Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +1 -0
- env-llmeval/lib/python3.10/site-packages/scipy/fft/_pocketfft/pypocketfft.cpython-310-x86_64-linux-gnu.so +3 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/README +76 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/__init__.py +451 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/_differentialevolution.py +1897 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/_highs/__init__.py +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/_highs/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/_highs/src/cython/HConst.pxd +106 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/_highs/src/cython/Highs.pxd +56 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/_highs/src/cython/HighsIO.pxd +20 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/_highs/src/cython/HighsInfo.pxd +22 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/_highs/src/cython/HighsLpUtils.pxd +9 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/_highs/src/cython/HighsModelUtils.pxd +10 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/_highs/src/cython/HighsOptions.pxd +110 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/_highs/src/cython/HighsRuntimeOptions.pxd +9 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/_highs/src/cython/HighsStatus.pxd +12 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/_highs/src/cython/SimplexConst.pxd +95 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/_highs/src/cython/highs_c_api.pxd +7 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/_isotonic.py +158 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/_linprog_doc.py +1434 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/_linprog_highs.py +440 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/_linprog_rs.py +572 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/_linprog_simplex.py +661 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/_lsq/common.py +733 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/_lsq/dogbox.py +331 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/_lsq/least_squares.py +967 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/_lsq/lsq_linear.py +362 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/_lsq/trf_linear.py +249 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/_minimize.py +1094 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/_minpack.cpython-310-x86_64-linux-gnu.so +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/_qap.py +731 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/_slsqp.cpython-310-x86_64-linux-gnu.so +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/_trustregion_krylov.py +65 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/tests/__init__.py +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/tests/__pycache__/test__basinhopping.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/tests/test__basinhopping.py +525 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/tests/test__differential_evolution.py +1677 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/tests/test__dual_annealing.py +379 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/tests/test__linprog_clean_inputs.py +310 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/tests/test__numdiff.py +815 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/tests/test__remove_redundancy.py +228 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/tests/test__root.py +123 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/tests/test__shgo.py +1159 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/tests/test__spectral.py +226 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/tests/test_bracket.py +780 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/tests/test_chandrupatla.py +827 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/tests/test_cobyla.py +166 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/tests/test_constraint_conversion.py +274 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/tests/test_constraints.py +255 -0
- env-llmeval/lib/python3.10/site-packages/scipy/optimize/tests/test_cython_optimize.py +92 -0
.gitattributes
CHANGED
@@ -166,3 +166,4 @@ env-llmeval/lib/python3.10/site-packages/scipy/stats/_unuran/unuran_wrapper.cpyt
|
|
166 |
env-llmeval/lib/python3.10/site-packages/scipy/special/_ufuncs.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
|
167 |
env-llmeval/lib/python3.10/site-packages/scipy/spatial/_ckdtree.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
|
168 |
env-llmeval/lib/python3.10/site-packages/scipy/spatial/_qhull.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
|
|
|
|
166 |
env-llmeval/lib/python3.10/site-packages/scipy/special/_ufuncs.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
|
167 |
env-llmeval/lib/python3.10/site-packages/scipy/spatial/_ckdtree.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
|
168 |
env-llmeval/lib/python3.10/site-packages/scipy/spatial/_qhull.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
|
169 |
+
env-llmeval/lib/python3.10/site-packages/scipy/fft/_pocketfft/pypocketfft.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
|
env-llmeval/lib/python3.10/site-packages/scipy/fft/_pocketfft/pypocketfft.cpython-310-x86_64-linux-gnu.so
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9faaa2f0339885c57273254ce48313ce6a25143417c9618a63a1ea97df886369
|
3 |
+
size 1197600
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/README
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
From the website for the L-BFGS-B code (from at
|
2 |
+
http://www.ece.northwestern.edu/~nocedal/lbfgsb.html):
|
3 |
+
|
4 |
+
"""
|
5 |
+
L-BFGS-B is a limited-memory quasi-Newton code for bound-constrained
|
6 |
+
optimization, i.e. for problems where the only constraints are of the
|
7 |
+
form l<= x <= u.
|
8 |
+
"""
|
9 |
+
|
10 |
+
This is a Python wrapper (using F2PY) written by David M. Cooke
|
11 |
+
<[email protected]> and released as version 0.9 on April 9, 2004.
|
12 |
+
The wrapper was slightly modified by Joonas Paalasmaa for the 3.0 version
|
13 |
+
in March 2012.
|
14 |
+
|
15 |
+
License of L-BFGS-B (Fortran code)
|
16 |
+
==================================
|
17 |
+
|
18 |
+
The version included here (in lbfgsb.f) is 3.0 (released April 25, 2011). It was
|
19 |
+
written by Ciyou Zhu, Richard Byrd, and Jorge Nocedal <[email protected]>. It
|
20 |
+
carries the following condition for use:
|
21 |
+
|
22 |
+
"""
|
23 |
+
This software is freely available, but we expect that all publications
|
24 |
+
describing work using this software, or all commercial products using it,
|
25 |
+
quote at least one of the references given below. This software is released
|
26 |
+
under the BSD License.
|
27 |
+
|
28 |
+
References
|
29 |
+
* R. H. Byrd, P. Lu and J. Nocedal. A Limited Memory Algorithm for Bound
|
30 |
+
Constrained Optimization, (1995), SIAM Journal on Scientific and
|
31 |
+
Statistical Computing, 16, 5, pp. 1190-1208.
|
32 |
+
* C. Zhu, R. H. Byrd and J. Nocedal. L-BFGS-B: Algorithm 778: L-BFGS-B,
|
33 |
+
FORTRAN routines for large scale bound constrained optimization (1997),
|
34 |
+
ACM Transactions on Mathematical Software, 23, 4, pp. 550 - 560.
|
35 |
+
* J.L. Morales and J. Nocedal. L-BFGS-B: Remark on Algorithm 778: L-BFGS-B,
|
36 |
+
FORTRAN routines for large scale bound constrained optimization (2011),
|
37 |
+
ACM Transactions on Mathematical Software, 38, 1.
|
38 |
+
"""
|
39 |
+
|
40 |
+
The Python wrapper
|
41 |
+
==================
|
42 |
+
|
43 |
+
This code uses F2PY (http://cens.ioc.ee/projects/f2py2e/) to generate
|
44 |
+
the wrapper around the Fortran code.
|
45 |
+
|
46 |
+
The Python code and wrapper are copyrighted 2004 by David M. Cooke
|
47 |
+
<[email protected]>.
|
48 |
+
|
49 |
+
Example usage
|
50 |
+
=============
|
51 |
+
|
52 |
+
An example of the usage is given at the bottom of the lbfgsb.py file.
|
53 |
+
Run it with 'python lbfgsb.py'.
|
54 |
+
|
55 |
+
License for the Python wrapper
|
56 |
+
==============================
|
57 |
+
|
58 |
+
Copyright (c) 2004 David M. Cooke <[email protected]>
|
59 |
+
|
60 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy of
|
61 |
+
this software and associated documentation files (the "Software"), to deal in
|
62 |
+
the Software without restriction, including without limitation the rights to
|
63 |
+
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
|
64 |
+
of the Software, and to permit persons to whom the Software is furnished to do
|
65 |
+
so, subject to the following conditions:
|
66 |
+
|
67 |
+
The above copyright notice and this permission notice shall be included in all
|
68 |
+
copies or substantial portions of the Software.
|
69 |
+
|
70 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
71 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
72 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
73 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
74 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
75 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
76 |
+
SOFTWARE.
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/__init__.py
ADDED
@@ -0,0 +1,451 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
=====================================================
|
3 |
+
Optimization and root finding (:mod:`scipy.optimize`)
|
4 |
+
=====================================================
|
5 |
+
|
6 |
+
.. currentmodule:: scipy.optimize
|
7 |
+
|
8 |
+
.. toctree::
|
9 |
+
:hidden:
|
10 |
+
|
11 |
+
optimize.cython_optimize
|
12 |
+
|
13 |
+
SciPy ``optimize`` provides functions for minimizing (or maximizing)
|
14 |
+
objective functions, possibly subject to constraints. It includes
|
15 |
+
solvers for nonlinear problems (with support for both local and global
|
16 |
+
optimization algorithms), linear programming, constrained
|
17 |
+
and nonlinear least-squares, root finding, and curve fitting.
|
18 |
+
|
19 |
+
Common functions and objects, shared across different solvers, are:
|
20 |
+
|
21 |
+
.. autosummary::
|
22 |
+
:toctree: generated/
|
23 |
+
|
24 |
+
show_options - Show specific options optimization solvers.
|
25 |
+
OptimizeResult - The optimization result returned by some optimizers.
|
26 |
+
OptimizeWarning - The optimization encountered problems.
|
27 |
+
|
28 |
+
|
29 |
+
Optimization
|
30 |
+
============
|
31 |
+
|
32 |
+
Scalar functions optimization
|
33 |
+
-----------------------------
|
34 |
+
|
35 |
+
.. autosummary::
|
36 |
+
:toctree: generated/
|
37 |
+
|
38 |
+
minimize_scalar - Interface for minimizers of univariate functions
|
39 |
+
|
40 |
+
The `minimize_scalar` function supports the following methods:
|
41 |
+
|
42 |
+
.. toctree::
|
43 |
+
|
44 |
+
optimize.minimize_scalar-brent
|
45 |
+
optimize.minimize_scalar-bounded
|
46 |
+
optimize.minimize_scalar-golden
|
47 |
+
|
48 |
+
Local (multivariate) optimization
|
49 |
+
---------------------------------
|
50 |
+
|
51 |
+
.. autosummary::
|
52 |
+
:toctree: generated/
|
53 |
+
|
54 |
+
minimize - Interface for minimizers of multivariate functions.
|
55 |
+
|
56 |
+
The `minimize` function supports the following methods:
|
57 |
+
|
58 |
+
.. toctree::
|
59 |
+
|
60 |
+
optimize.minimize-neldermead
|
61 |
+
optimize.minimize-powell
|
62 |
+
optimize.minimize-cg
|
63 |
+
optimize.minimize-bfgs
|
64 |
+
optimize.minimize-newtoncg
|
65 |
+
optimize.minimize-lbfgsb
|
66 |
+
optimize.minimize-tnc
|
67 |
+
optimize.minimize-cobyla
|
68 |
+
optimize.minimize-slsqp
|
69 |
+
optimize.minimize-trustconstr
|
70 |
+
optimize.minimize-dogleg
|
71 |
+
optimize.minimize-trustncg
|
72 |
+
optimize.minimize-trustkrylov
|
73 |
+
optimize.minimize-trustexact
|
74 |
+
|
75 |
+
Constraints are passed to `minimize` function as a single object or
|
76 |
+
as a list of objects from the following classes:
|
77 |
+
|
78 |
+
.. autosummary::
|
79 |
+
:toctree: generated/
|
80 |
+
|
81 |
+
NonlinearConstraint - Class defining general nonlinear constraints.
|
82 |
+
LinearConstraint - Class defining general linear constraints.
|
83 |
+
|
84 |
+
Simple bound constraints are handled separately and there is a special class
|
85 |
+
for them:
|
86 |
+
|
87 |
+
.. autosummary::
|
88 |
+
:toctree: generated/
|
89 |
+
|
90 |
+
Bounds - Bound constraints.
|
91 |
+
|
92 |
+
Quasi-Newton strategies implementing `HessianUpdateStrategy`
|
93 |
+
interface can be used to approximate the Hessian in `minimize`
|
94 |
+
function (available only for the 'trust-constr' method). Available
|
95 |
+
quasi-Newton methods implementing this interface are:
|
96 |
+
|
97 |
+
.. autosummary::
|
98 |
+
:toctree: generated/
|
99 |
+
|
100 |
+
BFGS - Broyden-Fletcher-Goldfarb-Shanno (BFGS) Hessian update strategy.
|
101 |
+
SR1 - Symmetric-rank-1 Hessian update strategy.
|
102 |
+
|
103 |
+
.. _global_optimization:
|
104 |
+
|
105 |
+
Global optimization
|
106 |
+
-------------------
|
107 |
+
|
108 |
+
.. autosummary::
|
109 |
+
:toctree: generated/
|
110 |
+
|
111 |
+
basinhopping - Basinhopping stochastic optimizer.
|
112 |
+
brute - Brute force searching optimizer.
|
113 |
+
differential_evolution - Stochastic optimizer using differential evolution.
|
114 |
+
|
115 |
+
shgo - Simplicial homology global optimizer.
|
116 |
+
dual_annealing - Dual annealing stochastic optimizer.
|
117 |
+
direct - DIRECT (Dividing Rectangles) optimizer.
|
118 |
+
|
119 |
+
Least-squares and curve fitting
|
120 |
+
===============================
|
121 |
+
|
122 |
+
Nonlinear least-squares
|
123 |
+
-----------------------
|
124 |
+
|
125 |
+
.. autosummary::
|
126 |
+
:toctree: generated/
|
127 |
+
|
128 |
+
least_squares - Solve a nonlinear least-squares problem with bounds on the variables.
|
129 |
+
|
130 |
+
Linear least-squares
|
131 |
+
--------------------
|
132 |
+
|
133 |
+
.. autosummary::
|
134 |
+
:toctree: generated/
|
135 |
+
|
136 |
+
nnls - Linear least-squares problem with non-negativity constraint.
|
137 |
+
lsq_linear - Linear least-squares problem with bound constraints.
|
138 |
+
isotonic_regression - Least squares problem of isotonic regression via PAVA.
|
139 |
+
|
140 |
+
Curve fitting
|
141 |
+
-------------
|
142 |
+
|
143 |
+
.. autosummary::
|
144 |
+
:toctree: generated/
|
145 |
+
|
146 |
+
curve_fit -- Fit curve to a set of points.
|
147 |
+
|
148 |
+
Root finding
|
149 |
+
============
|
150 |
+
|
151 |
+
Scalar functions
|
152 |
+
----------------
|
153 |
+
.. autosummary::
|
154 |
+
:toctree: generated/
|
155 |
+
|
156 |
+
root_scalar - Unified interface for nonlinear solvers of scalar functions.
|
157 |
+
brentq - quadratic interpolation Brent method.
|
158 |
+
brenth - Brent method, modified by Harris with hyperbolic extrapolation.
|
159 |
+
ridder - Ridder's method.
|
160 |
+
bisect - Bisection method.
|
161 |
+
newton - Newton's method (also Secant and Halley's methods).
|
162 |
+
toms748 - Alefeld, Potra & Shi Algorithm 748.
|
163 |
+
RootResults - The root finding result returned by some root finders.
|
164 |
+
|
165 |
+
The `root_scalar` function supports the following methods:
|
166 |
+
|
167 |
+
.. toctree::
|
168 |
+
|
169 |
+
optimize.root_scalar-brentq
|
170 |
+
optimize.root_scalar-brenth
|
171 |
+
optimize.root_scalar-bisect
|
172 |
+
optimize.root_scalar-ridder
|
173 |
+
optimize.root_scalar-newton
|
174 |
+
optimize.root_scalar-toms748
|
175 |
+
optimize.root_scalar-secant
|
176 |
+
optimize.root_scalar-halley
|
177 |
+
|
178 |
+
|
179 |
+
|
180 |
+
The table below lists situations and appropriate methods, along with
|
181 |
+
*asymptotic* convergence rates per iteration (and per function evaluation)
|
182 |
+
for successful convergence to a simple root(*).
|
183 |
+
Bisection is the slowest of them all, adding one bit of accuracy for each
|
184 |
+
function evaluation, but is guaranteed to converge.
|
185 |
+
The other bracketing methods all (eventually) increase the number of accurate
|
186 |
+
bits by about 50% for every function evaluation.
|
187 |
+
The derivative-based methods, all built on `newton`, can converge quite quickly
|
188 |
+
if the initial value is close to the root. They can also be applied to
|
189 |
+
functions defined on (a subset of) the complex plane.
|
190 |
+
|
191 |
+
+-------------+----------+----------+-----------+-------------+-------------+----------------+
|
192 |
+
| Domain of f | Bracket? | Derivatives? | Solvers | Convergence |
|
193 |
+
+ + +----------+-----------+ +-------------+----------------+
|
194 |
+
| | | `fprime` | `fprime2` | | Guaranteed? | Rate(s)(*) |
|
195 |
+
+=============+==========+==========+===========+=============+=============+================+
|
196 |
+
| `R` | Yes | N/A | N/A | - bisection | - Yes | - 1 "Linear" |
|
197 |
+
| | | | | - brentq | - Yes | - >=1, <= 1.62 |
|
198 |
+
| | | | | - brenth | - Yes | - >=1, <= 1.62 |
|
199 |
+
| | | | | - ridder | - Yes | - 2.0 (1.41) |
|
200 |
+
| | | | | - toms748 | - Yes | - 2.7 (1.65) |
|
201 |
+
+-------------+----------+----------+-----------+-------------+-------------+----------------+
|
202 |
+
| `R` or `C` | No | No | No | secant | No | 1.62 (1.62) |
|
203 |
+
+-------------+----------+----------+-----------+-------------+-------------+----------------+
|
204 |
+
| `R` or `C` | No | Yes | No | newton | No | 2.00 (1.41) |
|
205 |
+
+-------------+----------+----------+-----------+-------------+-------------+----------------+
|
206 |
+
| `R` or `C` | No | Yes | Yes | halley | No | 3.00 (1.44) |
|
207 |
+
+-------------+----------+----------+-----------+-------------+-------------+----------------+
|
208 |
+
|
209 |
+
.. seealso::
|
210 |
+
|
211 |
+
`scipy.optimize.cython_optimize` -- Typed Cython versions of root finding functions
|
212 |
+
|
213 |
+
Fixed point finding:
|
214 |
+
|
215 |
+
.. autosummary::
|
216 |
+
:toctree: generated/
|
217 |
+
|
218 |
+
fixed_point - Single-variable fixed-point solver.
|
219 |
+
|
220 |
+
Multidimensional
|
221 |
+
----------------
|
222 |
+
|
223 |
+
.. autosummary::
|
224 |
+
:toctree: generated/
|
225 |
+
|
226 |
+
root - Unified interface for nonlinear solvers of multivariate functions.
|
227 |
+
|
228 |
+
The `root` function supports the following methods:
|
229 |
+
|
230 |
+
.. toctree::
|
231 |
+
|
232 |
+
optimize.root-hybr
|
233 |
+
optimize.root-lm
|
234 |
+
optimize.root-broyden1
|
235 |
+
optimize.root-broyden2
|
236 |
+
optimize.root-anderson
|
237 |
+
optimize.root-linearmixing
|
238 |
+
optimize.root-diagbroyden
|
239 |
+
optimize.root-excitingmixing
|
240 |
+
optimize.root-krylov
|
241 |
+
optimize.root-dfsane
|
242 |
+
|
243 |
+
Linear programming / MILP
|
244 |
+
=========================
|
245 |
+
|
246 |
+
.. autosummary::
|
247 |
+
:toctree: generated/
|
248 |
+
|
249 |
+
milp -- Mixed integer linear programming.
|
250 |
+
linprog -- Unified interface for minimizers of linear programming problems.
|
251 |
+
|
252 |
+
The `linprog` function supports the following methods:
|
253 |
+
|
254 |
+
.. toctree::
|
255 |
+
|
256 |
+
optimize.linprog-simplex
|
257 |
+
optimize.linprog-interior-point
|
258 |
+
optimize.linprog-revised_simplex
|
259 |
+
optimize.linprog-highs-ipm
|
260 |
+
optimize.linprog-highs-ds
|
261 |
+
optimize.linprog-highs
|
262 |
+
|
263 |
+
The simplex, interior-point, and revised simplex methods support callback
|
264 |
+
functions, such as:
|
265 |
+
|
266 |
+
.. autosummary::
|
267 |
+
:toctree: generated/
|
268 |
+
|
269 |
+
linprog_verbose_callback -- Sample callback function for linprog (simplex).
|
270 |
+
|
271 |
+
Assignment problems
|
272 |
+
===================
|
273 |
+
|
274 |
+
.. autosummary::
|
275 |
+
:toctree: generated/
|
276 |
+
|
277 |
+
linear_sum_assignment -- Solves the linear-sum assignment problem.
|
278 |
+
quadratic_assignment -- Solves the quadratic assignment problem.
|
279 |
+
|
280 |
+
The `quadratic_assignment` function supports the following methods:
|
281 |
+
|
282 |
+
.. toctree::
|
283 |
+
|
284 |
+
optimize.qap-faq
|
285 |
+
optimize.qap-2opt
|
286 |
+
|
287 |
+
Utilities
|
288 |
+
=========
|
289 |
+
|
290 |
+
Finite-difference approximation
|
291 |
+
-------------------------------
|
292 |
+
|
293 |
+
.. autosummary::
|
294 |
+
:toctree: generated/
|
295 |
+
|
296 |
+
approx_fprime - Approximate the gradient of a scalar function.
|
297 |
+
check_grad - Check the supplied derivative using finite differences.
|
298 |
+
|
299 |
+
|
300 |
+
Line search
|
301 |
+
-----------
|
302 |
+
|
303 |
+
.. autosummary::
|
304 |
+
:toctree: generated/
|
305 |
+
|
306 |
+
bracket - Bracket a minimum, given two starting points.
|
307 |
+
line_search - Return a step that satisfies the strong Wolfe conditions.
|
308 |
+
|
309 |
+
Hessian approximation
|
310 |
+
---------------------
|
311 |
+
|
312 |
+
.. autosummary::
|
313 |
+
:toctree: generated/
|
314 |
+
|
315 |
+
LbfgsInvHessProduct - Linear operator for L-BFGS approximate inverse Hessian.
|
316 |
+
HessianUpdateStrategy - Interface for implementing Hessian update strategies
|
317 |
+
|
318 |
+
Benchmark problems
|
319 |
+
------------------
|
320 |
+
|
321 |
+
.. autosummary::
|
322 |
+
:toctree: generated/
|
323 |
+
|
324 |
+
rosen - The Rosenbrock function.
|
325 |
+
rosen_der - The derivative of the Rosenbrock function.
|
326 |
+
rosen_hess - The Hessian matrix of the Rosenbrock function.
|
327 |
+
rosen_hess_prod - Product of the Rosenbrock Hessian with a vector.
|
328 |
+
|
329 |
+
Legacy functions
|
330 |
+
================
|
331 |
+
|
332 |
+
The functions below are not recommended for use in new scripts;
|
333 |
+
all of these methods are accessible via a newer, more consistent
|
334 |
+
interfaces, provided by the interfaces above.
|
335 |
+
|
336 |
+
Optimization
|
337 |
+
------------
|
338 |
+
|
339 |
+
General-purpose multivariate methods:
|
340 |
+
|
341 |
+
.. autosummary::
|
342 |
+
:toctree: generated/
|
343 |
+
|
344 |
+
fmin - Nelder-Mead Simplex algorithm.
|
345 |
+
fmin_powell - Powell's (modified) conjugate direction method.
|
346 |
+
fmin_cg - Non-linear (Polak-Ribiere) conjugate gradient algorithm.
|
347 |
+
fmin_bfgs - Quasi-Newton method (Broydon-Fletcher-Goldfarb-Shanno).
|
348 |
+
fmin_ncg - Line-search Newton Conjugate Gradient.
|
349 |
+
|
350 |
+
Constrained multivariate methods:
|
351 |
+
|
352 |
+
.. autosummary::
|
353 |
+
:toctree: generated/
|
354 |
+
|
355 |
+
fmin_l_bfgs_b - Zhu, Byrd, and Nocedal's constrained optimizer.
|
356 |
+
fmin_tnc - Truncated Newton code.
|
357 |
+
fmin_cobyla - Constrained optimization by linear approximation.
|
358 |
+
fmin_slsqp - Minimization using sequential least-squares programming.
|
359 |
+
|
360 |
+
Univariate (scalar) minimization methods:
|
361 |
+
|
362 |
+
.. autosummary::
|
363 |
+
:toctree: generated/
|
364 |
+
|
365 |
+
fminbound - Bounded minimization of a scalar function.
|
366 |
+
brent - 1-D function minimization using Brent method.
|
367 |
+
golden - 1-D function minimization using Golden Section method.
|
368 |
+
|
369 |
+
Least-squares
|
370 |
+
-------------
|
371 |
+
|
372 |
+
.. autosummary::
|
373 |
+
:toctree: generated/
|
374 |
+
|
375 |
+
leastsq - Minimize the sum of squares of M equations in N unknowns.
|
376 |
+
|
377 |
+
Root finding
|
378 |
+
------------
|
379 |
+
|
380 |
+
General nonlinear solvers:
|
381 |
+
|
382 |
+
.. autosummary::
|
383 |
+
:toctree: generated/
|
384 |
+
|
385 |
+
fsolve - Non-linear multivariable equation solver.
|
386 |
+
broyden1 - Broyden's first method.
|
387 |
+
broyden2 - Broyden's second method.
|
388 |
+
NoConvergence - Exception raised when nonlinear solver does not converge.
|
389 |
+
|
390 |
+
Large-scale nonlinear solvers:
|
391 |
+
|
392 |
+
.. autosummary::
|
393 |
+
:toctree: generated/
|
394 |
+
|
395 |
+
newton_krylov
|
396 |
+
anderson
|
397 |
+
|
398 |
+
BroydenFirst
|
399 |
+
InverseJacobian
|
400 |
+
KrylovJacobian
|
401 |
+
|
402 |
+
Simple iteration solvers:
|
403 |
+
|
404 |
+
.. autosummary::
|
405 |
+
:toctree: generated/
|
406 |
+
|
407 |
+
excitingmixing
|
408 |
+
linearmixing
|
409 |
+
diagbroyden
|
410 |
+
|
411 |
+
""" # noqa: E501
|
412 |
+
|
413 |
+
from ._optimize import *
|
414 |
+
from ._minimize import *
|
415 |
+
from ._root import *
|
416 |
+
from ._root_scalar import *
|
417 |
+
from ._minpack_py import *
|
418 |
+
from ._zeros_py import *
|
419 |
+
from ._lbfgsb_py import fmin_l_bfgs_b, LbfgsInvHessProduct
|
420 |
+
from ._tnc import fmin_tnc
|
421 |
+
from ._cobyla_py import fmin_cobyla
|
422 |
+
from ._nonlin import *
|
423 |
+
from ._slsqp_py import fmin_slsqp
|
424 |
+
from ._nnls import nnls
|
425 |
+
from ._basinhopping import basinhopping
|
426 |
+
from ._linprog import linprog, linprog_verbose_callback
|
427 |
+
from ._lsap import linear_sum_assignment
|
428 |
+
from ._differentialevolution import differential_evolution
|
429 |
+
from ._lsq import least_squares, lsq_linear
|
430 |
+
from ._isotonic import isotonic_regression
|
431 |
+
from ._constraints import (NonlinearConstraint,
|
432 |
+
LinearConstraint,
|
433 |
+
Bounds)
|
434 |
+
from ._hessian_update_strategy import HessianUpdateStrategy, BFGS, SR1
|
435 |
+
from ._shgo import shgo
|
436 |
+
from ._dual_annealing import dual_annealing
|
437 |
+
from ._qap import quadratic_assignment
|
438 |
+
from ._direct_py import direct
|
439 |
+
from ._milp import milp
|
440 |
+
|
441 |
+
# Deprecated namespaces, to be removed in v2.0.0
|
442 |
+
from . import (
|
443 |
+
cobyla, lbfgsb, linesearch, minpack, minpack2, moduleTNC, nonlin, optimize,
|
444 |
+
slsqp, tnc, zeros
|
445 |
+
)
|
446 |
+
|
447 |
+
__all__ = [s for s in dir() if not s.startswith('_')]
|
448 |
+
|
449 |
+
from scipy._lib._testutils import PytestTester
|
450 |
+
test = PytestTester(__name__)
|
451 |
+
del PytestTester
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/_differentialevolution.py
ADDED
@@ -0,0 +1,1897 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
differential_evolution: The differential evolution global optimization algorithm
|
3 |
+
Added by Andrew Nelson 2014
|
4 |
+
"""
|
5 |
+
import warnings
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
from scipy.optimize import OptimizeResult, minimize
|
9 |
+
from scipy.optimize._optimize import _status_message, _wrap_callback
|
10 |
+
from scipy._lib._util import check_random_state, MapWrapper, _FunctionWrapper
|
11 |
+
|
12 |
+
from scipy.optimize._constraints import (Bounds, new_bounds_to_old,
|
13 |
+
NonlinearConstraint, LinearConstraint)
|
14 |
+
from scipy.sparse import issparse
|
15 |
+
|
16 |
+
__all__ = ['differential_evolution']
|
17 |
+
|
18 |
+
|
19 |
+
_MACHEPS = np.finfo(np.float64).eps
|
20 |
+
|
21 |
+
|
22 |
+
def differential_evolution(func, bounds, args=(), strategy='best1bin',
|
23 |
+
maxiter=1000, popsize=15, tol=0.01,
|
24 |
+
mutation=(0.5, 1), recombination=0.7, seed=None,
|
25 |
+
callback=None, disp=False, polish=True,
|
26 |
+
init='latinhypercube', atol=0, updating='immediate',
|
27 |
+
workers=1, constraints=(), x0=None, *,
|
28 |
+
integrality=None, vectorized=False):
|
29 |
+
"""Finds the global minimum of a multivariate function.
|
30 |
+
|
31 |
+
The differential evolution method [1]_ is stochastic in nature. It does
|
32 |
+
not use gradient methods to find the minimum, and can search large areas
|
33 |
+
of candidate space, but often requires larger numbers of function
|
34 |
+
evaluations than conventional gradient-based techniques.
|
35 |
+
|
36 |
+
The algorithm is due to Storn and Price [2]_.
|
37 |
+
|
38 |
+
Parameters
|
39 |
+
----------
|
40 |
+
func : callable
|
41 |
+
The objective function to be minimized. Must be in the form
|
42 |
+
``f(x, *args)``, where ``x`` is the argument in the form of a 1-D array
|
43 |
+
and ``args`` is a tuple of any additional fixed parameters needed to
|
44 |
+
completely specify the function. The number of parameters, N, is equal
|
45 |
+
to ``len(x)``.
|
46 |
+
bounds : sequence or `Bounds`
|
47 |
+
Bounds for variables. There are two ways to specify the bounds:
|
48 |
+
|
49 |
+
1. Instance of `Bounds` class.
|
50 |
+
2. ``(min, max)`` pairs for each element in ``x``, defining the
|
51 |
+
finite lower and upper bounds for the optimizing argument of
|
52 |
+
`func`.
|
53 |
+
|
54 |
+
The total number of bounds is used to determine the number of
|
55 |
+
parameters, N. If there are parameters whose bounds are equal the total
|
56 |
+
number of free parameters is ``N - N_equal``.
|
57 |
+
|
58 |
+
args : tuple, optional
|
59 |
+
Any additional fixed parameters needed to
|
60 |
+
completely specify the objective function.
|
61 |
+
strategy : {str, callable}, optional
|
62 |
+
The differential evolution strategy to use. Should be one of:
|
63 |
+
|
64 |
+
- 'best1bin'
|
65 |
+
- 'best1exp'
|
66 |
+
- 'rand1bin'
|
67 |
+
- 'rand1exp'
|
68 |
+
- 'rand2bin'
|
69 |
+
- 'rand2exp'
|
70 |
+
- 'randtobest1bin'
|
71 |
+
- 'randtobest1exp'
|
72 |
+
- 'currenttobest1bin'
|
73 |
+
- 'currenttobest1exp'
|
74 |
+
- 'best2exp'
|
75 |
+
- 'best2bin'
|
76 |
+
|
77 |
+
The default is 'best1bin'. Strategies that may be implemented are
|
78 |
+
outlined in 'Notes'.
|
79 |
+
Alternatively the differential evolution strategy can be customized by
|
80 |
+
providing a callable that constructs a trial vector. The callable must
|
81 |
+
have the form ``strategy(candidate: int, population: np.ndarray, rng=None)``,
|
82 |
+
where ``candidate`` is an integer specifying which entry of the
|
83 |
+
population is being evolved, ``population`` is an array of shape
|
84 |
+
``(S, N)`` containing all the population members (where S is the
|
85 |
+
total population size), and ``rng`` is the random number generator
|
86 |
+
being used within the solver.
|
87 |
+
``candidate`` will be in the range ``[0, S)``.
|
88 |
+
``strategy`` must return a trial vector with shape `(N,)`. The
|
89 |
+
fitness of this trial vector is compared against the fitness of
|
90 |
+
``population[candidate]``.
|
91 |
+
|
92 |
+
.. versionchanged:: 1.12.0
|
93 |
+
Customization of evolution strategy via a callable.
|
94 |
+
|
95 |
+
maxiter : int, optional
|
96 |
+
The maximum number of generations over which the entire population is
|
97 |
+
evolved. The maximum number of function evaluations (with no polishing)
|
98 |
+
is: ``(maxiter + 1) * popsize * (N - N_equal)``
|
99 |
+
popsize : int, optional
|
100 |
+
A multiplier for setting the total population size. The population has
|
101 |
+
``popsize * (N - N_equal)`` individuals. This keyword is overridden if
|
102 |
+
an initial population is supplied via the `init` keyword. When using
|
103 |
+
``init='sobol'`` the population size is calculated as the next power
|
104 |
+
of 2 after ``popsize * (N - N_equal)``.
|
105 |
+
tol : float, optional
|
106 |
+
Relative tolerance for convergence, the solving stops when
|
107 |
+
``np.std(pop) <= atol + tol * np.abs(np.mean(population_energies))``,
|
108 |
+
where and `atol` and `tol` are the absolute and relative tolerance
|
109 |
+
respectively.
|
110 |
+
mutation : float or tuple(float, float), optional
|
111 |
+
The mutation constant. In the literature this is also known as
|
112 |
+
differential weight, being denoted by F.
|
113 |
+
If specified as a float it should be in the range [0, 2].
|
114 |
+
If specified as a tuple ``(min, max)`` dithering is employed. Dithering
|
115 |
+
randomly changes the mutation constant on a generation by generation
|
116 |
+
basis. The mutation constant for that generation is taken from
|
117 |
+
``U[min, max)``. Dithering can help speed convergence significantly.
|
118 |
+
Increasing the mutation constant increases the search radius, but will
|
119 |
+
slow down convergence.
|
120 |
+
recombination : float, optional
|
121 |
+
The recombination constant, should be in the range [0, 1]. In the
|
122 |
+
literature this is also known as the crossover probability, being
|
123 |
+
denoted by CR. Increasing this value allows a larger number of mutants
|
124 |
+
to progress into the next generation, but at the risk of population
|
125 |
+
stability.
|
126 |
+
seed : {None, int, `numpy.random.Generator`, `numpy.random.RandomState`}, optional
|
127 |
+
If `seed` is None (or `np.random`), the `numpy.random.RandomState`
|
128 |
+
singleton is used.
|
129 |
+
If `seed` is an int, a new ``RandomState`` instance is used,
|
130 |
+
seeded with `seed`.
|
131 |
+
If `seed` is already a ``Generator`` or ``RandomState`` instance then
|
132 |
+
that instance is used.
|
133 |
+
Specify `seed` for repeatable minimizations.
|
134 |
+
disp : bool, optional
|
135 |
+
Prints the evaluated `func` at every iteration.
|
136 |
+
callback : callable, optional
|
137 |
+
A callable called after each iteration. Has the signature:
|
138 |
+
|
139 |
+
``callback(intermediate_result: OptimizeResult)``
|
140 |
+
|
141 |
+
where ``intermediate_result`` is a keyword parameter containing an
|
142 |
+
`OptimizeResult` with attributes ``x`` and ``fun``, the best solution
|
143 |
+
found so far and the objective function. Note that the name
|
144 |
+
of the parameter must be ``intermediate_result`` for the callback
|
145 |
+
to be passed an `OptimizeResult`.
|
146 |
+
|
147 |
+
The callback also supports a signature like:
|
148 |
+
|
149 |
+
``callback(x, convergence: float=val)``
|
150 |
+
|
151 |
+
``val`` represents the fractional value of the population convergence.
|
152 |
+
When ``val`` is greater than ``1.0``, the function halts.
|
153 |
+
|
154 |
+
Introspection is used to determine which of the signatures is invoked.
|
155 |
+
|
156 |
+
Global minimization will halt if the callback raises ``StopIteration``
|
157 |
+
or returns ``True``; any polishing is still carried out.
|
158 |
+
|
159 |
+
.. versionchanged:: 1.12.0
|
160 |
+
callback accepts the ``intermediate_result`` keyword.
|
161 |
+
|
162 |
+
polish : bool, optional
|
163 |
+
If True (default), then `scipy.optimize.minimize` with the `L-BFGS-B`
|
164 |
+
method is used to polish the best population member at the end, which
|
165 |
+
can improve the minimization slightly. If a constrained problem is
|
166 |
+
being studied then the `trust-constr` method is used instead. For large
|
167 |
+
problems with many constraints, polishing can take a long time due to
|
168 |
+
the Jacobian computations.
|
169 |
+
init : str or array-like, optional
|
170 |
+
Specify which type of population initialization is performed. Should be
|
171 |
+
one of:
|
172 |
+
|
173 |
+
- 'latinhypercube'
|
174 |
+
- 'sobol'
|
175 |
+
- 'halton'
|
176 |
+
- 'random'
|
177 |
+
- array specifying the initial population. The array should have
|
178 |
+
shape ``(S, N)``, where S is the total population size and N is
|
179 |
+
the number of parameters.
|
180 |
+
`init` is clipped to `bounds` before use.
|
181 |
+
|
182 |
+
The default is 'latinhypercube'. Latin Hypercube sampling tries to
|
183 |
+
maximize coverage of the available parameter space.
|
184 |
+
|
185 |
+
'sobol' and 'halton' are superior alternatives and maximize even more
|
186 |
+
the parameter space. 'sobol' will enforce an initial population
|
187 |
+
size which is calculated as the next power of 2 after
|
188 |
+
``popsize * (N - N_equal)``. 'halton' has no requirements but is a bit
|
189 |
+
less efficient. See `scipy.stats.qmc` for more details.
|
190 |
+
|
191 |
+
'random' initializes the population randomly - this has the drawback
|
192 |
+
that clustering can occur, preventing the whole of parameter space
|
193 |
+
being covered. Use of an array to specify a population could be used,
|
194 |
+
for example, to create a tight bunch of initial guesses in an location
|
195 |
+
where the solution is known to exist, thereby reducing time for
|
196 |
+
convergence.
|
197 |
+
atol : float, optional
|
198 |
+
Absolute tolerance for convergence, the solving stops when
|
199 |
+
``np.std(pop) <= atol + tol * np.abs(np.mean(population_energies))``,
|
200 |
+
where and `atol` and `tol` are the absolute and relative tolerance
|
201 |
+
respectively.
|
202 |
+
updating : {'immediate', 'deferred'}, optional
|
203 |
+
If ``'immediate'``, the best solution vector is continuously updated
|
204 |
+
within a single generation [4]_. This can lead to faster convergence as
|
205 |
+
trial vectors can take advantage of continuous improvements in the best
|
206 |
+
solution.
|
207 |
+
With ``'deferred'``, the best solution vector is updated once per
|
208 |
+
generation. Only ``'deferred'`` is compatible with parallelization or
|
209 |
+
vectorization, and the `workers` and `vectorized` keywords can
|
210 |
+
over-ride this option.
|
211 |
+
|
212 |
+
.. versionadded:: 1.2.0
|
213 |
+
|
214 |
+
workers : int or map-like callable, optional
|
215 |
+
If `workers` is an int the population is subdivided into `workers`
|
216 |
+
sections and evaluated in parallel
|
217 |
+
(uses `multiprocessing.Pool <multiprocessing>`).
|
218 |
+
Supply -1 to use all available CPU cores.
|
219 |
+
Alternatively supply a map-like callable, such as
|
220 |
+
`multiprocessing.Pool.map` for evaluating the population in parallel.
|
221 |
+
This evaluation is carried out as ``workers(func, iterable)``.
|
222 |
+
This option will override the `updating` keyword to
|
223 |
+
``updating='deferred'`` if ``workers != 1``.
|
224 |
+
This option overrides the `vectorized` keyword if ``workers != 1``.
|
225 |
+
Requires that `func` be pickleable.
|
226 |
+
|
227 |
+
.. versionadded:: 1.2.0
|
228 |
+
|
229 |
+
constraints : {NonLinearConstraint, LinearConstraint, Bounds}
|
230 |
+
Constraints on the solver, over and above those applied by the `bounds`
|
231 |
+
kwd. Uses the approach by Lampinen [5]_.
|
232 |
+
|
233 |
+
.. versionadded:: 1.4.0
|
234 |
+
|
235 |
+
x0 : None or array-like, optional
|
236 |
+
Provides an initial guess to the minimization. Once the population has
|
237 |
+
been initialized this vector replaces the first (best) member. This
|
238 |
+
replacement is done even if `init` is given an initial population.
|
239 |
+
``x0.shape == (N,)``.
|
240 |
+
|
241 |
+
.. versionadded:: 1.7.0
|
242 |
+
|
243 |
+
integrality : 1-D array, optional
|
244 |
+
For each decision variable, a boolean value indicating whether the
|
245 |
+
decision variable is constrained to integer values. The array is
|
246 |
+
broadcast to ``(N,)``.
|
247 |
+
If any decision variables are constrained to be integral, they will not
|
248 |
+
be changed during polishing.
|
249 |
+
Only integer values lying between the lower and upper bounds are used.
|
250 |
+
If there are no integer values lying between the bounds then a
|
251 |
+
`ValueError` is raised.
|
252 |
+
|
253 |
+
.. versionadded:: 1.9.0
|
254 |
+
|
255 |
+
vectorized : bool, optional
|
256 |
+
If ``vectorized is True``, `func` is sent an `x` array with
|
257 |
+
``x.shape == (N, S)``, and is expected to return an array of shape
|
258 |
+
``(S,)``, where `S` is the number of solution vectors to be calculated.
|
259 |
+
If constraints are applied, each of the functions used to construct
|
260 |
+
a `Constraint` object should accept an `x` array with
|
261 |
+
``x.shape == (N, S)``, and return an array of shape ``(M, S)``, where
|
262 |
+
`M` is the number of constraint components.
|
263 |
+
This option is an alternative to the parallelization offered by
|
264 |
+
`workers`, and may help in optimization speed by reducing interpreter
|
265 |
+
overhead from multiple function calls. This keyword is ignored if
|
266 |
+
``workers != 1``.
|
267 |
+
This option will override the `updating` keyword to
|
268 |
+
``updating='deferred'``.
|
269 |
+
See the notes section for further discussion on when to use
|
270 |
+
``'vectorized'``, and when to use ``'workers'``.
|
271 |
+
|
272 |
+
.. versionadded:: 1.9.0
|
273 |
+
|
274 |
+
Returns
|
275 |
+
-------
|
276 |
+
res : OptimizeResult
|
277 |
+
The optimization result represented as a `OptimizeResult` object.
|
278 |
+
Important attributes are: ``x`` the solution array, ``success`` a
|
279 |
+
Boolean flag indicating if the optimizer exited successfully,
|
280 |
+
``message`` which describes the cause of the termination,
|
281 |
+
``population`` the solution vectors present in the population, and
|
282 |
+
``population_energies`` the value of the objective function for each
|
283 |
+
entry in ``population``.
|
284 |
+
See `OptimizeResult` for a description of other attributes. If `polish`
|
285 |
+
was employed, and a lower minimum was obtained by the polishing, then
|
286 |
+
OptimizeResult also contains the ``jac`` attribute.
|
287 |
+
If the eventual solution does not satisfy the applied constraints
|
288 |
+
``success`` will be `False`.
|
289 |
+
|
290 |
+
Notes
|
291 |
+
-----
|
292 |
+
Differential evolution is a stochastic population based method that is
|
293 |
+
useful for global optimization problems. At each pass through the
|
294 |
+
population the algorithm mutates each candidate solution by mixing with
|
295 |
+
other candidate solutions to create a trial candidate. There are several
|
296 |
+
strategies [3]_ for creating trial candidates, which suit some problems
|
297 |
+
more than others. The 'best1bin' strategy is a good starting point for
|
298 |
+
many systems. In this strategy two members of the population are randomly
|
299 |
+
chosen. Their difference is used to mutate the best member (the 'best' in
|
300 |
+
'best1bin'), :math:`x_0`, so far:
|
301 |
+
|
302 |
+
.. math::
|
303 |
+
|
304 |
+
b' = x_0 + mutation * (x_{r_0} - x_{r_1})
|
305 |
+
|
306 |
+
A trial vector is then constructed. Starting with a randomly chosen ith
|
307 |
+
parameter the trial is sequentially filled (in modulo) with parameters
|
308 |
+
from ``b'`` or the original candidate. The choice of whether to use ``b'``
|
309 |
+
or the original candidate is made with a binomial distribution (the 'bin'
|
310 |
+
in 'best1bin') - a random number in [0, 1) is generated. If this number is
|
311 |
+
less than the `recombination` constant then the parameter is loaded from
|
312 |
+
``b'``, otherwise it is loaded from the original candidate. The final
|
313 |
+
parameter is always loaded from ``b'``. Once the trial candidate is built
|
314 |
+
its fitness is assessed. If the trial is better than the original candidate
|
315 |
+
then it takes its place. If it is also better than the best overall
|
316 |
+
candidate it also replaces that.
|
317 |
+
|
318 |
+
The other strategies available are outlined in Qiang and
|
319 |
+
Mitchell (2014) [3]_.
|
320 |
+
|
321 |
+
.. math::
|
322 |
+
rand1* : b' = x_{r_0} + mutation*(x_{r_1} - x_{r_2})
|
323 |
+
|
324 |
+
rand2* : b' = x_{r_0} + mutation*(x_{r_1} + x_{r_2}
|
325 |
+
- x_{r_3} - x_{r_4})
|
326 |
+
|
327 |
+
best1* : b' = x_0 + mutation*(x_{r_0} - x_{r_1})
|
328 |
+
|
329 |
+
best2* : b' = x_0 + mutation*(x_{r_0} + x_{r_1}
|
330 |
+
- x_{r_2} - x_{r_3})
|
331 |
+
|
332 |
+
currenttobest1* : b' = x_i + mutation*(x_0 - x_i
|
333 |
+
+ x_{r_0} - x_{r_1})
|
334 |
+
|
335 |
+
randtobest1* : b' = x_{r_0} + mutation*(x_0 - x_{r_0}
|
336 |
+
+ x_{r_1} - x_{r_2})
|
337 |
+
|
338 |
+
where the integers :math:`r_0, r_1, r_2, r_3, r_4` are chosen randomly
|
339 |
+
from the interval [0, NP) with `NP` being the total population size and
|
340 |
+
the original candidate having index `i`. The user can fully customize the
|
341 |
+
generation of the trial candidates by supplying a callable to ``strategy``.
|
342 |
+
|
343 |
+
To improve your chances of finding a global minimum use higher `popsize`
|
344 |
+
values, with higher `mutation` and (dithering), but lower `recombination`
|
345 |
+
values. This has the effect of widening the search radius, but slowing
|
346 |
+
convergence.
|
347 |
+
|
348 |
+
By default the best solution vector is updated continuously within a single
|
349 |
+
iteration (``updating='immediate'``). This is a modification [4]_ of the
|
350 |
+
original differential evolution algorithm which can lead to faster
|
351 |
+
convergence as trial vectors can immediately benefit from improved
|
352 |
+
solutions. To use the original Storn and Price behaviour, updating the best
|
353 |
+
solution once per iteration, set ``updating='deferred'``.
|
354 |
+
The ``'deferred'`` approach is compatible with both parallelization and
|
355 |
+
vectorization (``'workers'`` and ``'vectorized'`` keywords). These may
|
356 |
+
improve minimization speed by using computer resources more efficiently.
|
357 |
+
The ``'workers'`` distribute calculations over multiple processors. By
|
358 |
+
default the Python `multiprocessing` module is used, but other approaches
|
359 |
+
are also possible, such as the Message Passing Interface (MPI) used on
|
360 |
+
clusters [6]_ [7]_. The overhead from these approaches (creating new
|
361 |
+
Processes, etc) may be significant, meaning that computational speed
|
362 |
+
doesn't necessarily scale with the number of processors used.
|
363 |
+
Parallelization is best suited to computationally expensive objective
|
364 |
+
functions. If the objective function is less expensive, then
|
365 |
+
``'vectorized'`` may aid by only calling the objective function once per
|
366 |
+
iteration, rather than multiple times for all the population members; the
|
367 |
+
interpreter overhead is reduced.
|
368 |
+
|
369 |
+
.. versionadded:: 0.15.0
|
370 |
+
|
371 |
+
References
|
372 |
+
----------
|
373 |
+
.. [1] Differential evolution, Wikipedia,
|
374 |
+
http://en.wikipedia.org/wiki/Differential_evolution
|
375 |
+
.. [2] Storn, R and Price, K, Differential Evolution - a Simple and
|
376 |
+
Efficient Heuristic for Global Optimization over Continuous Spaces,
|
377 |
+
Journal of Global Optimization, 1997, 11, 341 - 359.
|
378 |
+
.. [3] Qiang, J., Mitchell, C., A Unified Differential Evolution Algorithm
|
379 |
+
for Global Optimization, 2014, https://www.osti.gov/servlets/purl/1163659
|
380 |
+
.. [4] Wormington, M., Panaccione, C., Matney, K. M., Bowen, D. K., -
|
381 |
+
Characterization of structures from X-ray scattering data using
|
382 |
+
genetic algorithms, Phil. Trans. R. Soc. Lond. A, 1999, 357,
|
383 |
+
2827-2848
|
384 |
+
.. [5] Lampinen, J., A constraint handling approach for the differential
|
385 |
+
evolution algorithm. Proceedings of the 2002 Congress on
|
386 |
+
Evolutionary Computation. CEC'02 (Cat. No. 02TH8600). Vol. 2. IEEE,
|
387 |
+
2002.
|
388 |
+
.. [6] https://mpi4py.readthedocs.io/en/stable/
|
389 |
+
.. [7] https://schwimmbad.readthedocs.io/en/latest/
|
390 |
+
|
391 |
+
|
392 |
+
Examples
|
393 |
+
--------
|
394 |
+
Let us consider the problem of minimizing the Rosenbrock function. This
|
395 |
+
function is implemented in `rosen` in `scipy.optimize`.
|
396 |
+
|
397 |
+
>>> import numpy as np
|
398 |
+
>>> from scipy.optimize import rosen, differential_evolution
|
399 |
+
>>> bounds = [(0,2), (0, 2), (0, 2), (0, 2), (0, 2)]
|
400 |
+
>>> result = differential_evolution(rosen, bounds)
|
401 |
+
>>> result.x, result.fun
|
402 |
+
(array([1., 1., 1., 1., 1.]), 1.9216496320061384e-19)
|
403 |
+
|
404 |
+
Now repeat, but with parallelization.
|
405 |
+
|
406 |
+
>>> result = differential_evolution(rosen, bounds, updating='deferred',
|
407 |
+
... workers=2)
|
408 |
+
>>> result.x, result.fun
|
409 |
+
(array([1., 1., 1., 1., 1.]), 1.9216496320061384e-19)
|
410 |
+
|
411 |
+
Let's do a constrained minimization.
|
412 |
+
|
413 |
+
>>> from scipy.optimize import LinearConstraint, Bounds
|
414 |
+
|
415 |
+
We add the constraint that the sum of ``x[0]`` and ``x[1]`` must be less
|
416 |
+
than or equal to 1.9. This is a linear constraint, which may be written
|
417 |
+
``A @ x <= 1.9``, where ``A = array([[1, 1]])``. This can be encoded as
|
418 |
+
a `LinearConstraint` instance:
|
419 |
+
|
420 |
+
>>> lc = LinearConstraint([[1, 1]], -np.inf, 1.9)
|
421 |
+
|
422 |
+
Specify limits using a `Bounds` object.
|
423 |
+
|
424 |
+
>>> bounds = Bounds([0., 0.], [2., 2.])
|
425 |
+
>>> result = differential_evolution(rosen, bounds, constraints=lc,
|
426 |
+
... seed=1)
|
427 |
+
>>> result.x, result.fun
|
428 |
+
(array([0.96632622, 0.93367155]), 0.0011352416852625719)
|
429 |
+
|
430 |
+
Next find the minimum of the Ackley function
|
431 |
+
(https://en.wikipedia.org/wiki/Test_functions_for_optimization).
|
432 |
+
|
433 |
+
>>> def ackley(x):
|
434 |
+
... arg1 = -0.2 * np.sqrt(0.5 * (x[0] ** 2 + x[1] ** 2))
|
435 |
+
... arg2 = 0.5 * (np.cos(2. * np.pi * x[0]) + np.cos(2. * np.pi * x[1]))
|
436 |
+
... return -20. * np.exp(arg1) - np.exp(arg2) + 20. + np.e
|
437 |
+
>>> bounds = [(-5, 5), (-5, 5)]
|
438 |
+
>>> result = differential_evolution(ackley, bounds, seed=1)
|
439 |
+
>>> result.x, result.fun
|
440 |
+
(array([0., 0.]), 4.440892098500626e-16)
|
441 |
+
|
442 |
+
The Ackley function is written in a vectorized manner, so the
|
443 |
+
``'vectorized'`` keyword can be employed. Note the reduced number of
|
444 |
+
function evaluations.
|
445 |
+
|
446 |
+
>>> result = differential_evolution(
|
447 |
+
... ackley, bounds, vectorized=True, updating='deferred', seed=1
|
448 |
+
... )
|
449 |
+
>>> result.x, result.fun
|
450 |
+
(array([0., 0.]), 4.440892098500626e-16)
|
451 |
+
|
452 |
+
The following custom strategy function mimics 'best1bin':
|
453 |
+
|
454 |
+
>>> def custom_strategy_fn(candidate, population, rng=None):
|
455 |
+
... parameter_count = population.shape(-1)
|
456 |
+
... mutation, recombination = 0.7, 0.9
|
457 |
+
... trial = np.copy(population[candidate])
|
458 |
+
... fill_point = rng.choice(parameter_count)
|
459 |
+
...
|
460 |
+
... pool = np.arange(len(population))
|
461 |
+
... rng.shuffle(pool)
|
462 |
+
...
|
463 |
+
... # two unique random numbers that aren't the same, and
|
464 |
+
... # aren't equal to candidate.
|
465 |
+
... idxs = []
|
466 |
+
... while len(idxs) < 2 and len(pool) > 0:
|
467 |
+
... idx = pool[0]
|
468 |
+
... pool = pool[1:]
|
469 |
+
... if idx != candidate:
|
470 |
+
... idxs.append(idx)
|
471 |
+
...
|
472 |
+
... r0, r1 = idxs[:2]
|
473 |
+
...
|
474 |
+
... bprime = (population[0] + mutation *
|
475 |
+
... (population[r0] - population[r1]))
|
476 |
+
...
|
477 |
+
... crossovers = rng.uniform(size=parameter_count)
|
478 |
+
... crossovers = crossovers < recombination
|
479 |
+
... crossovers[fill_point] = True
|
480 |
+
... trial = np.where(crossovers, bprime, trial)
|
481 |
+
... return trial
|
482 |
+
|
483 |
+
"""
|
484 |
+
|
485 |
+
# using a context manager means that any created Pool objects are
|
486 |
+
# cleared up.
|
487 |
+
with DifferentialEvolutionSolver(func, bounds, args=args,
|
488 |
+
strategy=strategy,
|
489 |
+
maxiter=maxiter,
|
490 |
+
popsize=popsize, tol=tol,
|
491 |
+
mutation=mutation,
|
492 |
+
recombination=recombination,
|
493 |
+
seed=seed, polish=polish,
|
494 |
+
callback=callback,
|
495 |
+
disp=disp, init=init, atol=atol,
|
496 |
+
updating=updating,
|
497 |
+
workers=workers,
|
498 |
+
constraints=constraints,
|
499 |
+
x0=x0,
|
500 |
+
integrality=integrality,
|
501 |
+
vectorized=vectorized) as solver:
|
502 |
+
ret = solver.solve()
|
503 |
+
|
504 |
+
return ret
|
505 |
+
|
506 |
+
|
507 |
+
class DifferentialEvolutionSolver:
|
508 |
+
|
509 |
+
"""This class implements the differential evolution solver
|
510 |
+
|
511 |
+
Parameters
|
512 |
+
----------
|
513 |
+
func : callable
|
514 |
+
The objective function to be minimized. Must be in the form
|
515 |
+
``f(x, *args)``, where ``x`` is the argument in the form of a 1-D array
|
516 |
+
and ``args`` is a tuple of any additional fixed parameters needed to
|
517 |
+
completely specify the function. The number of parameters, N, is equal
|
518 |
+
to ``len(x)``.
|
519 |
+
bounds : sequence or `Bounds`
|
520 |
+
Bounds for variables. There are two ways to specify the bounds:
|
521 |
+
|
522 |
+
1. Instance of `Bounds` class.
|
523 |
+
2. ``(min, max)`` pairs for each element in ``x``, defining the
|
524 |
+
finite lower and upper bounds for the optimizing argument of
|
525 |
+
`func`.
|
526 |
+
|
527 |
+
The total number of bounds is used to determine the number of
|
528 |
+
parameters, N. If there are parameters whose bounds are equal the total
|
529 |
+
number of free parameters is ``N - N_equal``.
|
530 |
+
args : tuple, optional
|
531 |
+
Any additional fixed parameters needed to
|
532 |
+
completely specify the objective function.
|
533 |
+
strategy : {str, callable}, optional
|
534 |
+
The differential evolution strategy to use. Should be one of:
|
535 |
+
|
536 |
+
- 'best1bin'
|
537 |
+
- 'best1exp'
|
538 |
+
- 'rand1bin'
|
539 |
+
- 'rand1exp'
|
540 |
+
- 'rand2bin'
|
541 |
+
- 'rand2exp'
|
542 |
+
- 'randtobest1bin'
|
543 |
+
- 'randtobest1exp'
|
544 |
+
- 'currenttobest1bin'
|
545 |
+
- 'currenttobest1exp'
|
546 |
+
- 'best2exp'
|
547 |
+
- 'best2bin'
|
548 |
+
|
549 |
+
The default is 'best1bin'. Strategies that may be
|
550 |
+
implemented are outlined in 'Notes'.
|
551 |
+
|
552 |
+
Alternatively the differential evolution strategy can be customized
|
553 |
+
by providing a callable that constructs a trial vector. The callable
|
554 |
+
must have the form
|
555 |
+
``strategy(candidate: int, population: np.ndarray, rng=None)``,
|
556 |
+
where ``candidate`` is an integer specifying which entry of the
|
557 |
+
population is being evolved, ``population`` is an array of shape
|
558 |
+
``(S, N)`` containing all the population members (where S is the
|
559 |
+
total population size), and ``rng`` is the random number generator
|
560 |
+
being used within the solver.
|
561 |
+
``candidate`` will be in the range ``[0, S)``.
|
562 |
+
``strategy`` must return a trial vector with shape `(N,)`. The
|
563 |
+
fitness of this trial vector is compared against the fitness of
|
564 |
+
``population[candidate]``.
|
565 |
+
maxiter : int, optional
|
566 |
+
The maximum number of generations over which the entire population is
|
567 |
+
evolved. The maximum number of function evaluations (with no polishing)
|
568 |
+
is: ``(maxiter + 1) * popsize * (N - N_equal)``
|
569 |
+
popsize : int, optional
|
570 |
+
A multiplier for setting the total population size. The population has
|
571 |
+
``popsize * (N - N_equal)`` individuals. This keyword is overridden if
|
572 |
+
an initial population is supplied via the `init` keyword. When using
|
573 |
+
``init='sobol'`` the population size is calculated as the next power
|
574 |
+
of 2 after ``popsize * (N - N_equal)``.
|
575 |
+
tol : float, optional
|
576 |
+
Relative tolerance for convergence, the solving stops when
|
577 |
+
``np.std(pop) <= atol + tol * np.abs(np.mean(population_energies))``,
|
578 |
+
where and `atol` and `tol` are the absolute and relative tolerance
|
579 |
+
respectively.
|
580 |
+
mutation : float or tuple(float, float), optional
|
581 |
+
The mutation constant. In the literature this is also known as
|
582 |
+
differential weight, being denoted by F.
|
583 |
+
If specified as a float it should be in the range [0, 2].
|
584 |
+
If specified as a tuple ``(min, max)`` dithering is employed. Dithering
|
585 |
+
randomly changes the mutation constant on a generation by generation
|
586 |
+
basis. The mutation constant for that generation is taken from
|
587 |
+
U[min, max). Dithering can help speed convergence significantly.
|
588 |
+
Increasing the mutation constant increases the search radius, but will
|
589 |
+
slow down convergence.
|
590 |
+
recombination : float, optional
|
591 |
+
The recombination constant, should be in the range [0, 1]. In the
|
592 |
+
literature this is also known as the crossover probability, being
|
593 |
+
denoted by CR. Increasing this value allows a larger number of mutants
|
594 |
+
to progress into the next generation, but at the risk of population
|
595 |
+
stability.
|
596 |
+
seed : {None, int, `numpy.random.Generator`, `numpy.random.RandomState`}, optional
|
597 |
+
If `seed` is None (or `np.random`), the `numpy.random.RandomState`
|
598 |
+
singleton is used.
|
599 |
+
If `seed` is an int, a new ``RandomState`` instance is used,
|
600 |
+
seeded with `seed`.
|
601 |
+
If `seed` is already a ``Generator`` or ``RandomState`` instance then
|
602 |
+
that instance is used.
|
603 |
+
Specify `seed` for repeatable minimizations.
|
604 |
+
disp : bool, optional
|
605 |
+
Prints the evaluated `func` at every iteration.
|
606 |
+
callback : callable, optional
|
607 |
+
A callable called after each iteration. Has the signature:
|
608 |
+
|
609 |
+
``callback(intermediate_result: OptimizeResult)``
|
610 |
+
|
611 |
+
where ``intermediate_result`` is a keyword parameter containing an
|
612 |
+
`OptimizeResult` with attributes ``x`` and ``fun``, the best solution
|
613 |
+
found so far and the objective function. Note that the name
|
614 |
+
of the parameter must be ``intermediate_result`` for the callback
|
615 |
+
to be passed an `OptimizeResult`.
|
616 |
+
|
617 |
+
The callback also supports a signature like:
|
618 |
+
|
619 |
+
``callback(x, convergence: float=val)``
|
620 |
+
|
621 |
+
``val`` represents the fractional value of the population convergence.
|
622 |
+
When ``val`` is greater than ``1.0``, the function halts.
|
623 |
+
|
624 |
+
Introspection is used to determine which of the signatures is invoked.
|
625 |
+
|
626 |
+
Global minimization will halt if the callback raises ``StopIteration``
|
627 |
+
or returns ``True``; any polishing is still carried out.
|
628 |
+
|
629 |
+
.. versionchanged:: 1.12.0
|
630 |
+
callback accepts the ``intermediate_result`` keyword.
|
631 |
+
|
632 |
+
polish : bool, optional
|
633 |
+
If True (default), then `scipy.optimize.minimize` with the `L-BFGS-B`
|
634 |
+
method is used to polish the best population member at the end, which
|
635 |
+
can improve the minimization slightly. If a constrained problem is
|
636 |
+
being studied then the `trust-constr` method is used instead. For large
|
637 |
+
problems with many constraints, polishing can take a long time due to
|
638 |
+
the Jacobian computations.
|
639 |
+
maxfun : int, optional
|
640 |
+
Set the maximum number of function evaluations. However, it probably
|
641 |
+
makes more sense to set `maxiter` instead.
|
642 |
+
init : str or array-like, optional
|
643 |
+
Specify which type of population initialization is performed. Should be
|
644 |
+
one of:
|
645 |
+
|
646 |
+
- 'latinhypercube'
|
647 |
+
- 'sobol'
|
648 |
+
- 'halton'
|
649 |
+
- 'random'
|
650 |
+
- array specifying the initial population. The array should have
|
651 |
+
shape ``(S, N)``, where S is the total population size and
|
652 |
+
N is the number of parameters.
|
653 |
+
`init` is clipped to `bounds` before use.
|
654 |
+
|
655 |
+
The default is 'latinhypercube'. Latin Hypercube sampling tries to
|
656 |
+
maximize coverage of the available parameter space.
|
657 |
+
|
658 |
+
'sobol' and 'halton' are superior alternatives and maximize even more
|
659 |
+
the parameter space. 'sobol' will enforce an initial population
|
660 |
+
size which is calculated as the next power of 2 after
|
661 |
+
``popsize * (N - N_equal)``. 'halton' has no requirements but is a bit
|
662 |
+
less efficient. See `scipy.stats.qmc` for more details.
|
663 |
+
|
664 |
+
'random' initializes the population randomly - this has the drawback
|
665 |
+
that clustering can occur, preventing the whole of parameter space
|
666 |
+
being covered. Use of an array to specify a population could be used,
|
667 |
+
for example, to create a tight bunch of initial guesses in an location
|
668 |
+
where the solution is known to exist, thereby reducing time for
|
669 |
+
convergence.
|
670 |
+
atol : float, optional
|
671 |
+
Absolute tolerance for convergence, the solving stops when
|
672 |
+
``np.std(pop) <= atol + tol * np.abs(np.mean(population_energies))``,
|
673 |
+
where and `atol` and `tol` are the absolute and relative tolerance
|
674 |
+
respectively.
|
675 |
+
updating : {'immediate', 'deferred'}, optional
|
676 |
+
If ``'immediate'``, the best solution vector is continuously updated
|
677 |
+
within a single generation [4]_. This can lead to faster convergence as
|
678 |
+
trial vectors can take advantage of continuous improvements in the best
|
679 |
+
solution.
|
680 |
+
With ``'deferred'``, the best solution vector is updated once per
|
681 |
+
generation. Only ``'deferred'`` is compatible with parallelization or
|
682 |
+
vectorization, and the `workers` and `vectorized` keywords can
|
683 |
+
over-ride this option.
|
684 |
+
workers : int or map-like callable, optional
|
685 |
+
If `workers` is an int the population is subdivided into `workers`
|
686 |
+
sections and evaluated in parallel
|
687 |
+
(uses `multiprocessing.Pool <multiprocessing>`).
|
688 |
+
Supply `-1` to use all cores available to the Process.
|
689 |
+
Alternatively supply a map-like callable, such as
|
690 |
+
`multiprocessing.Pool.map` for evaluating the population in parallel.
|
691 |
+
This evaluation is carried out as ``workers(func, iterable)``.
|
692 |
+
This option will override the `updating` keyword to
|
693 |
+
`updating='deferred'` if `workers != 1`.
|
694 |
+
Requires that `func` be pickleable.
|
695 |
+
constraints : {NonLinearConstraint, LinearConstraint, Bounds}
|
696 |
+
Constraints on the solver, over and above those applied by the `bounds`
|
697 |
+
kwd. Uses the approach by Lampinen.
|
698 |
+
x0 : None or array-like, optional
|
699 |
+
Provides an initial guess to the minimization. Once the population has
|
700 |
+
been initialized this vector replaces the first (best) member. This
|
701 |
+
replacement is done even if `init` is given an initial population.
|
702 |
+
``x0.shape == (N,)``.
|
703 |
+
integrality : 1-D array, optional
|
704 |
+
For each decision variable, a boolean value indicating whether the
|
705 |
+
decision variable is constrained to integer values. The array is
|
706 |
+
broadcast to ``(N,)``.
|
707 |
+
If any decision variables are constrained to be integral, they will not
|
708 |
+
be changed during polishing.
|
709 |
+
Only integer values lying between the lower and upper bounds are used.
|
710 |
+
If there are no integer values lying between the bounds then a
|
711 |
+
`ValueError` is raised.
|
712 |
+
vectorized : bool, optional
|
713 |
+
If ``vectorized is True``, `func` is sent an `x` array with
|
714 |
+
``x.shape == (N, S)``, and is expected to return an array of shape
|
715 |
+
``(S,)``, where `S` is the number of solution vectors to be calculated.
|
716 |
+
If constraints are applied, each of the functions used to construct
|
717 |
+
a `Constraint` object should accept an `x` array with
|
718 |
+
``x.shape == (N, S)``, and return an array of shape ``(M, S)``, where
|
719 |
+
`M` is the number of constraint components.
|
720 |
+
This option is an alternative to the parallelization offered by
|
721 |
+
`workers`, and may help in optimization speed. This keyword is
|
722 |
+
ignored if ``workers != 1``.
|
723 |
+
This option will override the `updating` keyword to
|
724 |
+
``updating='deferred'``.
|
725 |
+
"""
|
726 |
+
|
727 |
+
# Dispatch of mutation strategy method (binomial or exponential).
|
728 |
+
_binomial = {'best1bin': '_best1',
|
729 |
+
'randtobest1bin': '_randtobest1',
|
730 |
+
'currenttobest1bin': '_currenttobest1',
|
731 |
+
'best2bin': '_best2',
|
732 |
+
'rand2bin': '_rand2',
|
733 |
+
'rand1bin': '_rand1'}
|
734 |
+
_exponential = {'best1exp': '_best1',
|
735 |
+
'rand1exp': '_rand1',
|
736 |
+
'randtobest1exp': '_randtobest1',
|
737 |
+
'currenttobest1exp': '_currenttobest1',
|
738 |
+
'best2exp': '_best2',
|
739 |
+
'rand2exp': '_rand2'}
|
740 |
+
|
741 |
+
__init_error_msg = ("The population initialization method must be one of "
|
742 |
+
"'latinhypercube' or 'random', or an array of shape "
|
743 |
+
"(S, N) where N is the number of parameters and S>5")
|
744 |
+
|
745 |
+
def __init__(self, func, bounds, args=(),
|
746 |
+
strategy='best1bin', maxiter=1000, popsize=15,
|
747 |
+
tol=0.01, mutation=(0.5, 1), recombination=0.7, seed=None,
|
748 |
+
maxfun=np.inf, callback=None, disp=False, polish=True,
|
749 |
+
init='latinhypercube', atol=0, updating='immediate',
|
750 |
+
workers=1, constraints=(), x0=None, *, integrality=None,
|
751 |
+
vectorized=False):
|
752 |
+
|
753 |
+
if callable(strategy):
|
754 |
+
# a callable strategy is going to be stored in self.strategy anyway
|
755 |
+
pass
|
756 |
+
elif strategy in self._binomial:
|
757 |
+
self.mutation_func = getattr(self, self._binomial[strategy])
|
758 |
+
elif strategy in self._exponential:
|
759 |
+
self.mutation_func = getattr(self, self._exponential[strategy])
|
760 |
+
else:
|
761 |
+
raise ValueError("Please select a valid mutation strategy")
|
762 |
+
self.strategy = strategy
|
763 |
+
|
764 |
+
self.callback = _wrap_callback(callback, "differential_evolution")
|
765 |
+
self.polish = polish
|
766 |
+
|
767 |
+
# set the updating / parallelisation options
|
768 |
+
if updating in ['immediate', 'deferred']:
|
769 |
+
self._updating = updating
|
770 |
+
|
771 |
+
self.vectorized = vectorized
|
772 |
+
|
773 |
+
# want to use parallelisation, but updating is immediate
|
774 |
+
if workers != 1 and updating == 'immediate':
|
775 |
+
warnings.warn("differential_evolution: the 'workers' keyword has"
|
776 |
+
" overridden updating='immediate' to"
|
777 |
+
" updating='deferred'", UserWarning, stacklevel=2)
|
778 |
+
self._updating = 'deferred'
|
779 |
+
|
780 |
+
if vectorized and workers != 1:
|
781 |
+
warnings.warn("differential_evolution: the 'workers' keyword"
|
782 |
+
" overrides the 'vectorized' keyword", stacklevel=2)
|
783 |
+
self.vectorized = vectorized = False
|
784 |
+
|
785 |
+
if vectorized and updating == 'immediate':
|
786 |
+
warnings.warn("differential_evolution: the 'vectorized' keyword"
|
787 |
+
" has overridden updating='immediate' to updating"
|
788 |
+
"='deferred'", UserWarning, stacklevel=2)
|
789 |
+
self._updating = 'deferred'
|
790 |
+
|
791 |
+
# an object with a map method.
|
792 |
+
if vectorized:
|
793 |
+
def maplike_for_vectorized_func(func, x):
|
794 |
+
# send an array (N, S) to the user func,
|
795 |
+
# expect to receive (S,). Transposition is required because
|
796 |
+
# internally the population is held as (S, N)
|
797 |
+
return np.atleast_1d(func(x.T))
|
798 |
+
workers = maplike_for_vectorized_func
|
799 |
+
|
800 |
+
self._mapwrapper = MapWrapper(workers)
|
801 |
+
|
802 |
+
# relative and absolute tolerances for convergence
|
803 |
+
self.tol, self.atol = tol, atol
|
804 |
+
|
805 |
+
# Mutation constant should be in [0, 2). If specified as a sequence
|
806 |
+
# then dithering is performed.
|
807 |
+
self.scale = mutation
|
808 |
+
if (not np.all(np.isfinite(mutation)) or
|
809 |
+
np.any(np.array(mutation) >= 2) or
|
810 |
+
np.any(np.array(mutation) < 0)):
|
811 |
+
raise ValueError('The mutation constant must be a float in '
|
812 |
+
'U[0, 2), or specified as a tuple(min, max)'
|
813 |
+
' where min < max and min, max are in U[0, 2).')
|
814 |
+
|
815 |
+
self.dither = None
|
816 |
+
if hasattr(mutation, '__iter__') and len(mutation) > 1:
|
817 |
+
self.dither = [mutation[0], mutation[1]]
|
818 |
+
self.dither.sort()
|
819 |
+
|
820 |
+
self.cross_over_probability = recombination
|
821 |
+
|
822 |
+
# we create a wrapped function to allow the use of map (and Pool.map
|
823 |
+
# in the future)
|
824 |
+
self.func = _FunctionWrapper(func, args)
|
825 |
+
self.args = args
|
826 |
+
|
827 |
+
# convert tuple of lower and upper bounds to limits
|
828 |
+
# [(low_0, high_0), ..., (low_n, high_n]
|
829 |
+
# -> [[low_0, ..., low_n], [high_0, ..., high_n]]
|
830 |
+
if isinstance(bounds, Bounds):
|
831 |
+
self.limits = np.array(new_bounds_to_old(bounds.lb,
|
832 |
+
bounds.ub,
|
833 |
+
len(bounds.lb)),
|
834 |
+
dtype=float).T
|
835 |
+
else:
|
836 |
+
self.limits = np.array(bounds, dtype='float').T
|
837 |
+
|
838 |
+
if (np.size(self.limits, 0) != 2 or not
|
839 |
+
np.all(np.isfinite(self.limits))):
|
840 |
+
raise ValueError('bounds should be a sequence containing finite '
|
841 |
+
'real valued (min, max) pairs for each value'
|
842 |
+
' in x')
|
843 |
+
|
844 |
+
if maxiter is None: # the default used to be None
|
845 |
+
maxiter = 1000
|
846 |
+
self.maxiter = maxiter
|
847 |
+
if maxfun is None: # the default used to be None
|
848 |
+
maxfun = np.inf
|
849 |
+
self.maxfun = maxfun
|
850 |
+
|
851 |
+
# population is scaled to between [0, 1].
|
852 |
+
# We have to scale between parameter <-> population
|
853 |
+
# save these arguments for _scale_parameter and
|
854 |
+
# _unscale_parameter. This is an optimization
|
855 |
+
self.__scale_arg1 = 0.5 * (self.limits[0] + self.limits[1])
|
856 |
+
self.__scale_arg2 = np.fabs(self.limits[0] - self.limits[1])
|
857 |
+
with np.errstate(divide='ignore'):
|
858 |
+
# if lb == ub then the following line will be 1/0, which is why
|
859 |
+
# we ignore the divide by zero warning. The result from 1/0 is
|
860 |
+
# inf, so replace those values by 0.
|
861 |
+
self.__recip_scale_arg2 = 1 / self.__scale_arg2
|
862 |
+
self.__recip_scale_arg2[~np.isfinite(self.__recip_scale_arg2)] = 0
|
863 |
+
|
864 |
+
self.parameter_count = np.size(self.limits, 1)
|
865 |
+
|
866 |
+
self.random_number_generator = check_random_state(seed)
|
867 |
+
|
868 |
+
# Which parameters are going to be integers?
|
869 |
+
if np.any(integrality):
|
870 |
+
# # user has provided a truth value for integer constraints
|
871 |
+
integrality = np.broadcast_to(
|
872 |
+
integrality,
|
873 |
+
self.parameter_count
|
874 |
+
)
|
875 |
+
integrality = np.asarray(integrality, bool)
|
876 |
+
# For integrality parameters change the limits to only allow
|
877 |
+
# integer values lying between the limits.
|
878 |
+
lb, ub = np.copy(self.limits)
|
879 |
+
|
880 |
+
lb = np.ceil(lb)
|
881 |
+
ub = np.floor(ub)
|
882 |
+
if not (lb[integrality] <= ub[integrality]).all():
|
883 |
+
# there's a parameter that doesn't have an integer value
|
884 |
+
# lying between the limits
|
885 |
+
raise ValueError("One of the integrality constraints does not"
|
886 |
+
" have any possible integer values between"
|
887 |
+
" the lower/upper bounds.")
|
888 |
+
nlb = np.nextafter(lb[integrality] - 0.5, np.inf)
|
889 |
+
nub = np.nextafter(ub[integrality] + 0.5, -np.inf)
|
890 |
+
|
891 |
+
self.integrality = integrality
|
892 |
+
self.limits[0, self.integrality] = nlb
|
893 |
+
self.limits[1, self.integrality] = nub
|
894 |
+
else:
|
895 |
+
self.integrality = False
|
896 |
+
|
897 |
+
# check for equal bounds
|
898 |
+
eb = self.limits[0] == self.limits[1]
|
899 |
+
eb_count = np.count_nonzero(eb)
|
900 |
+
|
901 |
+
# default population initialization is a latin hypercube design, but
|
902 |
+
# there are other population initializations possible.
|
903 |
+
# the minimum is 5 because 'best2bin' requires a population that's at
|
904 |
+
# least 5 long
|
905 |
+
# 202301 - reduced population size to account for parameters with
|
906 |
+
# equal bounds. If there are no varying parameters set N to at least 1
|
907 |
+
self.num_population_members = max(
|
908 |
+
5,
|
909 |
+
popsize * max(1, self.parameter_count - eb_count)
|
910 |
+
)
|
911 |
+
self.population_shape = (self.num_population_members,
|
912 |
+
self.parameter_count)
|
913 |
+
|
914 |
+
self._nfev = 0
|
915 |
+
# check first str otherwise will fail to compare str with array
|
916 |
+
if isinstance(init, str):
|
917 |
+
if init == 'latinhypercube':
|
918 |
+
self.init_population_lhs()
|
919 |
+
elif init == 'sobol':
|
920 |
+
# must be Ns = 2**m for Sobol'
|
921 |
+
n_s = int(2 ** np.ceil(np.log2(self.num_population_members)))
|
922 |
+
self.num_population_members = n_s
|
923 |
+
self.population_shape = (self.num_population_members,
|
924 |
+
self.parameter_count)
|
925 |
+
self.init_population_qmc(qmc_engine='sobol')
|
926 |
+
elif init == 'halton':
|
927 |
+
self.init_population_qmc(qmc_engine='halton')
|
928 |
+
elif init == 'random':
|
929 |
+
self.init_population_random()
|
930 |
+
else:
|
931 |
+
raise ValueError(self.__init_error_msg)
|
932 |
+
else:
|
933 |
+
self.init_population_array(init)
|
934 |
+
|
935 |
+
if x0 is not None:
|
936 |
+
# scale to within unit interval and
|
937 |
+
# ensure parameters are within bounds.
|
938 |
+
x0_scaled = self._unscale_parameters(np.asarray(x0))
|
939 |
+
if ((x0_scaled > 1.0) | (x0_scaled < 0.0)).any():
|
940 |
+
raise ValueError(
|
941 |
+
"Some entries in x0 lay outside the specified bounds"
|
942 |
+
)
|
943 |
+
self.population[0] = x0_scaled
|
944 |
+
|
945 |
+
# infrastructure for constraints
|
946 |
+
self.constraints = constraints
|
947 |
+
self._wrapped_constraints = []
|
948 |
+
|
949 |
+
if hasattr(constraints, '__len__'):
|
950 |
+
# sequence of constraints, this will also deal with default
|
951 |
+
# keyword parameter
|
952 |
+
for c in constraints:
|
953 |
+
self._wrapped_constraints.append(
|
954 |
+
_ConstraintWrapper(c, self.x)
|
955 |
+
)
|
956 |
+
else:
|
957 |
+
self._wrapped_constraints = [
|
958 |
+
_ConstraintWrapper(constraints, self.x)
|
959 |
+
]
|
960 |
+
self.total_constraints = np.sum(
|
961 |
+
[c.num_constr for c in self._wrapped_constraints]
|
962 |
+
)
|
963 |
+
self.constraint_violation = np.zeros((self.num_population_members, 1))
|
964 |
+
self.feasible = np.ones(self.num_population_members, bool)
|
965 |
+
|
966 |
+
self.disp = disp
|
967 |
+
|
968 |
+
def init_population_lhs(self):
|
969 |
+
"""
|
970 |
+
Initializes the population with Latin Hypercube Sampling.
|
971 |
+
Latin Hypercube Sampling ensures that each parameter is uniformly
|
972 |
+
sampled over its range.
|
973 |
+
"""
|
974 |
+
rng = self.random_number_generator
|
975 |
+
|
976 |
+
# Each parameter range needs to be sampled uniformly. The scaled
|
977 |
+
# parameter range ([0, 1)) needs to be split into
|
978 |
+
# `self.num_population_members` segments, each of which has the following
|
979 |
+
# size:
|
980 |
+
segsize = 1.0 / self.num_population_members
|
981 |
+
|
982 |
+
# Within each segment we sample from a uniform random distribution.
|
983 |
+
# We need to do this sampling for each parameter.
|
984 |
+
samples = (segsize * rng.uniform(size=self.population_shape)
|
985 |
+
|
986 |
+
# Offset each segment to cover the entire parameter range [0, 1)
|
987 |
+
+ np.linspace(0., 1., self.num_population_members,
|
988 |
+
endpoint=False)[:, np.newaxis])
|
989 |
+
|
990 |
+
# Create an array for population of candidate solutions.
|
991 |
+
self.population = np.zeros_like(samples)
|
992 |
+
|
993 |
+
# Initialize population of candidate solutions by permutation of the
|
994 |
+
# random samples.
|
995 |
+
for j in range(self.parameter_count):
|
996 |
+
order = rng.permutation(range(self.num_population_members))
|
997 |
+
self.population[:, j] = samples[order, j]
|
998 |
+
|
999 |
+
# reset population energies
|
1000 |
+
self.population_energies = np.full(self.num_population_members,
|
1001 |
+
np.inf)
|
1002 |
+
|
1003 |
+
# reset number of function evaluations counter
|
1004 |
+
self._nfev = 0
|
1005 |
+
|
1006 |
+
def init_population_qmc(self, qmc_engine):
|
1007 |
+
"""Initializes the population with a QMC method.
|
1008 |
+
|
1009 |
+
QMC methods ensures that each parameter is uniformly
|
1010 |
+
sampled over its range.
|
1011 |
+
|
1012 |
+
Parameters
|
1013 |
+
----------
|
1014 |
+
qmc_engine : str
|
1015 |
+
The QMC method to use for initialization. Can be one of
|
1016 |
+
``latinhypercube``, ``sobol`` or ``halton``.
|
1017 |
+
|
1018 |
+
"""
|
1019 |
+
from scipy.stats import qmc
|
1020 |
+
|
1021 |
+
rng = self.random_number_generator
|
1022 |
+
|
1023 |
+
# Create an array for population of candidate solutions.
|
1024 |
+
if qmc_engine == 'latinhypercube':
|
1025 |
+
sampler = qmc.LatinHypercube(d=self.parameter_count, seed=rng)
|
1026 |
+
elif qmc_engine == 'sobol':
|
1027 |
+
sampler = qmc.Sobol(d=self.parameter_count, seed=rng)
|
1028 |
+
elif qmc_engine == 'halton':
|
1029 |
+
sampler = qmc.Halton(d=self.parameter_count, seed=rng)
|
1030 |
+
else:
|
1031 |
+
raise ValueError(self.__init_error_msg)
|
1032 |
+
|
1033 |
+
self.population = sampler.random(n=self.num_population_members)
|
1034 |
+
|
1035 |
+
# reset population energies
|
1036 |
+
self.population_energies = np.full(self.num_population_members,
|
1037 |
+
np.inf)
|
1038 |
+
|
1039 |
+
# reset number of function evaluations counter
|
1040 |
+
self._nfev = 0
|
1041 |
+
|
1042 |
+
def init_population_random(self):
|
1043 |
+
"""
|
1044 |
+
Initializes the population at random. This type of initialization
|
1045 |
+
can possess clustering, Latin Hypercube sampling is generally better.
|
1046 |
+
"""
|
1047 |
+
rng = self.random_number_generator
|
1048 |
+
self.population = rng.uniform(size=self.population_shape)
|
1049 |
+
|
1050 |
+
# reset population energies
|
1051 |
+
self.population_energies = np.full(self.num_population_members,
|
1052 |
+
np.inf)
|
1053 |
+
|
1054 |
+
# reset number of function evaluations counter
|
1055 |
+
self._nfev = 0
|
1056 |
+
|
1057 |
+
def init_population_array(self, init):
|
1058 |
+
"""
|
1059 |
+
Initializes the population with a user specified population.
|
1060 |
+
|
1061 |
+
Parameters
|
1062 |
+
----------
|
1063 |
+
init : np.ndarray
|
1064 |
+
Array specifying subset of the initial population. The array should
|
1065 |
+
have shape (S, N), where N is the number of parameters.
|
1066 |
+
The population is clipped to the lower and upper bounds.
|
1067 |
+
"""
|
1068 |
+
# make sure you're using a float array
|
1069 |
+
popn = np.asarray(init, dtype=np.float64)
|
1070 |
+
|
1071 |
+
if (np.size(popn, 0) < 5 or
|
1072 |
+
popn.shape[1] != self.parameter_count or
|
1073 |
+
len(popn.shape) != 2):
|
1074 |
+
raise ValueError("The population supplied needs to have shape"
|
1075 |
+
" (S, len(x)), where S > 4.")
|
1076 |
+
|
1077 |
+
# scale values and clip to bounds, assigning to population
|
1078 |
+
self.population = np.clip(self._unscale_parameters(popn), 0, 1)
|
1079 |
+
|
1080 |
+
self.num_population_members = np.size(self.population, 0)
|
1081 |
+
|
1082 |
+
self.population_shape = (self.num_population_members,
|
1083 |
+
self.parameter_count)
|
1084 |
+
|
1085 |
+
# reset population energies
|
1086 |
+
self.population_energies = np.full(self.num_population_members,
|
1087 |
+
np.inf)
|
1088 |
+
|
1089 |
+
# reset number of function evaluations counter
|
1090 |
+
self._nfev = 0
|
1091 |
+
|
1092 |
+
@property
|
1093 |
+
def x(self):
|
1094 |
+
"""
|
1095 |
+
The best solution from the solver
|
1096 |
+
"""
|
1097 |
+
return self._scale_parameters(self.population[0])
|
1098 |
+
|
1099 |
+
@property
|
1100 |
+
def convergence(self):
|
1101 |
+
"""
|
1102 |
+
The standard deviation of the population energies divided by their
|
1103 |
+
mean.
|
1104 |
+
"""
|
1105 |
+
if np.any(np.isinf(self.population_energies)):
|
1106 |
+
return np.inf
|
1107 |
+
return (np.std(self.population_energies) /
|
1108 |
+
(np.abs(np.mean(self.population_energies)) + _MACHEPS))
|
1109 |
+
|
1110 |
+
def converged(self):
|
1111 |
+
"""
|
1112 |
+
Return True if the solver has converged.
|
1113 |
+
"""
|
1114 |
+
if np.any(np.isinf(self.population_energies)):
|
1115 |
+
return False
|
1116 |
+
|
1117 |
+
return (np.std(self.population_energies) <=
|
1118 |
+
self.atol +
|
1119 |
+
self.tol * np.abs(np.mean(self.population_energies)))
|
1120 |
+
|
1121 |
+
def solve(self):
|
1122 |
+
"""
|
1123 |
+
Runs the DifferentialEvolutionSolver.
|
1124 |
+
|
1125 |
+
Returns
|
1126 |
+
-------
|
1127 |
+
res : OptimizeResult
|
1128 |
+
The optimization result represented as a `OptimizeResult` object.
|
1129 |
+
Important attributes are: ``x`` the solution array, ``success`` a
|
1130 |
+
Boolean flag indicating if the optimizer exited successfully,
|
1131 |
+
``message`` which describes the cause of the termination,
|
1132 |
+
``population`` the solution vectors present in the population, and
|
1133 |
+
``population_energies`` the value of the objective function for
|
1134 |
+
each entry in ``population``.
|
1135 |
+
See `OptimizeResult` for a description of other attributes. If
|
1136 |
+
`polish` was employed, and a lower minimum was obtained by the
|
1137 |
+
polishing, then OptimizeResult also contains the ``jac`` attribute.
|
1138 |
+
If the eventual solution does not satisfy the applied constraints
|
1139 |
+
``success`` will be `False`.
|
1140 |
+
"""
|
1141 |
+
nit, warning_flag = 0, False
|
1142 |
+
status_message = _status_message['success']
|
1143 |
+
|
1144 |
+
# The population may have just been initialized (all entries are
|
1145 |
+
# np.inf). If it has you have to calculate the initial energies.
|
1146 |
+
# Although this is also done in the evolve generator it's possible
|
1147 |
+
# that someone can set maxiter=0, at which point we still want the
|
1148 |
+
# initial energies to be calculated (the following loop isn't run).
|
1149 |
+
if np.all(np.isinf(self.population_energies)):
|
1150 |
+
self.feasible, self.constraint_violation = (
|
1151 |
+
self._calculate_population_feasibilities(self.population))
|
1152 |
+
|
1153 |
+
# only work out population energies for feasible solutions
|
1154 |
+
self.population_energies[self.feasible] = (
|
1155 |
+
self._calculate_population_energies(
|
1156 |
+
self.population[self.feasible]))
|
1157 |
+
|
1158 |
+
self._promote_lowest_energy()
|
1159 |
+
|
1160 |
+
# do the optimization.
|
1161 |
+
for nit in range(1, self.maxiter + 1):
|
1162 |
+
# evolve the population by a generation
|
1163 |
+
try:
|
1164 |
+
next(self)
|
1165 |
+
except StopIteration:
|
1166 |
+
warning_flag = True
|
1167 |
+
if self._nfev > self.maxfun:
|
1168 |
+
status_message = _status_message['maxfev']
|
1169 |
+
elif self._nfev == self.maxfun:
|
1170 |
+
status_message = ('Maximum number of function evaluations'
|
1171 |
+
' has been reached.')
|
1172 |
+
break
|
1173 |
+
|
1174 |
+
if self.disp:
|
1175 |
+
print(f"differential_evolution step {nit}: f(x)="
|
1176 |
+
f" {self.population_energies[0]}"
|
1177 |
+
)
|
1178 |
+
|
1179 |
+
if self.callback:
|
1180 |
+
c = self.tol / (self.convergence + _MACHEPS)
|
1181 |
+
res = self._result(nit=nit, message="in progress")
|
1182 |
+
res.convergence = c
|
1183 |
+
try:
|
1184 |
+
warning_flag = bool(self.callback(res))
|
1185 |
+
except StopIteration:
|
1186 |
+
warning_flag = True
|
1187 |
+
|
1188 |
+
if warning_flag:
|
1189 |
+
status_message = 'callback function requested stop early'
|
1190 |
+
|
1191 |
+
# should the solver terminate?
|
1192 |
+
if warning_flag or self.converged():
|
1193 |
+
break
|
1194 |
+
|
1195 |
+
else:
|
1196 |
+
status_message = _status_message['maxiter']
|
1197 |
+
warning_flag = True
|
1198 |
+
|
1199 |
+
DE_result = self._result(
|
1200 |
+
nit=nit, message=status_message, warning_flag=warning_flag
|
1201 |
+
)
|
1202 |
+
|
1203 |
+
if self.polish and not np.all(self.integrality):
|
1204 |
+
# can't polish if all the parameters are integers
|
1205 |
+
if np.any(self.integrality):
|
1206 |
+
# set the lower/upper bounds equal so that any integrality
|
1207 |
+
# constraints work.
|
1208 |
+
limits, integrality = self.limits, self.integrality
|
1209 |
+
limits[0, integrality] = DE_result.x[integrality]
|
1210 |
+
limits[1, integrality] = DE_result.x[integrality]
|
1211 |
+
|
1212 |
+
polish_method = 'L-BFGS-B'
|
1213 |
+
|
1214 |
+
if self._wrapped_constraints:
|
1215 |
+
polish_method = 'trust-constr'
|
1216 |
+
|
1217 |
+
constr_violation = self._constraint_violation_fn(DE_result.x)
|
1218 |
+
if np.any(constr_violation > 0.):
|
1219 |
+
warnings.warn("differential evolution didn't find a "
|
1220 |
+
"solution satisfying the constraints, "
|
1221 |
+
"attempting to polish from the least "
|
1222 |
+
"infeasible solution",
|
1223 |
+
UserWarning, stacklevel=2)
|
1224 |
+
if self.disp:
|
1225 |
+
print(f"Polishing solution with '{polish_method}'")
|
1226 |
+
result = minimize(self.func,
|
1227 |
+
np.copy(DE_result.x),
|
1228 |
+
method=polish_method,
|
1229 |
+
bounds=self.limits.T,
|
1230 |
+
constraints=self.constraints)
|
1231 |
+
|
1232 |
+
self._nfev += result.nfev
|
1233 |
+
DE_result.nfev = self._nfev
|
1234 |
+
|
1235 |
+
# Polishing solution is only accepted if there is an improvement in
|
1236 |
+
# cost function, the polishing was successful and the solution lies
|
1237 |
+
# within the bounds.
|
1238 |
+
if (result.fun < DE_result.fun and
|
1239 |
+
result.success and
|
1240 |
+
np.all(result.x <= self.limits[1]) and
|
1241 |
+
np.all(self.limits[0] <= result.x)):
|
1242 |
+
DE_result.fun = result.fun
|
1243 |
+
DE_result.x = result.x
|
1244 |
+
DE_result.jac = result.jac
|
1245 |
+
# to keep internal state consistent
|
1246 |
+
self.population_energies[0] = result.fun
|
1247 |
+
self.population[0] = self._unscale_parameters(result.x)
|
1248 |
+
|
1249 |
+
if self._wrapped_constraints:
|
1250 |
+
DE_result.constr = [c.violation(DE_result.x) for
|
1251 |
+
c in self._wrapped_constraints]
|
1252 |
+
DE_result.constr_violation = np.max(
|
1253 |
+
np.concatenate(DE_result.constr))
|
1254 |
+
DE_result.maxcv = DE_result.constr_violation
|
1255 |
+
if DE_result.maxcv > 0:
|
1256 |
+
# if the result is infeasible then success must be False
|
1257 |
+
DE_result.success = False
|
1258 |
+
DE_result.message = ("The solution does not satisfy the "
|
1259 |
+
f"constraints, MAXCV = {DE_result.maxcv}")
|
1260 |
+
|
1261 |
+
return DE_result
|
1262 |
+
|
1263 |
+
def _result(self, **kwds):
|
1264 |
+
# form an intermediate OptimizeResult
|
1265 |
+
nit = kwds.get('nit', None)
|
1266 |
+
message = kwds.get('message', None)
|
1267 |
+
warning_flag = kwds.get('warning_flag', False)
|
1268 |
+
result = OptimizeResult(
|
1269 |
+
x=self.x,
|
1270 |
+
fun=self.population_energies[0],
|
1271 |
+
nfev=self._nfev,
|
1272 |
+
nit=nit,
|
1273 |
+
message=message,
|
1274 |
+
success=(warning_flag is not True),
|
1275 |
+
population=self._scale_parameters(self.population),
|
1276 |
+
population_energies=self.population_energies
|
1277 |
+
)
|
1278 |
+
if self._wrapped_constraints:
|
1279 |
+
result.constr = [c.violation(result.x)
|
1280 |
+
for c in self._wrapped_constraints]
|
1281 |
+
result.constr_violation = np.max(np.concatenate(result.constr))
|
1282 |
+
result.maxcv = result.constr_violation
|
1283 |
+
if result.maxcv > 0:
|
1284 |
+
result.success = False
|
1285 |
+
|
1286 |
+
return result
|
1287 |
+
|
1288 |
+
def _calculate_population_energies(self, population):
|
1289 |
+
"""
|
1290 |
+
Calculate the energies of a population.
|
1291 |
+
|
1292 |
+
Parameters
|
1293 |
+
----------
|
1294 |
+
population : ndarray
|
1295 |
+
An array of parameter vectors normalised to [0, 1] using lower
|
1296 |
+
and upper limits. Has shape ``(np.size(population, 0), N)``.
|
1297 |
+
|
1298 |
+
Returns
|
1299 |
+
-------
|
1300 |
+
energies : ndarray
|
1301 |
+
An array of energies corresponding to each population member. If
|
1302 |
+
maxfun will be exceeded during this call, then the number of
|
1303 |
+
function evaluations will be reduced and energies will be
|
1304 |
+
right-padded with np.inf. Has shape ``(np.size(population, 0),)``
|
1305 |
+
"""
|
1306 |
+
num_members = np.size(population, 0)
|
1307 |
+
# S is the number of function evals left to stay under the
|
1308 |
+
# maxfun budget
|
1309 |
+
S = min(num_members, self.maxfun - self._nfev)
|
1310 |
+
|
1311 |
+
energies = np.full(num_members, np.inf)
|
1312 |
+
|
1313 |
+
parameters_pop = self._scale_parameters(population)
|
1314 |
+
try:
|
1315 |
+
calc_energies = list(
|
1316 |
+
self._mapwrapper(self.func, parameters_pop[0:S])
|
1317 |
+
)
|
1318 |
+
calc_energies = np.squeeze(calc_energies)
|
1319 |
+
except (TypeError, ValueError) as e:
|
1320 |
+
# wrong number of arguments for _mapwrapper
|
1321 |
+
# or wrong length returned from the mapper
|
1322 |
+
raise RuntimeError(
|
1323 |
+
"The map-like callable must be of the form f(func, iterable), "
|
1324 |
+
"returning a sequence of numbers the same length as 'iterable'"
|
1325 |
+
) from e
|
1326 |
+
|
1327 |
+
if calc_energies.size != S:
|
1328 |
+
if self.vectorized:
|
1329 |
+
raise RuntimeError("The vectorized function must return an"
|
1330 |
+
" array of shape (S,) when given an array"
|
1331 |
+
" of shape (len(x), S)")
|
1332 |
+
raise RuntimeError("func(x, *args) must return a scalar value")
|
1333 |
+
|
1334 |
+
energies[0:S] = calc_energies
|
1335 |
+
|
1336 |
+
if self.vectorized:
|
1337 |
+
self._nfev += 1
|
1338 |
+
else:
|
1339 |
+
self._nfev += S
|
1340 |
+
|
1341 |
+
return energies
|
1342 |
+
|
1343 |
+
def _promote_lowest_energy(self):
|
1344 |
+
# swaps 'best solution' into first population entry
|
1345 |
+
|
1346 |
+
idx = np.arange(self.num_population_members)
|
1347 |
+
feasible_solutions = idx[self.feasible]
|
1348 |
+
if feasible_solutions.size:
|
1349 |
+
# find the best feasible solution
|
1350 |
+
idx_t = np.argmin(self.population_energies[feasible_solutions])
|
1351 |
+
l = feasible_solutions[idx_t]
|
1352 |
+
else:
|
1353 |
+
# no solution was feasible, use 'best' infeasible solution, which
|
1354 |
+
# will violate constraints the least
|
1355 |
+
l = np.argmin(np.sum(self.constraint_violation, axis=1))
|
1356 |
+
|
1357 |
+
self.population_energies[[0, l]] = self.population_energies[[l, 0]]
|
1358 |
+
self.population[[0, l], :] = self.population[[l, 0], :]
|
1359 |
+
self.feasible[[0, l]] = self.feasible[[l, 0]]
|
1360 |
+
self.constraint_violation[[0, l], :] = (
|
1361 |
+
self.constraint_violation[[l, 0], :])
|
1362 |
+
|
1363 |
+
def _constraint_violation_fn(self, x):
|
1364 |
+
"""
|
1365 |
+
Calculates total constraint violation for all the constraints, for a
|
1366 |
+
set of solutions.
|
1367 |
+
|
1368 |
+
Parameters
|
1369 |
+
----------
|
1370 |
+
x : ndarray
|
1371 |
+
Solution vector(s). Has shape (S, N), or (N,), where S is the
|
1372 |
+
number of solutions to investigate and N is the number of
|
1373 |
+
parameters.
|
1374 |
+
|
1375 |
+
Returns
|
1376 |
+
-------
|
1377 |
+
cv : ndarray
|
1378 |
+
Total violation of constraints. Has shape ``(S, M)``, where M is
|
1379 |
+
the total number of constraint components (which is not necessarily
|
1380 |
+
equal to len(self._wrapped_constraints)).
|
1381 |
+
"""
|
1382 |
+
# how many solution vectors you're calculating constraint violations
|
1383 |
+
# for
|
1384 |
+
S = np.size(x) // self.parameter_count
|
1385 |
+
_out = np.zeros((S, self.total_constraints))
|
1386 |
+
offset = 0
|
1387 |
+
for con in self._wrapped_constraints:
|
1388 |
+
# the input/output of the (vectorized) constraint function is
|
1389 |
+
# {(N, S), (N,)} --> (M, S)
|
1390 |
+
# The input to _constraint_violation_fn is (S, N) or (N,), so
|
1391 |
+
# transpose to pass it to the constraint. The output is transposed
|
1392 |
+
# from (M, S) to (S, M) for further use.
|
1393 |
+
c = con.violation(x.T).T
|
1394 |
+
|
1395 |
+
# The shape of c should be (M,), (1, M), or (S, M). Check for
|
1396 |
+
# those shapes, as an incorrect shape indicates that the
|
1397 |
+
# user constraint function didn't return the right thing, and
|
1398 |
+
# the reshape operation will fail. Intercept the wrong shape
|
1399 |
+
# to give a reasonable error message. I'm not sure what failure
|
1400 |
+
# modes an inventive user will come up with.
|
1401 |
+
if c.shape[-1] != con.num_constr or (S > 1 and c.shape[0] != S):
|
1402 |
+
raise RuntimeError("An array returned from a Constraint has"
|
1403 |
+
" the wrong shape. If `vectorized is False`"
|
1404 |
+
" the Constraint should return an array of"
|
1405 |
+
" shape (M,). If `vectorized is True` then"
|
1406 |
+
" the Constraint must return an array of"
|
1407 |
+
" shape (M, S), where S is the number of"
|
1408 |
+
" solution vectors and M is the number of"
|
1409 |
+
" constraint components in a given"
|
1410 |
+
" Constraint object.")
|
1411 |
+
|
1412 |
+
# the violation function may return a 1D array, but is it a
|
1413 |
+
# sequence of constraints for one solution (S=1, M>=1), or the
|
1414 |
+
# value of a single constraint for a sequence of solutions
|
1415 |
+
# (S>=1, M=1)
|
1416 |
+
c = np.reshape(c, (S, con.num_constr))
|
1417 |
+
_out[:, offset:offset + con.num_constr] = c
|
1418 |
+
offset += con.num_constr
|
1419 |
+
|
1420 |
+
return _out
|
1421 |
+
|
1422 |
+
def _calculate_population_feasibilities(self, population):
|
1423 |
+
"""
|
1424 |
+
Calculate the feasibilities of a population.
|
1425 |
+
|
1426 |
+
Parameters
|
1427 |
+
----------
|
1428 |
+
population : ndarray
|
1429 |
+
An array of parameter vectors normalised to [0, 1] using lower
|
1430 |
+
and upper limits. Has shape ``(np.size(population, 0), N)``.
|
1431 |
+
|
1432 |
+
Returns
|
1433 |
+
-------
|
1434 |
+
feasible, constraint_violation : ndarray, ndarray
|
1435 |
+
Boolean array of feasibility for each population member, and an
|
1436 |
+
array of the constraint violation for each population member.
|
1437 |
+
constraint_violation has shape ``(np.size(population, 0), M)``,
|
1438 |
+
where M is the number of constraints.
|
1439 |
+
"""
|
1440 |
+
num_members = np.size(population, 0)
|
1441 |
+
if not self._wrapped_constraints:
|
1442 |
+
# shortcut for no constraints
|
1443 |
+
return np.ones(num_members, bool), np.zeros((num_members, 1))
|
1444 |
+
|
1445 |
+
# (S, N)
|
1446 |
+
parameters_pop = self._scale_parameters(population)
|
1447 |
+
|
1448 |
+
if self.vectorized:
|
1449 |
+
# (S, M)
|
1450 |
+
constraint_violation = np.array(
|
1451 |
+
self._constraint_violation_fn(parameters_pop)
|
1452 |
+
)
|
1453 |
+
else:
|
1454 |
+
# (S, 1, M)
|
1455 |
+
constraint_violation = np.array([self._constraint_violation_fn(x)
|
1456 |
+
for x in parameters_pop])
|
1457 |
+
# if you use the list comprehension in the line above it will
|
1458 |
+
# create an array of shape (S, 1, M), because each iteration
|
1459 |
+
# generates an array of (1, M). In comparison the vectorized
|
1460 |
+
# version returns (S, M). It's therefore necessary to remove axis 1
|
1461 |
+
constraint_violation = constraint_violation[:, 0]
|
1462 |
+
|
1463 |
+
feasible = ~(np.sum(constraint_violation, axis=1) > 0)
|
1464 |
+
|
1465 |
+
return feasible, constraint_violation
|
1466 |
+
|
1467 |
+
def __iter__(self):
|
1468 |
+
return self
|
1469 |
+
|
1470 |
+
def __enter__(self):
|
1471 |
+
return self
|
1472 |
+
|
1473 |
+
def __exit__(self, *args):
|
1474 |
+
return self._mapwrapper.__exit__(*args)
|
1475 |
+
|
1476 |
+
def _accept_trial(self, energy_trial, feasible_trial, cv_trial,
|
1477 |
+
energy_orig, feasible_orig, cv_orig):
|
1478 |
+
"""
|
1479 |
+
Trial is accepted if:
|
1480 |
+
* it satisfies all constraints and provides a lower or equal objective
|
1481 |
+
function value, while both the compared solutions are feasible
|
1482 |
+
- or -
|
1483 |
+
* it is feasible while the original solution is infeasible,
|
1484 |
+
- or -
|
1485 |
+
* it is infeasible, but provides a lower or equal constraint violation
|
1486 |
+
for all constraint functions.
|
1487 |
+
|
1488 |
+
This test corresponds to section III of Lampinen [1]_.
|
1489 |
+
|
1490 |
+
Parameters
|
1491 |
+
----------
|
1492 |
+
energy_trial : float
|
1493 |
+
Energy of the trial solution
|
1494 |
+
feasible_trial : float
|
1495 |
+
Feasibility of trial solution
|
1496 |
+
cv_trial : array-like
|
1497 |
+
Excess constraint violation for the trial solution
|
1498 |
+
energy_orig : float
|
1499 |
+
Energy of the original solution
|
1500 |
+
feasible_orig : float
|
1501 |
+
Feasibility of original solution
|
1502 |
+
cv_orig : array-like
|
1503 |
+
Excess constraint violation for the original solution
|
1504 |
+
|
1505 |
+
Returns
|
1506 |
+
-------
|
1507 |
+
accepted : bool
|
1508 |
+
|
1509 |
+
"""
|
1510 |
+
if feasible_orig and feasible_trial:
|
1511 |
+
return energy_trial <= energy_orig
|
1512 |
+
elif feasible_trial and not feasible_orig:
|
1513 |
+
return True
|
1514 |
+
elif not feasible_trial and (cv_trial <= cv_orig).all():
|
1515 |
+
# cv_trial < cv_orig would imply that both trial and orig are not
|
1516 |
+
# feasible
|
1517 |
+
return True
|
1518 |
+
|
1519 |
+
return False
|
1520 |
+
|
1521 |
+
def __next__(self):
|
1522 |
+
"""
|
1523 |
+
Evolve the population by a single generation
|
1524 |
+
|
1525 |
+
Returns
|
1526 |
+
-------
|
1527 |
+
x : ndarray
|
1528 |
+
The best solution from the solver.
|
1529 |
+
fun : float
|
1530 |
+
Value of objective function obtained from the best solution.
|
1531 |
+
"""
|
1532 |
+
# the population may have just been initialized (all entries are
|
1533 |
+
# np.inf). If it has you have to calculate the initial energies
|
1534 |
+
if np.all(np.isinf(self.population_energies)):
|
1535 |
+
self.feasible, self.constraint_violation = (
|
1536 |
+
self._calculate_population_feasibilities(self.population))
|
1537 |
+
|
1538 |
+
# only need to work out population energies for those that are
|
1539 |
+
# feasible
|
1540 |
+
self.population_energies[self.feasible] = (
|
1541 |
+
self._calculate_population_energies(
|
1542 |
+
self.population[self.feasible]))
|
1543 |
+
|
1544 |
+
self._promote_lowest_energy()
|
1545 |
+
|
1546 |
+
if self.dither is not None:
|
1547 |
+
self.scale = self.random_number_generator.uniform(self.dither[0],
|
1548 |
+
self.dither[1])
|
1549 |
+
|
1550 |
+
if self._updating == 'immediate':
|
1551 |
+
# update best solution immediately
|
1552 |
+
for candidate in range(self.num_population_members):
|
1553 |
+
if self._nfev > self.maxfun:
|
1554 |
+
raise StopIteration
|
1555 |
+
|
1556 |
+
# create a trial solution
|
1557 |
+
trial = self._mutate(candidate)
|
1558 |
+
|
1559 |
+
# ensuring that it's in the range [0, 1)
|
1560 |
+
self._ensure_constraint(trial)
|
1561 |
+
|
1562 |
+
# scale from [0, 1) to the actual parameter value
|
1563 |
+
parameters = self._scale_parameters(trial)
|
1564 |
+
|
1565 |
+
# determine the energy of the objective function
|
1566 |
+
if self._wrapped_constraints:
|
1567 |
+
cv = self._constraint_violation_fn(parameters)
|
1568 |
+
feasible = False
|
1569 |
+
energy = np.inf
|
1570 |
+
if not np.sum(cv) > 0:
|
1571 |
+
# solution is feasible
|
1572 |
+
feasible = True
|
1573 |
+
energy = self.func(parameters)
|
1574 |
+
self._nfev += 1
|
1575 |
+
else:
|
1576 |
+
feasible = True
|
1577 |
+
cv = np.atleast_2d([0.])
|
1578 |
+
energy = self.func(parameters)
|
1579 |
+
self._nfev += 1
|
1580 |
+
|
1581 |
+
# compare trial and population member
|
1582 |
+
if self._accept_trial(energy, feasible, cv,
|
1583 |
+
self.population_energies[candidate],
|
1584 |
+
self.feasible[candidate],
|
1585 |
+
self.constraint_violation[candidate]):
|
1586 |
+
self.population[candidate] = trial
|
1587 |
+
self.population_energies[candidate] = np.squeeze(energy)
|
1588 |
+
self.feasible[candidate] = feasible
|
1589 |
+
self.constraint_violation[candidate] = cv
|
1590 |
+
|
1591 |
+
# if the trial candidate is also better than the best
|
1592 |
+
# solution then promote it.
|
1593 |
+
if self._accept_trial(energy, feasible, cv,
|
1594 |
+
self.population_energies[0],
|
1595 |
+
self.feasible[0],
|
1596 |
+
self.constraint_violation[0]):
|
1597 |
+
self._promote_lowest_energy()
|
1598 |
+
|
1599 |
+
elif self._updating == 'deferred':
|
1600 |
+
# update best solution once per generation
|
1601 |
+
if self._nfev >= self.maxfun:
|
1602 |
+
raise StopIteration
|
1603 |
+
|
1604 |
+
# 'deferred' approach, vectorised form.
|
1605 |
+
# create trial solutions
|
1606 |
+
trial_pop = np.array(
|
1607 |
+
[self._mutate(i) for i in range(self.num_population_members)])
|
1608 |
+
|
1609 |
+
# enforce bounds
|
1610 |
+
self._ensure_constraint(trial_pop)
|
1611 |
+
|
1612 |
+
# determine the energies of the objective function, but only for
|
1613 |
+
# feasible trials
|
1614 |
+
feasible, cv = self._calculate_population_feasibilities(trial_pop)
|
1615 |
+
trial_energies = np.full(self.num_population_members, np.inf)
|
1616 |
+
|
1617 |
+
# only calculate for feasible entries
|
1618 |
+
trial_energies[feasible] = self._calculate_population_energies(
|
1619 |
+
trial_pop[feasible])
|
1620 |
+
|
1621 |
+
# which solutions are 'improved'?
|
1622 |
+
loc = [self._accept_trial(*val) for val in
|
1623 |
+
zip(trial_energies, feasible, cv, self.population_energies,
|
1624 |
+
self.feasible, self.constraint_violation)]
|
1625 |
+
loc = np.array(loc)
|
1626 |
+
self.population = np.where(loc[:, np.newaxis],
|
1627 |
+
trial_pop,
|
1628 |
+
self.population)
|
1629 |
+
self.population_energies = np.where(loc,
|
1630 |
+
trial_energies,
|
1631 |
+
self.population_energies)
|
1632 |
+
self.feasible = np.where(loc,
|
1633 |
+
feasible,
|
1634 |
+
self.feasible)
|
1635 |
+
self.constraint_violation = np.where(loc[:, np.newaxis],
|
1636 |
+
cv,
|
1637 |
+
self.constraint_violation)
|
1638 |
+
|
1639 |
+
# make sure the best solution is updated if updating='deferred'.
|
1640 |
+
# put the lowest energy into the best solution position.
|
1641 |
+
self._promote_lowest_energy()
|
1642 |
+
|
1643 |
+
return self.x, self.population_energies[0]
|
1644 |
+
|
1645 |
+
def _scale_parameters(self, trial):
|
1646 |
+
"""Scale from a number between 0 and 1 to parameters."""
|
1647 |
+
# trial either has shape (N, ) or (L, N), where L is the number of
|
1648 |
+
# solutions being scaled
|
1649 |
+
scaled = self.__scale_arg1 + (trial - 0.5) * self.__scale_arg2
|
1650 |
+
if np.any(self.integrality):
|
1651 |
+
i = np.broadcast_to(self.integrality, scaled.shape)
|
1652 |
+
scaled[i] = np.round(scaled[i])
|
1653 |
+
return scaled
|
1654 |
+
|
1655 |
+
def _unscale_parameters(self, parameters):
|
1656 |
+
"""Scale from parameters to a number between 0 and 1."""
|
1657 |
+
return (parameters - self.__scale_arg1) * self.__recip_scale_arg2 + 0.5
|
1658 |
+
|
1659 |
+
def _ensure_constraint(self, trial):
|
1660 |
+
"""Make sure the parameters lie between the limits."""
|
1661 |
+
mask = np.where((trial > 1) | (trial < 0))
|
1662 |
+
trial[mask] = self.random_number_generator.uniform(size=mask[0].shape)
|
1663 |
+
|
1664 |
+
def _mutate(self, candidate):
|
1665 |
+
"""Create a trial vector based on a mutation strategy."""
|
1666 |
+
rng = self.random_number_generator
|
1667 |
+
|
1668 |
+
if callable(self.strategy):
|
1669 |
+
_population = self._scale_parameters(self.population)
|
1670 |
+
trial = np.array(
|
1671 |
+
self.strategy(candidate, _population, rng=rng), dtype=float
|
1672 |
+
)
|
1673 |
+
if trial.shape != (self.parameter_count,):
|
1674 |
+
raise RuntimeError(
|
1675 |
+
"strategy must have signature"
|
1676 |
+
" f(candidate: int, population: np.ndarray, rng=None)"
|
1677 |
+
" returning an array of shape (N,)"
|
1678 |
+
)
|
1679 |
+
return self._unscale_parameters(trial)
|
1680 |
+
|
1681 |
+
trial = np.copy(self.population[candidate])
|
1682 |
+
fill_point = rng.choice(self.parameter_count)
|
1683 |
+
|
1684 |
+
if self.strategy in ['currenttobest1exp', 'currenttobest1bin']:
|
1685 |
+
bprime = self.mutation_func(candidate,
|
1686 |
+
self._select_samples(candidate, 5))
|
1687 |
+
else:
|
1688 |
+
bprime = self.mutation_func(self._select_samples(candidate, 5))
|
1689 |
+
|
1690 |
+
if self.strategy in self._binomial:
|
1691 |
+
crossovers = rng.uniform(size=self.parameter_count)
|
1692 |
+
crossovers = crossovers < self.cross_over_probability
|
1693 |
+
# the last one is always from the bprime vector for binomial
|
1694 |
+
# If you fill in modulo with a loop you have to set the last one to
|
1695 |
+
# true. If you don't use a loop then you can have any random entry
|
1696 |
+
# be True.
|
1697 |
+
crossovers[fill_point] = True
|
1698 |
+
trial = np.where(crossovers, bprime, trial)
|
1699 |
+
return trial
|
1700 |
+
|
1701 |
+
elif self.strategy in self._exponential:
|
1702 |
+
i = 0
|
1703 |
+
crossovers = rng.uniform(size=self.parameter_count)
|
1704 |
+
crossovers = crossovers < self.cross_over_probability
|
1705 |
+
crossovers[0] = True
|
1706 |
+
while (i < self.parameter_count and crossovers[i]):
|
1707 |
+
trial[fill_point] = bprime[fill_point]
|
1708 |
+
fill_point = (fill_point + 1) % self.parameter_count
|
1709 |
+
i += 1
|
1710 |
+
|
1711 |
+
return trial
|
1712 |
+
|
1713 |
+
def _best1(self, samples):
|
1714 |
+
"""best1bin, best1exp"""
|
1715 |
+
r0, r1 = samples[:2]
|
1716 |
+
return (self.population[0] + self.scale *
|
1717 |
+
(self.population[r0] - self.population[r1]))
|
1718 |
+
|
1719 |
+
def _rand1(self, samples):
|
1720 |
+
"""rand1bin, rand1exp"""
|
1721 |
+
r0, r1, r2 = samples[:3]
|
1722 |
+
return (self.population[r0] + self.scale *
|
1723 |
+
(self.population[r1] - self.population[r2]))
|
1724 |
+
|
1725 |
+
def _randtobest1(self, samples):
|
1726 |
+
"""randtobest1bin, randtobest1exp"""
|
1727 |
+
r0, r1, r2 = samples[:3]
|
1728 |
+
bprime = np.copy(self.population[r0])
|
1729 |
+
bprime += self.scale * (self.population[0] - bprime)
|
1730 |
+
bprime += self.scale * (self.population[r1] -
|
1731 |
+
self.population[r2])
|
1732 |
+
return bprime
|
1733 |
+
|
1734 |
+
def _currenttobest1(self, candidate, samples):
|
1735 |
+
"""currenttobest1bin, currenttobest1exp"""
|
1736 |
+
r0, r1 = samples[:2]
|
1737 |
+
bprime = (self.population[candidate] + self.scale *
|
1738 |
+
(self.population[0] - self.population[candidate] +
|
1739 |
+
self.population[r0] - self.population[r1]))
|
1740 |
+
return bprime
|
1741 |
+
|
1742 |
+
def _best2(self, samples):
|
1743 |
+
"""best2bin, best2exp"""
|
1744 |
+
r0, r1, r2, r3 = samples[:4]
|
1745 |
+
bprime = (self.population[0] + self.scale *
|
1746 |
+
(self.population[r0] + self.population[r1] -
|
1747 |
+
self.population[r2] - self.population[r3]))
|
1748 |
+
|
1749 |
+
return bprime
|
1750 |
+
|
1751 |
+
def _rand2(self, samples):
|
1752 |
+
"""rand2bin, rand2exp"""
|
1753 |
+
r0, r1, r2, r3, r4 = samples
|
1754 |
+
bprime = (self.population[r0] + self.scale *
|
1755 |
+
(self.population[r1] + self.population[r2] -
|
1756 |
+
self.population[r3] - self.population[r4]))
|
1757 |
+
|
1758 |
+
return bprime
|
1759 |
+
|
1760 |
+
def _select_samples(self, candidate, number_samples):
|
1761 |
+
"""
|
1762 |
+
obtain random integers from range(self.num_population_members),
|
1763 |
+
without replacement. You can't have the original candidate either.
|
1764 |
+
"""
|
1765 |
+
pool = np.arange(self.num_population_members)
|
1766 |
+
self.random_number_generator.shuffle(pool)
|
1767 |
+
|
1768 |
+
idxs = []
|
1769 |
+
while len(idxs) < number_samples and len(pool) > 0:
|
1770 |
+
idx = pool[0]
|
1771 |
+
pool = pool[1:]
|
1772 |
+
if idx != candidate:
|
1773 |
+
idxs.append(idx)
|
1774 |
+
|
1775 |
+
return idxs
|
1776 |
+
|
1777 |
+
|
1778 |
+
class _ConstraintWrapper:
|
1779 |
+
"""Object to wrap/evaluate user defined constraints.
|
1780 |
+
|
1781 |
+
Very similar in practice to `PreparedConstraint`, except that no evaluation
|
1782 |
+
of jac/hess is performed (explicit or implicit).
|
1783 |
+
|
1784 |
+
If created successfully, it will contain the attributes listed below.
|
1785 |
+
|
1786 |
+
Parameters
|
1787 |
+
----------
|
1788 |
+
constraint : {`NonlinearConstraint`, `LinearConstraint`, `Bounds`}
|
1789 |
+
Constraint to check and prepare.
|
1790 |
+
x0 : array_like
|
1791 |
+
Initial vector of independent variables, shape (N,)
|
1792 |
+
|
1793 |
+
Attributes
|
1794 |
+
----------
|
1795 |
+
fun : callable
|
1796 |
+
Function defining the constraint wrapped by one of the convenience
|
1797 |
+
classes.
|
1798 |
+
bounds : 2-tuple
|
1799 |
+
Contains lower and upper bounds for the constraints --- lb and ub.
|
1800 |
+
These are converted to ndarray and have a size equal to the number of
|
1801 |
+
the constraints.
|
1802 |
+
|
1803 |
+
Notes
|
1804 |
+
-----
|
1805 |
+
_ConstraintWrapper.fun and _ConstraintWrapper.violation can get sent
|
1806 |
+
arrays of shape (N, S) or (N,), where S is the number of vectors of shape
|
1807 |
+
(N,) to consider constraints for.
|
1808 |
+
"""
|
1809 |
+
def __init__(self, constraint, x0):
|
1810 |
+
self.constraint = constraint
|
1811 |
+
|
1812 |
+
if isinstance(constraint, NonlinearConstraint):
|
1813 |
+
def fun(x):
|
1814 |
+
x = np.asarray(x)
|
1815 |
+
return np.atleast_1d(constraint.fun(x))
|
1816 |
+
elif isinstance(constraint, LinearConstraint):
|
1817 |
+
def fun(x):
|
1818 |
+
if issparse(constraint.A):
|
1819 |
+
A = constraint.A
|
1820 |
+
else:
|
1821 |
+
A = np.atleast_2d(constraint.A)
|
1822 |
+
|
1823 |
+
res = A.dot(x)
|
1824 |
+
# x either has shape (N, S) or (N)
|
1825 |
+
# (M, N) x (N, S) --> (M, S)
|
1826 |
+
# (M, N) x (N,) --> (M,)
|
1827 |
+
# However, if (M, N) is a matrix then:
|
1828 |
+
# (M, N) * (N,) --> (M, 1), we need this to be (M,)
|
1829 |
+
if x.ndim == 1 and res.ndim == 2:
|
1830 |
+
# deal with case that constraint.A is an np.matrix
|
1831 |
+
# see gh20041
|
1832 |
+
res = np.asarray(res)[:, 0]
|
1833 |
+
|
1834 |
+
return res
|
1835 |
+
elif isinstance(constraint, Bounds):
|
1836 |
+
def fun(x):
|
1837 |
+
return np.asarray(x)
|
1838 |
+
else:
|
1839 |
+
raise ValueError("`constraint` of an unknown type is passed.")
|
1840 |
+
|
1841 |
+
self.fun = fun
|
1842 |
+
|
1843 |
+
lb = np.asarray(constraint.lb, dtype=float)
|
1844 |
+
ub = np.asarray(constraint.ub, dtype=float)
|
1845 |
+
|
1846 |
+
x0 = np.asarray(x0)
|
1847 |
+
|
1848 |
+
# find out the number of constraints
|
1849 |
+
f0 = fun(x0)
|
1850 |
+
self.num_constr = m = f0.size
|
1851 |
+
self.parameter_count = x0.size
|
1852 |
+
|
1853 |
+
if lb.ndim == 0:
|
1854 |
+
lb = np.resize(lb, m)
|
1855 |
+
if ub.ndim == 0:
|
1856 |
+
ub = np.resize(ub, m)
|
1857 |
+
|
1858 |
+
self.bounds = (lb, ub)
|
1859 |
+
|
1860 |
+
def __call__(self, x):
|
1861 |
+
return np.atleast_1d(self.fun(x))
|
1862 |
+
|
1863 |
+
def violation(self, x):
|
1864 |
+
"""How much the constraint is exceeded by.
|
1865 |
+
|
1866 |
+
Parameters
|
1867 |
+
----------
|
1868 |
+
x : array-like
|
1869 |
+
Vector of independent variables, (N, S), where N is number of
|
1870 |
+
parameters and S is the number of solutions to be investigated.
|
1871 |
+
|
1872 |
+
Returns
|
1873 |
+
-------
|
1874 |
+
excess : array-like
|
1875 |
+
How much the constraint is exceeded by, for each of the
|
1876 |
+
constraints specified by `_ConstraintWrapper.fun`.
|
1877 |
+
Has shape (M, S) where M is the number of constraint components.
|
1878 |
+
"""
|
1879 |
+
# expect ev to have shape (num_constr, S) or (num_constr,)
|
1880 |
+
ev = self.fun(np.asarray(x))
|
1881 |
+
|
1882 |
+
try:
|
1883 |
+
excess_lb = np.maximum(self.bounds[0] - ev.T, 0)
|
1884 |
+
excess_ub = np.maximum(ev.T - self.bounds[1], 0)
|
1885 |
+
except ValueError as e:
|
1886 |
+
raise RuntimeError("An array returned from a Constraint has"
|
1887 |
+
" the wrong shape. If `vectorized is False`"
|
1888 |
+
" the Constraint should return an array of"
|
1889 |
+
" shape (M,). If `vectorized is True` then"
|
1890 |
+
" the Constraint must return an array of"
|
1891 |
+
" shape (M, S), where S is the number of"
|
1892 |
+
" solution vectors and M is the number of"
|
1893 |
+
" constraint components in a given"
|
1894 |
+
" Constraint object.") from e
|
1895 |
+
|
1896 |
+
v = (excess_lb + excess_ub).T
|
1897 |
+
return v
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/_highs/__init__.py
ADDED
File without changes
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/_highs/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (186 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/_highs/src/cython/HConst.pxd
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# cython: language_level=3
|
2 |
+
|
3 |
+
from libcpp cimport bool
|
4 |
+
from libcpp.string cimport string
|
5 |
+
|
6 |
+
cdef extern from "HConst.h" nogil:
|
7 |
+
|
8 |
+
const int HIGHS_CONST_I_INF "kHighsIInf"
|
9 |
+
const double HIGHS_CONST_INF "kHighsInf"
|
10 |
+
const double kHighsTiny
|
11 |
+
const double kHighsZero
|
12 |
+
const int kHighsThreadLimit
|
13 |
+
|
14 |
+
cdef enum HighsDebugLevel:
|
15 |
+
HighsDebugLevel_kHighsDebugLevelNone "kHighsDebugLevelNone" = 0
|
16 |
+
HighsDebugLevel_kHighsDebugLevelCheap "kHighsDebugLevelCheap"
|
17 |
+
HighsDebugLevel_kHighsDebugLevelCostly "kHighsDebugLevelCostly"
|
18 |
+
HighsDebugLevel_kHighsDebugLevelExpensive "kHighsDebugLevelExpensive"
|
19 |
+
HighsDebugLevel_kHighsDebugLevelMin "kHighsDebugLevelMin" = HighsDebugLevel_kHighsDebugLevelNone
|
20 |
+
HighsDebugLevel_kHighsDebugLevelMax "kHighsDebugLevelMax" = HighsDebugLevel_kHighsDebugLevelExpensive
|
21 |
+
|
22 |
+
ctypedef enum HighsModelStatus:
|
23 |
+
HighsModelStatusNOTSET "HighsModelStatus::kNotset" = 0
|
24 |
+
HighsModelStatusLOAD_ERROR "HighsModelStatus::kLoadError"
|
25 |
+
HighsModelStatusMODEL_ERROR "HighsModelStatus::kModelError"
|
26 |
+
HighsModelStatusPRESOLVE_ERROR "HighsModelStatus::kPresolveError"
|
27 |
+
HighsModelStatusSOLVE_ERROR "HighsModelStatus::kSolveError"
|
28 |
+
HighsModelStatusPOSTSOLVE_ERROR "HighsModelStatus::kPostsolveError"
|
29 |
+
HighsModelStatusMODEL_EMPTY "HighsModelStatus::kModelEmpty"
|
30 |
+
HighsModelStatusOPTIMAL "HighsModelStatus::kOptimal"
|
31 |
+
HighsModelStatusINFEASIBLE "HighsModelStatus::kInfeasible"
|
32 |
+
HighsModelStatus_UNBOUNDED_OR_INFEASIBLE "HighsModelStatus::kUnboundedOrInfeasible"
|
33 |
+
HighsModelStatusUNBOUNDED "HighsModelStatus::kUnbounded"
|
34 |
+
HighsModelStatusREACHED_DUAL_OBJECTIVE_VALUE_UPPER_BOUND "HighsModelStatus::kObjectiveBound"
|
35 |
+
HighsModelStatusREACHED_OBJECTIVE_TARGET "HighsModelStatus::kObjectiveTarget"
|
36 |
+
HighsModelStatusREACHED_TIME_LIMIT "HighsModelStatus::kTimeLimit"
|
37 |
+
HighsModelStatusREACHED_ITERATION_LIMIT "HighsModelStatus::kIterationLimit"
|
38 |
+
HighsModelStatusUNKNOWN "HighsModelStatus::kUnknown"
|
39 |
+
HighsModelStatusHIGHS_MODEL_STATUS_MIN "HighsModelStatus::kMin" = HighsModelStatusNOTSET
|
40 |
+
HighsModelStatusHIGHS_MODEL_STATUS_MAX "HighsModelStatus::kMax" = HighsModelStatusUNKNOWN
|
41 |
+
|
42 |
+
cdef enum HighsBasisStatus:
|
43 |
+
HighsBasisStatusLOWER "HighsBasisStatus::kLower" = 0, # (slack) variable is at its lower bound [including fixed variables]
|
44 |
+
HighsBasisStatusBASIC "HighsBasisStatus::kBasic" # (slack) variable is basic
|
45 |
+
HighsBasisStatusUPPER "HighsBasisStatus::kUpper" # (slack) variable is at its upper bound
|
46 |
+
HighsBasisStatusZERO "HighsBasisStatus::kZero" # free variable is non-basic and set to zero
|
47 |
+
HighsBasisStatusNONBASIC "HighsBasisStatus::kNonbasic" # nonbasic with no specific bound information - useful for users and postsolve
|
48 |
+
|
49 |
+
cdef enum SolverOption:
|
50 |
+
SOLVER_OPTION_SIMPLEX "SolverOption::SOLVER_OPTION_SIMPLEX" = -1
|
51 |
+
SOLVER_OPTION_CHOOSE "SolverOption::SOLVER_OPTION_CHOOSE"
|
52 |
+
SOLVER_OPTION_IPM "SolverOption::SOLVER_OPTION_IPM"
|
53 |
+
|
54 |
+
cdef enum PrimalDualStatus:
|
55 |
+
PrimalDualStatusSTATUS_NOT_SET "PrimalDualStatus::STATUS_NOT_SET" = -1
|
56 |
+
PrimalDualStatusSTATUS_MIN "PrimalDualStatus::STATUS_MIN" = PrimalDualStatusSTATUS_NOT_SET
|
57 |
+
PrimalDualStatusSTATUS_NO_SOLUTION "PrimalDualStatus::STATUS_NO_SOLUTION"
|
58 |
+
PrimalDualStatusSTATUS_UNKNOWN "PrimalDualStatus::STATUS_UNKNOWN"
|
59 |
+
PrimalDualStatusSTATUS_INFEASIBLE_POINT "PrimalDualStatus::STATUS_INFEASIBLE_POINT"
|
60 |
+
PrimalDualStatusSTATUS_FEASIBLE_POINT "PrimalDualStatus::STATUS_FEASIBLE_POINT"
|
61 |
+
PrimalDualStatusSTATUS_MAX "PrimalDualStatus::STATUS_MAX" = PrimalDualStatusSTATUS_FEASIBLE_POINT
|
62 |
+
|
63 |
+
cdef enum HighsOptionType:
|
64 |
+
HighsOptionTypeBOOL "HighsOptionType::kBool" = 0
|
65 |
+
HighsOptionTypeINT "HighsOptionType::kInt"
|
66 |
+
HighsOptionTypeDOUBLE "HighsOptionType::kDouble"
|
67 |
+
HighsOptionTypeSTRING "HighsOptionType::kString"
|
68 |
+
|
69 |
+
# workaround for lack of enum class support in Cython < 3.x
|
70 |
+
# cdef enum class ObjSense(int):
|
71 |
+
# ObjSenseMINIMIZE "ObjSense::kMinimize" = 1
|
72 |
+
# ObjSenseMAXIMIZE "ObjSense::kMaximize" = -1
|
73 |
+
|
74 |
+
cdef cppclass ObjSense:
|
75 |
+
pass
|
76 |
+
|
77 |
+
cdef ObjSense ObjSenseMINIMIZE "ObjSense::kMinimize"
|
78 |
+
cdef ObjSense ObjSenseMAXIMIZE "ObjSense::kMaximize"
|
79 |
+
|
80 |
+
# cdef enum class MatrixFormat(int):
|
81 |
+
# MatrixFormatkColwise "MatrixFormat::kColwise" = 1
|
82 |
+
# MatrixFormatkRowwise "MatrixFormat::kRowwise"
|
83 |
+
# MatrixFormatkRowwisePartitioned "MatrixFormat::kRowwisePartitioned"
|
84 |
+
|
85 |
+
cdef cppclass MatrixFormat:
|
86 |
+
pass
|
87 |
+
|
88 |
+
cdef MatrixFormat MatrixFormatkColwise "MatrixFormat::kColwise"
|
89 |
+
cdef MatrixFormat MatrixFormatkRowwise "MatrixFormat::kRowwise"
|
90 |
+
cdef MatrixFormat MatrixFormatkRowwisePartitioned "MatrixFormat::kRowwisePartitioned"
|
91 |
+
|
92 |
+
# cdef enum class HighsVarType(int):
|
93 |
+
# kContinuous "HighsVarType::kContinuous"
|
94 |
+
# kInteger "HighsVarType::kInteger"
|
95 |
+
# kSemiContinuous "HighsVarType::kSemiContinuous"
|
96 |
+
# kSemiInteger "HighsVarType::kSemiInteger"
|
97 |
+
# kImplicitInteger "HighsVarType::kImplicitInteger"
|
98 |
+
|
99 |
+
cdef cppclass HighsVarType:
|
100 |
+
pass
|
101 |
+
|
102 |
+
cdef HighsVarType kContinuous "HighsVarType::kContinuous"
|
103 |
+
cdef HighsVarType kInteger "HighsVarType::kInteger"
|
104 |
+
cdef HighsVarType kSemiContinuous "HighsVarType::kSemiContinuous"
|
105 |
+
cdef HighsVarType kSemiInteger "HighsVarType::kSemiInteger"
|
106 |
+
cdef HighsVarType kImplicitInteger "HighsVarType::kImplicitInteger"
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/_highs/src/cython/Highs.pxd
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# cython: language_level=3
|
2 |
+
|
3 |
+
from libc.stdio cimport FILE
|
4 |
+
|
5 |
+
from libcpp cimport bool
|
6 |
+
from libcpp.string cimport string
|
7 |
+
|
8 |
+
from .HighsStatus cimport HighsStatus
|
9 |
+
from .HighsOptions cimport HighsOptions
|
10 |
+
from .HighsInfo cimport HighsInfo
|
11 |
+
from .HighsLp cimport (
|
12 |
+
HighsLp,
|
13 |
+
HighsSolution,
|
14 |
+
HighsBasis,
|
15 |
+
ObjSense,
|
16 |
+
)
|
17 |
+
from .HConst cimport HighsModelStatus
|
18 |
+
|
19 |
+
cdef extern from "Highs.h":
|
20 |
+
# From HiGHS/src/Highs.h
|
21 |
+
cdef cppclass Highs:
|
22 |
+
HighsStatus passHighsOptions(const HighsOptions& options)
|
23 |
+
HighsStatus passModel(const HighsLp& lp)
|
24 |
+
HighsStatus run()
|
25 |
+
HighsStatus setHighsLogfile(FILE* logfile)
|
26 |
+
HighsStatus setHighsOutput(FILE* output)
|
27 |
+
HighsStatus writeHighsOptions(const string filename, const bool report_only_non_default_values = true)
|
28 |
+
|
29 |
+
# split up for cython below
|
30 |
+
#const HighsModelStatus& getModelStatus(const bool scaled_model = False) const
|
31 |
+
const HighsModelStatus & getModelStatus() const
|
32 |
+
|
33 |
+
const HighsInfo& getHighsInfo "getInfo" () const
|
34 |
+
string modelStatusToString(const HighsModelStatus model_status) const
|
35 |
+
#HighsStatus getHighsInfoValue(const string& info, int& value)
|
36 |
+
HighsStatus getHighsInfoValue(const string& info, double& value) const
|
37 |
+
const HighsOptions& getHighsOptions() const
|
38 |
+
|
39 |
+
const HighsLp& getLp() const
|
40 |
+
|
41 |
+
HighsStatus writeSolution(const string filename, const bool pretty) const
|
42 |
+
|
43 |
+
HighsStatus setBasis()
|
44 |
+
const HighsSolution& getSolution() const
|
45 |
+
const HighsBasis& getBasis() const
|
46 |
+
|
47 |
+
bool changeObjectiveSense(const ObjSense sense)
|
48 |
+
|
49 |
+
HighsStatus setHighsOptionValueBool "setOptionValue" (const string & option, const bool value)
|
50 |
+
HighsStatus setHighsOptionValueInt "setOptionValue" (const string & option, const int value)
|
51 |
+
HighsStatus setHighsOptionValueStr "setOptionValue" (const string & option, const string & value)
|
52 |
+
HighsStatus setHighsOptionValueDbl "setOptionValue" (const string & option, const double value)
|
53 |
+
|
54 |
+
string primalDualStatusToString(const int primal_dual_status)
|
55 |
+
|
56 |
+
void resetGlobalScheduler(bool blocking)
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/_highs/src/cython/HighsIO.pxd
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# cython: language_level=3
|
2 |
+
|
3 |
+
|
4 |
+
cdef extern from "HighsIO.h" nogil:
|
5 |
+
# workaround for lack of enum class support in Cython < 3.x
|
6 |
+
# cdef enum class HighsLogType(int):
|
7 |
+
# kInfo "HighsLogType::kInfo" = 1
|
8 |
+
# kDetailed "HighsLogType::kDetailed"
|
9 |
+
# kVerbose "HighsLogType::kVerbose"
|
10 |
+
# kWarning "HighsLogType::kWarning"
|
11 |
+
# kError "HighsLogType::kError"
|
12 |
+
|
13 |
+
cdef cppclass HighsLogType:
|
14 |
+
pass
|
15 |
+
|
16 |
+
cdef HighsLogType kInfo "HighsLogType::kInfo"
|
17 |
+
cdef HighsLogType kDetailed "HighsLogType::kDetailed"
|
18 |
+
cdef HighsLogType kVerbose "HighsLogType::kVerbose"
|
19 |
+
cdef HighsLogType kWarning "HighsLogType::kWarning"
|
20 |
+
cdef HighsLogType kError "HighsLogType::kError"
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/_highs/src/cython/HighsInfo.pxd
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# cython: language_level=3
|
2 |
+
|
3 |
+
cdef extern from "HighsInfo.h" nogil:
|
4 |
+
# From HiGHS/src/lp_data/HighsInfo.h
|
5 |
+
cdef cppclass HighsInfo:
|
6 |
+
# Inherited from HighsInfoStruct:
|
7 |
+
int mip_node_count
|
8 |
+
int simplex_iteration_count
|
9 |
+
int ipm_iteration_count
|
10 |
+
int crossover_iteration_count
|
11 |
+
int primal_solution_status
|
12 |
+
int dual_solution_status
|
13 |
+
int basis_validity
|
14 |
+
double objective_function_value
|
15 |
+
double mip_dual_bound
|
16 |
+
double mip_gap
|
17 |
+
int num_primal_infeasibilities
|
18 |
+
double max_primal_infeasibility
|
19 |
+
double sum_primal_infeasibilities
|
20 |
+
int num_dual_infeasibilities
|
21 |
+
double max_dual_infeasibility
|
22 |
+
double sum_dual_infeasibilities
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/_highs/src/cython/HighsLpUtils.pxd
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# cython: language_level=3
|
2 |
+
|
3 |
+
from .HighsStatus cimport HighsStatus
|
4 |
+
from .HighsLp cimport HighsLp
|
5 |
+
from .HighsOptions cimport HighsOptions
|
6 |
+
|
7 |
+
cdef extern from "HighsLpUtils.h" nogil:
|
8 |
+
# From HiGHS/src/lp_data/HighsLpUtils.h
|
9 |
+
HighsStatus assessLp(HighsLp& lp, const HighsOptions& options)
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/_highs/src/cython/HighsModelUtils.pxd
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# cython: language_level=3
|
2 |
+
|
3 |
+
from libcpp.string cimport string
|
4 |
+
|
5 |
+
from .HConst cimport HighsModelStatus
|
6 |
+
|
7 |
+
cdef extern from "HighsModelUtils.h" nogil:
|
8 |
+
# From HiGHS/src/lp_data/HighsModelUtils.h
|
9 |
+
string utilHighsModelStatusToString(const HighsModelStatus model_status)
|
10 |
+
string utilBasisStatusToString(const int primal_dual_status)
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/_highs/src/cython/HighsOptions.pxd
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# cython: language_level=3
|
2 |
+
|
3 |
+
from libc.stdio cimport FILE
|
4 |
+
|
5 |
+
from libcpp cimport bool
|
6 |
+
from libcpp.string cimport string
|
7 |
+
from libcpp.vector cimport vector
|
8 |
+
|
9 |
+
from .HConst cimport HighsOptionType
|
10 |
+
|
11 |
+
cdef extern from "HighsOptions.h" nogil:
|
12 |
+
|
13 |
+
cdef cppclass OptionRecord:
|
14 |
+
HighsOptionType type
|
15 |
+
string name
|
16 |
+
string description
|
17 |
+
bool advanced
|
18 |
+
|
19 |
+
cdef cppclass OptionRecordBool(OptionRecord):
|
20 |
+
bool* value
|
21 |
+
bool default_value
|
22 |
+
|
23 |
+
cdef cppclass OptionRecordInt(OptionRecord):
|
24 |
+
int* value
|
25 |
+
int lower_bound
|
26 |
+
int default_value
|
27 |
+
int upper_bound
|
28 |
+
|
29 |
+
cdef cppclass OptionRecordDouble(OptionRecord):
|
30 |
+
double* value
|
31 |
+
double lower_bound
|
32 |
+
double default_value
|
33 |
+
double upper_bound
|
34 |
+
|
35 |
+
cdef cppclass OptionRecordString(OptionRecord):
|
36 |
+
string* value
|
37 |
+
string default_value
|
38 |
+
|
39 |
+
cdef cppclass HighsOptions:
|
40 |
+
# From HighsOptionsStruct:
|
41 |
+
|
42 |
+
# Options read from the command line
|
43 |
+
string model_file
|
44 |
+
string presolve
|
45 |
+
string solver
|
46 |
+
string parallel
|
47 |
+
double time_limit
|
48 |
+
string options_file
|
49 |
+
|
50 |
+
# Options read from the file
|
51 |
+
double infinite_cost
|
52 |
+
double infinite_bound
|
53 |
+
double small_matrix_value
|
54 |
+
double large_matrix_value
|
55 |
+
double primal_feasibility_tolerance
|
56 |
+
double dual_feasibility_tolerance
|
57 |
+
double ipm_optimality_tolerance
|
58 |
+
double dual_objective_value_upper_bound
|
59 |
+
int highs_debug_level
|
60 |
+
int simplex_strategy
|
61 |
+
int simplex_scale_strategy
|
62 |
+
int simplex_crash_strategy
|
63 |
+
int simplex_dual_edge_weight_strategy
|
64 |
+
int simplex_primal_edge_weight_strategy
|
65 |
+
int simplex_iteration_limit
|
66 |
+
int simplex_update_limit
|
67 |
+
int ipm_iteration_limit
|
68 |
+
int highs_min_threads
|
69 |
+
int highs_max_threads
|
70 |
+
int message_level
|
71 |
+
string solution_file
|
72 |
+
bool write_solution_to_file
|
73 |
+
bool write_solution_pretty
|
74 |
+
|
75 |
+
# Advanced options
|
76 |
+
bool run_crossover
|
77 |
+
bool mps_parser_type_free
|
78 |
+
int keep_n_rows
|
79 |
+
int allowed_simplex_matrix_scale_factor
|
80 |
+
int allowed_simplex_cost_scale_factor
|
81 |
+
int simplex_dualise_strategy
|
82 |
+
int simplex_permute_strategy
|
83 |
+
int dual_simplex_cleanup_strategy
|
84 |
+
int simplex_price_strategy
|
85 |
+
int dual_chuzc_sort_strategy
|
86 |
+
bool simplex_initial_condition_check
|
87 |
+
double simplex_initial_condition_tolerance
|
88 |
+
double dual_steepest_edge_weight_log_error_threshhold
|
89 |
+
double dual_simplex_cost_perturbation_multiplier
|
90 |
+
double start_crossover_tolerance
|
91 |
+
bool less_infeasible_DSE_check
|
92 |
+
bool less_infeasible_DSE_choose_row
|
93 |
+
bool use_original_HFactor_logic
|
94 |
+
|
95 |
+
# Options for MIP solver
|
96 |
+
int mip_max_nodes
|
97 |
+
int mip_report_level
|
98 |
+
|
99 |
+
# Switch for MIP solver
|
100 |
+
bool mip
|
101 |
+
|
102 |
+
# Options for HighsPrintMessage and HighsLogMessage
|
103 |
+
FILE* logfile
|
104 |
+
FILE* output
|
105 |
+
int message_level
|
106 |
+
string solution_file
|
107 |
+
bool write_solution_to_file
|
108 |
+
bool write_solution_pretty
|
109 |
+
|
110 |
+
vector[OptionRecord*] records
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/_highs/src/cython/HighsRuntimeOptions.pxd
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# cython: language_level=3
|
2 |
+
|
3 |
+
from libcpp cimport bool
|
4 |
+
|
5 |
+
from .HighsOptions cimport HighsOptions
|
6 |
+
|
7 |
+
cdef extern from "HighsRuntimeOptions.h" nogil:
|
8 |
+
# From HiGHS/src/lp_data/HighsRuntimeOptions.h
|
9 |
+
bool loadOptions(int argc, char** argv, HighsOptions& options)
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/_highs/src/cython/HighsStatus.pxd
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# cython: language_level=3
|
2 |
+
|
3 |
+
from libcpp.string cimport string
|
4 |
+
|
5 |
+
cdef extern from "HighsStatus.h" nogil:
|
6 |
+
ctypedef enum HighsStatus:
|
7 |
+
HighsStatusError "HighsStatus::kError" = -1
|
8 |
+
HighsStatusOK "HighsStatus::kOk" = 0
|
9 |
+
HighsStatusWarning "HighsStatus::kWarning" = 1
|
10 |
+
|
11 |
+
|
12 |
+
string highsStatusToString(HighsStatus status)
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/_highs/src/cython/SimplexConst.pxd
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# cython: language_level=3
|
2 |
+
|
3 |
+
from libcpp cimport bool
|
4 |
+
|
5 |
+
cdef extern from "SimplexConst.h" nogil:
|
6 |
+
|
7 |
+
cdef enum SimplexAlgorithm:
|
8 |
+
PRIMAL "SimplexAlgorithm::kPrimal" = 0
|
9 |
+
DUAL "SimplexAlgorithm::kDual"
|
10 |
+
|
11 |
+
cdef enum SimplexStrategy:
|
12 |
+
SIMPLEX_STRATEGY_MIN "SimplexStrategy::kSimplexStrategyMin" = 0
|
13 |
+
SIMPLEX_STRATEGY_CHOOSE "SimplexStrategy::kSimplexStrategyChoose" = SIMPLEX_STRATEGY_MIN
|
14 |
+
SIMPLEX_STRATEGY_DUAL "SimplexStrategy::kSimplexStrategyDual"
|
15 |
+
SIMPLEX_STRATEGY_DUAL_PLAIN "SimplexStrategy::kSimplexStrategyDualPlain" = SIMPLEX_STRATEGY_DUAL
|
16 |
+
SIMPLEX_STRATEGY_DUAL_TASKS "SimplexStrategy::kSimplexStrategyDualTasks"
|
17 |
+
SIMPLEX_STRATEGY_DUAL_MULTI "SimplexStrategy::kSimplexStrategyDualMulti"
|
18 |
+
SIMPLEX_STRATEGY_PRIMAL "SimplexStrategy::kSimplexStrategyPrimal"
|
19 |
+
SIMPLEX_STRATEGY_MAX "SimplexStrategy::kSimplexStrategyMax" = SIMPLEX_STRATEGY_PRIMAL
|
20 |
+
SIMPLEX_STRATEGY_NUM "SimplexStrategy::kSimplexStrategyNum"
|
21 |
+
|
22 |
+
cdef enum SimplexCrashStrategy:
|
23 |
+
SIMPLEX_CRASH_STRATEGY_MIN "SimplexCrashStrategy::kSimplexCrashStrategyMin" = 0
|
24 |
+
SIMPLEX_CRASH_STRATEGY_OFF "SimplexCrashStrategy::kSimplexCrashStrategyOff" = SIMPLEX_CRASH_STRATEGY_MIN
|
25 |
+
SIMPLEX_CRASH_STRATEGY_LTSSF_K "SimplexCrashStrategy::kSimplexCrashStrategyLtssfK"
|
26 |
+
SIMPLEX_CRASH_STRATEGY_LTSSF "SimplexCrashStrategy::kSimplexCrashStrategyLtssf" = SIMPLEX_CRASH_STRATEGY_LTSSF_K
|
27 |
+
SIMPLEX_CRASH_STRATEGY_BIXBY "SimplexCrashStrategy::kSimplexCrashStrategyBixby"
|
28 |
+
SIMPLEX_CRASH_STRATEGY_LTSSF_PRI "SimplexCrashStrategy::kSimplexCrashStrategyLtssfPri"
|
29 |
+
SIMPLEX_CRASH_STRATEGY_LTSF_K "SimplexCrashStrategy::kSimplexCrashStrategyLtsfK"
|
30 |
+
SIMPLEX_CRASH_STRATEGY_LTSF_PRI "SimplexCrashStrategy::kSimplexCrashStrategyLtsfPri"
|
31 |
+
SIMPLEX_CRASH_STRATEGY_LTSF "SimplexCrashStrategy::kSimplexCrashStrategyLtsf"
|
32 |
+
SIMPLEX_CRASH_STRATEGY_BIXBY_NO_NONZERO_COL_COSTS "SimplexCrashStrategy::kSimplexCrashStrategyBixbyNoNonzeroColCosts"
|
33 |
+
SIMPLEX_CRASH_STRATEGY_BASIC "SimplexCrashStrategy::kSimplexCrashStrategyBasic"
|
34 |
+
SIMPLEX_CRASH_STRATEGY_TEST_SING "SimplexCrashStrategy::kSimplexCrashStrategyTestSing"
|
35 |
+
SIMPLEX_CRASH_STRATEGY_MAX "SimplexCrashStrategy::kSimplexCrashStrategyMax" = SIMPLEX_CRASH_STRATEGY_TEST_SING
|
36 |
+
|
37 |
+
cdef enum SimplexEdgeWeightStrategy:
|
38 |
+
SIMPLEX_EDGE_WEIGHT_STRATEGY_MIN "SimplexEdgeWeightStrategy::kSimplexEdgeWeightStrategyMin" = -1
|
39 |
+
SIMPLEX_EDGE_WEIGHT_STRATEGY_CHOOSE "SimplexEdgeWeightStrategy::kSimplexEdgeWeightStrategyChoose" = SIMPLEX_EDGE_WEIGHT_STRATEGY_MIN
|
40 |
+
SIMPLEX_EDGE_WEIGHT_STRATEGY_DANTZIG "SimplexEdgeWeightStrategy::kSimplexEdgeWeightStrategyDantzig"
|
41 |
+
SIMPLEX_EDGE_WEIGHT_STRATEGY_DEVEX "SimplexEdgeWeightStrategy::kSimplexEdgeWeightStrategyDevex"
|
42 |
+
SIMPLEX_EDGE_WEIGHT_STRATEGY_STEEPEST_EDGE "SimplexEdgeWeightStrategy::kSimplexEdgeWeightStrategySteepestEdge"
|
43 |
+
SIMPLEX_EDGE_WEIGHT_STRATEGY_STEEPEST_EDGE_UNIT_INITIAL "SimplexEdgeWeightStrategy::kSimplexEdgeWeightStrategySteepestEdgeUnitInitial"
|
44 |
+
SIMPLEX_EDGE_WEIGHT_STRATEGY_MAX "SimplexEdgeWeightStrategy::kSimplexEdgeWeightStrategyMax" = SIMPLEX_EDGE_WEIGHT_STRATEGY_STEEPEST_EDGE_UNIT_INITIAL
|
45 |
+
|
46 |
+
cdef enum SimplexPriceStrategy:
|
47 |
+
SIMPLEX_PRICE_STRATEGY_MIN = 0
|
48 |
+
SIMPLEX_PRICE_STRATEGY_COL = SIMPLEX_PRICE_STRATEGY_MIN
|
49 |
+
SIMPLEX_PRICE_STRATEGY_ROW
|
50 |
+
SIMPLEX_PRICE_STRATEGY_ROW_SWITCH
|
51 |
+
SIMPLEX_PRICE_STRATEGY_ROW_SWITCH_COL_SWITCH
|
52 |
+
SIMPLEX_PRICE_STRATEGY_MAX = SIMPLEX_PRICE_STRATEGY_ROW_SWITCH_COL_SWITCH
|
53 |
+
|
54 |
+
cdef enum SimplexDualChuzcStrategy:
|
55 |
+
SIMPLEX_DUAL_CHUZC_STRATEGY_MIN = 0
|
56 |
+
SIMPLEX_DUAL_CHUZC_STRATEGY_CHOOSE = SIMPLEX_DUAL_CHUZC_STRATEGY_MIN
|
57 |
+
SIMPLEX_DUAL_CHUZC_STRATEGY_QUAD
|
58 |
+
SIMPLEX_DUAL_CHUZC_STRATEGY_HEAP
|
59 |
+
SIMPLEX_DUAL_CHUZC_STRATEGY_BOTH
|
60 |
+
SIMPLEX_DUAL_CHUZC_STRATEGY_MAX = SIMPLEX_DUAL_CHUZC_STRATEGY_BOTH
|
61 |
+
|
62 |
+
cdef enum InvertHint:
|
63 |
+
INVERT_HINT_NO = 0
|
64 |
+
INVERT_HINT_UPDATE_LIMIT_REACHED
|
65 |
+
INVERT_HINT_SYNTHETIC_CLOCK_SAYS_INVERT
|
66 |
+
INVERT_HINT_POSSIBLY_OPTIMAL
|
67 |
+
INVERT_HINT_POSSIBLY_PRIMAL_UNBOUNDED
|
68 |
+
INVERT_HINT_POSSIBLY_DUAL_UNBOUNDED
|
69 |
+
INVERT_HINT_POSSIBLY_SINGULAR_BASIS
|
70 |
+
INVERT_HINT_PRIMAL_INFEASIBLE_IN_PRIMAL_SIMPLEX
|
71 |
+
INVERT_HINT_CHOOSE_COLUMN_FAIL
|
72 |
+
INVERT_HINT_Count
|
73 |
+
|
74 |
+
cdef enum DualEdgeWeightMode:
|
75 |
+
DANTZIG "DualEdgeWeightMode::DANTZIG" = 0
|
76 |
+
DEVEX "DualEdgeWeightMode::DEVEX"
|
77 |
+
STEEPEST_EDGE "DualEdgeWeightMode::STEEPEST_EDGE"
|
78 |
+
Count "DualEdgeWeightMode::Count"
|
79 |
+
|
80 |
+
cdef enum PriceMode:
|
81 |
+
ROW "PriceMode::ROW" = 0
|
82 |
+
COL "PriceMode::COL"
|
83 |
+
|
84 |
+
const int PARALLEL_THREADS_DEFAULT
|
85 |
+
const int DUAL_TASKS_MIN_THREADS
|
86 |
+
const int DUAL_MULTI_MIN_THREADS
|
87 |
+
|
88 |
+
const bool invert_if_row_out_negative
|
89 |
+
|
90 |
+
const int NONBASIC_FLAG_TRUE
|
91 |
+
const int NONBASIC_FLAG_FALSE
|
92 |
+
|
93 |
+
const int NONBASIC_MOVE_UP
|
94 |
+
const int NONBASIC_MOVE_DN
|
95 |
+
const int NONBASIC_MOVE_ZE
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/_highs/src/cython/highs_c_api.pxd
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# cython: language_level=3
|
2 |
+
|
3 |
+
cdef extern from "highs_c_api.h" nogil:
|
4 |
+
int Highs_passLp(void* highs, int numcol, int numrow, int numnz,
|
5 |
+
double* colcost, double* collower, double* colupper,
|
6 |
+
double* rowlower, double* rowupper,
|
7 |
+
int* astart, int* aindex, double* avalue)
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/_isotonic.py
ADDED
@@ -0,0 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
from typing import TYPE_CHECKING
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
from ._optimize import OptimizeResult
|
7 |
+
from ._pava_pybind import pava
|
8 |
+
|
9 |
+
if TYPE_CHECKING:
|
10 |
+
import numpy.typing as npt
|
11 |
+
|
12 |
+
|
13 |
+
__all__ = ["isotonic_regression"]
|
14 |
+
|
15 |
+
|
16 |
+
def isotonic_regression(
|
17 |
+
y: npt.ArrayLike,
|
18 |
+
*,
|
19 |
+
weights: npt.ArrayLike | None = None,
|
20 |
+
increasing: bool = True,
|
21 |
+
) -> OptimizeResult:
|
22 |
+
r"""Nonparametric isotonic regression.
|
23 |
+
|
24 |
+
A (not strictly) monotonically increasing array `x` with the same length
|
25 |
+
as `y` is calculated by the pool adjacent violators algorithm (PAVA), see
|
26 |
+
[1]_. See the Notes section for more details.
|
27 |
+
|
28 |
+
Parameters
|
29 |
+
----------
|
30 |
+
y : (N,) array_like
|
31 |
+
Response variable.
|
32 |
+
weights : (N,) array_like or None
|
33 |
+
Case weights.
|
34 |
+
increasing : bool
|
35 |
+
If True, fit monotonic increasing, i.e. isotonic, regression.
|
36 |
+
If False, fit a monotonic decreasing, i.e. antitonic, regression.
|
37 |
+
Default is True.
|
38 |
+
|
39 |
+
Returns
|
40 |
+
-------
|
41 |
+
res : OptimizeResult
|
42 |
+
The optimization result represented as a ``OptimizeResult`` object.
|
43 |
+
Important attributes are:
|
44 |
+
|
45 |
+
- ``x``: The isotonic regression solution, i.e. an increasing (or
|
46 |
+
decreasing) array of the same length than y, with elements in the
|
47 |
+
range from min(y) to max(y).
|
48 |
+
- ``weights`` : Array with the sum of case weights for each block
|
49 |
+
(or pool) B.
|
50 |
+
- ``blocks``: Array of length B+1 with the indices of the start
|
51 |
+
positions of each block (or pool) B. The j-th block is given by
|
52 |
+
``x[blocks[j]:blocks[j+1]]`` for which all values are the same.
|
53 |
+
|
54 |
+
Notes
|
55 |
+
-----
|
56 |
+
Given data :math:`y` and case weights :math:`w`, the isotonic regression
|
57 |
+
solves the following optimization problem:
|
58 |
+
|
59 |
+
.. math::
|
60 |
+
|
61 |
+
\operatorname{argmin}_{x_i} \sum_i w_i (y_i - x_i)^2 \quad
|
62 |
+
\text{subject to } x_i \leq x_j \text{ whenever } i \leq j \,.
|
63 |
+
|
64 |
+
For every input value :math:`y_i`, it generates a value :math:`x_i` such
|
65 |
+
that :math:`x` is increasing (but not strictly), i.e.
|
66 |
+
:math:`x_i \leq x_{i+1}`. This is accomplished by the PAVA.
|
67 |
+
The solution consists of pools or blocks, i.e. neighboring elements of
|
68 |
+
:math:`x`, e.g. :math:`x_i` and :math:`x_{i+1}`, that all have the same
|
69 |
+
value.
|
70 |
+
|
71 |
+
Most interestingly, the solution stays the same if the squared loss is
|
72 |
+
replaced by the wide class of Bregman functions which are the unique
|
73 |
+
class of strictly consistent scoring functions for the mean, see [2]_
|
74 |
+
and references therein.
|
75 |
+
|
76 |
+
The implemented version of PAVA according to [1]_ has a computational
|
77 |
+
complexity of O(N) with input size N.
|
78 |
+
|
79 |
+
References
|
80 |
+
----------
|
81 |
+
.. [1] Busing, F. M. T. A. (2022).
|
82 |
+
Monotone Regression: A Simple and Fast O(n) PAVA Implementation.
|
83 |
+
Journal of Statistical Software, Code Snippets, 102(1), 1-25.
|
84 |
+
:doi:`10.18637/jss.v102.c01`
|
85 |
+
.. [2] Jordan, A.I., Mühlemann, A. & Ziegel, J.F.
|
86 |
+
Characterizing the optimal solutions to the isotonic regression
|
87 |
+
problem for identifiable functionals.
|
88 |
+
Ann Inst Stat Math 74, 489-514 (2022).
|
89 |
+
:doi:`10.1007/s10463-021-00808-0`
|
90 |
+
|
91 |
+
Examples
|
92 |
+
--------
|
93 |
+
This example demonstrates that ``isotonic_regression`` really solves a
|
94 |
+
constrained optimization problem.
|
95 |
+
|
96 |
+
>>> import numpy as np
|
97 |
+
>>> from scipy.optimize import isotonic_regression, minimize
|
98 |
+
>>> y = [1.5, 1.0, 4.0, 6.0, 5.7, 5.0, 7.8, 9.0, 7.5, 9.5, 9.0]
|
99 |
+
>>> def objective(yhat, y):
|
100 |
+
... return np.sum((yhat - y)**2)
|
101 |
+
>>> def constraint(yhat, y):
|
102 |
+
... # This is for a monotonically increasing regression.
|
103 |
+
... return np.diff(yhat)
|
104 |
+
>>> result = minimize(objective, x0=y, args=(y,),
|
105 |
+
... constraints=[{'type': 'ineq',
|
106 |
+
... 'fun': lambda x: constraint(x, y)}])
|
107 |
+
>>> result.x
|
108 |
+
array([1.25 , 1.25 , 4. , 5.56666667, 5.56666667,
|
109 |
+
5.56666667, 7.8 , 8.25 , 8.25 , 9.25 ,
|
110 |
+
9.25 ])
|
111 |
+
>>> result = isotonic_regression(y)
|
112 |
+
>>> result.x
|
113 |
+
array([1.25 , 1.25 , 4. , 5.56666667, 5.56666667,
|
114 |
+
5.56666667, 7.8 , 8.25 , 8.25 , 9.25 ,
|
115 |
+
9.25 ])
|
116 |
+
|
117 |
+
The big advantage of ``isotonic_regression`` compared to calling
|
118 |
+
``minimize`` is that it is more user friendly, i.e. one does not need to
|
119 |
+
define objective and constraint functions, and that it is orders of
|
120 |
+
magnitudes faster. On commodity hardware (in 2023), for normal distributed
|
121 |
+
input y of length 1000, the minimizer takes about 4 seconds, while
|
122 |
+
``isotonic_regression`` takes about 200 microseconds.
|
123 |
+
"""
|
124 |
+
yarr = np.asarray(y) # Check yarr.ndim == 1 is implicit (pybind11) in pava.
|
125 |
+
if weights is None:
|
126 |
+
warr = np.ones_like(yarr)
|
127 |
+
else:
|
128 |
+
warr = np.asarray(weights)
|
129 |
+
|
130 |
+
if not (yarr.ndim == warr.ndim == 1 and yarr.shape[0] == warr.shape[0]):
|
131 |
+
raise ValueError(
|
132 |
+
"Input arrays y and w must have one dimension of equal length."
|
133 |
+
)
|
134 |
+
if np.any(warr <= 0):
|
135 |
+
raise ValueError("Weights w must be strictly positive.")
|
136 |
+
|
137 |
+
order = slice(None) if increasing else slice(None, None, -1)
|
138 |
+
x = np.array(yarr[order], order="C", dtype=np.float64, copy=True)
|
139 |
+
wx = np.array(warr[order], order="C", dtype=np.float64, copy=True)
|
140 |
+
n = x.shape[0]
|
141 |
+
r = np.full(shape=n + 1, fill_value=-1, dtype=np.intp)
|
142 |
+
x, wx, r, b = pava(x, wx, r)
|
143 |
+
# Now that we know the number of blocks b, we only keep the relevant part
|
144 |
+
# of r and wx.
|
145 |
+
# As information: Due to the pava implementation, after the last block
|
146 |
+
# index, there might be smaller numbers appended to r, e.g.
|
147 |
+
# r = [0, 10, 8, 7] which in the end should be r = [0, 10].
|
148 |
+
r = r[:b + 1]
|
149 |
+
wx = wx[:b]
|
150 |
+
if not increasing:
|
151 |
+
x = x[::-1]
|
152 |
+
wx = wx[::-1]
|
153 |
+
r = r[-1] - r[::-1]
|
154 |
+
return OptimizeResult(
|
155 |
+
x=x,
|
156 |
+
weights=wx,
|
157 |
+
blocks=r,
|
158 |
+
)
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/_linprog_doc.py
ADDED
@@ -0,0 +1,1434 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Created on Sat Aug 22 19:49:17 2020
|
3 |
+
|
4 |
+
@author: matth
|
5 |
+
"""
|
6 |
+
|
7 |
+
|
8 |
+
def _linprog_highs_doc(c, A_ub=None, b_ub=None, A_eq=None, b_eq=None,
|
9 |
+
bounds=None, method='highs', callback=None,
|
10 |
+
maxiter=None, disp=False, presolve=True,
|
11 |
+
time_limit=None,
|
12 |
+
dual_feasibility_tolerance=None,
|
13 |
+
primal_feasibility_tolerance=None,
|
14 |
+
ipm_optimality_tolerance=None,
|
15 |
+
simplex_dual_edge_weight_strategy=None,
|
16 |
+
mip_rel_gap=None,
|
17 |
+
**unknown_options):
|
18 |
+
r"""
|
19 |
+
Linear programming: minimize a linear objective function subject to linear
|
20 |
+
equality and inequality constraints using one of the HiGHS solvers.
|
21 |
+
|
22 |
+
Linear programming solves problems of the following form:
|
23 |
+
|
24 |
+
.. math::
|
25 |
+
|
26 |
+
\min_x \ & c^T x \\
|
27 |
+
\mbox{such that} \ & A_{ub} x \leq b_{ub},\\
|
28 |
+
& A_{eq} x = b_{eq},\\
|
29 |
+
& l \leq x \leq u ,
|
30 |
+
|
31 |
+
where :math:`x` is a vector of decision variables; :math:`c`,
|
32 |
+
:math:`b_{ub}`, :math:`b_{eq}`, :math:`l`, and :math:`u` are vectors; and
|
33 |
+
:math:`A_{ub}` and :math:`A_{eq}` are matrices.
|
34 |
+
|
35 |
+
Alternatively, that's:
|
36 |
+
|
37 |
+
minimize::
|
38 |
+
|
39 |
+
c @ x
|
40 |
+
|
41 |
+
such that::
|
42 |
+
|
43 |
+
A_ub @ x <= b_ub
|
44 |
+
A_eq @ x == b_eq
|
45 |
+
lb <= x <= ub
|
46 |
+
|
47 |
+
Note that by default ``lb = 0`` and ``ub = None`` unless specified with
|
48 |
+
``bounds``.
|
49 |
+
|
50 |
+
Parameters
|
51 |
+
----------
|
52 |
+
c : 1-D array
|
53 |
+
The coefficients of the linear objective function to be minimized.
|
54 |
+
A_ub : 2-D array, optional
|
55 |
+
The inequality constraint matrix. Each row of ``A_ub`` specifies the
|
56 |
+
coefficients of a linear inequality constraint on ``x``.
|
57 |
+
b_ub : 1-D array, optional
|
58 |
+
The inequality constraint vector. Each element represents an
|
59 |
+
upper bound on the corresponding value of ``A_ub @ x``.
|
60 |
+
A_eq : 2-D array, optional
|
61 |
+
The equality constraint matrix. Each row of ``A_eq`` specifies the
|
62 |
+
coefficients of a linear equality constraint on ``x``.
|
63 |
+
b_eq : 1-D array, optional
|
64 |
+
The equality constraint vector. Each element of ``A_eq @ x`` must equal
|
65 |
+
the corresponding element of ``b_eq``.
|
66 |
+
bounds : sequence, optional
|
67 |
+
A sequence of ``(min, max)`` pairs for each element in ``x``, defining
|
68 |
+
the minimum and maximum values of that decision variable. Use ``None``
|
69 |
+
to indicate that there is no bound. By default, bounds are
|
70 |
+
``(0, None)`` (all decision variables are non-negative).
|
71 |
+
If a single tuple ``(min, max)`` is provided, then ``min`` and
|
72 |
+
``max`` will serve as bounds for all decision variables.
|
73 |
+
method : str
|
74 |
+
|
75 |
+
This is the method-specific documentation for 'highs', which chooses
|
76 |
+
automatically between
|
77 |
+
:ref:`'highs-ds' <optimize.linprog-highs-ds>` and
|
78 |
+
:ref:`'highs-ipm' <optimize.linprog-highs-ipm>`.
|
79 |
+
:ref:`'interior-point' <optimize.linprog-interior-point>` (default),
|
80 |
+
:ref:`'revised simplex' <optimize.linprog-revised_simplex>`, and
|
81 |
+
:ref:`'simplex' <optimize.linprog-simplex>` (legacy)
|
82 |
+
are also available.
|
83 |
+
integrality : 1-D array or int, optional
|
84 |
+
Indicates the type of integrality constraint on each decision variable.
|
85 |
+
|
86 |
+
``0`` : Continuous variable; no integrality constraint.
|
87 |
+
|
88 |
+
``1`` : Integer variable; decision variable must be an integer
|
89 |
+
within `bounds`.
|
90 |
+
|
91 |
+
``2`` : Semi-continuous variable; decision variable must be within
|
92 |
+
`bounds` or take value ``0``.
|
93 |
+
|
94 |
+
``3`` : Semi-integer variable; decision variable must be an integer
|
95 |
+
within `bounds` or take value ``0``.
|
96 |
+
|
97 |
+
By default, all variables are continuous.
|
98 |
+
|
99 |
+
For mixed integrality constraints, supply an array of shape `c.shape`.
|
100 |
+
To infer a constraint on each decision variable from shorter inputs,
|
101 |
+
the argument will be broadcasted to `c.shape` using `np.broadcast_to`.
|
102 |
+
|
103 |
+
This argument is currently used only by the ``'highs'`` method and
|
104 |
+
ignored otherwise.
|
105 |
+
|
106 |
+
Options
|
107 |
+
-------
|
108 |
+
maxiter : int
|
109 |
+
The maximum number of iterations to perform in either phase.
|
110 |
+
For :ref:`'highs-ipm' <optimize.linprog-highs-ipm>`, this does not
|
111 |
+
include the number of crossover iterations. Default is the largest
|
112 |
+
possible value for an ``int`` on the platform.
|
113 |
+
disp : bool (default: ``False``)
|
114 |
+
Set to ``True`` if indicators of optimization status are to be
|
115 |
+
printed to the console during optimization.
|
116 |
+
presolve : bool (default: ``True``)
|
117 |
+
Presolve attempts to identify trivial infeasibilities,
|
118 |
+
identify trivial unboundedness, and simplify the problem before
|
119 |
+
sending it to the main solver. It is generally recommended
|
120 |
+
to keep the default setting ``True``; set to ``False`` if
|
121 |
+
presolve is to be disabled.
|
122 |
+
time_limit : float
|
123 |
+
The maximum time in seconds allotted to solve the problem;
|
124 |
+
default is the largest possible value for a ``double`` on the
|
125 |
+
platform.
|
126 |
+
dual_feasibility_tolerance : double (default: 1e-07)
|
127 |
+
Dual feasibility tolerance for
|
128 |
+
:ref:`'highs-ds' <optimize.linprog-highs-ds>`.
|
129 |
+
The minimum of this and ``primal_feasibility_tolerance``
|
130 |
+
is used for the feasibility tolerance of
|
131 |
+
:ref:`'highs-ipm' <optimize.linprog-highs-ipm>`.
|
132 |
+
primal_feasibility_tolerance : double (default: 1e-07)
|
133 |
+
Primal feasibility tolerance for
|
134 |
+
:ref:`'highs-ds' <optimize.linprog-highs-ds>`.
|
135 |
+
The minimum of this and ``dual_feasibility_tolerance``
|
136 |
+
is used for the feasibility tolerance of
|
137 |
+
:ref:`'highs-ipm' <optimize.linprog-highs-ipm>`.
|
138 |
+
ipm_optimality_tolerance : double (default: ``1e-08``)
|
139 |
+
Optimality tolerance for
|
140 |
+
:ref:`'highs-ipm' <optimize.linprog-highs-ipm>`.
|
141 |
+
Minimum allowable value is 1e-12.
|
142 |
+
simplex_dual_edge_weight_strategy : str (default: None)
|
143 |
+
Strategy for simplex dual edge weights. The default, ``None``,
|
144 |
+
automatically selects one of the following.
|
145 |
+
|
146 |
+
``'dantzig'`` uses Dantzig's original strategy of choosing the most
|
147 |
+
negative reduced cost.
|
148 |
+
|
149 |
+
``'devex'`` uses the strategy described in [15]_.
|
150 |
+
|
151 |
+
``steepest`` uses the exact steepest edge strategy as described in
|
152 |
+
[16]_.
|
153 |
+
|
154 |
+
``'steepest-devex'`` begins with the exact steepest edge strategy
|
155 |
+
until the computation is too costly or inexact and then switches to
|
156 |
+
the devex method.
|
157 |
+
|
158 |
+
Currently, ``None`` always selects ``'steepest-devex'``, but this
|
159 |
+
may change as new options become available.
|
160 |
+
mip_rel_gap : double (default: None)
|
161 |
+
Termination criterion for MIP solver: solver will terminate when the
|
162 |
+
gap between the primal objective value and the dual objective bound,
|
163 |
+
scaled by the primal objective value, is <= mip_rel_gap.
|
164 |
+
unknown_options : dict
|
165 |
+
Optional arguments not used by this particular solver. If
|
166 |
+
``unknown_options`` is non-empty, a warning is issued listing
|
167 |
+
all unused options.
|
168 |
+
|
169 |
+
Returns
|
170 |
+
-------
|
171 |
+
res : OptimizeResult
|
172 |
+
A :class:`scipy.optimize.OptimizeResult` consisting of the fields:
|
173 |
+
|
174 |
+
x : 1D array
|
175 |
+
The values of the decision variables that minimizes the
|
176 |
+
objective function while satisfying the constraints.
|
177 |
+
fun : float
|
178 |
+
The optimal value of the objective function ``c @ x``.
|
179 |
+
slack : 1D array
|
180 |
+
The (nominally positive) values of the slack,
|
181 |
+
``b_ub - A_ub @ x``.
|
182 |
+
con : 1D array
|
183 |
+
The (nominally zero) residuals of the equality constraints,
|
184 |
+
``b_eq - A_eq @ x``.
|
185 |
+
success : bool
|
186 |
+
``True`` when the algorithm succeeds in finding an optimal
|
187 |
+
solution.
|
188 |
+
status : int
|
189 |
+
An integer representing the exit status of the algorithm.
|
190 |
+
|
191 |
+
``0`` : Optimization terminated successfully.
|
192 |
+
|
193 |
+
``1`` : Iteration or time limit reached.
|
194 |
+
|
195 |
+
``2`` : Problem appears to be infeasible.
|
196 |
+
|
197 |
+
``3`` : Problem appears to be unbounded.
|
198 |
+
|
199 |
+
``4`` : The HiGHS solver ran into a problem.
|
200 |
+
|
201 |
+
message : str
|
202 |
+
A string descriptor of the exit status of the algorithm.
|
203 |
+
nit : int
|
204 |
+
The total number of iterations performed.
|
205 |
+
For the HiGHS simplex method, this includes iterations in all
|
206 |
+
phases. For the HiGHS interior-point method, this does not include
|
207 |
+
crossover iterations.
|
208 |
+
crossover_nit : int
|
209 |
+
The number of primal/dual pushes performed during the
|
210 |
+
crossover routine for the HiGHS interior-point method.
|
211 |
+
This is ``0`` for the HiGHS simplex method.
|
212 |
+
ineqlin : OptimizeResult
|
213 |
+
Solution and sensitivity information corresponding to the
|
214 |
+
inequality constraints, `b_ub`. A dictionary consisting of the
|
215 |
+
fields:
|
216 |
+
|
217 |
+
residual : np.ndnarray
|
218 |
+
The (nominally positive) values of the slack variables,
|
219 |
+
``b_ub - A_ub @ x``. This quantity is also commonly
|
220 |
+
referred to as "slack".
|
221 |
+
|
222 |
+
marginals : np.ndarray
|
223 |
+
The sensitivity (partial derivative) of the objective
|
224 |
+
function with respect to the right-hand side of the
|
225 |
+
inequality constraints, `b_ub`.
|
226 |
+
|
227 |
+
eqlin : OptimizeResult
|
228 |
+
Solution and sensitivity information corresponding to the
|
229 |
+
equality constraints, `b_eq`. A dictionary consisting of the
|
230 |
+
fields:
|
231 |
+
|
232 |
+
residual : np.ndarray
|
233 |
+
The (nominally zero) residuals of the equality constraints,
|
234 |
+
``b_eq - A_eq @ x``.
|
235 |
+
|
236 |
+
marginals : np.ndarray
|
237 |
+
The sensitivity (partial derivative) of the objective
|
238 |
+
function with respect to the right-hand side of the
|
239 |
+
equality constraints, `b_eq`.
|
240 |
+
|
241 |
+
lower, upper : OptimizeResult
|
242 |
+
Solution and sensitivity information corresponding to the
|
243 |
+
lower and upper bounds on decision variables, `bounds`.
|
244 |
+
|
245 |
+
residual : np.ndarray
|
246 |
+
The (nominally positive) values of the quantity
|
247 |
+
``x - lb`` (lower) or ``ub - x`` (upper).
|
248 |
+
|
249 |
+
marginals : np.ndarray
|
250 |
+
The sensitivity (partial derivative) of the objective
|
251 |
+
function with respect to the lower and upper
|
252 |
+
`bounds`.
|
253 |
+
|
254 |
+
Notes
|
255 |
+
-----
|
256 |
+
|
257 |
+
Method :ref:`'highs-ds' <optimize.linprog-highs-ds>` is a wrapper
|
258 |
+
of the C++ high performance dual revised simplex implementation (HSOL)
|
259 |
+
[13]_, [14]_. Method :ref:`'highs-ipm' <optimize.linprog-highs-ipm>`
|
260 |
+
is a wrapper of a C++ implementation of an **i**\ nterior-\ **p**\ oint
|
261 |
+
**m**\ ethod [13]_; it features a crossover routine, so it is as accurate
|
262 |
+
as a simplex solver. Method :ref:`'highs' <optimize.linprog-highs>` chooses
|
263 |
+
between the two automatically. For new code involving `linprog`, we
|
264 |
+
recommend explicitly choosing one of these three method values instead of
|
265 |
+
:ref:`'interior-point' <optimize.linprog-interior-point>` (default),
|
266 |
+
:ref:`'revised simplex' <optimize.linprog-revised_simplex>`, and
|
267 |
+
:ref:`'simplex' <optimize.linprog-simplex>` (legacy).
|
268 |
+
|
269 |
+
The result fields `ineqlin`, `eqlin`, `lower`, and `upper` all contain
|
270 |
+
`marginals`, or partial derivatives of the objective function with respect
|
271 |
+
to the right-hand side of each constraint. These partial derivatives are
|
272 |
+
also referred to as "Lagrange multipliers", "dual values", and
|
273 |
+
"shadow prices". The sign convention of `marginals` is opposite that
|
274 |
+
of Lagrange multipliers produced by many nonlinear solvers.
|
275 |
+
|
276 |
+
References
|
277 |
+
----------
|
278 |
+
.. [13] Huangfu, Q., Galabova, I., Feldmeier, M., and Hall, J. A. J.
|
279 |
+
"HiGHS - high performance software for linear optimization."
|
280 |
+
https://highs.dev/
|
281 |
+
.. [14] Huangfu, Q. and Hall, J. A. J. "Parallelizing the dual revised
|
282 |
+
simplex method." Mathematical Programming Computation, 10 (1),
|
283 |
+
119-142, 2018. DOI: 10.1007/s12532-017-0130-5
|
284 |
+
.. [15] Harris, Paula MJ. "Pivot selection methods of the Devex LP code."
|
285 |
+
Mathematical programming 5.1 (1973): 1-28.
|
286 |
+
.. [16] Goldfarb, Donald, and John Ker Reid. "A practicable steepest-edge
|
287 |
+
simplex algorithm." Mathematical Programming 12.1 (1977): 361-371.
|
288 |
+
"""
|
289 |
+
pass
|
290 |
+
|
291 |
+
|
292 |
+
def _linprog_highs_ds_doc(c, A_ub=None, b_ub=None, A_eq=None, b_eq=None,
|
293 |
+
bounds=None, method='highs-ds', callback=None,
|
294 |
+
maxiter=None, disp=False, presolve=True,
|
295 |
+
time_limit=None,
|
296 |
+
dual_feasibility_tolerance=None,
|
297 |
+
primal_feasibility_tolerance=None,
|
298 |
+
simplex_dual_edge_weight_strategy=None,
|
299 |
+
**unknown_options):
|
300 |
+
r"""
|
301 |
+
Linear programming: minimize a linear objective function subject to linear
|
302 |
+
equality and inequality constraints using the HiGHS dual simplex solver.
|
303 |
+
|
304 |
+
Linear programming solves problems of the following form:
|
305 |
+
|
306 |
+
.. math::
|
307 |
+
|
308 |
+
\min_x \ & c^T x \\
|
309 |
+
\mbox{such that} \ & A_{ub} x \leq b_{ub},\\
|
310 |
+
& A_{eq} x = b_{eq},\\
|
311 |
+
& l \leq x \leq u ,
|
312 |
+
|
313 |
+
where :math:`x` is a vector of decision variables; :math:`c`,
|
314 |
+
:math:`b_{ub}`, :math:`b_{eq}`, :math:`l`, and :math:`u` are vectors; and
|
315 |
+
:math:`A_{ub}` and :math:`A_{eq}` are matrices.
|
316 |
+
|
317 |
+
Alternatively, that's:
|
318 |
+
|
319 |
+
minimize::
|
320 |
+
|
321 |
+
c @ x
|
322 |
+
|
323 |
+
such that::
|
324 |
+
|
325 |
+
A_ub @ x <= b_ub
|
326 |
+
A_eq @ x == b_eq
|
327 |
+
lb <= x <= ub
|
328 |
+
|
329 |
+
Note that by default ``lb = 0`` and ``ub = None`` unless specified with
|
330 |
+
``bounds``.
|
331 |
+
|
332 |
+
Parameters
|
333 |
+
----------
|
334 |
+
c : 1-D array
|
335 |
+
The coefficients of the linear objective function to be minimized.
|
336 |
+
A_ub : 2-D array, optional
|
337 |
+
The inequality constraint matrix. Each row of ``A_ub`` specifies the
|
338 |
+
coefficients of a linear inequality constraint on ``x``.
|
339 |
+
b_ub : 1-D array, optional
|
340 |
+
The inequality constraint vector. Each element represents an
|
341 |
+
upper bound on the corresponding value of ``A_ub @ x``.
|
342 |
+
A_eq : 2-D array, optional
|
343 |
+
The equality constraint matrix. Each row of ``A_eq`` specifies the
|
344 |
+
coefficients of a linear equality constraint on ``x``.
|
345 |
+
b_eq : 1-D array, optional
|
346 |
+
The equality constraint vector. Each element of ``A_eq @ x`` must equal
|
347 |
+
the corresponding element of ``b_eq``.
|
348 |
+
bounds : sequence, optional
|
349 |
+
A sequence of ``(min, max)`` pairs for each element in ``x``, defining
|
350 |
+
the minimum and maximum values of that decision variable. Use ``None``
|
351 |
+
to indicate that there is no bound. By default, bounds are
|
352 |
+
``(0, None)`` (all decision variables are non-negative).
|
353 |
+
If a single tuple ``(min, max)`` is provided, then ``min`` and
|
354 |
+
``max`` will serve as bounds for all decision variables.
|
355 |
+
method : str
|
356 |
+
|
357 |
+
This is the method-specific documentation for 'highs-ds'.
|
358 |
+
:ref:`'highs' <optimize.linprog-highs>`,
|
359 |
+
:ref:`'highs-ipm' <optimize.linprog-highs-ipm>`,
|
360 |
+
:ref:`'interior-point' <optimize.linprog-interior-point>` (default),
|
361 |
+
:ref:`'revised simplex' <optimize.linprog-revised_simplex>`, and
|
362 |
+
:ref:`'simplex' <optimize.linprog-simplex>` (legacy)
|
363 |
+
are also available.
|
364 |
+
|
365 |
+
Options
|
366 |
+
-------
|
367 |
+
maxiter : int
|
368 |
+
The maximum number of iterations to perform in either phase.
|
369 |
+
Default is the largest possible value for an ``int`` on the platform.
|
370 |
+
disp : bool (default: ``False``)
|
371 |
+
Set to ``True`` if indicators of optimization status are to be
|
372 |
+
printed to the console during optimization.
|
373 |
+
presolve : bool (default: ``True``)
|
374 |
+
Presolve attempts to identify trivial infeasibilities,
|
375 |
+
identify trivial unboundedness, and simplify the problem before
|
376 |
+
sending it to the main solver. It is generally recommended
|
377 |
+
to keep the default setting ``True``; set to ``False`` if
|
378 |
+
presolve is to be disabled.
|
379 |
+
time_limit : float
|
380 |
+
The maximum time in seconds allotted to solve the problem;
|
381 |
+
default is the largest possible value for a ``double`` on the
|
382 |
+
platform.
|
383 |
+
dual_feasibility_tolerance : double (default: 1e-07)
|
384 |
+
Dual feasibility tolerance for
|
385 |
+
:ref:`'highs-ds' <optimize.linprog-highs-ds>`.
|
386 |
+
primal_feasibility_tolerance : double (default: 1e-07)
|
387 |
+
Primal feasibility tolerance for
|
388 |
+
:ref:`'highs-ds' <optimize.linprog-highs-ds>`.
|
389 |
+
simplex_dual_edge_weight_strategy : str (default: None)
|
390 |
+
Strategy for simplex dual edge weights. The default, ``None``,
|
391 |
+
automatically selects one of the following.
|
392 |
+
|
393 |
+
``'dantzig'`` uses Dantzig's original strategy of choosing the most
|
394 |
+
negative reduced cost.
|
395 |
+
|
396 |
+
``'devex'`` uses the strategy described in [15]_.
|
397 |
+
|
398 |
+
``steepest`` uses the exact steepest edge strategy as described in
|
399 |
+
[16]_.
|
400 |
+
|
401 |
+
``'steepest-devex'`` begins with the exact steepest edge strategy
|
402 |
+
until the computation is too costly or inexact and then switches to
|
403 |
+
the devex method.
|
404 |
+
|
405 |
+
Currently, ``None`` always selects ``'steepest-devex'``, but this
|
406 |
+
may change as new options become available.
|
407 |
+
unknown_options : dict
|
408 |
+
Optional arguments not used by this particular solver. If
|
409 |
+
``unknown_options`` is non-empty, a warning is issued listing
|
410 |
+
all unused options.
|
411 |
+
|
412 |
+
Returns
|
413 |
+
-------
|
414 |
+
res : OptimizeResult
|
415 |
+
A :class:`scipy.optimize.OptimizeResult` consisting of the fields:
|
416 |
+
|
417 |
+
x : 1D array
|
418 |
+
The values of the decision variables that minimizes the
|
419 |
+
objective function while satisfying the constraints.
|
420 |
+
fun : float
|
421 |
+
The optimal value of the objective function ``c @ x``.
|
422 |
+
slack : 1D array
|
423 |
+
The (nominally positive) values of the slack,
|
424 |
+
``b_ub - A_ub @ x``.
|
425 |
+
con : 1D array
|
426 |
+
The (nominally zero) residuals of the equality constraints,
|
427 |
+
``b_eq - A_eq @ x``.
|
428 |
+
success : bool
|
429 |
+
``True`` when the algorithm succeeds in finding an optimal
|
430 |
+
solution.
|
431 |
+
status : int
|
432 |
+
An integer representing the exit status of the algorithm.
|
433 |
+
|
434 |
+
``0`` : Optimization terminated successfully.
|
435 |
+
|
436 |
+
``1`` : Iteration or time limit reached.
|
437 |
+
|
438 |
+
``2`` : Problem appears to be infeasible.
|
439 |
+
|
440 |
+
``3`` : Problem appears to be unbounded.
|
441 |
+
|
442 |
+
``4`` : The HiGHS solver ran into a problem.
|
443 |
+
|
444 |
+
message : str
|
445 |
+
A string descriptor of the exit status of the algorithm.
|
446 |
+
nit : int
|
447 |
+
The total number of iterations performed. This includes iterations
|
448 |
+
in all phases.
|
449 |
+
crossover_nit : int
|
450 |
+
This is always ``0`` for the HiGHS simplex method.
|
451 |
+
For the HiGHS interior-point method, this is the number of
|
452 |
+
primal/dual pushes performed during the crossover routine.
|
453 |
+
ineqlin : OptimizeResult
|
454 |
+
Solution and sensitivity information corresponding to the
|
455 |
+
inequality constraints, `b_ub`. A dictionary consisting of the
|
456 |
+
fields:
|
457 |
+
|
458 |
+
residual : np.ndnarray
|
459 |
+
The (nominally positive) values of the slack variables,
|
460 |
+
``b_ub - A_ub @ x``. This quantity is also commonly
|
461 |
+
referred to as "slack".
|
462 |
+
|
463 |
+
marginals : np.ndarray
|
464 |
+
The sensitivity (partial derivative) of the objective
|
465 |
+
function with respect to the right-hand side of the
|
466 |
+
inequality constraints, `b_ub`.
|
467 |
+
|
468 |
+
eqlin : OptimizeResult
|
469 |
+
Solution and sensitivity information corresponding to the
|
470 |
+
equality constraints, `b_eq`. A dictionary consisting of the
|
471 |
+
fields:
|
472 |
+
|
473 |
+
residual : np.ndarray
|
474 |
+
The (nominally zero) residuals of the equality constraints,
|
475 |
+
``b_eq - A_eq @ x``.
|
476 |
+
|
477 |
+
marginals : np.ndarray
|
478 |
+
The sensitivity (partial derivative) of the objective
|
479 |
+
function with respect to the right-hand side of the
|
480 |
+
equality constraints, `b_eq`.
|
481 |
+
|
482 |
+
lower, upper : OptimizeResult
|
483 |
+
Solution and sensitivity information corresponding to the
|
484 |
+
lower and upper bounds on decision variables, `bounds`.
|
485 |
+
|
486 |
+
residual : np.ndarray
|
487 |
+
The (nominally positive) values of the quantity
|
488 |
+
``x - lb`` (lower) or ``ub - x`` (upper).
|
489 |
+
|
490 |
+
marginals : np.ndarray
|
491 |
+
The sensitivity (partial derivative) of the objective
|
492 |
+
function with respect to the lower and upper
|
493 |
+
`bounds`.
|
494 |
+
|
495 |
+
Notes
|
496 |
+
-----
|
497 |
+
|
498 |
+
Method :ref:`'highs-ds' <optimize.linprog-highs-ds>` is a wrapper
|
499 |
+
of the C++ high performance dual revised simplex implementation (HSOL)
|
500 |
+
[13]_, [14]_. Method :ref:`'highs-ipm' <optimize.linprog-highs-ipm>`
|
501 |
+
is a wrapper of a C++ implementation of an **i**\ nterior-\ **p**\ oint
|
502 |
+
**m**\ ethod [13]_; it features a crossover routine, so it is as accurate
|
503 |
+
as a simplex solver. Method :ref:`'highs' <optimize.linprog-highs>` chooses
|
504 |
+
between the two automatically. For new code involving `linprog`, we
|
505 |
+
recommend explicitly choosing one of these three method values instead of
|
506 |
+
:ref:`'interior-point' <optimize.linprog-interior-point>` (default),
|
507 |
+
:ref:`'revised simplex' <optimize.linprog-revised_simplex>`, and
|
508 |
+
:ref:`'simplex' <optimize.linprog-simplex>` (legacy).
|
509 |
+
|
510 |
+
The result fields `ineqlin`, `eqlin`, `lower`, and `upper` all contain
|
511 |
+
`marginals`, or partial derivatives of the objective function with respect
|
512 |
+
to the right-hand side of each constraint. These partial derivatives are
|
513 |
+
also referred to as "Lagrange multipliers", "dual values", and
|
514 |
+
"shadow prices". The sign convention of `marginals` is opposite that
|
515 |
+
of Lagrange multipliers produced by many nonlinear solvers.
|
516 |
+
|
517 |
+
References
|
518 |
+
----------
|
519 |
+
.. [13] Huangfu, Q., Galabova, I., Feldmeier, M., and Hall, J. A. J.
|
520 |
+
"HiGHS - high performance software for linear optimization."
|
521 |
+
https://highs.dev/
|
522 |
+
.. [14] Huangfu, Q. and Hall, J. A. J. "Parallelizing the dual revised
|
523 |
+
simplex method." Mathematical Programming Computation, 10 (1),
|
524 |
+
119-142, 2018. DOI: 10.1007/s12532-017-0130-5
|
525 |
+
.. [15] Harris, Paula MJ. "Pivot selection methods of the Devex LP code."
|
526 |
+
Mathematical programming 5.1 (1973): 1-28.
|
527 |
+
.. [16] Goldfarb, Donald, and John Ker Reid. "A practicable steepest-edge
|
528 |
+
simplex algorithm." Mathematical Programming 12.1 (1977): 361-371.
|
529 |
+
"""
|
530 |
+
pass
|
531 |
+
|
532 |
+
|
533 |
+
def _linprog_highs_ipm_doc(c, A_ub=None, b_ub=None, A_eq=None, b_eq=None,
|
534 |
+
bounds=None, method='highs-ipm', callback=None,
|
535 |
+
maxiter=None, disp=False, presolve=True,
|
536 |
+
time_limit=None,
|
537 |
+
dual_feasibility_tolerance=None,
|
538 |
+
primal_feasibility_tolerance=None,
|
539 |
+
ipm_optimality_tolerance=None,
|
540 |
+
**unknown_options):
|
541 |
+
r"""
|
542 |
+
Linear programming: minimize a linear objective function subject to linear
|
543 |
+
equality and inequality constraints using the HiGHS interior point solver.
|
544 |
+
|
545 |
+
Linear programming solves problems of the following form:
|
546 |
+
|
547 |
+
.. math::
|
548 |
+
|
549 |
+
\min_x \ & c^T x \\
|
550 |
+
\mbox{such that} \ & A_{ub} x \leq b_{ub},\\
|
551 |
+
& A_{eq} x = b_{eq},\\
|
552 |
+
& l \leq x \leq u ,
|
553 |
+
|
554 |
+
where :math:`x` is a vector of decision variables; :math:`c`,
|
555 |
+
:math:`b_{ub}`, :math:`b_{eq}`, :math:`l`, and :math:`u` are vectors; and
|
556 |
+
:math:`A_{ub}` and :math:`A_{eq}` are matrices.
|
557 |
+
|
558 |
+
Alternatively, that's:
|
559 |
+
|
560 |
+
minimize::
|
561 |
+
|
562 |
+
c @ x
|
563 |
+
|
564 |
+
such that::
|
565 |
+
|
566 |
+
A_ub @ x <= b_ub
|
567 |
+
A_eq @ x == b_eq
|
568 |
+
lb <= x <= ub
|
569 |
+
|
570 |
+
Note that by default ``lb = 0`` and ``ub = None`` unless specified with
|
571 |
+
``bounds``.
|
572 |
+
|
573 |
+
Parameters
|
574 |
+
----------
|
575 |
+
c : 1-D array
|
576 |
+
The coefficients of the linear objective function to be minimized.
|
577 |
+
A_ub : 2-D array, optional
|
578 |
+
The inequality constraint matrix. Each row of ``A_ub`` specifies the
|
579 |
+
coefficients of a linear inequality constraint on ``x``.
|
580 |
+
b_ub : 1-D array, optional
|
581 |
+
The inequality constraint vector. Each element represents an
|
582 |
+
upper bound on the corresponding value of ``A_ub @ x``.
|
583 |
+
A_eq : 2-D array, optional
|
584 |
+
The equality constraint matrix. Each row of ``A_eq`` specifies the
|
585 |
+
coefficients of a linear equality constraint on ``x``.
|
586 |
+
b_eq : 1-D array, optional
|
587 |
+
The equality constraint vector. Each element of ``A_eq @ x`` must equal
|
588 |
+
the corresponding element of ``b_eq``.
|
589 |
+
bounds : sequence, optional
|
590 |
+
A sequence of ``(min, max)`` pairs for each element in ``x``, defining
|
591 |
+
the minimum and maximum values of that decision variable. Use ``None``
|
592 |
+
to indicate that there is no bound. By default, bounds are
|
593 |
+
``(0, None)`` (all decision variables are non-negative).
|
594 |
+
If a single tuple ``(min, max)`` is provided, then ``min`` and
|
595 |
+
``max`` will serve as bounds for all decision variables.
|
596 |
+
method : str
|
597 |
+
|
598 |
+
This is the method-specific documentation for 'highs-ipm'.
|
599 |
+
:ref:`'highs-ipm' <optimize.linprog-highs>`,
|
600 |
+
:ref:`'highs-ds' <optimize.linprog-highs-ds>`,
|
601 |
+
:ref:`'interior-point' <optimize.linprog-interior-point>` (default),
|
602 |
+
:ref:`'revised simplex' <optimize.linprog-revised_simplex>`, and
|
603 |
+
:ref:`'simplex' <optimize.linprog-simplex>` (legacy)
|
604 |
+
are also available.
|
605 |
+
|
606 |
+
Options
|
607 |
+
-------
|
608 |
+
maxiter : int
|
609 |
+
The maximum number of iterations to perform in either phase.
|
610 |
+
For :ref:`'highs-ipm' <optimize.linprog-highs-ipm>`, this does not
|
611 |
+
include the number of crossover iterations. Default is the largest
|
612 |
+
possible value for an ``int`` on the platform.
|
613 |
+
disp : bool (default: ``False``)
|
614 |
+
Set to ``True`` if indicators of optimization status are to be
|
615 |
+
printed to the console during optimization.
|
616 |
+
presolve : bool (default: ``True``)
|
617 |
+
Presolve attempts to identify trivial infeasibilities,
|
618 |
+
identify trivial unboundedness, and simplify the problem before
|
619 |
+
sending it to the main solver. It is generally recommended
|
620 |
+
to keep the default setting ``True``; set to ``False`` if
|
621 |
+
presolve is to be disabled.
|
622 |
+
time_limit : float
|
623 |
+
The maximum time in seconds allotted to solve the problem;
|
624 |
+
default is the largest possible value for a ``double`` on the
|
625 |
+
platform.
|
626 |
+
dual_feasibility_tolerance : double (default: 1e-07)
|
627 |
+
The minimum of this and ``primal_feasibility_tolerance``
|
628 |
+
is used for the feasibility tolerance of
|
629 |
+
:ref:`'highs-ipm' <optimize.linprog-highs-ipm>`.
|
630 |
+
primal_feasibility_tolerance : double (default: 1e-07)
|
631 |
+
The minimum of this and ``dual_feasibility_tolerance``
|
632 |
+
is used for the feasibility tolerance of
|
633 |
+
:ref:`'highs-ipm' <optimize.linprog-highs-ipm>`.
|
634 |
+
ipm_optimality_tolerance : double (default: ``1e-08``)
|
635 |
+
Optimality tolerance for
|
636 |
+
:ref:`'highs-ipm' <optimize.linprog-highs-ipm>`.
|
637 |
+
Minimum allowable value is 1e-12.
|
638 |
+
unknown_options : dict
|
639 |
+
Optional arguments not used by this particular solver. If
|
640 |
+
``unknown_options`` is non-empty, a warning is issued listing
|
641 |
+
all unused options.
|
642 |
+
|
643 |
+
Returns
|
644 |
+
-------
|
645 |
+
res : OptimizeResult
|
646 |
+
A :class:`scipy.optimize.OptimizeResult` consisting of the fields:
|
647 |
+
|
648 |
+
x : 1D array
|
649 |
+
The values of the decision variables that minimizes the
|
650 |
+
objective function while satisfying the constraints.
|
651 |
+
fun : float
|
652 |
+
The optimal value of the objective function ``c @ x``.
|
653 |
+
slack : 1D array
|
654 |
+
The (nominally positive) values of the slack,
|
655 |
+
``b_ub - A_ub @ x``.
|
656 |
+
con : 1D array
|
657 |
+
The (nominally zero) residuals of the equality constraints,
|
658 |
+
``b_eq - A_eq @ x``.
|
659 |
+
success : bool
|
660 |
+
``True`` when the algorithm succeeds in finding an optimal
|
661 |
+
solution.
|
662 |
+
status : int
|
663 |
+
An integer representing the exit status of the algorithm.
|
664 |
+
|
665 |
+
``0`` : Optimization terminated successfully.
|
666 |
+
|
667 |
+
``1`` : Iteration or time limit reached.
|
668 |
+
|
669 |
+
``2`` : Problem appears to be infeasible.
|
670 |
+
|
671 |
+
``3`` : Problem appears to be unbounded.
|
672 |
+
|
673 |
+
``4`` : The HiGHS solver ran into a problem.
|
674 |
+
|
675 |
+
message : str
|
676 |
+
A string descriptor of the exit status of the algorithm.
|
677 |
+
nit : int
|
678 |
+
The total number of iterations performed.
|
679 |
+
For the HiGHS interior-point method, this does not include
|
680 |
+
crossover iterations.
|
681 |
+
crossover_nit : int
|
682 |
+
The number of primal/dual pushes performed during the
|
683 |
+
crossover routine for the HiGHS interior-point method.
|
684 |
+
ineqlin : OptimizeResult
|
685 |
+
Solution and sensitivity information corresponding to the
|
686 |
+
inequality constraints, `b_ub`. A dictionary consisting of the
|
687 |
+
fields:
|
688 |
+
|
689 |
+
residual : np.ndnarray
|
690 |
+
The (nominally positive) values of the slack variables,
|
691 |
+
``b_ub - A_ub @ x``. This quantity is also commonly
|
692 |
+
referred to as "slack".
|
693 |
+
|
694 |
+
marginals : np.ndarray
|
695 |
+
The sensitivity (partial derivative) of the objective
|
696 |
+
function with respect to the right-hand side of the
|
697 |
+
inequality constraints, `b_ub`.
|
698 |
+
|
699 |
+
eqlin : OptimizeResult
|
700 |
+
Solution and sensitivity information corresponding to the
|
701 |
+
equality constraints, `b_eq`. A dictionary consisting of the
|
702 |
+
fields:
|
703 |
+
|
704 |
+
residual : np.ndarray
|
705 |
+
The (nominally zero) residuals of the equality constraints,
|
706 |
+
``b_eq - A_eq @ x``.
|
707 |
+
|
708 |
+
marginals : np.ndarray
|
709 |
+
The sensitivity (partial derivative) of the objective
|
710 |
+
function with respect to the right-hand side of the
|
711 |
+
equality constraints, `b_eq`.
|
712 |
+
|
713 |
+
lower, upper : OptimizeResult
|
714 |
+
Solution and sensitivity information corresponding to the
|
715 |
+
lower and upper bounds on decision variables, `bounds`.
|
716 |
+
|
717 |
+
residual : np.ndarray
|
718 |
+
The (nominally positive) values of the quantity
|
719 |
+
``x - lb`` (lower) or ``ub - x`` (upper).
|
720 |
+
|
721 |
+
marginals : np.ndarray
|
722 |
+
The sensitivity (partial derivative) of the objective
|
723 |
+
function with respect to the lower and upper
|
724 |
+
`bounds`.
|
725 |
+
|
726 |
+
Notes
|
727 |
+
-----
|
728 |
+
|
729 |
+
Method :ref:`'highs-ipm' <optimize.linprog-highs-ipm>`
|
730 |
+
is a wrapper of a C++ implementation of an **i**\ nterior-\ **p**\ oint
|
731 |
+
**m**\ ethod [13]_; it features a crossover routine, so it is as accurate
|
732 |
+
as a simplex solver.
|
733 |
+
Method :ref:`'highs-ds' <optimize.linprog-highs-ds>` is a wrapper
|
734 |
+
of the C++ high performance dual revised simplex implementation (HSOL)
|
735 |
+
[13]_, [14]_. Method :ref:`'highs' <optimize.linprog-highs>` chooses
|
736 |
+
between the two automatically. For new code involving `linprog`, we
|
737 |
+
recommend explicitly choosing one of these three method values instead of
|
738 |
+
:ref:`'interior-point' <optimize.linprog-interior-point>` (default),
|
739 |
+
:ref:`'revised simplex' <optimize.linprog-revised_simplex>`, and
|
740 |
+
:ref:`'simplex' <optimize.linprog-simplex>` (legacy).
|
741 |
+
|
742 |
+
The result fields `ineqlin`, `eqlin`, `lower`, and `upper` all contain
|
743 |
+
`marginals`, or partial derivatives of the objective function with respect
|
744 |
+
to the right-hand side of each constraint. These partial derivatives are
|
745 |
+
also referred to as "Lagrange multipliers", "dual values", and
|
746 |
+
"shadow prices". The sign convention of `marginals` is opposite that
|
747 |
+
of Lagrange multipliers produced by many nonlinear solvers.
|
748 |
+
|
749 |
+
References
|
750 |
+
----------
|
751 |
+
.. [13] Huangfu, Q., Galabova, I., Feldmeier, M., and Hall, J. A. J.
|
752 |
+
"HiGHS - high performance software for linear optimization."
|
753 |
+
https://highs.dev/
|
754 |
+
.. [14] Huangfu, Q. and Hall, J. A. J. "Parallelizing the dual revised
|
755 |
+
simplex method." Mathematical Programming Computation, 10 (1),
|
756 |
+
119-142, 2018. DOI: 10.1007/s12532-017-0130-5
|
757 |
+
"""
|
758 |
+
pass
|
759 |
+
|
760 |
+
|
761 |
+
def _linprog_ip_doc(c, A_ub=None, b_ub=None, A_eq=None, b_eq=None,
|
762 |
+
bounds=None, method='interior-point', callback=None,
|
763 |
+
maxiter=1000, disp=False, presolve=True,
|
764 |
+
tol=1e-8, autoscale=False, rr=True,
|
765 |
+
alpha0=.99995, beta=0.1, sparse=False,
|
766 |
+
lstsq=False, sym_pos=True, cholesky=True, pc=True,
|
767 |
+
ip=False, permc_spec='MMD_AT_PLUS_A', **unknown_options):
|
768 |
+
r"""
|
769 |
+
Linear programming: minimize a linear objective function subject to linear
|
770 |
+
equality and inequality constraints using the interior-point method of
|
771 |
+
[4]_.
|
772 |
+
|
773 |
+
.. deprecated:: 1.9.0
|
774 |
+
`method='interior-point'` will be removed in SciPy 1.11.0.
|
775 |
+
It is replaced by `method='highs'` because the latter is
|
776 |
+
faster and more robust.
|
777 |
+
|
778 |
+
Linear programming solves problems of the following form:
|
779 |
+
|
780 |
+
.. math::
|
781 |
+
|
782 |
+
\min_x \ & c^T x \\
|
783 |
+
\mbox{such that} \ & A_{ub} x \leq b_{ub},\\
|
784 |
+
& A_{eq} x = b_{eq},\\
|
785 |
+
& l \leq x \leq u ,
|
786 |
+
|
787 |
+
where :math:`x` is a vector of decision variables; :math:`c`,
|
788 |
+
:math:`b_{ub}`, :math:`b_{eq}`, :math:`l`, and :math:`u` are vectors; and
|
789 |
+
:math:`A_{ub}` and :math:`A_{eq}` are matrices.
|
790 |
+
|
791 |
+
Alternatively, that's:
|
792 |
+
|
793 |
+
minimize::
|
794 |
+
|
795 |
+
c @ x
|
796 |
+
|
797 |
+
such that::
|
798 |
+
|
799 |
+
A_ub @ x <= b_ub
|
800 |
+
A_eq @ x == b_eq
|
801 |
+
lb <= x <= ub
|
802 |
+
|
803 |
+
Note that by default ``lb = 0`` and ``ub = None`` unless specified with
|
804 |
+
``bounds``.
|
805 |
+
|
806 |
+
Parameters
|
807 |
+
----------
|
808 |
+
c : 1-D array
|
809 |
+
The coefficients of the linear objective function to be minimized.
|
810 |
+
A_ub : 2-D array, optional
|
811 |
+
The inequality constraint matrix. Each row of ``A_ub`` specifies the
|
812 |
+
coefficients of a linear inequality constraint on ``x``.
|
813 |
+
b_ub : 1-D array, optional
|
814 |
+
The inequality constraint vector. Each element represents an
|
815 |
+
upper bound on the corresponding value of ``A_ub @ x``.
|
816 |
+
A_eq : 2-D array, optional
|
817 |
+
The equality constraint matrix. Each row of ``A_eq`` specifies the
|
818 |
+
coefficients of a linear equality constraint on ``x``.
|
819 |
+
b_eq : 1-D array, optional
|
820 |
+
The equality constraint vector. Each element of ``A_eq @ x`` must equal
|
821 |
+
the corresponding element of ``b_eq``.
|
822 |
+
bounds : sequence, optional
|
823 |
+
A sequence of ``(min, max)`` pairs for each element in ``x``, defining
|
824 |
+
the minimum and maximum values of that decision variable. Use ``None``
|
825 |
+
to indicate that there is no bound. By default, bounds are
|
826 |
+
``(0, None)`` (all decision variables are non-negative).
|
827 |
+
If a single tuple ``(min, max)`` is provided, then ``min`` and
|
828 |
+
``max`` will serve as bounds for all decision variables.
|
829 |
+
method : str
|
830 |
+
This is the method-specific documentation for 'interior-point'.
|
831 |
+
:ref:`'highs' <optimize.linprog-highs>`,
|
832 |
+
:ref:`'highs-ds' <optimize.linprog-highs-ds>`,
|
833 |
+
:ref:`'highs-ipm' <optimize.linprog-highs-ipm>`,
|
834 |
+
:ref:`'revised simplex' <optimize.linprog-revised_simplex>`, and
|
835 |
+
:ref:`'simplex' <optimize.linprog-simplex>` (legacy)
|
836 |
+
are also available.
|
837 |
+
callback : callable, optional
|
838 |
+
Callback function to be executed once per iteration.
|
839 |
+
|
840 |
+
Options
|
841 |
+
-------
|
842 |
+
maxiter : int (default: 1000)
|
843 |
+
The maximum number of iterations of the algorithm.
|
844 |
+
disp : bool (default: False)
|
845 |
+
Set to ``True`` if indicators of optimization status are to be printed
|
846 |
+
to the console each iteration.
|
847 |
+
presolve : bool (default: True)
|
848 |
+
Presolve attempts to identify trivial infeasibilities,
|
849 |
+
identify trivial unboundedness, and simplify the problem before
|
850 |
+
sending it to the main solver. It is generally recommended
|
851 |
+
to keep the default setting ``True``; set to ``False`` if
|
852 |
+
presolve is to be disabled.
|
853 |
+
tol : float (default: 1e-8)
|
854 |
+
Termination tolerance to be used for all termination criteria;
|
855 |
+
see [4]_ Section 4.5.
|
856 |
+
autoscale : bool (default: False)
|
857 |
+
Set to ``True`` to automatically perform equilibration.
|
858 |
+
Consider using this option if the numerical values in the
|
859 |
+
constraints are separated by several orders of magnitude.
|
860 |
+
rr : bool (default: True)
|
861 |
+
Set to ``False`` to disable automatic redundancy removal.
|
862 |
+
alpha0 : float (default: 0.99995)
|
863 |
+
The maximal step size for Mehrota's predictor-corrector search
|
864 |
+
direction; see :math:`\beta_{3}` of [4]_ Table 8.1.
|
865 |
+
beta : float (default: 0.1)
|
866 |
+
The desired reduction of the path parameter :math:`\mu` (see [6]_)
|
867 |
+
when Mehrota's predictor-corrector is not in use (uncommon).
|
868 |
+
sparse : bool (default: False)
|
869 |
+
Set to ``True`` if the problem is to be treated as sparse after
|
870 |
+
presolve. If either ``A_eq`` or ``A_ub`` is a sparse matrix,
|
871 |
+
this option will automatically be set ``True``, and the problem
|
872 |
+
will be treated as sparse even during presolve. If your constraint
|
873 |
+
matrices contain mostly zeros and the problem is not very small (less
|
874 |
+
than about 100 constraints or variables), consider setting ``True``
|
875 |
+
or providing ``A_eq`` and ``A_ub`` as sparse matrices.
|
876 |
+
lstsq : bool (default: ``False``)
|
877 |
+
Set to ``True`` if the problem is expected to be very poorly
|
878 |
+
conditioned. This should always be left ``False`` unless severe
|
879 |
+
numerical difficulties are encountered. Leave this at the default
|
880 |
+
unless you receive a warning message suggesting otherwise.
|
881 |
+
sym_pos : bool (default: True)
|
882 |
+
Leave ``True`` if the problem is expected to yield a well conditioned
|
883 |
+
symmetric positive definite normal equation matrix
|
884 |
+
(almost always). Leave this at the default unless you receive
|
885 |
+
a warning message suggesting otherwise.
|
886 |
+
cholesky : bool (default: True)
|
887 |
+
Set to ``True`` if the normal equations are to be solved by explicit
|
888 |
+
Cholesky decomposition followed by explicit forward/backward
|
889 |
+
substitution. This is typically faster for problems
|
890 |
+
that are numerically well-behaved.
|
891 |
+
pc : bool (default: True)
|
892 |
+
Leave ``True`` if the predictor-corrector method of Mehrota is to be
|
893 |
+
used. This is almost always (if not always) beneficial.
|
894 |
+
ip : bool (default: False)
|
895 |
+
Set to ``True`` if the improved initial point suggestion due to [4]_
|
896 |
+
Section 4.3 is desired. Whether this is beneficial or not
|
897 |
+
depends on the problem.
|
898 |
+
permc_spec : str (default: 'MMD_AT_PLUS_A')
|
899 |
+
(Has effect only with ``sparse = True``, ``lstsq = False``, ``sym_pos =
|
900 |
+
True``, and no SuiteSparse.)
|
901 |
+
A matrix is factorized in each iteration of the algorithm.
|
902 |
+
This option specifies how to permute the columns of the matrix for
|
903 |
+
sparsity preservation. Acceptable values are:
|
904 |
+
|
905 |
+
- ``NATURAL``: natural ordering.
|
906 |
+
- ``MMD_ATA``: minimum degree ordering on the structure of A^T A.
|
907 |
+
- ``MMD_AT_PLUS_A``: minimum degree ordering on the structure of A^T+A.
|
908 |
+
- ``COLAMD``: approximate minimum degree column ordering.
|
909 |
+
|
910 |
+
This option can impact the convergence of the
|
911 |
+
interior point algorithm; test different values to determine which
|
912 |
+
performs best for your problem. For more information, refer to
|
913 |
+
``scipy.sparse.linalg.splu``.
|
914 |
+
unknown_options : dict
|
915 |
+
Optional arguments not used by this particular solver. If
|
916 |
+
`unknown_options` is non-empty a warning is issued listing all
|
917 |
+
unused options.
|
918 |
+
|
919 |
+
Returns
|
920 |
+
-------
|
921 |
+
res : OptimizeResult
|
922 |
+
A :class:`scipy.optimize.OptimizeResult` consisting of the fields:
|
923 |
+
|
924 |
+
x : 1-D array
|
925 |
+
The values of the decision variables that minimizes the
|
926 |
+
objective function while satisfying the constraints.
|
927 |
+
fun : float
|
928 |
+
The optimal value of the objective function ``c @ x``.
|
929 |
+
slack : 1-D array
|
930 |
+
The (nominally positive) values of the slack variables,
|
931 |
+
``b_ub - A_ub @ x``.
|
932 |
+
con : 1-D array
|
933 |
+
The (nominally zero) residuals of the equality constraints,
|
934 |
+
``b_eq - A_eq @ x``.
|
935 |
+
success : bool
|
936 |
+
``True`` when the algorithm succeeds in finding an optimal
|
937 |
+
solution.
|
938 |
+
status : int
|
939 |
+
An integer representing the exit status of the algorithm.
|
940 |
+
|
941 |
+
``0`` : Optimization terminated successfully.
|
942 |
+
|
943 |
+
``1`` : Iteration limit reached.
|
944 |
+
|
945 |
+
``2`` : Problem appears to be infeasible.
|
946 |
+
|
947 |
+
``3`` : Problem appears to be unbounded.
|
948 |
+
|
949 |
+
``4`` : Numerical difficulties encountered.
|
950 |
+
|
951 |
+
message : str
|
952 |
+
A string descriptor of the exit status of the algorithm.
|
953 |
+
nit : int
|
954 |
+
The total number of iterations performed in all phases.
|
955 |
+
|
956 |
+
|
957 |
+
Notes
|
958 |
+
-----
|
959 |
+
This method implements the algorithm outlined in [4]_ with ideas from [8]_
|
960 |
+
and a structure inspired by the simpler methods of [6]_.
|
961 |
+
|
962 |
+
The primal-dual path following method begins with initial 'guesses' of
|
963 |
+
the primal and dual variables of the standard form problem and iteratively
|
964 |
+
attempts to solve the (nonlinear) Karush-Kuhn-Tucker conditions for the
|
965 |
+
problem with a gradually reduced logarithmic barrier term added to the
|
966 |
+
objective. This particular implementation uses a homogeneous self-dual
|
967 |
+
formulation, which provides certificates of infeasibility or unboundedness
|
968 |
+
where applicable.
|
969 |
+
|
970 |
+
The default initial point for the primal and dual variables is that
|
971 |
+
defined in [4]_ Section 4.4 Equation 8.22. Optionally (by setting initial
|
972 |
+
point option ``ip=True``), an alternate (potentially improved) starting
|
973 |
+
point can be calculated according to the additional recommendations of
|
974 |
+
[4]_ Section 4.4.
|
975 |
+
|
976 |
+
A search direction is calculated using the predictor-corrector method
|
977 |
+
(single correction) proposed by Mehrota and detailed in [4]_ Section 4.1.
|
978 |
+
(A potential improvement would be to implement the method of multiple
|
979 |
+
corrections described in [4]_ Section 4.2.) In practice, this is
|
980 |
+
accomplished by solving the normal equations, [4]_ Section 5.1 Equations
|
981 |
+
8.31 and 8.32, derived from the Newton equations [4]_ Section 5 Equations
|
982 |
+
8.25 (compare to [4]_ Section 4 Equations 8.6-8.8). The advantage of
|
983 |
+
solving the normal equations rather than 8.25 directly is that the
|
984 |
+
matrices involved are symmetric positive definite, so Cholesky
|
985 |
+
decomposition can be used rather than the more expensive LU factorization.
|
986 |
+
|
987 |
+
With default options, the solver used to perform the factorization depends
|
988 |
+
on third-party software availability and the conditioning of the problem.
|
989 |
+
|
990 |
+
For dense problems, solvers are tried in the following order:
|
991 |
+
|
992 |
+
1. ``scipy.linalg.cho_factor``
|
993 |
+
|
994 |
+
2. ``scipy.linalg.solve`` with option ``sym_pos=True``
|
995 |
+
|
996 |
+
3. ``scipy.linalg.solve`` with option ``sym_pos=False``
|
997 |
+
|
998 |
+
4. ``scipy.linalg.lstsq``
|
999 |
+
|
1000 |
+
For sparse problems:
|
1001 |
+
|
1002 |
+
1. ``sksparse.cholmod.cholesky`` (if scikit-sparse and SuiteSparse are
|
1003 |
+
installed)
|
1004 |
+
|
1005 |
+
2. ``scipy.sparse.linalg.factorized`` (if scikit-umfpack and SuiteSparse
|
1006 |
+
are installed)
|
1007 |
+
|
1008 |
+
3. ``scipy.sparse.linalg.splu`` (which uses SuperLU distributed with SciPy)
|
1009 |
+
|
1010 |
+
4. ``scipy.sparse.linalg.lsqr``
|
1011 |
+
|
1012 |
+
If the solver fails for any reason, successively more robust (but slower)
|
1013 |
+
solvers are attempted in the order indicated. Attempting, failing, and
|
1014 |
+
re-starting factorization can be time consuming, so if the problem is
|
1015 |
+
numerically challenging, options can be set to bypass solvers that are
|
1016 |
+
failing. Setting ``cholesky=False`` skips to solver 2,
|
1017 |
+
``sym_pos=False`` skips to solver 3, and ``lstsq=True`` skips
|
1018 |
+
to solver 4 for both sparse and dense problems.
|
1019 |
+
|
1020 |
+
Potential improvements for combatting issues associated with dense
|
1021 |
+
columns in otherwise sparse problems are outlined in [4]_ Section 5.3 and
|
1022 |
+
[10]_ Section 4.1-4.2; the latter also discusses the alleviation of
|
1023 |
+
accuracy issues associated with the substitution approach to free
|
1024 |
+
variables.
|
1025 |
+
|
1026 |
+
After calculating the search direction, the maximum possible step size
|
1027 |
+
that does not activate the non-negativity constraints is calculated, and
|
1028 |
+
the smaller of this step size and unity is applied (as in [4]_ Section
|
1029 |
+
4.1.) [4]_ Section 4.3 suggests improvements for choosing the step size.
|
1030 |
+
|
1031 |
+
The new point is tested according to the termination conditions of [4]_
|
1032 |
+
Section 4.5. The same tolerance, which can be set using the ``tol`` option,
|
1033 |
+
is used for all checks. (A potential improvement would be to expose
|
1034 |
+
the different tolerances to be set independently.) If optimality,
|
1035 |
+
unboundedness, or infeasibility is detected, the solve procedure
|
1036 |
+
terminates; otherwise it repeats.
|
1037 |
+
|
1038 |
+
Whereas the top level ``linprog`` module expects a problem of form:
|
1039 |
+
|
1040 |
+
Minimize::
|
1041 |
+
|
1042 |
+
c @ x
|
1043 |
+
|
1044 |
+
Subject to::
|
1045 |
+
|
1046 |
+
A_ub @ x <= b_ub
|
1047 |
+
A_eq @ x == b_eq
|
1048 |
+
lb <= x <= ub
|
1049 |
+
|
1050 |
+
where ``lb = 0`` and ``ub = None`` unless set in ``bounds``. The problem
|
1051 |
+
is automatically converted to the form:
|
1052 |
+
|
1053 |
+
Minimize::
|
1054 |
+
|
1055 |
+
c @ x
|
1056 |
+
|
1057 |
+
Subject to::
|
1058 |
+
|
1059 |
+
A @ x == b
|
1060 |
+
x >= 0
|
1061 |
+
|
1062 |
+
for solution. That is, the original problem contains equality, upper-bound
|
1063 |
+
and variable constraints whereas the method specific solver requires
|
1064 |
+
equality constraints and variable non-negativity. ``linprog`` converts the
|
1065 |
+
original problem to standard form by converting the simple bounds to upper
|
1066 |
+
bound constraints, introducing non-negative slack variables for inequality
|
1067 |
+
constraints, and expressing unbounded variables as the difference between
|
1068 |
+
two non-negative variables. The problem is converted back to the original
|
1069 |
+
form before results are reported.
|
1070 |
+
|
1071 |
+
References
|
1072 |
+
----------
|
1073 |
+
.. [4] Andersen, Erling D., and Knud D. Andersen. "The MOSEK interior point
|
1074 |
+
optimizer for linear programming: an implementation of the
|
1075 |
+
homogeneous algorithm." High performance optimization. Springer US,
|
1076 |
+
2000. 197-232.
|
1077 |
+
.. [6] Freund, Robert M. "Primal-Dual Interior-Point Methods for Linear
|
1078 |
+
Programming based on Newton's Method." Unpublished Course Notes,
|
1079 |
+
March 2004. Available 2/25/2017 at
|
1080 |
+
https://ocw.mit.edu/courses/sloan-school-of-management/15-084j-nonlinear-programming-spring-2004/lecture-notes/lec14_int_pt_mthd.pdf
|
1081 |
+
.. [8] Andersen, Erling D., and Knud D. Andersen. "Presolving in linear
|
1082 |
+
programming." Mathematical Programming 71.2 (1995): 221-245.
|
1083 |
+
.. [9] Bertsimas, Dimitris, and J. Tsitsiklis. "Introduction to linear
|
1084 |
+
programming." Athena Scientific 1 (1997): 997.
|
1085 |
+
.. [10] Andersen, Erling D., et al. Implementation of interior point
|
1086 |
+
methods for large scale linear programming. HEC/Universite de
|
1087 |
+
Geneve, 1996.
|
1088 |
+
"""
|
1089 |
+
pass
|
1090 |
+
|
1091 |
+
|
1092 |
+
def _linprog_rs_doc(c, A_ub=None, b_ub=None, A_eq=None, b_eq=None,
|
1093 |
+
bounds=None, method='interior-point', callback=None,
|
1094 |
+
x0=None, maxiter=5000, disp=False, presolve=True,
|
1095 |
+
tol=1e-12, autoscale=False, rr=True, maxupdate=10,
|
1096 |
+
mast=False, pivot="mrc", **unknown_options):
|
1097 |
+
r"""
|
1098 |
+
Linear programming: minimize a linear objective function subject to linear
|
1099 |
+
equality and inequality constraints using the revised simplex method.
|
1100 |
+
|
1101 |
+
.. deprecated:: 1.9.0
|
1102 |
+
`method='revised simplex'` will be removed in SciPy 1.11.0.
|
1103 |
+
It is replaced by `method='highs'` because the latter is
|
1104 |
+
faster and more robust.
|
1105 |
+
|
1106 |
+
Linear programming solves problems of the following form:
|
1107 |
+
|
1108 |
+
.. math::
|
1109 |
+
|
1110 |
+
\min_x \ & c^T x \\
|
1111 |
+
\mbox{such that} \ & A_{ub} x \leq b_{ub},\\
|
1112 |
+
& A_{eq} x = b_{eq},\\
|
1113 |
+
& l \leq x \leq u ,
|
1114 |
+
|
1115 |
+
where :math:`x` is a vector of decision variables; :math:`c`,
|
1116 |
+
:math:`b_{ub}`, :math:`b_{eq}`, :math:`l`, and :math:`u` are vectors; and
|
1117 |
+
:math:`A_{ub}` and :math:`A_{eq}` are matrices.
|
1118 |
+
|
1119 |
+
Alternatively, that's:
|
1120 |
+
|
1121 |
+
minimize::
|
1122 |
+
|
1123 |
+
c @ x
|
1124 |
+
|
1125 |
+
such that::
|
1126 |
+
|
1127 |
+
A_ub @ x <= b_ub
|
1128 |
+
A_eq @ x == b_eq
|
1129 |
+
lb <= x <= ub
|
1130 |
+
|
1131 |
+
Note that by default ``lb = 0`` and ``ub = None`` unless specified with
|
1132 |
+
``bounds``.
|
1133 |
+
|
1134 |
+
Parameters
|
1135 |
+
----------
|
1136 |
+
c : 1-D array
|
1137 |
+
The coefficients of the linear objective function to be minimized.
|
1138 |
+
A_ub : 2-D array, optional
|
1139 |
+
The inequality constraint matrix. Each row of ``A_ub`` specifies the
|
1140 |
+
coefficients of a linear inequality constraint on ``x``.
|
1141 |
+
b_ub : 1-D array, optional
|
1142 |
+
The inequality constraint vector. Each element represents an
|
1143 |
+
upper bound on the corresponding value of ``A_ub @ x``.
|
1144 |
+
A_eq : 2-D array, optional
|
1145 |
+
The equality constraint matrix. Each row of ``A_eq`` specifies the
|
1146 |
+
coefficients of a linear equality constraint on ``x``.
|
1147 |
+
b_eq : 1-D array, optional
|
1148 |
+
The equality constraint vector. Each element of ``A_eq @ x`` must equal
|
1149 |
+
the corresponding element of ``b_eq``.
|
1150 |
+
bounds : sequence, optional
|
1151 |
+
A sequence of ``(min, max)`` pairs for each element in ``x``, defining
|
1152 |
+
the minimum and maximum values of that decision variable. Use ``None``
|
1153 |
+
to indicate that there is no bound. By default, bounds are
|
1154 |
+
``(0, None)`` (all decision variables are non-negative).
|
1155 |
+
If a single tuple ``(min, max)`` is provided, then ``min`` and
|
1156 |
+
``max`` will serve as bounds for all decision variables.
|
1157 |
+
method : str
|
1158 |
+
This is the method-specific documentation for 'revised simplex'.
|
1159 |
+
:ref:`'highs' <optimize.linprog-highs>`,
|
1160 |
+
:ref:`'highs-ds' <optimize.linprog-highs-ds>`,
|
1161 |
+
:ref:`'highs-ipm' <optimize.linprog-highs-ipm>`,
|
1162 |
+
:ref:`'interior-point' <optimize.linprog-interior-point>` (default),
|
1163 |
+
and :ref:`'simplex' <optimize.linprog-simplex>` (legacy)
|
1164 |
+
are also available.
|
1165 |
+
callback : callable, optional
|
1166 |
+
Callback function to be executed once per iteration.
|
1167 |
+
x0 : 1-D array, optional
|
1168 |
+
Guess values of the decision variables, which will be refined by
|
1169 |
+
the optimization algorithm. This argument is currently used only by the
|
1170 |
+
'revised simplex' method, and can only be used if `x0` represents a
|
1171 |
+
basic feasible solution.
|
1172 |
+
|
1173 |
+
Options
|
1174 |
+
-------
|
1175 |
+
maxiter : int (default: 5000)
|
1176 |
+
The maximum number of iterations to perform in either phase.
|
1177 |
+
disp : bool (default: False)
|
1178 |
+
Set to ``True`` if indicators of optimization status are to be printed
|
1179 |
+
to the console each iteration.
|
1180 |
+
presolve : bool (default: True)
|
1181 |
+
Presolve attempts to identify trivial infeasibilities,
|
1182 |
+
identify trivial unboundedness, and simplify the problem before
|
1183 |
+
sending it to the main solver. It is generally recommended
|
1184 |
+
to keep the default setting ``True``; set to ``False`` if
|
1185 |
+
presolve is to be disabled.
|
1186 |
+
tol : float (default: 1e-12)
|
1187 |
+
The tolerance which determines when a solution is "close enough" to
|
1188 |
+
zero in Phase 1 to be considered a basic feasible solution or close
|
1189 |
+
enough to positive to serve as an optimal solution.
|
1190 |
+
autoscale : bool (default: False)
|
1191 |
+
Set to ``True`` to automatically perform equilibration.
|
1192 |
+
Consider using this option if the numerical values in the
|
1193 |
+
constraints are separated by several orders of magnitude.
|
1194 |
+
rr : bool (default: True)
|
1195 |
+
Set to ``False`` to disable automatic redundancy removal.
|
1196 |
+
maxupdate : int (default: 10)
|
1197 |
+
The maximum number of updates performed on the LU factorization.
|
1198 |
+
After this many updates is reached, the basis matrix is factorized
|
1199 |
+
from scratch.
|
1200 |
+
mast : bool (default: False)
|
1201 |
+
Minimize Amortized Solve Time. If enabled, the average time to solve
|
1202 |
+
a linear system using the basis factorization is measured. Typically,
|
1203 |
+
the average solve time will decrease with each successive solve after
|
1204 |
+
initial factorization, as factorization takes much more time than the
|
1205 |
+
solve operation (and updates). Eventually, however, the updated
|
1206 |
+
factorization becomes sufficiently complex that the average solve time
|
1207 |
+
begins to increase. When this is detected, the basis is refactorized
|
1208 |
+
from scratch. Enable this option to maximize speed at the risk of
|
1209 |
+
nondeterministic behavior. Ignored if ``maxupdate`` is 0.
|
1210 |
+
pivot : "mrc" or "bland" (default: "mrc")
|
1211 |
+
Pivot rule: Minimum Reduced Cost ("mrc") or Bland's rule ("bland").
|
1212 |
+
Choose Bland's rule if iteration limit is reached and cycling is
|
1213 |
+
suspected.
|
1214 |
+
unknown_options : dict
|
1215 |
+
Optional arguments not used by this particular solver. If
|
1216 |
+
`unknown_options` is non-empty a warning is issued listing all
|
1217 |
+
unused options.
|
1218 |
+
|
1219 |
+
Returns
|
1220 |
+
-------
|
1221 |
+
res : OptimizeResult
|
1222 |
+
A :class:`scipy.optimize.OptimizeResult` consisting of the fields:
|
1223 |
+
|
1224 |
+
x : 1-D array
|
1225 |
+
The values of the decision variables that minimizes the
|
1226 |
+
objective function while satisfying the constraints.
|
1227 |
+
fun : float
|
1228 |
+
The optimal value of the objective function ``c @ x``.
|
1229 |
+
slack : 1-D array
|
1230 |
+
The (nominally positive) values of the slack variables,
|
1231 |
+
``b_ub - A_ub @ x``.
|
1232 |
+
con : 1-D array
|
1233 |
+
The (nominally zero) residuals of the equality constraints,
|
1234 |
+
``b_eq - A_eq @ x``.
|
1235 |
+
success : bool
|
1236 |
+
``True`` when the algorithm succeeds in finding an optimal
|
1237 |
+
solution.
|
1238 |
+
status : int
|
1239 |
+
An integer representing the exit status of the algorithm.
|
1240 |
+
|
1241 |
+
``0`` : Optimization terminated successfully.
|
1242 |
+
|
1243 |
+
``1`` : Iteration limit reached.
|
1244 |
+
|
1245 |
+
``2`` : Problem appears to be infeasible.
|
1246 |
+
|
1247 |
+
``3`` : Problem appears to be unbounded.
|
1248 |
+
|
1249 |
+
``4`` : Numerical difficulties encountered.
|
1250 |
+
|
1251 |
+
``5`` : Problem has no constraints; turn presolve on.
|
1252 |
+
|
1253 |
+
``6`` : Invalid guess provided.
|
1254 |
+
|
1255 |
+
message : str
|
1256 |
+
A string descriptor of the exit status of the algorithm.
|
1257 |
+
nit : int
|
1258 |
+
The total number of iterations performed in all phases.
|
1259 |
+
|
1260 |
+
|
1261 |
+
Notes
|
1262 |
+
-----
|
1263 |
+
Method *revised simplex* uses the revised simplex method as described in
|
1264 |
+
[9]_, except that a factorization [11]_ of the basis matrix, rather than
|
1265 |
+
its inverse, is efficiently maintained and used to solve the linear systems
|
1266 |
+
at each iteration of the algorithm.
|
1267 |
+
|
1268 |
+
References
|
1269 |
+
----------
|
1270 |
+
.. [9] Bertsimas, Dimitris, and J. Tsitsiklis. "Introduction to linear
|
1271 |
+
programming." Athena Scientific 1 (1997): 997.
|
1272 |
+
.. [11] Bartels, Richard H. "A stabilization of the simplex method."
|
1273 |
+
Journal in Numerische Mathematik 16.5 (1971): 414-434.
|
1274 |
+
"""
|
1275 |
+
pass
|
1276 |
+
|
1277 |
+
|
1278 |
+
def _linprog_simplex_doc(c, A_ub=None, b_ub=None, A_eq=None, b_eq=None,
|
1279 |
+
bounds=None, method='interior-point', callback=None,
|
1280 |
+
maxiter=5000, disp=False, presolve=True,
|
1281 |
+
tol=1e-12, autoscale=False, rr=True, bland=False,
|
1282 |
+
**unknown_options):
|
1283 |
+
r"""
|
1284 |
+
Linear programming: minimize a linear objective function subject to linear
|
1285 |
+
equality and inequality constraints using the tableau-based simplex method.
|
1286 |
+
|
1287 |
+
.. deprecated:: 1.9.0
|
1288 |
+
`method='simplex'` will be removed in SciPy 1.11.0.
|
1289 |
+
It is replaced by `method='highs'` because the latter is
|
1290 |
+
faster and more robust.
|
1291 |
+
|
1292 |
+
Linear programming solves problems of the following form:
|
1293 |
+
|
1294 |
+
.. math::
|
1295 |
+
|
1296 |
+
\min_x \ & c^T x \\
|
1297 |
+
\mbox{such that} \ & A_{ub} x \leq b_{ub},\\
|
1298 |
+
& A_{eq} x = b_{eq},\\
|
1299 |
+
& l \leq x \leq u ,
|
1300 |
+
|
1301 |
+
where :math:`x` is a vector of decision variables; :math:`c`,
|
1302 |
+
:math:`b_{ub}`, :math:`b_{eq}`, :math:`l`, and :math:`u` are vectors; and
|
1303 |
+
:math:`A_{ub}` and :math:`A_{eq}` are matrices.
|
1304 |
+
|
1305 |
+
Alternatively, that's:
|
1306 |
+
|
1307 |
+
minimize::
|
1308 |
+
|
1309 |
+
c @ x
|
1310 |
+
|
1311 |
+
such that::
|
1312 |
+
|
1313 |
+
A_ub @ x <= b_ub
|
1314 |
+
A_eq @ x == b_eq
|
1315 |
+
lb <= x <= ub
|
1316 |
+
|
1317 |
+
Note that by default ``lb = 0`` and ``ub = None`` unless specified with
|
1318 |
+
``bounds``.
|
1319 |
+
|
1320 |
+
Parameters
|
1321 |
+
----------
|
1322 |
+
c : 1-D array
|
1323 |
+
The coefficients of the linear objective function to be minimized.
|
1324 |
+
A_ub : 2-D array, optional
|
1325 |
+
The inequality constraint matrix. Each row of ``A_ub`` specifies the
|
1326 |
+
coefficients of a linear inequality constraint on ``x``.
|
1327 |
+
b_ub : 1-D array, optional
|
1328 |
+
The inequality constraint vector. Each element represents an
|
1329 |
+
upper bound on the corresponding value of ``A_ub @ x``.
|
1330 |
+
A_eq : 2-D array, optional
|
1331 |
+
The equality constraint matrix. Each row of ``A_eq`` specifies the
|
1332 |
+
coefficients of a linear equality constraint on ``x``.
|
1333 |
+
b_eq : 1-D array, optional
|
1334 |
+
The equality constraint vector. Each element of ``A_eq @ x`` must equal
|
1335 |
+
the corresponding element of ``b_eq``.
|
1336 |
+
bounds : sequence, optional
|
1337 |
+
A sequence of ``(min, max)`` pairs for each element in ``x``, defining
|
1338 |
+
the minimum and maximum values of that decision variable. Use ``None``
|
1339 |
+
to indicate that there is no bound. By default, bounds are
|
1340 |
+
``(0, None)`` (all decision variables are non-negative).
|
1341 |
+
If a single tuple ``(min, max)`` is provided, then ``min`` and
|
1342 |
+
``max`` will serve as bounds for all decision variables.
|
1343 |
+
method : str
|
1344 |
+
This is the method-specific documentation for 'simplex'.
|
1345 |
+
:ref:`'highs' <optimize.linprog-highs>`,
|
1346 |
+
:ref:`'highs-ds' <optimize.linprog-highs-ds>`,
|
1347 |
+
:ref:`'highs-ipm' <optimize.linprog-highs-ipm>`,
|
1348 |
+
:ref:`'interior-point' <optimize.linprog-interior-point>` (default),
|
1349 |
+
and :ref:`'revised simplex' <optimize.linprog-revised_simplex>`
|
1350 |
+
are also available.
|
1351 |
+
callback : callable, optional
|
1352 |
+
Callback function to be executed once per iteration.
|
1353 |
+
|
1354 |
+
Options
|
1355 |
+
-------
|
1356 |
+
maxiter : int (default: 5000)
|
1357 |
+
The maximum number of iterations to perform in either phase.
|
1358 |
+
disp : bool (default: False)
|
1359 |
+
Set to ``True`` if indicators of optimization status are to be printed
|
1360 |
+
to the console each iteration.
|
1361 |
+
presolve : bool (default: True)
|
1362 |
+
Presolve attempts to identify trivial infeasibilities,
|
1363 |
+
identify trivial unboundedness, and simplify the problem before
|
1364 |
+
sending it to the main solver. It is generally recommended
|
1365 |
+
to keep the default setting ``True``; set to ``False`` if
|
1366 |
+
presolve is to be disabled.
|
1367 |
+
tol : float (default: 1e-12)
|
1368 |
+
The tolerance which determines when a solution is "close enough" to
|
1369 |
+
zero in Phase 1 to be considered a basic feasible solution or close
|
1370 |
+
enough to positive to serve as an optimal solution.
|
1371 |
+
autoscale : bool (default: False)
|
1372 |
+
Set to ``True`` to automatically perform equilibration.
|
1373 |
+
Consider using this option if the numerical values in the
|
1374 |
+
constraints are separated by several orders of magnitude.
|
1375 |
+
rr : bool (default: True)
|
1376 |
+
Set to ``False`` to disable automatic redundancy removal.
|
1377 |
+
bland : bool
|
1378 |
+
If True, use Bland's anti-cycling rule [3]_ to choose pivots to
|
1379 |
+
prevent cycling. If False, choose pivots which should lead to a
|
1380 |
+
converged solution more quickly. The latter method is subject to
|
1381 |
+
cycling (non-convergence) in rare instances.
|
1382 |
+
unknown_options : dict
|
1383 |
+
Optional arguments not used by this particular solver. If
|
1384 |
+
`unknown_options` is non-empty a warning is issued listing all
|
1385 |
+
unused options.
|
1386 |
+
|
1387 |
+
Returns
|
1388 |
+
-------
|
1389 |
+
res : OptimizeResult
|
1390 |
+
A :class:`scipy.optimize.OptimizeResult` consisting of the fields:
|
1391 |
+
|
1392 |
+
x : 1-D array
|
1393 |
+
The values of the decision variables that minimizes the
|
1394 |
+
objective function while satisfying the constraints.
|
1395 |
+
fun : float
|
1396 |
+
The optimal value of the objective function ``c @ x``.
|
1397 |
+
slack : 1-D array
|
1398 |
+
The (nominally positive) values of the slack variables,
|
1399 |
+
``b_ub - A_ub @ x``.
|
1400 |
+
con : 1-D array
|
1401 |
+
The (nominally zero) residuals of the equality constraints,
|
1402 |
+
``b_eq - A_eq @ x``.
|
1403 |
+
success : bool
|
1404 |
+
``True`` when the algorithm succeeds in finding an optimal
|
1405 |
+
solution.
|
1406 |
+
status : int
|
1407 |
+
An integer representing the exit status of the algorithm.
|
1408 |
+
|
1409 |
+
``0`` : Optimization terminated successfully.
|
1410 |
+
|
1411 |
+
``1`` : Iteration limit reached.
|
1412 |
+
|
1413 |
+
``2`` : Problem appears to be infeasible.
|
1414 |
+
|
1415 |
+
``3`` : Problem appears to be unbounded.
|
1416 |
+
|
1417 |
+
``4`` : Numerical difficulties encountered.
|
1418 |
+
|
1419 |
+
message : str
|
1420 |
+
A string descriptor of the exit status of the algorithm.
|
1421 |
+
nit : int
|
1422 |
+
The total number of iterations performed in all phases.
|
1423 |
+
|
1424 |
+
References
|
1425 |
+
----------
|
1426 |
+
.. [1] Dantzig, George B., Linear programming and extensions. Rand
|
1427 |
+
Corporation Research Study Princeton Univ. Press, Princeton, NJ,
|
1428 |
+
1963
|
1429 |
+
.. [2] Hillier, S.H. and Lieberman, G.J. (1995), "Introduction to
|
1430 |
+
Mathematical Programming", McGraw-Hill, Chapter 4.
|
1431 |
+
.. [3] Bland, Robert G. New finite pivoting rules for the simplex method.
|
1432 |
+
Mathematics of Operations Research (2), 1977: pp. 103-107.
|
1433 |
+
"""
|
1434 |
+
pass
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/_linprog_highs.py
ADDED
@@ -0,0 +1,440 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""HiGHS Linear Optimization Methods
|
2 |
+
|
3 |
+
Interface to HiGHS linear optimization software.
|
4 |
+
https://highs.dev/
|
5 |
+
|
6 |
+
.. versionadded:: 1.5.0
|
7 |
+
|
8 |
+
References
|
9 |
+
----------
|
10 |
+
.. [1] Q. Huangfu and J.A.J. Hall. "Parallelizing the dual revised simplex
|
11 |
+
method." Mathematical Programming Computation, 10 (1), 119-142,
|
12 |
+
2018. DOI: 10.1007/s12532-017-0130-5
|
13 |
+
|
14 |
+
"""
|
15 |
+
|
16 |
+
import inspect
|
17 |
+
import numpy as np
|
18 |
+
from ._optimize import OptimizeWarning, OptimizeResult
|
19 |
+
from warnings import warn
|
20 |
+
from ._highs._highs_wrapper import _highs_wrapper
|
21 |
+
from ._highs._highs_constants import (
|
22 |
+
CONST_INF,
|
23 |
+
MESSAGE_LEVEL_NONE,
|
24 |
+
HIGHS_OBJECTIVE_SENSE_MINIMIZE,
|
25 |
+
|
26 |
+
MODEL_STATUS_NOTSET,
|
27 |
+
MODEL_STATUS_LOAD_ERROR,
|
28 |
+
MODEL_STATUS_MODEL_ERROR,
|
29 |
+
MODEL_STATUS_PRESOLVE_ERROR,
|
30 |
+
MODEL_STATUS_SOLVE_ERROR,
|
31 |
+
MODEL_STATUS_POSTSOLVE_ERROR,
|
32 |
+
MODEL_STATUS_MODEL_EMPTY,
|
33 |
+
MODEL_STATUS_OPTIMAL,
|
34 |
+
MODEL_STATUS_INFEASIBLE,
|
35 |
+
MODEL_STATUS_UNBOUNDED_OR_INFEASIBLE,
|
36 |
+
MODEL_STATUS_UNBOUNDED,
|
37 |
+
MODEL_STATUS_REACHED_DUAL_OBJECTIVE_VALUE_UPPER_BOUND
|
38 |
+
as MODEL_STATUS_RDOVUB,
|
39 |
+
MODEL_STATUS_REACHED_OBJECTIVE_TARGET,
|
40 |
+
MODEL_STATUS_REACHED_TIME_LIMIT,
|
41 |
+
MODEL_STATUS_REACHED_ITERATION_LIMIT,
|
42 |
+
|
43 |
+
HIGHS_SIMPLEX_STRATEGY_DUAL,
|
44 |
+
|
45 |
+
HIGHS_SIMPLEX_CRASH_STRATEGY_OFF,
|
46 |
+
|
47 |
+
HIGHS_SIMPLEX_EDGE_WEIGHT_STRATEGY_CHOOSE,
|
48 |
+
HIGHS_SIMPLEX_EDGE_WEIGHT_STRATEGY_DANTZIG,
|
49 |
+
HIGHS_SIMPLEX_EDGE_WEIGHT_STRATEGY_DEVEX,
|
50 |
+
HIGHS_SIMPLEX_EDGE_WEIGHT_STRATEGY_STEEPEST_EDGE,
|
51 |
+
)
|
52 |
+
from scipy.sparse import csc_matrix, vstack, issparse
|
53 |
+
|
54 |
+
|
55 |
+
def _highs_to_scipy_status_message(highs_status, highs_message):
|
56 |
+
"""Converts HiGHS status number/message to SciPy status number/message"""
|
57 |
+
|
58 |
+
scipy_statuses_messages = {
|
59 |
+
None: (4, "HiGHS did not provide a status code. "),
|
60 |
+
MODEL_STATUS_NOTSET: (4, ""),
|
61 |
+
MODEL_STATUS_LOAD_ERROR: (4, ""),
|
62 |
+
MODEL_STATUS_MODEL_ERROR: (2, ""),
|
63 |
+
MODEL_STATUS_PRESOLVE_ERROR: (4, ""),
|
64 |
+
MODEL_STATUS_SOLVE_ERROR: (4, ""),
|
65 |
+
MODEL_STATUS_POSTSOLVE_ERROR: (4, ""),
|
66 |
+
MODEL_STATUS_MODEL_EMPTY: (4, ""),
|
67 |
+
MODEL_STATUS_RDOVUB: (4, ""),
|
68 |
+
MODEL_STATUS_REACHED_OBJECTIVE_TARGET: (4, ""),
|
69 |
+
MODEL_STATUS_OPTIMAL: (0, "Optimization terminated successfully. "),
|
70 |
+
MODEL_STATUS_REACHED_TIME_LIMIT: (1, "Time limit reached. "),
|
71 |
+
MODEL_STATUS_REACHED_ITERATION_LIMIT: (1, "Iteration limit reached. "),
|
72 |
+
MODEL_STATUS_INFEASIBLE: (2, "The problem is infeasible. "),
|
73 |
+
MODEL_STATUS_UNBOUNDED: (3, "The problem is unbounded. "),
|
74 |
+
MODEL_STATUS_UNBOUNDED_OR_INFEASIBLE: (4, "The problem is unbounded "
|
75 |
+
"or infeasible. ")}
|
76 |
+
unrecognized = (4, "The HiGHS status code was not recognized. ")
|
77 |
+
scipy_status, scipy_message = (
|
78 |
+
scipy_statuses_messages.get(highs_status, unrecognized))
|
79 |
+
scipy_message = (f"{scipy_message}"
|
80 |
+
f"(HiGHS Status {highs_status}: {highs_message})")
|
81 |
+
return scipy_status, scipy_message
|
82 |
+
|
83 |
+
|
84 |
+
def _replace_inf(x):
|
85 |
+
# Replace `np.inf` with CONST_INF
|
86 |
+
infs = np.isinf(x)
|
87 |
+
with np.errstate(invalid="ignore"):
|
88 |
+
x[infs] = np.sign(x[infs])*CONST_INF
|
89 |
+
return x
|
90 |
+
|
91 |
+
|
92 |
+
def _convert_to_highs_enum(option, option_str, choices):
|
93 |
+
# If option is in the choices we can look it up, if not use
|
94 |
+
# the default value taken from function signature and warn:
|
95 |
+
try:
|
96 |
+
return choices[option.lower()]
|
97 |
+
except AttributeError:
|
98 |
+
return choices[option]
|
99 |
+
except KeyError:
|
100 |
+
sig = inspect.signature(_linprog_highs)
|
101 |
+
default_str = sig.parameters[option_str].default
|
102 |
+
warn(f"Option {option_str} is {option}, but only values in "
|
103 |
+
f"{set(choices.keys())} are allowed. Using default: "
|
104 |
+
f"{default_str}.",
|
105 |
+
OptimizeWarning, stacklevel=3)
|
106 |
+
return choices[default_str]
|
107 |
+
|
108 |
+
|
109 |
+
def _linprog_highs(lp, solver, time_limit=None, presolve=True,
|
110 |
+
disp=False, maxiter=None,
|
111 |
+
dual_feasibility_tolerance=None,
|
112 |
+
primal_feasibility_tolerance=None,
|
113 |
+
ipm_optimality_tolerance=None,
|
114 |
+
simplex_dual_edge_weight_strategy=None,
|
115 |
+
mip_rel_gap=None,
|
116 |
+
mip_max_nodes=None,
|
117 |
+
**unknown_options):
|
118 |
+
r"""
|
119 |
+
Solve the following linear programming problem using one of the HiGHS
|
120 |
+
solvers:
|
121 |
+
|
122 |
+
User-facing documentation is in _linprog_doc.py.
|
123 |
+
|
124 |
+
Parameters
|
125 |
+
----------
|
126 |
+
lp : _LPProblem
|
127 |
+
A ``scipy.optimize._linprog_util._LPProblem`` ``namedtuple``.
|
128 |
+
solver : "ipm" or "simplex" or None
|
129 |
+
Which HiGHS solver to use. If ``None``, "simplex" will be used.
|
130 |
+
|
131 |
+
Options
|
132 |
+
-------
|
133 |
+
maxiter : int
|
134 |
+
The maximum number of iterations to perform in either phase. For
|
135 |
+
``solver='ipm'``, this does not include the number of crossover
|
136 |
+
iterations. Default is the largest possible value for an ``int``
|
137 |
+
on the platform.
|
138 |
+
disp : bool
|
139 |
+
Set to ``True`` if indicators of optimization status are to be printed
|
140 |
+
to the console each iteration; default ``False``.
|
141 |
+
time_limit : float
|
142 |
+
The maximum time in seconds allotted to solve the problem; default is
|
143 |
+
the largest possible value for a ``double`` on the platform.
|
144 |
+
presolve : bool
|
145 |
+
Presolve attempts to identify trivial infeasibilities,
|
146 |
+
identify trivial unboundedness, and simplify the problem before
|
147 |
+
sending it to the main solver. It is generally recommended
|
148 |
+
to keep the default setting ``True``; set to ``False`` if presolve is
|
149 |
+
to be disabled.
|
150 |
+
dual_feasibility_tolerance : double
|
151 |
+
Dual feasibility tolerance. Default is 1e-07.
|
152 |
+
The minimum of this and ``primal_feasibility_tolerance``
|
153 |
+
is used for the feasibility tolerance when ``solver='ipm'``.
|
154 |
+
primal_feasibility_tolerance : double
|
155 |
+
Primal feasibility tolerance. Default is 1e-07.
|
156 |
+
The minimum of this and ``dual_feasibility_tolerance``
|
157 |
+
is used for the feasibility tolerance when ``solver='ipm'``.
|
158 |
+
ipm_optimality_tolerance : double
|
159 |
+
Optimality tolerance for ``solver='ipm'``. Default is 1e-08.
|
160 |
+
Minimum possible value is 1e-12 and must be smaller than the largest
|
161 |
+
possible value for a ``double`` on the platform.
|
162 |
+
simplex_dual_edge_weight_strategy : str (default: None)
|
163 |
+
Strategy for simplex dual edge weights. The default, ``None``,
|
164 |
+
automatically selects one of the following.
|
165 |
+
|
166 |
+
``'dantzig'`` uses Dantzig's original strategy of choosing the most
|
167 |
+
negative reduced cost.
|
168 |
+
|
169 |
+
``'devex'`` uses the strategy described in [15]_.
|
170 |
+
|
171 |
+
``steepest`` uses the exact steepest edge strategy as described in
|
172 |
+
[16]_.
|
173 |
+
|
174 |
+
``'steepest-devex'`` begins with the exact steepest edge strategy
|
175 |
+
until the computation is too costly or inexact and then switches to
|
176 |
+
the devex method.
|
177 |
+
|
178 |
+
Currently, using ``None`` always selects ``'steepest-devex'``, but this
|
179 |
+
may change as new options become available.
|
180 |
+
|
181 |
+
mip_max_nodes : int
|
182 |
+
The maximum number of nodes allotted to solve the problem; default is
|
183 |
+
the largest possible value for a ``HighsInt`` on the platform.
|
184 |
+
Ignored if not using the MIP solver.
|
185 |
+
unknown_options : dict
|
186 |
+
Optional arguments not used by this particular solver. If
|
187 |
+
``unknown_options`` is non-empty, a warning is issued listing all
|
188 |
+
unused options.
|
189 |
+
|
190 |
+
Returns
|
191 |
+
-------
|
192 |
+
sol : dict
|
193 |
+
A dictionary consisting of the fields:
|
194 |
+
|
195 |
+
x : 1D array
|
196 |
+
The values of the decision variables that minimizes the
|
197 |
+
objective function while satisfying the constraints.
|
198 |
+
fun : float
|
199 |
+
The optimal value of the objective function ``c @ x``.
|
200 |
+
slack : 1D array
|
201 |
+
The (nominally positive) values of the slack,
|
202 |
+
``b_ub - A_ub @ x``.
|
203 |
+
con : 1D array
|
204 |
+
The (nominally zero) residuals of the equality constraints,
|
205 |
+
``b_eq - A_eq @ x``.
|
206 |
+
success : bool
|
207 |
+
``True`` when the algorithm succeeds in finding an optimal
|
208 |
+
solution.
|
209 |
+
status : int
|
210 |
+
An integer representing the exit status of the algorithm.
|
211 |
+
|
212 |
+
``0`` : Optimization terminated successfully.
|
213 |
+
|
214 |
+
``1`` : Iteration or time limit reached.
|
215 |
+
|
216 |
+
``2`` : Problem appears to be infeasible.
|
217 |
+
|
218 |
+
``3`` : Problem appears to be unbounded.
|
219 |
+
|
220 |
+
``4`` : The HiGHS solver ran into a problem.
|
221 |
+
|
222 |
+
message : str
|
223 |
+
A string descriptor of the exit status of the algorithm.
|
224 |
+
nit : int
|
225 |
+
The total number of iterations performed.
|
226 |
+
For ``solver='simplex'``, this includes iterations in all
|
227 |
+
phases. For ``solver='ipm'``, this does not include
|
228 |
+
crossover iterations.
|
229 |
+
crossover_nit : int
|
230 |
+
The number of primal/dual pushes performed during the
|
231 |
+
crossover routine for ``solver='ipm'``. This is ``0``
|
232 |
+
for ``solver='simplex'``.
|
233 |
+
ineqlin : OptimizeResult
|
234 |
+
Solution and sensitivity information corresponding to the
|
235 |
+
inequality constraints, `b_ub`. A dictionary consisting of the
|
236 |
+
fields:
|
237 |
+
|
238 |
+
residual : np.ndnarray
|
239 |
+
The (nominally positive) values of the slack variables,
|
240 |
+
``b_ub - A_ub @ x``. This quantity is also commonly
|
241 |
+
referred to as "slack".
|
242 |
+
|
243 |
+
marginals : np.ndarray
|
244 |
+
The sensitivity (partial derivative) of the objective
|
245 |
+
function with respect to the right-hand side of the
|
246 |
+
inequality constraints, `b_ub`.
|
247 |
+
|
248 |
+
eqlin : OptimizeResult
|
249 |
+
Solution and sensitivity information corresponding to the
|
250 |
+
equality constraints, `b_eq`. A dictionary consisting of the
|
251 |
+
fields:
|
252 |
+
|
253 |
+
residual : np.ndarray
|
254 |
+
The (nominally zero) residuals of the equality constraints,
|
255 |
+
``b_eq - A_eq @ x``.
|
256 |
+
|
257 |
+
marginals : np.ndarray
|
258 |
+
The sensitivity (partial derivative) of the objective
|
259 |
+
function with respect to the right-hand side of the
|
260 |
+
equality constraints, `b_eq`.
|
261 |
+
|
262 |
+
lower, upper : OptimizeResult
|
263 |
+
Solution and sensitivity information corresponding to the
|
264 |
+
lower and upper bounds on decision variables, `bounds`.
|
265 |
+
|
266 |
+
residual : np.ndarray
|
267 |
+
The (nominally positive) values of the quantity
|
268 |
+
``x - lb`` (lower) or ``ub - x`` (upper).
|
269 |
+
|
270 |
+
marginals : np.ndarray
|
271 |
+
The sensitivity (partial derivative) of the objective
|
272 |
+
function with respect to the lower and upper
|
273 |
+
`bounds`.
|
274 |
+
|
275 |
+
mip_node_count : int
|
276 |
+
The number of subproblems or "nodes" solved by the MILP
|
277 |
+
solver. Only present when `integrality` is not `None`.
|
278 |
+
|
279 |
+
mip_dual_bound : float
|
280 |
+
The MILP solver's final estimate of the lower bound on the
|
281 |
+
optimal solution. Only present when `integrality` is not
|
282 |
+
`None`.
|
283 |
+
|
284 |
+
mip_gap : float
|
285 |
+
The difference between the final objective function value
|
286 |
+
and the final dual bound, scaled by the final objective
|
287 |
+
function value. Only present when `integrality` is not
|
288 |
+
`None`.
|
289 |
+
|
290 |
+
Notes
|
291 |
+
-----
|
292 |
+
The result fields `ineqlin`, `eqlin`, `lower`, and `upper` all contain
|
293 |
+
`marginals`, or partial derivatives of the objective function with respect
|
294 |
+
to the right-hand side of each constraint. These partial derivatives are
|
295 |
+
also referred to as "Lagrange multipliers", "dual values", and
|
296 |
+
"shadow prices". The sign convention of `marginals` is opposite that
|
297 |
+
of Lagrange multipliers produced by many nonlinear solvers.
|
298 |
+
|
299 |
+
References
|
300 |
+
----------
|
301 |
+
.. [15] Harris, Paula MJ. "Pivot selection methods of the Devex LP code."
|
302 |
+
Mathematical programming 5.1 (1973): 1-28.
|
303 |
+
.. [16] Goldfarb, Donald, and John Ker Reid. "A practicable steepest-edge
|
304 |
+
simplex algorithm." Mathematical Programming 12.1 (1977): 361-371.
|
305 |
+
"""
|
306 |
+
if unknown_options:
|
307 |
+
message = (f"Unrecognized options detected: {unknown_options}. "
|
308 |
+
"These will be passed to HiGHS verbatim.")
|
309 |
+
warn(message, OptimizeWarning, stacklevel=3)
|
310 |
+
|
311 |
+
# Map options to HiGHS enum values
|
312 |
+
simplex_dual_edge_weight_strategy_enum = _convert_to_highs_enum(
|
313 |
+
simplex_dual_edge_weight_strategy,
|
314 |
+
'simplex_dual_edge_weight_strategy',
|
315 |
+
choices={'dantzig': HIGHS_SIMPLEX_EDGE_WEIGHT_STRATEGY_DANTZIG,
|
316 |
+
'devex': HIGHS_SIMPLEX_EDGE_WEIGHT_STRATEGY_DEVEX,
|
317 |
+
'steepest-devex': HIGHS_SIMPLEX_EDGE_WEIGHT_STRATEGY_CHOOSE,
|
318 |
+
'steepest':
|
319 |
+
HIGHS_SIMPLEX_EDGE_WEIGHT_STRATEGY_STEEPEST_EDGE,
|
320 |
+
None: None})
|
321 |
+
|
322 |
+
c, A_ub, b_ub, A_eq, b_eq, bounds, x0, integrality = lp
|
323 |
+
|
324 |
+
lb, ub = bounds.T.copy() # separate bounds, copy->C-cntgs
|
325 |
+
# highs_wrapper solves LHS <= A*x <= RHS, not equality constraints
|
326 |
+
with np.errstate(invalid="ignore"):
|
327 |
+
lhs_ub = -np.ones_like(b_ub)*np.inf # LHS of UB constraints is -inf
|
328 |
+
rhs_ub = b_ub # RHS of UB constraints is b_ub
|
329 |
+
lhs_eq = b_eq # Equality constraint is inequality
|
330 |
+
rhs_eq = b_eq # constraint with LHS=RHS
|
331 |
+
lhs = np.concatenate((lhs_ub, lhs_eq))
|
332 |
+
rhs = np.concatenate((rhs_ub, rhs_eq))
|
333 |
+
|
334 |
+
if issparse(A_ub) or issparse(A_eq):
|
335 |
+
A = vstack((A_ub, A_eq))
|
336 |
+
else:
|
337 |
+
A = np.vstack((A_ub, A_eq))
|
338 |
+
A = csc_matrix(A)
|
339 |
+
|
340 |
+
options = {
|
341 |
+
'presolve': presolve,
|
342 |
+
'sense': HIGHS_OBJECTIVE_SENSE_MINIMIZE,
|
343 |
+
'solver': solver,
|
344 |
+
'time_limit': time_limit,
|
345 |
+
'highs_debug_level': MESSAGE_LEVEL_NONE,
|
346 |
+
'dual_feasibility_tolerance': dual_feasibility_tolerance,
|
347 |
+
'ipm_optimality_tolerance': ipm_optimality_tolerance,
|
348 |
+
'log_to_console': disp,
|
349 |
+
'mip_max_nodes': mip_max_nodes,
|
350 |
+
'output_flag': disp,
|
351 |
+
'primal_feasibility_tolerance': primal_feasibility_tolerance,
|
352 |
+
'simplex_dual_edge_weight_strategy':
|
353 |
+
simplex_dual_edge_weight_strategy_enum,
|
354 |
+
'simplex_strategy': HIGHS_SIMPLEX_STRATEGY_DUAL,
|
355 |
+
'simplex_crash_strategy': HIGHS_SIMPLEX_CRASH_STRATEGY_OFF,
|
356 |
+
'ipm_iteration_limit': maxiter,
|
357 |
+
'simplex_iteration_limit': maxiter,
|
358 |
+
'mip_rel_gap': mip_rel_gap,
|
359 |
+
}
|
360 |
+
options.update(unknown_options)
|
361 |
+
|
362 |
+
# np.inf doesn't work; use very large constant
|
363 |
+
rhs = _replace_inf(rhs)
|
364 |
+
lhs = _replace_inf(lhs)
|
365 |
+
lb = _replace_inf(lb)
|
366 |
+
ub = _replace_inf(ub)
|
367 |
+
|
368 |
+
if integrality is None or np.sum(integrality) == 0:
|
369 |
+
integrality = np.empty(0)
|
370 |
+
else:
|
371 |
+
integrality = np.array(integrality)
|
372 |
+
|
373 |
+
res = _highs_wrapper(c, A.indptr, A.indices, A.data, lhs, rhs,
|
374 |
+
lb, ub, integrality.astype(np.uint8), options)
|
375 |
+
|
376 |
+
# HiGHS represents constraints as lhs/rhs, so
|
377 |
+
# Ax + s = b => Ax = b - s
|
378 |
+
# and we need to split up s by A_ub and A_eq
|
379 |
+
if 'slack' in res:
|
380 |
+
slack = res['slack']
|
381 |
+
con = np.array(slack[len(b_ub):])
|
382 |
+
slack = np.array(slack[:len(b_ub)])
|
383 |
+
else:
|
384 |
+
slack, con = None, None
|
385 |
+
|
386 |
+
# lagrange multipliers for equalities/inequalities and upper/lower bounds
|
387 |
+
if 'lambda' in res:
|
388 |
+
lamda = res['lambda']
|
389 |
+
marg_ineqlin = np.array(lamda[:len(b_ub)])
|
390 |
+
marg_eqlin = np.array(lamda[len(b_ub):])
|
391 |
+
marg_upper = np.array(res['marg_bnds'][1, :])
|
392 |
+
marg_lower = np.array(res['marg_bnds'][0, :])
|
393 |
+
else:
|
394 |
+
marg_ineqlin, marg_eqlin = None, None
|
395 |
+
marg_upper, marg_lower = None, None
|
396 |
+
|
397 |
+
# this needs to be updated if we start choosing the solver intelligently
|
398 |
+
|
399 |
+
# Convert to scipy-style status and message
|
400 |
+
highs_status = res.get('status', None)
|
401 |
+
highs_message = res.get('message', None)
|
402 |
+
status, message = _highs_to_scipy_status_message(highs_status,
|
403 |
+
highs_message)
|
404 |
+
|
405 |
+
x = np.array(res['x']) if 'x' in res else None
|
406 |
+
sol = {'x': x,
|
407 |
+
'slack': slack,
|
408 |
+
'con': con,
|
409 |
+
'ineqlin': OptimizeResult({
|
410 |
+
'residual': slack,
|
411 |
+
'marginals': marg_ineqlin,
|
412 |
+
}),
|
413 |
+
'eqlin': OptimizeResult({
|
414 |
+
'residual': con,
|
415 |
+
'marginals': marg_eqlin,
|
416 |
+
}),
|
417 |
+
'lower': OptimizeResult({
|
418 |
+
'residual': None if x is None else x - lb,
|
419 |
+
'marginals': marg_lower,
|
420 |
+
}),
|
421 |
+
'upper': OptimizeResult({
|
422 |
+
'residual': None if x is None else ub - x,
|
423 |
+
'marginals': marg_upper
|
424 |
+
}),
|
425 |
+
'fun': res.get('fun'),
|
426 |
+
'status': status,
|
427 |
+
'success': res['status'] == MODEL_STATUS_OPTIMAL,
|
428 |
+
'message': message,
|
429 |
+
'nit': res.get('simplex_nit', 0) or res.get('ipm_nit', 0),
|
430 |
+
'crossover_nit': res.get('crossover_nit'),
|
431 |
+
}
|
432 |
+
|
433 |
+
if np.any(x) and integrality is not None:
|
434 |
+
sol.update({
|
435 |
+
'mip_node_count': res.get('mip_node_count', 0),
|
436 |
+
'mip_dual_bound': res.get('mip_dual_bound', 0.0),
|
437 |
+
'mip_gap': res.get('mip_gap', 0.0),
|
438 |
+
})
|
439 |
+
|
440 |
+
return sol
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/_linprog_rs.py
ADDED
@@ -0,0 +1,572 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Revised simplex method for linear programming
|
2 |
+
|
3 |
+
The *revised simplex* method uses the method described in [1]_, except
|
4 |
+
that a factorization [2]_ of the basis matrix, rather than its inverse,
|
5 |
+
is efficiently maintained and used to solve the linear systems at each
|
6 |
+
iteration of the algorithm.
|
7 |
+
|
8 |
+
.. versionadded:: 1.3.0
|
9 |
+
|
10 |
+
References
|
11 |
+
----------
|
12 |
+
.. [1] Bertsimas, Dimitris, and J. Tsitsiklis. "Introduction to linear
|
13 |
+
programming." Athena Scientific 1 (1997): 997.
|
14 |
+
.. [2] Bartels, Richard H. "A stabilization of the simplex method."
|
15 |
+
Journal in Numerische Mathematik 16.5 (1971): 414-434.
|
16 |
+
|
17 |
+
"""
|
18 |
+
# Author: Matt Haberland
|
19 |
+
|
20 |
+
import numpy as np
|
21 |
+
from numpy.linalg import LinAlgError
|
22 |
+
|
23 |
+
from scipy.linalg import solve
|
24 |
+
from ._optimize import _check_unknown_options
|
25 |
+
from ._bglu_dense import LU
|
26 |
+
from ._bglu_dense import BGLU as BGLU
|
27 |
+
from ._linprog_util import _postsolve
|
28 |
+
from ._optimize import OptimizeResult
|
29 |
+
|
30 |
+
|
31 |
+
def _phase_one(A, b, x0, callback, postsolve_args, maxiter, tol, disp,
|
32 |
+
maxupdate, mast, pivot):
|
33 |
+
"""
|
34 |
+
The purpose of phase one is to find an initial basic feasible solution
|
35 |
+
(BFS) to the original problem.
|
36 |
+
|
37 |
+
Generates an auxiliary problem with a trivial BFS and an objective that
|
38 |
+
minimizes infeasibility of the original problem. Solves the auxiliary
|
39 |
+
problem using the main simplex routine (phase two). This either yields
|
40 |
+
a BFS to the original problem or determines that the original problem is
|
41 |
+
infeasible. If feasible, phase one detects redundant rows in the original
|
42 |
+
constraint matrix and removes them, then chooses additional indices as
|
43 |
+
necessary to complete a basis/BFS for the original problem.
|
44 |
+
"""
|
45 |
+
|
46 |
+
m, n = A.shape
|
47 |
+
status = 0
|
48 |
+
|
49 |
+
# generate auxiliary problem to get initial BFS
|
50 |
+
A, b, c, basis, x, status = _generate_auxiliary_problem(A, b, x0, tol)
|
51 |
+
|
52 |
+
if status == 6:
|
53 |
+
residual = c.dot(x)
|
54 |
+
iter_k = 0
|
55 |
+
return x, basis, A, b, residual, status, iter_k
|
56 |
+
|
57 |
+
# solve auxiliary problem
|
58 |
+
phase_one_n = n
|
59 |
+
iter_k = 0
|
60 |
+
x, basis, status, iter_k = _phase_two(c, A, x, basis, callback,
|
61 |
+
postsolve_args,
|
62 |
+
maxiter, tol, disp,
|
63 |
+
maxupdate, mast, pivot,
|
64 |
+
iter_k, phase_one_n)
|
65 |
+
|
66 |
+
# check for infeasibility
|
67 |
+
residual = c.dot(x)
|
68 |
+
if status == 0 and residual > tol:
|
69 |
+
status = 2
|
70 |
+
|
71 |
+
# drive artificial variables out of basis
|
72 |
+
# TODO: test redundant row removal better
|
73 |
+
# TODO: make solve more efficient with BGLU? This could take a while.
|
74 |
+
keep_rows = np.ones(m, dtype=bool)
|
75 |
+
for basis_column in basis[basis >= n]:
|
76 |
+
B = A[:, basis]
|
77 |
+
try:
|
78 |
+
basis_finder = np.abs(solve(B, A)) # inefficient
|
79 |
+
pertinent_row = np.argmax(basis_finder[:, basis_column])
|
80 |
+
eligible_columns = np.ones(n, dtype=bool)
|
81 |
+
eligible_columns[basis[basis < n]] = 0
|
82 |
+
eligible_column_indices = np.where(eligible_columns)[0]
|
83 |
+
index = np.argmax(basis_finder[:, :n]
|
84 |
+
[pertinent_row, eligible_columns])
|
85 |
+
new_basis_column = eligible_column_indices[index]
|
86 |
+
if basis_finder[pertinent_row, new_basis_column] < tol:
|
87 |
+
keep_rows[pertinent_row] = False
|
88 |
+
else:
|
89 |
+
basis[basis == basis_column] = new_basis_column
|
90 |
+
except LinAlgError:
|
91 |
+
status = 4
|
92 |
+
|
93 |
+
# form solution to original problem
|
94 |
+
A = A[keep_rows, :n]
|
95 |
+
basis = basis[keep_rows]
|
96 |
+
x = x[:n]
|
97 |
+
m = A.shape[0]
|
98 |
+
return x, basis, A, b, residual, status, iter_k
|
99 |
+
|
100 |
+
|
101 |
+
def _get_more_basis_columns(A, basis):
|
102 |
+
"""
|
103 |
+
Called when the auxiliary problem terminates with artificial columns in
|
104 |
+
the basis, which must be removed and replaced with non-artificial
|
105 |
+
columns. Finds additional columns that do not make the matrix singular.
|
106 |
+
"""
|
107 |
+
m, n = A.shape
|
108 |
+
|
109 |
+
# options for inclusion are those that aren't already in the basis
|
110 |
+
a = np.arange(m+n)
|
111 |
+
bl = np.zeros(len(a), dtype=bool)
|
112 |
+
bl[basis] = 1
|
113 |
+
options = a[~bl]
|
114 |
+
options = options[options < n] # and they have to be non-artificial
|
115 |
+
|
116 |
+
# form basis matrix
|
117 |
+
B = np.zeros((m, m))
|
118 |
+
B[:, 0:len(basis)] = A[:, basis]
|
119 |
+
|
120 |
+
if (basis.size > 0 and
|
121 |
+
np.linalg.matrix_rank(B[:, :len(basis)]) < len(basis)):
|
122 |
+
raise Exception("Basis has dependent columns")
|
123 |
+
|
124 |
+
rank = 0 # just enter the loop
|
125 |
+
for i in range(n): # somewhat arbitrary, but we need another way out
|
126 |
+
# permute the options, and take as many as needed
|
127 |
+
new_basis = np.random.permutation(options)[:m-len(basis)]
|
128 |
+
B[:, len(basis):] = A[:, new_basis] # update the basis matrix
|
129 |
+
rank = np.linalg.matrix_rank(B) # check the rank
|
130 |
+
if rank == m:
|
131 |
+
break
|
132 |
+
|
133 |
+
return np.concatenate((basis, new_basis))
|
134 |
+
|
135 |
+
|
136 |
+
def _generate_auxiliary_problem(A, b, x0, tol):
|
137 |
+
"""
|
138 |
+
Modifies original problem to create an auxiliary problem with a trivial
|
139 |
+
initial basic feasible solution and an objective that minimizes
|
140 |
+
infeasibility in the original problem.
|
141 |
+
|
142 |
+
Conceptually, this is done by stacking an identity matrix on the right of
|
143 |
+
the original constraint matrix, adding artificial variables to correspond
|
144 |
+
with each of these new columns, and generating a cost vector that is all
|
145 |
+
zeros except for ones corresponding with each of the new variables.
|
146 |
+
|
147 |
+
A initial basic feasible solution is trivial: all variables are zero
|
148 |
+
except for the artificial variables, which are set equal to the
|
149 |
+
corresponding element of the right hand side `b`.
|
150 |
+
|
151 |
+
Running the simplex method on this auxiliary problem drives all of the
|
152 |
+
artificial variables - and thus the cost - to zero if the original problem
|
153 |
+
is feasible. The original problem is declared infeasible otherwise.
|
154 |
+
|
155 |
+
Much of the complexity below is to improve efficiency by using singleton
|
156 |
+
columns in the original problem where possible, thus generating artificial
|
157 |
+
variables only as necessary, and using an initial 'guess' basic feasible
|
158 |
+
solution.
|
159 |
+
"""
|
160 |
+
status = 0
|
161 |
+
m, n = A.shape
|
162 |
+
|
163 |
+
if x0 is not None:
|
164 |
+
x = x0
|
165 |
+
else:
|
166 |
+
x = np.zeros(n)
|
167 |
+
|
168 |
+
r = b - A@x # residual; this must be all zeros for feasibility
|
169 |
+
|
170 |
+
A[r < 0] = -A[r < 0] # express problem with RHS positive for trivial BFS
|
171 |
+
b[r < 0] = -b[r < 0] # to the auxiliary problem
|
172 |
+
r[r < 0] *= -1
|
173 |
+
|
174 |
+
# Rows which we will need to find a trivial way to zero.
|
175 |
+
# This should just be the rows where there is a nonzero residual.
|
176 |
+
# But then we would not necessarily have a column singleton in every row.
|
177 |
+
# This makes it difficult to find an initial basis.
|
178 |
+
if x0 is None:
|
179 |
+
nonzero_constraints = np.arange(m)
|
180 |
+
else:
|
181 |
+
nonzero_constraints = np.where(r > tol)[0]
|
182 |
+
|
183 |
+
# these are (at least some of) the initial basis columns
|
184 |
+
basis = np.where(np.abs(x) > tol)[0]
|
185 |
+
|
186 |
+
if len(nonzero_constraints) == 0 and len(basis) <= m: # already a BFS
|
187 |
+
c = np.zeros(n)
|
188 |
+
basis = _get_more_basis_columns(A, basis)
|
189 |
+
return A, b, c, basis, x, status
|
190 |
+
elif (len(nonzero_constraints) > m - len(basis) or
|
191 |
+
np.any(x < 0)): # can't get trivial BFS
|
192 |
+
c = np.zeros(n)
|
193 |
+
status = 6
|
194 |
+
return A, b, c, basis, x, status
|
195 |
+
|
196 |
+
# chooses existing columns appropriate for inclusion in initial basis
|
197 |
+
cols, rows = _select_singleton_columns(A, r)
|
198 |
+
|
199 |
+
# find the rows we need to zero that we _can_ zero with column singletons
|
200 |
+
i_tofix = np.isin(rows, nonzero_constraints)
|
201 |
+
# these columns can't already be in the basis, though
|
202 |
+
# we are going to add them to the basis and change the corresponding x val
|
203 |
+
i_notinbasis = np.logical_not(np.isin(cols, basis))
|
204 |
+
i_fix_without_aux = np.logical_and(i_tofix, i_notinbasis)
|
205 |
+
rows = rows[i_fix_without_aux]
|
206 |
+
cols = cols[i_fix_without_aux]
|
207 |
+
|
208 |
+
# indices of the rows we can only zero with auxiliary variable
|
209 |
+
# these rows will get a one in each auxiliary column
|
210 |
+
arows = nonzero_constraints[np.logical_not(
|
211 |
+
np.isin(nonzero_constraints, rows))]
|
212 |
+
n_aux = len(arows)
|
213 |
+
acols = n + np.arange(n_aux) # indices of auxiliary columns
|
214 |
+
|
215 |
+
basis_ng = np.concatenate((cols, acols)) # basis columns not from guess
|
216 |
+
basis_ng_rows = np.concatenate((rows, arows)) # rows we need to zero
|
217 |
+
|
218 |
+
# add auxiliary singleton columns
|
219 |
+
A = np.hstack((A, np.zeros((m, n_aux))))
|
220 |
+
A[arows, acols] = 1
|
221 |
+
|
222 |
+
# generate initial BFS
|
223 |
+
x = np.concatenate((x, np.zeros(n_aux)))
|
224 |
+
x[basis_ng] = r[basis_ng_rows]/A[basis_ng_rows, basis_ng]
|
225 |
+
|
226 |
+
# generate costs to minimize infeasibility
|
227 |
+
c = np.zeros(n_aux + n)
|
228 |
+
c[acols] = 1
|
229 |
+
|
230 |
+
# basis columns correspond with nonzeros in guess, those with column
|
231 |
+
# singletons we used to zero remaining constraints, and any additional
|
232 |
+
# columns to get a full set (m columns)
|
233 |
+
basis = np.concatenate((basis, basis_ng))
|
234 |
+
basis = _get_more_basis_columns(A, basis) # add columns as needed
|
235 |
+
|
236 |
+
return A, b, c, basis, x, status
|
237 |
+
|
238 |
+
|
239 |
+
def _select_singleton_columns(A, b):
|
240 |
+
"""
|
241 |
+
Finds singleton columns for which the singleton entry is of the same sign
|
242 |
+
as the right-hand side; these columns are eligible for inclusion in an
|
243 |
+
initial basis. Determines the rows in which the singleton entries are
|
244 |
+
located. For each of these rows, returns the indices of the one singleton
|
245 |
+
column and its corresponding row.
|
246 |
+
"""
|
247 |
+
# find indices of all singleton columns and corresponding row indices
|
248 |
+
column_indices = np.nonzero(np.sum(np.abs(A) != 0, axis=0) == 1)[0]
|
249 |
+
columns = A[:, column_indices] # array of singleton columns
|
250 |
+
row_indices = np.zeros(len(column_indices), dtype=int)
|
251 |
+
nonzero_rows, nonzero_columns = np.nonzero(columns)
|
252 |
+
row_indices[nonzero_columns] = nonzero_rows # corresponding row indices
|
253 |
+
|
254 |
+
# keep only singletons with entries that have same sign as RHS
|
255 |
+
# this is necessary because all elements of BFS must be non-negative
|
256 |
+
same_sign = A[row_indices, column_indices]*b[row_indices] >= 0
|
257 |
+
column_indices = column_indices[same_sign][::-1]
|
258 |
+
row_indices = row_indices[same_sign][::-1]
|
259 |
+
# Reversing the order so that steps below select rightmost columns
|
260 |
+
# for initial basis, which will tend to be slack variables. (If the
|
261 |
+
# guess corresponds with a basic feasible solution but a constraint
|
262 |
+
# is not satisfied with the corresponding slack variable zero, the slack
|
263 |
+
# variable must be basic.)
|
264 |
+
|
265 |
+
# for each row, keep rightmost singleton column with an entry in that row
|
266 |
+
unique_row_indices, first_columns = np.unique(row_indices,
|
267 |
+
return_index=True)
|
268 |
+
return column_indices[first_columns], unique_row_indices
|
269 |
+
|
270 |
+
|
271 |
+
def _find_nonzero_rows(A, tol):
|
272 |
+
"""
|
273 |
+
Returns logical array indicating the locations of rows with at least
|
274 |
+
one nonzero element.
|
275 |
+
"""
|
276 |
+
return np.any(np.abs(A) > tol, axis=1)
|
277 |
+
|
278 |
+
|
279 |
+
def _select_enter_pivot(c_hat, bl, a, rule="bland", tol=1e-12):
|
280 |
+
"""
|
281 |
+
Selects a pivot to enter the basis. Currently Bland's rule - the smallest
|
282 |
+
index that has a negative reduced cost - is the default.
|
283 |
+
"""
|
284 |
+
if rule.lower() == "mrc": # index with minimum reduced cost
|
285 |
+
return a[~bl][np.argmin(c_hat)]
|
286 |
+
else: # smallest index w/ negative reduced cost
|
287 |
+
return a[~bl][c_hat < -tol][0]
|
288 |
+
|
289 |
+
|
290 |
+
def _display_iter(phase, iteration, slack, con, fun):
|
291 |
+
"""
|
292 |
+
Print indicators of optimization status to the console.
|
293 |
+
"""
|
294 |
+
header = True if not iteration % 20 else False
|
295 |
+
|
296 |
+
if header:
|
297 |
+
print("Phase",
|
298 |
+
"Iteration",
|
299 |
+
"Minimum Slack ",
|
300 |
+
"Constraint Residual",
|
301 |
+
"Objective ")
|
302 |
+
|
303 |
+
# :<X.Y left aligns Y digits in X digit spaces
|
304 |
+
fmt = '{0:<6}{1:<10}{2:<20.13}{3:<20.13}{4:<20.13}'
|
305 |
+
try:
|
306 |
+
slack = np.min(slack)
|
307 |
+
except ValueError:
|
308 |
+
slack = "NA"
|
309 |
+
print(fmt.format(phase, iteration, slack, np.linalg.norm(con), fun))
|
310 |
+
|
311 |
+
|
312 |
+
def _display_and_callback(phase_one_n, x, postsolve_args, status,
|
313 |
+
iteration, disp, callback):
|
314 |
+
if phase_one_n is not None:
|
315 |
+
phase = 1
|
316 |
+
x_postsolve = x[:phase_one_n]
|
317 |
+
else:
|
318 |
+
phase = 2
|
319 |
+
x_postsolve = x
|
320 |
+
x_o, fun, slack, con = _postsolve(x_postsolve,
|
321 |
+
postsolve_args)
|
322 |
+
|
323 |
+
if callback is not None:
|
324 |
+
res = OptimizeResult({'x': x_o, 'fun': fun, 'slack': slack,
|
325 |
+
'con': con, 'nit': iteration,
|
326 |
+
'phase': phase, 'complete': False,
|
327 |
+
'status': status, 'message': "",
|
328 |
+
'success': False})
|
329 |
+
callback(res)
|
330 |
+
if disp:
|
331 |
+
_display_iter(phase, iteration, slack, con, fun)
|
332 |
+
|
333 |
+
|
334 |
+
def _phase_two(c, A, x, b, callback, postsolve_args, maxiter, tol, disp,
|
335 |
+
maxupdate, mast, pivot, iteration=0, phase_one_n=None):
|
336 |
+
"""
|
337 |
+
The heart of the simplex method. Beginning with a basic feasible solution,
|
338 |
+
moves to adjacent basic feasible solutions successively lower reduced cost.
|
339 |
+
Terminates when there are no basic feasible solutions with lower reduced
|
340 |
+
cost or if the problem is determined to be unbounded.
|
341 |
+
|
342 |
+
This implementation follows the revised simplex method based on LU
|
343 |
+
decomposition. Rather than maintaining a tableau or an inverse of the
|
344 |
+
basis matrix, we keep a factorization of the basis matrix that allows
|
345 |
+
efficient solution of linear systems while avoiding stability issues
|
346 |
+
associated with inverted matrices.
|
347 |
+
"""
|
348 |
+
m, n = A.shape
|
349 |
+
status = 0
|
350 |
+
a = np.arange(n) # indices of columns of A
|
351 |
+
ab = np.arange(m) # indices of columns of B
|
352 |
+
if maxupdate:
|
353 |
+
# basis matrix factorization object; similar to B = A[:, b]
|
354 |
+
B = BGLU(A, b, maxupdate, mast)
|
355 |
+
else:
|
356 |
+
B = LU(A, b)
|
357 |
+
|
358 |
+
for iteration in range(iteration, maxiter):
|
359 |
+
|
360 |
+
if disp or callback is not None:
|
361 |
+
_display_and_callback(phase_one_n, x, postsolve_args, status,
|
362 |
+
iteration, disp, callback)
|
363 |
+
|
364 |
+
bl = np.zeros(len(a), dtype=bool)
|
365 |
+
bl[b] = 1
|
366 |
+
|
367 |
+
xb = x[b] # basic variables
|
368 |
+
cb = c[b] # basic costs
|
369 |
+
|
370 |
+
try:
|
371 |
+
v = B.solve(cb, transposed=True) # similar to v = solve(B.T, cb)
|
372 |
+
except LinAlgError:
|
373 |
+
status = 4
|
374 |
+
break
|
375 |
+
|
376 |
+
# TODO: cythonize?
|
377 |
+
c_hat = c - v.dot(A) # reduced cost
|
378 |
+
c_hat = c_hat[~bl]
|
379 |
+
# Above is much faster than:
|
380 |
+
# N = A[:, ~bl] # slow!
|
381 |
+
# c_hat = c[~bl] - v.T.dot(N)
|
382 |
+
# Can we perform the multiplication only on the nonbasic columns?
|
383 |
+
|
384 |
+
if np.all(c_hat >= -tol): # all reduced costs positive -> terminate
|
385 |
+
break
|
386 |
+
|
387 |
+
j = _select_enter_pivot(c_hat, bl, a, rule=pivot, tol=tol)
|
388 |
+
u = B.solve(A[:, j]) # similar to u = solve(B, A[:, j])
|
389 |
+
|
390 |
+
i = u > tol # if none of the u are positive, unbounded
|
391 |
+
if not np.any(i):
|
392 |
+
status = 3
|
393 |
+
break
|
394 |
+
|
395 |
+
th = xb[i]/u[i]
|
396 |
+
l = np.argmin(th) # implicitly selects smallest subscript
|
397 |
+
th_star = th[l] # step size
|
398 |
+
|
399 |
+
x[b] = x[b] - th_star*u # take step
|
400 |
+
x[j] = th_star
|
401 |
+
B.update(ab[i][l], j) # modify basis
|
402 |
+
b = B.b # similar to b[ab[i][l]] =
|
403 |
+
|
404 |
+
else:
|
405 |
+
# If the end of the for loop is reached (without a break statement),
|
406 |
+
# then another step has been taken, so the iteration counter should
|
407 |
+
# increment, info should be displayed, and callback should be called.
|
408 |
+
iteration += 1
|
409 |
+
status = 1
|
410 |
+
if disp or callback is not None:
|
411 |
+
_display_and_callback(phase_one_n, x, postsolve_args, status,
|
412 |
+
iteration, disp, callback)
|
413 |
+
|
414 |
+
return x, b, status, iteration
|
415 |
+
|
416 |
+
|
417 |
+
def _linprog_rs(c, c0, A, b, x0, callback, postsolve_args,
|
418 |
+
maxiter=5000, tol=1e-12, disp=False,
|
419 |
+
maxupdate=10, mast=False, pivot="mrc",
|
420 |
+
**unknown_options):
|
421 |
+
"""
|
422 |
+
Solve the following linear programming problem via a two-phase
|
423 |
+
revised simplex algorithm.::
|
424 |
+
|
425 |
+
minimize: c @ x
|
426 |
+
|
427 |
+
subject to: A @ x == b
|
428 |
+
0 <= x < oo
|
429 |
+
|
430 |
+
User-facing documentation is in _linprog_doc.py.
|
431 |
+
|
432 |
+
Parameters
|
433 |
+
----------
|
434 |
+
c : 1-D array
|
435 |
+
Coefficients of the linear objective function to be minimized.
|
436 |
+
c0 : float
|
437 |
+
Constant term in objective function due to fixed (and eliminated)
|
438 |
+
variables. (Currently unused.)
|
439 |
+
A : 2-D array
|
440 |
+
2-D array which, when matrix-multiplied by ``x``, gives the values of
|
441 |
+
the equality constraints at ``x``.
|
442 |
+
b : 1-D array
|
443 |
+
1-D array of values representing the RHS of each equality constraint
|
444 |
+
(row) in ``A_eq``.
|
445 |
+
x0 : 1-D array, optional
|
446 |
+
Starting values of the independent variables, which will be refined by
|
447 |
+
the optimization algorithm. For the revised simplex method, these must
|
448 |
+
correspond with a basic feasible solution.
|
449 |
+
callback : callable, optional
|
450 |
+
If a callback function is provided, it will be called within each
|
451 |
+
iteration of the algorithm. The callback function must accept a single
|
452 |
+
`scipy.optimize.OptimizeResult` consisting of the following fields:
|
453 |
+
|
454 |
+
x : 1-D array
|
455 |
+
Current solution vector.
|
456 |
+
fun : float
|
457 |
+
Current value of the objective function ``c @ x``.
|
458 |
+
success : bool
|
459 |
+
True only when an algorithm has completed successfully,
|
460 |
+
so this is always False as the callback function is called
|
461 |
+
only while the algorithm is still iterating.
|
462 |
+
slack : 1-D array
|
463 |
+
The values of the slack variables. Each slack variable
|
464 |
+
corresponds to an inequality constraint. If the slack is zero,
|
465 |
+
the corresponding constraint is active.
|
466 |
+
con : 1-D array
|
467 |
+
The (nominally zero) residuals of the equality constraints,
|
468 |
+
that is, ``b - A_eq @ x``.
|
469 |
+
phase : int
|
470 |
+
The phase of the algorithm being executed.
|
471 |
+
status : int
|
472 |
+
For revised simplex, this is always 0 because if a different
|
473 |
+
status is detected, the algorithm terminates.
|
474 |
+
nit : int
|
475 |
+
The number of iterations performed.
|
476 |
+
message : str
|
477 |
+
A string descriptor of the exit status of the optimization.
|
478 |
+
postsolve_args : tuple
|
479 |
+
Data needed by _postsolve to convert the solution to the standard-form
|
480 |
+
problem into the solution to the original problem.
|
481 |
+
|
482 |
+
Options
|
483 |
+
-------
|
484 |
+
maxiter : int
|
485 |
+
The maximum number of iterations to perform in either phase.
|
486 |
+
tol : float
|
487 |
+
The tolerance which determines when a solution is "close enough" to
|
488 |
+
zero in Phase 1 to be considered a basic feasible solution or close
|
489 |
+
enough to positive to serve as an optimal solution.
|
490 |
+
disp : bool
|
491 |
+
Set to ``True`` if indicators of optimization status are to be printed
|
492 |
+
to the console each iteration.
|
493 |
+
maxupdate : int
|
494 |
+
The maximum number of updates performed on the LU factorization.
|
495 |
+
After this many updates is reached, the basis matrix is factorized
|
496 |
+
from scratch.
|
497 |
+
mast : bool
|
498 |
+
Minimize Amortized Solve Time. If enabled, the average time to solve
|
499 |
+
a linear system using the basis factorization is measured. Typically,
|
500 |
+
the average solve time will decrease with each successive solve after
|
501 |
+
initial factorization, as factorization takes much more time than the
|
502 |
+
solve operation (and updates). Eventually, however, the updated
|
503 |
+
factorization becomes sufficiently complex that the average solve time
|
504 |
+
begins to increase. When this is detected, the basis is refactorized
|
505 |
+
from scratch. Enable this option to maximize speed at the risk of
|
506 |
+
nondeterministic behavior. Ignored if ``maxupdate`` is 0.
|
507 |
+
pivot : "mrc" or "bland"
|
508 |
+
Pivot rule: Minimum Reduced Cost (default) or Bland's rule. Choose
|
509 |
+
Bland's rule if iteration limit is reached and cycling is suspected.
|
510 |
+
unknown_options : dict
|
511 |
+
Optional arguments not used by this particular solver. If
|
512 |
+
`unknown_options` is non-empty a warning is issued listing all
|
513 |
+
unused options.
|
514 |
+
|
515 |
+
Returns
|
516 |
+
-------
|
517 |
+
x : 1-D array
|
518 |
+
Solution vector.
|
519 |
+
status : int
|
520 |
+
An integer representing the exit status of the optimization::
|
521 |
+
|
522 |
+
0 : Optimization terminated successfully
|
523 |
+
1 : Iteration limit reached
|
524 |
+
2 : Problem appears to be infeasible
|
525 |
+
3 : Problem appears to be unbounded
|
526 |
+
4 : Numerical difficulties encountered
|
527 |
+
5 : No constraints; turn presolve on
|
528 |
+
6 : Guess x0 cannot be converted to a basic feasible solution
|
529 |
+
|
530 |
+
message : str
|
531 |
+
A string descriptor of the exit status of the optimization.
|
532 |
+
iteration : int
|
533 |
+
The number of iterations taken to solve the problem.
|
534 |
+
"""
|
535 |
+
|
536 |
+
_check_unknown_options(unknown_options)
|
537 |
+
|
538 |
+
messages = ["Optimization terminated successfully.",
|
539 |
+
"Iteration limit reached.",
|
540 |
+
"The problem appears infeasible, as the phase one auxiliary "
|
541 |
+
"problem terminated successfully with a residual of {0:.1e}, "
|
542 |
+
"greater than the tolerance {1} required for the solution to "
|
543 |
+
"be considered feasible. Consider increasing the tolerance to "
|
544 |
+
"be greater than {0:.1e}. If this tolerance is unnaceptably "
|
545 |
+
"large, the problem is likely infeasible.",
|
546 |
+
"The problem is unbounded, as the simplex algorithm found "
|
547 |
+
"a basic feasible solution from which there is a direction "
|
548 |
+
"with negative reduced cost in which all decision variables "
|
549 |
+
"increase.",
|
550 |
+
"Numerical difficulties encountered; consider trying "
|
551 |
+
"method='interior-point'.",
|
552 |
+
"Problems with no constraints are trivially solved; please "
|
553 |
+
"turn presolve on.",
|
554 |
+
"The guess x0 cannot be converted to a basic feasible "
|
555 |
+
"solution. "
|
556 |
+
]
|
557 |
+
|
558 |
+
if A.size == 0: # address test_unbounded_below_no_presolve_corrected
|
559 |
+
return np.zeros(c.shape), 5, messages[5], 0
|
560 |
+
|
561 |
+
x, basis, A, b, residual, status, iteration = (
|
562 |
+
_phase_one(A, b, x0, callback, postsolve_args,
|
563 |
+
maxiter, tol, disp, maxupdate, mast, pivot))
|
564 |
+
|
565 |
+
if status == 0:
|
566 |
+
x, basis, status, iteration = _phase_two(c, A, x, basis, callback,
|
567 |
+
postsolve_args,
|
568 |
+
maxiter, tol, disp,
|
569 |
+
maxupdate, mast, pivot,
|
570 |
+
iteration)
|
571 |
+
|
572 |
+
return x, status, messages[status].format(residual, tol), iteration
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/_linprog_simplex.py
ADDED
@@ -0,0 +1,661 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Simplex method for linear programming
|
2 |
+
|
3 |
+
The *simplex* method uses a traditional, full-tableau implementation of
|
4 |
+
Dantzig's simplex algorithm [1]_, [2]_ (*not* the Nelder-Mead simplex).
|
5 |
+
This algorithm is included for backwards compatibility and educational
|
6 |
+
purposes.
|
7 |
+
|
8 |
+
.. versionadded:: 0.15.0
|
9 |
+
|
10 |
+
Warnings
|
11 |
+
--------
|
12 |
+
|
13 |
+
The simplex method may encounter numerical difficulties when pivot
|
14 |
+
values are close to the specified tolerance. If encountered try
|
15 |
+
remove any redundant constraints, change the pivot strategy to Bland's
|
16 |
+
rule or increase the tolerance value.
|
17 |
+
|
18 |
+
Alternatively, more robust methods maybe be used. See
|
19 |
+
:ref:`'interior-point' <optimize.linprog-interior-point>` and
|
20 |
+
:ref:`'revised simplex' <optimize.linprog-revised_simplex>`.
|
21 |
+
|
22 |
+
References
|
23 |
+
----------
|
24 |
+
.. [1] Dantzig, George B., Linear programming and extensions. Rand
|
25 |
+
Corporation Research Study Princeton Univ. Press, Princeton, NJ,
|
26 |
+
1963
|
27 |
+
.. [2] Hillier, S.H. and Lieberman, G.J. (1995), "Introduction to
|
28 |
+
Mathematical Programming", McGraw-Hill, Chapter 4.
|
29 |
+
"""
|
30 |
+
|
31 |
+
import numpy as np
|
32 |
+
from warnings import warn
|
33 |
+
from ._optimize import OptimizeResult, OptimizeWarning, _check_unknown_options
|
34 |
+
from ._linprog_util import _postsolve
|
35 |
+
|
36 |
+
|
37 |
+
def _pivot_col(T, tol=1e-9, bland=False):
|
38 |
+
"""
|
39 |
+
Given a linear programming simplex tableau, determine the column
|
40 |
+
of the variable to enter the basis.
|
41 |
+
|
42 |
+
Parameters
|
43 |
+
----------
|
44 |
+
T : 2-D array
|
45 |
+
A 2-D array representing the simplex tableau, T, corresponding to the
|
46 |
+
linear programming problem. It should have the form:
|
47 |
+
|
48 |
+
[[A[0, 0], A[0, 1], ..., A[0, n_total], b[0]],
|
49 |
+
[A[1, 0], A[1, 1], ..., A[1, n_total], b[1]],
|
50 |
+
.
|
51 |
+
.
|
52 |
+
.
|
53 |
+
[A[m, 0], A[m, 1], ..., A[m, n_total], b[m]],
|
54 |
+
[c[0], c[1], ..., c[n_total], 0]]
|
55 |
+
|
56 |
+
for a Phase 2 problem, or the form:
|
57 |
+
|
58 |
+
[[A[0, 0], A[0, 1], ..., A[0, n_total], b[0]],
|
59 |
+
[A[1, 0], A[1, 1], ..., A[1, n_total], b[1]],
|
60 |
+
.
|
61 |
+
.
|
62 |
+
.
|
63 |
+
[A[m, 0], A[m, 1], ..., A[m, n_total], b[m]],
|
64 |
+
[c[0], c[1], ..., c[n_total], 0],
|
65 |
+
[c'[0], c'[1], ..., c'[n_total], 0]]
|
66 |
+
|
67 |
+
for a Phase 1 problem (a problem in which a basic feasible solution is
|
68 |
+
sought prior to maximizing the actual objective. ``T`` is modified in
|
69 |
+
place by ``_solve_simplex``.
|
70 |
+
tol : float
|
71 |
+
Elements in the objective row larger than -tol will not be considered
|
72 |
+
for pivoting. Nominally this value is zero, but numerical issues
|
73 |
+
cause a tolerance about zero to be necessary.
|
74 |
+
bland : bool
|
75 |
+
If True, use Bland's rule for selection of the column (select the
|
76 |
+
first column with a negative coefficient in the objective row,
|
77 |
+
regardless of magnitude).
|
78 |
+
|
79 |
+
Returns
|
80 |
+
-------
|
81 |
+
status: bool
|
82 |
+
True if a suitable pivot column was found, otherwise False.
|
83 |
+
A return of False indicates that the linear programming simplex
|
84 |
+
algorithm is complete.
|
85 |
+
col: int
|
86 |
+
The index of the column of the pivot element.
|
87 |
+
If status is False, col will be returned as nan.
|
88 |
+
"""
|
89 |
+
ma = np.ma.masked_where(T[-1, :-1] >= -tol, T[-1, :-1], copy=False)
|
90 |
+
if ma.count() == 0:
|
91 |
+
return False, np.nan
|
92 |
+
if bland:
|
93 |
+
# ma.mask is sometimes 0d
|
94 |
+
return True, np.nonzero(np.logical_not(np.atleast_1d(ma.mask)))[0][0]
|
95 |
+
return True, np.ma.nonzero(ma == ma.min())[0][0]
|
96 |
+
|
97 |
+
|
98 |
+
def _pivot_row(T, basis, pivcol, phase, tol=1e-9, bland=False):
|
99 |
+
"""
|
100 |
+
Given a linear programming simplex tableau, determine the row for the
|
101 |
+
pivot operation.
|
102 |
+
|
103 |
+
Parameters
|
104 |
+
----------
|
105 |
+
T : 2-D array
|
106 |
+
A 2-D array representing the simplex tableau, T, corresponding to the
|
107 |
+
linear programming problem. It should have the form:
|
108 |
+
|
109 |
+
[[A[0, 0], A[0, 1], ..., A[0, n_total], b[0]],
|
110 |
+
[A[1, 0], A[1, 1], ..., A[1, n_total], b[1]],
|
111 |
+
.
|
112 |
+
.
|
113 |
+
.
|
114 |
+
[A[m, 0], A[m, 1], ..., A[m, n_total], b[m]],
|
115 |
+
[c[0], c[1], ..., c[n_total], 0]]
|
116 |
+
|
117 |
+
for a Phase 2 problem, or the form:
|
118 |
+
|
119 |
+
[[A[0, 0], A[0, 1], ..., A[0, n_total], b[0]],
|
120 |
+
[A[1, 0], A[1, 1], ..., A[1, n_total], b[1]],
|
121 |
+
.
|
122 |
+
.
|
123 |
+
.
|
124 |
+
[A[m, 0], A[m, 1], ..., A[m, n_total], b[m]],
|
125 |
+
[c[0], c[1], ..., c[n_total], 0],
|
126 |
+
[c'[0], c'[1], ..., c'[n_total], 0]]
|
127 |
+
|
128 |
+
for a Phase 1 problem (a Problem in which a basic feasible solution is
|
129 |
+
sought prior to maximizing the actual objective. ``T`` is modified in
|
130 |
+
place by ``_solve_simplex``.
|
131 |
+
basis : array
|
132 |
+
A list of the current basic variables.
|
133 |
+
pivcol : int
|
134 |
+
The index of the pivot column.
|
135 |
+
phase : int
|
136 |
+
The phase of the simplex algorithm (1 or 2).
|
137 |
+
tol : float
|
138 |
+
Elements in the pivot column smaller than tol will not be considered
|
139 |
+
for pivoting. Nominally this value is zero, but numerical issues
|
140 |
+
cause a tolerance about zero to be necessary.
|
141 |
+
bland : bool
|
142 |
+
If True, use Bland's rule for selection of the row (if more than one
|
143 |
+
row can be used, choose the one with the lowest variable index).
|
144 |
+
|
145 |
+
Returns
|
146 |
+
-------
|
147 |
+
status: bool
|
148 |
+
True if a suitable pivot row was found, otherwise False. A return
|
149 |
+
of False indicates that the linear programming problem is unbounded.
|
150 |
+
row: int
|
151 |
+
The index of the row of the pivot element. If status is False, row
|
152 |
+
will be returned as nan.
|
153 |
+
"""
|
154 |
+
if phase == 1:
|
155 |
+
k = 2
|
156 |
+
else:
|
157 |
+
k = 1
|
158 |
+
ma = np.ma.masked_where(T[:-k, pivcol] <= tol, T[:-k, pivcol], copy=False)
|
159 |
+
if ma.count() == 0:
|
160 |
+
return False, np.nan
|
161 |
+
mb = np.ma.masked_where(T[:-k, pivcol] <= tol, T[:-k, -1], copy=False)
|
162 |
+
q = mb / ma
|
163 |
+
min_rows = np.ma.nonzero(q == q.min())[0]
|
164 |
+
if bland:
|
165 |
+
return True, min_rows[np.argmin(np.take(basis, min_rows))]
|
166 |
+
return True, min_rows[0]
|
167 |
+
|
168 |
+
|
169 |
+
def _apply_pivot(T, basis, pivrow, pivcol, tol=1e-9):
|
170 |
+
"""
|
171 |
+
Pivot the simplex tableau inplace on the element given by (pivrow, pivol).
|
172 |
+
The entering variable corresponds to the column given by pivcol forcing
|
173 |
+
the variable basis[pivrow] to leave the basis.
|
174 |
+
|
175 |
+
Parameters
|
176 |
+
----------
|
177 |
+
T : 2-D array
|
178 |
+
A 2-D array representing the simplex tableau, T, corresponding to the
|
179 |
+
linear programming problem. It should have the form:
|
180 |
+
|
181 |
+
[[A[0, 0], A[0, 1], ..., A[0, n_total], b[0]],
|
182 |
+
[A[1, 0], A[1, 1], ..., A[1, n_total], b[1]],
|
183 |
+
.
|
184 |
+
.
|
185 |
+
.
|
186 |
+
[A[m, 0], A[m, 1], ..., A[m, n_total], b[m]],
|
187 |
+
[c[0], c[1], ..., c[n_total], 0]]
|
188 |
+
|
189 |
+
for a Phase 2 problem, or the form:
|
190 |
+
|
191 |
+
[[A[0, 0], A[0, 1], ..., A[0, n_total], b[0]],
|
192 |
+
[A[1, 0], A[1, 1], ..., A[1, n_total], b[1]],
|
193 |
+
.
|
194 |
+
.
|
195 |
+
.
|
196 |
+
[A[m, 0], A[m, 1], ..., A[m, n_total], b[m]],
|
197 |
+
[c[0], c[1], ..., c[n_total], 0],
|
198 |
+
[c'[0], c'[1], ..., c'[n_total], 0]]
|
199 |
+
|
200 |
+
for a Phase 1 problem (a problem in which a basic feasible solution is
|
201 |
+
sought prior to maximizing the actual objective. ``T`` is modified in
|
202 |
+
place by ``_solve_simplex``.
|
203 |
+
basis : 1-D array
|
204 |
+
An array of the indices of the basic variables, such that basis[i]
|
205 |
+
contains the column corresponding to the basic variable for row i.
|
206 |
+
Basis is modified in place by _apply_pivot.
|
207 |
+
pivrow : int
|
208 |
+
Row index of the pivot.
|
209 |
+
pivcol : int
|
210 |
+
Column index of the pivot.
|
211 |
+
"""
|
212 |
+
basis[pivrow] = pivcol
|
213 |
+
pivval = T[pivrow, pivcol]
|
214 |
+
T[pivrow] = T[pivrow] / pivval
|
215 |
+
for irow in range(T.shape[0]):
|
216 |
+
if irow != pivrow:
|
217 |
+
T[irow] = T[irow] - T[pivrow] * T[irow, pivcol]
|
218 |
+
|
219 |
+
# The selected pivot should never lead to a pivot value less than the tol.
|
220 |
+
if np.isclose(pivval, tol, atol=0, rtol=1e4):
|
221 |
+
message = (
|
222 |
+
f"The pivot operation produces a pivot value of:{pivval: .1e}, "
|
223 |
+
"which is only slightly greater than the specified "
|
224 |
+
f"tolerance{tol: .1e}. This may lead to issues regarding the "
|
225 |
+
"numerical stability of the simplex method. "
|
226 |
+
"Removing redundant constraints, changing the pivot strategy "
|
227 |
+
"via Bland's rule or increasing the tolerance may "
|
228 |
+
"help reduce the issue.")
|
229 |
+
warn(message, OptimizeWarning, stacklevel=5)
|
230 |
+
|
231 |
+
|
232 |
+
def _solve_simplex(T, n, basis, callback, postsolve_args,
|
233 |
+
maxiter=1000, tol=1e-9, phase=2, bland=False, nit0=0,
|
234 |
+
):
|
235 |
+
"""
|
236 |
+
Solve a linear programming problem in "standard form" using the Simplex
|
237 |
+
Method. Linear Programming is intended to solve the following problem form:
|
238 |
+
|
239 |
+
Minimize::
|
240 |
+
|
241 |
+
c @ x
|
242 |
+
|
243 |
+
Subject to::
|
244 |
+
|
245 |
+
A @ x == b
|
246 |
+
x >= 0
|
247 |
+
|
248 |
+
Parameters
|
249 |
+
----------
|
250 |
+
T : 2-D array
|
251 |
+
A 2-D array representing the simplex tableau, T, corresponding to the
|
252 |
+
linear programming problem. It should have the form:
|
253 |
+
|
254 |
+
[[A[0, 0], A[0, 1], ..., A[0, n_total], b[0]],
|
255 |
+
[A[1, 0], A[1, 1], ..., A[1, n_total], b[1]],
|
256 |
+
.
|
257 |
+
.
|
258 |
+
.
|
259 |
+
[A[m, 0], A[m, 1], ..., A[m, n_total], b[m]],
|
260 |
+
[c[0], c[1], ..., c[n_total], 0]]
|
261 |
+
|
262 |
+
for a Phase 2 problem, or the form:
|
263 |
+
|
264 |
+
[[A[0, 0], A[0, 1], ..., A[0, n_total], b[0]],
|
265 |
+
[A[1, 0], A[1, 1], ..., A[1, n_total], b[1]],
|
266 |
+
.
|
267 |
+
.
|
268 |
+
.
|
269 |
+
[A[m, 0], A[m, 1], ..., A[m, n_total], b[m]],
|
270 |
+
[c[0], c[1], ..., c[n_total], 0],
|
271 |
+
[c'[0], c'[1], ..., c'[n_total], 0]]
|
272 |
+
|
273 |
+
for a Phase 1 problem (a problem in which a basic feasible solution is
|
274 |
+
sought prior to maximizing the actual objective. ``T`` is modified in
|
275 |
+
place by ``_solve_simplex``.
|
276 |
+
n : int
|
277 |
+
The number of true variables in the problem.
|
278 |
+
basis : 1-D array
|
279 |
+
An array of the indices of the basic variables, such that basis[i]
|
280 |
+
contains the column corresponding to the basic variable for row i.
|
281 |
+
Basis is modified in place by _solve_simplex
|
282 |
+
callback : callable, optional
|
283 |
+
If a callback function is provided, it will be called within each
|
284 |
+
iteration of the algorithm. The callback must accept a
|
285 |
+
`scipy.optimize.OptimizeResult` consisting of the following fields:
|
286 |
+
|
287 |
+
x : 1-D array
|
288 |
+
Current solution vector
|
289 |
+
fun : float
|
290 |
+
Current value of the objective function
|
291 |
+
success : bool
|
292 |
+
True only when a phase has completed successfully. This
|
293 |
+
will be False for most iterations.
|
294 |
+
slack : 1-D array
|
295 |
+
The values of the slack variables. Each slack variable
|
296 |
+
corresponds to an inequality constraint. If the slack is zero,
|
297 |
+
the corresponding constraint is active.
|
298 |
+
con : 1-D array
|
299 |
+
The (nominally zero) residuals of the equality constraints,
|
300 |
+
that is, ``b - A_eq @ x``
|
301 |
+
phase : int
|
302 |
+
The phase of the optimization being executed. In phase 1 a basic
|
303 |
+
feasible solution is sought and the T has an additional row
|
304 |
+
representing an alternate objective function.
|
305 |
+
status : int
|
306 |
+
An integer representing the exit status of the optimization::
|
307 |
+
|
308 |
+
0 : Optimization terminated successfully
|
309 |
+
1 : Iteration limit reached
|
310 |
+
2 : Problem appears to be infeasible
|
311 |
+
3 : Problem appears to be unbounded
|
312 |
+
4 : Serious numerical difficulties encountered
|
313 |
+
|
314 |
+
nit : int
|
315 |
+
The number of iterations performed.
|
316 |
+
message : str
|
317 |
+
A string descriptor of the exit status of the optimization.
|
318 |
+
postsolve_args : tuple
|
319 |
+
Data needed by _postsolve to convert the solution to the standard-form
|
320 |
+
problem into the solution to the original problem.
|
321 |
+
maxiter : int
|
322 |
+
The maximum number of iterations to perform before aborting the
|
323 |
+
optimization.
|
324 |
+
tol : float
|
325 |
+
The tolerance which determines when a solution is "close enough" to
|
326 |
+
zero in Phase 1 to be considered a basic feasible solution or close
|
327 |
+
enough to positive to serve as an optimal solution.
|
328 |
+
phase : int
|
329 |
+
The phase of the optimization being executed. In phase 1 a basic
|
330 |
+
feasible solution is sought and the T has an additional row
|
331 |
+
representing an alternate objective function.
|
332 |
+
bland : bool
|
333 |
+
If True, choose pivots using Bland's rule [3]_. In problems which
|
334 |
+
fail to converge due to cycling, using Bland's rule can provide
|
335 |
+
convergence at the expense of a less optimal path about the simplex.
|
336 |
+
nit0 : int
|
337 |
+
The initial iteration number used to keep an accurate iteration total
|
338 |
+
in a two-phase problem.
|
339 |
+
|
340 |
+
Returns
|
341 |
+
-------
|
342 |
+
nit : int
|
343 |
+
The number of iterations. Used to keep an accurate iteration total
|
344 |
+
in the two-phase problem.
|
345 |
+
status : int
|
346 |
+
An integer representing the exit status of the optimization::
|
347 |
+
|
348 |
+
0 : Optimization terminated successfully
|
349 |
+
1 : Iteration limit reached
|
350 |
+
2 : Problem appears to be infeasible
|
351 |
+
3 : Problem appears to be unbounded
|
352 |
+
4 : Serious numerical difficulties encountered
|
353 |
+
|
354 |
+
"""
|
355 |
+
nit = nit0
|
356 |
+
status = 0
|
357 |
+
message = ''
|
358 |
+
complete = False
|
359 |
+
|
360 |
+
if phase == 1:
|
361 |
+
m = T.shape[1]-2
|
362 |
+
elif phase == 2:
|
363 |
+
m = T.shape[1]-1
|
364 |
+
else:
|
365 |
+
raise ValueError("Argument 'phase' to _solve_simplex must be 1 or 2")
|
366 |
+
|
367 |
+
if phase == 2:
|
368 |
+
# Check if any artificial variables are still in the basis.
|
369 |
+
# If yes, check if any coefficients from this row and a column
|
370 |
+
# corresponding to one of the non-artificial variable is non-zero.
|
371 |
+
# If found, pivot at this term. If not, start phase 2.
|
372 |
+
# Do this for all artificial variables in the basis.
|
373 |
+
# Ref: "An Introduction to Linear Programming and Game Theory"
|
374 |
+
# by Paul R. Thie, Gerard E. Keough, 3rd Ed,
|
375 |
+
# Chapter 3.7 Redundant Systems (pag 102)
|
376 |
+
for pivrow in [row for row in range(basis.size)
|
377 |
+
if basis[row] > T.shape[1] - 2]:
|
378 |
+
non_zero_row = [col for col in range(T.shape[1] - 1)
|
379 |
+
if abs(T[pivrow, col]) > tol]
|
380 |
+
if len(non_zero_row) > 0:
|
381 |
+
pivcol = non_zero_row[0]
|
382 |
+
_apply_pivot(T, basis, pivrow, pivcol, tol)
|
383 |
+
nit += 1
|
384 |
+
|
385 |
+
if len(basis[:m]) == 0:
|
386 |
+
solution = np.empty(T.shape[1] - 1, dtype=np.float64)
|
387 |
+
else:
|
388 |
+
solution = np.empty(max(T.shape[1] - 1, max(basis[:m]) + 1),
|
389 |
+
dtype=np.float64)
|
390 |
+
|
391 |
+
while not complete:
|
392 |
+
# Find the pivot column
|
393 |
+
pivcol_found, pivcol = _pivot_col(T, tol, bland)
|
394 |
+
if not pivcol_found:
|
395 |
+
pivcol = np.nan
|
396 |
+
pivrow = np.nan
|
397 |
+
status = 0
|
398 |
+
complete = True
|
399 |
+
else:
|
400 |
+
# Find the pivot row
|
401 |
+
pivrow_found, pivrow = _pivot_row(T, basis, pivcol, phase, tol, bland)
|
402 |
+
if not pivrow_found:
|
403 |
+
status = 3
|
404 |
+
complete = True
|
405 |
+
|
406 |
+
if callback is not None:
|
407 |
+
solution[:] = 0
|
408 |
+
solution[basis[:n]] = T[:n, -1]
|
409 |
+
x = solution[:m]
|
410 |
+
x, fun, slack, con = _postsolve(
|
411 |
+
x, postsolve_args
|
412 |
+
)
|
413 |
+
res = OptimizeResult({
|
414 |
+
'x': x,
|
415 |
+
'fun': fun,
|
416 |
+
'slack': slack,
|
417 |
+
'con': con,
|
418 |
+
'status': status,
|
419 |
+
'message': message,
|
420 |
+
'nit': nit,
|
421 |
+
'success': status == 0 and complete,
|
422 |
+
'phase': phase,
|
423 |
+
'complete': complete,
|
424 |
+
})
|
425 |
+
callback(res)
|
426 |
+
|
427 |
+
if not complete:
|
428 |
+
if nit >= maxiter:
|
429 |
+
# Iteration limit exceeded
|
430 |
+
status = 1
|
431 |
+
complete = True
|
432 |
+
else:
|
433 |
+
_apply_pivot(T, basis, pivrow, pivcol, tol)
|
434 |
+
nit += 1
|
435 |
+
return nit, status
|
436 |
+
|
437 |
+
|
438 |
+
def _linprog_simplex(c, c0, A, b, callback, postsolve_args,
|
439 |
+
maxiter=1000, tol=1e-9, disp=False, bland=False,
|
440 |
+
**unknown_options):
|
441 |
+
"""
|
442 |
+
Minimize a linear objective function subject to linear equality and
|
443 |
+
non-negativity constraints using the two phase simplex method.
|
444 |
+
Linear programming is intended to solve problems of the following form:
|
445 |
+
|
446 |
+
Minimize::
|
447 |
+
|
448 |
+
c @ x
|
449 |
+
|
450 |
+
Subject to::
|
451 |
+
|
452 |
+
A @ x == b
|
453 |
+
x >= 0
|
454 |
+
|
455 |
+
User-facing documentation is in _linprog_doc.py.
|
456 |
+
|
457 |
+
Parameters
|
458 |
+
----------
|
459 |
+
c : 1-D array
|
460 |
+
Coefficients of the linear objective function to be minimized.
|
461 |
+
c0 : float
|
462 |
+
Constant term in objective function due to fixed (and eliminated)
|
463 |
+
variables. (Purely for display.)
|
464 |
+
A : 2-D array
|
465 |
+
2-D array such that ``A @ x``, gives the values of the equality
|
466 |
+
constraints at ``x``.
|
467 |
+
b : 1-D array
|
468 |
+
1-D array of values representing the right hand side of each equality
|
469 |
+
constraint (row) in ``A``.
|
470 |
+
callback : callable, optional
|
471 |
+
If a callback function is provided, it will be called within each
|
472 |
+
iteration of the algorithm. The callback function must accept a single
|
473 |
+
`scipy.optimize.OptimizeResult` consisting of the following fields:
|
474 |
+
|
475 |
+
x : 1-D array
|
476 |
+
Current solution vector
|
477 |
+
fun : float
|
478 |
+
Current value of the objective function
|
479 |
+
success : bool
|
480 |
+
True when an algorithm has completed successfully.
|
481 |
+
slack : 1-D array
|
482 |
+
The values of the slack variables. Each slack variable
|
483 |
+
corresponds to an inequality constraint. If the slack is zero,
|
484 |
+
the corresponding constraint is active.
|
485 |
+
con : 1-D array
|
486 |
+
The (nominally zero) residuals of the equality constraints,
|
487 |
+
that is, ``b - A_eq @ x``
|
488 |
+
phase : int
|
489 |
+
The phase of the algorithm being executed.
|
490 |
+
status : int
|
491 |
+
An integer representing the status of the optimization::
|
492 |
+
|
493 |
+
0 : Algorithm proceeding nominally
|
494 |
+
1 : Iteration limit reached
|
495 |
+
2 : Problem appears to be infeasible
|
496 |
+
3 : Problem appears to be unbounded
|
497 |
+
4 : Serious numerical difficulties encountered
|
498 |
+
nit : int
|
499 |
+
The number of iterations performed.
|
500 |
+
message : str
|
501 |
+
A string descriptor of the exit status of the optimization.
|
502 |
+
postsolve_args : tuple
|
503 |
+
Data needed by _postsolve to convert the solution to the standard-form
|
504 |
+
problem into the solution to the original problem.
|
505 |
+
|
506 |
+
Options
|
507 |
+
-------
|
508 |
+
maxiter : int
|
509 |
+
The maximum number of iterations to perform.
|
510 |
+
disp : bool
|
511 |
+
If True, print exit status message to sys.stdout
|
512 |
+
tol : float
|
513 |
+
The tolerance which determines when a solution is "close enough" to
|
514 |
+
zero in Phase 1 to be considered a basic feasible solution or close
|
515 |
+
enough to positive to serve as an optimal solution.
|
516 |
+
bland : bool
|
517 |
+
If True, use Bland's anti-cycling rule [3]_ to choose pivots to
|
518 |
+
prevent cycling. If False, choose pivots which should lead to a
|
519 |
+
converged solution more quickly. The latter method is subject to
|
520 |
+
cycling (non-convergence) in rare instances.
|
521 |
+
unknown_options : dict
|
522 |
+
Optional arguments not used by this particular solver. If
|
523 |
+
`unknown_options` is non-empty a warning is issued listing all
|
524 |
+
unused options.
|
525 |
+
|
526 |
+
Returns
|
527 |
+
-------
|
528 |
+
x : 1-D array
|
529 |
+
Solution vector.
|
530 |
+
status : int
|
531 |
+
An integer representing the exit status of the optimization::
|
532 |
+
|
533 |
+
0 : Optimization terminated successfully
|
534 |
+
1 : Iteration limit reached
|
535 |
+
2 : Problem appears to be infeasible
|
536 |
+
3 : Problem appears to be unbounded
|
537 |
+
4 : Serious numerical difficulties encountered
|
538 |
+
|
539 |
+
message : str
|
540 |
+
A string descriptor of the exit status of the optimization.
|
541 |
+
iteration : int
|
542 |
+
The number of iterations taken to solve the problem.
|
543 |
+
|
544 |
+
References
|
545 |
+
----------
|
546 |
+
.. [1] Dantzig, George B., Linear programming and extensions. Rand
|
547 |
+
Corporation Research Study Princeton Univ. Press, Princeton, NJ,
|
548 |
+
1963
|
549 |
+
.. [2] Hillier, S.H. and Lieberman, G.J. (1995), "Introduction to
|
550 |
+
Mathematical Programming", McGraw-Hill, Chapter 4.
|
551 |
+
.. [3] Bland, Robert G. New finite pivoting rules for the simplex method.
|
552 |
+
Mathematics of Operations Research (2), 1977: pp. 103-107.
|
553 |
+
|
554 |
+
|
555 |
+
Notes
|
556 |
+
-----
|
557 |
+
The expected problem formulation differs between the top level ``linprog``
|
558 |
+
module and the method specific solvers. The method specific solvers expect a
|
559 |
+
problem in standard form:
|
560 |
+
|
561 |
+
Minimize::
|
562 |
+
|
563 |
+
c @ x
|
564 |
+
|
565 |
+
Subject to::
|
566 |
+
|
567 |
+
A @ x == b
|
568 |
+
x >= 0
|
569 |
+
|
570 |
+
Whereas the top level ``linprog`` module expects a problem of form:
|
571 |
+
|
572 |
+
Minimize::
|
573 |
+
|
574 |
+
c @ x
|
575 |
+
|
576 |
+
Subject to::
|
577 |
+
|
578 |
+
A_ub @ x <= b_ub
|
579 |
+
A_eq @ x == b_eq
|
580 |
+
lb <= x <= ub
|
581 |
+
|
582 |
+
where ``lb = 0`` and ``ub = None`` unless set in ``bounds``.
|
583 |
+
|
584 |
+
The original problem contains equality, upper-bound and variable constraints
|
585 |
+
whereas the method specific solver requires equality constraints and
|
586 |
+
variable non-negativity.
|
587 |
+
|
588 |
+
``linprog`` module converts the original problem to standard form by
|
589 |
+
converting the simple bounds to upper bound constraints, introducing
|
590 |
+
non-negative slack variables for inequality constraints, and expressing
|
591 |
+
unbounded variables as the difference between two non-negative variables.
|
592 |
+
"""
|
593 |
+
_check_unknown_options(unknown_options)
|
594 |
+
|
595 |
+
status = 0
|
596 |
+
messages = {0: "Optimization terminated successfully.",
|
597 |
+
1: "Iteration limit reached.",
|
598 |
+
2: "Optimization failed. Unable to find a feasible"
|
599 |
+
" starting point.",
|
600 |
+
3: "Optimization failed. The problem appears to be unbounded.",
|
601 |
+
4: "Optimization failed. Singular matrix encountered."}
|
602 |
+
|
603 |
+
n, m = A.shape
|
604 |
+
|
605 |
+
# All constraints must have b >= 0.
|
606 |
+
is_negative_constraint = np.less(b, 0)
|
607 |
+
A[is_negative_constraint] *= -1
|
608 |
+
b[is_negative_constraint] *= -1
|
609 |
+
|
610 |
+
# As all constraints are equality constraints the artificial variables
|
611 |
+
# will also be basic variables.
|
612 |
+
av = np.arange(n) + m
|
613 |
+
basis = av.copy()
|
614 |
+
|
615 |
+
# Format the phase one tableau by adding artificial variables and stacking
|
616 |
+
# the constraints, the objective row and pseudo-objective row.
|
617 |
+
row_constraints = np.hstack((A, np.eye(n), b[:, np.newaxis]))
|
618 |
+
row_objective = np.hstack((c, np.zeros(n), c0))
|
619 |
+
row_pseudo_objective = -row_constraints.sum(axis=0)
|
620 |
+
row_pseudo_objective[av] = 0
|
621 |
+
T = np.vstack((row_constraints, row_objective, row_pseudo_objective))
|
622 |
+
|
623 |
+
nit1, status = _solve_simplex(T, n, basis, callback=callback,
|
624 |
+
postsolve_args=postsolve_args,
|
625 |
+
maxiter=maxiter, tol=tol, phase=1,
|
626 |
+
bland=bland
|
627 |
+
)
|
628 |
+
# if pseudo objective is zero, remove the last row from the tableau and
|
629 |
+
# proceed to phase 2
|
630 |
+
nit2 = nit1
|
631 |
+
if abs(T[-1, -1]) < tol:
|
632 |
+
# Remove the pseudo-objective row from the tableau
|
633 |
+
T = T[:-1, :]
|
634 |
+
# Remove the artificial variable columns from the tableau
|
635 |
+
T = np.delete(T, av, 1)
|
636 |
+
else:
|
637 |
+
# Failure to find a feasible starting point
|
638 |
+
status = 2
|
639 |
+
messages[status] = (
|
640 |
+
"Phase 1 of the simplex method failed to find a feasible "
|
641 |
+
"solution. The pseudo-objective function evaluates to {0:.1e} "
|
642 |
+
"which exceeds the required tolerance of {1} for a solution to be "
|
643 |
+
"considered 'close enough' to zero to be a basic solution. "
|
644 |
+
"Consider increasing the tolerance to be greater than {0:.1e}. "
|
645 |
+
"If this tolerance is unacceptably large the problem may be "
|
646 |
+
"infeasible.".format(abs(T[-1, -1]), tol)
|
647 |
+
)
|
648 |
+
|
649 |
+
if status == 0:
|
650 |
+
# Phase 2
|
651 |
+
nit2, status = _solve_simplex(T, n, basis, callback=callback,
|
652 |
+
postsolve_args=postsolve_args,
|
653 |
+
maxiter=maxiter, tol=tol, phase=2,
|
654 |
+
bland=bland, nit0=nit1
|
655 |
+
)
|
656 |
+
|
657 |
+
solution = np.zeros(n + m)
|
658 |
+
solution[basis[:n]] = T[:n, -1]
|
659 |
+
x = solution[:m]
|
660 |
+
|
661 |
+
return x, status, messages[status], int(nit2)
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/_lsq/common.py
ADDED
@@ -0,0 +1,733 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Functions used by least-squares algorithms."""
|
2 |
+
from math import copysign
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
from numpy.linalg import norm
|
6 |
+
|
7 |
+
from scipy.linalg import cho_factor, cho_solve, LinAlgError
|
8 |
+
from scipy.sparse import issparse
|
9 |
+
from scipy.sparse.linalg import LinearOperator, aslinearoperator
|
10 |
+
|
11 |
+
|
12 |
+
EPS = np.finfo(float).eps
|
13 |
+
|
14 |
+
|
15 |
+
# Functions related to a trust-region problem.
|
16 |
+
|
17 |
+
|
18 |
+
def intersect_trust_region(x, s, Delta):
|
19 |
+
"""Find the intersection of a line with the boundary of a trust region.
|
20 |
+
|
21 |
+
This function solves the quadratic equation with respect to t
|
22 |
+
||(x + s*t)||**2 = Delta**2.
|
23 |
+
|
24 |
+
Returns
|
25 |
+
-------
|
26 |
+
t_neg, t_pos : tuple of float
|
27 |
+
Negative and positive roots.
|
28 |
+
|
29 |
+
Raises
|
30 |
+
------
|
31 |
+
ValueError
|
32 |
+
If `s` is zero or `x` is not within the trust region.
|
33 |
+
"""
|
34 |
+
a = np.dot(s, s)
|
35 |
+
if a == 0:
|
36 |
+
raise ValueError("`s` is zero.")
|
37 |
+
|
38 |
+
b = np.dot(x, s)
|
39 |
+
|
40 |
+
c = np.dot(x, x) - Delta**2
|
41 |
+
if c > 0:
|
42 |
+
raise ValueError("`x` is not within the trust region.")
|
43 |
+
|
44 |
+
d = np.sqrt(b*b - a*c) # Root from one fourth of the discriminant.
|
45 |
+
|
46 |
+
# Computations below avoid loss of significance, see "Numerical Recipes".
|
47 |
+
q = -(b + copysign(d, b))
|
48 |
+
t1 = q / a
|
49 |
+
t2 = c / q
|
50 |
+
|
51 |
+
if t1 < t2:
|
52 |
+
return t1, t2
|
53 |
+
else:
|
54 |
+
return t2, t1
|
55 |
+
|
56 |
+
|
57 |
+
def solve_lsq_trust_region(n, m, uf, s, V, Delta, initial_alpha=None,
|
58 |
+
rtol=0.01, max_iter=10):
|
59 |
+
"""Solve a trust-region problem arising in least-squares minimization.
|
60 |
+
|
61 |
+
This function implements a method described by J. J. More [1]_ and used
|
62 |
+
in MINPACK, but it relies on a single SVD of Jacobian instead of series
|
63 |
+
of Cholesky decompositions. Before running this function, compute:
|
64 |
+
``U, s, VT = svd(J, full_matrices=False)``.
|
65 |
+
|
66 |
+
Parameters
|
67 |
+
----------
|
68 |
+
n : int
|
69 |
+
Number of variables.
|
70 |
+
m : int
|
71 |
+
Number of residuals.
|
72 |
+
uf : ndarray
|
73 |
+
Computed as U.T.dot(f).
|
74 |
+
s : ndarray
|
75 |
+
Singular values of J.
|
76 |
+
V : ndarray
|
77 |
+
Transpose of VT.
|
78 |
+
Delta : float
|
79 |
+
Radius of a trust region.
|
80 |
+
initial_alpha : float, optional
|
81 |
+
Initial guess for alpha, which might be available from a previous
|
82 |
+
iteration. If None, determined automatically.
|
83 |
+
rtol : float, optional
|
84 |
+
Stopping tolerance for the root-finding procedure. Namely, the
|
85 |
+
solution ``p`` will satisfy ``abs(norm(p) - Delta) < rtol * Delta``.
|
86 |
+
max_iter : int, optional
|
87 |
+
Maximum allowed number of iterations for the root-finding procedure.
|
88 |
+
|
89 |
+
Returns
|
90 |
+
-------
|
91 |
+
p : ndarray, shape (n,)
|
92 |
+
Found solution of a trust-region problem.
|
93 |
+
alpha : float
|
94 |
+
Positive value such that (J.T*J + alpha*I)*p = -J.T*f.
|
95 |
+
Sometimes called Levenberg-Marquardt parameter.
|
96 |
+
n_iter : int
|
97 |
+
Number of iterations made by root-finding procedure. Zero means
|
98 |
+
that Gauss-Newton step was selected as the solution.
|
99 |
+
|
100 |
+
References
|
101 |
+
----------
|
102 |
+
.. [1] More, J. J., "The Levenberg-Marquardt Algorithm: Implementation
|
103 |
+
and Theory," Numerical Analysis, ed. G. A. Watson, Lecture Notes
|
104 |
+
in Mathematics 630, Springer Verlag, pp. 105-116, 1977.
|
105 |
+
"""
|
106 |
+
def phi_and_derivative(alpha, suf, s, Delta):
|
107 |
+
"""Function of which to find zero.
|
108 |
+
|
109 |
+
It is defined as "norm of regularized (by alpha) least-squares
|
110 |
+
solution minus `Delta`". Refer to [1]_.
|
111 |
+
"""
|
112 |
+
denom = s**2 + alpha
|
113 |
+
p_norm = norm(suf / denom)
|
114 |
+
phi = p_norm - Delta
|
115 |
+
phi_prime = -np.sum(suf ** 2 / denom**3) / p_norm
|
116 |
+
return phi, phi_prime
|
117 |
+
|
118 |
+
suf = s * uf
|
119 |
+
|
120 |
+
# Check if J has full rank and try Gauss-Newton step.
|
121 |
+
if m >= n:
|
122 |
+
threshold = EPS * m * s[0]
|
123 |
+
full_rank = s[-1] > threshold
|
124 |
+
else:
|
125 |
+
full_rank = False
|
126 |
+
|
127 |
+
if full_rank:
|
128 |
+
p = -V.dot(uf / s)
|
129 |
+
if norm(p) <= Delta:
|
130 |
+
return p, 0.0, 0
|
131 |
+
|
132 |
+
alpha_upper = norm(suf) / Delta
|
133 |
+
|
134 |
+
if full_rank:
|
135 |
+
phi, phi_prime = phi_and_derivative(0.0, suf, s, Delta)
|
136 |
+
alpha_lower = -phi / phi_prime
|
137 |
+
else:
|
138 |
+
alpha_lower = 0.0
|
139 |
+
|
140 |
+
if initial_alpha is None or not full_rank and initial_alpha == 0:
|
141 |
+
alpha = max(0.001 * alpha_upper, (alpha_lower * alpha_upper)**0.5)
|
142 |
+
else:
|
143 |
+
alpha = initial_alpha
|
144 |
+
|
145 |
+
for it in range(max_iter):
|
146 |
+
if alpha < alpha_lower or alpha > alpha_upper:
|
147 |
+
alpha = max(0.001 * alpha_upper, (alpha_lower * alpha_upper)**0.5)
|
148 |
+
|
149 |
+
phi, phi_prime = phi_and_derivative(alpha, suf, s, Delta)
|
150 |
+
|
151 |
+
if phi < 0:
|
152 |
+
alpha_upper = alpha
|
153 |
+
|
154 |
+
ratio = phi / phi_prime
|
155 |
+
alpha_lower = max(alpha_lower, alpha - ratio)
|
156 |
+
alpha -= (phi + Delta) * ratio / Delta
|
157 |
+
|
158 |
+
if np.abs(phi) < rtol * Delta:
|
159 |
+
break
|
160 |
+
|
161 |
+
p = -V.dot(suf / (s**2 + alpha))
|
162 |
+
|
163 |
+
# Make the norm of p equal to Delta, p is changed only slightly during
|
164 |
+
# this. It is done to prevent p lie outside the trust region (which can
|
165 |
+
# cause problems later).
|
166 |
+
p *= Delta / norm(p)
|
167 |
+
|
168 |
+
return p, alpha, it + 1
|
169 |
+
|
170 |
+
|
171 |
+
def solve_trust_region_2d(B, g, Delta):
|
172 |
+
"""Solve a general trust-region problem in 2 dimensions.
|
173 |
+
|
174 |
+
The problem is reformulated as a 4th order algebraic equation,
|
175 |
+
the solution of which is found by numpy.roots.
|
176 |
+
|
177 |
+
Parameters
|
178 |
+
----------
|
179 |
+
B : ndarray, shape (2, 2)
|
180 |
+
Symmetric matrix, defines a quadratic term of the function.
|
181 |
+
g : ndarray, shape (2,)
|
182 |
+
Defines a linear term of the function.
|
183 |
+
Delta : float
|
184 |
+
Radius of a trust region.
|
185 |
+
|
186 |
+
Returns
|
187 |
+
-------
|
188 |
+
p : ndarray, shape (2,)
|
189 |
+
Found solution.
|
190 |
+
newton_step : bool
|
191 |
+
Whether the returned solution is the Newton step which lies within
|
192 |
+
the trust region.
|
193 |
+
"""
|
194 |
+
try:
|
195 |
+
R, lower = cho_factor(B)
|
196 |
+
p = -cho_solve((R, lower), g)
|
197 |
+
if np.dot(p, p) <= Delta**2:
|
198 |
+
return p, True
|
199 |
+
except LinAlgError:
|
200 |
+
pass
|
201 |
+
|
202 |
+
a = B[0, 0] * Delta**2
|
203 |
+
b = B[0, 1] * Delta**2
|
204 |
+
c = B[1, 1] * Delta**2
|
205 |
+
|
206 |
+
d = g[0] * Delta
|
207 |
+
f = g[1] * Delta
|
208 |
+
|
209 |
+
coeffs = np.array(
|
210 |
+
[-b + d, 2 * (a - c + f), 6 * b, 2 * (-a + c + f), -b - d])
|
211 |
+
t = np.roots(coeffs) # Can handle leading zeros.
|
212 |
+
t = np.real(t[np.isreal(t)])
|
213 |
+
|
214 |
+
p = Delta * np.vstack((2 * t / (1 + t**2), (1 - t**2) / (1 + t**2)))
|
215 |
+
value = 0.5 * np.sum(p * B.dot(p), axis=0) + np.dot(g, p)
|
216 |
+
i = np.argmin(value)
|
217 |
+
p = p[:, i]
|
218 |
+
|
219 |
+
return p, False
|
220 |
+
|
221 |
+
|
222 |
+
def update_tr_radius(Delta, actual_reduction, predicted_reduction,
|
223 |
+
step_norm, bound_hit):
|
224 |
+
"""Update the radius of a trust region based on the cost reduction.
|
225 |
+
|
226 |
+
Returns
|
227 |
+
-------
|
228 |
+
Delta : float
|
229 |
+
New radius.
|
230 |
+
ratio : float
|
231 |
+
Ratio between actual and predicted reductions.
|
232 |
+
"""
|
233 |
+
if predicted_reduction > 0:
|
234 |
+
ratio = actual_reduction / predicted_reduction
|
235 |
+
elif predicted_reduction == actual_reduction == 0:
|
236 |
+
ratio = 1
|
237 |
+
else:
|
238 |
+
ratio = 0
|
239 |
+
|
240 |
+
if ratio < 0.25:
|
241 |
+
Delta = 0.25 * step_norm
|
242 |
+
elif ratio > 0.75 and bound_hit:
|
243 |
+
Delta *= 2.0
|
244 |
+
|
245 |
+
return Delta, ratio
|
246 |
+
|
247 |
+
|
248 |
+
# Construction and minimization of quadratic functions.
|
249 |
+
|
250 |
+
|
251 |
+
def build_quadratic_1d(J, g, s, diag=None, s0=None):
|
252 |
+
"""Parameterize a multivariate quadratic function along a line.
|
253 |
+
|
254 |
+
The resulting univariate quadratic function is given as follows::
|
255 |
+
|
256 |
+
f(t) = 0.5 * (s0 + s*t).T * (J.T*J + diag) * (s0 + s*t) +
|
257 |
+
g.T * (s0 + s*t)
|
258 |
+
|
259 |
+
Parameters
|
260 |
+
----------
|
261 |
+
J : ndarray, sparse matrix or LinearOperator shape (m, n)
|
262 |
+
Jacobian matrix, affects the quadratic term.
|
263 |
+
g : ndarray, shape (n,)
|
264 |
+
Gradient, defines the linear term.
|
265 |
+
s : ndarray, shape (n,)
|
266 |
+
Direction vector of a line.
|
267 |
+
diag : None or ndarray with shape (n,), optional
|
268 |
+
Addition diagonal part, affects the quadratic term.
|
269 |
+
If None, assumed to be 0.
|
270 |
+
s0 : None or ndarray with shape (n,), optional
|
271 |
+
Initial point. If None, assumed to be 0.
|
272 |
+
|
273 |
+
Returns
|
274 |
+
-------
|
275 |
+
a : float
|
276 |
+
Coefficient for t**2.
|
277 |
+
b : float
|
278 |
+
Coefficient for t.
|
279 |
+
c : float
|
280 |
+
Free term. Returned only if `s0` is provided.
|
281 |
+
"""
|
282 |
+
v = J.dot(s)
|
283 |
+
a = np.dot(v, v)
|
284 |
+
if diag is not None:
|
285 |
+
a += np.dot(s * diag, s)
|
286 |
+
a *= 0.5
|
287 |
+
|
288 |
+
b = np.dot(g, s)
|
289 |
+
|
290 |
+
if s0 is not None:
|
291 |
+
u = J.dot(s0)
|
292 |
+
b += np.dot(u, v)
|
293 |
+
c = 0.5 * np.dot(u, u) + np.dot(g, s0)
|
294 |
+
if diag is not None:
|
295 |
+
b += np.dot(s0 * diag, s)
|
296 |
+
c += 0.5 * np.dot(s0 * diag, s0)
|
297 |
+
return a, b, c
|
298 |
+
else:
|
299 |
+
return a, b
|
300 |
+
|
301 |
+
|
302 |
+
def minimize_quadratic_1d(a, b, lb, ub, c=0):
|
303 |
+
"""Minimize a 1-D quadratic function subject to bounds.
|
304 |
+
|
305 |
+
The free term `c` is 0 by default. Bounds must be finite.
|
306 |
+
|
307 |
+
Returns
|
308 |
+
-------
|
309 |
+
t : float
|
310 |
+
Minimum point.
|
311 |
+
y : float
|
312 |
+
Minimum value.
|
313 |
+
"""
|
314 |
+
t = [lb, ub]
|
315 |
+
if a != 0:
|
316 |
+
extremum = -0.5 * b / a
|
317 |
+
if lb < extremum < ub:
|
318 |
+
t.append(extremum)
|
319 |
+
t = np.asarray(t)
|
320 |
+
y = t * (a * t + b) + c
|
321 |
+
min_index = np.argmin(y)
|
322 |
+
return t[min_index], y[min_index]
|
323 |
+
|
324 |
+
|
325 |
+
def evaluate_quadratic(J, g, s, diag=None):
|
326 |
+
"""Compute values of a quadratic function arising in least squares.
|
327 |
+
|
328 |
+
The function is 0.5 * s.T * (J.T * J + diag) * s + g.T * s.
|
329 |
+
|
330 |
+
Parameters
|
331 |
+
----------
|
332 |
+
J : ndarray, sparse matrix or LinearOperator, shape (m, n)
|
333 |
+
Jacobian matrix, affects the quadratic term.
|
334 |
+
g : ndarray, shape (n,)
|
335 |
+
Gradient, defines the linear term.
|
336 |
+
s : ndarray, shape (k, n) or (n,)
|
337 |
+
Array containing steps as rows.
|
338 |
+
diag : ndarray, shape (n,), optional
|
339 |
+
Addition diagonal part, affects the quadratic term.
|
340 |
+
If None, assumed to be 0.
|
341 |
+
|
342 |
+
Returns
|
343 |
+
-------
|
344 |
+
values : ndarray with shape (k,) or float
|
345 |
+
Values of the function. If `s` was 2-D, then ndarray is
|
346 |
+
returned, otherwise, float is returned.
|
347 |
+
"""
|
348 |
+
if s.ndim == 1:
|
349 |
+
Js = J.dot(s)
|
350 |
+
q = np.dot(Js, Js)
|
351 |
+
if diag is not None:
|
352 |
+
q += np.dot(s * diag, s)
|
353 |
+
else:
|
354 |
+
Js = J.dot(s.T)
|
355 |
+
q = np.sum(Js**2, axis=0)
|
356 |
+
if diag is not None:
|
357 |
+
q += np.sum(diag * s**2, axis=1)
|
358 |
+
|
359 |
+
l = np.dot(s, g)
|
360 |
+
|
361 |
+
return 0.5 * q + l
|
362 |
+
|
363 |
+
|
364 |
+
# Utility functions to work with bound constraints.
|
365 |
+
|
366 |
+
|
367 |
+
def in_bounds(x, lb, ub):
|
368 |
+
"""Check if a point lies within bounds."""
|
369 |
+
return np.all((x >= lb) & (x <= ub))
|
370 |
+
|
371 |
+
|
372 |
+
def step_size_to_bound(x, s, lb, ub):
|
373 |
+
"""Compute a min_step size required to reach a bound.
|
374 |
+
|
375 |
+
The function computes a positive scalar t, such that x + s * t is on
|
376 |
+
the bound.
|
377 |
+
|
378 |
+
Returns
|
379 |
+
-------
|
380 |
+
step : float
|
381 |
+
Computed step. Non-negative value.
|
382 |
+
hits : ndarray of int with shape of x
|
383 |
+
Each element indicates whether a corresponding variable reaches the
|
384 |
+
bound:
|
385 |
+
|
386 |
+
* 0 - the bound was not hit.
|
387 |
+
* -1 - the lower bound was hit.
|
388 |
+
* 1 - the upper bound was hit.
|
389 |
+
"""
|
390 |
+
non_zero = np.nonzero(s)
|
391 |
+
s_non_zero = s[non_zero]
|
392 |
+
steps = np.empty_like(x)
|
393 |
+
steps.fill(np.inf)
|
394 |
+
with np.errstate(over='ignore'):
|
395 |
+
steps[non_zero] = np.maximum((lb - x)[non_zero] / s_non_zero,
|
396 |
+
(ub - x)[non_zero] / s_non_zero)
|
397 |
+
min_step = np.min(steps)
|
398 |
+
return min_step, np.equal(steps, min_step) * np.sign(s).astype(int)
|
399 |
+
|
400 |
+
|
401 |
+
def find_active_constraints(x, lb, ub, rtol=1e-10):
|
402 |
+
"""Determine which constraints are active in a given point.
|
403 |
+
|
404 |
+
The threshold is computed using `rtol` and the absolute value of the
|
405 |
+
closest bound.
|
406 |
+
|
407 |
+
Returns
|
408 |
+
-------
|
409 |
+
active : ndarray of int with shape of x
|
410 |
+
Each component shows whether the corresponding constraint is active:
|
411 |
+
|
412 |
+
* 0 - a constraint is not active.
|
413 |
+
* -1 - a lower bound is active.
|
414 |
+
* 1 - a upper bound is active.
|
415 |
+
"""
|
416 |
+
active = np.zeros_like(x, dtype=int)
|
417 |
+
|
418 |
+
if rtol == 0:
|
419 |
+
active[x <= lb] = -1
|
420 |
+
active[x >= ub] = 1
|
421 |
+
return active
|
422 |
+
|
423 |
+
lower_dist = x - lb
|
424 |
+
upper_dist = ub - x
|
425 |
+
|
426 |
+
lower_threshold = rtol * np.maximum(1, np.abs(lb))
|
427 |
+
upper_threshold = rtol * np.maximum(1, np.abs(ub))
|
428 |
+
|
429 |
+
lower_active = (np.isfinite(lb) &
|
430 |
+
(lower_dist <= np.minimum(upper_dist, lower_threshold)))
|
431 |
+
active[lower_active] = -1
|
432 |
+
|
433 |
+
upper_active = (np.isfinite(ub) &
|
434 |
+
(upper_dist <= np.minimum(lower_dist, upper_threshold)))
|
435 |
+
active[upper_active] = 1
|
436 |
+
|
437 |
+
return active
|
438 |
+
|
439 |
+
|
440 |
+
def make_strictly_feasible(x, lb, ub, rstep=1e-10):
|
441 |
+
"""Shift a point to the interior of a feasible region.
|
442 |
+
|
443 |
+
Each element of the returned vector is at least at a relative distance
|
444 |
+
`rstep` from the closest bound. If ``rstep=0`` then `np.nextafter` is used.
|
445 |
+
"""
|
446 |
+
x_new = x.copy()
|
447 |
+
|
448 |
+
active = find_active_constraints(x, lb, ub, rstep)
|
449 |
+
lower_mask = np.equal(active, -1)
|
450 |
+
upper_mask = np.equal(active, 1)
|
451 |
+
|
452 |
+
if rstep == 0:
|
453 |
+
x_new[lower_mask] = np.nextafter(lb[lower_mask], ub[lower_mask])
|
454 |
+
x_new[upper_mask] = np.nextafter(ub[upper_mask], lb[upper_mask])
|
455 |
+
else:
|
456 |
+
x_new[lower_mask] = (lb[lower_mask] +
|
457 |
+
rstep * np.maximum(1, np.abs(lb[lower_mask])))
|
458 |
+
x_new[upper_mask] = (ub[upper_mask] -
|
459 |
+
rstep * np.maximum(1, np.abs(ub[upper_mask])))
|
460 |
+
|
461 |
+
tight_bounds = (x_new < lb) | (x_new > ub)
|
462 |
+
x_new[tight_bounds] = 0.5 * (lb[tight_bounds] + ub[tight_bounds])
|
463 |
+
|
464 |
+
return x_new
|
465 |
+
|
466 |
+
|
467 |
+
def CL_scaling_vector(x, g, lb, ub):
|
468 |
+
"""Compute Coleman-Li scaling vector and its derivatives.
|
469 |
+
|
470 |
+
Components of a vector v are defined as follows::
|
471 |
+
|
472 |
+
| ub[i] - x[i], if g[i] < 0 and ub[i] < np.inf
|
473 |
+
v[i] = | x[i] - lb[i], if g[i] > 0 and lb[i] > -np.inf
|
474 |
+
| 1, otherwise
|
475 |
+
|
476 |
+
According to this definition v[i] >= 0 for all i. It differs from the
|
477 |
+
definition in paper [1]_ (eq. (2.2)), where the absolute value of v is
|
478 |
+
used. Both definitions are equivalent down the line.
|
479 |
+
Derivatives of v with respect to x take value 1, -1 or 0 depending on a
|
480 |
+
case.
|
481 |
+
|
482 |
+
Returns
|
483 |
+
-------
|
484 |
+
v : ndarray with shape of x
|
485 |
+
Scaling vector.
|
486 |
+
dv : ndarray with shape of x
|
487 |
+
Derivatives of v[i] with respect to x[i], diagonal elements of v's
|
488 |
+
Jacobian.
|
489 |
+
|
490 |
+
References
|
491 |
+
----------
|
492 |
+
.. [1] M.A. Branch, T.F. Coleman, and Y. Li, "A Subspace, Interior,
|
493 |
+
and Conjugate Gradient Method for Large-Scale Bound-Constrained
|
494 |
+
Minimization Problems," SIAM Journal on Scientific Computing,
|
495 |
+
Vol. 21, Number 1, pp 1-23, 1999.
|
496 |
+
"""
|
497 |
+
v = np.ones_like(x)
|
498 |
+
dv = np.zeros_like(x)
|
499 |
+
|
500 |
+
mask = (g < 0) & np.isfinite(ub)
|
501 |
+
v[mask] = ub[mask] - x[mask]
|
502 |
+
dv[mask] = -1
|
503 |
+
|
504 |
+
mask = (g > 0) & np.isfinite(lb)
|
505 |
+
v[mask] = x[mask] - lb[mask]
|
506 |
+
dv[mask] = 1
|
507 |
+
|
508 |
+
return v, dv
|
509 |
+
|
510 |
+
|
511 |
+
def reflective_transformation(y, lb, ub):
|
512 |
+
"""Compute reflective transformation and its gradient."""
|
513 |
+
if in_bounds(y, lb, ub):
|
514 |
+
return y, np.ones_like(y)
|
515 |
+
|
516 |
+
lb_finite = np.isfinite(lb)
|
517 |
+
ub_finite = np.isfinite(ub)
|
518 |
+
|
519 |
+
x = y.copy()
|
520 |
+
g_negative = np.zeros_like(y, dtype=bool)
|
521 |
+
|
522 |
+
mask = lb_finite & ~ub_finite
|
523 |
+
x[mask] = np.maximum(y[mask], 2 * lb[mask] - y[mask])
|
524 |
+
g_negative[mask] = y[mask] < lb[mask]
|
525 |
+
|
526 |
+
mask = ~lb_finite & ub_finite
|
527 |
+
x[mask] = np.minimum(y[mask], 2 * ub[mask] - y[mask])
|
528 |
+
g_negative[mask] = y[mask] > ub[mask]
|
529 |
+
|
530 |
+
mask = lb_finite & ub_finite
|
531 |
+
d = ub - lb
|
532 |
+
t = np.remainder(y[mask] - lb[mask], 2 * d[mask])
|
533 |
+
x[mask] = lb[mask] + np.minimum(t, 2 * d[mask] - t)
|
534 |
+
g_negative[mask] = t > d[mask]
|
535 |
+
|
536 |
+
g = np.ones_like(y)
|
537 |
+
g[g_negative] = -1
|
538 |
+
|
539 |
+
return x, g
|
540 |
+
|
541 |
+
|
542 |
+
# Functions to display algorithm's progress.
|
543 |
+
|
544 |
+
|
545 |
+
def print_header_nonlinear():
|
546 |
+
print("{:^15}{:^15}{:^15}{:^15}{:^15}{:^15}"
|
547 |
+
.format("Iteration", "Total nfev", "Cost", "Cost reduction",
|
548 |
+
"Step norm", "Optimality"))
|
549 |
+
|
550 |
+
|
551 |
+
def print_iteration_nonlinear(iteration, nfev, cost, cost_reduction,
|
552 |
+
step_norm, optimality):
|
553 |
+
if cost_reduction is None:
|
554 |
+
cost_reduction = " " * 15
|
555 |
+
else:
|
556 |
+
cost_reduction = f"{cost_reduction:^15.2e}"
|
557 |
+
|
558 |
+
if step_norm is None:
|
559 |
+
step_norm = " " * 15
|
560 |
+
else:
|
561 |
+
step_norm = f"{step_norm:^15.2e}"
|
562 |
+
|
563 |
+
print("{:^15}{:^15}{:^15.4e}{}{}{:^15.2e}"
|
564 |
+
.format(iteration, nfev, cost, cost_reduction,
|
565 |
+
step_norm, optimality))
|
566 |
+
|
567 |
+
|
568 |
+
def print_header_linear():
|
569 |
+
print("{:^15}{:^15}{:^15}{:^15}{:^15}"
|
570 |
+
.format("Iteration", "Cost", "Cost reduction", "Step norm",
|
571 |
+
"Optimality"))
|
572 |
+
|
573 |
+
|
574 |
+
def print_iteration_linear(iteration, cost, cost_reduction, step_norm,
|
575 |
+
optimality):
|
576 |
+
if cost_reduction is None:
|
577 |
+
cost_reduction = " " * 15
|
578 |
+
else:
|
579 |
+
cost_reduction = f"{cost_reduction:^15.2e}"
|
580 |
+
|
581 |
+
if step_norm is None:
|
582 |
+
step_norm = " " * 15
|
583 |
+
else:
|
584 |
+
step_norm = f"{step_norm:^15.2e}"
|
585 |
+
|
586 |
+
print(f"{iteration:^15}{cost:^15.4e}{cost_reduction}{step_norm}{optimality:^15.2e}")
|
587 |
+
|
588 |
+
|
589 |
+
# Simple helper functions.
|
590 |
+
|
591 |
+
|
592 |
+
def compute_grad(J, f):
|
593 |
+
"""Compute gradient of the least-squares cost function."""
|
594 |
+
if isinstance(J, LinearOperator):
|
595 |
+
return J.rmatvec(f)
|
596 |
+
else:
|
597 |
+
return J.T.dot(f)
|
598 |
+
|
599 |
+
|
600 |
+
def compute_jac_scale(J, scale_inv_old=None):
|
601 |
+
"""Compute variables scale based on the Jacobian matrix."""
|
602 |
+
if issparse(J):
|
603 |
+
scale_inv = np.asarray(J.power(2).sum(axis=0)).ravel()**0.5
|
604 |
+
else:
|
605 |
+
scale_inv = np.sum(J**2, axis=0)**0.5
|
606 |
+
|
607 |
+
if scale_inv_old is None:
|
608 |
+
scale_inv[scale_inv == 0] = 1
|
609 |
+
else:
|
610 |
+
scale_inv = np.maximum(scale_inv, scale_inv_old)
|
611 |
+
|
612 |
+
return 1 / scale_inv, scale_inv
|
613 |
+
|
614 |
+
|
615 |
+
def left_multiplied_operator(J, d):
|
616 |
+
"""Return diag(d) J as LinearOperator."""
|
617 |
+
J = aslinearoperator(J)
|
618 |
+
|
619 |
+
def matvec(x):
|
620 |
+
return d * J.matvec(x)
|
621 |
+
|
622 |
+
def matmat(X):
|
623 |
+
return d[:, np.newaxis] * J.matmat(X)
|
624 |
+
|
625 |
+
def rmatvec(x):
|
626 |
+
return J.rmatvec(x.ravel() * d)
|
627 |
+
|
628 |
+
return LinearOperator(J.shape, matvec=matvec, matmat=matmat,
|
629 |
+
rmatvec=rmatvec)
|
630 |
+
|
631 |
+
|
632 |
+
def right_multiplied_operator(J, d):
|
633 |
+
"""Return J diag(d) as LinearOperator."""
|
634 |
+
J = aslinearoperator(J)
|
635 |
+
|
636 |
+
def matvec(x):
|
637 |
+
return J.matvec(np.ravel(x) * d)
|
638 |
+
|
639 |
+
def matmat(X):
|
640 |
+
return J.matmat(X * d[:, np.newaxis])
|
641 |
+
|
642 |
+
def rmatvec(x):
|
643 |
+
return d * J.rmatvec(x)
|
644 |
+
|
645 |
+
return LinearOperator(J.shape, matvec=matvec, matmat=matmat,
|
646 |
+
rmatvec=rmatvec)
|
647 |
+
|
648 |
+
|
649 |
+
def regularized_lsq_operator(J, diag):
|
650 |
+
"""Return a matrix arising in regularized least squares as LinearOperator.
|
651 |
+
|
652 |
+
The matrix is
|
653 |
+
[ J ]
|
654 |
+
[ D ]
|
655 |
+
where D is diagonal matrix with elements from `diag`.
|
656 |
+
"""
|
657 |
+
J = aslinearoperator(J)
|
658 |
+
m, n = J.shape
|
659 |
+
|
660 |
+
def matvec(x):
|
661 |
+
return np.hstack((J.matvec(x), diag * x))
|
662 |
+
|
663 |
+
def rmatvec(x):
|
664 |
+
x1 = x[:m]
|
665 |
+
x2 = x[m:]
|
666 |
+
return J.rmatvec(x1) + diag * x2
|
667 |
+
|
668 |
+
return LinearOperator((m + n, n), matvec=matvec, rmatvec=rmatvec)
|
669 |
+
|
670 |
+
|
671 |
+
def right_multiply(J, d, copy=True):
|
672 |
+
"""Compute J diag(d).
|
673 |
+
|
674 |
+
If `copy` is False, `J` is modified in place (unless being LinearOperator).
|
675 |
+
"""
|
676 |
+
if copy and not isinstance(J, LinearOperator):
|
677 |
+
J = J.copy()
|
678 |
+
|
679 |
+
if issparse(J):
|
680 |
+
J.data *= d.take(J.indices, mode='clip') # scikit-learn recipe.
|
681 |
+
elif isinstance(J, LinearOperator):
|
682 |
+
J = right_multiplied_operator(J, d)
|
683 |
+
else:
|
684 |
+
J *= d
|
685 |
+
|
686 |
+
return J
|
687 |
+
|
688 |
+
|
689 |
+
def left_multiply(J, d, copy=True):
|
690 |
+
"""Compute diag(d) J.
|
691 |
+
|
692 |
+
If `copy` is False, `J` is modified in place (unless being LinearOperator).
|
693 |
+
"""
|
694 |
+
if copy and not isinstance(J, LinearOperator):
|
695 |
+
J = J.copy()
|
696 |
+
|
697 |
+
if issparse(J):
|
698 |
+
J.data *= np.repeat(d, np.diff(J.indptr)) # scikit-learn recipe.
|
699 |
+
elif isinstance(J, LinearOperator):
|
700 |
+
J = left_multiplied_operator(J, d)
|
701 |
+
else:
|
702 |
+
J *= d[:, np.newaxis]
|
703 |
+
|
704 |
+
return J
|
705 |
+
|
706 |
+
|
707 |
+
def check_termination(dF, F, dx_norm, x_norm, ratio, ftol, xtol):
|
708 |
+
"""Check termination condition for nonlinear least squares."""
|
709 |
+
ftol_satisfied = dF < ftol * F and ratio > 0.25
|
710 |
+
xtol_satisfied = dx_norm < xtol * (xtol + x_norm)
|
711 |
+
|
712 |
+
if ftol_satisfied and xtol_satisfied:
|
713 |
+
return 4
|
714 |
+
elif ftol_satisfied:
|
715 |
+
return 2
|
716 |
+
elif xtol_satisfied:
|
717 |
+
return 3
|
718 |
+
else:
|
719 |
+
return None
|
720 |
+
|
721 |
+
|
722 |
+
def scale_for_robust_loss_function(J, f, rho):
|
723 |
+
"""Scale Jacobian and residuals for a robust loss function.
|
724 |
+
|
725 |
+
Arrays are modified in place.
|
726 |
+
"""
|
727 |
+
J_scale = rho[1] + 2 * rho[2] * f**2
|
728 |
+
J_scale[J_scale < EPS] = EPS
|
729 |
+
J_scale **= 0.5
|
730 |
+
|
731 |
+
f *= rho[1] / J_scale
|
732 |
+
|
733 |
+
return left_multiply(J, J_scale, copy=False), f
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/_lsq/dogbox.py
ADDED
@@ -0,0 +1,331 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Dogleg algorithm with rectangular trust regions for least-squares minimization.
|
3 |
+
|
4 |
+
The description of the algorithm can be found in [Voglis]_. The algorithm does
|
5 |
+
trust-region iterations, but the shape of trust regions is rectangular as
|
6 |
+
opposed to conventional elliptical. The intersection of a trust region and
|
7 |
+
an initial feasible region is again some rectangle. Thus, on each iteration a
|
8 |
+
bound-constrained quadratic optimization problem is solved.
|
9 |
+
|
10 |
+
A quadratic problem is solved by well-known dogleg approach, where the
|
11 |
+
function is minimized along piecewise-linear "dogleg" path [NumOpt]_,
|
12 |
+
Chapter 4. If Jacobian is not rank-deficient then the function is decreasing
|
13 |
+
along this path, and optimization amounts to simply following along this
|
14 |
+
path as long as a point stays within the bounds. A constrained Cauchy step
|
15 |
+
(along the anti-gradient) is considered for safety in rank deficient cases,
|
16 |
+
in this situations the convergence might be slow.
|
17 |
+
|
18 |
+
If during iterations some variable hit the initial bound and the component
|
19 |
+
of anti-gradient points outside the feasible region, then a next dogleg step
|
20 |
+
won't make any progress. At this state such variables satisfy first-order
|
21 |
+
optimality conditions and they are excluded before computing a next dogleg
|
22 |
+
step.
|
23 |
+
|
24 |
+
Gauss-Newton step can be computed exactly by `numpy.linalg.lstsq` (for dense
|
25 |
+
Jacobian matrices) or by iterative procedure `scipy.sparse.linalg.lsmr` (for
|
26 |
+
dense and sparse matrices, or Jacobian being LinearOperator). The second
|
27 |
+
option allows to solve very large problems (up to couple of millions of
|
28 |
+
residuals on a regular PC), provided the Jacobian matrix is sufficiently
|
29 |
+
sparse. But note that dogbox is not very good for solving problems with
|
30 |
+
large number of constraints, because of variables exclusion-inclusion on each
|
31 |
+
iteration (a required number of function evaluations might be high or accuracy
|
32 |
+
of a solution will be poor), thus its large-scale usage is probably limited
|
33 |
+
to unconstrained problems.
|
34 |
+
|
35 |
+
References
|
36 |
+
----------
|
37 |
+
.. [Voglis] C. Voglis and I. E. Lagaris, "A Rectangular Trust Region Dogleg
|
38 |
+
Approach for Unconstrained and Bound Constrained Nonlinear
|
39 |
+
Optimization", WSEAS International Conference on Applied
|
40 |
+
Mathematics, Corfu, Greece, 2004.
|
41 |
+
.. [NumOpt] J. Nocedal and S. J. Wright, "Numerical optimization, 2nd edition".
|
42 |
+
"""
|
43 |
+
import numpy as np
|
44 |
+
from numpy.linalg import lstsq, norm
|
45 |
+
|
46 |
+
from scipy.sparse.linalg import LinearOperator, aslinearoperator, lsmr
|
47 |
+
from scipy.optimize import OptimizeResult
|
48 |
+
|
49 |
+
from .common import (
|
50 |
+
step_size_to_bound, in_bounds, update_tr_radius, evaluate_quadratic,
|
51 |
+
build_quadratic_1d, minimize_quadratic_1d, compute_grad,
|
52 |
+
compute_jac_scale, check_termination, scale_for_robust_loss_function,
|
53 |
+
print_header_nonlinear, print_iteration_nonlinear)
|
54 |
+
|
55 |
+
|
56 |
+
def lsmr_operator(Jop, d, active_set):
|
57 |
+
"""Compute LinearOperator to use in LSMR by dogbox algorithm.
|
58 |
+
|
59 |
+
`active_set` mask is used to excluded active variables from computations
|
60 |
+
of matrix-vector products.
|
61 |
+
"""
|
62 |
+
m, n = Jop.shape
|
63 |
+
|
64 |
+
def matvec(x):
|
65 |
+
x_free = x.ravel().copy()
|
66 |
+
x_free[active_set] = 0
|
67 |
+
return Jop.matvec(x * d)
|
68 |
+
|
69 |
+
def rmatvec(x):
|
70 |
+
r = d * Jop.rmatvec(x)
|
71 |
+
r[active_set] = 0
|
72 |
+
return r
|
73 |
+
|
74 |
+
return LinearOperator((m, n), matvec=matvec, rmatvec=rmatvec, dtype=float)
|
75 |
+
|
76 |
+
|
77 |
+
def find_intersection(x, tr_bounds, lb, ub):
|
78 |
+
"""Find intersection of trust-region bounds and initial bounds.
|
79 |
+
|
80 |
+
Returns
|
81 |
+
-------
|
82 |
+
lb_total, ub_total : ndarray with shape of x
|
83 |
+
Lower and upper bounds of the intersection region.
|
84 |
+
orig_l, orig_u : ndarray of bool with shape of x
|
85 |
+
True means that an original bound is taken as a corresponding bound
|
86 |
+
in the intersection region.
|
87 |
+
tr_l, tr_u : ndarray of bool with shape of x
|
88 |
+
True means that a trust-region bound is taken as a corresponding bound
|
89 |
+
in the intersection region.
|
90 |
+
"""
|
91 |
+
lb_centered = lb - x
|
92 |
+
ub_centered = ub - x
|
93 |
+
|
94 |
+
lb_total = np.maximum(lb_centered, -tr_bounds)
|
95 |
+
ub_total = np.minimum(ub_centered, tr_bounds)
|
96 |
+
|
97 |
+
orig_l = np.equal(lb_total, lb_centered)
|
98 |
+
orig_u = np.equal(ub_total, ub_centered)
|
99 |
+
|
100 |
+
tr_l = np.equal(lb_total, -tr_bounds)
|
101 |
+
tr_u = np.equal(ub_total, tr_bounds)
|
102 |
+
|
103 |
+
return lb_total, ub_total, orig_l, orig_u, tr_l, tr_u
|
104 |
+
|
105 |
+
|
106 |
+
def dogleg_step(x, newton_step, g, a, b, tr_bounds, lb, ub):
|
107 |
+
"""Find dogleg step in a rectangular region.
|
108 |
+
|
109 |
+
Returns
|
110 |
+
-------
|
111 |
+
step : ndarray, shape (n,)
|
112 |
+
Computed dogleg step.
|
113 |
+
bound_hits : ndarray of int, shape (n,)
|
114 |
+
Each component shows whether a corresponding variable hits the
|
115 |
+
initial bound after the step is taken:
|
116 |
+
* 0 - a variable doesn't hit the bound.
|
117 |
+
* -1 - lower bound is hit.
|
118 |
+
* 1 - upper bound is hit.
|
119 |
+
tr_hit : bool
|
120 |
+
Whether the step hit the boundary of the trust-region.
|
121 |
+
"""
|
122 |
+
lb_total, ub_total, orig_l, orig_u, tr_l, tr_u = find_intersection(
|
123 |
+
x, tr_bounds, lb, ub
|
124 |
+
)
|
125 |
+
bound_hits = np.zeros_like(x, dtype=int)
|
126 |
+
|
127 |
+
if in_bounds(newton_step, lb_total, ub_total):
|
128 |
+
return newton_step, bound_hits, False
|
129 |
+
|
130 |
+
to_bounds, _ = step_size_to_bound(np.zeros_like(x), -g, lb_total, ub_total)
|
131 |
+
|
132 |
+
# The classical dogleg algorithm would check if Cauchy step fits into
|
133 |
+
# the bounds, and just return it constrained version if not. But in a
|
134 |
+
# rectangular trust region it makes sense to try to improve constrained
|
135 |
+
# Cauchy step too. Thus, we don't distinguish these two cases.
|
136 |
+
|
137 |
+
cauchy_step = -minimize_quadratic_1d(a, b, 0, to_bounds)[0] * g
|
138 |
+
|
139 |
+
step_diff = newton_step - cauchy_step
|
140 |
+
step_size, hits = step_size_to_bound(cauchy_step, step_diff,
|
141 |
+
lb_total, ub_total)
|
142 |
+
bound_hits[(hits < 0) & orig_l] = -1
|
143 |
+
bound_hits[(hits > 0) & orig_u] = 1
|
144 |
+
tr_hit = np.any((hits < 0) & tr_l | (hits > 0) & tr_u)
|
145 |
+
|
146 |
+
return cauchy_step + step_size * step_diff, bound_hits, tr_hit
|
147 |
+
|
148 |
+
|
149 |
+
def dogbox(fun, jac, x0, f0, J0, lb, ub, ftol, xtol, gtol, max_nfev, x_scale,
|
150 |
+
loss_function, tr_solver, tr_options, verbose):
|
151 |
+
f = f0
|
152 |
+
f_true = f.copy()
|
153 |
+
nfev = 1
|
154 |
+
|
155 |
+
J = J0
|
156 |
+
njev = 1
|
157 |
+
|
158 |
+
if loss_function is not None:
|
159 |
+
rho = loss_function(f)
|
160 |
+
cost = 0.5 * np.sum(rho[0])
|
161 |
+
J, f = scale_for_robust_loss_function(J, f, rho)
|
162 |
+
else:
|
163 |
+
cost = 0.5 * np.dot(f, f)
|
164 |
+
|
165 |
+
g = compute_grad(J, f)
|
166 |
+
|
167 |
+
jac_scale = isinstance(x_scale, str) and x_scale == 'jac'
|
168 |
+
if jac_scale:
|
169 |
+
scale, scale_inv = compute_jac_scale(J)
|
170 |
+
else:
|
171 |
+
scale, scale_inv = x_scale, 1 / x_scale
|
172 |
+
|
173 |
+
Delta = norm(x0 * scale_inv, ord=np.inf)
|
174 |
+
if Delta == 0:
|
175 |
+
Delta = 1.0
|
176 |
+
|
177 |
+
on_bound = np.zeros_like(x0, dtype=int)
|
178 |
+
on_bound[np.equal(x0, lb)] = -1
|
179 |
+
on_bound[np.equal(x0, ub)] = 1
|
180 |
+
|
181 |
+
x = x0
|
182 |
+
step = np.empty_like(x0)
|
183 |
+
|
184 |
+
if max_nfev is None:
|
185 |
+
max_nfev = x0.size * 100
|
186 |
+
|
187 |
+
termination_status = None
|
188 |
+
iteration = 0
|
189 |
+
step_norm = None
|
190 |
+
actual_reduction = None
|
191 |
+
|
192 |
+
if verbose == 2:
|
193 |
+
print_header_nonlinear()
|
194 |
+
|
195 |
+
while True:
|
196 |
+
active_set = on_bound * g < 0
|
197 |
+
free_set = ~active_set
|
198 |
+
|
199 |
+
g_free = g[free_set]
|
200 |
+
g_full = g.copy()
|
201 |
+
g[active_set] = 0
|
202 |
+
|
203 |
+
g_norm = norm(g, ord=np.inf)
|
204 |
+
if g_norm < gtol:
|
205 |
+
termination_status = 1
|
206 |
+
|
207 |
+
if verbose == 2:
|
208 |
+
print_iteration_nonlinear(iteration, nfev, cost, actual_reduction,
|
209 |
+
step_norm, g_norm)
|
210 |
+
|
211 |
+
if termination_status is not None or nfev == max_nfev:
|
212 |
+
break
|
213 |
+
|
214 |
+
x_free = x[free_set]
|
215 |
+
lb_free = lb[free_set]
|
216 |
+
ub_free = ub[free_set]
|
217 |
+
scale_free = scale[free_set]
|
218 |
+
|
219 |
+
# Compute (Gauss-)Newton and build quadratic model for Cauchy step.
|
220 |
+
if tr_solver == 'exact':
|
221 |
+
J_free = J[:, free_set]
|
222 |
+
newton_step = lstsq(J_free, -f, rcond=-1)[0]
|
223 |
+
|
224 |
+
# Coefficients for the quadratic model along the anti-gradient.
|
225 |
+
a, b = build_quadratic_1d(J_free, g_free, -g_free)
|
226 |
+
elif tr_solver == 'lsmr':
|
227 |
+
Jop = aslinearoperator(J)
|
228 |
+
|
229 |
+
# We compute lsmr step in scaled variables and then
|
230 |
+
# transform back to normal variables, if lsmr would give exact lsq
|
231 |
+
# solution, this would be equivalent to not doing any
|
232 |
+
# transformations, but from experience it's better this way.
|
233 |
+
|
234 |
+
# We pass active_set to make computations as if we selected
|
235 |
+
# the free subset of J columns, but without actually doing any
|
236 |
+
# slicing, which is expensive for sparse matrices and impossible
|
237 |
+
# for LinearOperator.
|
238 |
+
|
239 |
+
lsmr_op = lsmr_operator(Jop, scale, active_set)
|
240 |
+
newton_step = -lsmr(lsmr_op, f, **tr_options)[0][free_set]
|
241 |
+
newton_step *= scale_free
|
242 |
+
|
243 |
+
# Components of g for active variables were zeroed, so this call
|
244 |
+
# is correct and equivalent to using J_free and g_free.
|
245 |
+
a, b = build_quadratic_1d(Jop, g, -g)
|
246 |
+
|
247 |
+
actual_reduction = -1.0
|
248 |
+
while actual_reduction <= 0 and nfev < max_nfev:
|
249 |
+
tr_bounds = Delta * scale_free
|
250 |
+
|
251 |
+
step_free, on_bound_free, tr_hit = dogleg_step(
|
252 |
+
x_free, newton_step, g_free, a, b, tr_bounds, lb_free, ub_free)
|
253 |
+
|
254 |
+
step.fill(0.0)
|
255 |
+
step[free_set] = step_free
|
256 |
+
|
257 |
+
if tr_solver == 'exact':
|
258 |
+
predicted_reduction = -evaluate_quadratic(J_free, g_free,
|
259 |
+
step_free)
|
260 |
+
elif tr_solver == 'lsmr':
|
261 |
+
predicted_reduction = -evaluate_quadratic(Jop, g, step)
|
262 |
+
|
263 |
+
# gh11403 ensure that solution is fully within bounds.
|
264 |
+
x_new = np.clip(x + step, lb, ub)
|
265 |
+
|
266 |
+
f_new = fun(x_new)
|
267 |
+
nfev += 1
|
268 |
+
|
269 |
+
step_h_norm = norm(step * scale_inv, ord=np.inf)
|
270 |
+
|
271 |
+
if not np.all(np.isfinite(f_new)):
|
272 |
+
Delta = 0.25 * step_h_norm
|
273 |
+
continue
|
274 |
+
|
275 |
+
# Usual trust-region step quality estimation.
|
276 |
+
if loss_function is not None:
|
277 |
+
cost_new = loss_function(f_new, cost_only=True)
|
278 |
+
else:
|
279 |
+
cost_new = 0.5 * np.dot(f_new, f_new)
|
280 |
+
actual_reduction = cost - cost_new
|
281 |
+
|
282 |
+
Delta, ratio = update_tr_radius(
|
283 |
+
Delta, actual_reduction, predicted_reduction,
|
284 |
+
step_h_norm, tr_hit
|
285 |
+
)
|
286 |
+
|
287 |
+
step_norm = norm(step)
|
288 |
+
termination_status = check_termination(
|
289 |
+
actual_reduction, cost, step_norm, norm(x), ratio, ftol, xtol)
|
290 |
+
|
291 |
+
if termination_status is not None:
|
292 |
+
break
|
293 |
+
|
294 |
+
if actual_reduction > 0:
|
295 |
+
on_bound[free_set] = on_bound_free
|
296 |
+
|
297 |
+
x = x_new
|
298 |
+
# Set variables exactly at the boundary.
|
299 |
+
mask = on_bound == -1
|
300 |
+
x[mask] = lb[mask]
|
301 |
+
mask = on_bound == 1
|
302 |
+
x[mask] = ub[mask]
|
303 |
+
|
304 |
+
f = f_new
|
305 |
+
f_true = f.copy()
|
306 |
+
|
307 |
+
cost = cost_new
|
308 |
+
|
309 |
+
J = jac(x, f)
|
310 |
+
njev += 1
|
311 |
+
|
312 |
+
if loss_function is not None:
|
313 |
+
rho = loss_function(f)
|
314 |
+
J, f = scale_for_robust_loss_function(J, f, rho)
|
315 |
+
|
316 |
+
g = compute_grad(J, f)
|
317 |
+
|
318 |
+
if jac_scale:
|
319 |
+
scale, scale_inv = compute_jac_scale(J, scale_inv)
|
320 |
+
else:
|
321 |
+
step_norm = 0
|
322 |
+
actual_reduction = 0
|
323 |
+
|
324 |
+
iteration += 1
|
325 |
+
|
326 |
+
if termination_status is None:
|
327 |
+
termination_status = 0
|
328 |
+
|
329 |
+
return OptimizeResult(
|
330 |
+
x=x, cost=cost, fun=f_true, jac=J, grad=g_full, optimality=g_norm,
|
331 |
+
active_mask=on_bound, nfev=nfev, njev=njev, status=termination_status)
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/_lsq/least_squares.py
ADDED
@@ -0,0 +1,967 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Generic interface for least-squares minimization."""
|
2 |
+
from warnings import warn
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
from numpy.linalg import norm
|
6 |
+
|
7 |
+
from scipy.sparse import issparse
|
8 |
+
from scipy.sparse.linalg import LinearOperator
|
9 |
+
from scipy.optimize import _minpack, OptimizeResult
|
10 |
+
from scipy.optimize._numdiff import approx_derivative, group_columns
|
11 |
+
from scipy.optimize._minimize import Bounds
|
12 |
+
|
13 |
+
from .trf import trf
|
14 |
+
from .dogbox import dogbox
|
15 |
+
from .common import EPS, in_bounds, make_strictly_feasible
|
16 |
+
|
17 |
+
|
18 |
+
TERMINATION_MESSAGES = {
|
19 |
+
-1: "Improper input parameters status returned from `leastsq`",
|
20 |
+
0: "The maximum number of function evaluations is exceeded.",
|
21 |
+
1: "`gtol` termination condition is satisfied.",
|
22 |
+
2: "`ftol` termination condition is satisfied.",
|
23 |
+
3: "`xtol` termination condition is satisfied.",
|
24 |
+
4: "Both `ftol` and `xtol` termination conditions are satisfied."
|
25 |
+
}
|
26 |
+
|
27 |
+
|
28 |
+
FROM_MINPACK_TO_COMMON = {
|
29 |
+
0: -1, # Improper input parameters from MINPACK.
|
30 |
+
1: 2,
|
31 |
+
2: 3,
|
32 |
+
3: 4,
|
33 |
+
4: 1,
|
34 |
+
5: 0
|
35 |
+
# There are 6, 7, 8 for too small tolerance parameters,
|
36 |
+
# but we guard against it by checking ftol, xtol, gtol beforehand.
|
37 |
+
}
|
38 |
+
|
39 |
+
|
40 |
+
def call_minpack(fun, x0, jac, ftol, xtol, gtol, max_nfev, x_scale, diff_step):
|
41 |
+
n = x0.size
|
42 |
+
|
43 |
+
if diff_step is None:
|
44 |
+
epsfcn = EPS
|
45 |
+
else:
|
46 |
+
epsfcn = diff_step**2
|
47 |
+
|
48 |
+
# Compute MINPACK's `diag`, which is inverse of our `x_scale` and
|
49 |
+
# ``x_scale='jac'`` corresponds to ``diag=None``.
|
50 |
+
if isinstance(x_scale, str) and x_scale == 'jac':
|
51 |
+
diag = None
|
52 |
+
else:
|
53 |
+
diag = 1 / x_scale
|
54 |
+
|
55 |
+
full_output = True
|
56 |
+
col_deriv = False
|
57 |
+
factor = 100.0
|
58 |
+
|
59 |
+
if jac is None:
|
60 |
+
if max_nfev is None:
|
61 |
+
# n squared to account for Jacobian evaluations.
|
62 |
+
max_nfev = 100 * n * (n + 1)
|
63 |
+
x, info, status = _minpack._lmdif(
|
64 |
+
fun, x0, (), full_output, ftol, xtol, gtol,
|
65 |
+
max_nfev, epsfcn, factor, diag)
|
66 |
+
else:
|
67 |
+
if max_nfev is None:
|
68 |
+
max_nfev = 100 * n
|
69 |
+
x, info, status = _minpack._lmder(
|
70 |
+
fun, jac, x0, (), full_output, col_deriv,
|
71 |
+
ftol, xtol, gtol, max_nfev, factor, diag)
|
72 |
+
|
73 |
+
f = info['fvec']
|
74 |
+
|
75 |
+
if callable(jac):
|
76 |
+
J = jac(x)
|
77 |
+
else:
|
78 |
+
J = np.atleast_2d(approx_derivative(fun, x))
|
79 |
+
|
80 |
+
cost = 0.5 * np.dot(f, f)
|
81 |
+
g = J.T.dot(f)
|
82 |
+
g_norm = norm(g, ord=np.inf)
|
83 |
+
|
84 |
+
nfev = info['nfev']
|
85 |
+
njev = info.get('njev', None)
|
86 |
+
|
87 |
+
status = FROM_MINPACK_TO_COMMON[status]
|
88 |
+
active_mask = np.zeros_like(x0, dtype=int)
|
89 |
+
|
90 |
+
return OptimizeResult(
|
91 |
+
x=x, cost=cost, fun=f, jac=J, grad=g, optimality=g_norm,
|
92 |
+
active_mask=active_mask, nfev=nfev, njev=njev, status=status)
|
93 |
+
|
94 |
+
|
95 |
+
def prepare_bounds(bounds, n):
|
96 |
+
lb, ub = (np.asarray(b, dtype=float) for b in bounds)
|
97 |
+
if lb.ndim == 0:
|
98 |
+
lb = np.resize(lb, n)
|
99 |
+
|
100 |
+
if ub.ndim == 0:
|
101 |
+
ub = np.resize(ub, n)
|
102 |
+
|
103 |
+
return lb, ub
|
104 |
+
|
105 |
+
|
106 |
+
def check_tolerance(ftol, xtol, gtol, method):
|
107 |
+
def check(tol, name):
|
108 |
+
if tol is None:
|
109 |
+
tol = 0
|
110 |
+
elif tol < EPS:
|
111 |
+
warn(f"Setting `{name}` below the machine epsilon ({EPS:.2e}) effectively "
|
112 |
+
f"disables the corresponding termination condition.",
|
113 |
+
stacklevel=3)
|
114 |
+
return tol
|
115 |
+
|
116 |
+
ftol = check(ftol, "ftol")
|
117 |
+
xtol = check(xtol, "xtol")
|
118 |
+
gtol = check(gtol, "gtol")
|
119 |
+
|
120 |
+
if method == "lm" and (ftol < EPS or xtol < EPS or gtol < EPS):
|
121 |
+
raise ValueError("All tolerances must be higher than machine epsilon "
|
122 |
+
f"({EPS:.2e}) for method 'lm'.")
|
123 |
+
elif ftol < EPS and xtol < EPS and gtol < EPS:
|
124 |
+
raise ValueError("At least one of the tolerances must be higher than "
|
125 |
+
f"machine epsilon ({EPS:.2e}).")
|
126 |
+
|
127 |
+
return ftol, xtol, gtol
|
128 |
+
|
129 |
+
|
130 |
+
def check_x_scale(x_scale, x0):
|
131 |
+
if isinstance(x_scale, str) and x_scale == 'jac':
|
132 |
+
return x_scale
|
133 |
+
|
134 |
+
try:
|
135 |
+
x_scale = np.asarray(x_scale, dtype=float)
|
136 |
+
valid = np.all(np.isfinite(x_scale)) and np.all(x_scale > 0)
|
137 |
+
except (ValueError, TypeError):
|
138 |
+
valid = False
|
139 |
+
|
140 |
+
if not valid:
|
141 |
+
raise ValueError("`x_scale` must be 'jac' or array_like with "
|
142 |
+
"positive numbers.")
|
143 |
+
|
144 |
+
if x_scale.ndim == 0:
|
145 |
+
x_scale = np.resize(x_scale, x0.shape)
|
146 |
+
|
147 |
+
if x_scale.shape != x0.shape:
|
148 |
+
raise ValueError("Inconsistent shapes between `x_scale` and `x0`.")
|
149 |
+
|
150 |
+
return x_scale
|
151 |
+
|
152 |
+
|
153 |
+
def check_jac_sparsity(jac_sparsity, m, n):
|
154 |
+
if jac_sparsity is None:
|
155 |
+
return None
|
156 |
+
|
157 |
+
if not issparse(jac_sparsity):
|
158 |
+
jac_sparsity = np.atleast_2d(jac_sparsity)
|
159 |
+
|
160 |
+
if jac_sparsity.shape != (m, n):
|
161 |
+
raise ValueError("`jac_sparsity` has wrong shape.")
|
162 |
+
|
163 |
+
return jac_sparsity, group_columns(jac_sparsity)
|
164 |
+
|
165 |
+
|
166 |
+
# Loss functions.
|
167 |
+
|
168 |
+
|
169 |
+
def huber(z, rho, cost_only):
|
170 |
+
mask = z <= 1
|
171 |
+
rho[0, mask] = z[mask]
|
172 |
+
rho[0, ~mask] = 2 * z[~mask]**0.5 - 1
|
173 |
+
if cost_only:
|
174 |
+
return
|
175 |
+
rho[1, mask] = 1
|
176 |
+
rho[1, ~mask] = z[~mask]**-0.5
|
177 |
+
rho[2, mask] = 0
|
178 |
+
rho[2, ~mask] = -0.5 * z[~mask]**-1.5
|
179 |
+
|
180 |
+
|
181 |
+
def soft_l1(z, rho, cost_only):
|
182 |
+
t = 1 + z
|
183 |
+
rho[0] = 2 * (t**0.5 - 1)
|
184 |
+
if cost_only:
|
185 |
+
return
|
186 |
+
rho[1] = t**-0.5
|
187 |
+
rho[2] = -0.5 * t**-1.5
|
188 |
+
|
189 |
+
|
190 |
+
def cauchy(z, rho, cost_only):
|
191 |
+
rho[0] = np.log1p(z)
|
192 |
+
if cost_only:
|
193 |
+
return
|
194 |
+
t = 1 + z
|
195 |
+
rho[1] = 1 / t
|
196 |
+
rho[2] = -1 / t**2
|
197 |
+
|
198 |
+
|
199 |
+
def arctan(z, rho, cost_only):
|
200 |
+
rho[0] = np.arctan(z)
|
201 |
+
if cost_only:
|
202 |
+
return
|
203 |
+
t = 1 + z**2
|
204 |
+
rho[1] = 1 / t
|
205 |
+
rho[2] = -2 * z / t**2
|
206 |
+
|
207 |
+
|
208 |
+
IMPLEMENTED_LOSSES = dict(linear=None, huber=huber, soft_l1=soft_l1,
|
209 |
+
cauchy=cauchy, arctan=arctan)
|
210 |
+
|
211 |
+
|
212 |
+
def construct_loss_function(m, loss, f_scale):
|
213 |
+
if loss == 'linear':
|
214 |
+
return None
|
215 |
+
|
216 |
+
if not callable(loss):
|
217 |
+
loss = IMPLEMENTED_LOSSES[loss]
|
218 |
+
rho = np.empty((3, m))
|
219 |
+
|
220 |
+
def loss_function(f, cost_only=False):
|
221 |
+
z = (f / f_scale) ** 2
|
222 |
+
loss(z, rho, cost_only=cost_only)
|
223 |
+
if cost_only:
|
224 |
+
return 0.5 * f_scale ** 2 * np.sum(rho[0])
|
225 |
+
rho[0] *= f_scale ** 2
|
226 |
+
rho[2] /= f_scale ** 2
|
227 |
+
return rho
|
228 |
+
else:
|
229 |
+
def loss_function(f, cost_only=False):
|
230 |
+
z = (f / f_scale) ** 2
|
231 |
+
rho = loss(z)
|
232 |
+
if cost_only:
|
233 |
+
return 0.5 * f_scale ** 2 * np.sum(rho[0])
|
234 |
+
rho[0] *= f_scale ** 2
|
235 |
+
rho[2] /= f_scale ** 2
|
236 |
+
return rho
|
237 |
+
|
238 |
+
return loss_function
|
239 |
+
|
240 |
+
|
241 |
+
def least_squares(
|
242 |
+
fun, x0, jac='2-point', bounds=(-np.inf, np.inf), method='trf',
|
243 |
+
ftol=1e-8, xtol=1e-8, gtol=1e-8, x_scale=1.0, loss='linear',
|
244 |
+
f_scale=1.0, diff_step=None, tr_solver=None, tr_options={},
|
245 |
+
jac_sparsity=None, max_nfev=None, verbose=0, args=(), kwargs={}):
|
246 |
+
"""Solve a nonlinear least-squares problem with bounds on the variables.
|
247 |
+
|
248 |
+
Given the residuals f(x) (an m-D real function of n real
|
249 |
+
variables) and the loss function rho(s) (a scalar function), `least_squares`
|
250 |
+
finds a local minimum of the cost function F(x)::
|
251 |
+
|
252 |
+
minimize F(x) = 0.5 * sum(rho(f_i(x)**2), i = 0, ..., m - 1)
|
253 |
+
subject to lb <= x <= ub
|
254 |
+
|
255 |
+
The purpose of the loss function rho(s) is to reduce the influence of
|
256 |
+
outliers on the solution.
|
257 |
+
|
258 |
+
Parameters
|
259 |
+
----------
|
260 |
+
fun : callable
|
261 |
+
Function which computes the vector of residuals, with the signature
|
262 |
+
``fun(x, *args, **kwargs)``, i.e., the minimization proceeds with
|
263 |
+
respect to its first argument. The argument ``x`` passed to this
|
264 |
+
function is an ndarray of shape (n,) (never a scalar, even for n=1).
|
265 |
+
It must allocate and return a 1-D array_like of shape (m,) or a scalar.
|
266 |
+
If the argument ``x`` is complex or the function ``fun`` returns
|
267 |
+
complex residuals, it must be wrapped in a real function of real
|
268 |
+
arguments, as shown at the end of the Examples section.
|
269 |
+
x0 : array_like with shape (n,) or float
|
270 |
+
Initial guess on independent variables. If float, it will be treated
|
271 |
+
as a 1-D array with one element. When `method` is 'trf', the initial
|
272 |
+
guess might be slightly adjusted to lie sufficiently within the given
|
273 |
+
`bounds`.
|
274 |
+
jac : {'2-point', '3-point', 'cs', callable}, optional
|
275 |
+
Method of computing the Jacobian matrix (an m-by-n matrix, where
|
276 |
+
element (i, j) is the partial derivative of f[i] with respect to
|
277 |
+
x[j]). The keywords select a finite difference scheme for numerical
|
278 |
+
estimation. The scheme '3-point' is more accurate, but requires
|
279 |
+
twice as many operations as '2-point' (default). The scheme 'cs'
|
280 |
+
uses complex steps, and while potentially the most accurate, it is
|
281 |
+
applicable only when `fun` correctly handles complex inputs and
|
282 |
+
can be analytically continued to the complex plane. Method 'lm'
|
283 |
+
always uses the '2-point' scheme. If callable, it is used as
|
284 |
+
``jac(x, *args, **kwargs)`` and should return a good approximation
|
285 |
+
(or the exact value) for the Jacobian as an array_like (np.atleast_2d
|
286 |
+
is applied), a sparse matrix (csr_matrix preferred for performance) or
|
287 |
+
a `scipy.sparse.linalg.LinearOperator`.
|
288 |
+
bounds : 2-tuple of array_like or `Bounds`, optional
|
289 |
+
There are two ways to specify bounds:
|
290 |
+
|
291 |
+
1. Instance of `Bounds` class
|
292 |
+
2. Lower and upper bounds on independent variables. Defaults to no
|
293 |
+
bounds. Each array must match the size of `x0` or be a scalar,
|
294 |
+
in the latter case a bound will be the same for all variables.
|
295 |
+
Use ``np.inf`` with an appropriate sign to disable bounds on all
|
296 |
+
or some variables.
|
297 |
+
method : {'trf', 'dogbox', 'lm'}, optional
|
298 |
+
Algorithm to perform minimization.
|
299 |
+
|
300 |
+
* 'trf' : Trust Region Reflective algorithm, particularly suitable
|
301 |
+
for large sparse problems with bounds. Generally robust method.
|
302 |
+
* 'dogbox' : dogleg algorithm with rectangular trust regions,
|
303 |
+
typical use case is small problems with bounds. Not recommended
|
304 |
+
for problems with rank-deficient Jacobian.
|
305 |
+
* 'lm' : Levenberg-Marquardt algorithm as implemented in MINPACK.
|
306 |
+
Doesn't handle bounds and sparse Jacobians. Usually the most
|
307 |
+
efficient method for small unconstrained problems.
|
308 |
+
|
309 |
+
Default is 'trf'. See Notes for more information.
|
310 |
+
ftol : float or None, optional
|
311 |
+
Tolerance for termination by the change of the cost function. Default
|
312 |
+
is 1e-8. The optimization process is stopped when ``dF < ftol * F``,
|
313 |
+
and there was an adequate agreement between a local quadratic model and
|
314 |
+
the true model in the last step.
|
315 |
+
|
316 |
+
If None and 'method' is not 'lm', the termination by this condition is
|
317 |
+
disabled. If 'method' is 'lm', this tolerance must be higher than
|
318 |
+
machine epsilon.
|
319 |
+
xtol : float or None, optional
|
320 |
+
Tolerance for termination by the change of the independent variables.
|
321 |
+
Default is 1e-8. The exact condition depends on the `method` used:
|
322 |
+
|
323 |
+
* For 'trf' and 'dogbox' : ``norm(dx) < xtol * (xtol + norm(x))``.
|
324 |
+
* For 'lm' : ``Delta < xtol * norm(xs)``, where ``Delta`` is
|
325 |
+
a trust-region radius and ``xs`` is the value of ``x``
|
326 |
+
scaled according to `x_scale` parameter (see below).
|
327 |
+
|
328 |
+
If None and 'method' is not 'lm', the termination by this condition is
|
329 |
+
disabled. If 'method' is 'lm', this tolerance must be higher than
|
330 |
+
machine epsilon.
|
331 |
+
gtol : float or None, optional
|
332 |
+
Tolerance for termination by the norm of the gradient. Default is 1e-8.
|
333 |
+
The exact condition depends on a `method` used:
|
334 |
+
|
335 |
+
* For 'trf' : ``norm(g_scaled, ord=np.inf) < gtol``, where
|
336 |
+
``g_scaled`` is the value of the gradient scaled to account for
|
337 |
+
the presence of the bounds [STIR]_.
|
338 |
+
* For 'dogbox' : ``norm(g_free, ord=np.inf) < gtol``, where
|
339 |
+
``g_free`` is the gradient with respect to the variables which
|
340 |
+
are not in the optimal state on the boundary.
|
341 |
+
* For 'lm' : the maximum absolute value of the cosine of angles
|
342 |
+
between columns of the Jacobian and the residual vector is less
|
343 |
+
than `gtol`, or the residual vector is zero.
|
344 |
+
|
345 |
+
If None and 'method' is not 'lm', the termination by this condition is
|
346 |
+
disabled. If 'method' is 'lm', this tolerance must be higher than
|
347 |
+
machine epsilon.
|
348 |
+
x_scale : array_like or 'jac', optional
|
349 |
+
Characteristic scale of each variable. Setting `x_scale` is equivalent
|
350 |
+
to reformulating the problem in scaled variables ``xs = x / x_scale``.
|
351 |
+
An alternative view is that the size of a trust region along jth
|
352 |
+
dimension is proportional to ``x_scale[j]``. Improved convergence may
|
353 |
+
be achieved by setting `x_scale` such that a step of a given size
|
354 |
+
along any of the scaled variables has a similar effect on the cost
|
355 |
+
function. If set to 'jac', the scale is iteratively updated using the
|
356 |
+
inverse norms of the columns of the Jacobian matrix (as described in
|
357 |
+
[JJMore]_).
|
358 |
+
loss : str or callable, optional
|
359 |
+
Determines the loss function. The following keyword values are allowed:
|
360 |
+
|
361 |
+
* 'linear' (default) : ``rho(z) = z``. Gives a standard
|
362 |
+
least-squares problem.
|
363 |
+
* 'soft_l1' : ``rho(z) = 2 * ((1 + z)**0.5 - 1)``. The smooth
|
364 |
+
approximation of l1 (absolute value) loss. Usually a good
|
365 |
+
choice for robust least squares.
|
366 |
+
* 'huber' : ``rho(z) = z if z <= 1 else 2*z**0.5 - 1``. Works
|
367 |
+
similarly to 'soft_l1'.
|
368 |
+
* 'cauchy' : ``rho(z) = ln(1 + z)``. Severely weakens outliers
|
369 |
+
influence, but may cause difficulties in optimization process.
|
370 |
+
* 'arctan' : ``rho(z) = arctan(z)``. Limits a maximum loss on
|
371 |
+
a single residual, has properties similar to 'cauchy'.
|
372 |
+
|
373 |
+
If callable, it must take a 1-D ndarray ``z=f**2`` and return an
|
374 |
+
array_like with shape (3, m) where row 0 contains function values,
|
375 |
+
row 1 contains first derivatives and row 2 contains second
|
376 |
+
derivatives. Method 'lm' supports only 'linear' loss.
|
377 |
+
f_scale : float, optional
|
378 |
+
Value of soft margin between inlier and outlier residuals, default
|
379 |
+
is 1.0. The loss function is evaluated as follows
|
380 |
+
``rho_(f**2) = C**2 * rho(f**2 / C**2)``, where ``C`` is `f_scale`,
|
381 |
+
and ``rho`` is determined by `loss` parameter. This parameter has
|
382 |
+
no effect with ``loss='linear'``, but for other `loss` values it is
|
383 |
+
of crucial importance.
|
384 |
+
max_nfev : None or int, optional
|
385 |
+
Maximum number of function evaluations before the termination.
|
386 |
+
If None (default), the value is chosen automatically:
|
387 |
+
|
388 |
+
* For 'trf' and 'dogbox' : 100 * n.
|
389 |
+
* For 'lm' : 100 * n if `jac` is callable and 100 * n * (n + 1)
|
390 |
+
otherwise (because 'lm' counts function calls in Jacobian
|
391 |
+
estimation).
|
392 |
+
|
393 |
+
diff_step : None or array_like, optional
|
394 |
+
Determines the relative step size for the finite difference
|
395 |
+
approximation of the Jacobian. The actual step is computed as
|
396 |
+
``x * diff_step``. If None (default), then `diff_step` is taken to be
|
397 |
+
a conventional "optimal" power of machine epsilon for the finite
|
398 |
+
difference scheme used [NR]_.
|
399 |
+
tr_solver : {None, 'exact', 'lsmr'}, optional
|
400 |
+
Method for solving trust-region subproblems, relevant only for 'trf'
|
401 |
+
and 'dogbox' methods.
|
402 |
+
|
403 |
+
* 'exact' is suitable for not very large problems with dense
|
404 |
+
Jacobian matrices. The computational complexity per iteration is
|
405 |
+
comparable to a singular value decomposition of the Jacobian
|
406 |
+
matrix.
|
407 |
+
* 'lsmr' is suitable for problems with sparse and large Jacobian
|
408 |
+
matrices. It uses the iterative procedure
|
409 |
+
`scipy.sparse.linalg.lsmr` for finding a solution of a linear
|
410 |
+
least-squares problem and only requires matrix-vector product
|
411 |
+
evaluations.
|
412 |
+
|
413 |
+
If None (default), the solver is chosen based on the type of Jacobian
|
414 |
+
returned on the first iteration.
|
415 |
+
tr_options : dict, optional
|
416 |
+
Keyword options passed to trust-region solver.
|
417 |
+
|
418 |
+
* ``tr_solver='exact'``: `tr_options` are ignored.
|
419 |
+
* ``tr_solver='lsmr'``: options for `scipy.sparse.linalg.lsmr`.
|
420 |
+
Additionally, ``method='trf'`` supports 'regularize' option
|
421 |
+
(bool, default is True), which adds a regularization term to the
|
422 |
+
normal equation, which improves convergence if the Jacobian is
|
423 |
+
rank-deficient [Byrd]_ (eq. 3.4).
|
424 |
+
|
425 |
+
jac_sparsity : {None, array_like, sparse matrix}, optional
|
426 |
+
Defines the sparsity structure of the Jacobian matrix for finite
|
427 |
+
difference estimation, its shape must be (m, n). If the Jacobian has
|
428 |
+
only few non-zero elements in *each* row, providing the sparsity
|
429 |
+
structure will greatly speed up the computations [Curtis]_. A zero
|
430 |
+
entry means that a corresponding element in the Jacobian is identically
|
431 |
+
zero. If provided, forces the use of 'lsmr' trust-region solver.
|
432 |
+
If None (default), then dense differencing will be used. Has no effect
|
433 |
+
for 'lm' method.
|
434 |
+
verbose : {0, 1, 2}, optional
|
435 |
+
Level of algorithm's verbosity:
|
436 |
+
|
437 |
+
* 0 (default) : work silently.
|
438 |
+
* 1 : display a termination report.
|
439 |
+
* 2 : display progress during iterations (not supported by 'lm'
|
440 |
+
method).
|
441 |
+
|
442 |
+
args, kwargs : tuple and dict, optional
|
443 |
+
Additional arguments passed to `fun` and `jac`. Both empty by default.
|
444 |
+
The calling signature is ``fun(x, *args, **kwargs)`` and the same for
|
445 |
+
`jac`.
|
446 |
+
|
447 |
+
Returns
|
448 |
+
-------
|
449 |
+
result : OptimizeResult
|
450 |
+
`OptimizeResult` with the following fields defined:
|
451 |
+
|
452 |
+
x : ndarray, shape (n,)
|
453 |
+
Solution found.
|
454 |
+
cost : float
|
455 |
+
Value of the cost function at the solution.
|
456 |
+
fun : ndarray, shape (m,)
|
457 |
+
Vector of residuals at the solution.
|
458 |
+
jac : ndarray, sparse matrix or LinearOperator, shape (m, n)
|
459 |
+
Modified Jacobian matrix at the solution, in the sense that J^T J
|
460 |
+
is a Gauss-Newton approximation of the Hessian of the cost function.
|
461 |
+
The type is the same as the one used by the algorithm.
|
462 |
+
grad : ndarray, shape (m,)
|
463 |
+
Gradient of the cost function at the solution.
|
464 |
+
optimality : float
|
465 |
+
First-order optimality measure. In unconstrained problems, it is
|
466 |
+
always the uniform norm of the gradient. In constrained problems,
|
467 |
+
it is the quantity which was compared with `gtol` during iterations.
|
468 |
+
active_mask : ndarray of int, shape (n,)
|
469 |
+
Each component shows whether a corresponding constraint is active
|
470 |
+
(that is, whether a variable is at the bound):
|
471 |
+
|
472 |
+
* 0 : a constraint is not active.
|
473 |
+
* -1 : a lower bound is active.
|
474 |
+
* 1 : an upper bound is active.
|
475 |
+
|
476 |
+
Might be somewhat arbitrary for 'trf' method as it generates a
|
477 |
+
sequence of strictly feasible iterates and `active_mask` is
|
478 |
+
determined within a tolerance threshold.
|
479 |
+
nfev : int
|
480 |
+
Number of function evaluations done. Methods 'trf' and 'dogbox' do
|
481 |
+
not count function calls for numerical Jacobian approximation, as
|
482 |
+
opposed to 'lm' method.
|
483 |
+
njev : int or None
|
484 |
+
Number of Jacobian evaluations done. If numerical Jacobian
|
485 |
+
approximation is used in 'lm' method, it is set to None.
|
486 |
+
status : int
|
487 |
+
The reason for algorithm termination:
|
488 |
+
|
489 |
+
* -1 : improper input parameters status returned from MINPACK.
|
490 |
+
* 0 : the maximum number of function evaluations is exceeded.
|
491 |
+
* 1 : `gtol` termination condition is satisfied.
|
492 |
+
* 2 : `ftol` termination condition is satisfied.
|
493 |
+
* 3 : `xtol` termination condition is satisfied.
|
494 |
+
* 4 : Both `ftol` and `xtol` termination conditions are satisfied.
|
495 |
+
|
496 |
+
message : str
|
497 |
+
Verbal description of the termination reason.
|
498 |
+
success : bool
|
499 |
+
True if one of the convergence criteria is satisfied (`status` > 0).
|
500 |
+
|
501 |
+
See Also
|
502 |
+
--------
|
503 |
+
leastsq : A legacy wrapper for the MINPACK implementation of the
|
504 |
+
Levenberg-Marquadt algorithm.
|
505 |
+
curve_fit : Least-squares minimization applied to a curve-fitting problem.
|
506 |
+
|
507 |
+
Notes
|
508 |
+
-----
|
509 |
+
Method 'lm' (Levenberg-Marquardt) calls a wrapper over least-squares
|
510 |
+
algorithms implemented in MINPACK (lmder, lmdif). It runs the
|
511 |
+
Levenberg-Marquardt algorithm formulated as a trust-region type algorithm.
|
512 |
+
The implementation is based on paper [JJMore]_, it is very robust and
|
513 |
+
efficient with a lot of smart tricks. It should be your first choice
|
514 |
+
for unconstrained problems. Note that it doesn't support bounds. Also,
|
515 |
+
it doesn't work when m < n.
|
516 |
+
|
517 |
+
Method 'trf' (Trust Region Reflective) is motivated by the process of
|
518 |
+
solving a system of equations, which constitute the first-order optimality
|
519 |
+
condition for a bound-constrained minimization problem as formulated in
|
520 |
+
[STIR]_. The algorithm iteratively solves trust-region subproblems
|
521 |
+
augmented by a special diagonal quadratic term and with trust-region shape
|
522 |
+
determined by the distance from the bounds and the direction of the
|
523 |
+
gradient. This enhancements help to avoid making steps directly into bounds
|
524 |
+
and efficiently explore the whole space of variables. To further improve
|
525 |
+
convergence, the algorithm considers search directions reflected from the
|
526 |
+
bounds. To obey theoretical requirements, the algorithm keeps iterates
|
527 |
+
strictly feasible. With dense Jacobians trust-region subproblems are
|
528 |
+
solved by an exact method very similar to the one described in [JJMore]_
|
529 |
+
(and implemented in MINPACK). The difference from the MINPACK
|
530 |
+
implementation is that a singular value decomposition of a Jacobian
|
531 |
+
matrix is done once per iteration, instead of a QR decomposition and series
|
532 |
+
of Givens rotation eliminations. For large sparse Jacobians a 2-D subspace
|
533 |
+
approach of solving trust-region subproblems is used [STIR]_, [Byrd]_.
|
534 |
+
The subspace is spanned by a scaled gradient and an approximate
|
535 |
+
Gauss-Newton solution delivered by `scipy.sparse.linalg.lsmr`. When no
|
536 |
+
constraints are imposed the algorithm is very similar to MINPACK and has
|
537 |
+
generally comparable performance. The algorithm works quite robust in
|
538 |
+
unbounded and bounded problems, thus it is chosen as a default algorithm.
|
539 |
+
|
540 |
+
Method 'dogbox' operates in a trust-region framework, but considers
|
541 |
+
rectangular trust regions as opposed to conventional ellipsoids [Voglis]_.
|
542 |
+
The intersection of a current trust region and initial bounds is again
|
543 |
+
rectangular, so on each iteration a quadratic minimization problem subject
|
544 |
+
to bound constraints is solved approximately by Powell's dogleg method
|
545 |
+
[NumOpt]_. The required Gauss-Newton step can be computed exactly for
|
546 |
+
dense Jacobians or approximately by `scipy.sparse.linalg.lsmr` for large
|
547 |
+
sparse Jacobians. The algorithm is likely to exhibit slow convergence when
|
548 |
+
the rank of Jacobian is less than the number of variables. The algorithm
|
549 |
+
often outperforms 'trf' in bounded problems with a small number of
|
550 |
+
variables.
|
551 |
+
|
552 |
+
Robust loss functions are implemented as described in [BA]_. The idea
|
553 |
+
is to modify a residual vector and a Jacobian matrix on each iteration
|
554 |
+
such that computed gradient and Gauss-Newton Hessian approximation match
|
555 |
+
the true gradient and Hessian approximation of the cost function. Then
|
556 |
+
the algorithm proceeds in a normal way, i.e., robust loss functions are
|
557 |
+
implemented as a simple wrapper over standard least-squares algorithms.
|
558 |
+
|
559 |
+
.. versionadded:: 0.17.0
|
560 |
+
|
561 |
+
References
|
562 |
+
----------
|
563 |
+
.. [STIR] M. A. Branch, T. F. Coleman, and Y. Li, "A Subspace, Interior,
|
564 |
+
and Conjugate Gradient Method for Large-Scale Bound-Constrained
|
565 |
+
Minimization Problems," SIAM Journal on Scientific Computing,
|
566 |
+
Vol. 21, Number 1, pp 1-23, 1999.
|
567 |
+
.. [NR] William H. Press et. al., "Numerical Recipes. The Art of Scientific
|
568 |
+
Computing. 3rd edition", Sec. 5.7.
|
569 |
+
.. [Byrd] R. H. Byrd, R. B. Schnabel and G. A. Shultz, "Approximate
|
570 |
+
solution of the trust region problem by minimization over
|
571 |
+
two-dimensional subspaces", Math. Programming, 40, pp. 247-263,
|
572 |
+
1988.
|
573 |
+
.. [Curtis] A. Curtis, M. J. D. Powell, and J. Reid, "On the estimation of
|
574 |
+
sparse Jacobian matrices", Journal of the Institute of
|
575 |
+
Mathematics and its Applications, 13, pp. 117-120, 1974.
|
576 |
+
.. [JJMore] J. J. More, "The Levenberg-Marquardt Algorithm: Implementation
|
577 |
+
and Theory," Numerical Analysis, ed. G. A. Watson, Lecture
|
578 |
+
Notes in Mathematics 630, Springer Verlag, pp. 105-116, 1977.
|
579 |
+
.. [Voglis] C. Voglis and I. E. Lagaris, "A Rectangular Trust Region
|
580 |
+
Dogleg Approach for Unconstrained and Bound Constrained
|
581 |
+
Nonlinear Optimization", WSEAS International Conference on
|
582 |
+
Applied Mathematics, Corfu, Greece, 2004.
|
583 |
+
.. [NumOpt] J. Nocedal and S. J. Wright, "Numerical optimization,
|
584 |
+
2nd edition", Chapter 4.
|
585 |
+
.. [BA] B. Triggs et. al., "Bundle Adjustment - A Modern Synthesis",
|
586 |
+
Proceedings of the International Workshop on Vision Algorithms:
|
587 |
+
Theory and Practice, pp. 298-372, 1999.
|
588 |
+
|
589 |
+
Examples
|
590 |
+
--------
|
591 |
+
In this example we find a minimum of the Rosenbrock function without bounds
|
592 |
+
on independent variables.
|
593 |
+
|
594 |
+
>>> import numpy as np
|
595 |
+
>>> def fun_rosenbrock(x):
|
596 |
+
... return np.array([10 * (x[1] - x[0]**2), (1 - x[0])])
|
597 |
+
|
598 |
+
Notice that we only provide the vector of the residuals. The algorithm
|
599 |
+
constructs the cost function as a sum of squares of the residuals, which
|
600 |
+
gives the Rosenbrock function. The exact minimum is at ``x = [1.0, 1.0]``.
|
601 |
+
|
602 |
+
>>> from scipy.optimize import least_squares
|
603 |
+
>>> x0_rosenbrock = np.array([2, 2])
|
604 |
+
>>> res_1 = least_squares(fun_rosenbrock, x0_rosenbrock)
|
605 |
+
>>> res_1.x
|
606 |
+
array([ 1., 1.])
|
607 |
+
>>> res_1.cost
|
608 |
+
9.8669242910846867e-30
|
609 |
+
>>> res_1.optimality
|
610 |
+
8.8928864934219529e-14
|
611 |
+
|
612 |
+
We now constrain the variables, in such a way that the previous solution
|
613 |
+
becomes infeasible. Specifically, we require that ``x[1] >= 1.5``, and
|
614 |
+
``x[0]`` left unconstrained. To this end, we specify the `bounds` parameter
|
615 |
+
to `least_squares` in the form ``bounds=([-np.inf, 1.5], np.inf)``.
|
616 |
+
|
617 |
+
We also provide the analytic Jacobian:
|
618 |
+
|
619 |
+
>>> def jac_rosenbrock(x):
|
620 |
+
... return np.array([
|
621 |
+
... [-20 * x[0], 10],
|
622 |
+
... [-1, 0]])
|
623 |
+
|
624 |
+
Putting this all together, we see that the new solution lies on the bound:
|
625 |
+
|
626 |
+
>>> res_2 = least_squares(fun_rosenbrock, x0_rosenbrock, jac_rosenbrock,
|
627 |
+
... bounds=([-np.inf, 1.5], np.inf))
|
628 |
+
>>> res_2.x
|
629 |
+
array([ 1.22437075, 1.5 ])
|
630 |
+
>>> res_2.cost
|
631 |
+
0.025213093946805685
|
632 |
+
>>> res_2.optimality
|
633 |
+
1.5885401433157753e-07
|
634 |
+
|
635 |
+
Now we solve a system of equations (i.e., the cost function should be zero
|
636 |
+
at a minimum) for a Broyden tridiagonal vector-valued function of 100000
|
637 |
+
variables:
|
638 |
+
|
639 |
+
>>> def fun_broyden(x):
|
640 |
+
... f = (3 - x) * x + 1
|
641 |
+
... f[1:] -= x[:-1]
|
642 |
+
... f[:-1] -= 2 * x[1:]
|
643 |
+
... return f
|
644 |
+
|
645 |
+
The corresponding Jacobian matrix is sparse. We tell the algorithm to
|
646 |
+
estimate it by finite differences and provide the sparsity structure of
|
647 |
+
Jacobian to significantly speed up this process.
|
648 |
+
|
649 |
+
>>> from scipy.sparse import lil_matrix
|
650 |
+
>>> def sparsity_broyden(n):
|
651 |
+
... sparsity = lil_matrix((n, n), dtype=int)
|
652 |
+
... i = np.arange(n)
|
653 |
+
... sparsity[i, i] = 1
|
654 |
+
... i = np.arange(1, n)
|
655 |
+
... sparsity[i, i - 1] = 1
|
656 |
+
... i = np.arange(n - 1)
|
657 |
+
... sparsity[i, i + 1] = 1
|
658 |
+
... return sparsity
|
659 |
+
...
|
660 |
+
>>> n = 100000
|
661 |
+
>>> x0_broyden = -np.ones(n)
|
662 |
+
...
|
663 |
+
>>> res_3 = least_squares(fun_broyden, x0_broyden,
|
664 |
+
... jac_sparsity=sparsity_broyden(n))
|
665 |
+
>>> res_3.cost
|
666 |
+
4.5687069299604613e-23
|
667 |
+
>>> res_3.optimality
|
668 |
+
1.1650454296851518e-11
|
669 |
+
|
670 |
+
Let's also solve a curve fitting problem using robust loss function to
|
671 |
+
take care of outliers in the data. Define the model function as
|
672 |
+
``y = a + b * exp(c * t)``, where t is a predictor variable, y is an
|
673 |
+
observation and a, b, c are parameters to estimate.
|
674 |
+
|
675 |
+
First, define the function which generates the data with noise and
|
676 |
+
outliers, define the model parameters, and generate data:
|
677 |
+
|
678 |
+
>>> from numpy.random import default_rng
|
679 |
+
>>> rng = default_rng()
|
680 |
+
>>> def gen_data(t, a, b, c, noise=0., n_outliers=0, seed=None):
|
681 |
+
... rng = default_rng(seed)
|
682 |
+
...
|
683 |
+
... y = a + b * np.exp(t * c)
|
684 |
+
...
|
685 |
+
... error = noise * rng.standard_normal(t.size)
|
686 |
+
... outliers = rng.integers(0, t.size, n_outliers)
|
687 |
+
... error[outliers] *= 10
|
688 |
+
...
|
689 |
+
... return y + error
|
690 |
+
...
|
691 |
+
>>> a = 0.5
|
692 |
+
>>> b = 2.0
|
693 |
+
>>> c = -1
|
694 |
+
>>> t_min = 0
|
695 |
+
>>> t_max = 10
|
696 |
+
>>> n_points = 15
|
697 |
+
...
|
698 |
+
>>> t_train = np.linspace(t_min, t_max, n_points)
|
699 |
+
>>> y_train = gen_data(t_train, a, b, c, noise=0.1, n_outliers=3)
|
700 |
+
|
701 |
+
Define function for computing residuals and initial estimate of
|
702 |
+
parameters.
|
703 |
+
|
704 |
+
>>> def fun(x, t, y):
|
705 |
+
... return x[0] + x[1] * np.exp(x[2] * t) - y
|
706 |
+
...
|
707 |
+
>>> x0 = np.array([1.0, 1.0, 0.0])
|
708 |
+
|
709 |
+
Compute a standard least-squares solution:
|
710 |
+
|
711 |
+
>>> res_lsq = least_squares(fun, x0, args=(t_train, y_train))
|
712 |
+
|
713 |
+
Now compute two solutions with two different robust loss functions. The
|
714 |
+
parameter `f_scale` is set to 0.1, meaning that inlier residuals should
|
715 |
+
not significantly exceed 0.1 (the noise level used).
|
716 |
+
|
717 |
+
>>> res_soft_l1 = least_squares(fun, x0, loss='soft_l1', f_scale=0.1,
|
718 |
+
... args=(t_train, y_train))
|
719 |
+
>>> res_log = least_squares(fun, x0, loss='cauchy', f_scale=0.1,
|
720 |
+
... args=(t_train, y_train))
|
721 |
+
|
722 |
+
And, finally, plot all the curves. We see that by selecting an appropriate
|
723 |
+
`loss` we can get estimates close to optimal even in the presence of
|
724 |
+
strong outliers. But keep in mind that generally it is recommended to try
|
725 |
+
'soft_l1' or 'huber' losses first (if at all necessary) as the other two
|
726 |
+
options may cause difficulties in optimization process.
|
727 |
+
|
728 |
+
>>> t_test = np.linspace(t_min, t_max, n_points * 10)
|
729 |
+
>>> y_true = gen_data(t_test, a, b, c)
|
730 |
+
>>> y_lsq = gen_data(t_test, *res_lsq.x)
|
731 |
+
>>> y_soft_l1 = gen_data(t_test, *res_soft_l1.x)
|
732 |
+
>>> y_log = gen_data(t_test, *res_log.x)
|
733 |
+
...
|
734 |
+
>>> import matplotlib.pyplot as plt
|
735 |
+
>>> plt.plot(t_train, y_train, 'o')
|
736 |
+
>>> plt.plot(t_test, y_true, 'k', linewidth=2, label='true')
|
737 |
+
>>> plt.plot(t_test, y_lsq, label='linear loss')
|
738 |
+
>>> plt.plot(t_test, y_soft_l1, label='soft_l1 loss')
|
739 |
+
>>> plt.plot(t_test, y_log, label='cauchy loss')
|
740 |
+
>>> plt.xlabel("t")
|
741 |
+
>>> plt.ylabel("y")
|
742 |
+
>>> plt.legend()
|
743 |
+
>>> plt.show()
|
744 |
+
|
745 |
+
In the next example, we show how complex-valued residual functions of
|
746 |
+
complex variables can be optimized with ``least_squares()``. Consider the
|
747 |
+
following function:
|
748 |
+
|
749 |
+
>>> def f(z):
|
750 |
+
... return z - (0.5 + 0.5j)
|
751 |
+
|
752 |
+
We wrap it into a function of real variables that returns real residuals
|
753 |
+
by simply handling the real and imaginary parts as independent variables:
|
754 |
+
|
755 |
+
>>> def f_wrap(x):
|
756 |
+
... fx = f(x[0] + 1j*x[1])
|
757 |
+
... return np.array([fx.real, fx.imag])
|
758 |
+
|
759 |
+
Thus, instead of the original m-D complex function of n complex
|
760 |
+
variables we optimize a 2m-D real function of 2n real variables:
|
761 |
+
|
762 |
+
>>> from scipy.optimize import least_squares
|
763 |
+
>>> res_wrapped = least_squares(f_wrap, (0.1, 0.1), bounds=([0, 0], [1, 1]))
|
764 |
+
>>> z = res_wrapped.x[0] + res_wrapped.x[1]*1j
|
765 |
+
>>> z
|
766 |
+
(0.49999999999925893+0.49999999999925893j)
|
767 |
+
|
768 |
+
"""
|
769 |
+
if method not in ['trf', 'dogbox', 'lm']:
|
770 |
+
raise ValueError("`method` must be 'trf', 'dogbox' or 'lm'.")
|
771 |
+
|
772 |
+
if jac not in ['2-point', '3-point', 'cs'] and not callable(jac):
|
773 |
+
raise ValueError("`jac` must be '2-point', '3-point', 'cs' or "
|
774 |
+
"callable.")
|
775 |
+
|
776 |
+
if tr_solver not in [None, 'exact', 'lsmr']:
|
777 |
+
raise ValueError("`tr_solver` must be None, 'exact' or 'lsmr'.")
|
778 |
+
|
779 |
+
if loss not in IMPLEMENTED_LOSSES and not callable(loss):
|
780 |
+
raise ValueError("`loss` must be one of {} or a callable."
|
781 |
+
.format(IMPLEMENTED_LOSSES.keys()))
|
782 |
+
|
783 |
+
if method == 'lm' and loss != 'linear':
|
784 |
+
raise ValueError("method='lm' supports only 'linear' loss function.")
|
785 |
+
|
786 |
+
if verbose not in [0, 1, 2]:
|
787 |
+
raise ValueError("`verbose` must be in [0, 1, 2].")
|
788 |
+
|
789 |
+
if max_nfev is not None and max_nfev <= 0:
|
790 |
+
raise ValueError("`max_nfev` must be None or positive integer.")
|
791 |
+
|
792 |
+
if np.iscomplexobj(x0):
|
793 |
+
raise ValueError("`x0` must be real.")
|
794 |
+
|
795 |
+
x0 = np.atleast_1d(x0).astype(float)
|
796 |
+
|
797 |
+
if x0.ndim > 1:
|
798 |
+
raise ValueError("`x0` must have at most 1 dimension.")
|
799 |
+
|
800 |
+
if isinstance(bounds, Bounds):
|
801 |
+
lb, ub = bounds.lb, bounds.ub
|
802 |
+
bounds = (lb, ub)
|
803 |
+
else:
|
804 |
+
if len(bounds) == 2:
|
805 |
+
lb, ub = prepare_bounds(bounds, x0.shape[0])
|
806 |
+
else:
|
807 |
+
raise ValueError("`bounds` must contain 2 elements.")
|
808 |
+
|
809 |
+
if method == 'lm' and not np.all((lb == -np.inf) & (ub == np.inf)):
|
810 |
+
raise ValueError("Method 'lm' doesn't support bounds.")
|
811 |
+
|
812 |
+
if lb.shape != x0.shape or ub.shape != x0.shape:
|
813 |
+
raise ValueError("Inconsistent shapes between bounds and `x0`.")
|
814 |
+
|
815 |
+
if np.any(lb >= ub):
|
816 |
+
raise ValueError("Each lower bound must be strictly less than each "
|
817 |
+
"upper bound.")
|
818 |
+
|
819 |
+
if not in_bounds(x0, lb, ub):
|
820 |
+
raise ValueError("`x0` is infeasible.")
|
821 |
+
|
822 |
+
x_scale = check_x_scale(x_scale, x0)
|
823 |
+
|
824 |
+
ftol, xtol, gtol = check_tolerance(ftol, xtol, gtol, method)
|
825 |
+
|
826 |
+
if method == 'trf':
|
827 |
+
x0 = make_strictly_feasible(x0, lb, ub)
|
828 |
+
|
829 |
+
def fun_wrapped(x):
|
830 |
+
return np.atleast_1d(fun(x, *args, **kwargs))
|
831 |
+
|
832 |
+
f0 = fun_wrapped(x0)
|
833 |
+
|
834 |
+
if f0.ndim != 1:
|
835 |
+
raise ValueError("`fun` must return at most 1-d array_like. "
|
836 |
+
f"f0.shape: {f0.shape}")
|
837 |
+
|
838 |
+
if not np.all(np.isfinite(f0)):
|
839 |
+
raise ValueError("Residuals are not finite in the initial point.")
|
840 |
+
|
841 |
+
n = x0.size
|
842 |
+
m = f0.size
|
843 |
+
|
844 |
+
if method == 'lm' and m < n:
|
845 |
+
raise ValueError("Method 'lm' doesn't work when the number of "
|
846 |
+
"residuals is less than the number of variables.")
|
847 |
+
|
848 |
+
loss_function = construct_loss_function(m, loss, f_scale)
|
849 |
+
if callable(loss):
|
850 |
+
rho = loss_function(f0)
|
851 |
+
if rho.shape != (3, m):
|
852 |
+
raise ValueError("The return value of `loss` callable has wrong "
|
853 |
+
"shape.")
|
854 |
+
initial_cost = 0.5 * np.sum(rho[0])
|
855 |
+
elif loss_function is not None:
|
856 |
+
initial_cost = loss_function(f0, cost_only=True)
|
857 |
+
else:
|
858 |
+
initial_cost = 0.5 * np.dot(f0, f0)
|
859 |
+
|
860 |
+
if callable(jac):
|
861 |
+
J0 = jac(x0, *args, **kwargs)
|
862 |
+
|
863 |
+
if issparse(J0):
|
864 |
+
J0 = J0.tocsr()
|
865 |
+
|
866 |
+
def jac_wrapped(x, _=None):
|
867 |
+
return jac(x, *args, **kwargs).tocsr()
|
868 |
+
|
869 |
+
elif isinstance(J0, LinearOperator):
|
870 |
+
def jac_wrapped(x, _=None):
|
871 |
+
return jac(x, *args, **kwargs)
|
872 |
+
|
873 |
+
else:
|
874 |
+
J0 = np.atleast_2d(J0)
|
875 |
+
|
876 |
+
def jac_wrapped(x, _=None):
|
877 |
+
return np.atleast_2d(jac(x, *args, **kwargs))
|
878 |
+
|
879 |
+
else: # Estimate Jacobian by finite differences.
|
880 |
+
if method == 'lm':
|
881 |
+
if jac_sparsity is not None:
|
882 |
+
raise ValueError("method='lm' does not support "
|
883 |
+
"`jac_sparsity`.")
|
884 |
+
|
885 |
+
if jac != '2-point':
|
886 |
+
warn(f"jac='{jac}' works equivalently to '2-point' for method='lm'.",
|
887 |
+
stacklevel=2)
|
888 |
+
|
889 |
+
J0 = jac_wrapped = None
|
890 |
+
else:
|
891 |
+
if jac_sparsity is not None and tr_solver == 'exact':
|
892 |
+
raise ValueError("tr_solver='exact' is incompatible "
|
893 |
+
"with `jac_sparsity`.")
|
894 |
+
|
895 |
+
jac_sparsity = check_jac_sparsity(jac_sparsity, m, n)
|
896 |
+
|
897 |
+
def jac_wrapped(x, f):
|
898 |
+
J = approx_derivative(fun, x, rel_step=diff_step, method=jac,
|
899 |
+
f0=f, bounds=bounds, args=args,
|
900 |
+
kwargs=kwargs, sparsity=jac_sparsity)
|
901 |
+
if J.ndim != 2: # J is guaranteed not sparse.
|
902 |
+
J = np.atleast_2d(J)
|
903 |
+
|
904 |
+
return J
|
905 |
+
|
906 |
+
J0 = jac_wrapped(x0, f0)
|
907 |
+
|
908 |
+
if J0 is not None:
|
909 |
+
if J0.shape != (m, n):
|
910 |
+
raise ValueError(
|
911 |
+
f"The return value of `jac` has wrong shape: expected {(m, n)}, "
|
912 |
+
f"actual {J0.shape}."
|
913 |
+
)
|
914 |
+
|
915 |
+
if not isinstance(J0, np.ndarray):
|
916 |
+
if method == 'lm':
|
917 |
+
raise ValueError("method='lm' works only with dense "
|
918 |
+
"Jacobian matrices.")
|
919 |
+
|
920 |
+
if tr_solver == 'exact':
|
921 |
+
raise ValueError(
|
922 |
+
"tr_solver='exact' works only with dense "
|
923 |
+
"Jacobian matrices.")
|
924 |
+
|
925 |
+
jac_scale = isinstance(x_scale, str) and x_scale == 'jac'
|
926 |
+
if isinstance(J0, LinearOperator) and jac_scale:
|
927 |
+
raise ValueError("x_scale='jac' can't be used when `jac` "
|
928 |
+
"returns LinearOperator.")
|
929 |
+
|
930 |
+
if tr_solver is None:
|
931 |
+
if isinstance(J0, np.ndarray):
|
932 |
+
tr_solver = 'exact'
|
933 |
+
else:
|
934 |
+
tr_solver = 'lsmr'
|
935 |
+
|
936 |
+
if method == 'lm':
|
937 |
+
result = call_minpack(fun_wrapped, x0, jac_wrapped, ftol, xtol, gtol,
|
938 |
+
max_nfev, x_scale, diff_step)
|
939 |
+
|
940 |
+
elif method == 'trf':
|
941 |
+
result = trf(fun_wrapped, jac_wrapped, x0, f0, J0, lb, ub, ftol, xtol,
|
942 |
+
gtol, max_nfev, x_scale, loss_function, tr_solver,
|
943 |
+
tr_options.copy(), verbose)
|
944 |
+
|
945 |
+
elif method == 'dogbox':
|
946 |
+
if tr_solver == 'lsmr' and 'regularize' in tr_options:
|
947 |
+
warn("The keyword 'regularize' in `tr_options` is not relevant "
|
948 |
+
"for 'dogbox' method.",
|
949 |
+
stacklevel=2)
|
950 |
+
tr_options = tr_options.copy()
|
951 |
+
del tr_options['regularize']
|
952 |
+
|
953 |
+
result = dogbox(fun_wrapped, jac_wrapped, x0, f0, J0, lb, ub, ftol,
|
954 |
+
xtol, gtol, max_nfev, x_scale, loss_function,
|
955 |
+
tr_solver, tr_options, verbose)
|
956 |
+
|
957 |
+
result.message = TERMINATION_MESSAGES[result.status]
|
958 |
+
result.success = result.status > 0
|
959 |
+
|
960 |
+
if verbose >= 1:
|
961 |
+
print(result.message)
|
962 |
+
print("Function evaluations {}, initial cost {:.4e}, final cost "
|
963 |
+
"{:.4e}, first-order optimality {:.2e}."
|
964 |
+
.format(result.nfev, initial_cost, result.cost,
|
965 |
+
result.optimality))
|
966 |
+
|
967 |
+
return result
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/_lsq/lsq_linear.py
ADDED
@@ -0,0 +1,362 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Linear least squares with bound constraints on independent variables."""
|
2 |
+
import numpy as np
|
3 |
+
from numpy.linalg import norm
|
4 |
+
from scipy.sparse import issparse, csr_matrix
|
5 |
+
from scipy.sparse.linalg import LinearOperator, lsmr
|
6 |
+
from scipy.optimize import OptimizeResult
|
7 |
+
from scipy.optimize._minimize import Bounds
|
8 |
+
|
9 |
+
from .common import in_bounds, compute_grad
|
10 |
+
from .trf_linear import trf_linear
|
11 |
+
from .bvls import bvls
|
12 |
+
|
13 |
+
|
14 |
+
def prepare_bounds(bounds, n):
|
15 |
+
if len(bounds) != 2:
|
16 |
+
raise ValueError("`bounds` must contain 2 elements.")
|
17 |
+
lb, ub = (np.asarray(b, dtype=float) for b in bounds)
|
18 |
+
|
19 |
+
if lb.ndim == 0:
|
20 |
+
lb = np.resize(lb, n)
|
21 |
+
|
22 |
+
if ub.ndim == 0:
|
23 |
+
ub = np.resize(ub, n)
|
24 |
+
|
25 |
+
return lb, ub
|
26 |
+
|
27 |
+
|
28 |
+
TERMINATION_MESSAGES = {
|
29 |
+
-1: "The algorithm was not able to make progress on the last iteration.",
|
30 |
+
0: "The maximum number of iterations is exceeded.",
|
31 |
+
1: "The first-order optimality measure is less than `tol`.",
|
32 |
+
2: "The relative change of the cost function is less than `tol`.",
|
33 |
+
3: "The unconstrained solution is optimal."
|
34 |
+
}
|
35 |
+
|
36 |
+
|
37 |
+
def lsq_linear(A, b, bounds=(-np.inf, np.inf), method='trf', tol=1e-10,
|
38 |
+
lsq_solver=None, lsmr_tol=None, max_iter=None,
|
39 |
+
verbose=0, *, lsmr_maxiter=None,):
|
40 |
+
r"""Solve a linear least-squares problem with bounds on the variables.
|
41 |
+
|
42 |
+
Given a m-by-n design matrix A and a target vector b with m elements,
|
43 |
+
`lsq_linear` solves the following optimization problem::
|
44 |
+
|
45 |
+
minimize 0.5 * ||A x - b||**2
|
46 |
+
subject to lb <= x <= ub
|
47 |
+
|
48 |
+
This optimization problem is convex, hence a found minimum (if iterations
|
49 |
+
have converged) is guaranteed to be global.
|
50 |
+
|
51 |
+
Parameters
|
52 |
+
----------
|
53 |
+
A : array_like, sparse matrix of LinearOperator, shape (m, n)
|
54 |
+
Design matrix. Can be `scipy.sparse.linalg.LinearOperator`.
|
55 |
+
b : array_like, shape (m,)
|
56 |
+
Target vector.
|
57 |
+
bounds : 2-tuple of array_like or `Bounds`, optional
|
58 |
+
Lower and upper bounds on parameters. Defaults to no bounds.
|
59 |
+
There are two ways to specify the bounds:
|
60 |
+
|
61 |
+
- Instance of `Bounds` class.
|
62 |
+
|
63 |
+
- 2-tuple of array_like: Each element of the tuple must be either
|
64 |
+
an array with the length equal to the number of parameters, or a
|
65 |
+
scalar (in which case the bound is taken to be the same for all
|
66 |
+
parameters). Use ``np.inf`` with an appropriate sign to disable
|
67 |
+
bounds on all or some parameters.
|
68 |
+
|
69 |
+
method : 'trf' or 'bvls', optional
|
70 |
+
Method to perform minimization.
|
71 |
+
|
72 |
+
* 'trf' : Trust Region Reflective algorithm adapted for a linear
|
73 |
+
least-squares problem. This is an interior-point-like method
|
74 |
+
and the required number of iterations is weakly correlated with
|
75 |
+
the number of variables.
|
76 |
+
* 'bvls' : Bounded-variable least-squares algorithm. This is
|
77 |
+
an active set method, which requires the number of iterations
|
78 |
+
comparable to the number of variables. Can't be used when `A` is
|
79 |
+
sparse or LinearOperator.
|
80 |
+
|
81 |
+
Default is 'trf'.
|
82 |
+
tol : float, optional
|
83 |
+
Tolerance parameter. The algorithm terminates if a relative change
|
84 |
+
of the cost function is less than `tol` on the last iteration.
|
85 |
+
Additionally, the first-order optimality measure is considered:
|
86 |
+
|
87 |
+
* ``method='trf'`` terminates if the uniform norm of the gradient,
|
88 |
+
scaled to account for the presence of the bounds, is less than
|
89 |
+
`tol`.
|
90 |
+
* ``method='bvls'`` terminates if Karush-Kuhn-Tucker conditions
|
91 |
+
are satisfied within `tol` tolerance.
|
92 |
+
|
93 |
+
lsq_solver : {None, 'exact', 'lsmr'}, optional
|
94 |
+
Method of solving unbounded least-squares problems throughout
|
95 |
+
iterations:
|
96 |
+
|
97 |
+
* 'exact' : Use dense QR or SVD decomposition approach. Can't be
|
98 |
+
used when `A` is sparse or LinearOperator.
|
99 |
+
* 'lsmr' : Use `scipy.sparse.linalg.lsmr` iterative procedure
|
100 |
+
which requires only matrix-vector product evaluations. Can't
|
101 |
+
be used with ``method='bvls'``.
|
102 |
+
|
103 |
+
If None (default), the solver is chosen based on type of `A`.
|
104 |
+
lsmr_tol : None, float or 'auto', optional
|
105 |
+
Tolerance parameters 'atol' and 'btol' for `scipy.sparse.linalg.lsmr`
|
106 |
+
If None (default), it is set to ``1e-2 * tol``. If 'auto', the
|
107 |
+
tolerance will be adjusted based on the optimality of the current
|
108 |
+
iterate, which can speed up the optimization process, but is not always
|
109 |
+
reliable.
|
110 |
+
max_iter : None or int, optional
|
111 |
+
Maximum number of iterations before termination. If None (default), it
|
112 |
+
is set to 100 for ``method='trf'`` or to the number of variables for
|
113 |
+
``method='bvls'`` (not counting iterations for 'bvls' initialization).
|
114 |
+
verbose : {0, 1, 2}, optional
|
115 |
+
Level of algorithm's verbosity:
|
116 |
+
|
117 |
+
* 0 : work silently (default).
|
118 |
+
* 1 : display a termination report.
|
119 |
+
* 2 : display progress during iterations.
|
120 |
+
lsmr_maxiter : None or int, optional
|
121 |
+
Maximum number of iterations for the lsmr least squares solver,
|
122 |
+
if it is used (by setting ``lsq_solver='lsmr'``). If None (default), it
|
123 |
+
uses lsmr's default of ``min(m, n)`` where ``m`` and ``n`` are the
|
124 |
+
number of rows and columns of `A`, respectively. Has no effect if
|
125 |
+
``lsq_solver='exact'``.
|
126 |
+
|
127 |
+
Returns
|
128 |
+
-------
|
129 |
+
OptimizeResult with the following fields defined:
|
130 |
+
x : ndarray, shape (n,)
|
131 |
+
Solution found.
|
132 |
+
cost : float
|
133 |
+
Value of the cost function at the solution.
|
134 |
+
fun : ndarray, shape (m,)
|
135 |
+
Vector of residuals at the solution.
|
136 |
+
optimality : float
|
137 |
+
First-order optimality measure. The exact meaning depends on `method`,
|
138 |
+
refer to the description of `tol` parameter.
|
139 |
+
active_mask : ndarray of int, shape (n,)
|
140 |
+
Each component shows whether a corresponding constraint is active
|
141 |
+
(that is, whether a variable is at the bound):
|
142 |
+
|
143 |
+
* 0 : a constraint is not active.
|
144 |
+
* -1 : a lower bound is active.
|
145 |
+
* 1 : an upper bound is active.
|
146 |
+
|
147 |
+
Might be somewhat arbitrary for the `trf` method as it generates a
|
148 |
+
sequence of strictly feasible iterates and active_mask is determined
|
149 |
+
within a tolerance threshold.
|
150 |
+
unbounded_sol : tuple
|
151 |
+
Unbounded least squares solution tuple returned by the least squares
|
152 |
+
solver (set with `lsq_solver` option). If `lsq_solver` is not set or is
|
153 |
+
set to ``'exact'``, the tuple contains an ndarray of shape (n,) with
|
154 |
+
the unbounded solution, an ndarray with the sum of squared residuals,
|
155 |
+
an int with the rank of `A`, and an ndarray with the singular values
|
156 |
+
of `A` (see NumPy's ``linalg.lstsq`` for more information). If
|
157 |
+
`lsq_solver` is set to ``'lsmr'``, the tuple contains an ndarray of
|
158 |
+
shape (n,) with the unbounded solution, an int with the exit code,
|
159 |
+
an int with the number of iterations, and five floats with
|
160 |
+
various norms and the condition number of `A` (see SciPy's
|
161 |
+
``sparse.linalg.lsmr`` for more information). This output can be
|
162 |
+
useful for determining the convergence of the least squares solver,
|
163 |
+
particularly the iterative ``'lsmr'`` solver. The unbounded least
|
164 |
+
squares problem is to minimize ``0.5 * ||A x - b||**2``.
|
165 |
+
nit : int
|
166 |
+
Number of iterations. Zero if the unconstrained solution is optimal.
|
167 |
+
status : int
|
168 |
+
Reason for algorithm termination:
|
169 |
+
|
170 |
+
* -1 : the algorithm was not able to make progress on the last
|
171 |
+
iteration.
|
172 |
+
* 0 : the maximum number of iterations is exceeded.
|
173 |
+
* 1 : the first-order optimality measure is less than `tol`.
|
174 |
+
* 2 : the relative change of the cost function is less than `tol`.
|
175 |
+
* 3 : the unconstrained solution is optimal.
|
176 |
+
|
177 |
+
message : str
|
178 |
+
Verbal description of the termination reason.
|
179 |
+
success : bool
|
180 |
+
True if one of the convergence criteria is satisfied (`status` > 0).
|
181 |
+
|
182 |
+
See Also
|
183 |
+
--------
|
184 |
+
nnls : Linear least squares with non-negativity constraint.
|
185 |
+
least_squares : Nonlinear least squares with bounds on the variables.
|
186 |
+
|
187 |
+
Notes
|
188 |
+
-----
|
189 |
+
The algorithm first computes the unconstrained least-squares solution by
|
190 |
+
`numpy.linalg.lstsq` or `scipy.sparse.linalg.lsmr` depending on
|
191 |
+
`lsq_solver`. This solution is returned as optimal if it lies within the
|
192 |
+
bounds.
|
193 |
+
|
194 |
+
Method 'trf' runs the adaptation of the algorithm described in [STIR]_ for
|
195 |
+
a linear least-squares problem. The iterations are essentially the same as
|
196 |
+
in the nonlinear least-squares algorithm, but as the quadratic function
|
197 |
+
model is always accurate, we don't need to track or modify the radius of
|
198 |
+
a trust region. The line search (backtracking) is used as a safety net
|
199 |
+
when a selected step does not decrease the cost function. Read more
|
200 |
+
detailed description of the algorithm in `scipy.optimize.least_squares`.
|
201 |
+
|
202 |
+
Method 'bvls' runs a Python implementation of the algorithm described in
|
203 |
+
[BVLS]_. The algorithm maintains active and free sets of variables, on
|
204 |
+
each iteration chooses a new variable to move from the active set to the
|
205 |
+
free set and then solves the unconstrained least-squares problem on free
|
206 |
+
variables. This algorithm is guaranteed to give an accurate solution
|
207 |
+
eventually, but may require up to n iterations for a problem with n
|
208 |
+
variables. Additionally, an ad-hoc initialization procedure is
|
209 |
+
implemented, that determines which variables to set free or active
|
210 |
+
initially. It takes some number of iterations before actual BVLS starts,
|
211 |
+
but can significantly reduce the number of further iterations.
|
212 |
+
|
213 |
+
References
|
214 |
+
----------
|
215 |
+
.. [STIR] M. A. Branch, T. F. Coleman, and Y. Li, "A Subspace, Interior,
|
216 |
+
and Conjugate Gradient Method for Large-Scale Bound-Constrained
|
217 |
+
Minimization Problems," SIAM Journal on Scientific Computing,
|
218 |
+
Vol. 21, Number 1, pp 1-23, 1999.
|
219 |
+
.. [BVLS] P. B. Start and R. L. Parker, "Bounded-Variable Least-Squares:
|
220 |
+
an Algorithm and Applications", Computational Statistics, 10,
|
221 |
+
129-141, 1995.
|
222 |
+
|
223 |
+
Examples
|
224 |
+
--------
|
225 |
+
In this example, a problem with a large sparse matrix and bounds on the
|
226 |
+
variables is solved.
|
227 |
+
|
228 |
+
>>> import numpy as np
|
229 |
+
>>> from scipy.sparse import rand
|
230 |
+
>>> from scipy.optimize import lsq_linear
|
231 |
+
>>> rng = np.random.default_rng()
|
232 |
+
...
|
233 |
+
>>> m = 20000
|
234 |
+
>>> n = 10000
|
235 |
+
...
|
236 |
+
>>> A = rand(m, n, density=1e-4, random_state=rng)
|
237 |
+
>>> b = rng.standard_normal(m)
|
238 |
+
...
|
239 |
+
>>> lb = rng.standard_normal(n)
|
240 |
+
>>> ub = lb + 1
|
241 |
+
...
|
242 |
+
>>> res = lsq_linear(A, b, bounds=(lb, ub), lsmr_tol='auto', verbose=1)
|
243 |
+
# may vary
|
244 |
+
The relative change of the cost function is less than `tol`.
|
245 |
+
Number of iterations 16, initial cost 1.5039e+04, final cost 1.1112e+04,
|
246 |
+
first-order optimality 4.66e-08.
|
247 |
+
"""
|
248 |
+
if method not in ['trf', 'bvls']:
|
249 |
+
raise ValueError("`method` must be 'trf' or 'bvls'")
|
250 |
+
|
251 |
+
if lsq_solver not in [None, 'exact', 'lsmr']:
|
252 |
+
raise ValueError("`solver` must be None, 'exact' or 'lsmr'.")
|
253 |
+
|
254 |
+
if verbose not in [0, 1, 2]:
|
255 |
+
raise ValueError("`verbose` must be in [0, 1, 2].")
|
256 |
+
|
257 |
+
if issparse(A):
|
258 |
+
A = csr_matrix(A)
|
259 |
+
elif not isinstance(A, LinearOperator):
|
260 |
+
A = np.atleast_2d(np.asarray(A))
|
261 |
+
|
262 |
+
if method == 'bvls':
|
263 |
+
if lsq_solver == 'lsmr':
|
264 |
+
raise ValueError("method='bvls' can't be used with "
|
265 |
+
"lsq_solver='lsmr'")
|
266 |
+
|
267 |
+
if not isinstance(A, np.ndarray):
|
268 |
+
raise ValueError("method='bvls' can't be used with `A` being "
|
269 |
+
"sparse or LinearOperator.")
|
270 |
+
|
271 |
+
if lsq_solver is None:
|
272 |
+
if isinstance(A, np.ndarray):
|
273 |
+
lsq_solver = 'exact'
|
274 |
+
else:
|
275 |
+
lsq_solver = 'lsmr'
|
276 |
+
elif lsq_solver == 'exact' and not isinstance(A, np.ndarray):
|
277 |
+
raise ValueError("`exact` solver can't be used when `A` is "
|
278 |
+
"sparse or LinearOperator.")
|
279 |
+
|
280 |
+
if len(A.shape) != 2: # No ndim for LinearOperator.
|
281 |
+
raise ValueError("`A` must have at most 2 dimensions.")
|
282 |
+
|
283 |
+
if max_iter is not None and max_iter <= 0:
|
284 |
+
raise ValueError("`max_iter` must be None or positive integer.")
|
285 |
+
|
286 |
+
m, n = A.shape
|
287 |
+
|
288 |
+
b = np.atleast_1d(b)
|
289 |
+
if b.ndim != 1:
|
290 |
+
raise ValueError("`b` must have at most 1 dimension.")
|
291 |
+
|
292 |
+
if b.size != m:
|
293 |
+
raise ValueError("Inconsistent shapes between `A` and `b`.")
|
294 |
+
|
295 |
+
if isinstance(bounds, Bounds):
|
296 |
+
lb = bounds.lb
|
297 |
+
ub = bounds.ub
|
298 |
+
else:
|
299 |
+
lb, ub = prepare_bounds(bounds, n)
|
300 |
+
|
301 |
+
if lb.shape != (n,) and ub.shape != (n,):
|
302 |
+
raise ValueError("Bounds have wrong shape.")
|
303 |
+
|
304 |
+
if np.any(lb >= ub):
|
305 |
+
raise ValueError("Each lower bound must be strictly less than each "
|
306 |
+
"upper bound.")
|
307 |
+
|
308 |
+
if lsmr_maxiter is not None and lsmr_maxiter < 1:
|
309 |
+
raise ValueError("`lsmr_maxiter` must be None or positive integer.")
|
310 |
+
|
311 |
+
if not ((isinstance(lsmr_tol, float) and lsmr_tol > 0) or
|
312 |
+
lsmr_tol in ('auto', None)):
|
313 |
+
raise ValueError("`lsmr_tol` must be None, 'auto', or positive float.")
|
314 |
+
|
315 |
+
if lsq_solver == 'exact':
|
316 |
+
unbd_lsq = np.linalg.lstsq(A, b, rcond=-1)
|
317 |
+
elif lsq_solver == 'lsmr':
|
318 |
+
first_lsmr_tol = lsmr_tol # tol of first call to lsmr
|
319 |
+
if lsmr_tol is None or lsmr_tol == 'auto':
|
320 |
+
first_lsmr_tol = 1e-2 * tol # default if lsmr_tol not defined
|
321 |
+
unbd_lsq = lsmr(A, b, maxiter=lsmr_maxiter,
|
322 |
+
atol=first_lsmr_tol, btol=first_lsmr_tol)
|
323 |
+
x_lsq = unbd_lsq[0] # extract the solution from the least squares solver
|
324 |
+
|
325 |
+
if in_bounds(x_lsq, lb, ub):
|
326 |
+
r = A @ x_lsq - b
|
327 |
+
cost = 0.5 * np.dot(r, r)
|
328 |
+
termination_status = 3
|
329 |
+
termination_message = TERMINATION_MESSAGES[termination_status]
|
330 |
+
g = compute_grad(A, r)
|
331 |
+
g_norm = norm(g, ord=np.inf)
|
332 |
+
|
333 |
+
if verbose > 0:
|
334 |
+
print(termination_message)
|
335 |
+
print(f"Final cost {cost:.4e}, first-order optimality {g_norm:.2e}")
|
336 |
+
|
337 |
+
return OptimizeResult(
|
338 |
+
x=x_lsq, fun=r, cost=cost, optimality=g_norm,
|
339 |
+
active_mask=np.zeros(n), unbounded_sol=unbd_lsq,
|
340 |
+
nit=0, status=termination_status,
|
341 |
+
message=termination_message, success=True)
|
342 |
+
|
343 |
+
if method == 'trf':
|
344 |
+
res = trf_linear(A, b, x_lsq, lb, ub, tol, lsq_solver, lsmr_tol,
|
345 |
+
max_iter, verbose, lsmr_maxiter=lsmr_maxiter)
|
346 |
+
elif method == 'bvls':
|
347 |
+
res = bvls(A, b, x_lsq, lb, ub, tol, max_iter, verbose)
|
348 |
+
|
349 |
+
res.unbounded_sol = unbd_lsq
|
350 |
+
res.message = TERMINATION_MESSAGES[res.status]
|
351 |
+
res.success = res.status > 0
|
352 |
+
|
353 |
+
if verbose > 0:
|
354 |
+
print(res.message)
|
355 |
+
print(
|
356 |
+
f"Number of iterations {res.nit}, initial cost {res.initial_cost:.4e}, "
|
357 |
+
f"final cost {res.cost:.4e}, first-order optimality {res.optimality:.2e}."
|
358 |
+
)
|
359 |
+
|
360 |
+
del res.initial_cost
|
361 |
+
|
362 |
+
return res
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/_lsq/trf_linear.py
ADDED
@@ -0,0 +1,249 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""The adaptation of Trust Region Reflective algorithm for a linear
|
2 |
+
least-squares problem."""
|
3 |
+
import numpy as np
|
4 |
+
from numpy.linalg import norm
|
5 |
+
from scipy.linalg import qr, solve_triangular
|
6 |
+
from scipy.sparse.linalg import lsmr
|
7 |
+
from scipy.optimize import OptimizeResult
|
8 |
+
|
9 |
+
from .givens_elimination import givens_elimination
|
10 |
+
from .common import (
|
11 |
+
EPS, step_size_to_bound, find_active_constraints, in_bounds,
|
12 |
+
make_strictly_feasible, build_quadratic_1d, evaluate_quadratic,
|
13 |
+
minimize_quadratic_1d, CL_scaling_vector, reflective_transformation,
|
14 |
+
print_header_linear, print_iteration_linear, compute_grad,
|
15 |
+
regularized_lsq_operator, right_multiplied_operator)
|
16 |
+
|
17 |
+
|
18 |
+
def regularized_lsq_with_qr(m, n, R, QTb, perm, diag, copy_R=True):
|
19 |
+
"""Solve regularized least squares using information from QR-decomposition.
|
20 |
+
|
21 |
+
The initial problem is to solve the following system in a least-squares
|
22 |
+
sense::
|
23 |
+
|
24 |
+
A x = b
|
25 |
+
D x = 0
|
26 |
+
|
27 |
+
where D is diagonal matrix. The method is based on QR decomposition
|
28 |
+
of the form A P = Q R, where P is a column permutation matrix, Q is an
|
29 |
+
orthogonal matrix and R is an upper triangular matrix.
|
30 |
+
|
31 |
+
Parameters
|
32 |
+
----------
|
33 |
+
m, n : int
|
34 |
+
Initial shape of A.
|
35 |
+
R : ndarray, shape (n, n)
|
36 |
+
Upper triangular matrix from QR decomposition of A.
|
37 |
+
QTb : ndarray, shape (n,)
|
38 |
+
First n components of Q^T b.
|
39 |
+
perm : ndarray, shape (n,)
|
40 |
+
Array defining column permutation of A, such that ith column of
|
41 |
+
P is perm[i]-th column of identity matrix.
|
42 |
+
diag : ndarray, shape (n,)
|
43 |
+
Array containing diagonal elements of D.
|
44 |
+
|
45 |
+
Returns
|
46 |
+
-------
|
47 |
+
x : ndarray, shape (n,)
|
48 |
+
Found least-squares solution.
|
49 |
+
"""
|
50 |
+
if copy_R:
|
51 |
+
R = R.copy()
|
52 |
+
v = QTb.copy()
|
53 |
+
|
54 |
+
givens_elimination(R, v, diag[perm])
|
55 |
+
|
56 |
+
abs_diag_R = np.abs(np.diag(R))
|
57 |
+
threshold = EPS * max(m, n) * np.max(abs_diag_R)
|
58 |
+
nns, = np.nonzero(abs_diag_R > threshold)
|
59 |
+
|
60 |
+
R = R[np.ix_(nns, nns)]
|
61 |
+
v = v[nns]
|
62 |
+
|
63 |
+
x = np.zeros(n)
|
64 |
+
x[perm[nns]] = solve_triangular(R, v)
|
65 |
+
|
66 |
+
return x
|
67 |
+
|
68 |
+
|
69 |
+
def backtracking(A, g, x, p, theta, p_dot_g, lb, ub):
|
70 |
+
"""Find an appropriate step size using backtracking line search."""
|
71 |
+
alpha = 1
|
72 |
+
while True:
|
73 |
+
x_new, _ = reflective_transformation(x + alpha * p, lb, ub)
|
74 |
+
step = x_new - x
|
75 |
+
cost_change = -evaluate_quadratic(A, g, step)
|
76 |
+
if cost_change > -0.1 * alpha * p_dot_g:
|
77 |
+
break
|
78 |
+
alpha *= 0.5
|
79 |
+
|
80 |
+
active = find_active_constraints(x_new, lb, ub)
|
81 |
+
if np.any(active != 0):
|
82 |
+
x_new, _ = reflective_transformation(x + theta * alpha * p, lb, ub)
|
83 |
+
x_new = make_strictly_feasible(x_new, lb, ub, rstep=0)
|
84 |
+
step = x_new - x
|
85 |
+
cost_change = -evaluate_quadratic(A, g, step)
|
86 |
+
|
87 |
+
return x, step, cost_change
|
88 |
+
|
89 |
+
|
90 |
+
def select_step(x, A_h, g_h, c_h, p, p_h, d, lb, ub, theta):
|
91 |
+
"""Select the best step according to Trust Region Reflective algorithm."""
|
92 |
+
if in_bounds(x + p, lb, ub):
|
93 |
+
return p
|
94 |
+
|
95 |
+
p_stride, hits = step_size_to_bound(x, p, lb, ub)
|
96 |
+
r_h = np.copy(p_h)
|
97 |
+
r_h[hits.astype(bool)] *= -1
|
98 |
+
r = d * r_h
|
99 |
+
|
100 |
+
# Restrict step, such that it hits the bound.
|
101 |
+
p *= p_stride
|
102 |
+
p_h *= p_stride
|
103 |
+
x_on_bound = x + p
|
104 |
+
|
105 |
+
# Find the step size along reflected direction.
|
106 |
+
r_stride_u, _ = step_size_to_bound(x_on_bound, r, lb, ub)
|
107 |
+
|
108 |
+
# Stay interior.
|
109 |
+
r_stride_l = (1 - theta) * r_stride_u
|
110 |
+
r_stride_u *= theta
|
111 |
+
|
112 |
+
if r_stride_u > 0:
|
113 |
+
a, b, c = build_quadratic_1d(A_h, g_h, r_h, s0=p_h, diag=c_h)
|
114 |
+
r_stride, r_value = minimize_quadratic_1d(
|
115 |
+
a, b, r_stride_l, r_stride_u, c=c)
|
116 |
+
r_h = p_h + r_h * r_stride
|
117 |
+
r = d * r_h
|
118 |
+
else:
|
119 |
+
r_value = np.inf
|
120 |
+
|
121 |
+
# Now correct p_h to make it strictly interior.
|
122 |
+
p_h *= theta
|
123 |
+
p *= theta
|
124 |
+
p_value = evaluate_quadratic(A_h, g_h, p_h, diag=c_h)
|
125 |
+
|
126 |
+
ag_h = -g_h
|
127 |
+
ag = d * ag_h
|
128 |
+
ag_stride_u, _ = step_size_to_bound(x, ag, lb, ub)
|
129 |
+
ag_stride_u *= theta
|
130 |
+
a, b = build_quadratic_1d(A_h, g_h, ag_h, diag=c_h)
|
131 |
+
ag_stride, ag_value = minimize_quadratic_1d(a, b, 0, ag_stride_u)
|
132 |
+
ag *= ag_stride
|
133 |
+
|
134 |
+
if p_value < r_value and p_value < ag_value:
|
135 |
+
return p
|
136 |
+
elif r_value < p_value and r_value < ag_value:
|
137 |
+
return r
|
138 |
+
else:
|
139 |
+
return ag
|
140 |
+
|
141 |
+
|
142 |
+
def trf_linear(A, b, x_lsq, lb, ub, tol, lsq_solver, lsmr_tol,
|
143 |
+
max_iter, verbose, *, lsmr_maxiter=None):
|
144 |
+
m, n = A.shape
|
145 |
+
x, _ = reflective_transformation(x_lsq, lb, ub)
|
146 |
+
x = make_strictly_feasible(x, lb, ub, rstep=0.1)
|
147 |
+
|
148 |
+
if lsq_solver == 'exact':
|
149 |
+
QT, R, perm = qr(A, mode='economic', pivoting=True)
|
150 |
+
QT = QT.T
|
151 |
+
|
152 |
+
if m < n:
|
153 |
+
R = np.vstack((R, np.zeros((n - m, n))))
|
154 |
+
|
155 |
+
QTr = np.zeros(n)
|
156 |
+
k = min(m, n)
|
157 |
+
elif lsq_solver == 'lsmr':
|
158 |
+
r_aug = np.zeros(m + n)
|
159 |
+
auto_lsmr_tol = False
|
160 |
+
if lsmr_tol is None:
|
161 |
+
lsmr_tol = 1e-2 * tol
|
162 |
+
elif lsmr_tol == 'auto':
|
163 |
+
auto_lsmr_tol = True
|
164 |
+
|
165 |
+
r = A.dot(x) - b
|
166 |
+
g = compute_grad(A, r)
|
167 |
+
cost = 0.5 * np.dot(r, r)
|
168 |
+
initial_cost = cost
|
169 |
+
|
170 |
+
termination_status = None
|
171 |
+
step_norm = None
|
172 |
+
cost_change = None
|
173 |
+
|
174 |
+
if max_iter is None:
|
175 |
+
max_iter = 100
|
176 |
+
|
177 |
+
if verbose == 2:
|
178 |
+
print_header_linear()
|
179 |
+
|
180 |
+
for iteration in range(max_iter):
|
181 |
+
v, dv = CL_scaling_vector(x, g, lb, ub)
|
182 |
+
g_scaled = g * v
|
183 |
+
g_norm = norm(g_scaled, ord=np.inf)
|
184 |
+
if g_norm < tol:
|
185 |
+
termination_status = 1
|
186 |
+
|
187 |
+
if verbose == 2:
|
188 |
+
print_iteration_linear(iteration, cost, cost_change,
|
189 |
+
step_norm, g_norm)
|
190 |
+
|
191 |
+
if termination_status is not None:
|
192 |
+
break
|
193 |
+
|
194 |
+
diag_h = g * dv
|
195 |
+
diag_root_h = diag_h ** 0.5
|
196 |
+
d = v ** 0.5
|
197 |
+
g_h = d * g
|
198 |
+
|
199 |
+
A_h = right_multiplied_operator(A, d)
|
200 |
+
if lsq_solver == 'exact':
|
201 |
+
QTr[:k] = QT.dot(r)
|
202 |
+
p_h = -regularized_lsq_with_qr(m, n, R * d[perm], QTr, perm,
|
203 |
+
diag_root_h, copy_R=False)
|
204 |
+
elif lsq_solver == 'lsmr':
|
205 |
+
lsmr_op = regularized_lsq_operator(A_h, diag_root_h)
|
206 |
+
r_aug[:m] = r
|
207 |
+
if auto_lsmr_tol:
|
208 |
+
eta = 1e-2 * min(0.5, g_norm)
|
209 |
+
lsmr_tol = max(EPS, min(0.1, eta * g_norm))
|
210 |
+
p_h = -lsmr(lsmr_op, r_aug, maxiter=lsmr_maxiter,
|
211 |
+
atol=lsmr_tol, btol=lsmr_tol)[0]
|
212 |
+
|
213 |
+
p = d * p_h
|
214 |
+
|
215 |
+
p_dot_g = np.dot(p, g)
|
216 |
+
if p_dot_g > 0:
|
217 |
+
termination_status = -1
|
218 |
+
|
219 |
+
theta = 1 - min(0.005, g_norm)
|
220 |
+
step = select_step(x, A_h, g_h, diag_h, p, p_h, d, lb, ub, theta)
|
221 |
+
cost_change = -evaluate_quadratic(A, g, step)
|
222 |
+
|
223 |
+
# Perhaps almost never executed, the idea is that `p` is descent
|
224 |
+
# direction thus we must find acceptable cost decrease using simple
|
225 |
+
# "backtracking", otherwise the algorithm's logic would break.
|
226 |
+
if cost_change < 0:
|
227 |
+
x, step, cost_change = backtracking(
|
228 |
+
A, g, x, p, theta, p_dot_g, lb, ub)
|
229 |
+
else:
|
230 |
+
x = make_strictly_feasible(x + step, lb, ub, rstep=0)
|
231 |
+
|
232 |
+
step_norm = norm(step)
|
233 |
+
r = A.dot(x) - b
|
234 |
+
g = compute_grad(A, r)
|
235 |
+
|
236 |
+
if cost_change < tol * cost:
|
237 |
+
termination_status = 2
|
238 |
+
|
239 |
+
cost = 0.5 * np.dot(r, r)
|
240 |
+
|
241 |
+
if termination_status is None:
|
242 |
+
termination_status = 0
|
243 |
+
|
244 |
+
active_mask = find_active_constraints(x, lb, ub, rtol=tol)
|
245 |
+
|
246 |
+
return OptimizeResult(
|
247 |
+
x=x, fun=r, cost=cost, optimality=g_norm, active_mask=active_mask,
|
248 |
+
nit=iteration + 1, status=termination_status,
|
249 |
+
initial_cost=initial_cost)
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/_minimize.py
ADDED
@@ -0,0 +1,1094 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Unified interfaces to minimization algorithms.
|
3 |
+
|
4 |
+
Functions
|
5 |
+
---------
|
6 |
+
- minimize : minimization of a function of several variables.
|
7 |
+
- minimize_scalar : minimization of a function of one variable.
|
8 |
+
"""
|
9 |
+
|
10 |
+
__all__ = ['minimize', 'minimize_scalar']
|
11 |
+
|
12 |
+
|
13 |
+
from warnings import warn
|
14 |
+
|
15 |
+
import numpy as np
|
16 |
+
|
17 |
+
# unconstrained minimization
|
18 |
+
from ._optimize import (_minimize_neldermead, _minimize_powell, _minimize_cg,
|
19 |
+
_minimize_bfgs, _minimize_newtoncg,
|
20 |
+
_minimize_scalar_brent, _minimize_scalar_bounded,
|
21 |
+
_minimize_scalar_golden, MemoizeJac, OptimizeResult,
|
22 |
+
_wrap_callback, _recover_from_bracket_error)
|
23 |
+
from ._trustregion_dogleg import _minimize_dogleg
|
24 |
+
from ._trustregion_ncg import _minimize_trust_ncg
|
25 |
+
from ._trustregion_krylov import _minimize_trust_krylov
|
26 |
+
from ._trustregion_exact import _minimize_trustregion_exact
|
27 |
+
from ._trustregion_constr import _minimize_trustregion_constr
|
28 |
+
|
29 |
+
# constrained minimization
|
30 |
+
from ._lbfgsb_py import _minimize_lbfgsb
|
31 |
+
from ._tnc import _minimize_tnc
|
32 |
+
from ._cobyla_py import _minimize_cobyla
|
33 |
+
from ._slsqp_py import _minimize_slsqp
|
34 |
+
from ._constraints import (old_bound_to_new, new_bounds_to_old,
|
35 |
+
old_constraint_to_new, new_constraint_to_old,
|
36 |
+
NonlinearConstraint, LinearConstraint, Bounds,
|
37 |
+
PreparedConstraint)
|
38 |
+
from ._differentiable_functions import FD_METHODS
|
39 |
+
|
40 |
+
MINIMIZE_METHODS = ['nelder-mead', 'powell', 'cg', 'bfgs', 'newton-cg',
|
41 |
+
'l-bfgs-b', 'tnc', 'cobyla', 'slsqp', 'trust-constr',
|
42 |
+
'dogleg', 'trust-ncg', 'trust-exact', 'trust-krylov']
|
43 |
+
|
44 |
+
# These methods support the new callback interface (passed an OptimizeResult)
|
45 |
+
MINIMIZE_METHODS_NEW_CB = ['nelder-mead', 'powell', 'cg', 'bfgs', 'newton-cg',
|
46 |
+
'l-bfgs-b', 'trust-constr', 'dogleg', 'trust-ncg',
|
47 |
+
'trust-exact', 'trust-krylov']
|
48 |
+
|
49 |
+
MINIMIZE_SCALAR_METHODS = ['brent', 'bounded', 'golden']
|
50 |
+
|
51 |
+
def minimize(fun, x0, args=(), method=None, jac=None, hess=None,
|
52 |
+
hessp=None, bounds=None, constraints=(), tol=None,
|
53 |
+
callback=None, options=None):
|
54 |
+
"""Minimization of scalar function of one or more variables.
|
55 |
+
|
56 |
+
Parameters
|
57 |
+
----------
|
58 |
+
fun : callable
|
59 |
+
The objective function to be minimized.
|
60 |
+
|
61 |
+
``fun(x, *args) -> float``
|
62 |
+
|
63 |
+
where ``x`` is a 1-D array with shape (n,) and ``args``
|
64 |
+
is a tuple of the fixed parameters needed to completely
|
65 |
+
specify the function.
|
66 |
+
x0 : ndarray, shape (n,)
|
67 |
+
Initial guess. Array of real elements of size (n,),
|
68 |
+
where ``n`` is the number of independent variables.
|
69 |
+
args : tuple, optional
|
70 |
+
Extra arguments passed to the objective function and its
|
71 |
+
derivatives (`fun`, `jac` and `hess` functions).
|
72 |
+
method : str or callable, optional
|
73 |
+
Type of solver. Should be one of
|
74 |
+
|
75 |
+
- 'Nelder-Mead' :ref:`(see here) <optimize.minimize-neldermead>`
|
76 |
+
- 'Powell' :ref:`(see here) <optimize.minimize-powell>`
|
77 |
+
- 'CG' :ref:`(see here) <optimize.minimize-cg>`
|
78 |
+
- 'BFGS' :ref:`(see here) <optimize.minimize-bfgs>`
|
79 |
+
- 'Newton-CG' :ref:`(see here) <optimize.minimize-newtoncg>`
|
80 |
+
- 'L-BFGS-B' :ref:`(see here) <optimize.minimize-lbfgsb>`
|
81 |
+
- 'TNC' :ref:`(see here) <optimize.minimize-tnc>`
|
82 |
+
- 'COBYLA' :ref:`(see here) <optimize.minimize-cobyla>`
|
83 |
+
- 'SLSQP' :ref:`(see here) <optimize.minimize-slsqp>`
|
84 |
+
- 'trust-constr':ref:`(see here) <optimize.minimize-trustconstr>`
|
85 |
+
- 'dogleg' :ref:`(see here) <optimize.minimize-dogleg>`
|
86 |
+
- 'trust-ncg' :ref:`(see here) <optimize.minimize-trustncg>`
|
87 |
+
- 'trust-exact' :ref:`(see here) <optimize.minimize-trustexact>`
|
88 |
+
- 'trust-krylov' :ref:`(see here) <optimize.minimize-trustkrylov>`
|
89 |
+
- custom - a callable object, see below for description.
|
90 |
+
|
91 |
+
If not given, chosen to be one of ``BFGS``, ``L-BFGS-B``, ``SLSQP``,
|
92 |
+
depending on whether or not the problem has constraints or bounds.
|
93 |
+
jac : {callable, '2-point', '3-point', 'cs', bool}, optional
|
94 |
+
Method for computing the gradient vector. Only for CG, BFGS,
|
95 |
+
Newton-CG, L-BFGS-B, TNC, SLSQP, dogleg, trust-ncg, trust-krylov,
|
96 |
+
trust-exact and trust-constr.
|
97 |
+
If it is a callable, it should be a function that returns the gradient
|
98 |
+
vector:
|
99 |
+
|
100 |
+
``jac(x, *args) -> array_like, shape (n,)``
|
101 |
+
|
102 |
+
where ``x`` is an array with shape (n,) and ``args`` is a tuple with
|
103 |
+
the fixed parameters. If `jac` is a Boolean and is True, `fun` is
|
104 |
+
assumed to return a tuple ``(f, g)`` containing the objective
|
105 |
+
function and the gradient.
|
106 |
+
Methods 'Newton-CG', 'trust-ncg', 'dogleg', 'trust-exact', and
|
107 |
+
'trust-krylov' require that either a callable be supplied, or that
|
108 |
+
`fun` return the objective and gradient.
|
109 |
+
If None or False, the gradient will be estimated using 2-point finite
|
110 |
+
difference estimation with an absolute step size.
|
111 |
+
Alternatively, the keywords {'2-point', '3-point', 'cs'} can be used
|
112 |
+
to select a finite difference scheme for numerical estimation of the
|
113 |
+
gradient with a relative step size. These finite difference schemes
|
114 |
+
obey any specified `bounds`.
|
115 |
+
hess : {callable, '2-point', '3-point', 'cs', HessianUpdateStrategy}, optional
|
116 |
+
Method for computing the Hessian matrix. Only for Newton-CG, dogleg,
|
117 |
+
trust-ncg, trust-krylov, trust-exact and trust-constr.
|
118 |
+
If it is callable, it should return the Hessian matrix:
|
119 |
+
|
120 |
+
``hess(x, *args) -> {LinearOperator, spmatrix, array}, (n, n)``
|
121 |
+
|
122 |
+
where ``x`` is a (n,) ndarray and ``args`` is a tuple with the fixed
|
123 |
+
parameters.
|
124 |
+
The keywords {'2-point', '3-point', 'cs'} can also be used to select
|
125 |
+
a finite difference scheme for numerical estimation of the hessian.
|
126 |
+
Alternatively, objects implementing the `HessianUpdateStrategy`
|
127 |
+
interface can be used to approximate the Hessian. Available
|
128 |
+
quasi-Newton methods implementing this interface are:
|
129 |
+
|
130 |
+
- `BFGS`;
|
131 |
+
- `SR1`.
|
132 |
+
|
133 |
+
Not all of the options are available for each of the methods; for
|
134 |
+
availability refer to the notes.
|
135 |
+
hessp : callable, optional
|
136 |
+
Hessian of objective function times an arbitrary vector p. Only for
|
137 |
+
Newton-CG, trust-ncg, trust-krylov, trust-constr.
|
138 |
+
Only one of `hessp` or `hess` needs to be given. If `hess` is
|
139 |
+
provided, then `hessp` will be ignored. `hessp` must compute the
|
140 |
+
Hessian times an arbitrary vector:
|
141 |
+
|
142 |
+
``hessp(x, p, *args) -> ndarray shape (n,)``
|
143 |
+
|
144 |
+
where ``x`` is a (n,) ndarray, ``p`` is an arbitrary vector with
|
145 |
+
dimension (n,) and ``args`` is a tuple with the fixed
|
146 |
+
parameters.
|
147 |
+
bounds : sequence or `Bounds`, optional
|
148 |
+
Bounds on variables for Nelder-Mead, L-BFGS-B, TNC, SLSQP, Powell,
|
149 |
+
trust-constr, and COBYLA methods. There are two ways to specify the
|
150 |
+
bounds:
|
151 |
+
|
152 |
+
1. Instance of `Bounds` class.
|
153 |
+
2. Sequence of ``(min, max)`` pairs for each element in `x`. None
|
154 |
+
is used to specify no bound.
|
155 |
+
|
156 |
+
constraints : {Constraint, dict} or List of {Constraint, dict}, optional
|
157 |
+
Constraints definition. Only for COBYLA, SLSQP and trust-constr.
|
158 |
+
|
159 |
+
Constraints for 'trust-constr' are defined as a single object or a
|
160 |
+
list of objects specifying constraints to the optimization problem.
|
161 |
+
Available constraints are:
|
162 |
+
|
163 |
+
- `LinearConstraint`
|
164 |
+
- `NonlinearConstraint`
|
165 |
+
|
166 |
+
Constraints for COBYLA, SLSQP are defined as a list of dictionaries.
|
167 |
+
Each dictionary with fields:
|
168 |
+
|
169 |
+
type : str
|
170 |
+
Constraint type: 'eq' for equality, 'ineq' for inequality.
|
171 |
+
fun : callable
|
172 |
+
The function defining the constraint.
|
173 |
+
jac : callable, optional
|
174 |
+
The Jacobian of `fun` (only for SLSQP).
|
175 |
+
args : sequence, optional
|
176 |
+
Extra arguments to be passed to the function and Jacobian.
|
177 |
+
|
178 |
+
Equality constraint means that the constraint function result is to
|
179 |
+
be zero whereas inequality means that it is to be non-negative.
|
180 |
+
Note that COBYLA only supports inequality constraints.
|
181 |
+
tol : float, optional
|
182 |
+
Tolerance for termination. When `tol` is specified, the selected
|
183 |
+
minimization algorithm sets some relevant solver-specific tolerance(s)
|
184 |
+
equal to `tol`. For detailed control, use solver-specific
|
185 |
+
options.
|
186 |
+
options : dict, optional
|
187 |
+
A dictionary of solver options. All methods except `TNC` accept the
|
188 |
+
following generic options:
|
189 |
+
|
190 |
+
maxiter : int
|
191 |
+
Maximum number of iterations to perform. Depending on the
|
192 |
+
method each iteration may use several function evaluations.
|
193 |
+
|
194 |
+
For `TNC` use `maxfun` instead of `maxiter`.
|
195 |
+
disp : bool
|
196 |
+
Set to True to print convergence messages.
|
197 |
+
|
198 |
+
For method-specific options, see :func:`show_options()`.
|
199 |
+
callback : callable, optional
|
200 |
+
A callable called after each iteration.
|
201 |
+
|
202 |
+
All methods except TNC, SLSQP, and COBYLA support a callable with
|
203 |
+
the signature:
|
204 |
+
|
205 |
+
``callback(intermediate_result: OptimizeResult)``
|
206 |
+
|
207 |
+
where ``intermediate_result`` is a keyword parameter containing an
|
208 |
+
`OptimizeResult` with attributes ``x`` and ``fun``, the present values
|
209 |
+
of the parameter vector and objective function. Note that the name
|
210 |
+
of the parameter must be ``intermediate_result`` for the callback
|
211 |
+
to be passed an `OptimizeResult`. These methods will also terminate if
|
212 |
+
the callback raises ``StopIteration``.
|
213 |
+
|
214 |
+
All methods except trust-constr (also) support a signature like:
|
215 |
+
|
216 |
+
``callback(xk)``
|
217 |
+
|
218 |
+
where ``xk`` is the current parameter vector.
|
219 |
+
|
220 |
+
Introspection is used to determine which of the signatures above to
|
221 |
+
invoke.
|
222 |
+
|
223 |
+
Returns
|
224 |
+
-------
|
225 |
+
res : OptimizeResult
|
226 |
+
The optimization result represented as a ``OptimizeResult`` object.
|
227 |
+
Important attributes are: ``x`` the solution array, ``success`` a
|
228 |
+
Boolean flag indicating if the optimizer exited successfully and
|
229 |
+
``message`` which describes the cause of the termination. See
|
230 |
+
`OptimizeResult` for a description of other attributes.
|
231 |
+
|
232 |
+
See also
|
233 |
+
--------
|
234 |
+
minimize_scalar : Interface to minimization algorithms for scalar
|
235 |
+
univariate functions
|
236 |
+
show_options : Additional options accepted by the solvers
|
237 |
+
|
238 |
+
Notes
|
239 |
+
-----
|
240 |
+
This section describes the available solvers that can be selected by the
|
241 |
+
'method' parameter. The default method is *BFGS*.
|
242 |
+
|
243 |
+
**Unconstrained minimization**
|
244 |
+
|
245 |
+
Method :ref:`CG <optimize.minimize-cg>` uses a nonlinear conjugate
|
246 |
+
gradient algorithm by Polak and Ribiere, a variant of the
|
247 |
+
Fletcher-Reeves method described in [5]_ pp.120-122. Only the
|
248 |
+
first derivatives are used.
|
249 |
+
|
250 |
+
Method :ref:`BFGS <optimize.minimize-bfgs>` uses the quasi-Newton
|
251 |
+
method of Broyden, Fletcher, Goldfarb, and Shanno (BFGS) [5]_
|
252 |
+
pp. 136. It uses the first derivatives only. BFGS has proven good
|
253 |
+
performance even for non-smooth optimizations. This method also
|
254 |
+
returns an approximation of the Hessian inverse, stored as
|
255 |
+
`hess_inv` in the OptimizeResult object.
|
256 |
+
|
257 |
+
Method :ref:`Newton-CG <optimize.minimize-newtoncg>` uses a
|
258 |
+
Newton-CG algorithm [5]_ pp. 168 (also known as the truncated
|
259 |
+
Newton method). It uses a CG method to the compute the search
|
260 |
+
direction. See also *TNC* method for a box-constrained
|
261 |
+
minimization with a similar algorithm. Suitable for large-scale
|
262 |
+
problems.
|
263 |
+
|
264 |
+
Method :ref:`dogleg <optimize.minimize-dogleg>` uses the dog-leg
|
265 |
+
trust-region algorithm [5]_ for unconstrained minimization. This
|
266 |
+
algorithm requires the gradient and Hessian; furthermore the
|
267 |
+
Hessian is required to be positive definite.
|
268 |
+
|
269 |
+
Method :ref:`trust-ncg <optimize.minimize-trustncg>` uses the
|
270 |
+
Newton conjugate gradient trust-region algorithm [5]_ for
|
271 |
+
unconstrained minimization. This algorithm requires the gradient
|
272 |
+
and either the Hessian or a function that computes the product of
|
273 |
+
the Hessian with a given vector. Suitable for large-scale problems.
|
274 |
+
|
275 |
+
Method :ref:`trust-krylov <optimize.minimize-trustkrylov>` uses
|
276 |
+
the Newton GLTR trust-region algorithm [14]_, [15]_ for unconstrained
|
277 |
+
minimization. This algorithm requires the gradient
|
278 |
+
and either the Hessian or a function that computes the product of
|
279 |
+
the Hessian with a given vector. Suitable for large-scale problems.
|
280 |
+
On indefinite problems it requires usually less iterations than the
|
281 |
+
`trust-ncg` method and is recommended for medium and large-scale problems.
|
282 |
+
|
283 |
+
Method :ref:`trust-exact <optimize.minimize-trustexact>`
|
284 |
+
is a trust-region method for unconstrained minimization in which
|
285 |
+
quadratic subproblems are solved almost exactly [13]_. This
|
286 |
+
algorithm requires the gradient and the Hessian (which is
|
287 |
+
*not* required to be positive definite). It is, in many
|
288 |
+
situations, the Newton method to converge in fewer iterations
|
289 |
+
and the most recommended for small and medium-size problems.
|
290 |
+
|
291 |
+
**Bound-Constrained minimization**
|
292 |
+
|
293 |
+
Method :ref:`Nelder-Mead <optimize.minimize-neldermead>` uses the
|
294 |
+
Simplex algorithm [1]_, [2]_. This algorithm is robust in many
|
295 |
+
applications. However, if numerical computation of derivative can be
|
296 |
+
trusted, other algorithms using the first and/or second derivatives
|
297 |
+
information might be preferred for their better performance in
|
298 |
+
general.
|
299 |
+
|
300 |
+
Method :ref:`L-BFGS-B <optimize.minimize-lbfgsb>` uses the L-BFGS-B
|
301 |
+
algorithm [6]_, [7]_ for bound constrained minimization.
|
302 |
+
|
303 |
+
Method :ref:`Powell <optimize.minimize-powell>` is a modification
|
304 |
+
of Powell's method [3]_, [4]_ which is a conjugate direction
|
305 |
+
method. It performs sequential one-dimensional minimizations along
|
306 |
+
each vector of the directions set (`direc` field in `options` and
|
307 |
+
`info`), which is updated at each iteration of the main
|
308 |
+
minimization loop. The function need not be differentiable, and no
|
309 |
+
derivatives are taken. If bounds are not provided, then an
|
310 |
+
unbounded line search will be used. If bounds are provided and
|
311 |
+
the initial guess is within the bounds, then every function
|
312 |
+
evaluation throughout the minimization procedure will be within
|
313 |
+
the bounds. If bounds are provided, the initial guess is outside
|
314 |
+
the bounds, and `direc` is full rank (default has full rank), then
|
315 |
+
some function evaluations during the first iteration may be
|
316 |
+
outside the bounds, but every function evaluation after the first
|
317 |
+
iteration will be within the bounds. If `direc` is not full rank,
|
318 |
+
then some parameters may not be optimized and the solution is not
|
319 |
+
guaranteed to be within the bounds.
|
320 |
+
|
321 |
+
Method :ref:`TNC <optimize.minimize-tnc>` uses a truncated Newton
|
322 |
+
algorithm [5]_, [8]_ to minimize a function with variables subject
|
323 |
+
to bounds. This algorithm uses gradient information; it is also
|
324 |
+
called Newton Conjugate-Gradient. It differs from the *Newton-CG*
|
325 |
+
method described above as it wraps a C implementation and allows
|
326 |
+
each variable to be given upper and lower bounds.
|
327 |
+
|
328 |
+
**Constrained Minimization**
|
329 |
+
|
330 |
+
Method :ref:`COBYLA <optimize.minimize-cobyla>` uses the
|
331 |
+
Constrained Optimization BY Linear Approximation (COBYLA) method
|
332 |
+
[9]_, [10]_, [11]_. The algorithm is based on linear
|
333 |
+
approximations to the objective function and each constraint. The
|
334 |
+
method wraps a FORTRAN implementation of the algorithm. The
|
335 |
+
constraints functions 'fun' may return either a single number
|
336 |
+
or an array or list of numbers.
|
337 |
+
|
338 |
+
Method :ref:`SLSQP <optimize.minimize-slsqp>` uses Sequential
|
339 |
+
Least SQuares Programming to minimize a function of several
|
340 |
+
variables with any combination of bounds, equality and inequality
|
341 |
+
constraints. The method wraps the SLSQP Optimization subroutine
|
342 |
+
originally implemented by Dieter Kraft [12]_. Note that the
|
343 |
+
wrapper handles infinite values in bounds by converting them into
|
344 |
+
large floating values.
|
345 |
+
|
346 |
+
Method :ref:`trust-constr <optimize.minimize-trustconstr>` is a
|
347 |
+
trust-region algorithm for constrained optimization. It switches
|
348 |
+
between two implementations depending on the problem definition.
|
349 |
+
It is the most versatile constrained minimization algorithm
|
350 |
+
implemented in SciPy and the most appropriate for large-scale problems.
|
351 |
+
For equality constrained problems it is an implementation of Byrd-Omojokun
|
352 |
+
Trust-Region SQP method described in [17]_ and in [5]_, p. 549. When
|
353 |
+
inequality constraints are imposed as well, it switches to the trust-region
|
354 |
+
interior point method described in [16]_. This interior point algorithm,
|
355 |
+
in turn, solves inequality constraints by introducing slack variables
|
356 |
+
and solving a sequence of equality-constrained barrier problems
|
357 |
+
for progressively smaller values of the barrier parameter.
|
358 |
+
The previously described equality constrained SQP method is
|
359 |
+
used to solve the subproblems with increasing levels of accuracy
|
360 |
+
as the iterate gets closer to a solution.
|
361 |
+
|
362 |
+
**Finite-Difference Options**
|
363 |
+
|
364 |
+
For Method :ref:`trust-constr <optimize.minimize-trustconstr>`
|
365 |
+
the gradient and the Hessian may be approximated using
|
366 |
+
three finite-difference schemes: {'2-point', '3-point', 'cs'}.
|
367 |
+
The scheme 'cs' is, potentially, the most accurate but it
|
368 |
+
requires the function to correctly handle complex inputs and to
|
369 |
+
be differentiable in the complex plane. The scheme '3-point' is more
|
370 |
+
accurate than '2-point' but requires twice as many operations. If the
|
371 |
+
gradient is estimated via finite-differences the Hessian must be
|
372 |
+
estimated using one of the quasi-Newton strategies.
|
373 |
+
|
374 |
+
**Method specific options for the** `hess` **keyword**
|
375 |
+
|
376 |
+
+--------------+------+----------+-------------------------+-----+
|
377 |
+
| method/Hess | None | callable | '2-point/'3-point'/'cs' | HUS |
|
378 |
+
+==============+======+==========+=========================+=====+
|
379 |
+
| Newton-CG | x | (n, n) | x | x |
|
380 |
+
| | | LO | | |
|
381 |
+
+--------------+------+----------+-------------------------+-----+
|
382 |
+
| dogleg | | (n, n) | | |
|
383 |
+
+--------------+------+----------+-------------------------+-----+
|
384 |
+
| trust-ncg | | (n, n) | x | x |
|
385 |
+
+--------------+------+----------+-------------------------+-----+
|
386 |
+
| trust-krylov | | (n, n) | x | x |
|
387 |
+
+--------------+------+----------+-------------------------+-----+
|
388 |
+
| trust-exact | | (n, n) | | |
|
389 |
+
+--------------+------+----------+-------------------------+-----+
|
390 |
+
| trust-constr | x | (n, n) | x | x |
|
391 |
+
| | | LO | | |
|
392 |
+
| | | sp | | |
|
393 |
+
+--------------+------+----------+-------------------------+-----+
|
394 |
+
|
395 |
+
where LO=LinearOperator, sp=Sparse matrix, HUS=HessianUpdateStrategy
|
396 |
+
|
397 |
+
**Custom minimizers**
|
398 |
+
|
399 |
+
It may be useful to pass a custom minimization method, for example
|
400 |
+
when using a frontend to this method such as `scipy.optimize.basinhopping`
|
401 |
+
or a different library. You can simply pass a callable as the ``method``
|
402 |
+
parameter.
|
403 |
+
|
404 |
+
The callable is called as ``method(fun, x0, args, **kwargs, **options)``
|
405 |
+
where ``kwargs`` corresponds to any other parameters passed to `minimize`
|
406 |
+
(such as `callback`, `hess`, etc.), except the `options` dict, which has
|
407 |
+
its contents also passed as `method` parameters pair by pair. Also, if
|
408 |
+
`jac` has been passed as a bool type, `jac` and `fun` are mangled so that
|
409 |
+
`fun` returns just the function values and `jac` is converted to a function
|
410 |
+
returning the Jacobian. The method shall return an `OptimizeResult`
|
411 |
+
object.
|
412 |
+
|
413 |
+
The provided `method` callable must be able to accept (and possibly ignore)
|
414 |
+
arbitrary parameters; the set of parameters accepted by `minimize` may
|
415 |
+
expand in future versions and then these parameters will be passed to
|
416 |
+
the method. You can find an example in the scipy.optimize tutorial.
|
417 |
+
|
418 |
+
References
|
419 |
+
----------
|
420 |
+
.. [1] Nelder, J A, and R Mead. 1965. A Simplex Method for Function
|
421 |
+
Minimization. The Computer Journal 7: 308-13.
|
422 |
+
.. [2] Wright M H. 1996. Direct search methods: Once scorned, now
|
423 |
+
respectable, in Numerical Analysis 1995: Proceedings of the 1995
|
424 |
+
Dundee Biennial Conference in Numerical Analysis (Eds. D F
|
425 |
+
Griffiths and G A Watson). Addison Wesley Longman, Harlow, UK.
|
426 |
+
191-208.
|
427 |
+
.. [3] Powell, M J D. 1964. An efficient method for finding the minimum of
|
428 |
+
a function of several variables without calculating derivatives. The
|
429 |
+
Computer Journal 7: 155-162.
|
430 |
+
.. [4] Press W, S A Teukolsky, W T Vetterling and B P Flannery.
|
431 |
+
Numerical Recipes (any edition), Cambridge University Press.
|
432 |
+
.. [5] Nocedal, J, and S J Wright. 2006. Numerical Optimization.
|
433 |
+
Springer New York.
|
434 |
+
.. [6] Byrd, R H and P Lu and J. Nocedal. 1995. A Limited Memory
|
435 |
+
Algorithm for Bound Constrained Optimization. SIAM Journal on
|
436 |
+
Scientific and Statistical Computing 16 (5): 1190-1208.
|
437 |
+
.. [7] Zhu, C and R H Byrd and J Nocedal. 1997. L-BFGS-B: Algorithm
|
438 |
+
778: L-BFGS-B, FORTRAN routines for large scale bound constrained
|
439 |
+
optimization. ACM Transactions on Mathematical Software 23 (4):
|
440 |
+
550-560.
|
441 |
+
.. [8] Nash, S G. Newton-Type Minimization Via the Lanczos Method.
|
442 |
+
1984. SIAM Journal of Numerical Analysis 21: 770-778.
|
443 |
+
.. [9] Powell, M J D. A direct search optimization method that models
|
444 |
+
the objective and constraint functions by linear interpolation.
|
445 |
+
1994. Advances in Optimization and Numerical Analysis, eds. S. Gomez
|
446 |
+
and J-P Hennart, Kluwer Academic (Dordrecht), 51-67.
|
447 |
+
.. [10] Powell M J D. Direct search algorithms for optimization
|
448 |
+
calculations. 1998. Acta Numerica 7: 287-336.
|
449 |
+
.. [11] Powell M J D. A view of algorithms for optimization without
|
450 |
+
derivatives. 2007.Cambridge University Technical Report DAMTP
|
451 |
+
2007/NA03
|
452 |
+
.. [12] Kraft, D. A software package for sequential quadratic
|
453 |
+
programming. 1988. Tech. Rep. DFVLR-FB 88-28, DLR German Aerospace
|
454 |
+
Center -- Institute for Flight Mechanics, Koln, Germany.
|
455 |
+
.. [13] Conn, A. R., Gould, N. I., and Toint, P. L.
|
456 |
+
Trust region methods. 2000. Siam. pp. 169-200.
|
457 |
+
.. [14] F. Lenders, C. Kirches, A. Potschka: "trlib: A vector-free
|
458 |
+
implementation of the GLTR method for iterative solution of
|
459 |
+
the trust region problem", :arxiv:`1611.04718`
|
460 |
+
.. [15] N. Gould, S. Lucidi, M. Roma, P. Toint: "Solving the
|
461 |
+
Trust-Region Subproblem using the Lanczos Method",
|
462 |
+
SIAM J. Optim., 9(2), 504--525, (1999).
|
463 |
+
.. [16] Byrd, Richard H., Mary E. Hribar, and Jorge Nocedal. 1999.
|
464 |
+
An interior point algorithm for large-scale nonlinear programming.
|
465 |
+
SIAM Journal on Optimization 9.4: 877-900.
|
466 |
+
.. [17] Lalee, Marucha, Jorge Nocedal, and Todd Plantega. 1998. On the
|
467 |
+
implementation of an algorithm for large-scale equality constrained
|
468 |
+
optimization. SIAM Journal on Optimization 8.3: 682-706.
|
469 |
+
|
470 |
+
Examples
|
471 |
+
--------
|
472 |
+
Let us consider the problem of minimizing the Rosenbrock function. This
|
473 |
+
function (and its respective derivatives) is implemented in `rosen`
|
474 |
+
(resp. `rosen_der`, `rosen_hess`) in the `scipy.optimize`.
|
475 |
+
|
476 |
+
>>> from scipy.optimize import minimize, rosen, rosen_der
|
477 |
+
|
478 |
+
A simple application of the *Nelder-Mead* method is:
|
479 |
+
|
480 |
+
>>> x0 = [1.3, 0.7, 0.8, 1.9, 1.2]
|
481 |
+
>>> res = minimize(rosen, x0, method='Nelder-Mead', tol=1e-6)
|
482 |
+
>>> res.x
|
483 |
+
array([ 1., 1., 1., 1., 1.])
|
484 |
+
|
485 |
+
Now using the *BFGS* algorithm, using the first derivative and a few
|
486 |
+
options:
|
487 |
+
|
488 |
+
>>> res = minimize(rosen, x0, method='BFGS', jac=rosen_der,
|
489 |
+
... options={'gtol': 1e-6, 'disp': True})
|
490 |
+
Optimization terminated successfully.
|
491 |
+
Current function value: 0.000000
|
492 |
+
Iterations: 26
|
493 |
+
Function evaluations: 31
|
494 |
+
Gradient evaluations: 31
|
495 |
+
>>> res.x
|
496 |
+
array([ 1., 1., 1., 1., 1.])
|
497 |
+
>>> print(res.message)
|
498 |
+
Optimization terminated successfully.
|
499 |
+
>>> res.hess_inv
|
500 |
+
array([
|
501 |
+
[ 0.00749589, 0.01255155, 0.02396251, 0.04750988, 0.09495377], # may vary
|
502 |
+
[ 0.01255155, 0.02510441, 0.04794055, 0.09502834, 0.18996269],
|
503 |
+
[ 0.02396251, 0.04794055, 0.09631614, 0.19092151, 0.38165151],
|
504 |
+
[ 0.04750988, 0.09502834, 0.19092151, 0.38341252, 0.7664427 ],
|
505 |
+
[ 0.09495377, 0.18996269, 0.38165151, 0.7664427, 1.53713523]
|
506 |
+
])
|
507 |
+
|
508 |
+
|
509 |
+
Next, consider a minimization problem with several constraints (namely
|
510 |
+
Example 16.4 from [5]_). The objective function is:
|
511 |
+
|
512 |
+
>>> fun = lambda x: (x[0] - 1)**2 + (x[1] - 2.5)**2
|
513 |
+
|
514 |
+
There are three constraints defined as:
|
515 |
+
|
516 |
+
>>> cons = ({'type': 'ineq', 'fun': lambda x: x[0] - 2 * x[1] + 2},
|
517 |
+
... {'type': 'ineq', 'fun': lambda x: -x[0] - 2 * x[1] + 6},
|
518 |
+
... {'type': 'ineq', 'fun': lambda x: -x[0] + 2 * x[1] + 2})
|
519 |
+
|
520 |
+
And variables must be positive, hence the following bounds:
|
521 |
+
|
522 |
+
>>> bnds = ((0, None), (0, None))
|
523 |
+
|
524 |
+
The optimization problem is solved using the SLSQP method as:
|
525 |
+
|
526 |
+
>>> res = minimize(fun, (2, 0), method='SLSQP', bounds=bnds,
|
527 |
+
... constraints=cons)
|
528 |
+
|
529 |
+
It should converge to the theoretical solution (1.4 ,1.7).
|
530 |
+
|
531 |
+
"""
|
532 |
+
x0 = np.atleast_1d(np.asarray(x0))
|
533 |
+
|
534 |
+
if x0.ndim != 1:
|
535 |
+
raise ValueError("'x0' must only have one dimension.")
|
536 |
+
|
537 |
+
if x0.dtype.kind in np.typecodes["AllInteger"]:
|
538 |
+
x0 = np.asarray(x0, dtype=float)
|
539 |
+
|
540 |
+
if not isinstance(args, tuple):
|
541 |
+
args = (args,)
|
542 |
+
|
543 |
+
if method is None:
|
544 |
+
# Select automatically
|
545 |
+
if constraints:
|
546 |
+
method = 'SLSQP'
|
547 |
+
elif bounds is not None:
|
548 |
+
method = 'L-BFGS-B'
|
549 |
+
else:
|
550 |
+
method = 'BFGS'
|
551 |
+
|
552 |
+
if callable(method):
|
553 |
+
meth = "_custom"
|
554 |
+
else:
|
555 |
+
meth = method.lower()
|
556 |
+
|
557 |
+
if options is None:
|
558 |
+
options = {}
|
559 |
+
# check if optional parameters are supported by the selected method
|
560 |
+
# - jac
|
561 |
+
if meth in ('nelder-mead', 'powell', 'cobyla') and bool(jac):
|
562 |
+
warn('Method %s does not use gradient information (jac).' % method,
|
563 |
+
RuntimeWarning, stacklevel=2)
|
564 |
+
# - hess
|
565 |
+
if meth not in ('newton-cg', 'dogleg', 'trust-ncg', 'trust-constr',
|
566 |
+
'trust-krylov', 'trust-exact', '_custom') and hess is not None:
|
567 |
+
warn('Method %s does not use Hessian information (hess).' % method,
|
568 |
+
RuntimeWarning, stacklevel=2)
|
569 |
+
# - hessp
|
570 |
+
if meth not in ('newton-cg', 'trust-ncg', 'trust-constr',
|
571 |
+
'trust-krylov', '_custom') \
|
572 |
+
and hessp is not None:
|
573 |
+
warn('Method %s does not use Hessian-vector product '
|
574 |
+
'information (hessp).' % method,
|
575 |
+
RuntimeWarning, stacklevel=2)
|
576 |
+
# - constraints or bounds
|
577 |
+
if (meth not in ('cobyla', 'slsqp', 'trust-constr', '_custom') and
|
578 |
+
np.any(constraints)):
|
579 |
+
warn('Method %s cannot handle constraints.' % method,
|
580 |
+
RuntimeWarning, stacklevel=2)
|
581 |
+
if meth not in ('nelder-mead', 'powell', 'l-bfgs-b', 'cobyla', 'slsqp',
|
582 |
+
'tnc', 'trust-constr', '_custom') and bounds is not None:
|
583 |
+
warn('Method %s cannot handle bounds.' % method,
|
584 |
+
RuntimeWarning, stacklevel=2)
|
585 |
+
# - return_all
|
586 |
+
if (meth in ('l-bfgs-b', 'tnc', 'cobyla', 'slsqp') and
|
587 |
+
options.get('return_all', False)):
|
588 |
+
warn('Method %s does not support the return_all option.' % method,
|
589 |
+
RuntimeWarning, stacklevel=2)
|
590 |
+
|
591 |
+
# check gradient vector
|
592 |
+
if callable(jac):
|
593 |
+
pass
|
594 |
+
elif jac is True:
|
595 |
+
# fun returns func and grad
|
596 |
+
fun = MemoizeJac(fun)
|
597 |
+
jac = fun.derivative
|
598 |
+
elif (jac in FD_METHODS and
|
599 |
+
meth in ['trust-constr', 'bfgs', 'cg', 'l-bfgs-b', 'tnc', 'slsqp']):
|
600 |
+
# finite differences with relative step
|
601 |
+
pass
|
602 |
+
elif meth in ['trust-constr']:
|
603 |
+
# default jac calculation for this method
|
604 |
+
jac = '2-point'
|
605 |
+
elif jac is None or bool(jac) is False:
|
606 |
+
# this will cause e.g. LBFGS to use forward difference, absolute step
|
607 |
+
jac = None
|
608 |
+
else:
|
609 |
+
# default if jac option is not understood
|
610 |
+
jac = None
|
611 |
+
|
612 |
+
# set default tolerances
|
613 |
+
if tol is not None:
|
614 |
+
options = dict(options)
|
615 |
+
if meth == 'nelder-mead':
|
616 |
+
options.setdefault('xatol', tol)
|
617 |
+
options.setdefault('fatol', tol)
|
618 |
+
if meth in ('newton-cg', 'powell', 'tnc'):
|
619 |
+
options.setdefault('xtol', tol)
|
620 |
+
if meth in ('powell', 'l-bfgs-b', 'tnc', 'slsqp'):
|
621 |
+
options.setdefault('ftol', tol)
|
622 |
+
if meth in ('bfgs', 'cg', 'l-bfgs-b', 'tnc', 'dogleg',
|
623 |
+
'trust-ncg', 'trust-exact', 'trust-krylov'):
|
624 |
+
options.setdefault('gtol', tol)
|
625 |
+
if meth in ('cobyla', '_custom'):
|
626 |
+
options.setdefault('tol', tol)
|
627 |
+
if meth == 'trust-constr':
|
628 |
+
options.setdefault('xtol', tol)
|
629 |
+
options.setdefault('gtol', tol)
|
630 |
+
options.setdefault('barrier_tol', tol)
|
631 |
+
|
632 |
+
if meth == '_custom':
|
633 |
+
# custom method called before bounds and constraints are 'standardised'
|
634 |
+
# custom method should be able to accept whatever bounds/constraints
|
635 |
+
# are provided to it.
|
636 |
+
return method(fun, x0, args=args, jac=jac, hess=hess, hessp=hessp,
|
637 |
+
bounds=bounds, constraints=constraints,
|
638 |
+
callback=callback, **options)
|
639 |
+
|
640 |
+
constraints = standardize_constraints(constraints, x0, meth)
|
641 |
+
|
642 |
+
remove_vars = False
|
643 |
+
if bounds is not None:
|
644 |
+
# convert to new-style bounds so we only have to consider one case
|
645 |
+
bounds = standardize_bounds(bounds, x0, 'new')
|
646 |
+
bounds = _validate_bounds(bounds, x0, meth)
|
647 |
+
|
648 |
+
if meth in {"tnc", "slsqp", "l-bfgs-b"}:
|
649 |
+
# These methods can't take the finite-difference derivatives they
|
650 |
+
# need when a variable is fixed by the bounds. To avoid this issue,
|
651 |
+
# remove fixed variables from the problem.
|
652 |
+
# NOTE: if this list is expanded, then be sure to update the
|
653 |
+
# accompanying tests and test_optimize.eb_data. Consider also if
|
654 |
+
# default OptimizeResult will need updating.
|
655 |
+
|
656 |
+
# determine whether any variables are fixed
|
657 |
+
i_fixed = (bounds.lb == bounds.ub)
|
658 |
+
|
659 |
+
if np.all(i_fixed):
|
660 |
+
# all the parameters are fixed, a minimizer is not able to do
|
661 |
+
# anything
|
662 |
+
return _optimize_result_for_equal_bounds(
|
663 |
+
fun, bounds, meth, args=args, constraints=constraints
|
664 |
+
)
|
665 |
+
|
666 |
+
# determine whether finite differences are needed for any grad/jac
|
667 |
+
fd_needed = (not callable(jac))
|
668 |
+
for con in constraints:
|
669 |
+
if not callable(con.get('jac', None)):
|
670 |
+
fd_needed = True
|
671 |
+
|
672 |
+
# If finite differences are ever used, remove all fixed variables
|
673 |
+
# Always remove fixed variables for TNC; see gh-14565
|
674 |
+
remove_vars = i_fixed.any() and (fd_needed or meth == "tnc")
|
675 |
+
if remove_vars:
|
676 |
+
x_fixed = (bounds.lb)[i_fixed]
|
677 |
+
x0 = x0[~i_fixed]
|
678 |
+
bounds = _remove_from_bounds(bounds, i_fixed)
|
679 |
+
fun = _remove_from_func(fun, i_fixed, x_fixed)
|
680 |
+
if callable(callback):
|
681 |
+
callback = _remove_from_func(callback, i_fixed, x_fixed)
|
682 |
+
if callable(jac):
|
683 |
+
jac = _remove_from_func(jac, i_fixed, x_fixed, remove=1)
|
684 |
+
|
685 |
+
# make a copy of the constraints so the user's version doesn't
|
686 |
+
# get changed. (Shallow copy is ok)
|
687 |
+
constraints = [con.copy() for con in constraints]
|
688 |
+
for con in constraints: # yes, guaranteed to be a list
|
689 |
+
con['fun'] = _remove_from_func(con['fun'], i_fixed,
|
690 |
+
x_fixed, min_dim=1,
|
691 |
+
remove=0)
|
692 |
+
if callable(con.get('jac', None)):
|
693 |
+
con['jac'] = _remove_from_func(con['jac'], i_fixed,
|
694 |
+
x_fixed, min_dim=2,
|
695 |
+
remove=1)
|
696 |
+
bounds = standardize_bounds(bounds, x0, meth)
|
697 |
+
|
698 |
+
callback = _wrap_callback(callback, meth)
|
699 |
+
|
700 |
+
if meth == 'nelder-mead':
|
701 |
+
res = _minimize_neldermead(fun, x0, args, callback, bounds=bounds,
|
702 |
+
**options)
|
703 |
+
elif meth == 'powell':
|
704 |
+
res = _minimize_powell(fun, x0, args, callback, bounds, **options)
|
705 |
+
elif meth == 'cg':
|
706 |
+
res = _minimize_cg(fun, x0, args, jac, callback, **options)
|
707 |
+
elif meth == 'bfgs':
|
708 |
+
res = _minimize_bfgs(fun, x0, args, jac, callback, **options)
|
709 |
+
elif meth == 'newton-cg':
|
710 |
+
res = _minimize_newtoncg(fun, x0, args, jac, hess, hessp, callback,
|
711 |
+
**options)
|
712 |
+
elif meth == 'l-bfgs-b':
|
713 |
+
res = _minimize_lbfgsb(fun, x0, args, jac, bounds,
|
714 |
+
callback=callback, **options)
|
715 |
+
elif meth == 'tnc':
|
716 |
+
res = _minimize_tnc(fun, x0, args, jac, bounds, callback=callback,
|
717 |
+
**options)
|
718 |
+
elif meth == 'cobyla':
|
719 |
+
res = _minimize_cobyla(fun, x0, args, constraints, callback=callback,
|
720 |
+
bounds=bounds, **options)
|
721 |
+
elif meth == 'slsqp':
|
722 |
+
res = _minimize_slsqp(fun, x0, args, jac, bounds,
|
723 |
+
constraints, callback=callback, **options)
|
724 |
+
elif meth == 'trust-constr':
|
725 |
+
res = _minimize_trustregion_constr(fun, x0, args, jac, hess, hessp,
|
726 |
+
bounds, constraints,
|
727 |
+
callback=callback, **options)
|
728 |
+
elif meth == 'dogleg':
|
729 |
+
res = _minimize_dogleg(fun, x0, args, jac, hess,
|
730 |
+
callback=callback, **options)
|
731 |
+
elif meth == 'trust-ncg':
|
732 |
+
res = _minimize_trust_ncg(fun, x0, args, jac, hess, hessp,
|
733 |
+
callback=callback, **options)
|
734 |
+
elif meth == 'trust-krylov':
|
735 |
+
res = _minimize_trust_krylov(fun, x0, args, jac, hess, hessp,
|
736 |
+
callback=callback, **options)
|
737 |
+
elif meth == 'trust-exact':
|
738 |
+
res = _minimize_trustregion_exact(fun, x0, args, jac, hess,
|
739 |
+
callback=callback, **options)
|
740 |
+
else:
|
741 |
+
raise ValueError('Unknown solver %s' % method)
|
742 |
+
|
743 |
+
if remove_vars:
|
744 |
+
res.x = _add_to_array(res.x, i_fixed, x_fixed)
|
745 |
+
res.jac = _add_to_array(res.jac, i_fixed, np.nan)
|
746 |
+
if "hess_inv" in res:
|
747 |
+
res.hess_inv = None # unknown
|
748 |
+
|
749 |
+
if getattr(callback, 'stop_iteration', False):
|
750 |
+
res.success = False
|
751 |
+
res.status = 99
|
752 |
+
res.message = "`callback` raised `StopIteration`."
|
753 |
+
|
754 |
+
return res
|
755 |
+
|
756 |
+
|
757 |
+
def minimize_scalar(fun, bracket=None, bounds=None, args=(),
|
758 |
+
method=None, tol=None, options=None):
|
759 |
+
"""Local minimization of scalar function of one variable.
|
760 |
+
|
761 |
+
Parameters
|
762 |
+
----------
|
763 |
+
fun : callable
|
764 |
+
Objective function.
|
765 |
+
Scalar function, must return a scalar.
|
766 |
+
bracket : sequence, optional
|
767 |
+
For methods 'brent' and 'golden', `bracket` defines the bracketing
|
768 |
+
interval and is required.
|
769 |
+
Either a triple ``(xa, xb, xc)`` satisfying ``xa < xb < xc`` and
|
770 |
+
``func(xb) < func(xa) and func(xb) < func(xc)``, or a pair
|
771 |
+
``(xa, xb)`` to be used as initial points for a downhill bracket search
|
772 |
+
(see `scipy.optimize.bracket`).
|
773 |
+
The minimizer ``res.x`` will not necessarily satisfy
|
774 |
+
``xa <= res.x <= xb``.
|
775 |
+
bounds : sequence, optional
|
776 |
+
For method 'bounded', `bounds` is mandatory and must have two finite
|
777 |
+
items corresponding to the optimization bounds.
|
778 |
+
args : tuple, optional
|
779 |
+
Extra arguments passed to the objective function.
|
780 |
+
method : str or callable, optional
|
781 |
+
Type of solver. Should be one of:
|
782 |
+
|
783 |
+
- :ref:`Brent <optimize.minimize_scalar-brent>`
|
784 |
+
- :ref:`Bounded <optimize.minimize_scalar-bounded>`
|
785 |
+
- :ref:`Golden <optimize.minimize_scalar-golden>`
|
786 |
+
- custom - a callable object (added in version 0.14.0), see below
|
787 |
+
|
788 |
+
Default is "Bounded" if bounds are provided and "Brent" otherwise.
|
789 |
+
See the 'Notes' section for details of each solver.
|
790 |
+
|
791 |
+
tol : float, optional
|
792 |
+
Tolerance for termination. For detailed control, use solver-specific
|
793 |
+
options.
|
794 |
+
options : dict, optional
|
795 |
+
A dictionary of solver options.
|
796 |
+
|
797 |
+
maxiter : int
|
798 |
+
Maximum number of iterations to perform.
|
799 |
+
disp : bool
|
800 |
+
Set to True to print convergence messages.
|
801 |
+
|
802 |
+
See :func:`show_options()` for solver-specific options.
|
803 |
+
|
804 |
+
Returns
|
805 |
+
-------
|
806 |
+
res : OptimizeResult
|
807 |
+
The optimization result represented as a ``OptimizeResult`` object.
|
808 |
+
Important attributes are: ``x`` the solution array, ``success`` a
|
809 |
+
Boolean flag indicating if the optimizer exited successfully and
|
810 |
+
``message`` which describes the cause of the termination. See
|
811 |
+
`OptimizeResult` for a description of other attributes.
|
812 |
+
|
813 |
+
See also
|
814 |
+
--------
|
815 |
+
minimize : Interface to minimization algorithms for scalar multivariate
|
816 |
+
functions
|
817 |
+
show_options : Additional options accepted by the solvers
|
818 |
+
|
819 |
+
Notes
|
820 |
+
-----
|
821 |
+
This section describes the available solvers that can be selected by the
|
822 |
+
'method' parameter. The default method is the ``"Bounded"`` Brent method if
|
823 |
+
`bounds` are passed and unbounded ``"Brent"`` otherwise.
|
824 |
+
|
825 |
+
Method :ref:`Brent <optimize.minimize_scalar-brent>` uses Brent's
|
826 |
+
algorithm [1]_ to find a local minimum. The algorithm uses inverse
|
827 |
+
parabolic interpolation when possible to speed up convergence of
|
828 |
+
the golden section method.
|
829 |
+
|
830 |
+
Method :ref:`Golden <optimize.minimize_scalar-golden>` uses the
|
831 |
+
golden section search technique [1]_. It uses analog of the bisection
|
832 |
+
method to decrease the bracketed interval. It is usually
|
833 |
+
preferable to use the *Brent* method.
|
834 |
+
|
835 |
+
Method :ref:`Bounded <optimize.minimize_scalar-bounded>` can
|
836 |
+
perform bounded minimization [2]_ [3]_. It uses the Brent method to find a
|
837 |
+
local minimum in the interval x1 < xopt < x2.
|
838 |
+
|
839 |
+
Note that the Brent and Golden methods do not guarantee success unless a
|
840 |
+
valid ``bracket`` triple is provided. If a three-point bracket cannot be
|
841 |
+
found, consider `scipy.optimize.minimize`. Also, all methods are intended
|
842 |
+
only for local minimization. When the function of interest has more than
|
843 |
+
one local minimum, consider :ref:`global_optimization`.
|
844 |
+
|
845 |
+
**Custom minimizers**
|
846 |
+
|
847 |
+
It may be useful to pass a custom minimization method, for example
|
848 |
+
when using some library frontend to minimize_scalar. You can simply
|
849 |
+
pass a callable as the ``method`` parameter.
|
850 |
+
|
851 |
+
The callable is called as ``method(fun, args, **kwargs, **options)``
|
852 |
+
where ``kwargs`` corresponds to any other parameters passed to `minimize`
|
853 |
+
(such as `bracket`, `tol`, etc.), except the `options` dict, which has
|
854 |
+
its contents also passed as `method` parameters pair by pair. The method
|
855 |
+
shall return an `OptimizeResult` object.
|
856 |
+
|
857 |
+
The provided `method` callable must be able to accept (and possibly ignore)
|
858 |
+
arbitrary parameters; the set of parameters accepted by `minimize` may
|
859 |
+
expand in future versions and then these parameters will be passed to
|
860 |
+
the method. You can find an example in the scipy.optimize tutorial.
|
861 |
+
|
862 |
+
.. versionadded:: 0.11.0
|
863 |
+
|
864 |
+
References
|
865 |
+
----------
|
866 |
+
.. [1] Press, W., S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery.
|
867 |
+
Numerical Recipes in C. Cambridge University Press.
|
868 |
+
.. [2] Forsythe, G.E., M. A. Malcolm, and C. B. Moler. "Computer Methods
|
869 |
+
for Mathematical Computations." Prentice-Hall Series in Automatic
|
870 |
+
Computation 259 (1977).
|
871 |
+
.. [3] Brent, Richard P. Algorithms for Minimization Without Derivatives.
|
872 |
+
Courier Corporation, 2013.
|
873 |
+
|
874 |
+
Examples
|
875 |
+
--------
|
876 |
+
Consider the problem of minimizing the following function.
|
877 |
+
|
878 |
+
>>> def f(x):
|
879 |
+
... return (x - 2) * x * (x + 2)**2
|
880 |
+
|
881 |
+
Using the *Brent* method, we find the local minimum as:
|
882 |
+
|
883 |
+
>>> from scipy.optimize import minimize_scalar
|
884 |
+
>>> res = minimize_scalar(f)
|
885 |
+
>>> res.fun
|
886 |
+
-9.9149495908
|
887 |
+
|
888 |
+
The minimizer is:
|
889 |
+
|
890 |
+
>>> res.x
|
891 |
+
1.28077640403
|
892 |
+
|
893 |
+
Using the *Bounded* method, we find a local minimum with specified
|
894 |
+
bounds as:
|
895 |
+
|
896 |
+
>>> res = minimize_scalar(f, bounds=(-3, -1), method='bounded')
|
897 |
+
>>> res.fun # minimum
|
898 |
+
3.28365179850e-13
|
899 |
+
>>> res.x # minimizer
|
900 |
+
-2.0000002026
|
901 |
+
|
902 |
+
"""
|
903 |
+
if not isinstance(args, tuple):
|
904 |
+
args = (args,)
|
905 |
+
|
906 |
+
if callable(method):
|
907 |
+
meth = "_custom"
|
908 |
+
elif method is None:
|
909 |
+
meth = 'brent' if bounds is None else 'bounded'
|
910 |
+
else:
|
911 |
+
meth = method.lower()
|
912 |
+
if options is None:
|
913 |
+
options = {}
|
914 |
+
|
915 |
+
if bounds is not None and meth in {'brent', 'golden'}:
|
916 |
+
message = f"Use of `bounds` is incompatible with 'method={method}'."
|
917 |
+
raise ValueError(message)
|
918 |
+
|
919 |
+
if tol is not None:
|
920 |
+
options = dict(options)
|
921 |
+
if meth == 'bounded' and 'xatol' not in options:
|
922 |
+
warn("Method 'bounded' does not support relative tolerance in x; "
|
923 |
+
"defaulting to absolute tolerance.",
|
924 |
+
RuntimeWarning, stacklevel=2)
|
925 |
+
options['xatol'] = tol
|
926 |
+
elif meth == '_custom':
|
927 |
+
options.setdefault('tol', tol)
|
928 |
+
else:
|
929 |
+
options.setdefault('xtol', tol)
|
930 |
+
|
931 |
+
# replace boolean "disp" option, if specified, by an integer value.
|
932 |
+
disp = options.get('disp')
|
933 |
+
if isinstance(disp, bool):
|
934 |
+
options['disp'] = 2 * int(disp)
|
935 |
+
|
936 |
+
if meth == '_custom':
|
937 |
+
res = method(fun, args=args, bracket=bracket, bounds=bounds, **options)
|
938 |
+
elif meth == 'brent':
|
939 |
+
res = _recover_from_bracket_error(_minimize_scalar_brent,
|
940 |
+
fun, bracket, args, **options)
|
941 |
+
elif meth == 'bounded':
|
942 |
+
if bounds is None:
|
943 |
+
raise ValueError('The `bounds` parameter is mandatory for '
|
944 |
+
'method `bounded`.')
|
945 |
+
res = _minimize_scalar_bounded(fun, bounds, args, **options)
|
946 |
+
elif meth == 'golden':
|
947 |
+
res = _recover_from_bracket_error(_minimize_scalar_golden,
|
948 |
+
fun, bracket, args, **options)
|
949 |
+
else:
|
950 |
+
raise ValueError('Unknown solver %s' % method)
|
951 |
+
|
952 |
+
# gh-16196 reported inconsistencies in the output shape of `res.x`. While
|
953 |
+
# fixing this, future-proof it for when the function is vectorized:
|
954 |
+
# the shape of `res.x` should match that of `res.fun`.
|
955 |
+
res.fun = np.asarray(res.fun)[()]
|
956 |
+
res.x = np.reshape(res.x, res.fun.shape)[()]
|
957 |
+
return res
|
958 |
+
|
959 |
+
|
960 |
+
def _remove_from_bounds(bounds, i_fixed):
|
961 |
+
"""Removes fixed variables from a `Bounds` instance"""
|
962 |
+
lb = bounds.lb[~i_fixed]
|
963 |
+
ub = bounds.ub[~i_fixed]
|
964 |
+
return Bounds(lb, ub) # don't mutate original Bounds object
|
965 |
+
|
966 |
+
|
967 |
+
def _remove_from_func(fun_in, i_fixed, x_fixed, min_dim=None, remove=0):
|
968 |
+
"""Wraps a function such that fixed variables need not be passed in"""
|
969 |
+
def fun_out(x_in, *args, **kwargs):
|
970 |
+
x_out = np.zeros_like(i_fixed, dtype=x_in.dtype)
|
971 |
+
x_out[i_fixed] = x_fixed
|
972 |
+
x_out[~i_fixed] = x_in
|
973 |
+
y_out = fun_in(x_out, *args, **kwargs)
|
974 |
+
y_out = np.array(y_out)
|
975 |
+
|
976 |
+
if min_dim == 1:
|
977 |
+
y_out = np.atleast_1d(y_out)
|
978 |
+
elif min_dim == 2:
|
979 |
+
y_out = np.atleast_2d(y_out)
|
980 |
+
|
981 |
+
if remove == 1:
|
982 |
+
y_out = y_out[..., ~i_fixed]
|
983 |
+
elif remove == 2:
|
984 |
+
y_out = y_out[~i_fixed, ~i_fixed]
|
985 |
+
|
986 |
+
return y_out
|
987 |
+
return fun_out
|
988 |
+
|
989 |
+
|
990 |
+
def _add_to_array(x_in, i_fixed, x_fixed):
|
991 |
+
"""Adds fixed variables back to an array"""
|
992 |
+
i_free = ~i_fixed
|
993 |
+
if x_in.ndim == 2:
|
994 |
+
i_free = i_free[:, None] @ i_free[None, :]
|
995 |
+
x_out = np.zeros_like(i_free, dtype=x_in.dtype)
|
996 |
+
x_out[~i_free] = x_fixed
|
997 |
+
x_out[i_free] = x_in.ravel()
|
998 |
+
return x_out
|
999 |
+
|
1000 |
+
|
1001 |
+
def _validate_bounds(bounds, x0, meth):
|
1002 |
+
"""Check that bounds are valid."""
|
1003 |
+
|
1004 |
+
msg = "An upper bound is less than the corresponding lower bound."
|
1005 |
+
if np.any(bounds.ub < bounds.lb):
|
1006 |
+
raise ValueError(msg)
|
1007 |
+
|
1008 |
+
msg = "The number of bounds is not compatible with the length of `x0`."
|
1009 |
+
try:
|
1010 |
+
bounds.lb = np.broadcast_to(bounds.lb, x0.shape)
|
1011 |
+
bounds.ub = np.broadcast_to(bounds.ub, x0.shape)
|
1012 |
+
except Exception as e:
|
1013 |
+
raise ValueError(msg) from e
|
1014 |
+
|
1015 |
+
return bounds
|
1016 |
+
|
1017 |
+
def standardize_bounds(bounds, x0, meth):
|
1018 |
+
"""Converts bounds to the form required by the solver."""
|
1019 |
+
if meth in {'trust-constr', 'powell', 'nelder-mead', 'cobyla', 'new'}:
|
1020 |
+
if not isinstance(bounds, Bounds):
|
1021 |
+
lb, ub = old_bound_to_new(bounds)
|
1022 |
+
bounds = Bounds(lb, ub)
|
1023 |
+
elif meth in ('l-bfgs-b', 'tnc', 'slsqp', 'old'):
|
1024 |
+
if isinstance(bounds, Bounds):
|
1025 |
+
bounds = new_bounds_to_old(bounds.lb, bounds.ub, x0.shape[0])
|
1026 |
+
return bounds
|
1027 |
+
|
1028 |
+
|
1029 |
+
def standardize_constraints(constraints, x0, meth):
|
1030 |
+
"""Converts constraints to the form required by the solver."""
|
1031 |
+
all_constraint_types = (NonlinearConstraint, LinearConstraint, dict)
|
1032 |
+
new_constraint_types = all_constraint_types[:-1]
|
1033 |
+
if constraints is None:
|
1034 |
+
constraints = []
|
1035 |
+
elif isinstance(constraints, all_constraint_types):
|
1036 |
+
constraints = [constraints]
|
1037 |
+
else:
|
1038 |
+
constraints = list(constraints) # ensure it's a mutable sequence
|
1039 |
+
|
1040 |
+
if meth in ['trust-constr', 'new']:
|
1041 |
+
for i, con in enumerate(constraints):
|
1042 |
+
if not isinstance(con, new_constraint_types):
|
1043 |
+
constraints[i] = old_constraint_to_new(i, con)
|
1044 |
+
else:
|
1045 |
+
# iterate over copy, changing original
|
1046 |
+
for i, con in enumerate(list(constraints)):
|
1047 |
+
if isinstance(con, new_constraint_types):
|
1048 |
+
old_constraints = new_constraint_to_old(con, x0)
|
1049 |
+
constraints[i] = old_constraints[0]
|
1050 |
+
constraints.extend(old_constraints[1:]) # appends 1 if present
|
1051 |
+
|
1052 |
+
return constraints
|
1053 |
+
|
1054 |
+
|
1055 |
+
def _optimize_result_for_equal_bounds(
|
1056 |
+
fun, bounds, method, args=(), constraints=()
|
1057 |
+
):
|
1058 |
+
"""
|
1059 |
+
Provides a default OptimizeResult for when a bounded minimization method
|
1060 |
+
has (lb == ub).all().
|
1061 |
+
|
1062 |
+
Parameters
|
1063 |
+
----------
|
1064 |
+
fun: callable
|
1065 |
+
bounds: Bounds
|
1066 |
+
method: str
|
1067 |
+
constraints: Constraint
|
1068 |
+
"""
|
1069 |
+
success = True
|
1070 |
+
message = 'All independent variables were fixed by bounds.'
|
1071 |
+
|
1072 |
+
# bounds is new-style
|
1073 |
+
x0 = bounds.lb
|
1074 |
+
|
1075 |
+
if constraints:
|
1076 |
+
message = ("All independent variables were fixed by bounds at values"
|
1077 |
+
" that satisfy the constraints.")
|
1078 |
+
constraints = standardize_constraints(constraints, x0, 'new')
|
1079 |
+
|
1080 |
+
maxcv = 0
|
1081 |
+
for c in constraints:
|
1082 |
+
pc = PreparedConstraint(c, x0)
|
1083 |
+
violation = pc.violation(x0)
|
1084 |
+
if np.sum(violation):
|
1085 |
+
maxcv = max(maxcv, np.max(violation))
|
1086 |
+
success = False
|
1087 |
+
message = (f"All independent variables were fixed by bounds, but "
|
1088 |
+
f"the independent variables do not satisfy the "
|
1089 |
+
f"constraints exactly. (Maximum violation: {maxcv}).")
|
1090 |
+
|
1091 |
+
return OptimizeResult(
|
1092 |
+
x=x0, fun=fun(x0, *args), success=success, message=message, nfev=1,
|
1093 |
+
njev=0, nhev=0,
|
1094 |
+
)
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/_minpack.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (78.3 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/_qap.py
ADDED
@@ -0,0 +1,731 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import operator
|
3 |
+
from . import (linear_sum_assignment, OptimizeResult)
|
4 |
+
from ._optimize import _check_unknown_options
|
5 |
+
|
6 |
+
from scipy._lib._util import check_random_state
|
7 |
+
import itertools
|
8 |
+
|
9 |
+
QUADRATIC_ASSIGNMENT_METHODS = ['faq', '2opt']
|
10 |
+
|
11 |
+
def quadratic_assignment(A, B, method="faq", options=None):
|
12 |
+
r"""
|
13 |
+
Approximates solution to the quadratic assignment problem and
|
14 |
+
the graph matching problem.
|
15 |
+
|
16 |
+
Quadratic assignment solves problems of the following form:
|
17 |
+
|
18 |
+
.. math::
|
19 |
+
|
20 |
+
\min_P & \ {\ \text{trace}(A^T P B P^T)}\\
|
21 |
+
\mbox{s.t. } & {P \ \epsilon \ \mathcal{P}}\\
|
22 |
+
|
23 |
+
where :math:`\mathcal{P}` is the set of all permutation matrices,
|
24 |
+
and :math:`A` and :math:`B` are square matrices.
|
25 |
+
|
26 |
+
Graph matching tries to *maximize* the same objective function.
|
27 |
+
This algorithm can be thought of as finding the alignment of the
|
28 |
+
nodes of two graphs that minimizes the number of induced edge
|
29 |
+
disagreements, or, in the case of weighted graphs, the sum of squared
|
30 |
+
edge weight differences.
|
31 |
+
|
32 |
+
Note that the quadratic assignment problem is NP-hard. The results given
|
33 |
+
here are approximations and are not guaranteed to be optimal.
|
34 |
+
|
35 |
+
|
36 |
+
Parameters
|
37 |
+
----------
|
38 |
+
A : 2-D array, square
|
39 |
+
The square matrix :math:`A` in the objective function above.
|
40 |
+
|
41 |
+
B : 2-D array, square
|
42 |
+
The square matrix :math:`B` in the objective function above.
|
43 |
+
|
44 |
+
method : str in {'faq', '2opt'} (default: 'faq')
|
45 |
+
The algorithm used to solve the problem.
|
46 |
+
:ref:`'faq' <optimize.qap-faq>` (default) and
|
47 |
+
:ref:`'2opt' <optimize.qap-2opt>` are available.
|
48 |
+
|
49 |
+
options : dict, optional
|
50 |
+
A dictionary of solver options. All solvers support the following:
|
51 |
+
|
52 |
+
maximize : bool (default: False)
|
53 |
+
Maximizes the objective function if ``True``.
|
54 |
+
|
55 |
+
partial_match : 2-D array of integers, optional (default: None)
|
56 |
+
Fixes part of the matching. Also known as a "seed" [2]_.
|
57 |
+
|
58 |
+
Each row of `partial_match` specifies a pair of matched nodes:
|
59 |
+
node ``partial_match[i, 0]`` of `A` is matched to node
|
60 |
+
``partial_match[i, 1]`` of `B`. The array has shape ``(m, 2)``,
|
61 |
+
where ``m`` is not greater than the number of nodes, :math:`n`.
|
62 |
+
|
63 |
+
rng : {None, int, `numpy.random.Generator`,
|
64 |
+
`numpy.random.RandomState`}, optional
|
65 |
+
|
66 |
+
If `seed` is None (or `np.random`), the `numpy.random.RandomState`
|
67 |
+
singleton is used.
|
68 |
+
If `seed` is an int, a new ``RandomState`` instance is used,
|
69 |
+
seeded with `seed`.
|
70 |
+
If `seed` is already a ``Generator`` or ``RandomState`` instance then
|
71 |
+
that instance is used.
|
72 |
+
|
73 |
+
For method-specific options, see
|
74 |
+
:func:`show_options('quadratic_assignment') <show_options>`.
|
75 |
+
|
76 |
+
Returns
|
77 |
+
-------
|
78 |
+
res : OptimizeResult
|
79 |
+
`OptimizeResult` containing the following fields.
|
80 |
+
|
81 |
+
col_ind : 1-D array
|
82 |
+
Column indices corresponding to the best permutation found of the
|
83 |
+
nodes of `B`.
|
84 |
+
fun : float
|
85 |
+
The objective value of the solution.
|
86 |
+
nit : int
|
87 |
+
The number of iterations performed during optimization.
|
88 |
+
|
89 |
+
Notes
|
90 |
+
-----
|
91 |
+
The default method :ref:`'faq' <optimize.qap-faq>` uses the Fast
|
92 |
+
Approximate QAP algorithm [1]_; it typically offers the best combination of
|
93 |
+
speed and accuracy.
|
94 |
+
Method :ref:`'2opt' <optimize.qap-2opt>` can be computationally expensive,
|
95 |
+
but may be a useful alternative, or it can be used to refine the solution
|
96 |
+
returned by another method.
|
97 |
+
|
98 |
+
References
|
99 |
+
----------
|
100 |
+
.. [1] J.T. Vogelstein, J.M. Conroy, V. Lyzinski, L.J. Podrazik,
|
101 |
+
S.G. Kratzer, E.T. Harley, D.E. Fishkind, R.J. Vogelstein, and
|
102 |
+
C.E. Priebe, "Fast approximate quadratic programming for graph
|
103 |
+
matching," PLOS one, vol. 10, no. 4, p. e0121002, 2015,
|
104 |
+
:doi:`10.1371/journal.pone.0121002`
|
105 |
+
|
106 |
+
.. [2] D. Fishkind, S. Adali, H. Patsolic, L. Meng, D. Singh, V. Lyzinski,
|
107 |
+
C. Priebe, "Seeded graph matching", Pattern Recognit. 87 (2019):
|
108 |
+
203-215, :doi:`10.1016/j.patcog.2018.09.014`
|
109 |
+
|
110 |
+
.. [3] "2-opt," Wikipedia.
|
111 |
+
https://en.wikipedia.org/wiki/2-opt
|
112 |
+
|
113 |
+
Examples
|
114 |
+
--------
|
115 |
+
>>> import numpy as np
|
116 |
+
>>> from scipy.optimize import quadratic_assignment
|
117 |
+
>>> A = np.array([[0, 80, 150, 170], [80, 0, 130, 100],
|
118 |
+
... [150, 130, 0, 120], [170, 100, 120, 0]])
|
119 |
+
>>> B = np.array([[0, 5, 2, 7], [0, 0, 3, 8],
|
120 |
+
... [0, 0, 0, 3], [0, 0, 0, 0]])
|
121 |
+
>>> res = quadratic_assignment(A, B)
|
122 |
+
>>> print(res)
|
123 |
+
fun: 3260
|
124 |
+
col_ind: [0 3 2 1]
|
125 |
+
nit: 9
|
126 |
+
|
127 |
+
The see the relationship between the returned ``col_ind`` and ``fun``,
|
128 |
+
use ``col_ind`` to form the best permutation matrix found, then evaluate
|
129 |
+
the objective function :math:`f(P) = trace(A^T P B P^T )`.
|
130 |
+
|
131 |
+
>>> perm = res['col_ind']
|
132 |
+
>>> P = np.eye(len(A), dtype=int)[perm]
|
133 |
+
>>> fun = np.trace(A.T @ P @ B @ P.T)
|
134 |
+
>>> print(fun)
|
135 |
+
3260
|
136 |
+
|
137 |
+
Alternatively, to avoid constructing the permutation matrix explicitly,
|
138 |
+
directly permute the rows and columns of the distance matrix.
|
139 |
+
|
140 |
+
>>> fun = np.trace(A.T @ B[perm][:, perm])
|
141 |
+
>>> print(fun)
|
142 |
+
3260
|
143 |
+
|
144 |
+
Although not guaranteed in general, ``quadratic_assignment`` happens to
|
145 |
+
have found the globally optimal solution.
|
146 |
+
|
147 |
+
>>> from itertools import permutations
|
148 |
+
>>> perm_opt, fun_opt = None, np.inf
|
149 |
+
>>> for perm in permutations([0, 1, 2, 3]):
|
150 |
+
... perm = np.array(perm)
|
151 |
+
... fun = np.trace(A.T @ B[perm][:, perm])
|
152 |
+
... if fun < fun_opt:
|
153 |
+
... fun_opt, perm_opt = fun, perm
|
154 |
+
>>> print(np.array_equal(perm_opt, res['col_ind']))
|
155 |
+
True
|
156 |
+
|
157 |
+
Here is an example for which the default method,
|
158 |
+
:ref:`'faq' <optimize.qap-faq>`, does not find the global optimum.
|
159 |
+
|
160 |
+
>>> A = np.array([[0, 5, 8, 6], [5, 0, 5, 1],
|
161 |
+
... [8, 5, 0, 2], [6, 1, 2, 0]])
|
162 |
+
>>> B = np.array([[0, 1, 8, 4], [1, 0, 5, 2],
|
163 |
+
... [8, 5, 0, 5], [4, 2, 5, 0]])
|
164 |
+
>>> res = quadratic_assignment(A, B)
|
165 |
+
>>> print(res)
|
166 |
+
fun: 178
|
167 |
+
col_ind: [1 0 3 2]
|
168 |
+
nit: 13
|
169 |
+
|
170 |
+
If accuracy is important, consider using :ref:`'2opt' <optimize.qap-2opt>`
|
171 |
+
to refine the solution.
|
172 |
+
|
173 |
+
>>> guess = np.array([np.arange(len(A)), res.col_ind]).T
|
174 |
+
>>> res = quadratic_assignment(A, B, method="2opt",
|
175 |
+
... options = {'partial_guess': guess})
|
176 |
+
>>> print(res)
|
177 |
+
fun: 176
|
178 |
+
col_ind: [1 2 3 0]
|
179 |
+
nit: 17
|
180 |
+
|
181 |
+
"""
|
182 |
+
|
183 |
+
if options is None:
|
184 |
+
options = {}
|
185 |
+
|
186 |
+
method = method.lower()
|
187 |
+
methods = {"faq": _quadratic_assignment_faq,
|
188 |
+
"2opt": _quadratic_assignment_2opt}
|
189 |
+
if method not in methods:
|
190 |
+
raise ValueError(f"method {method} must be in {methods}.")
|
191 |
+
res = methods[method](A, B, **options)
|
192 |
+
return res
|
193 |
+
|
194 |
+
|
195 |
+
def _calc_score(A, B, perm):
|
196 |
+
# equivalent to objective function but avoids matmul
|
197 |
+
return np.sum(A * B[perm][:, perm])
|
198 |
+
|
199 |
+
|
200 |
+
def _common_input_validation(A, B, partial_match):
|
201 |
+
A = np.atleast_2d(A)
|
202 |
+
B = np.atleast_2d(B)
|
203 |
+
|
204 |
+
if partial_match is None:
|
205 |
+
partial_match = np.array([[], []]).T
|
206 |
+
partial_match = np.atleast_2d(partial_match).astype(int)
|
207 |
+
|
208 |
+
msg = None
|
209 |
+
if A.shape[0] != A.shape[1]:
|
210 |
+
msg = "`A` must be square"
|
211 |
+
elif B.shape[0] != B.shape[1]:
|
212 |
+
msg = "`B` must be square"
|
213 |
+
elif A.ndim != 2 or B.ndim != 2:
|
214 |
+
msg = "`A` and `B` must have exactly two dimensions"
|
215 |
+
elif A.shape != B.shape:
|
216 |
+
msg = "`A` and `B` matrices must be of equal size"
|
217 |
+
elif partial_match.shape[0] > A.shape[0]:
|
218 |
+
msg = "`partial_match` can have only as many seeds as there are nodes"
|
219 |
+
elif partial_match.shape[1] != 2:
|
220 |
+
msg = "`partial_match` must have two columns"
|
221 |
+
elif partial_match.ndim != 2:
|
222 |
+
msg = "`partial_match` must have exactly two dimensions"
|
223 |
+
elif (partial_match < 0).any():
|
224 |
+
msg = "`partial_match` must contain only positive indices"
|
225 |
+
elif (partial_match >= len(A)).any():
|
226 |
+
msg = "`partial_match` entries must be less than number of nodes"
|
227 |
+
elif (not len(set(partial_match[:, 0])) == len(partial_match[:, 0]) or
|
228 |
+
not len(set(partial_match[:, 1])) == len(partial_match[:, 1])):
|
229 |
+
msg = "`partial_match` column entries must be unique"
|
230 |
+
|
231 |
+
if msg is not None:
|
232 |
+
raise ValueError(msg)
|
233 |
+
|
234 |
+
return A, B, partial_match
|
235 |
+
|
236 |
+
|
237 |
+
def _quadratic_assignment_faq(A, B,
|
238 |
+
maximize=False, partial_match=None, rng=None,
|
239 |
+
P0="barycenter", shuffle_input=False, maxiter=30,
|
240 |
+
tol=0.03, **unknown_options):
|
241 |
+
r"""Solve the quadratic assignment problem (approximately).
|
242 |
+
|
243 |
+
This function solves the Quadratic Assignment Problem (QAP) and the
|
244 |
+
Graph Matching Problem (GMP) using the Fast Approximate QAP Algorithm
|
245 |
+
(FAQ) [1]_.
|
246 |
+
|
247 |
+
Quadratic assignment solves problems of the following form:
|
248 |
+
|
249 |
+
.. math::
|
250 |
+
|
251 |
+
\min_P & \ {\ \text{trace}(A^T P B P^T)}\\
|
252 |
+
\mbox{s.t. } & {P \ \epsilon \ \mathcal{P}}\\
|
253 |
+
|
254 |
+
where :math:`\mathcal{P}` is the set of all permutation matrices,
|
255 |
+
and :math:`A` and :math:`B` are square matrices.
|
256 |
+
|
257 |
+
Graph matching tries to *maximize* the same objective function.
|
258 |
+
This algorithm can be thought of as finding the alignment of the
|
259 |
+
nodes of two graphs that minimizes the number of induced edge
|
260 |
+
disagreements, or, in the case of weighted graphs, the sum of squared
|
261 |
+
edge weight differences.
|
262 |
+
|
263 |
+
Note that the quadratic assignment problem is NP-hard. The results given
|
264 |
+
here are approximations and are not guaranteed to be optimal.
|
265 |
+
|
266 |
+
Parameters
|
267 |
+
----------
|
268 |
+
A : 2-D array, square
|
269 |
+
The square matrix :math:`A` in the objective function above.
|
270 |
+
B : 2-D array, square
|
271 |
+
The square matrix :math:`B` in the objective function above.
|
272 |
+
method : str in {'faq', '2opt'} (default: 'faq')
|
273 |
+
The algorithm used to solve the problem. This is the method-specific
|
274 |
+
documentation for 'faq'.
|
275 |
+
:ref:`'2opt' <optimize.qap-2opt>` is also available.
|
276 |
+
|
277 |
+
Options
|
278 |
+
-------
|
279 |
+
maximize : bool (default: False)
|
280 |
+
Maximizes the objective function if ``True``.
|
281 |
+
partial_match : 2-D array of integers, optional (default: None)
|
282 |
+
Fixes part of the matching. Also known as a "seed" [2]_.
|
283 |
+
|
284 |
+
Each row of `partial_match` specifies a pair of matched nodes:
|
285 |
+
node ``partial_match[i, 0]`` of `A` is matched to node
|
286 |
+
``partial_match[i, 1]`` of `B`. The array has shape ``(m, 2)``, where
|
287 |
+
``m`` is not greater than the number of nodes, :math:`n`.
|
288 |
+
|
289 |
+
rng : {None, int, `numpy.random.Generator`,
|
290 |
+
`numpy.random.RandomState`}, optional
|
291 |
+
|
292 |
+
If `seed` is None (or `np.random`), the `numpy.random.RandomState`
|
293 |
+
singleton is used.
|
294 |
+
If `seed` is an int, a new ``RandomState`` instance is used,
|
295 |
+
seeded with `seed`.
|
296 |
+
If `seed` is already a ``Generator`` or ``RandomState`` instance then
|
297 |
+
that instance is used.
|
298 |
+
P0 : 2-D array, "barycenter", or "randomized" (default: "barycenter")
|
299 |
+
Initial position. Must be a doubly-stochastic matrix [3]_.
|
300 |
+
|
301 |
+
If the initial position is an array, it must be a doubly stochastic
|
302 |
+
matrix of size :math:`m' \times m'` where :math:`m' = n - m`.
|
303 |
+
|
304 |
+
If ``"barycenter"`` (default), the initial position is the barycenter
|
305 |
+
of the Birkhoff polytope (the space of doubly stochastic matrices).
|
306 |
+
This is a :math:`m' \times m'` matrix with all entries equal to
|
307 |
+
:math:`1 / m'`.
|
308 |
+
|
309 |
+
If ``"randomized"`` the initial search position is
|
310 |
+
:math:`P_0 = (J + K) / 2`, where :math:`J` is the barycenter and
|
311 |
+
:math:`K` is a random doubly stochastic matrix.
|
312 |
+
shuffle_input : bool (default: False)
|
313 |
+
Set to `True` to resolve degenerate gradients randomly. For
|
314 |
+
non-degenerate gradients this option has no effect.
|
315 |
+
maxiter : int, positive (default: 30)
|
316 |
+
Integer specifying the max number of Frank-Wolfe iterations performed.
|
317 |
+
tol : float (default: 0.03)
|
318 |
+
Tolerance for termination. Frank-Wolfe iteration terminates when
|
319 |
+
:math:`\frac{||P_{i}-P_{i+1}||_F}{\sqrt{m')}} \leq tol`,
|
320 |
+
where :math:`i` is the iteration number.
|
321 |
+
|
322 |
+
Returns
|
323 |
+
-------
|
324 |
+
res : OptimizeResult
|
325 |
+
`OptimizeResult` containing the following fields.
|
326 |
+
|
327 |
+
col_ind : 1-D array
|
328 |
+
Column indices corresponding to the best permutation found of the
|
329 |
+
nodes of `B`.
|
330 |
+
fun : float
|
331 |
+
The objective value of the solution.
|
332 |
+
nit : int
|
333 |
+
The number of Frank-Wolfe iterations performed.
|
334 |
+
|
335 |
+
Notes
|
336 |
+
-----
|
337 |
+
The algorithm may be sensitive to the initial permutation matrix (or
|
338 |
+
search "position") due to the possibility of several local minima
|
339 |
+
within the feasible region. A barycenter initialization is more likely to
|
340 |
+
result in a better solution than a single random initialization. However,
|
341 |
+
calling ``quadratic_assignment`` several times with different random
|
342 |
+
initializations may result in a better optimum at the cost of longer
|
343 |
+
total execution time.
|
344 |
+
|
345 |
+
Examples
|
346 |
+
--------
|
347 |
+
As mentioned above, a barycenter initialization often results in a better
|
348 |
+
solution than a single random initialization.
|
349 |
+
|
350 |
+
>>> from numpy.random import default_rng
|
351 |
+
>>> rng = default_rng()
|
352 |
+
>>> n = 15
|
353 |
+
>>> A = rng.random((n, n))
|
354 |
+
>>> B = rng.random((n, n))
|
355 |
+
>>> res = quadratic_assignment(A, B) # FAQ is default method
|
356 |
+
>>> print(res.fun)
|
357 |
+
46.871483385480545 # may vary
|
358 |
+
|
359 |
+
>>> options = {"P0": "randomized"} # use randomized initialization
|
360 |
+
>>> res = quadratic_assignment(A, B, options=options)
|
361 |
+
>>> print(res.fun)
|
362 |
+
47.224831071310625 # may vary
|
363 |
+
|
364 |
+
However, consider running from several randomized initializations and
|
365 |
+
keeping the best result.
|
366 |
+
|
367 |
+
>>> res = min([quadratic_assignment(A, B, options=options)
|
368 |
+
... for i in range(30)], key=lambda x: x.fun)
|
369 |
+
>>> print(res.fun)
|
370 |
+
46.671852533681516 # may vary
|
371 |
+
|
372 |
+
The '2-opt' method can be used to further refine the results.
|
373 |
+
|
374 |
+
>>> options = {"partial_guess": np.array([np.arange(n), res.col_ind]).T}
|
375 |
+
>>> res = quadratic_assignment(A, B, method="2opt", options=options)
|
376 |
+
>>> print(res.fun)
|
377 |
+
46.47160735721583 # may vary
|
378 |
+
|
379 |
+
References
|
380 |
+
----------
|
381 |
+
.. [1] J.T. Vogelstein, J.M. Conroy, V. Lyzinski, L.J. Podrazik,
|
382 |
+
S.G. Kratzer, E.T. Harley, D.E. Fishkind, R.J. Vogelstein, and
|
383 |
+
C.E. Priebe, "Fast approximate quadratic programming for graph
|
384 |
+
matching," PLOS one, vol. 10, no. 4, p. e0121002, 2015,
|
385 |
+
:doi:`10.1371/journal.pone.0121002`
|
386 |
+
|
387 |
+
.. [2] D. Fishkind, S. Adali, H. Patsolic, L. Meng, D. Singh, V. Lyzinski,
|
388 |
+
C. Priebe, "Seeded graph matching", Pattern Recognit. 87 (2019):
|
389 |
+
203-215, :doi:`10.1016/j.patcog.2018.09.014`
|
390 |
+
|
391 |
+
.. [3] "Doubly stochastic Matrix," Wikipedia.
|
392 |
+
https://en.wikipedia.org/wiki/Doubly_stochastic_matrix
|
393 |
+
|
394 |
+
"""
|
395 |
+
|
396 |
+
_check_unknown_options(unknown_options)
|
397 |
+
|
398 |
+
maxiter = operator.index(maxiter)
|
399 |
+
|
400 |
+
# ValueError check
|
401 |
+
A, B, partial_match = _common_input_validation(A, B, partial_match)
|
402 |
+
|
403 |
+
msg = None
|
404 |
+
if isinstance(P0, str) and P0 not in {'barycenter', 'randomized'}:
|
405 |
+
msg = "Invalid 'P0' parameter string"
|
406 |
+
elif maxiter <= 0:
|
407 |
+
msg = "'maxiter' must be a positive integer"
|
408 |
+
elif tol <= 0:
|
409 |
+
msg = "'tol' must be a positive float"
|
410 |
+
if msg is not None:
|
411 |
+
raise ValueError(msg)
|
412 |
+
|
413 |
+
rng = check_random_state(rng)
|
414 |
+
n = len(A) # number of vertices in graphs
|
415 |
+
n_seeds = len(partial_match) # number of seeds
|
416 |
+
n_unseed = n - n_seeds
|
417 |
+
|
418 |
+
# [1] Algorithm 1 Line 1 - choose initialization
|
419 |
+
if not isinstance(P0, str):
|
420 |
+
P0 = np.atleast_2d(P0)
|
421 |
+
if P0.shape != (n_unseed, n_unseed):
|
422 |
+
msg = "`P0` matrix must have shape m' x m', where m'=n-m"
|
423 |
+
elif ((P0 < 0).any() or not np.allclose(np.sum(P0, axis=0), 1)
|
424 |
+
or not np.allclose(np.sum(P0, axis=1), 1)):
|
425 |
+
msg = "`P0` matrix must be doubly stochastic"
|
426 |
+
if msg is not None:
|
427 |
+
raise ValueError(msg)
|
428 |
+
elif P0 == 'barycenter':
|
429 |
+
P0 = np.ones((n_unseed, n_unseed)) / n_unseed
|
430 |
+
elif P0 == 'randomized':
|
431 |
+
J = np.ones((n_unseed, n_unseed)) / n_unseed
|
432 |
+
# generate a nxn matrix where each entry is a random number [0, 1]
|
433 |
+
# would use rand, but Generators don't have it
|
434 |
+
# would use random, but old mtrand.RandomStates don't have it
|
435 |
+
K = _doubly_stochastic(rng.uniform(size=(n_unseed, n_unseed)))
|
436 |
+
P0 = (J + K) / 2
|
437 |
+
|
438 |
+
# check trivial cases
|
439 |
+
if n == 0 or n_seeds == n:
|
440 |
+
score = _calc_score(A, B, partial_match[:, 1])
|
441 |
+
res = {"col_ind": partial_match[:, 1], "fun": score, "nit": 0}
|
442 |
+
return OptimizeResult(res)
|
443 |
+
|
444 |
+
obj_func_scalar = 1
|
445 |
+
if maximize:
|
446 |
+
obj_func_scalar = -1
|
447 |
+
|
448 |
+
nonseed_B = np.setdiff1d(range(n), partial_match[:, 1])
|
449 |
+
if shuffle_input:
|
450 |
+
nonseed_B = rng.permutation(nonseed_B)
|
451 |
+
|
452 |
+
nonseed_A = np.setdiff1d(range(n), partial_match[:, 0])
|
453 |
+
perm_A = np.concatenate([partial_match[:, 0], nonseed_A])
|
454 |
+
perm_B = np.concatenate([partial_match[:, 1], nonseed_B])
|
455 |
+
|
456 |
+
# definitions according to Seeded Graph Matching [2].
|
457 |
+
A11, A12, A21, A22 = _split_matrix(A[perm_A][:, perm_A], n_seeds)
|
458 |
+
B11, B12, B21, B22 = _split_matrix(B[perm_B][:, perm_B], n_seeds)
|
459 |
+
const_sum = A21 @ B21.T + A12.T @ B12
|
460 |
+
|
461 |
+
P = P0
|
462 |
+
# [1] Algorithm 1 Line 2 - loop while stopping criteria not met
|
463 |
+
for n_iter in range(1, maxiter+1):
|
464 |
+
# [1] Algorithm 1 Line 3 - compute the gradient of f(P) = -tr(APB^tP^t)
|
465 |
+
grad_fp = (const_sum + A22 @ P @ B22.T + A22.T @ P @ B22)
|
466 |
+
# [1] Algorithm 1 Line 4 - get direction Q by solving Eq. 8
|
467 |
+
_, cols = linear_sum_assignment(grad_fp, maximize=maximize)
|
468 |
+
Q = np.eye(n_unseed)[cols]
|
469 |
+
|
470 |
+
# [1] Algorithm 1 Line 5 - compute the step size
|
471 |
+
# Noting that e.g. trace(Ax) = trace(A)*x, expand and re-collect
|
472 |
+
# terms as ax**2 + bx + c. c does not affect location of minimum
|
473 |
+
# and can be ignored. Also, note that trace(A@B) = (A.T*B).sum();
|
474 |
+
# apply where possible for efficiency.
|
475 |
+
R = P - Q
|
476 |
+
b21 = ((R.T @ A21) * B21).sum()
|
477 |
+
b12 = ((R.T @ A12.T) * B12.T).sum()
|
478 |
+
AR22 = A22.T @ R
|
479 |
+
BR22 = B22 @ R.T
|
480 |
+
b22a = (AR22 * B22.T[cols]).sum()
|
481 |
+
b22b = (A22 * BR22[cols]).sum()
|
482 |
+
a = (AR22.T * BR22).sum()
|
483 |
+
b = b21 + b12 + b22a + b22b
|
484 |
+
# critical point of ax^2 + bx + c is at x = -d/(2*e)
|
485 |
+
# if a * obj_func_scalar > 0, it is a minimum
|
486 |
+
# if minimum is not in [0, 1], only endpoints need to be considered
|
487 |
+
if a*obj_func_scalar > 0 and 0 <= -b/(2*a) <= 1:
|
488 |
+
alpha = -b/(2*a)
|
489 |
+
else:
|
490 |
+
alpha = np.argmin([0, (b + a)*obj_func_scalar])
|
491 |
+
|
492 |
+
# [1] Algorithm 1 Line 6 - Update P
|
493 |
+
P_i1 = alpha * P + (1 - alpha) * Q
|
494 |
+
if np.linalg.norm(P - P_i1) / np.sqrt(n_unseed) < tol:
|
495 |
+
P = P_i1
|
496 |
+
break
|
497 |
+
P = P_i1
|
498 |
+
# [1] Algorithm 1 Line 7 - end main loop
|
499 |
+
|
500 |
+
# [1] Algorithm 1 Line 8 - project onto the set of permutation matrices
|
501 |
+
_, col = linear_sum_assignment(P, maximize=True)
|
502 |
+
perm = np.concatenate((np.arange(n_seeds), col + n_seeds))
|
503 |
+
|
504 |
+
unshuffled_perm = np.zeros(n, dtype=int)
|
505 |
+
unshuffled_perm[perm_A] = perm_B[perm]
|
506 |
+
|
507 |
+
score = _calc_score(A, B, unshuffled_perm)
|
508 |
+
res = {"col_ind": unshuffled_perm, "fun": score, "nit": n_iter}
|
509 |
+
return OptimizeResult(res)
|
510 |
+
|
511 |
+
|
512 |
+
def _split_matrix(X, n):
|
513 |
+
# definitions according to Seeded Graph Matching [2].
|
514 |
+
upper, lower = X[:n], X[n:]
|
515 |
+
return upper[:, :n], upper[:, n:], lower[:, :n], lower[:, n:]
|
516 |
+
|
517 |
+
|
518 |
+
def _doubly_stochastic(P, tol=1e-3):
|
519 |
+
# Adapted from @btaba implementation
|
520 |
+
# https://github.com/btaba/sinkhorn_knopp
|
521 |
+
# of Sinkhorn-Knopp algorithm
|
522 |
+
# https://projecteuclid.org/euclid.pjm/1102992505
|
523 |
+
|
524 |
+
max_iter = 1000
|
525 |
+
c = 1 / P.sum(axis=0)
|
526 |
+
r = 1 / (P @ c)
|
527 |
+
P_eps = P
|
528 |
+
|
529 |
+
for it in range(max_iter):
|
530 |
+
if ((np.abs(P_eps.sum(axis=1) - 1) < tol).all() and
|
531 |
+
(np.abs(P_eps.sum(axis=0) - 1) < tol).all()):
|
532 |
+
# All column/row sums ~= 1 within threshold
|
533 |
+
break
|
534 |
+
|
535 |
+
c = 1 / (r @ P)
|
536 |
+
r = 1 / (P @ c)
|
537 |
+
P_eps = r[:, None] * P * c
|
538 |
+
|
539 |
+
return P_eps
|
540 |
+
|
541 |
+
|
542 |
+
def _quadratic_assignment_2opt(A, B, maximize=False, rng=None,
|
543 |
+
partial_match=None,
|
544 |
+
partial_guess=None,
|
545 |
+
**unknown_options):
|
546 |
+
r"""Solve the quadratic assignment problem (approximately).
|
547 |
+
|
548 |
+
This function solves the Quadratic Assignment Problem (QAP) and the
|
549 |
+
Graph Matching Problem (GMP) using the 2-opt algorithm [1]_.
|
550 |
+
|
551 |
+
Quadratic assignment solves problems of the following form:
|
552 |
+
|
553 |
+
.. math::
|
554 |
+
|
555 |
+
\min_P & \ {\ \text{trace}(A^T P B P^T)}\\
|
556 |
+
\mbox{s.t. } & {P \ \epsilon \ \mathcal{P}}\\
|
557 |
+
|
558 |
+
where :math:`\mathcal{P}` is the set of all permutation matrices,
|
559 |
+
and :math:`A` and :math:`B` are square matrices.
|
560 |
+
|
561 |
+
Graph matching tries to *maximize* the same objective function.
|
562 |
+
This algorithm can be thought of as finding the alignment of the
|
563 |
+
nodes of two graphs that minimizes the number of induced edge
|
564 |
+
disagreements, or, in the case of weighted graphs, the sum of squared
|
565 |
+
edge weight differences.
|
566 |
+
|
567 |
+
Note that the quadratic assignment problem is NP-hard. The results given
|
568 |
+
here are approximations and are not guaranteed to be optimal.
|
569 |
+
|
570 |
+
Parameters
|
571 |
+
----------
|
572 |
+
A : 2-D array, square
|
573 |
+
The square matrix :math:`A` in the objective function above.
|
574 |
+
B : 2-D array, square
|
575 |
+
The square matrix :math:`B` in the objective function above.
|
576 |
+
method : str in {'faq', '2opt'} (default: 'faq')
|
577 |
+
The algorithm used to solve the problem. This is the method-specific
|
578 |
+
documentation for '2opt'.
|
579 |
+
:ref:`'faq' <optimize.qap-faq>` is also available.
|
580 |
+
|
581 |
+
Options
|
582 |
+
-------
|
583 |
+
maximize : bool (default: False)
|
584 |
+
Maximizes the objective function if ``True``.
|
585 |
+
rng : {None, int, `numpy.random.Generator`,
|
586 |
+
`numpy.random.RandomState`}, optional
|
587 |
+
|
588 |
+
If `seed` is None (or `np.random`), the `numpy.random.RandomState`
|
589 |
+
singleton is used.
|
590 |
+
If `seed` is an int, a new ``RandomState`` instance is used,
|
591 |
+
seeded with `seed`.
|
592 |
+
If `seed` is already a ``Generator`` or ``RandomState`` instance then
|
593 |
+
that instance is used.
|
594 |
+
partial_match : 2-D array of integers, optional (default: None)
|
595 |
+
Fixes part of the matching. Also known as a "seed" [2]_.
|
596 |
+
|
597 |
+
Each row of `partial_match` specifies a pair of matched nodes: node
|
598 |
+
``partial_match[i, 0]`` of `A` is matched to node
|
599 |
+
``partial_match[i, 1]`` of `B`. The array has shape ``(m, 2)``,
|
600 |
+
where ``m`` is not greater than the number of nodes, :math:`n`.
|
601 |
+
|
602 |
+
.. note::
|
603 |
+
`partial_match` must be sorted by the first column.
|
604 |
+
|
605 |
+
partial_guess : 2-D array of integers, optional (default: None)
|
606 |
+
A guess for the matching between the two matrices. Unlike
|
607 |
+
`partial_match`, `partial_guess` does not fix the indices; they are
|
608 |
+
still free to be optimized.
|
609 |
+
|
610 |
+
Each row of `partial_guess` specifies a pair of matched nodes: node
|
611 |
+
``partial_guess[i, 0]`` of `A` is matched to node
|
612 |
+
``partial_guess[i, 1]`` of `B`. The array has shape ``(m, 2)``,
|
613 |
+
where ``m`` is not greater than the number of nodes, :math:`n`.
|
614 |
+
|
615 |
+
.. note::
|
616 |
+
`partial_guess` must be sorted by the first column.
|
617 |
+
|
618 |
+
Returns
|
619 |
+
-------
|
620 |
+
res : OptimizeResult
|
621 |
+
`OptimizeResult` containing the following fields.
|
622 |
+
|
623 |
+
col_ind : 1-D array
|
624 |
+
Column indices corresponding to the best permutation found of the
|
625 |
+
nodes of `B`.
|
626 |
+
fun : float
|
627 |
+
The objective value of the solution.
|
628 |
+
nit : int
|
629 |
+
The number of iterations performed during optimization.
|
630 |
+
|
631 |
+
Notes
|
632 |
+
-----
|
633 |
+
This is a greedy algorithm that works similarly to bubble sort: beginning
|
634 |
+
with an initial permutation, it iteratively swaps pairs of indices to
|
635 |
+
improve the objective function until no such improvements are possible.
|
636 |
+
|
637 |
+
References
|
638 |
+
----------
|
639 |
+
.. [1] "2-opt," Wikipedia.
|
640 |
+
https://en.wikipedia.org/wiki/2-opt
|
641 |
+
|
642 |
+
.. [2] D. Fishkind, S. Adali, H. Patsolic, L. Meng, D. Singh, V. Lyzinski,
|
643 |
+
C. Priebe, "Seeded graph matching", Pattern Recognit. 87 (2019):
|
644 |
+
203-215, https://doi.org/10.1016/j.patcog.2018.09.014
|
645 |
+
|
646 |
+
"""
|
647 |
+
_check_unknown_options(unknown_options)
|
648 |
+
rng = check_random_state(rng)
|
649 |
+
A, B, partial_match = _common_input_validation(A, B, partial_match)
|
650 |
+
|
651 |
+
N = len(A)
|
652 |
+
# check trivial cases
|
653 |
+
if N == 0 or partial_match.shape[0] == N:
|
654 |
+
score = _calc_score(A, B, partial_match[:, 1])
|
655 |
+
res = {"col_ind": partial_match[:, 1], "fun": score, "nit": 0}
|
656 |
+
return OptimizeResult(res)
|
657 |
+
|
658 |
+
if partial_guess is None:
|
659 |
+
partial_guess = np.array([[], []]).T
|
660 |
+
partial_guess = np.atleast_2d(partial_guess).astype(int)
|
661 |
+
|
662 |
+
msg = None
|
663 |
+
if partial_guess.shape[0] > A.shape[0]:
|
664 |
+
msg = ("`partial_guess` can have only as "
|
665 |
+
"many entries as there are nodes")
|
666 |
+
elif partial_guess.shape[1] != 2:
|
667 |
+
msg = "`partial_guess` must have two columns"
|
668 |
+
elif partial_guess.ndim != 2:
|
669 |
+
msg = "`partial_guess` must have exactly two dimensions"
|
670 |
+
elif (partial_guess < 0).any():
|
671 |
+
msg = "`partial_guess` must contain only positive indices"
|
672 |
+
elif (partial_guess >= len(A)).any():
|
673 |
+
msg = "`partial_guess` entries must be less than number of nodes"
|
674 |
+
elif (not len(set(partial_guess[:, 0])) == len(partial_guess[:, 0]) or
|
675 |
+
not len(set(partial_guess[:, 1])) == len(partial_guess[:, 1])):
|
676 |
+
msg = "`partial_guess` column entries must be unique"
|
677 |
+
if msg is not None:
|
678 |
+
raise ValueError(msg)
|
679 |
+
|
680 |
+
fixed_rows = None
|
681 |
+
if partial_match.size or partial_guess.size:
|
682 |
+
# use partial_match and partial_guess for initial permutation,
|
683 |
+
# but randomly permute the rest.
|
684 |
+
guess_rows = np.zeros(N, dtype=bool)
|
685 |
+
guess_cols = np.zeros(N, dtype=bool)
|
686 |
+
fixed_rows = np.zeros(N, dtype=bool)
|
687 |
+
fixed_cols = np.zeros(N, dtype=bool)
|
688 |
+
perm = np.zeros(N, dtype=int)
|
689 |
+
|
690 |
+
rg, cg = partial_guess.T
|
691 |
+
guess_rows[rg] = True
|
692 |
+
guess_cols[cg] = True
|
693 |
+
perm[guess_rows] = cg
|
694 |
+
|
695 |
+
# match overrides guess
|
696 |
+
rf, cf = partial_match.T
|
697 |
+
fixed_rows[rf] = True
|
698 |
+
fixed_cols[cf] = True
|
699 |
+
perm[fixed_rows] = cf
|
700 |
+
|
701 |
+
random_rows = ~fixed_rows & ~guess_rows
|
702 |
+
random_cols = ~fixed_cols & ~guess_cols
|
703 |
+
perm[random_rows] = rng.permutation(np.arange(N)[random_cols])
|
704 |
+
else:
|
705 |
+
perm = rng.permutation(np.arange(N))
|
706 |
+
|
707 |
+
best_score = _calc_score(A, B, perm)
|
708 |
+
|
709 |
+
i_free = np.arange(N)
|
710 |
+
if fixed_rows is not None:
|
711 |
+
i_free = i_free[~fixed_rows]
|
712 |
+
|
713 |
+
better = operator.gt if maximize else operator.lt
|
714 |
+
n_iter = 0
|
715 |
+
done = False
|
716 |
+
while not done:
|
717 |
+
# equivalent to nested for loops i in range(N), j in range(i, N)
|
718 |
+
for i, j in itertools.combinations_with_replacement(i_free, 2):
|
719 |
+
n_iter += 1
|
720 |
+
perm[i], perm[j] = perm[j], perm[i]
|
721 |
+
score = _calc_score(A, B, perm)
|
722 |
+
if better(score, best_score):
|
723 |
+
best_score = score
|
724 |
+
break
|
725 |
+
# faster to swap back than to create a new list every time
|
726 |
+
perm[i], perm[j] = perm[j], perm[i]
|
727 |
+
else: # no swaps made
|
728 |
+
done = True
|
729 |
+
|
730 |
+
res = {"col_ind": perm, "fun": best_score, "nit": n_iter}
|
731 |
+
return OptimizeResult(res)
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/_slsqp.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (86.6 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/_trustregion_krylov.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ._trustregion import (_minimize_trust_region)
|
2 |
+
from ._trlib import (get_trlib_quadratic_subproblem)
|
3 |
+
|
4 |
+
__all__ = ['_minimize_trust_krylov']
|
5 |
+
|
6 |
+
def _minimize_trust_krylov(fun, x0, args=(), jac=None, hess=None, hessp=None,
|
7 |
+
inexact=True, **trust_region_options):
|
8 |
+
"""
|
9 |
+
Minimization of a scalar function of one or more variables using
|
10 |
+
a nearly exact trust-region algorithm that only requires matrix
|
11 |
+
vector products with the hessian matrix.
|
12 |
+
|
13 |
+
.. versionadded:: 1.0.0
|
14 |
+
|
15 |
+
Options
|
16 |
+
-------
|
17 |
+
inexact : bool, optional
|
18 |
+
Accuracy to solve subproblems. If True requires less nonlinear
|
19 |
+
iterations, but more vector products.
|
20 |
+
"""
|
21 |
+
|
22 |
+
if jac is None:
|
23 |
+
raise ValueError('Jacobian is required for trust region ',
|
24 |
+
'exact minimization.')
|
25 |
+
if hess is None and hessp is None:
|
26 |
+
raise ValueError('Either the Hessian or the Hessian-vector product '
|
27 |
+
'is required for Krylov trust-region minimization')
|
28 |
+
|
29 |
+
# tol_rel specifies the termination tolerance relative to the initial
|
30 |
+
# gradient norm in the Krylov subspace iteration.
|
31 |
+
|
32 |
+
# - tol_rel_i specifies the tolerance for interior convergence.
|
33 |
+
# - tol_rel_b specifies the tolerance for boundary convergence.
|
34 |
+
# in nonlinear programming applications it is not necessary to solve
|
35 |
+
# the boundary case as exact as the interior case.
|
36 |
+
|
37 |
+
# - setting tol_rel_i=-2 leads to a forcing sequence in the Krylov
|
38 |
+
# subspace iteration leading to quadratic convergence if eventually
|
39 |
+
# the trust region stays inactive.
|
40 |
+
# - setting tol_rel_b=-3 leads to a forcing sequence in the Krylov
|
41 |
+
# subspace iteration leading to superlinear convergence as long
|
42 |
+
# as the iterates hit the trust region boundary.
|
43 |
+
|
44 |
+
# For details consult the documentation of trlib_krylov_min
|
45 |
+
# in _trlib/trlib_krylov.h
|
46 |
+
#
|
47 |
+
# Optimality of this choice of parameters among a range of possibilities
|
48 |
+
# has been tested on the unconstrained subset of the CUTEst library.
|
49 |
+
|
50 |
+
if inexact:
|
51 |
+
return _minimize_trust_region(fun, x0, args=args, jac=jac,
|
52 |
+
hess=hess, hessp=hessp,
|
53 |
+
subproblem=get_trlib_quadratic_subproblem(
|
54 |
+
tol_rel_i=-2.0, tol_rel_b=-3.0,
|
55 |
+
disp=trust_region_options.get('disp', False)
|
56 |
+
),
|
57 |
+
**trust_region_options)
|
58 |
+
else:
|
59 |
+
return _minimize_trust_region(fun, x0, args=args, jac=jac,
|
60 |
+
hess=hess, hessp=hessp,
|
61 |
+
subproblem=get_trlib_quadratic_subproblem(
|
62 |
+
tol_rel_i=1e-8, tol_rel_b=1e-6,
|
63 |
+
disp=trust_region_options.get('disp', False)
|
64 |
+
),
|
65 |
+
**trust_region_options)
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/tests/__init__.py
ADDED
File without changes
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/tests/__pycache__/test__basinhopping.cpython-310.pyc
ADDED
Binary file (17.4 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/tests/test__basinhopping.py
ADDED
@@ -0,0 +1,525 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Unit tests for the basin hopping global minimization algorithm.
|
3 |
+
"""
|
4 |
+
import copy
|
5 |
+
|
6 |
+
from numpy.testing import (assert_almost_equal, assert_equal, assert_,
|
7 |
+
assert_allclose)
|
8 |
+
import pytest
|
9 |
+
from pytest import raises as assert_raises
|
10 |
+
import numpy as np
|
11 |
+
from numpy import cos, sin
|
12 |
+
|
13 |
+
from scipy.optimize import basinhopping, OptimizeResult
|
14 |
+
from scipy.optimize._basinhopping import (
|
15 |
+
Storage, RandomDisplacement, Metropolis, AdaptiveStepsize)
|
16 |
+
|
17 |
+
|
18 |
+
def func1d(x):
|
19 |
+
f = cos(14.5 * x - 0.3) + (x + 0.2) * x
|
20 |
+
df = np.array(-14.5 * sin(14.5 * x - 0.3) + 2. * x + 0.2)
|
21 |
+
return f, df
|
22 |
+
|
23 |
+
|
24 |
+
def func2d_nograd(x):
|
25 |
+
f = cos(14.5 * x[0] - 0.3) + (x[1] + 0.2) * x[1] + (x[0] + 0.2) * x[0]
|
26 |
+
return f
|
27 |
+
|
28 |
+
|
29 |
+
def func2d(x):
|
30 |
+
f = cos(14.5 * x[0] - 0.3) + (x[1] + 0.2) * x[1] + (x[0] + 0.2) * x[0]
|
31 |
+
df = np.zeros(2)
|
32 |
+
df[0] = -14.5 * sin(14.5 * x[0] - 0.3) + 2. * x[0] + 0.2
|
33 |
+
df[1] = 2. * x[1] + 0.2
|
34 |
+
return f, df
|
35 |
+
|
36 |
+
|
37 |
+
def func2d_easyderiv(x):
|
38 |
+
f = 2.0*x[0]**2 + 2.0*x[0]*x[1] + 2.0*x[1]**2 - 6.0*x[0]
|
39 |
+
df = np.zeros(2)
|
40 |
+
df[0] = 4.0*x[0] + 2.0*x[1] - 6.0
|
41 |
+
df[1] = 2.0*x[0] + 4.0*x[1]
|
42 |
+
|
43 |
+
return f, df
|
44 |
+
|
45 |
+
|
46 |
+
class MyTakeStep1(RandomDisplacement):
|
47 |
+
"""use a copy of displace, but have it set a special parameter to
|
48 |
+
make sure it's actually being used."""
|
49 |
+
def __init__(self):
|
50 |
+
self.been_called = False
|
51 |
+
super().__init__()
|
52 |
+
|
53 |
+
def __call__(self, x):
|
54 |
+
self.been_called = True
|
55 |
+
return super().__call__(x)
|
56 |
+
|
57 |
+
|
58 |
+
def myTakeStep2(x):
|
59 |
+
"""redo RandomDisplacement in function form without the attribute stepsize
|
60 |
+
to make sure everything still works ok
|
61 |
+
"""
|
62 |
+
s = 0.5
|
63 |
+
x += np.random.uniform(-s, s, np.shape(x))
|
64 |
+
return x
|
65 |
+
|
66 |
+
|
67 |
+
class MyAcceptTest:
|
68 |
+
"""pass a custom accept test
|
69 |
+
|
70 |
+
This does nothing but make sure it's being used and ensure all the
|
71 |
+
possible return values are accepted
|
72 |
+
"""
|
73 |
+
def __init__(self):
|
74 |
+
self.been_called = False
|
75 |
+
self.ncalls = 0
|
76 |
+
self.testres = [False, 'force accept', True, np.bool_(True),
|
77 |
+
np.bool_(False), [], {}, 0, 1]
|
78 |
+
|
79 |
+
def __call__(self, **kwargs):
|
80 |
+
self.been_called = True
|
81 |
+
self.ncalls += 1
|
82 |
+
if self.ncalls - 1 < len(self.testres):
|
83 |
+
return self.testres[self.ncalls - 1]
|
84 |
+
else:
|
85 |
+
return True
|
86 |
+
|
87 |
+
|
88 |
+
class MyCallBack:
|
89 |
+
"""pass a custom callback function
|
90 |
+
|
91 |
+
This makes sure it's being used. It also returns True after 10
|
92 |
+
steps to ensure that it's stopping early.
|
93 |
+
|
94 |
+
"""
|
95 |
+
def __init__(self):
|
96 |
+
self.been_called = False
|
97 |
+
self.ncalls = 0
|
98 |
+
|
99 |
+
def __call__(self, x, f, accepted):
|
100 |
+
self.been_called = True
|
101 |
+
self.ncalls += 1
|
102 |
+
if self.ncalls == 10:
|
103 |
+
return True
|
104 |
+
|
105 |
+
|
106 |
+
class TestBasinHopping:
|
107 |
+
|
108 |
+
def setup_method(self):
|
109 |
+
""" Tests setup.
|
110 |
+
|
111 |
+
Run tests based on the 1-D and 2-D functions described above.
|
112 |
+
"""
|
113 |
+
self.x0 = (1.0, [1.0, 1.0])
|
114 |
+
self.sol = (-0.195, np.array([-0.195, -0.1]))
|
115 |
+
|
116 |
+
self.tol = 3 # number of decimal places
|
117 |
+
|
118 |
+
self.niter = 100
|
119 |
+
self.disp = False
|
120 |
+
|
121 |
+
# fix random seed
|
122 |
+
np.random.seed(1234)
|
123 |
+
|
124 |
+
self.kwargs = {"method": "L-BFGS-B", "jac": True}
|
125 |
+
self.kwargs_nograd = {"method": "L-BFGS-B"}
|
126 |
+
|
127 |
+
def test_TypeError(self):
|
128 |
+
# test the TypeErrors are raised on bad input
|
129 |
+
i = 1
|
130 |
+
# if take_step is passed, it must be callable
|
131 |
+
assert_raises(TypeError, basinhopping, func2d, self.x0[i],
|
132 |
+
take_step=1)
|
133 |
+
# if accept_test is passed, it must be callable
|
134 |
+
assert_raises(TypeError, basinhopping, func2d, self.x0[i],
|
135 |
+
accept_test=1)
|
136 |
+
|
137 |
+
def test_input_validation(self):
|
138 |
+
msg = 'target_accept_rate has to be in range \\(0, 1\\)'
|
139 |
+
with assert_raises(ValueError, match=msg):
|
140 |
+
basinhopping(func1d, self.x0[0], target_accept_rate=0.)
|
141 |
+
with assert_raises(ValueError, match=msg):
|
142 |
+
basinhopping(func1d, self.x0[0], target_accept_rate=1.)
|
143 |
+
|
144 |
+
msg = 'stepwise_factor has to be in range \\(0, 1\\)'
|
145 |
+
with assert_raises(ValueError, match=msg):
|
146 |
+
basinhopping(func1d, self.x0[0], stepwise_factor=0.)
|
147 |
+
with assert_raises(ValueError, match=msg):
|
148 |
+
basinhopping(func1d, self.x0[0], stepwise_factor=1.)
|
149 |
+
|
150 |
+
def test_1d_grad(self):
|
151 |
+
# test 1-D minimizations with gradient
|
152 |
+
i = 0
|
153 |
+
res = basinhopping(func1d, self.x0[i], minimizer_kwargs=self.kwargs,
|
154 |
+
niter=self.niter, disp=self.disp)
|
155 |
+
assert_almost_equal(res.x, self.sol[i], self.tol)
|
156 |
+
|
157 |
+
def test_2d(self):
|
158 |
+
# test 2d minimizations with gradient
|
159 |
+
i = 1
|
160 |
+
res = basinhopping(func2d, self.x0[i], minimizer_kwargs=self.kwargs,
|
161 |
+
niter=self.niter, disp=self.disp)
|
162 |
+
assert_almost_equal(res.x, self.sol[i], self.tol)
|
163 |
+
assert_(res.nfev > 0)
|
164 |
+
|
165 |
+
def test_njev(self):
|
166 |
+
# test njev is returned correctly
|
167 |
+
i = 1
|
168 |
+
minimizer_kwargs = self.kwargs.copy()
|
169 |
+
# L-BFGS-B doesn't use njev, but BFGS does
|
170 |
+
minimizer_kwargs["method"] = "BFGS"
|
171 |
+
res = basinhopping(func2d, self.x0[i],
|
172 |
+
minimizer_kwargs=minimizer_kwargs, niter=self.niter,
|
173 |
+
disp=self.disp)
|
174 |
+
assert_(res.nfev > 0)
|
175 |
+
assert_equal(res.nfev, res.njev)
|
176 |
+
|
177 |
+
def test_jac(self):
|
178 |
+
# test Jacobian returned
|
179 |
+
minimizer_kwargs = self.kwargs.copy()
|
180 |
+
# BFGS returns a Jacobian
|
181 |
+
minimizer_kwargs["method"] = "BFGS"
|
182 |
+
|
183 |
+
res = basinhopping(func2d_easyderiv, [0.0, 0.0],
|
184 |
+
minimizer_kwargs=minimizer_kwargs, niter=self.niter,
|
185 |
+
disp=self.disp)
|
186 |
+
|
187 |
+
assert_(hasattr(res.lowest_optimization_result, "jac"))
|
188 |
+
|
189 |
+
# in this case, the Jacobian is just [df/dx, df/dy]
|
190 |
+
_, jacobian = func2d_easyderiv(res.x)
|
191 |
+
assert_almost_equal(res.lowest_optimization_result.jac, jacobian,
|
192 |
+
self.tol)
|
193 |
+
|
194 |
+
def test_2d_nograd(self):
|
195 |
+
# test 2-D minimizations without gradient
|
196 |
+
i = 1
|
197 |
+
res = basinhopping(func2d_nograd, self.x0[i],
|
198 |
+
minimizer_kwargs=self.kwargs_nograd,
|
199 |
+
niter=self.niter, disp=self.disp)
|
200 |
+
assert_almost_equal(res.x, self.sol[i], self.tol)
|
201 |
+
|
202 |
+
def test_all_minimizers(self):
|
203 |
+
# Test 2-D minimizations with gradient. Nelder-Mead, Powell, and COBYLA
|
204 |
+
# don't accept jac=True, so aren't included here.
|
205 |
+
i = 1
|
206 |
+
methods = ['CG', 'BFGS', 'Newton-CG', 'L-BFGS-B', 'TNC', 'SLSQP']
|
207 |
+
minimizer_kwargs = copy.copy(self.kwargs)
|
208 |
+
for method in methods:
|
209 |
+
minimizer_kwargs["method"] = method
|
210 |
+
res = basinhopping(func2d, self.x0[i],
|
211 |
+
minimizer_kwargs=minimizer_kwargs,
|
212 |
+
niter=self.niter, disp=self.disp)
|
213 |
+
assert_almost_equal(res.x, self.sol[i], self.tol)
|
214 |
+
|
215 |
+
def test_all_nograd_minimizers(self):
|
216 |
+
# Test 2-D minimizations without gradient. Newton-CG requires jac=True,
|
217 |
+
# so not included here.
|
218 |
+
i = 1
|
219 |
+
methods = ['CG', 'BFGS', 'L-BFGS-B', 'TNC', 'SLSQP',
|
220 |
+
'Nelder-Mead', 'Powell', 'COBYLA']
|
221 |
+
minimizer_kwargs = copy.copy(self.kwargs_nograd)
|
222 |
+
for method in methods:
|
223 |
+
minimizer_kwargs["method"] = method
|
224 |
+
res = basinhopping(func2d_nograd, self.x0[i],
|
225 |
+
minimizer_kwargs=minimizer_kwargs,
|
226 |
+
niter=self.niter, disp=self.disp)
|
227 |
+
tol = self.tol
|
228 |
+
if method == 'COBYLA':
|
229 |
+
tol = 2
|
230 |
+
assert_almost_equal(res.x, self.sol[i], decimal=tol)
|
231 |
+
|
232 |
+
def test_pass_takestep(self):
|
233 |
+
# test that passing a custom takestep works
|
234 |
+
# also test that the stepsize is being adjusted
|
235 |
+
takestep = MyTakeStep1()
|
236 |
+
initial_step_size = takestep.stepsize
|
237 |
+
i = 1
|
238 |
+
res = basinhopping(func2d, self.x0[i], minimizer_kwargs=self.kwargs,
|
239 |
+
niter=self.niter, disp=self.disp,
|
240 |
+
take_step=takestep)
|
241 |
+
assert_almost_equal(res.x, self.sol[i], self.tol)
|
242 |
+
assert_(takestep.been_called)
|
243 |
+
# make sure that the build in adaptive step size has been used
|
244 |
+
assert_(initial_step_size != takestep.stepsize)
|
245 |
+
|
246 |
+
def test_pass_simple_takestep(self):
|
247 |
+
# test that passing a custom takestep without attribute stepsize
|
248 |
+
takestep = myTakeStep2
|
249 |
+
i = 1
|
250 |
+
res = basinhopping(func2d_nograd, self.x0[i],
|
251 |
+
minimizer_kwargs=self.kwargs_nograd,
|
252 |
+
niter=self.niter, disp=self.disp,
|
253 |
+
take_step=takestep)
|
254 |
+
assert_almost_equal(res.x, self.sol[i], self.tol)
|
255 |
+
|
256 |
+
def test_pass_accept_test(self):
|
257 |
+
# test passing a custom accept test
|
258 |
+
# makes sure it's being used and ensures all the possible return values
|
259 |
+
# are accepted.
|
260 |
+
accept_test = MyAcceptTest()
|
261 |
+
i = 1
|
262 |
+
# there's no point in running it more than a few steps.
|
263 |
+
basinhopping(func2d, self.x0[i], minimizer_kwargs=self.kwargs,
|
264 |
+
niter=10, disp=self.disp, accept_test=accept_test)
|
265 |
+
assert_(accept_test.been_called)
|
266 |
+
|
267 |
+
def test_pass_callback(self):
|
268 |
+
# test passing a custom callback function
|
269 |
+
# This makes sure it's being used. It also returns True after 10 steps
|
270 |
+
# to ensure that it's stopping early.
|
271 |
+
callback = MyCallBack()
|
272 |
+
i = 1
|
273 |
+
# there's no point in running it more than a few steps.
|
274 |
+
res = basinhopping(func2d, self.x0[i], minimizer_kwargs=self.kwargs,
|
275 |
+
niter=30, disp=self.disp, callback=callback)
|
276 |
+
assert_(callback.been_called)
|
277 |
+
assert_("callback" in res.message[0])
|
278 |
+
# One of the calls of MyCallBack is during BasinHoppingRunner
|
279 |
+
# construction, so there are only 9 remaining before MyCallBack stops
|
280 |
+
# the minimization.
|
281 |
+
assert_equal(res.nit, 9)
|
282 |
+
|
283 |
+
def test_minimizer_fail(self):
|
284 |
+
# test if a minimizer fails
|
285 |
+
i = 1
|
286 |
+
self.kwargs["options"] = dict(maxiter=0)
|
287 |
+
self.niter = 10
|
288 |
+
res = basinhopping(func2d, self.x0[i], minimizer_kwargs=self.kwargs,
|
289 |
+
niter=self.niter, disp=self.disp)
|
290 |
+
# the number of failed minimizations should be the number of
|
291 |
+
# iterations + 1
|
292 |
+
assert_equal(res.nit + 1, res.minimization_failures)
|
293 |
+
|
294 |
+
def test_niter_zero(self):
|
295 |
+
# gh5915, what happens if you call basinhopping with niter=0
|
296 |
+
i = 0
|
297 |
+
basinhopping(func1d, self.x0[i], minimizer_kwargs=self.kwargs,
|
298 |
+
niter=0, disp=self.disp)
|
299 |
+
|
300 |
+
def test_seed_reproducibility(self):
|
301 |
+
# seed should ensure reproducibility between runs
|
302 |
+
minimizer_kwargs = {"method": "L-BFGS-B", "jac": True}
|
303 |
+
|
304 |
+
f_1 = []
|
305 |
+
|
306 |
+
def callback(x, f, accepted):
|
307 |
+
f_1.append(f)
|
308 |
+
|
309 |
+
basinhopping(func2d, [1.0, 1.0], minimizer_kwargs=minimizer_kwargs,
|
310 |
+
niter=10, callback=callback, seed=10)
|
311 |
+
|
312 |
+
f_2 = []
|
313 |
+
|
314 |
+
def callback2(x, f, accepted):
|
315 |
+
f_2.append(f)
|
316 |
+
|
317 |
+
basinhopping(func2d, [1.0, 1.0], minimizer_kwargs=minimizer_kwargs,
|
318 |
+
niter=10, callback=callback2, seed=10)
|
319 |
+
assert_equal(np.array(f_1), np.array(f_2))
|
320 |
+
|
321 |
+
def test_random_gen(self):
|
322 |
+
# check that np.random.Generator can be used (numpy >= 1.17)
|
323 |
+
rng = np.random.default_rng(1)
|
324 |
+
|
325 |
+
minimizer_kwargs = {"method": "L-BFGS-B", "jac": True}
|
326 |
+
|
327 |
+
res1 = basinhopping(func2d, [1.0, 1.0],
|
328 |
+
minimizer_kwargs=minimizer_kwargs,
|
329 |
+
niter=10, seed=rng)
|
330 |
+
|
331 |
+
rng = np.random.default_rng(1)
|
332 |
+
res2 = basinhopping(func2d, [1.0, 1.0],
|
333 |
+
minimizer_kwargs=minimizer_kwargs,
|
334 |
+
niter=10, seed=rng)
|
335 |
+
assert_equal(res1.x, res2.x)
|
336 |
+
|
337 |
+
def test_monotonic_basin_hopping(self):
|
338 |
+
# test 1-D minimizations with gradient and T=0
|
339 |
+
i = 0
|
340 |
+
res = basinhopping(func1d, self.x0[i], minimizer_kwargs=self.kwargs,
|
341 |
+
niter=self.niter, disp=self.disp, T=0)
|
342 |
+
assert_almost_equal(res.x, self.sol[i], self.tol)
|
343 |
+
|
344 |
+
|
345 |
+
class Test_Storage:
|
346 |
+
def setup_method(self):
|
347 |
+
self.x0 = np.array(1)
|
348 |
+
self.f0 = 0
|
349 |
+
|
350 |
+
minres = OptimizeResult(success=True)
|
351 |
+
minres.x = self.x0
|
352 |
+
minres.fun = self.f0
|
353 |
+
|
354 |
+
self.storage = Storage(minres)
|
355 |
+
|
356 |
+
def test_higher_f_rejected(self):
|
357 |
+
new_minres = OptimizeResult(success=True)
|
358 |
+
new_minres.x = self.x0 + 1
|
359 |
+
new_minres.fun = self.f0 + 1
|
360 |
+
|
361 |
+
ret = self.storage.update(new_minres)
|
362 |
+
minres = self.storage.get_lowest()
|
363 |
+
assert_equal(self.x0, minres.x)
|
364 |
+
assert_equal(self.f0, minres.fun)
|
365 |
+
assert_(not ret)
|
366 |
+
|
367 |
+
@pytest.mark.parametrize('success', [True, False])
|
368 |
+
def test_lower_f_accepted(self, success):
|
369 |
+
new_minres = OptimizeResult(success=success)
|
370 |
+
new_minres.x = self.x0 + 1
|
371 |
+
new_minres.fun = self.f0 - 1
|
372 |
+
|
373 |
+
ret = self.storage.update(new_minres)
|
374 |
+
minres = self.storage.get_lowest()
|
375 |
+
assert (self.x0 != minres.x) == success # can't use `is`
|
376 |
+
assert (self.f0 != minres.fun) == success # left side is NumPy bool
|
377 |
+
assert ret is success
|
378 |
+
|
379 |
+
|
380 |
+
class Test_RandomDisplacement:
|
381 |
+
def setup_method(self):
|
382 |
+
self.stepsize = 1.0
|
383 |
+
self.displace = RandomDisplacement(stepsize=self.stepsize)
|
384 |
+
self.N = 300000
|
385 |
+
self.x0 = np.zeros([self.N])
|
386 |
+
|
387 |
+
def test_random(self):
|
388 |
+
# the mean should be 0
|
389 |
+
# the variance should be (2*stepsize)**2 / 12
|
390 |
+
# note these tests are random, they will fail from time to time
|
391 |
+
x = self.displace(self.x0)
|
392 |
+
v = (2. * self.stepsize) ** 2 / 12
|
393 |
+
assert_almost_equal(np.mean(x), 0., 1)
|
394 |
+
assert_almost_equal(np.var(x), v, 1)
|
395 |
+
|
396 |
+
|
397 |
+
class Test_Metropolis:
|
398 |
+
def setup_method(self):
|
399 |
+
self.T = 2.
|
400 |
+
self.met = Metropolis(self.T)
|
401 |
+
self.res_new = OptimizeResult(success=True, fun=0.)
|
402 |
+
self.res_old = OptimizeResult(success=True, fun=1.)
|
403 |
+
|
404 |
+
def test_boolean_return(self):
|
405 |
+
# the return must be a bool, else an error will be raised in
|
406 |
+
# basinhopping
|
407 |
+
ret = self.met(res_new=self.res_new, res_old=self.res_old)
|
408 |
+
assert isinstance(ret, bool)
|
409 |
+
|
410 |
+
def test_lower_f_accepted(self):
|
411 |
+
assert_(self.met(res_new=self.res_new, res_old=self.res_old))
|
412 |
+
|
413 |
+
def test_accept(self):
|
414 |
+
# test that steps are randomly accepted for f_new > f_old
|
415 |
+
one_accept = False
|
416 |
+
one_reject = False
|
417 |
+
for i in range(1000):
|
418 |
+
if one_accept and one_reject:
|
419 |
+
break
|
420 |
+
res_new = OptimizeResult(success=True, fun=1.)
|
421 |
+
res_old = OptimizeResult(success=True, fun=0.5)
|
422 |
+
ret = self.met(res_new=res_new, res_old=res_old)
|
423 |
+
if ret:
|
424 |
+
one_accept = True
|
425 |
+
else:
|
426 |
+
one_reject = True
|
427 |
+
assert_(one_accept)
|
428 |
+
assert_(one_reject)
|
429 |
+
|
430 |
+
def test_GH7495(self):
|
431 |
+
# an overflow in exp was producing a RuntimeWarning
|
432 |
+
# create own object here in case someone changes self.T
|
433 |
+
met = Metropolis(2)
|
434 |
+
res_new = OptimizeResult(success=True, fun=0.)
|
435 |
+
res_old = OptimizeResult(success=True, fun=2000)
|
436 |
+
with np.errstate(over='raise'):
|
437 |
+
met.accept_reject(res_new=res_new, res_old=res_old)
|
438 |
+
|
439 |
+
def test_gh7799(self):
|
440 |
+
# gh-7799 reported a problem in which local search was successful but
|
441 |
+
# basinhopping returned an invalid solution. Show that this is fixed.
|
442 |
+
def func(x):
|
443 |
+
return (x**2-8)**2+(x+2)**2
|
444 |
+
|
445 |
+
x0 = -4
|
446 |
+
limit = 50 # Constrain to func value >= 50
|
447 |
+
con = {'type': 'ineq', 'fun': lambda x: func(x) - limit},
|
448 |
+
res = basinhopping(func, x0, 30, minimizer_kwargs={'constraints': con})
|
449 |
+
assert res.success
|
450 |
+
assert_allclose(res.fun, limit, rtol=1e-6)
|
451 |
+
|
452 |
+
def test_accept_gh7799(self):
|
453 |
+
# Metropolis should not accept the result of an unsuccessful new local
|
454 |
+
# search if the old local search was successful
|
455 |
+
|
456 |
+
met = Metropolis(0) # monotonic basin hopping
|
457 |
+
res_new = OptimizeResult(success=True, fun=0.)
|
458 |
+
res_old = OptimizeResult(success=True, fun=1.)
|
459 |
+
|
460 |
+
# if new local search was successful and energy is lower, accept
|
461 |
+
assert met(res_new=res_new, res_old=res_old)
|
462 |
+
# if new res is unsuccessful, don't accept - even if energy is lower
|
463 |
+
res_new.success = False
|
464 |
+
assert not met(res_new=res_new, res_old=res_old)
|
465 |
+
# ...unless the old res was unsuccessful, too. In that case, why not?
|
466 |
+
res_old.success = False
|
467 |
+
assert met(res_new=res_new, res_old=res_old)
|
468 |
+
|
469 |
+
def test_reject_all_gh7799(self):
|
470 |
+
# Test the behavior when there is no feasible solution
|
471 |
+
def fun(x):
|
472 |
+
return x@x
|
473 |
+
|
474 |
+
def constraint(x):
|
475 |
+
return x + 1
|
476 |
+
|
477 |
+
kwargs = {'constraints': {'type': 'eq', 'fun': constraint},
|
478 |
+
'bounds': [(0, 1), (0, 1)], 'method': 'slsqp'}
|
479 |
+
res = basinhopping(fun, x0=[2, 3], niter=10, minimizer_kwargs=kwargs)
|
480 |
+
assert not res.success
|
481 |
+
|
482 |
+
|
483 |
+
class Test_AdaptiveStepsize:
|
484 |
+
def setup_method(self):
|
485 |
+
self.stepsize = 1.
|
486 |
+
self.ts = RandomDisplacement(stepsize=self.stepsize)
|
487 |
+
self.target_accept_rate = 0.5
|
488 |
+
self.takestep = AdaptiveStepsize(takestep=self.ts, verbose=False,
|
489 |
+
accept_rate=self.target_accept_rate)
|
490 |
+
|
491 |
+
def test_adaptive_increase(self):
|
492 |
+
# if few steps are rejected, the stepsize should increase
|
493 |
+
x = 0.
|
494 |
+
self.takestep(x)
|
495 |
+
self.takestep.report(False)
|
496 |
+
for i in range(self.takestep.interval):
|
497 |
+
self.takestep(x)
|
498 |
+
self.takestep.report(True)
|
499 |
+
assert_(self.ts.stepsize > self.stepsize)
|
500 |
+
|
501 |
+
def test_adaptive_decrease(self):
|
502 |
+
# if few steps are rejected, the stepsize should increase
|
503 |
+
x = 0.
|
504 |
+
self.takestep(x)
|
505 |
+
self.takestep.report(True)
|
506 |
+
for i in range(self.takestep.interval):
|
507 |
+
self.takestep(x)
|
508 |
+
self.takestep.report(False)
|
509 |
+
assert_(self.ts.stepsize < self.stepsize)
|
510 |
+
|
511 |
+
def test_all_accepted(self):
|
512 |
+
# test that everything works OK if all steps were accepted
|
513 |
+
x = 0.
|
514 |
+
for i in range(self.takestep.interval + 1):
|
515 |
+
self.takestep(x)
|
516 |
+
self.takestep.report(True)
|
517 |
+
assert_(self.ts.stepsize > self.stepsize)
|
518 |
+
|
519 |
+
def test_all_rejected(self):
|
520 |
+
# test that everything works OK if all steps were rejected
|
521 |
+
x = 0.
|
522 |
+
for i in range(self.takestep.interval + 1):
|
523 |
+
self.takestep(x)
|
524 |
+
self.takestep.report(False)
|
525 |
+
assert_(self.ts.stepsize < self.stepsize)
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/tests/test__differential_evolution.py
ADDED
@@ -0,0 +1,1677 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Unit tests for the differential global minimization algorithm.
|
3 |
+
"""
|
4 |
+
import multiprocessing
|
5 |
+
import platform
|
6 |
+
|
7 |
+
from scipy.optimize._differentialevolution import (DifferentialEvolutionSolver,
|
8 |
+
_ConstraintWrapper)
|
9 |
+
from scipy.optimize import differential_evolution, OptimizeResult
|
10 |
+
from scipy.optimize._constraints import (Bounds, NonlinearConstraint,
|
11 |
+
LinearConstraint)
|
12 |
+
from scipy.optimize import rosen, minimize
|
13 |
+
from scipy.sparse import csr_matrix
|
14 |
+
from scipy import stats
|
15 |
+
|
16 |
+
import numpy as np
|
17 |
+
from numpy.testing import (assert_equal, assert_allclose, assert_almost_equal,
|
18 |
+
assert_string_equal, assert_, suppress_warnings)
|
19 |
+
from pytest import raises as assert_raises, warns
|
20 |
+
import pytest
|
21 |
+
|
22 |
+
|
23 |
+
class TestDifferentialEvolutionSolver:
|
24 |
+
|
25 |
+
def setup_method(self):
|
26 |
+
self.old_seterr = np.seterr(invalid='raise')
|
27 |
+
self.limits = np.array([[0., 0.],
|
28 |
+
[2., 2.]])
|
29 |
+
self.bounds = [(0., 2.), (0., 2.)]
|
30 |
+
|
31 |
+
self.dummy_solver = DifferentialEvolutionSolver(self.quadratic,
|
32 |
+
[(0, 100)])
|
33 |
+
|
34 |
+
# dummy_solver2 will be used to test mutation strategies
|
35 |
+
self.dummy_solver2 = DifferentialEvolutionSolver(self.quadratic,
|
36 |
+
[(0, 1)],
|
37 |
+
popsize=7,
|
38 |
+
mutation=0.5)
|
39 |
+
# create a population that's only 7 members long
|
40 |
+
# [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7]
|
41 |
+
population = np.atleast_2d(np.arange(0.1, 0.8, 0.1)).T
|
42 |
+
self.dummy_solver2.population = population
|
43 |
+
|
44 |
+
def teardown_method(self):
|
45 |
+
np.seterr(**self.old_seterr)
|
46 |
+
|
47 |
+
def quadratic(self, x):
|
48 |
+
return x[0]**2
|
49 |
+
|
50 |
+
def test__strategy_resolves(self):
|
51 |
+
# test that the correct mutation function is resolved by
|
52 |
+
# different requested strategy arguments
|
53 |
+
solver = DifferentialEvolutionSolver(rosen,
|
54 |
+
self.bounds,
|
55 |
+
strategy='best1exp')
|
56 |
+
assert_equal(solver.strategy, 'best1exp')
|
57 |
+
assert_equal(solver.mutation_func.__name__, '_best1')
|
58 |
+
|
59 |
+
solver = DifferentialEvolutionSolver(rosen,
|
60 |
+
self.bounds,
|
61 |
+
strategy='best1bin')
|
62 |
+
assert_equal(solver.strategy, 'best1bin')
|
63 |
+
assert_equal(solver.mutation_func.__name__, '_best1')
|
64 |
+
|
65 |
+
solver = DifferentialEvolutionSolver(rosen,
|
66 |
+
self.bounds,
|
67 |
+
strategy='rand1bin')
|
68 |
+
assert_equal(solver.strategy, 'rand1bin')
|
69 |
+
assert_equal(solver.mutation_func.__name__, '_rand1')
|
70 |
+
|
71 |
+
solver = DifferentialEvolutionSolver(rosen,
|
72 |
+
self.bounds,
|
73 |
+
strategy='rand1exp')
|
74 |
+
assert_equal(solver.strategy, 'rand1exp')
|
75 |
+
assert_equal(solver.mutation_func.__name__, '_rand1')
|
76 |
+
|
77 |
+
solver = DifferentialEvolutionSolver(rosen,
|
78 |
+
self.bounds,
|
79 |
+
strategy='rand2exp')
|
80 |
+
assert_equal(solver.strategy, 'rand2exp')
|
81 |
+
assert_equal(solver.mutation_func.__name__, '_rand2')
|
82 |
+
|
83 |
+
solver = DifferentialEvolutionSolver(rosen,
|
84 |
+
self.bounds,
|
85 |
+
strategy='best2bin')
|
86 |
+
assert_equal(solver.strategy, 'best2bin')
|
87 |
+
assert_equal(solver.mutation_func.__name__, '_best2')
|
88 |
+
|
89 |
+
solver = DifferentialEvolutionSolver(rosen,
|
90 |
+
self.bounds,
|
91 |
+
strategy='rand2bin')
|
92 |
+
assert_equal(solver.strategy, 'rand2bin')
|
93 |
+
assert_equal(solver.mutation_func.__name__, '_rand2')
|
94 |
+
|
95 |
+
solver = DifferentialEvolutionSolver(rosen,
|
96 |
+
self.bounds,
|
97 |
+
strategy='rand2exp')
|
98 |
+
assert_equal(solver.strategy, 'rand2exp')
|
99 |
+
assert_equal(solver.mutation_func.__name__, '_rand2')
|
100 |
+
|
101 |
+
solver = DifferentialEvolutionSolver(rosen,
|
102 |
+
self.bounds,
|
103 |
+
strategy='randtobest1bin')
|
104 |
+
assert_equal(solver.strategy, 'randtobest1bin')
|
105 |
+
assert_equal(solver.mutation_func.__name__, '_randtobest1')
|
106 |
+
|
107 |
+
solver = DifferentialEvolutionSolver(rosen,
|
108 |
+
self.bounds,
|
109 |
+
strategy='randtobest1exp')
|
110 |
+
assert_equal(solver.strategy, 'randtobest1exp')
|
111 |
+
assert_equal(solver.mutation_func.__name__, '_randtobest1')
|
112 |
+
|
113 |
+
solver = DifferentialEvolutionSolver(rosen,
|
114 |
+
self.bounds,
|
115 |
+
strategy='currenttobest1bin')
|
116 |
+
assert_equal(solver.strategy, 'currenttobest1bin')
|
117 |
+
assert_equal(solver.mutation_func.__name__, '_currenttobest1')
|
118 |
+
|
119 |
+
solver = DifferentialEvolutionSolver(rosen,
|
120 |
+
self.bounds,
|
121 |
+
strategy='currenttobest1exp')
|
122 |
+
assert_equal(solver.strategy, 'currenttobest1exp')
|
123 |
+
assert_equal(solver.mutation_func.__name__, '_currenttobest1')
|
124 |
+
|
125 |
+
def test__mutate1(self):
|
126 |
+
# strategies */1/*, i.e. rand/1/bin, best/1/exp, etc.
|
127 |
+
result = np.array([0.05])
|
128 |
+
trial = self.dummy_solver2._best1((2, 3, 4, 5, 6))
|
129 |
+
assert_allclose(trial, result)
|
130 |
+
|
131 |
+
result = np.array([0.25])
|
132 |
+
trial = self.dummy_solver2._rand1((2, 3, 4, 5, 6))
|
133 |
+
assert_allclose(trial, result)
|
134 |
+
|
135 |
+
def test__mutate2(self):
|
136 |
+
# strategies */2/*, i.e. rand/2/bin, best/2/exp, etc.
|
137 |
+
# [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7]
|
138 |
+
|
139 |
+
result = np.array([-0.1])
|
140 |
+
trial = self.dummy_solver2._best2((2, 3, 4, 5, 6))
|
141 |
+
assert_allclose(trial, result)
|
142 |
+
|
143 |
+
result = np.array([0.1])
|
144 |
+
trial = self.dummy_solver2._rand2((2, 3, 4, 5, 6))
|
145 |
+
assert_allclose(trial, result)
|
146 |
+
|
147 |
+
def test__randtobest1(self):
|
148 |
+
# strategies randtobest/1/*
|
149 |
+
result = np.array([0.15])
|
150 |
+
trial = self.dummy_solver2._randtobest1((2, 3, 4, 5, 6))
|
151 |
+
assert_allclose(trial, result)
|
152 |
+
|
153 |
+
def test__currenttobest1(self):
|
154 |
+
# strategies currenttobest/1/*
|
155 |
+
result = np.array([0.1])
|
156 |
+
trial = self.dummy_solver2._currenttobest1(1, (2, 3, 4, 5, 6))
|
157 |
+
assert_allclose(trial, result)
|
158 |
+
|
159 |
+
def test_can_init_with_dithering(self):
|
160 |
+
mutation = (0.5, 1)
|
161 |
+
solver = DifferentialEvolutionSolver(self.quadratic,
|
162 |
+
self.bounds,
|
163 |
+
mutation=mutation)
|
164 |
+
|
165 |
+
assert_equal(solver.dither, list(mutation))
|
166 |
+
|
167 |
+
def test_invalid_mutation_values_arent_accepted(self):
|
168 |
+
func = rosen
|
169 |
+
mutation = (0.5, 3)
|
170 |
+
assert_raises(ValueError,
|
171 |
+
DifferentialEvolutionSolver,
|
172 |
+
func,
|
173 |
+
self.bounds,
|
174 |
+
mutation=mutation)
|
175 |
+
|
176 |
+
mutation = (-1, 1)
|
177 |
+
assert_raises(ValueError,
|
178 |
+
DifferentialEvolutionSolver,
|
179 |
+
func,
|
180 |
+
self.bounds,
|
181 |
+
mutation=mutation)
|
182 |
+
|
183 |
+
mutation = (0.1, np.nan)
|
184 |
+
assert_raises(ValueError,
|
185 |
+
DifferentialEvolutionSolver,
|
186 |
+
func,
|
187 |
+
self.bounds,
|
188 |
+
mutation=mutation)
|
189 |
+
|
190 |
+
mutation = 0.5
|
191 |
+
solver = DifferentialEvolutionSolver(func,
|
192 |
+
self.bounds,
|
193 |
+
mutation=mutation)
|
194 |
+
assert_equal(0.5, solver.scale)
|
195 |
+
assert_equal(None, solver.dither)
|
196 |
+
|
197 |
+
def test_invalid_functional(self):
|
198 |
+
def func(x):
|
199 |
+
return np.array([np.sum(x ** 2), np.sum(x)])
|
200 |
+
|
201 |
+
with assert_raises(
|
202 |
+
RuntimeError,
|
203 |
+
match=r"func\(x, \*args\) must return a scalar value"):
|
204 |
+
differential_evolution(func, [(-2, 2), (-2, 2)])
|
205 |
+
|
206 |
+
def test__scale_parameters(self):
|
207 |
+
trial = np.array([0.3])
|
208 |
+
assert_equal(30, self.dummy_solver._scale_parameters(trial))
|
209 |
+
|
210 |
+
# it should also work with the limits reversed
|
211 |
+
self.dummy_solver.limits = np.array([[100], [0.]])
|
212 |
+
assert_equal(30, self.dummy_solver._scale_parameters(trial))
|
213 |
+
|
214 |
+
def test__unscale_parameters(self):
|
215 |
+
trial = np.array([30])
|
216 |
+
assert_equal(0.3, self.dummy_solver._unscale_parameters(trial))
|
217 |
+
|
218 |
+
# it should also work with the limits reversed
|
219 |
+
self.dummy_solver.limits = np.array([[100], [0.]])
|
220 |
+
assert_equal(0.3, self.dummy_solver._unscale_parameters(trial))
|
221 |
+
|
222 |
+
def test_equal_bounds(self):
|
223 |
+
with np.errstate(invalid='raise'):
|
224 |
+
solver = DifferentialEvolutionSolver(
|
225 |
+
self.quadratic,
|
226 |
+
bounds=[(2.0, 2.0), (1.0, 3.0)]
|
227 |
+
)
|
228 |
+
v = solver._unscale_parameters([2.0, 2.0])
|
229 |
+
assert_allclose(v, 0.5)
|
230 |
+
|
231 |
+
res = differential_evolution(self.quadratic, [(2.0, 2.0), (3.0, 3.0)])
|
232 |
+
assert_equal(res.x, [2.0, 3.0])
|
233 |
+
|
234 |
+
def test__ensure_constraint(self):
|
235 |
+
trial = np.array([1.1, -100, 0.9, 2., 300., -0.00001])
|
236 |
+
self.dummy_solver._ensure_constraint(trial)
|
237 |
+
|
238 |
+
assert_equal(trial[2], 0.9)
|
239 |
+
assert_(np.logical_and(trial >= 0, trial <= 1).all())
|
240 |
+
|
241 |
+
def test_differential_evolution(self):
|
242 |
+
# test that the Jmin of DifferentialEvolutionSolver
|
243 |
+
# is the same as the function evaluation
|
244 |
+
solver = DifferentialEvolutionSolver(
|
245 |
+
self.quadratic, [(-2, 2)], maxiter=1, polish=False
|
246 |
+
)
|
247 |
+
result = solver.solve()
|
248 |
+
assert_equal(result.fun, self.quadratic(result.x))
|
249 |
+
|
250 |
+
solver = DifferentialEvolutionSolver(
|
251 |
+
self.quadratic, [(-2, 2)], maxiter=1, polish=True
|
252 |
+
)
|
253 |
+
result = solver.solve()
|
254 |
+
assert_equal(result.fun, self.quadratic(result.x))
|
255 |
+
|
256 |
+
def test_best_solution_retrieval(self):
|
257 |
+
# test that the getter property method for the best solution works.
|
258 |
+
solver = DifferentialEvolutionSolver(self.quadratic, [(-2, 2)])
|
259 |
+
result = solver.solve()
|
260 |
+
assert_equal(result.x, solver.x)
|
261 |
+
|
262 |
+
def test_intermediate_result(self):
|
263 |
+
# Check that intermediate result object passed into the callback
|
264 |
+
# function contains the expected information and that raising
|
265 |
+
# `StopIteration` causes the expected behavior.
|
266 |
+
maxiter = 10
|
267 |
+
|
268 |
+
def func(x):
|
269 |
+
val = rosen(x)
|
270 |
+
if val < func.val:
|
271 |
+
func.x = x
|
272 |
+
func.val = val
|
273 |
+
return val
|
274 |
+
func.x = None
|
275 |
+
func.val = np.inf
|
276 |
+
|
277 |
+
def callback(intermediate_result):
|
278 |
+
callback.nit += 1
|
279 |
+
callback.intermediate_result = intermediate_result
|
280 |
+
assert intermediate_result.population.ndim == 2
|
281 |
+
assert intermediate_result.population.shape[1] == 2
|
282 |
+
assert intermediate_result.nit == callback.nit
|
283 |
+
|
284 |
+
# Check that `x` and `fun` attributes are the best found so far
|
285 |
+
assert_equal(intermediate_result.x, callback.func.x)
|
286 |
+
assert_equal(intermediate_result.fun, callback.func.val)
|
287 |
+
|
288 |
+
# Check for consistency between `fun`, `population_energies`,
|
289 |
+
# `x`, and `population`
|
290 |
+
assert_equal(intermediate_result.fun, rosen(intermediate_result.x))
|
291 |
+
for i in range(len(intermediate_result.population_energies)):
|
292 |
+
res = intermediate_result.population_energies[i]
|
293 |
+
ref = rosen(intermediate_result.population[i])
|
294 |
+
assert_equal(res, ref)
|
295 |
+
assert_equal(intermediate_result.x,
|
296 |
+
intermediate_result.population[0])
|
297 |
+
assert_equal(intermediate_result.fun,
|
298 |
+
intermediate_result.population_energies[0])
|
299 |
+
|
300 |
+
assert intermediate_result.message == 'in progress'
|
301 |
+
assert intermediate_result.success is True
|
302 |
+
assert isinstance(intermediate_result, OptimizeResult)
|
303 |
+
if callback.nit == maxiter:
|
304 |
+
raise StopIteration
|
305 |
+
callback.nit = 0
|
306 |
+
callback.intermediate_result = None
|
307 |
+
callback.func = func
|
308 |
+
|
309 |
+
bounds = [(0, 2), (0, 2)]
|
310 |
+
kwargs = dict(func=func, bounds=bounds, seed=838245, polish=False)
|
311 |
+
res = differential_evolution(**kwargs, callback=callback)
|
312 |
+
ref = differential_evolution(**kwargs, maxiter=maxiter)
|
313 |
+
|
314 |
+
# Check that final `intermediate_result` is equivalent to returned
|
315 |
+
# result object and that terminating with callback `StopIteration`
|
316 |
+
# after `maxiter` iterations is equivalent to terminating with
|
317 |
+
# `maxiter` parameter.
|
318 |
+
assert res.success is ref.success is False
|
319 |
+
assert callback.nit == res.nit == maxiter
|
320 |
+
assert res.message == 'callback function requested stop early'
|
321 |
+
assert ref.message == 'Maximum number of iterations has been exceeded.'
|
322 |
+
for field, val in ref.items():
|
323 |
+
if field in {'message', 'success'}: # checked separately
|
324 |
+
continue
|
325 |
+
assert_equal(callback.intermediate_result[field], val)
|
326 |
+
assert_equal(res[field], val)
|
327 |
+
|
328 |
+
# Check that polish occurs after `StopIteration` as advertised
|
329 |
+
callback.nit = 0
|
330 |
+
func.val = np.inf
|
331 |
+
kwargs['polish'] = True
|
332 |
+
res = differential_evolution(**kwargs, callback=callback)
|
333 |
+
assert res.fun < ref.fun
|
334 |
+
|
335 |
+
def test_callback_terminates(self):
|
336 |
+
# test that if the callback returns true, then the minimization halts
|
337 |
+
bounds = [(0, 2), (0, 2)]
|
338 |
+
expected_msg = 'callback function requested stop early'
|
339 |
+
def callback_python_true(param, convergence=0.):
|
340 |
+
return True
|
341 |
+
|
342 |
+
result = differential_evolution(
|
343 |
+
rosen, bounds, callback=callback_python_true
|
344 |
+
)
|
345 |
+
assert_string_equal(result.message, expected_msg)
|
346 |
+
|
347 |
+
# if callback raises StopIteration then solve should be interrupted
|
348 |
+
def callback_stop(intermediate_result):
|
349 |
+
raise StopIteration
|
350 |
+
|
351 |
+
result = differential_evolution(rosen, bounds, callback=callback_stop)
|
352 |
+
assert not result.success
|
353 |
+
|
354 |
+
def callback_evaluates_true(param, convergence=0.):
|
355 |
+
# DE should stop if bool(self.callback) is True
|
356 |
+
return [10]
|
357 |
+
|
358 |
+
result = differential_evolution(rosen, bounds, callback=callback_evaluates_true)
|
359 |
+
assert_string_equal(result.message, expected_msg)
|
360 |
+
assert not result.success
|
361 |
+
|
362 |
+
def callback_evaluates_false(param, convergence=0.):
|
363 |
+
return []
|
364 |
+
|
365 |
+
result = differential_evolution(rosen, bounds,
|
366 |
+
callback=callback_evaluates_false)
|
367 |
+
assert result.success
|
368 |
+
|
369 |
+
def test_args_tuple_is_passed(self):
|
370 |
+
# test that the args tuple is passed to the cost function properly.
|
371 |
+
bounds = [(-10, 10)]
|
372 |
+
args = (1., 2., 3.)
|
373 |
+
|
374 |
+
def quadratic(x, *args):
|
375 |
+
if type(args) != tuple:
|
376 |
+
raise ValueError('args should be a tuple')
|
377 |
+
return args[0] + args[1] * x + args[2] * x**2.
|
378 |
+
|
379 |
+
result = differential_evolution(quadratic,
|
380 |
+
bounds,
|
381 |
+
args=args,
|
382 |
+
polish=True)
|
383 |
+
assert_almost_equal(result.fun, 2 / 3.)
|
384 |
+
|
385 |
+
def test_init_with_invalid_strategy(self):
|
386 |
+
# test that passing an invalid strategy raises ValueError
|
387 |
+
func = rosen
|
388 |
+
bounds = [(-3, 3)]
|
389 |
+
assert_raises(ValueError,
|
390 |
+
differential_evolution,
|
391 |
+
func,
|
392 |
+
bounds,
|
393 |
+
strategy='abc')
|
394 |
+
|
395 |
+
def test_bounds_checking(self):
|
396 |
+
# test that the bounds checking works
|
397 |
+
func = rosen
|
398 |
+
bounds = [(-3)]
|
399 |
+
assert_raises(ValueError,
|
400 |
+
differential_evolution,
|
401 |
+
func,
|
402 |
+
bounds)
|
403 |
+
bounds = [(-3, 3), (3, 4, 5)]
|
404 |
+
assert_raises(ValueError,
|
405 |
+
differential_evolution,
|
406 |
+
func,
|
407 |
+
bounds)
|
408 |
+
|
409 |
+
# test that we can use a new-type Bounds object
|
410 |
+
result = differential_evolution(rosen, Bounds([0, 0], [2, 2]))
|
411 |
+
assert_almost_equal(result.x, (1., 1.))
|
412 |
+
|
413 |
+
def test_select_samples(self):
|
414 |
+
# select_samples should return 5 separate random numbers.
|
415 |
+
limits = np.arange(12., dtype='float64').reshape(2, 6)
|
416 |
+
bounds = list(zip(limits[0, :], limits[1, :]))
|
417 |
+
solver = DifferentialEvolutionSolver(None, bounds, popsize=1)
|
418 |
+
candidate = 0
|
419 |
+
r1, r2, r3, r4, r5 = solver._select_samples(candidate, 5)
|
420 |
+
assert_equal(
|
421 |
+
len(np.unique(np.array([candidate, r1, r2, r3, r4, r5]))), 6)
|
422 |
+
|
423 |
+
def test_maxiter_stops_solve(self):
|
424 |
+
# test that if the maximum number of iterations is exceeded
|
425 |
+
# the solver stops.
|
426 |
+
solver = DifferentialEvolutionSolver(rosen, self.bounds, maxiter=1)
|
427 |
+
result = solver.solve()
|
428 |
+
assert_equal(result.success, False)
|
429 |
+
assert_equal(result.message,
|
430 |
+
'Maximum number of iterations has been exceeded.')
|
431 |
+
|
432 |
+
def test_maxfun_stops_solve(self):
|
433 |
+
# test that if the maximum number of function evaluations is exceeded
|
434 |
+
# during initialisation the solver stops
|
435 |
+
solver = DifferentialEvolutionSolver(rosen, self.bounds, maxfun=1,
|
436 |
+
polish=False)
|
437 |
+
result = solver.solve()
|
438 |
+
|
439 |
+
assert_equal(result.nfev, 2)
|
440 |
+
assert_equal(result.success, False)
|
441 |
+
assert_equal(result.message,
|
442 |
+
'Maximum number of function evaluations has '
|
443 |
+
'been exceeded.')
|
444 |
+
|
445 |
+
# test that if the maximum number of function evaluations is exceeded
|
446 |
+
# during the actual minimisation, then the solver stops.
|
447 |
+
# Have to turn polishing off, as this will still occur even if maxfun
|
448 |
+
# is reached. For popsize=5 and len(bounds)=2, then there are only 10
|
449 |
+
# function evaluations during initialisation.
|
450 |
+
solver = DifferentialEvolutionSolver(rosen,
|
451 |
+
self.bounds,
|
452 |
+
popsize=5,
|
453 |
+
polish=False,
|
454 |
+
maxfun=40)
|
455 |
+
result = solver.solve()
|
456 |
+
|
457 |
+
assert_equal(result.nfev, 41)
|
458 |
+
assert_equal(result.success, False)
|
459 |
+
assert_equal(result.message,
|
460 |
+
'Maximum number of function evaluations has '
|
461 |
+
'been exceeded.')
|
462 |
+
|
463 |
+
# now repeat for updating='deferred version
|
464 |
+
# 47 function evaluations is not a multiple of the population size,
|
465 |
+
# so maxfun is reached partway through a population evaluation.
|
466 |
+
solver = DifferentialEvolutionSolver(rosen,
|
467 |
+
self.bounds,
|
468 |
+
popsize=5,
|
469 |
+
polish=False,
|
470 |
+
maxfun=47,
|
471 |
+
updating='deferred')
|
472 |
+
result = solver.solve()
|
473 |
+
|
474 |
+
assert_equal(result.nfev, 47)
|
475 |
+
assert_equal(result.success, False)
|
476 |
+
assert_equal(result.message,
|
477 |
+
'Maximum number of function evaluations has '
|
478 |
+
'been reached.')
|
479 |
+
|
480 |
+
def test_quadratic(self):
|
481 |
+
# test the quadratic function from object
|
482 |
+
solver = DifferentialEvolutionSolver(self.quadratic,
|
483 |
+
[(-100, 100)],
|
484 |
+
tol=0.02)
|
485 |
+
solver.solve()
|
486 |
+
assert_equal(np.argmin(solver.population_energies), 0)
|
487 |
+
|
488 |
+
def test_quadratic_from_diff_ev(self):
|
489 |
+
# test the quadratic function from differential_evolution function
|
490 |
+
differential_evolution(self.quadratic,
|
491 |
+
[(-100, 100)],
|
492 |
+
tol=0.02)
|
493 |
+
|
494 |
+
def test_seed_gives_repeatability(self):
|
495 |
+
result = differential_evolution(self.quadratic,
|
496 |
+
[(-100, 100)],
|
497 |
+
polish=False,
|
498 |
+
seed=1,
|
499 |
+
tol=0.5)
|
500 |
+
result2 = differential_evolution(self.quadratic,
|
501 |
+
[(-100, 100)],
|
502 |
+
polish=False,
|
503 |
+
seed=1,
|
504 |
+
tol=0.5)
|
505 |
+
assert_equal(result.x, result2.x)
|
506 |
+
assert_equal(result.nfev, result2.nfev)
|
507 |
+
|
508 |
+
def test_random_generator(self):
|
509 |
+
# check that np.random.Generator can be used (numpy >= 1.17)
|
510 |
+
# obtain a np.random.Generator object
|
511 |
+
rng = np.random.default_rng()
|
512 |
+
|
513 |
+
inits = ['random', 'latinhypercube', 'sobol', 'halton']
|
514 |
+
for init in inits:
|
515 |
+
differential_evolution(self.quadratic,
|
516 |
+
[(-100, 100)],
|
517 |
+
polish=False,
|
518 |
+
seed=rng,
|
519 |
+
tol=0.5,
|
520 |
+
init=init)
|
521 |
+
|
522 |
+
def test_exp_runs(self):
|
523 |
+
# test whether exponential mutation loop runs
|
524 |
+
solver = DifferentialEvolutionSolver(rosen,
|
525 |
+
self.bounds,
|
526 |
+
strategy='best1exp',
|
527 |
+
maxiter=1)
|
528 |
+
|
529 |
+
solver.solve()
|
530 |
+
|
531 |
+
def test_gh_4511_regression(self):
|
532 |
+
# This modification of the differential evolution docstring example
|
533 |
+
# uses a custom popsize that had triggered an off-by-one error.
|
534 |
+
# Because we do not care about solving the optimization problem in
|
535 |
+
# this test, we use maxiter=1 to reduce the testing time.
|
536 |
+
bounds = [(-5, 5), (-5, 5)]
|
537 |
+
# result = differential_evolution(rosen, bounds, popsize=1815,
|
538 |
+
# maxiter=1)
|
539 |
+
|
540 |
+
# the original issue arose because of rounding error in arange, with
|
541 |
+
# linspace being a much better solution. 1815 is quite a large popsize
|
542 |
+
# to use and results in a long test time (~13s). I used the original
|
543 |
+
# issue to figure out the lowest number of samples that would cause
|
544 |
+
# this rounding error to occur, 49.
|
545 |
+
differential_evolution(rosen, bounds, popsize=49, maxiter=1)
|
546 |
+
|
547 |
+
def test_calculate_population_energies(self):
|
548 |
+
# if popsize is 3, then the overall generation has size (6,)
|
549 |
+
solver = DifferentialEvolutionSolver(rosen, self.bounds, popsize=3)
|
550 |
+
solver._calculate_population_energies(solver.population)
|
551 |
+
solver._promote_lowest_energy()
|
552 |
+
assert_equal(np.argmin(solver.population_energies), 0)
|
553 |
+
|
554 |
+
# initial calculation of the energies should require 6 nfev.
|
555 |
+
assert_equal(solver._nfev, 6)
|
556 |
+
|
557 |
+
def test_iteration(self):
|
558 |
+
# test that DifferentialEvolutionSolver is iterable
|
559 |
+
# if popsize is 3, then the overall generation has size (6,)
|
560 |
+
solver = DifferentialEvolutionSolver(rosen, self.bounds, popsize=3,
|
561 |
+
maxfun=12)
|
562 |
+
x, fun = next(solver)
|
563 |
+
assert_equal(np.size(x, 0), 2)
|
564 |
+
|
565 |
+
# 6 nfev are required for initial calculation of energies, 6 nfev are
|
566 |
+
# required for the evolution of the 6 population members.
|
567 |
+
assert_equal(solver._nfev, 12)
|
568 |
+
|
569 |
+
# the next generation should halt because it exceeds maxfun
|
570 |
+
assert_raises(StopIteration, next, solver)
|
571 |
+
|
572 |
+
# check a proper minimisation can be done by an iterable solver
|
573 |
+
solver = DifferentialEvolutionSolver(rosen, self.bounds)
|
574 |
+
_, fun_prev = next(solver)
|
575 |
+
for i, soln in enumerate(solver):
|
576 |
+
x_current, fun_current = soln
|
577 |
+
assert fun_prev >= fun_current
|
578 |
+
_, fun_prev = x_current, fun_current
|
579 |
+
# need to have this otherwise the solver would never stop.
|
580 |
+
if i == 50:
|
581 |
+
break
|
582 |
+
|
583 |
+
def test_convergence(self):
|
584 |
+
solver = DifferentialEvolutionSolver(rosen, self.bounds, tol=0.2,
|
585 |
+
polish=False)
|
586 |
+
solver.solve()
|
587 |
+
assert_(solver.convergence < 0.2)
|
588 |
+
|
589 |
+
def test_maxiter_none_GH5731(self):
|
590 |
+
# Pre 0.17 the previous default for maxiter and maxfun was None.
|
591 |
+
# the numerical defaults are now 1000 and np.inf. However, some scripts
|
592 |
+
# will still supply None for both of those, this will raise a TypeError
|
593 |
+
# in the solve method.
|
594 |
+
solver = DifferentialEvolutionSolver(rosen, self.bounds, maxiter=None,
|
595 |
+
maxfun=None)
|
596 |
+
solver.solve()
|
597 |
+
|
598 |
+
def test_population_initiation(self):
|
599 |
+
# test the different modes of population initiation
|
600 |
+
|
601 |
+
# init must be either 'latinhypercube' or 'random'
|
602 |
+
# raising ValueError is something else is passed in
|
603 |
+
assert_raises(ValueError,
|
604 |
+
DifferentialEvolutionSolver,
|
605 |
+
*(rosen, self.bounds),
|
606 |
+
**{'init': 'rubbish'})
|
607 |
+
|
608 |
+
solver = DifferentialEvolutionSolver(rosen, self.bounds)
|
609 |
+
|
610 |
+
# check that population initiation:
|
611 |
+
# 1) resets _nfev to 0
|
612 |
+
# 2) all population energies are np.inf
|
613 |
+
solver.init_population_random()
|
614 |
+
assert_equal(solver._nfev, 0)
|
615 |
+
assert_(np.all(np.isinf(solver.population_energies)))
|
616 |
+
|
617 |
+
solver.init_population_lhs()
|
618 |
+
assert_equal(solver._nfev, 0)
|
619 |
+
assert_(np.all(np.isinf(solver.population_energies)))
|
620 |
+
|
621 |
+
solver.init_population_qmc(qmc_engine='halton')
|
622 |
+
assert_equal(solver._nfev, 0)
|
623 |
+
assert_(np.all(np.isinf(solver.population_energies)))
|
624 |
+
|
625 |
+
solver = DifferentialEvolutionSolver(rosen, self.bounds, init='sobol')
|
626 |
+
solver.init_population_qmc(qmc_engine='sobol')
|
627 |
+
assert_equal(solver._nfev, 0)
|
628 |
+
assert_(np.all(np.isinf(solver.population_energies)))
|
629 |
+
|
630 |
+
# we should be able to initialize with our own array
|
631 |
+
population = np.linspace(-1, 3, 10).reshape(5, 2)
|
632 |
+
solver = DifferentialEvolutionSolver(rosen, self.bounds,
|
633 |
+
init=population,
|
634 |
+
strategy='best2bin',
|
635 |
+
atol=0.01, seed=1, popsize=5)
|
636 |
+
|
637 |
+
assert_equal(solver._nfev, 0)
|
638 |
+
assert_(np.all(np.isinf(solver.population_energies)))
|
639 |
+
assert_(solver.num_population_members == 5)
|
640 |
+
assert_(solver.population_shape == (5, 2))
|
641 |
+
|
642 |
+
# check that the population was initialized correctly
|
643 |
+
unscaled_population = np.clip(solver._unscale_parameters(population),
|
644 |
+
0, 1)
|
645 |
+
assert_almost_equal(solver.population[:5], unscaled_population)
|
646 |
+
|
647 |
+
# population values need to be clipped to bounds
|
648 |
+
assert_almost_equal(np.min(solver.population[:5]), 0)
|
649 |
+
assert_almost_equal(np.max(solver.population[:5]), 1)
|
650 |
+
|
651 |
+
# shouldn't be able to initialize with an array if it's the wrong shape
|
652 |
+
# this would have too many parameters
|
653 |
+
population = np.linspace(-1, 3, 15).reshape(5, 3)
|
654 |
+
assert_raises(ValueError,
|
655 |
+
DifferentialEvolutionSolver,
|
656 |
+
*(rosen, self.bounds),
|
657 |
+
**{'init': population})
|
658 |
+
|
659 |
+
# provide an initial solution
|
660 |
+
# bounds are [(0, 2), (0, 2)]
|
661 |
+
x0 = np.random.uniform(low=0.0, high=2.0, size=2)
|
662 |
+
solver = DifferentialEvolutionSolver(
|
663 |
+
rosen, self.bounds, x0=x0
|
664 |
+
)
|
665 |
+
# parameters are scaled to unit interval
|
666 |
+
assert_allclose(solver.population[0], x0 / 2.0)
|
667 |
+
|
668 |
+
def test_x0(self):
|
669 |
+
# smoke test that checks that x0 is usable.
|
670 |
+
res = differential_evolution(rosen, self.bounds, x0=[0.2, 0.8])
|
671 |
+
assert res.success
|
672 |
+
|
673 |
+
# check what happens if some of the x0 lay outside the bounds
|
674 |
+
with assert_raises(ValueError):
|
675 |
+
differential_evolution(rosen, self.bounds, x0=[0.2, 2.1])
|
676 |
+
|
677 |
+
def test_infinite_objective_function(self):
|
678 |
+
# Test that there are no problems if the objective function
|
679 |
+
# returns inf on some runs
|
680 |
+
def sometimes_inf(x):
|
681 |
+
if x[0] < .5:
|
682 |
+
return np.inf
|
683 |
+
return x[1]
|
684 |
+
bounds = [(0, 1), (0, 1)]
|
685 |
+
differential_evolution(sometimes_inf, bounds=bounds, disp=False)
|
686 |
+
|
687 |
+
def test_deferred_updating(self):
|
688 |
+
# check setting of deferred updating, with default workers
|
689 |
+
bounds = [(0., 2.), (0., 2.)]
|
690 |
+
solver = DifferentialEvolutionSolver(rosen, bounds, updating='deferred')
|
691 |
+
assert_(solver._updating == 'deferred')
|
692 |
+
assert_(solver._mapwrapper._mapfunc is map)
|
693 |
+
solver.solve()
|
694 |
+
|
695 |
+
def test_immediate_updating(self):
|
696 |
+
# check setting of immediate updating, with default workers
|
697 |
+
bounds = [(0., 2.), (0., 2.)]
|
698 |
+
solver = DifferentialEvolutionSolver(rosen, bounds)
|
699 |
+
assert_(solver._updating == 'immediate')
|
700 |
+
|
701 |
+
# Safely forking from a multithreaded process is
|
702 |
+
# problematic, and deprecated in Python 3.12, so
|
703 |
+
# we use a slower but portable alternative
|
704 |
+
# see gh-19848
|
705 |
+
ctx = multiprocessing.get_context("spawn")
|
706 |
+
with ctx.Pool(2) as p:
|
707 |
+
# should raise a UserWarning because the updating='immediate'
|
708 |
+
# is being overridden by the workers keyword
|
709 |
+
with warns(UserWarning):
|
710 |
+
with DifferentialEvolutionSolver(rosen, bounds, workers=p.map) as s:
|
711 |
+
pass
|
712 |
+
assert s._updating == 'deferred'
|
713 |
+
|
714 |
+
def test_parallel(self):
|
715 |
+
# smoke test for parallelization with deferred updating
|
716 |
+
bounds = [(0., 2.), (0., 2.)]
|
717 |
+
with multiprocessing.Pool(2) as p, DifferentialEvolutionSolver(
|
718 |
+
rosen, bounds, updating='deferred', workers=p.map) as solver:
|
719 |
+
assert_(solver._mapwrapper.pool is not None)
|
720 |
+
assert_(solver._updating == 'deferred')
|
721 |
+
solver.solve()
|
722 |
+
|
723 |
+
with DifferentialEvolutionSolver(rosen, bounds, updating='deferred',
|
724 |
+
workers=2) as solver:
|
725 |
+
assert_(solver._mapwrapper.pool is not None)
|
726 |
+
assert_(solver._updating == 'deferred')
|
727 |
+
solver.solve()
|
728 |
+
|
729 |
+
def test_converged(self):
|
730 |
+
solver = DifferentialEvolutionSolver(rosen, [(0, 2), (0, 2)])
|
731 |
+
solver.solve()
|
732 |
+
assert_(solver.converged())
|
733 |
+
|
734 |
+
def test_constraint_violation_fn(self):
|
735 |
+
def constr_f(x):
|
736 |
+
return [x[0] + x[1]]
|
737 |
+
|
738 |
+
def constr_f2(x):
|
739 |
+
return np.array([x[0]**2 + x[1], x[0] - x[1]])
|
740 |
+
|
741 |
+
nlc = NonlinearConstraint(constr_f, -np.inf, 1.9)
|
742 |
+
|
743 |
+
solver = DifferentialEvolutionSolver(rosen, [(0, 2), (0, 2)],
|
744 |
+
constraints=(nlc))
|
745 |
+
|
746 |
+
cv = solver._constraint_violation_fn(np.array([1.0, 1.0]))
|
747 |
+
assert_almost_equal(cv, 0.1)
|
748 |
+
|
749 |
+
nlc2 = NonlinearConstraint(constr_f2, -np.inf, 1.8)
|
750 |
+
solver = DifferentialEvolutionSolver(rosen, [(0, 2), (0, 2)],
|
751 |
+
constraints=(nlc, nlc2))
|
752 |
+
|
753 |
+
# for multiple constraints the constraint violations should
|
754 |
+
# be concatenated.
|
755 |
+
xs = [(1.2, 1), (2.0, 2.0), (0.5, 0.5)]
|
756 |
+
vs = [(0.3, 0.64, 0.0), (2.1, 4.2, 0.0), (0, 0, 0)]
|
757 |
+
|
758 |
+
for x, v in zip(xs, vs):
|
759 |
+
cv = solver._constraint_violation_fn(np.array(x))
|
760 |
+
assert_allclose(cv, np.atleast_2d(v))
|
761 |
+
|
762 |
+
# vectorized calculation of a series of solutions
|
763 |
+
assert_allclose(
|
764 |
+
solver._constraint_violation_fn(np.array(xs)), np.array(vs)
|
765 |
+
)
|
766 |
+
|
767 |
+
# the following line is used in _calculate_population_feasibilities.
|
768 |
+
# _constraint_violation_fn returns an (1, M) array when
|
769 |
+
# x.shape == (N,), i.e. a single solution. Therefore this list
|
770 |
+
# comprehension should generate (S, 1, M) array.
|
771 |
+
constraint_violation = np.array([solver._constraint_violation_fn(x)
|
772 |
+
for x in np.array(xs)])
|
773 |
+
assert constraint_violation.shape == (3, 1, 3)
|
774 |
+
|
775 |
+
# we need reasonable error messages if the constraint function doesn't
|
776 |
+
# return the right thing
|
777 |
+
def constr_f3(x):
|
778 |
+
# returns (S, M), rather than (M, S)
|
779 |
+
return constr_f2(x).T
|
780 |
+
|
781 |
+
nlc2 = NonlinearConstraint(constr_f3, -np.inf, 1.8)
|
782 |
+
solver = DifferentialEvolutionSolver(rosen, [(0, 2), (0, 2)],
|
783 |
+
constraints=(nlc, nlc2),
|
784 |
+
vectorized=False)
|
785 |
+
solver.vectorized = True
|
786 |
+
with pytest.raises(
|
787 |
+
RuntimeError, match="An array returned from a Constraint"
|
788 |
+
):
|
789 |
+
solver._constraint_violation_fn(np.array(xs))
|
790 |
+
|
791 |
+
def test_constraint_population_feasibilities(self):
|
792 |
+
def constr_f(x):
|
793 |
+
return [x[0] + x[1]]
|
794 |
+
|
795 |
+
def constr_f2(x):
|
796 |
+
return [x[0]**2 + x[1], x[0] - x[1]]
|
797 |
+
|
798 |
+
nlc = NonlinearConstraint(constr_f, -np.inf, 1.9)
|
799 |
+
|
800 |
+
solver = DifferentialEvolutionSolver(rosen, [(0, 2), (0, 2)],
|
801 |
+
constraints=(nlc))
|
802 |
+
|
803 |
+
# are population feasibilities correct
|
804 |
+
# [0.5, 0.5] corresponds to scaled values of [1., 1.]
|
805 |
+
feas, cv = solver._calculate_population_feasibilities(
|
806 |
+
np.array([[0.5, 0.5], [1., 1.]]))
|
807 |
+
assert_equal(feas, [False, False])
|
808 |
+
assert_almost_equal(cv, np.array([[0.1], [2.1]]))
|
809 |
+
assert cv.shape == (2, 1)
|
810 |
+
|
811 |
+
nlc2 = NonlinearConstraint(constr_f2, -np.inf, 1.8)
|
812 |
+
|
813 |
+
for vectorize in [False, True]:
|
814 |
+
solver = DifferentialEvolutionSolver(rosen, [(0, 2), (0, 2)],
|
815 |
+
constraints=(nlc, nlc2),
|
816 |
+
vectorized=vectorize,
|
817 |
+
updating='deferred')
|
818 |
+
|
819 |
+
feas, cv = solver._calculate_population_feasibilities(
|
820 |
+
np.array([[0.5, 0.5], [0.6, 0.5]]))
|
821 |
+
assert_equal(feas, [False, False])
|
822 |
+
assert_almost_equal(cv, np.array([[0.1, 0.2, 0], [0.3, 0.64, 0]]))
|
823 |
+
|
824 |
+
feas, cv = solver._calculate_population_feasibilities(
|
825 |
+
np.array([[0.5, 0.5], [1., 1.]]))
|
826 |
+
assert_equal(feas, [False, False])
|
827 |
+
assert_almost_equal(cv, np.array([[0.1, 0.2, 0], [2.1, 4.2, 0]]))
|
828 |
+
assert cv.shape == (2, 3)
|
829 |
+
|
830 |
+
feas, cv = solver._calculate_population_feasibilities(
|
831 |
+
np.array([[0.25, 0.25], [1., 1.]]))
|
832 |
+
assert_equal(feas, [True, False])
|
833 |
+
assert_almost_equal(cv, np.array([[0.0, 0.0, 0.], [2.1, 4.2, 0]]))
|
834 |
+
assert cv.shape == (2, 3)
|
835 |
+
|
836 |
+
def test_constraint_solve(self):
|
837 |
+
def constr_f(x):
|
838 |
+
return np.array([x[0] + x[1]])
|
839 |
+
|
840 |
+
nlc = NonlinearConstraint(constr_f, -np.inf, 1.9)
|
841 |
+
|
842 |
+
solver = DifferentialEvolutionSolver(rosen, [(0, 2), (0, 2)],
|
843 |
+
constraints=(nlc))
|
844 |
+
|
845 |
+
# trust-constr warns if the constraint function is linear
|
846 |
+
with warns(UserWarning):
|
847 |
+
res = solver.solve()
|
848 |
+
|
849 |
+
assert constr_f(res.x) <= 1.9
|
850 |
+
assert res.success
|
851 |
+
|
852 |
+
def test_impossible_constraint(self):
|
853 |
+
def constr_f(x):
|
854 |
+
return np.array([x[0] + x[1]])
|
855 |
+
|
856 |
+
nlc = NonlinearConstraint(constr_f, -np.inf, -1)
|
857 |
+
|
858 |
+
solver = DifferentialEvolutionSolver(rosen, [(0, 2), (0, 2)],
|
859 |
+
constraints=(nlc), popsize=3,
|
860 |
+
seed=1)
|
861 |
+
|
862 |
+
# a UserWarning is issued because the 'trust-constr' polishing is
|
863 |
+
# attempted on the least infeasible solution found.
|
864 |
+
with warns(UserWarning):
|
865 |
+
res = solver.solve()
|
866 |
+
|
867 |
+
assert res.maxcv > 0
|
868 |
+
assert not res.success
|
869 |
+
|
870 |
+
# test _promote_lowest_energy works when none of the population is
|
871 |
+
# feasible. In this case, the solution with the lowest constraint
|
872 |
+
# violation should be promoted.
|
873 |
+
solver = DifferentialEvolutionSolver(rosen, [(0, 2), (0, 2)],
|
874 |
+
constraints=(nlc), polish=False)
|
875 |
+
next(solver)
|
876 |
+
assert not solver.feasible.all()
|
877 |
+
assert not np.isfinite(solver.population_energies).all()
|
878 |
+
|
879 |
+
# now swap two of the entries in the population
|
880 |
+
l = 20
|
881 |
+
cv = solver.constraint_violation[0]
|
882 |
+
|
883 |
+
solver.population_energies[[0, l]] = solver.population_energies[[l, 0]]
|
884 |
+
solver.population[[0, l], :] = solver.population[[l, 0], :]
|
885 |
+
solver.constraint_violation[[0, l], :] = (
|
886 |
+
solver.constraint_violation[[l, 0], :])
|
887 |
+
|
888 |
+
solver._promote_lowest_energy()
|
889 |
+
assert_equal(solver.constraint_violation[0], cv)
|
890 |
+
|
891 |
+
def test_accept_trial(self):
|
892 |
+
# _accept_trial(self, energy_trial, feasible_trial, cv_trial,
|
893 |
+
# energy_orig, feasible_orig, cv_orig)
|
894 |
+
def constr_f(x):
|
895 |
+
return [x[0] + x[1]]
|
896 |
+
nlc = NonlinearConstraint(constr_f, -np.inf, 1.9)
|
897 |
+
solver = DifferentialEvolutionSolver(rosen, [(0, 2), (0, 2)],
|
898 |
+
constraints=(nlc))
|
899 |
+
fn = solver._accept_trial
|
900 |
+
# both solutions are feasible, select lower energy
|
901 |
+
assert fn(0.1, True, np.array([0.]), 1.0, True, np.array([0.]))
|
902 |
+
assert (fn(1.0, True, np.array([0.0]), 0.1, True, np.array([0.0])) is False)
|
903 |
+
assert fn(0.1, True, np.array([0.]), 0.1, True, np.array([0.]))
|
904 |
+
|
905 |
+
# trial is feasible, original is not
|
906 |
+
assert fn(9.9, True, np.array([0.]), 1.0, False, np.array([1.]))
|
907 |
+
|
908 |
+
# trial and original are infeasible
|
909 |
+
# cv_trial have to be <= cv_original to be better
|
910 |
+
assert (fn(0.1, False, np.array([0.5, 0.5]),
|
911 |
+
1.0, False, np.array([1., 1.0])))
|
912 |
+
assert (fn(0.1, False, np.array([0.5, 0.5]),
|
913 |
+
1.0, False, np.array([1., 0.50])))
|
914 |
+
assert not (fn(1.0, False, np.array([0.5, 0.5]),
|
915 |
+
1.0, False, np.array([1.0, 0.4])))
|
916 |
+
|
917 |
+
def test_constraint_wrapper(self):
|
918 |
+
lb = np.array([0, 20, 30])
|
919 |
+
ub = np.array([0.5, np.inf, 70])
|
920 |
+
x0 = np.array([1, 2, 3])
|
921 |
+
pc = _ConstraintWrapper(Bounds(lb, ub), x0)
|
922 |
+
assert (pc.violation(x0) > 0).any()
|
923 |
+
assert (pc.violation([0.25, 21, 31]) == 0).all()
|
924 |
+
|
925 |
+
# check vectorized Bounds constraint
|
926 |
+
xs = np.arange(1, 16).reshape(5, 3)
|
927 |
+
violations = []
|
928 |
+
for x in xs:
|
929 |
+
violations.append(pc.violation(x))
|
930 |
+
np.testing.assert_allclose(pc.violation(xs.T), np.array(violations).T)
|
931 |
+
|
932 |
+
x0 = np.array([1, 2, 3, 4])
|
933 |
+
A = np.array([[1, 2, 3, 4], [5, 0, 0, 6], [7, 0, 8, 0]])
|
934 |
+
pc = _ConstraintWrapper(LinearConstraint(A, -np.inf, 0), x0)
|
935 |
+
assert (pc.violation(x0) > 0).any()
|
936 |
+
assert (pc.violation([-10, 2, -10, 4]) == 0).all()
|
937 |
+
|
938 |
+
# check vectorized LinearConstraint, for 7 lots of parameter vectors
|
939 |
+
# with each parameter vector being 4 long, with 3 constraints
|
940 |
+
# xs is the same shape as stored in the differential evolution
|
941 |
+
# population, but it's sent to the violation function as (len(x), M)
|
942 |
+
xs = np.arange(1, 29).reshape(7, 4)
|
943 |
+
violations = []
|
944 |
+
for x in xs:
|
945 |
+
violations.append(pc.violation(x))
|
946 |
+
np.testing.assert_allclose(pc.violation(xs.T), np.array(violations).T)
|
947 |
+
|
948 |
+
pc = _ConstraintWrapper(LinearConstraint(csr_matrix(A), -np.inf, 0),
|
949 |
+
x0)
|
950 |
+
assert (pc.violation(x0) > 0).any()
|
951 |
+
assert (pc.violation([-10, 2, -10, 4]) == 0).all()
|
952 |
+
|
953 |
+
def fun(x):
|
954 |
+
return A.dot(x)
|
955 |
+
|
956 |
+
nonlinear = NonlinearConstraint(fun, -np.inf, 0)
|
957 |
+
pc = _ConstraintWrapper(nonlinear, [-10, 2, -10, 4])
|
958 |
+
assert (pc.violation(x0) > 0).any()
|
959 |
+
assert (pc.violation([-10, 2, -10, 4]) == 0).all()
|
960 |
+
|
961 |
+
def test_constraint_wrapper_violation(self):
|
962 |
+
def cons_f(x):
|
963 |
+
# written in vectorised form to accept an array of (N, S)
|
964 |
+
# returning (M, S)
|
965 |
+
# where N is the number of parameters,
|
966 |
+
# S is the number of solution vectors to be examined,
|
967 |
+
# and M is the number of constraint components
|
968 |
+
return np.array([x[0] ** 2 + x[1],
|
969 |
+
x[0] ** 2 - x[1]])
|
970 |
+
|
971 |
+
nlc = NonlinearConstraint(cons_f, [-1, -0.8500], [2, 2])
|
972 |
+
pc = _ConstraintWrapper(nlc, [0.5, 1])
|
973 |
+
assert np.size(pc.bounds[0]) == 2
|
974 |
+
|
975 |
+
xs = [(0.5, 1), (0.5, 1.2), (1.2, 1.2), (0.1, -1.2), (0.1, 2.0)]
|
976 |
+
vs = [(0, 0), (0, 0.1), (0.64, 0), (0.19, 0), (0.01, 1.14)]
|
977 |
+
|
978 |
+
for x, v in zip(xs, vs):
|
979 |
+
assert_allclose(pc.violation(x), v)
|
980 |
+
|
981 |
+
# now check that we can vectorize the constraint wrapper
|
982 |
+
assert_allclose(pc.violation(np.array(xs).T),
|
983 |
+
np.array(vs).T)
|
984 |
+
assert pc.fun(np.array(xs).T).shape == (2, len(xs))
|
985 |
+
assert pc.violation(np.array(xs).T).shape == (2, len(xs))
|
986 |
+
assert pc.num_constr == 2
|
987 |
+
assert pc.parameter_count == 2
|
988 |
+
|
989 |
+
def test_matrix_linear_constraint(self):
|
990 |
+
# gh20041 supplying an np.matrix to construct a LinearConstraint caused
|
991 |
+
# _ConstraintWrapper to start returning constraint violations of the
|
992 |
+
# wrong shape.
|
993 |
+
with suppress_warnings() as sup:
|
994 |
+
sup.filter(PendingDeprecationWarning)
|
995 |
+
matrix = np.matrix([[1, 1, 1, 1.],
|
996 |
+
[2, 2, 2, 2.]])
|
997 |
+
lc = LinearConstraint(matrix, 0, 1)
|
998 |
+
x0 = np.ones(4)
|
999 |
+
cw = _ConstraintWrapper(lc, x0)
|
1000 |
+
# the shape of the constraint violation should be the same as the number
|
1001 |
+
# of constraints applied.
|
1002 |
+
assert cw.violation(x0).shape == (2,)
|
1003 |
+
|
1004 |
+
# let's try a vectorised violation call.
|
1005 |
+
xtrial = np.arange(4 * 5).reshape(4, 5)
|
1006 |
+
assert cw.violation(xtrial).shape == (2, 5)
|
1007 |
+
|
1008 |
+
|
1009 |
+
def test_L1(self):
|
1010 |
+
# Lampinen ([5]) test problem 1
|
1011 |
+
|
1012 |
+
def f(x):
|
1013 |
+
x = np.hstack(([0], x)) # 1-indexed to match reference
|
1014 |
+
fun = np.sum(5*x[1:5]) - 5*x[1:5]@x[1:5] - np.sum(x[5:])
|
1015 |
+
return fun
|
1016 |
+
|
1017 |
+
A = np.zeros((10, 14)) # 1-indexed to match reference
|
1018 |
+
A[1, [1, 2, 10, 11]] = 2, 2, 1, 1
|
1019 |
+
A[2, [1, 10]] = -8, 1
|
1020 |
+
A[3, [4, 5, 10]] = -2, -1, 1
|
1021 |
+
A[4, [1, 3, 10, 11]] = 2, 2, 1, 1
|
1022 |
+
A[5, [2, 11]] = -8, 1
|
1023 |
+
A[6, [6, 7, 11]] = -2, -1, 1
|
1024 |
+
A[7, [2, 3, 11, 12]] = 2, 2, 1, 1
|
1025 |
+
A[8, [3, 12]] = -8, 1
|
1026 |
+
A[9, [8, 9, 12]] = -2, -1, 1
|
1027 |
+
A = A[1:, 1:]
|
1028 |
+
|
1029 |
+
b = np.array([10, 0, 0, 10, 0, 0, 10, 0, 0])
|
1030 |
+
|
1031 |
+
L = LinearConstraint(A, -np.inf, b)
|
1032 |
+
|
1033 |
+
bounds = [(0, 1)]*9 + [(0, 100)]*3 + [(0, 1)]
|
1034 |
+
|
1035 |
+
# using a lower popsize to speed the test up
|
1036 |
+
res = differential_evolution(f, bounds, strategy='best1bin', seed=1234,
|
1037 |
+
constraints=(L), popsize=2)
|
1038 |
+
|
1039 |
+
x_opt = (1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1)
|
1040 |
+
f_opt = -15
|
1041 |
+
|
1042 |
+
assert_allclose(f(x_opt), f_opt, atol=6e-4)
|
1043 |
+
assert res.success
|
1044 |
+
assert_allclose(res.x, x_opt, atol=6e-4)
|
1045 |
+
assert_allclose(res.fun, f_opt, atol=5e-3)
|
1046 |
+
assert_(np.all([email protected] <= b))
|
1047 |
+
assert_(np.all(res.x >= np.array(bounds)[:, 0]))
|
1048 |
+
assert_(np.all(res.x <= np.array(bounds)[:, 1]))
|
1049 |
+
|
1050 |
+
# now repeat the same solve, using the same overall constraints,
|
1051 |
+
# but using a sparse matrix for the LinearConstraint instead of an
|
1052 |
+
# array
|
1053 |
+
|
1054 |
+
L = LinearConstraint(csr_matrix(A), -np.inf, b)
|
1055 |
+
|
1056 |
+
# using a lower popsize to speed the test up
|
1057 |
+
res = differential_evolution(f, bounds, strategy='best1bin', seed=1234,
|
1058 |
+
constraints=(L), popsize=2)
|
1059 |
+
|
1060 |
+
assert_allclose(f(x_opt), f_opt)
|
1061 |
+
assert res.success
|
1062 |
+
assert_allclose(res.x, x_opt, atol=5e-4)
|
1063 |
+
assert_allclose(res.fun, f_opt, atol=5e-3)
|
1064 |
+
assert_(np.all([email protected] <= b))
|
1065 |
+
assert_(np.all(res.x >= np.array(bounds)[:, 0]))
|
1066 |
+
assert_(np.all(res.x <= np.array(bounds)[:, 1]))
|
1067 |
+
|
1068 |
+
# now repeat the same solve, using the same overall constraints,
|
1069 |
+
# but specify half the constraints in terms of LinearConstraint,
|
1070 |
+
# and the other half by NonlinearConstraint
|
1071 |
+
def c1(x):
|
1072 |
+
x = np.hstack(([0], x))
|
1073 |
+
return [2*x[2] + 2*x[3] + x[11] + x[12],
|
1074 |
+
-8*x[3] + x[12]]
|
1075 |
+
|
1076 |
+
def c2(x):
|
1077 |
+
x = np.hstack(([0], x))
|
1078 |
+
return -2*x[8] - x[9] + x[12]
|
1079 |
+
|
1080 |
+
L = LinearConstraint(A[:5, :], -np.inf, b[:5])
|
1081 |
+
L2 = LinearConstraint(A[5:6, :], -np.inf, b[5:6])
|
1082 |
+
N = NonlinearConstraint(c1, -np.inf, b[6:8])
|
1083 |
+
N2 = NonlinearConstraint(c2, -np.inf, b[8:9])
|
1084 |
+
constraints = (L, N, L2, N2)
|
1085 |
+
|
1086 |
+
with suppress_warnings() as sup:
|
1087 |
+
sup.filter(UserWarning)
|
1088 |
+
res = differential_evolution(f, bounds, strategy='rand1bin',
|
1089 |
+
seed=1234, constraints=constraints,
|
1090 |
+
popsize=2)
|
1091 |
+
|
1092 |
+
assert_allclose(res.x, x_opt, atol=6e-4)
|
1093 |
+
assert_allclose(res.fun, f_opt, atol=5e-3)
|
1094 |
+
assert_(np.all([email protected] <= b))
|
1095 |
+
assert_(np.all(res.x >= np.array(bounds)[:, 0]))
|
1096 |
+
assert_(np.all(res.x <= np.array(bounds)[:, 1]))
|
1097 |
+
|
1098 |
+
def test_L2(self):
|
1099 |
+
# Lampinen ([5]) test problem 2
|
1100 |
+
|
1101 |
+
def f(x):
|
1102 |
+
x = np.hstack(([0], x)) # 1-indexed to match reference
|
1103 |
+
fun = ((x[1]-10)**2 + 5*(x[2]-12)**2 + x[3]**4 + 3*(x[4]-11)**2 +
|
1104 |
+
10*x[5]**6 + 7*x[6]**2 + x[7]**4 - 4*x[6]*x[7] - 10*x[6] -
|
1105 |
+
8*x[7])
|
1106 |
+
return fun
|
1107 |
+
|
1108 |
+
def c1(x):
|
1109 |
+
x = np.hstack(([0], x)) # 1-indexed to match reference
|
1110 |
+
return [127 - 2*x[1]**2 - 3*x[2]**4 - x[3] - 4*x[4]**2 - 5*x[5],
|
1111 |
+
196 - 23*x[1] - x[2]**2 - 6*x[6]**2 + 8*x[7],
|
1112 |
+
282 - 7*x[1] - 3*x[2] - 10*x[3]**2 - x[4] + x[5],
|
1113 |
+
-4*x[1]**2 - x[2]**2 + 3*x[1]*x[2] - 2*x[3]**2 -
|
1114 |
+
5*x[6] + 11*x[7]]
|
1115 |
+
|
1116 |
+
N = NonlinearConstraint(c1, 0, np.inf)
|
1117 |
+
bounds = [(-10, 10)]*7
|
1118 |
+
constraints = (N)
|
1119 |
+
|
1120 |
+
with suppress_warnings() as sup:
|
1121 |
+
sup.filter(UserWarning)
|
1122 |
+
res = differential_evolution(f, bounds, strategy='rand1bin',
|
1123 |
+
seed=1234, constraints=constraints)
|
1124 |
+
|
1125 |
+
f_opt = 680.6300599487869
|
1126 |
+
x_opt = (2.330499, 1.951372, -0.4775414, 4.365726,
|
1127 |
+
-0.6244870, 1.038131, 1.594227)
|
1128 |
+
|
1129 |
+
assert_allclose(f(x_opt), f_opt)
|
1130 |
+
assert_allclose(res.fun, f_opt)
|
1131 |
+
assert_allclose(res.x, x_opt, atol=1e-5)
|
1132 |
+
assert res.success
|
1133 |
+
assert_(np.all(np.array(c1(res.x)) >= 0))
|
1134 |
+
assert_(np.all(res.x >= np.array(bounds)[:, 0]))
|
1135 |
+
assert_(np.all(res.x <= np.array(bounds)[:, 1]))
|
1136 |
+
|
1137 |
+
def test_L3(self):
|
1138 |
+
# Lampinen ([5]) test problem 3
|
1139 |
+
|
1140 |
+
def f(x):
|
1141 |
+
x = np.hstack(([0], x)) # 1-indexed to match reference
|
1142 |
+
fun = (x[1]**2 + x[2]**2 + x[1]*x[2] - 14*x[1] - 16*x[2] +
|
1143 |
+
(x[3]-10)**2 + 4*(x[4]-5)**2 + (x[5]-3)**2 + 2*(x[6]-1)**2 +
|
1144 |
+
5*x[7]**2 + 7*(x[8]-11)**2 + 2*(x[9]-10)**2 +
|
1145 |
+
(x[10] - 7)**2 + 45
|
1146 |
+
)
|
1147 |
+
return fun # maximize
|
1148 |
+
|
1149 |
+
A = np.zeros((4, 11))
|
1150 |
+
A[1, [1, 2, 7, 8]] = -4, -5, 3, -9
|
1151 |
+
A[2, [1, 2, 7, 8]] = -10, 8, 17, -2
|
1152 |
+
A[3, [1, 2, 9, 10]] = 8, -2, -5, 2
|
1153 |
+
A = A[1:, 1:]
|
1154 |
+
b = np.array([-105, 0, -12])
|
1155 |
+
|
1156 |
+
def c1(x):
|
1157 |
+
x = np.hstack(([0], x)) # 1-indexed to match reference
|
1158 |
+
return [3*x[1] - 6*x[2] - 12*(x[9]-8)**2 + 7*x[10],
|
1159 |
+
-3*(x[1]-2)**2 - 4*(x[2]-3)**2 - 2*x[3]**2 + 7*x[4] + 120,
|
1160 |
+
-x[1]**2 - 2*(x[2]-2)**2 + 2*x[1]*x[2] - 14*x[5] + 6*x[6],
|
1161 |
+
-5*x[1]**2 - 8*x[2] - (x[3]-6)**2 + 2*x[4] + 40,
|
1162 |
+
-0.5*(x[1]-8)**2 - 2*(x[2]-4)**2 - 3*x[5]**2 + x[6] + 30]
|
1163 |
+
|
1164 |
+
L = LinearConstraint(A, b, np.inf)
|
1165 |
+
N = NonlinearConstraint(c1, 0, np.inf)
|
1166 |
+
bounds = [(-10, 10)]*10
|
1167 |
+
constraints = (L, N)
|
1168 |
+
|
1169 |
+
with suppress_warnings() as sup:
|
1170 |
+
sup.filter(UserWarning)
|
1171 |
+
res = differential_evolution(f, bounds, seed=1234,
|
1172 |
+
constraints=constraints, popsize=3)
|
1173 |
+
|
1174 |
+
x_opt = (2.171996, 2.363683, 8.773926, 5.095984, 0.9906548,
|
1175 |
+
1.430574, 1.321644, 9.828726, 8.280092, 8.375927)
|
1176 |
+
f_opt = 24.3062091
|
1177 |
+
|
1178 |
+
assert_allclose(f(x_opt), f_opt, atol=1e-5)
|
1179 |
+
assert_allclose(res.x, x_opt, atol=1e-6)
|
1180 |
+
assert_allclose(res.fun, f_opt, atol=1e-5)
|
1181 |
+
assert res.success
|
1182 |
+
assert_(np.all(A @ res.x >= b))
|
1183 |
+
assert_(np.all(np.array(c1(res.x)) >= 0))
|
1184 |
+
assert_(np.all(res.x >= np.array(bounds)[:, 0]))
|
1185 |
+
assert_(np.all(res.x <= np.array(bounds)[:, 1]))
|
1186 |
+
|
1187 |
+
def test_L4(self):
|
1188 |
+
# Lampinen ([5]) test problem 4
|
1189 |
+
def f(x):
|
1190 |
+
return np.sum(x[:3])
|
1191 |
+
|
1192 |
+
A = np.zeros((4, 9))
|
1193 |
+
A[1, [4, 6]] = 0.0025, 0.0025
|
1194 |
+
A[2, [5, 7, 4]] = 0.0025, 0.0025, -0.0025
|
1195 |
+
A[3, [8, 5]] = 0.01, -0.01
|
1196 |
+
A = A[1:, 1:]
|
1197 |
+
b = np.array([1, 1, 1])
|
1198 |
+
|
1199 |
+
def c1(x):
|
1200 |
+
x = np.hstack(([0], x)) # 1-indexed to match reference
|
1201 |
+
return [x[1]*x[6] - 833.33252*x[4] - 100*x[1] + 83333.333,
|
1202 |
+
x[2]*x[7] - 1250*x[5] - x[2]*x[4] + 1250*x[4],
|
1203 |
+
x[3]*x[8] - 1250000 - x[3]*x[5] + 2500*x[5]]
|
1204 |
+
|
1205 |
+
L = LinearConstraint(A, -np.inf, 1)
|
1206 |
+
N = NonlinearConstraint(c1, 0, np.inf)
|
1207 |
+
|
1208 |
+
bounds = [(100, 10000)] + [(1000, 10000)]*2 + [(10, 1000)]*5
|
1209 |
+
constraints = (L, N)
|
1210 |
+
|
1211 |
+
with suppress_warnings() as sup:
|
1212 |
+
sup.filter(UserWarning)
|
1213 |
+
res = differential_evolution(f, bounds, strategy='rand1bin',
|
1214 |
+
seed=1234, constraints=constraints,
|
1215 |
+
popsize=3)
|
1216 |
+
|
1217 |
+
f_opt = 7049.248
|
1218 |
+
|
1219 |
+
x_opt = [579.306692, 1359.97063, 5109.9707, 182.0177, 295.601172,
|
1220 |
+
217.9823, 286.416528, 395.601172]
|
1221 |
+
|
1222 |
+
assert_allclose(f(x_opt), f_opt, atol=0.001)
|
1223 |
+
assert_allclose(res.fun, f_opt, atol=0.001)
|
1224 |
+
|
1225 |
+
# use higher tol here for 32-bit Windows, see gh-11693
|
1226 |
+
if (platform.system() == 'Windows' and np.dtype(np.intp).itemsize < 8):
|
1227 |
+
assert_allclose(res.x, x_opt, rtol=2.4e-6, atol=0.0035)
|
1228 |
+
else:
|
1229 |
+
# tolerance determined from macOS + MKL failure, see gh-12701
|
1230 |
+
assert_allclose(res.x, x_opt, rtol=5e-6, atol=0.0024)
|
1231 |
+
|
1232 |
+
assert res.success
|
1233 |
+
assert_(np.all(A @ res.x <= b))
|
1234 |
+
assert_(np.all(np.array(c1(res.x)) >= 0))
|
1235 |
+
assert_(np.all(res.x >= np.array(bounds)[:, 0]))
|
1236 |
+
assert_(np.all(res.x <= np.array(bounds)[:, 1]))
|
1237 |
+
|
1238 |
+
def test_L5(self):
|
1239 |
+
# Lampinen ([5]) test problem 5
|
1240 |
+
|
1241 |
+
def f(x):
|
1242 |
+
x = np.hstack(([0], x)) # 1-indexed to match reference
|
1243 |
+
fun = (np.sin(2*np.pi*x[1])**3*np.sin(2*np.pi*x[2]) /
|
1244 |
+
(x[1]**3*(x[1]+x[2])))
|
1245 |
+
return -fun # maximize
|
1246 |
+
|
1247 |
+
def c1(x):
|
1248 |
+
x = np.hstack(([0], x)) # 1-indexed to match reference
|
1249 |
+
return [x[1]**2 - x[2] + 1,
|
1250 |
+
1 - x[1] + (x[2]-4)**2]
|
1251 |
+
|
1252 |
+
N = NonlinearConstraint(c1, -np.inf, 0)
|
1253 |
+
bounds = [(0, 10)]*2
|
1254 |
+
constraints = (N)
|
1255 |
+
|
1256 |
+
res = differential_evolution(f, bounds, strategy='rand1bin', seed=1234,
|
1257 |
+
constraints=constraints)
|
1258 |
+
|
1259 |
+
x_opt = (1.22797135, 4.24537337)
|
1260 |
+
f_opt = -0.095825
|
1261 |
+
assert_allclose(f(x_opt), f_opt, atol=2e-5)
|
1262 |
+
assert_allclose(res.fun, f_opt, atol=1e-4)
|
1263 |
+
assert res.success
|
1264 |
+
assert_(np.all(np.array(c1(res.x)) <= 0))
|
1265 |
+
assert_(np.all(res.x >= np.array(bounds)[:, 0]))
|
1266 |
+
assert_(np.all(res.x <= np.array(bounds)[:, 1]))
|
1267 |
+
|
1268 |
+
def test_L6(self):
|
1269 |
+
# Lampinen ([5]) test problem 6
|
1270 |
+
def f(x):
|
1271 |
+
x = np.hstack(([0], x)) # 1-indexed to match reference
|
1272 |
+
fun = (x[1]-10)**3 + (x[2] - 20)**3
|
1273 |
+
return fun
|
1274 |
+
|
1275 |
+
def c1(x):
|
1276 |
+
x = np.hstack(([0], x)) # 1-indexed to match reference
|
1277 |
+
return [(x[1]-5)**2 + (x[2] - 5)**2 - 100,
|
1278 |
+
-(x[1]-6)**2 - (x[2] - 5)**2 + 82.81]
|
1279 |
+
|
1280 |
+
N = NonlinearConstraint(c1, 0, np.inf)
|
1281 |
+
bounds = [(13, 100), (0, 100)]
|
1282 |
+
constraints = (N)
|
1283 |
+
res = differential_evolution(f, bounds, strategy='rand1bin', seed=1234,
|
1284 |
+
constraints=constraints, tol=1e-7)
|
1285 |
+
x_opt = (14.095, 0.84296)
|
1286 |
+
f_opt = -6961.814744
|
1287 |
+
|
1288 |
+
assert_allclose(f(x_opt), f_opt, atol=1e-6)
|
1289 |
+
assert_allclose(res.fun, f_opt, atol=0.001)
|
1290 |
+
assert_allclose(res.x, x_opt, atol=1e-4)
|
1291 |
+
assert res.success
|
1292 |
+
assert_(np.all(np.array(c1(res.x)) >= 0))
|
1293 |
+
assert_(np.all(res.x >= np.array(bounds)[:, 0]))
|
1294 |
+
assert_(np.all(res.x <= np.array(bounds)[:, 1]))
|
1295 |
+
|
1296 |
+
def test_L7(self):
|
1297 |
+
# Lampinen ([5]) test problem 7
|
1298 |
+
def f(x):
|
1299 |
+
x = np.hstack(([0], x)) # 1-indexed to match reference
|
1300 |
+
fun = (5.3578547*x[3]**2 + 0.8356891*x[1]*x[5] +
|
1301 |
+
37.293239*x[1] - 40792.141)
|
1302 |
+
return fun
|
1303 |
+
|
1304 |
+
def c1(x):
|
1305 |
+
x = np.hstack(([0], x)) # 1-indexed to match reference
|
1306 |
+
return [
|
1307 |
+
85.334407 + 0.0056858*x[2]*x[5] + 0.0006262*x[1]*x[4] -
|
1308 |
+
0.0022053*x[3]*x[5],
|
1309 |
+
|
1310 |
+
80.51249 + 0.0071317*x[2]*x[5] + 0.0029955*x[1]*x[2] +
|
1311 |
+
0.0021813*x[3]**2,
|
1312 |
+
|
1313 |
+
9.300961 + 0.0047026*x[3]*x[5] + 0.0012547*x[1]*x[3] +
|
1314 |
+
0.0019085*x[3]*x[4]
|
1315 |
+
]
|
1316 |
+
|
1317 |
+
N = NonlinearConstraint(c1, [0, 90, 20], [92, 110, 25])
|
1318 |
+
|
1319 |
+
bounds = [(78, 102), (33, 45)] + [(27, 45)]*3
|
1320 |
+
constraints = (N)
|
1321 |
+
|
1322 |
+
res = differential_evolution(f, bounds, strategy='rand1bin', seed=1234,
|
1323 |
+
constraints=constraints)
|
1324 |
+
|
1325 |
+
# using our best solution, rather than Lampinen/Koziel. Koziel solution
|
1326 |
+
# doesn't satisfy constraints, Lampinen f_opt just plain wrong.
|
1327 |
+
x_opt = [78.00000686, 33.00000362, 29.99526064, 44.99999971,
|
1328 |
+
36.77579979]
|
1329 |
+
|
1330 |
+
f_opt = -30665.537578
|
1331 |
+
|
1332 |
+
assert_allclose(f(x_opt), f_opt)
|
1333 |
+
assert_allclose(res.x, x_opt, atol=1e-3)
|
1334 |
+
assert_allclose(res.fun, f_opt, atol=1e-3)
|
1335 |
+
|
1336 |
+
assert res.success
|
1337 |
+
assert_(np.all(np.array(c1(res.x)) >= np.array([0, 90, 20])))
|
1338 |
+
assert_(np.all(np.array(c1(res.x)) <= np.array([92, 110, 25])))
|
1339 |
+
assert_(np.all(res.x >= np.array(bounds)[:, 0]))
|
1340 |
+
assert_(np.all(res.x <= np.array(bounds)[:, 1]))
|
1341 |
+
|
1342 |
+
@pytest.mark.slow
|
1343 |
+
@pytest.mark.xfail(platform.machine() == 'ppc64le',
|
1344 |
+
reason="fails on ppc64le")
|
1345 |
+
def test_L8(self):
|
1346 |
+
def f(x):
|
1347 |
+
x = np.hstack(([0], x)) # 1-indexed to match reference
|
1348 |
+
fun = 3*x[1] + 0.000001*x[1]**3 + 2*x[2] + 0.000002/3*x[2]**3
|
1349 |
+
return fun
|
1350 |
+
|
1351 |
+
A = np.zeros((3, 5))
|
1352 |
+
A[1, [4, 3]] = 1, -1
|
1353 |
+
A[2, [3, 4]] = 1, -1
|
1354 |
+
A = A[1:, 1:]
|
1355 |
+
b = np.array([-.55, -.55])
|
1356 |
+
|
1357 |
+
def c1(x):
|
1358 |
+
x = np.hstack(([0], x)) # 1-indexed to match reference
|
1359 |
+
return [
|
1360 |
+
1000*np.sin(-x[3]-0.25) + 1000*np.sin(-x[4]-0.25) +
|
1361 |
+
894.8 - x[1],
|
1362 |
+
1000*np.sin(x[3]-0.25) + 1000*np.sin(x[3]-x[4]-0.25) +
|
1363 |
+
894.8 - x[2],
|
1364 |
+
1000*np.sin(x[4]-0.25) + 1000*np.sin(x[4]-x[3]-0.25) +
|
1365 |
+
1294.8
|
1366 |
+
]
|
1367 |
+
L = LinearConstraint(A, b, np.inf)
|
1368 |
+
N = NonlinearConstraint(c1, np.full(3, -0.001), np.full(3, 0.001))
|
1369 |
+
|
1370 |
+
bounds = [(0, 1200)]*2+[(-.55, .55)]*2
|
1371 |
+
constraints = (L, N)
|
1372 |
+
|
1373 |
+
with suppress_warnings() as sup:
|
1374 |
+
sup.filter(UserWarning)
|
1375 |
+
# original Lampinen test was with rand1bin, but that takes a
|
1376 |
+
# huge amount of CPU time. Changing strategy to best1bin speeds
|
1377 |
+
# things up a lot
|
1378 |
+
res = differential_evolution(f, bounds, strategy='best1bin',
|
1379 |
+
seed=1234, constraints=constraints,
|
1380 |
+
maxiter=5000)
|
1381 |
+
|
1382 |
+
x_opt = (679.9453, 1026.067, 0.1188764, -0.3962336)
|
1383 |
+
f_opt = 5126.4981
|
1384 |
+
|
1385 |
+
assert_allclose(f(x_opt), f_opt, atol=1e-3)
|
1386 |
+
assert_allclose(res.x[:2], x_opt[:2], atol=2e-3)
|
1387 |
+
assert_allclose(res.x[2:], x_opt[2:], atol=2e-3)
|
1388 |
+
assert_allclose(res.fun, f_opt, atol=2e-2)
|
1389 |
+
assert res.success
|
1390 |
+
assert_(np.all([email protected] >= b))
|
1391 |
+
assert_(np.all(np.array(c1(res.x)) >= -0.001))
|
1392 |
+
assert_(np.all(np.array(c1(res.x)) <= 0.001))
|
1393 |
+
assert_(np.all(res.x >= np.array(bounds)[:, 0]))
|
1394 |
+
assert_(np.all(res.x <= np.array(bounds)[:, 1]))
|
1395 |
+
|
1396 |
+
def test_L9(self):
|
1397 |
+
# Lampinen ([5]) test problem 9
|
1398 |
+
|
1399 |
+
def f(x):
|
1400 |
+
x = np.hstack(([0], x)) # 1-indexed to match reference
|
1401 |
+
return x[1]**2 + (x[2]-1)**2
|
1402 |
+
|
1403 |
+
def c1(x):
|
1404 |
+
x = np.hstack(([0], x)) # 1-indexed to match reference
|
1405 |
+
return [x[2] - x[1]**2]
|
1406 |
+
|
1407 |
+
N = NonlinearConstraint(c1, [-.001], [0.001])
|
1408 |
+
|
1409 |
+
bounds = [(-1, 1)]*2
|
1410 |
+
constraints = (N)
|
1411 |
+
res = differential_evolution(f, bounds, strategy='rand1bin', seed=1234,
|
1412 |
+
constraints=constraints)
|
1413 |
+
|
1414 |
+
x_opt = [np.sqrt(2)/2, 0.5]
|
1415 |
+
f_opt = 0.75
|
1416 |
+
|
1417 |
+
assert_allclose(f(x_opt), f_opt)
|
1418 |
+
assert_allclose(np.abs(res.x), x_opt, atol=1e-3)
|
1419 |
+
assert_allclose(res.fun, f_opt, atol=1e-3)
|
1420 |
+
assert res.success
|
1421 |
+
assert_(np.all(np.array(c1(res.x)) >= -0.001))
|
1422 |
+
assert_(np.all(np.array(c1(res.x)) <= 0.001))
|
1423 |
+
assert_(np.all(res.x >= np.array(bounds)[:, 0]))
|
1424 |
+
assert_(np.all(res.x <= np.array(bounds)[:, 1]))
|
1425 |
+
|
1426 |
+
def test_integrality(self):
|
1427 |
+
# test fitting discrete distribution to data
|
1428 |
+
rng = np.random.default_rng(6519843218105)
|
1429 |
+
dist = stats.nbinom
|
1430 |
+
shapes = (5, 0.5)
|
1431 |
+
x = dist.rvs(*shapes, size=10000, random_state=rng)
|
1432 |
+
|
1433 |
+
def func(p, *args):
|
1434 |
+
dist, x = args
|
1435 |
+
# negative log-likelihood function
|
1436 |
+
ll = -np.log(dist.pmf(x, *p)).sum(axis=-1)
|
1437 |
+
if np.isnan(ll): # occurs when x is outside of support
|
1438 |
+
ll = np.inf # we don't want that
|
1439 |
+
return ll
|
1440 |
+
|
1441 |
+
integrality = [True, False]
|
1442 |
+
bounds = [(1, 18), (0, 0.95)]
|
1443 |
+
|
1444 |
+
res = differential_evolution(func, bounds, args=(dist, x),
|
1445 |
+
integrality=integrality, polish=False,
|
1446 |
+
seed=rng)
|
1447 |
+
# tolerance has to be fairly relaxed for the second parameter
|
1448 |
+
# because we're fitting a distribution to random variates.
|
1449 |
+
assert res.x[0] == 5
|
1450 |
+
assert_allclose(res.x, shapes, rtol=0.025)
|
1451 |
+
|
1452 |
+
# check that we can still use integrality constraints with polishing
|
1453 |
+
res2 = differential_evolution(func, bounds, args=(dist, x),
|
1454 |
+
integrality=integrality, polish=True,
|
1455 |
+
seed=rng)
|
1456 |
+
|
1457 |
+
def func2(p, *args):
|
1458 |
+
n, dist, x = args
|
1459 |
+
return func(np.array([n, p[0]]), dist, x)
|
1460 |
+
|
1461 |
+
# compare the DE derived solution to an LBFGSB solution (that doesn't
|
1462 |
+
# have to find the integral values). Note we're setting x0 to be the
|
1463 |
+
# output from the first DE result, thereby making the polishing step
|
1464 |
+
# and this minimisation pretty much equivalent.
|
1465 |
+
LBFGSB = minimize(func2, res2.x[1], args=(5, dist, x),
|
1466 |
+
bounds=[(0, 0.95)])
|
1467 |
+
assert_allclose(res2.x[1], LBFGSB.x)
|
1468 |
+
assert res2.fun <= res.fun
|
1469 |
+
|
1470 |
+
def test_integrality_limits(self):
|
1471 |
+
def f(x):
|
1472 |
+
return x
|
1473 |
+
|
1474 |
+
integrality = [True, False, True]
|
1475 |
+
bounds = [(0.2, 1.1), (0.9, 2.2), (3.3, 4.9)]
|
1476 |
+
|
1477 |
+
# no integrality constraints
|
1478 |
+
solver = DifferentialEvolutionSolver(f, bounds=bounds, polish=False,
|
1479 |
+
integrality=False)
|
1480 |
+
assert_allclose(solver.limits[0], [0.2, 0.9, 3.3])
|
1481 |
+
assert_allclose(solver.limits[1], [1.1, 2.2, 4.9])
|
1482 |
+
|
1483 |
+
# with integrality constraints
|
1484 |
+
solver = DifferentialEvolutionSolver(f, bounds=bounds, polish=False,
|
1485 |
+
integrality=integrality)
|
1486 |
+
assert_allclose(solver.limits[0], [0.5, 0.9, 3.5])
|
1487 |
+
assert_allclose(solver.limits[1], [1.5, 2.2, 4.5])
|
1488 |
+
assert_equal(solver.integrality, [True, False, True])
|
1489 |
+
assert solver.polish is False
|
1490 |
+
|
1491 |
+
bounds = [(-1.2, -0.9), (0.9, 2.2), (-10.3, 4.1)]
|
1492 |
+
solver = DifferentialEvolutionSolver(f, bounds=bounds, polish=False,
|
1493 |
+
integrality=integrality)
|
1494 |
+
assert_allclose(solver.limits[0], [-1.5, 0.9, -10.5])
|
1495 |
+
assert_allclose(solver.limits[1], [-0.5, 2.2, 4.5])
|
1496 |
+
|
1497 |
+
# A lower bound of -1.2 is converted to
|
1498 |
+
# np.nextafter(np.ceil(-1.2) - 0.5, np.inf)
|
1499 |
+
# with a similar process to the upper bound. Check that the
|
1500 |
+
# conversions work
|
1501 |
+
assert_allclose(np.round(solver.limits[0]), [-1.0, 1.0, -10.0])
|
1502 |
+
assert_allclose(np.round(solver.limits[1]), [-1.0, 2.0, 4.0])
|
1503 |
+
|
1504 |
+
bounds = [(-10.2, -8.1), (0.9, 2.2), (-10.9, -9.9999)]
|
1505 |
+
solver = DifferentialEvolutionSolver(f, bounds=bounds, polish=False,
|
1506 |
+
integrality=integrality)
|
1507 |
+
assert_allclose(solver.limits[0], [-10.5, 0.9, -10.5])
|
1508 |
+
assert_allclose(solver.limits[1], [-8.5, 2.2, -9.5])
|
1509 |
+
|
1510 |
+
bounds = [(-10.2, -10.1), (0.9, 2.2), (-10.9, -9.9999)]
|
1511 |
+
with pytest.raises(ValueError, match='One of the integrality'):
|
1512 |
+
DifferentialEvolutionSolver(f, bounds=bounds, polish=False,
|
1513 |
+
integrality=integrality)
|
1514 |
+
|
1515 |
+
def test_vectorized(self):
|
1516 |
+
def quadratic(x):
|
1517 |
+
return np.sum(x**2)
|
1518 |
+
|
1519 |
+
def quadratic_vec(x):
|
1520 |
+
return np.sum(x**2, axis=0)
|
1521 |
+
|
1522 |
+
# A vectorized function needs to accept (len(x), S) and return (S,)
|
1523 |
+
with pytest.raises(RuntimeError, match='The vectorized function'):
|
1524 |
+
differential_evolution(quadratic, self.bounds,
|
1525 |
+
vectorized=True, updating='deferred')
|
1526 |
+
|
1527 |
+
# vectorized overrides the updating keyword, check for warning
|
1528 |
+
with warns(UserWarning, match="differential_evolution: the 'vector"):
|
1529 |
+
differential_evolution(quadratic_vec, self.bounds,
|
1530 |
+
vectorized=True)
|
1531 |
+
|
1532 |
+
# vectorized defers to the workers keyword, check for warning
|
1533 |
+
with warns(UserWarning, match="differential_evolution: the 'workers"):
|
1534 |
+
differential_evolution(quadratic_vec, self.bounds,
|
1535 |
+
vectorized=True, workers=map,
|
1536 |
+
updating='deferred')
|
1537 |
+
|
1538 |
+
ncalls = [0]
|
1539 |
+
|
1540 |
+
def rosen_vec(x):
|
1541 |
+
ncalls[0] += 1
|
1542 |
+
return rosen(x)
|
1543 |
+
|
1544 |
+
bounds = [(0, 10), (0, 10)]
|
1545 |
+
res1 = differential_evolution(rosen, bounds, updating='deferred',
|
1546 |
+
seed=1)
|
1547 |
+
res2 = differential_evolution(rosen_vec, bounds, vectorized=True,
|
1548 |
+
updating='deferred', seed=1)
|
1549 |
+
|
1550 |
+
# the two minimisation runs should be functionally equivalent
|
1551 |
+
assert_allclose(res1.x, res2.x)
|
1552 |
+
assert ncalls[0] == res2.nfev
|
1553 |
+
assert res1.nit == res2.nit
|
1554 |
+
|
1555 |
+
def test_vectorized_constraints(self):
|
1556 |
+
def constr_f(x):
|
1557 |
+
return np.array([x[0] + x[1]])
|
1558 |
+
|
1559 |
+
def constr_f2(x):
|
1560 |
+
return np.array([x[0]**2 + x[1], x[0] - x[1]])
|
1561 |
+
|
1562 |
+
nlc1 = NonlinearConstraint(constr_f, -np.inf, 1.9)
|
1563 |
+
nlc2 = NonlinearConstraint(constr_f2, (0.9, 0.5), (2.0, 2.0))
|
1564 |
+
|
1565 |
+
def rosen_vec(x):
|
1566 |
+
# accept an (len(x0), S) array, returning a (S,) array
|
1567 |
+
v = 100 * (x[1:] - x[:-1]**2.0)**2.0
|
1568 |
+
v += (1 - x[:-1])**2.0
|
1569 |
+
return np.squeeze(v)
|
1570 |
+
|
1571 |
+
bounds = [(0, 10), (0, 10)]
|
1572 |
+
|
1573 |
+
res1 = differential_evolution(rosen, bounds, updating='deferred',
|
1574 |
+
seed=1, constraints=[nlc1, nlc2],
|
1575 |
+
polish=False)
|
1576 |
+
res2 = differential_evolution(rosen_vec, bounds, vectorized=True,
|
1577 |
+
updating='deferred', seed=1,
|
1578 |
+
constraints=[nlc1, nlc2],
|
1579 |
+
polish=False)
|
1580 |
+
# the two minimisation runs should be functionally equivalent
|
1581 |
+
assert_allclose(res1.x, res2.x)
|
1582 |
+
|
1583 |
+
def test_constraint_violation_error_message(self):
|
1584 |
+
|
1585 |
+
def func(x):
|
1586 |
+
return np.cos(x[0]) + np.sin(x[1])
|
1587 |
+
|
1588 |
+
# Intentionally infeasible constraints.
|
1589 |
+
c0 = NonlinearConstraint(lambda x: x[1] - (x[0]-1)**2, 0, np.inf)
|
1590 |
+
c1 = NonlinearConstraint(lambda x: x[1] + x[0]**2, -np.inf, 0)
|
1591 |
+
|
1592 |
+
result = differential_evolution(func,
|
1593 |
+
bounds=[(-1, 2), (-1, 1)],
|
1594 |
+
constraints=[c0, c1],
|
1595 |
+
maxiter=10,
|
1596 |
+
polish=False,
|
1597 |
+
seed=864197532)
|
1598 |
+
assert result.success is False
|
1599 |
+
# The numerical value in the error message might be sensitive to
|
1600 |
+
# changes in the implementation. It can be updated if the code is
|
1601 |
+
# changed. The essential part of the test is that there is a number
|
1602 |
+
# after the '=', so if necessary, the text could be reduced to, say,
|
1603 |
+
# "MAXCV = 0.".
|
1604 |
+
assert "MAXCV = 0.414" in result.message
|
1605 |
+
|
1606 |
+
def test_strategy_fn(self):
|
1607 |
+
# examines ability to customize strategy by mimicking one of the
|
1608 |
+
# in-built strategies and comparing to the actual in-built strategy.
|
1609 |
+
parameter_count = 4
|
1610 |
+
popsize = 10
|
1611 |
+
bounds = [(0, 10.)] * parameter_count
|
1612 |
+
total_popsize = parameter_count * popsize
|
1613 |
+
mutation = 0.8
|
1614 |
+
recombination = 0.7
|
1615 |
+
|
1616 |
+
def custom_strategy_fn(candidate, population, rng=None):
|
1617 |
+
trial = np.copy(population[candidate])
|
1618 |
+
fill_point = rng.choice(parameter_count)
|
1619 |
+
|
1620 |
+
pool = np.arange(total_popsize)
|
1621 |
+
rng.shuffle(pool)
|
1622 |
+
|
1623 |
+
idxs = []
|
1624 |
+
while len(idxs) < 2 and len(pool) > 0:
|
1625 |
+
idx = pool[0]
|
1626 |
+
pool = pool[1:]
|
1627 |
+
if idx != candidate:
|
1628 |
+
idxs.append(idx)
|
1629 |
+
|
1630 |
+
r0, r1 = idxs[:2]
|
1631 |
+
|
1632 |
+
bprime = (population[0] + mutation *
|
1633 |
+
(population[r0] - population[r1]))
|
1634 |
+
|
1635 |
+
crossovers = rng.uniform(size=parameter_count)
|
1636 |
+
crossovers = crossovers < recombination
|
1637 |
+
crossovers[fill_point] = True
|
1638 |
+
trial = np.where(crossovers, bprime, trial)
|
1639 |
+
return trial
|
1640 |
+
|
1641 |
+
solver = DifferentialEvolutionSolver(
|
1642 |
+
rosen,
|
1643 |
+
bounds,
|
1644 |
+
popsize=popsize,
|
1645 |
+
recombination=recombination,
|
1646 |
+
mutation=mutation,
|
1647 |
+
maxiter=2,
|
1648 |
+
strategy=custom_strategy_fn,
|
1649 |
+
seed=10,
|
1650 |
+
polish=False
|
1651 |
+
)
|
1652 |
+
assert solver.strategy is custom_strategy_fn
|
1653 |
+
res = solver.solve()
|
1654 |
+
|
1655 |
+
res2 = differential_evolution(
|
1656 |
+
rosen,
|
1657 |
+
bounds,
|
1658 |
+
mutation=mutation,
|
1659 |
+
popsize=popsize,
|
1660 |
+
recombination=recombination,
|
1661 |
+
maxiter=2,
|
1662 |
+
strategy='best1bin',
|
1663 |
+
polish=False,
|
1664 |
+
seed=10
|
1665 |
+
)
|
1666 |
+
assert_allclose(res.population, res2.population)
|
1667 |
+
assert_allclose(res.x, res2.x)
|
1668 |
+
|
1669 |
+
def custom_strategy_fn(candidate, population, rng=None):
|
1670 |
+
return np.array([1.0, 2.0])
|
1671 |
+
|
1672 |
+
with pytest.raises(RuntimeError, match="strategy*"):
|
1673 |
+
differential_evolution(
|
1674 |
+
rosen,
|
1675 |
+
bounds,
|
1676 |
+
strategy=custom_strategy_fn
|
1677 |
+
)
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/tests/test__dual_annealing.py
ADDED
@@ -0,0 +1,379 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Dual annealing unit tests implementation.
|
2 |
+
# Copyright (c) 2018 Sylvain Gubian <[email protected]>,
|
3 |
+
# Yang Xiang <[email protected]>
|
4 |
+
# Author: Sylvain Gubian, PMP S.A.
|
5 |
+
"""
|
6 |
+
Unit tests for the dual annealing global optimizer
|
7 |
+
"""
|
8 |
+
from scipy.optimize import dual_annealing, Bounds
|
9 |
+
|
10 |
+
from scipy.optimize._dual_annealing import EnergyState
|
11 |
+
from scipy.optimize._dual_annealing import LocalSearchWrapper
|
12 |
+
from scipy.optimize._dual_annealing import ObjectiveFunWrapper
|
13 |
+
from scipy.optimize._dual_annealing import StrategyChain
|
14 |
+
from scipy.optimize._dual_annealing import VisitingDistribution
|
15 |
+
from scipy.optimize import rosen, rosen_der
|
16 |
+
import pytest
|
17 |
+
import numpy as np
|
18 |
+
from numpy.testing import assert_equal, assert_allclose, assert_array_less
|
19 |
+
from pytest import raises as assert_raises
|
20 |
+
from scipy._lib._util import check_random_state
|
21 |
+
|
22 |
+
|
23 |
+
class TestDualAnnealing:
|
24 |
+
|
25 |
+
def setup_method(self):
|
26 |
+
# A function that returns always infinity for initialization tests
|
27 |
+
self.weirdfunc = lambda x: np.inf
|
28 |
+
# 2-D bounds for testing function
|
29 |
+
self.ld_bounds = [(-5.12, 5.12)] * 2
|
30 |
+
# 4-D bounds for testing function
|
31 |
+
self.hd_bounds = self.ld_bounds * 4
|
32 |
+
# Number of values to be generated for testing visit function
|
33 |
+
self.nbtestvalues = 5000
|
34 |
+
self.high_temperature = 5230
|
35 |
+
self.low_temperature = 0.1
|
36 |
+
self.qv = 2.62
|
37 |
+
self.seed = 1234
|
38 |
+
self.rs = check_random_state(self.seed)
|
39 |
+
self.nb_fun_call = 0
|
40 |
+
self.ngev = 0
|
41 |
+
|
42 |
+
def callback(self, x, f, context):
|
43 |
+
# For testing callback mechanism. Should stop for e <= 1 as
|
44 |
+
# the callback function returns True
|
45 |
+
if f <= 1.0:
|
46 |
+
return True
|
47 |
+
|
48 |
+
def func(self, x, args=()):
|
49 |
+
# Using Rastrigin function for performing tests
|
50 |
+
if args:
|
51 |
+
shift = args
|
52 |
+
else:
|
53 |
+
shift = 0
|
54 |
+
y = np.sum((x - shift) ** 2 - 10 * np.cos(2 * np.pi * (
|
55 |
+
x - shift))) + 10 * np.size(x) + shift
|
56 |
+
self.nb_fun_call += 1
|
57 |
+
return y
|
58 |
+
|
59 |
+
def rosen_der_wrapper(self, x, args=()):
|
60 |
+
self.ngev += 1
|
61 |
+
return rosen_der(x, *args)
|
62 |
+
|
63 |
+
# FIXME: there are some discontinuities in behaviour as a function of `qv`,
|
64 |
+
# this needs investigating - see gh-12384
|
65 |
+
@pytest.mark.parametrize('qv', [1.1, 1.41, 2, 2.62, 2.9])
|
66 |
+
def test_visiting_stepping(self, qv):
|
67 |
+
lu = list(zip(*self.ld_bounds))
|
68 |
+
lower = np.array(lu[0])
|
69 |
+
upper = np.array(lu[1])
|
70 |
+
dim = lower.size
|
71 |
+
vd = VisitingDistribution(lower, upper, qv, self.rs)
|
72 |
+
values = np.zeros(dim)
|
73 |
+
x_step_low = vd.visiting(values, 0, self.high_temperature)
|
74 |
+
# Make sure that only the first component is changed
|
75 |
+
assert_equal(np.not_equal(x_step_low, 0), True)
|
76 |
+
values = np.zeros(dim)
|
77 |
+
x_step_high = vd.visiting(values, dim, self.high_temperature)
|
78 |
+
# Make sure that component other than at dim has changed
|
79 |
+
assert_equal(np.not_equal(x_step_high[0], 0), True)
|
80 |
+
|
81 |
+
@pytest.mark.parametrize('qv', [2.25, 2.62, 2.9])
|
82 |
+
def test_visiting_dist_high_temperature(self, qv):
|
83 |
+
lu = list(zip(*self.ld_bounds))
|
84 |
+
lower = np.array(lu[0])
|
85 |
+
upper = np.array(lu[1])
|
86 |
+
vd = VisitingDistribution(lower, upper, qv, self.rs)
|
87 |
+
# values = np.zeros(self.nbtestvalues)
|
88 |
+
# for i in np.arange(self.nbtestvalues):
|
89 |
+
# values[i] = vd.visit_fn(self.high_temperature)
|
90 |
+
values = vd.visit_fn(self.high_temperature, self.nbtestvalues)
|
91 |
+
|
92 |
+
# Visiting distribution is a distorted version of Cauchy-Lorentz
|
93 |
+
# distribution, and as no 1st and higher moments (no mean defined,
|
94 |
+
# no variance defined).
|
95 |
+
# Check that big tails values are generated
|
96 |
+
assert_array_less(np.min(values), 1e-10)
|
97 |
+
assert_array_less(1e+10, np.max(values))
|
98 |
+
|
99 |
+
def test_reset(self):
|
100 |
+
owf = ObjectiveFunWrapper(self.weirdfunc)
|
101 |
+
lu = list(zip(*self.ld_bounds))
|
102 |
+
lower = np.array(lu[0])
|
103 |
+
upper = np.array(lu[1])
|
104 |
+
es = EnergyState(lower, upper)
|
105 |
+
assert_raises(ValueError, es.reset, owf, check_random_state(None))
|
106 |
+
|
107 |
+
def test_low_dim(self):
|
108 |
+
ret = dual_annealing(
|
109 |
+
self.func, self.ld_bounds, seed=self.seed)
|
110 |
+
assert_allclose(ret.fun, 0., atol=1e-12)
|
111 |
+
assert ret.success
|
112 |
+
|
113 |
+
def test_high_dim(self):
|
114 |
+
ret = dual_annealing(self.func, self.hd_bounds, seed=self.seed)
|
115 |
+
assert_allclose(ret.fun, 0., atol=1e-12)
|
116 |
+
assert ret.success
|
117 |
+
|
118 |
+
def test_low_dim_no_ls(self):
|
119 |
+
ret = dual_annealing(self.func, self.ld_bounds,
|
120 |
+
no_local_search=True, seed=self.seed)
|
121 |
+
assert_allclose(ret.fun, 0., atol=1e-4)
|
122 |
+
|
123 |
+
def test_high_dim_no_ls(self):
|
124 |
+
ret = dual_annealing(self.func, self.hd_bounds,
|
125 |
+
no_local_search=True, seed=self.seed)
|
126 |
+
assert_allclose(ret.fun, 0., atol=1e-4)
|
127 |
+
|
128 |
+
def test_nb_fun_call(self):
|
129 |
+
ret = dual_annealing(self.func, self.ld_bounds, seed=self.seed)
|
130 |
+
assert_equal(self.nb_fun_call, ret.nfev)
|
131 |
+
|
132 |
+
def test_nb_fun_call_no_ls(self):
|
133 |
+
ret = dual_annealing(self.func, self.ld_bounds,
|
134 |
+
no_local_search=True, seed=self.seed)
|
135 |
+
assert_equal(self.nb_fun_call, ret.nfev)
|
136 |
+
|
137 |
+
def test_max_reinit(self):
|
138 |
+
assert_raises(ValueError, dual_annealing, self.weirdfunc,
|
139 |
+
self.ld_bounds)
|
140 |
+
|
141 |
+
def test_reproduce(self):
|
142 |
+
res1 = dual_annealing(self.func, self.ld_bounds, seed=self.seed)
|
143 |
+
res2 = dual_annealing(self.func, self.ld_bounds, seed=self.seed)
|
144 |
+
res3 = dual_annealing(self.func, self.ld_bounds, seed=self.seed)
|
145 |
+
# If we have reproducible results, x components found has to
|
146 |
+
# be exactly the same, which is not the case with no seeding
|
147 |
+
assert_equal(res1.x, res2.x)
|
148 |
+
assert_equal(res1.x, res3.x)
|
149 |
+
|
150 |
+
def test_rand_gen(self):
|
151 |
+
# check that np.random.Generator can be used (numpy >= 1.17)
|
152 |
+
# obtain a np.random.Generator object
|
153 |
+
rng = np.random.default_rng(1)
|
154 |
+
|
155 |
+
res1 = dual_annealing(self.func, self.ld_bounds, seed=rng)
|
156 |
+
# seed again
|
157 |
+
rng = np.random.default_rng(1)
|
158 |
+
res2 = dual_annealing(self.func, self.ld_bounds, seed=rng)
|
159 |
+
# If we have reproducible results, x components found has to
|
160 |
+
# be exactly the same, which is not the case with no seeding
|
161 |
+
assert_equal(res1.x, res2.x)
|
162 |
+
|
163 |
+
def test_bounds_integrity(self):
|
164 |
+
wrong_bounds = [(-5.12, 5.12), (1, 0), (5.12, 5.12)]
|
165 |
+
assert_raises(ValueError, dual_annealing, self.func,
|
166 |
+
wrong_bounds)
|
167 |
+
|
168 |
+
def test_bound_validity(self):
|
169 |
+
invalid_bounds = [(-5, 5), (-np.inf, 0), (-5, 5)]
|
170 |
+
assert_raises(ValueError, dual_annealing, self.func,
|
171 |
+
invalid_bounds)
|
172 |
+
invalid_bounds = [(-5, 5), (0, np.inf), (-5, 5)]
|
173 |
+
assert_raises(ValueError, dual_annealing, self.func,
|
174 |
+
invalid_bounds)
|
175 |
+
invalid_bounds = [(-5, 5), (0, np.nan), (-5, 5)]
|
176 |
+
assert_raises(ValueError, dual_annealing, self.func,
|
177 |
+
invalid_bounds)
|
178 |
+
|
179 |
+
def test_deprecated_local_search_options_bounds(self):
|
180 |
+
def func(x):
|
181 |
+
return np.sum((x - 5) * (x - 1))
|
182 |
+
bounds = list(zip([-6, -5], [6, 5]))
|
183 |
+
# Test bounds can be passed (see gh-10831)
|
184 |
+
|
185 |
+
with pytest.warns(RuntimeWarning, match=r"Method CG cannot handle "):
|
186 |
+
dual_annealing(
|
187 |
+
func,
|
188 |
+
bounds=bounds,
|
189 |
+
minimizer_kwargs={"method": "CG", "bounds": bounds})
|
190 |
+
|
191 |
+
def test_minimizer_kwargs_bounds(self):
|
192 |
+
def func(x):
|
193 |
+
return np.sum((x - 5) * (x - 1))
|
194 |
+
bounds = list(zip([-6, -5], [6, 5]))
|
195 |
+
# Test bounds can be passed (see gh-10831)
|
196 |
+
dual_annealing(
|
197 |
+
func,
|
198 |
+
bounds=bounds,
|
199 |
+
minimizer_kwargs={"method": "SLSQP", "bounds": bounds})
|
200 |
+
|
201 |
+
with pytest.warns(RuntimeWarning, match=r"Method CG cannot handle "):
|
202 |
+
dual_annealing(
|
203 |
+
func,
|
204 |
+
bounds=bounds,
|
205 |
+
minimizer_kwargs={"method": "CG", "bounds": bounds})
|
206 |
+
|
207 |
+
def test_max_fun_ls(self):
|
208 |
+
ret = dual_annealing(self.func, self.ld_bounds, maxfun=100,
|
209 |
+
seed=self.seed)
|
210 |
+
|
211 |
+
ls_max_iter = min(max(
|
212 |
+
len(self.ld_bounds) * LocalSearchWrapper.LS_MAXITER_RATIO,
|
213 |
+
LocalSearchWrapper.LS_MAXITER_MIN),
|
214 |
+
LocalSearchWrapper.LS_MAXITER_MAX)
|
215 |
+
assert ret.nfev <= 100 + ls_max_iter
|
216 |
+
assert not ret.success
|
217 |
+
|
218 |
+
def test_max_fun_no_ls(self):
|
219 |
+
ret = dual_annealing(self.func, self.ld_bounds,
|
220 |
+
no_local_search=True, maxfun=500, seed=self.seed)
|
221 |
+
assert ret.nfev <= 500
|
222 |
+
assert not ret.success
|
223 |
+
|
224 |
+
def test_maxiter(self):
|
225 |
+
ret = dual_annealing(self.func, self.ld_bounds, maxiter=700,
|
226 |
+
seed=self.seed)
|
227 |
+
assert ret.nit <= 700
|
228 |
+
|
229 |
+
# Testing that args are passed correctly for dual_annealing
|
230 |
+
def test_fun_args_ls(self):
|
231 |
+
ret = dual_annealing(self.func, self.ld_bounds,
|
232 |
+
args=((3.14159,)), seed=self.seed)
|
233 |
+
assert_allclose(ret.fun, 3.14159, atol=1e-6)
|
234 |
+
|
235 |
+
# Testing that args are passed correctly for pure simulated annealing
|
236 |
+
def test_fun_args_no_ls(self):
|
237 |
+
ret = dual_annealing(self.func, self.ld_bounds,
|
238 |
+
args=((3.14159, )), no_local_search=True,
|
239 |
+
seed=self.seed)
|
240 |
+
assert_allclose(ret.fun, 3.14159, atol=1e-4)
|
241 |
+
|
242 |
+
def test_callback_stop(self):
|
243 |
+
# Testing that callback make the algorithm stop for
|
244 |
+
# fun value <= 1.0 (see callback method)
|
245 |
+
ret = dual_annealing(self.func, self.ld_bounds,
|
246 |
+
callback=self.callback, seed=self.seed)
|
247 |
+
assert ret.fun <= 1.0
|
248 |
+
assert 'stop early' in ret.message[0]
|
249 |
+
assert not ret.success
|
250 |
+
|
251 |
+
@pytest.mark.parametrize('method, atol', [
|
252 |
+
('Nelder-Mead', 2e-5),
|
253 |
+
('COBYLA', 1e-5),
|
254 |
+
('Powell', 1e-8),
|
255 |
+
('CG', 1e-8),
|
256 |
+
('BFGS', 1e-8),
|
257 |
+
('TNC', 1e-8),
|
258 |
+
('SLSQP', 2e-7),
|
259 |
+
])
|
260 |
+
def test_multi_ls_minimizer(self, method, atol):
|
261 |
+
ret = dual_annealing(self.func, self.ld_bounds,
|
262 |
+
minimizer_kwargs=dict(method=method),
|
263 |
+
seed=self.seed)
|
264 |
+
assert_allclose(ret.fun, 0., atol=atol)
|
265 |
+
|
266 |
+
def test_wrong_restart_temp(self):
|
267 |
+
assert_raises(ValueError, dual_annealing, self.func,
|
268 |
+
self.ld_bounds, restart_temp_ratio=1)
|
269 |
+
assert_raises(ValueError, dual_annealing, self.func,
|
270 |
+
self.ld_bounds, restart_temp_ratio=0)
|
271 |
+
|
272 |
+
def test_gradient_gnev(self):
|
273 |
+
minimizer_opts = {
|
274 |
+
'jac': self.rosen_der_wrapper,
|
275 |
+
}
|
276 |
+
ret = dual_annealing(rosen, self.ld_bounds,
|
277 |
+
minimizer_kwargs=minimizer_opts,
|
278 |
+
seed=self.seed)
|
279 |
+
assert ret.njev == self.ngev
|
280 |
+
|
281 |
+
def test_from_docstring(self):
|
282 |
+
def func(x):
|
283 |
+
return np.sum(x * x - 10 * np.cos(2 * np.pi * x)) + 10 * np.size(x)
|
284 |
+
lw = [-5.12] * 10
|
285 |
+
up = [5.12] * 10
|
286 |
+
ret = dual_annealing(func, bounds=list(zip(lw, up)), seed=1234)
|
287 |
+
assert_allclose(ret.x,
|
288 |
+
[-4.26437714e-09, -3.91699361e-09, -1.86149218e-09,
|
289 |
+
-3.97165720e-09, -6.29151648e-09, -6.53145322e-09,
|
290 |
+
-3.93616815e-09, -6.55623025e-09, -6.05775280e-09,
|
291 |
+
-5.00668935e-09], atol=4e-8)
|
292 |
+
assert_allclose(ret.fun, 0.000000, atol=5e-13)
|
293 |
+
|
294 |
+
@pytest.mark.parametrize('new_e, temp_step, accepted, accept_rate', [
|
295 |
+
(0, 100, 1000, 1.0097587941791923),
|
296 |
+
(0, 2, 1000, 1.2599210498948732),
|
297 |
+
(10, 100, 878, 0.8786035869128718),
|
298 |
+
(10, 60, 695, 0.6812920690579612),
|
299 |
+
(2, 100, 990, 0.9897404249173424),
|
300 |
+
])
|
301 |
+
def test_accept_reject_probabilistic(
|
302 |
+
self, new_e, temp_step, accepted, accept_rate):
|
303 |
+
# Test accepts unconditionally with e < current_energy and
|
304 |
+
# probabilistically with e > current_energy
|
305 |
+
|
306 |
+
rs = check_random_state(123)
|
307 |
+
|
308 |
+
count_accepted = 0
|
309 |
+
iterations = 1000
|
310 |
+
|
311 |
+
accept_param = -5
|
312 |
+
current_energy = 1
|
313 |
+
for _ in range(iterations):
|
314 |
+
energy_state = EnergyState(lower=None, upper=None)
|
315 |
+
# Set energy state with current_energy, any location.
|
316 |
+
energy_state.update_current(current_energy, [0])
|
317 |
+
|
318 |
+
chain = StrategyChain(
|
319 |
+
accept_param, None, None, None, rs, energy_state)
|
320 |
+
# Normally this is set in run()
|
321 |
+
chain.temperature_step = temp_step
|
322 |
+
|
323 |
+
# Check if update is accepted.
|
324 |
+
chain.accept_reject(j=1, e=new_e, x_visit=[2])
|
325 |
+
if energy_state.current_energy == new_e:
|
326 |
+
count_accepted += 1
|
327 |
+
|
328 |
+
assert count_accepted == accepted
|
329 |
+
|
330 |
+
# Check accept rate
|
331 |
+
pqv = 1 - (1 - accept_param) * (new_e - current_energy) / temp_step
|
332 |
+
rate = 0 if pqv <= 0 else np.exp(np.log(pqv) / (1 - accept_param))
|
333 |
+
|
334 |
+
assert_allclose(rate, accept_rate)
|
335 |
+
|
336 |
+
def test_bounds_class(self):
|
337 |
+
# test that result does not depend on the bounds type
|
338 |
+
def func(x):
|
339 |
+
f = np.sum(x * x - 10 * np.cos(2 * np.pi * x)) + 10 * np.size(x)
|
340 |
+
return f
|
341 |
+
lw = [-5.12] * 5
|
342 |
+
up = [5.12] * 5
|
343 |
+
|
344 |
+
# Unbounded global minimum is all zeros. Most bounds below will force
|
345 |
+
# a DV away from unbounded minimum and be active at solution.
|
346 |
+
up[0] = -2.0
|
347 |
+
up[1] = -1.0
|
348 |
+
lw[3] = 1.0
|
349 |
+
lw[4] = 2.0
|
350 |
+
|
351 |
+
# run optimizations
|
352 |
+
bounds = Bounds(lw, up)
|
353 |
+
ret_bounds_class = dual_annealing(func, bounds=bounds, seed=1234)
|
354 |
+
|
355 |
+
bounds_old = list(zip(lw, up))
|
356 |
+
ret_bounds_list = dual_annealing(func, bounds=bounds_old, seed=1234)
|
357 |
+
|
358 |
+
# test that found minima, function evaluations and iterations match
|
359 |
+
assert_allclose(ret_bounds_class.x, ret_bounds_list.x, atol=1e-8)
|
360 |
+
assert_allclose(ret_bounds_class.x, np.arange(-2, 3), atol=1e-7)
|
361 |
+
assert_allclose(ret_bounds_list.fun, ret_bounds_class.fun, atol=1e-9)
|
362 |
+
assert ret_bounds_list.nfev == ret_bounds_class.nfev
|
363 |
+
|
364 |
+
def test_callable_jac_with_args_gh11052(self):
|
365 |
+
# dual_annealing used to fail when `jac` was callable and `args` were
|
366 |
+
# used; check that this is resolved. Example is from gh-11052.
|
367 |
+
rng = np.random.default_rng(94253637693657847462)
|
368 |
+
def f(x, power):
|
369 |
+
return np.sum(np.exp(x ** power))
|
370 |
+
|
371 |
+
def jac(x, power):
|
372 |
+
return np.exp(x ** power) * power * x ** (power - 1)
|
373 |
+
|
374 |
+
res1 = dual_annealing(f, args=(2, ), bounds=[[0, 1], [0, 1]], seed=rng,
|
375 |
+
minimizer_kwargs=dict(method='L-BFGS-B'))
|
376 |
+
res2 = dual_annealing(f, args=(2, ), bounds=[[0, 1], [0, 1]], seed=rng,
|
377 |
+
minimizer_kwargs=dict(method='L-BFGS-B',
|
378 |
+
jac=jac))
|
379 |
+
assert_allclose(res1.fun, res2.fun, rtol=1e-6)
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/tests/test__linprog_clean_inputs.py
ADDED
@@ -0,0 +1,310 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Unit test for Linear Programming via Simplex Algorithm.
|
3 |
+
"""
|
4 |
+
import numpy as np
|
5 |
+
from numpy.testing import assert_, assert_allclose, assert_equal
|
6 |
+
from pytest import raises as assert_raises
|
7 |
+
from scipy.optimize._linprog_util import _clean_inputs, _LPProblem
|
8 |
+
from scipy._lib._util import VisibleDeprecationWarning
|
9 |
+
from copy import deepcopy
|
10 |
+
from datetime import date
|
11 |
+
|
12 |
+
|
13 |
+
def test_aliasing():
|
14 |
+
"""
|
15 |
+
Test for ensuring that no objects referred to by `lp` attributes,
|
16 |
+
`c`, `A_ub`, `b_ub`, `A_eq`, `b_eq`, `bounds`, have been modified
|
17 |
+
by `_clean_inputs` as a side effect.
|
18 |
+
"""
|
19 |
+
lp = _LPProblem(
|
20 |
+
c=1,
|
21 |
+
A_ub=[[1]],
|
22 |
+
b_ub=[1],
|
23 |
+
A_eq=[[1]],
|
24 |
+
b_eq=[1],
|
25 |
+
bounds=(-np.inf, np.inf)
|
26 |
+
)
|
27 |
+
lp_copy = deepcopy(lp)
|
28 |
+
|
29 |
+
_clean_inputs(lp)
|
30 |
+
|
31 |
+
assert_(lp.c == lp_copy.c, "c modified by _clean_inputs")
|
32 |
+
assert_(lp.A_ub == lp_copy.A_ub, "A_ub modified by _clean_inputs")
|
33 |
+
assert_(lp.b_ub == lp_copy.b_ub, "b_ub modified by _clean_inputs")
|
34 |
+
assert_(lp.A_eq == lp_copy.A_eq, "A_eq modified by _clean_inputs")
|
35 |
+
assert_(lp.b_eq == lp_copy.b_eq, "b_eq modified by _clean_inputs")
|
36 |
+
assert_(lp.bounds == lp_copy.bounds, "bounds modified by _clean_inputs")
|
37 |
+
|
38 |
+
|
39 |
+
def test_aliasing2():
|
40 |
+
"""
|
41 |
+
Similar purpose as `test_aliasing` above.
|
42 |
+
"""
|
43 |
+
lp = _LPProblem(
|
44 |
+
c=np.array([1, 1]),
|
45 |
+
A_ub=np.array([[1, 1], [2, 2]]),
|
46 |
+
b_ub=np.array([[1], [1]]),
|
47 |
+
A_eq=np.array([[1, 1]]),
|
48 |
+
b_eq=np.array([1]),
|
49 |
+
bounds=[(-np.inf, np.inf), (None, 1)]
|
50 |
+
)
|
51 |
+
lp_copy = deepcopy(lp)
|
52 |
+
|
53 |
+
_clean_inputs(lp)
|
54 |
+
|
55 |
+
assert_allclose(lp.c, lp_copy.c, err_msg="c modified by _clean_inputs")
|
56 |
+
assert_allclose(lp.A_ub, lp_copy.A_ub, err_msg="A_ub modified by _clean_inputs")
|
57 |
+
assert_allclose(lp.b_ub, lp_copy.b_ub, err_msg="b_ub modified by _clean_inputs")
|
58 |
+
assert_allclose(lp.A_eq, lp_copy.A_eq, err_msg="A_eq modified by _clean_inputs")
|
59 |
+
assert_allclose(lp.b_eq, lp_copy.b_eq, err_msg="b_eq modified by _clean_inputs")
|
60 |
+
assert_(lp.bounds == lp_copy.bounds, "bounds modified by _clean_inputs")
|
61 |
+
|
62 |
+
|
63 |
+
def test_missing_inputs():
|
64 |
+
c = [1, 2]
|
65 |
+
A_ub = np.array([[1, 1], [2, 2]])
|
66 |
+
b_ub = np.array([1, 1])
|
67 |
+
A_eq = np.array([[1, 1], [2, 2]])
|
68 |
+
b_eq = np.array([1, 1])
|
69 |
+
|
70 |
+
assert_raises(TypeError, _clean_inputs)
|
71 |
+
assert_raises(TypeError, _clean_inputs, _LPProblem(c=None))
|
72 |
+
assert_raises(ValueError, _clean_inputs, _LPProblem(c=c, A_ub=A_ub))
|
73 |
+
assert_raises(ValueError, _clean_inputs, _LPProblem(c=c, A_ub=A_ub, b_ub=None))
|
74 |
+
assert_raises(ValueError, _clean_inputs, _LPProblem(c=c, b_ub=b_ub))
|
75 |
+
assert_raises(ValueError, _clean_inputs, _LPProblem(c=c, A_ub=None, b_ub=b_ub))
|
76 |
+
assert_raises(ValueError, _clean_inputs, _LPProblem(c=c, A_eq=A_eq))
|
77 |
+
assert_raises(ValueError, _clean_inputs, _LPProblem(c=c, A_eq=A_eq, b_eq=None))
|
78 |
+
assert_raises(ValueError, _clean_inputs, _LPProblem(c=c, b_eq=b_eq))
|
79 |
+
assert_raises(ValueError, _clean_inputs, _LPProblem(c=c, A_eq=None, b_eq=b_eq))
|
80 |
+
|
81 |
+
|
82 |
+
def test_too_many_dimensions():
|
83 |
+
cb = [1, 2, 3, 4]
|
84 |
+
A = np.random.rand(4, 4)
|
85 |
+
bad2D = [[1, 2], [3, 4]]
|
86 |
+
bad3D = np.random.rand(4, 4, 4)
|
87 |
+
assert_raises(ValueError, _clean_inputs, _LPProblem(c=bad2D, A_ub=A, b_ub=cb))
|
88 |
+
assert_raises(ValueError, _clean_inputs, _LPProblem(c=cb, A_ub=bad3D, b_ub=cb))
|
89 |
+
assert_raises(ValueError, _clean_inputs, _LPProblem(c=cb, A_ub=A, b_ub=bad2D))
|
90 |
+
assert_raises(ValueError, _clean_inputs, _LPProblem(c=cb, A_eq=bad3D, b_eq=cb))
|
91 |
+
assert_raises(ValueError, _clean_inputs, _LPProblem(c=cb, A_eq=A, b_eq=bad2D))
|
92 |
+
|
93 |
+
|
94 |
+
def test_too_few_dimensions():
|
95 |
+
bad = np.random.rand(4, 4).ravel()
|
96 |
+
cb = np.random.rand(4)
|
97 |
+
assert_raises(ValueError, _clean_inputs, _LPProblem(c=cb, A_ub=bad, b_ub=cb))
|
98 |
+
assert_raises(ValueError, _clean_inputs, _LPProblem(c=cb, A_eq=bad, b_eq=cb))
|
99 |
+
|
100 |
+
|
101 |
+
def test_inconsistent_dimensions():
|
102 |
+
m = 2
|
103 |
+
n = 4
|
104 |
+
c = [1, 2, 3, 4]
|
105 |
+
|
106 |
+
Agood = np.random.rand(m, n)
|
107 |
+
Abad = np.random.rand(m, n + 1)
|
108 |
+
bgood = np.random.rand(m)
|
109 |
+
bbad = np.random.rand(m + 1)
|
110 |
+
boundsbad = [(0, 1)] * (n + 1)
|
111 |
+
assert_raises(ValueError, _clean_inputs, _LPProblem(c=c, A_ub=Abad, b_ub=bgood))
|
112 |
+
assert_raises(ValueError, _clean_inputs, _LPProblem(c=c, A_ub=Agood, b_ub=bbad))
|
113 |
+
assert_raises(ValueError, _clean_inputs, _LPProblem(c=c, A_eq=Abad, b_eq=bgood))
|
114 |
+
assert_raises(ValueError, _clean_inputs, _LPProblem(c=c, A_eq=Agood, b_eq=bbad))
|
115 |
+
assert_raises(ValueError, _clean_inputs, _LPProblem(c=c, bounds=boundsbad))
|
116 |
+
with np.testing.suppress_warnings() as sup:
|
117 |
+
sup.filter(VisibleDeprecationWarning, "Creating an ndarray from ragged")
|
118 |
+
assert_raises(ValueError, _clean_inputs,
|
119 |
+
_LPProblem(c=c, bounds=[[1, 2], [2, 3], [3, 4], [4, 5, 6]]))
|
120 |
+
|
121 |
+
|
122 |
+
def test_type_errors():
|
123 |
+
lp = _LPProblem(
|
124 |
+
c=[1, 2],
|
125 |
+
A_ub=np.array([[1, 1], [2, 2]]),
|
126 |
+
b_ub=np.array([1, 1]),
|
127 |
+
A_eq=np.array([[1, 1], [2, 2]]),
|
128 |
+
b_eq=np.array([1, 1]),
|
129 |
+
bounds=[(0, 1)]
|
130 |
+
)
|
131 |
+
bad = "hello"
|
132 |
+
|
133 |
+
assert_raises(TypeError, _clean_inputs, lp._replace(c=bad))
|
134 |
+
assert_raises(TypeError, _clean_inputs, lp._replace(A_ub=bad))
|
135 |
+
assert_raises(TypeError, _clean_inputs, lp._replace(b_ub=bad))
|
136 |
+
assert_raises(TypeError, _clean_inputs, lp._replace(A_eq=bad))
|
137 |
+
assert_raises(TypeError, _clean_inputs, lp._replace(b_eq=bad))
|
138 |
+
|
139 |
+
assert_raises(ValueError, _clean_inputs, lp._replace(bounds=bad))
|
140 |
+
assert_raises(ValueError, _clean_inputs, lp._replace(bounds="hi"))
|
141 |
+
assert_raises(ValueError, _clean_inputs, lp._replace(bounds=["hi"]))
|
142 |
+
assert_raises(ValueError, _clean_inputs, lp._replace(bounds=[("hi")]))
|
143 |
+
assert_raises(ValueError, _clean_inputs, lp._replace(bounds=[(1, "")]))
|
144 |
+
assert_raises(ValueError, _clean_inputs, lp._replace(bounds=[(1, 2), (1, "")]))
|
145 |
+
assert_raises(TypeError, _clean_inputs,
|
146 |
+
lp._replace(bounds=[(1, date(2020, 2, 29))]))
|
147 |
+
assert_raises(ValueError, _clean_inputs, lp._replace(bounds=[[[1, 2]]]))
|
148 |
+
|
149 |
+
|
150 |
+
def test_non_finite_errors():
|
151 |
+
lp = _LPProblem(
|
152 |
+
c=[1, 2],
|
153 |
+
A_ub=np.array([[1, 1], [2, 2]]),
|
154 |
+
b_ub=np.array([1, 1]),
|
155 |
+
A_eq=np.array([[1, 1], [2, 2]]),
|
156 |
+
b_eq=np.array([1, 1]),
|
157 |
+
bounds=[(0, 1)]
|
158 |
+
)
|
159 |
+
assert_raises(ValueError, _clean_inputs, lp._replace(c=[0, None]))
|
160 |
+
assert_raises(ValueError, _clean_inputs, lp._replace(c=[np.inf, 0]))
|
161 |
+
assert_raises(ValueError, _clean_inputs, lp._replace(c=[0, -np.inf]))
|
162 |
+
assert_raises(ValueError, _clean_inputs, lp._replace(c=[np.nan, 0]))
|
163 |
+
|
164 |
+
assert_raises(ValueError, _clean_inputs, lp._replace(A_ub=[[1, 2], [None, 1]]))
|
165 |
+
assert_raises(ValueError, _clean_inputs, lp._replace(b_ub=[np.inf, 1]))
|
166 |
+
assert_raises(ValueError, _clean_inputs, lp._replace(A_eq=[[1, 2], [1, -np.inf]]))
|
167 |
+
assert_raises(ValueError, _clean_inputs, lp._replace(b_eq=[1, np.nan]))
|
168 |
+
|
169 |
+
|
170 |
+
def test__clean_inputs1():
|
171 |
+
lp = _LPProblem(
|
172 |
+
c=[1, 2],
|
173 |
+
A_ub=[[1, 1], [2, 2]],
|
174 |
+
b_ub=[1, 1],
|
175 |
+
A_eq=[[1, 1], [2, 2]],
|
176 |
+
b_eq=[1, 1],
|
177 |
+
bounds=None
|
178 |
+
)
|
179 |
+
|
180 |
+
lp_cleaned = _clean_inputs(lp)
|
181 |
+
|
182 |
+
assert_allclose(lp_cleaned.c, np.array(lp.c))
|
183 |
+
assert_allclose(lp_cleaned.A_ub, np.array(lp.A_ub))
|
184 |
+
assert_allclose(lp_cleaned.b_ub, np.array(lp.b_ub))
|
185 |
+
assert_allclose(lp_cleaned.A_eq, np.array(lp.A_eq))
|
186 |
+
assert_allclose(lp_cleaned.b_eq, np.array(lp.b_eq))
|
187 |
+
assert_equal(lp_cleaned.bounds, [(0, np.inf)] * 2)
|
188 |
+
|
189 |
+
assert_(lp_cleaned.c.shape == (2,), "")
|
190 |
+
assert_(lp_cleaned.A_ub.shape == (2, 2), "")
|
191 |
+
assert_(lp_cleaned.b_ub.shape == (2,), "")
|
192 |
+
assert_(lp_cleaned.A_eq.shape == (2, 2), "")
|
193 |
+
assert_(lp_cleaned.b_eq.shape == (2,), "")
|
194 |
+
|
195 |
+
|
196 |
+
def test__clean_inputs2():
|
197 |
+
lp = _LPProblem(
|
198 |
+
c=1,
|
199 |
+
A_ub=[[1]],
|
200 |
+
b_ub=1,
|
201 |
+
A_eq=[[1]],
|
202 |
+
b_eq=1,
|
203 |
+
bounds=(0, 1)
|
204 |
+
)
|
205 |
+
|
206 |
+
lp_cleaned = _clean_inputs(lp)
|
207 |
+
|
208 |
+
assert_allclose(lp_cleaned.c, np.array(lp.c))
|
209 |
+
assert_allclose(lp_cleaned.A_ub, np.array(lp.A_ub))
|
210 |
+
assert_allclose(lp_cleaned.b_ub, np.array(lp.b_ub))
|
211 |
+
assert_allclose(lp_cleaned.A_eq, np.array(lp.A_eq))
|
212 |
+
assert_allclose(lp_cleaned.b_eq, np.array(lp.b_eq))
|
213 |
+
assert_equal(lp_cleaned.bounds, [(0, 1)])
|
214 |
+
|
215 |
+
assert_(lp_cleaned.c.shape == (1,), "")
|
216 |
+
assert_(lp_cleaned.A_ub.shape == (1, 1), "")
|
217 |
+
assert_(lp_cleaned.b_ub.shape == (1,), "")
|
218 |
+
assert_(lp_cleaned.A_eq.shape == (1, 1), "")
|
219 |
+
assert_(lp_cleaned.b_eq.shape == (1,), "")
|
220 |
+
|
221 |
+
|
222 |
+
def test__clean_inputs3():
|
223 |
+
lp = _LPProblem(
|
224 |
+
c=[[1, 2]],
|
225 |
+
A_ub=np.random.rand(2, 2),
|
226 |
+
b_ub=[[1], [2]],
|
227 |
+
A_eq=np.random.rand(2, 2),
|
228 |
+
b_eq=[[1], [2]],
|
229 |
+
bounds=[(0, 1)]
|
230 |
+
)
|
231 |
+
|
232 |
+
lp_cleaned = _clean_inputs(lp)
|
233 |
+
|
234 |
+
assert_allclose(lp_cleaned.c, np.array([1, 2]))
|
235 |
+
assert_allclose(lp_cleaned.b_ub, np.array([1, 2]))
|
236 |
+
assert_allclose(lp_cleaned.b_eq, np.array([1, 2]))
|
237 |
+
assert_equal(lp_cleaned.bounds, [(0, 1)] * 2)
|
238 |
+
|
239 |
+
assert_(lp_cleaned.c.shape == (2,), "")
|
240 |
+
assert_(lp_cleaned.b_ub.shape == (2,), "")
|
241 |
+
assert_(lp_cleaned.b_eq.shape == (2,), "")
|
242 |
+
|
243 |
+
|
244 |
+
def test_bad_bounds():
|
245 |
+
lp = _LPProblem(c=[1, 2])
|
246 |
+
|
247 |
+
assert_raises(ValueError, _clean_inputs, lp._replace(bounds=(1, 2, 2)))
|
248 |
+
assert_raises(ValueError, _clean_inputs, lp._replace(bounds=[(1, 2, 2)]))
|
249 |
+
with np.testing.suppress_warnings() as sup:
|
250 |
+
sup.filter(VisibleDeprecationWarning, "Creating an ndarray from ragged")
|
251 |
+
assert_raises(ValueError, _clean_inputs,
|
252 |
+
lp._replace(bounds=[(1, 2), (1, 2, 2)]))
|
253 |
+
assert_raises(ValueError, _clean_inputs,
|
254 |
+
lp._replace(bounds=[(1, 2), (1, 2), (1, 2)]))
|
255 |
+
|
256 |
+
lp = _LPProblem(c=[1, 2, 3, 4])
|
257 |
+
|
258 |
+
assert_raises(ValueError, _clean_inputs,
|
259 |
+
lp._replace(bounds=[(1, 2, 3, 4), (1, 2, 3, 4)]))
|
260 |
+
|
261 |
+
|
262 |
+
def test_good_bounds():
|
263 |
+
lp = _LPProblem(c=[1, 2])
|
264 |
+
|
265 |
+
lp_cleaned = _clean_inputs(lp) # lp.bounds is None by default
|
266 |
+
assert_equal(lp_cleaned.bounds, [(0, np.inf)] * 2)
|
267 |
+
|
268 |
+
lp_cleaned = _clean_inputs(lp._replace(bounds=[]))
|
269 |
+
assert_equal(lp_cleaned.bounds, [(0, np.inf)] * 2)
|
270 |
+
|
271 |
+
lp_cleaned = _clean_inputs(lp._replace(bounds=[[]]))
|
272 |
+
assert_equal(lp_cleaned.bounds, [(0, np.inf)] * 2)
|
273 |
+
|
274 |
+
lp_cleaned = _clean_inputs(lp._replace(bounds=(1, 2)))
|
275 |
+
assert_equal(lp_cleaned.bounds, [(1, 2)] * 2)
|
276 |
+
|
277 |
+
lp_cleaned = _clean_inputs(lp._replace(bounds=[(1, 2)]))
|
278 |
+
assert_equal(lp_cleaned.bounds, [(1, 2)] * 2)
|
279 |
+
|
280 |
+
lp_cleaned = _clean_inputs(lp._replace(bounds=[(1, None)]))
|
281 |
+
assert_equal(lp_cleaned.bounds, [(1, np.inf)] * 2)
|
282 |
+
|
283 |
+
lp_cleaned = _clean_inputs(lp._replace(bounds=[(None, 1)]))
|
284 |
+
assert_equal(lp_cleaned.bounds, [(-np.inf, 1)] * 2)
|
285 |
+
|
286 |
+
lp_cleaned = _clean_inputs(lp._replace(bounds=[(None, None), (-np.inf, None)]))
|
287 |
+
assert_equal(lp_cleaned.bounds, [(-np.inf, np.inf)] * 2)
|
288 |
+
|
289 |
+
lp = _LPProblem(c=[1, 2, 3, 4])
|
290 |
+
|
291 |
+
lp_cleaned = _clean_inputs(lp) # lp.bounds is None by default
|
292 |
+
assert_equal(lp_cleaned.bounds, [(0, np.inf)] * 4)
|
293 |
+
|
294 |
+
lp_cleaned = _clean_inputs(lp._replace(bounds=(1, 2)))
|
295 |
+
assert_equal(lp_cleaned.bounds, [(1, 2)] * 4)
|
296 |
+
|
297 |
+
lp_cleaned = _clean_inputs(lp._replace(bounds=[(1, 2)]))
|
298 |
+
assert_equal(lp_cleaned.bounds, [(1, 2)] * 4)
|
299 |
+
|
300 |
+
lp_cleaned = _clean_inputs(lp._replace(bounds=[(1, None)]))
|
301 |
+
assert_equal(lp_cleaned.bounds, [(1, np.inf)] * 4)
|
302 |
+
|
303 |
+
lp_cleaned = _clean_inputs(lp._replace(bounds=[(None, 1)]))
|
304 |
+
assert_equal(lp_cleaned.bounds, [(-np.inf, 1)] * 4)
|
305 |
+
|
306 |
+
lp_cleaned = _clean_inputs(lp._replace(bounds=[(None, None),
|
307 |
+
(-np.inf, None),
|
308 |
+
(None, np.inf),
|
309 |
+
(-np.inf, np.inf)]))
|
310 |
+
assert_equal(lp_cleaned.bounds, [(-np.inf, np.inf)] * 4)
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/tests/test__numdiff.py
ADDED
@@ -0,0 +1,815 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from itertools import product
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
from numpy.testing import assert_allclose, assert_equal, assert_
|
6 |
+
from pytest import raises as assert_raises
|
7 |
+
|
8 |
+
from scipy.sparse import csr_matrix, csc_matrix, lil_matrix
|
9 |
+
|
10 |
+
from scipy.optimize._numdiff import (
|
11 |
+
_adjust_scheme_to_bounds, approx_derivative, check_derivative,
|
12 |
+
group_columns, _eps_for_method, _compute_absolute_step)
|
13 |
+
|
14 |
+
|
15 |
+
def test_group_columns():
|
16 |
+
structure = [
|
17 |
+
[1, 1, 0, 0, 0, 0],
|
18 |
+
[1, 1, 1, 0, 0, 0],
|
19 |
+
[0, 1, 1, 1, 0, 0],
|
20 |
+
[0, 0, 1, 1, 1, 0],
|
21 |
+
[0, 0, 0, 1, 1, 1],
|
22 |
+
[0, 0, 0, 0, 1, 1],
|
23 |
+
[0, 0, 0, 0, 0, 0]
|
24 |
+
]
|
25 |
+
for transform in [np.asarray, csr_matrix, csc_matrix, lil_matrix]:
|
26 |
+
A = transform(structure)
|
27 |
+
order = np.arange(6)
|
28 |
+
groups_true = np.array([0, 1, 2, 0, 1, 2])
|
29 |
+
groups = group_columns(A, order)
|
30 |
+
assert_equal(groups, groups_true)
|
31 |
+
|
32 |
+
order = [1, 2, 4, 3, 5, 0]
|
33 |
+
groups_true = np.array([2, 0, 1, 2, 0, 1])
|
34 |
+
groups = group_columns(A, order)
|
35 |
+
assert_equal(groups, groups_true)
|
36 |
+
|
37 |
+
# Test repeatability.
|
38 |
+
groups_1 = group_columns(A)
|
39 |
+
groups_2 = group_columns(A)
|
40 |
+
assert_equal(groups_1, groups_2)
|
41 |
+
|
42 |
+
|
43 |
+
def test_correct_fp_eps():
|
44 |
+
# check that relative step size is correct for FP size
|
45 |
+
EPS = np.finfo(np.float64).eps
|
46 |
+
relative_step = {"2-point": EPS**0.5,
|
47 |
+
"3-point": EPS**(1/3),
|
48 |
+
"cs": EPS**0.5}
|
49 |
+
for method in ['2-point', '3-point', 'cs']:
|
50 |
+
assert_allclose(
|
51 |
+
_eps_for_method(np.float64, np.float64, method),
|
52 |
+
relative_step[method])
|
53 |
+
assert_allclose(
|
54 |
+
_eps_for_method(np.complex128, np.complex128, method),
|
55 |
+
relative_step[method]
|
56 |
+
)
|
57 |
+
|
58 |
+
# check another FP size
|
59 |
+
EPS = np.finfo(np.float32).eps
|
60 |
+
relative_step = {"2-point": EPS**0.5,
|
61 |
+
"3-point": EPS**(1/3),
|
62 |
+
"cs": EPS**0.5}
|
63 |
+
|
64 |
+
for method in ['2-point', '3-point', 'cs']:
|
65 |
+
assert_allclose(
|
66 |
+
_eps_for_method(np.float64, np.float32, method),
|
67 |
+
relative_step[method]
|
68 |
+
)
|
69 |
+
assert_allclose(
|
70 |
+
_eps_for_method(np.float32, np.float64, method),
|
71 |
+
relative_step[method]
|
72 |
+
)
|
73 |
+
assert_allclose(
|
74 |
+
_eps_for_method(np.float32, np.float32, method),
|
75 |
+
relative_step[method]
|
76 |
+
)
|
77 |
+
|
78 |
+
|
79 |
+
class TestAdjustSchemeToBounds:
|
80 |
+
def test_no_bounds(self):
|
81 |
+
x0 = np.zeros(3)
|
82 |
+
h = np.full(3, 1e-2)
|
83 |
+
inf_lower = np.empty_like(x0)
|
84 |
+
inf_upper = np.empty_like(x0)
|
85 |
+
inf_lower.fill(-np.inf)
|
86 |
+
inf_upper.fill(np.inf)
|
87 |
+
|
88 |
+
h_adjusted, one_sided = _adjust_scheme_to_bounds(
|
89 |
+
x0, h, 1, '1-sided', inf_lower, inf_upper)
|
90 |
+
assert_allclose(h_adjusted, h)
|
91 |
+
assert_(np.all(one_sided))
|
92 |
+
|
93 |
+
h_adjusted, one_sided = _adjust_scheme_to_bounds(
|
94 |
+
x0, h, 2, '1-sided', inf_lower, inf_upper)
|
95 |
+
assert_allclose(h_adjusted, h)
|
96 |
+
assert_(np.all(one_sided))
|
97 |
+
|
98 |
+
h_adjusted, one_sided = _adjust_scheme_to_bounds(
|
99 |
+
x0, h, 1, '2-sided', inf_lower, inf_upper)
|
100 |
+
assert_allclose(h_adjusted, h)
|
101 |
+
assert_(np.all(~one_sided))
|
102 |
+
|
103 |
+
h_adjusted, one_sided = _adjust_scheme_to_bounds(
|
104 |
+
x0, h, 2, '2-sided', inf_lower, inf_upper)
|
105 |
+
assert_allclose(h_adjusted, h)
|
106 |
+
assert_(np.all(~one_sided))
|
107 |
+
|
108 |
+
def test_with_bound(self):
|
109 |
+
x0 = np.array([0.0, 0.85, -0.85])
|
110 |
+
lb = -np.ones(3)
|
111 |
+
ub = np.ones(3)
|
112 |
+
h = np.array([1, 1, -1]) * 1e-1
|
113 |
+
|
114 |
+
h_adjusted, _ = _adjust_scheme_to_bounds(x0, h, 1, '1-sided', lb, ub)
|
115 |
+
assert_allclose(h_adjusted, h)
|
116 |
+
|
117 |
+
h_adjusted, _ = _adjust_scheme_to_bounds(x0, h, 2, '1-sided', lb, ub)
|
118 |
+
assert_allclose(h_adjusted, np.array([1, -1, 1]) * 1e-1)
|
119 |
+
|
120 |
+
h_adjusted, one_sided = _adjust_scheme_to_bounds(
|
121 |
+
x0, h, 1, '2-sided', lb, ub)
|
122 |
+
assert_allclose(h_adjusted, np.abs(h))
|
123 |
+
assert_(np.all(~one_sided))
|
124 |
+
|
125 |
+
h_adjusted, one_sided = _adjust_scheme_to_bounds(
|
126 |
+
x0, h, 2, '2-sided', lb, ub)
|
127 |
+
assert_allclose(h_adjusted, np.array([1, -1, 1]) * 1e-1)
|
128 |
+
assert_equal(one_sided, np.array([False, True, True]))
|
129 |
+
|
130 |
+
def test_tight_bounds(self):
|
131 |
+
lb = np.array([-0.03, -0.03])
|
132 |
+
ub = np.array([0.05, 0.05])
|
133 |
+
x0 = np.array([0.0, 0.03])
|
134 |
+
h = np.array([-0.1, -0.1])
|
135 |
+
|
136 |
+
h_adjusted, _ = _adjust_scheme_to_bounds(x0, h, 1, '1-sided', lb, ub)
|
137 |
+
assert_allclose(h_adjusted, np.array([0.05, -0.06]))
|
138 |
+
|
139 |
+
h_adjusted, _ = _adjust_scheme_to_bounds(x0, h, 2, '1-sided', lb, ub)
|
140 |
+
assert_allclose(h_adjusted, np.array([0.025, -0.03]))
|
141 |
+
|
142 |
+
h_adjusted, one_sided = _adjust_scheme_to_bounds(
|
143 |
+
x0, h, 1, '2-sided', lb, ub)
|
144 |
+
assert_allclose(h_adjusted, np.array([0.03, -0.03]))
|
145 |
+
assert_equal(one_sided, np.array([False, True]))
|
146 |
+
|
147 |
+
h_adjusted, one_sided = _adjust_scheme_to_bounds(
|
148 |
+
x0, h, 2, '2-sided', lb, ub)
|
149 |
+
assert_allclose(h_adjusted, np.array([0.015, -0.015]))
|
150 |
+
assert_equal(one_sided, np.array([False, True]))
|
151 |
+
|
152 |
+
|
153 |
+
class TestApproxDerivativesDense:
|
154 |
+
def fun_scalar_scalar(self, x):
|
155 |
+
return np.sinh(x)
|
156 |
+
|
157 |
+
def jac_scalar_scalar(self, x):
|
158 |
+
return np.cosh(x)
|
159 |
+
|
160 |
+
def fun_scalar_vector(self, x):
|
161 |
+
return np.array([x[0]**2, np.tan(x[0]), np.exp(x[0])])
|
162 |
+
|
163 |
+
def jac_scalar_vector(self, x):
|
164 |
+
return np.array(
|
165 |
+
[2 * x[0], np.cos(x[0]) ** -2, np.exp(x[0])]).reshape(-1, 1)
|
166 |
+
|
167 |
+
def fun_vector_scalar(self, x):
|
168 |
+
return np.sin(x[0] * x[1]) * np.log(x[0])
|
169 |
+
|
170 |
+
def wrong_dimensions_fun(self, x):
|
171 |
+
return np.array([x**2, np.tan(x), np.exp(x)])
|
172 |
+
|
173 |
+
def jac_vector_scalar(self, x):
|
174 |
+
return np.array([
|
175 |
+
x[1] * np.cos(x[0] * x[1]) * np.log(x[0]) +
|
176 |
+
np.sin(x[0] * x[1]) / x[0],
|
177 |
+
x[0] * np.cos(x[0] * x[1]) * np.log(x[0])
|
178 |
+
])
|
179 |
+
|
180 |
+
def fun_vector_vector(self, x):
|
181 |
+
return np.array([
|
182 |
+
x[0] * np.sin(x[1]),
|
183 |
+
x[1] * np.cos(x[0]),
|
184 |
+
x[0] ** 3 * x[1] ** -0.5
|
185 |
+
])
|
186 |
+
|
187 |
+
def jac_vector_vector(self, x):
|
188 |
+
return np.array([
|
189 |
+
[np.sin(x[1]), x[0] * np.cos(x[1])],
|
190 |
+
[-x[1] * np.sin(x[0]), np.cos(x[0])],
|
191 |
+
[3 * x[0] ** 2 * x[1] ** -0.5, -0.5 * x[0] ** 3 * x[1] ** -1.5]
|
192 |
+
])
|
193 |
+
|
194 |
+
def fun_parametrized(self, x, c0, c1=1.0):
|
195 |
+
return np.array([np.exp(c0 * x[0]), np.exp(c1 * x[1])])
|
196 |
+
|
197 |
+
def jac_parametrized(self, x, c0, c1=0.1):
|
198 |
+
return np.array([
|
199 |
+
[c0 * np.exp(c0 * x[0]), 0],
|
200 |
+
[0, c1 * np.exp(c1 * x[1])]
|
201 |
+
])
|
202 |
+
|
203 |
+
def fun_with_nan(self, x):
|
204 |
+
return x if np.abs(x) <= 1e-8 else np.nan
|
205 |
+
|
206 |
+
def jac_with_nan(self, x):
|
207 |
+
return 1.0 if np.abs(x) <= 1e-8 else np.nan
|
208 |
+
|
209 |
+
def fun_zero_jacobian(self, x):
|
210 |
+
return np.array([x[0] * x[1], np.cos(x[0] * x[1])])
|
211 |
+
|
212 |
+
def jac_zero_jacobian(self, x):
|
213 |
+
return np.array([
|
214 |
+
[x[1], x[0]],
|
215 |
+
[-x[1] * np.sin(x[0] * x[1]), -x[0] * np.sin(x[0] * x[1])]
|
216 |
+
])
|
217 |
+
|
218 |
+
def jac_non_numpy(self, x):
|
219 |
+
# x can be a scalar or an array [val].
|
220 |
+
# Cast to true scalar before handing over to math.exp
|
221 |
+
xp = np.asarray(x).item()
|
222 |
+
return math.exp(xp)
|
223 |
+
|
224 |
+
def test_scalar_scalar(self):
|
225 |
+
x0 = 1.0
|
226 |
+
jac_diff_2 = approx_derivative(self.fun_scalar_scalar, x0,
|
227 |
+
method='2-point')
|
228 |
+
jac_diff_3 = approx_derivative(self.fun_scalar_scalar, x0)
|
229 |
+
jac_diff_4 = approx_derivative(self.fun_scalar_scalar, x0,
|
230 |
+
method='cs')
|
231 |
+
jac_true = self.jac_scalar_scalar(x0)
|
232 |
+
assert_allclose(jac_diff_2, jac_true, rtol=1e-6)
|
233 |
+
assert_allclose(jac_diff_3, jac_true, rtol=1e-9)
|
234 |
+
assert_allclose(jac_diff_4, jac_true, rtol=1e-12)
|
235 |
+
|
236 |
+
def test_scalar_scalar_abs_step(self):
|
237 |
+
# can approx_derivative use abs_step?
|
238 |
+
x0 = 1.0
|
239 |
+
jac_diff_2 = approx_derivative(self.fun_scalar_scalar, x0,
|
240 |
+
method='2-point', abs_step=1.49e-8)
|
241 |
+
jac_diff_3 = approx_derivative(self.fun_scalar_scalar, x0,
|
242 |
+
abs_step=1.49e-8)
|
243 |
+
jac_diff_4 = approx_derivative(self.fun_scalar_scalar, x0,
|
244 |
+
method='cs', abs_step=1.49e-8)
|
245 |
+
jac_true = self.jac_scalar_scalar(x0)
|
246 |
+
assert_allclose(jac_diff_2, jac_true, rtol=1e-6)
|
247 |
+
assert_allclose(jac_diff_3, jac_true, rtol=1e-9)
|
248 |
+
assert_allclose(jac_diff_4, jac_true, rtol=1e-12)
|
249 |
+
|
250 |
+
def test_scalar_vector(self):
|
251 |
+
x0 = 0.5
|
252 |
+
jac_diff_2 = approx_derivative(self.fun_scalar_vector, x0,
|
253 |
+
method='2-point')
|
254 |
+
jac_diff_3 = approx_derivative(self.fun_scalar_vector, x0)
|
255 |
+
jac_diff_4 = approx_derivative(self.fun_scalar_vector, x0,
|
256 |
+
method='cs')
|
257 |
+
jac_true = self.jac_scalar_vector(np.atleast_1d(x0))
|
258 |
+
assert_allclose(jac_diff_2, jac_true, rtol=1e-6)
|
259 |
+
assert_allclose(jac_diff_3, jac_true, rtol=1e-9)
|
260 |
+
assert_allclose(jac_diff_4, jac_true, rtol=1e-12)
|
261 |
+
|
262 |
+
def test_vector_scalar(self):
|
263 |
+
x0 = np.array([100.0, -0.5])
|
264 |
+
jac_diff_2 = approx_derivative(self.fun_vector_scalar, x0,
|
265 |
+
method='2-point')
|
266 |
+
jac_diff_3 = approx_derivative(self.fun_vector_scalar, x0)
|
267 |
+
jac_diff_4 = approx_derivative(self.fun_vector_scalar, x0,
|
268 |
+
method='cs')
|
269 |
+
jac_true = self.jac_vector_scalar(x0)
|
270 |
+
assert_allclose(jac_diff_2, jac_true, rtol=1e-6)
|
271 |
+
assert_allclose(jac_diff_3, jac_true, rtol=1e-7)
|
272 |
+
assert_allclose(jac_diff_4, jac_true, rtol=1e-12)
|
273 |
+
|
274 |
+
def test_vector_scalar_abs_step(self):
|
275 |
+
# can approx_derivative use abs_step?
|
276 |
+
x0 = np.array([100.0, -0.5])
|
277 |
+
jac_diff_2 = approx_derivative(self.fun_vector_scalar, x0,
|
278 |
+
method='2-point', abs_step=1.49e-8)
|
279 |
+
jac_diff_3 = approx_derivative(self.fun_vector_scalar, x0,
|
280 |
+
abs_step=1.49e-8, rel_step=np.inf)
|
281 |
+
jac_diff_4 = approx_derivative(self.fun_vector_scalar, x0,
|
282 |
+
method='cs', abs_step=1.49e-8)
|
283 |
+
jac_true = self.jac_vector_scalar(x0)
|
284 |
+
assert_allclose(jac_diff_2, jac_true, rtol=1e-6)
|
285 |
+
assert_allclose(jac_diff_3, jac_true, rtol=3e-9)
|
286 |
+
assert_allclose(jac_diff_4, jac_true, rtol=1e-12)
|
287 |
+
|
288 |
+
def test_vector_vector(self):
|
289 |
+
x0 = np.array([-100.0, 0.2])
|
290 |
+
jac_diff_2 = approx_derivative(self.fun_vector_vector, x0,
|
291 |
+
method='2-point')
|
292 |
+
jac_diff_3 = approx_derivative(self.fun_vector_vector, x0)
|
293 |
+
jac_diff_4 = approx_derivative(self.fun_vector_vector, x0,
|
294 |
+
method='cs')
|
295 |
+
jac_true = self.jac_vector_vector(x0)
|
296 |
+
assert_allclose(jac_diff_2, jac_true, rtol=1e-5)
|
297 |
+
assert_allclose(jac_diff_3, jac_true, rtol=1e-6)
|
298 |
+
assert_allclose(jac_diff_4, jac_true, rtol=1e-12)
|
299 |
+
|
300 |
+
def test_wrong_dimensions(self):
|
301 |
+
x0 = 1.0
|
302 |
+
assert_raises(RuntimeError, approx_derivative,
|
303 |
+
self.wrong_dimensions_fun, x0)
|
304 |
+
f0 = self.wrong_dimensions_fun(np.atleast_1d(x0))
|
305 |
+
assert_raises(ValueError, approx_derivative,
|
306 |
+
self.wrong_dimensions_fun, x0, f0=f0)
|
307 |
+
|
308 |
+
def test_custom_rel_step(self):
|
309 |
+
x0 = np.array([-0.1, 0.1])
|
310 |
+
jac_diff_2 = approx_derivative(self.fun_vector_vector, x0,
|
311 |
+
method='2-point', rel_step=1e-4)
|
312 |
+
jac_diff_3 = approx_derivative(self.fun_vector_vector, x0,
|
313 |
+
rel_step=1e-4)
|
314 |
+
jac_true = self.jac_vector_vector(x0)
|
315 |
+
assert_allclose(jac_diff_2, jac_true, rtol=1e-2)
|
316 |
+
assert_allclose(jac_diff_3, jac_true, rtol=1e-4)
|
317 |
+
|
318 |
+
def test_options(self):
|
319 |
+
x0 = np.array([1.0, 1.0])
|
320 |
+
c0 = -1.0
|
321 |
+
c1 = 1.0
|
322 |
+
lb = 0.0
|
323 |
+
ub = 2.0
|
324 |
+
f0 = self.fun_parametrized(x0, c0, c1=c1)
|
325 |
+
rel_step = np.array([-1e-6, 1e-7])
|
326 |
+
jac_true = self.jac_parametrized(x0, c0, c1)
|
327 |
+
jac_diff_2 = approx_derivative(
|
328 |
+
self.fun_parametrized, x0, method='2-point', rel_step=rel_step,
|
329 |
+
f0=f0, args=(c0,), kwargs=dict(c1=c1), bounds=(lb, ub))
|
330 |
+
jac_diff_3 = approx_derivative(
|
331 |
+
self.fun_parametrized, x0, rel_step=rel_step,
|
332 |
+
f0=f0, args=(c0,), kwargs=dict(c1=c1), bounds=(lb, ub))
|
333 |
+
assert_allclose(jac_diff_2, jac_true, rtol=1e-6)
|
334 |
+
assert_allclose(jac_diff_3, jac_true, rtol=1e-9)
|
335 |
+
|
336 |
+
def test_with_bounds_2_point(self):
|
337 |
+
lb = -np.ones(2)
|
338 |
+
ub = np.ones(2)
|
339 |
+
|
340 |
+
x0 = np.array([-2.0, 0.2])
|
341 |
+
assert_raises(ValueError, approx_derivative,
|
342 |
+
self.fun_vector_vector, x0, bounds=(lb, ub))
|
343 |
+
|
344 |
+
x0 = np.array([-1.0, 1.0])
|
345 |
+
jac_diff = approx_derivative(self.fun_vector_vector, x0,
|
346 |
+
method='2-point', bounds=(lb, ub))
|
347 |
+
jac_true = self.jac_vector_vector(x0)
|
348 |
+
assert_allclose(jac_diff, jac_true, rtol=1e-6)
|
349 |
+
|
350 |
+
def test_with_bounds_3_point(self):
|
351 |
+
lb = np.array([1.0, 1.0])
|
352 |
+
ub = np.array([2.0, 2.0])
|
353 |
+
|
354 |
+
x0 = np.array([1.0, 2.0])
|
355 |
+
jac_true = self.jac_vector_vector(x0)
|
356 |
+
|
357 |
+
jac_diff = approx_derivative(self.fun_vector_vector, x0)
|
358 |
+
assert_allclose(jac_diff, jac_true, rtol=1e-9)
|
359 |
+
|
360 |
+
jac_diff = approx_derivative(self.fun_vector_vector, x0,
|
361 |
+
bounds=(lb, np.inf))
|
362 |
+
assert_allclose(jac_diff, jac_true, rtol=1e-9)
|
363 |
+
|
364 |
+
jac_diff = approx_derivative(self.fun_vector_vector, x0,
|
365 |
+
bounds=(-np.inf, ub))
|
366 |
+
assert_allclose(jac_diff, jac_true, rtol=1e-9)
|
367 |
+
|
368 |
+
jac_diff = approx_derivative(self.fun_vector_vector, x0,
|
369 |
+
bounds=(lb, ub))
|
370 |
+
assert_allclose(jac_diff, jac_true, rtol=1e-9)
|
371 |
+
|
372 |
+
def test_tight_bounds(self):
|
373 |
+
x0 = np.array([10.0, 10.0])
|
374 |
+
lb = x0 - 3e-9
|
375 |
+
ub = x0 + 2e-9
|
376 |
+
jac_true = self.jac_vector_vector(x0)
|
377 |
+
jac_diff = approx_derivative(
|
378 |
+
self.fun_vector_vector, x0, method='2-point', bounds=(lb, ub))
|
379 |
+
assert_allclose(jac_diff, jac_true, rtol=1e-6)
|
380 |
+
jac_diff = approx_derivative(
|
381 |
+
self.fun_vector_vector, x0, method='2-point',
|
382 |
+
rel_step=1e-6, bounds=(lb, ub))
|
383 |
+
assert_allclose(jac_diff, jac_true, rtol=1e-6)
|
384 |
+
|
385 |
+
jac_diff = approx_derivative(
|
386 |
+
self.fun_vector_vector, x0, bounds=(lb, ub))
|
387 |
+
assert_allclose(jac_diff, jac_true, rtol=1e-6)
|
388 |
+
jac_diff = approx_derivative(
|
389 |
+
self.fun_vector_vector, x0, rel_step=1e-6, bounds=(lb, ub))
|
390 |
+
assert_allclose(jac_true, jac_diff, rtol=1e-6)
|
391 |
+
|
392 |
+
def test_bound_switches(self):
|
393 |
+
lb = -1e-8
|
394 |
+
ub = 1e-8
|
395 |
+
x0 = 0.0
|
396 |
+
jac_true = self.jac_with_nan(x0)
|
397 |
+
jac_diff_2 = approx_derivative(
|
398 |
+
self.fun_with_nan, x0, method='2-point', rel_step=1e-6,
|
399 |
+
bounds=(lb, ub))
|
400 |
+
jac_diff_3 = approx_derivative(
|
401 |
+
self.fun_with_nan, x0, rel_step=1e-6, bounds=(lb, ub))
|
402 |
+
assert_allclose(jac_diff_2, jac_true, rtol=1e-6)
|
403 |
+
assert_allclose(jac_diff_3, jac_true, rtol=1e-9)
|
404 |
+
|
405 |
+
x0 = 1e-8
|
406 |
+
jac_true = self.jac_with_nan(x0)
|
407 |
+
jac_diff_2 = approx_derivative(
|
408 |
+
self.fun_with_nan, x0, method='2-point', rel_step=1e-6,
|
409 |
+
bounds=(lb, ub))
|
410 |
+
jac_diff_3 = approx_derivative(
|
411 |
+
self.fun_with_nan, x0, rel_step=1e-6, bounds=(lb, ub))
|
412 |
+
assert_allclose(jac_diff_2, jac_true, rtol=1e-6)
|
413 |
+
assert_allclose(jac_diff_3, jac_true, rtol=1e-9)
|
414 |
+
|
415 |
+
def test_non_numpy(self):
|
416 |
+
x0 = 1.0
|
417 |
+
jac_true = self.jac_non_numpy(x0)
|
418 |
+
jac_diff_2 = approx_derivative(self.jac_non_numpy, x0,
|
419 |
+
method='2-point')
|
420 |
+
jac_diff_3 = approx_derivative(self.jac_non_numpy, x0)
|
421 |
+
assert_allclose(jac_diff_2, jac_true, rtol=1e-6)
|
422 |
+
assert_allclose(jac_diff_3, jac_true, rtol=1e-8)
|
423 |
+
|
424 |
+
# math.exp cannot handle complex arguments, hence this raises
|
425 |
+
assert_raises(TypeError, approx_derivative, self.jac_non_numpy, x0,
|
426 |
+
**dict(method='cs'))
|
427 |
+
|
428 |
+
def test_fp(self):
|
429 |
+
# checks that approx_derivative works for FP size other than 64.
|
430 |
+
# Example is derived from the minimal working example in gh12991.
|
431 |
+
np.random.seed(1)
|
432 |
+
|
433 |
+
def func(p, x):
|
434 |
+
return p[0] + p[1] * x
|
435 |
+
|
436 |
+
def err(p, x, y):
|
437 |
+
return func(p, x) - y
|
438 |
+
|
439 |
+
x = np.linspace(0, 1, 100, dtype=np.float64)
|
440 |
+
y = np.random.random(100).astype(np.float64)
|
441 |
+
p0 = np.array([-1.0, -1.0])
|
442 |
+
|
443 |
+
jac_fp64 = approx_derivative(err, p0, method='2-point', args=(x, y))
|
444 |
+
|
445 |
+
# parameter vector is float32, func output is float64
|
446 |
+
jac_fp = approx_derivative(err, p0.astype(np.float32),
|
447 |
+
method='2-point', args=(x, y))
|
448 |
+
assert err(p0, x, y).dtype == np.float64
|
449 |
+
assert_allclose(jac_fp, jac_fp64, atol=1e-3)
|
450 |
+
|
451 |
+
# parameter vector is float64, func output is float32
|
452 |
+
def err_fp32(p):
|
453 |
+
assert p.dtype == np.float32
|
454 |
+
return err(p, x, y).astype(np.float32)
|
455 |
+
|
456 |
+
jac_fp = approx_derivative(err_fp32, p0.astype(np.float32),
|
457 |
+
method='2-point')
|
458 |
+
assert_allclose(jac_fp, jac_fp64, atol=1e-3)
|
459 |
+
|
460 |
+
# check upper bound of error on the derivative for 2-point
|
461 |
+
def f(x):
|
462 |
+
return np.sin(x)
|
463 |
+
def g(x):
|
464 |
+
return np.cos(x)
|
465 |
+
def hess(x):
|
466 |
+
return -np.sin(x)
|
467 |
+
|
468 |
+
def calc_atol(h, x0, f, hess, EPS):
|
469 |
+
# truncation error
|
470 |
+
t0 = h / 2 * max(np.abs(hess(x0)), np.abs(hess(x0 + h)))
|
471 |
+
# roundoff error. There may be a divisor (>1) missing from
|
472 |
+
# the following line, so this contribution is possibly
|
473 |
+
# overestimated
|
474 |
+
t1 = EPS / h * max(np.abs(f(x0)), np.abs(f(x0 + h)))
|
475 |
+
return t0 + t1
|
476 |
+
|
477 |
+
for dtype in [np.float16, np.float32, np.float64]:
|
478 |
+
EPS = np.finfo(dtype).eps
|
479 |
+
x0 = np.array(1.0).astype(dtype)
|
480 |
+
h = _compute_absolute_step(None, x0, f(x0), '2-point')
|
481 |
+
atol = calc_atol(h, x0, f, hess, EPS)
|
482 |
+
err = approx_derivative(f, x0, method='2-point',
|
483 |
+
abs_step=h) - g(x0)
|
484 |
+
assert abs(err) < atol
|
485 |
+
|
486 |
+
def test_check_derivative(self):
|
487 |
+
x0 = np.array([-10.0, 10])
|
488 |
+
accuracy = check_derivative(self.fun_vector_vector,
|
489 |
+
self.jac_vector_vector, x0)
|
490 |
+
assert_(accuracy < 1e-9)
|
491 |
+
accuracy = check_derivative(self.fun_vector_vector,
|
492 |
+
self.jac_vector_vector, x0)
|
493 |
+
assert_(accuracy < 1e-6)
|
494 |
+
|
495 |
+
x0 = np.array([0.0, 0.0])
|
496 |
+
accuracy = check_derivative(self.fun_zero_jacobian,
|
497 |
+
self.jac_zero_jacobian, x0)
|
498 |
+
assert_(accuracy == 0)
|
499 |
+
accuracy = check_derivative(self.fun_zero_jacobian,
|
500 |
+
self.jac_zero_jacobian, x0)
|
501 |
+
assert_(accuracy == 0)
|
502 |
+
|
503 |
+
|
504 |
+
class TestApproxDerivativeSparse:
|
505 |
+
# Example from Numerical Optimization 2nd edition, p. 198.
|
506 |
+
def setup_method(self):
|
507 |
+
np.random.seed(0)
|
508 |
+
self.n = 50
|
509 |
+
self.lb = -0.1 * (1 + np.arange(self.n))
|
510 |
+
self.ub = 0.1 * (1 + np.arange(self.n))
|
511 |
+
self.x0 = np.empty(self.n)
|
512 |
+
self.x0[::2] = (1 - 1e-7) * self.lb[::2]
|
513 |
+
self.x0[1::2] = (1 - 1e-7) * self.ub[1::2]
|
514 |
+
|
515 |
+
self.J_true = self.jac(self.x0)
|
516 |
+
|
517 |
+
def fun(self, x):
|
518 |
+
e = x[1:]**3 - x[:-1]**2
|
519 |
+
return np.hstack((0, 3 * e)) + np.hstack((2 * e, 0))
|
520 |
+
|
521 |
+
def jac(self, x):
|
522 |
+
n = x.size
|
523 |
+
J = np.zeros((n, n))
|
524 |
+
J[0, 0] = -4 * x[0]
|
525 |
+
J[0, 1] = 6 * x[1]**2
|
526 |
+
for i in range(1, n - 1):
|
527 |
+
J[i, i - 1] = -6 * x[i-1]
|
528 |
+
J[i, i] = 9 * x[i]**2 - 4 * x[i]
|
529 |
+
J[i, i + 1] = 6 * x[i+1]**2
|
530 |
+
J[-1, -1] = 9 * x[-1]**2
|
531 |
+
J[-1, -2] = -6 * x[-2]
|
532 |
+
|
533 |
+
return J
|
534 |
+
|
535 |
+
def structure(self, n):
|
536 |
+
A = np.zeros((n, n), dtype=int)
|
537 |
+
A[0, 0] = 1
|
538 |
+
A[0, 1] = 1
|
539 |
+
for i in range(1, n - 1):
|
540 |
+
A[i, i - 1: i + 2] = 1
|
541 |
+
A[-1, -1] = 1
|
542 |
+
A[-1, -2] = 1
|
543 |
+
|
544 |
+
return A
|
545 |
+
|
546 |
+
def test_all(self):
|
547 |
+
A = self.structure(self.n)
|
548 |
+
order = np.arange(self.n)
|
549 |
+
groups_1 = group_columns(A, order)
|
550 |
+
np.random.shuffle(order)
|
551 |
+
groups_2 = group_columns(A, order)
|
552 |
+
|
553 |
+
for method, groups, l, u in product(
|
554 |
+
['2-point', '3-point', 'cs'], [groups_1, groups_2],
|
555 |
+
[-np.inf, self.lb], [np.inf, self.ub]):
|
556 |
+
J = approx_derivative(self.fun, self.x0, method=method,
|
557 |
+
bounds=(l, u), sparsity=(A, groups))
|
558 |
+
assert_(isinstance(J, csr_matrix))
|
559 |
+
assert_allclose(J.toarray(), self.J_true, rtol=1e-6)
|
560 |
+
|
561 |
+
rel_step = np.full_like(self.x0, 1e-8)
|
562 |
+
rel_step[::2] *= -1
|
563 |
+
J = approx_derivative(self.fun, self.x0, method=method,
|
564 |
+
rel_step=rel_step, sparsity=(A, groups))
|
565 |
+
assert_allclose(J.toarray(), self.J_true, rtol=1e-5)
|
566 |
+
|
567 |
+
def test_no_precomputed_groups(self):
|
568 |
+
A = self.structure(self.n)
|
569 |
+
J = approx_derivative(self.fun, self.x0, sparsity=A)
|
570 |
+
assert_allclose(J.toarray(), self.J_true, rtol=1e-6)
|
571 |
+
|
572 |
+
def test_equivalence(self):
|
573 |
+
structure = np.ones((self.n, self.n), dtype=int)
|
574 |
+
groups = np.arange(self.n)
|
575 |
+
for method in ['2-point', '3-point', 'cs']:
|
576 |
+
J_dense = approx_derivative(self.fun, self.x0, method=method)
|
577 |
+
J_sparse = approx_derivative(
|
578 |
+
self.fun, self.x0, sparsity=(structure, groups), method=method)
|
579 |
+
assert_allclose(J_dense, J_sparse.toarray(),
|
580 |
+
rtol=5e-16, atol=7e-15)
|
581 |
+
|
582 |
+
def test_check_derivative(self):
|
583 |
+
def jac(x):
|
584 |
+
return csr_matrix(self.jac(x))
|
585 |
+
|
586 |
+
accuracy = check_derivative(self.fun, jac, self.x0,
|
587 |
+
bounds=(self.lb, self.ub))
|
588 |
+
assert_(accuracy < 1e-9)
|
589 |
+
|
590 |
+
accuracy = check_derivative(self.fun, jac, self.x0,
|
591 |
+
bounds=(self.lb, self.ub))
|
592 |
+
assert_(accuracy < 1e-9)
|
593 |
+
|
594 |
+
|
595 |
+
class TestApproxDerivativeLinearOperator:
|
596 |
+
|
597 |
+
def fun_scalar_scalar(self, x):
|
598 |
+
return np.sinh(x)
|
599 |
+
|
600 |
+
def jac_scalar_scalar(self, x):
|
601 |
+
return np.cosh(x)
|
602 |
+
|
603 |
+
def fun_scalar_vector(self, x):
|
604 |
+
return np.array([x[0]**2, np.tan(x[0]), np.exp(x[0])])
|
605 |
+
|
606 |
+
def jac_scalar_vector(self, x):
|
607 |
+
return np.array(
|
608 |
+
[2 * x[0], np.cos(x[0]) ** -2, np.exp(x[0])]).reshape(-1, 1)
|
609 |
+
|
610 |
+
def fun_vector_scalar(self, x):
|
611 |
+
return np.sin(x[0] * x[1]) * np.log(x[0])
|
612 |
+
|
613 |
+
def jac_vector_scalar(self, x):
|
614 |
+
return np.array([
|
615 |
+
x[1] * np.cos(x[0] * x[1]) * np.log(x[0]) +
|
616 |
+
np.sin(x[0] * x[1]) / x[0],
|
617 |
+
x[0] * np.cos(x[0] * x[1]) * np.log(x[0])
|
618 |
+
])
|
619 |
+
|
620 |
+
def fun_vector_vector(self, x):
|
621 |
+
return np.array([
|
622 |
+
x[0] * np.sin(x[1]),
|
623 |
+
x[1] * np.cos(x[0]),
|
624 |
+
x[0] ** 3 * x[1] ** -0.5
|
625 |
+
])
|
626 |
+
|
627 |
+
def jac_vector_vector(self, x):
|
628 |
+
return np.array([
|
629 |
+
[np.sin(x[1]), x[0] * np.cos(x[1])],
|
630 |
+
[-x[1] * np.sin(x[0]), np.cos(x[0])],
|
631 |
+
[3 * x[0] ** 2 * x[1] ** -0.5, -0.5 * x[0] ** 3 * x[1] ** -1.5]
|
632 |
+
])
|
633 |
+
|
634 |
+
def test_scalar_scalar(self):
|
635 |
+
x0 = 1.0
|
636 |
+
jac_diff_2 = approx_derivative(self.fun_scalar_scalar, x0,
|
637 |
+
method='2-point',
|
638 |
+
as_linear_operator=True)
|
639 |
+
jac_diff_3 = approx_derivative(self.fun_scalar_scalar, x0,
|
640 |
+
as_linear_operator=True)
|
641 |
+
jac_diff_4 = approx_derivative(self.fun_scalar_scalar, x0,
|
642 |
+
method='cs',
|
643 |
+
as_linear_operator=True)
|
644 |
+
jac_true = self.jac_scalar_scalar(x0)
|
645 |
+
np.random.seed(1)
|
646 |
+
for i in range(10):
|
647 |
+
p = np.random.uniform(-10, 10, size=(1,))
|
648 |
+
assert_allclose(jac_diff_2.dot(p), jac_true*p,
|
649 |
+
rtol=1e-5)
|
650 |
+
assert_allclose(jac_diff_3.dot(p), jac_true*p,
|
651 |
+
rtol=5e-6)
|
652 |
+
assert_allclose(jac_diff_4.dot(p), jac_true*p,
|
653 |
+
rtol=5e-6)
|
654 |
+
|
655 |
+
def test_scalar_vector(self):
|
656 |
+
x0 = 0.5
|
657 |
+
jac_diff_2 = approx_derivative(self.fun_scalar_vector, x0,
|
658 |
+
method='2-point',
|
659 |
+
as_linear_operator=True)
|
660 |
+
jac_diff_3 = approx_derivative(self.fun_scalar_vector, x0,
|
661 |
+
as_linear_operator=True)
|
662 |
+
jac_diff_4 = approx_derivative(self.fun_scalar_vector, x0,
|
663 |
+
method='cs',
|
664 |
+
as_linear_operator=True)
|
665 |
+
jac_true = self.jac_scalar_vector(np.atleast_1d(x0))
|
666 |
+
np.random.seed(1)
|
667 |
+
for i in range(10):
|
668 |
+
p = np.random.uniform(-10, 10, size=(1,))
|
669 |
+
assert_allclose(jac_diff_2.dot(p), jac_true.dot(p),
|
670 |
+
rtol=1e-5)
|
671 |
+
assert_allclose(jac_diff_3.dot(p), jac_true.dot(p),
|
672 |
+
rtol=5e-6)
|
673 |
+
assert_allclose(jac_diff_4.dot(p), jac_true.dot(p),
|
674 |
+
rtol=5e-6)
|
675 |
+
|
676 |
+
def test_vector_scalar(self):
|
677 |
+
x0 = np.array([100.0, -0.5])
|
678 |
+
jac_diff_2 = approx_derivative(self.fun_vector_scalar, x0,
|
679 |
+
method='2-point',
|
680 |
+
as_linear_operator=True)
|
681 |
+
jac_diff_3 = approx_derivative(self.fun_vector_scalar, x0,
|
682 |
+
as_linear_operator=True)
|
683 |
+
jac_diff_4 = approx_derivative(self.fun_vector_scalar, x0,
|
684 |
+
method='cs',
|
685 |
+
as_linear_operator=True)
|
686 |
+
jac_true = self.jac_vector_scalar(x0)
|
687 |
+
np.random.seed(1)
|
688 |
+
for i in range(10):
|
689 |
+
p = np.random.uniform(-10, 10, size=x0.shape)
|
690 |
+
assert_allclose(jac_diff_2.dot(p), np.atleast_1d(jac_true.dot(p)),
|
691 |
+
rtol=1e-5)
|
692 |
+
assert_allclose(jac_diff_3.dot(p), np.atleast_1d(jac_true.dot(p)),
|
693 |
+
rtol=5e-6)
|
694 |
+
assert_allclose(jac_diff_4.dot(p), np.atleast_1d(jac_true.dot(p)),
|
695 |
+
rtol=1e-7)
|
696 |
+
|
697 |
+
def test_vector_vector(self):
|
698 |
+
x0 = np.array([-100.0, 0.2])
|
699 |
+
jac_diff_2 = approx_derivative(self.fun_vector_vector, x0,
|
700 |
+
method='2-point',
|
701 |
+
as_linear_operator=True)
|
702 |
+
jac_diff_3 = approx_derivative(self.fun_vector_vector, x0,
|
703 |
+
as_linear_operator=True)
|
704 |
+
jac_diff_4 = approx_derivative(self.fun_vector_vector, x0,
|
705 |
+
method='cs',
|
706 |
+
as_linear_operator=True)
|
707 |
+
jac_true = self.jac_vector_vector(x0)
|
708 |
+
np.random.seed(1)
|
709 |
+
for i in range(10):
|
710 |
+
p = np.random.uniform(-10, 10, size=x0.shape)
|
711 |
+
assert_allclose(jac_diff_2.dot(p), jac_true.dot(p), rtol=1e-5)
|
712 |
+
assert_allclose(jac_diff_3.dot(p), jac_true.dot(p), rtol=1e-6)
|
713 |
+
assert_allclose(jac_diff_4.dot(p), jac_true.dot(p), rtol=1e-7)
|
714 |
+
|
715 |
+
def test_exception(self):
|
716 |
+
x0 = np.array([-100.0, 0.2])
|
717 |
+
assert_raises(ValueError, approx_derivative,
|
718 |
+
self.fun_vector_vector, x0,
|
719 |
+
method='2-point', bounds=(1, np.inf))
|
720 |
+
|
721 |
+
|
722 |
+
def test_absolute_step_sign():
|
723 |
+
# test for gh12487
|
724 |
+
# if an absolute step is specified for 2-point differences make sure that
|
725 |
+
# the side corresponds to the step. i.e. if step is positive then forward
|
726 |
+
# differences should be used, if step is negative then backwards
|
727 |
+
# differences should be used.
|
728 |
+
|
729 |
+
# function has double discontinuity at x = [-1, -1]
|
730 |
+
# first component is \/, second component is /\
|
731 |
+
def f(x):
|
732 |
+
return -np.abs(x[0] + 1) + np.abs(x[1] + 1)
|
733 |
+
|
734 |
+
# check that the forward difference is used
|
735 |
+
grad = approx_derivative(f, [-1, -1], method='2-point', abs_step=1e-8)
|
736 |
+
assert_allclose(grad, [-1.0, 1.0])
|
737 |
+
|
738 |
+
# check that the backwards difference is used
|
739 |
+
grad = approx_derivative(f, [-1, -1], method='2-point', abs_step=-1e-8)
|
740 |
+
assert_allclose(grad, [1.0, -1.0])
|
741 |
+
|
742 |
+
# check that the forwards difference is used with a step for both
|
743 |
+
# parameters
|
744 |
+
grad = approx_derivative(
|
745 |
+
f, [-1, -1], method='2-point', abs_step=[1e-8, 1e-8]
|
746 |
+
)
|
747 |
+
assert_allclose(grad, [-1.0, 1.0])
|
748 |
+
|
749 |
+
# check that we can mix forward/backwards steps.
|
750 |
+
grad = approx_derivative(
|
751 |
+
f, [-1, -1], method='2-point', abs_step=[1e-8, -1e-8]
|
752 |
+
)
|
753 |
+
assert_allclose(grad, [-1.0, -1.0])
|
754 |
+
grad = approx_derivative(
|
755 |
+
f, [-1, -1], method='2-point', abs_step=[-1e-8, 1e-8]
|
756 |
+
)
|
757 |
+
assert_allclose(grad, [1.0, 1.0])
|
758 |
+
|
759 |
+
# the forward step should reverse to a backwards step if it runs into a
|
760 |
+
# bound
|
761 |
+
# This is kind of tested in TestAdjustSchemeToBounds, but only for a lower level
|
762 |
+
# function.
|
763 |
+
grad = approx_derivative(
|
764 |
+
f, [-1, -1], method='2-point', abs_step=1e-8,
|
765 |
+
bounds=(-np.inf, -1)
|
766 |
+
)
|
767 |
+
assert_allclose(grad, [1.0, -1.0])
|
768 |
+
|
769 |
+
grad = approx_derivative(
|
770 |
+
f, [-1, -1], method='2-point', abs_step=-1e-8, bounds=(-1, np.inf)
|
771 |
+
)
|
772 |
+
assert_allclose(grad, [-1.0, 1.0])
|
773 |
+
|
774 |
+
|
775 |
+
def test__compute_absolute_step():
|
776 |
+
# tests calculation of absolute step from rel_step
|
777 |
+
methods = ['2-point', '3-point', 'cs']
|
778 |
+
|
779 |
+
x0 = np.array([1e-5, 0, 1, 1e5])
|
780 |
+
|
781 |
+
EPS = np.finfo(np.float64).eps
|
782 |
+
relative_step = {
|
783 |
+
"2-point": EPS**0.5,
|
784 |
+
"3-point": EPS**(1/3),
|
785 |
+
"cs": EPS**0.5
|
786 |
+
}
|
787 |
+
f0 = np.array(1.0)
|
788 |
+
|
789 |
+
for method in methods:
|
790 |
+
rel_step = relative_step[method]
|
791 |
+
correct_step = np.array([rel_step,
|
792 |
+
rel_step * 1.,
|
793 |
+
rel_step * 1.,
|
794 |
+
rel_step * np.abs(x0[3])])
|
795 |
+
|
796 |
+
abs_step = _compute_absolute_step(None, x0, f0, method)
|
797 |
+
assert_allclose(abs_step, correct_step)
|
798 |
+
|
799 |
+
sign_x0 = (-x0 >= 0).astype(float) * 2 - 1
|
800 |
+
abs_step = _compute_absolute_step(None, -x0, f0, method)
|
801 |
+
assert_allclose(abs_step, sign_x0 * correct_step)
|
802 |
+
|
803 |
+
# if a relative step is provided it should be used
|
804 |
+
rel_step = np.array([0.1, 1, 10, 100])
|
805 |
+
correct_step = np.array([rel_step[0] * x0[0],
|
806 |
+
relative_step['2-point'],
|
807 |
+
rel_step[2] * 1.,
|
808 |
+
rel_step[3] * np.abs(x0[3])])
|
809 |
+
|
810 |
+
abs_step = _compute_absolute_step(rel_step, x0, f0, '2-point')
|
811 |
+
assert_allclose(abs_step, correct_step)
|
812 |
+
|
813 |
+
sign_x0 = (-x0 >= 0).astype(float) * 2 - 1
|
814 |
+
abs_step = _compute_absolute_step(rel_step, -x0, f0, '2-point')
|
815 |
+
assert_allclose(abs_step, sign_x0 * correct_step)
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/tests/test__remove_redundancy.py
ADDED
@@ -0,0 +1,228 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Unit test for Linear Programming via Simplex Algorithm.
|
3 |
+
"""
|
4 |
+
|
5 |
+
# TODO: add tests for:
|
6 |
+
# https://github.com/scipy/scipy/issues/5400
|
7 |
+
# https://github.com/scipy/scipy/issues/6690
|
8 |
+
|
9 |
+
import numpy as np
|
10 |
+
from numpy.testing import (
|
11 |
+
assert_,
|
12 |
+
assert_allclose,
|
13 |
+
assert_equal)
|
14 |
+
|
15 |
+
from .test_linprog import magic_square
|
16 |
+
from scipy.optimize._remove_redundancy import _remove_redundancy_svd
|
17 |
+
from scipy.optimize._remove_redundancy import _remove_redundancy_pivot_dense
|
18 |
+
from scipy.optimize._remove_redundancy import _remove_redundancy_pivot_sparse
|
19 |
+
from scipy.optimize._remove_redundancy import _remove_redundancy_id
|
20 |
+
|
21 |
+
from scipy.sparse import csc_matrix
|
22 |
+
|
23 |
+
|
24 |
+
def setup_module():
|
25 |
+
np.random.seed(2017)
|
26 |
+
|
27 |
+
|
28 |
+
def redundancy_removed(A, B):
|
29 |
+
"""Checks whether a matrix contains only independent rows of another"""
|
30 |
+
for rowA in A:
|
31 |
+
# `rowA in B` is not a reliable check
|
32 |
+
for rowB in B:
|
33 |
+
if np.all(rowA == rowB):
|
34 |
+
break
|
35 |
+
else:
|
36 |
+
return False
|
37 |
+
return A.shape[0] == np.linalg.matrix_rank(A) == np.linalg.matrix_rank(B)
|
38 |
+
|
39 |
+
|
40 |
+
class RRCommonTests:
|
41 |
+
def test_no_redundancy(self):
|
42 |
+
m, n = 10, 10
|
43 |
+
A0 = np.random.rand(m, n)
|
44 |
+
b0 = np.random.rand(m)
|
45 |
+
A1, b1, status, message = self.rr(A0, b0)
|
46 |
+
assert_allclose(A0, A1)
|
47 |
+
assert_allclose(b0, b1)
|
48 |
+
assert_equal(status, 0)
|
49 |
+
|
50 |
+
def test_infeasible_zero_row(self):
|
51 |
+
A = np.eye(3)
|
52 |
+
A[1, :] = 0
|
53 |
+
b = np.random.rand(3)
|
54 |
+
A1, b1, status, message = self.rr(A, b)
|
55 |
+
assert_equal(status, 2)
|
56 |
+
|
57 |
+
def test_remove_zero_row(self):
|
58 |
+
A = np.eye(3)
|
59 |
+
A[1, :] = 0
|
60 |
+
b = np.random.rand(3)
|
61 |
+
b[1] = 0
|
62 |
+
A1, b1, status, message = self.rr(A, b)
|
63 |
+
assert_equal(status, 0)
|
64 |
+
assert_allclose(A1, A[[0, 2], :])
|
65 |
+
assert_allclose(b1, b[[0, 2]])
|
66 |
+
|
67 |
+
def test_infeasible_m_gt_n(self):
|
68 |
+
m, n = 20, 10
|
69 |
+
A0 = np.random.rand(m, n)
|
70 |
+
b0 = np.random.rand(m)
|
71 |
+
A1, b1, status, message = self.rr(A0, b0)
|
72 |
+
assert_equal(status, 2)
|
73 |
+
|
74 |
+
def test_infeasible_m_eq_n(self):
|
75 |
+
m, n = 10, 10
|
76 |
+
A0 = np.random.rand(m, n)
|
77 |
+
b0 = np.random.rand(m)
|
78 |
+
A0[-1, :] = 2 * A0[-2, :]
|
79 |
+
A1, b1, status, message = self.rr(A0, b0)
|
80 |
+
assert_equal(status, 2)
|
81 |
+
|
82 |
+
def test_infeasible_m_lt_n(self):
|
83 |
+
m, n = 9, 10
|
84 |
+
A0 = np.random.rand(m, n)
|
85 |
+
b0 = np.random.rand(m)
|
86 |
+
A0[-1, :] = np.arange(m - 1).dot(A0[:-1])
|
87 |
+
A1, b1, status, message = self.rr(A0, b0)
|
88 |
+
assert_equal(status, 2)
|
89 |
+
|
90 |
+
def test_m_gt_n(self):
|
91 |
+
np.random.seed(2032)
|
92 |
+
m, n = 20, 10
|
93 |
+
A0 = np.random.rand(m, n)
|
94 |
+
b0 = np.random.rand(m)
|
95 |
+
x = np.linalg.solve(A0[:n, :], b0[:n])
|
96 |
+
b0[n:] = A0[n:, :].dot(x)
|
97 |
+
A1, b1, status, message = self.rr(A0, b0)
|
98 |
+
assert_equal(status, 0)
|
99 |
+
assert_equal(A1.shape[0], n)
|
100 |
+
assert_equal(np.linalg.matrix_rank(A1), n)
|
101 |
+
|
102 |
+
def test_m_gt_n_rank_deficient(self):
|
103 |
+
m, n = 20, 10
|
104 |
+
A0 = np.zeros((m, n))
|
105 |
+
A0[:, 0] = 1
|
106 |
+
b0 = np.ones(m)
|
107 |
+
A1, b1, status, message = self.rr(A0, b0)
|
108 |
+
assert_equal(status, 0)
|
109 |
+
assert_allclose(A1, A0[0:1, :])
|
110 |
+
assert_allclose(b1, b0[0])
|
111 |
+
|
112 |
+
def test_m_lt_n_rank_deficient(self):
|
113 |
+
m, n = 9, 10
|
114 |
+
A0 = np.random.rand(m, n)
|
115 |
+
b0 = np.random.rand(m)
|
116 |
+
A0[-1, :] = np.arange(m - 1).dot(A0[:-1])
|
117 |
+
b0[-1] = np.arange(m - 1).dot(b0[:-1])
|
118 |
+
A1, b1, status, message = self.rr(A0, b0)
|
119 |
+
assert_equal(status, 0)
|
120 |
+
assert_equal(A1.shape[0], 8)
|
121 |
+
assert_equal(np.linalg.matrix_rank(A1), 8)
|
122 |
+
|
123 |
+
def test_dense1(self):
|
124 |
+
A = np.ones((6, 6))
|
125 |
+
A[0, :3] = 0
|
126 |
+
A[1, 3:] = 0
|
127 |
+
A[3:, ::2] = -1
|
128 |
+
A[3, :2] = 0
|
129 |
+
A[4, 2:] = 0
|
130 |
+
b = np.zeros(A.shape[0])
|
131 |
+
|
132 |
+
A1, b1, status, message = self.rr(A, b)
|
133 |
+
assert_(redundancy_removed(A1, A))
|
134 |
+
assert_equal(status, 0)
|
135 |
+
|
136 |
+
def test_dense2(self):
|
137 |
+
A = np.eye(6)
|
138 |
+
A[-2, -1] = 1
|
139 |
+
A[-1, :] = 1
|
140 |
+
b = np.zeros(A.shape[0])
|
141 |
+
A1, b1, status, message = self.rr(A, b)
|
142 |
+
assert_(redundancy_removed(A1, A))
|
143 |
+
assert_equal(status, 0)
|
144 |
+
|
145 |
+
def test_dense3(self):
|
146 |
+
A = np.eye(6)
|
147 |
+
A[-2, -1] = 1
|
148 |
+
A[-1, :] = 1
|
149 |
+
b = np.random.rand(A.shape[0])
|
150 |
+
b[-1] = np.sum(b[:-1])
|
151 |
+
A1, b1, status, message = self.rr(A, b)
|
152 |
+
assert_(redundancy_removed(A1, A))
|
153 |
+
assert_equal(status, 0)
|
154 |
+
|
155 |
+
def test_m_gt_n_sparse(self):
|
156 |
+
np.random.seed(2013)
|
157 |
+
m, n = 20, 5
|
158 |
+
p = 0.1
|
159 |
+
A = np.random.rand(m, n)
|
160 |
+
A[np.random.rand(m, n) > p] = 0
|
161 |
+
rank = np.linalg.matrix_rank(A)
|
162 |
+
b = np.zeros(A.shape[0])
|
163 |
+
A1, b1, status, message = self.rr(A, b)
|
164 |
+
assert_equal(status, 0)
|
165 |
+
assert_equal(A1.shape[0], rank)
|
166 |
+
assert_equal(np.linalg.matrix_rank(A1), rank)
|
167 |
+
|
168 |
+
def test_m_lt_n_sparse(self):
|
169 |
+
np.random.seed(2017)
|
170 |
+
m, n = 20, 50
|
171 |
+
p = 0.05
|
172 |
+
A = np.random.rand(m, n)
|
173 |
+
A[np.random.rand(m, n) > p] = 0
|
174 |
+
rank = np.linalg.matrix_rank(A)
|
175 |
+
b = np.zeros(A.shape[0])
|
176 |
+
A1, b1, status, message = self.rr(A, b)
|
177 |
+
assert_equal(status, 0)
|
178 |
+
assert_equal(A1.shape[0], rank)
|
179 |
+
assert_equal(np.linalg.matrix_rank(A1), rank)
|
180 |
+
|
181 |
+
def test_m_eq_n_sparse(self):
|
182 |
+
np.random.seed(2017)
|
183 |
+
m, n = 100, 100
|
184 |
+
p = 0.01
|
185 |
+
A = np.random.rand(m, n)
|
186 |
+
A[np.random.rand(m, n) > p] = 0
|
187 |
+
rank = np.linalg.matrix_rank(A)
|
188 |
+
b = np.zeros(A.shape[0])
|
189 |
+
A1, b1, status, message = self.rr(A, b)
|
190 |
+
assert_equal(status, 0)
|
191 |
+
assert_equal(A1.shape[0], rank)
|
192 |
+
assert_equal(np.linalg.matrix_rank(A1), rank)
|
193 |
+
|
194 |
+
def test_magic_square(self):
|
195 |
+
A, b, c, numbers, _ = magic_square(3)
|
196 |
+
A1, b1, status, message = self.rr(A, b)
|
197 |
+
assert_equal(status, 0)
|
198 |
+
assert_equal(A1.shape[0], 23)
|
199 |
+
assert_equal(np.linalg.matrix_rank(A1), 23)
|
200 |
+
|
201 |
+
def test_magic_square2(self):
|
202 |
+
A, b, c, numbers, _ = magic_square(4)
|
203 |
+
A1, b1, status, message = self.rr(A, b)
|
204 |
+
assert_equal(status, 0)
|
205 |
+
assert_equal(A1.shape[0], 39)
|
206 |
+
assert_equal(np.linalg.matrix_rank(A1), 39)
|
207 |
+
|
208 |
+
|
209 |
+
class TestRRSVD(RRCommonTests):
|
210 |
+
def rr(self, A, b):
|
211 |
+
return _remove_redundancy_svd(A, b)
|
212 |
+
|
213 |
+
|
214 |
+
class TestRRPivotDense(RRCommonTests):
|
215 |
+
def rr(self, A, b):
|
216 |
+
return _remove_redundancy_pivot_dense(A, b)
|
217 |
+
|
218 |
+
|
219 |
+
class TestRRID(RRCommonTests):
|
220 |
+
def rr(self, A, b):
|
221 |
+
return _remove_redundancy_id(A, b)
|
222 |
+
|
223 |
+
|
224 |
+
class TestRRPivotSparse(RRCommonTests):
|
225 |
+
def rr(self, A, b):
|
226 |
+
rr_res = _remove_redundancy_pivot_sparse(csc_matrix(A), b)
|
227 |
+
A1, b1, status, message = rr_res
|
228 |
+
return A1.toarray(), b1, status, message
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/tests/test__root.py
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Unit tests for optimization routines from _root.py.
|
3 |
+
"""
|
4 |
+
from numpy.testing import assert_, assert_equal
|
5 |
+
import pytest
|
6 |
+
from pytest import raises as assert_raises, warns as assert_warns
|
7 |
+
import numpy as np
|
8 |
+
|
9 |
+
from scipy.optimize import root
|
10 |
+
|
11 |
+
|
12 |
+
class TestRoot:
|
13 |
+
def test_tol_parameter(self):
|
14 |
+
# Check that the minimize() tol= argument does something
|
15 |
+
def func(z):
|
16 |
+
x, y = z
|
17 |
+
return np.array([x**3 - 1, y**3 - 1])
|
18 |
+
|
19 |
+
def dfunc(z):
|
20 |
+
x, y = z
|
21 |
+
return np.array([[3*x**2, 0], [0, 3*y**2]])
|
22 |
+
|
23 |
+
for method in ['hybr', 'lm', 'broyden1', 'broyden2', 'anderson',
|
24 |
+
'diagbroyden', 'krylov']:
|
25 |
+
if method in ('linearmixing', 'excitingmixing'):
|
26 |
+
# doesn't converge
|
27 |
+
continue
|
28 |
+
|
29 |
+
if method in ('hybr', 'lm'):
|
30 |
+
jac = dfunc
|
31 |
+
else:
|
32 |
+
jac = None
|
33 |
+
|
34 |
+
sol1 = root(func, [1.1,1.1], jac=jac, tol=1e-4, method=method)
|
35 |
+
sol2 = root(func, [1.1,1.1], jac=jac, tol=0.5, method=method)
|
36 |
+
msg = f"{method}: {func(sol1.x)} vs. {func(sol2.x)}"
|
37 |
+
assert_(sol1.success, msg)
|
38 |
+
assert_(sol2.success, msg)
|
39 |
+
assert_(abs(func(sol1.x)).max() < abs(func(sol2.x)).max(),
|
40 |
+
msg)
|
41 |
+
|
42 |
+
def test_tol_norm(self):
|
43 |
+
|
44 |
+
def norm(x):
|
45 |
+
return abs(x[0])
|
46 |
+
|
47 |
+
for method in ['excitingmixing',
|
48 |
+
'diagbroyden',
|
49 |
+
'linearmixing',
|
50 |
+
'anderson',
|
51 |
+
'broyden1',
|
52 |
+
'broyden2',
|
53 |
+
'krylov']:
|
54 |
+
|
55 |
+
root(np.zeros_like, np.zeros(2), method=method,
|
56 |
+
options={"tol_norm": norm})
|
57 |
+
|
58 |
+
def test_minimize_scalar_coerce_args_param(self):
|
59 |
+
# github issue #3503
|
60 |
+
def func(z, f=1):
|
61 |
+
x, y = z
|
62 |
+
return np.array([x**3 - 1, y**3 - f])
|
63 |
+
root(func, [1.1, 1.1], args=1.5)
|
64 |
+
|
65 |
+
def test_f_size(self):
|
66 |
+
# gh8320
|
67 |
+
# check that decreasing the size of the returned array raises an error
|
68 |
+
# and doesn't segfault
|
69 |
+
class fun:
|
70 |
+
def __init__(self):
|
71 |
+
self.count = 0
|
72 |
+
|
73 |
+
def __call__(self, x):
|
74 |
+
self.count += 1
|
75 |
+
|
76 |
+
if not (self.count % 5):
|
77 |
+
ret = x[0] + 0.5 * (x[0] - x[1]) ** 3 - 1.0
|
78 |
+
else:
|
79 |
+
ret = ([x[0] + 0.5 * (x[0] - x[1]) ** 3 - 1.0,
|
80 |
+
0.5 * (x[1] - x[0]) ** 3 + x[1]])
|
81 |
+
|
82 |
+
return ret
|
83 |
+
|
84 |
+
F = fun()
|
85 |
+
with assert_raises(ValueError):
|
86 |
+
root(F, [0.1, 0.0], method='lm')
|
87 |
+
|
88 |
+
def test_gh_10370(self):
|
89 |
+
# gh-10370 reported that passing both `args` and `jac` to `root` with
|
90 |
+
# `method='krylov'` caused a failure. Ensure that this is fixed whether
|
91 |
+
# the gradient is passed via `jac` or as a second output of `fun`.
|
92 |
+
def fun(x, ignored):
|
93 |
+
return [3*x[0] - 0.25*x[1]**2 + 10, 0.1*x[0]**2 + 5*x[1] - 2]
|
94 |
+
|
95 |
+
def grad(x, ignored):
|
96 |
+
return [[3, 0.5 * x[1]], [0.2 * x[0], 5]]
|
97 |
+
|
98 |
+
def fun_grad(x, ignored):
|
99 |
+
return fun(x, ignored), grad(x, ignored)
|
100 |
+
|
101 |
+
x0 = np.zeros(2)
|
102 |
+
|
103 |
+
ref = root(fun, x0, args=(1,), method='krylov')
|
104 |
+
message = 'Method krylov does not use the jacobian'
|
105 |
+
with assert_warns(RuntimeWarning, match=message):
|
106 |
+
res1 = root(fun, x0, args=(1,), method='krylov', jac=grad)
|
107 |
+
with assert_warns(RuntimeWarning, match=message):
|
108 |
+
res2 = root(fun_grad, x0, args=(1,), method='krylov', jac=True)
|
109 |
+
|
110 |
+
assert_equal(res1.x, ref.x)
|
111 |
+
assert_equal(res2.x, ref.x)
|
112 |
+
assert res1.success is res2.success is ref.success is True
|
113 |
+
|
114 |
+
@pytest.mark.parametrize("method", ["hybr", "lm", "broyden1", "broyden2",
|
115 |
+
"anderson", "linearmixing",
|
116 |
+
"diagbroyden", "excitingmixing",
|
117 |
+
"krylov", "df-sane"])
|
118 |
+
def test_method_in_result(self, method):
|
119 |
+
def func(x):
|
120 |
+
return x - 1
|
121 |
+
|
122 |
+
res = root(func, x0=[1], method=method)
|
123 |
+
assert res.method == method
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/tests/test__shgo.py
ADDED
@@ -0,0 +1,1159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import sys
|
3 |
+
|
4 |
+
import numpy
|
5 |
+
import numpy as np
|
6 |
+
import time
|
7 |
+
from multiprocessing import Pool
|
8 |
+
from numpy.testing import assert_allclose, IS_PYPY
|
9 |
+
import pytest
|
10 |
+
from pytest import raises as assert_raises, warns
|
11 |
+
from scipy.optimize import (shgo, Bounds, minimize_scalar, minimize, rosen,
|
12 |
+
rosen_der, rosen_hess, NonlinearConstraint)
|
13 |
+
from scipy.optimize._constraints import new_constraint_to_old
|
14 |
+
from scipy.optimize._shgo import SHGO
|
15 |
+
|
16 |
+
|
17 |
+
class StructTestFunction:
|
18 |
+
def __init__(self, bounds, expected_x, expected_fun=None,
|
19 |
+
expected_xl=None, expected_funl=None):
|
20 |
+
self.bounds = bounds
|
21 |
+
self.expected_x = expected_x
|
22 |
+
self.expected_fun = expected_fun
|
23 |
+
self.expected_xl = expected_xl
|
24 |
+
self.expected_funl = expected_funl
|
25 |
+
|
26 |
+
|
27 |
+
def wrap_constraints(g):
|
28 |
+
cons = []
|
29 |
+
if g is not None:
|
30 |
+
if not isinstance(g, (tuple, list)):
|
31 |
+
g = (g,)
|
32 |
+
else:
|
33 |
+
pass
|
34 |
+
for g in g:
|
35 |
+
cons.append({'type': 'ineq',
|
36 |
+
'fun': g})
|
37 |
+
cons = tuple(cons)
|
38 |
+
else:
|
39 |
+
cons = None
|
40 |
+
return cons
|
41 |
+
|
42 |
+
|
43 |
+
class StructTest1(StructTestFunction):
|
44 |
+
def f(self, x):
|
45 |
+
return x[0] ** 2 + x[1] ** 2
|
46 |
+
|
47 |
+
def g(x):
|
48 |
+
return -(numpy.sum(x, axis=0) - 6.0)
|
49 |
+
|
50 |
+
cons = wrap_constraints(g)
|
51 |
+
|
52 |
+
|
53 |
+
test1_1 = StructTest1(bounds=[(-1, 6), (-1, 6)],
|
54 |
+
expected_x=[0, 0])
|
55 |
+
test1_2 = StructTest1(bounds=[(0, 1), (0, 1)],
|
56 |
+
expected_x=[0, 0])
|
57 |
+
test1_3 = StructTest1(bounds=[(None, None), (None, None)],
|
58 |
+
expected_x=[0, 0])
|
59 |
+
|
60 |
+
|
61 |
+
class StructTest2(StructTestFunction):
|
62 |
+
"""
|
63 |
+
Scalar function with several minima to test all minimiser retrievals
|
64 |
+
"""
|
65 |
+
|
66 |
+
def f(self, x):
|
67 |
+
return (x - 30) * numpy.sin(x)
|
68 |
+
|
69 |
+
def g(x):
|
70 |
+
return 58 - numpy.sum(x, axis=0)
|
71 |
+
|
72 |
+
cons = wrap_constraints(g)
|
73 |
+
|
74 |
+
|
75 |
+
test2_1 = StructTest2(bounds=[(0, 60)],
|
76 |
+
expected_x=[1.53567906],
|
77 |
+
expected_fun=-28.44677132,
|
78 |
+
# Important: test that funl return is in the correct
|
79 |
+
# order
|
80 |
+
expected_xl=numpy.array([[1.53567906],
|
81 |
+
[55.01782167],
|
82 |
+
[7.80894889],
|
83 |
+
[48.74797493],
|
84 |
+
[14.07445705],
|
85 |
+
[42.4913859],
|
86 |
+
[20.31743841],
|
87 |
+
[36.28607535],
|
88 |
+
[26.43039605],
|
89 |
+
[30.76371366]]),
|
90 |
+
|
91 |
+
expected_funl=numpy.array([-28.44677132, -24.99785984,
|
92 |
+
-22.16855376, -18.72136195,
|
93 |
+
-15.89423937, -12.45154942,
|
94 |
+
-9.63133158, -6.20801301,
|
95 |
+
-3.43727232, -0.46353338])
|
96 |
+
)
|
97 |
+
|
98 |
+
test2_2 = StructTest2(bounds=[(0, 4.5)],
|
99 |
+
expected_x=[1.53567906],
|
100 |
+
expected_fun=[-28.44677132],
|
101 |
+
expected_xl=numpy.array([[1.53567906]]),
|
102 |
+
expected_funl=numpy.array([-28.44677132])
|
103 |
+
)
|
104 |
+
|
105 |
+
|
106 |
+
class StructTest3(StructTestFunction):
|
107 |
+
"""
|
108 |
+
Hock and Schittkowski 18 problem (HS18). Hoch and Schittkowski (1981)
|
109 |
+
http://www.ai7.uni-bayreuth.de/test_problem_coll.pdf
|
110 |
+
Minimize: f = 0.01 * (x_1)**2 + (x_2)**2
|
111 |
+
|
112 |
+
Subject to: x_1 * x_2 - 25.0 >= 0,
|
113 |
+
(x_1)**2 + (x_2)**2 - 25.0 >= 0,
|
114 |
+
2 <= x_1 <= 50,
|
115 |
+
0 <= x_2 <= 50.
|
116 |
+
|
117 |
+
Approx. Answer:
|
118 |
+
f([(250)**0.5 , (2.5)**0.5]) = 5.0
|
119 |
+
|
120 |
+
|
121 |
+
"""
|
122 |
+
|
123 |
+
# amended to test vectorisation of constraints
|
124 |
+
def f(self, x):
|
125 |
+
return 0.01 * (x[0]) ** 2 + (x[1]) ** 2
|
126 |
+
|
127 |
+
def g1(x):
|
128 |
+
return x[0] * x[1] - 25.0
|
129 |
+
|
130 |
+
def g2(x):
|
131 |
+
return x[0] ** 2 + x[1] ** 2 - 25.0
|
132 |
+
|
133 |
+
# g = (g1, g2)
|
134 |
+
# cons = wrap_constraints(g)
|
135 |
+
|
136 |
+
def g(x):
|
137 |
+
return x[0] * x[1] - 25.0, x[0] ** 2 + x[1] ** 2 - 25.0
|
138 |
+
|
139 |
+
# this checks that shgo can be sent new-style constraints
|
140 |
+
__nlc = NonlinearConstraint(g, 0, np.inf)
|
141 |
+
cons = (__nlc,)
|
142 |
+
|
143 |
+
test3_1 = StructTest3(bounds=[(2, 50), (0, 50)],
|
144 |
+
expected_x=[250 ** 0.5, 2.5 ** 0.5],
|
145 |
+
expected_fun=5.0
|
146 |
+
)
|
147 |
+
|
148 |
+
|
149 |
+
class StructTest4(StructTestFunction):
|
150 |
+
"""
|
151 |
+
Hock and Schittkowski 11 problem (HS11). Hoch and Schittkowski (1981)
|
152 |
+
|
153 |
+
NOTE: Did not find in original reference to HS collection, refer to
|
154 |
+
Henderson (2015) problem 7 instead. 02.03.2016
|
155 |
+
"""
|
156 |
+
|
157 |
+
def f(self, x):
|
158 |
+
return ((x[0] - 10) ** 2 + 5 * (x[1] - 12) ** 2 + x[2] ** 4
|
159 |
+
+ 3 * (x[3] - 11) ** 2 + 10 * x[4] ** 6 + 7 * x[5] ** 2 + x[
|
160 |
+
6] ** 4
|
161 |
+
- 4 * x[5] * x[6] - 10 * x[5] - 8 * x[6]
|
162 |
+
)
|
163 |
+
|
164 |
+
def g1(x):
|
165 |
+
return -(2 * x[0] ** 2 + 3 * x[1] ** 4 + x[2] + 4 * x[3] ** 2
|
166 |
+
+ 5 * x[4] - 127)
|
167 |
+
|
168 |
+
def g2(x):
|
169 |
+
return -(7 * x[0] + 3 * x[1] + 10 * x[2] ** 2 + x[3] - x[4] - 282.0)
|
170 |
+
|
171 |
+
def g3(x):
|
172 |
+
return -(23 * x[0] + x[1] ** 2 + 6 * x[5] ** 2 - 8 * x[6] - 196)
|
173 |
+
|
174 |
+
def g4(x):
|
175 |
+
return -(4 * x[0] ** 2 + x[1] ** 2 - 3 * x[0] * x[1] + 2 * x[2] ** 2
|
176 |
+
+ 5 * x[5] - 11 * x[6])
|
177 |
+
|
178 |
+
g = (g1, g2, g3, g4)
|
179 |
+
|
180 |
+
cons = wrap_constraints(g)
|
181 |
+
|
182 |
+
|
183 |
+
test4_1 = StructTest4(bounds=[(-10, 10), ] * 7,
|
184 |
+
expected_x=[2.330499, 1.951372, -0.4775414,
|
185 |
+
4.365726, -0.6244870, 1.038131, 1.594227],
|
186 |
+
expected_fun=680.6300573
|
187 |
+
)
|
188 |
+
|
189 |
+
|
190 |
+
class StructTest5(StructTestFunction):
|
191 |
+
def f(self, x):
|
192 |
+
return (-(x[1] + 47.0)
|
193 |
+
* numpy.sin(numpy.sqrt(abs(x[0] / 2.0 + (x[1] + 47.0))))
|
194 |
+
- x[0] * numpy.sin(numpy.sqrt(abs(x[0] - (x[1] + 47.0))))
|
195 |
+
)
|
196 |
+
|
197 |
+
g = None
|
198 |
+
cons = wrap_constraints(g)
|
199 |
+
|
200 |
+
|
201 |
+
test5_1 = StructTest5(bounds=[(-512, 512), (-512, 512)],
|
202 |
+
expected_fun=[-959.64066272085051],
|
203 |
+
expected_x=[512., 404.23180542])
|
204 |
+
|
205 |
+
|
206 |
+
class StructTestLJ(StructTestFunction):
|
207 |
+
"""
|
208 |
+
LennardJones objective function. Used to test symmetry constraints
|
209 |
+
settings.
|
210 |
+
"""
|
211 |
+
|
212 |
+
def f(self, x, *args):
|
213 |
+
print(f'x = {x}')
|
214 |
+
self.N = args[0]
|
215 |
+
k = int(self.N / 3)
|
216 |
+
s = 0.0
|
217 |
+
|
218 |
+
for i in range(k - 1):
|
219 |
+
for j in range(i + 1, k):
|
220 |
+
a = 3 * i
|
221 |
+
b = 3 * j
|
222 |
+
xd = x[a] - x[b]
|
223 |
+
yd = x[a + 1] - x[b + 1]
|
224 |
+
zd = x[a + 2] - x[b + 2]
|
225 |
+
ed = xd * xd + yd * yd + zd * zd
|
226 |
+
ud = ed * ed * ed
|
227 |
+
if ed > 0.0:
|
228 |
+
s += (1.0 / ud - 2.0) / ud
|
229 |
+
|
230 |
+
return s
|
231 |
+
|
232 |
+
g = None
|
233 |
+
cons = wrap_constraints(g)
|
234 |
+
|
235 |
+
|
236 |
+
N = 6
|
237 |
+
boundsLJ = list(zip([-4.0] * 6, [4.0] * 6))
|
238 |
+
|
239 |
+
testLJ = StructTestLJ(bounds=boundsLJ,
|
240 |
+
expected_fun=[-1.0],
|
241 |
+
expected_x=None,
|
242 |
+
# expected_x=[-2.71247337e-08,
|
243 |
+
# -2.71247337e-08,
|
244 |
+
# -2.50000222e+00,
|
245 |
+
# -2.71247337e-08,
|
246 |
+
# -2.71247337e-08,
|
247 |
+
# -1.50000222e+00]
|
248 |
+
)
|
249 |
+
|
250 |
+
|
251 |
+
class StructTestS(StructTestFunction):
|
252 |
+
def f(self, x):
|
253 |
+
return ((x[0] - 0.5) ** 2 + (x[1] - 0.5) ** 2
|
254 |
+
+ (x[2] - 0.5) ** 2 + (x[3] - 0.5) ** 2)
|
255 |
+
|
256 |
+
g = None
|
257 |
+
cons = wrap_constraints(g)
|
258 |
+
|
259 |
+
|
260 |
+
test_s = StructTestS(bounds=[(0, 2.0), ] * 4,
|
261 |
+
expected_fun=0.0,
|
262 |
+
expected_x=numpy.ones(4) - 0.5
|
263 |
+
)
|
264 |
+
|
265 |
+
|
266 |
+
class StructTestTable(StructTestFunction):
|
267 |
+
def f(self, x):
|
268 |
+
if x[0] == 3.0 and x[1] == 3.0:
|
269 |
+
return 50
|
270 |
+
else:
|
271 |
+
return 100
|
272 |
+
|
273 |
+
g = None
|
274 |
+
cons = wrap_constraints(g)
|
275 |
+
|
276 |
+
|
277 |
+
test_table = StructTestTable(bounds=[(-10, 10), (-10, 10)],
|
278 |
+
expected_fun=[50],
|
279 |
+
expected_x=[3.0, 3.0])
|
280 |
+
|
281 |
+
|
282 |
+
class StructTestInfeasible(StructTestFunction):
|
283 |
+
"""
|
284 |
+
Test function with no feasible domain.
|
285 |
+
"""
|
286 |
+
|
287 |
+
def f(self, x, *args):
|
288 |
+
return x[0] ** 2 + x[1] ** 2
|
289 |
+
|
290 |
+
def g1(x):
|
291 |
+
return x[0] + x[1] - 1
|
292 |
+
|
293 |
+
def g2(x):
|
294 |
+
return -(x[0] + x[1] - 1)
|
295 |
+
|
296 |
+
def g3(x):
|
297 |
+
return -x[0] + x[1] - 1
|
298 |
+
|
299 |
+
def g4(x):
|
300 |
+
return -(-x[0] + x[1] - 1)
|
301 |
+
|
302 |
+
g = (g1, g2, g3, g4)
|
303 |
+
cons = wrap_constraints(g)
|
304 |
+
|
305 |
+
|
306 |
+
test_infeasible = StructTestInfeasible(bounds=[(2, 50), (-1, 1)],
|
307 |
+
expected_fun=None,
|
308 |
+
expected_x=None
|
309 |
+
)
|
310 |
+
|
311 |
+
|
312 |
+
@pytest.mark.skip("Not a test")
|
313 |
+
def run_test(test, args=(), test_atol=1e-5, n=100, iters=None,
|
314 |
+
callback=None, minimizer_kwargs=None, options=None,
|
315 |
+
sampling_method='sobol', workers=1):
|
316 |
+
res = shgo(test.f, test.bounds, args=args, constraints=test.cons,
|
317 |
+
n=n, iters=iters, callback=callback,
|
318 |
+
minimizer_kwargs=minimizer_kwargs, options=options,
|
319 |
+
sampling_method=sampling_method, workers=workers)
|
320 |
+
|
321 |
+
print(f'res = {res}')
|
322 |
+
logging.info(f'res = {res}')
|
323 |
+
if test.expected_x is not None:
|
324 |
+
numpy.testing.assert_allclose(res.x, test.expected_x,
|
325 |
+
rtol=test_atol,
|
326 |
+
atol=test_atol)
|
327 |
+
|
328 |
+
# (Optional tests)
|
329 |
+
if test.expected_fun is not None:
|
330 |
+
numpy.testing.assert_allclose(res.fun,
|
331 |
+
test.expected_fun,
|
332 |
+
atol=test_atol)
|
333 |
+
|
334 |
+
if test.expected_xl is not None:
|
335 |
+
numpy.testing.assert_allclose(res.xl,
|
336 |
+
test.expected_xl,
|
337 |
+
atol=test_atol)
|
338 |
+
|
339 |
+
if test.expected_funl is not None:
|
340 |
+
numpy.testing.assert_allclose(res.funl,
|
341 |
+
test.expected_funl,
|
342 |
+
atol=test_atol)
|
343 |
+
return
|
344 |
+
|
345 |
+
|
346 |
+
# Base test functions:
|
347 |
+
class TestShgoSobolTestFunctions:
|
348 |
+
"""
|
349 |
+
Global optimisation tests with Sobol sampling:
|
350 |
+
"""
|
351 |
+
|
352 |
+
# Sobol algorithm
|
353 |
+
def test_f1_1_sobol(self):
|
354 |
+
"""Multivariate test function 1:
|
355 |
+
x[0]**2 + x[1]**2 with bounds=[(-1, 6), (-1, 6)]"""
|
356 |
+
run_test(test1_1)
|
357 |
+
|
358 |
+
def test_f1_2_sobol(self):
|
359 |
+
"""Multivariate test function 1:
|
360 |
+
x[0]**2 + x[1]**2 with bounds=[(0, 1), (0, 1)]"""
|
361 |
+
run_test(test1_2)
|
362 |
+
|
363 |
+
def test_f1_3_sobol(self):
|
364 |
+
"""Multivariate test function 1:
|
365 |
+
x[0]**2 + x[1]**2 with bounds=[(None, None),(None, None)]"""
|
366 |
+
options = {'disp': True}
|
367 |
+
run_test(test1_3, options=options)
|
368 |
+
|
369 |
+
def test_f2_1_sobol(self):
|
370 |
+
"""Univariate test function on
|
371 |
+
f(x) = (x - 30) * sin(x) with bounds=[(0, 60)]"""
|
372 |
+
run_test(test2_1)
|
373 |
+
|
374 |
+
def test_f2_2_sobol(self):
|
375 |
+
"""Univariate test function on
|
376 |
+
f(x) = (x - 30) * sin(x) bounds=[(0, 4.5)]"""
|
377 |
+
run_test(test2_2)
|
378 |
+
|
379 |
+
def test_f3_sobol(self):
|
380 |
+
"""NLP: Hock and Schittkowski problem 18"""
|
381 |
+
run_test(test3_1)
|
382 |
+
|
383 |
+
@pytest.mark.slow
|
384 |
+
def test_f4_sobol(self):
|
385 |
+
"""NLP: (High dimensional) Hock and Schittkowski 11 problem (HS11)"""
|
386 |
+
options = {'infty_constraints': False}
|
387 |
+
# run_test(test4_1, n=990, options=options)
|
388 |
+
run_test(test4_1, n=990 * 2, options=options)
|
389 |
+
|
390 |
+
def test_f5_1_sobol(self):
|
391 |
+
"""NLP: Eggholder, multimodal"""
|
392 |
+
# run_test(test5_1, n=30)
|
393 |
+
run_test(test5_1, n=60)
|
394 |
+
|
395 |
+
def test_f5_2_sobol(self):
|
396 |
+
"""NLP: Eggholder, multimodal"""
|
397 |
+
# run_test(test5_1, n=60, iters=5)
|
398 |
+
run_test(test5_1, n=60, iters=5)
|
399 |
+
|
400 |
+
# def test_t911(self):
|
401 |
+
# """1D tabletop function"""
|
402 |
+
# run_test(test11_1)
|
403 |
+
|
404 |
+
|
405 |
+
class TestShgoSimplicialTestFunctions:
|
406 |
+
"""
|
407 |
+
Global optimisation tests with Simplicial sampling:
|
408 |
+
"""
|
409 |
+
|
410 |
+
def test_f1_1_simplicial(self):
|
411 |
+
"""Multivariate test function 1:
|
412 |
+
x[0]**2 + x[1]**2 with bounds=[(-1, 6), (-1, 6)]"""
|
413 |
+
run_test(test1_1, n=1, sampling_method='simplicial')
|
414 |
+
|
415 |
+
def test_f1_2_simplicial(self):
|
416 |
+
"""Multivariate test function 1:
|
417 |
+
x[0]**2 + x[1]**2 with bounds=[(0, 1), (0, 1)]"""
|
418 |
+
run_test(test1_2, n=1, sampling_method='simplicial')
|
419 |
+
|
420 |
+
def test_f1_3_simplicial(self):
|
421 |
+
"""Multivariate test function 1: x[0]**2 + x[1]**2
|
422 |
+
with bounds=[(None, None),(None, None)]"""
|
423 |
+
run_test(test1_3, n=5, sampling_method='simplicial')
|
424 |
+
|
425 |
+
def test_f2_1_simplicial(self):
|
426 |
+
"""Univariate test function on
|
427 |
+
f(x) = (x - 30) * sin(x) with bounds=[(0, 60)]"""
|
428 |
+
options = {'minimize_every_iter': False}
|
429 |
+
run_test(test2_1, n=200, iters=7, options=options,
|
430 |
+
sampling_method='simplicial')
|
431 |
+
|
432 |
+
def test_f2_2_simplicial(self):
|
433 |
+
"""Univariate test function on
|
434 |
+
f(x) = (x - 30) * sin(x) bounds=[(0, 4.5)]"""
|
435 |
+
run_test(test2_2, n=1, sampling_method='simplicial')
|
436 |
+
|
437 |
+
def test_f3_simplicial(self):
|
438 |
+
"""NLP: Hock and Schittkowski problem 18"""
|
439 |
+
run_test(test3_1, n=1, sampling_method='simplicial')
|
440 |
+
|
441 |
+
@pytest.mark.slow
|
442 |
+
def test_f4_simplicial(self):
|
443 |
+
"""NLP: (High dimensional) Hock and Schittkowski 11 problem (HS11)"""
|
444 |
+
run_test(test4_1, n=1, sampling_method='simplicial')
|
445 |
+
|
446 |
+
def test_lj_symmetry_old(self):
|
447 |
+
"""LJ: Symmetry-constrained test function"""
|
448 |
+
options = {'symmetry': True,
|
449 |
+
'disp': True}
|
450 |
+
args = (6,) # Number of atoms
|
451 |
+
run_test(testLJ, args=args, n=300,
|
452 |
+
options=options, iters=1,
|
453 |
+
sampling_method='simplicial')
|
454 |
+
|
455 |
+
def test_f5_1_lj_symmetry(self):
|
456 |
+
"""LJ: Symmetry constrained test function"""
|
457 |
+
options = {'symmetry': [0, ] * 6,
|
458 |
+
'disp': True}
|
459 |
+
args = (6,) # No. of atoms
|
460 |
+
|
461 |
+
run_test(testLJ, args=args, n=300,
|
462 |
+
options=options, iters=1,
|
463 |
+
sampling_method='simplicial')
|
464 |
+
|
465 |
+
def test_f5_2_cons_symmetry(self):
|
466 |
+
"""Symmetry constrained test function"""
|
467 |
+
options = {'symmetry': [0, 0],
|
468 |
+
'disp': True}
|
469 |
+
|
470 |
+
run_test(test1_1, n=200,
|
471 |
+
options=options, iters=1,
|
472 |
+
sampling_method='simplicial')
|
473 |
+
|
474 |
+
def test_f5_3_cons_symmetry(self):
|
475 |
+
"""Assymmetrically constrained test function"""
|
476 |
+
options = {'symmetry': [0, 0, 0, 3],
|
477 |
+
'disp': True}
|
478 |
+
|
479 |
+
run_test(test_s, n=10000,
|
480 |
+
options=options,
|
481 |
+
iters=1,
|
482 |
+
sampling_method='simplicial')
|
483 |
+
|
484 |
+
@pytest.mark.skip("Not a test")
|
485 |
+
def test_f0_min_variance(self):
|
486 |
+
"""Return a minimum on a perfectly symmetric problem, based on
|
487 |
+
gh10429"""
|
488 |
+
avg = 0.5 # Given average value of x
|
489 |
+
cons = {'type': 'eq', 'fun': lambda x: numpy.mean(x) - avg}
|
490 |
+
|
491 |
+
# Minimize the variance of x under the given constraint
|
492 |
+
res = shgo(numpy.var, bounds=6 * [(0, 1)], constraints=cons)
|
493 |
+
assert res.success
|
494 |
+
assert_allclose(res.fun, 0, atol=1e-15)
|
495 |
+
assert_allclose(res.x, 0.5)
|
496 |
+
|
497 |
+
@pytest.mark.skip("Not a test")
|
498 |
+
def test_f0_min_variance_1D(self):
|
499 |
+
"""Return a minimum on a perfectly symmetric 1D problem, based on
|
500 |
+
gh10538"""
|
501 |
+
|
502 |
+
def fun(x):
|
503 |
+
return x * (x - 1.0) * (x - 0.5)
|
504 |
+
|
505 |
+
bounds = [(0, 1)]
|
506 |
+
res = shgo(fun, bounds=bounds)
|
507 |
+
ref = minimize_scalar(fun, bounds=bounds[0])
|
508 |
+
assert res.success
|
509 |
+
assert_allclose(res.fun, ref.fun)
|
510 |
+
assert_allclose(res.x, ref.x, rtol=1e-6)
|
511 |
+
|
512 |
+
# Argument test functions
|
513 |
+
class TestShgoArguments:
|
514 |
+
def test_1_1_simpl_iter(self):
|
515 |
+
"""Iterative simplicial sampling on TestFunction 1 (multivariate)"""
|
516 |
+
run_test(test1_2, n=None, iters=2, sampling_method='simplicial')
|
517 |
+
|
518 |
+
def test_1_2_simpl_iter(self):
|
519 |
+
"""Iterative simplicial on TestFunction 2 (univariate)"""
|
520 |
+
options = {'minimize_every_iter': False}
|
521 |
+
run_test(test2_1, n=None, iters=9, options=options,
|
522 |
+
sampling_method='simplicial')
|
523 |
+
|
524 |
+
def test_2_1_sobol_iter(self):
|
525 |
+
"""Iterative Sobol sampling on TestFunction 1 (multivariate)"""
|
526 |
+
run_test(test1_2, n=None, iters=1, sampling_method='sobol')
|
527 |
+
|
528 |
+
def test_2_2_sobol_iter(self):
|
529 |
+
"""Iterative Sobol sampling on TestFunction 2 (univariate)"""
|
530 |
+
res = shgo(test2_1.f, test2_1.bounds, constraints=test2_1.cons,
|
531 |
+
n=None, iters=1, sampling_method='sobol')
|
532 |
+
|
533 |
+
numpy.testing.assert_allclose(res.x, test2_1.expected_x, rtol=1e-5,
|
534 |
+
atol=1e-5)
|
535 |
+
numpy.testing.assert_allclose(res.fun, test2_1.expected_fun, atol=1e-5)
|
536 |
+
|
537 |
+
def test_3_1_disp_simplicial(self):
|
538 |
+
"""Iterative sampling on TestFunction 1 and 2 (multi and univariate)
|
539 |
+
"""
|
540 |
+
|
541 |
+
def callback_func(x):
|
542 |
+
print("Local minimization callback test")
|
543 |
+
|
544 |
+
for test in [test1_1, test2_1]:
|
545 |
+
shgo(test.f, test.bounds, iters=1,
|
546 |
+
sampling_method='simplicial',
|
547 |
+
callback=callback_func, options={'disp': True})
|
548 |
+
shgo(test.f, test.bounds, n=1, sampling_method='simplicial',
|
549 |
+
callback=callback_func, options={'disp': True})
|
550 |
+
|
551 |
+
def test_3_2_disp_sobol(self):
|
552 |
+
"""Iterative sampling on TestFunction 1 and 2 (multi and univariate)"""
|
553 |
+
|
554 |
+
def callback_func(x):
|
555 |
+
print("Local minimization callback test")
|
556 |
+
|
557 |
+
for test in [test1_1, test2_1]:
|
558 |
+
shgo(test.f, test.bounds, iters=1, sampling_method='sobol',
|
559 |
+
callback=callback_func, options={'disp': True})
|
560 |
+
|
561 |
+
shgo(test.f, test.bounds, n=1, sampling_method='simplicial',
|
562 |
+
callback=callback_func, options={'disp': True})
|
563 |
+
|
564 |
+
def test_args_gh14589(self):
|
565 |
+
"""Using `args` used to cause `shgo` to fail; see #14589, #15986,
|
566 |
+
#16506"""
|
567 |
+
res = shgo(func=lambda x, y, z: x * z + y, bounds=[(0, 3)], args=(1, 2)
|
568 |
+
)
|
569 |
+
ref = shgo(func=lambda x: 2 * x + 1, bounds=[(0, 3)])
|
570 |
+
assert_allclose(res.fun, ref.fun)
|
571 |
+
assert_allclose(res.x, ref.x)
|
572 |
+
|
573 |
+
@pytest.mark.slow
|
574 |
+
def test_4_1_known_f_min(self):
|
575 |
+
"""Test known function minima stopping criteria"""
|
576 |
+
# Specify known function value
|
577 |
+
options = {'f_min': test4_1.expected_fun,
|
578 |
+
'f_tol': 1e-6,
|
579 |
+
'minimize_every_iter': True}
|
580 |
+
# TODO: Make default n higher for faster tests
|
581 |
+
run_test(test4_1, n=None, test_atol=1e-5, options=options,
|
582 |
+
sampling_method='simplicial')
|
583 |
+
|
584 |
+
@pytest.mark.slow
|
585 |
+
def test_4_2_known_f_min(self):
|
586 |
+
"""Test Global mode limiting local evaluations"""
|
587 |
+
options = { # Specify known function value
|
588 |
+
'f_min': test4_1.expected_fun,
|
589 |
+
'f_tol': 1e-6,
|
590 |
+
# Specify number of local iterations to perform
|
591 |
+
'minimize_every_iter': True,
|
592 |
+
'local_iter': 1}
|
593 |
+
|
594 |
+
run_test(test4_1, n=None, test_atol=1e-5, options=options,
|
595 |
+
sampling_method='simplicial')
|
596 |
+
|
597 |
+
def test_4_4_known_f_min(self):
|
598 |
+
"""Test Global mode limiting local evaluations for 1D funcs"""
|
599 |
+
options = { # Specify known function value
|
600 |
+
'f_min': test2_1.expected_fun,
|
601 |
+
'f_tol': 1e-6,
|
602 |
+
# Specify number of local iterations to perform+
|
603 |
+
'minimize_every_iter': True,
|
604 |
+
'local_iter': 1,
|
605 |
+
'infty_constraints': False}
|
606 |
+
|
607 |
+
res = shgo(test2_1.f, test2_1.bounds, constraints=test2_1.cons,
|
608 |
+
n=None, iters=None, options=options,
|
609 |
+
sampling_method='sobol')
|
610 |
+
numpy.testing.assert_allclose(res.x, test2_1.expected_x, rtol=1e-5,
|
611 |
+
atol=1e-5)
|
612 |
+
|
613 |
+
def test_5_1_simplicial_argless(self):
|
614 |
+
"""Test Default simplicial sampling settings on TestFunction 1"""
|
615 |
+
res = shgo(test1_1.f, test1_1.bounds, constraints=test1_1.cons)
|
616 |
+
numpy.testing.assert_allclose(res.x, test1_1.expected_x, rtol=1e-5,
|
617 |
+
atol=1e-5)
|
618 |
+
|
619 |
+
def test_5_2_sobol_argless(self):
|
620 |
+
"""Test Default sobol sampling settings on TestFunction 1"""
|
621 |
+
res = shgo(test1_1.f, test1_1.bounds, constraints=test1_1.cons,
|
622 |
+
sampling_method='sobol')
|
623 |
+
numpy.testing.assert_allclose(res.x, test1_1.expected_x, rtol=1e-5,
|
624 |
+
atol=1e-5)
|
625 |
+
|
626 |
+
def test_6_1_simplicial_max_iter(self):
|
627 |
+
"""Test that maximum iteration option works on TestFunction 3"""
|
628 |
+
options = {'max_iter': 2}
|
629 |
+
res = shgo(test3_1.f, test3_1.bounds, constraints=test3_1.cons,
|
630 |
+
options=options, sampling_method='simplicial')
|
631 |
+
numpy.testing.assert_allclose(res.x, test3_1.expected_x, rtol=1e-5,
|
632 |
+
atol=1e-5)
|
633 |
+
numpy.testing.assert_allclose(res.fun, test3_1.expected_fun, atol=1e-5)
|
634 |
+
|
635 |
+
def test_6_2_simplicial_min_iter(self):
|
636 |
+
"""Test that maximum iteration option works on TestFunction 3"""
|
637 |
+
options = {'min_iter': 2}
|
638 |
+
res = shgo(test3_1.f, test3_1.bounds, constraints=test3_1.cons,
|
639 |
+
options=options, sampling_method='simplicial')
|
640 |
+
numpy.testing.assert_allclose(res.x, test3_1.expected_x, rtol=1e-5,
|
641 |
+
atol=1e-5)
|
642 |
+
numpy.testing.assert_allclose(res.fun, test3_1.expected_fun, atol=1e-5)
|
643 |
+
|
644 |
+
def test_7_1_minkwargs(self):
|
645 |
+
"""Test the minimizer_kwargs arguments for solvers with constraints"""
|
646 |
+
# Test solvers
|
647 |
+
for solver in ['COBYLA', 'SLSQP']:
|
648 |
+
# Note that passing global constraints to SLSQP is tested in other
|
649 |
+
# unittests which run test4_1 normally
|
650 |
+
minimizer_kwargs = {'method': solver,
|
651 |
+
'constraints': test3_1.cons}
|
652 |
+
run_test(test3_1, n=100, test_atol=1e-3,
|
653 |
+
minimizer_kwargs=minimizer_kwargs,
|
654 |
+
sampling_method='sobol')
|
655 |
+
|
656 |
+
def test_7_2_minkwargs(self):
|
657 |
+
"""Test the minimizer_kwargs default inits"""
|
658 |
+
minimizer_kwargs = {'ftol': 1e-5}
|
659 |
+
options = {'disp': True} # For coverage purposes
|
660 |
+
SHGO(test3_1.f, test3_1.bounds, constraints=test3_1.cons[0],
|
661 |
+
minimizer_kwargs=minimizer_kwargs, options=options)
|
662 |
+
|
663 |
+
def test_7_3_minkwargs(self):
|
664 |
+
"""Test minimizer_kwargs arguments for solvers without constraints"""
|
665 |
+
for solver in ['Nelder-Mead', 'Powell', 'CG', 'BFGS', 'Newton-CG',
|
666 |
+
'L-BFGS-B', 'TNC', 'dogleg', 'trust-ncg', 'trust-exact',
|
667 |
+
'trust-krylov']:
|
668 |
+
def jac(x):
|
669 |
+
return numpy.array([2 * x[0], 2 * x[1]]).T
|
670 |
+
|
671 |
+
def hess(x):
|
672 |
+
return numpy.array([[2, 0], [0, 2]])
|
673 |
+
|
674 |
+
minimizer_kwargs = {'method': solver,
|
675 |
+
'jac': jac,
|
676 |
+
'hess': hess}
|
677 |
+
logging.info(f"Solver = {solver}")
|
678 |
+
logging.info("=" * 100)
|
679 |
+
run_test(test1_1, n=100, test_atol=1e-3,
|
680 |
+
minimizer_kwargs=minimizer_kwargs,
|
681 |
+
sampling_method='sobol')
|
682 |
+
|
683 |
+
def test_8_homology_group_diff(self):
|
684 |
+
options = {'minhgrd': 1,
|
685 |
+
'minimize_every_iter': True}
|
686 |
+
|
687 |
+
run_test(test1_1, n=None, iters=None, options=options,
|
688 |
+
sampling_method='simplicial')
|
689 |
+
|
690 |
+
def test_9_cons_g(self):
|
691 |
+
"""Test single function constraint passing"""
|
692 |
+
SHGO(test3_1.f, test3_1.bounds, constraints=test3_1.cons[0])
|
693 |
+
|
694 |
+
@pytest.mark.xfail(IS_PYPY and sys.platform == 'win32',
|
695 |
+
reason="Failing and fix in PyPy not planned (see gh-18632)")
|
696 |
+
def test_10_finite_time(self):
|
697 |
+
"""Test single function constraint passing"""
|
698 |
+
options = {'maxtime': 1e-15}
|
699 |
+
|
700 |
+
def f(x):
|
701 |
+
time.sleep(1e-14)
|
702 |
+
return 0.0
|
703 |
+
|
704 |
+
res = shgo(f, test1_1.bounds, iters=5, options=options)
|
705 |
+
# Assert that only 1 rather than 5 requested iterations ran:
|
706 |
+
assert res.nit == 1
|
707 |
+
|
708 |
+
def test_11_f_min_0(self):
|
709 |
+
"""Test to cover the case where f_lowest == 0"""
|
710 |
+
options = {'f_min': 0.0,
|
711 |
+
'disp': True}
|
712 |
+
res = shgo(test1_2.f, test1_2.bounds, n=10, iters=None,
|
713 |
+
options=options, sampling_method='sobol')
|
714 |
+
numpy.testing.assert_equal(0, res.x[0])
|
715 |
+
numpy.testing.assert_equal(0, res.x[1])
|
716 |
+
|
717 |
+
# @nottest
|
718 |
+
@pytest.mark.skip(reason="no way of currently testing this")
|
719 |
+
def test_12_sobol_inf_cons(self):
|
720 |
+
"""Test to cover the case where f_lowest == 0"""
|
721 |
+
# TODO: This test doesn't cover anything new, it is unknown what the
|
722 |
+
# original test was intended for as it was never complete. Delete or
|
723 |
+
# replace in the future.
|
724 |
+
options = {'maxtime': 1e-15,
|
725 |
+
'f_min': 0.0}
|
726 |
+
res = shgo(test1_2.f, test1_2.bounds, n=1, iters=None,
|
727 |
+
options=options, sampling_method='sobol')
|
728 |
+
numpy.testing.assert_equal(0.0, res.fun)
|
729 |
+
|
730 |
+
def test_13_high_sobol(self):
|
731 |
+
"""Test init of high-dimensional sobol sequences"""
|
732 |
+
|
733 |
+
def f(x):
|
734 |
+
return 0
|
735 |
+
|
736 |
+
bounds = [(None, None), ] * 41
|
737 |
+
SHGOc = SHGO(f, bounds, sampling_method='sobol')
|
738 |
+
# SHGOc.sobol_points(2, 50)
|
739 |
+
SHGOc.sampling_function(2, 50)
|
740 |
+
|
741 |
+
def test_14_local_iter(self):
|
742 |
+
"""Test limited local iterations for a pseudo-global mode"""
|
743 |
+
options = {'local_iter': 4}
|
744 |
+
run_test(test5_1, n=60, options=options)
|
745 |
+
|
746 |
+
def test_15_min_every_iter(self):
|
747 |
+
"""Test minimize every iter options and cover function cache"""
|
748 |
+
options = {'minimize_every_iter': True}
|
749 |
+
run_test(test1_1, n=1, iters=7, options=options,
|
750 |
+
sampling_method='sobol')
|
751 |
+
|
752 |
+
def test_16_disp_bounds_minimizer(self, capsys):
|
753 |
+
"""Test disp=True with minimizers that do not support bounds """
|
754 |
+
options = {'disp': True}
|
755 |
+
minimizer_kwargs = {'method': 'nelder-mead'}
|
756 |
+
run_test(test1_2, sampling_method='simplicial',
|
757 |
+
options=options, minimizer_kwargs=minimizer_kwargs)
|
758 |
+
|
759 |
+
def test_17_custom_sampling(self):
|
760 |
+
"""Test the functionality to add custom sampling methods to shgo"""
|
761 |
+
|
762 |
+
def sample(n, d):
|
763 |
+
return numpy.random.uniform(size=(n, d))
|
764 |
+
|
765 |
+
run_test(test1_1, n=30, sampling_method=sample)
|
766 |
+
|
767 |
+
def test_18_bounds_class(self):
|
768 |
+
# test that new and old bounds yield same result
|
769 |
+
def f(x):
|
770 |
+
return numpy.square(x).sum()
|
771 |
+
|
772 |
+
lb = [-6., 1., -5.]
|
773 |
+
ub = [-1., 3., 5.]
|
774 |
+
bounds_old = list(zip(lb, ub))
|
775 |
+
bounds_new = Bounds(lb, ub)
|
776 |
+
|
777 |
+
res_old_bounds = shgo(f, bounds_old)
|
778 |
+
res_new_bounds = shgo(f, bounds_new)
|
779 |
+
|
780 |
+
assert res_new_bounds.nfev == res_old_bounds.nfev
|
781 |
+
assert res_new_bounds.message == res_old_bounds.message
|
782 |
+
assert res_new_bounds.success == res_old_bounds.success
|
783 |
+
x_opt = numpy.array([-1., 1., 0.])
|
784 |
+
numpy.testing.assert_allclose(res_new_bounds.x, x_opt)
|
785 |
+
numpy.testing.assert_allclose(res_new_bounds.x,
|
786 |
+
res_old_bounds.x)
|
787 |
+
|
788 |
+
def test_19_parallelization(self):
|
789 |
+
"""Test the functionality to add custom sampling methods to shgo"""
|
790 |
+
|
791 |
+
with Pool(2) as p:
|
792 |
+
run_test(test1_1, n=30, workers=p.map) # Constrained
|
793 |
+
run_test(test1_1, n=30, workers=map) # Constrained
|
794 |
+
with Pool(2) as p:
|
795 |
+
run_test(test_s, n=30, workers=p.map) # Unconstrained
|
796 |
+
run_test(test_s, n=30, workers=map) # Unconstrained
|
797 |
+
|
798 |
+
def test_20_constrained_args(self):
|
799 |
+
"""Test that constraints can be passed to arguments"""
|
800 |
+
|
801 |
+
def eggholder(x):
|
802 |
+
return (-(x[1] + 47.0)
|
803 |
+
* numpy.sin(numpy.sqrt(abs(x[0] / 2.0 + (x[1] + 47.0))))
|
804 |
+
- x[0] * numpy.sin(numpy.sqrt(abs(x[0] - (x[1] + 47.0))))
|
805 |
+
)
|
806 |
+
|
807 |
+
def f(x): # (cattle-feed)
|
808 |
+
return 24.55 * x[0] + 26.75 * x[1] + 39 * x[2] + 40.50 * x[3]
|
809 |
+
|
810 |
+
bounds = [(0, 1.0), ] * 4
|
811 |
+
|
812 |
+
def g1_modified(x, i):
|
813 |
+
return i * 2.3 * x[0] + i * 5.6 * x[1] + 11.1 * x[2] + 1.3 * x[
|
814 |
+
3] - 5 # >=0
|
815 |
+
|
816 |
+
def g2(x):
|
817 |
+
return (12 * x[0] + 11.9 * x[1] + 41.8 * x[2] + 52.1 * x[3] - 21
|
818 |
+
- 1.645 * numpy.sqrt(0.28 * x[0] ** 2 + 0.19 * x[1] ** 2
|
819 |
+
+ 20.5 * x[2] ** 2 + 0.62 * x[3] ** 2)
|
820 |
+
) # >=0
|
821 |
+
|
822 |
+
def h1(x):
|
823 |
+
return x[0] + x[1] + x[2] + x[3] - 1 # == 0
|
824 |
+
|
825 |
+
cons = ({'type': 'ineq', 'fun': g1_modified, "args": (0,)},
|
826 |
+
{'type': 'ineq', 'fun': g2},
|
827 |
+
{'type': 'eq', 'fun': h1})
|
828 |
+
|
829 |
+
shgo(f, bounds, n=300, iters=1, constraints=cons)
|
830 |
+
# using constrain with arguments AND sampling method sobol
|
831 |
+
shgo(f, bounds, n=300, iters=1, constraints=cons,
|
832 |
+
sampling_method='sobol')
|
833 |
+
|
834 |
+
def test_21_1_jac_true(self):
|
835 |
+
"""Test that shgo can handle objective functions that return the
|
836 |
+
gradient alongside the objective value. Fixes gh-13547"""
|
837 |
+
# previous
|
838 |
+
def func(x):
|
839 |
+
return numpy.sum(numpy.power(x, 2)), 2 * x
|
840 |
+
|
841 |
+
shgo(
|
842 |
+
func,
|
843 |
+
bounds=[[-1, 1], [1, 2]],
|
844 |
+
n=100, iters=5,
|
845 |
+
sampling_method="sobol",
|
846 |
+
minimizer_kwargs={'method': 'SLSQP', 'jac': True}
|
847 |
+
)
|
848 |
+
|
849 |
+
# new
|
850 |
+
def func(x):
|
851 |
+
return numpy.sum(x ** 2), 2 * x
|
852 |
+
|
853 |
+
bounds = [[-1, 1], [1, 2], [-1, 1], [1, 2], [0, 3]]
|
854 |
+
|
855 |
+
res = shgo(func, bounds=bounds, sampling_method="sobol",
|
856 |
+
minimizer_kwargs={'method': 'SLSQP', 'jac': True})
|
857 |
+
ref = minimize(func, x0=[1, 1, 1, 1, 1], bounds=bounds,
|
858 |
+
jac=True)
|
859 |
+
assert res.success
|
860 |
+
assert_allclose(res.fun, ref.fun)
|
861 |
+
assert_allclose(res.x, ref.x, atol=1e-15)
|
862 |
+
|
863 |
+
@pytest.mark.parametrize('derivative', ['jac', 'hess', 'hessp'])
|
864 |
+
def test_21_2_derivative_options(self, derivative):
|
865 |
+
"""shgo used to raise an error when passing `options` with 'jac'
|
866 |
+
# see gh-12963. check that this is resolved
|
867 |
+
"""
|
868 |
+
|
869 |
+
def objective(x):
|
870 |
+
return 3 * x[0] * x[0] + 2 * x[0] + 5
|
871 |
+
|
872 |
+
def gradient(x):
|
873 |
+
return 6 * x[0] + 2
|
874 |
+
|
875 |
+
def hess(x):
|
876 |
+
return 6
|
877 |
+
|
878 |
+
def hessp(x, p):
|
879 |
+
return 6 * p
|
880 |
+
|
881 |
+
derivative_funcs = {'jac': gradient, 'hess': hess, 'hessp': hessp}
|
882 |
+
options = {derivative: derivative_funcs[derivative]}
|
883 |
+
minimizer_kwargs = {'method': 'trust-constr'}
|
884 |
+
|
885 |
+
bounds = [(-100, 100)]
|
886 |
+
res = shgo(objective, bounds, minimizer_kwargs=minimizer_kwargs,
|
887 |
+
options=options)
|
888 |
+
ref = minimize(objective, x0=[0], bounds=bounds, **minimizer_kwargs,
|
889 |
+
**options)
|
890 |
+
|
891 |
+
assert res.success
|
892 |
+
numpy.testing.assert_allclose(res.fun, ref.fun)
|
893 |
+
numpy.testing.assert_allclose(res.x, ref.x)
|
894 |
+
|
895 |
+
def test_21_3_hess_options_rosen(self):
|
896 |
+
"""Ensure the Hessian gets passed correctly to the local minimizer
|
897 |
+
routine. Previous report gh-14533.
|
898 |
+
"""
|
899 |
+
bounds = [(0, 1.6), (0, 1.6), (0, 1.4), (0, 1.4), (0, 1.4)]
|
900 |
+
options = {'jac': rosen_der, 'hess': rosen_hess}
|
901 |
+
minimizer_kwargs = {'method': 'Newton-CG'}
|
902 |
+
res = shgo(rosen, bounds, minimizer_kwargs=minimizer_kwargs,
|
903 |
+
options=options)
|
904 |
+
ref = minimize(rosen, numpy.zeros(5), method='Newton-CG',
|
905 |
+
**options)
|
906 |
+
assert res.success
|
907 |
+
assert_allclose(res.fun, ref.fun)
|
908 |
+
assert_allclose(res.x, ref.x, atol=1e-15)
|
909 |
+
|
910 |
+
def test_21_arg_tuple_sobol(self):
|
911 |
+
"""shgo used to raise an error when passing `args` with Sobol sampling
|
912 |
+
# see gh-12114. check that this is resolved"""
|
913 |
+
|
914 |
+
def fun(x, k):
|
915 |
+
return x[0] ** k
|
916 |
+
|
917 |
+
constraints = ({'type': 'ineq', 'fun': lambda x: x[0] - 1})
|
918 |
+
|
919 |
+
bounds = [(0, 10)]
|
920 |
+
res = shgo(fun, bounds, args=(1,), constraints=constraints,
|
921 |
+
sampling_method='sobol')
|
922 |
+
ref = minimize(fun, numpy.zeros(1), bounds=bounds, args=(1,),
|
923 |
+
constraints=constraints)
|
924 |
+
assert res.success
|
925 |
+
assert_allclose(res.fun, ref.fun)
|
926 |
+
assert_allclose(res.x, ref.x)
|
927 |
+
|
928 |
+
|
929 |
+
# Failure test functions
|
930 |
+
class TestShgoFailures:
|
931 |
+
def test_1_maxiter(self):
|
932 |
+
"""Test failure on insufficient iterations"""
|
933 |
+
options = {'maxiter': 2}
|
934 |
+
res = shgo(test4_1.f, test4_1.bounds, n=2, iters=None,
|
935 |
+
options=options, sampling_method='sobol')
|
936 |
+
|
937 |
+
numpy.testing.assert_equal(False, res.success)
|
938 |
+
# numpy.testing.assert_equal(4, res.nfev)
|
939 |
+
numpy.testing.assert_equal(4, res.tnev)
|
940 |
+
|
941 |
+
def test_2_sampling(self):
|
942 |
+
"""Rejection of unknown sampling method"""
|
943 |
+
assert_raises(ValueError, shgo, test1_1.f, test1_1.bounds,
|
944 |
+
sampling_method='not_Sobol')
|
945 |
+
|
946 |
+
def test_3_1_no_min_pool_sobol(self):
|
947 |
+
"""Check that the routine stops when no minimiser is found
|
948 |
+
after maximum specified function evaluations"""
|
949 |
+
options = {'maxfev': 10,
|
950 |
+
# 'maxev': 10,
|
951 |
+
'disp': True}
|
952 |
+
res = shgo(test_table.f, test_table.bounds, n=3, options=options,
|
953 |
+
sampling_method='sobol')
|
954 |
+
numpy.testing.assert_equal(False, res.success)
|
955 |
+
# numpy.testing.assert_equal(9, res.nfev)
|
956 |
+
numpy.testing.assert_equal(12, res.nfev)
|
957 |
+
|
958 |
+
def test_3_2_no_min_pool_simplicial(self):
|
959 |
+
"""Check that the routine stops when no minimiser is found
|
960 |
+
after maximum specified sampling evaluations"""
|
961 |
+
options = {'maxev': 10,
|
962 |
+
'disp': True}
|
963 |
+
res = shgo(test_table.f, test_table.bounds, n=3, options=options,
|
964 |
+
sampling_method='simplicial')
|
965 |
+
numpy.testing.assert_equal(False, res.success)
|
966 |
+
|
967 |
+
def test_4_1_bound_err(self):
|
968 |
+
"""Specified bounds ub > lb"""
|
969 |
+
bounds = [(6, 3), (3, 5)]
|
970 |
+
assert_raises(ValueError, shgo, test1_1.f, bounds)
|
971 |
+
|
972 |
+
def test_4_2_bound_err(self):
|
973 |
+
"""Specified bounds are of the form (lb, ub)"""
|
974 |
+
bounds = [(3, 5, 5), (3, 5)]
|
975 |
+
assert_raises(ValueError, shgo, test1_1.f, bounds)
|
976 |
+
|
977 |
+
def test_5_1_1_infeasible_sobol(self):
|
978 |
+
"""Ensures the algorithm terminates on infeasible problems
|
979 |
+
after maxev is exceeded. Use infty constraints option"""
|
980 |
+
options = {'maxev': 100,
|
981 |
+
'disp': True}
|
982 |
+
|
983 |
+
res = shgo(test_infeasible.f, test_infeasible.bounds,
|
984 |
+
constraints=test_infeasible.cons, n=100, options=options,
|
985 |
+
sampling_method='sobol')
|
986 |
+
|
987 |
+
numpy.testing.assert_equal(False, res.success)
|
988 |
+
|
989 |
+
def test_5_1_2_infeasible_sobol(self):
|
990 |
+
"""Ensures the algorithm terminates on infeasible problems
|
991 |
+
after maxev is exceeded. Do not use infty constraints option"""
|
992 |
+
options = {'maxev': 100,
|
993 |
+
'disp': True,
|
994 |
+
'infty_constraints': False}
|
995 |
+
|
996 |
+
res = shgo(test_infeasible.f, test_infeasible.bounds,
|
997 |
+
constraints=test_infeasible.cons, n=100, options=options,
|
998 |
+
sampling_method='sobol')
|
999 |
+
|
1000 |
+
numpy.testing.assert_equal(False, res.success)
|
1001 |
+
|
1002 |
+
def test_5_2_infeasible_simplicial(self):
|
1003 |
+
"""Ensures the algorithm terminates on infeasible problems
|
1004 |
+
after maxev is exceeded."""
|
1005 |
+
options = {'maxev': 1000,
|
1006 |
+
'disp': False}
|
1007 |
+
|
1008 |
+
res = shgo(test_infeasible.f, test_infeasible.bounds,
|
1009 |
+
constraints=test_infeasible.cons, n=100, options=options,
|
1010 |
+
sampling_method='simplicial')
|
1011 |
+
|
1012 |
+
numpy.testing.assert_equal(False, res.success)
|
1013 |
+
|
1014 |
+
def test_6_1_lower_known_f_min(self):
|
1015 |
+
"""Test Global mode limiting local evaluations with f* too high"""
|
1016 |
+
options = { # Specify known function value
|
1017 |
+
'f_min': test2_1.expected_fun + 2.0,
|
1018 |
+
'f_tol': 1e-6,
|
1019 |
+
# Specify number of local iterations to perform+
|
1020 |
+
'minimize_every_iter': True,
|
1021 |
+
'local_iter': 1,
|
1022 |
+
'infty_constraints': False}
|
1023 |
+
args = (test2_1.f, test2_1.bounds)
|
1024 |
+
kwargs = {'constraints': test2_1.cons,
|
1025 |
+
'n': None,
|
1026 |
+
'iters': None,
|
1027 |
+
'options': options,
|
1028 |
+
'sampling_method': 'sobol'
|
1029 |
+
}
|
1030 |
+
warns(UserWarning, shgo, *args, **kwargs)
|
1031 |
+
|
1032 |
+
def test(self):
|
1033 |
+
from scipy.optimize import rosen, shgo
|
1034 |
+
bounds = [(0, 2), (0, 2), (0, 2), (0, 2), (0, 2)]
|
1035 |
+
|
1036 |
+
def fun(x):
|
1037 |
+
fun.nfev += 1
|
1038 |
+
return rosen(x)
|
1039 |
+
|
1040 |
+
fun.nfev = 0
|
1041 |
+
|
1042 |
+
result = shgo(fun, bounds)
|
1043 |
+
print(result.x, result.fun, fun.nfev) # 50
|
1044 |
+
|
1045 |
+
|
1046 |
+
# Returns
|
1047 |
+
class TestShgoReturns:
|
1048 |
+
def test_1_nfev_simplicial(self):
|
1049 |
+
bounds = [(0, 2), (0, 2), (0, 2), (0, 2), (0, 2)]
|
1050 |
+
|
1051 |
+
def fun(x):
|
1052 |
+
fun.nfev += 1
|
1053 |
+
return rosen(x)
|
1054 |
+
|
1055 |
+
fun.nfev = 0
|
1056 |
+
|
1057 |
+
result = shgo(fun, bounds)
|
1058 |
+
numpy.testing.assert_equal(fun.nfev, result.nfev)
|
1059 |
+
|
1060 |
+
def test_1_nfev_sobol(self):
|
1061 |
+
bounds = [(0, 2), (0, 2), (0, 2), (0, 2), (0, 2)]
|
1062 |
+
|
1063 |
+
def fun(x):
|
1064 |
+
fun.nfev += 1
|
1065 |
+
return rosen(x)
|
1066 |
+
|
1067 |
+
fun.nfev = 0
|
1068 |
+
|
1069 |
+
result = shgo(fun, bounds, sampling_method='sobol')
|
1070 |
+
numpy.testing.assert_equal(fun.nfev, result.nfev)
|
1071 |
+
|
1072 |
+
|
1073 |
+
def test_vector_constraint():
|
1074 |
+
# gh15514
|
1075 |
+
def quad(x):
|
1076 |
+
x = np.asarray(x)
|
1077 |
+
return [np.sum(x ** 2)]
|
1078 |
+
|
1079 |
+
nlc = NonlinearConstraint(quad, [2.2], [3])
|
1080 |
+
oldc = new_constraint_to_old(nlc, np.array([1.0, 1.0]))
|
1081 |
+
|
1082 |
+
res = shgo(rosen, [(0, 10), (0, 10)], constraints=oldc, sampling_method='sobol')
|
1083 |
+
assert np.all(np.sum((res.x)**2) >= 2.2)
|
1084 |
+
assert np.all(np.sum((res.x) ** 2) <= 3.0)
|
1085 |
+
assert res.success
|
1086 |
+
|
1087 |
+
|
1088 |
+
@pytest.mark.filterwarnings("ignore:delta_grad")
|
1089 |
+
def test_trust_constr():
|
1090 |
+
def quad(x):
|
1091 |
+
x = np.asarray(x)
|
1092 |
+
return [np.sum(x ** 2)]
|
1093 |
+
|
1094 |
+
nlc = NonlinearConstraint(quad, [2.6], [3])
|
1095 |
+
minimizer_kwargs = {'method': 'trust-constr'}
|
1096 |
+
# note that we don't supply the constraints in minimizer_kwargs,
|
1097 |
+
# so if the final result obeys the constraints we know that shgo
|
1098 |
+
# passed them on to 'trust-constr'
|
1099 |
+
res = shgo(
|
1100 |
+
rosen,
|
1101 |
+
[(0, 10), (0, 10)],
|
1102 |
+
constraints=nlc,
|
1103 |
+
sampling_method='sobol',
|
1104 |
+
minimizer_kwargs=minimizer_kwargs
|
1105 |
+
)
|
1106 |
+
assert np.all(np.sum((res.x)**2) >= 2.6)
|
1107 |
+
assert np.all(np.sum((res.x) ** 2) <= 3.0)
|
1108 |
+
assert res.success
|
1109 |
+
|
1110 |
+
|
1111 |
+
def test_equality_constraints():
|
1112 |
+
# gh16260
|
1113 |
+
bounds = [(0.9, 4.0)] * 2 # Constrain probabilities to 0 and 1.
|
1114 |
+
|
1115 |
+
def faulty(x):
|
1116 |
+
return x[0] + x[1]
|
1117 |
+
|
1118 |
+
nlc = NonlinearConstraint(faulty, 3.9, 3.9)
|
1119 |
+
res = shgo(rosen, bounds=bounds, constraints=nlc)
|
1120 |
+
assert_allclose(np.sum(res.x), 3.9)
|
1121 |
+
|
1122 |
+
def faulty(x):
|
1123 |
+
return x[0] + x[1] - 3.9
|
1124 |
+
|
1125 |
+
constraints = {'type': 'eq', 'fun': faulty}
|
1126 |
+
res = shgo(rosen, bounds=bounds, constraints=constraints)
|
1127 |
+
assert_allclose(np.sum(res.x), 3.9)
|
1128 |
+
|
1129 |
+
bounds = [(0, 1.0)] * 4
|
1130 |
+
# sum of variable should equal 1.
|
1131 |
+
def faulty(x):
|
1132 |
+
return x[0] + x[1] + x[2] + x[3] - 1
|
1133 |
+
|
1134 |
+
# options = {'minimize_every_iter': True, 'local_iter':10}
|
1135 |
+
constraints = {'type': 'eq', 'fun': faulty}
|
1136 |
+
res = shgo(
|
1137 |
+
lambda x: - np.prod(x),
|
1138 |
+
bounds=bounds,
|
1139 |
+
constraints=constraints,
|
1140 |
+
sampling_method='sobol'
|
1141 |
+
)
|
1142 |
+
assert_allclose(np.sum(res.x), 1.0)
|
1143 |
+
|
1144 |
+
def test_gh16971():
|
1145 |
+
def cons(x):
|
1146 |
+
return np.sum(x**2) - 0
|
1147 |
+
|
1148 |
+
c = {'fun': cons, 'type': 'ineq'}
|
1149 |
+
minimizer_kwargs = {
|
1150 |
+
'method': 'COBYLA',
|
1151 |
+
'options': {'rhobeg': 5, 'tol': 5e-1, 'catol': 0.05}
|
1152 |
+
}
|
1153 |
+
|
1154 |
+
s = SHGO(
|
1155 |
+
rosen, [(0, 10)]*2, constraints=c, minimizer_kwargs=minimizer_kwargs
|
1156 |
+
)
|
1157 |
+
|
1158 |
+
assert s.minimizer_kwargs['method'].lower() == 'cobyla'
|
1159 |
+
assert s.minimizer_kwargs['options']['catol'] == 0.05
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/tests/test__spectral.py
ADDED
@@ -0,0 +1,226 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import itertools
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
from numpy import exp
|
5 |
+
from numpy.testing import assert_, assert_equal
|
6 |
+
|
7 |
+
from scipy.optimize import root
|
8 |
+
|
9 |
+
|
10 |
+
def test_performance():
|
11 |
+
# Compare performance results to those listed in
|
12 |
+
# [Cheng & Li, IMA J. Num. An. 29, 814 (2008)]
|
13 |
+
# and
|
14 |
+
# [W. La Cruz, J.M. Martinez, M. Raydan, Math. Comp. 75, 1429 (2006)].
|
15 |
+
# and those produced by dfsane.f from M. Raydan's website.
|
16 |
+
#
|
17 |
+
# Where the results disagree, the largest limits are taken.
|
18 |
+
|
19 |
+
e_a = 1e-5
|
20 |
+
e_r = 1e-4
|
21 |
+
|
22 |
+
table_1 = [
|
23 |
+
dict(F=F_1, x0=x0_1, n=1000, nit=5, nfev=5),
|
24 |
+
dict(F=F_1, x0=x0_1, n=10000, nit=2, nfev=2),
|
25 |
+
dict(F=F_2, x0=x0_2, n=500, nit=11, nfev=11),
|
26 |
+
dict(F=F_2, x0=x0_2, n=2000, nit=11, nfev=11),
|
27 |
+
# dict(F=F_4, x0=x0_4, n=999, nit=243, nfev=1188) removed:
|
28 |
+
# too sensitive to rounding errors
|
29 |
+
# Results from dfsane.f; papers list nit=3, nfev=3
|
30 |
+
dict(F=F_6, x0=x0_6, n=100, nit=6, nfev=6),
|
31 |
+
# Must have n%3==0, typo in papers?
|
32 |
+
dict(F=F_7, x0=x0_7, n=99, nit=23, nfev=29),
|
33 |
+
# Must have n%3==0, typo in papers?
|
34 |
+
dict(F=F_7, x0=x0_7, n=999, nit=23, nfev=29),
|
35 |
+
# Results from dfsane.f; papers list nit=nfev=6?
|
36 |
+
dict(F=F_9, x0=x0_9, n=100, nit=12, nfev=18),
|
37 |
+
dict(F=F_9, x0=x0_9, n=1000, nit=12, nfev=18),
|
38 |
+
# Results from dfsane.f; papers list nit=2, nfev=12
|
39 |
+
dict(F=F_10, x0=x0_10, n=1000, nit=5, nfev=5),
|
40 |
+
]
|
41 |
+
|
42 |
+
# Check also scaling invariance
|
43 |
+
for xscale, yscale, line_search in itertools.product(
|
44 |
+
[1.0, 1e-10, 1e10], [1.0, 1e-10, 1e10], ['cruz', 'cheng']
|
45 |
+
):
|
46 |
+
for problem in table_1:
|
47 |
+
n = problem['n']
|
48 |
+
def func(x, n):
|
49 |
+
return yscale * problem['F'](x / xscale, n)
|
50 |
+
args = (n,)
|
51 |
+
x0 = problem['x0'](n) * xscale
|
52 |
+
|
53 |
+
fatol = np.sqrt(n) * e_a * yscale + e_r * np.linalg.norm(func(x0, n))
|
54 |
+
|
55 |
+
sigma_eps = 1e-10 * min(yscale/xscale, xscale/yscale)
|
56 |
+
sigma_0 = xscale/yscale
|
57 |
+
|
58 |
+
with np.errstate(over='ignore'):
|
59 |
+
sol = root(func, x0, args=args,
|
60 |
+
options=dict(ftol=0, fatol=fatol, maxfev=problem['nfev'] + 1,
|
61 |
+
sigma_0=sigma_0, sigma_eps=sigma_eps,
|
62 |
+
line_search=line_search),
|
63 |
+
method='DF-SANE')
|
64 |
+
|
65 |
+
err_msg = repr(
|
66 |
+
[xscale, yscale, line_search, problem, np.linalg.norm(func(sol.x, n)),
|
67 |
+
fatol, sol.success, sol.nit, sol.nfev]
|
68 |
+
)
|
69 |
+
assert sol.success, err_msg
|
70 |
+
# nfev+1: dfsane.f doesn't count first eval
|
71 |
+
assert sol.nfev <= problem['nfev'] + 1, err_msg
|
72 |
+
assert sol.nit <= problem['nit'], err_msg
|
73 |
+
assert np.linalg.norm(func(sol.x, n)) <= fatol, err_msg
|
74 |
+
|
75 |
+
|
76 |
+
def test_complex():
|
77 |
+
def func(z):
|
78 |
+
return z**2 - 1 + 2j
|
79 |
+
x0 = 2.0j
|
80 |
+
|
81 |
+
ftol = 1e-4
|
82 |
+
sol = root(func, x0, tol=ftol, method='DF-SANE')
|
83 |
+
|
84 |
+
assert_(sol.success)
|
85 |
+
|
86 |
+
f0 = np.linalg.norm(func(x0))
|
87 |
+
fx = np.linalg.norm(func(sol.x))
|
88 |
+
assert_(fx <= ftol*f0)
|
89 |
+
|
90 |
+
|
91 |
+
def test_linear_definite():
|
92 |
+
# The DF-SANE paper proves convergence for "strongly isolated"
|
93 |
+
# solutions.
|
94 |
+
#
|
95 |
+
# For linear systems F(x) = A x - b = 0, with A positive or
|
96 |
+
# negative definite, the solution is strongly isolated.
|
97 |
+
|
98 |
+
def check_solvability(A, b, line_search='cruz'):
|
99 |
+
def func(x):
|
100 |
+
return A.dot(x) - b
|
101 |
+
xp = np.linalg.solve(A, b)
|
102 |
+
eps = np.linalg.norm(func(xp)) * 1e3
|
103 |
+
sol = root(
|
104 |
+
func, b,
|
105 |
+
options=dict(fatol=eps, ftol=0, maxfev=17523, line_search=line_search),
|
106 |
+
method='DF-SANE',
|
107 |
+
)
|
108 |
+
assert_(sol.success)
|
109 |
+
assert_(np.linalg.norm(func(sol.x)) <= eps)
|
110 |
+
|
111 |
+
n = 90
|
112 |
+
|
113 |
+
# Test linear pos.def. system
|
114 |
+
np.random.seed(1234)
|
115 |
+
A = np.arange(n*n).reshape(n, n)
|
116 |
+
A = A + n*n * np.diag(1 + np.arange(n))
|
117 |
+
assert_(np.linalg.eigvals(A).min() > 0)
|
118 |
+
b = np.arange(n) * 1.0
|
119 |
+
check_solvability(A, b, 'cruz')
|
120 |
+
check_solvability(A, b, 'cheng')
|
121 |
+
|
122 |
+
# Test linear neg.def. system
|
123 |
+
check_solvability(-A, b, 'cruz')
|
124 |
+
check_solvability(-A, b, 'cheng')
|
125 |
+
|
126 |
+
|
127 |
+
def test_shape():
|
128 |
+
def f(x, arg):
|
129 |
+
return x - arg
|
130 |
+
|
131 |
+
for dt in [float, complex]:
|
132 |
+
x = np.zeros([2,2])
|
133 |
+
arg = np.ones([2,2], dtype=dt)
|
134 |
+
|
135 |
+
sol = root(f, x, args=(arg,), method='DF-SANE')
|
136 |
+
assert_(sol.success)
|
137 |
+
assert_equal(sol.x.shape, x.shape)
|
138 |
+
|
139 |
+
|
140 |
+
# Some of the test functions and initial guesses listed in
|
141 |
+
# [W. La Cruz, M. Raydan. Optimization Methods and Software, 18, 583 (2003)]
|
142 |
+
|
143 |
+
def F_1(x, n):
|
144 |
+
g = np.zeros([n])
|
145 |
+
i = np.arange(2, n+1)
|
146 |
+
g[0] = exp(x[0] - 1) - 1
|
147 |
+
g[1:] = i*(exp(x[1:] - 1) - x[1:])
|
148 |
+
return g
|
149 |
+
|
150 |
+
def x0_1(n):
|
151 |
+
x0 = np.empty([n])
|
152 |
+
x0.fill(n/(n-1))
|
153 |
+
return x0
|
154 |
+
|
155 |
+
def F_2(x, n):
|
156 |
+
g = np.zeros([n])
|
157 |
+
i = np.arange(2, n+1)
|
158 |
+
g[0] = exp(x[0]) - 1
|
159 |
+
g[1:] = 0.1*i*(exp(x[1:]) + x[:-1] - 1)
|
160 |
+
return g
|
161 |
+
|
162 |
+
def x0_2(n):
|
163 |
+
x0 = np.empty([n])
|
164 |
+
x0.fill(1/n**2)
|
165 |
+
return x0
|
166 |
+
|
167 |
+
|
168 |
+
def F_4(x, n): # skip name check
|
169 |
+
assert_equal(n % 3, 0)
|
170 |
+
g = np.zeros([n])
|
171 |
+
# Note: the first line is typoed in some of the references;
|
172 |
+
# correct in original [Gasparo, Optimization Meth. 13, 79 (2000)]
|
173 |
+
g[::3] = 0.6 * x[::3] + 1.6 * x[1::3]**3 - 7.2 * x[1::3]**2 + 9.6 * x[1::3] - 4.8
|
174 |
+
g[1::3] = (0.48 * x[::3] - 0.72 * x[1::3]**3 + 3.24 * x[1::3]**2 - 4.32 * x[1::3]
|
175 |
+
- x[2::3] + 0.2 * x[2::3]**3 + 2.16)
|
176 |
+
g[2::3] = 1.25 * x[2::3] - 0.25*x[2::3]**3
|
177 |
+
return g
|
178 |
+
|
179 |
+
|
180 |
+
def x0_4(n): # skip name check
|
181 |
+
assert_equal(n % 3, 0)
|
182 |
+
x0 = np.array([-1, 1/2, -1] * (n//3))
|
183 |
+
return x0
|
184 |
+
|
185 |
+
def F_6(x, n):
|
186 |
+
c = 0.9
|
187 |
+
mu = (np.arange(1, n+1) - 0.5)/n
|
188 |
+
return x - 1/(1 - c/(2*n) * (mu[:,None]*x / (mu[:,None] + mu)).sum(axis=1))
|
189 |
+
|
190 |
+
def x0_6(n):
|
191 |
+
return np.ones([n])
|
192 |
+
|
193 |
+
def F_7(x, n):
|
194 |
+
assert_equal(n % 3, 0)
|
195 |
+
|
196 |
+
def phi(t):
|
197 |
+
v = 0.5*t - 2
|
198 |
+
v[t > -1] = ((-592*t**3 + 888*t**2 + 4551*t - 1924)/1998)[t > -1]
|
199 |
+
v[t >= 2] = (0.5*t + 2)[t >= 2]
|
200 |
+
return v
|
201 |
+
g = np.zeros([n])
|
202 |
+
g[::3] = 1e4 * x[1::3]**2 - 1
|
203 |
+
g[1::3] = exp(-x[::3]) + exp(-x[1::3]) - 1.0001
|
204 |
+
g[2::3] = phi(x[2::3])
|
205 |
+
return g
|
206 |
+
|
207 |
+
def x0_7(n):
|
208 |
+
assert_equal(n % 3, 0)
|
209 |
+
return np.array([1e-3, 18, 1] * (n//3))
|
210 |
+
|
211 |
+
def F_9(x, n):
|
212 |
+
g = np.zeros([n])
|
213 |
+
i = np.arange(2, n)
|
214 |
+
g[0] = x[0]**3/3 + x[1]**2/2
|
215 |
+
g[1:-1] = -x[1:-1]**2/2 + i*x[1:-1]**3/3 + x[2:]**2/2
|
216 |
+
g[-1] = -x[-1]**2/2 + n*x[-1]**3/3
|
217 |
+
return g
|
218 |
+
|
219 |
+
def x0_9(n):
|
220 |
+
return np.ones([n])
|
221 |
+
|
222 |
+
def F_10(x, n):
|
223 |
+
return np.log(1 + x) - x/n
|
224 |
+
|
225 |
+
def x0_10(n):
|
226 |
+
return np.ones([n])
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/tests/test_bracket.py
ADDED
@@ -0,0 +1,780 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pytest
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
from numpy.testing import assert_array_less, assert_allclose, assert_equal
|
5 |
+
|
6 |
+
from scipy.optimize._bracket import _bracket_root, _bracket_minimum, _ELIMITS
|
7 |
+
import scipy._lib._elementwise_iterative_method as eim
|
8 |
+
from scipy import stats
|
9 |
+
|
10 |
+
class TestBracketRoot:
|
11 |
+
@pytest.mark.parametrize("seed", (615655101, 3141866013, 238075752))
|
12 |
+
@pytest.mark.parametrize("use_xmin", (False, True))
|
13 |
+
@pytest.mark.parametrize("other_side", (False, True))
|
14 |
+
@pytest.mark.parametrize("fix_one_side", (False, True))
|
15 |
+
def test_nfev_expected(self, seed, use_xmin, other_side, fix_one_side):
|
16 |
+
# Property-based test to confirm that _bracket_root is behaving as
|
17 |
+
# expected. The basic case is when root < a < b.
|
18 |
+
# The number of times bracket expands (per side) can be found by
|
19 |
+
# setting the expression for the left endpoint of the bracket to the
|
20 |
+
# root of f (x=0), solving for i, and rounding up. The corresponding
|
21 |
+
# lower and upper ends of the bracket are found by plugging this back
|
22 |
+
# into the expression for the ends of the bracket.
|
23 |
+
# `other_side=True` is the case that a < b < root
|
24 |
+
# Special cases like a < root < b are tested separately
|
25 |
+
|
26 |
+
rng = np.random.default_rng(seed)
|
27 |
+
xl0, d, factor = rng.random(size=3) * [1e5, 10, 5]
|
28 |
+
factor = 1 + factor # factor must be greater than 1
|
29 |
+
xr0 = xl0 + d # xr0 must be greater than a in basic case
|
30 |
+
|
31 |
+
def f(x):
|
32 |
+
f.count += 1
|
33 |
+
return x # root is 0
|
34 |
+
|
35 |
+
if use_xmin:
|
36 |
+
xmin = -rng.random()
|
37 |
+
n = np.ceil(np.log(-(xl0 - xmin) / xmin) / np.log(factor))
|
38 |
+
l, u = xmin + (xl0 - xmin)*factor**-n, xmin + (xl0 - xmin)*factor**-(n - 1)
|
39 |
+
kwargs = dict(xl0=xl0, xr0=xr0, factor=factor, xmin=xmin)
|
40 |
+
else:
|
41 |
+
n = np.ceil(np.log(xr0/d) / np.log(factor))
|
42 |
+
l, u = xr0 - d*factor**n, xr0 - d*factor**(n-1)
|
43 |
+
kwargs = dict(xl0=xl0, xr0=xr0, factor=factor)
|
44 |
+
|
45 |
+
if other_side:
|
46 |
+
kwargs['xl0'], kwargs['xr0'] = -kwargs['xr0'], -kwargs['xl0']
|
47 |
+
l, u = -u, -l
|
48 |
+
if 'xmin' in kwargs:
|
49 |
+
kwargs['xmax'] = -kwargs.pop('xmin')
|
50 |
+
|
51 |
+
if fix_one_side:
|
52 |
+
if other_side:
|
53 |
+
kwargs['xmin'] = -xr0
|
54 |
+
else:
|
55 |
+
kwargs['xmax'] = xr0
|
56 |
+
|
57 |
+
f.count = 0
|
58 |
+
res = _bracket_root(f, **kwargs)
|
59 |
+
|
60 |
+
# Compare reported number of function evaluations `nfev` against
|
61 |
+
# reported `nit`, actual function call count `f.count`, and theoretical
|
62 |
+
# number of expansions `n`.
|
63 |
+
# When both sides are free, these get multiplied by 2 because function
|
64 |
+
# is evaluated on the left and the right each iteration.
|
65 |
+
# When one side is fixed, however, we add one: on the right side, the
|
66 |
+
# function gets evaluated once at b.
|
67 |
+
# Add 1 to `n` and `res.nit` because function evaluations occur at
|
68 |
+
# iterations *0*, 1, ..., `n`. Subtract 1 from `f.count` because
|
69 |
+
# function is called separately for left and right in iteration 0.
|
70 |
+
if not fix_one_side:
|
71 |
+
assert res.nfev == 2*(res.nit+1) == 2*(f.count-1) == 2*(n + 1)
|
72 |
+
else:
|
73 |
+
assert res.nfev == (res.nit+1)+1 == (f.count-1)+1 == (n+1)+1
|
74 |
+
|
75 |
+
# Compare reported bracket to theoretical bracket and reported function
|
76 |
+
# values to function evaluated at bracket.
|
77 |
+
bracket = np.asarray([res.xl, res.xr])
|
78 |
+
assert_allclose(bracket, (l, u))
|
79 |
+
f_bracket = np.asarray([res.fl, res.fr])
|
80 |
+
assert_allclose(f_bracket, f(bracket))
|
81 |
+
|
82 |
+
# Check that bracket is valid and that status and success are correct
|
83 |
+
assert res.xr > res.xl
|
84 |
+
signs = np.sign(f_bracket)
|
85 |
+
assert signs[0] == -signs[1]
|
86 |
+
assert res.status == 0
|
87 |
+
assert res.success
|
88 |
+
|
89 |
+
def f(self, q, p):
|
90 |
+
return stats.norm.cdf(q) - p
|
91 |
+
|
92 |
+
@pytest.mark.parametrize('p', [0.6, np.linspace(0.05, 0.95, 10)])
|
93 |
+
@pytest.mark.parametrize('xmin', [-5, None])
|
94 |
+
@pytest.mark.parametrize('xmax', [5, None])
|
95 |
+
@pytest.mark.parametrize('factor', [1.2, 2])
|
96 |
+
def test_basic(self, p, xmin, xmax, factor):
|
97 |
+
# Test basic functionality to bracket root (distribution PPF)
|
98 |
+
res = _bracket_root(self.f, -0.01, 0.01, xmin=xmin, xmax=xmax,
|
99 |
+
factor=factor, args=(p,))
|
100 |
+
assert_equal(-np.sign(res.fl), np.sign(res.fr))
|
101 |
+
|
102 |
+
@pytest.mark.parametrize('shape', [tuple(), (12,), (3, 4), (3, 2, 2)])
|
103 |
+
def test_vectorization(self, shape):
|
104 |
+
# Test for correct functionality, output shapes, and dtypes for various
|
105 |
+
# input shapes.
|
106 |
+
p = np.linspace(-0.05, 1.05, 12).reshape(shape) if shape else 0.6
|
107 |
+
args = (p,)
|
108 |
+
maxiter = 10
|
109 |
+
|
110 |
+
@np.vectorize
|
111 |
+
def bracket_root_single(xl0, xr0, xmin, xmax, factor, p):
|
112 |
+
return _bracket_root(self.f, xl0, xr0, xmin=xmin, xmax=xmax,
|
113 |
+
factor=factor, args=(p,),
|
114 |
+
maxiter=maxiter)
|
115 |
+
|
116 |
+
def f(*args, **kwargs):
|
117 |
+
f.f_evals += 1
|
118 |
+
return self.f(*args, **kwargs)
|
119 |
+
f.f_evals = 0
|
120 |
+
|
121 |
+
rng = np.random.default_rng(2348234)
|
122 |
+
xl0 = -rng.random(size=shape)
|
123 |
+
xr0 = rng.random(size=shape)
|
124 |
+
xmin, xmax = 1e3*xl0, 1e3*xr0
|
125 |
+
if shape: # make some elements un
|
126 |
+
i = rng.random(size=shape) > 0.5
|
127 |
+
xmin[i], xmax[i] = -np.inf, np.inf
|
128 |
+
factor = rng.random(size=shape) + 1.5
|
129 |
+
res = _bracket_root(f, xl0, xr0, xmin=xmin, xmax=xmax, factor=factor,
|
130 |
+
args=args, maxiter=maxiter)
|
131 |
+
refs = bracket_root_single(xl0, xr0, xmin, xmax, factor, p).ravel()
|
132 |
+
|
133 |
+
attrs = ['xl', 'xr', 'fl', 'fr', 'success', 'nfev', 'nit']
|
134 |
+
for attr in attrs:
|
135 |
+
ref_attr = [getattr(ref, attr) for ref in refs]
|
136 |
+
res_attr = getattr(res, attr)
|
137 |
+
assert_allclose(res_attr.ravel(), ref_attr)
|
138 |
+
assert_equal(res_attr.shape, shape)
|
139 |
+
|
140 |
+
assert np.issubdtype(res.success.dtype, np.bool_)
|
141 |
+
if shape:
|
142 |
+
assert np.all(res.success[1:-1])
|
143 |
+
assert np.issubdtype(res.status.dtype, np.integer)
|
144 |
+
assert np.issubdtype(res.nfev.dtype, np.integer)
|
145 |
+
assert np.issubdtype(res.nit.dtype, np.integer)
|
146 |
+
assert_equal(np.max(res.nit), f.f_evals - 2)
|
147 |
+
assert_array_less(res.xl, res.xr)
|
148 |
+
assert_allclose(res.fl, self.f(res.xl, *args))
|
149 |
+
assert_allclose(res.fr, self.f(res.xr, *args))
|
150 |
+
|
151 |
+
def test_flags(self):
|
152 |
+
# Test cases that should produce different status flags; show that all
|
153 |
+
# can be produced simultaneously.
|
154 |
+
def f(xs, js):
|
155 |
+
funcs = [lambda x: x - 1.5,
|
156 |
+
lambda x: x - 1000,
|
157 |
+
lambda x: x - 1000,
|
158 |
+
lambda x: np.nan]
|
159 |
+
|
160 |
+
return [funcs[j](x) for x, j in zip(xs, js)]
|
161 |
+
|
162 |
+
args = (np.arange(4, dtype=np.int64),)
|
163 |
+
res = _bracket_root(f, xl0=[-1, -1, -1, -1], xr0=[1, 1, 1, 1],
|
164 |
+
xmin=[-np.inf, -1, -np.inf, -np.inf],
|
165 |
+
xmax=[np.inf, 1, np.inf, np.inf],
|
166 |
+
args=args, maxiter=3)
|
167 |
+
|
168 |
+
ref_flags = np.array([eim._ECONVERGED,
|
169 |
+
_ELIMITS,
|
170 |
+
eim._ECONVERR,
|
171 |
+
eim._EVALUEERR])
|
172 |
+
assert_equal(res.status, ref_flags)
|
173 |
+
|
174 |
+
@pytest.mark.parametrize("root", (0.622, [0.622, 0.623]))
|
175 |
+
@pytest.mark.parametrize('xmin', [-5, None])
|
176 |
+
@pytest.mark.parametrize('xmax', [5, None])
|
177 |
+
@pytest.mark.parametrize("dtype", (np.float16, np.float32, np.float64))
|
178 |
+
def test_dtype(self, root, xmin, xmax, dtype):
|
179 |
+
# Test that dtypes are preserved
|
180 |
+
|
181 |
+
xmin = xmin if xmin is None else dtype(xmin)
|
182 |
+
xmax = xmax if xmax is None else dtype(xmax)
|
183 |
+
root = dtype(root)
|
184 |
+
def f(x, root):
|
185 |
+
return ((x - root) ** 3).astype(dtype)
|
186 |
+
|
187 |
+
bracket = np.asarray([-0.01, 0.01], dtype=dtype)
|
188 |
+
res = _bracket_root(f, *bracket, xmin=xmin, xmax=xmax, args=(root,))
|
189 |
+
assert np.all(res.success)
|
190 |
+
assert res.xl.dtype == res.xr.dtype == dtype
|
191 |
+
assert res.fl.dtype == res.fr.dtype == dtype
|
192 |
+
|
193 |
+
def test_input_validation(self):
|
194 |
+
# Test input validation for appropriate error messages
|
195 |
+
|
196 |
+
message = '`func` must be callable.'
|
197 |
+
with pytest.raises(ValueError, match=message):
|
198 |
+
_bracket_root(None, -4, 4)
|
199 |
+
|
200 |
+
message = '...must be numeric and real.'
|
201 |
+
with pytest.raises(ValueError, match=message):
|
202 |
+
_bracket_root(lambda x: x, -4+1j, 4)
|
203 |
+
with pytest.raises(ValueError, match=message):
|
204 |
+
_bracket_root(lambda x: x, -4, 'hello')
|
205 |
+
with pytest.raises(ValueError, match=message):
|
206 |
+
_bracket_root(lambda x: x, -4, 4, xmin=np)
|
207 |
+
with pytest.raises(ValueError, match=message):
|
208 |
+
_bracket_root(lambda x: x, -4, 4, xmax=object())
|
209 |
+
with pytest.raises(ValueError, match=message):
|
210 |
+
_bracket_root(lambda x: x, -4, 4, factor=sum)
|
211 |
+
|
212 |
+
message = "All elements of `factor` must be greater than 1."
|
213 |
+
with pytest.raises(ValueError, match=message):
|
214 |
+
_bracket_root(lambda x: x, -4, 4, factor=0.5)
|
215 |
+
|
216 |
+
message = '`xmin <= xl0 < xr0 <= xmax` must be True'
|
217 |
+
with pytest.raises(ValueError, match=message):
|
218 |
+
_bracket_root(lambda x: x, 4, -4)
|
219 |
+
with pytest.raises(ValueError, match=message):
|
220 |
+
_bracket_root(lambda x: x, -4, 4, xmax=np.nan)
|
221 |
+
with pytest.raises(ValueError, match=message):
|
222 |
+
_bracket_root(lambda x: x, -4, 4, xmin=10)
|
223 |
+
|
224 |
+
message = "shape mismatch: objects cannot be broadcast"
|
225 |
+
# raised by `np.broadcast, but the traceback is readable IMO
|
226 |
+
with pytest.raises(ValueError, match=message):
|
227 |
+
_bracket_root(lambda x: x, [-2, -3], [3, 4, 5])
|
228 |
+
# Consider making this give a more readable error message
|
229 |
+
# with pytest.raises(ValueError, match=message):
|
230 |
+
# _bracket_root(lambda x: [x[0], x[1], x[1]], [-3, -3], [5, 5])
|
231 |
+
|
232 |
+
message = '`maxiter` must be a non-negative integer.'
|
233 |
+
with pytest.raises(ValueError, match=message):
|
234 |
+
_bracket_root(lambda x: x, -4, 4, maxiter=1.5)
|
235 |
+
with pytest.raises(ValueError, match=message):
|
236 |
+
_bracket_root(lambda x: x, -4, 4, maxiter=-1)
|
237 |
+
|
238 |
+
def test_special_cases(self):
|
239 |
+
# Test edge cases and other special cases
|
240 |
+
|
241 |
+
# Test that integers are not passed to `f`
|
242 |
+
# (otherwise this would overflow)
|
243 |
+
def f(x):
|
244 |
+
assert np.issubdtype(x.dtype, np.floating)
|
245 |
+
return x ** 99 - 1
|
246 |
+
|
247 |
+
res = _bracket_root(f, -7, 5)
|
248 |
+
assert res.success
|
249 |
+
|
250 |
+
# Test maxiter = 0. Should do nothing to bracket.
|
251 |
+
def f(x):
|
252 |
+
return x - 10
|
253 |
+
|
254 |
+
bracket = (-3, 5)
|
255 |
+
res = _bracket_root(f, *bracket, maxiter=0)
|
256 |
+
assert res.xl, res.xr == bracket
|
257 |
+
assert res.nit == 0
|
258 |
+
assert res.nfev == 2
|
259 |
+
assert res.status == -2
|
260 |
+
|
261 |
+
# Test scalar `args` (not in tuple)
|
262 |
+
def f(x, c):
|
263 |
+
return c*x - 1
|
264 |
+
|
265 |
+
res = _bracket_root(f, -1, 1, args=3)
|
266 |
+
assert res.success
|
267 |
+
assert_allclose(res.fl, f(res.xl, 3))
|
268 |
+
|
269 |
+
# Test other edge cases
|
270 |
+
|
271 |
+
def f(x):
|
272 |
+
f.count += 1
|
273 |
+
return x
|
274 |
+
|
275 |
+
# 1. root lies within guess of bracket
|
276 |
+
f.count = 0
|
277 |
+
_bracket_root(f, -10, 20)
|
278 |
+
assert_equal(f.count, 2)
|
279 |
+
|
280 |
+
# 2. bracket endpoint hits root exactly
|
281 |
+
f.count = 0
|
282 |
+
res = _bracket_root(f, 5, 10, factor=2)
|
283 |
+
bracket = (res.xl, res.xr)
|
284 |
+
assert_equal(res.nfev, 4)
|
285 |
+
assert_allclose(bracket, (0, 5), atol=1e-15)
|
286 |
+
|
287 |
+
# 3. bracket limit hits root exactly
|
288 |
+
with np.errstate(over='ignore'):
|
289 |
+
res = _bracket_root(f, 5, 10, xmin=0)
|
290 |
+
bracket = (res.xl, res.xr)
|
291 |
+
assert_allclose(bracket[0], 0, atol=1e-15)
|
292 |
+
with np.errstate(over='ignore'):
|
293 |
+
res = _bracket_root(f, -10, -5, xmax=0)
|
294 |
+
bracket = (res.xl, res.xr)
|
295 |
+
assert_allclose(bracket[1], 0, atol=1e-15)
|
296 |
+
|
297 |
+
# 4. bracket not within min, max
|
298 |
+
with np.errstate(over='ignore'):
|
299 |
+
res = _bracket_root(f, 5, 10, xmin=1)
|
300 |
+
assert not res.success
|
301 |
+
|
302 |
+
|
303 |
+
class TestBracketMinimum:
|
304 |
+
def init_f(self):
|
305 |
+
def f(x, a, b):
|
306 |
+
f.count += 1
|
307 |
+
return (x - a)**2 + b
|
308 |
+
f.count = 0
|
309 |
+
return f
|
310 |
+
|
311 |
+
def assert_valid_bracket(self, result):
|
312 |
+
assert np.all(
|
313 |
+
(result.xl < result.xm) & (result.xm < result.xr)
|
314 |
+
)
|
315 |
+
assert np.all(
|
316 |
+
(result.fl >= result.fm) & (result.fr > result.fm)
|
317 |
+
| (result.fl > result.fm) & (result.fr > result.fm)
|
318 |
+
)
|
319 |
+
|
320 |
+
def get_kwargs(
|
321 |
+
self, *, xl0=None, xr0=None, factor=None, xmin=None, xmax=None, args=()
|
322 |
+
):
|
323 |
+
names = ("xl0", "xr0", "xmin", "xmax", "factor", "args")
|
324 |
+
return {
|
325 |
+
name: val for name, val in zip(names, (xl0, xr0, xmin, xmax, factor, args))
|
326 |
+
if isinstance(val, np.ndarray) or np.isscalar(val)
|
327 |
+
or val not in [None, ()]
|
328 |
+
}
|
329 |
+
|
330 |
+
@pytest.mark.parametrize(
|
331 |
+
"seed",
|
332 |
+
(
|
333 |
+
307448016549685229886351382450158984917,
|
334 |
+
11650702770735516532954347931959000479,
|
335 |
+
113767103358505514764278732330028568336,
|
336 |
+
)
|
337 |
+
)
|
338 |
+
@pytest.mark.parametrize("use_xmin", (False, True))
|
339 |
+
@pytest.mark.parametrize("other_side", (False, True))
|
340 |
+
def test_nfev_expected(self, seed, use_xmin, other_side):
|
341 |
+
rng = np.random.default_rng(seed)
|
342 |
+
args = (0, 0) # f(x) = x^2 with minimum at 0
|
343 |
+
# xl0, xm0, xr0 are chosen such that the initial bracket is to
|
344 |
+
# the right of the minimum, and the bracket will expand
|
345 |
+
# downhill towards zero.
|
346 |
+
xl0, d1, d2, factor = rng.random(size=4) * [1e5, 10, 10, 5]
|
347 |
+
xm0 = xl0 + d1
|
348 |
+
xr0 = xm0 + d2
|
349 |
+
# Factor should be greater than one.
|
350 |
+
factor += 1
|
351 |
+
|
352 |
+
if use_xmin:
|
353 |
+
xmin = -rng.random() * 5
|
354 |
+
n = int(np.ceil(np.log(-(xl0 - xmin) / xmin) / np.log(factor)))
|
355 |
+
lower = xmin + (xl0 - xmin)*factor**-n
|
356 |
+
middle = xmin + (xl0 - xmin)*factor**-(n-1)
|
357 |
+
upper = xmin + (xl0 - xmin)*factor**-(n-2) if n > 1 else xm0
|
358 |
+
# It may be the case the lower is below the minimum, but we still
|
359 |
+
# don't have a valid bracket.
|
360 |
+
if middle**2 > lower**2:
|
361 |
+
n += 1
|
362 |
+
lower, middle, upper = (
|
363 |
+
xmin + (xl0 - xmin)*factor**-n, lower, middle
|
364 |
+
)
|
365 |
+
else:
|
366 |
+
xmin = None
|
367 |
+
n = int(np.ceil(np.log(xl0 / d1) / np.log(factor)))
|
368 |
+
lower = xl0 - d1*factor**n
|
369 |
+
middle = xl0 - d1*factor**(n-1) if n > 1 else xl0
|
370 |
+
upper = xl0 - d1*factor**(n-2) if n > 1 else xm0
|
371 |
+
# It may be the case the lower is below the minimum, but we still
|
372 |
+
# don't have a valid bracket.
|
373 |
+
if middle**2 > lower**2:
|
374 |
+
n += 1
|
375 |
+
lower, middle, upper = (
|
376 |
+
xl0 - d1*factor**n, lower, middle
|
377 |
+
)
|
378 |
+
f = self.init_f()
|
379 |
+
|
380 |
+
xmax = None
|
381 |
+
if other_side:
|
382 |
+
xl0, xm0, xr0 = -xr0, -xm0, -xl0
|
383 |
+
xmin, xmax = None, -xmin if xmin is not None else None
|
384 |
+
lower, middle, upper = -upper, -middle, -lower
|
385 |
+
|
386 |
+
kwargs = self.get_kwargs(
|
387 |
+
xl0=xl0, xr0=xr0, xmin=xmin, xmax=xmax, factor=factor, args=args
|
388 |
+
)
|
389 |
+
result = _bracket_minimum(f, xm0, **kwargs)
|
390 |
+
|
391 |
+
# Check that `nfev` and `nit` have the correct relationship
|
392 |
+
assert result.nfev == result.nit + 3
|
393 |
+
# Check that `nfev` reports the correct number of function evaluations.
|
394 |
+
assert result.nfev == f.count
|
395 |
+
# Check that the number of iterations matches the theoretical value.
|
396 |
+
assert result.nit == n
|
397 |
+
|
398 |
+
# Compare reported bracket to theoretical bracket and reported function
|
399 |
+
# values to function evaluated at bracket.
|
400 |
+
bracket = np.asarray([result.xl, result.xm, result.xr])
|
401 |
+
assert_allclose(bracket, (lower, middle, upper))
|
402 |
+
f_bracket = np.asarray([result.fl, result.fm, result.fr])
|
403 |
+
assert_allclose(f_bracket, f(bracket, *args))
|
404 |
+
|
405 |
+
self.assert_valid_bracket(result)
|
406 |
+
assert result.status == 0
|
407 |
+
assert result.success
|
408 |
+
|
409 |
+
def test_flags(self):
|
410 |
+
# Test cases that should produce different status flags; show that all
|
411 |
+
# can be produced simultaneously
|
412 |
+
def f(xs, js):
|
413 |
+
funcs = [lambda x: (x - 1.5)**2,
|
414 |
+
lambda x: x,
|
415 |
+
lambda x: x,
|
416 |
+
lambda x: np.nan]
|
417 |
+
return [funcs[j](x) for x, j in zip(xs, js)]
|
418 |
+
|
419 |
+
args = (np.arange(4, dtype=np.int64),)
|
420 |
+
xl0, xm0, xr0 = np.full(4, -1.0), np.full(4, 0.0), np.full(4, 1.0)
|
421 |
+
result = _bracket_minimum(f, xm0, xl0=xl0, xr0=xr0,
|
422 |
+
xmin=[-np.inf, -1.0, -np.inf, -np.inf],
|
423 |
+
args=args, maxiter=3)
|
424 |
+
|
425 |
+
reference_flags = np.array([eim._ECONVERGED, _ELIMITS,
|
426 |
+
eim._ECONVERR, eim._EVALUEERR])
|
427 |
+
assert_equal(result.status, reference_flags)
|
428 |
+
|
429 |
+
@pytest.mark.parametrize("minimum", (0.622, [0.622, 0.623]))
|
430 |
+
@pytest.mark.parametrize("dtype", (np.float16, np.float32, np.float64))
|
431 |
+
@pytest.mark.parametrize("xmin", [-5, None])
|
432 |
+
@pytest.mark.parametrize("xmax", [5, None])
|
433 |
+
def test_dtypes(self, minimum, xmin, xmax, dtype):
|
434 |
+
xmin = xmin if xmin is None else dtype(xmin)
|
435 |
+
xmax = xmax if xmax is None else dtype(xmax)
|
436 |
+
minimum = dtype(minimum)
|
437 |
+
|
438 |
+
def f(x, minimum):
|
439 |
+
return ((x - minimum)**2).astype(dtype)
|
440 |
+
|
441 |
+
xl0, xm0, xr0 = np.array([-0.01, 0.0, 0.01], dtype=dtype)
|
442 |
+
result = _bracket_minimum(
|
443 |
+
f, xm0, xl0=xl0, xr0=xr0, xmin=xmin, xmax=xmax, args=(minimum, )
|
444 |
+
)
|
445 |
+
assert np.all(result.success)
|
446 |
+
assert result.xl.dtype == result.xm.dtype == result.xr.dtype == dtype
|
447 |
+
assert result.fl.dtype == result.fm.dtype == result.fr.dtype == dtype
|
448 |
+
|
449 |
+
def test_input_validation(self):
|
450 |
+
# Test input validation for appropriate error messages
|
451 |
+
|
452 |
+
message = '`func` must be callable.'
|
453 |
+
with pytest.raises(ValueError, match=message):
|
454 |
+
_bracket_minimum(None, -4, xl0=4)
|
455 |
+
|
456 |
+
message = '...must be numeric and real.'
|
457 |
+
with pytest.raises(ValueError, match=message):
|
458 |
+
_bracket_minimum(lambda x: x**2, 4+1j)
|
459 |
+
with pytest.raises(ValueError, match=message):
|
460 |
+
_bracket_minimum(lambda x: x**2, -4, xl0='hello')
|
461 |
+
with pytest.raises(ValueError, match=message):
|
462 |
+
_bracket_minimum(lambda x: x**2, -4, xmin=np)
|
463 |
+
with pytest.raises(ValueError, match=message):
|
464 |
+
_bracket_minimum(lambda x: x**2, -4, xmax=object())
|
465 |
+
with pytest.raises(ValueError, match=message):
|
466 |
+
_bracket_minimum(lambda x: x**2, -4, factor=sum)
|
467 |
+
|
468 |
+
message = "All elements of `factor` must be greater than 1."
|
469 |
+
with pytest.raises(ValueError, match=message):
|
470 |
+
_bracket_minimum(lambda x: x, -4, factor=0.5)
|
471 |
+
|
472 |
+
message = '`xmin <= xl0 < xm0 < xr0 <= xmax` must be True'
|
473 |
+
with pytest.raises(ValueError, match=message):
|
474 |
+
_bracket_minimum(lambda x: x**2, 4, xl0=6)
|
475 |
+
with pytest.raises(ValueError, match=message):
|
476 |
+
_bracket_minimum(lambda x: x**2, -4, xr0=-6)
|
477 |
+
with pytest.raises(ValueError, match=message):
|
478 |
+
_bracket_minimum(lambda x: x**2, -4, xl0=-3, xr0=-2)
|
479 |
+
with pytest.raises(ValueError, match=message):
|
480 |
+
_bracket_minimum(lambda x: x**2, -4, xl0=-6, xr0=-5)
|
481 |
+
with pytest.raises(ValueError, match=message):
|
482 |
+
_bracket_minimum(lambda x: x**2, -4, xl0=-np.nan)
|
483 |
+
with pytest.raises(ValueError, match=message):
|
484 |
+
_bracket_minimum(lambda x: x**2, -4, xr0=np.nan)
|
485 |
+
|
486 |
+
message = "shape mismatch: objects cannot be broadcast"
|
487 |
+
# raised by `np.broadcast, but the traceback is readable IMO
|
488 |
+
with pytest.raises(ValueError, match=message):
|
489 |
+
_bracket_minimum(lambda x: x**2, [-2, -3], xl0=[-3, -4, -5])
|
490 |
+
|
491 |
+
message = '`maxiter` must be a non-negative integer.'
|
492 |
+
with pytest.raises(ValueError, match=message):
|
493 |
+
_bracket_minimum(lambda x: x**2, -4, xr0=4, maxiter=1.5)
|
494 |
+
with pytest.raises(ValueError, match=message):
|
495 |
+
_bracket_minimum(lambda x: x**2, -4, xr0=4, maxiter=-1)
|
496 |
+
|
497 |
+
@pytest.mark.parametrize("xl0", [0.0, None])
|
498 |
+
@pytest.mark.parametrize("xm0", (0.05, 0.1, 0.15))
|
499 |
+
@pytest.mark.parametrize("xr0", (0.2, 0.4, 0.6, None))
|
500 |
+
# Minimum is ``a`` for each tuple ``(a, b)`` below. Tests cases where minimum
|
501 |
+
# is within, or at varying disances to the left or right of the initial
|
502 |
+
# bracket.
|
503 |
+
@pytest.mark.parametrize(
|
504 |
+
"args",
|
505 |
+
(
|
506 |
+
(1.2, 0), (-0.5, 0), (0.1, 0), (0.2, 0), (3.6, 0), (21.4, 0),
|
507 |
+
(121.6, 0), (5764.1, 0), (-6.4, 0), (-12.9, 0), (-146.2, 0)
|
508 |
+
)
|
509 |
+
)
|
510 |
+
def test_scalar_no_limits(self, xl0, xm0, xr0, args):
|
511 |
+
f = self.init_f()
|
512 |
+
kwargs = self.get_kwargs(xl0=xl0, xr0=xr0, args=args)
|
513 |
+
result = _bracket_minimum(f, xm0, **kwargs)
|
514 |
+
self.assert_valid_bracket(result)
|
515 |
+
assert result.status == 0
|
516 |
+
assert result.success
|
517 |
+
assert result.nfev == f.count
|
518 |
+
|
519 |
+
@pytest.mark.parametrize(
|
520 |
+
# xmin is set at 0.0 in all cases.
|
521 |
+
"xl0,xm0,xr0,xmin",
|
522 |
+
(
|
523 |
+
# Initial bracket at varying distances from the xmin.
|
524 |
+
(0.5, 0.75, 1.0, 0.0),
|
525 |
+
(1.0, 2.5, 4.0, 0.0),
|
526 |
+
(2.0, 4.0, 6.0, 0.0),
|
527 |
+
(12.0, 16.0, 20.0, 0.0),
|
528 |
+
# Test default initial left endpoint selection. It should not
|
529 |
+
# be below xmin.
|
530 |
+
(None, 0.75, 1.0, 0.0),
|
531 |
+
(None, 2.5, 4.0, 0.0),
|
532 |
+
(None, 4.0, 6.0, 0.0),
|
533 |
+
(None, 16.0, 20.0, 0.0),
|
534 |
+
)
|
535 |
+
)
|
536 |
+
@pytest.mark.parametrize(
|
537 |
+
"args", (
|
538 |
+
(0.0, 0.0), # Minimum is directly at xmin.
|
539 |
+
(1e-300, 0.0), # Minimum is extremely close to xmin.
|
540 |
+
(1e-20, 0.0), # Minimum is very close to xmin.
|
541 |
+
# Minimum at varying distances from xmin.
|
542 |
+
(0.1, 0.0),
|
543 |
+
(0.2, 0.0),
|
544 |
+
(0.4, 0.0)
|
545 |
+
)
|
546 |
+
)
|
547 |
+
def test_scalar_with_limit_left(self, xl0, xm0, xr0, xmin, args):
|
548 |
+
f = self.init_f()
|
549 |
+
kwargs = self.get_kwargs(xl0=xl0, xr0=xr0, xmin=xmin, args=args)
|
550 |
+
result = _bracket_minimum(f, xm0, **kwargs)
|
551 |
+
self.assert_valid_bracket(result)
|
552 |
+
assert result.status == 0
|
553 |
+
assert result.success
|
554 |
+
assert result.nfev == f.count
|
555 |
+
|
556 |
+
@pytest.mark.parametrize(
|
557 |
+
#xmax is set to 1.0 in all cases.
|
558 |
+
"xl0,xm0,xr0,xmax",
|
559 |
+
(
|
560 |
+
# Bracket at varying distances from xmax.
|
561 |
+
(0.2, 0.3, 0.4, 1.0),
|
562 |
+
(0.05, 0.075, 0.1, 1.0),
|
563 |
+
(-0.2, -0.1, 0.0, 1.0),
|
564 |
+
(-21.2, -17.7, -14.2, 1.0),
|
565 |
+
# Test default right endpoint selection. It should not exceed xmax.
|
566 |
+
(0.2, 0.3, None, 1.0),
|
567 |
+
(0.05, 0.075, None, 1.0),
|
568 |
+
(-0.2, -0.1, None, 1.0),
|
569 |
+
(-21.2, -17.7, None, 1.0),
|
570 |
+
)
|
571 |
+
)
|
572 |
+
@pytest.mark.parametrize(
|
573 |
+
"args", (
|
574 |
+
(0.9999999999999999, 0.0), # Minimum very close to xmax.
|
575 |
+
# Minimum at varying distances from xmax.
|
576 |
+
(0.9, 0.0),
|
577 |
+
(0.7, 0.0),
|
578 |
+
(0.5, 0.0)
|
579 |
+
)
|
580 |
+
)
|
581 |
+
def test_scalar_with_limit_right(self, xl0, xm0, xr0, xmax, args):
|
582 |
+
f = self.init_f()
|
583 |
+
kwargs = self.get_kwargs(xl0=xl0, xr0=xr0, xmax=xmax, args=args)
|
584 |
+
result = _bracket_minimum(f, xm0, **kwargs)
|
585 |
+
self.assert_valid_bracket(result)
|
586 |
+
assert result.status == 0
|
587 |
+
assert result.success
|
588 |
+
assert result.nfev == f.count
|
589 |
+
|
590 |
+
@pytest.mark.parametrize(
|
591 |
+
"xl0,xm0,xr0,xmin,xmax,args",
|
592 |
+
(
|
593 |
+
( # Case 1:
|
594 |
+
# Initial bracket.
|
595 |
+
0.2,
|
596 |
+
0.3,
|
597 |
+
0.4,
|
598 |
+
# Function slopes down to the right from the bracket to a minimum
|
599 |
+
# at 1.0. xmax is also at 1.0
|
600 |
+
None,
|
601 |
+
1.0,
|
602 |
+
(1.0, 0.0)
|
603 |
+
),
|
604 |
+
( # Case 2:
|
605 |
+
# Initial bracket.
|
606 |
+
1.4,
|
607 |
+
1.95,
|
608 |
+
2.5,
|
609 |
+
# Function slopes down to the left from the bracket to a minimum at
|
610 |
+
# 0.3 with xmin set to 0.3.
|
611 |
+
0.3,
|
612 |
+
None,
|
613 |
+
(0.3, 0.0)
|
614 |
+
),
|
615 |
+
(
|
616 |
+
# Case 3:
|
617 |
+
# Initial bracket.
|
618 |
+
2.6,
|
619 |
+
3.25,
|
620 |
+
3.9,
|
621 |
+
# Function slopes down and to the right to a minimum at 99.4 with xmax
|
622 |
+
# at 99.4. Tests case where minimum is at xmax relatively further from
|
623 |
+
# the bracket.
|
624 |
+
None,
|
625 |
+
99.4,
|
626 |
+
(99.4, 0)
|
627 |
+
),
|
628 |
+
(
|
629 |
+
# Case 4:
|
630 |
+
# Initial bracket.
|
631 |
+
4,
|
632 |
+
4.5,
|
633 |
+
5,
|
634 |
+
# Function slopes down and to the left away from the bracket with a
|
635 |
+
# minimum at -26.3 with xmin set to -26.3. Tests case where minimum is
|
636 |
+
# at xmin relatively far from the bracket.
|
637 |
+
-26.3,
|
638 |
+
None,
|
639 |
+
(-26.3, 0)
|
640 |
+
),
|
641 |
+
(
|
642 |
+
# Case 5:
|
643 |
+
# Similar to Case 1 above, but tests default values of xl0 and xr0.
|
644 |
+
None,
|
645 |
+
0.3,
|
646 |
+
None,
|
647 |
+
None,
|
648 |
+
1.0,
|
649 |
+
(1.0, 0.0)
|
650 |
+
),
|
651 |
+
( # Case 6:
|
652 |
+
# Similar to Case 2 above, but tests default values of xl0 and xr0.
|
653 |
+
None,
|
654 |
+
1.95,
|
655 |
+
None,
|
656 |
+
0.3,
|
657 |
+
None,
|
658 |
+
(0.3, 0.0)
|
659 |
+
),
|
660 |
+
(
|
661 |
+
# Case 7:
|
662 |
+
# Similar to Case 3 above, but tests default values of xl0 and xr0.
|
663 |
+
None,
|
664 |
+
3.25,
|
665 |
+
None,
|
666 |
+
None,
|
667 |
+
99.4,
|
668 |
+
(99.4, 0)
|
669 |
+
),
|
670 |
+
(
|
671 |
+
# Case 8:
|
672 |
+
# Similar to Case 4 above, but tests default values of xl0 and xr0.
|
673 |
+
None,
|
674 |
+
4.5,
|
675 |
+
None,
|
676 |
+
-26.3,
|
677 |
+
None,
|
678 |
+
(-26.3, 0)
|
679 |
+
),
|
680 |
+
)
|
681 |
+
)
|
682 |
+
def test_minimum_at_boundary_point(self, xl0, xm0, xr0, xmin, xmax, args):
|
683 |
+
f = self.init_f()
|
684 |
+
kwargs = self.get_kwargs(xr0=xr0, xmin=xmin, xmax=xmax, args=args)
|
685 |
+
result = _bracket_minimum(f, xm0, **kwargs)
|
686 |
+
assert result.status == -1
|
687 |
+
assert args[0] in (result.xl, result.xr)
|
688 |
+
assert result.nfev == f.count
|
689 |
+
|
690 |
+
@pytest.mark.parametrize('shape', [tuple(), (12, ), (3, 4), (3, 2, 2)])
|
691 |
+
def test_vectorization(self, shape):
|
692 |
+
# Test for correct functionality, output shapes, and dtypes for
|
693 |
+
# various input shapes.
|
694 |
+
a = np.linspace(-0.05, 1.05, 12).reshape(shape) if shape else 0.6
|
695 |
+
args = (a, 0.0)
|
696 |
+
maxiter = 10
|
697 |
+
|
698 |
+
@np.vectorize
|
699 |
+
def bracket_minimum_single(xm0, xl0, xr0, xmin, xmax, factor, a):
|
700 |
+
return _bracket_minimum(self.init_f(), xm0, xl0=xl0, xr0=xr0, xmin=xmin,
|
701 |
+
xmax=xmax, factor=factor, maxiter=maxiter,
|
702 |
+
args=(a, 0.0))
|
703 |
+
|
704 |
+
f = self.init_f()
|
705 |
+
|
706 |
+
rng = np.random.default_rng(2348234)
|
707 |
+
xl0 = -rng.random(size=shape)
|
708 |
+
xr0 = rng.random(size=shape)
|
709 |
+
xm0 = xl0 + rng.random(size=shape) * (xr0 - xl0)
|
710 |
+
xmin, xmax = 1e3*xl0, 1e3*xr0
|
711 |
+
if shape: # make some elements un
|
712 |
+
i = rng.random(size=shape) > 0.5
|
713 |
+
xmin[i], xmax[i] = -np.inf, np.inf
|
714 |
+
factor = rng.random(size=shape) + 1.5
|
715 |
+
res = _bracket_minimum(f, xm0, xl0=xl0, xr0=xr0, xmin=xmin, xmax=xmax,
|
716 |
+
factor=factor, args=args, maxiter=maxiter)
|
717 |
+
refs = bracket_minimum_single(xm0, xl0, xr0, xmin, xmax, factor, a).ravel()
|
718 |
+
|
719 |
+
attrs = ['xl', 'xm', 'xr', 'fl', 'fm', 'fr', 'success', 'nfev', 'nit']
|
720 |
+
for attr in attrs:
|
721 |
+
ref_attr = [getattr(ref, attr) for ref in refs]
|
722 |
+
res_attr = getattr(res, attr)
|
723 |
+
assert_allclose(res_attr.ravel(), ref_attr)
|
724 |
+
assert_equal(res_attr.shape, shape)
|
725 |
+
|
726 |
+
assert np.issubdtype(res.success.dtype, np.bool_)
|
727 |
+
if shape:
|
728 |
+
assert np.all(res.success[1:-1])
|
729 |
+
assert np.issubdtype(res.status.dtype, np.integer)
|
730 |
+
assert np.issubdtype(res.nfev.dtype, np.integer)
|
731 |
+
assert np.issubdtype(res.nit.dtype, np.integer)
|
732 |
+
assert_equal(np.max(res.nit), f.count - 3)
|
733 |
+
self.assert_valid_bracket(res)
|
734 |
+
assert_allclose(res.fl, f(res.xl, *args))
|
735 |
+
assert_allclose(res.fm, f(res.xm, *args))
|
736 |
+
assert_allclose(res.fr, f(res.xr, *args))
|
737 |
+
|
738 |
+
def test_special_cases(self):
|
739 |
+
# Test edge cases and other special cases.
|
740 |
+
|
741 |
+
# Test that integers are not passed to `f`
|
742 |
+
# (otherwise this would overflow)
|
743 |
+
def f(x):
|
744 |
+
assert np.issubdtype(x.dtype, np.floating)
|
745 |
+
return x ** 98 - 1
|
746 |
+
|
747 |
+
result = _bracket_minimum(f, -7, xr0=5)
|
748 |
+
assert result.success
|
749 |
+
|
750 |
+
# Test maxiter = 0. Should do nothing to bracket.
|
751 |
+
def f(x):
|
752 |
+
return x**2 - 10
|
753 |
+
|
754 |
+
xl0, xm0, xr0 = -3, -1, 2
|
755 |
+
result = _bracket_minimum(f, xm0, xl0=xl0, xr0=xr0, maxiter=0)
|
756 |
+
assert_equal([result.xl, result.xm, result.xr], [xl0, xm0, xr0])
|
757 |
+
|
758 |
+
# Test scalar `args` (not in tuple)
|
759 |
+
def f(x, c):
|
760 |
+
return c*x**2 - 1
|
761 |
+
|
762 |
+
result = _bracket_minimum(f, -1, args=3)
|
763 |
+
assert result.success
|
764 |
+
assert_allclose(result.fl, f(result.xl, 3))
|
765 |
+
|
766 |
+
# Initial bracket is valid.
|
767 |
+
f = self.init_f()
|
768 |
+
xl0, xm0, xr0 = [-1.0, -0.2, 1.0]
|
769 |
+
args = (0, 0)
|
770 |
+
result = _bracket_minimum(f, xm0, xl0=xl0, xr0=xr0, args=args)
|
771 |
+
assert f.count == 3
|
772 |
+
|
773 |
+
assert_equal(
|
774 |
+
[result.xl, result.xm, result.xr],
|
775 |
+
[xl0, xm0, xr0],
|
776 |
+
)
|
777 |
+
assert_equal(
|
778 |
+
[result.fl, result.fm, result.fr],
|
779 |
+
[f(xl0, *args), f(xm0, *args), f(xr0, *args)],
|
780 |
+
)
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/tests/test_chandrupatla.py
ADDED
@@ -0,0 +1,827 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pytest
|
2 |
+
import numpy as np
|
3 |
+
from numpy.testing import assert_allclose, assert_equal, assert_array_less
|
4 |
+
|
5 |
+
from scipy import stats
|
6 |
+
import scipy._lib._elementwise_iterative_method as eim
|
7 |
+
|
8 |
+
from scipy.optimize._chandrupatla import (_chandrupatla_minimize,
|
9 |
+
_chandrupatla as _chandrupatla_root)
|
10 |
+
from scipy.optimize._tstutils import _CHANDRUPATLA_TESTS
|
11 |
+
|
12 |
+
from itertools import permutations
|
13 |
+
from .test_zeros import TestScalarRootFinders
|
14 |
+
|
15 |
+
def f1(x):
|
16 |
+
return 100*(1 - x**3.)**2 + (1-x**2.) + 2*(1-x)**2.
|
17 |
+
|
18 |
+
|
19 |
+
def f2(x):
|
20 |
+
return 5 + (x - 2.)**6
|
21 |
+
|
22 |
+
|
23 |
+
def f3(x):
|
24 |
+
return np.exp(x) - 5*x
|
25 |
+
|
26 |
+
|
27 |
+
def f4(x):
|
28 |
+
return x**5. - 5*x**3. - 20.*x + 5.
|
29 |
+
|
30 |
+
|
31 |
+
def f5(x):
|
32 |
+
return 8*x**3 - 2*x**2 - 7*x + 3
|
33 |
+
|
34 |
+
|
35 |
+
def _bracket_minimum(func, x1, x2):
|
36 |
+
phi = 1.61803398875
|
37 |
+
maxiter = 100
|
38 |
+
f1 = func(x1)
|
39 |
+
f2 = func(x2)
|
40 |
+
step = x2 - x1
|
41 |
+
x1, x2, f1, f2, step = ((x2, x1, f2, f1, -step) if f2 > f1
|
42 |
+
else (x1, x2, f1, f2, step))
|
43 |
+
|
44 |
+
for i in range(maxiter):
|
45 |
+
step *= phi
|
46 |
+
x3 = x2 + step
|
47 |
+
f3 = func(x3)
|
48 |
+
if f3 < f2:
|
49 |
+
x1, x2, f1, f2 = x2, x3, f2, f3
|
50 |
+
else:
|
51 |
+
break
|
52 |
+
return x1, x2, x3, f1, f2, f3
|
53 |
+
|
54 |
+
|
55 |
+
cases = [
|
56 |
+
(f1, -1, 11),
|
57 |
+
(f1, -2, 13),
|
58 |
+
(f1, -4, 13),
|
59 |
+
(f1, -8, 15),
|
60 |
+
(f1, -16, 16),
|
61 |
+
(f1, -32, 19),
|
62 |
+
(f1, -64, 20),
|
63 |
+
(f1, -128, 21),
|
64 |
+
(f1, -256, 21),
|
65 |
+
(f1, -512, 19),
|
66 |
+
(f1, -1024, 24),
|
67 |
+
(f2, -1, 8),
|
68 |
+
(f2, -2, 6),
|
69 |
+
(f2, -4, 6),
|
70 |
+
(f2, -8, 7),
|
71 |
+
(f2, -16, 8),
|
72 |
+
(f2, -32, 8),
|
73 |
+
(f2, -64, 9),
|
74 |
+
(f2, -128, 11),
|
75 |
+
(f2, -256, 13),
|
76 |
+
(f2, -512, 12),
|
77 |
+
(f2, -1024, 13),
|
78 |
+
(f3, -1, 11),
|
79 |
+
(f3, -2, 11),
|
80 |
+
(f3, -4, 11),
|
81 |
+
(f3, -8, 10),
|
82 |
+
(f3, -16, 14),
|
83 |
+
(f3, -32, 12),
|
84 |
+
(f3, -64, 15),
|
85 |
+
(f3, -128, 18),
|
86 |
+
(f3, -256, 18),
|
87 |
+
(f3, -512, 19),
|
88 |
+
(f3, -1024, 19),
|
89 |
+
(f4, -0.05, 9),
|
90 |
+
(f4, -0.10, 11),
|
91 |
+
(f4, -0.15, 11),
|
92 |
+
(f4, -0.20, 11),
|
93 |
+
(f4, -0.25, 11),
|
94 |
+
(f4, -0.30, 9),
|
95 |
+
(f4, -0.35, 9),
|
96 |
+
(f4, -0.40, 9),
|
97 |
+
(f4, -0.45, 10),
|
98 |
+
(f4, -0.50, 10),
|
99 |
+
(f4, -0.55, 10),
|
100 |
+
(f5, -0.05, 6),
|
101 |
+
(f5, -0.10, 7),
|
102 |
+
(f5, -0.15, 8),
|
103 |
+
(f5, -0.20, 10),
|
104 |
+
(f5, -0.25, 9),
|
105 |
+
(f5, -0.30, 8),
|
106 |
+
(f5, -0.35, 7),
|
107 |
+
(f5, -0.40, 7),
|
108 |
+
(f5, -0.45, 9),
|
109 |
+
(f5, -0.50, 9),
|
110 |
+
(f5, -0.55, 8)
|
111 |
+
]
|
112 |
+
|
113 |
+
|
114 |
+
class TestChandrupatlaMinimize:
|
115 |
+
|
116 |
+
def f(self, x, loc):
|
117 |
+
dist = stats.norm()
|
118 |
+
return -dist.pdf(x - loc)
|
119 |
+
|
120 |
+
@pytest.mark.parametrize('loc', [0.6, np.linspace(-1.05, 1.05, 10)])
|
121 |
+
def test_basic(self, loc):
|
122 |
+
# Find mode of normal distribution. Compare mode against location
|
123 |
+
# parameter and value of pdf at mode against expected pdf.
|
124 |
+
res = _chandrupatla_minimize(self.f, -5, 0, 5, args=(loc,))
|
125 |
+
ref = loc
|
126 |
+
np.testing.assert_allclose(res.x, ref, rtol=1e-6)
|
127 |
+
np.testing.assert_allclose(res.fun, -stats.norm.pdf(0), atol=0, rtol=0)
|
128 |
+
assert res.x.shape == np.shape(ref)
|
129 |
+
|
130 |
+
@pytest.mark.parametrize('shape', [tuple(), (12,), (3, 4), (3, 2, 2)])
|
131 |
+
def test_vectorization(self, shape):
|
132 |
+
# Test for correct functionality, output shapes, and dtypes for various
|
133 |
+
# input shapes.
|
134 |
+
loc = np.linspace(-0.05, 1.05, 12).reshape(shape) if shape else 0.6
|
135 |
+
args = (loc,)
|
136 |
+
|
137 |
+
@np.vectorize
|
138 |
+
def chandrupatla_single(loc_single):
|
139 |
+
return _chandrupatla_minimize(self.f, -5, 0, 5, args=(loc_single,))
|
140 |
+
|
141 |
+
def f(*args, **kwargs):
|
142 |
+
f.f_evals += 1
|
143 |
+
return self.f(*args, **kwargs)
|
144 |
+
f.f_evals = 0
|
145 |
+
|
146 |
+
res = _chandrupatla_minimize(f, -5, 0, 5, args=args)
|
147 |
+
refs = chandrupatla_single(loc).ravel()
|
148 |
+
|
149 |
+
ref_x = [ref.x for ref in refs]
|
150 |
+
assert_allclose(res.x.ravel(), ref_x)
|
151 |
+
assert_equal(res.x.shape, shape)
|
152 |
+
|
153 |
+
ref_fun = [ref.fun for ref in refs]
|
154 |
+
assert_allclose(res.fun.ravel(), ref_fun)
|
155 |
+
assert_equal(res.fun.shape, shape)
|
156 |
+
assert_equal(res.fun, self.f(res.x, *args))
|
157 |
+
|
158 |
+
ref_success = [ref.success for ref in refs]
|
159 |
+
assert_equal(res.success.ravel(), ref_success)
|
160 |
+
assert_equal(res.success.shape, shape)
|
161 |
+
assert np.issubdtype(res.success.dtype, np.bool_)
|
162 |
+
|
163 |
+
ref_flag = [ref.status for ref in refs]
|
164 |
+
assert_equal(res.status.ravel(), ref_flag)
|
165 |
+
assert_equal(res.status.shape, shape)
|
166 |
+
assert np.issubdtype(res.status.dtype, np.integer)
|
167 |
+
|
168 |
+
ref_nfev = [ref.nfev for ref in refs]
|
169 |
+
assert_equal(res.nfev.ravel(), ref_nfev)
|
170 |
+
assert_equal(np.max(res.nfev), f.f_evals)
|
171 |
+
assert_equal(res.nfev.shape, res.fun.shape)
|
172 |
+
assert np.issubdtype(res.nfev.dtype, np.integer)
|
173 |
+
|
174 |
+
ref_nit = [ref.nit for ref in refs]
|
175 |
+
assert_equal(res.nit.ravel(), ref_nit)
|
176 |
+
assert_equal(np.max(res.nit), f.f_evals-3)
|
177 |
+
assert_equal(res.nit.shape, res.fun.shape)
|
178 |
+
assert np.issubdtype(res.nit.dtype, np.integer)
|
179 |
+
|
180 |
+
ref_xl = [ref.xl for ref in refs]
|
181 |
+
assert_allclose(res.xl.ravel(), ref_xl)
|
182 |
+
assert_equal(res.xl.shape, shape)
|
183 |
+
|
184 |
+
ref_xm = [ref.xm for ref in refs]
|
185 |
+
assert_allclose(res.xm.ravel(), ref_xm)
|
186 |
+
assert_equal(res.xm.shape, shape)
|
187 |
+
|
188 |
+
ref_xr = [ref.xr for ref in refs]
|
189 |
+
assert_allclose(res.xr.ravel(), ref_xr)
|
190 |
+
assert_equal(res.xr.shape, shape)
|
191 |
+
|
192 |
+
ref_fl = [ref.fl for ref in refs]
|
193 |
+
assert_allclose(res.fl.ravel(), ref_fl)
|
194 |
+
assert_equal(res.fl.shape, shape)
|
195 |
+
assert_allclose(res.fl, self.f(res.xl, *args))
|
196 |
+
|
197 |
+
ref_fm = [ref.fm for ref in refs]
|
198 |
+
assert_allclose(res.fm.ravel(), ref_fm)
|
199 |
+
assert_equal(res.fm.shape, shape)
|
200 |
+
assert_allclose(res.fm, self.f(res.xm, *args))
|
201 |
+
|
202 |
+
ref_fr = [ref.fr for ref in refs]
|
203 |
+
assert_allclose(res.fr.ravel(), ref_fr)
|
204 |
+
assert_equal(res.fr.shape, shape)
|
205 |
+
assert_allclose(res.fr, self.f(res.xr, *args))
|
206 |
+
|
207 |
+
def test_flags(self):
|
208 |
+
# Test cases that should produce different status flags; show that all
|
209 |
+
# can be produced simultaneously.
|
210 |
+
def f(xs, js):
|
211 |
+
funcs = [lambda x: (x - 2.5) ** 2,
|
212 |
+
lambda x: x - 10,
|
213 |
+
lambda x: (x - 2.5) ** 4,
|
214 |
+
lambda x: np.nan]
|
215 |
+
|
216 |
+
return [funcs[j](x) for x, j in zip(xs, js)]
|
217 |
+
|
218 |
+
args = (np.arange(4, dtype=np.int64),)
|
219 |
+
|
220 |
+
res = _chandrupatla_minimize(f, [0]*4, [2]*4, [np.pi]*4, args=args,
|
221 |
+
maxiter=10)
|
222 |
+
|
223 |
+
ref_flags = np.array([eim._ECONVERGED,
|
224 |
+
eim._ESIGNERR,
|
225 |
+
eim._ECONVERR,
|
226 |
+
eim._EVALUEERR])
|
227 |
+
assert_equal(res.status, ref_flags)
|
228 |
+
|
229 |
+
def test_convergence(self):
|
230 |
+
# Test that the convergence tolerances behave as expected
|
231 |
+
rng = np.random.default_rng(2585255913088665241)
|
232 |
+
p = rng.random(size=3)
|
233 |
+
bracket = (-5, 0, 5)
|
234 |
+
args = (p,)
|
235 |
+
kwargs0 = dict(args=args, xatol=0, xrtol=0, fatol=0, frtol=0)
|
236 |
+
|
237 |
+
kwargs = kwargs0.copy()
|
238 |
+
kwargs['xatol'] = 1e-3
|
239 |
+
res1 = _chandrupatla_minimize(self.f, *bracket, **kwargs)
|
240 |
+
j1 = abs(res1.xr - res1.xl)
|
241 |
+
assert_array_less(j1, 4*kwargs['xatol'])
|
242 |
+
kwargs['xatol'] = 1e-6
|
243 |
+
res2 = _chandrupatla_minimize(self.f, *bracket, **kwargs)
|
244 |
+
j2 = abs(res2.xr - res2.xl)
|
245 |
+
assert_array_less(j2, 4*kwargs['xatol'])
|
246 |
+
assert_array_less(j2, j1)
|
247 |
+
|
248 |
+
kwargs = kwargs0.copy()
|
249 |
+
kwargs['xrtol'] = 1e-3
|
250 |
+
res1 = _chandrupatla_minimize(self.f, *bracket, **kwargs)
|
251 |
+
j1 = abs(res1.xr - res1.xl)
|
252 |
+
assert_array_less(j1, 4*kwargs['xrtol']*abs(res1.x))
|
253 |
+
kwargs['xrtol'] = 1e-6
|
254 |
+
res2 = _chandrupatla_minimize(self.f, *bracket, **kwargs)
|
255 |
+
j2 = abs(res2.xr - res2.xl)
|
256 |
+
assert_array_less(j2, 4*kwargs['xrtol']*abs(res2.x))
|
257 |
+
assert_array_less(j2, j1)
|
258 |
+
|
259 |
+
kwargs = kwargs0.copy()
|
260 |
+
kwargs['fatol'] = 1e-3
|
261 |
+
res1 = _chandrupatla_minimize(self.f, *bracket, **kwargs)
|
262 |
+
h1 = abs(res1.fl - 2 * res1.fm + res1.fr)
|
263 |
+
assert_array_less(h1, 2*kwargs['fatol'])
|
264 |
+
kwargs['fatol'] = 1e-6
|
265 |
+
res2 = _chandrupatla_minimize(self.f, *bracket, **kwargs)
|
266 |
+
h2 = abs(res2.fl - 2 * res2.fm + res2.fr)
|
267 |
+
assert_array_less(h2, 2*kwargs['fatol'])
|
268 |
+
assert_array_less(h2, h1)
|
269 |
+
|
270 |
+
kwargs = kwargs0.copy()
|
271 |
+
kwargs['frtol'] = 1e-3
|
272 |
+
res1 = _chandrupatla_minimize(self.f, *bracket, **kwargs)
|
273 |
+
h1 = abs(res1.fl - 2 * res1.fm + res1.fr)
|
274 |
+
assert_array_less(h1, 2*kwargs['frtol']*abs(res1.fun))
|
275 |
+
kwargs['frtol'] = 1e-6
|
276 |
+
res2 = _chandrupatla_minimize(self.f, *bracket, **kwargs)
|
277 |
+
h2 = abs(res2.fl - 2 * res2.fm + res2.fr)
|
278 |
+
assert_array_less(h2, 2*kwargs['frtol']*abs(res2.fun))
|
279 |
+
assert_array_less(h2, h1)
|
280 |
+
|
281 |
+
def test_maxiter_callback(self):
|
282 |
+
# Test behavior of `maxiter` parameter and `callback` interface
|
283 |
+
loc = 0.612814
|
284 |
+
bracket = (-5, 0, 5)
|
285 |
+
maxiter = 5
|
286 |
+
|
287 |
+
res = _chandrupatla_minimize(self.f, *bracket, args=(loc,),
|
288 |
+
maxiter=maxiter)
|
289 |
+
assert not np.any(res.success)
|
290 |
+
assert np.all(res.nfev == maxiter+3)
|
291 |
+
assert np.all(res.nit == maxiter)
|
292 |
+
|
293 |
+
def callback(res):
|
294 |
+
callback.iter += 1
|
295 |
+
callback.res = res
|
296 |
+
assert hasattr(res, 'x')
|
297 |
+
if callback.iter == 0:
|
298 |
+
# callback is called once with initial bracket
|
299 |
+
assert (res.xl, res.xm, res.xr) == bracket
|
300 |
+
else:
|
301 |
+
changed_xr = (res.xl == callback.xl) & (res.xr != callback.xr)
|
302 |
+
changed_xl = (res.xl != callback.xl) & (res.xr == callback.xr)
|
303 |
+
assert np.all(changed_xr | changed_xl)
|
304 |
+
|
305 |
+
callback.xl = res.xl
|
306 |
+
callback.xr = res.xr
|
307 |
+
assert res.status == eim._EINPROGRESS
|
308 |
+
assert_equal(self.f(res.xl, loc), res.fl)
|
309 |
+
assert_equal(self.f(res.xm, loc), res.fm)
|
310 |
+
assert_equal(self.f(res.xr, loc), res.fr)
|
311 |
+
assert_equal(self.f(res.x, loc), res.fun)
|
312 |
+
if callback.iter == maxiter:
|
313 |
+
raise StopIteration
|
314 |
+
|
315 |
+
callback.xl = np.nan
|
316 |
+
callback.xr = np.nan
|
317 |
+
callback.iter = -1 # callback called once before first iteration
|
318 |
+
callback.res = None
|
319 |
+
|
320 |
+
res2 = _chandrupatla_minimize(self.f, *bracket, args=(loc,),
|
321 |
+
callback=callback)
|
322 |
+
|
323 |
+
# terminating with callback is identical to terminating due to maxiter
|
324 |
+
# (except for `status`)
|
325 |
+
for key in res.keys():
|
326 |
+
if key == 'status':
|
327 |
+
assert res[key] == eim._ECONVERR
|
328 |
+
assert callback.res[key] == eim._EINPROGRESS
|
329 |
+
assert res2[key] == eim._ECALLBACK
|
330 |
+
else:
|
331 |
+
assert res2[key] == callback.res[key] == res[key]
|
332 |
+
|
333 |
+
@pytest.mark.parametrize('case', cases)
|
334 |
+
def test_nit_expected(self, case):
|
335 |
+
# Test that `_chandrupatla` implements Chandrupatla's algorithm:
|
336 |
+
# in all 55 test cases, the number of iterations performed
|
337 |
+
# matches the number reported in the original paper.
|
338 |
+
func, x1, nit = case
|
339 |
+
|
340 |
+
# Find bracket using the algorithm in the paper
|
341 |
+
step = 0.2
|
342 |
+
x2 = x1 + step
|
343 |
+
x1, x2, x3, f1, f2, f3 = _bracket_minimum(func, x1, x2)
|
344 |
+
|
345 |
+
# Use tolerances from original paper
|
346 |
+
xatol = 0.0001
|
347 |
+
fatol = 0.000001
|
348 |
+
xrtol = 1e-16
|
349 |
+
frtol = 1e-16
|
350 |
+
|
351 |
+
res = _chandrupatla_minimize(func, x1, x2, x3, xatol=xatol,
|
352 |
+
fatol=fatol, xrtol=xrtol, frtol=frtol)
|
353 |
+
assert_equal(res.nit, nit)
|
354 |
+
|
355 |
+
@pytest.mark.parametrize("loc", (0.65, [0.65, 0.7]))
|
356 |
+
@pytest.mark.parametrize("dtype", (np.float16, np.float32, np.float64))
|
357 |
+
def test_dtype(self, loc, dtype):
|
358 |
+
# Test that dtypes are preserved
|
359 |
+
|
360 |
+
loc = dtype(loc)
|
361 |
+
|
362 |
+
def f(x, loc):
|
363 |
+
assert x.dtype == dtype
|
364 |
+
return ((x - loc) ** 2).astype(dtype)
|
365 |
+
|
366 |
+
res = _chandrupatla_minimize(f, dtype(-3), dtype(1), dtype(5),
|
367 |
+
args=(loc,))
|
368 |
+
assert res.x.dtype == dtype
|
369 |
+
assert_allclose(res.x, loc, rtol=np.sqrt(np.finfo(dtype).eps))
|
370 |
+
|
371 |
+
def test_input_validation(self):
|
372 |
+
# Test input validation for appropriate error messages
|
373 |
+
|
374 |
+
message = '`func` must be callable.'
|
375 |
+
with pytest.raises(ValueError, match=message):
|
376 |
+
_chandrupatla_minimize(None, -4, 0, 4)
|
377 |
+
|
378 |
+
message = 'Abscissae and function output must be real numbers.'
|
379 |
+
with pytest.raises(ValueError, match=message):
|
380 |
+
_chandrupatla_minimize(lambda x: x, -4+1j, 0, 4)
|
381 |
+
|
382 |
+
message = "shape mismatch: objects cannot be broadcast"
|
383 |
+
# raised by `np.broadcast, but the traceback is readable IMO
|
384 |
+
with pytest.raises(ValueError, match=message):
|
385 |
+
_chandrupatla_minimize(lambda x: x, [-2, -3], [0, 0], [3, 4, 5])
|
386 |
+
|
387 |
+
message = "The shape of the array returned by `func` must be the same"
|
388 |
+
with pytest.raises(ValueError, match=message):
|
389 |
+
_chandrupatla_minimize(lambda x: [x[0], x[1], x[1]], [-3, -3],
|
390 |
+
[0, 0], [5, 5])
|
391 |
+
|
392 |
+
message = 'Tolerances must be non-negative scalars.'
|
393 |
+
with pytest.raises(ValueError, match=message):
|
394 |
+
_chandrupatla_minimize(lambda x: x, -4, 0, 4, xatol=-1)
|
395 |
+
with pytest.raises(ValueError, match=message):
|
396 |
+
_chandrupatla_minimize(lambda x: x, -4, 0, 4, xrtol=np.nan)
|
397 |
+
with pytest.raises(ValueError, match=message):
|
398 |
+
_chandrupatla_minimize(lambda x: x, -4, 0, 4, fatol='ekki')
|
399 |
+
with pytest.raises(ValueError, match=message):
|
400 |
+
_chandrupatla_minimize(lambda x: x, -4, 0, 4, frtol=np.nan)
|
401 |
+
|
402 |
+
message = '`maxiter` must be a non-negative integer.'
|
403 |
+
with pytest.raises(ValueError, match=message):
|
404 |
+
_chandrupatla_minimize(lambda x: x, -4, 0, 4, maxiter=1.5)
|
405 |
+
with pytest.raises(ValueError, match=message):
|
406 |
+
_chandrupatla_minimize(lambda x: x, -4, 0, 4, maxiter=-1)
|
407 |
+
|
408 |
+
message = '`callback` must be callable.'
|
409 |
+
with pytest.raises(ValueError, match=message):
|
410 |
+
_chandrupatla_minimize(lambda x: x, -4, 0, 4, callback='shrubbery')
|
411 |
+
|
412 |
+
def test_bracket_order(self):
|
413 |
+
# Confirm that order of points in bracket doesn't matter
|
414 |
+
loc = np.linspace(-1, 1, 6)[:, np.newaxis]
|
415 |
+
brackets = np.array(list(permutations([-5, 0, 5]))).T
|
416 |
+
res = _chandrupatla_minimize(self.f, *brackets, args=(loc,))
|
417 |
+
assert np.all(np.isclose(res.x, loc) | (res.fun == self.f(loc, loc)))
|
418 |
+
ref = res.x[:, 0] # all columns should be the same
|
419 |
+
assert_allclose(*np.broadcast_arrays(res.x.T, ref), rtol=1e-15)
|
420 |
+
|
421 |
+
def test_special_cases(self):
|
422 |
+
# Test edge cases and other special cases
|
423 |
+
|
424 |
+
# Test that integers are not passed to `f`
|
425 |
+
# (otherwise this would overflow)
|
426 |
+
def f(x):
|
427 |
+
assert np.issubdtype(x.dtype, np.floating)
|
428 |
+
return (x-1) ** 100
|
429 |
+
|
430 |
+
with np.errstate(invalid='ignore'):
|
431 |
+
res = _chandrupatla_minimize(f, -7, 0, 8, fatol=0, frtol=0)
|
432 |
+
assert res.success
|
433 |
+
assert_allclose(res.x, 1, rtol=1e-3)
|
434 |
+
assert_equal(res.fun, 0)
|
435 |
+
|
436 |
+
# Test that if all elements of bracket equal minimizer, algorithm
|
437 |
+
# reports convergence
|
438 |
+
def f(x):
|
439 |
+
return (x-1)**2
|
440 |
+
|
441 |
+
res = _chandrupatla_minimize(f, 1, 1, 1)
|
442 |
+
assert res.success
|
443 |
+
assert_equal(res.x, 1)
|
444 |
+
|
445 |
+
# Test maxiter = 0. Should do nothing to bracket.
|
446 |
+
def f(x):
|
447 |
+
return (x-1)**2
|
448 |
+
|
449 |
+
bracket = (-3, 1.1, 5)
|
450 |
+
res = _chandrupatla_minimize(f, *bracket, maxiter=0)
|
451 |
+
assert res.xl, res.xr == bracket
|
452 |
+
assert res.nit == 0
|
453 |
+
assert res.nfev == 3
|
454 |
+
assert res.status == -2
|
455 |
+
assert res.x == 1.1 # best so far
|
456 |
+
|
457 |
+
# Test scalar `args` (not in tuple)
|
458 |
+
def f(x, c):
|
459 |
+
return (x-c)**2 - 1
|
460 |
+
|
461 |
+
res = _chandrupatla_minimize(f, -1, 0, 1, args=1/3)
|
462 |
+
assert_allclose(res.x, 1/3)
|
463 |
+
|
464 |
+
# Test zero tolerances
|
465 |
+
# TODO: fatol/frtol = 0?
|
466 |
+
def f(x):
|
467 |
+
return -np.sin(x)
|
468 |
+
|
469 |
+
res = _chandrupatla_minimize(f, 0, 1, np.pi, xatol=0, xrtol=0,
|
470 |
+
fatol=0, frtol=0)
|
471 |
+
assert res.success
|
472 |
+
# found a minimum exactly (according to floating point arithmetic)
|
473 |
+
assert res.xl < res.xm < res.xr
|
474 |
+
assert f(res.xl) == f(res.xm) == f(res.xr)
|
475 |
+
|
476 |
+
|
477 |
+
class TestChandrupatla(TestScalarRootFinders):
|
478 |
+
|
479 |
+
def f(self, q, p):
|
480 |
+
return stats.norm.cdf(q) - p
|
481 |
+
|
482 |
+
@pytest.mark.parametrize('p', [0.6, np.linspace(-0.05, 1.05, 10)])
|
483 |
+
def test_basic(self, p):
|
484 |
+
# Invert distribution CDF and compare against distrtibution `ppf`
|
485 |
+
res = _chandrupatla_root(self.f, -5, 5, args=(p,))
|
486 |
+
ref = stats.norm().ppf(p)
|
487 |
+
np.testing.assert_allclose(res.x, ref)
|
488 |
+
assert res.x.shape == ref.shape
|
489 |
+
|
490 |
+
@pytest.mark.parametrize('shape', [tuple(), (12,), (3, 4), (3, 2, 2)])
|
491 |
+
def test_vectorization(self, shape):
|
492 |
+
# Test for correct functionality, output shapes, and dtypes for various
|
493 |
+
# input shapes.
|
494 |
+
p = np.linspace(-0.05, 1.05, 12).reshape(shape) if shape else 0.6
|
495 |
+
args = (p,)
|
496 |
+
|
497 |
+
@np.vectorize
|
498 |
+
def chandrupatla_single(p):
|
499 |
+
return _chandrupatla_root(self.f, -5, 5, args=(p,))
|
500 |
+
|
501 |
+
def f(*args, **kwargs):
|
502 |
+
f.f_evals += 1
|
503 |
+
return self.f(*args, **kwargs)
|
504 |
+
f.f_evals = 0
|
505 |
+
|
506 |
+
res = _chandrupatla_root(f, -5, 5, args=args)
|
507 |
+
refs = chandrupatla_single(p).ravel()
|
508 |
+
|
509 |
+
ref_x = [ref.x for ref in refs]
|
510 |
+
assert_allclose(res.x.ravel(), ref_x)
|
511 |
+
assert_equal(res.x.shape, shape)
|
512 |
+
|
513 |
+
ref_fun = [ref.fun for ref in refs]
|
514 |
+
assert_allclose(res.fun.ravel(), ref_fun)
|
515 |
+
assert_equal(res.fun.shape, shape)
|
516 |
+
assert_equal(res.fun, self.f(res.x, *args))
|
517 |
+
|
518 |
+
ref_success = [ref.success for ref in refs]
|
519 |
+
assert_equal(res.success.ravel(), ref_success)
|
520 |
+
assert_equal(res.success.shape, shape)
|
521 |
+
assert np.issubdtype(res.success.dtype, np.bool_)
|
522 |
+
|
523 |
+
ref_flag = [ref.status for ref in refs]
|
524 |
+
assert_equal(res.status.ravel(), ref_flag)
|
525 |
+
assert_equal(res.status.shape, shape)
|
526 |
+
assert np.issubdtype(res.status.dtype, np.integer)
|
527 |
+
|
528 |
+
ref_nfev = [ref.nfev for ref in refs]
|
529 |
+
assert_equal(res.nfev.ravel(), ref_nfev)
|
530 |
+
assert_equal(np.max(res.nfev), f.f_evals)
|
531 |
+
assert_equal(res.nfev.shape, res.fun.shape)
|
532 |
+
assert np.issubdtype(res.nfev.dtype, np.integer)
|
533 |
+
|
534 |
+
ref_nit = [ref.nit for ref in refs]
|
535 |
+
assert_equal(res.nit.ravel(), ref_nit)
|
536 |
+
assert_equal(np.max(res.nit), f.f_evals-2)
|
537 |
+
assert_equal(res.nit.shape, res.fun.shape)
|
538 |
+
assert np.issubdtype(res.nit.dtype, np.integer)
|
539 |
+
|
540 |
+
ref_xl = [ref.xl for ref in refs]
|
541 |
+
assert_allclose(res.xl.ravel(), ref_xl)
|
542 |
+
assert_equal(res.xl.shape, shape)
|
543 |
+
|
544 |
+
ref_xr = [ref.xr for ref in refs]
|
545 |
+
assert_allclose(res.xr.ravel(), ref_xr)
|
546 |
+
assert_equal(res.xr.shape, shape)
|
547 |
+
|
548 |
+
assert_array_less(res.xl, res.xr)
|
549 |
+
finite = np.isfinite(res.x)
|
550 |
+
assert np.all((res.x[finite] == res.xl[finite])
|
551 |
+
| (res.x[finite] == res.xr[finite]))
|
552 |
+
|
553 |
+
ref_fl = [ref.fl for ref in refs]
|
554 |
+
assert_allclose(res.fl.ravel(), ref_fl)
|
555 |
+
assert_equal(res.fl.shape, shape)
|
556 |
+
assert_allclose(res.fl, self.f(res.xl, *args))
|
557 |
+
|
558 |
+
ref_fr = [ref.fr for ref in refs]
|
559 |
+
assert_allclose(res.fr.ravel(), ref_fr)
|
560 |
+
assert_equal(res.fr.shape, shape)
|
561 |
+
assert_allclose(res.fr, self.f(res.xr, *args))
|
562 |
+
|
563 |
+
assert np.all(np.abs(res.fun[finite]) ==
|
564 |
+
np.minimum(np.abs(res.fl[finite]),
|
565 |
+
np.abs(res.fr[finite])))
|
566 |
+
|
567 |
+
def test_flags(self):
|
568 |
+
# Test cases that should produce different status flags; show that all
|
569 |
+
# can be produced simultaneously.
|
570 |
+
def f(xs, js):
|
571 |
+
funcs = [lambda x: x - 2.5,
|
572 |
+
lambda x: x - 10,
|
573 |
+
lambda x: (x - 0.1)**3,
|
574 |
+
lambda x: np.nan]
|
575 |
+
return [funcs[j](x) for x, j in zip(xs, js)]
|
576 |
+
|
577 |
+
args = (np.arange(4, dtype=np.int64),)
|
578 |
+
res = _chandrupatla_root(f, [0]*4, [np.pi]*4, args=args, maxiter=2)
|
579 |
+
|
580 |
+
ref_flags = np.array([eim._ECONVERGED,
|
581 |
+
eim._ESIGNERR,
|
582 |
+
eim._ECONVERR,
|
583 |
+
eim._EVALUEERR])
|
584 |
+
assert_equal(res.status, ref_flags)
|
585 |
+
|
586 |
+
def test_convergence(self):
|
587 |
+
# Test that the convergence tolerances behave as expected
|
588 |
+
rng = np.random.default_rng(2585255913088665241)
|
589 |
+
p = rng.random(size=3)
|
590 |
+
bracket = (-5, 5)
|
591 |
+
args = (p,)
|
592 |
+
kwargs0 = dict(args=args, xatol=0, xrtol=0, fatol=0, frtol=0)
|
593 |
+
|
594 |
+
kwargs = kwargs0.copy()
|
595 |
+
kwargs['xatol'] = 1e-3
|
596 |
+
res1 = _chandrupatla_root(self.f, *bracket, **kwargs)
|
597 |
+
assert_array_less(res1.xr - res1.xl, 1e-3)
|
598 |
+
kwargs['xatol'] = 1e-6
|
599 |
+
res2 = _chandrupatla_root(self.f, *bracket, **kwargs)
|
600 |
+
assert_array_less(res2.xr - res2.xl, 1e-6)
|
601 |
+
assert_array_less(res2.xr - res2.xl, res1.xr - res1.xl)
|
602 |
+
|
603 |
+
kwargs = kwargs0.copy()
|
604 |
+
kwargs['xrtol'] = 1e-3
|
605 |
+
res1 = _chandrupatla_root(self.f, *bracket, **kwargs)
|
606 |
+
assert_array_less(res1.xr - res1.xl, 1e-3 * np.abs(res1.x))
|
607 |
+
kwargs['xrtol'] = 1e-6
|
608 |
+
res2 = _chandrupatla_root(self.f, *bracket, **kwargs)
|
609 |
+
assert_array_less(res2.xr - res2.xl, 1e-6 * np.abs(res2.x))
|
610 |
+
assert_array_less(res2.xr - res2.xl, res1.xr - res1.xl)
|
611 |
+
|
612 |
+
kwargs = kwargs0.copy()
|
613 |
+
kwargs['fatol'] = 1e-3
|
614 |
+
res1 = _chandrupatla_root(self.f, *bracket, **kwargs)
|
615 |
+
assert_array_less(np.abs(res1.fun), 1e-3)
|
616 |
+
kwargs['fatol'] = 1e-6
|
617 |
+
res2 = _chandrupatla_root(self.f, *bracket, **kwargs)
|
618 |
+
assert_array_less(np.abs(res2.fun), 1e-6)
|
619 |
+
assert_array_less(np.abs(res2.fun), np.abs(res1.fun))
|
620 |
+
|
621 |
+
kwargs = kwargs0.copy()
|
622 |
+
kwargs['frtol'] = 1e-3
|
623 |
+
x1, x2 = bracket
|
624 |
+
f0 = np.minimum(abs(self.f(x1, *args)), abs(self.f(x2, *args)))
|
625 |
+
res1 = _chandrupatla_root(self.f, *bracket, **kwargs)
|
626 |
+
assert_array_less(np.abs(res1.fun), 1e-3*f0)
|
627 |
+
kwargs['frtol'] = 1e-6
|
628 |
+
res2 = _chandrupatla_root(self.f, *bracket, **kwargs)
|
629 |
+
assert_array_less(np.abs(res2.fun), 1e-6*f0)
|
630 |
+
assert_array_less(np.abs(res2.fun), np.abs(res1.fun))
|
631 |
+
|
632 |
+
def test_maxiter_callback(self):
|
633 |
+
# Test behavior of `maxiter` parameter and `callback` interface
|
634 |
+
p = 0.612814
|
635 |
+
bracket = (-5, 5)
|
636 |
+
maxiter = 5
|
637 |
+
|
638 |
+
def f(q, p):
|
639 |
+
res = stats.norm().cdf(q) - p
|
640 |
+
f.x = q
|
641 |
+
f.fun = res
|
642 |
+
return res
|
643 |
+
f.x = None
|
644 |
+
f.fun = None
|
645 |
+
|
646 |
+
res = _chandrupatla_root(f, *bracket, args=(p,),
|
647 |
+
maxiter=maxiter)
|
648 |
+
assert not np.any(res.success)
|
649 |
+
assert np.all(res.nfev == maxiter+2)
|
650 |
+
assert np.all(res.nit == maxiter)
|
651 |
+
|
652 |
+
def callback(res):
|
653 |
+
callback.iter += 1
|
654 |
+
callback.res = res
|
655 |
+
assert hasattr(res, 'x')
|
656 |
+
if callback.iter == 0:
|
657 |
+
# callback is called once with initial bracket
|
658 |
+
assert (res.xl, res.xr) == bracket
|
659 |
+
else:
|
660 |
+
changed = (((res.xl == callback.xl) & (res.xr != callback.xr))
|
661 |
+
| ((res.xl != callback.xl) & (res.xr == callback.xr)))
|
662 |
+
assert np.all(changed)
|
663 |
+
|
664 |
+
callback.xl = res.xl
|
665 |
+
callback.xr = res.xr
|
666 |
+
assert res.status == eim._EINPROGRESS
|
667 |
+
assert_equal(self.f(res.xl, p), res.fl)
|
668 |
+
assert_equal(self.f(res.xr, p), res.fr)
|
669 |
+
assert_equal(self.f(res.x, p), res.fun)
|
670 |
+
if callback.iter == maxiter:
|
671 |
+
raise StopIteration
|
672 |
+
callback.iter = -1 # callback called once before first iteration
|
673 |
+
callback.res = None
|
674 |
+
callback.xl = None
|
675 |
+
callback.xr = None
|
676 |
+
|
677 |
+
res2 = _chandrupatla_root(f, *bracket, args=(p,),
|
678 |
+
callback=callback)
|
679 |
+
|
680 |
+
# terminating with callback is identical to terminating due to maxiter
|
681 |
+
# (except for `status`)
|
682 |
+
for key in res.keys():
|
683 |
+
if key == 'status':
|
684 |
+
assert res[key] == eim._ECONVERR
|
685 |
+
assert callback.res[key] == eim._EINPROGRESS
|
686 |
+
assert res2[key] == eim._ECALLBACK
|
687 |
+
else:
|
688 |
+
assert res2[key] == callback.res[key] == res[key]
|
689 |
+
|
690 |
+
@pytest.mark.parametrize('case', _CHANDRUPATLA_TESTS)
|
691 |
+
def test_nit_expected(self, case):
|
692 |
+
# Test that `_chandrupatla` implements Chandrupatla's algorithm:
|
693 |
+
# in all 40 test cases, the number of iterations performed
|
694 |
+
# matches the number reported in the original paper.
|
695 |
+
f, bracket, root, nfeval, id = case
|
696 |
+
# Chandrupatla's criterion is equivalent to
|
697 |
+
# abs(x2-x1) < 4*abs(xmin)*xrtol + xatol, but we use the more standard
|
698 |
+
# abs(x2-x1) < abs(xmin)*xrtol + xatol. Therefore, set xrtol to 4x
|
699 |
+
# that used by Chandrupatla in tests.
|
700 |
+
res = _chandrupatla_root(f, *bracket, xrtol=4e-10, xatol=1e-5)
|
701 |
+
assert_allclose(res.fun, f(root), rtol=1e-8, atol=2e-3)
|
702 |
+
assert_equal(res.nfev, nfeval)
|
703 |
+
|
704 |
+
@pytest.mark.parametrize("root", (0.622, [0.622, 0.623]))
|
705 |
+
@pytest.mark.parametrize("dtype", (np.float16, np.float32, np.float64))
|
706 |
+
def test_dtype(self, root, dtype):
|
707 |
+
# Test that dtypes are preserved
|
708 |
+
|
709 |
+
root = dtype(root)
|
710 |
+
def f(x, root):
|
711 |
+
return ((x - root) ** 3).astype(dtype)
|
712 |
+
|
713 |
+
res = _chandrupatla_root(f, dtype(-3), dtype(5),
|
714 |
+
args=(root,), xatol=1e-3)
|
715 |
+
assert res.x.dtype == dtype
|
716 |
+
assert np.allclose(res.x, root, atol=1e-3) or np.all(res.fun == 0)
|
717 |
+
|
718 |
+
def test_input_validation(self):
|
719 |
+
# Test input validation for appropriate error messages
|
720 |
+
|
721 |
+
message = '`func` must be callable.'
|
722 |
+
with pytest.raises(ValueError, match=message):
|
723 |
+
_chandrupatla_root(None, -4, 4)
|
724 |
+
|
725 |
+
message = 'Abscissae and function output must be real numbers.'
|
726 |
+
with pytest.raises(ValueError, match=message):
|
727 |
+
_chandrupatla_root(lambda x: x, -4+1j, 4)
|
728 |
+
|
729 |
+
message = "shape mismatch: objects cannot be broadcast"
|
730 |
+
# raised by `np.broadcast, but the traceback is readable IMO
|
731 |
+
with pytest.raises(ValueError, match=message):
|
732 |
+
_chandrupatla_root(lambda x: x, [-2, -3], [3, 4, 5])
|
733 |
+
|
734 |
+
message = "The shape of the array returned by `func`..."
|
735 |
+
with pytest.raises(ValueError, match=message):
|
736 |
+
_chandrupatla_root(lambda x: [x[0], x[1], x[1]], [-3, -3], [5, 5])
|
737 |
+
|
738 |
+
message = 'Tolerances must be non-negative scalars.'
|
739 |
+
with pytest.raises(ValueError, match=message):
|
740 |
+
_chandrupatla_root(lambda x: x, -4, 4, xatol=-1)
|
741 |
+
with pytest.raises(ValueError, match=message):
|
742 |
+
_chandrupatla_root(lambda x: x, -4, 4, xrtol=np.nan)
|
743 |
+
with pytest.raises(ValueError, match=message):
|
744 |
+
_chandrupatla_root(lambda x: x, -4, 4, fatol='ekki')
|
745 |
+
with pytest.raises(ValueError, match=message):
|
746 |
+
_chandrupatla_root(lambda x: x, -4, 4, frtol=np.nan)
|
747 |
+
|
748 |
+
message = '`maxiter` must be a non-negative integer.'
|
749 |
+
with pytest.raises(ValueError, match=message):
|
750 |
+
_chandrupatla_root(lambda x: x, -4, 4, maxiter=1.5)
|
751 |
+
with pytest.raises(ValueError, match=message):
|
752 |
+
_chandrupatla_root(lambda x: x, -4, 4, maxiter=-1)
|
753 |
+
|
754 |
+
message = '`callback` must be callable.'
|
755 |
+
with pytest.raises(ValueError, match=message):
|
756 |
+
_chandrupatla_root(lambda x: x, -4, 4, callback='shrubbery')
|
757 |
+
|
758 |
+
def test_special_cases(self):
|
759 |
+
# Test edge cases and other special cases
|
760 |
+
|
761 |
+
# Test that integers are not passed to `f`
|
762 |
+
# (otherwise this would overflow)
|
763 |
+
def f(x):
|
764 |
+
assert np.issubdtype(x.dtype, np.floating)
|
765 |
+
return x ** 99 - 1
|
766 |
+
|
767 |
+
res = _chandrupatla_root(f, -7, 5)
|
768 |
+
assert res.success
|
769 |
+
assert_allclose(res.x, 1)
|
770 |
+
|
771 |
+
# Test that if both ends of bracket equal root, algorithm reports
|
772 |
+
# convergence
|
773 |
+
def f(x):
|
774 |
+
return x**2 - 1
|
775 |
+
|
776 |
+
res = _chandrupatla_root(f, 1, 1)
|
777 |
+
assert res.success
|
778 |
+
assert_equal(res.x, 1)
|
779 |
+
|
780 |
+
def f(x):
|
781 |
+
return 1/x
|
782 |
+
|
783 |
+
with np.errstate(invalid='ignore'):
|
784 |
+
res = _chandrupatla_root(f, np.inf, np.inf)
|
785 |
+
assert res.success
|
786 |
+
assert_equal(res.x, np.inf)
|
787 |
+
|
788 |
+
# Test maxiter = 0. Should do nothing to bracket.
|
789 |
+
def f(x):
|
790 |
+
return x**3 - 1
|
791 |
+
|
792 |
+
bracket = (-3, 5)
|
793 |
+
res = _chandrupatla_root(f, *bracket, maxiter=0)
|
794 |
+
assert res.xl, res.xr == bracket
|
795 |
+
assert res.nit == 0
|
796 |
+
assert res.nfev == 2
|
797 |
+
assert res.status == -2
|
798 |
+
assert res.x == -3 # best so far
|
799 |
+
|
800 |
+
# Test maxiter = 1
|
801 |
+
res = _chandrupatla_root(f, *bracket, maxiter=1)
|
802 |
+
assert res.success
|
803 |
+
assert res.status == 0
|
804 |
+
assert res.nit == 1
|
805 |
+
assert res.nfev == 3
|
806 |
+
assert_allclose(res.x, 1)
|
807 |
+
|
808 |
+
# Test scalar `args` (not in tuple)
|
809 |
+
def f(x, c):
|
810 |
+
return c*x - 1
|
811 |
+
|
812 |
+
res = _chandrupatla_root(f, -1, 1, args=3)
|
813 |
+
assert_allclose(res.x, 1/3)
|
814 |
+
|
815 |
+
# # TODO: Test zero tolerance
|
816 |
+
# # ~~What's going on here - why are iterations repeated?~~
|
817 |
+
# # tl goes to zero when xatol=xrtol=0. When function is nearly linear,
|
818 |
+
# # this causes convergence issues.
|
819 |
+
# def f(x):
|
820 |
+
# return np.cos(x)
|
821 |
+
#
|
822 |
+
# res = _chandrupatla_root(f, 0, np.pi, xatol=0, xrtol=0)
|
823 |
+
# assert res.nit < 100
|
824 |
+
# xp = np.nextafter(res.x, np.inf)
|
825 |
+
# xm = np.nextafter(res.x, -np.inf)
|
826 |
+
# assert np.abs(res.fun) < np.abs(f(xp))
|
827 |
+
# assert np.abs(res.fun) < np.abs(f(xm))
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/tests/test_cobyla.py
ADDED
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
from numpy.testing import assert_allclose, assert_, assert_array_equal
|
5 |
+
import pytest
|
6 |
+
|
7 |
+
from scipy.optimize import fmin_cobyla, minimize, Bounds
|
8 |
+
|
9 |
+
|
10 |
+
class TestCobyla:
|
11 |
+
def setup_method(self):
|
12 |
+
self.x0 = [4.95, 0.66]
|
13 |
+
self.solution = [math.sqrt(25 - (2.0/3)**2), 2.0/3]
|
14 |
+
self.opts = {'disp': False, 'rhobeg': 1, 'tol': 1e-5,
|
15 |
+
'maxiter': 100}
|
16 |
+
|
17 |
+
def fun(self, x):
|
18 |
+
return x[0]**2 + abs(x[1])**3
|
19 |
+
|
20 |
+
def con1(self, x):
|
21 |
+
return x[0]**2 + x[1]**2 - 25
|
22 |
+
|
23 |
+
def con2(self, x):
|
24 |
+
return -self.con1(x)
|
25 |
+
|
26 |
+
@pytest.mark.xslow(True, reason='not slow, but noisy so only run rarely')
|
27 |
+
def test_simple(self, capfd):
|
28 |
+
# use disp=True as smoke test for gh-8118
|
29 |
+
x = fmin_cobyla(self.fun, self.x0, [self.con1, self.con2], rhobeg=1,
|
30 |
+
rhoend=1e-5, maxfun=100, disp=True)
|
31 |
+
assert_allclose(x, self.solution, atol=1e-4)
|
32 |
+
|
33 |
+
def test_minimize_simple(self):
|
34 |
+
class Callback:
|
35 |
+
def __init__(self):
|
36 |
+
self.n_calls = 0
|
37 |
+
self.last_x = None
|
38 |
+
|
39 |
+
def __call__(self, x):
|
40 |
+
self.n_calls += 1
|
41 |
+
self.last_x = x
|
42 |
+
|
43 |
+
callback = Callback()
|
44 |
+
|
45 |
+
# Minimize with method='COBYLA'
|
46 |
+
cons = ({'type': 'ineq', 'fun': self.con1},
|
47 |
+
{'type': 'ineq', 'fun': self.con2})
|
48 |
+
sol = minimize(self.fun, self.x0, method='cobyla', constraints=cons,
|
49 |
+
callback=callback, options=self.opts)
|
50 |
+
assert_allclose(sol.x, self.solution, atol=1e-4)
|
51 |
+
assert_(sol.success, sol.message)
|
52 |
+
assert_(sol.maxcv < 1e-5, sol)
|
53 |
+
assert_(sol.nfev < 70, sol)
|
54 |
+
assert_(sol.fun < self.fun(self.solution) + 1e-3, sol)
|
55 |
+
assert_(sol.nfev == callback.n_calls,
|
56 |
+
"Callback is not called exactly once for every function eval.")
|
57 |
+
assert_array_equal(
|
58 |
+
sol.x,
|
59 |
+
callback.last_x,
|
60 |
+
"Last design vector sent to the callback is not equal to returned value.",
|
61 |
+
)
|
62 |
+
|
63 |
+
def test_minimize_constraint_violation(self):
|
64 |
+
np.random.seed(1234)
|
65 |
+
pb = np.random.rand(10, 10)
|
66 |
+
spread = np.random.rand(10)
|
67 |
+
|
68 |
+
def p(w):
|
69 |
+
return pb.dot(w)
|
70 |
+
|
71 |
+
def f(w):
|
72 |
+
return -(w * spread).sum()
|
73 |
+
|
74 |
+
def c1(w):
|
75 |
+
return 500 - abs(p(w)).sum()
|
76 |
+
|
77 |
+
def c2(w):
|
78 |
+
return 5 - abs(p(w).sum())
|
79 |
+
|
80 |
+
def c3(w):
|
81 |
+
return 5 - abs(p(w)).max()
|
82 |
+
|
83 |
+
cons = ({'type': 'ineq', 'fun': c1},
|
84 |
+
{'type': 'ineq', 'fun': c2},
|
85 |
+
{'type': 'ineq', 'fun': c3})
|
86 |
+
w0 = np.zeros((10,))
|
87 |
+
sol = minimize(f, w0, method='cobyla', constraints=cons,
|
88 |
+
options={'catol': 1e-6})
|
89 |
+
assert_(sol.maxcv > 1e-6)
|
90 |
+
assert_(not sol.success)
|
91 |
+
|
92 |
+
|
93 |
+
def test_vector_constraints():
|
94 |
+
# test that fmin_cobyla and minimize can take a combination
|
95 |
+
# of constraints, some returning a number and others an array
|
96 |
+
def fun(x):
|
97 |
+
return (x[0] - 1)**2 + (x[1] - 2.5)**2
|
98 |
+
|
99 |
+
def fmin(x):
|
100 |
+
return fun(x) - 1
|
101 |
+
|
102 |
+
def cons1(x):
|
103 |
+
a = np.array([[1, -2, 2], [-1, -2, 6], [-1, 2, 2]])
|
104 |
+
return np.array([a[i, 0] * x[0] + a[i, 1] * x[1] +
|
105 |
+
a[i, 2] for i in range(len(a))])
|
106 |
+
|
107 |
+
def cons2(x):
|
108 |
+
return x # identity, acts as bounds x > 0
|
109 |
+
|
110 |
+
x0 = np.array([2, 0])
|
111 |
+
cons_list = [fun, cons1, cons2]
|
112 |
+
|
113 |
+
xsol = [1.4, 1.7]
|
114 |
+
fsol = 0.8
|
115 |
+
|
116 |
+
# testing fmin_cobyla
|
117 |
+
sol = fmin_cobyla(fun, x0, cons_list, rhoend=1e-5)
|
118 |
+
assert_allclose(sol, xsol, atol=1e-4)
|
119 |
+
|
120 |
+
sol = fmin_cobyla(fun, x0, fmin, rhoend=1e-5)
|
121 |
+
assert_allclose(fun(sol), 1, atol=1e-4)
|
122 |
+
|
123 |
+
# testing minimize
|
124 |
+
constraints = [{'type': 'ineq', 'fun': cons} for cons in cons_list]
|
125 |
+
sol = minimize(fun, x0, constraints=constraints, tol=1e-5)
|
126 |
+
assert_allclose(sol.x, xsol, atol=1e-4)
|
127 |
+
assert_(sol.success, sol.message)
|
128 |
+
assert_allclose(sol.fun, fsol, atol=1e-4)
|
129 |
+
|
130 |
+
constraints = {'type': 'ineq', 'fun': fmin}
|
131 |
+
sol = minimize(fun, x0, constraints=constraints, tol=1e-5)
|
132 |
+
assert_allclose(sol.fun, 1, atol=1e-4)
|
133 |
+
|
134 |
+
|
135 |
+
class TestBounds:
|
136 |
+
# Test cobyla support for bounds (only when used via `minimize`)
|
137 |
+
# Invalid bounds is tested in
|
138 |
+
# test_optimize.TestOptimizeSimple.test_minimize_invalid_bounds
|
139 |
+
|
140 |
+
def test_basic(self):
|
141 |
+
def f(x):
|
142 |
+
return np.sum(x**2)
|
143 |
+
|
144 |
+
lb = [-1, None, 1, None, -0.5]
|
145 |
+
ub = [-0.5, -0.5, None, None, -0.5]
|
146 |
+
bounds = [(a, b) for a, b in zip(lb, ub)]
|
147 |
+
# these are converted to Bounds internally
|
148 |
+
|
149 |
+
res = minimize(f, x0=[1, 2, 3, 4, 5], method='cobyla', bounds=bounds)
|
150 |
+
ref = [-0.5, -0.5, 1, 0, -0.5]
|
151 |
+
assert res.success
|
152 |
+
assert_allclose(res.x, ref, atol=1e-3)
|
153 |
+
|
154 |
+
def test_unbounded(self):
|
155 |
+
def f(x):
|
156 |
+
return np.sum(x**2)
|
157 |
+
|
158 |
+
bounds = Bounds([-np.inf, -np.inf], [np.inf, np.inf])
|
159 |
+
res = minimize(f, x0=[1, 2], method='cobyla', bounds=bounds)
|
160 |
+
assert res.success
|
161 |
+
assert_allclose(res.x, 0, atol=1e-3)
|
162 |
+
|
163 |
+
bounds = Bounds([1, -np.inf], [np.inf, np.inf])
|
164 |
+
res = minimize(f, x0=[1, 2], method='cobyla', bounds=bounds)
|
165 |
+
assert res.success
|
166 |
+
assert_allclose(res.x, [1, 0], atol=1e-3)
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/tests/test_constraint_conversion.py
ADDED
@@ -0,0 +1,274 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Unit test for constraint conversion
|
3 |
+
"""
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
from numpy.testing import (assert_array_almost_equal,
|
7 |
+
assert_allclose, assert_warns, suppress_warnings)
|
8 |
+
import pytest
|
9 |
+
from scipy.optimize import (NonlinearConstraint, LinearConstraint,
|
10 |
+
OptimizeWarning, minimize, BFGS)
|
11 |
+
from .test_minimize_constrained import (Maratos, HyperbolicIneq, Rosenbrock,
|
12 |
+
IneqRosenbrock, EqIneqRosenbrock,
|
13 |
+
BoundedRosenbrock, Elec)
|
14 |
+
|
15 |
+
|
16 |
+
class TestOldToNew:
|
17 |
+
x0 = (2, 0)
|
18 |
+
bnds = ((0, None), (0, None))
|
19 |
+
method = "trust-constr"
|
20 |
+
|
21 |
+
def test_constraint_dictionary_1(self):
|
22 |
+
def fun(x):
|
23 |
+
return (x[0] - 1) ** 2 + (x[1] - 2.5) ** 2
|
24 |
+
cons = ({'type': 'ineq', 'fun': lambda x: x[0] - 2 * x[1] + 2},
|
25 |
+
{'type': 'ineq', 'fun': lambda x: -x[0] - 2 * x[1] + 6},
|
26 |
+
{'type': 'ineq', 'fun': lambda x: -x[0] + 2 * x[1] + 2})
|
27 |
+
|
28 |
+
with suppress_warnings() as sup:
|
29 |
+
sup.filter(UserWarning, "delta_grad == 0.0")
|
30 |
+
res = minimize(fun, self.x0, method=self.method,
|
31 |
+
bounds=self.bnds, constraints=cons)
|
32 |
+
assert_allclose(res.x, [1.4, 1.7], rtol=1e-4)
|
33 |
+
assert_allclose(res.fun, 0.8, rtol=1e-4)
|
34 |
+
|
35 |
+
def test_constraint_dictionary_2(self):
|
36 |
+
def fun(x):
|
37 |
+
return (x[0] - 1) ** 2 + (x[1] - 2.5) ** 2
|
38 |
+
cons = {'type': 'eq',
|
39 |
+
'fun': lambda x, p1, p2: p1*x[0] - p2*x[1],
|
40 |
+
'args': (1, 1.1),
|
41 |
+
'jac': lambda x, p1, p2: np.array([[p1, -p2]])}
|
42 |
+
with suppress_warnings() as sup:
|
43 |
+
sup.filter(UserWarning, "delta_grad == 0.0")
|
44 |
+
res = minimize(fun, self.x0, method=self.method,
|
45 |
+
bounds=self.bnds, constraints=cons)
|
46 |
+
assert_allclose(res.x, [1.7918552, 1.62895927])
|
47 |
+
assert_allclose(res.fun, 1.3857466063348418)
|
48 |
+
|
49 |
+
def test_constraint_dictionary_3(self):
|
50 |
+
def fun(x):
|
51 |
+
return (x[0] - 1) ** 2 + (x[1] - 2.5) ** 2
|
52 |
+
cons = [{'type': 'ineq', 'fun': lambda x: x[0] - 2 * x[1] + 2},
|
53 |
+
NonlinearConstraint(lambda x: x[0] - x[1], 0, 0)]
|
54 |
+
|
55 |
+
with suppress_warnings() as sup:
|
56 |
+
sup.filter(UserWarning, "delta_grad == 0.0")
|
57 |
+
res = minimize(fun, self.x0, method=self.method,
|
58 |
+
bounds=self.bnds, constraints=cons)
|
59 |
+
assert_allclose(res.x, [1.75, 1.75], rtol=1e-4)
|
60 |
+
assert_allclose(res.fun, 1.125, rtol=1e-4)
|
61 |
+
|
62 |
+
|
63 |
+
class TestNewToOld:
|
64 |
+
|
65 |
+
def test_multiple_constraint_objects(self):
|
66 |
+
def fun(x):
|
67 |
+
return (x[0] - 1) ** 2 + (x[1] - 2.5) ** 2 + (x[2] - 0.75) ** 2
|
68 |
+
x0 = [2, 0, 1]
|
69 |
+
coni = [] # only inequality constraints (can use cobyla)
|
70 |
+
methods = ["slsqp", "cobyla", "trust-constr"]
|
71 |
+
|
72 |
+
# mixed old and new
|
73 |
+
coni.append([{'type': 'ineq', 'fun': lambda x: x[0] - 2 * x[1] + 2},
|
74 |
+
NonlinearConstraint(lambda x: x[0] - x[1], -1, 1)])
|
75 |
+
|
76 |
+
coni.append([LinearConstraint([1, -2, 0], -2, np.inf),
|
77 |
+
NonlinearConstraint(lambda x: x[0] - x[1], -1, 1)])
|
78 |
+
|
79 |
+
coni.append([NonlinearConstraint(lambda x: x[0] - 2 * x[1] + 2, 0, np.inf),
|
80 |
+
NonlinearConstraint(lambda x: x[0] - x[1], -1, 1)])
|
81 |
+
|
82 |
+
for con in coni:
|
83 |
+
funs = {}
|
84 |
+
for method in methods:
|
85 |
+
with suppress_warnings() as sup:
|
86 |
+
sup.filter(UserWarning)
|
87 |
+
result = minimize(fun, x0, method=method, constraints=con)
|
88 |
+
funs[method] = result.fun
|
89 |
+
assert_allclose(funs['slsqp'], funs['trust-constr'], rtol=1e-4)
|
90 |
+
assert_allclose(funs['cobyla'], funs['trust-constr'], rtol=1e-4)
|
91 |
+
|
92 |
+
def test_individual_constraint_objects(self):
|
93 |
+
def fun(x):
|
94 |
+
return (x[0] - 1) ** 2 + (x[1] - 2.5) ** 2 + (x[2] - 0.75) ** 2
|
95 |
+
x0 = [2, 0, 1]
|
96 |
+
|
97 |
+
cone = [] # with equality constraints (can't use cobyla)
|
98 |
+
coni = [] # only inequality constraints (can use cobyla)
|
99 |
+
methods = ["slsqp", "cobyla", "trust-constr"]
|
100 |
+
|
101 |
+
# nonstandard data types for constraint equality bounds
|
102 |
+
cone.append(NonlinearConstraint(lambda x: x[0] - x[1], 1, 1))
|
103 |
+
cone.append(NonlinearConstraint(lambda x: x[0] - x[1], [1.21], [1.21]))
|
104 |
+
cone.append(NonlinearConstraint(lambda x: x[0] - x[1],
|
105 |
+
1.21, np.array([1.21])))
|
106 |
+
|
107 |
+
# multiple equalities
|
108 |
+
cone.append(NonlinearConstraint(
|
109 |
+
lambda x: [x[0] - x[1], x[1] - x[2]],
|
110 |
+
1.21, 1.21)) # two same equalities
|
111 |
+
cone.append(NonlinearConstraint(
|
112 |
+
lambda x: [x[0] - x[1], x[1] - x[2]],
|
113 |
+
[1.21, 1.4], [1.21, 1.4])) # two different equalities
|
114 |
+
cone.append(NonlinearConstraint(
|
115 |
+
lambda x: [x[0] - x[1], x[1] - x[2]],
|
116 |
+
[1.21, 1.21], 1.21)) # equality specified two ways
|
117 |
+
cone.append(NonlinearConstraint(
|
118 |
+
lambda x: [x[0] - x[1], x[1] - x[2]],
|
119 |
+
[1.21, -np.inf], [1.21, np.inf])) # equality + unbounded
|
120 |
+
|
121 |
+
# nonstandard data types for constraint inequality bounds
|
122 |
+
coni.append(NonlinearConstraint(lambda x: x[0] - x[1], 1.21, np.inf))
|
123 |
+
coni.append(NonlinearConstraint(lambda x: x[0] - x[1], [1.21], np.inf))
|
124 |
+
coni.append(NonlinearConstraint(lambda x: x[0] - x[1],
|
125 |
+
1.21, np.array([np.inf])))
|
126 |
+
coni.append(NonlinearConstraint(lambda x: x[0] - x[1], -np.inf, -3))
|
127 |
+
coni.append(NonlinearConstraint(lambda x: x[0] - x[1],
|
128 |
+
np.array(-np.inf), -3))
|
129 |
+
|
130 |
+
# multiple inequalities/equalities
|
131 |
+
coni.append(NonlinearConstraint(
|
132 |
+
lambda x: [x[0] - x[1], x[1] - x[2]],
|
133 |
+
1.21, np.inf)) # two same inequalities
|
134 |
+
cone.append(NonlinearConstraint(
|
135 |
+
lambda x: [x[0] - x[1], x[1] - x[2]],
|
136 |
+
[1.21, -np.inf], [1.21, 1.4])) # mixed equality/inequality
|
137 |
+
coni.append(NonlinearConstraint(
|
138 |
+
lambda x: [x[0] - x[1], x[1] - x[2]],
|
139 |
+
[1.1, .8], [1.2, 1.4])) # bounded above and below
|
140 |
+
coni.append(NonlinearConstraint(
|
141 |
+
lambda x: [x[0] - x[1], x[1] - x[2]],
|
142 |
+
[-1.2, -1.4], [-1.1, -.8])) # - bounded above and below
|
143 |
+
|
144 |
+
# quick check of LinearConstraint class (very little new code to test)
|
145 |
+
cone.append(LinearConstraint([1, -1, 0], 1.21, 1.21))
|
146 |
+
cone.append(LinearConstraint([[1, -1, 0], [0, 1, -1]], 1.21, 1.21))
|
147 |
+
cone.append(LinearConstraint([[1, -1, 0], [0, 1, -1]],
|
148 |
+
[1.21, -np.inf], [1.21, 1.4]))
|
149 |
+
|
150 |
+
for con in coni:
|
151 |
+
funs = {}
|
152 |
+
for method in methods:
|
153 |
+
with suppress_warnings() as sup:
|
154 |
+
sup.filter(UserWarning)
|
155 |
+
result = minimize(fun, x0, method=method, constraints=con)
|
156 |
+
funs[method] = result.fun
|
157 |
+
assert_allclose(funs['slsqp'], funs['trust-constr'], rtol=1e-3)
|
158 |
+
assert_allclose(funs['cobyla'], funs['trust-constr'], rtol=1e-3)
|
159 |
+
|
160 |
+
for con in cone:
|
161 |
+
funs = {}
|
162 |
+
for method in methods[::2]: # skip cobyla
|
163 |
+
with suppress_warnings() as sup:
|
164 |
+
sup.filter(UserWarning)
|
165 |
+
result = minimize(fun, x0, method=method, constraints=con)
|
166 |
+
funs[method] = result.fun
|
167 |
+
assert_allclose(funs['slsqp'], funs['trust-constr'], rtol=1e-3)
|
168 |
+
|
169 |
+
|
170 |
+
class TestNewToOldSLSQP:
|
171 |
+
method = 'slsqp'
|
172 |
+
elec = Elec(n_electrons=2)
|
173 |
+
elec.x_opt = np.array([-0.58438468, 0.58438466, 0.73597047,
|
174 |
+
-0.73597044, 0.34180668, -0.34180667])
|
175 |
+
brock = BoundedRosenbrock()
|
176 |
+
brock.x_opt = [0, 0]
|
177 |
+
list_of_problems = [Maratos(),
|
178 |
+
HyperbolicIneq(),
|
179 |
+
Rosenbrock(),
|
180 |
+
IneqRosenbrock(),
|
181 |
+
EqIneqRosenbrock(),
|
182 |
+
elec,
|
183 |
+
brock
|
184 |
+
]
|
185 |
+
|
186 |
+
def test_list_of_problems(self):
|
187 |
+
|
188 |
+
for prob in self.list_of_problems:
|
189 |
+
|
190 |
+
with suppress_warnings() as sup:
|
191 |
+
sup.filter(UserWarning)
|
192 |
+
result = minimize(prob.fun, prob.x0,
|
193 |
+
method=self.method,
|
194 |
+
bounds=prob.bounds,
|
195 |
+
constraints=prob.constr)
|
196 |
+
|
197 |
+
assert_array_almost_equal(result.x, prob.x_opt, decimal=3)
|
198 |
+
|
199 |
+
def test_warn_mixed_constraints(self):
|
200 |
+
# warns about inefficiency of mixed equality/inequality constraints
|
201 |
+
def fun(x):
|
202 |
+
return (x[0] - 1) ** 2 + (x[1] - 2.5) ** 2 + (x[2] - 0.75) ** 2
|
203 |
+
cons = NonlinearConstraint(lambda x: [x[0]**2 - x[1], x[1] - x[2]],
|
204 |
+
[1.1, .8], [1.1, 1.4])
|
205 |
+
bnds = ((0, None), (0, None), (0, None))
|
206 |
+
with suppress_warnings() as sup:
|
207 |
+
sup.filter(UserWarning, "delta_grad == 0.0")
|
208 |
+
assert_warns(OptimizeWarning, minimize, fun, (2, 0, 1),
|
209 |
+
method=self.method, bounds=bnds, constraints=cons)
|
210 |
+
|
211 |
+
def test_warn_ignored_options(self):
|
212 |
+
# warns about constraint options being ignored
|
213 |
+
def fun(x):
|
214 |
+
return (x[0] - 1) ** 2 + (x[1] - 2.5) ** 2 + (x[2] - 0.75) ** 2
|
215 |
+
x0 = (2, 0, 1)
|
216 |
+
|
217 |
+
if self.method == "slsqp":
|
218 |
+
bnds = ((0, None), (0, None), (0, None))
|
219 |
+
else:
|
220 |
+
bnds = None
|
221 |
+
|
222 |
+
cons = NonlinearConstraint(lambda x: x[0], 2, np.inf)
|
223 |
+
res = minimize(fun, x0, method=self.method,
|
224 |
+
bounds=bnds, constraints=cons)
|
225 |
+
# no warnings without constraint options
|
226 |
+
assert_allclose(res.fun, 1)
|
227 |
+
|
228 |
+
cons = LinearConstraint([1, 0, 0], 2, np.inf)
|
229 |
+
res = minimize(fun, x0, method=self.method,
|
230 |
+
bounds=bnds, constraints=cons)
|
231 |
+
# no warnings without constraint options
|
232 |
+
assert_allclose(res.fun, 1)
|
233 |
+
|
234 |
+
cons = []
|
235 |
+
cons.append(NonlinearConstraint(lambda x: x[0]**2, 2, np.inf,
|
236 |
+
keep_feasible=True))
|
237 |
+
cons.append(NonlinearConstraint(lambda x: x[0]**2, 2, np.inf,
|
238 |
+
hess=BFGS()))
|
239 |
+
cons.append(NonlinearConstraint(lambda x: x[0]**2, 2, np.inf,
|
240 |
+
finite_diff_jac_sparsity=42))
|
241 |
+
cons.append(NonlinearConstraint(lambda x: x[0]**2, 2, np.inf,
|
242 |
+
finite_diff_rel_step=42))
|
243 |
+
cons.append(LinearConstraint([1, 0, 0], 2, np.inf,
|
244 |
+
keep_feasible=True))
|
245 |
+
for con in cons:
|
246 |
+
assert_warns(OptimizeWarning, minimize, fun, x0,
|
247 |
+
method=self.method, bounds=bnds, constraints=cons)
|
248 |
+
|
249 |
+
|
250 |
+
class TestNewToOldCobyla:
|
251 |
+
method = 'cobyla'
|
252 |
+
|
253 |
+
list_of_problems = [
|
254 |
+
Elec(n_electrons=2),
|
255 |
+
Elec(n_electrons=4),
|
256 |
+
]
|
257 |
+
|
258 |
+
@pytest.mark.slow
|
259 |
+
def test_list_of_problems(self):
|
260 |
+
|
261 |
+
for prob in self.list_of_problems:
|
262 |
+
|
263 |
+
with suppress_warnings() as sup:
|
264 |
+
sup.filter(UserWarning)
|
265 |
+
truth = minimize(prob.fun, prob.x0,
|
266 |
+
method='trust-constr',
|
267 |
+
bounds=prob.bounds,
|
268 |
+
constraints=prob.constr)
|
269 |
+
result = minimize(prob.fun, prob.x0,
|
270 |
+
method=self.method,
|
271 |
+
bounds=prob.bounds,
|
272 |
+
constraints=prob.constr)
|
273 |
+
|
274 |
+
assert_allclose(result.fun, truth.fun, rtol=1e-3)
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/tests/test_constraints.py
ADDED
@@ -0,0 +1,255 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pytest
|
2 |
+
import numpy as np
|
3 |
+
from numpy.testing import TestCase, assert_array_equal
|
4 |
+
import scipy.sparse as sps
|
5 |
+
from scipy.optimize._constraints import (
|
6 |
+
Bounds, LinearConstraint, NonlinearConstraint, PreparedConstraint,
|
7 |
+
new_bounds_to_old, old_bound_to_new, strict_bounds)
|
8 |
+
|
9 |
+
|
10 |
+
class TestStrictBounds(TestCase):
|
11 |
+
def test_scalarvalue_unique_enforce_feasibility(self):
|
12 |
+
m = 3
|
13 |
+
lb = 2
|
14 |
+
ub = 4
|
15 |
+
enforce_feasibility = False
|
16 |
+
strict_lb, strict_ub = strict_bounds(lb, ub,
|
17 |
+
enforce_feasibility,
|
18 |
+
m)
|
19 |
+
assert_array_equal(strict_lb, [-np.inf, -np.inf, -np.inf])
|
20 |
+
assert_array_equal(strict_ub, [np.inf, np.inf, np.inf])
|
21 |
+
|
22 |
+
enforce_feasibility = True
|
23 |
+
strict_lb, strict_ub = strict_bounds(lb, ub,
|
24 |
+
enforce_feasibility,
|
25 |
+
m)
|
26 |
+
assert_array_equal(strict_lb, [2, 2, 2])
|
27 |
+
assert_array_equal(strict_ub, [4, 4, 4])
|
28 |
+
|
29 |
+
def test_vectorvalue_unique_enforce_feasibility(self):
|
30 |
+
m = 3
|
31 |
+
lb = [1, 2, 3]
|
32 |
+
ub = [4, 5, 6]
|
33 |
+
enforce_feasibility = False
|
34 |
+
strict_lb, strict_ub = strict_bounds(lb, ub,
|
35 |
+
enforce_feasibility,
|
36 |
+
m)
|
37 |
+
assert_array_equal(strict_lb, [-np.inf, -np.inf, -np.inf])
|
38 |
+
assert_array_equal(strict_ub, [np.inf, np.inf, np.inf])
|
39 |
+
|
40 |
+
enforce_feasibility = True
|
41 |
+
strict_lb, strict_ub = strict_bounds(lb, ub,
|
42 |
+
enforce_feasibility,
|
43 |
+
m)
|
44 |
+
assert_array_equal(strict_lb, [1, 2, 3])
|
45 |
+
assert_array_equal(strict_ub, [4, 5, 6])
|
46 |
+
|
47 |
+
def test_scalarvalue_vector_enforce_feasibility(self):
|
48 |
+
m = 3
|
49 |
+
lb = 2
|
50 |
+
ub = 4
|
51 |
+
enforce_feasibility = [False, True, False]
|
52 |
+
strict_lb, strict_ub = strict_bounds(lb, ub,
|
53 |
+
enforce_feasibility,
|
54 |
+
m)
|
55 |
+
assert_array_equal(strict_lb, [-np.inf, 2, -np.inf])
|
56 |
+
assert_array_equal(strict_ub, [np.inf, 4, np.inf])
|
57 |
+
|
58 |
+
def test_vectorvalue_vector_enforce_feasibility(self):
|
59 |
+
m = 3
|
60 |
+
lb = [1, 2, 3]
|
61 |
+
ub = [4, 6, np.inf]
|
62 |
+
enforce_feasibility = [True, False, True]
|
63 |
+
strict_lb, strict_ub = strict_bounds(lb, ub,
|
64 |
+
enforce_feasibility,
|
65 |
+
m)
|
66 |
+
assert_array_equal(strict_lb, [1, -np.inf, 3])
|
67 |
+
assert_array_equal(strict_ub, [4, np.inf, np.inf])
|
68 |
+
|
69 |
+
|
70 |
+
def test_prepare_constraint_infeasible_x0():
|
71 |
+
lb = np.array([0, 20, 30])
|
72 |
+
ub = np.array([0.5, np.inf, 70])
|
73 |
+
x0 = np.array([1, 2, 3])
|
74 |
+
enforce_feasibility = np.array([False, True, True], dtype=bool)
|
75 |
+
bounds = Bounds(lb, ub, enforce_feasibility)
|
76 |
+
pytest.raises(ValueError, PreparedConstraint, bounds, x0)
|
77 |
+
|
78 |
+
pc = PreparedConstraint(Bounds(lb, ub), [1, 2, 3])
|
79 |
+
assert (pc.violation([1, 2, 3]) > 0).any()
|
80 |
+
assert (pc.violation([0.25, 21, 31]) == 0).all()
|
81 |
+
|
82 |
+
x0 = np.array([1, 2, 3, 4])
|
83 |
+
A = np.array([[1, 2, 3, 4], [5, 0, 0, 6], [7, 0, 8, 0]])
|
84 |
+
enforce_feasibility = np.array([True, True, True], dtype=bool)
|
85 |
+
linear = LinearConstraint(A, -np.inf, 0, enforce_feasibility)
|
86 |
+
pytest.raises(ValueError, PreparedConstraint, linear, x0)
|
87 |
+
|
88 |
+
pc = PreparedConstraint(LinearConstraint(A, -np.inf, 0),
|
89 |
+
[1, 2, 3, 4])
|
90 |
+
assert (pc.violation([1, 2, 3, 4]) > 0).any()
|
91 |
+
assert (pc.violation([-10, 2, -10, 4]) == 0).all()
|
92 |
+
|
93 |
+
def fun(x):
|
94 |
+
return A.dot(x)
|
95 |
+
|
96 |
+
def jac(x):
|
97 |
+
return A
|
98 |
+
|
99 |
+
def hess(x, v):
|
100 |
+
return sps.csr_matrix((4, 4))
|
101 |
+
|
102 |
+
nonlinear = NonlinearConstraint(fun, -np.inf, 0, jac, hess,
|
103 |
+
enforce_feasibility)
|
104 |
+
pytest.raises(ValueError, PreparedConstraint, nonlinear, x0)
|
105 |
+
|
106 |
+
pc = PreparedConstraint(nonlinear, [-10, 2, -10, 4])
|
107 |
+
assert (pc.violation([1, 2, 3, 4]) > 0).any()
|
108 |
+
assert (pc.violation([-10, 2, -10, 4]) == 0).all()
|
109 |
+
|
110 |
+
|
111 |
+
def test_violation():
|
112 |
+
def cons_f(x):
|
113 |
+
return np.array([x[0] ** 2 + x[1], x[0] ** 2 - x[1]])
|
114 |
+
|
115 |
+
nlc = NonlinearConstraint(cons_f, [-1, -0.8500], [2, 2])
|
116 |
+
pc = PreparedConstraint(nlc, [0.5, 1])
|
117 |
+
|
118 |
+
assert_array_equal(pc.violation([0.5, 1]), [0., 0.])
|
119 |
+
|
120 |
+
np.testing.assert_almost_equal(pc.violation([0.5, 1.2]), [0., 0.1])
|
121 |
+
|
122 |
+
np.testing.assert_almost_equal(pc.violation([1.2, 1.2]), [0.64, 0])
|
123 |
+
|
124 |
+
np.testing.assert_almost_equal(pc.violation([0.1, -1.2]), [0.19, 0])
|
125 |
+
|
126 |
+
np.testing.assert_almost_equal(pc.violation([0.1, 2]), [0.01, 1.14])
|
127 |
+
|
128 |
+
|
129 |
+
def test_new_bounds_to_old():
|
130 |
+
lb = np.array([-np.inf, 2, 3])
|
131 |
+
ub = np.array([3, np.inf, 10])
|
132 |
+
|
133 |
+
bounds = [(None, 3), (2, None), (3, 10)]
|
134 |
+
assert_array_equal(new_bounds_to_old(lb, ub, 3), bounds)
|
135 |
+
|
136 |
+
bounds_single_lb = [(-1, 3), (-1, None), (-1, 10)]
|
137 |
+
assert_array_equal(new_bounds_to_old(-1, ub, 3), bounds_single_lb)
|
138 |
+
|
139 |
+
bounds_no_lb = [(None, 3), (None, None), (None, 10)]
|
140 |
+
assert_array_equal(new_bounds_to_old(-np.inf, ub, 3), bounds_no_lb)
|
141 |
+
|
142 |
+
bounds_single_ub = [(None, 20), (2, 20), (3, 20)]
|
143 |
+
assert_array_equal(new_bounds_to_old(lb, 20, 3), bounds_single_ub)
|
144 |
+
|
145 |
+
bounds_no_ub = [(None, None), (2, None), (3, None)]
|
146 |
+
assert_array_equal(new_bounds_to_old(lb, np.inf, 3), bounds_no_ub)
|
147 |
+
|
148 |
+
bounds_single_both = [(1, 2), (1, 2), (1, 2)]
|
149 |
+
assert_array_equal(new_bounds_to_old(1, 2, 3), bounds_single_both)
|
150 |
+
|
151 |
+
bounds_no_both = [(None, None), (None, None), (None, None)]
|
152 |
+
assert_array_equal(new_bounds_to_old(-np.inf, np.inf, 3), bounds_no_both)
|
153 |
+
|
154 |
+
|
155 |
+
def test_old_bounds_to_new():
|
156 |
+
bounds = ([1, 2], (None, 3), (-1, None))
|
157 |
+
lb_true = np.array([1, -np.inf, -1])
|
158 |
+
ub_true = np.array([2, 3, np.inf])
|
159 |
+
|
160 |
+
lb, ub = old_bound_to_new(bounds)
|
161 |
+
assert_array_equal(lb, lb_true)
|
162 |
+
assert_array_equal(ub, ub_true)
|
163 |
+
|
164 |
+
bounds = [(-np.inf, np.inf), (np.array([1]), np.array([1]))]
|
165 |
+
lb, ub = old_bound_to_new(bounds)
|
166 |
+
|
167 |
+
assert_array_equal(lb, [-np.inf, 1])
|
168 |
+
assert_array_equal(ub, [np.inf, 1])
|
169 |
+
|
170 |
+
|
171 |
+
class TestBounds:
|
172 |
+
def test_repr(self):
|
173 |
+
# so that eval works
|
174 |
+
from numpy import array, inf # noqa: F401
|
175 |
+
for args in (
|
176 |
+
(-1.0, 5.0),
|
177 |
+
(-1.0, np.inf, True),
|
178 |
+
(np.array([1.0, -np.inf]), np.array([2.0, np.inf])),
|
179 |
+
(np.array([1.0, -np.inf]), np.array([2.0, np.inf]),
|
180 |
+
np.array([True, False])),
|
181 |
+
):
|
182 |
+
bounds = Bounds(*args)
|
183 |
+
bounds2 = eval(repr(Bounds(*args)))
|
184 |
+
assert_array_equal(bounds.lb, bounds2.lb)
|
185 |
+
assert_array_equal(bounds.ub, bounds2.ub)
|
186 |
+
assert_array_equal(bounds.keep_feasible, bounds2.keep_feasible)
|
187 |
+
|
188 |
+
def test_array(self):
|
189 |
+
# gh13501
|
190 |
+
b = Bounds(lb=[0.0, 0.0], ub=[1.0, 1.0])
|
191 |
+
assert isinstance(b.lb, np.ndarray)
|
192 |
+
assert isinstance(b.ub, np.ndarray)
|
193 |
+
|
194 |
+
def test_defaults(self):
|
195 |
+
b1 = Bounds()
|
196 |
+
b2 = Bounds(np.asarray(-np.inf), np.asarray(np.inf))
|
197 |
+
assert b1.lb == b2.lb
|
198 |
+
assert b1.ub == b2.ub
|
199 |
+
|
200 |
+
def test_input_validation(self):
|
201 |
+
message = "Lower and upper bounds must be dense arrays."
|
202 |
+
with pytest.raises(ValueError, match=message):
|
203 |
+
Bounds(sps.coo_array([1, 2]), [1, 2])
|
204 |
+
with pytest.raises(ValueError, match=message):
|
205 |
+
Bounds([1, 2], sps.coo_array([1, 2]))
|
206 |
+
|
207 |
+
message = "`keep_feasible` must be a dense array."
|
208 |
+
with pytest.raises(ValueError, match=message):
|
209 |
+
Bounds([1, 2], [1, 2], keep_feasible=sps.coo_array([True, True]))
|
210 |
+
|
211 |
+
message = "`lb`, `ub`, and `keep_feasible` must be broadcastable."
|
212 |
+
with pytest.raises(ValueError, match=message):
|
213 |
+
Bounds([1, 2], [1, 2, 3])
|
214 |
+
|
215 |
+
def test_residual(self):
|
216 |
+
bounds = Bounds(-2, 4)
|
217 |
+
x0 = [-1, 2]
|
218 |
+
np.testing.assert_allclose(bounds.residual(x0), ([1, 4], [5, 2]))
|
219 |
+
|
220 |
+
|
221 |
+
class TestLinearConstraint:
|
222 |
+
def test_defaults(self):
|
223 |
+
A = np.eye(4)
|
224 |
+
lc = LinearConstraint(A)
|
225 |
+
lc2 = LinearConstraint(A, -np.inf, np.inf)
|
226 |
+
assert_array_equal(lc.lb, lc2.lb)
|
227 |
+
assert_array_equal(lc.ub, lc2.ub)
|
228 |
+
|
229 |
+
def test_input_validation(self):
|
230 |
+
A = np.eye(4)
|
231 |
+
message = "`lb`, `ub`, and `keep_feasible` must be broadcastable"
|
232 |
+
with pytest.raises(ValueError, match=message):
|
233 |
+
LinearConstraint(A, [1, 2], [1, 2, 3])
|
234 |
+
|
235 |
+
message = "Constraint limits must be dense arrays"
|
236 |
+
with pytest.raises(ValueError, match=message):
|
237 |
+
LinearConstraint(A, sps.coo_array([1, 2]), [2, 3])
|
238 |
+
with pytest.raises(ValueError, match=message):
|
239 |
+
LinearConstraint(A, [1, 2], sps.coo_array([2, 3]))
|
240 |
+
|
241 |
+
message = "`keep_feasible` must be a dense array"
|
242 |
+
with pytest.raises(ValueError, match=message):
|
243 |
+
keep_feasible = sps.coo_array([True, True])
|
244 |
+
LinearConstraint(A, [1, 2], [2, 3], keep_feasible=keep_feasible)
|
245 |
+
|
246 |
+
A = np.empty((4, 3, 5))
|
247 |
+
message = "`A` must have exactly two dimensions."
|
248 |
+
with pytest.raises(ValueError, match=message):
|
249 |
+
LinearConstraint(A)
|
250 |
+
|
251 |
+
def test_residual(self):
|
252 |
+
A = np.eye(2)
|
253 |
+
lc = LinearConstraint(A, -2, 4)
|
254 |
+
x0 = [-1, 2]
|
255 |
+
np.testing.assert_allclose(lc.residual(x0), ([1, 4], [5, 2]))
|
env-llmeval/lib/python3.10/site-packages/scipy/optimize/tests/test_cython_optimize.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Test Cython optimize zeros API functions: ``bisect``, ``ridder``, ``brenth``,
|
3 |
+
and ``brentq`` in `scipy.optimize.cython_optimize`, by finding the roots of a
|
4 |
+
3rd order polynomial given a sequence of constant terms, ``a0``, and fixed 1st,
|
5 |
+
2nd, and 3rd order terms in ``args``.
|
6 |
+
|
7 |
+
.. math::
|
8 |
+
|
9 |
+
f(x, a0, args) = ((args[2]*x + args[1])*x + args[0])*x + a0
|
10 |
+
|
11 |
+
The 3rd order polynomial function is written in Cython and called in a Python
|
12 |
+
wrapper named after the zero function. See the private ``_zeros`` Cython module
|
13 |
+
in `scipy.optimize.cython_optimze` for more information.
|
14 |
+
"""
|
15 |
+
|
16 |
+
import numpy.testing as npt
|
17 |
+
from scipy.optimize.cython_optimize import _zeros
|
18 |
+
|
19 |
+
# CONSTANTS
|
20 |
+
# Solve x**3 - A0 = 0 for A0 = [2.0, 2.1, ..., 2.9].
|
21 |
+
# The ARGS have 3 elements just to show how this could be done for any cubic
|
22 |
+
# polynomial.
|
23 |
+
A0 = tuple(-2.0 - x/10.0 for x in range(10)) # constant term
|
24 |
+
ARGS = (0.0, 0.0, 1.0) # 1st, 2nd, and 3rd order terms
|
25 |
+
XLO, XHI = 0.0, 2.0 # first and second bounds of zeros functions
|
26 |
+
# absolute and relative tolerances and max iterations for zeros functions
|
27 |
+
XTOL, RTOL, MITR = 0.001, 0.001, 10
|
28 |
+
EXPECTED = [(-a0) ** (1.0/3.0) for a0 in A0]
|
29 |
+
# = [1.2599210498948732,
|
30 |
+
# 1.2805791649874942,
|
31 |
+
# 1.300591446851387,
|
32 |
+
# 1.3200061217959123,
|
33 |
+
# 1.338865900164339,
|
34 |
+
# 1.3572088082974532,
|
35 |
+
# 1.375068867074141,
|
36 |
+
# 1.3924766500838337,
|
37 |
+
# 1.4094597464129783,
|
38 |
+
# 1.4260431471424087]
|
39 |
+
|
40 |
+
|
41 |
+
# test bisect
|
42 |
+
def test_bisect():
|
43 |
+
npt.assert_allclose(
|
44 |
+
EXPECTED,
|
45 |
+
list(
|
46 |
+
_zeros.loop_example('bisect', A0, ARGS, XLO, XHI, XTOL, RTOL, MITR)
|
47 |
+
),
|
48 |
+
rtol=RTOL, atol=XTOL
|
49 |
+
)
|
50 |
+
|
51 |
+
|
52 |
+
# test ridder
|
53 |
+
def test_ridder():
|
54 |
+
npt.assert_allclose(
|
55 |
+
EXPECTED,
|
56 |
+
list(
|
57 |
+
_zeros.loop_example('ridder', A0, ARGS, XLO, XHI, XTOL, RTOL, MITR)
|
58 |
+
),
|
59 |
+
rtol=RTOL, atol=XTOL
|
60 |
+
)
|
61 |
+
|
62 |
+
|
63 |
+
# test brenth
|
64 |
+
def test_brenth():
|
65 |
+
npt.assert_allclose(
|
66 |
+
EXPECTED,
|
67 |
+
list(
|
68 |
+
_zeros.loop_example('brenth', A0, ARGS, XLO, XHI, XTOL, RTOL, MITR)
|
69 |
+
),
|
70 |
+
rtol=RTOL, atol=XTOL
|
71 |
+
)
|
72 |
+
|
73 |
+
|
74 |
+
# test brentq
|
75 |
+
def test_brentq():
|
76 |
+
npt.assert_allclose(
|
77 |
+
EXPECTED,
|
78 |
+
list(
|
79 |
+
_zeros.loop_example('brentq', A0, ARGS, XLO, XHI, XTOL, RTOL, MITR)
|
80 |
+
),
|
81 |
+
rtol=RTOL, atol=XTOL
|
82 |
+
)
|
83 |
+
|
84 |
+
|
85 |
+
# test brentq with full output
|
86 |
+
def test_brentq_full_output():
|
87 |
+
output = _zeros.full_output_example(
|
88 |
+
(A0[0],) + ARGS, XLO, XHI, XTOL, RTOL, MITR)
|
89 |
+
npt.assert_allclose(EXPECTED[0], output['root'], rtol=RTOL, atol=XTOL)
|
90 |
+
npt.assert_equal(6, output['iterations'])
|
91 |
+
npt.assert_equal(7, output['funcalls'])
|
92 |
+
npt.assert_equal(0, output['error_num'])
|