Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/_lsq/bvls.py +183 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/_lsq/givens_elimination.cpython-310-x86_64-linux-gnu.so +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/_shgo_lib/__init__.py +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/_shgo_lib/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/_shgo_lib/__pycache__/_complex.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/_shgo_lib/__pycache__/_vertex.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/_shgo_lib/_complex.py +1225 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/_shgo_lib/_vertex.py +460 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/_trustregion_constr/__init__.py +6 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/_trustregion_constr/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/_trustregion_constr/__pycache__/canonical_constraint.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/_trustregion_constr/__pycache__/equality_constrained_sqp.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/_trustregion_constr/__pycache__/minimize_trustregion_constr.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/_trustregion_constr/__pycache__/projections.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/_trustregion_constr/__pycache__/qp_subproblem.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/_trustregion_constr/__pycache__/report.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/_trustregion_constr/__pycache__/tr_interior_point.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/_trustregion_constr/canonical_constraint.py +390 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/_trustregion_constr/equality_constrained_sqp.py +217 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/_trustregion_constr/minimize_trustregion_constr.py +564 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/_trustregion_constr/projections.py +407 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/_trustregion_constr/qp_subproblem.py +637 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/_trustregion_constr/report.py +51 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/_trustregion_constr/tests/__init__.py +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/_trustregion_constr/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/_trustregion_constr/tests/__pycache__/test_canonical_constraint.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/_trustregion_constr/tests/__pycache__/test_projections.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/_trustregion_constr/tests/__pycache__/test_report.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/_trustregion_constr/tests/test_canonical_constraint.py +296 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/_trustregion_constr/tests/test_projections.py +214 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/_trustregion_constr/tests/test_qp_subproblem.py +645 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/_trustregion_constr/tests/test_report.py +32 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/_trustregion_constr/tr_interior_point.py +346 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/tests/__pycache__/test__differential_evolution.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/tests/__pycache__/test__dual_annealing.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/tests/__pycache__/test__linprog_clean_inputs.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/tests/__pycache__/test__numdiff.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/tests/__pycache__/test__remove_redundancy.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/tests/__pycache__/test__root.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/tests/__pycache__/test__shgo.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/tests/__pycache__/test__spectral.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/tests/__pycache__/test_bracket.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/tests/__pycache__/test_chandrupatla.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/tests/__pycache__/test_cobyla.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/tests/__pycache__/test_constraint_conversion.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/tests/__pycache__/test_constraints.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/tests/__pycache__/test_cython_optimize.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/tests/__pycache__/test_differentiable_functions.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/tests/__pycache__/test_differentiate.cpython-310.pyc +0 -0
env-llmeval/lib/python3.10/site-packages/scipy/optimize/_lsq/bvls.py
ADDED
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Bounded-variable least-squares algorithm."""
|
2 |
+
import numpy as np
|
3 |
+
from numpy.linalg import norm, lstsq
|
4 |
+
from scipy.optimize import OptimizeResult
|
5 |
+
|
6 |
+
from .common import print_header_linear, print_iteration_linear
|
7 |
+
|
8 |
+
|
9 |
+
def compute_kkt_optimality(g, on_bound):
|
10 |
+
"""Compute the maximum violation of KKT conditions."""
|
11 |
+
g_kkt = g * on_bound
|
12 |
+
free_set = on_bound == 0
|
13 |
+
g_kkt[free_set] = np.abs(g[free_set])
|
14 |
+
return np.max(g_kkt)
|
15 |
+
|
16 |
+
|
17 |
+
def bvls(A, b, x_lsq, lb, ub, tol, max_iter, verbose, rcond=None):
|
18 |
+
m, n = A.shape
|
19 |
+
|
20 |
+
x = x_lsq.copy()
|
21 |
+
on_bound = np.zeros(n)
|
22 |
+
|
23 |
+
mask = x <= lb
|
24 |
+
x[mask] = lb[mask]
|
25 |
+
on_bound[mask] = -1
|
26 |
+
|
27 |
+
mask = x >= ub
|
28 |
+
x[mask] = ub[mask]
|
29 |
+
on_bound[mask] = 1
|
30 |
+
|
31 |
+
free_set = on_bound == 0
|
32 |
+
active_set = ~free_set
|
33 |
+
free_set, = np.nonzero(free_set)
|
34 |
+
|
35 |
+
r = A.dot(x) - b
|
36 |
+
cost = 0.5 * np.dot(r, r)
|
37 |
+
initial_cost = cost
|
38 |
+
g = A.T.dot(r)
|
39 |
+
|
40 |
+
cost_change = None
|
41 |
+
step_norm = None
|
42 |
+
iteration = 0
|
43 |
+
|
44 |
+
if verbose == 2:
|
45 |
+
print_header_linear()
|
46 |
+
|
47 |
+
# This is the initialization loop. The requirement is that the
|
48 |
+
# least-squares solution on free variables is feasible before BVLS starts.
|
49 |
+
# One possible initialization is to set all variables to lower or upper
|
50 |
+
# bounds, but many iterations may be required from this state later on.
|
51 |
+
# The implemented ad-hoc procedure which intuitively should give a better
|
52 |
+
# initial state: find the least-squares solution on current free variables,
|
53 |
+
# if its feasible then stop, otherwise, set violating variables to
|
54 |
+
# corresponding bounds and continue on the reduced set of free variables.
|
55 |
+
|
56 |
+
while free_set.size > 0:
|
57 |
+
if verbose == 2:
|
58 |
+
optimality = compute_kkt_optimality(g, on_bound)
|
59 |
+
print_iteration_linear(iteration, cost, cost_change, step_norm,
|
60 |
+
optimality)
|
61 |
+
|
62 |
+
iteration += 1
|
63 |
+
x_free_old = x[free_set].copy()
|
64 |
+
|
65 |
+
A_free = A[:, free_set]
|
66 |
+
b_free = b - A.dot(x * active_set)
|
67 |
+
z = lstsq(A_free, b_free, rcond=rcond)[0]
|
68 |
+
|
69 |
+
lbv = z < lb[free_set]
|
70 |
+
ubv = z > ub[free_set]
|
71 |
+
v = lbv | ubv
|
72 |
+
|
73 |
+
if np.any(lbv):
|
74 |
+
ind = free_set[lbv]
|
75 |
+
x[ind] = lb[ind]
|
76 |
+
active_set[ind] = True
|
77 |
+
on_bound[ind] = -1
|
78 |
+
|
79 |
+
if np.any(ubv):
|
80 |
+
ind = free_set[ubv]
|
81 |
+
x[ind] = ub[ind]
|
82 |
+
active_set[ind] = True
|
83 |
+
on_bound[ind] = 1
|
84 |
+
|
85 |
+
ind = free_set[~v]
|
86 |
+
x[ind] = z[~v]
|
87 |
+
|
88 |
+
r = A.dot(x) - b
|
89 |
+
cost_new = 0.5 * np.dot(r, r)
|
90 |
+
cost_change = cost - cost_new
|
91 |
+
cost = cost_new
|
92 |
+
g = A.T.dot(r)
|
93 |
+
step_norm = norm(x[free_set] - x_free_old)
|
94 |
+
|
95 |
+
if np.any(v):
|
96 |
+
free_set = free_set[~v]
|
97 |
+
else:
|
98 |
+
break
|
99 |
+
|
100 |
+
if max_iter is None:
|
101 |
+
max_iter = n
|
102 |
+
max_iter += iteration
|
103 |
+
|
104 |
+
termination_status = None
|
105 |
+
|
106 |
+
# Main BVLS loop.
|
107 |
+
|
108 |
+
optimality = compute_kkt_optimality(g, on_bound)
|
109 |
+
for iteration in range(iteration, max_iter): # BVLS Loop A
|
110 |
+
if verbose == 2:
|
111 |
+
print_iteration_linear(iteration, cost, cost_change,
|
112 |
+
step_norm, optimality)
|
113 |
+
|
114 |
+
if optimality < tol:
|
115 |
+
termination_status = 1
|
116 |
+
|
117 |
+
if termination_status is not None:
|
118 |
+
break
|
119 |
+
|
120 |
+
move_to_free = np.argmax(g * on_bound)
|
121 |
+
on_bound[move_to_free] = 0
|
122 |
+
|
123 |
+
while True: # BVLS Loop B
|
124 |
+
|
125 |
+
free_set = on_bound == 0
|
126 |
+
active_set = ~free_set
|
127 |
+
free_set, = np.nonzero(free_set)
|
128 |
+
|
129 |
+
x_free = x[free_set]
|
130 |
+
x_free_old = x_free.copy()
|
131 |
+
lb_free = lb[free_set]
|
132 |
+
ub_free = ub[free_set]
|
133 |
+
|
134 |
+
A_free = A[:, free_set]
|
135 |
+
b_free = b - A.dot(x * active_set)
|
136 |
+
z = lstsq(A_free, b_free, rcond=rcond)[0]
|
137 |
+
|
138 |
+
lbv, = np.nonzero(z < lb_free)
|
139 |
+
ubv, = np.nonzero(z > ub_free)
|
140 |
+
v = np.hstack((lbv, ubv))
|
141 |
+
|
142 |
+
if v.size > 0:
|
143 |
+
alphas = np.hstack((
|
144 |
+
lb_free[lbv] - x_free[lbv],
|
145 |
+
ub_free[ubv] - x_free[ubv])) / (z[v] - x_free[v])
|
146 |
+
|
147 |
+
i = np.argmin(alphas)
|
148 |
+
i_free = v[i]
|
149 |
+
alpha = alphas[i]
|
150 |
+
|
151 |
+
x_free *= 1 - alpha
|
152 |
+
x_free += alpha * z
|
153 |
+
x[free_set] = x_free
|
154 |
+
|
155 |
+
if i < lbv.size:
|
156 |
+
on_bound[free_set[i_free]] = -1
|
157 |
+
else:
|
158 |
+
on_bound[free_set[i_free]] = 1
|
159 |
+
else:
|
160 |
+
x_free = z
|
161 |
+
x[free_set] = x_free
|
162 |
+
break
|
163 |
+
|
164 |
+
step_norm = norm(x_free - x_free_old)
|
165 |
+
|
166 |
+
r = A.dot(x) - b
|
167 |
+
cost_new = 0.5 * np.dot(r, r)
|
168 |
+
cost_change = cost - cost_new
|
169 |
+
|
170 |
+
if cost_change < tol * cost:
|
171 |
+
termination_status = 2
|
172 |
+
cost = cost_new
|
173 |
+
|
174 |
+
g = A.T.dot(r)
|
175 |
+
optimality = compute_kkt_optimality(g, on_bound)
|
176 |
+
|
177 |
+
if termination_status is None:
|
178 |
+
termination_status = 0
|
179 |
+
|
180 |
+
return OptimizeResult(
|
181 |
+
x=x, fun=r, cost=cost, optimality=optimality, active_mask=on_bound,
|
182 |
+
nit=iteration + 1, status=termination_status,
|
183 |
+
initial_cost=initial_cost)
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/_lsq/givens_elimination.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (236 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/_shgo_lib/__init__.py
ADDED
File without changes
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/_shgo_lib/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (189 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/_shgo_lib/__pycache__/_complex.cpython-310.pyc
ADDED
Binary file (23 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/_shgo_lib/__pycache__/_vertex.cpython-310.pyc
ADDED
Binary file (14.5 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/_shgo_lib/_complex.py
ADDED
@@ -0,0 +1,1225 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Base classes for low memory simplicial complex structures."""
|
2 |
+
import copy
|
3 |
+
import logging
|
4 |
+
import itertools
|
5 |
+
import decimal
|
6 |
+
from functools import cache
|
7 |
+
|
8 |
+
import numpy
|
9 |
+
|
10 |
+
from ._vertex import (VertexCacheField, VertexCacheIndex)
|
11 |
+
|
12 |
+
|
13 |
+
class Complex:
|
14 |
+
"""
|
15 |
+
Base class for a simplicial complex described as a cache of vertices
|
16 |
+
together with their connections.
|
17 |
+
|
18 |
+
Important methods:
|
19 |
+
Domain triangulation:
|
20 |
+
Complex.triangulate, Complex.split_generation
|
21 |
+
Triangulating arbitrary points (must be traingulable,
|
22 |
+
may exist outside domain):
|
23 |
+
Complex.triangulate(sample_set)
|
24 |
+
Converting another simplicial complex structure data type to the
|
25 |
+
structure used in Complex (ex. OBJ wavefront)
|
26 |
+
Complex.convert(datatype, data)
|
27 |
+
|
28 |
+
Important objects:
|
29 |
+
HC.V: The cache of vertices and their connection
|
30 |
+
HC.H: Storage structure of all vertex groups
|
31 |
+
|
32 |
+
Parameters
|
33 |
+
----------
|
34 |
+
dim : int
|
35 |
+
Spatial dimensionality of the complex R^dim
|
36 |
+
domain : list of tuples, optional
|
37 |
+
The bounds [x_l, x_u]^dim of the hyperrectangle space
|
38 |
+
ex. The default domain is the hyperrectangle [0, 1]^dim
|
39 |
+
Note: The domain must be convex, non-convex spaces can be cut
|
40 |
+
away from this domain using the non-linear
|
41 |
+
g_cons functions to define any arbitrary domain
|
42 |
+
(these domains may also be disconnected from each other)
|
43 |
+
sfield :
|
44 |
+
A scalar function defined in the associated domain f: R^dim --> R
|
45 |
+
sfield_args : tuple
|
46 |
+
Additional arguments to be passed to `sfield`
|
47 |
+
vfield :
|
48 |
+
A scalar function defined in the associated domain
|
49 |
+
f: R^dim --> R^m
|
50 |
+
(for example a gradient function of the scalar field)
|
51 |
+
vfield_args : tuple
|
52 |
+
Additional arguments to be passed to vfield
|
53 |
+
symmetry : None or list
|
54 |
+
Specify if the objective function contains symmetric variables.
|
55 |
+
The search space (and therefore performance) is decreased by up to
|
56 |
+
O(n!) times in the fully symmetric case.
|
57 |
+
|
58 |
+
E.g. f(x) = (x_1 + x_2 + x_3) + (x_4)**2 + (x_5)**2 + (x_6)**2
|
59 |
+
|
60 |
+
In this equation x_2 and x_3 are symmetric to x_1, while x_5 and
|
61 |
+
x_6 are symmetric to x_4, this can be specified to the solver as:
|
62 |
+
|
63 |
+
symmetry = [0, # Variable 1
|
64 |
+
0, # symmetric to variable 1
|
65 |
+
0, # symmetric to variable 1
|
66 |
+
3, # Variable 4
|
67 |
+
3, # symmetric to variable 4
|
68 |
+
3, # symmetric to variable 4
|
69 |
+
]
|
70 |
+
|
71 |
+
constraints : dict or sequence of dict, optional
|
72 |
+
Constraints definition.
|
73 |
+
Function(s) ``R**n`` in the form::
|
74 |
+
|
75 |
+
g(x) <= 0 applied as g : R^n -> R^m
|
76 |
+
h(x) == 0 applied as h : R^n -> R^p
|
77 |
+
|
78 |
+
Each constraint is defined in a dictionary with fields:
|
79 |
+
|
80 |
+
type : str
|
81 |
+
Constraint type: 'eq' for equality, 'ineq' for inequality.
|
82 |
+
fun : callable
|
83 |
+
The function defining the constraint.
|
84 |
+
jac : callable, optional
|
85 |
+
The Jacobian of `fun` (only for SLSQP).
|
86 |
+
args : sequence, optional
|
87 |
+
Extra arguments to be passed to the function and Jacobian.
|
88 |
+
|
89 |
+
Equality constraint means that the constraint function result is to
|
90 |
+
be zero whereas inequality means that it is to be
|
91 |
+
non-negative.constraints : dict or sequence of dict, optional
|
92 |
+
Constraints definition.
|
93 |
+
Function(s) ``R**n`` in the form::
|
94 |
+
|
95 |
+
g(x) <= 0 applied as g : R^n -> R^m
|
96 |
+
h(x) == 0 applied as h : R^n -> R^p
|
97 |
+
|
98 |
+
Each constraint is defined in a dictionary with fields:
|
99 |
+
|
100 |
+
type : str
|
101 |
+
Constraint type: 'eq' for equality, 'ineq' for inequality.
|
102 |
+
fun : callable
|
103 |
+
The function defining the constraint.
|
104 |
+
jac : callable, optional
|
105 |
+
The Jacobian of `fun` (unused).
|
106 |
+
args : sequence, optional
|
107 |
+
Extra arguments to be passed to the function and Jacobian.
|
108 |
+
|
109 |
+
Equality constraint means that the constraint function result is to
|
110 |
+
be zero whereas inequality means that it is to be non-negative.
|
111 |
+
|
112 |
+
workers : int optional
|
113 |
+
Uses `multiprocessing.Pool <multiprocessing>`) to compute the field
|
114 |
+
functions in parallel.
|
115 |
+
"""
|
116 |
+
def __init__(self, dim, domain=None, sfield=None, sfield_args=(),
|
117 |
+
symmetry=None, constraints=None, workers=1):
|
118 |
+
self.dim = dim
|
119 |
+
|
120 |
+
# Domains
|
121 |
+
self.domain = domain
|
122 |
+
if domain is None:
|
123 |
+
self.bounds = [(0.0, 1.0), ] * dim
|
124 |
+
else:
|
125 |
+
self.bounds = domain
|
126 |
+
self.symmetry = symmetry
|
127 |
+
# here in init to avoid if checks
|
128 |
+
|
129 |
+
# Field functions
|
130 |
+
self.sfield = sfield
|
131 |
+
self.sfield_args = sfield_args
|
132 |
+
|
133 |
+
# Process constraints
|
134 |
+
# Constraints
|
135 |
+
# Process constraint dict sequence:
|
136 |
+
if constraints is not None:
|
137 |
+
self.min_cons = constraints
|
138 |
+
self.g_cons = []
|
139 |
+
self.g_args = []
|
140 |
+
if not isinstance(constraints, (tuple, list)):
|
141 |
+
constraints = (constraints,)
|
142 |
+
|
143 |
+
for cons in constraints:
|
144 |
+
if cons['type'] in ('ineq'):
|
145 |
+
self.g_cons.append(cons['fun'])
|
146 |
+
try:
|
147 |
+
self.g_args.append(cons['args'])
|
148 |
+
except KeyError:
|
149 |
+
self.g_args.append(())
|
150 |
+
self.g_cons = tuple(self.g_cons)
|
151 |
+
self.g_args = tuple(self.g_args)
|
152 |
+
else:
|
153 |
+
self.g_cons = None
|
154 |
+
self.g_args = None
|
155 |
+
|
156 |
+
# Homology properties
|
157 |
+
self.gen = 0
|
158 |
+
self.perm_cycle = 0
|
159 |
+
|
160 |
+
# Every cell is stored in a list of its generation,
|
161 |
+
# ex. the initial cell is stored in self.H[0]
|
162 |
+
# 1st get new cells are stored in self.H[1] etc.
|
163 |
+
# When a cell is sub-generated it is removed from this list
|
164 |
+
|
165 |
+
self.H = [] # Storage structure of vertex groups
|
166 |
+
|
167 |
+
# Cache of all vertices
|
168 |
+
if (sfield is not None) or (self.g_cons is not None):
|
169 |
+
# Initiate a vertex cache and an associated field cache, note that
|
170 |
+
# the field case is always initiated inside the vertex cache if an
|
171 |
+
# associated field scalar field is defined:
|
172 |
+
if sfield is not None:
|
173 |
+
self.V = VertexCacheField(field=sfield, field_args=sfield_args,
|
174 |
+
g_cons=self.g_cons,
|
175 |
+
g_cons_args=self.g_args,
|
176 |
+
workers=workers)
|
177 |
+
elif self.g_cons is not None:
|
178 |
+
self.V = VertexCacheField(field=sfield, field_args=sfield_args,
|
179 |
+
g_cons=self.g_cons,
|
180 |
+
g_cons_args=self.g_args,
|
181 |
+
workers=workers)
|
182 |
+
else:
|
183 |
+
self.V = VertexCacheIndex()
|
184 |
+
|
185 |
+
self.V_non_symm = [] # List of non-symmetric vertices
|
186 |
+
|
187 |
+
def __call__(self):
|
188 |
+
return self.H
|
189 |
+
|
190 |
+
# %% Triangulation methods
|
191 |
+
def cyclic_product(self, bounds, origin, supremum, centroid=True):
|
192 |
+
"""Generate initial triangulation using cyclic product"""
|
193 |
+
# Define current hyperrectangle
|
194 |
+
vot = tuple(origin)
|
195 |
+
vut = tuple(supremum) # Hyperrectangle supremum
|
196 |
+
self.V[vot]
|
197 |
+
vo = self.V[vot]
|
198 |
+
yield vo.x
|
199 |
+
self.V[vut].connect(self.V[vot])
|
200 |
+
yield vut
|
201 |
+
# Cyclic group approach with second x_l --- x_u operation.
|
202 |
+
|
203 |
+
# These containers store the "lower" and "upper" vertices
|
204 |
+
# corresponding to the origin or supremum of every C2 group.
|
205 |
+
# It has the structure of `dim` times embedded lists each containing
|
206 |
+
# these vertices as the entire complex grows. Bounds[0] has to be done
|
207 |
+
# outside the loops before we have symmetric containers.
|
208 |
+
# NOTE: This means that bounds[0][1] must always exist
|
209 |
+
C0x = [[self.V[vot]]]
|
210 |
+
a_vo = copy.copy(list(origin))
|
211 |
+
a_vo[0] = vut[0] # Update aN Origin
|
212 |
+
a_vo = self.V[tuple(a_vo)]
|
213 |
+
# self.V[vot].connect(self.V[tuple(a_vo)])
|
214 |
+
self.V[vot].connect(a_vo)
|
215 |
+
yield a_vo.x
|
216 |
+
C1x = [[a_vo]]
|
217 |
+
# C1x = [[self.V[tuple(a_vo)]]]
|
218 |
+
ab_C = [] # Container for a + b operations
|
219 |
+
|
220 |
+
# Loop over remaining bounds
|
221 |
+
for i, x in enumerate(bounds[1:]):
|
222 |
+
# Update lower and upper containers
|
223 |
+
C0x.append([])
|
224 |
+
C1x.append([])
|
225 |
+
# try to access a second bound (if not, C1 is symmetric)
|
226 |
+
try:
|
227 |
+
# Early try so that we don't have to copy the cache before
|
228 |
+
# moving on to next C1/C2: Try to add the operation of a new
|
229 |
+
# C2 product by accessing the upper bound
|
230 |
+
x[1]
|
231 |
+
# Copy lists for iteration
|
232 |
+
cC0x = [x[:] for x in C0x[:i + 1]]
|
233 |
+
cC1x = [x[:] for x in C1x[:i + 1]]
|
234 |
+
for j, (VL, VU) in enumerate(zip(cC0x, cC1x)):
|
235 |
+
for k, (vl, vu) in enumerate(zip(VL, VU)):
|
236 |
+
# Build aN vertices for each lower-upper pair in N:
|
237 |
+
a_vl = list(vl.x)
|
238 |
+
a_vu = list(vu.x)
|
239 |
+
a_vl[i + 1] = vut[i + 1]
|
240 |
+
a_vu[i + 1] = vut[i + 1]
|
241 |
+
a_vl = self.V[tuple(a_vl)]
|
242 |
+
|
243 |
+
# Connect vertices in N to corresponding vertices
|
244 |
+
# in aN:
|
245 |
+
vl.connect(a_vl)
|
246 |
+
|
247 |
+
yield a_vl.x
|
248 |
+
|
249 |
+
a_vu = self.V[tuple(a_vu)]
|
250 |
+
# Connect vertices in N to corresponding vertices
|
251 |
+
# in aN:
|
252 |
+
vu.connect(a_vu)
|
253 |
+
|
254 |
+
# Connect new vertex pair in aN:
|
255 |
+
a_vl.connect(a_vu)
|
256 |
+
|
257 |
+
# Connect lower pair to upper (triangulation
|
258 |
+
# operation of a + b (two arbitrary operations):
|
259 |
+
vl.connect(a_vu)
|
260 |
+
ab_C.append((vl, a_vu))
|
261 |
+
|
262 |
+
# Update the containers
|
263 |
+
C0x[i + 1].append(vl)
|
264 |
+
C0x[i + 1].append(vu)
|
265 |
+
C1x[i + 1].append(a_vl)
|
266 |
+
C1x[i + 1].append(a_vu)
|
267 |
+
|
268 |
+
# Update old containers
|
269 |
+
C0x[j].append(a_vl)
|
270 |
+
C1x[j].append(a_vu)
|
271 |
+
|
272 |
+
# Yield new points
|
273 |
+
yield a_vu.x
|
274 |
+
|
275 |
+
# Try to connect aN lower source of previous a + b
|
276 |
+
# operation with a aN vertex
|
277 |
+
ab_Cc = copy.copy(ab_C)
|
278 |
+
|
279 |
+
for vp in ab_Cc:
|
280 |
+
b_v = list(vp[0].x)
|
281 |
+
ab_v = list(vp[1].x)
|
282 |
+
b_v[i + 1] = vut[i + 1]
|
283 |
+
ab_v[i + 1] = vut[i + 1]
|
284 |
+
b_v = self.V[tuple(b_v)] # b + vl
|
285 |
+
ab_v = self.V[tuple(ab_v)] # b + a_vl
|
286 |
+
# Note o---o is already connected
|
287 |
+
vp[0].connect(ab_v) # o-s
|
288 |
+
b_v.connect(ab_v) # s-s
|
289 |
+
|
290 |
+
# Add new list of cross pairs
|
291 |
+
ab_C.append((vp[0], ab_v))
|
292 |
+
ab_C.append((b_v, ab_v))
|
293 |
+
|
294 |
+
except IndexError:
|
295 |
+
cC0x = C0x[i]
|
296 |
+
cC1x = C1x[i]
|
297 |
+
VL, VU = cC0x, cC1x
|
298 |
+
for k, (vl, vu) in enumerate(zip(VL, VU)):
|
299 |
+
# Build aN vertices for each lower-upper pair in N:
|
300 |
+
a_vu = list(vu.x)
|
301 |
+
a_vu[i + 1] = vut[i + 1]
|
302 |
+
# Connect vertices in N to corresponding vertices
|
303 |
+
# in aN:
|
304 |
+
a_vu = self.V[tuple(a_vu)]
|
305 |
+
# Connect vertices in N to corresponding vertices
|
306 |
+
# in aN:
|
307 |
+
vu.connect(a_vu)
|
308 |
+
# Connect new vertex pair in aN:
|
309 |
+
# a_vl.connect(a_vu)
|
310 |
+
# Connect lower pair to upper (triangulation
|
311 |
+
# operation of a + b (two arbitrary operations):
|
312 |
+
vl.connect(a_vu)
|
313 |
+
ab_C.append((vl, a_vu))
|
314 |
+
C0x[i + 1].append(vu)
|
315 |
+
C1x[i + 1].append(a_vu)
|
316 |
+
# Yield new points
|
317 |
+
a_vu.connect(self.V[vut])
|
318 |
+
yield a_vu.x
|
319 |
+
ab_Cc = copy.copy(ab_C)
|
320 |
+
for vp in ab_Cc:
|
321 |
+
if vp[1].x[i] == vut[i]:
|
322 |
+
ab_v = list(vp[1].x)
|
323 |
+
ab_v[i + 1] = vut[i + 1]
|
324 |
+
ab_v = self.V[tuple(ab_v)] # b + a_vl
|
325 |
+
# Note o---o is already connected
|
326 |
+
vp[0].connect(ab_v) # o-s
|
327 |
+
|
328 |
+
# Add new list of cross pairs
|
329 |
+
ab_C.append((vp[0], ab_v))
|
330 |
+
|
331 |
+
# Clean class trash
|
332 |
+
try:
|
333 |
+
del C0x
|
334 |
+
del cC0x
|
335 |
+
del C1x
|
336 |
+
del cC1x
|
337 |
+
del ab_C
|
338 |
+
del ab_Cc
|
339 |
+
except UnboundLocalError:
|
340 |
+
pass
|
341 |
+
|
342 |
+
# Extra yield to ensure that the triangulation is completed
|
343 |
+
if centroid:
|
344 |
+
vo = self.V[vot]
|
345 |
+
vs = self.V[vut]
|
346 |
+
# Disconnect the origin and supremum
|
347 |
+
vo.disconnect(vs)
|
348 |
+
# Build centroid
|
349 |
+
vc = self.split_edge(vot, vut)
|
350 |
+
for v in vo.nn:
|
351 |
+
v.connect(vc)
|
352 |
+
yield vc.x
|
353 |
+
return vc.x
|
354 |
+
else:
|
355 |
+
yield vut
|
356 |
+
return vut
|
357 |
+
|
358 |
+
def triangulate(self, n=None, symmetry=None, centroid=True,
|
359 |
+
printout=False):
|
360 |
+
"""
|
361 |
+
Triangulate the initial domain, if n is not None then a limited number
|
362 |
+
of points will be generated
|
363 |
+
|
364 |
+
Parameters
|
365 |
+
----------
|
366 |
+
n : int, Number of points to be sampled.
|
367 |
+
symmetry :
|
368 |
+
|
369 |
+
Ex. Dictionary/hashtable
|
370 |
+
f(x) = (x_1 + x_2 + x_3) + (x_4)**2 + (x_5)**2 + (x_6)**2
|
371 |
+
|
372 |
+
symmetry = symmetry[0]: 0, # Variable 1
|
373 |
+
symmetry[1]: 0, # symmetric to variable 1
|
374 |
+
symmetry[2]: 0, # symmetric to variable 1
|
375 |
+
symmetry[3]: 3, # Variable 4
|
376 |
+
symmetry[4]: 3, # symmetric to variable 4
|
377 |
+
symmetry[5]: 3, # symmetric to variable 4
|
378 |
+
}
|
379 |
+
centroid : bool, if True add a central point to the hypercube
|
380 |
+
printout : bool, if True print out results
|
381 |
+
|
382 |
+
NOTES:
|
383 |
+
------
|
384 |
+
Rather than using the combinatorial algorithm to connect vertices we
|
385 |
+
make the following observation:
|
386 |
+
|
387 |
+
The bound pairs are similar a C2 cyclic group and the structure is
|
388 |
+
formed using the cartesian product:
|
389 |
+
|
390 |
+
H = C2 x C2 x C2 ... x C2 (dim times)
|
391 |
+
|
392 |
+
So construct any normal subgroup N and consider H/N first, we connect
|
393 |
+
all vertices within N (ex. N is C2 (the first dimension), then we move
|
394 |
+
to a left coset aN (an operation moving around the defined H/N group by
|
395 |
+
for example moving from the lower bound in C2 (dimension 2) to the
|
396 |
+
higher bound in C2. During this operation connection all the vertices.
|
397 |
+
Now repeat the N connections. Note that these elements can be connected
|
398 |
+
in parallel.
|
399 |
+
"""
|
400 |
+
# Inherit class arguments
|
401 |
+
if symmetry is None:
|
402 |
+
symmetry = self.symmetry
|
403 |
+
# Build origin and supremum vectors
|
404 |
+
origin = [i[0] for i in self.bounds]
|
405 |
+
self.origin = origin
|
406 |
+
supremum = [i[1] for i in self.bounds]
|
407 |
+
|
408 |
+
self.supremum = supremum
|
409 |
+
|
410 |
+
if symmetry is None:
|
411 |
+
cbounds = self.bounds
|
412 |
+
else:
|
413 |
+
cbounds = copy.copy(self.bounds)
|
414 |
+
for i, j in enumerate(symmetry):
|
415 |
+
if i is not j:
|
416 |
+
# pop second entry on second symmetry vars
|
417 |
+
cbounds[i] = [self.bounds[symmetry[i]][0]]
|
418 |
+
# Sole (first) entry is the sup value and there is no
|
419 |
+
# origin:
|
420 |
+
cbounds[i] = [self.bounds[symmetry[i]][1]]
|
421 |
+
if (self.bounds[symmetry[i]] is not
|
422 |
+
self.bounds[symmetry[j]]):
|
423 |
+
logging.warning(f"Variable {i} was specified as "
|
424 |
+
f"symmetetric to variable {j}, however"
|
425 |
+
f", the bounds {i} ="
|
426 |
+
f" {self.bounds[symmetry[i]]} and {j}"
|
427 |
+
f" ="
|
428 |
+
f" {self.bounds[symmetry[j]]} do not "
|
429 |
+
f"match, the mismatch was ignored in "
|
430 |
+
f"the initial triangulation.")
|
431 |
+
cbounds[i] = self.bounds[symmetry[j]]
|
432 |
+
|
433 |
+
if n is None:
|
434 |
+
# Build generator
|
435 |
+
self.cp = self.cyclic_product(cbounds, origin, supremum, centroid)
|
436 |
+
for i in self.cp:
|
437 |
+
i
|
438 |
+
|
439 |
+
try:
|
440 |
+
self.triangulated_vectors.append((tuple(self.origin),
|
441 |
+
tuple(self.supremum)))
|
442 |
+
except (AttributeError, KeyError):
|
443 |
+
self.triangulated_vectors = [(tuple(self.origin),
|
444 |
+
tuple(self.supremum))]
|
445 |
+
|
446 |
+
else:
|
447 |
+
# Check if generator already exists
|
448 |
+
try:
|
449 |
+
self.cp
|
450 |
+
except (AttributeError, KeyError):
|
451 |
+
self.cp = self.cyclic_product(cbounds, origin, supremum,
|
452 |
+
centroid)
|
453 |
+
|
454 |
+
try:
|
455 |
+
while len(self.V.cache) < n:
|
456 |
+
next(self.cp)
|
457 |
+
except StopIteration:
|
458 |
+
try:
|
459 |
+
self.triangulated_vectors.append((tuple(self.origin),
|
460 |
+
tuple(self.supremum)))
|
461 |
+
except (AttributeError, KeyError):
|
462 |
+
self.triangulated_vectors = [(tuple(self.origin),
|
463 |
+
tuple(self.supremum))]
|
464 |
+
|
465 |
+
if printout:
|
466 |
+
# for v in self.C0():
|
467 |
+
# v.print_out()
|
468 |
+
for v in self.V.cache:
|
469 |
+
self.V[v].print_out()
|
470 |
+
|
471 |
+
return
|
472 |
+
|
473 |
+
def refine(self, n=1):
|
474 |
+
if n is None:
|
475 |
+
try:
|
476 |
+
self.triangulated_vectors
|
477 |
+
self.refine_all()
|
478 |
+
return
|
479 |
+
except AttributeError as ae:
|
480 |
+
if str(ae) == "'Complex' object has no attribute " \
|
481 |
+
"'triangulated_vectors'":
|
482 |
+
self.triangulate(symmetry=self.symmetry)
|
483 |
+
return
|
484 |
+
else:
|
485 |
+
raise
|
486 |
+
|
487 |
+
nt = len(self.V.cache) + n # Target number of total vertices
|
488 |
+
# In the outer while loop we iterate until we have added an extra `n`
|
489 |
+
# vertices to the complex:
|
490 |
+
while len(self.V.cache) < nt: # while loop 1
|
491 |
+
try: # try 1
|
492 |
+
# Try to access triangulated_vectors, this should only be
|
493 |
+
# defined if an initial triangulation has already been
|
494 |
+
# performed:
|
495 |
+
self.triangulated_vectors
|
496 |
+
# Try a usual iteration of the current generator, if it
|
497 |
+
# does not exist or is exhausted then produce a new generator
|
498 |
+
try: # try 2
|
499 |
+
next(self.rls)
|
500 |
+
except (AttributeError, StopIteration, KeyError):
|
501 |
+
vp = self.triangulated_vectors[0]
|
502 |
+
self.rls = self.refine_local_space(*vp, bounds=self.bounds)
|
503 |
+
next(self.rls)
|
504 |
+
|
505 |
+
except (AttributeError, KeyError):
|
506 |
+
# If an initial triangulation has not been completed, then
|
507 |
+
# we start/continue the initial triangulation targeting `nt`
|
508 |
+
# vertices, if nt is greater than the initial number of
|
509 |
+
# vertices then the `refine` routine will move back to try 1.
|
510 |
+
self.triangulate(nt, self.symmetry)
|
511 |
+
return
|
512 |
+
|
513 |
+
def refine_all(self, centroids=True):
|
514 |
+
"""Refine the entire domain of the current complex."""
|
515 |
+
try:
|
516 |
+
self.triangulated_vectors
|
517 |
+
tvs = copy.copy(self.triangulated_vectors)
|
518 |
+
for i, vp in enumerate(tvs):
|
519 |
+
self.rls = self.refine_local_space(*vp, bounds=self.bounds)
|
520 |
+
for i in self.rls:
|
521 |
+
i
|
522 |
+
except AttributeError as ae:
|
523 |
+
if str(ae) == "'Complex' object has no attribute " \
|
524 |
+
"'triangulated_vectors'":
|
525 |
+
self.triangulate(symmetry=self.symmetry, centroid=centroids)
|
526 |
+
else:
|
527 |
+
raise
|
528 |
+
|
529 |
+
# This adds a centroid to every new sub-domain generated and defined
|
530 |
+
# by self.triangulated_vectors, in addition the vertices ! to complete
|
531 |
+
# the triangulation
|
532 |
+
return
|
533 |
+
|
534 |
+
def refine_local_space(self, origin, supremum, bounds, centroid=1):
|
535 |
+
# Copy for later removal
|
536 |
+
origin_c = copy.copy(origin)
|
537 |
+
supremum_c = copy.copy(supremum)
|
538 |
+
|
539 |
+
# Initiate local variables redefined in later inner `for` loop:
|
540 |
+
vl, vu, a_vu = None, None, None
|
541 |
+
|
542 |
+
# Change the vector orientation so that it is only increasing
|
543 |
+
s_ov = list(origin)
|
544 |
+
s_origin = list(origin)
|
545 |
+
s_sv = list(supremum)
|
546 |
+
s_supremum = list(supremum)
|
547 |
+
for i, vi in enumerate(s_origin):
|
548 |
+
if s_ov[i] > s_sv[i]:
|
549 |
+
s_origin[i] = s_sv[i]
|
550 |
+
s_supremum[i] = s_ov[i]
|
551 |
+
|
552 |
+
vot = tuple(s_origin)
|
553 |
+
vut = tuple(s_supremum) # Hyperrectangle supremum
|
554 |
+
|
555 |
+
vo = self.V[vot] # initiate if doesn't exist yet
|
556 |
+
vs = self.V[vut]
|
557 |
+
# Start by finding the old centroid of the new space:
|
558 |
+
vco = self.split_edge(vo.x, vs.x) # Split in case not centroid arg
|
559 |
+
|
560 |
+
# Find set of extreme vertices in current local space
|
561 |
+
sup_set = copy.copy(vco.nn)
|
562 |
+
# Cyclic group approach with second x_l --- x_u operation.
|
563 |
+
|
564 |
+
# These containers store the "lower" and "upper" vertices
|
565 |
+
# corresponding to the origin or supremum of every C2 group.
|
566 |
+
# It has the structure of `dim` times embedded lists each containing
|
567 |
+
# these vertices as the entire complex grows. Bounds[0] has to be done
|
568 |
+
# outside the loops before we have symmetric containers.
|
569 |
+
# NOTE: This means that bounds[0][1] must always exist
|
570 |
+
|
571 |
+
a_vl = copy.copy(list(vot))
|
572 |
+
a_vl[0] = vut[0] # Update aN Origin
|
573 |
+
if tuple(a_vl) not in self.V.cache:
|
574 |
+
vo = self.V[vot] # initiate if doesn't exist yet
|
575 |
+
vs = self.V[vut]
|
576 |
+
# Start by finding the old centroid of the new space:
|
577 |
+
vco = self.split_edge(vo.x, vs.x) # Split in case not centroid arg
|
578 |
+
|
579 |
+
# Find set of extreme vertices in current local space
|
580 |
+
sup_set = copy.copy(vco.nn)
|
581 |
+
a_vl = copy.copy(list(vot))
|
582 |
+
a_vl[0] = vut[0] # Update aN Origin
|
583 |
+
a_vl = self.V[tuple(a_vl)]
|
584 |
+
else:
|
585 |
+
a_vl = self.V[tuple(a_vl)]
|
586 |
+
|
587 |
+
c_v = self.split_edge(vo.x, a_vl.x)
|
588 |
+
c_v.connect(vco)
|
589 |
+
yield c_v.x
|
590 |
+
Cox = [[vo]]
|
591 |
+
Ccx = [[c_v]]
|
592 |
+
Cux = [[a_vl]]
|
593 |
+
ab_C = [] # Container for a + b operations
|
594 |
+
s_ab_C = [] # Container for symmetric a + b operations
|
595 |
+
|
596 |
+
# Loop over remaining bounds
|
597 |
+
for i, x in enumerate(bounds[1:]):
|
598 |
+
# Update lower and upper containers
|
599 |
+
Cox.append([])
|
600 |
+
Ccx.append([])
|
601 |
+
Cux.append([])
|
602 |
+
# try to access a second bound (if not, C1 is symmetric)
|
603 |
+
try:
|
604 |
+
t_a_vl = list(vot)
|
605 |
+
t_a_vl[i + 1] = vut[i + 1]
|
606 |
+
|
607 |
+
# New: lists are used anyway, so copy all
|
608 |
+
# %%
|
609 |
+
# Copy lists for iteration
|
610 |
+
cCox = [x[:] for x in Cox[:i + 1]]
|
611 |
+
cCcx = [x[:] for x in Ccx[:i + 1]]
|
612 |
+
cCux = [x[:] for x in Cux[:i + 1]]
|
613 |
+
# Try to connect aN lower source of previous a + b
|
614 |
+
# operation with a aN vertex
|
615 |
+
ab_Cc = copy.copy(ab_C) # NOTE: We append ab_C in the
|
616 |
+
# (VL, VC, VU) for-loop, but we use the copy of the list in the
|
617 |
+
# ab_Cc for-loop.
|
618 |
+
s_ab_Cc = copy.copy(s_ab_C)
|
619 |
+
|
620 |
+
# Early try so that we don't have to copy the cache before
|
621 |
+
# moving on to next C1/C2: Try to add the operation of a new
|
622 |
+
# C2 product by accessing the upper bound
|
623 |
+
if tuple(t_a_vl) not in self.V.cache:
|
624 |
+
# Raise error to continue symmetric refine
|
625 |
+
raise IndexError
|
626 |
+
t_a_vu = list(vut)
|
627 |
+
t_a_vu[i + 1] = vut[i + 1]
|
628 |
+
if tuple(t_a_vu) not in self.V.cache:
|
629 |
+
# Raise error to continue symmetric refine:
|
630 |
+
raise IndexError
|
631 |
+
|
632 |
+
for vectors in s_ab_Cc:
|
633 |
+
# s_ab_C.append([c_vc, vl, vu, a_vu])
|
634 |
+
bc_vc = list(vectors[0].x)
|
635 |
+
b_vl = list(vectors[1].x)
|
636 |
+
b_vu = list(vectors[2].x)
|
637 |
+
ba_vu = list(vectors[3].x)
|
638 |
+
|
639 |
+
bc_vc[i + 1] = vut[i + 1]
|
640 |
+
b_vl[i + 1] = vut[i + 1]
|
641 |
+
b_vu[i + 1] = vut[i + 1]
|
642 |
+
ba_vu[i + 1] = vut[i + 1]
|
643 |
+
|
644 |
+
bc_vc = self.V[tuple(bc_vc)]
|
645 |
+
bc_vc.connect(vco) # NOTE: Unneeded?
|
646 |
+
yield bc_vc
|
647 |
+
|
648 |
+
# Split to centre, call this centre group "d = 0.5*a"
|
649 |
+
d_bc_vc = self.split_edge(vectors[0].x, bc_vc.x)
|
650 |
+
d_bc_vc.connect(bc_vc)
|
651 |
+
d_bc_vc.connect(vectors[1]) # Connect all to centroid
|
652 |
+
d_bc_vc.connect(vectors[2]) # Connect all to centroid
|
653 |
+
d_bc_vc.connect(vectors[3]) # Connect all to centroid
|
654 |
+
yield d_bc_vc.x
|
655 |
+
b_vl = self.V[tuple(b_vl)]
|
656 |
+
bc_vc.connect(b_vl) # Connect aN cross pairs
|
657 |
+
d_bc_vc.connect(b_vl) # Connect all to centroid
|
658 |
+
|
659 |
+
yield b_vl
|
660 |
+
b_vu = self.V[tuple(b_vu)]
|
661 |
+
bc_vc.connect(b_vu) # Connect aN cross pairs
|
662 |
+
d_bc_vc.connect(b_vu) # Connect all to centroid
|
663 |
+
|
664 |
+
b_vl_c = self.split_edge(b_vu.x, b_vl.x)
|
665 |
+
bc_vc.connect(b_vl_c)
|
666 |
+
|
667 |
+
yield b_vu
|
668 |
+
ba_vu = self.V[tuple(ba_vu)]
|
669 |
+
bc_vc.connect(ba_vu) # Connect aN cross pairs
|
670 |
+
d_bc_vc.connect(ba_vu) # Connect all to centroid
|
671 |
+
|
672 |
+
# Split the a + b edge of the initial triangulation:
|
673 |
+
os_v = self.split_edge(vectors[1].x, ba_vu.x) # o-s
|
674 |
+
ss_v = self.split_edge(b_vl.x, ba_vu.x) # s-s
|
675 |
+
b_vu_c = self.split_edge(b_vu.x, ba_vu.x)
|
676 |
+
bc_vc.connect(b_vu_c)
|
677 |
+
yield os_v.x # often equal to vco, but not always
|
678 |
+
yield ss_v.x # often equal to bc_vu, but not always
|
679 |
+
yield ba_vu
|
680 |
+
# Split remaining to centre, call this centre group
|
681 |
+
# "d = 0.5*a"
|
682 |
+
d_bc_vc = self.split_edge(vectors[0].x, bc_vc.x)
|
683 |
+
d_bc_vc.connect(vco) # NOTE: Unneeded?
|
684 |
+
yield d_bc_vc.x
|
685 |
+
d_b_vl = self.split_edge(vectors[1].x, b_vl.x)
|
686 |
+
d_bc_vc.connect(vco) # NOTE: Unneeded?
|
687 |
+
d_bc_vc.connect(d_b_vl) # Connect dN cross pairs
|
688 |
+
yield d_b_vl.x
|
689 |
+
d_b_vu = self.split_edge(vectors[2].x, b_vu.x)
|
690 |
+
d_bc_vc.connect(vco) # NOTE: Unneeded?
|
691 |
+
d_bc_vc.connect(d_b_vu) # Connect dN cross pairs
|
692 |
+
yield d_b_vu.x
|
693 |
+
d_ba_vu = self.split_edge(vectors[3].x, ba_vu.x)
|
694 |
+
d_bc_vc.connect(vco) # NOTE: Unneeded?
|
695 |
+
d_bc_vc.connect(d_ba_vu) # Connect dN cross pairs
|
696 |
+
yield d_ba_vu
|
697 |
+
|
698 |
+
# comb = [c_vc, vl, vu, a_vl, a_vu,
|
699 |
+
# bc_vc, b_vl, b_vu, ba_vl, ba_vu]
|
700 |
+
comb = [vl, vu, a_vu,
|
701 |
+
b_vl, b_vu, ba_vu]
|
702 |
+
comb_iter = itertools.combinations(comb, 2)
|
703 |
+
for vecs in comb_iter:
|
704 |
+
self.split_edge(vecs[0].x, vecs[1].x)
|
705 |
+
# Add new list of cross pairs
|
706 |
+
ab_C.append((d_bc_vc, vectors[1], b_vl, a_vu, ba_vu))
|
707 |
+
ab_C.append((d_bc_vc, vl, b_vl, a_vu, ba_vu)) # = prev
|
708 |
+
|
709 |
+
for vectors in ab_Cc:
|
710 |
+
bc_vc = list(vectors[0].x)
|
711 |
+
b_vl = list(vectors[1].x)
|
712 |
+
b_vu = list(vectors[2].x)
|
713 |
+
ba_vl = list(vectors[3].x)
|
714 |
+
ba_vu = list(vectors[4].x)
|
715 |
+
bc_vc[i + 1] = vut[i + 1]
|
716 |
+
b_vl[i + 1] = vut[i + 1]
|
717 |
+
b_vu[i + 1] = vut[i + 1]
|
718 |
+
ba_vl[i + 1] = vut[i + 1]
|
719 |
+
ba_vu[i + 1] = vut[i + 1]
|
720 |
+
bc_vc = self.V[tuple(bc_vc)]
|
721 |
+
bc_vc.connect(vco) # NOTE: Unneeded?
|
722 |
+
yield bc_vc
|
723 |
+
|
724 |
+
# Split to centre, call this centre group "d = 0.5*a"
|
725 |
+
d_bc_vc = self.split_edge(vectors[0].x, bc_vc.x)
|
726 |
+
d_bc_vc.connect(bc_vc)
|
727 |
+
d_bc_vc.connect(vectors[1]) # Connect all to centroid
|
728 |
+
d_bc_vc.connect(vectors[2]) # Connect all to centroid
|
729 |
+
d_bc_vc.connect(vectors[3]) # Connect all to centroid
|
730 |
+
d_bc_vc.connect(vectors[4]) # Connect all to centroid
|
731 |
+
yield d_bc_vc.x
|
732 |
+
b_vl = self.V[tuple(b_vl)]
|
733 |
+
bc_vc.connect(b_vl) # Connect aN cross pairs
|
734 |
+
d_bc_vc.connect(b_vl) # Connect all to centroid
|
735 |
+
yield b_vl
|
736 |
+
b_vu = self.V[tuple(b_vu)]
|
737 |
+
bc_vc.connect(b_vu) # Connect aN cross pairs
|
738 |
+
d_bc_vc.connect(b_vu) # Connect all to centroid
|
739 |
+
yield b_vu
|
740 |
+
ba_vl = self.V[tuple(ba_vl)]
|
741 |
+
bc_vc.connect(ba_vl) # Connect aN cross pairs
|
742 |
+
d_bc_vc.connect(ba_vl) # Connect all to centroid
|
743 |
+
self.split_edge(b_vu.x, ba_vl.x)
|
744 |
+
yield ba_vl
|
745 |
+
ba_vu = self.V[tuple(ba_vu)]
|
746 |
+
bc_vc.connect(ba_vu) # Connect aN cross pairs
|
747 |
+
d_bc_vc.connect(ba_vu) # Connect all to centroid
|
748 |
+
# Split the a + b edge of the initial triangulation:
|
749 |
+
os_v = self.split_edge(vectors[1].x, ba_vu.x) # o-s
|
750 |
+
ss_v = self.split_edge(b_vl.x, ba_vu.x) # s-s
|
751 |
+
yield os_v.x # often equal to vco, but not always
|
752 |
+
yield ss_v.x # often equal to bc_vu, but not always
|
753 |
+
yield ba_vu
|
754 |
+
# Split remaining to centre, call this centre group
|
755 |
+
# "d = 0.5*a"
|
756 |
+
d_bc_vc = self.split_edge(vectors[0].x, bc_vc.x)
|
757 |
+
d_bc_vc.connect(vco) # NOTE: Unneeded?
|
758 |
+
yield d_bc_vc.x
|
759 |
+
d_b_vl = self.split_edge(vectors[1].x, b_vl.x)
|
760 |
+
d_bc_vc.connect(vco) # NOTE: Unneeded?
|
761 |
+
d_bc_vc.connect(d_b_vl) # Connect dN cross pairs
|
762 |
+
yield d_b_vl.x
|
763 |
+
d_b_vu = self.split_edge(vectors[2].x, b_vu.x)
|
764 |
+
d_bc_vc.connect(vco) # NOTE: Unneeded?
|
765 |
+
d_bc_vc.connect(d_b_vu) # Connect dN cross pairs
|
766 |
+
yield d_b_vu.x
|
767 |
+
d_ba_vl = self.split_edge(vectors[3].x, ba_vl.x)
|
768 |
+
d_bc_vc.connect(vco) # NOTE: Unneeded?
|
769 |
+
d_bc_vc.connect(d_ba_vl) # Connect dN cross pairs
|
770 |
+
yield d_ba_vl
|
771 |
+
d_ba_vu = self.split_edge(vectors[4].x, ba_vu.x)
|
772 |
+
d_bc_vc.connect(vco) # NOTE: Unneeded?
|
773 |
+
d_bc_vc.connect(d_ba_vu) # Connect dN cross pairs
|
774 |
+
yield d_ba_vu
|
775 |
+
c_vc, vl, vu, a_vl, a_vu = vectors
|
776 |
+
|
777 |
+
comb = [vl, vu, a_vl, a_vu,
|
778 |
+
b_vl, b_vu, ba_vl, ba_vu]
|
779 |
+
comb_iter = itertools.combinations(comb, 2)
|
780 |
+
for vecs in comb_iter:
|
781 |
+
self.split_edge(vecs[0].x, vecs[1].x)
|
782 |
+
|
783 |
+
# Add new list of cross pairs
|
784 |
+
ab_C.append((bc_vc, b_vl, b_vu, ba_vl, ba_vu))
|
785 |
+
ab_C.append((d_bc_vc, d_b_vl, d_b_vu, d_ba_vl, d_ba_vu))
|
786 |
+
ab_C.append((d_bc_vc, vectors[1], b_vl, a_vu, ba_vu))
|
787 |
+
ab_C.append((d_bc_vc, vu, b_vu, a_vl, ba_vl))
|
788 |
+
|
789 |
+
for j, (VL, VC, VU) in enumerate(zip(cCox, cCcx, cCux)):
|
790 |
+
for k, (vl, vc, vu) in enumerate(zip(VL, VC, VU)):
|
791 |
+
# Build aN vertices for each lower-upper C3 group in N:
|
792 |
+
a_vl = list(vl.x)
|
793 |
+
a_vu = list(vu.x)
|
794 |
+
a_vl[i + 1] = vut[i + 1]
|
795 |
+
a_vu[i + 1] = vut[i + 1]
|
796 |
+
a_vl = self.V[tuple(a_vl)]
|
797 |
+
a_vu = self.V[tuple(a_vu)]
|
798 |
+
# Note, build (a + vc) later for consistent yields
|
799 |
+
# Split the a + b edge of the initial triangulation:
|
800 |
+
c_vc = self.split_edge(vl.x, a_vu.x)
|
801 |
+
self.split_edge(vl.x, vu.x) # Equal to vc
|
802 |
+
# Build cN vertices for each lower-upper C3 group in N:
|
803 |
+
c_vc.connect(vco)
|
804 |
+
c_vc.connect(vc)
|
805 |
+
c_vc.connect(vl) # Connect c + ac operations
|
806 |
+
c_vc.connect(vu) # Connect c + ac operations
|
807 |
+
c_vc.connect(a_vl) # Connect c + ac operations
|
808 |
+
c_vc.connect(a_vu) # Connect c + ac operations
|
809 |
+
yield c_vc.x
|
810 |
+
c_vl = self.split_edge(vl.x, a_vl.x)
|
811 |
+
c_vl.connect(vco)
|
812 |
+
c_vc.connect(c_vl) # Connect cN group vertices
|
813 |
+
yield c_vl.x
|
814 |
+
# yield at end of loop:
|
815 |
+
c_vu = self.split_edge(vu.x, a_vu.x)
|
816 |
+
c_vu.connect(vco)
|
817 |
+
# Connect remaining cN group vertices
|
818 |
+
c_vc.connect(c_vu) # Connect cN group vertices
|
819 |
+
yield c_vu.x
|
820 |
+
|
821 |
+
a_vc = self.split_edge(a_vl.x, a_vu.x) # is (a + vc) ?
|
822 |
+
a_vc.connect(vco)
|
823 |
+
a_vc.connect(c_vc)
|
824 |
+
|
825 |
+
# Storage for connecting c + ac operations:
|
826 |
+
ab_C.append((c_vc, vl, vu, a_vl, a_vu))
|
827 |
+
|
828 |
+
# Update the containers
|
829 |
+
Cox[i + 1].append(vl)
|
830 |
+
Cox[i + 1].append(vc)
|
831 |
+
Cox[i + 1].append(vu)
|
832 |
+
Ccx[i + 1].append(c_vl)
|
833 |
+
Ccx[i + 1].append(c_vc)
|
834 |
+
Ccx[i + 1].append(c_vu)
|
835 |
+
Cux[i + 1].append(a_vl)
|
836 |
+
Cux[i + 1].append(a_vc)
|
837 |
+
Cux[i + 1].append(a_vu)
|
838 |
+
|
839 |
+
# Update old containers
|
840 |
+
Cox[j].append(c_vl) # !
|
841 |
+
Cox[j].append(a_vl)
|
842 |
+
Ccx[j].append(c_vc) # !
|
843 |
+
Ccx[j].append(a_vc) # !
|
844 |
+
Cux[j].append(c_vu) # !
|
845 |
+
Cux[j].append(a_vu)
|
846 |
+
|
847 |
+
# Yield new points
|
848 |
+
yield a_vc.x
|
849 |
+
|
850 |
+
except IndexError:
|
851 |
+
for vectors in ab_Cc:
|
852 |
+
ba_vl = list(vectors[3].x)
|
853 |
+
ba_vu = list(vectors[4].x)
|
854 |
+
ba_vl[i + 1] = vut[i + 1]
|
855 |
+
ba_vu[i + 1] = vut[i + 1]
|
856 |
+
ba_vu = self.V[tuple(ba_vu)]
|
857 |
+
yield ba_vu
|
858 |
+
d_bc_vc = self.split_edge(vectors[1].x, ba_vu.x) # o-s
|
859 |
+
yield ba_vu
|
860 |
+
d_bc_vc.connect(vectors[1]) # Connect all to centroid
|
861 |
+
d_bc_vc.connect(vectors[2]) # Connect all to centroid
|
862 |
+
d_bc_vc.connect(vectors[3]) # Connect all to centroid
|
863 |
+
d_bc_vc.connect(vectors[4]) # Connect all to centroid
|
864 |
+
yield d_bc_vc.x
|
865 |
+
ba_vl = self.V[tuple(ba_vl)]
|
866 |
+
yield ba_vl
|
867 |
+
d_ba_vl = self.split_edge(vectors[3].x, ba_vl.x)
|
868 |
+
d_ba_vu = self.split_edge(vectors[4].x, ba_vu.x)
|
869 |
+
d_ba_vc = self.split_edge(d_ba_vl.x, d_ba_vu.x)
|
870 |
+
yield d_ba_vl
|
871 |
+
yield d_ba_vu
|
872 |
+
yield d_ba_vc
|
873 |
+
c_vc, vl, vu, a_vl, a_vu = vectors
|
874 |
+
comb = [vl, vu, a_vl, a_vu,
|
875 |
+
ba_vl,
|
876 |
+
ba_vu]
|
877 |
+
comb_iter = itertools.combinations(comb, 2)
|
878 |
+
for vecs in comb_iter:
|
879 |
+
self.split_edge(vecs[0].x, vecs[1].x)
|
880 |
+
|
881 |
+
# Copy lists for iteration
|
882 |
+
cCox = Cox[i]
|
883 |
+
cCcx = Ccx[i]
|
884 |
+
cCux = Cux[i]
|
885 |
+
VL, VC, VU = cCox, cCcx, cCux
|
886 |
+
for k, (vl, vc, vu) in enumerate(zip(VL, VC, VU)):
|
887 |
+
# Build aN vertices for each lower-upper pair in N:
|
888 |
+
a_vu = list(vu.x)
|
889 |
+
a_vu[i + 1] = vut[i + 1]
|
890 |
+
|
891 |
+
# Connect vertices in N to corresponding vertices
|
892 |
+
# in aN:
|
893 |
+
a_vu = self.V[tuple(a_vu)]
|
894 |
+
yield a_vl.x
|
895 |
+
# Split the a + b edge of the initial triangulation:
|
896 |
+
c_vc = self.split_edge(vl.x, a_vu.x)
|
897 |
+
self.split_edge(vl.x, vu.x) # Equal to vc
|
898 |
+
c_vc.connect(vco)
|
899 |
+
c_vc.connect(vc)
|
900 |
+
c_vc.connect(vl) # Connect c + ac operations
|
901 |
+
c_vc.connect(vu) # Connect c + ac operations
|
902 |
+
c_vc.connect(a_vu) # Connect c + ac operations
|
903 |
+
yield (c_vc.x)
|
904 |
+
c_vu = self.split_edge(vu.x,
|
905 |
+
a_vu.x) # yield at end of loop
|
906 |
+
c_vu.connect(vco)
|
907 |
+
# Connect remaining cN group vertices
|
908 |
+
c_vc.connect(c_vu) # Connect cN group vertices
|
909 |
+
yield (c_vu.x)
|
910 |
+
|
911 |
+
# Update the containers
|
912 |
+
Cox[i + 1].append(vu)
|
913 |
+
Ccx[i + 1].append(c_vu)
|
914 |
+
Cux[i + 1].append(a_vu)
|
915 |
+
|
916 |
+
# Update old containers
|
917 |
+
s_ab_C.append([c_vc, vl, vu, a_vu])
|
918 |
+
|
919 |
+
yield a_vu.x
|
920 |
+
|
921 |
+
# Clean class trash
|
922 |
+
try:
|
923 |
+
del Cox
|
924 |
+
del Ccx
|
925 |
+
del Cux
|
926 |
+
del ab_C
|
927 |
+
del ab_Cc
|
928 |
+
except UnboundLocalError:
|
929 |
+
pass
|
930 |
+
|
931 |
+
try:
|
932 |
+
self.triangulated_vectors.remove((tuple(origin_c),
|
933 |
+
tuple(supremum_c)))
|
934 |
+
except ValueError:
|
935 |
+
# Turn this into a logging warning?
|
936 |
+
pass
|
937 |
+
# Add newly triangulated vectors:
|
938 |
+
for vs in sup_set:
|
939 |
+
self.triangulated_vectors.append((tuple(vco.x), tuple(vs.x)))
|
940 |
+
|
941 |
+
# Extra yield to ensure that the triangulation is completed
|
942 |
+
if centroid:
|
943 |
+
vcn_set = set()
|
944 |
+
c_nn_lists = []
|
945 |
+
for vs in sup_set:
|
946 |
+
# Build centroid
|
947 |
+
c_nn = self.vpool(vco.x, vs.x)
|
948 |
+
try:
|
949 |
+
c_nn.remove(vcn_set)
|
950 |
+
except KeyError:
|
951 |
+
pass
|
952 |
+
c_nn_lists.append(c_nn)
|
953 |
+
|
954 |
+
for c_nn in c_nn_lists:
|
955 |
+
try:
|
956 |
+
c_nn.remove(vcn_set)
|
957 |
+
except KeyError:
|
958 |
+
pass
|
959 |
+
|
960 |
+
for vs, c_nn in zip(sup_set, c_nn_lists):
|
961 |
+
# Build centroid
|
962 |
+
vcn = self.split_edge(vco.x, vs.x)
|
963 |
+
vcn_set.add(vcn)
|
964 |
+
try: # Shouldn't be needed?
|
965 |
+
c_nn.remove(vcn_set)
|
966 |
+
except KeyError:
|
967 |
+
pass
|
968 |
+
for vnn in c_nn:
|
969 |
+
vcn.connect(vnn)
|
970 |
+
yield vcn.x
|
971 |
+
else:
|
972 |
+
pass
|
973 |
+
|
974 |
+
yield vut
|
975 |
+
return
|
976 |
+
|
977 |
+
def refine_star(self, v):
|
978 |
+
"""Refine the star domain of a vertex `v`."""
|
979 |
+
# Copy lists before iteration
|
980 |
+
vnn = copy.copy(v.nn)
|
981 |
+
v1nn = []
|
982 |
+
d_v0v1_set = set()
|
983 |
+
for v1 in vnn:
|
984 |
+
v1nn.append(copy.copy(v1.nn))
|
985 |
+
|
986 |
+
for v1, v1nn in zip(vnn, v1nn):
|
987 |
+
vnnu = v1nn.intersection(vnn)
|
988 |
+
|
989 |
+
d_v0v1 = self.split_edge(v.x, v1.x)
|
990 |
+
for o_d_v0v1 in d_v0v1_set:
|
991 |
+
d_v0v1.connect(o_d_v0v1)
|
992 |
+
d_v0v1_set.add(d_v0v1)
|
993 |
+
for v2 in vnnu:
|
994 |
+
d_v1v2 = self.split_edge(v1.x, v2.x)
|
995 |
+
d_v0v1.connect(d_v1v2)
|
996 |
+
return
|
997 |
+
|
998 |
+
@cache
|
999 |
+
def split_edge(self, v1, v2):
|
1000 |
+
v1 = self.V[v1]
|
1001 |
+
v2 = self.V[v2]
|
1002 |
+
# Destroy original edge, if it exists:
|
1003 |
+
v1.disconnect(v2)
|
1004 |
+
# Compute vertex on centre of edge:
|
1005 |
+
try:
|
1006 |
+
vct = (v2.x_a - v1.x_a) / 2.0 + v1.x_a
|
1007 |
+
except TypeError: # Allow for decimal operations
|
1008 |
+
vct = (v2.x_a - v1.x_a) / decimal.Decimal(2.0) + v1.x_a
|
1009 |
+
|
1010 |
+
vc = self.V[tuple(vct)]
|
1011 |
+
# Connect to original 2 vertices to the new centre vertex
|
1012 |
+
vc.connect(v1)
|
1013 |
+
vc.connect(v2)
|
1014 |
+
return vc
|
1015 |
+
|
1016 |
+
def vpool(self, origin, supremum):
|
1017 |
+
vot = tuple(origin)
|
1018 |
+
vst = tuple(supremum)
|
1019 |
+
# Initiate vertices in case they don't exist
|
1020 |
+
vo = self.V[vot]
|
1021 |
+
vs = self.V[vst]
|
1022 |
+
|
1023 |
+
# Remove origin - supremum disconnect
|
1024 |
+
|
1025 |
+
# Find the lower/upper bounds of the refinement hyperrectangle
|
1026 |
+
bl = list(vot)
|
1027 |
+
bu = list(vst)
|
1028 |
+
for i, (voi, vsi) in enumerate(zip(vot, vst)):
|
1029 |
+
if bl[i] > vsi:
|
1030 |
+
bl[i] = vsi
|
1031 |
+
if bu[i] < voi:
|
1032 |
+
bu[i] = voi
|
1033 |
+
|
1034 |
+
# NOTE: This is mostly done with sets/lists because we aren't sure
|
1035 |
+
# how well the numpy arrays will scale to thousands of
|
1036 |
+
# dimensions.
|
1037 |
+
vn_pool = set()
|
1038 |
+
vn_pool.update(vo.nn)
|
1039 |
+
vn_pool.update(vs.nn)
|
1040 |
+
cvn_pool = copy.copy(vn_pool)
|
1041 |
+
for vn in cvn_pool:
|
1042 |
+
for i, xi in enumerate(vn.x):
|
1043 |
+
if bl[i] <= xi <= bu[i]:
|
1044 |
+
pass
|
1045 |
+
else:
|
1046 |
+
try:
|
1047 |
+
vn_pool.remove(vn)
|
1048 |
+
except KeyError:
|
1049 |
+
pass # NOTE: Not all neigbouds are in initial pool
|
1050 |
+
return vn_pool
|
1051 |
+
|
1052 |
+
def vf_to_vv(self, vertices, simplices):
|
1053 |
+
"""
|
1054 |
+
Convert a vertex-face mesh to a vertex-vertex mesh used by this class
|
1055 |
+
|
1056 |
+
Parameters
|
1057 |
+
----------
|
1058 |
+
vertices : list
|
1059 |
+
Vertices
|
1060 |
+
simplices : list
|
1061 |
+
Simplices
|
1062 |
+
"""
|
1063 |
+
if self.dim > 1:
|
1064 |
+
for s in simplices:
|
1065 |
+
edges = itertools.combinations(s, self.dim)
|
1066 |
+
for e in edges:
|
1067 |
+
self.V[tuple(vertices[e[0]])].connect(
|
1068 |
+
self.V[tuple(vertices[e[1]])])
|
1069 |
+
else:
|
1070 |
+
for e in simplices:
|
1071 |
+
self.V[tuple(vertices[e[0]])].connect(
|
1072 |
+
self.V[tuple(vertices[e[1]])])
|
1073 |
+
return
|
1074 |
+
|
1075 |
+
def connect_vertex_non_symm(self, v_x, near=None):
|
1076 |
+
"""
|
1077 |
+
Adds a vertex at coords v_x to the complex that is not symmetric to the
|
1078 |
+
initial triangulation and sub-triangulation.
|
1079 |
+
|
1080 |
+
If near is specified (for example; a star domain or collections of
|
1081 |
+
cells known to contain v) then only those simplices containd in near
|
1082 |
+
will be searched, this greatly speeds up the process.
|
1083 |
+
|
1084 |
+
If near is not specified this method will search the entire simplicial
|
1085 |
+
complex structure.
|
1086 |
+
|
1087 |
+
Parameters
|
1088 |
+
----------
|
1089 |
+
v_x : tuple
|
1090 |
+
Coordinates of non-symmetric vertex
|
1091 |
+
near : set or list
|
1092 |
+
List of vertices, these are points near v to check for
|
1093 |
+
"""
|
1094 |
+
if near is None:
|
1095 |
+
star = self.V
|
1096 |
+
else:
|
1097 |
+
star = near
|
1098 |
+
# Create the vertex origin
|
1099 |
+
if tuple(v_x) in self.V.cache:
|
1100 |
+
if self.V[v_x] in self.V_non_symm:
|
1101 |
+
pass
|
1102 |
+
else:
|
1103 |
+
return
|
1104 |
+
|
1105 |
+
self.V[v_x]
|
1106 |
+
found_nn = False
|
1107 |
+
S_rows = []
|
1108 |
+
for v in star:
|
1109 |
+
S_rows.append(v.x)
|
1110 |
+
|
1111 |
+
S_rows = numpy.array(S_rows)
|
1112 |
+
A = numpy.array(S_rows) - numpy.array(v_x)
|
1113 |
+
# Iterate through all the possible simplices of S_rows
|
1114 |
+
for s_i in itertools.combinations(range(S_rows.shape[0]),
|
1115 |
+
r=self.dim + 1):
|
1116 |
+
# Check if connected, else s_i is not a simplex
|
1117 |
+
valid_simplex = True
|
1118 |
+
for i in itertools.combinations(s_i, r=2):
|
1119 |
+
# Every combination of vertices must be connected, we check of
|
1120 |
+
# the current iteration of all combinations of s_i are
|
1121 |
+
# connected we break the loop if it is not.
|
1122 |
+
if ((self.V[tuple(S_rows[i[1]])] not in
|
1123 |
+
self.V[tuple(S_rows[i[0]])].nn)
|
1124 |
+
and (self.V[tuple(S_rows[i[0]])] not in
|
1125 |
+
self.V[tuple(S_rows[i[1]])].nn)):
|
1126 |
+
valid_simplex = False
|
1127 |
+
break
|
1128 |
+
|
1129 |
+
S = S_rows[tuple([s_i])]
|
1130 |
+
if valid_simplex:
|
1131 |
+
if self.deg_simplex(S, proj=None):
|
1132 |
+
valid_simplex = False
|
1133 |
+
|
1134 |
+
# If s_i is a valid simplex we can test if v_x is inside si
|
1135 |
+
if valid_simplex:
|
1136 |
+
# Find the A_j0 value from the precalculated values
|
1137 |
+
A_j0 = A[tuple([s_i])]
|
1138 |
+
if self.in_simplex(S, v_x, A_j0):
|
1139 |
+
found_nn = True
|
1140 |
+
# breaks the main for loop, s_i is the target simplex:
|
1141 |
+
break
|
1142 |
+
|
1143 |
+
# Connect the simplex to point
|
1144 |
+
if found_nn:
|
1145 |
+
for i in s_i:
|
1146 |
+
self.V[v_x].connect(self.V[tuple(S_rows[i])])
|
1147 |
+
# Attached the simplex to storage for all non-symmetric vertices
|
1148 |
+
self.V_non_symm.append(self.V[v_x])
|
1149 |
+
# this bool value indicates a successful connection if True:
|
1150 |
+
return found_nn
|
1151 |
+
|
1152 |
+
def in_simplex(self, S, v_x, A_j0=None):
|
1153 |
+
"""Check if a vector v_x is in simplex `S`.
|
1154 |
+
|
1155 |
+
Parameters
|
1156 |
+
----------
|
1157 |
+
S : array_like
|
1158 |
+
Array containing simplex entries of vertices as rows
|
1159 |
+
v_x :
|
1160 |
+
A candidate vertex
|
1161 |
+
A_j0 : array, optional,
|
1162 |
+
Allows for A_j0 to be pre-calculated
|
1163 |
+
|
1164 |
+
Returns
|
1165 |
+
-------
|
1166 |
+
res : boolean
|
1167 |
+
True if `v_x` is in `S`
|
1168 |
+
"""
|
1169 |
+
A_11 = numpy.delete(S, 0, 0) - S[0]
|
1170 |
+
|
1171 |
+
sign_det_A_11 = numpy.sign(numpy.linalg.det(A_11))
|
1172 |
+
if sign_det_A_11 == 0:
|
1173 |
+
# NOTE: We keep the variable A_11, but we loop through A_jj
|
1174 |
+
# ind=
|
1175 |
+
# while sign_det_A_11 == 0:
|
1176 |
+
# A_11 = numpy.delete(S, ind, 0) - S[ind]
|
1177 |
+
# sign_det_A_11 = numpy.sign(numpy.linalg.det(A_11))
|
1178 |
+
|
1179 |
+
sign_det_A_11 = -1 # TODO: Choose another det of j instead?
|
1180 |
+
# TODO: Unlikely to work in many cases
|
1181 |
+
|
1182 |
+
if A_j0 is None:
|
1183 |
+
A_j0 = S - v_x
|
1184 |
+
|
1185 |
+
for d in range(self.dim + 1):
|
1186 |
+
det_A_jj = (-1)**d * sign_det_A_11
|
1187 |
+
# TODO: Note that scipy might be faster to add as an optional
|
1188 |
+
# dependency
|
1189 |
+
sign_det_A_j0 = numpy.sign(numpy.linalg.det(numpy.delete(A_j0, d,
|
1190 |
+
0)))
|
1191 |
+
# TODO: Note if sign_det_A_j0 == then the point is coplanar to the
|
1192 |
+
# current simplex facet, so perhaps return True and attach?
|
1193 |
+
if det_A_jj == sign_det_A_j0:
|
1194 |
+
continue
|
1195 |
+
else:
|
1196 |
+
return False
|
1197 |
+
|
1198 |
+
return True
|
1199 |
+
|
1200 |
+
def deg_simplex(self, S, proj=None):
|
1201 |
+
"""Test a simplex S for degeneracy (linear dependence in R^dim).
|
1202 |
+
|
1203 |
+
Parameters
|
1204 |
+
----------
|
1205 |
+
S : np.array
|
1206 |
+
Simplex with rows as vertex vectors
|
1207 |
+
proj : array, optional,
|
1208 |
+
If the projection S[1:] - S[0] is already
|
1209 |
+
computed it can be added as an optional argument.
|
1210 |
+
"""
|
1211 |
+
# Strategy: we test all combination of faces, if any of the
|
1212 |
+
# determinants are zero then the vectors lie on the same face and is
|
1213 |
+
# therefore linearly dependent in the space of R^dim
|
1214 |
+
if proj is None:
|
1215 |
+
proj = S[1:] - S[0]
|
1216 |
+
|
1217 |
+
# TODO: Is checking the projection of one vertex against faces of other
|
1218 |
+
# vertices sufficient? Or do we need to check more vertices in
|
1219 |
+
# dimensions higher than 2?
|
1220 |
+
# TODO: Literature seems to suggest using proj.T, but why is this
|
1221 |
+
# needed?
|
1222 |
+
if numpy.linalg.det(proj) == 0.0: # TODO: Repalace with tolerance?
|
1223 |
+
return True # Simplex is degenerate
|
1224 |
+
else:
|
1225 |
+
return False # Simplex is not degenerate
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/_shgo_lib/_vertex.py
ADDED
@@ -0,0 +1,460 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import collections
|
2 |
+
from abc import ABC, abstractmethod
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
from scipy._lib._util import MapWrapper
|
7 |
+
|
8 |
+
|
9 |
+
class VertexBase(ABC):
|
10 |
+
"""
|
11 |
+
Base class for a vertex.
|
12 |
+
"""
|
13 |
+
def __init__(self, x, nn=None, index=None):
|
14 |
+
"""
|
15 |
+
Initiation of a vertex object.
|
16 |
+
|
17 |
+
Parameters
|
18 |
+
----------
|
19 |
+
x : tuple or vector
|
20 |
+
The geometric location (domain).
|
21 |
+
nn : list, optional
|
22 |
+
Nearest neighbour list.
|
23 |
+
index : int, optional
|
24 |
+
Index of vertex.
|
25 |
+
"""
|
26 |
+
self.x = x
|
27 |
+
self.hash = hash(self.x) # Save precomputed hash
|
28 |
+
|
29 |
+
if nn is not None:
|
30 |
+
self.nn = set(nn) # can use .indexupdate to add a new list
|
31 |
+
else:
|
32 |
+
self.nn = set()
|
33 |
+
|
34 |
+
self.index = index
|
35 |
+
|
36 |
+
def __hash__(self):
|
37 |
+
return self.hash
|
38 |
+
|
39 |
+
def __getattr__(self, item):
|
40 |
+
if item not in ['x_a']:
|
41 |
+
raise AttributeError(f"{type(self)} object has no attribute "
|
42 |
+
f"'{item}'")
|
43 |
+
if item == 'x_a':
|
44 |
+
self.x_a = np.array(self.x)
|
45 |
+
return self.x_a
|
46 |
+
|
47 |
+
@abstractmethod
|
48 |
+
def connect(self, v):
|
49 |
+
raise NotImplementedError("This method is only implemented with an "
|
50 |
+
"associated child of the base class.")
|
51 |
+
|
52 |
+
@abstractmethod
|
53 |
+
def disconnect(self, v):
|
54 |
+
raise NotImplementedError("This method is only implemented with an "
|
55 |
+
"associated child of the base class.")
|
56 |
+
|
57 |
+
def star(self):
|
58 |
+
"""Returns the star domain ``st(v)`` of the vertex.
|
59 |
+
|
60 |
+
Parameters
|
61 |
+
----------
|
62 |
+
v :
|
63 |
+
The vertex ``v`` in ``st(v)``
|
64 |
+
|
65 |
+
Returns
|
66 |
+
-------
|
67 |
+
st : set
|
68 |
+
A set containing all the vertices in ``st(v)``
|
69 |
+
"""
|
70 |
+
self.st = self.nn
|
71 |
+
self.st.add(self)
|
72 |
+
return self.st
|
73 |
+
|
74 |
+
|
75 |
+
class VertexScalarField(VertexBase):
|
76 |
+
"""
|
77 |
+
Add homology properties of a scalar field f: R^n --> R associated with
|
78 |
+
the geometry built from the VertexBase class
|
79 |
+
"""
|
80 |
+
|
81 |
+
def __init__(self, x, field=None, nn=None, index=None, field_args=(),
|
82 |
+
g_cons=None, g_cons_args=()):
|
83 |
+
"""
|
84 |
+
Parameters
|
85 |
+
----------
|
86 |
+
x : tuple,
|
87 |
+
vector of vertex coordinates
|
88 |
+
field : callable, optional
|
89 |
+
a scalar field f: R^n --> R associated with the geometry
|
90 |
+
nn : list, optional
|
91 |
+
list of nearest neighbours
|
92 |
+
index : int, optional
|
93 |
+
index of the vertex
|
94 |
+
field_args : tuple, optional
|
95 |
+
additional arguments to be passed to field
|
96 |
+
g_cons : callable, optional
|
97 |
+
constraints on the vertex
|
98 |
+
g_cons_args : tuple, optional
|
99 |
+
additional arguments to be passed to g_cons
|
100 |
+
|
101 |
+
"""
|
102 |
+
super().__init__(x, nn=nn, index=index)
|
103 |
+
|
104 |
+
# Note Vertex is only initiated once for all x so only
|
105 |
+
# evaluated once
|
106 |
+
# self.feasible = None
|
107 |
+
|
108 |
+
# self.f is externally defined by the cache to allow parallel
|
109 |
+
# processing
|
110 |
+
# None type that will break arithmetic operations unless defined
|
111 |
+
# self.f = None
|
112 |
+
|
113 |
+
self.check_min = True
|
114 |
+
self.check_max = True
|
115 |
+
|
116 |
+
def connect(self, v):
|
117 |
+
"""Connects self to another vertex object v.
|
118 |
+
|
119 |
+
Parameters
|
120 |
+
----------
|
121 |
+
v : VertexBase or VertexScalarField object
|
122 |
+
"""
|
123 |
+
if v is not self and v not in self.nn:
|
124 |
+
self.nn.add(v)
|
125 |
+
v.nn.add(self)
|
126 |
+
|
127 |
+
# Flags for checking homology properties:
|
128 |
+
self.check_min = True
|
129 |
+
self.check_max = True
|
130 |
+
v.check_min = True
|
131 |
+
v.check_max = True
|
132 |
+
|
133 |
+
def disconnect(self, v):
|
134 |
+
if v in self.nn:
|
135 |
+
self.nn.remove(v)
|
136 |
+
v.nn.remove(self)
|
137 |
+
|
138 |
+
# Flags for checking homology properties:
|
139 |
+
self.check_min = True
|
140 |
+
self.check_max = True
|
141 |
+
v.check_min = True
|
142 |
+
v.check_max = True
|
143 |
+
|
144 |
+
def minimiser(self):
|
145 |
+
"""Check whether this vertex is strictly less than all its
|
146 |
+
neighbours"""
|
147 |
+
if self.check_min:
|
148 |
+
self._min = all(self.f < v.f for v in self.nn)
|
149 |
+
self.check_min = False
|
150 |
+
|
151 |
+
return self._min
|
152 |
+
|
153 |
+
def maximiser(self):
|
154 |
+
"""
|
155 |
+
Check whether this vertex is strictly greater than all its
|
156 |
+
neighbours.
|
157 |
+
"""
|
158 |
+
if self.check_max:
|
159 |
+
self._max = all(self.f > v.f for v in self.nn)
|
160 |
+
self.check_max = False
|
161 |
+
|
162 |
+
return self._max
|
163 |
+
|
164 |
+
|
165 |
+
class VertexVectorField(VertexBase):
|
166 |
+
"""
|
167 |
+
Add homology properties of a scalar field f: R^n --> R^m associated with
|
168 |
+
the geometry built from the VertexBase class.
|
169 |
+
"""
|
170 |
+
|
171 |
+
def __init__(self, x, sfield=None, vfield=None, field_args=(),
|
172 |
+
vfield_args=(), g_cons=None,
|
173 |
+
g_cons_args=(), nn=None, index=None):
|
174 |
+
super().__init__(x, nn=nn, index=index)
|
175 |
+
|
176 |
+
raise NotImplementedError("This class is still a work in progress")
|
177 |
+
|
178 |
+
|
179 |
+
class VertexCacheBase:
|
180 |
+
"""Base class for a vertex cache for a simplicial complex."""
|
181 |
+
def __init__(self):
|
182 |
+
|
183 |
+
self.cache = collections.OrderedDict()
|
184 |
+
self.nfev = 0 # Feasible points
|
185 |
+
self.index = -1
|
186 |
+
|
187 |
+
def __iter__(self):
|
188 |
+
for v in self.cache:
|
189 |
+
yield self.cache[v]
|
190 |
+
return
|
191 |
+
|
192 |
+
def size(self):
|
193 |
+
"""Returns the size of the vertex cache."""
|
194 |
+
return self.index + 1
|
195 |
+
|
196 |
+
def print_out(self):
|
197 |
+
headlen = len(f"Vertex cache of size: {len(self.cache)}:")
|
198 |
+
print('=' * headlen)
|
199 |
+
print(f"Vertex cache of size: {len(self.cache)}:")
|
200 |
+
print('=' * headlen)
|
201 |
+
for v in self.cache:
|
202 |
+
self.cache[v].print_out()
|
203 |
+
|
204 |
+
|
205 |
+
class VertexCube(VertexBase):
|
206 |
+
"""Vertex class to be used for a pure simplicial complex with no associated
|
207 |
+
differential geometry (single level domain that exists in R^n)"""
|
208 |
+
def __init__(self, x, nn=None, index=None):
|
209 |
+
super().__init__(x, nn=nn, index=index)
|
210 |
+
|
211 |
+
def connect(self, v):
|
212 |
+
if v is not self and v not in self.nn:
|
213 |
+
self.nn.add(v)
|
214 |
+
v.nn.add(self)
|
215 |
+
|
216 |
+
def disconnect(self, v):
|
217 |
+
if v in self.nn:
|
218 |
+
self.nn.remove(v)
|
219 |
+
v.nn.remove(self)
|
220 |
+
|
221 |
+
|
222 |
+
class VertexCacheIndex(VertexCacheBase):
|
223 |
+
def __init__(self):
|
224 |
+
"""
|
225 |
+
Class for a vertex cache for a simplicial complex without an associated
|
226 |
+
field. Useful only for building and visualising a domain complex.
|
227 |
+
|
228 |
+
Parameters
|
229 |
+
----------
|
230 |
+
"""
|
231 |
+
super().__init__()
|
232 |
+
self.Vertex = VertexCube
|
233 |
+
|
234 |
+
def __getitem__(self, x, nn=None):
|
235 |
+
try:
|
236 |
+
return self.cache[x]
|
237 |
+
except KeyError:
|
238 |
+
self.index += 1
|
239 |
+
xval = self.Vertex(x, index=self.index)
|
240 |
+
# logging.info("New generated vertex at x = {}".format(x))
|
241 |
+
# NOTE: Surprisingly high performance increase if logging
|
242 |
+
# is commented out
|
243 |
+
self.cache[x] = xval
|
244 |
+
return self.cache[x]
|
245 |
+
|
246 |
+
|
247 |
+
class VertexCacheField(VertexCacheBase):
|
248 |
+
def __init__(self, field=None, field_args=(), g_cons=None, g_cons_args=(),
|
249 |
+
workers=1):
|
250 |
+
"""
|
251 |
+
Class for a vertex cache for a simplicial complex with an associated
|
252 |
+
field.
|
253 |
+
|
254 |
+
Parameters
|
255 |
+
----------
|
256 |
+
field : callable
|
257 |
+
Scalar or vector field callable.
|
258 |
+
field_args : tuple, optional
|
259 |
+
Any additional fixed parameters needed to completely specify the
|
260 |
+
field function
|
261 |
+
g_cons : dict or sequence of dict, optional
|
262 |
+
Constraints definition.
|
263 |
+
Function(s) ``R**n`` in the form::
|
264 |
+
g_cons_args : tuple, optional
|
265 |
+
Any additional fixed parameters needed to completely specify the
|
266 |
+
constraint functions
|
267 |
+
workers : int optional
|
268 |
+
Uses `multiprocessing.Pool <multiprocessing>`) to compute the field
|
269 |
+
functions in parallel.
|
270 |
+
|
271 |
+
"""
|
272 |
+
super().__init__()
|
273 |
+
self.index = -1
|
274 |
+
self.Vertex = VertexScalarField
|
275 |
+
self.field = field
|
276 |
+
self.field_args = field_args
|
277 |
+
self.wfield = FieldWrapper(field, field_args) # if workers is not 1
|
278 |
+
|
279 |
+
self.g_cons = g_cons
|
280 |
+
self.g_cons_args = g_cons_args
|
281 |
+
self.wgcons = ConstraintWrapper(g_cons, g_cons_args)
|
282 |
+
self.gpool = set() # A set of tuples to process for feasibility
|
283 |
+
|
284 |
+
# Field processing objects
|
285 |
+
self.fpool = set() # A set of tuples to process for scalar function
|
286 |
+
self.sfc_lock = False # True if self.fpool is non-Empty
|
287 |
+
|
288 |
+
self.workers = workers
|
289 |
+
self._mapwrapper = MapWrapper(workers)
|
290 |
+
|
291 |
+
if workers == 1:
|
292 |
+
self.process_gpool = self.proc_gpool
|
293 |
+
if g_cons is None:
|
294 |
+
self.process_fpool = self.proc_fpool_nog
|
295 |
+
else:
|
296 |
+
self.process_fpool = self.proc_fpool_g
|
297 |
+
else:
|
298 |
+
self.process_gpool = self.pproc_gpool
|
299 |
+
if g_cons is None:
|
300 |
+
self.process_fpool = self.pproc_fpool_nog
|
301 |
+
else:
|
302 |
+
self.process_fpool = self.pproc_fpool_g
|
303 |
+
|
304 |
+
def __getitem__(self, x, nn=None):
|
305 |
+
try:
|
306 |
+
return self.cache[x]
|
307 |
+
except KeyError:
|
308 |
+
self.index += 1
|
309 |
+
xval = self.Vertex(x, field=self.field, nn=nn, index=self.index,
|
310 |
+
field_args=self.field_args,
|
311 |
+
g_cons=self.g_cons,
|
312 |
+
g_cons_args=self.g_cons_args)
|
313 |
+
|
314 |
+
self.cache[x] = xval # Define in cache
|
315 |
+
self.gpool.add(xval) # Add to pool for processing feasibility
|
316 |
+
self.fpool.add(xval) # Add to pool for processing field values
|
317 |
+
return self.cache[x]
|
318 |
+
|
319 |
+
def __getstate__(self):
|
320 |
+
self_dict = self.__dict__.copy()
|
321 |
+
del self_dict['pool']
|
322 |
+
return self_dict
|
323 |
+
|
324 |
+
def process_pools(self):
|
325 |
+
if self.g_cons is not None:
|
326 |
+
self.process_gpool()
|
327 |
+
self.process_fpool()
|
328 |
+
self.proc_minimisers()
|
329 |
+
|
330 |
+
def feasibility_check(self, v):
|
331 |
+
v.feasible = True
|
332 |
+
for g, args in zip(self.g_cons, self.g_cons_args):
|
333 |
+
# constraint may return more than 1 value.
|
334 |
+
if np.any(g(v.x_a, *args) < 0.0):
|
335 |
+
v.f = np.inf
|
336 |
+
v.feasible = False
|
337 |
+
break
|
338 |
+
|
339 |
+
def compute_sfield(self, v):
|
340 |
+
"""Compute the scalar field values of a vertex object `v`.
|
341 |
+
|
342 |
+
Parameters
|
343 |
+
----------
|
344 |
+
v : VertexBase or VertexScalarField object
|
345 |
+
"""
|
346 |
+
try:
|
347 |
+
v.f = self.field(v.x_a, *self.field_args)
|
348 |
+
self.nfev += 1
|
349 |
+
except AttributeError:
|
350 |
+
v.f = np.inf
|
351 |
+
# logging.warning(f"Field function not found at x = {self.x_a}")
|
352 |
+
if np.isnan(v.f):
|
353 |
+
v.f = np.inf
|
354 |
+
|
355 |
+
def proc_gpool(self):
|
356 |
+
"""Process all constraints."""
|
357 |
+
if self.g_cons is not None:
|
358 |
+
for v in self.gpool:
|
359 |
+
self.feasibility_check(v)
|
360 |
+
# Clean the pool
|
361 |
+
self.gpool = set()
|
362 |
+
|
363 |
+
def pproc_gpool(self):
|
364 |
+
"""Process all constraints in parallel."""
|
365 |
+
gpool_l = []
|
366 |
+
for v in self.gpool:
|
367 |
+
gpool_l.append(v.x_a)
|
368 |
+
|
369 |
+
G = self._mapwrapper(self.wgcons.gcons, gpool_l)
|
370 |
+
for v, g in zip(self.gpool, G):
|
371 |
+
v.feasible = g # set vertex object attribute v.feasible = g (bool)
|
372 |
+
|
373 |
+
def proc_fpool_g(self):
|
374 |
+
"""Process all field functions with constraints supplied."""
|
375 |
+
for v in self.fpool:
|
376 |
+
if v.feasible:
|
377 |
+
self.compute_sfield(v)
|
378 |
+
# Clean the pool
|
379 |
+
self.fpool = set()
|
380 |
+
|
381 |
+
def proc_fpool_nog(self):
|
382 |
+
"""Process all field functions with no constraints supplied."""
|
383 |
+
for v in self.fpool:
|
384 |
+
self.compute_sfield(v)
|
385 |
+
# Clean the pool
|
386 |
+
self.fpool = set()
|
387 |
+
|
388 |
+
def pproc_fpool_g(self):
|
389 |
+
"""
|
390 |
+
Process all field functions with constraints supplied in parallel.
|
391 |
+
"""
|
392 |
+
self.wfield.func
|
393 |
+
fpool_l = []
|
394 |
+
for v in self.fpool:
|
395 |
+
if v.feasible:
|
396 |
+
fpool_l.append(v.x_a)
|
397 |
+
else:
|
398 |
+
v.f = np.inf
|
399 |
+
F = self._mapwrapper(self.wfield.func, fpool_l)
|
400 |
+
for va, f in zip(fpool_l, F):
|
401 |
+
vt = tuple(va)
|
402 |
+
self[vt].f = f # set vertex object attribute v.f = f
|
403 |
+
self.nfev += 1
|
404 |
+
# Clean the pool
|
405 |
+
self.fpool = set()
|
406 |
+
|
407 |
+
def pproc_fpool_nog(self):
|
408 |
+
"""
|
409 |
+
Process all field functions with no constraints supplied in parallel.
|
410 |
+
"""
|
411 |
+
self.wfield.func
|
412 |
+
fpool_l = []
|
413 |
+
for v in self.fpool:
|
414 |
+
fpool_l.append(v.x_a)
|
415 |
+
F = self._mapwrapper(self.wfield.func, fpool_l)
|
416 |
+
for va, f in zip(fpool_l, F):
|
417 |
+
vt = tuple(va)
|
418 |
+
self[vt].f = f # set vertex object attribute v.f = f
|
419 |
+
self.nfev += 1
|
420 |
+
# Clean the pool
|
421 |
+
self.fpool = set()
|
422 |
+
|
423 |
+
def proc_minimisers(self):
|
424 |
+
"""Check for minimisers."""
|
425 |
+
for v in self:
|
426 |
+
v.minimiser()
|
427 |
+
v.maximiser()
|
428 |
+
|
429 |
+
|
430 |
+
class ConstraintWrapper:
|
431 |
+
"""Object to wrap constraints to pass to `multiprocessing.Pool`."""
|
432 |
+
def __init__(self, g_cons, g_cons_args):
|
433 |
+
self.g_cons = g_cons
|
434 |
+
self.g_cons_args = g_cons_args
|
435 |
+
|
436 |
+
def gcons(self, v_x_a):
|
437 |
+
vfeasible = True
|
438 |
+
for g, args in zip(self.g_cons, self.g_cons_args):
|
439 |
+
# constraint may return more than 1 value.
|
440 |
+
if np.any(g(v_x_a, *args) < 0.0):
|
441 |
+
vfeasible = False
|
442 |
+
break
|
443 |
+
return vfeasible
|
444 |
+
|
445 |
+
|
446 |
+
class FieldWrapper:
|
447 |
+
"""Object to wrap field to pass to `multiprocessing.Pool`."""
|
448 |
+
def __init__(self, field, field_args):
|
449 |
+
self.field = field
|
450 |
+
self.field_args = field_args
|
451 |
+
|
452 |
+
def func(self, v_x_a):
|
453 |
+
try:
|
454 |
+
v_f = self.field(v_x_a, *self.field_args)
|
455 |
+
except Exception:
|
456 |
+
v_f = np.inf
|
457 |
+
if np.isnan(v_f):
|
458 |
+
v_f = np.inf
|
459 |
+
|
460 |
+
return v_f
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/_trustregion_constr/__init__.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""This module contains the equality constrained SQP solver."""
|
2 |
+
|
3 |
+
|
4 |
+
from .minimize_trustregion_constr import _minimize_trustregion_constr
|
5 |
+
|
6 |
+
__all__ = ['_minimize_trustregion_constr']
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/_trustregion_constr/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (375 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/_trustregion_constr/__pycache__/canonical_constraint.cpython-310.pyc
ADDED
Binary file (12.7 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/_trustregion_constr/__pycache__/equality_constrained_sqp.cpython-310.pyc
ADDED
Binary file (4.18 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/_trustregion_constr/__pycache__/minimize_trustregion_constr.cpython-310.pyc
ADDED
Binary file (20.3 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/_trustregion_constr/__pycache__/projections.cpython-310.pyc
ADDED
Binary file (10.3 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/_trustregion_constr/__pycache__/qp_subproblem.cpython-310.pyc
ADDED
Binary file (15.7 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/_trustregion_constr/__pycache__/report.cpython-310.pyc
ADDED
Binary file (2.53 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/_trustregion_constr/__pycache__/tr_interior_point.cpython-310.pyc
ADDED
Binary file (9.65 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/_trustregion_constr/canonical_constraint.py
ADDED
@@ -0,0 +1,390 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import scipy.sparse as sps
|
3 |
+
|
4 |
+
|
5 |
+
class CanonicalConstraint:
|
6 |
+
"""Canonical constraint to use with trust-constr algorithm.
|
7 |
+
|
8 |
+
It represents the set of constraints of the form::
|
9 |
+
|
10 |
+
f_eq(x) = 0
|
11 |
+
f_ineq(x) <= 0
|
12 |
+
|
13 |
+
where ``f_eq`` and ``f_ineq`` are evaluated by a single function, see
|
14 |
+
below.
|
15 |
+
|
16 |
+
The class is supposed to be instantiated by factory methods, which
|
17 |
+
should prepare the parameters listed below.
|
18 |
+
|
19 |
+
Parameters
|
20 |
+
----------
|
21 |
+
n_eq, n_ineq : int
|
22 |
+
Number of equality and inequality constraints respectively.
|
23 |
+
fun : callable
|
24 |
+
Function defining the constraints. The signature is
|
25 |
+
``fun(x) -> c_eq, c_ineq``, where ``c_eq`` is ndarray with `n_eq`
|
26 |
+
components and ``c_ineq`` is ndarray with `n_ineq` components.
|
27 |
+
jac : callable
|
28 |
+
Function to evaluate the Jacobian of the constraint. The signature
|
29 |
+
is ``jac(x) -> J_eq, J_ineq``, where ``J_eq`` and ``J_ineq`` are
|
30 |
+
either ndarray of csr_matrix of shapes (n_eq, n) and (n_ineq, n),
|
31 |
+
respectively.
|
32 |
+
hess : callable
|
33 |
+
Function to evaluate the Hessian of the constraints multiplied
|
34 |
+
by Lagrange multipliers, that is
|
35 |
+
``dot(f_eq, v_eq) + dot(f_ineq, v_ineq)``. The signature is
|
36 |
+
``hess(x, v_eq, v_ineq) -> H``, where ``H`` has an implied
|
37 |
+
shape (n, n) and provide a matrix-vector product operation
|
38 |
+
``H.dot(p)``.
|
39 |
+
keep_feasible : ndarray, shape (n_ineq,)
|
40 |
+
Mask indicating which inequality constraints should be kept feasible.
|
41 |
+
"""
|
42 |
+
def __init__(self, n_eq, n_ineq, fun, jac, hess, keep_feasible):
|
43 |
+
self.n_eq = n_eq
|
44 |
+
self.n_ineq = n_ineq
|
45 |
+
self.fun = fun
|
46 |
+
self.jac = jac
|
47 |
+
self.hess = hess
|
48 |
+
self.keep_feasible = keep_feasible
|
49 |
+
|
50 |
+
@classmethod
|
51 |
+
def from_PreparedConstraint(cls, constraint):
|
52 |
+
"""Create an instance from `PreparedConstrained` object."""
|
53 |
+
lb, ub = constraint.bounds
|
54 |
+
cfun = constraint.fun
|
55 |
+
keep_feasible = constraint.keep_feasible
|
56 |
+
|
57 |
+
if np.all(lb == -np.inf) and np.all(ub == np.inf):
|
58 |
+
return cls.empty(cfun.n)
|
59 |
+
|
60 |
+
if np.all(lb == -np.inf) and np.all(ub == np.inf):
|
61 |
+
return cls.empty(cfun.n)
|
62 |
+
elif np.all(lb == ub):
|
63 |
+
return cls._equal_to_canonical(cfun, lb)
|
64 |
+
elif np.all(lb == -np.inf):
|
65 |
+
return cls._less_to_canonical(cfun, ub, keep_feasible)
|
66 |
+
elif np.all(ub == np.inf):
|
67 |
+
return cls._greater_to_canonical(cfun, lb, keep_feasible)
|
68 |
+
else:
|
69 |
+
return cls._interval_to_canonical(cfun, lb, ub, keep_feasible)
|
70 |
+
|
71 |
+
@classmethod
|
72 |
+
def empty(cls, n):
|
73 |
+
"""Create an "empty" instance.
|
74 |
+
|
75 |
+
This "empty" instance is required to allow working with unconstrained
|
76 |
+
problems as if they have some constraints.
|
77 |
+
"""
|
78 |
+
empty_fun = np.empty(0)
|
79 |
+
empty_jac = np.empty((0, n))
|
80 |
+
empty_hess = sps.csr_matrix((n, n))
|
81 |
+
|
82 |
+
def fun(x):
|
83 |
+
return empty_fun, empty_fun
|
84 |
+
|
85 |
+
def jac(x):
|
86 |
+
return empty_jac, empty_jac
|
87 |
+
|
88 |
+
def hess(x, v_eq, v_ineq):
|
89 |
+
return empty_hess
|
90 |
+
|
91 |
+
return cls(0, 0, fun, jac, hess, np.empty(0, dtype=np.bool_))
|
92 |
+
|
93 |
+
@classmethod
|
94 |
+
def concatenate(cls, canonical_constraints, sparse_jacobian):
|
95 |
+
"""Concatenate multiple `CanonicalConstraint` into one.
|
96 |
+
|
97 |
+
`sparse_jacobian` (bool) determines the Jacobian format of the
|
98 |
+
concatenated constraint. Note that items in `canonical_constraints`
|
99 |
+
must have their Jacobians in the same format.
|
100 |
+
"""
|
101 |
+
def fun(x):
|
102 |
+
if canonical_constraints:
|
103 |
+
eq_all, ineq_all = zip(
|
104 |
+
*[c.fun(x) for c in canonical_constraints])
|
105 |
+
else:
|
106 |
+
eq_all, ineq_all = [], []
|
107 |
+
|
108 |
+
return np.hstack(eq_all), np.hstack(ineq_all)
|
109 |
+
|
110 |
+
if sparse_jacobian:
|
111 |
+
vstack = sps.vstack
|
112 |
+
else:
|
113 |
+
vstack = np.vstack
|
114 |
+
|
115 |
+
def jac(x):
|
116 |
+
if canonical_constraints:
|
117 |
+
eq_all, ineq_all = zip(
|
118 |
+
*[c.jac(x) for c in canonical_constraints])
|
119 |
+
else:
|
120 |
+
eq_all, ineq_all = [], []
|
121 |
+
|
122 |
+
return vstack(eq_all), vstack(ineq_all)
|
123 |
+
|
124 |
+
def hess(x, v_eq, v_ineq):
|
125 |
+
hess_all = []
|
126 |
+
index_eq = 0
|
127 |
+
index_ineq = 0
|
128 |
+
for c in canonical_constraints:
|
129 |
+
vc_eq = v_eq[index_eq:index_eq + c.n_eq]
|
130 |
+
vc_ineq = v_ineq[index_ineq:index_ineq + c.n_ineq]
|
131 |
+
hess_all.append(c.hess(x, vc_eq, vc_ineq))
|
132 |
+
index_eq += c.n_eq
|
133 |
+
index_ineq += c.n_ineq
|
134 |
+
|
135 |
+
def matvec(p):
|
136 |
+
result = np.zeros_like(p)
|
137 |
+
for h in hess_all:
|
138 |
+
result += h.dot(p)
|
139 |
+
return result
|
140 |
+
|
141 |
+
n = x.shape[0]
|
142 |
+
return sps.linalg.LinearOperator((n, n), matvec, dtype=float)
|
143 |
+
|
144 |
+
n_eq = sum(c.n_eq for c in canonical_constraints)
|
145 |
+
n_ineq = sum(c.n_ineq for c in canonical_constraints)
|
146 |
+
keep_feasible = np.hstack([c.keep_feasible for c in
|
147 |
+
canonical_constraints])
|
148 |
+
|
149 |
+
return cls(n_eq, n_ineq, fun, jac, hess, keep_feasible)
|
150 |
+
|
151 |
+
@classmethod
|
152 |
+
def _equal_to_canonical(cls, cfun, value):
|
153 |
+
empty_fun = np.empty(0)
|
154 |
+
n = cfun.n
|
155 |
+
|
156 |
+
n_eq = value.shape[0]
|
157 |
+
n_ineq = 0
|
158 |
+
keep_feasible = np.empty(0, dtype=bool)
|
159 |
+
|
160 |
+
if cfun.sparse_jacobian:
|
161 |
+
empty_jac = sps.csr_matrix((0, n))
|
162 |
+
else:
|
163 |
+
empty_jac = np.empty((0, n))
|
164 |
+
|
165 |
+
def fun(x):
|
166 |
+
return cfun.fun(x) - value, empty_fun
|
167 |
+
|
168 |
+
def jac(x):
|
169 |
+
return cfun.jac(x), empty_jac
|
170 |
+
|
171 |
+
def hess(x, v_eq, v_ineq):
|
172 |
+
return cfun.hess(x, v_eq)
|
173 |
+
|
174 |
+
empty_fun = np.empty(0)
|
175 |
+
n = cfun.n
|
176 |
+
if cfun.sparse_jacobian:
|
177 |
+
empty_jac = sps.csr_matrix((0, n))
|
178 |
+
else:
|
179 |
+
empty_jac = np.empty((0, n))
|
180 |
+
|
181 |
+
return cls(n_eq, n_ineq, fun, jac, hess, keep_feasible)
|
182 |
+
|
183 |
+
@classmethod
|
184 |
+
def _less_to_canonical(cls, cfun, ub, keep_feasible):
|
185 |
+
empty_fun = np.empty(0)
|
186 |
+
n = cfun.n
|
187 |
+
if cfun.sparse_jacobian:
|
188 |
+
empty_jac = sps.csr_matrix((0, n))
|
189 |
+
else:
|
190 |
+
empty_jac = np.empty((0, n))
|
191 |
+
|
192 |
+
finite_ub = ub < np.inf
|
193 |
+
n_eq = 0
|
194 |
+
n_ineq = np.sum(finite_ub)
|
195 |
+
|
196 |
+
if np.all(finite_ub):
|
197 |
+
def fun(x):
|
198 |
+
return empty_fun, cfun.fun(x) - ub
|
199 |
+
|
200 |
+
def jac(x):
|
201 |
+
return empty_jac, cfun.jac(x)
|
202 |
+
|
203 |
+
def hess(x, v_eq, v_ineq):
|
204 |
+
return cfun.hess(x, v_ineq)
|
205 |
+
else:
|
206 |
+
finite_ub = np.nonzero(finite_ub)[0]
|
207 |
+
keep_feasible = keep_feasible[finite_ub]
|
208 |
+
ub = ub[finite_ub]
|
209 |
+
|
210 |
+
def fun(x):
|
211 |
+
return empty_fun, cfun.fun(x)[finite_ub] - ub
|
212 |
+
|
213 |
+
def jac(x):
|
214 |
+
return empty_jac, cfun.jac(x)[finite_ub]
|
215 |
+
|
216 |
+
def hess(x, v_eq, v_ineq):
|
217 |
+
v = np.zeros(cfun.m)
|
218 |
+
v[finite_ub] = v_ineq
|
219 |
+
return cfun.hess(x, v)
|
220 |
+
|
221 |
+
return cls(n_eq, n_ineq, fun, jac, hess, keep_feasible)
|
222 |
+
|
223 |
+
@classmethod
|
224 |
+
def _greater_to_canonical(cls, cfun, lb, keep_feasible):
|
225 |
+
empty_fun = np.empty(0)
|
226 |
+
n = cfun.n
|
227 |
+
if cfun.sparse_jacobian:
|
228 |
+
empty_jac = sps.csr_matrix((0, n))
|
229 |
+
else:
|
230 |
+
empty_jac = np.empty((0, n))
|
231 |
+
|
232 |
+
finite_lb = lb > -np.inf
|
233 |
+
n_eq = 0
|
234 |
+
n_ineq = np.sum(finite_lb)
|
235 |
+
|
236 |
+
if np.all(finite_lb):
|
237 |
+
def fun(x):
|
238 |
+
return empty_fun, lb - cfun.fun(x)
|
239 |
+
|
240 |
+
def jac(x):
|
241 |
+
return empty_jac, -cfun.jac(x)
|
242 |
+
|
243 |
+
def hess(x, v_eq, v_ineq):
|
244 |
+
return cfun.hess(x, -v_ineq)
|
245 |
+
else:
|
246 |
+
finite_lb = np.nonzero(finite_lb)[0]
|
247 |
+
keep_feasible = keep_feasible[finite_lb]
|
248 |
+
lb = lb[finite_lb]
|
249 |
+
|
250 |
+
def fun(x):
|
251 |
+
return empty_fun, lb - cfun.fun(x)[finite_lb]
|
252 |
+
|
253 |
+
def jac(x):
|
254 |
+
return empty_jac, -cfun.jac(x)[finite_lb]
|
255 |
+
|
256 |
+
def hess(x, v_eq, v_ineq):
|
257 |
+
v = np.zeros(cfun.m)
|
258 |
+
v[finite_lb] = -v_ineq
|
259 |
+
return cfun.hess(x, v)
|
260 |
+
|
261 |
+
return cls(n_eq, n_ineq, fun, jac, hess, keep_feasible)
|
262 |
+
|
263 |
+
@classmethod
|
264 |
+
def _interval_to_canonical(cls, cfun, lb, ub, keep_feasible):
|
265 |
+
lb_inf = lb == -np.inf
|
266 |
+
ub_inf = ub == np.inf
|
267 |
+
equal = lb == ub
|
268 |
+
less = lb_inf & ~ub_inf
|
269 |
+
greater = ub_inf & ~lb_inf
|
270 |
+
interval = ~equal & ~lb_inf & ~ub_inf
|
271 |
+
|
272 |
+
equal = np.nonzero(equal)[0]
|
273 |
+
less = np.nonzero(less)[0]
|
274 |
+
greater = np.nonzero(greater)[0]
|
275 |
+
interval = np.nonzero(interval)[0]
|
276 |
+
n_less = less.shape[0]
|
277 |
+
n_greater = greater.shape[0]
|
278 |
+
n_interval = interval.shape[0]
|
279 |
+
n_ineq = n_less + n_greater + 2 * n_interval
|
280 |
+
n_eq = equal.shape[0]
|
281 |
+
|
282 |
+
keep_feasible = np.hstack((keep_feasible[less],
|
283 |
+
keep_feasible[greater],
|
284 |
+
keep_feasible[interval],
|
285 |
+
keep_feasible[interval]))
|
286 |
+
|
287 |
+
def fun(x):
|
288 |
+
f = cfun.fun(x)
|
289 |
+
eq = f[equal] - lb[equal]
|
290 |
+
le = f[less] - ub[less]
|
291 |
+
ge = lb[greater] - f[greater]
|
292 |
+
il = f[interval] - ub[interval]
|
293 |
+
ig = lb[interval] - f[interval]
|
294 |
+
return eq, np.hstack((le, ge, il, ig))
|
295 |
+
|
296 |
+
def jac(x):
|
297 |
+
J = cfun.jac(x)
|
298 |
+
eq = J[equal]
|
299 |
+
le = J[less]
|
300 |
+
ge = -J[greater]
|
301 |
+
il = J[interval]
|
302 |
+
ig = -il
|
303 |
+
if sps.issparse(J):
|
304 |
+
ineq = sps.vstack((le, ge, il, ig))
|
305 |
+
else:
|
306 |
+
ineq = np.vstack((le, ge, il, ig))
|
307 |
+
return eq, ineq
|
308 |
+
|
309 |
+
def hess(x, v_eq, v_ineq):
|
310 |
+
n_start = 0
|
311 |
+
v_l = v_ineq[n_start:n_start + n_less]
|
312 |
+
n_start += n_less
|
313 |
+
v_g = v_ineq[n_start:n_start + n_greater]
|
314 |
+
n_start += n_greater
|
315 |
+
v_il = v_ineq[n_start:n_start + n_interval]
|
316 |
+
n_start += n_interval
|
317 |
+
v_ig = v_ineq[n_start:n_start + n_interval]
|
318 |
+
|
319 |
+
v = np.zeros_like(lb)
|
320 |
+
v[equal] = v_eq
|
321 |
+
v[less] = v_l
|
322 |
+
v[greater] = -v_g
|
323 |
+
v[interval] = v_il - v_ig
|
324 |
+
|
325 |
+
return cfun.hess(x, v)
|
326 |
+
|
327 |
+
return cls(n_eq, n_ineq, fun, jac, hess, keep_feasible)
|
328 |
+
|
329 |
+
|
330 |
+
def initial_constraints_as_canonical(n, prepared_constraints, sparse_jacobian):
|
331 |
+
"""Convert initial values of the constraints to the canonical format.
|
332 |
+
|
333 |
+
The purpose to avoid one additional call to the constraints at the initial
|
334 |
+
point. It takes saved values in `PreparedConstraint`, modififies and
|
335 |
+
concatenates them to the canonical constraint format.
|
336 |
+
"""
|
337 |
+
c_eq = []
|
338 |
+
c_ineq = []
|
339 |
+
J_eq = []
|
340 |
+
J_ineq = []
|
341 |
+
|
342 |
+
for c in prepared_constraints:
|
343 |
+
f = c.fun.f
|
344 |
+
J = c.fun.J
|
345 |
+
lb, ub = c.bounds
|
346 |
+
if np.all(lb == ub):
|
347 |
+
c_eq.append(f - lb)
|
348 |
+
J_eq.append(J)
|
349 |
+
elif np.all(lb == -np.inf):
|
350 |
+
finite_ub = ub < np.inf
|
351 |
+
c_ineq.append(f[finite_ub] - ub[finite_ub])
|
352 |
+
J_ineq.append(J[finite_ub])
|
353 |
+
elif np.all(ub == np.inf):
|
354 |
+
finite_lb = lb > -np.inf
|
355 |
+
c_ineq.append(lb[finite_lb] - f[finite_lb])
|
356 |
+
J_ineq.append(-J[finite_lb])
|
357 |
+
else:
|
358 |
+
lb_inf = lb == -np.inf
|
359 |
+
ub_inf = ub == np.inf
|
360 |
+
equal = lb == ub
|
361 |
+
less = lb_inf & ~ub_inf
|
362 |
+
greater = ub_inf & ~lb_inf
|
363 |
+
interval = ~equal & ~lb_inf & ~ub_inf
|
364 |
+
|
365 |
+
c_eq.append(f[equal] - lb[equal])
|
366 |
+
c_ineq.append(f[less] - ub[less])
|
367 |
+
c_ineq.append(lb[greater] - f[greater])
|
368 |
+
c_ineq.append(f[interval] - ub[interval])
|
369 |
+
c_ineq.append(lb[interval] - f[interval])
|
370 |
+
|
371 |
+
J_eq.append(J[equal])
|
372 |
+
J_ineq.append(J[less])
|
373 |
+
J_ineq.append(-J[greater])
|
374 |
+
J_ineq.append(J[interval])
|
375 |
+
J_ineq.append(-J[interval])
|
376 |
+
|
377 |
+
c_eq = np.hstack(c_eq) if c_eq else np.empty(0)
|
378 |
+
c_ineq = np.hstack(c_ineq) if c_ineq else np.empty(0)
|
379 |
+
|
380 |
+
if sparse_jacobian:
|
381 |
+
vstack = sps.vstack
|
382 |
+
empty = sps.csr_matrix((0, n))
|
383 |
+
else:
|
384 |
+
vstack = np.vstack
|
385 |
+
empty = np.empty((0, n))
|
386 |
+
|
387 |
+
J_eq = vstack(J_eq) if J_eq else empty
|
388 |
+
J_ineq = vstack(J_ineq) if J_ineq else empty
|
389 |
+
|
390 |
+
return c_eq, c_ineq, J_eq, J_ineq
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/_trustregion_constr/equality_constrained_sqp.py
ADDED
@@ -0,0 +1,217 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Byrd-Omojokun Trust-Region SQP method."""
|
2 |
+
|
3 |
+
from scipy.sparse import eye as speye
|
4 |
+
from .projections import projections
|
5 |
+
from .qp_subproblem import modified_dogleg, projected_cg, box_intersections
|
6 |
+
import numpy as np
|
7 |
+
from numpy.linalg import norm
|
8 |
+
|
9 |
+
__all__ = ['equality_constrained_sqp']
|
10 |
+
|
11 |
+
|
12 |
+
def default_scaling(x):
|
13 |
+
n, = np.shape(x)
|
14 |
+
return speye(n)
|
15 |
+
|
16 |
+
|
17 |
+
def equality_constrained_sqp(fun_and_constr, grad_and_jac, lagr_hess,
|
18 |
+
x0, fun0, grad0, constr0,
|
19 |
+
jac0, stop_criteria,
|
20 |
+
state,
|
21 |
+
initial_penalty,
|
22 |
+
initial_trust_radius,
|
23 |
+
factorization_method,
|
24 |
+
trust_lb=None,
|
25 |
+
trust_ub=None,
|
26 |
+
scaling=default_scaling):
|
27 |
+
"""Solve nonlinear equality-constrained problem using trust-region SQP.
|
28 |
+
|
29 |
+
Solve optimization problem:
|
30 |
+
|
31 |
+
minimize fun(x)
|
32 |
+
subject to: constr(x) = 0
|
33 |
+
|
34 |
+
using Byrd-Omojokun Trust-Region SQP method described in [1]_. Several
|
35 |
+
implementation details are based on [2]_ and [3]_, p. 549.
|
36 |
+
|
37 |
+
References
|
38 |
+
----------
|
39 |
+
.. [1] Lalee, Marucha, Jorge Nocedal, and Todd Plantenga. "On the
|
40 |
+
implementation of an algorithm for large-scale equality
|
41 |
+
constrained optimization." SIAM Journal on
|
42 |
+
Optimization 8.3 (1998): 682-706.
|
43 |
+
.. [2] Byrd, Richard H., Mary E. Hribar, and Jorge Nocedal.
|
44 |
+
"An interior point algorithm for large-scale nonlinear
|
45 |
+
programming." SIAM Journal on Optimization 9.4 (1999): 877-900.
|
46 |
+
.. [3] Nocedal, Jorge, and Stephen J. Wright. "Numerical optimization"
|
47 |
+
Second Edition (2006).
|
48 |
+
"""
|
49 |
+
PENALTY_FACTOR = 0.3 # Rho from formula (3.51), reference [2]_, p.891.
|
50 |
+
LARGE_REDUCTION_RATIO = 0.9
|
51 |
+
INTERMEDIARY_REDUCTION_RATIO = 0.3
|
52 |
+
SUFFICIENT_REDUCTION_RATIO = 1e-8 # Eta from reference [2]_, p.892.
|
53 |
+
TRUST_ENLARGEMENT_FACTOR_L = 7.0
|
54 |
+
TRUST_ENLARGEMENT_FACTOR_S = 2.0
|
55 |
+
MAX_TRUST_REDUCTION = 0.5
|
56 |
+
MIN_TRUST_REDUCTION = 0.1
|
57 |
+
SOC_THRESHOLD = 0.1
|
58 |
+
TR_FACTOR = 0.8 # Zeta from formula (3.21), reference [2]_, p.885.
|
59 |
+
BOX_FACTOR = 0.5
|
60 |
+
|
61 |
+
n, = np.shape(x0) # Number of parameters
|
62 |
+
|
63 |
+
# Set default lower and upper bounds.
|
64 |
+
if trust_lb is None:
|
65 |
+
trust_lb = np.full(n, -np.inf)
|
66 |
+
if trust_ub is None:
|
67 |
+
trust_ub = np.full(n, np.inf)
|
68 |
+
|
69 |
+
# Initial values
|
70 |
+
x = np.copy(x0)
|
71 |
+
trust_radius = initial_trust_radius
|
72 |
+
penalty = initial_penalty
|
73 |
+
# Compute Values
|
74 |
+
f = fun0
|
75 |
+
c = grad0
|
76 |
+
b = constr0
|
77 |
+
A = jac0
|
78 |
+
S = scaling(x)
|
79 |
+
# Get projections
|
80 |
+
Z, LS, Y = projections(A, factorization_method)
|
81 |
+
# Compute least-square lagrange multipliers
|
82 |
+
v = -LS.dot(c)
|
83 |
+
# Compute Hessian
|
84 |
+
H = lagr_hess(x, v)
|
85 |
+
|
86 |
+
# Update state parameters
|
87 |
+
optimality = norm(c + A.T.dot(v), np.inf)
|
88 |
+
constr_violation = norm(b, np.inf) if len(b) > 0 else 0
|
89 |
+
cg_info = {'niter': 0, 'stop_cond': 0,
|
90 |
+
'hits_boundary': False}
|
91 |
+
|
92 |
+
last_iteration_failed = False
|
93 |
+
while not stop_criteria(state, x, last_iteration_failed,
|
94 |
+
optimality, constr_violation,
|
95 |
+
trust_radius, penalty, cg_info):
|
96 |
+
# Normal Step - `dn`
|
97 |
+
# minimize 1/2*||A dn + b||^2
|
98 |
+
# subject to:
|
99 |
+
# ||dn|| <= TR_FACTOR * trust_radius
|
100 |
+
# BOX_FACTOR * lb <= dn <= BOX_FACTOR * ub.
|
101 |
+
dn = modified_dogleg(A, Y, b,
|
102 |
+
TR_FACTOR*trust_radius,
|
103 |
+
BOX_FACTOR*trust_lb,
|
104 |
+
BOX_FACTOR*trust_ub)
|
105 |
+
|
106 |
+
# Tangential Step - `dt`
|
107 |
+
# Solve the QP problem:
|
108 |
+
# minimize 1/2 dt.T H dt + dt.T (H dn + c)
|
109 |
+
# subject to:
|
110 |
+
# A dt = 0
|
111 |
+
# ||dt|| <= sqrt(trust_radius**2 - ||dn||**2)
|
112 |
+
# lb - dn <= dt <= ub - dn
|
113 |
+
c_t = H.dot(dn) + c
|
114 |
+
b_t = np.zeros_like(b)
|
115 |
+
trust_radius_t = np.sqrt(trust_radius**2 - np.linalg.norm(dn)**2)
|
116 |
+
lb_t = trust_lb - dn
|
117 |
+
ub_t = trust_ub - dn
|
118 |
+
dt, cg_info = projected_cg(H, c_t, Z, Y, b_t,
|
119 |
+
trust_radius_t,
|
120 |
+
lb_t, ub_t)
|
121 |
+
|
122 |
+
# Compute update (normal + tangential steps).
|
123 |
+
d = dn + dt
|
124 |
+
|
125 |
+
# Compute second order model: 1/2 d H d + c.T d + f.
|
126 |
+
quadratic_model = 1/2*(H.dot(d)).dot(d) + c.T.dot(d)
|
127 |
+
# Compute linearized constraint: l = A d + b.
|
128 |
+
linearized_constr = A.dot(d)+b
|
129 |
+
# Compute new penalty parameter according to formula (3.52),
|
130 |
+
# reference [2]_, p.891.
|
131 |
+
vpred = norm(b) - norm(linearized_constr)
|
132 |
+
# Guarantee `vpred` always positive,
|
133 |
+
# regardless of roundoff errors.
|
134 |
+
vpred = max(1e-16, vpred)
|
135 |
+
previous_penalty = penalty
|
136 |
+
if quadratic_model > 0:
|
137 |
+
new_penalty = quadratic_model / ((1-PENALTY_FACTOR)*vpred)
|
138 |
+
penalty = max(penalty, new_penalty)
|
139 |
+
# Compute predicted reduction according to formula (3.52),
|
140 |
+
# reference [2]_, p.891.
|
141 |
+
predicted_reduction = -quadratic_model + penalty*vpred
|
142 |
+
|
143 |
+
# Compute merit function at current point
|
144 |
+
merit_function = f + penalty*norm(b)
|
145 |
+
# Evaluate function and constraints at trial point
|
146 |
+
x_next = x + S.dot(d)
|
147 |
+
f_next, b_next = fun_and_constr(x_next)
|
148 |
+
# Compute merit function at trial point
|
149 |
+
merit_function_next = f_next + penalty*norm(b_next)
|
150 |
+
# Compute actual reduction according to formula (3.54),
|
151 |
+
# reference [2]_, p.892.
|
152 |
+
actual_reduction = merit_function - merit_function_next
|
153 |
+
# Compute reduction ratio
|
154 |
+
reduction_ratio = actual_reduction / predicted_reduction
|
155 |
+
|
156 |
+
# Second order correction (SOC), reference [2]_, p.892.
|
157 |
+
if reduction_ratio < SUFFICIENT_REDUCTION_RATIO and \
|
158 |
+
norm(dn) <= SOC_THRESHOLD * norm(dt):
|
159 |
+
# Compute second order correction
|
160 |
+
y = -Y.dot(b_next)
|
161 |
+
# Make sure increment is inside box constraints
|
162 |
+
_, t, intersect = box_intersections(d, y, trust_lb, trust_ub)
|
163 |
+
# Compute tentative point
|
164 |
+
x_soc = x + S.dot(d + t*y)
|
165 |
+
f_soc, b_soc = fun_and_constr(x_soc)
|
166 |
+
# Recompute actual reduction
|
167 |
+
merit_function_soc = f_soc + penalty*norm(b_soc)
|
168 |
+
actual_reduction_soc = merit_function - merit_function_soc
|
169 |
+
# Recompute reduction ratio
|
170 |
+
reduction_ratio_soc = actual_reduction_soc / predicted_reduction
|
171 |
+
if intersect and reduction_ratio_soc >= SUFFICIENT_REDUCTION_RATIO:
|
172 |
+
x_next = x_soc
|
173 |
+
f_next = f_soc
|
174 |
+
b_next = b_soc
|
175 |
+
reduction_ratio = reduction_ratio_soc
|
176 |
+
|
177 |
+
# Readjust trust region step, formula (3.55), reference [2]_, p.892.
|
178 |
+
if reduction_ratio >= LARGE_REDUCTION_RATIO:
|
179 |
+
trust_radius = max(TRUST_ENLARGEMENT_FACTOR_L * norm(d),
|
180 |
+
trust_radius)
|
181 |
+
elif reduction_ratio >= INTERMEDIARY_REDUCTION_RATIO:
|
182 |
+
trust_radius = max(TRUST_ENLARGEMENT_FACTOR_S * norm(d),
|
183 |
+
trust_radius)
|
184 |
+
# Reduce trust region step, according to reference [3]_, p.696.
|
185 |
+
elif reduction_ratio < SUFFICIENT_REDUCTION_RATIO:
|
186 |
+
trust_reduction = ((1-SUFFICIENT_REDUCTION_RATIO) /
|
187 |
+
(1-reduction_ratio))
|
188 |
+
new_trust_radius = trust_reduction * norm(d)
|
189 |
+
if new_trust_radius >= MAX_TRUST_REDUCTION * trust_radius:
|
190 |
+
trust_radius *= MAX_TRUST_REDUCTION
|
191 |
+
elif new_trust_radius >= MIN_TRUST_REDUCTION * trust_radius:
|
192 |
+
trust_radius = new_trust_radius
|
193 |
+
else:
|
194 |
+
trust_radius *= MIN_TRUST_REDUCTION
|
195 |
+
|
196 |
+
# Update iteration
|
197 |
+
if reduction_ratio >= SUFFICIENT_REDUCTION_RATIO:
|
198 |
+
x = x_next
|
199 |
+
f, b = f_next, b_next
|
200 |
+
c, A = grad_and_jac(x)
|
201 |
+
S = scaling(x)
|
202 |
+
# Get projections
|
203 |
+
Z, LS, Y = projections(A, factorization_method)
|
204 |
+
# Compute least-square lagrange multipliers
|
205 |
+
v = -LS.dot(c)
|
206 |
+
# Compute Hessian
|
207 |
+
H = lagr_hess(x, v)
|
208 |
+
# Set Flag
|
209 |
+
last_iteration_failed = False
|
210 |
+
# Otimality values
|
211 |
+
optimality = norm(c + A.T.dot(v), np.inf)
|
212 |
+
constr_violation = norm(b, np.inf) if len(b) > 0 else 0
|
213 |
+
else:
|
214 |
+
penalty = previous_penalty
|
215 |
+
last_iteration_failed = True
|
216 |
+
|
217 |
+
return x, state
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/_trustregion_constr/minimize_trustregion_constr.py
ADDED
@@ -0,0 +1,564 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
import numpy as np
|
3 |
+
from scipy.sparse.linalg import LinearOperator
|
4 |
+
from .._differentiable_functions import VectorFunction
|
5 |
+
from .._constraints import (
|
6 |
+
NonlinearConstraint, LinearConstraint, PreparedConstraint, Bounds, strict_bounds)
|
7 |
+
from .._hessian_update_strategy import BFGS
|
8 |
+
from .._optimize import OptimizeResult
|
9 |
+
from .._differentiable_functions import ScalarFunction
|
10 |
+
from .equality_constrained_sqp import equality_constrained_sqp
|
11 |
+
from .canonical_constraint import (CanonicalConstraint,
|
12 |
+
initial_constraints_as_canonical)
|
13 |
+
from .tr_interior_point import tr_interior_point
|
14 |
+
from .report import BasicReport, SQPReport, IPReport
|
15 |
+
|
16 |
+
|
17 |
+
TERMINATION_MESSAGES = {
|
18 |
+
0: "The maximum number of function evaluations is exceeded.",
|
19 |
+
1: "`gtol` termination condition is satisfied.",
|
20 |
+
2: "`xtol` termination condition is satisfied.",
|
21 |
+
3: "`callback` function requested termination."
|
22 |
+
}
|
23 |
+
|
24 |
+
|
25 |
+
class HessianLinearOperator:
|
26 |
+
"""Build LinearOperator from hessp"""
|
27 |
+
def __init__(self, hessp, n):
|
28 |
+
self.hessp = hessp
|
29 |
+
self.n = n
|
30 |
+
|
31 |
+
def __call__(self, x, *args):
|
32 |
+
def matvec(p):
|
33 |
+
return self.hessp(x, p, *args)
|
34 |
+
|
35 |
+
return LinearOperator((self.n, self.n), matvec=matvec)
|
36 |
+
|
37 |
+
|
38 |
+
class LagrangianHessian:
|
39 |
+
"""The Hessian of the Lagrangian as LinearOperator.
|
40 |
+
|
41 |
+
The Lagrangian is computed as the objective function plus all the
|
42 |
+
constraints multiplied with some numbers (Lagrange multipliers).
|
43 |
+
"""
|
44 |
+
def __init__(self, n, objective_hess, constraints_hess):
|
45 |
+
self.n = n
|
46 |
+
self.objective_hess = objective_hess
|
47 |
+
self.constraints_hess = constraints_hess
|
48 |
+
|
49 |
+
def __call__(self, x, v_eq=np.empty(0), v_ineq=np.empty(0)):
|
50 |
+
H_objective = self.objective_hess(x)
|
51 |
+
H_constraints = self.constraints_hess(x, v_eq, v_ineq)
|
52 |
+
|
53 |
+
def matvec(p):
|
54 |
+
return H_objective.dot(p) + H_constraints.dot(p)
|
55 |
+
|
56 |
+
return LinearOperator((self.n, self.n), matvec)
|
57 |
+
|
58 |
+
|
59 |
+
def update_state_sqp(state, x, last_iteration_failed, objective, prepared_constraints,
|
60 |
+
start_time, tr_radius, constr_penalty, cg_info):
|
61 |
+
state.nit += 1
|
62 |
+
state.nfev = objective.nfev
|
63 |
+
state.njev = objective.ngev
|
64 |
+
state.nhev = objective.nhev
|
65 |
+
state.constr_nfev = [c.fun.nfev if isinstance(c.fun, VectorFunction) else 0
|
66 |
+
for c in prepared_constraints]
|
67 |
+
state.constr_njev = [c.fun.njev if isinstance(c.fun, VectorFunction) else 0
|
68 |
+
for c in prepared_constraints]
|
69 |
+
state.constr_nhev = [c.fun.nhev if isinstance(c.fun, VectorFunction) else 0
|
70 |
+
for c in prepared_constraints]
|
71 |
+
|
72 |
+
if not last_iteration_failed:
|
73 |
+
state.x = x
|
74 |
+
state.fun = objective.f
|
75 |
+
state.grad = objective.g
|
76 |
+
state.v = [c.fun.v for c in prepared_constraints]
|
77 |
+
state.constr = [c.fun.f for c in prepared_constraints]
|
78 |
+
state.jac = [c.fun.J for c in prepared_constraints]
|
79 |
+
# Compute Lagrangian Gradient
|
80 |
+
state.lagrangian_grad = np.copy(state.grad)
|
81 |
+
for c in prepared_constraints:
|
82 |
+
state.lagrangian_grad += c.fun.J.T.dot(c.fun.v)
|
83 |
+
state.optimality = np.linalg.norm(state.lagrangian_grad, np.inf)
|
84 |
+
# Compute maximum constraint violation
|
85 |
+
state.constr_violation = 0
|
86 |
+
for i in range(len(prepared_constraints)):
|
87 |
+
lb, ub = prepared_constraints[i].bounds
|
88 |
+
c = state.constr[i]
|
89 |
+
state.constr_violation = np.max([state.constr_violation,
|
90 |
+
np.max(lb - c),
|
91 |
+
np.max(c - ub)])
|
92 |
+
|
93 |
+
state.execution_time = time.time() - start_time
|
94 |
+
state.tr_radius = tr_radius
|
95 |
+
state.constr_penalty = constr_penalty
|
96 |
+
state.cg_niter += cg_info["niter"]
|
97 |
+
state.cg_stop_cond = cg_info["stop_cond"]
|
98 |
+
|
99 |
+
return state
|
100 |
+
|
101 |
+
|
102 |
+
def update_state_ip(state, x, last_iteration_failed, objective,
|
103 |
+
prepared_constraints, start_time,
|
104 |
+
tr_radius, constr_penalty, cg_info,
|
105 |
+
barrier_parameter, barrier_tolerance):
|
106 |
+
state = update_state_sqp(state, x, last_iteration_failed, objective,
|
107 |
+
prepared_constraints, start_time, tr_radius,
|
108 |
+
constr_penalty, cg_info)
|
109 |
+
state.barrier_parameter = barrier_parameter
|
110 |
+
state.barrier_tolerance = barrier_tolerance
|
111 |
+
return state
|
112 |
+
|
113 |
+
|
114 |
+
def _minimize_trustregion_constr(fun, x0, args, grad,
|
115 |
+
hess, hessp, bounds, constraints,
|
116 |
+
xtol=1e-8, gtol=1e-8,
|
117 |
+
barrier_tol=1e-8,
|
118 |
+
sparse_jacobian=None,
|
119 |
+
callback=None, maxiter=1000,
|
120 |
+
verbose=0, finite_diff_rel_step=None,
|
121 |
+
initial_constr_penalty=1.0, initial_tr_radius=1.0,
|
122 |
+
initial_barrier_parameter=0.1,
|
123 |
+
initial_barrier_tolerance=0.1,
|
124 |
+
factorization_method=None,
|
125 |
+
disp=False):
|
126 |
+
"""Minimize a scalar function subject to constraints.
|
127 |
+
|
128 |
+
Parameters
|
129 |
+
----------
|
130 |
+
gtol : float, optional
|
131 |
+
Tolerance for termination by the norm of the Lagrangian gradient.
|
132 |
+
The algorithm will terminate when both the infinity norm (i.e., max
|
133 |
+
abs value) of the Lagrangian gradient and the constraint violation
|
134 |
+
are smaller than ``gtol``. Default is 1e-8.
|
135 |
+
xtol : float, optional
|
136 |
+
Tolerance for termination by the change of the independent variable.
|
137 |
+
The algorithm will terminate when ``tr_radius < xtol``, where
|
138 |
+
``tr_radius`` is the radius of the trust region used in the algorithm.
|
139 |
+
Default is 1e-8.
|
140 |
+
barrier_tol : float, optional
|
141 |
+
Threshold on the barrier parameter for the algorithm termination.
|
142 |
+
When inequality constraints are present, the algorithm will terminate
|
143 |
+
only when the barrier parameter is less than `barrier_tol`.
|
144 |
+
Default is 1e-8.
|
145 |
+
sparse_jacobian : {bool, None}, optional
|
146 |
+
Determines how to represent Jacobians of the constraints. If bool,
|
147 |
+
then Jacobians of all the constraints will be converted to the
|
148 |
+
corresponding format. If None (default), then Jacobians won't be
|
149 |
+
converted, but the algorithm can proceed only if they all have the
|
150 |
+
same format.
|
151 |
+
initial_tr_radius: float, optional
|
152 |
+
Initial trust radius. The trust radius gives the maximum distance
|
153 |
+
between solution points in consecutive iterations. It reflects the
|
154 |
+
trust the algorithm puts in the local approximation of the optimization
|
155 |
+
problem. For an accurate local approximation the trust-region should be
|
156 |
+
large and for an approximation valid only close to the current point it
|
157 |
+
should be a small one. The trust radius is automatically updated throughout
|
158 |
+
the optimization process, with ``initial_tr_radius`` being its initial value.
|
159 |
+
Default is 1 (recommended in [1]_, p. 19).
|
160 |
+
initial_constr_penalty : float, optional
|
161 |
+
Initial constraints penalty parameter. The penalty parameter is used for
|
162 |
+
balancing the requirements of decreasing the objective function
|
163 |
+
and satisfying the constraints. It is used for defining the merit function:
|
164 |
+
``merit_function(x) = fun(x) + constr_penalty * constr_norm_l2(x)``,
|
165 |
+
where ``constr_norm_l2(x)`` is the l2 norm of a vector containing all
|
166 |
+
the constraints. The merit function is used for accepting or rejecting
|
167 |
+
trial points and ``constr_penalty`` weights the two conflicting goals
|
168 |
+
of reducing objective function and constraints. The penalty is automatically
|
169 |
+
updated throughout the optimization process, with
|
170 |
+
``initial_constr_penalty`` being its initial value. Default is 1
|
171 |
+
(recommended in [1]_, p 19).
|
172 |
+
initial_barrier_parameter, initial_barrier_tolerance: float, optional
|
173 |
+
Initial barrier parameter and initial tolerance for the barrier subproblem.
|
174 |
+
Both are used only when inequality constraints are present. For dealing with
|
175 |
+
optimization problems ``min_x f(x)`` subject to inequality constraints
|
176 |
+
``c(x) <= 0`` the algorithm introduces slack variables, solving the problem
|
177 |
+
``min_(x,s) f(x) + barrier_parameter*sum(ln(s))`` subject to the equality
|
178 |
+
constraints ``c(x) + s = 0`` instead of the original problem. This subproblem
|
179 |
+
is solved for decreasing values of ``barrier_parameter`` and with decreasing
|
180 |
+
tolerances for the termination, starting with ``initial_barrier_parameter``
|
181 |
+
for the barrier parameter and ``initial_barrier_tolerance`` for the
|
182 |
+
barrier tolerance. Default is 0.1 for both values (recommended in [1]_ p. 19).
|
183 |
+
Also note that ``barrier_parameter`` and ``barrier_tolerance`` are updated
|
184 |
+
with the same prefactor.
|
185 |
+
factorization_method : string or None, optional
|
186 |
+
Method to factorize the Jacobian of the constraints. Use None (default)
|
187 |
+
for the auto selection or one of:
|
188 |
+
|
189 |
+
- 'NormalEquation' (requires scikit-sparse)
|
190 |
+
- 'AugmentedSystem'
|
191 |
+
- 'QRFactorization'
|
192 |
+
- 'SVDFactorization'
|
193 |
+
|
194 |
+
The methods 'NormalEquation' and 'AugmentedSystem' can be used only
|
195 |
+
with sparse constraints. The projections required by the algorithm
|
196 |
+
will be computed using, respectively, the normal equation and the
|
197 |
+
augmented system approaches explained in [1]_. 'NormalEquation'
|
198 |
+
computes the Cholesky factorization of ``A A.T`` and 'AugmentedSystem'
|
199 |
+
performs the LU factorization of an augmented system. They usually
|
200 |
+
provide similar results. 'AugmentedSystem' is used by default for
|
201 |
+
sparse matrices.
|
202 |
+
|
203 |
+
The methods 'QRFactorization' and 'SVDFactorization' can be used
|
204 |
+
only with dense constraints. They compute the required projections
|
205 |
+
using, respectively, QR and SVD factorizations. The 'SVDFactorization'
|
206 |
+
method can cope with Jacobian matrices with deficient row rank and will
|
207 |
+
be used whenever other factorization methods fail (which may imply the
|
208 |
+
conversion of sparse matrices to a dense format when required).
|
209 |
+
By default, 'QRFactorization' is used for dense matrices.
|
210 |
+
finite_diff_rel_step : None or array_like, optional
|
211 |
+
Relative step size for the finite difference approximation.
|
212 |
+
maxiter : int, optional
|
213 |
+
Maximum number of algorithm iterations. Default is 1000.
|
214 |
+
verbose : {0, 1, 2}, optional
|
215 |
+
Level of algorithm's verbosity:
|
216 |
+
|
217 |
+
* 0 (default) : work silently.
|
218 |
+
* 1 : display a termination report.
|
219 |
+
* 2 : display progress during iterations.
|
220 |
+
* 3 : display progress during iterations (more complete report).
|
221 |
+
|
222 |
+
disp : bool, optional
|
223 |
+
If True (default), then `verbose` will be set to 1 if it was 0.
|
224 |
+
|
225 |
+
Returns
|
226 |
+
-------
|
227 |
+
`OptimizeResult` with the fields documented below. Note the following:
|
228 |
+
|
229 |
+
1. All values corresponding to the constraints are ordered as they
|
230 |
+
were passed to the solver. And values corresponding to `bounds`
|
231 |
+
constraints are put *after* other constraints.
|
232 |
+
2. All numbers of function, Jacobian or Hessian evaluations correspond
|
233 |
+
to numbers of actual Python function calls. It means, for example,
|
234 |
+
that if a Jacobian is estimated by finite differences, then the
|
235 |
+
number of Jacobian evaluations will be zero and the number of
|
236 |
+
function evaluations will be incremented by all calls during the
|
237 |
+
finite difference estimation.
|
238 |
+
|
239 |
+
x : ndarray, shape (n,)
|
240 |
+
Solution found.
|
241 |
+
optimality : float
|
242 |
+
Infinity norm of the Lagrangian gradient at the solution.
|
243 |
+
constr_violation : float
|
244 |
+
Maximum constraint violation at the solution.
|
245 |
+
fun : float
|
246 |
+
Objective function at the solution.
|
247 |
+
grad : ndarray, shape (n,)
|
248 |
+
Gradient of the objective function at the solution.
|
249 |
+
lagrangian_grad : ndarray, shape (n,)
|
250 |
+
Gradient of the Lagrangian function at the solution.
|
251 |
+
nit : int
|
252 |
+
Total number of iterations.
|
253 |
+
nfev : integer
|
254 |
+
Number of the objective function evaluations.
|
255 |
+
njev : integer
|
256 |
+
Number of the objective function gradient evaluations.
|
257 |
+
nhev : integer
|
258 |
+
Number of the objective function Hessian evaluations.
|
259 |
+
cg_niter : int
|
260 |
+
Total number of the conjugate gradient method iterations.
|
261 |
+
method : {'equality_constrained_sqp', 'tr_interior_point'}
|
262 |
+
Optimization method used.
|
263 |
+
constr : list of ndarray
|
264 |
+
List of constraint values at the solution.
|
265 |
+
jac : list of {ndarray, sparse matrix}
|
266 |
+
List of the Jacobian matrices of the constraints at the solution.
|
267 |
+
v : list of ndarray
|
268 |
+
List of the Lagrange multipliers for the constraints at the solution.
|
269 |
+
For an inequality constraint a positive multiplier means that the upper
|
270 |
+
bound is active, a negative multiplier means that the lower bound is
|
271 |
+
active and if a multiplier is zero it means the constraint is not
|
272 |
+
active.
|
273 |
+
constr_nfev : list of int
|
274 |
+
Number of constraint evaluations for each of the constraints.
|
275 |
+
constr_njev : list of int
|
276 |
+
Number of Jacobian matrix evaluations for each of the constraints.
|
277 |
+
constr_nhev : list of int
|
278 |
+
Number of Hessian evaluations for each of the constraints.
|
279 |
+
tr_radius : float
|
280 |
+
Radius of the trust region at the last iteration.
|
281 |
+
constr_penalty : float
|
282 |
+
Penalty parameter at the last iteration, see `initial_constr_penalty`.
|
283 |
+
barrier_tolerance : float
|
284 |
+
Tolerance for the barrier subproblem at the last iteration.
|
285 |
+
Only for problems with inequality constraints.
|
286 |
+
barrier_parameter : float
|
287 |
+
Barrier parameter at the last iteration. Only for problems
|
288 |
+
with inequality constraints.
|
289 |
+
execution_time : float
|
290 |
+
Total execution time.
|
291 |
+
message : str
|
292 |
+
Termination message.
|
293 |
+
status : {0, 1, 2, 3}
|
294 |
+
Termination status:
|
295 |
+
|
296 |
+
* 0 : The maximum number of function evaluations is exceeded.
|
297 |
+
* 1 : `gtol` termination condition is satisfied.
|
298 |
+
* 2 : `xtol` termination condition is satisfied.
|
299 |
+
* 3 : `callback` function requested termination.
|
300 |
+
|
301 |
+
cg_stop_cond : int
|
302 |
+
Reason for CG subproblem termination at the last iteration:
|
303 |
+
|
304 |
+
* 0 : CG subproblem not evaluated.
|
305 |
+
* 1 : Iteration limit was reached.
|
306 |
+
* 2 : Reached the trust-region boundary.
|
307 |
+
* 3 : Negative curvature detected.
|
308 |
+
* 4 : Tolerance was satisfied.
|
309 |
+
|
310 |
+
References
|
311 |
+
----------
|
312 |
+
.. [1] Conn, A. R., Gould, N. I., & Toint, P. L.
|
313 |
+
Trust region methods. 2000. Siam. pp. 19.
|
314 |
+
"""
|
315 |
+
x0 = np.atleast_1d(x0).astype(float)
|
316 |
+
n_vars = np.size(x0)
|
317 |
+
if hess is None:
|
318 |
+
if callable(hessp):
|
319 |
+
hess = HessianLinearOperator(hessp, n_vars)
|
320 |
+
else:
|
321 |
+
hess = BFGS()
|
322 |
+
if disp and verbose == 0:
|
323 |
+
verbose = 1
|
324 |
+
|
325 |
+
if bounds is not None:
|
326 |
+
modified_lb = np.nextafter(bounds.lb, -np.inf, where=bounds.lb > -np.inf)
|
327 |
+
modified_ub = np.nextafter(bounds.ub, np.inf, where=bounds.ub < np.inf)
|
328 |
+
modified_lb = np.where(np.isfinite(bounds.lb), modified_lb, bounds.lb)
|
329 |
+
modified_ub = np.where(np.isfinite(bounds.ub), modified_ub, bounds.ub)
|
330 |
+
bounds = Bounds(modified_lb, modified_ub, keep_feasible=bounds.keep_feasible)
|
331 |
+
finite_diff_bounds = strict_bounds(bounds.lb, bounds.ub,
|
332 |
+
bounds.keep_feasible, n_vars)
|
333 |
+
else:
|
334 |
+
finite_diff_bounds = (-np.inf, np.inf)
|
335 |
+
|
336 |
+
# Define Objective Function
|
337 |
+
objective = ScalarFunction(fun, x0, args, grad, hess,
|
338 |
+
finite_diff_rel_step, finite_diff_bounds)
|
339 |
+
|
340 |
+
# Put constraints in list format when needed.
|
341 |
+
if isinstance(constraints, (NonlinearConstraint, LinearConstraint)):
|
342 |
+
constraints = [constraints]
|
343 |
+
|
344 |
+
# Prepare constraints.
|
345 |
+
prepared_constraints = [
|
346 |
+
PreparedConstraint(c, x0, sparse_jacobian, finite_diff_bounds)
|
347 |
+
for c in constraints]
|
348 |
+
|
349 |
+
# Check that all constraints are either sparse or dense.
|
350 |
+
n_sparse = sum(c.fun.sparse_jacobian for c in prepared_constraints)
|
351 |
+
if 0 < n_sparse < len(prepared_constraints):
|
352 |
+
raise ValueError("All constraints must have the same kind of the "
|
353 |
+
"Jacobian --- either all sparse or all dense. "
|
354 |
+
"You can set the sparsity globally by setting "
|
355 |
+
"`sparse_jacobian` to either True of False.")
|
356 |
+
if prepared_constraints:
|
357 |
+
sparse_jacobian = n_sparse > 0
|
358 |
+
|
359 |
+
if bounds is not None:
|
360 |
+
if sparse_jacobian is None:
|
361 |
+
sparse_jacobian = True
|
362 |
+
prepared_constraints.append(PreparedConstraint(bounds, x0,
|
363 |
+
sparse_jacobian))
|
364 |
+
|
365 |
+
# Concatenate initial constraints to the canonical form.
|
366 |
+
c_eq0, c_ineq0, J_eq0, J_ineq0 = initial_constraints_as_canonical(
|
367 |
+
n_vars, prepared_constraints, sparse_jacobian)
|
368 |
+
|
369 |
+
# Prepare all canonical constraints and concatenate it into one.
|
370 |
+
canonical_all = [CanonicalConstraint.from_PreparedConstraint(c)
|
371 |
+
for c in prepared_constraints]
|
372 |
+
|
373 |
+
if len(canonical_all) == 0:
|
374 |
+
canonical = CanonicalConstraint.empty(n_vars)
|
375 |
+
elif len(canonical_all) == 1:
|
376 |
+
canonical = canonical_all[0]
|
377 |
+
else:
|
378 |
+
canonical = CanonicalConstraint.concatenate(canonical_all,
|
379 |
+
sparse_jacobian)
|
380 |
+
|
381 |
+
# Generate the Hessian of the Lagrangian.
|
382 |
+
lagrangian_hess = LagrangianHessian(n_vars, objective.hess, canonical.hess)
|
383 |
+
|
384 |
+
# Choose appropriate method
|
385 |
+
if canonical.n_ineq == 0:
|
386 |
+
method = 'equality_constrained_sqp'
|
387 |
+
else:
|
388 |
+
method = 'tr_interior_point'
|
389 |
+
|
390 |
+
# Construct OptimizeResult
|
391 |
+
state = OptimizeResult(
|
392 |
+
nit=0, nfev=0, njev=0, nhev=0,
|
393 |
+
cg_niter=0, cg_stop_cond=0,
|
394 |
+
fun=objective.f, grad=objective.g,
|
395 |
+
lagrangian_grad=np.copy(objective.g),
|
396 |
+
constr=[c.fun.f for c in prepared_constraints],
|
397 |
+
jac=[c.fun.J for c in prepared_constraints],
|
398 |
+
constr_nfev=[0 for c in prepared_constraints],
|
399 |
+
constr_njev=[0 for c in prepared_constraints],
|
400 |
+
constr_nhev=[0 for c in prepared_constraints],
|
401 |
+
v=[c.fun.v for c in prepared_constraints],
|
402 |
+
method=method)
|
403 |
+
|
404 |
+
# Start counting
|
405 |
+
start_time = time.time()
|
406 |
+
|
407 |
+
# Define stop criteria
|
408 |
+
if method == 'equality_constrained_sqp':
|
409 |
+
def stop_criteria(state, x, last_iteration_failed,
|
410 |
+
optimality, constr_violation,
|
411 |
+
tr_radius, constr_penalty, cg_info):
|
412 |
+
state = update_state_sqp(state, x, last_iteration_failed,
|
413 |
+
objective, prepared_constraints,
|
414 |
+
start_time, tr_radius, constr_penalty,
|
415 |
+
cg_info)
|
416 |
+
if verbose == 2:
|
417 |
+
BasicReport.print_iteration(state.nit,
|
418 |
+
state.nfev,
|
419 |
+
state.cg_niter,
|
420 |
+
state.fun,
|
421 |
+
state.tr_radius,
|
422 |
+
state.optimality,
|
423 |
+
state.constr_violation)
|
424 |
+
elif verbose > 2:
|
425 |
+
SQPReport.print_iteration(state.nit,
|
426 |
+
state.nfev,
|
427 |
+
state.cg_niter,
|
428 |
+
state.fun,
|
429 |
+
state.tr_radius,
|
430 |
+
state.optimality,
|
431 |
+
state.constr_violation,
|
432 |
+
state.constr_penalty,
|
433 |
+
state.cg_stop_cond)
|
434 |
+
state.status = None
|
435 |
+
state.niter = state.nit # Alias for callback (backward-compatibility)
|
436 |
+
if callback is not None:
|
437 |
+
callback_stop = False
|
438 |
+
try:
|
439 |
+
callback_stop = callback(state)
|
440 |
+
except StopIteration:
|
441 |
+
callback_stop = True
|
442 |
+
if callback_stop:
|
443 |
+
state.status = 3
|
444 |
+
return True
|
445 |
+
if state.optimality < gtol and state.constr_violation < gtol:
|
446 |
+
state.status = 1
|
447 |
+
elif state.tr_radius < xtol:
|
448 |
+
state.status = 2
|
449 |
+
elif state.nit >= maxiter:
|
450 |
+
state.status = 0
|
451 |
+
return state.status in (0, 1, 2, 3)
|
452 |
+
elif method == 'tr_interior_point':
|
453 |
+
def stop_criteria(state, x, last_iteration_failed, tr_radius,
|
454 |
+
constr_penalty, cg_info, barrier_parameter,
|
455 |
+
barrier_tolerance):
|
456 |
+
state = update_state_ip(state, x, last_iteration_failed,
|
457 |
+
objective, prepared_constraints,
|
458 |
+
start_time, tr_radius, constr_penalty,
|
459 |
+
cg_info, barrier_parameter, barrier_tolerance)
|
460 |
+
if verbose == 2:
|
461 |
+
BasicReport.print_iteration(state.nit,
|
462 |
+
state.nfev,
|
463 |
+
state.cg_niter,
|
464 |
+
state.fun,
|
465 |
+
state.tr_radius,
|
466 |
+
state.optimality,
|
467 |
+
state.constr_violation)
|
468 |
+
elif verbose > 2:
|
469 |
+
IPReport.print_iteration(state.nit,
|
470 |
+
state.nfev,
|
471 |
+
state.cg_niter,
|
472 |
+
state.fun,
|
473 |
+
state.tr_radius,
|
474 |
+
state.optimality,
|
475 |
+
state.constr_violation,
|
476 |
+
state.constr_penalty,
|
477 |
+
state.barrier_parameter,
|
478 |
+
state.cg_stop_cond)
|
479 |
+
state.status = None
|
480 |
+
state.niter = state.nit # Alias for callback (backward compatibility)
|
481 |
+
if callback is not None:
|
482 |
+
callback_stop = False
|
483 |
+
try:
|
484 |
+
callback_stop = callback(state)
|
485 |
+
except StopIteration:
|
486 |
+
callback_stop = True
|
487 |
+
if callback_stop:
|
488 |
+
state.status = 3
|
489 |
+
return True
|
490 |
+
if state.optimality < gtol and state.constr_violation < gtol:
|
491 |
+
state.status = 1
|
492 |
+
elif (state.tr_radius < xtol
|
493 |
+
and state.barrier_parameter < barrier_tol):
|
494 |
+
state.status = 2
|
495 |
+
elif state.nit >= maxiter:
|
496 |
+
state.status = 0
|
497 |
+
return state.status in (0, 1, 2, 3)
|
498 |
+
|
499 |
+
if verbose == 2:
|
500 |
+
BasicReport.print_header()
|
501 |
+
elif verbose > 2:
|
502 |
+
if method == 'equality_constrained_sqp':
|
503 |
+
SQPReport.print_header()
|
504 |
+
elif method == 'tr_interior_point':
|
505 |
+
IPReport.print_header()
|
506 |
+
|
507 |
+
# Call inferior function to do the optimization
|
508 |
+
if method == 'equality_constrained_sqp':
|
509 |
+
def fun_and_constr(x):
|
510 |
+
f = objective.fun(x)
|
511 |
+
c_eq, _ = canonical.fun(x)
|
512 |
+
return f, c_eq
|
513 |
+
|
514 |
+
def grad_and_jac(x):
|
515 |
+
g = objective.grad(x)
|
516 |
+
J_eq, _ = canonical.jac(x)
|
517 |
+
return g, J_eq
|
518 |
+
|
519 |
+
_, result = equality_constrained_sqp(
|
520 |
+
fun_and_constr, grad_and_jac, lagrangian_hess,
|
521 |
+
x0, objective.f, objective.g,
|
522 |
+
c_eq0, J_eq0,
|
523 |
+
stop_criteria, state,
|
524 |
+
initial_constr_penalty, initial_tr_radius,
|
525 |
+
factorization_method)
|
526 |
+
|
527 |
+
elif method == 'tr_interior_point':
|
528 |
+
_, result = tr_interior_point(
|
529 |
+
objective.fun, objective.grad, lagrangian_hess,
|
530 |
+
n_vars, canonical.n_ineq, canonical.n_eq,
|
531 |
+
canonical.fun, canonical.jac,
|
532 |
+
x0, objective.f, objective.g,
|
533 |
+
c_ineq0, J_ineq0, c_eq0, J_eq0,
|
534 |
+
stop_criteria,
|
535 |
+
canonical.keep_feasible,
|
536 |
+
xtol, state, initial_barrier_parameter,
|
537 |
+
initial_barrier_tolerance,
|
538 |
+
initial_constr_penalty, initial_tr_radius,
|
539 |
+
factorization_method)
|
540 |
+
|
541 |
+
# Status 3 occurs when the callback function requests termination,
|
542 |
+
# this is assumed to not be a success.
|
543 |
+
result.success = True if result.status in (1, 2) else False
|
544 |
+
result.message = TERMINATION_MESSAGES[result.status]
|
545 |
+
|
546 |
+
# Alias (for backward compatibility with 1.1.0)
|
547 |
+
result.niter = result.nit
|
548 |
+
|
549 |
+
if verbose == 2:
|
550 |
+
BasicReport.print_footer()
|
551 |
+
elif verbose > 2:
|
552 |
+
if method == 'equality_constrained_sqp':
|
553 |
+
SQPReport.print_footer()
|
554 |
+
elif method == 'tr_interior_point':
|
555 |
+
IPReport.print_footer()
|
556 |
+
if verbose >= 1:
|
557 |
+
print(result.message)
|
558 |
+
print("Number of iterations: {}, function evaluations: {}, "
|
559 |
+
"CG iterations: {}, optimality: {:.2e}, "
|
560 |
+
"constraint violation: {:.2e}, execution time: {:4.2} s."
|
561 |
+
.format(result.nit, result.nfev, result.cg_niter,
|
562 |
+
result.optimality, result.constr_violation,
|
563 |
+
result.execution_time))
|
564 |
+
return result
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/_trustregion_constr/projections.py
ADDED
@@ -0,0 +1,407 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Basic linear factorizations needed by the solver."""
|
2 |
+
|
3 |
+
from scipy.sparse import (bmat, csc_matrix, eye, issparse)
|
4 |
+
from scipy.sparse.linalg import LinearOperator
|
5 |
+
import scipy.linalg
|
6 |
+
import scipy.sparse.linalg
|
7 |
+
try:
|
8 |
+
from sksparse.cholmod import cholesky_AAt
|
9 |
+
sksparse_available = True
|
10 |
+
except ImportError:
|
11 |
+
import warnings
|
12 |
+
sksparse_available = False
|
13 |
+
import numpy as np
|
14 |
+
from warnings import warn
|
15 |
+
|
16 |
+
__all__ = [
|
17 |
+
'orthogonality',
|
18 |
+
'projections',
|
19 |
+
]
|
20 |
+
|
21 |
+
|
22 |
+
def orthogonality(A, g):
|
23 |
+
"""Measure orthogonality between a vector and the null space of a matrix.
|
24 |
+
|
25 |
+
Compute a measure of orthogonality between the null space
|
26 |
+
of the (possibly sparse) matrix ``A`` and a given vector ``g``.
|
27 |
+
|
28 |
+
The formula is a simplified (and cheaper) version of formula (3.13)
|
29 |
+
from [1]_.
|
30 |
+
``orth = norm(A g, ord=2)/(norm(A, ord='fro')*norm(g, ord=2))``.
|
31 |
+
|
32 |
+
References
|
33 |
+
----------
|
34 |
+
.. [1] Gould, Nicholas IM, Mary E. Hribar, and Jorge Nocedal.
|
35 |
+
"On the solution of equality constrained quadratic
|
36 |
+
programming problems arising in optimization."
|
37 |
+
SIAM Journal on Scientific Computing 23.4 (2001): 1376-1395.
|
38 |
+
"""
|
39 |
+
# Compute vector norms
|
40 |
+
norm_g = np.linalg.norm(g)
|
41 |
+
# Compute Froebnius norm of the matrix A
|
42 |
+
if issparse(A):
|
43 |
+
norm_A = scipy.sparse.linalg.norm(A, ord='fro')
|
44 |
+
else:
|
45 |
+
norm_A = np.linalg.norm(A, ord='fro')
|
46 |
+
|
47 |
+
# Check if norms are zero
|
48 |
+
if norm_g == 0 or norm_A == 0:
|
49 |
+
return 0
|
50 |
+
|
51 |
+
norm_A_g = np.linalg.norm(A.dot(g))
|
52 |
+
# Orthogonality measure
|
53 |
+
orth = norm_A_g / (norm_A*norm_g)
|
54 |
+
return orth
|
55 |
+
|
56 |
+
|
57 |
+
def normal_equation_projections(A, m, n, orth_tol, max_refin, tol):
|
58 |
+
"""Return linear operators for matrix A using ``NormalEquation`` approach.
|
59 |
+
"""
|
60 |
+
# Cholesky factorization
|
61 |
+
factor = cholesky_AAt(A)
|
62 |
+
|
63 |
+
# z = x - A.T inv(A A.T) A x
|
64 |
+
def null_space(x):
|
65 |
+
v = factor(A.dot(x))
|
66 |
+
z = x - A.T.dot(v)
|
67 |
+
|
68 |
+
# Iterative refinement to improve roundoff
|
69 |
+
# errors described in [2]_, algorithm 5.1.
|
70 |
+
k = 0
|
71 |
+
while orthogonality(A, z) > orth_tol:
|
72 |
+
if k >= max_refin:
|
73 |
+
break
|
74 |
+
# z_next = z - A.T inv(A A.T) A z
|
75 |
+
v = factor(A.dot(z))
|
76 |
+
z = z - A.T.dot(v)
|
77 |
+
k += 1
|
78 |
+
|
79 |
+
return z
|
80 |
+
|
81 |
+
# z = inv(A A.T) A x
|
82 |
+
def least_squares(x):
|
83 |
+
return factor(A.dot(x))
|
84 |
+
|
85 |
+
# z = A.T inv(A A.T) x
|
86 |
+
def row_space(x):
|
87 |
+
return A.T.dot(factor(x))
|
88 |
+
|
89 |
+
return null_space, least_squares, row_space
|
90 |
+
|
91 |
+
|
92 |
+
def augmented_system_projections(A, m, n, orth_tol, max_refin, tol):
|
93 |
+
"""Return linear operators for matrix A - ``AugmentedSystem``."""
|
94 |
+
# Form augmented system
|
95 |
+
K = csc_matrix(bmat([[eye(n), A.T], [A, None]]))
|
96 |
+
# LU factorization
|
97 |
+
# TODO: Use a symmetric indefinite factorization
|
98 |
+
# to solve the system twice as fast (because
|
99 |
+
# of the symmetry).
|
100 |
+
try:
|
101 |
+
solve = scipy.sparse.linalg.factorized(K)
|
102 |
+
except RuntimeError:
|
103 |
+
warn("Singular Jacobian matrix. Using dense SVD decomposition to "
|
104 |
+
"perform the factorizations.",
|
105 |
+
stacklevel=3)
|
106 |
+
return svd_factorization_projections(A.toarray(),
|
107 |
+
m, n, orth_tol,
|
108 |
+
max_refin, tol)
|
109 |
+
|
110 |
+
# z = x - A.T inv(A A.T) A x
|
111 |
+
# is computed solving the extended system:
|
112 |
+
# [I A.T] * [ z ] = [x]
|
113 |
+
# [A O ] [aux] [0]
|
114 |
+
def null_space(x):
|
115 |
+
# v = [x]
|
116 |
+
# [0]
|
117 |
+
v = np.hstack([x, np.zeros(m)])
|
118 |
+
# lu_sol = [ z ]
|
119 |
+
# [aux]
|
120 |
+
lu_sol = solve(v)
|
121 |
+
z = lu_sol[:n]
|
122 |
+
|
123 |
+
# Iterative refinement to improve roundoff
|
124 |
+
# errors described in [2]_, algorithm 5.2.
|
125 |
+
k = 0
|
126 |
+
while orthogonality(A, z) > orth_tol:
|
127 |
+
if k >= max_refin:
|
128 |
+
break
|
129 |
+
# new_v = [x] - [I A.T] * [ z ]
|
130 |
+
# [0] [A O ] [aux]
|
131 |
+
new_v = v - K.dot(lu_sol)
|
132 |
+
# [I A.T] * [delta z ] = new_v
|
133 |
+
# [A O ] [delta aux]
|
134 |
+
lu_update = solve(new_v)
|
135 |
+
# [ z ] += [delta z ]
|
136 |
+
# [aux] [delta aux]
|
137 |
+
lu_sol += lu_update
|
138 |
+
z = lu_sol[:n]
|
139 |
+
k += 1
|
140 |
+
|
141 |
+
# return z = x - A.T inv(A A.T) A x
|
142 |
+
return z
|
143 |
+
|
144 |
+
# z = inv(A A.T) A x
|
145 |
+
# is computed solving the extended system:
|
146 |
+
# [I A.T] * [aux] = [x]
|
147 |
+
# [A O ] [ z ] [0]
|
148 |
+
def least_squares(x):
|
149 |
+
# v = [x]
|
150 |
+
# [0]
|
151 |
+
v = np.hstack([x, np.zeros(m)])
|
152 |
+
# lu_sol = [aux]
|
153 |
+
# [ z ]
|
154 |
+
lu_sol = solve(v)
|
155 |
+
# return z = inv(A A.T) A x
|
156 |
+
return lu_sol[n:m+n]
|
157 |
+
|
158 |
+
# z = A.T inv(A A.T) x
|
159 |
+
# is computed solving the extended system:
|
160 |
+
# [I A.T] * [ z ] = [0]
|
161 |
+
# [A O ] [aux] [x]
|
162 |
+
def row_space(x):
|
163 |
+
# v = [0]
|
164 |
+
# [x]
|
165 |
+
v = np.hstack([np.zeros(n), x])
|
166 |
+
# lu_sol = [ z ]
|
167 |
+
# [aux]
|
168 |
+
lu_sol = solve(v)
|
169 |
+
# return z = A.T inv(A A.T) x
|
170 |
+
return lu_sol[:n]
|
171 |
+
|
172 |
+
return null_space, least_squares, row_space
|
173 |
+
|
174 |
+
|
175 |
+
def qr_factorization_projections(A, m, n, orth_tol, max_refin, tol):
|
176 |
+
"""Return linear operators for matrix A using ``QRFactorization`` approach.
|
177 |
+
"""
|
178 |
+
# QRFactorization
|
179 |
+
Q, R, P = scipy.linalg.qr(A.T, pivoting=True, mode='economic')
|
180 |
+
|
181 |
+
if np.linalg.norm(R[-1, :], np.inf) < tol:
|
182 |
+
warn('Singular Jacobian matrix. Using SVD decomposition to ' +
|
183 |
+
'perform the factorizations.',
|
184 |
+
stacklevel=3)
|
185 |
+
return svd_factorization_projections(A, m, n,
|
186 |
+
orth_tol,
|
187 |
+
max_refin,
|
188 |
+
tol)
|
189 |
+
|
190 |
+
# z = x - A.T inv(A A.T) A x
|
191 |
+
def null_space(x):
|
192 |
+
# v = P inv(R) Q.T x
|
193 |
+
aux1 = Q.T.dot(x)
|
194 |
+
aux2 = scipy.linalg.solve_triangular(R, aux1, lower=False)
|
195 |
+
v = np.zeros(m)
|
196 |
+
v[P] = aux2
|
197 |
+
z = x - A.T.dot(v)
|
198 |
+
|
199 |
+
# Iterative refinement to improve roundoff
|
200 |
+
# errors described in [2]_, algorithm 5.1.
|
201 |
+
k = 0
|
202 |
+
while orthogonality(A, z) > orth_tol:
|
203 |
+
if k >= max_refin:
|
204 |
+
break
|
205 |
+
# v = P inv(R) Q.T x
|
206 |
+
aux1 = Q.T.dot(z)
|
207 |
+
aux2 = scipy.linalg.solve_triangular(R, aux1, lower=False)
|
208 |
+
v[P] = aux2
|
209 |
+
# z_next = z - A.T v
|
210 |
+
z = z - A.T.dot(v)
|
211 |
+
k += 1
|
212 |
+
|
213 |
+
return z
|
214 |
+
|
215 |
+
# z = inv(A A.T) A x
|
216 |
+
def least_squares(x):
|
217 |
+
# z = P inv(R) Q.T x
|
218 |
+
aux1 = Q.T.dot(x)
|
219 |
+
aux2 = scipy.linalg.solve_triangular(R, aux1, lower=False)
|
220 |
+
z = np.zeros(m)
|
221 |
+
z[P] = aux2
|
222 |
+
return z
|
223 |
+
|
224 |
+
# z = A.T inv(A A.T) x
|
225 |
+
def row_space(x):
|
226 |
+
# z = Q inv(R.T) P.T x
|
227 |
+
aux1 = x[P]
|
228 |
+
aux2 = scipy.linalg.solve_triangular(R, aux1,
|
229 |
+
lower=False,
|
230 |
+
trans='T')
|
231 |
+
z = Q.dot(aux2)
|
232 |
+
return z
|
233 |
+
|
234 |
+
return null_space, least_squares, row_space
|
235 |
+
|
236 |
+
|
237 |
+
def svd_factorization_projections(A, m, n, orth_tol, max_refin, tol):
|
238 |
+
"""Return linear operators for matrix A using ``SVDFactorization`` approach.
|
239 |
+
"""
|
240 |
+
# SVD Factorization
|
241 |
+
U, s, Vt = scipy.linalg.svd(A, full_matrices=False)
|
242 |
+
|
243 |
+
# Remove dimensions related with very small singular values
|
244 |
+
U = U[:, s > tol]
|
245 |
+
Vt = Vt[s > tol, :]
|
246 |
+
s = s[s > tol]
|
247 |
+
|
248 |
+
# z = x - A.T inv(A A.T) A x
|
249 |
+
def null_space(x):
|
250 |
+
# v = U 1/s V.T x = inv(A A.T) A x
|
251 |
+
aux1 = Vt.dot(x)
|
252 |
+
aux2 = 1/s*aux1
|
253 |
+
v = U.dot(aux2)
|
254 |
+
z = x - A.T.dot(v)
|
255 |
+
|
256 |
+
# Iterative refinement to improve roundoff
|
257 |
+
# errors described in [2]_, algorithm 5.1.
|
258 |
+
k = 0
|
259 |
+
while orthogonality(A, z) > orth_tol:
|
260 |
+
if k >= max_refin:
|
261 |
+
break
|
262 |
+
# v = U 1/s V.T x = inv(A A.T) A x
|
263 |
+
aux1 = Vt.dot(z)
|
264 |
+
aux2 = 1/s*aux1
|
265 |
+
v = U.dot(aux2)
|
266 |
+
# z_next = z - A.T v
|
267 |
+
z = z - A.T.dot(v)
|
268 |
+
k += 1
|
269 |
+
|
270 |
+
return z
|
271 |
+
|
272 |
+
# z = inv(A A.T) A x
|
273 |
+
def least_squares(x):
|
274 |
+
# z = U 1/s V.T x = inv(A A.T) A x
|
275 |
+
aux1 = Vt.dot(x)
|
276 |
+
aux2 = 1/s*aux1
|
277 |
+
z = U.dot(aux2)
|
278 |
+
return z
|
279 |
+
|
280 |
+
# z = A.T inv(A A.T) x
|
281 |
+
def row_space(x):
|
282 |
+
# z = V 1/s U.T x
|
283 |
+
aux1 = U.T.dot(x)
|
284 |
+
aux2 = 1/s*aux1
|
285 |
+
z = Vt.T.dot(aux2)
|
286 |
+
return z
|
287 |
+
|
288 |
+
return null_space, least_squares, row_space
|
289 |
+
|
290 |
+
|
291 |
+
def projections(A, method=None, orth_tol=1e-12, max_refin=3, tol=1e-15):
|
292 |
+
"""Return three linear operators related with a given matrix A.
|
293 |
+
|
294 |
+
Parameters
|
295 |
+
----------
|
296 |
+
A : sparse matrix (or ndarray), shape (m, n)
|
297 |
+
Matrix ``A`` used in the projection.
|
298 |
+
method : string, optional
|
299 |
+
Method used for compute the given linear
|
300 |
+
operators. Should be one of:
|
301 |
+
|
302 |
+
- 'NormalEquation': The operators
|
303 |
+
will be computed using the
|
304 |
+
so-called normal equation approach
|
305 |
+
explained in [1]_. In order to do
|
306 |
+
so the Cholesky factorization of
|
307 |
+
``(A A.T)`` is computed. Exclusive
|
308 |
+
for sparse matrices.
|
309 |
+
- 'AugmentedSystem': The operators
|
310 |
+
will be computed using the
|
311 |
+
so-called augmented system approach
|
312 |
+
explained in [1]_. Exclusive
|
313 |
+
for sparse matrices.
|
314 |
+
- 'QRFactorization': Compute projections
|
315 |
+
using QR factorization. Exclusive for
|
316 |
+
dense matrices.
|
317 |
+
- 'SVDFactorization': Compute projections
|
318 |
+
using SVD factorization. Exclusive for
|
319 |
+
dense matrices.
|
320 |
+
|
321 |
+
orth_tol : float, optional
|
322 |
+
Tolerance for iterative refinements.
|
323 |
+
max_refin : int, optional
|
324 |
+
Maximum number of iterative refinements.
|
325 |
+
tol : float, optional
|
326 |
+
Tolerance for singular values.
|
327 |
+
|
328 |
+
Returns
|
329 |
+
-------
|
330 |
+
Z : LinearOperator, shape (n, n)
|
331 |
+
Null-space operator. For a given vector ``x``,
|
332 |
+
the null space operator is equivalent to apply
|
333 |
+
a projection matrix ``P = I - A.T inv(A A.T) A``
|
334 |
+
to the vector. It can be shown that this is
|
335 |
+
equivalent to project ``x`` into the null space
|
336 |
+
of A.
|
337 |
+
LS : LinearOperator, shape (m, n)
|
338 |
+
Least-squares operator. For a given vector ``x``,
|
339 |
+
the least-squares operator is equivalent to apply a
|
340 |
+
pseudoinverse matrix ``pinv(A.T) = inv(A A.T) A``
|
341 |
+
to the vector. It can be shown that this vector
|
342 |
+
``pinv(A.T) x`` is the least_square solution to
|
343 |
+
``A.T y = x``.
|
344 |
+
Y : LinearOperator, shape (n, m)
|
345 |
+
Row-space operator. For a given vector ``x``,
|
346 |
+
the row-space operator is equivalent to apply a
|
347 |
+
projection matrix ``Q = A.T inv(A A.T)``
|
348 |
+
to the vector. It can be shown that this
|
349 |
+
vector ``y = Q x`` the minimum norm solution
|
350 |
+
of ``A y = x``.
|
351 |
+
|
352 |
+
Notes
|
353 |
+
-----
|
354 |
+
Uses iterative refinements described in [1]
|
355 |
+
during the computation of ``Z`` in order to
|
356 |
+
cope with the possibility of large roundoff errors.
|
357 |
+
|
358 |
+
References
|
359 |
+
----------
|
360 |
+
.. [1] Gould, Nicholas IM, Mary E. Hribar, and Jorge Nocedal.
|
361 |
+
"On the solution of equality constrained quadratic
|
362 |
+
programming problems arising in optimization."
|
363 |
+
SIAM Journal on Scientific Computing 23.4 (2001): 1376-1395.
|
364 |
+
"""
|
365 |
+
m, n = np.shape(A)
|
366 |
+
|
367 |
+
# The factorization of an empty matrix
|
368 |
+
# only works for the sparse representation.
|
369 |
+
if m*n == 0:
|
370 |
+
A = csc_matrix(A)
|
371 |
+
|
372 |
+
# Check Argument
|
373 |
+
if issparse(A):
|
374 |
+
if method is None:
|
375 |
+
method = "AugmentedSystem"
|
376 |
+
if method not in ("NormalEquation", "AugmentedSystem"):
|
377 |
+
raise ValueError("Method not allowed for sparse matrix.")
|
378 |
+
if method == "NormalEquation" and not sksparse_available:
|
379 |
+
warnings.warn("Only accepts 'NormalEquation' option when "
|
380 |
+
"scikit-sparse is available. Using "
|
381 |
+
"'AugmentedSystem' option instead.",
|
382 |
+
ImportWarning, stacklevel=3)
|
383 |
+
method = 'AugmentedSystem'
|
384 |
+
else:
|
385 |
+
if method is None:
|
386 |
+
method = "QRFactorization"
|
387 |
+
if method not in ("QRFactorization", "SVDFactorization"):
|
388 |
+
raise ValueError("Method not allowed for dense array.")
|
389 |
+
|
390 |
+
if method == 'NormalEquation':
|
391 |
+
null_space, least_squares, row_space \
|
392 |
+
= normal_equation_projections(A, m, n, orth_tol, max_refin, tol)
|
393 |
+
elif method == 'AugmentedSystem':
|
394 |
+
null_space, least_squares, row_space \
|
395 |
+
= augmented_system_projections(A, m, n, orth_tol, max_refin, tol)
|
396 |
+
elif method == "QRFactorization":
|
397 |
+
null_space, least_squares, row_space \
|
398 |
+
= qr_factorization_projections(A, m, n, orth_tol, max_refin, tol)
|
399 |
+
elif method == "SVDFactorization":
|
400 |
+
null_space, least_squares, row_space \
|
401 |
+
= svd_factorization_projections(A, m, n, orth_tol, max_refin, tol)
|
402 |
+
|
403 |
+
Z = LinearOperator((n, n), null_space)
|
404 |
+
LS = LinearOperator((m, n), least_squares)
|
405 |
+
Y = LinearOperator((n, m), row_space)
|
406 |
+
|
407 |
+
return Z, LS, Y
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/_trustregion_constr/qp_subproblem.py
ADDED
@@ -0,0 +1,637 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Equality-constrained quadratic programming solvers."""
|
2 |
+
|
3 |
+
from scipy.sparse import (linalg, bmat, csc_matrix)
|
4 |
+
from math import copysign
|
5 |
+
import numpy as np
|
6 |
+
from numpy.linalg import norm
|
7 |
+
|
8 |
+
__all__ = [
|
9 |
+
'eqp_kktfact',
|
10 |
+
'sphere_intersections',
|
11 |
+
'box_intersections',
|
12 |
+
'box_sphere_intersections',
|
13 |
+
'inside_box_boundaries',
|
14 |
+
'modified_dogleg',
|
15 |
+
'projected_cg'
|
16 |
+
]
|
17 |
+
|
18 |
+
|
19 |
+
# For comparison with the projected CG
|
20 |
+
def eqp_kktfact(H, c, A, b):
|
21 |
+
"""Solve equality-constrained quadratic programming (EQP) problem.
|
22 |
+
|
23 |
+
Solve ``min 1/2 x.T H x + x.t c`` subject to ``A x + b = 0``
|
24 |
+
using direct factorization of the KKT system.
|
25 |
+
|
26 |
+
Parameters
|
27 |
+
----------
|
28 |
+
H : sparse matrix, shape (n, n)
|
29 |
+
Hessian matrix of the EQP problem.
|
30 |
+
c : array_like, shape (n,)
|
31 |
+
Gradient of the quadratic objective function.
|
32 |
+
A : sparse matrix
|
33 |
+
Jacobian matrix of the EQP problem.
|
34 |
+
b : array_like, shape (m,)
|
35 |
+
Right-hand side of the constraint equation.
|
36 |
+
|
37 |
+
Returns
|
38 |
+
-------
|
39 |
+
x : array_like, shape (n,)
|
40 |
+
Solution of the KKT problem.
|
41 |
+
lagrange_multipliers : ndarray, shape (m,)
|
42 |
+
Lagrange multipliers of the KKT problem.
|
43 |
+
"""
|
44 |
+
n, = np.shape(c) # Number of parameters
|
45 |
+
m, = np.shape(b) # Number of constraints
|
46 |
+
|
47 |
+
# Karush-Kuhn-Tucker matrix of coefficients.
|
48 |
+
# Defined as in Nocedal/Wright "Numerical
|
49 |
+
# Optimization" p.452 in Eq. (16.4).
|
50 |
+
kkt_matrix = csc_matrix(bmat([[H, A.T], [A, None]]))
|
51 |
+
# Vector of coefficients.
|
52 |
+
kkt_vec = np.hstack([-c, -b])
|
53 |
+
|
54 |
+
# TODO: Use a symmetric indefinite factorization
|
55 |
+
# to solve the system twice as fast (because
|
56 |
+
# of the symmetry).
|
57 |
+
lu = linalg.splu(kkt_matrix)
|
58 |
+
kkt_sol = lu.solve(kkt_vec)
|
59 |
+
x = kkt_sol[:n]
|
60 |
+
lagrange_multipliers = -kkt_sol[n:n+m]
|
61 |
+
|
62 |
+
return x, lagrange_multipliers
|
63 |
+
|
64 |
+
|
65 |
+
def sphere_intersections(z, d, trust_radius,
|
66 |
+
entire_line=False):
|
67 |
+
"""Find the intersection between segment (or line) and spherical constraints.
|
68 |
+
|
69 |
+
Find the intersection between the segment (or line) defined by the
|
70 |
+
parametric equation ``x(t) = z + t*d`` and the ball
|
71 |
+
``||x|| <= trust_radius``.
|
72 |
+
|
73 |
+
Parameters
|
74 |
+
----------
|
75 |
+
z : array_like, shape (n,)
|
76 |
+
Initial point.
|
77 |
+
d : array_like, shape (n,)
|
78 |
+
Direction.
|
79 |
+
trust_radius : float
|
80 |
+
Ball radius.
|
81 |
+
entire_line : bool, optional
|
82 |
+
When ``True``, the function returns the intersection between the line
|
83 |
+
``x(t) = z + t*d`` (``t`` can assume any value) and the ball
|
84 |
+
``||x|| <= trust_radius``. When ``False``, the function returns the intersection
|
85 |
+
between the segment ``x(t) = z + t*d``, ``0 <= t <= 1``, and the ball.
|
86 |
+
|
87 |
+
Returns
|
88 |
+
-------
|
89 |
+
ta, tb : float
|
90 |
+
The line/segment ``x(t) = z + t*d`` is inside the ball for
|
91 |
+
for ``ta <= t <= tb``.
|
92 |
+
intersect : bool
|
93 |
+
When ``True``, there is a intersection between the line/segment
|
94 |
+
and the sphere. On the other hand, when ``False``, there is no
|
95 |
+
intersection.
|
96 |
+
"""
|
97 |
+
# Special case when d=0
|
98 |
+
if norm(d) == 0:
|
99 |
+
return 0, 0, False
|
100 |
+
# Check for inf trust_radius
|
101 |
+
if np.isinf(trust_radius):
|
102 |
+
if entire_line:
|
103 |
+
ta = -np.inf
|
104 |
+
tb = np.inf
|
105 |
+
else:
|
106 |
+
ta = 0
|
107 |
+
tb = 1
|
108 |
+
intersect = True
|
109 |
+
return ta, tb, intersect
|
110 |
+
|
111 |
+
a = np.dot(d, d)
|
112 |
+
b = 2 * np.dot(z, d)
|
113 |
+
c = np.dot(z, z) - trust_radius**2
|
114 |
+
discriminant = b*b - 4*a*c
|
115 |
+
if discriminant < 0:
|
116 |
+
intersect = False
|
117 |
+
return 0, 0, intersect
|
118 |
+
sqrt_discriminant = np.sqrt(discriminant)
|
119 |
+
|
120 |
+
# The following calculation is mathematically
|
121 |
+
# equivalent to:
|
122 |
+
# ta = (-b - sqrt_discriminant) / (2*a)
|
123 |
+
# tb = (-b + sqrt_discriminant) / (2*a)
|
124 |
+
# but produce smaller round off errors.
|
125 |
+
# Look at Matrix Computation p.97
|
126 |
+
# for a better justification.
|
127 |
+
aux = b + copysign(sqrt_discriminant, b)
|
128 |
+
ta = -aux / (2*a)
|
129 |
+
tb = -2*c / aux
|
130 |
+
ta, tb = sorted([ta, tb])
|
131 |
+
|
132 |
+
if entire_line:
|
133 |
+
intersect = True
|
134 |
+
else:
|
135 |
+
# Checks to see if intersection happens
|
136 |
+
# within vectors length.
|
137 |
+
if tb < 0 or ta > 1:
|
138 |
+
intersect = False
|
139 |
+
ta = 0
|
140 |
+
tb = 0
|
141 |
+
else:
|
142 |
+
intersect = True
|
143 |
+
# Restrict intersection interval
|
144 |
+
# between 0 and 1.
|
145 |
+
ta = max(0, ta)
|
146 |
+
tb = min(1, tb)
|
147 |
+
|
148 |
+
return ta, tb, intersect
|
149 |
+
|
150 |
+
|
151 |
+
def box_intersections(z, d, lb, ub,
|
152 |
+
entire_line=False):
|
153 |
+
"""Find the intersection between segment (or line) and box constraints.
|
154 |
+
|
155 |
+
Find the intersection between the segment (or line) defined by the
|
156 |
+
parametric equation ``x(t) = z + t*d`` and the rectangular box
|
157 |
+
``lb <= x <= ub``.
|
158 |
+
|
159 |
+
Parameters
|
160 |
+
----------
|
161 |
+
z : array_like, shape (n,)
|
162 |
+
Initial point.
|
163 |
+
d : array_like, shape (n,)
|
164 |
+
Direction.
|
165 |
+
lb : array_like, shape (n,)
|
166 |
+
Lower bounds to each one of the components of ``x``. Used
|
167 |
+
to delimit the rectangular box.
|
168 |
+
ub : array_like, shape (n, )
|
169 |
+
Upper bounds to each one of the components of ``x``. Used
|
170 |
+
to delimit the rectangular box.
|
171 |
+
entire_line : bool, optional
|
172 |
+
When ``True``, the function returns the intersection between the line
|
173 |
+
``x(t) = z + t*d`` (``t`` can assume any value) and the rectangular
|
174 |
+
box. When ``False``, the function returns the intersection between the segment
|
175 |
+
``x(t) = z + t*d``, ``0 <= t <= 1``, and the rectangular box.
|
176 |
+
|
177 |
+
Returns
|
178 |
+
-------
|
179 |
+
ta, tb : float
|
180 |
+
The line/segment ``x(t) = z + t*d`` is inside the box for
|
181 |
+
for ``ta <= t <= tb``.
|
182 |
+
intersect : bool
|
183 |
+
When ``True``, there is a intersection between the line (or segment)
|
184 |
+
and the rectangular box. On the other hand, when ``False``, there is no
|
185 |
+
intersection.
|
186 |
+
"""
|
187 |
+
# Make sure it is a numpy array
|
188 |
+
z = np.asarray(z)
|
189 |
+
d = np.asarray(d)
|
190 |
+
lb = np.asarray(lb)
|
191 |
+
ub = np.asarray(ub)
|
192 |
+
# Special case when d=0
|
193 |
+
if norm(d) == 0:
|
194 |
+
return 0, 0, False
|
195 |
+
|
196 |
+
# Get values for which d==0
|
197 |
+
zero_d = (d == 0)
|
198 |
+
# If the boundaries are not satisfied for some coordinate
|
199 |
+
# for which "d" is zero, there is no box-line intersection.
|
200 |
+
if (z[zero_d] < lb[zero_d]).any() or (z[zero_d] > ub[zero_d]).any():
|
201 |
+
intersect = False
|
202 |
+
return 0, 0, intersect
|
203 |
+
# Remove values for which d is zero
|
204 |
+
not_zero_d = np.logical_not(zero_d)
|
205 |
+
z = z[not_zero_d]
|
206 |
+
d = d[not_zero_d]
|
207 |
+
lb = lb[not_zero_d]
|
208 |
+
ub = ub[not_zero_d]
|
209 |
+
|
210 |
+
# Find a series of intervals (t_lb[i], t_ub[i]).
|
211 |
+
t_lb = (lb-z) / d
|
212 |
+
t_ub = (ub-z) / d
|
213 |
+
# Get the intersection of all those intervals.
|
214 |
+
ta = max(np.minimum(t_lb, t_ub))
|
215 |
+
tb = min(np.maximum(t_lb, t_ub))
|
216 |
+
|
217 |
+
# Check if intersection is feasible
|
218 |
+
if ta <= tb:
|
219 |
+
intersect = True
|
220 |
+
else:
|
221 |
+
intersect = False
|
222 |
+
# Checks to see if intersection happens within vectors length.
|
223 |
+
if not entire_line:
|
224 |
+
if tb < 0 or ta > 1:
|
225 |
+
intersect = False
|
226 |
+
ta = 0
|
227 |
+
tb = 0
|
228 |
+
else:
|
229 |
+
# Restrict intersection interval between 0 and 1.
|
230 |
+
ta = max(0, ta)
|
231 |
+
tb = min(1, tb)
|
232 |
+
|
233 |
+
return ta, tb, intersect
|
234 |
+
|
235 |
+
|
236 |
+
def box_sphere_intersections(z, d, lb, ub, trust_radius,
|
237 |
+
entire_line=False,
|
238 |
+
extra_info=False):
|
239 |
+
"""Find the intersection between segment (or line) and box/sphere constraints.
|
240 |
+
|
241 |
+
Find the intersection between the segment (or line) defined by the
|
242 |
+
parametric equation ``x(t) = z + t*d``, the rectangular box
|
243 |
+
``lb <= x <= ub`` and the ball ``||x|| <= trust_radius``.
|
244 |
+
|
245 |
+
Parameters
|
246 |
+
----------
|
247 |
+
z : array_like, shape (n,)
|
248 |
+
Initial point.
|
249 |
+
d : array_like, shape (n,)
|
250 |
+
Direction.
|
251 |
+
lb : array_like, shape (n,)
|
252 |
+
Lower bounds to each one of the components of ``x``. Used
|
253 |
+
to delimit the rectangular box.
|
254 |
+
ub : array_like, shape (n, )
|
255 |
+
Upper bounds to each one of the components of ``x``. Used
|
256 |
+
to delimit the rectangular box.
|
257 |
+
trust_radius : float
|
258 |
+
Ball radius.
|
259 |
+
entire_line : bool, optional
|
260 |
+
When ``True``, the function returns the intersection between the line
|
261 |
+
``x(t) = z + t*d`` (``t`` can assume any value) and the constraints.
|
262 |
+
When ``False``, the function returns the intersection between the segment
|
263 |
+
``x(t) = z + t*d``, ``0 <= t <= 1`` and the constraints.
|
264 |
+
extra_info : bool, optional
|
265 |
+
When ``True``, the function returns ``intersect_sphere`` and ``intersect_box``.
|
266 |
+
|
267 |
+
Returns
|
268 |
+
-------
|
269 |
+
ta, tb : float
|
270 |
+
The line/segment ``x(t) = z + t*d`` is inside the rectangular box and
|
271 |
+
inside the ball for ``ta <= t <= tb``.
|
272 |
+
intersect : bool
|
273 |
+
When ``True``, there is a intersection between the line (or segment)
|
274 |
+
and both constraints. On the other hand, when ``False``, there is no
|
275 |
+
intersection.
|
276 |
+
sphere_info : dict, optional
|
277 |
+
Dictionary ``{ta, tb, intersect}`` containing the interval ``[ta, tb]``
|
278 |
+
for which the line intercepts the ball. And a boolean value indicating
|
279 |
+
whether the sphere is intersected by the line.
|
280 |
+
box_info : dict, optional
|
281 |
+
Dictionary ``{ta, tb, intersect}`` containing the interval ``[ta, tb]``
|
282 |
+
for which the line intercepts the box. And a boolean value indicating
|
283 |
+
whether the box is intersected by the line.
|
284 |
+
"""
|
285 |
+
ta_b, tb_b, intersect_b = box_intersections(z, d, lb, ub,
|
286 |
+
entire_line)
|
287 |
+
ta_s, tb_s, intersect_s = sphere_intersections(z, d,
|
288 |
+
trust_radius,
|
289 |
+
entire_line)
|
290 |
+
ta = np.maximum(ta_b, ta_s)
|
291 |
+
tb = np.minimum(tb_b, tb_s)
|
292 |
+
if intersect_b and intersect_s and ta <= tb:
|
293 |
+
intersect = True
|
294 |
+
else:
|
295 |
+
intersect = False
|
296 |
+
|
297 |
+
if extra_info:
|
298 |
+
sphere_info = {'ta': ta_s, 'tb': tb_s, 'intersect': intersect_s}
|
299 |
+
box_info = {'ta': ta_b, 'tb': tb_b, 'intersect': intersect_b}
|
300 |
+
return ta, tb, intersect, sphere_info, box_info
|
301 |
+
else:
|
302 |
+
return ta, tb, intersect
|
303 |
+
|
304 |
+
|
305 |
+
def inside_box_boundaries(x, lb, ub):
|
306 |
+
"""Check if lb <= x <= ub."""
|
307 |
+
return (lb <= x).all() and (x <= ub).all()
|
308 |
+
|
309 |
+
|
310 |
+
def reinforce_box_boundaries(x, lb, ub):
|
311 |
+
"""Return clipped value of x"""
|
312 |
+
return np.minimum(np.maximum(x, lb), ub)
|
313 |
+
|
314 |
+
|
315 |
+
def modified_dogleg(A, Y, b, trust_radius, lb, ub):
|
316 |
+
"""Approximately minimize ``1/2*|| A x + b ||^2`` inside trust-region.
|
317 |
+
|
318 |
+
Approximately solve the problem of minimizing ``1/2*|| A x + b ||^2``
|
319 |
+
subject to ``||x|| < Delta`` and ``lb <= x <= ub`` using a modification
|
320 |
+
of the classical dogleg approach.
|
321 |
+
|
322 |
+
Parameters
|
323 |
+
----------
|
324 |
+
A : LinearOperator (or sparse matrix or ndarray), shape (m, n)
|
325 |
+
Matrix ``A`` in the minimization problem. It should have
|
326 |
+
dimension ``(m, n)`` such that ``m < n``.
|
327 |
+
Y : LinearOperator (or sparse matrix or ndarray), shape (n, m)
|
328 |
+
LinearOperator that apply the projection matrix
|
329 |
+
``Q = A.T inv(A A.T)`` to the vector. The obtained vector
|
330 |
+
``y = Q x`` being the minimum norm solution of ``A y = x``.
|
331 |
+
b : array_like, shape (m,)
|
332 |
+
Vector ``b``in the minimization problem.
|
333 |
+
trust_radius: float
|
334 |
+
Trust radius to be considered. Delimits a sphere boundary
|
335 |
+
to the problem.
|
336 |
+
lb : array_like, shape (n,)
|
337 |
+
Lower bounds to each one of the components of ``x``.
|
338 |
+
It is expected that ``lb <= 0``, otherwise the algorithm
|
339 |
+
may fail. If ``lb[i] = -Inf``, the lower
|
340 |
+
bound for the ith component is just ignored.
|
341 |
+
ub : array_like, shape (n, )
|
342 |
+
Upper bounds to each one of the components of ``x``.
|
343 |
+
It is expected that ``ub >= 0``, otherwise the algorithm
|
344 |
+
may fail. If ``ub[i] = Inf``, the upper bound for the ith
|
345 |
+
component is just ignored.
|
346 |
+
|
347 |
+
Returns
|
348 |
+
-------
|
349 |
+
x : array_like, shape (n,)
|
350 |
+
Solution to the problem.
|
351 |
+
|
352 |
+
Notes
|
353 |
+
-----
|
354 |
+
Based on implementations described in pp. 885-886 from [1]_.
|
355 |
+
|
356 |
+
References
|
357 |
+
----------
|
358 |
+
.. [1] Byrd, Richard H., Mary E. Hribar, and Jorge Nocedal.
|
359 |
+
"An interior point algorithm for large-scale nonlinear
|
360 |
+
programming." SIAM Journal on Optimization 9.4 (1999): 877-900.
|
361 |
+
"""
|
362 |
+
# Compute minimum norm minimizer of 1/2*|| A x + b ||^2.
|
363 |
+
newton_point = -Y.dot(b)
|
364 |
+
# Check for interior point
|
365 |
+
if inside_box_boundaries(newton_point, lb, ub) \
|
366 |
+
and norm(newton_point) <= trust_radius:
|
367 |
+
x = newton_point
|
368 |
+
return x
|
369 |
+
|
370 |
+
# Compute gradient vector ``g = A.T b``
|
371 |
+
g = A.T.dot(b)
|
372 |
+
# Compute Cauchy point
|
373 |
+
# `cauchy_point = g.T g / (g.T A.T A g)``.
|
374 |
+
A_g = A.dot(g)
|
375 |
+
cauchy_point = -np.dot(g, g) / np.dot(A_g, A_g) * g
|
376 |
+
# Origin
|
377 |
+
origin_point = np.zeros_like(cauchy_point)
|
378 |
+
|
379 |
+
# Check the segment between cauchy_point and newton_point
|
380 |
+
# for a possible solution.
|
381 |
+
z = cauchy_point
|
382 |
+
p = newton_point - cauchy_point
|
383 |
+
_, alpha, intersect = box_sphere_intersections(z, p, lb, ub,
|
384 |
+
trust_radius)
|
385 |
+
if intersect:
|
386 |
+
x1 = z + alpha*p
|
387 |
+
else:
|
388 |
+
# Check the segment between the origin and cauchy_point
|
389 |
+
# for a possible solution.
|
390 |
+
z = origin_point
|
391 |
+
p = cauchy_point
|
392 |
+
_, alpha, _ = box_sphere_intersections(z, p, lb, ub,
|
393 |
+
trust_radius)
|
394 |
+
x1 = z + alpha*p
|
395 |
+
|
396 |
+
# Check the segment between origin and newton_point
|
397 |
+
# for a possible solution.
|
398 |
+
z = origin_point
|
399 |
+
p = newton_point
|
400 |
+
_, alpha, _ = box_sphere_intersections(z, p, lb, ub,
|
401 |
+
trust_radius)
|
402 |
+
x2 = z + alpha*p
|
403 |
+
|
404 |
+
# Return the best solution among x1 and x2.
|
405 |
+
if norm(A.dot(x1) + b) < norm(A.dot(x2) + b):
|
406 |
+
return x1
|
407 |
+
else:
|
408 |
+
return x2
|
409 |
+
|
410 |
+
|
411 |
+
def projected_cg(H, c, Z, Y, b, trust_radius=np.inf,
|
412 |
+
lb=None, ub=None, tol=None,
|
413 |
+
max_iter=None, max_infeasible_iter=None,
|
414 |
+
return_all=False):
|
415 |
+
"""Solve EQP problem with projected CG method.
|
416 |
+
|
417 |
+
Solve equality-constrained quadratic programming problem
|
418 |
+
``min 1/2 x.T H x + x.t c`` subject to ``A x + b = 0`` and,
|
419 |
+
possibly, to trust region constraints ``||x|| < trust_radius``
|
420 |
+
and box constraints ``lb <= x <= ub``.
|
421 |
+
|
422 |
+
Parameters
|
423 |
+
----------
|
424 |
+
H : LinearOperator (or sparse matrix or ndarray), shape (n, n)
|
425 |
+
Operator for computing ``H v``.
|
426 |
+
c : array_like, shape (n,)
|
427 |
+
Gradient of the quadratic objective function.
|
428 |
+
Z : LinearOperator (or sparse matrix or ndarray), shape (n, n)
|
429 |
+
Operator for projecting ``x`` into the null space of A.
|
430 |
+
Y : LinearOperator, sparse matrix, ndarray, shape (n, m)
|
431 |
+
Operator that, for a given a vector ``b``, compute smallest
|
432 |
+
norm solution of ``A x + b = 0``.
|
433 |
+
b : array_like, shape (m,)
|
434 |
+
Right-hand side of the constraint equation.
|
435 |
+
trust_radius : float, optional
|
436 |
+
Trust radius to be considered. By default, uses ``trust_radius=inf``,
|
437 |
+
which means no trust radius at all.
|
438 |
+
lb : array_like, shape (n,), optional
|
439 |
+
Lower bounds to each one of the components of ``x``.
|
440 |
+
If ``lb[i] = -Inf`` the lower bound for the i-th
|
441 |
+
component is just ignored (default).
|
442 |
+
ub : array_like, shape (n, ), optional
|
443 |
+
Upper bounds to each one of the components of ``x``.
|
444 |
+
If ``ub[i] = Inf`` the upper bound for the i-th
|
445 |
+
component is just ignored (default).
|
446 |
+
tol : float, optional
|
447 |
+
Tolerance used to interrupt the algorithm.
|
448 |
+
max_iter : int, optional
|
449 |
+
Maximum algorithm iterations. Where ``max_inter <= n-m``.
|
450 |
+
By default, uses ``max_iter = n-m``.
|
451 |
+
max_infeasible_iter : int, optional
|
452 |
+
Maximum infeasible (regarding box constraints) iterations the
|
453 |
+
algorithm is allowed to take.
|
454 |
+
By default, uses ``max_infeasible_iter = n-m``.
|
455 |
+
return_all : bool, optional
|
456 |
+
When ``true``, return the list of all vectors through the iterations.
|
457 |
+
|
458 |
+
Returns
|
459 |
+
-------
|
460 |
+
x : array_like, shape (n,)
|
461 |
+
Solution of the EQP problem.
|
462 |
+
info : Dict
|
463 |
+
Dictionary containing the following:
|
464 |
+
|
465 |
+
- niter : Number of iterations.
|
466 |
+
- stop_cond : Reason for algorithm termination:
|
467 |
+
1. Iteration limit was reached;
|
468 |
+
2. Reached the trust-region boundary;
|
469 |
+
3. Negative curvature detected;
|
470 |
+
4. Tolerance was satisfied.
|
471 |
+
- allvecs : List containing all intermediary vectors (optional).
|
472 |
+
- hits_boundary : True if the proposed step is on the boundary
|
473 |
+
of the trust region.
|
474 |
+
|
475 |
+
Notes
|
476 |
+
-----
|
477 |
+
Implementation of Algorithm 6.2 on [1]_.
|
478 |
+
|
479 |
+
In the absence of spherical and box constraints, for sufficient
|
480 |
+
iterations, the method returns a truly optimal result.
|
481 |
+
In the presence of those constraints, the value returned is only
|
482 |
+
a inexpensive approximation of the optimal value.
|
483 |
+
|
484 |
+
References
|
485 |
+
----------
|
486 |
+
.. [1] Gould, Nicholas IM, Mary E. Hribar, and Jorge Nocedal.
|
487 |
+
"On the solution of equality constrained quadratic
|
488 |
+
programming problems arising in optimization."
|
489 |
+
SIAM Journal on Scientific Computing 23.4 (2001): 1376-1395.
|
490 |
+
"""
|
491 |
+
CLOSE_TO_ZERO = 1e-25
|
492 |
+
|
493 |
+
n, = np.shape(c) # Number of parameters
|
494 |
+
m, = np.shape(b) # Number of constraints
|
495 |
+
|
496 |
+
# Initial Values
|
497 |
+
x = Y.dot(-b)
|
498 |
+
r = Z.dot(H.dot(x) + c)
|
499 |
+
g = Z.dot(r)
|
500 |
+
p = -g
|
501 |
+
|
502 |
+
# Store ``x`` value
|
503 |
+
if return_all:
|
504 |
+
allvecs = [x]
|
505 |
+
# Values for the first iteration
|
506 |
+
H_p = H.dot(p)
|
507 |
+
rt_g = norm(g)**2 # g.T g = r.T Z g = r.T g (ref [1]_ p.1389)
|
508 |
+
|
509 |
+
# If x > trust-region the problem does not have a solution.
|
510 |
+
tr_distance = trust_radius - norm(x)
|
511 |
+
if tr_distance < 0:
|
512 |
+
raise ValueError("Trust region problem does not have a solution.")
|
513 |
+
# If x == trust_radius, then x is the solution
|
514 |
+
# to the optimization problem, since x is the
|
515 |
+
# minimum norm solution to Ax=b.
|
516 |
+
elif tr_distance < CLOSE_TO_ZERO:
|
517 |
+
info = {'niter': 0, 'stop_cond': 2, 'hits_boundary': True}
|
518 |
+
if return_all:
|
519 |
+
allvecs.append(x)
|
520 |
+
info['allvecs'] = allvecs
|
521 |
+
return x, info
|
522 |
+
|
523 |
+
# Set default tolerance
|
524 |
+
if tol is None:
|
525 |
+
tol = max(min(0.01 * np.sqrt(rt_g), 0.1 * rt_g), CLOSE_TO_ZERO)
|
526 |
+
# Set default lower and upper bounds
|
527 |
+
if lb is None:
|
528 |
+
lb = np.full(n, -np.inf)
|
529 |
+
if ub is None:
|
530 |
+
ub = np.full(n, np.inf)
|
531 |
+
# Set maximum iterations
|
532 |
+
if max_iter is None:
|
533 |
+
max_iter = n-m
|
534 |
+
max_iter = min(max_iter, n-m)
|
535 |
+
# Set maximum infeasible iterations
|
536 |
+
if max_infeasible_iter is None:
|
537 |
+
max_infeasible_iter = n-m
|
538 |
+
|
539 |
+
hits_boundary = False
|
540 |
+
stop_cond = 1
|
541 |
+
counter = 0
|
542 |
+
last_feasible_x = np.zeros_like(x)
|
543 |
+
k = 0
|
544 |
+
for i in range(max_iter):
|
545 |
+
# Stop criteria - Tolerance : r.T g < tol
|
546 |
+
if rt_g < tol:
|
547 |
+
stop_cond = 4
|
548 |
+
break
|
549 |
+
k += 1
|
550 |
+
# Compute curvature
|
551 |
+
pt_H_p = H_p.dot(p)
|
552 |
+
# Stop criteria - Negative curvature
|
553 |
+
if pt_H_p <= 0:
|
554 |
+
if np.isinf(trust_radius):
|
555 |
+
raise ValueError("Negative curvature not allowed "
|
556 |
+
"for unrestricted problems.")
|
557 |
+
else:
|
558 |
+
# Find intersection with constraints
|
559 |
+
_, alpha, intersect = box_sphere_intersections(
|
560 |
+
x, p, lb, ub, trust_radius, entire_line=True)
|
561 |
+
# Update solution
|
562 |
+
if intersect:
|
563 |
+
x = x + alpha*p
|
564 |
+
# Reinforce variables are inside box constraints.
|
565 |
+
# This is only necessary because of roundoff errors.
|
566 |
+
x = reinforce_box_boundaries(x, lb, ub)
|
567 |
+
# Attribute information
|
568 |
+
stop_cond = 3
|
569 |
+
hits_boundary = True
|
570 |
+
break
|
571 |
+
|
572 |
+
# Get next step
|
573 |
+
alpha = rt_g / pt_H_p
|
574 |
+
x_next = x + alpha*p
|
575 |
+
|
576 |
+
# Stop criteria - Hits boundary
|
577 |
+
if np.linalg.norm(x_next) >= trust_radius:
|
578 |
+
# Find intersection with box constraints
|
579 |
+
_, theta, intersect = box_sphere_intersections(x, alpha*p, lb, ub,
|
580 |
+
trust_radius)
|
581 |
+
# Update solution
|
582 |
+
if intersect:
|
583 |
+
x = x + theta*alpha*p
|
584 |
+
# Reinforce variables are inside box constraints.
|
585 |
+
# This is only necessary because of roundoff errors.
|
586 |
+
x = reinforce_box_boundaries(x, lb, ub)
|
587 |
+
# Attribute information
|
588 |
+
stop_cond = 2
|
589 |
+
hits_boundary = True
|
590 |
+
break
|
591 |
+
|
592 |
+
# Check if ``x`` is inside the box and start counter if it is not.
|
593 |
+
if inside_box_boundaries(x_next, lb, ub):
|
594 |
+
counter = 0
|
595 |
+
else:
|
596 |
+
counter += 1
|
597 |
+
# Whenever outside box constraints keep looking for intersections.
|
598 |
+
if counter > 0:
|
599 |
+
_, theta, intersect = box_sphere_intersections(x, alpha*p, lb, ub,
|
600 |
+
trust_radius)
|
601 |
+
if intersect:
|
602 |
+
last_feasible_x = x + theta*alpha*p
|
603 |
+
# Reinforce variables are inside box constraints.
|
604 |
+
# This is only necessary because of roundoff errors.
|
605 |
+
last_feasible_x = reinforce_box_boundaries(last_feasible_x,
|
606 |
+
lb, ub)
|
607 |
+
counter = 0
|
608 |
+
# Stop after too many infeasible (regarding box constraints) iteration.
|
609 |
+
if counter > max_infeasible_iter:
|
610 |
+
break
|
611 |
+
# Store ``x_next`` value
|
612 |
+
if return_all:
|
613 |
+
allvecs.append(x_next)
|
614 |
+
|
615 |
+
# Update residual
|
616 |
+
r_next = r + alpha*H_p
|
617 |
+
# Project residual g+ = Z r+
|
618 |
+
g_next = Z.dot(r_next)
|
619 |
+
# Compute conjugate direction step d
|
620 |
+
rt_g_next = norm(g_next)**2 # g.T g = r.T g (ref [1]_ p.1389)
|
621 |
+
beta = rt_g_next / rt_g
|
622 |
+
p = - g_next + beta*p
|
623 |
+
# Prepare for next iteration
|
624 |
+
x = x_next
|
625 |
+
g = g_next
|
626 |
+
r = g_next
|
627 |
+
rt_g = norm(g)**2 # g.T g = r.T Z g = r.T g (ref [1]_ p.1389)
|
628 |
+
H_p = H.dot(p)
|
629 |
+
|
630 |
+
if not inside_box_boundaries(x, lb, ub):
|
631 |
+
x = last_feasible_x
|
632 |
+
hits_boundary = True
|
633 |
+
info = {'niter': k, 'stop_cond': stop_cond,
|
634 |
+
'hits_boundary': hits_boundary}
|
635 |
+
if return_all:
|
636 |
+
info['allvecs'] = allvecs
|
637 |
+
return x, info
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/_trustregion_constr/report.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Progress report printers."""
|
2 |
+
|
3 |
+
from __future__ import annotations
|
4 |
+
|
5 |
+
class ReportBase:
|
6 |
+
COLUMN_NAMES: list[str] = NotImplemented
|
7 |
+
COLUMN_WIDTHS: list[int] = NotImplemented
|
8 |
+
ITERATION_FORMATS: list[str] = NotImplemented
|
9 |
+
|
10 |
+
@classmethod
|
11 |
+
def print_header(cls):
|
12 |
+
fmt = ("|"
|
13 |
+
+ "|".join([f"{{:^{x}}}" for x in cls.COLUMN_WIDTHS])
|
14 |
+
+ "|")
|
15 |
+
separators = ['-' * x for x in cls.COLUMN_WIDTHS]
|
16 |
+
print(fmt.format(*cls.COLUMN_NAMES))
|
17 |
+
print(fmt.format(*separators))
|
18 |
+
|
19 |
+
@classmethod
|
20 |
+
def print_iteration(cls, *args):
|
21 |
+
iteration_format = [f"{{:{x}}}" for x in cls.ITERATION_FORMATS]
|
22 |
+
fmt = "|" + "|".join(iteration_format) + "|"
|
23 |
+
print(fmt.format(*args))
|
24 |
+
|
25 |
+
@classmethod
|
26 |
+
def print_footer(cls):
|
27 |
+
print()
|
28 |
+
|
29 |
+
|
30 |
+
class BasicReport(ReportBase):
|
31 |
+
COLUMN_NAMES = ["niter", "f evals", "CG iter", "obj func", "tr radius",
|
32 |
+
"opt", "c viol"]
|
33 |
+
COLUMN_WIDTHS = [7, 7, 7, 13, 10, 10, 10]
|
34 |
+
ITERATION_FORMATS = ["^7", "^7", "^7", "^+13.4e",
|
35 |
+
"^10.2e", "^10.2e", "^10.2e"]
|
36 |
+
|
37 |
+
|
38 |
+
class SQPReport(ReportBase):
|
39 |
+
COLUMN_NAMES = ["niter", "f evals", "CG iter", "obj func", "tr radius",
|
40 |
+
"opt", "c viol", "penalty", "CG stop"]
|
41 |
+
COLUMN_WIDTHS = [7, 7, 7, 13, 10, 10, 10, 10, 7]
|
42 |
+
ITERATION_FORMATS = ["^7", "^7", "^7", "^+13.4e", "^10.2e", "^10.2e",
|
43 |
+
"^10.2e", "^10.2e", "^7"]
|
44 |
+
|
45 |
+
|
46 |
+
class IPReport(ReportBase):
|
47 |
+
COLUMN_NAMES = ["niter", "f evals", "CG iter", "obj func", "tr radius",
|
48 |
+
"opt", "c viol", "penalty", "barrier param", "CG stop"]
|
49 |
+
COLUMN_WIDTHS = [7, 7, 7, 13, 10, 10, 10, 10, 13, 7]
|
50 |
+
ITERATION_FORMATS = ["^7", "^7", "^7", "^+13.4e", "^10.2e", "^10.2e",
|
51 |
+
"^10.2e", "^10.2e", "^13.2e", "^7"]
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/_trustregion_constr/tests/__init__.py
ADDED
File without changes
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/_trustregion_constr/tests/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (205 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/_trustregion_constr/tests/__pycache__/test_canonical_constraint.cpython-310.pyc
ADDED
Binary file (7.01 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/_trustregion_constr/tests/__pycache__/test_projections.cpython-310.pyc
ADDED
Binary file (6.57 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/_trustregion_constr/tests/__pycache__/test_report.cpython-310.pyc
ADDED
Binary file (1.44 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/_trustregion_constr/tests/test_canonical_constraint.py
ADDED
@@ -0,0 +1,296 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from numpy.testing import assert_array_equal, assert_equal
|
3 |
+
from scipy.optimize._constraints import (NonlinearConstraint, Bounds,
|
4 |
+
PreparedConstraint)
|
5 |
+
from scipy.optimize._trustregion_constr.canonical_constraint \
|
6 |
+
import CanonicalConstraint, initial_constraints_as_canonical
|
7 |
+
|
8 |
+
|
9 |
+
def create_quadratic_function(n, m, rng):
|
10 |
+
a = rng.rand(m)
|
11 |
+
A = rng.rand(m, n)
|
12 |
+
H = rng.rand(m, n, n)
|
13 |
+
HT = np.transpose(H, (1, 2, 0))
|
14 |
+
|
15 |
+
def fun(x):
|
16 |
+
return a + A.dot(x) + 0.5 * H.dot(x).dot(x)
|
17 |
+
|
18 |
+
def jac(x):
|
19 |
+
return A + H.dot(x)
|
20 |
+
|
21 |
+
def hess(x, v):
|
22 |
+
return HT.dot(v)
|
23 |
+
|
24 |
+
return fun, jac, hess
|
25 |
+
|
26 |
+
|
27 |
+
def test_bounds_cases():
|
28 |
+
# Test 1: no constraints.
|
29 |
+
user_constraint = Bounds(-np.inf, np.inf)
|
30 |
+
x0 = np.array([-1, 2])
|
31 |
+
prepared_constraint = PreparedConstraint(user_constraint, x0, False)
|
32 |
+
c = CanonicalConstraint.from_PreparedConstraint(prepared_constraint)
|
33 |
+
|
34 |
+
assert_equal(c.n_eq, 0)
|
35 |
+
assert_equal(c.n_ineq, 0)
|
36 |
+
|
37 |
+
c_eq, c_ineq = c.fun(x0)
|
38 |
+
assert_array_equal(c_eq, [])
|
39 |
+
assert_array_equal(c_ineq, [])
|
40 |
+
|
41 |
+
J_eq, J_ineq = c.jac(x0)
|
42 |
+
assert_array_equal(J_eq, np.empty((0, 2)))
|
43 |
+
assert_array_equal(J_ineq, np.empty((0, 2)))
|
44 |
+
|
45 |
+
assert_array_equal(c.keep_feasible, [])
|
46 |
+
|
47 |
+
# Test 2: infinite lower bound.
|
48 |
+
user_constraint = Bounds(-np.inf, [0, np.inf, 1], [False, True, True])
|
49 |
+
x0 = np.array([-1, -2, -3], dtype=float)
|
50 |
+
prepared_constraint = PreparedConstraint(user_constraint, x0, False)
|
51 |
+
c = CanonicalConstraint.from_PreparedConstraint(prepared_constraint)
|
52 |
+
|
53 |
+
assert_equal(c.n_eq, 0)
|
54 |
+
assert_equal(c.n_ineq, 2)
|
55 |
+
|
56 |
+
c_eq, c_ineq = c.fun(x0)
|
57 |
+
assert_array_equal(c_eq, [])
|
58 |
+
assert_array_equal(c_ineq, [-1, -4])
|
59 |
+
|
60 |
+
J_eq, J_ineq = c.jac(x0)
|
61 |
+
assert_array_equal(J_eq, np.empty((0, 3)))
|
62 |
+
assert_array_equal(J_ineq, np.array([[1, 0, 0], [0, 0, 1]]))
|
63 |
+
|
64 |
+
assert_array_equal(c.keep_feasible, [False, True])
|
65 |
+
|
66 |
+
# Test 3: infinite upper bound.
|
67 |
+
user_constraint = Bounds([0, 1, -np.inf], np.inf, [True, False, True])
|
68 |
+
x0 = np.array([1, 2, 3], dtype=float)
|
69 |
+
prepared_constraint = PreparedConstraint(user_constraint, x0, False)
|
70 |
+
c = CanonicalConstraint.from_PreparedConstraint(prepared_constraint)
|
71 |
+
|
72 |
+
assert_equal(c.n_eq, 0)
|
73 |
+
assert_equal(c.n_ineq, 2)
|
74 |
+
|
75 |
+
c_eq, c_ineq = c.fun(x0)
|
76 |
+
assert_array_equal(c_eq, [])
|
77 |
+
assert_array_equal(c_ineq, [-1, -1])
|
78 |
+
|
79 |
+
J_eq, J_ineq = c.jac(x0)
|
80 |
+
assert_array_equal(J_eq, np.empty((0, 3)))
|
81 |
+
assert_array_equal(J_ineq, np.array([[-1, 0, 0], [0, -1, 0]]))
|
82 |
+
|
83 |
+
assert_array_equal(c.keep_feasible, [True, False])
|
84 |
+
|
85 |
+
# Test 4: interval constraint.
|
86 |
+
user_constraint = Bounds([-1, -np.inf, 2, 3], [1, np.inf, 10, 3],
|
87 |
+
[False, True, True, True])
|
88 |
+
x0 = np.array([0, 10, 8, 5])
|
89 |
+
prepared_constraint = PreparedConstraint(user_constraint, x0, False)
|
90 |
+
c = CanonicalConstraint.from_PreparedConstraint(prepared_constraint)
|
91 |
+
|
92 |
+
assert_equal(c.n_eq, 1)
|
93 |
+
assert_equal(c.n_ineq, 4)
|
94 |
+
|
95 |
+
c_eq, c_ineq = c.fun(x0)
|
96 |
+
assert_array_equal(c_eq, [2])
|
97 |
+
assert_array_equal(c_ineq, [-1, -2, -1, -6])
|
98 |
+
|
99 |
+
J_eq, J_ineq = c.jac(x0)
|
100 |
+
assert_array_equal(J_eq, [[0, 0, 0, 1]])
|
101 |
+
assert_array_equal(J_ineq, [[1, 0, 0, 0],
|
102 |
+
[0, 0, 1, 0],
|
103 |
+
[-1, 0, 0, 0],
|
104 |
+
[0, 0, -1, 0]])
|
105 |
+
|
106 |
+
assert_array_equal(c.keep_feasible, [False, True, False, True])
|
107 |
+
|
108 |
+
|
109 |
+
def test_nonlinear_constraint():
|
110 |
+
n = 3
|
111 |
+
m = 5
|
112 |
+
rng = np.random.RandomState(0)
|
113 |
+
x0 = rng.rand(n)
|
114 |
+
|
115 |
+
fun, jac, hess = create_quadratic_function(n, m, rng)
|
116 |
+
f = fun(x0)
|
117 |
+
J = jac(x0)
|
118 |
+
|
119 |
+
lb = [-10, 3, -np.inf, -np.inf, -5]
|
120 |
+
ub = [10, 3, np.inf, 3, np.inf]
|
121 |
+
user_constraint = NonlinearConstraint(
|
122 |
+
fun, lb, ub, jac, hess, [True, False, False, True, False])
|
123 |
+
|
124 |
+
for sparse_jacobian in [False, True]:
|
125 |
+
prepared_constraint = PreparedConstraint(user_constraint, x0,
|
126 |
+
sparse_jacobian)
|
127 |
+
c = CanonicalConstraint.from_PreparedConstraint(prepared_constraint)
|
128 |
+
|
129 |
+
assert_array_equal(c.n_eq, 1)
|
130 |
+
assert_array_equal(c.n_ineq, 4)
|
131 |
+
|
132 |
+
c_eq, c_ineq = c.fun(x0)
|
133 |
+
assert_array_equal(c_eq, [f[1] - lb[1]])
|
134 |
+
assert_array_equal(c_ineq, [f[3] - ub[3], lb[4] - f[4],
|
135 |
+
f[0] - ub[0], lb[0] - f[0]])
|
136 |
+
|
137 |
+
J_eq, J_ineq = c.jac(x0)
|
138 |
+
if sparse_jacobian:
|
139 |
+
J_eq = J_eq.toarray()
|
140 |
+
J_ineq = J_ineq.toarray()
|
141 |
+
|
142 |
+
assert_array_equal(J_eq, J[1, None])
|
143 |
+
assert_array_equal(J_ineq, np.vstack((J[3], -J[4], J[0], -J[0])))
|
144 |
+
|
145 |
+
v_eq = rng.rand(c.n_eq)
|
146 |
+
v_ineq = rng.rand(c.n_ineq)
|
147 |
+
v = np.zeros(m)
|
148 |
+
v[1] = v_eq[0]
|
149 |
+
v[3] = v_ineq[0]
|
150 |
+
v[4] = -v_ineq[1]
|
151 |
+
v[0] = v_ineq[2] - v_ineq[3]
|
152 |
+
assert_array_equal(c.hess(x0, v_eq, v_ineq), hess(x0, v))
|
153 |
+
|
154 |
+
assert_array_equal(c.keep_feasible, [True, False, True, True])
|
155 |
+
|
156 |
+
|
157 |
+
def test_concatenation():
|
158 |
+
rng = np.random.RandomState(0)
|
159 |
+
n = 4
|
160 |
+
x0 = rng.rand(n)
|
161 |
+
|
162 |
+
f1 = x0
|
163 |
+
J1 = np.eye(n)
|
164 |
+
lb1 = [-1, -np.inf, -2, 3]
|
165 |
+
ub1 = [1, np.inf, np.inf, 3]
|
166 |
+
bounds = Bounds(lb1, ub1, [False, False, True, False])
|
167 |
+
|
168 |
+
fun, jac, hess = create_quadratic_function(n, 5, rng)
|
169 |
+
f2 = fun(x0)
|
170 |
+
J2 = jac(x0)
|
171 |
+
lb2 = [-10, 3, -np.inf, -np.inf, -5]
|
172 |
+
ub2 = [10, 3, np.inf, 5, np.inf]
|
173 |
+
nonlinear = NonlinearConstraint(
|
174 |
+
fun, lb2, ub2, jac, hess, [True, False, False, True, False])
|
175 |
+
|
176 |
+
for sparse_jacobian in [False, True]:
|
177 |
+
bounds_prepared = PreparedConstraint(bounds, x0, sparse_jacobian)
|
178 |
+
nonlinear_prepared = PreparedConstraint(nonlinear, x0, sparse_jacobian)
|
179 |
+
|
180 |
+
c1 = CanonicalConstraint.from_PreparedConstraint(bounds_prepared)
|
181 |
+
c2 = CanonicalConstraint.from_PreparedConstraint(nonlinear_prepared)
|
182 |
+
c = CanonicalConstraint.concatenate([c1, c2], sparse_jacobian)
|
183 |
+
|
184 |
+
assert_equal(c.n_eq, 2)
|
185 |
+
assert_equal(c.n_ineq, 7)
|
186 |
+
|
187 |
+
c_eq, c_ineq = c.fun(x0)
|
188 |
+
assert_array_equal(c_eq, [f1[3] - lb1[3], f2[1] - lb2[1]])
|
189 |
+
assert_array_equal(c_ineq, [lb1[2] - f1[2], f1[0] - ub1[0],
|
190 |
+
lb1[0] - f1[0], f2[3] - ub2[3],
|
191 |
+
lb2[4] - f2[4], f2[0] - ub2[0],
|
192 |
+
lb2[0] - f2[0]])
|
193 |
+
|
194 |
+
J_eq, J_ineq = c.jac(x0)
|
195 |
+
if sparse_jacobian:
|
196 |
+
J_eq = J_eq.toarray()
|
197 |
+
J_ineq = J_ineq.toarray()
|
198 |
+
|
199 |
+
assert_array_equal(J_eq, np.vstack((J1[3], J2[1])))
|
200 |
+
assert_array_equal(J_ineq, np.vstack((-J1[2], J1[0], -J1[0], J2[3],
|
201 |
+
-J2[4], J2[0], -J2[0])))
|
202 |
+
|
203 |
+
v_eq = rng.rand(c.n_eq)
|
204 |
+
v_ineq = rng.rand(c.n_ineq)
|
205 |
+
v = np.zeros(5)
|
206 |
+
v[1] = v_eq[1]
|
207 |
+
v[3] = v_ineq[3]
|
208 |
+
v[4] = -v_ineq[4]
|
209 |
+
v[0] = v_ineq[5] - v_ineq[6]
|
210 |
+
H = c.hess(x0, v_eq, v_ineq).dot(np.eye(n))
|
211 |
+
assert_array_equal(H, hess(x0, v))
|
212 |
+
|
213 |
+
assert_array_equal(c.keep_feasible,
|
214 |
+
[True, False, False, True, False, True, True])
|
215 |
+
|
216 |
+
|
217 |
+
def test_empty():
|
218 |
+
x = np.array([1, 2, 3])
|
219 |
+
c = CanonicalConstraint.empty(3)
|
220 |
+
assert_equal(c.n_eq, 0)
|
221 |
+
assert_equal(c.n_ineq, 0)
|
222 |
+
|
223 |
+
c_eq, c_ineq = c.fun(x)
|
224 |
+
assert_array_equal(c_eq, [])
|
225 |
+
assert_array_equal(c_ineq, [])
|
226 |
+
|
227 |
+
J_eq, J_ineq = c.jac(x)
|
228 |
+
assert_array_equal(J_eq, np.empty((0, 3)))
|
229 |
+
assert_array_equal(J_ineq, np.empty((0, 3)))
|
230 |
+
|
231 |
+
H = c.hess(x, None, None).toarray()
|
232 |
+
assert_array_equal(H, np.zeros((3, 3)))
|
233 |
+
|
234 |
+
|
235 |
+
def test_initial_constraints_as_canonical():
|
236 |
+
# rng is only used to generate the coefficients of the quadratic
|
237 |
+
# function that is used by the nonlinear constraint.
|
238 |
+
rng = np.random.RandomState(0)
|
239 |
+
|
240 |
+
x0 = np.array([0.5, 0.4, 0.3, 0.2])
|
241 |
+
n = len(x0)
|
242 |
+
|
243 |
+
lb1 = [-1, -np.inf, -2, 3]
|
244 |
+
ub1 = [1, np.inf, np.inf, 3]
|
245 |
+
bounds = Bounds(lb1, ub1, [False, False, True, False])
|
246 |
+
|
247 |
+
fun, jac, hess = create_quadratic_function(n, 5, rng)
|
248 |
+
lb2 = [-10, 3, -np.inf, -np.inf, -5]
|
249 |
+
ub2 = [10, 3, np.inf, 5, np.inf]
|
250 |
+
nonlinear = NonlinearConstraint(
|
251 |
+
fun, lb2, ub2, jac, hess, [True, False, False, True, False])
|
252 |
+
|
253 |
+
for sparse_jacobian in [False, True]:
|
254 |
+
bounds_prepared = PreparedConstraint(bounds, x0, sparse_jacobian)
|
255 |
+
nonlinear_prepared = PreparedConstraint(nonlinear, x0, sparse_jacobian)
|
256 |
+
|
257 |
+
f1 = bounds_prepared.fun.f
|
258 |
+
J1 = bounds_prepared.fun.J
|
259 |
+
f2 = nonlinear_prepared.fun.f
|
260 |
+
J2 = nonlinear_prepared.fun.J
|
261 |
+
|
262 |
+
c_eq, c_ineq, J_eq, J_ineq = initial_constraints_as_canonical(
|
263 |
+
n, [bounds_prepared, nonlinear_prepared], sparse_jacobian)
|
264 |
+
|
265 |
+
assert_array_equal(c_eq, [f1[3] - lb1[3], f2[1] - lb2[1]])
|
266 |
+
assert_array_equal(c_ineq, [lb1[2] - f1[2], f1[0] - ub1[0],
|
267 |
+
lb1[0] - f1[0], f2[3] - ub2[3],
|
268 |
+
lb2[4] - f2[4], f2[0] - ub2[0],
|
269 |
+
lb2[0] - f2[0]])
|
270 |
+
|
271 |
+
if sparse_jacobian:
|
272 |
+
J1 = J1.toarray()
|
273 |
+
J2 = J2.toarray()
|
274 |
+
J_eq = J_eq.toarray()
|
275 |
+
J_ineq = J_ineq.toarray()
|
276 |
+
|
277 |
+
assert_array_equal(J_eq, np.vstack((J1[3], J2[1])))
|
278 |
+
assert_array_equal(J_ineq, np.vstack((-J1[2], J1[0], -J1[0], J2[3],
|
279 |
+
-J2[4], J2[0], -J2[0])))
|
280 |
+
|
281 |
+
|
282 |
+
def test_initial_constraints_as_canonical_empty():
|
283 |
+
n = 3
|
284 |
+
for sparse_jacobian in [False, True]:
|
285 |
+
c_eq, c_ineq, J_eq, J_ineq = initial_constraints_as_canonical(
|
286 |
+
n, [], sparse_jacobian)
|
287 |
+
|
288 |
+
assert_array_equal(c_eq, [])
|
289 |
+
assert_array_equal(c_ineq, [])
|
290 |
+
|
291 |
+
if sparse_jacobian:
|
292 |
+
J_eq = J_eq.toarray()
|
293 |
+
J_ineq = J_ineq.toarray()
|
294 |
+
|
295 |
+
assert_array_equal(J_eq, np.empty((0, n)))
|
296 |
+
assert_array_equal(J_ineq, np.empty((0, n)))
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/_trustregion_constr/tests/test_projections.py
ADDED
@@ -0,0 +1,214 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import scipy.linalg
|
3 |
+
from scipy.sparse import csc_matrix
|
4 |
+
from scipy.optimize._trustregion_constr.projections \
|
5 |
+
import projections, orthogonality
|
6 |
+
from numpy.testing import (TestCase, assert_array_almost_equal,
|
7 |
+
assert_equal, assert_allclose)
|
8 |
+
|
9 |
+
try:
|
10 |
+
from sksparse.cholmod import cholesky_AAt # noqa: F401
|
11 |
+
sksparse_available = True
|
12 |
+
available_sparse_methods = ("NormalEquation", "AugmentedSystem")
|
13 |
+
except ImportError:
|
14 |
+
sksparse_available = False
|
15 |
+
available_sparse_methods = ("AugmentedSystem",)
|
16 |
+
available_dense_methods = ('QRFactorization', 'SVDFactorization')
|
17 |
+
|
18 |
+
|
19 |
+
class TestProjections(TestCase):
|
20 |
+
|
21 |
+
def test_nullspace_and_least_squares_sparse(self):
|
22 |
+
A_dense = np.array([[1, 2, 3, 4, 0, 5, 0, 7],
|
23 |
+
[0, 8, 7, 0, 1, 5, 9, 0],
|
24 |
+
[1, 0, 0, 0, 0, 1, 2, 3]])
|
25 |
+
At_dense = A_dense.T
|
26 |
+
A = csc_matrix(A_dense)
|
27 |
+
test_points = ([1, 2, 3, 4, 5, 6, 7, 8],
|
28 |
+
[1, 10, 3, 0, 1, 6, 7, 8],
|
29 |
+
[1.12, 10, 0, 0, 100000, 6, 0.7, 8])
|
30 |
+
|
31 |
+
for method in available_sparse_methods:
|
32 |
+
Z, LS, _ = projections(A, method)
|
33 |
+
for z in test_points:
|
34 |
+
# Test if x is in the null_space
|
35 |
+
x = Z.matvec(z)
|
36 |
+
assert_array_almost_equal(A.dot(x), 0)
|
37 |
+
# Test orthogonality
|
38 |
+
assert_array_almost_equal(orthogonality(A, x), 0)
|
39 |
+
# Test if x is the least square solution
|
40 |
+
x = LS.matvec(z)
|
41 |
+
x2 = scipy.linalg.lstsq(At_dense, z)[0]
|
42 |
+
assert_array_almost_equal(x, x2)
|
43 |
+
|
44 |
+
def test_iterative_refinements_sparse(self):
|
45 |
+
A_dense = np.array([[1, 2, 3, 4, 0, 5, 0, 7],
|
46 |
+
[0, 8, 7, 0, 1, 5, 9, 0],
|
47 |
+
[1, 0, 0, 0, 0, 1, 2, 3]])
|
48 |
+
A = csc_matrix(A_dense)
|
49 |
+
test_points = ([1, 2, 3, 4, 5, 6, 7, 8],
|
50 |
+
[1, 10, 3, 0, 1, 6, 7, 8],
|
51 |
+
[1.12, 10, 0, 0, 100000, 6, 0.7, 8],
|
52 |
+
[1, 0, 0, 0, 0, 1, 2, 3+1e-10])
|
53 |
+
|
54 |
+
for method in available_sparse_methods:
|
55 |
+
Z, LS, _ = projections(A, method, orth_tol=1e-18, max_refin=100)
|
56 |
+
for z in test_points:
|
57 |
+
# Test if x is in the null_space
|
58 |
+
x = Z.matvec(z)
|
59 |
+
atol = 1e-13 * abs(x).max()
|
60 |
+
assert_allclose(A.dot(x), 0, atol=atol)
|
61 |
+
# Test orthogonality
|
62 |
+
assert_allclose(orthogonality(A, x), 0, atol=1e-13)
|
63 |
+
|
64 |
+
def test_rowspace_sparse(self):
|
65 |
+
A_dense = np.array([[1, 2, 3, 4, 0, 5, 0, 7],
|
66 |
+
[0, 8, 7, 0, 1, 5, 9, 0],
|
67 |
+
[1, 0, 0, 0, 0, 1, 2, 3]])
|
68 |
+
A = csc_matrix(A_dense)
|
69 |
+
test_points = ([1, 2, 3],
|
70 |
+
[1, 10, 3],
|
71 |
+
[1.12, 10, 0])
|
72 |
+
|
73 |
+
for method in available_sparse_methods:
|
74 |
+
_, _, Y = projections(A, method)
|
75 |
+
for z in test_points:
|
76 |
+
# Test if x is solution of A x = z
|
77 |
+
x = Y.matvec(z)
|
78 |
+
assert_array_almost_equal(A.dot(x), z)
|
79 |
+
# Test if x is in the return row space of A
|
80 |
+
A_ext = np.vstack((A_dense, x))
|
81 |
+
assert_equal(np.linalg.matrix_rank(A_dense),
|
82 |
+
np.linalg.matrix_rank(A_ext))
|
83 |
+
|
84 |
+
def test_nullspace_and_least_squares_dense(self):
|
85 |
+
A = np.array([[1, 2, 3, 4, 0, 5, 0, 7],
|
86 |
+
[0, 8, 7, 0, 1, 5, 9, 0],
|
87 |
+
[1, 0, 0, 0, 0, 1, 2, 3]])
|
88 |
+
At = A.T
|
89 |
+
test_points = ([1, 2, 3, 4, 5, 6, 7, 8],
|
90 |
+
[1, 10, 3, 0, 1, 6, 7, 8],
|
91 |
+
[1.12, 10, 0, 0, 100000, 6, 0.7, 8])
|
92 |
+
|
93 |
+
for method in available_dense_methods:
|
94 |
+
Z, LS, _ = projections(A, method)
|
95 |
+
for z in test_points:
|
96 |
+
# Test if x is in the null_space
|
97 |
+
x = Z.matvec(z)
|
98 |
+
assert_array_almost_equal(A.dot(x), 0)
|
99 |
+
# Test orthogonality
|
100 |
+
assert_array_almost_equal(orthogonality(A, x), 0)
|
101 |
+
# Test if x is the least square solution
|
102 |
+
x = LS.matvec(z)
|
103 |
+
x2 = scipy.linalg.lstsq(At, z)[0]
|
104 |
+
assert_array_almost_equal(x, x2)
|
105 |
+
|
106 |
+
def test_compare_dense_and_sparse(self):
|
107 |
+
D = np.diag(range(1, 101))
|
108 |
+
A = np.hstack([D, D, D, D])
|
109 |
+
A_sparse = csc_matrix(A)
|
110 |
+
np.random.seed(0)
|
111 |
+
|
112 |
+
Z, LS, Y = projections(A)
|
113 |
+
Z_sparse, LS_sparse, Y_sparse = projections(A_sparse)
|
114 |
+
for k in range(20):
|
115 |
+
z = np.random.normal(size=(400,))
|
116 |
+
assert_array_almost_equal(Z.dot(z), Z_sparse.dot(z))
|
117 |
+
assert_array_almost_equal(LS.dot(z), LS_sparse.dot(z))
|
118 |
+
x = np.random.normal(size=(100,))
|
119 |
+
assert_array_almost_equal(Y.dot(x), Y_sparse.dot(x))
|
120 |
+
|
121 |
+
def test_compare_dense_and_sparse2(self):
|
122 |
+
D1 = np.diag([-1.7, 1, 0.5])
|
123 |
+
D2 = np.diag([1, -0.6, -0.3])
|
124 |
+
D3 = np.diag([-0.3, -1.5, 2])
|
125 |
+
A = np.hstack([D1, D2, D3])
|
126 |
+
A_sparse = csc_matrix(A)
|
127 |
+
np.random.seed(0)
|
128 |
+
|
129 |
+
Z, LS, Y = projections(A)
|
130 |
+
Z_sparse, LS_sparse, Y_sparse = projections(A_sparse)
|
131 |
+
for k in range(1):
|
132 |
+
z = np.random.normal(size=(9,))
|
133 |
+
assert_array_almost_equal(Z.dot(z), Z_sparse.dot(z))
|
134 |
+
assert_array_almost_equal(LS.dot(z), LS_sparse.dot(z))
|
135 |
+
x = np.random.normal(size=(3,))
|
136 |
+
assert_array_almost_equal(Y.dot(x), Y_sparse.dot(x))
|
137 |
+
|
138 |
+
def test_iterative_refinements_dense(self):
|
139 |
+
A = np.array([[1, 2, 3, 4, 0, 5, 0, 7],
|
140 |
+
[0, 8, 7, 0, 1, 5, 9, 0],
|
141 |
+
[1, 0, 0, 0, 0, 1, 2, 3]])
|
142 |
+
test_points = ([1, 2, 3, 4, 5, 6, 7, 8],
|
143 |
+
[1, 10, 3, 0, 1, 6, 7, 8],
|
144 |
+
[1, 0, 0, 0, 0, 1, 2, 3+1e-10])
|
145 |
+
|
146 |
+
for method in available_dense_methods:
|
147 |
+
Z, LS, _ = projections(A, method, orth_tol=1e-18, max_refin=10)
|
148 |
+
for z in test_points:
|
149 |
+
# Test if x is in the null_space
|
150 |
+
x = Z.matvec(z)
|
151 |
+
assert_allclose(A.dot(x), 0, rtol=0, atol=2.5e-14)
|
152 |
+
# Test orthogonality
|
153 |
+
assert_allclose(orthogonality(A, x), 0, rtol=0, atol=5e-16)
|
154 |
+
|
155 |
+
def test_rowspace_dense(self):
|
156 |
+
A = np.array([[1, 2, 3, 4, 0, 5, 0, 7],
|
157 |
+
[0, 8, 7, 0, 1, 5, 9, 0],
|
158 |
+
[1, 0, 0, 0, 0, 1, 2, 3]])
|
159 |
+
test_points = ([1, 2, 3],
|
160 |
+
[1, 10, 3],
|
161 |
+
[1.12, 10, 0])
|
162 |
+
|
163 |
+
for method in available_dense_methods:
|
164 |
+
_, _, Y = projections(A, method)
|
165 |
+
for z in test_points:
|
166 |
+
# Test if x is solution of A x = z
|
167 |
+
x = Y.matvec(z)
|
168 |
+
assert_array_almost_equal(A.dot(x), z)
|
169 |
+
# Test if x is in the return row space of A
|
170 |
+
A_ext = np.vstack((A, x))
|
171 |
+
assert_equal(np.linalg.matrix_rank(A),
|
172 |
+
np.linalg.matrix_rank(A_ext))
|
173 |
+
|
174 |
+
|
175 |
+
class TestOrthogonality(TestCase):
|
176 |
+
|
177 |
+
def test_dense_matrix(self):
|
178 |
+
A = np.array([[1, 2, 3, 4, 0, 5, 0, 7],
|
179 |
+
[0, 8, 7, 0, 1, 5, 9, 0],
|
180 |
+
[1, 0, 0, 0, 0, 1, 2, 3]])
|
181 |
+
test_vectors = ([-1.98931144, -1.56363389,
|
182 |
+
-0.84115584, 2.2864762,
|
183 |
+
5.599141, 0.09286976,
|
184 |
+
1.37040802, -0.28145812],
|
185 |
+
[697.92794044, -4091.65114008,
|
186 |
+
-3327.42316335, 836.86906951,
|
187 |
+
99434.98929065, -1285.37653682,
|
188 |
+
-4109.21503806, 2935.29289083])
|
189 |
+
test_expected_orth = (0, 0)
|
190 |
+
|
191 |
+
for i in range(len(test_vectors)):
|
192 |
+
x = test_vectors[i]
|
193 |
+
orth = test_expected_orth[i]
|
194 |
+
assert_array_almost_equal(orthogonality(A, x), orth)
|
195 |
+
|
196 |
+
def test_sparse_matrix(self):
|
197 |
+
A = np.array([[1, 2, 3, 4, 0, 5, 0, 7],
|
198 |
+
[0, 8, 7, 0, 1, 5, 9, 0],
|
199 |
+
[1, 0, 0, 0, 0, 1, 2, 3]])
|
200 |
+
A = csc_matrix(A)
|
201 |
+
test_vectors = ([-1.98931144, -1.56363389,
|
202 |
+
-0.84115584, 2.2864762,
|
203 |
+
5.599141, 0.09286976,
|
204 |
+
1.37040802, -0.28145812],
|
205 |
+
[697.92794044, -4091.65114008,
|
206 |
+
-3327.42316335, 836.86906951,
|
207 |
+
99434.98929065, -1285.37653682,
|
208 |
+
-4109.21503806, 2935.29289083])
|
209 |
+
test_expected_orth = (0, 0)
|
210 |
+
|
211 |
+
for i in range(len(test_vectors)):
|
212 |
+
x = test_vectors[i]
|
213 |
+
orth = test_expected_orth[i]
|
214 |
+
assert_array_almost_equal(orthogonality(A, x), orth)
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/_trustregion_constr/tests/test_qp_subproblem.py
ADDED
@@ -0,0 +1,645 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from scipy.sparse import csc_matrix
|
3 |
+
from scipy.optimize._trustregion_constr.qp_subproblem \
|
4 |
+
import (eqp_kktfact,
|
5 |
+
projected_cg,
|
6 |
+
box_intersections,
|
7 |
+
sphere_intersections,
|
8 |
+
box_sphere_intersections,
|
9 |
+
modified_dogleg)
|
10 |
+
from scipy.optimize._trustregion_constr.projections \
|
11 |
+
import projections
|
12 |
+
from numpy.testing import TestCase, assert_array_almost_equal, assert_equal
|
13 |
+
import pytest
|
14 |
+
|
15 |
+
|
16 |
+
class TestEQPDirectFactorization(TestCase):
|
17 |
+
|
18 |
+
# From Example 16.2 Nocedal/Wright "Numerical
|
19 |
+
# Optimization" p.452.
|
20 |
+
def test_nocedal_example(self):
|
21 |
+
H = csc_matrix([[6, 2, 1],
|
22 |
+
[2, 5, 2],
|
23 |
+
[1, 2, 4]])
|
24 |
+
A = csc_matrix([[1, 0, 1],
|
25 |
+
[0, 1, 1]])
|
26 |
+
c = np.array([-8, -3, -3])
|
27 |
+
b = -np.array([3, 0])
|
28 |
+
x, lagrange_multipliers = eqp_kktfact(H, c, A, b)
|
29 |
+
assert_array_almost_equal(x, [2, -1, 1])
|
30 |
+
assert_array_almost_equal(lagrange_multipliers, [3, -2])
|
31 |
+
|
32 |
+
|
33 |
+
class TestSphericalBoundariesIntersections(TestCase):
|
34 |
+
|
35 |
+
def test_2d_sphere_constraints(self):
|
36 |
+
# Interior inicial point
|
37 |
+
ta, tb, intersect = sphere_intersections([0, 0],
|
38 |
+
[1, 0], 0.5)
|
39 |
+
assert_array_almost_equal([ta, tb], [0, 0.5])
|
40 |
+
assert_equal(intersect, True)
|
41 |
+
|
42 |
+
# No intersection between line and circle
|
43 |
+
ta, tb, intersect = sphere_intersections([2, 0],
|
44 |
+
[0, 1], 1)
|
45 |
+
assert_equal(intersect, False)
|
46 |
+
|
47 |
+
# Outside initial point pointing toward outside the circle
|
48 |
+
ta, tb, intersect = sphere_intersections([2, 0],
|
49 |
+
[1, 0], 1)
|
50 |
+
assert_equal(intersect, False)
|
51 |
+
|
52 |
+
# Outside initial point pointing toward inside the circle
|
53 |
+
ta, tb, intersect = sphere_intersections([2, 0],
|
54 |
+
[-1, 0], 1.5)
|
55 |
+
assert_array_almost_equal([ta, tb], [0.5, 1])
|
56 |
+
assert_equal(intersect, True)
|
57 |
+
|
58 |
+
# Initial point on the boundary
|
59 |
+
ta, tb, intersect = sphere_intersections([2, 0],
|
60 |
+
[1, 0], 2)
|
61 |
+
assert_array_almost_equal([ta, tb], [0, 0])
|
62 |
+
assert_equal(intersect, True)
|
63 |
+
|
64 |
+
def test_2d_sphere_constraints_line_intersections(self):
|
65 |
+
# Interior initial point
|
66 |
+
ta, tb, intersect = sphere_intersections([0, 0],
|
67 |
+
[1, 0], 0.5,
|
68 |
+
entire_line=True)
|
69 |
+
assert_array_almost_equal([ta, tb], [-0.5, 0.5])
|
70 |
+
assert_equal(intersect, True)
|
71 |
+
|
72 |
+
# No intersection between line and circle
|
73 |
+
ta, tb, intersect = sphere_intersections([2, 0],
|
74 |
+
[0, 1], 1,
|
75 |
+
entire_line=True)
|
76 |
+
assert_equal(intersect, False)
|
77 |
+
|
78 |
+
# Outside initial point pointing toward outside the circle
|
79 |
+
ta, tb, intersect = sphere_intersections([2, 0],
|
80 |
+
[1, 0], 1,
|
81 |
+
entire_line=True)
|
82 |
+
assert_array_almost_equal([ta, tb], [-3, -1])
|
83 |
+
assert_equal(intersect, True)
|
84 |
+
|
85 |
+
# Outside initial point pointing toward inside the circle
|
86 |
+
ta, tb, intersect = sphere_intersections([2, 0],
|
87 |
+
[-1, 0], 1.5,
|
88 |
+
entire_line=True)
|
89 |
+
assert_array_almost_equal([ta, tb], [0.5, 3.5])
|
90 |
+
assert_equal(intersect, True)
|
91 |
+
|
92 |
+
# Initial point on the boundary
|
93 |
+
ta, tb, intersect = sphere_intersections([2, 0],
|
94 |
+
[1, 0], 2,
|
95 |
+
entire_line=True)
|
96 |
+
assert_array_almost_equal([ta, tb], [-4, 0])
|
97 |
+
assert_equal(intersect, True)
|
98 |
+
|
99 |
+
|
100 |
+
class TestBoxBoundariesIntersections(TestCase):
|
101 |
+
|
102 |
+
def test_2d_box_constraints(self):
|
103 |
+
# Box constraint in the direction of vector d
|
104 |
+
ta, tb, intersect = box_intersections([2, 0], [0, 2],
|
105 |
+
[1, 1], [3, 3])
|
106 |
+
assert_array_almost_equal([ta, tb], [0.5, 1])
|
107 |
+
assert_equal(intersect, True)
|
108 |
+
|
109 |
+
# Negative direction
|
110 |
+
ta, tb, intersect = box_intersections([2, 0], [0, 2],
|
111 |
+
[1, -3], [3, -1])
|
112 |
+
assert_equal(intersect, False)
|
113 |
+
|
114 |
+
# Some constraints are absent (set to +/- inf)
|
115 |
+
ta, tb, intersect = box_intersections([2, 0], [0, 2],
|
116 |
+
[-np.inf, 1],
|
117 |
+
[np.inf, np.inf])
|
118 |
+
assert_array_almost_equal([ta, tb], [0.5, 1])
|
119 |
+
assert_equal(intersect, True)
|
120 |
+
|
121 |
+
# Intersect on the face of the box
|
122 |
+
ta, tb, intersect = box_intersections([1, 0], [0, 1],
|
123 |
+
[1, 1], [3, 3])
|
124 |
+
assert_array_almost_equal([ta, tb], [1, 1])
|
125 |
+
assert_equal(intersect, True)
|
126 |
+
|
127 |
+
# Interior initial point
|
128 |
+
ta, tb, intersect = box_intersections([0, 0], [4, 4],
|
129 |
+
[-2, -3], [3, 2])
|
130 |
+
assert_array_almost_equal([ta, tb], [0, 0.5])
|
131 |
+
assert_equal(intersect, True)
|
132 |
+
|
133 |
+
# No intersection between line and box constraints
|
134 |
+
ta, tb, intersect = box_intersections([2, 0], [0, 2],
|
135 |
+
[-3, -3], [-1, -1])
|
136 |
+
assert_equal(intersect, False)
|
137 |
+
ta, tb, intersect = box_intersections([2, 0], [0, 2],
|
138 |
+
[-3, 3], [-1, 1])
|
139 |
+
assert_equal(intersect, False)
|
140 |
+
ta, tb, intersect = box_intersections([2, 0], [0, 2],
|
141 |
+
[-3, -np.inf],
|
142 |
+
[-1, np.inf])
|
143 |
+
assert_equal(intersect, False)
|
144 |
+
ta, tb, intersect = box_intersections([0, 0], [1, 100],
|
145 |
+
[1, 1], [3, 3])
|
146 |
+
assert_equal(intersect, False)
|
147 |
+
ta, tb, intersect = box_intersections([0.99, 0], [0, 2],
|
148 |
+
[1, 1], [3, 3])
|
149 |
+
assert_equal(intersect, False)
|
150 |
+
|
151 |
+
# Initial point on the boundary
|
152 |
+
ta, tb, intersect = box_intersections([2, 2], [0, 1],
|
153 |
+
[-2, -2], [2, 2])
|
154 |
+
assert_array_almost_equal([ta, tb], [0, 0])
|
155 |
+
assert_equal(intersect, True)
|
156 |
+
|
157 |
+
def test_2d_box_constraints_entire_line(self):
|
158 |
+
# Box constraint in the direction of vector d
|
159 |
+
ta, tb, intersect = box_intersections([2, 0], [0, 2],
|
160 |
+
[1, 1], [3, 3],
|
161 |
+
entire_line=True)
|
162 |
+
assert_array_almost_equal([ta, tb], [0.5, 1.5])
|
163 |
+
assert_equal(intersect, True)
|
164 |
+
|
165 |
+
# Negative direction
|
166 |
+
ta, tb, intersect = box_intersections([2, 0], [0, 2],
|
167 |
+
[1, -3], [3, -1],
|
168 |
+
entire_line=True)
|
169 |
+
assert_array_almost_equal([ta, tb], [-1.5, -0.5])
|
170 |
+
assert_equal(intersect, True)
|
171 |
+
|
172 |
+
# Some constraints are absent (set to +/- inf)
|
173 |
+
ta, tb, intersect = box_intersections([2, 0], [0, 2],
|
174 |
+
[-np.inf, 1],
|
175 |
+
[np.inf, np.inf],
|
176 |
+
entire_line=True)
|
177 |
+
assert_array_almost_equal([ta, tb], [0.5, np.inf])
|
178 |
+
assert_equal(intersect, True)
|
179 |
+
|
180 |
+
# Intersect on the face of the box
|
181 |
+
ta, tb, intersect = box_intersections([1, 0], [0, 1],
|
182 |
+
[1, 1], [3, 3],
|
183 |
+
entire_line=True)
|
184 |
+
assert_array_almost_equal([ta, tb], [1, 3])
|
185 |
+
assert_equal(intersect, True)
|
186 |
+
|
187 |
+
# Interior initial pointoint
|
188 |
+
ta, tb, intersect = box_intersections([0, 0], [4, 4],
|
189 |
+
[-2, -3], [3, 2],
|
190 |
+
entire_line=True)
|
191 |
+
assert_array_almost_equal([ta, tb], [-0.5, 0.5])
|
192 |
+
assert_equal(intersect, True)
|
193 |
+
|
194 |
+
# No intersection between line and box constraints
|
195 |
+
ta, tb, intersect = box_intersections([2, 0], [0, 2],
|
196 |
+
[-3, -3], [-1, -1],
|
197 |
+
entire_line=True)
|
198 |
+
assert_equal(intersect, False)
|
199 |
+
ta, tb, intersect = box_intersections([2, 0], [0, 2],
|
200 |
+
[-3, 3], [-1, 1],
|
201 |
+
entire_line=True)
|
202 |
+
assert_equal(intersect, False)
|
203 |
+
ta, tb, intersect = box_intersections([2, 0], [0, 2],
|
204 |
+
[-3, -np.inf],
|
205 |
+
[-1, np.inf],
|
206 |
+
entire_line=True)
|
207 |
+
assert_equal(intersect, False)
|
208 |
+
ta, tb, intersect = box_intersections([0, 0], [1, 100],
|
209 |
+
[1, 1], [3, 3],
|
210 |
+
entire_line=True)
|
211 |
+
assert_equal(intersect, False)
|
212 |
+
ta, tb, intersect = box_intersections([0.99, 0], [0, 2],
|
213 |
+
[1, 1], [3, 3],
|
214 |
+
entire_line=True)
|
215 |
+
assert_equal(intersect, False)
|
216 |
+
|
217 |
+
# Initial point on the boundary
|
218 |
+
ta, tb, intersect = box_intersections([2, 2], [0, 1],
|
219 |
+
[-2, -2], [2, 2],
|
220 |
+
entire_line=True)
|
221 |
+
assert_array_almost_equal([ta, tb], [-4, 0])
|
222 |
+
assert_equal(intersect, True)
|
223 |
+
|
224 |
+
def test_3d_box_constraints(self):
|
225 |
+
# Simple case
|
226 |
+
ta, tb, intersect = box_intersections([1, 1, 0], [0, 0, 1],
|
227 |
+
[1, 1, 1], [3, 3, 3])
|
228 |
+
assert_array_almost_equal([ta, tb], [1, 1])
|
229 |
+
assert_equal(intersect, True)
|
230 |
+
|
231 |
+
# Negative direction
|
232 |
+
ta, tb, intersect = box_intersections([1, 1, 0], [0, 0, -1],
|
233 |
+
[1, 1, 1], [3, 3, 3])
|
234 |
+
assert_equal(intersect, False)
|
235 |
+
|
236 |
+
# Interior point
|
237 |
+
ta, tb, intersect = box_intersections([2, 2, 2], [0, -1, 1],
|
238 |
+
[1, 1, 1], [3, 3, 3])
|
239 |
+
assert_array_almost_equal([ta, tb], [0, 1])
|
240 |
+
assert_equal(intersect, True)
|
241 |
+
|
242 |
+
def test_3d_box_constraints_entire_line(self):
|
243 |
+
# Simple case
|
244 |
+
ta, tb, intersect = box_intersections([1, 1, 0], [0, 0, 1],
|
245 |
+
[1, 1, 1], [3, 3, 3],
|
246 |
+
entire_line=True)
|
247 |
+
assert_array_almost_equal([ta, tb], [1, 3])
|
248 |
+
assert_equal(intersect, True)
|
249 |
+
|
250 |
+
# Negative direction
|
251 |
+
ta, tb, intersect = box_intersections([1, 1, 0], [0, 0, -1],
|
252 |
+
[1, 1, 1], [3, 3, 3],
|
253 |
+
entire_line=True)
|
254 |
+
assert_array_almost_equal([ta, tb], [-3, -1])
|
255 |
+
assert_equal(intersect, True)
|
256 |
+
|
257 |
+
# Interior point
|
258 |
+
ta, tb, intersect = box_intersections([2, 2, 2], [0, -1, 1],
|
259 |
+
[1, 1, 1], [3, 3, 3],
|
260 |
+
entire_line=True)
|
261 |
+
assert_array_almost_equal([ta, tb], [-1, 1])
|
262 |
+
assert_equal(intersect, True)
|
263 |
+
|
264 |
+
|
265 |
+
class TestBoxSphereBoundariesIntersections(TestCase):
|
266 |
+
|
267 |
+
def test_2d_box_constraints(self):
|
268 |
+
# Both constraints are active
|
269 |
+
ta, tb, intersect = box_sphere_intersections([1, 1], [-2, 2],
|
270 |
+
[-1, -2], [1, 2], 2,
|
271 |
+
entire_line=False)
|
272 |
+
assert_array_almost_equal([ta, tb], [0, 0.5])
|
273 |
+
assert_equal(intersect, True)
|
274 |
+
|
275 |
+
# None of the constraints are active
|
276 |
+
ta, tb, intersect = box_sphere_intersections([1, 1], [-1, 1],
|
277 |
+
[-1, -3], [1, 3], 10,
|
278 |
+
entire_line=False)
|
279 |
+
assert_array_almost_equal([ta, tb], [0, 1])
|
280 |
+
assert_equal(intersect, True)
|
281 |
+
|
282 |
+
# Box constraints are active
|
283 |
+
ta, tb, intersect = box_sphere_intersections([1, 1], [-4, 4],
|
284 |
+
[-1, -3], [1, 3], 10,
|
285 |
+
entire_line=False)
|
286 |
+
assert_array_almost_equal([ta, tb], [0, 0.5])
|
287 |
+
assert_equal(intersect, True)
|
288 |
+
|
289 |
+
# Spherical constraints are active
|
290 |
+
ta, tb, intersect = box_sphere_intersections([1, 1], [-4, 4],
|
291 |
+
[-1, -3], [1, 3], 2,
|
292 |
+
entire_line=False)
|
293 |
+
assert_array_almost_equal([ta, tb], [0, 0.25])
|
294 |
+
assert_equal(intersect, True)
|
295 |
+
|
296 |
+
# Infeasible problems
|
297 |
+
ta, tb, intersect = box_sphere_intersections([2, 2], [-4, 4],
|
298 |
+
[-1, -3], [1, 3], 2,
|
299 |
+
entire_line=False)
|
300 |
+
assert_equal(intersect, False)
|
301 |
+
ta, tb, intersect = box_sphere_intersections([1, 1], [-4, 4],
|
302 |
+
[2, 4], [2, 4], 2,
|
303 |
+
entire_line=False)
|
304 |
+
assert_equal(intersect, False)
|
305 |
+
|
306 |
+
def test_2d_box_constraints_entire_line(self):
|
307 |
+
# Both constraints are active
|
308 |
+
ta, tb, intersect = box_sphere_intersections([1, 1], [-2, 2],
|
309 |
+
[-1, -2], [1, 2], 2,
|
310 |
+
entire_line=True)
|
311 |
+
assert_array_almost_equal([ta, tb], [0, 0.5])
|
312 |
+
assert_equal(intersect, True)
|
313 |
+
|
314 |
+
# None of the constraints are active
|
315 |
+
ta, tb, intersect = box_sphere_intersections([1, 1], [-1, 1],
|
316 |
+
[-1, -3], [1, 3], 10,
|
317 |
+
entire_line=True)
|
318 |
+
assert_array_almost_equal([ta, tb], [0, 2])
|
319 |
+
assert_equal(intersect, True)
|
320 |
+
|
321 |
+
# Box constraints are active
|
322 |
+
ta, tb, intersect = box_sphere_intersections([1, 1], [-4, 4],
|
323 |
+
[-1, -3], [1, 3], 10,
|
324 |
+
entire_line=True)
|
325 |
+
assert_array_almost_equal([ta, tb], [0, 0.5])
|
326 |
+
assert_equal(intersect, True)
|
327 |
+
|
328 |
+
# Spherical constraints are active
|
329 |
+
ta, tb, intersect = box_sphere_intersections([1, 1], [-4, 4],
|
330 |
+
[-1, -3], [1, 3], 2,
|
331 |
+
entire_line=True)
|
332 |
+
assert_array_almost_equal([ta, tb], [0, 0.25])
|
333 |
+
assert_equal(intersect, True)
|
334 |
+
|
335 |
+
# Infeasible problems
|
336 |
+
ta, tb, intersect = box_sphere_intersections([2, 2], [-4, 4],
|
337 |
+
[-1, -3], [1, 3], 2,
|
338 |
+
entire_line=True)
|
339 |
+
assert_equal(intersect, False)
|
340 |
+
ta, tb, intersect = box_sphere_intersections([1, 1], [-4, 4],
|
341 |
+
[2, 4], [2, 4], 2,
|
342 |
+
entire_line=True)
|
343 |
+
assert_equal(intersect, False)
|
344 |
+
|
345 |
+
|
346 |
+
class TestModifiedDogleg(TestCase):
|
347 |
+
|
348 |
+
def test_cauchypoint_equalsto_newtonpoint(self):
|
349 |
+
A = np.array([[1, 8]])
|
350 |
+
b = np.array([-16])
|
351 |
+
_, _, Y = projections(A)
|
352 |
+
newton_point = np.array([0.24615385, 1.96923077])
|
353 |
+
|
354 |
+
# Newton point inside boundaries
|
355 |
+
x = modified_dogleg(A, Y, b, 2, [-np.inf, -np.inf], [np.inf, np.inf])
|
356 |
+
assert_array_almost_equal(x, newton_point)
|
357 |
+
|
358 |
+
# Spherical constraint active
|
359 |
+
x = modified_dogleg(A, Y, b, 1, [-np.inf, -np.inf], [np.inf, np.inf])
|
360 |
+
assert_array_almost_equal(x, newton_point/np.linalg.norm(newton_point))
|
361 |
+
|
362 |
+
# Box constraints active
|
363 |
+
x = modified_dogleg(A, Y, b, 2, [-np.inf, -np.inf], [0.1, np.inf])
|
364 |
+
assert_array_almost_equal(x, (newton_point/newton_point[0]) * 0.1)
|
365 |
+
|
366 |
+
def test_3d_example(self):
|
367 |
+
A = np.array([[1, 8, 1],
|
368 |
+
[4, 2, 2]])
|
369 |
+
b = np.array([-16, 2])
|
370 |
+
Z, LS, Y = projections(A)
|
371 |
+
|
372 |
+
newton_point = np.array([-1.37090909, 2.23272727, -0.49090909])
|
373 |
+
cauchy_point = np.array([0.11165723, 1.73068711, 0.16748585])
|
374 |
+
origin = np.zeros_like(newton_point)
|
375 |
+
|
376 |
+
# newton_point inside boundaries
|
377 |
+
x = modified_dogleg(A, Y, b, 3, [-np.inf, -np.inf, -np.inf],
|
378 |
+
[np.inf, np.inf, np.inf])
|
379 |
+
assert_array_almost_equal(x, newton_point)
|
380 |
+
|
381 |
+
# line between cauchy_point and newton_point contains best point
|
382 |
+
# (spherical constraint is active).
|
383 |
+
x = modified_dogleg(A, Y, b, 2, [-np.inf, -np.inf, -np.inf],
|
384 |
+
[np.inf, np.inf, np.inf])
|
385 |
+
z = cauchy_point
|
386 |
+
d = newton_point-cauchy_point
|
387 |
+
t = ((x-z)/(d))
|
388 |
+
assert_array_almost_equal(t, np.full(3, 0.40807330))
|
389 |
+
assert_array_almost_equal(np.linalg.norm(x), 2)
|
390 |
+
|
391 |
+
# line between cauchy_point and newton_point contains best point
|
392 |
+
# (box constraint is active).
|
393 |
+
x = modified_dogleg(A, Y, b, 5, [-1, -np.inf, -np.inf],
|
394 |
+
[np.inf, np.inf, np.inf])
|
395 |
+
z = cauchy_point
|
396 |
+
d = newton_point-cauchy_point
|
397 |
+
t = ((x-z)/(d))
|
398 |
+
assert_array_almost_equal(t, np.full(3, 0.7498195))
|
399 |
+
assert_array_almost_equal(x[0], -1)
|
400 |
+
|
401 |
+
# line between origin and cauchy_point contains best point
|
402 |
+
# (spherical constraint is active).
|
403 |
+
x = modified_dogleg(A, Y, b, 1, [-np.inf, -np.inf, -np.inf],
|
404 |
+
[np.inf, np.inf, np.inf])
|
405 |
+
z = origin
|
406 |
+
d = cauchy_point
|
407 |
+
t = ((x-z)/(d))
|
408 |
+
assert_array_almost_equal(t, np.full(3, 0.573936265))
|
409 |
+
assert_array_almost_equal(np.linalg.norm(x), 1)
|
410 |
+
|
411 |
+
# line between origin and newton_point contains best point
|
412 |
+
# (box constraint is active).
|
413 |
+
x = modified_dogleg(A, Y, b, 2, [-np.inf, -np.inf, -np.inf],
|
414 |
+
[np.inf, 1, np.inf])
|
415 |
+
z = origin
|
416 |
+
d = newton_point
|
417 |
+
t = ((x-z)/(d))
|
418 |
+
assert_array_almost_equal(t, np.full(3, 0.4478827364))
|
419 |
+
assert_array_almost_equal(x[1], 1)
|
420 |
+
|
421 |
+
|
422 |
+
class TestProjectCG(TestCase):
|
423 |
+
|
424 |
+
# From Example 16.2 Nocedal/Wright "Numerical
|
425 |
+
# Optimization" p.452.
|
426 |
+
def test_nocedal_example(self):
|
427 |
+
H = csc_matrix([[6, 2, 1],
|
428 |
+
[2, 5, 2],
|
429 |
+
[1, 2, 4]])
|
430 |
+
A = csc_matrix([[1, 0, 1],
|
431 |
+
[0, 1, 1]])
|
432 |
+
c = np.array([-8, -3, -3])
|
433 |
+
b = -np.array([3, 0])
|
434 |
+
Z, _, Y = projections(A)
|
435 |
+
x, info = projected_cg(H, c, Z, Y, b)
|
436 |
+
assert_equal(info["stop_cond"], 4)
|
437 |
+
assert_equal(info["hits_boundary"], False)
|
438 |
+
assert_array_almost_equal(x, [2, -1, 1])
|
439 |
+
|
440 |
+
def test_compare_with_direct_fact(self):
|
441 |
+
H = csc_matrix([[6, 2, 1, 3],
|
442 |
+
[2, 5, 2, 4],
|
443 |
+
[1, 2, 4, 5],
|
444 |
+
[3, 4, 5, 7]])
|
445 |
+
A = csc_matrix([[1, 0, 1, 0],
|
446 |
+
[0, 1, 1, 1]])
|
447 |
+
c = np.array([-2, -3, -3, 1])
|
448 |
+
b = -np.array([3, 0])
|
449 |
+
Z, _, Y = projections(A)
|
450 |
+
x, info = projected_cg(H, c, Z, Y, b, tol=0)
|
451 |
+
x_kkt, _ = eqp_kktfact(H, c, A, b)
|
452 |
+
assert_equal(info["stop_cond"], 1)
|
453 |
+
assert_equal(info["hits_boundary"], False)
|
454 |
+
assert_array_almost_equal(x, x_kkt)
|
455 |
+
|
456 |
+
def test_trust_region_infeasible(self):
|
457 |
+
H = csc_matrix([[6, 2, 1, 3],
|
458 |
+
[2, 5, 2, 4],
|
459 |
+
[1, 2, 4, 5],
|
460 |
+
[3, 4, 5, 7]])
|
461 |
+
A = csc_matrix([[1, 0, 1, 0],
|
462 |
+
[0, 1, 1, 1]])
|
463 |
+
c = np.array([-2, -3, -3, 1])
|
464 |
+
b = -np.array([3, 0])
|
465 |
+
trust_radius = 1
|
466 |
+
Z, _, Y = projections(A)
|
467 |
+
with pytest.raises(ValueError):
|
468 |
+
projected_cg(H, c, Z, Y, b, trust_radius=trust_radius)
|
469 |
+
|
470 |
+
def test_trust_region_barely_feasible(self):
|
471 |
+
H = csc_matrix([[6, 2, 1, 3],
|
472 |
+
[2, 5, 2, 4],
|
473 |
+
[1, 2, 4, 5],
|
474 |
+
[3, 4, 5, 7]])
|
475 |
+
A = csc_matrix([[1, 0, 1, 0],
|
476 |
+
[0, 1, 1, 1]])
|
477 |
+
c = np.array([-2, -3, -3, 1])
|
478 |
+
b = -np.array([3, 0])
|
479 |
+
trust_radius = 2.32379000772445021283
|
480 |
+
Z, _, Y = projections(A)
|
481 |
+
x, info = projected_cg(H, c, Z, Y, b,
|
482 |
+
tol=0,
|
483 |
+
trust_radius=trust_radius)
|
484 |
+
assert_equal(info["stop_cond"], 2)
|
485 |
+
assert_equal(info["hits_boundary"], True)
|
486 |
+
assert_array_almost_equal(np.linalg.norm(x), trust_radius)
|
487 |
+
assert_array_almost_equal(x, -Y.dot(b))
|
488 |
+
|
489 |
+
def test_hits_boundary(self):
|
490 |
+
H = csc_matrix([[6, 2, 1, 3],
|
491 |
+
[2, 5, 2, 4],
|
492 |
+
[1, 2, 4, 5],
|
493 |
+
[3, 4, 5, 7]])
|
494 |
+
A = csc_matrix([[1, 0, 1, 0],
|
495 |
+
[0, 1, 1, 1]])
|
496 |
+
c = np.array([-2, -3, -3, 1])
|
497 |
+
b = -np.array([3, 0])
|
498 |
+
trust_radius = 3
|
499 |
+
Z, _, Y = projections(A)
|
500 |
+
x, info = projected_cg(H, c, Z, Y, b,
|
501 |
+
tol=0,
|
502 |
+
trust_radius=trust_radius)
|
503 |
+
assert_equal(info["stop_cond"], 2)
|
504 |
+
assert_equal(info["hits_boundary"], True)
|
505 |
+
assert_array_almost_equal(np.linalg.norm(x), trust_radius)
|
506 |
+
|
507 |
+
def test_negative_curvature_unconstrained(self):
|
508 |
+
H = csc_matrix([[1, 2, 1, 3],
|
509 |
+
[2, 0, 2, 4],
|
510 |
+
[1, 2, 0, 2],
|
511 |
+
[3, 4, 2, 0]])
|
512 |
+
A = csc_matrix([[1, 0, 1, 0],
|
513 |
+
[0, 1, 0, 1]])
|
514 |
+
c = np.array([-2, -3, -3, 1])
|
515 |
+
b = -np.array([3, 0])
|
516 |
+
Z, _, Y = projections(A)
|
517 |
+
with pytest.raises(ValueError):
|
518 |
+
projected_cg(H, c, Z, Y, b, tol=0)
|
519 |
+
|
520 |
+
def test_negative_curvature(self):
|
521 |
+
H = csc_matrix([[1, 2, 1, 3],
|
522 |
+
[2, 0, 2, 4],
|
523 |
+
[1, 2, 0, 2],
|
524 |
+
[3, 4, 2, 0]])
|
525 |
+
A = csc_matrix([[1, 0, 1, 0],
|
526 |
+
[0, 1, 0, 1]])
|
527 |
+
c = np.array([-2, -3, -3, 1])
|
528 |
+
b = -np.array([3, 0])
|
529 |
+
Z, _, Y = projections(A)
|
530 |
+
trust_radius = 1000
|
531 |
+
x, info = projected_cg(H, c, Z, Y, b,
|
532 |
+
tol=0,
|
533 |
+
trust_radius=trust_radius)
|
534 |
+
assert_equal(info["stop_cond"], 3)
|
535 |
+
assert_equal(info["hits_boundary"], True)
|
536 |
+
assert_array_almost_equal(np.linalg.norm(x), trust_radius)
|
537 |
+
|
538 |
+
# The box constraints are inactive at the solution but
|
539 |
+
# are active during the iterations.
|
540 |
+
def test_inactive_box_constraints(self):
|
541 |
+
H = csc_matrix([[6, 2, 1, 3],
|
542 |
+
[2, 5, 2, 4],
|
543 |
+
[1, 2, 4, 5],
|
544 |
+
[3, 4, 5, 7]])
|
545 |
+
A = csc_matrix([[1, 0, 1, 0],
|
546 |
+
[0, 1, 1, 1]])
|
547 |
+
c = np.array([-2, -3, -3, 1])
|
548 |
+
b = -np.array([3, 0])
|
549 |
+
Z, _, Y = projections(A)
|
550 |
+
x, info = projected_cg(H, c, Z, Y, b,
|
551 |
+
tol=0,
|
552 |
+
lb=[0.5, -np.inf,
|
553 |
+
-np.inf, -np.inf],
|
554 |
+
return_all=True)
|
555 |
+
x_kkt, _ = eqp_kktfact(H, c, A, b)
|
556 |
+
assert_equal(info["stop_cond"], 1)
|
557 |
+
assert_equal(info["hits_boundary"], False)
|
558 |
+
assert_array_almost_equal(x, x_kkt)
|
559 |
+
|
560 |
+
# The box constraints active and the termination is
|
561 |
+
# by maximum iterations (infeasible interaction).
|
562 |
+
def test_active_box_constraints_maximum_iterations_reached(self):
|
563 |
+
H = csc_matrix([[6, 2, 1, 3],
|
564 |
+
[2, 5, 2, 4],
|
565 |
+
[1, 2, 4, 5],
|
566 |
+
[3, 4, 5, 7]])
|
567 |
+
A = csc_matrix([[1, 0, 1, 0],
|
568 |
+
[0, 1, 1, 1]])
|
569 |
+
c = np.array([-2, -3, -3, 1])
|
570 |
+
b = -np.array([3, 0])
|
571 |
+
Z, _, Y = projections(A)
|
572 |
+
x, info = projected_cg(H, c, Z, Y, b,
|
573 |
+
tol=0,
|
574 |
+
lb=[0.8, -np.inf,
|
575 |
+
-np.inf, -np.inf],
|
576 |
+
return_all=True)
|
577 |
+
assert_equal(info["stop_cond"], 1)
|
578 |
+
assert_equal(info["hits_boundary"], True)
|
579 |
+
assert_array_almost_equal(A.dot(x), -b)
|
580 |
+
assert_array_almost_equal(x[0], 0.8)
|
581 |
+
|
582 |
+
# The box constraints are active and the termination is
|
583 |
+
# because it hits boundary (without infeasible interaction).
|
584 |
+
def test_active_box_constraints_hits_boundaries(self):
|
585 |
+
H = csc_matrix([[6, 2, 1, 3],
|
586 |
+
[2, 5, 2, 4],
|
587 |
+
[1, 2, 4, 5],
|
588 |
+
[3, 4, 5, 7]])
|
589 |
+
A = csc_matrix([[1, 0, 1, 0],
|
590 |
+
[0, 1, 1, 1]])
|
591 |
+
c = np.array([-2, -3, -3, 1])
|
592 |
+
b = -np.array([3, 0])
|
593 |
+
trust_radius = 3
|
594 |
+
Z, _, Y = projections(A)
|
595 |
+
x, info = projected_cg(H, c, Z, Y, b,
|
596 |
+
tol=0,
|
597 |
+
ub=[np.inf, np.inf, 1.6, np.inf],
|
598 |
+
trust_radius=trust_radius,
|
599 |
+
return_all=True)
|
600 |
+
assert_equal(info["stop_cond"], 2)
|
601 |
+
assert_equal(info["hits_boundary"], True)
|
602 |
+
assert_array_almost_equal(x[2], 1.6)
|
603 |
+
|
604 |
+
# The box constraints are active and the termination is
|
605 |
+
# because it hits boundary (infeasible interaction).
|
606 |
+
def test_active_box_constraints_hits_boundaries_infeasible_iter(self):
|
607 |
+
H = csc_matrix([[6, 2, 1, 3],
|
608 |
+
[2, 5, 2, 4],
|
609 |
+
[1, 2, 4, 5],
|
610 |
+
[3, 4, 5, 7]])
|
611 |
+
A = csc_matrix([[1, 0, 1, 0],
|
612 |
+
[0, 1, 1, 1]])
|
613 |
+
c = np.array([-2, -3, -3, 1])
|
614 |
+
b = -np.array([3, 0])
|
615 |
+
trust_radius = 4
|
616 |
+
Z, _, Y = projections(A)
|
617 |
+
x, info = projected_cg(H, c, Z, Y, b,
|
618 |
+
tol=0,
|
619 |
+
ub=[np.inf, 0.1, np.inf, np.inf],
|
620 |
+
trust_radius=trust_radius,
|
621 |
+
return_all=True)
|
622 |
+
assert_equal(info["stop_cond"], 2)
|
623 |
+
assert_equal(info["hits_boundary"], True)
|
624 |
+
assert_array_almost_equal(x[1], 0.1)
|
625 |
+
|
626 |
+
# The box constraints are active and the termination is
|
627 |
+
# because it hits boundary (no infeasible interaction).
|
628 |
+
def test_active_box_constraints_negative_curvature(self):
|
629 |
+
H = csc_matrix([[1, 2, 1, 3],
|
630 |
+
[2, 0, 2, 4],
|
631 |
+
[1, 2, 0, 2],
|
632 |
+
[3, 4, 2, 0]])
|
633 |
+
A = csc_matrix([[1, 0, 1, 0],
|
634 |
+
[0, 1, 0, 1]])
|
635 |
+
c = np.array([-2, -3, -3, 1])
|
636 |
+
b = -np.array([3, 0])
|
637 |
+
Z, _, Y = projections(A)
|
638 |
+
trust_radius = 1000
|
639 |
+
x, info = projected_cg(H, c, Z, Y, b,
|
640 |
+
tol=0,
|
641 |
+
ub=[np.inf, np.inf, 100, np.inf],
|
642 |
+
trust_radius=trust_radius)
|
643 |
+
assert_equal(info["stop_cond"], 3)
|
644 |
+
assert_equal(info["hits_boundary"], True)
|
645 |
+
assert_array_almost_equal(x[2], 100)
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/_trustregion_constr/tests/test_report.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from scipy.optimize import minimize, Bounds
|
3 |
+
|
4 |
+
def test_gh10880():
|
5 |
+
# checks that verbose reporting works with trust-constr for
|
6 |
+
# bound-contrained problems
|
7 |
+
bnds = Bounds(1, 2)
|
8 |
+
opts = {'maxiter': 1000, 'verbose': 2}
|
9 |
+
minimize(lambda x: x**2, x0=2., method='trust-constr',
|
10 |
+
bounds=bnds, options=opts)
|
11 |
+
|
12 |
+
opts = {'maxiter': 1000, 'verbose': 3}
|
13 |
+
minimize(lambda x: x**2, x0=2., method='trust-constr',
|
14 |
+
bounds=bnds, options=opts)
|
15 |
+
|
16 |
+
def test_gh12922():
|
17 |
+
# checks that verbose reporting works with trust-constr for
|
18 |
+
# general constraints
|
19 |
+
def objective(x):
|
20 |
+
return np.array([(np.sum((x+1)**4))])
|
21 |
+
|
22 |
+
cons = {'type': 'ineq', 'fun': lambda x: -x[0]**2}
|
23 |
+
n = 25
|
24 |
+
x0 = np.linspace(-5, 5, n)
|
25 |
+
|
26 |
+
opts = {'maxiter': 1000, 'verbose': 2}
|
27 |
+
minimize(objective, x0=x0, method='trust-constr',
|
28 |
+
constraints=cons, options=opts)
|
29 |
+
|
30 |
+
opts = {'maxiter': 1000, 'verbose': 3}
|
31 |
+
minimize(objective, x0=x0, method='trust-constr',
|
32 |
+
constraints=cons, options=opts)
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/_trustregion_constr/tr_interior_point.py
ADDED
@@ -0,0 +1,346 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Trust-region interior point method.
|
2 |
+
|
3 |
+
References
|
4 |
+
----------
|
5 |
+
.. [1] Byrd, Richard H., Mary E. Hribar, and Jorge Nocedal.
|
6 |
+
"An interior point algorithm for large-scale nonlinear
|
7 |
+
programming." SIAM Journal on Optimization 9.4 (1999): 877-900.
|
8 |
+
.. [2] Byrd, Richard H., Guanghui Liu, and Jorge Nocedal.
|
9 |
+
"On the local behavior of an interior point method for
|
10 |
+
nonlinear programming." Numerical analysis 1997 (1997): 37-56.
|
11 |
+
.. [3] Nocedal, Jorge, and Stephen J. Wright. "Numerical optimization"
|
12 |
+
Second Edition (2006).
|
13 |
+
"""
|
14 |
+
|
15 |
+
import scipy.sparse as sps
|
16 |
+
import numpy as np
|
17 |
+
from .equality_constrained_sqp import equality_constrained_sqp
|
18 |
+
from scipy.sparse.linalg import LinearOperator
|
19 |
+
|
20 |
+
__all__ = ['tr_interior_point']
|
21 |
+
|
22 |
+
|
23 |
+
class BarrierSubproblem:
|
24 |
+
"""
|
25 |
+
Barrier optimization problem:
|
26 |
+
minimize fun(x) - barrier_parameter*sum(log(s))
|
27 |
+
subject to: constr_eq(x) = 0
|
28 |
+
constr_ineq(x) + s = 0
|
29 |
+
"""
|
30 |
+
|
31 |
+
def __init__(self, x0, s0, fun, grad, lagr_hess, n_vars, n_ineq, n_eq,
|
32 |
+
constr, jac, barrier_parameter, tolerance,
|
33 |
+
enforce_feasibility, global_stop_criteria,
|
34 |
+
xtol, fun0, grad0, constr_ineq0, jac_ineq0, constr_eq0,
|
35 |
+
jac_eq0):
|
36 |
+
# Store parameters
|
37 |
+
self.n_vars = n_vars
|
38 |
+
self.x0 = x0
|
39 |
+
self.s0 = s0
|
40 |
+
self.fun = fun
|
41 |
+
self.grad = grad
|
42 |
+
self.lagr_hess = lagr_hess
|
43 |
+
self.constr = constr
|
44 |
+
self.jac = jac
|
45 |
+
self.barrier_parameter = barrier_parameter
|
46 |
+
self.tolerance = tolerance
|
47 |
+
self.n_eq = n_eq
|
48 |
+
self.n_ineq = n_ineq
|
49 |
+
self.enforce_feasibility = enforce_feasibility
|
50 |
+
self.global_stop_criteria = global_stop_criteria
|
51 |
+
self.xtol = xtol
|
52 |
+
self.fun0 = self._compute_function(fun0, constr_ineq0, s0)
|
53 |
+
self.grad0 = self._compute_gradient(grad0)
|
54 |
+
self.constr0 = self._compute_constr(constr_ineq0, constr_eq0, s0)
|
55 |
+
self.jac0 = self._compute_jacobian(jac_eq0, jac_ineq0, s0)
|
56 |
+
self.terminate = False
|
57 |
+
|
58 |
+
def update(self, barrier_parameter, tolerance):
|
59 |
+
self.barrier_parameter = barrier_parameter
|
60 |
+
self.tolerance = tolerance
|
61 |
+
|
62 |
+
def get_slack(self, z):
|
63 |
+
return z[self.n_vars:self.n_vars+self.n_ineq]
|
64 |
+
|
65 |
+
def get_variables(self, z):
|
66 |
+
return z[:self.n_vars]
|
67 |
+
|
68 |
+
def function_and_constraints(self, z):
|
69 |
+
"""Returns barrier function and constraints at given point.
|
70 |
+
|
71 |
+
For z = [x, s], returns barrier function:
|
72 |
+
function(z) = fun(x) - barrier_parameter*sum(log(s))
|
73 |
+
and barrier constraints:
|
74 |
+
constraints(z) = [ constr_eq(x) ]
|
75 |
+
[ constr_ineq(x) + s ]
|
76 |
+
|
77 |
+
"""
|
78 |
+
# Get variables and slack variables
|
79 |
+
x = self.get_variables(z)
|
80 |
+
s = self.get_slack(z)
|
81 |
+
# Compute function and constraints
|
82 |
+
f = self.fun(x)
|
83 |
+
c_eq, c_ineq = self.constr(x)
|
84 |
+
# Return objective function and constraints
|
85 |
+
return (self._compute_function(f, c_ineq, s),
|
86 |
+
self._compute_constr(c_ineq, c_eq, s))
|
87 |
+
|
88 |
+
def _compute_function(self, f, c_ineq, s):
|
89 |
+
# Use technique from Nocedal and Wright book, ref [3]_, p.576,
|
90 |
+
# to guarantee constraints from `enforce_feasibility`
|
91 |
+
# stay feasible along iterations.
|
92 |
+
s[self.enforce_feasibility] = -c_ineq[self.enforce_feasibility]
|
93 |
+
log_s = [np.log(s_i) if s_i > 0 else -np.inf for s_i in s]
|
94 |
+
# Compute barrier objective function
|
95 |
+
return f - self.barrier_parameter*np.sum(log_s)
|
96 |
+
|
97 |
+
def _compute_constr(self, c_ineq, c_eq, s):
|
98 |
+
# Compute barrier constraint
|
99 |
+
return np.hstack((c_eq,
|
100 |
+
c_ineq + s))
|
101 |
+
|
102 |
+
def scaling(self, z):
|
103 |
+
"""Returns scaling vector.
|
104 |
+
Given by:
|
105 |
+
scaling = [ones(n_vars), s]
|
106 |
+
"""
|
107 |
+
s = self.get_slack(z)
|
108 |
+
diag_elements = np.hstack((np.ones(self.n_vars), s))
|
109 |
+
|
110 |
+
# Diagonal matrix
|
111 |
+
def matvec(vec):
|
112 |
+
return diag_elements*vec
|
113 |
+
return LinearOperator((self.n_vars+self.n_ineq,
|
114 |
+
self.n_vars+self.n_ineq),
|
115 |
+
matvec)
|
116 |
+
|
117 |
+
def gradient_and_jacobian(self, z):
|
118 |
+
"""Returns scaled gradient.
|
119 |
+
|
120 |
+
Return scaled gradient:
|
121 |
+
gradient = [ grad(x) ]
|
122 |
+
[ -barrier_parameter*ones(n_ineq) ]
|
123 |
+
and scaled Jacobian matrix:
|
124 |
+
jacobian = [ jac_eq(x) 0 ]
|
125 |
+
[ jac_ineq(x) S ]
|
126 |
+
Both of them scaled by the previously defined scaling factor.
|
127 |
+
"""
|
128 |
+
# Get variables and slack variables
|
129 |
+
x = self.get_variables(z)
|
130 |
+
s = self.get_slack(z)
|
131 |
+
# Compute first derivatives
|
132 |
+
g = self.grad(x)
|
133 |
+
J_eq, J_ineq = self.jac(x)
|
134 |
+
# Return gradient and Jacobian
|
135 |
+
return (self._compute_gradient(g),
|
136 |
+
self._compute_jacobian(J_eq, J_ineq, s))
|
137 |
+
|
138 |
+
def _compute_gradient(self, g):
|
139 |
+
return np.hstack((g, -self.barrier_parameter*np.ones(self.n_ineq)))
|
140 |
+
|
141 |
+
def _compute_jacobian(self, J_eq, J_ineq, s):
|
142 |
+
if self.n_ineq == 0:
|
143 |
+
return J_eq
|
144 |
+
else:
|
145 |
+
if sps.issparse(J_eq) or sps.issparse(J_ineq):
|
146 |
+
# It is expected that J_eq and J_ineq
|
147 |
+
# are already `csr_matrix` because of
|
148 |
+
# the way ``BoxConstraint``, ``NonlinearConstraint``
|
149 |
+
# and ``LinearConstraint`` are defined.
|
150 |
+
J_eq = sps.csr_matrix(J_eq)
|
151 |
+
J_ineq = sps.csr_matrix(J_ineq)
|
152 |
+
return self._assemble_sparse_jacobian(J_eq, J_ineq, s)
|
153 |
+
else:
|
154 |
+
S = np.diag(s)
|
155 |
+
zeros = np.zeros((self.n_eq, self.n_ineq))
|
156 |
+
# Convert to matrix
|
157 |
+
if sps.issparse(J_ineq):
|
158 |
+
J_ineq = J_ineq.toarray()
|
159 |
+
if sps.issparse(J_eq):
|
160 |
+
J_eq = J_eq.toarray()
|
161 |
+
# Concatenate matrices
|
162 |
+
return np.block([[J_eq, zeros],
|
163 |
+
[J_ineq, S]])
|
164 |
+
|
165 |
+
def _assemble_sparse_jacobian(self, J_eq, J_ineq, s):
|
166 |
+
"""Assemble sparse Jacobian given its components.
|
167 |
+
|
168 |
+
Given ``J_eq``, ``J_ineq`` and ``s`` returns:
|
169 |
+
jacobian = [ J_eq, 0 ]
|
170 |
+
[ J_ineq, diag(s) ]
|
171 |
+
|
172 |
+
It is equivalent to:
|
173 |
+
sps.bmat([[ J_eq, None ],
|
174 |
+
[ J_ineq, diag(s) ]], "csr")
|
175 |
+
but significantly more efficient for this
|
176 |
+
given structure.
|
177 |
+
"""
|
178 |
+
n_vars, n_ineq, n_eq = self.n_vars, self.n_ineq, self.n_eq
|
179 |
+
J_aux = sps.vstack([J_eq, J_ineq], "csr")
|
180 |
+
indptr, indices, data = J_aux.indptr, J_aux.indices, J_aux.data
|
181 |
+
new_indptr = indptr + np.hstack((np.zeros(n_eq, dtype=int),
|
182 |
+
np.arange(n_ineq+1, dtype=int)))
|
183 |
+
size = indices.size+n_ineq
|
184 |
+
new_indices = np.empty(size)
|
185 |
+
new_data = np.empty(size)
|
186 |
+
mask = np.full(size, False, bool)
|
187 |
+
mask[new_indptr[-n_ineq:]-1] = True
|
188 |
+
new_indices[mask] = n_vars+np.arange(n_ineq)
|
189 |
+
new_indices[~mask] = indices
|
190 |
+
new_data[mask] = s
|
191 |
+
new_data[~mask] = data
|
192 |
+
J = sps.csr_matrix((new_data, new_indices, new_indptr),
|
193 |
+
(n_eq + n_ineq, n_vars + n_ineq))
|
194 |
+
return J
|
195 |
+
|
196 |
+
def lagrangian_hessian_x(self, z, v):
|
197 |
+
"""Returns Lagrangian Hessian (in relation to `x`) -> Hx"""
|
198 |
+
x = self.get_variables(z)
|
199 |
+
# Get lagrange multipliers related to nonlinear equality constraints
|
200 |
+
v_eq = v[:self.n_eq]
|
201 |
+
# Get lagrange multipliers related to nonlinear ineq. constraints
|
202 |
+
v_ineq = v[self.n_eq:self.n_eq+self.n_ineq]
|
203 |
+
lagr_hess = self.lagr_hess
|
204 |
+
return lagr_hess(x, v_eq, v_ineq)
|
205 |
+
|
206 |
+
def lagrangian_hessian_s(self, z, v):
|
207 |
+
"""Returns scaled Lagrangian Hessian (in relation to`s`) -> S Hs S"""
|
208 |
+
s = self.get_slack(z)
|
209 |
+
# Using the primal formulation:
|
210 |
+
# S Hs S = diag(s)*diag(barrier_parameter/s**2)*diag(s).
|
211 |
+
# Reference [1]_ p. 882, formula (3.1)
|
212 |
+
primal = self.barrier_parameter
|
213 |
+
# Using the primal-dual formulation
|
214 |
+
# S Hs S = diag(s)*diag(v/s)*diag(s)
|
215 |
+
# Reference [1]_ p. 883, formula (3.11)
|
216 |
+
primal_dual = v[-self.n_ineq:]*s
|
217 |
+
# Uses the primal-dual formulation for
|
218 |
+
# positives values of v_ineq, and primal
|
219 |
+
# formulation for the remaining ones.
|
220 |
+
return np.where(v[-self.n_ineq:] > 0, primal_dual, primal)
|
221 |
+
|
222 |
+
def lagrangian_hessian(self, z, v):
|
223 |
+
"""Returns scaled Lagrangian Hessian"""
|
224 |
+
# Compute Hessian in relation to x and s
|
225 |
+
Hx = self.lagrangian_hessian_x(z, v)
|
226 |
+
if self.n_ineq > 0:
|
227 |
+
S_Hs_S = self.lagrangian_hessian_s(z, v)
|
228 |
+
|
229 |
+
# The scaled Lagragian Hessian is:
|
230 |
+
# [ Hx 0 ]
|
231 |
+
# [ 0 S Hs S ]
|
232 |
+
def matvec(vec):
|
233 |
+
vec_x = self.get_variables(vec)
|
234 |
+
vec_s = self.get_slack(vec)
|
235 |
+
if self.n_ineq > 0:
|
236 |
+
return np.hstack((Hx.dot(vec_x), S_Hs_S*vec_s))
|
237 |
+
else:
|
238 |
+
return Hx.dot(vec_x)
|
239 |
+
return LinearOperator((self.n_vars+self.n_ineq,
|
240 |
+
self.n_vars+self.n_ineq),
|
241 |
+
matvec)
|
242 |
+
|
243 |
+
def stop_criteria(self, state, z, last_iteration_failed,
|
244 |
+
optimality, constr_violation,
|
245 |
+
trust_radius, penalty, cg_info):
|
246 |
+
"""Stop criteria to the barrier problem.
|
247 |
+
The criteria here proposed is similar to formula (2.3)
|
248 |
+
from [1]_, p.879.
|
249 |
+
"""
|
250 |
+
x = self.get_variables(z)
|
251 |
+
if self.global_stop_criteria(state, x,
|
252 |
+
last_iteration_failed,
|
253 |
+
trust_radius, penalty,
|
254 |
+
cg_info,
|
255 |
+
self.barrier_parameter,
|
256 |
+
self.tolerance):
|
257 |
+
self.terminate = True
|
258 |
+
return True
|
259 |
+
else:
|
260 |
+
g_cond = (optimality < self.tolerance and
|
261 |
+
constr_violation < self.tolerance)
|
262 |
+
x_cond = trust_radius < self.xtol
|
263 |
+
return g_cond or x_cond
|
264 |
+
|
265 |
+
|
266 |
+
def tr_interior_point(fun, grad, lagr_hess, n_vars, n_ineq, n_eq,
|
267 |
+
constr, jac, x0, fun0, grad0,
|
268 |
+
constr_ineq0, jac_ineq0, constr_eq0,
|
269 |
+
jac_eq0, stop_criteria,
|
270 |
+
enforce_feasibility, xtol, state,
|
271 |
+
initial_barrier_parameter,
|
272 |
+
initial_tolerance,
|
273 |
+
initial_penalty,
|
274 |
+
initial_trust_radius,
|
275 |
+
factorization_method):
|
276 |
+
"""Trust-region interior points method.
|
277 |
+
|
278 |
+
Solve problem:
|
279 |
+
minimize fun(x)
|
280 |
+
subject to: constr_ineq(x) <= 0
|
281 |
+
constr_eq(x) = 0
|
282 |
+
using trust-region interior point method described in [1]_.
|
283 |
+
"""
|
284 |
+
# BOUNDARY_PARAMETER controls the decrease on the slack
|
285 |
+
# variables. Represents ``tau`` from [1]_ p.885, formula (3.18).
|
286 |
+
BOUNDARY_PARAMETER = 0.995
|
287 |
+
# BARRIER_DECAY_RATIO controls the decay of the barrier parameter
|
288 |
+
# and of the subproblem toloerance. Represents ``theta`` from [1]_ p.879.
|
289 |
+
BARRIER_DECAY_RATIO = 0.2
|
290 |
+
# TRUST_ENLARGEMENT controls the enlargement on trust radius
|
291 |
+
# after each iteration
|
292 |
+
TRUST_ENLARGEMENT = 5
|
293 |
+
|
294 |
+
# Default enforce_feasibility
|
295 |
+
if enforce_feasibility is None:
|
296 |
+
enforce_feasibility = np.zeros(n_ineq, bool)
|
297 |
+
# Initial Values
|
298 |
+
barrier_parameter = initial_barrier_parameter
|
299 |
+
tolerance = initial_tolerance
|
300 |
+
trust_radius = initial_trust_radius
|
301 |
+
# Define initial value for the slack variables
|
302 |
+
s0 = np.maximum(-1.5*constr_ineq0, np.ones(n_ineq))
|
303 |
+
# Define barrier subproblem
|
304 |
+
subprob = BarrierSubproblem(
|
305 |
+
x0, s0, fun, grad, lagr_hess, n_vars, n_ineq, n_eq, constr, jac,
|
306 |
+
barrier_parameter, tolerance, enforce_feasibility,
|
307 |
+
stop_criteria, xtol, fun0, grad0, constr_ineq0, jac_ineq0,
|
308 |
+
constr_eq0, jac_eq0)
|
309 |
+
# Define initial parameter for the first iteration.
|
310 |
+
z = np.hstack((x0, s0))
|
311 |
+
fun0_subprob, constr0_subprob = subprob.fun0, subprob.constr0
|
312 |
+
grad0_subprob, jac0_subprob = subprob.grad0, subprob.jac0
|
313 |
+
# Define trust region bounds
|
314 |
+
trust_lb = np.hstack((np.full(subprob.n_vars, -np.inf),
|
315 |
+
np.full(subprob.n_ineq, -BOUNDARY_PARAMETER)))
|
316 |
+
trust_ub = np.full(subprob.n_vars+subprob.n_ineq, np.inf)
|
317 |
+
|
318 |
+
# Solves a sequence of barrier problems
|
319 |
+
while True:
|
320 |
+
# Solve SQP subproblem
|
321 |
+
z, state = equality_constrained_sqp(
|
322 |
+
subprob.function_and_constraints,
|
323 |
+
subprob.gradient_and_jacobian,
|
324 |
+
subprob.lagrangian_hessian,
|
325 |
+
z, fun0_subprob, grad0_subprob,
|
326 |
+
constr0_subprob, jac0_subprob, subprob.stop_criteria,
|
327 |
+
state, initial_penalty, trust_radius,
|
328 |
+
factorization_method, trust_lb, trust_ub, subprob.scaling)
|
329 |
+
if subprob.terminate:
|
330 |
+
break
|
331 |
+
# Update parameters
|
332 |
+
trust_radius = max(initial_trust_radius,
|
333 |
+
TRUST_ENLARGEMENT*state.tr_radius)
|
334 |
+
# TODO: Use more advanced strategies from [2]_
|
335 |
+
# to update this parameters.
|
336 |
+
barrier_parameter *= BARRIER_DECAY_RATIO
|
337 |
+
tolerance *= BARRIER_DECAY_RATIO
|
338 |
+
# Update Barrier Problem
|
339 |
+
subprob.update(barrier_parameter, tolerance)
|
340 |
+
# Compute initial values for next iteration
|
341 |
+
fun0_subprob, constr0_subprob = subprob.function_and_constraints(z)
|
342 |
+
grad0_subprob, jac0_subprob = subprob.gradient_and_jacobian(z)
|
343 |
+
|
344 |
+
# Get x and s
|
345 |
+
x = subprob.get_variables(z)
|
346 |
+
return x, state
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/tests/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (185 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/tests/__pycache__/test__differential_evolution.cpython-310.pyc
ADDED
Binary file (49.6 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/tests/__pycache__/test__dual_annealing.cpython-310.pyc
ADDED
Binary file (13.2 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/tests/__pycache__/test__linprog_clean_inputs.cpython-310.pyc
ADDED
Binary file (8.04 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/tests/__pycache__/test__numdiff.cpython-310.pyc
ADDED
Binary file (24.4 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/tests/__pycache__/test__remove_redundancy.cpython-310.pyc
ADDED
Binary file (7.6 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/tests/__pycache__/test__root.cpython-310.pyc
ADDED
Binary file (4.97 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/tests/__pycache__/test__shgo.cpython-310.pyc
ADDED
Binary file (40.9 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/tests/__pycache__/test__spectral.cpython-310.pyc
ADDED
Binary file (6.99 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/tests/__pycache__/test_bracket.cpython-310.pyc
ADDED
Binary file (23.3 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/tests/__pycache__/test_chandrupatla.cpython-310.pyc
ADDED
Binary file (26.6 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/tests/__pycache__/test_cobyla.cpython-310.pyc
ADDED
Binary file (7.24 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/tests/__pycache__/test_constraint_conversion.cpython-310.pyc
ADDED
Binary file (11.7 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/tests/__pycache__/test_constraints.cpython-310.pyc
ADDED
Binary file (9.05 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/tests/__pycache__/test_cython_optimize.cpython-310.pyc
ADDED
Binary file (2.34 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/tests/__pycache__/test_differentiable_functions.cpython-310.pyc
ADDED
Binary file (16.8 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/tests/__pycache__/test_differentiate.cpython-310.pyc
ADDED
Binary file (15.7 kB). View file
|
|