applied-ai-018 commited on
Commit
6377ca4
·
verified ·
1 Parent(s): 084d6b3

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/tests/__pycache__/test_graycode.cpython-310.pyc +0 -0
  2. llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/tests/__pycache__/test_group_constructs.cpython-310.pyc +0 -0
  3. llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/tests/__pycache__/test_homomorphisms.cpython-310.pyc +0 -0
  4. llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/tests/__pycache__/test_perm_groups.cpython-310.pyc +0 -0
  5. llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/tests/__pycache__/test_prufer.cpython-310.pyc +0 -0
  6. llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/tests/test_free_groups.py +215 -0
  7. llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/tests/test_generators.py +105 -0
  8. llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/tests/test_group_constructs.py +15 -0
  9. llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/tests/test_pc_groups.py +87 -0
  10. llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/tests/test_util.py +120 -0
  11. llmeval-env/lib/python3.10/site-packages/sympy/logic/algorithms/__pycache__/__init__.cpython-310.pyc +0 -0
  12. llmeval-env/lib/python3.10/site-packages/sympy/logic/algorithms/__pycache__/dpll.cpython-310.pyc +0 -0
  13. llmeval-env/lib/python3.10/site-packages/sympy/logic/algorithms/__pycache__/dpll2.cpython-310.pyc +0 -0
  14. llmeval-env/lib/python3.10/site-packages/sympy/logic/algorithms/__pycache__/minisat22_wrapper.cpython-310.pyc +0 -0
  15. llmeval-env/lib/python3.10/site-packages/sympy/logic/algorithms/__pycache__/pycosat_wrapper.cpython-310.pyc +0 -0
  16. llmeval-env/lib/python3.10/site-packages/sympy/logic/algorithms/pycosat_wrapper.py +41 -0
  17. llmeval-env/lib/python3.10/site-packages/sympy/series/__init__.py +23 -0
  18. llmeval-env/lib/python3.10/site-packages/sympy/series/__pycache__/__init__.cpython-310.pyc +0 -0
  19. llmeval-env/lib/python3.10/site-packages/sympy/series/__pycache__/acceleration.cpython-310.pyc +0 -0
  20. llmeval-env/lib/python3.10/site-packages/sympy/series/__pycache__/approximants.cpython-310.pyc +0 -0
  21. llmeval-env/lib/python3.10/site-packages/sympy/series/__pycache__/aseries.cpython-310.pyc +0 -0
  22. llmeval-env/lib/python3.10/site-packages/sympy/series/__pycache__/formal.cpython-310.pyc +0 -0
  23. llmeval-env/lib/python3.10/site-packages/sympy/series/__pycache__/fourier.cpython-310.pyc +0 -0
  24. llmeval-env/lib/python3.10/site-packages/sympy/series/__pycache__/gruntz.cpython-310.pyc +0 -0
  25. llmeval-env/lib/python3.10/site-packages/sympy/series/__pycache__/kauers.cpython-310.pyc +0 -0
  26. llmeval-env/lib/python3.10/site-packages/sympy/series/__pycache__/limits.cpython-310.pyc +0 -0
  27. llmeval-env/lib/python3.10/site-packages/sympy/series/__pycache__/limitseq.cpython-310.pyc +0 -0
  28. llmeval-env/lib/python3.10/site-packages/sympy/series/__pycache__/order.cpython-310.pyc +0 -0
  29. llmeval-env/lib/python3.10/site-packages/sympy/series/__pycache__/residues.cpython-310.pyc +0 -0
  30. llmeval-env/lib/python3.10/site-packages/sympy/series/__pycache__/sequences.cpython-310.pyc +0 -0
  31. llmeval-env/lib/python3.10/site-packages/sympy/series/__pycache__/series.cpython-310.pyc +0 -0
  32. llmeval-env/lib/python3.10/site-packages/sympy/series/__pycache__/series_class.cpython-310.pyc +0 -0
  33. llmeval-env/lib/python3.10/site-packages/sympy/series/approximants.py +103 -0
  34. llmeval-env/lib/python3.10/site-packages/sympy/series/aseries.py +10 -0
  35. llmeval-env/lib/python3.10/site-packages/sympy/series/benchmarks/__init__.py +0 -0
  36. llmeval-env/lib/python3.10/site-packages/sympy/series/benchmarks/__pycache__/__init__.cpython-310.pyc +0 -0
  37. llmeval-env/lib/python3.10/site-packages/sympy/series/benchmarks/__pycache__/bench_limit.cpython-310.pyc +0 -0
  38. llmeval-env/lib/python3.10/site-packages/sympy/series/benchmarks/__pycache__/bench_order.cpython-310.pyc +0 -0
  39. llmeval-env/lib/python3.10/site-packages/sympy/series/benchmarks/bench_limit.py +9 -0
  40. llmeval-env/lib/python3.10/site-packages/sympy/series/benchmarks/bench_order.py +10 -0
  41. llmeval-env/lib/python3.10/site-packages/sympy/series/kauers.py +51 -0
  42. llmeval-env/lib/python3.10/site-packages/sympy/series/order.py +517 -0
  43. llmeval-env/lib/python3.10/site-packages/sympy/series/residues.py +73 -0
  44. llmeval-env/lib/python3.10/site-packages/sympy/series/tests/__init__.py +0 -0
  45. llmeval-env/lib/python3.10/site-packages/sympy/series/tests/__pycache__/__init__.cpython-310.pyc +0 -0
  46. llmeval-env/lib/python3.10/site-packages/sympy/series/tests/__pycache__/test_approximants.cpython-310.pyc +0 -0
  47. llmeval-env/lib/python3.10/site-packages/sympy/series/tests/__pycache__/test_aseries.cpython-310.pyc +0 -0
  48. llmeval-env/lib/python3.10/site-packages/sympy/series/tests/__pycache__/test_demidovich.cpython-310.pyc +0 -0
  49. llmeval-env/lib/python3.10/site-packages/sympy/series/tests/__pycache__/test_formal.cpython-310.pyc +0 -0
  50. llmeval-env/lib/python3.10/site-packages/sympy/series/tests/__pycache__/test_fourier.cpython-310.pyc +0 -0
llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/tests/__pycache__/test_graycode.cpython-310.pyc ADDED
Binary file (3.41 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/tests/__pycache__/test_group_constructs.cpython-310.pyc ADDED
Binary file (731 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/tests/__pycache__/test_homomorphisms.cpython-310.pyc ADDED
Binary file (3.34 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/tests/__pycache__/test_perm_groups.cpython-310.pyc ADDED
Binary file (36.2 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/tests/__pycache__/test_prufer.cpython-310.pyc ADDED
Binary file (3.69 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/tests/test_free_groups.py ADDED
@@ -0,0 +1,215 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.combinatorics.free_groups import free_group, FreeGroup
2
+ from sympy.core import Symbol
3
+ from sympy.testing.pytest import raises
4
+ from sympy.core.numbers import oo
5
+
6
+ F, x, y, z = free_group("x, y, z")
7
+
8
+
9
+ def test_FreeGroup__init__():
10
+ x, y, z = map(Symbol, "xyz")
11
+
12
+ assert len(FreeGroup("x, y, z").generators) == 3
13
+ assert len(FreeGroup(x).generators) == 1
14
+ assert len(FreeGroup(("x", "y", "z"))) == 3
15
+ assert len(FreeGroup((x, y, z)).generators) == 3
16
+
17
+
18
+ def test_free_group():
19
+ G, a, b, c = free_group("a, b, c")
20
+ assert F.generators == (x, y, z)
21
+ assert x*z**2 in F
22
+ assert x in F
23
+ assert y*z**-1 in F
24
+ assert (y*z)**0 in F
25
+ assert a not in F
26
+ assert a**0 not in F
27
+ assert len(F) == 3
28
+ assert str(F) == '<free group on the generators (x, y, z)>'
29
+ assert not F == G
30
+ assert F.order() is oo
31
+ assert F.is_abelian == False
32
+ assert F.center() == {F.identity}
33
+
34
+ (e,) = free_group("")
35
+ assert e.order() == 1
36
+ assert e.generators == ()
37
+ assert e.elements == {e.identity}
38
+ assert e.is_abelian == True
39
+
40
+
41
+ def test_FreeGroup__hash__():
42
+ assert hash(F)
43
+
44
+
45
+ def test_FreeGroup__eq__():
46
+ assert free_group("x, y, z")[0] == free_group("x, y, z")[0]
47
+ assert free_group("x, y, z")[0] is free_group("x, y, z")[0]
48
+
49
+ assert free_group("x, y, z")[0] != free_group("a, x, y")[0]
50
+ assert free_group("x, y, z")[0] is not free_group("a, x, y")[0]
51
+
52
+ assert free_group("x, y")[0] != free_group("x, y, z")[0]
53
+ assert free_group("x, y")[0] is not free_group("x, y, z")[0]
54
+
55
+ assert free_group("x, y, z")[0] != free_group("x, y")[0]
56
+ assert free_group("x, y, z")[0] is not free_group("x, y")[0]
57
+
58
+
59
+ def test_FreeGroup__getitem__():
60
+ assert F[0:] == FreeGroup("x, y, z")
61
+ assert F[1:] == FreeGroup("y, z")
62
+ assert F[2:] == FreeGroup("z")
63
+
64
+
65
+ def test_FreeGroupElm__hash__():
66
+ assert hash(x*y*z)
67
+
68
+
69
+ def test_FreeGroupElm_copy():
70
+ f = x*y*z**3
71
+ g = f.copy()
72
+ h = x*y*z**7
73
+
74
+ assert f == g
75
+ assert f != h
76
+
77
+
78
+ def test_FreeGroupElm_inverse():
79
+ assert x.inverse() == x**-1
80
+ assert (x*y).inverse() == y**-1*x**-1
81
+ assert (y*x*y**-1).inverse() == y*x**-1*y**-1
82
+ assert (y**2*x**-1).inverse() == x*y**-2
83
+
84
+
85
+ def test_FreeGroupElm_type_error():
86
+ raises(TypeError, lambda: 2/x)
87
+ raises(TypeError, lambda: x**2 + y**2)
88
+ raises(TypeError, lambda: x/2)
89
+
90
+
91
+ def test_FreeGroupElm_methods():
92
+ assert (x**0).order() == 1
93
+ assert (y**2).order() is oo
94
+ assert (x**-1*y).commutator(x) == y**-1*x**-1*y*x
95
+ assert len(x**2*y**-1) == 3
96
+ assert len(x**-1*y**3*z) == 5
97
+
98
+
99
+ def test_FreeGroupElm_eliminate_word():
100
+ w = x**5*y*x**2*y**-4*x
101
+ assert w.eliminate_word( x, x**2 ) == x**10*y*x**4*y**-4*x**2
102
+ w3 = x**2*y**3*x**-1*y
103
+ assert w3.eliminate_word(x, x**2) == x**4*y**3*x**-2*y
104
+ assert w3.eliminate_word(x, y) == y**5
105
+ assert w3.eliminate_word(x, y**4) == y**8
106
+ assert w3.eliminate_word(y, x**-1) == x**-3
107
+ assert w3.eliminate_word(x, y*z) == y*z*y*z*y**3*z**-1
108
+ assert (y**-3).eliminate_word(y, x**-1*z**-1) == z*x*z*x*z*x
109
+ #assert w3.eliminate_word(x, y*x) == y*x*y*x**2*y*x*y*x*y*x*z**3
110
+ #assert w3.eliminate_word(x, x*y) == x*y*x**2*y*x*y*x*y*x*y*z**3
111
+
112
+
113
+ def test_FreeGroupElm_array_form():
114
+ assert (x*z).array_form == ((Symbol('x'), 1), (Symbol('z'), 1))
115
+ assert (x**2*z*y*x**-2).array_form == \
116
+ ((Symbol('x'), 2), (Symbol('z'), 1), (Symbol('y'), 1), (Symbol('x'), -2))
117
+ assert (x**-2*y**-1).array_form == ((Symbol('x'), -2), (Symbol('y'), -1))
118
+
119
+
120
+ def test_FreeGroupElm_letter_form():
121
+ assert (x**3).letter_form == (Symbol('x'), Symbol('x'), Symbol('x'))
122
+ assert (x**2*z**-2*x).letter_form == \
123
+ (Symbol('x'), Symbol('x'), -Symbol('z'), -Symbol('z'), Symbol('x'))
124
+
125
+
126
+ def test_FreeGroupElm_ext_rep():
127
+ assert (x**2*z**-2*x).ext_rep == \
128
+ (Symbol('x'), 2, Symbol('z'), -2, Symbol('x'), 1)
129
+ assert (x**-2*y**-1).ext_rep == (Symbol('x'), -2, Symbol('y'), -1)
130
+ assert (x*z).ext_rep == (Symbol('x'), 1, Symbol('z'), 1)
131
+
132
+
133
+ def test_FreeGroupElm__mul__pow__():
134
+ x1 = x.group.dtype(((Symbol('x'), 1),))
135
+ assert x**2 == x1*x
136
+
137
+ assert (x**2*y*x**-2)**4 == x**2*y**4*x**-2
138
+ assert (x**2)**2 == x**4
139
+ assert (x**-1)**-1 == x
140
+ assert (x**-1)**0 == F.identity
141
+ assert (y**2)**-2 == y**-4
142
+
143
+ assert x**2*x**-1 == x
144
+ assert x**2*y**2*y**-1 == x**2*y
145
+ assert x*x**-1 == F.identity
146
+
147
+ assert x/x == F.identity
148
+ assert x/x**2 == x**-1
149
+ assert (x**2*y)/(x**2*y**-1) == x**2*y**2*x**-2
150
+ assert (x**2*y)/(y**-1*x**2) == x**2*y*x**-2*y
151
+
152
+ assert x*(x**-1*y*z*y**-1) == y*z*y**-1
153
+ assert x**2*(x**-2*y**-1*z**2*y) == y**-1*z**2*y
154
+
155
+
156
+ def test_FreeGroupElm__len__():
157
+ assert len(x**5*y*x**2*y**-4*x) == 13
158
+ assert len(x**17) == 17
159
+ assert len(y**0) == 0
160
+
161
+
162
+ def test_FreeGroupElm_comparison():
163
+ assert not (x*y == y*x)
164
+ assert x**0 == y**0
165
+
166
+ assert x**2 < y**3
167
+ assert not x**3 < y**2
168
+ assert x*y < x**2*y
169
+ assert x**2*y**2 < y**4
170
+ assert not y**4 < y**-4
171
+ assert not y**4 < x**-4
172
+ assert y**-2 < y**2
173
+
174
+ assert x**2 <= y**2
175
+ assert x**2 <= x**2
176
+
177
+ assert not y*z > z*y
178
+ assert x > x**-1
179
+
180
+ assert not x**2 >= y**2
181
+
182
+
183
+ def test_FreeGroupElm_syllables():
184
+ w = x**5*y*x**2*y**-4*x
185
+ assert w.number_syllables() == 5
186
+ assert w.exponent_syllable(2) == 2
187
+ assert w.generator_syllable(3) == Symbol('y')
188
+ assert w.sub_syllables(1, 2) == y
189
+ assert w.sub_syllables(3, 3) == F.identity
190
+
191
+
192
+ def test_FreeGroup_exponents():
193
+ w1 = x**2*y**3
194
+ assert w1.exponent_sum(x) == 2
195
+ assert w1.exponent_sum(x**-1) == -2
196
+ assert w1.generator_count(x) == 2
197
+
198
+ w2 = x**2*y**4*x**-3
199
+ assert w2.exponent_sum(x) == -1
200
+ assert w2.generator_count(x) == 5
201
+
202
+
203
+ def test_FreeGroup_generators():
204
+ assert (x**2*y**4*z**-1).contains_generators() == {x, y, z}
205
+ assert (x**-1*y**3).contains_generators() == {x, y}
206
+
207
+
208
+ def test_FreeGroupElm_words():
209
+ w = x**5*y*x**2*y**-4*x
210
+ assert w.subword(2, 6) == x**3*y
211
+ assert w.subword(3, 2) == F.identity
212
+ assert w.subword(6, 10) == x**2*y**-2
213
+
214
+ assert w.substituted_word(0, 7, y**-1) == y**-1*x*y**-4*x
215
+ assert w.substituted_word(0, 7, y**2*x) == y**2*x**2*y**-4*x
llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/tests/test_generators.py ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.combinatorics.generators import symmetric, cyclic, alternating, \
2
+ dihedral, rubik
3
+ from sympy.combinatorics.permutations import Permutation
4
+ from sympy.testing.pytest import raises
5
+
6
+ def test_generators():
7
+
8
+ assert list(cyclic(6)) == [
9
+ Permutation([0, 1, 2, 3, 4, 5]),
10
+ Permutation([1, 2, 3, 4, 5, 0]),
11
+ Permutation([2, 3, 4, 5, 0, 1]),
12
+ Permutation([3, 4, 5, 0, 1, 2]),
13
+ Permutation([4, 5, 0, 1, 2, 3]),
14
+ Permutation([5, 0, 1, 2, 3, 4])]
15
+
16
+ assert list(cyclic(10)) == [
17
+ Permutation([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),
18
+ Permutation([1, 2, 3, 4, 5, 6, 7, 8, 9, 0]),
19
+ Permutation([2, 3, 4, 5, 6, 7, 8, 9, 0, 1]),
20
+ Permutation([3, 4, 5, 6, 7, 8, 9, 0, 1, 2]),
21
+ Permutation([4, 5, 6, 7, 8, 9, 0, 1, 2, 3]),
22
+ Permutation([5, 6, 7, 8, 9, 0, 1, 2, 3, 4]),
23
+ Permutation([6, 7, 8, 9, 0, 1, 2, 3, 4, 5]),
24
+ Permutation([7, 8, 9, 0, 1, 2, 3, 4, 5, 6]),
25
+ Permutation([8, 9, 0, 1, 2, 3, 4, 5, 6, 7]),
26
+ Permutation([9, 0, 1, 2, 3, 4, 5, 6, 7, 8])]
27
+
28
+ assert list(alternating(4)) == [
29
+ Permutation([0, 1, 2, 3]),
30
+ Permutation([0, 2, 3, 1]),
31
+ Permutation([0, 3, 1, 2]),
32
+ Permutation([1, 0, 3, 2]),
33
+ Permutation([1, 2, 0, 3]),
34
+ Permutation([1, 3, 2, 0]),
35
+ Permutation([2, 0, 1, 3]),
36
+ Permutation([2, 1, 3, 0]),
37
+ Permutation([2, 3, 0, 1]),
38
+ Permutation([3, 0, 2, 1]),
39
+ Permutation([3, 1, 0, 2]),
40
+ Permutation([3, 2, 1, 0])]
41
+
42
+ assert list(symmetric(3)) == [
43
+ Permutation([0, 1, 2]),
44
+ Permutation([0, 2, 1]),
45
+ Permutation([1, 0, 2]),
46
+ Permutation([1, 2, 0]),
47
+ Permutation([2, 0, 1]),
48
+ Permutation([2, 1, 0])]
49
+
50
+ assert list(symmetric(4)) == [
51
+ Permutation([0, 1, 2, 3]),
52
+ Permutation([0, 1, 3, 2]),
53
+ Permutation([0, 2, 1, 3]),
54
+ Permutation([0, 2, 3, 1]),
55
+ Permutation([0, 3, 1, 2]),
56
+ Permutation([0, 3, 2, 1]),
57
+ Permutation([1, 0, 2, 3]),
58
+ Permutation([1, 0, 3, 2]),
59
+ Permutation([1, 2, 0, 3]),
60
+ Permutation([1, 2, 3, 0]),
61
+ Permutation([1, 3, 0, 2]),
62
+ Permutation([1, 3, 2, 0]),
63
+ Permutation([2, 0, 1, 3]),
64
+ Permutation([2, 0, 3, 1]),
65
+ Permutation([2, 1, 0, 3]),
66
+ Permutation([2, 1, 3, 0]),
67
+ Permutation([2, 3, 0, 1]),
68
+ Permutation([2, 3, 1, 0]),
69
+ Permutation([3, 0, 1, 2]),
70
+ Permutation([3, 0, 2, 1]),
71
+ Permutation([3, 1, 0, 2]),
72
+ Permutation([3, 1, 2, 0]),
73
+ Permutation([3, 2, 0, 1]),
74
+ Permutation([3, 2, 1, 0])]
75
+
76
+ assert list(dihedral(1)) == [
77
+ Permutation([0, 1]), Permutation([1, 0])]
78
+
79
+ assert list(dihedral(2)) == [
80
+ Permutation([0, 1, 2, 3]),
81
+ Permutation([1, 0, 3, 2]),
82
+ Permutation([2, 3, 0, 1]),
83
+ Permutation([3, 2, 1, 0])]
84
+
85
+ assert list(dihedral(3)) == [
86
+ Permutation([0, 1, 2]),
87
+ Permutation([2, 1, 0]),
88
+ Permutation([1, 2, 0]),
89
+ Permutation([0, 2, 1]),
90
+ Permutation([2, 0, 1]),
91
+ Permutation([1, 0, 2])]
92
+
93
+ assert list(dihedral(5)) == [
94
+ Permutation([0, 1, 2, 3, 4]),
95
+ Permutation([4, 3, 2, 1, 0]),
96
+ Permutation([1, 2, 3, 4, 0]),
97
+ Permutation([0, 4, 3, 2, 1]),
98
+ Permutation([2, 3, 4, 0, 1]),
99
+ Permutation([1, 0, 4, 3, 2]),
100
+ Permutation([3, 4, 0, 1, 2]),
101
+ Permutation([2, 1, 0, 4, 3]),
102
+ Permutation([4, 0, 1, 2, 3]),
103
+ Permutation([3, 2, 1, 0, 4])]
104
+
105
+ raises(ValueError, lambda: rubik(1))
llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/tests/test_group_constructs.py ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.combinatorics.group_constructs import DirectProduct
2
+ from sympy.combinatorics.named_groups import CyclicGroup, DihedralGroup
3
+
4
+
5
+ def test_direct_product_n():
6
+ C = CyclicGroup(4)
7
+ D = DihedralGroup(4)
8
+ G = DirectProduct(C, C, C)
9
+ assert G.order() == 64
10
+ assert G.degree == 12
11
+ assert len(G.orbits()) == 3
12
+ assert G.is_abelian is True
13
+ H = DirectProduct(D, C)
14
+ assert H.order() == 32
15
+ assert H.is_abelian is False
llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/tests/test_pc_groups.py ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.combinatorics.permutations import Permutation
2
+ from sympy.combinatorics.named_groups import SymmetricGroup, AlternatingGroup, DihedralGroup
3
+ from sympy.matrices import Matrix
4
+
5
+ def test_pc_presentation():
6
+ Groups = [SymmetricGroup(3), SymmetricGroup(4), SymmetricGroup(9).sylow_subgroup(3),
7
+ SymmetricGroup(9).sylow_subgroup(2), SymmetricGroup(8).sylow_subgroup(2), DihedralGroup(10)]
8
+
9
+ S = SymmetricGroup(125).sylow_subgroup(5)
10
+ G = S.derived_series()[2]
11
+ Groups.append(G)
12
+
13
+ G = SymmetricGroup(25).sylow_subgroup(5)
14
+ Groups.append(G)
15
+
16
+ S = SymmetricGroup(11**2).sylow_subgroup(11)
17
+ G = S.derived_series()[2]
18
+ Groups.append(G)
19
+
20
+ for G in Groups:
21
+ PcGroup = G.polycyclic_group()
22
+ collector = PcGroup.collector
23
+ pc_presentation = collector.pc_presentation
24
+
25
+ pcgs = PcGroup.pcgs
26
+ free_group = collector.free_group
27
+ free_to_perm = {}
28
+ for s, g in zip(free_group.symbols, pcgs):
29
+ free_to_perm[s] = g
30
+
31
+ for k, v in pc_presentation.items():
32
+ k_array = k.array_form
33
+ if v != ():
34
+ v_array = v.array_form
35
+
36
+ lhs = Permutation()
37
+ for gen in k_array:
38
+ s = gen[0]
39
+ e = gen[1]
40
+ lhs = lhs*free_to_perm[s]**e
41
+
42
+ if v == ():
43
+ assert lhs.is_identity
44
+ continue
45
+
46
+ rhs = Permutation()
47
+ for gen in v_array:
48
+ s = gen[0]
49
+ e = gen[1]
50
+ rhs = rhs*free_to_perm[s]**e
51
+
52
+ assert lhs == rhs
53
+
54
+
55
+ def test_exponent_vector():
56
+
57
+ Groups = [SymmetricGroup(3), SymmetricGroup(4), SymmetricGroup(9).sylow_subgroup(3),
58
+ SymmetricGroup(9).sylow_subgroup(2), SymmetricGroup(8).sylow_subgroup(2)]
59
+
60
+ for G in Groups:
61
+ PcGroup = G.polycyclic_group()
62
+ collector = PcGroup.collector
63
+
64
+ pcgs = PcGroup.pcgs
65
+ # free_group = collector.free_group
66
+
67
+ for gen in G.generators:
68
+ exp = collector.exponent_vector(gen)
69
+ g = Permutation()
70
+ for i in range(len(exp)):
71
+ g = g*pcgs[i]**exp[i] if exp[i] else g
72
+ assert g == gen
73
+
74
+
75
+ def test_induced_pcgs():
76
+ G = [SymmetricGroup(9).sylow_subgroup(3), SymmetricGroup(20).sylow_subgroup(2), AlternatingGroup(4),
77
+ DihedralGroup(4), DihedralGroup(10), DihedralGroup(9), SymmetricGroup(3), SymmetricGroup(4)]
78
+
79
+ for g in G:
80
+ PcGroup = g.polycyclic_group()
81
+ collector = PcGroup.collector
82
+ gens = list(g.generators)
83
+ ipcgs = collector.induced_pcgs(gens)
84
+ m = []
85
+ for i in ipcgs:
86
+ m.append(collector.exponent_vector(i))
87
+ assert Matrix(m).is_upper
llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/tests/test_util.py ADDED
@@ -0,0 +1,120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.combinatorics.named_groups import SymmetricGroup, DihedralGroup,\
2
+ AlternatingGroup
3
+ from sympy.combinatorics.permutations import Permutation
4
+ from sympy.combinatorics.util import _check_cycles_alt_sym, _strip,\
5
+ _distribute_gens_by_base, _strong_gens_from_distr,\
6
+ _orbits_transversals_from_bsgs, _handle_precomputed_bsgs, _base_ordering,\
7
+ _remove_gens
8
+ from sympy.combinatorics.testutil import _verify_bsgs
9
+
10
+
11
+ def test_check_cycles_alt_sym():
12
+ perm1 = Permutation([[0, 1, 2, 3, 4, 5, 6], [7], [8], [9]])
13
+ perm2 = Permutation([[0, 1, 2, 3, 4, 5], [6, 7, 8, 9]])
14
+ perm3 = Permutation([[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]])
15
+ assert _check_cycles_alt_sym(perm1) is True
16
+ assert _check_cycles_alt_sym(perm2) is False
17
+ assert _check_cycles_alt_sym(perm3) is False
18
+
19
+
20
+ def test_strip():
21
+ D = DihedralGroup(5)
22
+ D.schreier_sims()
23
+ member = Permutation([4, 0, 1, 2, 3])
24
+ not_member1 = Permutation([0, 1, 4, 3, 2])
25
+ not_member2 = Permutation([3, 1, 4, 2, 0])
26
+ identity = Permutation([0, 1, 2, 3, 4])
27
+ res1 = _strip(member, D.base, D.basic_orbits, D.basic_transversals)
28
+ res2 = _strip(not_member1, D.base, D.basic_orbits, D.basic_transversals)
29
+ res3 = _strip(not_member2, D.base, D.basic_orbits, D.basic_transversals)
30
+ assert res1[0] == identity
31
+ assert res1[1] == len(D.base) + 1
32
+ assert res2[0] == not_member1
33
+ assert res2[1] == len(D.base) + 1
34
+ assert res3[0] != identity
35
+ assert res3[1] == 2
36
+
37
+
38
+ def test_distribute_gens_by_base():
39
+ base = [0, 1, 2]
40
+ gens = [Permutation([0, 1, 2, 3]), Permutation([0, 1, 3, 2]),
41
+ Permutation([0, 2, 3, 1]), Permutation([3, 2, 1, 0])]
42
+ assert _distribute_gens_by_base(base, gens) == [gens,
43
+ [Permutation([0, 1, 2, 3]),
44
+ Permutation([0, 1, 3, 2]),
45
+ Permutation([0, 2, 3, 1])],
46
+ [Permutation([0, 1, 2, 3]),
47
+ Permutation([0, 1, 3, 2])]]
48
+
49
+
50
+ def test_strong_gens_from_distr():
51
+ strong_gens_distr = [[Permutation([0, 2, 1]), Permutation([1, 2, 0]),
52
+ Permutation([1, 0, 2])], [Permutation([0, 2, 1])]]
53
+ assert _strong_gens_from_distr(strong_gens_distr) == \
54
+ [Permutation([0, 2, 1]),
55
+ Permutation([1, 2, 0]),
56
+ Permutation([1, 0, 2])]
57
+
58
+
59
+ def test_orbits_transversals_from_bsgs():
60
+ S = SymmetricGroup(4)
61
+ S.schreier_sims()
62
+ base = S.base
63
+ strong_gens = S.strong_gens
64
+ strong_gens_distr = _distribute_gens_by_base(base, strong_gens)
65
+ result = _orbits_transversals_from_bsgs(base, strong_gens_distr)
66
+ orbits = result[0]
67
+ transversals = result[1]
68
+ base_len = len(base)
69
+ for i in range(base_len):
70
+ for el in orbits[i]:
71
+ assert transversals[i][el](base[i]) == el
72
+ for j in range(i):
73
+ assert transversals[i][el](base[j]) == base[j]
74
+ order = 1
75
+ for i in range(base_len):
76
+ order *= len(orbits[i])
77
+ assert S.order() == order
78
+
79
+
80
+ def test_handle_precomputed_bsgs():
81
+ A = AlternatingGroup(5)
82
+ A.schreier_sims()
83
+ base = A.base
84
+ strong_gens = A.strong_gens
85
+ result = _handle_precomputed_bsgs(base, strong_gens)
86
+ strong_gens_distr = _distribute_gens_by_base(base, strong_gens)
87
+ assert strong_gens_distr == result[2]
88
+ transversals = result[0]
89
+ orbits = result[1]
90
+ base_len = len(base)
91
+ for i in range(base_len):
92
+ for el in orbits[i]:
93
+ assert transversals[i][el](base[i]) == el
94
+ for j in range(i):
95
+ assert transversals[i][el](base[j]) == base[j]
96
+ order = 1
97
+ for i in range(base_len):
98
+ order *= len(orbits[i])
99
+ assert A.order() == order
100
+
101
+
102
+ def test_base_ordering():
103
+ base = [2, 4, 5]
104
+ degree = 7
105
+ assert _base_ordering(base, degree) == [3, 4, 0, 5, 1, 2, 6]
106
+
107
+
108
+ def test_remove_gens():
109
+ S = SymmetricGroup(10)
110
+ base, strong_gens = S.schreier_sims_incremental()
111
+ new_gens = _remove_gens(base, strong_gens)
112
+ assert _verify_bsgs(S, base, new_gens) is True
113
+ A = AlternatingGroup(7)
114
+ base, strong_gens = A.schreier_sims_incremental()
115
+ new_gens = _remove_gens(base, strong_gens)
116
+ assert _verify_bsgs(A, base, new_gens) is True
117
+ D = DihedralGroup(2)
118
+ base, strong_gens = D.schreier_sims_incremental()
119
+ new_gens = _remove_gens(base, strong_gens)
120
+ assert _verify_bsgs(D, base, new_gens) is True
llmeval-env/lib/python3.10/site-packages/sympy/logic/algorithms/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (195 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/logic/algorithms/__pycache__/dpll.cpython-310.pyc ADDED
Binary file (8.03 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/logic/algorithms/__pycache__/dpll2.cpython-310.pyc ADDED
Binary file (17.6 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/logic/algorithms/__pycache__/minisat22_wrapper.cpython-310.pyc ADDED
Binary file (1.95 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/logic/algorithms/__pycache__/pycosat_wrapper.cpython-310.pyc ADDED
Binary file (1.42 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/logic/algorithms/pycosat_wrapper.py ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.assumptions.cnf import EncodedCNF
2
+
3
+
4
+ def pycosat_satisfiable(expr, all_models=False):
5
+ import pycosat
6
+ if not isinstance(expr, EncodedCNF):
7
+ exprs = EncodedCNF()
8
+ exprs.add_prop(expr)
9
+ expr = exprs
10
+
11
+ # Return UNSAT when False (encoded as 0) is present in the CNF
12
+ if {0} in expr.data:
13
+ if all_models:
14
+ return (f for f in [False])
15
+ return False
16
+
17
+ if not all_models:
18
+ r = pycosat.solve(expr.data)
19
+ result = (r != "UNSAT")
20
+ if not result:
21
+ return result
22
+ return {expr.symbols[abs(lit) - 1]: lit > 0 for lit in r}
23
+ else:
24
+ r = pycosat.itersolve(expr.data)
25
+ result = (r != "UNSAT")
26
+ if not result:
27
+ return result
28
+
29
+ # Make solutions SymPy compatible by creating a generator
30
+ def _gen(results):
31
+ satisfiable = False
32
+ try:
33
+ while True:
34
+ sol = next(results)
35
+ yield {expr.symbols[abs(lit) - 1]: lit > 0 for lit in sol}
36
+ satisfiable = True
37
+ except StopIteration:
38
+ if not satisfiable:
39
+ yield False
40
+
41
+ return _gen(r)
llmeval-env/lib/python3.10/site-packages/sympy/series/__init__.py ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """A module that handles series: find a limit, order the series etc.
2
+ """
3
+ from .order import Order
4
+ from .limits import limit, Limit
5
+ from .gruntz import gruntz
6
+ from .series import series
7
+ from .approximants import approximants
8
+ from .residues import residue
9
+ from .sequences import SeqPer, SeqFormula, sequence, SeqAdd, SeqMul
10
+ from .fourier import fourier_series
11
+ from .formal import fps
12
+ from .limitseq import difference_delta, limit_seq
13
+
14
+ from sympy.core.singleton import S
15
+ EmptySequence = S.EmptySequence
16
+
17
+ O = Order
18
+
19
+ __all__ = ['Order', 'O', 'limit', 'Limit', 'gruntz', 'series', 'approximants',
20
+ 'residue', 'EmptySequence', 'SeqPer', 'SeqFormula', 'sequence',
21
+ 'SeqAdd', 'SeqMul', 'fourier_series', 'fps', 'difference_delta',
22
+ 'limit_seq'
23
+ ]
llmeval-env/lib/python3.10/site-packages/sympy/series/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (945 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/series/__pycache__/acceleration.cpython-310.pyc ADDED
Binary file (3.83 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/series/__pycache__/approximants.cpython-310.pyc ADDED
Binary file (3.43 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/series/__pycache__/aseries.cpython-310.pyc ADDED
Binary file (493 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/series/__pycache__/formal.cpython-310.pyc ADDED
Binary file (51.5 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/series/__pycache__/fourier.cpython-310.pyc ADDED
Binary file (24.2 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/series/__pycache__/gruntz.cpython-310.pyc ADDED
Binary file (21.4 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/series/__pycache__/kauers.cpython-310.pyc ADDED
Binary file (1.92 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/series/__pycache__/limits.cpython-310.pyc ADDED
Binary file (9.3 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/series/__pycache__/limitseq.cpython-310.pyc ADDED
Binary file (7.26 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/series/__pycache__/order.cpython-310.pyc ADDED
Binary file (15.7 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/series/__pycache__/residues.cpython-310.pyc ADDED
Binary file (1.75 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/series/__pycache__/sequences.cpython-310.pyc ADDED
Binary file (35.2 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/series/__pycache__/series.cpython-310.pyc ADDED
Binary file (2.11 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/series/__pycache__/series_class.cpython-310.pyc ADDED
Binary file (3.73 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/series/approximants.py ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.singleton import S
2
+ from sympy.core.symbol import Symbol
3
+ from sympy.polys.polytools import lcm
4
+ from sympy.utilities import public
5
+
6
+ @public
7
+ def approximants(l, X=Symbol('x'), simplify=False):
8
+ """
9
+ Return a generator for consecutive Pade approximants for a series.
10
+ It can also be used for computing the rational generating function of a
11
+ series when possible, since the last approximant returned by the generator
12
+ will be the generating function (if any).
13
+
14
+ Explanation
15
+ ===========
16
+
17
+ The input list can contain more complex expressions than integer or rational
18
+ numbers; symbols may also be involved in the computation. An example below
19
+ show how to compute the generating function of the whole Pascal triangle.
20
+
21
+ The generator can be asked to apply the sympy.simplify function on each
22
+ generated term, which will make the computation slower; however it may be
23
+ useful when symbols are involved in the expressions.
24
+
25
+ Examples
26
+ ========
27
+
28
+ >>> from sympy.series import approximants
29
+ >>> from sympy import lucas, fibonacci, symbols, binomial
30
+ >>> g = [lucas(k) for k in range(16)]
31
+ >>> [e for e in approximants(g)]
32
+ [2, -4/(x - 2), (5*x - 2)/(3*x - 1), (x - 2)/(x**2 + x - 1)]
33
+
34
+ >>> h = [fibonacci(k) for k in range(16)]
35
+ >>> [e for e in approximants(h)]
36
+ [x, -x/(x - 1), (x**2 - x)/(2*x - 1), -x/(x**2 + x - 1)]
37
+
38
+ >>> x, t = symbols("x,t")
39
+ >>> p=[sum(binomial(k,i)*x**i for i in range(k+1)) for k in range(16)]
40
+ >>> y = approximants(p, t)
41
+ >>> for k in range(3): print(next(y))
42
+ 1
43
+ (x + 1)/((-x - 1)*(t*(x + 1) + (x + 1)/(-x - 1)))
44
+ nan
45
+
46
+ >>> y = approximants(p, t, simplify=True)
47
+ >>> for k in range(3): print(next(y))
48
+ 1
49
+ -1/(t*(x + 1) - 1)
50
+ nan
51
+
52
+ See Also
53
+ ========
54
+
55
+ sympy.concrete.guess.guess_generating_function_rational
56
+ mpmath.pade
57
+ """
58
+ from sympy.simplify import simplify as simp
59
+ from sympy.simplify.radsimp import denom
60
+ p1, q1 = [S.One], [S.Zero]
61
+ p2, q2 = [S.Zero], [S.One]
62
+ while len(l):
63
+ b = 0
64
+ while l[b]==0:
65
+ b += 1
66
+ if b == len(l):
67
+ return
68
+ m = [S.One/l[b]]
69
+ for k in range(b+1, len(l)):
70
+ s = 0
71
+ for j in range(b, k):
72
+ s -= l[j+1] * m[b-j-1]
73
+ m.append(s/l[b])
74
+ l = m
75
+ a, l[0] = l[0], 0
76
+ p = [0] * max(len(p2), b+len(p1))
77
+ q = [0] * max(len(q2), b+len(q1))
78
+ for k in range(len(p2)):
79
+ p[k] = a*p2[k]
80
+ for k in range(b, b+len(p1)):
81
+ p[k] += p1[k-b]
82
+ for k in range(len(q2)):
83
+ q[k] = a*q2[k]
84
+ for k in range(b, b+len(q1)):
85
+ q[k] += q1[k-b]
86
+ while p[-1]==0: p.pop()
87
+ while q[-1]==0: q.pop()
88
+ p1, p2 = p2, p
89
+ q1, q2 = q2, q
90
+
91
+ # yield result
92
+ c = 1
93
+ for x in p:
94
+ c = lcm(c, denom(x))
95
+ for x in q:
96
+ c = lcm(c, denom(x))
97
+ out = ( sum(c*e*X**k for k, e in enumerate(p))
98
+ / sum(c*e*X**k for k, e in enumerate(q)) )
99
+ if simplify:
100
+ yield(simp(out))
101
+ else:
102
+ yield out
103
+ return
llmeval-env/lib/python3.10/site-packages/sympy/series/aseries.py ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.sympify import sympify
2
+
3
+
4
+ def aseries(expr, x=None, n=6, bound=0, hir=False):
5
+ """
6
+ See the docstring of Expr.aseries() for complete details of this wrapper.
7
+
8
+ """
9
+ expr = sympify(expr)
10
+ return expr.aseries(x, n, bound, hir)
llmeval-env/lib/python3.10/site-packages/sympy/series/benchmarks/__init__.py ADDED
File without changes
llmeval-env/lib/python3.10/site-packages/sympy/series/benchmarks/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (196 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/series/benchmarks/__pycache__/bench_limit.cpython-310.pyc ADDED
Binary file (502 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/series/benchmarks/__pycache__/bench_order.cpython-310.pyc ADDED
Binary file (658 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/series/benchmarks/bench_limit.py ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.numbers import oo
2
+ from sympy.core.symbol import Symbol
3
+ from sympy.series.limits import limit
4
+
5
+ x = Symbol('x')
6
+
7
+
8
+ def timeit_limit_1x():
9
+ limit(1/x, x, oo)
llmeval-env/lib/python3.10/site-packages/sympy/series/benchmarks/bench_order.py ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.add import Add
2
+ from sympy.core.symbol import Symbol
3
+ from sympy.series.order import O
4
+
5
+ x = Symbol('x')
6
+ l = [x**i for i in range(1000)]
7
+ l.append(O(x**1001))
8
+
9
+ def timeit_order_1x():
10
+ Add(*l)
llmeval-env/lib/python3.10/site-packages/sympy/series/kauers.py ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ def finite_diff(expression, variable, increment=1):
2
+ """
3
+ Takes as input a polynomial expression and the variable used to construct
4
+ it and returns the difference between function's value when the input is
5
+ incremented to 1 and the original function value. If you want an increment
6
+ other than one supply it as a third argument.
7
+
8
+ Examples
9
+ ========
10
+
11
+ >>> from sympy.abc import x, y, z
12
+ >>> from sympy.series.kauers import finite_diff
13
+ >>> finite_diff(x**2, x)
14
+ 2*x + 1
15
+ >>> finite_diff(y**3 + 2*y**2 + 3*y + 4, y)
16
+ 3*y**2 + 7*y + 6
17
+ >>> finite_diff(x**2 + 3*x + 8, x, 2)
18
+ 4*x + 10
19
+ >>> finite_diff(z**3 + 8*z, z, 3)
20
+ 9*z**2 + 27*z + 51
21
+ """
22
+ expression = expression.expand()
23
+ expression2 = expression.subs(variable, variable + increment)
24
+ expression2 = expression2.expand()
25
+ return expression2 - expression
26
+
27
+ def finite_diff_kauers(sum):
28
+ """
29
+ Takes as input a Sum instance and returns the difference between the sum
30
+ with the upper index incremented by 1 and the original sum. For example,
31
+ if S(n) is a sum, then finite_diff_kauers will return S(n + 1) - S(n).
32
+
33
+ Examples
34
+ ========
35
+
36
+ >>> from sympy.series.kauers import finite_diff_kauers
37
+ >>> from sympy import Sum
38
+ >>> from sympy.abc import x, y, m, n, k
39
+ >>> finite_diff_kauers(Sum(k, (k, 1, n)))
40
+ n + 1
41
+ >>> finite_diff_kauers(Sum(1/k, (k, 1, n)))
42
+ 1/(n + 1)
43
+ >>> finite_diff_kauers(Sum((x*y**2), (x, 1, n), (y, 1, m)))
44
+ (m + 1)**2*(n + 1)
45
+ >>> finite_diff_kauers(Sum((x*y), (x, 1, m), (y, 1, n)))
46
+ (m + 1)*(n + 1)
47
+ """
48
+ function = sum.function
49
+ for l in sum.limits:
50
+ function = function.subs(l[0], l[- 1] + 1)
51
+ return function
llmeval-env/lib/python3.10/site-packages/sympy/series/order.py ADDED
@@ -0,0 +1,517 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core import S, sympify, Expr, Dummy, Add, Mul
2
+ from sympy.core.cache import cacheit
3
+ from sympy.core.containers import Tuple
4
+ from sympy.core.function import Function, PoleError, expand_power_base, expand_log
5
+ from sympy.core.sorting import default_sort_key
6
+ from sympy.functions.elementary.exponential import exp, log
7
+ from sympy.sets.sets import Complement
8
+ from sympy.utilities.iterables import uniq, is_sequence
9
+
10
+
11
+ class Order(Expr):
12
+ r""" Represents the limiting behavior of some function.
13
+
14
+ Explanation
15
+ ===========
16
+
17
+ The order of a function characterizes the function based on the limiting
18
+ behavior of the function as it goes to some limit. Only taking the limit
19
+ point to be a number is currently supported. This is expressed in
20
+ big O notation [1]_.
21
+
22
+ The formal definition for the order of a function `g(x)` about a point `a`
23
+ is such that `g(x) = O(f(x))` as `x \rightarrow a` if and only if there
24
+ exists a `\delta > 0` and an `M > 0` such that `|g(x)| \leq M|f(x)|` for
25
+ `|x-a| < \delta`. This is equivalent to `\limsup_{x \rightarrow a}
26
+ |g(x)/f(x)| < \infty`.
27
+
28
+ Let's illustrate it on the following example by taking the expansion of
29
+ `\sin(x)` about 0:
30
+
31
+ .. math ::
32
+ \sin(x) = x - x^3/3! + O(x^5)
33
+
34
+ where in this case `O(x^5) = x^5/5! - x^7/7! + \cdots`. By the definition
35
+ of `O`, there is a `\delta > 0` and an `M` such that:
36
+
37
+ .. math ::
38
+ |x^5/5! - x^7/7! + ....| <= M|x^5| \text{ for } |x| < \delta
39
+
40
+ or by the alternate definition:
41
+
42
+ .. math ::
43
+ \lim_{x \rightarrow 0} | (x^5/5! - x^7/7! + ....) / x^5| < \infty
44
+
45
+ which surely is true, because
46
+
47
+ .. math ::
48
+ \lim_{x \rightarrow 0} | (x^5/5! - x^7/7! + ....) / x^5| = 1/5!
49
+
50
+
51
+ As it is usually used, the order of a function can be intuitively thought
52
+ of representing all terms of powers greater than the one specified. For
53
+ example, `O(x^3)` corresponds to any terms proportional to `x^3,
54
+ x^4,\ldots` and any higher power. For a polynomial, this leaves terms
55
+ proportional to `x^2`, `x` and constants.
56
+
57
+ Examples
58
+ ========
59
+
60
+ >>> from sympy import O, oo, cos, pi
61
+ >>> from sympy.abc import x, y
62
+
63
+ >>> O(x + x**2)
64
+ O(x)
65
+ >>> O(x + x**2, (x, 0))
66
+ O(x)
67
+ >>> O(x + x**2, (x, oo))
68
+ O(x**2, (x, oo))
69
+
70
+ >>> O(1 + x*y)
71
+ O(1, x, y)
72
+ >>> O(1 + x*y, (x, 0), (y, 0))
73
+ O(1, x, y)
74
+ >>> O(1 + x*y, (x, oo), (y, oo))
75
+ O(x*y, (x, oo), (y, oo))
76
+
77
+ >>> O(1) in O(1, x)
78
+ True
79
+ >>> O(1, x) in O(1)
80
+ False
81
+ >>> O(x) in O(1, x)
82
+ True
83
+ >>> O(x**2) in O(x)
84
+ True
85
+
86
+ >>> O(x)*x
87
+ O(x**2)
88
+ >>> O(x) - O(x)
89
+ O(x)
90
+ >>> O(cos(x))
91
+ O(1)
92
+ >>> O(cos(x), (x, pi/2))
93
+ O(x - pi/2, (x, pi/2))
94
+
95
+ References
96
+ ==========
97
+
98
+ .. [1] `Big O notation <https://en.wikipedia.org/wiki/Big_O_notation>`_
99
+
100
+ Notes
101
+ =====
102
+
103
+ In ``O(f(x), x)`` the expression ``f(x)`` is assumed to have a leading
104
+ term. ``O(f(x), x)`` is automatically transformed to
105
+ ``O(f(x).as_leading_term(x),x)``.
106
+
107
+ ``O(expr*f(x), x)`` is ``O(f(x), x)``
108
+
109
+ ``O(expr, x)`` is ``O(1)``
110
+
111
+ ``O(0, x)`` is 0.
112
+
113
+ Multivariate O is also supported:
114
+
115
+ ``O(f(x, y), x, y)`` is transformed to
116
+ ``O(f(x, y).as_leading_term(x,y).as_leading_term(y), x, y)``
117
+
118
+ In the multivariate case, it is assumed the limits w.r.t. the various
119
+ symbols commute.
120
+
121
+ If no symbols are passed then all symbols in the expression are used
122
+ and the limit point is assumed to be zero.
123
+
124
+ """
125
+
126
+ is_Order = True
127
+
128
+ __slots__ = ()
129
+
130
+ @cacheit
131
+ def __new__(cls, expr, *args, **kwargs):
132
+ expr = sympify(expr)
133
+
134
+ if not args:
135
+ if expr.is_Order:
136
+ variables = expr.variables
137
+ point = expr.point
138
+ else:
139
+ variables = list(expr.free_symbols)
140
+ point = [S.Zero]*len(variables)
141
+ else:
142
+ args = list(args if is_sequence(args) else [args])
143
+ variables, point = [], []
144
+ if is_sequence(args[0]):
145
+ for a in args:
146
+ v, p = list(map(sympify, a))
147
+ variables.append(v)
148
+ point.append(p)
149
+ else:
150
+ variables = list(map(sympify, args))
151
+ point = [S.Zero]*len(variables)
152
+
153
+ if not all(v.is_symbol for v in variables):
154
+ raise TypeError('Variables are not symbols, got %s' % variables)
155
+
156
+ if len(list(uniq(variables))) != len(variables):
157
+ raise ValueError('Variables are supposed to be unique symbols, got %s' % variables)
158
+
159
+ if expr.is_Order:
160
+ expr_vp = dict(expr.args[1:])
161
+ new_vp = dict(expr_vp)
162
+ vp = dict(zip(variables, point))
163
+ for v, p in vp.items():
164
+ if v in new_vp.keys():
165
+ if p != new_vp[v]:
166
+ raise NotImplementedError(
167
+ "Mixing Order at different points is not supported.")
168
+ else:
169
+ new_vp[v] = p
170
+ if set(expr_vp.keys()) == set(new_vp.keys()):
171
+ return expr
172
+ else:
173
+ variables = list(new_vp.keys())
174
+ point = [new_vp[v] for v in variables]
175
+
176
+ if expr is S.NaN:
177
+ return S.NaN
178
+
179
+ if any(x in p.free_symbols for x in variables for p in point):
180
+ raise ValueError('Got %s as a point.' % point)
181
+
182
+ if variables:
183
+ if any(p != point[0] for p in point):
184
+ raise NotImplementedError(
185
+ "Multivariable orders at different points are not supported.")
186
+ if point[0] in (S.Infinity, S.Infinity*S.ImaginaryUnit):
187
+ s = {k: 1/Dummy() for k in variables}
188
+ rs = {1/v: 1/k for k, v in s.items()}
189
+ ps = [S.Zero for p in point]
190
+ elif point[0] in (S.NegativeInfinity, S.NegativeInfinity*S.ImaginaryUnit):
191
+ s = {k: -1/Dummy() for k in variables}
192
+ rs = {-1/v: -1/k for k, v in s.items()}
193
+ ps = [S.Zero for p in point]
194
+ elif point[0] is not S.Zero:
195
+ s = {k: Dummy() + point[0] for k in variables}
196
+ rs = {(v - point[0]).together(): k - point[0] for k, v in s.items()}
197
+ ps = [S.Zero for p in point]
198
+ else:
199
+ s = ()
200
+ rs = ()
201
+ ps = list(point)
202
+
203
+ expr = expr.subs(s)
204
+
205
+ if expr.is_Add:
206
+ expr = expr.factor()
207
+
208
+ if s:
209
+ args = tuple([r[0] for r in rs.items()])
210
+ else:
211
+ args = tuple(variables)
212
+
213
+ if len(variables) > 1:
214
+ # XXX: better way? We need this expand() to
215
+ # workaround e.g: expr = x*(x + y).
216
+ # (x*(x + y)).as_leading_term(x, y) currently returns
217
+ # x*y (wrong order term!). That's why we want to deal with
218
+ # expand()'ed expr (handled in "if expr.is_Add" branch below).
219
+ expr = expr.expand()
220
+
221
+ old_expr = None
222
+ while old_expr != expr:
223
+ old_expr = expr
224
+ if expr.is_Add:
225
+ lst = expr.extract_leading_order(args)
226
+ expr = Add(*[f.expr for (e, f) in lst])
227
+
228
+ elif expr:
229
+ try:
230
+ expr = expr.as_leading_term(*args)
231
+ except PoleError:
232
+ if isinstance(expr, Function) or\
233
+ all(isinstance(arg, Function) for arg in expr.args):
234
+ # It is not possible to simplify an expression
235
+ # containing only functions (which raise error on
236
+ # call to leading term) further
237
+ pass
238
+ else:
239
+ orders = []
240
+ pts = tuple(zip(args, ps))
241
+ for arg in expr.args:
242
+ try:
243
+ lt = arg.as_leading_term(*args)
244
+ except PoleError:
245
+ lt = arg
246
+ if lt not in args:
247
+ order = Order(lt)
248
+ else:
249
+ order = Order(lt, *pts)
250
+ orders.append(order)
251
+ if expr.is_Add:
252
+ new_expr = Order(Add(*orders), *pts)
253
+ if new_expr.is_Add:
254
+ new_expr = Order(Add(*[a.expr for a in new_expr.args]), *pts)
255
+ expr = new_expr.expr
256
+ elif expr.is_Mul:
257
+ expr = Mul(*[a.expr for a in orders])
258
+ elif expr.is_Pow:
259
+ e = expr.exp
260
+ b = expr.base
261
+ expr = exp(e * log(b))
262
+
263
+ # It would probably be better to handle this somewhere
264
+ # else. This is needed for a testcase in which there is a
265
+ # symbol with the assumptions zero=True.
266
+ if expr.is_zero:
267
+ expr = S.Zero
268
+ else:
269
+ expr = expr.as_independent(*args, as_Add=False)[1]
270
+
271
+ expr = expand_power_base(expr)
272
+ expr = expand_log(expr)
273
+
274
+ if len(args) == 1:
275
+ # The definition of O(f(x)) symbol explicitly stated that
276
+ # the argument of f(x) is irrelevant. That's why we can
277
+ # combine some power exponents (only "on top" of the
278
+ # expression tree for f(x)), e.g.:
279
+ # x**p * (-x)**q -> x**(p+q) for real p, q.
280
+ x = args[0]
281
+ margs = list(Mul.make_args(
282
+ expr.as_independent(x, as_Add=False)[1]))
283
+
284
+ for i, t in enumerate(margs):
285
+ if t.is_Pow:
286
+ b, q = t.args
287
+ if b in (x, -x) and q.is_real and not q.has(x):
288
+ margs[i] = x**q
289
+ elif b.is_Pow and not b.exp.has(x):
290
+ b, r = b.args
291
+ if b in (x, -x) and r.is_real:
292
+ margs[i] = x**(r*q)
293
+ elif b.is_Mul and b.args[0] is S.NegativeOne:
294
+ b = -b
295
+ if b.is_Pow and not b.exp.has(x):
296
+ b, r = b.args
297
+ if b in (x, -x) and r.is_real:
298
+ margs[i] = x**(r*q)
299
+
300
+ expr = Mul(*margs)
301
+
302
+ expr = expr.subs(rs)
303
+
304
+ if expr.is_Order:
305
+ expr = expr.expr
306
+
307
+ if not expr.has(*variables) and not expr.is_zero:
308
+ expr = S.One
309
+
310
+ # create Order instance:
311
+ vp = dict(zip(variables, point))
312
+ variables.sort(key=default_sort_key)
313
+ point = [vp[v] for v in variables]
314
+ args = (expr,) + Tuple(*zip(variables, point))
315
+ obj = Expr.__new__(cls, *args)
316
+ return obj
317
+
318
+ def _eval_nseries(self, x, n, logx, cdir=0):
319
+ return self
320
+
321
+ @property
322
+ def expr(self):
323
+ return self.args[0]
324
+
325
+ @property
326
+ def variables(self):
327
+ if self.args[1:]:
328
+ return tuple(x[0] for x in self.args[1:])
329
+ else:
330
+ return ()
331
+
332
+ @property
333
+ def point(self):
334
+ if self.args[1:]:
335
+ return tuple(x[1] for x in self.args[1:])
336
+ else:
337
+ return ()
338
+
339
+ @property
340
+ def free_symbols(self):
341
+ return self.expr.free_symbols | set(self.variables)
342
+
343
+ def _eval_power(b, e):
344
+ if e.is_Number and e.is_nonnegative:
345
+ return b.func(b.expr ** e, *b.args[1:])
346
+ if e == O(1):
347
+ return b
348
+ return
349
+
350
+ def as_expr_variables(self, order_symbols):
351
+ if order_symbols is None:
352
+ order_symbols = self.args[1:]
353
+ else:
354
+ if (not all(o[1] == order_symbols[0][1] for o in order_symbols) and
355
+ not all(p == self.point[0] for p in self.point)): # pragma: no cover
356
+ raise NotImplementedError('Order at points other than 0 '
357
+ 'or oo not supported, got %s as a point.' % self.point)
358
+ if order_symbols and order_symbols[0][1] != self.point[0]:
359
+ raise NotImplementedError(
360
+ "Multiplying Order at different points is not supported.")
361
+ order_symbols = dict(order_symbols)
362
+ for s, p in dict(self.args[1:]).items():
363
+ if s not in order_symbols.keys():
364
+ order_symbols[s] = p
365
+ order_symbols = sorted(order_symbols.items(), key=lambda x: default_sort_key(x[0]))
366
+ return self.expr, tuple(order_symbols)
367
+
368
+ def removeO(self):
369
+ return S.Zero
370
+
371
+ def getO(self):
372
+ return self
373
+
374
+ @cacheit
375
+ def contains(self, expr):
376
+ r"""
377
+ Return True if expr belongs to Order(self.expr, \*self.variables).
378
+ Return False if self belongs to expr.
379
+ Return None if the inclusion relation cannot be determined
380
+ (e.g. when self and expr have different symbols).
381
+ """
382
+ expr = sympify(expr)
383
+ if expr.is_zero:
384
+ return True
385
+ if expr is S.NaN:
386
+ return False
387
+ point = self.point[0] if self.point else S.Zero
388
+ if expr.is_Order:
389
+ if (any(p != point for p in expr.point) or
390
+ any(p != point for p in self.point)):
391
+ return None
392
+ if expr.expr == self.expr:
393
+ # O(1) + O(1), O(1) + O(1, x), etc.
394
+ return all(x in self.args[1:] for x in expr.args[1:])
395
+ if expr.expr.is_Add:
396
+ return all(self.contains(x) for x in expr.expr.args)
397
+ if self.expr.is_Add and point.is_zero:
398
+ return any(self.func(x, *self.args[1:]).contains(expr)
399
+ for x in self.expr.args)
400
+ if self.variables and expr.variables:
401
+ common_symbols = tuple(
402
+ [s for s in self.variables if s in expr.variables])
403
+ elif self.variables:
404
+ common_symbols = self.variables
405
+ else:
406
+ common_symbols = expr.variables
407
+ if not common_symbols:
408
+ return None
409
+ if (self.expr.is_Pow and len(self.variables) == 1
410
+ and self.variables == expr.variables):
411
+ symbol = self.variables[0]
412
+ other = expr.expr.as_independent(symbol, as_Add=False)[1]
413
+ if (other.is_Pow and other.base == symbol and
414
+ self.expr.base == symbol):
415
+ if point.is_zero:
416
+ rv = (self.expr.exp - other.exp).is_nonpositive
417
+ if point.is_infinite:
418
+ rv = (self.expr.exp - other.exp).is_nonnegative
419
+ if rv is not None:
420
+ return rv
421
+
422
+ from sympy.simplify.powsimp import powsimp
423
+ r = None
424
+ ratio = self.expr/expr.expr
425
+ ratio = powsimp(ratio, deep=True, combine='exp')
426
+ for s in common_symbols:
427
+ from sympy.series.limits import Limit
428
+ l = Limit(ratio, s, point).doit(heuristics=False)
429
+ if not isinstance(l, Limit):
430
+ l = l != 0
431
+ else:
432
+ l = None
433
+ if r is None:
434
+ r = l
435
+ else:
436
+ if r != l:
437
+ return
438
+ return r
439
+
440
+ if self.expr.is_Pow and len(self.variables) == 1:
441
+ symbol = self.variables[0]
442
+ other = expr.as_independent(symbol, as_Add=False)[1]
443
+ if (other.is_Pow and other.base == symbol and
444
+ self.expr.base == symbol):
445
+ if point.is_zero:
446
+ rv = (self.expr.exp - other.exp).is_nonpositive
447
+ if point.is_infinite:
448
+ rv = (self.expr.exp - other.exp).is_nonnegative
449
+ if rv is not None:
450
+ return rv
451
+
452
+ obj = self.func(expr, *self.args[1:])
453
+ return self.contains(obj)
454
+
455
+ def __contains__(self, other):
456
+ result = self.contains(other)
457
+ if result is None:
458
+ raise TypeError('contains did not evaluate to a bool')
459
+ return result
460
+
461
+ def _eval_subs(self, old, new):
462
+ if old in self.variables:
463
+ newexpr = self.expr.subs(old, new)
464
+ i = self.variables.index(old)
465
+ newvars = list(self.variables)
466
+ newpt = list(self.point)
467
+ if new.is_symbol:
468
+ newvars[i] = new
469
+ else:
470
+ syms = new.free_symbols
471
+ if len(syms) == 1 or old in syms:
472
+ if old in syms:
473
+ var = self.variables[i]
474
+ else:
475
+ var = syms.pop()
476
+ # First, try to substitute self.point in the "new"
477
+ # expr to see if this is a fixed point.
478
+ # E.g. O(y).subs(y, sin(x))
479
+ point = new.subs(var, self.point[i])
480
+ if point != self.point[i]:
481
+ from sympy.solvers.solveset import solveset
482
+ d = Dummy()
483
+ sol = solveset(old - new.subs(var, d), d)
484
+ if isinstance(sol, Complement):
485
+ e1 = sol.args[0]
486
+ e2 = sol.args[1]
487
+ sol = set(e1) - set(e2)
488
+ res = [dict(zip((d, ), sol))]
489
+ point = d.subs(res[0]).limit(old, self.point[i])
490
+ newvars[i] = var
491
+ newpt[i] = point
492
+ elif old not in syms:
493
+ del newvars[i], newpt[i]
494
+ if not syms and new == self.point[i]:
495
+ newvars.extend(syms)
496
+ newpt.extend([S.Zero]*len(syms))
497
+ else:
498
+ return
499
+ return Order(newexpr, *zip(newvars, newpt))
500
+
501
+ def _eval_conjugate(self):
502
+ expr = self.expr._eval_conjugate()
503
+ if expr is not None:
504
+ return self.func(expr, *self.args[1:])
505
+
506
+ def _eval_derivative(self, x):
507
+ return self.func(self.expr.diff(x), *self.args[1:]) or self
508
+
509
+ def _eval_transpose(self):
510
+ expr = self.expr._eval_transpose()
511
+ if expr is not None:
512
+ return self.func(expr, *self.args[1:])
513
+
514
+ def __neg__(self):
515
+ return self
516
+
517
+ O = Order
llmeval-env/lib/python3.10/site-packages/sympy/series/residues.py ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ This module implements the Residue function and related tools for working
3
+ with residues.
4
+ """
5
+
6
+ from sympy.core.mul import Mul
7
+ from sympy.core.singleton import S
8
+ from sympy.core.sympify import sympify
9
+ from sympy.utilities.timeutils import timethis
10
+
11
+
12
+ @timethis('residue')
13
+ def residue(expr, x, x0):
14
+ """
15
+ Finds the residue of ``expr`` at the point x=x0.
16
+
17
+ The residue is defined as the coefficient of ``1/(x-x0)`` in the power series
18
+ expansion about ``x=x0``.
19
+
20
+ Examples
21
+ ========
22
+
23
+ >>> from sympy import Symbol, residue, sin
24
+ >>> x = Symbol("x")
25
+ >>> residue(1/x, x, 0)
26
+ 1
27
+ >>> residue(1/x**2, x, 0)
28
+ 0
29
+ >>> residue(2/sin(x), x, 0)
30
+ 2
31
+
32
+ This function is essential for the Residue Theorem [1].
33
+
34
+ References
35
+ ==========
36
+
37
+ .. [1] https://en.wikipedia.org/wiki/Residue_theorem
38
+ """
39
+ # The current implementation uses series expansion to
40
+ # calculate it. A more general implementation is explained in
41
+ # the section 5.6 of the Bronstein's book {M. Bronstein:
42
+ # Symbolic Integration I, Springer Verlag (2005)}. For purely
43
+ # rational functions, the algorithm is much easier. See
44
+ # sections 2.4, 2.5, and 2.7 (this section actually gives an
45
+ # algorithm for computing any Laurent series coefficient for
46
+ # a rational function). The theory in section 2.4 will help to
47
+ # understand why the resultant works in the general algorithm.
48
+ # For the definition of a resultant, see section 1.4 (and any
49
+ # previous sections for more review).
50
+
51
+ from sympy.series.order import Order
52
+ from sympy.simplify.radsimp import collect
53
+ expr = sympify(expr)
54
+ if x0 != 0:
55
+ expr = expr.subs(x, x + x0)
56
+ for n in (0, 1, 2, 4, 8, 16, 32):
57
+ s = expr.nseries(x, n=n)
58
+ if not s.has(Order) or s.getn() >= 0:
59
+ break
60
+ s = collect(s.removeO(), x)
61
+ if s.is_Add:
62
+ args = s.args
63
+ else:
64
+ args = [s]
65
+ res = S.Zero
66
+ for arg in args:
67
+ c, m = arg.as_coeff_mul(x)
68
+ m = Mul(*m)
69
+ if not (m in (S.One, x) or (m.is_Pow and m.exp.is_Integer)):
70
+ raise NotImplementedError('term of unexpected form: %s' % m)
71
+ if m == 1/x:
72
+ res += c
73
+ return res
llmeval-env/lib/python3.10/site-packages/sympy/series/tests/__init__.py ADDED
File without changes
llmeval-env/lib/python3.10/site-packages/sympy/series/tests/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (191 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/series/tests/__pycache__/test_approximants.cpython-310.pyc ADDED
Binary file (1.93 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/series/tests/__pycache__/test_aseries.cpython-310.pyc ADDED
Binary file (2.79 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/series/tests/__pycache__/test_demidovich.cpython-310.pyc ADDED
Binary file (6.28 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/series/tests/__pycache__/test_formal.cpython-310.pyc ADDED
Binary file (24.7 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/series/tests/__pycache__/test_fourier.cpython-310.pyc ADDED
Binary file (7.14 kB). View file