applied-ai-018 commited on
Commit
5722a9e
·
verified ·
1 Parent(s): 04bde8b

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. llmeval-env/lib/python3.10/site-packages/transformers/models/bridgetower/__init__.py +89 -0
  2. llmeval-env/lib/python3.10/site-packages/transformers/models/bridgetower/__pycache__/configuration_bridgetower.cpython-310.pyc +0 -0
  3. llmeval-env/lib/python3.10/site-packages/transformers/models/bridgetower/__pycache__/modeling_bridgetower.cpython-310.pyc +0 -0
  4. llmeval-env/lib/python3.10/site-packages/transformers/models/bridgetower/__pycache__/processing_bridgetower.cpython-310.pyc +0 -0
  5. llmeval-env/lib/python3.10/site-packages/transformers/models/bridgetower/configuration_bridgetower.py +349 -0
  6. llmeval-env/lib/python3.10/site-packages/transformers/models/bridgetower/image_processing_bridgetower.py +561 -0
  7. llmeval-env/lib/python3.10/site-packages/transformers/models/bridgetower/modeling_bridgetower.py +1898 -0
  8. llmeval-env/lib/python3.10/site-packages/transformers/models/bridgetower/processing_bridgetower.py +119 -0
  9. llmeval-env/lib/python3.10/site-packages/transformers/models/chinese_clip/__init__.py +88 -0
  10. llmeval-env/lib/python3.10/site-packages/transformers/models/chinese_clip/__pycache__/__init__.cpython-310.pyc +0 -0
  11. llmeval-env/lib/python3.10/site-packages/transformers/models/chinese_clip/__pycache__/configuration_chinese_clip.cpython-310.pyc +0 -0
  12. llmeval-env/lib/python3.10/site-packages/transformers/models/chinese_clip/__pycache__/convert_chinese_clip_original_pytorch_to_hf.cpython-310.pyc +0 -0
  13. llmeval-env/lib/python3.10/site-packages/transformers/models/chinese_clip/__pycache__/feature_extraction_chinese_clip.cpython-310.pyc +0 -0
  14. llmeval-env/lib/python3.10/site-packages/transformers/models/chinese_clip/__pycache__/image_processing_chinese_clip.cpython-310.pyc +0 -0
  15. llmeval-env/lib/python3.10/site-packages/transformers/models/chinese_clip/__pycache__/modeling_chinese_clip.cpython-310.pyc +0 -0
  16. llmeval-env/lib/python3.10/site-packages/transformers/models/chinese_clip/__pycache__/processing_chinese_clip.cpython-310.pyc +0 -0
  17. llmeval-env/lib/python3.10/site-packages/transformers/models/chinese_clip/configuration_chinese_clip.py +468 -0
  18. llmeval-env/lib/python3.10/site-packages/transformers/models/chinese_clip/convert_chinese_clip_original_pytorch_to_hf.py +134 -0
  19. llmeval-env/lib/python3.10/site-packages/transformers/models/chinese_clip/feature_extraction_chinese_clip.py +33 -0
  20. llmeval-env/lib/python3.10/site-packages/transformers/models/chinese_clip/image_processing_chinese_clip.py +331 -0
  21. llmeval-env/lib/python3.10/site-packages/transformers/models/chinese_clip/modeling_chinese_clip.py +1562 -0
  22. llmeval-env/lib/python3.10/site-packages/transformers/models/chinese_clip/processing_chinese_clip.py +141 -0
  23. llmeval-env/lib/python3.10/site-packages/transformers/models/cpm/__init__.py +59 -0
  24. llmeval-env/lib/python3.10/site-packages/transformers/models/cpm/__pycache__/__init__.cpython-310.pyc +0 -0
  25. llmeval-env/lib/python3.10/site-packages/transformers/models/cpm/__pycache__/tokenization_cpm.cpython-310.pyc +0 -0
  26. llmeval-env/lib/python3.10/site-packages/transformers/models/cpm/__pycache__/tokenization_cpm_fast.cpython-310.pyc +0 -0
  27. llmeval-env/lib/python3.10/site-packages/transformers/models/cpm/tokenization_cpm.py +344 -0
  28. llmeval-env/lib/python3.10/site-packages/transformers/models/cpm/tokenization_cpm_fast.py +237 -0
  29. llmeval-env/lib/python3.10/site-packages/transformers/models/efficientnet/__init__.py +84 -0
  30. llmeval-env/lib/python3.10/site-packages/transformers/models/efficientnet/__pycache__/__init__.cpython-310.pyc +0 -0
  31. llmeval-env/lib/python3.10/site-packages/transformers/models/efficientnet/__pycache__/configuration_efficientnet.cpython-310.pyc +0 -0
  32. llmeval-env/lib/python3.10/site-packages/transformers/models/efficientnet/__pycache__/convert_efficientnet_to_pytorch.cpython-310.pyc +0 -0
  33. llmeval-env/lib/python3.10/site-packages/transformers/models/efficientnet/__pycache__/image_processing_efficientnet.cpython-310.pyc +0 -0
  34. llmeval-env/lib/python3.10/site-packages/transformers/models/efficientnet/__pycache__/modeling_efficientnet.cpython-310.pyc +0 -0
  35. llmeval-env/lib/python3.10/site-packages/transformers/models/efficientnet/configuration_efficientnet.py +169 -0
  36. llmeval-env/lib/python3.10/site-packages/transformers/models/efficientnet/convert_efficientnet_to_pytorch.py +339 -0
  37. llmeval-env/lib/python3.10/site-packages/transformers/models/efficientnet/image_processing_efficientnet.py +387 -0
  38. llmeval-env/lib/python3.10/site-packages/transformers/models/efficientnet/modeling_efficientnet.py +648 -0
  39. llmeval-env/lib/python3.10/site-packages/transformers/models/musicgen_melody/__init__.py +90 -0
  40. llmeval-env/lib/python3.10/site-packages/transformers/models/musicgen_melody/__pycache__/__init__.cpython-310.pyc +0 -0
  41. llmeval-env/lib/python3.10/site-packages/transformers/models/musicgen_melody/__pycache__/configuration_musicgen_melody.cpython-310.pyc +0 -0
  42. llmeval-env/lib/python3.10/site-packages/transformers/models/musicgen_melody/__pycache__/convert_musicgen_melody_transformers.cpython-310.pyc +0 -0
  43. llmeval-env/lib/python3.10/site-packages/transformers/models/musicgen_melody/__pycache__/feature_extraction_musicgen_melody.cpython-310.pyc +0 -0
  44. llmeval-env/lib/python3.10/site-packages/transformers/models/musicgen_melody/__pycache__/modeling_musicgen_melody.cpython-310.pyc +0 -0
  45. llmeval-env/lib/python3.10/site-packages/transformers/models/musicgen_melody/__pycache__/processing_musicgen_melody.cpython-310.pyc +0 -0
  46. llmeval-env/lib/python3.10/site-packages/transformers/models/musicgen_melody/configuration_musicgen_melody.py +271 -0
  47. llmeval-env/lib/python3.10/site-packages/transformers/models/musicgen_melody/convert_musicgen_melody_transformers.py +266 -0
  48. llmeval-env/lib/python3.10/site-packages/transformers/models/musicgen_melody/modeling_musicgen_melody.py +0 -0
  49. llmeval-env/lib/python3.10/site-packages/transformers/models/musicgen_melody/processing_musicgen_melody.py +174 -0
  50. llmeval-env/lib/python3.10/site-packages/transformers/models/owlv2/__init__.py +93 -0
llmeval-env/lib/python3.10/site-packages/transformers/models/bridgetower/__init__.py ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 The Intel Labs Team Authors, The Microsoft Research Team Authors and HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ from typing import TYPE_CHECKING
15
+
16
+ from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
17
+
18
+
19
+ _import_structure = {
20
+ "configuration_bridgetower": [
21
+ "BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP",
22
+ "BridgeTowerConfig",
23
+ "BridgeTowerTextConfig",
24
+ "BridgeTowerVisionConfig",
25
+ ],
26
+ "processing_bridgetower": ["BridgeTowerProcessor"],
27
+ }
28
+
29
+ try:
30
+ if not is_vision_available():
31
+ raise OptionalDependencyNotAvailable()
32
+ except OptionalDependencyNotAvailable:
33
+ pass
34
+ else:
35
+ _import_structure["image_processing_bridgetower"] = ["BridgeTowerImageProcessor"]
36
+
37
+ try:
38
+ if not is_torch_available():
39
+ raise OptionalDependencyNotAvailable()
40
+ except OptionalDependencyNotAvailable:
41
+ pass
42
+ else:
43
+ _import_structure["modeling_bridgetower"] = [
44
+ "BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST",
45
+ "BridgeTowerForContrastiveLearning",
46
+ "BridgeTowerForImageAndTextRetrieval",
47
+ "BridgeTowerForMaskedLM",
48
+ "BridgeTowerModel",
49
+ "BridgeTowerPreTrainedModel",
50
+ ]
51
+
52
+
53
+ if TYPE_CHECKING:
54
+ from .configuration_bridgetower import (
55
+ BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP,
56
+ BridgeTowerConfig,
57
+ BridgeTowerTextConfig,
58
+ BridgeTowerVisionConfig,
59
+ )
60
+ from .processing_bridgetower import BridgeTowerProcessor
61
+
62
+ try:
63
+ if not is_vision_available():
64
+ raise OptionalDependencyNotAvailable()
65
+ except OptionalDependencyNotAvailable:
66
+ pass
67
+ else:
68
+ from .image_processing_bridgetower import BridgeTowerImageProcessor
69
+
70
+ try:
71
+ if not is_torch_available():
72
+ raise OptionalDependencyNotAvailable()
73
+ except OptionalDependencyNotAvailable:
74
+ pass
75
+ else:
76
+ from .modeling_bridgetower import (
77
+ BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST,
78
+ BridgeTowerForContrastiveLearning,
79
+ BridgeTowerForImageAndTextRetrieval,
80
+ BridgeTowerForMaskedLM,
81
+ BridgeTowerModel,
82
+ BridgeTowerPreTrainedModel,
83
+ )
84
+
85
+
86
+ else:
87
+ import sys
88
+
89
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure)
llmeval-env/lib/python3.10/site-packages/transformers/models/bridgetower/__pycache__/configuration_bridgetower.cpython-310.pyc ADDED
Binary file (13.9 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/bridgetower/__pycache__/modeling_bridgetower.cpython-310.pyc ADDED
Binary file (58.5 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/bridgetower/__pycache__/processing_bridgetower.cpython-310.pyc ADDED
Binary file (4.23 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/bridgetower/configuration_bridgetower.py ADDED
@@ -0,0 +1,349 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 The Intel Labs Team Authors, The Microsoft Research Team Authors and HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License=, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing=, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS=,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND=, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ BridgeTower model configuration"""
16
+
17
+ import os
18
+ from typing import Union
19
+
20
+ from ...configuration_utils import PretrainedConfig
21
+ from ...utils import logging
22
+
23
+
24
+ logger = logging.get_logger(__name__)
25
+
26
+
27
+ from ..deprecated._archive_maps import BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
28
+
29
+
30
+ class BridgeTowerVisionConfig(PretrainedConfig):
31
+ r"""
32
+ This is the configuration class to store the vision configuration of a [`BridgeTowerModel`]. Instantiating a
33
+ configuration with the defaults will yield a similar configuration to that of the bridgetower-base
34
+ [BridgeTower/bridgetower-base](https://huggingface.co/BridgeTower/bridgetower-base/) architecture.
35
+
36
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
37
+ documentation from [`PretrainedConfig`] for more information.
38
+
39
+ Args:
40
+ hidden_size (`int`, *optional*, defaults to 768):
41
+ Dimensionality of the encoder layers and the pooler layer.
42
+ num_hidden_layers (`int`, *optional*, defaults to 12):
43
+ Number of hidden layers in visual encoder model.
44
+ patch_size (`int`, *optional*, defaults to 16):
45
+ The size (resolution) of each patch.
46
+ image_size (`int`, *optional*, defaults to 288):
47
+ The size (resolution) of each image.
48
+ initializer_factor (`float`, *optional*, defaults to 1):
49
+ A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
50
+ testing).
51
+ layer_norm_eps (`float`, *optional*, defaults to 1e-05):
52
+ The epsilon used by the layer normalization layers.
53
+ stop_gradient (`bool`, *optional*, defaults to `False`):
54
+ Whether to stop gradient for training.
55
+ share_layernorm (`bool`, *optional*, defaults to `True`):
56
+ Whether LayerNorm layers are shared.
57
+ remove_last_layer (`bool`, *optional*, defaults to `False`):
58
+ Whether to remove the last layer from the vision encoder.
59
+
60
+
61
+ Example:
62
+
63
+ ```python
64
+ >>> from transformers import BridgeTowerVisionConfig
65
+
66
+ >>> # Initializing a BridgeTower BridgeTower/bridgetower-base style configuration for the vision model
67
+ >>> configuration = BridgeTowerVisionConfig()
68
+
69
+ >>> # Accessing the configuration
70
+ >>> configuration
71
+ ```"""
72
+
73
+ model_type = "bridgetower_vision_model"
74
+
75
+ def __init__(
76
+ self,
77
+ hidden_size=768,
78
+ num_hidden_layers=12,
79
+ num_channels=3,
80
+ patch_size=16,
81
+ image_size=288,
82
+ initializer_factor=1,
83
+ layer_norm_eps=1e-05,
84
+ stop_gradient=False,
85
+ share_layernorm=True,
86
+ remove_last_layer=False,
87
+ **kwargs,
88
+ ):
89
+ super().__init__(**kwargs)
90
+ self.hidden_size = hidden_size
91
+ self.num_hidden_layers = num_hidden_layers
92
+ self.num_channels = num_channels
93
+ self.patch_size = patch_size
94
+ self.image_size = image_size
95
+ self.initializer_factor = initializer_factor
96
+ self.layer_norm_eps = layer_norm_eps
97
+ self.stop_gradient = stop_gradient
98
+ self.share_layernorm = share_layernorm
99
+ self.remove_last_layer = remove_last_layer
100
+
101
+ @classmethod
102
+ def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
103
+ config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
104
+
105
+ if config_dict.get("model_type") == "bridgetower":
106
+ config_dict = config_dict["text_config"]
107
+
108
+ if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
109
+ logger.warning(
110
+ f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
111
+ f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
112
+ )
113
+
114
+ return cls.from_dict(config_dict, **kwargs)
115
+
116
+
117
+ class BridgeTowerTextConfig(PretrainedConfig):
118
+ r"""
119
+ This is the configuration class to store the text configuration of a [`BridgeTowerModel`]. The default values here
120
+ are copied from RoBERTa. Instantiating a configuration with the defaults will yield a similar configuration to that
121
+ of the bridgetower-base [BridegTower/bridgetower-base](https://huggingface.co/BridgeTower/bridgetower-base/)
122
+ architecture.
123
+
124
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
125
+ documentation from [`PretrainedConfig`] for more information.
126
+
127
+ Args:
128
+ vocab_size (`int`, *optional*, defaults to 50265):
129
+ Vocabulary size of the text part of the model. Defines the number of different tokens that can be
130
+ represented by the `inputs_ids` passed when calling [`BridgeTowerModel`].
131
+ hidden_size (`int`, *optional*, defaults to 768):
132
+ Dimensionality of the encoder layers and the pooler layer.
133
+ num_hidden_layers (`int`, *optional*, defaults to 12):
134
+ Number of hidden layers in the Transformer encoder.
135
+ num_attention_heads (`int`, *optional*, defaults to 12):
136
+ Number of attention heads for each attention layer in the Transformer encoder.
137
+ intermediate_size (`int`, *optional*, defaults to 3072):
138
+ Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
139
+ hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
140
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
141
+ `"relu"`, `"silu"` and `"gelu_new"` are supported.
142
+ hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
143
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
144
+ attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
145
+ The dropout ratio for the attention probabilities.
146
+ max_position_embeddings (`int`, *optional*, defaults to 514):
147
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
148
+ just in case (e.g., 512 or 1024 or 2048).
149
+ type_vocab_size (`int`, *optional*, defaults to 2):
150
+ The vocabulary size of the `token_type_ids`.
151
+ initializer_factor (`float`, *optional*, defaults to 1):
152
+ A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
153
+ testing).
154
+ layer_norm_eps (`float`, *optional*, defaults to 1e-05):
155
+ The epsilon used by the layer normalization layers.
156
+ position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
157
+ Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
158
+ positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
159
+ [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
160
+ For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
161
+ with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
162
+ is_decoder (`bool`, *optional*, defaults to `False`):
163
+ Whether the model is used as a decoder or not. If `False`, the model is used as an encoder.
164
+ use_cache (`bool`, *optional*, defaults to `True`):
165
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
166
+ relevant if `config.is_decoder=True`.
167
+
168
+ Example:
169
+
170
+ ```python
171
+ >>> from transformers import BridgeTowerTextConfig
172
+
173
+ >>> # Initializing a BridgeTower BridgeTower/bridgetower-base style configuration for the text model
174
+ >>> configuration = BridgeTowerTextConfig()
175
+
176
+ >>> # Accessing the configuration
177
+ >>> configuration
178
+ ```"""
179
+
180
+ model_type = "bridgetower_text_model"
181
+
182
+ def __init__(
183
+ self,
184
+ vocab_size=50265,
185
+ hidden_size=768,
186
+ num_hidden_layers=12,
187
+ num_attention_heads=12,
188
+ initializer_factor=1,
189
+ intermediate_size=3072,
190
+ hidden_act="gelu",
191
+ hidden_dropout_prob=0.1,
192
+ attention_probs_dropout_prob=0.1,
193
+ max_position_embeddings=514,
194
+ type_vocab_size=1,
195
+ layer_norm_eps=1e-05,
196
+ pad_token_id=1,
197
+ bos_token_id=0,
198
+ eos_token_id=2,
199
+ position_embedding_type="absolute",
200
+ use_cache=True,
201
+ **kwargs,
202
+ ):
203
+ super().__init__(**kwargs)
204
+
205
+ self.vocab_size = vocab_size
206
+ self.hidden_size = hidden_size
207
+ self.num_hidden_layers = num_hidden_layers
208
+ self.num_attention_heads = num_attention_heads
209
+ self.hidden_act = hidden_act
210
+ self.initializer_factor = initializer_factor
211
+ self.intermediate_size = intermediate_size
212
+ self.hidden_dropout_prob = hidden_dropout_prob
213
+ self.attention_probs_dropout_prob = attention_probs_dropout_prob
214
+ self.max_position_embeddings = max_position_embeddings
215
+ self.type_vocab_size = type_vocab_size
216
+ self.layer_norm_eps = layer_norm_eps
217
+ self.position_embedding_type = position_embedding_type
218
+ self.use_cache = use_cache
219
+ self.pad_token_id = pad_token_id
220
+ self.bos_token_id = bos_token_id
221
+ self.eos_token_id = eos_token_id
222
+
223
+ @classmethod
224
+ def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
225
+ config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
226
+
227
+ if config_dict.get("model_type") == "bridgetower":
228
+ config_dict = config_dict["text_config"]
229
+
230
+ if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
231
+ logger.warning(
232
+ f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
233
+ f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
234
+ )
235
+
236
+ return cls.from_dict(config_dict, **kwargs)
237
+
238
+
239
+ class BridgeTowerConfig(PretrainedConfig):
240
+ r"""
241
+ This is the configuration class to store the configuration of a [`BridgeTowerModel`]. It is used to instantiate a
242
+ BridgeTower model according to the specified arguments, defining the model architecture. Instantiating a
243
+ configuration with the defaults will yield a similar configuration to that of the bridgetower-base
244
+ [BridgeTower/bridgetower-base](https://huggingface.co/BridgeTower/bridgetower-base/) architecture.
245
+
246
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
247
+ documentation from [`PretrainedConfig`] for more information.
248
+
249
+ Args:
250
+ share_cross_modal_transformer_layers (`bool`, *optional*, defaults to `True`):
251
+ Whether cross modal transformer layers are shared.
252
+ hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
253
+ The non-linear activation function (function or string) in the encoder and pooler.
254
+ hidden_size (`int`, *optional*, defaults to 768):
255
+ Dimensionality of the encoder layers and the pooler layer.
256
+ initializer_factor (`float`, *optional*, defaults to 1):
257
+ A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
258
+ testing).
259
+ layer_norm_eps (`float`, *optional*, defaults to 1e-05):
260
+ The epsilon used by the layer normalization layers.
261
+ share_link_tower_layers (`bool`, *optional*, defaults to `False`):
262
+ Whether the bride/link tower layers are shared.
263
+ link_tower_type (`str`, *optional*, defaults to `"add"`):
264
+ Type of the bridge/link layer.
265
+ num_attention_heads (`int`, *optional*, defaults to 12):
266
+ Number of attention heads for each attention layer in the Transformer encoder.
267
+ num_hidden_layers (`int`, *optional*, defaults to 6):
268
+ Number of hidden layers in the Transformer encoder.
269
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
270
+ Whether to tie input and output embeddings.
271
+ init_layernorm_from_vision_encoder (`bool`, *optional*, defaults to `False`):
272
+ Whether to init LayerNorm from the vision encoder.
273
+ text_config (`dict`, *optional*):
274
+ Dictionary of configuration options used to initialize [`BridgeTowerTextConfig`].
275
+ vision_config (`dict`, *optional*):
276
+ Dictionary of configuration options used to initialize [`BridgeTowerVisionConfig`].
277
+
278
+ Example:
279
+
280
+ ```python
281
+ >>> from transformers import BridgeTowerModel, BridgeTowerConfig
282
+
283
+ >>> # Initializing a BridgeTower BridgeTower/bridgetower-base style configuration
284
+ >>> configuration = BridgeTowerConfig()
285
+
286
+ >>> # Initializing a model from the BridgeTower/bridgetower-base style configuration
287
+ >>> model = BridgeTowerModel(configuration)
288
+
289
+ >>> # Accessing the model configuration
290
+ >>> configuration = model.config
291
+ ```"""
292
+
293
+ model_type = "bridgetower"
294
+
295
+ def __init__(
296
+ self,
297
+ share_cross_modal_transformer_layers=True,
298
+ hidden_act="gelu",
299
+ hidden_size=768,
300
+ initializer_factor=1,
301
+ layer_norm_eps=1e-05,
302
+ share_link_tower_layers=False,
303
+ link_tower_type="add",
304
+ num_attention_heads=12,
305
+ num_hidden_layers=6,
306
+ tie_word_embeddings=False,
307
+ init_layernorm_from_vision_encoder=False,
308
+ text_config=None,
309
+ vision_config=None,
310
+ **kwargs,
311
+ ):
312
+ # TODO: remove this once the Hub files are updated.
313
+ _ = kwargs.pop("text_config_dict", None)
314
+ _ = kwargs.pop("vision_config_dict", None)
315
+
316
+ super().__init__(**kwargs)
317
+ self.share_cross_modal_transformer_layers = share_cross_modal_transformer_layers
318
+ self.hidden_act = hidden_act
319
+ self.hidden_size = hidden_size
320
+ self.initializer_factor = initializer_factor
321
+ self.layer_norm_eps = layer_norm_eps
322
+ self.share_link_tower_layers = share_link_tower_layers
323
+ self.link_tower_type = link_tower_type
324
+ self.num_attention_heads = num_attention_heads
325
+ self.num_hidden_layers = num_hidden_layers
326
+ self.tie_word_embeddings = tie_word_embeddings
327
+ self.init_layernorm_from_vision_encoder = init_layernorm_from_vision_encoder
328
+
329
+ if text_config is None:
330
+ text_config = {}
331
+ logger.info("`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values.")
332
+
333
+ if vision_config is None:
334
+ vision_config = {}
335
+ logger.info("`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values.")
336
+
337
+ self.text_config = BridgeTowerTextConfig(**text_config)
338
+ self.vision_config = BridgeTowerVisionConfig(**vision_config)
339
+
340
+ @classmethod
341
+ def from_text_vision_configs(
342
+ cls, text_config: BridgeTowerTextConfig, vision_config: BridgeTowerVisionConfig, **kwargs
343
+ ):
344
+ r"""
345
+ Instantiate a [`BridgeTowerConfig`] (or a derived class) from BridgeTower text model configuration. Returns:
346
+ [`BridgeTowerConfig`]: An instance of a configuration object
347
+ """
348
+
349
+ return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs)
llmeval-env/lib/python3.10/site-packages/transformers/models/bridgetower/image_processing_bridgetower.py ADDED
@@ -0,0 +1,561 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 The Intel Labs Team Authors, The Microsoft Research Team Authors and HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Image processor class for BridgeTower."""
16
+
17
+ from typing import Any, Dict, Iterable, List, Optional, Tuple, Union
18
+
19
+ import numpy as np
20
+
21
+ from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
22
+ from ...image_transforms import PaddingMode, center_crop, pad, resize, to_channel_dimension_format
23
+ from ...image_utils import (
24
+ OPENAI_CLIP_MEAN,
25
+ OPENAI_CLIP_STD,
26
+ ChannelDimension,
27
+ ImageInput,
28
+ PILImageResampling,
29
+ get_image_size,
30
+ infer_channel_dimension_format,
31
+ is_batched,
32
+ is_scaled_image,
33
+ to_numpy_array,
34
+ valid_images,
35
+ validate_kwargs,
36
+ validate_preprocess_arguments,
37
+ )
38
+ from ...utils import TensorType, is_vision_available, logging
39
+
40
+
41
+ if is_vision_available():
42
+ import PIL
43
+
44
+ logger = logging.get_logger(__name__)
45
+
46
+
47
+ # Copied from transformers.models.vilt.image_processing_vilt.max_across_indices
48
+ def max_across_indices(values: Iterable[Any]) -> List[Any]:
49
+ """
50
+ Return the maximum value across all indices of an iterable of values.
51
+ """
52
+ return [max(values_i) for values_i in zip(*values)]
53
+
54
+
55
+ # Copied from transformers.models.vilt.image_processing_vilt.make_pixel_mask
56
+ def make_pixel_mask(
57
+ image: np.ndarray, output_size: Tuple[int, int], input_data_format: Optional[Union[str, ChannelDimension]] = None
58
+ ) -> np.ndarray:
59
+ """
60
+ Make a pixel mask for the image, where 1 indicates a valid pixel and 0 indicates padding.
61
+
62
+ Args:
63
+ image (`np.ndarray`):
64
+ Image to make the pixel mask for.
65
+ output_size (`Tuple[int, int]`):
66
+ Output size of the mask.
67
+ """
68
+ input_height, input_width = get_image_size(image, channel_dim=input_data_format)
69
+ mask = np.zeros(output_size, dtype=np.int64)
70
+ mask[:input_height, :input_width] = 1
71
+ return mask
72
+
73
+
74
+ # Copied from transformers.models.vilt.image_processing_vilt.get_max_height_width
75
+ def get_max_height_width(
76
+ images: List[np.ndarray], input_data_format: Optional[Union[str, ChannelDimension]] = None
77
+ ) -> List[int]:
78
+ """
79
+ Get the maximum height and width across all images in a batch.
80
+ """
81
+ if input_data_format is None:
82
+ input_data_format = infer_channel_dimension_format(images[0])
83
+
84
+ if input_data_format == ChannelDimension.FIRST:
85
+ _, max_height, max_width = max_across_indices([img.shape for img in images])
86
+ elif input_data_format == ChannelDimension.LAST:
87
+ max_height, max_width, _ = max_across_indices([img.shape for img in images])
88
+ else:
89
+ raise ValueError(f"Invalid channel dimension format: {input_data_format}")
90
+ return (max_height, max_width)
91
+
92
+
93
+ # Copied from transformers.models.vilt.image_processing_vilt.get_resize_output_image_size
94
+ def get_resize_output_image_size(
95
+ input_image: np.ndarray,
96
+ shorter: int = 800,
97
+ longer: int = 1333,
98
+ size_divisor: int = 32,
99
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
100
+ ) -> Tuple[int, int]:
101
+ input_height, input_width = get_image_size(input_image, input_data_format)
102
+ min_size, max_size = shorter, longer
103
+
104
+ scale = min_size / min(input_height, input_width)
105
+
106
+ if input_height < input_width:
107
+ new_height = min_size
108
+ new_width = scale * input_width
109
+ else:
110
+ new_height = scale * input_height
111
+ new_width = min_size
112
+
113
+ if max(new_height, new_width) > max_size:
114
+ scale = max_size / max(new_height, new_width)
115
+ new_height = scale * new_height
116
+ new_width = scale * new_width
117
+
118
+ new_height, new_width = int(new_height + 0.5), int(new_width + 0.5)
119
+ new_height = new_height // size_divisor * size_divisor
120
+ new_width = new_width // size_divisor * size_divisor
121
+
122
+ return new_height, new_width
123
+
124
+
125
+ class BridgeTowerImageProcessor(BaseImageProcessor):
126
+ r"""
127
+ Constructs a BridgeTower image processor.
128
+
129
+ Args:
130
+ do_resize (`bool`, *optional*, defaults to `True`):
131
+ Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by the
132
+ `do_resize` parameter in the `preprocess` method.
133
+ size (`Dict[str, int]` *optional*, defaults to `{'shortest_edge': 288}`):
134
+ Resize the shorter side of the input to `size["shortest_edge"]`. The longer side will be limited to under
135
+ `int((1333 / 800) * size["shortest_edge"])` while preserving the aspect ratio. Only has an effect if
136
+ `do_resize` is set to `True`. Can be overridden by the `size` parameter in the `preprocess` method.
137
+ size_divisor (`int`, *optional*, defaults to 32):
138
+ The size by which to make sure both the height and width can be divided. Only has an effect if `do_resize`
139
+ is set to `True`. Can be overridden by the `size_divisor` parameter in the `preprocess` method.
140
+ resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`):
141
+ Resampling filter to use if resizing the image. Only has an effect if `do_resize` is set to `True`. Can be
142
+ overridden by the `resample` parameter in the `preprocess` method.
143
+ do_rescale (`bool`, *optional*, defaults to `True`):
144
+ Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale`
145
+ parameter in the `preprocess` method.
146
+ rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
147
+ Scale factor to use if rescaling the image. Only has an effect if `do_rescale` is set to `True`. Can be
148
+ overridden by the `rescale_factor` parameter in the `preprocess` method.
149
+ do_normalize (`bool`, *optional*, defaults to `True`):
150
+ Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
151
+ method. Can be overridden by the `do_normalize` parameter in the `preprocess` method.
152
+ image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
153
+ Mean to use if normalizing the image. This is a float or list of floats the length of the number of
154
+ channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. Can be
155
+ overridden by the `image_mean` parameter in the `preprocess` method.
156
+ image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
157
+ Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
158
+ number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
159
+ Can be overridden by the `image_std` parameter in the `preprocess` method.
160
+ do_center_crop (`bool`, *optional*, defaults to `True`):
161
+ Whether to center crop the image. Can be overridden by the `do_center_crop` parameter in the `preprocess`
162
+ method.
163
+ crop_size (`Dict[str, int]`, *optional*):
164
+ Desired output size when applying center-cropping. Only has an effect if `do_center_crop` is set to `True`.
165
+ Can be overridden by the `crop_size` parameter in the `preprocess` method. If unset defaults to `size`,
166
+ do_pad (`bool`, *optional*, defaults to `True`):
167
+ Whether to pad the image to the `(max_height, max_width)` of the images in the batch. Can be overridden by
168
+ the `do_pad` parameter in the `preprocess` method.
169
+ """
170
+
171
+ model_input_names = ["pixel_values"]
172
+
173
+ def __init__(
174
+ self,
175
+ do_resize: bool = True,
176
+ size: Dict[str, int] = None,
177
+ size_divisor: int = 32,
178
+ resample: PILImageResampling = PILImageResampling.BICUBIC,
179
+ do_rescale: bool = True,
180
+ rescale_factor: Union[int, float] = 1 / 255,
181
+ do_normalize: bool = True,
182
+ image_mean: Optional[Union[float, List[float]]] = None,
183
+ image_std: Optional[Union[float, List[float]]] = None,
184
+ do_center_crop: bool = True,
185
+ crop_size: Dict[str, int] = None,
186
+ do_pad: bool = True,
187
+ **kwargs,
188
+ ) -> None:
189
+ if "pad_and_return_pixel_mask" in kwargs:
190
+ do_pad = kwargs.pop("pad_and_return_pixel_mask")
191
+
192
+ super().__init__(**kwargs)
193
+ size = size if size is not None else {"shortest_edge": 288}
194
+ size = get_size_dict(size, default_to_square=False)
195
+
196
+ self.do_resize = do_resize
197
+ self.size = size
198
+ self.size_divisor = size_divisor
199
+ self.resample = resample
200
+ self.do_rescale = do_rescale
201
+ self.rescale_factor = rescale_factor
202
+ self.do_normalize = do_normalize
203
+ self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
204
+ self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
205
+ self.do_pad = do_pad
206
+ self.do_center_crop = do_center_crop
207
+ self.crop_size = crop_size
208
+ self._valid_processor_keys = [
209
+ "images",
210
+ "do_resize",
211
+ "size",
212
+ "size_divisor",
213
+ "resample",
214
+ "do_rescale",
215
+ "rescale_factor",
216
+ "do_normalize",
217
+ "image_mean",
218
+ "image_std",
219
+ "do_pad",
220
+ "do_center_crop",
221
+ "crop_size",
222
+ "return_tensors",
223
+ "data_format",
224
+ "input_data_format",
225
+ ]
226
+
227
+ # Copied from transformers.models.vilt.image_processing_vilt.ViltImageProcessor.resize
228
+ def resize(
229
+ self,
230
+ image: np.ndarray,
231
+ size: Dict[str, int],
232
+ size_divisor: int = 32,
233
+ resample: PILImageResampling = PILImageResampling.BICUBIC,
234
+ data_format: Optional[Union[str, ChannelDimension]] = None,
235
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
236
+ **kwargs,
237
+ ) -> np.ndarray:
238
+ """
239
+ Resize an image.
240
+
241
+ Resizes the shorter side of the image to `size["shortest_edge"]` while preserving the aspect ratio. If the
242
+ longer side is larger than the max size `(int(`size["shortest_edge"]` * 1333 / 800))`, the longer side is then
243
+ resized to the max size while preserving the aspect ratio.
244
+
245
+ Args:
246
+ image (`np.ndarray`):
247
+ Image to resize.
248
+ size (`Dict[str, int]`):
249
+ Controls the size of the output image. Should be of the form `{"shortest_edge": int}`.
250
+ size_divisor (`int`, defaults to 32):
251
+ The image is resized to a size that is a multiple of this value.
252
+ resample (`PILImageResampling` filter, *optional*, defaults to `PILImageResampling.BICUBIC`):
253
+ Resampling filter to use when resiizing the image.
254
+ data_format (`str` or `ChannelDimension`, *optional*):
255
+ The channel dimension format of the image. If not provided, it will be the same as the input image.
256
+ input_data_format (`str` or `ChannelDimension`, *optional*):
257
+ The channel dimension format of the input image. If not provided, it will be inferred.
258
+ """
259
+ size = get_size_dict(size, default_to_square=False)
260
+ if "shortest_edge" not in size:
261
+ raise ValueError(f"The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}")
262
+ shorter = size["shortest_edge"]
263
+ longer = int(1333 / 800 * shorter)
264
+ output_size = get_resize_output_image_size(
265
+ image, shorter=shorter, longer=longer, size_divisor=size_divisor, input_data_format=input_data_format
266
+ )
267
+ return resize(
268
+ image,
269
+ size=output_size,
270
+ resample=resample,
271
+ data_format=data_format,
272
+ input_data_format=input_data_format,
273
+ **kwargs,
274
+ )
275
+
276
+ def center_crop(
277
+ self,
278
+ image: np.ndarray,
279
+ size: Dict[str, int],
280
+ data_format: Optional[Union[str, ChannelDimension]] = None,
281
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
282
+ **kwargs,
283
+ ) -> np.ndarray:
284
+ """
285
+ Center crop an image to `(size["height"], size["width"])`. If the input size is smaller than `crop_size` along
286
+ any edge, the image is padded with 0's and then center cropped.
287
+
288
+ Args:
289
+ image (`np.ndarray`):
290
+ Image to center crop.
291
+ size (`Dict[str, int]`):
292
+ Size of the output image in the form `{"height": h, "width": w}`.
293
+ data_format (`str` or `ChannelDimension`, *optional*):
294
+ The channel dimension format of the image. If not provided, it will be the same as the input image.
295
+ input_data_format (`ChannelDimension` or `str`, *optional*):
296
+ The channel dimension format of the input image. If not provided, it will be inferred from the input
297
+ image.
298
+ """
299
+ output_size = size["shortest_edge"]
300
+ return center_crop(
301
+ image,
302
+ size=(output_size, output_size),
303
+ data_format=data_format,
304
+ input_data_format=input_data_format,
305
+ **kwargs,
306
+ )
307
+
308
+ # Copied from transformers.models.vilt.image_processing_vilt.ViltImageProcessor._pad_image
309
+ def _pad_image(
310
+ self,
311
+ image: np.ndarray,
312
+ output_size: Tuple[int, int],
313
+ constant_values: Union[float, Iterable[float]] = 0,
314
+ data_format: Optional[ChannelDimension] = None,
315
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
316
+ ) -> np.ndarray:
317
+ """
318
+ Pad an image with zeros to the given size.
319
+ """
320
+ input_height, input_width = get_image_size(image, channel_dim=input_data_format)
321
+ output_height, output_width = output_size
322
+
323
+ pad_bottom = output_height - input_height
324
+ pad_right = output_width - input_width
325
+ padding = ((0, pad_bottom), (0, pad_right))
326
+ padded_image = pad(
327
+ image,
328
+ padding,
329
+ mode=PaddingMode.CONSTANT,
330
+ constant_values=constant_values,
331
+ data_format=data_format,
332
+ input_data_format=input_data_format,
333
+ )
334
+ return padded_image
335
+
336
+ # Copied from transformers.models.vilt.image_processing_vilt.ViltImageProcessor.pad
337
+ def pad(
338
+ self,
339
+ images: List[np.ndarray],
340
+ constant_values: Union[float, Iterable[float]] = 0,
341
+ return_pixel_mask: bool = True,
342
+ return_tensors: Optional[Union[str, TensorType]] = None,
343
+ data_format: Optional[ChannelDimension] = None,
344
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
345
+ ) -> BatchFeature:
346
+ """
347
+ Pads a batch of images to the bottom and right of the image with zeros to the size of largest height and width
348
+ in the batch and optionally returns their corresponding pixel mask.
349
+
350
+ Args:
351
+ image (`np.ndarray`):
352
+ Image to pad.
353
+ constant_values (`float` or `Iterable[float]`, *optional*):
354
+ The value to use for the padding if `mode` is `"constant"`.
355
+ return_pixel_mask (`bool`, *optional*, defaults to `True`):
356
+ Whether to return a pixel mask.
357
+ return_tensors (`str` or `TensorType`, *optional*):
358
+ The type of tensors to return. Can be one of:
359
+ - Unset: Return a list of `np.ndarray`.
360
+ - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
361
+ - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
362
+ - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
363
+ - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
364
+ data_format (`str` or `ChannelDimension`, *optional*):
365
+ The channel dimension format of the image. If not provided, it will be the same as the input image.
366
+ input_data_format (`ChannelDimension` or `str`, *optional*):
367
+ The channel dimension format of the input image. If not provided, it will be inferred.
368
+ """
369
+ pad_size = get_max_height_width(images, input_data_format=input_data_format)
370
+
371
+ padded_images = [
372
+ self._pad_image(
373
+ image,
374
+ pad_size,
375
+ constant_values=constant_values,
376
+ data_format=data_format,
377
+ input_data_format=input_data_format,
378
+ )
379
+ for image in images
380
+ ]
381
+ data = {"pixel_values": padded_images}
382
+
383
+ if return_pixel_mask:
384
+ masks = [
385
+ make_pixel_mask(image=image, output_size=pad_size, input_data_format=input_data_format)
386
+ for image in images
387
+ ]
388
+ data["pixel_mask"] = masks
389
+
390
+ return BatchFeature(data=data, tensor_type=return_tensors)
391
+
392
+ def preprocess(
393
+ self,
394
+ images: ImageInput,
395
+ do_resize: Optional[bool] = None,
396
+ size: Optional[Dict[str, int]] = None,
397
+ size_divisor: Optional[int] = None,
398
+ resample: PILImageResampling = None,
399
+ do_rescale: Optional[bool] = None,
400
+ rescale_factor: Optional[float] = None,
401
+ do_normalize: Optional[bool] = None,
402
+ image_mean: Optional[Union[float, List[float]]] = None,
403
+ image_std: Optional[Union[float, List[float]]] = None,
404
+ do_pad: Optional[bool] = None,
405
+ do_center_crop: Optional[bool] = None,
406
+ crop_size: Dict[str, int] = None,
407
+ return_tensors: Optional[Union[str, TensorType]] = None,
408
+ data_format: ChannelDimension = ChannelDimension.FIRST,
409
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
410
+ **kwargs,
411
+ ) -> PIL.Image.Image:
412
+ """
413
+ Preprocess an image or batch of images.
414
+
415
+ Args:
416
+ images (`ImageInput`):
417
+ Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
418
+ passing in images with pixel values between 0 and 1, set `do_rescale=False`.
419
+ do_resize (`bool`, *optional*, defaults to `self.do_resize`):
420
+ Whether to resize the image.
421
+ size (`Dict[str, int]`, *optional*, defaults to `self.size`):
422
+ Controls the size of the image after `resize`. The shortest edge of the image is resized to
423
+ `size["shortest_edge"]` whilst preserving the aspect ratio. If the longest edge of this resized image
424
+ is > `int(size["shortest_edge"] * (1333 / 800))`, then the image is resized again to make the longest
425
+ edge equal to `int(size["shortest_edge"] * (1333 / 800))`.
426
+ size_divisor (`int`, *optional*, defaults to `self.size_divisor`):
427
+ The image is resized to a size that is a multiple of this value.
428
+ resample (`PILImageResampling`, *optional*, defaults to `self.resample`):
429
+ Resampling filter to use if resizing the image. Only has an effect if `do_resize` is set to `True`.
430
+ do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
431
+ Whether to rescale the image values between [0 - 1].
432
+ rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
433
+ Rescale factor to rescale the image by if `do_rescale` is set to `True`.
434
+ do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
435
+ Whether to normalize the image.
436
+ image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
437
+ Image mean to normalize the image by if `do_normalize` is set to `True`.
438
+ image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
439
+ Image standard deviation to normalize the image by if `do_normalize` is set to `True`.
440
+ do_pad (`bool`, *optional*, defaults to `self.do_pad`):
441
+ Whether to pad the image to the (max_height, max_width) in the batch. If `True`, a pixel mask is also
442
+ created and returned.
443
+ do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`):
444
+ Whether to center crop the image. If the input size is smaller than `crop_size` along any edge, the
445
+ image is padded with 0's and then center cropped.
446
+ crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
447
+ Size of the image after center crop. If one edge the image is smaller than `crop_size`, it will be
448
+ padded with zeros and then cropped
449
+ return_tensors (`str` or `TensorType`, *optional*):
450
+ The type of tensors to return. Can be one of:
451
+ - Unset: Return a list of `np.ndarray`.
452
+ - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
453
+ - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
454
+ - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
455
+ - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
456
+ data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
457
+ The channel dimension format for the output image. Can be one of:
458
+ - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
459
+ - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
460
+ - Unset: Use the channel dimension format of the input image.
461
+ input_data_format (`ChannelDimension` or `str`, *optional*):
462
+ The channel dimension format for the input image. If unset, the channel dimension format is inferred
463
+ from the input image. Can be one of:
464
+ - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
465
+ - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
466
+ - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
467
+ """
468
+ do_resize = do_resize if do_resize is not None else self.do_resize
469
+ size_divisor = size_divisor if size_divisor is not None else self.size_divisor
470
+ resample = resample if resample is not None else self.resample
471
+ do_rescale = do_rescale if do_rescale is not None else self.do_rescale
472
+ rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
473
+ do_normalize = do_normalize if do_normalize is not None else self.do_normalize
474
+ image_mean = image_mean if image_mean is not None else self.image_mean
475
+ image_std = image_std if image_std is not None else self.image_std
476
+ do_pad = do_pad if do_pad is not None else self.do_pad
477
+ do_center_crop if do_center_crop is not None else self.do_center_crop
478
+ # For backwards compatibility. Initial version of this processor was cropping to the "size" argument, which
479
+ # it should default to if crop_size is undefined.
480
+ crop_size = (
481
+ crop_size if crop_size is not None else (self.crop_size if self.crop_size is not None else self.size)
482
+ )
483
+
484
+ size = size if size is not None else self.size
485
+ size = get_size_dict(size, default_to_square=False)
486
+
487
+ validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
488
+
489
+ if not is_batched(images):
490
+ images = [images]
491
+
492
+ if not valid_images(images):
493
+ raise ValueError(
494
+ "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
495
+ "torch.Tensor, tf.Tensor or jax.ndarray."
496
+ )
497
+ # Here, crop_size is used only if it is set, else size will be used.
498
+ validate_preprocess_arguments(
499
+ do_rescale=do_rescale,
500
+ rescale_factor=rescale_factor,
501
+ do_normalize=do_normalize,
502
+ image_mean=image_mean,
503
+ image_std=image_std,
504
+ do_pad=do_pad,
505
+ size_divisibility=size_divisor,
506
+ do_center_crop=do_center_crop,
507
+ crop_size=crop_size,
508
+ do_resize=do_resize,
509
+ size=size,
510
+ resample=resample,
511
+ )
512
+ # All transformations expect numpy arrays.
513
+ images = [to_numpy_array(image) for image in images]
514
+
515
+ if is_scaled_image(images[0]) and do_rescale:
516
+ logger.warning_once(
517
+ "It looks like you are trying to rescale already rescaled images. If the input"
518
+ " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
519
+ )
520
+
521
+ if do_resize:
522
+ images = [
523
+ self.resize(
524
+ image=image,
525
+ size=size,
526
+ size_divisor=size_divisor,
527
+ resample=resample,
528
+ input_data_format=input_data_format,
529
+ )
530
+ for image in images
531
+ ]
532
+
533
+ if do_center_crop:
534
+ images = [
535
+ self.center_crop(image=image, size=crop_size, input_data_format=input_data_format) for image in images
536
+ ]
537
+
538
+ if do_rescale:
539
+ images = [
540
+ self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
541
+ for image in images
542
+ ]
543
+
544
+ if do_normalize:
545
+ images = [
546
+ self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
547
+ for image in images
548
+ ]
549
+
550
+ images = [
551
+ to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
552
+ ]
553
+
554
+ if do_pad:
555
+ encoded_outputs = self.pad(
556
+ images, return_pixel_mask=True, return_tensors=return_tensors, input_data_format=data_format
557
+ )
558
+ else:
559
+ encoded_outputs = BatchFeature(data={"pixel_values": images}, tensor_type=return_tensors)
560
+
561
+ return encoded_outputs
llmeval-env/lib/python3.10/site-packages/transformers/models/bridgetower/modeling_bridgetower.py ADDED
@@ -0,0 +1,1898 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 The Intel Labs Team Authors, The Microsoft Research Team Authors and HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """PyTorch BridgeTower Model"""
16
+
17
+ import math
18
+ from collections import OrderedDict
19
+ from dataclasses import dataclass
20
+ from typing import List, Optional, Tuple, Union
21
+
22
+ import torch
23
+ import torch.utils.checkpoint
24
+ from torch import nn
25
+ from torch.nn import CrossEntropyLoss
26
+
27
+ from ...activations import ACT2FN, QuickGELUActivation
28
+ from ...modeling_outputs import (
29
+ BaseModelOutputWithPastAndCrossAttentions,
30
+ BaseModelOutputWithPoolingAndCrossAttentions,
31
+ MaskedLMOutput,
32
+ ModelOutput,
33
+ SequenceClassifierOutput,
34
+ )
35
+ from ...modeling_utils import PreTrainedModel, apply_chunking_to_forward
36
+ from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer
37
+ from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
38
+ from .configuration_bridgetower import BridgeTowerConfig, BridgeTowerTextConfig, BridgeTowerVisionConfig
39
+
40
+
41
+ logger = logging.get_logger(__name__)
42
+
43
+ _CONFIG_FOR_DOC = "BridgeTowerConfig"
44
+ _CHECKPOINT_FOR_DOC = "BridgeTower/bridgetower-base"
45
+ _TOKENIZER_FOR_DOC = "RobertaTokenizer"
46
+
47
+
48
+ from ..deprecated._archive_maps import BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
49
+
50
+
51
+ BRIDGETOWER_START_DOCSTRING = r"""
52
+ This model is a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`_ subclass. Use
53
+ it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
54
+ behavior.
55
+
56
+ Parameters:
57
+ config ([`BridgeTowerConfig`]): Model configuration class with all the parameters of the model.
58
+ Initializing with a config file does not load the weights associated with the model, only the
59
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
60
+ """
61
+
62
+ BRIDGETOWER_INPUTS_DOCSTRING = r"""
63
+ Args:
64
+ input_ids (`torch.LongTensor` of shape `({0})`):
65
+ Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See
66
+ [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input
67
+ IDs?](../glossary#input-ids)
68
+
69
+ attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
70
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
71
+ - 1 for tokens that are **not masked**,
72
+ - 0 for tokens that are **masked**.
73
+ [What are attention masks?](../glossary#attention-mask)
74
+
75
+ token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
76
+ Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
77
+ 1]`:
78
+ - 0 corresponds to a *sentence A* token,
79
+ - 1 corresponds to a *sentence B* token.
80
+ [What are token type IDs?](../glossary#token-type-ids)
81
+
82
+ pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
83
+ Pixel values. Pixel values can be obtained using [`BridgeTowerImageProcessor`]. See
84
+ [`BridgeTowerImageProcessor.__call__`] for details.
85
+
86
+ pixel_mask (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*):
87
+ Mask to avoid performing attention on padding pixel values. Mask values selected in `[0, 1]`:
88
+
89
+ - 1 for pixels that are real (i.e. **not masked**),
90
+ - 0 for pixels that are padding (i.e. **masked**).
91
+ `What are attention masks? <../glossary.html#attention-mask>`__
92
+
93
+ head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
94
+ Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
95
+ - 1 indicates the head is **not masked**,
96
+ - 0 indicates the head is **masked**.
97
+
98
+ inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
99
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
100
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
101
+ model's internal embedding lookup matrix.
102
+
103
+ image_embeds (`torch.FloatTensor` of shape `(batch_size, num_patches, hidden_size)`, *optional*):
104
+ Optionally, instead of passing `pixel_values`, you can choose to directly pass an embedded representation.
105
+ This is useful if you want more control over how to convert `pixel_values` into patch embeddings.
106
+
107
+ image_token_type_idx (`int`, *optional*):
108
+ - The token type ids for images.
109
+
110
+ output_attentions (`bool`, *optional*):
111
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
112
+ tensors for more detail.
113
+
114
+ output_hidden_states (`bool`, *optional*):
115
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
116
+ more detail.
117
+ return_dict (`bool`, *optional*):
118
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
119
+ """
120
+
121
+
122
+ @dataclass
123
+ class BridgeTowerModelOutput(ModelOutput):
124
+ """
125
+ Output type of [`BridgeTowerModel`].
126
+
127
+ Args:
128
+ text_features (`torch.FloatTensor` of shape `(batch_size, text_sequence_length, hidden_size)`):
129
+ Sequence of hidden-states at the text output of the last layer of the model.
130
+ image_features (`torch.FloatTensor` of shape `(batch_size, image_sequence_length, hidden_size)`):
131
+ Sequence of hidden-states at the image output of the last layer of the model.
132
+ pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size x 2)`):
133
+ Concatenation of last layer hidden-state of the first token of the text and image sequence (classification
134
+ token), respectively, after further processing through layers used for auxiliary pretraining tasks.
135
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
136
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
137
+ one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of
138
+ the model at the output of each layer plus the optional initial embedding outputs.
139
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
140
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
141
+ sequence_length)`.
142
+
143
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
144
+ heads.
145
+ """
146
+
147
+ text_features: torch.FloatTensor = None
148
+ image_features: torch.FloatTensor = None
149
+ pooler_output: torch.FloatTensor = None
150
+ hidden_states: Optional[Tuple[torch.FloatTensor]] = None
151
+ attentions: Optional[Tuple[torch.FloatTensor]] = None
152
+
153
+
154
+ @dataclass
155
+ class BridgeTowerContrastiveOutput(ModelOutput):
156
+ """
157
+ Output type of ['BridgeTowerForContrastiveLearning']
158
+
159
+ Args:
160
+ loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`:
161
+ Image-text contrastive loss.
162
+ logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
163
+ Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
164
+ text_embeds (`torch.FloatTensor)`, *optional*, returned when model is initialized with `with_projection=True`):
165
+ The text embeddings obtained by applying the projection layer to the pooler_output.
166
+ image_embeds (`torch.FloatTensor)`, *optional*, returned when model is initialized with `with_projection=True`):
167
+ The image embeddings obtained by applying the projection layer to the pooler_output.
168
+ cross_embeds (`torch.FloatTensor)`, *optional*, returned when model is initialized with `with_projection=True`):
169
+ The text-image cross-modal embeddings obtained by applying the projection layer to the pooler_output.
170
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
171
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
172
+ one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of
173
+ the model at the output of each layer plus the optional initial embedding outputs.
174
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
175
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
176
+ sequence_length)`.
177
+ """
178
+
179
+ loss: Optional[torch.FloatTensor] = None
180
+ logits: torch.FloatTensor = None
181
+ text_embeds: Optional[Tuple[torch.FloatTensor]] = None
182
+ image_embeds: Optional[Tuple[torch.FloatTensor]] = None
183
+ cross_embeds: Optional[Tuple[torch.FloatTensor]] = None
184
+ hidden_states: Optional[Tuple[torch.FloatTensor]] = None
185
+ attentions: Optional[Tuple[torch.FloatTensor]] = None
186
+
187
+
188
+ class BridgeTowerResidualAttention(nn.Module):
189
+ def __init__(self, config):
190
+ super().__init__()
191
+
192
+ self.attn = nn.MultiheadAttention(config.hidden_size, config.hidden_size // 64)
193
+ self.ln_1 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
194
+ self.mlp = nn.ModuleDict(
195
+ OrderedDict(
196
+ [
197
+ ("c_fc", nn.Linear(config.hidden_size, config.hidden_size * 4)),
198
+ ("gelu", QuickGELUActivation()),
199
+ ("c_proj", nn.Linear(config.hidden_size * 4, config.hidden_size)),
200
+ ]
201
+ )
202
+ )
203
+ self.ln_2 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
204
+ self.attn_mask = None
205
+
206
+ def attention(self, hidden_state: torch.Tensor, attention_mask: torch.Tensor):
207
+ if attention_mask is not None:
208
+ attention_mask = attention_mask.to(dtype=torch.bool, device=hidden_state.device)
209
+ self.attn_mask = (
210
+ self.attn_mask.to(dtype=hidden_state.dtype, device=hidden_state.device)
211
+ if self.attn_mask is not None
212
+ else None
213
+ )
214
+ return self.attn(
215
+ hidden_state,
216
+ hidden_state,
217
+ hidden_state,
218
+ need_weights=False,
219
+ attn_mask=self.attn_mask,
220
+ key_padding_mask=attention_mask,
221
+ )[0]
222
+
223
+ def forward(self, hidden_state: torch.Tensor, attention_mask: torch.Tensor = None):
224
+ residual_state = hidden_state + self.attention(self.ln_1(hidden_state), attention_mask)
225
+ hidden_state = self.ln_2(residual_state)
226
+ for _, layer in self.mlp.items():
227
+ hidden_state = layer(hidden_state)
228
+ hidden_state = residual_state + hidden_state
229
+ return hidden_state
230
+
231
+
232
+ class BridgeTowerTransformer(nn.Module):
233
+ def __init__(self, config):
234
+ super().__init__()
235
+ self.hidden_size = config.hidden_size
236
+ self.num_hidden_layers = config.num_hidden_layers
237
+ if config.remove_last_layer:
238
+ self.resblocks = nn.ModuleList(
239
+ [BridgeTowerResidualAttention(config) for _ in range(self.num_hidden_layers - 1)]
240
+ )
241
+ else:
242
+ self.resblocks = nn.ModuleList(
243
+ [BridgeTowerResidualAttention(config) for _ in range(self.num_hidden_layers)]
244
+ )
245
+ self.stop_gradient = config.stop_gradient
246
+
247
+ def forward(self, hidden_state: torch.Tensor, attention_mask: Optional[torch.Tensor] = None):
248
+ hidden_states = []
249
+ for block in self.resblocks:
250
+ hidden_state = block(hidden_state, attention_mask)
251
+ if self.stop_gradient:
252
+ hidden_states.append(hidden_state.detach())
253
+ else:
254
+ hidden_states.append(hidden_state)
255
+ return hidden_states
256
+
257
+
258
+ # Copied from transformers.models.clip.modeling_clip.CLIPVisionEmbeddings with CLIP->BridgeTower
259
+ class BridgeTowerVisionEmbeddings(nn.Module):
260
+ def __init__(self, config: BridgeTowerVisionConfig):
261
+ super().__init__()
262
+ self.config = config
263
+ self.embed_dim = config.hidden_size
264
+ self.image_size = config.image_size
265
+ self.patch_size = config.patch_size
266
+
267
+ self.class_embedding = nn.Parameter(torch.randn(self.embed_dim))
268
+
269
+ self.patch_embedding = nn.Conv2d(
270
+ in_channels=config.num_channels,
271
+ out_channels=self.embed_dim,
272
+ kernel_size=self.patch_size,
273
+ stride=self.patch_size,
274
+ bias=False,
275
+ )
276
+
277
+ self.num_patches = (self.image_size // self.patch_size) ** 2
278
+ self.num_positions = self.num_patches + 1
279
+ self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
280
+ self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent=False)
281
+
282
+ def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
283
+ batch_size = pixel_values.shape[0]
284
+ target_dtype = self.patch_embedding.weight.dtype
285
+ patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) # shape = [*, width, grid, grid]
286
+ patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
287
+
288
+ class_embeds = self.class_embedding.expand(batch_size, 1, -1)
289
+ embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
290
+ embeddings = embeddings + self.position_embedding(self.position_ids)
291
+ return embeddings
292
+
293
+
294
+ class BridgeTowerVisionTransformer(nn.Module):
295
+ def __init__(self, config):
296
+ super().__init__()
297
+
298
+ self.embeddings = BridgeTowerVisionEmbeddings(config)
299
+ self.ln_pre = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
300
+ self.transformer = BridgeTowerTransformer(config)
301
+ self.ln_post = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
302
+ self.share_layernorm = config.share_layernorm
303
+ if not config.share_layernorm:
304
+ self.ln_separate = nn.ModuleList(
305
+ [nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) for _ in range(config.num_hidden_layers)]
306
+ )
307
+
308
+ def forward(self, pixel_values: torch.Tensor, attention_mask):
309
+ hidden_states = self.embeddings(pixel_values)
310
+ hidden_states = self.ln_pre(hidden_states)
311
+ # NLD -> LND
312
+ hidden_states = hidden_states.permute(1, 0, 2)
313
+
314
+ hidden_states = self.transformer(hidden_states, attention_mask)
315
+ # shape = [num_hidden_layers, hidden_size, *, grid ** 2]
316
+ hidden_states = torch.stack(hidden_states, dim=0)
317
+ # shape = [num_hidden_layers, *, hidden_size, grid ** 2]
318
+ hidden_states = hidden_states.permute(0, 2, 1, 3)
319
+ if self.share_layernorm:
320
+ hidden_states = self.ln_post(hidden_states)
321
+ else:
322
+ hidden_states_stack = []
323
+ for hidden_states, ln in zip(hidden_states, self.ln_separate):
324
+ hidden_states = ln(hidden_states)
325
+ hidden_states_stack.append(hidden_states)
326
+ # shape = [num_hidden_layers, *, hidden_size, grid ** 2]
327
+ hidden_states = torch.stack(hidden_states_stack, dim=0)
328
+ return hidden_states
329
+
330
+ def forward_pre(self, pixel_values: torch.Tensor):
331
+ hidden_states = self.embeddings(pixel_values)
332
+ hidden_states = self.ln_pre(hidden_states)
333
+ # NLD -> LND
334
+ hidden_states = hidden_states.permute(1, 0, 2)
335
+ return hidden_states
336
+
337
+ def forward_post(self, hidden_state: torch.Tensor):
338
+ visual_output_post = hidden_state.permute(1, 0, 2)
339
+ visual_output_post = self.ln_post(visual_output_post)
340
+ return visual_output_post
341
+
342
+
343
+ class BridgeTowerLinkTower(nn.Module):
344
+ def __init__(self, config):
345
+ super().__init__()
346
+ self.link_tower_type = config.link_tower_type
347
+ self.hidden_size = config.hidden_size
348
+ if config.link_tower_type in ["add", "scaled_add", "interpolate"]:
349
+ if config.link_tower_type == "scaled_add":
350
+ self.scaled_factor = nn.Parameter(torch.tensor(1.0))
351
+ elif config.link_tower_type == "interpolate":
352
+ self.beta = nn.Parameter(torch.tensor(0.5))
353
+ self.LayerNorm = nn.LayerNorm(self.hidden_size, eps=config.layer_norm_eps)
354
+ else:
355
+ raise NotImplementedError(f"link_tower_type {config.link_tower_type} is not implemented")
356
+
357
+ def forward(self, hidden_states, cross_modal_hidden_states, attention_mask):
358
+ if self.link_tower_type == "add":
359
+ return self.LayerNorm(hidden_states + cross_modal_hidden_states)
360
+ elif self.link_tower_type == "scaled_add":
361
+ return self.LayerNorm(hidden_states * self.scaled_factor + cross_modal_hidden_states)
362
+ elif self.link_tower_type == "interpolate":
363
+ return self.LayerNorm(hidden_states * (1 - self.beta) + cross_modal_hidden_states * self.beta)
364
+ else:
365
+ raise NotImplementedError(f"link_tower_type {self.link_tower_type} is not implemented")
366
+
367
+
368
+ # Copied from transformers.models.bert.modeling_bert.BertSelfOutput with Bert->BridgeTower
369
+ class BridgeTowerSelfOutput(nn.Module):
370
+ def __init__(self, config):
371
+ super().__init__()
372
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
373
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
374
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
375
+
376
+ def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
377
+ hidden_states = self.dense(hidden_states)
378
+ hidden_states = self.dropout(hidden_states)
379
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
380
+ return hidden_states
381
+
382
+
383
+ # Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->BridgeTower
384
+ class BridgeTowerIntermediate(nn.Module):
385
+ def __init__(self, config):
386
+ super().__init__()
387
+ self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
388
+ if isinstance(config.hidden_act, str):
389
+ self.intermediate_act_fn = ACT2FN[config.hidden_act]
390
+ else:
391
+ self.intermediate_act_fn = config.hidden_act
392
+
393
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
394
+ hidden_states = self.dense(hidden_states)
395
+ hidden_states = self.intermediate_act_fn(hidden_states)
396
+ return hidden_states
397
+
398
+
399
+ # Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->BridgeTower
400
+ class BridgeTowerOutput(nn.Module):
401
+ def __init__(self, config):
402
+ super().__init__()
403
+ self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
404
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
405
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
406
+
407
+ def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
408
+ hidden_states = self.dense(hidden_states)
409
+ hidden_states = self.dropout(hidden_states)
410
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
411
+ return hidden_states
412
+
413
+
414
+ # Copied from transformers.models.bert.modeling_bert.BertPooler with Bert->BridgeTower
415
+ class BridgeTowerPooler(nn.Module):
416
+ def __init__(self, config):
417
+ super().__init__()
418
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
419
+ self.activation = nn.Tanh()
420
+
421
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
422
+ # We "pool" the model by simply taking the hidden state corresponding
423
+ # to the first token.
424
+ first_token_tensor = hidden_states[:, 0]
425
+ pooled_output = self.dense(first_token_tensor)
426
+ pooled_output = self.activation(pooled_output)
427
+ return pooled_output
428
+
429
+
430
+ # Copied from transformers.models.roberta.modeling_roberta.RobertaSelfAttention with Roberta->BridgeTower
431
+ class BridgeTowerSelfAttention(nn.Module):
432
+ def __init__(self, config, position_embedding_type=None):
433
+ super().__init__()
434
+ if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
435
+ raise ValueError(
436
+ f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
437
+ f"heads ({config.num_attention_heads})"
438
+ )
439
+
440
+ self.num_attention_heads = config.num_attention_heads
441
+ self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
442
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
443
+
444
+ self.query = nn.Linear(config.hidden_size, self.all_head_size)
445
+ self.key = nn.Linear(config.hidden_size, self.all_head_size)
446
+ self.value = nn.Linear(config.hidden_size, self.all_head_size)
447
+
448
+ self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
449
+ self.position_embedding_type = position_embedding_type or getattr(
450
+ config, "position_embedding_type", "absolute"
451
+ )
452
+ if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
453
+ self.max_position_embeddings = config.max_position_embeddings
454
+ self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
455
+
456
+ self.is_decoder = config.is_decoder
457
+
458
+ def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
459
+ new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
460
+ x = x.view(new_x_shape)
461
+ return x.permute(0, 2, 1, 3)
462
+
463
+ def forward(
464
+ self,
465
+ hidden_states: torch.Tensor,
466
+ attention_mask: Optional[torch.FloatTensor] = None,
467
+ head_mask: Optional[torch.FloatTensor] = None,
468
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
469
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
470
+ past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
471
+ output_attentions: Optional[bool] = False,
472
+ ) -> Tuple[torch.Tensor]:
473
+ mixed_query_layer = self.query(hidden_states)
474
+
475
+ # If this is instantiated as a cross-attention module, the keys
476
+ # and values come from an encoder; the attention mask needs to be
477
+ # such that the encoder's padding tokens are not attended to.
478
+ is_cross_attention = encoder_hidden_states is not None
479
+
480
+ if is_cross_attention and past_key_value is not None:
481
+ # reuse k,v, cross_attentions
482
+ key_layer = past_key_value[0]
483
+ value_layer = past_key_value[1]
484
+ attention_mask = encoder_attention_mask
485
+ elif is_cross_attention:
486
+ key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
487
+ value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
488
+ attention_mask = encoder_attention_mask
489
+ elif past_key_value is not None:
490
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
491
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
492
+ key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
493
+ value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
494
+ else:
495
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
496
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
497
+
498
+ query_layer = self.transpose_for_scores(mixed_query_layer)
499
+
500
+ use_cache = past_key_value is not None
501
+ if self.is_decoder:
502
+ # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
503
+ # Further calls to cross_attention layer can then reuse all cross-attention
504
+ # key/value_states (first "if" case)
505
+ # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
506
+ # all previous decoder key/value_states. Further calls to uni-directional self-attention
507
+ # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
508
+ # if encoder bi-directional self-attention `past_key_value` is always `None`
509
+ past_key_value = (key_layer, value_layer)
510
+
511
+ # Take the dot product between "query" and "key" to get the raw attention scores.
512
+ attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
513
+
514
+ if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
515
+ query_length, key_length = query_layer.shape[2], key_layer.shape[2]
516
+ if use_cache:
517
+ position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view(
518
+ -1, 1
519
+ )
520
+ else:
521
+ position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
522
+ position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
523
+ distance = position_ids_l - position_ids_r
524
+
525
+ positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
526
+ positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
527
+
528
+ if self.position_embedding_type == "relative_key":
529
+ relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
530
+ attention_scores = attention_scores + relative_position_scores
531
+ elif self.position_embedding_type == "relative_key_query":
532
+ relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
533
+ relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
534
+ attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
535
+
536
+ attention_scores = attention_scores / math.sqrt(self.attention_head_size)
537
+ if attention_mask is not None:
538
+ # Apply the attention mask is (precomputed for all layers in BridgeTowerModel forward() function)
539
+ attention_scores = attention_scores + attention_mask
540
+
541
+ # Normalize the attention scores to probabilities.
542
+ attention_probs = nn.functional.softmax(attention_scores, dim=-1)
543
+
544
+ # This is actually dropping out entire tokens to attend to, which might
545
+ # seem a bit unusual, but is taken from the original Transformer paper.
546
+ attention_probs = self.dropout(attention_probs)
547
+
548
+ # Mask heads if we want to
549
+ if head_mask is not None:
550
+ attention_probs = attention_probs * head_mask
551
+
552
+ context_layer = torch.matmul(attention_probs, value_layer)
553
+
554
+ context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
555
+ new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
556
+ context_layer = context_layer.view(new_context_layer_shape)
557
+
558
+ outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
559
+
560
+ if self.is_decoder:
561
+ outputs = outputs + (past_key_value,)
562
+ return outputs
563
+
564
+
565
+ # Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->BridgeTower
566
+ class BridgeTowerAttention(nn.Module):
567
+ def __init__(self, config, position_embedding_type=None):
568
+ super().__init__()
569
+ self.self = BridgeTowerSelfAttention(config, position_embedding_type=position_embedding_type)
570
+ self.output = BridgeTowerSelfOutput(config)
571
+ self.pruned_heads = set()
572
+
573
+ def prune_heads(self, heads):
574
+ if len(heads) == 0:
575
+ return
576
+ heads, index = find_pruneable_heads_and_indices(
577
+ heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
578
+ )
579
+
580
+ # Prune linear layers
581
+ self.self.query = prune_linear_layer(self.self.query, index)
582
+ self.self.key = prune_linear_layer(self.self.key, index)
583
+ self.self.value = prune_linear_layer(self.self.value, index)
584
+ self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
585
+
586
+ # Update hyper params and store pruned heads
587
+ self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
588
+ self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
589
+ self.pruned_heads = self.pruned_heads.union(heads)
590
+
591
+ def forward(
592
+ self,
593
+ hidden_states: torch.Tensor,
594
+ attention_mask: Optional[torch.FloatTensor] = None,
595
+ head_mask: Optional[torch.FloatTensor] = None,
596
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
597
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
598
+ past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
599
+ output_attentions: Optional[bool] = False,
600
+ ) -> Tuple[torch.Tensor]:
601
+ self_outputs = self.self(
602
+ hidden_states,
603
+ attention_mask,
604
+ head_mask,
605
+ encoder_hidden_states,
606
+ encoder_attention_mask,
607
+ past_key_value,
608
+ output_attentions,
609
+ )
610
+ attention_output = self.output(self_outputs[0], hidden_states)
611
+ outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
612
+ return outputs
613
+
614
+
615
+ class BridgeTowerBertCrossLayer(nn.Module):
616
+ def __init__(self, config):
617
+ super().__init__()
618
+ self.chunk_size_feed_forward = config.chunk_size_feed_forward
619
+ self.seq_len_dim = 1
620
+ self.attention = BridgeTowerAttention(config)
621
+ self.is_decoder = config.is_decoder
622
+ self.add_cross_attention = config.add_cross_attention
623
+ self.crossattention = BridgeTowerAttention(config)
624
+ self.intermediate = BridgeTowerIntermediate(config)
625
+ self.output = BridgeTowerOutput(config)
626
+
627
+ def forward(
628
+ self,
629
+ hidden_states,
630
+ encoder_hidden_states,
631
+ attention_mask=None,
632
+ head_mask=None,
633
+ encoder_attention_mask=None,
634
+ past_key_value=None,
635
+ output_attentions=False,
636
+ ):
637
+ # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
638
+ self_attention_outputs = self.attention(
639
+ hidden_states,
640
+ attention_mask=attention_mask,
641
+ head_mask=None,
642
+ output_attentions=output_attentions,
643
+ past_key_value=None,
644
+ )
645
+ attention_output = self_attention_outputs[0]
646
+
647
+ # if decoder, the last output is tuple of self-attn cache
648
+ # add self attentions if we output attention weights
649
+ outputs = self_attention_outputs[1:]
650
+
651
+ cross_attention_outputs = self.crossattention(
652
+ attention_output,
653
+ attention_mask=attention_mask,
654
+ head_mask=head_mask,
655
+ encoder_hidden_states=encoder_hidden_states,
656
+ encoder_attention_mask=encoder_attention_mask,
657
+ past_key_value=past_key_value,
658
+ output_attentions=output_attentions,
659
+ )
660
+ attention_output = cross_attention_outputs[0]
661
+ # add cross attentions if we output attention weights
662
+ outputs = outputs + cross_attention_outputs[1:-1]
663
+
664
+ layer_output = apply_chunking_to_forward(
665
+ self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
666
+ )
667
+ outputs = (layer_output,) + outputs
668
+
669
+ return outputs
670
+
671
+ def feed_forward_chunk(self, attention_output):
672
+ intermediate_output = self.intermediate(attention_output)
673
+ layer_output = self.output(intermediate_output, attention_output)
674
+ return layer_output
675
+
676
+
677
+ class BridgeTowerTextLayer(nn.Module):
678
+ def __init__(self, config):
679
+ super().__init__()
680
+ self.chunk_size_feed_forward = config.chunk_size_feed_forward
681
+ self.seq_len_dim = 1
682
+ self.attention = BridgeTowerAttention(config)
683
+ self.is_decoder = config.is_decoder
684
+ self.add_cross_attention = config.add_cross_attention
685
+ if self.add_cross_attention:
686
+ if not self.is_decoder:
687
+ raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
688
+ self.crossattention = BridgeTowerAttention(config, position_embedding_type="absolute")
689
+ self.intermediate = BridgeTowerIntermediate(config)
690
+ self.output = BridgeTowerOutput(config)
691
+
692
+ def forward(
693
+ self,
694
+ hidden_states: torch.Tensor,
695
+ attention_mask: Optional[torch.FloatTensor] = None,
696
+ head_mask: Optional[torch.FloatTensor] = None,
697
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
698
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
699
+ past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
700
+ output_attentions: Optional[bool] = False,
701
+ ) -> Tuple[torch.Tensor]:
702
+ # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
703
+ self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
704
+ self_attention_outputs = self.attention(
705
+ hidden_states,
706
+ attention_mask,
707
+ head_mask,
708
+ output_attentions=output_attentions,
709
+ past_key_value=self_attn_past_key_value,
710
+ )
711
+ attention_output = self_attention_outputs[0]
712
+
713
+ # if decoder, the last output is tuple of self-attn cache
714
+ if self.is_decoder:
715
+ outputs = self_attention_outputs[1:-1]
716
+ present_key_value = self_attention_outputs[-1]
717
+ else:
718
+ outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
719
+
720
+ cross_attn_present_key_value = None
721
+ if self.is_decoder and encoder_hidden_states is not None:
722
+ if not hasattr(self, "crossattention"):
723
+ raise ValueError(
724
+ f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
725
+ " by setting `config.add_cross_attention=True`"
726
+ )
727
+
728
+ # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
729
+ cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
730
+ cross_attention_outputs = self.crossattention(
731
+ attention_output,
732
+ attention_mask,
733
+ head_mask,
734
+ encoder_hidden_states,
735
+ encoder_attention_mask,
736
+ cross_attn_past_key_value,
737
+ output_attentions,
738
+ )
739
+ attention_output = cross_attention_outputs[0]
740
+ outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
741
+
742
+ # add cross-attn cache to positions 3,4 of present_key_value tuple
743
+ cross_attn_present_key_value = cross_attention_outputs[-1]
744
+ present_key_value = present_key_value + cross_attn_present_key_value
745
+
746
+ layer_output = apply_chunking_to_forward(
747
+ self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
748
+ )
749
+ outputs = (layer_output,) + outputs
750
+
751
+ # if decoder, return the attn key/values as the last output
752
+ if self.is_decoder:
753
+ outputs = outputs + (present_key_value,)
754
+
755
+ return outputs
756
+
757
+ def feed_forward_chunk(self, attention_output):
758
+ intermediate_output = self.intermediate(attention_output)
759
+ layer_output = self.output(intermediate_output, attention_output)
760
+ return layer_output
761
+
762
+
763
+ # Copied from transformers.models.roberta.modeling_roberta.RobertaEncoder with Roberta->BridgeTowerText
764
+ class BridgeTowerTextEncoder(nn.Module):
765
+ def __init__(self, config):
766
+ super().__init__()
767
+ self.config = config
768
+ self.layer = nn.ModuleList([BridgeTowerTextLayer(config) for _ in range(config.num_hidden_layers)])
769
+ self.gradient_checkpointing = False
770
+
771
+ def forward(
772
+ self,
773
+ hidden_states: torch.Tensor,
774
+ attention_mask: Optional[torch.FloatTensor] = None,
775
+ head_mask: Optional[torch.FloatTensor] = None,
776
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
777
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
778
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
779
+ use_cache: Optional[bool] = None,
780
+ output_attentions: Optional[bool] = False,
781
+ output_hidden_states: Optional[bool] = False,
782
+ return_dict: Optional[bool] = True,
783
+ ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
784
+ all_hidden_states = () if output_hidden_states else None
785
+ all_self_attentions = () if output_attentions else None
786
+ all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
787
+
788
+ if self.gradient_checkpointing and self.training:
789
+ if use_cache:
790
+ logger.warning_once(
791
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
792
+ )
793
+ use_cache = False
794
+
795
+ next_decoder_cache = () if use_cache else None
796
+ for i, layer_module in enumerate(self.layer):
797
+ if output_hidden_states:
798
+ all_hidden_states = all_hidden_states + (hidden_states,)
799
+
800
+ layer_head_mask = head_mask[i] if head_mask is not None else None
801
+ past_key_value = past_key_values[i] if past_key_values is not None else None
802
+
803
+ if self.gradient_checkpointing and self.training:
804
+ layer_outputs = self._gradient_checkpointing_func(
805
+ layer_module.__call__,
806
+ hidden_states,
807
+ attention_mask,
808
+ layer_head_mask,
809
+ encoder_hidden_states,
810
+ encoder_attention_mask,
811
+ past_key_value,
812
+ output_attentions,
813
+ )
814
+ else:
815
+ layer_outputs = layer_module(
816
+ hidden_states,
817
+ attention_mask,
818
+ layer_head_mask,
819
+ encoder_hidden_states,
820
+ encoder_attention_mask,
821
+ past_key_value,
822
+ output_attentions,
823
+ )
824
+
825
+ hidden_states = layer_outputs[0]
826
+ if use_cache:
827
+ next_decoder_cache += (layer_outputs[-1],)
828
+ if output_attentions:
829
+ all_self_attentions = all_self_attentions + (layer_outputs[1],)
830
+ if self.config.add_cross_attention:
831
+ all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
832
+
833
+ if output_hidden_states:
834
+ all_hidden_states = all_hidden_states + (hidden_states,)
835
+
836
+ if not return_dict:
837
+ return tuple(
838
+ v
839
+ for v in [
840
+ hidden_states,
841
+ next_decoder_cache,
842
+ all_hidden_states,
843
+ all_self_attentions,
844
+ all_cross_attentions,
845
+ ]
846
+ if v is not None
847
+ )
848
+ return BaseModelOutputWithPastAndCrossAttentions(
849
+ last_hidden_state=hidden_states,
850
+ past_key_values=next_decoder_cache,
851
+ hidden_states=all_hidden_states,
852
+ attentions=all_self_attentions,
853
+ cross_attentions=all_cross_attentions,
854
+ )
855
+
856
+
857
+ # Copied from transformers.models.roberta.modeling_roberta.RobertaEmbeddings with Roberta->BridgeTowerText
858
+ class BridgeTowerTextEmbeddings(nn.Module):
859
+ """
860
+ Same as BertEmbeddings with a tiny tweak for positional embeddings indexing.
861
+ """
862
+
863
+ # Copied from transformers.models.bert.modeling_bert.BertEmbeddings.__init__
864
+ def __init__(self, config):
865
+ super().__init__()
866
+ self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
867
+ self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
868
+ self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
869
+
870
+ # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
871
+ # any TensorFlow checkpoint file
872
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
873
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
874
+ # position_ids (1, len position emb) is contiguous in memory and exported when serialized
875
+ self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
876
+ self.register_buffer(
877
+ "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
878
+ )
879
+ self.register_buffer(
880
+ "token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False
881
+ )
882
+
883
+ # End copy
884
+ self.padding_idx = config.pad_token_id
885
+ self.position_embeddings = nn.Embedding(
886
+ config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx
887
+ )
888
+
889
+ def forward(
890
+ self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0
891
+ ):
892
+ if position_ids is None:
893
+ if input_ids is not None:
894
+ # Create the position ids from the input token ids. Any padded tokens remain padded.
895
+ position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length)
896
+ else:
897
+ position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds)
898
+
899
+ if input_ids is not None:
900
+ input_shape = input_ids.size()
901
+ else:
902
+ input_shape = inputs_embeds.size()[:-1]
903
+
904
+ seq_length = input_shape[1]
905
+
906
+ # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
907
+ # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
908
+ # issue #5664
909
+ if token_type_ids is None:
910
+ if hasattr(self, "token_type_ids"):
911
+ buffered_token_type_ids = self.token_type_ids[:, :seq_length]
912
+ buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
913
+ token_type_ids = buffered_token_type_ids_expanded
914
+ else:
915
+ token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
916
+
917
+ if inputs_embeds is None:
918
+ inputs_embeds = self.word_embeddings(input_ids)
919
+ token_type_embeddings = self.token_type_embeddings(token_type_ids)
920
+
921
+ embeddings = inputs_embeds + token_type_embeddings
922
+ if self.position_embedding_type == "absolute":
923
+ position_embeddings = self.position_embeddings(position_ids)
924
+ embeddings += position_embeddings
925
+ embeddings = self.LayerNorm(embeddings)
926
+ embeddings = self.dropout(embeddings)
927
+ return embeddings
928
+
929
+ def create_position_ids_from_inputs_embeds(self, inputs_embeds):
930
+ """
931
+ We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.
932
+
933
+ Args:
934
+ inputs_embeds: torch.Tensor
935
+
936
+ Returns: torch.Tensor
937
+ """
938
+ input_shape = inputs_embeds.size()[:-1]
939
+ sequence_length = input_shape[1]
940
+
941
+ position_ids = torch.arange(
942
+ self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device
943
+ )
944
+ return position_ids.unsqueeze(0).expand(input_shape)
945
+
946
+
947
+ # Copied from transformers.models.roberta.modeling_roberta.create_position_ids_from_input_ids
948
+ def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0):
949
+ """
950
+ Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
951
+ are ignored. This is modified from fairseq's `utils.make_positions`.
952
+
953
+ Args:
954
+ x: torch.Tensor x:
955
+
956
+ Returns: torch.Tensor
957
+ """
958
+ # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
959
+ mask = input_ids.ne(padding_idx).int()
960
+ incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask
961
+ return incremental_indices.long() + padding_idx
962
+
963
+
964
+ class BridgeTowerPreTrainedModel(PreTrainedModel):
965
+ """
966
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
967
+ models.
968
+ """
969
+
970
+ config_class = BridgeTowerConfig
971
+ base_model_prefix = "bridgetower"
972
+ supports_gradient_checkpointing = False
973
+ _no_split_modules = ["BridgeTowerSelfAttention", "BridgeTowerResidualAttention"]
974
+ _skip_keys_device_placement = "past_key_values"
975
+
976
+ def _init_weights(self, module):
977
+ if isinstance(module, BridgeTowerVisionModel):
978
+ proj_std = (module.visual.transformer.hidden_size**-0.5) * (
979
+ (2 * module.visual.transformer.num_hidden_layers) ** -0.5
980
+ )
981
+ attn_std = module.visual.transformer.hidden_size**-0.5
982
+ fc_std = (2 * module.visual.transformer.hidden_size) ** -0.5
983
+ for block in module.visual.transformer.resblocks:
984
+ nn.init.normal_(block.attn.in_proj_weight, std=attn_std * self.config.initializer_factor)
985
+ nn.init.normal_(block.attn.out_proj.weight, std=proj_std * self.config.initializer_factor)
986
+ nn.init.normal_(block.mlp.c_fc.weight, std=fc_std * self.config.initializer_factor)
987
+ nn.init.normal_(block.mlp.c_proj.weight, std=proj_std * self.config.initializer_factor)
988
+
989
+ nn.init.normal_(module.visual.embeddings.class_embedding, std=attn_std * self.config.initializer_factor)
990
+ nn.init.normal_(
991
+ module.visual.embeddings.position_embedding.weight, std=attn_std * self.config.initializer_factor
992
+ )
993
+ elif isinstance(module, (nn.Linear, nn.Conv2d, nn.Embedding)):
994
+ module.weight.data.normal_(mean=0.0, std=0.05 * self.config.initializer_factor)
995
+ elif isinstance(module, nn.LayerNorm):
996
+ module.bias.data.zero_()
997
+ module.weight.data.fill_(1.0)
998
+
999
+ if isinstance(module, nn.Linear) and module.bias is not None:
1000
+ module.bias.data.zero_()
1001
+
1002
+
1003
+ class BridgeTowerVisionModel(BridgeTowerPreTrainedModel):
1004
+ config_class = BridgeTowerVisionConfig
1005
+
1006
+ def __init__(self, config):
1007
+ super().__init__(config)
1008
+ self.visual = BridgeTowerVisionTransformer(config)
1009
+
1010
+ @property
1011
+ def dtype(self):
1012
+ return self.visual.embeddings.patch_embedding.weight.dtype
1013
+
1014
+ def forward(self, image, image_mask=None):
1015
+ return self.visual(image.type(self.dtype), image_mask)
1016
+
1017
+
1018
+ class BridgeTowerTextModel(BridgeTowerPreTrainedModel):
1019
+ """
1020
+
1021
+ The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
1022
+ cross-attention is added between the self-attention layers, following the architecture described in *Attention is
1023
+ all you need*_ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
1024
+ Kaiser and Illia Polosukhin.
1025
+
1026
+ To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set
1027
+ to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and
1028
+ `add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass.
1029
+
1030
+ .. _*Attention is all you need*: https://arxiv.org/abs/1706.03762
1031
+
1032
+ """
1033
+
1034
+ config_class = BridgeTowerTextConfig
1035
+
1036
+ def __init__(self, config, add_pooling_layer=True):
1037
+ super().__init__(config)
1038
+ self.config = config
1039
+
1040
+ self.embeddings = BridgeTowerTextEmbeddings(config)
1041
+ self.encoder = BridgeTowerTextEncoder(config)
1042
+
1043
+ self.pooler = BridgeTowerPooler(config) if add_pooling_layer else None
1044
+
1045
+ # Initialize weights and apply final processing
1046
+ self.post_init()
1047
+
1048
+ def get_input_embeddings(self):
1049
+ return self.embeddings.word_embeddings
1050
+
1051
+ def set_input_embeddings(self, value):
1052
+ self.embeddings.word_embeddings = value
1053
+
1054
+ def _prune_heads(self, heads_to_prune):
1055
+ """
1056
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
1057
+ class PreTrainedModel
1058
+ """
1059
+ for layer, heads in heads_to_prune.items():
1060
+ self.encoder.layer[layer].attention.prune_heads(heads)
1061
+
1062
+ # Copied from transformers.models.roberta.modeling_roberta.RobertaModel.forward
1063
+ def forward(
1064
+ self,
1065
+ input_ids: Optional[torch.Tensor] = None,
1066
+ attention_mask: Optional[torch.Tensor] = None,
1067
+ token_type_ids: Optional[torch.Tensor] = None,
1068
+ position_ids: Optional[torch.Tensor] = None,
1069
+ head_mask: Optional[torch.Tensor] = None,
1070
+ inputs_embeds: Optional[torch.Tensor] = None,
1071
+ encoder_hidden_states: Optional[torch.Tensor] = None,
1072
+ encoder_attention_mask: Optional[torch.Tensor] = None,
1073
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1074
+ use_cache: Optional[bool] = None,
1075
+ output_attentions: Optional[bool] = None,
1076
+ output_hidden_states: Optional[bool] = None,
1077
+ return_dict: Optional[bool] = None,
1078
+ ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
1079
+ r"""
1080
+ encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
1081
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
1082
+ the model is configured as a decoder.
1083
+ encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
1084
+ Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
1085
+ the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
1086
+
1087
+ - 1 for tokens that are **not masked**,
1088
+ - 0 for tokens that are **masked**.
1089
+ past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
1090
+ Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
1091
+
1092
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
1093
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
1094
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
1095
+ use_cache (`bool`, *optional*):
1096
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
1097
+ `past_key_values`).
1098
+ """
1099
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1100
+ output_hidden_states = (
1101
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1102
+ )
1103
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1104
+
1105
+ if self.config.is_decoder:
1106
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
1107
+ else:
1108
+ use_cache = False
1109
+
1110
+ if input_ids is not None and inputs_embeds is not None:
1111
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
1112
+ elif input_ids is not None:
1113
+ self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
1114
+ input_shape = input_ids.size()
1115
+ elif inputs_embeds is not None:
1116
+ input_shape = inputs_embeds.size()[:-1]
1117
+ else:
1118
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
1119
+
1120
+ batch_size, seq_length = input_shape
1121
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
1122
+
1123
+ # past_key_values_length
1124
+ past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
1125
+
1126
+ if attention_mask is None:
1127
+ attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
1128
+
1129
+ if token_type_ids is None:
1130
+ if hasattr(self.embeddings, "token_type_ids"):
1131
+ buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
1132
+ buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
1133
+ token_type_ids = buffered_token_type_ids_expanded
1134
+ else:
1135
+ token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
1136
+
1137
+ # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
1138
+ # ourselves in which case we just need to make it broadcastable to all heads.
1139
+ extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
1140
+
1141
+ # If a 2D or 3D attention mask is provided for the cross-attention
1142
+ # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
1143
+ if self.config.is_decoder and encoder_hidden_states is not None:
1144
+ encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
1145
+ encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
1146
+ if encoder_attention_mask is None:
1147
+ encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
1148
+ encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
1149
+ else:
1150
+ encoder_extended_attention_mask = None
1151
+
1152
+ # Prepare head mask if needed
1153
+ # 1.0 in head_mask indicate we keep the head
1154
+ # attention_probs has shape bsz x n_heads x N x N
1155
+ # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
1156
+ # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
1157
+ head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
1158
+
1159
+ embedding_output = self.embeddings(
1160
+ input_ids=input_ids,
1161
+ position_ids=position_ids,
1162
+ token_type_ids=token_type_ids,
1163
+ inputs_embeds=inputs_embeds,
1164
+ past_key_values_length=past_key_values_length,
1165
+ )
1166
+ encoder_outputs = self.encoder(
1167
+ embedding_output,
1168
+ attention_mask=extended_attention_mask,
1169
+ head_mask=head_mask,
1170
+ encoder_hidden_states=encoder_hidden_states,
1171
+ encoder_attention_mask=encoder_extended_attention_mask,
1172
+ past_key_values=past_key_values,
1173
+ use_cache=use_cache,
1174
+ output_attentions=output_attentions,
1175
+ output_hidden_states=output_hidden_states,
1176
+ return_dict=return_dict,
1177
+ )
1178
+ sequence_output = encoder_outputs[0]
1179
+ pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
1180
+
1181
+ if not return_dict:
1182
+ return (sequence_output, pooled_output) + encoder_outputs[1:]
1183
+
1184
+ return BaseModelOutputWithPoolingAndCrossAttentions(
1185
+ last_hidden_state=sequence_output,
1186
+ pooler_output=pooled_output,
1187
+ past_key_values=encoder_outputs.past_key_values,
1188
+ hidden_states=encoder_outputs.hidden_states,
1189
+ attentions=encoder_outputs.attentions,
1190
+ cross_attentions=encoder_outputs.cross_attentions,
1191
+ )
1192
+
1193
+
1194
+ @add_start_docstrings(
1195
+ "The bare BridgeTower Model transformer outputting BridgeTowerModelOutput object without any specific head on"
1196
+ " top.",
1197
+ BRIDGETOWER_START_DOCSTRING,
1198
+ )
1199
+ class BridgeTowerModel(BridgeTowerPreTrainedModel):
1200
+ def __init__(self, config):
1201
+ super().__init__(config)
1202
+ self.config = config
1203
+ vision_config = config.vision_config
1204
+ text_config = config.text_config
1205
+
1206
+ if config.share_cross_modal_transformer_layers:
1207
+ self.cross_modal_text_transform = nn.Linear(text_config.hidden_size, config.hidden_size)
1208
+ self.cross_modal_image_transform = nn.Linear(vision_config.hidden_size, config.hidden_size)
1209
+ else:
1210
+ self.cross_modal_text_transform = nn.ModuleList(
1211
+ [nn.Linear(text_config.hidden_size, config.hidden_size) for _ in range(config.num_hidden_layers)]
1212
+ )
1213
+ self.cross_modal_image_transform = nn.ModuleList(
1214
+ [nn.Linear(vision_config.hidden_size, config.hidden_size) for _ in range(config.num_hidden_layers)]
1215
+ )
1216
+
1217
+ self.token_type_embeddings = nn.Embedding(2, config.hidden_size)
1218
+
1219
+ self.vision_model = BridgeTowerVisionModel(vision_config)
1220
+
1221
+ self.text_model = BridgeTowerTextModel(text_config)
1222
+
1223
+ if not vision_config.share_layernorm and config.init_layernorm_from_vision_encoder:
1224
+ for ln in self.vision_model.visual.cross_modal_ln_separate:
1225
+ ln.weight.data = self.vision_model.visual.ln_post.weight.data
1226
+ ln.bias.data = self.vision_model.visual.ln_post.bias.data
1227
+
1228
+ self.cross_modal_image_layers = nn.ModuleList(
1229
+ [BridgeTowerBertCrossLayer(text_config) for _ in range(config.num_hidden_layers)]
1230
+ )
1231
+ self.cross_modal_text_layers = nn.ModuleList(
1232
+ [BridgeTowerBertCrossLayer(text_config) for _ in range(config.num_hidden_layers)]
1233
+ )
1234
+
1235
+ # Class token => Linear => Tanh
1236
+ self.cross_modal_image_pooler = BridgeTowerPooler(config)
1237
+ self.cross_modal_text_pooler = BridgeTowerPooler(config)
1238
+
1239
+ # Initialize BridgeTower Components
1240
+ self.cross_modal_text_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
1241
+ self.cross_modal_image_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
1242
+
1243
+ if config.share_link_tower_layers:
1244
+ self.cross_modal_text_link_tower = BridgeTowerLinkTower(config)
1245
+ self.cross_modal_image_link_tower = BridgeTowerLinkTower(config)
1246
+ else:
1247
+ self.cross_modal_text_link_tower = nn.ModuleList(
1248
+ [BridgeTowerLinkTower(config) for _ in range(config.num_hidden_layers - 1)]
1249
+ )
1250
+ self.cross_modal_image_link_tower = nn.ModuleList(
1251
+ [BridgeTowerLinkTower(config) for _ in range(config.num_hidden_layers - 1)]
1252
+ )
1253
+
1254
+ self.post_init()
1255
+
1256
+ def get_input_embeddings(self):
1257
+ return self.text_model.get_input_embeddings()
1258
+
1259
+ def set_input_embeddings(self, value):
1260
+ self.text_model.set_input_embeddings(value)
1261
+
1262
+ @add_start_docstrings_to_model_forward(BRIDGETOWER_INPUTS_DOCSTRING)
1263
+ @replace_return_docstrings(output_type=BridgeTowerModelOutput, config_class=_CONFIG_FOR_DOC)
1264
+ def forward(
1265
+ self,
1266
+ input_ids: Optional[torch.LongTensor] = None,
1267
+ attention_mask: Optional[torch.FloatTensor] = None,
1268
+ token_type_ids: Optional[torch.LongTensor] = None,
1269
+ pixel_values: Optional[torch.FloatTensor] = None,
1270
+ pixel_mask: Optional[torch.LongTensor] = None,
1271
+ head_mask: Optional[torch.FloatTensor] = None,
1272
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1273
+ image_embeds: Optional[torch.FloatTensor] = None,
1274
+ image_token_type_idx: Optional[int] = None,
1275
+ output_attentions: Optional[bool] = None,
1276
+ output_hidden_states: Optional[bool] = None,
1277
+ return_dict: Optional[bool] = None,
1278
+ labels: Optional[torch.LongTensor] = None,
1279
+ ) -> Union[Tuple[torch.Tensor], BridgeTowerModelOutput]:
1280
+ r"""
1281
+ output_hidden_states (`bool`, *optional*):
1282
+ If set to `True`, hidden states are returned as a list containing the hidden states of text, image, and
1283
+ cross-modal components respectively. i.e. `(hidden_states_text, hidden_states_image,
1284
+ hidden_states_cross_modal)` where each element is a list of the hidden states of the corresponding
1285
+ modality. `hidden_states_txt/img` are a list of tensors corresponding to unimodal hidden states and
1286
+ `hidden_states_cross_modal` is a list of tuples containing `cross_modal_text_hidden_states` and
1287
+ `cross_modal_image_hidden_states` of each brdige layer.
1288
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1289
+ Labels are currently not supported.
1290
+ Returns:
1291
+
1292
+ Examples:
1293
+
1294
+ ```python
1295
+ >>> from transformers import BridgeTowerProcessor, BridgeTowerModel
1296
+ >>> from PIL import Image
1297
+ >>> import requests
1298
+
1299
+ >>> # prepare image and text
1300
+ >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
1301
+ >>> image = Image.open(requests.get(url, stream=True).raw)
1302
+ >>> text = "hello world"
1303
+ >>> processor = BridgeTowerProcessor.from_pretrained("BridgeTower/bridgetower-base")
1304
+ >>> model = BridgeTowerModel.from_pretrained("BridgeTower/bridgetower-base")
1305
+
1306
+ >>> inputs = processor(image, text, return_tensors="pt")
1307
+ >>> outputs = model(**inputs)
1308
+ >>> outputs.keys()
1309
+ odict_keys(['text_features', 'image_features', 'pooler_output'])
1310
+ ```"""
1311
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1312
+ output_hidden_states = (
1313
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1314
+ )
1315
+ all_hidden_states_text = () if output_hidden_states else None
1316
+ all_hidden_states_image = () if output_hidden_states else None
1317
+ all_hidden_states_cross = () if output_hidden_states else None
1318
+ all_hidden_states = () if output_hidden_states else None
1319
+ all_self_attentions = () if output_attentions else None
1320
+
1321
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1322
+ image_token_type_idx = image_token_type_idx if image_token_type_idx else 1
1323
+ input_shape = input_ids.size()
1324
+ text_embeds = self.text_model.embeddings(input_ids=input_ids)
1325
+
1326
+ if output_hidden_states:
1327
+ all_hidden_states_text += (text_embeds,)
1328
+
1329
+ if attention_mask is None:
1330
+ attention_mask = torch.ones(input_shape, dtype=torch.long, device=input_ids.device)
1331
+ extend_text_masks = self.text_model.get_extended_attention_mask(attention_mask, input_shape).to(
1332
+ input_ids.device
1333
+ )
1334
+
1335
+ # The split_index determines how many layers of the uni-modal encoder are applied before the cross-modal encoder
1336
+ split_index = len(self.text_model.encoder.layer) - self.config.num_hidden_layers + 1
1337
+
1338
+ # Run the first 'split_index' layers of the textual encoder
1339
+ for layer in self.text_model.encoder.layer[:split_index]:
1340
+ text_embeds = layer(text_embeds, extend_text_masks)[0]
1341
+
1342
+ if output_hidden_states:
1343
+ all_hidden_states_text += (text_embeds,)
1344
+
1345
+ if image_embeds is None:
1346
+ image_embeds = self.vision_model.visual.forward_pre(pixel_values.type(self.vision_model.dtype))
1347
+ else:
1348
+ # Permute as BridgeTowerResidualAttention has batch_first=True
1349
+ image_embeds = image_embeds.permute(1, 0, 2)
1350
+
1351
+ if output_hidden_states:
1352
+ all_hidden_states_image += (image_embeds,)
1353
+
1354
+ # Run the first 'split_index' layers of the visual encoder
1355
+ for block in self.vision_model.visual.transformer.resblocks[:split_index]:
1356
+ image_embeds = block(image_embeds)
1357
+ if output_hidden_states:
1358
+ all_hidden_states_image += (image_embeds,)
1359
+
1360
+ image_embeds_with_ln = self.vision_model.visual.forward_post(image_embeds.type(self.vision_model.dtype))
1361
+
1362
+ # first layer is a special case because we don't have the output from the cross-encoder yet
1363
+ cross_modal_text = self.cross_modal_text_transform(text_embeds)
1364
+
1365
+ text_token_type_embeddings = self.token_type_embeddings(
1366
+ torch.zeros(1, dtype=torch.long, device=input_ids.device)
1367
+ ).expand_as(cross_modal_text)
1368
+
1369
+ cross_modal_text = self.cross_modal_text_layernorm(cross_modal_text + text_token_type_embeddings)
1370
+
1371
+ image_embeds_with_ln = self.cross_modal_image_transform(image_embeds_with_ln)
1372
+ image_token_type_embeddings = self.token_type_embeddings(
1373
+ torch.full((1,), image_token_type_idx, dtype=torch.long, device=input_ids.device)
1374
+ ).expand_as(image_embeds_with_ln)
1375
+
1376
+ image_embeds_with_ln = image_embeds_with_ln + image_token_type_embeddings
1377
+ cross_modal_image = self.cross_modal_image_layernorm(image_embeds_with_ln)
1378
+
1379
+ pixel_mask = torch.ones(
1380
+ (cross_modal_image.size(0), cross_modal_image.size(1)),
1381
+ dtype=torch.long,
1382
+ device=input_ids.device,
1383
+ )
1384
+ extend_image_masks = self.text_model.get_extended_attention_mask(pixel_mask, pixel_mask.size()).to(
1385
+ input_ids.device
1386
+ )
1387
+
1388
+ layer_outputs_text = self.cross_modal_text_layers[0](
1389
+ cross_modal_text,
1390
+ cross_modal_image,
1391
+ attention_mask=extend_text_masks,
1392
+ encoder_attention_mask=extend_image_masks,
1393
+ output_attentions=output_attentions,
1394
+ )
1395
+ cross_text_features = layer_outputs_text[0]
1396
+
1397
+ layer_outputs_image = self.cross_modal_image_layers[0](
1398
+ cross_modal_image,
1399
+ cross_modal_text,
1400
+ attention_mask=extend_image_masks,
1401
+ encoder_attention_mask=extend_text_masks,
1402
+ output_attentions=output_attentions,
1403
+ )
1404
+ cross_image_features = layer_outputs_image[0]
1405
+
1406
+ if output_hidden_states:
1407
+ all_hidden_states_cross += ((cross_text_features, cross_image_features),)
1408
+
1409
+ if output_attentions:
1410
+ all_self_attentions += ((layer_outputs_text[1], layer_outputs_image[1]),)
1411
+
1412
+ link_layer_index = 0
1413
+
1414
+ # Each of the top 6 layers of the visual and textual encoders ([split_index:]) is connected to each layer of
1415
+ # the cross-modal encoder via bridge layers, which brings bottom-up alignment and fusion to the cross-modal encoder.
1416
+ for i in range(split_index, len(self.text_model.encoder.layer)):
1417
+ text_embeds = self.text_model.encoder.layer[i](text_embeds, extend_text_masks)[0]
1418
+ image_embeds = self.vision_model.visual.transformer.resblocks[i](image_embeds).type(
1419
+ self.vision_model.dtype
1420
+ )
1421
+ image_embeds_with_ln = (
1422
+ self.cross_modal_image_transform(self.vision_model.visual.forward_post(image_embeds))
1423
+ + image_token_type_embeddings
1424
+ )
1425
+
1426
+ text_link_tower = self.cross_modal_text_link_tower[link_layer_index]
1427
+ image_link_tower = self.cross_modal_image_link_tower[link_layer_index]
1428
+
1429
+ # Bridge layers for textual and visual encoders
1430
+ cross_text_features_ = text_link_tower(
1431
+ self.cross_modal_text_transform(text_embeds) + text_token_type_embeddings,
1432
+ cross_text_features,
1433
+ extend_text_masks,
1434
+ )
1435
+ cross_image_features_ = image_link_tower(image_embeds_with_ln, cross_image_features, extend_image_masks)
1436
+
1437
+ # Cross-modal encoder via bridge layers of textual and visual encoders
1438
+ layer_outputs_text = self.cross_modal_text_layers[link_layer_index + 1](
1439
+ cross_text_features_,
1440
+ cross_image_features_,
1441
+ attention_mask=extend_text_masks,
1442
+ encoder_attention_mask=extend_image_masks,
1443
+ output_attentions=output_attentions,
1444
+ )
1445
+ cross_text_features = layer_outputs_text[0]
1446
+
1447
+ layer_outputs_image = self.cross_modal_image_layers[link_layer_index + 1](
1448
+ cross_image_features_,
1449
+ cross_text_features_,
1450
+ attention_mask=extend_image_masks,
1451
+ encoder_attention_mask=extend_text_masks,
1452
+ output_attentions=output_attentions,
1453
+ )
1454
+ cross_image_features = layer_outputs_image[0]
1455
+
1456
+ link_layer_index += 1
1457
+
1458
+ if output_hidden_states:
1459
+ all_hidden_states_text += (text_embeds,)
1460
+ all_hidden_states_image += (image_embeds,)
1461
+ all_hidden_states_cross += ((cross_text_features, cross_image_features),)
1462
+
1463
+ if output_attentions:
1464
+ all_self_attentions += ((layer_outputs_text[1], layer_outputs_image[1]),)
1465
+
1466
+ # Concatenate the cls token of the text and image features to get the final represtation
1467
+ text_features, image_features = cross_text_features, cross_image_features
1468
+ cls_features = self.get_cls_features(text_features, image_features)
1469
+
1470
+ if output_hidden_states:
1471
+ all_hidden_states = (all_hidden_states_text, all_hidden_states_image, all_hidden_states_cross)
1472
+
1473
+ if not return_dict:
1474
+ return tuple(
1475
+ v
1476
+ for v in [text_features, image_features, cls_features, all_hidden_states, all_self_attentions]
1477
+ if v is not None
1478
+ )
1479
+
1480
+ return BridgeTowerModelOutput(
1481
+ text_features=text_features,
1482
+ image_features=image_features,
1483
+ pooler_output=cls_features,
1484
+ hidden_states=all_hidden_states,
1485
+ attentions=all_self_attentions,
1486
+ )
1487
+
1488
+ def get_cls_features(self, text_features, image_features):
1489
+ cls_features_text = self.cross_modal_text_pooler(text_features)
1490
+ cls_features_image = self.cross_modal_image_pooler(image_features)
1491
+ return torch.cat([cls_features_text, cls_features_image], dim=-1)
1492
+
1493
+
1494
+ # Copied from transformers.models.vilt.modeling_vilt.ViltPredictionHeadTransform with Vilt->BridgeTower
1495
+ class BridgeTowerPredictionHeadTransform(nn.Module):
1496
+ def __init__(self, config):
1497
+ super().__init__()
1498
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
1499
+ if isinstance(config.hidden_act, str):
1500
+ self.transform_act_fn = ACT2FN[config.hidden_act]
1501
+ else:
1502
+ self.transform_act_fn = config.hidden_act
1503
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
1504
+
1505
+ def forward(self, hidden_states):
1506
+ hidden_states = self.dense(hidden_states)
1507
+ hidden_states = self.transform_act_fn(hidden_states)
1508
+ hidden_states = self.LayerNorm(hidden_states)
1509
+ return hidden_states
1510
+
1511
+
1512
+ class BridgeTowerMLMHead(nn.Module):
1513
+ def __init__(self, config, weight=None):
1514
+ super().__init__()
1515
+ self.config = config
1516
+ self.transform = BridgeTowerPredictionHeadTransform(config)
1517
+ self.decoder = nn.Linear(config.hidden_size, config.text_config.vocab_size, bias=False)
1518
+ self.bias = nn.Parameter(torch.zeros(config.text_config.vocab_size))
1519
+ if weight is not None:
1520
+ self.decoder.weight = weight
1521
+
1522
+ def forward(self, x):
1523
+ mlm_score = self.transform(x)
1524
+ mlm_score = self.decoder(mlm_score) + self.bias
1525
+ return mlm_score
1526
+
1527
+
1528
+ class BridgeTowerITMHead(nn.Module):
1529
+ def __init__(self, hidden_size):
1530
+ super().__init__()
1531
+ self.fc = nn.Linear(hidden_size, 2)
1532
+
1533
+ def forward(self, x):
1534
+ itm_score = self.fc(x)
1535
+ return itm_score
1536
+
1537
+
1538
+ @add_start_docstrings(
1539
+ """
1540
+ BridgeTower Model with a language modeling head on top as done during pretraining.
1541
+ """,
1542
+ BRIDGETOWER_START_DOCSTRING,
1543
+ )
1544
+ class BridgeTowerForMaskedLM(BridgeTowerPreTrainedModel):
1545
+ _tied_weights_keys = ["mlm_score.decoder.weight"]
1546
+
1547
+ def __init__(self, config):
1548
+ super().__init__(config)
1549
+
1550
+ self.bridgetower = BridgeTowerModel(config)
1551
+ self.mlm_score = BridgeTowerMLMHead(config)
1552
+
1553
+ # Initialize weights and apply final processing
1554
+ self.post_init()
1555
+
1556
+ def get_output_embeddings(self):
1557
+ return self.mlm_score.decoder
1558
+
1559
+ def set_output_embeddings(self, new_embeddings):
1560
+ self.mlm_score.decoder = new_embeddings
1561
+
1562
+ @add_start_docstrings_to_model_forward(BRIDGETOWER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
1563
+ @replace_return_docstrings(output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC)
1564
+ def forward(
1565
+ self,
1566
+ input_ids: Optional[torch.LongTensor] = None,
1567
+ attention_mask: Optional[torch.FloatTensor] = None,
1568
+ token_type_ids: Optional[torch.LongTensor] = None,
1569
+ pixel_values: Optional[torch.FloatTensor] = None,
1570
+ pixel_mask: Optional[torch.LongTensor] = None,
1571
+ head_mask: Optional[torch.FloatTensor] = None,
1572
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1573
+ image_embeds: Optional[torch.FloatTensor] = None,
1574
+ output_attentions: Optional[bool] = None,
1575
+ output_hidden_states: Optional[bool] = None,
1576
+ return_dict: Optional[bool] = None,
1577
+ labels: Optional[torch.LongTensor] = None,
1578
+ ) -> Union[MaskedLMOutput, Tuple[torch.FloatTensor]]:
1579
+ r"""
1580
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1581
+ Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
1582
+ config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
1583
+ loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
1584
+ Returns:
1585
+
1586
+ Examples:
1587
+
1588
+ ```python
1589
+ >>> from transformers import BridgeTowerProcessor, BridgeTowerForMaskedLM
1590
+ >>> from PIL import Image
1591
+ >>> import requests
1592
+
1593
+ >>> url = "http://images.cocodataset.org/val2017/000000360943.jpg"
1594
+ >>> image = Image.open(requests.get(url, stream=True).raw).convert("RGB")
1595
+ >>> text = "a <mask> looking out of the window"
1596
+
1597
+ >>> processor = BridgeTowerProcessor.from_pretrained("BridgeTower/bridgetower-base-itm-mlm")
1598
+ >>> model = BridgeTowerForMaskedLM.from_pretrained("BridgeTower/bridgetower-base-itm-mlm")
1599
+
1600
+ >>> # prepare inputs
1601
+ >>> encoding = processor(image, text, return_tensors="pt")
1602
+
1603
+ >>> # forward pass
1604
+ >>> outputs = model(**encoding)
1605
+
1606
+ >>> results = processor.decode(outputs.logits.argmax(dim=-1).squeeze(0).tolist())
1607
+
1608
+ >>> print(results)
1609
+ .a cat looking out of the window.
1610
+ ```"""
1611
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1612
+ outputs = self.bridgetower(
1613
+ input_ids,
1614
+ attention_mask=attention_mask,
1615
+ token_type_ids=token_type_ids,
1616
+ pixel_values=pixel_values,
1617
+ pixel_mask=pixel_mask,
1618
+ head_mask=head_mask,
1619
+ inputs_embeds=inputs_embeds,
1620
+ image_embeds=image_embeds,
1621
+ output_attentions=output_attentions,
1622
+ output_hidden_states=output_hidden_states,
1623
+ return_dict=return_dict,
1624
+ )
1625
+
1626
+ mlm_logits = self.mlm_score(outputs.text_features if return_dict else outputs[0])
1627
+ masked_lm_loss = None
1628
+ if labels is not None:
1629
+ loss_fct = CrossEntropyLoss() # -100 index = padding token
1630
+
1631
+ labels = labels.to(mlm_logits.device)
1632
+ masked_lm_loss = loss_fct(mlm_logits.view(-1, self.config.text_config.vocab_size), labels.view(-1))
1633
+
1634
+ if not return_dict:
1635
+ output = tuple(mlm_logits)
1636
+ return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
1637
+
1638
+ return MaskedLMOutput(
1639
+ loss=masked_lm_loss,
1640
+ logits=mlm_logits,
1641
+ hidden_states=outputs.hidden_states,
1642
+ attentions=outputs.attentions,
1643
+ )
1644
+
1645
+
1646
+ @add_start_docstrings(
1647
+ """
1648
+ BridgeTower Model transformer with a classifier head on top (a linear layer on top of the final hidden state of the
1649
+ [CLS] token) for image-to-text matching.
1650
+ """,
1651
+ BRIDGETOWER_START_DOCSTRING,
1652
+ )
1653
+ class BridgeTowerForImageAndTextRetrieval(BridgeTowerPreTrainedModel):
1654
+ def __init__(self, config):
1655
+ super().__init__(config)
1656
+
1657
+ self.bridgetower = BridgeTowerModel(config)
1658
+
1659
+ self.itm_score = BridgeTowerITMHead(config.hidden_size * 2)
1660
+
1661
+ # Initialize weights and apply final processing
1662
+ self.post_init()
1663
+
1664
+ @add_start_docstrings_to_model_forward(BRIDGETOWER_INPUTS_DOCSTRING)
1665
+ @replace_return_docstrings(output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC)
1666
+ def forward(
1667
+ self,
1668
+ input_ids: Optional[torch.LongTensor] = None,
1669
+ attention_mask: Optional[torch.FloatTensor] = None,
1670
+ token_type_ids: Optional[torch.LongTensor] = None,
1671
+ pixel_values: Optional[torch.FloatTensor] = None,
1672
+ pixel_mask: Optional[torch.LongTensor] = None,
1673
+ head_mask: Optional[torch.FloatTensor] = None,
1674
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1675
+ image_embeds: Optional[torch.FloatTensor] = None,
1676
+ output_attentions: Optional[bool] = None,
1677
+ output_hidden_states: Optional[bool] = None,
1678
+ return_dict: Optional[bool] = None,
1679
+ labels: Optional[torch.LongTensor] = None,
1680
+ ) -> Union[SequenceClassifierOutput, Tuple[torch.FloatTensor]]:
1681
+ r"""
1682
+ labels (`torch.LongTensor` of shape `(batch_size, 1)`, *optional*):
1683
+ Labels for computing the image-text matching loss. 0 means the pairs don't match and 1 means they match.
1684
+ The pairs with 0 will be skipped for calculation.
1685
+ Returns:
1686
+
1687
+ Examples:
1688
+
1689
+ ```python
1690
+ >>> from transformers import BridgeTowerProcessor, BridgeTowerForImageAndTextRetrieval
1691
+ >>> import requests
1692
+ >>> from PIL import Image
1693
+
1694
+ >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
1695
+ >>> image = Image.open(requests.get(url, stream=True).raw)
1696
+ >>> texts = ["An image of two cats chilling on a couch", "A football player scoring a goal"]
1697
+
1698
+ >>> processor = BridgeTowerProcessor.from_pretrained("BridgeTower/bridgetower-base-itm-mlm")
1699
+ >>> model = BridgeTowerForImageAndTextRetrieval.from_pretrained("BridgeTower/bridgetower-base-itm-mlm")
1700
+
1701
+ >>> # forward pass
1702
+ >>> scores = dict()
1703
+ >>> for text in texts:
1704
+ ... # prepare inputs
1705
+ ... encoding = processor(image, text, return_tensors="pt")
1706
+ ... outputs = model(**encoding)
1707
+ ... scores[text] = outputs.logits[0, 1].item()
1708
+ ```"""
1709
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1710
+
1711
+ outputs = self.bridgetower(
1712
+ input_ids,
1713
+ attention_mask=attention_mask,
1714
+ token_type_ids=token_type_ids,
1715
+ pixel_values=pixel_values,
1716
+ pixel_mask=pixel_mask,
1717
+ head_mask=head_mask,
1718
+ inputs_embeds=inputs_embeds,
1719
+ image_embeds=image_embeds,
1720
+ output_attentions=output_attentions,
1721
+ output_hidden_states=output_hidden_states,
1722
+ return_dict=return_dict,
1723
+ )
1724
+
1725
+ pooler_output = outputs.pooler_output if return_dict else outputs[2]
1726
+
1727
+ logits = self.itm_score(pooler_output)
1728
+
1729
+ itm_loss = None
1730
+ if labels is not None:
1731
+ loss_fct = CrossEntropyLoss()
1732
+
1733
+ labels = labels.to(logits.device)
1734
+ itm_loss = loss_fct(logits, labels)
1735
+
1736
+ if not return_dict:
1737
+ output = tuple(logits)
1738
+ return ((itm_loss,) + output) if itm_loss is not None else output
1739
+
1740
+ return SequenceClassifierOutput(
1741
+ loss=itm_loss,
1742
+ logits=logits,
1743
+ hidden_states=outputs.hidden_states,
1744
+ attentions=outputs.attentions,
1745
+ )
1746
+
1747
+
1748
+ class BridgeTowerContrastiveHead(nn.Module):
1749
+ def __init__(self, hidden_size, embed_size):
1750
+ super().__init__()
1751
+ self.fc = nn.Linear(hidden_size, embed_size)
1752
+
1753
+ def forward(self, x):
1754
+ x = self.fc(x)
1755
+ return x
1756
+
1757
+
1758
+ @add_start_docstrings(
1759
+ """
1760
+ BridgeTower Model with a image-text contrastive head on top computing image-text contrastive loss.
1761
+ """,
1762
+ BRIDGETOWER_START_DOCSTRING,
1763
+ )
1764
+ class BridgeTowerForContrastiveLearning(BridgeTowerPreTrainedModel):
1765
+ def __init__(self, config):
1766
+ super().__init__(config)
1767
+
1768
+ self.bridgetower = BridgeTowerModel(config)
1769
+
1770
+ self.itc_text_head = BridgeTowerContrastiveHead(config.hidden_size, config.contrastive_hidden_size)
1771
+ self.itc_image_head = BridgeTowerContrastiveHead(config.hidden_size, config.contrastive_hidden_size)
1772
+ self.itc_cross_modal_head = BridgeTowerContrastiveHead(config.hidden_size * 2, config.contrastive_hidden_size)
1773
+
1774
+ self.logit_scale = nn.Parameter(torch.tensor(self.config.logit_scale_init_value))
1775
+ # Initialize weights and apply final processing
1776
+ self.post_init()
1777
+
1778
+ @add_start_docstrings_to_model_forward(BRIDGETOWER_INPUTS_DOCSTRING)
1779
+ @replace_return_docstrings(output_type=BridgeTowerContrastiveOutput, config_class=_CONFIG_FOR_DOC)
1780
+ def forward(
1781
+ self,
1782
+ input_ids: Optional[torch.LongTensor] = None,
1783
+ attention_mask: Optional[torch.FloatTensor] = None,
1784
+ token_type_ids: Optional[torch.LongTensor] = None,
1785
+ pixel_values: Optional[torch.FloatTensor] = None,
1786
+ pixel_mask: Optional[torch.LongTensor] = None,
1787
+ head_mask: Optional[torch.FloatTensor] = None,
1788
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1789
+ image_embeds: Optional[torch.FloatTensor] = None,
1790
+ output_attentions: Optional[bool] = None,
1791
+ output_hidden_states: Optional[bool] = True,
1792
+ return_dict: Optional[bool] = None,
1793
+ return_loss: Optional[bool] = None,
1794
+ ) -> Union[BridgeTowerContrastiveOutput, Tuple[torch.FloatTensor]]:
1795
+ r"""
1796
+ return_loss (`bool`, *optional*):
1797
+ Whether or not to return the contrastive loss.
1798
+ Returns:
1799
+
1800
+ Examples:
1801
+
1802
+ ```python
1803
+ >>> from transformers import BridgeTowerProcessor, BridgeTowerForContrastiveLearning
1804
+ >>> import requests
1805
+ >>> from PIL import Image
1806
+ >>> import torch
1807
+
1808
+ >>> image_urls = [
1809
+ ... "https://farm4.staticflickr.com/3395/3428278415_81c3e27f15_z.jpg",
1810
+ ... "http://images.cocodataset.org/val2017/000000039769.jpg",
1811
+ ... ]
1812
+ >>> texts = ["two dogs in a car", "two cats sleeping on a couch"]
1813
+ >>> images = [Image.open(requests.get(url, stream=True).raw) for url in image_urls]
1814
+
1815
+ >>> processor = BridgeTowerProcessor.from_pretrained("BridgeTower/bridgetower-large-itm-mlm-itc")
1816
+ >>> model = BridgeTowerForContrastiveLearning.from_pretrained("BridgeTower/bridgetower-large-itm-mlm-itc")
1817
+
1818
+ >>> inputs = processor(images, texts, padding=True, return_tensors="pt")
1819
+ >>> loss = model(**inputs, return_loss=True).loss
1820
+
1821
+ >>> inputs = processor(images, texts[::-1], padding=True, return_tensors="pt")
1822
+ >>> loss_swapped = model(**inputs, return_loss=True).loss
1823
+
1824
+ >>> print("Loss", round(loss.item(), 4))
1825
+ Loss 0.0019
1826
+
1827
+ >>> print("Loss with swapped images", round(loss_swapped.item(), 4))
1828
+ Loss with swapped images 2.126
1829
+ ```"""
1830
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1831
+
1832
+ outputs = self.bridgetower(
1833
+ input_ids,
1834
+ attention_mask=attention_mask,
1835
+ token_type_ids=token_type_ids,
1836
+ pixel_values=pixel_values,
1837
+ pixel_mask=pixel_mask,
1838
+ head_mask=head_mask,
1839
+ inputs_embeds=inputs_embeds,
1840
+ image_embeds=image_embeds,
1841
+ output_attentions=output_attentions,
1842
+ output_hidden_states=True,
1843
+ return_dict=return_dict,
1844
+ )
1845
+
1846
+ pooler_output = outputs.pooler_output if return_dict else outputs[2]
1847
+ hidden_states_txt, hidden_states_img, hidden_states_cross_modal = (
1848
+ outputs.hidden_states if return_dict else outputs[3]
1849
+ )
1850
+
1851
+ text_embeds = hidden_states_txt[-1]
1852
+ image_embeds = hidden_states_img[-1]
1853
+
1854
+ image_embeds_with_ln = self.bridgetower.vision_model.visual.forward_post(image_embeds)
1855
+ image_token_type_embeddings = self.bridgetower.token_type_embeddings(
1856
+ torch.full((1,), 1, dtype=torch.long, device=self.bridgetower.token_type_embeddings.weight.device)
1857
+ ).expand_as(image_embeds_with_ln)
1858
+
1859
+ image_embeds = self.bridgetower.cross_modal_image_transform(image_embeds_with_ln) + image_token_type_embeddings
1860
+
1861
+ # normalized features
1862
+ text_embeds = nn.functional.normalize(self.itc_text_head(text_embeds[:, 0, :]), dim=-1, p=2)
1863
+ image_embeds = nn.functional.normalize(self.itc_image_head(image_embeds[:, 0, :]), dim=-1, p=2).to(
1864
+ device=text_embeds.device
1865
+ )
1866
+ cross_embeds = nn.functional.normalize(self.itc_cross_modal_head(pooler_output), dim=-1, p=2).to(
1867
+ device=text_embeds.device
1868
+ )
1869
+
1870
+ logits = torch.stack([text_embeds, image_embeds, cross_embeds], dim=-2)
1871
+
1872
+ logit_scale = self.logit_scale.exp().to(device=text_embeds.device)
1873
+ logits_text_to_image = torch.matmul(text_embeds, image_embeds.t()) * logit_scale
1874
+ logits_text_to_cross = torch.matmul(text_embeds, cross_embeds.t()) * logit_scale
1875
+ logits_image_to_cross = torch.matmul(image_embeds, cross_embeds.t()) * logit_scale
1876
+
1877
+ itc_loss = None
1878
+
1879
+ if return_loss:
1880
+ labels = torch.arange(len(logits), device=logits.device)
1881
+ text_to_image_loss = nn.functional.cross_entropy(logits_text_to_image, labels)
1882
+ text_to_cross_loss = nn.functional.cross_entropy(logits_text_to_cross, labels)
1883
+ image_to_cross_loss = nn.functional.cross_entropy(logits_image_to_cross, labels)
1884
+ itc_loss = (text_to_image_loss + text_to_cross_loss + image_to_cross_loss) / 3.0
1885
+
1886
+ if not return_dict:
1887
+ output = (logits, text_embeds, image_embeds, cross_embeds) + outputs[3:]
1888
+ return ((itc_loss,) + output) if itc_loss is not None else output
1889
+
1890
+ return BridgeTowerContrastiveOutput(
1891
+ loss=itc_loss,
1892
+ logits=logits,
1893
+ text_embeds=text_embeds,
1894
+ image_embeds=image_embeds,
1895
+ cross_embeds=cross_embeds,
1896
+ hidden_states=outputs.hidden_states,
1897
+ attentions=outputs.attentions,
1898
+ )
llmeval-env/lib/python3.10/site-packages/transformers/models/bridgetower/processing_bridgetower.py ADDED
@@ -0,0 +1,119 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 The Intel Labs Team Authors, The Microsoft Research Team Authors and HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """
16
+ Processor class for BridgeTower.
17
+ """
18
+
19
+ from typing import List, Optional, Union
20
+
21
+ from ...processing_utils import ProcessorMixin
22
+ from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
23
+ from ...utils import TensorType
24
+
25
+
26
+ class BridgeTowerProcessor(ProcessorMixin):
27
+ r"""
28
+ Constructs a BridgeTower processor which wraps a Roberta tokenizer and BridgeTower image processor into a single
29
+ processor.
30
+
31
+ [`BridgeTowerProcessor`] offers all the functionalities of [`BridgeTowerImageProcessor`] and
32
+ [`RobertaTokenizerFast`]. See the docstring of [`~BridgeTowerProcessor.__call__`] and
33
+ [`~BridgeTowerProcessor.decode`] for more information.
34
+
35
+ Args:
36
+ image_processor (`BridgeTowerImageProcessor`):
37
+ An instance of [`BridgeTowerImageProcessor`]. The image processor is a required input.
38
+ tokenizer (`RobertaTokenizerFast`):
39
+ An instance of ['RobertaTokenizerFast`]. The tokenizer is a required input.
40
+ """
41
+
42
+ attributes = ["image_processor", "tokenizer"]
43
+ image_processor_class = "BridgeTowerImageProcessor"
44
+ tokenizer_class = ("RobertaTokenizer", "RobertaTokenizerFast")
45
+
46
+ def __init__(self, image_processor, tokenizer):
47
+ super().__init__(image_processor, tokenizer)
48
+
49
+ def __call__(
50
+ self,
51
+ images,
52
+ text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
53
+ add_special_tokens: bool = True,
54
+ padding: Union[bool, str, PaddingStrategy] = False,
55
+ truncation: Union[bool, str, TruncationStrategy] = None,
56
+ max_length: Optional[int] = None,
57
+ stride: int = 0,
58
+ pad_to_multiple_of: Optional[int] = None,
59
+ return_token_type_ids: Optional[bool] = None,
60
+ return_attention_mask: Optional[bool] = None,
61
+ return_overflowing_tokens: bool = False,
62
+ return_special_tokens_mask: bool = False,
63
+ return_offsets_mapping: bool = False,
64
+ return_length: bool = False,
65
+ verbose: bool = True,
66
+ return_tensors: Optional[Union[str, TensorType]] = None,
67
+ **kwargs,
68
+ ) -> BatchEncoding:
69
+ """
70
+ This method uses [`BridgeTowerImageProcessor.__call__`] method to prepare image(s) for the model, and
71
+ [`RobertaTokenizerFast.__call__`] to prepare text for the model.
72
+
73
+ Please refer to the docstring of the above two methods for more information.
74
+ """
75
+ encoding = self.tokenizer(
76
+ text=text,
77
+ add_special_tokens=add_special_tokens,
78
+ padding=padding,
79
+ truncation=truncation,
80
+ max_length=max_length,
81
+ stride=stride,
82
+ pad_to_multiple_of=pad_to_multiple_of,
83
+ return_token_type_ids=return_token_type_ids,
84
+ return_attention_mask=return_attention_mask,
85
+ return_overflowing_tokens=return_overflowing_tokens,
86
+ return_special_tokens_mask=return_special_tokens_mask,
87
+ return_offsets_mapping=return_offsets_mapping,
88
+ return_length=return_length,
89
+ verbose=verbose,
90
+ return_tensors=return_tensors,
91
+ **kwargs,
92
+ )
93
+ # add pixel_values + pixel_mask
94
+ encoding_image_processor = self.image_processor(
95
+ images, return_tensors=return_tensors, do_normalize=True, do_center_crop=True, **kwargs
96
+ )
97
+ encoding.update(encoding_image_processor)
98
+
99
+ return encoding
100
+
101
+ def batch_decode(self, *args, **kwargs):
102
+ """
103
+ This method forwards all its arguments to RobertaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
104
+ refer to the docstring of this method for more information.
105
+ """
106
+ return self.tokenizer.batch_decode(*args, **kwargs)
107
+
108
+ def decode(self, *args, **kwargs):
109
+ """
110
+ This method forwards all its arguments to RobertaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer
111
+ to the docstring of this method for more information.
112
+ """
113
+ return self.tokenizer.decode(*args, **kwargs)
114
+
115
+ @property
116
+ def model_input_names(self):
117
+ tokenizer_input_names = self.tokenizer.model_input_names
118
+ image_processor_input_names = self.image_processor.model_input_names
119
+ return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
llmeval-env/lib/python3.10/site-packages/transformers/models/chinese_clip/__init__.py ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2022 The OFA-Sys Team Authors and The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ from typing import TYPE_CHECKING
15
+
16
+ from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
17
+
18
+
19
+ _import_structure = {
20
+ "configuration_chinese_clip": [
21
+ "CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP",
22
+ "ChineseCLIPConfig",
23
+ "ChineseCLIPOnnxConfig",
24
+ "ChineseCLIPTextConfig",
25
+ "ChineseCLIPVisionConfig",
26
+ ],
27
+ "processing_chinese_clip": ["ChineseCLIPProcessor"],
28
+ }
29
+
30
+ try:
31
+ if not is_vision_available():
32
+ raise OptionalDependencyNotAvailable()
33
+ except OptionalDependencyNotAvailable:
34
+ pass
35
+ else:
36
+ _import_structure["feature_extraction_chinese_clip"] = ["ChineseCLIPFeatureExtractor"]
37
+ _import_structure["image_processing_chinese_clip"] = ["ChineseCLIPImageProcessor"]
38
+
39
+ try:
40
+ if not is_torch_available():
41
+ raise OptionalDependencyNotAvailable()
42
+ except OptionalDependencyNotAvailable:
43
+ pass
44
+ else:
45
+ _import_structure["modeling_chinese_clip"] = [
46
+ "CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST",
47
+ "ChineseCLIPModel",
48
+ "ChineseCLIPPreTrainedModel",
49
+ "ChineseCLIPTextModel",
50
+ "ChineseCLIPVisionModel",
51
+ ]
52
+
53
+ if TYPE_CHECKING:
54
+ from .configuration_chinese_clip import (
55
+ CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
56
+ ChineseCLIPConfig,
57
+ ChineseCLIPOnnxConfig,
58
+ ChineseCLIPTextConfig,
59
+ ChineseCLIPVisionConfig,
60
+ )
61
+ from .processing_chinese_clip import ChineseCLIPProcessor
62
+
63
+ try:
64
+ if not is_vision_available():
65
+ raise OptionalDependencyNotAvailable()
66
+ except OptionalDependencyNotAvailable:
67
+ pass
68
+ else:
69
+ from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor
70
+
71
+ try:
72
+ if not is_torch_available():
73
+ raise OptionalDependencyNotAvailable()
74
+ except OptionalDependencyNotAvailable:
75
+ pass
76
+ else:
77
+ from .modeling_chinese_clip import (
78
+ CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
79
+ ChineseCLIPModel,
80
+ ChineseCLIPPreTrainedModel,
81
+ ChineseCLIPTextModel,
82
+ ChineseCLIPVisionModel,
83
+ )
84
+
85
+ else:
86
+ import sys
87
+
88
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
llmeval-env/lib/python3.10/site-packages/transformers/models/chinese_clip/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (1.49 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/chinese_clip/__pycache__/configuration_chinese_clip.cpython-310.pyc ADDED
Binary file (17.8 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/chinese_clip/__pycache__/convert_chinese_clip_original_pytorch_to_hf.cpython-310.pyc ADDED
Binary file (4.05 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/chinese_clip/__pycache__/feature_extraction_chinese_clip.cpython-310.pyc ADDED
Binary file (1.07 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/chinese_clip/__pycache__/image_processing_chinese_clip.cpython-310.pyc ADDED
Binary file (13.2 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/chinese_clip/__pycache__/modeling_chinese_clip.cpython-310.pyc ADDED
Binary file (48.5 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/chinese_clip/__pycache__/processing_chinese_clip.cpython-310.pyc ADDED
Binary file (6.02 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/chinese_clip/configuration_chinese_clip.py ADDED
@@ -0,0 +1,468 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 The OFA-Sys Team Authors and The HuggingFace Team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ Chinese-CLIP model configuration"""
16
+
17
+ import os
18
+ from collections import OrderedDict
19
+ from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
20
+
21
+
22
+ if TYPE_CHECKING:
23
+ from ...processing_utils import ProcessorMixin
24
+ from ...utils import TensorType
25
+
26
+ from ...configuration_utils import PretrainedConfig
27
+ from ...onnx import OnnxConfig
28
+ from ...utils import logging
29
+
30
+
31
+ logger = logging.get_logger(__name__)
32
+
33
+
34
+ from ..deprecated._archive_maps import CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
35
+
36
+
37
+ class ChineseCLIPTextConfig(PretrainedConfig):
38
+ r"""
39
+ This is the configuration class to store the configuration of a [`ChineseCLIPModel`]. It is used to instantiate a
40
+ Chinese CLIP model according to the specified arguments, defining the model architecture. Instantiating a
41
+ configuration with the defaults will yield a similar configuration to that of the Chinese CLIP
42
+ [OFA-Sys/chinese-clip-vit-base-patch16](https:
43
+ //huggingface.co/OFA-Sys/chinese-clip-vit-base-patch16) architecture.
44
+
45
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
46
+ documentation from [`PretrainedConfig`] for more information.
47
+
48
+
49
+ Args:
50
+ vocab_size (`int`, *optional*, defaults to 30522):
51
+ Vocabulary size of the CHINESE_CLIP model. Defines the number of different tokens that can be represented
52
+ by the `inputs_ids` passed when calling [`ChineseCLIPModel`].
53
+ hidden_size (`int`, *optional*, defaults to 768):
54
+ Dimensionality of the encoder layers and the pooler layer.
55
+ num_hidden_layers (`int`, *optional*, defaults to 12):
56
+ Number of hidden layers in the Transformer encoder.
57
+ num_attention_heads (`int`, *optional*, defaults to 12):
58
+ Number of attention heads for each attention layer in the Transformer encoder.
59
+ intermediate_size (`int`, *optional*, defaults to 3072):
60
+ Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
61
+ hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
62
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
63
+ `"relu"`, `"silu"` and `"gelu_new"` are supported.
64
+ hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
65
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
66
+ attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
67
+ The dropout ratio for the attention probabilities.
68
+ max_position_embeddings (`int`, *optional*, defaults to 512):
69
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
70
+ just in case (e.g., 512 or 1024 or 2048).
71
+ type_vocab_size (`int`, *optional*, defaults to 2):
72
+ The vocabulary size of the `token_type_ids` passed when calling [`ChineseCLIPModel`].
73
+ initializer_range (`float`, *optional*, defaults to 0.02):
74
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
75
+ initializer_factor (`float`, *optional*, defaults to 1.0):
76
+ A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
77
+ testing).
78
+ layer_norm_eps (`float`, *optional*, defaults to 1e-12):
79
+ The epsilon used by the layer normalization layers.
80
+ pad_token_id (`int`, *optional*, defaults to 0):
81
+ Padding token id.
82
+ position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
83
+ Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
84
+ positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
85
+ [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
86
+ For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
87
+ with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
88
+ use_cache (`bool`, *optional*, defaults to `True`):
89
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
90
+ relevant if `config.is_decoder=True`.
91
+
92
+ Example:
93
+
94
+ ```python
95
+ >>> from transformers import ChineseCLIPTextConfig, ChineseCLIPTextModel
96
+
97
+ >>> # Initializing a ChineseCLIPTextConfig with OFA-Sys/chinese-clip-vit-base-patch16 style configuration
98
+ >>> configuration = ChineseCLIPTextConfig()
99
+
100
+ >>> # Initializing a ChineseCLIPTextModel (with random weights) from the OFA-Sys/chinese-clip-vit-base-patch16 style configuration
101
+ >>> model = ChineseCLIPTextModel(configuration)
102
+
103
+ >>> # Accessing the model configuration
104
+ >>> configuration = model.config
105
+ ```"""
106
+
107
+ model_type = "chinese_clip_text_model"
108
+
109
+ def __init__(
110
+ self,
111
+ vocab_size=30522,
112
+ hidden_size=768,
113
+ num_hidden_layers=12,
114
+ num_attention_heads=12,
115
+ intermediate_size=3072,
116
+ hidden_act="gelu",
117
+ hidden_dropout_prob=0.1,
118
+ attention_probs_dropout_prob=0.1,
119
+ max_position_embeddings=512,
120
+ type_vocab_size=2,
121
+ initializer_range=0.02,
122
+ initializer_factor=1.0,
123
+ layer_norm_eps=1e-12,
124
+ pad_token_id=0,
125
+ position_embedding_type="absolute",
126
+ use_cache=True,
127
+ **kwargs,
128
+ ):
129
+ super().__init__(pad_token_id=pad_token_id, **kwargs)
130
+
131
+ self.vocab_size = vocab_size
132
+ self.hidden_size = hidden_size
133
+ self.num_hidden_layers = num_hidden_layers
134
+ self.num_attention_heads = num_attention_heads
135
+ self.hidden_act = hidden_act
136
+ self.intermediate_size = intermediate_size
137
+ self.hidden_dropout_prob = hidden_dropout_prob
138
+ self.attention_probs_dropout_prob = attention_probs_dropout_prob
139
+ self.max_position_embeddings = max_position_embeddings
140
+ self.type_vocab_size = type_vocab_size
141
+ self.initializer_range = initializer_range
142
+ self.initializer_factor = initializer_factor
143
+ self.layer_norm_eps = layer_norm_eps
144
+ self.position_embedding_type = position_embedding_type
145
+ self.use_cache = use_cache
146
+
147
+ @classmethod
148
+ def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
149
+ cls._set_token_in_kwargs(kwargs)
150
+
151
+ config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
152
+
153
+ # get the vision config dict if we are loading from ChineseCLIPConfig
154
+ if config_dict.get("model_type") == "chinese_clip":
155
+ config_dict = config_dict["text_config"]
156
+
157
+ if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
158
+ logger.warning(
159
+ f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
160
+ f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
161
+ )
162
+
163
+ return cls.from_dict(config_dict, **kwargs)
164
+
165
+
166
+ class ChineseCLIPVisionConfig(PretrainedConfig):
167
+ r"""
168
+ This is the configuration class to store the configuration of a [`ChineseCLIPModel`]. It is used to instantiate an
169
+ ChineseCLIP model according to the specified arguments, defining the model architecture. Instantiating a
170
+ configuration with the defaults will yield a similar configuration to that of the ChineseCLIP
171
+ [OFA-Sys/chinese-clip-vit-base-patch16](https://huggingface.co/OFA-Sys/chinese-clip-vit-base-patch16) architecture.
172
+
173
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
174
+ documentation from [`PretrainedConfig`] for more information.
175
+
176
+
177
+ Args:
178
+ hidden_size (`int`, *optional*, defaults to 768):
179
+ Dimensionality of the encoder layers and the pooler layer.
180
+ intermediate_size (`int`, *optional*, defaults to 3072):
181
+ Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
182
+ projection_dim (`int`, *optional*, defaults to 512):
183
+ Dimentionality of text and vision projection layers.
184
+ num_hidden_layers (`int`, *optional*, defaults to 12):
185
+ Number of hidden layers in the Transformer encoder.
186
+ num_attention_heads (`int`, *optional*, defaults to 12):
187
+ Number of attention heads for each attention layer in the Transformer encoder.
188
+ num_channels (`int`, *optional*, defaults to 3):
189
+ The number of input channels.
190
+ image_size (`int`, *optional*, defaults to 224):
191
+ The size (resolution) of each image.
192
+ patch_size (`int`, *optional*, defaults to 32):
193
+ The size (resolution) of each patch.
194
+ hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
195
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
196
+ `"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported.
197
+ layer_norm_eps (`float`, *optional*, defaults to 1e-05):
198
+ The epsilon used by the layer normalization layers.
199
+ attention_dropout (`float`, *optional*, defaults to 0.0):
200
+ The dropout ratio for the attention probabilities.
201
+ initializer_range (`float`, *optional*, defaults to 0.02):
202
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
203
+ initializer_factor (`float`, *optional*, defaults to 1.0):
204
+ A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
205
+ testing).
206
+ Example:
207
+ ```python
208
+ >>> from transformers import ChineseCLIPVisionConfig, ChineseCLIPVisionModel
209
+
210
+ >>> # Initializing a ChineseCLIPVisionConfig with OFA-Sys/chinese-clip-vit-base-patch16 style configuration
211
+ >>> configuration = ChineseCLIPVisionConfig()
212
+
213
+ >>> # Initializing a ChineseCLIPVisionModel (with random weights) from the OFA-Sys/chinese-clip-vit-base-patch16 style configuration
214
+ >>> model = ChineseCLIPVisionModel(configuration)
215
+
216
+ >>> # Accessing the model configuration
217
+ >>> configuration = model.config
218
+ ```"""
219
+
220
+ model_type = "chinese_clip_vision_model"
221
+
222
+ def __init__(
223
+ self,
224
+ hidden_size=768,
225
+ intermediate_size=3072,
226
+ projection_dim=512,
227
+ num_hidden_layers=12,
228
+ num_attention_heads=12,
229
+ num_channels=3,
230
+ image_size=224,
231
+ patch_size=32,
232
+ hidden_act="quick_gelu",
233
+ layer_norm_eps=1e-5,
234
+ attention_dropout=0.0,
235
+ initializer_range=0.02,
236
+ initializer_factor=1.0,
237
+ **kwargs,
238
+ ):
239
+ super().__init__(**kwargs)
240
+
241
+ self.hidden_size = hidden_size
242
+ self.intermediate_size = intermediate_size
243
+ self.projection_dim = projection_dim
244
+ self.num_hidden_layers = num_hidden_layers
245
+ self.num_attention_heads = num_attention_heads
246
+ self.num_channels = num_channels
247
+ self.patch_size = patch_size
248
+ self.image_size = image_size
249
+ self.initializer_range = initializer_range
250
+ self.initializer_factor = initializer_factor
251
+ self.attention_dropout = attention_dropout
252
+ self.layer_norm_eps = layer_norm_eps
253
+ self.hidden_act = hidden_act
254
+
255
+ @classmethod
256
+ def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
257
+ cls._set_token_in_kwargs(kwargs)
258
+
259
+ config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
260
+
261
+ # get the vision config dict if we are loading from ChineseCLIPConfig
262
+ if config_dict.get("model_type") == "chinese_clip":
263
+ config_dict = config_dict["vision_config"]
264
+
265
+ if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
266
+ logger.warning(
267
+ f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
268
+ f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
269
+ )
270
+
271
+ return cls.from_dict(config_dict, **kwargs)
272
+
273
+
274
+ class ChineseCLIPConfig(PretrainedConfig):
275
+ r"""
276
+ [`ChineseCLIPConfig`] is the configuration class to store the configuration of a [`ChineseCLIPModel`]. It is used
277
+ to instantiate Chinese-CLIP model according to the specified arguments, defining the text model and vision model
278
+ configs. Instantiating a configuration with the defaults will yield a similar configuration to that of the
279
+ Chinese-CLIP [OFA-Sys/chinese-clip-vit-base-patch16](https://huggingface.co/OFA-Sys/chinese-clip-vit-base-patch16)
280
+ architecture.
281
+
282
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
283
+ documentation from [`PretrainedConfig`] for more information.
284
+
285
+ Args:
286
+ text_config (`dict`, *optional*):
287
+ Dictionary of configuration options used to initialize [`ChineseCLIPTextConfig`].
288
+ vision_config (`dict`, *optional*):
289
+ Dictionary of configuration options used to initialize [`ChineseCLIPVisionConfig`].
290
+ projection_dim (`int`, *optional*, defaults to 512):
291
+ Dimentionality of text and vision projection layers.
292
+ logit_scale_init_value (`float`, *optional*, defaults to 2.6592):
293
+ The inital value of the *logit_scale* paramter. Default is used as per the original ChineseCLIP
294
+ implementation.
295
+ kwargs (*optional*):
296
+ Dictionary of keyword arguments.
297
+
298
+ Example:
299
+
300
+ ```python
301
+ >>> from transformers import ChineseCLIPConfig, ChineseCLIPModel
302
+
303
+ >>> # Initializing a ChineseCLIPConfig with OFA-Sys/chinese-clip-vit-base-patch16 style configuration
304
+ >>> configuration = ChineseCLIPConfig()
305
+
306
+ >>> # Initializing a ChineseCLIPModel (with random weights) from the OFA-Sys/chinese-clip-vit-base-patch16 style configuration
307
+ >>> model = ChineseCLIPModel(configuration)
308
+
309
+ >>> # Accessing the model configuration
310
+ >>> configuration = model.config
311
+
312
+ >>> # We can also initialize a ChineseCLIPConfig from a ChineseCLIPTextConfig and a ChineseCLIPVisionConfig
313
+
314
+ >>> # Initializing a ChineseCLIPTextConfig and ChineseCLIPVisionConfig configuration
315
+ >>> config_text = ChineseCLIPTextConfig()
316
+ >>> config_vision = ChineseCLIPVisionConfig()
317
+
318
+ >>> config = ChineseCLIPConfig.from_text_vision_configs(config_text, config_vision)
319
+ ```"""
320
+
321
+ model_type = "chinese_clip"
322
+
323
+ def __init__(
324
+ self, text_config=None, vision_config=None, projection_dim=512, logit_scale_init_value=2.6592, **kwargs
325
+ ):
326
+ # If `_config_dict` exist, we use them for the backward compatibility.
327
+ # We pop out these 2 attributes before calling `super().__init__` to avoid them being saved (which causes a lot
328
+ # of confusion!).
329
+ text_config_dict = kwargs.pop("text_config_dict", None)
330
+ vision_config_dict = kwargs.pop("vision_config_dict", None)
331
+
332
+ super().__init__(**kwargs)
333
+
334
+ # Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in
335
+ # `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most
336
+ # cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`.
337
+ if text_config_dict is not None:
338
+ if text_config is None:
339
+ text_config = {}
340
+
341
+ # This is the complete result when using `text_config_dict`.
342
+ _text_config_dict = ChineseCLIPTextConfig(**text_config_dict).to_dict()
343
+
344
+ # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different.
345
+ for key, value in _text_config_dict.items():
346
+ if key in text_config and value != text_config[key] and key not in ["transformers_version"]:
347
+ # If specified in `text_config_dict`
348
+ if key in text_config_dict:
349
+ message = (
350
+ f"`{key}` is found in both `text_config_dict` and `text_config` but with different values. "
351
+ f'The value `text_config_dict["{key}"]` will be used instead.'
352
+ )
353
+ # If inferred from default argument values (just to be super careful)
354
+ else:
355
+ message = (
356
+ f"`text_config_dict` is provided which will be used to initialize `ChineseCLIPTextConfig`. "
357
+ f'The value `text_config["{key}"]` will be overriden.'
358
+ )
359
+ logger.info(message)
360
+
361
+ # Update all values in `text_config` with the ones in `_text_config_dict`.
362
+ text_config.update(_text_config_dict)
363
+
364
+ if vision_config_dict is not None:
365
+ if vision_config is None:
366
+ vision_config = {}
367
+
368
+ # This is the complete result when using `vision_config_dict`.
369
+ _vision_config_dict = ChineseCLIPVisionConfig(**vision_config_dict).to_dict()
370
+ # convert keys to string instead of integer
371
+ if "id2label" in _vision_config_dict:
372
+ _vision_config_dict["id2label"] = {
373
+ str(key): value for key, value in _vision_config_dict["id2label"].items()
374
+ }
375
+
376
+ # Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different.
377
+ for key, value in _vision_config_dict.items():
378
+ if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]:
379
+ # If specified in `vision_config_dict`
380
+ if key in vision_config_dict:
381
+ message = (
382
+ f"`{key}` is found in both `vision_config_dict` and `vision_config` but with different "
383
+ f'values. The value `vision_config_dict["{key}"]` will be used instead.'
384
+ )
385
+ # If inferred from default argument values (just to be super careful)
386
+ else:
387
+ message = (
388
+ f"`vision_config_dict` is provided which will be used to initialize "
389
+ f'`ChineseCLIPVisionConfig`. The value `vision_config["{key}"]` will be overriden.'
390
+ )
391
+ logger.info(message)
392
+
393
+ # Update all values in `vision_config` with the ones in `_vision_config_dict`.
394
+ vision_config.update(_vision_config_dict)
395
+
396
+ if text_config is None:
397
+ text_config = {}
398
+ logger.info("`text_config` is `None`. Initializing the `ChineseCLIPTextConfig` with default values.")
399
+
400
+ if vision_config is None:
401
+ vision_config = {}
402
+ logger.info("`vision_config` is `None`. initializing the `ChineseCLIPVisionConfig` with default values.")
403
+
404
+ self.text_config = ChineseCLIPTextConfig(**text_config)
405
+ self.vision_config = ChineseCLIPVisionConfig(**vision_config)
406
+
407
+ self.projection_dim = projection_dim
408
+ self.logit_scale_init_value = logit_scale_init_value
409
+ self.initializer_factor = 1.0
410
+ self.initializer_range = 0.02
411
+
412
+ @classmethod
413
+ def from_text_vision_configs(
414
+ cls, text_config: ChineseCLIPTextConfig, vision_config: ChineseCLIPVisionConfig, **kwargs
415
+ ):
416
+ r"""
417
+ Instantiate a [`ChineseCLIPConfig`] (or a derived class) from Chinese-CLIP text model configuration and
418
+ Chinese-CLIP vision model configuration. Returns:
419
+ [`ChineseCLIPConfig`]: An instance of a configuration object
420
+ """
421
+
422
+ return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs)
423
+
424
+
425
+ class ChineseCLIPOnnxConfig(OnnxConfig):
426
+ @property
427
+ def inputs(self) -> Mapping[str, Mapping[int, str]]:
428
+ return OrderedDict(
429
+ [
430
+ ("input_ids", {0: "batch", 1: "sequence"}),
431
+ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
432
+ ("attention_mask", {0: "batch", 1: "sequence"}),
433
+ ]
434
+ )
435
+
436
+ @property
437
+ def outputs(self) -> Mapping[str, Mapping[int, str]]:
438
+ return OrderedDict(
439
+ [
440
+ ("logits_per_image", {0: "batch"}),
441
+ ("logits_per_text", {0: "batch"}),
442
+ ("text_embeds", {0: "batch"}),
443
+ ("image_embeds", {0: "batch"}),
444
+ ]
445
+ )
446
+
447
+ @property
448
+ def atol_for_validation(self) -> float:
449
+ return 1e-4
450
+
451
+ def generate_dummy_inputs(
452
+ self,
453
+ processor: "ProcessorMixin",
454
+ batch_size: int = -1,
455
+ seq_length: int = -1,
456
+ framework: Optional["TensorType"] = None,
457
+ ) -> Mapping[str, Any]:
458
+ text_input_dict = super().generate_dummy_inputs(
459
+ processor.tokenizer, batch_size=batch_size, seq_length=seq_length, framework=framework
460
+ )
461
+ image_input_dict = super().generate_dummy_inputs(
462
+ processor.image_processor, batch_size=batch_size, framework=framework
463
+ )
464
+ return {**text_input_dict, **image_input_dict}
465
+
466
+ @property
467
+ def default_onnx_opset(self) -> int:
468
+ return 14
llmeval-env/lib/python3.10/site-packages/transformers/models/chinese_clip/convert_chinese_clip_original_pytorch_to_hf.py ADDED
@@ -0,0 +1,134 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 The OFA-Sys Team Authors and The HuggingFace Team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ import argparse
17
+
18
+ import torch
19
+
20
+ from transformers import ChineseCLIPConfig, ChineseCLIPModel
21
+
22
+
23
+ def copy_attn_layer(hf_attn_layer, pt_weights, prefix):
24
+ q_proj, k_proj, v_proj = pt_weights[f"{prefix}.in_proj_weight"].chunk(3, dim=0)
25
+ q_proj_bias, k_proj_bias, v_proj_bias = pt_weights[f"{prefix}.in_proj_bias"].chunk(3, dim=0)
26
+
27
+ out_proj_weights = pt_weights[f"{prefix}.out_proj.weight"]
28
+ out_proj_bias = pt_weights[f"{prefix}.out_proj.bias"]
29
+
30
+ hf_attn_layer.q_proj.weight.data = q_proj
31
+ hf_attn_layer.q_proj.bias.data = q_proj_bias
32
+
33
+ hf_attn_layer.k_proj.weight.data = k_proj
34
+ hf_attn_layer.k_proj.bias.data = k_proj_bias
35
+
36
+ hf_attn_layer.v_proj.weight.data = v_proj
37
+ hf_attn_layer.v_proj.bias.data = v_proj_bias
38
+
39
+ hf_attn_layer.out_proj.weight.data = out_proj_weights
40
+ hf_attn_layer.out_proj.bias.data = out_proj_bias
41
+
42
+
43
+ def copy_mlp(hf_mlp, pt_weights, prefix):
44
+ copy_linear(hf_mlp.fc1, pt_weights, f"{prefix}.c_fc")
45
+ copy_linear(hf_mlp.fc2, pt_weights, f"{prefix}.c_proj")
46
+
47
+
48
+ def copy_linear(hf_linear, pt_weights, prefix):
49
+ hf_linear.weight.data = pt_weights[f"{prefix}.weight"].data
50
+ hf_linear.bias.data = pt_weights[f"{prefix}.bias"].data
51
+
52
+
53
+ def copy_layer(hf_layer, pt_weights, prefix):
54
+ # copy layer norms
55
+ copy_linear(hf_layer.layer_norm1, pt_weights, f"{prefix}.ln_1")
56
+ copy_linear(hf_layer.layer_norm2, pt_weights, f"{prefix}.ln_2")
57
+
58
+ # copy MLP
59
+ copy_mlp(hf_layer.mlp, pt_weights, f"{prefix}.mlp")
60
+
61
+ # copy attn
62
+ copy_attn_layer(hf_layer.self_attn, pt_weights, f"{prefix}.attn")
63
+
64
+
65
+ def copy_layers(hf_layers, pt_weights, prefix):
66
+ for layer_id, hf_layer in enumerate(hf_layers):
67
+ copy_layer(hf_layer, pt_weights, f"{prefix}.{layer_id}")
68
+
69
+
70
+ def copy_text_model_and_projection(hf_model, pt_weights):
71
+ # copy projection
72
+ hf_model.text_projection.weight.data = pt_weights["text_projection"].data.T
73
+
74
+ # copy text encoder
75
+ for name, param in hf_model.text_model.named_parameters():
76
+ param.data = pt_weights[f"bert.{name}"].data
77
+
78
+
79
+ def copy_vision_model_and_projection(hf_model, pt_weights):
80
+ # copy projection
81
+ hf_model.visual_projection.weight.data = pt_weights["visual.proj"].data.T
82
+
83
+ # copy layer norms
84
+ copy_linear(hf_model.vision_model.pre_layrnorm, pt_weights, "visual.ln_pre")
85
+ copy_linear(hf_model.vision_model.post_layernorm, pt_weights, "visual.ln_post")
86
+
87
+ # copy embeddings
88
+ hf_model.vision_model.embeddings.patch_embedding.weight.data = pt_weights["visual.conv1.weight"].data
89
+ hf_model.vision_model.embeddings.class_embedding.data = pt_weights["visual.class_embedding"].data
90
+ hf_model.vision_model.embeddings.position_embedding.weight.data = pt_weights["visual.positional_embedding"].data
91
+
92
+ # copy encoder
93
+ copy_layers(hf_model.vision_model.encoder.layers, pt_weights, "visual.transformer.resblocks")
94
+
95
+
96
+ @torch.no_grad()
97
+ def convert_chinese_clip_checkpoint(checkpoint_path, pytorch_dump_folder_path, config_path=None):
98
+ """
99
+ Copy/paste/tweak model's weights to transformers design.
100
+ """
101
+
102
+ assert config_path is not None, "Please specify the ChineseCLIP model config of the corresponding model size."
103
+ config = ChineseCLIPConfig.from_pretrained(config_path)
104
+
105
+ hf_model = ChineseCLIPModel(config).eval()
106
+
107
+ pt_weights = torch.load(checkpoint_path, map_location="cpu")["state_dict"]
108
+ pt_weights = {(name[7:] if name.startswith("module.") else name): value for name, value in pt_weights.items()}
109
+
110
+ copy_text_model_and_projection(hf_model, pt_weights)
111
+ copy_vision_model_and_projection(hf_model, pt_weights)
112
+ hf_model.logit_scale.data = pt_weights["logit_scale"].data
113
+
114
+ hf_model.save_pretrained(pytorch_dump_folder_path)
115
+
116
+
117
+ if __name__ == "__main__":
118
+ parser = argparse.ArgumentParser()
119
+ parser.add_argument(
120
+ "--pytorch_dump_folder_path",
121
+ default=None,
122
+ type=str,
123
+ help="Path to the output folder storing converted hf PyTorch model.",
124
+ )
125
+ parser.add_argument(
126
+ "--checkpoint_path", default=None, type=str, help="Path to original github format ChineseCLIP checkpoint."
127
+ )
128
+ parser.add_argument(
129
+ "--config_path", default=None, required=True, type=str, help="Path to hf config.json of model to convert."
130
+ )
131
+ args = parser.parse_args()
132
+
133
+ convert_chinese_clip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
134
+ print("The conversion is finished!")
llmeval-env/lib/python3.10/site-packages/transformers/models/chinese_clip/feature_extraction_chinese_clip.py ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2021 The OFA-Sys Team Authors and The HuggingFace Team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Feature extractor class for Chinese-CLIP."""
16
+
17
+ import warnings
18
+
19
+ from ...utils import logging
20
+ from .image_processing_chinese_clip import ChineseCLIPImageProcessor
21
+
22
+
23
+ logger = logging.get_logger(__name__)
24
+
25
+
26
+ class ChineseCLIPFeatureExtractor(ChineseCLIPImageProcessor):
27
+ def __init__(self, *args, **kwargs) -> None:
28
+ warnings.warn(
29
+ "The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers."
30
+ " Please use ChineseCLIPImageProcessor instead.",
31
+ FutureWarning,
32
+ )
33
+ super().__init__(*args, **kwargs)
llmeval-env/lib/python3.10/site-packages/transformers/models/chinese_clip/image_processing_chinese_clip.py ADDED
@@ -0,0 +1,331 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 The OFA-Sys Team Authors and The HuggingFace Team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Image processor class for Chinese-CLIP."""
16
+
17
+ from typing import Dict, List, Optional, Union
18
+
19
+ import numpy as np
20
+
21
+ from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
22
+ from ...image_transforms import (
23
+ convert_to_rgb,
24
+ get_resize_output_image_size,
25
+ resize,
26
+ to_channel_dimension_format,
27
+ )
28
+ from ...image_utils import (
29
+ OPENAI_CLIP_MEAN,
30
+ OPENAI_CLIP_STD,
31
+ ChannelDimension,
32
+ ImageInput,
33
+ PILImageResampling,
34
+ infer_channel_dimension_format,
35
+ is_scaled_image,
36
+ make_list_of_images,
37
+ to_numpy_array,
38
+ valid_images,
39
+ validate_kwargs,
40
+ validate_preprocess_arguments,
41
+ )
42
+ from ...utils import TensorType, is_vision_available, logging
43
+
44
+
45
+ logger = logging.get_logger(__name__)
46
+
47
+
48
+ if is_vision_available():
49
+ import PIL
50
+
51
+
52
+ class ChineseCLIPImageProcessor(BaseImageProcessor):
53
+ r"""
54
+ Constructs a Chinese-CLIP image processor.
55
+
56
+ Args:
57
+ do_resize (`bool`, *optional*, defaults to `True`):
58
+ Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by
59
+ `do_resize` in the `preprocess` method.
60
+ size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 224}`):
61
+ Size of the image after resizing. The shortest edge of the image is resized to size["shortest_edge"], with
62
+ the longest edge resized to keep the input aspect ratio. Can be overridden by `size` in the `preprocess`
63
+ method.
64
+ resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`):
65
+ Resampling filter to use if resizing the image. Can be overridden by `resample` in the `preprocess` method.
66
+ do_center_crop (`bool`, *optional*, defaults to `True`):
67
+ Whether to center crop the image to the specified `crop_size`. Can be overridden by `do_center_crop` in the
68
+ `preprocess` method.
69
+ crop_size (`Dict[str, int]` *optional*, defaults to 224):
70
+ Size of the output image after applying `center_crop`. Can be overridden by `crop_size` in the `preprocess`
71
+ method.
72
+ do_rescale (`bool`, *optional*, defaults to `True`):
73
+ Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by `do_rescale` in
74
+ the `preprocess` method.
75
+ rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
76
+ Scale factor to use if rescaling the image. Can be overridden by `rescale_factor` in the `preprocess`
77
+ method.
78
+ do_normalize (`bool`, *optional*, defaults to `True`):
79
+ Whether to normalize the image. Can be overridden by `do_normalize` in the `preprocess` method.
80
+ image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
81
+ Mean to use if normalizing the image. This is a float or list of floats the length of the number of
82
+ channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
83
+ image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
84
+ Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
85
+ number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
86
+ Can be overridden by the `image_std` parameter in the `preprocess` method.
87
+ do_convert_rgb (`bool`, *optional*, defaults to `True`):
88
+ Whether to convert the image to RGB.
89
+ """
90
+
91
+ model_input_names = ["pixel_values"]
92
+
93
+ def __init__(
94
+ self,
95
+ do_resize: bool = True,
96
+ size: Dict[str, int] = None,
97
+ resample: PILImageResampling = PILImageResampling.BICUBIC,
98
+ do_center_crop: bool = True,
99
+ crop_size: Dict[str, int] = None,
100
+ do_rescale: bool = True,
101
+ rescale_factor: Union[int, float] = 1 / 255,
102
+ do_normalize: bool = True,
103
+ image_mean: Optional[Union[float, List[float]]] = None,
104
+ image_std: Optional[Union[float, List[float]]] = None,
105
+ do_convert_rgb: bool = True,
106
+ **kwargs,
107
+ ) -> None:
108
+ super().__init__(**kwargs)
109
+ size = size if size is not None else {"shortest_edge": 224}
110
+ size = get_size_dict(size, default_to_square=False)
111
+ crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224}
112
+ crop_size = get_size_dict(crop_size)
113
+
114
+ self.do_resize = do_resize
115
+ self.size = size
116
+ self.resample = resample
117
+ self.do_center_crop = do_center_crop
118
+ self.crop_size = crop_size
119
+ self.do_rescale = do_rescale
120
+ self.rescale_factor = rescale_factor
121
+ self.do_normalize = do_normalize
122
+ self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
123
+ self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
124
+ self.do_convert_rgb = do_convert_rgb
125
+ self._valid_processor_keys = [
126
+ "images",
127
+ "do_resize",
128
+ "size",
129
+ "resample",
130
+ "do_center_crop",
131
+ "crop_size",
132
+ "do_rescale",
133
+ "rescale_factor",
134
+ "do_normalize",
135
+ "image_mean",
136
+ "image_std",
137
+ "do_convert_rgb",
138
+ "return_tensors",
139
+ "data_format",
140
+ "input_data_format",
141
+ ]
142
+
143
+ def resize(
144
+ self,
145
+ image: np.ndarray,
146
+ size: Dict[str, int],
147
+ resample: PILImageResampling = PILImageResampling.BICUBIC,
148
+ data_format: Optional[Union[str, ChannelDimension]] = None,
149
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
150
+ **kwargs,
151
+ ) -> np.ndarray:
152
+ """
153
+ Resize an image. The shortest edge of the image is resized to size["shortest_edge"], with the longest edge
154
+ resized to keep the input aspect ratio.
155
+
156
+ Args:
157
+ image (`np.ndarray`):
158
+ Image to resize.
159
+ size (`Dict[str, int]`):
160
+ Size of the output image.
161
+ resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
162
+ Resampling filter to use when resiizing the image.
163
+ data_format (`str` or `ChannelDimension`, *optional*):
164
+ The channel dimension format of the image. If not provided, it will be the same as the input image.
165
+ input_data_format (`ChannelDimension` or `str`, *optional*):
166
+ The channel dimension format of the input image. If not provided, it will be inferred from the input
167
+ image.
168
+ """
169
+ size = get_size_dict(size, default_to_square=False)
170
+ output_size = get_resize_output_image_size(
171
+ image, size=(size["height"], size["width"]), default_to_square=False, input_data_format=input_data_format
172
+ )
173
+ return resize(
174
+ image,
175
+ size=output_size,
176
+ resample=resample,
177
+ data_format=data_format,
178
+ input_data_format=input_data_format,
179
+ **kwargs,
180
+ )
181
+
182
+ def preprocess(
183
+ self,
184
+ images: ImageInput,
185
+ do_resize: bool = None,
186
+ size: Dict[str, int] = None,
187
+ resample: PILImageResampling = None,
188
+ do_center_crop: bool = None,
189
+ crop_size: int = None,
190
+ do_rescale: bool = None,
191
+ rescale_factor: float = None,
192
+ do_normalize: bool = None,
193
+ image_mean: Optional[Union[float, List[float]]] = None,
194
+ image_std: Optional[Union[float, List[float]]] = None,
195
+ do_convert_rgb: bool = None,
196
+ return_tensors: Optional[Union[str, TensorType]] = None,
197
+ data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
198
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
199
+ **kwargs,
200
+ ) -> PIL.Image.Image:
201
+ """
202
+ Preprocess an image or batch of images.
203
+
204
+ Args:
205
+ images (`ImageInput`):
206
+ Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
207
+ passing in images with pixel values between 0 and 1, set `do_rescale=False`.
208
+ do_resize (`bool`, *optional*, defaults to `self.do_resize`):
209
+ Whether to resize the image.
210
+ size (`Dict[str, int]`, *optional*, defaults to `self.size`):
211
+ Size of the image after resizing. Shortest edge of the image is resized to size["shortest_edge"], with
212
+ the longest edge resized to keep the input aspect ratio.
213
+ resample (`int`, *optional*, defaults to `self.resample`):
214
+ Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only
215
+ has an effect if `do_resize` is set to `True`.
216
+ do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`):
217
+ Whether to center crop the image.
218
+ crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
219
+ Size of the center crop. Only has an effect if `do_center_crop` is set to `True`.
220
+ do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
221
+ Whether to rescale the image.
222
+ rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
223
+ Rescale factor to rescale the image by if `do_rescale` is set to `True`.
224
+ do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
225
+ Whether to normalize the image.
226
+ image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
227
+ Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`.
228
+ image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
229
+ Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to
230
+ `True`.
231
+ do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
232
+ Whether to convert the image to RGB.
233
+ return_tensors (`str` or `TensorType`, *optional*):
234
+ The type of tensors to return. Can be one of:
235
+ - Unset: Return a list of `np.ndarray`.
236
+ - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
237
+ - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
238
+ - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
239
+ - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
240
+ data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
241
+ The channel dimension format for the output image. Can be one of:
242
+ - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
243
+ - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
244
+ - Unset: Use the channel dimension format of the input image.
245
+ input_data_format (`ChannelDimension` or `str`, *optional*):
246
+ The channel dimension format for the input image. If unset, the channel dimension format is inferred
247
+ from the input image. Can be one of:
248
+ - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
249
+ - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
250
+ - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
251
+ """
252
+ do_resize = do_resize if do_resize is not None else self.do_resize
253
+ size = size if size is not None else self.size
254
+ size = get_size_dict(size, default_to_square=False)
255
+ resample = resample if resample is not None else self.resample
256
+ do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop
257
+ crop_size = crop_size if crop_size is not None else self.crop_size
258
+ crop_size = get_size_dict(crop_size)
259
+ do_rescale = do_rescale if do_rescale is not None else self.do_rescale
260
+ rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
261
+ do_normalize = do_normalize if do_normalize is not None else self.do_normalize
262
+ image_mean = image_mean if image_mean is not None else self.image_mean
263
+ image_std = image_std if image_std is not None else self.image_std
264
+ do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
265
+
266
+ images = make_list_of_images(images)
267
+
268
+ validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
269
+
270
+ if not valid_images(images):
271
+ raise ValueError(
272
+ "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
273
+ "torch.Tensor, tf.Tensor or jax.ndarray."
274
+ )
275
+ validate_preprocess_arguments(
276
+ do_rescale=do_rescale,
277
+ rescale_factor=rescale_factor,
278
+ do_normalize=do_normalize,
279
+ image_mean=image_mean,
280
+ image_std=image_std,
281
+ do_center_crop=do_center_crop,
282
+ crop_size=crop_size,
283
+ do_resize=do_resize,
284
+ size=size,
285
+ resample=resample,
286
+ )
287
+ if do_convert_rgb:
288
+ images = [convert_to_rgb(image) for image in images]
289
+
290
+ # All transformations expect numpy arrays.
291
+ images = [to_numpy_array(image) for image in images]
292
+
293
+ if is_scaled_image(images[0]) and do_rescale:
294
+ logger.warning_once(
295
+ "It looks like you are trying to rescale already rescaled images. If the input"
296
+ " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
297
+ )
298
+
299
+ if input_data_format is None:
300
+ # We assume that all images have the same channel dimension format.
301
+ input_data_format = infer_channel_dimension_format(images[0])
302
+
303
+ if do_resize:
304
+ images = [
305
+ self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format)
306
+ for image in images
307
+ ]
308
+
309
+ if do_center_crop:
310
+ images = [
311
+ self.center_crop(image=image, size=crop_size, input_data_format=input_data_format) for image in images
312
+ ]
313
+
314
+ if do_rescale:
315
+ images = [
316
+ self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
317
+ for image in images
318
+ ]
319
+
320
+ if do_normalize:
321
+ images = [
322
+ self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
323
+ for image in images
324
+ ]
325
+
326
+ images = [
327
+ to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
328
+ ]
329
+
330
+ data = {"pixel_values": images}
331
+ return BatchFeature(data=data, tensor_type=return_tensors)
llmeval-env/lib/python3.10/site-packages/transformers/models/chinese_clip/modeling_chinese_clip.py ADDED
@@ -0,0 +1,1562 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 The OFA-Sys Team Authors and The HuggingFace Team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ PyTorch Chinese-CLIP model."""
16
+
17
+
18
+ import math
19
+ from dataclasses import dataclass
20
+ from typing import Any, List, Optional, Tuple, Union
21
+
22
+ import torch
23
+ import torch.utils.checkpoint
24
+ from torch import nn
25
+
26
+ from ...activations import ACT2FN
27
+ from ...modeling_outputs import (
28
+ BaseModelOutput,
29
+ BaseModelOutputWithPastAndCrossAttentions,
30
+ BaseModelOutputWithPooling,
31
+ BaseModelOutputWithPoolingAndCrossAttentions,
32
+ )
33
+ from ...modeling_utils import PreTrainedModel
34
+ from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
35
+ from ...utils import (
36
+ ModelOutput,
37
+ add_code_sample_docstrings,
38
+ add_start_docstrings,
39
+ add_start_docstrings_to_model_forward,
40
+ logging,
41
+ replace_return_docstrings,
42
+ )
43
+ from .configuration_chinese_clip import ChineseCLIPConfig, ChineseCLIPTextConfig, ChineseCLIPVisionConfig
44
+
45
+
46
+ logger = logging.get_logger(__name__)
47
+
48
+ _CHECKPOINT_FOR_DOC = "OFA-Sys/chinese-clip-vit-base-patch16"
49
+ _CONFIG_FOR_DOC = "ChineseCLIPConfig"
50
+
51
+
52
+ from ..deprecated._archive_maps import CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
53
+
54
+
55
+ # https://sachinruk.github.io/blog/pytorch/pytorch%20lightning/loss%20function/gpu/2021/03/07/CLIP.html
56
+ # Copied from transformers.models.clip.modeling_clip.contrastive_loss
57
+ def contrastive_loss(logits: torch.Tensor) -> torch.Tensor:
58
+ return nn.functional.cross_entropy(logits, torch.arange(len(logits), device=logits.device))
59
+
60
+
61
+ def chinese_clip_loss(similarity: torch.Tensor) -> torch.Tensor:
62
+ caption_loss = contrastive_loss(similarity)
63
+ image_loss = contrastive_loss(similarity.t())
64
+ return (caption_loss + image_loss) / 2.0
65
+
66
+
67
+ @dataclass
68
+ class ChineseCLIPOutput(ModelOutput):
69
+ """
70
+ Args:
71
+ loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`):
72
+ Contrastive loss for image-text similarity.
73
+ logits_per_image:(`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`):
74
+ The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text
75
+ similarity scores.
76
+ logits_per_text:(`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`):
77
+ The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image
78
+ similarity scores.
79
+ text_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`):
80
+ The text embeddings obtained by applying the projection layer to the pooled output of
81
+ [`ChineseCLIPTextModel`].
82
+ image_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`):
83
+ The image embeddings obtained by applying the projection layer to the pooled output of
84
+ [`ChineseCLIPVisionModel`].
85
+ text_model_output(`BaseModelOutputWithPoolingAndCrossAttentions`):
86
+ The output of the [`ChineseCLIPTextModel`].
87
+ vision_model_output(`BaseModelOutputWithPoolingAndCrossAttentions`):
88
+ The output of the [`ChineseCLIPVisionModel`].
89
+ """
90
+
91
+ loss: Optional[torch.FloatTensor] = None
92
+ logits_per_image: torch.FloatTensor = None
93
+ logits_per_text: torch.FloatTensor = None
94
+ text_embeds: torch.FloatTensor = None
95
+ image_embeds: torch.FloatTensor = None
96
+ text_model_output: BaseModelOutputWithPoolingAndCrossAttentions = None
97
+ vision_model_output: BaseModelOutputWithPoolingAndCrossAttentions = None
98
+
99
+ def to_tuple(self) -> Tuple[Any]:
100
+ return tuple(
101
+ self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple()
102
+ for k in self.keys()
103
+ )
104
+
105
+
106
+ # Copied from transformers.models.bert.modeling_bert.BertEmbeddings with Bert->ChineseCLIPText
107
+ class ChineseCLIPTextEmbeddings(nn.Module):
108
+ """Construct the embeddings from word, position and token_type embeddings."""
109
+
110
+ def __init__(self, config):
111
+ super().__init__()
112
+ self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
113
+ self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
114
+ self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
115
+
116
+ # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
117
+ # any TensorFlow checkpoint file
118
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
119
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
120
+ # position_ids (1, len position emb) is contiguous in memory and exported when serialized
121
+ self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
122
+ self.register_buffer(
123
+ "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
124
+ )
125
+ self.register_buffer(
126
+ "token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False
127
+ )
128
+
129
+ def forward(
130
+ self,
131
+ input_ids: Optional[torch.LongTensor] = None,
132
+ token_type_ids: Optional[torch.LongTensor] = None,
133
+ position_ids: Optional[torch.LongTensor] = None,
134
+ inputs_embeds: Optional[torch.FloatTensor] = None,
135
+ past_key_values_length: int = 0,
136
+ ) -> torch.Tensor:
137
+ if input_ids is not None:
138
+ input_shape = input_ids.size()
139
+ else:
140
+ input_shape = inputs_embeds.size()[:-1]
141
+
142
+ seq_length = input_shape[1]
143
+
144
+ if position_ids is None:
145
+ position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
146
+
147
+ # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
148
+ # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
149
+ # issue #5664
150
+ if token_type_ids is None:
151
+ if hasattr(self, "token_type_ids"):
152
+ buffered_token_type_ids = self.token_type_ids[:, :seq_length]
153
+ buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
154
+ token_type_ids = buffered_token_type_ids_expanded
155
+ else:
156
+ token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
157
+
158
+ if inputs_embeds is None:
159
+ inputs_embeds = self.word_embeddings(input_ids)
160
+ token_type_embeddings = self.token_type_embeddings(token_type_ids)
161
+
162
+ embeddings = inputs_embeds + token_type_embeddings
163
+ if self.position_embedding_type == "absolute":
164
+ position_embeddings = self.position_embeddings(position_ids)
165
+ embeddings += position_embeddings
166
+ embeddings = self.LayerNorm(embeddings)
167
+ embeddings = self.dropout(embeddings)
168
+ return embeddings
169
+
170
+
171
+ # Copied from transformers.models.clip.modeling_clip.CLIPVisionEmbeddings with CLIP->ChineseCLIP
172
+ class ChineseCLIPVisionEmbeddings(nn.Module):
173
+ def __init__(self, config: ChineseCLIPVisionConfig):
174
+ super().__init__()
175
+ self.config = config
176
+ self.embed_dim = config.hidden_size
177
+ self.image_size = config.image_size
178
+ self.patch_size = config.patch_size
179
+
180
+ self.class_embedding = nn.Parameter(torch.randn(self.embed_dim))
181
+
182
+ self.patch_embedding = nn.Conv2d(
183
+ in_channels=config.num_channels,
184
+ out_channels=self.embed_dim,
185
+ kernel_size=self.patch_size,
186
+ stride=self.patch_size,
187
+ bias=False,
188
+ )
189
+
190
+ self.num_patches = (self.image_size // self.patch_size) ** 2
191
+ self.num_positions = self.num_patches + 1
192
+ self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
193
+ self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent=False)
194
+
195
+ def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
196
+ batch_size = pixel_values.shape[0]
197
+ target_dtype = self.patch_embedding.weight.dtype
198
+ patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) # shape = [*, width, grid, grid]
199
+ patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
200
+
201
+ class_embeds = self.class_embedding.expand(batch_size, 1, -1)
202
+ embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
203
+ embeddings = embeddings + self.position_embedding(self.position_ids)
204
+ return embeddings
205
+
206
+
207
+ # Copied from transformers.models.bert.modeling_bert.BertSelfAttention with Bert->ChineseCLIPText
208
+ class ChineseCLIPTextSelfAttention(nn.Module):
209
+ def __init__(self, config, position_embedding_type=None):
210
+ super().__init__()
211
+ if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
212
+ raise ValueError(
213
+ f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
214
+ f"heads ({config.num_attention_heads})"
215
+ )
216
+
217
+ self.num_attention_heads = config.num_attention_heads
218
+ self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
219
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
220
+
221
+ self.query = nn.Linear(config.hidden_size, self.all_head_size)
222
+ self.key = nn.Linear(config.hidden_size, self.all_head_size)
223
+ self.value = nn.Linear(config.hidden_size, self.all_head_size)
224
+
225
+ self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
226
+ self.position_embedding_type = position_embedding_type or getattr(
227
+ config, "position_embedding_type", "absolute"
228
+ )
229
+ if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
230
+ self.max_position_embeddings = config.max_position_embeddings
231
+ self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
232
+
233
+ self.is_decoder = config.is_decoder
234
+
235
+ def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
236
+ new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
237
+ x = x.view(new_x_shape)
238
+ return x.permute(0, 2, 1, 3)
239
+
240
+ def forward(
241
+ self,
242
+ hidden_states: torch.Tensor,
243
+ attention_mask: Optional[torch.FloatTensor] = None,
244
+ head_mask: Optional[torch.FloatTensor] = None,
245
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
246
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
247
+ past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
248
+ output_attentions: Optional[bool] = False,
249
+ ) -> Tuple[torch.Tensor]:
250
+ mixed_query_layer = self.query(hidden_states)
251
+
252
+ # If this is instantiated as a cross-attention module, the keys
253
+ # and values come from an encoder; the attention mask needs to be
254
+ # such that the encoder's padding tokens are not attended to.
255
+ is_cross_attention = encoder_hidden_states is not None
256
+
257
+ if is_cross_attention and past_key_value is not None:
258
+ # reuse k,v, cross_attentions
259
+ key_layer = past_key_value[0]
260
+ value_layer = past_key_value[1]
261
+ attention_mask = encoder_attention_mask
262
+ elif is_cross_attention:
263
+ key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
264
+ value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
265
+ attention_mask = encoder_attention_mask
266
+ elif past_key_value is not None:
267
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
268
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
269
+ key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
270
+ value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
271
+ else:
272
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
273
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
274
+
275
+ query_layer = self.transpose_for_scores(mixed_query_layer)
276
+
277
+ use_cache = past_key_value is not None
278
+ if self.is_decoder:
279
+ # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
280
+ # Further calls to cross_attention layer can then reuse all cross-attention
281
+ # key/value_states (first "if" case)
282
+ # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
283
+ # all previous decoder key/value_states. Further calls to uni-directional self-attention
284
+ # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
285
+ # if encoder bi-directional self-attention `past_key_value` is always `None`
286
+ past_key_value = (key_layer, value_layer)
287
+
288
+ # Take the dot product between "query" and "key" to get the raw attention scores.
289
+ attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
290
+
291
+ if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
292
+ query_length, key_length = query_layer.shape[2], key_layer.shape[2]
293
+ if use_cache:
294
+ position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view(
295
+ -1, 1
296
+ )
297
+ else:
298
+ position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
299
+ position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
300
+ distance = position_ids_l - position_ids_r
301
+
302
+ positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
303
+ positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
304
+
305
+ if self.position_embedding_type == "relative_key":
306
+ relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
307
+ attention_scores = attention_scores + relative_position_scores
308
+ elif self.position_embedding_type == "relative_key_query":
309
+ relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
310
+ relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
311
+ attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
312
+
313
+ attention_scores = attention_scores / math.sqrt(self.attention_head_size)
314
+ if attention_mask is not None:
315
+ # Apply the attention mask is (precomputed for all layers in ChineseCLIPTextModel forward() function)
316
+ attention_scores = attention_scores + attention_mask
317
+
318
+ # Normalize the attention scores to probabilities.
319
+ attention_probs = nn.functional.softmax(attention_scores, dim=-1)
320
+
321
+ # This is actually dropping out entire tokens to attend to, which might
322
+ # seem a bit unusual, but is taken from the original Transformer paper.
323
+ attention_probs = self.dropout(attention_probs)
324
+
325
+ # Mask heads if we want to
326
+ if head_mask is not None:
327
+ attention_probs = attention_probs * head_mask
328
+
329
+ context_layer = torch.matmul(attention_probs, value_layer)
330
+
331
+ context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
332
+ new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
333
+ context_layer = context_layer.view(new_context_layer_shape)
334
+
335
+ outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
336
+
337
+ if self.is_decoder:
338
+ outputs = outputs + (past_key_value,)
339
+ return outputs
340
+
341
+
342
+ # Copied from transformers.models.bert.modeling_bert.BertSelfOutput with Bert->ChineseCLIPText
343
+ class ChineseCLIPTextSelfOutput(nn.Module):
344
+ def __init__(self, config):
345
+ super().__init__()
346
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
347
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
348
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
349
+
350
+ def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
351
+ hidden_states = self.dense(hidden_states)
352
+ hidden_states = self.dropout(hidden_states)
353
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
354
+ return hidden_states
355
+
356
+
357
+ # Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->ChineseCLIPText
358
+ class ChineseCLIPTextAttention(nn.Module):
359
+ def __init__(self, config, position_embedding_type=None):
360
+ super().__init__()
361
+ self.self = ChineseCLIPTextSelfAttention(config, position_embedding_type=position_embedding_type)
362
+ self.output = ChineseCLIPTextSelfOutput(config)
363
+ self.pruned_heads = set()
364
+
365
+ def prune_heads(self, heads):
366
+ if len(heads) == 0:
367
+ return
368
+ heads, index = find_pruneable_heads_and_indices(
369
+ heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
370
+ )
371
+
372
+ # Prune linear layers
373
+ self.self.query = prune_linear_layer(self.self.query, index)
374
+ self.self.key = prune_linear_layer(self.self.key, index)
375
+ self.self.value = prune_linear_layer(self.self.value, index)
376
+ self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
377
+
378
+ # Update hyper params and store pruned heads
379
+ self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
380
+ self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
381
+ self.pruned_heads = self.pruned_heads.union(heads)
382
+
383
+ def forward(
384
+ self,
385
+ hidden_states: torch.Tensor,
386
+ attention_mask: Optional[torch.FloatTensor] = None,
387
+ head_mask: Optional[torch.FloatTensor] = None,
388
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
389
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
390
+ past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
391
+ output_attentions: Optional[bool] = False,
392
+ ) -> Tuple[torch.Tensor]:
393
+ self_outputs = self.self(
394
+ hidden_states,
395
+ attention_mask,
396
+ head_mask,
397
+ encoder_hidden_states,
398
+ encoder_attention_mask,
399
+ past_key_value,
400
+ output_attentions,
401
+ )
402
+ attention_output = self.output(self_outputs[0], hidden_states)
403
+ outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
404
+ return outputs
405
+
406
+
407
+ class ChineseCLIPVisionAttention(nn.Module):
408
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
409
+
410
+ def __init__(self, config):
411
+ super().__init__()
412
+ self.config = config
413
+ self.embed_dim = config.hidden_size
414
+ self.num_heads = config.num_attention_heads
415
+ self.head_dim = self.embed_dim // self.num_heads
416
+ if self.head_dim * self.num_heads != self.embed_dim:
417
+ raise ValueError(
418
+ f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
419
+ f" {self.num_heads})."
420
+ )
421
+ self.scale = self.head_dim**-0.5
422
+ self.dropout = config.attention_dropout
423
+
424
+ self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
425
+ self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
426
+ self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
427
+ self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
428
+
429
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
430
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
431
+
432
+ def forward(
433
+ self,
434
+ hidden_states: torch.Tensor,
435
+ output_attentions: Optional[bool] = False,
436
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
437
+ """Input shape: Batch x Time x Channel"""
438
+
439
+ bsz, tgt_len, embed_dim = hidden_states.size()
440
+
441
+ # get query proj
442
+ query_states = self.q_proj(hidden_states) * self.scale
443
+ key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
444
+ value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
445
+
446
+ proj_shape = (bsz * self.num_heads, -1, self.head_dim)
447
+ query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
448
+ key_states = key_states.view(*proj_shape)
449
+ value_states = value_states.view(*proj_shape)
450
+
451
+ src_len = key_states.size(1)
452
+ attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
453
+
454
+ if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
455
+ raise ValueError(
456
+ f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
457
+ f" {attn_weights.size()}"
458
+ )
459
+
460
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1)
461
+
462
+ if output_attentions:
463
+ # this operation is a bit akward, but it's required to
464
+ # make sure that attn_weights keeps its gradient.
465
+ # In order to do so, attn_weights have to reshaped
466
+ # twice and have to be reused in the following
467
+ attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
468
+ attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
469
+ else:
470
+ attn_weights_reshaped = None
471
+
472
+ attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
473
+
474
+ attn_output = torch.bmm(attn_probs, value_states)
475
+
476
+ if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
477
+ raise ValueError(
478
+ f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
479
+ f" {attn_output.size()}"
480
+ )
481
+
482
+ attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
483
+ attn_output = attn_output.transpose(1, 2)
484
+ attn_output = attn_output.reshape(bsz, tgt_len, embed_dim)
485
+
486
+ attn_output = self.out_proj(attn_output)
487
+
488
+ return attn_output, attn_weights_reshaped
489
+
490
+
491
+ # Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->ChineseCLIPText
492
+ class ChineseCLIPTextIntermediate(nn.Module):
493
+ def __init__(self, config):
494
+ super().__init__()
495
+ self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
496
+ if isinstance(config.hidden_act, str):
497
+ self.intermediate_act_fn = ACT2FN[config.hidden_act]
498
+ else:
499
+ self.intermediate_act_fn = config.hidden_act
500
+
501
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
502
+ hidden_states = self.dense(hidden_states)
503
+ hidden_states = self.intermediate_act_fn(hidden_states)
504
+ return hidden_states
505
+
506
+
507
+ # Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->ChineseCLIPText
508
+ class ChineseCLIPTextOutput(nn.Module):
509
+ def __init__(self, config):
510
+ super().__init__()
511
+ self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
512
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
513
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
514
+
515
+ def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
516
+ hidden_states = self.dense(hidden_states)
517
+ hidden_states = self.dropout(hidden_states)
518
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
519
+ return hidden_states
520
+
521
+
522
+ # Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->ChineseCLIPVision
523
+ class ChineseCLIPVisionMLP(nn.Module):
524
+ def __init__(self, config):
525
+ super().__init__()
526
+ self.config = config
527
+ self.activation_fn = ACT2FN[config.hidden_act]
528
+ self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
529
+ self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
530
+
531
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
532
+ hidden_states = self.fc1(hidden_states)
533
+ hidden_states = self.activation_fn(hidden_states)
534
+ hidden_states = self.fc2(hidden_states)
535
+ return hidden_states
536
+
537
+
538
+ # Copied from transformers.models.bert.modeling_bert.BertLayer with Bert->ChineseCLIPText
539
+ class ChineseCLIPTextLayer(nn.Module):
540
+ def __init__(self, config):
541
+ super().__init__()
542
+ self.chunk_size_feed_forward = config.chunk_size_feed_forward
543
+ self.seq_len_dim = 1
544
+ self.attention = ChineseCLIPTextAttention(config)
545
+ self.is_decoder = config.is_decoder
546
+ self.add_cross_attention = config.add_cross_attention
547
+ if self.add_cross_attention:
548
+ if not self.is_decoder:
549
+ raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
550
+ self.crossattention = ChineseCLIPTextAttention(config, position_embedding_type="absolute")
551
+ self.intermediate = ChineseCLIPTextIntermediate(config)
552
+ self.output = ChineseCLIPTextOutput(config)
553
+
554
+ def forward(
555
+ self,
556
+ hidden_states: torch.Tensor,
557
+ attention_mask: Optional[torch.FloatTensor] = None,
558
+ head_mask: Optional[torch.FloatTensor] = None,
559
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
560
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
561
+ past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
562
+ output_attentions: Optional[bool] = False,
563
+ ) -> Tuple[torch.Tensor]:
564
+ # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
565
+ self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
566
+ self_attention_outputs = self.attention(
567
+ hidden_states,
568
+ attention_mask,
569
+ head_mask,
570
+ output_attentions=output_attentions,
571
+ past_key_value=self_attn_past_key_value,
572
+ )
573
+ attention_output = self_attention_outputs[0]
574
+
575
+ # if decoder, the last output is tuple of self-attn cache
576
+ if self.is_decoder:
577
+ outputs = self_attention_outputs[1:-1]
578
+ present_key_value = self_attention_outputs[-1]
579
+ else:
580
+ outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
581
+
582
+ cross_attn_present_key_value = None
583
+ if self.is_decoder and encoder_hidden_states is not None:
584
+ if not hasattr(self, "crossattention"):
585
+ raise ValueError(
586
+ f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
587
+ " by setting `config.add_cross_attention=True`"
588
+ )
589
+
590
+ # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
591
+ cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
592
+ cross_attention_outputs = self.crossattention(
593
+ attention_output,
594
+ attention_mask,
595
+ head_mask,
596
+ encoder_hidden_states,
597
+ encoder_attention_mask,
598
+ cross_attn_past_key_value,
599
+ output_attentions,
600
+ )
601
+ attention_output = cross_attention_outputs[0]
602
+ outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
603
+
604
+ # add cross-attn cache to positions 3,4 of present_key_value tuple
605
+ cross_attn_present_key_value = cross_attention_outputs[-1]
606
+ present_key_value = present_key_value + cross_attn_present_key_value
607
+
608
+ layer_output = apply_chunking_to_forward(
609
+ self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
610
+ )
611
+ outputs = (layer_output,) + outputs
612
+
613
+ # if decoder, return the attn key/values as the last output
614
+ if self.is_decoder:
615
+ outputs = outputs + (present_key_value,)
616
+
617
+ return outputs
618
+
619
+ def feed_forward_chunk(self, attention_output):
620
+ intermediate_output = self.intermediate(attention_output)
621
+ layer_output = self.output(intermediate_output, attention_output)
622
+ return layer_output
623
+
624
+
625
+ class ChineseCLIPVisionLayer(nn.Module):
626
+ def __init__(self, config: ChineseCLIPConfig):
627
+ super().__init__()
628
+ self.embed_dim = config.hidden_size
629
+ self.self_attn = ChineseCLIPVisionAttention(config)
630
+ self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
631
+ self.mlp = ChineseCLIPVisionMLP(config)
632
+ self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
633
+
634
+ def forward(
635
+ self,
636
+ hidden_states: torch.Tensor,
637
+ output_attentions: Optional[bool] = False,
638
+ ) -> Tuple[torch.FloatTensor]:
639
+ """
640
+ Args:
641
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
642
+ output_attentions (`bool`, *optional*):
643
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
644
+ returned tensors for more detail.
645
+ """
646
+ residual = hidden_states
647
+
648
+ hidden_states = self.layer_norm1(hidden_states)
649
+ hidden_states, attn_weights = self.self_attn(
650
+ hidden_states=hidden_states,
651
+ output_attentions=output_attentions,
652
+ )
653
+ hidden_states = residual + hidden_states
654
+
655
+ residual = hidden_states
656
+ hidden_states = self.layer_norm2(hidden_states)
657
+ hidden_states = self.mlp(hidden_states)
658
+ hidden_states = residual + hidden_states
659
+
660
+ outputs = (hidden_states,)
661
+
662
+ if output_attentions:
663
+ outputs += (attn_weights,)
664
+
665
+ return outputs
666
+
667
+
668
+ # Copied from transformers.models.bert.modeling_bert.BertPooler with Bert->ChineseCLIPText
669
+ class ChineseCLIPTextPooler(nn.Module):
670
+ def __init__(self, config):
671
+ super().__init__()
672
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
673
+ self.activation = nn.Tanh()
674
+
675
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
676
+ # We "pool" the model by simply taking the hidden state corresponding
677
+ # to the first token.
678
+ first_token_tensor = hidden_states[:, 0]
679
+ pooled_output = self.dense(first_token_tensor)
680
+ pooled_output = self.activation(pooled_output)
681
+ return pooled_output
682
+
683
+
684
+ class ChineseCLIPPreTrainedModel(PreTrainedModel):
685
+ """
686
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
687
+ models.
688
+ """
689
+
690
+ config_class = ChineseCLIPConfig
691
+ base_model_prefix = "chinese_clip"
692
+ supports_gradient_checkpointing = True
693
+
694
+ def _init_weights(self, module):
695
+ """Initialize the weights"""
696
+ factor = self.config.initializer_factor
697
+ if isinstance(module, ChineseCLIPVisionEmbeddings):
698
+ factor = self.config.initializer_factor
699
+ nn.init.normal_(module.class_embedding, mean=0.0, std=module.embed_dim**-0.5 * factor)
700
+ nn.init.normal_(module.patch_embedding.weight, std=module.config.initializer_range * factor)
701
+ nn.init.normal_(module.position_embedding.weight, std=module.config.initializer_range * factor)
702
+ elif isinstance(module, ChineseCLIPTextEmbeddings):
703
+ nn.init.normal_(module.word_embeddings.weight, mean=0.0, std=self.config.initializer_range)
704
+ nn.init.normal_(module.position_embeddings.weight, mean=0.0, std=self.config.initializer_range)
705
+ nn.init.normal_(module.token_type_embeddings.weight, mean=0.0, std=self.config.initializer_range)
706
+ for embedding in [module.word_embeddings, module.position_embeddings, module.token_type_embeddings]:
707
+ if embedding.padding_idx is not None:
708
+ embedding.weight.data[embedding.padding_idx].zero_()
709
+ elif isinstance(module, ChineseCLIPVisionAttention):
710
+ factor = self.config.initializer_factor
711
+ in_proj_std = (module.embed_dim**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
712
+ out_proj_std = (module.embed_dim**-0.5) * factor
713
+ nn.init.normal_(module.q_proj.weight, std=in_proj_std)
714
+ nn.init.normal_(module.k_proj.weight, std=in_proj_std)
715
+ nn.init.normal_(module.v_proj.weight, std=in_proj_std)
716
+ nn.init.normal_(module.out_proj.weight, std=out_proj_std)
717
+ elif isinstance(module, ChineseCLIPVisionMLP):
718
+ factor = self.config.initializer_factor
719
+ in_proj_std = (module.config.hidden_size**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
720
+ fc_std = (2 * module.config.hidden_size) ** -0.5 * factor
721
+ nn.init.normal_(module.fc1.weight, std=fc_std)
722
+ nn.init.normal_(module.fc2.weight, std=in_proj_std)
723
+ elif isinstance(module, ChineseCLIPModel):
724
+ nn.init.normal_(
725
+ module.text_projection.weight,
726
+ std=module.text_embed_dim**-0.5 * self.config.initializer_factor,
727
+ )
728
+ nn.init.normal_(
729
+ module.visual_projection.weight,
730
+ std=module.vision_embed_dim**-0.5 * self.config.initializer_factor,
731
+ )
732
+
733
+ if isinstance(module, nn.LayerNorm):
734
+ module.bias.data.zero_()
735
+ module.weight.data.fill_(1.0)
736
+ if isinstance(module, nn.Linear):
737
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
738
+ if module.bias is not None:
739
+ module.bias.data.zero_()
740
+
741
+
742
+ CHINESE_CLIP_START_DOCSTRING = r"""
743
+ This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
744
+ as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
745
+ behavior.
746
+
747
+ Parameters:
748
+ config ([`ChineseCLIPConfig`]): Model configuration class with all the parameters of the model.
749
+ Initializing with a config file does not load the weights associated with the model, only the
750
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
751
+ """
752
+
753
+ CHINESE_CLIP_TEXT_INPUTS_DOCSTRING = r"""
754
+ Args:
755
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
756
+ Indices of input sequence tokens in the vocabulary.
757
+
758
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
759
+ [`PreTrainedTokenizer.__call__`] for details.
760
+
761
+ [What are input IDs?](../glossary#input-ids)
762
+ attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
763
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
764
+
765
+ - 1 for tokens that are **not masked**,
766
+ - 0 for tokens that are **masked**.
767
+
768
+ [What are attention masks?](../glossary#attention-mask)
769
+ token_type_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
770
+ Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
771
+ 1]`:
772
+
773
+ - 0 corresponds to a *sentence A* token,
774
+ - 1 corresponds to a *sentence B* token.
775
+
776
+ [What are token type IDs?](../glossary#token-type-ids)
777
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
778
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
779
+ config.max_position_embeddings - 1]`.
780
+
781
+ [What are position IDs?](../glossary#position-ids)
782
+ head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
783
+ Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
784
+
785
+ - 1 indicates the head is **not masked**,
786
+ - 0 indicates the head is **masked**.
787
+
788
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
789
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
790
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
791
+ model's internal embedding lookup matrix.
792
+ output_attentions (`bool`, *optional*):
793
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
794
+ tensors for more detail.
795
+ output_hidden_states (`bool`, *optional*):
796
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
797
+ more detail.
798
+ return_dict (`bool`, *optional*):
799
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
800
+ """
801
+
802
+ CHINESE_CLIP_VISION_INPUTS_DOCSTRING = r"""
803
+ Args:
804
+ pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
805
+ Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
806
+ [`AutoImageProcessor`]. See [`ChineseCLIPImageProcessor.__call__`] for details.
807
+ output_attentions (`bool`, *optional*):
808
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
809
+ tensors for more detail.
810
+ output_hidden_states (`bool`, *optional*):
811
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
812
+ more detail.
813
+ return_dict (`bool`, *optional*):
814
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
815
+ """
816
+
817
+ CHINESE_CLIP_INPUTS_DOCSTRING = r"""
818
+ Args:
819
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
820
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
821
+ it.
822
+
823
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
824
+ [`PreTrainedTokenizer.__call__`] for details.
825
+
826
+ [What are input IDs?](../glossary#input-ids)
827
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
828
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
829
+
830
+ - 1 for tokens that are **not masked**,
831
+ - 0 for tokens that are **masked**.
832
+
833
+ [What are attention masks?](../glossary#attention-mask)
834
+ token_type_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
835
+ Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
836
+ 1]`:
837
+
838
+ - 0 corresponds to a *sentence A* token,
839
+ - 1 corresponds to a *sentence B* token.
840
+
841
+ [What are token type IDs?](../glossary#token-type-ids)
842
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
843
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
844
+ config.max_position_embeddings - 1]`.
845
+
846
+ [What are position IDs?](../glossary#position-ids)
847
+ pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
848
+ Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
849
+ [`AutoImageProcessor`]. See [`ChineseCLIPImageProcessor.__call__`] for details.
850
+ return_loss (`bool`, *optional*):
851
+ Whether or not to return the contrastive loss.
852
+ output_attentions (`bool`, *optional*):
853
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
854
+ tensors for more detail.
855
+ output_hidden_states (`bool`, *optional*):
856
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
857
+ more detail.
858
+ return_dict (`bool`, *optional*):
859
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
860
+ """
861
+
862
+
863
+ # Copied from transformers.models.bert.modeling_bert.BertEncoder with Bert->ChineseCLIPText
864
+ class ChineseCLIPTextEncoder(nn.Module):
865
+ def __init__(self, config):
866
+ super().__init__()
867
+ self.config = config
868
+ self.layer = nn.ModuleList([ChineseCLIPTextLayer(config) for _ in range(config.num_hidden_layers)])
869
+ self.gradient_checkpointing = False
870
+
871
+ def forward(
872
+ self,
873
+ hidden_states: torch.Tensor,
874
+ attention_mask: Optional[torch.FloatTensor] = None,
875
+ head_mask: Optional[torch.FloatTensor] = None,
876
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
877
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
878
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
879
+ use_cache: Optional[bool] = None,
880
+ output_attentions: Optional[bool] = False,
881
+ output_hidden_states: Optional[bool] = False,
882
+ return_dict: Optional[bool] = True,
883
+ ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
884
+ all_hidden_states = () if output_hidden_states else None
885
+ all_self_attentions = () if output_attentions else None
886
+ all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
887
+
888
+ if self.gradient_checkpointing and self.training:
889
+ if use_cache:
890
+ logger.warning_once(
891
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
892
+ )
893
+ use_cache = False
894
+
895
+ next_decoder_cache = () if use_cache else None
896
+ for i, layer_module in enumerate(self.layer):
897
+ if output_hidden_states:
898
+ all_hidden_states = all_hidden_states + (hidden_states,)
899
+
900
+ layer_head_mask = head_mask[i] if head_mask is not None else None
901
+ past_key_value = past_key_values[i] if past_key_values is not None else None
902
+
903
+ if self.gradient_checkpointing and self.training:
904
+ layer_outputs = self._gradient_checkpointing_func(
905
+ layer_module.__call__,
906
+ hidden_states,
907
+ attention_mask,
908
+ layer_head_mask,
909
+ encoder_hidden_states,
910
+ encoder_attention_mask,
911
+ past_key_value,
912
+ output_attentions,
913
+ )
914
+ else:
915
+ layer_outputs = layer_module(
916
+ hidden_states,
917
+ attention_mask,
918
+ layer_head_mask,
919
+ encoder_hidden_states,
920
+ encoder_attention_mask,
921
+ past_key_value,
922
+ output_attentions,
923
+ )
924
+
925
+ hidden_states = layer_outputs[0]
926
+ if use_cache:
927
+ next_decoder_cache += (layer_outputs[-1],)
928
+ if output_attentions:
929
+ all_self_attentions = all_self_attentions + (layer_outputs[1],)
930
+ if self.config.add_cross_attention:
931
+ all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
932
+
933
+ if output_hidden_states:
934
+ all_hidden_states = all_hidden_states + (hidden_states,)
935
+
936
+ if not return_dict:
937
+ return tuple(
938
+ v
939
+ for v in [
940
+ hidden_states,
941
+ next_decoder_cache,
942
+ all_hidden_states,
943
+ all_self_attentions,
944
+ all_cross_attentions,
945
+ ]
946
+ if v is not None
947
+ )
948
+ return BaseModelOutputWithPastAndCrossAttentions(
949
+ last_hidden_state=hidden_states,
950
+ past_key_values=next_decoder_cache,
951
+ hidden_states=all_hidden_states,
952
+ attentions=all_self_attentions,
953
+ cross_attentions=all_cross_attentions,
954
+ )
955
+
956
+
957
+ class ChineseCLIPVisionEncoder(nn.Module):
958
+ """
959
+ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
960
+ [`ChineseCLIPVisionEncoderLayer`].
961
+
962
+ Args:
963
+ config: ChineseCLIPConfig
964
+ """
965
+
966
+ def __init__(self, config: ChineseCLIPConfig):
967
+ super().__init__()
968
+ self.config = config
969
+ self.layers = nn.ModuleList([ChineseCLIPVisionLayer(config) for _ in range(config.num_hidden_layers)])
970
+ self.gradient_checkpointing = False
971
+
972
+ def forward(
973
+ self,
974
+ inputs_embeds,
975
+ output_attentions: Optional[bool] = None,
976
+ output_hidden_states: Optional[bool] = None,
977
+ return_dict: Optional[bool] = None,
978
+ ) -> Union[Tuple, BaseModelOutput]:
979
+ r"""
980
+ Args:
981
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
982
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
983
+ This is useful if you want more control over how to convert `input_ids` indices into associated vectors
984
+ than the model's internal embedding lookup matrix.
985
+ output_attentions (`bool`, *optional*):
986
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
987
+ returned tensors for more detail.
988
+ output_hidden_states (`bool`, *optional*):
989
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
990
+ for more detail.
991
+ return_dict (`bool`, *optional*):
992
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
993
+ """
994
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
995
+ output_hidden_states = (
996
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
997
+ )
998
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
999
+
1000
+ encoder_states = () if output_hidden_states else None
1001
+ all_attentions = () if output_attentions else None
1002
+
1003
+ hidden_states = inputs_embeds
1004
+ for idx, encoder_layer in enumerate(self.layers):
1005
+ if output_hidden_states:
1006
+ encoder_states = encoder_states + (hidden_states,)
1007
+ if self.gradient_checkpointing and self.training:
1008
+ layer_outputs = self._gradient_checkpointing_func(
1009
+ encoder_layer.__call__,
1010
+ hidden_states,
1011
+ output_attentions,
1012
+ )
1013
+ else:
1014
+ layer_outputs = encoder_layer(
1015
+ hidden_states,
1016
+ output_attentions=output_attentions,
1017
+ )
1018
+
1019
+ hidden_states = layer_outputs[0]
1020
+
1021
+ if output_attentions:
1022
+ all_attentions = all_attentions + (layer_outputs[1],)
1023
+
1024
+ if output_hidden_states:
1025
+ encoder_states = encoder_states + (hidden_states,)
1026
+
1027
+ if not return_dict:
1028
+ return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
1029
+ return BaseModelOutput(
1030
+ last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
1031
+ )
1032
+
1033
+
1034
+ class ChineseCLIPVisionTransformer(nn.Module):
1035
+ def __init__(self, config: ChineseCLIPVisionConfig):
1036
+ super().__init__()
1037
+ self.config = config
1038
+ embed_dim = config.hidden_size
1039
+
1040
+ self.embeddings = ChineseCLIPVisionEmbeddings(config)
1041
+ self.pre_layrnorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
1042
+ self.encoder = ChineseCLIPVisionEncoder(config)
1043
+ self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
1044
+
1045
+ @add_start_docstrings_to_model_forward(CHINESE_CLIP_VISION_INPUTS_DOCSTRING)
1046
+ @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=ChineseCLIPVisionConfig)
1047
+ def forward(
1048
+ self,
1049
+ pixel_values: Optional[torch.FloatTensor] = None,
1050
+ output_attentions: Optional[bool] = None,
1051
+ output_hidden_states: Optional[bool] = None,
1052
+ return_dict: Optional[bool] = None,
1053
+ ) -> Union[Tuple, BaseModelOutputWithPooling]:
1054
+ r"""
1055
+ Returns:
1056
+ """
1057
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1058
+ output_hidden_states = (
1059
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1060
+ )
1061
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1062
+
1063
+ if pixel_values is None:
1064
+ raise ValueError("You have to specify pixel_values")
1065
+
1066
+ hidden_states = self.embeddings(pixel_values)
1067
+ hidden_states = self.pre_layrnorm(hidden_states)
1068
+
1069
+ encoder_outputs = self.encoder(
1070
+ inputs_embeds=hidden_states,
1071
+ output_attentions=output_attentions,
1072
+ output_hidden_states=output_hidden_states,
1073
+ return_dict=return_dict,
1074
+ )
1075
+
1076
+ last_hidden_state = encoder_outputs[0]
1077
+ pooled_output = last_hidden_state[:, 0, :]
1078
+ pooled_output = self.post_layernorm(pooled_output)
1079
+
1080
+ if not return_dict:
1081
+ return (last_hidden_state, pooled_output) + encoder_outputs[1:]
1082
+
1083
+ return BaseModelOutputWithPooling(
1084
+ last_hidden_state=last_hidden_state,
1085
+ pooler_output=pooled_output,
1086
+ hidden_states=encoder_outputs.hidden_states,
1087
+ attentions=encoder_outputs.attentions,
1088
+ )
1089
+
1090
+
1091
+ @add_start_docstrings(
1092
+ "The text model from CHINESE_CLIP without any head or projection on top.",
1093
+ CHINESE_CLIP_START_DOCSTRING,
1094
+ )
1095
+ class ChineseCLIPTextModel(ChineseCLIPPreTrainedModel):
1096
+ """
1097
+
1098
+ The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
1099
+ cross-attention is added between the self-attention layers, following the architecture described in [Attention is
1100
+ all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
1101
+ Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
1102
+
1103
+ To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set
1104
+ to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and
1105
+ `add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass.
1106
+ """
1107
+
1108
+ config_class = ChineseCLIPTextConfig
1109
+
1110
+ def __init__(self, config, add_pooling_layer=True):
1111
+ super().__init__(config)
1112
+ self.config = config
1113
+
1114
+ self.embeddings = ChineseCLIPTextEmbeddings(config)
1115
+ self.encoder = ChineseCLIPTextEncoder(config)
1116
+
1117
+ self.pooler = ChineseCLIPTextPooler(config) if add_pooling_layer else None
1118
+
1119
+ # Initialize weights and apply final processing
1120
+ self.post_init()
1121
+
1122
+ def get_input_embeddings(self):
1123
+ return self.embeddings.word_embeddings
1124
+
1125
+ def set_input_embeddings(self, value):
1126
+ self.embeddings.word_embeddings = value
1127
+
1128
+ def _prune_heads(self, heads_to_prune):
1129
+ """
1130
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
1131
+ class PreTrainedModel
1132
+ """
1133
+ for layer, heads in heads_to_prune.items():
1134
+ self.encoder.layer[layer].attention.prune_heads(heads)
1135
+
1136
+ @add_start_docstrings_to_model_forward(CHINESE_CLIP_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
1137
+ @add_code_sample_docstrings(
1138
+ checkpoint=_CHECKPOINT_FOR_DOC,
1139
+ output_type=BaseModelOutputWithPoolingAndCrossAttentions,
1140
+ config_class=_CONFIG_FOR_DOC,
1141
+ )
1142
+ def forward(
1143
+ self,
1144
+ input_ids: Optional[torch.Tensor] = None,
1145
+ attention_mask: Optional[torch.Tensor] = None,
1146
+ token_type_ids: Optional[torch.Tensor] = None,
1147
+ position_ids: Optional[torch.Tensor] = None,
1148
+ head_mask: Optional[torch.Tensor] = None,
1149
+ inputs_embeds: Optional[torch.Tensor] = None,
1150
+ encoder_hidden_states: Optional[torch.Tensor] = None,
1151
+ encoder_attention_mask: Optional[torch.Tensor] = None,
1152
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1153
+ use_cache: Optional[bool] = None,
1154
+ output_attentions: Optional[bool] = None,
1155
+ output_hidden_states: Optional[bool] = None,
1156
+ return_dict: Optional[bool] = None,
1157
+ ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
1158
+ r"""
1159
+ encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
1160
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
1161
+ the model is configured as a decoder.
1162
+ encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
1163
+ Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
1164
+ the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
1165
+
1166
+ - 1 for tokens that are **not masked**,
1167
+ - 0 for tokens that are **masked**.
1168
+ past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
1169
+ Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
1170
+
1171
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
1172
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
1173
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
1174
+ use_cache (`bool`, *optional*):
1175
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
1176
+ `past_key_values`).
1177
+ """
1178
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1179
+ output_hidden_states = (
1180
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1181
+ )
1182
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1183
+
1184
+ if self.config.is_decoder:
1185
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
1186
+ else:
1187
+ use_cache = False
1188
+
1189
+ if input_ids is not None and inputs_embeds is not None:
1190
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
1191
+ elif input_ids is not None:
1192
+ self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
1193
+ input_shape = input_ids.size()
1194
+ elif inputs_embeds is not None:
1195
+ input_shape = inputs_embeds.size()[:-1]
1196
+ else:
1197
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
1198
+
1199
+ batch_size, seq_length = input_shape
1200
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
1201
+
1202
+ # past_key_values_length
1203
+ past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
1204
+
1205
+ if attention_mask is None:
1206
+ attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
1207
+
1208
+ if token_type_ids is None:
1209
+ if hasattr(self.embeddings, "token_type_ids"):
1210
+ buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
1211
+ buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
1212
+ token_type_ids = buffered_token_type_ids_expanded
1213
+ else:
1214
+ token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
1215
+
1216
+ # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
1217
+ # ourselves in which case we just need to make it broadcastable to all heads.
1218
+ extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
1219
+
1220
+ # If a 2D or 3D attention mask is provided for the cross-attention
1221
+ # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
1222
+ if self.config.is_decoder and encoder_hidden_states is not None:
1223
+ encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
1224
+ encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
1225
+ if encoder_attention_mask is None:
1226
+ encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
1227
+ encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
1228
+ else:
1229
+ encoder_extended_attention_mask = None
1230
+
1231
+ # Prepare head mask if needed
1232
+ # 1.0 in head_mask indicate we keep the head
1233
+ # attention_probs has shape bsz x n_heads x N x N
1234
+ # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
1235
+ # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
1236
+ head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
1237
+
1238
+ embedding_output = self.embeddings(
1239
+ input_ids=input_ids,
1240
+ position_ids=position_ids,
1241
+ token_type_ids=token_type_ids,
1242
+ inputs_embeds=inputs_embeds,
1243
+ past_key_values_length=past_key_values_length,
1244
+ )
1245
+ encoder_outputs = self.encoder(
1246
+ embedding_output,
1247
+ attention_mask=extended_attention_mask,
1248
+ head_mask=head_mask,
1249
+ encoder_hidden_states=encoder_hidden_states,
1250
+ encoder_attention_mask=encoder_extended_attention_mask,
1251
+ past_key_values=past_key_values,
1252
+ use_cache=use_cache,
1253
+ output_attentions=output_attentions,
1254
+ output_hidden_states=output_hidden_states,
1255
+ return_dict=return_dict,
1256
+ )
1257
+ sequence_output = encoder_outputs[0]
1258
+ pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
1259
+
1260
+ if not return_dict:
1261
+ return (sequence_output, pooled_output) + encoder_outputs[1:]
1262
+
1263
+ return BaseModelOutputWithPoolingAndCrossAttentions(
1264
+ last_hidden_state=sequence_output,
1265
+ pooler_output=pooled_output,
1266
+ past_key_values=encoder_outputs.past_key_values,
1267
+ hidden_states=encoder_outputs.hidden_states,
1268
+ attentions=encoder_outputs.attentions,
1269
+ cross_attentions=encoder_outputs.cross_attentions,
1270
+ )
1271
+
1272
+
1273
+ @add_start_docstrings(
1274
+ """The vision model from CHINESE_CLIP without any head or projection on top.""",
1275
+ CHINESE_CLIP_START_DOCSTRING,
1276
+ )
1277
+ class ChineseCLIPVisionModel(ChineseCLIPPreTrainedModel):
1278
+ config_class = ChineseCLIPVisionConfig
1279
+ main_input_name = "pixel_values"
1280
+
1281
+ def __init__(self, config: ChineseCLIPVisionConfig):
1282
+ super().__init__(config)
1283
+ self.vision_model = ChineseCLIPVisionTransformer(config)
1284
+ # Initialize weights and apply final processing
1285
+ self.post_init()
1286
+
1287
+ def get_input_embeddings(self) -> nn.Module:
1288
+ return self.vision_model.embeddings.patch_embedding
1289
+
1290
+ @add_start_docstrings_to_model_forward(CHINESE_CLIP_VISION_INPUTS_DOCSTRING)
1291
+ @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=ChineseCLIPVisionConfig)
1292
+ def forward(
1293
+ self,
1294
+ pixel_values: Optional[torch.FloatTensor] = None,
1295
+ output_attentions: Optional[bool] = None,
1296
+ output_hidden_states: Optional[bool] = None,
1297
+ return_dict: Optional[bool] = None,
1298
+ ) -> Union[Tuple, BaseModelOutputWithPooling]:
1299
+ r"""
1300
+ Returns:
1301
+
1302
+ Examples:
1303
+
1304
+ ```python
1305
+ >>> from PIL import Image
1306
+ >>> import requests
1307
+ >>> from transformers import CLIPProcessor, ChineseCLIPVisionModel
1308
+
1309
+ >>> model = ChineseCLIPVisionModel.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16")
1310
+ >>> processor = CLIPProcessor.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16")
1311
+
1312
+ >>> url = "https://clip-cn-beijing.oss-cn-beijing.aliyuncs.com/pokemon.jpeg"
1313
+ >>> image = Image.open(requests.get(url, stream=True).raw)
1314
+
1315
+ >>> inputs = processor(images=image, return_tensors="pt")
1316
+
1317
+ >>> outputs = model(**inputs)
1318
+ >>> last_hidden_state = outputs.last_hidden_state
1319
+ >>> pooled_output = outputs.pooler_output # pooled CLS states
1320
+ ```"""
1321
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1322
+
1323
+ return self.vision_model(
1324
+ pixel_values=pixel_values,
1325
+ output_attentions=output_attentions,
1326
+ output_hidden_states=output_hidden_states,
1327
+ return_dict=return_dict,
1328
+ )
1329
+
1330
+
1331
+ @add_start_docstrings(CHINESE_CLIP_START_DOCSTRING)
1332
+ class ChineseCLIPModel(ChineseCLIPPreTrainedModel):
1333
+ config_class = ChineseCLIPConfig
1334
+
1335
+ def __init__(self, config: ChineseCLIPConfig):
1336
+ super().__init__(config)
1337
+
1338
+ if not isinstance(config.text_config, ChineseCLIPTextConfig):
1339
+ raise ValueError(
1340
+ "config.text_config is expected to be of type ChineseCLIPTextConfig but is of type"
1341
+ f" {type(config.text_config)}."
1342
+ )
1343
+
1344
+ if not isinstance(config.vision_config, ChineseCLIPVisionConfig):
1345
+ raise ValueError(
1346
+ "config.vision_config is expected to be of type ChineseCLIPVisionConfig but is of type"
1347
+ f" {type(config.vision_config)}."
1348
+ )
1349
+
1350
+ text_config = config.text_config
1351
+ vision_config = config.vision_config
1352
+
1353
+ self.projection_dim = config.projection_dim
1354
+ self.text_embed_dim = text_config.hidden_size
1355
+ self.vision_embed_dim = vision_config.hidden_size
1356
+
1357
+ self.text_model = ChineseCLIPTextModel(text_config, add_pooling_layer=False)
1358
+ self.vision_model = ChineseCLIPVisionTransformer(vision_config)
1359
+
1360
+ self.visual_projection = nn.Linear(self.vision_embed_dim, self.projection_dim, bias=False)
1361
+ self.text_projection = nn.Linear(self.text_embed_dim, self.projection_dim, bias=False)
1362
+ self.logit_scale = nn.Parameter(torch.tensor(self.config.logit_scale_init_value))
1363
+
1364
+ # Initialize weights and apply final processing
1365
+ self.post_init()
1366
+
1367
+ @add_start_docstrings_to_model_forward(CHINESE_CLIP_TEXT_INPUTS_DOCSTRING)
1368
+ def get_text_features(
1369
+ self,
1370
+ input_ids: Optional[torch.Tensor] = None,
1371
+ attention_mask: Optional[torch.Tensor] = None,
1372
+ token_type_ids: Optional[torch.Tensor] = None,
1373
+ position_ids: Optional[torch.Tensor] = None,
1374
+ output_attentions: Optional[bool] = None,
1375
+ output_hidden_states: Optional[bool] = None,
1376
+ return_dict: Optional[bool] = None,
1377
+ ) -> torch.FloatTensor:
1378
+ r"""
1379
+ Returns:
1380
+ text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by
1381
+ applying the projection layer to the final [CLS] hidden state of Text-Transformer.
1382
+
1383
+ Examples:
1384
+
1385
+ ```python
1386
+ >>> from transformers import AutoTokenizer, ChineseCLIPModel
1387
+
1388
+ >>> model = ChineseCLIPModel.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16")
1389
+ >>> tokenizer = AutoTokenizer.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16")
1390
+
1391
+ >>> inputs = tokenizer(["杰尼龟", "妙蛙种子", "小火龙", "皮卡丘"], padding=True, return_tensors="pt")
1392
+ >>> text_features = model.get_text_features(**inputs)
1393
+ >>> text_features = text_features / text_features.norm(p=2, dim=-1, keepdim=True)
1394
+ ```"""
1395
+ # Use CHINESE_CLIP model's config for some fields (if specified) instead of those of vision & text components.
1396
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1397
+ output_hidden_states = (
1398
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1399
+ )
1400
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1401
+
1402
+ text_outputs = self.text_model(
1403
+ input_ids=input_ids,
1404
+ attention_mask=attention_mask,
1405
+ token_type_ids=token_type_ids,
1406
+ position_ids=position_ids,
1407
+ output_attentions=output_attentions,
1408
+ output_hidden_states=output_hidden_states,
1409
+ return_dict=return_dict,
1410
+ )
1411
+
1412
+ pooled_output = text_outputs[0][:, 0, :]
1413
+ text_features = self.text_projection(pooled_output)
1414
+
1415
+ return text_features
1416
+
1417
+ @add_start_docstrings_to_model_forward(CHINESE_CLIP_VISION_INPUTS_DOCSTRING)
1418
+ def get_image_features(
1419
+ self,
1420
+ pixel_values: Optional[torch.FloatTensor] = None,
1421
+ output_attentions: Optional[bool] = None,
1422
+ output_hidden_states: Optional[bool] = None,
1423
+ return_dict: Optional[bool] = None,
1424
+ ) -> torch.FloatTensor:
1425
+ r"""
1426
+ Returns:
1427
+ image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by
1428
+ applying the projection layer to the final [CLS] hidden state of Vision-Transformer.
1429
+
1430
+ Examples:
1431
+
1432
+ ```python
1433
+ >>> from PIL import Image
1434
+ >>> import requests
1435
+ >>> from transformers import AutoProcessor, ChineseCLIPModel
1436
+
1437
+ >>> model = ChineseCLIPModel.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16")
1438
+ >>> processor = AutoProcessor.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16")
1439
+
1440
+ >>> url = "https://clip-cn-beijing.oss-cn-beijing.aliyuncs.com/pokemon.jpeg"
1441
+ >>> image = Image.open(requests.get(url, stream=True).raw)
1442
+
1443
+ >>> inputs = processor(images=image, return_tensors="pt")
1444
+
1445
+ >>> image_features = model.get_image_features(**inputs)
1446
+ >>> image_features = image_features / image_features.norm(p=2, dim=-1, keepdim=True)
1447
+ ```"""
1448
+ # Use CHINESE_CLIP model's config for some fields (if specified) instead of those of vision & text components.
1449
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1450
+ output_hidden_states = (
1451
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1452
+ )
1453
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1454
+
1455
+ vision_outputs = self.vision_model(
1456
+ pixel_values=pixel_values,
1457
+ output_attentions=output_attentions,
1458
+ output_hidden_states=output_hidden_states,
1459
+ return_dict=return_dict,
1460
+ )
1461
+
1462
+ pooled_output = vision_outputs[1] # pooled_output
1463
+ image_features = self.visual_projection(pooled_output)
1464
+
1465
+ return image_features
1466
+
1467
+ @add_start_docstrings_to_model_forward(CHINESE_CLIP_INPUTS_DOCSTRING)
1468
+ @replace_return_docstrings(output_type=ChineseCLIPOutput, config_class=ChineseCLIPConfig)
1469
+ def forward(
1470
+ self,
1471
+ input_ids: Optional[torch.LongTensor] = None,
1472
+ pixel_values: Optional[torch.FloatTensor] = None,
1473
+ attention_mask: Optional[torch.Tensor] = None,
1474
+ token_type_ids: Optional[torch.Tensor] = None,
1475
+ position_ids: Optional[torch.LongTensor] = None,
1476
+ return_loss: Optional[bool] = None,
1477
+ output_attentions: Optional[bool] = None,
1478
+ output_hidden_states: Optional[bool] = None,
1479
+ return_dict: Optional[bool] = None,
1480
+ ) -> Union[Tuple, ChineseCLIPOutput]:
1481
+ r"""
1482
+ Returns:
1483
+
1484
+ Examples:
1485
+
1486
+ ```python
1487
+ >>> from PIL import Image
1488
+ >>> import requests
1489
+ >>> from transformers import AutoProcessor, ChineseCLIPModel
1490
+
1491
+ >>> model = ChineseCLIPModel.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16")
1492
+ >>> processor = AutoProcessor.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16")
1493
+
1494
+ >>> url = "https://clip-cn-beijing.oss-cn-beijing.aliyuncs.com/pokemon.jpeg"
1495
+ >>> image = Image.open(requests.get(url, stream=True).raw)
1496
+
1497
+ >>> inputs = processor(text=["杰尼龟", "妙蛙种子", "小火龙", "皮卡丘"], images=image, return_tensors="pt", padding=True)
1498
+
1499
+ >>> outputs = model(**inputs)
1500
+ >>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score
1501
+ >>> probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities
1502
+ ```"""
1503
+ # Use CHINESE_CLIP model's config for some fields (if specified) instead of those of vision & text components.
1504
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1505
+ output_hidden_states = (
1506
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1507
+ )
1508
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1509
+
1510
+ vision_outputs = self.vision_model(
1511
+ pixel_values=pixel_values,
1512
+ output_attentions=output_attentions,
1513
+ output_hidden_states=output_hidden_states,
1514
+ return_dict=return_dict,
1515
+ )
1516
+
1517
+ text_outputs = self.text_model(
1518
+ input_ids=input_ids,
1519
+ attention_mask=attention_mask,
1520
+ token_type_ids=token_type_ids,
1521
+ position_ids=position_ids,
1522
+ output_attentions=output_attentions,
1523
+ output_hidden_states=output_hidden_states,
1524
+ return_dict=return_dict,
1525
+ )
1526
+
1527
+ image_embeds = vision_outputs[1]
1528
+ image_embeds = self.visual_projection(image_embeds)
1529
+
1530
+ text_embeds = text_outputs[0][:, 0, :]
1531
+ text_embeds = self.text_projection(text_embeds)
1532
+
1533
+ # normalized features
1534
+ image_embeds = image_embeds / image_embeds.norm(p=2, dim=-1, keepdim=True)
1535
+ text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True)
1536
+
1537
+ # cosine similarity as logits
1538
+ logit_scale = self.logit_scale.exp()
1539
+ logits_per_text = torch.matmul(text_embeds, image_embeds.t()) * logit_scale
1540
+ logits_per_image = logits_per_text.t()
1541
+
1542
+ loss = None
1543
+ if return_loss:
1544
+ loss = chinese_clip_loss(logits_per_text)
1545
+
1546
+ if not return_dict:
1547
+ # fix the None pooled_output of text_outputs to conform with dict_output
1548
+ pooled_output = text_outputs[1]
1549
+ if pooled_output is None:
1550
+ text_outputs = (text_outputs[0],) + text_outputs[2:]
1551
+ output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs)
1552
+ return ((loss,) + output) if loss is not None else output
1553
+
1554
+ return ChineseCLIPOutput(
1555
+ loss=loss,
1556
+ logits_per_image=logits_per_image,
1557
+ logits_per_text=logits_per_text,
1558
+ text_embeds=text_embeds,
1559
+ image_embeds=image_embeds,
1560
+ text_model_output=text_outputs,
1561
+ vision_model_output=vision_outputs,
1562
+ )
llmeval-env/lib/python3.10/site-packages/transformers/models/chinese_clip/processing_chinese_clip.py ADDED
@@ -0,0 +1,141 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 The OFA-Sys Team Authors and The HuggingFace Team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """
16
+ Image/Text processor class for Chinese-CLIP
17
+ """
18
+
19
+ import warnings
20
+
21
+ from ...processing_utils import ProcessorMixin
22
+ from ...tokenization_utils_base import BatchEncoding
23
+
24
+
25
+ class ChineseCLIPProcessor(ProcessorMixin):
26
+ r"""
27
+ Constructs a Chinese-CLIP processor which wraps a Chinese-CLIP image processor and a Chinese-CLIP tokenizer into a
28
+ single processor.
29
+
30
+ [`ChineseCLIPProcessor`] offers all the functionalities of [`ChineseCLIPImageProcessor`] and [`BertTokenizerFast`].
31
+ See the [`~ChineseCLIPProcessor.__call__`] and [`~ChineseCLIPProcessor.decode`] for more information.
32
+
33
+ Args:
34
+ image_processor ([`ChineseCLIPImageProcessor`], *optional*):
35
+ The image processor is a required input.
36
+ tokenizer ([`BertTokenizerFast`], *optional*):
37
+ The tokenizer is a required input.
38
+ """
39
+
40
+ attributes = ["image_processor", "tokenizer"]
41
+ image_processor_class = "ChineseCLIPImageProcessor"
42
+ tokenizer_class = ("BertTokenizer", "BertTokenizerFast")
43
+
44
+ def __init__(self, image_processor=None, tokenizer=None, **kwargs):
45
+ feature_extractor = None
46
+ if "feature_extractor" in kwargs:
47
+ warnings.warn(
48
+ "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
49
+ " instead.",
50
+ FutureWarning,
51
+ )
52
+ feature_extractor = kwargs.pop("feature_extractor")
53
+
54
+ image_processor = image_processor if image_processor is not None else feature_extractor
55
+ if image_processor is None:
56
+ raise ValueError("You need to specify an `image_processor`.")
57
+ if tokenizer is None:
58
+ raise ValueError("You need to specify a `tokenizer`.")
59
+
60
+ super().__init__(image_processor, tokenizer)
61
+ self.current_processor = self.image_processor
62
+
63
+ def __call__(self, text=None, images=None, return_tensors=None, **kwargs):
64
+ """
65
+ Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
66
+ and `kwargs` arguments to BertTokenizerFast's [`~BertTokenizerFast.__call__`] if `text` is not `None` to encode
67
+ the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
68
+ CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
69
+ of the above two methods for more information.
70
+
71
+ Args:
72
+ text (`str`, `List[str]`, `List[List[str]]`):
73
+ The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
74
+ (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
75
+ `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
76
+ images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
77
+ The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
78
+ tensor. Both channels-first and channels-last formats are supported.
79
+
80
+ return_tensors (`str` or [`~utils.TensorType`], *optional*):
81
+ If set, will return tensors of a particular framework. Acceptable values are:
82
+
83
+ - `'tf'`: Return TensorFlow `tf.constant` objects.
84
+ - `'pt'`: Return PyTorch `torch.Tensor` objects.
85
+ - `'np'`: Return NumPy `np.ndarray` objects.
86
+ - `'jax'`: Return JAX `jnp.ndarray` objects.
87
+
88
+ Returns:
89
+ [`BatchEncoding`]: A [`BatchEncoding`] with the following fields:
90
+
91
+ - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
92
+ - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
93
+ `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
94
+ `None`).
95
+ - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
96
+ """
97
+
98
+ if text is None and images is None:
99
+ raise ValueError("You have to specify either text or images. Both cannot be none.")
100
+
101
+ if text is not None:
102
+ encoding = self.tokenizer(text, return_tensors=return_tensors, **kwargs)
103
+
104
+ if images is not None:
105
+ image_features = self.image_processor(images, return_tensors=return_tensors, **kwargs)
106
+
107
+ if text is not None and images is not None:
108
+ encoding["pixel_values"] = image_features.pixel_values
109
+ return encoding
110
+ elif text is not None:
111
+ return encoding
112
+ else:
113
+ return BatchEncoding(data=dict(**image_features), tensor_type=return_tensors)
114
+
115
+ def batch_decode(self, *args, **kwargs):
116
+ """
117
+ This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
118
+ refer to the docstring of this method for more information.
119
+ """
120
+ return self.tokenizer.batch_decode(*args, **kwargs)
121
+
122
+ def decode(self, *args, **kwargs):
123
+ """
124
+ This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
125
+ the docstring of this method for more information.
126
+ """
127
+ return self.tokenizer.decode(*args, **kwargs)
128
+
129
+ @property
130
+ def model_input_names(self):
131
+ tokenizer_input_names = self.tokenizer.model_input_names
132
+ image_processor_input_names = self.image_processor.model_input_names
133
+ return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
134
+
135
+ @property
136
+ def feature_extractor_class(self):
137
+ warnings.warn(
138
+ "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.",
139
+ FutureWarning,
140
+ )
141
+ return self.image_processor_class
llmeval-env/lib/python3.10/site-packages/transformers/models/cpm/__init__.py ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2020 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from typing import TYPE_CHECKING
16
+
17
+ from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available
18
+
19
+
20
+ _import_structure = {}
21
+
22
+ try:
23
+ if not is_sentencepiece_available():
24
+ raise OptionalDependencyNotAvailable()
25
+ except OptionalDependencyNotAvailable:
26
+ pass
27
+ else:
28
+ _import_structure["tokenization_cpm"] = ["CpmTokenizer"]
29
+
30
+ try:
31
+ if not is_tokenizers_available():
32
+ raise OptionalDependencyNotAvailable()
33
+ except OptionalDependencyNotAvailable:
34
+ pass
35
+ else:
36
+ _import_structure["tokenization_cpm_fast"] = ["CpmTokenizerFast"]
37
+
38
+
39
+ if TYPE_CHECKING:
40
+ try:
41
+ if not is_sentencepiece_available():
42
+ raise OptionalDependencyNotAvailable()
43
+ except OptionalDependencyNotAvailable:
44
+ pass
45
+ else:
46
+ from .tokenization_cpm import CpmTokenizer
47
+
48
+ try:
49
+ if not is_tokenizers_available():
50
+ raise OptionalDependencyNotAvailable()
51
+ except OptionalDependencyNotAvailable:
52
+ pass
53
+ else:
54
+ from .tokenization_cpm_fast import CpmTokenizerFast
55
+
56
+ else:
57
+ import sys
58
+
59
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
llmeval-env/lib/python3.10/site-packages/transformers/models/cpm/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (907 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/cpm/__pycache__/tokenization_cpm.cpython-310.pyc ADDED
Binary file (12.7 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/cpm/__pycache__/tokenization_cpm_fast.cpython-310.pyc ADDED
Binary file (9.33 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/cpm/tokenization_cpm.py ADDED
@@ -0,0 +1,344 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Tokenization classes."""
16
+ import os
17
+ import unicodedata
18
+ from shutil import copyfile
19
+ from typing import Any, Dict, List, Optional, Tuple
20
+
21
+ import sentencepiece as spm
22
+
23
+ from ...tokenization_utils import AddedToken, PreTrainedTokenizer
24
+ from ...utils import SPIECE_UNDERLINE, logging
25
+
26
+
27
+ logger = logging.get_logger(__name__)
28
+
29
+ VOCAB_FILES_NAMES = {"vocab_file": "spiece.model"}
30
+
31
+
32
+ class CpmTokenizer(PreTrainedTokenizer):
33
+ """Runs pre-tokenization with Jieba segmentation tool. It is used in CPM models."""
34
+
35
+ vocab_files_names = VOCAB_FILES_NAMES
36
+
37
+ def __init__(
38
+ self,
39
+ vocab_file,
40
+ do_lower_case=False,
41
+ remove_space=True,
42
+ keep_accents=False,
43
+ bos_token="<s>",
44
+ eos_token="</s>",
45
+ unk_token="<unk>",
46
+ sep_token="<sep>",
47
+ pad_token="<pad>",
48
+ cls_token="<cls>",
49
+ mask_token="<mask>",
50
+ additional_special_tokens=["<eop>", "<eod>"],
51
+ sp_model_kwargs: Optional[Dict[str, Any]] = None,
52
+ **kwargs,
53
+ ) -> None:
54
+ """
55
+ Construct a CPM tokenizer. Based on [Jieba](https://pypi.org/project/jieba/) and
56
+ [SentencePiece](https://github.com/google/sentencepiece).
57
+
58
+ This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should
59
+ refer to this superclass for more information regarding those methods.
60
+
61
+ Args:
62
+ vocab_file (`str`):
63
+ [SentencePiece](https://github.com/google/sentencepiece) file (generally has a .spm extension) that
64
+ contains the vocabulary necessary to instantiate a tokenizer.
65
+ do_lower_case (`bool`, *optional*, defaults to `True`):
66
+ Whether to lowercase the input when tokenizing.
67
+ remove_space (`bool`, *optional*, defaults to `True`):
68
+ Whether to strip the text when tokenizing (removing excess spaces before and after the string).
69
+ keep_accents (`bool`, *optional*, defaults to `False`):
70
+ Whether to keep accents when tokenizing.
71
+ bos_token (`str`, *optional*, defaults to `"<s>"`):
72
+ The beginning of sequence token that was used during pretraining. Can be used a sequence classifier
73
+ token.
74
+
75
+ <Tip>
76
+
77
+ When building a sequence using special tokens, this is not the token that is used for the beginning of
78
+ sequence. The token used is the `cls_token`.
79
+
80
+ </Tip>
81
+
82
+ eos_token (`str`, *optional*, defaults to `"</s>"`):
83
+ The end of sequence token.
84
+
85
+ <Tip>
86
+
87
+ When building a sequence using special tokens, this is not the token that is used for the end of
88
+ sequence. The token used is the `sep_token`.
89
+
90
+ </Tip>
91
+
92
+ unk_token (`str`, *optional*, defaults to `"<unk>"`):
93
+ The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be
94
+ this token instead.
95
+ sep_token (`str`, *optional*, defaults to `"<sep>"`):
96
+ The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences
97
+ for sequence classification or for a text and a question for question answering. It is also used as the
98
+ last token of a sequence built with special tokens.
99
+ pad_token (`str`, *optional*, defaults to `"<pad>"`):
100
+ The token used for padding, for example when batching sequences of different lengths.
101
+ cls_token (`str`, *optional*, defaults to `"<cls>"`):
102
+ The classifier token which is used when doing sequence classification (classification of the whole
103
+ sequence instead of per-token classification). It is the first token of the sequence when built with
104
+ special tokens.
105
+ mask_token (`str`, *optional*, defaults to `"<mask>"`):
106
+ The token used for masking values. This is the token used when training this model with masked language
107
+ modeling. This is the token which the model will try to predict.
108
+ additional_special_tokens (`List[str]`, *optional*, defaults to `["<eop>", "<eod>"]`):
109
+ Additional special tokens used by the tokenizer.
110
+
111
+ Attributes:
112
+ sp_model (`SentencePieceProcessor`):
113
+ The *SentencePiece* processor that is used for every conversion (string, tokens and IDs).
114
+ """
115
+ # Mask token behave like a normal word, i.e. include the space before it
116
+ mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token
117
+
118
+ self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
119
+
120
+ self.do_lower_case = do_lower_case
121
+ self.remove_space = remove_space
122
+ self.keep_accents = keep_accents
123
+ self.vocab_file = vocab_file
124
+
125
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
126
+ self.sp_model.Load(vocab_file)
127
+
128
+ try:
129
+ import jieba
130
+ except ModuleNotFoundError as error:
131
+ raise error.__class__(
132
+ "You need to install jieba to use CpmTokenizer or CpmTokenizerFast. "
133
+ "See https://pypi.org/project/jieba/ for installation."
134
+ )
135
+ self.jieba = jieba
136
+ self.translator = str.maketrans(" \n", "\u2582\u2583")
137
+
138
+ super().__init__(
139
+ do_lower_case=do_lower_case,
140
+ remove_space=remove_space,
141
+ keep_accents=keep_accents,
142
+ bos_token=bos_token,
143
+ eos_token=eos_token,
144
+ unk_token=unk_token,
145
+ sep_token=sep_token,
146
+ pad_token=pad_token,
147
+ cls_token=cls_token,
148
+ mask_token=mask_token,
149
+ additional_special_tokens=additional_special_tokens,
150
+ sp_model_kwargs=self.sp_model_kwargs,
151
+ **kwargs,
152
+ )
153
+
154
+ self._pad_token_type_id = 3
155
+
156
+ @property
157
+ # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size
158
+ def vocab_size(self):
159
+ return len(self.sp_model)
160
+
161
+ # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.get_vocab
162
+ def get_vocab(self):
163
+ vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
164
+ vocab.update(self.added_tokens_encoder)
165
+ return vocab
166
+
167
+ # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.__getstate__
168
+ def __getstate__(self):
169
+ state = self.__dict__.copy()
170
+ state["sp_model"] = None
171
+ return state
172
+
173
+ # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.__setstate__
174
+ def __setstate__(self, d):
175
+ self.__dict__ = d
176
+
177
+ # for backward compatibility
178
+ if not hasattr(self, "sp_model_kwargs"):
179
+ self.sp_model_kwargs = {}
180
+
181
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
182
+ self.sp_model.Load(self.vocab_file)
183
+
184
+ # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.preprocess_text
185
+ def preprocess_text(self, inputs):
186
+ if self.remove_space:
187
+ outputs = " ".join(inputs.strip().split())
188
+ else:
189
+ outputs = inputs
190
+ outputs = outputs.replace("``", '"').replace("''", '"')
191
+
192
+ if not self.keep_accents:
193
+ outputs = unicodedata.normalize("NFKD", outputs)
194
+ outputs = "".join([c for c in outputs if not unicodedata.combining(c)])
195
+ if self.do_lower_case:
196
+ outputs = outputs.lower()
197
+
198
+ return outputs
199
+
200
+ # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer._tokenize
201
+ def _tokenize(self, text: str) -> List[str]:
202
+ """Tokenize a string."""
203
+ text = self.preprocess_text(text)
204
+ pieces = self.sp_model.encode(text, out_type=str)
205
+ new_pieces = []
206
+ for piece in pieces:
207
+ if len(piece) > 1 and piece[-1] == str(",") and piece[-2].isdigit():
208
+ cur_pieces = self.sp_model.EncodeAsPieces(piece[:-1].replace(SPIECE_UNDERLINE, ""))
209
+ if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
210
+ if len(cur_pieces[0]) == 1:
211
+ cur_pieces = cur_pieces[1:]
212
+ else:
213
+ cur_pieces[0] = cur_pieces[0][1:]
214
+ cur_pieces.append(piece[-1])
215
+ new_pieces.extend(cur_pieces)
216
+ else:
217
+ new_pieces.append(piece)
218
+
219
+ return new_pieces
220
+
221
+ # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer._convert_token_to_id
222
+ def _convert_token_to_id(self, token):
223
+ """Converts a token (str) in an id using the vocab."""
224
+ return self.sp_model.PieceToId(token)
225
+
226
+ # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer._convert_id_to_token
227
+ def _convert_id_to_token(self, index):
228
+ """Converts an index (integer) in a token (str) using the vocab."""
229
+ return self.sp_model.IdToPiece(index)
230
+
231
+ # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.convert_tokens_to_string
232
+ def convert_tokens_to_string(self, tokens):
233
+ """Converts a sequence of tokens (strings for sub-words) in a single string."""
234
+ out_string = "".join(tokens).replace(SPIECE_UNDERLINE, " ").strip()
235
+ return out_string
236
+
237
+ # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.build_inputs_with_special_tokens
238
+ def build_inputs_with_special_tokens(
239
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
240
+ ) -> List[int]:
241
+ """
242
+ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
243
+ adding special tokens. An XLNet sequence has the following format:
244
+
245
+ - single sequence: `X <sep> <cls>`
246
+ - pair of sequences: `A <sep> B <sep> <cls>`
247
+
248
+ Args:
249
+ token_ids_0 (`List[int]`):
250
+ List of IDs to which the special tokens will be added.
251
+ token_ids_1 (`List[int]`, *optional*):
252
+ Optional second list of IDs for sequence pairs.
253
+
254
+ Returns:
255
+ `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
256
+ """
257
+ sep = [self.sep_token_id]
258
+ cls = [self.cls_token_id]
259
+ if token_ids_1 is None:
260
+ return token_ids_0 + sep + cls
261
+ return token_ids_0 + sep + token_ids_1 + sep + cls
262
+
263
+ # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.get_special_tokens_mask
264
+ def get_special_tokens_mask(
265
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
266
+ ) -> List[int]:
267
+ """
268
+ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
269
+ special tokens using the tokenizer `prepare_for_model` method.
270
+
271
+ Args:
272
+ token_ids_0 (`List[int]`):
273
+ List of IDs.
274
+ token_ids_1 (`List[int]`, *optional*):
275
+ Optional second list of IDs for sequence pairs.
276
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
277
+ Whether or not the token list is already formatted with special tokens for the model.
278
+
279
+ Returns:
280
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
281
+ """
282
+
283
+ if already_has_special_tokens:
284
+ return super().get_special_tokens_mask(
285
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
286
+ )
287
+
288
+ if token_ids_1 is not None:
289
+ return ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1, 1]
290
+ return ([0] * len(token_ids_0)) + [1, 1]
291
+
292
+ # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.create_token_type_ids_from_sequences
293
+ def create_token_type_ids_from_sequences(
294
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
295
+ ) -> List[int]:
296
+ """
297
+ Create a mask from the two sequences passed to be used in a sequence-pair classification task. An XLNet
298
+ sequence pair mask has the following format:
299
+
300
+ ```
301
+ 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
302
+ | first sequence | second sequence |
303
+ ```
304
+
305
+ If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
306
+
307
+ Args:
308
+ token_ids_0 (`List[int]`):
309
+ List of IDs.
310
+ token_ids_1 (`List[int]`, *optional*):
311
+ Optional second list of IDs for sequence pairs.
312
+
313
+ Returns:
314
+ `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
315
+ """
316
+ sep = [self.sep_token_id]
317
+ cls_segment_id = [2]
318
+
319
+ if token_ids_1 is None:
320
+ return len(token_ids_0 + sep) * [0] + cls_segment_id
321
+ return len(token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] + cls_segment_id
322
+
323
+ # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.save_vocabulary
324
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
325
+ if not os.path.isdir(save_directory):
326
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
327
+ return
328
+ out_vocab_file = os.path.join(
329
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
330
+ )
331
+
332
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
333
+ copyfile(self.vocab_file, out_vocab_file)
334
+ elif not os.path.isfile(self.vocab_file):
335
+ with open(out_vocab_file, "wb") as fi:
336
+ content_spiece_model = self.sp_model.serialized_model_proto()
337
+ fi.write(content_spiece_model)
338
+
339
+ return (out_vocab_file,)
340
+
341
+ def _decode(self, *args, **kwargs):
342
+ text = super()._decode(*args, **kwargs)
343
+ text = text.replace(" ", "").replace("\u2582", " ").replace("\u2583", "\n")
344
+ return text
llmeval-env/lib/python3.10/site-packages/transformers/models/cpm/tokenization_cpm_fast.py ADDED
@@ -0,0 +1,237 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Tokenization classes."""
16
+ import os
17
+ from shutil import copyfile
18
+ from typing import List, Optional, Tuple
19
+
20
+ from ...tokenization_utils_fast import AddedToken, PreTrainedTokenizerFast
21
+ from ...utils import logging
22
+
23
+
24
+ logger = logging.get_logger(__name__)
25
+
26
+ VOCAB_FILES_NAMES = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"}
27
+
28
+
29
+ class CpmTokenizerFast(PreTrainedTokenizerFast):
30
+ """Runs pre-tokenization with Jieba segmentation tool. It is used in CPM models."""
31
+
32
+ def __init__(
33
+ self,
34
+ vocab_file=None,
35
+ tokenizer_file=None,
36
+ do_lower_case=False,
37
+ remove_space=True,
38
+ keep_accents=False,
39
+ bos_token="<s>",
40
+ eos_token="</s>",
41
+ unk_token="<unk>",
42
+ sep_token="<sep>",
43
+ pad_token="<pad>",
44
+ cls_token="<cls>",
45
+ mask_token="<mask>",
46
+ additional_special_tokens=["<eop>", "<eod>"],
47
+ **kwargs,
48
+ ):
49
+ """
50
+ Construct a CPM tokenizer. Based on [Jieba](https://pypi.org/project/jieba/) and
51
+ [SentencePiece](https://github.com/google/sentencepiece).
52
+
53
+ This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should
54
+ refer to this superclass for more information regarding those methods.
55
+
56
+ Args:
57
+ vocab_file (`str`):
58
+ [SentencePiece](https://github.com/google/sentencepiece) file (generally has a .spm extension) that
59
+ contains the vocabulary necessary to instantiate a tokenizer.
60
+ do_lower_case (`bool`, *optional*, defaults to `True`):
61
+ Whether to lowercase the input when tokenizing.
62
+ remove_space (`bool`, *optional*, defaults to `True`):
63
+ Whether to strip the text when tokenizing (removing excess spaces before and after the string).
64
+ keep_accents (`bool`, *optional*, defaults to `False`):
65
+ Whether to keep accents when tokenizing.
66
+ bos_token (`str`, *optional*, defaults to `"<s>"`):
67
+ The beginning of sequence token that was used during pretraining. Can be used a sequence classifier
68
+ token.
69
+
70
+ <Tip>
71
+
72
+ When building a sequence using special tokens, this is not the token that is used for the beginning of
73
+ sequence. The token used is the `cls_token`.
74
+
75
+ </Tip>
76
+
77
+ eos_token (`str`, *optional*, defaults to `"</s>"`):
78
+ The end of sequence token.
79
+
80
+ <Tip>
81
+
82
+ When building a sequence using special tokens, this is not the token that is used for the end of
83
+ sequence. The token used is the `sep_token`.
84
+
85
+ </Tip>
86
+
87
+ unk_token (`str`, *optional*, defaults to `"<unk>"`):
88
+ The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be
89
+ this token instead.
90
+ sep_token (`str`, *optional*, defaults to `"<sep>"`):
91
+ The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences
92
+ for sequence classification or for a text and a question for question answering. It is also used as the
93
+ last token of a sequence built with special tokens.
94
+ pad_token (`str`, *optional*, defaults to `"<pad>"`):
95
+ The token used for padding, for example when batching sequences of different lengths.
96
+ cls_token (`str`, *optional*, defaults to `"<cls>"`):
97
+ The classifier token which is used when doing sequence classification (classification of the whole
98
+ sequence instead of per-token classification). It is the first token of the sequence when built with
99
+ special tokens.
100
+ mask_token (`str`, *optional*, defaults to `"<mask>"`):
101
+ The token used for masking values. This is the token used when training this model with masked language
102
+ modeling. This is the token which the model will try to predict.
103
+ additional_special_tokens (`List[str]`, *optional*, defaults to `["<eop>", "<eod>"]`):
104
+ Additional special tokens used by the tokenizer.
105
+
106
+ Attributes:
107
+ sp_model (`SentencePieceProcessor`):
108
+ The *SentencePiece* processor that is used for every conversion (string, tokens and IDs).
109
+ """
110
+ # Mask token behave like a normal word, i.e. include the space before it
111
+ mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token
112
+
113
+ super().__init__(
114
+ vocab_file=vocab_file,
115
+ tokenizer_file=tokenizer_file,
116
+ do_lower_case=do_lower_case,
117
+ remove_space=remove_space,
118
+ keep_accents=keep_accents,
119
+ bos_token=bos_token,
120
+ eos_token=eos_token,
121
+ unk_token=unk_token,
122
+ sep_token=sep_token,
123
+ pad_token=pad_token,
124
+ cls_token=cls_token,
125
+ mask_token=mask_token,
126
+ additional_special_tokens=additional_special_tokens,
127
+ **kwargs,
128
+ )
129
+
130
+ self._pad_token_type_id = 3
131
+ self.do_lower_case = do_lower_case
132
+ self.remove_space = remove_space
133
+ self.keep_accents = keep_accents
134
+ self.vocab_file = vocab_file
135
+
136
+ try:
137
+ import jieba
138
+ except ModuleNotFoundError as error:
139
+ raise error.__class__(
140
+ "You need to install jieba to use CpmTokenizer or CpmTokenizerFast. "
141
+ "See https://pypi.org/project/jieba/ for installation."
142
+ )
143
+ self.jieba = jieba
144
+ self.translator = str.maketrans(" \n", "\u2582\u2583")
145
+
146
+ @property
147
+ def can_save_slow_tokenizer(self) -> bool:
148
+ return os.path.isfile(self.vocab_file) if self.vocab_file else False
149
+
150
+ # Copied from transformers.models.xlnet.tokenization_xlnet_fast.XLNetTokenizerFast.build_inputs_with_special_tokens
151
+ def build_inputs_with_special_tokens(
152
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
153
+ ) -> List[int]:
154
+ """
155
+ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
156
+ adding special tokens. An XLNet sequence has the following format:
157
+
158
+ - single sequence: `X <sep> <cls>`
159
+ - pair of sequences: `A <sep> B <sep> <cls>`
160
+
161
+ Args:
162
+ token_ids_0 (`List[int]`):
163
+ List of IDs to which the special tokens will be added.
164
+ token_ids_1 (`List[int]`, *optional*):
165
+ Optional second list of IDs for sequence pairs.
166
+
167
+ Returns:
168
+ `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
169
+ """
170
+ sep = [self.sep_token_id]
171
+ cls = [self.cls_token_id]
172
+ if token_ids_1 is None:
173
+ return token_ids_0 + sep + cls
174
+ return token_ids_0 + sep + token_ids_1 + sep + cls
175
+
176
+ # Copied from transformers.models.xlnet.tokenization_xlnet_fast.XLNetTokenizerFast.create_token_type_ids_from_sequences
177
+ def create_token_type_ids_from_sequences(
178
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
179
+ ) -> List[int]:
180
+ """
181
+ Create a mask from the two sequences passed to be used in a sequence-pair classification task. An XLNet
182
+ sequence pair mask has the following format:
183
+
184
+ ```
185
+ 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
186
+ | first sequence | second sequence |
187
+ ```
188
+
189
+ If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
190
+
191
+ Args:
192
+ token_ids_0 (`List[int]`):
193
+ List of IDs.
194
+ token_ids_1 (`List[int]`, *optional*):
195
+ Optional second list of IDs for sequence pairs.
196
+
197
+ Returns:
198
+ `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
199
+ """
200
+ sep = [self.sep_token_id]
201
+ cls_segment_id = [2]
202
+
203
+ if token_ids_1 is None:
204
+ return len(token_ids_0 + sep) * [0] + cls_segment_id
205
+ return len(token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] + cls_segment_id
206
+
207
+ # Copied from transformers.models.xlnet.tokenization_xlnet_fast.XLNetTokenizerFast.save_vocabulary
208
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
209
+ if not self.can_save_slow_tokenizer:
210
+ raise ValueError(
211
+ "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
212
+ "tokenizer."
213
+ )
214
+
215
+ if not os.path.isdir(save_directory):
216
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
217
+ return
218
+ out_vocab_file = os.path.join(
219
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
220
+ )
221
+
222
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
223
+ copyfile(self.vocab_file, out_vocab_file)
224
+
225
+ return (out_vocab_file,)
226
+
227
+ def _batch_encode_plus(self, batch_text_or_text_pairs, *args, **kwargs):
228
+ batch_text_or_text_pairs = [
229
+ " ".join([x.translate(self.translator) for x in self.jieba.cut(text, cut_all=False)])
230
+ for text in batch_text_or_text_pairs
231
+ ]
232
+ return super()._batch_encode_plus(batch_text_or_text_pairs, *args, **kwargs)
233
+
234
+ def _decode(self, *args, **kwargs):
235
+ text = super()._decode(*args, **kwargs)
236
+ text = text.replace(" ", "").replace("\u2582", " ").replace("\u2583", "\n")
237
+ return text
llmeval-env/lib/python3.10/site-packages/transformers/models/efficientnet/__init__.py ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # flake8: noqa
2
+ # There's no way to ignore "F401 '...' imported but unused" warnings in this
3
+ # module, but to preserve other warnings. So, don't check this module at all.
4
+
5
+ # Copyright 2023 The HuggingFace Team. All rights reserved.
6
+ #
7
+ # Licensed under the Apache License, Version 2.0 (the "License");
8
+ # you may not use this file except in compliance with the License.
9
+ # You may obtain a copy of the License at
10
+ #
11
+ # http://www.apache.org/licenses/LICENSE-2.0
12
+ #
13
+ # Unless required by applicable law or agreed to in writing, software
14
+ # distributed under the License is distributed on an "AS IS" BASIS,
15
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16
+ # See the License for the specific language governing permissions and
17
+ # limitations under the License.
18
+ from typing import TYPE_CHECKING
19
+
20
+ # rely on isort to merge the imports
21
+ from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
22
+
23
+
24
+ _import_structure = {
25
+ "configuration_efficientnet": [
26
+ "EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP",
27
+ "EfficientNetConfig",
28
+ "EfficientNetOnnxConfig",
29
+ ]
30
+ }
31
+
32
+ try:
33
+ if not is_vision_available():
34
+ raise OptionalDependencyNotAvailable()
35
+ except OptionalDependencyNotAvailable:
36
+ pass
37
+ else:
38
+ _import_structure["image_processing_efficientnet"] = ["EfficientNetImageProcessor"]
39
+
40
+ try:
41
+ if not is_torch_available():
42
+ raise OptionalDependencyNotAvailable()
43
+ except OptionalDependencyNotAvailable:
44
+ pass
45
+ else:
46
+ _import_structure["modeling_efficientnet"] = [
47
+ "EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST",
48
+ "EfficientNetForImageClassification",
49
+ "EfficientNetModel",
50
+ "EfficientNetPreTrainedModel",
51
+ ]
52
+
53
+ if TYPE_CHECKING:
54
+ from .configuration_efficientnet import (
55
+ EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP,
56
+ EfficientNetConfig,
57
+ EfficientNetOnnxConfig,
58
+ )
59
+
60
+ try:
61
+ if not is_vision_available():
62
+ raise OptionalDependencyNotAvailable()
63
+ except OptionalDependencyNotAvailable:
64
+ pass
65
+ else:
66
+ from .image_processing_efficientnet import EfficientNetImageProcessor
67
+
68
+ try:
69
+ if not is_torch_available():
70
+ raise OptionalDependencyNotAvailable()
71
+ except OptionalDependencyNotAvailable:
72
+ pass
73
+ else:
74
+ from .modeling_efficientnet import (
75
+ EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST,
76
+ EfficientNetForImageClassification,
77
+ EfficientNetModel,
78
+ EfficientNetPreTrainedModel,
79
+ )
80
+
81
+ else:
82
+ import sys
83
+
84
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure)
llmeval-env/lib/python3.10/site-packages/transformers/models/efficientnet/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (1.21 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/efficientnet/__pycache__/configuration_efficientnet.cpython-310.pyc ADDED
Binary file (7.31 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/efficientnet/__pycache__/convert_efficientnet_to_pytorch.cpython-310.pyc ADDED
Binary file (9.38 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/efficientnet/__pycache__/image_processing_efficientnet.cpython-310.pyc ADDED
Binary file (15.6 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/efficientnet/__pycache__/modeling_efficientnet.cpython-310.pyc ADDED
Binary file (18.8 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/efficientnet/configuration_efficientnet.py ADDED
@@ -0,0 +1,169 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 Google Research, Inc. and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ EfficientNet model configuration"""
16
+
17
+ from collections import OrderedDict
18
+ from typing import List, Mapping
19
+
20
+ from packaging import version
21
+
22
+ from ...configuration_utils import PretrainedConfig
23
+ from ...onnx import OnnxConfig
24
+ from ...utils import logging
25
+
26
+
27
+ logger = logging.get_logger(__name__)
28
+
29
+
30
+ from ..deprecated._archive_maps import EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
31
+
32
+
33
+ class EfficientNetConfig(PretrainedConfig):
34
+ r"""
35
+ This is the configuration class to store the configuration of a [`EfficientNetModel`]. It is used to instantiate an
36
+ EfficientNet model according to the specified arguments, defining the model architecture. Instantiating a
37
+ configuration with the defaults will yield a similar configuration to that of the EfficientNet
38
+ [google/efficientnet-b7](https://huggingface.co/google/efficientnet-b7) architecture.
39
+
40
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
41
+ documentation from [`PretrainedConfig`] for more information.
42
+
43
+ Args:
44
+ num_channels (`int`, *optional*, defaults to 3):
45
+ The number of input channels.
46
+ image_size (`int`, *optional*, defaults to 600):
47
+ The input image size.
48
+ width_coefficient (`float`, *optional*, defaults to 2.0):
49
+ Scaling coefficient for network width at each stage.
50
+ depth_coefficient (`float`, *optional*, defaults to 3.1):
51
+ Scaling coefficient for network depth at each stage.
52
+ depth_divisor `int`, *optional*, defaults to 8):
53
+ A unit of network width.
54
+ kernel_sizes (`List[int]`, *optional*, defaults to `[3, 3, 5, 3, 5, 5, 3]`):
55
+ List of kernel sizes to be used in each block.
56
+ in_channels (`List[int]`, *optional*, defaults to `[32, 16, 24, 40, 80, 112, 192]`):
57
+ List of input channel sizes to be used in each block for convolutional layers.
58
+ out_channels (`List[int]`, *optional*, defaults to `[16, 24, 40, 80, 112, 192, 320]`):
59
+ List of output channel sizes to be used in each block for convolutional layers.
60
+ depthwise_padding (`List[int]`, *optional*, defaults to `[]`):
61
+ List of block indices with square padding.
62
+ strides (`List[int]`, *optional*, defaults to `[1, 2, 2, 2, 1, 2, 1]`):
63
+ List of stride sizes to be used in each block for convolutional layers.
64
+ num_block_repeats (`List[int]`, *optional*, defaults to `[1, 2, 2, 3, 3, 4, 1]`):
65
+ List of the number of times each block is to repeated.
66
+ expand_ratios (`List[int]`, *optional*, defaults to `[1, 6, 6, 6, 6, 6, 6]`):
67
+ List of scaling coefficient of each block.
68
+ squeeze_expansion_ratio (`float`, *optional*, defaults to 0.25):
69
+ Squeeze expansion ratio.
70
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
71
+ The non-linear activation function (function or string) in each block. If string, `"gelu"`, `"relu"`,
72
+ `"selu", `"gelu_new"`, `"silu"` and `"mish"` are supported.
73
+ hiddem_dim (`int`, *optional*, defaults to 1280):
74
+ The hidden dimension of the layer before the classification head.
75
+ pooling_type (`str` or `function`, *optional*, defaults to `"mean"`):
76
+ Type of final pooling to be applied before the dense classification head. Available options are [`"mean"`,
77
+ `"max"`]
78
+ initializer_range (`float`, *optional*, defaults to 0.02):
79
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
80
+ batch_norm_eps (`float`, *optional*, defaults to 1e-3):
81
+ The epsilon used by the batch normalization layers.
82
+ batch_norm_momentum (`float`, *optional*, defaults to 0.99):
83
+ The momentum used by the batch normalization layers.
84
+ dropout_rate (`float`, *optional*, defaults to 0.5):
85
+ The dropout rate to be applied before final classifier layer.
86
+ drop_connect_rate (`float`, *optional*, defaults to 0.2):
87
+ The drop rate for skip connections.
88
+
89
+ Example:
90
+ ```python
91
+ >>> from transformers import EfficientNetConfig, EfficientNetModel
92
+
93
+ >>> # Initializing a EfficientNet efficientnet-b7 style configuration
94
+ >>> configuration = EfficientNetConfig()
95
+
96
+ >>> # Initializing a model (with random weights) from the efficientnet-b7 style configuration
97
+ >>> model = EfficientNetModel(configuration)
98
+
99
+ >>> # Accessing the model configuration
100
+ >>> configuration = model.config
101
+ ```"""
102
+
103
+ model_type = "efficientnet"
104
+
105
+ def __init__(
106
+ self,
107
+ num_channels: int = 3,
108
+ image_size: int = 600,
109
+ width_coefficient: float = 2.0,
110
+ depth_coefficient: float = 3.1,
111
+ depth_divisor: int = 8,
112
+ kernel_sizes: List[int] = [3, 3, 5, 3, 5, 5, 3],
113
+ in_channels: List[int] = [32, 16, 24, 40, 80, 112, 192],
114
+ out_channels: List[int] = [16, 24, 40, 80, 112, 192, 320],
115
+ depthwise_padding: List[int] = [],
116
+ strides: List[int] = [1, 2, 2, 2, 1, 2, 1],
117
+ num_block_repeats: List[int] = [1, 2, 2, 3, 3, 4, 1],
118
+ expand_ratios: List[int] = [1, 6, 6, 6, 6, 6, 6],
119
+ squeeze_expansion_ratio: float = 0.25,
120
+ hidden_act: str = "swish",
121
+ hidden_dim: int = 2560,
122
+ pooling_type: str = "mean",
123
+ initializer_range: float = 0.02,
124
+ batch_norm_eps: float = 0.001,
125
+ batch_norm_momentum: float = 0.99,
126
+ dropout_rate: float = 0.5,
127
+ drop_connect_rate: float = 0.2,
128
+ **kwargs,
129
+ ):
130
+ super().__init__(**kwargs)
131
+
132
+ self.num_channels = num_channels
133
+ self.image_size = image_size
134
+ self.width_coefficient = width_coefficient
135
+ self.depth_coefficient = depth_coefficient
136
+ self.depth_divisor = depth_divisor
137
+ self.kernel_sizes = kernel_sizes
138
+ self.in_channels = in_channels
139
+ self.out_channels = out_channels
140
+ self.depthwise_padding = depthwise_padding
141
+ self.strides = strides
142
+ self.num_block_repeats = num_block_repeats
143
+ self.expand_ratios = expand_ratios
144
+ self.squeeze_expansion_ratio = squeeze_expansion_ratio
145
+ self.hidden_act = hidden_act
146
+ self.hidden_dim = hidden_dim
147
+ self.pooling_type = pooling_type
148
+ self.initializer_range = initializer_range
149
+ self.batch_norm_eps = batch_norm_eps
150
+ self.batch_norm_momentum = batch_norm_momentum
151
+ self.dropout_rate = dropout_rate
152
+ self.drop_connect_rate = drop_connect_rate
153
+ self.num_hidden_layers = sum(num_block_repeats) * 4
154
+
155
+
156
+ class EfficientNetOnnxConfig(OnnxConfig):
157
+ torch_onnx_minimum_version = version.parse("1.11")
158
+
159
+ @property
160
+ def inputs(self) -> Mapping[str, Mapping[int, str]]:
161
+ return OrderedDict(
162
+ [
163
+ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
164
+ ]
165
+ )
166
+
167
+ @property
168
+ def atol_for_validation(self) -> float:
169
+ return 1e-5
llmeval-env/lib/python3.10/site-packages/transformers/models/efficientnet/convert_efficientnet_to_pytorch.py ADDED
@@ -0,0 +1,339 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 The HuggingFace Inc. team.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Convert EfficientNet checkpoints from the original repository.
16
+
17
+ URL: https://github.com/keras-team/keras/blob/v2.11.0/keras/applications/efficientnet.py"""
18
+
19
+ import argparse
20
+ import json
21
+ import os
22
+
23
+ import numpy as np
24
+ import PIL
25
+ import requests
26
+ import tensorflow.keras.applications.efficientnet as efficientnet
27
+ import torch
28
+ from huggingface_hub import hf_hub_download
29
+ from PIL import Image
30
+ from tensorflow.keras.preprocessing import image
31
+
32
+ from transformers import (
33
+ EfficientNetConfig,
34
+ EfficientNetForImageClassification,
35
+ EfficientNetImageProcessor,
36
+ )
37
+ from transformers.utils import logging
38
+
39
+
40
+ logging.set_verbosity_info()
41
+ logger = logging.get_logger(__name__)
42
+
43
+ model_classes = {
44
+ "b0": efficientnet.EfficientNetB0,
45
+ "b1": efficientnet.EfficientNetB1,
46
+ "b2": efficientnet.EfficientNetB2,
47
+ "b3": efficientnet.EfficientNetB3,
48
+ "b4": efficientnet.EfficientNetB4,
49
+ "b5": efficientnet.EfficientNetB5,
50
+ "b6": efficientnet.EfficientNetB6,
51
+ "b7": efficientnet.EfficientNetB7,
52
+ }
53
+
54
+ CONFIG_MAP = {
55
+ "b0": {
56
+ "hidden_dim": 1280,
57
+ "width_coef": 1.0,
58
+ "depth_coef": 1.0,
59
+ "image_size": 224,
60
+ "dropout_rate": 0.2,
61
+ "dw_padding": [],
62
+ },
63
+ "b1": {
64
+ "hidden_dim": 1280,
65
+ "width_coef": 1.0,
66
+ "depth_coef": 1.1,
67
+ "image_size": 240,
68
+ "dropout_rate": 0.2,
69
+ "dw_padding": [16],
70
+ },
71
+ "b2": {
72
+ "hidden_dim": 1408,
73
+ "width_coef": 1.1,
74
+ "depth_coef": 1.2,
75
+ "image_size": 260,
76
+ "dropout_rate": 0.3,
77
+ "dw_padding": [5, 8, 16],
78
+ },
79
+ "b3": {
80
+ "hidden_dim": 1536,
81
+ "width_coef": 1.2,
82
+ "depth_coef": 1.4,
83
+ "image_size": 300,
84
+ "dropout_rate": 0.3,
85
+ "dw_padding": [5, 18],
86
+ },
87
+ "b4": {
88
+ "hidden_dim": 1792,
89
+ "width_coef": 1.4,
90
+ "depth_coef": 1.8,
91
+ "image_size": 380,
92
+ "dropout_rate": 0.4,
93
+ "dw_padding": [6],
94
+ },
95
+ "b5": {
96
+ "hidden_dim": 2048,
97
+ "width_coef": 1.6,
98
+ "depth_coef": 2.2,
99
+ "image_size": 456,
100
+ "dropout_rate": 0.4,
101
+ "dw_padding": [13, 27],
102
+ },
103
+ "b6": {
104
+ "hidden_dim": 2304,
105
+ "width_coef": 1.8,
106
+ "depth_coef": 2.6,
107
+ "image_size": 528,
108
+ "dropout_rate": 0.5,
109
+ "dw_padding": [31],
110
+ },
111
+ "b7": {
112
+ "hidden_dim": 2560,
113
+ "width_coef": 2.0,
114
+ "depth_coef": 3.1,
115
+ "image_size": 600,
116
+ "dropout_rate": 0.5,
117
+ "dw_padding": [18],
118
+ },
119
+ }
120
+
121
+
122
+ def get_efficientnet_config(model_name):
123
+ config = EfficientNetConfig()
124
+ config.hidden_dim = CONFIG_MAP[model_name]["hidden_dim"]
125
+ config.width_coefficient = CONFIG_MAP[model_name]["width_coef"]
126
+ config.depth_coefficient = CONFIG_MAP[model_name]["depth_coef"]
127
+ config.image_size = CONFIG_MAP[model_name]["image_size"]
128
+ config.dropout_rate = CONFIG_MAP[model_name]["dropout_rate"]
129
+ config.depthwise_padding = CONFIG_MAP[model_name]["dw_padding"]
130
+
131
+ repo_id = "huggingface/label-files"
132
+ filename = "imagenet-1k-id2label.json"
133
+ config.num_labels = 1000
134
+ id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r"))
135
+ id2label = {int(k): v for k, v in id2label.items()}
136
+
137
+ config.id2label = id2label
138
+ config.label2id = {v: k for k, v in id2label.items()}
139
+ return config
140
+
141
+
142
+ # We will verify our results on an image of cute cats
143
+ def prepare_img():
144
+ url = "http://images.cocodataset.org/val2017/000000039769.jpg"
145
+ im = Image.open(requests.get(url, stream=True).raw)
146
+ return im
147
+
148
+
149
+ def convert_image_processor(model_name):
150
+ size = CONFIG_MAP[model_name]["image_size"]
151
+ preprocessor = EfficientNetImageProcessor(
152
+ size={"height": size, "width": size},
153
+ image_mean=[0.485, 0.456, 0.406],
154
+ image_std=[0.47853944, 0.4732864, 0.47434163],
155
+ do_center_crop=False,
156
+ )
157
+ return preprocessor
158
+
159
+
160
+ # here we list all keys to be renamed (original name on the left, our name on the right)
161
+ def rename_keys(original_param_names):
162
+ block_names = [v.split("_")[0].split("block")[1] for v in original_param_names if v.startswith("block")]
163
+ block_names = sorted(set(block_names))
164
+ num_blocks = len(block_names)
165
+ block_name_mapping = {b: str(i) for b, i in zip(block_names, range(num_blocks))}
166
+
167
+ rename_keys = []
168
+ rename_keys.append(("stem_conv/kernel:0", "embeddings.convolution.weight"))
169
+ rename_keys.append(("stem_bn/gamma:0", "embeddings.batchnorm.weight"))
170
+ rename_keys.append(("stem_bn/beta:0", "embeddings.batchnorm.bias"))
171
+ rename_keys.append(("stem_bn/moving_mean:0", "embeddings.batchnorm.running_mean"))
172
+ rename_keys.append(("stem_bn/moving_variance:0", "embeddings.batchnorm.running_var"))
173
+
174
+ for b in block_names:
175
+ hf_b = block_name_mapping[b]
176
+ rename_keys.append((f"block{b}_expand_conv/kernel:0", f"encoder.blocks.{hf_b}.expansion.expand_conv.weight"))
177
+ rename_keys.append((f"block{b}_expand_bn/gamma:0", f"encoder.blocks.{hf_b}.expansion.expand_bn.weight"))
178
+ rename_keys.append((f"block{b}_expand_bn/beta:0", f"encoder.blocks.{hf_b}.expansion.expand_bn.bias"))
179
+ rename_keys.append(
180
+ (f"block{b}_expand_bn/moving_mean:0", f"encoder.blocks.{hf_b}.expansion.expand_bn.running_mean")
181
+ )
182
+ rename_keys.append(
183
+ (f"block{b}_expand_bn/moving_variance:0", f"encoder.blocks.{hf_b}.expansion.expand_bn.running_var")
184
+ )
185
+ rename_keys.append(
186
+ (f"block{b}_dwconv/depthwise_kernel:0", f"encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight")
187
+ )
188
+ rename_keys.append((f"block{b}_bn/gamma:0", f"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight"))
189
+ rename_keys.append((f"block{b}_bn/beta:0", f"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias"))
190
+ rename_keys.append(
191
+ (f"block{b}_bn/moving_mean:0", f"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean")
192
+ )
193
+ rename_keys.append(
194
+ (f"block{b}_bn/moving_variance:0", f"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var")
195
+ )
196
+
197
+ rename_keys.append((f"block{b}_se_reduce/kernel:0", f"encoder.blocks.{hf_b}.squeeze_excite.reduce.weight"))
198
+ rename_keys.append((f"block{b}_se_reduce/bias:0", f"encoder.blocks.{hf_b}.squeeze_excite.reduce.bias"))
199
+ rename_keys.append((f"block{b}_se_expand/kernel:0", f"encoder.blocks.{hf_b}.squeeze_excite.expand.weight"))
200
+ rename_keys.append((f"block{b}_se_expand/bias:0", f"encoder.blocks.{hf_b}.squeeze_excite.expand.bias"))
201
+ rename_keys.append(
202
+ (f"block{b}_project_conv/kernel:0", f"encoder.blocks.{hf_b}.projection.project_conv.weight")
203
+ )
204
+ rename_keys.append((f"block{b}_project_bn/gamma:0", f"encoder.blocks.{hf_b}.projection.project_bn.weight"))
205
+ rename_keys.append((f"block{b}_project_bn/beta:0", f"encoder.blocks.{hf_b}.projection.project_bn.bias"))
206
+ rename_keys.append(
207
+ (f"block{b}_project_bn/moving_mean:0", f"encoder.blocks.{hf_b}.projection.project_bn.running_mean")
208
+ )
209
+ rename_keys.append(
210
+ (f"block{b}_project_bn/moving_variance:0", f"encoder.blocks.{hf_b}.projection.project_bn.running_var")
211
+ )
212
+
213
+ rename_keys.append(("top_conv/kernel:0", "encoder.top_conv.weight"))
214
+ rename_keys.append(("top_bn/gamma:0", "encoder.top_bn.weight"))
215
+ rename_keys.append(("top_bn/beta:0", "encoder.top_bn.bias"))
216
+ rename_keys.append(("top_bn/moving_mean:0", "encoder.top_bn.running_mean"))
217
+ rename_keys.append(("top_bn/moving_variance:0", "encoder.top_bn.running_var"))
218
+
219
+ key_mapping = {}
220
+ for item in rename_keys:
221
+ if item[0] in original_param_names:
222
+ key_mapping[item[0]] = "efficientnet." + item[1]
223
+
224
+ key_mapping["predictions/kernel:0"] = "classifier.weight"
225
+ key_mapping["predictions/bias:0"] = "classifier.bias"
226
+ return key_mapping
227
+
228
+
229
+ def replace_params(hf_params, tf_params, key_mapping):
230
+ for key, value in tf_params.items():
231
+ if "normalization" in key:
232
+ continue
233
+
234
+ hf_key = key_mapping[key]
235
+ if "_conv" in key and "kernel" in key:
236
+ new_hf_value = torch.from_numpy(value).permute(3, 2, 0, 1)
237
+ elif "depthwise_kernel" in key:
238
+ new_hf_value = torch.from_numpy(value).permute(2, 3, 0, 1)
239
+ elif "kernel" in key:
240
+ new_hf_value = torch.from_numpy(np.transpose(value))
241
+ else:
242
+ new_hf_value = torch.from_numpy(value)
243
+
244
+ # Replace HF parameters with original TF model parameters
245
+ assert hf_params[hf_key].shape == new_hf_value.shape
246
+ hf_params[hf_key].copy_(new_hf_value)
247
+
248
+
249
+ @torch.no_grad()
250
+ def convert_efficientnet_checkpoint(model_name, pytorch_dump_folder_path, save_model, push_to_hub):
251
+ """
252
+ Copy/paste/tweak model's weights to our EfficientNet structure.
253
+ """
254
+ # Load original model
255
+ original_model = model_classes[model_name](
256
+ include_top=True,
257
+ weights="imagenet",
258
+ input_tensor=None,
259
+ input_shape=None,
260
+ pooling=None,
261
+ classes=1000,
262
+ classifier_activation="softmax",
263
+ )
264
+
265
+ tf_params = original_model.trainable_variables
266
+ tf_non_train_params = original_model.non_trainable_variables
267
+ tf_params = {param.name: param.numpy() for param in tf_params}
268
+ for param in tf_non_train_params:
269
+ tf_params[param.name] = param.numpy()
270
+ tf_param_names = list(tf_params.keys())
271
+
272
+ # Load HuggingFace model
273
+ config = get_efficientnet_config(model_name)
274
+ hf_model = EfficientNetForImageClassification(config).eval()
275
+ hf_params = hf_model.state_dict()
276
+
277
+ # Create src-to-dst parameter name mapping dictionary
278
+ print("Converting parameters...")
279
+ key_mapping = rename_keys(tf_param_names)
280
+ replace_params(hf_params, tf_params, key_mapping)
281
+
282
+ # Initialize preprocessor and preprocess input image
283
+ preprocessor = convert_image_processor(model_name)
284
+ inputs = preprocessor(images=prepare_img(), return_tensors="pt")
285
+
286
+ # HF model inference
287
+ hf_model.eval()
288
+ with torch.no_grad():
289
+ outputs = hf_model(**inputs)
290
+ hf_logits = outputs.logits.detach().numpy()
291
+
292
+ # Original model inference
293
+ original_model.trainable = False
294
+ image_size = CONFIG_MAP[model_name]["image_size"]
295
+ img = prepare_img().resize((image_size, image_size), resample=PIL.Image.NEAREST)
296
+ x = image.img_to_array(img)
297
+ x = np.expand_dims(x, axis=0)
298
+ original_logits = original_model.predict(x)
299
+
300
+ # Check whether original and HF model outputs match -> np.allclose
301
+ assert np.allclose(original_logits, hf_logits, atol=1e-3), "The predicted logits are not the same."
302
+ print("Model outputs match!")
303
+
304
+ if save_model:
305
+ # Create folder to save model
306
+ if not os.path.isdir(pytorch_dump_folder_path):
307
+ os.mkdir(pytorch_dump_folder_path)
308
+ # Save converted model and image processor
309
+ hf_model.save_pretrained(pytorch_dump_folder_path)
310
+ preprocessor.save_pretrained(pytorch_dump_folder_path)
311
+
312
+ if push_to_hub:
313
+ # Push model and image processor to hub
314
+ print(f"Pushing converted {model_name} to the hub...")
315
+ model_name = f"efficientnet-{model_name}"
316
+ preprocessor.push_to_hub(model_name)
317
+ hf_model.push_to_hub(model_name)
318
+
319
+
320
+ if __name__ == "__main__":
321
+ parser = argparse.ArgumentParser()
322
+ # Required parameters
323
+ parser.add_argument(
324
+ "--model_name",
325
+ default="b0",
326
+ type=str,
327
+ help="Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].",
328
+ )
329
+ parser.add_argument(
330
+ "--pytorch_dump_folder_path",
331
+ default="hf_model",
332
+ type=str,
333
+ help="Path to the output PyTorch model directory.",
334
+ )
335
+ parser.add_argument("--save_model", action="store_true", help="Save model to local")
336
+ parser.add_argument("--push_to_hub", action="store_true", help="Push model and image processor to the hub")
337
+
338
+ args = parser.parse_args()
339
+ convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
llmeval-env/lib/python3.10/site-packages/transformers/models/efficientnet/image_processing_efficientnet.py ADDED
@@ -0,0 +1,387 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Image processor class for EfficientNet."""
16
+
17
+ from typing import Dict, List, Optional, Union
18
+
19
+ import numpy as np
20
+
21
+ from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
22
+ from ...image_transforms import rescale, resize, to_channel_dimension_format
23
+ from ...image_utils import (
24
+ IMAGENET_STANDARD_MEAN,
25
+ IMAGENET_STANDARD_STD,
26
+ ChannelDimension,
27
+ ImageInput,
28
+ PILImageResampling,
29
+ infer_channel_dimension_format,
30
+ is_scaled_image,
31
+ make_list_of_images,
32
+ to_numpy_array,
33
+ valid_images,
34
+ validate_kwargs,
35
+ validate_preprocess_arguments,
36
+ )
37
+ from ...utils import TensorType, is_vision_available, logging
38
+
39
+
40
+ if is_vision_available():
41
+ import PIL
42
+
43
+
44
+ logger = logging.get_logger(__name__)
45
+
46
+
47
+ class EfficientNetImageProcessor(BaseImageProcessor):
48
+ r"""
49
+ Constructs a EfficientNet image processor.
50
+
51
+ Args:
52
+ do_resize (`bool`, *optional*, defaults to `True`):
53
+ Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by
54
+ `do_resize` in `preprocess`.
55
+ size (`Dict[str, int]` *optional*, defaults to `{"height": 346, "width": 346}`):
56
+ Size of the image after `resize`. Can be overridden by `size` in `preprocess`.
57
+ resample (`PILImageResampling` filter, *optional*, defaults to 0):
58
+ Resampling filter to use if resizing the image. Can be overridden by `resample` in `preprocess`.
59
+ do_center_crop (`bool`, *optional*, defaults to `False`):
60
+ Whether to center crop the image. If the input size is smaller than `crop_size` along any edge, the image
61
+ is padded with 0's and then center cropped. Can be overridden by `do_center_crop` in `preprocess`.
62
+ crop_size (`Dict[str, int]`, *optional*, defaults to `{"height": 289, "width": 289}`):
63
+ Desired output size when applying center-cropping. Can be overridden by `crop_size` in `preprocess`.
64
+ rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
65
+ Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the
66
+ `preprocess` method.
67
+ rescale_offset (`bool`, *optional*, defaults to `False`):
68
+ Whether to rescale the image between [-scale_range, scale_range] instead of [0, scale_range]. Can be
69
+ overridden by the `rescale_factor` parameter in the `preprocess` method.
70
+ do_rescale (`bool`, *optional*, defaults to `True`):
71
+ Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale`
72
+ parameter in the `preprocess` method.
73
+ do_normalize (`bool`, *optional*, defaults to `True`):
74
+ Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
75
+ method.
76
+ image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
77
+ Mean to use if normalizing the image. This is a float or list of floats the length of the number of
78
+ channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
79
+ image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
80
+ Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
81
+ number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
82
+ include_top (`bool`, *optional*, defaults to `True`):
83
+ Whether to rescale the image again. Should be set to True if the inputs are used for image classification.
84
+ """
85
+
86
+ model_input_names = ["pixel_values"]
87
+
88
+ def __init__(
89
+ self,
90
+ do_resize: bool = True,
91
+ size: Dict[str, int] = None,
92
+ resample: PILImageResampling = PIL.Image.NEAREST,
93
+ do_center_crop: bool = False,
94
+ crop_size: Dict[str, int] = None,
95
+ rescale_factor: Union[int, float] = 1 / 255,
96
+ rescale_offset: bool = False,
97
+ do_rescale: bool = True,
98
+ do_normalize: bool = True,
99
+ image_mean: Optional[Union[float, List[float]]] = None,
100
+ image_std: Optional[Union[float, List[float]]] = None,
101
+ include_top: bool = True,
102
+ **kwargs,
103
+ ) -> None:
104
+ super().__init__(**kwargs)
105
+ size = size if size is not None else {"height": 346, "width": 346}
106
+ size = get_size_dict(size)
107
+ crop_size = crop_size if crop_size is not None else {"height": 289, "width": 289}
108
+ crop_size = get_size_dict(crop_size, param_name="crop_size")
109
+
110
+ self.do_resize = do_resize
111
+ self.size = size
112
+ self.resample = resample
113
+ self.do_center_crop = do_center_crop
114
+ self.crop_size = crop_size
115
+ self.do_rescale = do_rescale
116
+ self.rescale_factor = rescale_factor
117
+ self.rescale_offset = rescale_offset
118
+ self.do_normalize = do_normalize
119
+ self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
120
+ self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD
121
+ self.include_top = include_top
122
+ self._valid_processor_keys = [
123
+ "images",
124
+ "do_resize",
125
+ "size",
126
+ "resample",
127
+ "do_center_crop",
128
+ "crop_size",
129
+ "do_rescale",
130
+ "rescale_factor",
131
+ "rescale_offset",
132
+ "do_normalize",
133
+ "image_mean",
134
+ "image_std",
135
+ "include_top",
136
+ "return_tensors",
137
+ "data_format",
138
+ "input_data_format",
139
+ ]
140
+
141
+ # Copied from transformers.models.vit.image_processing_vit.ViTImageProcessor.resize with PILImageResampling.BILINEAR->PILImageResampling.NEAREST
142
+ def resize(
143
+ self,
144
+ image: np.ndarray,
145
+ size: Dict[str, int],
146
+ resample: PILImageResampling = PILImageResampling.NEAREST,
147
+ data_format: Optional[Union[str, ChannelDimension]] = None,
148
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
149
+ **kwargs,
150
+ ) -> np.ndarray:
151
+ """
152
+ Resize an image to `(size["height"], size["width"])`.
153
+
154
+ Args:
155
+ image (`np.ndarray`):
156
+ Image to resize.
157
+ size (`Dict[str, int]`):
158
+ Dictionary in the format `{"height": int, "width": int}` specifying the size of the output image.
159
+ resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.NEAREST`):
160
+ `PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.NEAREST`.
161
+ data_format (`ChannelDimension` or `str`, *optional*):
162
+ The channel dimension format for the output image. If unset, the channel dimension format of the input
163
+ image is used. Can be one of:
164
+ - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
165
+ - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
166
+ - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
167
+ input_data_format (`ChannelDimension` or `str`, *optional*):
168
+ The channel dimension format for the input image. If unset, the channel dimension format is inferred
169
+ from the input image. Can be one of:
170
+ - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
171
+ - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
172
+ - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
173
+
174
+ Returns:
175
+ `np.ndarray`: The resized image.
176
+ """
177
+ size = get_size_dict(size)
178
+ if "height" not in size or "width" not in size:
179
+ raise ValueError(f"The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}")
180
+ output_size = (size["height"], size["width"])
181
+ return resize(
182
+ image,
183
+ size=output_size,
184
+ resample=resample,
185
+ data_format=data_format,
186
+ input_data_format=input_data_format,
187
+ **kwargs,
188
+ )
189
+
190
+ def rescale(
191
+ self,
192
+ image: np.ndarray,
193
+ scale: Union[int, float],
194
+ offset: bool = True,
195
+ data_format: Optional[Union[str, ChannelDimension]] = None,
196
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
197
+ **kwargs,
198
+ ):
199
+ """
200
+ Rescale an image by a scale factor.
201
+
202
+ If `offset` is `True`, the image has its values rescaled by `scale` and then offset by 1. If `scale` is
203
+ 1/127.5, the image is rescaled between [-1, 1].
204
+ image = image * scale - 1
205
+
206
+ If `offset` is `False`, and `scale` is 1/255, the image is rescaled between [0, 1].
207
+ image = image * scale
208
+
209
+ Args:
210
+ image (`np.ndarray`):
211
+ Image to rescale.
212
+ scale (`int` or `float`):
213
+ Scale to apply to the image.
214
+ offset (`bool`, *optional*):
215
+ Whether to scale the image in both negative and positive directions.
216
+ data_format (`str` or `ChannelDimension`, *optional*):
217
+ The channel dimension format of the image. If not provided, it will be the same as the input image.
218
+ input_data_format (`ChannelDimension` or `str`, *optional*):
219
+ The channel dimension format of the input image. If not provided, it will be inferred.
220
+ """
221
+ rescaled_image = rescale(
222
+ image, scale=scale, data_format=data_format, input_data_format=input_data_format, **kwargs
223
+ )
224
+
225
+ if offset:
226
+ rescaled_image = rescaled_image - 1
227
+
228
+ return rescaled_image
229
+
230
+ def preprocess(
231
+ self,
232
+ images: ImageInput,
233
+ do_resize: bool = None,
234
+ size: Dict[str, int] = None,
235
+ resample=None,
236
+ do_center_crop: bool = None,
237
+ crop_size: Dict[str, int] = None,
238
+ do_rescale: bool = None,
239
+ rescale_factor: float = None,
240
+ rescale_offset: bool = None,
241
+ do_normalize: bool = None,
242
+ image_mean: Optional[Union[float, List[float]]] = None,
243
+ image_std: Optional[Union[float, List[float]]] = None,
244
+ include_top: bool = None,
245
+ return_tensors: Optional[Union[str, TensorType]] = None,
246
+ data_format: ChannelDimension = ChannelDimension.FIRST,
247
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
248
+ **kwargs,
249
+ ) -> PIL.Image.Image:
250
+ """
251
+ Preprocess an image or batch of images.
252
+
253
+ Args:
254
+ images (`ImageInput`):
255
+ Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
256
+ passing in images with pixel values between 0 and 1, set `do_rescale=False`.
257
+ do_resize (`bool`, *optional*, defaults to `self.do_resize`):
258
+ Whether to resize the image.
259
+ size (`Dict[str, int]`, *optional*, defaults to `self.size`):
260
+ Size of the image after `resize`.
261
+ resample (`PILImageResampling`, *optional*, defaults to `self.resample`):
262
+ PILImageResampling filter to use if resizing the image Only has an effect if `do_resize` is set to
263
+ `True`.
264
+ do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`):
265
+ Whether to center crop the image.
266
+ crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
267
+ Size of the image after center crop. If one edge the image is smaller than `crop_size`, it will be
268
+ padded with zeros and then cropped
269
+ do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
270
+ Whether to rescale the image values between [0 - 1].
271
+ rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
272
+ Rescale factor to rescale the image by if `do_rescale` is set to `True`.
273
+ rescale_offset (`bool`, *optional*, defaults to `self.rescale_offset`):
274
+ Whether to rescale the image between [-scale_range, scale_range] instead of [0, scale_range].
275
+ do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
276
+ Whether to normalize the image.
277
+ image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
278
+ Image mean.
279
+ image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
280
+ Image standard deviation.
281
+ include_top (`bool`, *optional*, defaults to `self.include_top`):
282
+ Rescales the image again for image classification if set to True.
283
+ return_tensors (`str` or `TensorType`, *optional*):
284
+ The type of tensors to return. Can be one of:
285
+ - `None`: Return a list of `np.ndarray`.
286
+ - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
287
+ - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
288
+ - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
289
+ - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
290
+ data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
291
+ The channel dimension format for the output image. Can be one of:
292
+ - `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
293
+ - `ChannelDimension.LAST`: image in (height, width, num_channels) format.
294
+ input_data_format (`ChannelDimension` or `str`, *optional*):
295
+ The channel dimension format for the input image. If unset, the channel dimension format is inferred
296
+ from the input image. Can be one of:
297
+ - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
298
+ - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
299
+ - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
300
+ """
301
+ do_resize = do_resize if do_resize is not None else self.do_resize
302
+ resample = resample if resample is not None else self.resample
303
+ do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop
304
+ do_rescale = do_rescale if do_rescale is not None else self.do_rescale
305
+ rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
306
+ rescale_offset = rescale_offset if rescale_offset is not None else self.rescale_offset
307
+ do_normalize = do_normalize if do_normalize is not None else self.do_normalize
308
+ image_mean = image_mean if image_mean is not None else self.image_mean
309
+ image_std = image_std if image_std is not None else self.image_std
310
+ include_top = include_top if include_top is not None else self.include_top
311
+
312
+ size = size if size is not None else self.size
313
+ size = get_size_dict(size)
314
+ crop_size = crop_size if crop_size is not None else self.crop_size
315
+ crop_size = get_size_dict(crop_size, param_name="crop_size")
316
+
317
+ images = make_list_of_images(images)
318
+
319
+ validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
320
+
321
+ if not valid_images(images):
322
+ raise ValueError(
323
+ "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
324
+ "torch.Tensor, tf.Tensor or jax.ndarray."
325
+ )
326
+ validate_preprocess_arguments(
327
+ do_rescale=do_rescale,
328
+ rescale_factor=rescale_factor,
329
+ do_normalize=do_normalize,
330
+ image_mean=image_mean,
331
+ image_std=image_std,
332
+ do_center_crop=do_center_crop,
333
+ crop_size=crop_size,
334
+ do_resize=do_resize,
335
+ size=size,
336
+ resample=resample,
337
+ )
338
+ # All transformations expect numpy arrays.
339
+ images = [to_numpy_array(image) for image in images]
340
+
341
+ if is_scaled_image(images[0]) and do_rescale:
342
+ logger.warning_once(
343
+ "It looks like you are trying to rescale already rescaled images. If the input"
344
+ " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
345
+ )
346
+
347
+ if input_data_format is None:
348
+ # We assume that all images have the same channel dimension format.
349
+ input_data_format = infer_channel_dimension_format(images[0])
350
+
351
+ if do_resize:
352
+ images = [
353
+ self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format)
354
+ for image in images
355
+ ]
356
+
357
+ if do_center_crop:
358
+ images = [
359
+ self.center_crop(image=image, size=crop_size, input_data_format=input_data_format) for image in images
360
+ ]
361
+
362
+ if do_rescale:
363
+ images = [
364
+ self.rescale(
365
+ image=image, scale=rescale_factor, offset=rescale_offset, input_data_format=input_data_format
366
+ )
367
+ for image in images
368
+ ]
369
+
370
+ if do_normalize:
371
+ images = [
372
+ self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
373
+ for image in images
374
+ ]
375
+
376
+ if include_top:
377
+ images = [
378
+ self.normalize(image=image, mean=0, std=image_std, input_data_format=input_data_format)
379
+ for image in images
380
+ ]
381
+
382
+ images = [
383
+ to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
384
+ ]
385
+
386
+ data = {"pixel_values": images}
387
+ return BatchFeature(data=data, tensor_type=return_tensors)
llmeval-env/lib/python3.10/site-packages/transformers/models/efficientnet/modeling_efficientnet.py ADDED
@@ -0,0 +1,648 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 Google Research, Inc. and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ PyTorch EfficientNet model."""
16
+
17
+
18
+ import math
19
+ from typing import Optional, Tuple, Union
20
+
21
+ import torch
22
+ import torch.utils.checkpoint
23
+ from torch import nn
24
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
25
+
26
+ from ...activations import ACT2FN
27
+ from ...modeling_outputs import (
28
+ BaseModelOutputWithNoAttention,
29
+ BaseModelOutputWithPoolingAndNoAttention,
30
+ ImageClassifierOutputWithNoAttention,
31
+ )
32
+ from ...modeling_utils import PreTrainedModel
33
+ from ...utils import (
34
+ add_code_sample_docstrings,
35
+ add_start_docstrings,
36
+ add_start_docstrings_to_model_forward,
37
+ logging,
38
+ )
39
+ from .configuration_efficientnet import EfficientNetConfig
40
+
41
+
42
+ logger = logging.get_logger(__name__)
43
+
44
+ # General docstring
45
+ _CONFIG_FOR_DOC = "EfficientNetConfig"
46
+
47
+ # Base docstring
48
+ _CHECKPOINT_FOR_DOC = "google/efficientnet-b7"
49
+ _EXPECTED_OUTPUT_SHAPE = [1, 768, 7, 7]
50
+
51
+ # Image classification docstring
52
+ _IMAGE_CLASS_CHECKPOINT = "google/efficientnet-b7"
53
+ _IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat"
54
+
55
+
56
+ from ..deprecated._archive_maps import EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
57
+
58
+
59
+ EFFICIENTNET_START_DOCSTRING = r"""
60
+ This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
61
+ as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
62
+ behavior.
63
+
64
+ Parameters:
65
+ config ([`EfficientNetConfig`]): Model configuration class with all the parameters of the model.
66
+ Initializing with a config file does not load the weights associated with the model, only the
67
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
68
+ """
69
+
70
+ EFFICIENTNET_INPUTS_DOCSTRING = r"""
71
+ Args:
72
+ pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
73
+ Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
74
+ [`AutoImageProcessor.__call__`] for details.
75
+
76
+ output_hidden_states (`bool`, *optional*):
77
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
78
+ more detail.
79
+ return_dict (`bool`, *optional*):
80
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
81
+ """
82
+
83
+
84
+ def round_filters(config: EfficientNetConfig, num_channels: int):
85
+ r"""
86
+ Round number of filters based on depth multiplier.
87
+ """
88
+ divisor = config.depth_divisor
89
+ num_channels *= config.width_coefficient
90
+ new_dim = max(divisor, int(num_channels + divisor / 2) // divisor * divisor)
91
+
92
+ # Make sure that round down does not go down by more than 10%.
93
+ if new_dim < 0.9 * num_channels:
94
+ new_dim += divisor
95
+
96
+ return int(new_dim)
97
+
98
+
99
+ def correct_pad(kernel_size: Union[int, Tuple], adjust: bool = True):
100
+ r"""
101
+ Utility function to get the tuple padding value for the depthwise convolution.
102
+
103
+ Args:
104
+ kernel_size (`int` or `tuple`):
105
+ Kernel size of the convolution layers.
106
+ adjust (`bool`, *optional*, defaults to `True`):
107
+ Adjusts padding value to apply to right and bottom sides of the input.
108
+ """
109
+ if isinstance(kernel_size, int):
110
+ kernel_size = (kernel_size, kernel_size)
111
+
112
+ correct = (kernel_size[0] // 2, kernel_size[1] // 2)
113
+ if adjust:
114
+ return (correct[1] - 1, correct[1], correct[0] - 1, correct[0])
115
+ else:
116
+ return (correct[1], correct[1], correct[0], correct[0])
117
+
118
+
119
+ class EfficientNetEmbeddings(nn.Module):
120
+ r"""
121
+ A module that corresponds to the stem module of the original work.
122
+ """
123
+
124
+ def __init__(self, config: EfficientNetConfig):
125
+ super().__init__()
126
+
127
+ self.out_dim = round_filters(config, 32)
128
+ self.padding = nn.ZeroPad2d(padding=(0, 1, 0, 1))
129
+ self.convolution = nn.Conv2d(
130
+ config.num_channels, self.out_dim, kernel_size=3, stride=2, padding="valid", bias=False
131
+ )
132
+ self.batchnorm = nn.BatchNorm2d(self.out_dim, eps=config.batch_norm_eps, momentum=config.batch_norm_momentum)
133
+ self.activation = ACT2FN[config.hidden_act]
134
+
135
+ def forward(self, pixel_values: torch.Tensor) -> torch.Tensor:
136
+ features = self.padding(pixel_values)
137
+ features = self.convolution(features)
138
+ features = self.batchnorm(features)
139
+ features = self.activation(features)
140
+
141
+ return features
142
+
143
+
144
+ class EfficientNetDepthwiseConv2d(nn.Conv2d):
145
+ def __init__(
146
+ self,
147
+ in_channels,
148
+ depth_multiplier=1,
149
+ kernel_size=3,
150
+ stride=1,
151
+ padding=0,
152
+ dilation=1,
153
+ bias=True,
154
+ padding_mode="zeros",
155
+ ):
156
+ out_channels = in_channels * depth_multiplier
157
+ super().__init__(
158
+ in_channels=in_channels,
159
+ out_channels=out_channels,
160
+ kernel_size=kernel_size,
161
+ stride=stride,
162
+ padding=padding,
163
+ dilation=dilation,
164
+ groups=in_channels,
165
+ bias=bias,
166
+ padding_mode=padding_mode,
167
+ )
168
+
169
+
170
+ class EfficientNetExpansionLayer(nn.Module):
171
+ r"""
172
+ This corresponds to the expansion phase of each block in the original implementation.
173
+ """
174
+
175
+ def __init__(self, config: EfficientNetConfig, in_dim: int, out_dim: int, stride: int):
176
+ super().__init__()
177
+ self.expand_conv = nn.Conv2d(
178
+ in_channels=in_dim,
179
+ out_channels=out_dim,
180
+ kernel_size=1,
181
+ padding="same",
182
+ bias=False,
183
+ )
184
+ self.expand_bn = nn.BatchNorm2d(num_features=out_dim, eps=config.batch_norm_eps)
185
+ self.expand_act = ACT2FN[config.hidden_act]
186
+
187
+ def forward(self, hidden_states: torch.FloatTensor) -> torch.Tensor:
188
+ # Expand phase
189
+ hidden_states = self.expand_conv(hidden_states)
190
+ hidden_states = self.expand_bn(hidden_states)
191
+ hidden_states = self.expand_act(hidden_states)
192
+
193
+ return hidden_states
194
+
195
+
196
+ class EfficientNetDepthwiseLayer(nn.Module):
197
+ r"""
198
+ This corresponds to the depthwise convolution phase of each block in the original implementation.
199
+ """
200
+
201
+ def __init__(
202
+ self,
203
+ config: EfficientNetConfig,
204
+ in_dim: int,
205
+ stride: int,
206
+ kernel_size: int,
207
+ adjust_padding: bool,
208
+ ):
209
+ super().__init__()
210
+ self.stride = stride
211
+ conv_pad = "valid" if self.stride == 2 else "same"
212
+ padding = correct_pad(kernel_size, adjust=adjust_padding)
213
+
214
+ self.depthwise_conv_pad = nn.ZeroPad2d(padding=padding)
215
+ self.depthwise_conv = EfficientNetDepthwiseConv2d(
216
+ in_dim, kernel_size=kernel_size, stride=stride, padding=conv_pad, bias=False
217
+ )
218
+ self.depthwise_norm = nn.BatchNorm2d(
219
+ num_features=in_dim, eps=config.batch_norm_eps, momentum=config.batch_norm_momentum
220
+ )
221
+ self.depthwise_act = ACT2FN[config.hidden_act]
222
+
223
+ def forward(self, hidden_states: torch.FloatTensor) -> torch.Tensor:
224
+ # Depthwise convolution
225
+ if self.stride == 2:
226
+ hidden_states = self.depthwise_conv_pad(hidden_states)
227
+
228
+ hidden_states = self.depthwise_conv(hidden_states)
229
+ hidden_states = self.depthwise_norm(hidden_states)
230
+ hidden_states = self.depthwise_act(hidden_states)
231
+
232
+ return hidden_states
233
+
234
+
235
+ class EfficientNetSqueezeExciteLayer(nn.Module):
236
+ r"""
237
+ This corresponds to the Squeeze and Excitement phase of each block in the original implementation.
238
+ """
239
+
240
+ def __init__(self, config: EfficientNetConfig, in_dim: int, expand_dim: int, expand: bool = False):
241
+ super().__init__()
242
+ self.dim = expand_dim if expand else in_dim
243
+ self.dim_se = max(1, int(in_dim * config.squeeze_expansion_ratio))
244
+
245
+ self.squeeze = nn.AdaptiveAvgPool2d(output_size=1)
246
+ self.reduce = nn.Conv2d(
247
+ in_channels=self.dim,
248
+ out_channels=self.dim_se,
249
+ kernel_size=1,
250
+ padding="same",
251
+ )
252
+ self.expand = nn.Conv2d(
253
+ in_channels=self.dim_se,
254
+ out_channels=self.dim,
255
+ kernel_size=1,
256
+ padding="same",
257
+ )
258
+ self.act_reduce = ACT2FN[config.hidden_act]
259
+ self.act_expand = nn.Sigmoid()
260
+
261
+ def forward(self, hidden_states: torch.FloatTensor) -> torch.Tensor:
262
+ inputs = hidden_states
263
+ hidden_states = self.squeeze(hidden_states)
264
+ hidden_states = self.reduce(hidden_states)
265
+ hidden_states = self.act_reduce(hidden_states)
266
+
267
+ hidden_states = self.expand(hidden_states)
268
+ hidden_states = self.act_expand(hidden_states)
269
+ hidden_states = torch.mul(inputs, hidden_states)
270
+
271
+ return hidden_states
272
+
273
+
274
+ class EfficientNetFinalBlockLayer(nn.Module):
275
+ r"""
276
+ This corresponds to the final phase of each block in the original implementation.
277
+ """
278
+
279
+ def __init__(
280
+ self, config: EfficientNetConfig, in_dim: int, out_dim: int, stride: int, drop_rate: float, id_skip: bool
281
+ ):
282
+ super().__init__()
283
+ self.apply_dropout = stride == 1 and not id_skip
284
+ self.project_conv = nn.Conv2d(
285
+ in_channels=in_dim,
286
+ out_channels=out_dim,
287
+ kernel_size=1,
288
+ padding="same",
289
+ bias=False,
290
+ )
291
+ self.project_bn = nn.BatchNorm2d(
292
+ num_features=out_dim, eps=config.batch_norm_eps, momentum=config.batch_norm_momentum
293
+ )
294
+ self.dropout = nn.Dropout(p=drop_rate)
295
+
296
+ def forward(self, embeddings: torch.FloatTensor, hidden_states: torch.FloatTensor) -> torch.Tensor:
297
+ hidden_states = self.project_conv(hidden_states)
298
+ hidden_states = self.project_bn(hidden_states)
299
+
300
+ if self.apply_dropout:
301
+ hidden_states = self.dropout(hidden_states)
302
+ hidden_states = hidden_states + embeddings
303
+
304
+ return hidden_states
305
+
306
+
307
+ class EfficientNetBlock(nn.Module):
308
+ r"""
309
+ This corresponds to the expansion and depthwise convolution phase of each block in the original implementation.
310
+
311
+ Args:
312
+ config ([`EfficientNetConfig`]):
313
+ Model configuration class.
314
+ in_dim (`int`):
315
+ Number of input channels.
316
+ out_dim (`int`):
317
+ Number of output channels.
318
+ stride (`int`):
319
+ Stride size to be used in convolution layers.
320
+ expand_ratio (`int`):
321
+ Expand ratio to set the output dimensions for the expansion and squeeze-excite layers.
322
+ kernel_size (`int`):
323
+ Kernel size for the depthwise convolution layer.
324
+ drop_rate (`float`):
325
+ Dropout rate to be used in the final phase of each block.
326
+ id_skip (`bool`):
327
+ Whether to apply dropout and sum the final hidden states with the input embeddings during the final phase
328
+ of each block. Set to `True` for the first block of each stage.
329
+ adjust_padding (`bool`):
330
+ Whether to apply padding to only right and bottom side of the input kernel before the depthwise convolution
331
+ operation, set to `True` for inputs with odd input sizes.
332
+ """
333
+
334
+ def __init__(
335
+ self,
336
+ config: EfficientNetConfig,
337
+ in_dim: int,
338
+ out_dim: int,
339
+ stride: int,
340
+ expand_ratio: int,
341
+ kernel_size: int,
342
+ drop_rate: float,
343
+ id_skip: bool,
344
+ adjust_padding: bool,
345
+ ):
346
+ super().__init__()
347
+ self.expand_ratio = expand_ratio
348
+ self.expand = True if self.expand_ratio != 1 else False
349
+ expand_in_dim = in_dim * expand_ratio
350
+
351
+ if self.expand:
352
+ self.expansion = EfficientNetExpansionLayer(
353
+ config=config, in_dim=in_dim, out_dim=expand_in_dim, stride=stride
354
+ )
355
+
356
+ self.depthwise_conv = EfficientNetDepthwiseLayer(
357
+ config=config,
358
+ in_dim=expand_in_dim if self.expand else in_dim,
359
+ stride=stride,
360
+ kernel_size=kernel_size,
361
+ adjust_padding=adjust_padding,
362
+ )
363
+ self.squeeze_excite = EfficientNetSqueezeExciteLayer(
364
+ config=config, in_dim=in_dim, expand_dim=expand_in_dim, expand=self.expand
365
+ )
366
+ self.projection = EfficientNetFinalBlockLayer(
367
+ config=config,
368
+ in_dim=expand_in_dim if self.expand else in_dim,
369
+ out_dim=out_dim,
370
+ stride=stride,
371
+ drop_rate=drop_rate,
372
+ id_skip=id_skip,
373
+ )
374
+
375
+ def forward(self, hidden_states: torch.FloatTensor) -> torch.Tensor:
376
+ embeddings = hidden_states
377
+ # Expansion and depthwise convolution phase
378
+ if self.expand_ratio != 1:
379
+ hidden_states = self.expansion(hidden_states)
380
+ hidden_states = self.depthwise_conv(hidden_states)
381
+
382
+ # Squeeze and excite phase
383
+ hidden_states = self.squeeze_excite(hidden_states)
384
+ hidden_states = self.projection(embeddings, hidden_states)
385
+ return hidden_states
386
+
387
+
388
+ class EfficientNetEncoder(nn.Module):
389
+ r"""
390
+ Forward propogates the embeddings through each EfficientNet block.
391
+
392
+ Args:
393
+ config ([`EfficientNetConfig`]):
394
+ Model configuration class.
395
+ """
396
+
397
+ def __init__(self, config: EfficientNetConfig):
398
+ super().__init__()
399
+ self.config = config
400
+ self.depth_coefficient = config.depth_coefficient
401
+
402
+ def round_repeats(repeats):
403
+ # Round number of block repeats based on depth multiplier.
404
+ return int(math.ceil(self.depth_coefficient * repeats))
405
+
406
+ num_base_blocks = len(config.in_channels)
407
+ num_blocks = sum(round_repeats(n) for n in config.num_block_repeats)
408
+
409
+ curr_block_num = 0
410
+ blocks = []
411
+ for i in range(num_base_blocks):
412
+ in_dim = round_filters(config, config.in_channels[i])
413
+ out_dim = round_filters(config, config.out_channels[i])
414
+ stride = config.strides[i]
415
+ kernel_size = config.kernel_sizes[i]
416
+ expand_ratio = config.expand_ratios[i]
417
+
418
+ for j in range(round_repeats(config.num_block_repeats[i])):
419
+ id_skip = True if j == 0 else False
420
+ stride = 1 if j > 0 else stride
421
+ in_dim = out_dim if j > 0 else in_dim
422
+ adjust_padding = False if curr_block_num in config.depthwise_padding else True
423
+ drop_rate = config.drop_connect_rate * curr_block_num / num_blocks
424
+
425
+ block = EfficientNetBlock(
426
+ config=config,
427
+ in_dim=in_dim,
428
+ out_dim=out_dim,
429
+ stride=stride,
430
+ kernel_size=kernel_size,
431
+ expand_ratio=expand_ratio,
432
+ drop_rate=drop_rate,
433
+ id_skip=id_skip,
434
+ adjust_padding=adjust_padding,
435
+ )
436
+ blocks.append(block)
437
+ curr_block_num += 1
438
+
439
+ self.blocks = nn.ModuleList(blocks)
440
+ self.top_conv = nn.Conv2d(
441
+ in_channels=out_dim,
442
+ out_channels=round_filters(config, 1280),
443
+ kernel_size=1,
444
+ padding="same",
445
+ bias=False,
446
+ )
447
+ self.top_bn = nn.BatchNorm2d(
448
+ num_features=config.hidden_dim, eps=config.batch_norm_eps, momentum=config.batch_norm_momentum
449
+ )
450
+ self.top_activation = ACT2FN[config.hidden_act]
451
+
452
+ def forward(
453
+ self,
454
+ hidden_states: torch.FloatTensor,
455
+ output_hidden_states: Optional[bool] = False,
456
+ return_dict: Optional[bool] = True,
457
+ ) -> BaseModelOutputWithNoAttention:
458
+ all_hidden_states = (hidden_states,) if output_hidden_states else None
459
+
460
+ for block in self.blocks:
461
+ hidden_states = block(hidden_states)
462
+ if output_hidden_states:
463
+ all_hidden_states += (hidden_states,)
464
+
465
+ hidden_states = self.top_conv(hidden_states)
466
+ hidden_states = self.top_bn(hidden_states)
467
+ hidden_states = self.top_activation(hidden_states)
468
+
469
+ if not return_dict:
470
+ return tuple(v for v in [hidden_states, all_hidden_states] if v is not None)
471
+
472
+ return BaseModelOutputWithNoAttention(
473
+ last_hidden_state=hidden_states,
474
+ hidden_states=all_hidden_states,
475
+ )
476
+
477
+
478
+ class EfficientNetPreTrainedModel(PreTrainedModel):
479
+ """
480
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
481
+ models.
482
+ """
483
+
484
+ config_class = EfficientNetConfig
485
+ base_model_prefix = "efficientnet"
486
+ main_input_name = "pixel_values"
487
+ _no_split_modules = []
488
+
489
+ def _init_weights(self, module):
490
+ """Initialize the weights"""
491
+ if isinstance(module, (nn.Linear, nn.Conv2d)):
492
+ # Slightly different from the TF version which uses truncated_normal for initialization
493
+ # cf https://github.com/pytorch/pytorch/pull/5617
494
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
495
+ if module.bias is not None:
496
+ module.bias.data.zero_()
497
+ elif isinstance(module, nn.LayerNorm):
498
+ module.bias.data.zero_()
499
+ module.weight.data.fill_(1.0)
500
+
501
+
502
+ @add_start_docstrings(
503
+ "The bare EfficientNet model outputting raw features without any specific head on top.",
504
+ EFFICIENTNET_START_DOCSTRING,
505
+ )
506
+ class EfficientNetModel(EfficientNetPreTrainedModel):
507
+ def __init__(self, config: EfficientNetConfig):
508
+ super().__init__(config)
509
+ self.config = config
510
+ self.embeddings = EfficientNetEmbeddings(config)
511
+ self.encoder = EfficientNetEncoder(config)
512
+
513
+ # Final pooling layer
514
+ if config.pooling_type == "mean":
515
+ self.pooler = nn.AvgPool2d(config.hidden_dim, ceil_mode=True)
516
+ elif config.pooling_type == "max":
517
+ self.pooler = nn.MaxPool2d(config.hidden_dim, ceil_mode=True)
518
+ else:
519
+ raise ValueError(f"config.pooling must be one of ['mean', 'max'] got {config.pooling}")
520
+
521
+ # Initialize weights and apply final processing
522
+ self.post_init()
523
+
524
+ @add_start_docstrings_to_model_forward(EFFICIENTNET_INPUTS_DOCSTRING)
525
+ @add_code_sample_docstrings(
526
+ checkpoint=_CHECKPOINT_FOR_DOC,
527
+ output_type=BaseModelOutputWithPoolingAndNoAttention,
528
+ config_class=_CONFIG_FOR_DOC,
529
+ modality="vision",
530
+ expected_output=_EXPECTED_OUTPUT_SHAPE,
531
+ )
532
+ def forward(
533
+ self,
534
+ pixel_values: torch.FloatTensor = None,
535
+ output_hidden_states: Optional[bool] = None,
536
+ return_dict: Optional[bool] = None,
537
+ ) -> Union[Tuple, BaseModelOutputWithPoolingAndNoAttention]:
538
+ output_hidden_states = (
539
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
540
+ )
541
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
542
+
543
+ if pixel_values is None:
544
+ raise ValueError("You have to specify pixel_values")
545
+
546
+ embedding_output = self.embeddings(pixel_values)
547
+
548
+ encoder_outputs = self.encoder(
549
+ embedding_output,
550
+ output_hidden_states=output_hidden_states,
551
+ return_dict=return_dict,
552
+ )
553
+ # Apply pooling
554
+ last_hidden_state = encoder_outputs[0]
555
+ pooled_output = self.pooler(last_hidden_state)
556
+ # Reshape (batch_size, 1280, 1 , 1) -> (batch_size, 1280)
557
+ pooled_output = pooled_output.reshape(pooled_output.shape[:2])
558
+
559
+ if not return_dict:
560
+ return (last_hidden_state, pooled_output) + encoder_outputs[1:]
561
+
562
+ return BaseModelOutputWithPoolingAndNoAttention(
563
+ last_hidden_state=last_hidden_state,
564
+ pooler_output=pooled_output,
565
+ hidden_states=encoder_outputs.hidden_states,
566
+ )
567
+
568
+
569
+ @add_start_docstrings(
570
+ """
571
+ EfficientNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g.
572
+ for ImageNet.
573
+ """,
574
+ EFFICIENTNET_START_DOCSTRING,
575
+ )
576
+ class EfficientNetForImageClassification(EfficientNetPreTrainedModel):
577
+ def __init__(self, config):
578
+ super().__init__(config)
579
+ self.num_labels = config.num_labels
580
+ self.config = config
581
+ self.efficientnet = EfficientNetModel(config)
582
+ # Classifier head
583
+ self.dropout = nn.Dropout(p=config.dropout_rate)
584
+ self.classifier = nn.Linear(config.hidden_dim, self.num_labels) if self.num_labels > 0 else nn.Identity()
585
+
586
+ # Initialize weights and apply final processing
587
+ self.post_init()
588
+
589
+ @add_start_docstrings_to_model_forward(EFFICIENTNET_INPUTS_DOCSTRING)
590
+ @add_code_sample_docstrings(
591
+ checkpoint=_IMAGE_CLASS_CHECKPOINT,
592
+ output_type=ImageClassifierOutputWithNoAttention,
593
+ config_class=_CONFIG_FOR_DOC,
594
+ expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
595
+ )
596
+ def forward(
597
+ self,
598
+ pixel_values: torch.FloatTensor = None,
599
+ labels: Optional[torch.LongTensor] = None,
600
+ output_hidden_states: Optional[bool] = None,
601
+ return_dict: Optional[bool] = None,
602
+ ) -> Union[Tuple, ImageClassifierOutputWithNoAttention]:
603
+ r"""
604
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
605
+ Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
606
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
607
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
608
+ """
609
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
610
+
611
+ outputs = self.efficientnet(pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict)
612
+
613
+ pooled_output = outputs.pooler_output if return_dict else outputs[1]
614
+ pooled_output = self.dropout(pooled_output)
615
+ logits = self.classifier(pooled_output)
616
+
617
+ loss = None
618
+ if labels is not None:
619
+ if self.config.problem_type is None:
620
+ if self.num_labels == 1:
621
+ self.config.problem_type = "regression"
622
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
623
+ self.config.problem_type = "single_label_classification"
624
+ else:
625
+ self.config.problem_type = "multi_label_classification"
626
+
627
+ if self.config.problem_type == "regression":
628
+ loss_fct = MSELoss()
629
+ if self.num_labels == 1:
630
+ loss = loss_fct(logits.squeeze(), labels.squeeze())
631
+ else:
632
+ loss = loss_fct(logits, labels)
633
+ elif self.config.problem_type == "single_label_classification":
634
+ loss_fct = CrossEntropyLoss()
635
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
636
+ elif self.config.problem_type == "multi_label_classification":
637
+ loss_fct = BCEWithLogitsLoss()
638
+ loss = loss_fct(logits, labels)
639
+
640
+ if not return_dict:
641
+ output = (logits,) + outputs[2:]
642
+ return ((loss,) + output) if loss is not None else output
643
+
644
+ return ImageClassifierOutputWithNoAttention(
645
+ loss=loss,
646
+ logits=logits,
647
+ hidden_states=outputs.hidden_states,
648
+ )
llmeval-env/lib/python3.10/site-packages/transformers/models/musicgen_melody/__init__.py ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ from typing import TYPE_CHECKING
15
+
16
+ from ...utils import (
17
+ OptionalDependencyNotAvailable,
18
+ _LazyModule,
19
+ is_torch_available,
20
+ is_torchaudio_available,
21
+ )
22
+
23
+
24
+ _import_structure = {
25
+ "configuration_musicgen_melody": [
26
+ "MUSICGEN_MELODY_PRETRAINED_CONFIG_ARCHIVE_MAP",
27
+ "MusicgenMelodyConfig",
28
+ "MusicgenMelodyDecoderConfig",
29
+ ],
30
+ }
31
+
32
+ try:
33
+ if not is_torch_available():
34
+ raise OptionalDependencyNotAvailable()
35
+ except OptionalDependencyNotAvailable:
36
+ pass
37
+ else:
38
+ _import_structure["modeling_musicgen_melody"] = [
39
+ "MUSICGEN_MELODY_PRETRAINED_MODEL_ARCHIVE_LIST",
40
+ "MusicgenMelodyForConditionalGeneration",
41
+ "MusicgenMelodyForCausalLM",
42
+ "MusicgenMelodyModel",
43
+ "MusicgenMelodyPreTrainedModel",
44
+ ]
45
+
46
+ try:
47
+ if not is_torchaudio_available():
48
+ raise OptionalDependencyNotAvailable()
49
+ except OptionalDependencyNotAvailable:
50
+ pass
51
+ else:
52
+ _import_structure["feature_extraction_musicgen_melody"] = ["MusicgenMelodyFeatureExtractor"]
53
+ _import_structure["processing_musicgen_melody"] = ["MusicgenMelodyProcessor"]
54
+
55
+
56
+ if TYPE_CHECKING:
57
+ from .configuration_musicgen_melody import (
58
+ MUSICGEN_MELODY_PRETRAINED_CONFIG_ARCHIVE_MAP,
59
+ MusicgenMelodyConfig,
60
+ MusicgenMelodyDecoderConfig,
61
+ )
62
+
63
+ try:
64
+ if not is_torch_available():
65
+ raise OptionalDependencyNotAvailable()
66
+ except OptionalDependencyNotAvailable:
67
+ pass
68
+ else:
69
+ from .modeling_musicgen_melody import (
70
+ MUSICGEN_MELODY_PRETRAINED_MODEL_ARCHIVE_LIST,
71
+ MusicgenMelodyForCausalLM,
72
+ MusicgenMelodyForConditionalGeneration,
73
+ MusicgenMelodyModel,
74
+ MusicgenMelodyPreTrainedModel,
75
+ )
76
+
77
+ try:
78
+ if not is_torchaudio_available():
79
+ raise OptionalDependencyNotAvailable()
80
+ except OptionalDependencyNotAvailable:
81
+ pass
82
+ else:
83
+ from .feature_extraction_musicgen_melody import MusicgenMelodyFeatureExtractor
84
+ from .processing_musicgen_melody import MusicgenMelodyProcessor
85
+
86
+
87
+ else:
88
+ import sys
89
+
90
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
llmeval-env/lib/python3.10/site-packages/transformers/models/musicgen_melody/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (1.44 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/musicgen_melody/__pycache__/configuration_musicgen_melody.cpython-310.pyc ADDED
Binary file (10.9 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/musicgen_melody/__pycache__/convert_musicgen_melody_transformers.cpython-310.pyc ADDED
Binary file (7.41 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/musicgen_melody/__pycache__/feature_extraction_musicgen_melody.cpython-310.pyc ADDED
Binary file (12.4 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/musicgen_melody/__pycache__/modeling_musicgen_melody.cpython-310.pyc ADDED
Binary file (81.6 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/musicgen_melody/__pycache__/processing_musicgen_melody.cpython-310.pyc ADDED
Binary file (7.33 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/musicgen_melody/configuration_musicgen_melody.py ADDED
@@ -0,0 +1,271 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 Meta AI and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ Musicgen Melody model configuration"""
16
+
17
+ from ...configuration_utils import PretrainedConfig
18
+ from ...utils import logging
19
+ from ..auto.configuration_auto import AutoConfig
20
+
21
+
22
+ logger = logging.get_logger(__name__)
23
+
24
+ from ..deprecated._archive_maps import MUSICGEN_MELODY_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
25
+
26
+
27
+ class MusicgenMelodyDecoderConfig(PretrainedConfig):
28
+ r"""
29
+ This is the configuration class to store the configuration of an [`MusicgenMelodyDecoder`]. It is used to instantiate a
30
+ Musicgen Melody decoder according to the specified arguments, defining the model architecture. Instantiating a
31
+ configuration with the defaults will yield a similar configuration to that of the Musicgen Melody
32
+ [facebook/musicgen-melody](https://huggingface.co/facebook/musicgen-melody) architecture.
33
+
34
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
35
+ documentation from [`PretrainedConfig`] for more information.
36
+
37
+
38
+ Args:
39
+ vocab_size (`int`, *optional*, defaults to 2048):
40
+ Vocabulary size of the MusicgenMelodyDecoder model. Defines the number of different tokens that can be
41
+ represented by the `inputs_ids` passed when calling [`MusicgenMelodyDecoder`].
42
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
43
+ The maximum sequence length that this model might ever be used with. Typically, set this to something large
44
+ just in case (e.g., 512 or 1024 or 2048).
45
+ num_hidden_layers (`int`, *optional*, defaults to 24):
46
+ Number of decoder layers.
47
+ ffn_dim (`int`, *optional*, defaults to 4096):
48
+ Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer block.
49
+ num_attention_heads (`int`, *optional*, defaults to 16):
50
+ Number of attention heads for each attention layer in the Transformer block.
51
+ layerdrop (`float`, *optional*, defaults to 0.0):
52
+ The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
53
+ for more details.
54
+ use_cache (`bool`, *optional*, defaults to `True`):
55
+ Whether the model should return the last key/values attentions (not used by all models)
56
+ activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
57
+ The non-linear activation function (function or string) in the decoder and pooler. If string, `"gelu"`,
58
+ `"relu"`, `"silu"` and `"gelu_new"` are supported.
59
+ hidden_size (`int`, *optional*, defaults to 1024):
60
+ Dimensionality of the layers and the pooler layer.
61
+ dropout (`float`, *optional*, defaults to 0.1):
62
+ The dropout probability for all fully connected layers in the embeddings, text_encoder, and pooler.
63
+ attention_dropout (`float`, *optional*, defaults to 0.0):
64
+ The dropout ratio for the attention probabilities.
65
+ activation_dropout (`float`, *optional*, defaults to 0.0):
66
+ The dropout ratio for activations inside the fully connected layer.
67
+ initializer_factor (`float`, *optional*, defaults to 0.02):
68
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
69
+ scale_embedding (`bool`, *optional*, defaults to `False`):
70
+ Scale embeddings by diving by sqrt(hidden_size).
71
+ num_codebooks (`int`, *optional*, defaults to 4):
72
+ The number of parallel codebooks forwarded to the model.
73
+ audio_channels (`int`, *optional*, defaults to 1):
74
+ Number of audio channels used by the model (either mono or stereo). Stereo models generate a separate
75
+ audio stream for the left/right output channels. Mono models generate a single audio stream output.
76
+ pad_token_id (`int`, *optional*, defaults to 2048): The id of the *padding* token.
77
+ bos_token_id (`int`, *optional*, defaults to 2048): The id of the *beginning-of-sequence* token.
78
+ eos_token_id (`int`, *optional*): The id of the *end-of-sequence* token.
79
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`): Whether to tie word embeddings with the text encoder.
80
+ """
81
+
82
+ model_type = "musicgen_melody_decoder"
83
+ keys_to_ignore_at_inference = ["past_key_values"]
84
+
85
+ def __init__(
86
+ self,
87
+ vocab_size=2048,
88
+ max_position_embeddings=2048,
89
+ num_hidden_layers=24,
90
+ ffn_dim=4096,
91
+ num_attention_heads=16,
92
+ layerdrop=0.0,
93
+ use_cache=True,
94
+ activation_function="gelu",
95
+ hidden_size=1024,
96
+ dropout=0.1,
97
+ attention_dropout=0.0,
98
+ activation_dropout=0.0,
99
+ initializer_factor=0.02,
100
+ scale_embedding=False,
101
+ num_codebooks=4,
102
+ audio_channels=1,
103
+ pad_token_id=2048,
104
+ bos_token_id=2048,
105
+ eos_token_id=None,
106
+ tie_word_embeddings=False,
107
+ **kwargs,
108
+ ):
109
+ self.vocab_size = vocab_size
110
+ self.max_position_embeddings = max_position_embeddings
111
+ self.hidden_size = hidden_size
112
+ self.ffn_dim = ffn_dim
113
+ self.num_hidden_layers = num_hidden_layers
114
+ self.num_attention_heads = num_attention_heads
115
+ self.dropout = dropout
116
+ self.attention_dropout = attention_dropout
117
+ self.activation_dropout = activation_dropout
118
+ self.activation_function = activation_function
119
+ self.initializer_factor = initializer_factor
120
+ self.layerdrop = layerdrop
121
+ self.use_cache = use_cache
122
+ self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True
123
+ self.num_codebooks = num_codebooks
124
+
125
+ if audio_channels not in [1, 2]:
126
+ raise ValueError(f"Expected 1 (mono) or 2 (stereo) audio channels, got {audio_channels} channels.")
127
+ self.audio_channels = audio_channels
128
+
129
+ super().__init__(
130
+ pad_token_id=pad_token_id,
131
+ bos_token_id=bos_token_id,
132
+ eos_token_id=eos_token_id,
133
+ tie_word_embeddings=tie_word_embeddings,
134
+ **kwargs,
135
+ )
136
+
137
+
138
+ class MusicgenMelodyConfig(PretrainedConfig):
139
+ r"""
140
+ This is the configuration class to store the configuration of a [`MusicgenMelodyModel`]. It is used to instantiate a
141
+ Musicgen Melody model according to the specified arguments, defining the text encoder, audio encoder and Musicgen Melody decoder
142
+ configs. Instantiating a configuration with the defaults will yield a similar configuration to that of the Musicgen Melody
143
+ [facebook/musicgen-melody](https://huggingface.co/facebook/musicgen-melody) architecture.
144
+
145
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
146
+ documentation from [`PretrainedConfig`] for more information.
147
+
148
+ Args:
149
+ num_chroma (`int`, *optional*, defaults to 12): Number of chroma bins to use.
150
+ chroma_length (`int`, *optional*, defaults to 235):
151
+ Maximum chroma duration if audio is used to condition the model. Corresponds to the maximum duration used during training.
152
+ kwargs (*optional*):
153
+ Dictionary of keyword arguments. Notably:
154
+
155
+ - **text_encoder** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that
156
+ defines the text encoder config.
157
+ - **audio_encoder** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that
158
+ defines the audio encoder config.
159
+ - **decoder** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that defines
160
+ the decoder config.
161
+
162
+ Example:
163
+
164
+ ```python
165
+ >>> from transformers import (
166
+ ... MusicgenMelodyConfig,
167
+ ... MusicgenMelodyDecoderConfig,
168
+ ... T5Config,
169
+ ... EncodecConfig,
170
+ ... MusicgenMelodyForConditionalGeneration,
171
+ ... )
172
+
173
+ >>> # Initializing text encoder, audio encoder, and decoder model configurations
174
+ >>> text_encoder_config = T5Config()
175
+ >>> audio_encoder_config = EncodecConfig()
176
+ >>> decoder_config = MusicgenMelodyDecoderConfig()
177
+
178
+ >>> configuration = MusicgenMelodyConfig.from_sub_models_config(
179
+ ... text_encoder_config, audio_encoder_config, decoder_config
180
+ ... )
181
+
182
+ >>> # Initializing a MusicgenMelodyForConditionalGeneration (with random weights) from the facebook/musicgen-melody style configuration
183
+ >>> model = MusicgenMelodyForConditionalGeneration(configuration)
184
+
185
+ >>> # Accessing the model configuration
186
+ >>> configuration = model.config
187
+ >>> config_text_encoder = model.config.text_encoder
188
+ >>> config_audio_encoder = model.config.audio_encoder
189
+ >>> config_decoder = model.config.decoder
190
+
191
+ >>> # Saving the model, including its configuration
192
+ >>> model.save_pretrained("musicgen_melody-model")
193
+
194
+ >>> # loading model and config from pretrained folder
195
+ >>> musicgen_melody_config = MusicgenMelodyConfig.from_pretrained("musicgen_melody-model")
196
+ >>> model = MusicgenMelodyForConditionalGeneration.from_pretrained("musicgen_melody-model", config=musicgen_melody_config)
197
+ ```"""
198
+
199
+ model_type = "musicgen_melody"
200
+ is_composition = True
201
+
202
+ def __init__(
203
+ self,
204
+ num_chroma=12,
205
+ chroma_length=235,
206
+ **kwargs,
207
+ ):
208
+ super().__init__(**kwargs)
209
+ if "text_encoder" not in kwargs or "audio_encoder" not in kwargs or "decoder" not in kwargs:
210
+ raise ValueError("Config has to be initialized with text_encoder, audio_encoder and decoder config")
211
+
212
+ text_encoder_config = kwargs.pop("text_encoder")
213
+ text_encoder_model_type = text_encoder_config.pop("model_type")
214
+
215
+ audio_encoder_config = kwargs.pop("audio_encoder")
216
+ audio_encoder_model_type = audio_encoder_config.pop("model_type")
217
+
218
+ decoder_config = kwargs.pop("decoder")
219
+
220
+ self.text_encoder = AutoConfig.for_model(text_encoder_model_type, **text_encoder_config)
221
+ self.audio_encoder = AutoConfig.for_model(audio_encoder_model_type, **audio_encoder_config)
222
+ self.decoder = MusicgenMelodyDecoderConfig(**decoder_config)
223
+ self.is_encoder_decoder = False
224
+
225
+ self.num_chroma = num_chroma
226
+ self.chroma_length = chroma_length
227
+
228
+ @classmethod
229
+ def from_sub_models_config(
230
+ cls,
231
+ text_encoder_config: PretrainedConfig,
232
+ audio_encoder_config: PretrainedConfig,
233
+ decoder_config: MusicgenMelodyDecoderConfig,
234
+ **kwargs,
235
+ ):
236
+ r"""
237
+ Instantiate a [`MusicgenMelodyConfig`] (or a derived class) from text encoder, audio encoder and decoder
238
+ configurations.
239
+
240
+ Returns:
241
+ [`MusicgenMelodyConfig`]: An instance of a configuration object
242
+ """
243
+
244
+ return cls(
245
+ text_encoder=text_encoder_config.to_dict(),
246
+ audio_encoder=audio_encoder_config.to_dict(),
247
+ decoder=decoder_config.to_dict(),
248
+ **kwargs,
249
+ )
250
+
251
+ @property
252
+ # This is a property because you might want to change the codec model on the fly
253
+ def sampling_rate(self):
254
+ return self.audio_encoder.sampling_rate
255
+
256
+ @property
257
+ def _attn_implementation(self):
258
+ # This property is made private for now (as it cannot be changed and a PreTrainedModel.use_attn_implementation method needs to be implemented.)
259
+ if hasattr(self, "_attn_implementation_internal"):
260
+ if self._attn_implementation_internal is None:
261
+ # `config.attn_implementation` should never be None, for backward compatibility.
262
+ return "eager"
263
+ else:
264
+ return self._attn_implementation_internal
265
+ else:
266
+ return "eager"
267
+
268
+ @_attn_implementation.setter
269
+ def _attn_implementation(self, value):
270
+ self._attn_implementation_internal = value
271
+ self.decoder._attn_implementation = value
llmeval-env/lib/python3.10/site-packages/transformers/models/musicgen_melody/convert_musicgen_melody_transformers.py ADDED
@@ -0,0 +1,266 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Convert Musicgen Melody checkpoints from the original repository."""
16
+ import argparse
17
+ from pathlib import Path
18
+ from typing import Dict, OrderedDict, Tuple
19
+
20
+ import torch
21
+ from audiocraft.models import MusicGen
22
+
23
+ from transformers import (
24
+ AutoTokenizer,
25
+ EncodecModel,
26
+ T5EncoderModel,
27
+ )
28
+ from transformers.models.musicgen_melody.configuration_musicgen_melody import MusicgenMelodyDecoderConfig
29
+ from transformers.models.musicgen_melody.feature_extraction_musicgen_melody import MusicgenMelodyFeatureExtractor
30
+ from transformers.models.musicgen_melody.modeling_musicgen_melody import (
31
+ MusicgenMelodyForCausalLM,
32
+ MusicgenMelodyForConditionalGeneration,
33
+ )
34
+ from transformers.models.musicgen_melody.processing_musicgen_melody import MusicgenMelodyProcessor
35
+ from transformers.utils import logging
36
+
37
+
38
+ logging.set_verbosity_info()
39
+ logger = logging.get_logger(__name__)
40
+
41
+
42
+ EXPECTED_MISSING_KEYS = ["model.decoder.embed_positions.weights"]
43
+ EXPECTED_ADDITIONAL_KEYS = ["condition_provider.conditioners.self_wav.chroma.spec.window"]
44
+
45
+
46
+ def rename_keys(name):
47
+ if "emb" in name:
48
+ name = name.replace("emb", "model.decoder.embed_tokens")
49
+ if "transformer" in name:
50
+ name = name.replace("transformer", "model.decoder")
51
+ if "cross_attention" in name:
52
+ name = name.replace("cross_attention", "encoder_attn")
53
+ if "linear1" in name:
54
+ name = name.replace("linear1", "fc1")
55
+ if "linear2" in name:
56
+ name = name.replace("linear2", "fc2")
57
+ if "norm1" in name:
58
+ name = name.replace("norm1", "self_attn_layer_norm")
59
+ if "norm_cross" in name:
60
+ name = name.replace("norm_cross", "encoder_attn_layer_norm")
61
+ if "norm2" in name:
62
+ name = name.replace("norm2", "final_layer_norm")
63
+ if "out_norm" in name:
64
+ name = name.replace("out_norm", "model.decoder.layer_norm")
65
+ if "linears" in name:
66
+ name = name.replace("linears", "lm_heads")
67
+ if "condition_provider.conditioners.description.output_proj" in name:
68
+ name = name.replace("condition_provider.conditioners.description.output_proj", "enc_to_dec_proj")
69
+ if "condition_provider.conditioners.self_wav.output_proj" in name:
70
+ name = name.replace("condition_provider.conditioners.self_wav.output_proj", "audio_enc_to_dec_proj")
71
+ return name
72
+
73
+
74
+ def rename_state_dict(state_dict: OrderedDict, hidden_size: int) -> Tuple[Dict, Dict]:
75
+ """Function that takes the fairseq MusicgenMelody state dict and renames it according to the HF
76
+ module names. It further partitions the state dict into the decoder (LM) state dict, and that for the
77
+ text encoder projection and for the audio encoder projection."""
78
+ keys = list(state_dict.keys())
79
+ enc_dec_proj_state_dict = {}
80
+ audio_enc_to_dec_proj_state_dict = {}
81
+ for key in keys:
82
+ val = state_dict.pop(key)
83
+ key = rename_keys(key)
84
+ if "in_proj_weight" in key:
85
+ # split fused qkv proj
86
+ state_dict[key.replace("in_proj_weight", "q_proj.weight")] = val[:hidden_size, :]
87
+ state_dict[key.replace("in_proj_weight", "k_proj.weight")] = val[hidden_size : 2 * hidden_size, :]
88
+ state_dict[key.replace("in_proj_weight", "v_proj.weight")] = val[-hidden_size:, :]
89
+ elif "audio_enc_to_dec_proj" in key:
90
+ audio_enc_to_dec_proj_state_dict[key[len("audio_enc_to_dec_proj.") :]] = val
91
+ elif "enc_to_dec_proj" in key:
92
+ enc_dec_proj_state_dict[key[len("enc_to_dec_proj.") :]] = val
93
+ else:
94
+ state_dict[key] = val
95
+ return state_dict, enc_dec_proj_state_dict, audio_enc_to_dec_proj_state_dict
96
+
97
+
98
+ def decoder_config_from_checkpoint(checkpoint: str) -> MusicgenMelodyDecoderConfig:
99
+ if checkpoint == "facebook/musicgen-melody" or checkpoint == "facebook/musicgen-stereo-melody":
100
+ hidden_size = 1536
101
+ num_hidden_layers = 48
102
+ num_attention_heads = 24
103
+ elif checkpoint == "facebook/musicgen-melody-large" or checkpoint == "facebook/musicgen-stereo-melody-large":
104
+ hidden_size = 2048
105
+ num_hidden_layers = 48
106
+ num_attention_heads = 32
107
+ else:
108
+ raise ValueError(
109
+ "Checkpoint should be one of `['facebook/musicgen-melody', 'facebook/musicgen-melody-large']` for the mono checkpoints, "
110
+ "or `['facebook/musicgen-stereo-melody', 'facebook/musicgen-stereo-melody-large']` "
111
+ f"for the stereo checkpoints, got {checkpoint}."
112
+ )
113
+
114
+ if "stereo" in checkpoint:
115
+ audio_channels = 2
116
+ num_codebooks = 8
117
+ else:
118
+ audio_channels = 1
119
+ num_codebooks = 4
120
+
121
+ config = MusicgenMelodyDecoderConfig(
122
+ hidden_size=hidden_size,
123
+ ffn_dim=hidden_size * 4,
124
+ num_hidden_layers=num_hidden_layers,
125
+ num_attention_heads=num_attention_heads,
126
+ num_codebooks=num_codebooks,
127
+ audio_channels=audio_channels,
128
+ )
129
+ return config
130
+
131
+
132
+ @torch.no_grad()
133
+ def convert_musicgen_melody_checkpoint(
134
+ checkpoint, pytorch_dump_folder=None, repo_id=None, device="cpu", test_same_output=False
135
+ ):
136
+ fairseq_model = MusicGen.get_pretrained(checkpoint, device=args.device)
137
+ decoder_config = decoder_config_from_checkpoint(checkpoint)
138
+
139
+ decoder_state_dict = fairseq_model.lm.state_dict()
140
+ decoder_state_dict, enc_dec_proj_state_dict, audio_enc_to_dec_proj_state_dict = rename_state_dict(
141
+ decoder_state_dict, hidden_size=decoder_config.hidden_size
142
+ )
143
+
144
+ text_encoder = T5EncoderModel.from_pretrained("t5-base")
145
+ audio_encoder = EncodecModel.from_pretrained("facebook/encodec_32khz")
146
+ decoder = MusicgenMelodyForCausalLM(decoder_config).eval()
147
+
148
+ # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection
149
+ missing_keys, unexpected_keys = decoder.load_state_dict(decoder_state_dict, strict=False)
150
+
151
+ for key in missing_keys.copy():
152
+ if key.startswith(("text_encoder", "audio_encoder")) or key in EXPECTED_MISSING_KEYS:
153
+ missing_keys.remove(key)
154
+
155
+ for key in unexpected_keys.copy():
156
+ if key in EXPECTED_ADDITIONAL_KEYS:
157
+ unexpected_keys.remove(key)
158
+
159
+ if len(missing_keys) > 0:
160
+ raise ValueError(f"Missing key(s) in state_dict: {missing_keys}")
161
+
162
+ if len(unexpected_keys) > 0:
163
+ raise ValueError(f"Unexpected key(s) in state_dict: {unexpected_keys}")
164
+
165
+ # init the composite model
166
+ model = MusicgenMelodyForConditionalGeneration(
167
+ text_encoder=text_encoder, audio_encoder=audio_encoder, decoder=decoder
168
+ ).to(args.device)
169
+
170
+ # load the pre-trained enc-dec projection (from the decoder state dict)
171
+ model.enc_to_dec_proj.load_state_dict(enc_dec_proj_state_dict)
172
+
173
+ # load the pre-trained audio encoder projection (from the decoder state dict)
174
+ model.audio_enc_to_dec_proj.load_state_dict(audio_enc_to_dec_proj_state_dict)
175
+
176
+ # check we can do a forward pass
177
+ input_ids = torch.arange(0, 2 * decoder_config.num_codebooks, dtype=torch.long).reshape(2, -1).to(device)
178
+ decoder_input_ids = input_ids.reshape(2 * decoder_config.num_codebooks, -1).to(device)
179
+
180
+ with torch.no_grad():
181
+ logits = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids).logits
182
+
183
+ output_length = 1 + input_ids.shape[1] + model.config.chroma_length
184
+ if logits.shape != (2 * decoder_config.num_codebooks, output_length, 2048):
185
+ raise ValueError("Incorrect shape for logits")
186
+
187
+ # now construct the processor
188
+ tokenizer = AutoTokenizer.from_pretrained("t5-base")
189
+ feature_extractor = MusicgenMelodyFeatureExtractor()
190
+
191
+ processor = MusicgenMelodyProcessor(feature_extractor=feature_extractor, tokenizer=tokenizer)
192
+
193
+ # set the appropriate bos/pad token ids
194
+ model.generation_config.decoder_start_token_id = 2048
195
+ model.generation_config.pad_token_id = 2048
196
+
197
+ # set other default generation config params
198
+ model.generation_config.max_length = int(30 * audio_encoder.config.frame_rate)
199
+ model.generation_config.do_sample = True
200
+ model.generation_config.guidance_scale = 3.0
201
+
202
+ if test_same_output:
203
+ # check same output than original model
204
+ decoder_input_ids = torch.ones_like(decoder_input_ids).to(device) * model.generation_config.pad_token_id
205
+ with torch.no_grad():
206
+ decoder_input_ids = decoder_input_ids[: decoder_config.num_codebooks]
207
+ inputs = processor(text=["gen"], return_tensors="pt", padding=True).to(device)
208
+ logits = model(**inputs, decoder_input_ids=decoder_input_ids).logits
209
+
210
+ attributes, prompt_tokens = fairseq_model._prepare_tokens_and_attributes(["gen"], None)
211
+ original_logits = fairseq_model.lm.forward(
212
+ decoder_input_ids.reshape(1, decoder_config.num_codebooks, -1), attributes
213
+ )
214
+
215
+ torch.testing.assert_close(
216
+ original_logits.squeeze(2).reshape(decoder_config.num_codebooks, -1),
217
+ logits[:, -1],
218
+ rtol=1e-5,
219
+ atol=5e-5,
220
+ )
221
+
222
+ if pytorch_dump_folder is not None:
223
+ Path(pytorch_dump_folder).mkdir(exist_ok=True)
224
+ logger.info(f"Saving model {checkpoint} to {pytorch_dump_folder}")
225
+ model.save_pretrained(pytorch_dump_folder)
226
+ processor.save_pretrained(pytorch_dump_folder)
227
+
228
+ if repo_id:
229
+ logger.info(f"Pushing model {checkpoint} to {repo_id}")
230
+ model.push_to_hub(repo_id, create_pr=True)
231
+ processor.push_to_hub(repo_id, create_pr=True)
232
+
233
+
234
+ if __name__ == "__main__":
235
+ parser = argparse.ArgumentParser()
236
+ # Required parameters
237
+ parser.add_argument(
238
+ "--checkpoint",
239
+ default="facebook/musicgen-melody",
240
+ type=str,
241
+ help="Checkpoint size of the Musicgen Melody model you'd like to convert. Can be one of: "
242
+ "`['facebook/musicgen-melody', 'facebook/musicgen-melody-large']` for the mono checkpoints, or "
243
+ "`['facebook/musicgen-stereo-melody', 'facebook/musicgen-stereo-melody-large']` "
244
+ "for the stereo checkpoints.",
245
+ )
246
+ parser.add_argument(
247
+ "--pytorch_dump_folder",
248
+ default=None,
249
+ type=str,
250
+ help="Path to the output PyTorch model directory.",
251
+ )
252
+ parser.add_argument(
253
+ "--push_to_hub",
254
+ default="musicgen-melody",
255
+ type=str,
256
+ help="Where to upload the converted model on the 🤗 hub.",
257
+ )
258
+ parser.add_argument(
259
+ "--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda."
260
+ )
261
+ parser.add_argument("--test_same_output", default=False, type=bool, help="If `True`, test if same output logits.")
262
+
263
+ args = parser.parse_args()
264
+ convert_musicgen_melody_checkpoint(
265
+ args.checkpoint, args.pytorch_dump_folder, args.push_to_hub, args.device, args.test_same_output
266
+ )
llmeval-env/lib/python3.10/site-packages/transformers/models/musicgen_melody/modeling_musicgen_melody.py ADDED
The diff for this file is too large to render. See raw diff
 
llmeval-env/lib/python3.10/site-packages/transformers/models/musicgen_melody/processing_musicgen_melody.py ADDED
@@ -0,0 +1,174 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 Meta AI and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """
16
+ Text/audio processor class for MusicGen Melody
17
+ """
18
+ from typing import List, Optional
19
+
20
+ import numpy as np
21
+
22
+ from ...processing_utils import ProcessorMixin
23
+ from ...utils import to_numpy
24
+
25
+
26
+ class MusicgenMelodyProcessor(ProcessorMixin):
27
+ r"""
28
+ Constructs a MusicGen Melody processor which wraps a Wav2Vec2 feature extractor - for raw audio waveform processing - and a T5 tokenizer into a single processor
29
+ class.
30
+
31
+ [`MusicgenProcessor`] offers all the functionalities of [`MusicgenMelodyFeatureExtractor`] and [`T5Tokenizer`]. See
32
+ [`~MusicgenProcessor.__call__`] and [`~MusicgenProcessor.decode`] for more information.
33
+
34
+ Args:
35
+ feature_extractor (`MusicgenMelodyFeatureExtractor`):
36
+ An instance of [`MusicgenMelodyFeatureExtractor`]. The feature extractor is a required input.
37
+ tokenizer (`T5Tokenizer`):
38
+ An instance of [`T5Tokenizer`]. The tokenizer is a required input.
39
+ """
40
+
41
+ feature_extractor_class = "MusicgenMelodyFeatureExtractor"
42
+ tokenizer_class = ("T5Tokenizer", "T5TokenizerFast")
43
+
44
+ def __init__(self, feature_extractor, tokenizer):
45
+ super().__init__(feature_extractor, tokenizer)
46
+
47
+ # Copied from transformers.models.musicgen.processing_musicgen.MusicgenProcessor.get_decoder_prompt_ids
48
+ def get_decoder_prompt_ids(self, task=None, language=None, no_timestamps=True):
49
+ return self.tokenizer.get_decoder_prompt_ids(task=task, language=language, no_timestamps=no_timestamps)
50
+
51
+ def __call__(self, audio=None, text=None, **kwargs):
52
+ """
53
+ Main method to prepare for the model one or several sequences(s) and audio(s). This method forwards the `audio`
54
+ and `kwargs` arguments to MusicgenMelodyFeatureExtractor's [`~MusicgenMelodyFeatureExtractor.__call__`] if `audio` is not
55
+ `None` to pre-process the audio. It also forwards the `text` and `kwargs` arguments to
56
+ PreTrainedTokenizer's [`~PreTrainedTokenizer.__call__`] if `text` is not `None`. Please refer to the doctsring of the above two methods for more information.
57
+
58
+ Args:
59
+ audio (`np.ndarray`, `torch.Tensor`, `List[np.ndarray]`, `List[torch.Tensor]`):
60
+ The audio or batch of audios to be prepared. Each audio can be NumPy array or PyTorch tensor. In case
61
+ of a NumPy array/PyTorch tensor, each audio should be a mono-stereo signal of shape (T), where T is the sample length of the audio.
62
+ text (`str`, `List[str]`, `List[List[str]]`):
63
+ The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
64
+ (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
65
+ `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
66
+ kwargs (*optional*):
67
+ Remaining dictionary of keyword arguments that will be passed to the feature extractor and/or the
68
+ tokenizer.
69
+ Returns:
70
+ [`BatchEncoding`]: A [`BatchEncoding`] with the following fields:
71
+ - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
72
+ - **input_features** -- Audio input features to be fed to a model. Returned when `audio` is not `None`.
73
+ - **attention_mask** -- List of token indices specifying which tokens should be attended to by the model when `text` is not `None`.
74
+ When only `audio` is specified, returns the timestamps attention mask.
75
+ """
76
+
77
+ sampling_rate = kwargs.pop("sampling_rate", None)
78
+
79
+ if audio is None and text is None:
80
+ raise ValueError("You need to specify either an `audio` or `text` input to process.")
81
+
82
+ if text is not None:
83
+ inputs = self.tokenizer(text, **kwargs)
84
+ if audio is not None:
85
+ audio_inputs = self.feature_extractor(audio, sampling_rate=sampling_rate, **kwargs)
86
+
87
+ if text is None:
88
+ return audio_inputs
89
+ elif audio is None:
90
+ return inputs
91
+ else:
92
+ inputs["input_features"] = audio_inputs["input_features"]
93
+ return inputs
94
+
95
+ # Copied from transformers.models.musicgen.processing_musicgen.MusicgenProcessor.batch_decode with padding_mask->attention_mask
96
+ def batch_decode(self, *args, **kwargs):
97
+ """
98
+ This method is used to decode either batches of audio outputs from the MusicGen model, or batches of token ids
99
+ from the tokenizer. In the case of decoding token ids, this method forwards all its arguments to T5Tokenizer's
100
+ [`~PreTrainedTokenizer.batch_decode`]. Please refer to the docstring of this method for more information.
101
+ """
102
+ audio_values = kwargs.pop("audio", None)
103
+ attention_mask = kwargs.pop("attention_mask", None)
104
+
105
+ if len(args) > 0:
106
+ audio_values = args[0]
107
+ args = args[1:]
108
+
109
+ if audio_values is not None:
110
+ return self._decode_audio(audio_values, attention_mask=attention_mask)
111
+ else:
112
+ return self.tokenizer.batch_decode(*args, **kwargs)
113
+
114
+ # Copied from transformers.models.musicgen.processing_musicgen.MusicgenProcessor.decode
115
+ def decode(self, *args, **kwargs):
116
+ """
117
+ This method forwards all its arguments to T5Tokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to the
118
+ docstring of this method for more information.
119
+ """
120
+ return self.tokenizer.decode(*args, **kwargs)
121
+
122
+ # Copied from transformers.models.musicgen.processing_musicgen.MusicgenProcessor._decode_audio with padding_mask->attention_mask
123
+ def _decode_audio(self, audio_values, attention_mask: Optional = None) -> List[np.ndarray]:
124
+ """
125
+ This method strips any padding from the audio values to return a list of numpy audio arrays.
126
+ """
127
+ audio_values = to_numpy(audio_values)
128
+ bsz, channels, seq_len = audio_values.shape
129
+
130
+ if attention_mask is None:
131
+ return list(audio_values)
132
+
133
+ attention_mask = to_numpy(attention_mask)
134
+
135
+ # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding**
136
+ # token (so that the generated audio values are **not** treated as padded tokens)
137
+ difference = seq_len - attention_mask.shape[-1]
138
+ padding_value = 1 - self.feature_extractor.padding_value
139
+ attention_mask = np.pad(attention_mask, ((0, 0), (0, difference)), "constant", constant_values=padding_value)
140
+
141
+ audio_values = audio_values.tolist()
142
+ for i in range(bsz):
143
+ sliced_audio = np.asarray(audio_values[i])[
144
+ attention_mask[i][None, :] != self.feature_extractor.padding_value
145
+ ]
146
+ audio_values[i] = sliced_audio.reshape(channels, -1)
147
+
148
+ return audio_values
149
+
150
+ def get_unconditional_inputs(self, num_samples=1, return_tensors="pt"):
151
+ """
152
+ Helper function to get null inputs for unconditional generation, enabling the model to be used without the
153
+ feature extractor or tokenizer.
154
+
155
+ Args:
156
+ num_samples (int, *optional*):
157
+ Number of audio samples to unconditionally generate.
158
+
159
+ Example:
160
+ ```python
161
+ >>> from transformers import MusicgenMelodyForConditionalGeneration, MusicgenMelodyProcessor
162
+
163
+ >>> model = MusicgenMelodyForConditionalGeneration.from_pretrained("facebook/musicgen-melody")
164
+
165
+ >>> # get the unconditional (or 'null') inputs for the model
166
+ >>> processor = MusicgenMelodyProcessor.from_pretrained("facebook/musicgen-melody")
167
+ >>> unconditional_inputs = processor.get_unconditional_inputs(num_samples=1)
168
+
169
+ >>> audio_samples = model.generate(**unconditional_inputs, max_new_tokens=256)
170
+ ```"""
171
+ inputs = self.tokenizer([""] * num_samples, return_tensors=return_tensors, return_attention_mask=True)
172
+ inputs["attention_mask"][:] = 0
173
+
174
+ return inputs
llmeval-env/lib/python3.10/site-packages/transformers/models/owlv2/__init__.py ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ from typing import TYPE_CHECKING
15
+
16
+ from ...utils import (
17
+ OptionalDependencyNotAvailable,
18
+ _LazyModule,
19
+ is_torch_available,
20
+ is_vision_available,
21
+ )
22
+
23
+
24
+ _import_structure = {
25
+ "configuration_owlv2": [
26
+ "OWLV2_PRETRAINED_CONFIG_ARCHIVE_MAP",
27
+ "Owlv2Config",
28
+ "Owlv2TextConfig",
29
+ "Owlv2VisionConfig",
30
+ ],
31
+ "processing_owlv2": ["Owlv2Processor"],
32
+ }
33
+
34
+ try:
35
+ if not is_vision_available():
36
+ raise OptionalDependencyNotAvailable()
37
+ except OptionalDependencyNotAvailable:
38
+ pass
39
+ else:
40
+ _import_structure["image_processing_owlv2"] = ["Owlv2ImageProcessor"]
41
+
42
+
43
+ try:
44
+ if not is_torch_available():
45
+ raise OptionalDependencyNotAvailable()
46
+ except OptionalDependencyNotAvailable:
47
+ pass
48
+ else:
49
+ _import_structure["modeling_owlv2"] = [
50
+ "OWLV2_PRETRAINED_MODEL_ARCHIVE_LIST",
51
+ "Owlv2Model",
52
+ "Owlv2PreTrainedModel",
53
+ "Owlv2TextModel",
54
+ "Owlv2VisionModel",
55
+ "Owlv2ForObjectDetection",
56
+ ]
57
+
58
+ if TYPE_CHECKING:
59
+ from .configuration_owlv2 import (
60
+ OWLV2_PRETRAINED_CONFIG_ARCHIVE_MAP,
61
+ Owlv2Config,
62
+ Owlv2TextConfig,
63
+ Owlv2VisionConfig,
64
+ )
65
+ from .processing_owlv2 import Owlv2Processor
66
+
67
+ try:
68
+ if not is_vision_available():
69
+ raise OptionalDependencyNotAvailable()
70
+ except OptionalDependencyNotAvailable:
71
+ pass
72
+ else:
73
+ from .image_processing_owlv2 import Owlv2ImageProcessor
74
+
75
+ try:
76
+ if not is_torch_available():
77
+ raise OptionalDependencyNotAvailable()
78
+ except OptionalDependencyNotAvailable:
79
+ pass
80
+ else:
81
+ from .modeling_owlv2 import (
82
+ OWLV2_PRETRAINED_MODEL_ARCHIVE_LIST,
83
+ Owlv2ForObjectDetection,
84
+ Owlv2Model,
85
+ Owlv2PreTrainedModel,
86
+ Owlv2TextModel,
87
+ Owlv2VisionModel,
88
+ )
89
+
90
+ else:
91
+ import sys
92
+
93
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)