applied-ai-018 commited on
Commit
51b4b82
·
verified ·
1 Parent(s): 175ee62

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. llmeval-env/lib/python3.10/site-packages/nltk-3.8.1.dist-info/AUTHORS.md +313 -0
  2. llmeval-env/lib/python3.10/site-packages/nltk-3.8.1.dist-info/INSTALLER +1 -0
  3. llmeval-env/lib/python3.10/site-packages/nltk-3.8.1.dist-info/LICENSE.txt +202 -0
  4. llmeval-env/lib/python3.10/site-packages/nltk-3.8.1.dist-info/METADATA +67 -0
  5. llmeval-env/lib/python3.10/site-packages/nltk-3.8.1.dist-info/README.md +50 -0
  6. llmeval-env/lib/python3.10/site-packages/nltk-3.8.1.dist-info/RECORD +782 -0
  7. llmeval-env/lib/python3.10/site-packages/nltk-3.8.1.dist-info/WHEEL +5 -0
  8. llmeval-env/lib/python3.10/site-packages/nltk-3.8.1.dist-info/entry_points.txt +3 -0
  9. llmeval-env/lib/python3.10/site-packages/nltk-3.8.1.dist-info/top_level.txt +1 -0
  10. llmeval-env/lib/python3.10/site-packages/peft/tuners/adaption_prompt/__init__.py +19 -0
  11. llmeval-env/lib/python3.10/site-packages/peft/tuners/adaption_prompt/__pycache__/__init__.cpython-310.pyc +0 -0
  12. llmeval-env/lib/python3.10/site-packages/peft/tuners/adaption_prompt/__pycache__/config.cpython-310.pyc +0 -0
  13. llmeval-env/lib/python3.10/site-packages/peft/tuners/adaption_prompt/__pycache__/layer.cpython-310.pyc +0 -0
  14. llmeval-env/lib/python3.10/site-packages/peft/tuners/adaption_prompt/__pycache__/model.cpython-310.pyc +0 -0
  15. llmeval-env/lib/python3.10/site-packages/peft/tuners/adaption_prompt/__pycache__/utils.cpython-310.pyc +0 -0
  16. llmeval-env/lib/python3.10/site-packages/peft/tuners/adaption_prompt/config.py +80 -0
  17. llmeval-env/lib/python3.10/site-packages/peft/tuners/adaption_prompt/layer.py +128 -0
  18. llmeval-env/lib/python3.10/site-packages/peft/tuners/adaption_prompt/model.py +161 -0
  19. llmeval-env/lib/python3.10/site-packages/peft/tuners/adaption_prompt/utils.py +121 -0
  20. llmeval-env/lib/python3.10/site-packages/peft/tuners/lokr/__init__.py +20 -0
  21. llmeval-env/lib/python3.10/site-packages/peft/tuners/lokr/__pycache__/__init__.cpython-310.pyc +0 -0
  22. llmeval-env/lib/python3.10/site-packages/peft/tuners/lokr/__pycache__/config.cpython-310.pyc +0 -0
  23. llmeval-env/lib/python3.10/site-packages/peft/tuners/lokr/__pycache__/layer.cpython-310.pyc +0 -0
  24. llmeval-env/lib/python3.10/site-packages/peft/tuners/lokr/__pycache__/model.cpython-310.pyc +0 -0
  25. llmeval-env/lib/python3.10/site-packages/peft/tuners/lokr/config.py +127 -0
  26. llmeval-env/lib/python3.10/site-packages/peft/tuners/lokr/layer.py +409 -0
  27. llmeval-env/lib/python3.10/site-packages/peft/tuners/lokr/model.py +115 -0
  28. llmeval-env/lib/python3.10/site-packages/peft/tuners/lora/__init__.py +37 -0
  29. llmeval-env/lib/python3.10/site-packages/peft/tuners/lora/__pycache__/__init__.cpython-310.pyc +0 -0
  30. llmeval-env/lib/python3.10/site-packages/peft/tuners/lora/__pycache__/aqlm.cpython-310.pyc +0 -0
  31. llmeval-env/lib/python3.10/site-packages/peft/tuners/lora/__pycache__/awq.cpython-310.pyc +0 -0
  32. llmeval-env/lib/python3.10/site-packages/peft/tuners/lora/__pycache__/bnb.cpython-310.pyc +0 -0
  33. llmeval-env/lib/python3.10/site-packages/peft/tuners/lora/__pycache__/gptq.cpython-310.pyc +0 -0
  34. llmeval-env/lib/python3.10/site-packages/peft/tuners/lora/__pycache__/layer.cpython-310.pyc +0 -0
  35. llmeval-env/lib/python3.10/site-packages/peft/tuners/lora/__pycache__/model.cpython-310.pyc +0 -0
  36. llmeval-env/lib/python3.10/site-packages/peft/tuners/lora/__pycache__/tp_layer.cpython-310.pyc +0 -0
  37. llmeval-env/lib/python3.10/site-packages/peft/tuners/lora/gptq.py +114 -0
  38. llmeval-env/lib/python3.10/site-packages/peft/tuners/p_tuning/__init__.py +19 -0
  39. llmeval-env/lib/python3.10/site-packages/peft/tuners/p_tuning/__pycache__/__init__.cpython-310.pyc +0 -0
  40. llmeval-env/lib/python3.10/site-packages/peft/tuners/p_tuning/__pycache__/config.cpython-310.pyc +0 -0
  41. llmeval-env/lib/python3.10/site-packages/peft/tuners/p_tuning/__pycache__/model.cpython-310.pyc +0 -0
  42. llmeval-env/lib/python3.10/site-packages/peft/tuners/p_tuning/config.py +59 -0
  43. llmeval-env/lib/python3.10/site-packages/peft/tuners/p_tuning/model.py +130 -0
  44. llmeval-env/lib/python3.10/site-packages/peft/tuners/poly/__init__.py +20 -0
  45. llmeval-env/lib/python3.10/site-packages/peft/tuners/poly/config.py +89 -0
  46. llmeval-env/lib/python3.10/site-packages/peft/tuners/poly/layer.py +171 -0
  47. llmeval-env/lib/python3.10/site-packages/peft/tuners/poly/router.py +83 -0
  48. llmeval-env/lib/python3.10/site-packages/peft/tuners/prompt_tuning/__pycache__/__init__.cpython-310.pyc +0 -0
  49. llmeval-env/lib/python3.10/site-packages/peft/tuners/prompt_tuning/__pycache__/config.cpython-310.pyc +0 -0
  50. llmeval-env/lib/python3.10/site-packages/peft/tuners/prompt_tuning/__pycache__/model.cpython-310.pyc +0 -0
llmeval-env/lib/python3.10/site-packages/nltk-3.8.1.dist-info/AUTHORS.md ADDED
@@ -0,0 +1,313 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Natural Language Toolkit (NLTK) Authors
2
+
3
+ ## Original Authors
4
+
5
+ - Steven Bird <[email protected]>
6
+ - Edward Loper <[email protected]>
7
+ - Ewan Klein <[email protected]>
8
+
9
+ ## Contributors
10
+
11
+ - Tom Aarsen
12
+ - Rami Al-Rfou'
13
+ - Mark Amery
14
+ - Greg Aumann
15
+ - Ivan Barria
16
+ - Ingolf Becker
17
+ - Yonatan Becker
18
+ - Paul Bedaride
19
+ - Steven Bethard
20
+ - Robert Berwick
21
+ - Dan Blanchard
22
+ - Nathan Bodenstab
23
+ - Alexander Böhm
24
+ - Francis Bond
25
+ - Paul Bone
26
+ - Jordan Boyd-Graber
27
+ - Daniel Blanchard
28
+ - Phil Blunsom
29
+ - Lars Buitinck
30
+ - Cristian Capdevila
31
+ - Steve Cassidy
32
+ - Chen-Fu Chiang
33
+ - Dmitry Chichkov
34
+ - Jinyoung Choi
35
+ - Andrew Clausen
36
+ - Lucas Champollion
37
+ - Graham Christensen
38
+ - Trevor Cohn
39
+ - David Coles
40
+ - Tom Conroy <https://github.com/tconroy>
41
+ - Claude Coulombe
42
+ - Lucas Cooper
43
+ - Robin Cooper
44
+ - Chris Crowner
45
+ - James Curran
46
+ - Arthur Darcet
47
+ - Dariel Dato-on
48
+ - Selina Dennis
49
+ - Leon Derczynski
50
+ - Alexis Dimitriadis
51
+ - Nikhil Dinesh
52
+ - Liang Dong
53
+ - David Doukhan
54
+ - Rebecca Dridan
55
+ - Pablo Duboue
56
+ - Long Duong
57
+ - Christian Federmann
58
+ - Campion Fellin
59
+ - Michelle Fullwood
60
+ - Dan Garrette
61
+ - Maciej Gawinecki
62
+ - Jean Mark Gawron
63
+ - Sumukh Ghodke
64
+ - Yoav Goldberg
65
+ - Michael Wayne Goodman
66
+ - Dougal Graham
67
+ - Brent Gray
68
+ - Simon Greenhill
69
+ - Clark Grubb
70
+ - Eduardo Pereira Habkost
71
+ - Masato Hagiwara
72
+ - Lauri Hallila
73
+ - Michael Hansen
74
+ - Yurie Hara
75
+ - Will Hardy
76
+ - Tyler Hartley
77
+ - Peter Hawkins
78
+ - Saimadhav Heblikar
79
+ - Fredrik Hedman
80
+ - Helder
81
+ - Michael Heilman
82
+ - Ofer Helman
83
+ - Christopher Hench
84
+ - Bruce Hill
85
+ - Amy Holland
86
+ - Kristy Hollingshead
87
+ - Marcus Huderle
88
+ - Baden Hughes
89
+ - Nancy Ide
90
+ - Rebecca Ingram
91
+ - Edward Ivanovic
92
+ - Thomas Jakobsen
93
+ - Nick Johnson
94
+ - Eric Kafe
95
+ - Piotr Kasprzyk
96
+ - Angelos Katharopoulos
97
+ - Sudharshan Kaushik
98
+ - Chris Koenig
99
+ - Mikhail Korobov
100
+ - Denis Krusko
101
+ - Ilia Kurenkov
102
+ - Stefano Lattarini
103
+ - Pierre-François Laquerre
104
+ - Stefano Lattarini
105
+ - Haejoong Lee
106
+ - Jackson Lee
107
+ - Max Leonov
108
+ - Chris Liechti
109
+ - Hyuckin David Lim
110
+ - Tom Lippincott
111
+ - Peter Ljunglöf
112
+ - Alex Louden
113
+ - Joseph Lynch
114
+ - Nitin Madnani
115
+ - Felipe Madrigal
116
+ - Bjørn Mæland
117
+ - Dean Malmgren
118
+ - Christopher Maloof
119
+ - Rob Malouf
120
+ - Iker Manterola
121
+ - Carl de Marcken
122
+ - Mitch Marcus
123
+ - Torsten Marek
124
+ - Robert Marshall
125
+ - Marius Mather
126
+ - Duncan McGreggor
127
+ - David McClosky
128
+ - Xinfan Meng
129
+ - Dmitrijs Milajevs
130
+ - Margaret Mitchell
131
+ - Tomonori Nagano
132
+ - Jason Narad
133
+ - Shari A’aidil Nasruddin
134
+ - Lance Nathan
135
+ - Morten Neergaard
136
+ - David Nemeskey
137
+ - Eric Nichols
138
+ - Joel Nothman
139
+ - Alireza Nourian
140
+ - Alexander Oleynikov
141
+ - Pierpaolo Pantone
142
+ - Ted Pedersen
143
+ - Jacob Perkins
144
+ - Alberto Planas
145
+ - Ondrej Platek
146
+ - Alessandro Presta
147
+ - Qi Liu
148
+ - Martin Thorsen Ranang
149
+ - Michael Recachinas
150
+ - Brandon Rhodes
151
+ - Joshua Ritterman
152
+ - Will Roberts
153
+ - Stuart Robinson
154
+ - Carlos Rodriguez
155
+ - Lorenzo Rubio
156
+ - Alex Rudnick
157
+ - Jussi Salmela
158
+ - Geoffrey Sampson
159
+ - Kepa Sarasola
160
+ - Kevin Scannell
161
+ - Nathan Schneider
162
+ - Rico Sennrich
163
+ - Thomas Skardal
164
+ - Eric Smith
165
+ - Lynn Soe
166
+ - Rob Speer
167
+ - Peter Spiller
168
+ - Richard Sproat
169
+ - Ceri Stagg
170
+ - Peter Stahl
171
+ - Oliver Steele
172
+ - Thomas Stieglmaier
173
+ - Jan Strunk
174
+ - Liling Tan
175
+ - Claire Taylor
176
+ - Louis Tiao
177
+ - Steven Tomcavage
178
+ - Tiago Tresoldi
179
+ - Marcus Uneson
180
+ - Yu Usami
181
+ - Petro Verkhogliad
182
+ - Peter Wang
183
+ - Zhe Wang
184
+ - Charlotte Wilson
185
+ - Chuck Wooters
186
+ - Steven Xu
187
+ - Beracah Yankama
188
+ - Lei Ye (叶磊)
189
+ - Patrick Ye
190
+ - Geraldine Sim Wei Ying
191
+ - Jason Yoder
192
+ - Thomas Zieglier
193
+ - 0ssifrage
194
+ - ducki13
195
+ - kiwipi
196
+ - lade
197
+ - isnowfy
198
+ - onesandzeros
199
+ - pquentin
200
+ - wvanlint
201
+ - Álvaro Justen <https://github.com/turicas>
202
+ - bjut-hz
203
+ - Sergio Oller
204
+ - Will Monroe
205
+ - Elijah Rippeth
206
+ - Emil Manukyan
207
+ - Casper Lehmann-Strøm
208
+ - Andrew Giel
209
+ - Tanin Na Nakorn
210
+ - Linghao Zhang
211
+ - Colin Carroll
212
+ - Heguang Miao
213
+ - Hannah Aizenman (story645)
214
+ - George Berry
215
+ - Adam Nelson
216
+ - J Richard Snape
217
+ - Alex Constantin <[email protected]>
218
+ - Tsolak Ghukasyan
219
+ - Prasasto Adi
220
+ - Safwan Kamarrudin
221
+ - Arthur Tilley
222
+ - Vilhjalmur Thorsteinsson
223
+ - Jaehoon Hwang <https://github.com/jaehoonhwang>
224
+ - Chintan Shah <https://github.com/chintanshah24>
225
+ - sbagan
226
+ - Zicheng Xu
227
+ - Albert Au Yeung <https://github.com/albertauyeung>
228
+ - Shenjian Zhao
229
+ - Deng Wang <https://github.com/lmatt-bit>
230
+ - Ali Abdullah
231
+ - Stoytcho Stoytchev
232
+ - Lakhdar Benzahia
233
+ - Kheireddine Abainia <https://github.com/xprogramer>
234
+ - Yibin Lin <https://github.com/yibinlin>
235
+ - Artiem Krinitsyn
236
+ - Björn Mattsson
237
+ - Oleg Chislov
238
+ - Pavan Gururaj Joshi <https://github.com/PavanGJ>
239
+ - Ethan Hill <https://github.com/hill1303>
240
+ - Vivek Lakshmanan
241
+ - Somnath Rakshit <https://github.com/somnathrakshit>
242
+ - Anlan Du
243
+ - Pulkit Maloo <https://github.com/pulkitmaloo>
244
+ - Brandon M. Burroughs <https://github.com/brandonmburroughs>
245
+ - John Stewart <https://github.com/free-variation>
246
+ - Iaroslav Tymchenko <https://github.com/myproblemchild>
247
+ - Aleš Tamchyna
248
+ - Tim Gianitsos <https://github.com/timgianitsos>
249
+ - Philippe Partarrieu <https://github.com/ppartarr>
250
+ - Andrew Owen Martin
251
+ - Adrian Ellis <https://github.com/adrianjellis>
252
+ - Nat Quayle Nelson <https://github.com/nqnstudios>
253
+ - Yanpeng Zhao <https://github.com/zhaoyanpeng>
254
+ - Matan Rak <https://github.com/matanrak>
255
+ - Nick Ulle <https://github.com/nick-ulle>
256
+ - Uday Krishna <https://github.com/udaykrishna>
257
+ - Osman Zubair <https://github.com/okz12>
258
+ - Viresh Gupta <https://github.com/virresh>
259
+ - Ondřej Cífka <https://github.com/cifkao>
260
+ - Iris X. Zhou <https://github.com/irisxzhou>
261
+ - Devashish Lal <https://github.com/BLaZeKiLL>
262
+ - Gerhard Kremer <https://github.com/GerhardKa>
263
+ - Nicolas Darr <https://github.com/ndarr>
264
+ - Hervé Nicol <https://github.com/hervenicol>
265
+ - Alexandre H. T. Dias <https://github.com/alexandredias3d>
266
+ - Daksh Shah <https://github.com/Daksh>
267
+ - Jacob Weightman <https://github.com/jacobdweightman>
268
+ - Bonifacio de Oliveira <https://github.com/Bonifacio2>
269
+ - Armins Bagrats Stepanjans <https://github.com/ab-10>
270
+ - Vassilis Palassopoulos <https://github.com/palasso>
271
+ - Ram Rachum <https://github.com/cool-RR>
272
+ - Or Sharir <https://github.com/orsharir>
273
+ - Denali Molitor <https://github.com/dmmolitor>
274
+ - Jacob Moorman <https://github.com/jdmoorman>
275
+ - Cory Nezin <https://github.com/corynezin>
276
+ - Matt Chaput
277
+ - Danny Sepler <https://github.com/dannysepler>
278
+ - Akshita Bhagia <https://github.com/AkshitaB>
279
+ - Pratap Yadav <https://github.com/prtpydv>
280
+ - Hiroki Teranishi <https://github.com/chantera>
281
+ - Ruben Cartuyvels <https://github.com/rubencart>
282
+ - Dalton Pearson <https://github.com/daltonpearson>
283
+ - Robby Horvath <https://github.com/robbyhorvath>
284
+ - Gavish Poddar <https://github.com/gavishpoddar>
285
+ - Saibo Geng <https://github.com/Saibo-creator>
286
+ - Ahmet Yildirim <https://github.com/RnDevelover>
287
+ - Yuta Nakamura <https://github.com/yutanakamura-tky>
288
+ - Adam Hawley <https://github.com/adamjhawley>
289
+ - Panagiotis Simakis <https://github.com/sp1thas>
290
+ - Richard Wang <https://github.com/richarddwang>
291
+ - Alexandre Perez-Lebel <https://github.com/aperezlebel>
292
+ - Fernando Carranza <https://github.com/fernandocar86>
293
+ - Martin Kondratzky <https://github.com/martinkondra>
294
+ - Heungson Lee <https://github.com/heungson>
295
+ - M.K. Pawelkiewicz <https://github.com/hamiltonianflow>
296
+ - Steven Thomas Smith <https://github.com/essandess>
297
+ - Jan Lennartz <https://github.com/Madnex>
298
+
299
+ ## Others whose work we've taken and included in NLTK, but who didn't directly contribute it:
300
+
301
+ ### Contributors to the Porter Stemmer
302
+
303
+ - Martin Porter
304
+ - Vivake Gupta
305
+ - Barry Wilkins
306
+ - Hiranmay Ghosh
307
+ - Chris Emerson
308
+
309
+ ### Authors of snowball arabic stemmer algorithm
310
+
311
+ - Assem Chelli
312
+ - Abdelkrim Aries
313
+ - Lakhdar Benzahia
llmeval-env/lib/python3.10/site-packages/nltk-3.8.1.dist-info/INSTALLER ADDED
@@ -0,0 +1 @@
 
 
1
+ pip
llmeval-env/lib/python3.10/site-packages/nltk-3.8.1.dist-info/LICENSE.txt ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ Apache License
3
+ Version 2.0, January 2004
4
+ http://www.apache.org/licenses/
5
+
6
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
7
+
8
+ 1. Definitions.
9
+
10
+ "License" shall mean the terms and conditions for use, reproduction,
11
+ and distribution as defined by Sections 1 through 9 of this document.
12
+
13
+ "Licensor" shall mean the copyright owner or entity authorized by
14
+ the copyright owner that is granting the License.
15
+
16
+ "Legal Entity" shall mean the union of the acting entity and all
17
+ other entities that control, are controlled by, or are under common
18
+ control with that entity. For the purposes of this definition,
19
+ "control" means (i) the power, direct or indirect, to cause the
20
+ direction or management of such entity, whether by contract or
21
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
22
+ outstanding shares, or (iii) beneficial ownership of such entity.
23
+
24
+ "You" (or "Your") shall mean an individual or Legal Entity
25
+ exercising permissions granted by this License.
26
+
27
+ "Source" form shall mean the preferred form for making modifications,
28
+ including but not limited to software source code, documentation
29
+ source, and configuration files.
30
+
31
+ "Object" form shall mean any form resulting from mechanical
32
+ transformation or translation of a Source form, including but
33
+ not limited to compiled object code, generated documentation,
34
+ and conversions to other media types.
35
+
36
+ "Work" shall mean the work of authorship, whether in Source or
37
+ Object form, made available under the License, as indicated by a
38
+ copyright notice that is included in or attached to the work
39
+ (an example is provided in the Appendix below).
40
+
41
+ "Derivative Works" shall mean any work, whether in Source or Object
42
+ form, that is based on (or derived from) the Work and for which the
43
+ editorial revisions, annotations, elaborations, or other modifications
44
+ represent, as a whole, an original work of authorship. For the purposes
45
+ of this License, Derivative Works shall not include works that remain
46
+ separable from, or merely link (or bind by name) to the interfaces of,
47
+ the Work and Derivative Works thereof.
48
+
49
+ "Contribution" shall mean any work of authorship, including
50
+ the original version of the Work and any modifications or additions
51
+ to that Work or Derivative Works thereof, that is intentionally
52
+ submitted to Licensor for inclusion in the Work by the copyright owner
53
+ or by an individual or Legal Entity authorized to submit on behalf of
54
+ the copyright owner. For the purposes of this definition, "submitted"
55
+ means any form of electronic, verbal, or written communication sent
56
+ to the Licensor or its representatives, including but not limited to
57
+ communication on electronic mailing lists, source code control systems,
58
+ and issue tracking systems that are managed by, or on behalf of, the
59
+ Licensor for the purpose of discussing and improving the Work, but
60
+ excluding communication that is conspicuously marked or otherwise
61
+ designated in writing by the copyright owner as "Not a Contribution."
62
+
63
+ "Contributor" shall mean Licensor and any individual or Legal Entity
64
+ on behalf of whom a Contribution has been received by Licensor and
65
+ subsequently incorporated within the Work.
66
+
67
+ 2. Grant of Copyright License. Subject to the terms and conditions of
68
+ this License, each Contributor hereby grants to You a perpetual,
69
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
70
+ copyright license to reproduce, prepare Derivative Works of,
71
+ publicly display, publicly perform, sublicense, and distribute the
72
+ Work and such Derivative Works in Source or Object form.
73
+
74
+ 3. Grant of Patent License. Subject to the terms and conditions of
75
+ this License, each Contributor hereby grants to You a perpetual,
76
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
77
+ (except as stated in this section) patent license to make, have made,
78
+ use, offer to sell, sell, import, and otherwise transfer the Work,
79
+ where such license applies only to those patent claims licensable
80
+ by such Contributor that are necessarily infringed by their
81
+ Contribution(s) alone or by combination of their Contribution(s)
82
+ with the Work to which such Contribution(s) was submitted. If You
83
+ institute patent litigation against any entity (including a
84
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
85
+ or a Contribution incorporated within the Work constitutes direct
86
+ or contributory patent infringement, then any patent licenses
87
+ granted to You under this License for that Work shall terminate
88
+ as of the date such litigation is filed.
89
+
90
+ 4. Redistribution. You may reproduce and distribute copies of the
91
+ Work or Derivative Works thereof in any medium, with or without
92
+ modifications, and in Source or Object form, provided that You
93
+ meet the following conditions:
94
+
95
+ (a) You must give any other recipients of the Work or
96
+ Derivative Works a copy of this License; and
97
+
98
+ (b) You must cause any modified files to carry prominent notices
99
+ stating that You changed the files; and
100
+
101
+ (c) You must retain, in the Source form of any Derivative Works
102
+ that You distribute, all copyright, patent, trademark, and
103
+ attribution notices from the Source form of the Work,
104
+ excluding those notices that do not pertain to any part of
105
+ the Derivative Works; and
106
+
107
+ (d) If the Work includes a "NOTICE" text file as part of its
108
+ distribution, then any Derivative Works that You distribute must
109
+ include a readable copy of the attribution notices contained
110
+ within such NOTICE file, excluding those notices that do not
111
+ pertain to any part of the Derivative Works, in at least one
112
+ of the following places: within a NOTICE text file distributed
113
+ as part of the Derivative Works; within the Source form or
114
+ documentation, if provided along with the Derivative Works; or,
115
+ within a display generated by the Derivative Works, if and
116
+ wherever such third-party notices normally appear. The contents
117
+ of the NOTICE file are for informational purposes only and
118
+ do not modify the License. You may add Your own attribution
119
+ notices within Derivative Works that You distribute, alongside
120
+ or as an addendum to the NOTICE text from the Work, provided
121
+ that such additional attribution notices cannot be construed
122
+ as modifying the License.
123
+
124
+ You may add Your own copyright statement to Your modifications and
125
+ may provide additional or different license terms and conditions
126
+ for use, reproduction, or distribution of Your modifications, or
127
+ for any such Derivative Works as a whole, provided Your use,
128
+ reproduction, and distribution of the Work otherwise complies with
129
+ the conditions stated in this License.
130
+
131
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
132
+ any Contribution intentionally submitted for inclusion in the Work
133
+ by You to the Licensor shall be under the terms and conditions of
134
+ this License, without any additional terms or conditions.
135
+ Notwithstanding the above, nothing herein shall supersede or modify
136
+ the terms of any separate license agreement you may have executed
137
+ with Licensor regarding such Contributions.
138
+
139
+ 6. Trademarks. This License does not grant permission to use the trade
140
+ names, trademarks, service marks, or product names of the Licensor,
141
+ except as required for reasonable and customary use in describing the
142
+ origin of the Work and reproducing the content of the NOTICE file.
143
+
144
+ 7. Disclaimer of Warranty. Unless required by applicable law or
145
+ agreed to in writing, Licensor provides the Work (and each
146
+ Contributor provides its Contributions) on an "AS IS" BASIS,
147
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
148
+ implied, including, without limitation, any warranties or conditions
149
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
150
+ PARTICULAR PURPOSE. You are solely responsible for determining the
151
+ appropriateness of using or redistributing the Work and assume any
152
+ risks associated with Your exercise of permissions under this License.
153
+
154
+ 8. Limitation of Liability. In no event and under no legal theory,
155
+ whether in tort (including negligence), contract, or otherwise,
156
+ unless required by applicable law (such as deliberate and grossly
157
+ negligent acts) or agreed to in writing, shall any Contributor be
158
+ liable to You for damages, including any direct, indirect, special,
159
+ incidental, or consequential damages of any character arising as a
160
+ result of this License or out of the use or inability to use the
161
+ Work (including but not limited to damages for loss of goodwill,
162
+ work stoppage, computer failure or malfunction, or any and all
163
+ other commercial damages or losses), even if such Contributor
164
+ has been advised of the possibility of such damages.
165
+
166
+ 9. Accepting Warranty or Additional Liability. While redistributing
167
+ the Work or Derivative Works thereof, You may choose to offer,
168
+ and charge a fee for, acceptance of support, warranty, indemnity,
169
+ or other liability obligations and/or rights consistent with this
170
+ License. However, in accepting such obligations, You may act only
171
+ on Your own behalf and on Your sole responsibility, not on behalf
172
+ of any other Contributor, and only if You agree to indemnify,
173
+ defend, and hold each Contributor harmless for any liability
174
+ incurred by, or claims asserted against, such Contributor by reason
175
+ of your accepting any such warranty or additional liability.
176
+
177
+ END OF TERMS AND CONDITIONS
178
+
179
+ APPENDIX: How to apply the Apache License to your work.
180
+
181
+ To apply the Apache License to your work, attach the following
182
+ boilerplate notice, with the fields enclosed by brackets "[]"
183
+ replaced with your own identifying information. (Don't include
184
+ the brackets!) The text should be enclosed in the appropriate
185
+ comment syntax for the file format. We also recommend that a
186
+ file or class name and description of purpose be included on the
187
+ same "printed page" as the copyright notice for easier
188
+ identification within third-party archives.
189
+
190
+ Copyright [yyyy] [name of copyright owner]
191
+
192
+ Licensed under the Apache License, Version 2.0 (the "License");
193
+ you may not use this file except in compliance with the License.
194
+ You may obtain a copy of the License at
195
+
196
+ http://www.apache.org/licenses/LICENSE-2.0
197
+
198
+ Unless required by applicable law or agreed to in writing, software
199
+ distributed under the License is distributed on an "AS IS" BASIS,
200
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
201
+ See the License for the specific language governing permissions and
202
+ limitations under the License.
llmeval-env/lib/python3.10/site-packages/nltk-3.8.1.dist-info/METADATA ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Metadata-Version: 2.1
2
+ Name: nltk
3
+ Version: 3.8.1
4
+ Summary: Natural Language Toolkit
5
+ Home-page: https://www.nltk.org/
6
+ Author: NLTK Team
7
+ Author-email: [email protected]
8
+ Maintainer: NLTK Team
9
+ Maintainer-email: [email protected]
10
+ License: Apache License, Version 2.0
11
+ Project-URL: Documentation, https://www.nltk.org/
12
+ Project-URL: Source Code, https://github.com/nltk/nltk
13
+ Project-URL: Issue Tracker, https://github.com/nltk/nltk/issues
14
+ Keywords: NLP,CL,natural language processing,computational linguistics,parsing,tagging,tokenizing,syntax,linguistics,language,natural language,text analytics
15
+ Platform: UNKNOWN
16
+ Classifier: Development Status :: 5 - Production/Stable
17
+ Classifier: Intended Audience :: Developers
18
+ Classifier: Intended Audience :: Education
19
+ Classifier: Intended Audience :: Information Technology
20
+ Classifier: Intended Audience :: Science/Research
21
+ Classifier: License :: OSI Approved :: Apache Software License
22
+ Classifier: Operating System :: OS Independent
23
+ Classifier: Programming Language :: Python :: 3.7
24
+ Classifier: Programming Language :: Python :: 3.8
25
+ Classifier: Programming Language :: Python :: 3.9
26
+ Classifier: Programming Language :: Python :: 3.10
27
+ Classifier: Programming Language :: Python :: 3.11
28
+ Classifier: Topic :: Scientific/Engineering
29
+ Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
30
+ Classifier: Topic :: Scientific/Engineering :: Human Machine Interfaces
31
+ Classifier: Topic :: Scientific/Engineering :: Information Analysis
32
+ Classifier: Topic :: Text Processing
33
+ Classifier: Topic :: Text Processing :: Filters
34
+ Classifier: Topic :: Text Processing :: General
35
+ Classifier: Topic :: Text Processing :: Indexing
36
+ Classifier: Topic :: Text Processing :: Linguistic
37
+ Requires-Python: >=3.7
38
+ Requires-Dist: click
39
+ Requires-Dist: joblib
40
+ Requires-Dist: regex (>=2021.8.3)
41
+ Requires-Dist: tqdm
42
+ Provides-Extra: all
43
+ Requires-Dist: scikit-learn ; extra == 'all'
44
+ Requires-Dist: python-crfsuite ; extra == 'all'
45
+ Requires-Dist: requests ; extra == 'all'
46
+ Requires-Dist: numpy ; extra == 'all'
47
+ Requires-Dist: pyparsing ; extra == 'all'
48
+ Requires-Dist: twython ; extra == 'all'
49
+ Requires-Dist: scipy ; extra == 'all'
50
+ Requires-Dist: matplotlib ; extra == 'all'
51
+ Provides-Extra: corenlp
52
+ Requires-Dist: requests ; extra == 'corenlp'
53
+ Provides-Extra: machine_learning
54
+ Requires-Dist: numpy ; extra == 'machine_learning'
55
+ Requires-Dist: python-crfsuite ; extra == 'machine_learning'
56
+ Requires-Dist: scikit-learn ; extra == 'machine_learning'
57
+ Requires-Dist: scipy ; extra == 'machine_learning'
58
+ Provides-Extra: plot
59
+ Requires-Dist: matplotlib ; extra == 'plot'
60
+ Provides-Extra: tgrep
61
+ Requires-Dist: pyparsing ; extra == 'tgrep'
62
+ Provides-Extra: twitter
63
+ Requires-Dist: twython ; extra == 'twitter'
64
+
65
+ The Natural Language Toolkit (NLTK) is a Python package for
66
+ natural language processing. NLTK requires Python 3.7, 3.8, 3.9, 3.10 or 3.11.
67
+
llmeval-env/lib/python3.10/site-packages/nltk-3.8.1.dist-info/README.md ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Natural Language Toolkit (NLTK)
2
+ [![PyPI](https://img.shields.io/pypi/v/nltk.svg)](https://pypi.python.org/pypi/nltk)
3
+ ![CI](https://github.com/nltk/nltk/actions/workflows/ci.yaml/badge.svg?branch=develop)
4
+
5
+ NLTK -- the Natural Language Toolkit -- is a suite of open source Python
6
+ modules, data sets, and tutorials supporting research and development in Natural
7
+ Language Processing. NLTK requires Python version 3.7, 3.8, 3.9, 3.10 or 3.11.
8
+
9
+ For documentation, please visit [nltk.org](https://www.nltk.org/).
10
+
11
+
12
+ ## Contributing
13
+
14
+ Do you want to contribute to NLTK development? Great!
15
+ Please read [CONTRIBUTING.md](CONTRIBUTING.md) for more details.
16
+
17
+ See also [how to contribute to NLTK](https://www.nltk.org/contribute.html).
18
+
19
+
20
+ ## Donate
21
+
22
+ Have you found the toolkit helpful? Please support NLTK development by donating
23
+ to the project via PayPal, using the link on the NLTK homepage.
24
+
25
+
26
+ ## Citing
27
+
28
+ If you publish work that uses NLTK, please cite the NLTK book, as follows:
29
+
30
+ Bird, Steven, Edward Loper and Ewan Klein (2009).
31
+ Natural Language Processing with Python. O'Reilly Media Inc.
32
+
33
+
34
+ ## Copyright
35
+
36
+ Copyright (C) 2001-2023 NLTK Project
37
+
38
+ For license information, see [LICENSE.txt](LICENSE.txt).
39
+
40
+ [AUTHORS.md](AUTHORS.md) contains a list of everyone who has contributed to NLTK.
41
+
42
+
43
+ ### Redistributing
44
+
45
+ - NLTK source code is distributed under the Apache 2.0 License.
46
+ - NLTK documentation is distributed under the Creative Commons
47
+ Attribution-Noncommercial-No Derivative Works 3.0 United States license.
48
+ - NLTK corpora are provided under the terms given in the README file for each
49
+ corpus; all are redistributable and available for non-commercial use.
50
+ - NLTK may be freely redistributed, subject to the provisions of these licenses.
llmeval-env/lib/python3.10/site-packages/nltk-3.8.1.dist-info/RECORD ADDED
@@ -0,0 +1,782 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ../../../bin/nltk,sha256=BPORS870sJtlzIbvcsuWYIoNzWWuAW4oAPgSh-ugPCc,239
2
+ nltk-3.8.1.dist-info/AUTHORS.md,sha256=lwegiKq14iCouEfpgu85VSAWadP2X1MkLhUsgYBfPOI,7628
3
+ nltk-3.8.1.dist-info/INSTALLER,sha256=zuuue4knoyJ-UwPPXg8fezS7VCrXJQrAP7zeNuwvFQg,4
4
+ nltk-3.8.1.dist-info/LICENSE.txt,sha256=Pd-b5cKP4n2tFDpdx27qJSIq0d1ok0oEcGTlbtL6QMU,11560
5
+ nltk-3.8.1.dist-info/METADATA,sha256=CUHc77qyEPWGmH6DiO6622SIsRU2fGENF_LCKUzGEOI,2847
6
+ nltk-3.8.1.dist-info/README.md,sha256=_oLlVxk8v-ARv0t4wAyrPKZ8KmLA2y1tlhJ4C3QjRk0,1789
7
+ nltk-3.8.1.dist-info/RECORD,,
8
+ nltk-3.8.1.dist-info/WHEEL,sha256=ewwEueio1C2XeHTvT17n8dZUJgOvyCWCt0WVNLClP9o,92
9
+ nltk-3.8.1.dist-info/entry_points.txt,sha256=SK6SzMicwUtBiwUOmv5P1ZVs0h-xqey6PnRpsUGGx5c,37
10
+ nltk-3.8.1.dist-info/top_level.txt,sha256=YoQ-mwqckmTv1Qktmlk5Ylb6lDG77jg5qwoEB7c-pXo,5
11
+ nltk/VERSION,sha256=932VxvO5Mh-hWNyZVXsqpdneLGKgY0kKcA4_XVSSvyQ,7
12
+ nltk/__init__.py,sha256=RSji7RAoc5vyHzOA6pB6LPpCUxB8o68igd6CrYElOGA,6432
13
+ nltk/__pycache__/__init__.cpython-310.pyc,,
14
+ nltk/__pycache__/book.cpython-310.pyc,,
15
+ nltk/__pycache__/cli.cpython-310.pyc,,
16
+ nltk/__pycache__/collections.cpython-310.pyc,,
17
+ nltk/__pycache__/collocations.cpython-310.pyc,,
18
+ nltk/__pycache__/compat.cpython-310.pyc,,
19
+ nltk/__pycache__/data.cpython-310.pyc,,
20
+ nltk/__pycache__/decorators.cpython-310.pyc,,
21
+ nltk/__pycache__/downloader.cpython-310.pyc,,
22
+ nltk/__pycache__/featstruct.cpython-310.pyc,,
23
+ nltk/__pycache__/grammar.cpython-310.pyc,,
24
+ nltk/__pycache__/help.cpython-310.pyc,,
25
+ nltk/__pycache__/internals.cpython-310.pyc,,
26
+ nltk/__pycache__/jsontags.cpython-310.pyc,,
27
+ nltk/__pycache__/langnames.cpython-310.pyc,,
28
+ nltk/__pycache__/lazyimport.cpython-310.pyc,,
29
+ nltk/__pycache__/probability.cpython-310.pyc,,
30
+ nltk/__pycache__/text.cpython-310.pyc,,
31
+ nltk/__pycache__/tgrep.cpython-310.pyc,,
32
+ nltk/__pycache__/toolbox.cpython-310.pyc,,
33
+ nltk/__pycache__/treeprettyprinter.cpython-310.pyc,,
34
+ nltk/__pycache__/treetransforms.cpython-310.pyc,,
35
+ nltk/__pycache__/util.cpython-310.pyc,,
36
+ nltk/__pycache__/wsd.cpython-310.pyc,,
37
+ nltk/app/__init__.py,sha256=xGZbbDC3xv67XnHHusxZmCPMNqj07BM9W6ZSlkWn9eQ,1578
38
+ nltk/app/__pycache__/__init__.cpython-310.pyc,,
39
+ nltk/app/__pycache__/chartparser_app.cpython-310.pyc,,
40
+ nltk/app/__pycache__/chunkparser_app.cpython-310.pyc,,
41
+ nltk/app/__pycache__/collocations_app.cpython-310.pyc,,
42
+ nltk/app/__pycache__/concordance_app.cpython-310.pyc,,
43
+ nltk/app/__pycache__/nemo_app.cpython-310.pyc,,
44
+ nltk/app/__pycache__/rdparser_app.cpython-310.pyc,,
45
+ nltk/app/__pycache__/srparser_app.cpython-310.pyc,,
46
+ nltk/app/__pycache__/wordfreq_app.cpython-310.pyc,,
47
+ nltk/app/__pycache__/wordnet_app.cpython-310.pyc,,
48
+ nltk/app/chartparser_app.py,sha256=8FX3-eJQmB-8LT9k-lQJe_y5dSO3Ly4AD2K_wIs9FuE,88195
49
+ nltk/app/chunkparser_app.py,sha256=tbEPtYtccyTcbSCUhFhhbkjCVi_rtel4EKPSogeJOT8,58322
50
+ nltk/app/collocations_app.py,sha256=gJBWxNmkUjXQWkruqcOSE8l51Md2fcM3RmZlrJHJZK4,14664
51
+ nltk/app/concordance_app.py,sha256=HjLN9ybKbjbKqkhJNUakivwIPojvDxqvwnqb7u07BYE,24882
52
+ nltk/app/nemo_app.py,sha256=6ZBJXlJWKWoYnsrEy3Yy6IeFxcy3FNaGWK6QnMYEy4E,12305
53
+ nltk/app/rdparser_app.py,sha256=j4tMGNLnwrwkVw3MyMr3-56TXAwAIIEo-v0yWyjDKEQ,37781
54
+ nltk/app/srparser_app.py,sha256=UQwxqEPDfSYJTw22SSdp5EUX0QwlbztyH4EYHtBerw0,34401
55
+ nltk/app/wordfreq_app.py,sha256=0mzSrNosW3Wh_J_5FdJV8Bq-F_a2x5HRV3iQAI03fnQ,957
56
+ nltk/app/wordnet_app.py,sha256=Ut5VU3hzM4inRayi4c5uyNsbAz7YcGW7_q8BBmrJpPs,35574
57
+ nltk/book.py,sha256=enAPUeJxxAXY0C60vlmPHCVhUxVY2K2gx3wWPH6tU6k,3912
58
+ nltk/ccg/__init__.py,sha256=Gz2z13lWdN_wdcvn78rxJGvU23EKIN_sNm5twz_2nWw,915
59
+ nltk/ccg/__pycache__/__init__.cpython-310.pyc,,
60
+ nltk/ccg/__pycache__/api.cpython-310.pyc,,
61
+ nltk/ccg/__pycache__/chart.cpython-310.pyc,,
62
+ nltk/ccg/__pycache__/combinator.cpython-310.pyc,,
63
+ nltk/ccg/__pycache__/lexicon.cpython-310.pyc,,
64
+ nltk/ccg/__pycache__/logic.cpython-310.pyc,,
65
+ nltk/ccg/api.py,sha256=3xzrsFkp0XM_SihDIEODQEMgFh-KYBaCQs4WNStLTgU,10360
66
+ nltk/ccg/chart.py,sha256=2lyYNM8PY6AhucRmNetqgylPfKz3Pzn4faAKtkvYuFA,14147
67
+ nltk/ccg/combinator.py,sha256=1C5Tqwhp-diD7rHtUfpPbVt4v1a7oPBY0bkHPm52OD4,10633
68
+ nltk/ccg/lexicon.py,sha256=9rC11EzdzOVMybBt6TeYdVw4xj73Ufy7NS1cTqtq5sU,9863
69
+ nltk/ccg/logic.py,sha256=MEukXOQu6dX-i-irRH3Nko5D2ElpDGjVosdgHPZs8wg,1871
70
+ nltk/chat/__init__.py,sha256=4aSic0g0Zwhlxm7PC_t-0JZjChyKcPXTS0hoWTyTvLw,1556
71
+ nltk/chat/__pycache__/__init__.cpython-310.pyc,,
72
+ nltk/chat/__pycache__/eliza.cpython-310.pyc,,
73
+ nltk/chat/__pycache__/iesha.cpython-310.pyc,,
74
+ nltk/chat/__pycache__/rude.cpython-310.pyc,,
75
+ nltk/chat/__pycache__/suntsu.cpython-310.pyc,,
76
+ nltk/chat/__pycache__/util.cpython-310.pyc,,
77
+ nltk/chat/__pycache__/zen.cpython-310.pyc,,
78
+ nltk/chat/eliza.py,sha256=27GYLQfKpMzsBvPixXQnZHqZSmaI_8H3mAvuPZAUVNw,9626
79
+ nltk/chat/iesha.py,sha256=WassBbqcT2LbxZHda7vwcIBeIOfzefZ19cxUGay-NNM,4407
80
+ nltk/chat/rude.py,sha256=JMoqOg2_r30pNRwknXWG8qIi_0mm__AnI7tTM1orj2I,3289
81
+ nltk/chat/suntsu.py,sha256=dlYCRQ3INyOXbfL0qwyLaq1E-fqIVS8weRk2gOC8tq0,7185
82
+ nltk/chat/util.py,sha256=dbgxikuBJGP6YhDPFw_ZYTSsBqpqEV5HU1ipWfj21Bw,4014
83
+ nltk/chat/zen.py,sha256=KtZcUzKXlwyfL_tQpa9rtuNB12PAscwaWt2pbvk6GcM,11679
84
+ nltk/chunk/__init__.py,sha256=hIssYRWZj_6YmHQOhJe3DRlvqbehf-Y7e6kSy8Sicp0,7597
85
+ nltk/chunk/__pycache__/__init__.cpython-310.pyc,,
86
+ nltk/chunk/__pycache__/api.cpython-310.pyc,,
87
+ nltk/chunk/__pycache__/named_entity.cpython-310.pyc,,
88
+ nltk/chunk/__pycache__/regexp.cpython-310.pyc,,
89
+ nltk/chunk/__pycache__/util.cpython-310.pyc,,
90
+ nltk/chunk/api.py,sha256=-gEfVh1nv3CO-YXV3kTSMNDS4_sbuKnM3xVuTq2oc60,1946
91
+ nltk/chunk/named_entity.py,sha256=v__H3Rply3PvrzKRUM2ktkLQcMYJc_14qHFbiKqqaMo,11140
92
+ nltk/chunk/regexp.py,sha256=KXfm9-KJNqSRSJFfV5192yErXVuLH2jmOeCJbROkPRU,55980
93
+ nltk/chunk/util.py,sha256=Ll5PB0ozF7rwNJtsdM6YiA1zktVLO7MOaQtJDR2Qx4g,21311
94
+ nltk/classify/__init__.py,sha256=2s2RPR2IPix1aXumcnpzKSYJ8BzaC-VsKcpVHHZPT0E,4596
95
+ nltk/classify/__pycache__/__init__.cpython-310.pyc,,
96
+ nltk/classify/__pycache__/api.cpython-310.pyc,,
97
+ nltk/classify/__pycache__/decisiontree.cpython-310.pyc,,
98
+ nltk/classify/__pycache__/maxent.cpython-310.pyc,,
99
+ nltk/classify/__pycache__/megam.cpython-310.pyc,,
100
+ nltk/classify/__pycache__/naivebayes.cpython-310.pyc,,
101
+ nltk/classify/__pycache__/positivenaivebayes.cpython-310.pyc,,
102
+ nltk/classify/__pycache__/rte_classify.cpython-310.pyc,,
103
+ nltk/classify/__pycache__/scikitlearn.cpython-310.pyc,,
104
+ nltk/classify/__pycache__/senna.cpython-310.pyc,,
105
+ nltk/classify/__pycache__/svm.cpython-310.pyc,,
106
+ nltk/classify/__pycache__/tadm.cpython-310.pyc,,
107
+ nltk/classify/__pycache__/textcat.cpython-310.pyc,,
108
+ nltk/classify/__pycache__/util.cpython-310.pyc,,
109
+ nltk/classify/__pycache__/weka.cpython-310.pyc,,
110
+ nltk/classify/api.py,sha256=PN1b_jw2InZWMNuzMaPSs2PP-f9_7IZfokohkKd0Xro,6625
111
+ nltk/classify/decisiontree.py,sha256=HL-V9gcFYX2uYaonc3glQq_CAEqyCxKTb1FnKxkpx8U,13083
112
+ nltk/classify/maxent.py,sha256=pJZFnshxF4jfYlY-8zgf3N8P5jVczqxTOCAI6HrVTqA,60921
113
+ nltk/classify/megam.py,sha256=4d2NlMAyrXca2TB_phpff41-qY8YZdqx6LrYLL5s0jI,6396
114
+ nltk/classify/naivebayes.py,sha256=fahYSKoSAMisUKOjXxkIDsRRU7swLyFMSAloL8mToNU,10713
115
+ nltk/classify/positivenaivebayes.py,sha256=WckMp6Olu6x6Ku__NCRVPO2n6WY_AI2yr1y46cy-IgU,7412
116
+ nltk/classify/rte_classify.py,sha256=d7BhvcXp-j1ovcbFs0jz2I22nZtn1pBvfT79kpc1xnY,6301
117
+ nltk/classify/scikitlearn.py,sha256=_D3TQC-jxEn-eq3Y7Ydc1OczkhIAbednxDpcFpbj99U,5548
118
+ nltk/classify/senna.py,sha256=WGne67HygHBl85t4DKqTjWgjILTVOaXoDrQgV7odLm8,6931
119
+ nltk/classify/svm.py,sha256=Izn33z8jQhQ70hJdbli-HUc_dly9O2sxMso0v1MZ5dY,525
120
+ nltk/classify/tadm.py,sha256=jGR9ga8n1rQUCoRg49kkSyZkJ7thteHc0TAApdtVaVU,3555
121
+ nltk/classify/textcat.py,sha256=BeHyxtRXdqAGJtnipjORVrCIjWTHVa0OJm1-WOoMybI,6035
122
+ nltk/classify/util.py,sha256=1Puz0ks5SrYXYQ8eJbcJpqRtGdwS1Hji0TMQk70ZCy4,12461
123
+ nltk/classify/weka.py,sha256=em2Rij5vMKo5LFZbHWBsPZlDkBb-QOLMMEGIPjSgBoI,12938
124
+ nltk/cli.py,sha256=ZdakKKRjRmDn_b3e4TL1UNqaTF4VsLSMgQ4juVWstEM,1897
125
+ nltk/cluster/__init__.py,sha256=1mPkvd-mjaRXe0Aha9qx5Gn_Dr39BRovq-qT74bUi54,4361
126
+ nltk/cluster/__pycache__/__init__.cpython-310.pyc,,
127
+ nltk/cluster/__pycache__/api.cpython-310.pyc,,
128
+ nltk/cluster/__pycache__/em.cpython-310.pyc,,
129
+ nltk/cluster/__pycache__/gaac.cpython-310.pyc,,
130
+ nltk/cluster/__pycache__/kmeans.cpython-310.pyc,,
131
+ nltk/cluster/__pycache__/util.cpython-310.pyc,,
132
+ nltk/cluster/api.py,sha256=sranVby2NHrTr3vmefGkZgREzzOjlE94MLCUbO63rlU,2162
133
+ nltk/cluster/em.py,sha256=uxd6qQ0T1PSE5e_3q41yk66OlkPMX0ws4L0J7ciq1YM,8419
134
+ nltk/cluster/gaac.py,sha256=c_2ewAkcLdWLhW0WjUedESoV7I1UPGlNeY_BNhOTQqY,5921
135
+ nltk/cluster/kmeans.py,sha256=1Ik_3_pIjCfpgDag0LmP4hi2SQiRIwy8sQqtXFSuHYA,8592
136
+ nltk/cluster/util.py,sha256=TVZtWob_8SoZOwG6NtsBPk4fOD40ZVjxnHj9oPa6eC8,10039
137
+ nltk/collections.py,sha256=DiSo-vicLp7UQLpDiDTljFwdDLdQVUi7UVAdgublO8A,23673
138
+ nltk/collocations.py,sha256=NWC5upNNulRI_FYmCHX0rNeZCkCQxqVXMlLnOC_bwa8,14964
139
+ nltk/compat.py,sha256=7f0Eg2_MbidKae8brT_oCuqDSHcfmOskS88Y6-lycmw,1307
140
+ nltk/corpus/__init__.py,sha256=qGkuNZ2GIP4qDOR6mMVtJHnC7oMV3kRxiNr8aGFHhfs,17359
141
+ nltk/corpus/__pycache__/__init__.cpython-310.pyc,,
142
+ nltk/corpus/__pycache__/europarl_raw.cpython-310.pyc,,
143
+ nltk/corpus/__pycache__/util.cpython-310.pyc,,
144
+ nltk/corpus/europarl_raw.py,sha256=aXMKViytBRbry4J0FrO0P20JTOV2bgjuJQ5hOxFkJ-0,1896
145
+ nltk/corpus/reader/__init__.py,sha256=urxkSILuhBlGI9qvsIlhQap6nFKSfkKrYi-rb4LCV5U,6677
146
+ nltk/corpus/reader/__pycache__/__init__.cpython-310.pyc,,
147
+ nltk/corpus/reader/__pycache__/aligned.cpython-310.pyc,,
148
+ nltk/corpus/reader/__pycache__/api.cpython-310.pyc,,
149
+ nltk/corpus/reader/__pycache__/bcp47.cpython-310.pyc,,
150
+ nltk/corpus/reader/__pycache__/bnc.cpython-310.pyc,,
151
+ nltk/corpus/reader/__pycache__/bracket_parse.cpython-310.pyc,,
152
+ nltk/corpus/reader/__pycache__/categorized_sents.cpython-310.pyc,,
153
+ nltk/corpus/reader/__pycache__/chasen.cpython-310.pyc,,
154
+ nltk/corpus/reader/__pycache__/childes.cpython-310.pyc,,
155
+ nltk/corpus/reader/__pycache__/chunked.cpython-310.pyc,,
156
+ nltk/corpus/reader/__pycache__/cmudict.cpython-310.pyc,,
157
+ nltk/corpus/reader/__pycache__/comparative_sents.cpython-310.pyc,,
158
+ nltk/corpus/reader/__pycache__/conll.cpython-310.pyc,,
159
+ nltk/corpus/reader/__pycache__/crubadan.cpython-310.pyc,,
160
+ nltk/corpus/reader/__pycache__/dependency.cpython-310.pyc,,
161
+ nltk/corpus/reader/__pycache__/framenet.cpython-310.pyc,,
162
+ nltk/corpus/reader/__pycache__/ieer.cpython-310.pyc,,
163
+ nltk/corpus/reader/__pycache__/indian.cpython-310.pyc,,
164
+ nltk/corpus/reader/__pycache__/ipipan.cpython-310.pyc,,
165
+ nltk/corpus/reader/__pycache__/knbc.cpython-310.pyc,,
166
+ nltk/corpus/reader/__pycache__/lin.cpython-310.pyc,,
167
+ nltk/corpus/reader/__pycache__/markdown.cpython-310.pyc,,
168
+ nltk/corpus/reader/__pycache__/mte.cpython-310.pyc,,
169
+ nltk/corpus/reader/__pycache__/nkjp.cpython-310.pyc,,
170
+ nltk/corpus/reader/__pycache__/nombank.cpython-310.pyc,,
171
+ nltk/corpus/reader/__pycache__/nps_chat.cpython-310.pyc,,
172
+ nltk/corpus/reader/__pycache__/opinion_lexicon.cpython-310.pyc,,
173
+ nltk/corpus/reader/__pycache__/panlex_lite.cpython-310.pyc,,
174
+ nltk/corpus/reader/__pycache__/panlex_swadesh.cpython-310.pyc,,
175
+ nltk/corpus/reader/__pycache__/pl196x.cpython-310.pyc,,
176
+ nltk/corpus/reader/__pycache__/plaintext.cpython-310.pyc,,
177
+ nltk/corpus/reader/__pycache__/ppattach.cpython-310.pyc,,
178
+ nltk/corpus/reader/__pycache__/propbank.cpython-310.pyc,,
179
+ nltk/corpus/reader/__pycache__/pros_cons.cpython-310.pyc,,
180
+ nltk/corpus/reader/__pycache__/reviews.cpython-310.pyc,,
181
+ nltk/corpus/reader/__pycache__/rte.cpython-310.pyc,,
182
+ nltk/corpus/reader/__pycache__/semcor.cpython-310.pyc,,
183
+ nltk/corpus/reader/__pycache__/senseval.cpython-310.pyc,,
184
+ nltk/corpus/reader/__pycache__/sentiwordnet.cpython-310.pyc,,
185
+ nltk/corpus/reader/__pycache__/sinica_treebank.cpython-310.pyc,,
186
+ nltk/corpus/reader/__pycache__/string_category.cpython-310.pyc,,
187
+ nltk/corpus/reader/__pycache__/switchboard.cpython-310.pyc,,
188
+ nltk/corpus/reader/__pycache__/tagged.cpython-310.pyc,,
189
+ nltk/corpus/reader/__pycache__/timit.cpython-310.pyc,,
190
+ nltk/corpus/reader/__pycache__/toolbox.cpython-310.pyc,,
191
+ nltk/corpus/reader/__pycache__/twitter.cpython-310.pyc,,
192
+ nltk/corpus/reader/__pycache__/udhr.cpython-310.pyc,,
193
+ nltk/corpus/reader/__pycache__/util.cpython-310.pyc,,
194
+ nltk/corpus/reader/__pycache__/verbnet.cpython-310.pyc,,
195
+ nltk/corpus/reader/__pycache__/wordlist.cpython-310.pyc,,
196
+ nltk/corpus/reader/__pycache__/wordnet.cpython-310.pyc,,
197
+ nltk/corpus/reader/__pycache__/xmldocs.cpython-310.pyc,,
198
+ nltk/corpus/reader/__pycache__/ycoe.cpython-310.pyc,,
199
+ nltk/corpus/reader/aligned.py,sha256=OJUpm8HyzqR0e8hPHd5CrAmH1bfQfXV2hZ4KCak0Zzw,5005
200
+ nltk/corpus/reader/api.py,sha256=Dhu491gmTJnWSilm6lWdQBN59RM1aIT410mrbiDwD1k,19671
201
+ nltk/corpus/reader/bcp47.py,sha256=I27Lj4hMW2IRM62RyXeK9OX-kSeAvEEkoXVWN1HwEiY,8534
202
+ nltk/corpus/reader/bnc.py,sha256=AhFjLzhCpgijSGvhhHiB5AT5vmAPRP6LO-bHEXOEXas,9716
203
+ nltk/corpus/reader/bracket_parse.py,sha256=1EfRuNmCU9DESWjwalyiDZhQuOwb3IYDjL-aAXlId_U,9619
204
+ nltk/corpus/reader/categorized_sents.py,sha256=QLpHrDk3JlbgitkpbfndSXGxfssAyAA5MsnBesFSKis,6221
205
+ nltk/corpus/reader/chasen.py,sha256=iVW9xtRtGcr3EpEf_BjbusRcPqRqPzKoFlOJfxdooTM,4699
206
+ nltk/corpus/reader/childes.py,sha256=keelogBlaIvHWv1A0Q_tHbzmKyMthB2_YNWXQQmG53g,26105
207
+ nltk/corpus/reader/chunked.py,sha256=8foVT90OCSIzv7B99rHsVGSiAX62e4HFc8QyGDqc_4Y,9366
208
+ nltk/corpus/reader/cmudict.py,sha256=CCDpjWDzwPMOXKprKxmNtvX_-gUSFahFO-vUdTJbNhU,3366
209
+ nltk/corpus/reader/comparative_sents.py,sha256=9YwKIk0xf_EhB6qBepCMOENtxoyvOqwuV_aIjW_WRk4,12069
210
+ nltk/corpus/reader/conll.py,sha256=l-pgBQfCiZP90EJo1hnG3TLM9wM5imFvqlt4FfXlDII,22301
211
+ nltk/corpus/reader/crubadan.py,sha256=FLorWHpsugP1Z3bgkukr51baIw_FvAdNqRKIcPeURL4,3627
212
+ nltk/corpus/reader/dependency.py,sha256=nAdjT0H-HV9JW6iUMNe4cW8RR5rdA8IB8ZQ5IQY9aIc,3890
213
+ nltk/corpus/reader/framenet.py,sha256=n59uoGpOSFIapeYnkbPmCamuslARpoa9q8773DkxB5Y,134791
214
+ nltk/corpus/reader/ieer.py,sha256=x6CnLllJTOQYpwGKxjsbtGjej-rxVCEKb4HUyUbmCAw,3802
215
+ nltk/corpus/reader/indian.py,sha256=GQMsNmZwoWvSS4bdeBT5guNUyU8-LErUoMfuT2ukJb0,3014
216
+ nltk/corpus/reader/ipipan.py,sha256=1yJ5cl7AwX9SFmJs07HsuW-eZHp_YkTL-n1nRhadzgw,13092
217
+ nltk/corpus/reader/knbc.py,sha256=rKg0SDmeQCUaSc3SOr97_IfM5FGJjjvTCdFDn1Vnvn8,5787
218
+ nltk/corpus/reader/lin.py,sha256=1gx48Odd8WJ9PpoF6_f5UjmqJ5j22Rsu8GMraepu7Mg,6654
219
+ nltk/corpus/reader/markdown.py,sha256=Y9AeB3F1gbUuEK7HNjR6iwHDAYeneI5XH1rMkw_ubWQ,12028
220
+ nltk/corpus/reader/mte.py,sha256=8p5iQIJOuxu9MOWa1xH1Iijj9J9KmcRUWh2vmcWSOqQ,14385
221
+ nltk/corpus/reader/nkjp.py,sha256=9npzIMG-tOJjb1NpiwDvH1uXXQ5eBEq8xp_KeQ5jD10,16332
222
+ nltk/corpus/reader/nombank.py,sha256=v-smV3YSQfl54cF-NM0St9dodOKawPL6JGsMv5tvI4g,16247
223
+ nltk/corpus/reader/nps_chat.py,sha256=tjp98O7FNsyoxXenMT5OW0XaJN1RciICJfeekN6AWa8,2940
224
+ nltk/corpus/reader/opinion_lexicon.py,sha256=Xnb9RpQJBxZWdnN-DN41Cw1S4HR35FmomKO-ISy476k,4230
225
+ nltk/corpus/reader/panlex_lite.py,sha256=QJg00vmQTl-iTot524qmEah5LBiacNA9GmpNp9hhZYE,5440
226
+ nltk/corpus/reader/panlex_swadesh.py,sha256=JxpPNLY-WqHZvXsSG7eKFc9eBUHsKO0qOCEUm4iupUw,3287
227
+ nltk/corpus/reader/pl196x.py,sha256=e7yXJOjyKh4uTxn78rvSdSF-K8wSDghYutvrf1IMPjk,12320
228
+ nltk/corpus/reader/plaintext.py,sha256=o1ekALImW_Uyv4pjXn3y2P7uAevWqAAU-X1FrAinqiA,8456
229
+ nltk/corpus/reader/ppattach.py,sha256=vGCcRHcwSMWaHYI1K6KliD9kTKtvabGosqGvPWZjIVs,2903
230
+ nltk/corpus/reader/propbank.py,sha256=1Bv1psLPUwLsbfVUuTP9RanC4MoJp1JHboxgRqGJxrs,17776
231
+ nltk/corpus/reader/pros_cons.py,sha256=DzQ0xyw7fiyZucbrrOqUooPsDv-SCARTMwTxcVzzwlo,4896
232
+ nltk/corpus/reader/reviews.py,sha256=nDNnRfW6XqdJEYh1nKbIOOHFxpHTPD27nxgQanmL8go,12321
233
+ nltk/corpus/reader/rte.py,sha256=ihayGJCEZ9Mw4idk337owoXGlC1Ikn4yM_eUZyHlqgY,4785
234
+ nltk/corpus/reader/semcor.py,sha256=UxLpm2sbR5_6kPQD-9QSwzYkciA71OGRZ4PGudlln1w,11694
235
+ nltk/corpus/reader/senseval.py,sha256=ZNyHHh5gpa2dGQHThMVUoxekDP0DRkrQhKAs8wmY0vI,7539
236
+ nltk/corpus/reader/sentiwordnet.py,sha256=yQeTvAT2T1XFg45dgYfFyIJBhXvkxvoEB7H7w-tEosk,4626
237
+ nltk/corpus/reader/sinica_treebank.py,sha256=64GeJSNCg3eXUFXDasGIql60OC6Pq1Fwc9OtB8Dsais,2541
238
+ nltk/corpus/reader/string_category.py,sha256=-oPUy5R2qb4xiyFsCKGAlUwc3CCsWYCvQsmc2F7NNt8,1919
239
+ nltk/corpus/reader/switchboard.py,sha256=yRjPwtDRx-9rZLsBiX_cAcrMl90zaJ2kanD7RB5hT2A,4547
240
+ nltk/corpus/reader/tagged.py,sha256=P-gUFkUTazKCJzOlqvwA8aAPWYB6Pw08pkieRduIaJU,12140
241
+ nltk/corpus/reader/timit.py,sha256=FpbCiufjEoKPZNgGjvUO1-dAhTq36qeCauaFIzqzRO8,18473
242
+ nltk/corpus/reader/toolbox.py,sha256=yVxaqjDOVCjHRNz4Zs_8Zu8fkbi88YEb_JxwCYtHwVE,2121
243
+ nltk/corpus/reader/twitter.py,sha256=UdnwB2Hh6quI1KhFAAlriybVrYBoUyNqxzUBCdFLics,4608
244
+ nltk/corpus/reader/udhr.py,sha256=tjqXc1JQiTURHnsTU8RIzwxdQIZasbtdMSPz4msnHVo,2592
245
+ nltk/corpus/reader/util.py,sha256=fZy5GyMxJ-urpTqO19Sj-oRQqgL-EI65_UDscr2nizg,32225
246
+ nltk/corpus/reader/verbnet.py,sha256=NBIwOd2JrnHUamt29yzQjHS5VyzqQsOoCI9ZwOfXZIU,25404
247
+ nltk/corpus/reader/wordlist.py,sha256=8dlcXRIjDuJ6U_dvbw6OF_VOgbC4EVeXI8uE2tCxjbM,5812
248
+ nltk/corpus/reader/wordnet.py,sha256=nSIDdVHF_FDx6eOlsU5pUgV5z6YjPbhvQoWyEfb8_Yo,93352
249
+ nltk/corpus/reader/xmldocs.py,sha256=_fVqoEIAaYKT772IEcYmuk_7OaqUdsRLKZpbaL4up88,16285
250
+ nltk/corpus/reader/ycoe.py,sha256=9VbkO_JnFG2joiWfjsfYZ53vsSPl8lWfK00faIAaLN4,10504
251
+ nltk/corpus/util.py,sha256=Q9xYJ97UUOy8vuuDA-uidzpE1oEU_-k6M6L0CcxsZ90,5867
252
+ nltk/data.py,sha256=rr3iRF4UJi7bh3Ss1Gp0bn8qml3YmTOV8kyWeYOavO8,52814
253
+ nltk/decorators.py,sha256=U1-DvExxy0Uv96M0St_rR8IAh8Em3eK6uS4AXIf_Ti4,8526
254
+ nltk/downloader.py,sha256=SWUlq_6w6PDWKs4UCXmY3HyvEfDII1Mp7bgjChv-KEM,95506
255
+ nltk/draw/__init__.py,sha256=vtk9kECEd_9ZZ0pqST6z5Sb-no-VDpEohi7UHD_YQcE,810
256
+ nltk/draw/__pycache__/__init__.cpython-310.pyc,,
257
+ nltk/draw/__pycache__/cfg.cpython-310.pyc,,
258
+ nltk/draw/__pycache__/dispersion.cpython-310.pyc,,
259
+ nltk/draw/__pycache__/table.cpython-310.pyc,,
260
+ nltk/draw/__pycache__/tree.cpython-310.pyc,,
261
+ nltk/draw/__pycache__/util.cpython-310.pyc,,
262
+ nltk/draw/cfg.py,sha256=Y-89bIKWPdiCAn1GkA0eOP08L6eeQHc4gVQKMzBj2sk,30794
263
+ nltk/draw/dispersion.py,sha256=MaCehYu6cTuRhMTzDW7E_cwGjXkP7auGCMsD31WjLcE,1854
264
+ nltk/draw/table.py,sha256=Gz7IZ6JDxsfLUc5zLui_g1IyTfhPCEJU-u8K71S_qrc,46257
265
+ nltk/draw/tree.py,sha256=N8qbNssr6A8OLp4zLE2FJ-jQzWYWFkeASvUeGzc2wKY,39275
266
+ nltk/draw/util.py,sha256=8n8YJrrTWSD-MUEy96bX-oaaRBufEtg74bXPXWzWbJ0,90944
267
+ nltk/featstruct.py,sha256=BVbotcvgnlNTKMDC1bL16-i3PCw5zXgP7X20tt-yPF0,106108
268
+ nltk/grammar.py,sha256=uTC2ScpQIVxWt38QfWceYczkTjTVzPplmD63RfLLKkY,59174
269
+ nltk/help.py,sha256=Sj2M3-tktpBZxwHxx1btdthJZ4hhZx-XUXlYuGv2Kp8,1709
270
+ nltk/inference/__init__.py,sha256=nw4pQFHOGUv4x7u21GrJBOUS2hc7JibvvgbVnqXuksA,814
271
+ nltk/inference/__pycache__/__init__.cpython-310.pyc,,
272
+ nltk/inference/__pycache__/api.cpython-310.pyc,,
273
+ nltk/inference/__pycache__/discourse.cpython-310.pyc,,
274
+ nltk/inference/__pycache__/mace.cpython-310.pyc,,
275
+ nltk/inference/__pycache__/nonmonotonic.cpython-310.pyc,,
276
+ nltk/inference/__pycache__/prover9.cpython-310.pyc,,
277
+ nltk/inference/__pycache__/resolution.cpython-310.pyc,,
278
+ nltk/inference/__pycache__/tableau.cpython-310.pyc,,
279
+ nltk/inference/api.py,sha256=GdomkZQT97b7Z_HER__KuhCDehRbT1jxD7MoV-1COnY,19560
280
+ nltk/inference/discourse.py,sha256=XojyiwkuvpTjBOZCcQ0q5CBpIMOw5fXw3eNzjZPJoqw,22691
281
+ nltk/inference/mace.py,sha256=EKRZuwCrX320jzWrq3NOFnfIugapuYdgiH31dVf2ZvE,12243
282
+ nltk/inference/nonmonotonic.py,sha256=4_uEiG5h11Cv9_Z7dFIGAZ8M_QpZ-gWNVew11TGbeSU,19174
283
+ nltk/inference/prover9.py,sha256=LHyuOmISLo5c64e5VOXiZsK-bG7z-0cb3xY01kWE068,16266
284
+ nltk/inference/resolution.py,sha256=wx0YCAC5GgICEOg0VN_x67W88cGHu854aQD3pIJcfq4,26761
285
+ nltk/inference/tableau.py,sha256=IpDZT3FbM02R2TnfjmAOlwXivnP19DXoT9Fu6xW4Cv0,26320
286
+ nltk/internals.py,sha256=eOGggyeDGf6gyU76p2SU6_vFQP6h5Frg8idDyS6naW8,39416
287
+ nltk/jsontags.py,sha256=IWrXxAjSzlgaxqclkKcAnxNzANbG1Zjf_j2jjPnxUy4,1948
288
+ nltk/langnames.py,sha256=dDNlEkDmsxWUKxU5CGpYLBHpWlcD1ZrUiO3XTMEPBFU,17957
289
+ nltk/lazyimport.py,sha256=qBI5PNKz5qYLrxow19KwLrSE821TyRhVKCafAGML-1E,4719
290
+ nltk/lm/__init__.py,sha256=Gsg0OaefWlZVbCDGYqh1cEluhXpWS7vN8Bgpfm3wa-w,8051
291
+ nltk/lm/__pycache__/__init__.cpython-310.pyc,,
292
+ nltk/lm/__pycache__/api.cpython-310.pyc,,
293
+ nltk/lm/__pycache__/counter.cpython-310.pyc,,
294
+ nltk/lm/__pycache__/models.cpython-310.pyc,,
295
+ nltk/lm/__pycache__/preprocessing.cpython-310.pyc,,
296
+ nltk/lm/__pycache__/smoothing.cpython-310.pyc,,
297
+ nltk/lm/__pycache__/util.cpython-310.pyc,,
298
+ nltk/lm/__pycache__/vocabulary.cpython-310.pyc,,
299
+ nltk/lm/api.py,sha256=u65V1dwqoBjCdxNSbLLUpY0zjzY0-WBGK7HHvV0Dct4,8495
300
+ nltk/lm/counter.py,sha256=AOqwTQFxaWNMnJZp5E6i5bPBq54Lc7dklp76J5Ty_rY,5250
301
+ nltk/lm/models.py,sha256=ricaFU593KT1n8ri5b-3JTxwpO__XXkZCYgPadPmrLA,4903
302
+ nltk/lm/preprocessing.py,sha256=yeW6yCp2e0zGFpcQ_puPZ0VBsjcespq2MLPPdUojY3A,1714
303
+ nltk/lm/smoothing.py,sha256=GqBAZAgZbQgMFTfu8LJFuWobda4AC8A8va2C3hbkI28,4745
304
+ nltk/lm/util.py,sha256=X7x-__sk-f_Z8ttRmLP1ASLIQlVLOVo1ziID3F9qDZQ,474
305
+ nltk/lm/vocabulary.py,sha256=rMng32oqXSg1XXOFpRi0TQtjaF_fQNx3b9MGKGakPnQ,7099
306
+ nltk/metrics/__init__.py,sha256=gu6faSWxN5vW86Lk7fvzb_NeD4H-5BcUvTqmo5lSNLg,1243
307
+ nltk/metrics/__pycache__/__init__.cpython-310.pyc,,
308
+ nltk/metrics/__pycache__/agreement.cpython-310.pyc,,
309
+ nltk/metrics/__pycache__/aline.cpython-310.pyc,,
310
+ nltk/metrics/__pycache__/association.cpython-310.pyc,,
311
+ nltk/metrics/__pycache__/confusionmatrix.cpython-310.pyc,,
312
+ nltk/metrics/__pycache__/distance.cpython-310.pyc,,
313
+ nltk/metrics/__pycache__/paice.cpython-310.pyc,,
314
+ nltk/metrics/__pycache__/scores.cpython-310.pyc,,
315
+ nltk/metrics/__pycache__/segmentation.cpython-310.pyc,,
316
+ nltk/metrics/__pycache__/spearman.cpython-310.pyc,,
317
+ nltk/metrics/agreement.py,sha256=NveWTfhBZDQWxqwEWbDMJKpeRElk7vtdN0bh9nMnKWI,16421
318
+ nltk/metrics/aline.py,sha256=yWktce0eQ_r60KKUioLZSkorZT8U2zPbxLA-wqLzzDA,32845
319
+ nltk/metrics/association.py,sha256=1hNurRIKGop2rDttTKddxtZkMrJ_0qBczugF9Mm4S4o,16569
320
+ nltk/metrics/confusionmatrix.py,sha256=szVY58vzNWQRr4objnsiouDcwd-kqAT5_b59wvwx4q8,13035
321
+ nltk/metrics/distance.py,sha256=oQ-o9tMyv5kTOJsRe2EKHLlArLiZxlAMJY73tKFnAcw,17661
322
+ nltk/metrics/paice.py,sha256=yge6FA2y8_AGYSmCWfzapmKBFF6kkJTe-puWp-KcTBk,14739
323
+ nltk/metrics/scores.py,sha256=nv0f5lsR_nKY_A2pJrVMtH4Mzef_CBpDWpkBoHnb-L0,7922
324
+ nltk/metrics/segmentation.py,sha256=WdPD6aH31Z55RfEJ7OM0FQoxmGLr_q-q6vEJ0CqxwDY,7221
325
+ nltk/metrics/spearman.py,sha256=irorJE5fYsGGxLLvKGvvL6je-hM4aonDBVhWS_ZiOS0,2197
326
+ nltk/misc/__init__.py,sha256=pgYpCMn6fRf90Zwn52OjzHDe5MsPgl7u9cbTKeEH8pk,406
327
+ nltk/misc/__pycache__/__init__.cpython-310.pyc,,
328
+ nltk/misc/__pycache__/babelfish.cpython-310.pyc,,
329
+ nltk/misc/__pycache__/chomsky.cpython-310.pyc,,
330
+ nltk/misc/__pycache__/minimalset.cpython-310.pyc,,
331
+ nltk/misc/__pycache__/sort.cpython-310.pyc,,
332
+ nltk/misc/__pycache__/wordfinder.cpython-310.pyc,,
333
+ nltk/misc/babelfish.py,sha256=9UkSa6l_j1BHxaT9CU1Viv_51RB0k9AA--3ytmQpsAk,361
334
+ nltk/misc/chomsky.py,sha256=UatgZu7Zj3W5DQzuxHZW6Zyxv5kH9l_W2u_ZnOCqXcc,5319
335
+ nltk/misc/minimalset.py,sha256=z7-UaqT7F-2ba_qybwY46bgaH4l5zQcyBkg5K_joFQs,2979
336
+ nltk/misc/sort.py,sha256=aeqONHRGSDcVksvB6a5npkwdf5sAy6A2vRP9wYp0Y1w,4547
337
+ nltk/misc/wordfinder.py,sha256=2HR5Fj4hv7Q2IDFlJb5Nl644uNWtSkWEUe-hBKYt6Zg,4352
338
+ nltk/parse/__init__.py,sha256=w2H8yrs8-Wov_wtGTHoMyRyGt7Q4iLyQC6Z05LhuEhc,3797
339
+ nltk/parse/__pycache__/__init__.cpython-310.pyc,,
340
+ nltk/parse/__pycache__/api.cpython-310.pyc,,
341
+ nltk/parse/__pycache__/bllip.cpython-310.pyc,,
342
+ nltk/parse/__pycache__/chart.cpython-310.pyc,,
343
+ nltk/parse/__pycache__/corenlp.cpython-310.pyc,,
344
+ nltk/parse/__pycache__/dependencygraph.cpython-310.pyc,,
345
+ nltk/parse/__pycache__/earleychart.cpython-310.pyc,,
346
+ nltk/parse/__pycache__/evaluate.cpython-310.pyc,,
347
+ nltk/parse/__pycache__/featurechart.cpython-310.pyc,,
348
+ nltk/parse/__pycache__/generate.cpython-310.pyc,,
349
+ nltk/parse/__pycache__/malt.cpython-310.pyc,,
350
+ nltk/parse/__pycache__/nonprojectivedependencyparser.cpython-310.pyc,,
351
+ nltk/parse/__pycache__/pchart.cpython-310.pyc,,
352
+ nltk/parse/__pycache__/projectivedependencyparser.cpython-310.pyc,,
353
+ nltk/parse/__pycache__/recursivedescent.cpython-310.pyc,,
354
+ nltk/parse/__pycache__/shiftreduce.cpython-310.pyc,,
355
+ nltk/parse/__pycache__/stanford.cpython-310.pyc,,
356
+ nltk/parse/__pycache__/transitionparser.cpython-310.pyc,,
357
+ nltk/parse/__pycache__/util.cpython-310.pyc,,
358
+ nltk/parse/__pycache__/viterbi.cpython-310.pyc,,
359
+ nltk/parse/api.py,sha256=R3xG2NEEAq5TvzQpuTKGE_xX_JLoVwp0lTGCQsL2WV8,2354
360
+ nltk/parse/bllip.py,sha256=LipdGFlJrKinwKVIgiEKosvdaDrFQGQq-7rZUOkkPNw,10976
361
+ nltk/parse/chart.py,sha256=6b3HoLPbT0OlKkETtezIODvqpBKIlkAPoY7r4gV91oM,63760
362
+ nltk/parse/corenlp.py,sha256=t9ePlsr3zWxf6CKEbczk71mCVe_y5j9U2sd8el8REms,27745
363
+ nltk/parse/dependencygraph.py,sha256=J9DcO7sszs6Pp_TqSRL-pJLwBATw_F98_xaZ9m0-kbM,32468
364
+ nltk/parse/earleychart.py,sha256=OVBGyzHbv6M76LyFlHv1Gz-0PvZ0xdRdIYgSb_Qet84,18274
365
+ nltk/parse/evaluate.py,sha256=P3qGZ7WG90mOrP4MEQXzDbIOB8WWhDBG3PIDIYfozx0,4468
366
+ nltk/parse/featurechart.py,sha256=iK0O0uC-ZAgg6Bcj9ACeQkAvBTrWo-hteu-b-cPdPhU,22532
367
+ nltk/parse/generate.py,sha256=kDlYgWj1f_YpbzVJq7OL6O5H0zU03hrrjxLuKLzJgvE,2381
368
+ nltk/parse/malt.py,sha256=_XMFcW3SOH0XCrzfv-o4-U8RTkcwDbFSHpfbWOzMtuM,16571
369
+ nltk/parse/nonprojectivedependencyparser.py,sha256=ncMpvaMMc8TtRzaPSub8Qt0IUfaXQV42YSbUMQDEnvg,29446
370
+ nltk/parse/pchart.py,sha256=KGMYKf5x2psS9XZfU6wbUnIF5jwtoeAtsHzJz6vyZ-E,20480
371
+ nltk/parse/projectivedependencyparser.py,sha256=WIWDRYAaUqr8u9UQP5AwSLXbciyoaClSN4TavumkfkY,28243
372
+ nltk/parse/recursivedescent.py,sha256=uaVune-fIIWa_wT3CTY4O8p9MhTP4VgW1UoNauPsBZQ,26032
373
+ nltk/parse/shiftreduce.py,sha256=Yl2JYRdUOqJIjQXOEWv4fUfpfGu5kLq94HaYPTV5QAk,17071
374
+ nltk/parse/stanford.py,sha256=xyPRx710ddMCVYIXje2gTwvZrvYgxOM1CMhM7ziDuVQ,19312
375
+ nltk/parse/transitionparser.py,sha256=9EdYOIGZPq77l3fgI4dnH63146YpC5PBfaZKaBPkhlU,32272
376
+ nltk/parse/util.py,sha256=6mu9ZVO2hRduKhZGr40bAwRPvhKyTO_Srx2MT8pAy6E,8667
377
+ nltk/parse/viterbi.py,sha256=czOjotH__XU_A_Mpf5-xYlYi8bXYOTbIff1mrPZBNYQ,18351
378
+ nltk/probability.py,sha256=ikWJyp0Equm4RyGxXOJFBBgNfr2jo2fK0Ck7xwmSks0,92907
379
+ nltk/sem/__init__.py,sha256=3-QdBYTgLd1iRHzo6e2f3OT0CDBWZAVmzhnlh7Yvu24,2443
380
+ nltk/sem/__pycache__/__init__.cpython-310.pyc,,
381
+ nltk/sem/__pycache__/boxer.cpython-310.pyc,,
382
+ nltk/sem/__pycache__/chat80.cpython-310.pyc,,
383
+ nltk/sem/__pycache__/cooper_storage.cpython-310.pyc,,
384
+ nltk/sem/__pycache__/drt.cpython-310.pyc,,
385
+ nltk/sem/__pycache__/drt_glue_demo.cpython-310.pyc,,
386
+ nltk/sem/__pycache__/evaluate.cpython-310.pyc,,
387
+ nltk/sem/__pycache__/glue.cpython-310.pyc,,
388
+ nltk/sem/__pycache__/hole.cpython-310.pyc,,
389
+ nltk/sem/__pycache__/lfg.cpython-310.pyc,,
390
+ nltk/sem/__pycache__/linearlogic.cpython-310.pyc,,
391
+ nltk/sem/__pycache__/logic.cpython-310.pyc,,
392
+ nltk/sem/__pycache__/relextract.cpython-310.pyc,,
393
+ nltk/sem/__pycache__/skolemize.cpython-310.pyc,,
394
+ nltk/sem/__pycache__/util.cpython-310.pyc,,
395
+ nltk/sem/boxer.py,sha256=rACkFGXGKpK0pMxGXxtpkaKF50-aysHw_9GQjf9xtww,55287
396
+ nltk/sem/chat80.py,sha256=TAiZ4BROBzIibz3jVkcgWL_BlmkC-3gMziEySS8JWMw,26519
397
+ nltk/sem/cooper_storage.py,sha256=ghg6kYG6a54I4sDiwgzX70Jcm6HlNCPDm5gZi2ZqPG4,4210
398
+ nltk/sem/drt.py,sha256=7YDYqc9XuWBleZ0aL41LW_wqpBbpvCMgqMnTOiRXX9s,53149
399
+ nltk/sem/drt_glue_demo.py,sha256=xe-SoNG6JVIYtB7YoMO75vEil0KSVGI-gxcfzuLgQdc,19171
400
+ nltk/sem/evaluate.py,sha256=07NnlgTmfjJy93UtFfFB6mdZRiW2hrm9ZTfO4RLfjcM,26282
401
+ nltk/sem/glue.py,sha256=1nBjlbsqna4gXnNG8iMQn5wb15QPxejyDn-vbTPmXrc,30254
402
+ nltk/sem/hole.py,sha256=D9Cnc89WvG9WCDlDNjYF3cig4UmHJgFIwtevuNX1CBs,14216
403
+ nltk/sem/lfg.py,sha256=SR-OYvj8HBtIx-EBvnfkOFstSj8eKXzAiVyQeFIsmZI,7716
404
+ nltk/sem/linearlogic.py,sha256=Wg_jzVVQDy1nCvYkuJB-g9tdwBYRmsenQboD7eRbEU8,17234
405
+ nltk/sem/logic.py,sha256=F0giVBpzZi3HYLQBlsiU0tLOOVEEkswlOYkRsitiVnU,70239
406
+ nltk/sem/relextract.py,sha256=UPv_7dKm-GpdYGL_J8CsJHAz0ALxGv_4EZ_rFk7_y7o,15809
407
+ nltk/sem/skolemize.py,sha256=CtOfU12APkeIkp-Z_jMlAOMkXIEO9le8TQUvlZ5rBns,5870
408
+ nltk/sem/util.py,sha256=GB8SOc7dtyywa4WrlVHr1mHwRntX9ppD7N1em-Bh1Yo,9062
409
+ nltk/sentiment/__init__.py,sha256=vre9oZROX6xHjdKjM8inuxYfiVLf341HZ_sPKyoA2Jo,382
410
+ nltk/sentiment/__pycache__/__init__.cpython-310.pyc,,
411
+ nltk/sentiment/__pycache__/sentiment_analyzer.cpython-310.pyc,,
412
+ nltk/sentiment/__pycache__/util.cpython-310.pyc,,
413
+ nltk/sentiment/__pycache__/vader.cpython-310.pyc,,
414
+ nltk/sentiment/sentiment_analyzer.py,sha256=vB09EsrK-16IqHDD7TdsHZYGrkrUcY1rPzNtHpTrL1w,10432
415
+ nltk/sentiment/util.py,sha256=memSkOlHeTfJpeZYtgYJ9LsiMOcoVw4wvwHBOsFwneY,31275
416
+ nltk/sentiment/vader.py,sha256=efJHlAUaRr6bV63ZVDIMAOaolVqct6lBKo9tMVCOpkg,21764
417
+ nltk/stem/__init__.py,sha256=BUVavJGvw_wgnL3PkklsVg9PNMbz3rCW1U6XTufamC8,1296
418
+ nltk/stem/__pycache__/__init__.cpython-310.pyc,,
419
+ nltk/stem/__pycache__/api.cpython-310.pyc,,
420
+ nltk/stem/__pycache__/arlstem.cpython-310.pyc,,
421
+ nltk/stem/__pycache__/arlstem2.cpython-310.pyc,,
422
+ nltk/stem/__pycache__/cistem.cpython-310.pyc,,
423
+ nltk/stem/__pycache__/isri.cpython-310.pyc,,
424
+ nltk/stem/__pycache__/lancaster.cpython-310.pyc,,
425
+ nltk/stem/__pycache__/porter.cpython-310.pyc,,
426
+ nltk/stem/__pycache__/regexp.cpython-310.pyc,,
427
+ nltk/stem/__pycache__/rslp.cpython-310.pyc,,
428
+ nltk/stem/__pycache__/snowball.cpython-310.pyc,,
429
+ nltk/stem/__pycache__/util.cpython-310.pyc,,
430
+ nltk/stem/__pycache__/wordnet.cpython-310.pyc,,
431
+ nltk/stem/api.py,sha256=eCDlGturJXqs0AG-q0AHN6EiqU7ytGs43ly-eEiob6s,741
432
+ nltk/stem/arlstem.py,sha256=3LW-2dSdsNNAGlQluBiOmHR6V7xOaRdIT2OdlZgcJVk,13006
433
+ nltk/stem/arlstem2.py,sha256=2SrhWIANG2Gd9Rxbvj-UIWc7-zr5-zIJGB8HDyszqW0,16535
434
+ nltk/stem/cistem.py,sha256=59OmWHS_EWFO-I-ZN1DVFnnz1rdcUxKCBwM4z8DRQoo,7259
435
+ nltk/stem/isri.py,sha256=2tOa82AbRnXPympONMJOVc6-CsWdyWlMgcllFwqrJ-I,14990
436
+ nltk/stem/lancaster.py,sha256=QrvXzQGULfwIMsW1Z8By8Pz8Exb1MTTydc5ZBV4dJao,12587
437
+ nltk/stem/porter.py,sha256=c5jYrt7IHEpV-neeZp6zHOjLXYh83x0tksE3VP7YkRg,28372
438
+ nltk/stem/regexp.py,sha256=5lb_FGFd7SixF8hyAZpNNLCCeNDfRhnp750We9dbZJA,1578
439
+ nltk/stem/rslp.py,sha256=cMyro3T1eslSdD-sE3Vq5Nnp4yJNrlB6gTQz08tlOxU,5511
440
+ nltk/stem/snowball.py,sha256=6somwXR8EoIN9TNmK251dPRGRZ75oC4i6CfPV8iqwk8,183890
441
+ nltk/stem/util.py,sha256=ktwGClVb3h-AndTu60wS6rfTAdruI41M1zbccWt7wm0,644
442
+ nltk/stem/wordnet.py,sha256=AojhkFURMhpF8vmS7uTkfeJNL-EYrvGb42v-yrTSD8w,1655
443
+ nltk/tag/__init__.py,sha256=v7hPbsW3lrb6AFSIZ3uhZ33iwCKVx7RvBHrNkNro1NY,7298
444
+ nltk/tag/__pycache__/__init__.cpython-310.pyc,,
445
+ nltk/tag/__pycache__/api.cpython-310.pyc,,
446
+ nltk/tag/__pycache__/brill.cpython-310.pyc,,
447
+ nltk/tag/__pycache__/brill_trainer.cpython-310.pyc,,
448
+ nltk/tag/__pycache__/crf.cpython-310.pyc,,
449
+ nltk/tag/__pycache__/hmm.cpython-310.pyc,,
450
+ nltk/tag/__pycache__/hunpos.cpython-310.pyc,,
451
+ nltk/tag/__pycache__/mapping.cpython-310.pyc,,
452
+ nltk/tag/__pycache__/perceptron.cpython-310.pyc,,
453
+ nltk/tag/__pycache__/senna.cpython-310.pyc,,
454
+ nltk/tag/__pycache__/sequential.cpython-310.pyc,,
455
+ nltk/tag/__pycache__/stanford.cpython-310.pyc,,
456
+ nltk/tag/__pycache__/tnt.cpython-310.pyc,,
457
+ nltk/tag/__pycache__/util.cpython-310.pyc,,
458
+ nltk/tag/api.py,sha256=hxGeLViDHBmcXYnWtYA8N3r7meYyOzW8nxafEaSXH0c,14810
459
+ nltk/tag/brill.py,sha256=PA8cP2tXwbxYtSO33vrV8RwGJNm4ZU_T5iCkqKf0W4g,16829
460
+ nltk/tag/brill_trainer.py,sha256=ba0A2b255xtF3N30iiLWy8oazQycJ3IP-gBY6SMuX2w,27900
461
+ nltk/tag/crf.py,sha256=eaU05hpUOPRO9TRVt6VXffvCB9ZsahkDu2gQi1x8FFQ,7960
462
+ nltk/tag/hmm.py,sha256=mkD06CBebJyBZ-lqXVsyVwCL1blqA0ucijINjynZiJQ,50349
463
+ nltk/tag/hunpos.py,sha256=th_TEehZi3QIlaFLJhI40tBpqn1Rn3QYzfv_dT1n1w8,5195
464
+ nltk/tag/mapping.py,sha256=TfcRmPsp-cM7FFx03ElLmf0ZYvW48N35SIl_y7M7QHY,4024
465
+ nltk/tag/perceptron.py,sha256=ge04T_6s-qIk2ElRLA43euMSzbaxQur2KxosuLfq_Tg,13425
466
+ nltk/tag/senna.py,sha256=_Y-mrYv1Y4SH8720pMKiXYvPFnuNJMeDeG6PUu1TyHk,5903
467
+ nltk/tag/sequential.py,sha256=hWSEZAYlZa8uKd5-o7NeAIsEaHOj2lZVaVX5F5ymdoI,28621
468
+ nltk/tag/stanford.py,sha256=_HuQnKPvcHn01gUtrvhaYI_GpOG2tldthDXoV3daCFA,8427
469
+ nltk/tag/tnt.py,sha256=gNsbvbZYFnhPLnbCKCAOdwJIsK7OyNxAje2SfRclyz8,18432
470
+ nltk/tag/util.py,sha256=FEApJmJ5lpb1mWbfhRvtKce9sR93WPiRJfUyAvBoc78,2353
471
+ nltk/tbl/__init__.py,sha256=7w88VhcTvvCRY03cUftsmoLkf5YanRyM3PXU-Ik2t2c,790
472
+ nltk/tbl/__pycache__/__init__.cpython-310.pyc,,
473
+ nltk/tbl/__pycache__/api.cpython-310.pyc,,
474
+ nltk/tbl/__pycache__/demo.cpython-310.pyc,,
475
+ nltk/tbl/__pycache__/erroranalysis.cpython-310.pyc,,
476
+ nltk/tbl/__pycache__/feature.cpython-310.pyc,,
477
+ nltk/tbl/__pycache__/rule.cpython-310.pyc,,
478
+ nltk/tbl/__pycache__/template.cpython-310.pyc,,
479
+ nltk/tbl/api.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
480
+ nltk/tbl/demo.py,sha256=VpqlJQdaXU5wrpJF2aSLhTlF62fOQl5sCYiBJrPZcZU,15338
481
+ nltk/tbl/erroranalysis.py,sha256=pav23zp0nOiGydqQ4wSJbXAVJmixxCwgodSthCL-onU,1454
482
+ nltk/tbl/feature.py,sha256=CrcNBJ_BGqnEXzFshpz_MGe6mTB1V0rMWBGWyn5Kukw,9690
483
+ nltk/tbl/rule.py,sha256=k-0gRVsZOigPWkqn_NuZvOeQ5bXx6YTYuSRA-oUSXPo,11515
484
+ nltk/tbl/template.py,sha256=LeTafIw_oehScGgwFgl9fklSIOY5tJvuJNFgzaRsJHU,12892
485
+ nltk/test/__init__.py,sha256=79tUwF8keWTdPOWa-gpVx0VkJr6DABwmq9j589IFABU,487
486
+ nltk/test/__pycache__/__init__.cpython-310.pyc,,
487
+ nltk/test/__pycache__/all.cpython-310.pyc,,
488
+ nltk/test/__pycache__/childes_fixt.cpython-310.pyc,,
489
+ nltk/test/__pycache__/classify_fixt.cpython-310.pyc,,
490
+ nltk/test/__pycache__/conftest.cpython-310.pyc,,
491
+ nltk/test/__pycache__/gensim_fixt.cpython-310.pyc,,
492
+ nltk/test/__pycache__/gluesemantics_malt_fixt.cpython-310.pyc,,
493
+ nltk/test/__pycache__/portuguese_en_fixt.cpython-310.pyc,,
494
+ nltk/test/__pycache__/probability_fixt.cpython-310.pyc,,
495
+ nltk/test/__pycache__/setup_fixt.cpython-310.pyc,,
496
+ nltk/test/all.py,sha256=Ojl5ZxWh7LV7XsdOyR8kWEOxMk7E4m7QnCUrQoACzQk,819
497
+ nltk/test/bleu.doctest,sha256=2LmQDiyg-BueBx8LbLJanXCs7UZI9zsLe5nurrXBVBs,862
498
+ nltk/test/bnc.doctest,sha256=_8MYpY69ibBaUmkNE3lu187WDOVV_AF4GgTvxSmRuLQ,2051
499
+ nltk/test/ccg.doctest,sha256=YHiQsfRdaAuOXrkBfD2WTSd9yWbAWyJ8K2KDtkAWyhk,19786
500
+ nltk/test/ccg_semantics.doctest,sha256=vPdQojJQwAxOXJ12cUQXKnHTnU5IOr1z-FszyX1MAAQ,31066
501
+ nltk/test/chat80.doctest,sha256=-bY1zKFhVZmtKf82ndwBt3aiNHy7SeSduXjLKggyy2o,8735
502
+ nltk/test/childes.doctest,sha256=FcKzuX_RXXHZNhCyU_S2B7xTN46R54mxjYs17bejhN0,9363
503
+ nltk/test/childes_fixt.py,sha256=A04g6D3QytqCatGOYAg6fCXqXT8XyjIPbRSkdG1ys8o,372
504
+ nltk/test/chunk.doctest,sha256=hDVcWtgJPEZJZLceKbm_885sgpaSR6DFHQMesFzyYeU,11511
505
+ nltk/test/classify.doctest,sha256=e1MEsCmHQcLkky6XomMc4je0mhImN8YghEy-A13Ieh8,7699
506
+ nltk/test/classify_fixt.py,sha256=zUj2OUNhyi2sJNmVdShbQnuhLUieJ7h_AwKmvj1Gnzw,119
507
+ nltk/test/collections.doctest,sha256=ygTv1l_HbXdVHDw91rjUxJy6KFnSvbvzpkXLvTfnVUU,622
508
+ nltk/test/collocations.doctest,sha256=ezSwbUboIG91fbmKX7mvFo3c9C_BlbgM85tRrctZAKU,12506
509
+ nltk/test/concordance.doctest,sha256=rPESoW6-ugpgj2LgBYgChcjOWv75x0eu3Y4A2MuZSsQ,3544
510
+ nltk/test/conftest.py,sha256=apMfe_V5EHXZHCXCMxVqMt3gpHCUwwxR-MxESis9--Q,804
511
+ nltk/test/corpus.doctest,sha256=K3vInYJLjonuHTysZCrHvZ1ytgseREpqZMcz9VsolHA,99206
512
+ nltk/test/crubadan.doctest,sha256=qn63dlNT7XmxUA1m2JmcwuX_i12_cWCAfJDVxSp9Kgs,2060
513
+ nltk/test/data.doctest,sha256=ggmXuZT1Hy7Bd5_bppQPhz64lO8E-dDHXtuh2hQ5HYM,14266
514
+ nltk/test/dependency.doctest,sha256=pXyaAjDE232xA0Q2EEvxkMNu8COSk0l52ELMi07C-qI,7669
515
+ nltk/test/discourse.doctest,sha256=AxJetWi0DetMfptecrI9lXac7mN4YVrfCVPr3VXDBkQ,17923
516
+ nltk/test/drt.doctest,sha256=wTRxo8ISpwcsF9RpwlHn0PLfpaL5ZCZxN2oEpqlGHYg,20076
517
+ nltk/test/featgram.doctest,sha256=APe6OaMrt1UwuKzLM-7NRXIQF0mPnpZj4vR1yTSnz0o,28870
518
+ nltk/test/featstruct.doctest,sha256=hjCDZs3NN2DJdyAH9BygfXUuWAP723xQFk3YMSg7p_Q,38894
519
+ nltk/test/framenet.doctest,sha256=KcZIkt-8_HJ2gDl7BvWG-vfOI3NI7Be2VT9sc9hcAXY,10797
520
+ nltk/test/generate.doctest,sha256=7yYAJ1EO1qAHy9OYVcoEehPs4hoEhvTvs0VH5H08oBg,2050
521
+ nltk/test/gensim.doctest,sha256=kmwbF1XcgZvyfrfdotjNw-VlkzgGFVxwVObQ0IPcAXI,5200
522
+ nltk/test/gensim_fixt.py,sha256=2p-4RObBWBU-YzbGPXAj03aPhimK-l_RLNdS_RuKHh4,77
523
+ nltk/test/gluesemantics.doctest,sha256=QVR_Hki10s1CRghGvxJDNDA2u1J89uj1O_nKt0RF8eo,12705
524
+ nltk/test/gluesemantics_malt.doctest,sha256=4S5usX2BTPAPpK7t1SIfwHGaajpVXAuk5CuAUvSagZU,2667
525
+ nltk/test/gluesemantics_malt_fixt.py,sha256=H7YUsT_M5LteTBF9utPjqUP8pybUaW3w2fQdGUPiT3c,232
526
+ nltk/test/grammar.doctest,sha256=z2ZzpqBjN64pPB7J3WbZcI_QsH5a1TkgdNKN5GsHMLE,1949
527
+ nltk/test/grammartestsuites.doctest,sha256=4eF9lME7iQqaAUMvp3IX0s815yi9MSUgbDrT_hJov2c,3309
528
+ nltk/test/index.doctest,sha256=MuVP-xRyC9Zu_bY7PU8BZekRztycmrD28ngq6q6RonI,2701
529
+ nltk/test/inference.doctest,sha256=8dABBDz575EQIw1qMwVdDCEQClRmaRxxMARqC1CHYBw,18365
530
+ nltk/test/internals.doctest,sha256=dzXAofPbEfck_BZYO1ZHp5NpqQd_Ofz3nGKjP_KlzHE,4283
531
+ nltk/test/japanese.doctest,sha256=79O_D43s3rVCS0Am06pG2hCiNUkT2A7AT1Up_BT82_g,1093
532
+ nltk/test/lm.doctest,sha256=mTo97a-_5wZ1t_G3Hso-LuhluTTtHZrsE5b89dhQXfY,3951
533
+ nltk/test/logic.doctest,sha256=h8numvKfRWQucoEA9HPJ02pxviSb8SdCa02BUvWPL5o,35183
534
+ nltk/test/meteor.doctest,sha256=dcxi8dfWOG6fm-7_VlHkxnaW8d3vEw6TBir0iAsf2Qo,1523
535
+ nltk/test/metrics.doctest,sha256=h9P-WsPkMHmFQDQw98TRwfRBAVhkuLqE3MOSl3hZaJY,11283
536
+ nltk/test/misc.doctest,sha256=upseLcrsXziqxxF0pCmA1Nyx9ovGAuUlpG7w4PK8a1k,3464
537
+ nltk/test/nonmonotonic.doctest,sha256=mG0_JgtIhZh9pD-jqiGAHD7nuQHGClxWhKvffiBPHNM,10370
538
+ nltk/test/paice.doctest,sha256=9KOoUsd6O-ACSMbt3Ras4zS-FE55R4jZ6xh1JKopb3c,1273
539
+ nltk/test/parse.doctest,sha256=fKDMs2TD3qhUgNdwW30CTYcEOl1olf3TRCHsf_i1heY,34936
540
+ nltk/test/portuguese_en.doctest,sha256=voMsH9rhsaI2ETsXYI8T8-ZXKYv6l1-ghv4TMaEDt7c,23121
541
+ nltk/test/portuguese_en_fixt.py,sha256=-66oHXFBbvDKHkwkcOLnpwcn29iUpwUEWrJ-LqSk5FM,130
542
+ nltk/test/probability.doctest,sha256=4BuJPzdy6l8hlRXIJOEMxfzlLl1oaru2ezTV6olNx0U,9244
543
+ nltk/test/probability_fixt.py,sha256=avszs9PHMTVYHHcOXA19-EsTYDahH4VPPPMqv1QkGpE,188
544
+ nltk/test/propbank.doctest,sha256=jDD0XEFjm2-hDA8g_Y7Us3feNLeOgsw8lvDn-tApO0g,6694
545
+ nltk/test/relextract.doctest,sha256=Klf15poDywGJTJlpmpTBnLF5ur-_0tLZC-S93Sox95A,9520
546
+ nltk/test/resolution.doctest,sha256=XJw6Bs4CBYSEEWreyqWTaoTo1ADGwGwRptEsZV8qUH8,8010
547
+ nltk/test/semantics.doctest,sha256=XhmM0qSpAcmqYZu6dV7Veugf3FpuyMxaHEh1t2UEqwI,25190
548
+ nltk/test/sentiment.doctest,sha256=dwARYfcbIn6oaPX7kRAo_ZjjJ_YDowxh3zAgr-16Mak,12229
549
+ nltk/test/sentiwordnet.doctest,sha256=7wIk6gIiYtONvkpNfAUK_xk-jXNVVzIzPlQJ4h2UTrk,1051
550
+ nltk/test/setup_fixt.py,sha256=IQUyYM-mNaVbfsGFvfOdJc0ymAJ-0u5OAZd2cqRgF0s,912
551
+ nltk/test/simple.doctest,sha256=ZF_0SZ5vp7pMfFp6iKf3ZvKkRYLHlxBamC0aaQItSog,2407
552
+ nltk/test/stem.doctest,sha256=XJu6ADeinzu41KgldR5pVuiLdzkmCsoJIXLaSQocTPs,2552
553
+ nltk/test/tag.doctest,sha256=Dl3QKGZi-1uJQwQKenGThEIfOLKKR7k3wghJKAf4GC4,34100
554
+ nltk/test/tokenize.doctest,sha256=9fZOgyZnwOBNiPYS0xRFSPcr8asz18Tc29Et8_nzHs4,20353
555
+ nltk/test/toolbox.doctest,sha256=NfbQ7Q_WFajCTtjxcLSzYkkvr8VVm8SGtqDerv5KBJ4,10323
556
+ nltk/test/translate.doctest,sha256=if9_vzqjIWk0wnok6QSaLO-dry5lt3DLWCTj99VWmf0,8396
557
+ nltk/test/tree.doctest,sha256=_MYclk55SLXJ4zGRu-bbL-oPOThpWc2G4c0cuLkyXXo,47273
558
+ nltk/test/treeprettyprinter.doctest,sha256=yuAL_WWYVV5jCAe0TmzQ9j4N2CSZD9r13_g992DUvkM,9376
559
+ nltk/test/treetransforms.doctest,sha256=UDSeLha6tfB-PN4_eJGQeOMifVhTIY89tho_2cuXDyc,5006
560
+ nltk/test/unit/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
561
+ nltk/test/unit/__pycache__/__init__.cpython-310.pyc,,
562
+ nltk/test/unit/__pycache__/test_aline.cpython-310.pyc,,
563
+ nltk/test/unit/__pycache__/test_bllip.cpython-310.pyc,,
564
+ nltk/test/unit/__pycache__/test_brill.cpython-310.pyc,,
565
+ nltk/test/unit/__pycache__/test_cfd_mutation.cpython-310.pyc,,
566
+ nltk/test/unit/__pycache__/test_cfg2chomsky.cpython-310.pyc,,
567
+ nltk/test/unit/__pycache__/test_chunk.cpython-310.pyc,,
568
+ nltk/test/unit/__pycache__/test_classify.cpython-310.pyc,,
569
+ nltk/test/unit/__pycache__/test_collocations.cpython-310.pyc,,
570
+ nltk/test/unit/__pycache__/test_concordance.cpython-310.pyc,,
571
+ nltk/test/unit/__pycache__/test_corenlp.cpython-310.pyc,,
572
+ nltk/test/unit/__pycache__/test_corpora.cpython-310.pyc,,
573
+ nltk/test/unit/__pycache__/test_corpus_views.cpython-310.pyc,,
574
+ nltk/test/unit/__pycache__/test_data.cpython-310.pyc,,
575
+ nltk/test/unit/__pycache__/test_disagreement.cpython-310.pyc,,
576
+ nltk/test/unit/__pycache__/test_distance.cpython-310.pyc,,
577
+ nltk/test/unit/__pycache__/test_downloader.cpython-310.pyc,,
578
+ nltk/test/unit/__pycache__/test_freqdist.cpython-310.pyc,,
579
+ nltk/test/unit/__pycache__/test_hmm.cpython-310.pyc,,
580
+ nltk/test/unit/__pycache__/test_json2csv_corpus.cpython-310.pyc,,
581
+ nltk/test/unit/__pycache__/test_json_serialization.cpython-310.pyc,,
582
+ nltk/test/unit/__pycache__/test_metrics.cpython-310.pyc,,
583
+ nltk/test/unit/__pycache__/test_naivebayes.cpython-310.pyc,,
584
+ nltk/test/unit/__pycache__/test_nombank.cpython-310.pyc,,
585
+ nltk/test/unit/__pycache__/test_pl196x.cpython-310.pyc,,
586
+ nltk/test/unit/__pycache__/test_pos_tag.cpython-310.pyc,,
587
+ nltk/test/unit/__pycache__/test_ribes.cpython-310.pyc,,
588
+ nltk/test/unit/__pycache__/test_rte_classify.cpython-310.pyc,,
589
+ nltk/test/unit/__pycache__/test_seekable_unicode_stream_reader.cpython-310.pyc,,
590
+ nltk/test/unit/__pycache__/test_senna.cpython-310.pyc,,
591
+ nltk/test/unit/__pycache__/test_stem.cpython-310.pyc,,
592
+ nltk/test/unit/__pycache__/test_tag.cpython-310.pyc,,
593
+ nltk/test/unit/__pycache__/test_tgrep.cpython-310.pyc,,
594
+ nltk/test/unit/__pycache__/test_tokenize.cpython-310.pyc,,
595
+ nltk/test/unit/__pycache__/test_twitter_auth.cpython-310.pyc,,
596
+ nltk/test/unit/__pycache__/test_util.cpython-310.pyc,,
597
+ nltk/test/unit/__pycache__/test_wordnet.cpython-310.pyc,,
598
+ nltk/test/unit/lm/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
599
+ nltk/test/unit/lm/__pycache__/__init__.cpython-310.pyc,,
600
+ nltk/test/unit/lm/__pycache__/test_counter.cpython-310.pyc,,
601
+ nltk/test/unit/lm/__pycache__/test_models.cpython-310.pyc,,
602
+ nltk/test/unit/lm/__pycache__/test_preprocessing.cpython-310.pyc,,
603
+ nltk/test/unit/lm/__pycache__/test_vocabulary.cpython-310.pyc,,
604
+ nltk/test/unit/lm/test_counter.py,sha256=t1Dgd6b6JFrtkggAzoRXSGfZ1gwNKiD4aM_cBPoFsEM,3891
605
+ nltk/test/unit/lm/test_models.py,sha256=3yVFNUsVC2_VUJexqclnSjInpQe14MuPVq3qsYlr2lc,20160
606
+ nltk/test/unit/lm/test_preprocessing.py,sha256=05lMhOdkglGipiMuJ0gTJwaGweYed0qVGade6VY1uXw,999
607
+ nltk/test/unit/lm/test_vocabulary.py,sha256=1Pd5rfniE0C_Pq5v2k3IKGdug6ZuA4ycbNZKfRpCfuI,5917
608
+ nltk/test/unit/test_aline.py,sha256=u9y3D19sJGY_VE9nSOOON5GMYyTIRGVXMyqveeMypyU,1130
609
+ nltk/test/unit/test_bllip.py,sha256=rm3KrL9F6F49WfXDV42GpuPlvbvsXibTbUXU0pWa-pw,1115
610
+ nltk/test/unit/test_brill.py,sha256=ZTDCN3y2mTZ-dLeL0GwvO3yM6LlcTmIQ1LaNMBtXZyE,1024
611
+ nltk/test/unit/test_cfd_mutation.py,sha256=YutOmFGBizpUzZ61l1cDxIegJah2ntuwKL88C49-WBA,1373
612
+ nltk/test/unit/test_cfg2chomsky.py,sha256=g2wKKjmogJpAaRiLxA0_xw4KLwZa4zvjA-gBMt9z1l0,1726
613
+ nltk/test/unit/test_chunk.py,sha256=xo-ItBtJdBsRIt-rX1rYYkV_ufABgPK4e6HlogRTvWg,2219
614
+ nltk/test/unit/test_classify.py,sha256=4Bv5-rDyrjDGdmRHY_qh4Rq_5VdoghzlJEPB_PCIzQo,1337
615
+ nltk/test/unit/test_collocations.py,sha256=vaiBeImr5dCDOhFPAN8Q4CAUVojJTwNHpodolyIymCU,3690
616
+ nltk/test/unit/test_concordance.py,sha256=91x9LT-875n7OOi3it5O1qr1xKdOA1ufZY3KLH10Iaw,4108
617
+ nltk/test/unit/test_corenlp.py,sha256=doMoc3Drnl3fDFxTaZKVPKq-75RTXOGSOqkI9K_74FQ,58632
618
+ nltk/test/unit/test_corpora.py,sha256=46IA2v_oxDRFQQGa6iGTHiTHAPsDZjIovDSG2432Ubc,9923
619
+ nltk/test/unit/test_corpus_views.py,sha256=mIxoCvqWSfInEQkISPwfZvTG6dTxYh7Bx0kCGC6VsoA,1600
620
+ nltk/test/unit/test_data.py,sha256=y1fXWnIylRrff9fBJBUYZ6xw3T6uwMg_6View-jKcas,390
621
+ nltk/test/unit/test_disagreement.py,sha256=e2JIXrNqCg1YTSh6P2lnGs9YN8KmkWcFD-zcZPsNkjk,4461
622
+ nltk/test/unit/test_distance.py,sha256=DIMhkfn2y6WvsiJRyw1y_T5b_4OHI6wG01eEAt8Cd9Q,5839
623
+ nltk/test/unit/test_downloader.py,sha256=QvpnRVehOfLZVJ-iUH8m5mEHG8w4deKxRhF7IOnjAZM,741
624
+ nltk/test/unit/test_freqdist.py,sha256=I6qkc8zleTMeivGWB0NntBVQDx_tVxthWRwcOB-T0i4,210
625
+ nltk/test/unit/test_hmm.py,sha256=bX7fSFd7k89JCr9VNFr1ZAng4m2KkfuTL_M2TNvA1nU,2285
626
+ nltk/test/unit/test_json2csv_corpus.py,sha256=-BUZfzFHAof4umKGAL-9WKGUBiPFyKzLVZOCmzW-a-g,5888
627
+ nltk/test/unit/test_json_serialization.py,sha256=CfpHkTvY0lF8rMQXQsv_0nSVhDfhxVkqDwTLq26pv5Q,3634
628
+ nltk/test/unit/test_metrics.py,sha256=iK6bLxVi1fVll-2eCmgzE-ubWnQlFeQjP079qdiRP-A,1949
629
+ nltk/test/unit/test_naivebayes.py,sha256=a_tjsQsyvPIsO3mrtmN6knaC9BFwPE7PDNHBSNdhYMc,764
630
+ nltk/test/unit/test_nombank.py,sha256=gIgs6vlEI2NheAh8c6wlJdk6apHmAMmaDZkP8laIvKY,760
631
+ nltk/test/unit/test_pl196x.py,sha256=C41qhbllNBqtVJ9tCFM8mReQqzsdbM7uoMo9hFVHKLg,410
632
+ nltk/test/unit/test_pos_tag.py,sha256=5HkW7hpjZd2270RVSFXECLxXg8jCY2iBViDoDA8O2Qs,2782
633
+ nltk/test/unit/test_ribes.py,sha256=DItkydO5d543kRFYiAebnqudiF2HETHrMAntG3H75jA,5204
634
+ nltk/test/unit/test_rte_classify.py,sha256=oNGw78oedct_VpwelsMVFb7v3bRFepnQWWbHgKp3GBQ,2765
635
+ nltk/test/unit/test_seekable_unicode_stream_reader.py,sha256=XBxkic2HcfqxfTY0XxBBBRNEo5FQrYYQzkg1vywwUA0,2265
636
+ nltk/test/unit/test_senna.py,sha256=fuLdpQO7kG-12rWpGprIOiH9fwxhv1yseNxKtpcUmss,3712
637
+ nltk/test/unit/test_stem.py,sha256=kjtoZlKkgtCZYX8kxyVQIPf5f6QSPzUCLkCJLDvDWFA,6347
638
+ nltk/test/unit/test_tag.py,sha256=h7YztNxvYcx2177MkQrPqPgYR2gL1sdl9YB3ZMKuciw,535
639
+ nltk/test/unit/test_tgrep.py,sha256=elx0roGwZJEOJy7-j7cqwAXvzvldlzYkxo8lHDoKf8E,31708
640
+ nltk/test/unit/test_tokenize.py,sha256=9uQx21Vs5Iv5mBmNyiHqTaOmIecSlD1n9jUY9dF1mBM,30921
641
+ nltk/test/unit/test_twitter_auth.py,sha256=bms9DQ07DwEr53IqMr49qGL9ria_1rEf3aA7xt8oR-A,2509
642
+ nltk/test/unit/test_util.py,sha256=UMUTzBJRSSAdFwp7tZkG7gygQ9gHcrk2IEiuq6XvTRA,1888
643
+ nltk/test/unit/test_wordnet.py,sha256=tZCn_lZVJ8POuehMbAIcgV000vCMwXFJUbdhuPEOSmw,9260
644
+ nltk/test/unit/translate/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
645
+ nltk/test/unit/translate/__pycache__/__init__.cpython-310.pyc,,
646
+ nltk/test/unit/translate/__pycache__/test_bleu.cpython-310.pyc,,
647
+ nltk/test/unit/translate/__pycache__/test_gdfa.cpython-310.pyc,,
648
+ nltk/test/unit/translate/__pycache__/test_ibm1.cpython-310.pyc,,
649
+ nltk/test/unit/translate/__pycache__/test_ibm2.cpython-310.pyc,,
650
+ nltk/test/unit/translate/__pycache__/test_ibm3.cpython-310.pyc,,
651
+ nltk/test/unit/translate/__pycache__/test_ibm4.cpython-310.pyc,,
652
+ nltk/test/unit/translate/__pycache__/test_ibm5.cpython-310.pyc,,
653
+ nltk/test/unit/translate/__pycache__/test_ibm_model.cpython-310.pyc,,
654
+ nltk/test/unit/translate/__pycache__/test_meteor.cpython-310.pyc,,
655
+ nltk/test/unit/translate/__pycache__/test_nist.cpython-310.pyc,,
656
+ nltk/test/unit/translate/__pycache__/test_stack_decoder.cpython-310.pyc,,
657
+ nltk/test/unit/translate/test_bleu.py,sha256=YpYHqzzebFqF8M-x2AjUYeI3YNmRSseJmAf4xoT13XY,15874
658
+ nltk/test/unit/translate/test_gdfa.py,sha256=E4r6o0S2r5rzK7NPFTyDA2a7IAfYzmIhCU4WXB0Wvdo,4770
659
+ nltk/test/unit/translate/test_ibm1.py,sha256=7dGtPK_T9qXGTmB8skOeJ_mNJ2G8VaoYOlqMkhP0fBs,2669
660
+ nltk/test/unit/translate/test_ibm2.py,sha256=fAjggyyMHRzPmpuFdov7dWfwsNM7hK9Z8p_qalCn_lY,3377
661
+ nltk/test/unit/translate/test_ibm3.py,sha256=9PUQNN75ITw_TgzWayxQrMZRNS6pdyNThSw-sTdscP4,4189
662
+ nltk/test/unit/translate/test_ibm4.py,sha256=r1gfJCmXlP0UZhZdrdzc0CcJLZNCn0zrn_BIMH0dVDk,5209
663
+ nltk/test/unit/translate/test_ibm5.py,sha256=20agaTpArhfMcx-Ady0BUXyxayBU_ipPiDTvb8s_1oo,6761
664
+ nltk/test/unit/translate/test_ibm_model.py,sha256=qTMFR4acSkEP5-kta-9B6RymoswEIitV3ljn86riNCo,9676
665
+ nltk/test/unit/translate/test_meteor.py,sha256=sldeMjDkStoMnxBnx1MKDRNBGmcs4Hdu9VmMSzpl1Jo,750
666
+ nltk/test/unit/translate/test_nist.py,sha256=HFfcs5Gq_goyYm-NSqdb_Eet6kClibKNvcr3gdasMmk,1645
667
+ nltk/test/unit/translate/test_stack_decoder.py,sha256=37pm9cVUc-I0789Yt-yUZME9wG6Xrcdzqs0a3lB_8mg,10000
668
+ nltk/test/util.doctest,sha256=BYtTUbvvvKXlM57NfVs-QGe2YqSN3M_Ad40fJNI0go0,1058
669
+ nltk/test/wordnet.doctest,sha256=5VI2tl-FxJ-NCwpMbv5AMvy8vvEoqaLW1hUNu2mzV9A,30528
670
+ nltk/test/wordnet_lch.doctest,sha256=5a80en1DUmUKj9RepGbrpJmPsgvYSFCezlYqh_da9ME,2361
671
+ nltk/test/wsd.doctest,sha256=wa0eAdE0glaOrzkY7VnxIb297tmA46TsuNqdeyHUNR4,3014
672
+ nltk/text.py,sha256=TVmS9X9weLrodN2y_VlHqSYaJi6LOh9U6lpLtyAJU0o,28909
673
+ nltk/tgrep.py,sha256=g3BNjLGCcIrKUnwXRoMd32f-l-8JqF6mUrJfxFKLOUI,37911
674
+ nltk/tokenize/__init__.py,sha256=0qmUpIe6PExgEzV9lXnzeiSfGkHVLoIxVrcZIgBF3FA,5243
675
+ nltk/tokenize/__pycache__/__init__.cpython-310.pyc,,
676
+ nltk/tokenize/__pycache__/api.cpython-310.pyc,,
677
+ nltk/tokenize/__pycache__/casual.cpython-310.pyc,,
678
+ nltk/tokenize/__pycache__/destructive.cpython-310.pyc,,
679
+ nltk/tokenize/__pycache__/legality_principle.cpython-310.pyc,,
680
+ nltk/tokenize/__pycache__/mwe.cpython-310.pyc,,
681
+ nltk/tokenize/__pycache__/nist.cpython-310.pyc,,
682
+ nltk/tokenize/__pycache__/punkt.cpython-310.pyc,,
683
+ nltk/tokenize/__pycache__/regexp.cpython-310.pyc,,
684
+ nltk/tokenize/__pycache__/repp.cpython-310.pyc,,
685
+ nltk/tokenize/__pycache__/sexpr.cpython-310.pyc,,
686
+ nltk/tokenize/__pycache__/simple.cpython-310.pyc,,
687
+ nltk/tokenize/__pycache__/sonority_sequencing.cpython-310.pyc,,
688
+ nltk/tokenize/__pycache__/stanford.cpython-310.pyc,,
689
+ nltk/tokenize/__pycache__/stanford_segmenter.cpython-310.pyc,,
690
+ nltk/tokenize/__pycache__/texttiling.cpython-310.pyc,,
691
+ nltk/tokenize/__pycache__/toktok.cpython-310.pyc,,
692
+ nltk/tokenize/__pycache__/treebank.cpython-310.pyc,,
693
+ nltk/tokenize/__pycache__/util.cpython-310.pyc,,
694
+ nltk/tokenize/api.py,sha256=gSsubjy4wvCeoLz2LIToXV7fEbH-ZYuU1ZQKiZAUATc,2357
695
+ nltk/tokenize/casual.py,sha256=38kW21jjDImAPLoCsvoCIHV91U6SqKYKroIzts82f3o,16101
696
+ nltk/tokenize/destructive.py,sha256=JkyvgJ4vbKQ7PKeG5_Ss3LWvYVhCLzrnuNC9mmXO66U,9447
697
+ nltk/tokenize/legality_principle.py,sha256=AIbUBCKtuAvehwOkC0Aa4lGmc8vJoRrNN5hm7wCpfyg,6236
698
+ nltk/tokenize/mwe.py,sha256=lKHLQ-4lwHuhDeg3OJvTnq1xPk2H-Sp78VYL1WRovQ0,4181
699
+ nltk/tokenize/nist.py,sha256=-EXf8gKQOFQmuymmIsslr1RInp4lS20rgXlECRNWbdA,7720
700
+ nltk/tokenize/punkt.py,sha256=KVKagPpsPNYKzGc6a9sPkBMUlHjw5LwZxWr_r4z6hpw,68804
701
+ nltk/tokenize/regexp.py,sha256=4oFnXCBYYwHbl9PLVIRdLIsMoFDKvhUvXUTB0N_Yu10,8331
702
+ nltk/tokenize/repp.py,sha256=0c9syu4dcvFjlFt-bwIIlM2uunhtnAc0rcR_QqfjYJ4,8245
703
+ nltk/tokenize/sexpr.py,sha256=NZazV0MD6VJH30gHaf4Ul4NlJMZ5r5S9ZR8xOROnezw,5302
704
+ nltk/tokenize/simple.py,sha256=Ie7Fhs95ubIHTzb-1Kfnfm0xjRNNsR9Jplu9Ei8v728,5379
705
+ nltk/tokenize/sonority_sequencing.py,sha256=XBiVVAp9f2kCX_bg80r0QI835uF0jtTMUuCUimsqWPQ,7739
706
+ nltk/tokenize/stanford.py,sha256=_p90fpkx6hmIwBtZYsKsXRa0i0OthUZ2kJqgXAkHLRY,3875
707
+ nltk/tokenize/stanford_segmenter.py,sha256=E3Y1HS4Y298DpKFvotlpWf2YMcO7zCs7JrajhugJf1Q,9857
708
+ nltk/tokenize/texttiling.py,sha256=QYDETnGqm4RdimXBZNInhALjzt0Wca8M3mH8aaX1lFU,16943
709
+ nltk/tokenize/toktok.py,sha256=R1eW8VozEtxuwDYjNVn2eWSGSTDvtTKtASMhDvdrdIk,7679
710
+ nltk/tokenize/treebank.py,sha256=ahB5jsQrFeXS-H1Y2Cm5dkkJE91Dva5nWI9Io-Uco2M,16669
711
+ nltk/tokenize/util.py,sha256=iw9hPFtD_oZOVetjcCjh0P6s98u_fjbMDgpxGxn4RGY,10339
712
+ nltk/toolbox.py,sha256=bMXsrkHbgGrP-Ktg2MBLDr-6MJupIlkTRtBhLUwI7tY,18337
713
+ nltk/translate/__init__.py,sha256=a9SOGnQ057m96m5YY8JOP5OIWi353ManWall-EIlxCo,1331
714
+ nltk/translate/__pycache__/__init__.cpython-310.pyc,,
715
+ nltk/translate/__pycache__/api.cpython-310.pyc,,
716
+ nltk/translate/__pycache__/bleu_score.cpython-310.pyc,,
717
+ nltk/translate/__pycache__/chrf_score.cpython-310.pyc,,
718
+ nltk/translate/__pycache__/gale_church.cpython-310.pyc,,
719
+ nltk/translate/__pycache__/gdfa.cpython-310.pyc,,
720
+ nltk/translate/__pycache__/gleu_score.cpython-310.pyc,,
721
+ nltk/translate/__pycache__/ibm1.cpython-310.pyc,,
722
+ nltk/translate/__pycache__/ibm2.cpython-310.pyc,,
723
+ nltk/translate/__pycache__/ibm3.cpython-310.pyc,,
724
+ nltk/translate/__pycache__/ibm4.cpython-310.pyc,,
725
+ nltk/translate/__pycache__/ibm5.cpython-310.pyc,,
726
+ nltk/translate/__pycache__/ibm_model.cpython-310.pyc,,
727
+ nltk/translate/__pycache__/meteor_score.cpython-310.pyc,,
728
+ nltk/translate/__pycache__/metrics.cpython-310.pyc,,
729
+ nltk/translate/__pycache__/nist_score.cpython-310.pyc,,
730
+ nltk/translate/__pycache__/phrase_based.cpython-310.pyc,,
731
+ nltk/translate/__pycache__/ribes_score.cpython-310.pyc,,
732
+ nltk/translate/__pycache__/stack_decoder.cpython-310.pyc,,
733
+ nltk/translate/api.py,sha256=SM3sIpzqhMYSFxnOHo1G30y9hkxKrQtE2Ugi1Qln03o,11109
734
+ nltk/translate/bleu_score.py,sha256=YpFNn80ydIWg8iKHgAJ7jgFFkPrkuEMku6m1rC9X_kA,30415
735
+ nltk/translate/chrf_score.py,sha256=C7mEHCk0Jn7QdmxctQImEja-HovmvpPOCfos_UhUH80,8978
736
+ nltk/translate/gale_church.py,sha256=fy4jIbJpZmiJyjVEc_2s1ng6BORp63vG9_HbEToFM6E,8732
737
+ nltk/translate/gdfa.py,sha256=dMWFOM72FZh8d3iuJhyhQZ8KxMfbusSzR0Nr74lyfKQ,6246
738
+ nltk/translate/gleu_score.py,sha256=symY8I6w4SxQDKUN9EyJL6_1Da-4bVT_y-Kd2nnFe38,8831
739
+ nltk/translate/ibm1.py,sha256=MnR2l9vpkyxCAyqGd6ajMUkVxsp5Q6m8Hz--lLzWVMs,9522
740
+ nltk/translate/ibm2.py,sha256=kaGLTJfIrsy3KYj1-72vFYMNtDD8ptJst73mS4NH2nk,12561
741
+ nltk/translate/ibm3.py,sha256=E9aNT2lKkV0I9wwGCvhZPWXk7FUl5VwqV2qPeDUbTck,14154
742
+ nltk/translate/ibm4.py,sha256=1kUdywKq3klNtmId3AHrdYhk-3ptzYlaRw9CH7Jydzk,20765
743
+ nltk/translate/ibm5.py,sha256=H6V--iB46jm9btUyvRSaJ09L2fPCda8xNhbNW9AbtKQ,27957
744
+ nltk/translate/ibm_model.py,sha256=AXy2cgctd8CBV77lih-Yvw2G32xyCO8YMLIGpTugXHU,20504
745
+ nltk/translate/meteor_score.py,sha256=-ZKuCuXxmexx3U-GkpUBvbxNyFEyKZUL16ZIkNnOVYY,17301
746
+ nltk/translate/metrics.py,sha256=qyM4DXkdyRY6OYiHR0M9anTGl129lsHyKIzutfJ-Low,1513
747
+ nltk/translate/nist_score.py,sha256=5n8KyFK_99PcGPGE_l-wkKPbbj9Uy68iE4MZiWEKaxY,8148
748
+ nltk/translate/phrase_based.py,sha256=KBfNqROhEiut1N0C-nFDCivllejA4OUeZ6BLyuMNYTA,7860
749
+ nltk/translate/ribes_score.py,sha256=OGPOh-byCf0R7i2aQYWR-Vh21RJtl9nxQKHEH_YuBto,14027
750
+ nltk/translate/stack_decoder.py,sha256=MuRPezJG4gq2TQsArF0Cm3xn2X6E8FAKSg9BD4Qx4cI,20516
751
+ nltk/tree/__init__.py,sha256=mruLTDldjRtc3viZeVxuUp_QaWW49aRrCSIlFUgln9I,1466
752
+ nltk/tree/__pycache__/__init__.cpython-310.pyc,,
753
+ nltk/tree/__pycache__/immutable.cpython-310.pyc,,
754
+ nltk/tree/__pycache__/parented.cpython-310.pyc,,
755
+ nltk/tree/__pycache__/parsing.cpython-310.pyc,,
756
+ nltk/tree/__pycache__/prettyprinter.cpython-310.pyc,,
757
+ nltk/tree/__pycache__/probabilistic.cpython-310.pyc,,
758
+ nltk/tree/__pycache__/transforms.cpython-310.pyc,,
759
+ nltk/tree/__pycache__/tree.cpython-310.pyc,,
760
+ nltk/tree/immutable.py,sha256=NOmT_xXNUrk3ct0m7ZMNhqj_kL-91lRdP_ZwTc6bZEc,4178
761
+ nltk/tree/parented.py,sha256=0VrrC0i7eBQuj0Q3H4bGrhWXXzlqvIX-7efnZmXtNTI,23192
762
+ nltk/tree/parsing.py,sha256=IpYHYTBD_VZkp4m0NbC8qmhj9ZiQVI_8x4iJmoe2Hp4,2083
763
+ nltk/tree/prettyprinter.py,sha256=1nybXp3GGP8AF_FxG_v6xrXiQxyvTAt7yseLLZ0QLdI,25586
764
+ nltk/tree/probabilistic.py,sha256=mOnOfXKwE_OeIs4llAStM0vtm4DOqDbWgMOrR42Ni6U,2492
765
+ nltk/tree/transforms.py,sha256=PmprKuO_0pYsSxQPdhnNnJsRmZNOtDYkImwZMoOVfvY,13689
766
+ nltk/tree/tree.py,sha256=euTPBiCu9qVe2_-amu74Ew4SdqxrfIC0itRZkh_r05Q,36500
767
+ nltk/treeprettyprinter.py,sha256=TJU6UHvemo2C_9a0LdTYS6n4ES4QjVf4sQcXq8HapQo,975
768
+ nltk/treetransforms.py,sha256=B_0-bNh4gkTu2dY8E5mt8XQdN97IKFL7LrtOMeASRps,5288
769
+ nltk/twitter/__init__.py,sha256=npOhJzWN63BFf7aPDfUAia76r8uVgVy3ll6ohLKS8fU,819
770
+ nltk/twitter/__pycache__/__init__.cpython-310.pyc,,
771
+ nltk/twitter/__pycache__/api.cpython-310.pyc,,
772
+ nltk/twitter/__pycache__/common.cpython-310.pyc,,
773
+ nltk/twitter/__pycache__/twitter_demo.cpython-310.pyc,,
774
+ nltk/twitter/__pycache__/twitterclient.cpython-310.pyc,,
775
+ nltk/twitter/__pycache__/util.cpython-310.pyc,,
776
+ nltk/twitter/api.py,sha256=yAHSw0JeVRAKJOHvWGqml3U3t7GYaQwhPU3Kf1sRYqw,4692
777
+ nltk/twitter/common.py,sha256=RJbcw3Wvr6YTnQ4YqfWQDN494vKATE_REx-5-9YL5Qg,10120
778
+ nltk/twitter/twitter_demo.py,sha256=dCplglFGLm9I5NgSt3UHVM-NVES2zWWjDnVPRFUONIQ,8309
779
+ nltk/twitter/twitterclient.py,sha256=Vliyz7To9z2IJmUUg6AWcwDS-gNIIF2Yi5fuPfJN0zE,19927
780
+ nltk/twitter/util.py,sha256=Ij7TX3ypt1uYcfo6nSwCbygUpK6_59OhNN3l1ZPefS0,4546
781
+ nltk/util.py,sha256=VijbYZYpM5wjWEsgI0uu-GnR-zJMulfBoDgeJI9QpGw,42026
782
+ nltk/wsd.py,sha256=5Ie3V_RtWQGRsIeL0rMnGGA_9KEGD_9l9GkbkFyYQoA,1789
llmeval-env/lib/python3.10/site-packages/nltk-3.8.1.dist-info/WHEEL ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ Wheel-Version: 1.0
2
+ Generator: bdist_wheel (0.37.0)
3
+ Root-Is-Purelib: true
4
+ Tag: py3-none-any
5
+
llmeval-env/lib/python3.10/site-packages/nltk-3.8.1.dist-info/entry_points.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+
2
+ [console_scripts]
3
+ nltk=nltk.cli:cli
llmeval-env/lib/python3.10/site-packages/nltk-3.8.1.dist-info/top_level.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ nltk
llmeval-env/lib/python3.10/site-packages/peft/tuners/adaption_prompt/__init__.py ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023-present the HuggingFace Inc. team.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ from .config import AdaptionPromptConfig
15
+ from .layer import AdaptedAttention
16
+ from .model import AdaptionPromptModel
17
+
18
+
19
+ __all__ = ["AdaptionPromptConfig", "AdaptedAttention", "AdaptionPromptModel"]
llmeval-env/lib/python3.10/site-packages/peft/tuners/adaption_prompt/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (382 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/peft/tuners/adaption_prompt/__pycache__/config.cpython-310.pyc ADDED
Binary file (2.12 kB). View file
 
llmeval-env/lib/python3.10/site-packages/peft/tuners/adaption_prompt/__pycache__/layer.cpython-310.pyc ADDED
Binary file (3.29 kB). View file
 
llmeval-env/lib/python3.10/site-packages/peft/tuners/adaption_prompt/__pycache__/model.cpython-310.pyc ADDED
Binary file (5.56 kB). View file
 
llmeval-env/lib/python3.10/site-packages/peft/tuners/adaption_prompt/__pycache__/utils.cpython-310.pyc ADDED
Binary file (3.56 kB). View file
 
llmeval-env/lib/python3.10/site-packages/peft/tuners/adaption_prompt/config.py ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023-present the HuggingFace Inc. team.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from collections import namedtuple
16
+ from dataclasses import dataclass, field
17
+
18
+ from peft.config import PeftConfig
19
+ from peft.utils import PeftType
20
+
21
+ from .utils import llama_compute_query_states
22
+
23
+
24
+ @dataclass
25
+ class AdaptionPromptConfig(PeftConfig):
26
+ """Stores the configuration of an [`AdaptionPromptModel`]."""
27
+
28
+ target_modules: str = field(
29
+ default=None, metadata={"help": "Name of the attention submodules to insert adaption prompts into."}
30
+ )
31
+ adapter_len: int = field(default=None, metadata={"help": "Number of adapter tokens to insert"})
32
+ adapter_layers: int = field(default=None, metadata={"help": "Number of adapter layers (from the top)"})
33
+
34
+ def __post_init__(self):
35
+ self.peft_type = PeftType.ADAPTION_PROMPT
36
+
37
+ @property
38
+ def is_adaption_prompt(self) -> bool:
39
+ """Return True if this is an adaption prompt config."""
40
+ return True
41
+
42
+
43
+ # Contains the config that is specific to a transformers model type.
44
+ ModelTypeConfig = namedtuple(
45
+ "ModelTypeConfig", ["compute_query_states", "target_modules", "k_proj_layer", "v_proj_layer", "o_proj_layer"]
46
+ )
47
+
48
+ # Mapping of transformers model types to their specific configuration.
49
+ TRANSFORMERS_MODEL_CONFIG = {
50
+ "llama": ModelTypeConfig(
51
+ compute_query_states=llama_compute_query_states,
52
+ target_modules="self_attn",
53
+ k_proj_layer="k_proj",
54
+ v_proj_layer="v_proj",
55
+ o_proj_layer="o_proj",
56
+ ),
57
+ "mistral": ModelTypeConfig( # same as llama,
58
+ compute_query_states=llama_compute_query_states,
59
+ target_modules="self_attn",
60
+ k_proj_layer="k_proj",
61
+ v_proj_layer="v_proj",
62
+ o_proj_layer="o_proj",
63
+ ),
64
+ }
65
+
66
+
67
+ def prepare_config(
68
+ peft_config: AdaptionPromptConfig,
69
+ model,
70
+ ) -> AdaptionPromptConfig:
71
+ """Prepare the config based on the llama model type."""
72
+ if model.config.model_type not in TRANSFORMERS_MODEL_CONFIG:
73
+ raise ValueError("Unsupported model type for adaption prompt: '{model.config.model_type}'.")
74
+
75
+ model_config = TRANSFORMERS_MODEL_CONFIG[model.config.model_type]
76
+
77
+ if peft_config.target_modules is None:
78
+ peft_config.target_modules = model_config.target_modules
79
+
80
+ return peft_config
llmeval-env/lib/python3.10/site-packages/peft/tuners/adaption_prompt/layer.py ADDED
@@ -0,0 +1,128 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023-present the HuggingFace Inc. team.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import math
16
+
17
+ import torch
18
+ import torch.nn as nn
19
+ import torch.nn.functional as F
20
+
21
+ from .config import TRANSFORMERS_MODEL_CONFIG
22
+
23
+
24
+ class AdaptedAttention(nn.Module):
25
+ """This module wraps a LLamaAttention module and injects adaption prompts."""
26
+
27
+ def __init__(self, model_type: str, adapter_len: int, model):
28
+ """
29
+ Initialize object.
30
+
31
+ Args:
32
+ model_type: The transformer model type. This is used to retrieve the right method to
33
+ compute query states.
34
+ adapter_len: The length of the adaption prompt to insert.
35
+ model: The original transformer attention module that is being wrapped.
36
+ """
37
+ assert not isinstance(model, AdaptedAttention)
38
+ super().__init__()
39
+ self.model_type = model_type
40
+ self.model = model
41
+ self.adapter_len = adapter_len
42
+ # Assume all parameters of the attention model we are wrapping are on the same device.
43
+ device = next(model.parameters()).device
44
+ # Don't think this was specified in the paper, but we follow the official repo which used an Embedding
45
+ # which initializes the tokens with standard normal values.
46
+ # https://github.com/ZrrSkywalker/LLaMA-Adapter/blob/41c3546fe1997ab8a65809dc8d8f9252b19d9faf/llama/model.py#L234
47
+ # (bsz, adapter_len, hidden_size)
48
+ target_dtype = (
49
+ model.q_proj.weight.dtype if model.q_proj.weight.dtype not in [torch.int8, torch.uint8] else torch.float32
50
+ )
51
+ self.adaption_prompt = nn.Parameter(
52
+ torch.empty(1, adapter_len, self.model.hidden_size, device=device, dtype=target_dtype).normal_()
53
+ )
54
+ # Initialize the gate to 0 as this is "zero-init".
55
+ self.adaption_gate = nn.Parameter(torch.zeros(1, device=device, dtype=target_dtype))
56
+
57
+ def forward(self, **kwargs):
58
+ """
59
+ Forward pass for the adapter which wraps the original LlamaAttention module.
60
+
61
+ "Official" paper implementation:
62
+ https://github.com/ZrrSkywalker/LLaMA-Adapter/blob/41c3546fe1997ab8a65809dc8d8f9252b19d9faf/llama/model.py#L141
63
+
64
+ Args:
65
+ kwargs: See the original LlamaAttention module.
66
+ """
67
+ if kwargs.get("output_attention", False):
68
+ raise NotImplementedError("output_attention is not currently supported.")
69
+
70
+ output, _, past_key_value = self.model(**kwargs)
71
+ bsz = output.shape[0]
72
+ q_len = output.shape[1]
73
+ embed_dim = output.shape[2]
74
+ k_proj_layer = TRANSFORMERS_MODEL_CONFIG[self.model_type].k_proj_layer
75
+ v_proj_layer = TRANSFORMERS_MODEL_CONFIG[self.model_type].v_proj_layer
76
+ o_proj_layer = TRANSFORMERS_MODEL_CONFIG[self.model_type].o_proj_layer
77
+ factor = (
78
+ self.model.k_proj.in_features // self.model.k_proj.out_features
79
+ ) # Mistral has different input and output dimension for k_proj and v_proj layers
80
+
81
+ if k_proj_layer == v_proj_layer:
82
+ _, key, value = getattr(self.model, k_proj_layer)(self.adaption_prompt).split(embed_dim, dim=2)
83
+ else:
84
+ key = getattr(self.model, k_proj_layer)(self.adaption_prompt)
85
+ value = getattr(self.model, v_proj_layer)(self.adaption_prompt)
86
+
87
+ # (bsz, num_key_value_heads, adapter_len, head_dim)
88
+ adapter_k = (
89
+ key.view(1, self.adapter_len, (self.model.num_heads // factor), self.model.head_dim)
90
+ .repeat(bsz, 1, 1, 1)
91
+ .transpose(1, 2)
92
+ )
93
+ adapter_v = (
94
+ value.view(1, self.adapter_len, (self.model.num_heads // factor), self.model.head_dim)
95
+ .repeat(bsz, 1, 1, 1)
96
+ .transpose(1, 2)
97
+ )
98
+ # Below is taken from https://github.com/huggingface/transformers/blob/e547458c43dfdbbb8f6a7757237e234c44e20a8f/src/transformers/models/mistral/modeling_mistral.py#L181
99
+ # (bsz, num_heads, adapter_len, head_dim)
100
+ adapter_k = torch.repeat_interleave(adapter_k, repeats=factor, dim=1)
101
+ adapter_v = torch.repeat_interleave(adapter_v, repeats=factor, dim=1)
102
+ # Recompute query states.
103
+ compute_query_states = TRANSFORMERS_MODEL_CONFIG[self.model_type].compute_query_states
104
+ # (bsz, num_heads, q_len, head_dim)
105
+ query_states = compute_query_states(model=self.model, **kwargs)
106
+
107
+ previous_dtype = query_states.dtype
108
+
109
+ # (bsz, num_heads, q_len, adapter_len)
110
+ scores = torch.matmul(query_states, adapter_k.transpose(2, 3).to(previous_dtype)) / math.sqrt(
111
+ self.model.head_dim
112
+ )
113
+ # Upcast attention to fp32
114
+ # (bsz, num_heads, q_len, adapter_len)
115
+ scores = self.adaption_gate * F.softmax(scores, dim=-1, dtype=torch.float32).to(previous_dtype)
116
+ # (bsz, q_len, num_heads * head_dim)
117
+ adapter_output = torch.matmul(scores, adapter_v).transpose(1, 2).reshape(bsz, q_len, -1)
118
+
119
+ # (bsz, q_len, hidden_size)
120
+ if o_proj_layer is not None:
121
+ adapter_output = getattr(self.model, o_proj_layer)(adapter_output)
122
+
123
+ # Add adaption prompt output to original output.
124
+ output = output + adapter_output
125
+
126
+ # Restore original dtype.
127
+ output = output.to(previous_dtype)
128
+ return output, None, past_key_value
llmeval-env/lib/python3.10/site-packages/peft/tuners/adaption_prompt/model.py ADDED
@@ -0,0 +1,161 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023-present the HuggingFace Inc. team.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from typing import Dict, List
16
+
17
+ import torch.nn as nn
18
+
19
+ from peft.utils import _freeze_adapter, _get_submodules
20
+
21
+ from .config import AdaptionPromptConfig, prepare_config
22
+ from .layer import AdaptedAttention
23
+ from .utils import is_adaption_prompt_trainable
24
+
25
+
26
+ class AdaptionPromptModel(nn.Module):
27
+ """
28
+ Implements adaption prompts as described in https://arxiv.org/pdf/2303.16199.pdf.
29
+
30
+ The top L attention modules are replaced with AdaptedAttention modules that wrap the original ones, but insert
31
+ trainable prompts with gates (for zero init).
32
+
33
+ Notes on the multi-adapter pattern:
34
+ - We store the states of different adapters by keeping a dictionary of AdaptedAttention modules indexed by adapter
35
+ name.
36
+ - Every time we switch adapters, we remove the modules of the currently active adapter from the model, store them
37
+ in the dictionary, and replace them with the modules of the new adapter.
38
+ - To avoid duplicated and potentially inconsistent state, the currently active adapter is always removed from the
39
+ dictionary.
40
+ - Disabling the adapter would also result in the modules being removed from the model.
41
+ """
42
+
43
+ def __init__(self, model, configs: Dict, adapter_name: str):
44
+ super().__init__()
45
+ self.model = model
46
+ # Store adapter configs by name.
47
+ self.peft_config: Dict[str, AdaptionPromptConfig] = {}
48
+ # Store lists of the parents of the affected attention modules by adapter name.
49
+ # We keep references to the parents so we can swap the adapters in-and-out of the model.
50
+ self._parents: Dict[str, List[nn.Module]] = {}
51
+ # Store lists of cached AdaptedAttention modules by name.
52
+ self._cached_adapters: Dict[str, List] = {}
53
+ # The name of the currently active adapter.
54
+ self._active_adapter = None
55
+ # Whether the adapter is enabled.
56
+ self._enabled = True
57
+ self.forward = self.model.forward
58
+ self.add_adapter(adapter_name, configs[adapter_name])
59
+ self._mark_only_adaption_prompts_as_trainable(self.model)
60
+
61
+ def add_adapter(self, adapter_name: str, config: AdaptionPromptConfig) -> None:
62
+ """Add an adapter with the given name and config."""
63
+ config = prepare_config(config, self.model)
64
+ if adapter_name in self.peft_config:
65
+ raise ValueError(f"Adapter with name '{adapter_name}' already exists.")
66
+
67
+ parents = []
68
+ for name, _ in self.model.named_modules():
69
+ if name.endswith(config.target_modules):
70
+ par, _, _ = _get_submodules(self.model, name)
71
+ parents.append(par)
72
+ if len(parents) < config.adapter_layers:
73
+ raise ValueError(
74
+ f"Config specifies more adapter layers '{config.adapter_layers}'"
75
+ f" than the model has '{len(parents)}'."
76
+ )
77
+ # Note that if the target modules are not in Sequential, ModuleList, or
78
+ # some other PyTorch ordered container, the behavior is undefined as we
79
+ # assume here that the order of the modules is the same as the order of
80
+ # the transformer decoder layers.
81
+ parents = parents[-config.adapter_layers :]
82
+ self._parents[adapter_name] = parents
83
+
84
+ # It is only None during initialization.
85
+ # If it is disabled, we don't have to remove the modules.
86
+ if self._active_adapter is not None and self._enabled:
87
+ self._remove_adapted_attentions(self._active_adapter)
88
+ self._active_adapter = adapter_name
89
+ self.peft_config[adapter_name] = config
90
+ self._create_adapted_attentions(config, parents)
91
+ if not self._enabled:
92
+ self._remove_adapted_attentions(self._active_adapter)
93
+
94
+ if config.inference_mode:
95
+ _freeze_adapter(self.model, adapter_name)
96
+
97
+ def set_adapter(self, adapter_name: str) -> None:
98
+ """Set the model to use the adapter with the given name."""
99
+ if self._active_adapter == adapter_name:
100
+ return
101
+ if adapter_name not in self.peft_config:
102
+ raise ValueError(f"Adapter with name '{adapter_name}' does not exist.")
103
+
104
+ if self._enabled:
105
+ self._remove_adapted_attentions(self._active_adapter)
106
+ self._set_adapted_attentions(adapter_name)
107
+
108
+ self._active_adapter = adapter_name
109
+
110
+ def enable_adapter_layers(self):
111
+ """Enable adapter layers by swapping in cached AdaptedAttention modules."""
112
+ self._enabled = True
113
+ self._set_adapted_attentions(self._active_adapter)
114
+
115
+ def disable_adapter_layers(self):
116
+ """Disable adapter layers by swapping out AdaptedAttention modules."""
117
+ self._enabled = False
118
+ self._remove_adapted_attentions(self._active_adapter)
119
+
120
+ def _create_adapted_attentions(self, config: AdaptionPromptConfig, parents: List[nn.Module]) -> None:
121
+ """Wrap LlamaAttention modules with newly created AdaptedAttention modules."""
122
+ for par in parents:
123
+ attn = AdaptedAttention(
124
+ model_type=self.model.config.model_type,
125
+ adapter_len=config.adapter_len,
126
+ model=getattr(par, config.target_modules),
127
+ )
128
+ setattr(par, config.target_modules, attn)
129
+
130
+ def _set_adapted_attentions(self, adapter_name: str) -> None:
131
+ """Replace LlamaAttention modules with cached AdaptedAttention modules."""
132
+ cached = self._cached_adapters[adapter_name]
133
+ del self._cached_adapters[adapter_name]
134
+ config = self.peft_config[adapter_name]
135
+ for i, par in enumerate(self._parents[adapter_name]):
136
+ setattr(par, config.target_modules, cached[i])
137
+
138
+ def _remove_adapted_attentions(self, adapter_name: str) -> None:
139
+ """Remove AdaptedAttention modules from the model and store them in the cache."""
140
+ config = self.peft_config[adapter_name]
141
+ adapted_attentions = []
142
+ for par in self._parents[adapter_name]:
143
+ attn = getattr(par, config.target_modules)
144
+ adapted_attentions.append(attn)
145
+ setattr(par, config.target_modules, attn.model)
146
+ self._cached_adapters[adapter_name] = adapted_attentions
147
+
148
+ def _mark_only_adaption_prompts_as_trainable(self, model: nn.Module) -> None:
149
+ """Freeze all parameters of the model except the adaption prompts."""
150
+ for n, p in model.named_parameters():
151
+ if not is_adaption_prompt_trainable(n):
152
+ p.requires_grad = False
153
+
154
+ def __getattr__(self, name: str):
155
+ """Forward missing attributes to the wrapped module."""
156
+ try:
157
+ return super().__getattr__(name) # defer to nn.Module's logic
158
+ except AttributeError:
159
+ # This is necessary as e.g. causal models have various methods that we
160
+ # don't want to re-implement here.
161
+ return getattr(self.model, name)
llmeval-env/lib/python3.10/site-packages/peft/tuners/adaption_prompt/utils.py ADDED
@@ -0,0 +1,121 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023-present the HuggingFace Inc. team.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ import inspect
15
+
16
+ import torch
17
+ import torch.nn as nn
18
+
19
+
20
+ def llama_rotate_half(x: torch.Tensor) -> torch.Tensor:
21
+ """
22
+ Rotate half the hidden dims of the input.
23
+
24
+ This function was duplicated verbatim from:
25
+ https://github.com/huggingface/transformers/blob/1de8ce9ee1191ba761a593ac15d9ccbf5851bfc5/src/transformers/models/llama/modeling_llama.py#L126
26
+
27
+ This was done to eliminate the Llama transformers implementation as a dependency of this file. Note that some other
28
+ functions were also adapted from the transformers implementation but were modified.
29
+ """
30
+ x1 = x[..., : x.shape[-1] // 2]
31
+ x2 = x[..., x.shape[-1] // 2 :]
32
+ return torch.cat((-x2, x1), dim=-1)
33
+
34
+
35
+ def llama_apply_rotary_pos_emb(q, cos, sin, position_ids):
36
+ """
37
+ Apply rotary position embedding to query states in the Llama model.
38
+
39
+ This function was adapted from:
40
+ https://github.com/huggingface/transformers/blob/1de8ce9ee1191ba761a593ac15d9ccbf5851bfc5/src/transformers/models/llama/modeling_llama.py#L133
41
+
42
+ It was modified to remove unnecessary processing of key states. The method is compatible with transformers <=
43
+ 4.34.2 and also with the latest version (>=4.35).
44
+ """
45
+ # In previous transformers version cos/sin cached had a shape of 4D
46
+ if len(cos.shape) == 4:
47
+ gather_indices = position_ids[:, None, :, None] # [bs, 1, seq_len, 1]
48
+ gather_indices = gather_indices.repeat(1, cos.shape[1], 1, cos.shape[3])
49
+ cos = torch.gather(cos.repeat(gather_indices.shape[0], 1, 1, 1), 2, gather_indices)
50
+ sin = torch.gather(sin.repeat(gather_indices.shape[0], 1, 1, 1), 2, gather_indices)
51
+ # In the new version, it is 2D so we fall back to the new implementation
52
+ # https://github.com/huggingface/transformers/blame/eef7ea98c31a333bacdc7ae7a2372bde772be8e4/src/transformers/models/llama/modeling_llama.py#L222-L226
53
+ else:
54
+ cos = cos[position_ids].unsqueeze(1)
55
+ sin = sin[position_ids].unsqueeze(1)
56
+ q_embed = (q * cos) + (llama_rotate_half(q) * sin)
57
+ return q_embed
58
+
59
+
60
+ def llama_compute_query_states(model: nn.Module, **kwargs) -> torch.Tensor:
61
+ """
62
+ Compute query states for Llama models specifically. They need to be recomputed as the forward() method of the
63
+ original LlamaModel in the transformers library does not return them. See the related discussion in the PR:
64
+ https://github.com/huggingface/peft/pull/268
65
+ """
66
+ hidden_states = kwargs.get("hidden_states")
67
+ position_ids = kwargs.get("position_ids")
68
+ past_key_value = kwargs.get("past_key_value")
69
+ bsz, q_len, _ = hidden_states.size()
70
+ query_states = model.q_proj(hidden_states).view(bsz, q_len, model.num_heads, model.head_dim).transpose(1, 2)
71
+
72
+ factor = model.k_proj.in_features // model.k_proj.out_features
73
+ value_states = (
74
+ model.v_proj(hidden_states).view(bsz, q_len, (model.num_heads // factor), model.head_dim).transpose(1, 2)
75
+ )
76
+
77
+ seq_len = q_len
78
+
79
+ if past_key_value is not None:
80
+ if isinstance(past_key_value, tuple):
81
+ # for transformers <= 4.35
82
+ seq_len += past_key_value[0].shape[-2]
83
+ else:
84
+ # since transformers 4.36, this is a DynamicCache instance
85
+ seq_len += past_key_value.get_seq_length(model.layer_idx)
86
+
87
+ # For transformers > 4.37.2 `position_ids` became a required arguments in the rotary embedding's forward pass.
88
+ if "position_ids" not in inspect.signature(model.rotary_emb.forward).parameters:
89
+ # TODO we assume that position_ids is not None here, not sure if that is safe but the old code also did that
90
+ cos, sin = model.rotary_emb(value_states, seq_len=seq_len)
91
+ return llama_apply_rotary_pos_emb(query_states, cos, sin, position_ids)
92
+
93
+ past_seen_tokens = 0
94
+ if position_ids is None:
95
+ # Compute position_ids, since they are required for transformers > 4.37.2
96
+ if past_key_value is None:
97
+ new_cache_positions = torch.arange(q_len, q_len + q_len, device=value_states.device)
98
+ else:
99
+ past_seen_tokens = past_key_value.get_usable_length(q_len, model.layer_idx)
100
+ new_cache_positions = torch.arange(past_seen_tokens, past_seen_tokens + q_len, device=value_states.device)
101
+ position_ids = new_cache_positions.unsqueeze(0)
102
+
103
+ rotary_emb_kwargs = {"position_ids": position_ids}
104
+ # The `seq_len` argument has been officially removed in transformers >= 4.39.0
105
+ if "seq_len" in inspect.signature(model.rotary_emb.forward).parameters:
106
+ rotary_emb_kwargs["seq_len"] = q_len + past_seen_tokens
107
+
108
+ cos, sin = model.rotary_emb(value_states, **rotary_emb_kwargs)
109
+
110
+ # For batched inference unsqueeze it on the correct dim
111
+ # since: https://github.com/huggingface/transformers/pull/29109
112
+ if len(cos.shape) == 3:
113
+ cos = cos.unsqueeze(1)
114
+ sin = sin.unsqueeze(1)
115
+
116
+ return (query_states * cos) + (llama_rotate_half(query_states) * sin)
117
+
118
+
119
+ def is_adaption_prompt_trainable(params: str) -> bool:
120
+ """Return True if module is trainable under adaption prompt fine-tuning."""
121
+ return params.split(".")[-1].startswith("adaption_")
llmeval-env/lib/python3.10/site-packages/peft/tuners/lokr/__init__.py ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023-present the HuggingFace Inc. team.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from .config import LoKrConfig
16
+ from .layer import Conv2d, Linear, LoKrLayer
17
+ from .model import LoKrModel
18
+
19
+
20
+ __all__ = ["LoKrConfig", "LoKrModel", "Conv2d", "Linear", "LoKrLayer"]
llmeval-env/lib/python3.10/site-packages/peft/tuners/lokr/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (388 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/peft/tuners/lokr/__pycache__/config.cpython-310.pyc ADDED
Binary file (5.65 kB). View file
 
llmeval-env/lib/python3.10/site-packages/peft/tuners/lokr/__pycache__/layer.cpython-310.pyc ADDED
Binary file (10.8 kB). View file
 
llmeval-env/lib/python3.10/site-packages/peft/tuners/lokr/__pycache__/model.cpython-310.pyc ADDED
Binary file (3.96 kB). View file
 
llmeval-env/lib/python3.10/site-packages/peft/tuners/lokr/config.py ADDED
@@ -0,0 +1,127 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023-present the HuggingFace Inc. team.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from dataclasses import dataclass, field
16
+ from typing import List, Optional, Union
17
+
18
+ from peft.tuners.lycoris_utils import LycorisConfig
19
+ from peft.utils import PeftType
20
+
21
+
22
+ @dataclass
23
+ class LoKrConfig(LycorisConfig):
24
+ """
25
+ Configuration class of [`LoKrModel`].
26
+
27
+ Args:
28
+ r (`int`):
29
+ LoKr rank.
30
+ alpha (`int`):
31
+ The alpha parameter for LoKr scaling.
32
+ rank_dropout (`float`):
33
+ The dropout probability for rank dimension during training.
34
+ module_dropout (`float`):
35
+ The dropout probability for disabling LoKr modules during training.
36
+ use_effective_conv2d (`bool`):
37
+ Use parameter effective decomposition for Conv2d with ksize > 1 ("Proposition 3" from FedPara paper).
38
+ decompose_both (`bool`):
39
+ Perform rank decomposition of left kronecker product matrix.
40
+ decompose_factor (`int`):
41
+ Kronecker product decomposition factor.
42
+ target_modules (`Optional[Union[List[str], str]]`):
43
+ The names of the modules to apply the adapter to. If this is specified, only the modules with the specified
44
+ names will be replaced. When passing a string, a regex match will be performed. When passing a list of
45
+ strings, either an exact match will be performed or it is checked if the name of the module ends with any
46
+ of the passed strings. If this is specified as 'all-linear', then all linear/Conv1D modules are chosen,
47
+ excluding the output layer. If this is not specified, modules will be chosen according to the model
48
+ architecture. If the architecture is not known, an error will be raised -- in this case, you should specify
49
+ the target modules manually.
50
+ init_weights (`bool`):
51
+ Whether to perform initialization of adapter weights. This defaults to `True`, passing `False` is
52
+ discouraged.
53
+ layers_to_transform (`Union[List[int], int]`):
54
+ The layer indices to transform. If a list of ints is passed, it will apply the adapter to the layer indices
55
+ that are specified in this list. If a single integer is passed, it will apply the transformations on the
56
+ layer at this index.
57
+ layers_pattern (`str`):
58
+ The layer pattern name, used only if `layers_to_transform` is different from `None`.
59
+ rank_pattern (`dict`):
60
+ The mapping from layer names or regexp expression to ranks which are different from the default rank
61
+ specified by `r`.
62
+ alpha_pattern (`dict`):
63
+ The mapping from layer names or regexp expression to alphas which are different from the default alpha
64
+ specified by `alpha`.
65
+ modules_to_save (`Optional[List[str]]`):
66
+ List of modules apart from adapter layers to be set as trainable and saved in the final checkpoint.
67
+ """
68
+
69
+ r: int = field(default=8, metadata={"help": "LoKr rank"})
70
+ alpha: int = field(default=8, metadata={"help": "LoKr alpha"})
71
+ rank_dropout: float = field(
72
+ default=0.0, metadata={"help": "The dropout probability for rank dimension during training"}
73
+ )
74
+ module_dropout: float = field(
75
+ default=0.0, metadata={"help": "The dropout probability for disabling LoKr modules during training"}
76
+ )
77
+ use_effective_conv2d: bool = field(
78
+ default=False,
79
+ metadata={
80
+ "help": 'Use parameter effective decomposition for Conv2d 3x3 with ksize > 1 ("Proposition 3" from FedPara paper)'
81
+ },
82
+ )
83
+ decompose_both: bool = field(
84
+ default=False,
85
+ metadata={"help": "Perform rank decomposition of left kronecker product matrix."},
86
+ )
87
+ decompose_factor: int = field(default=-1, metadata={"help": "Kronecker product decomposition factor."})
88
+ target_modules: Optional[Union[List[str], str]] = field(
89
+ default=None,
90
+ metadata={
91
+ "help": "List of module names or regex expression of the module names to replace with LoKr."
92
+ "For example, ['q', 'v'] or '.*decoder.*(SelfAttention|EncDecAttention).*(q|v)$' "
93
+ "This can also be a wildcard 'all-linear' which matches all linear/Conv1D layers except the output layer."
94
+ },
95
+ )
96
+ init_weights: bool = field(
97
+ default=True,
98
+ metadata={
99
+ "help": (
100
+ "Whether to initialize the weights of the LoKr layers with their default initialization. Don't change "
101
+ "this setting, except if you know exactly what you're doing."
102
+ ),
103
+ },
104
+ )
105
+ layers_to_transform: Optional[Union[List[int], int]] = field(
106
+ default=None,
107
+ metadata={
108
+ "help": "The layer indexes to transform, is this argument is specified, PEFT will transform only the layers indexes that are specified inside this list. If a single integer is passed, PEFT will transform only the layer at this index."
109
+ },
110
+ )
111
+ layers_pattern: Optional[str] = field(
112
+ default=None,
113
+ metadata={
114
+ "help": "The layer pattern name, used only if `layers_to_transform` is different to None and if the layer pattern is not in the common layers pattern."
115
+ },
116
+ )
117
+ modules_to_save: Optional[List[str]] = field(
118
+ default=None,
119
+ metadata={
120
+ "help": "List of modules apart from LoKr layers to be set as trainable and saved in the final checkpoint. "
121
+ "For example, in Sequence Classification or Token Classification tasks, "
122
+ "the final layer `classifier/score` are randomly initialized and as such need to be trainable and saved."
123
+ },
124
+ )
125
+
126
+ def __post_init__(self):
127
+ self.peft_type = PeftType.LOKR
llmeval-env/lib/python3.10/site-packages/peft/tuners/lokr/layer.py ADDED
@@ -0,0 +1,409 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023-present the HuggingFace Inc. team.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import math
16
+ from typing import Any, Optional, Set, Tuple, Union
17
+
18
+ import torch
19
+ import torch.nn as nn
20
+ import torch.nn.functional as F
21
+
22
+ from peft.tuners.lycoris_utils import LycorisLayer
23
+
24
+
25
+ class LoKrLayer(nn.Module, LycorisLayer):
26
+ # All names of layers that may contain adapter weights
27
+ adapter_layer_names = (
28
+ "lokr_w1",
29
+ "lokr_w1_a",
30
+ "lokr_w1_b",
31
+ "lokr_w2",
32
+ "lokr_w2_a",
33
+ "lokr_w2_b",
34
+ "lokr_t2",
35
+ )
36
+ # other_param_names is defined on parent class
37
+
38
+ def __init__(self, base_layer: nn.Module) -> None:
39
+ super().__init__()
40
+ LycorisLayer.__init__(self, base_layer)
41
+
42
+ # LoKr info
43
+ self.lokr_w1 = nn.ParameterDict({})
44
+ self.lokr_w1_a = nn.ParameterDict({})
45
+ self.lokr_w1_b = nn.ParameterDict({})
46
+ self.lokr_w2 = nn.ParameterDict({})
47
+ self.lokr_w2_a = nn.ParameterDict({})
48
+ self.lokr_w2_b = nn.ParameterDict({})
49
+ self.lokr_t2 = nn.ParameterDict({})
50
+
51
+ @property
52
+ def _available_adapters(self) -> Set[str]:
53
+ return {
54
+ *self.lokr_w1,
55
+ *self.lokr_w1_a,
56
+ *self.lokr_w1_b,
57
+ *self.lokr_w2,
58
+ *self.lokr_w2_a,
59
+ *self.lokr_w2_b,
60
+ *self.lokr_t2,
61
+ }
62
+
63
+ def create_adapter_parameters(
64
+ self,
65
+ adapter_name: str,
66
+ r: int,
67
+ shape,
68
+ use_w1: bool,
69
+ use_w2: bool,
70
+ use_effective_conv2d: bool,
71
+ ):
72
+ if use_w1:
73
+ self.lokr_w1[adapter_name] = nn.Parameter(torch.empty(shape[0][0], shape[1][0]))
74
+ else:
75
+ self.lokr_w1_a[adapter_name] = nn.Parameter(torch.empty(shape[0][0], r))
76
+ self.lokr_w1_b[adapter_name] = nn.Parameter(torch.empty(r, shape[1][0]))
77
+
78
+ if len(shape) == 4:
79
+ # Conv2d
80
+ if use_w2:
81
+ self.lokr_w2[adapter_name] = nn.Parameter(torch.empty(shape[0][1], shape[1][1], *shape[2:]))
82
+ elif use_effective_conv2d:
83
+ self.lokr_t2[adapter_name] = nn.Parameter(torch.empty(r, r, shape[2], shape[3]))
84
+ self.lokr_w2_a[adapter_name] = nn.Parameter(torch.empty(r, shape[0][1])) # b, 1-mode
85
+ self.lokr_w2_b[adapter_name] = nn.Parameter(torch.empty(r, shape[1][1])) # d, 2-mode
86
+ else:
87
+ self.lokr_w2_a[adapter_name] = nn.Parameter(torch.empty(shape[0][1], r))
88
+ self.lokr_w2_b[adapter_name] = nn.Parameter(torch.empty(r, shape[1][1] * shape[2] * shape[3]))
89
+ else:
90
+ # Linear
91
+ if use_w2:
92
+ self.lokr_w2[adapter_name] = nn.Parameter(torch.empty(shape[0][1], shape[1][1]))
93
+ else:
94
+ self.lokr_w2_a[adapter_name] = nn.Parameter(torch.empty(shape[0][1], r))
95
+ self.lokr_w2_b[adapter_name] = nn.Parameter(torch.empty(r, shape[1][1]))
96
+
97
+ def reset_adapter_parameters(self, adapter_name: str):
98
+ if adapter_name in self.lokr_w1:
99
+ nn.init.zeros_(self.lokr_w1[adapter_name])
100
+ else:
101
+ nn.init.zeros_(self.lokr_w1_a[adapter_name])
102
+ nn.init.kaiming_uniform_(self.lokr_w1_b[adapter_name], a=math.sqrt(5))
103
+
104
+ if adapter_name in self.lokr_w2:
105
+ nn.init.kaiming_uniform_(self.lokr_w2[adapter_name], a=math.sqrt(5))
106
+ else:
107
+ nn.init.kaiming_uniform_(self.lokr_w2_a[adapter_name], a=math.sqrt(5))
108
+ nn.init.kaiming_uniform_(self.lokr_w2_b[adapter_name], a=math.sqrt(5))
109
+
110
+ if adapter_name in self.lokr_t2:
111
+ nn.init.kaiming_uniform_(self.lokr_t2[adapter_name], a=math.sqrt(5))
112
+
113
+ def reset_adapter_parameters_random(self, adapter_name: str):
114
+ if adapter_name in self.lokr_w1:
115
+ nn.init.kaiming_uniform_(self.lokr_w1[adapter_name], a=math.sqrt(5))
116
+ else:
117
+ nn.init.kaiming_uniform_(self.lokr_w1_a[adapter_name], a=math.sqrt(5))
118
+ nn.init.kaiming_uniform_(self.lokr_w1_b[adapter_name], a=math.sqrt(5))
119
+
120
+ if adapter_name in self.lokr_w2:
121
+ nn.init.kaiming_uniform_(self.lokr_w2[adapter_name], a=math.sqrt(5))
122
+ else:
123
+ nn.init.kaiming_uniform_(self.lokr_w2_a[adapter_name], a=math.sqrt(5))
124
+ nn.init.kaiming_uniform_(self.lokr_w2_b[adapter_name], a=math.sqrt(5))
125
+
126
+ if adapter_name in self.lokr_t2:
127
+ nn.init.kaiming_uniform_(self.lokr_t2[adapter_name], a=math.sqrt(5))
128
+
129
+ def update_layer(
130
+ self,
131
+ adapter_name: str,
132
+ r: int,
133
+ alpha: float,
134
+ rank_dropout: float,
135
+ module_dropout: float,
136
+ init_weights: bool,
137
+ use_effective_conv2d: bool,
138
+ decompose_both: bool,
139
+ decompose_factor: int,
140
+ **kwargs,
141
+ ) -> None:
142
+ """Internal function to create lokr adapter
143
+
144
+ Args:
145
+ adapter_name (`str`): Name for the adapter to add.
146
+ r (`int`): Rank for the added adapter.
147
+ alpha (`float`): Alpha for the added adapter.
148
+ rank_dropout (`float`): The dropout probability for rank dimension during training
149
+ module_dropout (`float`): The dropout probability for disabling adapter during training.
150
+ init_weights (`bool`): Whether to initialize adapter weights.
151
+ use_effective_conv2d (`bool`): Use parameter effective decomposition for Conv2d with ksize > 1.
152
+ decompose_both (`bool`): Perform rank decomposition of left kronecker product matrix.
153
+ decompose_factor (`int`): Kronecker product decomposition factor.
154
+ """
155
+ if r <= 0:
156
+ raise ValueError(f"`r` should be a positive integer value but the value passed is {r}")
157
+
158
+ self.r[adapter_name] = r
159
+ self.alpha[adapter_name] = alpha
160
+ self.scaling[adapter_name] = alpha / r
161
+ self.rank_dropout[adapter_name] = rank_dropout
162
+ self.module_dropout[adapter_name] = module_dropout
163
+ base_layer = self.get_base_layer()
164
+
165
+ # Determine shape of LoKr weights
166
+ if isinstance(base_layer, nn.Linear):
167
+ in_dim, out_dim = base_layer.in_features, base_layer.out_features
168
+
169
+ in_m, in_n = factorization(in_dim, decompose_factor)
170
+ out_l, out_k = factorization(out_dim, decompose_factor)
171
+ shape = ((out_l, out_k), (in_m, in_n)) # ((a, b), (c, d)), out_dim = a*c, in_dim = b*d
172
+
173
+ use_w1 = not (decompose_both and r < max(shape[0][0], shape[1][0]) / 2)
174
+ use_w2 = not (r < max(shape[0][1], shape[1][1]) / 2)
175
+ use_effective_conv2d = False
176
+ elif isinstance(base_layer, nn.Conv2d):
177
+ in_dim, out_dim = base_layer.in_channels, base_layer.out_channels
178
+ k_size = base_layer.kernel_size
179
+
180
+ in_m, in_n = factorization(in_dim, decompose_factor)
181
+ out_l, out_k = factorization(out_dim, decompose_factor)
182
+ shape = ((out_l, out_k), (in_m, in_n), *k_size) # ((a, b), (c, d), *k_size)
183
+
184
+ use_w1 = not (decompose_both and r < max(shape[0][0], shape[1][0]) / 2)
185
+ use_w2 = r >= max(shape[0][1], shape[1][1]) / 2
186
+ use_effective_conv2d = use_effective_conv2d and base_layer.kernel_size != (1, 1)
187
+ else:
188
+ raise TypeError(f"LoKr is not implemented for base layers of type {type(base_layer).__name__}")
189
+
190
+ # Create weights with provided shape
191
+ self.create_adapter_parameters(adapter_name, r, shape, use_w1, use_w2, use_effective_conv2d)
192
+
193
+ # Initialize weights
194
+ if init_weights:
195
+ self.reset_adapter_parameters(adapter_name)
196
+ else:
197
+ self.reset_adapter_parameters_random(adapter_name)
198
+
199
+ # Move new weights to device
200
+ weight = getattr(self.get_base_layer(), "weight", None)
201
+ if weight is not None:
202
+ # the layer is already completely initialized, this is an update
203
+ if weight.dtype.is_floating_point or weight.dtype.is_complex:
204
+ self.to(weight.device, dtype=weight.dtype)
205
+ else:
206
+ self.to(weight.device)
207
+ self.set_adapter(self.active_adapters)
208
+
209
+ def get_delta_weight(self, adapter_name: str) -> torch.Tensor:
210
+ # https://github.com/KohakuBlueleaf/LyCORIS/blob/e4259b870d3354a9615a96be61cb5d07455c58ea/lycoris/modules/lokr.py#L224
211
+ if adapter_name in self.lokr_w1:
212
+ w1 = self.lokr_w1[adapter_name]
213
+ else:
214
+ w1 = self.lokr_w1_a[adapter_name] @ self.lokr_w1_b[adapter_name]
215
+
216
+ if adapter_name in self.lokr_w2:
217
+ w2 = self.lokr_w2[adapter_name]
218
+ elif adapter_name in self.lokr_t2:
219
+ w2 = make_weight_cp(self.lokr_t2[adapter_name], self.lokr_w2_a[adapter_name], self.lokr_w2_b[adapter_name])
220
+ else:
221
+ w2 = self.lokr_w2_a[adapter_name] @ self.lokr_w2_b[adapter_name]
222
+
223
+ # Make weights with Kronecker product
224
+ weight = make_kron(w1, w2)
225
+ weight = weight.reshape(self.get_base_layer().weight.shape)
226
+
227
+ # Perform rank dropout during training - drop rows of addition weights
228
+ rank_dropout = self.rank_dropout[adapter_name]
229
+ if self.training and rank_dropout:
230
+ drop = (torch.rand(weight.size(0)) > rank_dropout).float()
231
+ drop = drop.view(-1, *[1] * len(weight.shape[1:])).to(weight.device)
232
+ drop /= drop.mean()
233
+ weight *= drop
234
+
235
+ return weight
236
+
237
+ def forward(self, x: torch.Tensor, *args, **kwargs) -> torch.Tensor:
238
+ previous_dtype = x.dtype
239
+
240
+ if self.disable_adapters:
241
+ if self.merged:
242
+ self.unmerge()
243
+ result = self.base_layer(x, *args, **kwargs)
244
+ elif self.merged:
245
+ result = self.base_layer(x, *args, **kwargs)
246
+ else:
247
+ result = self.base_layer(x, *args, **kwargs)
248
+
249
+ # Execute all the adapters
250
+ for active_adapter in self.active_adapters:
251
+ if active_adapter not in self._available_adapters:
252
+ continue
253
+
254
+ module_dropout = self.module_dropout[active_adapter]
255
+
256
+ # Modify current execution weights
257
+ if (not self.training) or (self.training and torch.rand(1) > module_dropout):
258
+ result = result + self._get_delta_activations(active_adapter, x, *args, **kwargs)
259
+
260
+ result = result.to(previous_dtype)
261
+ return result
262
+
263
+
264
+ class Linear(LoKrLayer):
265
+ """LoKr implemented in Linear layer"""
266
+
267
+ def __init__(
268
+ self,
269
+ base_layer: nn.Module,
270
+ device: Optional[Union[str, torch.device]] = None,
271
+ dtype: Optional[torch.dtype] = None,
272
+ adapter_name: str = "default",
273
+ r: int = 0,
274
+ alpha: float = 0.0,
275
+ rank_dropout: float = 0.0,
276
+ module_dropout: float = 0.0,
277
+ init_weights: bool = True,
278
+ **kwargs,
279
+ ):
280
+ super().__init__(base_layer)
281
+
282
+ # Create adapter and set it active
283
+ self._active_adapter = adapter_name
284
+ self.update_layer(adapter_name, r, alpha, rank_dropout, module_dropout, init_weights, **kwargs)
285
+
286
+ def _get_delta_activations(
287
+ self, adapter_name: str, input: torch.Tensor, *args: Any, **kwargs: Any
288
+ ) -> torch.Tensor:
289
+ delta_weight = self.get_delta_weight(adapter_name)
290
+ # don't add bias here, because the bias is already included in the output of the base_layer
291
+ return F.linear(input, delta_weight)
292
+
293
+ def __repr__(self) -> str:
294
+ rep = super().__repr__()
295
+ return "lokr." + rep
296
+
297
+
298
+ class Conv2d(LoKrLayer):
299
+ """LoKr implemented in Conv2d layer"""
300
+
301
+ def __init__(
302
+ self,
303
+ base_layer: nn.Module,
304
+ device: Optional[Union[str, torch.device]] = None,
305
+ dtype: Optional[torch.dtype] = None,
306
+ adapter_name: str = "default",
307
+ r: int = 0,
308
+ alpha: float = 0.0,
309
+ rank_dropout: float = 0.0,
310
+ module_dropout: float = 0.0,
311
+ use_effective_conv2d: bool = False,
312
+ init_weights: bool = True,
313
+ **kwargs,
314
+ ):
315
+ super().__init__(base_layer)
316
+
317
+ # Create adapter and set it active
318
+ self._active_adapter = adapter_name
319
+ self.update_layer(
320
+ adapter_name, r, alpha, rank_dropout, module_dropout, init_weights, use_effective_conv2d, **kwargs
321
+ )
322
+
323
+ def _get_delta_activations(
324
+ self, adapter_name: str, input: torch.Tensor, *args: Any, **kwargs: Any
325
+ ) -> torch.Tensor:
326
+ delta_weight = self.get_delta_weight(adapter_name)
327
+ # don't add bias here, because the bias is already included in the output of the base_layer
328
+ base_layer = self.get_base_layer()
329
+ return F.conv2d(
330
+ input,
331
+ delta_weight,
332
+ stride=base_layer.stride,
333
+ padding=base_layer.padding,
334
+ dilation=base_layer.dilation,
335
+ groups=base_layer.groups,
336
+ )
337
+
338
+ def __repr__(self) -> str:
339
+ rep = super().__repr__()
340
+ return "lokr." + rep
341
+
342
+
343
+ # Below code is a direct copy from https://github.com/KohakuBlueleaf/LyCORIS/blob/eb460098187f752a5d66406d3affade6f0a07ece/lycoris/modules/lokr.py#L11
344
+
345
+
346
+ def factorization(dimension: int, factor: int = -1) -> Tuple[int, int]:
347
+ """Factorizes the provided number into the product of two numbers
348
+
349
+ Args:
350
+ dimension (`int`): The number that needs to be factorized.
351
+ factor (`int`, optional):
352
+ Factorization divider. The algorithm will try to output two numbers, one of each will be as close to the
353
+ factor as possible. If -1 is provided, the decomposition algorithm would try to search dividers near the
354
+ square root of the dimension. Defaults to -1.
355
+
356
+ Returns:
357
+ Tuple[`int`, `int`]: A tuple of two numbers, whose product is equal to the provided number. The first number is
358
+ always less than or equal to the second.
359
+
360
+ Example:
361
+ ```py
362
+ >>> factorization(256, factor=-1)
363
+ (16, 16)
364
+
365
+ >>> factorization(128, factor=-1)
366
+ (8, 16)
367
+
368
+ >>> factorization(127, factor=-1)
369
+ (1, 127)
370
+
371
+ >>> factorization(128, factor=4)
372
+ (4, 32)
373
+ ```
374
+ """
375
+
376
+ if factor > 0 and (dimension % factor) == 0:
377
+ m = factor
378
+ n = dimension // factor
379
+ return m, n
380
+ if factor == -1:
381
+ factor = dimension
382
+ m, n = 1, dimension
383
+ length = m + n
384
+ while m < n:
385
+ new_m = m + 1
386
+ while dimension % new_m != 0:
387
+ new_m += 1
388
+ new_n = dimension // new_m
389
+ if new_m + new_n > length or new_m > factor:
390
+ break
391
+ else:
392
+ m, n = new_m, new_n
393
+ if m > n:
394
+ n, m = m, n
395
+ return m, n
396
+
397
+
398
+ def make_weight_cp(t, wa, wb):
399
+ rebuild2 = torch.einsum("i j k l, i p, j r -> p r k l", t, wa, wb) # [c, d, k1, k2]
400
+ return rebuild2
401
+
402
+
403
+ def make_kron(w1, w2, scale=1.0):
404
+ if len(w2.shape) == 4:
405
+ w1 = w1.unsqueeze(2).unsqueeze(2)
406
+ w2 = w2.contiguous()
407
+ rebuild = torch.kron(w1, w2)
408
+
409
+ return rebuild * scale
llmeval-env/lib/python3.10/site-packages/peft/tuners/lokr/model.py ADDED
@@ -0,0 +1,115 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023-present the HuggingFace Inc. team.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import re
16
+ from itertools import chain
17
+ from typing import Dict, Type, Union
18
+
19
+ import torch
20
+ from torch import nn
21
+
22
+ from peft.tuners.lycoris_utils import LycorisConfig, LycorisTuner
23
+
24
+ from .layer import Conv2d, Linear, LoKrLayer
25
+
26
+
27
+ class LoKrModel(LycorisTuner):
28
+ """
29
+ Creates Low-Rank Kronecker Product model from a pretrained model. The original method is partially described in
30
+ https://arxiv.org/abs/2108.06098 and in https://arxiv.org/abs/2309.14859 Current implementation heavily borrows
31
+ from
32
+ https://github.com/KohakuBlueleaf/LyCORIS/blob/eb460098187f752a5d66406d3affade6f0a07ece/lycoris/modules/lokr.py
33
+
34
+ Args:
35
+ model (`torch.nn.Module`): The model to which the adapter tuner layers will be attached.
36
+ config ([`LoKrConfig`]): The configuration of the LoKr model.
37
+ adapter_name (`str`): The name of the adapter, defaults to `"default"`.
38
+
39
+ Returns:
40
+ `torch.nn.Module`: The LoKr model.
41
+
42
+ Example:
43
+ ```py
44
+ >>> from diffusers import StableDiffusionPipeline
45
+ >>> from peft import LoKrModel, LoKrConfig
46
+
47
+ >>> config_te = LoKrConfig(
48
+ ... r=8,
49
+ ... lora_alpha=32,
50
+ ... target_modules=["k_proj", "q_proj", "v_proj", "out_proj", "fc1", "fc2"],
51
+ ... rank_dropout=0.0,
52
+ ... module_dropout=0.0,
53
+ ... init_weights=True,
54
+ ... )
55
+ >>> config_unet = LoKrConfig(
56
+ ... r=8,
57
+ ... lora_alpha=32,
58
+ ... target_modules=[
59
+ ... "proj_in",
60
+ ... "proj_out",
61
+ ... "to_k",
62
+ ... "to_q",
63
+ ... "to_v",
64
+ ... "to_out.0",
65
+ ... "ff.net.0.proj",
66
+ ... "ff.net.2",
67
+ ... ],
68
+ ... rank_dropout=0.0,
69
+ ... module_dropout=0.0,
70
+ ... init_weights=True,
71
+ ... use_effective_conv2d=True,
72
+ ... )
73
+
74
+ >>> model = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
75
+ >>> model.text_encoder = LoKrModel(model.text_encoder, config_te, "default")
76
+ >>> model.unet = LoKrModel(model.unet, config_unet, "default")
77
+ ```
78
+
79
+ **Attributes**:
80
+ - **model** ([`~torch.nn.Module`]) -- The model to be adapted.
81
+ - **peft_config** ([`LoKrConfig`]): The configuration of the LoKr model.
82
+ """
83
+
84
+ prefix: str = "lokr_"
85
+ layers_mapping: Dict[Type[torch.nn.Module], Type[LoKrLayer]] = {
86
+ torch.nn.Conv2d: Conv2d,
87
+ torch.nn.Linear: Linear,
88
+ }
89
+
90
+ def _create_and_replace(
91
+ self,
92
+ config: LycorisConfig,
93
+ adapter_name: str,
94
+ target: Union[LoKrLayer, nn.Module],
95
+ target_name: str,
96
+ parent: nn.Module,
97
+ current_key: str,
98
+ ) -> None:
99
+ """
100
+ A private method to create and replace the target module with the adapter module.
101
+ """
102
+
103
+ # Regexp matching - Find key which matches current target_name in patterns provided
104
+ pattern_keys = list(chain(config.rank_pattern.keys(), config.alpha_pattern.keys()))
105
+ target_name_key = next(filter(lambda key: re.match(rf"(.*\.)?{key}$", current_key), pattern_keys), target_name)
106
+
107
+ kwargs = config.to_dict()
108
+ kwargs["r"] = config.rank_pattern.get(target_name_key, config.r)
109
+ kwargs["alpha"] = config.alpha_pattern.get(target_name_key, config.alpha)
110
+
111
+ if isinstance(target, LoKrLayer):
112
+ target.update_layer(adapter_name, **kwargs)
113
+ else:
114
+ new_module = self._create_new_module(config, adapter_name, target, **kwargs)
115
+ self._replace_module(parent, target_name, new_module, target)
llmeval-env/lib/python3.10/site-packages/peft/tuners/lora/__init__.py ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023-present the HuggingFace Inc. team.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from peft.import_utils import is_bnb_4bit_available, is_bnb_available
16
+
17
+ from .config import LoftQConfig, LoraConfig
18
+ from .gptq import QuantLinear
19
+ from .layer import Conv2d, Embedding, Linear, LoraLayer
20
+ from .model import LoraModel
21
+
22
+
23
+ __all__ = ["LoraConfig", "LoftQConfig", "Conv2d", "Embedding", "LoraLayer", "Linear", "LoraModel", "QuantLinear"]
24
+
25
+
26
+ def __getattr__(name):
27
+ if (name == "Linear8bitLt") and is_bnb_available():
28
+ from .bnb import Linear8bitLt
29
+
30
+ return Linear8bitLt
31
+
32
+ if (name == "Linear4bit") and is_bnb_4bit_available():
33
+ from .bnb import Linear4bit
34
+
35
+ return Linear4bit
36
+
37
+ raise AttributeError(f"module {__name__} has no attribute {name}")
llmeval-env/lib/python3.10/site-packages/peft/tuners/lora/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (909 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/peft/tuners/lora/__pycache__/aqlm.cpython-310.pyc ADDED
Binary file (2.3 kB). View file
 
llmeval-env/lib/python3.10/site-packages/peft/tuners/lora/__pycache__/awq.cpython-310.pyc ADDED
Binary file (2.71 kB). View file
 
llmeval-env/lib/python3.10/site-packages/peft/tuners/lora/__pycache__/bnb.cpython-310.pyc ADDED
Binary file (11 kB). View file
 
llmeval-env/lib/python3.10/site-packages/peft/tuners/lora/__pycache__/gptq.cpython-310.pyc ADDED
Binary file (2.51 kB). View file
 
llmeval-env/lib/python3.10/site-packages/peft/tuners/lora/__pycache__/layer.cpython-310.pyc ADDED
Binary file (22.9 kB). View file
 
llmeval-env/lib/python3.10/site-packages/peft/tuners/lora/__pycache__/model.cpython-310.pyc ADDED
Binary file (25.8 kB). View file
 
llmeval-env/lib/python3.10/site-packages/peft/tuners/lora/__pycache__/tp_layer.cpython-310.pyc ADDED
Binary file (5.04 kB). View file
 
llmeval-env/lib/python3.10/site-packages/peft/tuners/lora/gptq.py ADDED
@@ -0,0 +1,114 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023-present the HuggingFace Inc. team.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from typing import Any, Optional
16
+
17
+ import torch
18
+
19
+ from peft.tuners.lora.layer import LoraLayer
20
+ from peft.tuners.tuners_utils import BaseTunerLayer
21
+ from peft.utils import get_auto_gptq_quant_linear
22
+
23
+
24
+ class QuantLinear(torch.nn.Module, LoraLayer):
25
+ def __init__(
26
+ self,
27
+ base_layer,
28
+ adapter_name: str,
29
+ r: int = 0,
30
+ lora_alpha: int = 1,
31
+ lora_dropout: float = 0.0,
32
+ init_lora_weights: bool = True,
33
+ use_rslora: bool = False,
34
+ use_dora: bool = False,
35
+ **kwargs,
36
+ ):
37
+ super().__init__()
38
+ LoraLayer.__init__(self, base_layer)
39
+
40
+ if use_dora:
41
+ raise ValueError(f"{self.__class__.__name__} does not support DoRA yet, please set it to False")
42
+
43
+ # self.base_layer and self.quant_linear_module are the same; we need the former for consistency and the latter
44
+ # for backwards compatibility
45
+ self.quant_linear_module = base_layer
46
+ self._active_adapter = adapter_name
47
+ self.update_layer(
48
+ adapter_name,
49
+ r,
50
+ lora_alpha=lora_alpha,
51
+ lora_dropout=lora_dropout,
52
+ init_lora_weights=init_lora_weights,
53
+ use_rslora=use_rslora,
54
+ use_dora=use_dora,
55
+ )
56
+
57
+ def forward(self, x: torch.Tensor):
58
+ # note: logic differs from default Linear because merging is not supported
59
+ result = self.quant_linear_module(x)
60
+
61
+ if self.disable_adapters:
62
+ return result
63
+
64
+ for active_adapter in self.active_adapters:
65
+ if active_adapter not in self.lora_A.keys():
66
+ continue
67
+ lora_A = self.lora_A[active_adapter]
68
+ lora_B = self.lora_B[active_adapter]
69
+ dropout = self.lora_dropout[active_adapter]
70
+ scaling = self.scaling[active_adapter]
71
+
72
+ requires_conversion = not torch.is_autocast_enabled()
73
+ if requires_conversion:
74
+ expected_dtype = result.dtype
75
+ x = x.to(lora_A.weight.dtype)
76
+
77
+ output = lora_B(lora_A(dropout(x)))
78
+ if requires_conversion:
79
+ output = output.to(expected_dtype)
80
+ output = output * scaling
81
+ result += output
82
+ return result
83
+
84
+ def __repr__(self) -> str:
85
+ rep = super().__repr__()
86
+ return "lora." + rep
87
+
88
+ # TODO: Check if it is better as suggested by users https://github.com/PanQiWei/AutoGPTQ/pull/102
89
+ # def reset_lora_parameters(self, adapter_name):
90
+ # if adapter_name in self.lora_A.keys():
91
+ # torch.nn.init.xavier_uniform_(self.lora_A[adapter_name].weight)
92
+ # torch.nn.init.zeros_(self.lora_B[adapter_name].weight)
93
+
94
+
95
+ def dispatch_gptq(
96
+ target: torch.nn.Module,
97
+ adapter_name: str,
98
+ **kwargs: Any,
99
+ ) -> Optional[torch.nn.Module]:
100
+ new_module = None
101
+
102
+ if isinstance(target, BaseTunerLayer):
103
+ target_base_layer = target.get_base_layer()
104
+ else:
105
+ target_base_layer = target
106
+
107
+ gptq_quantization_config = kwargs.get("gptq_quantization_config", None)
108
+ AutoGPTQQuantLinear = get_auto_gptq_quant_linear(gptq_quantization_config)
109
+
110
+ if AutoGPTQQuantLinear is not None and isinstance(target_base_layer, AutoGPTQQuantLinear):
111
+ new_module = QuantLinear(target, adapter_name, **kwargs)
112
+ target.qweight = target_base_layer.qweight
113
+
114
+ return new_module
llmeval-env/lib/python3.10/site-packages/peft/tuners/p_tuning/__init__.py ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023-present the HuggingFace Inc. team.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from .config import PromptEncoderConfig, PromptEncoderReparameterizationType
16
+ from .model import PromptEncoder
17
+
18
+
19
+ __all__ = ["PromptEncoder", "PromptEncoderConfig", "PromptEncoderReparameterizationType"]
llmeval-env/lib/python3.10/site-packages/peft/tuners/p_tuning/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (368 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/peft/tuners/p_tuning/__pycache__/config.cpython-310.pyc ADDED
Binary file (1.98 kB). View file
 
llmeval-env/lib/python3.10/site-packages/peft/tuners/p_tuning/__pycache__/model.cpython-310.pyc ADDED
Binary file (3.9 kB). View file
 
llmeval-env/lib/python3.10/site-packages/peft/tuners/p_tuning/config.py ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023-present the HuggingFace Inc. team.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import enum
16
+ from dataclasses import dataclass, field
17
+ from typing import Union
18
+
19
+ from peft.config import PromptLearningConfig
20
+ from peft.utils import PeftType
21
+
22
+
23
+ class PromptEncoderReparameterizationType(str, enum.Enum):
24
+ MLP = "MLP"
25
+ LSTM = "LSTM"
26
+
27
+
28
+ @dataclass
29
+ class PromptEncoderConfig(PromptLearningConfig):
30
+ """
31
+ This is the configuration class to store the configuration of a [`PromptEncoder`].
32
+
33
+ Args:
34
+ encoder_reparameterization_type (Union[[`PromptEncoderReparameterizationType`], `str`]):
35
+ The type of reparameterization to use.
36
+ encoder_hidden_size (`int`): The hidden size of the prompt encoder.
37
+ encoder_num_layers (`int`): The number of layers of the prompt encoder.
38
+ encoder_dropout (`float`): The dropout probability of the prompt encoder.
39
+ """
40
+
41
+ encoder_reparameterization_type: Union[str, PromptEncoderReparameterizationType] = field(
42
+ default=PromptEncoderReparameterizationType.MLP,
43
+ metadata={"help": "How to reparameterize the prompt encoder"},
44
+ )
45
+ encoder_hidden_size: int = field(
46
+ default=None,
47
+ metadata={"help": "The hidden size of the prompt encoder"},
48
+ )
49
+ encoder_num_layers: int = field(
50
+ default=2,
51
+ metadata={"help": "The number of layers of the prompt encoder"},
52
+ )
53
+ encoder_dropout: float = field(
54
+ default=0.0,
55
+ metadata={"help": "The dropout of the prompt encoder"},
56
+ )
57
+
58
+ def __post_init__(self):
59
+ self.peft_type = PeftType.P_TUNING
llmeval-env/lib/python3.10/site-packages/peft/tuners/p_tuning/model.py ADDED
@@ -0,0 +1,130 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023-present the HuggingFace Inc. team.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ # Based on https://github.com/NVIDIA/NeMo/blob/main/nemo/collections/nlp/modules/common/prompt_encoder.py
16
+ # with some refactor
17
+ import warnings
18
+
19
+ import torch
20
+
21
+ from .config import PromptEncoderConfig, PromptEncoderReparameterizationType
22
+
23
+
24
+ class PromptEncoder(torch.nn.Module):
25
+ """
26
+ The prompt encoder network that is used to generate the virtual token embeddings for p-tuning.
27
+
28
+ Args:
29
+ config ([`PromptEncoderConfig`]): The configuration of the prompt encoder.
30
+
31
+ Example:
32
+
33
+ ```py
34
+ >>> from peft import PromptEncoder, PromptEncoderConfig
35
+
36
+ >>> config = PromptEncoderConfig(
37
+ ... peft_type="P_TUNING",
38
+ ... task_type="SEQ_2_SEQ_LM",
39
+ ... num_virtual_tokens=20,
40
+ ... token_dim=768,
41
+ ... num_transformer_submodules=1,
42
+ ... num_attention_heads=12,
43
+ ... num_layers=12,
44
+ ... encoder_reparameterization_type="MLP",
45
+ ... encoder_hidden_size=768,
46
+ ... )
47
+
48
+ >>> prompt_encoder = PromptEncoder(config)
49
+ ```
50
+
51
+ **Attributes**:
52
+ - **embedding** (`torch.nn.Embedding`) -- The embedding layer of the prompt encoder.
53
+ - **mlp_head** (`torch.nn.Sequential`) -- The MLP head of the prompt encoder if `inference_mode=False`.
54
+ - **lstm_head** (`torch.nn.LSTM`) -- The LSTM head of the prompt encoder if `inference_mode=False` and
55
+ `encoder_reparameterization_type="LSTM"`.
56
+ - **token_dim** (`int`) -- The hidden embedding dimension of the base transformer model.
57
+ - **input_size** (`int`) -- The input size of the prompt encoder.
58
+ - **output_size** (`int`) -- The output size of the prompt encoder.
59
+ - **hidden_size** (`int`) -- The hidden size of the prompt encoder.
60
+ - **total_virtual_tokens** (`int`): The total number of virtual tokens of the
61
+ prompt encoder.
62
+ - **encoder_type** (Union[[`PromptEncoderReparameterizationType`], `str`]): The encoder type of the prompt
63
+ encoder.
64
+
65
+
66
+ Input shape: (`batch_size`, `total_virtual_tokens`)
67
+
68
+ Output shape: (`batch_size`, `total_virtual_tokens`, `token_dim`)
69
+ """
70
+
71
+ def __init__(self, config):
72
+ super().__init__()
73
+ self.token_dim = config.token_dim
74
+ self.input_size = self.token_dim
75
+ self.output_size = self.token_dim
76
+ self.hidden_size = config.encoder_hidden_size
77
+ self.total_virtual_tokens = config.num_virtual_tokens * config.num_transformer_submodules
78
+ self.encoder_type = config.encoder_reparameterization_type
79
+
80
+ # embedding
81
+ self.embedding = torch.nn.Embedding(self.total_virtual_tokens, self.token_dim)
82
+ if not config.inference_mode:
83
+ if self.encoder_type == PromptEncoderReparameterizationType.LSTM:
84
+ lstm_dropout = config.encoder_dropout
85
+ num_layers = config.encoder_num_layers
86
+ # LSTM
87
+ self.lstm_head = torch.nn.LSTM(
88
+ input_size=self.input_size,
89
+ hidden_size=self.hidden_size,
90
+ num_layers=num_layers,
91
+ dropout=lstm_dropout,
92
+ bidirectional=True,
93
+ batch_first=True,
94
+ )
95
+
96
+ self.mlp_head = torch.nn.Sequential(
97
+ torch.nn.Linear(self.hidden_size * 2, self.hidden_size * 2),
98
+ torch.nn.ReLU(),
99
+ torch.nn.Linear(self.hidden_size * 2, self.output_size),
100
+ )
101
+
102
+ elif self.encoder_type == PromptEncoderReparameterizationType.MLP:
103
+ encoder_num_layers_default = PromptEncoderConfig.encoder_num_layers
104
+ if config.encoder_num_layers != encoder_num_layers_default:
105
+ warnings.warn(
106
+ f"for {self.encoder_type.value}, the argument `encoder_num_layers` is ignored. "
107
+ f"Exactly {encoder_num_layers_default} MLP layers are used."
108
+ )
109
+ layers = [
110
+ torch.nn.Linear(self.input_size, self.hidden_size),
111
+ torch.nn.ReLU(),
112
+ torch.nn.Linear(self.hidden_size, self.hidden_size),
113
+ torch.nn.ReLU(),
114
+ torch.nn.Linear(self.hidden_size, self.output_size),
115
+ ]
116
+ self.mlp_head = torch.nn.Sequential(*layers)
117
+
118
+ else:
119
+ raise ValueError("Prompt encoder type not recognized. Please use one of MLP (recommended) or LSTM.")
120
+
121
+ def forward(self, indices):
122
+ input_embeds = self.embedding(indices)
123
+ if self.encoder_type == PromptEncoderReparameterizationType.LSTM:
124
+ output_embeds = self.mlp_head(self.lstm_head(input_embeds)[0])
125
+ elif self.encoder_type == PromptEncoderReparameterizationType.MLP:
126
+ output_embeds = self.mlp_head(input_embeds)
127
+ else:
128
+ raise ValueError("Prompt encoder type not recognized. Please use one of MLP (recommended) or LSTM.")
129
+
130
+ return output_embeds
llmeval-env/lib/python3.10/site-packages/peft/tuners/poly/__init__.py ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023-present the HuggingFace Inc. team.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from .config import PolyConfig
16
+ from .layer import Linear, PolyLayer
17
+ from .model import PolyModel
18
+
19
+
20
+ __all__ = ["Linear", "PolyConfig", "PolyLayer", "PolyModel"]
llmeval-env/lib/python3.10/site-packages/peft/tuners/poly/config.py ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023-present the HuggingFace Inc. team.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from dataclasses import dataclass, field
16
+ from typing import List, Literal, Optional, Union
17
+
18
+ from peft.config import PeftConfig
19
+ from peft.utils import PeftType
20
+
21
+
22
+ @dataclass
23
+ class PolyConfig(PeftConfig):
24
+ """
25
+ This is the configuration class to store the configuration of a [`PolyModel`].
26
+ - [Polytropon (Poly)](https://arxiv.org/abs/2202.13914)
27
+ - [Multi-Head Routing (MHR)](https://arxiv.org/abs/2211.03831)
28
+
29
+ Args:
30
+ r (`int`): Attention dimension of each Lora in Poly.
31
+ target_modules (`Union[List[str],str]`): The names of the modules to apply Poly to.
32
+ modules_to_save (`List[str]`): List of modules apart from Poly layers to be set as trainable
33
+ and saved in the final checkpoint.
34
+ init_weights (bool): Whether to perform initialization of Poly weights.
35
+ poly_type (`Literal["poly"]`): The variant of the Poly module to use. Currently, only "poly"
36
+ is supported.
37
+ n_tasks (`int`): The number of tasks in a multitasking scenario.
38
+ n_skills (`int`): The number of skills (LoRA) in each Poly layer.
39
+ n_splits (`int`): The number of splits within each LoRA of a Poly layer. A value greater
40
+ than 1 indicates the use of Multi-Head Routing (MHR).
41
+ """
42
+
43
+ r: int = field(default=8, metadata={"help": "Lora attention dimension"})
44
+ target_modules: Optional[Union[List[str], str]] = field(
45
+ default=None,
46
+ metadata={
47
+ "help": "List of module names or regex expression of the module names to replace with Poly."
48
+ "For example, ['q', 'v'] or '.*decoder.*(SelfAttention|EncDecAttention).*(q|v)$' "
49
+ },
50
+ )
51
+ modules_to_save: Optional[List[str]] = field(
52
+ default=None,
53
+ metadata={
54
+ "help": "List of modules apart from Poly layers to be set as trainable and saved in the final checkpoint. "
55
+ "For example, in Sequence Classification or Token Classification tasks, "
56
+ "the final layer `classifier/score` are randomly initialized and as such need to be trainable and saved."
57
+ },
58
+ )
59
+ init_weights: bool = field(
60
+ default=True,
61
+ metadata={
62
+ "help": (
63
+ "Whether to initialize the weights of the Poly layers with their default initialization. Don't change "
64
+ "this setting, except if you know exactly what you're doing."
65
+ ),
66
+ },
67
+ )
68
+ poly_type: Literal["poly"] = field(
69
+ default="poly",
70
+ metadata={"help": 'Type of Poly modules to be used. Currently only "poly" is supported.'},
71
+ )
72
+ n_tasks: int = field(
73
+ default=1,
74
+ metadata={"help": "Number of tasks in multitasking scenario."},
75
+ )
76
+ n_skills: int = field(
77
+ default=4,
78
+ metadata={"help": "Number of skills (LoRA) in each Poly layer."},
79
+ )
80
+ n_splits: int = field(
81
+ default=1,
82
+ metadata={"help": "Number of splits within each LoRA of a Poly layer."},
83
+ )
84
+
85
+ def __post_init__(self):
86
+ self.peft_type = PeftType.POLY
87
+ self.target_modules = (
88
+ set(self.target_modules) if isinstance(self.target_modules, list) else self.target_modules
89
+ )
llmeval-env/lib/python3.10/site-packages/peft/tuners/poly/layer.py ADDED
@@ -0,0 +1,171 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023-present the HuggingFace Inc. team.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import math
16
+ from typing import Any
17
+
18
+ import torch
19
+ import torch.nn as nn
20
+
21
+ from peft.tuners.tuners_utils import BaseTunerLayer
22
+
23
+ from .config import PolyConfig
24
+ from .router import get_router
25
+
26
+
27
+ class PolyLayer(BaseTunerLayer):
28
+ # All names of layers that may contain (trainable) adapter weights
29
+ adapter_layer_names = ("poly_lora_A", "poly_lora_B", "poly_router")
30
+ # All names of other parameters that may contain adapter-related parameters
31
+ other_param_names = ("r", "n_tasks", "n_skills", "n_splits")
32
+
33
+ def __init__(self, base_layer: nn.Module, **kwargs):
34
+ self.base_layer = base_layer
35
+ self.r = {}
36
+ self.n_tasks = {}
37
+ self.n_skills = {}
38
+ self.n_splits = {}
39
+ self.poly_type = {}
40
+ self.poly_router = nn.ModuleDict()
41
+ self.poly_lora_A = nn.ParameterDict()
42
+ self.poly_lora_B = nn.ParameterDict()
43
+ self.kwargs = kwargs
44
+
45
+ base_layer = self.get_base_layer()
46
+ if isinstance(base_layer, nn.Linear):
47
+ in_features, out_features = base_layer.in_features, base_layer.out_features
48
+ else:
49
+ raise ValueError(f"Unsupported layer type {type(base_layer)}")
50
+
51
+ self.in_features = in_features
52
+ self.out_features = out_features
53
+
54
+ def update_layer(self, adapter_name, poly_config):
55
+ if poly_config.r <= 0:
56
+ raise ValueError(f"`r` should be a positive integer value but the value passed is {poly_config.r}")
57
+
58
+ self.r[adapter_name] = poly_config.r
59
+ self.n_tasks[adapter_name] = poly_config.n_tasks
60
+ self.n_skills[adapter_name] = poly_config.n_skills
61
+ self.n_splits[adapter_name] = poly_config.n_splits
62
+ self.poly_type[adapter_name] = poly_config.poly_type
63
+
64
+ self.poly_lora_A[adapter_name] = nn.Parameter(
65
+ torch.empty(
66
+ poly_config.n_splits,
67
+ poly_config.n_skills,
68
+ self.in_features // poly_config.n_splits,
69
+ poly_config.r,
70
+ )
71
+ )
72
+ self.poly_lora_B[adapter_name] = nn.Parameter(
73
+ torch.empty(
74
+ poly_config.n_splits,
75
+ poly_config.n_skills,
76
+ poly_config.r,
77
+ self.out_features // poly_config.n_splits,
78
+ )
79
+ )
80
+ self.poly_router[adapter_name] = get_router(poly_config)
81
+
82
+ self.reset_poly_parameters(adapter_name, init_weights=poly_config.init_weights)
83
+
84
+ weight = getattr(self.get_base_layer(), "weight", None)
85
+ if weight is not None:
86
+ # the layer is already completely initialized, this is an update
87
+ if weight.dtype.is_floating_point or weight.dtype.is_complex:
88
+ self.to(weight.device, dtype=weight.dtype)
89
+ else:
90
+ self.to(weight.device)
91
+ self.set_adapter(self.active_adapters)
92
+
93
+ def reset_poly_parameters(self, adapter_name, init_weights):
94
+ if adapter_name in self.poly_lora_A.keys():
95
+ # initialize A the same way as the default for nn.Linear
96
+ # https://github.com/microsoft/mttl/blob/ce4ca51dbca73be656feb9b3e5233633e3c5dec7/mttl/models/poly.py#L269
97
+ n_splits, n_skills, d, r = self.poly_lora_A[adapter_name].shape
98
+ for skill in range(n_skills):
99
+ for split in range(n_splits):
100
+ param = torch.empty((r, d))
101
+ torch.nn.init.kaiming_uniform_(param, a=math.sqrt(5))
102
+ self.poly_lora_A[adapter_name].data[split, skill, :, :] = param.T
103
+
104
+ if init_weights:
105
+ # initialize B to zero
106
+ torch.nn.init.zeros_(self.poly_lora_B[adapter_name])
107
+ else:
108
+ # initialize B the same way as the default for nn.Linear
109
+ n_splits, n_skills, r, d = self.poly_lora_B[adapter_name].shape
110
+ for skill in range(n_skills):
111
+ for split in range(n_splits):
112
+ param = torch.empty((d, r))
113
+ torch.nn.init.kaiming_uniform_(param, a=math.sqrt(5))
114
+ self.poly_lora_B[adapter_name].data[split, skill, :, :] = param.T
115
+
116
+ # initialized router
117
+ self.poly_router[adapter_name].reset()
118
+
119
+
120
+ class Linear(nn.Module, PolyLayer):
121
+ # Lora implemented in a dense layer
122
+ def __init__(
123
+ self,
124
+ base_layer,
125
+ adapter_name: str,
126
+ poly_config: PolyConfig,
127
+ **kwargs,
128
+ ) -> None:
129
+ super().__init__()
130
+ PolyLayer.__init__(self, base_layer, **kwargs)
131
+
132
+ self._active_adapter = adapter_name
133
+ self.update_layer(adapter_name, poly_config)
134
+
135
+ def forward(self, x: torch.Tensor, *args: Any, task_ids: torch.Tensor = None, **kwargs: Any) -> torch.Tensor:
136
+ previous_dtype = x.dtype
137
+ if self.disable_adapters:
138
+ result = self.base_layer(x, *args, **kwargs)
139
+ else:
140
+ result = self.base_layer(x, *args, **kwargs)
141
+ for active_adapter in self.active_adapters:
142
+ if active_adapter not in self.poly_lora_A.keys():
143
+ continue
144
+
145
+ r = self.r[active_adapter]
146
+ poly_router = self.poly_router[active_adapter]
147
+ poly_lora_A = self.poly_lora_A[active_adapter]
148
+ poly_lora_B = self.poly_lora_B[active_adapter]
149
+
150
+ # Combine the output of LoRAs
151
+ # https://github.com/microsoft/mttl/blob/ce4ca51dbca73be656feb9b3e5233633e3c5dec7/mttl/models/poly.py#L293
152
+ mixing_weights = poly_router(task_ids=task_ids, input_ids=x)
153
+ bs, n_splits, n_skills = mixing_weights.size()
154
+
155
+ # A is n_splits, n_skills, D // n_splits, rank
156
+ # we want bs, n_splits, D // n_splits, rank
157
+ A = torch.einsum("bqs,qsdr->bqdr", (mixing_weights, poly_lora_A))
158
+ B = torch.einsum("bqs,qsrd->bqrd", (mixing_weights, poly_lora_B))
159
+
160
+ A = A.reshape(bs, self.in_features, r)
161
+ B = B.transpose(1, 2).reshape(bs, r, self.out_features)
162
+
163
+ x = x.to(A.dtype)
164
+ result += x.bmm(A).bmm(B) / r
165
+
166
+ result = result.to(previous_dtype)
167
+ return result
168
+
169
+ def __repr__(self) -> str:
170
+ rep = super().__repr__()
171
+ return "poly." + rep
llmeval-env/lib/python3.10/site-packages/peft/tuners/poly/router.py ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023-present the HuggingFace Inc. team.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from abc import ABC, abstractmethod
16
+
17
+ import torch
18
+ from torch import nn
19
+ from torch.distributions.relaxed_bernoulli import RelaxedBernoulli
20
+
21
+ from .config import PolyConfig
22
+
23
+
24
+ EPS = 1e-12
25
+
26
+
27
+ def get_router(poly_config: PolyConfig) -> nn.Module:
28
+ if poly_config.poly_type == "poly":
29
+ return PolyRouter(poly_config)
30
+ else:
31
+ raise ValueError(
32
+ f"Unsupported poly_type: {poly_config.poly_type}. "
33
+ "Currently, only the following types are supported: "
34
+ "`poly`."
35
+ )
36
+
37
+
38
+ class Router(nn.Module, ABC):
39
+ @abstractmethod
40
+ def reset(self):
41
+ ...
42
+
43
+ @abstractmethod
44
+ def forward(self, task_ids: torch.Tensor, input_ids: torch.Tensor):
45
+ ...
46
+
47
+
48
+ class PolyRouter(Router):
49
+ # It's a simplified implementation of
50
+ # https://github.com/microsoft/mttl/blob/ce4ca51dbca73be656feb9b3e5233633e3c5dec7/mttl/models/poly.py#L138
51
+ def __init__(self, poly_config: PolyConfig):
52
+ super().__init__()
53
+
54
+ self.poly_type = poly_config.poly_type
55
+ self.n_tasks = poly_config.n_tasks
56
+ self.n_skills = poly_config.n_skills
57
+ self.n_splits = poly_config.n_splits
58
+
59
+ self.module_logits = nn.Parameter(torch.empty((self.n_tasks, self.n_splits * self.n_skills)))
60
+
61
+ def reset(self):
62
+ torch.nn.init.uniform_(self.module_logits, -1e-3, 1e-3)
63
+
64
+ def forward(self, task_ids: torch.Tensor, input_ids: torch.Tensor):
65
+ if task_ids is None:
66
+ raise ValueError("task_ids should not be None.")
67
+ if task_ids.max().item() >= self.n_tasks:
68
+ raise ValueError(f"Only {self.n_tasks} tasks available. Found task id = {task_ids.max().item()}")
69
+
70
+ # move task id to input's device
71
+ task_ids = task_ids.to(self.module_logits.device)
72
+
73
+ module_logits = self.module_logits[task_ids]
74
+ module_logits = module_logits.view(-1, self.n_splits, self.n_skills)
75
+
76
+ if self.training:
77
+ module_logits = RelaxedBernoulli(temperature=1.0, logits=module_logits).rsample()
78
+ else:
79
+ module_logits = torch.sigmoid(module_logits)
80
+
81
+ module_weights = module_logits / (module_logits.sum(dim=-1, keepdim=True) + EPS)
82
+
83
+ return module_weights
llmeval-env/lib/python3.10/site-packages/peft/tuners/prompt_tuning/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (355 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/peft/tuners/prompt_tuning/__pycache__/config.cpython-310.pyc ADDED
Binary file (2.77 kB). View file
 
llmeval-env/lib/python3.10/site-packages/peft/tuners/prompt_tuning/__pycache__/model.cpython-310.pyc ADDED
Binary file (2.83 kB). View file