Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- env-llmeval/lib/python3.10/site-packages/pandas/core/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/__pycache__/accessor.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/__pycache__/algorithms.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/__pycache__/api.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/__pycache__/apply.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/__pycache__/arraylike.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/__pycache__/base.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/__pycache__/config_init.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/__pycache__/construction.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/__pycache__/flags.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/__pycache__/frame.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/__pycache__/generic.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/__pycache__/indexing.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/__pycache__/missing.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/__pycache__/nanops.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/__pycache__/resample.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/__pycache__/sample.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/__pycache__/series.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/__pycache__/sorting.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/array_algos/take.py +594 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/computation/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/computation/__pycache__/align.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/computation/__pycache__/api.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/computation/__pycache__/check.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/computation/__pycache__/common.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/computation/__pycache__/eval.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/computation/__pycache__/ops.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/computation/__pycache__/parsing.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/computation/__pycache__/pytables.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/computation/check.py +8 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/computation/common.py +48 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/computation/ops.py +621 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/computation/parsing.py +198 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/computation/scope.py +355 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/strings/base.py +262 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/tools/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/tools/__pycache__/datetimes.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/tools/__pycache__/numeric.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/tools/__pycache__/timedeltas.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/tools/__pycache__/times.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/tools/datetimes.py +1235 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/tools/numeric.py +329 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/window/__init__.py +23 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/window/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/window/__pycache__/common.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/window/__pycache__/doc.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/window/__pycache__/ewm.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/window/__pycache__/expanding.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/window/__pycache__/numba_.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/core/window/__pycache__/online.cpython-310.pyc +0 -0
env-llmeval/lib/python3.10/site-packages/pandas/core/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (176 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/core/__pycache__/accessor.cpython-310.pyc
ADDED
Binary file (11.2 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/core/__pycache__/algorithms.cpython-310.pyc
ADDED
Binary file (39.6 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/core/__pycache__/api.cpython-310.pyc
ADDED
Binary file (2.62 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/core/__pycache__/apply.cpython-310.pyc
ADDED
Binary file (49.8 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/core/__pycache__/arraylike.cpython-310.pyc
ADDED
Binary file (14.4 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/core/__pycache__/base.cpython-310.pyc
ADDED
Binary file (37.8 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/core/__pycache__/config_init.cpython-310.pyc
ADDED
Binary file (20.7 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/core/__pycache__/construction.cpython-310.pyc
ADDED
Binary file (19.7 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/core/__pycache__/flags.cpython-310.pyc
ADDED
Binary file (4.34 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/core/__pycache__/frame.cpython-310.pyc
ADDED
Binary file (363 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/core/__pycache__/generic.cpython-310.pyc
ADDED
Binary file (386 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/core/__pycache__/indexing.cpython-310.pyc
ADDED
Binary file (68.7 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/core/__pycache__/missing.cpython-310.pyc
ADDED
Binary file (26.6 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/core/__pycache__/nanops.cpython-310.pyc
ADDED
Binary file (37 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/core/__pycache__/resample.cpython-310.pyc
ADDED
Binary file (74.8 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/core/__pycache__/sample.cpython-310.pyc
ADDED
Binary file (3.96 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/core/__pycache__/series.cpython-310.pyc
ADDED
Binary file (176 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/core/__pycache__/sorting.cpython-310.pyc
ADDED
Binary file (19.9 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/core/array_algos/take.py
ADDED
@@ -0,0 +1,594 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
import functools
|
4 |
+
from typing import (
|
5 |
+
TYPE_CHECKING,
|
6 |
+
cast,
|
7 |
+
overload,
|
8 |
+
)
|
9 |
+
|
10 |
+
import numpy as np
|
11 |
+
|
12 |
+
from pandas._libs import (
|
13 |
+
algos as libalgos,
|
14 |
+
lib,
|
15 |
+
)
|
16 |
+
|
17 |
+
from pandas.core.dtypes.cast import maybe_promote
|
18 |
+
from pandas.core.dtypes.common import (
|
19 |
+
ensure_platform_int,
|
20 |
+
is_1d_only_ea_dtype,
|
21 |
+
)
|
22 |
+
from pandas.core.dtypes.missing import na_value_for_dtype
|
23 |
+
|
24 |
+
from pandas.core.construction import ensure_wrapped_if_datetimelike
|
25 |
+
|
26 |
+
if TYPE_CHECKING:
|
27 |
+
from pandas._typing import (
|
28 |
+
ArrayLike,
|
29 |
+
AxisInt,
|
30 |
+
npt,
|
31 |
+
)
|
32 |
+
|
33 |
+
from pandas.core.arrays._mixins import NDArrayBackedExtensionArray
|
34 |
+
from pandas.core.arrays.base import ExtensionArray
|
35 |
+
|
36 |
+
|
37 |
+
@overload
|
38 |
+
def take_nd(
|
39 |
+
arr: np.ndarray,
|
40 |
+
indexer,
|
41 |
+
axis: AxisInt = ...,
|
42 |
+
fill_value=...,
|
43 |
+
allow_fill: bool = ...,
|
44 |
+
) -> np.ndarray:
|
45 |
+
...
|
46 |
+
|
47 |
+
|
48 |
+
@overload
|
49 |
+
def take_nd(
|
50 |
+
arr: ExtensionArray,
|
51 |
+
indexer,
|
52 |
+
axis: AxisInt = ...,
|
53 |
+
fill_value=...,
|
54 |
+
allow_fill: bool = ...,
|
55 |
+
) -> ArrayLike:
|
56 |
+
...
|
57 |
+
|
58 |
+
|
59 |
+
def take_nd(
|
60 |
+
arr: ArrayLike,
|
61 |
+
indexer,
|
62 |
+
axis: AxisInt = 0,
|
63 |
+
fill_value=lib.no_default,
|
64 |
+
allow_fill: bool = True,
|
65 |
+
) -> ArrayLike:
|
66 |
+
"""
|
67 |
+
Specialized Cython take which sets NaN values in one pass
|
68 |
+
|
69 |
+
This dispatches to ``take`` defined on ExtensionArrays.
|
70 |
+
|
71 |
+
Note: this function assumes that the indexer is a valid(ated) indexer with
|
72 |
+
no out of bound indices.
|
73 |
+
|
74 |
+
Parameters
|
75 |
+
----------
|
76 |
+
arr : np.ndarray or ExtensionArray
|
77 |
+
Input array.
|
78 |
+
indexer : ndarray
|
79 |
+
1-D array of indices to take, subarrays corresponding to -1 value
|
80 |
+
indices are filed with fill_value
|
81 |
+
axis : int, default 0
|
82 |
+
Axis to take from
|
83 |
+
fill_value : any, default np.nan
|
84 |
+
Fill value to replace -1 values with
|
85 |
+
allow_fill : bool, default True
|
86 |
+
If False, indexer is assumed to contain no -1 values so no filling
|
87 |
+
will be done. This short-circuits computation of a mask. Result is
|
88 |
+
undefined if allow_fill == False and -1 is present in indexer.
|
89 |
+
|
90 |
+
Returns
|
91 |
+
-------
|
92 |
+
subarray : np.ndarray or ExtensionArray
|
93 |
+
May be the same type as the input, or cast to an ndarray.
|
94 |
+
"""
|
95 |
+
if fill_value is lib.no_default:
|
96 |
+
fill_value = na_value_for_dtype(arr.dtype, compat=False)
|
97 |
+
elif lib.is_np_dtype(arr.dtype, "mM"):
|
98 |
+
dtype, fill_value = maybe_promote(arr.dtype, fill_value)
|
99 |
+
if arr.dtype != dtype:
|
100 |
+
# EA.take is strict about returning a new object of the same type
|
101 |
+
# so for that case cast upfront
|
102 |
+
arr = arr.astype(dtype)
|
103 |
+
|
104 |
+
if not isinstance(arr, np.ndarray):
|
105 |
+
# i.e. ExtensionArray,
|
106 |
+
# includes for EA to catch DatetimeArray, TimedeltaArray
|
107 |
+
if not is_1d_only_ea_dtype(arr.dtype):
|
108 |
+
# i.e. DatetimeArray, TimedeltaArray
|
109 |
+
arr = cast("NDArrayBackedExtensionArray", arr)
|
110 |
+
return arr.take(
|
111 |
+
indexer, fill_value=fill_value, allow_fill=allow_fill, axis=axis
|
112 |
+
)
|
113 |
+
|
114 |
+
return arr.take(indexer, fill_value=fill_value, allow_fill=allow_fill)
|
115 |
+
|
116 |
+
arr = np.asarray(arr)
|
117 |
+
return _take_nd_ndarray(arr, indexer, axis, fill_value, allow_fill)
|
118 |
+
|
119 |
+
|
120 |
+
def _take_nd_ndarray(
|
121 |
+
arr: np.ndarray,
|
122 |
+
indexer: npt.NDArray[np.intp] | None,
|
123 |
+
axis: AxisInt,
|
124 |
+
fill_value,
|
125 |
+
allow_fill: bool,
|
126 |
+
) -> np.ndarray:
|
127 |
+
if indexer is None:
|
128 |
+
indexer = np.arange(arr.shape[axis], dtype=np.intp)
|
129 |
+
dtype, fill_value = arr.dtype, arr.dtype.type()
|
130 |
+
else:
|
131 |
+
indexer = ensure_platform_int(indexer)
|
132 |
+
|
133 |
+
dtype, fill_value, mask_info = _take_preprocess_indexer_and_fill_value(
|
134 |
+
arr, indexer, fill_value, allow_fill
|
135 |
+
)
|
136 |
+
|
137 |
+
flip_order = False
|
138 |
+
if arr.ndim == 2 and arr.flags.f_contiguous:
|
139 |
+
flip_order = True
|
140 |
+
|
141 |
+
if flip_order:
|
142 |
+
arr = arr.T
|
143 |
+
axis = arr.ndim - axis - 1
|
144 |
+
|
145 |
+
# at this point, it's guaranteed that dtype can hold both the arr values
|
146 |
+
# and the fill_value
|
147 |
+
out_shape_ = list(arr.shape)
|
148 |
+
out_shape_[axis] = len(indexer)
|
149 |
+
out_shape = tuple(out_shape_)
|
150 |
+
if arr.flags.f_contiguous and axis == arr.ndim - 1:
|
151 |
+
# minor tweak that can make an order-of-magnitude difference
|
152 |
+
# for dataframes initialized directly from 2-d ndarrays
|
153 |
+
# (s.t. df.values is c-contiguous and df._mgr.blocks[0] is its
|
154 |
+
# f-contiguous transpose)
|
155 |
+
out = np.empty(out_shape, dtype=dtype, order="F")
|
156 |
+
else:
|
157 |
+
out = np.empty(out_shape, dtype=dtype)
|
158 |
+
|
159 |
+
func = _get_take_nd_function(
|
160 |
+
arr.ndim, arr.dtype, out.dtype, axis=axis, mask_info=mask_info
|
161 |
+
)
|
162 |
+
func(arr, indexer, out, fill_value)
|
163 |
+
|
164 |
+
if flip_order:
|
165 |
+
out = out.T
|
166 |
+
return out
|
167 |
+
|
168 |
+
|
169 |
+
def take_1d(
|
170 |
+
arr: ArrayLike,
|
171 |
+
indexer: npt.NDArray[np.intp],
|
172 |
+
fill_value=None,
|
173 |
+
allow_fill: bool = True,
|
174 |
+
mask: npt.NDArray[np.bool_] | None = None,
|
175 |
+
) -> ArrayLike:
|
176 |
+
"""
|
177 |
+
Specialized version for 1D arrays. Differences compared to `take_nd`:
|
178 |
+
|
179 |
+
- Assumes input array has already been converted to numpy array / EA
|
180 |
+
- Assumes indexer is already guaranteed to be intp dtype ndarray
|
181 |
+
- Only works for 1D arrays
|
182 |
+
|
183 |
+
To ensure the lowest possible overhead.
|
184 |
+
|
185 |
+
Note: similarly to `take_nd`, this function assumes that the indexer is
|
186 |
+
a valid(ated) indexer with no out of bound indices.
|
187 |
+
|
188 |
+
Parameters
|
189 |
+
----------
|
190 |
+
arr : np.ndarray or ExtensionArray
|
191 |
+
Input array.
|
192 |
+
indexer : ndarray
|
193 |
+
1-D array of indices to take (validated indices, intp dtype).
|
194 |
+
fill_value : any, default np.nan
|
195 |
+
Fill value to replace -1 values with
|
196 |
+
allow_fill : bool, default True
|
197 |
+
If False, indexer is assumed to contain no -1 values so no filling
|
198 |
+
will be done. This short-circuits computation of a mask. Result is
|
199 |
+
undefined if allow_fill == False and -1 is present in indexer.
|
200 |
+
mask : np.ndarray, optional, default None
|
201 |
+
If `allow_fill` is True, and the mask (where indexer == -1) is already
|
202 |
+
known, it can be passed to avoid recomputation.
|
203 |
+
"""
|
204 |
+
if not isinstance(arr, np.ndarray):
|
205 |
+
# ExtensionArray -> dispatch to their method
|
206 |
+
return arr.take(indexer, fill_value=fill_value, allow_fill=allow_fill)
|
207 |
+
|
208 |
+
if not allow_fill:
|
209 |
+
return arr.take(indexer)
|
210 |
+
|
211 |
+
dtype, fill_value, mask_info = _take_preprocess_indexer_and_fill_value(
|
212 |
+
arr, indexer, fill_value, True, mask
|
213 |
+
)
|
214 |
+
|
215 |
+
# at this point, it's guaranteed that dtype can hold both the arr values
|
216 |
+
# and the fill_value
|
217 |
+
out = np.empty(indexer.shape, dtype=dtype)
|
218 |
+
|
219 |
+
func = _get_take_nd_function(
|
220 |
+
arr.ndim, arr.dtype, out.dtype, axis=0, mask_info=mask_info
|
221 |
+
)
|
222 |
+
func(arr, indexer, out, fill_value)
|
223 |
+
|
224 |
+
return out
|
225 |
+
|
226 |
+
|
227 |
+
def take_2d_multi(
|
228 |
+
arr: np.ndarray,
|
229 |
+
indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
|
230 |
+
fill_value=np.nan,
|
231 |
+
) -> np.ndarray:
|
232 |
+
"""
|
233 |
+
Specialized Cython take which sets NaN values in one pass.
|
234 |
+
"""
|
235 |
+
# This is only called from one place in DataFrame._reindex_multi,
|
236 |
+
# so we know indexer is well-behaved.
|
237 |
+
assert indexer is not None
|
238 |
+
assert indexer[0] is not None
|
239 |
+
assert indexer[1] is not None
|
240 |
+
|
241 |
+
row_idx, col_idx = indexer
|
242 |
+
|
243 |
+
row_idx = ensure_platform_int(row_idx)
|
244 |
+
col_idx = ensure_platform_int(col_idx)
|
245 |
+
indexer = row_idx, col_idx
|
246 |
+
mask_info = None
|
247 |
+
|
248 |
+
# check for promotion based on types only (do this first because
|
249 |
+
# it's faster than computing a mask)
|
250 |
+
dtype, fill_value = maybe_promote(arr.dtype, fill_value)
|
251 |
+
if dtype != arr.dtype:
|
252 |
+
# check if promotion is actually required based on indexer
|
253 |
+
row_mask = row_idx == -1
|
254 |
+
col_mask = col_idx == -1
|
255 |
+
row_needs = row_mask.any()
|
256 |
+
col_needs = col_mask.any()
|
257 |
+
mask_info = (row_mask, col_mask), (row_needs, col_needs)
|
258 |
+
|
259 |
+
if not (row_needs or col_needs):
|
260 |
+
# if not, then depromote, set fill_value to dummy
|
261 |
+
# (it won't be used but we don't want the cython code
|
262 |
+
# to crash when trying to cast it to dtype)
|
263 |
+
dtype, fill_value = arr.dtype, arr.dtype.type()
|
264 |
+
|
265 |
+
# at this point, it's guaranteed that dtype can hold both the arr values
|
266 |
+
# and the fill_value
|
267 |
+
out_shape = len(row_idx), len(col_idx)
|
268 |
+
out = np.empty(out_shape, dtype=dtype)
|
269 |
+
|
270 |
+
func = _take_2d_multi_dict.get((arr.dtype.name, out.dtype.name), None)
|
271 |
+
if func is None and arr.dtype != out.dtype:
|
272 |
+
func = _take_2d_multi_dict.get((out.dtype.name, out.dtype.name), None)
|
273 |
+
if func is not None:
|
274 |
+
func = _convert_wrapper(func, out.dtype)
|
275 |
+
|
276 |
+
if func is not None:
|
277 |
+
func(arr, indexer, out=out, fill_value=fill_value)
|
278 |
+
else:
|
279 |
+
# test_reindex_multi
|
280 |
+
_take_2d_multi_object(
|
281 |
+
arr, indexer, out, fill_value=fill_value, mask_info=mask_info
|
282 |
+
)
|
283 |
+
|
284 |
+
return out
|
285 |
+
|
286 |
+
|
287 |
+
@functools.lru_cache
|
288 |
+
def _get_take_nd_function_cached(
|
289 |
+
ndim: int, arr_dtype: np.dtype, out_dtype: np.dtype, axis: AxisInt
|
290 |
+
):
|
291 |
+
"""
|
292 |
+
Part of _get_take_nd_function below that doesn't need `mask_info` and thus
|
293 |
+
can be cached (mask_info potentially contains a numpy ndarray which is not
|
294 |
+
hashable and thus cannot be used as argument for cached function).
|
295 |
+
"""
|
296 |
+
tup = (arr_dtype.name, out_dtype.name)
|
297 |
+
if ndim == 1:
|
298 |
+
func = _take_1d_dict.get(tup, None)
|
299 |
+
elif ndim == 2:
|
300 |
+
if axis == 0:
|
301 |
+
func = _take_2d_axis0_dict.get(tup, None)
|
302 |
+
else:
|
303 |
+
func = _take_2d_axis1_dict.get(tup, None)
|
304 |
+
if func is not None:
|
305 |
+
return func
|
306 |
+
|
307 |
+
# We get here with string, uint, float16, and complex dtypes that could
|
308 |
+
# potentially be handled in algos_take_helper.
|
309 |
+
# Also a couple with (M8[ns], object) and (m8[ns], object)
|
310 |
+
tup = (out_dtype.name, out_dtype.name)
|
311 |
+
if ndim == 1:
|
312 |
+
func = _take_1d_dict.get(tup, None)
|
313 |
+
elif ndim == 2:
|
314 |
+
if axis == 0:
|
315 |
+
func = _take_2d_axis0_dict.get(tup, None)
|
316 |
+
else:
|
317 |
+
func = _take_2d_axis1_dict.get(tup, None)
|
318 |
+
if func is not None:
|
319 |
+
func = _convert_wrapper(func, out_dtype)
|
320 |
+
return func
|
321 |
+
|
322 |
+
return None
|
323 |
+
|
324 |
+
|
325 |
+
def _get_take_nd_function(
|
326 |
+
ndim: int,
|
327 |
+
arr_dtype: np.dtype,
|
328 |
+
out_dtype: np.dtype,
|
329 |
+
axis: AxisInt = 0,
|
330 |
+
mask_info=None,
|
331 |
+
):
|
332 |
+
"""
|
333 |
+
Get the appropriate "take" implementation for the given dimension, axis
|
334 |
+
and dtypes.
|
335 |
+
"""
|
336 |
+
func = None
|
337 |
+
if ndim <= 2:
|
338 |
+
# for this part we don't need `mask_info` -> use the cached algo lookup
|
339 |
+
func = _get_take_nd_function_cached(ndim, arr_dtype, out_dtype, axis)
|
340 |
+
|
341 |
+
if func is None:
|
342 |
+
|
343 |
+
def func(arr, indexer, out, fill_value=np.nan) -> None:
|
344 |
+
indexer = ensure_platform_int(indexer)
|
345 |
+
_take_nd_object(
|
346 |
+
arr, indexer, out, axis=axis, fill_value=fill_value, mask_info=mask_info
|
347 |
+
)
|
348 |
+
|
349 |
+
return func
|
350 |
+
|
351 |
+
|
352 |
+
def _view_wrapper(f, arr_dtype=None, out_dtype=None, fill_wrap=None):
|
353 |
+
def wrapper(
|
354 |
+
arr: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=np.nan
|
355 |
+
) -> None:
|
356 |
+
if arr_dtype is not None:
|
357 |
+
arr = arr.view(arr_dtype)
|
358 |
+
if out_dtype is not None:
|
359 |
+
out = out.view(out_dtype)
|
360 |
+
if fill_wrap is not None:
|
361 |
+
# FIXME: if we get here with dt64/td64 we need to be sure we have
|
362 |
+
# matching resos
|
363 |
+
if fill_value.dtype.kind == "m":
|
364 |
+
fill_value = fill_value.astype("m8[ns]")
|
365 |
+
else:
|
366 |
+
fill_value = fill_value.astype("M8[ns]")
|
367 |
+
fill_value = fill_wrap(fill_value)
|
368 |
+
|
369 |
+
f(arr, indexer, out, fill_value=fill_value)
|
370 |
+
|
371 |
+
return wrapper
|
372 |
+
|
373 |
+
|
374 |
+
def _convert_wrapper(f, conv_dtype):
|
375 |
+
def wrapper(
|
376 |
+
arr: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=np.nan
|
377 |
+
) -> None:
|
378 |
+
if conv_dtype == object:
|
379 |
+
# GH#39755 avoid casting dt64/td64 to integers
|
380 |
+
arr = ensure_wrapped_if_datetimelike(arr)
|
381 |
+
arr = arr.astype(conv_dtype)
|
382 |
+
f(arr, indexer, out, fill_value=fill_value)
|
383 |
+
|
384 |
+
return wrapper
|
385 |
+
|
386 |
+
|
387 |
+
_take_1d_dict = {
|
388 |
+
("int8", "int8"): libalgos.take_1d_int8_int8,
|
389 |
+
("int8", "int32"): libalgos.take_1d_int8_int32,
|
390 |
+
("int8", "int64"): libalgos.take_1d_int8_int64,
|
391 |
+
("int8", "float64"): libalgos.take_1d_int8_float64,
|
392 |
+
("int16", "int16"): libalgos.take_1d_int16_int16,
|
393 |
+
("int16", "int32"): libalgos.take_1d_int16_int32,
|
394 |
+
("int16", "int64"): libalgos.take_1d_int16_int64,
|
395 |
+
("int16", "float64"): libalgos.take_1d_int16_float64,
|
396 |
+
("int32", "int32"): libalgos.take_1d_int32_int32,
|
397 |
+
("int32", "int64"): libalgos.take_1d_int32_int64,
|
398 |
+
("int32", "float64"): libalgos.take_1d_int32_float64,
|
399 |
+
("int64", "int64"): libalgos.take_1d_int64_int64,
|
400 |
+
("int64", "float64"): libalgos.take_1d_int64_float64,
|
401 |
+
("float32", "float32"): libalgos.take_1d_float32_float32,
|
402 |
+
("float32", "float64"): libalgos.take_1d_float32_float64,
|
403 |
+
("float64", "float64"): libalgos.take_1d_float64_float64,
|
404 |
+
("object", "object"): libalgos.take_1d_object_object,
|
405 |
+
("bool", "bool"): _view_wrapper(libalgos.take_1d_bool_bool, np.uint8, np.uint8),
|
406 |
+
("bool", "object"): _view_wrapper(libalgos.take_1d_bool_object, np.uint8, None),
|
407 |
+
("datetime64[ns]", "datetime64[ns]"): _view_wrapper(
|
408 |
+
libalgos.take_1d_int64_int64, np.int64, np.int64, np.int64
|
409 |
+
),
|
410 |
+
("timedelta64[ns]", "timedelta64[ns]"): _view_wrapper(
|
411 |
+
libalgos.take_1d_int64_int64, np.int64, np.int64, np.int64
|
412 |
+
),
|
413 |
+
}
|
414 |
+
|
415 |
+
_take_2d_axis0_dict = {
|
416 |
+
("int8", "int8"): libalgos.take_2d_axis0_int8_int8,
|
417 |
+
("int8", "int32"): libalgos.take_2d_axis0_int8_int32,
|
418 |
+
("int8", "int64"): libalgos.take_2d_axis0_int8_int64,
|
419 |
+
("int8", "float64"): libalgos.take_2d_axis0_int8_float64,
|
420 |
+
("int16", "int16"): libalgos.take_2d_axis0_int16_int16,
|
421 |
+
("int16", "int32"): libalgos.take_2d_axis0_int16_int32,
|
422 |
+
("int16", "int64"): libalgos.take_2d_axis0_int16_int64,
|
423 |
+
("int16", "float64"): libalgos.take_2d_axis0_int16_float64,
|
424 |
+
("int32", "int32"): libalgos.take_2d_axis0_int32_int32,
|
425 |
+
("int32", "int64"): libalgos.take_2d_axis0_int32_int64,
|
426 |
+
("int32", "float64"): libalgos.take_2d_axis0_int32_float64,
|
427 |
+
("int64", "int64"): libalgos.take_2d_axis0_int64_int64,
|
428 |
+
("int64", "float64"): libalgos.take_2d_axis0_int64_float64,
|
429 |
+
("float32", "float32"): libalgos.take_2d_axis0_float32_float32,
|
430 |
+
("float32", "float64"): libalgos.take_2d_axis0_float32_float64,
|
431 |
+
("float64", "float64"): libalgos.take_2d_axis0_float64_float64,
|
432 |
+
("object", "object"): libalgos.take_2d_axis0_object_object,
|
433 |
+
("bool", "bool"): _view_wrapper(
|
434 |
+
libalgos.take_2d_axis0_bool_bool, np.uint8, np.uint8
|
435 |
+
),
|
436 |
+
("bool", "object"): _view_wrapper(
|
437 |
+
libalgos.take_2d_axis0_bool_object, np.uint8, None
|
438 |
+
),
|
439 |
+
("datetime64[ns]", "datetime64[ns]"): _view_wrapper(
|
440 |
+
libalgos.take_2d_axis0_int64_int64, np.int64, np.int64, fill_wrap=np.int64
|
441 |
+
),
|
442 |
+
("timedelta64[ns]", "timedelta64[ns]"): _view_wrapper(
|
443 |
+
libalgos.take_2d_axis0_int64_int64, np.int64, np.int64, fill_wrap=np.int64
|
444 |
+
),
|
445 |
+
}
|
446 |
+
|
447 |
+
_take_2d_axis1_dict = {
|
448 |
+
("int8", "int8"): libalgos.take_2d_axis1_int8_int8,
|
449 |
+
("int8", "int32"): libalgos.take_2d_axis1_int8_int32,
|
450 |
+
("int8", "int64"): libalgos.take_2d_axis1_int8_int64,
|
451 |
+
("int8", "float64"): libalgos.take_2d_axis1_int8_float64,
|
452 |
+
("int16", "int16"): libalgos.take_2d_axis1_int16_int16,
|
453 |
+
("int16", "int32"): libalgos.take_2d_axis1_int16_int32,
|
454 |
+
("int16", "int64"): libalgos.take_2d_axis1_int16_int64,
|
455 |
+
("int16", "float64"): libalgos.take_2d_axis1_int16_float64,
|
456 |
+
("int32", "int32"): libalgos.take_2d_axis1_int32_int32,
|
457 |
+
("int32", "int64"): libalgos.take_2d_axis1_int32_int64,
|
458 |
+
("int32", "float64"): libalgos.take_2d_axis1_int32_float64,
|
459 |
+
("int64", "int64"): libalgos.take_2d_axis1_int64_int64,
|
460 |
+
("int64", "float64"): libalgos.take_2d_axis1_int64_float64,
|
461 |
+
("float32", "float32"): libalgos.take_2d_axis1_float32_float32,
|
462 |
+
("float32", "float64"): libalgos.take_2d_axis1_float32_float64,
|
463 |
+
("float64", "float64"): libalgos.take_2d_axis1_float64_float64,
|
464 |
+
("object", "object"): libalgos.take_2d_axis1_object_object,
|
465 |
+
("bool", "bool"): _view_wrapper(
|
466 |
+
libalgos.take_2d_axis1_bool_bool, np.uint8, np.uint8
|
467 |
+
),
|
468 |
+
("bool", "object"): _view_wrapper(
|
469 |
+
libalgos.take_2d_axis1_bool_object, np.uint8, None
|
470 |
+
),
|
471 |
+
("datetime64[ns]", "datetime64[ns]"): _view_wrapper(
|
472 |
+
libalgos.take_2d_axis1_int64_int64, np.int64, np.int64, fill_wrap=np.int64
|
473 |
+
),
|
474 |
+
("timedelta64[ns]", "timedelta64[ns]"): _view_wrapper(
|
475 |
+
libalgos.take_2d_axis1_int64_int64, np.int64, np.int64, fill_wrap=np.int64
|
476 |
+
),
|
477 |
+
}
|
478 |
+
|
479 |
+
_take_2d_multi_dict = {
|
480 |
+
("int8", "int8"): libalgos.take_2d_multi_int8_int8,
|
481 |
+
("int8", "int32"): libalgos.take_2d_multi_int8_int32,
|
482 |
+
("int8", "int64"): libalgos.take_2d_multi_int8_int64,
|
483 |
+
("int8", "float64"): libalgos.take_2d_multi_int8_float64,
|
484 |
+
("int16", "int16"): libalgos.take_2d_multi_int16_int16,
|
485 |
+
("int16", "int32"): libalgos.take_2d_multi_int16_int32,
|
486 |
+
("int16", "int64"): libalgos.take_2d_multi_int16_int64,
|
487 |
+
("int16", "float64"): libalgos.take_2d_multi_int16_float64,
|
488 |
+
("int32", "int32"): libalgos.take_2d_multi_int32_int32,
|
489 |
+
("int32", "int64"): libalgos.take_2d_multi_int32_int64,
|
490 |
+
("int32", "float64"): libalgos.take_2d_multi_int32_float64,
|
491 |
+
("int64", "int64"): libalgos.take_2d_multi_int64_int64,
|
492 |
+
("int64", "float64"): libalgos.take_2d_multi_int64_float64,
|
493 |
+
("float32", "float32"): libalgos.take_2d_multi_float32_float32,
|
494 |
+
("float32", "float64"): libalgos.take_2d_multi_float32_float64,
|
495 |
+
("float64", "float64"): libalgos.take_2d_multi_float64_float64,
|
496 |
+
("object", "object"): libalgos.take_2d_multi_object_object,
|
497 |
+
("bool", "bool"): _view_wrapper(
|
498 |
+
libalgos.take_2d_multi_bool_bool, np.uint8, np.uint8
|
499 |
+
),
|
500 |
+
("bool", "object"): _view_wrapper(
|
501 |
+
libalgos.take_2d_multi_bool_object, np.uint8, None
|
502 |
+
),
|
503 |
+
("datetime64[ns]", "datetime64[ns]"): _view_wrapper(
|
504 |
+
libalgos.take_2d_multi_int64_int64, np.int64, np.int64, fill_wrap=np.int64
|
505 |
+
),
|
506 |
+
("timedelta64[ns]", "timedelta64[ns]"): _view_wrapper(
|
507 |
+
libalgos.take_2d_multi_int64_int64, np.int64, np.int64, fill_wrap=np.int64
|
508 |
+
),
|
509 |
+
}
|
510 |
+
|
511 |
+
|
512 |
+
def _take_nd_object(
|
513 |
+
arr: np.ndarray,
|
514 |
+
indexer: npt.NDArray[np.intp],
|
515 |
+
out: np.ndarray,
|
516 |
+
axis: AxisInt,
|
517 |
+
fill_value,
|
518 |
+
mask_info,
|
519 |
+
) -> None:
|
520 |
+
if mask_info is not None:
|
521 |
+
mask, needs_masking = mask_info
|
522 |
+
else:
|
523 |
+
mask = indexer == -1
|
524 |
+
needs_masking = mask.any()
|
525 |
+
if arr.dtype != out.dtype:
|
526 |
+
arr = arr.astype(out.dtype)
|
527 |
+
if arr.shape[axis] > 0:
|
528 |
+
arr.take(indexer, axis=axis, out=out)
|
529 |
+
if needs_masking:
|
530 |
+
outindexer = [slice(None)] * arr.ndim
|
531 |
+
outindexer[axis] = mask
|
532 |
+
out[tuple(outindexer)] = fill_value
|
533 |
+
|
534 |
+
|
535 |
+
def _take_2d_multi_object(
|
536 |
+
arr: np.ndarray,
|
537 |
+
indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
|
538 |
+
out: np.ndarray,
|
539 |
+
fill_value,
|
540 |
+
mask_info,
|
541 |
+
) -> None:
|
542 |
+
# this is not ideal, performance-wise, but it's better than raising
|
543 |
+
# an exception (best to optimize in Cython to avoid getting here)
|
544 |
+
row_idx, col_idx = indexer # both np.intp
|
545 |
+
if mask_info is not None:
|
546 |
+
(row_mask, col_mask), (row_needs, col_needs) = mask_info
|
547 |
+
else:
|
548 |
+
row_mask = row_idx == -1
|
549 |
+
col_mask = col_idx == -1
|
550 |
+
row_needs = row_mask.any()
|
551 |
+
col_needs = col_mask.any()
|
552 |
+
if fill_value is not None:
|
553 |
+
if row_needs:
|
554 |
+
out[row_mask, :] = fill_value
|
555 |
+
if col_needs:
|
556 |
+
out[:, col_mask] = fill_value
|
557 |
+
for i, u_ in enumerate(row_idx):
|
558 |
+
if u_ != -1:
|
559 |
+
for j, v in enumerate(col_idx):
|
560 |
+
if v != -1:
|
561 |
+
out[i, j] = arr[u_, v]
|
562 |
+
|
563 |
+
|
564 |
+
def _take_preprocess_indexer_and_fill_value(
|
565 |
+
arr: np.ndarray,
|
566 |
+
indexer: npt.NDArray[np.intp],
|
567 |
+
fill_value,
|
568 |
+
allow_fill: bool,
|
569 |
+
mask: npt.NDArray[np.bool_] | None = None,
|
570 |
+
):
|
571 |
+
mask_info: tuple[np.ndarray | None, bool] | None = None
|
572 |
+
|
573 |
+
if not allow_fill:
|
574 |
+
dtype, fill_value = arr.dtype, arr.dtype.type()
|
575 |
+
mask_info = None, False
|
576 |
+
else:
|
577 |
+
# check for promotion based on types only (do this first because
|
578 |
+
# it's faster than computing a mask)
|
579 |
+
dtype, fill_value = maybe_promote(arr.dtype, fill_value)
|
580 |
+
if dtype != arr.dtype:
|
581 |
+
# check if promotion is actually required based on indexer
|
582 |
+
if mask is not None:
|
583 |
+
needs_masking = True
|
584 |
+
else:
|
585 |
+
mask = indexer == -1
|
586 |
+
needs_masking = bool(mask.any())
|
587 |
+
mask_info = mask, needs_masking
|
588 |
+
if not needs_masking:
|
589 |
+
# if not, then depromote, set fill_value to dummy
|
590 |
+
# (it won't be used but we don't want the cython code
|
591 |
+
# to crash when trying to cast it to dtype)
|
592 |
+
dtype, fill_value = arr.dtype, arr.dtype.type()
|
593 |
+
|
594 |
+
return dtype, fill_value, mask_info
|
env-llmeval/lib/python3.10/site-packages/pandas/core/computation/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (188 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/core/computation/__pycache__/align.cpython-310.pyc
ADDED
Binary file (6.12 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/core/computation/__pycache__/api.cpython-310.pyc
ADDED
Binary file (262 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/core/computation/__pycache__/check.cpython-310.pyc
ADDED
Binary file (399 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/core/computation/__pycache__/common.cpython-310.pyc
ADDED
Binary file (1.36 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/core/computation/__pycache__/eval.cpython-310.pyc
ADDED
Binary file (11.9 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/core/computation/__pycache__/ops.cpython-310.pyc
ADDED
Binary file (17 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/core/computation/__pycache__/parsing.cpython-310.pyc
ADDED
Binary file (6.08 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/core/computation/__pycache__/pytables.cpython-310.pyc
ADDED
Binary file (19.7 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/core/computation/check.py
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
from pandas.compat._optional import import_optional_dependency
|
4 |
+
|
5 |
+
ne = import_optional_dependency("numexpr", errors="warn")
|
6 |
+
NUMEXPR_INSTALLED = ne is not None
|
7 |
+
|
8 |
+
__all__ = ["NUMEXPR_INSTALLED"]
|
env-llmeval/lib/python3.10/site-packages/pandas/core/computation/common.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
from functools import reduce
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
from pandas._config import get_option
|
8 |
+
|
9 |
+
|
10 |
+
def ensure_decoded(s) -> str:
|
11 |
+
"""
|
12 |
+
If we have bytes, decode them to unicode.
|
13 |
+
"""
|
14 |
+
if isinstance(s, (np.bytes_, bytes)):
|
15 |
+
s = s.decode(get_option("display.encoding"))
|
16 |
+
return s
|
17 |
+
|
18 |
+
|
19 |
+
def result_type_many(*arrays_and_dtypes):
|
20 |
+
"""
|
21 |
+
Wrapper around numpy.result_type which overcomes the NPY_MAXARGS (32)
|
22 |
+
argument limit.
|
23 |
+
"""
|
24 |
+
try:
|
25 |
+
return np.result_type(*arrays_and_dtypes)
|
26 |
+
except ValueError:
|
27 |
+
# we have > NPY_MAXARGS terms in our expression
|
28 |
+
return reduce(np.result_type, arrays_and_dtypes)
|
29 |
+
except TypeError:
|
30 |
+
from pandas.core.dtypes.cast import find_common_type
|
31 |
+
from pandas.core.dtypes.common import is_extension_array_dtype
|
32 |
+
|
33 |
+
arr_and_dtypes = list(arrays_and_dtypes)
|
34 |
+
ea_dtypes, non_ea_dtypes = [], []
|
35 |
+
for arr_or_dtype in arr_and_dtypes:
|
36 |
+
if is_extension_array_dtype(arr_or_dtype):
|
37 |
+
ea_dtypes.append(arr_or_dtype)
|
38 |
+
else:
|
39 |
+
non_ea_dtypes.append(arr_or_dtype)
|
40 |
+
|
41 |
+
if non_ea_dtypes:
|
42 |
+
try:
|
43 |
+
np_dtype = np.result_type(*non_ea_dtypes)
|
44 |
+
except ValueError:
|
45 |
+
np_dtype = reduce(np.result_type, arrays_and_dtypes)
|
46 |
+
return find_common_type(ea_dtypes + [np_dtype])
|
47 |
+
|
48 |
+
return find_common_type(ea_dtypes)
|
env-llmeval/lib/python3.10/site-packages/pandas/core/computation/ops.py
ADDED
@@ -0,0 +1,621 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Operator classes for eval.
|
3 |
+
"""
|
4 |
+
|
5 |
+
from __future__ import annotations
|
6 |
+
|
7 |
+
from datetime import datetime
|
8 |
+
from functools import partial
|
9 |
+
import operator
|
10 |
+
from typing import (
|
11 |
+
TYPE_CHECKING,
|
12 |
+
Callable,
|
13 |
+
Literal,
|
14 |
+
)
|
15 |
+
|
16 |
+
import numpy as np
|
17 |
+
|
18 |
+
from pandas._libs.tslibs import Timestamp
|
19 |
+
|
20 |
+
from pandas.core.dtypes.common import (
|
21 |
+
is_list_like,
|
22 |
+
is_scalar,
|
23 |
+
)
|
24 |
+
|
25 |
+
import pandas.core.common as com
|
26 |
+
from pandas.core.computation.common import (
|
27 |
+
ensure_decoded,
|
28 |
+
result_type_many,
|
29 |
+
)
|
30 |
+
from pandas.core.computation.scope import DEFAULT_GLOBALS
|
31 |
+
|
32 |
+
from pandas.io.formats.printing import (
|
33 |
+
pprint_thing,
|
34 |
+
pprint_thing_encoded,
|
35 |
+
)
|
36 |
+
|
37 |
+
if TYPE_CHECKING:
|
38 |
+
from collections.abc import (
|
39 |
+
Iterable,
|
40 |
+
Iterator,
|
41 |
+
)
|
42 |
+
|
43 |
+
REDUCTIONS = ("sum", "prod", "min", "max")
|
44 |
+
|
45 |
+
_unary_math_ops = (
|
46 |
+
"sin",
|
47 |
+
"cos",
|
48 |
+
"exp",
|
49 |
+
"log",
|
50 |
+
"expm1",
|
51 |
+
"log1p",
|
52 |
+
"sqrt",
|
53 |
+
"sinh",
|
54 |
+
"cosh",
|
55 |
+
"tanh",
|
56 |
+
"arcsin",
|
57 |
+
"arccos",
|
58 |
+
"arctan",
|
59 |
+
"arccosh",
|
60 |
+
"arcsinh",
|
61 |
+
"arctanh",
|
62 |
+
"abs",
|
63 |
+
"log10",
|
64 |
+
"floor",
|
65 |
+
"ceil",
|
66 |
+
)
|
67 |
+
_binary_math_ops = ("arctan2",)
|
68 |
+
|
69 |
+
MATHOPS = _unary_math_ops + _binary_math_ops
|
70 |
+
|
71 |
+
|
72 |
+
LOCAL_TAG = "__pd_eval_local_"
|
73 |
+
|
74 |
+
|
75 |
+
class Term:
|
76 |
+
def __new__(cls, name, env, side=None, encoding=None):
|
77 |
+
klass = Constant if not isinstance(name, str) else cls
|
78 |
+
# error: Argument 2 for "super" not an instance of argument 1
|
79 |
+
supr_new = super(Term, klass).__new__ # type: ignore[misc]
|
80 |
+
return supr_new(klass)
|
81 |
+
|
82 |
+
is_local: bool
|
83 |
+
|
84 |
+
def __init__(self, name, env, side=None, encoding=None) -> None:
|
85 |
+
# name is a str for Term, but may be something else for subclasses
|
86 |
+
self._name = name
|
87 |
+
self.env = env
|
88 |
+
self.side = side
|
89 |
+
tname = str(name)
|
90 |
+
self.is_local = tname.startswith(LOCAL_TAG) or tname in DEFAULT_GLOBALS
|
91 |
+
self._value = self._resolve_name()
|
92 |
+
self.encoding = encoding
|
93 |
+
|
94 |
+
@property
|
95 |
+
def local_name(self) -> str:
|
96 |
+
return self.name.replace(LOCAL_TAG, "")
|
97 |
+
|
98 |
+
def __repr__(self) -> str:
|
99 |
+
return pprint_thing(self.name)
|
100 |
+
|
101 |
+
def __call__(self, *args, **kwargs):
|
102 |
+
return self.value
|
103 |
+
|
104 |
+
def evaluate(self, *args, **kwargs) -> Term:
|
105 |
+
return self
|
106 |
+
|
107 |
+
def _resolve_name(self):
|
108 |
+
local_name = str(self.local_name)
|
109 |
+
is_local = self.is_local
|
110 |
+
if local_name in self.env.scope and isinstance(
|
111 |
+
self.env.scope[local_name], type
|
112 |
+
):
|
113 |
+
is_local = False
|
114 |
+
|
115 |
+
res = self.env.resolve(local_name, is_local=is_local)
|
116 |
+
self.update(res)
|
117 |
+
|
118 |
+
if hasattr(res, "ndim") and res.ndim > 2:
|
119 |
+
raise NotImplementedError(
|
120 |
+
"N-dimensional objects, where N > 2, are not supported with eval"
|
121 |
+
)
|
122 |
+
return res
|
123 |
+
|
124 |
+
def update(self, value) -> None:
|
125 |
+
"""
|
126 |
+
search order for local (i.e., @variable) variables:
|
127 |
+
|
128 |
+
scope, key_variable
|
129 |
+
[('locals', 'local_name'),
|
130 |
+
('globals', 'local_name'),
|
131 |
+
('locals', 'key'),
|
132 |
+
('globals', 'key')]
|
133 |
+
"""
|
134 |
+
key = self.name
|
135 |
+
|
136 |
+
# if it's a variable name (otherwise a constant)
|
137 |
+
if isinstance(key, str):
|
138 |
+
self.env.swapkey(self.local_name, key, new_value=value)
|
139 |
+
|
140 |
+
self.value = value
|
141 |
+
|
142 |
+
@property
|
143 |
+
def is_scalar(self) -> bool:
|
144 |
+
return is_scalar(self._value)
|
145 |
+
|
146 |
+
@property
|
147 |
+
def type(self):
|
148 |
+
try:
|
149 |
+
# potentially very slow for large, mixed dtype frames
|
150 |
+
return self._value.values.dtype
|
151 |
+
except AttributeError:
|
152 |
+
try:
|
153 |
+
# ndarray
|
154 |
+
return self._value.dtype
|
155 |
+
except AttributeError:
|
156 |
+
# scalar
|
157 |
+
return type(self._value)
|
158 |
+
|
159 |
+
return_type = type
|
160 |
+
|
161 |
+
@property
|
162 |
+
def raw(self) -> str:
|
163 |
+
return f"{type(self).__name__}(name={repr(self.name)}, type={self.type})"
|
164 |
+
|
165 |
+
@property
|
166 |
+
def is_datetime(self) -> bool:
|
167 |
+
try:
|
168 |
+
t = self.type.type
|
169 |
+
except AttributeError:
|
170 |
+
t = self.type
|
171 |
+
|
172 |
+
return issubclass(t, (datetime, np.datetime64))
|
173 |
+
|
174 |
+
@property
|
175 |
+
def value(self):
|
176 |
+
return self._value
|
177 |
+
|
178 |
+
@value.setter
|
179 |
+
def value(self, new_value) -> None:
|
180 |
+
self._value = new_value
|
181 |
+
|
182 |
+
@property
|
183 |
+
def name(self):
|
184 |
+
return self._name
|
185 |
+
|
186 |
+
@property
|
187 |
+
def ndim(self) -> int:
|
188 |
+
return self._value.ndim
|
189 |
+
|
190 |
+
|
191 |
+
class Constant(Term):
|
192 |
+
def _resolve_name(self):
|
193 |
+
return self._name
|
194 |
+
|
195 |
+
@property
|
196 |
+
def name(self):
|
197 |
+
return self.value
|
198 |
+
|
199 |
+
def __repr__(self) -> str:
|
200 |
+
# in python 2 str() of float
|
201 |
+
# can truncate shorter than repr()
|
202 |
+
return repr(self.name)
|
203 |
+
|
204 |
+
|
205 |
+
_bool_op_map = {"not": "~", "and": "&", "or": "|"}
|
206 |
+
|
207 |
+
|
208 |
+
class Op:
|
209 |
+
"""
|
210 |
+
Hold an operator of arbitrary arity.
|
211 |
+
"""
|
212 |
+
|
213 |
+
op: str
|
214 |
+
|
215 |
+
def __init__(self, op: str, operands: Iterable[Term | Op], encoding=None) -> None:
|
216 |
+
self.op = _bool_op_map.get(op, op)
|
217 |
+
self.operands = operands
|
218 |
+
self.encoding = encoding
|
219 |
+
|
220 |
+
def __iter__(self) -> Iterator:
|
221 |
+
return iter(self.operands)
|
222 |
+
|
223 |
+
def __repr__(self) -> str:
|
224 |
+
"""
|
225 |
+
Print a generic n-ary operator and its operands using infix notation.
|
226 |
+
"""
|
227 |
+
# recurse over the operands
|
228 |
+
parened = (f"({pprint_thing(opr)})" for opr in self.operands)
|
229 |
+
return pprint_thing(f" {self.op} ".join(parened))
|
230 |
+
|
231 |
+
@property
|
232 |
+
def return_type(self):
|
233 |
+
# clobber types to bool if the op is a boolean operator
|
234 |
+
if self.op in (CMP_OPS_SYMS + BOOL_OPS_SYMS):
|
235 |
+
return np.bool_
|
236 |
+
return result_type_many(*(term.type for term in com.flatten(self)))
|
237 |
+
|
238 |
+
@property
|
239 |
+
def has_invalid_return_type(self) -> bool:
|
240 |
+
types = self.operand_types
|
241 |
+
obj_dtype_set = frozenset([np.dtype("object")])
|
242 |
+
return self.return_type == object and types - obj_dtype_set
|
243 |
+
|
244 |
+
@property
|
245 |
+
def operand_types(self):
|
246 |
+
return frozenset(term.type for term in com.flatten(self))
|
247 |
+
|
248 |
+
@property
|
249 |
+
def is_scalar(self) -> bool:
|
250 |
+
return all(operand.is_scalar for operand in self.operands)
|
251 |
+
|
252 |
+
@property
|
253 |
+
def is_datetime(self) -> bool:
|
254 |
+
try:
|
255 |
+
t = self.return_type.type
|
256 |
+
except AttributeError:
|
257 |
+
t = self.return_type
|
258 |
+
|
259 |
+
return issubclass(t, (datetime, np.datetime64))
|
260 |
+
|
261 |
+
|
262 |
+
def _in(x, y):
|
263 |
+
"""
|
264 |
+
Compute the vectorized membership of ``x in y`` if possible, otherwise
|
265 |
+
use Python.
|
266 |
+
"""
|
267 |
+
try:
|
268 |
+
return x.isin(y)
|
269 |
+
except AttributeError:
|
270 |
+
if is_list_like(x):
|
271 |
+
try:
|
272 |
+
return y.isin(x)
|
273 |
+
except AttributeError:
|
274 |
+
pass
|
275 |
+
return x in y
|
276 |
+
|
277 |
+
|
278 |
+
def _not_in(x, y):
|
279 |
+
"""
|
280 |
+
Compute the vectorized membership of ``x not in y`` if possible,
|
281 |
+
otherwise use Python.
|
282 |
+
"""
|
283 |
+
try:
|
284 |
+
return ~x.isin(y)
|
285 |
+
except AttributeError:
|
286 |
+
if is_list_like(x):
|
287 |
+
try:
|
288 |
+
return ~y.isin(x)
|
289 |
+
except AttributeError:
|
290 |
+
pass
|
291 |
+
return x not in y
|
292 |
+
|
293 |
+
|
294 |
+
CMP_OPS_SYMS = (">", "<", ">=", "<=", "==", "!=", "in", "not in")
|
295 |
+
_cmp_ops_funcs = (
|
296 |
+
operator.gt,
|
297 |
+
operator.lt,
|
298 |
+
operator.ge,
|
299 |
+
operator.le,
|
300 |
+
operator.eq,
|
301 |
+
operator.ne,
|
302 |
+
_in,
|
303 |
+
_not_in,
|
304 |
+
)
|
305 |
+
_cmp_ops_dict = dict(zip(CMP_OPS_SYMS, _cmp_ops_funcs))
|
306 |
+
|
307 |
+
BOOL_OPS_SYMS = ("&", "|", "and", "or")
|
308 |
+
_bool_ops_funcs = (operator.and_, operator.or_, operator.and_, operator.or_)
|
309 |
+
_bool_ops_dict = dict(zip(BOOL_OPS_SYMS, _bool_ops_funcs))
|
310 |
+
|
311 |
+
ARITH_OPS_SYMS = ("+", "-", "*", "/", "**", "//", "%")
|
312 |
+
_arith_ops_funcs = (
|
313 |
+
operator.add,
|
314 |
+
operator.sub,
|
315 |
+
operator.mul,
|
316 |
+
operator.truediv,
|
317 |
+
operator.pow,
|
318 |
+
operator.floordiv,
|
319 |
+
operator.mod,
|
320 |
+
)
|
321 |
+
_arith_ops_dict = dict(zip(ARITH_OPS_SYMS, _arith_ops_funcs))
|
322 |
+
|
323 |
+
SPECIAL_CASE_ARITH_OPS_SYMS = ("**", "//", "%")
|
324 |
+
_special_case_arith_ops_funcs = (operator.pow, operator.floordiv, operator.mod)
|
325 |
+
_special_case_arith_ops_dict = dict(
|
326 |
+
zip(SPECIAL_CASE_ARITH_OPS_SYMS, _special_case_arith_ops_funcs)
|
327 |
+
)
|
328 |
+
|
329 |
+
_binary_ops_dict = {}
|
330 |
+
|
331 |
+
for d in (_cmp_ops_dict, _bool_ops_dict, _arith_ops_dict):
|
332 |
+
_binary_ops_dict.update(d)
|
333 |
+
|
334 |
+
|
335 |
+
def _cast_inplace(terms, acceptable_dtypes, dtype) -> None:
|
336 |
+
"""
|
337 |
+
Cast an expression inplace.
|
338 |
+
|
339 |
+
Parameters
|
340 |
+
----------
|
341 |
+
terms : Op
|
342 |
+
The expression that should cast.
|
343 |
+
acceptable_dtypes : list of acceptable numpy.dtype
|
344 |
+
Will not cast if term's dtype in this list.
|
345 |
+
dtype : str or numpy.dtype
|
346 |
+
The dtype to cast to.
|
347 |
+
"""
|
348 |
+
dt = np.dtype(dtype)
|
349 |
+
for term in terms:
|
350 |
+
if term.type in acceptable_dtypes:
|
351 |
+
continue
|
352 |
+
|
353 |
+
try:
|
354 |
+
new_value = term.value.astype(dt)
|
355 |
+
except AttributeError:
|
356 |
+
new_value = dt.type(term.value)
|
357 |
+
term.update(new_value)
|
358 |
+
|
359 |
+
|
360 |
+
def is_term(obj) -> bool:
|
361 |
+
return isinstance(obj, Term)
|
362 |
+
|
363 |
+
|
364 |
+
class BinOp(Op):
|
365 |
+
"""
|
366 |
+
Hold a binary operator and its operands.
|
367 |
+
|
368 |
+
Parameters
|
369 |
+
----------
|
370 |
+
op : str
|
371 |
+
lhs : Term or Op
|
372 |
+
rhs : Term or Op
|
373 |
+
"""
|
374 |
+
|
375 |
+
def __init__(self, op: str, lhs, rhs) -> None:
|
376 |
+
super().__init__(op, (lhs, rhs))
|
377 |
+
self.lhs = lhs
|
378 |
+
self.rhs = rhs
|
379 |
+
|
380 |
+
self._disallow_scalar_only_bool_ops()
|
381 |
+
|
382 |
+
self.convert_values()
|
383 |
+
|
384 |
+
try:
|
385 |
+
self.func = _binary_ops_dict[op]
|
386 |
+
except KeyError as err:
|
387 |
+
# has to be made a list for python3
|
388 |
+
keys = list(_binary_ops_dict.keys())
|
389 |
+
raise ValueError(
|
390 |
+
f"Invalid binary operator {repr(op)}, valid operators are {keys}"
|
391 |
+
) from err
|
392 |
+
|
393 |
+
def __call__(self, env):
|
394 |
+
"""
|
395 |
+
Recursively evaluate an expression in Python space.
|
396 |
+
|
397 |
+
Parameters
|
398 |
+
----------
|
399 |
+
env : Scope
|
400 |
+
|
401 |
+
Returns
|
402 |
+
-------
|
403 |
+
object
|
404 |
+
The result of an evaluated expression.
|
405 |
+
"""
|
406 |
+
# recurse over the left/right nodes
|
407 |
+
left = self.lhs(env)
|
408 |
+
right = self.rhs(env)
|
409 |
+
|
410 |
+
return self.func(left, right)
|
411 |
+
|
412 |
+
def evaluate(self, env, engine: str, parser, term_type, eval_in_python):
|
413 |
+
"""
|
414 |
+
Evaluate a binary operation *before* being passed to the engine.
|
415 |
+
|
416 |
+
Parameters
|
417 |
+
----------
|
418 |
+
env : Scope
|
419 |
+
engine : str
|
420 |
+
parser : str
|
421 |
+
term_type : type
|
422 |
+
eval_in_python : list
|
423 |
+
|
424 |
+
Returns
|
425 |
+
-------
|
426 |
+
term_type
|
427 |
+
The "pre-evaluated" expression as an instance of ``term_type``
|
428 |
+
"""
|
429 |
+
if engine == "python":
|
430 |
+
res = self(env)
|
431 |
+
else:
|
432 |
+
# recurse over the left/right nodes
|
433 |
+
|
434 |
+
left = self.lhs.evaluate(
|
435 |
+
env,
|
436 |
+
engine=engine,
|
437 |
+
parser=parser,
|
438 |
+
term_type=term_type,
|
439 |
+
eval_in_python=eval_in_python,
|
440 |
+
)
|
441 |
+
|
442 |
+
right = self.rhs.evaluate(
|
443 |
+
env,
|
444 |
+
engine=engine,
|
445 |
+
parser=parser,
|
446 |
+
term_type=term_type,
|
447 |
+
eval_in_python=eval_in_python,
|
448 |
+
)
|
449 |
+
|
450 |
+
# base cases
|
451 |
+
if self.op in eval_in_python:
|
452 |
+
res = self.func(left.value, right.value)
|
453 |
+
else:
|
454 |
+
from pandas.core.computation.eval import eval
|
455 |
+
|
456 |
+
res = eval(self, local_dict=env, engine=engine, parser=parser)
|
457 |
+
|
458 |
+
name = env.add_tmp(res)
|
459 |
+
return term_type(name, env=env)
|
460 |
+
|
461 |
+
def convert_values(self) -> None:
|
462 |
+
"""
|
463 |
+
Convert datetimes to a comparable value in an expression.
|
464 |
+
"""
|
465 |
+
|
466 |
+
def stringify(value):
|
467 |
+
encoder: Callable
|
468 |
+
if self.encoding is not None:
|
469 |
+
encoder = partial(pprint_thing_encoded, encoding=self.encoding)
|
470 |
+
else:
|
471 |
+
encoder = pprint_thing
|
472 |
+
return encoder(value)
|
473 |
+
|
474 |
+
lhs, rhs = self.lhs, self.rhs
|
475 |
+
|
476 |
+
if is_term(lhs) and lhs.is_datetime and is_term(rhs) and rhs.is_scalar:
|
477 |
+
v = rhs.value
|
478 |
+
if isinstance(v, (int, float)):
|
479 |
+
v = stringify(v)
|
480 |
+
v = Timestamp(ensure_decoded(v))
|
481 |
+
if v.tz is not None:
|
482 |
+
v = v.tz_convert("UTC")
|
483 |
+
self.rhs.update(v)
|
484 |
+
|
485 |
+
if is_term(rhs) and rhs.is_datetime and is_term(lhs) and lhs.is_scalar:
|
486 |
+
v = lhs.value
|
487 |
+
if isinstance(v, (int, float)):
|
488 |
+
v = stringify(v)
|
489 |
+
v = Timestamp(ensure_decoded(v))
|
490 |
+
if v.tz is not None:
|
491 |
+
v = v.tz_convert("UTC")
|
492 |
+
self.lhs.update(v)
|
493 |
+
|
494 |
+
def _disallow_scalar_only_bool_ops(self):
|
495 |
+
rhs = self.rhs
|
496 |
+
lhs = self.lhs
|
497 |
+
|
498 |
+
# GH#24883 unwrap dtype if necessary to ensure we have a type object
|
499 |
+
rhs_rt = rhs.return_type
|
500 |
+
rhs_rt = getattr(rhs_rt, "type", rhs_rt)
|
501 |
+
lhs_rt = lhs.return_type
|
502 |
+
lhs_rt = getattr(lhs_rt, "type", lhs_rt)
|
503 |
+
if (
|
504 |
+
(lhs.is_scalar or rhs.is_scalar)
|
505 |
+
and self.op in _bool_ops_dict
|
506 |
+
and (
|
507 |
+
not (
|
508 |
+
issubclass(rhs_rt, (bool, np.bool_))
|
509 |
+
and issubclass(lhs_rt, (bool, np.bool_))
|
510 |
+
)
|
511 |
+
)
|
512 |
+
):
|
513 |
+
raise NotImplementedError("cannot evaluate scalar only bool ops")
|
514 |
+
|
515 |
+
|
516 |
+
def isnumeric(dtype) -> bool:
|
517 |
+
return issubclass(np.dtype(dtype).type, np.number)
|
518 |
+
|
519 |
+
|
520 |
+
class Div(BinOp):
|
521 |
+
"""
|
522 |
+
Div operator to special case casting.
|
523 |
+
|
524 |
+
Parameters
|
525 |
+
----------
|
526 |
+
lhs, rhs : Term or Op
|
527 |
+
The Terms or Ops in the ``/`` expression.
|
528 |
+
"""
|
529 |
+
|
530 |
+
def __init__(self, lhs, rhs) -> None:
|
531 |
+
super().__init__("/", lhs, rhs)
|
532 |
+
|
533 |
+
if not isnumeric(lhs.return_type) or not isnumeric(rhs.return_type):
|
534 |
+
raise TypeError(
|
535 |
+
f"unsupported operand type(s) for {self.op}: "
|
536 |
+
f"'{lhs.return_type}' and '{rhs.return_type}'"
|
537 |
+
)
|
538 |
+
|
539 |
+
# do not upcast float32s to float64 un-necessarily
|
540 |
+
acceptable_dtypes = [np.float32, np.float64]
|
541 |
+
_cast_inplace(com.flatten(self), acceptable_dtypes, np.float64)
|
542 |
+
|
543 |
+
|
544 |
+
UNARY_OPS_SYMS = ("+", "-", "~", "not")
|
545 |
+
_unary_ops_funcs = (operator.pos, operator.neg, operator.invert, operator.invert)
|
546 |
+
_unary_ops_dict = dict(zip(UNARY_OPS_SYMS, _unary_ops_funcs))
|
547 |
+
|
548 |
+
|
549 |
+
class UnaryOp(Op):
|
550 |
+
"""
|
551 |
+
Hold a unary operator and its operands.
|
552 |
+
|
553 |
+
Parameters
|
554 |
+
----------
|
555 |
+
op : str
|
556 |
+
The token used to represent the operator.
|
557 |
+
operand : Term or Op
|
558 |
+
The Term or Op operand to the operator.
|
559 |
+
|
560 |
+
Raises
|
561 |
+
------
|
562 |
+
ValueError
|
563 |
+
* If no function associated with the passed operator token is found.
|
564 |
+
"""
|
565 |
+
|
566 |
+
def __init__(self, op: Literal["+", "-", "~", "not"], operand) -> None:
|
567 |
+
super().__init__(op, (operand,))
|
568 |
+
self.operand = operand
|
569 |
+
|
570 |
+
try:
|
571 |
+
self.func = _unary_ops_dict[op]
|
572 |
+
except KeyError as err:
|
573 |
+
raise ValueError(
|
574 |
+
f"Invalid unary operator {repr(op)}, "
|
575 |
+
f"valid operators are {UNARY_OPS_SYMS}"
|
576 |
+
) from err
|
577 |
+
|
578 |
+
def __call__(self, env) -> MathCall:
|
579 |
+
operand = self.operand(env)
|
580 |
+
# error: Cannot call function of unknown type
|
581 |
+
return self.func(operand) # type: ignore[operator]
|
582 |
+
|
583 |
+
def __repr__(self) -> str:
|
584 |
+
return pprint_thing(f"{self.op}({self.operand})")
|
585 |
+
|
586 |
+
@property
|
587 |
+
def return_type(self) -> np.dtype:
|
588 |
+
operand = self.operand
|
589 |
+
if operand.return_type == np.dtype("bool"):
|
590 |
+
return np.dtype("bool")
|
591 |
+
if isinstance(operand, Op) and (
|
592 |
+
operand.op in _cmp_ops_dict or operand.op in _bool_ops_dict
|
593 |
+
):
|
594 |
+
return np.dtype("bool")
|
595 |
+
return np.dtype("int")
|
596 |
+
|
597 |
+
|
598 |
+
class MathCall(Op):
|
599 |
+
def __init__(self, func, args) -> None:
|
600 |
+
super().__init__(func.name, args)
|
601 |
+
self.func = func
|
602 |
+
|
603 |
+
def __call__(self, env):
|
604 |
+
# error: "Op" not callable
|
605 |
+
operands = [op(env) for op in self.operands] # type: ignore[operator]
|
606 |
+
return self.func.func(*operands)
|
607 |
+
|
608 |
+
def __repr__(self) -> str:
|
609 |
+
operands = map(str, self.operands)
|
610 |
+
return pprint_thing(f"{self.op}({','.join(operands)})")
|
611 |
+
|
612 |
+
|
613 |
+
class FuncNode:
|
614 |
+
def __init__(self, name: str) -> None:
|
615 |
+
if name not in MATHOPS:
|
616 |
+
raise ValueError(f'"{name}" is not a supported function')
|
617 |
+
self.name = name
|
618 |
+
self.func = getattr(np, name)
|
619 |
+
|
620 |
+
def __call__(self, *args) -> MathCall:
|
621 |
+
return MathCall(self, args)
|
env-llmeval/lib/python3.10/site-packages/pandas/core/computation/parsing.py
ADDED
@@ -0,0 +1,198 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
:func:`~pandas.eval` source string parsing functions
|
3 |
+
"""
|
4 |
+
from __future__ import annotations
|
5 |
+
|
6 |
+
from io import StringIO
|
7 |
+
from keyword import iskeyword
|
8 |
+
import token
|
9 |
+
import tokenize
|
10 |
+
from typing import TYPE_CHECKING
|
11 |
+
|
12 |
+
if TYPE_CHECKING:
|
13 |
+
from collections.abc import (
|
14 |
+
Hashable,
|
15 |
+
Iterator,
|
16 |
+
)
|
17 |
+
|
18 |
+
# A token value Python's tokenizer probably will never use.
|
19 |
+
BACKTICK_QUOTED_STRING = 100
|
20 |
+
|
21 |
+
|
22 |
+
def create_valid_python_identifier(name: str) -> str:
|
23 |
+
"""
|
24 |
+
Create valid Python identifiers from any string.
|
25 |
+
|
26 |
+
Check if name contains any special characters. If it contains any
|
27 |
+
special characters, the special characters will be replaced by
|
28 |
+
a special string and a prefix is added.
|
29 |
+
|
30 |
+
Raises
|
31 |
+
------
|
32 |
+
SyntaxError
|
33 |
+
If the returned name is not a Python valid identifier, raise an exception.
|
34 |
+
This can happen if there is a hashtag in the name, as the tokenizer will
|
35 |
+
than terminate and not find the backtick.
|
36 |
+
But also for characters that fall out of the range of (U+0001..U+007F).
|
37 |
+
"""
|
38 |
+
if name.isidentifier() and not iskeyword(name):
|
39 |
+
return name
|
40 |
+
|
41 |
+
# Create a dict with the special characters and their replacement string.
|
42 |
+
# EXACT_TOKEN_TYPES contains these special characters
|
43 |
+
# token.tok_name contains a readable description of the replacement string.
|
44 |
+
special_characters_replacements = {
|
45 |
+
char: f"_{token.tok_name[tokval]}_"
|
46 |
+
for char, tokval in (tokenize.EXACT_TOKEN_TYPES.items())
|
47 |
+
}
|
48 |
+
special_characters_replacements.update(
|
49 |
+
{
|
50 |
+
" ": "_",
|
51 |
+
"?": "_QUESTIONMARK_",
|
52 |
+
"!": "_EXCLAMATIONMARK_",
|
53 |
+
"$": "_DOLLARSIGN_",
|
54 |
+
"€": "_EUROSIGN_",
|
55 |
+
"°": "_DEGREESIGN_",
|
56 |
+
# Including quotes works, but there are exceptions.
|
57 |
+
"'": "_SINGLEQUOTE_",
|
58 |
+
'"': "_DOUBLEQUOTE_",
|
59 |
+
# Currently not possible. Terminates parser and won't find backtick.
|
60 |
+
# "#": "_HASH_",
|
61 |
+
}
|
62 |
+
)
|
63 |
+
|
64 |
+
name = "".join([special_characters_replacements.get(char, char) for char in name])
|
65 |
+
name = f"BACKTICK_QUOTED_STRING_{name}"
|
66 |
+
|
67 |
+
if not name.isidentifier():
|
68 |
+
raise SyntaxError(f"Could not convert '{name}' to a valid Python identifier.")
|
69 |
+
|
70 |
+
return name
|
71 |
+
|
72 |
+
|
73 |
+
def clean_backtick_quoted_toks(tok: tuple[int, str]) -> tuple[int, str]:
|
74 |
+
"""
|
75 |
+
Clean up a column name if surrounded by backticks.
|
76 |
+
|
77 |
+
Backtick quoted string are indicated by a certain tokval value. If a string
|
78 |
+
is a backtick quoted token it will processed by
|
79 |
+
:func:`_create_valid_python_identifier` so that the parser can find this
|
80 |
+
string when the query is executed.
|
81 |
+
In this case the tok will get the NAME tokval.
|
82 |
+
|
83 |
+
Parameters
|
84 |
+
----------
|
85 |
+
tok : tuple of int, str
|
86 |
+
ints correspond to the all caps constants in the tokenize module
|
87 |
+
|
88 |
+
Returns
|
89 |
+
-------
|
90 |
+
tok : Tuple[int, str]
|
91 |
+
Either the input or token or the replacement values
|
92 |
+
"""
|
93 |
+
toknum, tokval = tok
|
94 |
+
if toknum == BACKTICK_QUOTED_STRING:
|
95 |
+
return tokenize.NAME, create_valid_python_identifier(tokval)
|
96 |
+
return toknum, tokval
|
97 |
+
|
98 |
+
|
99 |
+
def clean_column_name(name: Hashable) -> Hashable:
|
100 |
+
"""
|
101 |
+
Function to emulate the cleaning of a backtick quoted name.
|
102 |
+
|
103 |
+
The purpose for this function is to see what happens to the name of
|
104 |
+
identifier if it goes to the process of being parsed a Python code
|
105 |
+
inside a backtick quoted string and than being cleaned
|
106 |
+
(removed of any special characters).
|
107 |
+
|
108 |
+
Parameters
|
109 |
+
----------
|
110 |
+
name : hashable
|
111 |
+
Name to be cleaned.
|
112 |
+
|
113 |
+
Returns
|
114 |
+
-------
|
115 |
+
name : hashable
|
116 |
+
Returns the name after tokenizing and cleaning.
|
117 |
+
|
118 |
+
Notes
|
119 |
+
-----
|
120 |
+
For some cases, a name cannot be converted to a valid Python identifier.
|
121 |
+
In that case :func:`tokenize_string` raises a SyntaxError.
|
122 |
+
In that case, we just return the name unmodified.
|
123 |
+
|
124 |
+
If this name was used in the query string (this makes the query call impossible)
|
125 |
+
an error will be raised by :func:`tokenize_backtick_quoted_string` instead,
|
126 |
+
which is not caught and propagates to the user level.
|
127 |
+
"""
|
128 |
+
try:
|
129 |
+
tokenized = tokenize_string(f"`{name}`")
|
130 |
+
tokval = next(tokenized)[1]
|
131 |
+
return create_valid_python_identifier(tokval)
|
132 |
+
except SyntaxError:
|
133 |
+
return name
|
134 |
+
|
135 |
+
|
136 |
+
def tokenize_backtick_quoted_string(
|
137 |
+
token_generator: Iterator[tokenize.TokenInfo], source: str, string_start: int
|
138 |
+
) -> tuple[int, str]:
|
139 |
+
"""
|
140 |
+
Creates a token from a backtick quoted string.
|
141 |
+
|
142 |
+
Moves the token_generator forwards till right after the next backtick.
|
143 |
+
|
144 |
+
Parameters
|
145 |
+
----------
|
146 |
+
token_generator : Iterator[tokenize.TokenInfo]
|
147 |
+
The generator that yields the tokens of the source string (Tuple[int, str]).
|
148 |
+
The generator is at the first token after the backtick (`)
|
149 |
+
|
150 |
+
source : str
|
151 |
+
The Python source code string.
|
152 |
+
|
153 |
+
string_start : int
|
154 |
+
This is the start of backtick quoted string inside the source string.
|
155 |
+
|
156 |
+
Returns
|
157 |
+
-------
|
158 |
+
tok: Tuple[int, str]
|
159 |
+
The token that represents the backtick quoted string.
|
160 |
+
The integer is equal to BACKTICK_QUOTED_STRING (100).
|
161 |
+
"""
|
162 |
+
for _, tokval, start, _, _ in token_generator:
|
163 |
+
if tokval == "`":
|
164 |
+
string_end = start[1]
|
165 |
+
break
|
166 |
+
|
167 |
+
return BACKTICK_QUOTED_STRING, source[string_start:string_end]
|
168 |
+
|
169 |
+
|
170 |
+
def tokenize_string(source: str) -> Iterator[tuple[int, str]]:
|
171 |
+
"""
|
172 |
+
Tokenize a Python source code string.
|
173 |
+
|
174 |
+
Parameters
|
175 |
+
----------
|
176 |
+
source : str
|
177 |
+
The Python source code string.
|
178 |
+
|
179 |
+
Returns
|
180 |
+
-------
|
181 |
+
tok_generator : Iterator[Tuple[int, str]]
|
182 |
+
An iterator yielding all tokens with only toknum and tokval (Tuple[ing, str]).
|
183 |
+
"""
|
184 |
+
line_reader = StringIO(source).readline
|
185 |
+
token_generator = tokenize.generate_tokens(line_reader)
|
186 |
+
|
187 |
+
# Loop over all tokens till a backtick (`) is found.
|
188 |
+
# Then, take all tokens till the next backtick to form a backtick quoted string
|
189 |
+
for toknum, tokval, start, _, _ in token_generator:
|
190 |
+
if tokval == "`":
|
191 |
+
try:
|
192 |
+
yield tokenize_backtick_quoted_string(
|
193 |
+
token_generator, source, string_start=start[1] + 1
|
194 |
+
)
|
195 |
+
except Exception as err:
|
196 |
+
raise SyntaxError(f"Failed to parse backticks in '{source}'.") from err
|
197 |
+
else:
|
198 |
+
yield toknum, tokval
|
env-llmeval/lib/python3.10/site-packages/pandas/core/computation/scope.py
ADDED
@@ -0,0 +1,355 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Module for scope operations
|
3 |
+
"""
|
4 |
+
from __future__ import annotations
|
5 |
+
|
6 |
+
from collections import ChainMap
|
7 |
+
import datetime
|
8 |
+
import inspect
|
9 |
+
from io import StringIO
|
10 |
+
import itertools
|
11 |
+
import pprint
|
12 |
+
import struct
|
13 |
+
import sys
|
14 |
+
from typing import TypeVar
|
15 |
+
|
16 |
+
import numpy as np
|
17 |
+
|
18 |
+
from pandas._libs.tslibs import Timestamp
|
19 |
+
from pandas.errors import UndefinedVariableError
|
20 |
+
|
21 |
+
_KT = TypeVar("_KT")
|
22 |
+
_VT = TypeVar("_VT")
|
23 |
+
|
24 |
+
|
25 |
+
# https://docs.python.org/3/library/collections.html#chainmap-examples-and-recipes
|
26 |
+
class DeepChainMap(ChainMap[_KT, _VT]):
|
27 |
+
"""
|
28 |
+
Variant of ChainMap that allows direct updates to inner scopes.
|
29 |
+
|
30 |
+
Only works when all passed mapping are mutable.
|
31 |
+
"""
|
32 |
+
|
33 |
+
def __setitem__(self, key: _KT, value: _VT) -> None:
|
34 |
+
for mapping in self.maps:
|
35 |
+
if key in mapping:
|
36 |
+
mapping[key] = value
|
37 |
+
return
|
38 |
+
self.maps[0][key] = value
|
39 |
+
|
40 |
+
def __delitem__(self, key: _KT) -> None:
|
41 |
+
"""
|
42 |
+
Raises
|
43 |
+
------
|
44 |
+
KeyError
|
45 |
+
If `key` doesn't exist.
|
46 |
+
"""
|
47 |
+
for mapping in self.maps:
|
48 |
+
if key in mapping:
|
49 |
+
del mapping[key]
|
50 |
+
return
|
51 |
+
raise KeyError(key)
|
52 |
+
|
53 |
+
|
54 |
+
def ensure_scope(
|
55 |
+
level: int, global_dict=None, local_dict=None, resolvers=(), target=None
|
56 |
+
) -> Scope:
|
57 |
+
"""Ensure that we are grabbing the correct scope."""
|
58 |
+
return Scope(
|
59 |
+
level + 1,
|
60 |
+
global_dict=global_dict,
|
61 |
+
local_dict=local_dict,
|
62 |
+
resolvers=resolvers,
|
63 |
+
target=target,
|
64 |
+
)
|
65 |
+
|
66 |
+
|
67 |
+
def _replacer(x) -> str:
|
68 |
+
"""
|
69 |
+
Replace a number with its hexadecimal representation. Used to tag
|
70 |
+
temporary variables with their calling scope's id.
|
71 |
+
"""
|
72 |
+
# get the hex repr of the binary char and remove 0x and pad by pad_size
|
73 |
+
# zeros
|
74 |
+
try:
|
75 |
+
hexin = ord(x)
|
76 |
+
except TypeError:
|
77 |
+
# bytes literals masquerade as ints when iterating in py3
|
78 |
+
hexin = x
|
79 |
+
|
80 |
+
return hex(hexin)
|
81 |
+
|
82 |
+
|
83 |
+
def _raw_hex_id(obj) -> str:
|
84 |
+
"""Return the padded hexadecimal id of ``obj``."""
|
85 |
+
# interpret as a pointer since that's what really what id returns
|
86 |
+
packed = struct.pack("@P", id(obj))
|
87 |
+
return "".join([_replacer(x) for x in packed])
|
88 |
+
|
89 |
+
|
90 |
+
DEFAULT_GLOBALS = {
|
91 |
+
"Timestamp": Timestamp,
|
92 |
+
"datetime": datetime.datetime,
|
93 |
+
"True": True,
|
94 |
+
"False": False,
|
95 |
+
"list": list,
|
96 |
+
"tuple": tuple,
|
97 |
+
"inf": np.inf,
|
98 |
+
"Inf": np.inf,
|
99 |
+
}
|
100 |
+
|
101 |
+
|
102 |
+
def _get_pretty_string(obj) -> str:
|
103 |
+
"""
|
104 |
+
Return a prettier version of obj.
|
105 |
+
|
106 |
+
Parameters
|
107 |
+
----------
|
108 |
+
obj : object
|
109 |
+
Object to pretty print
|
110 |
+
|
111 |
+
Returns
|
112 |
+
-------
|
113 |
+
str
|
114 |
+
Pretty print object repr
|
115 |
+
"""
|
116 |
+
sio = StringIO()
|
117 |
+
pprint.pprint(obj, stream=sio)
|
118 |
+
return sio.getvalue()
|
119 |
+
|
120 |
+
|
121 |
+
class Scope:
|
122 |
+
"""
|
123 |
+
Object to hold scope, with a few bells to deal with some custom syntax
|
124 |
+
and contexts added by pandas.
|
125 |
+
|
126 |
+
Parameters
|
127 |
+
----------
|
128 |
+
level : int
|
129 |
+
global_dict : dict or None, optional, default None
|
130 |
+
local_dict : dict or Scope or None, optional, default None
|
131 |
+
resolvers : list-like or None, optional, default None
|
132 |
+
target : object
|
133 |
+
|
134 |
+
Attributes
|
135 |
+
----------
|
136 |
+
level : int
|
137 |
+
scope : DeepChainMap
|
138 |
+
target : object
|
139 |
+
temps : dict
|
140 |
+
"""
|
141 |
+
|
142 |
+
__slots__ = ["level", "scope", "target", "resolvers", "temps"]
|
143 |
+
level: int
|
144 |
+
scope: DeepChainMap
|
145 |
+
resolvers: DeepChainMap
|
146 |
+
temps: dict
|
147 |
+
|
148 |
+
def __init__(
|
149 |
+
self, level: int, global_dict=None, local_dict=None, resolvers=(), target=None
|
150 |
+
) -> None:
|
151 |
+
self.level = level + 1
|
152 |
+
|
153 |
+
# shallow copy because we don't want to keep filling this up with what
|
154 |
+
# was there before if there are multiple calls to Scope/_ensure_scope
|
155 |
+
self.scope = DeepChainMap(DEFAULT_GLOBALS.copy())
|
156 |
+
self.target = target
|
157 |
+
|
158 |
+
if isinstance(local_dict, Scope):
|
159 |
+
self.scope.update(local_dict.scope)
|
160 |
+
if local_dict.target is not None:
|
161 |
+
self.target = local_dict.target
|
162 |
+
self._update(local_dict.level)
|
163 |
+
|
164 |
+
frame = sys._getframe(self.level)
|
165 |
+
|
166 |
+
try:
|
167 |
+
# shallow copy here because we don't want to replace what's in
|
168 |
+
# scope when we align terms (alignment accesses the underlying
|
169 |
+
# numpy array of pandas objects)
|
170 |
+
scope_global = self.scope.new_child(
|
171 |
+
(global_dict if global_dict is not None else frame.f_globals).copy()
|
172 |
+
)
|
173 |
+
self.scope = DeepChainMap(scope_global)
|
174 |
+
if not isinstance(local_dict, Scope):
|
175 |
+
scope_local = self.scope.new_child(
|
176 |
+
(local_dict if local_dict is not None else frame.f_locals).copy()
|
177 |
+
)
|
178 |
+
self.scope = DeepChainMap(scope_local)
|
179 |
+
finally:
|
180 |
+
del frame
|
181 |
+
|
182 |
+
# assumes that resolvers are going from outermost scope to inner
|
183 |
+
if isinstance(local_dict, Scope):
|
184 |
+
resolvers += tuple(local_dict.resolvers.maps)
|
185 |
+
self.resolvers = DeepChainMap(*resolvers)
|
186 |
+
self.temps = {}
|
187 |
+
|
188 |
+
def __repr__(self) -> str:
|
189 |
+
scope_keys = _get_pretty_string(list(self.scope.keys()))
|
190 |
+
res_keys = _get_pretty_string(list(self.resolvers.keys()))
|
191 |
+
return f"{type(self).__name__}(scope={scope_keys}, resolvers={res_keys})"
|
192 |
+
|
193 |
+
@property
|
194 |
+
def has_resolvers(self) -> bool:
|
195 |
+
"""
|
196 |
+
Return whether we have any extra scope.
|
197 |
+
|
198 |
+
For example, DataFrames pass Their columns as resolvers during calls to
|
199 |
+
``DataFrame.eval()`` and ``DataFrame.query()``.
|
200 |
+
|
201 |
+
Returns
|
202 |
+
-------
|
203 |
+
hr : bool
|
204 |
+
"""
|
205 |
+
return bool(len(self.resolvers))
|
206 |
+
|
207 |
+
def resolve(self, key: str, is_local: bool):
|
208 |
+
"""
|
209 |
+
Resolve a variable name in a possibly local context.
|
210 |
+
|
211 |
+
Parameters
|
212 |
+
----------
|
213 |
+
key : str
|
214 |
+
A variable name
|
215 |
+
is_local : bool
|
216 |
+
Flag indicating whether the variable is local or not (prefixed with
|
217 |
+
the '@' symbol)
|
218 |
+
|
219 |
+
Returns
|
220 |
+
-------
|
221 |
+
value : object
|
222 |
+
The value of a particular variable
|
223 |
+
"""
|
224 |
+
try:
|
225 |
+
# only look for locals in outer scope
|
226 |
+
if is_local:
|
227 |
+
return self.scope[key]
|
228 |
+
|
229 |
+
# not a local variable so check in resolvers if we have them
|
230 |
+
if self.has_resolvers:
|
231 |
+
return self.resolvers[key]
|
232 |
+
|
233 |
+
# if we're here that means that we have no locals and we also have
|
234 |
+
# no resolvers
|
235 |
+
assert not is_local and not self.has_resolvers
|
236 |
+
return self.scope[key]
|
237 |
+
except KeyError:
|
238 |
+
try:
|
239 |
+
# last ditch effort we look in temporaries
|
240 |
+
# these are created when parsing indexing expressions
|
241 |
+
# e.g., df[df > 0]
|
242 |
+
return self.temps[key]
|
243 |
+
except KeyError as err:
|
244 |
+
raise UndefinedVariableError(key, is_local) from err
|
245 |
+
|
246 |
+
def swapkey(self, old_key: str, new_key: str, new_value=None) -> None:
|
247 |
+
"""
|
248 |
+
Replace a variable name, with a potentially new value.
|
249 |
+
|
250 |
+
Parameters
|
251 |
+
----------
|
252 |
+
old_key : str
|
253 |
+
Current variable name to replace
|
254 |
+
new_key : str
|
255 |
+
New variable name to replace `old_key` with
|
256 |
+
new_value : object
|
257 |
+
Value to be replaced along with the possible renaming
|
258 |
+
"""
|
259 |
+
if self.has_resolvers:
|
260 |
+
maps = self.resolvers.maps + self.scope.maps
|
261 |
+
else:
|
262 |
+
maps = self.scope.maps
|
263 |
+
|
264 |
+
maps.append(self.temps)
|
265 |
+
|
266 |
+
for mapping in maps:
|
267 |
+
if old_key in mapping:
|
268 |
+
mapping[new_key] = new_value
|
269 |
+
return
|
270 |
+
|
271 |
+
def _get_vars(self, stack, scopes: list[str]) -> None:
|
272 |
+
"""
|
273 |
+
Get specifically scoped variables from a list of stack frames.
|
274 |
+
|
275 |
+
Parameters
|
276 |
+
----------
|
277 |
+
stack : list
|
278 |
+
A list of stack frames as returned by ``inspect.stack()``
|
279 |
+
scopes : sequence of strings
|
280 |
+
A sequence containing valid stack frame attribute names that
|
281 |
+
evaluate to a dictionary. For example, ('locals', 'globals')
|
282 |
+
"""
|
283 |
+
variables = itertools.product(scopes, stack)
|
284 |
+
for scope, (frame, _, _, _, _, _) in variables:
|
285 |
+
try:
|
286 |
+
d = getattr(frame, f"f_{scope}")
|
287 |
+
self.scope = DeepChainMap(self.scope.new_child(d))
|
288 |
+
finally:
|
289 |
+
# won't remove it, but DECREF it
|
290 |
+
# in Py3 this probably isn't necessary since frame won't be
|
291 |
+
# scope after the loop
|
292 |
+
del frame
|
293 |
+
|
294 |
+
def _update(self, level: int) -> None:
|
295 |
+
"""
|
296 |
+
Update the current scope by going back `level` levels.
|
297 |
+
|
298 |
+
Parameters
|
299 |
+
----------
|
300 |
+
level : int
|
301 |
+
"""
|
302 |
+
sl = level + 1
|
303 |
+
|
304 |
+
# add sl frames to the scope starting with the
|
305 |
+
# most distant and overwriting with more current
|
306 |
+
# makes sure that we can capture variable scope
|
307 |
+
stack = inspect.stack()
|
308 |
+
|
309 |
+
try:
|
310 |
+
self._get_vars(stack[:sl], scopes=["locals"])
|
311 |
+
finally:
|
312 |
+
del stack[:], stack
|
313 |
+
|
314 |
+
def add_tmp(self, value) -> str:
|
315 |
+
"""
|
316 |
+
Add a temporary variable to the scope.
|
317 |
+
|
318 |
+
Parameters
|
319 |
+
----------
|
320 |
+
value : object
|
321 |
+
An arbitrary object to be assigned to a temporary variable.
|
322 |
+
|
323 |
+
Returns
|
324 |
+
-------
|
325 |
+
str
|
326 |
+
The name of the temporary variable created.
|
327 |
+
"""
|
328 |
+
name = f"{type(value).__name__}_{self.ntemps}_{_raw_hex_id(self)}"
|
329 |
+
|
330 |
+
# add to inner most scope
|
331 |
+
assert name not in self.temps
|
332 |
+
self.temps[name] = value
|
333 |
+
assert name in self.temps
|
334 |
+
|
335 |
+
# only increment if the variable gets put in the scope
|
336 |
+
return name
|
337 |
+
|
338 |
+
@property
|
339 |
+
def ntemps(self) -> int:
|
340 |
+
"""The number of temporary variables in this scope"""
|
341 |
+
return len(self.temps)
|
342 |
+
|
343 |
+
@property
|
344 |
+
def full_scope(self) -> DeepChainMap:
|
345 |
+
"""
|
346 |
+
Return the full scope for use with passing to engines transparently
|
347 |
+
as a mapping.
|
348 |
+
|
349 |
+
Returns
|
350 |
+
-------
|
351 |
+
vars : DeepChainMap
|
352 |
+
All variables in this scope.
|
353 |
+
"""
|
354 |
+
maps = [self.temps] + self.resolvers.maps + self.scope.maps
|
355 |
+
return DeepChainMap(*maps)
|
env-llmeval/lib/python3.10/site-packages/pandas/core/strings/base.py
ADDED
@@ -0,0 +1,262 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
import abc
|
4 |
+
from typing import (
|
5 |
+
TYPE_CHECKING,
|
6 |
+
Callable,
|
7 |
+
Literal,
|
8 |
+
)
|
9 |
+
|
10 |
+
import numpy as np
|
11 |
+
|
12 |
+
if TYPE_CHECKING:
|
13 |
+
from collections.abc import Sequence
|
14 |
+
import re
|
15 |
+
|
16 |
+
from pandas._typing import Scalar
|
17 |
+
|
18 |
+
from pandas import Series
|
19 |
+
|
20 |
+
|
21 |
+
class BaseStringArrayMethods(abc.ABC):
|
22 |
+
"""
|
23 |
+
Base class for extension arrays implementing string methods.
|
24 |
+
|
25 |
+
This is where our ExtensionArrays can override the implementation of
|
26 |
+
Series.str.<method>. We don't expect this to work with
|
27 |
+
3rd-party extension arrays.
|
28 |
+
|
29 |
+
* User calls Series.str.<method>
|
30 |
+
* pandas extracts the extension array from the Series
|
31 |
+
* pandas calls ``extension_array._str_<method>(*args, **kwargs)``
|
32 |
+
* pandas wraps the result, to return to the user.
|
33 |
+
|
34 |
+
See :ref:`Series.str` for the docstring of each method.
|
35 |
+
"""
|
36 |
+
|
37 |
+
def _str_getitem(self, key):
|
38 |
+
if isinstance(key, slice):
|
39 |
+
return self._str_slice(start=key.start, stop=key.stop, step=key.step)
|
40 |
+
else:
|
41 |
+
return self._str_get(key)
|
42 |
+
|
43 |
+
@abc.abstractmethod
|
44 |
+
def _str_count(self, pat, flags: int = 0):
|
45 |
+
pass
|
46 |
+
|
47 |
+
@abc.abstractmethod
|
48 |
+
def _str_pad(
|
49 |
+
self,
|
50 |
+
width: int,
|
51 |
+
side: Literal["left", "right", "both"] = "left",
|
52 |
+
fillchar: str = " ",
|
53 |
+
):
|
54 |
+
pass
|
55 |
+
|
56 |
+
@abc.abstractmethod
|
57 |
+
def _str_contains(
|
58 |
+
self, pat, case: bool = True, flags: int = 0, na=None, regex: bool = True
|
59 |
+
):
|
60 |
+
pass
|
61 |
+
|
62 |
+
@abc.abstractmethod
|
63 |
+
def _str_startswith(self, pat, na=None):
|
64 |
+
pass
|
65 |
+
|
66 |
+
@abc.abstractmethod
|
67 |
+
def _str_endswith(self, pat, na=None):
|
68 |
+
pass
|
69 |
+
|
70 |
+
@abc.abstractmethod
|
71 |
+
def _str_replace(
|
72 |
+
self,
|
73 |
+
pat: str | re.Pattern,
|
74 |
+
repl: str | Callable,
|
75 |
+
n: int = -1,
|
76 |
+
case: bool = True,
|
77 |
+
flags: int = 0,
|
78 |
+
regex: bool = True,
|
79 |
+
):
|
80 |
+
pass
|
81 |
+
|
82 |
+
@abc.abstractmethod
|
83 |
+
def _str_repeat(self, repeats: int | Sequence[int]):
|
84 |
+
pass
|
85 |
+
|
86 |
+
@abc.abstractmethod
|
87 |
+
def _str_match(
|
88 |
+
self, pat: str, case: bool = True, flags: int = 0, na: Scalar = np.nan
|
89 |
+
):
|
90 |
+
pass
|
91 |
+
|
92 |
+
@abc.abstractmethod
|
93 |
+
def _str_fullmatch(
|
94 |
+
self,
|
95 |
+
pat: str | re.Pattern,
|
96 |
+
case: bool = True,
|
97 |
+
flags: int = 0,
|
98 |
+
na: Scalar = np.nan,
|
99 |
+
):
|
100 |
+
pass
|
101 |
+
|
102 |
+
@abc.abstractmethod
|
103 |
+
def _str_encode(self, encoding, errors: str = "strict"):
|
104 |
+
pass
|
105 |
+
|
106 |
+
@abc.abstractmethod
|
107 |
+
def _str_find(self, sub, start: int = 0, end=None):
|
108 |
+
pass
|
109 |
+
|
110 |
+
@abc.abstractmethod
|
111 |
+
def _str_rfind(self, sub, start: int = 0, end=None):
|
112 |
+
pass
|
113 |
+
|
114 |
+
@abc.abstractmethod
|
115 |
+
def _str_findall(self, pat, flags: int = 0):
|
116 |
+
pass
|
117 |
+
|
118 |
+
@abc.abstractmethod
|
119 |
+
def _str_get(self, i):
|
120 |
+
pass
|
121 |
+
|
122 |
+
@abc.abstractmethod
|
123 |
+
def _str_index(self, sub, start: int = 0, end=None):
|
124 |
+
pass
|
125 |
+
|
126 |
+
@abc.abstractmethod
|
127 |
+
def _str_rindex(self, sub, start: int = 0, end=None):
|
128 |
+
pass
|
129 |
+
|
130 |
+
@abc.abstractmethod
|
131 |
+
def _str_join(self, sep: str):
|
132 |
+
pass
|
133 |
+
|
134 |
+
@abc.abstractmethod
|
135 |
+
def _str_partition(self, sep: str, expand):
|
136 |
+
pass
|
137 |
+
|
138 |
+
@abc.abstractmethod
|
139 |
+
def _str_rpartition(self, sep: str, expand):
|
140 |
+
pass
|
141 |
+
|
142 |
+
@abc.abstractmethod
|
143 |
+
def _str_len(self):
|
144 |
+
pass
|
145 |
+
|
146 |
+
@abc.abstractmethod
|
147 |
+
def _str_slice(self, start=None, stop=None, step=None):
|
148 |
+
pass
|
149 |
+
|
150 |
+
@abc.abstractmethod
|
151 |
+
def _str_slice_replace(self, start=None, stop=None, repl=None):
|
152 |
+
pass
|
153 |
+
|
154 |
+
@abc.abstractmethod
|
155 |
+
def _str_translate(self, table):
|
156 |
+
pass
|
157 |
+
|
158 |
+
@abc.abstractmethod
|
159 |
+
def _str_wrap(self, width: int, **kwargs):
|
160 |
+
pass
|
161 |
+
|
162 |
+
@abc.abstractmethod
|
163 |
+
def _str_get_dummies(self, sep: str = "|"):
|
164 |
+
pass
|
165 |
+
|
166 |
+
@abc.abstractmethod
|
167 |
+
def _str_isalnum(self):
|
168 |
+
pass
|
169 |
+
|
170 |
+
@abc.abstractmethod
|
171 |
+
def _str_isalpha(self):
|
172 |
+
pass
|
173 |
+
|
174 |
+
@abc.abstractmethod
|
175 |
+
def _str_isdecimal(self):
|
176 |
+
pass
|
177 |
+
|
178 |
+
@abc.abstractmethod
|
179 |
+
def _str_isdigit(self):
|
180 |
+
pass
|
181 |
+
|
182 |
+
@abc.abstractmethod
|
183 |
+
def _str_islower(self):
|
184 |
+
pass
|
185 |
+
|
186 |
+
@abc.abstractmethod
|
187 |
+
def _str_isnumeric(self):
|
188 |
+
pass
|
189 |
+
|
190 |
+
@abc.abstractmethod
|
191 |
+
def _str_isspace(self):
|
192 |
+
pass
|
193 |
+
|
194 |
+
@abc.abstractmethod
|
195 |
+
def _str_istitle(self):
|
196 |
+
pass
|
197 |
+
|
198 |
+
@abc.abstractmethod
|
199 |
+
def _str_isupper(self):
|
200 |
+
pass
|
201 |
+
|
202 |
+
@abc.abstractmethod
|
203 |
+
def _str_capitalize(self):
|
204 |
+
pass
|
205 |
+
|
206 |
+
@abc.abstractmethod
|
207 |
+
def _str_casefold(self):
|
208 |
+
pass
|
209 |
+
|
210 |
+
@abc.abstractmethod
|
211 |
+
def _str_title(self):
|
212 |
+
pass
|
213 |
+
|
214 |
+
@abc.abstractmethod
|
215 |
+
def _str_swapcase(self):
|
216 |
+
pass
|
217 |
+
|
218 |
+
@abc.abstractmethod
|
219 |
+
def _str_lower(self):
|
220 |
+
pass
|
221 |
+
|
222 |
+
@abc.abstractmethod
|
223 |
+
def _str_upper(self):
|
224 |
+
pass
|
225 |
+
|
226 |
+
@abc.abstractmethod
|
227 |
+
def _str_normalize(self, form):
|
228 |
+
pass
|
229 |
+
|
230 |
+
@abc.abstractmethod
|
231 |
+
def _str_strip(self, to_strip=None):
|
232 |
+
pass
|
233 |
+
|
234 |
+
@abc.abstractmethod
|
235 |
+
def _str_lstrip(self, to_strip=None):
|
236 |
+
pass
|
237 |
+
|
238 |
+
@abc.abstractmethod
|
239 |
+
def _str_rstrip(self, to_strip=None):
|
240 |
+
pass
|
241 |
+
|
242 |
+
@abc.abstractmethod
|
243 |
+
def _str_removeprefix(self, prefix: str) -> Series:
|
244 |
+
pass
|
245 |
+
|
246 |
+
@abc.abstractmethod
|
247 |
+
def _str_removesuffix(self, suffix: str) -> Series:
|
248 |
+
pass
|
249 |
+
|
250 |
+
@abc.abstractmethod
|
251 |
+
def _str_split(
|
252 |
+
self, pat=None, n=-1, expand: bool = False, regex: bool | None = None
|
253 |
+
):
|
254 |
+
pass
|
255 |
+
|
256 |
+
@abc.abstractmethod
|
257 |
+
def _str_rsplit(self, pat=None, n=-1):
|
258 |
+
pass
|
259 |
+
|
260 |
+
@abc.abstractmethod
|
261 |
+
def _str_extract(self, pat: str, flags: int = 0, expand: bool = True):
|
262 |
+
pass
|
env-llmeval/lib/python3.10/site-packages/pandas/core/tools/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (182 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/core/tools/__pycache__/datetimes.cpython-310.pyc
ADDED
Binary file (35 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/core/tools/__pycache__/numeric.cpython-310.pyc
ADDED
Binary file (8.14 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/core/tools/__pycache__/timedeltas.cpython-310.pyc
ADDED
Binary file (7.33 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/core/tools/__pycache__/times.cpython-310.pyc
ADDED
Binary file (3.95 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/core/tools/datetimes.py
ADDED
@@ -0,0 +1,1235 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
from collections import abc
|
4 |
+
from datetime import date
|
5 |
+
from functools import partial
|
6 |
+
from itertools import islice
|
7 |
+
from typing import (
|
8 |
+
TYPE_CHECKING,
|
9 |
+
Callable,
|
10 |
+
TypedDict,
|
11 |
+
Union,
|
12 |
+
cast,
|
13 |
+
overload,
|
14 |
+
)
|
15 |
+
import warnings
|
16 |
+
|
17 |
+
import numpy as np
|
18 |
+
|
19 |
+
from pandas._libs import (
|
20 |
+
lib,
|
21 |
+
tslib,
|
22 |
+
)
|
23 |
+
from pandas._libs.tslibs import (
|
24 |
+
OutOfBoundsDatetime,
|
25 |
+
Timedelta,
|
26 |
+
Timestamp,
|
27 |
+
astype_overflowsafe,
|
28 |
+
is_supported_dtype,
|
29 |
+
timezones as libtimezones,
|
30 |
+
)
|
31 |
+
from pandas._libs.tslibs.conversion import cast_from_unit_vectorized
|
32 |
+
from pandas._libs.tslibs.parsing import (
|
33 |
+
DateParseError,
|
34 |
+
guess_datetime_format,
|
35 |
+
)
|
36 |
+
from pandas._libs.tslibs.strptime import array_strptime
|
37 |
+
from pandas._typing import (
|
38 |
+
AnyArrayLike,
|
39 |
+
ArrayLike,
|
40 |
+
DateTimeErrorChoices,
|
41 |
+
)
|
42 |
+
from pandas.util._exceptions import find_stack_level
|
43 |
+
|
44 |
+
from pandas.core.dtypes.common import (
|
45 |
+
ensure_object,
|
46 |
+
is_float,
|
47 |
+
is_integer,
|
48 |
+
is_integer_dtype,
|
49 |
+
is_list_like,
|
50 |
+
is_numeric_dtype,
|
51 |
+
)
|
52 |
+
from pandas.core.dtypes.dtypes import (
|
53 |
+
ArrowDtype,
|
54 |
+
DatetimeTZDtype,
|
55 |
+
)
|
56 |
+
from pandas.core.dtypes.generic import (
|
57 |
+
ABCDataFrame,
|
58 |
+
ABCSeries,
|
59 |
+
)
|
60 |
+
|
61 |
+
from pandas.arrays import (
|
62 |
+
DatetimeArray,
|
63 |
+
IntegerArray,
|
64 |
+
NumpyExtensionArray,
|
65 |
+
)
|
66 |
+
from pandas.core.algorithms import unique
|
67 |
+
from pandas.core.arrays import ArrowExtensionArray
|
68 |
+
from pandas.core.arrays.base import ExtensionArray
|
69 |
+
from pandas.core.arrays.datetimes import (
|
70 |
+
maybe_convert_dtype,
|
71 |
+
objects_to_datetime64,
|
72 |
+
tz_to_dtype,
|
73 |
+
)
|
74 |
+
from pandas.core.construction import extract_array
|
75 |
+
from pandas.core.indexes.base import Index
|
76 |
+
from pandas.core.indexes.datetimes import DatetimeIndex
|
77 |
+
|
78 |
+
if TYPE_CHECKING:
|
79 |
+
from collections.abc import Hashable
|
80 |
+
|
81 |
+
from pandas._libs.tslibs.nattype import NaTType
|
82 |
+
from pandas._libs.tslibs.timedeltas import UnitChoices
|
83 |
+
|
84 |
+
from pandas import (
|
85 |
+
DataFrame,
|
86 |
+
Series,
|
87 |
+
)
|
88 |
+
|
89 |
+
# ---------------------------------------------------------------------
|
90 |
+
# types used in annotations
|
91 |
+
|
92 |
+
ArrayConvertible = Union[list, tuple, AnyArrayLike]
|
93 |
+
Scalar = Union[float, str]
|
94 |
+
DatetimeScalar = Union[Scalar, date, np.datetime64]
|
95 |
+
|
96 |
+
DatetimeScalarOrArrayConvertible = Union[DatetimeScalar, ArrayConvertible]
|
97 |
+
|
98 |
+
DatetimeDictArg = Union[list[Scalar], tuple[Scalar, ...], AnyArrayLike]
|
99 |
+
|
100 |
+
|
101 |
+
class YearMonthDayDict(TypedDict, total=True):
|
102 |
+
year: DatetimeDictArg
|
103 |
+
month: DatetimeDictArg
|
104 |
+
day: DatetimeDictArg
|
105 |
+
|
106 |
+
|
107 |
+
class FulldatetimeDict(YearMonthDayDict, total=False):
|
108 |
+
hour: DatetimeDictArg
|
109 |
+
hours: DatetimeDictArg
|
110 |
+
minute: DatetimeDictArg
|
111 |
+
minutes: DatetimeDictArg
|
112 |
+
second: DatetimeDictArg
|
113 |
+
seconds: DatetimeDictArg
|
114 |
+
ms: DatetimeDictArg
|
115 |
+
us: DatetimeDictArg
|
116 |
+
ns: DatetimeDictArg
|
117 |
+
|
118 |
+
|
119 |
+
DictConvertible = Union[FulldatetimeDict, "DataFrame"]
|
120 |
+
start_caching_at = 50
|
121 |
+
|
122 |
+
|
123 |
+
# ---------------------------------------------------------------------
|
124 |
+
|
125 |
+
|
126 |
+
def _guess_datetime_format_for_array(arr, dayfirst: bool | None = False) -> str | None:
|
127 |
+
# Try to guess the format based on the first non-NaN element, return None if can't
|
128 |
+
if (first_non_null := tslib.first_non_null(arr)) != -1:
|
129 |
+
if type(first_non_nan_element := arr[first_non_null]) is str: # noqa: E721
|
130 |
+
# GH#32264 np.str_ object
|
131 |
+
guessed_format = guess_datetime_format(
|
132 |
+
first_non_nan_element, dayfirst=dayfirst
|
133 |
+
)
|
134 |
+
if guessed_format is not None:
|
135 |
+
return guessed_format
|
136 |
+
# If there are multiple non-null elements, warn about
|
137 |
+
# how parsing might not be consistent
|
138 |
+
if tslib.first_non_null(arr[first_non_null + 1 :]) != -1:
|
139 |
+
warnings.warn(
|
140 |
+
"Could not infer format, so each element will be parsed "
|
141 |
+
"individually, falling back to `dateutil`. To ensure parsing is "
|
142 |
+
"consistent and as-expected, please specify a format.",
|
143 |
+
UserWarning,
|
144 |
+
stacklevel=find_stack_level(),
|
145 |
+
)
|
146 |
+
return None
|
147 |
+
|
148 |
+
|
149 |
+
def should_cache(
|
150 |
+
arg: ArrayConvertible, unique_share: float = 0.7, check_count: int | None = None
|
151 |
+
) -> bool:
|
152 |
+
"""
|
153 |
+
Decides whether to do caching.
|
154 |
+
|
155 |
+
If the percent of unique elements among `check_count` elements less
|
156 |
+
than `unique_share * 100` then we can do caching.
|
157 |
+
|
158 |
+
Parameters
|
159 |
+
----------
|
160 |
+
arg: listlike, tuple, 1-d array, Series
|
161 |
+
unique_share: float, default=0.7, optional
|
162 |
+
0 < unique_share < 1
|
163 |
+
check_count: int, optional
|
164 |
+
0 <= check_count <= len(arg)
|
165 |
+
|
166 |
+
Returns
|
167 |
+
-------
|
168 |
+
do_caching: bool
|
169 |
+
|
170 |
+
Notes
|
171 |
+
-----
|
172 |
+
By default for a sequence of less than 50 items in size, we don't do
|
173 |
+
caching; for the number of elements less than 5000, we take ten percent of
|
174 |
+
all elements to check for a uniqueness share; if the sequence size is more
|
175 |
+
than 5000, then we check only the first 500 elements.
|
176 |
+
All constants were chosen empirically by.
|
177 |
+
"""
|
178 |
+
do_caching = True
|
179 |
+
|
180 |
+
# default realization
|
181 |
+
if check_count is None:
|
182 |
+
# in this case, the gain from caching is negligible
|
183 |
+
if len(arg) <= start_caching_at:
|
184 |
+
return False
|
185 |
+
|
186 |
+
if len(arg) <= 5000:
|
187 |
+
check_count = len(arg) // 10
|
188 |
+
else:
|
189 |
+
check_count = 500
|
190 |
+
else:
|
191 |
+
assert (
|
192 |
+
0 <= check_count <= len(arg)
|
193 |
+
), "check_count must be in next bounds: [0; len(arg)]"
|
194 |
+
if check_count == 0:
|
195 |
+
return False
|
196 |
+
|
197 |
+
assert 0 < unique_share < 1, "unique_share must be in next bounds: (0; 1)"
|
198 |
+
|
199 |
+
try:
|
200 |
+
# We can't cache if the items are not hashable.
|
201 |
+
unique_elements = set(islice(arg, check_count))
|
202 |
+
except TypeError:
|
203 |
+
return False
|
204 |
+
if len(unique_elements) > check_count * unique_share:
|
205 |
+
do_caching = False
|
206 |
+
return do_caching
|
207 |
+
|
208 |
+
|
209 |
+
def _maybe_cache(
|
210 |
+
arg: ArrayConvertible,
|
211 |
+
format: str | None,
|
212 |
+
cache: bool,
|
213 |
+
convert_listlike: Callable,
|
214 |
+
) -> Series:
|
215 |
+
"""
|
216 |
+
Create a cache of unique dates from an array of dates
|
217 |
+
|
218 |
+
Parameters
|
219 |
+
----------
|
220 |
+
arg : listlike, tuple, 1-d array, Series
|
221 |
+
format : string
|
222 |
+
Strftime format to parse time
|
223 |
+
cache : bool
|
224 |
+
True attempts to create a cache of converted values
|
225 |
+
convert_listlike : function
|
226 |
+
Conversion function to apply on dates
|
227 |
+
|
228 |
+
Returns
|
229 |
+
-------
|
230 |
+
cache_array : Series
|
231 |
+
Cache of converted, unique dates. Can be empty
|
232 |
+
"""
|
233 |
+
from pandas import Series
|
234 |
+
|
235 |
+
cache_array = Series(dtype=object)
|
236 |
+
|
237 |
+
if cache:
|
238 |
+
# Perform a quicker unique check
|
239 |
+
if not should_cache(arg):
|
240 |
+
return cache_array
|
241 |
+
|
242 |
+
if not isinstance(arg, (np.ndarray, ExtensionArray, Index, ABCSeries)):
|
243 |
+
arg = np.array(arg)
|
244 |
+
|
245 |
+
unique_dates = unique(arg)
|
246 |
+
if len(unique_dates) < len(arg):
|
247 |
+
cache_dates = convert_listlike(unique_dates, format)
|
248 |
+
# GH#45319
|
249 |
+
try:
|
250 |
+
cache_array = Series(cache_dates, index=unique_dates, copy=False)
|
251 |
+
except OutOfBoundsDatetime:
|
252 |
+
return cache_array
|
253 |
+
# GH#39882 and GH#35888 in case of None and NaT we get duplicates
|
254 |
+
if not cache_array.index.is_unique:
|
255 |
+
cache_array = cache_array[~cache_array.index.duplicated()]
|
256 |
+
return cache_array
|
257 |
+
|
258 |
+
|
259 |
+
def _box_as_indexlike(
|
260 |
+
dt_array: ArrayLike, utc: bool = False, name: Hashable | None = None
|
261 |
+
) -> Index:
|
262 |
+
"""
|
263 |
+
Properly boxes the ndarray of datetimes to DatetimeIndex
|
264 |
+
if it is possible or to generic Index instead
|
265 |
+
|
266 |
+
Parameters
|
267 |
+
----------
|
268 |
+
dt_array: 1-d array
|
269 |
+
Array of datetimes to be wrapped in an Index.
|
270 |
+
utc : bool
|
271 |
+
Whether to convert/localize timestamps to UTC.
|
272 |
+
name : string, default None
|
273 |
+
Name for a resulting index
|
274 |
+
|
275 |
+
Returns
|
276 |
+
-------
|
277 |
+
result : datetime of converted dates
|
278 |
+
- DatetimeIndex if convertible to sole datetime64 type
|
279 |
+
- general Index otherwise
|
280 |
+
"""
|
281 |
+
|
282 |
+
if lib.is_np_dtype(dt_array.dtype, "M"):
|
283 |
+
tz = "utc" if utc else None
|
284 |
+
return DatetimeIndex(dt_array, tz=tz, name=name)
|
285 |
+
return Index(dt_array, name=name, dtype=dt_array.dtype)
|
286 |
+
|
287 |
+
|
288 |
+
def _convert_and_box_cache(
|
289 |
+
arg: DatetimeScalarOrArrayConvertible,
|
290 |
+
cache_array: Series,
|
291 |
+
name: Hashable | None = None,
|
292 |
+
) -> Index:
|
293 |
+
"""
|
294 |
+
Convert array of dates with a cache and wrap the result in an Index.
|
295 |
+
|
296 |
+
Parameters
|
297 |
+
----------
|
298 |
+
arg : integer, float, string, datetime, list, tuple, 1-d array, Series
|
299 |
+
cache_array : Series
|
300 |
+
Cache of converted, unique dates
|
301 |
+
name : string, default None
|
302 |
+
Name for a DatetimeIndex
|
303 |
+
|
304 |
+
Returns
|
305 |
+
-------
|
306 |
+
result : Index-like of converted dates
|
307 |
+
"""
|
308 |
+
from pandas import Series
|
309 |
+
|
310 |
+
result = Series(arg, dtype=cache_array.index.dtype).map(cache_array)
|
311 |
+
return _box_as_indexlike(result._values, utc=False, name=name)
|
312 |
+
|
313 |
+
|
314 |
+
def _convert_listlike_datetimes(
|
315 |
+
arg,
|
316 |
+
format: str | None,
|
317 |
+
name: Hashable | None = None,
|
318 |
+
utc: bool = False,
|
319 |
+
unit: str | None = None,
|
320 |
+
errors: DateTimeErrorChoices = "raise",
|
321 |
+
dayfirst: bool | None = None,
|
322 |
+
yearfirst: bool | None = None,
|
323 |
+
exact: bool = True,
|
324 |
+
):
|
325 |
+
"""
|
326 |
+
Helper function for to_datetime. Performs the conversions of 1D listlike
|
327 |
+
of dates
|
328 |
+
|
329 |
+
Parameters
|
330 |
+
----------
|
331 |
+
arg : list, tuple, ndarray, Series, Index
|
332 |
+
date to be parsed
|
333 |
+
name : object
|
334 |
+
None or string for the Index name
|
335 |
+
utc : bool
|
336 |
+
Whether to convert/localize timestamps to UTC.
|
337 |
+
unit : str
|
338 |
+
None or string of the frequency of the passed data
|
339 |
+
errors : str
|
340 |
+
error handing behaviors from to_datetime, 'raise', 'coerce', 'ignore'
|
341 |
+
dayfirst : bool
|
342 |
+
dayfirst parsing behavior from to_datetime
|
343 |
+
yearfirst : bool
|
344 |
+
yearfirst parsing behavior from to_datetime
|
345 |
+
exact : bool, default True
|
346 |
+
exact format matching behavior from to_datetime
|
347 |
+
|
348 |
+
Returns
|
349 |
+
-------
|
350 |
+
Index-like of parsed dates
|
351 |
+
"""
|
352 |
+
if isinstance(arg, (list, tuple)):
|
353 |
+
arg = np.array(arg, dtype="O")
|
354 |
+
elif isinstance(arg, NumpyExtensionArray):
|
355 |
+
arg = np.array(arg)
|
356 |
+
|
357 |
+
arg_dtype = getattr(arg, "dtype", None)
|
358 |
+
# these are shortcutable
|
359 |
+
tz = "utc" if utc else None
|
360 |
+
if isinstance(arg_dtype, DatetimeTZDtype):
|
361 |
+
if not isinstance(arg, (DatetimeArray, DatetimeIndex)):
|
362 |
+
return DatetimeIndex(arg, tz=tz, name=name)
|
363 |
+
if utc:
|
364 |
+
arg = arg.tz_convert(None).tz_localize("utc")
|
365 |
+
return arg
|
366 |
+
|
367 |
+
elif isinstance(arg_dtype, ArrowDtype) and arg_dtype.type is Timestamp:
|
368 |
+
# TODO: Combine with above if DTI/DTA supports Arrow timestamps
|
369 |
+
if utc:
|
370 |
+
# pyarrow uses UTC, not lowercase utc
|
371 |
+
if isinstance(arg, Index):
|
372 |
+
arg_array = cast(ArrowExtensionArray, arg.array)
|
373 |
+
if arg_dtype.pyarrow_dtype.tz is not None:
|
374 |
+
arg_array = arg_array._dt_tz_convert("UTC")
|
375 |
+
else:
|
376 |
+
arg_array = arg_array._dt_tz_localize("UTC")
|
377 |
+
arg = Index(arg_array)
|
378 |
+
else:
|
379 |
+
# ArrowExtensionArray
|
380 |
+
if arg_dtype.pyarrow_dtype.tz is not None:
|
381 |
+
arg = arg._dt_tz_convert("UTC")
|
382 |
+
else:
|
383 |
+
arg = arg._dt_tz_localize("UTC")
|
384 |
+
return arg
|
385 |
+
|
386 |
+
elif lib.is_np_dtype(arg_dtype, "M"):
|
387 |
+
if not is_supported_dtype(arg_dtype):
|
388 |
+
# We go to closest supported reso, i.e. "s"
|
389 |
+
arg = astype_overflowsafe(
|
390 |
+
# TODO: looks like we incorrectly raise with errors=="ignore"
|
391 |
+
np.asarray(arg),
|
392 |
+
np.dtype("M8[s]"),
|
393 |
+
is_coerce=errors == "coerce",
|
394 |
+
)
|
395 |
+
|
396 |
+
if not isinstance(arg, (DatetimeArray, DatetimeIndex)):
|
397 |
+
return DatetimeIndex(arg, tz=tz, name=name)
|
398 |
+
elif utc:
|
399 |
+
# DatetimeArray, DatetimeIndex
|
400 |
+
return arg.tz_localize("utc")
|
401 |
+
|
402 |
+
return arg
|
403 |
+
|
404 |
+
elif unit is not None:
|
405 |
+
if format is not None:
|
406 |
+
raise ValueError("cannot specify both format and unit")
|
407 |
+
return _to_datetime_with_unit(arg, unit, name, utc, errors)
|
408 |
+
elif getattr(arg, "ndim", 1) > 1:
|
409 |
+
raise TypeError(
|
410 |
+
"arg must be a string, datetime, list, tuple, 1-d array, or Series"
|
411 |
+
)
|
412 |
+
|
413 |
+
# warn if passing timedelta64, raise for PeriodDtype
|
414 |
+
# NB: this must come after unit transformation
|
415 |
+
try:
|
416 |
+
arg, _ = maybe_convert_dtype(arg, copy=False, tz=libtimezones.maybe_get_tz(tz))
|
417 |
+
except TypeError:
|
418 |
+
if errors == "coerce":
|
419 |
+
npvalues = np.array(["NaT"], dtype="datetime64[ns]").repeat(len(arg))
|
420 |
+
return DatetimeIndex(npvalues, name=name)
|
421 |
+
elif errors == "ignore":
|
422 |
+
idx = Index(arg, name=name)
|
423 |
+
return idx
|
424 |
+
raise
|
425 |
+
|
426 |
+
arg = ensure_object(arg)
|
427 |
+
|
428 |
+
if format is None:
|
429 |
+
format = _guess_datetime_format_for_array(arg, dayfirst=dayfirst)
|
430 |
+
|
431 |
+
# `format` could be inferred, or user didn't ask for mixed-format parsing.
|
432 |
+
if format is not None and format != "mixed":
|
433 |
+
return _array_strptime_with_fallback(arg, name, utc, format, exact, errors)
|
434 |
+
|
435 |
+
result, tz_parsed = objects_to_datetime64(
|
436 |
+
arg,
|
437 |
+
dayfirst=dayfirst,
|
438 |
+
yearfirst=yearfirst,
|
439 |
+
utc=utc,
|
440 |
+
errors=errors,
|
441 |
+
allow_object=True,
|
442 |
+
)
|
443 |
+
|
444 |
+
if tz_parsed is not None:
|
445 |
+
# We can take a shortcut since the datetime64 numpy array
|
446 |
+
# is in UTC
|
447 |
+
out_unit = np.datetime_data(result.dtype)[0]
|
448 |
+
dtype = cast(DatetimeTZDtype, tz_to_dtype(tz_parsed, out_unit))
|
449 |
+
dt64_values = result.view(f"M8[{dtype.unit}]")
|
450 |
+
dta = DatetimeArray._simple_new(dt64_values, dtype=dtype)
|
451 |
+
return DatetimeIndex._simple_new(dta, name=name)
|
452 |
+
|
453 |
+
return _box_as_indexlike(result, utc=utc, name=name)
|
454 |
+
|
455 |
+
|
456 |
+
def _array_strptime_with_fallback(
|
457 |
+
arg,
|
458 |
+
name,
|
459 |
+
utc: bool,
|
460 |
+
fmt: str,
|
461 |
+
exact: bool,
|
462 |
+
errors: str,
|
463 |
+
) -> Index:
|
464 |
+
"""
|
465 |
+
Call array_strptime, with fallback behavior depending on 'errors'.
|
466 |
+
"""
|
467 |
+
result, tz_out = array_strptime(arg, fmt, exact=exact, errors=errors, utc=utc)
|
468 |
+
if tz_out is not None:
|
469 |
+
unit = np.datetime_data(result.dtype)[0]
|
470 |
+
dtype = DatetimeTZDtype(tz=tz_out, unit=unit)
|
471 |
+
dta = DatetimeArray._simple_new(result, dtype=dtype)
|
472 |
+
if utc:
|
473 |
+
dta = dta.tz_convert("UTC")
|
474 |
+
return Index(dta, name=name)
|
475 |
+
elif result.dtype != object and utc:
|
476 |
+
unit = np.datetime_data(result.dtype)[0]
|
477 |
+
res = Index(result, dtype=f"M8[{unit}, UTC]", name=name)
|
478 |
+
return res
|
479 |
+
return Index(result, dtype=result.dtype, name=name)
|
480 |
+
|
481 |
+
|
482 |
+
def _to_datetime_with_unit(arg, unit, name, utc: bool, errors: str) -> Index:
|
483 |
+
"""
|
484 |
+
to_datetime specalized to the case where a 'unit' is passed.
|
485 |
+
"""
|
486 |
+
arg = extract_array(arg, extract_numpy=True)
|
487 |
+
|
488 |
+
# GH#30050 pass an ndarray to tslib.array_with_unit_to_datetime
|
489 |
+
# because it expects an ndarray argument
|
490 |
+
if isinstance(arg, IntegerArray):
|
491 |
+
arr = arg.astype(f"datetime64[{unit}]")
|
492 |
+
tz_parsed = None
|
493 |
+
else:
|
494 |
+
arg = np.asarray(arg)
|
495 |
+
|
496 |
+
if arg.dtype.kind in "iu":
|
497 |
+
# Note we can't do "f" here because that could induce unwanted
|
498 |
+
# rounding GH#14156, GH#20445
|
499 |
+
arr = arg.astype(f"datetime64[{unit}]", copy=False)
|
500 |
+
try:
|
501 |
+
arr = astype_overflowsafe(arr, np.dtype("M8[ns]"), copy=False)
|
502 |
+
except OutOfBoundsDatetime:
|
503 |
+
if errors == "raise":
|
504 |
+
raise
|
505 |
+
arg = arg.astype(object)
|
506 |
+
return _to_datetime_with_unit(arg, unit, name, utc, errors)
|
507 |
+
tz_parsed = None
|
508 |
+
|
509 |
+
elif arg.dtype.kind == "f":
|
510 |
+
with np.errstate(over="raise"):
|
511 |
+
try:
|
512 |
+
arr = cast_from_unit_vectorized(arg, unit=unit)
|
513 |
+
except OutOfBoundsDatetime:
|
514 |
+
if errors != "raise":
|
515 |
+
return _to_datetime_with_unit(
|
516 |
+
arg.astype(object), unit, name, utc, errors
|
517 |
+
)
|
518 |
+
raise OutOfBoundsDatetime(
|
519 |
+
f"cannot convert input with unit '{unit}'"
|
520 |
+
)
|
521 |
+
|
522 |
+
arr = arr.view("M8[ns]")
|
523 |
+
tz_parsed = None
|
524 |
+
else:
|
525 |
+
arg = arg.astype(object, copy=False)
|
526 |
+
arr, tz_parsed = tslib.array_with_unit_to_datetime(arg, unit, errors=errors)
|
527 |
+
|
528 |
+
if errors == "ignore":
|
529 |
+
# Index constructor _may_ infer to DatetimeIndex
|
530 |
+
result = Index._with_infer(arr, name=name)
|
531 |
+
else:
|
532 |
+
result = DatetimeIndex(arr, name=name)
|
533 |
+
|
534 |
+
if not isinstance(result, DatetimeIndex):
|
535 |
+
return result
|
536 |
+
|
537 |
+
# GH#23758: We may still need to localize the result with tz
|
538 |
+
# GH#25546: Apply tz_parsed first (from arg), then tz (from caller)
|
539 |
+
# result will be naive but in UTC
|
540 |
+
result = result.tz_localize("UTC").tz_convert(tz_parsed)
|
541 |
+
|
542 |
+
if utc:
|
543 |
+
if result.tz is None:
|
544 |
+
result = result.tz_localize("utc")
|
545 |
+
else:
|
546 |
+
result = result.tz_convert("utc")
|
547 |
+
return result
|
548 |
+
|
549 |
+
|
550 |
+
def _adjust_to_origin(arg, origin, unit):
|
551 |
+
"""
|
552 |
+
Helper function for to_datetime.
|
553 |
+
Adjust input argument to the specified origin
|
554 |
+
|
555 |
+
Parameters
|
556 |
+
----------
|
557 |
+
arg : list, tuple, ndarray, Series, Index
|
558 |
+
date to be adjusted
|
559 |
+
origin : 'julian' or Timestamp
|
560 |
+
origin offset for the arg
|
561 |
+
unit : str
|
562 |
+
passed unit from to_datetime, must be 'D'
|
563 |
+
|
564 |
+
Returns
|
565 |
+
-------
|
566 |
+
ndarray or scalar of adjusted date(s)
|
567 |
+
"""
|
568 |
+
if origin == "julian":
|
569 |
+
original = arg
|
570 |
+
j0 = Timestamp(0).to_julian_date()
|
571 |
+
if unit != "D":
|
572 |
+
raise ValueError("unit must be 'D' for origin='julian'")
|
573 |
+
try:
|
574 |
+
arg = arg - j0
|
575 |
+
except TypeError as err:
|
576 |
+
raise ValueError(
|
577 |
+
"incompatible 'arg' type for given 'origin'='julian'"
|
578 |
+
) from err
|
579 |
+
|
580 |
+
# preemptively check this for a nice range
|
581 |
+
j_max = Timestamp.max.to_julian_date() - j0
|
582 |
+
j_min = Timestamp.min.to_julian_date() - j0
|
583 |
+
if np.any(arg > j_max) or np.any(arg < j_min):
|
584 |
+
raise OutOfBoundsDatetime(
|
585 |
+
f"{original} is Out of Bounds for origin='julian'"
|
586 |
+
)
|
587 |
+
else:
|
588 |
+
# arg must be numeric
|
589 |
+
if not (
|
590 |
+
(is_integer(arg) or is_float(arg)) or is_numeric_dtype(np.asarray(arg))
|
591 |
+
):
|
592 |
+
raise ValueError(
|
593 |
+
f"'{arg}' is not compatible with origin='{origin}'; "
|
594 |
+
"it must be numeric with a unit specified"
|
595 |
+
)
|
596 |
+
|
597 |
+
# we are going to offset back to unix / epoch time
|
598 |
+
try:
|
599 |
+
offset = Timestamp(origin, unit=unit)
|
600 |
+
except OutOfBoundsDatetime as err:
|
601 |
+
raise OutOfBoundsDatetime(f"origin {origin} is Out of Bounds") from err
|
602 |
+
except ValueError as err:
|
603 |
+
raise ValueError(
|
604 |
+
f"origin {origin} cannot be converted to a Timestamp"
|
605 |
+
) from err
|
606 |
+
|
607 |
+
if offset.tz is not None:
|
608 |
+
raise ValueError(f"origin offset {offset} must be tz-naive")
|
609 |
+
td_offset = offset - Timestamp(0)
|
610 |
+
|
611 |
+
# convert the offset to the unit of the arg
|
612 |
+
# this should be lossless in terms of precision
|
613 |
+
ioffset = td_offset // Timedelta(1, unit=unit)
|
614 |
+
|
615 |
+
# scalars & ndarray-like can handle the addition
|
616 |
+
if is_list_like(arg) and not isinstance(arg, (ABCSeries, Index, np.ndarray)):
|
617 |
+
arg = np.asarray(arg)
|
618 |
+
arg = arg + ioffset
|
619 |
+
return arg
|
620 |
+
|
621 |
+
|
622 |
+
@overload
|
623 |
+
def to_datetime(
|
624 |
+
arg: DatetimeScalar,
|
625 |
+
errors: DateTimeErrorChoices = ...,
|
626 |
+
dayfirst: bool = ...,
|
627 |
+
yearfirst: bool = ...,
|
628 |
+
utc: bool = ...,
|
629 |
+
format: str | None = ...,
|
630 |
+
exact: bool = ...,
|
631 |
+
unit: str | None = ...,
|
632 |
+
infer_datetime_format: bool = ...,
|
633 |
+
origin=...,
|
634 |
+
cache: bool = ...,
|
635 |
+
) -> Timestamp:
|
636 |
+
...
|
637 |
+
|
638 |
+
|
639 |
+
@overload
|
640 |
+
def to_datetime(
|
641 |
+
arg: Series | DictConvertible,
|
642 |
+
errors: DateTimeErrorChoices = ...,
|
643 |
+
dayfirst: bool = ...,
|
644 |
+
yearfirst: bool = ...,
|
645 |
+
utc: bool = ...,
|
646 |
+
format: str | None = ...,
|
647 |
+
exact: bool = ...,
|
648 |
+
unit: str | None = ...,
|
649 |
+
infer_datetime_format: bool = ...,
|
650 |
+
origin=...,
|
651 |
+
cache: bool = ...,
|
652 |
+
) -> Series:
|
653 |
+
...
|
654 |
+
|
655 |
+
|
656 |
+
@overload
|
657 |
+
def to_datetime(
|
658 |
+
arg: list | tuple | Index | ArrayLike,
|
659 |
+
errors: DateTimeErrorChoices = ...,
|
660 |
+
dayfirst: bool = ...,
|
661 |
+
yearfirst: bool = ...,
|
662 |
+
utc: bool = ...,
|
663 |
+
format: str | None = ...,
|
664 |
+
exact: bool = ...,
|
665 |
+
unit: str | None = ...,
|
666 |
+
infer_datetime_format: bool = ...,
|
667 |
+
origin=...,
|
668 |
+
cache: bool = ...,
|
669 |
+
) -> DatetimeIndex:
|
670 |
+
...
|
671 |
+
|
672 |
+
|
673 |
+
def to_datetime(
|
674 |
+
arg: DatetimeScalarOrArrayConvertible | DictConvertible,
|
675 |
+
errors: DateTimeErrorChoices = "raise",
|
676 |
+
dayfirst: bool = False,
|
677 |
+
yearfirst: bool = False,
|
678 |
+
utc: bool = False,
|
679 |
+
format: str | None = None,
|
680 |
+
exact: bool | lib.NoDefault = lib.no_default,
|
681 |
+
unit: str | None = None,
|
682 |
+
infer_datetime_format: lib.NoDefault | bool = lib.no_default,
|
683 |
+
origin: str = "unix",
|
684 |
+
cache: bool = True,
|
685 |
+
) -> DatetimeIndex | Series | DatetimeScalar | NaTType | None:
|
686 |
+
"""
|
687 |
+
Convert argument to datetime.
|
688 |
+
|
689 |
+
This function converts a scalar, array-like, :class:`Series` or
|
690 |
+
:class:`DataFrame`/dict-like to a pandas datetime object.
|
691 |
+
|
692 |
+
Parameters
|
693 |
+
----------
|
694 |
+
arg : int, float, str, datetime, list, tuple, 1-d array, Series, DataFrame/dict-like
|
695 |
+
The object to convert to a datetime. If a :class:`DataFrame` is provided, the
|
696 |
+
method expects minimally the following columns: :const:`"year"`,
|
697 |
+
:const:`"month"`, :const:`"day"`. The column "year"
|
698 |
+
must be specified in 4-digit format.
|
699 |
+
errors : {'ignore', 'raise', 'coerce'}, default 'raise'
|
700 |
+
- If :const:`'raise'`, then invalid parsing will raise an exception.
|
701 |
+
- If :const:`'coerce'`, then invalid parsing will be set as :const:`NaT`.
|
702 |
+
- If :const:`'ignore'`, then invalid parsing will return the input.
|
703 |
+
dayfirst : bool, default False
|
704 |
+
Specify a date parse order if `arg` is str or is list-like.
|
705 |
+
If :const:`True`, parses dates with the day first, e.g. :const:`"10/11/12"`
|
706 |
+
is parsed as :const:`2012-11-10`.
|
707 |
+
|
708 |
+
.. warning::
|
709 |
+
|
710 |
+
``dayfirst=True`` is not strict, but will prefer to parse
|
711 |
+
with day first.
|
712 |
+
|
713 |
+
yearfirst : bool, default False
|
714 |
+
Specify a date parse order if `arg` is str or is list-like.
|
715 |
+
|
716 |
+
- If :const:`True` parses dates with the year first, e.g.
|
717 |
+
:const:`"10/11/12"` is parsed as :const:`2010-11-12`.
|
718 |
+
- If both `dayfirst` and `yearfirst` are :const:`True`, `yearfirst` is
|
719 |
+
preceded (same as :mod:`dateutil`).
|
720 |
+
|
721 |
+
.. warning::
|
722 |
+
|
723 |
+
``yearfirst=True`` is not strict, but will prefer to parse
|
724 |
+
with year first.
|
725 |
+
|
726 |
+
utc : bool, default False
|
727 |
+
Control timezone-related parsing, localization and conversion.
|
728 |
+
|
729 |
+
- If :const:`True`, the function *always* returns a timezone-aware
|
730 |
+
UTC-localized :class:`Timestamp`, :class:`Series` or
|
731 |
+
:class:`DatetimeIndex`. To do this, timezone-naive inputs are
|
732 |
+
*localized* as UTC, while timezone-aware inputs are *converted* to UTC.
|
733 |
+
|
734 |
+
- If :const:`False` (default), inputs will not be coerced to UTC.
|
735 |
+
Timezone-naive inputs will remain naive, while timezone-aware ones
|
736 |
+
will keep their time offsets. Limitations exist for mixed
|
737 |
+
offsets (typically, daylight savings), see :ref:`Examples
|
738 |
+
<to_datetime_tz_examples>` section for details.
|
739 |
+
|
740 |
+
.. warning::
|
741 |
+
|
742 |
+
In a future version of pandas, parsing datetimes with mixed time
|
743 |
+
zones will raise an error unless `utc=True`.
|
744 |
+
Please specify `utc=True` to opt in to the new behaviour
|
745 |
+
and silence this warning. To create a `Series` with mixed offsets and
|
746 |
+
`object` dtype, please use `apply` and `datetime.datetime.strptime`.
|
747 |
+
|
748 |
+
See also: pandas general documentation about `timezone conversion and
|
749 |
+
localization
|
750 |
+
<https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html
|
751 |
+
#time-zone-handling>`_.
|
752 |
+
|
753 |
+
format : str, default None
|
754 |
+
The strftime to parse time, e.g. :const:`"%d/%m/%Y"`. See
|
755 |
+
`strftime documentation
|
756 |
+
<https://docs.python.org/3/library/datetime.html
|
757 |
+
#strftime-and-strptime-behavior>`_ for more information on choices, though
|
758 |
+
note that :const:`"%f"` will parse all the way up to nanoseconds.
|
759 |
+
You can also pass:
|
760 |
+
|
761 |
+
- "ISO8601", to parse any `ISO8601 <https://en.wikipedia.org/wiki/ISO_8601>`_
|
762 |
+
time string (not necessarily in exactly the same format);
|
763 |
+
- "mixed", to infer the format for each element individually. This is risky,
|
764 |
+
and you should probably use it along with `dayfirst`.
|
765 |
+
|
766 |
+
.. note::
|
767 |
+
|
768 |
+
If a :class:`DataFrame` is passed, then `format` has no effect.
|
769 |
+
|
770 |
+
exact : bool, default True
|
771 |
+
Control how `format` is used:
|
772 |
+
|
773 |
+
- If :const:`True`, require an exact `format` match.
|
774 |
+
- If :const:`False`, allow the `format` to match anywhere in the target
|
775 |
+
string.
|
776 |
+
|
777 |
+
Cannot be used alongside ``format='ISO8601'`` or ``format='mixed'``.
|
778 |
+
unit : str, default 'ns'
|
779 |
+
The unit of the arg (D,s,ms,us,ns) denote the unit, which is an
|
780 |
+
integer or float number. This will be based off the origin.
|
781 |
+
Example, with ``unit='ms'`` and ``origin='unix'``, this would calculate
|
782 |
+
the number of milliseconds to the unix epoch start.
|
783 |
+
infer_datetime_format : bool, default False
|
784 |
+
If :const:`True` and no `format` is given, attempt to infer the format
|
785 |
+
of the datetime strings based on the first non-NaN element,
|
786 |
+
and if it can be inferred, switch to a faster method of parsing them.
|
787 |
+
In some cases this can increase the parsing speed by ~5-10x.
|
788 |
+
|
789 |
+
.. deprecated:: 2.0.0
|
790 |
+
A strict version of this argument is now the default, passing it has
|
791 |
+
no effect.
|
792 |
+
|
793 |
+
origin : scalar, default 'unix'
|
794 |
+
Define the reference date. The numeric values would be parsed as number
|
795 |
+
of units (defined by `unit`) since this reference date.
|
796 |
+
|
797 |
+
- If :const:`'unix'` (or POSIX) time; origin is set to 1970-01-01.
|
798 |
+
- If :const:`'julian'`, unit must be :const:`'D'`, and origin is set to
|
799 |
+
beginning of Julian Calendar. Julian day number :const:`0` is assigned
|
800 |
+
to the day starting at noon on January 1, 4713 BC.
|
801 |
+
- If Timestamp convertible (Timestamp, dt.datetime, np.datetimt64 or date
|
802 |
+
string), origin is set to Timestamp identified by origin.
|
803 |
+
- If a float or integer, origin is the difference
|
804 |
+
(in units determined by the ``unit`` argument) relative to 1970-01-01.
|
805 |
+
cache : bool, default True
|
806 |
+
If :const:`True`, use a cache of unique, converted dates to apply the
|
807 |
+
datetime conversion. May produce significant speed-up when parsing
|
808 |
+
duplicate date strings, especially ones with timezone offsets. The cache
|
809 |
+
is only used when there are at least 50 values. The presence of
|
810 |
+
out-of-bounds values will render the cache unusable and may slow down
|
811 |
+
parsing.
|
812 |
+
|
813 |
+
Returns
|
814 |
+
-------
|
815 |
+
datetime
|
816 |
+
If parsing succeeded.
|
817 |
+
Return type depends on input (types in parenthesis correspond to
|
818 |
+
fallback in case of unsuccessful timezone or out-of-range timestamp
|
819 |
+
parsing):
|
820 |
+
|
821 |
+
- scalar: :class:`Timestamp` (or :class:`datetime.datetime`)
|
822 |
+
- array-like: :class:`DatetimeIndex` (or :class:`Series` with
|
823 |
+
:class:`object` dtype containing :class:`datetime.datetime`)
|
824 |
+
- Series: :class:`Series` of :class:`datetime64` dtype (or
|
825 |
+
:class:`Series` of :class:`object` dtype containing
|
826 |
+
:class:`datetime.datetime`)
|
827 |
+
- DataFrame: :class:`Series` of :class:`datetime64` dtype (or
|
828 |
+
:class:`Series` of :class:`object` dtype containing
|
829 |
+
:class:`datetime.datetime`)
|
830 |
+
|
831 |
+
Raises
|
832 |
+
------
|
833 |
+
ParserError
|
834 |
+
When parsing a date from string fails.
|
835 |
+
ValueError
|
836 |
+
When another datetime conversion error happens. For example when one
|
837 |
+
of 'year', 'month', day' columns is missing in a :class:`DataFrame`, or
|
838 |
+
when a Timezone-aware :class:`datetime.datetime` is found in an array-like
|
839 |
+
of mixed time offsets, and ``utc=False``.
|
840 |
+
|
841 |
+
See Also
|
842 |
+
--------
|
843 |
+
DataFrame.astype : Cast argument to a specified dtype.
|
844 |
+
to_timedelta : Convert argument to timedelta.
|
845 |
+
convert_dtypes : Convert dtypes.
|
846 |
+
|
847 |
+
Notes
|
848 |
+
-----
|
849 |
+
|
850 |
+
Many input types are supported, and lead to different output types:
|
851 |
+
|
852 |
+
- **scalars** can be int, float, str, datetime object (from stdlib :mod:`datetime`
|
853 |
+
module or :mod:`numpy`). They are converted to :class:`Timestamp` when
|
854 |
+
possible, otherwise they are converted to :class:`datetime.datetime`.
|
855 |
+
None/NaN/null scalars are converted to :const:`NaT`.
|
856 |
+
|
857 |
+
- **array-like** can contain int, float, str, datetime objects. They are
|
858 |
+
converted to :class:`DatetimeIndex` when possible, otherwise they are
|
859 |
+
converted to :class:`Index` with :class:`object` dtype, containing
|
860 |
+
:class:`datetime.datetime`. None/NaN/null entries are converted to
|
861 |
+
:const:`NaT` in both cases.
|
862 |
+
|
863 |
+
- **Series** are converted to :class:`Series` with :class:`datetime64`
|
864 |
+
dtype when possible, otherwise they are converted to :class:`Series` with
|
865 |
+
:class:`object` dtype, containing :class:`datetime.datetime`. None/NaN/null
|
866 |
+
entries are converted to :const:`NaT` in both cases.
|
867 |
+
|
868 |
+
- **DataFrame/dict-like** are converted to :class:`Series` with
|
869 |
+
:class:`datetime64` dtype. For each row a datetime is created from assembling
|
870 |
+
the various dataframe columns. Column keys can be common abbreviations
|
871 |
+
like ['year', 'month', 'day', 'minute', 'second', 'ms', 'us', 'ns']) or
|
872 |
+
plurals of the same.
|
873 |
+
|
874 |
+
The following causes are responsible for :class:`datetime.datetime` objects
|
875 |
+
being returned (possibly inside an :class:`Index` or a :class:`Series` with
|
876 |
+
:class:`object` dtype) instead of a proper pandas designated type
|
877 |
+
(:class:`Timestamp`, :class:`DatetimeIndex` or :class:`Series`
|
878 |
+
with :class:`datetime64` dtype):
|
879 |
+
|
880 |
+
- when any input element is before :const:`Timestamp.min` or after
|
881 |
+
:const:`Timestamp.max`, see `timestamp limitations
|
882 |
+
<https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html
|
883 |
+
#timeseries-timestamp-limits>`_.
|
884 |
+
|
885 |
+
- when ``utc=False`` (default) and the input is an array-like or
|
886 |
+
:class:`Series` containing mixed naive/aware datetime, or aware with mixed
|
887 |
+
time offsets. Note that this happens in the (quite frequent) situation when
|
888 |
+
the timezone has a daylight savings policy. In that case you may wish to
|
889 |
+
use ``utc=True``.
|
890 |
+
|
891 |
+
Examples
|
892 |
+
--------
|
893 |
+
|
894 |
+
**Handling various input formats**
|
895 |
+
|
896 |
+
Assembling a datetime from multiple columns of a :class:`DataFrame`. The keys
|
897 |
+
can be common abbreviations like ['year', 'month', 'day', 'minute', 'second',
|
898 |
+
'ms', 'us', 'ns']) or plurals of the same
|
899 |
+
|
900 |
+
>>> df = pd.DataFrame({'year': [2015, 2016],
|
901 |
+
... 'month': [2, 3],
|
902 |
+
... 'day': [4, 5]})
|
903 |
+
>>> pd.to_datetime(df)
|
904 |
+
0 2015-02-04
|
905 |
+
1 2016-03-05
|
906 |
+
dtype: datetime64[ns]
|
907 |
+
|
908 |
+
Using a unix epoch time
|
909 |
+
|
910 |
+
>>> pd.to_datetime(1490195805, unit='s')
|
911 |
+
Timestamp('2017-03-22 15:16:45')
|
912 |
+
>>> pd.to_datetime(1490195805433502912, unit='ns')
|
913 |
+
Timestamp('2017-03-22 15:16:45.433502912')
|
914 |
+
|
915 |
+
.. warning:: For float arg, precision rounding might happen. To prevent
|
916 |
+
unexpected behavior use a fixed-width exact type.
|
917 |
+
|
918 |
+
Using a non-unix epoch origin
|
919 |
+
|
920 |
+
>>> pd.to_datetime([1, 2, 3], unit='D',
|
921 |
+
... origin=pd.Timestamp('1960-01-01'))
|
922 |
+
DatetimeIndex(['1960-01-02', '1960-01-03', '1960-01-04'],
|
923 |
+
dtype='datetime64[ns]', freq=None)
|
924 |
+
|
925 |
+
**Differences with strptime behavior**
|
926 |
+
|
927 |
+
:const:`"%f"` will parse all the way up to nanoseconds.
|
928 |
+
|
929 |
+
>>> pd.to_datetime('2018-10-26 12:00:00.0000000011',
|
930 |
+
... format='%Y-%m-%d %H:%M:%S.%f')
|
931 |
+
Timestamp('2018-10-26 12:00:00.000000001')
|
932 |
+
|
933 |
+
**Non-convertible date/times**
|
934 |
+
|
935 |
+
Passing ``errors='coerce'`` will force an out-of-bounds date to :const:`NaT`,
|
936 |
+
in addition to forcing non-dates (or non-parseable dates) to :const:`NaT`.
|
937 |
+
|
938 |
+
>>> pd.to_datetime('13000101', format='%Y%m%d', errors='coerce')
|
939 |
+
NaT
|
940 |
+
|
941 |
+
.. _to_datetime_tz_examples:
|
942 |
+
|
943 |
+
**Timezones and time offsets**
|
944 |
+
|
945 |
+
The default behaviour (``utc=False``) is as follows:
|
946 |
+
|
947 |
+
- Timezone-naive inputs are converted to timezone-naive :class:`DatetimeIndex`:
|
948 |
+
|
949 |
+
>>> pd.to_datetime(['2018-10-26 12:00:00', '2018-10-26 13:00:15'])
|
950 |
+
DatetimeIndex(['2018-10-26 12:00:00', '2018-10-26 13:00:15'],
|
951 |
+
dtype='datetime64[ns]', freq=None)
|
952 |
+
|
953 |
+
- Timezone-aware inputs *with constant time offset* are converted to
|
954 |
+
timezone-aware :class:`DatetimeIndex`:
|
955 |
+
|
956 |
+
>>> pd.to_datetime(['2018-10-26 12:00 -0500', '2018-10-26 13:00 -0500'])
|
957 |
+
DatetimeIndex(['2018-10-26 12:00:00-05:00', '2018-10-26 13:00:00-05:00'],
|
958 |
+
dtype='datetime64[ns, UTC-05:00]', freq=None)
|
959 |
+
|
960 |
+
- However, timezone-aware inputs *with mixed time offsets* (for example
|
961 |
+
issued from a timezone with daylight savings, such as Europe/Paris)
|
962 |
+
are **not successfully converted** to a :class:`DatetimeIndex`.
|
963 |
+
Parsing datetimes with mixed time zones will show a warning unless
|
964 |
+
`utc=True`. If you specify `utc=False` the warning below will be shown
|
965 |
+
and a simple :class:`Index` containing :class:`datetime.datetime`
|
966 |
+
objects will be returned:
|
967 |
+
|
968 |
+
>>> pd.to_datetime(['2020-10-25 02:00 +0200',
|
969 |
+
... '2020-10-25 04:00 +0100']) # doctest: +SKIP
|
970 |
+
FutureWarning: In a future version of pandas, parsing datetimes with mixed
|
971 |
+
time zones will raise an error unless `utc=True`. Please specify `utc=True`
|
972 |
+
to opt in to the new behaviour and silence this warning. To create a `Series`
|
973 |
+
with mixed offsets and `object` dtype, please use `apply` and
|
974 |
+
`datetime.datetime.strptime`.
|
975 |
+
Index([2020-10-25 02:00:00+02:00, 2020-10-25 04:00:00+01:00],
|
976 |
+
dtype='object')
|
977 |
+
|
978 |
+
- A mix of timezone-aware and timezone-naive inputs is also converted to
|
979 |
+
a simple :class:`Index` containing :class:`datetime.datetime` objects:
|
980 |
+
|
981 |
+
>>> from datetime import datetime
|
982 |
+
>>> pd.to_datetime(["2020-01-01 01:00:00-01:00",
|
983 |
+
... datetime(2020, 1, 1, 3, 0)]) # doctest: +SKIP
|
984 |
+
FutureWarning: In a future version of pandas, parsing datetimes with mixed
|
985 |
+
time zones will raise an error unless `utc=True`. Please specify `utc=True`
|
986 |
+
to opt in to the new behaviour and silence this warning. To create a `Series`
|
987 |
+
with mixed offsets and `object` dtype, please use `apply` and
|
988 |
+
`datetime.datetime.strptime`.
|
989 |
+
Index([2020-01-01 01:00:00-01:00, 2020-01-01 03:00:00], dtype='object')
|
990 |
+
|
991 |
+
|
|
992 |
+
|
993 |
+
Setting ``utc=True`` solves most of the above issues:
|
994 |
+
|
995 |
+
- Timezone-naive inputs are *localized* as UTC
|
996 |
+
|
997 |
+
>>> pd.to_datetime(['2018-10-26 12:00', '2018-10-26 13:00'], utc=True)
|
998 |
+
DatetimeIndex(['2018-10-26 12:00:00+00:00', '2018-10-26 13:00:00+00:00'],
|
999 |
+
dtype='datetime64[ns, UTC]', freq=None)
|
1000 |
+
|
1001 |
+
- Timezone-aware inputs are *converted* to UTC (the output represents the
|
1002 |
+
exact same datetime, but viewed from the UTC time offset `+00:00`).
|
1003 |
+
|
1004 |
+
>>> pd.to_datetime(['2018-10-26 12:00 -0530', '2018-10-26 12:00 -0500'],
|
1005 |
+
... utc=True)
|
1006 |
+
DatetimeIndex(['2018-10-26 17:30:00+00:00', '2018-10-26 17:00:00+00:00'],
|
1007 |
+
dtype='datetime64[ns, UTC]', freq=None)
|
1008 |
+
|
1009 |
+
- Inputs can contain both string or datetime, the above
|
1010 |
+
rules still apply
|
1011 |
+
|
1012 |
+
>>> pd.to_datetime(['2018-10-26 12:00', datetime(2020, 1, 1, 18)], utc=True)
|
1013 |
+
DatetimeIndex(['2018-10-26 12:00:00+00:00', '2020-01-01 18:00:00+00:00'],
|
1014 |
+
dtype='datetime64[ns, UTC]', freq=None)
|
1015 |
+
"""
|
1016 |
+
if exact is not lib.no_default and format in {"mixed", "ISO8601"}:
|
1017 |
+
raise ValueError("Cannot use 'exact' when 'format' is 'mixed' or 'ISO8601'")
|
1018 |
+
if infer_datetime_format is not lib.no_default:
|
1019 |
+
warnings.warn(
|
1020 |
+
"The argument 'infer_datetime_format' is deprecated and will "
|
1021 |
+
"be removed in a future version. "
|
1022 |
+
"A strict version of it is now the default, see "
|
1023 |
+
"https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. "
|
1024 |
+
"You can safely remove this argument.",
|
1025 |
+
stacklevel=find_stack_level(),
|
1026 |
+
)
|
1027 |
+
if errors == "ignore":
|
1028 |
+
# GH#54467
|
1029 |
+
warnings.warn(
|
1030 |
+
"errors='ignore' is deprecated and will raise in a future version. "
|
1031 |
+
"Use to_datetime without passing `errors` and catch exceptions "
|
1032 |
+
"explicitly instead",
|
1033 |
+
FutureWarning,
|
1034 |
+
stacklevel=find_stack_level(),
|
1035 |
+
)
|
1036 |
+
|
1037 |
+
if arg is None:
|
1038 |
+
return None
|
1039 |
+
|
1040 |
+
if origin != "unix":
|
1041 |
+
arg = _adjust_to_origin(arg, origin, unit)
|
1042 |
+
|
1043 |
+
convert_listlike = partial(
|
1044 |
+
_convert_listlike_datetimes,
|
1045 |
+
utc=utc,
|
1046 |
+
unit=unit,
|
1047 |
+
dayfirst=dayfirst,
|
1048 |
+
yearfirst=yearfirst,
|
1049 |
+
errors=errors,
|
1050 |
+
exact=exact,
|
1051 |
+
)
|
1052 |
+
# pylint: disable-next=used-before-assignment
|
1053 |
+
result: Timestamp | NaTType | Series | Index
|
1054 |
+
|
1055 |
+
if isinstance(arg, Timestamp):
|
1056 |
+
result = arg
|
1057 |
+
if utc:
|
1058 |
+
if arg.tz is not None:
|
1059 |
+
result = arg.tz_convert("utc")
|
1060 |
+
else:
|
1061 |
+
result = arg.tz_localize("utc")
|
1062 |
+
elif isinstance(arg, ABCSeries):
|
1063 |
+
cache_array = _maybe_cache(arg, format, cache, convert_listlike)
|
1064 |
+
if not cache_array.empty:
|
1065 |
+
result = arg.map(cache_array)
|
1066 |
+
else:
|
1067 |
+
values = convert_listlike(arg._values, format)
|
1068 |
+
result = arg._constructor(values, index=arg.index, name=arg.name)
|
1069 |
+
elif isinstance(arg, (ABCDataFrame, abc.MutableMapping)):
|
1070 |
+
result = _assemble_from_unit_mappings(arg, errors, utc)
|
1071 |
+
elif isinstance(arg, Index):
|
1072 |
+
cache_array = _maybe_cache(arg, format, cache, convert_listlike)
|
1073 |
+
if not cache_array.empty:
|
1074 |
+
result = _convert_and_box_cache(arg, cache_array, name=arg.name)
|
1075 |
+
else:
|
1076 |
+
result = convert_listlike(arg, format, name=arg.name)
|
1077 |
+
elif is_list_like(arg):
|
1078 |
+
try:
|
1079 |
+
# error: Argument 1 to "_maybe_cache" has incompatible type
|
1080 |
+
# "Union[float, str, datetime, List[Any], Tuple[Any, ...], ExtensionArray,
|
1081 |
+
# ndarray[Any, Any], Series]"; expected "Union[List[Any], Tuple[Any, ...],
|
1082 |
+
# Union[Union[ExtensionArray, ndarray[Any, Any]], Index, Series], Series]"
|
1083 |
+
argc = cast(
|
1084 |
+
Union[list, tuple, ExtensionArray, np.ndarray, "Series", Index], arg
|
1085 |
+
)
|
1086 |
+
cache_array = _maybe_cache(argc, format, cache, convert_listlike)
|
1087 |
+
except OutOfBoundsDatetime:
|
1088 |
+
# caching attempts to create a DatetimeIndex, which may raise
|
1089 |
+
# an OOB. If that's the desired behavior, then just reraise...
|
1090 |
+
if errors == "raise":
|
1091 |
+
raise
|
1092 |
+
# ... otherwise, continue without the cache.
|
1093 |
+
from pandas import Series
|
1094 |
+
|
1095 |
+
cache_array = Series([], dtype=object) # just an empty array
|
1096 |
+
if not cache_array.empty:
|
1097 |
+
result = _convert_and_box_cache(argc, cache_array)
|
1098 |
+
else:
|
1099 |
+
result = convert_listlike(argc, format)
|
1100 |
+
else:
|
1101 |
+
result = convert_listlike(np.array([arg]), format)[0]
|
1102 |
+
if isinstance(arg, bool) and isinstance(result, np.bool_):
|
1103 |
+
result = bool(result) # TODO: avoid this kludge.
|
1104 |
+
|
1105 |
+
# error: Incompatible return value type (got "Union[Timestamp, NaTType,
|
1106 |
+
# Series, Index]", expected "Union[DatetimeIndex, Series, float, str,
|
1107 |
+
# NaTType, None]")
|
1108 |
+
return result # type: ignore[return-value]
|
1109 |
+
|
1110 |
+
|
1111 |
+
# mappings for assembling units
|
1112 |
+
_unit_map = {
|
1113 |
+
"year": "year",
|
1114 |
+
"years": "year",
|
1115 |
+
"month": "month",
|
1116 |
+
"months": "month",
|
1117 |
+
"day": "day",
|
1118 |
+
"days": "day",
|
1119 |
+
"hour": "h",
|
1120 |
+
"hours": "h",
|
1121 |
+
"minute": "m",
|
1122 |
+
"minutes": "m",
|
1123 |
+
"second": "s",
|
1124 |
+
"seconds": "s",
|
1125 |
+
"ms": "ms",
|
1126 |
+
"millisecond": "ms",
|
1127 |
+
"milliseconds": "ms",
|
1128 |
+
"us": "us",
|
1129 |
+
"microsecond": "us",
|
1130 |
+
"microseconds": "us",
|
1131 |
+
"ns": "ns",
|
1132 |
+
"nanosecond": "ns",
|
1133 |
+
"nanoseconds": "ns",
|
1134 |
+
}
|
1135 |
+
|
1136 |
+
|
1137 |
+
def _assemble_from_unit_mappings(arg, errors: DateTimeErrorChoices, utc: bool):
|
1138 |
+
"""
|
1139 |
+
assemble the unit specified fields from the arg (DataFrame)
|
1140 |
+
Return a Series for actual parsing
|
1141 |
+
|
1142 |
+
Parameters
|
1143 |
+
----------
|
1144 |
+
arg : DataFrame
|
1145 |
+
errors : {'ignore', 'raise', 'coerce'}, default 'raise'
|
1146 |
+
|
1147 |
+
- If :const:`'raise'`, then invalid parsing will raise an exception
|
1148 |
+
- If :const:`'coerce'`, then invalid parsing will be set as :const:`NaT`
|
1149 |
+
- If :const:`'ignore'`, then invalid parsing will return the input
|
1150 |
+
utc : bool
|
1151 |
+
Whether to convert/localize timestamps to UTC.
|
1152 |
+
|
1153 |
+
Returns
|
1154 |
+
-------
|
1155 |
+
Series
|
1156 |
+
"""
|
1157 |
+
from pandas import (
|
1158 |
+
DataFrame,
|
1159 |
+
to_numeric,
|
1160 |
+
to_timedelta,
|
1161 |
+
)
|
1162 |
+
|
1163 |
+
arg = DataFrame(arg)
|
1164 |
+
if not arg.columns.is_unique:
|
1165 |
+
raise ValueError("cannot assemble with duplicate keys")
|
1166 |
+
|
1167 |
+
# replace passed unit with _unit_map
|
1168 |
+
def f(value):
|
1169 |
+
if value in _unit_map:
|
1170 |
+
return _unit_map[value]
|
1171 |
+
|
1172 |
+
# m is case significant
|
1173 |
+
if value.lower() in _unit_map:
|
1174 |
+
return _unit_map[value.lower()]
|
1175 |
+
|
1176 |
+
return value
|
1177 |
+
|
1178 |
+
unit = {k: f(k) for k in arg.keys()}
|
1179 |
+
unit_rev = {v: k for k, v in unit.items()}
|
1180 |
+
|
1181 |
+
# we require at least Ymd
|
1182 |
+
required = ["year", "month", "day"]
|
1183 |
+
req = sorted(set(required) - set(unit_rev.keys()))
|
1184 |
+
if len(req):
|
1185 |
+
_required = ",".join(req)
|
1186 |
+
raise ValueError(
|
1187 |
+
"to assemble mappings requires at least that "
|
1188 |
+
f"[year, month, day] be specified: [{_required}] is missing"
|
1189 |
+
)
|
1190 |
+
|
1191 |
+
# keys we don't recognize
|
1192 |
+
excess = sorted(set(unit_rev.keys()) - set(_unit_map.values()))
|
1193 |
+
if len(excess):
|
1194 |
+
_excess = ",".join(excess)
|
1195 |
+
raise ValueError(
|
1196 |
+
f"extra keys have been passed to the datetime assemblage: [{_excess}]"
|
1197 |
+
)
|
1198 |
+
|
1199 |
+
def coerce(values):
|
1200 |
+
# we allow coercion to if errors allows
|
1201 |
+
values = to_numeric(values, errors=errors)
|
1202 |
+
|
1203 |
+
# prevent overflow in case of int8 or int16
|
1204 |
+
if is_integer_dtype(values.dtype):
|
1205 |
+
values = values.astype("int64", copy=False)
|
1206 |
+
return values
|
1207 |
+
|
1208 |
+
values = (
|
1209 |
+
coerce(arg[unit_rev["year"]]) * 10000
|
1210 |
+
+ coerce(arg[unit_rev["month"]]) * 100
|
1211 |
+
+ coerce(arg[unit_rev["day"]])
|
1212 |
+
)
|
1213 |
+
try:
|
1214 |
+
values = to_datetime(values, format="%Y%m%d", errors=errors, utc=utc)
|
1215 |
+
except (TypeError, ValueError) as err:
|
1216 |
+
raise ValueError(f"cannot assemble the datetimes: {err}") from err
|
1217 |
+
|
1218 |
+
units: list[UnitChoices] = ["h", "m", "s", "ms", "us", "ns"]
|
1219 |
+
for u in units:
|
1220 |
+
value = unit_rev.get(u)
|
1221 |
+
if value is not None and value in arg:
|
1222 |
+
try:
|
1223 |
+
values += to_timedelta(coerce(arg[value]), unit=u, errors=errors)
|
1224 |
+
except (TypeError, ValueError) as err:
|
1225 |
+
raise ValueError(
|
1226 |
+
f"cannot assemble the datetimes [{value}]: {err}"
|
1227 |
+
) from err
|
1228 |
+
return values
|
1229 |
+
|
1230 |
+
|
1231 |
+
__all__ = [
|
1232 |
+
"DateParseError",
|
1233 |
+
"should_cache",
|
1234 |
+
"to_datetime",
|
1235 |
+
]
|
env-llmeval/lib/python3.10/site-packages/pandas/core/tools/numeric.py
ADDED
@@ -0,0 +1,329 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
from typing import (
|
4 |
+
TYPE_CHECKING,
|
5 |
+
Literal,
|
6 |
+
)
|
7 |
+
import warnings
|
8 |
+
|
9 |
+
import numpy as np
|
10 |
+
|
11 |
+
from pandas._libs import lib
|
12 |
+
from pandas.util._exceptions import find_stack_level
|
13 |
+
from pandas.util._validators import check_dtype_backend
|
14 |
+
|
15 |
+
from pandas.core.dtypes.cast import maybe_downcast_numeric
|
16 |
+
from pandas.core.dtypes.common import (
|
17 |
+
ensure_object,
|
18 |
+
is_bool_dtype,
|
19 |
+
is_decimal,
|
20 |
+
is_integer_dtype,
|
21 |
+
is_number,
|
22 |
+
is_numeric_dtype,
|
23 |
+
is_scalar,
|
24 |
+
is_string_dtype,
|
25 |
+
needs_i8_conversion,
|
26 |
+
)
|
27 |
+
from pandas.core.dtypes.dtypes import ArrowDtype
|
28 |
+
from pandas.core.dtypes.generic import (
|
29 |
+
ABCIndex,
|
30 |
+
ABCSeries,
|
31 |
+
)
|
32 |
+
|
33 |
+
from pandas.core.arrays import BaseMaskedArray
|
34 |
+
from pandas.core.arrays.string_ import StringDtype
|
35 |
+
|
36 |
+
if TYPE_CHECKING:
|
37 |
+
from pandas._typing import (
|
38 |
+
DateTimeErrorChoices,
|
39 |
+
DtypeBackend,
|
40 |
+
npt,
|
41 |
+
)
|
42 |
+
|
43 |
+
|
44 |
+
def to_numeric(
|
45 |
+
arg,
|
46 |
+
errors: DateTimeErrorChoices = "raise",
|
47 |
+
downcast: Literal["integer", "signed", "unsigned", "float"] | None = None,
|
48 |
+
dtype_backend: DtypeBackend | lib.NoDefault = lib.no_default,
|
49 |
+
):
|
50 |
+
"""
|
51 |
+
Convert argument to a numeric type.
|
52 |
+
|
53 |
+
The default return dtype is `float64` or `int64`
|
54 |
+
depending on the data supplied. Use the `downcast` parameter
|
55 |
+
to obtain other dtypes.
|
56 |
+
|
57 |
+
Please note that precision loss may occur if really large numbers
|
58 |
+
are passed in. Due to the internal limitations of `ndarray`, if
|
59 |
+
numbers smaller than `-9223372036854775808` (np.iinfo(np.int64).min)
|
60 |
+
or larger than `18446744073709551615` (np.iinfo(np.uint64).max) are
|
61 |
+
passed in, it is very likely they will be converted to float so that
|
62 |
+
they can be stored in an `ndarray`. These warnings apply similarly to
|
63 |
+
`Series` since it internally leverages `ndarray`.
|
64 |
+
|
65 |
+
Parameters
|
66 |
+
----------
|
67 |
+
arg : scalar, list, tuple, 1-d array, or Series
|
68 |
+
Argument to be converted.
|
69 |
+
errors : {'ignore', 'raise', 'coerce'}, default 'raise'
|
70 |
+
- If 'raise', then invalid parsing will raise an exception.
|
71 |
+
- If 'coerce', then invalid parsing will be set as NaN.
|
72 |
+
- If 'ignore', then invalid parsing will return the input.
|
73 |
+
|
74 |
+
.. versionchanged:: 2.2
|
75 |
+
|
76 |
+
"ignore" is deprecated. Catch exceptions explicitly instead.
|
77 |
+
|
78 |
+
downcast : str, default None
|
79 |
+
Can be 'integer', 'signed', 'unsigned', or 'float'.
|
80 |
+
If not None, and if the data has been successfully cast to a
|
81 |
+
numerical dtype (or if the data was numeric to begin with),
|
82 |
+
downcast that resulting data to the smallest numerical dtype
|
83 |
+
possible according to the following rules:
|
84 |
+
|
85 |
+
- 'integer' or 'signed': smallest signed int dtype (min.: np.int8)
|
86 |
+
- 'unsigned': smallest unsigned int dtype (min.: np.uint8)
|
87 |
+
- 'float': smallest float dtype (min.: np.float32)
|
88 |
+
|
89 |
+
As this behaviour is separate from the core conversion to
|
90 |
+
numeric values, any errors raised during the downcasting
|
91 |
+
will be surfaced regardless of the value of the 'errors' input.
|
92 |
+
|
93 |
+
In addition, downcasting will only occur if the size
|
94 |
+
of the resulting data's dtype is strictly larger than
|
95 |
+
the dtype it is to be cast to, so if none of the dtypes
|
96 |
+
checked satisfy that specification, no downcasting will be
|
97 |
+
performed on the data.
|
98 |
+
dtype_backend : {'numpy_nullable', 'pyarrow'}, default 'numpy_nullable'
|
99 |
+
Back-end data type applied to the resultant :class:`DataFrame`
|
100 |
+
(still experimental). Behaviour is as follows:
|
101 |
+
|
102 |
+
* ``"numpy_nullable"``: returns nullable-dtype-backed :class:`DataFrame`
|
103 |
+
(default).
|
104 |
+
* ``"pyarrow"``: returns pyarrow-backed nullable :class:`ArrowDtype`
|
105 |
+
DataFrame.
|
106 |
+
|
107 |
+
.. versionadded:: 2.0
|
108 |
+
|
109 |
+
Returns
|
110 |
+
-------
|
111 |
+
ret
|
112 |
+
Numeric if parsing succeeded.
|
113 |
+
Return type depends on input. Series if Series, otherwise ndarray.
|
114 |
+
|
115 |
+
See Also
|
116 |
+
--------
|
117 |
+
DataFrame.astype : Cast argument to a specified dtype.
|
118 |
+
to_datetime : Convert argument to datetime.
|
119 |
+
to_timedelta : Convert argument to timedelta.
|
120 |
+
numpy.ndarray.astype : Cast a numpy array to a specified type.
|
121 |
+
DataFrame.convert_dtypes : Convert dtypes.
|
122 |
+
|
123 |
+
Examples
|
124 |
+
--------
|
125 |
+
Take separate series and convert to numeric, coercing when told to
|
126 |
+
|
127 |
+
>>> s = pd.Series(['1.0', '2', -3])
|
128 |
+
>>> pd.to_numeric(s)
|
129 |
+
0 1.0
|
130 |
+
1 2.0
|
131 |
+
2 -3.0
|
132 |
+
dtype: float64
|
133 |
+
>>> pd.to_numeric(s, downcast='float')
|
134 |
+
0 1.0
|
135 |
+
1 2.0
|
136 |
+
2 -3.0
|
137 |
+
dtype: float32
|
138 |
+
>>> pd.to_numeric(s, downcast='signed')
|
139 |
+
0 1
|
140 |
+
1 2
|
141 |
+
2 -3
|
142 |
+
dtype: int8
|
143 |
+
>>> s = pd.Series(['apple', '1.0', '2', -3])
|
144 |
+
>>> pd.to_numeric(s, errors='coerce')
|
145 |
+
0 NaN
|
146 |
+
1 1.0
|
147 |
+
2 2.0
|
148 |
+
3 -3.0
|
149 |
+
dtype: float64
|
150 |
+
|
151 |
+
Downcasting of nullable integer and floating dtypes is supported:
|
152 |
+
|
153 |
+
>>> s = pd.Series([1, 2, 3], dtype="Int64")
|
154 |
+
>>> pd.to_numeric(s, downcast="integer")
|
155 |
+
0 1
|
156 |
+
1 2
|
157 |
+
2 3
|
158 |
+
dtype: Int8
|
159 |
+
>>> s = pd.Series([1.0, 2.1, 3.0], dtype="Float64")
|
160 |
+
>>> pd.to_numeric(s, downcast="float")
|
161 |
+
0 1.0
|
162 |
+
1 2.1
|
163 |
+
2 3.0
|
164 |
+
dtype: Float32
|
165 |
+
"""
|
166 |
+
if downcast not in (None, "integer", "signed", "unsigned", "float"):
|
167 |
+
raise ValueError("invalid downcasting method provided")
|
168 |
+
|
169 |
+
if errors not in ("ignore", "raise", "coerce"):
|
170 |
+
raise ValueError("invalid error value specified")
|
171 |
+
if errors == "ignore":
|
172 |
+
# GH#54467
|
173 |
+
warnings.warn(
|
174 |
+
"errors='ignore' is deprecated and will raise in a future version. "
|
175 |
+
"Use to_numeric without passing `errors` and catch exceptions "
|
176 |
+
"explicitly instead",
|
177 |
+
FutureWarning,
|
178 |
+
stacklevel=find_stack_level(),
|
179 |
+
)
|
180 |
+
|
181 |
+
check_dtype_backend(dtype_backend)
|
182 |
+
|
183 |
+
is_series = False
|
184 |
+
is_index = False
|
185 |
+
is_scalars = False
|
186 |
+
|
187 |
+
if isinstance(arg, ABCSeries):
|
188 |
+
is_series = True
|
189 |
+
values = arg.values
|
190 |
+
elif isinstance(arg, ABCIndex):
|
191 |
+
is_index = True
|
192 |
+
if needs_i8_conversion(arg.dtype):
|
193 |
+
values = arg.view("i8")
|
194 |
+
else:
|
195 |
+
values = arg.values
|
196 |
+
elif isinstance(arg, (list, tuple)):
|
197 |
+
values = np.array(arg, dtype="O")
|
198 |
+
elif is_scalar(arg):
|
199 |
+
if is_decimal(arg):
|
200 |
+
return float(arg)
|
201 |
+
if is_number(arg):
|
202 |
+
return arg
|
203 |
+
is_scalars = True
|
204 |
+
values = np.array([arg], dtype="O")
|
205 |
+
elif getattr(arg, "ndim", 1) > 1:
|
206 |
+
raise TypeError("arg must be a list, tuple, 1-d array, or Series")
|
207 |
+
else:
|
208 |
+
values = arg
|
209 |
+
|
210 |
+
orig_values = values
|
211 |
+
|
212 |
+
# GH33013: for IntegerArray & FloatingArray extract non-null values for casting
|
213 |
+
# save mask to reconstruct the full array after casting
|
214 |
+
mask: npt.NDArray[np.bool_] | None = None
|
215 |
+
if isinstance(values, BaseMaskedArray):
|
216 |
+
mask = values._mask
|
217 |
+
values = values._data[~mask]
|
218 |
+
|
219 |
+
values_dtype = getattr(values, "dtype", None)
|
220 |
+
if isinstance(values_dtype, ArrowDtype):
|
221 |
+
mask = values.isna()
|
222 |
+
values = values.dropna().to_numpy()
|
223 |
+
new_mask: np.ndarray | None = None
|
224 |
+
if is_numeric_dtype(values_dtype):
|
225 |
+
pass
|
226 |
+
elif lib.is_np_dtype(values_dtype, "mM"):
|
227 |
+
values = values.view(np.int64)
|
228 |
+
else:
|
229 |
+
values = ensure_object(values)
|
230 |
+
coerce_numeric = errors not in ("ignore", "raise")
|
231 |
+
try:
|
232 |
+
values, new_mask = lib.maybe_convert_numeric( # type: ignore[call-overload]
|
233 |
+
values,
|
234 |
+
set(),
|
235 |
+
coerce_numeric=coerce_numeric,
|
236 |
+
convert_to_masked_nullable=dtype_backend is not lib.no_default
|
237 |
+
or isinstance(values_dtype, StringDtype)
|
238 |
+
and not values_dtype.storage == "pyarrow_numpy",
|
239 |
+
)
|
240 |
+
except (ValueError, TypeError):
|
241 |
+
if errors == "raise":
|
242 |
+
raise
|
243 |
+
values = orig_values
|
244 |
+
|
245 |
+
if new_mask is not None:
|
246 |
+
# Remove unnecessary values, is expected later anyway and enables
|
247 |
+
# downcasting
|
248 |
+
values = values[~new_mask]
|
249 |
+
elif (
|
250 |
+
dtype_backend is not lib.no_default
|
251 |
+
and new_mask is None
|
252 |
+
or isinstance(values_dtype, StringDtype)
|
253 |
+
and not values_dtype.storage == "pyarrow_numpy"
|
254 |
+
):
|
255 |
+
new_mask = np.zeros(values.shape, dtype=np.bool_)
|
256 |
+
|
257 |
+
# attempt downcast only if the data has been successfully converted
|
258 |
+
# to a numerical dtype and if a downcast method has been specified
|
259 |
+
if downcast is not None and is_numeric_dtype(values.dtype):
|
260 |
+
typecodes: str | None = None
|
261 |
+
|
262 |
+
if downcast in ("integer", "signed"):
|
263 |
+
typecodes = np.typecodes["Integer"]
|
264 |
+
elif downcast == "unsigned" and (not len(values) or np.min(values) >= 0):
|
265 |
+
typecodes = np.typecodes["UnsignedInteger"]
|
266 |
+
elif downcast == "float":
|
267 |
+
typecodes = np.typecodes["Float"]
|
268 |
+
|
269 |
+
# pandas support goes only to np.float32,
|
270 |
+
# as float dtypes smaller than that are
|
271 |
+
# extremely rare and not well supported
|
272 |
+
float_32_char = np.dtype(np.float32).char
|
273 |
+
float_32_ind = typecodes.index(float_32_char)
|
274 |
+
typecodes = typecodes[float_32_ind:]
|
275 |
+
|
276 |
+
if typecodes is not None:
|
277 |
+
# from smallest to largest
|
278 |
+
for typecode in typecodes:
|
279 |
+
dtype = np.dtype(typecode)
|
280 |
+
if dtype.itemsize <= values.dtype.itemsize:
|
281 |
+
values = maybe_downcast_numeric(values, dtype)
|
282 |
+
|
283 |
+
# successful conversion
|
284 |
+
if values.dtype == dtype:
|
285 |
+
break
|
286 |
+
|
287 |
+
# GH33013: for IntegerArray, BooleanArray & FloatingArray need to reconstruct
|
288 |
+
# masked array
|
289 |
+
if (mask is not None or new_mask is not None) and not is_string_dtype(values.dtype):
|
290 |
+
if mask is None or (new_mask is not None and new_mask.shape == mask.shape):
|
291 |
+
# GH 52588
|
292 |
+
mask = new_mask
|
293 |
+
else:
|
294 |
+
mask = mask.copy()
|
295 |
+
assert isinstance(mask, np.ndarray)
|
296 |
+
data = np.zeros(mask.shape, dtype=values.dtype)
|
297 |
+
data[~mask] = values
|
298 |
+
|
299 |
+
from pandas.core.arrays import (
|
300 |
+
ArrowExtensionArray,
|
301 |
+
BooleanArray,
|
302 |
+
FloatingArray,
|
303 |
+
IntegerArray,
|
304 |
+
)
|
305 |
+
|
306 |
+
klass: type[IntegerArray | BooleanArray | FloatingArray]
|
307 |
+
if is_integer_dtype(data.dtype):
|
308 |
+
klass = IntegerArray
|
309 |
+
elif is_bool_dtype(data.dtype):
|
310 |
+
klass = BooleanArray
|
311 |
+
else:
|
312 |
+
klass = FloatingArray
|
313 |
+
values = klass(data, mask)
|
314 |
+
|
315 |
+
if dtype_backend == "pyarrow" or isinstance(values_dtype, ArrowDtype):
|
316 |
+
values = ArrowExtensionArray(values.__arrow_array__())
|
317 |
+
|
318 |
+
if is_series:
|
319 |
+
return arg._constructor(values, index=arg.index, name=arg.name)
|
320 |
+
elif is_index:
|
321 |
+
# because we want to coerce to numeric if possible,
|
322 |
+
# do not use _shallow_copy
|
323 |
+
from pandas import Index
|
324 |
+
|
325 |
+
return Index(values, name=arg.name)
|
326 |
+
elif is_scalars:
|
327 |
+
return values[0]
|
328 |
+
else:
|
329 |
+
return values
|
env-llmeval/lib/python3.10/site-packages/pandas/core/window/__init__.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pandas.core.window.ewm import (
|
2 |
+
ExponentialMovingWindow,
|
3 |
+
ExponentialMovingWindowGroupby,
|
4 |
+
)
|
5 |
+
from pandas.core.window.expanding import (
|
6 |
+
Expanding,
|
7 |
+
ExpandingGroupby,
|
8 |
+
)
|
9 |
+
from pandas.core.window.rolling import (
|
10 |
+
Rolling,
|
11 |
+
RollingGroupby,
|
12 |
+
Window,
|
13 |
+
)
|
14 |
+
|
15 |
+
__all__ = [
|
16 |
+
"Expanding",
|
17 |
+
"ExpandingGroupby",
|
18 |
+
"ExponentialMovingWindow",
|
19 |
+
"ExponentialMovingWindowGroupby",
|
20 |
+
"Rolling",
|
21 |
+
"RollingGroupby",
|
22 |
+
"Window",
|
23 |
+
]
|
env-llmeval/lib/python3.10/site-packages/pandas/core/window/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (539 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/core/window/__pycache__/common.cpython-310.pyc
ADDED
Binary file (4 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/core/window/__pycache__/doc.cpython-310.pyc
ADDED
Binary file (4.44 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/core/window/__pycache__/ewm.cpython-310.pyc
ADDED
Binary file (27.7 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/core/window/__pycache__/expanding.cpython-310.pyc
ADDED
Binary file (20.1 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/core/window/__pycache__/numba_.cpython-310.pyc
ADDED
Binary file (7.58 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/core/window/__pycache__/online.cpython-310.pyc
ADDED
Binary file (3.17 kB). View file
|
|