Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/DataLoader.h +6 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/Device.h +21 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/DynamicTypes.h +36 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/Exceptions.h +390 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/Export.h +9 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/Generator.h +28 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/MemoryFormat.h +27 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/Module.h +6 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/Size.h +15 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/Storage.h +60 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/StorageMethods.h +8 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/Types.h +13 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/FunctionsManual.h +1101 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/anomaly_mode.h +71 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/autograd.h +104 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/cpp_hook.h +29 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/engine.h +288 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/forward_grad.h +210 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/functions/accumulate_grad.h +277 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/functions/basic_ops.h +111 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/functions/comm.h +47 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/functions/pybind.h +15 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/functions/tensor.h +186 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/functions/utils.h +114 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/generated/Functions.h +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/generated/VariableType.h +59 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/generated/ViewFuncs.h +953 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/generated/python_functions.h +25 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/generated/python_return_types.h +98 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/generated/variable_factories.h +736 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/graph_task.h +226 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/input_buffer.h +45 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/jit_decomp_interface.h +50 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/profiler.h +4 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/profiler_kineto.h +188 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/profiler_legacy.h +406 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/python_anomaly_mode.h +44 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/python_autograd.h +17 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/python_enum_tag.h +7 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/python_legacy_variable.h +12 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/python_nested_functions.h +9 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/python_nn_functions.h +7 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/python_sparse_functions.h +7 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/python_variable.h +114 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/python_variable_indexing.h +102 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/saved_variable_hooks.h +13 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/utils/error_messages.h +22 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/utils/grad_layout_contract.h +80 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/utils/lambda_post_hook.h +40 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/utils/python_arg_parsing.h +53 -0
llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/DataLoader.h
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/python_headers.h>
|
4 |
+
|
5 |
+
// NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays,cppcoreguidelines-avoid-non-const-global-variables,modernize-avoid-c-arrays)
|
6 |
+
extern PyMethodDef DataLoaderMethods[];
|
llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/Device.h
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/Export.h>
|
4 |
+
#include <torch/csrc/python_headers.h>
|
5 |
+
|
6 |
+
#include <ATen/Device.h>
|
7 |
+
|
8 |
+
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
|
9 |
+
struct TORCH_API THPDevice {
|
10 |
+
PyObject_HEAD at::Device device;
|
11 |
+
};
|
12 |
+
|
13 |
+
TORCH_API extern PyTypeObject THPDeviceType;
|
14 |
+
|
15 |
+
inline bool THPDevice_Check(PyObject* obj) {
|
16 |
+
return Py_TYPE(obj) == &THPDeviceType;
|
17 |
+
}
|
18 |
+
|
19 |
+
TORCH_API PyObject* THPDevice_New(const at::Device& device);
|
20 |
+
|
21 |
+
TORCH_API void THPDevice_init(PyObject* module);
|
llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/DynamicTypes.h
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// Provides conversions between Python tensor objects and at::Tensor.
|
4 |
+
|
5 |
+
#include <torch/csrc/python_headers.h>
|
6 |
+
|
7 |
+
#include <ATen/Device.h>
|
8 |
+
#include <c10/core/Backend.h>
|
9 |
+
#include <c10/core/Layout.h>
|
10 |
+
#include <c10/core/ScalarType.h>
|
11 |
+
#include <c10/core/ScalarTypeToTypeMeta.h>
|
12 |
+
#include <torch/csrc/Export.h>
|
13 |
+
|
14 |
+
#include <memory>
|
15 |
+
#include <string>
|
16 |
+
|
17 |
+
struct THPDtype;
|
18 |
+
struct THPLayout;
|
19 |
+
|
20 |
+
namespace c10 {
|
21 |
+
struct Storage;
|
22 |
+
}
|
23 |
+
|
24 |
+
namespace torch {
|
25 |
+
void registerDtypeObject(THPDtype* dtype, at::ScalarType scalarType);
|
26 |
+
void registerLayoutObject(THPLayout* thp_layout, at::Layout layout);
|
27 |
+
|
28 |
+
TORCH_PYTHON_API PyObject* createPyObject(const at::Storage& storage);
|
29 |
+
at::Storage createStorage(PyObject* obj);
|
30 |
+
std::tuple<at::Storage, at::ScalarType, bool> createStorageGetType(
|
31 |
+
PyObject* obj);
|
32 |
+
bool isStorage(PyObject* obj);
|
33 |
+
|
34 |
+
TORCH_PYTHON_API THPDtype* getTHPDtype(at::ScalarType scalarType);
|
35 |
+
THPLayout* getTHPLayout(at::Layout layout);
|
36 |
+
} // namespace torch
|
llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/Exceptions.h
ADDED
@@ -0,0 +1,390 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <exception>
|
4 |
+
#include <memory>
|
5 |
+
#include <string>
|
6 |
+
#include <system_error>
|
7 |
+
|
8 |
+
#include <ATen/detail/FunctionTraits.h>
|
9 |
+
#include <c10/util/C++17.h>
|
10 |
+
#include <c10/util/Exception.h>
|
11 |
+
#include <c10/util/StringUtil.h>
|
12 |
+
#include <pybind11/pybind11.h>
|
13 |
+
#include <torch/csrc/Export.h>
|
14 |
+
#include <torch/csrc/jit/runtime/jit_exception.h>
|
15 |
+
#include <torch/csrc/utils/cpp_stacktraces.h>
|
16 |
+
#include <torch/csrc/utils/pybind.h>
|
17 |
+
|
18 |
+
#if defined(USE_DISTRIBUTED) && defined(USE_C10D)
|
19 |
+
#include <torch/csrc/distributed/c10d/exception.h>
|
20 |
+
#endif
|
21 |
+
|
22 |
+
static inline void PyErr_SetString(PyObject* type, const std::string& message) {
|
23 |
+
PyErr_SetString(type, message.c_str());
|
24 |
+
}
|
25 |
+
/// NOTE [ Conversion Cpp Python Warning ]
|
26 |
+
/// The warning handler cannot set python warnings immediately
|
27 |
+
/// as it requires acquiring the GIL (potential deadlock)
|
28 |
+
/// and would need to cleanly exit if the warning raised a
|
29 |
+
/// python error. To solve this, we buffer the warnings and
|
30 |
+
/// process them when we go back to python.
|
31 |
+
/// This requires the two try/catch blocks below to handle the
|
32 |
+
/// following cases:
|
33 |
+
/// - If there is no Error raised in the inner try/catch, the
|
34 |
+
/// buffered warnings are processed as python warnings.
|
35 |
+
/// - If they don't raise an error, the function process with the
|
36 |
+
/// original return code.
|
37 |
+
/// - If any of them raise an error, the error is set (PyErr_*) and
|
38 |
+
/// the destructor will raise a cpp exception python_error() that
|
39 |
+
/// will be caught by the outer try/catch that will be able to change
|
40 |
+
/// the return value of the function to reflect the error.
|
41 |
+
/// - If an Error was raised in the inner try/catch, the inner try/catch
|
42 |
+
/// must set the python error. The buffered warnings are then
|
43 |
+
/// processed as cpp warnings as we cannot predict before hand
|
44 |
+
/// whether a python warning will raise an error or not and we
|
45 |
+
/// cannot handle two errors at the same time.
|
46 |
+
/// This advanced handler will only be used in the current thread.
|
47 |
+
/// If any other thread is used, warnings will be processed as
|
48 |
+
/// cpp warnings.
|
49 |
+
#define HANDLE_TH_ERRORS \
|
50 |
+
try { \
|
51 |
+
torch::PyWarningHandler __enforce_warning_buffer; \
|
52 |
+
try {
|
53 |
+
#define _CATCH_GENERIC_ERROR(ErrorType, PythonErrorType, retstmnt) \
|
54 |
+
catch (const c10::ErrorType& e) { \
|
55 |
+
auto msg = torch::get_cpp_stacktraces_enabled() \
|
56 |
+
? e.what() \
|
57 |
+
: e.what_without_backtrace(); \
|
58 |
+
PyErr_SetString(PythonErrorType, torch::processErrorMsg(msg)); \
|
59 |
+
retstmnt; \
|
60 |
+
}
|
61 |
+
|
62 |
+
// Only catch torch-specific exceptions
|
63 |
+
#define CATCH_CORE_ERRORS(retstmnt) \
|
64 |
+
catch (python_error & e) { \
|
65 |
+
e.restore(); \
|
66 |
+
retstmnt; \
|
67 |
+
} \
|
68 |
+
catch (py::error_already_set & e) { \
|
69 |
+
e.restore(); \
|
70 |
+
retstmnt; \
|
71 |
+
} \
|
72 |
+
_CATCH_GENERIC_ERROR(IndexError, PyExc_IndexError, retstmnt) \
|
73 |
+
_CATCH_GENERIC_ERROR(ValueError, PyExc_ValueError, retstmnt) \
|
74 |
+
_CATCH_GENERIC_ERROR(TypeError, PyExc_TypeError, retstmnt) \
|
75 |
+
_CATCH_GENERIC_ERROR( \
|
76 |
+
NotImplementedError, PyExc_NotImplementedError, retstmnt) \
|
77 |
+
_CATCH_GENERIC_ERROR(LinAlgError, THPException_LinAlgError, retstmnt) \
|
78 |
+
_CATCH_GENERIC_ERROR( \
|
79 |
+
OutOfMemoryError, THPException_OutOfMemoryError, retstmnt) \
|
80 |
+
_CATCH_GENERIC_ERROR( \
|
81 |
+
DistBackendError, THPException_DistBackendError, retstmnt) \
|
82 |
+
_CATCH_GENERIC_ERROR( \
|
83 |
+
DistNetworkError, THPException_DistNetworkError, retstmnt) \
|
84 |
+
_CATCH_GENERIC_ERROR(DistStoreError, THPException_DistStoreError, retstmnt) \
|
85 |
+
_CATCH_GENERIC_ERROR(DistError, THPException_DistError, retstmnt) \
|
86 |
+
_CATCH_GENERIC_ERROR(Error, PyExc_RuntimeError, retstmnt) \
|
87 |
+
catch (torch::PyTorchError & e) { \
|
88 |
+
auto msg = torch::processErrorMsg(e.what()); \
|
89 |
+
PyErr_SetString(e.python_type(), msg); \
|
90 |
+
retstmnt; \
|
91 |
+
}
|
92 |
+
|
93 |
+
#define CATCH_TH_ERRORS(retstmnt) CATCH_CORE_ERRORS(retstmnt)
|
94 |
+
|
95 |
+
#define CATCH_ALL_ERRORS(retstmnt) \
|
96 |
+
CATCH_TH_ERRORS(retstmnt) \
|
97 |
+
catch (const std::exception& e) { \
|
98 |
+
auto msg = torch::processErrorMsg(e.what()); \
|
99 |
+
PyErr_SetString(PyExc_RuntimeError, msg); \
|
100 |
+
retstmnt; \
|
101 |
+
}
|
102 |
+
|
103 |
+
#define END_HANDLE_TH_ERRORS_PYBIND \
|
104 |
+
} \
|
105 |
+
catch (...) { \
|
106 |
+
__enforce_warning_buffer.set_in_exception(); \
|
107 |
+
throw; \
|
108 |
+
} \
|
109 |
+
} \
|
110 |
+
catch (py::error_already_set & e) { \
|
111 |
+
throw; \
|
112 |
+
} \
|
113 |
+
catch (py::builtin_exception & e) { \
|
114 |
+
throw; \
|
115 |
+
} \
|
116 |
+
catch (torch::jit::JITException & e) { \
|
117 |
+
throw; \
|
118 |
+
} \
|
119 |
+
catch (const std::exception& e) { \
|
120 |
+
torch::translate_exception_to_python(std::current_exception()); \
|
121 |
+
throw py::error_already_set(); \
|
122 |
+
}
|
123 |
+
|
124 |
+
#define END_HANDLE_TH_ERRORS_RET(retval) \
|
125 |
+
} \
|
126 |
+
catch (...) { \
|
127 |
+
__enforce_warning_buffer.set_in_exception(); \
|
128 |
+
throw; \
|
129 |
+
} \
|
130 |
+
} \
|
131 |
+
catch (const std::exception& e) { \
|
132 |
+
torch::translate_exception_to_python(std::current_exception()); \
|
133 |
+
return retval; \
|
134 |
+
}
|
135 |
+
|
136 |
+
#define END_HANDLE_TH_ERRORS END_HANDLE_TH_ERRORS_RET(nullptr)
|
137 |
+
|
138 |
+
extern PyObject *THPException_FatalError, *THPException_LinAlgError,
|
139 |
+
*THPException_OutOfMemoryError, *THPException_DistError,
|
140 |
+
*THPException_DistBackendError, *THPException_DistNetworkError,
|
141 |
+
*THPException_DistStoreError;
|
142 |
+
|
143 |
+
// Throwing this exception means that the python error flags have been already
|
144 |
+
// set and control should be immediately returned to the interpreter.
|
145 |
+
struct python_error : public std::exception {
|
146 |
+
python_error() = default;
|
147 |
+
|
148 |
+
python_error(const python_error& other)
|
149 |
+
: type(other.type),
|
150 |
+
value(other.value),
|
151 |
+
traceback(other.traceback),
|
152 |
+
message(other.message) {
|
153 |
+
pybind11::gil_scoped_acquire gil;
|
154 |
+
Py_XINCREF(type);
|
155 |
+
Py_XINCREF(value);
|
156 |
+
Py_XINCREF(traceback);
|
157 |
+
}
|
158 |
+
|
159 |
+
python_error(python_error&& other) noexcept
|
160 |
+
: type(other.type),
|
161 |
+
value(other.value),
|
162 |
+
traceback(other.traceback),
|
163 |
+
message(std::move(other.message)) {
|
164 |
+
other.type = nullptr;
|
165 |
+
other.value = nullptr;
|
166 |
+
other.traceback = nullptr;
|
167 |
+
}
|
168 |
+
|
169 |
+
// NOLINTNEXTLINE(bugprone-exception-escape)
|
170 |
+
~python_error() override {
|
171 |
+
if (type || value || traceback) {
|
172 |
+
pybind11::gil_scoped_acquire gil;
|
173 |
+
Py_XDECREF(type);
|
174 |
+
Py_XDECREF(value);
|
175 |
+
Py_XDECREF(traceback);
|
176 |
+
}
|
177 |
+
}
|
178 |
+
|
179 |
+
const char* what() const noexcept override {
|
180 |
+
return message.c_str();
|
181 |
+
}
|
182 |
+
|
183 |
+
void build_message() {
|
184 |
+
// Ensure we have the GIL.
|
185 |
+
pybind11::gil_scoped_acquire gil;
|
186 |
+
|
187 |
+
// No errors should be set when we enter the function since PyErr_Fetch
|
188 |
+
// clears the error indicator.
|
189 |
+
TORCH_INTERNAL_ASSERT(!PyErr_Occurred());
|
190 |
+
|
191 |
+
// Default message.
|
192 |
+
message = "python_error";
|
193 |
+
|
194 |
+
// Try to retrieve the error message from the value.
|
195 |
+
if (value != nullptr) {
|
196 |
+
// Reference count should not be zero.
|
197 |
+
TORCH_INTERNAL_ASSERT(Py_REFCNT(value) > 0);
|
198 |
+
|
199 |
+
PyObject* pyStr = PyObject_Str(value);
|
200 |
+
if (pyStr != nullptr) {
|
201 |
+
PyObject* encodedString =
|
202 |
+
PyUnicode_AsEncodedString(pyStr, "utf-8", "strict");
|
203 |
+
if (encodedString != nullptr) {
|
204 |
+
char* bytes = PyBytes_AS_STRING(encodedString);
|
205 |
+
if (bytes != nullptr) {
|
206 |
+
// Set the message.
|
207 |
+
message = std::string(bytes);
|
208 |
+
}
|
209 |
+
Py_XDECREF(encodedString);
|
210 |
+
}
|
211 |
+
Py_XDECREF(pyStr);
|
212 |
+
}
|
213 |
+
}
|
214 |
+
|
215 |
+
// Clear any errors since we don't want to propagate errors for functions
|
216 |
+
// that are trying to build a string for the error message.
|
217 |
+
PyErr_Clear();
|
218 |
+
}
|
219 |
+
|
220 |
+
/** Saves the exception so that it can be re-thrown on a different thread */
|
221 |
+
inline void persist() {
|
222 |
+
if (type)
|
223 |
+
return; // Don't overwrite exceptions
|
224 |
+
// PyErr_Fetch overwrites the pointers
|
225 |
+
pybind11::gil_scoped_acquire gil;
|
226 |
+
Py_XDECREF(type);
|
227 |
+
Py_XDECREF(value);
|
228 |
+
Py_XDECREF(traceback);
|
229 |
+
PyErr_Fetch(&type, &value, &traceback);
|
230 |
+
build_message();
|
231 |
+
}
|
232 |
+
|
233 |
+
/** Sets the current Python error from this exception */
|
234 |
+
inline void restore() {
|
235 |
+
if (!type)
|
236 |
+
return;
|
237 |
+
// PyErr_Restore steals references
|
238 |
+
pybind11::gil_scoped_acquire gil;
|
239 |
+
Py_XINCREF(type);
|
240 |
+
Py_XINCREF(value);
|
241 |
+
Py_XINCREF(traceback);
|
242 |
+
PyErr_Restore(type, value, traceback);
|
243 |
+
}
|
244 |
+
|
245 |
+
PyObject* type{nullptr};
|
246 |
+
PyObject* value{nullptr};
|
247 |
+
PyObject* traceback{nullptr};
|
248 |
+
|
249 |
+
// Message to return to the user when 'what()' is invoked.
|
250 |
+
std::string message;
|
251 |
+
};
|
252 |
+
|
253 |
+
bool THPException_init(PyObject* module);
|
254 |
+
|
255 |
+
namespace torch {
|
256 |
+
|
257 |
+
// Set python current exception from a C++ exception
|
258 |
+
TORCH_PYTHON_API void translate_exception_to_python(const std::exception_ptr&);
|
259 |
+
|
260 |
+
TORCH_PYTHON_API std::string processErrorMsg(std::string str);
|
261 |
+
|
262 |
+
// Abstract base class for exceptions which translate to specific Python types
|
263 |
+
struct PyTorchError : public std::exception {
|
264 |
+
PyTorchError() = default;
|
265 |
+
PyTorchError(std::string msg_) : msg(std::move(msg_)) {}
|
266 |
+
virtual PyObject* python_type() = 0;
|
267 |
+
const char* what() const noexcept override {
|
268 |
+
return msg.c_str();
|
269 |
+
}
|
270 |
+
std::string msg;
|
271 |
+
};
|
272 |
+
|
273 |
+
// Declare a printf-like function on gcc & clang
|
274 |
+
// The compiler can then warn on invalid format specifiers
|
275 |
+
#ifdef __GNUC__
|
276 |
+
#define TORCH_FORMAT_FUNC(FORMAT_INDEX, VA_ARGS_INDEX) \
|
277 |
+
__attribute__((format(printf, FORMAT_INDEX, VA_ARGS_INDEX)))
|
278 |
+
#else
|
279 |
+
#define TORCH_FORMAT_FUNC(FORMAT_INDEX, VA_ARGS_INDEX)
|
280 |
+
#endif
|
281 |
+
|
282 |
+
// Translates to Python TypeError
|
283 |
+
struct TypeError : public PyTorchError {
|
284 |
+
using PyTorchError::PyTorchError;
|
285 |
+
TORCH_PYTHON_API TypeError(const char* format, ...) TORCH_FORMAT_FUNC(2, 3);
|
286 |
+
PyObject* python_type() override {
|
287 |
+
return PyExc_TypeError;
|
288 |
+
}
|
289 |
+
};
|
290 |
+
|
291 |
+
// Translates to Python AttributeError
|
292 |
+
struct AttributeError : public PyTorchError {
|
293 |
+
AttributeError(const char* format, ...) TORCH_FORMAT_FUNC(2, 3);
|
294 |
+
PyObject* python_type() override {
|
295 |
+
return PyExc_AttributeError;
|
296 |
+
}
|
297 |
+
};
|
298 |
+
|
299 |
+
// ATen warning handler for Python
|
300 |
+
struct PyWarningHandler {
|
301 |
+
// Move actual handler into a separate class with a noexcept
|
302 |
+
// destructor. Otherwise, we need to force all WarningHandler
|
303 |
+
// subclasses to have a noexcept(false) destructor.
|
304 |
+
struct InternalHandler : at::WarningHandler {
|
305 |
+
~InternalHandler() override = default;
|
306 |
+
void process(const c10::Warning& warning) override;
|
307 |
+
|
308 |
+
std::vector<c10::Warning> warning_buffer_;
|
309 |
+
};
|
310 |
+
|
311 |
+
public:
|
312 |
+
/// See NOTE [ Conversion Cpp Python Warning ] for noexcept justification
|
313 |
+
TORCH_PYTHON_API PyWarningHandler() noexcept(true);
|
314 |
+
// NOLINTNEXTLINE(bugprone-exception-escape)
|
315 |
+
TORCH_PYTHON_API ~PyWarningHandler() noexcept(false);
|
316 |
+
|
317 |
+
/** Call if an exception has been thrown
|
318 |
+
|
319 |
+
* Necessary to determine if it is safe to throw from the desctructor since
|
320 |
+
* std::uncaught_exception is buggy on some platforms and generally
|
321 |
+
* unreliable across dynamic library calls.
|
322 |
+
*/
|
323 |
+
void set_in_exception() {
|
324 |
+
in_exception_ = true;
|
325 |
+
}
|
326 |
+
|
327 |
+
private:
|
328 |
+
InternalHandler internal_handler_;
|
329 |
+
at::WarningHandler* prev_handler_;
|
330 |
+
bool in_exception_;
|
331 |
+
};
|
332 |
+
|
333 |
+
namespace detail {
|
334 |
+
|
335 |
+
struct noop_gil_scoped_release {
|
336 |
+
// user-defined constructor (i.e. not defaulted) to avoid
|
337 |
+
// unused-variable warnings at usage sites of this class
|
338 |
+
noop_gil_scoped_release() {}
|
339 |
+
};
|
340 |
+
|
341 |
+
template <bool release_gil>
|
342 |
+
using conditional_gil_scoped_release = std::conditional_t<
|
343 |
+
release_gil,
|
344 |
+
pybind11::gil_scoped_release,
|
345 |
+
noop_gil_scoped_release>;
|
346 |
+
|
347 |
+
template <typename Func, size_t i>
|
348 |
+
using Arg = typename invoke_traits<Func>::template arg<i>::type;
|
349 |
+
|
350 |
+
template <typename Func, size_t... Is, bool release_gil>
|
351 |
+
auto wrap_pybind_function_impl_(
|
352 |
+
// NOLINTNEXTLINE(cppcoreguidelines-missing-std-forward)
|
353 |
+
Func&& f,
|
354 |
+
std::index_sequence<Is...>,
|
355 |
+
std::bool_constant<release_gil>) {
|
356 |
+
namespace py = pybind11;
|
357 |
+
|
358 |
+
// f=f is needed to handle function references on older compilers
|
359 |
+
return [f = std::forward<Func>(f)](Arg<Func, Is>... args) {
|
360 |
+
HANDLE_TH_ERRORS
|
361 |
+
conditional_gil_scoped_release<release_gil> no_gil;
|
362 |
+
return c10::guts::invoke(f, std::forward<Arg<Func, Is>>(args)...);
|
363 |
+
END_HANDLE_TH_ERRORS_PYBIND
|
364 |
+
};
|
365 |
+
}
|
366 |
+
} // namespace detail
|
367 |
+
|
368 |
+
// Wrap a function with TH error and warning handling.
|
369 |
+
// Returns a function object suitable for registering with pybind11.
|
370 |
+
template <typename Func>
|
371 |
+
auto wrap_pybind_function(Func&& f) {
|
372 |
+
using traits = invoke_traits<Func>;
|
373 |
+
return torch::detail::wrap_pybind_function_impl_(
|
374 |
+
std::forward<Func>(f),
|
375 |
+
std::make_index_sequence<traits::arity>{},
|
376 |
+
std::false_type{});
|
377 |
+
}
|
378 |
+
|
379 |
+
// Wrap a function with TH error, warning handling and releases the GIL.
|
380 |
+
// Returns a function object suitable for registering with pybind11.
|
381 |
+
template <typename Func>
|
382 |
+
auto wrap_pybind_function_no_gil(Func&& f) {
|
383 |
+
using traits = invoke_traits<Func>;
|
384 |
+
return torch::detail::wrap_pybind_function_impl_(
|
385 |
+
std::forward<Func>(f),
|
386 |
+
std::make_index_sequence<traits::arity>{},
|
387 |
+
std::true_type{});
|
388 |
+
}
|
389 |
+
|
390 |
+
} // namespace torch
|
llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/Export.h
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <c10/macros/Export.h>
|
4 |
+
|
5 |
+
#ifdef THP_BUILD_MAIN_LIB
|
6 |
+
#define TORCH_PYTHON_API C10_EXPORT
|
7 |
+
#else
|
8 |
+
#define TORCH_PYTHON_API C10_IMPORT
|
9 |
+
#endif
|
llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/Generator.h
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/core/Generator.h>
|
4 |
+
#include <torch/csrc/Export.h>
|
5 |
+
#include <torch/csrc/python_headers.h>
|
6 |
+
|
7 |
+
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
|
8 |
+
struct THPGenerator {
|
9 |
+
PyObject_HEAD at::Generator cdata;
|
10 |
+
};
|
11 |
+
|
12 |
+
// Creates a new Python object wrapping the default at::Generator. The reference
|
13 |
+
// is borrowed. The caller should ensure that the at::Generator object lifetime
|
14 |
+
// last at least as long as the Python wrapper.
|
15 |
+
TORCH_PYTHON_API PyObject* THPGenerator_initDefaultGenerator(
|
16 |
+
at::Generator cdata);
|
17 |
+
|
18 |
+
#define THPGenerator_Check(obj) PyObject_IsInstance(obj, THPGeneratorClass)
|
19 |
+
|
20 |
+
TORCH_PYTHON_API extern PyObject* THPGeneratorClass;
|
21 |
+
|
22 |
+
bool THPGenerator_init(PyObject* module);
|
23 |
+
|
24 |
+
TORCH_PYTHON_API PyObject* THPGenerator_Wrap(at::Generator gen);
|
25 |
+
|
26 |
+
// Creates a new Python object for a Generator. The Generator must not already
|
27 |
+
// have a PyObject* associated with it.
|
28 |
+
PyObject* THPGenerator_NewWithVar(PyTypeObject* type, at::Generator gen);
|
llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/MemoryFormat.h
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/python_headers.h>
|
4 |
+
|
5 |
+
#include <c10/core/MemoryFormat.h>
|
6 |
+
|
7 |
+
#include <string>
|
8 |
+
|
9 |
+
const int MEMORY_FORMAT_NAME_LEN = 64;
|
10 |
+
|
11 |
+
struct THPMemoryFormat {
|
12 |
+
PyObject_HEAD at::MemoryFormat memory_format;
|
13 |
+
// NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays,modernize-avoid-c-arrays)
|
14 |
+
char name[MEMORY_FORMAT_NAME_LEN + 1];
|
15 |
+
};
|
16 |
+
|
17 |
+
extern PyTypeObject THPMemoryFormatType;
|
18 |
+
|
19 |
+
inline bool THPMemoryFormat_Check(PyObject* obj) {
|
20 |
+
return Py_TYPE(obj) == &THPMemoryFormatType;
|
21 |
+
}
|
22 |
+
|
23 |
+
PyObject* THPMemoryFormat_New(
|
24 |
+
at::MemoryFormat memory_format,
|
25 |
+
const std::string& name);
|
26 |
+
|
27 |
+
void THPMemoryFormat_init(PyObject* module);
|
llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/Module.h
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#ifndef THP_MODULE_INC
|
2 |
+
#define THP_MODULE_INC
|
3 |
+
|
4 |
+
#define THP_STATELESS_ATTRIBUTE_NAME "_torch"
|
5 |
+
|
6 |
+
#endif
|
llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/Size.h
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/autograd/variable.h>
|
4 |
+
#include <torch/csrc/python_headers.h>
|
5 |
+
#include <cstdint>
|
6 |
+
|
7 |
+
extern PyTypeObject THPSizeType;
|
8 |
+
|
9 |
+
#define THPSize_Check(obj) (Py_TYPE(obj) == &THPSizeType)
|
10 |
+
|
11 |
+
PyObject* THPSize_New(const torch::autograd::Variable& t);
|
12 |
+
PyObject* THPSize_NewFromSizes(int64_t dim, const int64_t* sizes);
|
13 |
+
PyObject* THPSize_NewFromSymSizes(const at::Tensor& t);
|
14 |
+
|
15 |
+
void THPSize_init(PyObject* module);
|
llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/Storage.h
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#ifndef THP_STORAGE_INC
|
2 |
+
#define THP_STORAGE_INC
|
3 |
+
|
4 |
+
#include <Python.h>
|
5 |
+
#include <c10/core/Storage.h>
|
6 |
+
#include <torch/csrc/Exceptions.h>
|
7 |
+
#include <torch/csrc/Export.h>
|
8 |
+
#include <torch/csrc/Types.h>
|
9 |
+
|
10 |
+
#define THPStorageStr "torch.UntypedStorage"
|
11 |
+
|
12 |
+
struct THPStorage {
|
13 |
+
PyObject_HEAD;
|
14 |
+
c10::MaybeOwned<c10::Storage> cdata;
|
15 |
+
bool is_hermetic;
|
16 |
+
};
|
17 |
+
|
18 |
+
TORCH_PYTHON_API PyObject* THPStorage_Wrap(c10::Storage storage);
|
19 |
+
TORCH_PYTHON_API PyObject* THPStorage_NewWithStorage(
|
20 |
+
PyTypeObject* type,
|
21 |
+
c10::Storage _storage,
|
22 |
+
c10::impl::PyInterpreterStatus status,
|
23 |
+
bool allow_preexisting_pyobj = false);
|
24 |
+
extern PyTypeObject* THPStorageClass;
|
25 |
+
|
26 |
+
static inline bool THPStorage_CheckTypeExact(PyTypeObject* tp) {
|
27 |
+
return tp == THPStorageClass;
|
28 |
+
}
|
29 |
+
|
30 |
+
static inline bool THPStorage_CheckExact(PyObject* obj) {
|
31 |
+
return THPStorage_CheckTypeExact(Py_TYPE(obj));
|
32 |
+
}
|
33 |
+
|
34 |
+
inline bool THPStorage_Check(PyObject* obj) {
|
35 |
+
if (!THPStorageClass)
|
36 |
+
return false;
|
37 |
+
|
38 |
+
const auto result = PyObject_IsInstance(obj, (PyObject*)THPStorageClass);
|
39 |
+
if (result == -1)
|
40 |
+
throw python_error();
|
41 |
+
return result;
|
42 |
+
}
|
43 |
+
|
44 |
+
bool THPStorage_init(PyObject* module);
|
45 |
+
void THPStorage_postInit(PyObject* module);
|
46 |
+
|
47 |
+
void THPStorage_assertNotNull(THPStorage* storage);
|
48 |
+
void THPStorage_assertNotNull(PyObject* obj);
|
49 |
+
|
50 |
+
extern PyTypeObject THPStorageType;
|
51 |
+
|
52 |
+
inline const c10::Storage& THPStorage_Unpack(THPStorage* storage) {
|
53 |
+
return *storage->cdata;
|
54 |
+
}
|
55 |
+
|
56 |
+
inline const c10::Storage& THPStorage_Unpack(PyObject* obj) {
|
57 |
+
return THPStorage_Unpack(reinterpret_cast<THPStorage*>(obj));
|
58 |
+
}
|
59 |
+
|
60 |
+
#endif
|
llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/StorageMethods.h
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#ifndef THP_STORAGE_METHODS_INC
|
2 |
+
#define THP_STORAGE_METHODS_INC
|
3 |
+
|
4 |
+
#include <Python.h>
|
5 |
+
|
6 |
+
PyMethodDef* THPStorage_getMethods();
|
7 |
+
|
8 |
+
#endif
|
llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/Types.h
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#ifndef THP_TYPES_INC
|
2 |
+
#define THP_TYPES_INC
|
3 |
+
|
4 |
+
#include <cstddef>
|
5 |
+
|
6 |
+
#ifndef INT64_MAX
|
7 |
+
#include <cstdint>
|
8 |
+
#endif
|
9 |
+
|
10 |
+
template <typename T>
|
11 |
+
struct THPTypeInfo {};
|
12 |
+
|
13 |
+
#endif
|
llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/FunctionsManual.h
ADDED
@@ -0,0 +1,1101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// NB: Must be at the top of file to avoid including the deprecated "math.h".
|
4 |
+
// https://stackoverflow.com/questions/6563810/m-pi-works-with-math-h-but-not-with-cmath-in-visual-studio
|
5 |
+
#ifdef _MSC_VER
|
6 |
+
#ifndef _USE_MATH_DEFINES
|
7 |
+
#define _USE_MATH_DEFINES
|
8 |
+
#endif
|
9 |
+
#include <cmath>
|
10 |
+
#endif
|
11 |
+
|
12 |
+
#include <ATen/ATen.h>
|
13 |
+
#include <torch/csrc/autograd/generated/Functions.h>
|
14 |
+
|
15 |
+
namespace torch::autograd::generated::details {
|
16 |
+
|
17 |
+
extern const char* kCudnnDoubleBackwardMsg;
|
18 |
+
|
19 |
+
// A simple way to imperatively compute index ranges for slots
|
20 |
+
// that have been flattened
|
21 |
+
struct TORCH_API IndexRangeGenerator {
|
22 |
+
IndexRange range(size_t range_size) {
|
23 |
+
i += range_size;
|
24 |
+
return {i - range_size, i};
|
25 |
+
}
|
26 |
+
size_t size() {
|
27 |
+
return i;
|
28 |
+
}
|
29 |
+
|
30 |
+
private:
|
31 |
+
size_t i = 0;
|
32 |
+
};
|
33 |
+
|
34 |
+
TORCH_API Tensor toNonOptFwGrad(const c10::optional<Tensor>& t);
|
35 |
+
TORCH_API Tensor toNonOptPrimal(const c10::optional<Tensor>& t);
|
36 |
+
TORCH_API Tensor toNonOptTensor(const c10::optional<Tensor>& t);
|
37 |
+
|
38 |
+
TORCH_API inline c10::optional<Tensor> wrap_opt_if(
|
39 |
+
const Tensor& t,
|
40 |
+
const bool cond) {
|
41 |
+
using OptTensor = c10::optional<Tensor>;
|
42 |
+
return cond ? OptTensor(t) : static_cast<OptTensor>(c10::nullopt);
|
43 |
+
}
|
44 |
+
|
45 |
+
TORCH_API Tensor
|
46 |
+
apply_loss_reduction(const Tensor& unreduced, int64_t reduction);
|
47 |
+
TORCH_API bool any_variable_defined(const variable_list& variables);
|
48 |
+
TORCH_API void copy_range(
|
49 |
+
variable_list& out,
|
50 |
+
IndexRange range,
|
51 |
+
const at::Tensor& t);
|
52 |
+
TORCH_API void copy_range(
|
53 |
+
variable_list& out,
|
54 |
+
IndexRange range,
|
55 |
+
at::ArrayRef<at::Tensor> t);
|
56 |
+
TORCH_API at::Tensor copysign_tensor_self_backward(
|
57 |
+
const Tensor& grad,
|
58 |
+
const Tensor& self,
|
59 |
+
const Tensor& result);
|
60 |
+
TORCH_API at::Tensor not_implemented(const char* name, const char* reason = "");
|
61 |
+
TORCH_API std::vector<Tensor> not_implemented_list(
|
62 |
+
const char* name,
|
63 |
+
const char* reason = "");
|
64 |
+
at::Tensor handle_r_to_c(ScalarType self_st, Tensor gradient_result);
|
65 |
+
at::Tensor maybe_multiply(const at::Tensor& t, const at::Scalar& s);
|
66 |
+
int64_t _safe_size(IntArrayRef sizes, IntArrayRef dim);
|
67 |
+
Tensor restore_reduced_dims(
|
68 |
+
const Tensor& output,
|
69 |
+
IntArrayRef dims,
|
70 |
+
bool keepdim);
|
71 |
+
Tensor scale_grad_by_count(
|
72 |
+
const Tensor& grad,
|
73 |
+
const Tensor& mask,
|
74 |
+
IntArrayRef dims);
|
75 |
+
at::Tensor norm_backward(
|
76 |
+
const at::Tensor& grad,
|
77 |
+
const at::Tensor& self,
|
78 |
+
const optional<at::Scalar>& p_,
|
79 |
+
const at::Tensor& norm);
|
80 |
+
at::Tensor norm_backward(
|
81 |
+
at::Tensor grad,
|
82 |
+
const at::Tensor& self,
|
83 |
+
const optional<at::Scalar>& p_,
|
84 |
+
at::Tensor norm,
|
85 |
+
at::IntArrayRef dim,
|
86 |
+
bool keepdim);
|
87 |
+
Tensor norm_jvp(
|
88 |
+
const Tensor& self_p,
|
89 |
+
const Tensor& self_t,
|
90 |
+
const optional<Scalar>& p_,
|
91 |
+
Tensor norm,
|
92 |
+
IntArrayRef dim,
|
93 |
+
bool keepdim);
|
94 |
+
Tensor norm_jvp(
|
95 |
+
const Tensor& grad,
|
96 |
+
const Tensor& self,
|
97 |
+
const optional<Scalar>& p_,
|
98 |
+
Tensor norm);
|
99 |
+
Tensor _nested_from_padded_backward(
|
100 |
+
const Tensor& grad,
|
101 |
+
const Tensor& input,
|
102 |
+
const bool do_transform_0213);
|
103 |
+
std::tuple<Tensor, Tensor, Tensor> linear_double_backward(
|
104 |
+
const variable_list& grads,
|
105 |
+
const Tensor& self,
|
106 |
+
const Tensor& grad_output,
|
107 |
+
const Tensor& weight);
|
108 |
+
Tensor linalg_vector_norm_jvp(
|
109 |
+
const Tensor& self_p,
|
110 |
+
const Tensor& self_t,
|
111 |
+
const Scalar& scalar_ord,
|
112 |
+
Tensor norm,
|
113 |
+
const at::OptionalIntArrayRef& opt_dim,
|
114 |
+
bool keepdim);
|
115 |
+
at::Tensor linalg_vector_norm_backward(
|
116 |
+
at::Tensor grad,
|
117 |
+
const at::Tensor& self,
|
118 |
+
const at::Scalar& ord,
|
119 |
+
at::Tensor norm,
|
120 |
+
const at::OptionalIntArrayRef& opt_dim,
|
121 |
+
bool keepdim);
|
122 |
+
at::Tensor pow_backward(
|
123 |
+
at::Tensor grad,
|
124 |
+
const at::Tensor& self,
|
125 |
+
const at::Scalar& exponent_);
|
126 |
+
at::Tensor pow_backward_self(
|
127 |
+
const at::Tensor& grad,
|
128 |
+
const at::Tensor& self,
|
129 |
+
const at::Tensor& exponent);
|
130 |
+
at::Tensor pow_backward_exponent(
|
131 |
+
const at::Tensor& grad,
|
132 |
+
const at::Tensor& self,
|
133 |
+
const at::Tensor& exponent,
|
134 |
+
const at::Tensor& result);
|
135 |
+
at::Tensor pow_backward_exponent(
|
136 |
+
const at::Tensor& grad,
|
137 |
+
const at::Scalar& base,
|
138 |
+
const at::Tensor& exponent,
|
139 |
+
const at::Tensor& result);
|
140 |
+
at::Tensor angle_backward(const at::Tensor& grad, const at::Tensor& self);
|
141 |
+
template <typename T>
|
142 |
+
at::Tensor mul_tensor_backward(const Tensor& grad, T other, ScalarType self_st);
|
143 |
+
template <typename T>
|
144 |
+
at::Tensor div_tensor_self_backward(
|
145 |
+
const Tensor& grad,
|
146 |
+
T other,
|
147 |
+
ScalarType self_st);
|
148 |
+
at::Tensor div_tensor_other_backward(
|
149 |
+
const Tensor& grad,
|
150 |
+
const Tensor& self,
|
151 |
+
const Tensor& other);
|
152 |
+
template <typename T>
|
153 |
+
at::Tensor div_tensor_self_backward(
|
154 |
+
const Tensor& grad,
|
155 |
+
T other,
|
156 |
+
ScalarType self_st,
|
157 |
+
const c10::optional<c10::string_view>& rounding_mode);
|
158 |
+
at::Tensor div_tensor_other_backward(
|
159 |
+
const Tensor& grad,
|
160 |
+
const Tensor& self,
|
161 |
+
const Tensor& other,
|
162 |
+
const c10::optional<c10::string_view>& rounding_mode);
|
163 |
+
at::Tensor mvlgamma_backward(
|
164 |
+
const at::Tensor& grad,
|
165 |
+
const at::Tensor& self,
|
166 |
+
int64_t p);
|
167 |
+
at::Tensor permute_backwards(const at::Tensor& grad, at::IntArrayRef fwd_dims);
|
168 |
+
at::Tensor rad2deg_backward(const at::Tensor& grad);
|
169 |
+
at::Tensor deg2rad_backward(const at::Tensor& grad);
|
170 |
+
at::Tensor unsqueeze_multiple(
|
171 |
+
const at::Tensor& t,
|
172 |
+
at::OptionalIntArrayRef opt_dim,
|
173 |
+
size_t n_dims);
|
174 |
+
at::Tensor sum_backward(
|
175 |
+
const at::Tensor& grad,
|
176 |
+
at::SymIntArrayRef sizes,
|
177 |
+
at::OptionalIntArrayRef opt_dims,
|
178 |
+
bool keepdim);
|
179 |
+
at::Tensor sum_backward(
|
180 |
+
const at::Tensor& grad,
|
181 |
+
c10::SymIntArrayRef sizes,
|
182 |
+
c10::IntArrayRef dims,
|
183 |
+
bool keepdim);
|
184 |
+
at::Tensor nansum_backward(
|
185 |
+
const at::Tensor& grad,
|
186 |
+
const at::Tensor& self,
|
187 |
+
at::OptionalIntArrayRef dims,
|
188 |
+
bool keepdim);
|
189 |
+
std::vector<int64_t> reverse_list(const at::IntArrayRef list);
|
190 |
+
std::vector<c10::SymInt> reverse_list_symint(const c10::SymIntArrayRef list);
|
191 |
+
at::Tensor reverse_dim(const at::Tensor& t, int64_t dim);
|
192 |
+
at::Tensor prod_safe_zeros_backward(
|
193 |
+
const at::Tensor& grad,
|
194 |
+
const at::Tensor& inp,
|
195 |
+
int64_t dim);
|
196 |
+
at::Tensor prod_backward(
|
197 |
+
const at::Tensor& grad,
|
198 |
+
const at::Tensor& input,
|
199 |
+
const at::Tensor& result);
|
200 |
+
at::Tensor prod_backward(
|
201 |
+
at::Tensor grad,
|
202 |
+
const at::Tensor& input,
|
203 |
+
at::Tensor result,
|
204 |
+
int64_t dim,
|
205 |
+
bool keepdim);
|
206 |
+
at::Tensor solve_jvp(
|
207 |
+
const Tensor& X,
|
208 |
+
const Tensor& A,
|
209 |
+
const Tensor& dA,
|
210 |
+
const Tensor& dB);
|
211 |
+
at::Tensor solve_backward_self(
|
212 |
+
const at::Tensor& grad,
|
213 |
+
const at::Tensor& self,
|
214 |
+
const at::Tensor& A);
|
215 |
+
at::Tensor solve_backward_A(
|
216 |
+
const at::Tensor& grad,
|
217 |
+
const at::Tensor& self,
|
218 |
+
const at::Tensor& A,
|
219 |
+
const at::Tensor& solution);
|
220 |
+
at::Tensor cumsum_backward(const at::Tensor& grad, int64_t dim);
|
221 |
+
at::Tensor logsumexp_backward(
|
222 |
+
at::Tensor grad,
|
223 |
+
const at::Tensor& self,
|
224 |
+
at::Tensor result,
|
225 |
+
at::IntArrayRef dim,
|
226 |
+
bool keepdim);
|
227 |
+
at::Tensor logsumexp_jvp(
|
228 |
+
const at::Tensor& self_p,
|
229 |
+
const at::Tensor& self_t,
|
230 |
+
IntArrayRef dim,
|
231 |
+
bool keepdim);
|
232 |
+
at::Tensor logcumsumexp_backward(
|
233 |
+
at::Tensor grad,
|
234 |
+
const at::Tensor& self,
|
235 |
+
at::Tensor result,
|
236 |
+
int64_t dim);
|
237 |
+
at::Tensor logcumsumexp_jvp(
|
238 |
+
const at::Tensor& self_p,
|
239 |
+
const at::Tensor& self_t,
|
240 |
+
int64_t dim);
|
241 |
+
at::Tensor unbind_backward(const variable_list& grads, int64_t dim);
|
242 |
+
at::Tensor unbind_backward_nested(
|
243 |
+
const variable_list& grads,
|
244 |
+
const Tensor& nt_sizes,
|
245 |
+
int64_t dim,
|
246 |
+
const at::TensorOptions& options);
|
247 |
+
at::Tensor unsqueeze_to(const at::Tensor& self, c10::SymIntArrayRef sym_sizes);
|
248 |
+
at::Tensor unsqueeze_to(
|
249 |
+
const at::Tensor& self,
|
250 |
+
int64_t dim,
|
251 |
+
c10::SymIntArrayRef sym_sizes);
|
252 |
+
at::Tensor unsqueeze_to(
|
253 |
+
const at::Tensor& self,
|
254 |
+
IntArrayRef dim,
|
255 |
+
c10::SymIntArrayRef sym_sizes);
|
256 |
+
std::vector<at::Tensor> cat_tensors_backward(
|
257 |
+
const at::Tensor& grad,
|
258 |
+
const std::vector<std::vector<c10::SymInt>>& sizes,
|
259 |
+
const std::vector<ScalarType>& dtypes,
|
260 |
+
int64_t dim);
|
261 |
+
std::vector<at::Tensor> stack_tensors_backward(
|
262 |
+
const at::Tensor& grad,
|
263 |
+
int64_t dim,
|
264 |
+
const std::vector<ScalarType>& dtypes);
|
265 |
+
std::vector<at::Tensor> block_diag_backward(
|
266 |
+
const at::Tensor& grad,
|
267 |
+
const std::vector<std::vector<int64_t>>& sizes,
|
268 |
+
const std::vector<ScalarType>& dtypes);
|
269 |
+
at::Tensor clamp_backward(
|
270 |
+
const at::Tensor& grad,
|
271 |
+
const at::Tensor& self,
|
272 |
+
const optional<at::Scalar>& min,
|
273 |
+
const optional<at::Scalar>& max);
|
274 |
+
at::Tensor clamp_backward(
|
275 |
+
const at::Tensor& grad,
|
276 |
+
const at::Tensor& self,
|
277 |
+
const at::Tensor& min,
|
278 |
+
const at::Tensor& max);
|
279 |
+
std::tuple<at::Tensor, at::Tensor> clamp_backward_min_max(
|
280 |
+
const at::Tensor& grad,
|
281 |
+
const at::Tensor& self,
|
282 |
+
const at::Tensor& min,
|
283 |
+
const at::Tensor& max,
|
284 |
+
const std::array<bool, 2>&);
|
285 |
+
at::Tensor clamp_jvp(
|
286 |
+
const Tensor& self_p,
|
287 |
+
const Tensor& self_t,
|
288 |
+
const Tensor& min_p,
|
289 |
+
const Tensor& min_t,
|
290 |
+
const Tensor& max_p,
|
291 |
+
const Tensor& max_t);
|
292 |
+
at::SymIntArrayRef strides_or_error(
|
293 |
+
const Tensor& input,
|
294 |
+
c10::string_view const& input_name);
|
295 |
+
at::Tensor mm_mat1_backward(
|
296 |
+
const Tensor& grad,
|
297 |
+
const Tensor& mat2,
|
298 |
+
at::SymIntArrayRef mat1_sizes,
|
299 |
+
at::SymIntArrayRef mat1_strides,
|
300 |
+
c10::Layout mat1_layout,
|
301 |
+
const Scalar& alpha);
|
302 |
+
at::Tensor mm_mat2_backward(
|
303 |
+
const at::Tensor& grad,
|
304 |
+
const at::Tensor& mat1,
|
305 |
+
at::SymIntArrayRef sizes,
|
306 |
+
at::SymIntArrayRef strides,
|
307 |
+
c10::Layout layout,
|
308 |
+
const at::Scalar& alpha);
|
309 |
+
at::Tensor mm_mat1_sparse_backward(
|
310 |
+
const at::Tensor& grad,
|
311 |
+
const at::Tensor& mat1,
|
312 |
+
const at::Tensor& mat2,
|
313 |
+
const at::Scalar& alpha);
|
314 |
+
std::tuple<Tensor, Tensor, Tensor> sparse_sampled_addmm_backward(
|
315 |
+
const Tensor& grad,
|
316 |
+
const Tensor& self,
|
317 |
+
const c10::optional<Tensor>& mat1,
|
318 |
+
const c10::optional<Tensor>& mat2,
|
319 |
+
const Scalar& alpha,
|
320 |
+
const Scalar& beta,
|
321 |
+
const std::array<bool, 3>& grad_input_mask);
|
322 |
+
at::Tensor sparse_mask_backward(
|
323 |
+
const at::Tensor& grad,
|
324 |
+
const at::Tensor& mask,
|
325 |
+
c10::Layout self_layout);
|
326 |
+
at::Tensor sparse_sparse_matmul_backward(
|
327 |
+
const at::Tensor& grad,
|
328 |
+
const at::Tensor& mat1,
|
329 |
+
const at::Tensor& mat2,
|
330 |
+
int64_t grad_order);
|
331 |
+
at::Tensor renorm_backward(
|
332 |
+
const at::Tensor& grad,
|
333 |
+
const at::Tensor& self,
|
334 |
+
const at::Scalar& p,
|
335 |
+
int64_t dim,
|
336 |
+
const at::Scalar& maxnorm);
|
337 |
+
at::Tensor renorm_jvp(
|
338 |
+
const at::Tensor& self_p,
|
339 |
+
const at::Tensor& self_t,
|
340 |
+
const at::Scalar& p,
|
341 |
+
int64_t dim,
|
342 |
+
const at::Scalar& maxnorm);
|
343 |
+
at::Tensor repeat_backward(
|
344 |
+
at::Tensor grad,
|
345 |
+
at::SymIntArrayRef repeats,
|
346 |
+
at::SymIntArrayRef input_shape);
|
347 |
+
at::Tensor _fused_dropout_backward(
|
348 |
+
const at::Tensor& grad,
|
349 |
+
const at::Tensor& mask,
|
350 |
+
double p1m);
|
351 |
+
at::Tensor infinitely_differentiable_native_dropout_backward(
|
352 |
+
const at::Tensor& grad,
|
353 |
+
const at::Tensor& mask,
|
354 |
+
double scale);
|
355 |
+
at::Tensor native_dropout_double_backward(
|
356 |
+
const at::Tensor& ggI,
|
357 |
+
const at::Tensor& grad,
|
358 |
+
const at::Tensor& mask,
|
359 |
+
double scale);
|
360 |
+
at::Tensor evenly_distribute_backward(
|
361 |
+
const at::Tensor& grad,
|
362 |
+
const at::Tensor& input,
|
363 |
+
const at::Tensor& value);
|
364 |
+
Tensor sgn_backward(const Tensor& x, const Tensor& gx, const Tensor& sgn);
|
365 |
+
Tensor masked_fill_backward(const Tensor& grad, const Tensor& mask);
|
366 |
+
at::Tensor var_backward(
|
367 |
+
at::Tensor grad,
|
368 |
+
const at::Tensor& self,
|
369 |
+
at::OptionalIntArrayRef dim,
|
370 |
+
const c10::optional<c10::Scalar>& correction,
|
371 |
+
bool keepdim);
|
372 |
+
at::Tensor var_jvp(
|
373 |
+
const at::Tensor& self_t,
|
374 |
+
const at::Tensor& self_p,
|
375 |
+
const at::Tensor& result,
|
376 |
+
at::OptionalIntArrayRef dim_opt,
|
377 |
+
const c10::optional<c10::Scalar>& correction,
|
378 |
+
bool keepdim);
|
379 |
+
at::Tensor std_backward(
|
380 |
+
const at::Tensor& result,
|
381 |
+
const at::Tensor& grad,
|
382 |
+
const at::Tensor& self,
|
383 |
+
at::OptionalIntArrayRef dim,
|
384 |
+
const c10::optional<c10::Scalar>& correction,
|
385 |
+
bool keepdim);
|
386 |
+
Tensor mean_backward(
|
387 |
+
const Tensor& grad,
|
388 |
+
c10::SymIntArrayRef shape,
|
389 |
+
at::OptionalIntArrayRef opt_dim,
|
390 |
+
c10::SymInt numel,
|
391 |
+
bool keepdim);
|
392 |
+
Tensor var_mean_backward(
|
393 |
+
const Tensor& gvar,
|
394 |
+
const Tensor& gmean,
|
395 |
+
const Tensor& self,
|
396 |
+
at::OptionalIntArrayRef dim_opt,
|
397 |
+
const c10::optional<c10::Scalar>& correction,
|
398 |
+
bool keepdim);
|
399 |
+
Tensor std_mean_backward(
|
400 |
+
const Tensor& gstd,
|
401 |
+
const Tensor& gmean,
|
402 |
+
const Tensor& self,
|
403 |
+
const Tensor& std,
|
404 |
+
at::OptionalIntArrayRef dim_opt,
|
405 |
+
const c10::optional<c10::Scalar>& correction,
|
406 |
+
bool keepdim);
|
407 |
+
at::Tensor cholesky_backward(
|
408 |
+
const at::Tensor& grad,
|
409 |
+
bool upper,
|
410 |
+
const at::Tensor& L);
|
411 |
+
at::Tensor cholesky_jvp(
|
412 |
+
const at::Tensor& input_tangent,
|
413 |
+
const at::Tensor& L,
|
414 |
+
bool upper);
|
415 |
+
at::Tensor cholesky_inverse_backward(
|
416 |
+
const at::Tensor& grad,
|
417 |
+
const at::Tensor& L,
|
418 |
+
bool upper,
|
419 |
+
const at::Tensor& inverse);
|
420 |
+
at::Tensor cholesky_inverse_jvp(
|
421 |
+
const at::Tensor& F,
|
422 |
+
const at::Tensor& dF,
|
423 |
+
const at::Tensor& X,
|
424 |
+
bool upper);
|
425 |
+
Tensor pinv_jvp(const Tensor& A, const Tensor& pinvA, const Tensor& dA);
|
426 |
+
Tensor pinv_backward(const Tensor& grad, const Tensor& pinvA, const Tensor& A);
|
427 |
+
at::Tensor split_with_sizes_backward(
|
428 |
+
const std::vector<torch::autograd::Variable>& grads,
|
429 |
+
c10::SymIntArrayRef split_sizes,
|
430 |
+
int64_t dim,
|
431 |
+
c10::SymIntArrayRef sizes,
|
432 |
+
const at::TensorOptions& options);
|
433 |
+
at::Tensor _nested_split_with_sizes_backward(
|
434 |
+
const std::vector<torch::autograd::Variable>& grads,
|
435 |
+
c10::SymIntArrayRef split_sizes,
|
436 |
+
int64_t dim,
|
437 |
+
const Tensor& nt_sizes,
|
438 |
+
const at::TensorOptions& options);
|
439 |
+
at::Tensor split_backward(
|
440 |
+
const std::vector<torch::autograd::Variable>& grads,
|
441 |
+
const c10::SymInt& split_size,
|
442 |
+
int64_t dim,
|
443 |
+
c10::SymIntArrayRef sizes,
|
444 |
+
const at::TensorOptions& options);
|
445 |
+
at::Tensor max_pool_double_backward(
|
446 |
+
const at::Tensor& grad,
|
447 |
+
const at::Tensor& indices,
|
448 |
+
int dim);
|
449 |
+
at::Tensor error_for_max_pool2d_double_backward();
|
450 |
+
at::Tensor glu_double_backward(
|
451 |
+
const at::Tensor& grad,
|
452 |
+
const at::Tensor& grad_output,
|
453 |
+
const at::Tensor& input,
|
454 |
+
int64_t dim);
|
455 |
+
at::Tensor glu_double_backward_grad_output(
|
456 |
+
const at::Tensor& grad,
|
457 |
+
const at::Tensor& input,
|
458 |
+
int64_t dim);
|
459 |
+
at::Tensor infinitely_differentiable_silu_backward(
|
460 |
+
const at::Tensor& grad_output,
|
461 |
+
const at::Tensor& input);
|
462 |
+
at::Tensor infinitely_differentiable_mish_backward(
|
463 |
+
const at::Tensor& grad_output,
|
464 |
+
const at::Tensor& input);
|
465 |
+
Tensor infinitely_differentiable_logit_backward(
|
466 |
+
const Tensor& grad,
|
467 |
+
const Tensor& self,
|
468 |
+
c10::optional<double> eps);
|
469 |
+
Tensor binary_cross_entropy_target_backward(
|
470 |
+
const Tensor& grad,
|
471 |
+
const Tensor& self,
|
472 |
+
const Tensor& target,
|
473 |
+
const c10::optional<Tensor>& weight,
|
474 |
+
int64_t reduction);
|
475 |
+
Tensor binary_cross_entropy_double_backward_target(
|
476 |
+
const Tensor& grad,
|
477 |
+
const Tensor& grad_output,
|
478 |
+
const Tensor& self,
|
479 |
+
const Tensor& target,
|
480 |
+
const c10::optional<Tensor>& weight,
|
481 |
+
int64_t reduction);
|
482 |
+
Tensor binary_cross_entropy_with_logits_backward(
|
483 |
+
const Tensor& grad,
|
484 |
+
const Tensor& input,
|
485 |
+
const Tensor& target,
|
486 |
+
const c10::optional<Tensor>& weight_opt,
|
487 |
+
const c10::optional<Tensor>& pos_weight_opt,
|
488 |
+
int64_t reduction);
|
489 |
+
at::Tensor binary_cross_entropy_with_logits_target_backward(
|
490 |
+
const at::Tensor& grad_output,
|
491 |
+
const at::Tensor& self,
|
492 |
+
const at::Tensor& target,
|
493 |
+
const c10::optional<at::Tensor>& weight,
|
494 |
+
const c10::optional<at::Tensor>& pos_weight,
|
495 |
+
int64_t reduction);
|
496 |
+
at::Tensor log_sigmoid_double_backward(
|
497 |
+
const at::Tensor& grad,
|
498 |
+
const at::Tensor& input);
|
499 |
+
at::Tensor softmax_double_backward(
|
500 |
+
const at::Tensor& grad,
|
501 |
+
const at::Tensor& grad_output,
|
502 |
+
int dim,
|
503 |
+
const at::Tensor& output);
|
504 |
+
at::Tensor binary_cross_entropy_double_backward(
|
505 |
+
const at::Tensor& grad_output,
|
506 |
+
const at::Tensor& grad,
|
507 |
+
const at::Tensor& input,
|
508 |
+
const at::Tensor& target,
|
509 |
+
const c10::optional<at::Tensor>& weight,
|
510 |
+
int64_t reduction);
|
511 |
+
at::Tensor binary_cross_entropy_double_backward_grad_output(
|
512 |
+
const at::Tensor& grad,
|
513 |
+
const at::Tensor& input,
|
514 |
+
const at::Tensor& target,
|
515 |
+
const c10::optional<at::Tensor>& weight,
|
516 |
+
int64_t reduction);
|
517 |
+
at::Tensor smooth_l1_loss_double_backward(
|
518 |
+
const at::Tensor& grad,
|
519 |
+
const at::Tensor& input,
|
520 |
+
const at::Tensor& target,
|
521 |
+
int64_t reduction,
|
522 |
+
double beta);
|
523 |
+
at::Tensor huber_loss_double_backward(
|
524 |
+
const at::Tensor& grad,
|
525 |
+
const at::Tensor& input,
|
526 |
+
const at::Tensor& target,
|
527 |
+
int64_t reduction,
|
528 |
+
double delta);
|
529 |
+
at::Tensor huber_loss_double_backward_grad_output(
|
530 |
+
const at::Tensor& grad,
|
531 |
+
const at::Tensor& grad_output,
|
532 |
+
const at::Tensor& input,
|
533 |
+
const at::Tensor& target,
|
534 |
+
int64_t reduction,
|
535 |
+
double delta);
|
536 |
+
at::Tensor mse_loss_double_backward(
|
537 |
+
const at::Tensor& grad,
|
538 |
+
const at::Tensor& input,
|
539 |
+
int64_t reduction);
|
540 |
+
at::Tensor soft_margin_loss_double_backward(
|
541 |
+
const at::Tensor& grad,
|
542 |
+
const at::Tensor& input,
|
543 |
+
const at::Tensor& target,
|
544 |
+
int64_t reduction);
|
545 |
+
at::Tensor soft_margin_loss_double_backward_grad_output(
|
546 |
+
const at::Tensor& grad,
|
547 |
+
const at::Tensor& grad_output,
|
548 |
+
const at::Tensor& input,
|
549 |
+
const at::Tensor& target,
|
550 |
+
int64_t reduction);
|
551 |
+
at::Tensor softplus_double_backward(
|
552 |
+
const at::Tensor& grad,
|
553 |
+
const at::Tensor& input,
|
554 |
+
const at::Scalar& beta,
|
555 |
+
const at::Scalar& threshold);
|
556 |
+
std::tuple<at::Tensor, at::Tensor> slogdet_jvp(
|
557 |
+
const at::Tensor& LU,
|
558 |
+
const at::Tensor& pivots,
|
559 |
+
const at::Tensor& dA,
|
560 |
+
const at::Tensor& sign,
|
561 |
+
const bool use_A_T);
|
562 |
+
at::Tensor slogdet_backward(
|
563 |
+
const at::Tensor& grad_sign,
|
564 |
+
const at::Tensor& grad_logabsdet,
|
565 |
+
const at::Tensor& A,
|
566 |
+
const at::Tensor& signdet,
|
567 |
+
const at::Tensor& LU,
|
568 |
+
const at::Tensor& pivots);
|
569 |
+
at::Tensor log1p_backward(const at::Tensor& grad, const at::Tensor& self);
|
570 |
+
at::Tensor sinc_backward(const at::Tensor& grad, const at::Tensor& self);
|
571 |
+
at::Tensor sparse_constructor_values_backward(
|
572 |
+
const at::Tensor& sparse_grad_out,
|
573 |
+
const at::Tensor& indices);
|
574 |
+
at::Tensor embedding_dense_double_backward_symint(
|
575 |
+
const at::Tensor& grad,
|
576 |
+
const at::Tensor& indices,
|
577 |
+
const c10::SymInt& padding_idx);
|
578 |
+
at::Tensor index_backward(
|
579 |
+
at::Tensor zeros_like_self,
|
580 |
+
const torch::List<c10::optional<Tensor>>& indices,
|
581 |
+
const at::Tensor& grad);
|
582 |
+
at::Tensor _cudnn_ctc_loss_backward(
|
583 |
+
const at::Tensor& grad_out,
|
584 |
+
const at::Tensor& loss,
|
585 |
+
const at::Tensor& raw_grad,
|
586 |
+
bool zero_infinity);
|
587 |
+
at::Tensor elu_double_backward(
|
588 |
+
const Tensor& grad,
|
589 |
+
const Tensor& grad_output,
|
590 |
+
const Scalar& alpha,
|
591 |
+
const Scalar& scale,
|
592 |
+
const Scalar& input_scale,
|
593 |
+
bool is_result,
|
594 |
+
const Tensor& self_or_result);
|
595 |
+
|
596 |
+
Tensor svd_backward(
|
597 |
+
const Tensor& gU,
|
598 |
+
const Tensor& gS,
|
599 |
+
const Tensor& gVh,
|
600 |
+
const Tensor& U,
|
601 |
+
const Tensor& S,
|
602 |
+
const Tensor& Vh);
|
603 |
+
|
604 |
+
std::tuple<Tensor, Tensor, Tensor> linalg_svd_jvp(
|
605 |
+
const Tensor& dA,
|
606 |
+
const Tensor& U,
|
607 |
+
const Tensor& S,
|
608 |
+
const Tensor& Vh,
|
609 |
+
const bool full_matrices);
|
610 |
+
Tensor slice_backward_wrapper(
|
611 |
+
const at::Tensor& grad,
|
612 |
+
const c10::SymIntArrayRef& input_sizes,
|
613 |
+
int64_t dim,
|
614 |
+
c10::optional<c10::SymInt> start,
|
615 |
+
c10::optional<c10::SymInt> end,
|
616 |
+
c10::SymInt step);
|
617 |
+
std::tuple<Tensor, Tensor> linalg_eig_jvp(
|
618 |
+
const Tensor& dA,
|
619 |
+
const Tensor& L,
|
620 |
+
const Tensor& V,
|
621 |
+
const bool is_hermitian);
|
622 |
+
Tensor linalg_eig_backward(
|
623 |
+
const Tensor& gL,
|
624 |
+
const Tensor& gV,
|
625 |
+
const Tensor& L,
|
626 |
+
const Tensor& V,
|
627 |
+
const bool is_hermitian,
|
628 |
+
const bool symeig_eigenvectors = true);
|
629 |
+
Tensor linalg_lstsq_jvp(
|
630 |
+
const Tensor& A,
|
631 |
+
const Tensor& B,
|
632 |
+
const Tensor& dA,
|
633 |
+
const Tensor& dB);
|
634 |
+
std::tuple<Tensor, Tensor> triangular_solve_backward(
|
635 |
+
const Tensor& grad_x,
|
636 |
+
const Tensor& grad_m,
|
637 |
+
const Tensor& b,
|
638 |
+
const Tensor& a,
|
639 |
+
const Tensor& x,
|
640 |
+
const bool upper,
|
641 |
+
const bool transpose,
|
642 |
+
const bool unitriangular,
|
643 |
+
std::array<bool, 2> output_mask);
|
644 |
+
Tensor triangular_solve_jvp(
|
645 |
+
const Tensor& X,
|
646 |
+
const Tensor& A,
|
647 |
+
const Tensor& dA,
|
648 |
+
const Tensor& dB,
|
649 |
+
const bool upper,
|
650 |
+
const bool transpose,
|
651 |
+
const bool unitriangular);
|
652 |
+
Tensor linalg_solve_triangular_forward_AD(
|
653 |
+
const Tensor& A_t,
|
654 |
+
const Tensor& B_t,
|
655 |
+
const Tensor& A,
|
656 |
+
const Tensor& X,
|
657 |
+
const bool upper,
|
658 |
+
const bool left,
|
659 |
+
const bool unitriangular);
|
660 |
+
std::tuple<Tensor, Tensor> linalg_solve_triangular_backward(
|
661 |
+
const Tensor& grad,
|
662 |
+
const Tensor& A,
|
663 |
+
const Tensor& X,
|
664 |
+
const bool upper,
|
665 |
+
const bool left,
|
666 |
+
const bool unitriangular,
|
667 |
+
std::array<bool, 2> output_mask);
|
668 |
+
std::tuple<Tensor, Tensor, Tensor> _trilinear_backward(
|
669 |
+
const Tensor& grad_out,
|
670 |
+
const c10::optional<Tensor>& i1,
|
671 |
+
const c10::optional<Tensor>& i2,
|
672 |
+
const c10::optional<Tensor>& i3,
|
673 |
+
IntArrayRef expand1,
|
674 |
+
IntArrayRef expand2,
|
675 |
+
IntArrayRef expand3,
|
676 |
+
IntArrayRef sumdim,
|
677 |
+
std::array<bool, 3> grad_mask);
|
678 |
+
std::tuple<Tensor, Tensor> linalg_qr_jvp(
|
679 |
+
const Tensor& dA,
|
680 |
+
const Tensor& Q,
|
681 |
+
const Tensor& R,
|
682 |
+
const c10::string_view mode);
|
683 |
+
Tensor linalg_qr_backward(
|
684 |
+
const Tensor& gQ,
|
685 |
+
const Tensor& gR,
|
686 |
+
const Tensor& Q,
|
687 |
+
const Tensor& R,
|
688 |
+
const c10::string_view mode);
|
689 |
+
Tensor linalg_matrix_exp_differential(
|
690 |
+
const Tensor& self,
|
691 |
+
const Tensor& grad,
|
692 |
+
bool adjoint);
|
693 |
+
std::tuple<Tensor, Tensor, Tensor> batchnorm_double_backward(
|
694 |
+
const Tensor& input,
|
695 |
+
const c10::optional<Tensor>& gamma,
|
696 |
+
const Tensor& ggI,
|
697 |
+
const Tensor& ggG,
|
698 |
+
const Tensor& ggB,
|
699 |
+
const Tensor& gO,
|
700 |
+
const c10::optional<Tensor>& running_mean,
|
701 |
+
const c10::optional<Tensor>& running_var,
|
702 |
+
bool training,
|
703 |
+
double eps,
|
704 |
+
const c10::optional<Tensor>& save_mean,
|
705 |
+
const c10::optional<Tensor>& save_invstd,
|
706 |
+
std::array<bool, 3> output_mask);
|
707 |
+
std::tuple<Tensor, Tensor> _euclidean_dist_backward(
|
708 |
+
const Tensor& grad,
|
709 |
+
const Tensor& x1,
|
710 |
+
const Tensor& x2,
|
711 |
+
const Tensor& res);
|
712 |
+
Tensor fft_backward(
|
713 |
+
const Tensor& self,
|
714 |
+
const Tensor& grad,
|
715 |
+
int64_t signal_ndim,
|
716 |
+
bool complex_input,
|
717 |
+
bool complex_output,
|
718 |
+
bool inverse,
|
719 |
+
IntArrayRef checked_signal_sizes,
|
720 |
+
int64_t normalization,
|
721 |
+
bool onesided,
|
722 |
+
IntArrayRef output_sizes);
|
723 |
+
Tensor fft_r2c_backward(
|
724 |
+
const Tensor& grad,
|
725 |
+
at::IntArrayRef dim,
|
726 |
+
int64_t normalization,
|
727 |
+
bool onesided,
|
728 |
+
const c10::SymInt& last_dim_size);
|
729 |
+
Tensor fft_c2r_backward(
|
730 |
+
const Tensor& grad,
|
731 |
+
IntArrayRef dim,
|
732 |
+
int64_t normalization);
|
733 |
+
Tensor constant_pad_nd_backward(const Tensor& grad, c10::SymIntArrayRef pad);
|
734 |
+
std::tuple<Tensor, Tensor> cholesky_solve_backward(
|
735 |
+
const Tensor& grad_x,
|
736 |
+
const Tensor& self,
|
737 |
+
const Tensor& input2,
|
738 |
+
const Tensor& result,
|
739 |
+
const bool upper,
|
740 |
+
std::array<bool, 2> output_mask);
|
741 |
+
Tensor cholesky_solve_jvp(
|
742 |
+
const Tensor& X,
|
743 |
+
const Tensor& U,
|
744 |
+
const Tensor& dU,
|
745 |
+
const Tensor& dB,
|
746 |
+
const bool upper);
|
747 |
+
std::tuple<Tensor, Tensor, Tensor>
|
748 |
+
infinitely_differentiable_native_group_norm_backward(
|
749 |
+
const Tensor& dY,
|
750 |
+
const Tensor& dmean,
|
751 |
+
const Tensor& drstd,
|
752 |
+
const Tensor& X,
|
753 |
+
const Tensor& mean,
|
754 |
+
const Tensor& rstd,
|
755 |
+
const c10::optional<Tensor>& gamma,
|
756 |
+
c10::SymInt N,
|
757 |
+
const c10::SymInt& C,
|
758 |
+
c10::SymInt HxW,
|
759 |
+
int64_t group,
|
760 |
+
double eps,
|
761 |
+
std::array<bool, 3> grad_input_mask);
|
762 |
+
Tensor gelu_double_backward(
|
763 |
+
const Tensor& ggI,
|
764 |
+
const Tensor& gO,
|
765 |
+
const Tensor& input,
|
766 |
+
c10::string_view approximate);
|
767 |
+
Tensor as_strided_backward(
|
768 |
+
Tensor grad,
|
769 |
+
const TensorGeometry& input_geometry,
|
770 |
+
c10::SymIntArrayRef sizes,
|
771 |
+
c10::SymIntArrayRef strides,
|
772 |
+
const optional<c10::SymInt>& storage_offset_);
|
773 |
+
Tensor as_strided_scatter_backward(
|
774 |
+
const Tensor& grad,
|
775 |
+
const TensorGeometry& input_geometry,
|
776 |
+
const TensorGeometry& src_geometry,
|
777 |
+
c10::SymIntArrayRef sizes,
|
778 |
+
c10::SymIntArrayRef strides,
|
779 |
+
optional<c10::SymInt> storage_offset);
|
780 |
+
std::tuple<Tensor, Tensor> atan2_backward(
|
781 |
+
const Tensor& grad,
|
782 |
+
const Tensor& self,
|
783 |
+
const Tensor& other,
|
784 |
+
std::array<bool, 2> output_mask);
|
785 |
+
Tensor amaxamin_jvp(
|
786 |
+
const Tensor& x,
|
787 |
+
const Tensor& dx,
|
788 |
+
const Tensor& result,
|
789 |
+
IntArrayRef dim,
|
790 |
+
bool keepdim);
|
791 |
+
std::tuple<Tensor, Tensor, Tensor> layer_norm_double_backward(
|
792 |
+
const Tensor& input,
|
793 |
+
const c10::optional<Tensor>& gamma,
|
794 |
+
const Tensor& ggI,
|
795 |
+
const Tensor& ggG,
|
796 |
+
const Tensor& ggB,
|
797 |
+
const Tensor& gO,
|
798 |
+
const Tensor& save_mean,
|
799 |
+
const Tensor& save_invstd,
|
800 |
+
c10::SymIntArrayRef normalized_shape,
|
801 |
+
std::array<bool, 3> output_mask);
|
802 |
+
|
803 |
+
std::tuple<Tensor, Tensor> householder_product_backward(
|
804 |
+
const Tensor& grad,
|
805 |
+
const Tensor& result,
|
806 |
+
const Tensor& input,
|
807 |
+
const Tensor& tau,
|
808 |
+
const bool flip_order = false);
|
809 |
+
Tensor householder_product_jvp(
|
810 |
+
const Tensor& dV,
|
811 |
+
const Tensor& dtau,
|
812 |
+
const Tensor& prod,
|
813 |
+
const Tensor& V,
|
814 |
+
const Tensor& tau);
|
815 |
+
std::tuple<Tensor, Tensor, Tensor> ormqr_backward(
|
816 |
+
const Tensor& grad,
|
817 |
+
const Tensor& result,
|
818 |
+
const Tensor& self,
|
819 |
+
const Tensor& tau,
|
820 |
+
const Tensor& other,
|
821 |
+
bool left,
|
822 |
+
bool transpose,
|
823 |
+
std::array<bool, 3> grad_output_mask);
|
824 |
+
std::tuple<Tensor, Tensor> polar_backward(
|
825 |
+
const Tensor& grad,
|
826 |
+
const Tensor& result);
|
827 |
+
Tensor i1_backward(
|
828 |
+
const Tensor& grad,
|
829 |
+
const Tensor& self,
|
830 |
+
const Tensor& result);
|
831 |
+
Tensor i1e_backward(
|
832 |
+
const Tensor& grad,
|
833 |
+
const Tensor& self,
|
834 |
+
const Tensor& result);
|
835 |
+
Tensor linalg_lu_solve_LU(
|
836 |
+
const Tensor& grad,
|
837 |
+
const Tensor& LU,
|
838 |
+
const Tensor& pivots,
|
839 |
+
const Tensor& X,
|
840 |
+
const bool left,
|
841 |
+
const bool adjoint);
|
842 |
+
Tensor linalg_lu_solve_jvp(
|
843 |
+
const Tensor& X,
|
844 |
+
const Tensor& LU,
|
845 |
+
const Tensor& pivots,
|
846 |
+
const Tensor& dLU,
|
847 |
+
const Tensor& dB,
|
848 |
+
const bool left,
|
849 |
+
const bool adjoint);
|
850 |
+
std::tuple<Tensor, Tensor> linalg_solve_backward(
|
851 |
+
const Tensor& gX,
|
852 |
+
const Tensor& X,
|
853 |
+
const Tensor& A,
|
854 |
+
const Tensor& LU,
|
855 |
+
const Tensor& pivots,
|
856 |
+
const bool left,
|
857 |
+
const bool B_requires_grad);
|
858 |
+
Tensor linalg_solve_jvp(
|
859 |
+
const Tensor& dA,
|
860 |
+
const Tensor& dB,
|
861 |
+
const Tensor& X,
|
862 |
+
const Tensor& LU,
|
863 |
+
const Tensor& pivots,
|
864 |
+
const bool left,
|
865 |
+
const bool use_A_T);
|
866 |
+
Tensor lu_unpack_backward(
|
867 |
+
const Tensor& L_grad,
|
868 |
+
const Tensor& U_grad,
|
869 |
+
const c10::SymInt& m,
|
870 |
+
const c10::SymInt& n);
|
871 |
+
|
872 |
+
Tensor linalg_det_backward(
|
873 |
+
const Tensor& grad,
|
874 |
+
const Tensor& det,
|
875 |
+
const Tensor& A,
|
876 |
+
const Tensor& LU,
|
877 |
+
const Tensor& pivots);
|
878 |
+
Tensor linalg_det_jvp(
|
879 |
+
const Tensor& dA,
|
880 |
+
const Tensor& det,
|
881 |
+
const Tensor& LU,
|
882 |
+
const Tensor& pivots,
|
883 |
+
const bool use_A_T);
|
884 |
+
std::tuple<Tensor, Tensor> linalg_lstsq_backward(
|
885 |
+
const Tensor& grad,
|
886 |
+
const Tensor& A,
|
887 |
+
const Tensor& B_,
|
888 |
+
const std::array<bool, 2>& grad_input_mask);
|
889 |
+
Tensor linalg_lu_backward(
|
890 |
+
const Tensor& L_grad,
|
891 |
+
const Tensor& U_grad,
|
892 |
+
const Tensor& P,
|
893 |
+
const Tensor& L,
|
894 |
+
const Tensor& U,
|
895 |
+
const bool pivot);
|
896 |
+
|
897 |
+
std::tuple<Tensor, Tensor> linalg_lu_jvp(
|
898 |
+
const Tensor& dA,
|
899 |
+
const Tensor& P,
|
900 |
+
const Tensor& L,
|
901 |
+
const Tensor& U,
|
902 |
+
const bool pivot);
|
903 |
+
|
904 |
+
Tensor lu_factor_ex_backward(
|
905 |
+
const Tensor& grad,
|
906 |
+
const Tensor& LU,
|
907 |
+
const Tensor& pivs,
|
908 |
+
const bool pivot);
|
909 |
+
Tensor lu_factor_ex_jvp(
|
910 |
+
const Tensor& dX,
|
911 |
+
const Tensor& LU,
|
912 |
+
const Tensor& pivs,
|
913 |
+
const bool pivot);
|
914 |
+
|
915 |
+
Tensor batch_norm_jvp(
|
916 |
+
const Tensor& input_p,
|
917 |
+
const Tensor& input_t,
|
918 |
+
const Tensor& weight_p,
|
919 |
+
const Tensor& weight_t,
|
920 |
+
const Tensor& bias_p,
|
921 |
+
const Tensor& bias_t,
|
922 |
+
const c10::optional<Tensor>& running_mean,
|
923 |
+
const c10::optional<Tensor>& running_var,
|
924 |
+
const Tensor& saved_mean,
|
925 |
+
const Tensor& saved_invstd,
|
926 |
+
bool train,
|
927 |
+
double eps);
|
928 |
+
|
929 |
+
Tensor layer_norm_jvp(
|
930 |
+
const Tensor& input_p,
|
931 |
+
const Tensor& input_t,
|
932 |
+
const Tensor& weight_p,
|
933 |
+
const Tensor& weight_t,
|
934 |
+
const Tensor& bias_p,
|
935 |
+
const Tensor& bias_t,
|
936 |
+
const Tensor& saved_mean,
|
937 |
+
const Tensor& saved_invstd,
|
938 |
+
c10::SymIntArrayRef normalized_shape);
|
939 |
+
|
940 |
+
Tensor group_norm_jvp(
|
941 |
+
const Tensor& input_p,
|
942 |
+
const Tensor& input_t,
|
943 |
+
const Tensor& weight_p,
|
944 |
+
const Tensor& weight_t,
|
945 |
+
const Tensor& bias_p,
|
946 |
+
const Tensor& bias_t,
|
947 |
+
const Tensor& saved_mean,
|
948 |
+
const Tensor& saved_invstd,
|
949 |
+
int64_t groups);
|
950 |
+
Tensor group_norm_mean_jvp(
|
951 |
+
const Tensor& input_t,
|
952 |
+
const Tensor& mean_p,
|
953 |
+
int64_t groups);
|
954 |
+
Tensor group_norm_invstd_jvp(
|
955 |
+
const Tensor& input_p,
|
956 |
+
const Tensor& input_t,
|
957 |
+
const Tensor& mean_p,
|
958 |
+
const Tensor& invstd_p,
|
959 |
+
int64_t groups);
|
960 |
+
|
961 |
+
Tensor convolution_jvp(
|
962 |
+
const Tensor& input_p,
|
963 |
+
const Tensor& input_t,
|
964 |
+
const Tensor& weight_p,
|
965 |
+
const Tensor& weight_t,
|
966 |
+
const Tensor& bias_p,
|
967 |
+
const Tensor& bias_t,
|
968 |
+
at::SymIntArrayRef stride,
|
969 |
+
at::SymIntArrayRef padding,
|
970 |
+
at::SymIntArrayRef dilation,
|
971 |
+
bool transposed,
|
972 |
+
at::SymIntArrayRef output_padding,
|
973 |
+
const c10::SymInt& groups);
|
974 |
+
|
975 |
+
Tensor _convolution_jvp(
|
976 |
+
const Tensor& input_p,
|
977 |
+
const Tensor& input_t,
|
978 |
+
const Tensor& weight_p,
|
979 |
+
const Tensor& weight_t,
|
980 |
+
const Tensor& bias_p,
|
981 |
+
const Tensor& bias_t,
|
982 |
+
at::SymIntArrayRef stride,
|
983 |
+
at::SymIntArrayRef padding,
|
984 |
+
at::SymIntArrayRef dilation,
|
985 |
+
bool transposed,
|
986 |
+
at::SymIntArrayRef output_padding,
|
987 |
+
const c10::SymInt& groups,
|
988 |
+
bool benchmark,
|
989 |
+
bool deterministic,
|
990 |
+
bool cudnn_enabled,
|
991 |
+
bool allow_tf32);
|
992 |
+
|
993 |
+
Tensor convolution_backward_jvp_grad_bias(
|
994 |
+
const Tensor& grad_out_t,
|
995 |
+
const Tensor& grad_bias);
|
996 |
+
|
997 |
+
Tensor cat_jvp(const at::ITensorListRef& tensors, int64_t dim);
|
998 |
+
Tensor block_diag_jvp(at::TensorList tensors);
|
999 |
+
Tensor stack_jvp(at::TensorList tensors, int64_t dim);
|
1000 |
+
Tensor cumprod_jvp(
|
1001 |
+
const Tensor& self_t,
|
1002 |
+
const Tensor& self_p,
|
1003 |
+
const Tensor& result,
|
1004 |
+
int dim);
|
1005 |
+
Tensor gather_with_keepdimed_indices(
|
1006 |
+
const Tensor& input,
|
1007 |
+
int64_t dim,
|
1008 |
+
const Tensor& indices,
|
1009 |
+
bool keepdim);
|
1010 |
+
Tensor evenly_read_jvp(
|
1011 |
+
const Tensor& fw_grad,
|
1012 |
+
const Tensor& input,
|
1013 |
+
const Tensor& value);
|
1014 |
+
Tensor warn_backwards(const Tensor& grad_output);
|
1015 |
+
|
1016 |
+
std::tuple<Tensor, Tensor> _cudnn_convolution_backward(
|
1017 |
+
const at::Tensor& self,
|
1018 |
+
const at::Tensor& grad_output,
|
1019 |
+
const at::Tensor& weight,
|
1020 |
+
at::SymIntArrayRef padding,
|
1021 |
+
at::SymIntArrayRef output_padding,
|
1022 |
+
at::SymIntArrayRef stride,
|
1023 |
+
at::SymIntArrayRef dilation,
|
1024 |
+
bool transposed,
|
1025 |
+
c10::SymInt groups,
|
1026 |
+
::std::array<bool, 2> output_mask);
|
1027 |
+
|
1028 |
+
Tensor scatter_reduce_jvp(
|
1029 |
+
const Tensor& self_p,
|
1030 |
+
const Tensor& self_t,
|
1031 |
+
int dim,
|
1032 |
+
const Tensor& index,
|
1033 |
+
const Tensor& src_p,
|
1034 |
+
const Tensor& src_t,
|
1035 |
+
c10::string_view reduce,
|
1036 |
+
bool include_self,
|
1037 |
+
const Tensor& result);
|
1038 |
+
|
1039 |
+
std::tuple<Tensor, Tensor> scatter_reduce_backward(
|
1040 |
+
const Tensor& grad,
|
1041 |
+
const Tensor& self,
|
1042 |
+
int dim,
|
1043 |
+
const Tensor& index,
|
1044 |
+
const Tensor& src,
|
1045 |
+
c10::string_view reduce,
|
1046 |
+
bool include_self,
|
1047 |
+
const Tensor& result);
|
1048 |
+
|
1049 |
+
Tensor _to_copy_backward(
|
1050 |
+
const Tensor& grad,
|
1051 |
+
const c10::TensorOptions& self_options);
|
1052 |
+
|
1053 |
+
std::tuple<Tensor, Tensor> index_reduce_backward(
|
1054 |
+
const Tensor& grad,
|
1055 |
+
const Tensor& self,
|
1056 |
+
int dim,
|
1057 |
+
const Tensor& index,
|
1058 |
+
const Tensor& source,
|
1059 |
+
c10::string_view reduce,
|
1060 |
+
bool include_self,
|
1061 |
+
const Tensor& result);
|
1062 |
+
|
1063 |
+
Tensor take_backward(
|
1064 |
+
const Tensor& grad,
|
1065 |
+
const Tensor& self,
|
1066 |
+
const Tensor& indices);
|
1067 |
+
|
1068 |
+
Tensor to_sparse_backward(
|
1069 |
+
const Tensor& grad,
|
1070 |
+
const c10::Layout self_layout,
|
1071 |
+
const c10::OptionalArrayRef<c10::SymInt>& self_blocksize);
|
1072 |
+
|
1073 |
+
std::tuple<Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor>
|
1074 |
+
mkldnn_rnn_layer_differentiable_backward(
|
1075 |
+
const Tensor& input,
|
1076 |
+
const Tensor& weight0,
|
1077 |
+
const Tensor& weight1,
|
1078 |
+
const Tensor& weight2,
|
1079 |
+
const Tensor& weight3,
|
1080 |
+
const Tensor& hx_,
|
1081 |
+
const Tensor& cx_tmp,
|
1082 |
+
const Tensor& output,
|
1083 |
+
const Tensor& hy_,
|
1084 |
+
const Tensor& cy_,
|
1085 |
+
const c10::optional<Tensor>& grad_output_r_opt,
|
1086 |
+
const c10::optional<Tensor>& grad_hy_r_opt,
|
1087 |
+
const c10::optional<Tensor>& grad_cy_r_opt,
|
1088 |
+
bool reverse,
|
1089 |
+
int64_t mode,
|
1090 |
+
int64_t hidden_size,
|
1091 |
+
int64_t num_layers,
|
1092 |
+
bool has_biases,
|
1093 |
+
bool train,
|
1094 |
+
bool bidirectional,
|
1095 |
+
at::IntArrayRef batch_sizes,
|
1096 |
+
bool batch_first,
|
1097 |
+
const at::Tensor& workspace);
|
1098 |
+
|
1099 |
+
Tensor values_backward(const Tensor& grad, const Tensor& self);
|
1100 |
+
|
1101 |
+
} // namespace torch::autograd::generated::details
|
llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/anomaly_mode.h
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/Export.h>
|
4 |
+
#include <memory>
|
5 |
+
#include <string>
|
6 |
+
|
7 |
+
namespace torch::autograd {
|
8 |
+
|
9 |
+
// forward declaration of Node from function.h
|
10 |
+
struct Node;
|
11 |
+
|
12 |
+
struct TORCH_API AnomalyMode {
|
13 |
+
static bool is_enabled() {
|
14 |
+
return _enabled;
|
15 |
+
}
|
16 |
+
static bool should_check_nan() {
|
17 |
+
return _check_nan;
|
18 |
+
}
|
19 |
+
static void set_enabled(bool enabled, bool check_nan = true) {
|
20 |
+
_enabled = enabled;
|
21 |
+
_check_nan = check_nan;
|
22 |
+
}
|
23 |
+
|
24 |
+
private:
|
25 |
+
static bool _enabled;
|
26 |
+
static bool _check_nan;
|
27 |
+
};
|
28 |
+
|
29 |
+
/// A RAII guard that enables Anomaly Detection Mode.
|
30 |
+
///
|
31 |
+
/// Anomaly detection mode is useful for debugging problems happening
|
32 |
+
/// in the backward, such as unexpectedly modified tensors or NaNs
|
33 |
+
/// occuring in the backward.
|
34 |
+
///
|
35 |
+
/// The enabling of anomaly mode is global - as soon as there is one
|
36 |
+
/// such guard, it is enabled for all computation and threads. It also
|
37 |
+
/// comes with a significant performance penalty.
|
38 |
+
///
|
39 |
+
/// Example:
|
40 |
+
/// @code
|
41 |
+
/// auto x = torch::tensor({1.}, torch::requires_grad());
|
42 |
+
/// {
|
43 |
+
/// torch::autograd::DetectAnomalyGuard detect_anomaly;
|
44 |
+
/// auto x = torch::tensor({5.0}, torch::requires_grad());
|
45 |
+
/// auto y = x * x;
|
46 |
+
/// auto z = y * y;
|
47 |
+
/// y += 1;
|
48 |
+
/// z.backward();
|
49 |
+
/// }
|
50 |
+
/// @endcode
|
51 |
+
class TORCH_API DetectAnomalyGuard {
|
52 |
+
public:
|
53 |
+
DetectAnomalyGuard(bool check_nan = true);
|
54 |
+
~DetectAnomalyGuard();
|
55 |
+
|
56 |
+
private:
|
57 |
+
bool prev_check_nan_;
|
58 |
+
};
|
59 |
+
|
60 |
+
struct TORCH_API AnomalyMetadata {
|
61 |
+
virtual ~AnomalyMetadata();
|
62 |
+
virtual void store_stack();
|
63 |
+
virtual void print_stack(const std::string& current_node_name);
|
64 |
+
virtual void assign_parent(const std::shared_ptr<Node>& parent_node);
|
65 |
+
|
66 |
+
private:
|
67 |
+
std::string traceback_;
|
68 |
+
std::shared_ptr<Node> parent_;
|
69 |
+
};
|
70 |
+
|
71 |
+
} // namespace torch::autograd
|
llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/autograd.h
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/autograd/variable.h>
|
4 |
+
|
5 |
+
namespace torch::autograd {
|
6 |
+
|
7 |
+
/// Computes the sum of gradients of given tensors with respect to graph leaves.
|
8 |
+
///
|
9 |
+
/// The graph is differentiated using the chain rule. If any of ``tensors``
|
10 |
+
/// are non-scalar (i.e. their data has more than one element) and require
|
11 |
+
/// gradient, then the Jacobian-vector product would be computed, in this case
|
12 |
+
/// the function additionally requires specifying `grad_tensors`. It should be a
|
13 |
+
/// sequence of matching length, that contains the "vector" in the
|
14 |
+
/// Jacobian-vector product, usually the gradient of the differentiated function
|
15 |
+
/// w.r.t. corresponding tensors
|
16 |
+
/// (`torch::Tensor()` is an acceptable value for all tensors that don't need
|
17 |
+
/// gradient tensors).
|
18 |
+
///
|
19 |
+
/// This function accumulates gradients in the leaves - you might need to zero
|
20 |
+
/// them before calling it.
|
21 |
+
///
|
22 |
+
/// \param tensors Tensors of which the derivative will be computed.
|
23 |
+
/// \param grad_tensors The "vector" in the Jacobian-vector product, usually
|
24 |
+
/// gradients
|
25 |
+
/// w.r.t. each element of corresponding tensors. `torch::Tensor()` values
|
26 |
+
/// can be specified for scalar Tensors or ones that don't require grad. If
|
27 |
+
/// a `torch::Tensor()` value would be acceptable for all grad_tensors, then
|
28 |
+
/// this argument is optional.
|
29 |
+
/// \param retain_graph If `false`, the graph used to compute the grad will be
|
30 |
+
/// freed.
|
31 |
+
/// Note that in nearly all cases setting this option to `true` is not
|
32 |
+
/// needed and often can be worked around in a much more efficient way.
|
33 |
+
/// Defaults to the value of `create_graph`.
|
34 |
+
/// \param create_graph If `true`, graph of the derivative will be constructed,
|
35 |
+
/// allowing
|
36 |
+
/// to compute higher order derivative products. Defaults to `false`.
|
37 |
+
/// \param inputs Inputs w.r.t. which the gradient will be accumulated into
|
38 |
+
/// `at::Tensor::grad`. All other Tensors will be ignored. If not provided,
|
39 |
+
/// the gradient is accumulated into all the leaf Tensors that were used to
|
40 |
+
/// compute param `tensors`.
|
41 |
+
// When inputs are provided and a given input is not a leaf,
|
42 |
+
// the current implementation will call its grad_fn (even though it is not
|
43 |
+
// strictly needed to get this gradients). It is an implementation detail
|
44 |
+
// on which the user should not rely. See
|
45 |
+
// https://github.com/pytorch/pytorch/pull/60521#issuecomment-867061780 for
|
46 |
+
// more details.
|
47 |
+
TORCH_API void backward(
|
48 |
+
const variable_list& tensors,
|
49 |
+
const variable_list& grad_tensors = {},
|
50 |
+
c10::optional<bool> retain_graph = c10::nullopt,
|
51 |
+
bool create_graph = false,
|
52 |
+
const variable_list& inputs = {});
|
53 |
+
|
54 |
+
/// Computes and returns the sum of gradients of outputs with respect to the
|
55 |
+
/// inputs.
|
56 |
+
///
|
57 |
+
/// ``grad_outputs`` should be a sequence of length matching ``output``
|
58 |
+
/// containing the "vector" in Jacobian-vector product, usually the pre-computed
|
59 |
+
/// gradients w.r.t. each of the outputs. If an output doesn't require_grad,
|
60 |
+
/// then the gradient can be ``torch::Tensor()``).
|
61 |
+
///
|
62 |
+
/// \param outputs outputs of the differentiated function.
|
63 |
+
/// \param inputs Inputs w.r.t. which the gradient will be
|
64 |
+
/// returned (and not accumulated into ``at::Tensor::grad``).
|
65 |
+
/// \param grad_outputs The "vector" in the Jacobian-vector product.
|
66 |
+
/// Usually gradients w.r.t. each output. `torch::Tensor()` values can be
|
67 |
+
/// specified for scalar Tensors or ones that don't require grad. If a
|
68 |
+
/// `torch::Tensor()` value would be acceptable for all grad_tensors, then
|
69 |
+
/// this argument is optional. Default: `{}`.
|
70 |
+
/// \param retain_graph If ``false``, the graph used to compute the grad
|
71 |
+
/// will be freed. Note that in nearly all cases setting this option to
|
72 |
+
/// ``true`` is not needed and often can be worked around in a much more
|
73 |
+
/// efficient way. Defaults to the value of ``create_graph``.
|
74 |
+
/// \param create_graph If ``true``, graph of the derivative will
|
75 |
+
/// be constructed, allowing to compute higher order derivative products.
|
76 |
+
/// Default: ``false``.
|
77 |
+
/// \param allow_unused If ``false``, specifying inputs that were not
|
78 |
+
/// used when computing outputs (and therefore their grad is always zero)
|
79 |
+
/// is an error. Defaults to ``false``.
|
80 |
+
TORCH_API variable_list grad(
|
81 |
+
const variable_list& outputs,
|
82 |
+
const variable_list& inputs,
|
83 |
+
const variable_list& grad_outputs = {},
|
84 |
+
c10::optional<bool> retain_graph = c10::nullopt,
|
85 |
+
bool create_graph = false,
|
86 |
+
bool allow_unused = false);
|
87 |
+
|
88 |
+
namespace forward_ad {
|
89 |
+
|
90 |
+
/// Creates a new dual level and returns its index. This level index should then
|
91 |
+
/// be used to call into the other functions below. This API supports entering a
|
92 |
+
/// new level before the previous one is exited. We call them nested forward AD
|
93 |
+
/// levels. These can be used to compute higher order derivatives.
|
94 |
+
TORCH_API uint64_t enter_dual_level();
|
95 |
+
|
96 |
+
/// Exits the given level. This will clear up all the gradients from this level
|
97 |
+
/// and all dual Tensors that had gradients for this level will become regular
|
98 |
+
/// Tensors again. This function can only be used to exit the innermost nesting
|
99 |
+
/// level and so exiting must happen in reverse order compared to the entering
|
100 |
+
/// that was done with the function above.
|
101 |
+
TORCH_API void exit_dual_level(uint64_t level);
|
102 |
+
|
103 |
+
} // namespace forward_ad
|
104 |
+
} // namespace torch::autograd
|
llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/cpp_hook.h
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
#include <torch/csrc/autograd/function_hook.h>
|
3 |
+
#include <functional>
|
4 |
+
#include <memory>
|
5 |
+
|
6 |
+
namespace torch::autograd {
|
7 |
+
|
8 |
+
using hooks_list =
|
9 |
+
std::vector<std::function<at::TensorBase(const at::TensorBase&)>>;
|
10 |
+
|
11 |
+
struct CppFunctionTensorPreHook : public FunctionPreHook {
|
12 |
+
CppFunctionTensorPreHook(std::shared_ptr<hooks_list> hooks, size_t value_idx);
|
13 |
+
variable_list operator()(const variable_list& values) override;
|
14 |
+
|
15 |
+
std::shared_ptr<hooks_list> hooks_;
|
16 |
+
size_t value_idx_;
|
17 |
+
};
|
18 |
+
|
19 |
+
struct CppFunctionSingleTensorPreHook : public FunctionPreHook {
|
20 |
+
CppFunctionSingleTensorPreHook(
|
21 |
+
std::function<at::TensorBase(const at::TensorBase&)> hook,
|
22 |
+
size_t value_idx);
|
23 |
+
variable_list operator()(const variable_list& values) override;
|
24 |
+
|
25 |
+
std::function<at::TensorBase(const at::TensorBase&)> hook_;
|
26 |
+
size_t value_idx_;
|
27 |
+
};
|
28 |
+
|
29 |
+
} // namespace torch::autograd
|
llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/engine.h
ADDED
@@ -0,0 +1,288 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// Engine implements backpropagation from output variables and their gradients
|
4 |
+
// to "root" variables (variables created by the user with requires_grad=True).
|
5 |
+
|
6 |
+
#include <ATen/Tensor.h>
|
7 |
+
#include <ATen/ThreadLocalState.h>
|
8 |
+
#include <ATen/core/ivalue.h>
|
9 |
+
#include <torch/csrc/Export.h>
|
10 |
+
#include <torch/csrc/autograd/anomaly_mode.h>
|
11 |
+
#include <torch/csrc/autograd/function.h>
|
12 |
+
#include <torch/csrc/autograd/functions/basic_ops.h>
|
13 |
+
#include <torch/csrc/autograd/graph_task.h>
|
14 |
+
#include <torch/csrc/autograd/input_buffer.h>
|
15 |
+
#include <torch/csrc/autograd/saved_variable_hooks.h>
|
16 |
+
#include <torch/csrc/autograd/utils/warnings.h>
|
17 |
+
|
18 |
+
#include <c10/util/CallOnce.h>
|
19 |
+
|
20 |
+
#include <exception>
|
21 |
+
#include <functional>
|
22 |
+
#include <memory>
|
23 |
+
#include <queue>
|
24 |
+
#include <utility>
|
25 |
+
#include <vector>
|
26 |
+
|
27 |
+
namespace torch::autograd {
|
28 |
+
struct ReadyQueue;
|
29 |
+
}
|
30 |
+
|
31 |
+
namespace torch::autograd {
|
32 |
+
|
33 |
+
// Maximum reentrant backward depth before switching to a new thread
|
34 |
+
// This limit is based on the TSAN's deadlock detector, where it will
|
35 |
+
// fail if a program hold more than 65 locks in one thread at once.
|
36 |
+
// As we hold mutex in every of our custom C++ autograd Node, we would
|
37 |
+
// like to avoid TSAN complains on this when doing reentrant backwards
|
38 |
+
// For reference, see https://github.com/google/sanitizers/issues/950
|
39 |
+
static constexpr int MAX_DEPTH = 60;
|
40 |
+
|
41 |
+
void set_device(int device);
|
42 |
+
TORCH_API void validate_outputs(
|
43 |
+
const edge_list& edges,
|
44 |
+
variable_list& grads,
|
45 |
+
const std::function<std::string(const std::string&)>& format_error);
|
46 |
+
|
47 |
+
struct NodeTask {
|
48 |
+
std::weak_ptr<GraphTask> base_;
|
49 |
+
std::shared_ptr<Node> fn_;
|
50 |
+
// This buffer serves as an implicit "addition" node for all of the
|
51 |
+
// gradients flowing here. Once all the dependencies are finished, we
|
52 |
+
// use the contents of this buffer to run the function.
|
53 |
+
InputBuffer inputs_;
|
54 |
+
// When worker receives a task with isShutdownTask = true, it will immediately
|
55 |
+
// exit. The engine sends a shutdown task to every queue upon its destruction.
|
56 |
+
bool isShutdownTask_;
|
57 |
+
|
58 |
+
int getReentrantDepth() const;
|
59 |
+
|
60 |
+
NodeTask(
|
61 |
+
std::weak_ptr<GraphTask> base,
|
62 |
+
std::shared_ptr<Node> fn,
|
63 |
+
InputBuffer inputs,
|
64 |
+
bool isShutdownTask = false)
|
65 |
+
: base_(std::move(base)),
|
66 |
+
fn_(std::move(fn)),
|
67 |
+
inputs_(std::move(inputs)),
|
68 |
+
isShutdownTask_(isShutdownTask) {}
|
69 |
+
};
|
70 |
+
|
71 |
+
// Guard that sets and restores checkpoint_valid
|
72 |
+
class CheckpointValidGuard {
|
73 |
+
public:
|
74 |
+
explicit CheckpointValidGuard(
|
75 |
+
const std::shared_ptr<const GraphTask>& graph_task);
|
76 |
+
~CheckpointValidGuard();
|
77 |
+
|
78 |
+
private:
|
79 |
+
bool prev_checkpoint_valid_state;
|
80 |
+
};
|
81 |
+
|
82 |
+
struct ReadyQueue {
|
83 |
+
private:
|
84 |
+
// Returns true when t2 should be (weakly) BEFORE t1 in the queue.
|
85 |
+
// Shutdown tasks are first and then empty NodeTask are next.
|
86 |
+
struct CompareNodeTaskTime {
|
87 |
+
bool operator()(NodeTask const& t1, NodeTask const& t2) {
|
88 |
+
// NOLINTNEXTLINE(bugprone-branch-clone)
|
89 |
+
if (t2.isShutdownTask_) {
|
90 |
+
return true;
|
91 |
+
} else if (!t1.fn_ || t1.isShutdownTask_) {
|
92 |
+
return false;
|
93 |
+
} else if (!t2.fn_) {
|
94 |
+
return true;
|
95 |
+
} else if (t1.getReentrantDepth() == t2.getReentrantDepth()) {
|
96 |
+
return t1.fn_->sequence_nr() < t2.fn_->sequence_nr();
|
97 |
+
} else {
|
98 |
+
return t1.getReentrantDepth() < t2.getReentrantDepth();
|
99 |
+
}
|
100 |
+
}
|
101 |
+
};
|
102 |
+
|
103 |
+
// To notify threads waiting on the ReadyQueue of available tasks on the heap_
|
104 |
+
std::condition_variable not_empty_;
|
105 |
+
// To protect read and writes to heap_
|
106 |
+
mutable std::mutex mutex_;
|
107 |
+
|
108 |
+
std::priority_queue<NodeTask, std::vector<NodeTask>, CompareNodeTaskTime>
|
109 |
+
heap_;
|
110 |
+
|
111 |
+
public:
|
112 |
+
// incrementOutstandingTasks indicates whether or not we should increment
|
113 |
+
// 'outstanding_tasks_' for the associated GraphTask. This should mostly
|
114 |
+
// always be true and is only set false in certain cases (see docs for
|
115 |
+
// DistEngine.execute_graph_task_until_ready_queue_empty)
|
116 |
+
void push(NodeTask item, bool incrementOutstandingTasks = true);
|
117 |
+
void pushShutdownTask();
|
118 |
+
NodeTask pop();
|
119 |
+
bool empty() const;
|
120 |
+
size_t size() const;
|
121 |
+
};
|
122 |
+
|
123 |
+
// A single instance of this struct should be created through the whole process
|
124 |
+
// lifetime. The worker thread creation logic and Engine's destructor rely on
|
125 |
+
// this.
|
126 |
+
struct TORCH_API Engine {
|
127 |
+
/// Returns a reference to a static `Engine` instance.
|
128 |
+
static Engine& get_default_engine();
|
129 |
+
|
130 |
+
static Engine& get_base_engine();
|
131 |
+
|
132 |
+
// compiled_autograd needs to live in a different .so file so that it
|
133 |
+
// can have python symbols, so we add a layer of indirection
|
134 |
+
// see [Note: Compiled Autograd]
|
135 |
+
typedef variable_list (*compiled_autograd_fn)(
|
136 |
+
const std::shared_ptr<Node>& graph_root,
|
137 |
+
GraphTask& graph_task,
|
138 |
+
bool accumulate_grad,
|
139 |
+
const edge_list& outputs);
|
140 |
+
static void set_compiled_autograd(compiled_autograd_fn fn);
|
141 |
+
|
142 |
+
Engine(const Engine&) = delete;
|
143 |
+
Engine(Engine&&) = delete;
|
144 |
+
virtual ~Engine();
|
145 |
+
|
146 |
+
// Given a list of (Node, input number) pairs computes the value of the graph
|
147 |
+
// by following next_edge references.
|
148 |
+
virtual variable_list execute(
|
149 |
+
const edge_list& roots,
|
150 |
+
const variable_list& inputs,
|
151 |
+
bool keep_graph,
|
152 |
+
bool create_graph,
|
153 |
+
bool accumulate_grad,
|
154 |
+
const edge_list& outputs = {});
|
155 |
+
|
156 |
+
// Given a pre-populated GraphTask and GraphRoot, computes the backward pass
|
157 |
+
// for the graph.
|
158 |
+
//
|
159 |
+
// NB: This API should only be used by internal autograd specific
|
160 |
+
// machinery and shouldn't be exposed to users in anyway.
|
161 |
+
virtual c10::intrusive_ptr<at::ivalue::Future> execute_with_graph_task(
|
162 |
+
const std::shared_ptr<GraphTask>& graph_task,
|
163 |
+
std::shared_ptr<Node> graph_root,
|
164 |
+
InputBuffer&& input_buffer);
|
165 |
+
|
166 |
+
virtual std::unique_ptr<AnomalyMetadata> make_anomaly_metadata() {
|
167 |
+
return std::make_unique<AnomalyMetadata>();
|
168 |
+
}
|
169 |
+
|
170 |
+
virtual std::unique_ptr<SavedVariableHooks> get_default_saved_variable_hooks() {
|
171 |
+
return nullptr;
|
172 |
+
}
|
173 |
+
|
174 |
+
// We pass cpu_ready_queue to evaluate_function, so that it knows
|
175 |
+
// the correct ready queue to push to after a NodeTask is ready
|
176 |
+
void evaluate_function(
|
177 |
+
std::shared_ptr<GraphTask>& graph_task,
|
178 |
+
Node* func,
|
179 |
+
InputBuffer& inputs,
|
180 |
+
const std::shared_ptr<ReadyQueue>& cpu_ready_queue);
|
181 |
+
|
182 |
+
void initialize_device_threads_pool();
|
183 |
+
virtual void thread_on_exception(
|
184 |
+
std::shared_ptr<GraphTask> graph_task,
|
185 |
+
const std::shared_ptr<Node>& fn,
|
186 |
+
std::exception& e);
|
187 |
+
|
188 |
+
void queue_callback(std::function<void()> callback);
|
189 |
+
|
190 |
+
bool is_checkpoint_valid();
|
191 |
+
|
192 |
+
// Should be called after fork to notify that worker threads are gone
|
193 |
+
void release_workers();
|
194 |
+
|
195 |
+
// Must be called by subclass before destructing to avoid a data-race-on-vptr.
|
196 |
+
void stop();
|
197 |
+
|
198 |
+
// Initializes a device thread for the autograd engine.
|
199 |
+
virtual void thread_init(
|
200 |
+
int device,
|
201 |
+
const std::shared_ptr<ReadyQueue>& ready_queue,
|
202 |
+
bool should_increment = true);
|
203 |
+
|
204 |
+
protected:
|
205 |
+
Engine();
|
206 |
+
void compute_dependencies(Node* root, GraphTask& task, uint64_t min_topo_nr);
|
207 |
+
|
208 |
+
// initialize the thread local ready queue with the ready queue that is
|
209 |
+
// created elsewhere (i.e. thread_init, Engine::execute, etc), or create a new
|
210 |
+
// ready queue if ready_queue is not provided.
|
211 |
+
void init_local_ready_queue(
|
212 |
+
std::shared_ptr<ReadyQueue> ready_queue = nullptr);
|
213 |
+
|
214 |
+
std::shared_ptr<ReadyQueue> ready_queue(
|
215 |
+
std::shared_ptr<ReadyQueue> cpu_ready_queue,
|
216 |
+
at::Device device);
|
217 |
+
std::shared_ptr<ReadyQueue> ready_queue_by_index(
|
218 |
+
std::shared_ptr<ReadyQueue> cpu_ready_queue,
|
219 |
+
int device_index);
|
220 |
+
// start device threads (CUDA, XLA, etc.) in Engine,
|
221 |
+
// note that it does NOT start CPU thread.
|
222 |
+
void start_device_threads();
|
223 |
+
void increment_non_reentrant_thread_count();
|
224 |
+
void decrement_non_reentrant_thread_count();
|
225 |
+
virtual void thread_main(const std::shared_ptr<GraphTask>& task);
|
226 |
+
void reentrant_thread_init();
|
227 |
+
void add_thread_pool_task(const std::weak_ptr<GraphTask>& graph_task);
|
228 |
+
|
229 |
+
// Ensures device_ready_queues_ are initialized only once
|
230 |
+
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
|
231 |
+
c10::once_flag start_device_threads_flag_;
|
232 |
+
// Safe to read device_ready_queues_ without synchronization after
|
233 |
+
// initialization
|
234 |
+
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
|
235 |
+
std::vector<std::shared_ptr<ReadyQueue>> device_ready_queues_;
|
236 |
+
|
237 |
+
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
|
238 |
+
std::vector<std::function<void()>> final_callbacks_;
|
239 |
+
// To protect reads and writes to final_callbacks_
|
240 |
+
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
|
241 |
+
std::mutex post_callbacks_lock_;
|
242 |
+
|
243 |
+
// How many nested reentrant calls are allowed until a new thread is used
|
244 |
+
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
|
245 |
+
int max_recursion_depth_;
|
246 |
+
|
247 |
+
struct ThreadPoolShared {
|
248 |
+
// Data structures used by the threads for executing reentrant backwards
|
249 |
+
// tasks. See Note [Reentrant backwards]
|
250 |
+
// Number of available threads for processing new GraphTasks.
|
251 |
+
unsigned int num_workers_{0};
|
252 |
+
// The threads will wait on work_ to be notified of GraphTasks
|
253 |
+
std::condition_variable work_;
|
254 |
+
// To protect reads and writes to graphtask_queue_ and num_workers_
|
255 |
+
// and for synchronizing creating new threads when needed
|
256 |
+
std::mutex mutex_;
|
257 |
+
// Workers will process the GraphTasks added to this queue. A GraphTask is
|
258 |
+
// allocated inside Engine::execute and lives for the duration of execute
|
259 |
+
std::queue<std::weak_ptr<GraphTask>> graphtasks_queue_;
|
260 |
+
|
261 |
+
ThreadPoolShared() = default;
|
262 |
+
};
|
263 |
+
|
264 |
+
// Temporary workaround until shutting down threads is done
|
265 |
+
// We need shared ownership of all these objects because the threads are
|
266 |
+
// leaked when Engine shuts down, so there may be threads waiting on work_ for
|
267 |
+
// the graphtasks_queue_ to be nonempty.
|
268 |
+
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
|
269 |
+
std::shared_ptr<ThreadPoolShared> thread_pool_shared_;
|
270 |
+
|
271 |
+
private:
|
272 |
+
// Number of non-reentrant threads
|
273 |
+
std::atomic<uint32_t> non_reentrant_device_thread_count_;
|
274 |
+
// Destructor will wait for non-reentrant threads to finish
|
275 |
+
std::condition_variable non_reentrant_device_thread_condvar_;
|
276 |
+
std::mutex non_reentrant_device_thread_mutex_;
|
277 |
+
// stop() must be called before the destruction path goes down to the base
|
278 |
+
// class, in order to avoid a data-race-on-vptr. Use this boolean to guard
|
279 |
+
// whether stop() has already been called, so we can call this in every
|
280 |
+
// destructor of the class hierarchy.
|
281 |
+
bool stopped_{false};
|
282 |
+
};
|
283 |
+
|
284 |
+
// allow python_engine to override the default engine when it loads
|
285 |
+
using EngineStub = Engine& (*)();
|
286 |
+
TORCH_API void set_default_engine_stub(EngineStub stub);
|
287 |
+
|
288 |
+
} // namespace torch::autograd
|
llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/forward_grad.h
ADDED
@@ -0,0 +1,210 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/core/Tensor.h>
|
4 |
+
#include <unordered_set>
|
5 |
+
|
6 |
+
namespace torch::autograd {
|
7 |
+
|
8 |
+
// [ Using ForwardGrad ]
|
9 |
+
// ForwardGrad needs to be a shared_ptr to satisfy constraints of its inner
|
10 |
+
// design. But this shared_ptr must be uniquely associated with the object that
|
11 |
+
// stores it (as of writing, either AutogradMeta or SavedVariable). This object
|
12 |
+
// is called the "owning object" in the discussions below. This owning object
|
13 |
+
// must call `ForwardGrad::clear()` when it is destroyed to ensure that the
|
14 |
+
// ForwardGrad is properly de-allocated.
|
15 |
+
|
16 |
+
struct ForwardGrad;
|
17 |
+
|
18 |
+
// This file contains two classes that are used to store forward AD gradients
|
19 |
+
// and ensure that they are scoped properly. Because forward AD runs
|
20 |
+
// concurrently with the evaluation of the function, we need a mechanism to
|
21 |
+
// separate different forward AD invocations and be able to compute the right
|
22 |
+
// gradients. We model such invocations as levels here. The particular scoping
|
23 |
+
// issue mentioned above has two main drivers:
|
24 |
+
// - Ensure that we can conveniently use forward AD within a high level API
|
25 |
+
// without
|
26 |
+
// leaking the forward AD states outside.
|
27 |
+
// - Ensure that we can keep the level that we expose to the user API simple
|
28 |
+
// (an integer
|
29 |
+
// that represents the nesting depth) while avoiding confusions when the
|
30 |
+
// level index is re-used.
|
31 |
+
|
32 |
+
// The important external APIs from this file are:
|
33 |
+
// - ForwardADLevel::get_next_idx() that can be used to enter a new level and
|
34 |
+
// get its index
|
35 |
+
// - ForwardADLevel::release_idx() that can be used to exit a given level.
|
36 |
+
// - ForwardGrad() can be used to store a given forward gradient that will
|
37 |
+
// handle the level
|
38 |
+
// tracking automatically.
|
39 |
+
|
40 |
+
// The basic implementation strategy is as follows:
|
41 |
+
// Every tensor has a ForwardGrad, maintaining a map from levels to tangents.
|
42 |
+
// ForwardGrad is responsible for registering itself to the appropriate
|
43 |
+
// ForwardADLevel when a new tangent is added to it via ForwardGrad::set_value
|
44 |
+
// and to un-register itself from this same level if that tangent is removed via
|
45 |
+
// ForwardGrad::reset. The ForwardADLevel is created when a new level is entered
|
46 |
+
// via ForwardADLevel::get_next_idx. A reference to the new ForwardADLevel is
|
47 |
+
// stored into a global (for the whole process) vector that ensure it can be
|
48 |
+
// accessed via ForwardADLevel::get_by_idx. This reference is deleted when the
|
49 |
+
// index is released by the user when calling ForwardADLevel::release_idx. When
|
50 |
+
// it is destructed, the ForwardADLevel is responsible for clearing all the
|
51 |
+
// tangents for its level stored in all the ForwardGrad that registered with it.
|
52 |
+
//
|
53 |
+
// This process-wide level design, compared to a thread local one, allows us to
|
54 |
+
// use very simple user facing handle for the level (an int) while enabling
|
55 |
+
// cross-thread forward AD. The only required synchronization for the user is
|
56 |
+
// when entering and exiting the levels. Some discussion on alternative design
|
57 |
+
// is in https://github.com/pytorch/pytorch/pull/49097#discussion_r543716453 and
|
58 |
+
// can be refined in the future.
|
59 |
+
|
60 |
+
// Correctness of concurrency:
|
61 |
+
// Each class uses its own lock when reading or modifying internal storages.
|
62 |
+
// This allows in particular to safely remove tangents from ForwardGrad when the
|
63 |
+
// ForwardADLevel is being exited. We ensure no deadlock by ensuring that a
|
64 |
+
// methods never calls into another class's method while the local class's lock
|
65 |
+
// is held except in one single case: calling from ForwardADLevel's destructor
|
66 |
+
// into ForwardGrad::reset with update_level=false.
|
67 |
+
|
68 |
+
// The lifetime of these objects is as follows:
|
69 |
+
// The ForwardADLevel can be in three states:
|
70 |
+
// - Initialized: where one of its reference is held by the global vector
|
71 |
+
// and there may be more
|
72 |
+
// references held by temporary variables in ForwardGrad's methods.
|
73 |
+
// - About to be destructed: where "release_idx" has been called and the
|
74 |
+
// only reason for the
|
75 |
+
// ForwardADLevel not to be destructed right away is that some methods in
|
76 |
+
// ForwardGrad have owning reference to it. This is done so that a
|
77 |
+
// ForwardADLevel can never be destructed when a ForwardGrad is
|
78 |
+
// registered with it and in the process of adding something to its
|
79 |
+
// internal state.
|
80 |
+
// - Being destructed: Here the ForwardADLevel is not referenced anymore
|
81 |
+
// and can be safely reset
|
82 |
+
// all of the ForwardGrad. Note that we can have more than one reset
|
83 |
+
// being called here (which is ok) but we are guaranteed that there is at
|
84 |
+
// least one.
|
85 |
+
// The ForwardGrad is simpler as there is no intermediary state and no special
|
86 |
+
// destructor for. The logic to unregister it from the different ForwardADLevel
|
87 |
+
// is done when the owning object (AutogradMeta or SavedVariable) is being
|
88 |
+
// destroyed.
|
89 |
+
|
90 |
+
// Other considered design:
|
91 |
+
// To avoid having the ForwardGrad::clear, we considered storing weak_ptr inside
|
92 |
+
// the ForwardADLevel. While this would work, it would mean that the set inside
|
93 |
+
// the ForwardADLevel would only grow unless we do an expensive linear scan to
|
94 |
+
// remove all the dangling weak pointers. Hence this approach was not used.
|
95 |
+
|
96 |
+
// Data structures in this file are optimized for this maximum number of levels.
|
97 |
+
// The number of levels corresponds to the degree of the gradient being
|
98 |
+
// computed using forward AD and we don't expect more than second order
|
99 |
+
// gradients to be common.
|
100 |
+
#define EXPECTED_MAX_LEVEL 2
|
101 |
+
|
102 |
+
struct TORCH_API ForwardADLevel {
|
103 |
+
ForwardADLevel(uint64_t idx) : idx_(idx) {}
|
104 |
+
~ForwardADLevel();
|
105 |
+
|
106 |
+
static uint64_t get_next_idx();
|
107 |
+
static void release_idx(uint64_t idx);
|
108 |
+
static std::shared_ptr<ForwardADLevel> get_by_idx(uint64_t idx);
|
109 |
+
static std::shared_ptr<ForwardADLevel> try_get_by_idx(uint64_t idx);
|
110 |
+
|
111 |
+
void erase(const std::shared_ptr<ForwardGrad>& grad) {
|
112 |
+
std::lock_guard<std::mutex> lock(mutex_);
|
113 |
+
grads_.erase(grad);
|
114 |
+
}
|
115 |
+
|
116 |
+
void insert(const std::shared_ptr<ForwardGrad>& grad) {
|
117 |
+
std::lock_guard<std::mutex> lock(mutex_);
|
118 |
+
grads_.insert(grad);
|
119 |
+
}
|
120 |
+
|
121 |
+
private:
|
122 |
+
std::unordered_set<std::shared_ptr<ForwardGrad>> grads_;
|
123 |
+
std::mutex mutex_;
|
124 |
+
uint64_t idx_;
|
125 |
+
};
|
126 |
+
|
127 |
+
struct TORCH_API ForwardGrad : std::enable_shared_from_this<ForwardGrad> {
|
128 |
+
ForwardGrad() = default;
|
129 |
+
|
130 |
+
// This function must only be called when AutogradMeta or SavedVariable is
|
131 |
+
// being destructed as it ensures that:
|
132 |
+
// - The only (potential) other references to this ForwardGrad are the
|
133 |
+
// different level it is registered to
|
134 |
+
// - No other thread will try to call `set_value` or `value` ever from now
|
135 |
+
// on
|
136 |
+
// - Any of the ForwardADLevel that this ForwardGrad is registered with
|
137 |
+
// might
|
138 |
+
// call `reset` at any point during this function
|
139 |
+
void clear() {
|
140 |
+
c10::SmallVector<uint64_t, EXPECTED_MAX_LEVEL> levels_idx;
|
141 |
+
|
142 |
+
{
|
143 |
+
std::lock_guard<std::mutex> lock(mutex_);
|
144 |
+
for (auto& c : content_) {
|
145 |
+
levels_idx.push_back(c.first);
|
146 |
+
}
|
147 |
+
}
|
148 |
+
|
149 |
+
for (auto l_idx : levels_idx) {
|
150 |
+
// Use "try" version here as another thread might have deleted this
|
151 |
+
// level before we got here
|
152 |
+
// This is an owning reference as we want to keep the level alive
|
153 |
+
// until we successfully unregister ourselves
|
154 |
+
auto level = ForwardADLevel::try_get_by_idx(l_idx);
|
155 |
+
if (level) {
|
156 |
+
level->erase(shared_from_this());
|
157 |
+
}
|
158 |
+
}
|
159 |
+
}
|
160 |
+
|
161 |
+
void set_value(const at::Tensor& value, uint64_t level) {
|
162 |
+
// Owning reference to ensure the forward_level is not destroyed
|
163 |
+
// while we are updating our internal state
|
164 |
+
auto forward_level = ForwardADLevel::get_by_idx(level);
|
165 |
+
forward_level->insert(shared_from_this());
|
166 |
+
|
167 |
+
std::lock_guard<std::mutex> lock(mutex_);
|
168 |
+
content_.insert({level, value});
|
169 |
+
}
|
170 |
+
|
171 |
+
// This function removes the tangent for a given level from this ForwardGrad
|
172 |
+
// Use the update_level flag to disable notifying the level about this reset
|
173 |
+
// This flag is most notably used by the ForwardADLevel destructor.
|
174 |
+
void reset(uint64_t level, bool update_level = true) {
|
175 |
+
if (update_level) {
|
176 |
+
ForwardADLevel::get_by_idx(level)->erase(shared_from_this());
|
177 |
+
}
|
178 |
+
|
179 |
+
std::unique_lock<std::mutex> lock(mutex_);
|
180 |
+
const auto& it = content_.find(level);
|
181 |
+
TORCH_INTERNAL_ASSERT(
|
182 |
+
it != content_.end(), "Resetting a non-existent level.");
|
183 |
+
// Keep the Tensor alive until we have released the lock
|
184 |
+
// This is needed as we can be in a case where this function is called by
|
185 |
+
// ForwardADLevel destructor
|
186 |
+
auto t = (*it).second;
|
187 |
+
content_.erase(level);
|
188 |
+
lock.unlock();
|
189 |
+
}
|
190 |
+
|
191 |
+
const at::Tensor& value(uint64_t level) const;
|
192 |
+
|
193 |
+
bool contains(uint64_t level) {
|
194 |
+
std::lock_guard<std::mutex> lock(mutex_);
|
195 |
+
return content_.count(level) > 0;
|
196 |
+
}
|
197 |
+
|
198 |
+
bool empty() const {
|
199 |
+
return content_.empty();
|
200 |
+
}
|
201 |
+
|
202 |
+
static const at::Tensor& undef_grad();
|
203 |
+
|
204 |
+
private:
|
205 |
+
// TODO(albanD): replace this with a SmallVector
|
206 |
+
std::unordered_map<uint64_t, at::Tensor> content_;
|
207 |
+
mutable std::mutex mutex_;
|
208 |
+
};
|
209 |
+
|
210 |
+
} // namespace torch::autograd
|
llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/functions/accumulate_grad.h
ADDED
@@ -0,0 +1,277 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/CachedTensorUtils.h>
|
4 |
+
#include <ATen/LegacyBatchedTensorImpl.h>
|
5 |
+
#include <ATen/TensorOperators.h>
|
6 |
+
#include <torch/csrc/Export.h>
|
7 |
+
#include <torch/csrc/autograd/function.h>
|
8 |
+
#include <torch/csrc/autograd/utils/grad_layout_contract.h>
|
9 |
+
#include <torch/csrc/autograd/variable.h>
|
10 |
+
|
11 |
+
#ifndef AT_PER_OPERATOR_HEADERS
|
12 |
+
#include <ATen/Functions.h>
|
13 |
+
#else
|
14 |
+
#include <ATen/ops/_sparse_coo_tensor_unsafe.h>
|
15 |
+
#endif
|
16 |
+
|
17 |
+
#include <mutex>
|
18 |
+
|
19 |
+
namespace torch {
|
20 |
+
namespace autograd {
|
21 |
+
|
22 |
+
#define CHECK_RESULT(RESULT, VAR) \
|
23 |
+
if (!(RESULT.is_sparse() || VAR.is_sparse() || RESULT.is_sparse_csr() || \
|
24 |
+
VAR.is_sparse_csr())) { \
|
25 |
+
if (!utils::obeys_layout_contract(RESULT, VAR)) { \
|
26 |
+
TORCH_WARN_ONCE( \
|
27 |
+
"grad and param do not obey the gradient layout contract. " \
|
28 |
+
"This is not an error, but may impair performance.\n" \
|
29 |
+
"grad.sizes() = ", \
|
30 |
+
RESULT.sizes(), \
|
31 |
+
", strides() = ", \
|
32 |
+
RESULT.strides(), \
|
33 |
+
"\n", \
|
34 |
+
"param.sizes() = ", \
|
35 |
+
VAR.sizes(), \
|
36 |
+
", strides() = ", \
|
37 |
+
VAR.strides()); \
|
38 |
+
} \
|
39 |
+
}
|
40 |
+
|
41 |
+
struct TORCH_API AccumulateGrad : public Node {
|
42 |
+
explicit AccumulateGrad(Variable variable_);
|
43 |
+
|
44 |
+
variable_list apply(variable_list&& grads) override;
|
45 |
+
|
46 |
+
std::vector<std::unique_ptr<FunctionPreHook>>& tensor_pre_hooks() noexcept
|
47 |
+
override {
|
48 |
+
// NB: Since the AccumulateGrad Node is only a weak ref from the Tensor,
|
49 |
+
// it can be destroyed even though the Tensor is still alive (contrary
|
50 |
+
// to all other Nodes). So we must lazily read the Tensor hooks here.
|
51 |
+
return impl::hooks(variable);
|
52 |
+
}
|
53 |
+
|
54 |
+
std::unique_ptr<PostAccumulateGradHook>& tensor_post_acc_grad_hooks() noexcept
|
55 |
+
override {
|
56 |
+
// NB: Since the AccumulateGrad Node is only a weak ref from the Tensor,
|
57 |
+
// it can be destroyed even though the Tensor is still alive (contrary
|
58 |
+
// to all other Nodes). So we must lazily read the Tensor hooks here.
|
59 |
+
return impl::post_acc_grad_hooks(variable);
|
60 |
+
}
|
61 |
+
|
62 |
+
// Given a variable with its current grad as variable_grad, accumulates
|
63 |
+
// new_grad into variable_grad if in place accumulation is possible.
|
64 |
+
// Otherwise, uses 'update_grad' to update the grad for the variable.
|
65 |
+
|
66 |
+
// "Gradient Layout Contract"
|
67 |
+
//
|
68 |
+
// AccumulateGrad tries to stash strided (non-sparse) grads with memory layout
|
69 |
+
// (strides) such that variables and grads interact efficiently in later
|
70 |
+
// optimizer kernels, and grads interact efficiently with c10d::Reducer.cpp.
|
71 |
+
//
|
72 |
+
// Specifically, AccumulateGrad tries to ensure the following
|
73 |
+
// (cf torch/csrc/autograd/utils/grad_layout_contract.h):
|
74 |
+
// (1) if variable.is_non_overlapping_and_dense(), the stashed grad's
|
75 |
+
// strides match variable.
|
76 |
+
// (2) else, stashed grad is rowmajor contiguous.
|
77 |
+
// If variable's grad does not exist (!variable_grad.defined())
|
78 |
+
// AccumulateGrad steals new_grad if it's stealable and obeys the contract
|
79 |
+
// already, otherwise it deep copies new_grad into an obedient clone.
|
80 |
+
//
|
81 |
+
// If variable's grad already exists (variable_grad.defined()), new_grad must
|
82 |
+
// be added to variable_grad. If we aren't setting up for double backward
|
83 |
+
// (!GradMode::is_enabled()), AccumulateGrad performs "variable_grad +=
|
84 |
+
// new_grad" in-place, which keeps variable_grad's layout. We assume (hope)
|
85 |
+
// variable_grad was created obeying (1) or (2) at some point in the past.
|
86 |
+
//
|
87 |
+
// If we are setting up for double backward, AccumulateGrad updates the grad
|
88 |
+
// out-of-place via "variable_grad + new_grad." TensorIterator operator+
|
89 |
+
// decides result's layout. Typically TensorIterator matches strides of the
|
90 |
+
// first arg, so we once again assume (hope) variable_grad was originally
|
91 |
+
// created obeying (1) or (2).
|
92 |
+
//
|
93 |
+
// AccumulateGrad does not enforce the contract with 100% certainty. Examples:
|
94 |
+
// - If a user manually permutes a param or its grad, then runs a fwd+bwd,
|
95 |
+
// variable_grad += new_grad keeps variable_grad's layout without
|
96 |
+
// rechecking the contract.
|
97 |
+
// - If TensorIterator changes its corner cases about operator+'s result
|
98 |
+
// (for example, giving more or less priority to channels_last inputs, see
|
99 |
+
// https://github.com/pytorch/pytorch/pull/37968) the result may not obey.
|
100 |
+
//
|
101 |
+
// Fortunately, if a given grad doesn't satisfy (1) or (2), the penalty is
|
102 |
+
// degraded performance in Reducer.cpp or optimizer kernels, not death by
|
103 |
+
// assert or silently bad numerics.
|
104 |
+
|
105 |
+
// variable: the variable whose grad we're accumulating.
|
106 |
+
// variable_grad: the current grad for the variable.
|
107 |
+
// new_grad: new grad we want to accumulate for the variable.
|
108 |
+
// num_expected_refs: the number of refs we expect to hold internally
|
109 |
+
// such that it is safe to avoid cloning the grad
|
110 |
+
// if use_count() of the grad is less than or equal
|
111 |
+
// to this value (in addition to post_hooks).
|
112 |
+
// update_grad: Function that is used to update grad for the variable.
|
113 |
+
// The argument to the function is a Tensor which
|
114 |
+
// is used to set a new value for the grad.
|
115 |
+
template <typename T>
|
116 |
+
static void accumulateGrad(
|
117 |
+
const Variable& variable,
|
118 |
+
at::Tensor& variable_grad,
|
119 |
+
const at::Tensor& new_grad,
|
120 |
+
size_t num_expected_refs,
|
121 |
+
const T& update_grad) {
|
122 |
+
if (!variable_grad.defined()) {
|
123 |
+
if (!GradMode::is_enabled() && !new_grad.is_sparse() &&
|
124 |
+
!new_grad.is_sparse_csr() &&
|
125 |
+
!(variable.is_sparse_csr() && new_grad.layout() == at::kStrided) &&
|
126 |
+
at::caching::adjusted_use_count(new_grad) <= num_expected_refs &&
|
127 |
+
(new_grad.is_mkldnn() ||
|
128 |
+
utils::obeys_layout_contract(new_grad, variable))) {
|
129 |
+
// we aren't setting up for double-backward
|
130 |
+
// not sparse
|
131 |
+
// no other user-visible tensor references new_grad
|
132 |
+
// new_grad obeys the "Gradient Layout Contract", there has a special
|
133 |
+
// case, For MKLDNN tensor, which is a opaque tensor, assuming it obeys
|
134 |
+
// layout_contract. Under these conditions, we can steal new_grad
|
135 |
+
// without a deep copy.
|
136 |
+
update_grad(new_grad.detach());
|
137 |
+
} else if (
|
138 |
+
!GradMode::is_enabled() && new_grad.is_sparse() &&
|
139 |
+
new_grad._indices().is_contiguous() &&
|
140 |
+
new_grad._values().is_contiguous() &&
|
141 |
+
// Use count for indices and values should always be <=1 since the
|
142 |
+
// SparseTensor should be the only one holding a reference to these.
|
143 |
+
new_grad._indices().use_count() <= 1 &&
|
144 |
+
new_grad._values().use_count() <= 1 &&
|
145 |
+
new_grad.use_count() <= num_expected_refs) {
|
146 |
+
// Can't detach sparse tensor (since metadata changes are not allowed
|
147 |
+
// after detach), so just create a new one for the grad which is a
|
148 |
+
// shallow copy. We need a shallow copy so that modifying the original
|
149 |
+
// grad tensor doesn't modify the grad we accumulate.
|
150 |
+
// We only skip clone if indices and values themselves are contiguous
|
151 |
+
// for backward compatibility reasons. Since without this optimization,
|
152 |
+
// earlier we would clone the entire SparseTensor which cloned indices
|
153 |
+
// and values.
|
154 |
+
// For details see https://github.com/pytorch/pytorch/issues/34375.
|
155 |
+
|
156 |
+
// No scenario where we expect this to be true currently
|
157 |
+
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(
|
158 |
+
!at::caching::is_cached_tensor(new_grad._indices()) &&
|
159 |
+
!at::caching::is_cached_tensor(new_grad._values()) &&
|
160 |
+
!at::caching::is_cached_tensor(new_grad));
|
161 |
+
|
162 |
+
update_grad(at::_sparse_coo_tensor_unsafe(
|
163 |
+
new_grad._indices(),
|
164 |
+
new_grad._values(),
|
165 |
+
new_grad.sizes(),
|
166 |
+
new_grad.options()));
|
167 |
+
} else {
|
168 |
+
if (new_grad.is_sparse() || new_grad.is_sparse_csr() ||
|
169 |
+
new_grad.is_nested()) {
|
170 |
+
update_grad(new_grad.clone());
|
171 |
+
} else {
|
172 |
+
if (new_grad.is_mkldnn()) {
|
173 |
+
update_grad(new_grad.clone());
|
174 |
+
} else {
|
175 |
+
// Deep copies new_grad according to the "Gradient Layout Contract."
|
176 |
+
update_grad(utils::clone_obey_contract(new_grad, variable));
|
177 |
+
}
|
178 |
+
}
|
179 |
+
}
|
180 |
+
} else if (!GradMode::is_enabled()) {
|
181 |
+
// This case is not strictly necessary, but it makes the first-order only
|
182 |
+
// case slightly more efficient.
|
183 |
+
if (variable_grad.is_sparse() && !new_grad.is_sparse()) {
|
184 |
+
// If `variable_grad` is sparse and `new_grad` is not sparse, their
|
185 |
+
// sum is not sparse, and we must change the TensorImpl type of
|
186 |
+
// `variable_grad` for it to store the result. However, changing the
|
187 |
+
// TensorImpl type of a tensor requires changing the tensor itself, and
|
188 |
+
// thus in this case we have to change the grad tensor.
|
189 |
+
auto result = new_grad + variable_grad;
|
190 |
+
CHECK_RESULT(result, variable);
|
191 |
+
update_grad(std::move(result));
|
192 |
+
} else if (!at::inplaceIsVmapCompatible(variable_grad, new_grad)) {
|
193 |
+
// Ideally we'd perform an in-place operation to avoid changing
|
194 |
+
// the grad tensor. However, if that's impossible because the grads
|
195 |
+
// are vmap-incompatible (See NOTE: [vmap-incompatible in-place
|
196 |
+
// operations]), then we just add them out-of-place.
|
197 |
+
auto result = variable_grad + new_grad;
|
198 |
+
CHECK_RESULT(result, variable);
|
199 |
+
update_grad(std::move(result));
|
200 |
+
} else {
|
201 |
+
// In this case we can avoid changing the grad tensor. There are three
|
202 |
+
// scenarios when we'll hit this case:
|
203 |
+
//
|
204 |
+
// 1. `variable_grad` is sparse, and `new_grad` is sparse.
|
205 |
+
// 2. `variable_grad` is dense, and `new_grad` is sparse.
|
206 |
+
// 3. `variable_grad` is dense, and `new_grad` is dense.
|
207 |
+
// 4. `variable_grad` is mkldnn, and `new_grad` is mkldnn.
|
208 |
+
//
|
209 |
+
// In all of these four cases, `variable_grad += new_grad` is a
|
210 |
+
// valid operation which adds `new_grad` to `variable_grad` in
|
211 |
+
// place. `variable_grad` is thus still referring to the same tensor
|
212 |
+
// after the operation.
|
213 |
+
// Also DistributedDataParallel(DDP) package relies on grad being
|
214 |
+
// mutated in place for saving peak memory usage. DDP will still
|
215 |
+
// work correctly if it is mutated out of place here, but DDP will
|
216 |
+
// maintain one extra copy of grad tensors in buffer and thus
|
217 |
+
// increase peak memory usage.
|
218 |
+
variable_grad += new_grad;
|
219 |
+
CHECK_RESULT(variable_grad, variable);
|
220 |
+
// ^ We could enforce the contract more aggressively here by writing:
|
221 |
+
// if (variable_grad.is_sparse() || new_grad.is_sparse()) {
|
222 |
+
// variable_grad += new_grad;
|
223 |
+
// } else if (obeys_layout_contract(variable_grad, variable)) {
|
224 |
+
// variable_grad += new_grad;
|
225 |
+
// } else {
|
226 |
+
// result = at::empty_strided(variable.sizes(), variable.strides(),
|
227 |
+
// variable.options().memory_format(c10::nullopt));
|
228 |
+
// update_grad(at::native::add_out(result, variable_grad,
|
229 |
+
// new_grad, 1.0);
|
230 |
+
// }
|
231 |
+
// However, that accumulation is sometimes in place and sometimes not,
|
232 |
+
// which may break user code.
|
233 |
+
}
|
234 |
+
} else {
|
235 |
+
at::Tensor result;
|
236 |
+
if (variable_grad.is_sparse() && !new_grad.is_sparse()) {
|
237 |
+
// CPU backend throws an error on sparse + dense, so prefer dense +
|
238 |
+
// sparse here.
|
239 |
+
result = new_grad + variable_grad;
|
240 |
+
} else {
|
241 |
+
// Assumes operator+ result typically matches strides of first arg,
|
242 |
+
// and hopes variable_grad was originally created obeying layout
|
243 |
+
// contract.
|
244 |
+
result = variable_grad + new_grad;
|
245 |
+
}
|
246 |
+
CHECK_RESULT(result, variable);
|
247 |
+
update_grad(std::move(result));
|
248 |
+
// ^ We could enforce the contract more aggressively here by saying
|
249 |
+
// if (obeys_layout_contract(new_grad, variable)) {
|
250 |
+
// update_grad(new_grad + variable_grad);
|
251 |
+
// } else {
|
252 |
+
// update_grad(variable_grad + new_grad);
|
253 |
+
// }
|
254 |
+
// such that the stashed grad is likely to have the right strides if
|
255 |
+
// either variable_grad or new_grad already has the right strides.
|
256 |
+
// We could enforce the contract with certainty by saying
|
257 |
+
// auto result = variable_grad + new_grad (or vice versa), checking
|
258 |
+
// result's layout, and copying to an obedient clone if necessary before
|
259 |
+
// update_grad. The copy would require another gmem pass. We can't create
|
260 |
+
// empty result with the right layout then add_out into it with a single
|
261 |
+
// kernel, because GradMode is enabled in this branch, and add_out isn't
|
262 |
+
// differentiable. Maybe more trouble than it's worth.
|
263 |
+
}
|
264 |
+
}
|
265 |
+
|
266 |
+
void compiled_args(CompiledNodeArgs& args) override;
|
267 |
+
variable_list apply_with_saved(
|
268 |
+
const variable_list& inputs,
|
269 |
+
SwapSavedVariables& saved) override;
|
270 |
+
|
271 |
+
Variable variable;
|
272 |
+
};
|
273 |
+
|
274 |
+
#undef CHECK_RESULT
|
275 |
+
|
276 |
+
} // namespace autograd
|
277 |
+
} // namespace torch
|
llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/functions/basic_ops.h
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <c10/util/irange.h>
|
4 |
+
#include <torch/csrc/Export.h>
|
5 |
+
#include <torch/csrc/autograd/function.h>
|
6 |
+
#include <torch/csrc/autograd/variable.h>
|
7 |
+
|
8 |
+
#include <memory>
|
9 |
+
#include <string>
|
10 |
+
#include <vector>
|
11 |
+
|
12 |
+
namespace torch {
|
13 |
+
namespace autograd {
|
14 |
+
|
15 |
+
struct TORCH_API Error : public Node {
|
16 |
+
Error(std::string msg, edge_list&& next_edges)
|
17 |
+
: Node(std::move(next_edges)), msg(std::move(msg)) {}
|
18 |
+
|
19 |
+
Error(std::string msg) : msg(std::move(msg)) {}
|
20 |
+
|
21 |
+
variable_list apply(variable_list&& inputs) override;
|
22 |
+
|
23 |
+
void compiled_args(CompiledNodeArgs& args) override;
|
24 |
+
variable_list apply_with_saved(
|
25 |
+
const variable_list& inputs,
|
26 |
+
SwapSavedVariables& saved) override;
|
27 |
+
|
28 |
+
std::string msg;
|
29 |
+
};
|
30 |
+
|
31 |
+
// We print grad_fn names in tensor printing. For functions with backward
|
32 |
+
// NYI, grad_fn=<Error> will be printed if we use Error, which is confusing. So
|
33 |
+
// special case with a new NotImplemented function here.
|
34 |
+
struct TORCH_API NotImplemented : public Error {
|
35 |
+
NotImplemented(const std::string& forward_fn, edge_list&& next_edges)
|
36 |
+
: Error(
|
37 |
+
"derivative for " + forward_fn + " is not implemented",
|
38 |
+
std::move(next_edges)) {}
|
39 |
+
|
40 |
+
NotImplemented(const std::string& forward_fn)
|
41 |
+
: Error("derivative for " + forward_fn + " is not implemented") {}
|
42 |
+
};
|
43 |
+
|
44 |
+
// Identity in forward, Error in backward. Used to implement
|
45 |
+
// @once_differentiable
|
46 |
+
struct TORCH_API DelayedError : public Node {
|
47 |
+
DelayedError(std::string msg, int64_t num_inputs) : msg(std::move(msg)) {
|
48 |
+
// NOLINTNEXTLINE(clang-analyzer-deadcode.DeadStores)
|
49 |
+
for (const auto i : c10::irange(num_inputs)) {
|
50 |
+
(void)i; // Suppress unused variable warning
|
51 |
+
add_input_metadata(Node::undefined_input());
|
52 |
+
}
|
53 |
+
}
|
54 |
+
|
55 |
+
variable_list apply(variable_list&& inputs) override;
|
56 |
+
|
57 |
+
std::string msg;
|
58 |
+
};
|
59 |
+
|
60 |
+
struct TORCH_API UndefinedGrad : public Node {
|
61 |
+
UndefinedGrad() {
|
62 |
+
add_input_metadata(Node::undefined_input());
|
63 |
+
}
|
64 |
+
|
65 |
+
variable_list apply(variable_list&& inputs) override;
|
66 |
+
};
|
67 |
+
|
68 |
+
struct TORCH_API UndefinedGradBackward : public Node {
|
69 |
+
UndefinedGradBackward(edge_list&& next_edges) : Node(std::move(next_edges)) {}
|
70 |
+
|
71 |
+
UndefinedGradBackward() = default;
|
72 |
+
|
73 |
+
variable_list apply(variable_list&& inputs) override;
|
74 |
+
|
75 |
+
void compiled_args(CompiledNodeArgs& args) override {}
|
76 |
+
variable_list apply_with_saved(
|
77 |
+
const variable_list& inputs,
|
78 |
+
SwapSavedVariables& saved) override {
|
79 |
+
return apply(variable_list(inputs));
|
80 |
+
}
|
81 |
+
};
|
82 |
+
|
83 |
+
struct TORCH_API GraphRoot : public Node {
|
84 |
+
GraphRoot(edge_list functions, variable_list inputs)
|
85 |
+
: Node(std::move(functions)), outputs(std::move(inputs)) {
|
86 |
+
// Ensures calls to stream() on a GraphRoot instance reflect current
|
87 |
+
// stream(s) on devices of root grad tensors at the time the instance is
|
88 |
+
// constructed.
|
89 |
+
for (const auto& t : outputs) {
|
90 |
+
add_input_metadata(t);
|
91 |
+
}
|
92 |
+
}
|
93 |
+
|
94 |
+
variable_list apply(variable_list&& inputs) override {
|
95 |
+
return outputs;
|
96 |
+
}
|
97 |
+
|
98 |
+
void compiled_args(CompiledNodeArgs& args) override;
|
99 |
+
variable_list apply_with_saved(
|
100 |
+
const variable_list& inputs,
|
101 |
+
SwapSavedVariables& saved) override;
|
102 |
+
|
103 |
+
variable_list outputs;
|
104 |
+
};
|
105 |
+
|
106 |
+
struct TORCH_API Identity : public Node {
|
107 |
+
variable_list apply(variable_list&& inputs) override;
|
108 |
+
};
|
109 |
+
|
110 |
+
} // namespace autograd
|
111 |
+
} // namespace torch
|
llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/functions/comm.h
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/Export.h>
|
4 |
+
#include <torch/csrc/autograd/function.h>
|
5 |
+
#include <torch/csrc/autograd/variable.h>
|
6 |
+
|
7 |
+
#include <ATen/ATen.h>
|
8 |
+
#include <c10/cuda/CUDAStream.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
|
11 |
+
#include <cstddef>
|
12 |
+
#include <vector>
|
13 |
+
|
14 |
+
namespace torch {
|
15 |
+
namespace autograd {
|
16 |
+
|
17 |
+
struct TORCH_CUDA_CU_API Scatter : public Node {
|
18 |
+
explicit Scatter(
|
19 |
+
std::vector<at::Device> devices,
|
20 |
+
c10::optional<std::vector<int64_t>> chunk_sizes = c10::nullopt,
|
21 |
+
int64_t dim = 0,
|
22 |
+
c10::optional<std::vector<c10::optional<at::cuda::CUDAStream>>> streams =
|
23 |
+
c10::nullopt,
|
24 |
+
bool unsqueeze_scalars = false);
|
25 |
+
~Scatter() override;
|
26 |
+
|
27 |
+
variable_list apply(variable_list&& inputs) override;
|
28 |
+
|
29 |
+
std::vector<at::Device> devices_;
|
30 |
+
c10::optional<std::vector<int64_t>> chunk_sizes_;
|
31 |
+
int64_t dim_;
|
32 |
+
c10::optional<std::vector<c10::optional<at::cuda::CUDAStream>>> streams_;
|
33 |
+
bool unsqueeze_scalars_;
|
34 |
+
};
|
35 |
+
|
36 |
+
struct TORCH_CUDA_CU_API Gather : public Node {
|
37 |
+
explicit Gather(const at::Device& destination_device, int64_t dim = 0);
|
38 |
+
~Gather() override;
|
39 |
+
|
40 |
+
variable_list apply(variable_list&& inputs) override;
|
41 |
+
|
42 |
+
at::Device destination_device_;
|
43 |
+
int64_t dim_;
|
44 |
+
};
|
45 |
+
|
46 |
+
} // namespace autograd
|
47 |
+
} // namespace torch
|
llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/functions/pybind.h
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <pybind11/pybind11.h>
|
4 |
+
#include <pybind11/stl.h>
|
5 |
+
#include <torch/csrc/python_headers.h>
|
6 |
+
#include <torch/csrc/utils/pybind.h>
|
7 |
+
|
8 |
+
#include <torch/csrc/autograd/python_cpp_function.h>
|
9 |
+
#include <torch/csrc/autograd/python_function.h>
|
10 |
+
|
11 |
+
namespace py = pybind11;
|
12 |
+
|
13 |
+
namespace pybind11 {
|
14 |
+
namespace detail {}
|
15 |
+
} // namespace pybind11
|
llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/functions/tensor.h
ADDED
@@ -0,0 +1,186 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/Export.h>
|
4 |
+
#include <torch/csrc/autograd/function.h>
|
5 |
+
#include <torch/csrc/autograd/variable.h>
|
6 |
+
|
7 |
+
#include <ATen/TensorGeometry.h>
|
8 |
+
#include <ATen/core/DeprecatedTypeProperties.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
|
11 |
+
#include <cstdint>
|
12 |
+
#include <memory>
|
13 |
+
|
14 |
+
namespace torch {
|
15 |
+
namespace autograd {
|
16 |
+
|
17 |
+
struct TORCH_API CopyBackwards : public Node {
|
18 |
+
variable_list apply(variable_list&& grads) override;
|
19 |
+
void compiled_args(CompiledNodeArgs& args) override;
|
20 |
+
variable_list apply_with_saved(
|
21 |
+
const variable_list& inputs,
|
22 |
+
SwapSavedVariables& saved) override;
|
23 |
+
|
24 |
+
at::TensorOptions src_options;
|
25 |
+
};
|
26 |
+
|
27 |
+
// Note [View + Inplace update for base tensor]
|
28 |
+
//
|
29 |
+
// This note covers a few important topics related to view + inplace handling.
|
30 |
+
// - It explains what is the CopySlices Node and why we need it.
|
31 |
+
// - It explains the considerations on what is saved for backward in
|
32 |
+
// CopySlices.
|
33 |
+
// - It explains why we need to sometimes change the exec_info of the current
|
34 |
+
// backward
|
35 |
+
//
|
36 |
+
// What is CopySlices?
|
37 |
+
// ~~~~~~~~~~~~~~~~~~~
|
38 |
+
//
|
39 |
+
// We support autograd with inplace mutation; e.g., if you write x.mul_(2)
|
40 |
+
// the autograd will work as if you now had multiple Tensors under the hood and
|
41 |
+
// you did
|
42 |
+
// x = t.clone()
|
43 |
+
// x0 = x
|
44 |
+
// x1 = x0 * 2
|
45 |
+
// x = x1
|
46 |
+
// As you can see here, after this operation, x.grad_fn now points to x1.grad_fn
|
47 |
+
// (the MulBackward node) and this node points to x's original grad_fn (which is
|
48 |
+
// also x0.grad_fn). It is important to keep in mind that after the inplace,
|
49 |
+
// there is no Tensor object that represents the x0 state anymore. But the graph
|
50 |
+
// for it is still around in autograd (in case x was used before being modified
|
51 |
+
// inplace). See Example 1 in
|
52 |
+
// https://docs.google.com/drawings/d/1-T5DyYfChMX1ONQkY-zU-hj_ayQ2zmA5CBOKDWqvEhE
|
53 |
+
// We call this rebasing the history of the Tensor.
|
54 |
+
//
|
55 |
+
// Now, a difficult situation is what happens if x is a differentiable view
|
56 |
+
// of a base b.
|
57 |
+
// b = t.clone()
|
58 |
+
// x = b.select(0, 0)
|
59 |
+
// x *= 2
|
60 |
+
// With the same approach as above, this will become
|
61 |
+
// b = t.clone()
|
62 |
+
// x = b.select(0, 0)
|
63 |
+
// b0 = b
|
64 |
+
// x0 = x
|
65 |
+
// x1 = x0 * 2
|
66 |
+
// b1 = b0.select_scatter(x1, 0, 0)
|
67 |
+
// x2 = b1.select(0, 0)
|
68 |
+
// x = x2
|
69 |
+
// b = b1
|
70 |
+
// As you can see here, not only we need to modify x's grad_fn, we also need to
|
71 |
+
// modify the one from b. We also need to ensure that the new grad_fn on x is
|
72 |
+
// linked to b's new grad_fn. The chain the select_scatter, multiplication and
|
73 |
+
// select is what CopySlices does, all wrapped into a single Node.
|
74 |
+
//
|
75 |
+
// See Example 1 in
|
76 |
+
// https://docs.google.com/drawings/d/1-T5DyYfChMX1ONQkY-zU-hj_ayQ2zmA5CBOKDWqvEhE
|
77 |
+
//
|
78 |
+
// What do we need to save in CopySlices to run backward?
|
79 |
+
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
80 |
+
//
|
81 |
+
// We need to perform grad_view = fn(grad_view), but out-of-place.
|
82 |
+
// view_fn_ is an optional function saved in DifferentiableViewMeta
|
83 |
+
// from forward pass, so that we can recover we when as_strided is not
|
84 |
+
// supported. It preserves the invariants:
|
85 |
+
// view = view_fn_(base)
|
86 |
+
// grad_view = view_fn_(grad_base)
|
87 |
+
//
|
88 |
+
// When as_strided is supported (e.g. strided CPU/CUDA Tensors), view_fn_
|
89 |
+
// is empty and we save TensorGeometry(view) instead.
|
90 |
+
// With the TensorGeometry information we can use `as_strided` call which
|
91 |
+
// is more efficient to recover views in backward.
|
92 |
+
//
|
93 |
+
// For example:
|
94 |
+
// view_1 = view_op_1(base)
|
95 |
+
// view_2 = view_op_2(view_1)
|
96 |
+
// ...
|
97 |
+
// view_n = view_op_n(view_n-1)
|
98 |
+
// view_n = inplace_op(view_n)
|
99 |
+
//
|
100 |
+
// In CPU/CUDA case where we support efficient as_strided implementation,
|
101 |
+
// grad_view_n can be calculated through 1 step.
|
102 |
+
//
|
103 |
+
// grad_view_n = grad_base.as_strided(view_sizes, view_strides, view_offset);
|
104 |
+
//
|
105 |
+
// But in XLA backend where we don't have full support of as_strided,
|
106 |
+
// it has to save a chained lambda function view_fn_, to exactly
|
107 |
+
// replay how the view was done in forward.
|
108 |
+
//
|
109 |
+
// view_fn_ = view_op_n(...(view_op_2(view_op_1())))
|
110 |
+
// grad_view_n = view_fn_(grad_base)
|
111 |
+
//
|
112 |
+
// This chain view_fn_ works as long as forward view ops are implemented,
|
113 |
+
// e.g XLA simulates view without a real Storage behind Tensor, but it's less
|
114 |
+
// efficient than the as_strided one so we should be careful to only use it when
|
115 |
+
// necessary.
|
116 |
+
//
|
117 |
+
// - For CPU/CUDA we save TensorGeometry of both base and view tensors,
|
118 |
+
// That's all we need to pass into as_strided.
|
119 |
+
// E.g. int[] sizes, int[] strides, and int storage_offset.
|
120 |
+
// - For XLA we use view_fn_, which captures all forward view op arguments
|
121 |
+
// by **value**.
|
122 |
+
// E.g for at::narrow, int dim, int start, in length are saved.
|
123 |
+
//
|
124 |
+
// Theoretically we could also save Tensor `view` in CopySlices Node, but
|
125 |
+
// it's far more expensive than what we currently save.
|
126 |
+
// 1. We cannot afford keeping large tensors alive to recover views only.
|
127 |
+
// 2. There are inplace checks when Tensors are loaded back to make sure
|
128 |
+
// they haven't been changed (including size metadata).
|
129 |
+
// So saving metadata like TensorGeometry/view arguments is much better
|
130 |
+
// because it is minimal information needed to recover views, as well as it
|
131 |
+
// allows the user to modify the original Tensor without preventing the
|
132 |
+
// backward pass from running.
|
133 |
+
//
|
134 |
+
// Why do we manually change exec_info in the apply?
|
135 |
+
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
136 |
+
//
|
137 |
+
// Using the same example as before,
|
138 |
+
// b = t.clone()
|
139 |
+
// x = b.select(0, 0)
|
140 |
+
// x *= y
|
141 |
+
//
|
142 |
+
// You can see the visualization at
|
143 |
+
// https://docs.google.com/drawings/d/1Bx-Hcz-zlIv7PabQqnPhUIVIs9F8WWi48svqMsAUMFs
|
144 |
+
// which contains the wrapped MulBackward Node and show what it links to.
|
145 |
+
// Since a backward can happen between any subset of the inputs (t and y) and
|
146 |
+
// outputs (o, x, b). It is possible to get into a state where CopySlices's 0th
|
147 |
+
// next function (CloneBackward) needs gradient but MulBackward's 0th next
|
148 |
+
// function (SelectBackward) is not. This happens if you do autograd.grad
|
149 |
+
// between x and t for example.
|
150 |
+
// In such a case, we do need to mark SelectBackward as requiring gradient such
|
151 |
+
// that, during the execution of MulBackward, we will actually compute gradient
|
152 |
+
// for the 0th input.
|
153 |
+
//
|
154 |
+
// All the other next functions are always shared (this is asserted in the apply
|
155 |
+
// code) and so nothing needs to be done for them.
|
156 |
+
|
157 |
+
// See Note [View + Inplace update for view tensor] for what we do to view
|
158 |
+
// tensor when an in-place operation happens.
|
159 |
+
struct TORCH_API CopySlices : public Node {
|
160 |
+
CopySlices(
|
161 |
+
const Variable& base_var,
|
162 |
+
at::TensorGeometry view_,
|
163 |
+
std::unique_ptr<ViewFunc> view_fn_,
|
164 |
+
std::shared_ptr<Node> fn_);
|
165 |
+
|
166 |
+
// common code between apply/apply_with_saved
|
167 |
+
template <typename T>
|
168 |
+
variable_list apply_impl(variable_list&& inputs, const T& call_fn);
|
169 |
+
|
170 |
+
variable_list apply(variable_list&& inputs) override;
|
171 |
+
void release_variables() override;
|
172 |
+
void compiled_args(CompiledNodeArgs& args) override;
|
173 |
+
variable_list apply_with_saved(
|
174 |
+
const variable_list& inputs,
|
175 |
+
SwapSavedVariables& saved) override;
|
176 |
+
|
177 |
+
at::TensorGeometry base;
|
178 |
+
// view and view_fn are redundant and view_fn will be used if available.
|
179 |
+
// See Note [View + Inplace update for base tensor] for details.
|
180 |
+
at::TensorGeometry view;
|
181 |
+
std::unique_ptr<ViewFunc> view_fn;
|
182 |
+
std::shared_ptr<Node> fn;
|
183 |
+
};
|
184 |
+
|
185 |
+
} // namespace autograd
|
186 |
+
} // namespace torch
|
llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/functions/utils.h
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/Export.h>
|
4 |
+
#include <torch/csrc/autograd/InferenceMode.h>
|
5 |
+
#include <torch/csrc/autograd/autograd.h>
|
6 |
+
#include <torch/csrc/autograd/function.h>
|
7 |
+
#include <torch/csrc/autograd/variable.h>
|
8 |
+
#include <torch/csrc/utils/variadic.h>
|
9 |
+
|
10 |
+
#include <ATen/core/Tensor.h>
|
11 |
+
|
12 |
+
#include <functional>
|
13 |
+
#include <memory>
|
14 |
+
#include <vector>
|
15 |
+
|
16 |
+
namespace torch {
|
17 |
+
namespace autograd {
|
18 |
+
|
19 |
+
using function_constructor = std::function<std::shared_ptr<Node>(edge_list&&)>;
|
20 |
+
|
21 |
+
/**
|
22 |
+
* Wraps the tensor outputs in variables and creates the grad_fn and sets the
|
23 |
+
* grad_fn if necessary.
|
24 |
+
*/
|
25 |
+
TORCH_API variable_list wrap_outputs(
|
26 |
+
const variable_list& inputs,
|
27 |
+
tensor_list&& outputs,
|
28 |
+
const function_constructor& ctr);
|
29 |
+
|
30 |
+
/// Checks that inputs contains exactly `args` items and that the first
|
31 |
+
/// `required_args`
|
32 |
+
/// items are not nullptr. If not specified, `required_args` defaults to `args`.
|
33 |
+
TORCH_API void check_input_variables(
|
34 |
+
const char* name,
|
35 |
+
const variable_list& inputs,
|
36 |
+
int args,
|
37 |
+
int required_args = -1,
|
38 |
+
bool allow_undefined = false);
|
39 |
+
|
40 |
+
struct ComputeRequiresGrad : IterArgs<ComputeRequiresGrad> {
|
41 |
+
bool out = false;
|
42 |
+
using IterArgs<ComputeRequiresGrad>::operator();
|
43 |
+
void operator()(const at::Tensor& tensor) {
|
44 |
+
const auto& var = static_cast<const Variable&>(tensor);
|
45 |
+
if (var.defined() && var.requires_grad()) {
|
46 |
+
out = true;
|
47 |
+
}
|
48 |
+
}
|
49 |
+
void operator()(const c10::optional<at::Tensor>& tensor) {
|
50 |
+
if (tensor.has_value()) {
|
51 |
+
(*this)(*tensor);
|
52 |
+
}
|
53 |
+
}
|
54 |
+
bool short_circuit() {
|
55 |
+
return out;
|
56 |
+
}
|
57 |
+
};
|
58 |
+
|
59 |
+
template <typename... Args>
|
60 |
+
inline bool compute_requires_grad(Args&&... args) {
|
61 |
+
if (!GradMode::is_enabled()) {
|
62 |
+
return false;
|
63 |
+
}
|
64 |
+
return ComputeRequiresGrad().apply(std::forward<Args>(args)...).out;
|
65 |
+
}
|
66 |
+
|
67 |
+
inline void set_history(
|
68 |
+
const at::Tensor& variable,
|
69 |
+
const std::shared_ptr<Node>& grad_fn) {
|
70 |
+
TORCH_CHECK(grad_fn != nullptr);
|
71 |
+
if (variable.defined()) {
|
72 |
+
// If the codegen triggers this, you most likely want to add your newly
|
73 |
+
// added function to the DONT_REQUIRE_DERIVATIVE list in
|
74 |
+
// tools/autograd/gen_variable_type.py
|
75 |
+
TORCH_INTERNAL_ASSERT(isDifferentiableType(variable.scalar_type()));
|
76 |
+
auto output_nr = grad_fn->add_input_metadata(variable);
|
77 |
+
impl::set_gradient_edge(variable, {grad_fn, output_nr});
|
78 |
+
} else {
|
79 |
+
grad_fn->add_input_metadata(Node::undefined_input());
|
80 |
+
}
|
81 |
+
}
|
82 |
+
|
83 |
+
inline void set_history(
|
84 |
+
const std::vector<Variable>& variables,
|
85 |
+
const std::shared_ptr<Node>& grad_fn) {
|
86 |
+
for (auto& variable : variables) {
|
87 |
+
set_history(variable, grad_fn);
|
88 |
+
}
|
89 |
+
}
|
90 |
+
|
91 |
+
inline bool isFwGradDefined(const c10::optional<at::Tensor>& t) {
|
92 |
+
return t.has_value() && t->defined() && t->_fw_grad(/*level */ 0).defined();
|
93 |
+
}
|
94 |
+
|
95 |
+
inline bool isFwGradDefinedTensorList(const at::ITensorListRef& variables) {
|
96 |
+
bool ret = false;
|
97 |
+
for (auto& variable : variables) {
|
98 |
+
ret |= isFwGradDefined(variable);
|
99 |
+
}
|
100 |
+
return ret;
|
101 |
+
}
|
102 |
+
|
103 |
+
inline bool isFwGradDefinedTensorList(
|
104 |
+
const c10::List<c10::optional<at::Tensor>>& li) {
|
105 |
+
bool ret = false;
|
106 |
+
for (auto i : c10::irange(li.size())) {
|
107 |
+
auto t = li.get(i);
|
108 |
+
ret |= (t.has_value() && isFwGradDefined(t.value()));
|
109 |
+
}
|
110 |
+
return ret;
|
111 |
+
}
|
112 |
+
|
113 |
+
} // namespace autograd
|
114 |
+
} // namespace torch
|
llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/generated/Functions.h
ADDED
The diff for this file is too large to render.
See raw diff
|
|
llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/generated/VariableType.h
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated from ../tools/autograd/templates/VariableType.h
|
4 |
+
|
5 |
+
#include <ATen/core/Tensor.h>
|
6 |
+
#include <ATen/Context.h>
|
7 |
+
|
8 |
+
#include <c10/util/intrusive_ptr.h>
|
9 |
+
|
10 |
+
#include <torch/csrc/Export.h>
|
11 |
+
#include <torch/csrc/autograd/autograd_not_implemented_fallback.h>
|
12 |
+
|
13 |
+
#include <cstdint> // for size_t
|
14 |
+
#include <functional> // for function
|
15 |
+
#include <memory> // for unique_ptr
|
16 |
+
#include <string>
|
17 |
+
#include <vector>
|
18 |
+
|
19 |
+
namespace at {
|
20 |
+
struct Quantizer;
|
21 |
+
};
|
22 |
+
|
23 |
+
namespace torch { namespace autograd {
|
24 |
+
|
25 |
+
using Variable = at::Tensor;
|
26 |
+
using at::Context;
|
27 |
+
using at::Device;
|
28 |
+
using at::Dimname;
|
29 |
+
using at::DimnameList;
|
30 |
+
using at::Generator;
|
31 |
+
using at::IntArrayRef;
|
32 |
+
using at::MemoryFormat;
|
33 |
+
using at::QScheme;
|
34 |
+
using at::Scalar;
|
35 |
+
using at::ScalarType;
|
36 |
+
using at::Storage;
|
37 |
+
using at::Tensor;
|
38 |
+
using at::TensorList;
|
39 |
+
using at::TensorOptions;
|
40 |
+
using at::Quantizer;
|
41 |
+
// This is temporary typedef to enable Quantizer in aten native function API
|
42 |
+
// we'll remove them when we are actually exposing Quantizer class
|
43 |
+
// to frontend
|
44 |
+
using ConstQuantizerPtr = const c10::intrusive_ptr<Quantizer>&;
|
45 |
+
using c10::optional;
|
46 |
+
|
47 |
+
namespace VariableType {
|
48 |
+
TORCH_API std::vector<at::DeprecatedTypeProperties*> allCUDATypes();
|
49 |
+
TORCH_API std::vector<at::DeprecatedTypeProperties*> allXPUTypes();
|
50 |
+
TORCH_API std::vector<at::DeprecatedTypeProperties*> allCPUTypes();
|
51 |
+
TORCH_API std::vector<at::DeprecatedTypeProperties*> allPrivateUser1Types();
|
52 |
+
|
53 |
+
at::Tensor & unpack(Tensor & t, const char * name, int pos);
|
54 |
+
const at::Tensor & unpack(const Tensor & t, const char * name, int pos);
|
55 |
+
at::Tensor unpack_opt(const Tensor & t, const char * name, int pos);
|
56 |
+
std::vector<at::Tensor> unpack(const at::ITensorListRef& tl, const char *name, int pos);
|
57 |
+
};
|
58 |
+
|
59 |
+
}} // namespace torch::autograd
|
llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/generated/ViewFuncs.h
ADDED
@@ -0,0 +1,953 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated from ../tools/autograd/templates/ViewFuncs.h
|
4 |
+
|
5 |
+
#include <torch/library.h>
|
6 |
+
#include <torch/csrc/autograd/variable.h>
|
7 |
+
#include <c10/core/SymIntArrayRef.h>
|
8 |
+
|
9 |
+
#ifndef AT_PER_OPERATOR_HEADERS
|
10 |
+
#include <ATen/Operators.h>
|
11 |
+
#else
|
12 |
+
#include <ATen/ops/_conj_ops.h>
|
13 |
+
#include <ATen/ops/_indices_ops.h>
|
14 |
+
#include <ATen/ops/_neg_view_ops.h>
|
15 |
+
#include <ATen/ops/_nested_get_values_ops.h>
|
16 |
+
#include <ATen/ops/_nested_view_from_buffer_ops.h>
|
17 |
+
#include <ATen/ops/_nested_view_from_jagged_ops.h>
|
18 |
+
#include <ATen/ops/_reshape_alias_ops.h>
|
19 |
+
#include <ATen/ops/_test_autograd_multiple_dispatch_view_ops.h>
|
20 |
+
#include <ATen/ops/_values_ops.h>
|
21 |
+
#include <ATen/ops/alias_ops.h>
|
22 |
+
#include <ATen/ops/as_strided_ops.h>
|
23 |
+
#include <ATen/ops/ccol_indices_ops.h>
|
24 |
+
#include <ATen/ops/chunk_ops.h>
|
25 |
+
#include <ATen/ops/col_indices_ops.h>
|
26 |
+
#include <ATen/ops/crow_indices_ops.h>
|
27 |
+
#include <ATen/ops/diagonal_ops.h>
|
28 |
+
#include <ATen/ops/expand_ops.h>
|
29 |
+
#include <ATen/ops/indices_ops.h>
|
30 |
+
#include <ATen/ops/narrow_ops.h>
|
31 |
+
#include <ATen/ops/permute_ops.h>
|
32 |
+
#include <ATen/ops/row_indices_ops.h>
|
33 |
+
#include <ATen/ops/select_ops.h>
|
34 |
+
#include <ATen/ops/slice_ops.h>
|
35 |
+
#include <ATen/ops/slice_inverse_ops.h>
|
36 |
+
#include <ATen/ops/split_ops.h>
|
37 |
+
#include <ATen/ops/split_with_sizes_ops.h>
|
38 |
+
#include <ATen/ops/squeeze_ops.h>
|
39 |
+
#include <ATen/ops/squeeze_ops.h>
|
40 |
+
#include <ATen/ops/squeeze_ops.h>
|
41 |
+
#include <ATen/ops/t_ops.h>
|
42 |
+
#include <ATen/ops/transpose_ops.h>
|
43 |
+
#include <ATen/ops/unbind_ops.h>
|
44 |
+
#include <ATen/ops/unfold_ops.h>
|
45 |
+
#include <ATen/ops/unsqueeze_ops.h>
|
46 |
+
#include <ATen/ops/values_ops.h>
|
47 |
+
#include <ATen/ops/view_ops.h>
|
48 |
+
#include <ATen/ops/view_ops.h>
|
49 |
+
#include <ATen/ops/view_as_complex_ops.h>
|
50 |
+
#include <ATen/ops/view_as_real_ops.h>
|
51 |
+
#endif
|
52 |
+
|
53 |
+
namespace torch::autograd::generated {
|
54 |
+
|
55 |
+
using at::Scalar;
|
56 |
+
using at::Tensor;
|
57 |
+
using at::IntArrayRef;
|
58 |
+
using at::ArrayRef;
|
59 |
+
using at::Type;
|
60 |
+
using at::ScalarType;
|
61 |
+
using c10::optional;
|
62 |
+
using c10::fmap;
|
63 |
+
|
64 |
+
#define _CONJ_VIEW_FUNC_AVAILABLE
|
65 |
+
struct _ConjViewFunc : public torch::autograd::ViewFunc {
|
66 |
+
_ConjViewFunc()
|
67 |
+
{};
|
68 |
+
virtual ~_ConjViewFunc() override {};
|
69 |
+
virtual std::vector<c10::SymInt> get_symints() const override;
|
70 |
+
virtual size_t num_symints() const override;
|
71 |
+
virtual std::vector<at::Tensor> get_tensors() const override;
|
72 |
+
virtual size_t num_tensors() const override;
|
73 |
+
virtual at::Tensor operator()(const at::Tensor&) const override;
|
74 |
+
virtual std::unique_ptr<ViewFunc> clone_and_set(
|
75 |
+
std::optional<std::vector<c10::SymInt>> = c10::nullopt,
|
76 |
+
std::optional<std::vector<at::Tensor>> = c10::nullopt) const override;
|
77 |
+
|
78 |
+
protected:
|
79 |
+
virtual void set_symints(std::vector<c10::SymInt>) override;
|
80 |
+
virtual void set_tensors(std::vector<at::Tensor>) override;
|
81 |
+
|
82 |
+
private:
|
83 |
+
|
84 |
+
};
|
85 |
+
|
86 |
+
#define _INDICES_VIEW_FUNC_AVAILABLE
|
87 |
+
struct _IndicesViewFunc : public torch::autograd::ViewFunc {
|
88 |
+
_IndicesViewFunc()
|
89 |
+
{};
|
90 |
+
virtual ~_IndicesViewFunc() override {};
|
91 |
+
virtual std::vector<c10::SymInt> get_symints() const override;
|
92 |
+
virtual size_t num_symints() const override;
|
93 |
+
virtual std::vector<at::Tensor> get_tensors() const override;
|
94 |
+
virtual size_t num_tensors() const override;
|
95 |
+
virtual at::Tensor operator()(const at::Tensor&) const override;
|
96 |
+
virtual std::unique_ptr<ViewFunc> clone_and_set(
|
97 |
+
std::optional<std::vector<c10::SymInt>> = c10::nullopt,
|
98 |
+
std::optional<std::vector<at::Tensor>> = c10::nullopt) const override;
|
99 |
+
|
100 |
+
protected:
|
101 |
+
virtual void set_symints(std::vector<c10::SymInt>) override;
|
102 |
+
virtual void set_tensors(std::vector<at::Tensor>) override;
|
103 |
+
|
104 |
+
private:
|
105 |
+
|
106 |
+
};
|
107 |
+
|
108 |
+
#define _NEG_VIEW_VIEW_FUNC_AVAILABLE
|
109 |
+
struct _NegViewViewFunc : public torch::autograd::ViewFunc {
|
110 |
+
_NegViewViewFunc()
|
111 |
+
{};
|
112 |
+
virtual ~_NegViewViewFunc() override {};
|
113 |
+
virtual std::vector<c10::SymInt> get_symints() const override;
|
114 |
+
virtual size_t num_symints() const override;
|
115 |
+
virtual std::vector<at::Tensor> get_tensors() const override;
|
116 |
+
virtual size_t num_tensors() const override;
|
117 |
+
virtual at::Tensor operator()(const at::Tensor&) const override;
|
118 |
+
virtual std::unique_ptr<ViewFunc> clone_and_set(
|
119 |
+
std::optional<std::vector<c10::SymInt>> = c10::nullopt,
|
120 |
+
std::optional<std::vector<at::Tensor>> = c10::nullopt) const override;
|
121 |
+
|
122 |
+
protected:
|
123 |
+
virtual void set_symints(std::vector<c10::SymInt>) override;
|
124 |
+
virtual void set_tensors(std::vector<at::Tensor>) override;
|
125 |
+
|
126 |
+
private:
|
127 |
+
|
128 |
+
};
|
129 |
+
|
130 |
+
#define _NESTED_GET_VALUES_VIEW_FUNC_AVAILABLE
|
131 |
+
struct _NestedGetValuesViewFunc : public torch::autograd::ViewFunc {
|
132 |
+
_NestedGetValuesViewFunc()
|
133 |
+
{};
|
134 |
+
virtual ~_NestedGetValuesViewFunc() override {};
|
135 |
+
virtual std::vector<c10::SymInt> get_symints() const override;
|
136 |
+
virtual size_t num_symints() const override;
|
137 |
+
virtual std::vector<at::Tensor> get_tensors() const override;
|
138 |
+
virtual size_t num_tensors() const override;
|
139 |
+
virtual at::Tensor operator()(const at::Tensor&) const override;
|
140 |
+
virtual std::unique_ptr<ViewFunc> clone_and_set(
|
141 |
+
std::optional<std::vector<c10::SymInt>> = c10::nullopt,
|
142 |
+
std::optional<std::vector<at::Tensor>> = c10::nullopt) const override;
|
143 |
+
|
144 |
+
protected:
|
145 |
+
virtual void set_symints(std::vector<c10::SymInt>) override;
|
146 |
+
virtual void set_tensors(std::vector<at::Tensor>) override;
|
147 |
+
|
148 |
+
private:
|
149 |
+
|
150 |
+
};
|
151 |
+
|
152 |
+
#define _NESTED_VIEW_FROM_BUFFER_VIEW_FUNC_AVAILABLE
|
153 |
+
struct _NestedViewFromBufferViewFunc : public torch::autograd::ViewFunc {
|
154 |
+
_NestedViewFromBufferViewFunc(const at::Tensor & nested_size, const at::Tensor & nested_strides, const at::Tensor & offsets) : nested_size(nested_size), nested_strides(nested_strides), offsets(offsets)
|
155 |
+
{};
|
156 |
+
virtual ~_NestedViewFromBufferViewFunc() override {};
|
157 |
+
virtual std::vector<c10::SymInt> get_symints() const override;
|
158 |
+
virtual size_t num_symints() const override;
|
159 |
+
virtual std::vector<at::Tensor> get_tensors() const override;
|
160 |
+
virtual size_t num_tensors() const override;
|
161 |
+
virtual at::Tensor operator()(const at::Tensor&) const override;
|
162 |
+
virtual std::unique_ptr<ViewFunc> clone_and_set(
|
163 |
+
std::optional<std::vector<c10::SymInt>> = c10::nullopt,
|
164 |
+
std::optional<std::vector<at::Tensor>> = c10::nullopt) const override;
|
165 |
+
|
166 |
+
protected:
|
167 |
+
virtual void set_symints(std::vector<c10::SymInt>) override;
|
168 |
+
virtual void set_tensors(std::vector<at::Tensor>) override;
|
169 |
+
|
170 |
+
private:
|
171 |
+
at::Tensor nested_size;
|
172 |
+
at::Tensor nested_strides;
|
173 |
+
at::Tensor offsets;
|
174 |
+
};
|
175 |
+
|
176 |
+
#define _NESTED_VIEW_FROM_JAGGED_VIEW_FUNC_AVAILABLE
|
177 |
+
struct _NestedViewFromJaggedViewFunc : public torch::autograd::ViewFunc {
|
178 |
+
_NestedViewFromJaggedViewFunc(const at::Tensor & offsets, const at::Tensor & dummy, const c10::optional<at::Tensor> & lengths, int64_t ragged_idx) : offsets(offsets), dummy(dummy), lengths(lengths), ragged_idx(ragged_idx)
|
179 |
+
{};
|
180 |
+
virtual ~_NestedViewFromJaggedViewFunc() override {};
|
181 |
+
virtual std::vector<c10::SymInt> get_symints() const override;
|
182 |
+
virtual size_t num_symints() const override;
|
183 |
+
virtual std::vector<at::Tensor> get_tensors() const override;
|
184 |
+
virtual size_t num_tensors() const override;
|
185 |
+
virtual at::Tensor operator()(const at::Tensor&) const override;
|
186 |
+
virtual std::unique_ptr<ViewFunc> clone_and_set(
|
187 |
+
std::optional<std::vector<c10::SymInt>> = c10::nullopt,
|
188 |
+
std::optional<std::vector<at::Tensor>> = c10::nullopt) const override;
|
189 |
+
|
190 |
+
protected:
|
191 |
+
virtual void set_symints(std::vector<c10::SymInt>) override;
|
192 |
+
virtual void set_tensors(std::vector<at::Tensor>) override;
|
193 |
+
|
194 |
+
private:
|
195 |
+
at::Tensor offsets;
|
196 |
+
at::Tensor dummy;
|
197 |
+
c10::optional<at::Tensor> lengths;
|
198 |
+
int64_t ragged_idx;
|
199 |
+
};
|
200 |
+
|
201 |
+
#define _RESHAPE_ALIAS_VIEW_FUNC_AVAILABLE
|
202 |
+
struct _ReshapeAliasViewFunc : public torch::autograd::ViewFunc {
|
203 |
+
_ReshapeAliasViewFunc(c10::SymIntArrayRef size, c10::SymIntArrayRef stride) : size(size.vec()), stride(stride.vec())
|
204 |
+
{};
|
205 |
+
virtual ~_ReshapeAliasViewFunc() override {};
|
206 |
+
virtual std::vector<c10::SymInt> get_symints() const override;
|
207 |
+
virtual size_t num_symints() const override;
|
208 |
+
virtual std::vector<at::Tensor> get_tensors() const override;
|
209 |
+
virtual size_t num_tensors() const override;
|
210 |
+
virtual at::Tensor operator()(const at::Tensor&) const override;
|
211 |
+
virtual std::unique_ptr<ViewFunc> clone_and_set(
|
212 |
+
std::optional<std::vector<c10::SymInt>> = c10::nullopt,
|
213 |
+
std::optional<std::vector<at::Tensor>> = c10::nullopt) const override;
|
214 |
+
|
215 |
+
protected:
|
216 |
+
virtual void set_symints(std::vector<c10::SymInt>) override;
|
217 |
+
virtual void set_tensors(std::vector<at::Tensor>) override;
|
218 |
+
|
219 |
+
private:
|
220 |
+
::std::vector<c10::SymInt> size;
|
221 |
+
::std::vector<c10::SymInt> stride;
|
222 |
+
};
|
223 |
+
|
224 |
+
#define _TEST_AUTOGRAD_MULTIPLE_DISPATCH_VIEW_VIEW_FUNC_AVAILABLE
|
225 |
+
struct _TestAutogradMultipleDispatchViewViewFunc : public torch::autograd::ViewFunc {
|
226 |
+
_TestAutogradMultipleDispatchViewViewFunc()
|
227 |
+
{};
|
228 |
+
virtual ~_TestAutogradMultipleDispatchViewViewFunc() override {};
|
229 |
+
virtual std::vector<c10::SymInt> get_symints() const override;
|
230 |
+
virtual size_t num_symints() const override;
|
231 |
+
virtual std::vector<at::Tensor> get_tensors() const override;
|
232 |
+
virtual size_t num_tensors() const override;
|
233 |
+
virtual at::Tensor operator()(const at::Tensor&) const override;
|
234 |
+
virtual std::unique_ptr<ViewFunc> clone_and_set(
|
235 |
+
std::optional<std::vector<c10::SymInt>> = c10::nullopt,
|
236 |
+
std::optional<std::vector<at::Tensor>> = c10::nullopt) const override;
|
237 |
+
|
238 |
+
protected:
|
239 |
+
virtual void set_symints(std::vector<c10::SymInt>) override;
|
240 |
+
virtual void set_tensors(std::vector<at::Tensor>) override;
|
241 |
+
|
242 |
+
private:
|
243 |
+
|
244 |
+
};
|
245 |
+
|
246 |
+
#define _VALUES_VIEW_FUNC_AVAILABLE
|
247 |
+
struct _ValuesViewFunc : public torch::autograd::ViewFunc {
|
248 |
+
_ValuesViewFunc()
|
249 |
+
{};
|
250 |
+
virtual ~_ValuesViewFunc() override {};
|
251 |
+
virtual std::vector<c10::SymInt> get_symints() const override;
|
252 |
+
virtual size_t num_symints() const override;
|
253 |
+
virtual std::vector<at::Tensor> get_tensors() const override;
|
254 |
+
virtual size_t num_tensors() const override;
|
255 |
+
virtual at::Tensor operator()(const at::Tensor&) const override;
|
256 |
+
virtual std::unique_ptr<ViewFunc> clone_and_set(
|
257 |
+
std::optional<std::vector<c10::SymInt>> = c10::nullopt,
|
258 |
+
std::optional<std::vector<at::Tensor>> = c10::nullopt) const override;
|
259 |
+
|
260 |
+
protected:
|
261 |
+
virtual void set_symints(std::vector<c10::SymInt>) override;
|
262 |
+
virtual void set_tensors(std::vector<at::Tensor>) override;
|
263 |
+
|
264 |
+
private:
|
265 |
+
|
266 |
+
};
|
267 |
+
|
268 |
+
#define ALIAS_VIEW_FUNC_AVAILABLE
|
269 |
+
struct AliasViewFunc : public torch::autograd::ViewFunc {
|
270 |
+
AliasViewFunc()
|
271 |
+
{};
|
272 |
+
virtual ~AliasViewFunc() override {};
|
273 |
+
virtual std::vector<c10::SymInt> get_symints() const override;
|
274 |
+
virtual size_t num_symints() const override;
|
275 |
+
virtual std::vector<at::Tensor> get_tensors() const override;
|
276 |
+
virtual size_t num_tensors() const override;
|
277 |
+
virtual at::Tensor operator()(const at::Tensor&) const override;
|
278 |
+
virtual std::unique_ptr<ViewFunc> clone_and_set(
|
279 |
+
std::optional<std::vector<c10::SymInt>> = c10::nullopt,
|
280 |
+
std::optional<std::vector<at::Tensor>> = c10::nullopt) const override;
|
281 |
+
|
282 |
+
protected:
|
283 |
+
virtual void set_symints(std::vector<c10::SymInt>) override;
|
284 |
+
virtual void set_tensors(std::vector<at::Tensor>) override;
|
285 |
+
|
286 |
+
private:
|
287 |
+
|
288 |
+
};
|
289 |
+
|
290 |
+
#define AS_STRIDED_VIEW_FUNC_AVAILABLE
|
291 |
+
struct AsStridedViewFunc : public torch::autograd::ViewFunc {
|
292 |
+
AsStridedViewFunc(c10::SymIntArrayRef size, c10::SymIntArrayRef stride, c10::optional<c10::SymInt> storage_offset) : size(size.vec()), stride(stride.vec()), storage_offset(storage_offset)
|
293 |
+
{};
|
294 |
+
virtual ~AsStridedViewFunc() override {};
|
295 |
+
virtual std::vector<c10::SymInt> get_symints() const override;
|
296 |
+
virtual size_t num_symints() const override;
|
297 |
+
virtual std::vector<at::Tensor> get_tensors() const override;
|
298 |
+
virtual size_t num_tensors() const override;
|
299 |
+
virtual at::Tensor operator()(const at::Tensor&) const override;
|
300 |
+
virtual std::unique_ptr<ViewFunc> clone_and_set(
|
301 |
+
std::optional<std::vector<c10::SymInt>> = c10::nullopt,
|
302 |
+
std::optional<std::vector<at::Tensor>> = c10::nullopt) const override;
|
303 |
+
|
304 |
+
protected:
|
305 |
+
virtual void set_symints(std::vector<c10::SymInt>) override;
|
306 |
+
virtual void set_tensors(std::vector<at::Tensor>) override;
|
307 |
+
|
308 |
+
private:
|
309 |
+
::std::vector<c10::SymInt> size;
|
310 |
+
::std::vector<c10::SymInt> stride;
|
311 |
+
c10::optional<c10::SymInt> storage_offset;
|
312 |
+
};
|
313 |
+
|
314 |
+
#define CCOL_INDICES_VIEW_FUNC_AVAILABLE
|
315 |
+
struct CcolIndicesViewFunc : public torch::autograd::ViewFunc {
|
316 |
+
CcolIndicesViewFunc()
|
317 |
+
{};
|
318 |
+
virtual ~CcolIndicesViewFunc() override {};
|
319 |
+
virtual std::vector<c10::SymInt> get_symints() const override;
|
320 |
+
virtual size_t num_symints() const override;
|
321 |
+
virtual std::vector<at::Tensor> get_tensors() const override;
|
322 |
+
virtual size_t num_tensors() const override;
|
323 |
+
virtual at::Tensor operator()(const at::Tensor&) const override;
|
324 |
+
virtual std::unique_ptr<ViewFunc> clone_and_set(
|
325 |
+
std::optional<std::vector<c10::SymInt>> = c10::nullopt,
|
326 |
+
std::optional<std::vector<at::Tensor>> = c10::nullopt) const override;
|
327 |
+
|
328 |
+
protected:
|
329 |
+
virtual void set_symints(std::vector<c10::SymInt>) override;
|
330 |
+
virtual void set_tensors(std::vector<at::Tensor>) override;
|
331 |
+
|
332 |
+
private:
|
333 |
+
|
334 |
+
};
|
335 |
+
|
336 |
+
#define CHUNK_VIEW_FUNC_AVAILABLE
|
337 |
+
struct ChunkViewFunc : public torch::autograd::ViewFunc {
|
338 |
+
ChunkViewFunc(int64_t chunks, int64_t dim, int64_t view_idx) : chunks(chunks), dim(dim), view_idx(view_idx)
|
339 |
+
{};
|
340 |
+
virtual ~ChunkViewFunc() override {};
|
341 |
+
virtual std::vector<c10::SymInt> get_symints() const override;
|
342 |
+
virtual size_t num_symints() const override;
|
343 |
+
virtual std::vector<at::Tensor> get_tensors() const override;
|
344 |
+
virtual size_t num_tensors() const override;
|
345 |
+
virtual at::Tensor operator()(const at::Tensor&) const override;
|
346 |
+
virtual std::unique_ptr<ViewFunc> clone_and_set(
|
347 |
+
std::optional<std::vector<c10::SymInt>> = c10::nullopt,
|
348 |
+
std::optional<std::vector<at::Tensor>> = c10::nullopt) const override;
|
349 |
+
|
350 |
+
protected:
|
351 |
+
virtual void set_symints(std::vector<c10::SymInt>) override;
|
352 |
+
virtual void set_tensors(std::vector<at::Tensor>) override;
|
353 |
+
|
354 |
+
private:
|
355 |
+
int64_t chunks;
|
356 |
+
int64_t dim;
|
357 |
+
int64_t view_idx;
|
358 |
+
};
|
359 |
+
|
360 |
+
#define COL_INDICES_VIEW_FUNC_AVAILABLE
|
361 |
+
struct ColIndicesViewFunc : public torch::autograd::ViewFunc {
|
362 |
+
ColIndicesViewFunc()
|
363 |
+
{};
|
364 |
+
virtual ~ColIndicesViewFunc() override {};
|
365 |
+
virtual std::vector<c10::SymInt> get_symints() const override;
|
366 |
+
virtual size_t num_symints() const override;
|
367 |
+
virtual std::vector<at::Tensor> get_tensors() const override;
|
368 |
+
virtual size_t num_tensors() const override;
|
369 |
+
virtual at::Tensor operator()(const at::Tensor&) const override;
|
370 |
+
virtual std::unique_ptr<ViewFunc> clone_and_set(
|
371 |
+
std::optional<std::vector<c10::SymInt>> = c10::nullopt,
|
372 |
+
std::optional<std::vector<at::Tensor>> = c10::nullopt) const override;
|
373 |
+
|
374 |
+
protected:
|
375 |
+
virtual void set_symints(std::vector<c10::SymInt>) override;
|
376 |
+
virtual void set_tensors(std::vector<at::Tensor>) override;
|
377 |
+
|
378 |
+
private:
|
379 |
+
|
380 |
+
};
|
381 |
+
|
382 |
+
#define CROW_INDICES_VIEW_FUNC_AVAILABLE
|
383 |
+
struct CrowIndicesViewFunc : public torch::autograd::ViewFunc {
|
384 |
+
CrowIndicesViewFunc()
|
385 |
+
{};
|
386 |
+
virtual ~CrowIndicesViewFunc() override {};
|
387 |
+
virtual std::vector<c10::SymInt> get_symints() const override;
|
388 |
+
virtual size_t num_symints() const override;
|
389 |
+
virtual std::vector<at::Tensor> get_tensors() const override;
|
390 |
+
virtual size_t num_tensors() const override;
|
391 |
+
virtual at::Tensor operator()(const at::Tensor&) const override;
|
392 |
+
virtual std::unique_ptr<ViewFunc> clone_and_set(
|
393 |
+
std::optional<std::vector<c10::SymInt>> = c10::nullopt,
|
394 |
+
std::optional<std::vector<at::Tensor>> = c10::nullopt) const override;
|
395 |
+
|
396 |
+
protected:
|
397 |
+
virtual void set_symints(std::vector<c10::SymInt>) override;
|
398 |
+
virtual void set_tensors(std::vector<at::Tensor>) override;
|
399 |
+
|
400 |
+
private:
|
401 |
+
|
402 |
+
};
|
403 |
+
|
404 |
+
#define DIAGONAL_VIEW_FUNC_AVAILABLE
|
405 |
+
struct DiagonalViewFunc : public torch::autograd::ViewFunc {
|
406 |
+
DiagonalViewFunc(int64_t offset, int64_t dim1, int64_t dim2) : offset(offset), dim1(dim1), dim2(dim2)
|
407 |
+
{};
|
408 |
+
virtual ~DiagonalViewFunc() override {};
|
409 |
+
virtual std::vector<c10::SymInt> get_symints() const override;
|
410 |
+
virtual size_t num_symints() const override;
|
411 |
+
virtual std::vector<at::Tensor> get_tensors() const override;
|
412 |
+
virtual size_t num_tensors() const override;
|
413 |
+
virtual at::Tensor operator()(const at::Tensor&) const override;
|
414 |
+
virtual std::unique_ptr<ViewFunc> clone_and_set(
|
415 |
+
std::optional<std::vector<c10::SymInt>> = c10::nullopt,
|
416 |
+
std::optional<std::vector<at::Tensor>> = c10::nullopt) const override;
|
417 |
+
|
418 |
+
protected:
|
419 |
+
virtual void set_symints(std::vector<c10::SymInt>) override;
|
420 |
+
virtual void set_tensors(std::vector<at::Tensor>) override;
|
421 |
+
|
422 |
+
private:
|
423 |
+
int64_t offset;
|
424 |
+
int64_t dim1;
|
425 |
+
int64_t dim2;
|
426 |
+
};
|
427 |
+
|
428 |
+
#define EXPAND_VIEW_FUNC_AVAILABLE
|
429 |
+
struct ExpandViewFunc : public torch::autograd::ViewFunc {
|
430 |
+
ExpandViewFunc(c10::SymIntArrayRef size, bool implicit) : size(size.vec()), implicit(implicit)
|
431 |
+
{};
|
432 |
+
virtual ~ExpandViewFunc() override {};
|
433 |
+
virtual std::vector<c10::SymInt> get_symints() const override;
|
434 |
+
virtual size_t num_symints() const override;
|
435 |
+
virtual std::vector<at::Tensor> get_tensors() const override;
|
436 |
+
virtual size_t num_tensors() const override;
|
437 |
+
virtual at::Tensor operator()(const at::Tensor&) const override;
|
438 |
+
virtual std::unique_ptr<ViewFunc> clone_and_set(
|
439 |
+
std::optional<std::vector<c10::SymInt>> = c10::nullopt,
|
440 |
+
std::optional<std::vector<at::Tensor>> = c10::nullopt) const override;
|
441 |
+
|
442 |
+
protected:
|
443 |
+
virtual void set_symints(std::vector<c10::SymInt>) override;
|
444 |
+
virtual void set_tensors(std::vector<at::Tensor>) override;
|
445 |
+
|
446 |
+
private:
|
447 |
+
::std::vector<c10::SymInt> size;
|
448 |
+
bool implicit;
|
449 |
+
};
|
450 |
+
|
451 |
+
#define INDICES_VIEW_FUNC_AVAILABLE
|
452 |
+
struct IndicesViewFunc : public torch::autograd::ViewFunc {
|
453 |
+
IndicesViewFunc()
|
454 |
+
{};
|
455 |
+
virtual ~IndicesViewFunc() override {};
|
456 |
+
virtual std::vector<c10::SymInt> get_symints() const override;
|
457 |
+
virtual size_t num_symints() const override;
|
458 |
+
virtual std::vector<at::Tensor> get_tensors() const override;
|
459 |
+
virtual size_t num_tensors() const override;
|
460 |
+
virtual at::Tensor operator()(const at::Tensor&) const override;
|
461 |
+
virtual std::unique_ptr<ViewFunc> clone_and_set(
|
462 |
+
std::optional<std::vector<c10::SymInt>> = c10::nullopt,
|
463 |
+
std::optional<std::vector<at::Tensor>> = c10::nullopt) const override;
|
464 |
+
|
465 |
+
protected:
|
466 |
+
virtual void set_symints(std::vector<c10::SymInt>) override;
|
467 |
+
virtual void set_tensors(std::vector<at::Tensor>) override;
|
468 |
+
|
469 |
+
private:
|
470 |
+
|
471 |
+
};
|
472 |
+
|
473 |
+
#define NARROW_VIEW_FUNC_AVAILABLE
|
474 |
+
struct NarrowViewFunc : public torch::autograd::ViewFunc {
|
475 |
+
NarrowViewFunc(int64_t dim, c10::SymInt start, c10::SymInt length) : dim(dim), start(start), length(length)
|
476 |
+
{};
|
477 |
+
virtual ~NarrowViewFunc() override {};
|
478 |
+
virtual std::vector<c10::SymInt> get_symints() const override;
|
479 |
+
virtual size_t num_symints() const override;
|
480 |
+
virtual std::vector<at::Tensor> get_tensors() const override;
|
481 |
+
virtual size_t num_tensors() const override;
|
482 |
+
virtual at::Tensor operator()(const at::Tensor&) const override;
|
483 |
+
virtual std::unique_ptr<ViewFunc> clone_and_set(
|
484 |
+
std::optional<std::vector<c10::SymInt>> = c10::nullopt,
|
485 |
+
std::optional<std::vector<at::Tensor>> = c10::nullopt) const override;
|
486 |
+
|
487 |
+
protected:
|
488 |
+
virtual void set_symints(std::vector<c10::SymInt>) override;
|
489 |
+
virtual void set_tensors(std::vector<at::Tensor>) override;
|
490 |
+
|
491 |
+
private:
|
492 |
+
int64_t dim;
|
493 |
+
c10::SymInt start;
|
494 |
+
c10::SymInt length;
|
495 |
+
};
|
496 |
+
|
497 |
+
#define PERMUTE_VIEW_FUNC_AVAILABLE
|
498 |
+
struct PermuteViewFunc : public torch::autograd::ViewFunc {
|
499 |
+
PermuteViewFunc(at::IntArrayRef dims) : dims(dims.vec())
|
500 |
+
{};
|
501 |
+
virtual ~PermuteViewFunc() override {};
|
502 |
+
virtual std::vector<c10::SymInt> get_symints() const override;
|
503 |
+
virtual size_t num_symints() const override;
|
504 |
+
virtual std::vector<at::Tensor> get_tensors() const override;
|
505 |
+
virtual size_t num_tensors() const override;
|
506 |
+
virtual at::Tensor operator()(const at::Tensor&) const override;
|
507 |
+
virtual std::unique_ptr<ViewFunc> clone_and_set(
|
508 |
+
std::optional<std::vector<c10::SymInt>> = c10::nullopt,
|
509 |
+
std::optional<std::vector<at::Tensor>> = c10::nullopt) const override;
|
510 |
+
|
511 |
+
protected:
|
512 |
+
virtual void set_symints(std::vector<c10::SymInt>) override;
|
513 |
+
virtual void set_tensors(std::vector<at::Tensor>) override;
|
514 |
+
|
515 |
+
private:
|
516 |
+
::std::vector<int64_t> dims;
|
517 |
+
};
|
518 |
+
|
519 |
+
#define ROW_INDICES_VIEW_FUNC_AVAILABLE
|
520 |
+
struct RowIndicesViewFunc : public torch::autograd::ViewFunc {
|
521 |
+
RowIndicesViewFunc()
|
522 |
+
{};
|
523 |
+
virtual ~RowIndicesViewFunc() override {};
|
524 |
+
virtual std::vector<c10::SymInt> get_symints() const override;
|
525 |
+
virtual size_t num_symints() const override;
|
526 |
+
virtual std::vector<at::Tensor> get_tensors() const override;
|
527 |
+
virtual size_t num_tensors() const override;
|
528 |
+
virtual at::Tensor operator()(const at::Tensor&) const override;
|
529 |
+
virtual std::unique_ptr<ViewFunc> clone_and_set(
|
530 |
+
std::optional<std::vector<c10::SymInt>> = c10::nullopt,
|
531 |
+
std::optional<std::vector<at::Tensor>> = c10::nullopt) const override;
|
532 |
+
|
533 |
+
protected:
|
534 |
+
virtual void set_symints(std::vector<c10::SymInt>) override;
|
535 |
+
virtual void set_tensors(std::vector<at::Tensor>) override;
|
536 |
+
|
537 |
+
private:
|
538 |
+
|
539 |
+
};
|
540 |
+
|
541 |
+
#define SELECT_INT_VIEW_FUNC_AVAILABLE
|
542 |
+
struct SelectIntViewFunc : public torch::autograd::ViewFunc {
|
543 |
+
SelectIntViewFunc(int64_t dim, c10::SymInt index) : dim(dim), index(index)
|
544 |
+
{};
|
545 |
+
virtual ~SelectIntViewFunc() override {};
|
546 |
+
virtual std::vector<c10::SymInt> get_symints() const override;
|
547 |
+
virtual size_t num_symints() const override;
|
548 |
+
virtual std::vector<at::Tensor> get_tensors() const override;
|
549 |
+
virtual size_t num_tensors() const override;
|
550 |
+
virtual at::Tensor operator()(const at::Tensor&) const override;
|
551 |
+
virtual std::unique_ptr<ViewFunc> clone_and_set(
|
552 |
+
std::optional<std::vector<c10::SymInt>> = c10::nullopt,
|
553 |
+
std::optional<std::vector<at::Tensor>> = c10::nullopt) const override;
|
554 |
+
|
555 |
+
protected:
|
556 |
+
virtual void set_symints(std::vector<c10::SymInt>) override;
|
557 |
+
virtual void set_tensors(std::vector<at::Tensor>) override;
|
558 |
+
|
559 |
+
private:
|
560 |
+
int64_t dim;
|
561 |
+
c10::SymInt index;
|
562 |
+
};
|
563 |
+
|
564 |
+
#define SLICE_TENSOR_VIEW_FUNC_AVAILABLE
|
565 |
+
struct SliceTensorViewFunc : public torch::autograd::ViewFunc {
|
566 |
+
SliceTensorViewFunc(int64_t dim, c10::optional<c10::SymInt> start, c10::optional<c10::SymInt> end, c10::SymInt step) : dim(dim), start(start), end(end), step(step)
|
567 |
+
{};
|
568 |
+
virtual ~SliceTensorViewFunc() override {};
|
569 |
+
virtual std::vector<c10::SymInt> get_symints() const override;
|
570 |
+
virtual size_t num_symints() const override;
|
571 |
+
virtual std::vector<at::Tensor> get_tensors() const override;
|
572 |
+
virtual size_t num_tensors() const override;
|
573 |
+
virtual at::Tensor operator()(const at::Tensor&) const override;
|
574 |
+
virtual std::unique_ptr<ViewFunc> clone_and_set(
|
575 |
+
std::optional<std::vector<c10::SymInt>> = c10::nullopt,
|
576 |
+
std::optional<std::vector<at::Tensor>> = c10::nullopt) const override;
|
577 |
+
|
578 |
+
protected:
|
579 |
+
virtual void set_symints(std::vector<c10::SymInt>) override;
|
580 |
+
virtual void set_tensors(std::vector<at::Tensor>) override;
|
581 |
+
|
582 |
+
private:
|
583 |
+
int64_t dim;
|
584 |
+
c10::optional<c10::SymInt> start;
|
585 |
+
c10::optional<c10::SymInt> end;
|
586 |
+
c10::SymInt step;
|
587 |
+
};
|
588 |
+
|
589 |
+
#define SLICE_INVERSE_VIEW_FUNC_AVAILABLE
|
590 |
+
struct SliceInverseViewFunc : public torch::autograd::ViewFunc {
|
591 |
+
SliceInverseViewFunc(const at::Tensor & src, int64_t dim, c10::optional<c10::SymInt> start, c10::optional<c10::SymInt> end, c10::SymInt step) : src(src), dim(dim), start(start), end(end), step(step)
|
592 |
+
{};
|
593 |
+
virtual ~SliceInverseViewFunc() override {};
|
594 |
+
virtual std::vector<c10::SymInt> get_symints() const override;
|
595 |
+
virtual size_t num_symints() const override;
|
596 |
+
virtual std::vector<at::Tensor> get_tensors() const override;
|
597 |
+
virtual size_t num_tensors() const override;
|
598 |
+
virtual at::Tensor operator()(const at::Tensor&) const override;
|
599 |
+
virtual std::unique_ptr<ViewFunc> clone_and_set(
|
600 |
+
std::optional<std::vector<c10::SymInt>> = c10::nullopt,
|
601 |
+
std::optional<std::vector<at::Tensor>> = c10::nullopt) const override;
|
602 |
+
|
603 |
+
protected:
|
604 |
+
virtual void set_symints(std::vector<c10::SymInt>) override;
|
605 |
+
virtual void set_tensors(std::vector<at::Tensor>) override;
|
606 |
+
|
607 |
+
private:
|
608 |
+
at::Tensor src;
|
609 |
+
int64_t dim;
|
610 |
+
c10::optional<c10::SymInt> start;
|
611 |
+
c10::optional<c10::SymInt> end;
|
612 |
+
c10::SymInt step;
|
613 |
+
};
|
614 |
+
|
615 |
+
#define SPLIT_TENSOR_VIEW_FUNC_AVAILABLE
|
616 |
+
struct SplitTensorViewFunc : public torch::autograd::ViewFunc {
|
617 |
+
SplitTensorViewFunc(c10::SymInt split_size, int64_t dim, int64_t view_idx) : split_size(split_size), dim(dim), view_idx(view_idx)
|
618 |
+
{};
|
619 |
+
virtual ~SplitTensorViewFunc() override {};
|
620 |
+
virtual std::vector<c10::SymInt> get_symints() const override;
|
621 |
+
virtual size_t num_symints() const override;
|
622 |
+
virtual std::vector<at::Tensor> get_tensors() const override;
|
623 |
+
virtual size_t num_tensors() const override;
|
624 |
+
virtual at::Tensor operator()(const at::Tensor&) const override;
|
625 |
+
virtual std::unique_ptr<ViewFunc> clone_and_set(
|
626 |
+
std::optional<std::vector<c10::SymInt>> = c10::nullopt,
|
627 |
+
std::optional<std::vector<at::Tensor>> = c10::nullopt) const override;
|
628 |
+
|
629 |
+
protected:
|
630 |
+
virtual void set_symints(std::vector<c10::SymInt>) override;
|
631 |
+
virtual void set_tensors(std::vector<at::Tensor>) override;
|
632 |
+
|
633 |
+
private:
|
634 |
+
c10::SymInt split_size;
|
635 |
+
int64_t dim;
|
636 |
+
int64_t view_idx;
|
637 |
+
};
|
638 |
+
|
639 |
+
#define SPLIT_WITH_SIZES_VIEW_FUNC_AVAILABLE
|
640 |
+
struct SplitWithSizesViewFunc : public torch::autograd::ViewFunc {
|
641 |
+
SplitWithSizesViewFunc(c10::SymIntArrayRef split_sizes, int64_t dim, int64_t view_idx) : split_sizes(split_sizes.vec()), dim(dim), view_idx(view_idx)
|
642 |
+
{};
|
643 |
+
virtual ~SplitWithSizesViewFunc() override {};
|
644 |
+
virtual std::vector<c10::SymInt> get_symints() const override;
|
645 |
+
virtual size_t num_symints() const override;
|
646 |
+
virtual std::vector<at::Tensor> get_tensors() const override;
|
647 |
+
virtual size_t num_tensors() const override;
|
648 |
+
virtual at::Tensor operator()(const at::Tensor&) const override;
|
649 |
+
virtual std::unique_ptr<ViewFunc> clone_and_set(
|
650 |
+
std::optional<std::vector<c10::SymInt>> = c10::nullopt,
|
651 |
+
std::optional<std::vector<at::Tensor>> = c10::nullopt) const override;
|
652 |
+
|
653 |
+
protected:
|
654 |
+
virtual void set_symints(std::vector<c10::SymInt>) override;
|
655 |
+
virtual void set_tensors(std::vector<at::Tensor>) override;
|
656 |
+
|
657 |
+
private:
|
658 |
+
::std::vector<c10::SymInt> split_sizes;
|
659 |
+
int64_t dim;
|
660 |
+
int64_t view_idx;
|
661 |
+
};
|
662 |
+
|
663 |
+
#define SQUEEZE_VIEW_FUNC_AVAILABLE
|
664 |
+
struct SqueezeViewFunc : public torch::autograd::ViewFunc {
|
665 |
+
SqueezeViewFunc()
|
666 |
+
{};
|
667 |
+
virtual ~SqueezeViewFunc() override {};
|
668 |
+
virtual std::vector<c10::SymInt> get_symints() const override;
|
669 |
+
virtual size_t num_symints() const override;
|
670 |
+
virtual std::vector<at::Tensor> get_tensors() const override;
|
671 |
+
virtual size_t num_tensors() const override;
|
672 |
+
virtual at::Tensor operator()(const at::Tensor&) const override;
|
673 |
+
virtual std::unique_ptr<ViewFunc> clone_and_set(
|
674 |
+
std::optional<std::vector<c10::SymInt>> = c10::nullopt,
|
675 |
+
std::optional<std::vector<at::Tensor>> = c10::nullopt) const override;
|
676 |
+
|
677 |
+
protected:
|
678 |
+
virtual void set_symints(std::vector<c10::SymInt>) override;
|
679 |
+
virtual void set_tensors(std::vector<at::Tensor>) override;
|
680 |
+
|
681 |
+
private:
|
682 |
+
|
683 |
+
};
|
684 |
+
|
685 |
+
#define SQUEEZE_DIM_VIEW_FUNC_AVAILABLE
|
686 |
+
struct SqueezeDimViewFunc : public torch::autograd::ViewFunc {
|
687 |
+
SqueezeDimViewFunc(int64_t dim) : dim(dim)
|
688 |
+
{};
|
689 |
+
virtual ~SqueezeDimViewFunc() override {};
|
690 |
+
virtual std::vector<c10::SymInt> get_symints() const override;
|
691 |
+
virtual size_t num_symints() const override;
|
692 |
+
virtual std::vector<at::Tensor> get_tensors() const override;
|
693 |
+
virtual size_t num_tensors() const override;
|
694 |
+
virtual at::Tensor operator()(const at::Tensor&) const override;
|
695 |
+
virtual std::unique_ptr<ViewFunc> clone_and_set(
|
696 |
+
std::optional<std::vector<c10::SymInt>> = c10::nullopt,
|
697 |
+
std::optional<std::vector<at::Tensor>> = c10::nullopt) const override;
|
698 |
+
|
699 |
+
protected:
|
700 |
+
virtual void set_symints(std::vector<c10::SymInt>) override;
|
701 |
+
virtual void set_tensors(std::vector<at::Tensor>) override;
|
702 |
+
|
703 |
+
private:
|
704 |
+
int64_t dim;
|
705 |
+
};
|
706 |
+
|
707 |
+
#define SQUEEZE_DIMS_VIEW_FUNC_AVAILABLE
|
708 |
+
struct SqueezeDimsViewFunc : public torch::autograd::ViewFunc {
|
709 |
+
SqueezeDimsViewFunc(at::IntArrayRef dim) : dim(dim.vec())
|
710 |
+
{};
|
711 |
+
virtual ~SqueezeDimsViewFunc() override {};
|
712 |
+
virtual std::vector<c10::SymInt> get_symints() const override;
|
713 |
+
virtual size_t num_symints() const override;
|
714 |
+
virtual std::vector<at::Tensor> get_tensors() const override;
|
715 |
+
virtual size_t num_tensors() const override;
|
716 |
+
virtual at::Tensor operator()(const at::Tensor&) const override;
|
717 |
+
virtual std::unique_ptr<ViewFunc> clone_and_set(
|
718 |
+
std::optional<std::vector<c10::SymInt>> = c10::nullopt,
|
719 |
+
std::optional<std::vector<at::Tensor>> = c10::nullopt) const override;
|
720 |
+
|
721 |
+
protected:
|
722 |
+
virtual void set_symints(std::vector<c10::SymInt>) override;
|
723 |
+
virtual void set_tensors(std::vector<at::Tensor>) override;
|
724 |
+
|
725 |
+
private:
|
726 |
+
::std::vector<int64_t> dim;
|
727 |
+
};
|
728 |
+
|
729 |
+
#define T_VIEW_FUNC_AVAILABLE
|
730 |
+
struct TViewFunc : public torch::autograd::ViewFunc {
|
731 |
+
TViewFunc()
|
732 |
+
{};
|
733 |
+
virtual ~TViewFunc() override {};
|
734 |
+
virtual std::vector<c10::SymInt> get_symints() const override;
|
735 |
+
virtual size_t num_symints() const override;
|
736 |
+
virtual std::vector<at::Tensor> get_tensors() const override;
|
737 |
+
virtual size_t num_tensors() const override;
|
738 |
+
virtual at::Tensor operator()(const at::Tensor&) const override;
|
739 |
+
virtual std::unique_ptr<ViewFunc> clone_and_set(
|
740 |
+
std::optional<std::vector<c10::SymInt>> = c10::nullopt,
|
741 |
+
std::optional<std::vector<at::Tensor>> = c10::nullopt) const override;
|
742 |
+
|
743 |
+
protected:
|
744 |
+
virtual void set_symints(std::vector<c10::SymInt>) override;
|
745 |
+
virtual void set_tensors(std::vector<at::Tensor>) override;
|
746 |
+
|
747 |
+
private:
|
748 |
+
|
749 |
+
};
|
750 |
+
|
751 |
+
#define TRANSPOSE_INT_VIEW_FUNC_AVAILABLE
|
752 |
+
struct TransposeIntViewFunc : public torch::autograd::ViewFunc {
|
753 |
+
TransposeIntViewFunc(int64_t dim0, int64_t dim1) : dim0(dim0), dim1(dim1)
|
754 |
+
{};
|
755 |
+
virtual ~TransposeIntViewFunc() override {};
|
756 |
+
virtual std::vector<c10::SymInt> get_symints() const override;
|
757 |
+
virtual size_t num_symints() const override;
|
758 |
+
virtual std::vector<at::Tensor> get_tensors() const override;
|
759 |
+
virtual size_t num_tensors() const override;
|
760 |
+
virtual at::Tensor operator()(const at::Tensor&) const override;
|
761 |
+
virtual std::unique_ptr<ViewFunc> clone_and_set(
|
762 |
+
std::optional<std::vector<c10::SymInt>> = c10::nullopt,
|
763 |
+
std::optional<std::vector<at::Tensor>> = c10::nullopt) const override;
|
764 |
+
|
765 |
+
protected:
|
766 |
+
virtual void set_symints(std::vector<c10::SymInt>) override;
|
767 |
+
virtual void set_tensors(std::vector<at::Tensor>) override;
|
768 |
+
|
769 |
+
private:
|
770 |
+
int64_t dim0;
|
771 |
+
int64_t dim1;
|
772 |
+
};
|
773 |
+
|
774 |
+
#define UNBIND_INT_VIEW_FUNC_AVAILABLE
|
775 |
+
struct UnbindIntViewFunc : public torch::autograd::ViewFunc {
|
776 |
+
UnbindIntViewFunc(int64_t dim, int64_t view_idx) : dim(dim), view_idx(view_idx)
|
777 |
+
{};
|
778 |
+
virtual ~UnbindIntViewFunc() override {};
|
779 |
+
virtual std::vector<c10::SymInt> get_symints() const override;
|
780 |
+
virtual size_t num_symints() const override;
|
781 |
+
virtual std::vector<at::Tensor> get_tensors() const override;
|
782 |
+
virtual size_t num_tensors() const override;
|
783 |
+
virtual at::Tensor operator()(const at::Tensor&) const override;
|
784 |
+
virtual std::unique_ptr<ViewFunc> clone_and_set(
|
785 |
+
std::optional<std::vector<c10::SymInt>> = c10::nullopt,
|
786 |
+
std::optional<std::vector<at::Tensor>> = c10::nullopt) const override;
|
787 |
+
|
788 |
+
protected:
|
789 |
+
virtual void set_symints(std::vector<c10::SymInt>) override;
|
790 |
+
virtual void set_tensors(std::vector<at::Tensor>) override;
|
791 |
+
|
792 |
+
private:
|
793 |
+
int64_t dim;
|
794 |
+
int64_t view_idx;
|
795 |
+
};
|
796 |
+
|
797 |
+
#define UNFOLD_VIEW_FUNC_AVAILABLE
|
798 |
+
struct UnfoldViewFunc : public torch::autograd::ViewFunc {
|
799 |
+
UnfoldViewFunc(int64_t dimension, int64_t size, int64_t step) : dimension(dimension), size(size), step(step)
|
800 |
+
{};
|
801 |
+
virtual ~UnfoldViewFunc() override {};
|
802 |
+
virtual std::vector<c10::SymInt> get_symints() const override;
|
803 |
+
virtual size_t num_symints() const override;
|
804 |
+
virtual std::vector<at::Tensor> get_tensors() const override;
|
805 |
+
virtual size_t num_tensors() const override;
|
806 |
+
virtual at::Tensor operator()(const at::Tensor&) const override;
|
807 |
+
virtual std::unique_ptr<ViewFunc> clone_and_set(
|
808 |
+
std::optional<std::vector<c10::SymInt>> = c10::nullopt,
|
809 |
+
std::optional<std::vector<at::Tensor>> = c10::nullopt) const override;
|
810 |
+
|
811 |
+
protected:
|
812 |
+
virtual void set_symints(std::vector<c10::SymInt>) override;
|
813 |
+
virtual void set_tensors(std::vector<at::Tensor>) override;
|
814 |
+
|
815 |
+
private:
|
816 |
+
int64_t dimension;
|
817 |
+
int64_t size;
|
818 |
+
int64_t step;
|
819 |
+
};
|
820 |
+
|
821 |
+
#define UNSQUEEZE_VIEW_FUNC_AVAILABLE
|
822 |
+
struct UnsqueezeViewFunc : public torch::autograd::ViewFunc {
|
823 |
+
UnsqueezeViewFunc(int64_t dim) : dim(dim)
|
824 |
+
{};
|
825 |
+
virtual ~UnsqueezeViewFunc() override {};
|
826 |
+
virtual std::vector<c10::SymInt> get_symints() const override;
|
827 |
+
virtual size_t num_symints() const override;
|
828 |
+
virtual std::vector<at::Tensor> get_tensors() const override;
|
829 |
+
virtual size_t num_tensors() const override;
|
830 |
+
virtual at::Tensor operator()(const at::Tensor&) const override;
|
831 |
+
virtual std::unique_ptr<ViewFunc> clone_and_set(
|
832 |
+
std::optional<std::vector<c10::SymInt>> = c10::nullopt,
|
833 |
+
std::optional<std::vector<at::Tensor>> = c10::nullopt) const override;
|
834 |
+
|
835 |
+
protected:
|
836 |
+
virtual void set_symints(std::vector<c10::SymInt>) override;
|
837 |
+
virtual void set_tensors(std::vector<at::Tensor>) override;
|
838 |
+
|
839 |
+
private:
|
840 |
+
int64_t dim;
|
841 |
+
};
|
842 |
+
|
843 |
+
#define VALUES_VIEW_FUNC_AVAILABLE
|
844 |
+
struct ValuesViewFunc : public torch::autograd::ViewFunc {
|
845 |
+
ValuesViewFunc()
|
846 |
+
{};
|
847 |
+
virtual ~ValuesViewFunc() override {};
|
848 |
+
virtual std::vector<c10::SymInt> get_symints() const override;
|
849 |
+
virtual size_t num_symints() const override;
|
850 |
+
virtual std::vector<at::Tensor> get_tensors() const override;
|
851 |
+
virtual size_t num_tensors() const override;
|
852 |
+
virtual at::Tensor operator()(const at::Tensor&) const override;
|
853 |
+
virtual std::unique_ptr<ViewFunc> clone_and_set(
|
854 |
+
std::optional<std::vector<c10::SymInt>> = c10::nullopt,
|
855 |
+
std::optional<std::vector<at::Tensor>> = c10::nullopt) const override;
|
856 |
+
|
857 |
+
protected:
|
858 |
+
virtual void set_symints(std::vector<c10::SymInt>) override;
|
859 |
+
virtual void set_tensors(std::vector<at::Tensor>) override;
|
860 |
+
|
861 |
+
private:
|
862 |
+
|
863 |
+
};
|
864 |
+
|
865 |
+
#define VIEW_VIEW_FUNC_AVAILABLE
|
866 |
+
struct ViewViewFunc : public torch::autograd::ViewFunc {
|
867 |
+
ViewViewFunc(c10::SymIntArrayRef size) : size(size.vec())
|
868 |
+
{};
|
869 |
+
virtual ~ViewViewFunc() override {};
|
870 |
+
virtual std::vector<c10::SymInt> get_symints() const override;
|
871 |
+
virtual size_t num_symints() const override;
|
872 |
+
virtual std::vector<at::Tensor> get_tensors() const override;
|
873 |
+
virtual size_t num_tensors() const override;
|
874 |
+
virtual at::Tensor operator()(const at::Tensor&) const override;
|
875 |
+
virtual std::unique_ptr<ViewFunc> clone_and_set(
|
876 |
+
std::optional<std::vector<c10::SymInt>> = c10::nullopt,
|
877 |
+
std::optional<std::vector<at::Tensor>> = c10::nullopt) const override;
|
878 |
+
|
879 |
+
protected:
|
880 |
+
virtual void set_symints(std::vector<c10::SymInt>) override;
|
881 |
+
virtual void set_tensors(std::vector<at::Tensor>) override;
|
882 |
+
|
883 |
+
private:
|
884 |
+
::std::vector<c10::SymInt> size;
|
885 |
+
};
|
886 |
+
|
887 |
+
#define VIEW_DTYPE_VIEW_FUNC_AVAILABLE
|
888 |
+
struct ViewDtypeViewFunc : public torch::autograd::ViewFunc {
|
889 |
+
ViewDtypeViewFunc(at::ScalarType dtype) : dtype(dtype)
|
890 |
+
{};
|
891 |
+
virtual ~ViewDtypeViewFunc() override {};
|
892 |
+
virtual std::vector<c10::SymInt> get_symints() const override;
|
893 |
+
virtual size_t num_symints() const override;
|
894 |
+
virtual std::vector<at::Tensor> get_tensors() const override;
|
895 |
+
virtual size_t num_tensors() const override;
|
896 |
+
virtual at::Tensor operator()(const at::Tensor&) const override;
|
897 |
+
virtual std::unique_ptr<ViewFunc> clone_and_set(
|
898 |
+
std::optional<std::vector<c10::SymInt>> = c10::nullopt,
|
899 |
+
std::optional<std::vector<at::Tensor>> = c10::nullopt) const override;
|
900 |
+
|
901 |
+
protected:
|
902 |
+
virtual void set_symints(std::vector<c10::SymInt>) override;
|
903 |
+
virtual void set_tensors(std::vector<at::Tensor>) override;
|
904 |
+
|
905 |
+
private:
|
906 |
+
at::ScalarType dtype;
|
907 |
+
};
|
908 |
+
|
909 |
+
#define VIEW_AS_COMPLEX_VIEW_FUNC_AVAILABLE
|
910 |
+
struct ViewAsComplexViewFunc : public torch::autograd::ViewFunc {
|
911 |
+
ViewAsComplexViewFunc()
|
912 |
+
{};
|
913 |
+
virtual ~ViewAsComplexViewFunc() override {};
|
914 |
+
virtual std::vector<c10::SymInt> get_symints() const override;
|
915 |
+
virtual size_t num_symints() const override;
|
916 |
+
virtual std::vector<at::Tensor> get_tensors() const override;
|
917 |
+
virtual size_t num_tensors() const override;
|
918 |
+
virtual at::Tensor operator()(const at::Tensor&) const override;
|
919 |
+
virtual std::unique_ptr<ViewFunc> clone_and_set(
|
920 |
+
std::optional<std::vector<c10::SymInt>> = c10::nullopt,
|
921 |
+
std::optional<std::vector<at::Tensor>> = c10::nullopt) const override;
|
922 |
+
|
923 |
+
protected:
|
924 |
+
virtual void set_symints(std::vector<c10::SymInt>) override;
|
925 |
+
virtual void set_tensors(std::vector<at::Tensor>) override;
|
926 |
+
|
927 |
+
private:
|
928 |
+
|
929 |
+
};
|
930 |
+
|
931 |
+
#define VIEW_AS_REAL_VIEW_FUNC_AVAILABLE
|
932 |
+
struct ViewAsRealViewFunc : public torch::autograd::ViewFunc {
|
933 |
+
ViewAsRealViewFunc()
|
934 |
+
{};
|
935 |
+
virtual ~ViewAsRealViewFunc() override {};
|
936 |
+
virtual std::vector<c10::SymInt> get_symints() const override;
|
937 |
+
virtual size_t num_symints() const override;
|
938 |
+
virtual std::vector<at::Tensor> get_tensors() const override;
|
939 |
+
virtual size_t num_tensors() const override;
|
940 |
+
virtual at::Tensor operator()(const at::Tensor&) const override;
|
941 |
+
virtual std::unique_ptr<ViewFunc> clone_and_set(
|
942 |
+
std::optional<std::vector<c10::SymInt>> = c10::nullopt,
|
943 |
+
std::optional<std::vector<at::Tensor>> = c10::nullopt) const override;
|
944 |
+
|
945 |
+
protected:
|
946 |
+
virtual void set_symints(std::vector<c10::SymInt>) override;
|
947 |
+
virtual void set_tensors(std::vector<at::Tensor>) override;
|
948 |
+
|
949 |
+
private:
|
950 |
+
|
951 |
+
};
|
952 |
+
|
953 |
+
} // namespace torch::autograd::generated
|
llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/generated/python_functions.h
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <Python.h>
|
4 |
+
|
5 |
+
// @generated from ../tools/autograd/templates/python_functions.h
|
6 |
+
|
7 |
+
// Python bindings for automatically generated autograd functions
|
8 |
+
|
9 |
+
namespace torch { namespace autograd { namespace generated {
|
10 |
+
|
11 |
+
void initialize_autogenerated_functions_0(PyObject* module);
|
12 |
+
void initialize_autogenerated_functions_1(PyObject* module);
|
13 |
+
void initialize_autogenerated_functions_2(PyObject* module);
|
14 |
+
void initialize_autogenerated_functions_3(PyObject* module);
|
15 |
+
void initialize_autogenerated_functions_4(PyObject* module);
|
16 |
+
|
17 |
+
inline void initialize_autogenerated_functions(PyObject* module) {
|
18 |
+
initialize_autogenerated_functions_0(module);
|
19 |
+
initialize_autogenerated_functions_1(module);
|
20 |
+
initialize_autogenerated_functions_2(module);
|
21 |
+
initialize_autogenerated_functions_3(module);
|
22 |
+
initialize_autogenerated_functions_4(module);
|
23 |
+
}
|
24 |
+
|
25 |
+
}}} // namespace torch::autograd::generated
|
llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/generated/python_return_types.h
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
namespace torch {
|
4 |
+
namespace autograd {
|
5 |
+
namespace generated {
|
6 |
+
|
7 |
+
PyTypeObject* get__fake_quantize_per_tensor_affine_cachemask_tensor_qparams_structseq();
|
8 |
+
PyTypeObject* get__fused_moving_avg_obs_fq_helper_structseq();
|
9 |
+
PyTypeObject* get__linalg_det_structseq();
|
10 |
+
PyTypeObject* get__linalg_det_out_structseq();
|
11 |
+
PyTypeObject* get__linalg_eigh_structseq();
|
12 |
+
PyTypeObject* get__linalg_eigh_out_structseq();
|
13 |
+
PyTypeObject* get__linalg_slogdet_structseq();
|
14 |
+
PyTypeObject* get__linalg_slogdet_out_structseq();
|
15 |
+
PyTypeObject* get__linalg_solve_ex_structseq();
|
16 |
+
PyTypeObject* get__linalg_solve_ex_out_structseq();
|
17 |
+
PyTypeObject* get__linalg_svd_structseq();
|
18 |
+
PyTypeObject* get__linalg_svd_out_structseq();
|
19 |
+
PyTypeObject* get__lu_with_info_structseq();
|
20 |
+
PyTypeObject* get__scaled_dot_product_cudnn_attention_structseq();
|
21 |
+
PyTypeObject* get__scaled_dot_product_efficient_attention_structseq();
|
22 |
+
PyTypeObject* get__scaled_dot_product_flash_attention_structseq();
|
23 |
+
PyTypeObject* get__scaled_dot_product_flash_attention_for_cpu_structseq();
|
24 |
+
PyTypeObject* get__unpack_dual_structseq();
|
25 |
+
PyTypeObject* get_aminmax_structseq();
|
26 |
+
PyTypeObject* get_aminmax_out_structseq();
|
27 |
+
PyTypeObject* get_cummax_structseq();
|
28 |
+
PyTypeObject* get_cummax_out_structseq();
|
29 |
+
PyTypeObject* get_cummin_structseq();
|
30 |
+
PyTypeObject* get_cummin_out_structseq();
|
31 |
+
PyTypeObject* get_frexp_structseq();
|
32 |
+
PyTypeObject* get_frexp_out_structseq();
|
33 |
+
PyTypeObject* get_geqrf_out_structseq();
|
34 |
+
PyTypeObject* get_geqrf_structseq();
|
35 |
+
PyTypeObject* get_histogram_out_structseq();
|
36 |
+
PyTypeObject* get_histogram_structseq();
|
37 |
+
PyTypeObject* get_histogramdd_structseq();
|
38 |
+
PyTypeObject* get_kthvalue_structseq();
|
39 |
+
PyTypeObject* get_kthvalue_out_structseq();
|
40 |
+
PyTypeObject* get_linalg_cholesky_ex_structseq();
|
41 |
+
PyTypeObject* get_linalg_cholesky_ex_out_structseq();
|
42 |
+
PyTypeObject* get_linalg_eig_structseq();
|
43 |
+
PyTypeObject* get_linalg_eig_out_structseq();
|
44 |
+
PyTypeObject* get_linalg_eigh_structseq();
|
45 |
+
PyTypeObject* get_linalg_eigh_out_structseq();
|
46 |
+
PyTypeObject* get_linalg_inv_ex_structseq();
|
47 |
+
PyTypeObject* get_linalg_inv_ex_out_structseq();
|
48 |
+
PyTypeObject* get_linalg_ldl_factor_structseq();
|
49 |
+
PyTypeObject* get_linalg_ldl_factor_out_structseq();
|
50 |
+
PyTypeObject* get_linalg_ldl_factor_ex_structseq();
|
51 |
+
PyTypeObject* get_linalg_ldl_factor_ex_out_structseq();
|
52 |
+
PyTypeObject* get_linalg_lstsq_structseq();
|
53 |
+
PyTypeObject* get_linalg_lstsq_out_structseq();
|
54 |
+
PyTypeObject* get_linalg_lu_structseq();
|
55 |
+
PyTypeObject* get_linalg_lu_out_structseq();
|
56 |
+
PyTypeObject* get_linalg_lu_factor_structseq();
|
57 |
+
PyTypeObject* get_linalg_lu_factor_out_structseq();
|
58 |
+
PyTypeObject* get_linalg_lu_factor_ex_structseq();
|
59 |
+
PyTypeObject* get_linalg_lu_factor_ex_out_structseq();
|
60 |
+
PyTypeObject* get_linalg_qr_structseq();
|
61 |
+
PyTypeObject* get_linalg_qr_out_structseq();
|
62 |
+
PyTypeObject* get_linalg_slogdet_structseq();
|
63 |
+
PyTypeObject* get_linalg_slogdet_out_structseq();
|
64 |
+
PyTypeObject* get_linalg_solve_ex_structseq();
|
65 |
+
PyTypeObject* get_linalg_solve_ex_out_structseq();
|
66 |
+
PyTypeObject* get_linalg_svd_structseq();
|
67 |
+
PyTypeObject* get_linalg_svd_out_structseq();
|
68 |
+
PyTypeObject* get_lu_unpack_structseq();
|
69 |
+
PyTypeObject* get_lu_unpack_out_structseq();
|
70 |
+
PyTypeObject* get_max_structseq();
|
71 |
+
PyTypeObject* get_max_out_structseq();
|
72 |
+
PyTypeObject* get_median_structseq();
|
73 |
+
PyTypeObject* get_median_out_structseq();
|
74 |
+
PyTypeObject* get_min_structseq();
|
75 |
+
PyTypeObject* get_min_out_structseq();
|
76 |
+
PyTypeObject* get_mode_structseq();
|
77 |
+
PyTypeObject* get_mode_out_structseq();
|
78 |
+
PyTypeObject* get_nanmedian_structseq();
|
79 |
+
PyTypeObject* get_nanmedian_out_structseq();
|
80 |
+
PyTypeObject* get_qr_out_structseq();
|
81 |
+
PyTypeObject* get_qr_structseq();
|
82 |
+
PyTypeObject* get_slogdet_structseq();
|
83 |
+
PyTypeObject* get_slogdet_out_structseq();
|
84 |
+
PyTypeObject* get_sort_out_structseq();
|
85 |
+
PyTypeObject* get_sort_structseq();
|
86 |
+
PyTypeObject* get_svd_out_structseq();
|
87 |
+
PyTypeObject* get_svd_structseq();
|
88 |
+
PyTypeObject* get_topk_out_structseq();
|
89 |
+
PyTypeObject* get_topk_structseq();
|
90 |
+
PyTypeObject* get_triangular_solve_out_structseq();
|
91 |
+
PyTypeObject* get_triangular_solve_structseq();
|
92 |
+
|
93 |
+
}
|
94 |
+
|
95 |
+
void initReturnTypes(PyObject* module);
|
96 |
+
|
97 |
+
} // namespace autograd
|
98 |
+
} // namespace torch
|
llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/generated/variable_factories.h
ADDED
@@ -0,0 +1,736 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated from ../tools/autograd/templates/variable_factories.h
|
4 |
+
|
5 |
+
#include <ATen/core/Tensor.h>
|
6 |
+
#include <ATen/TracerMode.h>
|
7 |
+
#include <ATen/core/grad_mode.h>
|
8 |
+
#include <c10/util/ArrayRef.h>
|
9 |
+
#include <c10/core/MemoryFormat.h>
|
10 |
+
#include <torch/csrc/api/include/torch/detail/TensorDataContainer.h>
|
11 |
+
#include <torch/csrc/autograd/variable.h>
|
12 |
+
|
13 |
+
#ifndef AT_PER_OPERATOR_HEADERS
|
14 |
+
#include <ATen/Functions.h>
|
15 |
+
#else
|
16 |
+
#include <ATen/ops/from_blob.h>
|
17 |
+
#include <ATen/ops/_make_dep_token.h>
|
18 |
+
#include <ATen/ops/_cudnn_init_dropout_state.h>
|
19 |
+
#include <ATen/ops/arange.h>
|
20 |
+
#include <ATen/ops/arange.h>
|
21 |
+
#include <ATen/ops/arange.h>
|
22 |
+
#include <ATen/ops/bartlett_window.h>
|
23 |
+
#include <ATen/ops/bartlett_window.h>
|
24 |
+
#include <ATen/ops/blackman_window.h>
|
25 |
+
#include <ATen/ops/blackman_window.h>
|
26 |
+
#include <ATen/ops/empty.h>
|
27 |
+
#include <ATen/ops/empty.h>
|
28 |
+
#include <ATen/ops/empty_permuted.h>
|
29 |
+
#include <ATen/ops/_empty_affine_quantized.h>
|
30 |
+
#include <ATen/ops/_empty_per_channel_affine_quantized.h>
|
31 |
+
#include <ATen/ops/empty_quantized.h>
|
32 |
+
#include <ATen/ops/empty_like.h>
|
33 |
+
#include <ATen/ops/empty_strided.h>
|
34 |
+
#include <ATen/ops/eye.h>
|
35 |
+
#include <ATen/ops/eye.h>
|
36 |
+
#include <ATen/ops/full.h>
|
37 |
+
#include <ATen/ops/full.h>
|
38 |
+
#include <ATen/ops/full_like.h>
|
39 |
+
#include <ATen/ops/from_file.h>
|
40 |
+
#include <ATen/ops/hann_window.h>
|
41 |
+
#include <ATen/ops/hann_window.h>
|
42 |
+
#include <ATen/ops/hamming_window.h>
|
43 |
+
#include <ATen/ops/hamming_window.h>
|
44 |
+
#include <ATen/ops/hamming_window.h>
|
45 |
+
#include <ATen/ops/hamming_window.h>
|
46 |
+
#include <ATen/ops/kaiser_window.h>
|
47 |
+
#include <ATen/ops/kaiser_window.h>
|
48 |
+
#include <ATen/ops/kaiser_window.h>
|
49 |
+
#include <ATen/ops/linspace.h>
|
50 |
+
#include <ATen/ops/linspace.h>
|
51 |
+
#include <ATen/ops/linspace.h>
|
52 |
+
#include <ATen/ops/linspace.h>
|
53 |
+
#include <ATen/ops/logspace.h>
|
54 |
+
#include <ATen/ops/logspace.h>
|
55 |
+
#include <ATen/ops/logspace.h>
|
56 |
+
#include <ATen/ops/logspace.h>
|
57 |
+
#include <ATen/ops/ones.h>
|
58 |
+
#include <ATen/ops/ones.h>
|
59 |
+
#include <ATen/ops/ones_like.h>
|
60 |
+
#include <ATen/ops/scalar_tensor.h>
|
61 |
+
#include <ATen/ops/rand.h>
|
62 |
+
#include <ATen/ops/rand.h>
|
63 |
+
#include <ATen/ops/rand.h>
|
64 |
+
#include <ATen/ops/rand.h>
|
65 |
+
#include <ATen/ops/rand_like.h>
|
66 |
+
#include <ATen/ops/randint.h>
|
67 |
+
#include <ATen/ops/randint.h>
|
68 |
+
#include <ATen/ops/randint.h>
|
69 |
+
#include <ATen/ops/randint.h>
|
70 |
+
#include <ATen/ops/randint_like.h>
|
71 |
+
#include <ATen/ops/randint_like.h>
|
72 |
+
#include <ATen/ops/randn.h>
|
73 |
+
#include <ATen/ops/randn.h>
|
74 |
+
#include <ATen/ops/randn.h>
|
75 |
+
#include <ATen/ops/randn.h>
|
76 |
+
#include <ATen/ops/randn_like.h>
|
77 |
+
#include <ATen/ops/randperm.h>
|
78 |
+
#include <ATen/ops/randperm.h>
|
79 |
+
#include <ATen/ops/range.h>
|
80 |
+
#include <ATen/ops/range.h>
|
81 |
+
#include <ATen/ops/zeros.h>
|
82 |
+
#include <ATen/ops/_efficientzerotensor.h>
|
83 |
+
#include <ATen/ops/zeros.h>
|
84 |
+
#include <ATen/ops/zeros_like.h>
|
85 |
+
#include <ATen/ops/sparse_compressed_tensor.h>
|
86 |
+
#include <ATen/ops/sparse_csr_tensor.h>
|
87 |
+
#include <ATen/ops/sparse_csc_tensor.h>
|
88 |
+
#include <ATen/ops/sparse_bsr_tensor.h>
|
89 |
+
#include <ATen/ops/sparse_bsc_tensor.h>
|
90 |
+
#include <ATen/ops/sparse_compressed_tensor.h>
|
91 |
+
#include <ATen/ops/sparse_csr_tensor.h>
|
92 |
+
#include <ATen/ops/sparse_csc_tensor.h>
|
93 |
+
#include <ATen/ops/sparse_bsr_tensor.h>
|
94 |
+
#include <ATen/ops/sparse_bsc_tensor.h>
|
95 |
+
#include <ATen/ops/_sparse_compressed_tensor_unsafe.h>
|
96 |
+
#include <ATen/ops/_sparse_csr_tensor_unsafe.h>
|
97 |
+
#include <ATen/ops/_sparse_csc_tensor_unsafe.h>
|
98 |
+
#include <ATen/ops/_sparse_bsr_tensor_unsafe.h>
|
99 |
+
#include <ATen/ops/_sparse_bsc_tensor_unsafe.h>
|
100 |
+
#include <ATen/ops/sparse_coo_tensor.h>
|
101 |
+
#include <ATen/ops/sparse_coo_tensor.h>
|
102 |
+
#include <ATen/ops/sparse_coo_tensor.h>
|
103 |
+
#include <ATen/ops/_sparse_coo_tensor_unsafe.h>
|
104 |
+
#include <ATen/ops/_sparse_coo_tensor_with_dims.h>
|
105 |
+
#include <ATen/ops/_sparse_coo_tensor_with_dims_and_tensors.h>
|
106 |
+
#include <ATen/ops/_to_copy.h>
|
107 |
+
#include <ATen/ops/tril_indices.h>
|
108 |
+
#include <ATen/ops/triu_indices.h>
|
109 |
+
#include <ATen/ops/normal.h>
|
110 |
+
#include <ATen/ops/fft_fftfreq.h>
|
111 |
+
#include <ATen/ops/fft_rfftfreq.h>
|
112 |
+
#endif
|
113 |
+
|
114 |
+
#include <functional>
|
115 |
+
#include <initializer_list>
|
116 |
+
#include <utility>
|
117 |
+
|
118 |
+
namespace torch {
|
119 |
+
|
120 |
+
/// NOTE: Currently `torch::tensor(...)` doesn't support mixed data types
|
121 |
+
/// (i.e. `torch::tensor({{bool, 2.0}})` doesn't work). We might be able to
|
122 |
+
/// support it in the future by iterating over all sub-lists to find
|
123 |
+
/// the largest data type that can represent all of the elements, or by using
|
124 |
+
/// variadic templates.
|
125 |
+
///
|
126 |
+
/// NOTE: C++ `torch::tensor` with a floating-point type or an `at::ArrayRef` / `std::vector` /
|
127 |
+
/// (nested) braced-init-list of floating-point types always produces a tensor of dtype
|
128 |
+
/// `torch::get_default_dtype()`, matching Python `torch.tensor` behavior.
|
129 |
+
///
|
130 |
+
/// NOTE: C++ `torch::tensor` with an integer type or an `at::ArrayRef` / `std::vector` /
|
131 |
+
/// (nested) braced-init-list of integer types always produces a tensor of dtype `at::kLong`
|
132 |
+
/// (aka. int64_t), matching Python `torch.tensor` behavior.
|
133 |
+
///
|
134 |
+
/// NOTE: The following dtypes are not supported by `torch::tensor` currently:
|
135 |
+
/// - `unsigned int`
|
136 |
+
/// - `unsigned long int`
|
137 |
+
/// - `unsigned long long int`
|
138 |
+
/// - `long long int`
|
139 |
+
inline at::Tensor tensor(detail::TensorDataContainer tensor_data_container, const at::TensorOptions& options = {}) {
|
140 |
+
return autograd::make_variable(
|
141 |
+
// note: we remove the requires_grad setting from the TensorOptions because
|
142 |
+
// it is ignored anyways (and we actually have an assertion that it isn't set
|
143 |
+
// which would fail otherwise). We handle requires_grad explicitly here
|
144 |
+
// instead of passing it through to the kernel.
|
145 |
+
tensor_data_container.convert_to_tensor(options.requires_grad(c10::nullopt)),
|
146 |
+
options.requires_grad());
|
147 |
+
}
|
148 |
+
|
149 |
+
/// A generic deleter function.
|
150 |
+
using Deleter = std::function<void(void*)>;
|
151 |
+
using at::MemoryFormat;
|
152 |
+
|
153 |
+
/// Exposes the given `data` as a `Tensor` without taking ownership of the
|
154 |
+
/// original data. `sizes` should specify the shape of the tensor, `strides` the
|
155 |
+
/// stride in each dimension. The `deleter` function (a
|
156 |
+
/// `std::function<void(void*)>`) will be called on the `data` when the Tensor
|
157 |
+
/// data would normally be deallocated. The `TensorOptions` specify additional
|
158 |
+
/// configuration options for the returned tensor, such as what type to
|
159 |
+
/// interpret the `data` as.
|
160 |
+
inline at::Tensor from_blob(
|
161 |
+
void* data,
|
162 |
+
at::IntArrayRef sizes,
|
163 |
+
at::IntArrayRef strides,
|
164 |
+
const Deleter& deleter,
|
165 |
+
const at::TensorOptions& options = at::TensorOptions()) {
|
166 |
+
at::Tensor tensor = ([&]() {
|
167 |
+
at::AutoDispatchBelowAutograd guard; // TODO: remove
|
168 |
+
at::tracer::impl::NoTracerDispatchMode tracer_guard;
|
169 |
+
return at::from_blob(data, sizes, strides, deleter, options.requires_grad(c10::nullopt));
|
170 |
+
})();
|
171 |
+
return autograd::make_variable(tensor, options.requires_grad());
|
172 |
+
}
|
173 |
+
|
174 |
+
/// Exposes the given `data` as a `Tensor` without taking ownership of the
|
175 |
+
/// original data. `sizes` should specify the shape of the tensor, `strides` the
|
176 |
+
/// stride in each dimension. The `TensorOptions`
|
177 |
+
/// specify additional configuration options for the returned tensor, such as
|
178 |
+
/// what type to interpret the `data` as.
|
179 |
+
inline at::Tensor from_blob(
|
180 |
+
void* data,
|
181 |
+
at::IntArrayRef sizes,
|
182 |
+
at::IntArrayRef strides,
|
183 |
+
const at::TensorOptions& options = at::TensorOptions()) {
|
184 |
+
at::Tensor tensor = ([&]() {
|
185 |
+
at::AutoDispatchBelowAutograd guard; // TODO: remove
|
186 |
+
at::tracer::impl::NoTracerDispatchMode tracer_guard;
|
187 |
+
return at::from_blob(data, sizes, strides, options.requires_grad(c10::nullopt));
|
188 |
+
})();
|
189 |
+
return autograd::make_variable(tensor, options.requires_grad());
|
190 |
+
}
|
191 |
+
|
192 |
+
/// Exposes the given `data` as a `Tensor` without taking ownership of the
|
193 |
+
/// original data. `sizes` should specify the shape of the tensor. The `deleter`
|
194 |
+
/// (a `std::function<void(void*)>`) function will be called on the `data` when
|
195 |
+
/// the Tensor data would normally be deallocated. The `TensorOptions` specify
|
196 |
+
/// additional configuration options for the returned tensor, such as what type
|
197 |
+
/// to interpret the `data` as.
|
198 |
+
inline at::Tensor from_blob(
|
199 |
+
void* data,
|
200 |
+
at::IntArrayRef sizes,
|
201 |
+
const Deleter& deleter,
|
202 |
+
const at::TensorOptions& options = at::TensorOptions()) {
|
203 |
+
at::Tensor tensor = ([&]() {
|
204 |
+
at::AutoDispatchBelowAutograd guard; // TODO: remove
|
205 |
+
at::tracer::impl::NoTracerDispatchMode tracer_guard;
|
206 |
+
return at::from_blob(data, sizes, deleter, options.requires_grad(c10::nullopt));
|
207 |
+
})();
|
208 |
+
return autograd::make_variable(tensor, options.requires_grad());
|
209 |
+
}
|
210 |
+
|
211 |
+
/// Exposes the given `data` as a `Tensor` without taking ownership of the
|
212 |
+
/// original data. `sizes` should specify the shape of the tensor. The
|
213 |
+
/// `TensorOptions` specify additional configuration options for the returned
|
214 |
+
/// tensor, such as what type to interpret the `data` as.
|
215 |
+
inline at::Tensor from_blob(
|
216 |
+
void* data,
|
217 |
+
at::IntArrayRef sizes,
|
218 |
+
const at::TensorOptions& options = at::TensorOptions()) {
|
219 |
+
at::Tensor tensor = ([&]() {
|
220 |
+
at::AutoDispatchBelowAutograd guard; // TODO: remove
|
221 |
+
at::tracer::impl::NoTracerDispatchMode tracer_guard;
|
222 |
+
return at::from_blob(data, sizes, options.requires_grad(c10::nullopt));
|
223 |
+
})();
|
224 |
+
return autograd::make_variable(tensor, options.requires_grad());
|
225 |
+
}
|
226 |
+
|
227 |
+
inline at::Tensor _make_dep_token(at::TensorOptions options = {}, c10::optional<at::MemoryFormat> memory_format = c10::nullopt) {
|
228 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
229 |
+
return autograd::make_variable(at::_make_dep_token(at::TensorOptions(options).requires_grad(c10::nullopt), memory_format), /*requires_grad=*/options.requires_grad());
|
230 |
+
}
|
231 |
+
inline at::Tensor _cudnn_init_dropout_state(double dropout, bool train, int64_t dropout_seed, at::TensorOptions options) {
|
232 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
233 |
+
return autograd::make_variable(at::_cudnn_init_dropout_state(dropout, train, dropout_seed, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
234 |
+
}
|
235 |
+
inline at::Tensor arange(const at::Scalar & end, at::TensorOptions options = {}) {
|
236 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
237 |
+
return autograd::make_variable(at::arange(end, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
238 |
+
}
|
239 |
+
inline at::Tensor arange(const at::Scalar & start, const at::Scalar & end, at::TensorOptions options = {}) {
|
240 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
241 |
+
return autograd::make_variable(at::arange(start, end, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
242 |
+
}
|
243 |
+
inline at::Tensor arange(const at::Scalar & start, const at::Scalar & end, const at::Scalar & step, at::TensorOptions options = {}) {
|
244 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
245 |
+
return autograd::make_variable(at::arange(start, end, step, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
246 |
+
}
|
247 |
+
inline at::Tensor bartlett_window(int64_t window_length, at::TensorOptions options = {}) {
|
248 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
249 |
+
return autograd::make_variable(at::bartlett_window(window_length, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
250 |
+
}
|
251 |
+
inline at::Tensor bartlett_window(int64_t window_length, bool periodic, at::TensorOptions options = {}) {
|
252 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
253 |
+
return autograd::make_variable(at::bartlett_window(window_length, periodic, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
254 |
+
}
|
255 |
+
inline at::Tensor blackman_window(int64_t window_length, at::TensorOptions options = {}) {
|
256 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
257 |
+
return autograd::make_variable(at::blackman_window(window_length, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
258 |
+
}
|
259 |
+
inline at::Tensor blackman_window(int64_t window_length, bool periodic, at::TensorOptions options = {}) {
|
260 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
261 |
+
return autograd::make_variable(at::blackman_window(window_length, periodic, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
262 |
+
}
|
263 |
+
inline at::Tensor empty(at::IntArrayRef size, c10::optional<at::DimnameList> names, at::TensorOptions options = {}, c10::optional<at::MemoryFormat> memory_format = c10::nullopt) {
|
264 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
265 |
+
return autograd::make_variable(at::empty(size, names, at::TensorOptions(options).requires_grad(c10::nullopt), memory_format), /*requires_grad=*/options.requires_grad());
|
266 |
+
}
|
267 |
+
inline at::Tensor empty(at::IntArrayRef size, at::TensorOptions options = {}, c10::optional<at::MemoryFormat> memory_format = c10::nullopt) {
|
268 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
269 |
+
return autograd::make_variable(at::empty(size, at::TensorOptions(options).requires_grad(c10::nullopt), memory_format), /*requires_grad=*/options.requires_grad());
|
270 |
+
}
|
271 |
+
inline at::Tensor empty_symint(c10::SymIntArrayRef size, at::TensorOptions options = {}, c10::optional<at::MemoryFormat> memory_format = c10::nullopt) {
|
272 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
273 |
+
return autograd::make_variable(at::empty_symint(size, at::TensorOptions(options).requires_grad(c10::nullopt), memory_format), /*requires_grad=*/options.requires_grad());
|
274 |
+
}
|
275 |
+
inline at::Tensor empty_permuted(at::IntArrayRef size, at::IntArrayRef physical_layout, at::TensorOptions options = {}) {
|
276 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
277 |
+
return autograd::make_variable(at::empty_permuted(size, physical_layout, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
278 |
+
}
|
279 |
+
inline at::Tensor empty_permuted_symint(c10::SymIntArrayRef size, at::IntArrayRef physical_layout, at::TensorOptions options = {}) {
|
280 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
281 |
+
return autograd::make_variable(at::empty_permuted_symint(size, physical_layout, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
282 |
+
}
|
283 |
+
inline at::Tensor _empty_affine_quantized(at::IntArrayRef size, at::TensorOptions options = {}, double scale = 1, int64_t zero_point = 0, c10::optional<at::MemoryFormat> memory_format = MemoryFormat::Contiguous) {
|
284 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
285 |
+
return autograd::make_variable(at::_empty_affine_quantized(size, at::TensorOptions(options).requires_grad(c10::nullopt), scale, zero_point, memory_format), /*requires_grad=*/options.requires_grad());
|
286 |
+
}
|
287 |
+
inline at::Tensor _empty_affine_quantized_symint(c10::SymIntArrayRef size, at::TensorOptions options = {}, double scale = 1, int64_t zero_point = 0, c10::optional<at::MemoryFormat> memory_format = MemoryFormat::Contiguous) {
|
288 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
289 |
+
return autograd::make_variable(at::_empty_affine_quantized_symint(size, at::TensorOptions(options).requires_grad(c10::nullopt), scale, zero_point, memory_format), /*requires_grad=*/options.requires_grad());
|
290 |
+
}
|
291 |
+
inline at::Tensor _empty_per_channel_affine_quantized(at::IntArrayRef size, const at::Tensor & scales, const at::Tensor & zero_points, int64_t axis, at::TensorOptions options = {}, c10::optional<at::MemoryFormat> memory_format = MemoryFormat::Contiguous) {
|
292 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
293 |
+
return autograd::make_variable(at::_empty_per_channel_affine_quantized(size, scales, zero_points, axis, at::TensorOptions(options).requires_grad(c10::nullopt), memory_format), /*requires_grad=*/options.requires_grad());
|
294 |
+
}
|
295 |
+
inline at::Tensor _empty_per_channel_affine_quantized_symint(c10::SymIntArrayRef size, const at::Tensor & scales, const at::Tensor & zero_points, int64_t axis, at::TensorOptions options = {}, c10::optional<at::MemoryFormat> memory_format = MemoryFormat::Contiguous) {
|
296 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
297 |
+
return autograd::make_variable(at::_empty_per_channel_affine_quantized_symint(size, scales, zero_points, axis, at::TensorOptions(options).requires_grad(c10::nullopt), memory_format), /*requires_grad=*/options.requires_grad());
|
298 |
+
}
|
299 |
+
inline at::Tensor empty_quantized(at::IntArrayRef size, const at::Tensor & qtensor, at::TensorOptions options = {}, c10::optional<at::MemoryFormat> memory_format = c10::nullopt) {
|
300 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
301 |
+
return autograd::make_variable(at::empty_quantized(size, qtensor, at::TensorOptions(options).requires_grad(c10::nullopt), memory_format), /*requires_grad=*/options.requires_grad());
|
302 |
+
}
|
303 |
+
inline at::Tensor empty_like(const at::Tensor & self, at::TensorOptions options = {}, c10::optional<at::MemoryFormat> memory_format = c10::nullopt) {
|
304 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
305 |
+
return autograd::make_variable(at::empty_like(self, at::TensorOptions(options).requires_grad(c10::nullopt), memory_format), /*requires_grad=*/options.requires_grad());
|
306 |
+
}
|
307 |
+
inline at::Tensor empty_strided(at::IntArrayRef size, at::IntArrayRef stride, at::TensorOptions options = {}) {
|
308 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
309 |
+
return autograd::make_variable(at::empty_strided(size, stride, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
310 |
+
}
|
311 |
+
inline at::Tensor empty_strided_symint(c10::SymIntArrayRef size, c10::SymIntArrayRef stride, at::TensorOptions options = {}) {
|
312 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
313 |
+
return autograd::make_variable(at::empty_strided_symint(size, stride, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
314 |
+
}
|
315 |
+
inline at::Tensor eye(int64_t n, at::TensorOptions options = {}) {
|
316 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
317 |
+
return autograd::make_variable(at::eye(n, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
318 |
+
}
|
319 |
+
inline at::Tensor eye_symint(c10::SymInt n, at::TensorOptions options = {}) {
|
320 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
321 |
+
return autograd::make_variable(at::eye_symint(n, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
322 |
+
}
|
323 |
+
inline at::Tensor eye(int64_t n, int64_t m, at::TensorOptions options = {}) {
|
324 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
325 |
+
return autograd::make_variable(at::eye(n, m, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
326 |
+
}
|
327 |
+
inline at::Tensor eye_symint(c10::SymInt n, c10::SymInt m, at::TensorOptions options = {}) {
|
328 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
329 |
+
return autograd::make_variable(at::eye_symint(n, m, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
330 |
+
}
|
331 |
+
inline at::Tensor full(at::IntArrayRef size, const at::Scalar & fill_value, c10::optional<at::DimnameList> names, at::TensorOptions options = {}) {
|
332 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
333 |
+
return autograd::make_variable(at::full(size, fill_value, names, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
334 |
+
}
|
335 |
+
inline at::Tensor full(at::IntArrayRef size, const at::Scalar & fill_value, at::TensorOptions options = {}) {
|
336 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
337 |
+
return autograd::make_variable(at::full(size, fill_value, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
338 |
+
}
|
339 |
+
inline at::Tensor full_symint(c10::SymIntArrayRef size, const at::Scalar & fill_value, at::TensorOptions options = {}) {
|
340 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
341 |
+
return autograd::make_variable(at::full_symint(size, fill_value, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
342 |
+
}
|
343 |
+
inline at::Tensor full_like(const at::Tensor & self, const at::Scalar & fill_value, at::TensorOptions options = {}, c10::optional<at::MemoryFormat> memory_format = c10::nullopt) {
|
344 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
345 |
+
return autograd::make_variable(at::full_like(self, fill_value, at::TensorOptions(options).requires_grad(c10::nullopt), memory_format), /*requires_grad=*/options.requires_grad());
|
346 |
+
}
|
347 |
+
inline at::Tensor from_file(c10::string_view filename, c10::optional<bool> shared = c10::nullopt, c10::optional<int64_t> size = 0, at::TensorOptions options = {}) {
|
348 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
349 |
+
return autograd::make_variable(at::from_file(filename, shared, size, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
350 |
+
}
|
351 |
+
inline at::Tensor hann_window(int64_t window_length, at::TensorOptions options = {}) {
|
352 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
353 |
+
return autograd::make_variable(at::hann_window(window_length, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
354 |
+
}
|
355 |
+
inline at::Tensor hann_window(int64_t window_length, bool periodic, at::TensorOptions options = {}) {
|
356 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
357 |
+
return autograd::make_variable(at::hann_window(window_length, periodic, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
358 |
+
}
|
359 |
+
inline at::Tensor hamming_window(int64_t window_length, at::TensorOptions options = {}) {
|
360 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
361 |
+
return autograd::make_variable(at::hamming_window(window_length, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
362 |
+
}
|
363 |
+
inline at::Tensor hamming_window(int64_t window_length, bool periodic, at::TensorOptions options = {}) {
|
364 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
365 |
+
return autograd::make_variable(at::hamming_window(window_length, periodic, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
366 |
+
}
|
367 |
+
inline at::Tensor hamming_window(int64_t window_length, bool periodic, double alpha, at::TensorOptions options = {}) {
|
368 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
369 |
+
return autograd::make_variable(at::hamming_window(window_length, periodic, alpha, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
370 |
+
}
|
371 |
+
inline at::Tensor hamming_window(int64_t window_length, bool periodic, double alpha, double beta, at::TensorOptions options = {}) {
|
372 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
373 |
+
return autograd::make_variable(at::hamming_window(window_length, periodic, alpha, beta, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
374 |
+
}
|
375 |
+
inline at::Tensor kaiser_window(int64_t window_length, at::TensorOptions options = {}) {
|
376 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
377 |
+
return autograd::make_variable(at::kaiser_window(window_length, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
378 |
+
}
|
379 |
+
inline at::Tensor kaiser_window(int64_t window_length, bool periodic, at::TensorOptions options = {}) {
|
380 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
381 |
+
return autograd::make_variable(at::kaiser_window(window_length, periodic, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
382 |
+
}
|
383 |
+
inline at::Tensor kaiser_window(int64_t window_length, bool periodic, double beta, at::TensorOptions options = {}) {
|
384 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
385 |
+
return autograd::make_variable(at::kaiser_window(window_length, periodic, beta, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
386 |
+
}
|
387 |
+
inline at::Tensor linspace(const at::Scalar & start, const at::Scalar & end, int64_t steps, at::TensorOptions options = {}) {
|
388 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
389 |
+
return autograd::make_variable(at::linspace(start, end, steps, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
390 |
+
}
|
391 |
+
inline at::Tensor linspace(const at::Tensor & start, const at::Tensor & end, int64_t steps, at::TensorOptions options = {}) {
|
392 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
393 |
+
return autograd::make_variable(at::linspace(start, end, steps, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
394 |
+
}
|
395 |
+
inline at::Tensor linspace(const at::Tensor & start, const at::Scalar & end, int64_t steps, at::TensorOptions options = {}) {
|
396 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
397 |
+
return autograd::make_variable(at::linspace(start, end, steps, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
398 |
+
}
|
399 |
+
inline at::Tensor linspace(const at::Scalar & start, const at::Tensor & end, int64_t steps, at::TensorOptions options = {}) {
|
400 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
401 |
+
return autograd::make_variable(at::linspace(start, end, steps, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
402 |
+
}
|
403 |
+
inline at::Tensor logspace(const at::Scalar & start, const at::Scalar & end, int64_t steps, double base = 10.0, at::TensorOptions options = {}) {
|
404 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
405 |
+
return autograd::make_variable(at::logspace(start, end, steps, base, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
406 |
+
}
|
407 |
+
inline at::Tensor logspace(const at::Tensor & start, const at::Tensor & end, int64_t steps, double base = 10.0, at::TensorOptions options = {}) {
|
408 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
409 |
+
return autograd::make_variable(at::logspace(start, end, steps, base, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
410 |
+
}
|
411 |
+
inline at::Tensor logspace(const at::Tensor & start, const at::Scalar & end, int64_t steps, double base = 10.0, at::TensorOptions options = {}) {
|
412 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
413 |
+
return autograd::make_variable(at::logspace(start, end, steps, base, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
414 |
+
}
|
415 |
+
inline at::Tensor logspace(const at::Scalar & start, const at::Tensor & end, int64_t steps, double base = 10.0, at::TensorOptions options = {}) {
|
416 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
417 |
+
return autograd::make_variable(at::logspace(start, end, steps, base, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
418 |
+
}
|
419 |
+
inline at::Tensor ones(at::IntArrayRef size, c10::optional<at::DimnameList> names, at::TensorOptions options = {}) {
|
420 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
421 |
+
return autograd::make_variable(at::ones(size, names, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
422 |
+
}
|
423 |
+
inline at::Tensor ones(at::IntArrayRef size, at::TensorOptions options = {}) {
|
424 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
425 |
+
return autograd::make_variable(at::ones(size, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
426 |
+
}
|
427 |
+
inline at::Tensor ones_symint(c10::SymIntArrayRef size, at::TensorOptions options = {}) {
|
428 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
429 |
+
return autograd::make_variable(at::ones_symint(size, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
430 |
+
}
|
431 |
+
inline at::Tensor ones_like(const at::Tensor & self, at::TensorOptions options = {}, c10::optional<at::MemoryFormat> memory_format = c10::nullopt) {
|
432 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
433 |
+
return autograd::make_variable(at::ones_like(self, at::TensorOptions(options).requires_grad(c10::nullopt), memory_format), /*requires_grad=*/options.requires_grad());
|
434 |
+
}
|
435 |
+
inline at::Tensor scalar_tensor(const at::Scalar & s, at::TensorOptions options = {}) {
|
436 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
437 |
+
return autograd::make_variable(at::scalar_tensor(s, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
438 |
+
}
|
439 |
+
inline at::Tensor rand(at::IntArrayRef size, c10::optional<at::DimnameList> names, at::TensorOptions options = {}) {
|
440 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
441 |
+
return autograd::make_variable(at::rand(size, names, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
442 |
+
}
|
443 |
+
inline at::Tensor rand_symint(c10::SymIntArrayRef size, c10::optional<at::DimnameList> names, at::TensorOptions options = {}) {
|
444 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
445 |
+
return autograd::make_variable(at::rand_symint(size, names, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
446 |
+
}
|
447 |
+
inline at::Tensor rand(at::IntArrayRef size, c10::optional<at::Generator> generator, c10::optional<at::DimnameList> names, at::TensorOptions options = {}) {
|
448 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
449 |
+
return autograd::make_variable(at::rand(size, generator, names, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
450 |
+
}
|
451 |
+
inline at::Tensor rand_symint(c10::SymIntArrayRef size, c10::optional<at::Generator> generator, c10::optional<at::DimnameList> names, at::TensorOptions options = {}) {
|
452 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
453 |
+
return autograd::make_variable(at::rand_symint(size, generator, names, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
454 |
+
}
|
455 |
+
inline at::Tensor rand(at::IntArrayRef size, at::TensorOptions options = {}) {
|
456 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
457 |
+
return autograd::make_variable(at::rand(size, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
458 |
+
}
|
459 |
+
inline at::Tensor rand_symint(c10::SymIntArrayRef size, at::TensorOptions options = {}) {
|
460 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
461 |
+
return autograd::make_variable(at::rand_symint(size, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
462 |
+
}
|
463 |
+
inline at::Tensor rand(at::IntArrayRef size, c10::optional<at::Generator> generator, at::TensorOptions options = {}) {
|
464 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
465 |
+
return autograd::make_variable(at::rand(size, generator, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
466 |
+
}
|
467 |
+
inline at::Tensor rand_symint(c10::SymIntArrayRef size, c10::optional<at::Generator> generator, at::TensorOptions options = {}) {
|
468 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
469 |
+
return autograd::make_variable(at::rand_symint(size, generator, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
470 |
+
}
|
471 |
+
inline at::Tensor rand_like(const at::Tensor & self, at::TensorOptions options = {}, c10::optional<at::MemoryFormat> memory_format = c10::nullopt) {
|
472 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
473 |
+
return autograd::make_variable(at::rand_like(self, at::TensorOptions(options).requires_grad(c10::nullopt), memory_format), /*requires_grad=*/options.requires_grad());
|
474 |
+
}
|
475 |
+
inline at::Tensor randint(int64_t high, at::IntArrayRef size, at::TensorOptions options = at::kLong) {
|
476 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
477 |
+
return autograd::make_variable(at::randint(high, size, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
478 |
+
}
|
479 |
+
inline at::Tensor randint_symint(c10::SymInt high, c10::SymIntArrayRef size, at::TensorOptions options = at::kLong) {
|
480 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
481 |
+
return autograd::make_variable(at::randint_symint(high, size, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
482 |
+
}
|
483 |
+
inline at::Tensor randint(int64_t high, at::IntArrayRef size, c10::optional<at::Generator> generator, at::TensorOptions options = at::kLong) {
|
484 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
485 |
+
return autograd::make_variable(at::randint(high, size, generator, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
486 |
+
}
|
487 |
+
inline at::Tensor randint_symint(c10::SymInt high, c10::SymIntArrayRef size, c10::optional<at::Generator> generator, at::TensorOptions options = at::kLong) {
|
488 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
489 |
+
return autograd::make_variable(at::randint_symint(high, size, generator, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
490 |
+
}
|
491 |
+
inline at::Tensor randint(int64_t low, int64_t high, at::IntArrayRef size, at::TensorOptions options = at::kLong) {
|
492 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
493 |
+
return autograd::make_variable(at::randint(low, high, size, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
494 |
+
}
|
495 |
+
inline at::Tensor randint_symint(c10::SymInt low, c10::SymInt high, c10::SymIntArrayRef size, at::TensorOptions options = at::kLong) {
|
496 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
497 |
+
return autograd::make_variable(at::randint_symint(low, high, size, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
498 |
+
}
|
499 |
+
inline at::Tensor randint(int64_t low, int64_t high, at::IntArrayRef size, c10::optional<at::Generator> generator, at::TensorOptions options = at::kLong) {
|
500 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
501 |
+
return autograd::make_variable(at::randint(low, high, size, generator, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
502 |
+
}
|
503 |
+
inline at::Tensor randint_symint(c10::SymInt low, c10::SymInt high, c10::SymIntArrayRef size, c10::optional<at::Generator> generator, at::TensorOptions options = at::kLong) {
|
504 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
505 |
+
return autograd::make_variable(at::randint_symint(low, high, size, generator, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
506 |
+
}
|
507 |
+
inline at::Tensor randint_like(const at::Tensor & self, int64_t high, at::TensorOptions options = {}, c10::optional<at::MemoryFormat> memory_format = c10::nullopt) {
|
508 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
509 |
+
return autograd::make_variable(at::randint_like(self, high, at::TensorOptions(options).requires_grad(c10::nullopt), memory_format), /*requires_grad=*/options.requires_grad());
|
510 |
+
}
|
511 |
+
inline at::Tensor randint_like_symint(const at::Tensor & self, c10::SymInt high, at::TensorOptions options = {}, c10::optional<at::MemoryFormat> memory_format = c10::nullopt) {
|
512 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
513 |
+
return autograd::make_variable(at::randint_like_symint(self, high, at::TensorOptions(options).requires_grad(c10::nullopt), memory_format), /*requires_grad=*/options.requires_grad());
|
514 |
+
}
|
515 |
+
inline at::Tensor randint_like(const at::Tensor & self, int64_t low, int64_t high, at::TensorOptions options = {}, c10::optional<at::MemoryFormat> memory_format = c10::nullopt) {
|
516 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
517 |
+
return autograd::make_variable(at::randint_like(self, low, high, at::TensorOptions(options).requires_grad(c10::nullopt), memory_format), /*requires_grad=*/options.requires_grad());
|
518 |
+
}
|
519 |
+
inline at::Tensor randint_like_symint(const at::Tensor & self, c10::SymInt low, c10::SymInt high, at::TensorOptions options = {}, c10::optional<at::MemoryFormat> memory_format = c10::nullopt) {
|
520 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
521 |
+
return autograd::make_variable(at::randint_like_symint(self, low, high, at::TensorOptions(options).requires_grad(c10::nullopt), memory_format), /*requires_grad=*/options.requires_grad());
|
522 |
+
}
|
523 |
+
inline at::Tensor randn(at::IntArrayRef size, at::TensorOptions options = {}) {
|
524 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
525 |
+
return autograd::make_variable(at::randn(size, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
526 |
+
}
|
527 |
+
inline at::Tensor randn_symint(c10::SymIntArrayRef size, at::TensorOptions options = {}) {
|
528 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
529 |
+
return autograd::make_variable(at::randn_symint(size, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
530 |
+
}
|
531 |
+
inline at::Tensor randn(at::IntArrayRef size, c10::optional<at::Generator> generator, at::TensorOptions options = {}) {
|
532 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
533 |
+
return autograd::make_variable(at::randn(size, generator, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
534 |
+
}
|
535 |
+
inline at::Tensor randn_symint(c10::SymIntArrayRef size, c10::optional<at::Generator> generator, at::TensorOptions options = {}) {
|
536 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
537 |
+
return autograd::make_variable(at::randn_symint(size, generator, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
538 |
+
}
|
539 |
+
inline at::Tensor randn(at::IntArrayRef size, c10::optional<at::DimnameList> names, at::TensorOptions options = {}) {
|
540 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
541 |
+
return autograd::make_variable(at::randn(size, names, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
542 |
+
}
|
543 |
+
inline at::Tensor randn_symint(c10::SymIntArrayRef size, c10::optional<at::DimnameList> names, at::TensorOptions options = {}) {
|
544 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
545 |
+
return autograd::make_variable(at::randn_symint(size, names, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
546 |
+
}
|
547 |
+
inline at::Tensor randn(at::IntArrayRef size, c10::optional<at::Generator> generator, c10::optional<at::DimnameList> names, at::TensorOptions options = {}) {
|
548 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
549 |
+
return autograd::make_variable(at::randn(size, generator, names, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
550 |
+
}
|
551 |
+
inline at::Tensor randn_symint(c10::SymIntArrayRef size, c10::optional<at::Generator> generator, c10::optional<at::DimnameList> names, at::TensorOptions options = {}) {
|
552 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
553 |
+
return autograd::make_variable(at::randn_symint(size, generator, names, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
554 |
+
}
|
555 |
+
inline at::Tensor randn_like(const at::Tensor & self, at::TensorOptions options = {}, c10::optional<at::MemoryFormat> memory_format = c10::nullopt) {
|
556 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
557 |
+
return autograd::make_variable(at::randn_like(self, at::TensorOptions(options).requires_grad(c10::nullopt), memory_format), /*requires_grad=*/options.requires_grad());
|
558 |
+
}
|
559 |
+
inline at::Tensor randperm(int64_t n, at::TensorOptions options = at::kLong) {
|
560 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
561 |
+
return autograd::make_variable(at::randperm(n, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
562 |
+
}
|
563 |
+
inline at::Tensor randperm_symint(c10::SymInt n, at::TensorOptions options = at::kLong) {
|
564 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
565 |
+
return autograd::make_variable(at::randperm_symint(n, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
566 |
+
}
|
567 |
+
inline at::Tensor randperm(int64_t n, c10::optional<at::Generator> generator, at::TensorOptions options = at::kLong) {
|
568 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
569 |
+
return autograd::make_variable(at::randperm(n, generator, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
570 |
+
}
|
571 |
+
inline at::Tensor randperm_symint(c10::SymInt n, c10::optional<at::Generator> generator, at::TensorOptions options = at::kLong) {
|
572 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
573 |
+
return autograd::make_variable(at::randperm_symint(n, generator, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
574 |
+
}
|
575 |
+
inline at::Tensor range(const at::Scalar & start, const at::Scalar & end, const at::Scalar & step = 1, at::TensorOptions options = {}) {
|
576 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
577 |
+
return autograd::make_variable(at::range(start, end, step, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
578 |
+
}
|
579 |
+
inline at::Tensor range(const at::Scalar & start, const at::Scalar & end, at::TensorOptions options = {}) {
|
580 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
581 |
+
return autograd::make_variable(at::range(start, end, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
582 |
+
}
|
583 |
+
inline at::Tensor zeros(at::IntArrayRef size, c10::optional<at::DimnameList> names, at::TensorOptions options = {}) {
|
584 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
585 |
+
return autograd::make_variable(at::zeros(size, names, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
586 |
+
}
|
587 |
+
inline at::Tensor _efficientzerotensor(at::IntArrayRef size, at::TensorOptions options = {}) {
|
588 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
589 |
+
return autograd::make_variable(at::_efficientzerotensor(size, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
590 |
+
}
|
591 |
+
inline at::Tensor _efficientzerotensor_symint(c10::SymIntArrayRef size, at::TensorOptions options = {}) {
|
592 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
593 |
+
return autograd::make_variable(at::_efficientzerotensor_symint(size, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
594 |
+
}
|
595 |
+
inline at::Tensor zeros(at::IntArrayRef size, at::TensorOptions options = {}) {
|
596 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
597 |
+
return autograd::make_variable(at::zeros(size, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
598 |
+
}
|
599 |
+
inline at::Tensor zeros_symint(c10::SymIntArrayRef size, at::TensorOptions options = {}) {
|
600 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
601 |
+
return autograd::make_variable(at::zeros_symint(size, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
602 |
+
}
|
603 |
+
inline at::Tensor zeros_like(const at::Tensor & self, at::TensorOptions options = {}, c10::optional<at::MemoryFormat> memory_format = c10::nullopt) {
|
604 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
605 |
+
return autograd::make_variable(at::zeros_like(self, at::TensorOptions(options).requires_grad(c10::nullopt), memory_format), /*requires_grad=*/options.requires_grad());
|
606 |
+
}
|
607 |
+
inline at::Tensor sparse_compressed_tensor(const at::Tensor & compressed_indices, const at::Tensor & plain_indices, const at::Tensor & values, at::IntArrayRef size, at::TensorOptions options) {
|
608 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
609 |
+
return autograd::make_variable(at::sparse_compressed_tensor(compressed_indices, plain_indices, values, size, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
610 |
+
}
|
611 |
+
inline at::Tensor sparse_compressed_tensor_symint(const at::Tensor & compressed_indices, const at::Tensor & plain_indices, const at::Tensor & values, c10::SymIntArrayRef size, at::TensorOptions options) {
|
612 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
613 |
+
return autograd::make_variable(at::sparse_compressed_tensor_symint(compressed_indices, plain_indices, values, size, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
614 |
+
}
|
615 |
+
inline at::Tensor sparse_csr_tensor(const at::Tensor & crow_indices, const at::Tensor & col_indices, const at::Tensor & values, at::IntArrayRef size, at::TensorOptions options) {
|
616 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
617 |
+
return autograd::make_variable(at::sparse_csr_tensor(crow_indices, col_indices, values, size, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
618 |
+
}
|
619 |
+
inline at::Tensor sparse_csc_tensor(const at::Tensor & ccol_indices, const at::Tensor & row_indices, const at::Tensor & values, at::IntArrayRef size, at::TensorOptions options) {
|
620 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
621 |
+
return autograd::make_variable(at::sparse_csc_tensor(ccol_indices, row_indices, values, size, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
622 |
+
}
|
623 |
+
inline at::Tensor sparse_bsr_tensor(const at::Tensor & crow_indices, const at::Tensor & col_indices, const at::Tensor & values, at::IntArrayRef size, at::TensorOptions options) {
|
624 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
625 |
+
return autograd::make_variable(at::sparse_bsr_tensor(crow_indices, col_indices, values, size, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
626 |
+
}
|
627 |
+
inline at::Tensor sparse_bsc_tensor(const at::Tensor & ccol_indices, const at::Tensor & row_indices, const at::Tensor & values, at::IntArrayRef size, at::TensorOptions options) {
|
628 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
629 |
+
return autograd::make_variable(at::sparse_bsc_tensor(ccol_indices, row_indices, values, size, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
630 |
+
}
|
631 |
+
inline at::Tensor sparse_compressed_tensor(const at::Tensor & compressed_indices, const at::Tensor & plain_indices, const at::Tensor & values, at::TensorOptions options) {
|
632 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
633 |
+
return autograd::make_variable(at::sparse_compressed_tensor(compressed_indices, plain_indices, values, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
634 |
+
}
|
635 |
+
inline at::Tensor sparse_csr_tensor(const at::Tensor & crow_indices, const at::Tensor & col_indices, const at::Tensor & values, at::TensorOptions options) {
|
636 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
637 |
+
return autograd::make_variable(at::sparse_csr_tensor(crow_indices, col_indices, values, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
638 |
+
}
|
639 |
+
inline at::Tensor sparse_csc_tensor(const at::Tensor & ccol_indices, const at::Tensor & row_indices, const at::Tensor & values, at::TensorOptions options) {
|
640 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
641 |
+
return autograd::make_variable(at::sparse_csc_tensor(ccol_indices, row_indices, values, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
642 |
+
}
|
643 |
+
inline at::Tensor sparse_bsr_tensor(const at::Tensor & crow_indices, const at::Tensor & col_indices, const at::Tensor & values, at::TensorOptions options) {
|
644 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
645 |
+
return autograd::make_variable(at::sparse_bsr_tensor(crow_indices, col_indices, values, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
646 |
+
}
|
647 |
+
inline at::Tensor sparse_bsc_tensor(const at::Tensor & ccol_indices, const at::Tensor & row_indices, const at::Tensor & values, at::TensorOptions options) {
|
648 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
649 |
+
return autograd::make_variable(at::sparse_bsc_tensor(ccol_indices, row_indices, values, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
650 |
+
}
|
651 |
+
inline at::Tensor _sparse_compressed_tensor_unsafe(const at::Tensor & compressed_indices, const at::Tensor & plain_indices, const at::Tensor & values, at::IntArrayRef size, at::TensorOptions options = {}) {
|
652 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
653 |
+
return autograd::make_variable(at::_sparse_compressed_tensor_unsafe(compressed_indices, plain_indices, values, size, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
654 |
+
}
|
655 |
+
inline at::Tensor _sparse_compressed_tensor_unsafe_symint(const at::Tensor & compressed_indices, const at::Tensor & plain_indices, const at::Tensor & values, c10::SymIntArrayRef size, at::TensorOptions options = {}) {
|
656 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
657 |
+
return autograd::make_variable(at::_sparse_compressed_tensor_unsafe_symint(compressed_indices, plain_indices, values, size, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
658 |
+
}
|
659 |
+
inline at::Tensor _sparse_csr_tensor_unsafe(const at::Tensor & crow_indices, const at::Tensor & col_indices, const at::Tensor & values, at::IntArrayRef size, at::TensorOptions options = {}) {
|
660 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
661 |
+
return autograd::make_variable(at::_sparse_csr_tensor_unsafe(crow_indices, col_indices, values, size, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
662 |
+
}
|
663 |
+
inline at::Tensor _sparse_csc_tensor_unsafe(const at::Tensor & ccol_indices, const at::Tensor & row_indices, const at::Tensor & values, at::IntArrayRef size, at::TensorOptions options = {}) {
|
664 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
665 |
+
return autograd::make_variable(at::_sparse_csc_tensor_unsafe(ccol_indices, row_indices, values, size, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
666 |
+
}
|
667 |
+
inline at::Tensor _sparse_bsr_tensor_unsafe(const at::Tensor & crow_indices, const at::Tensor & col_indices, const at::Tensor & values, at::IntArrayRef size, at::TensorOptions options = {}) {
|
668 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
669 |
+
return autograd::make_variable(at::_sparse_bsr_tensor_unsafe(crow_indices, col_indices, values, size, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
670 |
+
}
|
671 |
+
inline at::Tensor _sparse_bsc_tensor_unsafe(const at::Tensor & ccol_indices, const at::Tensor & row_indices, const at::Tensor & values, at::IntArrayRef size, at::TensorOptions options = {}) {
|
672 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
673 |
+
return autograd::make_variable(at::_sparse_bsc_tensor_unsafe(ccol_indices, row_indices, values, size, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
674 |
+
}
|
675 |
+
inline at::Tensor sparse_coo_tensor(at::IntArrayRef size, at::TensorOptions options) {
|
676 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
677 |
+
return autograd::make_variable(at::sparse_coo_tensor(size, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
678 |
+
}
|
679 |
+
inline at::Tensor sparse_coo_tensor(const at::Tensor & indices, const at::Tensor & values, at::TensorOptions options = {}, c10::optional<bool> is_coalesced = c10::nullopt) {
|
680 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
681 |
+
return autograd::make_variable(at::sparse_coo_tensor(indices, values, at::TensorOptions(options).requires_grad(c10::nullopt), is_coalesced), /*requires_grad=*/options.requires_grad());
|
682 |
+
}
|
683 |
+
inline at::Tensor sparse_coo_tensor(const at::Tensor & indices, const at::Tensor & values, at::IntArrayRef size, at::TensorOptions options = {}, c10::optional<bool> is_coalesced = c10::nullopt) {
|
684 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
685 |
+
return autograd::make_variable(at::sparse_coo_tensor(indices, values, size, at::TensorOptions(options).requires_grad(c10::nullopt), is_coalesced), /*requires_grad=*/options.requires_grad());
|
686 |
+
}
|
687 |
+
inline at::Tensor _sparse_coo_tensor_unsafe(const at::Tensor & indices, const at::Tensor & values, at::IntArrayRef size, at::TensorOptions options = {}, c10::optional<bool> is_coalesced = c10::nullopt) {
|
688 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
689 |
+
return autograd::make_variable(at::_sparse_coo_tensor_unsafe(indices, values, size, at::TensorOptions(options).requires_grad(c10::nullopt), is_coalesced), /*requires_grad=*/options.requires_grad());
|
690 |
+
}
|
691 |
+
inline at::Tensor _sparse_coo_tensor_unsafe_symint(const at::Tensor & indices, const at::Tensor & values, c10::SymIntArrayRef size, at::TensorOptions options = {}, c10::optional<bool> is_coalesced = c10::nullopt) {
|
692 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
693 |
+
return autograd::make_variable(at::_sparse_coo_tensor_unsafe_symint(indices, values, size, at::TensorOptions(options).requires_grad(c10::nullopt), is_coalesced), /*requires_grad=*/options.requires_grad());
|
694 |
+
}
|
695 |
+
inline at::Tensor _sparse_coo_tensor_with_dims(int64_t sparse_dim, int64_t dense_dim, at::IntArrayRef size, at::TensorOptions options) {
|
696 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
697 |
+
return autograd::make_variable(at::_sparse_coo_tensor_with_dims(sparse_dim, dense_dim, size, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
698 |
+
}
|
699 |
+
inline at::Tensor _sparse_coo_tensor_with_dims_and_tensors(int64_t sparse_dim, int64_t dense_dim, at::IntArrayRef size, const at::Tensor & indices, const at::Tensor & values, at::TensorOptions options, c10::optional<bool> is_coalesced = c10::nullopt) {
|
700 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
701 |
+
return autograd::make_variable(at::_sparse_coo_tensor_with_dims_and_tensors(sparse_dim, dense_dim, size, indices, values, at::TensorOptions(options).requires_grad(c10::nullopt), is_coalesced), /*requires_grad=*/options.requires_grad());
|
702 |
+
}
|
703 |
+
inline at::Tensor _sparse_coo_tensor_with_dims_and_tensors_symint(int64_t sparse_dim, int64_t dense_dim, c10::SymIntArrayRef size, const at::Tensor & indices, const at::Tensor & values, at::TensorOptions options, c10::optional<bool> is_coalesced = c10::nullopt) {
|
704 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
705 |
+
return autograd::make_variable(at::_sparse_coo_tensor_with_dims_and_tensors_symint(sparse_dim, dense_dim, size, indices, values, at::TensorOptions(options).requires_grad(c10::nullopt), is_coalesced), /*requires_grad=*/options.requires_grad());
|
706 |
+
}
|
707 |
+
inline at::Tensor _to_copy(const at::Tensor & self, at::TensorOptions options = {}, bool non_blocking = false, c10::optional<at::MemoryFormat> memory_format = c10::nullopt) {
|
708 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
709 |
+
return autograd::make_variable(at::_to_copy(self, at::TensorOptions(options).requires_grad(c10::nullopt), non_blocking, memory_format), /*requires_grad=*/options.requires_grad());
|
710 |
+
}
|
711 |
+
inline at::Tensor tril_indices(int64_t row, int64_t col, int64_t offset = 0, at::TensorOptions options = at::kLong) {
|
712 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
713 |
+
return autograd::make_variable(at::tril_indices(row, col, offset, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
714 |
+
}
|
715 |
+
inline at::Tensor triu_indices(int64_t row, int64_t col, int64_t offset = 0, at::TensorOptions options = at::kLong) {
|
716 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
717 |
+
return autograd::make_variable(at::triu_indices(row, col, offset, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
718 |
+
}
|
719 |
+
inline at::Tensor normal(double mean, double std, at::IntArrayRef size, c10::optional<at::Generator> generator = c10::nullopt, at::TensorOptions options = {}) {
|
720 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
721 |
+
return autograd::make_variable(at::normal(mean, std, size, generator, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
722 |
+
}
|
723 |
+
inline at::Tensor normal_symint(double mean, double std, c10::SymIntArrayRef size, c10::optional<at::Generator> generator = c10::nullopt, at::TensorOptions options = {}) {
|
724 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
725 |
+
return autograd::make_variable(at::normal_symint(mean, std, size, generator, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
726 |
+
}
|
727 |
+
inline at::Tensor fft_fftfreq(int64_t n, double d = 1.0, at::TensorOptions options = {}) {
|
728 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
729 |
+
return autograd::make_variable(at::fft_fftfreq(n, d, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
730 |
+
}
|
731 |
+
inline at::Tensor fft_rfftfreq(int64_t n, double d = 1.0, at::TensorOptions options = {}) {
|
732 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
733 |
+
return autograd::make_variable(at::fft_rfftfreq(n, d, at::TensorOptions(options).requires_grad(c10::nullopt)), /*requires_grad=*/options.requires_grad());
|
734 |
+
}
|
735 |
+
|
736 |
+
} // namespace torch
|
llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/graph_task.h
ADDED
@@ -0,0 +1,226 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
#include <ATen/ThreadLocalState.h>
|
3 |
+
#include <ATen/core/Tensor.h>
|
4 |
+
#include <c10/util/ThreadLocal.h>
|
5 |
+
#include <torch/csrc/autograd/input_buffer.h>
|
6 |
+
#include <torch/csrc/autograd/utils/warnings.h>
|
7 |
+
#include <vector>
|
8 |
+
|
9 |
+
namespace torch::autograd {
|
10 |
+
|
11 |
+
using edge_list = std::vector<Edge>;
|
12 |
+
struct ReadyQueue;
|
13 |
+
|
14 |
+
static constexpr int NO_DEVICE = -2;
|
15 |
+
static constexpr int CPU_DEVICE = -1;
|
16 |
+
|
17 |
+
// GraphTask holds metadata needed for a single execution of backward()
|
18 |
+
struct GraphTask : std::enable_shared_from_this<GraphTask> {
|
19 |
+
std::atomic<uint64_t> outstanding_tasks_{0};
|
20 |
+
// Indicates if an error occurred while executing any task. When this is
|
21 |
+
// true, it signals all threads to stop executing.
|
22 |
+
std::atomic_bool has_error_{false};
|
23 |
+
std::atomic_bool future_completed_{false};
|
24 |
+
// It is safe to read keep_graph_ without synchronization
|
25 |
+
bool keep_graph_;
|
26 |
+
|
27 |
+
// To protect reads/writes to not_ready_, dependencies_, captured_vars_,
|
28 |
+
// has_error_, future_result_, cpu_ready_queue_, and leaf_streams.
|
29 |
+
std::mutex mutex_;
|
30 |
+
std::unordered_map<Node*, InputBuffer> not_ready_;
|
31 |
+
std::unordered_map<Node*, int> dependencies_;
|
32 |
+
|
33 |
+
// Records the nodes that are in the graph
|
34 |
+
std::unordered_set<Node*> nodes_in_graph_;
|
35 |
+
c10::SmallVector<Node*, 4> graph_roots_;
|
36 |
+
// Note [Exec info]
|
37 |
+
// Exec info is created for each GraphTask, which allows filtering paths on
|
38 |
+
// the graph that are not needed. It has a bit complicated semantics. If it's
|
39 |
+
// empty, it means the task is run in a "default" mode, which means that all
|
40 |
+
// next_edges we encounter should get executed. If it's not empty, only
|
41 |
+
// functions that have an entry and this entry has needed == True should be
|
42 |
+
// executed. exec_info is only empty when the graph is executed via
|
43 |
+
// .backward() and the inputs parameter is not passed. Otherwise, when
|
44 |
+
// executed through .grad(), or when inputs arg is specified for .backward(),
|
45 |
+
// exec_info will be non-empty.
|
46 |
+
//
|
47 |
+
struct ExecInfo {
|
48 |
+
struct Capture {
|
49 |
+
Capture(const Capture&) = delete;
|
50 |
+
Capture(Capture&&) = default;
|
51 |
+
|
52 |
+
Capture(int input_idx, int output_idx)
|
53 |
+
: input_idx_(input_idx), output_idx_(output_idx) {}
|
54 |
+
int input_idx_; // within Node inputs
|
55 |
+
int output_idx_; // within the output vector of a GraphTask
|
56 |
+
|
57 |
+
// This hook will be executed after a grad is captured. The captured
|
58 |
+
// grad will be replaced by the return value of the hook.
|
59 |
+
struct GradCaptureHook {
|
60 |
+
virtual ~GradCaptureHook() = default;
|
61 |
+
virtual at::Tensor operator()(const at::Tensor& grad) = 0;
|
62 |
+
};
|
63 |
+
// NOTE [Deprecated capture hooks]
|
64 |
+
//
|
65 |
+
// The current status of capture hooks is that we continue to support
|
66 |
+
// the single usage of it by distributed in the dist_engine. If anyone
|
67 |
+
// else needs to use it for other purposes, they should file an issue.
|
68 |
+
//
|
69 |
+
// Capture hooks were originally created because there did not exist
|
70 |
+
// any way to register pre/post hooks to grad_fn in a way such that it
|
71 |
+
// would still be executed even if that is the grad_fn of a Tensor
|
72 |
+
// passed as input= of .grad. As far as I know, only dist_engine uses
|
73 |
+
// this hook.
|
74 |
+
//
|
75 |
+
// However, there are other alternatives today like tensor hooks that can
|
76 |
+
// replace the usage that originally motivated its creation. Also,
|
77 |
+
// Captures hooks are an outlier in terms of the types of hook that
|
78 |
+
// autograd offers in how it is registered and behaves, e.g. it is a hook
|
79 |
+
// registered not to the graph, but to a particular graph_task! This makes
|
80 |
+
// it a burden to maintain.
|
81 |
+
//
|
82 |
+
// It would be very nice to clean up/do a migration from pre/post
|
83 |
+
// hooks used in distributed to use tensor hooks, but for now we just
|
84 |
+
// mark this method as deprecated to prevent additional usage.
|
85 |
+
//
|
86 |
+
// If you still think you really need to capture hooks, please file an
|
87 |
+
// issue (and tag autograd).
|
88 |
+
const std::vector<std::unique_ptr<GradCaptureHook>>&
|
89 |
+
DO_NOT_USE_DEPRECATED_get_capture_hooks() const {
|
90 |
+
return hooks_;
|
91 |
+
}
|
92 |
+
// See NOTE [deprecated capture hooks]
|
93 |
+
void DO_NOT_USE_DEPRECATED_register_capture_hook(
|
94 |
+
std::unique_ptr<GradCaptureHook> hook) {
|
95 |
+
hooks_.push_back(std::move(hook));
|
96 |
+
}
|
97 |
+
|
98 |
+
private:
|
99 |
+
// The hooks will be called one by one in the order as they were added.
|
100 |
+
// The input grad of a hook will be the output of its preceding hook. The
|
101 |
+
// first hook will take the captured grad as the input. The output of the
|
102 |
+
// last hook will replace the captured grad.
|
103 |
+
std::vector<std::unique_ptr<GradCaptureHook>> hooks_;
|
104 |
+
};
|
105 |
+
|
106 |
+
bool should_execute() const {
|
107 |
+
return needed_ || captures_;
|
108 |
+
}
|
109 |
+
|
110 |
+
bool needed_ = false;
|
111 |
+
std::unique_ptr<std::vector<Capture>> captures_;
|
112 |
+
};
|
113 |
+
// exec_info_ is safe to read without synchronization
|
114 |
+
std::unordered_map<Node*, ExecInfo> exec_info_;
|
115 |
+
// Captures variables are grads captured that we return to the user. After
|
116 |
+
// execution of the GraphTask is completed, the captured_vars_ are moved
|
117 |
+
// out of the GraphTask and are no longer valid.
|
118 |
+
std::vector<Variable> captured_vars_;
|
119 |
+
|
120 |
+
// Note: this field is not ready to be used until the proper
|
121 |
+
// `thread_locals_.set_grad_mode()` call in the constructor.
|
122 |
+
at::ThreadLocalState thread_locals_ = at::ThreadLocalState();
|
123 |
+
|
124 |
+
std::unordered_set<c10::Stream> leaf_streams;
|
125 |
+
|
126 |
+
// Per-device current streams of the execute() that called this GraphTask.
|
127 |
+
// These will be synced with leaf_streams in exec_post_processing.
|
128 |
+
std::vector<c10::optional<c10::Stream>> caller_current_streams_;
|
129 |
+
|
130 |
+
// Collects caller_current_streams_ for the accelerator device.
|
131 |
+
void stash_current_streams();
|
132 |
+
|
133 |
+
void init_to_execute(
|
134 |
+
Node& graph_root,
|
135 |
+
const edge_list& outputs,
|
136 |
+
bool accumulate_grad,
|
137 |
+
uint64_t min_topo_nr);
|
138 |
+
|
139 |
+
// The value of worker_device in the thread that created this task.
|
140 |
+
// See Note [Reentrant backwards]
|
141 |
+
// Safe to read owner_ and reentrant_depth_ without synchronization
|
142 |
+
int owner_;
|
143 |
+
// The number of parent graph tasks for this graph task
|
144 |
+
// NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members)
|
145 |
+
const int reentrant_depth_;
|
146 |
+
|
147 |
+
bool can_checkpoint() const {
|
148 |
+
return exec_info_.empty();
|
149 |
+
}
|
150 |
+
|
151 |
+
// check if the GraphTask is completed or not
|
152 |
+
bool completed();
|
153 |
+
// mark the graph task as completed and trigger post processing
|
154 |
+
void mark_as_completed_and_run_post_processing();
|
155 |
+
|
156 |
+
// Set an appropriate exception on this graph_task which was encountered while
|
157 |
+
// running the provided function.
|
158 |
+
void set_exception(std::exception_ptr eptr, const std::shared_ptr<Node>& fn);
|
159 |
+
|
160 |
+
// Set an appropriate exception on this graph_task which was encountered while
|
161 |
+
// running the provided function. But doesn't signal completion on
|
162 |
+
// 'future_result_' right away. The user needs to explicitly mark
|
163 |
+
// 'future_result_' completed with an appropriate exception.
|
164 |
+
void set_exception_without_signal(const std::shared_ptr<Node>& fn);
|
165 |
+
|
166 |
+
// Whether or not to stop execution for this GraphTask when an error is
|
167 |
+
// encountered. When set to true, this would cause Engine::execute() to throw
|
168 |
+
// an exception as soon as the autograd engine receives an exception.
|
169 |
+
bool exit_on_error_;
|
170 |
+
|
171 |
+
// CPU threads are dedicated to processing CPU work for the backward they
|
172 |
+
// invoked. So any given graph task maintains its own cpu_ready_queue_ where
|
173 |
+
// you should send work for it to be done. We memoize the cpu_ready_queue_ per
|
174 |
+
// GraphTask so that we know which ready queue we should push to if we are on
|
175 |
+
// device thread (i.e. GPU) and but next NodeTask should be run on CPU.
|
176 |
+
std::shared_ptr<ReadyQueue> cpu_ready_queue_;
|
177 |
+
|
178 |
+
// Future representing the completion of the graph task. Notified when all
|
179 |
+
// tasks are done.
|
180 |
+
c10::intrusive_ptr<at::ivalue::Future> future_result_;
|
181 |
+
|
182 |
+
// Final callbacks installed during execution of this GraphTask
|
183 |
+
std::vector<std::function<void()>> final_callbacks_;
|
184 |
+
// To protect reads and writes to final_callbacks_. Intentionally no reusing
|
185 |
+
// mutex_ as the two are protecting different data structures.
|
186 |
+
std::mutex final_callbacks_lock_;
|
187 |
+
|
188 |
+
utils::DelayWarningHandler warning_handler_;
|
189 |
+
|
190 |
+
uint64_t id_;
|
191 |
+
|
192 |
+
GraphTask(
|
193 |
+
bool keep_graph,
|
194 |
+
bool grad_mode,
|
195 |
+
int reentrant_depth,
|
196 |
+
std::shared_ptr<ReadyQueue> cpu_ready_queue,
|
197 |
+
c10::SmallVector<Node*, 4> graph_roots,
|
198 |
+
bool exit_on_error = false);
|
199 |
+
|
200 |
+
private:
|
201 |
+
// run GraphTask post processing
|
202 |
+
void exec_post_processing();
|
203 |
+
};
|
204 |
+
|
205 |
+
// The guard that sets and restores current_graph_task.
|
206 |
+
class GraphTaskGuard {
|
207 |
+
public:
|
208 |
+
explicit GraphTaskGuard(std::shared_ptr<GraphTask> graph_task);
|
209 |
+
~GraphTaskGuard();
|
210 |
+
|
211 |
+
void restore_current_graph_task();
|
212 |
+
|
213 |
+
private:
|
214 |
+
std::shared_ptr<GraphTask> last_graph_task_;
|
215 |
+
};
|
216 |
+
|
217 |
+
TORCH_API const std::unordered_map<Node*, GraphTask::ExecInfo>*
|
218 |
+
get_current_graph_task_exec_info();
|
219 |
+
TORCH_API const std::unordered_set<Node*>*
|
220 |
+
get_current_graph_task_nodes_in_graph();
|
221 |
+
TORCH_API bool get_current_graph_task_keep_graph();
|
222 |
+
TORCH_API std::vector<Node*> get_current_graph_task_execution_order();
|
223 |
+
TORCH_API int get_current_graph_task_id();
|
224 |
+
void add_node_to_current_graph_task_exec_info(Node* fn);
|
225 |
+
|
226 |
+
} // namespace torch::autograd
|
llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/input_buffer.h
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// The InputBuffer class accumulates a list of Variables for use by a
|
4 |
+
// function. It implements logic to avoid modifying the passed
|
5 |
+
// values in-place (adding an input twice will accumulate the result).
|
6 |
+
// This behaviour is needed and used only in backward graphs.
|
7 |
+
|
8 |
+
#include <utility>
|
9 |
+
#include <vector>
|
10 |
+
|
11 |
+
#include <c10/core/Stream.h>
|
12 |
+
#include <c10/util/Optional.h>
|
13 |
+
#include <torch/csrc/autograd/variable.h>
|
14 |
+
|
15 |
+
namespace torch::autograd {
|
16 |
+
|
17 |
+
struct InputBuffer {
|
18 |
+
explicit InputBuffer(size_t size) : buffer(size) {}
|
19 |
+
InputBuffer(const InputBuffer& other) = delete;
|
20 |
+
InputBuffer(InputBuffer&& other) = default;
|
21 |
+
explicit InputBuffer(variable_list&& inputs) : buffer(std::move(inputs)){};
|
22 |
+
InputBuffer& operator=(InputBuffer&& other) = default;
|
23 |
+
|
24 |
+
// Accumulates the variable at a specified index.
|
25 |
+
// The optional CUDA streams determine which stream the accumulation
|
26 |
+
// is run on and how the addition is synchronized.
|
27 |
+
TORCH_API void add(
|
28 |
+
size_t pos,
|
29 |
+
Variable&& var,
|
30 |
+
const c10::optional<c10::Stream>& opt_producer_stream,
|
31 |
+
const c10::optional<c10::Stream>& opt_consumer_stream);
|
32 |
+
|
33 |
+
at::Device device() const;
|
34 |
+
|
35 |
+
Variable operator[](size_t pos) {
|
36 |
+
return buffer[pos];
|
37 |
+
}
|
38 |
+
|
39 |
+
// Returns the inputs as a list of variables. Destroys given InputBuffer.
|
40 |
+
static std::vector<Variable> variables(InputBuffer&& g);
|
41 |
+
|
42 |
+
std::vector<Variable> buffer;
|
43 |
+
};
|
44 |
+
|
45 |
+
} // namespace torch::autograd
|
llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/jit_decomp_interface.h
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/core/Tensor.h>
|
4 |
+
#include <ATen/core/function_schema.h>
|
5 |
+
#include <c10/macros/Export.h>
|
6 |
+
|
7 |
+
// NOTE: [Jit Decomposition Interface]
|
8 |
+
//
|
9 |
+
// For some context of why we need this at all, see NOTE: [forward-mode AD
|
10 |
+
// decompositions mechanism]
|
11 |
+
//
|
12 |
+
// Introducing that mechanism from the NOTE is problematic because:
|
13 |
+
// - it relies on TorchScript, so now VariableTypeX.cpp depends on TorchScript.
|
14 |
+
// - there exist internal builds like lite_trainer, which depend on VariableType
|
15 |
+
// but do not depend on TorchScript.
|
16 |
+
//
|
17 |
+
// For internal builds like lite_trainer builds to pass, and for OSS builds that
|
18 |
+
// do depend on TorchScript to still support the forward AD decomp mechanism, we
|
19 |
+
// implement a PImpl pattern to avoid a static dependency in favor of a dynamic
|
20 |
+
// one
|
21 |
+
// - during static initialization time, if the library is built with TorchScript
|
22 |
+
// setJitDecompImpl is called in decomposition_registry.cpp setting a global
|
23 |
+
// ptr to the impl
|
24 |
+
// - when the program is run,if getJitDecompImpl returns a non null ptr, we can
|
25 |
+
// carry on normally, otherwise we gracefully error out
|
26 |
+
//
|
27 |
+
// For extra context, see VariableHooksInterface.h, where a similar technique
|
28 |
+
// is used
|
29 |
+
|
30 |
+
namespace torch::autograd::impl {
|
31 |
+
|
32 |
+
struct TORCH_API JitDecompInterface {
|
33 |
+
virtual ~JitDecompInterface() = default;
|
34 |
+
virtual bool has_jit_decomposition(
|
35 |
+
const c10::FunctionSchema& schema) const = 0;
|
36 |
+
virtual void run_jit_decomposition(
|
37 |
+
const c10::OperatorHandle& op,
|
38 |
+
jit::Stack* stack) const = 0;
|
39 |
+
};
|
40 |
+
|
41 |
+
TORCH_API void setJitDecompImpl(JitDecompInterface* impl);
|
42 |
+
TORCH_API JitDecompInterface* getJitDecompImpl();
|
43 |
+
|
44 |
+
struct TORCH_API JitDecompRegisterer {
|
45 |
+
explicit JitDecompRegisterer(JitDecompInterface* impl) {
|
46 |
+
setJitDecompImpl(impl);
|
47 |
+
}
|
48 |
+
};
|
49 |
+
|
50 |
+
} // namespace torch::autograd::impl
|
llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/profiler.h
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/autograd/profiler_kineto.h>
|
4 |
+
#include <torch/csrc/autograd/profiler_legacy.h>
|
llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/profiler_kineto.h
ADDED
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <string>
|
4 |
+
#include <vector>
|
5 |
+
|
6 |
+
#include <torch/csrc/profiler/api.h>
|
7 |
+
#include <torch/csrc/profiler/events.h>
|
8 |
+
#include <torch/csrc/profiler/stubs/base.h>
|
9 |
+
#include <torch/csrc/profiler/util.h>
|
10 |
+
|
11 |
+
namespace torch {
|
12 |
+
|
13 |
+
namespace profiler::impl {
|
14 |
+
struct Result;
|
15 |
+
namespace kineto {
|
16 |
+
struct ActivityTraceWrapper;
|
17 |
+
} // namespace kineto
|
18 |
+
} // namespace profiler::impl
|
19 |
+
|
20 |
+
namespace autograd::profiler {
|
21 |
+
using experimental_event_t = std::shared_ptr<torch::profiler::impl::Result>;
|
22 |
+
using extra_meta_t = std::unordered_map<std::string, std::string>;
|
23 |
+
|
24 |
+
struct TORCH_API KinetoEvent {
|
25 |
+
KinetoEvent(
|
26 |
+
const std::shared_ptr<const torch::profiler::impl::Result>&,
|
27 |
+
const bool verbose);
|
28 |
+
|
29 |
+
uint64_t startThreadId() const;
|
30 |
+
uint64_t endThreadId() const;
|
31 |
+
uint8_t activityType() const;
|
32 |
+
uint64_t fwdThreadId() const;
|
33 |
+
bool hasShapes() const;
|
34 |
+
const c10::ArrayRef<std::vector<int64_t>> shapes() const;
|
35 |
+
bool hasTypes() const;
|
36 |
+
const c10::ArrayRef<std::string> dtypes() const;
|
37 |
+
bool hasConcreteInputs() const;
|
38 |
+
const c10::ArrayRef<c10::IValue> concreteInputs() const;
|
39 |
+
uint64_t flops() const;
|
40 |
+
int64_t sequenceNr() const;
|
41 |
+
bool hasStack() const;
|
42 |
+
const c10::ArrayRef<std::string> stack() const;
|
43 |
+
uint8_t scope() const;
|
44 |
+
bool hasModuleHierarchy() const;
|
45 |
+
const c10::ArrayRef<std::string> moduleHierarchy() const;
|
46 |
+
int64_t debugHandle() const;
|
47 |
+
std::string name() const;
|
48 |
+
c10::DeviceType deviceType() const;
|
49 |
+
int deviceIndex() const;
|
50 |
+
int64_t nBytes() const;
|
51 |
+
uint64_t startUs() const;
|
52 |
+
uint64_t durationUs() const;
|
53 |
+
bool isAsync() const;
|
54 |
+
uint64_t correlationId() const;
|
55 |
+
uint64_t linkedCorrelationId() const;
|
56 |
+
int64_t deviceResourceId() const;
|
57 |
+
std::string backend() const;
|
58 |
+
bool isPythonFunction() const;
|
59 |
+
int64_t cudaElapsedUs() const;
|
60 |
+
int64_t privateuse1ElapsedUs() const;
|
61 |
+
void getPerfEventCounters(torch::profiler::perf_counters_t&) const;
|
62 |
+
extra_meta_t extraMeta() const;
|
63 |
+
|
64 |
+
private:
|
65 |
+
torch::profiler::impl::ProfilerVoidEventStub fallbackStart() const;
|
66 |
+
torch::profiler::impl::ProfilerVoidEventStub fallbackEnd() const;
|
67 |
+
|
68 |
+
std::shared_ptr<const torch::profiler::impl::Result> result_;
|
69 |
+
std::vector<std::string> python_stack_;
|
70 |
+
|
71 |
+
// Copy fields from result so we can return ArrayRefs.
|
72 |
+
std::vector<std::vector<int64_t>> shapes_;
|
73 |
+
std::vector<std::string> dtypes_;
|
74 |
+
std::vector<c10::IValue> concrete_inputs_;
|
75 |
+
};
|
76 |
+
|
77 |
+
// Consolidating events returned directly from Kineto
|
78 |
+
// with events manually created by us (e.g. start/stop marks,
|
79 |
+
// memory allocation events)
|
80 |
+
struct TORCH_API ProfilerResult {
|
81 |
+
ProfilerResult();
|
82 |
+
ProfilerResult(
|
83 |
+
uint64_t start_time,
|
84 |
+
std::vector<KinetoEvent> events,
|
85 |
+
std::unique_ptr<torch::profiler::impl::kineto::ActivityTraceWrapper>&&
|
86 |
+
trace,
|
87 |
+
std::vector<experimental_event_t>&& event_tree);
|
88 |
+
~ProfilerResult();
|
89 |
+
|
90 |
+
uint64_t trace_start_us() const {
|
91 |
+
return trace_start_us_;
|
92 |
+
}
|
93 |
+
|
94 |
+
const std::vector<KinetoEvent>& events() const {
|
95 |
+
return events_;
|
96 |
+
}
|
97 |
+
|
98 |
+
const std::vector<experimental_event_t>& event_tree() const {
|
99 |
+
return event_tree_;
|
100 |
+
}
|
101 |
+
|
102 |
+
void save(const std::string& path);
|
103 |
+
|
104 |
+
private:
|
105 |
+
uint64_t trace_start_us_ = 0;
|
106 |
+
std::vector<KinetoEvent> events_;
|
107 |
+
std::unique_ptr<torch::profiler::impl::kineto::ActivityTraceWrapper> trace_;
|
108 |
+
std::vector<experimental_event_t> event_tree_;
|
109 |
+
};
|
110 |
+
|
111 |
+
/*
|
112 |
+
* This API is used by backends to record latency of events that
|
113 |
+
* happened in the backend but were not visible to pytorch runtime.
|
114 |
+
* For example, if part of the model is lowered to a dsp backend, then
|
115 |
+
* the execution of that part of the model is delegated to the backend.
|
116 |
+
* When backend finishes execution it has an option to provide profiling
|
117 |
+
* information (latency only at the moment) corresponding to different operators
|
118 |
+
* that were executed in the backend.
|
119 |
+
* When such events are recorded by backend using this API, the event
|
120 |
+
* records will be collected by active kineto profiler. If no kineto profiler
|
121 |
+
* is active then the event is ignored.
|
122 |
+
* This provides us with a way to generate all the profiling information
|
123 |
+
* for a model regardless of where model (or part of it) executed.
|
124 |
+
* @param start_time_us: start time in us of the event
|
125 |
+
* @param end_time_us: end time in us of the event
|
126 |
+
* @param debug_handle: debug handle to correlate this event/op with
|
127 |
+
* model level module/source information
|
128 |
+
* @param scope: scope of the event, e.g. LITE_INTERPRETER, RECORD_FN etc.
|
129 |
+
* @param event_name: name of the event, e.g. op name
|
130 |
+
* @param backend_name: name of the backend where the event took place.
|
131 |
+
*/
|
132 |
+
TORCH_API void reportBackendEventToActiveKinetoProfiler(
|
133 |
+
const int64_t start_time_us,
|
134 |
+
const int64_t end_time_us,
|
135 |
+
const int64_t debug_handle,
|
136 |
+
const at::RecordScope scope,
|
137 |
+
const std::string& event_name,
|
138 |
+
const std::string& backend_name);
|
139 |
+
|
140 |
+
TORCH_API void enableProfiler(
|
141 |
+
const torch::profiler::impl::ProfilerConfig& config,
|
142 |
+
const std::set<torch::profiler::impl::ActivityType>& activities,
|
143 |
+
const std::unordered_set<at::RecordScope>& scopes = {});
|
144 |
+
|
145 |
+
/*
|
146 |
+
* Same as enableProfiler but with callback to do post-processing of
|
147 |
+
* KinetoEvents.
|
148 |
+
* enableProfilerWithEventPostProcess enables profiler to capture
|
149 |
+
* specified activities, with specified RecordFunction scope, if any.
|
150 |
+
* Additionally, it takes a functor that does in-place post processing of
|
151 |
+
* events, e.g. populate stack trace or module hierarchy information lazily
|
152 |
+
* using debug_handle.
|
153 |
+
* Example usage is with lite interpreter that has recording scope of
|
154 |
+
* LITE_INTERPRETER. In this case lite interpreter runtime, records debug
|
155 |
+
* handles in RecordFunction, along with other information. Debug handles are
|
156 |
+
* eventually passed down to KinetoEvent and recorded as part of the event.
|
157 |
+
* KinetoEdgeCPUProfiler, in torch/csrc/jit/mobile/profiler_edge.cpp, enables
|
158 |
+
* profiler using post-processing callback, via
|
159 |
+
* enableProfilerWithEventPostProcess, that takes these debug handles and
|
160 |
+
* generates stack trace and module hierarchy information, once profiling is
|
161 |
+
* done.
|
162 |
+
*/
|
163 |
+
using post_process_t = std::function<void(
|
164 |
+
/*debug_handle */ int64_t,
|
165 |
+
/*jit_stack */ std::vector<std::string>&,
|
166 |
+
/*jit_modules */ std::vector<std::string>&)>;
|
167 |
+
TORCH_API void enableProfilerWithEventPostProcess(
|
168 |
+
const torch::profiler::impl::ProfilerConfig& config,
|
169 |
+
const std::set<torch::profiler::impl::ActivityType>& activities,
|
170 |
+
post_process_t&& cb,
|
171 |
+
const std::unordered_set<at::RecordScope>& scopes = {});
|
172 |
+
|
173 |
+
TORCH_API std::unique_ptr<ProfilerResult> disableProfiler();
|
174 |
+
|
175 |
+
TORCH_API void prepareProfiler(
|
176 |
+
const torch::profiler::impl::ProfilerConfig& config,
|
177 |
+
const std::set<torch::profiler::impl::ActivityType>& activities);
|
178 |
+
|
179 |
+
} // namespace autograd::profiler
|
180 |
+
|
181 |
+
namespace profiler::impl {
|
182 |
+
|
183 |
+
// Experimental.
|
184 |
+
TORCH_API void _reportVulkanEventToProfiler(vulkan_id_t id);
|
185 |
+
|
186 |
+
} // namespace profiler::impl
|
187 |
+
|
188 |
+
} // namespace torch
|
llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/profiler_legacy.h
ADDED
@@ -0,0 +1,406 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <cstdint>
|
4 |
+
#include <iostream>
|
5 |
+
#include <memory>
|
6 |
+
#include <mutex>
|
7 |
+
#include <string>
|
8 |
+
#include <vector>
|
9 |
+
|
10 |
+
#include <torch/csrc/Export.h>
|
11 |
+
#include <torch/csrc/profiler/api.h>
|
12 |
+
#include <torch/csrc/profiler/stubs/base.h>
|
13 |
+
#include <torch/csrc/profiler/util.h>
|
14 |
+
|
15 |
+
namespace torch::autograd {
|
16 |
+
|
17 |
+
struct Node;
|
18 |
+
|
19 |
+
namespace profiler {
|
20 |
+
|
21 |
+
enum class C10_API_ENUM EventKind : uint16_t {
|
22 |
+
Mark,
|
23 |
+
PushRange,
|
24 |
+
PopRange,
|
25 |
+
MemoryAlloc,
|
26 |
+
};
|
27 |
+
|
28 |
+
// To be deprecated, once we switch to Kineto profiling
|
29 |
+
struct TORCH_API LegacyEvent {
|
30 |
+
LegacyEvent(
|
31 |
+
EventKind kind,
|
32 |
+
at::StringView name,
|
33 |
+
uint16_t thread_id,
|
34 |
+
bool record_cuda,
|
35 |
+
at::RecordFunctionHandle handle = 0,
|
36 |
+
std::vector<std::vector<int64_t>>&& shapes = {},
|
37 |
+
int64_t node_id = -1,
|
38 |
+
bool is_async = false)
|
39 |
+
: name_(std::move(name)),
|
40 |
+
kind_(kind),
|
41 |
+
thread_id_(thread_id),
|
42 |
+
handle_(handle),
|
43 |
+
shapes_(std::move(shapes)),
|
44 |
+
node_id_(node_id),
|
45 |
+
is_async_(is_async) {
|
46 |
+
record(record_cuda);
|
47 |
+
}
|
48 |
+
|
49 |
+
// Constructor to be used in conjunction with LegacyEvent::fromIValue.
|
50 |
+
LegacyEvent(
|
51 |
+
EventKind kind,
|
52 |
+
at::StringView name,
|
53 |
+
uint16_t thread_id,
|
54 |
+
at::RecordFunctionHandle handle,
|
55 |
+
std::vector<std::vector<int64_t>>&& shapes,
|
56 |
+
int64_t node_id,
|
57 |
+
bool is_remote,
|
58 |
+
int64_t cpu_memory_usage,
|
59 |
+
int64_t cpu_ns,
|
60 |
+
bool cuda_recorded,
|
61 |
+
int64_t cuda_memory_usage = 0,
|
62 |
+
c10::DeviceIndex device = -1,
|
63 |
+
double cuda_us = -1)
|
64 |
+
: cpu_ns_(cpu_ns),
|
65 |
+
name_(std::move(name)),
|
66 |
+
kind_(kind),
|
67 |
+
thread_id_(thread_id),
|
68 |
+
handle_(handle),
|
69 |
+
shapes_(std::move(shapes)),
|
70 |
+
cpu_memory_usage_(cpu_memory_usage),
|
71 |
+
cuda_memory_usage_(cuda_memory_usage),
|
72 |
+
device_(device),
|
73 |
+
node_id_(node_id),
|
74 |
+
is_remote_(is_remote),
|
75 |
+
cuda_us_(static_cast<int64_t>(cuda_us)) {
|
76 |
+
// Sanity check values that were deserialized
|
77 |
+
TORCH_INTERNAL_ASSERT(cpu_ns_ > 0);
|
78 |
+
if (cuda_recorded) {
|
79 |
+
TORCH_INTERNAL_ASSERT(device_ >= 0);
|
80 |
+
TORCH_INTERNAL_ASSERT(cuda_us_ >= 0);
|
81 |
+
}
|
82 |
+
}
|
83 |
+
|
84 |
+
// Returns IValues corresponding to event structure, to be used for
|
85 |
+
// serialization.
|
86 |
+
at::IValue toIValue() const;
|
87 |
+
|
88 |
+
// Reconstructs an event from IValues given by toIValue.
|
89 |
+
static LegacyEvent fromIValue(const at::IValue& eventIValue);
|
90 |
+
|
91 |
+
void record(bool record_cuda);
|
92 |
+
|
93 |
+
std::string kindStr() const {
|
94 |
+
switch (kind_) {
|
95 |
+
case EventKind::Mark:
|
96 |
+
return "mark";
|
97 |
+
case EventKind::PushRange:
|
98 |
+
return "push";
|
99 |
+
case EventKind::PopRange:
|
100 |
+
return "pop";
|
101 |
+
case EventKind::MemoryAlloc:
|
102 |
+
return "memory_alloc";
|
103 |
+
}
|
104 |
+
throw std::runtime_error("unknown event kind");
|
105 |
+
}
|
106 |
+
|
107 |
+
EventKind kind() const {
|
108 |
+
return kind_;
|
109 |
+
}
|
110 |
+
|
111 |
+
const char* name() const {
|
112 |
+
return name_.str();
|
113 |
+
}
|
114 |
+
|
115 |
+
uint64_t threadId() const {
|
116 |
+
return thread_id_;
|
117 |
+
}
|
118 |
+
|
119 |
+
std::vector<std::vector<int64_t>> shapes() const {
|
120 |
+
return shapes_;
|
121 |
+
}
|
122 |
+
|
123 |
+
double cpuElapsedUs(const LegacyEvent& e) const {
|
124 |
+
return static_cast<double>(e.cpu_ns_ - cpu_ns_) / (1000.0);
|
125 |
+
}
|
126 |
+
|
127 |
+
void setCpuUs(int64_t cpu_us) {
|
128 |
+
cpu_ns_ = cpu_us * 1000;
|
129 |
+
}
|
130 |
+
|
131 |
+
double cpuUs() const {
|
132 |
+
return static_cast<double>(cpu_ns_) / (1000.0);
|
133 |
+
}
|
134 |
+
|
135 |
+
double cudaElapsedUs(const LegacyEvent& e) const;
|
136 |
+
|
137 |
+
bool hasCuda() const {
|
138 |
+
return cuda_event != nullptr || (isRemote() && device_ != -1);
|
139 |
+
}
|
140 |
+
|
141 |
+
c10::DeviceIndex device() const {
|
142 |
+
return device_;
|
143 |
+
}
|
144 |
+
|
145 |
+
void updateMemoryStats(int64_t alloc_size, c10::Device device) {
|
146 |
+
if (device.is_cuda() || device.type() == c10::DeviceType::HIP) {
|
147 |
+
cuda_memory_usage_ = alloc_size;
|
148 |
+
} else if (
|
149 |
+
device.is_cpu() || device.type() == c10::DeviceType::MKLDNN ||
|
150 |
+
device.type() == c10::DeviceType::IDEEP) {
|
151 |
+
cpu_memory_usage_ = alloc_size;
|
152 |
+
} else {
|
153 |
+
LOG(WARNING) << "Unsupported memory profiling device: " << device;
|
154 |
+
}
|
155 |
+
}
|
156 |
+
|
157 |
+
int64_t cpuMemoryUsage() const {
|
158 |
+
return cpu_memory_usage_;
|
159 |
+
}
|
160 |
+
|
161 |
+
int64_t cudaMemoryUsage() const {
|
162 |
+
return cuda_memory_usage_;
|
163 |
+
}
|
164 |
+
|
165 |
+
at::RecordFunctionHandle handle() const {
|
166 |
+
return handle_;
|
167 |
+
}
|
168 |
+
|
169 |
+
// Node ID corresponding to this event.
|
170 |
+
int64_t nodeId() const {
|
171 |
+
return node_id_;
|
172 |
+
}
|
173 |
+
|
174 |
+
// Set Node ID on this event.
|
175 |
+
void setNodeId(int64_t node_id) {
|
176 |
+
node_id_ = node_id;
|
177 |
+
}
|
178 |
+
|
179 |
+
void setName(at::StringView newName_) {
|
180 |
+
name_ = std::move(newName_);
|
181 |
+
}
|
182 |
+
|
183 |
+
bool isRemote() const {
|
184 |
+
return is_remote_;
|
185 |
+
}
|
186 |
+
|
187 |
+
void setCudaUs(int64_t cuda_us) {
|
188 |
+
cuda_us_ = cuda_us;
|
189 |
+
}
|
190 |
+
|
191 |
+
void setSequenceNr(int64_t sequence_nr) {
|
192 |
+
sequence_nr_ = sequence_nr;
|
193 |
+
}
|
194 |
+
|
195 |
+
int64_t sequenceNr() const {
|
196 |
+
return sequence_nr_;
|
197 |
+
}
|
198 |
+
|
199 |
+
void setCorrelationId(uint64_t correlation_id) {
|
200 |
+
correlation_id_ = correlation_id;
|
201 |
+
}
|
202 |
+
|
203 |
+
uint64_t correlationId() const {
|
204 |
+
return correlation_id_;
|
205 |
+
}
|
206 |
+
|
207 |
+
const std::vector<std::string>& stack() const {
|
208 |
+
return stack_;
|
209 |
+
}
|
210 |
+
|
211 |
+
void setStack(const std::vector<std::string>& stack) {
|
212 |
+
stack_ = stack;
|
213 |
+
}
|
214 |
+
|
215 |
+
uint64_t fwdThreadId() const {
|
216 |
+
return fwd_thread_id_;
|
217 |
+
}
|
218 |
+
|
219 |
+
void setFwdThreadId(uint64_t fwd_thread_id) {
|
220 |
+
fwd_thread_id_ = fwd_thread_id;
|
221 |
+
}
|
222 |
+
|
223 |
+
uint8_t scope() const {
|
224 |
+
return scope_;
|
225 |
+
}
|
226 |
+
|
227 |
+
void setScope(uint8_t scope) {
|
228 |
+
scope_ = scope;
|
229 |
+
}
|
230 |
+
|
231 |
+
const std::unordered_map<std::string, c10::IValue>& extraArgs() const {
|
232 |
+
return extra_args_;
|
233 |
+
}
|
234 |
+
|
235 |
+
void setExtraArgs(std::unordered_map<std::string, c10::IValue>&& save_args) {
|
236 |
+
extra_args_ = std::move(save_args);
|
237 |
+
}
|
238 |
+
|
239 |
+
uint64_t flops() {
|
240 |
+
return flops_;
|
241 |
+
}
|
242 |
+
|
243 |
+
bool isAsync() {
|
244 |
+
return is_async_;
|
245 |
+
}
|
246 |
+
|
247 |
+
void setFlops(uint64_t flops) {
|
248 |
+
flops_ = flops;
|
249 |
+
}
|
250 |
+
|
251 |
+
private:
|
252 |
+
// signed to allow for negative intervals, initialized for safety.
|
253 |
+
int64_t cpu_ns_ = 0;
|
254 |
+
at::StringView name_;
|
255 |
+
EventKind kind_;
|
256 |
+
uint64_t thread_id_;
|
257 |
+
uint64_t fwd_thread_id_{0};
|
258 |
+
at::RecordFunctionHandle handle_{0};
|
259 |
+
std::vector<std::vector<int64_t>> shapes_;
|
260 |
+
int64_t cpu_memory_usage_ = 0;
|
261 |
+
int64_t cuda_memory_usage_ = 0;
|
262 |
+
c10::DeviceIndex device_ = -1;
|
263 |
+
torch::profiler::impl::ProfilerVoidEventStub cuda_event = nullptr;
|
264 |
+
int64_t node_id_ = 0;
|
265 |
+
bool is_remote_ = false;
|
266 |
+
int64_t cuda_us_ = -1;
|
267 |
+
int64_t sequence_nr_ = -1;
|
268 |
+
bool is_async_ = false;
|
269 |
+
|
270 |
+
std::vector<std::string> stack_;
|
271 |
+
uint8_t scope_{0};
|
272 |
+
uint64_t correlation_id_{0};
|
273 |
+
// Extra arguments for computing op flops
|
274 |
+
std::unordered_map<std::string, c10::IValue> extra_args_;
|
275 |
+
uint64_t flops_ = 0;
|
276 |
+
};
|
277 |
+
|
278 |
+
// a linked-list of fixed sized vectors, to avoid
|
279 |
+
// a std::vector resize from taking a large amount of time inside
|
280 |
+
// a profiling event
|
281 |
+
struct RangeEventList {
|
282 |
+
RangeEventList() {
|
283 |
+
events_.reserve(kReservedCapacity);
|
284 |
+
}
|
285 |
+
|
286 |
+
template <typename... Args>
|
287 |
+
void record(Args&&... args) {
|
288 |
+
std::lock_guard<std::mutex> guard(mutex_);
|
289 |
+
events_.emplace_back(std::forward<Args>(args)...);
|
290 |
+
}
|
291 |
+
|
292 |
+
std::vector<LegacyEvent> consolidate() {
|
293 |
+
std::lock_guard<std::mutex> lock(mutex_);
|
294 |
+
std::vector<LegacyEvent> result;
|
295 |
+
result.insert(
|
296 |
+
result.begin(),
|
297 |
+
std::make_move_iterator(events_.begin()),
|
298 |
+
std::make_move_iterator(events_.end()));
|
299 |
+
events_.erase(events_.begin(), events_.end());
|
300 |
+
return result;
|
301 |
+
}
|
302 |
+
|
303 |
+
size_t size() {
|
304 |
+
std::lock_guard<std::mutex> lock(mutex_);
|
305 |
+
return events_.size();
|
306 |
+
}
|
307 |
+
|
308 |
+
private:
|
309 |
+
// This mutex is used to serialize access when different threads are writing
|
310 |
+
// to the same instance of RangeEventList.
|
311 |
+
std::mutex mutex_;
|
312 |
+
std::vector<LegacyEvent> events_;
|
313 |
+
|
314 |
+
static const size_t kReservedCapacity = 1024;
|
315 |
+
};
|
316 |
+
|
317 |
+
// A struct to control settings of disableProfiler options.
|
318 |
+
struct TORCH_API ProfilerDisableOptions {
|
319 |
+
ProfilerDisableOptions() = default;
|
320 |
+
ProfilerDisableOptions(bool shouldCleanupTLSState, bool shouldConsolidate)
|
321 |
+
: cleanupTLSState(shouldCleanupTLSState),
|
322 |
+
consolidate(shouldConsolidate) {}
|
323 |
+
// Whether we should clean up profiler states that are thread local, such as
|
324 |
+
// ThreadLocalDebugInfo and thread local RecordFunction callbacks.
|
325 |
+
bool cleanupTLSState = true;
|
326 |
+
// Whether we should consolidate all currently recorded profiled events. If
|
327 |
+
// false, will not consolidate and other threads can continue to write to the
|
328 |
+
// event lists.
|
329 |
+
bool consolidate = true;
|
330 |
+
};
|
331 |
+
|
332 |
+
// NOTE: profiler mode is thread local, with automatic propagation
|
333 |
+
// across thread boundary (e.g. at::launch tasks)
|
334 |
+
TORCH_API void enableProfilerLegacy(
|
335 |
+
const torch::profiler::impl::ProfilerConfig&);
|
336 |
+
using thread_event_lists = std::vector<std::vector<LegacyEvent>>;
|
337 |
+
TORCH_API thread_event_lists disableProfilerLegacy(
|
338 |
+
c10::optional<ProfilerDisableOptions> profilerDisableOptions =
|
339 |
+
c10::nullopt);
|
340 |
+
|
341 |
+
// adds profiledEvents to the current thread local recorded events. Each event
|
342 |
+
// will be marked with node ID given by fromNodeId.
|
343 |
+
TORCH_API void addEventList(std::vector<LegacyEvent>&& profiledEvents);
|
344 |
+
// Writes profiled events to a stream.
|
345 |
+
TORCH_API void writeProfilerEventsToStream(
|
346 |
+
std::ostream& out,
|
347 |
+
const std::vector<LegacyEvent*>& events);
|
348 |
+
|
349 |
+
// Usage:
|
350 |
+
// {
|
351 |
+
// RecordProfile guard("filename.trace");
|
352 |
+
// // code you want to profile
|
353 |
+
// }
|
354 |
+
// Then open filename.trace in chrome://tracing
|
355 |
+
struct TORCH_API RecordProfile {
|
356 |
+
RecordProfile(std::ostream& out);
|
357 |
+
RecordProfile(const std::string& filename);
|
358 |
+
|
359 |
+
~RecordProfile();
|
360 |
+
|
361 |
+
private:
|
362 |
+
void init();
|
363 |
+
std::unique_ptr<std::ofstream> file_;
|
364 |
+
std::ostream& out_;
|
365 |
+
void processEvents(const std::vector<LegacyEvent*>& events);
|
366 |
+
};
|
367 |
+
|
368 |
+
// A guard that enables the legacy profiler, taking in an optional callback to
|
369 |
+
// process the results Usage:
|
370 |
+
// {
|
371 |
+
// TLSLegacyProfilerGuard g([](thread_event_lists profilerResults) {
|
372 |
+
// // process profilerResults
|
373 |
+
// });
|
374 |
+
// Code to profile
|
375 |
+
// }
|
376 |
+
struct TORCH_API TLSLegacyProfilerGuard {
|
377 |
+
explicit TLSLegacyProfilerGuard(
|
378 |
+
const torch::profiler::impl::ProfilerConfig& cfg,
|
379 |
+
c10::optional<std::function<void(const thread_event_lists&)>>
|
380 |
+
resultCallback = c10::nullopt,
|
381 |
+
c10::optional<ProfilerDisableOptions> profilerDisableOptions =
|
382 |
+
c10::nullopt)
|
383 |
+
: cb_(std::move(resultCallback)),
|
384 |
+
profilerDisableOptions_(profilerDisableOptions) {
|
385 |
+
enableProfilerLegacy(cfg);
|
386 |
+
}
|
387 |
+
~TLSLegacyProfilerGuard() {
|
388 |
+
thread_event_lists event_lists =
|
389 |
+
disableProfilerLegacy(profilerDisableOptions_);
|
390 |
+
if (cb_) {
|
391 |
+
try {
|
392 |
+
(*cb_)(event_lists);
|
393 |
+
} catch (const std::exception& e) {
|
394 |
+
LOG(ERROR) << "Got error processing profiler events: " << e.what();
|
395 |
+
}
|
396 |
+
}
|
397 |
+
}
|
398 |
+
|
399 |
+
private:
|
400 |
+
c10::optional<std::function<void(const thread_event_lists&)>> cb_;
|
401 |
+
// NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members)
|
402 |
+
const c10::optional<ProfilerDisableOptions> profilerDisableOptions_;
|
403 |
+
};
|
404 |
+
|
405 |
+
} // namespace profiler
|
406 |
+
} // namespace torch::autograd
|
llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/python_anomaly_mode.h
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <pybind11/pybind11.h>
|
4 |
+
#include <torch/csrc/autograd/anomaly_mode.h>
|
5 |
+
#include <torch/csrc/python_headers.h>
|
6 |
+
#include <torch/csrc/utils/pybind.h>
|
7 |
+
|
8 |
+
namespace torch {
|
9 |
+
namespace autograd {
|
10 |
+
|
11 |
+
struct PyAnomalyMetadata : public AnomalyMetadata {
|
12 |
+
static constexpr const char* ANOMALY_TRACE_KEY = "traceback_";
|
13 |
+
static constexpr const char* ANOMALY_PARENT_KEY = "parent_";
|
14 |
+
|
15 |
+
PyAnomalyMetadata() {
|
16 |
+
pybind11::gil_scoped_acquire gil;
|
17 |
+
// NOLINTNEXTLINE(cppcoreguidelines-prefer-member-initializer)
|
18 |
+
dict_ = PyDict_New();
|
19 |
+
}
|
20 |
+
~PyAnomalyMetadata() override {
|
21 |
+
// If python is already dead, leak the wrapped python objects
|
22 |
+
if (Py_IsInitialized()) {
|
23 |
+
pybind11::gil_scoped_acquire gil;
|
24 |
+
Py_DECREF(dict_);
|
25 |
+
}
|
26 |
+
}
|
27 |
+
void store_stack() override;
|
28 |
+
void print_stack(const std::string& current_node_name) override;
|
29 |
+
void assign_parent(const std::shared_ptr<Node>& parent_node) override;
|
30 |
+
|
31 |
+
PyObject* dict() {
|
32 |
+
return dict_;
|
33 |
+
}
|
34 |
+
|
35 |
+
private:
|
36 |
+
PyObject* dict_{nullptr};
|
37 |
+
};
|
38 |
+
void _print_stack(
|
39 |
+
PyObject* trace_stack,
|
40 |
+
const std::string& current_node_name,
|
41 |
+
bool is_parent);
|
42 |
+
|
43 |
+
} // namespace autograd
|
44 |
+
} // namespace torch
|
llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/python_autograd.h
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#ifndef THP_AUTOGRAD_H
|
2 |
+
#define THP_AUTOGRAD_H
|
3 |
+
|
4 |
+
PyObject* THPAutograd_initExtension(PyObject* _unused, PyObject* unused);
|
5 |
+
void THPAutograd_initFunctions();
|
6 |
+
|
7 |
+
namespace torch::autograd {
|
8 |
+
|
9 |
+
PyMethodDef* python_functions();
|
10 |
+
|
11 |
+
}
|
12 |
+
|
13 |
+
#include <torch/csrc/autograd/python_engine.h>
|
14 |
+
#include <torch/csrc/autograd/python_function.h>
|
15 |
+
#include <torch/csrc/autograd/python_variable.h>
|
16 |
+
|
17 |
+
#endif
|
llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/python_enum_tag.h
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/python_headers.h>
|
4 |
+
|
5 |
+
namespace torch::autograd {
|
6 |
+
void initEnumTag(PyObject* module);
|
7 |
+
}
|
llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/python_legacy_variable.h
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// Instantiates torch._C._LegacyVariableBase, which defines the Python
|
4 |
+
// constructor (__new__) for torch.autograd.Variable.
|
5 |
+
|
6 |
+
#include <torch/csrc/python_headers.h>
|
7 |
+
|
8 |
+
namespace torch::autograd {
|
9 |
+
|
10 |
+
void init_legacy_variable(PyObject* module);
|
11 |
+
|
12 |
+
}
|
llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/python_nested_functions.h
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
namespace torch::autograd {
|
4 |
+
|
5 |
+
PyMethodDef* get_nested_functions_manual();
|
6 |
+
|
7 |
+
void initNestedFunctions(PyObject* module);
|
8 |
+
|
9 |
+
} // namespace torch::autograd
|
llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/python_nn_functions.h
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
namespace torch::autograd {
|
4 |
+
|
5 |
+
void initNNFunctions(PyObject* module);
|
6 |
+
|
7 |
+
}
|
llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/python_sparse_functions.h
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
namespace torch::autograd {
|
4 |
+
|
5 |
+
void initSparseFunctions(PyObject* module);
|
6 |
+
|
7 |
+
}
|
llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/python_variable.h
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/core/Tensor.h>
|
4 |
+
#include <torch/csrc/python_headers.h>
|
5 |
+
#include <torch/csrc/utils/pythoncapi_compat.h>
|
6 |
+
|
7 |
+
#include <ATen/core/function_schema.h>
|
8 |
+
#include <pybind11/pybind11.h>
|
9 |
+
#include <torch/csrc/Exceptions.h>
|
10 |
+
#include <torch/csrc/Export.h>
|
11 |
+
#include <torch/csrc/autograd/variable.h>
|
12 |
+
#include <torch/csrc/utils/pybind.h>
|
13 |
+
|
14 |
+
namespace py = pybind11;
|
15 |
+
|
16 |
+
// Python object that backs torch.autograd.Variable
|
17 |
+
struct THPVariable {
|
18 |
+
PyObject_HEAD;
|
19 |
+
// Payload
|
20 |
+
c10::MaybeOwned<at::Tensor> cdata;
|
21 |
+
// Hooks to be run on backwards pass (corresponds to Python attr
|
22 |
+
// '_backwards_hooks', set by 'register_hook')
|
23 |
+
PyObject* backward_hooks = nullptr;
|
24 |
+
// Hooks to be run in the backwards pass after accumulate grad,
|
25 |
+
// i.e., after the .grad has been set (corresponds to Python attr
|
26 |
+
// '_post_accumulate_grad_hooks', set by 'register_post_accumulate_grad_hook')
|
27 |
+
PyObject* post_accumulate_grad_hooks = nullptr;
|
28 |
+
};
|
29 |
+
|
30 |
+
TORCH_PYTHON_API void registerPythonTensorClass(
|
31 |
+
const std::string& device,
|
32 |
+
PyObject* python_tensor_class);
|
33 |
+
|
34 |
+
TORCH_PYTHON_API void activateCUDATrace();
|
35 |
+
|
36 |
+
TORCH_PYTHON_API extern PyObject* THPVariableClass;
|
37 |
+
TORCH_PYTHON_API extern PyObject* ParameterClass;
|
38 |
+
|
39 |
+
bool THPVariable_initModule(PyObject* module);
|
40 |
+
TORCH_PYTHON_API PyObject* THPVariable_Wrap(at::TensorBase var);
|
41 |
+
|
42 |
+
static inline bool THPVariable_CheckTypeExact(PyTypeObject* tp) {
|
43 |
+
// Check that a python object is a `Tensor`, but not a `Tensor` subclass.
|
44 |
+
// (A subclass could have different semantics.) The one exception is
|
45 |
+
// Parameter, which is used for Python bookkeeping but is equivalent to
|
46 |
+
// Tensor as far as C++ is concerned.
|
47 |
+
return (
|
48 |
+
tp == (PyTypeObject*)THPVariableClass ||
|
49 |
+
tp == (PyTypeObject*)ParameterClass);
|
50 |
+
}
|
51 |
+
|
52 |
+
static inline bool THPVariable_CheckExact(PyObject* obj) {
|
53 |
+
return THPVariable_CheckTypeExact(Py_TYPE(obj));
|
54 |
+
}
|
55 |
+
|
56 |
+
inline bool THPVariable_Check(PyObject* obj) {
|
57 |
+
if (!THPVariableClass)
|
58 |
+
return false;
|
59 |
+
|
60 |
+
// Fast path
|
61 |
+
if (THPVariable_CheckExact(obj)) {
|
62 |
+
return true;
|
63 |
+
}
|
64 |
+
|
65 |
+
const auto result = PyObject_IsInstance(obj, THPVariableClass);
|
66 |
+
if (result == -1)
|
67 |
+
throw python_error();
|
68 |
+
return result;
|
69 |
+
}
|
70 |
+
|
71 |
+
inline const at::Tensor& THPVariable_Unpack(THPVariable* var) {
|
72 |
+
return *var->cdata;
|
73 |
+
}
|
74 |
+
|
75 |
+
inline const at::Tensor& THPVariable_Unpack(PyObject* obj) {
|
76 |
+
return THPVariable_Unpack(reinterpret_cast<THPVariable*>(obj));
|
77 |
+
}
|
78 |
+
|
79 |
+
std::pair<py::object, py::dict> parseIValuesToPyArgsKwargs(
|
80 |
+
const c10::OperatorHandle& op,
|
81 |
+
const std::vector<c10::IValue>& arguments);
|
82 |
+
|
83 |
+
void pushPyOutToStack(
|
84 |
+
const c10::OperatorHandle& op,
|
85 |
+
torch::jit::Stack* stack,
|
86 |
+
py::object out,
|
87 |
+
const char* msg);
|
88 |
+
|
89 |
+
inline PyObject* THPVariable_WrapList(
|
90 |
+
const torch::autograd::variable_list& inputs) {
|
91 |
+
PyObject* pyinput = PyList_New(static_cast<Py_ssize_t>(inputs.size()));
|
92 |
+
for (const auto i : c10::irange(inputs.size())) {
|
93 |
+
PyList_SET_ITEM(pyinput, i, THPVariable_Wrap(inputs[i]));
|
94 |
+
}
|
95 |
+
return pyinput;
|
96 |
+
}
|
97 |
+
|
98 |
+
inline torch::autograd::variable_list THPVariable_UnpackList(
|
99 |
+
PyObject* pyresult) {
|
100 |
+
TORCH_CHECK(PyList_CheckExact(pyresult));
|
101 |
+
auto result_len = PyList_GET_SIZE(pyresult);
|
102 |
+
torch::autograd::variable_list result;
|
103 |
+
result.reserve(result_len);
|
104 |
+
for (const auto i : c10::irange(result_len)) {
|
105 |
+
PyObject* item = PyList_GET_ITEM(pyresult, i);
|
106 |
+
if (!Py_IsNone(item)) {
|
107 |
+
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(THPVariable_Check(item));
|
108 |
+
result.emplace_back(THPVariable_Unpack(item));
|
109 |
+
} else {
|
110 |
+
result.emplace_back();
|
111 |
+
}
|
112 |
+
}
|
113 |
+
return result;
|
114 |
+
}
|
llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/python_variable_indexing.h
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <c10/core/SymInt.h>
|
4 |
+
#include <torch/csrc/autograd/python_variable.h>
|
5 |
+
#include <torch/csrc/python_headers.h>
|
6 |
+
#include <torch/csrc/utils/pybind.h>
|
7 |
+
#include <torch/csrc/utils/python_symnode.h>
|
8 |
+
|
9 |
+
namespace torch::autograd {
|
10 |
+
|
11 |
+
struct UnpackedSlice {
|
12 |
+
c10::SymInt start;
|
13 |
+
c10::SymInt stop;
|
14 |
+
c10::SymInt step;
|
15 |
+
};
|
16 |
+
|
17 |
+
// This mirrors Cpython's PySlice_Unpack method
|
18 |
+
static inline UnpackedSlice __PySlice_Unpack(PyObject* _r) {
|
19 |
+
PySliceObject* r = (PySliceObject*)_r;
|
20 |
+
/* this is harder to get right than you might think */
|
21 |
+
|
22 |
+
c10::SymInt start_sym, stop_sym, step_sym;
|
23 |
+
|
24 |
+
auto clip_val = [](Py_ssize_t val) {
|
25 |
+
if (val < c10::SymInt::min_representable_int()) {
|
26 |
+
auto r = PyErr_WarnEx(
|
27 |
+
PyExc_UserWarning,
|
28 |
+
"Truncating the start/stop/step "
|
29 |
+
"of slice. This is likely because of "
|
30 |
+
"saved old models when the start/stop/step were larger.",
|
31 |
+
1);
|
32 |
+
if (r != 0) {
|
33 |
+
throw python_error();
|
34 |
+
}
|
35 |
+
return (Py_ssize_t)(c10::SymInt::min_representable_int());
|
36 |
+
}
|
37 |
+
return val;
|
38 |
+
};
|
39 |
+
|
40 |
+
if (r->step == Py_None) {
|
41 |
+
step_sym = c10::SymInt(1);
|
42 |
+
} else {
|
43 |
+
if (torch::is_symint(r->step)) {
|
44 |
+
auto step_sym = py::handle(r->step).cast<c10::SymInt>();
|
45 |
+
} else {
|
46 |
+
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
|
47 |
+
Py_ssize_t step;
|
48 |
+
if (!_PyEval_SliceIndex(r->step, &step)) {
|
49 |
+
throw python_error();
|
50 |
+
}
|
51 |
+
if (step == 0) {
|
52 |
+
PyErr_SetString(PyExc_ValueError, "slice step cannot be zero");
|
53 |
+
}
|
54 |
+
|
55 |
+
step = clip_val(step);
|
56 |
+
step_sym = c10::SymInt(step);
|
57 |
+
}
|
58 |
+
}
|
59 |
+
|
60 |
+
if (torch::is_symint(r->start)) {
|
61 |
+
start_sym = py::handle(r->start).cast<c10::SymInt>();
|
62 |
+
} else if (r->start == Py_None) {
|
63 |
+
start_sym = c10::SymInt(step_sym < 0 ? PY_SSIZE_T_MAX : 0);
|
64 |
+
} else {
|
65 |
+
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
|
66 |
+
Py_ssize_t start;
|
67 |
+
if (!_PyEval_SliceIndex(r->start, &start)) {
|
68 |
+
throw python_error();
|
69 |
+
}
|
70 |
+
start = clip_val(start);
|
71 |
+
start_sym = c10::SymInt(start);
|
72 |
+
}
|
73 |
+
|
74 |
+
if (torch::is_symint(r->stop)) {
|
75 |
+
stop_sym = py::handle(r->stop).cast<c10::SymInt>();
|
76 |
+
} else if (r->stop == Py_None) {
|
77 |
+
stop_sym = c10::SymInt(
|
78 |
+
step_sym < 0 ? c10::SymInt::min_representable_int() : PY_SSIZE_T_MAX);
|
79 |
+
} else {
|
80 |
+
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
|
81 |
+
Py_ssize_t stop;
|
82 |
+
if (!_PyEval_SliceIndex(r->stop, &stop)) {
|
83 |
+
throw python_error();
|
84 |
+
}
|
85 |
+
stop = clip_val(stop);
|
86 |
+
stop_sym = c10::SymInt(stop);
|
87 |
+
}
|
88 |
+
|
89 |
+
return UnpackedSlice{
|
90 |
+
std::move(start_sym), std::move(stop_sym), std::move(step_sym)};
|
91 |
+
}
|
92 |
+
|
93 |
+
Py_ssize_t THPVariable_length(PyObject* self);
|
94 |
+
PyObject* THPVariable_getitem(PyObject* self, PyObject* index);
|
95 |
+
int THPVariable_setitem(PyObject* self, PyObject* index, PyObject* value);
|
96 |
+
|
97 |
+
Variable valueToTensor(
|
98 |
+
c10::TensorOptions options,
|
99 |
+
PyObject* value,
|
100 |
+
const at::Device& device);
|
101 |
+
|
102 |
+
} // namespace torch::autograd
|
llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/saved_variable_hooks.h
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/core/Tensor.h>
|
4 |
+
|
5 |
+
namespace torch::autograd {
|
6 |
+
|
7 |
+
struct TORCH_API SavedVariableHooks {
|
8 |
+
virtual void call_pack_hook(const at::Tensor& tensor) = 0;
|
9 |
+
virtual at::Tensor call_unpack_hook() = 0;
|
10 |
+
virtual ~SavedVariableHooks() = default;
|
11 |
+
};
|
12 |
+
|
13 |
+
} // namespace torch::autograd
|
llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/utils/error_messages.h
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <sstream>
|
4 |
+
|
5 |
+
namespace torch {
|
6 |
+
namespace autograd {
|
7 |
+
namespace utils {
|
8 |
+
|
9 |
+
inline std::string requires_grad_leaf_error(bool requires_grad) {
|
10 |
+
std::ostringstream oss;
|
11 |
+
oss << "you can only change requires_grad flags of leaf variables.";
|
12 |
+
if (requires_grad == false) {
|
13 |
+
oss << " If you want to use a computed variable in a subgraph "
|
14 |
+
"that doesn't require differentiation use "
|
15 |
+
"var_no_grad = var.detach().";
|
16 |
+
}
|
17 |
+
return oss.str();
|
18 |
+
}
|
19 |
+
|
20 |
+
} // namespace utils
|
21 |
+
} // namespace autograd
|
22 |
+
} // namespace torch
|
llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/utils/grad_layout_contract.h
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/Tensor.h>
|
4 |
+
|
5 |
+
namespace torch {
|
6 |
+
namespace autograd {
|
7 |
+
namespace utils {
|
8 |
+
|
9 |
+
// Helper functions to enforce the "Gradient Layout Contract" described in
|
10 |
+
// torch/csrc/autograd/functions/accumulate_grad.h.
|
11 |
+
|
12 |
+
// Checks if grad obeys the contract with variable.
|
13 |
+
inline bool obeys_layout_contract(
|
14 |
+
const at::Tensor& grad,
|
15 |
+
const at::Tensor& variable) {
|
16 |
+
TORCH_INTERNAL_ASSERT(!grad.is_sparse());
|
17 |
+
TORCH_INTERNAL_ASSERT(!grad.is_sparse_csr());
|
18 |
+
TORCH_INTERNAL_ASSERT(!variable.is_sparse_csr());
|
19 |
+
|
20 |
+
// NOLINTNEXTLINE(bugprone-branch-clone)
|
21 |
+
if (variable.is_nested()) {
|
22 |
+
// TODO: Nested Tensor does not have an implementation of detach. The
|
23 |
+
// current implementation of nested tensor likely does obey the gradient
|
24 |
+
// contract and should return true, but this would likely change in the
|
25 |
+
// future
|
26 |
+
return false;
|
27 |
+
} else if (variable.is_sparse()) {
|
28 |
+
// Gradient Layout Contract is not applicable for sparse layouts
|
29 |
+
return false;
|
30 |
+
} else if (variable.is_non_overlapping_and_dense()) {
|
31 |
+
// Only look at stride for dimensions that are not of size 1.
|
32 |
+
const auto& grad_sizes = grad.sym_sizes();
|
33 |
+
const auto& grad_strides = grad.sym_strides();
|
34 |
+
const auto& variable_strides = variable.sym_strides();
|
35 |
+
for (const auto idx : c10::irange(grad_sizes.size())) {
|
36 |
+
if (grad_sizes[idx] != 1) {
|
37 |
+
if (grad_strides[idx] != variable_strides[idx]) {
|
38 |
+
return false;
|
39 |
+
}
|
40 |
+
} else {
|
41 |
+
// This should not be needed but we don't check if a Tensor has views
|
42 |
+
// before stashing it. And 0-strided Tensors of size 1 are actually
|
43 |
+
// views for ops like cat.
|
44 |
+
// TODO: Actually detect views in the accumulateGrad function so that
|
45 |
+
// this Tensor is not considered at all.
|
46 |
+
if (grad_strides[idx] == 0) {
|
47 |
+
return false;
|
48 |
+
}
|
49 |
+
}
|
50 |
+
}
|
51 |
+
return true;
|
52 |
+
} else {
|
53 |
+
return grad.is_contiguous(at::MemoryFormat::Contiguous);
|
54 |
+
}
|
55 |
+
}
|
56 |
+
|
57 |
+
// Creates a clone of new_grad that obeys the contract with variable.
|
58 |
+
// The clone should attach to new_grad's history if GradMode::is_enabled().
|
59 |
+
inline at::Tensor clone_obey_contract(
|
60 |
+
const at::Tensor& new_grad,
|
61 |
+
const at::Tensor& variable) {
|
62 |
+
if (variable.is_non_overlapping_and_dense()) {
|
63 |
+
// (1)
|
64 |
+
// Does this dicey-looking sequence attach the result to new_grad's
|
65 |
+
// history if GradMode::is_enabled()? Yes, and @alband says it should.
|
66 |
+
return std::move(new_grad
|
67 |
+
.new_empty_strided_symint(
|
68 |
+
variable.sym_sizes(),
|
69 |
+
variable.sym_strides(),
|
70 |
+
variable.options().memory_format(c10::nullopt))
|
71 |
+
.copy_(new_grad));
|
72 |
+
} else {
|
73 |
+
// (2)
|
74 |
+
return new_grad.clone(at::MemoryFormat::Contiguous);
|
75 |
+
}
|
76 |
+
}
|
77 |
+
|
78 |
+
} // namespace utils
|
79 |
+
} // namespace autograd
|
80 |
+
} // namespace torch
|
llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/utils/lambda_post_hook.h
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/autograd/function_hook.h>
|
4 |
+
|
5 |
+
namespace torch {
|
6 |
+
namespace autograd {
|
7 |
+
namespace utils {
|
8 |
+
|
9 |
+
// Turns lambda into a torch::autograd::FunctionPostHook.
|
10 |
+
class LambdaPostHook : public torch::autograd::FunctionPostHook {
|
11 |
+
using variable_list = std::vector<torch::autograd::Variable>;
|
12 |
+
using fn_type =
|
13 |
+
std::function<variable_list(const variable_list&, const variable_list&)>;
|
14 |
+
using compiled_fn_type = std::function<void(CompiledNodeArgs&)>;
|
15 |
+
|
16 |
+
public:
|
17 |
+
// The lambda function takes as arguments the outputs and inputs of the
|
18 |
+
// autograd function and can modify the outputs of the autograd function by
|
19 |
+
// returning a new output if needed.
|
20 |
+
/* implicit */ LambdaPostHook(fn_type fn) : fn_(std::move(fn)) {}
|
21 |
+
|
22 |
+
LambdaPostHook(fn_type fn, compiled_fn_type compiled_fn)
|
23 |
+
: fn_(std::move(fn)), compiled_fn_(std::move(compiled_fn)) {}
|
24 |
+
|
25 |
+
variable_list operator()(
|
26 |
+
const variable_list& outputs,
|
27 |
+
const variable_list& inputs) override {
|
28 |
+
return fn_(outputs, inputs);
|
29 |
+
}
|
30 |
+
|
31 |
+
void compiled_args(CompiledNodeArgs& args) override {}
|
32 |
+
|
33 |
+
protected:
|
34 |
+
std::function<variable_list(const variable_list&, const variable_list&)> fn_;
|
35 |
+
compiled_fn_type compiled_fn_;
|
36 |
+
};
|
37 |
+
|
38 |
+
} // namespace utils
|
39 |
+
} // namespace autograd
|
40 |
+
} // namespace torch
|
llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/utils/python_arg_parsing.h
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/core/Tensor.h>
|
4 |
+
#include <torch/csrc/python_headers.h>
|
5 |
+
|
6 |
+
#include <torch/csrc/utils/python_arg_parser.h>
|
7 |
+
|
8 |
+
namespace torch {
|
9 |
+
namespace autograd {
|
10 |
+
namespace utils {
|
11 |
+
|
12 |
+
// The parameter allow_copy is to accept copy for Tensor.to (and by proxy
|
13 |
+
// PackedSequences.to) but not nn.Module.to.
|
14 |
+
inline std::tuple<
|
15 |
+
c10::optional<at::Device>,
|
16 |
+
c10::optional<at::ScalarType>,
|
17 |
+
bool,
|
18 |
+
bool,
|
19 |
+
c10::optional<at::MemoryFormat>>
|
20 |
+
parse_to_conversion(PythonArgs& r, bool allow_copy) {
|
21 |
+
if (r.idx == 0) {
|
22 |
+
if (!allow_copy && !r.isNone(3))
|
23 |
+
throw std::runtime_error(".to() does not accept copy argument");
|
24 |
+
return std::make_tuple(
|
25 |
+
r.deviceOptional(0),
|
26 |
+
r.scalartypeOptional(1),
|
27 |
+
r.toBool(2),
|
28 |
+
r.toBool(3),
|
29 |
+
r.memoryformatOptional(4));
|
30 |
+
} else if (r.idx == 1) {
|
31 |
+
if (!allow_copy && !r.isNone(2))
|
32 |
+
throw std::runtime_error(".to() does not accept copy argument");
|
33 |
+
return std::make_tuple(
|
34 |
+
c10::nullopt,
|
35 |
+
r.scalartype(0),
|
36 |
+
r.toBool(1),
|
37 |
+
r.toBool(2),
|
38 |
+
r.memoryformatOptional(3));
|
39 |
+
} else {
|
40 |
+
auto tensor = r.tensor(0);
|
41 |
+
if (!allow_copy && !r.isNone(2))
|
42 |
+
throw std::runtime_error(".to() does not accept copy argument");
|
43 |
+
return std::make_tuple(
|
44 |
+
tensor.device(),
|
45 |
+
tensor.scalar_type(),
|
46 |
+
r.toBool(1),
|
47 |
+
r.toBool(2),
|
48 |
+
r.memoryformatOptional(3));
|
49 |
+
}
|
50 |
+
}
|
51 |
+
} // namespace utils
|
52 |
+
} // namespace autograd
|
53 |
+
} // namespace torch
|