applied-ai-018 commited on
Commit
627f14a
·
verified ·
1 Parent(s): d76c488

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +1 -0
  2. env-llmeval/lib/python3.10/site-packages/scipy/fftpack/_pseudo_diffs.py +551 -0
  3. env-llmeval/lib/python3.10/site-packages/scipy/fftpack/basic.py +20 -0
  4. env-llmeval/lib/python3.10/site-packages/scipy/fftpack/realtransforms.py +19 -0
  5. env-llmeval/lib/python3.10/site-packages/scipy/odr/__init__.py +131 -0
  6. env-llmeval/lib/python3.10/site-packages/scipy/odr/__odrpack.cpython-310-x86_64-linux-gnu.so +0 -0
  7. env-llmeval/lib/python3.10/site-packages/scipy/odr/__pycache__/__init__.cpython-310.pyc +0 -0
  8. env-llmeval/lib/python3.10/site-packages/scipy/odr/__pycache__/_add_newdocs.cpython-310.pyc +0 -0
  9. env-llmeval/lib/python3.10/site-packages/scipy/odr/__pycache__/_models.cpython-310.pyc +0 -0
  10. env-llmeval/lib/python3.10/site-packages/scipy/odr/__pycache__/_odrpack.cpython-310.pyc +0 -0
  11. env-llmeval/lib/python3.10/site-packages/scipy/odr/__pycache__/models.cpython-310.pyc +0 -0
  12. env-llmeval/lib/python3.10/site-packages/scipy/odr/__pycache__/odrpack.cpython-310.pyc +0 -0
  13. env-llmeval/lib/python3.10/site-packages/scipy/odr/_add_newdocs.py +34 -0
  14. env-llmeval/lib/python3.10/site-packages/scipy/odr/_models.py +315 -0
  15. env-llmeval/lib/python3.10/site-packages/scipy/odr/_odrpack.py +1150 -0
  16. env-llmeval/lib/python3.10/site-packages/scipy/odr/models.py +20 -0
  17. env-llmeval/lib/python3.10/site-packages/scipy/odr/odrpack.py +21 -0
  18. env-llmeval/lib/python3.10/site-packages/scipy/odr/tests/__init__.py +0 -0
  19. env-llmeval/lib/python3.10/site-packages/scipy/odr/tests/__pycache__/__init__.cpython-310.pyc +0 -0
  20. env-llmeval/lib/python3.10/site-packages/scipy/odr/tests/__pycache__/test_odr.cpython-310.pyc +0 -0
  21. env-llmeval/lib/python3.10/site-packages/scipy/odr/tests/test_odr.py +565 -0
  22. env-llmeval/lib/python3.10/site-packages/scipy/optimize/__pycache__/__init__.cpython-310.pyc +0 -0
  23. env-llmeval/lib/python3.10/site-packages/scipy/optimize/__pycache__/_basinhopping.cpython-310.pyc +0 -0
  24. env-llmeval/lib/python3.10/site-packages/scipy/optimize/__pycache__/_bracket.cpython-310.pyc +0 -0
  25. env-llmeval/lib/python3.10/site-packages/scipy/optimize/__pycache__/_chandrupatla.cpython-310.pyc +0 -0
  26. env-llmeval/lib/python3.10/site-packages/scipy/optimize/__pycache__/_constraints.cpython-310.pyc +0 -0
  27. env-llmeval/lib/python3.10/site-packages/scipy/optimize/__pycache__/_dcsrch.cpython-310.pyc +0 -0
  28. env-llmeval/lib/python3.10/site-packages/scipy/optimize/__pycache__/_differentiable_functions.cpython-310.pyc +0 -0
  29. env-llmeval/lib/python3.10/site-packages/scipy/optimize/__pycache__/_differentialevolution.cpython-310.pyc +0 -0
  30. env-llmeval/lib/python3.10/site-packages/scipy/optimize/__pycache__/_direct_py.cpython-310.pyc +0 -0
  31. env-llmeval/lib/python3.10/site-packages/scipy/optimize/__pycache__/_dual_annealing.cpython-310.pyc +0 -0
  32. env-llmeval/lib/python3.10/site-packages/scipy/optimize/__pycache__/_isotonic.cpython-310.pyc +0 -0
  33. env-llmeval/lib/python3.10/site-packages/scipy/optimize/__pycache__/_lbfgsb_py.cpython-310.pyc +0 -0
  34. env-llmeval/lib/python3.10/site-packages/scipy/optimize/__pycache__/_linesearch.cpython-310.pyc +0 -0
  35. env-llmeval/lib/python3.10/site-packages/scipy/optimize/__pycache__/_linprog.cpython-310.pyc +0 -0
  36. env-llmeval/lib/python3.10/site-packages/scipy/optimize/__pycache__/_linprog_doc.cpython-310.pyc +0 -0
  37. env-llmeval/lib/python3.10/site-packages/scipy/optimize/__pycache__/_linprog_highs.cpython-310.pyc +0 -0
  38. env-llmeval/lib/python3.10/site-packages/scipy/optimize/__pycache__/_linprog_ip.cpython-310.pyc +0 -0
  39. env-llmeval/lib/python3.10/site-packages/scipy/optimize/__pycache__/_linprog_simplex.cpython-310.pyc +0 -0
  40. env-llmeval/lib/python3.10/site-packages/scipy/optimize/__pycache__/_linprog_util.cpython-310.pyc +0 -0
  41. env-llmeval/lib/python3.10/site-packages/scipy/optimize/__pycache__/_milp.cpython-310.pyc +0 -0
  42. env-llmeval/lib/python3.10/site-packages/scipy/optimize/__pycache__/_minimize.cpython-310.pyc +0 -0
  43. env-llmeval/lib/python3.10/site-packages/scipy/optimize/__pycache__/_minpack_py.cpython-310.pyc +0 -0
  44. env-llmeval/lib/python3.10/site-packages/scipy/optimize/__pycache__/_nnls.cpython-310.pyc +0 -0
  45. env-llmeval/lib/python3.10/site-packages/scipy/optimize/__pycache__/_nonlin.cpython-310.pyc +0 -0
  46. env-llmeval/lib/python3.10/site-packages/scipy/optimize/__pycache__/_numdiff.cpython-310.pyc +0 -0
  47. env-llmeval/lib/python3.10/site-packages/scipy/optimize/__pycache__/_optimize.cpython-310.pyc +0 -0
  48. env-llmeval/lib/python3.10/site-packages/scipy/optimize/__pycache__/_qap.cpython-310.pyc +0 -0
  49. env-llmeval/lib/python3.10/site-packages/scipy/optimize/__pycache__/_remove_redundancy.cpython-310.pyc +0 -0
  50. env-llmeval/lib/python3.10/site-packages/scipy/optimize/__pycache__/_shgo.cpython-310.pyc +0 -0
.gitattributes CHANGED
@@ -167,3 +167,4 @@ env-llmeval/lib/python3.10/site-packages/scipy/special/_ufuncs.cpython-310-x86_6
167
  env-llmeval/lib/python3.10/site-packages/scipy/spatial/_ckdtree.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
168
  env-llmeval/lib/python3.10/site-packages/scipy/spatial/_qhull.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
169
  env-llmeval/lib/python3.10/site-packages/scipy/fft/_pocketfft/pypocketfft.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
 
 
167
  env-llmeval/lib/python3.10/site-packages/scipy/spatial/_ckdtree.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
168
  env-llmeval/lib/python3.10/site-packages/scipy/spatial/_qhull.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
169
  env-llmeval/lib/python3.10/site-packages/scipy/fft/_pocketfft/pypocketfft.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
170
+ env-llmeval/lib/python3.10/site-packages/scipy/optimize/_highs/_highs_wrapper.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
env-llmeval/lib/python3.10/site-packages/scipy/fftpack/_pseudo_diffs.py ADDED
@@ -0,0 +1,551 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Differential and pseudo-differential operators.
3
+ """
4
+ # Created by Pearu Peterson, September 2002
5
+
6
+ __all__ = ['diff',
7
+ 'tilbert','itilbert','hilbert','ihilbert',
8
+ 'cs_diff','cc_diff','sc_diff','ss_diff',
9
+ 'shift']
10
+
11
+ from numpy import pi, asarray, sin, cos, sinh, cosh, tanh, iscomplexobj
12
+ from . import convolve
13
+
14
+ from scipy.fft._pocketfft.helper import _datacopied
15
+
16
+
17
+ _cache = {}
18
+
19
+
20
+ def diff(x,order=1,period=None, _cache=_cache):
21
+ """
22
+ Return kth derivative (or integral) of a periodic sequence x.
23
+
24
+ If x_j and y_j are Fourier coefficients of periodic functions x
25
+ and y, respectively, then::
26
+
27
+ y_j = pow(sqrt(-1)*j*2*pi/period, order) * x_j
28
+ y_0 = 0 if order is not 0.
29
+
30
+ Parameters
31
+ ----------
32
+ x : array_like
33
+ Input array.
34
+ order : int, optional
35
+ The order of differentiation. Default order is 1. If order is
36
+ negative, then integration is carried out under the assumption
37
+ that ``x_0 == 0``.
38
+ period : float, optional
39
+ The assumed period of the sequence. Default is ``2*pi``.
40
+
41
+ Notes
42
+ -----
43
+ If ``sum(x, axis=0) = 0`` then ``diff(diff(x, k), -k) == x`` (within
44
+ numerical accuracy).
45
+
46
+ For odd order and even ``len(x)``, the Nyquist mode is taken zero.
47
+
48
+ """
49
+ tmp = asarray(x)
50
+ if order == 0:
51
+ return tmp
52
+ if iscomplexobj(tmp):
53
+ return diff(tmp.real,order,period)+1j*diff(tmp.imag,order,period)
54
+ if period is not None:
55
+ c = 2*pi/period
56
+ else:
57
+ c = 1.0
58
+ n = len(x)
59
+ omega = _cache.get((n,order,c))
60
+ if omega is None:
61
+ if len(_cache) > 20:
62
+ while _cache:
63
+ _cache.popitem()
64
+
65
+ def kernel(k,order=order,c=c):
66
+ if k:
67
+ return pow(c*k,order)
68
+ return 0
69
+ omega = convolve.init_convolution_kernel(n,kernel,d=order,
70
+ zero_nyquist=1)
71
+ _cache[(n,order,c)] = omega
72
+ overwrite_x = _datacopied(tmp, x)
73
+ return convolve.convolve(tmp,omega,swap_real_imag=order % 2,
74
+ overwrite_x=overwrite_x)
75
+
76
+
77
+ del _cache
78
+
79
+
80
+ _cache = {}
81
+
82
+
83
+ def tilbert(x, h, period=None, _cache=_cache):
84
+ """
85
+ Return h-Tilbert transform of a periodic sequence x.
86
+
87
+ If x_j and y_j are Fourier coefficients of periodic functions x
88
+ and y, respectively, then::
89
+
90
+ y_j = sqrt(-1)*coth(j*h*2*pi/period) * x_j
91
+ y_0 = 0
92
+
93
+ Parameters
94
+ ----------
95
+ x : array_like
96
+ The input array to transform.
97
+ h : float
98
+ Defines the parameter of the Tilbert transform.
99
+ period : float, optional
100
+ The assumed period of the sequence. Default period is ``2*pi``.
101
+
102
+ Returns
103
+ -------
104
+ tilbert : ndarray
105
+ The result of the transform.
106
+
107
+ Notes
108
+ -----
109
+ If ``sum(x, axis=0) == 0`` and ``n = len(x)`` is odd, then
110
+ ``tilbert(itilbert(x)) == x``.
111
+
112
+ If ``2 * pi * h / period`` is approximately 10 or larger, then
113
+ numerically ``tilbert == hilbert``
114
+ (theoretically oo-Tilbert == Hilbert).
115
+
116
+ For even ``len(x)``, the Nyquist mode of ``x`` is taken zero.
117
+
118
+ """
119
+ tmp = asarray(x)
120
+ if iscomplexobj(tmp):
121
+ return tilbert(tmp.real, h, period) + \
122
+ 1j * tilbert(tmp.imag, h, period)
123
+
124
+ if period is not None:
125
+ h = h * 2 * pi / period
126
+
127
+ n = len(x)
128
+ omega = _cache.get((n, h))
129
+ if omega is None:
130
+ if len(_cache) > 20:
131
+ while _cache:
132
+ _cache.popitem()
133
+
134
+ def kernel(k, h=h):
135
+ if k:
136
+ return 1.0/tanh(h*k)
137
+
138
+ return 0
139
+
140
+ omega = convolve.init_convolution_kernel(n, kernel, d=1)
141
+ _cache[(n,h)] = omega
142
+
143
+ overwrite_x = _datacopied(tmp, x)
144
+ return convolve.convolve(tmp,omega,swap_real_imag=1,overwrite_x=overwrite_x)
145
+
146
+
147
+ del _cache
148
+
149
+
150
+ _cache = {}
151
+
152
+
153
+ def itilbert(x,h,period=None, _cache=_cache):
154
+ """
155
+ Return inverse h-Tilbert transform of a periodic sequence x.
156
+
157
+ If ``x_j`` and ``y_j`` are Fourier coefficients of periodic functions x
158
+ and y, respectively, then::
159
+
160
+ y_j = -sqrt(-1)*tanh(j*h*2*pi/period) * x_j
161
+ y_0 = 0
162
+
163
+ For more details, see `tilbert`.
164
+
165
+ """
166
+ tmp = asarray(x)
167
+ if iscomplexobj(tmp):
168
+ return itilbert(tmp.real,h,period) + \
169
+ 1j*itilbert(tmp.imag,h,period)
170
+ if period is not None:
171
+ h = h*2*pi/period
172
+ n = len(x)
173
+ omega = _cache.get((n,h))
174
+ if omega is None:
175
+ if len(_cache) > 20:
176
+ while _cache:
177
+ _cache.popitem()
178
+
179
+ def kernel(k,h=h):
180
+ if k:
181
+ return -tanh(h*k)
182
+ return 0
183
+ omega = convolve.init_convolution_kernel(n,kernel,d=1)
184
+ _cache[(n,h)] = omega
185
+ overwrite_x = _datacopied(tmp, x)
186
+ return convolve.convolve(tmp,omega,swap_real_imag=1,overwrite_x=overwrite_x)
187
+
188
+
189
+ del _cache
190
+
191
+
192
+ _cache = {}
193
+
194
+
195
+ def hilbert(x, _cache=_cache):
196
+ """
197
+ Return Hilbert transform of a periodic sequence x.
198
+
199
+ If x_j and y_j are Fourier coefficients of periodic functions x
200
+ and y, respectively, then::
201
+
202
+ y_j = sqrt(-1)*sign(j) * x_j
203
+ y_0 = 0
204
+
205
+ Parameters
206
+ ----------
207
+ x : array_like
208
+ The input array, should be periodic.
209
+ _cache : dict, optional
210
+ Dictionary that contains the kernel used to do a convolution with.
211
+
212
+ Returns
213
+ -------
214
+ y : ndarray
215
+ The transformed input.
216
+
217
+ See Also
218
+ --------
219
+ scipy.signal.hilbert : Compute the analytic signal, using the Hilbert
220
+ transform.
221
+
222
+ Notes
223
+ -----
224
+ If ``sum(x, axis=0) == 0`` then ``hilbert(ihilbert(x)) == x``.
225
+
226
+ For even len(x), the Nyquist mode of x is taken zero.
227
+
228
+ The sign of the returned transform does not have a factor -1 that is more
229
+ often than not found in the definition of the Hilbert transform. Note also
230
+ that `scipy.signal.hilbert` does have an extra -1 factor compared to this
231
+ function.
232
+
233
+ """
234
+ tmp = asarray(x)
235
+ if iscomplexobj(tmp):
236
+ return hilbert(tmp.real)+1j*hilbert(tmp.imag)
237
+ n = len(x)
238
+ omega = _cache.get(n)
239
+ if omega is None:
240
+ if len(_cache) > 20:
241
+ while _cache:
242
+ _cache.popitem()
243
+
244
+ def kernel(k):
245
+ if k > 0:
246
+ return 1.0
247
+ elif k < 0:
248
+ return -1.0
249
+ return 0.0
250
+ omega = convolve.init_convolution_kernel(n,kernel,d=1)
251
+ _cache[n] = omega
252
+ overwrite_x = _datacopied(tmp, x)
253
+ return convolve.convolve(tmp,omega,swap_real_imag=1,overwrite_x=overwrite_x)
254
+
255
+
256
+ del _cache
257
+
258
+
259
+ def ihilbert(x):
260
+ """
261
+ Return inverse Hilbert transform of a periodic sequence x.
262
+
263
+ If ``x_j`` and ``y_j`` are Fourier coefficients of periodic functions x
264
+ and y, respectively, then::
265
+
266
+ y_j = -sqrt(-1)*sign(j) * x_j
267
+ y_0 = 0
268
+
269
+ """
270
+ return -hilbert(x)
271
+
272
+
273
+ _cache = {}
274
+
275
+
276
+ def cs_diff(x, a, b, period=None, _cache=_cache):
277
+ """
278
+ Return (a,b)-cosh/sinh pseudo-derivative of a periodic sequence.
279
+
280
+ If ``x_j`` and ``y_j`` are Fourier coefficients of periodic functions x
281
+ and y, respectively, then::
282
+
283
+ y_j = -sqrt(-1)*cosh(j*a*2*pi/period)/sinh(j*b*2*pi/period) * x_j
284
+ y_0 = 0
285
+
286
+ Parameters
287
+ ----------
288
+ x : array_like
289
+ The array to take the pseudo-derivative from.
290
+ a, b : float
291
+ Defines the parameters of the cosh/sinh pseudo-differential
292
+ operator.
293
+ period : float, optional
294
+ The period of the sequence. Default period is ``2*pi``.
295
+
296
+ Returns
297
+ -------
298
+ cs_diff : ndarray
299
+ Pseudo-derivative of periodic sequence `x`.
300
+
301
+ Notes
302
+ -----
303
+ For even len(`x`), the Nyquist mode of `x` is taken as zero.
304
+
305
+ """
306
+ tmp = asarray(x)
307
+ if iscomplexobj(tmp):
308
+ return cs_diff(tmp.real,a,b,period) + \
309
+ 1j*cs_diff(tmp.imag,a,b,period)
310
+ if period is not None:
311
+ a = a*2*pi/period
312
+ b = b*2*pi/period
313
+ n = len(x)
314
+ omega = _cache.get((n,a,b))
315
+ if omega is None:
316
+ if len(_cache) > 20:
317
+ while _cache:
318
+ _cache.popitem()
319
+
320
+ def kernel(k,a=a,b=b):
321
+ if k:
322
+ return -cosh(a*k)/sinh(b*k)
323
+ return 0
324
+ omega = convolve.init_convolution_kernel(n,kernel,d=1)
325
+ _cache[(n,a,b)] = omega
326
+ overwrite_x = _datacopied(tmp, x)
327
+ return convolve.convolve(tmp,omega,swap_real_imag=1,overwrite_x=overwrite_x)
328
+
329
+
330
+ del _cache
331
+
332
+
333
+ _cache = {}
334
+
335
+
336
+ def sc_diff(x, a, b, period=None, _cache=_cache):
337
+ """
338
+ Return (a,b)-sinh/cosh pseudo-derivative of a periodic sequence x.
339
+
340
+ If x_j and y_j are Fourier coefficients of periodic functions x
341
+ and y, respectively, then::
342
+
343
+ y_j = sqrt(-1)*sinh(j*a*2*pi/period)/cosh(j*b*2*pi/period) * x_j
344
+ y_0 = 0
345
+
346
+ Parameters
347
+ ----------
348
+ x : array_like
349
+ Input array.
350
+ a,b : float
351
+ Defines the parameters of the sinh/cosh pseudo-differential
352
+ operator.
353
+ period : float, optional
354
+ The period of the sequence x. Default is 2*pi.
355
+
356
+ Notes
357
+ -----
358
+ ``sc_diff(cs_diff(x,a,b),b,a) == x``
359
+ For even ``len(x)``, the Nyquist mode of x is taken as zero.
360
+
361
+ """
362
+ tmp = asarray(x)
363
+ if iscomplexobj(tmp):
364
+ return sc_diff(tmp.real,a,b,period) + \
365
+ 1j*sc_diff(tmp.imag,a,b,period)
366
+ if period is not None:
367
+ a = a*2*pi/period
368
+ b = b*2*pi/period
369
+ n = len(x)
370
+ omega = _cache.get((n,a,b))
371
+ if omega is None:
372
+ if len(_cache) > 20:
373
+ while _cache:
374
+ _cache.popitem()
375
+
376
+ def kernel(k,a=a,b=b):
377
+ if k:
378
+ return sinh(a*k)/cosh(b*k)
379
+ return 0
380
+ omega = convolve.init_convolution_kernel(n,kernel,d=1)
381
+ _cache[(n,a,b)] = omega
382
+ overwrite_x = _datacopied(tmp, x)
383
+ return convolve.convolve(tmp,omega,swap_real_imag=1,overwrite_x=overwrite_x)
384
+
385
+
386
+ del _cache
387
+
388
+
389
+ _cache = {}
390
+
391
+
392
+ def ss_diff(x, a, b, period=None, _cache=_cache):
393
+ """
394
+ Return (a,b)-sinh/sinh pseudo-derivative of a periodic sequence x.
395
+
396
+ If x_j and y_j are Fourier coefficients of periodic functions x
397
+ and y, respectively, then::
398
+
399
+ y_j = sinh(j*a*2*pi/period)/sinh(j*b*2*pi/period) * x_j
400
+ y_0 = a/b * x_0
401
+
402
+ Parameters
403
+ ----------
404
+ x : array_like
405
+ The array to take the pseudo-derivative from.
406
+ a,b
407
+ Defines the parameters of the sinh/sinh pseudo-differential
408
+ operator.
409
+ period : float, optional
410
+ The period of the sequence x. Default is ``2*pi``.
411
+
412
+ Notes
413
+ -----
414
+ ``ss_diff(ss_diff(x,a,b),b,a) == x``
415
+
416
+ """
417
+ tmp = asarray(x)
418
+ if iscomplexobj(tmp):
419
+ return ss_diff(tmp.real,a,b,period) + \
420
+ 1j*ss_diff(tmp.imag,a,b,period)
421
+ if period is not None:
422
+ a = a*2*pi/period
423
+ b = b*2*pi/period
424
+ n = len(x)
425
+ omega = _cache.get((n,a,b))
426
+ if omega is None:
427
+ if len(_cache) > 20:
428
+ while _cache:
429
+ _cache.popitem()
430
+
431
+ def kernel(k,a=a,b=b):
432
+ if k:
433
+ return sinh(a*k)/sinh(b*k)
434
+ return float(a)/b
435
+ omega = convolve.init_convolution_kernel(n,kernel)
436
+ _cache[(n,a,b)] = omega
437
+ overwrite_x = _datacopied(tmp, x)
438
+ return convolve.convolve(tmp,omega,overwrite_x=overwrite_x)
439
+
440
+
441
+ del _cache
442
+
443
+
444
+ _cache = {}
445
+
446
+
447
+ def cc_diff(x, a, b, period=None, _cache=_cache):
448
+ """
449
+ Return (a,b)-cosh/cosh pseudo-derivative of a periodic sequence.
450
+
451
+ If x_j and y_j are Fourier coefficients of periodic functions x
452
+ and y, respectively, then::
453
+
454
+ y_j = cosh(j*a*2*pi/period)/cosh(j*b*2*pi/period) * x_j
455
+
456
+ Parameters
457
+ ----------
458
+ x : array_like
459
+ The array to take the pseudo-derivative from.
460
+ a,b : float
461
+ Defines the parameters of the sinh/sinh pseudo-differential
462
+ operator.
463
+ period : float, optional
464
+ The period of the sequence x. Default is ``2*pi``.
465
+
466
+ Returns
467
+ -------
468
+ cc_diff : ndarray
469
+ Pseudo-derivative of periodic sequence `x`.
470
+
471
+ Notes
472
+ -----
473
+ ``cc_diff(cc_diff(x,a,b),b,a) == x``
474
+
475
+ """
476
+ tmp = asarray(x)
477
+ if iscomplexobj(tmp):
478
+ return cc_diff(tmp.real,a,b,period) + \
479
+ 1j*cc_diff(tmp.imag,a,b,period)
480
+ if period is not None:
481
+ a = a*2*pi/period
482
+ b = b*2*pi/period
483
+ n = len(x)
484
+ omega = _cache.get((n,a,b))
485
+ if omega is None:
486
+ if len(_cache) > 20:
487
+ while _cache:
488
+ _cache.popitem()
489
+
490
+ def kernel(k,a=a,b=b):
491
+ return cosh(a*k)/cosh(b*k)
492
+ omega = convolve.init_convolution_kernel(n,kernel)
493
+ _cache[(n,a,b)] = omega
494
+ overwrite_x = _datacopied(tmp, x)
495
+ return convolve.convolve(tmp,omega,overwrite_x=overwrite_x)
496
+
497
+
498
+ del _cache
499
+
500
+
501
+ _cache = {}
502
+
503
+
504
+ def shift(x, a, period=None, _cache=_cache):
505
+ """
506
+ Shift periodic sequence x by a: y(u) = x(u+a).
507
+
508
+ If x_j and y_j are Fourier coefficients of periodic functions x
509
+ and y, respectively, then::
510
+
511
+ y_j = exp(j*a*2*pi/period*sqrt(-1)) * x_f
512
+
513
+ Parameters
514
+ ----------
515
+ x : array_like
516
+ The array to take the pseudo-derivative from.
517
+ a : float
518
+ Defines the parameters of the sinh/sinh pseudo-differential
519
+ period : float, optional
520
+ The period of the sequences x and y. Default period is ``2*pi``.
521
+ """
522
+ tmp = asarray(x)
523
+ if iscomplexobj(tmp):
524
+ return shift(tmp.real,a,period)+1j*shift(tmp.imag,a,period)
525
+ if period is not None:
526
+ a = a*2*pi/period
527
+ n = len(x)
528
+ omega = _cache.get((n,a))
529
+ if omega is None:
530
+ if len(_cache) > 20:
531
+ while _cache:
532
+ _cache.popitem()
533
+
534
+ def kernel_real(k,a=a):
535
+ return cos(a*k)
536
+
537
+ def kernel_imag(k,a=a):
538
+ return sin(a*k)
539
+ omega_real = convolve.init_convolution_kernel(n,kernel_real,d=0,
540
+ zero_nyquist=0)
541
+ omega_imag = convolve.init_convolution_kernel(n,kernel_imag,d=1,
542
+ zero_nyquist=0)
543
+ _cache[(n,a)] = omega_real,omega_imag
544
+ else:
545
+ omega_real,omega_imag = omega
546
+ overwrite_x = _datacopied(tmp, x)
547
+ return convolve.convolve_z(tmp,omega_real,omega_imag,
548
+ overwrite_x=overwrite_x)
549
+
550
+
551
+ del _cache
env-llmeval/lib/python3.10/site-packages/scipy/fftpack/basic.py ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This file is not meant for public use and will be removed in SciPy v2.0.0.
2
+ # Use the `scipy.fftpack` namespace for importing the functions
3
+ # included below.
4
+
5
+ from scipy._lib.deprecation import _sub_module_deprecation
6
+
7
+ __all__ = [ # noqa: F822
8
+ 'fft','ifft','fftn','ifftn','rfft','irfft',
9
+ 'fft2','ifft2'
10
+ ]
11
+
12
+
13
+ def __dir__():
14
+ return __all__
15
+
16
+
17
+ def __getattr__(name):
18
+ return _sub_module_deprecation(sub_package="fftpack", module="basic",
19
+ private_modules=["_basic"], all=__all__,
20
+ attribute=name)
env-llmeval/lib/python3.10/site-packages/scipy/fftpack/realtransforms.py ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This file is not meant for public use and will be removed in SciPy v2.0.0.
2
+ # Use the `scipy.fftpack` namespace for importing the functions
3
+ # included below.
4
+
5
+ from scipy._lib.deprecation import _sub_module_deprecation
6
+
7
+ __all__ = [ # noqa: F822
8
+ 'dct', 'idct', 'dst', 'idst', 'dctn', 'idctn', 'dstn', 'idstn'
9
+ ]
10
+
11
+
12
+ def __dir__():
13
+ return __all__
14
+
15
+
16
+ def __getattr__(name):
17
+ return _sub_module_deprecation(sub_package="fftpack", module="realtransforms",
18
+ private_modules=["_realtransforms"], all=__all__,
19
+ attribute=name)
env-llmeval/lib/python3.10/site-packages/scipy/odr/__init__.py ADDED
@@ -0,0 +1,131 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ =================================================
3
+ Orthogonal distance regression (:mod:`scipy.odr`)
4
+ =================================================
5
+
6
+ .. currentmodule:: scipy.odr
7
+
8
+ Package Content
9
+ ===============
10
+
11
+ .. autosummary::
12
+ :toctree: generated/
13
+
14
+ Data -- The data to fit.
15
+ RealData -- Data with weights as actual std. dev.s and/or covariances.
16
+ Model -- Stores information about the function to be fit.
17
+ ODR -- Gathers all info & manages the main fitting routine.
18
+ Output -- Result from the fit.
19
+ odr -- Low-level function for ODR.
20
+
21
+ OdrWarning -- Warning about potential problems when running ODR.
22
+ OdrError -- Error exception.
23
+ OdrStop -- Stop exception.
24
+
25
+ polynomial -- Factory function for a general polynomial model.
26
+ exponential -- Exponential model
27
+ multilinear -- Arbitrary-dimensional linear model
28
+ unilinear -- Univariate linear model
29
+ quadratic -- Quadratic model
30
+
31
+ Usage information
32
+ =================
33
+
34
+ Introduction
35
+ ------------
36
+
37
+ Why Orthogonal Distance Regression (ODR)? Sometimes one has
38
+ measurement errors in the explanatory (a.k.a., "independent")
39
+ variable(s), not just the response (a.k.a., "dependent") variable(s).
40
+ Ordinary Least Squares (OLS) fitting procedures treat the data for
41
+ explanatory variables as fixed, i.e., not subject to error of any kind.
42
+ Furthermore, OLS procedures require that the response variables be an
43
+ explicit function of the explanatory variables; sometimes making the
44
+ equation explicit is impractical and/or introduces errors. ODR can
45
+ handle both of these cases with ease, and can even reduce to the OLS
46
+ case if that is sufficient for the problem.
47
+
48
+ ODRPACK is a FORTRAN-77 library for performing ODR with possibly
49
+ non-linear fitting functions. It uses a modified trust-region
50
+ Levenberg-Marquardt-type algorithm [1]_ to estimate the function
51
+ parameters. The fitting functions are provided by Python functions
52
+ operating on NumPy arrays. The required derivatives may be provided
53
+ by Python functions as well, or may be estimated numerically. ODRPACK
54
+ can do explicit or implicit ODR fits, or it can do OLS. Input and
55
+ output variables may be multidimensional. Weights can be provided to
56
+ account for different variances of the observations, and even
57
+ covariances between dimensions of the variables.
58
+
59
+ The `scipy.odr` package offers an object-oriented interface to
60
+ ODRPACK, in addition to the low-level `odr` function.
61
+
62
+ Additional background information about ODRPACK can be found in the
63
+ `ODRPACK User's Guide
64
+ <https://docs.scipy.org/doc/external/odrpack_guide.pdf>`_, reading
65
+ which is recommended.
66
+
67
+ Basic usage
68
+ -----------
69
+
70
+ 1. Define the function you want to fit against.::
71
+
72
+ def f(B, x):
73
+ '''Linear function y = m*x + b'''
74
+ # B is a vector of the parameters.
75
+ # x is an array of the current x values.
76
+ # x is in the same format as the x passed to Data or RealData.
77
+ #
78
+ # Return an array in the same format as y passed to Data or RealData.
79
+ return B[0]*x + B[1]
80
+
81
+ 2. Create a Model.::
82
+
83
+ linear = Model(f)
84
+
85
+ 3. Create a Data or RealData instance.::
86
+
87
+ mydata = Data(x, y, wd=1./power(sx,2), we=1./power(sy,2))
88
+
89
+ or, when the actual covariances are known::
90
+
91
+ mydata = RealData(x, y, sx=sx, sy=sy)
92
+
93
+ 4. Instantiate ODR with your data, model and initial parameter estimate.::
94
+
95
+ myodr = ODR(mydata, linear, beta0=[1., 2.])
96
+
97
+ 5. Run the fit.::
98
+
99
+ myoutput = myodr.run()
100
+
101
+ 6. Examine output.::
102
+
103
+ myoutput.pprint()
104
+
105
+
106
+ References
107
+ ----------
108
+ .. [1] P. T. Boggs and J. E. Rogers, "Orthogonal Distance Regression,"
109
+ in "Statistical analysis of measurement error models and
110
+ applications: proceedings of the AMS-IMS-SIAM joint summer research
111
+ conference held June 10-16, 1989," Contemporary Mathematics,
112
+ vol. 112, pg. 186, 1990.
113
+
114
+ """
115
+ # version: 0.7
116
+ # author: Robert Kern <[email protected]>
117
+ # date: 2006-09-21
118
+
119
+ from ._odrpack import *
120
+ from ._models import *
121
+ from . import _add_newdocs
122
+
123
+ # Deprecated namespaces, to be removed in v2.0.0
124
+ from . import models, odrpack
125
+
126
+ __all__ = [s for s in dir()
127
+ if not (s.startswith('_') or s in ('odr_stop', 'odr_error'))]
128
+
129
+ from scipy._lib._testutils import PytestTester
130
+ test = PytestTester(__name__)
131
+ del PytestTester
env-llmeval/lib/python3.10/site-packages/scipy/odr/__odrpack.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (223 kB). View file
 
env-llmeval/lib/python3.10/site-packages/scipy/odr/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (4.5 kB). View file
 
env-llmeval/lib/python3.10/site-packages/scipy/odr/__pycache__/_add_newdocs.cpython-310.pyc ADDED
Binary file (1.3 kB). View file
 
env-llmeval/lib/python3.10/site-packages/scipy/odr/__pycache__/_models.cpython-310.pyc ADDED
Binary file (9.07 kB). View file
 
env-llmeval/lib/python3.10/site-packages/scipy/odr/__pycache__/_odrpack.cpython-310.pyc ADDED
Binary file (37.2 kB). View file
 
env-llmeval/lib/python3.10/site-packages/scipy/odr/__pycache__/models.cpython-310.pyc ADDED
Binary file (650 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/scipy/odr/__pycache__/odrpack.cpython-310.pyc ADDED
Binary file (679 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/scipy/odr/_add_newdocs.py ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from numpy.lib import add_newdoc
2
+
3
+ add_newdoc('scipy.odr', 'odr',
4
+ """
5
+ odr(fcn, beta0, y, x, we=None, wd=None, fjacb=None, fjacd=None, extra_args=None,
6
+ ifixx=None, ifixb=None, job=0, iprint=0, errfile=None, rptfile=None, ndigit=0,
7
+ taufac=0.0, sstol=-1.0, partol=-1.0, maxit=-1, stpb=None, stpd=None, sclb=None,
8
+ scld=None, work=None, iwork=None, full_output=0)
9
+
10
+ Low-level function for ODR.
11
+
12
+ See Also
13
+ --------
14
+ ODR : The ODR class gathers all information and coordinates the running of the
15
+ main fitting routine.
16
+ Model : The Model class stores information about the function you wish to fit.
17
+ Data : The data to fit.
18
+ RealData : Data with weights as actual std. dev.s and/or covariances.
19
+
20
+ Notes
21
+ -----
22
+ This is a function performing the same operation as the `ODR`,
23
+ `Model`, and `Data` classes together. The parameters of this
24
+ function are explained in the class documentation.
25
+
26
+ """)
27
+
28
+ add_newdoc('scipy.odr.__odrpack', '_set_exceptions',
29
+ """
30
+ _set_exceptions(odr_error, odr_stop)
31
+
32
+ Internal function: set exception classes.
33
+
34
+ """)
env-llmeval/lib/python3.10/site-packages/scipy/odr/_models.py ADDED
@@ -0,0 +1,315 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ Collection of Model instances for use with the odrpack fitting package.
2
+ """
3
+ import numpy as np
4
+ from scipy.odr._odrpack import Model
5
+
6
+ __all__ = ['Model', 'exponential', 'multilinear', 'unilinear', 'quadratic',
7
+ 'polynomial']
8
+
9
+
10
+ def _lin_fcn(B, x):
11
+ a, b = B[0], B[1:]
12
+ b.shape = (b.shape[0], 1)
13
+
14
+ return a + (x*b).sum(axis=0)
15
+
16
+
17
+ def _lin_fjb(B, x):
18
+ a = np.ones(x.shape[-1], float)
19
+ res = np.concatenate((a, x.ravel()))
20
+ res.shape = (B.shape[-1], x.shape[-1])
21
+ return res
22
+
23
+
24
+ def _lin_fjd(B, x):
25
+ b = B[1:]
26
+ b = np.repeat(b, (x.shape[-1],)*b.shape[-1], axis=0)
27
+ b.shape = x.shape
28
+ return b
29
+
30
+
31
+ def _lin_est(data):
32
+ # Eh. The answer is analytical, so just return all ones.
33
+ # Don't return zeros since that will interfere with
34
+ # ODRPACK's auto-scaling procedures.
35
+
36
+ if len(data.x.shape) == 2:
37
+ m = data.x.shape[0]
38
+ else:
39
+ m = 1
40
+
41
+ return np.ones((m + 1,), float)
42
+
43
+
44
+ def _poly_fcn(B, x, powers):
45
+ a, b = B[0], B[1:]
46
+ b.shape = (b.shape[0], 1)
47
+
48
+ return a + np.sum(b * np.power(x, powers), axis=0)
49
+
50
+
51
+ def _poly_fjacb(B, x, powers):
52
+ res = np.concatenate((np.ones(x.shape[-1], float),
53
+ np.power(x, powers).flat))
54
+ res.shape = (B.shape[-1], x.shape[-1])
55
+ return res
56
+
57
+
58
+ def _poly_fjacd(B, x, powers):
59
+ b = B[1:]
60
+ b.shape = (b.shape[0], 1)
61
+
62
+ b = b * powers
63
+
64
+ return np.sum(b * np.power(x, powers-1), axis=0)
65
+
66
+
67
+ def _exp_fcn(B, x):
68
+ return B[0] + np.exp(B[1] * x)
69
+
70
+
71
+ def _exp_fjd(B, x):
72
+ return B[1] * np.exp(B[1] * x)
73
+
74
+
75
+ def _exp_fjb(B, x):
76
+ res = np.concatenate((np.ones(x.shape[-1], float), x * np.exp(B[1] * x)))
77
+ res.shape = (2, x.shape[-1])
78
+ return res
79
+
80
+
81
+ def _exp_est(data):
82
+ # Eh.
83
+ return np.array([1., 1.])
84
+
85
+
86
+ class _MultilinearModel(Model):
87
+ r"""
88
+ Arbitrary-dimensional linear model
89
+
90
+ This model is defined by :math:`y=\beta_0 + \sum_{i=1}^m \beta_i x_i`
91
+
92
+ Examples
93
+ --------
94
+ We can calculate orthogonal distance regression with an arbitrary
95
+ dimensional linear model:
96
+
97
+ >>> from scipy import odr
98
+ >>> import numpy as np
99
+ >>> x = np.linspace(0.0, 5.0)
100
+ >>> y = 10.0 + 5.0 * x
101
+ >>> data = odr.Data(x, y)
102
+ >>> odr_obj = odr.ODR(data, odr.multilinear)
103
+ >>> output = odr_obj.run()
104
+ >>> print(output.beta)
105
+ [10. 5.]
106
+
107
+ """
108
+
109
+ def __init__(self):
110
+ super().__init__(
111
+ _lin_fcn, fjacb=_lin_fjb, fjacd=_lin_fjd, estimate=_lin_est,
112
+ meta={'name': 'Arbitrary-dimensional Linear',
113
+ 'equ': 'y = B_0 + Sum[i=1..m, B_i * x_i]',
114
+ 'TeXequ': r'$y=\beta_0 + \sum_{i=1}^m \beta_i x_i$'})
115
+
116
+
117
+ multilinear = _MultilinearModel()
118
+
119
+
120
+ def polynomial(order):
121
+ """
122
+ Factory function for a general polynomial model.
123
+
124
+ Parameters
125
+ ----------
126
+ order : int or sequence
127
+ If an integer, it becomes the order of the polynomial to fit. If
128
+ a sequence of numbers, then these are the explicit powers in the
129
+ polynomial.
130
+ A constant term (power 0) is always included, so don't include 0.
131
+ Thus, polynomial(n) is equivalent to polynomial(range(1, n+1)).
132
+
133
+ Returns
134
+ -------
135
+ polynomial : Model instance
136
+ Model instance.
137
+
138
+ Examples
139
+ --------
140
+ We can fit an input data using orthogonal distance regression (ODR) with
141
+ a polynomial model:
142
+
143
+ >>> import numpy as np
144
+ >>> import matplotlib.pyplot as plt
145
+ >>> from scipy import odr
146
+ >>> x = np.linspace(0.0, 5.0)
147
+ >>> y = np.sin(x)
148
+ >>> poly_model = odr.polynomial(3) # using third order polynomial model
149
+ >>> data = odr.Data(x, y)
150
+ >>> odr_obj = odr.ODR(data, poly_model)
151
+ >>> output = odr_obj.run() # running ODR fitting
152
+ >>> poly = np.poly1d(output.beta[::-1])
153
+ >>> poly_y = poly(x)
154
+ >>> plt.plot(x, y, label="input data")
155
+ >>> plt.plot(x, poly_y, label="polynomial ODR")
156
+ >>> plt.legend()
157
+ >>> plt.show()
158
+
159
+ """
160
+
161
+ powers = np.asarray(order)
162
+ if powers.shape == ():
163
+ # Scalar.
164
+ powers = np.arange(1, powers + 1)
165
+
166
+ powers.shape = (len(powers), 1)
167
+ len_beta = len(powers) + 1
168
+
169
+ def _poly_est(data, len_beta=len_beta):
170
+ # Eh. Ignore data and return all ones.
171
+ return np.ones((len_beta,), float)
172
+
173
+ return Model(_poly_fcn, fjacd=_poly_fjacd, fjacb=_poly_fjacb,
174
+ estimate=_poly_est, extra_args=(powers,),
175
+ meta={'name': 'Sorta-general Polynomial',
176
+ 'equ': 'y = B_0 + Sum[i=1..%s, B_i * (x**i)]' % (len_beta-1),
177
+ 'TeXequ': r'$y=\beta_0 + \sum_{i=1}^{%s} \beta_i x^i$' %
178
+ (len_beta-1)})
179
+
180
+
181
+ class _ExponentialModel(Model):
182
+ r"""
183
+ Exponential model
184
+
185
+ This model is defined by :math:`y=\beta_0 + e^{\beta_1 x}`
186
+
187
+ Examples
188
+ --------
189
+ We can calculate orthogonal distance regression with an exponential model:
190
+
191
+ >>> from scipy import odr
192
+ >>> import numpy as np
193
+ >>> x = np.linspace(0.0, 5.0)
194
+ >>> y = -10.0 + np.exp(0.5*x)
195
+ >>> data = odr.Data(x, y)
196
+ >>> odr_obj = odr.ODR(data, odr.exponential)
197
+ >>> output = odr_obj.run()
198
+ >>> print(output.beta)
199
+ [-10. 0.5]
200
+
201
+ """
202
+
203
+ def __init__(self):
204
+ super().__init__(_exp_fcn, fjacd=_exp_fjd, fjacb=_exp_fjb,
205
+ estimate=_exp_est,
206
+ meta={'name': 'Exponential',
207
+ 'equ': 'y= B_0 + exp(B_1 * x)',
208
+ 'TeXequ': r'$y=\beta_0 + e^{\beta_1 x}$'})
209
+
210
+
211
+ exponential = _ExponentialModel()
212
+
213
+
214
+ def _unilin(B, x):
215
+ return x*B[0] + B[1]
216
+
217
+
218
+ def _unilin_fjd(B, x):
219
+ return np.ones(x.shape, float) * B[0]
220
+
221
+
222
+ def _unilin_fjb(B, x):
223
+ _ret = np.concatenate((x, np.ones(x.shape, float)))
224
+ _ret.shape = (2,) + x.shape
225
+
226
+ return _ret
227
+
228
+
229
+ def _unilin_est(data):
230
+ return (1., 1.)
231
+
232
+
233
+ def _quadratic(B, x):
234
+ return x*(x*B[0] + B[1]) + B[2]
235
+
236
+
237
+ def _quad_fjd(B, x):
238
+ return 2*x*B[0] + B[1]
239
+
240
+
241
+ def _quad_fjb(B, x):
242
+ _ret = np.concatenate((x*x, x, np.ones(x.shape, float)))
243
+ _ret.shape = (3,) + x.shape
244
+
245
+ return _ret
246
+
247
+
248
+ def _quad_est(data):
249
+ return (1.,1.,1.)
250
+
251
+
252
+ class _UnilinearModel(Model):
253
+ r"""
254
+ Univariate linear model
255
+
256
+ This model is defined by :math:`y = \beta_0 x + \beta_1`
257
+
258
+ Examples
259
+ --------
260
+ We can calculate orthogonal distance regression with an unilinear model:
261
+
262
+ >>> from scipy import odr
263
+ >>> import numpy as np
264
+ >>> x = np.linspace(0.0, 5.0)
265
+ >>> y = 1.0 * x + 2.0
266
+ >>> data = odr.Data(x, y)
267
+ >>> odr_obj = odr.ODR(data, odr.unilinear)
268
+ >>> output = odr_obj.run()
269
+ >>> print(output.beta)
270
+ [1. 2.]
271
+
272
+ """
273
+
274
+ def __init__(self):
275
+ super().__init__(_unilin, fjacd=_unilin_fjd, fjacb=_unilin_fjb,
276
+ estimate=_unilin_est,
277
+ meta={'name': 'Univariate Linear',
278
+ 'equ': 'y = B_0 * x + B_1',
279
+ 'TeXequ': '$y = \\beta_0 x + \\beta_1$'})
280
+
281
+
282
+ unilinear = _UnilinearModel()
283
+
284
+
285
+ class _QuadraticModel(Model):
286
+ r"""
287
+ Quadratic model
288
+
289
+ This model is defined by :math:`y = \beta_0 x^2 + \beta_1 x + \beta_2`
290
+
291
+ Examples
292
+ --------
293
+ We can calculate orthogonal distance regression with a quadratic model:
294
+
295
+ >>> from scipy import odr
296
+ >>> import numpy as np
297
+ >>> x = np.linspace(0.0, 5.0)
298
+ >>> y = 1.0 * x ** 2 + 2.0 * x + 3.0
299
+ >>> data = odr.Data(x, y)
300
+ >>> odr_obj = odr.ODR(data, odr.quadratic)
301
+ >>> output = odr_obj.run()
302
+ >>> print(output.beta)
303
+ [1. 2. 3.]
304
+
305
+ """
306
+
307
+ def __init__(self):
308
+ super().__init__(
309
+ _quadratic, fjacd=_quad_fjd, fjacb=_quad_fjb, estimate=_quad_est,
310
+ meta={'name': 'Quadratic',
311
+ 'equ': 'y = B_0*x**2 + B_1*x + B_2',
312
+ 'TeXequ': '$y = \\beta_0 x^2 + \\beta_1 x + \\beta_2'})
313
+
314
+
315
+ quadratic = _QuadraticModel()
env-llmeval/lib/python3.10/site-packages/scipy/odr/_odrpack.py ADDED
@@ -0,0 +1,1150 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Python wrappers for Orthogonal Distance Regression (ODRPACK).
3
+
4
+ Notes
5
+ =====
6
+
7
+ * Array formats -- FORTRAN stores its arrays in memory column first, i.e., an
8
+ array element A(i, j, k) will be next to A(i+1, j, k). In C and, consequently,
9
+ NumPy, arrays are stored row first: A[i, j, k] is next to A[i, j, k+1]. For
10
+ efficiency and convenience, the input and output arrays of the fitting
11
+ function (and its Jacobians) are passed to FORTRAN without transposition.
12
+ Therefore, where the ODRPACK documentation says that the X array is of shape
13
+ (N, M), it will be passed to the Python function as an array of shape (M, N).
14
+ If M==1, the 1-D case, then nothing matters; if M>1, then your
15
+ Python functions will be dealing with arrays that are indexed in reverse of
16
+ the ODRPACK documentation. No real issue, but watch out for your indexing of
17
+ the Jacobians: the i,jth elements (@f_i/@x_j) evaluated at the nth
18
+ observation will be returned as jacd[j, i, n]. Except for the Jacobians, it
19
+ really is easier to deal with x[0] and x[1] than x[:,0] and x[:,1]. Of course,
20
+ you can always use the transpose() function from SciPy explicitly.
21
+
22
+ * Examples -- See the accompanying file test/test.py for examples of how to set
23
+ up fits of your own. Some are taken from the User's Guide; some are from
24
+ other sources.
25
+
26
+ * Models -- Some common models are instantiated in the accompanying module
27
+ models.py . Contributions are welcome.
28
+
29
+ Credits
30
+ =======
31
+
32
+ * Thanks to Arnold Moene and Gerard Vermeulen for fixing some killer bugs.
33
+
34
+ Robert Kern
35
36
+
37
+ """
38
+ import os
39
+
40
+ import numpy
41
+ from warnings import warn
42
+ from scipy.odr import __odrpack
43
+
44
+ __all__ = ['odr', 'OdrWarning', 'OdrError', 'OdrStop',
45
+ 'Data', 'RealData', 'Model', 'Output', 'ODR',
46
+ 'odr_error', 'odr_stop']
47
+
48
+ odr = __odrpack.odr
49
+
50
+
51
+ class OdrWarning(UserWarning):
52
+ """
53
+ Warning indicating that the data passed into
54
+ ODR will cause problems when passed into 'odr'
55
+ that the user should be aware of.
56
+ """
57
+ pass
58
+
59
+
60
+ class OdrError(Exception):
61
+ """
62
+ Exception indicating an error in fitting.
63
+
64
+ This is raised by `~scipy.odr.odr` if an error occurs during fitting.
65
+ """
66
+ pass
67
+
68
+
69
+ class OdrStop(Exception):
70
+ """
71
+ Exception stopping fitting.
72
+
73
+ You can raise this exception in your objective function to tell
74
+ `~scipy.odr.odr` to stop fitting.
75
+ """
76
+ pass
77
+
78
+
79
+ # Backwards compatibility
80
+ odr_error = OdrError
81
+ odr_stop = OdrStop
82
+
83
+ __odrpack._set_exceptions(OdrError, OdrStop)
84
+
85
+
86
+ def _conv(obj, dtype=None):
87
+ """ Convert an object to the preferred form for input to the odr routine.
88
+ """
89
+
90
+ if obj is None:
91
+ return obj
92
+ else:
93
+ if dtype is None:
94
+ obj = numpy.asarray(obj)
95
+ else:
96
+ obj = numpy.asarray(obj, dtype)
97
+ if obj.shape == ():
98
+ # Scalar.
99
+ return obj.dtype.type(obj)
100
+ else:
101
+ return obj
102
+
103
+
104
+ def _report_error(info):
105
+ """ Interprets the return code of the odr routine.
106
+
107
+ Parameters
108
+ ----------
109
+ info : int
110
+ The return code of the odr routine.
111
+
112
+ Returns
113
+ -------
114
+ problems : list(str)
115
+ A list of messages about why the odr() routine stopped.
116
+ """
117
+
118
+ stopreason = ('Blank',
119
+ 'Sum of squares convergence',
120
+ 'Parameter convergence',
121
+ 'Both sum of squares and parameter convergence',
122
+ 'Iteration limit reached')[info % 5]
123
+
124
+ if info >= 5:
125
+ # questionable results or fatal error
126
+
127
+ I = (info//10000 % 10,
128
+ info//1000 % 10,
129
+ info//100 % 10,
130
+ info//10 % 10,
131
+ info % 10)
132
+ problems = []
133
+
134
+ if I[0] == 0:
135
+ if I[1] != 0:
136
+ problems.append('Derivatives possibly not correct')
137
+ if I[2] != 0:
138
+ problems.append('Error occurred in callback')
139
+ if I[3] != 0:
140
+ problems.append('Problem is not full rank at solution')
141
+ problems.append(stopreason)
142
+ elif I[0] == 1:
143
+ if I[1] != 0:
144
+ problems.append('N < 1')
145
+ if I[2] != 0:
146
+ problems.append('M < 1')
147
+ if I[3] != 0:
148
+ problems.append('NP < 1 or NP > N')
149
+ if I[4] != 0:
150
+ problems.append('NQ < 1')
151
+ elif I[0] == 2:
152
+ if I[1] != 0:
153
+ problems.append('LDY and/or LDX incorrect')
154
+ if I[2] != 0:
155
+ problems.append('LDWE, LD2WE, LDWD, and/or LD2WD incorrect')
156
+ if I[3] != 0:
157
+ problems.append('LDIFX, LDSTPD, and/or LDSCLD incorrect')
158
+ if I[4] != 0:
159
+ problems.append('LWORK and/or LIWORK too small')
160
+ elif I[0] == 3:
161
+ if I[1] != 0:
162
+ problems.append('STPB and/or STPD incorrect')
163
+ if I[2] != 0:
164
+ problems.append('SCLB and/or SCLD incorrect')
165
+ if I[3] != 0:
166
+ problems.append('WE incorrect')
167
+ if I[4] != 0:
168
+ problems.append('WD incorrect')
169
+ elif I[0] == 4:
170
+ problems.append('Error in derivatives')
171
+ elif I[0] == 5:
172
+ problems.append('Error occurred in callback')
173
+ elif I[0] == 6:
174
+ problems.append('Numerical error detected')
175
+
176
+ return problems
177
+
178
+ else:
179
+ return [stopreason]
180
+
181
+
182
+ class Data:
183
+ """
184
+ The data to fit.
185
+
186
+ Parameters
187
+ ----------
188
+ x : array_like
189
+ Observed data for the independent variable of the regression
190
+ y : array_like, optional
191
+ If array-like, observed data for the dependent variable of the
192
+ regression. A scalar input implies that the model to be used on
193
+ the data is implicit.
194
+ we : array_like, optional
195
+ If `we` is a scalar, then that value is used for all data points (and
196
+ all dimensions of the response variable).
197
+ If `we` is a rank-1 array of length q (the dimensionality of the
198
+ response variable), then this vector is the diagonal of the covariant
199
+ weighting matrix for all data points.
200
+ If `we` is a rank-1 array of length n (the number of data points), then
201
+ the i'th element is the weight for the i'th response variable
202
+ observation (single-dimensional only).
203
+ If `we` is a rank-2 array of shape (q, q), then this is the full
204
+ covariant weighting matrix broadcast to each observation.
205
+ If `we` is a rank-2 array of shape (q, n), then `we[:,i]` is the
206
+ diagonal of the covariant weighting matrix for the i'th observation.
207
+ If `we` is a rank-3 array of shape (q, q, n), then `we[:,:,i]` is the
208
+ full specification of the covariant weighting matrix for each
209
+ observation.
210
+ If the fit is implicit, then only a positive scalar value is used.
211
+ wd : array_like, optional
212
+ If `wd` is a scalar, then that value is used for all data points
213
+ (and all dimensions of the input variable). If `wd` = 0, then the
214
+ covariant weighting matrix for each observation is set to the identity
215
+ matrix (so each dimension of each observation has the same weight).
216
+ If `wd` is a rank-1 array of length m (the dimensionality of the input
217
+ variable), then this vector is the diagonal of the covariant weighting
218
+ matrix for all data points.
219
+ If `wd` is a rank-1 array of length n (the number of data points), then
220
+ the i'th element is the weight for the ith input variable observation
221
+ (single-dimensional only).
222
+ If `wd` is a rank-2 array of shape (m, m), then this is the full
223
+ covariant weighting matrix broadcast to each observation.
224
+ If `wd` is a rank-2 array of shape (m, n), then `wd[:,i]` is the
225
+ diagonal of the covariant weighting matrix for the ith observation.
226
+ If `wd` is a rank-3 array of shape (m, m, n), then `wd[:,:,i]` is the
227
+ full specification of the covariant weighting matrix for each
228
+ observation.
229
+ fix : array_like of ints, optional
230
+ The `fix` argument is the same as ifixx in the class ODR. It is an
231
+ array of integers with the same shape as data.x that determines which
232
+ input observations are treated as fixed. One can use a sequence of
233
+ length m (the dimensionality of the input observations) to fix some
234
+ dimensions for all observations. A value of 0 fixes the observation,
235
+ a value > 0 makes it free.
236
+ meta : dict, optional
237
+ Free-form dictionary for metadata.
238
+
239
+ Notes
240
+ -----
241
+ Each argument is attached to the member of the instance of the same name.
242
+ The structures of `x` and `y` are described in the Model class docstring.
243
+ If `y` is an integer, then the Data instance can only be used to fit with
244
+ implicit models where the dimensionality of the response is equal to the
245
+ specified value of `y`.
246
+
247
+ The `we` argument weights the effect a deviation in the response variable
248
+ has on the fit. The `wd` argument weights the effect a deviation in the
249
+ input variable has on the fit. To handle multidimensional inputs and
250
+ responses easily, the structure of these arguments has the n'th
251
+ dimensional axis first. These arguments heavily use the structured
252
+ arguments feature of ODRPACK to conveniently and flexibly support all
253
+ options. See the ODRPACK User's Guide for a full explanation of how these
254
+ weights are used in the algorithm. Basically, a higher value of the weight
255
+ for a particular data point makes a deviation at that point more
256
+ detrimental to the fit.
257
+
258
+ """
259
+
260
+ def __init__(self, x, y=None, we=None, wd=None, fix=None, meta=None):
261
+ self.x = _conv(x)
262
+
263
+ if not isinstance(self.x, numpy.ndarray):
264
+ raise ValueError("Expected an 'ndarray' of data for 'x', "
265
+ f"but instead got data of type '{type(self.x).__name__}'")
266
+
267
+ self.y = _conv(y)
268
+ self.we = _conv(we)
269
+ self.wd = _conv(wd)
270
+ self.fix = _conv(fix)
271
+ self.meta = {} if meta is None else meta
272
+
273
+ def set_meta(self, **kwds):
274
+ """ Update the metadata dictionary with the keywords and data provided
275
+ by keywords.
276
+
277
+ Examples
278
+ --------
279
+ ::
280
+
281
+ data.set_meta(lab="Ph 7; Lab 26", title="Ag110 + Ag108 Decay")
282
+ """
283
+
284
+ self.meta.update(kwds)
285
+
286
+ def __getattr__(self, attr):
287
+ """ Dispatch attribute access to the metadata dictionary.
288
+ """
289
+ if attr in self.meta:
290
+ return self.meta[attr]
291
+ else:
292
+ raise AttributeError("'%s' not in metadata" % attr)
293
+
294
+
295
+ class RealData(Data):
296
+ """
297
+ The data, with weightings as actual standard deviations and/or
298
+ covariances.
299
+
300
+ Parameters
301
+ ----------
302
+ x : array_like
303
+ Observed data for the independent variable of the regression
304
+ y : array_like, optional
305
+ If array-like, observed data for the dependent variable of the
306
+ regression. A scalar input implies that the model to be used on
307
+ the data is implicit.
308
+ sx : array_like, optional
309
+ Standard deviations of `x`.
310
+ `sx` are standard deviations of `x` and are converted to weights by
311
+ dividing 1.0 by their squares.
312
+ sy : array_like, optional
313
+ Standard deviations of `y`.
314
+ `sy` are standard deviations of `y` and are converted to weights by
315
+ dividing 1.0 by their squares.
316
+ covx : array_like, optional
317
+ Covariance of `x`
318
+ `covx` is an array of covariance matrices of `x` and are converted to
319
+ weights by performing a matrix inversion on each observation's
320
+ covariance matrix.
321
+ covy : array_like, optional
322
+ Covariance of `y`
323
+ `covy` is an array of covariance matrices and are converted to
324
+ weights by performing a matrix inversion on each observation's
325
+ covariance matrix.
326
+ fix : array_like, optional
327
+ The argument and member fix is the same as Data.fix and ODR.ifixx:
328
+ It is an array of integers with the same shape as `x` that
329
+ determines which input observations are treated as fixed. One can
330
+ use a sequence of length m (the dimensionality of the input
331
+ observations) to fix some dimensions for all observations. A value
332
+ of 0 fixes the observation, a value > 0 makes it free.
333
+ meta : dict, optional
334
+ Free-form dictionary for metadata.
335
+
336
+ Notes
337
+ -----
338
+ The weights `wd` and `we` are computed from provided values as follows:
339
+
340
+ `sx` and `sy` are converted to weights by dividing 1.0 by their squares.
341
+ For example, ``wd = 1./numpy.power(`sx`, 2)``.
342
+
343
+ `covx` and `covy` are arrays of covariance matrices and are converted to
344
+ weights by performing a matrix inversion on each observation's covariance
345
+ matrix. For example, ``we[i] = numpy.linalg.inv(covy[i])``.
346
+
347
+ These arguments follow the same structured argument conventions as wd and
348
+ we only restricted by their natures: `sx` and `sy` can't be rank-3, but
349
+ `covx` and `covy` can be.
350
+
351
+ Only set *either* `sx` or `covx` (not both). Setting both will raise an
352
+ exception. Same with `sy` and `covy`.
353
+
354
+ """
355
+
356
+ def __init__(self, x, y=None, sx=None, sy=None, covx=None, covy=None,
357
+ fix=None, meta=None):
358
+ if (sx is not None) and (covx is not None):
359
+ raise ValueError("cannot set both sx and covx")
360
+ if (sy is not None) and (covy is not None):
361
+ raise ValueError("cannot set both sy and covy")
362
+
363
+ # Set flags for __getattr__
364
+ self._ga_flags = {}
365
+ if sx is not None:
366
+ self._ga_flags['wd'] = 'sx'
367
+ else:
368
+ self._ga_flags['wd'] = 'covx'
369
+ if sy is not None:
370
+ self._ga_flags['we'] = 'sy'
371
+ else:
372
+ self._ga_flags['we'] = 'covy'
373
+
374
+ self.x = _conv(x)
375
+
376
+ if not isinstance(self.x, numpy.ndarray):
377
+ raise ValueError("Expected an 'ndarray' of data for 'x', "
378
+ f"but instead got data of type '{type(self.x).__name__}'")
379
+
380
+ self.y = _conv(y)
381
+ self.sx = _conv(sx)
382
+ self.sy = _conv(sy)
383
+ self.covx = _conv(covx)
384
+ self.covy = _conv(covy)
385
+ self.fix = _conv(fix)
386
+ self.meta = {} if meta is None else meta
387
+
388
+ def _sd2wt(self, sd):
389
+ """ Convert standard deviation to weights.
390
+ """
391
+
392
+ return 1./numpy.power(sd, 2)
393
+
394
+ def _cov2wt(self, cov):
395
+ """ Convert covariance matrix(-ices) to weights.
396
+ """
397
+
398
+ from scipy.linalg import inv
399
+
400
+ if len(cov.shape) == 2:
401
+ return inv(cov)
402
+ else:
403
+ weights = numpy.zeros(cov.shape, float)
404
+
405
+ for i in range(cov.shape[-1]): # n
406
+ weights[:,:,i] = inv(cov[:,:,i])
407
+
408
+ return weights
409
+
410
+ def __getattr__(self, attr):
411
+ lookup_tbl = {('wd', 'sx'): (self._sd2wt, self.sx),
412
+ ('wd', 'covx'): (self._cov2wt, self.covx),
413
+ ('we', 'sy'): (self._sd2wt, self.sy),
414
+ ('we', 'covy'): (self._cov2wt, self.covy)}
415
+
416
+ if attr not in ('wd', 'we'):
417
+ if attr in self.meta:
418
+ return self.meta[attr]
419
+ else:
420
+ raise AttributeError("'%s' not in metadata" % attr)
421
+ else:
422
+ func, arg = lookup_tbl[(attr, self._ga_flags[attr])]
423
+
424
+ if arg is not None:
425
+ return func(*(arg,))
426
+ else:
427
+ return None
428
+
429
+
430
+ class Model:
431
+ """
432
+ The Model class stores information about the function you wish to fit.
433
+
434
+ It stores the function itself, at the least, and optionally stores
435
+ functions which compute the Jacobians used during fitting. Also, one
436
+ can provide a function that will provide reasonable starting values
437
+ for the fit parameters possibly given the set of data.
438
+
439
+ Parameters
440
+ ----------
441
+ fcn : function
442
+ fcn(beta, x) --> y
443
+ fjacb : function
444
+ Jacobian of fcn wrt the fit parameters beta.
445
+
446
+ fjacb(beta, x) --> @f_i(x,B)/@B_j
447
+ fjacd : function
448
+ Jacobian of fcn wrt the (possibly multidimensional) input
449
+ variable.
450
+
451
+ fjacd(beta, x) --> @f_i(x,B)/@x_j
452
+ extra_args : tuple, optional
453
+ If specified, `extra_args` should be a tuple of extra
454
+ arguments to pass to `fcn`, `fjacb`, and `fjacd`. Each will be called
455
+ by `apply(fcn, (beta, x) + extra_args)`
456
+ estimate : array_like of rank-1
457
+ Provides estimates of the fit parameters from the data
458
+
459
+ estimate(data) --> estbeta
460
+ implicit : boolean
461
+ If TRUE, specifies that the model
462
+ is implicit; i.e `fcn(beta, x)` ~= 0 and there is no y data to fit
463
+ against
464
+ meta : dict, optional
465
+ freeform dictionary of metadata for the model
466
+
467
+ Notes
468
+ -----
469
+ Note that the `fcn`, `fjacb`, and `fjacd` operate on NumPy arrays and
470
+ return a NumPy array. The `estimate` object takes an instance of the
471
+ Data class.
472
+
473
+ Here are the rules for the shapes of the argument and return
474
+ arrays of the callback functions:
475
+
476
+ `x`
477
+ if the input data is single-dimensional, then `x` is rank-1
478
+ array; i.e., ``x = array([1, 2, 3, ...]); x.shape = (n,)``
479
+ If the input data is multi-dimensional, then `x` is a rank-2 array;
480
+ i.e., ``x = array([[1, 2, ...], [2, 4, ...]]); x.shape = (m, n)``.
481
+ In all cases, it has the same shape as the input data array passed to
482
+ `~scipy.odr.odr`. `m` is the dimensionality of the input data,
483
+ `n` is the number of observations.
484
+ `y`
485
+ if the response variable is single-dimensional, then `y` is a
486
+ rank-1 array, i.e., ``y = array([2, 4, ...]); y.shape = (n,)``.
487
+ If the response variable is multi-dimensional, then `y` is a rank-2
488
+ array, i.e., ``y = array([[2, 4, ...], [3, 6, ...]]); y.shape =
489
+ (q, n)`` where `q` is the dimensionality of the response variable.
490
+ `beta`
491
+ rank-1 array of length `p` where `p` is the number of parameters;
492
+ i.e. ``beta = array([B_1, B_2, ..., B_p])``
493
+ `fjacb`
494
+ if the response variable is multi-dimensional, then the
495
+ return array's shape is `(q, p, n)` such that ``fjacb(x,beta)[l,k,i] =
496
+ d f_l(X,B)/d B_k`` evaluated at the ith data point. If `q == 1`, then
497
+ the return array is only rank-2 and with shape `(p, n)`.
498
+ `fjacd`
499
+ as with fjacb, only the return array's shape is `(q, m, n)`
500
+ such that ``fjacd(x,beta)[l,j,i] = d f_l(X,B)/d X_j`` at the ith data
501
+ point. If `q == 1`, then the return array's shape is `(m, n)`. If
502
+ `m == 1`, the shape is (q, n). If `m == q == 1`, the shape is `(n,)`.
503
+
504
+ """
505
+
506
+ def __init__(self, fcn, fjacb=None, fjacd=None,
507
+ extra_args=None, estimate=None, implicit=0, meta=None):
508
+
509
+ self.fcn = fcn
510
+ self.fjacb = fjacb
511
+ self.fjacd = fjacd
512
+
513
+ if extra_args is not None:
514
+ extra_args = tuple(extra_args)
515
+
516
+ self.extra_args = extra_args
517
+ self.estimate = estimate
518
+ self.implicit = implicit
519
+ self.meta = meta if meta is not None else {}
520
+
521
+ def set_meta(self, **kwds):
522
+ """ Update the metadata dictionary with the keywords and data provided
523
+ here.
524
+
525
+ Examples
526
+ --------
527
+ set_meta(name="Exponential", equation="y = a exp(b x) + c")
528
+ """
529
+
530
+ self.meta.update(kwds)
531
+
532
+ def __getattr__(self, attr):
533
+ """ Dispatch attribute access to the metadata.
534
+ """
535
+
536
+ if attr in self.meta:
537
+ return self.meta[attr]
538
+ else:
539
+ raise AttributeError("'%s' not in metadata" % attr)
540
+
541
+
542
+ class Output:
543
+ """
544
+ The Output class stores the output of an ODR run.
545
+
546
+ Attributes
547
+ ----------
548
+ beta : ndarray
549
+ Estimated parameter values, of shape (q,).
550
+ sd_beta : ndarray
551
+ Standard deviations of the estimated parameters, of shape (p,).
552
+ cov_beta : ndarray
553
+ Covariance matrix of the estimated parameters, of shape (p,p).
554
+ Note that this `cov_beta` is not scaled by the residual variance
555
+ `res_var`, whereas `sd_beta` is. This means
556
+ ``np.sqrt(np.diag(output.cov_beta * output.res_var))`` is the same
557
+ result as `output.sd_beta`.
558
+ delta : ndarray, optional
559
+ Array of estimated errors in input variables, of same shape as `x`.
560
+ eps : ndarray, optional
561
+ Array of estimated errors in response variables, of same shape as `y`.
562
+ xplus : ndarray, optional
563
+ Array of ``x + delta``.
564
+ y : ndarray, optional
565
+ Array ``y = fcn(x + delta)``.
566
+ res_var : float, optional
567
+ Residual variance.
568
+ sum_square : float, optional
569
+ Sum of squares error.
570
+ sum_square_delta : float, optional
571
+ Sum of squares of delta error.
572
+ sum_square_eps : float, optional
573
+ Sum of squares of eps error.
574
+ inv_condnum : float, optional
575
+ Inverse condition number (cf. ODRPACK UG p. 77).
576
+ rel_error : float, optional
577
+ Relative error in function values computed within fcn.
578
+ work : ndarray, optional
579
+ Final work array.
580
+ work_ind : dict, optional
581
+ Indices into work for drawing out values (cf. ODRPACK UG p. 83).
582
+ info : int, optional
583
+ Reason for returning, as output by ODRPACK (cf. ODRPACK UG p. 38).
584
+ stopreason : list of str, optional
585
+ `info` interpreted into English.
586
+
587
+ Notes
588
+ -----
589
+ Takes one argument for initialization, the return value from the
590
+ function `~scipy.odr.odr`. The attributes listed as "optional" above are
591
+ only present if `~scipy.odr.odr` was run with ``full_output=1``.
592
+
593
+ """
594
+
595
+ def __init__(self, output):
596
+ self.beta = output[0]
597
+ self.sd_beta = output[1]
598
+ self.cov_beta = output[2]
599
+
600
+ if len(output) == 4:
601
+ # full output
602
+ self.__dict__.update(output[3])
603
+ self.stopreason = _report_error(self.info)
604
+
605
+ def pprint(self):
606
+ """ Pretty-print important results.
607
+ """
608
+
609
+ print('Beta:', self.beta)
610
+ print('Beta Std Error:', self.sd_beta)
611
+ print('Beta Covariance:', self.cov_beta)
612
+ if hasattr(self, 'info'):
613
+ print('Residual Variance:',self.res_var)
614
+ print('Inverse Condition #:', self.inv_condnum)
615
+ print('Reason(s) for Halting:')
616
+ for r in self.stopreason:
617
+ print(' %s' % r)
618
+
619
+
620
+ class ODR:
621
+ """
622
+ The ODR class gathers all information and coordinates the running of the
623
+ main fitting routine.
624
+
625
+ Members of instances of the ODR class have the same names as the arguments
626
+ to the initialization routine.
627
+
628
+ Parameters
629
+ ----------
630
+ data : Data class instance
631
+ instance of the Data class
632
+ model : Model class instance
633
+ instance of the Model class
634
+
635
+ Other Parameters
636
+ ----------------
637
+ beta0 : array_like of rank-1
638
+ a rank-1 sequence of initial parameter values. Optional if
639
+ model provides an "estimate" function to estimate these values.
640
+ delta0 : array_like of floats of rank-1, optional
641
+ a (double-precision) float array to hold the initial values of
642
+ the errors in the input variables. Must be same shape as data.x
643
+ ifixb : array_like of ints of rank-1, optional
644
+ sequence of integers with the same length as beta0 that determines
645
+ which parameters are held fixed. A value of 0 fixes the parameter,
646
+ a value > 0 makes the parameter free.
647
+ ifixx : array_like of ints with same shape as data.x, optional
648
+ an array of integers with the same shape as data.x that determines
649
+ which input observations are treated as fixed. One can use a sequence
650
+ of length m (the dimensionality of the input observations) to fix some
651
+ dimensions for all observations. A value of 0 fixes the observation,
652
+ a value > 0 makes it free.
653
+ job : int, optional
654
+ an integer telling ODRPACK what tasks to perform. See p. 31 of the
655
+ ODRPACK User's Guide if you absolutely must set the value here. Use the
656
+ method set_job post-initialization for a more readable interface.
657
+ iprint : int, optional
658
+ an integer telling ODRPACK what to print. See pp. 33-34 of the
659
+ ODRPACK User's Guide if you absolutely must set the value here. Use the
660
+ method set_iprint post-initialization for a more readable interface.
661
+ errfile : str, optional
662
+ string with the filename to print ODRPACK errors to. If the file already
663
+ exists, an error will be thrown. The `overwrite` argument can be used to
664
+ prevent this. *Do Not Open This File Yourself!*
665
+ rptfile : str, optional
666
+ string with the filename to print ODRPACK summaries to. If the file
667
+ already exists, an error will be thrown. The `overwrite` argument can be
668
+ used to prevent this. *Do Not Open This File Yourself!*
669
+ ndigit : int, optional
670
+ integer specifying the number of reliable digits in the computation
671
+ of the function.
672
+ taufac : float, optional
673
+ float specifying the initial trust region. The default value is 1.
674
+ The initial trust region is equal to taufac times the length of the
675
+ first computed Gauss-Newton step. taufac must be less than 1.
676
+ sstol : float, optional
677
+ float specifying the tolerance for convergence based on the relative
678
+ change in the sum-of-squares. The default value is eps**(1/2) where eps
679
+ is the smallest value such that 1 + eps > 1 for double precision
680
+ computation on the machine. sstol must be less than 1.
681
+ partol : float, optional
682
+ float specifying the tolerance for convergence based on the relative
683
+ change in the estimated parameters. The default value is eps**(2/3) for
684
+ explicit models and ``eps**(1/3)`` for implicit models. partol must be less
685
+ than 1.
686
+ maxit : int, optional
687
+ integer specifying the maximum number of iterations to perform. For
688
+ first runs, maxit is the total number of iterations performed and
689
+ defaults to 50. For restarts, maxit is the number of additional
690
+ iterations to perform and defaults to 10.
691
+ stpb : array_like, optional
692
+ sequence (``len(stpb) == len(beta0)``) of relative step sizes to compute
693
+ finite difference derivatives wrt the parameters.
694
+ stpd : optional
695
+ array (``stpd.shape == data.x.shape`` or ``stpd.shape == (m,)``) of relative
696
+ step sizes to compute finite difference derivatives wrt the input
697
+ variable errors. If stpd is a rank-1 array with length m (the
698
+ dimensionality of the input variable), then the values are broadcast to
699
+ all observations.
700
+ sclb : array_like, optional
701
+ sequence (``len(stpb) == len(beta0)``) of scaling factors for the
702
+ parameters. The purpose of these scaling factors are to scale all of
703
+ the parameters to around unity. Normally appropriate scaling factors
704
+ are computed if this argument is not specified. Specify them yourself
705
+ if the automatic procedure goes awry.
706
+ scld : array_like, optional
707
+ array (scld.shape == data.x.shape or scld.shape == (m,)) of scaling
708
+ factors for the *errors* in the input variables. Again, these factors
709
+ are automatically computed if you do not provide them. If scld.shape ==
710
+ (m,), then the scaling factors are broadcast to all observations.
711
+ work : ndarray, optional
712
+ array to hold the double-valued working data for ODRPACK. When
713
+ restarting, takes the value of self.output.work.
714
+ iwork : ndarray, optional
715
+ array to hold the integer-valued working data for ODRPACK. When
716
+ restarting, takes the value of self.output.iwork.
717
+ overwrite : bool, optional
718
+ If it is True, output files defined by `errfile` and `rptfile` are
719
+ overwritten. The default is False.
720
+
721
+ Attributes
722
+ ----------
723
+ data : Data
724
+ The data for this fit
725
+ model : Model
726
+ The model used in fit
727
+ output : Output
728
+ An instance if the Output class containing all of the returned
729
+ data from an invocation of ODR.run() or ODR.restart()
730
+
731
+ """
732
+
733
+ def __init__(self, data, model, beta0=None, delta0=None, ifixb=None,
734
+ ifixx=None, job=None, iprint=None, errfile=None, rptfile=None,
735
+ ndigit=None, taufac=None, sstol=None, partol=None, maxit=None,
736
+ stpb=None, stpd=None, sclb=None, scld=None, work=None, iwork=None,
737
+ overwrite=False):
738
+
739
+ self.data = data
740
+ self.model = model
741
+
742
+ if beta0 is None:
743
+ if self.model.estimate is not None:
744
+ self.beta0 = _conv(self.model.estimate(self.data))
745
+ else:
746
+ raise ValueError(
747
+ "must specify beta0 or provide an estimator with the model"
748
+ )
749
+ else:
750
+ self.beta0 = _conv(beta0)
751
+
752
+ if ifixx is None and data.fix is not None:
753
+ ifixx = data.fix
754
+
755
+ if overwrite:
756
+ # remove output files for overwriting.
757
+ if rptfile is not None and os.path.exists(rptfile):
758
+ os.remove(rptfile)
759
+ if errfile is not None and os.path.exists(errfile):
760
+ os.remove(errfile)
761
+
762
+ self.delta0 = _conv(delta0)
763
+ # These really are 32-bit integers in FORTRAN (gfortran), even on 64-bit
764
+ # platforms.
765
+ # XXX: some other FORTRAN compilers may not agree.
766
+ self.ifixx = _conv(ifixx, dtype=numpy.int32)
767
+ self.ifixb = _conv(ifixb, dtype=numpy.int32)
768
+ self.job = job
769
+ self.iprint = iprint
770
+ self.errfile = errfile
771
+ self.rptfile = rptfile
772
+ self.ndigit = ndigit
773
+ self.taufac = taufac
774
+ self.sstol = sstol
775
+ self.partol = partol
776
+ self.maxit = maxit
777
+ self.stpb = _conv(stpb)
778
+ self.stpd = _conv(stpd)
779
+ self.sclb = _conv(sclb)
780
+ self.scld = _conv(scld)
781
+ self.work = _conv(work)
782
+ self.iwork = _conv(iwork)
783
+
784
+ self.output = None
785
+
786
+ self._check()
787
+
788
+ def _check(self):
789
+ """ Check the inputs for consistency, but don't bother checking things
790
+ that the builtin function odr will check.
791
+ """
792
+
793
+ x_s = list(self.data.x.shape)
794
+
795
+ if isinstance(self.data.y, numpy.ndarray):
796
+ y_s = list(self.data.y.shape)
797
+ if self.model.implicit:
798
+ raise OdrError("an implicit model cannot use response data")
799
+ else:
800
+ # implicit model with q == self.data.y
801
+ y_s = [self.data.y, x_s[-1]]
802
+ if not self.model.implicit:
803
+ raise OdrError("an explicit model needs response data")
804
+ self.set_job(fit_type=1)
805
+
806
+ if x_s[-1] != y_s[-1]:
807
+ raise OdrError("number of observations do not match")
808
+
809
+ n = x_s[-1]
810
+
811
+ if len(x_s) == 2:
812
+ m = x_s[0]
813
+ else:
814
+ m = 1
815
+ if len(y_s) == 2:
816
+ q = y_s[0]
817
+ else:
818
+ q = 1
819
+
820
+ p = len(self.beta0)
821
+
822
+ # permissible output array shapes
823
+
824
+ fcn_perms = [(q, n)]
825
+ fjacd_perms = [(q, m, n)]
826
+ fjacb_perms = [(q, p, n)]
827
+
828
+ if q == 1:
829
+ fcn_perms.append((n,))
830
+ fjacd_perms.append((m, n))
831
+ fjacb_perms.append((p, n))
832
+ if m == 1:
833
+ fjacd_perms.append((q, n))
834
+ if p == 1:
835
+ fjacb_perms.append((q, n))
836
+ if m == q == 1:
837
+ fjacd_perms.append((n,))
838
+ if p == q == 1:
839
+ fjacb_perms.append((n,))
840
+
841
+ # try evaluating the supplied functions to make sure they provide
842
+ # sensible outputs
843
+
844
+ arglist = (self.beta0, self.data.x)
845
+ if self.model.extra_args is not None:
846
+ arglist = arglist + self.model.extra_args
847
+ res = self.model.fcn(*arglist)
848
+
849
+ if res.shape not in fcn_perms:
850
+ print(res.shape)
851
+ print(fcn_perms)
852
+ raise OdrError("fcn does not output %s-shaped array" % y_s)
853
+
854
+ if self.model.fjacd is not None:
855
+ res = self.model.fjacd(*arglist)
856
+ if res.shape not in fjacd_perms:
857
+ raise OdrError(
858
+ "fjacd does not output %s-shaped array" % repr((q, m, n)))
859
+ if self.model.fjacb is not None:
860
+ res = self.model.fjacb(*arglist)
861
+ if res.shape not in fjacb_perms:
862
+ raise OdrError(
863
+ "fjacb does not output %s-shaped array" % repr((q, p, n)))
864
+
865
+ # check shape of delta0
866
+
867
+ if self.delta0 is not None and self.delta0.shape != self.data.x.shape:
868
+ raise OdrError(
869
+ "delta0 is not a %s-shaped array" % repr(self.data.x.shape))
870
+
871
+ if self.data.x.size == 0:
872
+ warn("Empty data detected for ODR instance. "
873
+ "Do not expect any fitting to occur",
874
+ OdrWarning, stacklevel=3)
875
+
876
+ def _gen_work(self):
877
+ """ Generate a suitable work array if one does not already exist.
878
+ """
879
+
880
+ n = self.data.x.shape[-1]
881
+ p = self.beta0.shape[0]
882
+
883
+ if len(self.data.x.shape) == 2:
884
+ m = self.data.x.shape[0]
885
+ else:
886
+ m = 1
887
+
888
+ if self.model.implicit:
889
+ q = self.data.y
890
+ elif len(self.data.y.shape) == 2:
891
+ q = self.data.y.shape[0]
892
+ else:
893
+ q = 1
894
+
895
+ if self.data.we is None:
896
+ ldwe = ld2we = 1
897
+ elif len(self.data.we.shape) == 3:
898
+ ld2we, ldwe = self.data.we.shape[1:]
899
+ else:
900
+ we = self.data.we
901
+ ldwe = 1
902
+ ld2we = 1
903
+ if we.ndim == 1 and q == 1:
904
+ ldwe = n
905
+ elif we.ndim == 2:
906
+ if we.shape == (q, q):
907
+ ld2we = q
908
+ elif we.shape == (q, n):
909
+ ldwe = n
910
+
911
+ if self.job % 10 < 2:
912
+ # ODR not OLS
913
+ lwork = (18 + 11*p + p*p + m + m*m + 4*n*q + 6*n*m + 2*n*q*p +
914
+ 2*n*q*m + q*q + 5*q + q*(p+m) + ldwe*ld2we*q)
915
+ else:
916
+ # OLS not ODR
917
+ lwork = (18 + 11*p + p*p + m + m*m + 4*n*q + 2*n*m + 2*n*q*p +
918
+ 5*q + q*(p+m) + ldwe*ld2we*q)
919
+
920
+ if isinstance(self.work, numpy.ndarray) and self.work.shape == (lwork,)\
921
+ and self.work.dtype.str.endswith('f8'):
922
+ # the existing array is fine
923
+ return
924
+ else:
925
+ self.work = numpy.zeros((lwork,), float)
926
+
927
+ def set_job(self, fit_type=None, deriv=None, var_calc=None,
928
+ del_init=None, restart=None):
929
+ """
930
+ Sets the "job" parameter is a hopefully comprehensible way.
931
+
932
+ If an argument is not specified, then the value is left as is. The
933
+ default value from class initialization is for all of these options set
934
+ to 0.
935
+
936
+ Parameters
937
+ ----------
938
+ fit_type : {0, 1, 2} int
939
+ 0 -> explicit ODR
940
+
941
+ 1 -> implicit ODR
942
+
943
+ 2 -> ordinary least-squares
944
+ deriv : {0, 1, 2, 3} int
945
+ 0 -> forward finite differences
946
+
947
+ 1 -> central finite differences
948
+
949
+ 2 -> user-supplied derivatives (Jacobians) with results
950
+ checked by ODRPACK
951
+
952
+ 3 -> user-supplied derivatives, no checking
953
+ var_calc : {0, 1, 2} int
954
+ 0 -> calculate asymptotic covariance matrix and fit
955
+ parameter uncertainties (V_B, s_B) using derivatives
956
+ recomputed at the final solution
957
+
958
+ 1 -> calculate V_B and s_B using derivatives from last iteration
959
+
960
+ 2 -> do not calculate V_B and s_B
961
+ del_init : {0, 1} int
962
+ 0 -> initial input variable offsets set to 0
963
+
964
+ 1 -> initial offsets provided by user in variable "work"
965
+ restart : {0, 1} int
966
+ 0 -> fit is not a restart
967
+
968
+ 1 -> fit is a restart
969
+
970
+ Notes
971
+ -----
972
+ The permissible values are different from those given on pg. 31 of the
973
+ ODRPACK User's Guide only in that one cannot specify numbers greater than
974
+ the last value for each variable.
975
+
976
+ If one does not supply functions to compute the Jacobians, the fitting
977
+ procedure will change deriv to 0, finite differences, as a default. To
978
+ initialize the input variable offsets by yourself, set del_init to 1 and
979
+ put the offsets into the "work" variable correctly.
980
+
981
+ """
982
+
983
+ if self.job is None:
984
+ job_l = [0, 0, 0, 0, 0]
985
+ else:
986
+ job_l = [self.job // 10000 % 10,
987
+ self.job // 1000 % 10,
988
+ self.job // 100 % 10,
989
+ self.job // 10 % 10,
990
+ self.job % 10]
991
+
992
+ if fit_type in (0, 1, 2):
993
+ job_l[4] = fit_type
994
+ if deriv in (0, 1, 2, 3):
995
+ job_l[3] = deriv
996
+ if var_calc in (0, 1, 2):
997
+ job_l[2] = var_calc
998
+ if del_init in (0, 1):
999
+ job_l[1] = del_init
1000
+ if restart in (0, 1):
1001
+ job_l[0] = restart
1002
+
1003
+ self.job = (job_l[0]*10000 + job_l[1]*1000 +
1004
+ job_l[2]*100 + job_l[3]*10 + job_l[4])
1005
+
1006
+ def set_iprint(self, init=None, so_init=None,
1007
+ iter=None, so_iter=None, iter_step=None, final=None, so_final=None):
1008
+ """ Set the iprint parameter for the printing of computation reports.
1009
+
1010
+ If any of the arguments are specified here, then they are set in the
1011
+ iprint member. If iprint is not set manually or with this method, then
1012
+ ODRPACK defaults to no printing. If no filename is specified with the
1013
+ member rptfile, then ODRPACK prints to stdout. One can tell ODRPACK to
1014
+ print to stdout in addition to the specified filename by setting the
1015
+ so_* arguments to this function, but one cannot specify to print to
1016
+ stdout but not a file since one can do that by not specifying a rptfile
1017
+ filename.
1018
+
1019
+ There are three reports: initialization, iteration, and final reports.
1020
+ They are represented by the arguments init, iter, and final
1021
+ respectively. The permissible values are 0, 1, and 2 representing "no
1022
+ report", "short report", and "long report" respectively.
1023
+
1024
+ The argument iter_step (0 <= iter_step <= 9) specifies how often to make
1025
+ the iteration report; the report will be made for every iter_step'th
1026
+ iteration starting with iteration one. If iter_step == 0, then no
1027
+ iteration report is made, regardless of the other arguments.
1028
+
1029
+ If the rptfile is None, then any so_* arguments supplied will raise an
1030
+ exception.
1031
+ """
1032
+ if self.iprint is None:
1033
+ self.iprint = 0
1034
+
1035
+ ip = [self.iprint // 1000 % 10,
1036
+ self.iprint // 100 % 10,
1037
+ self.iprint // 10 % 10,
1038
+ self.iprint % 10]
1039
+
1040
+ # make a list to convert iprint digits to/from argument inputs
1041
+ # rptfile, stdout
1042
+ ip2arg = [[0, 0], # none, none
1043
+ [1, 0], # short, none
1044
+ [2, 0], # long, none
1045
+ [1, 1], # short, short
1046
+ [2, 1], # long, short
1047
+ [1, 2], # short, long
1048
+ [2, 2]] # long, long
1049
+
1050
+ if (self.rptfile is None and
1051
+ (so_init is not None or
1052
+ so_iter is not None or
1053
+ so_final is not None)):
1054
+ raise OdrError(
1055
+ "no rptfile specified, cannot output to stdout twice")
1056
+
1057
+ iprint_l = ip2arg[ip[0]] + ip2arg[ip[1]] + ip2arg[ip[3]]
1058
+
1059
+ if init is not None:
1060
+ iprint_l[0] = init
1061
+ if so_init is not None:
1062
+ iprint_l[1] = so_init
1063
+ if iter is not None:
1064
+ iprint_l[2] = iter
1065
+ if so_iter is not None:
1066
+ iprint_l[3] = so_iter
1067
+ if final is not None:
1068
+ iprint_l[4] = final
1069
+ if so_final is not None:
1070
+ iprint_l[5] = so_final
1071
+
1072
+ if iter_step in range(10):
1073
+ # 0..9
1074
+ ip[2] = iter_step
1075
+
1076
+ ip[0] = ip2arg.index(iprint_l[0:2])
1077
+ ip[1] = ip2arg.index(iprint_l[2:4])
1078
+ ip[3] = ip2arg.index(iprint_l[4:6])
1079
+
1080
+ self.iprint = ip[0]*1000 + ip[1]*100 + ip[2]*10 + ip[3]
1081
+
1082
+ def run(self):
1083
+ """ Run the fitting routine with all of the information given and with ``full_output=1``.
1084
+
1085
+ Returns
1086
+ -------
1087
+ output : Output instance
1088
+ This object is also assigned to the attribute .output .
1089
+ """ # noqa: E501
1090
+
1091
+ args = (self.model.fcn, self.beta0, self.data.y, self.data.x)
1092
+ kwds = {'full_output': 1}
1093
+ kwd_l = ['ifixx', 'ifixb', 'job', 'iprint', 'errfile', 'rptfile',
1094
+ 'ndigit', 'taufac', 'sstol', 'partol', 'maxit', 'stpb',
1095
+ 'stpd', 'sclb', 'scld', 'work', 'iwork']
1096
+
1097
+ if self.delta0 is not None and (self.job // 10000) % 10 == 0:
1098
+ # delta0 provided and fit is not a restart
1099
+ self._gen_work()
1100
+
1101
+ d0 = numpy.ravel(self.delta0)
1102
+
1103
+ self.work[:len(d0)] = d0
1104
+
1105
+ # set the kwds from other objects explicitly
1106
+ if self.model.fjacb is not None:
1107
+ kwds['fjacb'] = self.model.fjacb
1108
+ if self.model.fjacd is not None:
1109
+ kwds['fjacd'] = self.model.fjacd
1110
+ if self.data.we is not None:
1111
+ kwds['we'] = self.data.we
1112
+ if self.data.wd is not None:
1113
+ kwds['wd'] = self.data.wd
1114
+ if self.model.extra_args is not None:
1115
+ kwds['extra_args'] = self.model.extra_args
1116
+
1117
+ # implicitly set kwds from self's members
1118
+ for attr in kwd_l:
1119
+ obj = getattr(self, attr)
1120
+ if obj is not None:
1121
+ kwds[attr] = obj
1122
+
1123
+ self.output = Output(odr(*args, **kwds))
1124
+
1125
+ return self.output
1126
+
1127
+ def restart(self, iter=None):
1128
+ """ Restarts the run with iter more iterations.
1129
+
1130
+ Parameters
1131
+ ----------
1132
+ iter : int, optional
1133
+ ODRPACK's default for the number of new iterations is 10.
1134
+
1135
+ Returns
1136
+ -------
1137
+ output : Output instance
1138
+ This object is also assigned to the attribute .output .
1139
+ """
1140
+
1141
+ if self.output is None:
1142
+ raise OdrError("cannot restart: run() has not been called before")
1143
+
1144
+ self.set_job(restart=1)
1145
+ self.work = self.output.work
1146
+ self.iwork = self.output.iwork
1147
+
1148
+ self.maxit = iter
1149
+
1150
+ return self.run()
env-llmeval/lib/python3.10/site-packages/scipy/odr/models.py ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This file is not meant for public use and will be removed in SciPy v2.0.0.
2
+ # Use the `scipy.odr` namespace for importing the functions
3
+ # included below.
4
+
5
+ from scipy._lib.deprecation import _sub_module_deprecation
6
+
7
+ __all__ = [ # noqa: F822
8
+ 'Model', 'exponential', 'multilinear', 'unilinear',
9
+ 'quadratic', 'polynomial'
10
+ ]
11
+
12
+
13
+ def __dir__():
14
+ return __all__
15
+
16
+
17
+ def __getattr__(name):
18
+ return _sub_module_deprecation(sub_package="odr", module="models",
19
+ private_modules=["_models"], all=__all__,
20
+ attribute=name)
env-llmeval/lib/python3.10/site-packages/scipy/odr/odrpack.py ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This file is not meant for public use and will be removed in SciPy v2.0.0.
2
+ # Use the `scipy.odr` namespace for importing the functions
3
+ # included below.
4
+
5
+ from scipy._lib.deprecation import _sub_module_deprecation
6
+
7
+ __all__ = [ # noqa: F822
8
+ 'odr', 'OdrWarning', 'OdrError', 'OdrStop',
9
+ 'Data', 'RealData', 'Model', 'Output', 'ODR',
10
+ 'odr_error', 'odr_stop'
11
+ ]
12
+
13
+
14
+ def __dir__():
15
+ return __all__
16
+
17
+
18
+ def __getattr__(name):
19
+ return _sub_module_deprecation(sub_package="odr", module="odrpack",
20
+ private_modules=["_odrpack"], all=__all__,
21
+ attribute=name)
env-llmeval/lib/python3.10/site-packages/scipy/odr/tests/__init__.py ADDED
File without changes
env-llmeval/lib/python3.10/site-packages/scipy/odr/tests/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (180 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/scipy/odr/tests/__pycache__/test_odr.cpython-310.pyc ADDED
Binary file (18.1 kB). View file
 
env-llmeval/lib/python3.10/site-packages/scipy/odr/tests/test_odr.py ADDED
@@ -0,0 +1,565 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import tempfile
2
+ import shutil
3
+ import os
4
+
5
+ import numpy as np
6
+ from numpy import pi
7
+ from numpy.testing import (assert_array_almost_equal,
8
+ assert_equal, assert_warns,
9
+ assert_allclose)
10
+ import pytest
11
+ from pytest import raises as assert_raises
12
+
13
+ from scipy.odr import (Data, Model, ODR, RealData, OdrStop, OdrWarning,
14
+ multilinear, exponential, unilinear, quadratic,
15
+ polynomial)
16
+
17
+
18
+ class TestODR:
19
+
20
+ # Bad Data for 'x'
21
+
22
+ def test_bad_data(self):
23
+ assert_raises(ValueError, Data, 2, 1)
24
+ assert_raises(ValueError, RealData, 2, 1)
25
+
26
+ # Empty Data for 'x'
27
+ def empty_data_func(self, B, x):
28
+ return B[0]*x + B[1]
29
+
30
+ def test_empty_data(self):
31
+ beta0 = [0.02, 0.0]
32
+ linear = Model(self.empty_data_func)
33
+
34
+ empty_dat = Data([], [])
35
+ assert_warns(OdrWarning, ODR,
36
+ empty_dat, linear, beta0=beta0)
37
+
38
+ empty_dat = RealData([], [])
39
+ assert_warns(OdrWarning, ODR,
40
+ empty_dat, linear, beta0=beta0)
41
+
42
+ # Explicit Example
43
+
44
+ def explicit_fcn(self, B, x):
45
+ ret = B[0] + B[1] * np.power(np.exp(B[2]*x) - 1.0, 2)
46
+ return ret
47
+
48
+ def explicit_fjd(self, B, x):
49
+ eBx = np.exp(B[2]*x)
50
+ ret = B[1] * 2.0 * (eBx-1.0) * B[2] * eBx
51
+ return ret
52
+
53
+ def explicit_fjb(self, B, x):
54
+ eBx = np.exp(B[2]*x)
55
+ res = np.vstack([np.ones(x.shape[-1]),
56
+ np.power(eBx-1.0, 2),
57
+ B[1]*2.0*(eBx-1.0)*eBx*x])
58
+ return res
59
+
60
+ def test_explicit(self):
61
+ explicit_mod = Model(
62
+ self.explicit_fcn,
63
+ fjacb=self.explicit_fjb,
64
+ fjacd=self.explicit_fjd,
65
+ meta=dict(name='Sample Explicit Model',
66
+ ref='ODRPACK UG, pg. 39'),
67
+ )
68
+ explicit_dat = Data([0.,0.,5.,7.,7.5,10.,16.,26.,30.,34.,34.5,100.],
69
+ [1265.,1263.6,1258.,1254.,1253.,1249.8,1237.,1218.,1220.6,
70
+ 1213.8,1215.5,1212.])
71
+ explicit_odr = ODR(explicit_dat, explicit_mod, beta0=[1500.0, -50.0, -0.1],
72
+ ifixx=[0,0,1,1,1,1,1,1,1,1,1,0])
73
+ explicit_odr.set_job(deriv=2)
74
+ explicit_odr.set_iprint(init=0, iter=0, final=0)
75
+
76
+ out = explicit_odr.run()
77
+ assert_array_almost_equal(
78
+ out.beta,
79
+ np.array([1.2646548050648876e+03, -5.4018409956678255e+01,
80
+ -8.7849712165253724e-02]),
81
+ )
82
+ assert_array_almost_equal(
83
+ out.sd_beta,
84
+ np.array([1.0349270280543437, 1.583997785262061, 0.0063321988657267]),
85
+ )
86
+ assert_array_almost_equal(
87
+ out.cov_beta,
88
+ np.array([[4.4949592379003039e-01, -3.7421976890364739e-01,
89
+ -8.0978217468468912e-04],
90
+ [-3.7421976890364739e-01, 1.0529686462751804e+00,
91
+ -1.9453521827942002e-03],
92
+ [-8.0978217468468912e-04, -1.9453521827942002e-03,
93
+ 1.6827336938454476e-05]]),
94
+ )
95
+
96
+ # Implicit Example
97
+
98
+ def implicit_fcn(self, B, x):
99
+ return (B[2]*np.power(x[0]-B[0], 2) +
100
+ 2.0*B[3]*(x[0]-B[0])*(x[1]-B[1]) +
101
+ B[4]*np.power(x[1]-B[1], 2) - 1.0)
102
+
103
+ def test_implicit(self):
104
+ implicit_mod = Model(
105
+ self.implicit_fcn,
106
+ implicit=1,
107
+ meta=dict(name='Sample Implicit Model',
108
+ ref='ODRPACK UG, pg. 49'),
109
+ )
110
+ implicit_dat = Data([
111
+ [0.5,1.2,1.6,1.86,2.12,2.36,2.44,2.36,2.06,1.74,1.34,0.9,-0.28,
112
+ -0.78,-1.36,-1.9,-2.5,-2.88,-3.18,-3.44],
113
+ [-0.12,-0.6,-1.,-1.4,-2.54,-3.36,-4.,-4.75,-5.25,-5.64,-5.97,-6.32,
114
+ -6.44,-6.44,-6.41,-6.25,-5.88,-5.5,-5.24,-4.86]],
115
+ 1,
116
+ )
117
+ implicit_odr = ODR(implicit_dat, implicit_mod,
118
+ beta0=[-1.0, -3.0, 0.09, 0.02, 0.08])
119
+
120
+ out = implicit_odr.run()
121
+ assert_array_almost_equal(
122
+ out.beta,
123
+ np.array([-0.9993809167281279, -2.9310484652026476, 0.0875730502693354,
124
+ 0.0162299708984738, 0.0797537982976416]),
125
+ )
126
+ assert_array_almost_equal(
127
+ out.sd_beta,
128
+ np.array([0.1113840353364371, 0.1097673310686467, 0.0041060738314314,
129
+ 0.0027500347539902, 0.0034962501532468]),
130
+ )
131
+ assert_allclose(
132
+ out.cov_beta,
133
+ np.array([[2.1089274602333052e+00, -1.9437686411979040e+00,
134
+ 7.0263550868344446e-02, -4.7175267373474862e-02,
135
+ 5.2515575927380355e-02],
136
+ [-1.9437686411979040e+00, 2.0481509222414456e+00,
137
+ -6.1600515853057307e-02, 4.6268827806232933e-02,
138
+ -5.8822307501391467e-02],
139
+ [7.0263550868344446e-02, -6.1600515853057307e-02,
140
+ 2.8659542561579308e-03, -1.4628662260014491e-03,
141
+ 1.4528860663055824e-03],
142
+ [-4.7175267373474862e-02, 4.6268827806232933e-02,
143
+ -1.4628662260014491e-03, 1.2855592885514335e-03,
144
+ -1.2692942951415293e-03],
145
+ [5.2515575927380355e-02, -5.8822307501391467e-02,
146
+ 1.4528860663055824e-03, -1.2692942951415293e-03,
147
+ 2.0778813389755596e-03]]),
148
+ rtol=1e-6, atol=2e-6,
149
+ )
150
+
151
+ # Multi-variable Example
152
+
153
+ def multi_fcn(self, B, x):
154
+ if (x < 0.0).any():
155
+ raise OdrStop
156
+ theta = pi*B[3]/2.
157
+ ctheta = np.cos(theta)
158
+ stheta = np.sin(theta)
159
+ omega = np.power(2.*pi*x*np.exp(-B[2]), B[3])
160
+ phi = np.arctan2((omega*stheta), (1.0 + omega*ctheta))
161
+ r = (B[0] - B[1]) * np.power(np.sqrt(np.power(1.0 + omega*ctheta, 2) +
162
+ np.power(omega*stheta, 2)), -B[4])
163
+ ret = np.vstack([B[1] + r*np.cos(B[4]*phi),
164
+ r*np.sin(B[4]*phi)])
165
+ return ret
166
+
167
+ def test_multi(self):
168
+ multi_mod = Model(
169
+ self.multi_fcn,
170
+ meta=dict(name='Sample Multi-Response Model',
171
+ ref='ODRPACK UG, pg. 56'),
172
+ )
173
+
174
+ multi_x = np.array([30.0, 50.0, 70.0, 100.0, 150.0, 200.0, 300.0, 500.0,
175
+ 700.0, 1000.0, 1500.0, 2000.0, 3000.0, 5000.0, 7000.0, 10000.0,
176
+ 15000.0, 20000.0, 30000.0, 50000.0, 70000.0, 100000.0, 150000.0])
177
+ multi_y = np.array([
178
+ [4.22, 4.167, 4.132, 4.038, 4.019, 3.956, 3.884, 3.784, 3.713,
179
+ 3.633, 3.54, 3.433, 3.358, 3.258, 3.193, 3.128, 3.059, 2.984,
180
+ 2.934, 2.876, 2.838, 2.798, 2.759],
181
+ [0.136, 0.167, 0.188, 0.212, 0.236, 0.257, 0.276, 0.297, 0.309,
182
+ 0.311, 0.314, 0.311, 0.305, 0.289, 0.277, 0.255, 0.24, 0.218,
183
+ 0.202, 0.182, 0.168, 0.153, 0.139],
184
+ ])
185
+ n = len(multi_x)
186
+ multi_we = np.zeros((2, 2, n), dtype=float)
187
+ multi_ifixx = np.ones(n, dtype=int)
188
+ multi_delta = np.zeros(n, dtype=float)
189
+
190
+ multi_we[0,0,:] = 559.6
191
+ multi_we[1,0,:] = multi_we[0,1,:] = -1634.0
192
+ multi_we[1,1,:] = 8397.0
193
+
194
+ for i in range(n):
195
+ if multi_x[i] < 100.0:
196
+ multi_ifixx[i] = 0
197
+ elif multi_x[i] <= 150.0:
198
+ pass # defaults are fine
199
+ elif multi_x[i] <= 1000.0:
200
+ multi_delta[i] = 25.0
201
+ elif multi_x[i] <= 10000.0:
202
+ multi_delta[i] = 560.0
203
+ elif multi_x[i] <= 100000.0:
204
+ multi_delta[i] = 9500.0
205
+ else:
206
+ multi_delta[i] = 144000.0
207
+ if multi_x[i] == 100.0 or multi_x[i] == 150.0:
208
+ multi_we[:,:,i] = 0.0
209
+
210
+ multi_dat = Data(multi_x, multi_y, wd=1e-4/np.power(multi_x, 2),
211
+ we=multi_we)
212
+ multi_odr = ODR(multi_dat, multi_mod, beta0=[4.,2.,7.,.4,.5],
213
+ delta0=multi_delta, ifixx=multi_ifixx)
214
+ multi_odr.set_job(deriv=1, del_init=1)
215
+
216
+ out = multi_odr.run()
217
+ assert_array_almost_equal(
218
+ out.beta,
219
+ np.array([4.3799880305938963, 2.4333057577497703, 8.0028845899503978,
220
+ 0.5101147161764654, 0.5173902330489161]),
221
+ )
222
+ assert_array_almost_equal(
223
+ out.sd_beta,
224
+ np.array([0.0130625231081944, 0.0130499785273277, 0.1167085962217757,
225
+ 0.0132642749596149, 0.0288529201353984]),
226
+ )
227
+ assert_array_almost_equal(
228
+ out.cov_beta,
229
+ np.array([[0.0064918418231375, 0.0036159705923791, 0.0438637051470406,
230
+ -0.0058700836512467, 0.011281212888768],
231
+ [0.0036159705923791, 0.0064793789429006, 0.0517610978353126,
232
+ -0.0051181304940204, 0.0130726943624117],
233
+ [0.0438637051470406, 0.0517610978353126, 0.5182263323095322,
234
+ -0.0563083340093696, 0.1269490939468611],
235
+ [-0.0058700836512467, -0.0051181304940204, -0.0563083340093696,
236
+ 0.0066939246261263, -0.0140184391377962],
237
+ [0.011281212888768, 0.0130726943624117, 0.1269490939468611,
238
+ -0.0140184391377962, 0.0316733013820852]]),
239
+ )
240
+
241
+ # Pearson's Data
242
+ # K. Pearson, Philosophical Magazine, 2, 559 (1901)
243
+
244
+ def pearson_fcn(self, B, x):
245
+ return B[0] + B[1]*x
246
+
247
+ def test_pearson(self):
248
+ p_x = np.array([0.,.9,1.8,2.6,3.3,4.4,5.2,6.1,6.5,7.4])
249
+ p_y = np.array([5.9,5.4,4.4,4.6,3.5,3.7,2.8,2.8,2.4,1.5])
250
+ p_sx = np.array([.03,.03,.04,.035,.07,.11,.13,.22,.74,1.])
251
+ p_sy = np.array([1.,.74,.5,.35,.22,.22,.12,.12,.1,.04])
252
+
253
+ p_dat = RealData(p_x, p_y, sx=p_sx, sy=p_sy)
254
+
255
+ # Reverse the data to test invariance of results
256
+ pr_dat = RealData(p_y, p_x, sx=p_sy, sy=p_sx)
257
+
258
+ p_mod = Model(self.pearson_fcn, meta=dict(name='Uni-linear Fit'))
259
+
260
+ p_odr = ODR(p_dat, p_mod, beta0=[1.,1.])
261
+ pr_odr = ODR(pr_dat, p_mod, beta0=[1.,1.])
262
+
263
+ out = p_odr.run()
264
+ assert_array_almost_equal(
265
+ out.beta,
266
+ np.array([5.4767400299231674, -0.4796082367610305]),
267
+ )
268
+ assert_array_almost_equal(
269
+ out.sd_beta,
270
+ np.array([0.3590121690702467, 0.0706291186037444]),
271
+ )
272
+ assert_array_almost_equal(
273
+ out.cov_beta,
274
+ np.array([[0.0854275622946333, -0.0161807025443155],
275
+ [-0.0161807025443155, 0.003306337993922]]),
276
+ )
277
+
278
+ rout = pr_odr.run()
279
+ assert_array_almost_equal(
280
+ rout.beta,
281
+ np.array([11.4192022410781231, -2.0850374506165474]),
282
+ )
283
+ assert_array_almost_equal(
284
+ rout.sd_beta,
285
+ np.array([0.9820231665657161, 0.3070515616198911]),
286
+ )
287
+ assert_array_almost_equal(
288
+ rout.cov_beta,
289
+ np.array([[0.6391799462548782, -0.1955657291119177],
290
+ [-0.1955657291119177, 0.0624888159223392]]),
291
+ )
292
+
293
+ # Lorentz Peak
294
+ # The data is taken from one of the undergraduate physics labs I performed.
295
+
296
+ def lorentz(self, beta, x):
297
+ return (beta[0]*beta[1]*beta[2] / np.sqrt(np.power(x*x -
298
+ beta[2]*beta[2], 2.0) + np.power(beta[1]*x, 2.0)))
299
+
300
+ def test_lorentz(self):
301
+ l_sy = np.array([.29]*18)
302
+ l_sx = np.array([.000972971,.000948268,.000707632,.000706679,
303
+ .000706074, .000703918,.000698955,.000456856,
304
+ .000455207,.000662717,.000654619,.000652694,
305
+ .000000859202,.00106589,.00106378,.00125483, .00140818,.00241839])
306
+
307
+ l_dat = RealData(
308
+ [3.9094, 3.85945, 3.84976, 3.84716, 3.84551, 3.83964, 3.82608,
309
+ 3.78847, 3.78163, 3.72558, 3.70274, 3.6973, 3.67373, 3.65982,
310
+ 3.6562, 3.62498, 3.55525, 3.41886],
311
+ [652, 910.5, 984, 1000, 1007.5, 1053, 1160.5, 1409.5, 1430, 1122,
312
+ 957.5, 920, 777.5, 709.5, 698, 578.5, 418.5, 275.5],
313
+ sx=l_sx,
314
+ sy=l_sy,
315
+ )
316
+ l_mod = Model(self.lorentz, meta=dict(name='Lorentz Peak'))
317
+ l_odr = ODR(l_dat, l_mod, beta0=(1000., .1, 3.8))
318
+
319
+ out = l_odr.run()
320
+ assert_array_almost_equal(
321
+ out.beta,
322
+ np.array([1.4306780846149925e+03, 1.3390509034538309e-01,
323
+ 3.7798193600109009e+00]),
324
+ )
325
+ assert_array_almost_equal(
326
+ out.sd_beta,
327
+ np.array([7.3621186811330963e-01, 3.5068899941471650e-04,
328
+ 2.4451209281408992e-04]),
329
+ )
330
+ assert_array_almost_equal(
331
+ out.cov_beta,
332
+ np.array([[2.4714409064597873e-01, -6.9067261911110836e-05,
333
+ -3.1236953270424990e-05],
334
+ [-6.9067261911110836e-05, 5.6077531517333009e-08,
335
+ 3.6133261832722601e-08],
336
+ [-3.1236953270424990e-05, 3.6133261832722601e-08,
337
+ 2.7261220025171730e-08]]),
338
+ )
339
+
340
+ def test_ticket_1253(self):
341
+ def linear(c, x):
342
+ return c[0]*x+c[1]
343
+
344
+ c = [2.0, 3.0]
345
+ x = np.linspace(0, 10)
346
+ y = linear(c, x)
347
+
348
+ model = Model(linear)
349
+ data = Data(x, y, wd=1.0, we=1.0)
350
+ job = ODR(data, model, beta0=[1.0, 1.0])
351
+ result = job.run()
352
+ assert_equal(result.info, 2)
353
+
354
+ # Verify fix for gh-9140
355
+
356
+ def test_ifixx(self):
357
+ x1 = [-2.01, -0.99, -0.001, 1.02, 1.98]
358
+ x2 = [3.98, 1.01, 0.001, 0.998, 4.01]
359
+ fix = np.vstack((np.zeros_like(x1, dtype=int), np.ones_like(x2, dtype=int)))
360
+ data = Data(np.vstack((x1, x2)), y=1, fix=fix)
361
+ model = Model(lambda beta, x: x[1, :] - beta[0] * x[0, :]**2., implicit=True)
362
+
363
+ odr1 = ODR(data, model, beta0=np.array([1.]))
364
+ sol1 = odr1.run()
365
+ odr2 = ODR(data, model, beta0=np.array([1.]), ifixx=fix)
366
+ sol2 = odr2.run()
367
+ assert_equal(sol1.beta, sol2.beta)
368
+
369
+ # verify bugfix for #11800 in #11802
370
+ def test_ticket_11800(self):
371
+ # parameters
372
+ beta_true = np.array([1.0, 2.3, 1.1, -1.0, 1.3, 0.5])
373
+ nr_measurements = 10
374
+
375
+ std_dev_x = 0.01
376
+ x_error = np.array([[0.00063445, 0.00515731, 0.00162719, 0.01022866,
377
+ -0.01624845, 0.00482652, 0.00275988, -0.00714734, -0.00929201, -0.00687301],
378
+ [-0.00831623, -0.00821211, -0.00203459, 0.00938266, -0.00701829,
379
+ 0.0032169, 0.00259194, -0.00581017, -0.0030283, 0.01014164]])
380
+
381
+ std_dev_y = 0.05
382
+ y_error = np.array([[0.05275304, 0.04519563, -0.07524086, 0.03575642,
383
+ 0.04745194, 0.03806645, 0.07061601, -0.00753604, -0.02592543, -0.02394929],
384
+ [0.03632366, 0.06642266, 0.08373122, 0.03988822, -0.0092536,
385
+ -0.03750469, -0.03198903, 0.01642066, 0.01293648, -0.05627085]])
386
+
387
+ beta_solution = np.array([
388
+ 2.62920235756665876536e+00, -1.26608484996299608838e+02,
389
+ 1.29703572775403074502e+02, -1.88560985401185465804e+00,
390
+ 7.83834160771274923718e+01, -7.64124076838087091801e+01])
391
+
392
+ # model's function and Jacobians
393
+ def func(beta, x):
394
+ y0 = beta[0] + beta[1] * x[0, :] + beta[2] * x[1, :]
395
+ y1 = beta[3] + beta[4] * x[0, :] + beta[5] * x[1, :]
396
+
397
+ return np.vstack((y0, y1))
398
+
399
+ def df_dbeta_odr(beta, x):
400
+ nr_meas = np.shape(x)[1]
401
+ zeros = np.zeros(nr_meas)
402
+ ones = np.ones(nr_meas)
403
+
404
+ dy0 = np.array([ones, x[0, :], x[1, :], zeros, zeros, zeros])
405
+ dy1 = np.array([zeros, zeros, zeros, ones, x[0, :], x[1, :]])
406
+
407
+ return np.stack((dy0, dy1))
408
+
409
+ def df_dx_odr(beta, x):
410
+ nr_meas = np.shape(x)[1]
411
+ ones = np.ones(nr_meas)
412
+
413
+ dy0 = np.array([beta[1] * ones, beta[2] * ones])
414
+ dy1 = np.array([beta[4] * ones, beta[5] * ones])
415
+ return np.stack((dy0, dy1))
416
+
417
+ # do measurements with errors in independent and dependent variables
418
+ x0_true = np.linspace(1, 10, nr_measurements)
419
+ x1_true = np.linspace(1, 10, nr_measurements)
420
+ x_true = np.array([x0_true, x1_true])
421
+
422
+ y_true = func(beta_true, x_true)
423
+
424
+ x_meas = x_true + x_error
425
+ y_meas = y_true + y_error
426
+
427
+ # estimate model's parameters
428
+ model_f = Model(func, fjacb=df_dbeta_odr, fjacd=df_dx_odr)
429
+
430
+ data = RealData(x_meas, y_meas, sx=std_dev_x, sy=std_dev_y)
431
+
432
+ odr_obj = ODR(data, model_f, beta0=0.9 * beta_true, maxit=100)
433
+ #odr_obj.set_iprint(init=2, iter=0, iter_step=1, final=1)
434
+ odr_obj.set_job(deriv=3)
435
+
436
+ odr_out = odr_obj.run()
437
+
438
+ # check results
439
+ assert_equal(odr_out.info, 1)
440
+ assert_array_almost_equal(odr_out.beta, beta_solution)
441
+
442
+ def test_multilinear_model(self):
443
+ x = np.linspace(0.0, 5.0)
444
+ y = 10.0 + 5.0 * x
445
+ data = Data(x, y)
446
+ odr_obj = ODR(data, multilinear)
447
+ output = odr_obj.run()
448
+ assert_array_almost_equal(output.beta, [10.0, 5.0])
449
+
450
+ def test_exponential_model(self):
451
+ x = np.linspace(0.0, 5.0)
452
+ y = -10.0 + np.exp(0.5*x)
453
+ data = Data(x, y)
454
+ odr_obj = ODR(data, exponential)
455
+ output = odr_obj.run()
456
+ assert_array_almost_equal(output.beta, [-10.0, 0.5])
457
+
458
+ def test_polynomial_model(self):
459
+ x = np.linspace(0.0, 5.0)
460
+ y = 1.0 + 2.0 * x + 3.0 * x ** 2 + 4.0 * x ** 3
461
+ poly_model = polynomial(3)
462
+ data = Data(x, y)
463
+ odr_obj = ODR(data, poly_model)
464
+ output = odr_obj.run()
465
+ assert_array_almost_equal(output.beta, [1.0, 2.0, 3.0, 4.0])
466
+
467
+ def test_unilinear_model(self):
468
+ x = np.linspace(0.0, 5.0)
469
+ y = 1.0 * x + 2.0
470
+ data = Data(x, y)
471
+ odr_obj = ODR(data, unilinear)
472
+ output = odr_obj.run()
473
+ assert_array_almost_equal(output.beta, [1.0, 2.0])
474
+
475
+ def test_quadratic_model(self):
476
+ x = np.linspace(0.0, 5.0)
477
+ y = 1.0 * x ** 2 + 2.0 * x + 3.0
478
+ data = Data(x, y)
479
+ odr_obj = ODR(data, quadratic)
480
+ output = odr_obj.run()
481
+ assert_array_almost_equal(output.beta, [1.0, 2.0, 3.0])
482
+
483
+ def test_work_ind(self):
484
+
485
+ def func(par, x):
486
+ b0, b1 = par
487
+ return b0 + b1 * x
488
+
489
+ # generate some data
490
+ n_data = 4
491
+ x = np.arange(n_data)
492
+ y = np.where(x % 2, x + 0.1, x - 0.1)
493
+ x_err = np.full(n_data, 0.1)
494
+ y_err = np.full(n_data, 0.1)
495
+
496
+ # do the fitting
497
+ linear_model = Model(func)
498
+ real_data = RealData(x, y, sx=x_err, sy=y_err)
499
+ odr_obj = ODR(real_data, linear_model, beta0=[0.4, 0.4])
500
+ odr_obj.set_job(fit_type=0)
501
+ out = odr_obj.run()
502
+
503
+ sd_ind = out.work_ind['sd']
504
+ assert_array_almost_equal(out.sd_beta,
505
+ out.work[sd_ind:sd_ind + len(out.sd_beta)])
506
+
507
+ @pytest.mark.skipif(True, reason="Fortran I/O prone to crashing so better "
508
+ "not to run this test, see gh-13127")
509
+ def test_output_file_overwrite(self):
510
+ """
511
+ Verify fix for gh-1892
512
+ """
513
+ def func(b, x):
514
+ return b[0] + b[1] * x
515
+
516
+ p = Model(func)
517
+ data = Data(np.arange(10), 12 * np.arange(10))
518
+ tmp_dir = tempfile.mkdtemp()
519
+ error_file_path = os.path.join(tmp_dir, "error.dat")
520
+ report_file_path = os.path.join(tmp_dir, "report.dat")
521
+ try:
522
+ ODR(data, p, beta0=[0.1, 13], errfile=error_file_path,
523
+ rptfile=report_file_path).run()
524
+ ODR(data, p, beta0=[0.1, 13], errfile=error_file_path,
525
+ rptfile=report_file_path, overwrite=True).run()
526
+ finally:
527
+ # remove output files for clean up
528
+ shutil.rmtree(tmp_dir)
529
+
530
+ def test_odr_model_default_meta(self):
531
+ def func(b, x):
532
+ return b[0] + b[1] * x
533
+
534
+ p = Model(func)
535
+ p.set_meta(name='Sample Model Meta', ref='ODRPACK')
536
+ assert_equal(p.meta, {'name': 'Sample Model Meta', 'ref': 'ODRPACK'})
537
+
538
+ def test_work_array_del_init(self):
539
+ """
540
+ Verify fix for gh-18739 where del_init=1 fails.
541
+ """
542
+ def func(b, x):
543
+ return b[0] + b[1] * x
544
+
545
+ # generate some data
546
+ n_data = 4
547
+ x = np.arange(n_data)
548
+ y = np.where(x % 2, x + 0.1, x - 0.1)
549
+ x_err = np.full(n_data, 0.1)
550
+ y_err = np.full(n_data, 0.1)
551
+
552
+ linear_model = Model(func)
553
+ # Try various shapes of the `we` array from various `sy` and `covy`
554
+ rd0 = RealData(x, y, sx=x_err, sy=y_err)
555
+ rd1 = RealData(x, y, sx=x_err, sy=0.1)
556
+ rd2 = RealData(x, y, sx=x_err, sy=[0.1])
557
+ rd3 = RealData(x, y, sx=x_err, sy=np.full((1, n_data), 0.1))
558
+ rd4 = RealData(x, y, sx=x_err, covy=[[0.01]])
559
+ rd5 = RealData(x, y, sx=x_err, covy=np.full((1, 1, n_data), 0.01))
560
+ for rd in [rd0, rd1, rd2, rd3, rd4, rd5]:
561
+ odr_obj = ODR(rd, linear_model, beta0=[0.4, 0.4],
562
+ delta0=np.full(n_data, -0.1))
563
+ odr_obj.set_job(fit_type=0, del_init=1)
564
+ # Just make sure that it runs without raising an exception.
565
+ odr_obj.run()
env-llmeval/lib/python3.10/site-packages/scipy/optimize/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (13.6 kB). View file
 
env-llmeval/lib/python3.10/site-packages/scipy/optimize/__pycache__/_basinhopping.cpython-310.pyc ADDED
Binary file (26.9 kB). View file
 
env-llmeval/lib/python3.10/site-packages/scipy/optimize/__pycache__/_bracket.cpython-310.pyc ADDED
Binary file (18.8 kB). View file
 
env-llmeval/lib/python3.10/site-packages/scipy/optimize/__pycache__/_chandrupatla.cpython-310.pyc ADDED
Binary file (17.7 kB). View file
 
env-llmeval/lib/python3.10/site-packages/scipy/optimize/__pycache__/_constraints.cpython-310.pyc ADDED
Binary file (21.5 kB). View file
 
env-llmeval/lib/python3.10/site-packages/scipy/optimize/__pycache__/_dcsrch.cpython-310.pyc ADDED
Binary file (16.9 kB). View file
 
env-llmeval/lib/python3.10/site-packages/scipy/optimize/__pycache__/_differentiable_functions.cpython-310.pyc ADDED
Binary file (19.6 kB). View file
 
env-llmeval/lib/python3.10/site-packages/scipy/optimize/__pycache__/_differentialevolution.cpython-310.pyc ADDED
Binary file (62.9 kB). View file
 
env-llmeval/lib/python3.10/site-packages/scipy/optimize/__pycache__/_direct_py.cpython-310.pyc ADDED
Binary file (10.9 kB). View file
 
env-llmeval/lib/python3.10/site-packages/scipy/optimize/__pycache__/_dual_annealing.cpython-310.pyc ADDED
Binary file (22.4 kB). View file
 
env-llmeval/lib/python3.10/site-packages/scipy/optimize/__pycache__/_isotonic.cpython-310.pyc ADDED
Binary file (5.77 kB). View file
 
env-llmeval/lib/python3.10/site-packages/scipy/optimize/__pycache__/_lbfgsb_py.cpython-310.pyc ADDED
Binary file (16.8 kB). View file
 
env-llmeval/lib/python3.10/site-packages/scipy/optimize/__pycache__/_linesearch.cpython-310.pyc ADDED
Binary file (21 kB). View file
 
env-llmeval/lib/python3.10/site-packages/scipy/optimize/__pycache__/_linprog.cpython-310.pyc ADDED
Binary file (27.8 kB). View file
 
env-llmeval/lib/python3.10/site-packages/scipy/optimize/__pycache__/_linprog_doc.cpython-310.pyc ADDED
Binary file (61.2 kB). View file
 
env-llmeval/lib/python3.10/site-packages/scipy/optimize/__pycache__/_linprog_highs.cpython-310.pyc ADDED
Binary file (14.5 kB). View file
 
env-llmeval/lib/python3.10/site-packages/scipy/optimize/__pycache__/_linprog_ip.cpython-310.pyc ADDED
Binary file (37.6 kB). View file
 
env-llmeval/lib/python3.10/site-packages/scipy/optimize/__pycache__/_linprog_simplex.cpython-310.pyc ADDED
Binary file (22 kB). View file
 
env-llmeval/lib/python3.10/site-packages/scipy/optimize/__pycache__/_linprog_util.cpython-310.pyc ADDED
Binary file (46.4 kB). View file
 
env-llmeval/lib/python3.10/site-packages/scipy/optimize/__pycache__/_milp.cpython-310.pyc ADDED
Binary file (12.9 kB). View file
 
env-llmeval/lib/python3.10/site-packages/scipy/optimize/__pycache__/_minimize.cpython-310.pyc ADDED
Binary file (40.2 kB). View file
 
env-llmeval/lib/python3.10/site-packages/scipy/optimize/__pycache__/_minpack_py.cpython-310.pyc ADDED
Binary file (38 kB). View file
 
env-llmeval/lib/python3.10/site-packages/scipy/optimize/__pycache__/_nnls.cpython-310.pyc ADDED
Binary file (4.64 kB). View file
 
env-llmeval/lib/python3.10/site-packages/scipy/optimize/__pycache__/_nonlin.cpython-310.pyc ADDED
Binary file (46.5 kB). View file
 
env-llmeval/lib/python3.10/site-packages/scipy/optimize/__pycache__/_numdiff.cpython-310.pyc ADDED
Binary file (23.6 kB). View file
 
env-llmeval/lib/python3.10/site-packages/scipy/optimize/__pycache__/_optimize.cpython-310.pyc ADDED
Binary file (114 kB). View file
 
env-llmeval/lib/python3.10/site-packages/scipy/optimize/__pycache__/_qap.cpython-310.pyc ADDED
Binary file (23.4 kB). View file
 
env-llmeval/lib/python3.10/site-packages/scipy/optimize/__pycache__/_remove_redundancy.cpython-310.pyc ADDED
Binary file (10.3 kB). View file
 
env-llmeval/lib/python3.10/site-packages/scipy/optimize/__pycache__/_shgo.cpython-310.pyc ADDED
Binary file (44.4 kB). View file