Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- env-llmeval/lib/python3.10/site-packages/numpy/_typing/__pycache__/_array_like.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/numpy/_typing/__pycache__/_dtype_like.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/numpy/_typing/__pycache__/_nbit.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/numpy/_typing/__pycache__/_scalars.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/numpy/_typing/__pycache__/_shape.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/numpy/lib/__init__.py +92 -0
- env-llmeval/lib/python3.10/site-packages/numpy/lib/__init__.pyi +245 -0
- env-llmeval/lib/python3.10/site-packages/numpy/lib/_datasource.py +704 -0
- env-llmeval/lib/python3.10/site-packages/numpy/lib/_iotools.py +897 -0
- env-llmeval/lib/python3.10/site-packages/numpy/lib/_version.py +155 -0
- env-llmeval/lib/python3.10/site-packages/numpy/lib/_version.pyi +17 -0
- env-llmeval/lib/python3.10/site-packages/numpy/lib/arraypad.py +882 -0
- env-llmeval/lib/python3.10/site-packages/numpy/lib/arraypad.pyi +85 -0
- env-llmeval/lib/python3.10/site-packages/numpy/lib/arraysetops.py +981 -0
- env-llmeval/lib/python3.10/site-packages/numpy/lib/arraysetops.pyi +362 -0
- env-llmeval/lib/python3.10/site-packages/numpy/lib/arrayterator.py +219 -0
- env-llmeval/lib/python3.10/site-packages/numpy/lib/format.py +976 -0
- env-llmeval/lib/python3.10/site-packages/numpy/lib/format.pyi +22 -0
- env-llmeval/lib/python3.10/site-packages/numpy/lib/function_base.py +0 -0
- env-llmeval/lib/python3.10/site-packages/numpy/lib/function_base.pyi +697 -0
- env-llmeval/lib/python3.10/site-packages/numpy/lib/histograms.py +1072 -0
- env-llmeval/lib/python3.10/site-packages/numpy/lib/index_tricks.py +1046 -0
- env-llmeval/lib/python3.10/site-packages/numpy/lib/index_tricks.pyi +162 -0
- env-llmeval/lib/python3.10/site-packages/numpy/lib/mixins.py +177 -0
- env-llmeval/lib/python3.10/site-packages/numpy/lib/mixins.pyi +74 -0
- env-llmeval/lib/python3.10/site-packages/numpy/lib/nanfunctions.py +1887 -0
- env-llmeval/lib/python3.10/site-packages/numpy/lib/nanfunctions.pyi +38 -0
- env-llmeval/lib/python3.10/site-packages/numpy/lib/npyio.py +2547 -0
- env-llmeval/lib/python3.10/site-packages/numpy/lib/polynomial.py +1453 -0
- env-llmeval/lib/python3.10/site-packages/numpy/lib/polynomial.pyi +303 -0
- env-llmeval/lib/python3.10/site-packages/numpy/lib/recfunctions.py +1673 -0
- env-llmeval/lib/python3.10/site-packages/numpy/lib/scimath.py +625 -0
- env-llmeval/lib/python3.10/site-packages/numpy/lib/scimath.pyi +94 -0
- env-llmeval/lib/python3.10/site-packages/numpy/lib/shape_base.py +1274 -0
- env-llmeval/lib/python3.10/site-packages/numpy/lib/twodim_base.py +1183 -0
- env-llmeval/lib/python3.10/site-packages/numpy/lib/twodim_base.pyi +239 -0
- env-llmeval/lib/python3.10/site-packages/numpy/lib/type_check.py +735 -0
- env-llmeval/lib/python3.10/site-packages/numpy/lib/ufunclike.pyi +66 -0
- env-llmeval/lib/python3.10/site-packages/numpy/lib/user_array.py +286 -0
- env-llmeval/lib/python3.10/site-packages/numpy/matrixlib/__init__.py +11 -0
- env-llmeval/lib/python3.10/site-packages/numpy/matrixlib/__init__.pyi +15 -0
- env-llmeval/lib/python3.10/site-packages/numpy/matrixlib/defmatrix.py +1114 -0
- env-llmeval/lib/python3.10/site-packages/numpy/matrixlib/defmatrix.pyi +16 -0
- env-llmeval/lib/python3.10/site-packages/numpy/matrixlib/setup.py +12 -0
- env-llmeval/lib/python3.10/site-packages/numpy/matrixlib/tests/__init__.py +0 -0
- env-llmeval/lib/python3.10/site-packages/numpy/matrixlib/tests/__pycache__/test_numeric.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/numpy/matrixlib/tests/test_defmatrix.py +453 -0
- env-llmeval/lib/python3.10/site-packages/numpy/matrixlib/tests/test_interaction.py +354 -0
- env-llmeval/lib/python3.10/site-packages/numpy/matrixlib/tests/test_masked_matrix.py +231 -0
- env-llmeval/lib/python3.10/site-packages/numpy/matrixlib/tests/test_matrix_linalg.py +93 -0
env-llmeval/lib/python3.10/site-packages/numpy/_typing/__pycache__/_array_like.cpython-310.pyc
ADDED
Binary file (3.34 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/numpy/_typing/__pycache__/_dtype_like.cpython-310.pyc
ADDED
Binary file (3.69 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/numpy/_typing/__pycache__/_nbit.cpython-310.pyc
ADDED
Binary file (477 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/numpy/_typing/__pycache__/_scalars.cpython-310.pyc
ADDED
Binary file (767 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/numpy/_typing/__pycache__/_shape.cpython-310.pyc
ADDED
Binary file (349 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/numpy/lib/__init__.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
**Note:** almost all functions in the ``numpy.lib`` namespace
|
3 |
+
are also present in the main ``numpy`` namespace. Please use the
|
4 |
+
functions as ``np.<funcname>`` where possible.
|
5 |
+
|
6 |
+
``numpy.lib`` is mostly a space for implementing functions that don't
|
7 |
+
belong in core or in another NumPy submodule with a clear purpose
|
8 |
+
(e.g. ``random``, ``fft``, ``linalg``, ``ma``).
|
9 |
+
|
10 |
+
Most contains basic functions that are used by several submodules and are
|
11 |
+
useful to have in the main name-space.
|
12 |
+
|
13 |
+
"""
|
14 |
+
|
15 |
+
# Public submodules
|
16 |
+
# Note: recfunctions and (maybe) format are public too, but not imported
|
17 |
+
from . import mixins
|
18 |
+
from . import scimath as emath
|
19 |
+
|
20 |
+
# Private submodules
|
21 |
+
# load module names. See https://github.com/networkx/networkx/issues/5838
|
22 |
+
from . import type_check
|
23 |
+
from . import index_tricks
|
24 |
+
from . import function_base
|
25 |
+
from . import nanfunctions
|
26 |
+
from . import shape_base
|
27 |
+
from . import stride_tricks
|
28 |
+
from . import twodim_base
|
29 |
+
from . import ufunclike
|
30 |
+
from . import histograms
|
31 |
+
from . import polynomial
|
32 |
+
from . import utils
|
33 |
+
from . import arraysetops
|
34 |
+
from . import npyio
|
35 |
+
from . import arrayterator
|
36 |
+
from . import arraypad
|
37 |
+
from . import _version
|
38 |
+
|
39 |
+
from .type_check import *
|
40 |
+
from .index_tricks import *
|
41 |
+
from .function_base import *
|
42 |
+
from .nanfunctions import *
|
43 |
+
from .shape_base import *
|
44 |
+
from .stride_tricks import *
|
45 |
+
from .twodim_base import *
|
46 |
+
from .ufunclike import *
|
47 |
+
from .histograms import *
|
48 |
+
|
49 |
+
from .polynomial import *
|
50 |
+
from .utils import *
|
51 |
+
from .arraysetops import *
|
52 |
+
from .npyio import *
|
53 |
+
from .arrayterator import Arrayterator
|
54 |
+
from .arraypad import *
|
55 |
+
from ._version import *
|
56 |
+
from numpy.core._multiarray_umath import tracemalloc_domain
|
57 |
+
|
58 |
+
__all__ = ['emath', 'tracemalloc_domain', 'Arrayterator']
|
59 |
+
__all__ += type_check.__all__
|
60 |
+
__all__ += index_tricks.__all__
|
61 |
+
__all__ += function_base.__all__
|
62 |
+
__all__ += shape_base.__all__
|
63 |
+
__all__ += stride_tricks.__all__
|
64 |
+
__all__ += twodim_base.__all__
|
65 |
+
__all__ += ufunclike.__all__
|
66 |
+
__all__ += arraypad.__all__
|
67 |
+
__all__ += polynomial.__all__
|
68 |
+
__all__ += utils.__all__
|
69 |
+
__all__ += arraysetops.__all__
|
70 |
+
__all__ += npyio.__all__
|
71 |
+
__all__ += nanfunctions.__all__
|
72 |
+
__all__ += histograms.__all__
|
73 |
+
|
74 |
+
from numpy._pytesttester import PytestTester
|
75 |
+
test = PytestTester(__name__)
|
76 |
+
del PytestTester
|
77 |
+
|
78 |
+
def __getattr__(attr):
|
79 |
+
# Warn for reprecated attributes
|
80 |
+
import math
|
81 |
+
import warnings
|
82 |
+
|
83 |
+
if attr == 'math':
|
84 |
+
warnings.warn(
|
85 |
+
"`np.lib.math` is a deprecated alias for the standard library "
|
86 |
+
"`math` module (Deprecated Numpy 1.25). Replace usages of "
|
87 |
+
"`numpy.lib.math` with `math`", DeprecationWarning, stacklevel=2)
|
88 |
+
return math
|
89 |
+
else:
|
90 |
+
raise AttributeError("module {!r} has no attribute "
|
91 |
+
"{!r}".format(__name__, attr))
|
92 |
+
|
env-llmeval/lib/python3.10/site-packages/numpy/lib/__init__.pyi
ADDED
@@ -0,0 +1,245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math as math
|
2 |
+
from typing import Any
|
3 |
+
|
4 |
+
from numpy._pytesttester import PytestTester
|
5 |
+
|
6 |
+
from numpy import (
|
7 |
+
ndenumerate as ndenumerate,
|
8 |
+
ndindex as ndindex,
|
9 |
+
)
|
10 |
+
|
11 |
+
from numpy.version import version
|
12 |
+
|
13 |
+
from numpy.lib import (
|
14 |
+
format as format,
|
15 |
+
mixins as mixins,
|
16 |
+
scimath as scimath,
|
17 |
+
stride_tricks as stride_tricks,
|
18 |
+
)
|
19 |
+
|
20 |
+
from numpy.lib._version import (
|
21 |
+
NumpyVersion as NumpyVersion,
|
22 |
+
)
|
23 |
+
|
24 |
+
from numpy.lib.arraypad import (
|
25 |
+
pad as pad,
|
26 |
+
)
|
27 |
+
|
28 |
+
from numpy.lib.arraysetops import (
|
29 |
+
ediff1d as ediff1d,
|
30 |
+
intersect1d as intersect1d,
|
31 |
+
setxor1d as setxor1d,
|
32 |
+
union1d as union1d,
|
33 |
+
setdiff1d as setdiff1d,
|
34 |
+
unique as unique,
|
35 |
+
in1d as in1d,
|
36 |
+
isin as isin,
|
37 |
+
)
|
38 |
+
|
39 |
+
from numpy.lib.arrayterator import (
|
40 |
+
Arrayterator as Arrayterator,
|
41 |
+
)
|
42 |
+
|
43 |
+
from numpy.lib.function_base import (
|
44 |
+
select as select,
|
45 |
+
piecewise as piecewise,
|
46 |
+
trim_zeros as trim_zeros,
|
47 |
+
copy as copy,
|
48 |
+
iterable as iterable,
|
49 |
+
percentile as percentile,
|
50 |
+
diff as diff,
|
51 |
+
gradient as gradient,
|
52 |
+
angle as angle,
|
53 |
+
unwrap as unwrap,
|
54 |
+
sort_complex as sort_complex,
|
55 |
+
disp as disp,
|
56 |
+
flip as flip,
|
57 |
+
rot90 as rot90,
|
58 |
+
extract as extract,
|
59 |
+
place as place,
|
60 |
+
vectorize as vectorize,
|
61 |
+
asarray_chkfinite as asarray_chkfinite,
|
62 |
+
average as average,
|
63 |
+
bincount as bincount,
|
64 |
+
digitize as digitize,
|
65 |
+
cov as cov,
|
66 |
+
corrcoef as corrcoef,
|
67 |
+
median as median,
|
68 |
+
sinc as sinc,
|
69 |
+
hamming as hamming,
|
70 |
+
hanning as hanning,
|
71 |
+
bartlett as bartlett,
|
72 |
+
blackman as blackman,
|
73 |
+
kaiser as kaiser,
|
74 |
+
trapz as trapz,
|
75 |
+
i0 as i0,
|
76 |
+
add_newdoc as add_newdoc,
|
77 |
+
add_docstring as add_docstring,
|
78 |
+
meshgrid as meshgrid,
|
79 |
+
delete as delete,
|
80 |
+
insert as insert,
|
81 |
+
append as append,
|
82 |
+
interp as interp,
|
83 |
+
add_newdoc_ufunc as add_newdoc_ufunc,
|
84 |
+
quantile as quantile,
|
85 |
+
)
|
86 |
+
|
87 |
+
from numpy.lib.histograms import (
|
88 |
+
histogram_bin_edges as histogram_bin_edges,
|
89 |
+
histogram as histogram,
|
90 |
+
histogramdd as histogramdd,
|
91 |
+
)
|
92 |
+
|
93 |
+
from numpy.lib.index_tricks import (
|
94 |
+
ravel_multi_index as ravel_multi_index,
|
95 |
+
unravel_index as unravel_index,
|
96 |
+
mgrid as mgrid,
|
97 |
+
ogrid as ogrid,
|
98 |
+
r_ as r_,
|
99 |
+
c_ as c_,
|
100 |
+
s_ as s_,
|
101 |
+
index_exp as index_exp,
|
102 |
+
ix_ as ix_,
|
103 |
+
fill_diagonal as fill_diagonal,
|
104 |
+
diag_indices as diag_indices,
|
105 |
+
diag_indices_from as diag_indices_from,
|
106 |
+
)
|
107 |
+
|
108 |
+
from numpy.lib.nanfunctions import (
|
109 |
+
nansum as nansum,
|
110 |
+
nanmax as nanmax,
|
111 |
+
nanmin as nanmin,
|
112 |
+
nanargmax as nanargmax,
|
113 |
+
nanargmin as nanargmin,
|
114 |
+
nanmean as nanmean,
|
115 |
+
nanmedian as nanmedian,
|
116 |
+
nanpercentile as nanpercentile,
|
117 |
+
nanvar as nanvar,
|
118 |
+
nanstd as nanstd,
|
119 |
+
nanprod as nanprod,
|
120 |
+
nancumsum as nancumsum,
|
121 |
+
nancumprod as nancumprod,
|
122 |
+
nanquantile as nanquantile,
|
123 |
+
)
|
124 |
+
|
125 |
+
from numpy.lib.npyio import (
|
126 |
+
savetxt as savetxt,
|
127 |
+
loadtxt as loadtxt,
|
128 |
+
genfromtxt as genfromtxt,
|
129 |
+
recfromtxt as recfromtxt,
|
130 |
+
recfromcsv as recfromcsv,
|
131 |
+
load as load,
|
132 |
+
save as save,
|
133 |
+
savez as savez,
|
134 |
+
savez_compressed as savez_compressed,
|
135 |
+
packbits as packbits,
|
136 |
+
unpackbits as unpackbits,
|
137 |
+
fromregex as fromregex,
|
138 |
+
DataSource as DataSource,
|
139 |
+
)
|
140 |
+
|
141 |
+
from numpy.lib.polynomial import (
|
142 |
+
poly as poly,
|
143 |
+
roots as roots,
|
144 |
+
polyint as polyint,
|
145 |
+
polyder as polyder,
|
146 |
+
polyadd as polyadd,
|
147 |
+
polysub as polysub,
|
148 |
+
polymul as polymul,
|
149 |
+
polydiv as polydiv,
|
150 |
+
polyval as polyval,
|
151 |
+
polyfit as polyfit,
|
152 |
+
RankWarning as RankWarning,
|
153 |
+
poly1d as poly1d,
|
154 |
+
)
|
155 |
+
|
156 |
+
from numpy.lib.shape_base import (
|
157 |
+
column_stack as column_stack,
|
158 |
+
row_stack as row_stack,
|
159 |
+
dstack as dstack,
|
160 |
+
array_split as array_split,
|
161 |
+
split as split,
|
162 |
+
hsplit as hsplit,
|
163 |
+
vsplit as vsplit,
|
164 |
+
dsplit as dsplit,
|
165 |
+
apply_over_axes as apply_over_axes,
|
166 |
+
expand_dims as expand_dims,
|
167 |
+
apply_along_axis as apply_along_axis,
|
168 |
+
kron as kron,
|
169 |
+
tile as tile,
|
170 |
+
get_array_wrap as get_array_wrap,
|
171 |
+
take_along_axis as take_along_axis,
|
172 |
+
put_along_axis as put_along_axis,
|
173 |
+
)
|
174 |
+
|
175 |
+
from numpy.lib.stride_tricks import (
|
176 |
+
broadcast_to as broadcast_to,
|
177 |
+
broadcast_arrays as broadcast_arrays,
|
178 |
+
broadcast_shapes as broadcast_shapes,
|
179 |
+
)
|
180 |
+
|
181 |
+
from numpy.lib.twodim_base import (
|
182 |
+
diag as diag,
|
183 |
+
diagflat as diagflat,
|
184 |
+
eye as eye,
|
185 |
+
fliplr as fliplr,
|
186 |
+
flipud as flipud,
|
187 |
+
tri as tri,
|
188 |
+
triu as triu,
|
189 |
+
tril as tril,
|
190 |
+
vander as vander,
|
191 |
+
histogram2d as histogram2d,
|
192 |
+
mask_indices as mask_indices,
|
193 |
+
tril_indices as tril_indices,
|
194 |
+
tril_indices_from as tril_indices_from,
|
195 |
+
triu_indices as triu_indices,
|
196 |
+
triu_indices_from as triu_indices_from,
|
197 |
+
)
|
198 |
+
|
199 |
+
from numpy.lib.type_check import (
|
200 |
+
mintypecode as mintypecode,
|
201 |
+
asfarray as asfarray,
|
202 |
+
real as real,
|
203 |
+
imag as imag,
|
204 |
+
iscomplex as iscomplex,
|
205 |
+
isreal as isreal,
|
206 |
+
iscomplexobj as iscomplexobj,
|
207 |
+
isrealobj as isrealobj,
|
208 |
+
nan_to_num as nan_to_num,
|
209 |
+
real_if_close as real_if_close,
|
210 |
+
typename as typename,
|
211 |
+
common_type as common_type,
|
212 |
+
)
|
213 |
+
|
214 |
+
from numpy.lib.ufunclike import (
|
215 |
+
fix as fix,
|
216 |
+
isposinf as isposinf,
|
217 |
+
isneginf as isneginf,
|
218 |
+
)
|
219 |
+
|
220 |
+
from numpy.lib.utils import (
|
221 |
+
issubclass_ as issubclass_,
|
222 |
+
issubsctype as issubsctype,
|
223 |
+
issubdtype as issubdtype,
|
224 |
+
deprecate as deprecate,
|
225 |
+
deprecate_with_doc as deprecate_with_doc,
|
226 |
+
get_include as get_include,
|
227 |
+
info as info,
|
228 |
+
source as source,
|
229 |
+
who as who,
|
230 |
+
lookfor as lookfor,
|
231 |
+
byte_bounds as byte_bounds,
|
232 |
+
safe_eval as safe_eval,
|
233 |
+
show_runtime as show_runtime,
|
234 |
+
)
|
235 |
+
|
236 |
+
from numpy.core.multiarray import (
|
237 |
+
tracemalloc_domain as tracemalloc_domain,
|
238 |
+
)
|
239 |
+
|
240 |
+
__all__: list[str]
|
241 |
+
__path__: list[str]
|
242 |
+
test: PytestTester
|
243 |
+
|
244 |
+
__version__ = version
|
245 |
+
emath = scimath
|
env-llmeval/lib/python3.10/site-packages/numpy/lib/_datasource.py
ADDED
@@ -0,0 +1,704 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""A file interface for handling local and remote data files.
|
2 |
+
|
3 |
+
The goal of datasource is to abstract some of the file system operations
|
4 |
+
when dealing with data files so the researcher doesn't have to know all the
|
5 |
+
low-level details. Through datasource, a researcher can obtain and use a
|
6 |
+
file with one function call, regardless of location of the file.
|
7 |
+
|
8 |
+
DataSource is meant to augment standard python libraries, not replace them.
|
9 |
+
It should work seamlessly with standard file IO operations and the os
|
10 |
+
module.
|
11 |
+
|
12 |
+
DataSource files can originate locally or remotely:
|
13 |
+
|
14 |
+
- local files : '/home/guido/src/local/data.txt'
|
15 |
+
- URLs (http, ftp, ...) : 'http://www.scipy.org/not/real/data.txt'
|
16 |
+
|
17 |
+
DataSource files can also be compressed or uncompressed. Currently only
|
18 |
+
gzip, bz2 and xz are supported.
|
19 |
+
|
20 |
+
Example::
|
21 |
+
|
22 |
+
>>> # Create a DataSource, use os.curdir (default) for local storage.
|
23 |
+
>>> from numpy import DataSource
|
24 |
+
>>> ds = DataSource()
|
25 |
+
>>>
|
26 |
+
>>> # Open a remote file.
|
27 |
+
>>> # DataSource downloads the file, stores it locally in:
|
28 |
+
>>> # './www.google.com/index.html'
|
29 |
+
>>> # opens the file and returns a file object.
|
30 |
+
>>> fp = ds.open('http://www.google.com/') # doctest: +SKIP
|
31 |
+
>>>
|
32 |
+
>>> # Use the file as you normally would
|
33 |
+
>>> fp.read() # doctest: +SKIP
|
34 |
+
>>> fp.close() # doctest: +SKIP
|
35 |
+
|
36 |
+
"""
|
37 |
+
import os
|
38 |
+
import io
|
39 |
+
|
40 |
+
from .._utils import set_module
|
41 |
+
|
42 |
+
|
43 |
+
_open = open
|
44 |
+
|
45 |
+
|
46 |
+
def _check_mode(mode, encoding, newline):
|
47 |
+
"""Check mode and that encoding and newline are compatible.
|
48 |
+
|
49 |
+
Parameters
|
50 |
+
----------
|
51 |
+
mode : str
|
52 |
+
File open mode.
|
53 |
+
encoding : str
|
54 |
+
File encoding.
|
55 |
+
newline : str
|
56 |
+
Newline for text files.
|
57 |
+
|
58 |
+
"""
|
59 |
+
if "t" in mode:
|
60 |
+
if "b" in mode:
|
61 |
+
raise ValueError("Invalid mode: %r" % (mode,))
|
62 |
+
else:
|
63 |
+
if encoding is not None:
|
64 |
+
raise ValueError("Argument 'encoding' not supported in binary mode")
|
65 |
+
if newline is not None:
|
66 |
+
raise ValueError("Argument 'newline' not supported in binary mode")
|
67 |
+
|
68 |
+
|
69 |
+
# Using a class instead of a module-level dictionary
|
70 |
+
# to reduce the initial 'import numpy' overhead by
|
71 |
+
# deferring the import of lzma, bz2 and gzip until needed
|
72 |
+
|
73 |
+
# TODO: .zip support, .tar support?
|
74 |
+
class _FileOpeners:
|
75 |
+
"""
|
76 |
+
Container for different methods to open (un-)compressed files.
|
77 |
+
|
78 |
+
`_FileOpeners` contains a dictionary that holds one method for each
|
79 |
+
supported file format. Attribute lookup is implemented in such a way
|
80 |
+
that an instance of `_FileOpeners` itself can be indexed with the keys
|
81 |
+
of that dictionary. Currently uncompressed files as well as files
|
82 |
+
compressed with ``gzip``, ``bz2`` or ``xz`` compression are supported.
|
83 |
+
|
84 |
+
Notes
|
85 |
+
-----
|
86 |
+
`_file_openers`, an instance of `_FileOpeners`, is made available for
|
87 |
+
use in the `_datasource` module.
|
88 |
+
|
89 |
+
Examples
|
90 |
+
--------
|
91 |
+
>>> import gzip
|
92 |
+
>>> np.lib._datasource._file_openers.keys()
|
93 |
+
[None, '.bz2', '.gz', '.xz', '.lzma']
|
94 |
+
>>> np.lib._datasource._file_openers['.gz'] is gzip.open
|
95 |
+
True
|
96 |
+
|
97 |
+
"""
|
98 |
+
|
99 |
+
def __init__(self):
|
100 |
+
self._loaded = False
|
101 |
+
self._file_openers = {None: io.open}
|
102 |
+
|
103 |
+
def _load(self):
|
104 |
+
if self._loaded:
|
105 |
+
return
|
106 |
+
|
107 |
+
try:
|
108 |
+
import bz2
|
109 |
+
self._file_openers[".bz2"] = bz2.open
|
110 |
+
except ImportError:
|
111 |
+
pass
|
112 |
+
|
113 |
+
try:
|
114 |
+
import gzip
|
115 |
+
self._file_openers[".gz"] = gzip.open
|
116 |
+
except ImportError:
|
117 |
+
pass
|
118 |
+
|
119 |
+
try:
|
120 |
+
import lzma
|
121 |
+
self._file_openers[".xz"] = lzma.open
|
122 |
+
self._file_openers[".lzma"] = lzma.open
|
123 |
+
except (ImportError, AttributeError):
|
124 |
+
# There are incompatible backports of lzma that do not have the
|
125 |
+
# lzma.open attribute, so catch that as well as ImportError.
|
126 |
+
pass
|
127 |
+
|
128 |
+
self._loaded = True
|
129 |
+
|
130 |
+
def keys(self):
|
131 |
+
"""
|
132 |
+
Return the keys of currently supported file openers.
|
133 |
+
|
134 |
+
Parameters
|
135 |
+
----------
|
136 |
+
None
|
137 |
+
|
138 |
+
Returns
|
139 |
+
-------
|
140 |
+
keys : list
|
141 |
+
The keys are None for uncompressed files and the file extension
|
142 |
+
strings (i.e. ``'.gz'``, ``'.xz'``) for supported compression
|
143 |
+
methods.
|
144 |
+
|
145 |
+
"""
|
146 |
+
self._load()
|
147 |
+
return list(self._file_openers.keys())
|
148 |
+
|
149 |
+
def __getitem__(self, key):
|
150 |
+
self._load()
|
151 |
+
return self._file_openers[key]
|
152 |
+
|
153 |
+
_file_openers = _FileOpeners()
|
154 |
+
|
155 |
+
def open(path, mode='r', destpath=os.curdir, encoding=None, newline=None):
|
156 |
+
"""
|
157 |
+
Open `path` with `mode` and return the file object.
|
158 |
+
|
159 |
+
If ``path`` is an URL, it will be downloaded, stored in the
|
160 |
+
`DataSource` `destpath` directory and opened from there.
|
161 |
+
|
162 |
+
Parameters
|
163 |
+
----------
|
164 |
+
path : str
|
165 |
+
Local file path or URL to open.
|
166 |
+
mode : str, optional
|
167 |
+
Mode to open `path`. Mode 'r' for reading, 'w' for writing, 'a' to
|
168 |
+
append. Available modes depend on the type of object specified by
|
169 |
+
path. Default is 'r'.
|
170 |
+
destpath : str, optional
|
171 |
+
Path to the directory where the source file gets downloaded to for
|
172 |
+
use. If `destpath` is None, a temporary directory will be created.
|
173 |
+
The default path is the current directory.
|
174 |
+
encoding : {None, str}, optional
|
175 |
+
Open text file with given encoding. The default encoding will be
|
176 |
+
what `io.open` uses.
|
177 |
+
newline : {None, str}, optional
|
178 |
+
Newline to use when reading text file.
|
179 |
+
|
180 |
+
Returns
|
181 |
+
-------
|
182 |
+
out : file object
|
183 |
+
The opened file.
|
184 |
+
|
185 |
+
Notes
|
186 |
+
-----
|
187 |
+
This is a convenience function that instantiates a `DataSource` and
|
188 |
+
returns the file object from ``DataSource.open(path)``.
|
189 |
+
|
190 |
+
"""
|
191 |
+
|
192 |
+
ds = DataSource(destpath)
|
193 |
+
return ds.open(path, mode, encoding=encoding, newline=newline)
|
194 |
+
|
195 |
+
|
196 |
+
@set_module('numpy')
|
197 |
+
class DataSource:
|
198 |
+
"""
|
199 |
+
DataSource(destpath='.')
|
200 |
+
|
201 |
+
A generic data source file (file, http, ftp, ...).
|
202 |
+
|
203 |
+
DataSources can be local files or remote files/URLs. The files may
|
204 |
+
also be compressed or uncompressed. DataSource hides some of the
|
205 |
+
low-level details of downloading the file, allowing you to simply pass
|
206 |
+
in a valid file path (or URL) and obtain a file object.
|
207 |
+
|
208 |
+
Parameters
|
209 |
+
----------
|
210 |
+
destpath : str or None, optional
|
211 |
+
Path to the directory where the source file gets downloaded to for
|
212 |
+
use. If `destpath` is None, a temporary directory will be created.
|
213 |
+
The default path is the current directory.
|
214 |
+
|
215 |
+
Notes
|
216 |
+
-----
|
217 |
+
URLs require a scheme string (``http://``) to be used, without it they
|
218 |
+
will fail::
|
219 |
+
|
220 |
+
>>> repos = np.DataSource()
|
221 |
+
>>> repos.exists('www.google.com/index.html')
|
222 |
+
False
|
223 |
+
>>> repos.exists('http://www.google.com/index.html')
|
224 |
+
True
|
225 |
+
|
226 |
+
Temporary directories are deleted when the DataSource is deleted.
|
227 |
+
|
228 |
+
Examples
|
229 |
+
--------
|
230 |
+
::
|
231 |
+
|
232 |
+
>>> ds = np.DataSource('/home/guido')
|
233 |
+
>>> urlname = 'http://www.google.com/'
|
234 |
+
>>> gfile = ds.open('http://www.google.com/')
|
235 |
+
>>> ds.abspath(urlname)
|
236 |
+
'/home/guido/www.google.com/index.html'
|
237 |
+
|
238 |
+
>>> ds = np.DataSource(None) # use with temporary file
|
239 |
+
>>> ds.open('/home/guido/foobar.txt')
|
240 |
+
<open file '/home/guido.foobar.txt', mode 'r' at 0x91d4430>
|
241 |
+
>>> ds.abspath('/home/guido/foobar.txt')
|
242 |
+
'/tmp/.../home/guido/foobar.txt'
|
243 |
+
|
244 |
+
"""
|
245 |
+
|
246 |
+
def __init__(self, destpath=os.curdir):
|
247 |
+
"""Create a DataSource with a local path at destpath."""
|
248 |
+
if destpath:
|
249 |
+
self._destpath = os.path.abspath(destpath)
|
250 |
+
self._istmpdest = False
|
251 |
+
else:
|
252 |
+
import tempfile # deferring import to improve startup time
|
253 |
+
self._destpath = tempfile.mkdtemp()
|
254 |
+
self._istmpdest = True
|
255 |
+
|
256 |
+
def __del__(self):
|
257 |
+
# Remove temp directories
|
258 |
+
if hasattr(self, '_istmpdest') and self._istmpdest:
|
259 |
+
import shutil
|
260 |
+
|
261 |
+
shutil.rmtree(self._destpath)
|
262 |
+
|
263 |
+
def _iszip(self, filename):
|
264 |
+
"""Test if the filename is a zip file by looking at the file extension.
|
265 |
+
|
266 |
+
"""
|
267 |
+
fname, ext = os.path.splitext(filename)
|
268 |
+
return ext in _file_openers.keys()
|
269 |
+
|
270 |
+
def _iswritemode(self, mode):
|
271 |
+
"""Test if the given mode will open a file for writing."""
|
272 |
+
|
273 |
+
# Currently only used to test the bz2 files.
|
274 |
+
_writemodes = ("w", "+")
|
275 |
+
for c in mode:
|
276 |
+
if c in _writemodes:
|
277 |
+
return True
|
278 |
+
return False
|
279 |
+
|
280 |
+
def _splitzipext(self, filename):
|
281 |
+
"""Split zip extension from filename and return filename.
|
282 |
+
|
283 |
+
Returns
|
284 |
+
-------
|
285 |
+
base, zip_ext : {tuple}
|
286 |
+
|
287 |
+
"""
|
288 |
+
|
289 |
+
if self._iszip(filename):
|
290 |
+
return os.path.splitext(filename)
|
291 |
+
else:
|
292 |
+
return filename, None
|
293 |
+
|
294 |
+
def _possible_names(self, filename):
|
295 |
+
"""Return a tuple containing compressed filename variations."""
|
296 |
+
names = [filename]
|
297 |
+
if not self._iszip(filename):
|
298 |
+
for zipext in _file_openers.keys():
|
299 |
+
if zipext:
|
300 |
+
names.append(filename+zipext)
|
301 |
+
return names
|
302 |
+
|
303 |
+
def _isurl(self, path):
|
304 |
+
"""Test if path is a net location. Tests the scheme and netloc."""
|
305 |
+
|
306 |
+
# We do this here to reduce the 'import numpy' initial import time.
|
307 |
+
from urllib.parse import urlparse
|
308 |
+
|
309 |
+
# BUG : URLs require a scheme string ('http://') to be used.
|
310 |
+
# www.google.com will fail.
|
311 |
+
# Should we prepend the scheme for those that don't have it and
|
312 |
+
# test that also? Similar to the way we append .gz and test for
|
313 |
+
# for compressed versions of files.
|
314 |
+
|
315 |
+
scheme, netloc, upath, uparams, uquery, ufrag = urlparse(path)
|
316 |
+
return bool(scheme and netloc)
|
317 |
+
|
318 |
+
def _cache(self, path):
|
319 |
+
"""Cache the file specified by path.
|
320 |
+
|
321 |
+
Creates a copy of the file in the datasource cache.
|
322 |
+
|
323 |
+
"""
|
324 |
+
# We import these here because importing them is slow and
|
325 |
+
# a significant fraction of numpy's total import time.
|
326 |
+
import shutil
|
327 |
+
from urllib.request import urlopen
|
328 |
+
|
329 |
+
upath = self.abspath(path)
|
330 |
+
|
331 |
+
# ensure directory exists
|
332 |
+
if not os.path.exists(os.path.dirname(upath)):
|
333 |
+
os.makedirs(os.path.dirname(upath))
|
334 |
+
|
335 |
+
# TODO: Doesn't handle compressed files!
|
336 |
+
if self._isurl(path):
|
337 |
+
with urlopen(path) as openedurl:
|
338 |
+
with _open(upath, 'wb') as f:
|
339 |
+
shutil.copyfileobj(openedurl, f)
|
340 |
+
else:
|
341 |
+
shutil.copyfile(path, upath)
|
342 |
+
return upath
|
343 |
+
|
344 |
+
def _findfile(self, path):
|
345 |
+
"""Searches for ``path`` and returns full path if found.
|
346 |
+
|
347 |
+
If path is an URL, _findfile will cache a local copy and return the
|
348 |
+
path to the cached file. If path is a local file, _findfile will
|
349 |
+
return a path to that local file.
|
350 |
+
|
351 |
+
The search will include possible compressed versions of the file
|
352 |
+
and return the first occurrence found.
|
353 |
+
|
354 |
+
"""
|
355 |
+
|
356 |
+
# Build list of possible local file paths
|
357 |
+
if not self._isurl(path):
|
358 |
+
# Valid local paths
|
359 |
+
filelist = self._possible_names(path)
|
360 |
+
# Paths in self._destpath
|
361 |
+
filelist += self._possible_names(self.abspath(path))
|
362 |
+
else:
|
363 |
+
# Cached URLs in self._destpath
|
364 |
+
filelist = self._possible_names(self.abspath(path))
|
365 |
+
# Remote URLs
|
366 |
+
filelist = filelist + self._possible_names(path)
|
367 |
+
|
368 |
+
for name in filelist:
|
369 |
+
if self.exists(name):
|
370 |
+
if self._isurl(name):
|
371 |
+
name = self._cache(name)
|
372 |
+
return name
|
373 |
+
return None
|
374 |
+
|
375 |
+
def abspath(self, path):
|
376 |
+
"""
|
377 |
+
Return absolute path of file in the DataSource directory.
|
378 |
+
|
379 |
+
If `path` is an URL, then `abspath` will return either the location
|
380 |
+
the file exists locally or the location it would exist when opened
|
381 |
+
using the `open` method.
|
382 |
+
|
383 |
+
Parameters
|
384 |
+
----------
|
385 |
+
path : str
|
386 |
+
Can be a local file or a remote URL.
|
387 |
+
|
388 |
+
Returns
|
389 |
+
-------
|
390 |
+
out : str
|
391 |
+
Complete path, including the `DataSource` destination directory.
|
392 |
+
|
393 |
+
Notes
|
394 |
+
-----
|
395 |
+
The functionality is based on `os.path.abspath`.
|
396 |
+
|
397 |
+
"""
|
398 |
+
# We do this here to reduce the 'import numpy' initial import time.
|
399 |
+
from urllib.parse import urlparse
|
400 |
+
|
401 |
+
# TODO: This should be more robust. Handles case where path includes
|
402 |
+
# the destpath, but not other sub-paths. Failing case:
|
403 |
+
# path = /home/guido/datafile.txt
|
404 |
+
# destpath = /home/alex/
|
405 |
+
# upath = self.abspath(path)
|
406 |
+
# upath == '/home/alex/home/guido/datafile.txt'
|
407 |
+
|
408 |
+
# handle case where path includes self._destpath
|
409 |
+
splitpath = path.split(self._destpath, 2)
|
410 |
+
if len(splitpath) > 1:
|
411 |
+
path = splitpath[1]
|
412 |
+
scheme, netloc, upath, uparams, uquery, ufrag = urlparse(path)
|
413 |
+
netloc = self._sanitize_relative_path(netloc)
|
414 |
+
upath = self._sanitize_relative_path(upath)
|
415 |
+
return os.path.join(self._destpath, netloc, upath)
|
416 |
+
|
417 |
+
def _sanitize_relative_path(self, path):
|
418 |
+
"""Return a sanitised relative path for which
|
419 |
+
os.path.abspath(os.path.join(base, path)).startswith(base)
|
420 |
+
"""
|
421 |
+
last = None
|
422 |
+
path = os.path.normpath(path)
|
423 |
+
while path != last:
|
424 |
+
last = path
|
425 |
+
# Note: os.path.join treats '/' as os.sep on Windows
|
426 |
+
path = path.lstrip(os.sep).lstrip('/')
|
427 |
+
path = path.lstrip(os.pardir).lstrip('..')
|
428 |
+
drive, path = os.path.splitdrive(path) # for Windows
|
429 |
+
return path
|
430 |
+
|
431 |
+
def exists(self, path):
|
432 |
+
"""
|
433 |
+
Test if path exists.
|
434 |
+
|
435 |
+
Test if `path` exists as (and in this order):
|
436 |
+
|
437 |
+
- a local file.
|
438 |
+
- a remote URL that has been downloaded and stored locally in the
|
439 |
+
`DataSource` directory.
|
440 |
+
- a remote URL that has not been downloaded, but is valid and
|
441 |
+
accessible.
|
442 |
+
|
443 |
+
Parameters
|
444 |
+
----------
|
445 |
+
path : str
|
446 |
+
Can be a local file or a remote URL.
|
447 |
+
|
448 |
+
Returns
|
449 |
+
-------
|
450 |
+
out : bool
|
451 |
+
True if `path` exists.
|
452 |
+
|
453 |
+
Notes
|
454 |
+
-----
|
455 |
+
When `path` is an URL, `exists` will return True if it's either
|
456 |
+
stored locally in the `DataSource` directory, or is a valid remote
|
457 |
+
URL. `DataSource` does not discriminate between the two, the file
|
458 |
+
is accessible if it exists in either location.
|
459 |
+
|
460 |
+
"""
|
461 |
+
|
462 |
+
# First test for local path
|
463 |
+
if os.path.exists(path):
|
464 |
+
return True
|
465 |
+
|
466 |
+
# We import this here because importing urllib is slow and
|
467 |
+
# a significant fraction of numpy's total import time.
|
468 |
+
from urllib.request import urlopen
|
469 |
+
from urllib.error import URLError
|
470 |
+
|
471 |
+
# Test cached url
|
472 |
+
upath = self.abspath(path)
|
473 |
+
if os.path.exists(upath):
|
474 |
+
return True
|
475 |
+
|
476 |
+
# Test remote url
|
477 |
+
if self._isurl(path):
|
478 |
+
try:
|
479 |
+
netfile = urlopen(path)
|
480 |
+
netfile.close()
|
481 |
+
del(netfile)
|
482 |
+
return True
|
483 |
+
except URLError:
|
484 |
+
return False
|
485 |
+
return False
|
486 |
+
|
487 |
+
def open(self, path, mode='r', encoding=None, newline=None):
|
488 |
+
"""
|
489 |
+
Open and return file-like object.
|
490 |
+
|
491 |
+
If `path` is an URL, it will be downloaded, stored in the
|
492 |
+
`DataSource` directory and opened from there.
|
493 |
+
|
494 |
+
Parameters
|
495 |
+
----------
|
496 |
+
path : str
|
497 |
+
Local file path or URL to open.
|
498 |
+
mode : {'r', 'w', 'a'}, optional
|
499 |
+
Mode to open `path`. Mode 'r' for reading, 'w' for writing,
|
500 |
+
'a' to append. Available modes depend on the type of object
|
501 |
+
specified by `path`. Default is 'r'.
|
502 |
+
encoding : {None, str}, optional
|
503 |
+
Open text file with given encoding. The default encoding will be
|
504 |
+
what `io.open` uses.
|
505 |
+
newline : {None, str}, optional
|
506 |
+
Newline to use when reading text file.
|
507 |
+
|
508 |
+
Returns
|
509 |
+
-------
|
510 |
+
out : file object
|
511 |
+
File object.
|
512 |
+
|
513 |
+
"""
|
514 |
+
|
515 |
+
# TODO: There is no support for opening a file for writing which
|
516 |
+
# doesn't exist yet (creating a file). Should there be?
|
517 |
+
|
518 |
+
# TODO: Add a ``subdir`` parameter for specifying the subdirectory
|
519 |
+
# used to store URLs in self._destpath.
|
520 |
+
|
521 |
+
if self._isurl(path) and self._iswritemode(mode):
|
522 |
+
raise ValueError("URLs are not writeable")
|
523 |
+
|
524 |
+
# NOTE: _findfile will fail on a new file opened for writing.
|
525 |
+
found = self._findfile(path)
|
526 |
+
if found:
|
527 |
+
_fname, ext = self._splitzipext(found)
|
528 |
+
if ext == 'bz2':
|
529 |
+
mode.replace("+", "")
|
530 |
+
return _file_openers[ext](found, mode=mode,
|
531 |
+
encoding=encoding, newline=newline)
|
532 |
+
else:
|
533 |
+
raise FileNotFoundError(f"{path} not found.")
|
534 |
+
|
535 |
+
|
536 |
+
class Repository (DataSource):
|
537 |
+
"""
|
538 |
+
Repository(baseurl, destpath='.')
|
539 |
+
|
540 |
+
A data repository where multiple DataSource's share a base
|
541 |
+
URL/directory.
|
542 |
+
|
543 |
+
`Repository` extends `DataSource` by prepending a base URL (or
|
544 |
+
directory) to all the files it handles. Use `Repository` when you will
|
545 |
+
be working with multiple files from one base URL. Initialize
|
546 |
+
`Repository` with the base URL, then refer to each file by its filename
|
547 |
+
only.
|
548 |
+
|
549 |
+
Parameters
|
550 |
+
----------
|
551 |
+
baseurl : str
|
552 |
+
Path to the local directory or remote location that contains the
|
553 |
+
data files.
|
554 |
+
destpath : str or None, optional
|
555 |
+
Path to the directory where the source file gets downloaded to for
|
556 |
+
use. If `destpath` is None, a temporary directory will be created.
|
557 |
+
The default path is the current directory.
|
558 |
+
|
559 |
+
Examples
|
560 |
+
--------
|
561 |
+
To analyze all files in the repository, do something like this
|
562 |
+
(note: this is not self-contained code)::
|
563 |
+
|
564 |
+
>>> repos = np.lib._datasource.Repository('/home/user/data/dir/')
|
565 |
+
>>> for filename in filelist:
|
566 |
+
... fp = repos.open(filename)
|
567 |
+
... fp.analyze()
|
568 |
+
... fp.close()
|
569 |
+
|
570 |
+
Similarly you could use a URL for a repository::
|
571 |
+
|
572 |
+
>>> repos = np.lib._datasource.Repository('http://www.xyz.edu/data')
|
573 |
+
|
574 |
+
"""
|
575 |
+
|
576 |
+
def __init__(self, baseurl, destpath=os.curdir):
|
577 |
+
"""Create a Repository with a shared url or directory of baseurl."""
|
578 |
+
DataSource.__init__(self, destpath=destpath)
|
579 |
+
self._baseurl = baseurl
|
580 |
+
|
581 |
+
def __del__(self):
|
582 |
+
DataSource.__del__(self)
|
583 |
+
|
584 |
+
def _fullpath(self, path):
|
585 |
+
"""Return complete path for path. Prepends baseurl if necessary."""
|
586 |
+
splitpath = path.split(self._baseurl, 2)
|
587 |
+
if len(splitpath) == 1:
|
588 |
+
result = os.path.join(self._baseurl, path)
|
589 |
+
else:
|
590 |
+
result = path # path contains baseurl already
|
591 |
+
return result
|
592 |
+
|
593 |
+
def _findfile(self, path):
|
594 |
+
"""Extend DataSource method to prepend baseurl to ``path``."""
|
595 |
+
return DataSource._findfile(self, self._fullpath(path))
|
596 |
+
|
597 |
+
def abspath(self, path):
|
598 |
+
"""
|
599 |
+
Return absolute path of file in the Repository directory.
|
600 |
+
|
601 |
+
If `path` is an URL, then `abspath` will return either the location
|
602 |
+
the file exists locally or the location it would exist when opened
|
603 |
+
using the `open` method.
|
604 |
+
|
605 |
+
Parameters
|
606 |
+
----------
|
607 |
+
path : str
|
608 |
+
Can be a local file or a remote URL. This may, but does not
|
609 |
+
have to, include the `baseurl` with which the `Repository` was
|
610 |
+
initialized.
|
611 |
+
|
612 |
+
Returns
|
613 |
+
-------
|
614 |
+
out : str
|
615 |
+
Complete path, including the `DataSource` destination directory.
|
616 |
+
|
617 |
+
"""
|
618 |
+
return DataSource.abspath(self, self._fullpath(path))
|
619 |
+
|
620 |
+
def exists(self, path):
|
621 |
+
"""
|
622 |
+
Test if path exists prepending Repository base URL to path.
|
623 |
+
|
624 |
+
Test if `path` exists as (and in this order):
|
625 |
+
|
626 |
+
- a local file.
|
627 |
+
- a remote URL that has been downloaded and stored locally in the
|
628 |
+
`DataSource` directory.
|
629 |
+
- a remote URL that has not been downloaded, but is valid and
|
630 |
+
accessible.
|
631 |
+
|
632 |
+
Parameters
|
633 |
+
----------
|
634 |
+
path : str
|
635 |
+
Can be a local file or a remote URL. This may, but does not
|
636 |
+
have to, include the `baseurl` with which the `Repository` was
|
637 |
+
initialized.
|
638 |
+
|
639 |
+
Returns
|
640 |
+
-------
|
641 |
+
out : bool
|
642 |
+
True if `path` exists.
|
643 |
+
|
644 |
+
Notes
|
645 |
+
-----
|
646 |
+
When `path` is an URL, `exists` will return True if it's either
|
647 |
+
stored locally in the `DataSource` directory, or is a valid remote
|
648 |
+
URL. `DataSource` does not discriminate between the two, the file
|
649 |
+
is accessible if it exists in either location.
|
650 |
+
|
651 |
+
"""
|
652 |
+
return DataSource.exists(self, self._fullpath(path))
|
653 |
+
|
654 |
+
def open(self, path, mode='r', encoding=None, newline=None):
|
655 |
+
"""
|
656 |
+
Open and return file-like object prepending Repository base URL.
|
657 |
+
|
658 |
+
If `path` is an URL, it will be downloaded, stored in the
|
659 |
+
DataSource directory and opened from there.
|
660 |
+
|
661 |
+
Parameters
|
662 |
+
----------
|
663 |
+
path : str
|
664 |
+
Local file path or URL to open. This may, but does not have to,
|
665 |
+
include the `baseurl` with which the `Repository` was
|
666 |
+
initialized.
|
667 |
+
mode : {'r', 'w', 'a'}, optional
|
668 |
+
Mode to open `path`. Mode 'r' for reading, 'w' for writing,
|
669 |
+
'a' to append. Available modes depend on the type of object
|
670 |
+
specified by `path`. Default is 'r'.
|
671 |
+
encoding : {None, str}, optional
|
672 |
+
Open text file with given encoding. The default encoding will be
|
673 |
+
what `io.open` uses.
|
674 |
+
newline : {None, str}, optional
|
675 |
+
Newline to use when reading text file.
|
676 |
+
|
677 |
+
Returns
|
678 |
+
-------
|
679 |
+
out : file object
|
680 |
+
File object.
|
681 |
+
|
682 |
+
"""
|
683 |
+
return DataSource.open(self, self._fullpath(path), mode,
|
684 |
+
encoding=encoding, newline=newline)
|
685 |
+
|
686 |
+
def listdir(self):
|
687 |
+
"""
|
688 |
+
List files in the source Repository.
|
689 |
+
|
690 |
+
Returns
|
691 |
+
-------
|
692 |
+
files : list of str
|
693 |
+
List of file names (not containing a directory part).
|
694 |
+
|
695 |
+
Notes
|
696 |
+
-----
|
697 |
+
Does not currently work for remote repositories.
|
698 |
+
|
699 |
+
"""
|
700 |
+
if self._isurl(self._baseurl):
|
701 |
+
raise NotImplementedError(
|
702 |
+
"Directory listing of URLs, not supported yet.")
|
703 |
+
else:
|
704 |
+
return os.listdir(self._baseurl)
|
env-llmeval/lib/python3.10/site-packages/numpy/lib/_iotools.py
ADDED
@@ -0,0 +1,897 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""A collection of functions designed to help I/O with ascii files.
|
2 |
+
|
3 |
+
"""
|
4 |
+
__docformat__ = "restructuredtext en"
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import numpy.core.numeric as nx
|
8 |
+
from numpy.compat import asbytes, asunicode
|
9 |
+
|
10 |
+
|
11 |
+
def _decode_line(line, encoding=None):
|
12 |
+
"""Decode bytes from binary input streams.
|
13 |
+
|
14 |
+
Defaults to decoding from 'latin1'. That differs from the behavior of
|
15 |
+
np.compat.asunicode that decodes from 'ascii'.
|
16 |
+
|
17 |
+
Parameters
|
18 |
+
----------
|
19 |
+
line : str or bytes
|
20 |
+
Line to be decoded.
|
21 |
+
encoding : str
|
22 |
+
Encoding used to decode `line`.
|
23 |
+
|
24 |
+
Returns
|
25 |
+
-------
|
26 |
+
decoded_line : str
|
27 |
+
|
28 |
+
"""
|
29 |
+
if type(line) is bytes:
|
30 |
+
if encoding is None:
|
31 |
+
encoding = "latin1"
|
32 |
+
line = line.decode(encoding)
|
33 |
+
|
34 |
+
return line
|
35 |
+
|
36 |
+
|
37 |
+
def _is_string_like(obj):
|
38 |
+
"""
|
39 |
+
Check whether obj behaves like a string.
|
40 |
+
"""
|
41 |
+
try:
|
42 |
+
obj + ''
|
43 |
+
except (TypeError, ValueError):
|
44 |
+
return False
|
45 |
+
return True
|
46 |
+
|
47 |
+
|
48 |
+
def _is_bytes_like(obj):
|
49 |
+
"""
|
50 |
+
Check whether obj behaves like a bytes object.
|
51 |
+
"""
|
52 |
+
try:
|
53 |
+
obj + b''
|
54 |
+
except (TypeError, ValueError):
|
55 |
+
return False
|
56 |
+
return True
|
57 |
+
|
58 |
+
|
59 |
+
def has_nested_fields(ndtype):
|
60 |
+
"""
|
61 |
+
Returns whether one or several fields of a dtype are nested.
|
62 |
+
|
63 |
+
Parameters
|
64 |
+
----------
|
65 |
+
ndtype : dtype
|
66 |
+
Data-type of a structured array.
|
67 |
+
|
68 |
+
Raises
|
69 |
+
------
|
70 |
+
AttributeError
|
71 |
+
If `ndtype` does not have a `names` attribute.
|
72 |
+
|
73 |
+
Examples
|
74 |
+
--------
|
75 |
+
>>> dt = np.dtype([('name', 'S4'), ('x', float), ('y', float)])
|
76 |
+
>>> np.lib._iotools.has_nested_fields(dt)
|
77 |
+
False
|
78 |
+
|
79 |
+
"""
|
80 |
+
for name in ndtype.names or ():
|
81 |
+
if ndtype[name].names is not None:
|
82 |
+
return True
|
83 |
+
return False
|
84 |
+
|
85 |
+
|
86 |
+
def flatten_dtype(ndtype, flatten_base=False):
|
87 |
+
"""
|
88 |
+
Unpack a structured data-type by collapsing nested fields and/or fields
|
89 |
+
with a shape.
|
90 |
+
|
91 |
+
Note that the field names are lost.
|
92 |
+
|
93 |
+
Parameters
|
94 |
+
----------
|
95 |
+
ndtype : dtype
|
96 |
+
The datatype to collapse
|
97 |
+
flatten_base : bool, optional
|
98 |
+
If True, transform a field with a shape into several fields. Default is
|
99 |
+
False.
|
100 |
+
|
101 |
+
Examples
|
102 |
+
--------
|
103 |
+
>>> dt = np.dtype([('name', 'S4'), ('x', float), ('y', float),
|
104 |
+
... ('block', int, (2, 3))])
|
105 |
+
>>> np.lib._iotools.flatten_dtype(dt)
|
106 |
+
[dtype('S4'), dtype('float64'), dtype('float64'), dtype('int64')]
|
107 |
+
>>> np.lib._iotools.flatten_dtype(dt, flatten_base=True)
|
108 |
+
[dtype('S4'),
|
109 |
+
dtype('float64'),
|
110 |
+
dtype('float64'),
|
111 |
+
dtype('int64'),
|
112 |
+
dtype('int64'),
|
113 |
+
dtype('int64'),
|
114 |
+
dtype('int64'),
|
115 |
+
dtype('int64'),
|
116 |
+
dtype('int64')]
|
117 |
+
|
118 |
+
"""
|
119 |
+
names = ndtype.names
|
120 |
+
if names is None:
|
121 |
+
if flatten_base:
|
122 |
+
return [ndtype.base] * int(np.prod(ndtype.shape))
|
123 |
+
return [ndtype.base]
|
124 |
+
else:
|
125 |
+
types = []
|
126 |
+
for field in names:
|
127 |
+
info = ndtype.fields[field]
|
128 |
+
flat_dt = flatten_dtype(info[0], flatten_base)
|
129 |
+
types.extend(flat_dt)
|
130 |
+
return types
|
131 |
+
|
132 |
+
|
133 |
+
class LineSplitter:
|
134 |
+
"""
|
135 |
+
Object to split a string at a given delimiter or at given places.
|
136 |
+
|
137 |
+
Parameters
|
138 |
+
----------
|
139 |
+
delimiter : str, int, or sequence of ints, optional
|
140 |
+
If a string, character used to delimit consecutive fields.
|
141 |
+
If an integer or a sequence of integers, width(s) of each field.
|
142 |
+
comments : str, optional
|
143 |
+
Character used to mark the beginning of a comment. Default is '#'.
|
144 |
+
autostrip : bool, optional
|
145 |
+
Whether to strip each individual field. Default is True.
|
146 |
+
|
147 |
+
"""
|
148 |
+
|
149 |
+
def autostrip(self, method):
|
150 |
+
"""
|
151 |
+
Wrapper to strip each member of the output of `method`.
|
152 |
+
|
153 |
+
Parameters
|
154 |
+
----------
|
155 |
+
method : function
|
156 |
+
Function that takes a single argument and returns a sequence of
|
157 |
+
strings.
|
158 |
+
|
159 |
+
Returns
|
160 |
+
-------
|
161 |
+
wrapped : function
|
162 |
+
The result of wrapping `method`. `wrapped` takes a single input
|
163 |
+
argument and returns a list of strings that are stripped of
|
164 |
+
white-space.
|
165 |
+
|
166 |
+
"""
|
167 |
+
return lambda input: [_.strip() for _ in method(input)]
|
168 |
+
|
169 |
+
def __init__(self, delimiter=None, comments='#', autostrip=True,
|
170 |
+
encoding=None):
|
171 |
+
delimiter = _decode_line(delimiter)
|
172 |
+
comments = _decode_line(comments)
|
173 |
+
|
174 |
+
self.comments = comments
|
175 |
+
|
176 |
+
# Delimiter is a character
|
177 |
+
if (delimiter is None) or isinstance(delimiter, str):
|
178 |
+
delimiter = delimiter or None
|
179 |
+
_handyman = self._delimited_splitter
|
180 |
+
# Delimiter is a list of field widths
|
181 |
+
elif hasattr(delimiter, '__iter__'):
|
182 |
+
_handyman = self._variablewidth_splitter
|
183 |
+
idx = np.cumsum([0] + list(delimiter))
|
184 |
+
delimiter = [slice(i, j) for (i, j) in zip(idx[:-1], idx[1:])]
|
185 |
+
# Delimiter is a single integer
|
186 |
+
elif int(delimiter):
|
187 |
+
(_handyman, delimiter) = (
|
188 |
+
self._fixedwidth_splitter, int(delimiter))
|
189 |
+
else:
|
190 |
+
(_handyman, delimiter) = (self._delimited_splitter, None)
|
191 |
+
self.delimiter = delimiter
|
192 |
+
if autostrip:
|
193 |
+
self._handyman = self.autostrip(_handyman)
|
194 |
+
else:
|
195 |
+
self._handyman = _handyman
|
196 |
+
self.encoding = encoding
|
197 |
+
|
198 |
+
def _delimited_splitter(self, line):
|
199 |
+
"""Chop off comments, strip, and split at delimiter. """
|
200 |
+
if self.comments is not None:
|
201 |
+
line = line.split(self.comments)[0]
|
202 |
+
line = line.strip(" \r\n")
|
203 |
+
if not line:
|
204 |
+
return []
|
205 |
+
return line.split(self.delimiter)
|
206 |
+
|
207 |
+
def _fixedwidth_splitter(self, line):
|
208 |
+
if self.comments is not None:
|
209 |
+
line = line.split(self.comments)[0]
|
210 |
+
line = line.strip("\r\n")
|
211 |
+
if not line:
|
212 |
+
return []
|
213 |
+
fixed = self.delimiter
|
214 |
+
slices = [slice(i, i + fixed) for i in range(0, len(line), fixed)]
|
215 |
+
return [line[s] for s in slices]
|
216 |
+
|
217 |
+
def _variablewidth_splitter(self, line):
|
218 |
+
if self.comments is not None:
|
219 |
+
line = line.split(self.comments)[0]
|
220 |
+
if not line:
|
221 |
+
return []
|
222 |
+
slices = self.delimiter
|
223 |
+
return [line[s] for s in slices]
|
224 |
+
|
225 |
+
def __call__(self, line):
|
226 |
+
return self._handyman(_decode_line(line, self.encoding))
|
227 |
+
|
228 |
+
|
229 |
+
class NameValidator:
|
230 |
+
"""
|
231 |
+
Object to validate a list of strings to use as field names.
|
232 |
+
|
233 |
+
The strings are stripped of any non alphanumeric character, and spaces
|
234 |
+
are replaced by '_'. During instantiation, the user can define a list
|
235 |
+
of names to exclude, as well as a list of invalid characters. Names in
|
236 |
+
the exclusion list are appended a '_' character.
|
237 |
+
|
238 |
+
Once an instance has been created, it can be called with a list of
|
239 |
+
names, and a list of valid names will be created. The `__call__`
|
240 |
+
method accepts an optional keyword "default" that sets the default name
|
241 |
+
in case of ambiguity. By default this is 'f', so that names will
|
242 |
+
default to `f0`, `f1`, etc.
|
243 |
+
|
244 |
+
Parameters
|
245 |
+
----------
|
246 |
+
excludelist : sequence, optional
|
247 |
+
A list of names to exclude. This list is appended to the default
|
248 |
+
list ['return', 'file', 'print']. Excluded names are appended an
|
249 |
+
underscore: for example, `file` becomes `file_` if supplied.
|
250 |
+
deletechars : str, optional
|
251 |
+
A string combining invalid characters that must be deleted from the
|
252 |
+
names.
|
253 |
+
case_sensitive : {True, False, 'upper', 'lower'}, optional
|
254 |
+
* If True, field names are case-sensitive.
|
255 |
+
* If False or 'upper', field names are converted to upper case.
|
256 |
+
* If 'lower', field names are converted to lower case.
|
257 |
+
|
258 |
+
The default value is True.
|
259 |
+
replace_space : '_', optional
|
260 |
+
Character(s) used in replacement of white spaces.
|
261 |
+
|
262 |
+
Notes
|
263 |
+
-----
|
264 |
+
Calling an instance of `NameValidator` is the same as calling its
|
265 |
+
method `validate`.
|
266 |
+
|
267 |
+
Examples
|
268 |
+
--------
|
269 |
+
>>> validator = np.lib._iotools.NameValidator()
|
270 |
+
>>> validator(['file', 'field2', 'with space', 'CaSe'])
|
271 |
+
('file_', 'field2', 'with_space', 'CaSe')
|
272 |
+
|
273 |
+
>>> validator = np.lib._iotools.NameValidator(excludelist=['excl'],
|
274 |
+
... deletechars='q',
|
275 |
+
... case_sensitive=False)
|
276 |
+
>>> validator(['excl', 'field2', 'no_q', 'with space', 'CaSe'])
|
277 |
+
('EXCL', 'FIELD2', 'NO_Q', 'WITH_SPACE', 'CASE')
|
278 |
+
|
279 |
+
"""
|
280 |
+
|
281 |
+
defaultexcludelist = ['return', 'file', 'print']
|
282 |
+
defaultdeletechars = set(r"""~!@#$%^&*()-=+~\|]}[{';: /?.>,<""")
|
283 |
+
|
284 |
+
def __init__(self, excludelist=None, deletechars=None,
|
285 |
+
case_sensitive=None, replace_space='_'):
|
286 |
+
# Process the exclusion list ..
|
287 |
+
if excludelist is None:
|
288 |
+
excludelist = []
|
289 |
+
excludelist.extend(self.defaultexcludelist)
|
290 |
+
self.excludelist = excludelist
|
291 |
+
# Process the list of characters to delete
|
292 |
+
if deletechars is None:
|
293 |
+
delete = self.defaultdeletechars
|
294 |
+
else:
|
295 |
+
delete = set(deletechars)
|
296 |
+
delete.add('"')
|
297 |
+
self.deletechars = delete
|
298 |
+
# Process the case option .....
|
299 |
+
if (case_sensitive is None) or (case_sensitive is True):
|
300 |
+
self.case_converter = lambda x: x
|
301 |
+
elif (case_sensitive is False) or case_sensitive.startswith('u'):
|
302 |
+
self.case_converter = lambda x: x.upper()
|
303 |
+
elif case_sensitive.startswith('l'):
|
304 |
+
self.case_converter = lambda x: x.lower()
|
305 |
+
else:
|
306 |
+
msg = 'unrecognized case_sensitive value %s.' % case_sensitive
|
307 |
+
raise ValueError(msg)
|
308 |
+
|
309 |
+
self.replace_space = replace_space
|
310 |
+
|
311 |
+
def validate(self, names, defaultfmt="f%i", nbfields=None):
|
312 |
+
"""
|
313 |
+
Validate a list of strings as field names for a structured array.
|
314 |
+
|
315 |
+
Parameters
|
316 |
+
----------
|
317 |
+
names : sequence of str
|
318 |
+
Strings to be validated.
|
319 |
+
defaultfmt : str, optional
|
320 |
+
Default format string, used if validating a given string
|
321 |
+
reduces its length to zero.
|
322 |
+
nbfields : integer, optional
|
323 |
+
Final number of validated names, used to expand or shrink the
|
324 |
+
initial list of names.
|
325 |
+
|
326 |
+
Returns
|
327 |
+
-------
|
328 |
+
validatednames : list of str
|
329 |
+
The list of validated field names.
|
330 |
+
|
331 |
+
Notes
|
332 |
+
-----
|
333 |
+
A `NameValidator` instance can be called directly, which is the
|
334 |
+
same as calling `validate`. For examples, see `NameValidator`.
|
335 |
+
|
336 |
+
"""
|
337 |
+
# Initial checks ..............
|
338 |
+
if (names is None):
|
339 |
+
if (nbfields is None):
|
340 |
+
return None
|
341 |
+
names = []
|
342 |
+
if isinstance(names, str):
|
343 |
+
names = [names, ]
|
344 |
+
if nbfields is not None:
|
345 |
+
nbnames = len(names)
|
346 |
+
if (nbnames < nbfields):
|
347 |
+
names = list(names) + [''] * (nbfields - nbnames)
|
348 |
+
elif (nbnames > nbfields):
|
349 |
+
names = names[:nbfields]
|
350 |
+
# Set some shortcuts ...........
|
351 |
+
deletechars = self.deletechars
|
352 |
+
excludelist = self.excludelist
|
353 |
+
case_converter = self.case_converter
|
354 |
+
replace_space = self.replace_space
|
355 |
+
# Initializes some variables ...
|
356 |
+
validatednames = []
|
357 |
+
seen = dict()
|
358 |
+
nbempty = 0
|
359 |
+
|
360 |
+
for item in names:
|
361 |
+
item = case_converter(item).strip()
|
362 |
+
if replace_space:
|
363 |
+
item = item.replace(' ', replace_space)
|
364 |
+
item = ''.join([c for c in item if c not in deletechars])
|
365 |
+
if item == '':
|
366 |
+
item = defaultfmt % nbempty
|
367 |
+
while item in names:
|
368 |
+
nbempty += 1
|
369 |
+
item = defaultfmt % nbempty
|
370 |
+
nbempty += 1
|
371 |
+
elif item in excludelist:
|
372 |
+
item += '_'
|
373 |
+
cnt = seen.get(item, 0)
|
374 |
+
if cnt > 0:
|
375 |
+
validatednames.append(item + '_%d' % cnt)
|
376 |
+
else:
|
377 |
+
validatednames.append(item)
|
378 |
+
seen[item] = cnt + 1
|
379 |
+
return tuple(validatednames)
|
380 |
+
|
381 |
+
def __call__(self, names, defaultfmt="f%i", nbfields=None):
|
382 |
+
return self.validate(names, defaultfmt=defaultfmt, nbfields=nbfields)
|
383 |
+
|
384 |
+
|
385 |
+
def str2bool(value):
|
386 |
+
"""
|
387 |
+
Tries to transform a string supposed to represent a boolean to a boolean.
|
388 |
+
|
389 |
+
Parameters
|
390 |
+
----------
|
391 |
+
value : str
|
392 |
+
The string that is transformed to a boolean.
|
393 |
+
|
394 |
+
Returns
|
395 |
+
-------
|
396 |
+
boolval : bool
|
397 |
+
The boolean representation of `value`.
|
398 |
+
|
399 |
+
Raises
|
400 |
+
------
|
401 |
+
ValueError
|
402 |
+
If the string is not 'True' or 'False' (case independent)
|
403 |
+
|
404 |
+
Examples
|
405 |
+
--------
|
406 |
+
>>> np.lib._iotools.str2bool('TRUE')
|
407 |
+
True
|
408 |
+
>>> np.lib._iotools.str2bool('false')
|
409 |
+
False
|
410 |
+
|
411 |
+
"""
|
412 |
+
value = value.upper()
|
413 |
+
if value == 'TRUE':
|
414 |
+
return True
|
415 |
+
elif value == 'FALSE':
|
416 |
+
return False
|
417 |
+
else:
|
418 |
+
raise ValueError("Invalid boolean")
|
419 |
+
|
420 |
+
|
421 |
+
class ConverterError(Exception):
|
422 |
+
"""
|
423 |
+
Exception raised when an error occurs in a converter for string values.
|
424 |
+
|
425 |
+
"""
|
426 |
+
pass
|
427 |
+
|
428 |
+
|
429 |
+
class ConverterLockError(ConverterError):
|
430 |
+
"""
|
431 |
+
Exception raised when an attempt is made to upgrade a locked converter.
|
432 |
+
|
433 |
+
"""
|
434 |
+
pass
|
435 |
+
|
436 |
+
|
437 |
+
class ConversionWarning(UserWarning):
|
438 |
+
"""
|
439 |
+
Warning issued when a string converter has a problem.
|
440 |
+
|
441 |
+
Notes
|
442 |
+
-----
|
443 |
+
In `genfromtxt` a `ConversionWarning` is issued if raising exceptions
|
444 |
+
is explicitly suppressed with the "invalid_raise" keyword.
|
445 |
+
|
446 |
+
"""
|
447 |
+
pass
|
448 |
+
|
449 |
+
|
450 |
+
class StringConverter:
|
451 |
+
"""
|
452 |
+
Factory class for function transforming a string into another object
|
453 |
+
(int, float).
|
454 |
+
|
455 |
+
After initialization, an instance can be called to transform a string
|
456 |
+
into another object. If the string is recognized as representing a
|
457 |
+
missing value, a default value is returned.
|
458 |
+
|
459 |
+
Attributes
|
460 |
+
----------
|
461 |
+
func : function
|
462 |
+
Function used for the conversion.
|
463 |
+
default : any
|
464 |
+
Default value to return when the input corresponds to a missing
|
465 |
+
value.
|
466 |
+
type : type
|
467 |
+
Type of the output.
|
468 |
+
_status : int
|
469 |
+
Integer representing the order of the conversion.
|
470 |
+
_mapper : sequence of tuples
|
471 |
+
Sequence of tuples (dtype, function, default value) to evaluate in
|
472 |
+
order.
|
473 |
+
_locked : bool
|
474 |
+
Holds `locked` parameter.
|
475 |
+
|
476 |
+
Parameters
|
477 |
+
----------
|
478 |
+
dtype_or_func : {None, dtype, function}, optional
|
479 |
+
If a `dtype`, specifies the input data type, used to define a basic
|
480 |
+
function and a default value for missing data. For example, when
|
481 |
+
`dtype` is float, the `func` attribute is set to `float` and the
|
482 |
+
default value to `np.nan`. If a function, this function is used to
|
483 |
+
convert a string to another object. In this case, it is recommended
|
484 |
+
to give an associated default value as input.
|
485 |
+
default : any, optional
|
486 |
+
Value to return by default, that is, when the string to be
|
487 |
+
converted is flagged as missing. If not given, `StringConverter`
|
488 |
+
tries to supply a reasonable default value.
|
489 |
+
missing_values : {None, sequence of str}, optional
|
490 |
+
``None`` or sequence of strings indicating a missing value. If ``None``
|
491 |
+
then missing values are indicated by empty entries. The default is
|
492 |
+
``None``.
|
493 |
+
locked : bool, optional
|
494 |
+
Whether the StringConverter should be locked to prevent automatic
|
495 |
+
upgrade or not. Default is False.
|
496 |
+
|
497 |
+
"""
|
498 |
+
_mapper = [(nx.bool_, str2bool, False),
|
499 |
+
(nx.int_, int, -1),]
|
500 |
+
|
501 |
+
# On 32-bit systems, we need to make sure that we explicitly include
|
502 |
+
# nx.int64 since ns.int_ is nx.int32.
|
503 |
+
if nx.dtype(nx.int_).itemsize < nx.dtype(nx.int64).itemsize:
|
504 |
+
_mapper.append((nx.int64, int, -1))
|
505 |
+
|
506 |
+
_mapper.extend([(nx.float64, float, nx.nan),
|
507 |
+
(nx.complex128, complex, nx.nan + 0j),
|
508 |
+
(nx.longdouble, nx.longdouble, nx.nan),
|
509 |
+
# If a non-default dtype is passed, fall back to generic
|
510 |
+
# ones (should only be used for the converter)
|
511 |
+
(nx.integer, int, -1),
|
512 |
+
(nx.floating, float, nx.nan),
|
513 |
+
(nx.complexfloating, complex, nx.nan + 0j),
|
514 |
+
# Last, try with the string types (must be last, because
|
515 |
+
# `_mapper[-1]` is used as default in some cases)
|
516 |
+
(nx.str_, asunicode, '???'),
|
517 |
+
(nx.bytes_, asbytes, '???'),
|
518 |
+
])
|
519 |
+
|
520 |
+
@classmethod
|
521 |
+
def _getdtype(cls, val):
|
522 |
+
"""Returns the dtype of the input variable."""
|
523 |
+
return np.array(val).dtype
|
524 |
+
|
525 |
+
@classmethod
|
526 |
+
def _getsubdtype(cls, val):
|
527 |
+
"""Returns the type of the dtype of the input variable."""
|
528 |
+
return np.array(val).dtype.type
|
529 |
+
|
530 |
+
@classmethod
|
531 |
+
def _dtypeortype(cls, dtype):
|
532 |
+
"""Returns dtype for datetime64 and type of dtype otherwise."""
|
533 |
+
|
534 |
+
# This is a bit annoying. We want to return the "general" type in most
|
535 |
+
# cases (ie. "string" rather than "S10"), but we want to return the
|
536 |
+
# specific type for datetime64 (ie. "datetime64[us]" rather than
|
537 |
+
# "datetime64").
|
538 |
+
if dtype.type == np.datetime64:
|
539 |
+
return dtype
|
540 |
+
return dtype.type
|
541 |
+
|
542 |
+
@classmethod
|
543 |
+
def upgrade_mapper(cls, func, default=None):
|
544 |
+
"""
|
545 |
+
Upgrade the mapper of a StringConverter by adding a new function and
|
546 |
+
its corresponding default.
|
547 |
+
|
548 |
+
The input function (or sequence of functions) and its associated
|
549 |
+
default value (if any) is inserted in penultimate position of the
|
550 |
+
mapper. The corresponding type is estimated from the dtype of the
|
551 |
+
default value.
|
552 |
+
|
553 |
+
Parameters
|
554 |
+
----------
|
555 |
+
func : var
|
556 |
+
Function, or sequence of functions
|
557 |
+
|
558 |
+
Examples
|
559 |
+
--------
|
560 |
+
>>> import dateutil.parser
|
561 |
+
>>> import datetime
|
562 |
+
>>> dateparser = dateutil.parser.parse
|
563 |
+
>>> defaultdate = datetime.date(2000, 1, 1)
|
564 |
+
>>> StringConverter.upgrade_mapper(dateparser, default=defaultdate)
|
565 |
+
"""
|
566 |
+
# Func is a single functions
|
567 |
+
if hasattr(func, '__call__'):
|
568 |
+
cls._mapper.insert(-1, (cls._getsubdtype(default), func, default))
|
569 |
+
return
|
570 |
+
elif hasattr(func, '__iter__'):
|
571 |
+
if isinstance(func[0], (tuple, list)):
|
572 |
+
for _ in func:
|
573 |
+
cls._mapper.insert(-1, _)
|
574 |
+
return
|
575 |
+
if default is None:
|
576 |
+
default = [None] * len(func)
|
577 |
+
else:
|
578 |
+
default = list(default)
|
579 |
+
default.append([None] * (len(func) - len(default)))
|
580 |
+
for fct, dft in zip(func, default):
|
581 |
+
cls._mapper.insert(-1, (cls._getsubdtype(dft), fct, dft))
|
582 |
+
|
583 |
+
@classmethod
|
584 |
+
def _find_map_entry(cls, dtype):
|
585 |
+
# if a converter for the specific dtype is available use that
|
586 |
+
for i, (deftype, func, default_def) in enumerate(cls._mapper):
|
587 |
+
if dtype.type == deftype:
|
588 |
+
return i, (deftype, func, default_def)
|
589 |
+
|
590 |
+
# otherwise find an inexact match
|
591 |
+
for i, (deftype, func, default_def) in enumerate(cls._mapper):
|
592 |
+
if np.issubdtype(dtype.type, deftype):
|
593 |
+
return i, (deftype, func, default_def)
|
594 |
+
|
595 |
+
raise LookupError
|
596 |
+
|
597 |
+
def __init__(self, dtype_or_func=None, default=None, missing_values=None,
|
598 |
+
locked=False):
|
599 |
+
# Defines a lock for upgrade
|
600 |
+
self._locked = bool(locked)
|
601 |
+
# No input dtype: minimal initialization
|
602 |
+
if dtype_or_func is None:
|
603 |
+
self.func = str2bool
|
604 |
+
self._status = 0
|
605 |
+
self.default = default or False
|
606 |
+
dtype = np.dtype('bool')
|
607 |
+
else:
|
608 |
+
# Is the input a np.dtype ?
|
609 |
+
try:
|
610 |
+
self.func = None
|
611 |
+
dtype = np.dtype(dtype_or_func)
|
612 |
+
except TypeError:
|
613 |
+
# dtype_or_func must be a function, then
|
614 |
+
if not hasattr(dtype_or_func, '__call__'):
|
615 |
+
errmsg = ("The input argument `dtype` is neither a"
|
616 |
+
" function nor a dtype (got '%s' instead)")
|
617 |
+
raise TypeError(errmsg % type(dtype_or_func))
|
618 |
+
# Set the function
|
619 |
+
self.func = dtype_or_func
|
620 |
+
# If we don't have a default, try to guess it or set it to
|
621 |
+
# None
|
622 |
+
if default is None:
|
623 |
+
try:
|
624 |
+
default = self.func('0')
|
625 |
+
except ValueError:
|
626 |
+
default = None
|
627 |
+
dtype = self._getdtype(default)
|
628 |
+
|
629 |
+
# find the best match in our mapper
|
630 |
+
try:
|
631 |
+
self._status, (_, func, default_def) = self._find_map_entry(dtype)
|
632 |
+
except LookupError:
|
633 |
+
# no match
|
634 |
+
self.default = default
|
635 |
+
_, func, _ = self._mapper[-1]
|
636 |
+
self._status = 0
|
637 |
+
else:
|
638 |
+
# use the found default only if we did not already have one
|
639 |
+
if default is None:
|
640 |
+
self.default = default_def
|
641 |
+
else:
|
642 |
+
self.default = default
|
643 |
+
|
644 |
+
# If the input was a dtype, set the function to the last we saw
|
645 |
+
if self.func is None:
|
646 |
+
self.func = func
|
647 |
+
|
648 |
+
# If the status is 1 (int), change the function to
|
649 |
+
# something more robust.
|
650 |
+
if self.func == self._mapper[1][1]:
|
651 |
+
if issubclass(dtype.type, np.uint64):
|
652 |
+
self.func = np.uint64
|
653 |
+
elif issubclass(dtype.type, np.int64):
|
654 |
+
self.func = np.int64
|
655 |
+
else:
|
656 |
+
self.func = lambda x: int(float(x))
|
657 |
+
# Store the list of strings corresponding to missing values.
|
658 |
+
if missing_values is None:
|
659 |
+
self.missing_values = {''}
|
660 |
+
else:
|
661 |
+
if isinstance(missing_values, str):
|
662 |
+
missing_values = missing_values.split(",")
|
663 |
+
self.missing_values = set(list(missing_values) + [''])
|
664 |
+
|
665 |
+
self._callingfunction = self._strict_call
|
666 |
+
self.type = self._dtypeortype(dtype)
|
667 |
+
self._checked = False
|
668 |
+
self._initial_default = default
|
669 |
+
|
670 |
+
def _loose_call(self, value):
|
671 |
+
try:
|
672 |
+
return self.func(value)
|
673 |
+
except ValueError:
|
674 |
+
return self.default
|
675 |
+
|
676 |
+
def _strict_call(self, value):
|
677 |
+
try:
|
678 |
+
|
679 |
+
# We check if we can convert the value using the current function
|
680 |
+
new_value = self.func(value)
|
681 |
+
|
682 |
+
# In addition to having to check whether func can convert the
|
683 |
+
# value, we also have to make sure that we don't get overflow
|
684 |
+
# errors for integers.
|
685 |
+
if self.func is int:
|
686 |
+
try:
|
687 |
+
np.array(value, dtype=self.type)
|
688 |
+
except OverflowError:
|
689 |
+
raise ValueError
|
690 |
+
|
691 |
+
# We're still here so we can now return the new value
|
692 |
+
return new_value
|
693 |
+
|
694 |
+
except ValueError:
|
695 |
+
if value.strip() in self.missing_values:
|
696 |
+
if not self._status:
|
697 |
+
self._checked = False
|
698 |
+
return self.default
|
699 |
+
raise ValueError("Cannot convert string '%s'" % value)
|
700 |
+
|
701 |
+
def __call__(self, value):
|
702 |
+
return self._callingfunction(value)
|
703 |
+
|
704 |
+
def _do_upgrade(self):
|
705 |
+
# Raise an exception if we locked the converter...
|
706 |
+
if self._locked:
|
707 |
+
errmsg = "Converter is locked and cannot be upgraded"
|
708 |
+
raise ConverterLockError(errmsg)
|
709 |
+
_statusmax = len(self._mapper)
|
710 |
+
# Complains if we try to upgrade by the maximum
|
711 |
+
_status = self._status
|
712 |
+
if _status == _statusmax:
|
713 |
+
errmsg = "Could not find a valid conversion function"
|
714 |
+
raise ConverterError(errmsg)
|
715 |
+
elif _status < _statusmax - 1:
|
716 |
+
_status += 1
|
717 |
+
self.type, self.func, default = self._mapper[_status]
|
718 |
+
self._status = _status
|
719 |
+
if self._initial_default is not None:
|
720 |
+
self.default = self._initial_default
|
721 |
+
else:
|
722 |
+
self.default = default
|
723 |
+
|
724 |
+
def upgrade(self, value):
|
725 |
+
"""
|
726 |
+
Find the best converter for a given string, and return the result.
|
727 |
+
|
728 |
+
The supplied string `value` is converted by testing different
|
729 |
+
converters in order. First the `func` method of the
|
730 |
+
`StringConverter` instance is tried, if this fails other available
|
731 |
+
converters are tried. The order in which these other converters
|
732 |
+
are tried is determined by the `_status` attribute of the instance.
|
733 |
+
|
734 |
+
Parameters
|
735 |
+
----------
|
736 |
+
value : str
|
737 |
+
The string to convert.
|
738 |
+
|
739 |
+
Returns
|
740 |
+
-------
|
741 |
+
out : any
|
742 |
+
The result of converting `value` with the appropriate converter.
|
743 |
+
|
744 |
+
"""
|
745 |
+
self._checked = True
|
746 |
+
try:
|
747 |
+
return self._strict_call(value)
|
748 |
+
except ValueError:
|
749 |
+
self._do_upgrade()
|
750 |
+
return self.upgrade(value)
|
751 |
+
|
752 |
+
def iterupgrade(self, value):
|
753 |
+
self._checked = True
|
754 |
+
if not hasattr(value, '__iter__'):
|
755 |
+
value = (value,)
|
756 |
+
_strict_call = self._strict_call
|
757 |
+
try:
|
758 |
+
for _m in value:
|
759 |
+
_strict_call(_m)
|
760 |
+
except ValueError:
|
761 |
+
self._do_upgrade()
|
762 |
+
self.iterupgrade(value)
|
763 |
+
|
764 |
+
def update(self, func, default=None, testing_value=None,
|
765 |
+
missing_values='', locked=False):
|
766 |
+
"""
|
767 |
+
Set StringConverter attributes directly.
|
768 |
+
|
769 |
+
Parameters
|
770 |
+
----------
|
771 |
+
func : function
|
772 |
+
Conversion function.
|
773 |
+
default : any, optional
|
774 |
+
Value to return by default, that is, when the string to be
|
775 |
+
converted is flagged as missing. If not given,
|
776 |
+
`StringConverter` tries to supply a reasonable default value.
|
777 |
+
testing_value : str, optional
|
778 |
+
A string representing a standard input value of the converter.
|
779 |
+
This string is used to help defining a reasonable default
|
780 |
+
value.
|
781 |
+
missing_values : {sequence of str, None}, optional
|
782 |
+
Sequence of strings indicating a missing value. If ``None``, then
|
783 |
+
the existing `missing_values` are cleared. The default is `''`.
|
784 |
+
locked : bool, optional
|
785 |
+
Whether the StringConverter should be locked to prevent
|
786 |
+
automatic upgrade or not. Default is False.
|
787 |
+
|
788 |
+
Notes
|
789 |
+
-----
|
790 |
+
`update` takes the same parameters as the constructor of
|
791 |
+
`StringConverter`, except that `func` does not accept a `dtype`
|
792 |
+
whereas `dtype_or_func` in the constructor does.
|
793 |
+
|
794 |
+
"""
|
795 |
+
self.func = func
|
796 |
+
self._locked = locked
|
797 |
+
|
798 |
+
# Don't reset the default to None if we can avoid it
|
799 |
+
if default is not None:
|
800 |
+
self.default = default
|
801 |
+
self.type = self._dtypeortype(self._getdtype(default))
|
802 |
+
else:
|
803 |
+
try:
|
804 |
+
tester = func(testing_value or '1')
|
805 |
+
except (TypeError, ValueError):
|
806 |
+
tester = None
|
807 |
+
self.type = self._dtypeortype(self._getdtype(tester))
|
808 |
+
|
809 |
+
# Add the missing values to the existing set or clear it.
|
810 |
+
if missing_values is None:
|
811 |
+
# Clear all missing values even though the ctor initializes it to
|
812 |
+
# set(['']) when the argument is None.
|
813 |
+
self.missing_values = set()
|
814 |
+
else:
|
815 |
+
if not np.iterable(missing_values):
|
816 |
+
missing_values = [missing_values]
|
817 |
+
if not all(isinstance(v, str) for v in missing_values):
|
818 |
+
raise TypeError("missing_values must be strings or unicode")
|
819 |
+
self.missing_values.update(missing_values)
|
820 |
+
|
821 |
+
|
822 |
+
def easy_dtype(ndtype, names=None, defaultfmt="f%i", **validationargs):
|
823 |
+
"""
|
824 |
+
Convenience function to create a `np.dtype` object.
|
825 |
+
|
826 |
+
The function processes the input `dtype` and matches it with the given
|
827 |
+
names.
|
828 |
+
|
829 |
+
Parameters
|
830 |
+
----------
|
831 |
+
ndtype : var
|
832 |
+
Definition of the dtype. Can be any string or dictionary recognized
|
833 |
+
by the `np.dtype` function, or a sequence of types.
|
834 |
+
names : str or sequence, optional
|
835 |
+
Sequence of strings to use as field names for a structured dtype.
|
836 |
+
For convenience, `names` can be a string of a comma-separated list
|
837 |
+
of names.
|
838 |
+
defaultfmt : str, optional
|
839 |
+
Format string used to define missing names, such as ``"f%i"``
|
840 |
+
(default) or ``"fields_%02i"``.
|
841 |
+
validationargs : optional
|
842 |
+
A series of optional arguments used to initialize a
|
843 |
+
`NameValidator`.
|
844 |
+
|
845 |
+
Examples
|
846 |
+
--------
|
847 |
+
>>> np.lib._iotools.easy_dtype(float)
|
848 |
+
dtype('float64')
|
849 |
+
>>> np.lib._iotools.easy_dtype("i4, f8")
|
850 |
+
dtype([('f0', '<i4'), ('f1', '<f8')])
|
851 |
+
>>> np.lib._iotools.easy_dtype("i4, f8", defaultfmt="field_%03i")
|
852 |
+
dtype([('field_000', '<i4'), ('field_001', '<f8')])
|
853 |
+
|
854 |
+
>>> np.lib._iotools.easy_dtype((int, float, float), names="a,b,c")
|
855 |
+
dtype([('a', '<i8'), ('b', '<f8'), ('c', '<f8')])
|
856 |
+
>>> np.lib._iotools.easy_dtype(float, names="a,b,c")
|
857 |
+
dtype([('a', '<f8'), ('b', '<f8'), ('c', '<f8')])
|
858 |
+
|
859 |
+
"""
|
860 |
+
try:
|
861 |
+
ndtype = np.dtype(ndtype)
|
862 |
+
except TypeError:
|
863 |
+
validate = NameValidator(**validationargs)
|
864 |
+
nbfields = len(ndtype)
|
865 |
+
if names is None:
|
866 |
+
names = [''] * len(ndtype)
|
867 |
+
elif isinstance(names, str):
|
868 |
+
names = names.split(",")
|
869 |
+
names = validate(names, nbfields=nbfields, defaultfmt=defaultfmt)
|
870 |
+
ndtype = np.dtype(dict(formats=ndtype, names=names))
|
871 |
+
else:
|
872 |
+
# Explicit names
|
873 |
+
if names is not None:
|
874 |
+
validate = NameValidator(**validationargs)
|
875 |
+
if isinstance(names, str):
|
876 |
+
names = names.split(",")
|
877 |
+
# Simple dtype: repeat to match the nb of names
|
878 |
+
if ndtype.names is None:
|
879 |
+
formats = tuple([ndtype.type] * len(names))
|
880 |
+
names = validate(names, defaultfmt=defaultfmt)
|
881 |
+
ndtype = np.dtype(list(zip(names, formats)))
|
882 |
+
# Structured dtype: just validate the names as needed
|
883 |
+
else:
|
884 |
+
ndtype.names = validate(names, nbfields=len(ndtype.names),
|
885 |
+
defaultfmt=defaultfmt)
|
886 |
+
# No implicit names
|
887 |
+
elif ndtype.names is not None:
|
888 |
+
validate = NameValidator(**validationargs)
|
889 |
+
# Default initial names : should we change the format ?
|
890 |
+
numbered_names = tuple("f%i" % i for i in range(len(ndtype.names)))
|
891 |
+
if ((ndtype.names == numbered_names) and (defaultfmt != "f%i")):
|
892 |
+
ndtype.names = validate([''] * len(ndtype.names),
|
893 |
+
defaultfmt=defaultfmt)
|
894 |
+
# Explicit initial names : just validate
|
895 |
+
else:
|
896 |
+
ndtype.names = validate(ndtype.names, defaultfmt=defaultfmt)
|
897 |
+
return ndtype
|
env-llmeval/lib/python3.10/site-packages/numpy/lib/_version.py
ADDED
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Utility to compare (NumPy) version strings.
|
2 |
+
|
3 |
+
The NumpyVersion class allows properly comparing numpy version strings.
|
4 |
+
The LooseVersion and StrictVersion classes that distutils provides don't
|
5 |
+
work; they don't recognize anything like alpha/beta/rc/dev versions.
|
6 |
+
|
7 |
+
"""
|
8 |
+
import re
|
9 |
+
|
10 |
+
|
11 |
+
__all__ = ['NumpyVersion']
|
12 |
+
|
13 |
+
|
14 |
+
class NumpyVersion():
|
15 |
+
"""Parse and compare numpy version strings.
|
16 |
+
|
17 |
+
NumPy has the following versioning scheme (numbers given are examples; they
|
18 |
+
can be > 9 in principle):
|
19 |
+
|
20 |
+
- Released version: '1.8.0', '1.8.1', etc.
|
21 |
+
- Alpha: '1.8.0a1', '1.8.0a2', etc.
|
22 |
+
- Beta: '1.8.0b1', '1.8.0b2', etc.
|
23 |
+
- Release candidates: '1.8.0rc1', '1.8.0rc2', etc.
|
24 |
+
- Development versions: '1.8.0.dev-f1234afa' (git commit hash appended)
|
25 |
+
- Development versions after a1: '1.8.0a1.dev-f1234afa',
|
26 |
+
'1.8.0b2.dev-f1234afa',
|
27 |
+
'1.8.1rc1.dev-f1234afa', etc.
|
28 |
+
- Development versions (no git hash available): '1.8.0.dev-Unknown'
|
29 |
+
|
30 |
+
Comparing needs to be done against a valid version string or other
|
31 |
+
`NumpyVersion` instance. Note that all development versions of the same
|
32 |
+
(pre-)release compare equal.
|
33 |
+
|
34 |
+
.. versionadded:: 1.9.0
|
35 |
+
|
36 |
+
Parameters
|
37 |
+
----------
|
38 |
+
vstring : str
|
39 |
+
NumPy version string (``np.__version__``).
|
40 |
+
|
41 |
+
Examples
|
42 |
+
--------
|
43 |
+
>>> from numpy.lib import NumpyVersion
|
44 |
+
>>> if NumpyVersion(np.__version__) < '1.7.0':
|
45 |
+
... print('skip')
|
46 |
+
>>> # skip
|
47 |
+
|
48 |
+
>>> NumpyVersion('1.7') # raises ValueError, add ".0"
|
49 |
+
Traceback (most recent call last):
|
50 |
+
...
|
51 |
+
ValueError: Not a valid numpy version string
|
52 |
+
|
53 |
+
"""
|
54 |
+
|
55 |
+
def __init__(self, vstring):
|
56 |
+
self.vstring = vstring
|
57 |
+
ver_main = re.match(r'\d+\.\d+\.\d+', vstring)
|
58 |
+
if not ver_main:
|
59 |
+
raise ValueError("Not a valid numpy version string")
|
60 |
+
|
61 |
+
self.version = ver_main.group()
|
62 |
+
self.major, self.minor, self.bugfix = [int(x) for x in
|
63 |
+
self.version.split('.')]
|
64 |
+
if len(vstring) == ver_main.end():
|
65 |
+
self.pre_release = 'final'
|
66 |
+
else:
|
67 |
+
alpha = re.match(r'a\d', vstring[ver_main.end():])
|
68 |
+
beta = re.match(r'b\d', vstring[ver_main.end():])
|
69 |
+
rc = re.match(r'rc\d', vstring[ver_main.end():])
|
70 |
+
pre_rel = [m for m in [alpha, beta, rc] if m is not None]
|
71 |
+
if pre_rel:
|
72 |
+
self.pre_release = pre_rel[0].group()
|
73 |
+
else:
|
74 |
+
self.pre_release = ''
|
75 |
+
|
76 |
+
self.is_devversion = bool(re.search(r'.dev', vstring))
|
77 |
+
|
78 |
+
def _compare_version(self, other):
|
79 |
+
"""Compare major.minor.bugfix"""
|
80 |
+
if self.major == other.major:
|
81 |
+
if self.minor == other.minor:
|
82 |
+
if self.bugfix == other.bugfix:
|
83 |
+
vercmp = 0
|
84 |
+
elif self.bugfix > other.bugfix:
|
85 |
+
vercmp = 1
|
86 |
+
else:
|
87 |
+
vercmp = -1
|
88 |
+
elif self.minor > other.minor:
|
89 |
+
vercmp = 1
|
90 |
+
else:
|
91 |
+
vercmp = -1
|
92 |
+
elif self.major > other.major:
|
93 |
+
vercmp = 1
|
94 |
+
else:
|
95 |
+
vercmp = -1
|
96 |
+
|
97 |
+
return vercmp
|
98 |
+
|
99 |
+
def _compare_pre_release(self, other):
|
100 |
+
"""Compare alpha/beta/rc/final."""
|
101 |
+
if self.pre_release == other.pre_release:
|
102 |
+
vercmp = 0
|
103 |
+
elif self.pre_release == 'final':
|
104 |
+
vercmp = 1
|
105 |
+
elif other.pre_release == 'final':
|
106 |
+
vercmp = -1
|
107 |
+
elif self.pre_release > other.pre_release:
|
108 |
+
vercmp = 1
|
109 |
+
else:
|
110 |
+
vercmp = -1
|
111 |
+
|
112 |
+
return vercmp
|
113 |
+
|
114 |
+
def _compare(self, other):
|
115 |
+
if not isinstance(other, (str, NumpyVersion)):
|
116 |
+
raise ValueError("Invalid object to compare with NumpyVersion.")
|
117 |
+
|
118 |
+
if isinstance(other, str):
|
119 |
+
other = NumpyVersion(other)
|
120 |
+
|
121 |
+
vercmp = self._compare_version(other)
|
122 |
+
if vercmp == 0:
|
123 |
+
# Same x.y.z version, check for alpha/beta/rc
|
124 |
+
vercmp = self._compare_pre_release(other)
|
125 |
+
if vercmp == 0:
|
126 |
+
# Same version and same pre-release, check if dev version
|
127 |
+
if self.is_devversion is other.is_devversion:
|
128 |
+
vercmp = 0
|
129 |
+
elif self.is_devversion:
|
130 |
+
vercmp = -1
|
131 |
+
else:
|
132 |
+
vercmp = 1
|
133 |
+
|
134 |
+
return vercmp
|
135 |
+
|
136 |
+
def __lt__(self, other):
|
137 |
+
return self._compare(other) < 0
|
138 |
+
|
139 |
+
def __le__(self, other):
|
140 |
+
return self._compare(other) <= 0
|
141 |
+
|
142 |
+
def __eq__(self, other):
|
143 |
+
return self._compare(other) == 0
|
144 |
+
|
145 |
+
def __ne__(self, other):
|
146 |
+
return self._compare(other) != 0
|
147 |
+
|
148 |
+
def __gt__(self, other):
|
149 |
+
return self._compare(other) > 0
|
150 |
+
|
151 |
+
def __ge__(self, other):
|
152 |
+
return self._compare(other) >= 0
|
153 |
+
|
154 |
+
def __repr__(self):
|
155 |
+
return "NumpyVersion(%s)" % self.vstring
|
env-llmeval/lib/python3.10/site-packages/numpy/lib/_version.pyi
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
__all__: list[str]
|
2 |
+
|
3 |
+
class NumpyVersion:
|
4 |
+
vstring: str
|
5 |
+
version: str
|
6 |
+
major: int
|
7 |
+
minor: int
|
8 |
+
bugfix: int
|
9 |
+
pre_release: str
|
10 |
+
is_devversion: bool
|
11 |
+
def __init__(self, vstring: str) -> None: ...
|
12 |
+
def __lt__(self, other: str | NumpyVersion) -> bool: ...
|
13 |
+
def __le__(self, other: str | NumpyVersion) -> bool: ...
|
14 |
+
def __eq__(self, other: str | NumpyVersion) -> bool: ... # type: ignore[override]
|
15 |
+
def __ne__(self, other: str | NumpyVersion) -> bool: ... # type: ignore[override]
|
16 |
+
def __gt__(self, other: str | NumpyVersion) -> bool: ...
|
17 |
+
def __ge__(self, other: str | NumpyVersion) -> bool: ...
|
env-llmeval/lib/python3.10/site-packages/numpy/lib/arraypad.py
ADDED
@@ -0,0 +1,882 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
The arraypad module contains a group of functions to pad values onto the edges
|
3 |
+
of an n-dimensional array.
|
4 |
+
|
5 |
+
"""
|
6 |
+
import numpy as np
|
7 |
+
from numpy.core.overrides import array_function_dispatch
|
8 |
+
from numpy.lib.index_tricks import ndindex
|
9 |
+
|
10 |
+
|
11 |
+
__all__ = ['pad']
|
12 |
+
|
13 |
+
|
14 |
+
###############################################################################
|
15 |
+
# Private utility functions.
|
16 |
+
|
17 |
+
|
18 |
+
def _round_if_needed(arr, dtype):
|
19 |
+
"""
|
20 |
+
Rounds arr inplace if destination dtype is integer.
|
21 |
+
|
22 |
+
Parameters
|
23 |
+
----------
|
24 |
+
arr : ndarray
|
25 |
+
Input array.
|
26 |
+
dtype : dtype
|
27 |
+
The dtype of the destination array.
|
28 |
+
"""
|
29 |
+
if np.issubdtype(dtype, np.integer):
|
30 |
+
arr.round(out=arr)
|
31 |
+
|
32 |
+
|
33 |
+
def _slice_at_axis(sl, axis):
|
34 |
+
"""
|
35 |
+
Construct tuple of slices to slice an array in the given dimension.
|
36 |
+
|
37 |
+
Parameters
|
38 |
+
----------
|
39 |
+
sl : slice
|
40 |
+
The slice for the given dimension.
|
41 |
+
axis : int
|
42 |
+
The axis to which `sl` is applied. All other dimensions are left
|
43 |
+
"unsliced".
|
44 |
+
|
45 |
+
Returns
|
46 |
+
-------
|
47 |
+
sl : tuple of slices
|
48 |
+
A tuple with slices matching `shape` in length.
|
49 |
+
|
50 |
+
Examples
|
51 |
+
--------
|
52 |
+
>>> _slice_at_axis(slice(None, 3, -1), 1)
|
53 |
+
(slice(None, None, None), slice(None, 3, -1), (...,))
|
54 |
+
"""
|
55 |
+
return (slice(None),) * axis + (sl,) + (...,)
|
56 |
+
|
57 |
+
|
58 |
+
def _view_roi(array, original_area_slice, axis):
|
59 |
+
"""
|
60 |
+
Get a view of the current region of interest during iterative padding.
|
61 |
+
|
62 |
+
When padding multiple dimensions iteratively corner values are
|
63 |
+
unnecessarily overwritten multiple times. This function reduces the
|
64 |
+
working area for the first dimensions so that corners are excluded.
|
65 |
+
|
66 |
+
Parameters
|
67 |
+
----------
|
68 |
+
array : ndarray
|
69 |
+
The array with the region of interest.
|
70 |
+
original_area_slice : tuple of slices
|
71 |
+
Denotes the area with original values of the unpadded array.
|
72 |
+
axis : int
|
73 |
+
The currently padded dimension assuming that `axis` is padded before
|
74 |
+
`axis` + 1.
|
75 |
+
|
76 |
+
Returns
|
77 |
+
-------
|
78 |
+
roi : ndarray
|
79 |
+
The region of interest of the original `array`.
|
80 |
+
"""
|
81 |
+
axis += 1
|
82 |
+
sl = (slice(None),) * axis + original_area_slice[axis:]
|
83 |
+
return array[sl]
|
84 |
+
|
85 |
+
|
86 |
+
def _pad_simple(array, pad_width, fill_value=None):
|
87 |
+
"""
|
88 |
+
Pad array on all sides with either a single value or undefined values.
|
89 |
+
|
90 |
+
Parameters
|
91 |
+
----------
|
92 |
+
array : ndarray
|
93 |
+
Array to grow.
|
94 |
+
pad_width : sequence of tuple[int, int]
|
95 |
+
Pad width on both sides for each dimension in `arr`.
|
96 |
+
fill_value : scalar, optional
|
97 |
+
If provided the padded area is filled with this value, otherwise
|
98 |
+
the pad area left undefined.
|
99 |
+
|
100 |
+
Returns
|
101 |
+
-------
|
102 |
+
padded : ndarray
|
103 |
+
The padded array with the same dtype as`array`. Its order will default
|
104 |
+
to C-style if `array` is not F-contiguous.
|
105 |
+
original_area_slice : tuple
|
106 |
+
A tuple of slices pointing to the area of the original array.
|
107 |
+
"""
|
108 |
+
# Allocate grown array
|
109 |
+
new_shape = tuple(
|
110 |
+
left + size + right
|
111 |
+
for size, (left, right) in zip(array.shape, pad_width)
|
112 |
+
)
|
113 |
+
order = 'F' if array.flags.fnc else 'C' # Fortran and not also C-order
|
114 |
+
padded = np.empty(new_shape, dtype=array.dtype, order=order)
|
115 |
+
|
116 |
+
if fill_value is not None:
|
117 |
+
padded.fill(fill_value)
|
118 |
+
|
119 |
+
# Copy old array into correct space
|
120 |
+
original_area_slice = tuple(
|
121 |
+
slice(left, left + size)
|
122 |
+
for size, (left, right) in zip(array.shape, pad_width)
|
123 |
+
)
|
124 |
+
padded[original_area_slice] = array
|
125 |
+
|
126 |
+
return padded, original_area_slice
|
127 |
+
|
128 |
+
|
129 |
+
def _set_pad_area(padded, axis, width_pair, value_pair):
|
130 |
+
"""
|
131 |
+
Set empty-padded area in given dimension.
|
132 |
+
|
133 |
+
Parameters
|
134 |
+
----------
|
135 |
+
padded : ndarray
|
136 |
+
Array with the pad area which is modified inplace.
|
137 |
+
axis : int
|
138 |
+
Dimension with the pad area to set.
|
139 |
+
width_pair : (int, int)
|
140 |
+
Pair of widths that mark the pad area on both sides in the given
|
141 |
+
dimension.
|
142 |
+
value_pair : tuple of scalars or ndarrays
|
143 |
+
Values inserted into the pad area on each side. It must match or be
|
144 |
+
broadcastable to the shape of `arr`.
|
145 |
+
"""
|
146 |
+
left_slice = _slice_at_axis(slice(None, width_pair[0]), axis)
|
147 |
+
padded[left_slice] = value_pair[0]
|
148 |
+
|
149 |
+
right_slice = _slice_at_axis(
|
150 |
+
slice(padded.shape[axis] - width_pair[1], None), axis)
|
151 |
+
padded[right_slice] = value_pair[1]
|
152 |
+
|
153 |
+
|
154 |
+
def _get_edges(padded, axis, width_pair):
|
155 |
+
"""
|
156 |
+
Retrieve edge values from empty-padded array in given dimension.
|
157 |
+
|
158 |
+
Parameters
|
159 |
+
----------
|
160 |
+
padded : ndarray
|
161 |
+
Empty-padded array.
|
162 |
+
axis : int
|
163 |
+
Dimension in which the edges are considered.
|
164 |
+
width_pair : (int, int)
|
165 |
+
Pair of widths that mark the pad area on both sides in the given
|
166 |
+
dimension.
|
167 |
+
|
168 |
+
Returns
|
169 |
+
-------
|
170 |
+
left_edge, right_edge : ndarray
|
171 |
+
Edge values of the valid area in `padded` in the given dimension. Its
|
172 |
+
shape will always match `padded` except for the dimension given by
|
173 |
+
`axis` which will have a length of 1.
|
174 |
+
"""
|
175 |
+
left_index = width_pair[0]
|
176 |
+
left_slice = _slice_at_axis(slice(left_index, left_index + 1), axis)
|
177 |
+
left_edge = padded[left_slice]
|
178 |
+
|
179 |
+
right_index = padded.shape[axis] - width_pair[1]
|
180 |
+
right_slice = _slice_at_axis(slice(right_index - 1, right_index), axis)
|
181 |
+
right_edge = padded[right_slice]
|
182 |
+
|
183 |
+
return left_edge, right_edge
|
184 |
+
|
185 |
+
|
186 |
+
def _get_linear_ramps(padded, axis, width_pair, end_value_pair):
|
187 |
+
"""
|
188 |
+
Construct linear ramps for empty-padded array in given dimension.
|
189 |
+
|
190 |
+
Parameters
|
191 |
+
----------
|
192 |
+
padded : ndarray
|
193 |
+
Empty-padded array.
|
194 |
+
axis : int
|
195 |
+
Dimension in which the ramps are constructed.
|
196 |
+
width_pair : (int, int)
|
197 |
+
Pair of widths that mark the pad area on both sides in the given
|
198 |
+
dimension.
|
199 |
+
end_value_pair : (scalar, scalar)
|
200 |
+
End values for the linear ramps which form the edge of the fully padded
|
201 |
+
array. These values are included in the linear ramps.
|
202 |
+
|
203 |
+
Returns
|
204 |
+
-------
|
205 |
+
left_ramp, right_ramp : ndarray
|
206 |
+
Linear ramps to set on both sides of `padded`.
|
207 |
+
"""
|
208 |
+
edge_pair = _get_edges(padded, axis, width_pair)
|
209 |
+
|
210 |
+
left_ramp, right_ramp = (
|
211 |
+
np.linspace(
|
212 |
+
start=end_value,
|
213 |
+
stop=edge.squeeze(axis), # Dimension is replaced by linspace
|
214 |
+
num=width,
|
215 |
+
endpoint=False,
|
216 |
+
dtype=padded.dtype,
|
217 |
+
axis=axis
|
218 |
+
)
|
219 |
+
for end_value, edge, width in zip(
|
220 |
+
end_value_pair, edge_pair, width_pair
|
221 |
+
)
|
222 |
+
)
|
223 |
+
|
224 |
+
# Reverse linear space in appropriate dimension
|
225 |
+
right_ramp = right_ramp[_slice_at_axis(slice(None, None, -1), axis)]
|
226 |
+
|
227 |
+
return left_ramp, right_ramp
|
228 |
+
|
229 |
+
|
230 |
+
def _get_stats(padded, axis, width_pair, length_pair, stat_func):
|
231 |
+
"""
|
232 |
+
Calculate statistic for the empty-padded array in given dimension.
|
233 |
+
|
234 |
+
Parameters
|
235 |
+
----------
|
236 |
+
padded : ndarray
|
237 |
+
Empty-padded array.
|
238 |
+
axis : int
|
239 |
+
Dimension in which the statistic is calculated.
|
240 |
+
width_pair : (int, int)
|
241 |
+
Pair of widths that mark the pad area on both sides in the given
|
242 |
+
dimension.
|
243 |
+
length_pair : 2-element sequence of None or int
|
244 |
+
Gives the number of values in valid area from each side that is
|
245 |
+
taken into account when calculating the statistic. If None the entire
|
246 |
+
valid area in `padded` is considered.
|
247 |
+
stat_func : function
|
248 |
+
Function to compute statistic. The expected signature is
|
249 |
+
``stat_func(x: ndarray, axis: int, keepdims: bool) -> ndarray``.
|
250 |
+
|
251 |
+
Returns
|
252 |
+
-------
|
253 |
+
left_stat, right_stat : ndarray
|
254 |
+
Calculated statistic for both sides of `padded`.
|
255 |
+
"""
|
256 |
+
# Calculate indices of the edges of the area with original values
|
257 |
+
left_index = width_pair[0]
|
258 |
+
right_index = padded.shape[axis] - width_pair[1]
|
259 |
+
# as well as its length
|
260 |
+
max_length = right_index - left_index
|
261 |
+
|
262 |
+
# Limit stat_lengths to max_length
|
263 |
+
left_length, right_length = length_pair
|
264 |
+
if left_length is None or max_length < left_length:
|
265 |
+
left_length = max_length
|
266 |
+
if right_length is None or max_length < right_length:
|
267 |
+
right_length = max_length
|
268 |
+
|
269 |
+
if (left_length == 0 or right_length == 0) \
|
270 |
+
and stat_func in {np.amax, np.amin}:
|
271 |
+
# amax and amin can't operate on an empty array,
|
272 |
+
# raise a more descriptive warning here instead of the default one
|
273 |
+
raise ValueError("stat_length of 0 yields no value for padding")
|
274 |
+
|
275 |
+
# Calculate statistic for the left side
|
276 |
+
left_slice = _slice_at_axis(
|
277 |
+
slice(left_index, left_index + left_length), axis)
|
278 |
+
left_chunk = padded[left_slice]
|
279 |
+
left_stat = stat_func(left_chunk, axis=axis, keepdims=True)
|
280 |
+
_round_if_needed(left_stat, padded.dtype)
|
281 |
+
|
282 |
+
if left_length == right_length == max_length:
|
283 |
+
# return early as right_stat must be identical to left_stat
|
284 |
+
return left_stat, left_stat
|
285 |
+
|
286 |
+
# Calculate statistic for the right side
|
287 |
+
right_slice = _slice_at_axis(
|
288 |
+
slice(right_index - right_length, right_index), axis)
|
289 |
+
right_chunk = padded[right_slice]
|
290 |
+
right_stat = stat_func(right_chunk, axis=axis, keepdims=True)
|
291 |
+
_round_if_needed(right_stat, padded.dtype)
|
292 |
+
|
293 |
+
return left_stat, right_stat
|
294 |
+
|
295 |
+
|
296 |
+
def _set_reflect_both(padded, axis, width_pair, method, include_edge=False):
|
297 |
+
"""
|
298 |
+
Pad `axis` of `arr` with reflection.
|
299 |
+
|
300 |
+
Parameters
|
301 |
+
----------
|
302 |
+
padded : ndarray
|
303 |
+
Input array of arbitrary shape.
|
304 |
+
axis : int
|
305 |
+
Axis along which to pad `arr`.
|
306 |
+
width_pair : (int, int)
|
307 |
+
Pair of widths that mark the pad area on both sides in the given
|
308 |
+
dimension.
|
309 |
+
method : str
|
310 |
+
Controls method of reflection; options are 'even' or 'odd'.
|
311 |
+
include_edge : bool
|
312 |
+
If true, edge value is included in reflection, otherwise the edge
|
313 |
+
value forms the symmetric axis to the reflection.
|
314 |
+
|
315 |
+
Returns
|
316 |
+
-------
|
317 |
+
pad_amt : tuple of ints, length 2
|
318 |
+
New index positions of padding to do along the `axis`. If these are
|
319 |
+
both 0, padding is done in this dimension.
|
320 |
+
"""
|
321 |
+
left_pad, right_pad = width_pair
|
322 |
+
old_length = padded.shape[axis] - right_pad - left_pad
|
323 |
+
|
324 |
+
if include_edge:
|
325 |
+
# Edge is included, we need to offset the pad amount by 1
|
326 |
+
edge_offset = 1
|
327 |
+
else:
|
328 |
+
edge_offset = 0 # Edge is not included, no need to offset pad amount
|
329 |
+
old_length -= 1 # but must be omitted from the chunk
|
330 |
+
|
331 |
+
if left_pad > 0:
|
332 |
+
# Pad with reflected values on left side:
|
333 |
+
# First limit chunk size which can't be larger than pad area
|
334 |
+
chunk_length = min(old_length, left_pad)
|
335 |
+
# Slice right to left, stop on or next to edge, start relative to stop
|
336 |
+
stop = left_pad - edge_offset
|
337 |
+
start = stop + chunk_length
|
338 |
+
left_slice = _slice_at_axis(slice(start, stop, -1), axis)
|
339 |
+
left_chunk = padded[left_slice]
|
340 |
+
|
341 |
+
if method == "odd":
|
342 |
+
# Negate chunk and align with edge
|
343 |
+
edge_slice = _slice_at_axis(slice(left_pad, left_pad + 1), axis)
|
344 |
+
left_chunk = 2 * padded[edge_slice] - left_chunk
|
345 |
+
|
346 |
+
# Insert chunk into padded area
|
347 |
+
start = left_pad - chunk_length
|
348 |
+
stop = left_pad
|
349 |
+
pad_area = _slice_at_axis(slice(start, stop), axis)
|
350 |
+
padded[pad_area] = left_chunk
|
351 |
+
# Adjust pointer to left edge for next iteration
|
352 |
+
left_pad -= chunk_length
|
353 |
+
|
354 |
+
if right_pad > 0:
|
355 |
+
# Pad with reflected values on right side:
|
356 |
+
# First limit chunk size which can't be larger than pad area
|
357 |
+
chunk_length = min(old_length, right_pad)
|
358 |
+
# Slice right to left, start on or next to edge, stop relative to start
|
359 |
+
start = -right_pad + edge_offset - 2
|
360 |
+
stop = start - chunk_length
|
361 |
+
right_slice = _slice_at_axis(slice(start, stop, -1), axis)
|
362 |
+
right_chunk = padded[right_slice]
|
363 |
+
|
364 |
+
if method == "odd":
|
365 |
+
# Negate chunk and align with edge
|
366 |
+
edge_slice = _slice_at_axis(
|
367 |
+
slice(-right_pad - 1, -right_pad), axis)
|
368 |
+
right_chunk = 2 * padded[edge_slice] - right_chunk
|
369 |
+
|
370 |
+
# Insert chunk into padded area
|
371 |
+
start = padded.shape[axis] - right_pad
|
372 |
+
stop = start + chunk_length
|
373 |
+
pad_area = _slice_at_axis(slice(start, stop), axis)
|
374 |
+
padded[pad_area] = right_chunk
|
375 |
+
# Adjust pointer to right edge for next iteration
|
376 |
+
right_pad -= chunk_length
|
377 |
+
|
378 |
+
return left_pad, right_pad
|
379 |
+
|
380 |
+
|
381 |
+
def _set_wrap_both(padded, axis, width_pair, original_period):
|
382 |
+
"""
|
383 |
+
Pad `axis` of `arr` with wrapped values.
|
384 |
+
|
385 |
+
Parameters
|
386 |
+
----------
|
387 |
+
padded : ndarray
|
388 |
+
Input array of arbitrary shape.
|
389 |
+
axis : int
|
390 |
+
Axis along which to pad `arr`.
|
391 |
+
width_pair : (int, int)
|
392 |
+
Pair of widths that mark the pad area on both sides in the given
|
393 |
+
dimension.
|
394 |
+
original_period : int
|
395 |
+
Original length of data on `axis` of `arr`.
|
396 |
+
|
397 |
+
Returns
|
398 |
+
-------
|
399 |
+
pad_amt : tuple of ints, length 2
|
400 |
+
New index positions of padding to do along the `axis`. If these are
|
401 |
+
both 0, padding is done in this dimension.
|
402 |
+
"""
|
403 |
+
left_pad, right_pad = width_pair
|
404 |
+
period = padded.shape[axis] - right_pad - left_pad
|
405 |
+
# Avoid wrapping with only a subset of the original area by ensuring period
|
406 |
+
# can only be a multiple of the original area's length.
|
407 |
+
period = period // original_period * original_period
|
408 |
+
|
409 |
+
# If the current dimension of `arr` doesn't contain enough valid values
|
410 |
+
# (not part of the undefined pad area) we need to pad multiple times.
|
411 |
+
# Each time the pad area shrinks on both sides which is communicated with
|
412 |
+
# these variables.
|
413 |
+
new_left_pad = 0
|
414 |
+
new_right_pad = 0
|
415 |
+
|
416 |
+
if left_pad > 0:
|
417 |
+
# Pad with wrapped values on left side
|
418 |
+
# First slice chunk from left side of the non-pad area.
|
419 |
+
# Use min(period, left_pad) to ensure that chunk is not larger than
|
420 |
+
# pad area.
|
421 |
+
slice_end = left_pad + period
|
422 |
+
slice_start = slice_end - min(period, left_pad)
|
423 |
+
right_slice = _slice_at_axis(slice(slice_start, slice_end), axis)
|
424 |
+
right_chunk = padded[right_slice]
|
425 |
+
|
426 |
+
if left_pad > period:
|
427 |
+
# Chunk is smaller than pad area
|
428 |
+
pad_area = _slice_at_axis(slice(left_pad - period, left_pad), axis)
|
429 |
+
new_left_pad = left_pad - period
|
430 |
+
else:
|
431 |
+
# Chunk matches pad area
|
432 |
+
pad_area = _slice_at_axis(slice(None, left_pad), axis)
|
433 |
+
padded[pad_area] = right_chunk
|
434 |
+
|
435 |
+
if right_pad > 0:
|
436 |
+
# Pad with wrapped values on right side
|
437 |
+
# First slice chunk from right side of the non-pad area.
|
438 |
+
# Use min(period, right_pad) to ensure that chunk is not larger than
|
439 |
+
# pad area.
|
440 |
+
slice_start = -right_pad - period
|
441 |
+
slice_end = slice_start + min(period, right_pad)
|
442 |
+
left_slice = _slice_at_axis(slice(slice_start, slice_end), axis)
|
443 |
+
left_chunk = padded[left_slice]
|
444 |
+
|
445 |
+
if right_pad > period:
|
446 |
+
# Chunk is smaller than pad area
|
447 |
+
pad_area = _slice_at_axis(
|
448 |
+
slice(-right_pad, -right_pad + period), axis)
|
449 |
+
new_right_pad = right_pad - period
|
450 |
+
else:
|
451 |
+
# Chunk matches pad area
|
452 |
+
pad_area = _slice_at_axis(slice(-right_pad, None), axis)
|
453 |
+
padded[pad_area] = left_chunk
|
454 |
+
|
455 |
+
return new_left_pad, new_right_pad
|
456 |
+
|
457 |
+
|
458 |
+
def _as_pairs(x, ndim, as_index=False):
|
459 |
+
"""
|
460 |
+
Broadcast `x` to an array with the shape (`ndim`, 2).
|
461 |
+
|
462 |
+
A helper function for `pad` that prepares and validates arguments like
|
463 |
+
`pad_width` for iteration in pairs.
|
464 |
+
|
465 |
+
Parameters
|
466 |
+
----------
|
467 |
+
x : {None, scalar, array-like}
|
468 |
+
The object to broadcast to the shape (`ndim`, 2).
|
469 |
+
ndim : int
|
470 |
+
Number of pairs the broadcasted `x` will have.
|
471 |
+
as_index : bool, optional
|
472 |
+
If `x` is not None, try to round each element of `x` to an integer
|
473 |
+
(dtype `np.intp`) and ensure every element is positive.
|
474 |
+
|
475 |
+
Returns
|
476 |
+
-------
|
477 |
+
pairs : nested iterables, shape (`ndim`, 2)
|
478 |
+
The broadcasted version of `x`.
|
479 |
+
|
480 |
+
Raises
|
481 |
+
------
|
482 |
+
ValueError
|
483 |
+
If `as_index` is True and `x` contains negative elements.
|
484 |
+
Or if `x` is not broadcastable to the shape (`ndim`, 2).
|
485 |
+
"""
|
486 |
+
if x is None:
|
487 |
+
# Pass through None as a special case, otherwise np.round(x) fails
|
488 |
+
# with an AttributeError
|
489 |
+
return ((None, None),) * ndim
|
490 |
+
|
491 |
+
x = np.array(x)
|
492 |
+
if as_index:
|
493 |
+
x = np.round(x).astype(np.intp, copy=False)
|
494 |
+
|
495 |
+
if x.ndim < 3:
|
496 |
+
# Optimization: Possibly use faster paths for cases where `x` has
|
497 |
+
# only 1 or 2 elements. `np.broadcast_to` could handle these as well
|
498 |
+
# but is currently slower
|
499 |
+
|
500 |
+
if x.size == 1:
|
501 |
+
# x was supplied as a single value
|
502 |
+
x = x.ravel() # Ensure x[0] works for x.ndim == 0, 1, 2
|
503 |
+
if as_index and x < 0:
|
504 |
+
raise ValueError("index can't contain negative values")
|
505 |
+
return ((x[0], x[0]),) * ndim
|
506 |
+
|
507 |
+
if x.size == 2 and x.shape != (2, 1):
|
508 |
+
# x was supplied with a single value for each side
|
509 |
+
# but except case when each dimension has a single value
|
510 |
+
# which should be broadcasted to a pair,
|
511 |
+
# e.g. [[1], [2]] -> [[1, 1], [2, 2]] not [[1, 2], [1, 2]]
|
512 |
+
x = x.ravel() # Ensure x[0], x[1] works
|
513 |
+
if as_index and (x[0] < 0 or x[1] < 0):
|
514 |
+
raise ValueError("index can't contain negative values")
|
515 |
+
return ((x[0], x[1]),) * ndim
|
516 |
+
|
517 |
+
if as_index and x.min() < 0:
|
518 |
+
raise ValueError("index can't contain negative values")
|
519 |
+
|
520 |
+
# Converting the array with `tolist` seems to improve performance
|
521 |
+
# when iterating and indexing the result (see usage in `pad`)
|
522 |
+
return np.broadcast_to(x, (ndim, 2)).tolist()
|
523 |
+
|
524 |
+
|
525 |
+
def _pad_dispatcher(array, pad_width, mode=None, **kwargs):
|
526 |
+
return (array,)
|
527 |
+
|
528 |
+
|
529 |
+
###############################################################################
|
530 |
+
# Public functions
|
531 |
+
|
532 |
+
|
533 |
+
@array_function_dispatch(_pad_dispatcher, module='numpy')
|
534 |
+
def pad(array, pad_width, mode='constant', **kwargs):
|
535 |
+
"""
|
536 |
+
Pad an array.
|
537 |
+
|
538 |
+
Parameters
|
539 |
+
----------
|
540 |
+
array : array_like of rank N
|
541 |
+
The array to pad.
|
542 |
+
pad_width : {sequence, array_like, int}
|
543 |
+
Number of values padded to the edges of each axis.
|
544 |
+
``((before_1, after_1), ... (before_N, after_N))`` unique pad widths
|
545 |
+
for each axis.
|
546 |
+
``(before, after)`` or ``((before, after),)`` yields same before
|
547 |
+
and after pad for each axis.
|
548 |
+
``(pad,)`` or ``int`` is a shortcut for before = after = pad width
|
549 |
+
for all axes.
|
550 |
+
mode : str or function, optional
|
551 |
+
One of the following string values or a user supplied function.
|
552 |
+
|
553 |
+
'constant' (default)
|
554 |
+
Pads with a constant value.
|
555 |
+
'edge'
|
556 |
+
Pads with the edge values of array.
|
557 |
+
'linear_ramp'
|
558 |
+
Pads with the linear ramp between end_value and the
|
559 |
+
array edge value.
|
560 |
+
'maximum'
|
561 |
+
Pads with the maximum value of all or part of the
|
562 |
+
vector along each axis.
|
563 |
+
'mean'
|
564 |
+
Pads with the mean value of all or part of the
|
565 |
+
vector along each axis.
|
566 |
+
'median'
|
567 |
+
Pads with the median value of all or part of the
|
568 |
+
vector along each axis.
|
569 |
+
'minimum'
|
570 |
+
Pads with the minimum value of all or part of the
|
571 |
+
vector along each axis.
|
572 |
+
'reflect'
|
573 |
+
Pads with the reflection of the vector mirrored on
|
574 |
+
the first and last values of the vector along each
|
575 |
+
axis.
|
576 |
+
'symmetric'
|
577 |
+
Pads with the reflection of the vector mirrored
|
578 |
+
along the edge of the array.
|
579 |
+
'wrap'
|
580 |
+
Pads with the wrap of the vector along the axis.
|
581 |
+
The first values are used to pad the end and the
|
582 |
+
end values are used to pad the beginning.
|
583 |
+
'empty'
|
584 |
+
Pads with undefined values.
|
585 |
+
|
586 |
+
.. versionadded:: 1.17
|
587 |
+
|
588 |
+
<function>
|
589 |
+
Padding function, see Notes.
|
590 |
+
stat_length : sequence or int, optional
|
591 |
+
Used in 'maximum', 'mean', 'median', and 'minimum'. Number of
|
592 |
+
values at edge of each axis used to calculate the statistic value.
|
593 |
+
|
594 |
+
``((before_1, after_1), ... (before_N, after_N))`` unique statistic
|
595 |
+
lengths for each axis.
|
596 |
+
|
597 |
+
``(before, after)`` or ``((before, after),)`` yields same before
|
598 |
+
and after statistic lengths for each axis.
|
599 |
+
|
600 |
+
``(stat_length,)`` or ``int`` is a shortcut for
|
601 |
+
``before = after = statistic`` length for all axes.
|
602 |
+
|
603 |
+
Default is ``None``, to use the entire axis.
|
604 |
+
constant_values : sequence or scalar, optional
|
605 |
+
Used in 'constant'. The values to set the padded values for each
|
606 |
+
axis.
|
607 |
+
|
608 |
+
``((before_1, after_1), ... (before_N, after_N))`` unique pad constants
|
609 |
+
for each axis.
|
610 |
+
|
611 |
+
``(before, after)`` or ``((before, after),)`` yields same before
|
612 |
+
and after constants for each axis.
|
613 |
+
|
614 |
+
``(constant,)`` or ``constant`` is a shortcut for
|
615 |
+
``before = after = constant`` for all axes.
|
616 |
+
|
617 |
+
Default is 0.
|
618 |
+
end_values : sequence or scalar, optional
|
619 |
+
Used in 'linear_ramp'. The values used for the ending value of the
|
620 |
+
linear_ramp and that will form the edge of the padded array.
|
621 |
+
|
622 |
+
``((before_1, after_1), ... (before_N, after_N))`` unique end values
|
623 |
+
for each axis.
|
624 |
+
|
625 |
+
``(before, after)`` or ``((before, after),)`` yields same before
|
626 |
+
and after end values for each axis.
|
627 |
+
|
628 |
+
``(constant,)`` or ``constant`` is a shortcut for
|
629 |
+
``before = after = constant`` for all axes.
|
630 |
+
|
631 |
+
Default is 0.
|
632 |
+
reflect_type : {'even', 'odd'}, optional
|
633 |
+
Used in 'reflect', and 'symmetric'. The 'even' style is the
|
634 |
+
default with an unaltered reflection around the edge value. For
|
635 |
+
the 'odd' style, the extended part of the array is created by
|
636 |
+
subtracting the reflected values from two times the edge value.
|
637 |
+
|
638 |
+
Returns
|
639 |
+
-------
|
640 |
+
pad : ndarray
|
641 |
+
Padded array of rank equal to `array` with shape increased
|
642 |
+
according to `pad_width`.
|
643 |
+
|
644 |
+
Notes
|
645 |
+
-----
|
646 |
+
.. versionadded:: 1.7.0
|
647 |
+
|
648 |
+
For an array with rank greater than 1, some of the padding of later
|
649 |
+
axes is calculated from padding of previous axes. This is easiest to
|
650 |
+
think about with a rank 2 array where the corners of the padded array
|
651 |
+
are calculated by using padded values from the first axis.
|
652 |
+
|
653 |
+
The padding function, if used, should modify a rank 1 array in-place. It
|
654 |
+
has the following signature::
|
655 |
+
|
656 |
+
padding_func(vector, iaxis_pad_width, iaxis, kwargs)
|
657 |
+
|
658 |
+
where
|
659 |
+
|
660 |
+
vector : ndarray
|
661 |
+
A rank 1 array already padded with zeros. Padded values are
|
662 |
+
vector[:iaxis_pad_width[0]] and vector[-iaxis_pad_width[1]:].
|
663 |
+
iaxis_pad_width : tuple
|
664 |
+
A 2-tuple of ints, iaxis_pad_width[0] represents the number of
|
665 |
+
values padded at the beginning of vector where
|
666 |
+
iaxis_pad_width[1] represents the number of values padded at
|
667 |
+
the end of vector.
|
668 |
+
iaxis : int
|
669 |
+
The axis currently being calculated.
|
670 |
+
kwargs : dict
|
671 |
+
Any keyword arguments the function requires.
|
672 |
+
|
673 |
+
Examples
|
674 |
+
--------
|
675 |
+
>>> a = [1, 2, 3, 4, 5]
|
676 |
+
>>> np.pad(a, (2, 3), 'constant', constant_values=(4, 6))
|
677 |
+
array([4, 4, 1, ..., 6, 6, 6])
|
678 |
+
|
679 |
+
>>> np.pad(a, (2, 3), 'edge')
|
680 |
+
array([1, 1, 1, ..., 5, 5, 5])
|
681 |
+
|
682 |
+
>>> np.pad(a, (2, 3), 'linear_ramp', end_values=(5, -4))
|
683 |
+
array([ 5, 3, 1, 2, 3, 4, 5, 2, -1, -4])
|
684 |
+
|
685 |
+
>>> np.pad(a, (2,), 'maximum')
|
686 |
+
array([5, 5, 1, 2, 3, 4, 5, 5, 5])
|
687 |
+
|
688 |
+
>>> np.pad(a, (2,), 'mean')
|
689 |
+
array([3, 3, 1, 2, 3, 4, 5, 3, 3])
|
690 |
+
|
691 |
+
>>> np.pad(a, (2,), 'median')
|
692 |
+
array([3, 3, 1, 2, 3, 4, 5, 3, 3])
|
693 |
+
|
694 |
+
>>> a = [[1, 2], [3, 4]]
|
695 |
+
>>> np.pad(a, ((3, 2), (2, 3)), 'minimum')
|
696 |
+
array([[1, 1, 1, 2, 1, 1, 1],
|
697 |
+
[1, 1, 1, 2, 1, 1, 1],
|
698 |
+
[1, 1, 1, 2, 1, 1, 1],
|
699 |
+
[1, 1, 1, 2, 1, 1, 1],
|
700 |
+
[3, 3, 3, 4, 3, 3, 3],
|
701 |
+
[1, 1, 1, 2, 1, 1, 1],
|
702 |
+
[1, 1, 1, 2, 1, 1, 1]])
|
703 |
+
|
704 |
+
>>> a = [1, 2, 3, 4, 5]
|
705 |
+
>>> np.pad(a, (2, 3), 'reflect')
|
706 |
+
array([3, 2, 1, 2, 3, 4, 5, 4, 3, 2])
|
707 |
+
|
708 |
+
>>> np.pad(a, (2, 3), 'reflect', reflect_type='odd')
|
709 |
+
array([-1, 0, 1, 2, 3, 4, 5, 6, 7, 8])
|
710 |
+
|
711 |
+
>>> np.pad(a, (2, 3), 'symmetric')
|
712 |
+
array([2, 1, 1, 2, 3, 4, 5, 5, 4, 3])
|
713 |
+
|
714 |
+
>>> np.pad(a, (2, 3), 'symmetric', reflect_type='odd')
|
715 |
+
array([0, 1, 1, 2, 3, 4, 5, 5, 6, 7])
|
716 |
+
|
717 |
+
>>> np.pad(a, (2, 3), 'wrap')
|
718 |
+
array([4, 5, 1, 2, 3, 4, 5, 1, 2, 3])
|
719 |
+
|
720 |
+
>>> def pad_with(vector, pad_width, iaxis, kwargs):
|
721 |
+
... pad_value = kwargs.get('padder', 10)
|
722 |
+
... vector[:pad_width[0]] = pad_value
|
723 |
+
... vector[-pad_width[1]:] = pad_value
|
724 |
+
>>> a = np.arange(6)
|
725 |
+
>>> a = a.reshape((2, 3))
|
726 |
+
>>> np.pad(a, 2, pad_with)
|
727 |
+
array([[10, 10, 10, 10, 10, 10, 10],
|
728 |
+
[10, 10, 10, 10, 10, 10, 10],
|
729 |
+
[10, 10, 0, 1, 2, 10, 10],
|
730 |
+
[10, 10, 3, 4, 5, 10, 10],
|
731 |
+
[10, 10, 10, 10, 10, 10, 10],
|
732 |
+
[10, 10, 10, 10, 10, 10, 10]])
|
733 |
+
>>> np.pad(a, 2, pad_with, padder=100)
|
734 |
+
array([[100, 100, 100, 100, 100, 100, 100],
|
735 |
+
[100, 100, 100, 100, 100, 100, 100],
|
736 |
+
[100, 100, 0, 1, 2, 100, 100],
|
737 |
+
[100, 100, 3, 4, 5, 100, 100],
|
738 |
+
[100, 100, 100, 100, 100, 100, 100],
|
739 |
+
[100, 100, 100, 100, 100, 100, 100]])
|
740 |
+
"""
|
741 |
+
array = np.asarray(array)
|
742 |
+
pad_width = np.asarray(pad_width)
|
743 |
+
|
744 |
+
if not pad_width.dtype.kind == 'i':
|
745 |
+
raise TypeError('`pad_width` must be of integral type.')
|
746 |
+
|
747 |
+
# Broadcast to shape (array.ndim, 2)
|
748 |
+
pad_width = _as_pairs(pad_width, array.ndim, as_index=True)
|
749 |
+
|
750 |
+
if callable(mode):
|
751 |
+
# Old behavior: Use user-supplied function with np.apply_along_axis
|
752 |
+
function = mode
|
753 |
+
# Create a new zero padded array
|
754 |
+
padded, _ = _pad_simple(array, pad_width, fill_value=0)
|
755 |
+
# And apply along each axis
|
756 |
+
|
757 |
+
for axis in range(padded.ndim):
|
758 |
+
# Iterate using ndindex as in apply_along_axis, but assuming that
|
759 |
+
# function operates inplace on the padded array.
|
760 |
+
|
761 |
+
# view with the iteration axis at the end
|
762 |
+
view = np.moveaxis(padded, axis, -1)
|
763 |
+
|
764 |
+
# compute indices for the iteration axes, and append a trailing
|
765 |
+
# ellipsis to prevent 0d arrays decaying to scalars (gh-8642)
|
766 |
+
inds = ndindex(view.shape[:-1])
|
767 |
+
inds = (ind + (Ellipsis,) for ind in inds)
|
768 |
+
for ind in inds:
|
769 |
+
function(view[ind], pad_width[axis], axis, kwargs)
|
770 |
+
|
771 |
+
return padded
|
772 |
+
|
773 |
+
# Make sure that no unsupported keywords were passed for the current mode
|
774 |
+
allowed_kwargs = {
|
775 |
+
'empty': [], 'edge': [], 'wrap': [],
|
776 |
+
'constant': ['constant_values'],
|
777 |
+
'linear_ramp': ['end_values'],
|
778 |
+
'maximum': ['stat_length'],
|
779 |
+
'mean': ['stat_length'],
|
780 |
+
'median': ['stat_length'],
|
781 |
+
'minimum': ['stat_length'],
|
782 |
+
'reflect': ['reflect_type'],
|
783 |
+
'symmetric': ['reflect_type'],
|
784 |
+
}
|
785 |
+
try:
|
786 |
+
unsupported_kwargs = set(kwargs) - set(allowed_kwargs[mode])
|
787 |
+
except KeyError:
|
788 |
+
raise ValueError("mode '{}' is not supported".format(mode)) from None
|
789 |
+
if unsupported_kwargs:
|
790 |
+
raise ValueError("unsupported keyword arguments for mode '{}': {}"
|
791 |
+
.format(mode, unsupported_kwargs))
|
792 |
+
|
793 |
+
stat_functions = {"maximum": np.amax, "minimum": np.amin,
|
794 |
+
"mean": np.mean, "median": np.median}
|
795 |
+
|
796 |
+
# Create array with final shape and original values
|
797 |
+
# (padded area is undefined)
|
798 |
+
padded, original_area_slice = _pad_simple(array, pad_width)
|
799 |
+
# And prepare iteration over all dimensions
|
800 |
+
# (zipping may be more readable than using enumerate)
|
801 |
+
axes = range(padded.ndim)
|
802 |
+
|
803 |
+
if mode == "constant":
|
804 |
+
values = kwargs.get("constant_values", 0)
|
805 |
+
values = _as_pairs(values, padded.ndim)
|
806 |
+
for axis, width_pair, value_pair in zip(axes, pad_width, values):
|
807 |
+
roi = _view_roi(padded, original_area_slice, axis)
|
808 |
+
_set_pad_area(roi, axis, width_pair, value_pair)
|
809 |
+
|
810 |
+
elif mode == "empty":
|
811 |
+
pass # Do nothing as _pad_simple already returned the correct result
|
812 |
+
|
813 |
+
elif array.size == 0:
|
814 |
+
# Only modes "constant" and "empty" can extend empty axes, all other
|
815 |
+
# modes depend on `array` not being empty
|
816 |
+
# -> ensure every empty axis is only "padded with 0"
|
817 |
+
for axis, width_pair in zip(axes, pad_width):
|
818 |
+
if array.shape[axis] == 0 and any(width_pair):
|
819 |
+
raise ValueError(
|
820 |
+
"can't extend empty axis {} using modes other than "
|
821 |
+
"'constant' or 'empty'".format(axis)
|
822 |
+
)
|
823 |
+
# passed, don't need to do anything more as _pad_simple already
|
824 |
+
# returned the correct result
|
825 |
+
|
826 |
+
elif mode == "edge":
|
827 |
+
for axis, width_pair in zip(axes, pad_width):
|
828 |
+
roi = _view_roi(padded, original_area_slice, axis)
|
829 |
+
edge_pair = _get_edges(roi, axis, width_pair)
|
830 |
+
_set_pad_area(roi, axis, width_pair, edge_pair)
|
831 |
+
|
832 |
+
elif mode == "linear_ramp":
|
833 |
+
end_values = kwargs.get("end_values", 0)
|
834 |
+
end_values = _as_pairs(end_values, padded.ndim)
|
835 |
+
for axis, width_pair, value_pair in zip(axes, pad_width, end_values):
|
836 |
+
roi = _view_roi(padded, original_area_slice, axis)
|
837 |
+
ramp_pair = _get_linear_ramps(roi, axis, width_pair, value_pair)
|
838 |
+
_set_pad_area(roi, axis, width_pair, ramp_pair)
|
839 |
+
|
840 |
+
elif mode in stat_functions:
|
841 |
+
func = stat_functions[mode]
|
842 |
+
length = kwargs.get("stat_length", None)
|
843 |
+
length = _as_pairs(length, padded.ndim, as_index=True)
|
844 |
+
for axis, width_pair, length_pair in zip(axes, pad_width, length):
|
845 |
+
roi = _view_roi(padded, original_area_slice, axis)
|
846 |
+
stat_pair = _get_stats(roi, axis, width_pair, length_pair, func)
|
847 |
+
_set_pad_area(roi, axis, width_pair, stat_pair)
|
848 |
+
|
849 |
+
elif mode in {"reflect", "symmetric"}:
|
850 |
+
method = kwargs.get("reflect_type", "even")
|
851 |
+
include_edge = True if mode == "symmetric" else False
|
852 |
+
for axis, (left_index, right_index) in zip(axes, pad_width):
|
853 |
+
if array.shape[axis] == 1 and (left_index > 0 or right_index > 0):
|
854 |
+
# Extending singleton dimension for 'reflect' is legacy
|
855 |
+
# behavior; it really should raise an error.
|
856 |
+
edge_pair = _get_edges(padded, axis, (left_index, right_index))
|
857 |
+
_set_pad_area(
|
858 |
+
padded, axis, (left_index, right_index), edge_pair)
|
859 |
+
continue
|
860 |
+
|
861 |
+
roi = _view_roi(padded, original_area_slice, axis)
|
862 |
+
while left_index > 0 or right_index > 0:
|
863 |
+
# Iteratively pad until dimension is filled with reflected
|
864 |
+
# values. This is necessary if the pad area is larger than
|
865 |
+
# the length of the original values in the current dimension.
|
866 |
+
left_index, right_index = _set_reflect_both(
|
867 |
+
roi, axis, (left_index, right_index),
|
868 |
+
method, include_edge
|
869 |
+
)
|
870 |
+
|
871 |
+
elif mode == "wrap":
|
872 |
+
for axis, (left_index, right_index) in zip(axes, pad_width):
|
873 |
+
roi = _view_roi(padded, original_area_slice, axis)
|
874 |
+
original_period = padded.shape[axis] - right_index - left_index
|
875 |
+
while left_index > 0 or right_index > 0:
|
876 |
+
# Iteratively pad until dimension is filled with wrapped
|
877 |
+
# values. This is necessary if the pad area is larger than
|
878 |
+
# the length of the original values in the current dimension.
|
879 |
+
left_index, right_index = _set_wrap_both(
|
880 |
+
roi, axis, (left_index, right_index), original_period)
|
881 |
+
|
882 |
+
return padded
|
env-llmeval/lib/python3.10/site-packages/numpy/lib/arraypad.pyi
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import (
|
2 |
+
Literal as L,
|
3 |
+
Any,
|
4 |
+
overload,
|
5 |
+
TypeVar,
|
6 |
+
Protocol,
|
7 |
+
)
|
8 |
+
|
9 |
+
from numpy import generic
|
10 |
+
|
11 |
+
from numpy._typing import (
|
12 |
+
ArrayLike,
|
13 |
+
NDArray,
|
14 |
+
_ArrayLikeInt,
|
15 |
+
_ArrayLike,
|
16 |
+
)
|
17 |
+
|
18 |
+
_SCT = TypeVar("_SCT", bound=generic)
|
19 |
+
|
20 |
+
class _ModeFunc(Protocol):
|
21 |
+
def __call__(
|
22 |
+
self,
|
23 |
+
vector: NDArray[Any],
|
24 |
+
iaxis_pad_width: tuple[int, int],
|
25 |
+
iaxis: int,
|
26 |
+
kwargs: dict[str, Any],
|
27 |
+
/,
|
28 |
+
) -> None: ...
|
29 |
+
|
30 |
+
_ModeKind = L[
|
31 |
+
"constant",
|
32 |
+
"edge",
|
33 |
+
"linear_ramp",
|
34 |
+
"maximum",
|
35 |
+
"mean",
|
36 |
+
"median",
|
37 |
+
"minimum",
|
38 |
+
"reflect",
|
39 |
+
"symmetric",
|
40 |
+
"wrap",
|
41 |
+
"empty",
|
42 |
+
]
|
43 |
+
|
44 |
+
__all__: list[str]
|
45 |
+
|
46 |
+
# TODO: In practice each keyword argument is exclusive to one or more
|
47 |
+
# specific modes. Consider adding more overloads to express this in the future.
|
48 |
+
|
49 |
+
# Expand `**kwargs` into explicit keyword-only arguments
|
50 |
+
@overload
|
51 |
+
def pad(
|
52 |
+
array: _ArrayLike[_SCT],
|
53 |
+
pad_width: _ArrayLikeInt,
|
54 |
+
mode: _ModeKind = ...,
|
55 |
+
*,
|
56 |
+
stat_length: None | _ArrayLikeInt = ...,
|
57 |
+
constant_values: ArrayLike = ...,
|
58 |
+
end_values: ArrayLike = ...,
|
59 |
+
reflect_type: L["odd", "even"] = ...,
|
60 |
+
) -> NDArray[_SCT]: ...
|
61 |
+
@overload
|
62 |
+
def pad(
|
63 |
+
array: ArrayLike,
|
64 |
+
pad_width: _ArrayLikeInt,
|
65 |
+
mode: _ModeKind = ...,
|
66 |
+
*,
|
67 |
+
stat_length: None | _ArrayLikeInt = ...,
|
68 |
+
constant_values: ArrayLike = ...,
|
69 |
+
end_values: ArrayLike = ...,
|
70 |
+
reflect_type: L["odd", "even"] = ...,
|
71 |
+
) -> NDArray[Any]: ...
|
72 |
+
@overload
|
73 |
+
def pad(
|
74 |
+
array: _ArrayLike[_SCT],
|
75 |
+
pad_width: _ArrayLikeInt,
|
76 |
+
mode: _ModeFunc,
|
77 |
+
**kwargs: Any,
|
78 |
+
) -> NDArray[_SCT]: ...
|
79 |
+
@overload
|
80 |
+
def pad(
|
81 |
+
array: ArrayLike,
|
82 |
+
pad_width: _ArrayLikeInt,
|
83 |
+
mode: _ModeFunc,
|
84 |
+
**kwargs: Any,
|
85 |
+
) -> NDArray[Any]: ...
|
env-llmeval/lib/python3.10/site-packages/numpy/lib/arraysetops.py
ADDED
@@ -0,0 +1,981 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Set operations for arrays based on sorting.
|
3 |
+
|
4 |
+
Notes
|
5 |
+
-----
|
6 |
+
|
7 |
+
For floating point arrays, inaccurate results may appear due to usual round-off
|
8 |
+
and floating point comparison issues.
|
9 |
+
|
10 |
+
Speed could be gained in some operations by an implementation of
|
11 |
+
`numpy.sort`, that can provide directly the permutation vectors, thus avoiding
|
12 |
+
calls to `numpy.argsort`.
|
13 |
+
|
14 |
+
Original author: Robert Cimrman
|
15 |
+
|
16 |
+
"""
|
17 |
+
import functools
|
18 |
+
|
19 |
+
import numpy as np
|
20 |
+
from numpy.core import overrides
|
21 |
+
|
22 |
+
|
23 |
+
array_function_dispatch = functools.partial(
|
24 |
+
overrides.array_function_dispatch, module='numpy')
|
25 |
+
|
26 |
+
|
27 |
+
__all__ = [
|
28 |
+
'ediff1d', 'intersect1d', 'setxor1d', 'union1d', 'setdiff1d', 'unique',
|
29 |
+
'in1d', 'isin'
|
30 |
+
]
|
31 |
+
|
32 |
+
|
33 |
+
def _ediff1d_dispatcher(ary, to_end=None, to_begin=None):
|
34 |
+
return (ary, to_end, to_begin)
|
35 |
+
|
36 |
+
|
37 |
+
@array_function_dispatch(_ediff1d_dispatcher)
|
38 |
+
def ediff1d(ary, to_end=None, to_begin=None):
|
39 |
+
"""
|
40 |
+
The differences between consecutive elements of an array.
|
41 |
+
|
42 |
+
Parameters
|
43 |
+
----------
|
44 |
+
ary : array_like
|
45 |
+
If necessary, will be flattened before the differences are taken.
|
46 |
+
to_end : array_like, optional
|
47 |
+
Number(s) to append at the end of the returned differences.
|
48 |
+
to_begin : array_like, optional
|
49 |
+
Number(s) to prepend at the beginning of the returned differences.
|
50 |
+
|
51 |
+
Returns
|
52 |
+
-------
|
53 |
+
ediff1d : ndarray
|
54 |
+
The differences. Loosely, this is ``ary.flat[1:] - ary.flat[:-1]``.
|
55 |
+
|
56 |
+
See Also
|
57 |
+
--------
|
58 |
+
diff, gradient
|
59 |
+
|
60 |
+
Notes
|
61 |
+
-----
|
62 |
+
When applied to masked arrays, this function drops the mask information
|
63 |
+
if the `to_begin` and/or `to_end` parameters are used.
|
64 |
+
|
65 |
+
Examples
|
66 |
+
--------
|
67 |
+
>>> x = np.array([1, 2, 4, 7, 0])
|
68 |
+
>>> np.ediff1d(x)
|
69 |
+
array([ 1, 2, 3, -7])
|
70 |
+
|
71 |
+
>>> np.ediff1d(x, to_begin=-99, to_end=np.array([88, 99]))
|
72 |
+
array([-99, 1, 2, ..., -7, 88, 99])
|
73 |
+
|
74 |
+
The returned array is always 1D.
|
75 |
+
|
76 |
+
>>> y = [[1, 2, 4], [1, 6, 24]]
|
77 |
+
>>> np.ediff1d(y)
|
78 |
+
array([ 1, 2, -3, 5, 18])
|
79 |
+
|
80 |
+
"""
|
81 |
+
# force a 1d array
|
82 |
+
ary = np.asanyarray(ary).ravel()
|
83 |
+
|
84 |
+
# enforce that the dtype of `ary` is used for the output
|
85 |
+
dtype_req = ary.dtype
|
86 |
+
|
87 |
+
# fast track default case
|
88 |
+
if to_begin is None and to_end is None:
|
89 |
+
return ary[1:] - ary[:-1]
|
90 |
+
|
91 |
+
if to_begin is None:
|
92 |
+
l_begin = 0
|
93 |
+
else:
|
94 |
+
to_begin = np.asanyarray(to_begin)
|
95 |
+
if not np.can_cast(to_begin, dtype_req, casting="same_kind"):
|
96 |
+
raise TypeError("dtype of `to_begin` must be compatible "
|
97 |
+
"with input `ary` under the `same_kind` rule.")
|
98 |
+
|
99 |
+
to_begin = to_begin.ravel()
|
100 |
+
l_begin = len(to_begin)
|
101 |
+
|
102 |
+
if to_end is None:
|
103 |
+
l_end = 0
|
104 |
+
else:
|
105 |
+
to_end = np.asanyarray(to_end)
|
106 |
+
if not np.can_cast(to_end, dtype_req, casting="same_kind"):
|
107 |
+
raise TypeError("dtype of `to_end` must be compatible "
|
108 |
+
"with input `ary` under the `same_kind` rule.")
|
109 |
+
|
110 |
+
to_end = to_end.ravel()
|
111 |
+
l_end = len(to_end)
|
112 |
+
|
113 |
+
# do the calculation in place and copy to_begin and to_end
|
114 |
+
l_diff = max(len(ary) - 1, 0)
|
115 |
+
result = np.empty(l_diff + l_begin + l_end, dtype=ary.dtype)
|
116 |
+
result = ary.__array_wrap__(result)
|
117 |
+
if l_begin > 0:
|
118 |
+
result[:l_begin] = to_begin
|
119 |
+
if l_end > 0:
|
120 |
+
result[l_begin + l_diff:] = to_end
|
121 |
+
np.subtract(ary[1:], ary[:-1], result[l_begin:l_begin + l_diff])
|
122 |
+
return result
|
123 |
+
|
124 |
+
|
125 |
+
def _unpack_tuple(x):
|
126 |
+
""" Unpacks one-element tuples for use as return values """
|
127 |
+
if len(x) == 1:
|
128 |
+
return x[0]
|
129 |
+
else:
|
130 |
+
return x
|
131 |
+
|
132 |
+
|
133 |
+
def _unique_dispatcher(ar, return_index=None, return_inverse=None,
|
134 |
+
return_counts=None, axis=None, *, equal_nan=None):
|
135 |
+
return (ar,)
|
136 |
+
|
137 |
+
|
138 |
+
@array_function_dispatch(_unique_dispatcher)
|
139 |
+
def unique(ar, return_index=False, return_inverse=False,
|
140 |
+
return_counts=False, axis=None, *, equal_nan=True):
|
141 |
+
"""
|
142 |
+
Find the unique elements of an array.
|
143 |
+
|
144 |
+
Returns the sorted unique elements of an array. There are three optional
|
145 |
+
outputs in addition to the unique elements:
|
146 |
+
|
147 |
+
* the indices of the input array that give the unique values
|
148 |
+
* the indices of the unique array that reconstruct the input array
|
149 |
+
* the number of times each unique value comes up in the input array
|
150 |
+
|
151 |
+
Parameters
|
152 |
+
----------
|
153 |
+
ar : array_like
|
154 |
+
Input array. Unless `axis` is specified, this will be flattened if it
|
155 |
+
is not already 1-D.
|
156 |
+
return_index : bool, optional
|
157 |
+
If True, also return the indices of `ar` (along the specified axis,
|
158 |
+
if provided, or in the flattened array) that result in the unique array.
|
159 |
+
return_inverse : bool, optional
|
160 |
+
If True, also return the indices of the unique array (for the specified
|
161 |
+
axis, if provided) that can be used to reconstruct `ar`.
|
162 |
+
return_counts : bool, optional
|
163 |
+
If True, also return the number of times each unique item appears
|
164 |
+
in `ar`.
|
165 |
+
axis : int or None, optional
|
166 |
+
The axis to operate on. If None, `ar` will be flattened. If an integer,
|
167 |
+
the subarrays indexed by the given axis will be flattened and treated
|
168 |
+
as the elements of a 1-D array with the dimension of the given axis,
|
169 |
+
see the notes for more details. Object arrays or structured arrays
|
170 |
+
that contain objects are not supported if the `axis` kwarg is used. The
|
171 |
+
default is None.
|
172 |
+
|
173 |
+
.. versionadded:: 1.13.0
|
174 |
+
|
175 |
+
equal_nan : bool, optional
|
176 |
+
If True, collapses multiple NaN values in the return array into one.
|
177 |
+
|
178 |
+
.. versionadded:: 1.24
|
179 |
+
|
180 |
+
Returns
|
181 |
+
-------
|
182 |
+
unique : ndarray
|
183 |
+
The sorted unique values.
|
184 |
+
unique_indices : ndarray, optional
|
185 |
+
The indices of the first occurrences of the unique values in the
|
186 |
+
original array. Only provided if `return_index` is True.
|
187 |
+
unique_inverse : ndarray, optional
|
188 |
+
The indices to reconstruct the original array from the
|
189 |
+
unique array. Only provided if `return_inverse` is True.
|
190 |
+
unique_counts : ndarray, optional
|
191 |
+
The number of times each of the unique values comes up in the
|
192 |
+
original array. Only provided if `return_counts` is True.
|
193 |
+
|
194 |
+
.. versionadded:: 1.9.0
|
195 |
+
|
196 |
+
See Also
|
197 |
+
--------
|
198 |
+
numpy.lib.arraysetops : Module with a number of other functions for
|
199 |
+
performing set operations on arrays.
|
200 |
+
repeat : Repeat elements of an array.
|
201 |
+
|
202 |
+
Notes
|
203 |
+
-----
|
204 |
+
When an axis is specified the subarrays indexed by the axis are sorted.
|
205 |
+
This is done by making the specified axis the first dimension of the array
|
206 |
+
(move the axis to the first dimension to keep the order of the other axes)
|
207 |
+
and then flattening the subarrays in C order. The flattened subarrays are
|
208 |
+
then viewed as a structured type with each element given a label, with the
|
209 |
+
effect that we end up with a 1-D array of structured types that can be
|
210 |
+
treated in the same way as any other 1-D array. The result is that the
|
211 |
+
flattened subarrays are sorted in lexicographic order starting with the
|
212 |
+
first element.
|
213 |
+
|
214 |
+
.. versionchanged: NumPy 1.21
|
215 |
+
If nan values are in the input array, a single nan is put
|
216 |
+
to the end of the sorted unique values.
|
217 |
+
|
218 |
+
Also for complex arrays all NaN values are considered equivalent
|
219 |
+
(no matter whether the NaN is in the real or imaginary part).
|
220 |
+
As the representant for the returned array the smallest one in the
|
221 |
+
lexicographical order is chosen - see np.sort for how the lexicographical
|
222 |
+
order is defined for complex arrays.
|
223 |
+
|
224 |
+
Examples
|
225 |
+
--------
|
226 |
+
>>> np.unique([1, 1, 2, 2, 3, 3])
|
227 |
+
array([1, 2, 3])
|
228 |
+
>>> a = np.array([[1, 1], [2, 3]])
|
229 |
+
>>> np.unique(a)
|
230 |
+
array([1, 2, 3])
|
231 |
+
|
232 |
+
Return the unique rows of a 2D array
|
233 |
+
|
234 |
+
>>> a = np.array([[1, 0, 0], [1, 0, 0], [2, 3, 4]])
|
235 |
+
>>> np.unique(a, axis=0)
|
236 |
+
array([[1, 0, 0], [2, 3, 4]])
|
237 |
+
|
238 |
+
Return the indices of the original array that give the unique values:
|
239 |
+
|
240 |
+
>>> a = np.array(['a', 'b', 'b', 'c', 'a'])
|
241 |
+
>>> u, indices = np.unique(a, return_index=True)
|
242 |
+
>>> u
|
243 |
+
array(['a', 'b', 'c'], dtype='<U1')
|
244 |
+
>>> indices
|
245 |
+
array([0, 1, 3])
|
246 |
+
>>> a[indices]
|
247 |
+
array(['a', 'b', 'c'], dtype='<U1')
|
248 |
+
|
249 |
+
Reconstruct the input array from the unique values and inverse:
|
250 |
+
|
251 |
+
>>> a = np.array([1, 2, 6, 4, 2, 3, 2])
|
252 |
+
>>> u, indices = np.unique(a, return_inverse=True)
|
253 |
+
>>> u
|
254 |
+
array([1, 2, 3, 4, 6])
|
255 |
+
>>> indices
|
256 |
+
array([0, 1, 4, 3, 1, 2, 1])
|
257 |
+
>>> u[indices]
|
258 |
+
array([1, 2, 6, 4, 2, 3, 2])
|
259 |
+
|
260 |
+
Reconstruct the input values from the unique values and counts:
|
261 |
+
|
262 |
+
>>> a = np.array([1, 2, 6, 4, 2, 3, 2])
|
263 |
+
>>> values, counts = np.unique(a, return_counts=True)
|
264 |
+
>>> values
|
265 |
+
array([1, 2, 3, 4, 6])
|
266 |
+
>>> counts
|
267 |
+
array([1, 3, 1, 1, 1])
|
268 |
+
>>> np.repeat(values, counts)
|
269 |
+
array([1, 2, 2, 2, 3, 4, 6]) # original order not preserved
|
270 |
+
|
271 |
+
"""
|
272 |
+
ar = np.asanyarray(ar)
|
273 |
+
if axis is None:
|
274 |
+
ret = _unique1d(ar, return_index, return_inverse, return_counts,
|
275 |
+
equal_nan=equal_nan)
|
276 |
+
return _unpack_tuple(ret)
|
277 |
+
|
278 |
+
# axis was specified and not None
|
279 |
+
try:
|
280 |
+
ar = np.moveaxis(ar, axis, 0)
|
281 |
+
except np.AxisError:
|
282 |
+
# this removes the "axis1" or "axis2" prefix from the error message
|
283 |
+
raise np.AxisError(axis, ar.ndim) from None
|
284 |
+
|
285 |
+
# Must reshape to a contiguous 2D array for this to work...
|
286 |
+
orig_shape, orig_dtype = ar.shape, ar.dtype
|
287 |
+
ar = ar.reshape(orig_shape[0], np.prod(orig_shape[1:], dtype=np.intp))
|
288 |
+
ar = np.ascontiguousarray(ar)
|
289 |
+
dtype = [('f{i}'.format(i=i), ar.dtype) for i in range(ar.shape[1])]
|
290 |
+
|
291 |
+
# At this point, `ar` has shape `(n, m)`, and `dtype` is a structured
|
292 |
+
# data type with `m` fields where each field has the data type of `ar`.
|
293 |
+
# In the following, we create the array `consolidated`, which has
|
294 |
+
# shape `(n,)` with data type `dtype`.
|
295 |
+
try:
|
296 |
+
if ar.shape[1] > 0:
|
297 |
+
consolidated = ar.view(dtype)
|
298 |
+
else:
|
299 |
+
# If ar.shape[1] == 0, then dtype will be `np.dtype([])`, which is
|
300 |
+
# a data type with itemsize 0, and the call `ar.view(dtype)` will
|
301 |
+
# fail. Instead, we'll use `np.empty` to explicitly create the
|
302 |
+
# array with shape `(len(ar),)`. Because `dtype` in this case has
|
303 |
+
# itemsize 0, the total size of the result is still 0 bytes.
|
304 |
+
consolidated = np.empty(len(ar), dtype=dtype)
|
305 |
+
except TypeError as e:
|
306 |
+
# There's no good way to do this for object arrays, etc...
|
307 |
+
msg = 'The axis argument to unique is not supported for dtype {dt}'
|
308 |
+
raise TypeError(msg.format(dt=ar.dtype)) from e
|
309 |
+
|
310 |
+
def reshape_uniq(uniq):
|
311 |
+
n = len(uniq)
|
312 |
+
uniq = uniq.view(orig_dtype)
|
313 |
+
uniq = uniq.reshape(n, *orig_shape[1:])
|
314 |
+
uniq = np.moveaxis(uniq, 0, axis)
|
315 |
+
return uniq
|
316 |
+
|
317 |
+
output = _unique1d(consolidated, return_index,
|
318 |
+
return_inverse, return_counts, equal_nan=equal_nan)
|
319 |
+
output = (reshape_uniq(output[0]),) + output[1:]
|
320 |
+
return _unpack_tuple(output)
|
321 |
+
|
322 |
+
|
323 |
+
def _unique1d(ar, return_index=False, return_inverse=False,
|
324 |
+
return_counts=False, *, equal_nan=True):
|
325 |
+
"""
|
326 |
+
Find the unique elements of an array, ignoring shape.
|
327 |
+
"""
|
328 |
+
ar = np.asanyarray(ar).flatten()
|
329 |
+
|
330 |
+
optional_indices = return_index or return_inverse
|
331 |
+
|
332 |
+
if optional_indices:
|
333 |
+
perm = ar.argsort(kind='mergesort' if return_index else 'quicksort')
|
334 |
+
aux = ar[perm]
|
335 |
+
else:
|
336 |
+
ar.sort()
|
337 |
+
aux = ar
|
338 |
+
mask = np.empty(aux.shape, dtype=np.bool_)
|
339 |
+
mask[:1] = True
|
340 |
+
if (equal_nan and aux.shape[0] > 0 and aux.dtype.kind in "cfmM" and
|
341 |
+
np.isnan(aux[-1])):
|
342 |
+
if aux.dtype.kind == "c": # for complex all NaNs are considered equivalent
|
343 |
+
aux_firstnan = np.searchsorted(np.isnan(aux), True, side='left')
|
344 |
+
else:
|
345 |
+
aux_firstnan = np.searchsorted(aux, aux[-1], side='left')
|
346 |
+
if aux_firstnan > 0:
|
347 |
+
mask[1:aux_firstnan] = (
|
348 |
+
aux[1:aux_firstnan] != aux[:aux_firstnan - 1])
|
349 |
+
mask[aux_firstnan] = True
|
350 |
+
mask[aux_firstnan + 1:] = False
|
351 |
+
else:
|
352 |
+
mask[1:] = aux[1:] != aux[:-1]
|
353 |
+
|
354 |
+
ret = (aux[mask],)
|
355 |
+
if return_index:
|
356 |
+
ret += (perm[mask],)
|
357 |
+
if return_inverse:
|
358 |
+
imask = np.cumsum(mask) - 1
|
359 |
+
inv_idx = np.empty(mask.shape, dtype=np.intp)
|
360 |
+
inv_idx[perm] = imask
|
361 |
+
ret += (inv_idx,)
|
362 |
+
if return_counts:
|
363 |
+
idx = np.concatenate(np.nonzero(mask) + ([mask.size],))
|
364 |
+
ret += (np.diff(idx),)
|
365 |
+
return ret
|
366 |
+
|
367 |
+
|
368 |
+
def _intersect1d_dispatcher(
|
369 |
+
ar1, ar2, assume_unique=None, return_indices=None):
|
370 |
+
return (ar1, ar2)
|
371 |
+
|
372 |
+
|
373 |
+
@array_function_dispatch(_intersect1d_dispatcher)
|
374 |
+
def intersect1d(ar1, ar2, assume_unique=False, return_indices=False):
|
375 |
+
"""
|
376 |
+
Find the intersection of two arrays.
|
377 |
+
|
378 |
+
Return the sorted, unique values that are in both of the input arrays.
|
379 |
+
|
380 |
+
Parameters
|
381 |
+
----------
|
382 |
+
ar1, ar2 : array_like
|
383 |
+
Input arrays. Will be flattened if not already 1D.
|
384 |
+
assume_unique : bool
|
385 |
+
If True, the input arrays are both assumed to be unique, which
|
386 |
+
can speed up the calculation. If True but ``ar1`` or ``ar2`` are not
|
387 |
+
unique, incorrect results and out-of-bounds indices could result.
|
388 |
+
Default is False.
|
389 |
+
return_indices : bool
|
390 |
+
If True, the indices which correspond to the intersection of the two
|
391 |
+
arrays are returned. The first instance of a value is used if there are
|
392 |
+
multiple. Default is False.
|
393 |
+
|
394 |
+
.. versionadded:: 1.15.0
|
395 |
+
|
396 |
+
Returns
|
397 |
+
-------
|
398 |
+
intersect1d : ndarray
|
399 |
+
Sorted 1D array of common and unique elements.
|
400 |
+
comm1 : ndarray
|
401 |
+
The indices of the first occurrences of the common values in `ar1`.
|
402 |
+
Only provided if `return_indices` is True.
|
403 |
+
comm2 : ndarray
|
404 |
+
The indices of the first occurrences of the common values in `ar2`.
|
405 |
+
Only provided if `return_indices` is True.
|
406 |
+
|
407 |
+
|
408 |
+
See Also
|
409 |
+
--------
|
410 |
+
numpy.lib.arraysetops : Module with a number of other functions for
|
411 |
+
performing set operations on arrays.
|
412 |
+
|
413 |
+
Examples
|
414 |
+
--------
|
415 |
+
>>> np.intersect1d([1, 3, 4, 3], [3, 1, 2, 1])
|
416 |
+
array([1, 3])
|
417 |
+
|
418 |
+
To intersect more than two arrays, use functools.reduce:
|
419 |
+
|
420 |
+
>>> from functools import reduce
|
421 |
+
>>> reduce(np.intersect1d, ([1, 3, 4, 3], [3, 1, 2, 1], [6, 3, 4, 2]))
|
422 |
+
array([3])
|
423 |
+
|
424 |
+
To return the indices of the values common to the input arrays
|
425 |
+
along with the intersected values:
|
426 |
+
|
427 |
+
>>> x = np.array([1, 1, 2, 3, 4])
|
428 |
+
>>> y = np.array([2, 1, 4, 6])
|
429 |
+
>>> xy, x_ind, y_ind = np.intersect1d(x, y, return_indices=True)
|
430 |
+
>>> x_ind, y_ind
|
431 |
+
(array([0, 2, 4]), array([1, 0, 2]))
|
432 |
+
>>> xy, x[x_ind], y[y_ind]
|
433 |
+
(array([1, 2, 4]), array([1, 2, 4]), array([1, 2, 4]))
|
434 |
+
|
435 |
+
"""
|
436 |
+
ar1 = np.asanyarray(ar1)
|
437 |
+
ar2 = np.asanyarray(ar2)
|
438 |
+
|
439 |
+
if not assume_unique:
|
440 |
+
if return_indices:
|
441 |
+
ar1, ind1 = unique(ar1, return_index=True)
|
442 |
+
ar2, ind2 = unique(ar2, return_index=True)
|
443 |
+
else:
|
444 |
+
ar1 = unique(ar1)
|
445 |
+
ar2 = unique(ar2)
|
446 |
+
else:
|
447 |
+
ar1 = ar1.ravel()
|
448 |
+
ar2 = ar2.ravel()
|
449 |
+
|
450 |
+
aux = np.concatenate((ar1, ar2))
|
451 |
+
if return_indices:
|
452 |
+
aux_sort_indices = np.argsort(aux, kind='mergesort')
|
453 |
+
aux = aux[aux_sort_indices]
|
454 |
+
else:
|
455 |
+
aux.sort()
|
456 |
+
|
457 |
+
mask = aux[1:] == aux[:-1]
|
458 |
+
int1d = aux[:-1][mask]
|
459 |
+
|
460 |
+
if return_indices:
|
461 |
+
ar1_indices = aux_sort_indices[:-1][mask]
|
462 |
+
ar2_indices = aux_sort_indices[1:][mask] - ar1.size
|
463 |
+
if not assume_unique:
|
464 |
+
ar1_indices = ind1[ar1_indices]
|
465 |
+
ar2_indices = ind2[ar2_indices]
|
466 |
+
|
467 |
+
return int1d, ar1_indices, ar2_indices
|
468 |
+
else:
|
469 |
+
return int1d
|
470 |
+
|
471 |
+
|
472 |
+
def _setxor1d_dispatcher(ar1, ar2, assume_unique=None):
|
473 |
+
return (ar1, ar2)
|
474 |
+
|
475 |
+
|
476 |
+
@array_function_dispatch(_setxor1d_dispatcher)
|
477 |
+
def setxor1d(ar1, ar2, assume_unique=False):
|
478 |
+
"""
|
479 |
+
Find the set exclusive-or of two arrays.
|
480 |
+
|
481 |
+
Return the sorted, unique values that are in only one (not both) of the
|
482 |
+
input arrays.
|
483 |
+
|
484 |
+
Parameters
|
485 |
+
----------
|
486 |
+
ar1, ar2 : array_like
|
487 |
+
Input arrays.
|
488 |
+
assume_unique : bool
|
489 |
+
If True, the input arrays are both assumed to be unique, which
|
490 |
+
can speed up the calculation. Default is False.
|
491 |
+
|
492 |
+
Returns
|
493 |
+
-------
|
494 |
+
setxor1d : ndarray
|
495 |
+
Sorted 1D array of unique values that are in only one of the input
|
496 |
+
arrays.
|
497 |
+
|
498 |
+
Examples
|
499 |
+
--------
|
500 |
+
>>> a = np.array([1, 2, 3, 2, 4])
|
501 |
+
>>> b = np.array([2, 3, 5, 7, 5])
|
502 |
+
>>> np.setxor1d(a,b)
|
503 |
+
array([1, 4, 5, 7])
|
504 |
+
|
505 |
+
"""
|
506 |
+
if not assume_unique:
|
507 |
+
ar1 = unique(ar1)
|
508 |
+
ar2 = unique(ar2)
|
509 |
+
|
510 |
+
aux = np.concatenate((ar1, ar2))
|
511 |
+
if aux.size == 0:
|
512 |
+
return aux
|
513 |
+
|
514 |
+
aux.sort()
|
515 |
+
flag = np.concatenate(([True], aux[1:] != aux[:-1], [True]))
|
516 |
+
return aux[flag[1:] & flag[:-1]]
|
517 |
+
|
518 |
+
|
519 |
+
def _in1d_dispatcher(ar1, ar2, assume_unique=None, invert=None, *,
|
520 |
+
kind=None):
|
521 |
+
return (ar1, ar2)
|
522 |
+
|
523 |
+
|
524 |
+
@array_function_dispatch(_in1d_dispatcher)
|
525 |
+
def in1d(ar1, ar2, assume_unique=False, invert=False, *, kind=None):
|
526 |
+
"""
|
527 |
+
Test whether each element of a 1-D array is also present in a second array.
|
528 |
+
|
529 |
+
Returns a boolean array the same length as `ar1` that is True
|
530 |
+
where an element of `ar1` is in `ar2` and False otherwise.
|
531 |
+
|
532 |
+
We recommend using :func:`isin` instead of `in1d` for new code.
|
533 |
+
|
534 |
+
Parameters
|
535 |
+
----------
|
536 |
+
ar1 : (M,) array_like
|
537 |
+
Input array.
|
538 |
+
ar2 : array_like
|
539 |
+
The values against which to test each value of `ar1`.
|
540 |
+
assume_unique : bool, optional
|
541 |
+
If True, the input arrays are both assumed to be unique, which
|
542 |
+
can speed up the calculation. Default is False.
|
543 |
+
invert : bool, optional
|
544 |
+
If True, the values in the returned array are inverted (that is,
|
545 |
+
False where an element of `ar1` is in `ar2` and True otherwise).
|
546 |
+
Default is False. ``np.in1d(a, b, invert=True)`` is equivalent
|
547 |
+
to (but is faster than) ``np.invert(in1d(a, b))``.
|
548 |
+
kind : {None, 'sort', 'table'}, optional
|
549 |
+
The algorithm to use. This will not affect the final result,
|
550 |
+
but will affect the speed and memory use. The default, None,
|
551 |
+
will select automatically based on memory considerations.
|
552 |
+
|
553 |
+
* If 'sort', will use a mergesort-based approach. This will have
|
554 |
+
a memory usage of roughly 6 times the sum of the sizes of
|
555 |
+
`ar1` and `ar2`, not accounting for size of dtypes.
|
556 |
+
* If 'table', will use a lookup table approach similar
|
557 |
+
to a counting sort. This is only available for boolean and
|
558 |
+
integer arrays. This will have a memory usage of the
|
559 |
+
size of `ar1` plus the max-min value of `ar2`. `assume_unique`
|
560 |
+
has no effect when the 'table' option is used.
|
561 |
+
* If None, will automatically choose 'table' if
|
562 |
+
the required memory allocation is less than or equal to
|
563 |
+
6 times the sum of the sizes of `ar1` and `ar2`,
|
564 |
+
otherwise will use 'sort'. This is done to not use
|
565 |
+
a large amount of memory by default, even though
|
566 |
+
'table' may be faster in most cases. If 'table' is chosen,
|
567 |
+
`assume_unique` will have no effect.
|
568 |
+
|
569 |
+
.. versionadded:: 1.8.0
|
570 |
+
|
571 |
+
Returns
|
572 |
+
-------
|
573 |
+
in1d : (M,) ndarray, bool
|
574 |
+
The values `ar1[in1d]` are in `ar2`.
|
575 |
+
|
576 |
+
See Also
|
577 |
+
--------
|
578 |
+
isin : Version of this function that preserves the
|
579 |
+
shape of ar1.
|
580 |
+
numpy.lib.arraysetops : Module with a number of other functions for
|
581 |
+
performing set operations on arrays.
|
582 |
+
|
583 |
+
Notes
|
584 |
+
-----
|
585 |
+
`in1d` can be considered as an element-wise function version of the
|
586 |
+
python keyword `in`, for 1-D sequences. ``in1d(a, b)`` is roughly
|
587 |
+
equivalent to ``np.array([item in b for item in a])``.
|
588 |
+
However, this idea fails if `ar2` is a set, or similar (non-sequence)
|
589 |
+
container: As ``ar2`` is converted to an array, in those cases
|
590 |
+
``asarray(ar2)`` is an object array rather than the expected array of
|
591 |
+
contained values.
|
592 |
+
|
593 |
+
Using ``kind='table'`` tends to be faster than `kind='sort'` if the
|
594 |
+
following relationship is true:
|
595 |
+
``log10(len(ar2)) > (log10(max(ar2)-min(ar2)) - 2.27) / 0.927``,
|
596 |
+
but may use greater memory. The default value for `kind` will
|
597 |
+
be automatically selected based only on memory usage, so one may
|
598 |
+
manually set ``kind='table'`` if memory constraints can be relaxed.
|
599 |
+
|
600 |
+
.. versionadded:: 1.4.0
|
601 |
+
|
602 |
+
Examples
|
603 |
+
--------
|
604 |
+
>>> test = np.array([0, 1, 2, 5, 0])
|
605 |
+
>>> states = [0, 2]
|
606 |
+
>>> mask = np.in1d(test, states)
|
607 |
+
>>> mask
|
608 |
+
array([ True, False, True, False, True])
|
609 |
+
>>> test[mask]
|
610 |
+
array([0, 2, 0])
|
611 |
+
>>> mask = np.in1d(test, states, invert=True)
|
612 |
+
>>> mask
|
613 |
+
array([False, True, False, True, False])
|
614 |
+
>>> test[mask]
|
615 |
+
array([1, 5])
|
616 |
+
"""
|
617 |
+
# Ravel both arrays, behavior for the first array could be different
|
618 |
+
ar1 = np.asarray(ar1).ravel()
|
619 |
+
ar2 = np.asarray(ar2).ravel()
|
620 |
+
|
621 |
+
# Ensure that iteration through object arrays yields size-1 arrays
|
622 |
+
if ar2.dtype == object:
|
623 |
+
ar2 = ar2.reshape(-1, 1)
|
624 |
+
|
625 |
+
if kind not in {None, 'sort', 'table'}:
|
626 |
+
raise ValueError(
|
627 |
+
f"Invalid kind: '{kind}'. Please use None, 'sort' or 'table'.")
|
628 |
+
|
629 |
+
# Can use the table method if all arrays are integers or boolean:
|
630 |
+
is_int_arrays = all(ar.dtype.kind in ("u", "i", "b") for ar in (ar1, ar2))
|
631 |
+
use_table_method = is_int_arrays and kind in {None, 'table'}
|
632 |
+
|
633 |
+
if use_table_method:
|
634 |
+
if ar2.size == 0:
|
635 |
+
if invert:
|
636 |
+
return np.ones_like(ar1, dtype=bool)
|
637 |
+
else:
|
638 |
+
return np.zeros_like(ar1, dtype=bool)
|
639 |
+
|
640 |
+
# Convert booleans to uint8 so we can use the fast integer algorithm
|
641 |
+
if ar1.dtype == bool:
|
642 |
+
ar1 = ar1.astype(np.uint8)
|
643 |
+
if ar2.dtype == bool:
|
644 |
+
ar2 = ar2.astype(np.uint8)
|
645 |
+
|
646 |
+
ar2_min = np.min(ar2)
|
647 |
+
ar2_max = np.max(ar2)
|
648 |
+
|
649 |
+
ar2_range = int(ar2_max) - int(ar2_min)
|
650 |
+
|
651 |
+
# Constraints on whether we can actually use the table method:
|
652 |
+
# 1. Assert memory usage is not too large
|
653 |
+
below_memory_constraint = ar2_range <= 6 * (ar1.size + ar2.size)
|
654 |
+
# 2. Check overflows for (ar2 - ar2_min); dtype=ar2.dtype
|
655 |
+
range_safe_from_overflow = ar2_range <= np.iinfo(ar2.dtype).max
|
656 |
+
# 3. Check overflows for (ar1 - ar2_min); dtype=ar1.dtype
|
657 |
+
if ar1.size > 0:
|
658 |
+
ar1_min = np.min(ar1)
|
659 |
+
ar1_max = np.max(ar1)
|
660 |
+
|
661 |
+
# After masking, the range of ar1 is guaranteed to be
|
662 |
+
# within the range of ar2:
|
663 |
+
ar1_upper = min(int(ar1_max), int(ar2_max))
|
664 |
+
ar1_lower = max(int(ar1_min), int(ar2_min))
|
665 |
+
|
666 |
+
range_safe_from_overflow &= all((
|
667 |
+
ar1_upper - int(ar2_min) <= np.iinfo(ar1.dtype).max,
|
668 |
+
ar1_lower - int(ar2_min) >= np.iinfo(ar1.dtype).min
|
669 |
+
))
|
670 |
+
|
671 |
+
# Optimal performance is for approximately
|
672 |
+
# log10(size) > (log10(range) - 2.27) / 0.927.
|
673 |
+
# However, here we set the requirement that by default
|
674 |
+
# the intermediate array can only be 6x
|
675 |
+
# the combined memory allocation of the original
|
676 |
+
# arrays. See discussion on
|
677 |
+
# https://github.com/numpy/numpy/pull/12065.
|
678 |
+
|
679 |
+
if (
|
680 |
+
range_safe_from_overflow and
|
681 |
+
(below_memory_constraint or kind == 'table')
|
682 |
+
):
|
683 |
+
|
684 |
+
if invert:
|
685 |
+
outgoing_array = np.ones_like(ar1, dtype=bool)
|
686 |
+
else:
|
687 |
+
outgoing_array = np.zeros_like(ar1, dtype=bool)
|
688 |
+
|
689 |
+
# Make elements 1 where the integer exists in ar2
|
690 |
+
if invert:
|
691 |
+
isin_helper_ar = np.ones(ar2_range + 1, dtype=bool)
|
692 |
+
isin_helper_ar[ar2 - ar2_min] = 0
|
693 |
+
else:
|
694 |
+
isin_helper_ar = np.zeros(ar2_range + 1, dtype=bool)
|
695 |
+
isin_helper_ar[ar2 - ar2_min] = 1
|
696 |
+
|
697 |
+
# Mask out elements we know won't work
|
698 |
+
basic_mask = (ar1 <= ar2_max) & (ar1 >= ar2_min)
|
699 |
+
outgoing_array[basic_mask] = isin_helper_ar[ar1[basic_mask] -
|
700 |
+
ar2_min]
|
701 |
+
|
702 |
+
return outgoing_array
|
703 |
+
elif kind == 'table': # not range_safe_from_overflow
|
704 |
+
raise RuntimeError(
|
705 |
+
"You have specified kind='table', "
|
706 |
+
"but the range of values in `ar2` or `ar1` exceed the "
|
707 |
+
"maximum integer of the datatype. "
|
708 |
+
"Please set `kind` to None or 'sort'."
|
709 |
+
)
|
710 |
+
elif kind == 'table':
|
711 |
+
raise ValueError(
|
712 |
+
"The 'table' method is only "
|
713 |
+
"supported for boolean or integer arrays. "
|
714 |
+
"Please select 'sort' or None for kind."
|
715 |
+
)
|
716 |
+
|
717 |
+
|
718 |
+
# Check if one of the arrays may contain arbitrary objects
|
719 |
+
contains_object = ar1.dtype.hasobject or ar2.dtype.hasobject
|
720 |
+
|
721 |
+
# This code is run when
|
722 |
+
# a) the first condition is true, making the code significantly faster
|
723 |
+
# b) the second condition is true (i.e. `ar1` or `ar2` may contain
|
724 |
+
# arbitrary objects), since then sorting is not guaranteed to work
|
725 |
+
if len(ar2) < 10 * len(ar1) ** 0.145 or contains_object:
|
726 |
+
if invert:
|
727 |
+
mask = np.ones(len(ar1), dtype=bool)
|
728 |
+
for a in ar2:
|
729 |
+
mask &= (ar1 != a)
|
730 |
+
else:
|
731 |
+
mask = np.zeros(len(ar1), dtype=bool)
|
732 |
+
for a in ar2:
|
733 |
+
mask |= (ar1 == a)
|
734 |
+
return mask
|
735 |
+
|
736 |
+
# Otherwise use sorting
|
737 |
+
if not assume_unique:
|
738 |
+
ar1, rev_idx = np.unique(ar1, return_inverse=True)
|
739 |
+
ar2 = np.unique(ar2)
|
740 |
+
|
741 |
+
ar = np.concatenate((ar1, ar2))
|
742 |
+
# We need this to be a stable sort, so always use 'mergesort'
|
743 |
+
# here. The values from the first array should always come before
|
744 |
+
# the values from the second array.
|
745 |
+
order = ar.argsort(kind='mergesort')
|
746 |
+
sar = ar[order]
|
747 |
+
if invert:
|
748 |
+
bool_ar = (sar[1:] != sar[:-1])
|
749 |
+
else:
|
750 |
+
bool_ar = (sar[1:] == sar[:-1])
|
751 |
+
flag = np.concatenate((bool_ar, [invert]))
|
752 |
+
ret = np.empty(ar.shape, dtype=bool)
|
753 |
+
ret[order] = flag
|
754 |
+
|
755 |
+
if assume_unique:
|
756 |
+
return ret[:len(ar1)]
|
757 |
+
else:
|
758 |
+
return ret[rev_idx]
|
759 |
+
|
760 |
+
|
761 |
+
def _isin_dispatcher(element, test_elements, assume_unique=None, invert=None,
|
762 |
+
*, kind=None):
|
763 |
+
return (element, test_elements)
|
764 |
+
|
765 |
+
|
766 |
+
@array_function_dispatch(_isin_dispatcher)
|
767 |
+
def isin(element, test_elements, assume_unique=False, invert=False, *,
|
768 |
+
kind=None):
|
769 |
+
"""
|
770 |
+
Calculates ``element in test_elements``, broadcasting over `element` only.
|
771 |
+
Returns a boolean array of the same shape as `element` that is True
|
772 |
+
where an element of `element` is in `test_elements` and False otherwise.
|
773 |
+
|
774 |
+
Parameters
|
775 |
+
----------
|
776 |
+
element : array_like
|
777 |
+
Input array.
|
778 |
+
test_elements : array_like
|
779 |
+
The values against which to test each value of `element`.
|
780 |
+
This argument is flattened if it is an array or array_like.
|
781 |
+
See notes for behavior with non-array-like parameters.
|
782 |
+
assume_unique : bool, optional
|
783 |
+
If True, the input arrays are both assumed to be unique, which
|
784 |
+
can speed up the calculation. Default is False.
|
785 |
+
invert : bool, optional
|
786 |
+
If True, the values in the returned array are inverted, as if
|
787 |
+
calculating `element not in test_elements`. Default is False.
|
788 |
+
``np.isin(a, b, invert=True)`` is equivalent to (but faster
|
789 |
+
than) ``np.invert(np.isin(a, b))``.
|
790 |
+
kind : {None, 'sort', 'table'}, optional
|
791 |
+
The algorithm to use. This will not affect the final result,
|
792 |
+
but will affect the speed and memory use. The default, None,
|
793 |
+
will select automatically based on memory considerations.
|
794 |
+
|
795 |
+
* If 'sort', will use a mergesort-based approach. This will have
|
796 |
+
a memory usage of roughly 6 times the sum of the sizes of
|
797 |
+
`ar1` and `ar2`, not accounting for size of dtypes.
|
798 |
+
* If 'table', will use a lookup table approach similar
|
799 |
+
to a counting sort. This is only available for boolean and
|
800 |
+
integer arrays. This will have a memory usage of the
|
801 |
+
size of `ar1` plus the max-min value of `ar2`. `assume_unique`
|
802 |
+
has no effect when the 'table' option is used.
|
803 |
+
* If None, will automatically choose 'table' if
|
804 |
+
the required memory allocation is less than or equal to
|
805 |
+
6 times the sum of the sizes of `ar1` and `ar2`,
|
806 |
+
otherwise will use 'sort'. This is done to not use
|
807 |
+
a large amount of memory by default, even though
|
808 |
+
'table' may be faster in most cases. If 'table' is chosen,
|
809 |
+
`assume_unique` will have no effect.
|
810 |
+
|
811 |
+
|
812 |
+
Returns
|
813 |
+
-------
|
814 |
+
isin : ndarray, bool
|
815 |
+
Has the same shape as `element`. The values `element[isin]`
|
816 |
+
are in `test_elements`.
|
817 |
+
|
818 |
+
See Also
|
819 |
+
--------
|
820 |
+
in1d : Flattened version of this function.
|
821 |
+
numpy.lib.arraysetops : Module with a number of other functions for
|
822 |
+
performing set operations on arrays.
|
823 |
+
|
824 |
+
Notes
|
825 |
+
-----
|
826 |
+
|
827 |
+
`isin` is an element-wise function version of the python keyword `in`.
|
828 |
+
``isin(a, b)`` is roughly equivalent to
|
829 |
+
``np.array([item in b for item in a])`` if `a` and `b` are 1-D sequences.
|
830 |
+
|
831 |
+
`element` and `test_elements` are converted to arrays if they are not
|
832 |
+
already. If `test_elements` is a set (or other non-sequence collection)
|
833 |
+
it will be converted to an object array with one element, rather than an
|
834 |
+
array of the values contained in `test_elements`. This is a consequence
|
835 |
+
of the `array` constructor's way of handling non-sequence collections.
|
836 |
+
Converting the set to a list usually gives the desired behavior.
|
837 |
+
|
838 |
+
Using ``kind='table'`` tends to be faster than `kind='sort'` if the
|
839 |
+
following relationship is true:
|
840 |
+
``log10(len(ar2)) > (log10(max(ar2)-min(ar2)) - 2.27) / 0.927``,
|
841 |
+
but may use greater memory. The default value for `kind` will
|
842 |
+
be automatically selected based only on memory usage, so one may
|
843 |
+
manually set ``kind='table'`` if memory constraints can be relaxed.
|
844 |
+
|
845 |
+
.. versionadded:: 1.13.0
|
846 |
+
|
847 |
+
Examples
|
848 |
+
--------
|
849 |
+
>>> element = 2*np.arange(4).reshape((2, 2))
|
850 |
+
>>> element
|
851 |
+
array([[0, 2],
|
852 |
+
[4, 6]])
|
853 |
+
>>> test_elements = [1, 2, 4, 8]
|
854 |
+
>>> mask = np.isin(element, test_elements)
|
855 |
+
>>> mask
|
856 |
+
array([[False, True],
|
857 |
+
[ True, False]])
|
858 |
+
>>> element[mask]
|
859 |
+
array([2, 4])
|
860 |
+
|
861 |
+
The indices of the matched values can be obtained with `nonzero`:
|
862 |
+
|
863 |
+
>>> np.nonzero(mask)
|
864 |
+
(array([0, 1]), array([1, 0]))
|
865 |
+
|
866 |
+
The test can also be inverted:
|
867 |
+
|
868 |
+
>>> mask = np.isin(element, test_elements, invert=True)
|
869 |
+
>>> mask
|
870 |
+
array([[ True, False],
|
871 |
+
[False, True]])
|
872 |
+
>>> element[mask]
|
873 |
+
array([0, 6])
|
874 |
+
|
875 |
+
Because of how `array` handles sets, the following does not
|
876 |
+
work as expected:
|
877 |
+
|
878 |
+
>>> test_set = {1, 2, 4, 8}
|
879 |
+
>>> np.isin(element, test_set)
|
880 |
+
array([[False, False],
|
881 |
+
[False, False]])
|
882 |
+
|
883 |
+
Casting the set to a list gives the expected result:
|
884 |
+
|
885 |
+
>>> np.isin(element, list(test_set))
|
886 |
+
array([[False, True],
|
887 |
+
[ True, False]])
|
888 |
+
"""
|
889 |
+
element = np.asarray(element)
|
890 |
+
return in1d(element, test_elements, assume_unique=assume_unique,
|
891 |
+
invert=invert, kind=kind).reshape(element.shape)
|
892 |
+
|
893 |
+
|
894 |
+
def _union1d_dispatcher(ar1, ar2):
|
895 |
+
return (ar1, ar2)
|
896 |
+
|
897 |
+
|
898 |
+
@array_function_dispatch(_union1d_dispatcher)
|
899 |
+
def union1d(ar1, ar2):
|
900 |
+
"""
|
901 |
+
Find the union of two arrays.
|
902 |
+
|
903 |
+
Return the unique, sorted array of values that are in either of the two
|
904 |
+
input arrays.
|
905 |
+
|
906 |
+
Parameters
|
907 |
+
----------
|
908 |
+
ar1, ar2 : array_like
|
909 |
+
Input arrays. They are flattened if they are not already 1D.
|
910 |
+
|
911 |
+
Returns
|
912 |
+
-------
|
913 |
+
union1d : ndarray
|
914 |
+
Unique, sorted union of the input arrays.
|
915 |
+
|
916 |
+
See Also
|
917 |
+
--------
|
918 |
+
numpy.lib.arraysetops : Module with a number of other functions for
|
919 |
+
performing set operations on arrays.
|
920 |
+
|
921 |
+
Examples
|
922 |
+
--------
|
923 |
+
>>> np.union1d([-1, 0, 1], [-2, 0, 2])
|
924 |
+
array([-2, -1, 0, 1, 2])
|
925 |
+
|
926 |
+
To find the union of more than two arrays, use functools.reduce:
|
927 |
+
|
928 |
+
>>> from functools import reduce
|
929 |
+
>>> reduce(np.union1d, ([1, 3, 4, 3], [3, 1, 2, 1], [6, 3, 4, 2]))
|
930 |
+
array([1, 2, 3, 4, 6])
|
931 |
+
"""
|
932 |
+
return unique(np.concatenate((ar1, ar2), axis=None))
|
933 |
+
|
934 |
+
|
935 |
+
def _setdiff1d_dispatcher(ar1, ar2, assume_unique=None):
|
936 |
+
return (ar1, ar2)
|
937 |
+
|
938 |
+
|
939 |
+
@array_function_dispatch(_setdiff1d_dispatcher)
|
940 |
+
def setdiff1d(ar1, ar2, assume_unique=False):
|
941 |
+
"""
|
942 |
+
Find the set difference of two arrays.
|
943 |
+
|
944 |
+
Return the unique values in `ar1` that are not in `ar2`.
|
945 |
+
|
946 |
+
Parameters
|
947 |
+
----------
|
948 |
+
ar1 : array_like
|
949 |
+
Input array.
|
950 |
+
ar2 : array_like
|
951 |
+
Input comparison array.
|
952 |
+
assume_unique : bool
|
953 |
+
If True, the input arrays are both assumed to be unique, which
|
954 |
+
can speed up the calculation. Default is False.
|
955 |
+
|
956 |
+
Returns
|
957 |
+
-------
|
958 |
+
setdiff1d : ndarray
|
959 |
+
1D array of values in `ar1` that are not in `ar2`. The result
|
960 |
+
is sorted when `assume_unique=False`, but otherwise only sorted
|
961 |
+
if the input is sorted.
|
962 |
+
|
963 |
+
See Also
|
964 |
+
--------
|
965 |
+
numpy.lib.arraysetops : Module with a number of other functions for
|
966 |
+
performing set operations on arrays.
|
967 |
+
|
968 |
+
Examples
|
969 |
+
--------
|
970 |
+
>>> a = np.array([1, 2, 3, 2, 4, 1])
|
971 |
+
>>> b = np.array([3, 4, 5, 6])
|
972 |
+
>>> np.setdiff1d(a, b)
|
973 |
+
array([1, 2])
|
974 |
+
|
975 |
+
"""
|
976 |
+
if assume_unique:
|
977 |
+
ar1 = np.asarray(ar1).ravel()
|
978 |
+
else:
|
979 |
+
ar1 = unique(ar1)
|
980 |
+
ar2 = unique(ar2)
|
981 |
+
return ar1[in1d(ar1, ar2, assume_unique=True, invert=True)]
|
env-llmeval/lib/python3.10/site-packages/numpy/lib/arraysetops.pyi
ADDED
@@ -0,0 +1,362 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import (
|
2 |
+
Literal as L,
|
3 |
+
Any,
|
4 |
+
TypeVar,
|
5 |
+
overload,
|
6 |
+
SupportsIndex,
|
7 |
+
)
|
8 |
+
|
9 |
+
from numpy import (
|
10 |
+
generic,
|
11 |
+
number,
|
12 |
+
bool_,
|
13 |
+
ushort,
|
14 |
+
ubyte,
|
15 |
+
uintc,
|
16 |
+
uint,
|
17 |
+
ulonglong,
|
18 |
+
short,
|
19 |
+
int8,
|
20 |
+
byte,
|
21 |
+
intc,
|
22 |
+
int_,
|
23 |
+
intp,
|
24 |
+
longlong,
|
25 |
+
half,
|
26 |
+
single,
|
27 |
+
double,
|
28 |
+
longdouble,
|
29 |
+
csingle,
|
30 |
+
cdouble,
|
31 |
+
clongdouble,
|
32 |
+
timedelta64,
|
33 |
+
datetime64,
|
34 |
+
object_,
|
35 |
+
str_,
|
36 |
+
bytes_,
|
37 |
+
void,
|
38 |
+
)
|
39 |
+
|
40 |
+
from numpy._typing import (
|
41 |
+
ArrayLike,
|
42 |
+
NDArray,
|
43 |
+
_ArrayLike,
|
44 |
+
_ArrayLikeBool_co,
|
45 |
+
_ArrayLikeDT64_co,
|
46 |
+
_ArrayLikeTD64_co,
|
47 |
+
_ArrayLikeObject_co,
|
48 |
+
_ArrayLikeNumber_co,
|
49 |
+
)
|
50 |
+
|
51 |
+
_SCT = TypeVar("_SCT", bound=generic)
|
52 |
+
_NumberType = TypeVar("_NumberType", bound=number[Any])
|
53 |
+
|
54 |
+
# Explicitly set all allowed values to prevent accidental castings to
|
55 |
+
# abstract dtypes (their common super-type).
|
56 |
+
#
|
57 |
+
# Only relevant if two or more arguments are parametrized, (e.g. `setdiff1d`)
|
58 |
+
# which could result in, for example, `int64` and `float64`producing a
|
59 |
+
# `number[_64Bit]` array
|
60 |
+
_SCTNoCast = TypeVar(
|
61 |
+
"_SCTNoCast",
|
62 |
+
bool_,
|
63 |
+
ushort,
|
64 |
+
ubyte,
|
65 |
+
uintc,
|
66 |
+
uint,
|
67 |
+
ulonglong,
|
68 |
+
short,
|
69 |
+
byte,
|
70 |
+
intc,
|
71 |
+
int_,
|
72 |
+
longlong,
|
73 |
+
half,
|
74 |
+
single,
|
75 |
+
double,
|
76 |
+
longdouble,
|
77 |
+
csingle,
|
78 |
+
cdouble,
|
79 |
+
clongdouble,
|
80 |
+
timedelta64,
|
81 |
+
datetime64,
|
82 |
+
object_,
|
83 |
+
str_,
|
84 |
+
bytes_,
|
85 |
+
void,
|
86 |
+
)
|
87 |
+
|
88 |
+
__all__: list[str]
|
89 |
+
|
90 |
+
@overload
|
91 |
+
def ediff1d(
|
92 |
+
ary: _ArrayLikeBool_co,
|
93 |
+
to_end: None | ArrayLike = ...,
|
94 |
+
to_begin: None | ArrayLike = ...,
|
95 |
+
) -> NDArray[int8]: ...
|
96 |
+
@overload
|
97 |
+
def ediff1d(
|
98 |
+
ary: _ArrayLike[_NumberType],
|
99 |
+
to_end: None | ArrayLike = ...,
|
100 |
+
to_begin: None | ArrayLike = ...,
|
101 |
+
) -> NDArray[_NumberType]: ...
|
102 |
+
@overload
|
103 |
+
def ediff1d(
|
104 |
+
ary: _ArrayLikeNumber_co,
|
105 |
+
to_end: None | ArrayLike = ...,
|
106 |
+
to_begin: None | ArrayLike = ...,
|
107 |
+
) -> NDArray[Any]: ...
|
108 |
+
@overload
|
109 |
+
def ediff1d(
|
110 |
+
ary: _ArrayLikeDT64_co | _ArrayLikeTD64_co,
|
111 |
+
to_end: None | ArrayLike = ...,
|
112 |
+
to_begin: None | ArrayLike = ...,
|
113 |
+
) -> NDArray[timedelta64]: ...
|
114 |
+
@overload
|
115 |
+
def ediff1d(
|
116 |
+
ary: _ArrayLikeObject_co,
|
117 |
+
to_end: None | ArrayLike = ...,
|
118 |
+
to_begin: None | ArrayLike = ...,
|
119 |
+
) -> NDArray[object_]: ...
|
120 |
+
|
121 |
+
@overload
|
122 |
+
def unique(
|
123 |
+
ar: _ArrayLike[_SCT],
|
124 |
+
return_index: L[False] = ...,
|
125 |
+
return_inverse: L[False] = ...,
|
126 |
+
return_counts: L[False] = ...,
|
127 |
+
axis: None | SupportsIndex = ...,
|
128 |
+
*,
|
129 |
+
equal_nan: bool = ...,
|
130 |
+
) -> NDArray[_SCT]: ...
|
131 |
+
@overload
|
132 |
+
def unique(
|
133 |
+
ar: ArrayLike,
|
134 |
+
return_index: L[False] = ...,
|
135 |
+
return_inverse: L[False] = ...,
|
136 |
+
return_counts: L[False] = ...,
|
137 |
+
axis: None | SupportsIndex = ...,
|
138 |
+
*,
|
139 |
+
equal_nan: bool = ...,
|
140 |
+
) -> NDArray[Any]: ...
|
141 |
+
@overload
|
142 |
+
def unique(
|
143 |
+
ar: _ArrayLike[_SCT],
|
144 |
+
return_index: L[True] = ...,
|
145 |
+
return_inverse: L[False] = ...,
|
146 |
+
return_counts: L[False] = ...,
|
147 |
+
axis: None | SupportsIndex = ...,
|
148 |
+
*,
|
149 |
+
equal_nan: bool = ...,
|
150 |
+
) -> tuple[NDArray[_SCT], NDArray[intp]]: ...
|
151 |
+
@overload
|
152 |
+
def unique(
|
153 |
+
ar: ArrayLike,
|
154 |
+
return_index: L[True] = ...,
|
155 |
+
return_inverse: L[False] = ...,
|
156 |
+
return_counts: L[False] = ...,
|
157 |
+
axis: None | SupportsIndex = ...,
|
158 |
+
*,
|
159 |
+
equal_nan: bool = ...,
|
160 |
+
) -> tuple[NDArray[Any], NDArray[intp]]: ...
|
161 |
+
@overload
|
162 |
+
def unique(
|
163 |
+
ar: _ArrayLike[_SCT],
|
164 |
+
return_index: L[False] = ...,
|
165 |
+
return_inverse: L[True] = ...,
|
166 |
+
return_counts: L[False] = ...,
|
167 |
+
axis: None | SupportsIndex = ...,
|
168 |
+
*,
|
169 |
+
equal_nan: bool = ...,
|
170 |
+
) -> tuple[NDArray[_SCT], NDArray[intp]]: ...
|
171 |
+
@overload
|
172 |
+
def unique(
|
173 |
+
ar: ArrayLike,
|
174 |
+
return_index: L[False] = ...,
|
175 |
+
return_inverse: L[True] = ...,
|
176 |
+
return_counts: L[False] = ...,
|
177 |
+
axis: None | SupportsIndex = ...,
|
178 |
+
*,
|
179 |
+
equal_nan: bool = ...,
|
180 |
+
) -> tuple[NDArray[Any], NDArray[intp]]: ...
|
181 |
+
@overload
|
182 |
+
def unique(
|
183 |
+
ar: _ArrayLike[_SCT],
|
184 |
+
return_index: L[False] = ...,
|
185 |
+
return_inverse: L[False] = ...,
|
186 |
+
return_counts: L[True] = ...,
|
187 |
+
axis: None | SupportsIndex = ...,
|
188 |
+
*,
|
189 |
+
equal_nan: bool = ...,
|
190 |
+
) -> tuple[NDArray[_SCT], NDArray[intp]]: ...
|
191 |
+
@overload
|
192 |
+
def unique(
|
193 |
+
ar: ArrayLike,
|
194 |
+
return_index: L[False] = ...,
|
195 |
+
return_inverse: L[False] = ...,
|
196 |
+
return_counts: L[True] = ...,
|
197 |
+
axis: None | SupportsIndex = ...,
|
198 |
+
*,
|
199 |
+
equal_nan: bool = ...,
|
200 |
+
) -> tuple[NDArray[Any], NDArray[intp]]: ...
|
201 |
+
@overload
|
202 |
+
def unique(
|
203 |
+
ar: _ArrayLike[_SCT],
|
204 |
+
return_index: L[True] = ...,
|
205 |
+
return_inverse: L[True] = ...,
|
206 |
+
return_counts: L[False] = ...,
|
207 |
+
axis: None | SupportsIndex = ...,
|
208 |
+
*,
|
209 |
+
equal_nan: bool = ...,
|
210 |
+
) -> tuple[NDArray[_SCT], NDArray[intp], NDArray[intp]]: ...
|
211 |
+
@overload
|
212 |
+
def unique(
|
213 |
+
ar: ArrayLike,
|
214 |
+
return_index: L[True] = ...,
|
215 |
+
return_inverse: L[True] = ...,
|
216 |
+
return_counts: L[False] = ...,
|
217 |
+
axis: None | SupportsIndex = ...,
|
218 |
+
*,
|
219 |
+
equal_nan: bool = ...,
|
220 |
+
) -> tuple[NDArray[Any], NDArray[intp], NDArray[intp]]: ...
|
221 |
+
@overload
|
222 |
+
def unique(
|
223 |
+
ar: _ArrayLike[_SCT],
|
224 |
+
return_index: L[True] = ...,
|
225 |
+
return_inverse: L[False] = ...,
|
226 |
+
return_counts: L[True] = ...,
|
227 |
+
axis: None | SupportsIndex = ...,
|
228 |
+
*,
|
229 |
+
equal_nan: bool = ...,
|
230 |
+
) -> tuple[NDArray[_SCT], NDArray[intp], NDArray[intp]]: ...
|
231 |
+
@overload
|
232 |
+
def unique(
|
233 |
+
ar: ArrayLike,
|
234 |
+
return_index: L[True] = ...,
|
235 |
+
return_inverse: L[False] = ...,
|
236 |
+
return_counts: L[True] = ...,
|
237 |
+
axis: None | SupportsIndex = ...,
|
238 |
+
*,
|
239 |
+
equal_nan: bool = ...,
|
240 |
+
) -> tuple[NDArray[Any], NDArray[intp], NDArray[intp]]: ...
|
241 |
+
@overload
|
242 |
+
def unique(
|
243 |
+
ar: _ArrayLike[_SCT],
|
244 |
+
return_index: L[False] = ...,
|
245 |
+
return_inverse: L[True] = ...,
|
246 |
+
return_counts: L[True] = ...,
|
247 |
+
axis: None | SupportsIndex = ...,
|
248 |
+
*,
|
249 |
+
equal_nan: bool = ...,
|
250 |
+
) -> tuple[NDArray[_SCT], NDArray[intp], NDArray[intp]]: ...
|
251 |
+
@overload
|
252 |
+
def unique(
|
253 |
+
ar: ArrayLike,
|
254 |
+
return_index: L[False] = ...,
|
255 |
+
return_inverse: L[True] = ...,
|
256 |
+
return_counts: L[True] = ...,
|
257 |
+
axis: None | SupportsIndex = ...,
|
258 |
+
*,
|
259 |
+
equal_nan: bool = ...,
|
260 |
+
) -> tuple[NDArray[Any], NDArray[intp], NDArray[intp]]: ...
|
261 |
+
@overload
|
262 |
+
def unique(
|
263 |
+
ar: _ArrayLike[_SCT],
|
264 |
+
return_index: L[True] = ...,
|
265 |
+
return_inverse: L[True] = ...,
|
266 |
+
return_counts: L[True] = ...,
|
267 |
+
axis: None | SupportsIndex = ...,
|
268 |
+
*,
|
269 |
+
equal_nan: bool = ...,
|
270 |
+
) -> tuple[NDArray[_SCT], NDArray[intp], NDArray[intp], NDArray[intp]]: ...
|
271 |
+
@overload
|
272 |
+
def unique(
|
273 |
+
ar: ArrayLike,
|
274 |
+
return_index: L[True] = ...,
|
275 |
+
return_inverse: L[True] = ...,
|
276 |
+
return_counts: L[True] = ...,
|
277 |
+
axis: None | SupportsIndex = ...,
|
278 |
+
*,
|
279 |
+
equal_nan: bool = ...,
|
280 |
+
) -> tuple[NDArray[Any], NDArray[intp], NDArray[intp], NDArray[intp]]: ...
|
281 |
+
|
282 |
+
@overload
|
283 |
+
def intersect1d(
|
284 |
+
ar1: _ArrayLike[_SCTNoCast],
|
285 |
+
ar2: _ArrayLike[_SCTNoCast],
|
286 |
+
assume_unique: bool = ...,
|
287 |
+
return_indices: L[False] = ...,
|
288 |
+
) -> NDArray[_SCTNoCast]: ...
|
289 |
+
@overload
|
290 |
+
def intersect1d(
|
291 |
+
ar1: ArrayLike,
|
292 |
+
ar2: ArrayLike,
|
293 |
+
assume_unique: bool = ...,
|
294 |
+
return_indices: L[False] = ...,
|
295 |
+
) -> NDArray[Any]: ...
|
296 |
+
@overload
|
297 |
+
def intersect1d(
|
298 |
+
ar1: _ArrayLike[_SCTNoCast],
|
299 |
+
ar2: _ArrayLike[_SCTNoCast],
|
300 |
+
assume_unique: bool = ...,
|
301 |
+
return_indices: L[True] = ...,
|
302 |
+
) -> tuple[NDArray[_SCTNoCast], NDArray[intp], NDArray[intp]]: ...
|
303 |
+
@overload
|
304 |
+
def intersect1d(
|
305 |
+
ar1: ArrayLike,
|
306 |
+
ar2: ArrayLike,
|
307 |
+
assume_unique: bool = ...,
|
308 |
+
return_indices: L[True] = ...,
|
309 |
+
) -> tuple[NDArray[Any], NDArray[intp], NDArray[intp]]: ...
|
310 |
+
|
311 |
+
@overload
|
312 |
+
def setxor1d(
|
313 |
+
ar1: _ArrayLike[_SCTNoCast],
|
314 |
+
ar2: _ArrayLike[_SCTNoCast],
|
315 |
+
assume_unique: bool = ...,
|
316 |
+
) -> NDArray[_SCTNoCast]: ...
|
317 |
+
@overload
|
318 |
+
def setxor1d(
|
319 |
+
ar1: ArrayLike,
|
320 |
+
ar2: ArrayLike,
|
321 |
+
assume_unique: bool = ...,
|
322 |
+
) -> NDArray[Any]: ...
|
323 |
+
|
324 |
+
def in1d(
|
325 |
+
ar1: ArrayLike,
|
326 |
+
ar2: ArrayLike,
|
327 |
+
assume_unique: bool = ...,
|
328 |
+
invert: bool = ...,
|
329 |
+
) -> NDArray[bool_]: ...
|
330 |
+
|
331 |
+
def isin(
|
332 |
+
element: ArrayLike,
|
333 |
+
test_elements: ArrayLike,
|
334 |
+
assume_unique: bool = ...,
|
335 |
+
invert: bool = ...,
|
336 |
+
*,
|
337 |
+
kind: None | str = ...,
|
338 |
+
) -> NDArray[bool_]: ...
|
339 |
+
|
340 |
+
@overload
|
341 |
+
def union1d(
|
342 |
+
ar1: _ArrayLike[_SCTNoCast],
|
343 |
+
ar2: _ArrayLike[_SCTNoCast],
|
344 |
+
) -> NDArray[_SCTNoCast]: ...
|
345 |
+
@overload
|
346 |
+
def union1d(
|
347 |
+
ar1: ArrayLike,
|
348 |
+
ar2: ArrayLike,
|
349 |
+
) -> NDArray[Any]: ...
|
350 |
+
|
351 |
+
@overload
|
352 |
+
def setdiff1d(
|
353 |
+
ar1: _ArrayLike[_SCTNoCast],
|
354 |
+
ar2: _ArrayLike[_SCTNoCast],
|
355 |
+
assume_unique: bool = ...,
|
356 |
+
) -> NDArray[_SCTNoCast]: ...
|
357 |
+
@overload
|
358 |
+
def setdiff1d(
|
359 |
+
ar1: ArrayLike,
|
360 |
+
ar2: ArrayLike,
|
361 |
+
assume_unique: bool = ...,
|
362 |
+
) -> NDArray[Any]: ...
|
env-llmeval/lib/python3.10/site-packages/numpy/lib/arrayterator.py
ADDED
@@ -0,0 +1,219 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
A buffered iterator for big arrays.
|
3 |
+
|
4 |
+
This module solves the problem of iterating over a big file-based array
|
5 |
+
without having to read it into memory. The `Arrayterator` class wraps
|
6 |
+
an array object, and when iterated it will return sub-arrays with at most
|
7 |
+
a user-specified number of elements.
|
8 |
+
|
9 |
+
"""
|
10 |
+
from operator import mul
|
11 |
+
from functools import reduce
|
12 |
+
|
13 |
+
__all__ = ['Arrayterator']
|
14 |
+
|
15 |
+
|
16 |
+
class Arrayterator:
|
17 |
+
"""
|
18 |
+
Buffered iterator for big arrays.
|
19 |
+
|
20 |
+
`Arrayterator` creates a buffered iterator for reading big arrays in small
|
21 |
+
contiguous blocks. The class is useful for objects stored in the
|
22 |
+
file system. It allows iteration over the object *without* reading
|
23 |
+
everything in memory; instead, small blocks are read and iterated over.
|
24 |
+
|
25 |
+
`Arrayterator` can be used with any object that supports multidimensional
|
26 |
+
slices. This includes NumPy arrays, but also variables from
|
27 |
+
Scientific.IO.NetCDF or pynetcdf for example.
|
28 |
+
|
29 |
+
Parameters
|
30 |
+
----------
|
31 |
+
var : array_like
|
32 |
+
The object to iterate over.
|
33 |
+
buf_size : int, optional
|
34 |
+
The buffer size. If `buf_size` is supplied, the maximum amount of
|
35 |
+
data that will be read into memory is `buf_size` elements.
|
36 |
+
Default is None, which will read as many element as possible
|
37 |
+
into memory.
|
38 |
+
|
39 |
+
Attributes
|
40 |
+
----------
|
41 |
+
var
|
42 |
+
buf_size
|
43 |
+
start
|
44 |
+
stop
|
45 |
+
step
|
46 |
+
shape
|
47 |
+
flat
|
48 |
+
|
49 |
+
See Also
|
50 |
+
--------
|
51 |
+
ndenumerate : Multidimensional array iterator.
|
52 |
+
flatiter : Flat array iterator.
|
53 |
+
memmap : Create a memory-map to an array stored in a binary file on disk.
|
54 |
+
|
55 |
+
Notes
|
56 |
+
-----
|
57 |
+
The algorithm works by first finding a "running dimension", along which
|
58 |
+
the blocks will be extracted. Given an array of dimensions
|
59 |
+
``(d1, d2, ..., dn)``, e.g. if `buf_size` is smaller than ``d1``, the
|
60 |
+
first dimension will be used. If, on the other hand,
|
61 |
+
``d1 < buf_size < d1*d2`` the second dimension will be used, and so on.
|
62 |
+
Blocks are extracted along this dimension, and when the last block is
|
63 |
+
returned the process continues from the next dimension, until all
|
64 |
+
elements have been read.
|
65 |
+
|
66 |
+
Examples
|
67 |
+
--------
|
68 |
+
>>> a = np.arange(3 * 4 * 5 * 6).reshape(3, 4, 5, 6)
|
69 |
+
>>> a_itor = np.lib.Arrayterator(a, 2)
|
70 |
+
>>> a_itor.shape
|
71 |
+
(3, 4, 5, 6)
|
72 |
+
|
73 |
+
Now we can iterate over ``a_itor``, and it will return arrays of size
|
74 |
+
two. Since `buf_size` was smaller than any dimension, the first
|
75 |
+
dimension will be iterated over first:
|
76 |
+
|
77 |
+
>>> for subarr in a_itor:
|
78 |
+
... if not subarr.all():
|
79 |
+
... print(subarr, subarr.shape) # doctest: +SKIP
|
80 |
+
>>> # [[[[0 1]]]] (1, 1, 1, 2)
|
81 |
+
|
82 |
+
"""
|
83 |
+
|
84 |
+
def __init__(self, var, buf_size=None):
|
85 |
+
self.var = var
|
86 |
+
self.buf_size = buf_size
|
87 |
+
|
88 |
+
self.start = [0 for dim in var.shape]
|
89 |
+
self.stop = [dim for dim in var.shape]
|
90 |
+
self.step = [1 for dim in var.shape]
|
91 |
+
|
92 |
+
def __getattr__(self, attr):
|
93 |
+
return getattr(self.var, attr)
|
94 |
+
|
95 |
+
def __getitem__(self, index):
|
96 |
+
"""
|
97 |
+
Return a new arrayterator.
|
98 |
+
|
99 |
+
"""
|
100 |
+
# Fix index, handling ellipsis and incomplete slices.
|
101 |
+
if not isinstance(index, tuple):
|
102 |
+
index = (index,)
|
103 |
+
fixed = []
|
104 |
+
length, dims = len(index), self.ndim
|
105 |
+
for slice_ in index:
|
106 |
+
if slice_ is Ellipsis:
|
107 |
+
fixed.extend([slice(None)] * (dims-length+1))
|
108 |
+
length = len(fixed)
|
109 |
+
elif isinstance(slice_, int):
|
110 |
+
fixed.append(slice(slice_, slice_+1, 1))
|
111 |
+
else:
|
112 |
+
fixed.append(slice_)
|
113 |
+
index = tuple(fixed)
|
114 |
+
if len(index) < dims:
|
115 |
+
index += (slice(None),) * (dims-len(index))
|
116 |
+
|
117 |
+
# Return a new arrayterator object.
|
118 |
+
out = self.__class__(self.var, self.buf_size)
|
119 |
+
for i, (start, stop, step, slice_) in enumerate(
|
120 |
+
zip(self.start, self.stop, self.step, index)):
|
121 |
+
out.start[i] = start + (slice_.start or 0)
|
122 |
+
out.step[i] = step * (slice_.step or 1)
|
123 |
+
out.stop[i] = start + (slice_.stop or stop-start)
|
124 |
+
out.stop[i] = min(stop, out.stop[i])
|
125 |
+
return out
|
126 |
+
|
127 |
+
def __array__(self):
|
128 |
+
"""
|
129 |
+
Return corresponding data.
|
130 |
+
|
131 |
+
"""
|
132 |
+
slice_ = tuple(slice(*t) for t in zip(
|
133 |
+
self.start, self.stop, self.step))
|
134 |
+
return self.var[slice_]
|
135 |
+
|
136 |
+
@property
|
137 |
+
def flat(self):
|
138 |
+
"""
|
139 |
+
A 1-D flat iterator for Arrayterator objects.
|
140 |
+
|
141 |
+
This iterator returns elements of the array to be iterated over in
|
142 |
+
`Arrayterator` one by one. It is similar to `flatiter`.
|
143 |
+
|
144 |
+
See Also
|
145 |
+
--------
|
146 |
+
Arrayterator
|
147 |
+
flatiter
|
148 |
+
|
149 |
+
Examples
|
150 |
+
--------
|
151 |
+
>>> a = np.arange(3 * 4 * 5 * 6).reshape(3, 4, 5, 6)
|
152 |
+
>>> a_itor = np.lib.Arrayterator(a, 2)
|
153 |
+
|
154 |
+
>>> for subarr in a_itor.flat:
|
155 |
+
... if not subarr:
|
156 |
+
... print(subarr, type(subarr))
|
157 |
+
...
|
158 |
+
0 <class 'numpy.int64'>
|
159 |
+
|
160 |
+
"""
|
161 |
+
for block in self:
|
162 |
+
yield from block.flat
|
163 |
+
|
164 |
+
@property
|
165 |
+
def shape(self):
|
166 |
+
"""
|
167 |
+
The shape of the array to be iterated over.
|
168 |
+
|
169 |
+
For an example, see `Arrayterator`.
|
170 |
+
|
171 |
+
"""
|
172 |
+
return tuple(((stop-start-1)//step+1) for start, stop, step in
|
173 |
+
zip(self.start, self.stop, self.step))
|
174 |
+
|
175 |
+
def __iter__(self):
|
176 |
+
# Skip arrays with degenerate dimensions
|
177 |
+
if [dim for dim in self.shape if dim <= 0]:
|
178 |
+
return
|
179 |
+
|
180 |
+
start = self.start[:]
|
181 |
+
stop = self.stop[:]
|
182 |
+
step = self.step[:]
|
183 |
+
ndims = self.var.ndim
|
184 |
+
|
185 |
+
while True:
|
186 |
+
count = self.buf_size or reduce(mul, self.shape)
|
187 |
+
|
188 |
+
# iterate over each dimension, looking for the
|
189 |
+
# running dimension (ie, the dimension along which
|
190 |
+
# the blocks will be built from)
|
191 |
+
rundim = 0
|
192 |
+
for i in range(ndims-1, -1, -1):
|
193 |
+
# if count is zero we ran out of elements to read
|
194 |
+
# along higher dimensions, so we read only a single position
|
195 |
+
if count == 0:
|
196 |
+
stop[i] = start[i]+1
|
197 |
+
elif count <= self.shape[i]:
|
198 |
+
# limit along this dimension
|
199 |
+
stop[i] = start[i] + count*step[i]
|
200 |
+
rundim = i
|
201 |
+
else:
|
202 |
+
# read everything along this dimension
|
203 |
+
stop[i] = self.stop[i]
|
204 |
+
stop[i] = min(self.stop[i], stop[i])
|
205 |
+
count = count//self.shape[i]
|
206 |
+
|
207 |
+
# yield a block
|
208 |
+
slice_ = tuple(slice(*t) for t in zip(start, stop, step))
|
209 |
+
yield self.var[slice_]
|
210 |
+
|
211 |
+
# Update start position, taking care of overflow to
|
212 |
+
# other dimensions
|
213 |
+
start[rundim] = stop[rundim] # start where we stopped
|
214 |
+
for i in range(ndims-1, 0, -1):
|
215 |
+
if start[i] >= self.stop[i]:
|
216 |
+
start[i] = self.start[i]
|
217 |
+
start[i-1] += self.step[i-1]
|
218 |
+
if start[0] >= self.stop[0]:
|
219 |
+
return
|
env-llmeval/lib/python3.10/site-packages/numpy/lib/format.py
ADDED
@@ -0,0 +1,976 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Binary serialization
|
3 |
+
|
4 |
+
NPY format
|
5 |
+
==========
|
6 |
+
|
7 |
+
A simple format for saving numpy arrays to disk with the full
|
8 |
+
information about them.
|
9 |
+
|
10 |
+
The ``.npy`` format is the standard binary file format in NumPy for
|
11 |
+
persisting a *single* arbitrary NumPy array on disk. The format stores all
|
12 |
+
of the shape and dtype information necessary to reconstruct the array
|
13 |
+
correctly even on another machine with a different architecture.
|
14 |
+
The format is designed to be as simple as possible while achieving
|
15 |
+
its limited goals.
|
16 |
+
|
17 |
+
The ``.npz`` format is the standard format for persisting *multiple* NumPy
|
18 |
+
arrays on disk. A ``.npz`` file is a zip file containing multiple ``.npy``
|
19 |
+
files, one for each array.
|
20 |
+
|
21 |
+
Capabilities
|
22 |
+
------------
|
23 |
+
|
24 |
+
- Can represent all NumPy arrays including nested record arrays and
|
25 |
+
object arrays.
|
26 |
+
|
27 |
+
- Represents the data in its native binary form.
|
28 |
+
|
29 |
+
- Supports Fortran-contiguous arrays directly.
|
30 |
+
|
31 |
+
- Stores all of the necessary information to reconstruct the array
|
32 |
+
including shape and dtype on a machine of a different
|
33 |
+
architecture. Both little-endian and big-endian arrays are
|
34 |
+
supported, and a file with little-endian numbers will yield
|
35 |
+
a little-endian array on any machine reading the file. The
|
36 |
+
types are described in terms of their actual sizes. For example,
|
37 |
+
if a machine with a 64-bit C "long int" writes out an array with
|
38 |
+
"long ints", a reading machine with 32-bit C "long ints" will yield
|
39 |
+
an array with 64-bit integers.
|
40 |
+
|
41 |
+
- Is straightforward to reverse engineer. Datasets often live longer than
|
42 |
+
the programs that created them. A competent developer should be
|
43 |
+
able to create a solution in their preferred programming language to
|
44 |
+
read most ``.npy`` files that they have been given without much
|
45 |
+
documentation.
|
46 |
+
|
47 |
+
- Allows memory-mapping of the data. See `open_memmap`.
|
48 |
+
|
49 |
+
- Can be read from a filelike stream object instead of an actual file.
|
50 |
+
|
51 |
+
- Stores object arrays, i.e. arrays containing elements that are arbitrary
|
52 |
+
Python objects. Files with object arrays are not to be mmapable, but
|
53 |
+
can be read and written to disk.
|
54 |
+
|
55 |
+
Limitations
|
56 |
+
-----------
|
57 |
+
|
58 |
+
- Arbitrary subclasses of numpy.ndarray are not completely preserved.
|
59 |
+
Subclasses will be accepted for writing, but only the array data will
|
60 |
+
be written out. A regular numpy.ndarray object will be created
|
61 |
+
upon reading the file.
|
62 |
+
|
63 |
+
.. warning::
|
64 |
+
|
65 |
+
Due to limitations in the interpretation of structured dtypes, dtypes
|
66 |
+
with fields with empty names will have the names replaced by 'f0', 'f1',
|
67 |
+
etc. Such arrays will not round-trip through the format entirely
|
68 |
+
accurately. The data is intact; only the field names will differ. We are
|
69 |
+
working on a fix for this. This fix will not require a change in the
|
70 |
+
file format. The arrays with such structures can still be saved and
|
71 |
+
restored, and the correct dtype may be restored by using the
|
72 |
+
``loadedarray.view(correct_dtype)`` method.
|
73 |
+
|
74 |
+
File extensions
|
75 |
+
---------------
|
76 |
+
|
77 |
+
We recommend using the ``.npy`` and ``.npz`` extensions for files saved
|
78 |
+
in this format. This is by no means a requirement; applications may wish
|
79 |
+
to use these file formats but use an extension specific to the
|
80 |
+
application. In the absence of an obvious alternative, however,
|
81 |
+
we suggest using ``.npy`` and ``.npz``.
|
82 |
+
|
83 |
+
Version numbering
|
84 |
+
-----------------
|
85 |
+
|
86 |
+
The version numbering of these formats is independent of NumPy version
|
87 |
+
numbering. If the format is upgraded, the code in `numpy.io` will still
|
88 |
+
be able to read and write Version 1.0 files.
|
89 |
+
|
90 |
+
Format Version 1.0
|
91 |
+
------------------
|
92 |
+
|
93 |
+
The first 6 bytes are a magic string: exactly ``\\x93NUMPY``.
|
94 |
+
|
95 |
+
The next 1 byte is an unsigned byte: the major version number of the file
|
96 |
+
format, e.g. ``\\x01``.
|
97 |
+
|
98 |
+
The next 1 byte is an unsigned byte: the minor version number of the file
|
99 |
+
format, e.g. ``\\x00``. Note: the version of the file format is not tied
|
100 |
+
to the version of the numpy package.
|
101 |
+
|
102 |
+
The next 2 bytes form a little-endian unsigned short int: the length of
|
103 |
+
the header data HEADER_LEN.
|
104 |
+
|
105 |
+
The next HEADER_LEN bytes form the header data describing the array's
|
106 |
+
format. It is an ASCII string which contains a Python literal expression
|
107 |
+
of a dictionary. It is terminated by a newline (``\\n``) and padded with
|
108 |
+
spaces (``\\x20``) to make the total of
|
109 |
+
``len(magic string) + 2 + len(length) + HEADER_LEN`` be evenly divisible
|
110 |
+
by 64 for alignment purposes.
|
111 |
+
|
112 |
+
The dictionary contains three keys:
|
113 |
+
|
114 |
+
"descr" : dtype.descr
|
115 |
+
An object that can be passed as an argument to the `numpy.dtype`
|
116 |
+
constructor to create the array's dtype.
|
117 |
+
"fortran_order" : bool
|
118 |
+
Whether the array data is Fortran-contiguous or not. Since
|
119 |
+
Fortran-contiguous arrays are a common form of non-C-contiguity,
|
120 |
+
we allow them to be written directly to disk for efficiency.
|
121 |
+
"shape" : tuple of int
|
122 |
+
The shape of the array.
|
123 |
+
|
124 |
+
For repeatability and readability, the dictionary keys are sorted in
|
125 |
+
alphabetic order. This is for convenience only. A writer SHOULD implement
|
126 |
+
this if possible. A reader MUST NOT depend on this.
|
127 |
+
|
128 |
+
Following the header comes the array data. If the dtype contains Python
|
129 |
+
objects (i.e. ``dtype.hasobject is True``), then the data is a Python
|
130 |
+
pickle of the array. Otherwise the data is the contiguous (either C-
|
131 |
+
or Fortran-, depending on ``fortran_order``) bytes of the array.
|
132 |
+
Consumers can figure out the number of bytes by multiplying the number
|
133 |
+
of elements given by the shape (noting that ``shape=()`` means there is
|
134 |
+
1 element) by ``dtype.itemsize``.
|
135 |
+
|
136 |
+
Format Version 2.0
|
137 |
+
------------------
|
138 |
+
|
139 |
+
The version 1.0 format only allowed the array header to have a total size of
|
140 |
+
65535 bytes. This can be exceeded by structured arrays with a large number of
|
141 |
+
columns. The version 2.0 format extends the header size to 4 GiB.
|
142 |
+
`numpy.save` will automatically save in 2.0 format if the data requires it,
|
143 |
+
else it will always use the more compatible 1.0 format.
|
144 |
+
|
145 |
+
The description of the fourth element of the header therefore has become:
|
146 |
+
"The next 4 bytes form a little-endian unsigned int: the length of the header
|
147 |
+
data HEADER_LEN."
|
148 |
+
|
149 |
+
Format Version 3.0
|
150 |
+
------------------
|
151 |
+
|
152 |
+
This version replaces the ASCII string (which in practice was latin1) with
|
153 |
+
a utf8-encoded string, so supports structured types with any unicode field
|
154 |
+
names.
|
155 |
+
|
156 |
+
Notes
|
157 |
+
-----
|
158 |
+
The ``.npy`` format, including motivation for creating it and a comparison of
|
159 |
+
alternatives, is described in the
|
160 |
+
:doc:`"npy-format" NEP <neps:nep-0001-npy-format>`, however details have
|
161 |
+
evolved with time and this document is more current.
|
162 |
+
|
163 |
+
"""
|
164 |
+
import numpy
|
165 |
+
import warnings
|
166 |
+
from numpy.lib.utils import safe_eval, drop_metadata
|
167 |
+
from numpy.compat import (
|
168 |
+
isfileobj, os_fspath, pickle
|
169 |
+
)
|
170 |
+
|
171 |
+
|
172 |
+
__all__ = []
|
173 |
+
|
174 |
+
|
175 |
+
EXPECTED_KEYS = {'descr', 'fortran_order', 'shape'}
|
176 |
+
MAGIC_PREFIX = b'\x93NUMPY'
|
177 |
+
MAGIC_LEN = len(MAGIC_PREFIX) + 2
|
178 |
+
ARRAY_ALIGN = 64 # plausible values are powers of 2 between 16 and 4096
|
179 |
+
BUFFER_SIZE = 2**18 # size of buffer for reading npz files in bytes
|
180 |
+
# allow growth within the address space of a 64 bit machine along one axis
|
181 |
+
GROWTH_AXIS_MAX_DIGITS = 21 # = len(str(8*2**64-1)) hypothetical int1 dtype
|
182 |
+
|
183 |
+
# difference between version 1.0 and 2.0 is a 4 byte (I) header length
|
184 |
+
# instead of 2 bytes (H) allowing storage of large structured arrays
|
185 |
+
_header_size_info = {
|
186 |
+
(1, 0): ('<H', 'latin1'),
|
187 |
+
(2, 0): ('<I', 'latin1'),
|
188 |
+
(3, 0): ('<I', 'utf8'),
|
189 |
+
}
|
190 |
+
|
191 |
+
# Python's literal_eval is not actually safe for large inputs, since parsing
|
192 |
+
# may become slow or even cause interpreter crashes.
|
193 |
+
# This is an arbitrary, low limit which should make it safe in practice.
|
194 |
+
_MAX_HEADER_SIZE = 10000
|
195 |
+
|
196 |
+
def _check_version(version):
|
197 |
+
if version not in [(1, 0), (2, 0), (3, 0), None]:
|
198 |
+
msg = "we only support format version (1,0), (2,0), and (3,0), not %s"
|
199 |
+
raise ValueError(msg % (version,))
|
200 |
+
|
201 |
+
def magic(major, minor):
|
202 |
+
""" Return the magic string for the given file format version.
|
203 |
+
|
204 |
+
Parameters
|
205 |
+
----------
|
206 |
+
major : int in [0, 255]
|
207 |
+
minor : int in [0, 255]
|
208 |
+
|
209 |
+
Returns
|
210 |
+
-------
|
211 |
+
magic : str
|
212 |
+
|
213 |
+
Raises
|
214 |
+
------
|
215 |
+
ValueError if the version cannot be formatted.
|
216 |
+
"""
|
217 |
+
if major < 0 or major > 255:
|
218 |
+
raise ValueError("major version must be 0 <= major < 256")
|
219 |
+
if minor < 0 or minor > 255:
|
220 |
+
raise ValueError("minor version must be 0 <= minor < 256")
|
221 |
+
return MAGIC_PREFIX + bytes([major, minor])
|
222 |
+
|
223 |
+
def read_magic(fp):
|
224 |
+
""" Read the magic string to get the version of the file format.
|
225 |
+
|
226 |
+
Parameters
|
227 |
+
----------
|
228 |
+
fp : filelike object
|
229 |
+
|
230 |
+
Returns
|
231 |
+
-------
|
232 |
+
major : int
|
233 |
+
minor : int
|
234 |
+
"""
|
235 |
+
magic_str = _read_bytes(fp, MAGIC_LEN, "magic string")
|
236 |
+
if magic_str[:-2] != MAGIC_PREFIX:
|
237 |
+
msg = "the magic string is not correct; expected %r, got %r"
|
238 |
+
raise ValueError(msg % (MAGIC_PREFIX, magic_str[:-2]))
|
239 |
+
major, minor = magic_str[-2:]
|
240 |
+
return major, minor
|
241 |
+
|
242 |
+
|
243 |
+
def dtype_to_descr(dtype):
|
244 |
+
"""
|
245 |
+
Get a serializable descriptor from the dtype.
|
246 |
+
|
247 |
+
The .descr attribute of a dtype object cannot be round-tripped through
|
248 |
+
the dtype() constructor. Simple types, like dtype('float32'), have
|
249 |
+
a descr which looks like a record array with one field with '' as
|
250 |
+
a name. The dtype() constructor interprets this as a request to give
|
251 |
+
a default name. Instead, we construct descriptor that can be passed to
|
252 |
+
dtype().
|
253 |
+
|
254 |
+
Parameters
|
255 |
+
----------
|
256 |
+
dtype : dtype
|
257 |
+
The dtype of the array that will be written to disk.
|
258 |
+
|
259 |
+
Returns
|
260 |
+
-------
|
261 |
+
descr : object
|
262 |
+
An object that can be passed to `numpy.dtype()` in order to
|
263 |
+
replicate the input dtype.
|
264 |
+
|
265 |
+
"""
|
266 |
+
# NOTE: that drop_metadata may not return the right dtype e.g. for user
|
267 |
+
# dtypes. In that case our code below would fail the same, though.
|
268 |
+
new_dtype = drop_metadata(dtype)
|
269 |
+
if new_dtype is not dtype:
|
270 |
+
warnings.warn("metadata on a dtype is not saved to an npy/npz. "
|
271 |
+
"Use another format (such as pickle) to store it.",
|
272 |
+
UserWarning, stacklevel=2)
|
273 |
+
if dtype.names is not None:
|
274 |
+
# This is a record array. The .descr is fine. XXX: parts of the
|
275 |
+
# record array with an empty name, like padding bytes, still get
|
276 |
+
# fiddled with. This needs to be fixed in the C implementation of
|
277 |
+
# dtype().
|
278 |
+
return dtype.descr
|
279 |
+
else:
|
280 |
+
return dtype.str
|
281 |
+
|
282 |
+
def descr_to_dtype(descr):
|
283 |
+
"""
|
284 |
+
Returns a dtype based off the given description.
|
285 |
+
|
286 |
+
This is essentially the reverse of `dtype_to_descr()`. It will remove
|
287 |
+
the valueless padding fields created by, i.e. simple fields like
|
288 |
+
dtype('float32'), and then convert the description to its corresponding
|
289 |
+
dtype.
|
290 |
+
|
291 |
+
Parameters
|
292 |
+
----------
|
293 |
+
descr : object
|
294 |
+
The object retrieved by dtype.descr. Can be passed to
|
295 |
+
`numpy.dtype()` in order to replicate the input dtype.
|
296 |
+
|
297 |
+
Returns
|
298 |
+
-------
|
299 |
+
dtype : dtype
|
300 |
+
The dtype constructed by the description.
|
301 |
+
|
302 |
+
"""
|
303 |
+
if isinstance(descr, str):
|
304 |
+
# No padding removal needed
|
305 |
+
return numpy.dtype(descr)
|
306 |
+
elif isinstance(descr, tuple):
|
307 |
+
# subtype, will always have a shape descr[1]
|
308 |
+
dt = descr_to_dtype(descr[0])
|
309 |
+
return numpy.dtype((dt, descr[1]))
|
310 |
+
|
311 |
+
titles = []
|
312 |
+
names = []
|
313 |
+
formats = []
|
314 |
+
offsets = []
|
315 |
+
offset = 0
|
316 |
+
for field in descr:
|
317 |
+
if len(field) == 2:
|
318 |
+
name, descr_str = field
|
319 |
+
dt = descr_to_dtype(descr_str)
|
320 |
+
else:
|
321 |
+
name, descr_str, shape = field
|
322 |
+
dt = numpy.dtype((descr_to_dtype(descr_str), shape))
|
323 |
+
|
324 |
+
# Ignore padding bytes, which will be void bytes with '' as name
|
325 |
+
# Once support for blank names is removed, only "if name == ''" needed)
|
326 |
+
is_pad = (name == '' and dt.type is numpy.void and dt.names is None)
|
327 |
+
if not is_pad:
|
328 |
+
title, name = name if isinstance(name, tuple) else (None, name)
|
329 |
+
titles.append(title)
|
330 |
+
names.append(name)
|
331 |
+
formats.append(dt)
|
332 |
+
offsets.append(offset)
|
333 |
+
offset += dt.itemsize
|
334 |
+
|
335 |
+
return numpy.dtype({'names': names, 'formats': formats, 'titles': titles,
|
336 |
+
'offsets': offsets, 'itemsize': offset})
|
337 |
+
|
338 |
+
def header_data_from_array_1_0(array):
|
339 |
+
""" Get the dictionary of header metadata from a numpy.ndarray.
|
340 |
+
|
341 |
+
Parameters
|
342 |
+
----------
|
343 |
+
array : numpy.ndarray
|
344 |
+
|
345 |
+
Returns
|
346 |
+
-------
|
347 |
+
d : dict
|
348 |
+
This has the appropriate entries for writing its string representation
|
349 |
+
to the header of the file.
|
350 |
+
"""
|
351 |
+
d = {'shape': array.shape}
|
352 |
+
if array.flags.c_contiguous:
|
353 |
+
d['fortran_order'] = False
|
354 |
+
elif array.flags.f_contiguous:
|
355 |
+
d['fortran_order'] = True
|
356 |
+
else:
|
357 |
+
# Totally non-contiguous data. We will have to make it C-contiguous
|
358 |
+
# before writing. Note that we need to test for C_CONTIGUOUS first
|
359 |
+
# because a 1-D array is both C_CONTIGUOUS and F_CONTIGUOUS.
|
360 |
+
d['fortran_order'] = False
|
361 |
+
|
362 |
+
d['descr'] = dtype_to_descr(array.dtype)
|
363 |
+
return d
|
364 |
+
|
365 |
+
|
366 |
+
def _wrap_header(header, version):
|
367 |
+
"""
|
368 |
+
Takes a stringified header, and attaches the prefix and padding to it
|
369 |
+
"""
|
370 |
+
import struct
|
371 |
+
assert version is not None
|
372 |
+
fmt, encoding = _header_size_info[version]
|
373 |
+
header = header.encode(encoding)
|
374 |
+
hlen = len(header) + 1
|
375 |
+
padlen = ARRAY_ALIGN - ((MAGIC_LEN + struct.calcsize(fmt) + hlen) % ARRAY_ALIGN)
|
376 |
+
try:
|
377 |
+
header_prefix = magic(*version) + struct.pack(fmt, hlen + padlen)
|
378 |
+
except struct.error:
|
379 |
+
msg = "Header length {} too big for version={}".format(hlen, version)
|
380 |
+
raise ValueError(msg) from None
|
381 |
+
|
382 |
+
# Pad the header with spaces and a final newline such that the magic
|
383 |
+
# string, the header-length short and the header are aligned on a
|
384 |
+
# ARRAY_ALIGN byte boundary. This supports memory mapping of dtypes
|
385 |
+
# aligned up to ARRAY_ALIGN on systems like Linux where mmap()
|
386 |
+
# offset must be page-aligned (i.e. the beginning of the file).
|
387 |
+
return header_prefix + header + b' '*padlen + b'\n'
|
388 |
+
|
389 |
+
|
390 |
+
def _wrap_header_guess_version(header):
|
391 |
+
"""
|
392 |
+
Like `_wrap_header`, but chooses an appropriate version given the contents
|
393 |
+
"""
|
394 |
+
try:
|
395 |
+
return _wrap_header(header, (1, 0))
|
396 |
+
except ValueError:
|
397 |
+
pass
|
398 |
+
|
399 |
+
try:
|
400 |
+
ret = _wrap_header(header, (2, 0))
|
401 |
+
except UnicodeEncodeError:
|
402 |
+
pass
|
403 |
+
else:
|
404 |
+
warnings.warn("Stored array in format 2.0. It can only be"
|
405 |
+
"read by NumPy >= 1.9", UserWarning, stacklevel=2)
|
406 |
+
return ret
|
407 |
+
|
408 |
+
header = _wrap_header(header, (3, 0))
|
409 |
+
warnings.warn("Stored array in format 3.0. It can only be "
|
410 |
+
"read by NumPy >= 1.17", UserWarning, stacklevel=2)
|
411 |
+
return header
|
412 |
+
|
413 |
+
|
414 |
+
def _write_array_header(fp, d, version=None):
|
415 |
+
""" Write the header for an array and returns the version used
|
416 |
+
|
417 |
+
Parameters
|
418 |
+
----------
|
419 |
+
fp : filelike object
|
420 |
+
d : dict
|
421 |
+
This has the appropriate entries for writing its string representation
|
422 |
+
to the header of the file.
|
423 |
+
version : tuple or None
|
424 |
+
None means use oldest that works. Providing an explicit version will
|
425 |
+
raise a ValueError if the format does not allow saving this data.
|
426 |
+
Default: None
|
427 |
+
"""
|
428 |
+
header = ["{"]
|
429 |
+
for key, value in sorted(d.items()):
|
430 |
+
# Need to use repr here, since we eval these when reading
|
431 |
+
header.append("'%s': %s, " % (key, repr(value)))
|
432 |
+
header.append("}")
|
433 |
+
header = "".join(header)
|
434 |
+
|
435 |
+
# Add some spare space so that the array header can be modified in-place
|
436 |
+
# when changing the array size, e.g. when growing it by appending data at
|
437 |
+
# the end.
|
438 |
+
shape = d['shape']
|
439 |
+
header += " " * ((GROWTH_AXIS_MAX_DIGITS - len(repr(
|
440 |
+
shape[-1 if d['fortran_order'] else 0]
|
441 |
+
))) if len(shape) > 0 else 0)
|
442 |
+
|
443 |
+
if version is None:
|
444 |
+
header = _wrap_header_guess_version(header)
|
445 |
+
else:
|
446 |
+
header = _wrap_header(header, version)
|
447 |
+
fp.write(header)
|
448 |
+
|
449 |
+
def write_array_header_1_0(fp, d):
|
450 |
+
""" Write the header for an array using the 1.0 format.
|
451 |
+
|
452 |
+
Parameters
|
453 |
+
----------
|
454 |
+
fp : filelike object
|
455 |
+
d : dict
|
456 |
+
This has the appropriate entries for writing its string
|
457 |
+
representation to the header of the file.
|
458 |
+
"""
|
459 |
+
_write_array_header(fp, d, (1, 0))
|
460 |
+
|
461 |
+
|
462 |
+
def write_array_header_2_0(fp, d):
|
463 |
+
""" Write the header for an array using the 2.0 format.
|
464 |
+
The 2.0 format allows storing very large structured arrays.
|
465 |
+
|
466 |
+
.. versionadded:: 1.9.0
|
467 |
+
|
468 |
+
Parameters
|
469 |
+
----------
|
470 |
+
fp : filelike object
|
471 |
+
d : dict
|
472 |
+
This has the appropriate entries for writing its string
|
473 |
+
representation to the header of the file.
|
474 |
+
"""
|
475 |
+
_write_array_header(fp, d, (2, 0))
|
476 |
+
|
477 |
+
def read_array_header_1_0(fp, max_header_size=_MAX_HEADER_SIZE):
|
478 |
+
"""
|
479 |
+
Read an array header from a filelike object using the 1.0 file format
|
480 |
+
version.
|
481 |
+
|
482 |
+
This will leave the file object located just after the header.
|
483 |
+
|
484 |
+
Parameters
|
485 |
+
----------
|
486 |
+
fp : filelike object
|
487 |
+
A file object or something with a `.read()` method like a file.
|
488 |
+
|
489 |
+
Returns
|
490 |
+
-------
|
491 |
+
shape : tuple of int
|
492 |
+
The shape of the array.
|
493 |
+
fortran_order : bool
|
494 |
+
The array data will be written out directly if it is either
|
495 |
+
C-contiguous or Fortran-contiguous. Otherwise, it will be made
|
496 |
+
contiguous before writing it out.
|
497 |
+
dtype : dtype
|
498 |
+
The dtype of the file's data.
|
499 |
+
max_header_size : int, optional
|
500 |
+
Maximum allowed size of the header. Large headers may not be safe
|
501 |
+
to load securely and thus require explicitly passing a larger value.
|
502 |
+
See :py:func:`ast.literal_eval()` for details.
|
503 |
+
|
504 |
+
Raises
|
505 |
+
------
|
506 |
+
ValueError
|
507 |
+
If the data is invalid.
|
508 |
+
|
509 |
+
"""
|
510 |
+
return _read_array_header(
|
511 |
+
fp, version=(1, 0), max_header_size=max_header_size)
|
512 |
+
|
513 |
+
def read_array_header_2_0(fp, max_header_size=_MAX_HEADER_SIZE):
|
514 |
+
"""
|
515 |
+
Read an array header from a filelike object using the 2.0 file format
|
516 |
+
version.
|
517 |
+
|
518 |
+
This will leave the file object located just after the header.
|
519 |
+
|
520 |
+
.. versionadded:: 1.9.0
|
521 |
+
|
522 |
+
Parameters
|
523 |
+
----------
|
524 |
+
fp : filelike object
|
525 |
+
A file object or something with a `.read()` method like a file.
|
526 |
+
max_header_size : int, optional
|
527 |
+
Maximum allowed size of the header. Large headers may not be safe
|
528 |
+
to load securely and thus require explicitly passing a larger value.
|
529 |
+
See :py:func:`ast.literal_eval()` for details.
|
530 |
+
|
531 |
+
Returns
|
532 |
+
-------
|
533 |
+
shape : tuple of int
|
534 |
+
The shape of the array.
|
535 |
+
fortran_order : bool
|
536 |
+
The array data will be written out directly if it is either
|
537 |
+
C-contiguous or Fortran-contiguous. Otherwise, it will be made
|
538 |
+
contiguous before writing it out.
|
539 |
+
dtype : dtype
|
540 |
+
The dtype of the file's data.
|
541 |
+
|
542 |
+
Raises
|
543 |
+
------
|
544 |
+
ValueError
|
545 |
+
If the data is invalid.
|
546 |
+
|
547 |
+
"""
|
548 |
+
return _read_array_header(
|
549 |
+
fp, version=(2, 0), max_header_size=max_header_size)
|
550 |
+
|
551 |
+
|
552 |
+
def _filter_header(s):
|
553 |
+
"""Clean up 'L' in npz header ints.
|
554 |
+
|
555 |
+
Cleans up the 'L' in strings representing integers. Needed to allow npz
|
556 |
+
headers produced in Python2 to be read in Python3.
|
557 |
+
|
558 |
+
Parameters
|
559 |
+
----------
|
560 |
+
s : string
|
561 |
+
Npy file header.
|
562 |
+
|
563 |
+
Returns
|
564 |
+
-------
|
565 |
+
header : str
|
566 |
+
Cleaned up header.
|
567 |
+
|
568 |
+
"""
|
569 |
+
import tokenize
|
570 |
+
from io import StringIO
|
571 |
+
|
572 |
+
tokens = []
|
573 |
+
last_token_was_number = False
|
574 |
+
for token in tokenize.generate_tokens(StringIO(s).readline):
|
575 |
+
token_type = token[0]
|
576 |
+
token_string = token[1]
|
577 |
+
if (last_token_was_number and
|
578 |
+
token_type == tokenize.NAME and
|
579 |
+
token_string == "L"):
|
580 |
+
continue
|
581 |
+
else:
|
582 |
+
tokens.append(token)
|
583 |
+
last_token_was_number = (token_type == tokenize.NUMBER)
|
584 |
+
return tokenize.untokenize(tokens)
|
585 |
+
|
586 |
+
|
587 |
+
def _read_array_header(fp, version, max_header_size=_MAX_HEADER_SIZE):
|
588 |
+
"""
|
589 |
+
see read_array_header_1_0
|
590 |
+
"""
|
591 |
+
# Read an unsigned, little-endian short int which has the length of the
|
592 |
+
# header.
|
593 |
+
import struct
|
594 |
+
hinfo = _header_size_info.get(version)
|
595 |
+
if hinfo is None:
|
596 |
+
raise ValueError("Invalid version {!r}".format(version))
|
597 |
+
hlength_type, encoding = hinfo
|
598 |
+
|
599 |
+
hlength_str = _read_bytes(fp, struct.calcsize(hlength_type), "array header length")
|
600 |
+
header_length = struct.unpack(hlength_type, hlength_str)[0]
|
601 |
+
header = _read_bytes(fp, header_length, "array header")
|
602 |
+
header = header.decode(encoding)
|
603 |
+
if len(header) > max_header_size:
|
604 |
+
raise ValueError(
|
605 |
+
f"Header info length ({len(header)}) is large and may not be safe "
|
606 |
+
"to load securely.\n"
|
607 |
+
"To allow loading, adjust `max_header_size` or fully trust "
|
608 |
+
"the `.npy` file using `allow_pickle=True`.\n"
|
609 |
+
"For safety against large resource use or crashes, sandboxing "
|
610 |
+
"may be necessary.")
|
611 |
+
|
612 |
+
# The header is a pretty-printed string representation of a literal
|
613 |
+
# Python dictionary with trailing newlines padded to a ARRAY_ALIGN byte
|
614 |
+
# boundary. The keys are strings.
|
615 |
+
# "shape" : tuple of int
|
616 |
+
# "fortran_order" : bool
|
617 |
+
# "descr" : dtype.descr
|
618 |
+
# Versions (2, 0) and (1, 0) could have been created by a Python 2
|
619 |
+
# implementation before header filtering was implemented.
|
620 |
+
#
|
621 |
+
# For performance reasons, we try without _filter_header first though
|
622 |
+
try:
|
623 |
+
d = safe_eval(header)
|
624 |
+
except SyntaxError as e:
|
625 |
+
if version <= (2, 0):
|
626 |
+
header = _filter_header(header)
|
627 |
+
try:
|
628 |
+
d = safe_eval(header)
|
629 |
+
except SyntaxError as e2:
|
630 |
+
msg = "Cannot parse header: {!r}"
|
631 |
+
raise ValueError(msg.format(header)) from e2
|
632 |
+
else:
|
633 |
+
warnings.warn(
|
634 |
+
"Reading `.npy` or `.npz` file required additional "
|
635 |
+
"header parsing as it was created on Python 2. Save the "
|
636 |
+
"file again to speed up loading and avoid this warning.",
|
637 |
+
UserWarning, stacklevel=4)
|
638 |
+
else:
|
639 |
+
msg = "Cannot parse header: {!r}"
|
640 |
+
raise ValueError(msg.format(header)) from e
|
641 |
+
if not isinstance(d, dict):
|
642 |
+
msg = "Header is not a dictionary: {!r}"
|
643 |
+
raise ValueError(msg.format(d))
|
644 |
+
|
645 |
+
if EXPECTED_KEYS != d.keys():
|
646 |
+
keys = sorted(d.keys())
|
647 |
+
msg = "Header does not contain the correct keys: {!r}"
|
648 |
+
raise ValueError(msg.format(keys))
|
649 |
+
|
650 |
+
# Sanity-check the values.
|
651 |
+
if (not isinstance(d['shape'], tuple) or
|
652 |
+
not all(isinstance(x, int) for x in d['shape'])):
|
653 |
+
msg = "shape is not valid: {!r}"
|
654 |
+
raise ValueError(msg.format(d['shape']))
|
655 |
+
if not isinstance(d['fortran_order'], bool):
|
656 |
+
msg = "fortran_order is not a valid bool: {!r}"
|
657 |
+
raise ValueError(msg.format(d['fortran_order']))
|
658 |
+
try:
|
659 |
+
dtype = descr_to_dtype(d['descr'])
|
660 |
+
except TypeError as e:
|
661 |
+
msg = "descr is not a valid dtype descriptor: {!r}"
|
662 |
+
raise ValueError(msg.format(d['descr'])) from e
|
663 |
+
|
664 |
+
return d['shape'], d['fortran_order'], dtype
|
665 |
+
|
666 |
+
def write_array(fp, array, version=None, allow_pickle=True, pickle_kwargs=None):
|
667 |
+
"""
|
668 |
+
Write an array to an NPY file, including a header.
|
669 |
+
|
670 |
+
If the array is neither C-contiguous nor Fortran-contiguous AND the
|
671 |
+
file_like object is not a real file object, this function will have to
|
672 |
+
copy data in memory.
|
673 |
+
|
674 |
+
Parameters
|
675 |
+
----------
|
676 |
+
fp : file_like object
|
677 |
+
An open, writable file object, or similar object with a
|
678 |
+
``.write()`` method.
|
679 |
+
array : ndarray
|
680 |
+
The array to write to disk.
|
681 |
+
version : (int, int) or None, optional
|
682 |
+
The version number of the format. None means use the oldest
|
683 |
+
supported version that is able to store the data. Default: None
|
684 |
+
allow_pickle : bool, optional
|
685 |
+
Whether to allow writing pickled data. Default: True
|
686 |
+
pickle_kwargs : dict, optional
|
687 |
+
Additional keyword arguments to pass to pickle.dump, excluding
|
688 |
+
'protocol'. These are only useful when pickling objects in object
|
689 |
+
arrays on Python 3 to Python 2 compatible format.
|
690 |
+
|
691 |
+
Raises
|
692 |
+
------
|
693 |
+
ValueError
|
694 |
+
If the array cannot be persisted. This includes the case of
|
695 |
+
allow_pickle=False and array being an object array.
|
696 |
+
Various other errors
|
697 |
+
If the array contains Python objects as part of its dtype, the
|
698 |
+
process of pickling them may raise various errors if the objects
|
699 |
+
are not picklable.
|
700 |
+
|
701 |
+
"""
|
702 |
+
_check_version(version)
|
703 |
+
_write_array_header(fp, header_data_from_array_1_0(array), version)
|
704 |
+
|
705 |
+
if array.itemsize == 0:
|
706 |
+
buffersize = 0
|
707 |
+
else:
|
708 |
+
# Set buffer size to 16 MiB to hide the Python loop overhead.
|
709 |
+
buffersize = max(16 * 1024 ** 2 // array.itemsize, 1)
|
710 |
+
|
711 |
+
if array.dtype.hasobject:
|
712 |
+
# We contain Python objects so we cannot write out the data
|
713 |
+
# directly. Instead, we will pickle it out
|
714 |
+
if not allow_pickle:
|
715 |
+
raise ValueError("Object arrays cannot be saved when "
|
716 |
+
"allow_pickle=False")
|
717 |
+
if pickle_kwargs is None:
|
718 |
+
pickle_kwargs = {}
|
719 |
+
pickle.dump(array, fp, protocol=3, **pickle_kwargs)
|
720 |
+
elif array.flags.f_contiguous and not array.flags.c_contiguous:
|
721 |
+
if isfileobj(fp):
|
722 |
+
array.T.tofile(fp)
|
723 |
+
else:
|
724 |
+
for chunk in numpy.nditer(
|
725 |
+
array, flags=['external_loop', 'buffered', 'zerosize_ok'],
|
726 |
+
buffersize=buffersize, order='F'):
|
727 |
+
fp.write(chunk.tobytes('C'))
|
728 |
+
else:
|
729 |
+
if isfileobj(fp):
|
730 |
+
array.tofile(fp)
|
731 |
+
else:
|
732 |
+
for chunk in numpy.nditer(
|
733 |
+
array, flags=['external_loop', 'buffered', 'zerosize_ok'],
|
734 |
+
buffersize=buffersize, order='C'):
|
735 |
+
fp.write(chunk.tobytes('C'))
|
736 |
+
|
737 |
+
|
738 |
+
def read_array(fp, allow_pickle=False, pickle_kwargs=None, *,
|
739 |
+
max_header_size=_MAX_HEADER_SIZE):
|
740 |
+
"""
|
741 |
+
Read an array from an NPY file.
|
742 |
+
|
743 |
+
Parameters
|
744 |
+
----------
|
745 |
+
fp : file_like object
|
746 |
+
If this is not a real file object, then this may take extra memory
|
747 |
+
and time.
|
748 |
+
allow_pickle : bool, optional
|
749 |
+
Whether to allow writing pickled data. Default: False
|
750 |
+
|
751 |
+
.. versionchanged:: 1.16.3
|
752 |
+
Made default False in response to CVE-2019-6446.
|
753 |
+
|
754 |
+
pickle_kwargs : dict
|
755 |
+
Additional keyword arguments to pass to pickle.load. These are only
|
756 |
+
useful when loading object arrays saved on Python 2 when using
|
757 |
+
Python 3.
|
758 |
+
max_header_size : int, optional
|
759 |
+
Maximum allowed size of the header. Large headers may not be safe
|
760 |
+
to load securely and thus require explicitly passing a larger value.
|
761 |
+
See :py:func:`ast.literal_eval()` for details.
|
762 |
+
This option is ignored when `allow_pickle` is passed. In that case
|
763 |
+
the file is by definition trusted and the limit is unnecessary.
|
764 |
+
|
765 |
+
Returns
|
766 |
+
-------
|
767 |
+
array : ndarray
|
768 |
+
The array from the data on disk.
|
769 |
+
|
770 |
+
Raises
|
771 |
+
------
|
772 |
+
ValueError
|
773 |
+
If the data is invalid, or allow_pickle=False and the file contains
|
774 |
+
an object array.
|
775 |
+
|
776 |
+
"""
|
777 |
+
if allow_pickle:
|
778 |
+
# Effectively ignore max_header_size, since `allow_pickle` indicates
|
779 |
+
# that the input is fully trusted.
|
780 |
+
max_header_size = 2**64
|
781 |
+
|
782 |
+
version = read_magic(fp)
|
783 |
+
_check_version(version)
|
784 |
+
shape, fortran_order, dtype = _read_array_header(
|
785 |
+
fp, version, max_header_size=max_header_size)
|
786 |
+
if len(shape) == 0:
|
787 |
+
count = 1
|
788 |
+
else:
|
789 |
+
count = numpy.multiply.reduce(shape, dtype=numpy.int64)
|
790 |
+
|
791 |
+
# Now read the actual data.
|
792 |
+
if dtype.hasobject:
|
793 |
+
# The array contained Python objects. We need to unpickle the data.
|
794 |
+
if not allow_pickle:
|
795 |
+
raise ValueError("Object arrays cannot be loaded when "
|
796 |
+
"allow_pickle=False")
|
797 |
+
if pickle_kwargs is None:
|
798 |
+
pickle_kwargs = {}
|
799 |
+
try:
|
800 |
+
array = pickle.load(fp, **pickle_kwargs)
|
801 |
+
except UnicodeError as err:
|
802 |
+
# Friendlier error message
|
803 |
+
raise UnicodeError("Unpickling a python object failed: %r\n"
|
804 |
+
"You may need to pass the encoding= option "
|
805 |
+
"to numpy.load" % (err,)) from err
|
806 |
+
else:
|
807 |
+
if isfileobj(fp):
|
808 |
+
# We can use the fast fromfile() function.
|
809 |
+
array = numpy.fromfile(fp, dtype=dtype, count=count)
|
810 |
+
else:
|
811 |
+
# This is not a real file. We have to read it the
|
812 |
+
# memory-intensive way.
|
813 |
+
# crc32 module fails on reads greater than 2 ** 32 bytes,
|
814 |
+
# breaking large reads from gzip streams. Chunk reads to
|
815 |
+
# BUFFER_SIZE bytes to avoid issue and reduce memory overhead
|
816 |
+
# of the read. In non-chunked case count < max_read_count, so
|
817 |
+
# only one read is performed.
|
818 |
+
|
819 |
+
# Use np.ndarray instead of np.empty since the latter does
|
820 |
+
# not correctly instantiate zero-width string dtypes; see
|
821 |
+
# https://github.com/numpy/numpy/pull/6430
|
822 |
+
array = numpy.ndarray(count, dtype=dtype)
|
823 |
+
|
824 |
+
if dtype.itemsize > 0:
|
825 |
+
# If dtype.itemsize == 0 then there's nothing more to read
|
826 |
+
max_read_count = BUFFER_SIZE // min(BUFFER_SIZE, dtype.itemsize)
|
827 |
+
|
828 |
+
for i in range(0, count, max_read_count):
|
829 |
+
read_count = min(max_read_count, count - i)
|
830 |
+
read_size = int(read_count * dtype.itemsize)
|
831 |
+
data = _read_bytes(fp, read_size, "array data")
|
832 |
+
array[i:i+read_count] = numpy.frombuffer(data, dtype=dtype,
|
833 |
+
count=read_count)
|
834 |
+
|
835 |
+
if fortran_order:
|
836 |
+
array.shape = shape[::-1]
|
837 |
+
array = array.transpose()
|
838 |
+
else:
|
839 |
+
array.shape = shape
|
840 |
+
|
841 |
+
return array
|
842 |
+
|
843 |
+
|
844 |
+
def open_memmap(filename, mode='r+', dtype=None, shape=None,
|
845 |
+
fortran_order=False, version=None, *,
|
846 |
+
max_header_size=_MAX_HEADER_SIZE):
|
847 |
+
"""
|
848 |
+
Open a .npy file as a memory-mapped array.
|
849 |
+
|
850 |
+
This may be used to read an existing file or create a new one.
|
851 |
+
|
852 |
+
Parameters
|
853 |
+
----------
|
854 |
+
filename : str or path-like
|
855 |
+
The name of the file on disk. This may *not* be a file-like
|
856 |
+
object.
|
857 |
+
mode : str, optional
|
858 |
+
The mode in which to open the file; the default is 'r+'. In
|
859 |
+
addition to the standard file modes, 'c' is also accepted to mean
|
860 |
+
"copy on write." See `memmap` for the available mode strings.
|
861 |
+
dtype : data-type, optional
|
862 |
+
The data type of the array if we are creating a new file in "write"
|
863 |
+
mode, if not, `dtype` is ignored. The default value is None, which
|
864 |
+
results in a data-type of `float64`.
|
865 |
+
shape : tuple of int
|
866 |
+
The shape of the array if we are creating a new file in "write"
|
867 |
+
mode, in which case this parameter is required. Otherwise, this
|
868 |
+
parameter is ignored and is thus optional.
|
869 |
+
fortran_order : bool, optional
|
870 |
+
Whether the array should be Fortran-contiguous (True) or
|
871 |
+
C-contiguous (False, the default) if we are creating a new file in
|
872 |
+
"write" mode.
|
873 |
+
version : tuple of int (major, minor) or None
|
874 |
+
If the mode is a "write" mode, then this is the version of the file
|
875 |
+
format used to create the file. None means use the oldest
|
876 |
+
supported version that is able to store the data. Default: None
|
877 |
+
max_header_size : int, optional
|
878 |
+
Maximum allowed size of the header. Large headers may not be safe
|
879 |
+
to load securely and thus require explicitly passing a larger value.
|
880 |
+
See :py:func:`ast.literal_eval()` for details.
|
881 |
+
|
882 |
+
Returns
|
883 |
+
-------
|
884 |
+
marray : memmap
|
885 |
+
The memory-mapped array.
|
886 |
+
|
887 |
+
Raises
|
888 |
+
------
|
889 |
+
ValueError
|
890 |
+
If the data or the mode is invalid.
|
891 |
+
OSError
|
892 |
+
If the file is not found or cannot be opened correctly.
|
893 |
+
|
894 |
+
See Also
|
895 |
+
--------
|
896 |
+
numpy.memmap
|
897 |
+
|
898 |
+
"""
|
899 |
+
if isfileobj(filename):
|
900 |
+
raise ValueError("Filename must be a string or a path-like object."
|
901 |
+
" Memmap cannot use existing file handles.")
|
902 |
+
|
903 |
+
if 'w' in mode:
|
904 |
+
# We are creating the file, not reading it.
|
905 |
+
# Check if we ought to create the file.
|
906 |
+
_check_version(version)
|
907 |
+
# Ensure that the given dtype is an authentic dtype object rather
|
908 |
+
# than just something that can be interpreted as a dtype object.
|
909 |
+
dtype = numpy.dtype(dtype)
|
910 |
+
if dtype.hasobject:
|
911 |
+
msg = "Array can't be memory-mapped: Python objects in dtype."
|
912 |
+
raise ValueError(msg)
|
913 |
+
d = dict(
|
914 |
+
descr=dtype_to_descr(dtype),
|
915 |
+
fortran_order=fortran_order,
|
916 |
+
shape=shape,
|
917 |
+
)
|
918 |
+
# If we got here, then it should be safe to create the file.
|
919 |
+
with open(os_fspath(filename), mode+'b') as fp:
|
920 |
+
_write_array_header(fp, d, version)
|
921 |
+
offset = fp.tell()
|
922 |
+
else:
|
923 |
+
# Read the header of the file first.
|
924 |
+
with open(os_fspath(filename), 'rb') as fp:
|
925 |
+
version = read_magic(fp)
|
926 |
+
_check_version(version)
|
927 |
+
|
928 |
+
shape, fortran_order, dtype = _read_array_header(
|
929 |
+
fp, version, max_header_size=max_header_size)
|
930 |
+
if dtype.hasobject:
|
931 |
+
msg = "Array can't be memory-mapped: Python objects in dtype."
|
932 |
+
raise ValueError(msg)
|
933 |
+
offset = fp.tell()
|
934 |
+
|
935 |
+
if fortran_order:
|
936 |
+
order = 'F'
|
937 |
+
else:
|
938 |
+
order = 'C'
|
939 |
+
|
940 |
+
# We need to change a write-only mode to a read-write mode since we've
|
941 |
+
# already written data to the file.
|
942 |
+
if mode == 'w+':
|
943 |
+
mode = 'r+'
|
944 |
+
|
945 |
+
marray = numpy.memmap(filename, dtype=dtype, shape=shape, order=order,
|
946 |
+
mode=mode, offset=offset)
|
947 |
+
|
948 |
+
return marray
|
949 |
+
|
950 |
+
|
951 |
+
def _read_bytes(fp, size, error_template="ran out of data"):
|
952 |
+
"""
|
953 |
+
Read from file-like object until size bytes are read.
|
954 |
+
Raises ValueError if not EOF is encountered before size bytes are read.
|
955 |
+
Non-blocking objects only supported if they derive from io objects.
|
956 |
+
|
957 |
+
Required as e.g. ZipExtFile in python 2.6 can return less data than
|
958 |
+
requested.
|
959 |
+
"""
|
960 |
+
data = bytes()
|
961 |
+
while True:
|
962 |
+
# io files (default in python3) return None or raise on
|
963 |
+
# would-block, python2 file will truncate, probably nothing can be
|
964 |
+
# done about that. note that regular files can't be non-blocking
|
965 |
+
try:
|
966 |
+
r = fp.read(size - len(data))
|
967 |
+
data += r
|
968 |
+
if len(r) == 0 or len(data) == size:
|
969 |
+
break
|
970 |
+
except BlockingIOError:
|
971 |
+
pass
|
972 |
+
if len(data) != size:
|
973 |
+
msg = "EOF: reading %s, expected %d bytes got %d"
|
974 |
+
raise ValueError(msg % (error_template, size, len(data)))
|
975 |
+
else:
|
976 |
+
return data
|
env-llmeval/lib/python3.10/site-packages/numpy/lib/format.pyi
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, Literal, Final
|
2 |
+
|
3 |
+
__all__: list[str]
|
4 |
+
|
5 |
+
EXPECTED_KEYS: Final[set[str]]
|
6 |
+
MAGIC_PREFIX: Final[bytes]
|
7 |
+
MAGIC_LEN: Literal[8]
|
8 |
+
ARRAY_ALIGN: Literal[64]
|
9 |
+
BUFFER_SIZE: Literal[262144] # 2**18
|
10 |
+
|
11 |
+
def magic(major, minor): ...
|
12 |
+
def read_magic(fp): ...
|
13 |
+
def dtype_to_descr(dtype): ...
|
14 |
+
def descr_to_dtype(descr): ...
|
15 |
+
def header_data_from_array_1_0(array): ...
|
16 |
+
def write_array_header_1_0(fp, d): ...
|
17 |
+
def write_array_header_2_0(fp, d): ...
|
18 |
+
def read_array_header_1_0(fp): ...
|
19 |
+
def read_array_header_2_0(fp): ...
|
20 |
+
def write_array(fp, array, version=..., allow_pickle=..., pickle_kwargs=...): ...
|
21 |
+
def read_array(fp, allow_pickle=..., pickle_kwargs=...): ...
|
22 |
+
def open_memmap(filename, mode=..., dtype=..., shape=..., fortran_order=..., version=...): ...
|
env-llmeval/lib/python3.10/site-packages/numpy/lib/function_base.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
env-llmeval/lib/python3.10/site-packages/numpy/lib/function_base.pyi
ADDED
@@ -0,0 +1,697 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
from collections.abc import Sequence, Iterator, Callable, Iterable
|
3 |
+
from typing import (
|
4 |
+
Literal as L,
|
5 |
+
Any,
|
6 |
+
TypeVar,
|
7 |
+
overload,
|
8 |
+
Protocol,
|
9 |
+
SupportsIndex,
|
10 |
+
SupportsInt,
|
11 |
+
)
|
12 |
+
|
13 |
+
if sys.version_info >= (3, 10):
|
14 |
+
from typing import TypeGuard
|
15 |
+
else:
|
16 |
+
from typing_extensions import TypeGuard
|
17 |
+
|
18 |
+
from numpy import (
|
19 |
+
vectorize as vectorize,
|
20 |
+
ufunc,
|
21 |
+
generic,
|
22 |
+
floating,
|
23 |
+
complexfloating,
|
24 |
+
intp,
|
25 |
+
float64,
|
26 |
+
complex128,
|
27 |
+
timedelta64,
|
28 |
+
datetime64,
|
29 |
+
object_,
|
30 |
+
_OrderKACF,
|
31 |
+
)
|
32 |
+
|
33 |
+
from numpy._typing import (
|
34 |
+
NDArray,
|
35 |
+
ArrayLike,
|
36 |
+
DTypeLike,
|
37 |
+
_ShapeLike,
|
38 |
+
_ScalarLike_co,
|
39 |
+
_DTypeLike,
|
40 |
+
_ArrayLike,
|
41 |
+
_ArrayLikeInt_co,
|
42 |
+
_ArrayLikeFloat_co,
|
43 |
+
_ArrayLikeComplex_co,
|
44 |
+
_ArrayLikeTD64_co,
|
45 |
+
_ArrayLikeDT64_co,
|
46 |
+
_ArrayLikeObject_co,
|
47 |
+
_FloatLike_co,
|
48 |
+
_ComplexLike_co,
|
49 |
+
)
|
50 |
+
|
51 |
+
from numpy.core.function_base import (
|
52 |
+
add_newdoc as add_newdoc,
|
53 |
+
)
|
54 |
+
|
55 |
+
from numpy.core.multiarray import (
|
56 |
+
add_docstring as add_docstring,
|
57 |
+
bincount as bincount,
|
58 |
+
)
|
59 |
+
|
60 |
+
from numpy.core.umath import _add_newdoc_ufunc
|
61 |
+
|
62 |
+
_T = TypeVar("_T")
|
63 |
+
_T_co = TypeVar("_T_co", covariant=True)
|
64 |
+
_SCT = TypeVar("_SCT", bound=generic)
|
65 |
+
_ArrayType = TypeVar("_ArrayType", bound=NDArray[Any])
|
66 |
+
|
67 |
+
_2Tuple = tuple[_T, _T]
|
68 |
+
|
69 |
+
class _TrimZerosSequence(Protocol[_T_co]):
|
70 |
+
def __len__(self) -> int: ...
|
71 |
+
def __getitem__(self, key: slice, /) -> _T_co: ...
|
72 |
+
def __iter__(self) -> Iterator[Any]: ...
|
73 |
+
|
74 |
+
class _SupportsWriteFlush(Protocol):
|
75 |
+
def write(self, s: str, /) -> object: ...
|
76 |
+
def flush(self) -> object: ...
|
77 |
+
|
78 |
+
__all__: list[str]
|
79 |
+
|
80 |
+
# NOTE: This is in reality a re-export of `np.core.umath._add_newdoc_ufunc`
|
81 |
+
def add_newdoc_ufunc(ufunc: ufunc, new_docstring: str, /) -> None: ...
|
82 |
+
|
83 |
+
@overload
|
84 |
+
def rot90(
|
85 |
+
m: _ArrayLike[_SCT],
|
86 |
+
k: int = ...,
|
87 |
+
axes: tuple[int, int] = ...,
|
88 |
+
) -> NDArray[_SCT]: ...
|
89 |
+
@overload
|
90 |
+
def rot90(
|
91 |
+
m: ArrayLike,
|
92 |
+
k: int = ...,
|
93 |
+
axes: tuple[int, int] = ...,
|
94 |
+
) -> NDArray[Any]: ...
|
95 |
+
|
96 |
+
@overload
|
97 |
+
def flip(m: _SCT, axis: None = ...) -> _SCT: ...
|
98 |
+
@overload
|
99 |
+
def flip(m: _ScalarLike_co, axis: None = ...) -> Any: ...
|
100 |
+
@overload
|
101 |
+
def flip(m: _ArrayLike[_SCT], axis: None | _ShapeLike = ...) -> NDArray[_SCT]: ...
|
102 |
+
@overload
|
103 |
+
def flip(m: ArrayLike, axis: None | _ShapeLike = ...) -> NDArray[Any]: ...
|
104 |
+
|
105 |
+
def iterable(y: object) -> TypeGuard[Iterable[Any]]: ...
|
106 |
+
|
107 |
+
@overload
|
108 |
+
def average(
|
109 |
+
a: _ArrayLikeFloat_co,
|
110 |
+
axis: None = ...,
|
111 |
+
weights: None | _ArrayLikeFloat_co= ...,
|
112 |
+
returned: L[False] = ...,
|
113 |
+
keepdims: L[False] = ...,
|
114 |
+
) -> floating[Any]: ...
|
115 |
+
@overload
|
116 |
+
def average(
|
117 |
+
a: _ArrayLikeComplex_co,
|
118 |
+
axis: None = ...,
|
119 |
+
weights: None | _ArrayLikeComplex_co = ...,
|
120 |
+
returned: L[False] = ...,
|
121 |
+
keepdims: L[False] = ...,
|
122 |
+
) -> complexfloating[Any, Any]: ...
|
123 |
+
@overload
|
124 |
+
def average(
|
125 |
+
a: _ArrayLikeObject_co,
|
126 |
+
axis: None = ...,
|
127 |
+
weights: None | Any = ...,
|
128 |
+
returned: L[False] = ...,
|
129 |
+
keepdims: L[False] = ...,
|
130 |
+
) -> Any: ...
|
131 |
+
@overload
|
132 |
+
def average(
|
133 |
+
a: _ArrayLikeFloat_co,
|
134 |
+
axis: None = ...,
|
135 |
+
weights: None | _ArrayLikeFloat_co= ...,
|
136 |
+
returned: L[True] = ...,
|
137 |
+
keepdims: L[False] = ...,
|
138 |
+
) -> _2Tuple[floating[Any]]: ...
|
139 |
+
@overload
|
140 |
+
def average(
|
141 |
+
a: _ArrayLikeComplex_co,
|
142 |
+
axis: None = ...,
|
143 |
+
weights: None | _ArrayLikeComplex_co = ...,
|
144 |
+
returned: L[True] = ...,
|
145 |
+
keepdims: L[False] = ...,
|
146 |
+
) -> _2Tuple[complexfloating[Any, Any]]: ...
|
147 |
+
@overload
|
148 |
+
def average(
|
149 |
+
a: _ArrayLikeObject_co,
|
150 |
+
axis: None = ...,
|
151 |
+
weights: None | Any = ...,
|
152 |
+
returned: L[True] = ...,
|
153 |
+
keepdims: L[False] = ...,
|
154 |
+
) -> _2Tuple[Any]: ...
|
155 |
+
@overload
|
156 |
+
def average(
|
157 |
+
a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
|
158 |
+
axis: None | _ShapeLike = ...,
|
159 |
+
weights: None | Any = ...,
|
160 |
+
returned: L[False] = ...,
|
161 |
+
keepdims: bool = ...,
|
162 |
+
) -> Any: ...
|
163 |
+
@overload
|
164 |
+
def average(
|
165 |
+
a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
|
166 |
+
axis: None | _ShapeLike = ...,
|
167 |
+
weights: None | Any = ...,
|
168 |
+
returned: L[True] = ...,
|
169 |
+
keepdims: bool = ...,
|
170 |
+
) -> _2Tuple[Any]: ...
|
171 |
+
|
172 |
+
@overload
|
173 |
+
def asarray_chkfinite(
|
174 |
+
a: _ArrayLike[_SCT],
|
175 |
+
dtype: None = ...,
|
176 |
+
order: _OrderKACF = ...,
|
177 |
+
) -> NDArray[_SCT]: ...
|
178 |
+
@overload
|
179 |
+
def asarray_chkfinite(
|
180 |
+
a: object,
|
181 |
+
dtype: None = ...,
|
182 |
+
order: _OrderKACF = ...,
|
183 |
+
) -> NDArray[Any]: ...
|
184 |
+
@overload
|
185 |
+
def asarray_chkfinite(
|
186 |
+
a: Any,
|
187 |
+
dtype: _DTypeLike[_SCT],
|
188 |
+
order: _OrderKACF = ...,
|
189 |
+
) -> NDArray[_SCT]: ...
|
190 |
+
@overload
|
191 |
+
def asarray_chkfinite(
|
192 |
+
a: Any,
|
193 |
+
dtype: DTypeLike,
|
194 |
+
order: _OrderKACF = ...,
|
195 |
+
) -> NDArray[Any]: ...
|
196 |
+
|
197 |
+
# TODO: Use PEP 612 `ParamSpec` once mypy supports `Concatenate`
|
198 |
+
# xref python/mypy#8645
|
199 |
+
@overload
|
200 |
+
def piecewise(
|
201 |
+
x: _ArrayLike[_SCT],
|
202 |
+
condlist: ArrayLike,
|
203 |
+
funclist: Sequence[Any | Callable[..., Any]],
|
204 |
+
*args: Any,
|
205 |
+
**kw: Any,
|
206 |
+
) -> NDArray[_SCT]: ...
|
207 |
+
@overload
|
208 |
+
def piecewise(
|
209 |
+
x: ArrayLike,
|
210 |
+
condlist: ArrayLike,
|
211 |
+
funclist: Sequence[Any | Callable[..., Any]],
|
212 |
+
*args: Any,
|
213 |
+
**kw: Any,
|
214 |
+
) -> NDArray[Any]: ...
|
215 |
+
|
216 |
+
def select(
|
217 |
+
condlist: Sequence[ArrayLike],
|
218 |
+
choicelist: Sequence[ArrayLike],
|
219 |
+
default: ArrayLike = ...,
|
220 |
+
) -> NDArray[Any]: ...
|
221 |
+
|
222 |
+
@overload
|
223 |
+
def copy(
|
224 |
+
a: _ArrayType,
|
225 |
+
order: _OrderKACF,
|
226 |
+
subok: L[True],
|
227 |
+
) -> _ArrayType: ...
|
228 |
+
@overload
|
229 |
+
def copy(
|
230 |
+
a: _ArrayType,
|
231 |
+
order: _OrderKACF = ...,
|
232 |
+
*,
|
233 |
+
subok: L[True],
|
234 |
+
) -> _ArrayType: ...
|
235 |
+
@overload
|
236 |
+
def copy(
|
237 |
+
a: _ArrayLike[_SCT],
|
238 |
+
order: _OrderKACF = ...,
|
239 |
+
subok: L[False] = ...,
|
240 |
+
) -> NDArray[_SCT]: ...
|
241 |
+
@overload
|
242 |
+
def copy(
|
243 |
+
a: ArrayLike,
|
244 |
+
order: _OrderKACF = ...,
|
245 |
+
subok: L[False] = ...,
|
246 |
+
) -> NDArray[Any]: ...
|
247 |
+
|
248 |
+
def gradient(
|
249 |
+
f: ArrayLike,
|
250 |
+
*varargs: ArrayLike,
|
251 |
+
axis: None | _ShapeLike = ...,
|
252 |
+
edge_order: L[1, 2] = ...,
|
253 |
+
) -> Any: ...
|
254 |
+
|
255 |
+
@overload
|
256 |
+
def diff(
|
257 |
+
a: _T,
|
258 |
+
n: L[0],
|
259 |
+
axis: SupportsIndex = ...,
|
260 |
+
prepend: ArrayLike = ...,
|
261 |
+
append: ArrayLike = ...,
|
262 |
+
) -> _T: ...
|
263 |
+
@overload
|
264 |
+
def diff(
|
265 |
+
a: ArrayLike,
|
266 |
+
n: int = ...,
|
267 |
+
axis: SupportsIndex = ...,
|
268 |
+
prepend: ArrayLike = ...,
|
269 |
+
append: ArrayLike = ...,
|
270 |
+
) -> NDArray[Any]: ...
|
271 |
+
|
272 |
+
@overload
|
273 |
+
def interp(
|
274 |
+
x: _ArrayLikeFloat_co,
|
275 |
+
xp: _ArrayLikeFloat_co,
|
276 |
+
fp: _ArrayLikeFloat_co,
|
277 |
+
left: None | _FloatLike_co = ...,
|
278 |
+
right: None | _FloatLike_co = ...,
|
279 |
+
period: None | _FloatLike_co = ...,
|
280 |
+
) -> NDArray[float64]: ...
|
281 |
+
@overload
|
282 |
+
def interp(
|
283 |
+
x: _ArrayLikeFloat_co,
|
284 |
+
xp: _ArrayLikeFloat_co,
|
285 |
+
fp: _ArrayLikeComplex_co,
|
286 |
+
left: None | _ComplexLike_co = ...,
|
287 |
+
right: None | _ComplexLike_co = ...,
|
288 |
+
period: None | _FloatLike_co = ...,
|
289 |
+
) -> NDArray[complex128]: ...
|
290 |
+
|
291 |
+
@overload
|
292 |
+
def angle(z: _ComplexLike_co, deg: bool = ...) -> floating[Any]: ...
|
293 |
+
@overload
|
294 |
+
def angle(z: object_, deg: bool = ...) -> Any: ...
|
295 |
+
@overload
|
296 |
+
def angle(z: _ArrayLikeComplex_co, deg: bool = ...) -> NDArray[floating[Any]]: ...
|
297 |
+
@overload
|
298 |
+
def angle(z: _ArrayLikeObject_co, deg: bool = ...) -> NDArray[object_]: ...
|
299 |
+
|
300 |
+
@overload
|
301 |
+
def unwrap(
|
302 |
+
p: _ArrayLikeFloat_co,
|
303 |
+
discont: None | float = ...,
|
304 |
+
axis: int = ...,
|
305 |
+
*,
|
306 |
+
period: float = ...,
|
307 |
+
) -> NDArray[floating[Any]]: ...
|
308 |
+
@overload
|
309 |
+
def unwrap(
|
310 |
+
p: _ArrayLikeObject_co,
|
311 |
+
discont: None | float = ...,
|
312 |
+
axis: int = ...,
|
313 |
+
*,
|
314 |
+
period: float = ...,
|
315 |
+
) -> NDArray[object_]: ...
|
316 |
+
|
317 |
+
def sort_complex(a: ArrayLike) -> NDArray[complexfloating[Any, Any]]: ...
|
318 |
+
|
319 |
+
def trim_zeros(
|
320 |
+
filt: _TrimZerosSequence[_T],
|
321 |
+
trim: L["f", "b", "fb", "bf"] = ...,
|
322 |
+
) -> _T: ...
|
323 |
+
|
324 |
+
@overload
|
325 |
+
def extract(condition: ArrayLike, arr: _ArrayLike[_SCT]) -> NDArray[_SCT]: ...
|
326 |
+
@overload
|
327 |
+
def extract(condition: ArrayLike, arr: ArrayLike) -> NDArray[Any]: ...
|
328 |
+
|
329 |
+
def place(arr: NDArray[Any], mask: ArrayLike, vals: Any) -> None: ...
|
330 |
+
|
331 |
+
def disp(
|
332 |
+
mesg: object,
|
333 |
+
device: None | _SupportsWriteFlush = ...,
|
334 |
+
linefeed: bool = ...,
|
335 |
+
) -> None: ...
|
336 |
+
|
337 |
+
@overload
|
338 |
+
def cov(
|
339 |
+
m: _ArrayLikeFloat_co,
|
340 |
+
y: None | _ArrayLikeFloat_co = ...,
|
341 |
+
rowvar: bool = ...,
|
342 |
+
bias: bool = ...,
|
343 |
+
ddof: None | SupportsIndex | SupportsInt = ...,
|
344 |
+
fweights: None | ArrayLike = ...,
|
345 |
+
aweights: None | ArrayLike = ...,
|
346 |
+
*,
|
347 |
+
dtype: None = ...,
|
348 |
+
) -> NDArray[floating[Any]]: ...
|
349 |
+
@overload
|
350 |
+
def cov(
|
351 |
+
m: _ArrayLikeComplex_co,
|
352 |
+
y: None | _ArrayLikeComplex_co = ...,
|
353 |
+
rowvar: bool = ...,
|
354 |
+
bias: bool = ...,
|
355 |
+
ddof: None | SupportsIndex | SupportsInt = ...,
|
356 |
+
fweights: None | ArrayLike = ...,
|
357 |
+
aweights: None | ArrayLike = ...,
|
358 |
+
*,
|
359 |
+
dtype: None = ...,
|
360 |
+
) -> NDArray[complexfloating[Any, Any]]: ...
|
361 |
+
@overload
|
362 |
+
def cov(
|
363 |
+
m: _ArrayLikeComplex_co,
|
364 |
+
y: None | _ArrayLikeComplex_co = ...,
|
365 |
+
rowvar: bool = ...,
|
366 |
+
bias: bool = ...,
|
367 |
+
ddof: None | SupportsIndex | SupportsInt = ...,
|
368 |
+
fweights: None | ArrayLike = ...,
|
369 |
+
aweights: None | ArrayLike = ...,
|
370 |
+
*,
|
371 |
+
dtype: _DTypeLike[_SCT],
|
372 |
+
) -> NDArray[_SCT]: ...
|
373 |
+
@overload
|
374 |
+
def cov(
|
375 |
+
m: _ArrayLikeComplex_co,
|
376 |
+
y: None | _ArrayLikeComplex_co = ...,
|
377 |
+
rowvar: bool = ...,
|
378 |
+
bias: bool = ...,
|
379 |
+
ddof: None | SupportsIndex | SupportsInt = ...,
|
380 |
+
fweights: None | ArrayLike = ...,
|
381 |
+
aweights: None | ArrayLike = ...,
|
382 |
+
*,
|
383 |
+
dtype: DTypeLike,
|
384 |
+
) -> NDArray[Any]: ...
|
385 |
+
|
386 |
+
# NOTE `bias` and `ddof` have been deprecated
|
387 |
+
@overload
|
388 |
+
def corrcoef(
|
389 |
+
m: _ArrayLikeFloat_co,
|
390 |
+
y: None | _ArrayLikeFloat_co = ...,
|
391 |
+
rowvar: bool = ...,
|
392 |
+
*,
|
393 |
+
dtype: None = ...,
|
394 |
+
) -> NDArray[floating[Any]]: ...
|
395 |
+
@overload
|
396 |
+
def corrcoef(
|
397 |
+
m: _ArrayLikeComplex_co,
|
398 |
+
y: None | _ArrayLikeComplex_co = ...,
|
399 |
+
rowvar: bool = ...,
|
400 |
+
*,
|
401 |
+
dtype: None = ...,
|
402 |
+
) -> NDArray[complexfloating[Any, Any]]: ...
|
403 |
+
@overload
|
404 |
+
def corrcoef(
|
405 |
+
m: _ArrayLikeComplex_co,
|
406 |
+
y: None | _ArrayLikeComplex_co = ...,
|
407 |
+
rowvar: bool = ...,
|
408 |
+
*,
|
409 |
+
dtype: _DTypeLike[_SCT],
|
410 |
+
) -> NDArray[_SCT]: ...
|
411 |
+
@overload
|
412 |
+
def corrcoef(
|
413 |
+
m: _ArrayLikeComplex_co,
|
414 |
+
y: None | _ArrayLikeComplex_co = ...,
|
415 |
+
rowvar: bool = ...,
|
416 |
+
*,
|
417 |
+
dtype: DTypeLike,
|
418 |
+
) -> NDArray[Any]: ...
|
419 |
+
|
420 |
+
def blackman(M: _FloatLike_co) -> NDArray[floating[Any]]: ...
|
421 |
+
|
422 |
+
def bartlett(M: _FloatLike_co) -> NDArray[floating[Any]]: ...
|
423 |
+
|
424 |
+
def hanning(M: _FloatLike_co) -> NDArray[floating[Any]]: ...
|
425 |
+
|
426 |
+
def hamming(M: _FloatLike_co) -> NDArray[floating[Any]]: ...
|
427 |
+
|
428 |
+
def i0(x: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ...
|
429 |
+
|
430 |
+
def kaiser(
|
431 |
+
M: _FloatLike_co,
|
432 |
+
beta: _FloatLike_co,
|
433 |
+
) -> NDArray[floating[Any]]: ...
|
434 |
+
|
435 |
+
@overload
|
436 |
+
def sinc(x: _FloatLike_co) -> floating[Any]: ...
|
437 |
+
@overload
|
438 |
+
def sinc(x: _ComplexLike_co) -> complexfloating[Any, Any]: ...
|
439 |
+
@overload
|
440 |
+
def sinc(x: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ...
|
441 |
+
@overload
|
442 |
+
def sinc(x: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ...
|
443 |
+
|
444 |
+
# NOTE: Deprecated
|
445 |
+
# def msort(a: ArrayLike) -> NDArray[Any]: ...
|
446 |
+
|
447 |
+
@overload
|
448 |
+
def median(
|
449 |
+
a: _ArrayLikeFloat_co,
|
450 |
+
axis: None = ...,
|
451 |
+
out: None = ...,
|
452 |
+
overwrite_input: bool = ...,
|
453 |
+
keepdims: L[False] = ...,
|
454 |
+
) -> floating[Any]: ...
|
455 |
+
@overload
|
456 |
+
def median(
|
457 |
+
a: _ArrayLikeComplex_co,
|
458 |
+
axis: None = ...,
|
459 |
+
out: None = ...,
|
460 |
+
overwrite_input: bool = ...,
|
461 |
+
keepdims: L[False] = ...,
|
462 |
+
) -> complexfloating[Any, Any]: ...
|
463 |
+
@overload
|
464 |
+
def median(
|
465 |
+
a: _ArrayLikeTD64_co,
|
466 |
+
axis: None = ...,
|
467 |
+
out: None = ...,
|
468 |
+
overwrite_input: bool = ...,
|
469 |
+
keepdims: L[False] = ...,
|
470 |
+
) -> timedelta64: ...
|
471 |
+
@overload
|
472 |
+
def median(
|
473 |
+
a: _ArrayLikeObject_co,
|
474 |
+
axis: None = ...,
|
475 |
+
out: None = ...,
|
476 |
+
overwrite_input: bool = ...,
|
477 |
+
keepdims: L[False] = ...,
|
478 |
+
) -> Any: ...
|
479 |
+
@overload
|
480 |
+
def median(
|
481 |
+
a: _ArrayLikeFloat_co | _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeObject_co,
|
482 |
+
axis: None | _ShapeLike = ...,
|
483 |
+
out: None = ...,
|
484 |
+
overwrite_input: bool = ...,
|
485 |
+
keepdims: bool = ...,
|
486 |
+
) -> Any: ...
|
487 |
+
@overload
|
488 |
+
def median(
|
489 |
+
a: _ArrayLikeFloat_co | _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeObject_co,
|
490 |
+
axis: None | _ShapeLike = ...,
|
491 |
+
out: _ArrayType = ...,
|
492 |
+
overwrite_input: bool = ...,
|
493 |
+
keepdims: bool = ...,
|
494 |
+
) -> _ArrayType: ...
|
495 |
+
|
496 |
+
_MethodKind = L[
|
497 |
+
"inverted_cdf",
|
498 |
+
"averaged_inverted_cdf",
|
499 |
+
"closest_observation",
|
500 |
+
"interpolated_inverted_cdf",
|
501 |
+
"hazen",
|
502 |
+
"weibull",
|
503 |
+
"linear",
|
504 |
+
"median_unbiased",
|
505 |
+
"normal_unbiased",
|
506 |
+
"lower",
|
507 |
+
"higher",
|
508 |
+
"midpoint",
|
509 |
+
"nearest",
|
510 |
+
]
|
511 |
+
|
512 |
+
@overload
|
513 |
+
def percentile(
|
514 |
+
a: _ArrayLikeFloat_co,
|
515 |
+
q: _FloatLike_co,
|
516 |
+
axis: None = ...,
|
517 |
+
out: None = ...,
|
518 |
+
overwrite_input: bool = ...,
|
519 |
+
method: _MethodKind = ...,
|
520 |
+
keepdims: L[False] = ...,
|
521 |
+
) -> floating[Any]: ...
|
522 |
+
@overload
|
523 |
+
def percentile(
|
524 |
+
a: _ArrayLikeComplex_co,
|
525 |
+
q: _FloatLike_co,
|
526 |
+
axis: None = ...,
|
527 |
+
out: None = ...,
|
528 |
+
overwrite_input: bool = ...,
|
529 |
+
method: _MethodKind = ...,
|
530 |
+
keepdims: L[False] = ...,
|
531 |
+
) -> complexfloating[Any, Any]: ...
|
532 |
+
@overload
|
533 |
+
def percentile(
|
534 |
+
a: _ArrayLikeTD64_co,
|
535 |
+
q: _FloatLike_co,
|
536 |
+
axis: None = ...,
|
537 |
+
out: None = ...,
|
538 |
+
overwrite_input: bool = ...,
|
539 |
+
method: _MethodKind = ...,
|
540 |
+
keepdims: L[False] = ...,
|
541 |
+
) -> timedelta64: ...
|
542 |
+
@overload
|
543 |
+
def percentile(
|
544 |
+
a: _ArrayLikeDT64_co,
|
545 |
+
q: _FloatLike_co,
|
546 |
+
axis: None = ...,
|
547 |
+
out: None = ...,
|
548 |
+
overwrite_input: bool = ...,
|
549 |
+
method: _MethodKind = ...,
|
550 |
+
keepdims: L[False] = ...,
|
551 |
+
) -> datetime64: ...
|
552 |
+
@overload
|
553 |
+
def percentile(
|
554 |
+
a: _ArrayLikeObject_co,
|
555 |
+
q: _FloatLike_co,
|
556 |
+
axis: None = ...,
|
557 |
+
out: None = ...,
|
558 |
+
overwrite_input: bool = ...,
|
559 |
+
method: _MethodKind = ...,
|
560 |
+
keepdims: L[False] = ...,
|
561 |
+
) -> Any: ...
|
562 |
+
@overload
|
563 |
+
def percentile(
|
564 |
+
a: _ArrayLikeFloat_co,
|
565 |
+
q: _ArrayLikeFloat_co,
|
566 |
+
axis: None = ...,
|
567 |
+
out: None = ...,
|
568 |
+
overwrite_input: bool = ...,
|
569 |
+
method: _MethodKind = ...,
|
570 |
+
keepdims: L[False] = ...,
|
571 |
+
) -> NDArray[floating[Any]]: ...
|
572 |
+
@overload
|
573 |
+
def percentile(
|
574 |
+
a: _ArrayLikeComplex_co,
|
575 |
+
q: _ArrayLikeFloat_co,
|
576 |
+
axis: None = ...,
|
577 |
+
out: None = ...,
|
578 |
+
overwrite_input: bool = ...,
|
579 |
+
method: _MethodKind = ...,
|
580 |
+
keepdims: L[False] = ...,
|
581 |
+
) -> NDArray[complexfloating[Any, Any]]: ...
|
582 |
+
@overload
|
583 |
+
def percentile(
|
584 |
+
a: _ArrayLikeTD64_co,
|
585 |
+
q: _ArrayLikeFloat_co,
|
586 |
+
axis: None = ...,
|
587 |
+
out: None = ...,
|
588 |
+
overwrite_input: bool = ...,
|
589 |
+
method: _MethodKind = ...,
|
590 |
+
keepdims: L[False] = ...,
|
591 |
+
) -> NDArray[timedelta64]: ...
|
592 |
+
@overload
|
593 |
+
def percentile(
|
594 |
+
a: _ArrayLikeDT64_co,
|
595 |
+
q: _ArrayLikeFloat_co,
|
596 |
+
axis: None = ...,
|
597 |
+
out: None = ...,
|
598 |
+
overwrite_input: bool = ...,
|
599 |
+
method: _MethodKind = ...,
|
600 |
+
keepdims: L[False] = ...,
|
601 |
+
) -> NDArray[datetime64]: ...
|
602 |
+
@overload
|
603 |
+
def percentile(
|
604 |
+
a: _ArrayLikeObject_co,
|
605 |
+
q: _ArrayLikeFloat_co,
|
606 |
+
axis: None = ...,
|
607 |
+
out: None = ...,
|
608 |
+
overwrite_input: bool = ...,
|
609 |
+
method: _MethodKind = ...,
|
610 |
+
keepdims: L[False] = ...,
|
611 |
+
) -> NDArray[object_]: ...
|
612 |
+
@overload
|
613 |
+
def percentile(
|
614 |
+
a: _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeTD64_co | _ArrayLikeObject_co,
|
615 |
+
q: _ArrayLikeFloat_co,
|
616 |
+
axis: None | _ShapeLike = ...,
|
617 |
+
out: None = ...,
|
618 |
+
overwrite_input: bool = ...,
|
619 |
+
method: _MethodKind = ...,
|
620 |
+
keepdims: bool = ...,
|
621 |
+
) -> Any: ...
|
622 |
+
@overload
|
623 |
+
def percentile(
|
624 |
+
a: _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeTD64_co | _ArrayLikeObject_co,
|
625 |
+
q: _ArrayLikeFloat_co,
|
626 |
+
axis: None | _ShapeLike = ...,
|
627 |
+
out: _ArrayType = ...,
|
628 |
+
overwrite_input: bool = ...,
|
629 |
+
method: _MethodKind = ...,
|
630 |
+
keepdims: bool = ...,
|
631 |
+
) -> _ArrayType: ...
|
632 |
+
|
633 |
+
# NOTE: Not an alias, but they do have identical signatures
|
634 |
+
# (that we can reuse)
|
635 |
+
quantile = percentile
|
636 |
+
|
637 |
+
# TODO: Returns a scalar for <= 1D array-likes; returns an ndarray otherwise
|
638 |
+
def trapz(
|
639 |
+
y: _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeObject_co,
|
640 |
+
x: None | _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeObject_co = ...,
|
641 |
+
dx: float = ...,
|
642 |
+
axis: SupportsIndex = ...,
|
643 |
+
) -> Any: ...
|
644 |
+
|
645 |
+
def meshgrid(
|
646 |
+
*xi: ArrayLike,
|
647 |
+
copy: bool = ...,
|
648 |
+
sparse: bool = ...,
|
649 |
+
indexing: L["xy", "ij"] = ...,
|
650 |
+
) -> list[NDArray[Any]]: ...
|
651 |
+
|
652 |
+
@overload
|
653 |
+
def delete(
|
654 |
+
arr: _ArrayLike[_SCT],
|
655 |
+
obj: slice | _ArrayLikeInt_co,
|
656 |
+
axis: None | SupportsIndex = ...,
|
657 |
+
) -> NDArray[_SCT]: ...
|
658 |
+
@overload
|
659 |
+
def delete(
|
660 |
+
arr: ArrayLike,
|
661 |
+
obj: slice | _ArrayLikeInt_co,
|
662 |
+
axis: None | SupportsIndex = ...,
|
663 |
+
) -> NDArray[Any]: ...
|
664 |
+
|
665 |
+
@overload
|
666 |
+
def insert(
|
667 |
+
arr: _ArrayLike[_SCT],
|
668 |
+
obj: slice | _ArrayLikeInt_co,
|
669 |
+
values: ArrayLike,
|
670 |
+
axis: None | SupportsIndex = ...,
|
671 |
+
) -> NDArray[_SCT]: ...
|
672 |
+
@overload
|
673 |
+
def insert(
|
674 |
+
arr: ArrayLike,
|
675 |
+
obj: slice | _ArrayLikeInt_co,
|
676 |
+
values: ArrayLike,
|
677 |
+
axis: None | SupportsIndex = ...,
|
678 |
+
) -> NDArray[Any]: ...
|
679 |
+
|
680 |
+
def append(
|
681 |
+
arr: ArrayLike,
|
682 |
+
values: ArrayLike,
|
683 |
+
axis: None | SupportsIndex = ...,
|
684 |
+
) -> NDArray[Any]: ...
|
685 |
+
|
686 |
+
@overload
|
687 |
+
def digitize(
|
688 |
+
x: _FloatLike_co,
|
689 |
+
bins: _ArrayLikeFloat_co,
|
690 |
+
right: bool = ...,
|
691 |
+
) -> intp: ...
|
692 |
+
@overload
|
693 |
+
def digitize(
|
694 |
+
x: _ArrayLikeFloat_co,
|
695 |
+
bins: _ArrayLikeFloat_co,
|
696 |
+
right: bool = ...,
|
697 |
+
) -> NDArray[intp]: ...
|
env-llmeval/lib/python3.10/site-packages/numpy/lib/histograms.py
ADDED
@@ -0,0 +1,1072 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Histogram-related functions
|
3 |
+
"""
|
4 |
+
import contextlib
|
5 |
+
import functools
|
6 |
+
import operator
|
7 |
+
import warnings
|
8 |
+
|
9 |
+
import numpy as np
|
10 |
+
from numpy.core import overrides
|
11 |
+
|
12 |
+
__all__ = ['histogram', 'histogramdd', 'histogram_bin_edges']
|
13 |
+
|
14 |
+
array_function_dispatch = functools.partial(
|
15 |
+
overrides.array_function_dispatch, module='numpy')
|
16 |
+
|
17 |
+
# range is a keyword argument to many functions, so save the builtin so they can
|
18 |
+
# use it.
|
19 |
+
_range = range
|
20 |
+
|
21 |
+
|
22 |
+
def _ptp(x):
|
23 |
+
"""Peak-to-peak value of x.
|
24 |
+
|
25 |
+
This implementation avoids the problem of signed integer arrays having a
|
26 |
+
peak-to-peak value that cannot be represented with the array's data type.
|
27 |
+
This function returns an unsigned value for signed integer arrays.
|
28 |
+
"""
|
29 |
+
return _unsigned_subtract(x.max(), x.min())
|
30 |
+
|
31 |
+
|
32 |
+
def _hist_bin_sqrt(x, range):
|
33 |
+
"""
|
34 |
+
Square root histogram bin estimator.
|
35 |
+
|
36 |
+
Bin width is inversely proportional to the data size. Used by many
|
37 |
+
programs for its simplicity.
|
38 |
+
|
39 |
+
Parameters
|
40 |
+
----------
|
41 |
+
x : array_like
|
42 |
+
Input data that is to be histogrammed, trimmed to range. May not
|
43 |
+
be empty.
|
44 |
+
|
45 |
+
Returns
|
46 |
+
-------
|
47 |
+
h : An estimate of the optimal bin width for the given data.
|
48 |
+
"""
|
49 |
+
del range # unused
|
50 |
+
return _ptp(x) / np.sqrt(x.size)
|
51 |
+
|
52 |
+
|
53 |
+
def _hist_bin_sturges(x, range):
|
54 |
+
"""
|
55 |
+
Sturges histogram bin estimator.
|
56 |
+
|
57 |
+
A very simplistic estimator based on the assumption of normality of
|
58 |
+
the data. This estimator has poor performance for non-normal data,
|
59 |
+
which becomes especially obvious for large data sets. The estimate
|
60 |
+
depends only on size of the data.
|
61 |
+
|
62 |
+
Parameters
|
63 |
+
----------
|
64 |
+
x : array_like
|
65 |
+
Input data that is to be histogrammed, trimmed to range. May not
|
66 |
+
be empty.
|
67 |
+
|
68 |
+
Returns
|
69 |
+
-------
|
70 |
+
h : An estimate of the optimal bin width for the given data.
|
71 |
+
"""
|
72 |
+
del range # unused
|
73 |
+
return _ptp(x) / (np.log2(x.size) + 1.0)
|
74 |
+
|
75 |
+
|
76 |
+
def _hist_bin_rice(x, range):
|
77 |
+
"""
|
78 |
+
Rice histogram bin estimator.
|
79 |
+
|
80 |
+
Another simple estimator with no normality assumption. It has better
|
81 |
+
performance for large data than Sturges, but tends to overestimate
|
82 |
+
the number of bins. The number of bins is proportional to the cube
|
83 |
+
root of data size (asymptotically optimal). The estimate depends
|
84 |
+
only on size of the data.
|
85 |
+
|
86 |
+
Parameters
|
87 |
+
----------
|
88 |
+
x : array_like
|
89 |
+
Input data that is to be histogrammed, trimmed to range. May not
|
90 |
+
be empty.
|
91 |
+
|
92 |
+
Returns
|
93 |
+
-------
|
94 |
+
h : An estimate of the optimal bin width for the given data.
|
95 |
+
"""
|
96 |
+
del range # unused
|
97 |
+
return _ptp(x) / (2.0 * x.size ** (1.0 / 3))
|
98 |
+
|
99 |
+
|
100 |
+
def _hist_bin_scott(x, range):
|
101 |
+
"""
|
102 |
+
Scott histogram bin estimator.
|
103 |
+
|
104 |
+
The binwidth is proportional to the standard deviation of the data
|
105 |
+
and inversely proportional to the cube root of data size
|
106 |
+
(asymptotically optimal).
|
107 |
+
|
108 |
+
Parameters
|
109 |
+
----------
|
110 |
+
x : array_like
|
111 |
+
Input data that is to be histogrammed, trimmed to range. May not
|
112 |
+
be empty.
|
113 |
+
|
114 |
+
Returns
|
115 |
+
-------
|
116 |
+
h : An estimate of the optimal bin width for the given data.
|
117 |
+
"""
|
118 |
+
del range # unused
|
119 |
+
return (24.0 * np.pi**0.5 / x.size)**(1.0 / 3.0) * np.std(x)
|
120 |
+
|
121 |
+
|
122 |
+
def _hist_bin_stone(x, range):
|
123 |
+
"""
|
124 |
+
Histogram bin estimator based on minimizing the estimated integrated squared error (ISE).
|
125 |
+
|
126 |
+
The number of bins is chosen by minimizing the estimated ISE against the unknown true distribution.
|
127 |
+
The ISE is estimated using cross-validation and can be regarded as a generalization of Scott's rule.
|
128 |
+
https://en.wikipedia.org/wiki/Histogram#Scott.27s_normal_reference_rule
|
129 |
+
|
130 |
+
This paper by Stone appears to be the origination of this rule.
|
131 |
+
http://digitalassets.lib.berkeley.edu/sdtr/ucb/text/34.pdf
|
132 |
+
|
133 |
+
Parameters
|
134 |
+
----------
|
135 |
+
x : array_like
|
136 |
+
Input data that is to be histogrammed, trimmed to range. May not
|
137 |
+
be empty.
|
138 |
+
range : (float, float)
|
139 |
+
The lower and upper range of the bins.
|
140 |
+
|
141 |
+
Returns
|
142 |
+
-------
|
143 |
+
h : An estimate of the optimal bin width for the given data.
|
144 |
+
"""
|
145 |
+
|
146 |
+
n = x.size
|
147 |
+
ptp_x = _ptp(x)
|
148 |
+
if n <= 1 or ptp_x == 0:
|
149 |
+
return 0
|
150 |
+
|
151 |
+
def jhat(nbins):
|
152 |
+
hh = ptp_x / nbins
|
153 |
+
p_k = np.histogram(x, bins=nbins, range=range)[0] / n
|
154 |
+
return (2 - (n + 1) * p_k.dot(p_k)) / hh
|
155 |
+
|
156 |
+
nbins_upper_bound = max(100, int(np.sqrt(n)))
|
157 |
+
nbins = min(_range(1, nbins_upper_bound + 1), key=jhat)
|
158 |
+
if nbins == nbins_upper_bound:
|
159 |
+
warnings.warn("The number of bins estimated may be suboptimal.",
|
160 |
+
RuntimeWarning, stacklevel=3)
|
161 |
+
return ptp_x / nbins
|
162 |
+
|
163 |
+
|
164 |
+
def _hist_bin_doane(x, range):
|
165 |
+
"""
|
166 |
+
Doane's histogram bin estimator.
|
167 |
+
|
168 |
+
Improved version of Sturges' formula which works better for
|
169 |
+
non-normal data. See
|
170 |
+
stats.stackexchange.com/questions/55134/doanes-formula-for-histogram-binning
|
171 |
+
|
172 |
+
Parameters
|
173 |
+
----------
|
174 |
+
x : array_like
|
175 |
+
Input data that is to be histogrammed, trimmed to range. May not
|
176 |
+
be empty.
|
177 |
+
|
178 |
+
Returns
|
179 |
+
-------
|
180 |
+
h : An estimate of the optimal bin width for the given data.
|
181 |
+
"""
|
182 |
+
del range # unused
|
183 |
+
if x.size > 2:
|
184 |
+
sg1 = np.sqrt(6.0 * (x.size - 2) / ((x.size + 1.0) * (x.size + 3)))
|
185 |
+
sigma = np.std(x)
|
186 |
+
if sigma > 0.0:
|
187 |
+
# These three operations add up to
|
188 |
+
# g1 = np.mean(((x - np.mean(x)) / sigma)**3)
|
189 |
+
# but use only one temp array instead of three
|
190 |
+
temp = x - np.mean(x)
|
191 |
+
np.true_divide(temp, sigma, temp)
|
192 |
+
np.power(temp, 3, temp)
|
193 |
+
g1 = np.mean(temp)
|
194 |
+
return _ptp(x) / (1.0 + np.log2(x.size) +
|
195 |
+
np.log2(1.0 + np.absolute(g1) / sg1))
|
196 |
+
return 0.0
|
197 |
+
|
198 |
+
|
199 |
+
def _hist_bin_fd(x, range):
|
200 |
+
"""
|
201 |
+
The Freedman-Diaconis histogram bin estimator.
|
202 |
+
|
203 |
+
The Freedman-Diaconis rule uses interquartile range (IQR) to
|
204 |
+
estimate binwidth. It is considered a variation of the Scott rule
|
205 |
+
with more robustness as the IQR is less affected by outliers than
|
206 |
+
the standard deviation. However, the IQR depends on fewer points
|
207 |
+
than the standard deviation, so it is less accurate, especially for
|
208 |
+
long tailed distributions.
|
209 |
+
|
210 |
+
If the IQR is 0, this function returns 0 for the bin width.
|
211 |
+
Binwidth is inversely proportional to the cube root of data size
|
212 |
+
(asymptotically optimal).
|
213 |
+
|
214 |
+
Parameters
|
215 |
+
----------
|
216 |
+
x : array_like
|
217 |
+
Input data that is to be histogrammed, trimmed to range. May not
|
218 |
+
be empty.
|
219 |
+
|
220 |
+
Returns
|
221 |
+
-------
|
222 |
+
h : An estimate of the optimal bin width for the given data.
|
223 |
+
"""
|
224 |
+
del range # unused
|
225 |
+
iqr = np.subtract(*np.percentile(x, [75, 25]))
|
226 |
+
return 2.0 * iqr * x.size ** (-1.0 / 3.0)
|
227 |
+
|
228 |
+
|
229 |
+
def _hist_bin_auto(x, range):
|
230 |
+
"""
|
231 |
+
Histogram bin estimator that uses the minimum width of the
|
232 |
+
Freedman-Diaconis and Sturges estimators if the FD bin width is non-zero.
|
233 |
+
If the bin width from the FD estimator is 0, the Sturges estimator is used.
|
234 |
+
|
235 |
+
The FD estimator is usually the most robust method, but its width
|
236 |
+
estimate tends to be too large for small `x` and bad for data with limited
|
237 |
+
variance. The Sturges estimator is quite good for small (<1000) datasets
|
238 |
+
and is the default in the R language. This method gives good off-the-shelf
|
239 |
+
behaviour.
|
240 |
+
|
241 |
+
.. versionchanged:: 1.15.0
|
242 |
+
If there is limited variance the IQR can be 0, which results in the
|
243 |
+
FD bin width being 0 too. This is not a valid bin width, so
|
244 |
+
``np.histogram_bin_edges`` chooses 1 bin instead, which may not be optimal.
|
245 |
+
If the IQR is 0, it's unlikely any variance-based estimators will be of
|
246 |
+
use, so we revert to the Sturges estimator, which only uses the size of the
|
247 |
+
dataset in its calculation.
|
248 |
+
|
249 |
+
Parameters
|
250 |
+
----------
|
251 |
+
x : array_like
|
252 |
+
Input data that is to be histogrammed, trimmed to range. May not
|
253 |
+
be empty.
|
254 |
+
|
255 |
+
Returns
|
256 |
+
-------
|
257 |
+
h : An estimate of the optimal bin width for the given data.
|
258 |
+
|
259 |
+
See Also
|
260 |
+
--------
|
261 |
+
_hist_bin_fd, _hist_bin_sturges
|
262 |
+
"""
|
263 |
+
fd_bw = _hist_bin_fd(x, range)
|
264 |
+
sturges_bw = _hist_bin_sturges(x, range)
|
265 |
+
del range # unused
|
266 |
+
if fd_bw:
|
267 |
+
return min(fd_bw, sturges_bw)
|
268 |
+
else:
|
269 |
+
# limited variance, so we return a len dependent bw estimator
|
270 |
+
return sturges_bw
|
271 |
+
|
272 |
+
# Private dict initialized at module load time
|
273 |
+
_hist_bin_selectors = {'stone': _hist_bin_stone,
|
274 |
+
'auto': _hist_bin_auto,
|
275 |
+
'doane': _hist_bin_doane,
|
276 |
+
'fd': _hist_bin_fd,
|
277 |
+
'rice': _hist_bin_rice,
|
278 |
+
'scott': _hist_bin_scott,
|
279 |
+
'sqrt': _hist_bin_sqrt,
|
280 |
+
'sturges': _hist_bin_sturges}
|
281 |
+
|
282 |
+
|
283 |
+
def _ravel_and_check_weights(a, weights):
|
284 |
+
""" Check a and weights have matching shapes, and ravel both """
|
285 |
+
a = np.asarray(a)
|
286 |
+
|
287 |
+
# Ensure that the array is a "subtractable" dtype
|
288 |
+
if a.dtype == np.bool_:
|
289 |
+
warnings.warn("Converting input from {} to {} for compatibility."
|
290 |
+
.format(a.dtype, np.uint8),
|
291 |
+
RuntimeWarning, stacklevel=3)
|
292 |
+
a = a.astype(np.uint8)
|
293 |
+
|
294 |
+
if weights is not None:
|
295 |
+
weights = np.asarray(weights)
|
296 |
+
if weights.shape != a.shape:
|
297 |
+
raise ValueError(
|
298 |
+
'weights should have the same shape as a.')
|
299 |
+
weights = weights.ravel()
|
300 |
+
a = a.ravel()
|
301 |
+
return a, weights
|
302 |
+
|
303 |
+
|
304 |
+
def _get_outer_edges(a, range):
|
305 |
+
"""
|
306 |
+
Determine the outer bin edges to use, from either the data or the range
|
307 |
+
argument
|
308 |
+
"""
|
309 |
+
if range is not None:
|
310 |
+
first_edge, last_edge = range
|
311 |
+
if first_edge > last_edge:
|
312 |
+
raise ValueError(
|
313 |
+
'max must be larger than min in range parameter.')
|
314 |
+
if not (np.isfinite(first_edge) and np.isfinite(last_edge)):
|
315 |
+
raise ValueError(
|
316 |
+
"supplied range of [{}, {}] is not finite".format(first_edge, last_edge))
|
317 |
+
elif a.size == 0:
|
318 |
+
# handle empty arrays. Can't determine range, so use 0-1.
|
319 |
+
first_edge, last_edge = 0, 1
|
320 |
+
else:
|
321 |
+
first_edge, last_edge = a.min(), a.max()
|
322 |
+
if not (np.isfinite(first_edge) and np.isfinite(last_edge)):
|
323 |
+
raise ValueError(
|
324 |
+
"autodetected range of [{}, {}] is not finite".format(first_edge, last_edge))
|
325 |
+
|
326 |
+
# expand empty range to avoid divide by zero
|
327 |
+
if first_edge == last_edge:
|
328 |
+
first_edge = first_edge - 0.5
|
329 |
+
last_edge = last_edge + 0.5
|
330 |
+
|
331 |
+
return first_edge, last_edge
|
332 |
+
|
333 |
+
|
334 |
+
def _unsigned_subtract(a, b):
|
335 |
+
"""
|
336 |
+
Subtract two values where a >= b, and produce an unsigned result
|
337 |
+
|
338 |
+
This is needed when finding the difference between the upper and lower
|
339 |
+
bound of an int16 histogram
|
340 |
+
"""
|
341 |
+
# coerce to a single type
|
342 |
+
signed_to_unsigned = {
|
343 |
+
np.byte: np.ubyte,
|
344 |
+
np.short: np.ushort,
|
345 |
+
np.intc: np.uintc,
|
346 |
+
np.int_: np.uint,
|
347 |
+
np.longlong: np.ulonglong
|
348 |
+
}
|
349 |
+
dt = np.result_type(a, b)
|
350 |
+
try:
|
351 |
+
dt = signed_to_unsigned[dt.type]
|
352 |
+
except KeyError:
|
353 |
+
return np.subtract(a, b, dtype=dt)
|
354 |
+
else:
|
355 |
+
# we know the inputs are integers, and we are deliberately casting
|
356 |
+
# signed to unsigned
|
357 |
+
return np.subtract(a, b, casting='unsafe', dtype=dt)
|
358 |
+
|
359 |
+
|
360 |
+
def _get_bin_edges(a, bins, range, weights):
|
361 |
+
"""
|
362 |
+
Computes the bins used internally by `histogram`.
|
363 |
+
|
364 |
+
Parameters
|
365 |
+
==========
|
366 |
+
a : ndarray
|
367 |
+
Ravelled data array
|
368 |
+
bins, range
|
369 |
+
Forwarded arguments from `histogram`.
|
370 |
+
weights : ndarray, optional
|
371 |
+
Ravelled weights array, or None
|
372 |
+
|
373 |
+
Returns
|
374 |
+
=======
|
375 |
+
bin_edges : ndarray
|
376 |
+
Array of bin edges
|
377 |
+
uniform_bins : (Number, Number, int):
|
378 |
+
The upper bound, lowerbound, and number of bins, used in the optimized
|
379 |
+
implementation of `histogram` that works on uniform bins.
|
380 |
+
"""
|
381 |
+
# parse the overloaded bins argument
|
382 |
+
n_equal_bins = None
|
383 |
+
bin_edges = None
|
384 |
+
|
385 |
+
if isinstance(bins, str):
|
386 |
+
bin_name = bins
|
387 |
+
# if `bins` is a string for an automatic method,
|
388 |
+
# this will replace it with the number of bins calculated
|
389 |
+
if bin_name not in _hist_bin_selectors:
|
390 |
+
raise ValueError(
|
391 |
+
"{!r} is not a valid estimator for `bins`".format(bin_name))
|
392 |
+
if weights is not None:
|
393 |
+
raise TypeError("Automated estimation of the number of "
|
394 |
+
"bins is not supported for weighted data")
|
395 |
+
|
396 |
+
first_edge, last_edge = _get_outer_edges(a, range)
|
397 |
+
|
398 |
+
# truncate the range if needed
|
399 |
+
if range is not None:
|
400 |
+
keep = (a >= first_edge)
|
401 |
+
keep &= (a <= last_edge)
|
402 |
+
if not np.logical_and.reduce(keep):
|
403 |
+
a = a[keep]
|
404 |
+
|
405 |
+
if a.size == 0:
|
406 |
+
n_equal_bins = 1
|
407 |
+
else:
|
408 |
+
# Do not call selectors on empty arrays
|
409 |
+
width = _hist_bin_selectors[bin_name](a, (first_edge, last_edge))
|
410 |
+
if width:
|
411 |
+
n_equal_bins = int(np.ceil(_unsigned_subtract(last_edge, first_edge) / width))
|
412 |
+
else:
|
413 |
+
# Width can be zero for some estimators, e.g. FD when
|
414 |
+
# the IQR of the data is zero.
|
415 |
+
n_equal_bins = 1
|
416 |
+
|
417 |
+
elif np.ndim(bins) == 0:
|
418 |
+
try:
|
419 |
+
n_equal_bins = operator.index(bins)
|
420 |
+
except TypeError as e:
|
421 |
+
raise TypeError(
|
422 |
+
'`bins` must be an integer, a string, or an array') from e
|
423 |
+
if n_equal_bins < 1:
|
424 |
+
raise ValueError('`bins` must be positive, when an integer')
|
425 |
+
|
426 |
+
first_edge, last_edge = _get_outer_edges(a, range)
|
427 |
+
|
428 |
+
elif np.ndim(bins) == 1:
|
429 |
+
bin_edges = np.asarray(bins)
|
430 |
+
if np.any(bin_edges[:-1] > bin_edges[1:]):
|
431 |
+
raise ValueError(
|
432 |
+
'`bins` must increase monotonically, when an array')
|
433 |
+
|
434 |
+
else:
|
435 |
+
raise ValueError('`bins` must be 1d, when an array')
|
436 |
+
|
437 |
+
if n_equal_bins is not None:
|
438 |
+
# gh-10322 means that type resolution rules are dependent on array
|
439 |
+
# shapes. To avoid this causing problems, we pick a type now and stick
|
440 |
+
# with it throughout.
|
441 |
+
bin_type = np.result_type(first_edge, last_edge, a)
|
442 |
+
if np.issubdtype(bin_type, np.integer):
|
443 |
+
bin_type = np.result_type(bin_type, float)
|
444 |
+
|
445 |
+
# bin edges must be computed
|
446 |
+
bin_edges = np.linspace(
|
447 |
+
first_edge, last_edge, n_equal_bins + 1,
|
448 |
+
endpoint=True, dtype=bin_type)
|
449 |
+
return bin_edges, (first_edge, last_edge, n_equal_bins)
|
450 |
+
else:
|
451 |
+
return bin_edges, None
|
452 |
+
|
453 |
+
|
454 |
+
def _search_sorted_inclusive(a, v):
|
455 |
+
"""
|
456 |
+
Like `searchsorted`, but where the last item in `v` is placed on the right.
|
457 |
+
|
458 |
+
In the context of a histogram, this makes the last bin edge inclusive
|
459 |
+
"""
|
460 |
+
return np.concatenate((
|
461 |
+
a.searchsorted(v[:-1], 'left'),
|
462 |
+
a.searchsorted(v[-1:], 'right')
|
463 |
+
))
|
464 |
+
|
465 |
+
|
466 |
+
def _histogram_bin_edges_dispatcher(a, bins=None, range=None, weights=None):
|
467 |
+
return (a, bins, weights)
|
468 |
+
|
469 |
+
|
470 |
+
@array_function_dispatch(_histogram_bin_edges_dispatcher)
|
471 |
+
def histogram_bin_edges(a, bins=10, range=None, weights=None):
|
472 |
+
r"""
|
473 |
+
Function to calculate only the edges of the bins used by the `histogram`
|
474 |
+
function.
|
475 |
+
|
476 |
+
Parameters
|
477 |
+
----------
|
478 |
+
a : array_like
|
479 |
+
Input data. The histogram is computed over the flattened array.
|
480 |
+
bins : int or sequence of scalars or str, optional
|
481 |
+
If `bins` is an int, it defines the number of equal-width
|
482 |
+
bins in the given range (10, by default). If `bins` is a
|
483 |
+
sequence, it defines the bin edges, including the rightmost
|
484 |
+
edge, allowing for non-uniform bin widths.
|
485 |
+
|
486 |
+
If `bins` is a string from the list below, `histogram_bin_edges` will use
|
487 |
+
the method chosen to calculate the optimal bin width and
|
488 |
+
consequently the number of bins (see `Notes` for more detail on
|
489 |
+
the estimators) from the data that falls within the requested
|
490 |
+
range. While the bin width will be optimal for the actual data
|
491 |
+
in the range, the number of bins will be computed to fill the
|
492 |
+
entire range, including the empty portions. For visualisation,
|
493 |
+
using the 'auto' option is suggested. Weighted data is not
|
494 |
+
supported for automated bin size selection.
|
495 |
+
|
496 |
+
'auto'
|
497 |
+
Maximum of the 'sturges' and 'fd' estimators. Provides good
|
498 |
+
all around performance.
|
499 |
+
|
500 |
+
'fd' (Freedman Diaconis Estimator)
|
501 |
+
Robust (resilient to outliers) estimator that takes into
|
502 |
+
account data variability and data size.
|
503 |
+
|
504 |
+
'doane'
|
505 |
+
An improved version of Sturges' estimator that works better
|
506 |
+
with non-normal datasets.
|
507 |
+
|
508 |
+
'scott'
|
509 |
+
Less robust estimator that takes into account data variability
|
510 |
+
and data size.
|
511 |
+
|
512 |
+
'stone'
|
513 |
+
Estimator based on leave-one-out cross-validation estimate of
|
514 |
+
the integrated squared error. Can be regarded as a generalization
|
515 |
+
of Scott's rule.
|
516 |
+
|
517 |
+
'rice'
|
518 |
+
Estimator does not take variability into account, only data
|
519 |
+
size. Commonly overestimates number of bins required.
|
520 |
+
|
521 |
+
'sturges'
|
522 |
+
R's default method, only accounts for data size. Only
|
523 |
+
optimal for gaussian data and underestimates number of bins
|
524 |
+
for large non-gaussian datasets.
|
525 |
+
|
526 |
+
'sqrt'
|
527 |
+
Square root (of data size) estimator, used by Excel and
|
528 |
+
other programs for its speed and simplicity.
|
529 |
+
|
530 |
+
range : (float, float), optional
|
531 |
+
The lower and upper range of the bins. If not provided, range
|
532 |
+
is simply ``(a.min(), a.max())``. Values outside the range are
|
533 |
+
ignored. The first element of the range must be less than or
|
534 |
+
equal to the second. `range` affects the automatic bin
|
535 |
+
computation as well. While bin width is computed to be optimal
|
536 |
+
based on the actual data within `range`, the bin count will fill
|
537 |
+
the entire range including portions containing no data.
|
538 |
+
|
539 |
+
weights : array_like, optional
|
540 |
+
An array of weights, of the same shape as `a`. Each value in
|
541 |
+
`a` only contributes its associated weight towards the bin count
|
542 |
+
(instead of 1). This is currently not used by any of the bin estimators,
|
543 |
+
but may be in the future.
|
544 |
+
|
545 |
+
Returns
|
546 |
+
-------
|
547 |
+
bin_edges : array of dtype float
|
548 |
+
The edges to pass into `histogram`
|
549 |
+
|
550 |
+
See Also
|
551 |
+
--------
|
552 |
+
histogram
|
553 |
+
|
554 |
+
Notes
|
555 |
+
-----
|
556 |
+
The methods to estimate the optimal number of bins are well founded
|
557 |
+
in literature, and are inspired by the choices R provides for
|
558 |
+
histogram visualisation. Note that having the number of bins
|
559 |
+
proportional to :math:`n^{1/3}` is asymptotically optimal, which is
|
560 |
+
why it appears in most estimators. These are simply plug-in methods
|
561 |
+
that give good starting points for number of bins. In the equations
|
562 |
+
below, :math:`h` is the binwidth and :math:`n_h` is the number of
|
563 |
+
bins. All estimators that compute bin counts are recast to bin width
|
564 |
+
using the `ptp` of the data. The final bin count is obtained from
|
565 |
+
``np.round(np.ceil(range / h))``. The final bin width is often less
|
566 |
+
than what is returned by the estimators below.
|
567 |
+
|
568 |
+
'auto' (maximum of the 'sturges' and 'fd' estimators)
|
569 |
+
A compromise to get a good value. For small datasets the Sturges
|
570 |
+
value will usually be chosen, while larger datasets will usually
|
571 |
+
default to FD. Avoids the overly conservative behaviour of FD
|
572 |
+
and Sturges for small and large datasets respectively.
|
573 |
+
Switchover point is usually :math:`a.size \approx 1000`.
|
574 |
+
|
575 |
+
'fd' (Freedman Diaconis Estimator)
|
576 |
+
.. math:: h = 2 \frac{IQR}{n^{1/3}}
|
577 |
+
|
578 |
+
The binwidth is proportional to the interquartile range (IQR)
|
579 |
+
and inversely proportional to cube root of a.size. Can be too
|
580 |
+
conservative for small datasets, but is quite good for large
|
581 |
+
datasets. The IQR is very robust to outliers.
|
582 |
+
|
583 |
+
'scott'
|
584 |
+
.. math:: h = \sigma \sqrt[3]{\frac{24 \sqrt{\pi}}{n}}
|
585 |
+
|
586 |
+
The binwidth is proportional to the standard deviation of the
|
587 |
+
data and inversely proportional to cube root of ``x.size``. Can
|
588 |
+
be too conservative for small datasets, but is quite good for
|
589 |
+
large datasets. The standard deviation is not very robust to
|
590 |
+
outliers. Values are very similar to the Freedman-Diaconis
|
591 |
+
estimator in the absence of outliers.
|
592 |
+
|
593 |
+
'rice'
|
594 |
+
.. math:: n_h = 2n^{1/3}
|
595 |
+
|
596 |
+
The number of bins is only proportional to cube root of
|
597 |
+
``a.size``. It tends to overestimate the number of bins and it
|
598 |
+
does not take into account data variability.
|
599 |
+
|
600 |
+
'sturges'
|
601 |
+
.. math:: n_h = \log _{2}(n) + 1
|
602 |
+
|
603 |
+
The number of bins is the base 2 log of ``a.size``. This
|
604 |
+
estimator assumes normality of data and is too conservative for
|
605 |
+
larger, non-normal datasets. This is the default method in R's
|
606 |
+
``hist`` method.
|
607 |
+
|
608 |
+
'doane'
|
609 |
+
.. math:: n_h = 1 + \log_{2}(n) +
|
610 |
+
\log_{2}\left(1 + \frac{|g_1|}{\sigma_{g_1}}\right)
|
611 |
+
|
612 |
+
g_1 = mean\left[\left(\frac{x - \mu}{\sigma}\right)^3\right]
|
613 |
+
|
614 |
+
\sigma_{g_1} = \sqrt{\frac{6(n - 2)}{(n + 1)(n + 3)}}
|
615 |
+
|
616 |
+
An improved version of Sturges' formula that produces better
|
617 |
+
estimates for non-normal datasets. This estimator attempts to
|
618 |
+
account for the skew of the data.
|
619 |
+
|
620 |
+
'sqrt'
|
621 |
+
.. math:: n_h = \sqrt n
|
622 |
+
|
623 |
+
The simplest and fastest estimator. Only takes into account the
|
624 |
+
data size.
|
625 |
+
|
626 |
+
Examples
|
627 |
+
--------
|
628 |
+
>>> arr = np.array([0, 0, 0, 1, 2, 3, 3, 4, 5])
|
629 |
+
>>> np.histogram_bin_edges(arr, bins='auto', range=(0, 1))
|
630 |
+
array([0. , 0.25, 0.5 , 0.75, 1. ])
|
631 |
+
>>> np.histogram_bin_edges(arr, bins=2)
|
632 |
+
array([0. , 2.5, 5. ])
|
633 |
+
|
634 |
+
For consistency with histogram, an array of pre-computed bins is
|
635 |
+
passed through unmodified:
|
636 |
+
|
637 |
+
>>> np.histogram_bin_edges(arr, [1, 2])
|
638 |
+
array([1, 2])
|
639 |
+
|
640 |
+
This function allows one set of bins to be computed, and reused across
|
641 |
+
multiple histograms:
|
642 |
+
|
643 |
+
>>> shared_bins = np.histogram_bin_edges(arr, bins='auto')
|
644 |
+
>>> shared_bins
|
645 |
+
array([0., 1., 2., 3., 4., 5.])
|
646 |
+
|
647 |
+
>>> group_id = np.array([0, 1, 1, 0, 1, 1, 0, 1, 1])
|
648 |
+
>>> hist_0, _ = np.histogram(arr[group_id == 0], bins=shared_bins)
|
649 |
+
>>> hist_1, _ = np.histogram(arr[group_id == 1], bins=shared_bins)
|
650 |
+
|
651 |
+
>>> hist_0; hist_1
|
652 |
+
array([1, 1, 0, 1, 0])
|
653 |
+
array([2, 0, 1, 1, 2])
|
654 |
+
|
655 |
+
Which gives more easily comparable results than using separate bins for
|
656 |
+
each histogram:
|
657 |
+
|
658 |
+
>>> hist_0, bins_0 = np.histogram(arr[group_id == 0], bins='auto')
|
659 |
+
>>> hist_1, bins_1 = np.histogram(arr[group_id == 1], bins='auto')
|
660 |
+
>>> hist_0; hist_1
|
661 |
+
array([1, 1, 1])
|
662 |
+
array([2, 1, 1, 2])
|
663 |
+
>>> bins_0; bins_1
|
664 |
+
array([0., 1., 2., 3.])
|
665 |
+
array([0. , 1.25, 2.5 , 3.75, 5. ])
|
666 |
+
|
667 |
+
"""
|
668 |
+
a, weights = _ravel_and_check_weights(a, weights)
|
669 |
+
bin_edges, _ = _get_bin_edges(a, bins, range, weights)
|
670 |
+
return bin_edges
|
671 |
+
|
672 |
+
|
673 |
+
def _histogram_dispatcher(
|
674 |
+
a, bins=None, range=None, density=None, weights=None):
|
675 |
+
return (a, bins, weights)
|
676 |
+
|
677 |
+
|
678 |
+
@array_function_dispatch(_histogram_dispatcher)
|
679 |
+
def histogram(a, bins=10, range=None, density=None, weights=None):
|
680 |
+
r"""
|
681 |
+
Compute the histogram of a dataset.
|
682 |
+
|
683 |
+
Parameters
|
684 |
+
----------
|
685 |
+
a : array_like
|
686 |
+
Input data. The histogram is computed over the flattened array.
|
687 |
+
bins : int or sequence of scalars or str, optional
|
688 |
+
If `bins` is an int, it defines the number of equal-width
|
689 |
+
bins in the given range (10, by default). If `bins` is a
|
690 |
+
sequence, it defines a monotonically increasing array of bin edges,
|
691 |
+
including the rightmost edge, allowing for non-uniform bin widths.
|
692 |
+
|
693 |
+
.. versionadded:: 1.11.0
|
694 |
+
|
695 |
+
If `bins` is a string, it defines the method used to calculate the
|
696 |
+
optimal bin width, as defined by `histogram_bin_edges`.
|
697 |
+
|
698 |
+
range : (float, float), optional
|
699 |
+
The lower and upper range of the bins. If not provided, range
|
700 |
+
is simply ``(a.min(), a.max())``. Values outside the range are
|
701 |
+
ignored. The first element of the range must be less than or
|
702 |
+
equal to the second. `range` affects the automatic bin
|
703 |
+
computation as well. While bin width is computed to be optimal
|
704 |
+
based on the actual data within `range`, the bin count will fill
|
705 |
+
the entire range including portions containing no data.
|
706 |
+
weights : array_like, optional
|
707 |
+
An array of weights, of the same shape as `a`. Each value in
|
708 |
+
`a` only contributes its associated weight towards the bin count
|
709 |
+
(instead of 1). If `density` is True, the weights are
|
710 |
+
normalized, so that the integral of the density over the range
|
711 |
+
remains 1.
|
712 |
+
density : bool, optional
|
713 |
+
If ``False``, the result will contain the number of samples in
|
714 |
+
each bin. If ``True``, the result is the value of the
|
715 |
+
probability *density* function at the bin, normalized such that
|
716 |
+
the *integral* over the range is 1. Note that the sum of the
|
717 |
+
histogram values will not be equal to 1 unless bins of unity
|
718 |
+
width are chosen; it is not a probability *mass* function.
|
719 |
+
|
720 |
+
Returns
|
721 |
+
-------
|
722 |
+
hist : array
|
723 |
+
The values of the histogram. See `density` and `weights` for a
|
724 |
+
description of the possible semantics.
|
725 |
+
bin_edges : array of dtype float
|
726 |
+
Return the bin edges ``(length(hist)+1)``.
|
727 |
+
|
728 |
+
|
729 |
+
See Also
|
730 |
+
--------
|
731 |
+
histogramdd, bincount, searchsorted, digitize, histogram_bin_edges
|
732 |
+
|
733 |
+
Notes
|
734 |
+
-----
|
735 |
+
All but the last (righthand-most) bin is half-open. In other words,
|
736 |
+
if `bins` is::
|
737 |
+
|
738 |
+
[1, 2, 3, 4]
|
739 |
+
|
740 |
+
then the first bin is ``[1, 2)`` (including 1, but excluding 2) and
|
741 |
+
the second ``[2, 3)``. The last bin, however, is ``[3, 4]``, which
|
742 |
+
*includes* 4.
|
743 |
+
|
744 |
+
|
745 |
+
Examples
|
746 |
+
--------
|
747 |
+
>>> np.histogram([1, 2, 1], bins=[0, 1, 2, 3])
|
748 |
+
(array([0, 2, 1]), array([0, 1, 2, 3]))
|
749 |
+
>>> np.histogram(np.arange(4), bins=np.arange(5), density=True)
|
750 |
+
(array([0.25, 0.25, 0.25, 0.25]), array([0, 1, 2, 3, 4]))
|
751 |
+
>>> np.histogram([[1, 2, 1], [1, 0, 1]], bins=[0,1,2,3])
|
752 |
+
(array([1, 4, 1]), array([0, 1, 2, 3]))
|
753 |
+
|
754 |
+
>>> a = np.arange(5)
|
755 |
+
>>> hist, bin_edges = np.histogram(a, density=True)
|
756 |
+
>>> hist
|
757 |
+
array([0.5, 0. , 0.5, 0. , 0. , 0.5, 0. , 0.5, 0. , 0.5])
|
758 |
+
>>> hist.sum()
|
759 |
+
2.4999999999999996
|
760 |
+
>>> np.sum(hist * np.diff(bin_edges))
|
761 |
+
1.0
|
762 |
+
|
763 |
+
.. versionadded:: 1.11.0
|
764 |
+
|
765 |
+
Automated Bin Selection Methods example, using 2 peak random data
|
766 |
+
with 2000 points:
|
767 |
+
|
768 |
+
>>> import matplotlib.pyplot as plt
|
769 |
+
>>> rng = np.random.RandomState(10) # deterministic random data
|
770 |
+
>>> a = np.hstack((rng.normal(size=1000),
|
771 |
+
... rng.normal(loc=5, scale=2, size=1000)))
|
772 |
+
>>> _ = plt.hist(a, bins='auto') # arguments are passed to np.histogram
|
773 |
+
>>> plt.title("Histogram with 'auto' bins")
|
774 |
+
Text(0.5, 1.0, "Histogram with 'auto' bins")
|
775 |
+
>>> plt.show()
|
776 |
+
|
777 |
+
"""
|
778 |
+
a, weights = _ravel_and_check_weights(a, weights)
|
779 |
+
|
780 |
+
bin_edges, uniform_bins = _get_bin_edges(a, bins, range, weights)
|
781 |
+
|
782 |
+
# Histogram is an integer or a float array depending on the weights.
|
783 |
+
if weights is None:
|
784 |
+
ntype = np.dtype(np.intp)
|
785 |
+
else:
|
786 |
+
ntype = weights.dtype
|
787 |
+
|
788 |
+
# We set a block size, as this allows us to iterate over chunks when
|
789 |
+
# computing histograms, to minimize memory usage.
|
790 |
+
BLOCK = 65536
|
791 |
+
|
792 |
+
# The fast path uses bincount, but that only works for certain types
|
793 |
+
# of weight
|
794 |
+
simple_weights = (
|
795 |
+
weights is None or
|
796 |
+
np.can_cast(weights.dtype, np.double) or
|
797 |
+
np.can_cast(weights.dtype, complex)
|
798 |
+
)
|
799 |
+
|
800 |
+
if uniform_bins is not None and simple_weights:
|
801 |
+
# Fast algorithm for equal bins
|
802 |
+
# We now convert values of a to bin indices, under the assumption of
|
803 |
+
# equal bin widths (which is valid here).
|
804 |
+
first_edge, last_edge, n_equal_bins = uniform_bins
|
805 |
+
|
806 |
+
# Initialize empty histogram
|
807 |
+
n = np.zeros(n_equal_bins, ntype)
|
808 |
+
|
809 |
+
# Pre-compute histogram scaling factor
|
810 |
+
norm_numerator = n_equal_bins
|
811 |
+
norm_denom = _unsigned_subtract(last_edge, first_edge)
|
812 |
+
|
813 |
+
# We iterate over blocks here for two reasons: the first is that for
|
814 |
+
# large arrays, it is actually faster (for example for a 10^8 array it
|
815 |
+
# is 2x as fast) and it results in a memory footprint 3x lower in the
|
816 |
+
# limit of large arrays.
|
817 |
+
for i in _range(0, len(a), BLOCK):
|
818 |
+
tmp_a = a[i:i+BLOCK]
|
819 |
+
if weights is None:
|
820 |
+
tmp_w = None
|
821 |
+
else:
|
822 |
+
tmp_w = weights[i:i + BLOCK]
|
823 |
+
|
824 |
+
# Only include values in the right range
|
825 |
+
keep = (tmp_a >= first_edge)
|
826 |
+
keep &= (tmp_a <= last_edge)
|
827 |
+
if not np.logical_and.reduce(keep):
|
828 |
+
tmp_a = tmp_a[keep]
|
829 |
+
if tmp_w is not None:
|
830 |
+
tmp_w = tmp_w[keep]
|
831 |
+
|
832 |
+
# This cast ensures no type promotions occur below, which gh-10322
|
833 |
+
# make unpredictable. Getting it wrong leads to precision errors
|
834 |
+
# like gh-8123.
|
835 |
+
tmp_a = tmp_a.astype(bin_edges.dtype, copy=False)
|
836 |
+
|
837 |
+
# Compute the bin indices, and for values that lie exactly on
|
838 |
+
# last_edge we need to subtract one
|
839 |
+
f_indices = ((_unsigned_subtract(tmp_a, first_edge) / norm_denom)
|
840 |
+
* norm_numerator)
|
841 |
+
indices = f_indices.astype(np.intp)
|
842 |
+
indices[indices == n_equal_bins] -= 1
|
843 |
+
|
844 |
+
# The index computation is not guaranteed to give exactly
|
845 |
+
# consistent results within ~1 ULP of the bin edges.
|
846 |
+
decrement = tmp_a < bin_edges[indices]
|
847 |
+
indices[decrement] -= 1
|
848 |
+
# The last bin includes the right edge. The other bins do not.
|
849 |
+
increment = ((tmp_a >= bin_edges[indices + 1])
|
850 |
+
& (indices != n_equal_bins - 1))
|
851 |
+
indices[increment] += 1
|
852 |
+
|
853 |
+
# We now compute the histogram using bincount
|
854 |
+
if ntype.kind == 'c':
|
855 |
+
n.real += np.bincount(indices, weights=tmp_w.real,
|
856 |
+
minlength=n_equal_bins)
|
857 |
+
n.imag += np.bincount(indices, weights=tmp_w.imag,
|
858 |
+
minlength=n_equal_bins)
|
859 |
+
else:
|
860 |
+
n += np.bincount(indices, weights=tmp_w,
|
861 |
+
minlength=n_equal_bins).astype(ntype)
|
862 |
+
else:
|
863 |
+
# Compute via cumulative histogram
|
864 |
+
cum_n = np.zeros(bin_edges.shape, ntype)
|
865 |
+
if weights is None:
|
866 |
+
for i in _range(0, len(a), BLOCK):
|
867 |
+
sa = np.sort(a[i:i+BLOCK])
|
868 |
+
cum_n += _search_sorted_inclusive(sa, bin_edges)
|
869 |
+
else:
|
870 |
+
zero = np.zeros(1, dtype=ntype)
|
871 |
+
for i in _range(0, len(a), BLOCK):
|
872 |
+
tmp_a = a[i:i+BLOCK]
|
873 |
+
tmp_w = weights[i:i+BLOCK]
|
874 |
+
sorting_index = np.argsort(tmp_a)
|
875 |
+
sa = tmp_a[sorting_index]
|
876 |
+
sw = tmp_w[sorting_index]
|
877 |
+
cw = np.concatenate((zero, sw.cumsum()))
|
878 |
+
bin_index = _search_sorted_inclusive(sa, bin_edges)
|
879 |
+
cum_n += cw[bin_index]
|
880 |
+
|
881 |
+
n = np.diff(cum_n)
|
882 |
+
|
883 |
+
if density:
|
884 |
+
db = np.array(np.diff(bin_edges), float)
|
885 |
+
return n/db/n.sum(), bin_edges
|
886 |
+
|
887 |
+
return n, bin_edges
|
888 |
+
|
889 |
+
|
890 |
+
def _histogramdd_dispatcher(sample, bins=None, range=None, density=None,
|
891 |
+
weights=None):
|
892 |
+
if hasattr(sample, 'shape'): # same condition as used in histogramdd
|
893 |
+
yield sample
|
894 |
+
else:
|
895 |
+
yield from sample
|
896 |
+
with contextlib.suppress(TypeError):
|
897 |
+
yield from bins
|
898 |
+
yield weights
|
899 |
+
|
900 |
+
|
901 |
+
@array_function_dispatch(_histogramdd_dispatcher)
|
902 |
+
def histogramdd(sample, bins=10, range=None, density=None, weights=None):
|
903 |
+
"""
|
904 |
+
Compute the multidimensional histogram of some data.
|
905 |
+
|
906 |
+
Parameters
|
907 |
+
----------
|
908 |
+
sample : (N, D) array, or (N, D) array_like
|
909 |
+
The data to be histogrammed.
|
910 |
+
|
911 |
+
Note the unusual interpretation of sample when an array_like:
|
912 |
+
|
913 |
+
* When an array, each row is a coordinate in a D-dimensional space -
|
914 |
+
such as ``histogramdd(np.array([p1, p2, p3]))``.
|
915 |
+
* When an array_like, each element is the list of values for single
|
916 |
+
coordinate - such as ``histogramdd((X, Y, Z))``.
|
917 |
+
|
918 |
+
The first form should be preferred.
|
919 |
+
|
920 |
+
bins : sequence or int, optional
|
921 |
+
The bin specification:
|
922 |
+
|
923 |
+
* A sequence of arrays describing the monotonically increasing bin
|
924 |
+
edges along each dimension.
|
925 |
+
* The number of bins for each dimension (nx, ny, ... =bins)
|
926 |
+
* The number of bins for all dimensions (nx=ny=...=bins).
|
927 |
+
|
928 |
+
range : sequence, optional
|
929 |
+
A sequence of length D, each an optional (lower, upper) tuple giving
|
930 |
+
the outer bin edges to be used if the edges are not given explicitly in
|
931 |
+
`bins`.
|
932 |
+
An entry of None in the sequence results in the minimum and maximum
|
933 |
+
values being used for the corresponding dimension.
|
934 |
+
The default, None, is equivalent to passing a tuple of D None values.
|
935 |
+
density : bool, optional
|
936 |
+
If False, the default, returns the number of samples in each bin.
|
937 |
+
If True, returns the probability *density* function at the bin,
|
938 |
+
``bin_count / sample_count / bin_volume``.
|
939 |
+
weights : (N,) array_like, optional
|
940 |
+
An array of values `w_i` weighing each sample `(x_i, y_i, z_i, ...)`.
|
941 |
+
Weights are normalized to 1 if density is True. If density is False,
|
942 |
+
the values of the returned histogram are equal to the sum of the
|
943 |
+
weights belonging to the samples falling into each bin.
|
944 |
+
|
945 |
+
Returns
|
946 |
+
-------
|
947 |
+
H : ndarray
|
948 |
+
The multidimensional histogram of sample x. See density and weights
|
949 |
+
for the different possible semantics.
|
950 |
+
edges : list
|
951 |
+
A list of D arrays describing the bin edges for each dimension.
|
952 |
+
|
953 |
+
See Also
|
954 |
+
--------
|
955 |
+
histogram: 1-D histogram
|
956 |
+
histogram2d: 2-D histogram
|
957 |
+
|
958 |
+
Examples
|
959 |
+
--------
|
960 |
+
>>> r = np.random.randn(100,3)
|
961 |
+
>>> H, edges = np.histogramdd(r, bins = (5, 8, 4))
|
962 |
+
>>> H.shape, edges[0].size, edges[1].size, edges[2].size
|
963 |
+
((5, 8, 4), 6, 9, 5)
|
964 |
+
|
965 |
+
"""
|
966 |
+
|
967 |
+
try:
|
968 |
+
# Sample is an ND-array.
|
969 |
+
N, D = sample.shape
|
970 |
+
except (AttributeError, ValueError):
|
971 |
+
# Sample is a sequence of 1D arrays.
|
972 |
+
sample = np.atleast_2d(sample).T
|
973 |
+
N, D = sample.shape
|
974 |
+
|
975 |
+
nbin = np.empty(D, np.intp)
|
976 |
+
edges = D*[None]
|
977 |
+
dedges = D*[None]
|
978 |
+
if weights is not None:
|
979 |
+
weights = np.asarray(weights)
|
980 |
+
|
981 |
+
try:
|
982 |
+
M = len(bins)
|
983 |
+
if M != D:
|
984 |
+
raise ValueError(
|
985 |
+
'The dimension of bins must be equal to the dimension of the '
|
986 |
+
'sample x.')
|
987 |
+
except TypeError:
|
988 |
+
# bins is an integer
|
989 |
+
bins = D*[bins]
|
990 |
+
|
991 |
+
# normalize the range argument
|
992 |
+
if range is None:
|
993 |
+
range = (None,) * D
|
994 |
+
elif len(range) != D:
|
995 |
+
raise ValueError('range argument must have one entry per dimension')
|
996 |
+
|
997 |
+
# Create edge arrays
|
998 |
+
for i in _range(D):
|
999 |
+
if np.ndim(bins[i]) == 0:
|
1000 |
+
if bins[i] < 1:
|
1001 |
+
raise ValueError(
|
1002 |
+
'`bins[{}]` must be positive, when an integer'.format(i))
|
1003 |
+
smin, smax = _get_outer_edges(sample[:,i], range[i])
|
1004 |
+
try:
|
1005 |
+
n = operator.index(bins[i])
|
1006 |
+
|
1007 |
+
except TypeError as e:
|
1008 |
+
raise TypeError(
|
1009 |
+
"`bins[{}]` must be an integer, when a scalar".format(i)
|
1010 |
+
) from e
|
1011 |
+
|
1012 |
+
edges[i] = np.linspace(smin, smax, n + 1)
|
1013 |
+
elif np.ndim(bins[i]) == 1:
|
1014 |
+
edges[i] = np.asarray(bins[i])
|
1015 |
+
if np.any(edges[i][:-1] > edges[i][1:]):
|
1016 |
+
raise ValueError(
|
1017 |
+
'`bins[{}]` must be monotonically increasing, when an array'
|
1018 |
+
.format(i))
|
1019 |
+
else:
|
1020 |
+
raise ValueError(
|
1021 |
+
'`bins[{}]` must be a scalar or 1d array'.format(i))
|
1022 |
+
|
1023 |
+
nbin[i] = len(edges[i]) + 1 # includes an outlier on each end
|
1024 |
+
dedges[i] = np.diff(edges[i])
|
1025 |
+
|
1026 |
+
# Compute the bin number each sample falls into.
|
1027 |
+
Ncount = tuple(
|
1028 |
+
# avoid np.digitize to work around gh-11022
|
1029 |
+
np.searchsorted(edges[i], sample[:, i], side='right')
|
1030 |
+
for i in _range(D)
|
1031 |
+
)
|
1032 |
+
|
1033 |
+
# Using digitize, values that fall on an edge are put in the right bin.
|
1034 |
+
# For the rightmost bin, we want values equal to the right edge to be
|
1035 |
+
# counted in the last bin, and not as an outlier.
|
1036 |
+
for i in _range(D):
|
1037 |
+
# Find which points are on the rightmost edge.
|
1038 |
+
on_edge = (sample[:, i] == edges[i][-1])
|
1039 |
+
# Shift these points one bin to the left.
|
1040 |
+
Ncount[i][on_edge] -= 1
|
1041 |
+
|
1042 |
+
# Compute the sample indices in the flattened histogram matrix.
|
1043 |
+
# This raises an error if the array is too large.
|
1044 |
+
xy = np.ravel_multi_index(Ncount, nbin)
|
1045 |
+
|
1046 |
+
# Compute the number of repetitions in xy and assign it to the
|
1047 |
+
# flattened histmat.
|
1048 |
+
hist = np.bincount(xy, weights, minlength=nbin.prod())
|
1049 |
+
|
1050 |
+
# Shape into a proper matrix
|
1051 |
+
hist = hist.reshape(nbin)
|
1052 |
+
|
1053 |
+
# This preserves the (bad) behavior observed in gh-7845, for now.
|
1054 |
+
hist = hist.astype(float, casting='safe')
|
1055 |
+
|
1056 |
+
# Remove outliers (indices 0 and -1 for each dimension).
|
1057 |
+
core = D*(slice(1, -1),)
|
1058 |
+
hist = hist[core]
|
1059 |
+
|
1060 |
+
if density:
|
1061 |
+
# calculate the probability density function
|
1062 |
+
s = hist.sum()
|
1063 |
+
for i in _range(D):
|
1064 |
+
shape = np.ones(D, int)
|
1065 |
+
shape[i] = nbin[i] - 2
|
1066 |
+
hist = hist / dedges[i].reshape(shape)
|
1067 |
+
hist /= s
|
1068 |
+
|
1069 |
+
if (hist.shape != nbin - 2).any():
|
1070 |
+
raise RuntimeError(
|
1071 |
+
"Internal Shape Error")
|
1072 |
+
return hist, edges
|
env-llmeval/lib/python3.10/site-packages/numpy/lib/index_tricks.py
ADDED
@@ -0,0 +1,1046 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import functools
|
2 |
+
import sys
|
3 |
+
import math
|
4 |
+
import warnings
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
from .._utils import set_module
|
8 |
+
import numpy.core.numeric as _nx
|
9 |
+
from numpy.core.numeric import ScalarType, array
|
10 |
+
from numpy.core.numerictypes import issubdtype
|
11 |
+
|
12 |
+
import numpy.matrixlib as matrixlib
|
13 |
+
from .function_base import diff
|
14 |
+
from numpy.core.multiarray import ravel_multi_index, unravel_index
|
15 |
+
from numpy.core import overrides, linspace
|
16 |
+
from numpy.lib.stride_tricks import as_strided
|
17 |
+
|
18 |
+
|
19 |
+
array_function_dispatch = functools.partial(
|
20 |
+
overrides.array_function_dispatch, module='numpy')
|
21 |
+
|
22 |
+
|
23 |
+
__all__ = [
|
24 |
+
'ravel_multi_index', 'unravel_index', 'mgrid', 'ogrid', 'r_', 'c_',
|
25 |
+
's_', 'index_exp', 'ix_', 'ndenumerate', 'ndindex', 'fill_diagonal',
|
26 |
+
'diag_indices', 'diag_indices_from'
|
27 |
+
]
|
28 |
+
|
29 |
+
|
30 |
+
def _ix__dispatcher(*args):
|
31 |
+
return args
|
32 |
+
|
33 |
+
|
34 |
+
@array_function_dispatch(_ix__dispatcher)
|
35 |
+
def ix_(*args):
|
36 |
+
"""
|
37 |
+
Construct an open mesh from multiple sequences.
|
38 |
+
|
39 |
+
This function takes N 1-D sequences and returns N outputs with N
|
40 |
+
dimensions each, such that the shape is 1 in all but one dimension
|
41 |
+
and the dimension with the non-unit shape value cycles through all
|
42 |
+
N dimensions.
|
43 |
+
|
44 |
+
Using `ix_` one can quickly construct index arrays that will index
|
45 |
+
the cross product. ``a[np.ix_([1,3],[2,5])]`` returns the array
|
46 |
+
``[[a[1,2] a[1,5]], [a[3,2] a[3,5]]]``.
|
47 |
+
|
48 |
+
Parameters
|
49 |
+
----------
|
50 |
+
args : 1-D sequences
|
51 |
+
Each sequence should be of integer or boolean type.
|
52 |
+
Boolean sequences will be interpreted as boolean masks for the
|
53 |
+
corresponding dimension (equivalent to passing in
|
54 |
+
``np.nonzero(boolean_sequence)``).
|
55 |
+
|
56 |
+
Returns
|
57 |
+
-------
|
58 |
+
out : tuple of ndarrays
|
59 |
+
N arrays with N dimensions each, with N the number of input
|
60 |
+
sequences. Together these arrays form an open mesh.
|
61 |
+
|
62 |
+
See Also
|
63 |
+
--------
|
64 |
+
ogrid, mgrid, meshgrid
|
65 |
+
|
66 |
+
Examples
|
67 |
+
--------
|
68 |
+
>>> a = np.arange(10).reshape(2, 5)
|
69 |
+
>>> a
|
70 |
+
array([[0, 1, 2, 3, 4],
|
71 |
+
[5, 6, 7, 8, 9]])
|
72 |
+
>>> ixgrid = np.ix_([0, 1], [2, 4])
|
73 |
+
>>> ixgrid
|
74 |
+
(array([[0],
|
75 |
+
[1]]), array([[2, 4]]))
|
76 |
+
>>> ixgrid[0].shape, ixgrid[1].shape
|
77 |
+
((2, 1), (1, 2))
|
78 |
+
>>> a[ixgrid]
|
79 |
+
array([[2, 4],
|
80 |
+
[7, 9]])
|
81 |
+
|
82 |
+
>>> ixgrid = np.ix_([True, True], [2, 4])
|
83 |
+
>>> a[ixgrid]
|
84 |
+
array([[2, 4],
|
85 |
+
[7, 9]])
|
86 |
+
>>> ixgrid = np.ix_([True, True], [False, False, True, False, True])
|
87 |
+
>>> a[ixgrid]
|
88 |
+
array([[2, 4],
|
89 |
+
[7, 9]])
|
90 |
+
|
91 |
+
"""
|
92 |
+
out = []
|
93 |
+
nd = len(args)
|
94 |
+
for k, new in enumerate(args):
|
95 |
+
if not isinstance(new, _nx.ndarray):
|
96 |
+
new = np.asarray(new)
|
97 |
+
if new.size == 0:
|
98 |
+
# Explicitly type empty arrays to avoid float default
|
99 |
+
new = new.astype(_nx.intp)
|
100 |
+
if new.ndim != 1:
|
101 |
+
raise ValueError("Cross index must be 1 dimensional")
|
102 |
+
if issubdtype(new.dtype, _nx.bool_):
|
103 |
+
new, = new.nonzero()
|
104 |
+
new = new.reshape((1,)*k + (new.size,) + (1,)*(nd-k-1))
|
105 |
+
out.append(new)
|
106 |
+
return tuple(out)
|
107 |
+
|
108 |
+
|
109 |
+
class nd_grid:
|
110 |
+
"""
|
111 |
+
Construct a multi-dimensional "meshgrid".
|
112 |
+
|
113 |
+
``grid = nd_grid()`` creates an instance which will return a mesh-grid
|
114 |
+
when indexed. The dimension and number of the output arrays are equal
|
115 |
+
to the number of indexing dimensions. If the step length is not a
|
116 |
+
complex number, then the stop is not inclusive.
|
117 |
+
|
118 |
+
However, if the step length is a **complex number** (e.g. 5j), then the
|
119 |
+
integer part of its magnitude is interpreted as specifying the
|
120 |
+
number of points to create between the start and stop values, where
|
121 |
+
the stop value **is inclusive**.
|
122 |
+
|
123 |
+
If instantiated with an argument of ``sparse=True``, the mesh-grid is
|
124 |
+
open (or not fleshed out) so that only one-dimension of each returned
|
125 |
+
argument is greater than 1.
|
126 |
+
|
127 |
+
Parameters
|
128 |
+
----------
|
129 |
+
sparse : bool, optional
|
130 |
+
Whether the grid is sparse or not. Default is False.
|
131 |
+
|
132 |
+
Notes
|
133 |
+
-----
|
134 |
+
Two instances of `nd_grid` are made available in the NumPy namespace,
|
135 |
+
`mgrid` and `ogrid`, approximately defined as::
|
136 |
+
|
137 |
+
mgrid = nd_grid(sparse=False)
|
138 |
+
ogrid = nd_grid(sparse=True)
|
139 |
+
|
140 |
+
Users should use these pre-defined instances instead of using `nd_grid`
|
141 |
+
directly.
|
142 |
+
"""
|
143 |
+
|
144 |
+
def __init__(self, sparse=False):
|
145 |
+
self.sparse = sparse
|
146 |
+
|
147 |
+
def __getitem__(self, key):
|
148 |
+
try:
|
149 |
+
size = []
|
150 |
+
# Mimic the behavior of `np.arange` and use a data type
|
151 |
+
# which is at least as large as `np.int_`
|
152 |
+
num_list = [0]
|
153 |
+
for k in range(len(key)):
|
154 |
+
step = key[k].step
|
155 |
+
start = key[k].start
|
156 |
+
stop = key[k].stop
|
157 |
+
if start is None:
|
158 |
+
start = 0
|
159 |
+
if step is None:
|
160 |
+
step = 1
|
161 |
+
if isinstance(step, (_nx.complexfloating, complex)):
|
162 |
+
step = abs(step)
|
163 |
+
size.append(int(step))
|
164 |
+
else:
|
165 |
+
size.append(
|
166 |
+
int(math.ceil((stop - start) / (step*1.0))))
|
167 |
+
num_list += [start, stop, step]
|
168 |
+
typ = _nx.result_type(*num_list)
|
169 |
+
if self.sparse:
|
170 |
+
nn = [_nx.arange(_x, dtype=_t)
|
171 |
+
for _x, _t in zip(size, (typ,)*len(size))]
|
172 |
+
else:
|
173 |
+
nn = _nx.indices(size, typ)
|
174 |
+
for k, kk in enumerate(key):
|
175 |
+
step = kk.step
|
176 |
+
start = kk.start
|
177 |
+
if start is None:
|
178 |
+
start = 0
|
179 |
+
if step is None:
|
180 |
+
step = 1
|
181 |
+
if isinstance(step, (_nx.complexfloating, complex)):
|
182 |
+
step = int(abs(step))
|
183 |
+
if step != 1:
|
184 |
+
step = (kk.stop - start) / float(step - 1)
|
185 |
+
nn[k] = (nn[k]*step+start)
|
186 |
+
if self.sparse:
|
187 |
+
slobj = [_nx.newaxis]*len(size)
|
188 |
+
for k in range(len(size)):
|
189 |
+
slobj[k] = slice(None, None)
|
190 |
+
nn[k] = nn[k][tuple(slobj)]
|
191 |
+
slobj[k] = _nx.newaxis
|
192 |
+
return nn
|
193 |
+
except (IndexError, TypeError):
|
194 |
+
step = key.step
|
195 |
+
stop = key.stop
|
196 |
+
start = key.start
|
197 |
+
if start is None:
|
198 |
+
start = 0
|
199 |
+
if isinstance(step, (_nx.complexfloating, complex)):
|
200 |
+
# Prevent the (potential) creation of integer arrays
|
201 |
+
step_float = abs(step)
|
202 |
+
step = length = int(step_float)
|
203 |
+
if step != 1:
|
204 |
+
step = (key.stop-start)/float(step-1)
|
205 |
+
typ = _nx.result_type(start, stop, step_float)
|
206 |
+
return _nx.arange(0, length, 1, dtype=typ)*step + start
|
207 |
+
else:
|
208 |
+
return _nx.arange(start, stop, step)
|
209 |
+
|
210 |
+
|
211 |
+
class MGridClass(nd_grid):
|
212 |
+
"""
|
213 |
+
An instance which returns a dense multi-dimensional "meshgrid".
|
214 |
+
|
215 |
+
An instance which returns a dense (or fleshed out) mesh-grid
|
216 |
+
when indexed, so that each returned argument has the same shape.
|
217 |
+
The dimensions and number of the output arrays are equal to the
|
218 |
+
number of indexing dimensions. If the step length is not a complex
|
219 |
+
number, then the stop is not inclusive.
|
220 |
+
|
221 |
+
However, if the step length is a **complex number** (e.g. 5j), then
|
222 |
+
the integer part of its magnitude is interpreted as specifying the
|
223 |
+
number of points to create between the start and stop values, where
|
224 |
+
the stop value **is inclusive**.
|
225 |
+
|
226 |
+
Returns
|
227 |
+
-------
|
228 |
+
mesh-grid `ndarrays` all of the same dimensions
|
229 |
+
|
230 |
+
See Also
|
231 |
+
--------
|
232 |
+
ogrid : like `mgrid` but returns open (not fleshed out) mesh grids
|
233 |
+
meshgrid: return coordinate matrices from coordinate vectors
|
234 |
+
r_ : array concatenator
|
235 |
+
:ref:`how-to-partition`
|
236 |
+
|
237 |
+
Examples
|
238 |
+
--------
|
239 |
+
>>> np.mgrid[0:5, 0:5]
|
240 |
+
array([[[0, 0, 0, 0, 0],
|
241 |
+
[1, 1, 1, 1, 1],
|
242 |
+
[2, 2, 2, 2, 2],
|
243 |
+
[3, 3, 3, 3, 3],
|
244 |
+
[4, 4, 4, 4, 4]],
|
245 |
+
[[0, 1, 2, 3, 4],
|
246 |
+
[0, 1, 2, 3, 4],
|
247 |
+
[0, 1, 2, 3, 4],
|
248 |
+
[0, 1, 2, 3, 4],
|
249 |
+
[0, 1, 2, 3, 4]]])
|
250 |
+
>>> np.mgrid[-1:1:5j]
|
251 |
+
array([-1. , -0.5, 0. , 0.5, 1. ])
|
252 |
+
|
253 |
+
"""
|
254 |
+
|
255 |
+
def __init__(self):
|
256 |
+
super().__init__(sparse=False)
|
257 |
+
|
258 |
+
|
259 |
+
mgrid = MGridClass()
|
260 |
+
|
261 |
+
|
262 |
+
class OGridClass(nd_grid):
|
263 |
+
"""
|
264 |
+
An instance which returns an open multi-dimensional "meshgrid".
|
265 |
+
|
266 |
+
An instance which returns an open (i.e. not fleshed out) mesh-grid
|
267 |
+
when indexed, so that only one dimension of each returned array is
|
268 |
+
greater than 1. The dimension and number of the output arrays are
|
269 |
+
equal to the number of indexing dimensions. If the step length is
|
270 |
+
not a complex number, then the stop is not inclusive.
|
271 |
+
|
272 |
+
However, if the step length is a **complex number** (e.g. 5j), then
|
273 |
+
the integer part of its magnitude is interpreted as specifying the
|
274 |
+
number of points to create between the start and stop values, where
|
275 |
+
the stop value **is inclusive**.
|
276 |
+
|
277 |
+
Returns
|
278 |
+
-------
|
279 |
+
mesh-grid
|
280 |
+
`ndarrays` with only one dimension not equal to 1
|
281 |
+
|
282 |
+
See Also
|
283 |
+
--------
|
284 |
+
mgrid : like `ogrid` but returns dense (or fleshed out) mesh grids
|
285 |
+
meshgrid: return coordinate matrices from coordinate vectors
|
286 |
+
r_ : array concatenator
|
287 |
+
:ref:`how-to-partition`
|
288 |
+
|
289 |
+
Examples
|
290 |
+
--------
|
291 |
+
>>> from numpy import ogrid
|
292 |
+
>>> ogrid[-1:1:5j]
|
293 |
+
array([-1. , -0.5, 0. , 0.5, 1. ])
|
294 |
+
>>> ogrid[0:5,0:5]
|
295 |
+
[array([[0],
|
296 |
+
[1],
|
297 |
+
[2],
|
298 |
+
[3],
|
299 |
+
[4]]), array([[0, 1, 2, 3, 4]])]
|
300 |
+
|
301 |
+
"""
|
302 |
+
|
303 |
+
def __init__(self):
|
304 |
+
super().__init__(sparse=True)
|
305 |
+
|
306 |
+
|
307 |
+
ogrid = OGridClass()
|
308 |
+
|
309 |
+
|
310 |
+
class AxisConcatenator:
|
311 |
+
"""
|
312 |
+
Translates slice objects to concatenation along an axis.
|
313 |
+
|
314 |
+
For detailed documentation on usage, see `r_`.
|
315 |
+
"""
|
316 |
+
# allow ma.mr_ to override this
|
317 |
+
concatenate = staticmethod(_nx.concatenate)
|
318 |
+
makemat = staticmethod(matrixlib.matrix)
|
319 |
+
|
320 |
+
def __init__(self, axis=0, matrix=False, ndmin=1, trans1d=-1):
|
321 |
+
self.axis = axis
|
322 |
+
self.matrix = matrix
|
323 |
+
self.trans1d = trans1d
|
324 |
+
self.ndmin = ndmin
|
325 |
+
|
326 |
+
def __getitem__(self, key):
|
327 |
+
# handle matrix builder syntax
|
328 |
+
if isinstance(key, str):
|
329 |
+
frame = sys._getframe().f_back
|
330 |
+
mymat = matrixlib.bmat(key, frame.f_globals, frame.f_locals)
|
331 |
+
return mymat
|
332 |
+
|
333 |
+
if not isinstance(key, tuple):
|
334 |
+
key = (key,)
|
335 |
+
|
336 |
+
# copy attributes, since they can be overridden in the first argument
|
337 |
+
trans1d = self.trans1d
|
338 |
+
ndmin = self.ndmin
|
339 |
+
matrix = self.matrix
|
340 |
+
axis = self.axis
|
341 |
+
|
342 |
+
objs = []
|
343 |
+
# dtypes or scalars for weak scalar handling in result_type
|
344 |
+
result_type_objs = []
|
345 |
+
|
346 |
+
for k, item in enumerate(key):
|
347 |
+
scalar = False
|
348 |
+
if isinstance(item, slice):
|
349 |
+
step = item.step
|
350 |
+
start = item.start
|
351 |
+
stop = item.stop
|
352 |
+
if start is None:
|
353 |
+
start = 0
|
354 |
+
if step is None:
|
355 |
+
step = 1
|
356 |
+
if isinstance(step, (_nx.complexfloating, complex)):
|
357 |
+
size = int(abs(step))
|
358 |
+
newobj = linspace(start, stop, num=size)
|
359 |
+
else:
|
360 |
+
newobj = _nx.arange(start, stop, step)
|
361 |
+
if ndmin > 1:
|
362 |
+
newobj = array(newobj, copy=False, ndmin=ndmin)
|
363 |
+
if trans1d != -1:
|
364 |
+
newobj = newobj.swapaxes(-1, trans1d)
|
365 |
+
elif isinstance(item, str):
|
366 |
+
if k != 0:
|
367 |
+
raise ValueError("special directives must be the "
|
368 |
+
"first entry.")
|
369 |
+
if item in ('r', 'c'):
|
370 |
+
matrix = True
|
371 |
+
col = (item == 'c')
|
372 |
+
continue
|
373 |
+
if ',' in item:
|
374 |
+
vec = item.split(',')
|
375 |
+
try:
|
376 |
+
axis, ndmin = [int(x) for x in vec[:2]]
|
377 |
+
if len(vec) == 3:
|
378 |
+
trans1d = int(vec[2])
|
379 |
+
continue
|
380 |
+
except Exception as e:
|
381 |
+
raise ValueError(
|
382 |
+
"unknown special directive {!r}".format(item)
|
383 |
+
) from e
|
384 |
+
try:
|
385 |
+
axis = int(item)
|
386 |
+
continue
|
387 |
+
except (ValueError, TypeError) as e:
|
388 |
+
raise ValueError("unknown special directive") from e
|
389 |
+
elif type(item) in ScalarType:
|
390 |
+
scalar = True
|
391 |
+
newobj = item
|
392 |
+
else:
|
393 |
+
item_ndim = np.ndim(item)
|
394 |
+
newobj = array(item, copy=False, subok=True, ndmin=ndmin)
|
395 |
+
if trans1d != -1 and item_ndim < ndmin:
|
396 |
+
k2 = ndmin - item_ndim
|
397 |
+
k1 = trans1d
|
398 |
+
if k1 < 0:
|
399 |
+
k1 += k2 + 1
|
400 |
+
defaxes = list(range(ndmin))
|
401 |
+
axes = defaxes[:k1] + defaxes[k2:] + defaxes[k1:k2]
|
402 |
+
newobj = newobj.transpose(axes)
|
403 |
+
|
404 |
+
objs.append(newobj)
|
405 |
+
if scalar:
|
406 |
+
result_type_objs.append(item)
|
407 |
+
else:
|
408 |
+
result_type_objs.append(newobj.dtype)
|
409 |
+
|
410 |
+
# Ensure that scalars won't up-cast unless warranted, for 0, drops
|
411 |
+
# through to error in concatenate.
|
412 |
+
if len(result_type_objs) != 0:
|
413 |
+
final_dtype = _nx.result_type(*result_type_objs)
|
414 |
+
# concatenate could do cast, but that can be overriden:
|
415 |
+
objs = [array(obj, copy=False, subok=True,
|
416 |
+
ndmin=ndmin, dtype=final_dtype) for obj in objs]
|
417 |
+
|
418 |
+
res = self.concatenate(tuple(objs), axis=axis)
|
419 |
+
|
420 |
+
if matrix:
|
421 |
+
oldndim = res.ndim
|
422 |
+
res = self.makemat(res)
|
423 |
+
if oldndim == 1 and col:
|
424 |
+
res = res.T
|
425 |
+
return res
|
426 |
+
|
427 |
+
def __len__(self):
|
428 |
+
return 0
|
429 |
+
|
430 |
+
# separate classes are used here instead of just making r_ = concatentor(0),
|
431 |
+
# etc. because otherwise we couldn't get the doc string to come out right
|
432 |
+
# in help(r_)
|
433 |
+
|
434 |
+
|
435 |
+
class RClass(AxisConcatenator):
|
436 |
+
"""
|
437 |
+
Translates slice objects to concatenation along the first axis.
|
438 |
+
|
439 |
+
This is a simple way to build up arrays quickly. There are two use cases.
|
440 |
+
|
441 |
+
1. If the index expression contains comma separated arrays, then stack
|
442 |
+
them along their first axis.
|
443 |
+
2. If the index expression contains slice notation or scalars then create
|
444 |
+
a 1-D array with a range indicated by the slice notation.
|
445 |
+
|
446 |
+
If slice notation is used, the syntax ``start:stop:step`` is equivalent
|
447 |
+
to ``np.arange(start, stop, step)`` inside of the brackets. However, if
|
448 |
+
``step`` is an imaginary number (i.e. 100j) then its integer portion is
|
449 |
+
interpreted as a number-of-points desired and the start and stop are
|
450 |
+
inclusive. In other words ``start:stop:stepj`` is interpreted as
|
451 |
+
``np.linspace(start, stop, step, endpoint=1)`` inside of the brackets.
|
452 |
+
After expansion of slice notation, all comma separated sequences are
|
453 |
+
concatenated together.
|
454 |
+
|
455 |
+
Optional character strings placed as the first element of the index
|
456 |
+
expression can be used to change the output. The strings 'r' or 'c' result
|
457 |
+
in matrix output. If the result is 1-D and 'r' is specified a 1 x N (row)
|
458 |
+
matrix is produced. If the result is 1-D and 'c' is specified, then a N x 1
|
459 |
+
(column) matrix is produced. If the result is 2-D then both provide the
|
460 |
+
same matrix result.
|
461 |
+
|
462 |
+
A string integer specifies which axis to stack multiple comma separated
|
463 |
+
arrays along. A string of two comma-separated integers allows indication
|
464 |
+
of the minimum number of dimensions to force each entry into as the
|
465 |
+
second integer (the axis to concatenate along is still the first integer).
|
466 |
+
|
467 |
+
A string with three comma-separated integers allows specification of the
|
468 |
+
axis to concatenate along, the minimum number of dimensions to force the
|
469 |
+
entries to, and which axis should contain the start of the arrays which
|
470 |
+
are less than the specified number of dimensions. In other words the third
|
471 |
+
integer allows you to specify where the 1's should be placed in the shape
|
472 |
+
of the arrays that have their shapes upgraded. By default, they are placed
|
473 |
+
in the front of the shape tuple. The third argument allows you to specify
|
474 |
+
where the start of the array should be instead. Thus, a third argument of
|
475 |
+
'0' would place the 1's at the end of the array shape. Negative integers
|
476 |
+
specify where in the new shape tuple the last dimension of upgraded arrays
|
477 |
+
should be placed, so the default is '-1'.
|
478 |
+
|
479 |
+
Parameters
|
480 |
+
----------
|
481 |
+
Not a function, so takes no parameters
|
482 |
+
|
483 |
+
|
484 |
+
Returns
|
485 |
+
-------
|
486 |
+
A concatenated ndarray or matrix.
|
487 |
+
|
488 |
+
See Also
|
489 |
+
--------
|
490 |
+
concatenate : Join a sequence of arrays along an existing axis.
|
491 |
+
c_ : Translates slice objects to concatenation along the second axis.
|
492 |
+
|
493 |
+
Examples
|
494 |
+
--------
|
495 |
+
>>> np.r_[np.array([1,2,3]), 0, 0, np.array([4,5,6])]
|
496 |
+
array([1, 2, 3, ..., 4, 5, 6])
|
497 |
+
>>> np.r_[-1:1:6j, [0]*3, 5, 6]
|
498 |
+
array([-1. , -0.6, -0.2, 0.2, 0.6, 1. , 0. , 0. , 0. , 5. , 6. ])
|
499 |
+
|
500 |
+
String integers specify the axis to concatenate along or the minimum
|
501 |
+
number of dimensions to force entries into.
|
502 |
+
|
503 |
+
>>> a = np.array([[0, 1, 2], [3, 4, 5]])
|
504 |
+
>>> np.r_['-1', a, a] # concatenate along last axis
|
505 |
+
array([[0, 1, 2, 0, 1, 2],
|
506 |
+
[3, 4, 5, 3, 4, 5]])
|
507 |
+
>>> np.r_['0,2', [1,2,3], [4,5,6]] # concatenate along first axis, dim>=2
|
508 |
+
array([[1, 2, 3],
|
509 |
+
[4, 5, 6]])
|
510 |
+
|
511 |
+
>>> np.r_['0,2,0', [1,2,3], [4,5,6]]
|
512 |
+
array([[1],
|
513 |
+
[2],
|
514 |
+
[3],
|
515 |
+
[4],
|
516 |
+
[5],
|
517 |
+
[6]])
|
518 |
+
>>> np.r_['1,2,0', [1,2,3], [4,5,6]]
|
519 |
+
array([[1, 4],
|
520 |
+
[2, 5],
|
521 |
+
[3, 6]])
|
522 |
+
|
523 |
+
Using 'r' or 'c' as a first string argument creates a matrix.
|
524 |
+
|
525 |
+
>>> np.r_['r',[1,2,3], [4,5,6]]
|
526 |
+
matrix([[1, 2, 3, 4, 5, 6]])
|
527 |
+
|
528 |
+
"""
|
529 |
+
|
530 |
+
def __init__(self):
|
531 |
+
AxisConcatenator.__init__(self, 0)
|
532 |
+
|
533 |
+
|
534 |
+
r_ = RClass()
|
535 |
+
|
536 |
+
|
537 |
+
class CClass(AxisConcatenator):
|
538 |
+
"""
|
539 |
+
Translates slice objects to concatenation along the second axis.
|
540 |
+
|
541 |
+
This is short-hand for ``np.r_['-1,2,0', index expression]``, which is
|
542 |
+
useful because of its common occurrence. In particular, arrays will be
|
543 |
+
stacked along their last axis after being upgraded to at least 2-D with
|
544 |
+
1's post-pended to the shape (column vectors made out of 1-D arrays).
|
545 |
+
|
546 |
+
See Also
|
547 |
+
--------
|
548 |
+
column_stack : Stack 1-D arrays as columns into a 2-D array.
|
549 |
+
r_ : For more detailed documentation.
|
550 |
+
|
551 |
+
Examples
|
552 |
+
--------
|
553 |
+
>>> np.c_[np.array([1,2,3]), np.array([4,5,6])]
|
554 |
+
array([[1, 4],
|
555 |
+
[2, 5],
|
556 |
+
[3, 6]])
|
557 |
+
>>> np.c_[np.array([[1,2,3]]), 0, 0, np.array([[4,5,6]])]
|
558 |
+
array([[1, 2, 3, ..., 4, 5, 6]])
|
559 |
+
|
560 |
+
"""
|
561 |
+
|
562 |
+
def __init__(self):
|
563 |
+
AxisConcatenator.__init__(self, -1, ndmin=2, trans1d=0)
|
564 |
+
|
565 |
+
|
566 |
+
c_ = CClass()
|
567 |
+
|
568 |
+
|
569 |
+
@set_module('numpy')
|
570 |
+
class ndenumerate:
|
571 |
+
"""
|
572 |
+
Multidimensional index iterator.
|
573 |
+
|
574 |
+
Return an iterator yielding pairs of array coordinates and values.
|
575 |
+
|
576 |
+
Parameters
|
577 |
+
----------
|
578 |
+
arr : ndarray
|
579 |
+
Input array.
|
580 |
+
|
581 |
+
See Also
|
582 |
+
--------
|
583 |
+
ndindex, flatiter
|
584 |
+
|
585 |
+
Examples
|
586 |
+
--------
|
587 |
+
>>> a = np.array([[1, 2], [3, 4]])
|
588 |
+
>>> for index, x in np.ndenumerate(a):
|
589 |
+
... print(index, x)
|
590 |
+
(0, 0) 1
|
591 |
+
(0, 1) 2
|
592 |
+
(1, 0) 3
|
593 |
+
(1, 1) 4
|
594 |
+
|
595 |
+
"""
|
596 |
+
|
597 |
+
def __init__(self, arr):
|
598 |
+
self.iter = np.asarray(arr).flat
|
599 |
+
|
600 |
+
def __next__(self):
|
601 |
+
"""
|
602 |
+
Standard iterator method, returns the index tuple and array value.
|
603 |
+
|
604 |
+
Returns
|
605 |
+
-------
|
606 |
+
coords : tuple of ints
|
607 |
+
The indices of the current iteration.
|
608 |
+
val : scalar
|
609 |
+
The array element of the current iteration.
|
610 |
+
|
611 |
+
"""
|
612 |
+
return self.iter.coords, next(self.iter)
|
613 |
+
|
614 |
+
def __iter__(self):
|
615 |
+
return self
|
616 |
+
|
617 |
+
|
618 |
+
@set_module('numpy')
|
619 |
+
class ndindex:
|
620 |
+
"""
|
621 |
+
An N-dimensional iterator object to index arrays.
|
622 |
+
|
623 |
+
Given the shape of an array, an `ndindex` instance iterates over
|
624 |
+
the N-dimensional index of the array. At each iteration a tuple
|
625 |
+
of indices is returned, the last dimension is iterated over first.
|
626 |
+
|
627 |
+
Parameters
|
628 |
+
----------
|
629 |
+
shape : ints, or a single tuple of ints
|
630 |
+
The size of each dimension of the array can be passed as
|
631 |
+
individual parameters or as the elements of a tuple.
|
632 |
+
|
633 |
+
See Also
|
634 |
+
--------
|
635 |
+
ndenumerate, flatiter
|
636 |
+
|
637 |
+
Examples
|
638 |
+
--------
|
639 |
+
Dimensions as individual arguments
|
640 |
+
|
641 |
+
>>> for index in np.ndindex(3, 2, 1):
|
642 |
+
... print(index)
|
643 |
+
(0, 0, 0)
|
644 |
+
(0, 1, 0)
|
645 |
+
(1, 0, 0)
|
646 |
+
(1, 1, 0)
|
647 |
+
(2, 0, 0)
|
648 |
+
(2, 1, 0)
|
649 |
+
|
650 |
+
Same dimensions - but in a tuple ``(3, 2, 1)``
|
651 |
+
|
652 |
+
>>> for index in np.ndindex((3, 2, 1)):
|
653 |
+
... print(index)
|
654 |
+
(0, 0, 0)
|
655 |
+
(0, 1, 0)
|
656 |
+
(1, 0, 0)
|
657 |
+
(1, 1, 0)
|
658 |
+
(2, 0, 0)
|
659 |
+
(2, 1, 0)
|
660 |
+
|
661 |
+
"""
|
662 |
+
|
663 |
+
def __init__(self, *shape):
|
664 |
+
if len(shape) == 1 and isinstance(shape[0], tuple):
|
665 |
+
shape = shape[0]
|
666 |
+
x = as_strided(_nx.zeros(1), shape=shape,
|
667 |
+
strides=_nx.zeros_like(shape))
|
668 |
+
self._it = _nx.nditer(x, flags=['multi_index', 'zerosize_ok'],
|
669 |
+
order='C')
|
670 |
+
|
671 |
+
def __iter__(self):
|
672 |
+
return self
|
673 |
+
|
674 |
+
def ndincr(self):
|
675 |
+
"""
|
676 |
+
Increment the multi-dimensional index by one.
|
677 |
+
|
678 |
+
This method is for backward compatibility only: do not use.
|
679 |
+
|
680 |
+
.. deprecated:: 1.20.0
|
681 |
+
This method has been advised against since numpy 1.8.0, but only
|
682 |
+
started emitting DeprecationWarning as of this version.
|
683 |
+
"""
|
684 |
+
# NumPy 1.20.0, 2020-09-08
|
685 |
+
warnings.warn(
|
686 |
+
"`ndindex.ndincr()` is deprecated, use `next(ndindex)` instead",
|
687 |
+
DeprecationWarning, stacklevel=2)
|
688 |
+
next(self)
|
689 |
+
|
690 |
+
def __next__(self):
|
691 |
+
"""
|
692 |
+
Standard iterator method, updates the index and returns the index
|
693 |
+
tuple.
|
694 |
+
|
695 |
+
Returns
|
696 |
+
-------
|
697 |
+
val : tuple of ints
|
698 |
+
Returns a tuple containing the indices of the current
|
699 |
+
iteration.
|
700 |
+
|
701 |
+
"""
|
702 |
+
next(self._it)
|
703 |
+
return self._it.multi_index
|
704 |
+
|
705 |
+
|
706 |
+
# You can do all this with slice() plus a few special objects,
|
707 |
+
# but there's a lot to remember. This version is simpler because
|
708 |
+
# it uses the standard array indexing syntax.
|
709 |
+
#
|
710 |
+
# Written by Konrad Hinsen <[email protected]>
|
711 |
+
# last revision: 1999-7-23
|
712 |
+
#
|
713 |
+
# Cosmetic changes by T. Oliphant 2001
|
714 |
+
#
|
715 |
+
#
|
716 |
+
|
717 |
+
class IndexExpression:
|
718 |
+
"""
|
719 |
+
A nicer way to build up index tuples for arrays.
|
720 |
+
|
721 |
+
.. note::
|
722 |
+
Use one of the two predefined instances `index_exp` or `s_`
|
723 |
+
rather than directly using `IndexExpression`.
|
724 |
+
|
725 |
+
For any index combination, including slicing and axis insertion,
|
726 |
+
``a[indices]`` is the same as ``a[np.index_exp[indices]]`` for any
|
727 |
+
array `a`. However, ``np.index_exp[indices]`` can be used anywhere
|
728 |
+
in Python code and returns a tuple of slice objects that can be
|
729 |
+
used in the construction of complex index expressions.
|
730 |
+
|
731 |
+
Parameters
|
732 |
+
----------
|
733 |
+
maketuple : bool
|
734 |
+
If True, always returns a tuple.
|
735 |
+
|
736 |
+
See Also
|
737 |
+
--------
|
738 |
+
index_exp : Predefined instance that always returns a tuple:
|
739 |
+
`index_exp = IndexExpression(maketuple=True)`.
|
740 |
+
s_ : Predefined instance without tuple conversion:
|
741 |
+
`s_ = IndexExpression(maketuple=False)`.
|
742 |
+
|
743 |
+
Notes
|
744 |
+
-----
|
745 |
+
You can do all this with `slice()` plus a few special objects,
|
746 |
+
but there's a lot to remember and this version is simpler because
|
747 |
+
it uses the standard array indexing syntax.
|
748 |
+
|
749 |
+
Examples
|
750 |
+
--------
|
751 |
+
>>> np.s_[2::2]
|
752 |
+
slice(2, None, 2)
|
753 |
+
>>> np.index_exp[2::2]
|
754 |
+
(slice(2, None, 2),)
|
755 |
+
|
756 |
+
>>> np.array([0, 1, 2, 3, 4])[np.s_[2::2]]
|
757 |
+
array([2, 4])
|
758 |
+
|
759 |
+
"""
|
760 |
+
|
761 |
+
def __init__(self, maketuple):
|
762 |
+
self.maketuple = maketuple
|
763 |
+
|
764 |
+
def __getitem__(self, item):
|
765 |
+
if self.maketuple and not isinstance(item, tuple):
|
766 |
+
return (item,)
|
767 |
+
else:
|
768 |
+
return item
|
769 |
+
|
770 |
+
|
771 |
+
index_exp = IndexExpression(maketuple=True)
|
772 |
+
s_ = IndexExpression(maketuple=False)
|
773 |
+
|
774 |
+
# End contribution from Konrad.
|
775 |
+
|
776 |
+
|
777 |
+
# The following functions complement those in twodim_base, but are
|
778 |
+
# applicable to N-dimensions.
|
779 |
+
|
780 |
+
|
781 |
+
def _fill_diagonal_dispatcher(a, val, wrap=None):
|
782 |
+
return (a,)
|
783 |
+
|
784 |
+
|
785 |
+
@array_function_dispatch(_fill_diagonal_dispatcher)
|
786 |
+
def fill_diagonal(a, val, wrap=False):
|
787 |
+
"""Fill the main diagonal of the given array of any dimensionality.
|
788 |
+
|
789 |
+
For an array `a` with ``a.ndim >= 2``, the diagonal is the list of
|
790 |
+
locations with indices ``a[i, ..., i]`` all identical. This function
|
791 |
+
modifies the input array in-place, it does not return a value.
|
792 |
+
|
793 |
+
Parameters
|
794 |
+
----------
|
795 |
+
a : array, at least 2-D.
|
796 |
+
Array whose diagonal is to be filled, it gets modified in-place.
|
797 |
+
|
798 |
+
val : scalar or array_like
|
799 |
+
Value(s) to write on the diagonal. If `val` is scalar, the value is
|
800 |
+
written along the diagonal. If array-like, the flattened `val` is
|
801 |
+
written along the diagonal, repeating if necessary to fill all
|
802 |
+
diagonal entries.
|
803 |
+
|
804 |
+
wrap : bool
|
805 |
+
For tall matrices in NumPy version up to 1.6.2, the
|
806 |
+
diagonal "wrapped" after N columns. You can have this behavior
|
807 |
+
with this option. This affects only tall matrices.
|
808 |
+
|
809 |
+
See also
|
810 |
+
--------
|
811 |
+
diag_indices, diag_indices_from
|
812 |
+
|
813 |
+
Notes
|
814 |
+
-----
|
815 |
+
.. versionadded:: 1.4.0
|
816 |
+
|
817 |
+
This functionality can be obtained via `diag_indices`, but internally
|
818 |
+
this version uses a much faster implementation that never constructs the
|
819 |
+
indices and uses simple slicing.
|
820 |
+
|
821 |
+
Examples
|
822 |
+
--------
|
823 |
+
>>> a = np.zeros((3, 3), int)
|
824 |
+
>>> np.fill_diagonal(a, 5)
|
825 |
+
>>> a
|
826 |
+
array([[5, 0, 0],
|
827 |
+
[0, 5, 0],
|
828 |
+
[0, 0, 5]])
|
829 |
+
|
830 |
+
The same function can operate on a 4-D array:
|
831 |
+
|
832 |
+
>>> a = np.zeros((3, 3, 3, 3), int)
|
833 |
+
>>> np.fill_diagonal(a, 4)
|
834 |
+
|
835 |
+
We only show a few blocks for clarity:
|
836 |
+
|
837 |
+
>>> a[0, 0]
|
838 |
+
array([[4, 0, 0],
|
839 |
+
[0, 0, 0],
|
840 |
+
[0, 0, 0]])
|
841 |
+
>>> a[1, 1]
|
842 |
+
array([[0, 0, 0],
|
843 |
+
[0, 4, 0],
|
844 |
+
[0, 0, 0]])
|
845 |
+
>>> a[2, 2]
|
846 |
+
array([[0, 0, 0],
|
847 |
+
[0, 0, 0],
|
848 |
+
[0, 0, 4]])
|
849 |
+
|
850 |
+
The wrap option affects only tall matrices:
|
851 |
+
|
852 |
+
>>> # tall matrices no wrap
|
853 |
+
>>> a = np.zeros((5, 3), int)
|
854 |
+
>>> np.fill_diagonal(a, 4)
|
855 |
+
>>> a
|
856 |
+
array([[4, 0, 0],
|
857 |
+
[0, 4, 0],
|
858 |
+
[0, 0, 4],
|
859 |
+
[0, 0, 0],
|
860 |
+
[0, 0, 0]])
|
861 |
+
|
862 |
+
>>> # tall matrices wrap
|
863 |
+
>>> a = np.zeros((5, 3), int)
|
864 |
+
>>> np.fill_diagonal(a, 4, wrap=True)
|
865 |
+
>>> a
|
866 |
+
array([[4, 0, 0],
|
867 |
+
[0, 4, 0],
|
868 |
+
[0, 0, 4],
|
869 |
+
[0, 0, 0],
|
870 |
+
[4, 0, 0]])
|
871 |
+
|
872 |
+
>>> # wide matrices
|
873 |
+
>>> a = np.zeros((3, 5), int)
|
874 |
+
>>> np.fill_diagonal(a, 4, wrap=True)
|
875 |
+
>>> a
|
876 |
+
array([[4, 0, 0, 0, 0],
|
877 |
+
[0, 4, 0, 0, 0],
|
878 |
+
[0, 0, 4, 0, 0]])
|
879 |
+
|
880 |
+
The anti-diagonal can be filled by reversing the order of elements
|
881 |
+
using either `numpy.flipud` or `numpy.fliplr`.
|
882 |
+
|
883 |
+
>>> a = np.zeros((3, 3), int);
|
884 |
+
>>> np.fill_diagonal(np.fliplr(a), [1,2,3]) # Horizontal flip
|
885 |
+
>>> a
|
886 |
+
array([[0, 0, 1],
|
887 |
+
[0, 2, 0],
|
888 |
+
[3, 0, 0]])
|
889 |
+
>>> np.fill_diagonal(np.flipud(a), [1,2,3]) # Vertical flip
|
890 |
+
>>> a
|
891 |
+
array([[0, 0, 3],
|
892 |
+
[0, 2, 0],
|
893 |
+
[1, 0, 0]])
|
894 |
+
|
895 |
+
Note that the order in which the diagonal is filled varies depending
|
896 |
+
on the flip function.
|
897 |
+
"""
|
898 |
+
if a.ndim < 2:
|
899 |
+
raise ValueError("array must be at least 2-d")
|
900 |
+
end = None
|
901 |
+
if a.ndim == 2:
|
902 |
+
# Explicit, fast formula for the common case. For 2-d arrays, we
|
903 |
+
# accept rectangular ones.
|
904 |
+
step = a.shape[1] + 1
|
905 |
+
# This is needed to don't have tall matrix have the diagonal wrap.
|
906 |
+
if not wrap:
|
907 |
+
end = a.shape[1] * a.shape[1]
|
908 |
+
else:
|
909 |
+
# For more than d=2, the strided formula is only valid for arrays with
|
910 |
+
# all dimensions equal, so we check first.
|
911 |
+
if not np.all(diff(a.shape) == 0):
|
912 |
+
raise ValueError("All dimensions of input must be of equal length")
|
913 |
+
step = 1 + (np.cumprod(a.shape[:-1])).sum()
|
914 |
+
|
915 |
+
# Write the value out into the diagonal.
|
916 |
+
a.flat[:end:step] = val
|
917 |
+
|
918 |
+
|
919 |
+
@set_module('numpy')
|
920 |
+
def diag_indices(n, ndim=2):
|
921 |
+
"""
|
922 |
+
Return the indices to access the main diagonal of an array.
|
923 |
+
|
924 |
+
This returns a tuple of indices that can be used to access the main
|
925 |
+
diagonal of an array `a` with ``a.ndim >= 2`` dimensions and shape
|
926 |
+
(n, n, ..., n). For ``a.ndim = 2`` this is the usual diagonal, for
|
927 |
+
``a.ndim > 2`` this is the set of indices to access ``a[i, i, ..., i]``
|
928 |
+
for ``i = [0..n-1]``.
|
929 |
+
|
930 |
+
Parameters
|
931 |
+
----------
|
932 |
+
n : int
|
933 |
+
The size, along each dimension, of the arrays for which the returned
|
934 |
+
indices can be used.
|
935 |
+
|
936 |
+
ndim : int, optional
|
937 |
+
The number of dimensions.
|
938 |
+
|
939 |
+
See Also
|
940 |
+
--------
|
941 |
+
diag_indices_from
|
942 |
+
|
943 |
+
Notes
|
944 |
+
-----
|
945 |
+
.. versionadded:: 1.4.0
|
946 |
+
|
947 |
+
Examples
|
948 |
+
--------
|
949 |
+
Create a set of indices to access the diagonal of a (4, 4) array:
|
950 |
+
|
951 |
+
>>> di = np.diag_indices(4)
|
952 |
+
>>> di
|
953 |
+
(array([0, 1, 2, 3]), array([0, 1, 2, 3]))
|
954 |
+
>>> a = np.arange(16).reshape(4, 4)
|
955 |
+
>>> a
|
956 |
+
array([[ 0, 1, 2, 3],
|
957 |
+
[ 4, 5, 6, 7],
|
958 |
+
[ 8, 9, 10, 11],
|
959 |
+
[12, 13, 14, 15]])
|
960 |
+
>>> a[di] = 100
|
961 |
+
>>> a
|
962 |
+
array([[100, 1, 2, 3],
|
963 |
+
[ 4, 100, 6, 7],
|
964 |
+
[ 8, 9, 100, 11],
|
965 |
+
[ 12, 13, 14, 100]])
|
966 |
+
|
967 |
+
Now, we create indices to manipulate a 3-D array:
|
968 |
+
|
969 |
+
>>> d3 = np.diag_indices(2, 3)
|
970 |
+
>>> d3
|
971 |
+
(array([0, 1]), array([0, 1]), array([0, 1]))
|
972 |
+
|
973 |
+
And use it to set the diagonal of an array of zeros to 1:
|
974 |
+
|
975 |
+
>>> a = np.zeros((2, 2, 2), dtype=int)
|
976 |
+
>>> a[d3] = 1
|
977 |
+
>>> a
|
978 |
+
array([[[1, 0],
|
979 |
+
[0, 0]],
|
980 |
+
[[0, 0],
|
981 |
+
[0, 1]]])
|
982 |
+
|
983 |
+
"""
|
984 |
+
idx = np.arange(n)
|
985 |
+
return (idx,) * ndim
|
986 |
+
|
987 |
+
|
988 |
+
def _diag_indices_from(arr):
|
989 |
+
return (arr,)
|
990 |
+
|
991 |
+
|
992 |
+
@array_function_dispatch(_diag_indices_from)
|
993 |
+
def diag_indices_from(arr):
|
994 |
+
"""
|
995 |
+
Return the indices to access the main diagonal of an n-dimensional array.
|
996 |
+
|
997 |
+
See `diag_indices` for full details.
|
998 |
+
|
999 |
+
Parameters
|
1000 |
+
----------
|
1001 |
+
arr : array, at least 2-D
|
1002 |
+
|
1003 |
+
See Also
|
1004 |
+
--------
|
1005 |
+
diag_indices
|
1006 |
+
|
1007 |
+
Notes
|
1008 |
+
-----
|
1009 |
+
.. versionadded:: 1.4.0
|
1010 |
+
|
1011 |
+
Examples
|
1012 |
+
--------
|
1013 |
+
|
1014 |
+
Create a 4 by 4 array.
|
1015 |
+
|
1016 |
+
>>> a = np.arange(16).reshape(4, 4)
|
1017 |
+
>>> a
|
1018 |
+
array([[ 0, 1, 2, 3],
|
1019 |
+
[ 4, 5, 6, 7],
|
1020 |
+
[ 8, 9, 10, 11],
|
1021 |
+
[12, 13, 14, 15]])
|
1022 |
+
|
1023 |
+
Get the indices of the diagonal elements.
|
1024 |
+
|
1025 |
+
>>> di = np.diag_indices_from(a)
|
1026 |
+
>>> di
|
1027 |
+
(array([0, 1, 2, 3]), array([0, 1, 2, 3]))
|
1028 |
+
|
1029 |
+
>>> a[di]
|
1030 |
+
array([ 0, 5, 10, 15])
|
1031 |
+
|
1032 |
+
This is simply syntactic sugar for diag_indices.
|
1033 |
+
|
1034 |
+
>>> np.diag_indices(a.shape[0])
|
1035 |
+
(array([0, 1, 2, 3]), array([0, 1, 2, 3]))
|
1036 |
+
|
1037 |
+
"""
|
1038 |
+
|
1039 |
+
if not arr.ndim >= 2:
|
1040 |
+
raise ValueError("input array must be at least 2-d")
|
1041 |
+
# For more than d=2, the strided formula is only valid for arrays with
|
1042 |
+
# all dimensions equal, so we check first.
|
1043 |
+
if not np.all(diff(arr.shape) == 0):
|
1044 |
+
raise ValueError("All dimensions of input must be of equal length")
|
1045 |
+
|
1046 |
+
return diag_indices(arr.shape[0], arr.ndim)
|
env-llmeval/lib/python3.10/site-packages/numpy/lib/index_tricks.pyi
ADDED
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections.abc import Sequence
|
2 |
+
from typing import (
|
3 |
+
Any,
|
4 |
+
TypeVar,
|
5 |
+
Generic,
|
6 |
+
overload,
|
7 |
+
Literal,
|
8 |
+
SupportsIndex,
|
9 |
+
)
|
10 |
+
|
11 |
+
from numpy import (
|
12 |
+
# Circumvent a naming conflict with `AxisConcatenator.matrix`
|
13 |
+
matrix as _Matrix,
|
14 |
+
ndenumerate as ndenumerate,
|
15 |
+
ndindex as ndindex,
|
16 |
+
ndarray,
|
17 |
+
dtype,
|
18 |
+
integer,
|
19 |
+
str_,
|
20 |
+
bytes_,
|
21 |
+
bool_,
|
22 |
+
int_,
|
23 |
+
float_,
|
24 |
+
complex_,
|
25 |
+
intp,
|
26 |
+
_OrderCF,
|
27 |
+
_ModeKind,
|
28 |
+
)
|
29 |
+
from numpy._typing import (
|
30 |
+
# Arrays
|
31 |
+
ArrayLike,
|
32 |
+
_NestedSequence,
|
33 |
+
_FiniteNestedSequence,
|
34 |
+
NDArray,
|
35 |
+
_ArrayLikeInt,
|
36 |
+
|
37 |
+
# DTypes
|
38 |
+
DTypeLike,
|
39 |
+
_SupportsDType,
|
40 |
+
|
41 |
+
# Shapes
|
42 |
+
_ShapeLike,
|
43 |
+
)
|
44 |
+
|
45 |
+
from numpy.core.multiarray import (
|
46 |
+
unravel_index as unravel_index,
|
47 |
+
ravel_multi_index as ravel_multi_index,
|
48 |
+
)
|
49 |
+
|
50 |
+
_T = TypeVar("_T")
|
51 |
+
_DType = TypeVar("_DType", bound=dtype[Any])
|
52 |
+
_BoolType = TypeVar("_BoolType", Literal[True], Literal[False])
|
53 |
+
_TupType = TypeVar("_TupType", bound=tuple[Any, ...])
|
54 |
+
_ArrayType = TypeVar("_ArrayType", bound=ndarray[Any, Any])
|
55 |
+
|
56 |
+
__all__: list[str]
|
57 |
+
|
58 |
+
@overload
|
59 |
+
def ix_(*args: _FiniteNestedSequence[_SupportsDType[_DType]]) -> tuple[ndarray[Any, _DType], ...]: ...
|
60 |
+
@overload
|
61 |
+
def ix_(*args: str | _NestedSequence[str]) -> tuple[NDArray[str_], ...]: ...
|
62 |
+
@overload
|
63 |
+
def ix_(*args: bytes | _NestedSequence[bytes]) -> tuple[NDArray[bytes_], ...]: ...
|
64 |
+
@overload
|
65 |
+
def ix_(*args: bool | _NestedSequence[bool]) -> tuple[NDArray[bool_], ...]: ...
|
66 |
+
@overload
|
67 |
+
def ix_(*args: int | _NestedSequence[int]) -> tuple[NDArray[int_], ...]: ...
|
68 |
+
@overload
|
69 |
+
def ix_(*args: float | _NestedSequence[float]) -> tuple[NDArray[float_], ...]: ...
|
70 |
+
@overload
|
71 |
+
def ix_(*args: complex | _NestedSequence[complex]) -> tuple[NDArray[complex_], ...]: ...
|
72 |
+
|
73 |
+
class nd_grid(Generic[_BoolType]):
|
74 |
+
sparse: _BoolType
|
75 |
+
def __init__(self, sparse: _BoolType = ...) -> None: ...
|
76 |
+
@overload
|
77 |
+
def __getitem__(
|
78 |
+
self: nd_grid[Literal[False]],
|
79 |
+
key: slice | Sequence[slice],
|
80 |
+
) -> NDArray[Any]: ...
|
81 |
+
@overload
|
82 |
+
def __getitem__(
|
83 |
+
self: nd_grid[Literal[True]],
|
84 |
+
key: slice | Sequence[slice],
|
85 |
+
) -> list[NDArray[Any]]: ...
|
86 |
+
|
87 |
+
class MGridClass(nd_grid[Literal[False]]):
|
88 |
+
def __init__(self) -> None: ...
|
89 |
+
|
90 |
+
mgrid: MGridClass
|
91 |
+
|
92 |
+
class OGridClass(nd_grid[Literal[True]]):
|
93 |
+
def __init__(self) -> None: ...
|
94 |
+
|
95 |
+
ogrid: OGridClass
|
96 |
+
|
97 |
+
class AxisConcatenator:
|
98 |
+
axis: int
|
99 |
+
matrix: bool
|
100 |
+
ndmin: int
|
101 |
+
trans1d: int
|
102 |
+
def __init__(
|
103 |
+
self,
|
104 |
+
axis: int = ...,
|
105 |
+
matrix: bool = ...,
|
106 |
+
ndmin: int = ...,
|
107 |
+
trans1d: int = ...,
|
108 |
+
) -> None: ...
|
109 |
+
@staticmethod
|
110 |
+
@overload
|
111 |
+
def concatenate( # type: ignore[misc]
|
112 |
+
*a: ArrayLike, axis: SupportsIndex = ..., out: None = ...
|
113 |
+
) -> NDArray[Any]: ...
|
114 |
+
@staticmethod
|
115 |
+
@overload
|
116 |
+
def concatenate(
|
117 |
+
*a: ArrayLike, axis: SupportsIndex = ..., out: _ArrayType = ...
|
118 |
+
) -> _ArrayType: ...
|
119 |
+
@staticmethod
|
120 |
+
def makemat(
|
121 |
+
data: ArrayLike, dtype: DTypeLike = ..., copy: bool = ...
|
122 |
+
) -> _Matrix[Any, Any]: ...
|
123 |
+
|
124 |
+
# TODO: Sort out this `__getitem__` method
|
125 |
+
def __getitem__(self, key: Any) -> Any: ...
|
126 |
+
|
127 |
+
class RClass(AxisConcatenator):
|
128 |
+
axis: Literal[0]
|
129 |
+
matrix: Literal[False]
|
130 |
+
ndmin: Literal[1]
|
131 |
+
trans1d: Literal[-1]
|
132 |
+
def __init__(self) -> None: ...
|
133 |
+
|
134 |
+
r_: RClass
|
135 |
+
|
136 |
+
class CClass(AxisConcatenator):
|
137 |
+
axis: Literal[-1]
|
138 |
+
matrix: Literal[False]
|
139 |
+
ndmin: Literal[2]
|
140 |
+
trans1d: Literal[0]
|
141 |
+
def __init__(self) -> None: ...
|
142 |
+
|
143 |
+
c_: CClass
|
144 |
+
|
145 |
+
class IndexExpression(Generic[_BoolType]):
|
146 |
+
maketuple: _BoolType
|
147 |
+
def __init__(self, maketuple: _BoolType) -> None: ...
|
148 |
+
@overload
|
149 |
+
def __getitem__(self, item: _TupType) -> _TupType: ... # type: ignore[misc]
|
150 |
+
@overload
|
151 |
+
def __getitem__(self: IndexExpression[Literal[True]], item: _T) -> tuple[_T]: ...
|
152 |
+
@overload
|
153 |
+
def __getitem__(self: IndexExpression[Literal[False]], item: _T) -> _T: ...
|
154 |
+
|
155 |
+
index_exp: IndexExpression[Literal[True]]
|
156 |
+
s_: IndexExpression[Literal[False]]
|
157 |
+
|
158 |
+
def fill_diagonal(a: ndarray[Any, Any], val: Any, wrap: bool = ...) -> None: ...
|
159 |
+
def diag_indices(n: int, ndim: int = ...) -> tuple[NDArray[int_], ...]: ...
|
160 |
+
def diag_indices_from(arr: ArrayLike) -> tuple[NDArray[int_], ...]: ...
|
161 |
+
|
162 |
+
# NOTE: see `numpy/__init__.pyi` for `ndenumerate` and `ndindex`
|
env-llmeval/lib/python3.10/site-packages/numpy/lib/mixins.py
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Mixin classes for custom array types that don't inherit from ndarray."""
|
2 |
+
from numpy.core import umath as um
|
3 |
+
|
4 |
+
|
5 |
+
__all__ = ['NDArrayOperatorsMixin']
|
6 |
+
|
7 |
+
|
8 |
+
def _disables_array_ufunc(obj):
|
9 |
+
"""True when __array_ufunc__ is set to None."""
|
10 |
+
try:
|
11 |
+
return obj.__array_ufunc__ is None
|
12 |
+
except AttributeError:
|
13 |
+
return False
|
14 |
+
|
15 |
+
|
16 |
+
def _binary_method(ufunc, name):
|
17 |
+
"""Implement a forward binary method with a ufunc, e.g., __add__."""
|
18 |
+
def func(self, other):
|
19 |
+
if _disables_array_ufunc(other):
|
20 |
+
return NotImplemented
|
21 |
+
return ufunc(self, other)
|
22 |
+
func.__name__ = '__{}__'.format(name)
|
23 |
+
return func
|
24 |
+
|
25 |
+
|
26 |
+
def _reflected_binary_method(ufunc, name):
|
27 |
+
"""Implement a reflected binary method with a ufunc, e.g., __radd__."""
|
28 |
+
def func(self, other):
|
29 |
+
if _disables_array_ufunc(other):
|
30 |
+
return NotImplemented
|
31 |
+
return ufunc(other, self)
|
32 |
+
func.__name__ = '__r{}__'.format(name)
|
33 |
+
return func
|
34 |
+
|
35 |
+
|
36 |
+
def _inplace_binary_method(ufunc, name):
|
37 |
+
"""Implement an in-place binary method with a ufunc, e.g., __iadd__."""
|
38 |
+
def func(self, other):
|
39 |
+
return ufunc(self, other, out=(self,))
|
40 |
+
func.__name__ = '__i{}__'.format(name)
|
41 |
+
return func
|
42 |
+
|
43 |
+
|
44 |
+
def _numeric_methods(ufunc, name):
|
45 |
+
"""Implement forward, reflected and inplace binary methods with a ufunc."""
|
46 |
+
return (_binary_method(ufunc, name),
|
47 |
+
_reflected_binary_method(ufunc, name),
|
48 |
+
_inplace_binary_method(ufunc, name))
|
49 |
+
|
50 |
+
|
51 |
+
def _unary_method(ufunc, name):
|
52 |
+
"""Implement a unary special method with a ufunc."""
|
53 |
+
def func(self):
|
54 |
+
return ufunc(self)
|
55 |
+
func.__name__ = '__{}__'.format(name)
|
56 |
+
return func
|
57 |
+
|
58 |
+
|
59 |
+
class NDArrayOperatorsMixin:
|
60 |
+
"""Mixin defining all operator special methods using __array_ufunc__.
|
61 |
+
|
62 |
+
This class implements the special methods for almost all of Python's
|
63 |
+
builtin operators defined in the `operator` module, including comparisons
|
64 |
+
(``==``, ``>``, etc.) and arithmetic (``+``, ``*``, ``-``, etc.), by
|
65 |
+
deferring to the ``__array_ufunc__`` method, which subclasses must
|
66 |
+
implement.
|
67 |
+
|
68 |
+
It is useful for writing classes that do not inherit from `numpy.ndarray`,
|
69 |
+
but that should support arithmetic and numpy universal functions like
|
70 |
+
arrays as described in `A Mechanism for Overriding Ufuncs
|
71 |
+
<https://numpy.org/neps/nep-0013-ufunc-overrides.html>`_.
|
72 |
+
|
73 |
+
As an trivial example, consider this implementation of an ``ArrayLike``
|
74 |
+
class that simply wraps a NumPy array and ensures that the result of any
|
75 |
+
arithmetic operation is also an ``ArrayLike`` object::
|
76 |
+
|
77 |
+
class ArrayLike(np.lib.mixins.NDArrayOperatorsMixin):
|
78 |
+
def __init__(self, value):
|
79 |
+
self.value = np.asarray(value)
|
80 |
+
|
81 |
+
# One might also consider adding the built-in list type to this
|
82 |
+
# list, to support operations like np.add(array_like, list)
|
83 |
+
_HANDLED_TYPES = (np.ndarray, numbers.Number)
|
84 |
+
|
85 |
+
def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
|
86 |
+
out = kwargs.get('out', ())
|
87 |
+
for x in inputs + out:
|
88 |
+
# Only support operations with instances of _HANDLED_TYPES.
|
89 |
+
# Use ArrayLike instead of type(self) for isinstance to
|
90 |
+
# allow subclasses that don't override __array_ufunc__ to
|
91 |
+
# handle ArrayLike objects.
|
92 |
+
if not isinstance(x, self._HANDLED_TYPES + (ArrayLike,)):
|
93 |
+
return NotImplemented
|
94 |
+
|
95 |
+
# Defer to the implementation of the ufunc on unwrapped values.
|
96 |
+
inputs = tuple(x.value if isinstance(x, ArrayLike) else x
|
97 |
+
for x in inputs)
|
98 |
+
if out:
|
99 |
+
kwargs['out'] = tuple(
|
100 |
+
x.value if isinstance(x, ArrayLike) else x
|
101 |
+
for x in out)
|
102 |
+
result = getattr(ufunc, method)(*inputs, **kwargs)
|
103 |
+
|
104 |
+
if type(result) is tuple:
|
105 |
+
# multiple return values
|
106 |
+
return tuple(type(self)(x) for x in result)
|
107 |
+
elif method == 'at':
|
108 |
+
# no return value
|
109 |
+
return None
|
110 |
+
else:
|
111 |
+
# one return value
|
112 |
+
return type(self)(result)
|
113 |
+
|
114 |
+
def __repr__(self):
|
115 |
+
return '%s(%r)' % (type(self).__name__, self.value)
|
116 |
+
|
117 |
+
In interactions between ``ArrayLike`` objects and numbers or numpy arrays,
|
118 |
+
the result is always another ``ArrayLike``:
|
119 |
+
|
120 |
+
>>> x = ArrayLike([1, 2, 3])
|
121 |
+
>>> x - 1
|
122 |
+
ArrayLike(array([0, 1, 2]))
|
123 |
+
>>> 1 - x
|
124 |
+
ArrayLike(array([ 0, -1, -2]))
|
125 |
+
>>> np.arange(3) - x
|
126 |
+
ArrayLike(array([-1, -1, -1]))
|
127 |
+
>>> x - np.arange(3)
|
128 |
+
ArrayLike(array([1, 1, 1]))
|
129 |
+
|
130 |
+
Note that unlike ``numpy.ndarray``, ``ArrayLike`` does not allow operations
|
131 |
+
with arbitrary, unrecognized types. This ensures that interactions with
|
132 |
+
ArrayLike preserve a well-defined casting hierarchy.
|
133 |
+
|
134 |
+
.. versionadded:: 1.13
|
135 |
+
"""
|
136 |
+
__slots__ = ()
|
137 |
+
# Like np.ndarray, this mixin class implements "Option 1" from the ufunc
|
138 |
+
# overrides NEP.
|
139 |
+
|
140 |
+
# comparisons don't have reflected and in-place versions
|
141 |
+
__lt__ = _binary_method(um.less, 'lt')
|
142 |
+
__le__ = _binary_method(um.less_equal, 'le')
|
143 |
+
__eq__ = _binary_method(um.equal, 'eq')
|
144 |
+
__ne__ = _binary_method(um.not_equal, 'ne')
|
145 |
+
__gt__ = _binary_method(um.greater, 'gt')
|
146 |
+
__ge__ = _binary_method(um.greater_equal, 'ge')
|
147 |
+
|
148 |
+
# numeric methods
|
149 |
+
__add__, __radd__, __iadd__ = _numeric_methods(um.add, 'add')
|
150 |
+
__sub__, __rsub__, __isub__ = _numeric_methods(um.subtract, 'sub')
|
151 |
+
__mul__, __rmul__, __imul__ = _numeric_methods(um.multiply, 'mul')
|
152 |
+
__matmul__, __rmatmul__, __imatmul__ = _numeric_methods(
|
153 |
+
um.matmul, 'matmul')
|
154 |
+
# Python 3 does not use __div__, __rdiv__, or __idiv__
|
155 |
+
__truediv__, __rtruediv__, __itruediv__ = _numeric_methods(
|
156 |
+
um.true_divide, 'truediv')
|
157 |
+
__floordiv__, __rfloordiv__, __ifloordiv__ = _numeric_methods(
|
158 |
+
um.floor_divide, 'floordiv')
|
159 |
+
__mod__, __rmod__, __imod__ = _numeric_methods(um.remainder, 'mod')
|
160 |
+
__divmod__ = _binary_method(um.divmod, 'divmod')
|
161 |
+
__rdivmod__ = _reflected_binary_method(um.divmod, 'divmod')
|
162 |
+
# __idivmod__ does not exist
|
163 |
+
# TODO: handle the optional third argument for __pow__?
|
164 |
+
__pow__, __rpow__, __ipow__ = _numeric_methods(um.power, 'pow')
|
165 |
+
__lshift__, __rlshift__, __ilshift__ = _numeric_methods(
|
166 |
+
um.left_shift, 'lshift')
|
167 |
+
__rshift__, __rrshift__, __irshift__ = _numeric_methods(
|
168 |
+
um.right_shift, 'rshift')
|
169 |
+
__and__, __rand__, __iand__ = _numeric_methods(um.bitwise_and, 'and')
|
170 |
+
__xor__, __rxor__, __ixor__ = _numeric_methods(um.bitwise_xor, 'xor')
|
171 |
+
__or__, __ror__, __ior__ = _numeric_methods(um.bitwise_or, 'or')
|
172 |
+
|
173 |
+
# unary methods
|
174 |
+
__neg__ = _unary_method(um.negative, 'neg')
|
175 |
+
__pos__ = _unary_method(um.positive, 'pos')
|
176 |
+
__abs__ = _unary_method(um.absolute, 'abs')
|
177 |
+
__invert__ = _unary_method(um.invert, 'invert')
|
env-llmeval/lib/python3.10/site-packages/numpy/lib/mixins.pyi
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from abc import ABCMeta, abstractmethod
|
2 |
+
from typing import Literal as L, Any
|
3 |
+
|
4 |
+
from numpy import ufunc
|
5 |
+
|
6 |
+
__all__: list[str]
|
7 |
+
|
8 |
+
# NOTE: `NDArrayOperatorsMixin` is not formally an abstract baseclass,
|
9 |
+
# even though it's reliant on subclasses implementing `__array_ufunc__`
|
10 |
+
|
11 |
+
# NOTE: The accepted input- and output-types of the various dunders are
|
12 |
+
# completely dependent on how `__array_ufunc__` is implemented.
|
13 |
+
# As such, only little type safety can be provided here.
|
14 |
+
|
15 |
+
class NDArrayOperatorsMixin(metaclass=ABCMeta):
|
16 |
+
@abstractmethod
|
17 |
+
def __array_ufunc__(
|
18 |
+
self,
|
19 |
+
ufunc: ufunc,
|
20 |
+
method: L["__call__", "reduce", "reduceat", "accumulate", "outer", "inner"],
|
21 |
+
*inputs: Any,
|
22 |
+
**kwargs: Any,
|
23 |
+
) -> Any: ...
|
24 |
+
def __lt__(self, other: Any) -> Any: ...
|
25 |
+
def __le__(self, other: Any) -> Any: ...
|
26 |
+
def __eq__(self, other: Any) -> Any: ...
|
27 |
+
def __ne__(self, other: Any) -> Any: ...
|
28 |
+
def __gt__(self, other: Any) -> Any: ...
|
29 |
+
def __ge__(self, other: Any) -> Any: ...
|
30 |
+
def __add__(self, other: Any) -> Any: ...
|
31 |
+
def __radd__(self, other: Any) -> Any: ...
|
32 |
+
def __iadd__(self, other: Any) -> Any: ...
|
33 |
+
def __sub__(self, other: Any) -> Any: ...
|
34 |
+
def __rsub__(self, other: Any) -> Any: ...
|
35 |
+
def __isub__(self, other: Any) -> Any: ...
|
36 |
+
def __mul__(self, other: Any) -> Any: ...
|
37 |
+
def __rmul__(self, other: Any) -> Any: ...
|
38 |
+
def __imul__(self, other: Any) -> Any: ...
|
39 |
+
def __matmul__(self, other: Any) -> Any: ...
|
40 |
+
def __rmatmul__(self, other: Any) -> Any: ...
|
41 |
+
def __imatmul__(self, other: Any) -> Any: ...
|
42 |
+
def __truediv__(self, other: Any) -> Any: ...
|
43 |
+
def __rtruediv__(self, other: Any) -> Any: ...
|
44 |
+
def __itruediv__(self, other: Any) -> Any: ...
|
45 |
+
def __floordiv__(self, other: Any) -> Any: ...
|
46 |
+
def __rfloordiv__(self, other: Any) -> Any: ...
|
47 |
+
def __ifloordiv__(self, other: Any) -> Any: ...
|
48 |
+
def __mod__(self, other: Any) -> Any: ...
|
49 |
+
def __rmod__(self, other: Any) -> Any: ...
|
50 |
+
def __imod__(self, other: Any) -> Any: ...
|
51 |
+
def __divmod__(self, other: Any) -> Any: ...
|
52 |
+
def __rdivmod__(self, other: Any) -> Any: ...
|
53 |
+
def __pow__(self, other: Any) -> Any: ...
|
54 |
+
def __rpow__(self, other: Any) -> Any: ...
|
55 |
+
def __ipow__(self, other: Any) -> Any: ...
|
56 |
+
def __lshift__(self, other: Any) -> Any: ...
|
57 |
+
def __rlshift__(self, other: Any) -> Any: ...
|
58 |
+
def __ilshift__(self, other: Any) -> Any: ...
|
59 |
+
def __rshift__(self, other: Any) -> Any: ...
|
60 |
+
def __rrshift__(self, other: Any) -> Any: ...
|
61 |
+
def __irshift__(self, other: Any) -> Any: ...
|
62 |
+
def __and__(self, other: Any) -> Any: ...
|
63 |
+
def __rand__(self, other: Any) -> Any: ...
|
64 |
+
def __iand__(self, other: Any) -> Any: ...
|
65 |
+
def __xor__(self, other: Any) -> Any: ...
|
66 |
+
def __rxor__(self, other: Any) -> Any: ...
|
67 |
+
def __ixor__(self, other: Any) -> Any: ...
|
68 |
+
def __or__(self, other: Any) -> Any: ...
|
69 |
+
def __ror__(self, other: Any) -> Any: ...
|
70 |
+
def __ior__(self, other: Any) -> Any: ...
|
71 |
+
def __neg__(self) -> Any: ...
|
72 |
+
def __pos__(self) -> Any: ...
|
73 |
+
def __abs__(self) -> Any: ...
|
74 |
+
def __invert__(self) -> Any: ...
|
env-llmeval/lib/python3.10/site-packages/numpy/lib/nanfunctions.py
ADDED
@@ -0,0 +1,1887 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Functions that ignore NaN.
|
3 |
+
|
4 |
+
Functions
|
5 |
+
---------
|
6 |
+
|
7 |
+
- `nanmin` -- minimum non-NaN value
|
8 |
+
- `nanmax` -- maximum non-NaN value
|
9 |
+
- `nanargmin` -- index of minimum non-NaN value
|
10 |
+
- `nanargmax` -- index of maximum non-NaN value
|
11 |
+
- `nansum` -- sum of non-NaN values
|
12 |
+
- `nanprod` -- product of non-NaN values
|
13 |
+
- `nancumsum` -- cumulative sum of non-NaN values
|
14 |
+
- `nancumprod` -- cumulative product of non-NaN values
|
15 |
+
- `nanmean` -- mean of non-NaN values
|
16 |
+
- `nanvar` -- variance of non-NaN values
|
17 |
+
- `nanstd` -- standard deviation of non-NaN values
|
18 |
+
- `nanmedian` -- median of non-NaN values
|
19 |
+
- `nanquantile` -- qth quantile of non-NaN values
|
20 |
+
- `nanpercentile` -- qth percentile of non-NaN values
|
21 |
+
|
22 |
+
"""
|
23 |
+
import functools
|
24 |
+
import warnings
|
25 |
+
import numpy as np
|
26 |
+
from numpy.lib import function_base
|
27 |
+
from numpy.core import overrides
|
28 |
+
|
29 |
+
|
30 |
+
array_function_dispatch = functools.partial(
|
31 |
+
overrides.array_function_dispatch, module='numpy')
|
32 |
+
|
33 |
+
|
34 |
+
__all__ = [
|
35 |
+
'nansum', 'nanmax', 'nanmin', 'nanargmax', 'nanargmin', 'nanmean',
|
36 |
+
'nanmedian', 'nanpercentile', 'nanvar', 'nanstd', 'nanprod',
|
37 |
+
'nancumsum', 'nancumprod', 'nanquantile'
|
38 |
+
]
|
39 |
+
|
40 |
+
|
41 |
+
def _nan_mask(a, out=None):
|
42 |
+
"""
|
43 |
+
Parameters
|
44 |
+
----------
|
45 |
+
a : array-like
|
46 |
+
Input array with at least 1 dimension.
|
47 |
+
out : ndarray, optional
|
48 |
+
Alternate output array in which to place the result. The default
|
49 |
+
is ``None``; if provided, it must have the same shape as the
|
50 |
+
expected output and will prevent the allocation of a new array.
|
51 |
+
|
52 |
+
Returns
|
53 |
+
-------
|
54 |
+
y : bool ndarray or True
|
55 |
+
A bool array where ``np.nan`` positions are marked with ``False``
|
56 |
+
and other positions are marked with ``True``. If the type of ``a``
|
57 |
+
is such that it can't possibly contain ``np.nan``, returns ``True``.
|
58 |
+
"""
|
59 |
+
# we assume that a is an array for this private function
|
60 |
+
|
61 |
+
if a.dtype.kind not in 'fc':
|
62 |
+
return True
|
63 |
+
|
64 |
+
y = np.isnan(a, out=out)
|
65 |
+
y = np.invert(y, out=y)
|
66 |
+
return y
|
67 |
+
|
68 |
+
def _replace_nan(a, val):
|
69 |
+
"""
|
70 |
+
If `a` is of inexact type, make a copy of `a`, replace NaNs with
|
71 |
+
the `val` value, and return the copy together with a boolean mask
|
72 |
+
marking the locations where NaNs were present. If `a` is not of
|
73 |
+
inexact type, do nothing and return `a` together with a mask of None.
|
74 |
+
|
75 |
+
Note that scalars will end up as array scalars, which is important
|
76 |
+
for using the result as the value of the out argument in some
|
77 |
+
operations.
|
78 |
+
|
79 |
+
Parameters
|
80 |
+
----------
|
81 |
+
a : array-like
|
82 |
+
Input array.
|
83 |
+
val : float
|
84 |
+
NaN values are set to val before doing the operation.
|
85 |
+
|
86 |
+
Returns
|
87 |
+
-------
|
88 |
+
y : ndarray
|
89 |
+
If `a` is of inexact type, return a copy of `a` with the NaNs
|
90 |
+
replaced by the fill value, otherwise return `a`.
|
91 |
+
mask: {bool, None}
|
92 |
+
If `a` is of inexact type, return a boolean mask marking locations of
|
93 |
+
NaNs, otherwise return None.
|
94 |
+
|
95 |
+
"""
|
96 |
+
a = np.asanyarray(a)
|
97 |
+
|
98 |
+
if a.dtype == np.object_:
|
99 |
+
# object arrays do not support `isnan` (gh-9009), so make a guess
|
100 |
+
mask = np.not_equal(a, a, dtype=bool)
|
101 |
+
elif issubclass(a.dtype.type, np.inexact):
|
102 |
+
mask = np.isnan(a)
|
103 |
+
else:
|
104 |
+
mask = None
|
105 |
+
|
106 |
+
if mask is not None:
|
107 |
+
a = np.array(a, subok=True, copy=True)
|
108 |
+
np.copyto(a, val, where=mask)
|
109 |
+
|
110 |
+
return a, mask
|
111 |
+
|
112 |
+
|
113 |
+
def _copyto(a, val, mask):
|
114 |
+
"""
|
115 |
+
Replace values in `a` with NaN where `mask` is True. This differs from
|
116 |
+
copyto in that it will deal with the case where `a` is a numpy scalar.
|
117 |
+
|
118 |
+
Parameters
|
119 |
+
----------
|
120 |
+
a : ndarray or numpy scalar
|
121 |
+
Array or numpy scalar some of whose values are to be replaced
|
122 |
+
by val.
|
123 |
+
val : numpy scalar
|
124 |
+
Value used a replacement.
|
125 |
+
mask : ndarray, scalar
|
126 |
+
Boolean array. Where True the corresponding element of `a` is
|
127 |
+
replaced by `val`. Broadcasts.
|
128 |
+
|
129 |
+
Returns
|
130 |
+
-------
|
131 |
+
res : ndarray, scalar
|
132 |
+
Array with elements replaced or scalar `val`.
|
133 |
+
|
134 |
+
"""
|
135 |
+
if isinstance(a, np.ndarray):
|
136 |
+
np.copyto(a, val, where=mask, casting='unsafe')
|
137 |
+
else:
|
138 |
+
a = a.dtype.type(val)
|
139 |
+
return a
|
140 |
+
|
141 |
+
|
142 |
+
def _remove_nan_1d(arr1d, overwrite_input=False):
|
143 |
+
"""
|
144 |
+
Equivalent to arr1d[~arr1d.isnan()], but in a different order
|
145 |
+
|
146 |
+
Presumably faster as it incurs fewer copies
|
147 |
+
|
148 |
+
Parameters
|
149 |
+
----------
|
150 |
+
arr1d : ndarray
|
151 |
+
Array to remove nans from
|
152 |
+
overwrite_input : bool
|
153 |
+
True if `arr1d` can be modified in place
|
154 |
+
|
155 |
+
Returns
|
156 |
+
-------
|
157 |
+
res : ndarray
|
158 |
+
Array with nan elements removed
|
159 |
+
overwrite_input : bool
|
160 |
+
True if `res` can be modified in place, given the constraint on the
|
161 |
+
input
|
162 |
+
"""
|
163 |
+
if arr1d.dtype == object:
|
164 |
+
# object arrays do not support `isnan` (gh-9009), so make a guess
|
165 |
+
c = np.not_equal(arr1d, arr1d, dtype=bool)
|
166 |
+
else:
|
167 |
+
c = np.isnan(arr1d)
|
168 |
+
|
169 |
+
s = np.nonzero(c)[0]
|
170 |
+
if s.size == arr1d.size:
|
171 |
+
warnings.warn("All-NaN slice encountered", RuntimeWarning,
|
172 |
+
stacklevel=6)
|
173 |
+
return arr1d[:0], True
|
174 |
+
elif s.size == 0:
|
175 |
+
return arr1d, overwrite_input
|
176 |
+
else:
|
177 |
+
if not overwrite_input:
|
178 |
+
arr1d = arr1d.copy()
|
179 |
+
# select non-nans at end of array
|
180 |
+
enonan = arr1d[-s.size:][~c[-s.size:]]
|
181 |
+
# fill nans in beginning of array with non-nans of end
|
182 |
+
arr1d[s[:enonan.size]] = enonan
|
183 |
+
|
184 |
+
return arr1d[:-s.size], True
|
185 |
+
|
186 |
+
|
187 |
+
def _divide_by_count(a, b, out=None):
|
188 |
+
"""
|
189 |
+
Compute a/b ignoring invalid results. If `a` is an array the division
|
190 |
+
is done in place. If `a` is a scalar, then its type is preserved in the
|
191 |
+
output. If out is None, then a is used instead so that the division
|
192 |
+
is in place. Note that this is only called with `a` an inexact type.
|
193 |
+
|
194 |
+
Parameters
|
195 |
+
----------
|
196 |
+
a : {ndarray, numpy scalar}
|
197 |
+
Numerator. Expected to be of inexact type but not checked.
|
198 |
+
b : {ndarray, numpy scalar}
|
199 |
+
Denominator.
|
200 |
+
out : ndarray, optional
|
201 |
+
Alternate output array in which to place the result. The default
|
202 |
+
is ``None``; if provided, it must have the same shape as the
|
203 |
+
expected output, but the type will be cast if necessary.
|
204 |
+
|
205 |
+
Returns
|
206 |
+
-------
|
207 |
+
ret : {ndarray, numpy scalar}
|
208 |
+
The return value is a/b. If `a` was an ndarray the division is done
|
209 |
+
in place. If `a` is a numpy scalar, the division preserves its type.
|
210 |
+
|
211 |
+
"""
|
212 |
+
with np.errstate(invalid='ignore', divide='ignore'):
|
213 |
+
if isinstance(a, np.ndarray):
|
214 |
+
if out is None:
|
215 |
+
return np.divide(a, b, out=a, casting='unsafe')
|
216 |
+
else:
|
217 |
+
return np.divide(a, b, out=out, casting='unsafe')
|
218 |
+
else:
|
219 |
+
if out is None:
|
220 |
+
# Precaution against reduced object arrays
|
221 |
+
try:
|
222 |
+
return a.dtype.type(a / b)
|
223 |
+
except AttributeError:
|
224 |
+
return a / b
|
225 |
+
else:
|
226 |
+
# This is questionable, but currently a numpy scalar can
|
227 |
+
# be output to a zero dimensional array.
|
228 |
+
return np.divide(a, b, out=out, casting='unsafe')
|
229 |
+
|
230 |
+
|
231 |
+
def _nanmin_dispatcher(a, axis=None, out=None, keepdims=None,
|
232 |
+
initial=None, where=None):
|
233 |
+
return (a, out)
|
234 |
+
|
235 |
+
|
236 |
+
@array_function_dispatch(_nanmin_dispatcher)
|
237 |
+
def nanmin(a, axis=None, out=None, keepdims=np._NoValue, initial=np._NoValue,
|
238 |
+
where=np._NoValue):
|
239 |
+
"""
|
240 |
+
Return minimum of an array or minimum along an axis, ignoring any NaNs.
|
241 |
+
When all-NaN slices are encountered a ``RuntimeWarning`` is raised and
|
242 |
+
Nan is returned for that slice.
|
243 |
+
|
244 |
+
Parameters
|
245 |
+
----------
|
246 |
+
a : array_like
|
247 |
+
Array containing numbers whose minimum is desired. If `a` is not an
|
248 |
+
array, a conversion is attempted.
|
249 |
+
axis : {int, tuple of int, None}, optional
|
250 |
+
Axis or axes along which the minimum is computed. The default is to compute
|
251 |
+
the minimum of the flattened array.
|
252 |
+
out : ndarray, optional
|
253 |
+
Alternate output array in which to place the result. The default
|
254 |
+
is ``None``; if provided, it must have the same shape as the
|
255 |
+
expected output, but the type will be cast if necessary. See
|
256 |
+
:ref:`ufuncs-output-type` for more details.
|
257 |
+
|
258 |
+
.. versionadded:: 1.8.0
|
259 |
+
keepdims : bool, optional
|
260 |
+
If this is set to True, the axes which are reduced are left
|
261 |
+
in the result as dimensions with size one. With this option,
|
262 |
+
the result will broadcast correctly against the original `a`.
|
263 |
+
|
264 |
+
If the value is anything but the default, then
|
265 |
+
`keepdims` will be passed through to the `min` method
|
266 |
+
of sub-classes of `ndarray`. If the sub-classes methods
|
267 |
+
does not implement `keepdims` any exceptions will be raised.
|
268 |
+
|
269 |
+
.. versionadded:: 1.8.0
|
270 |
+
initial : scalar, optional
|
271 |
+
The maximum value of an output element. Must be present to allow
|
272 |
+
computation on empty slice. See `~numpy.ufunc.reduce` for details.
|
273 |
+
|
274 |
+
.. versionadded:: 1.22.0
|
275 |
+
where : array_like of bool, optional
|
276 |
+
Elements to compare for the minimum. See `~numpy.ufunc.reduce`
|
277 |
+
for details.
|
278 |
+
|
279 |
+
.. versionadded:: 1.22.0
|
280 |
+
|
281 |
+
Returns
|
282 |
+
-------
|
283 |
+
nanmin : ndarray
|
284 |
+
An array with the same shape as `a`, with the specified axis
|
285 |
+
removed. If `a` is a 0-d array, or if axis is None, an ndarray
|
286 |
+
scalar is returned. The same dtype as `a` is returned.
|
287 |
+
|
288 |
+
See Also
|
289 |
+
--------
|
290 |
+
nanmax :
|
291 |
+
The maximum value of an array along a given axis, ignoring any NaNs.
|
292 |
+
amin :
|
293 |
+
The minimum value of an array along a given axis, propagating any NaNs.
|
294 |
+
fmin :
|
295 |
+
Element-wise minimum of two arrays, ignoring any NaNs.
|
296 |
+
minimum :
|
297 |
+
Element-wise minimum of two arrays, propagating any NaNs.
|
298 |
+
isnan :
|
299 |
+
Shows which elements are Not a Number (NaN).
|
300 |
+
isfinite:
|
301 |
+
Shows which elements are neither NaN nor infinity.
|
302 |
+
|
303 |
+
amax, fmax, maximum
|
304 |
+
|
305 |
+
Notes
|
306 |
+
-----
|
307 |
+
NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic
|
308 |
+
(IEEE 754). This means that Not a Number is not equivalent to infinity.
|
309 |
+
Positive infinity is treated as a very large number and negative
|
310 |
+
infinity is treated as a very small (i.e. negative) number.
|
311 |
+
|
312 |
+
If the input has a integer type the function is equivalent to np.min.
|
313 |
+
|
314 |
+
Examples
|
315 |
+
--------
|
316 |
+
>>> a = np.array([[1, 2], [3, np.nan]])
|
317 |
+
>>> np.nanmin(a)
|
318 |
+
1.0
|
319 |
+
>>> np.nanmin(a, axis=0)
|
320 |
+
array([1., 2.])
|
321 |
+
>>> np.nanmin(a, axis=1)
|
322 |
+
array([1., 3.])
|
323 |
+
|
324 |
+
When positive infinity and negative infinity are present:
|
325 |
+
|
326 |
+
>>> np.nanmin([1, 2, np.nan, np.inf])
|
327 |
+
1.0
|
328 |
+
>>> np.nanmin([1, 2, np.nan, np.NINF])
|
329 |
+
-inf
|
330 |
+
|
331 |
+
"""
|
332 |
+
kwargs = {}
|
333 |
+
if keepdims is not np._NoValue:
|
334 |
+
kwargs['keepdims'] = keepdims
|
335 |
+
if initial is not np._NoValue:
|
336 |
+
kwargs['initial'] = initial
|
337 |
+
if where is not np._NoValue:
|
338 |
+
kwargs['where'] = where
|
339 |
+
|
340 |
+
if type(a) is np.ndarray and a.dtype != np.object_:
|
341 |
+
# Fast, but not safe for subclasses of ndarray, or object arrays,
|
342 |
+
# which do not implement isnan (gh-9009), or fmin correctly (gh-8975)
|
343 |
+
res = np.fmin.reduce(a, axis=axis, out=out, **kwargs)
|
344 |
+
if np.isnan(res).any():
|
345 |
+
warnings.warn("All-NaN slice encountered", RuntimeWarning,
|
346 |
+
stacklevel=2)
|
347 |
+
else:
|
348 |
+
# Slow, but safe for subclasses of ndarray
|
349 |
+
a, mask = _replace_nan(a, +np.inf)
|
350 |
+
res = np.amin(a, axis=axis, out=out, **kwargs)
|
351 |
+
if mask is None:
|
352 |
+
return res
|
353 |
+
|
354 |
+
# Check for all-NaN axis
|
355 |
+
kwargs.pop("initial", None)
|
356 |
+
mask = np.all(mask, axis=axis, **kwargs)
|
357 |
+
if np.any(mask):
|
358 |
+
res = _copyto(res, np.nan, mask)
|
359 |
+
warnings.warn("All-NaN axis encountered", RuntimeWarning,
|
360 |
+
stacklevel=2)
|
361 |
+
return res
|
362 |
+
|
363 |
+
|
364 |
+
def _nanmax_dispatcher(a, axis=None, out=None, keepdims=None,
|
365 |
+
initial=None, where=None):
|
366 |
+
return (a, out)
|
367 |
+
|
368 |
+
|
369 |
+
@array_function_dispatch(_nanmax_dispatcher)
|
370 |
+
def nanmax(a, axis=None, out=None, keepdims=np._NoValue, initial=np._NoValue,
|
371 |
+
where=np._NoValue):
|
372 |
+
"""
|
373 |
+
Return the maximum of an array or maximum along an axis, ignoring any
|
374 |
+
NaNs. When all-NaN slices are encountered a ``RuntimeWarning`` is
|
375 |
+
raised and NaN is returned for that slice.
|
376 |
+
|
377 |
+
Parameters
|
378 |
+
----------
|
379 |
+
a : array_like
|
380 |
+
Array containing numbers whose maximum is desired. If `a` is not an
|
381 |
+
array, a conversion is attempted.
|
382 |
+
axis : {int, tuple of int, None}, optional
|
383 |
+
Axis or axes along which the maximum is computed. The default is to compute
|
384 |
+
the maximum of the flattened array.
|
385 |
+
out : ndarray, optional
|
386 |
+
Alternate output array in which to place the result. The default
|
387 |
+
is ``None``; if provided, it must have the same shape as the
|
388 |
+
expected output, but the type will be cast if necessary. See
|
389 |
+
:ref:`ufuncs-output-type` for more details.
|
390 |
+
|
391 |
+
.. versionadded:: 1.8.0
|
392 |
+
keepdims : bool, optional
|
393 |
+
If this is set to True, the axes which are reduced are left
|
394 |
+
in the result as dimensions with size one. With this option,
|
395 |
+
the result will broadcast correctly against the original `a`.
|
396 |
+
|
397 |
+
If the value is anything but the default, then
|
398 |
+
`keepdims` will be passed through to the `max` method
|
399 |
+
of sub-classes of `ndarray`. If the sub-classes methods
|
400 |
+
does not implement `keepdims` any exceptions will be raised.
|
401 |
+
|
402 |
+
.. versionadded:: 1.8.0
|
403 |
+
initial : scalar, optional
|
404 |
+
The minimum value of an output element. Must be present to allow
|
405 |
+
computation on empty slice. See `~numpy.ufunc.reduce` for details.
|
406 |
+
|
407 |
+
.. versionadded:: 1.22.0
|
408 |
+
where : array_like of bool, optional
|
409 |
+
Elements to compare for the maximum. See `~numpy.ufunc.reduce`
|
410 |
+
for details.
|
411 |
+
|
412 |
+
.. versionadded:: 1.22.0
|
413 |
+
|
414 |
+
Returns
|
415 |
+
-------
|
416 |
+
nanmax : ndarray
|
417 |
+
An array with the same shape as `a`, with the specified axis removed.
|
418 |
+
If `a` is a 0-d array, or if axis is None, an ndarray scalar is
|
419 |
+
returned. The same dtype as `a` is returned.
|
420 |
+
|
421 |
+
See Also
|
422 |
+
--------
|
423 |
+
nanmin :
|
424 |
+
The minimum value of an array along a given axis, ignoring any NaNs.
|
425 |
+
amax :
|
426 |
+
The maximum value of an array along a given axis, propagating any NaNs.
|
427 |
+
fmax :
|
428 |
+
Element-wise maximum of two arrays, ignoring any NaNs.
|
429 |
+
maximum :
|
430 |
+
Element-wise maximum of two arrays, propagating any NaNs.
|
431 |
+
isnan :
|
432 |
+
Shows which elements are Not a Number (NaN).
|
433 |
+
isfinite:
|
434 |
+
Shows which elements are neither NaN nor infinity.
|
435 |
+
|
436 |
+
amin, fmin, minimum
|
437 |
+
|
438 |
+
Notes
|
439 |
+
-----
|
440 |
+
NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic
|
441 |
+
(IEEE 754). This means that Not a Number is not equivalent to infinity.
|
442 |
+
Positive infinity is treated as a very large number and negative
|
443 |
+
infinity is treated as a very small (i.e. negative) number.
|
444 |
+
|
445 |
+
If the input has a integer type the function is equivalent to np.max.
|
446 |
+
|
447 |
+
Examples
|
448 |
+
--------
|
449 |
+
>>> a = np.array([[1, 2], [3, np.nan]])
|
450 |
+
>>> np.nanmax(a)
|
451 |
+
3.0
|
452 |
+
>>> np.nanmax(a, axis=0)
|
453 |
+
array([3., 2.])
|
454 |
+
>>> np.nanmax(a, axis=1)
|
455 |
+
array([2., 3.])
|
456 |
+
|
457 |
+
When positive infinity and negative infinity are present:
|
458 |
+
|
459 |
+
>>> np.nanmax([1, 2, np.nan, np.NINF])
|
460 |
+
2.0
|
461 |
+
>>> np.nanmax([1, 2, np.nan, np.inf])
|
462 |
+
inf
|
463 |
+
|
464 |
+
"""
|
465 |
+
kwargs = {}
|
466 |
+
if keepdims is not np._NoValue:
|
467 |
+
kwargs['keepdims'] = keepdims
|
468 |
+
if initial is not np._NoValue:
|
469 |
+
kwargs['initial'] = initial
|
470 |
+
if where is not np._NoValue:
|
471 |
+
kwargs['where'] = where
|
472 |
+
|
473 |
+
if type(a) is np.ndarray and a.dtype != np.object_:
|
474 |
+
# Fast, but not safe for subclasses of ndarray, or object arrays,
|
475 |
+
# which do not implement isnan (gh-9009), or fmax correctly (gh-8975)
|
476 |
+
res = np.fmax.reduce(a, axis=axis, out=out, **kwargs)
|
477 |
+
if np.isnan(res).any():
|
478 |
+
warnings.warn("All-NaN slice encountered", RuntimeWarning,
|
479 |
+
stacklevel=2)
|
480 |
+
else:
|
481 |
+
# Slow, but safe for subclasses of ndarray
|
482 |
+
a, mask = _replace_nan(a, -np.inf)
|
483 |
+
res = np.amax(a, axis=axis, out=out, **kwargs)
|
484 |
+
if mask is None:
|
485 |
+
return res
|
486 |
+
|
487 |
+
# Check for all-NaN axis
|
488 |
+
kwargs.pop("initial", None)
|
489 |
+
mask = np.all(mask, axis=axis, **kwargs)
|
490 |
+
if np.any(mask):
|
491 |
+
res = _copyto(res, np.nan, mask)
|
492 |
+
warnings.warn("All-NaN axis encountered", RuntimeWarning,
|
493 |
+
stacklevel=2)
|
494 |
+
return res
|
495 |
+
|
496 |
+
|
497 |
+
def _nanargmin_dispatcher(a, axis=None, out=None, *, keepdims=None):
|
498 |
+
return (a,)
|
499 |
+
|
500 |
+
|
501 |
+
@array_function_dispatch(_nanargmin_dispatcher)
|
502 |
+
def nanargmin(a, axis=None, out=None, *, keepdims=np._NoValue):
|
503 |
+
"""
|
504 |
+
Return the indices of the minimum values in the specified axis ignoring
|
505 |
+
NaNs. For all-NaN slices ``ValueError`` is raised. Warning: the results
|
506 |
+
cannot be trusted if a slice contains only NaNs and Infs.
|
507 |
+
|
508 |
+
Parameters
|
509 |
+
----------
|
510 |
+
a : array_like
|
511 |
+
Input data.
|
512 |
+
axis : int, optional
|
513 |
+
Axis along which to operate. By default flattened input is used.
|
514 |
+
out : array, optional
|
515 |
+
If provided, the result will be inserted into this array. It should
|
516 |
+
be of the appropriate shape and dtype.
|
517 |
+
|
518 |
+
.. versionadded:: 1.22.0
|
519 |
+
keepdims : bool, optional
|
520 |
+
If this is set to True, the axes which are reduced are left
|
521 |
+
in the result as dimensions with size one. With this option,
|
522 |
+
the result will broadcast correctly against the array.
|
523 |
+
|
524 |
+
.. versionadded:: 1.22.0
|
525 |
+
|
526 |
+
Returns
|
527 |
+
-------
|
528 |
+
index_array : ndarray
|
529 |
+
An array of indices or a single index value.
|
530 |
+
|
531 |
+
See Also
|
532 |
+
--------
|
533 |
+
argmin, nanargmax
|
534 |
+
|
535 |
+
Examples
|
536 |
+
--------
|
537 |
+
>>> a = np.array([[np.nan, 4], [2, 3]])
|
538 |
+
>>> np.argmin(a)
|
539 |
+
0
|
540 |
+
>>> np.nanargmin(a)
|
541 |
+
2
|
542 |
+
>>> np.nanargmin(a, axis=0)
|
543 |
+
array([1, 1])
|
544 |
+
>>> np.nanargmin(a, axis=1)
|
545 |
+
array([1, 0])
|
546 |
+
|
547 |
+
"""
|
548 |
+
a, mask = _replace_nan(a, np.inf)
|
549 |
+
if mask is not None:
|
550 |
+
mask = np.all(mask, axis=axis)
|
551 |
+
if np.any(mask):
|
552 |
+
raise ValueError("All-NaN slice encountered")
|
553 |
+
res = np.argmin(a, axis=axis, out=out, keepdims=keepdims)
|
554 |
+
return res
|
555 |
+
|
556 |
+
|
557 |
+
def _nanargmax_dispatcher(a, axis=None, out=None, *, keepdims=None):
|
558 |
+
return (a,)
|
559 |
+
|
560 |
+
|
561 |
+
@array_function_dispatch(_nanargmax_dispatcher)
|
562 |
+
def nanargmax(a, axis=None, out=None, *, keepdims=np._NoValue):
|
563 |
+
"""
|
564 |
+
Return the indices of the maximum values in the specified axis ignoring
|
565 |
+
NaNs. For all-NaN slices ``ValueError`` is raised. Warning: the
|
566 |
+
results cannot be trusted if a slice contains only NaNs and -Infs.
|
567 |
+
|
568 |
+
|
569 |
+
Parameters
|
570 |
+
----------
|
571 |
+
a : array_like
|
572 |
+
Input data.
|
573 |
+
axis : int, optional
|
574 |
+
Axis along which to operate. By default flattened input is used.
|
575 |
+
out : array, optional
|
576 |
+
If provided, the result will be inserted into this array. It should
|
577 |
+
be of the appropriate shape and dtype.
|
578 |
+
|
579 |
+
.. versionadded:: 1.22.0
|
580 |
+
keepdims : bool, optional
|
581 |
+
If this is set to True, the axes which are reduced are left
|
582 |
+
in the result as dimensions with size one. With this option,
|
583 |
+
the result will broadcast correctly against the array.
|
584 |
+
|
585 |
+
.. versionadded:: 1.22.0
|
586 |
+
|
587 |
+
Returns
|
588 |
+
-------
|
589 |
+
index_array : ndarray
|
590 |
+
An array of indices or a single index value.
|
591 |
+
|
592 |
+
See Also
|
593 |
+
--------
|
594 |
+
argmax, nanargmin
|
595 |
+
|
596 |
+
Examples
|
597 |
+
--------
|
598 |
+
>>> a = np.array([[np.nan, 4], [2, 3]])
|
599 |
+
>>> np.argmax(a)
|
600 |
+
0
|
601 |
+
>>> np.nanargmax(a)
|
602 |
+
1
|
603 |
+
>>> np.nanargmax(a, axis=0)
|
604 |
+
array([1, 0])
|
605 |
+
>>> np.nanargmax(a, axis=1)
|
606 |
+
array([1, 1])
|
607 |
+
|
608 |
+
"""
|
609 |
+
a, mask = _replace_nan(a, -np.inf)
|
610 |
+
if mask is not None:
|
611 |
+
mask = np.all(mask, axis=axis)
|
612 |
+
if np.any(mask):
|
613 |
+
raise ValueError("All-NaN slice encountered")
|
614 |
+
res = np.argmax(a, axis=axis, out=out, keepdims=keepdims)
|
615 |
+
return res
|
616 |
+
|
617 |
+
|
618 |
+
def _nansum_dispatcher(a, axis=None, dtype=None, out=None, keepdims=None,
|
619 |
+
initial=None, where=None):
|
620 |
+
return (a, out)
|
621 |
+
|
622 |
+
|
623 |
+
@array_function_dispatch(_nansum_dispatcher)
|
624 |
+
def nansum(a, axis=None, dtype=None, out=None, keepdims=np._NoValue,
|
625 |
+
initial=np._NoValue, where=np._NoValue):
|
626 |
+
"""
|
627 |
+
Return the sum of array elements over a given axis treating Not a
|
628 |
+
Numbers (NaNs) as zero.
|
629 |
+
|
630 |
+
In NumPy versions <= 1.9.0 Nan is returned for slices that are all-NaN or
|
631 |
+
empty. In later versions zero is returned.
|
632 |
+
|
633 |
+
Parameters
|
634 |
+
----------
|
635 |
+
a : array_like
|
636 |
+
Array containing numbers whose sum is desired. If `a` is not an
|
637 |
+
array, a conversion is attempted.
|
638 |
+
axis : {int, tuple of int, None}, optional
|
639 |
+
Axis or axes along which the sum is computed. The default is to compute the
|
640 |
+
sum of the flattened array.
|
641 |
+
dtype : data-type, optional
|
642 |
+
The type of the returned array and of the accumulator in which the
|
643 |
+
elements are summed. By default, the dtype of `a` is used. An
|
644 |
+
exception is when `a` has an integer type with less precision than
|
645 |
+
the platform (u)intp. In that case, the default will be either
|
646 |
+
(u)int32 or (u)int64 depending on whether the platform is 32 or 64
|
647 |
+
bits. For inexact inputs, dtype must be inexact.
|
648 |
+
|
649 |
+
.. versionadded:: 1.8.0
|
650 |
+
out : ndarray, optional
|
651 |
+
Alternate output array in which to place the result. The default
|
652 |
+
is ``None``. If provided, it must have the same shape as the
|
653 |
+
expected output, but the type will be cast if necessary. See
|
654 |
+
:ref:`ufuncs-output-type` for more details. The casting of NaN to integer
|
655 |
+
can yield unexpected results.
|
656 |
+
|
657 |
+
.. versionadded:: 1.8.0
|
658 |
+
keepdims : bool, optional
|
659 |
+
If this is set to True, the axes which are reduced are left
|
660 |
+
in the result as dimensions with size one. With this option,
|
661 |
+
the result will broadcast correctly against the original `a`.
|
662 |
+
|
663 |
+
|
664 |
+
If the value is anything but the default, then
|
665 |
+
`keepdims` will be passed through to the `mean` or `sum` methods
|
666 |
+
of sub-classes of `ndarray`. If the sub-classes methods
|
667 |
+
does not implement `keepdims` any exceptions will be raised.
|
668 |
+
|
669 |
+
.. versionadded:: 1.8.0
|
670 |
+
initial : scalar, optional
|
671 |
+
Starting value for the sum. See `~numpy.ufunc.reduce` for details.
|
672 |
+
|
673 |
+
.. versionadded:: 1.22.0
|
674 |
+
where : array_like of bool, optional
|
675 |
+
Elements to include in the sum. See `~numpy.ufunc.reduce` for details.
|
676 |
+
|
677 |
+
.. versionadded:: 1.22.0
|
678 |
+
|
679 |
+
Returns
|
680 |
+
-------
|
681 |
+
nansum : ndarray.
|
682 |
+
A new array holding the result is returned unless `out` is
|
683 |
+
specified, in which it is returned. The result has the same
|
684 |
+
size as `a`, and the same shape as `a` if `axis` is not None
|
685 |
+
or `a` is a 1-d array.
|
686 |
+
|
687 |
+
See Also
|
688 |
+
--------
|
689 |
+
numpy.sum : Sum across array propagating NaNs.
|
690 |
+
isnan : Show which elements are NaN.
|
691 |
+
isfinite : Show which elements are not NaN or +/-inf.
|
692 |
+
|
693 |
+
Notes
|
694 |
+
-----
|
695 |
+
If both positive and negative infinity are present, the sum will be Not
|
696 |
+
A Number (NaN).
|
697 |
+
|
698 |
+
Examples
|
699 |
+
--------
|
700 |
+
>>> np.nansum(1)
|
701 |
+
1
|
702 |
+
>>> np.nansum([1])
|
703 |
+
1
|
704 |
+
>>> np.nansum([1, np.nan])
|
705 |
+
1.0
|
706 |
+
>>> a = np.array([[1, 1], [1, np.nan]])
|
707 |
+
>>> np.nansum(a)
|
708 |
+
3.0
|
709 |
+
>>> np.nansum(a, axis=0)
|
710 |
+
array([2., 1.])
|
711 |
+
>>> np.nansum([1, np.nan, np.inf])
|
712 |
+
inf
|
713 |
+
>>> np.nansum([1, np.nan, np.NINF])
|
714 |
+
-inf
|
715 |
+
>>> from numpy.testing import suppress_warnings
|
716 |
+
>>> with suppress_warnings() as sup:
|
717 |
+
... sup.filter(RuntimeWarning)
|
718 |
+
... np.nansum([1, np.nan, np.inf, -np.inf]) # both +/- infinity present
|
719 |
+
nan
|
720 |
+
|
721 |
+
"""
|
722 |
+
a, mask = _replace_nan(a, 0)
|
723 |
+
return np.sum(a, axis=axis, dtype=dtype, out=out, keepdims=keepdims,
|
724 |
+
initial=initial, where=where)
|
725 |
+
|
726 |
+
|
727 |
+
def _nanprod_dispatcher(a, axis=None, dtype=None, out=None, keepdims=None,
|
728 |
+
initial=None, where=None):
|
729 |
+
return (a, out)
|
730 |
+
|
731 |
+
|
732 |
+
@array_function_dispatch(_nanprod_dispatcher)
|
733 |
+
def nanprod(a, axis=None, dtype=None, out=None, keepdims=np._NoValue,
|
734 |
+
initial=np._NoValue, where=np._NoValue):
|
735 |
+
"""
|
736 |
+
Return the product of array elements over a given axis treating Not a
|
737 |
+
Numbers (NaNs) as ones.
|
738 |
+
|
739 |
+
One is returned for slices that are all-NaN or empty.
|
740 |
+
|
741 |
+
.. versionadded:: 1.10.0
|
742 |
+
|
743 |
+
Parameters
|
744 |
+
----------
|
745 |
+
a : array_like
|
746 |
+
Array containing numbers whose product is desired. If `a` is not an
|
747 |
+
array, a conversion is attempted.
|
748 |
+
axis : {int, tuple of int, None}, optional
|
749 |
+
Axis or axes along which the product is computed. The default is to compute
|
750 |
+
the product of the flattened array.
|
751 |
+
dtype : data-type, optional
|
752 |
+
The type of the returned array and of the accumulator in which the
|
753 |
+
elements are summed. By default, the dtype of `a` is used. An
|
754 |
+
exception is when `a` has an integer type with less precision than
|
755 |
+
the platform (u)intp. In that case, the default will be either
|
756 |
+
(u)int32 or (u)int64 depending on whether the platform is 32 or 64
|
757 |
+
bits. For inexact inputs, dtype must be inexact.
|
758 |
+
out : ndarray, optional
|
759 |
+
Alternate output array in which to place the result. The default
|
760 |
+
is ``None``. If provided, it must have the same shape as the
|
761 |
+
expected output, but the type will be cast if necessary. See
|
762 |
+
:ref:`ufuncs-output-type` for more details. The casting of NaN to integer
|
763 |
+
can yield unexpected results.
|
764 |
+
keepdims : bool, optional
|
765 |
+
If True, the axes which are reduced are left in the result as
|
766 |
+
dimensions with size one. With this option, the result will
|
767 |
+
broadcast correctly against the original `arr`.
|
768 |
+
initial : scalar, optional
|
769 |
+
The starting value for this product. See `~numpy.ufunc.reduce`
|
770 |
+
for details.
|
771 |
+
|
772 |
+
.. versionadded:: 1.22.0
|
773 |
+
where : array_like of bool, optional
|
774 |
+
Elements to include in the product. See `~numpy.ufunc.reduce`
|
775 |
+
for details.
|
776 |
+
|
777 |
+
.. versionadded:: 1.22.0
|
778 |
+
|
779 |
+
Returns
|
780 |
+
-------
|
781 |
+
nanprod : ndarray
|
782 |
+
A new array holding the result is returned unless `out` is
|
783 |
+
specified, in which case it is returned.
|
784 |
+
|
785 |
+
See Also
|
786 |
+
--------
|
787 |
+
numpy.prod : Product across array propagating NaNs.
|
788 |
+
isnan : Show which elements are NaN.
|
789 |
+
|
790 |
+
Examples
|
791 |
+
--------
|
792 |
+
>>> np.nanprod(1)
|
793 |
+
1
|
794 |
+
>>> np.nanprod([1])
|
795 |
+
1
|
796 |
+
>>> np.nanprod([1, np.nan])
|
797 |
+
1.0
|
798 |
+
>>> a = np.array([[1, 2], [3, np.nan]])
|
799 |
+
>>> np.nanprod(a)
|
800 |
+
6.0
|
801 |
+
>>> np.nanprod(a, axis=0)
|
802 |
+
array([3., 2.])
|
803 |
+
|
804 |
+
"""
|
805 |
+
a, mask = _replace_nan(a, 1)
|
806 |
+
return np.prod(a, axis=axis, dtype=dtype, out=out, keepdims=keepdims,
|
807 |
+
initial=initial, where=where)
|
808 |
+
|
809 |
+
|
810 |
+
def _nancumsum_dispatcher(a, axis=None, dtype=None, out=None):
|
811 |
+
return (a, out)
|
812 |
+
|
813 |
+
|
814 |
+
@array_function_dispatch(_nancumsum_dispatcher)
|
815 |
+
def nancumsum(a, axis=None, dtype=None, out=None):
|
816 |
+
"""
|
817 |
+
Return the cumulative sum of array elements over a given axis treating Not a
|
818 |
+
Numbers (NaNs) as zero. The cumulative sum does not change when NaNs are
|
819 |
+
encountered and leading NaNs are replaced by zeros.
|
820 |
+
|
821 |
+
Zeros are returned for slices that are all-NaN or empty.
|
822 |
+
|
823 |
+
.. versionadded:: 1.12.0
|
824 |
+
|
825 |
+
Parameters
|
826 |
+
----------
|
827 |
+
a : array_like
|
828 |
+
Input array.
|
829 |
+
axis : int, optional
|
830 |
+
Axis along which the cumulative sum is computed. The default
|
831 |
+
(None) is to compute the cumsum over the flattened array.
|
832 |
+
dtype : dtype, optional
|
833 |
+
Type of the returned array and of the accumulator in which the
|
834 |
+
elements are summed. If `dtype` is not specified, it defaults
|
835 |
+
to the dtype of `a`, unless `a` has an integer dtype with a
|
836 |
+
precision less than that of the default platform integer. In
|
837 |
+
that case, the default platform integer is used.
|
838 |
+
out : ndarray, optional
|
839 |
+
Alternative output array in which to place the result. It must
|
840 |
+
have the same shape and buffer length as the expected output
|
841 |
+
but the type will be cast if necessary. See :ref:`ufuncs-output-type` for
|
842 |
+
more details.
|
843 |
+
|
844 |
+
Returns
|
845 |
+
-------
|
846 |
+
nancumsum : ndarray.
|
847 |
+
A new array holding the result is returned unless `out` is
|
848 |
+
specified, in which it is returned. The result has the same
|
849 |
+
size as `a`, and the same shape as `a` if `axis` is not None
|
850 |
+
or `a` is a 1-d array.
|
851 |
+
|
852 |
+
See Also
|
853 |
+
--------
|
854 |
+
numpy.cumsum : Cumulative sum across array propagating NaNs.
|
855 |
+
isnan : Show which elements are NaN.
|
856 |
+
|
857 |
+
Examples
|
858 |
+
--------
|
859 |
+
>>> np.nancumsum(1)
|
860 |
+
array([1])
|
861 |
+
>>> np.nancumsum([1])
|
862 |
+
array([1])
|
863 |
+
>>> np.nancumsum([1, np.nan])
|
864 |
+
array([1., 1.])
|
865 |
+
>>> a = np.array([[1, 2], [3, np.nan]])
|
866 |
+
>>> np.nancumsum(a)
|
867 |
+
array([1., 3., 6., 6.])
|
868 |
+
>>> np.nancumsum(a, axis=0)
|
869 |
+
array([[1., 2.],
|
870 |
+
[4., 2.]])
|
871 |
+
>>> np.nancumsum(a, axis=1)
|
872 |
+
array([[1., 3.],
|
873 |
+
[3., 3.]])
|
874 |
+
|
875 |
+
"""
|
876 |
+
a, mask = _replace_nan(a, 0)
|
877 |
+
return np.cumsum(a, axis=axis, dtype=dtype, out=out)
|
878 |
+
|
879 |
+
|
880 |
+
def _nancumprod_dispatcher(a, axis=None, dtype=None, out=None):
|
881 |
+
return (a, out)
|
882 |
+
|
883 |
+
|
884 |
+
@array_function_dispatch(_nancumprod_dispatcher)
|
885 |
+
def nancumprod(a, axis=None, dtype=None, out=None):
|
886 |
+
"""
|
887 |
+
Return the cumulative product of array elements over a given axis treating Not a
|
888 |
+
Numbers (NaNs) as one. The cumulative product does not change when NaNs are
|
889 |
+
encountered and leading NaNs are replaced by ones.
|
890 |
+
|
891 |
+
Ones are returned for slices that are all-NaN or empty.
|
892 |
+
|
893 |
+
.. versionadded:: 1.12.0
|
894 |
+
|
895 |
+
Parameters
|
896 |
+
----------
|
897 |
+
a : array_like
|
898 |
+
Input array.
|
899 |
+
axis : int, optional
|
900 |
+
Axis along which the cumulative product is computed. By default
|
901 |
+
the input is flattened.
|
902 |
+
dtype : dtype, optional
|
903 |
+
Type of the returned array, as well as of the accumulator in which
|
904 |
+
the elements are multiplied. If *dtype* is not specified, it
|
905 |
+
defaults to the dtype of `a`, unless `a` has an integer dtype with
|
906 |
+
a precision less than that of the default platform integer. In
|
907 |
+
that case, the default platform integer is used instead.
|
908 |
+
out : ndarray, optional
|
909 |
+
Alternative output array in which to place the result. It must
|
910 |
+
have the same shape and buffer length as the expected output
|
911 |
+
but the type of the resulting values will be cast if necessary.
|
912 |
+
|
913 |
+
Returns
|
914 |
+
-------
|
915 |
+
nancumprod : ndarray
|
916 |
+
A new array holding the result is returned unless `out` is
|
917 |
+
specified, in which case it is returned.
|
918 |
+
|
919 |
+
See Also
|
920 |
+
--------
|
921 |
+
numpy.cumprod : Cumulative product across array propagating NaNs.
|
922 |
+
isnan : Show which elements are NaN.
|
923 |
+
|
924 |
+
Examples
|
925 |
+
--------
|
926 |
+
>>> np.nancumprod(1)
|
927 |
+
array([1])
|
928 |
+
>>> np.nancumprod([1])
|
929 |
+
array([1])
|
930 |
+
>>> np.nancumprod([1, np.nan])
|
931 |
+
array([1., 1.])
|
932 |
+
>>> a = np.array([[1, 2], [3, np.nan]])
|
933 |
+
>>> np.nancumprod(a)
|
934 |
+
array([1., 2., 6., 6.])
|
935 |
+
>>> np.nancumprod(a, axis=0)
|
936 |
+
array([[1., 2.],
|
937 |
+
[3., 2.]])
|
938 |
+
>>> np.nancumprod(a, axis=1)
|
939 |
+
array([[1., 2.],
|
940 |
+
[3., 3.]])
|
941 |
+
|
942 |
+
"""
|
943 |
+
a, mask = _replace_nan(a, 1)
|
944 |
+
return np.cumprod(a, axis=axis, dtype=dtype, out=out)
|
945 |
+
|
946 |
+
|
947 |
+
def _nanmean_dispatcher(a, axis=None, dtype=None, out=None, keepdims=None,
|
948 |
+
*, where=None):
|
949 |
+
return (a, out)
|
950 |
+
|
951 |
+
|
952 |
+
@array_function_dispatch(_nanmean_dispatcher)
|
953 |
+
def nanmean(a, axis=None, dtype=None, out=None, keepdims=np._NoValue,
|
954 |
+
*, where=np._NoValue):
|
955 |
+
"""
|
956 |
+
Compute the arithmetic mean along the specified axis, ignoring NaNs.
|
957 |
+
|
958 |
+
Returns the average of the array elements. The average is taken over
|
959 |
+
the flattened array by default, otherwise over the specified axis.
|
960 |
+
`float64` intermediate and return values are used for integer inputs.
|
961 |
+
|
962 |
+
For all-NaN slices, NaN is returned and a `RuntimeWarning` is raised.
|
963 |
+
|
964 |
+
.. versionadded:: 1.8.0
|
965 |
+
|
966 |
+
Parameters
|
967 |
+
----------
|
968 |
+
a : array_like
|
969 |
+
Array containing numbers whose mean is desired. If `a` is not an
|
970 |
+
array, a conversion is attempted.
|
971 |
+
axis : {int, tuple of int, None}, optional
|
972 |
+
Axis or axes along which the means are computed. The default is to compute
|
973 |
+
the mean of the flattened array.
|
974 |
+
dtype : data-type, optional
|
975 |
+
Type to use in computing the mean. For integer inputs, the default
|
976 |
+
is `float64`; for inexact inputs, it is the same as the input
|
977 |
+
dtype.
|
978 |
+
out : ndarray, optional
|
979 |
+
Alternate output array in which to place the result. The default
|
980 |
+
is ``None``; if provided, it must have the same shape as the
|
981 |
+
expected output, but the type will be cast if necessary. See
|
982 |
+
:ref:`ufuncs-output-type` for more details.
|
983 |
+
keepdims : bool, optional
|
984 |
+
If this is set to True, the axes which are reduced are left
|
985 |
+
in the result as dimensions with size one. With this option,
|
986 |
+
the result will broadcast correctly against the original `a`.
|
987 |
+
|
988 |
+
If the value is anything but the default, then
|
989 |
+
`keepdims` will be passed through to the `mean` or `sum` methods
|
990 |
+
of sub-classes of `ndarray`. If the sub-classes methods
|
991 |
+
does not implement `keepdims` any exceptions will be raised.
|
992 |
+
where : array_like of bool, optional
|
993 |
+
Elements to include in the mean. See `~numpy.ufunc.reduce` for details.
|
994 |
+
|
995 |
+
.. versionadded:: 1.22.0
|
996 |
+
|
997 |
+
Returns
|
998 |
+
-------
|
999 |
+
m : ndarray, see dtype parameter above
|
1000 |
+
If `out=None`, returns a new array containing the mean values,
|
1001 |
+
otherwise a reference to the output array is returned. Nan is
|
1002 |
+
returned for slices that contain only NaNs.
|
1003 |
+
|
1004 |
+
See Also
|
1005 |
+
--------
|
1006 |
+
average : Weighted average
|
1007 |
+
mean : Arithmetic mean taken while not ignoring NaNs
|
1008 |
+
var, nanvar
|
1009 |
+
|
1010 |
+
Notes
|
1011 |
+
-----
|
1012 |
+
The arithmetic mean is the sum of the non-NaN elements along the axis
|
1013 |
+
divided by the number of non-NaN elements.
|
1014 |
+
|
1015 |
+
Note that for floating-point input, the mean is computed using the same
|
1016 |
+
precision the input has. Depending on the input data, this can cause
|
1017 |
+
the results to be inaccurate, especially for `float32`. Specifying a
|
1018 |
+
higher-precision accumulator using the `dtype` keyword can alleviate
|
1019 |
+
this issue.
|
1020 |
+
|
1021 |
+
Examples
|
1022 |
+
--------
|
1023 |
+
>>> a = np.array([[1, np.nan], [3, 4]])
|
1024 |
+
>>> np.nanmean(a)
|
1025 |
+
2.6666666666666665
|
1026 |
+
>>> np.nanmean(a, axis=0)
|
1027 |
+
array([2., 4.])
|
1028 |
+
>>> np.nanmean(a, axis=1)
|
1029 |
+
array([1., 3.5]) # may vary
|
1030 |
+
|
1031 |
+
"""
|
1032 |
+
arr, mask = _replace_nan(a, 0)
|
1033 |
+
if mask is None:
|
1034 |
+
return np.mean(arr, axis=axis, dtype=dtype, out=out, keepdims=keepdims,
|
1035 |
+
where=where)
|
1036 |
+
|
1037 |
+
if dtype is not None:
|
1038 |
+
dtype = np.dtype(dtype)
|
1039 |
+
if dtype is not None and not issubclass(dtype.type, np.inexact):
|
1040 |
+
raise TypeError("If a is inexact, then dtype must be inexact")
|
1041 |
+
if out is not None and not issubclass(out.dtype.type, np.inexact):
|
1042 |
+
raise TypeError("If a is inexact, then out must be inexact")
|
1043 |
+
|
1044 |
+
cnt = np.sum(~mask, axis=axis, dtype=np.intp, keepdims=keepdims,
|
1045 |
+
where=where)
|
1046 |
+
tot = np.sum(arr, axis=axis, dtype=dtype, out=out, keepdims=keepdims,
|
1047 |
+
where=where)
|
1048 |
+
avg = _divide_by_count(tot, cnt, out=out)
|
1049 |
+
|
1050 |
+
isbad = (cnt == 0)
|
1051 |
+
if isbad.any():
|
1052 |
+
warnings.warn("Mean of empty slice", RuntimeWarning, stacklevel=2)
|
1053 |
+
# NaN is the only possible bad value, so no further
|
1054 |
+
# action is needed to handle bad results.
|
1055 |
+
return avg
|
1056 |
+
|
1057 |
+
|
1058 |
+
def _nanmedian1d(arr1d, overwrite_input=False):
|
1059 |
+
"""
|
1060 |
+
Private function for rank 1 arrays. Compute the median ignoring NaNs.
|
1061 |
+
See nanmedian for parameter usage
|
1062 |
+
"""
|
1063 |
+
arr1d_parsed, overwrite_input = _remove_nan_1d(
|
1064 |
+
arr1d, overwrite_input=overwrite_input,
|
1065 |
+
)
|
1066 |
+
|
1067 |
+
if arr1d_parsed.size == 0:
|
1068 |
+
# Ensure that a nan-esque scalar of the appropriate type (and unit)
|
1069 |
+
# is returned for `timedelta64` and `complexfloating`
|
1070 |
+
return arr1d[-1]
|
1071 |
+
|
1072 |
+
return np.median(arr1d_parsed, overwrite_input=overwrite_input)
|
1073 |
+
|
1074 |
+
|
1075 |
+
def _nanmedian(a, axis=None, out=None, overwrite_input=False):
|
1076 |
+
"""
|
1077 |
+
Private function that doesn't support extended axis or keepdims.
|
1078 |
+
These methods are extended to this function using _ureduce
|
1079 |
+
See nanmedian for parameter usage
|
1080 |
+
|
1081 |
+
"""
|
1082 |
+
if axis is None or a.ndim == 1:
|
1083 |
+
part = a.ravel()
|
1084 |
+
if out is None:
|
1085 |
+
return _nanmedian1d(part, overwrite_input)
|
1086 |
+
else:
|
1087 |
+
out[...] = _nanmedian1d(part, overwrite_input)
|
1088 |
+
return out
|
1089 |
+
else:
|
1090 |
+
# for small medians use sort + indexing which is still faster than
|
1091 |
+
# apply_along_axis
|
1092 |
+
# benchmarked with shuffled (50, 50, x) containing a few NaN
|
1093 |
+
if a.shape[axis] < 600:
|
1094 |
+
return _nanmedian_small(a, axis, out, overwrite_input)
|
1095 |
+
result = np.apply_along_axis(_nanmedian1d, axis, a, overwrite_input)
|
1096 |
+
if out is not None:
|
1097 |
+
out[...] = result
|
1098 |
+
return result
|
1099 |
+
|
1100 |
+
|
1101 |
+
def _nanmedian_small(a, axis=None, out=None, overwrite_input=False):
|
1102 |
+
"""
|
1103 |
+
sort + indexing median, faster for small medians along multiple
|
1104 |
+
dimensions due to the high overhead of apply_along_axis
|
1105 |
+
|
1106 |
+
see nanmedian for parameter usage
|
1107 |
+
"""
|
1108 |
+
a = np.ma.masked_array(a, np.isnan(a))
|
1109 |
+
m = np.ma.median(a, axis=axis, overwrite_input=overwrite_input)
|
1110 |
+
for i in range(np.count_nonzero(m.mask.ravel())):
|
1111 |
+
warnings.warn("All-NaN slice encountered", RuntimeWarning,
|
1112 |
+
stacklevel=5)
|
1113 |
+
|
1114 |
+
fill_value = np.timedelta64("NaT") if m.dtype.kind == "m" else np.nan
|
1115 |
+
if out is not None:
|
1116 |
+
out[...] = m.filled(fill_value)
|
1117 |
+
return out
|
1118 |
+
return m.filled(fill_value)
|
1119 |
+
|
1120 |
+
|
1121 |
+
def _nanmedian_dispatcher(
|
1122 |
+
a, axis=None, out=None, overwrite_input=None, keepdims=None):
|
1123 |
+
return (a, out)
|
1124 |
+
|
1125 |
+
|
1126 |
+
@array_function_dispatch(_nanmedian_dispatcher)
|
1127 |
+
def nanmedian(a, axis=None, out=None, overwrite_input=False, keepdims=np._NoValue):
|
1128 |
+
"""
|
1129 |
+
Compute the median along the specified axis, while ignoring NaNs.
|
1130 |
+
|
1131 |
+
Returns the median of the array elements.
|
1132 |
+
|
1133 |
+
.. versionadded:: 1.9.0
|
1134 |
+
|
1135 |
+
Parameters
|
1136 |
+
----------
|
1137 |
+
a : array_like
|
1138 |
+
Input array or object that can be converted to an array.
|
1139 |
+
axis : {int, sequence of int, None}, optional
|
1140 |
+
Axis or axes along which the medians are computed. The default
|
1141 |
+
is to compute the median along a flattened version of the array.
|
1142 |
+
A sequence of axes is supported since version 1.9.0.
|
1143 |
+
out : ndarray, optional
|
1144 |
+
Alternative output array in which to place the result. It must
|
1145 |
+
have the same shape and buffer length as the expected output,
|
1146 |
+
but the type (of the output) will be cast if necessary.
|
1147 |
+
overwrite_input : bool, optional
|
1148 |
+
If True, then allow use of memory of input array `a` for
|
1149 |
+
calculations. The input array will be modified by the call to
|
1150 |
+
`median`. This will save memory when you do not need to preserve
|
1151 |
+
the contents of the input array. Treat the input as undefined,
|
1152 |
+
but it will probably be fully or partially sorted. Default is
|
1153 |
+
False. If `overwrite_input` is ``True`` and `a` is not already an
|
1154 |
+
`ndarray`, an error will be raised.
|
1155 |
+
keepdims : bool, optional
|
1156 |
+
If this is set to True, the axes which are reduced are left
|
1157 |
+
in the result as dimensions with size one. With this option,
|
1158 |
+
the result will broadcast correctly against the original `a`.
|
1159 |
+
|
1160 |
+
If this is anything but the default value it will be passed
|
1161 |
+
through (in the special case of an empty array) to the
|
1162 |
+
`mean` function of the underlying array. If the array is
|
1163 |
+
a sub-class and `mean` does not have the kwarg `keepdims` this
|
1164 |
+
will raise a RuntimeError.
|
1165 |
+
|
1166 |
+
Returns
|
1167 |
+
-------
|
1168 |
+
median : ndarray
|
1169 |
+
A new array holding the result. If the input contains integers
|
1170 |
+
or floats smaller than ``float64``, then the output data-type is
|
1171 |
+
``np.float64``. Otherwise, the data-type of the output is the
|
1172 |
+
same as that of the input. If `out` is specified, that array is
|
1173 |
+
returned instead.
|
1174 |
+
|
1175 |
+
See Also
|
1176 |
+
--------
|
1177 |
+
mean, median, percentile
|
1178 |
+
|
1179 |
+
Notes
|
1180 |
+
-----
|
1181 |
+
Given a vector ``V`` of length ``N``, the median of ``V`` is the
|
1182 |
+
middle value of a sorted copy of ``V``, ``V_sorted`` - i.e.,
|
1183 |
+
``V_sorted[(N-1)/2]``, when ``N`` is odd and the average of the two
|
1184 |
+
middle values of ``V_sorted`` when ``N`` is even.
|
1185 |
+
|
1186 |
+
Examples
|
1187 |
+
--------
|
1188 |
+
>>> a = np.array([[10.0, 7, 4], [3, 2, 1]])
|
1189 |
+
>>> a[0, 1] = np.nan
|
1190 |
+
>>> a
|
1191 |
+
array([[10., nan, 4.],
|
1192 |
+
[ 3., 2., 1.]])
|
1193 |
+
>>> np.median(a)
|
1194 |
+
nan
|
1195 |
+
>>> np.nanmedian(a)
|
1196 |
+
3.0
|
1197 |
+
>>> np.nanmedian(a, axis=0)
|
1198 |
+
array([6.5, 2. , 2.5])
|
1199 |
+
>>> np.median(a, axis=1)
|
1200 |
+
array([nan, 2.])
|
1201 |
+
>>> b = a.copy()
|
1202 |
+
>>> np.nanmedian(b, axis=1, overwrite_input=True)
|
1203 |
+
array([7., 2.])
|
1204 |
+
>>> assert not np.all(a==b)
|
1205 |
+
>>> b = a.copy()
|
1206 |
+
>>> np.nanmedian(b, axis=None, overwrite_input=True)
|
1207 |
+
3.0
|
1208 |
+
>>> assert not np.all(a==b)
|
1209 |
+
|
1210 |
+
"""
|
1211 |
+
a = np.asanyarray(a)
|
1212 |
+
# apply_along_axis in _nanmedian doesn't handle empty arrays well,
|
1213 |
+
# so deal them upfront
|
1214 |
+
if a.size == 0:
|
1215 |
+
return np.nanmean(a, axis, out=out, keepdims=keepdims)
|
1216 |
+
|
1217 |
+
return function_base._ureduce(a, func=_nanmedian, keepdims=keepdims,
|
1218 |
+
axis=axis, out=out,
|
1219 |
+
overwrite_input=overwrite_input)
|
1220 |
+
|
1221 |
+
|
1222 |
+
def _nanpercentile_dispatcher(
|
1223 |
+
a, q, axis=None, out=None, overwrite_input=None,
|
1224 |
+
method=None, keepdims=None, *, interpolation=None):
|
1225 |
+
return (a, q, out)
|
1226 |
+
|
1227 |
+
|
1228 |
+
@array_function_dispatch(_nanpercentile_dispatcher)
|
1229 |
+
def nanpercentile(
|
1230 |
+
a,
|
1231 |
+
q,
|
1232 |
+
axis=None,
|
1233 |
+
out=None,
|
1234 |
+
overwrite_input=False,
|
1235 |
+
method="linear",
|
1236 |
+
keepdims=np._NoValue,
|
1237 |
+
*,
|
1238 |
+
interpolation=None,
|
1239 |
+
):
|
1240 |
+
"""
|
1241 |
+
Compute the qth percentile of the data along the specified axis,
|
1242 |
+
while ignoring nan values.
|
1243 |
+
|
1244 |
+
Returns the qth percentile(s) of the array elements.
|
1245 |
+
|
1246 |
+
.. versionadded:: 1.9.0
|
1247 |
+
|
1248 |
+
Parameters
|
1249 |
+
----------
|
1250 |
+
a : array_like
|
1251 |
+
Input array or object that can be converted to an array, containing
|
1252 |
+
nan values to be ignored.
|
1253 |
+
q : array_like of float
|
1254 |
+
Percentile or sequence of percentiles to compute, which must be
|
1255 |
+
between 0 and 100 inclusive.
|
1256 |
+
axis : {int, tuple of int, None}, optional
|
1257 |
+
Axis or axes along which the percentiles are computed. The default
|
1258 |
+
is to compute the percentile(s) along a flattened version of the
|
1259 |
+
array.
|
1260 |
+
out : ndarray, optional
|
1261 |
+
Alternative output array in which to place the result. It must have
|
1262 |
+
the same shape and buffer length as the expected output, but the
|
1263 |
+
type (of the output) will be cast if necessary.
|
1264 |
+
overwrite_input : bool, optional
|
1265 |
+
If True, then allow the input array `a` to be modified by
|
1266 |
+
intermediate calculations, to save memory. In this case, the
|
1267 |
+
contents of the input `a` after this function completes is
|
1268 |
+
undefined.
|
1269 |
+
method : str, optional
|
1270 |
+
This parameter specifies the method to use for estimating the
|
1271 |
+
percentile. There are many different methods, some unique to NumPy.
|
1272 |
+
See the notes for explanation. The options sorted by their R type
|
1273 |
+
as summarized in the H&F paper [1]_ are:
|
1274 |
+
|
1275 |
+
1. 'inverted_cdf'
|
1276 |
+
2. 'averaged_inverted_cdf'
|
1277 |
+
3. 'closest_observation'
|
1278 |
+
4. 'interpolated_inverted_cdf'
|
1279 |
+
5. 'hazen'
|
1280 |
+
6. 'weibull'
|
1281 |
+
7. 'linear' (default)
|
1282 |
+
8. 'median_unbiased'
|
1283 |
+
9. 'normal_unbiased'
|
1284 |
+
|
1285 |
+
The first three methods are discontinuous. NumPy further defines the
|
1286 |
+
following discontinuous variations of the default 'linear' (7.) option:
|
1287 |
+
|
1288 |
+
* 'lower'
|
1289 |
+
* 'higher',
|
1290 |
+
* 'midpoint'
|
1291 |
+
* 'nearest'
|
1292 |
+
|
1293 |
+
.. versionchanged:: 1.22.0
|
1294 |
+
This argument was previously called "interpolation" and only
|
1295 |
+
offered the "linear" default and last four options.
|
1296 |
+
|
1297 |
+
keepdims : bool, optional
|
1298 |
+
If this is set to True, the axes which are reduced are left in
|
1299 |
+
the result as dimensions with size one. With this option, the
|
1300 |
+
result will broadcast correctly against the original array `a`.
|
1301 |
+
|
1302 |
+
If this is anything but the default value it will be passed
|
1303 |
+
through (in the special case of an empty array) to the
|
1304 |
+
`mean` function of the underlying array. If the array is
|
1305 |
+
a sub-class and `mean` does not have the kwarg `keepdims` this
|
1306 |
+
will raise a RuntimeError.
|
1307 |
+
|
1308 |
+
interpolation : str, optional
|
1309 |
+
Deprecated name for the method keyword argument.
|
1310 |
+
|
1311 |
+
.. deprecated:: 1.22.0
|
1312 |
+
|
1313 |
+
Returns
|
1314 |
+
-------
|
1315 |
+
percentile : scalar or ndarray
|
1316 |
+
If `q` is a single percentile and `axis=None`, then the result
|
1317 |
+
is a scalar. If multiple percentiles are given, first axis of
|
1318 |
+
the result corresponds to the percentiles. The other axes are
|
1319 |
+
the axes that remain after the reduction of `a`. If the input
|
1320 |
+
contains integers or floats smaller than ``float64``, the output
|
1321 |
+
data-type is ``float64``. Otherwise, the output data-type is the
|
1322 |
+
same as that of the input. If `out` is specified, that array is
|
1323 |
+
returned instead.
|
1324 |
+
|
1325 |
+
See Also
|
1326 |
+
--------
|
1327 |
+
nanmean
|
1328 |
+
nanmedian : equivalent to ``nanpercentile(..., 50)``
|
1329 |
+
percentile, median, mean
|
1330 |
+
nanquantile : equivalent to nanpercentile, except q in range [0, 1].
|
1331 |
+
|
1332 |
+
Notes
|
1333 |
+
-----
|
1334 |
+
For more information please see `numpy.percentile`
|
1335 |
+
|
1336 |
+
Examples
|
1337 |
+
--------
|
1338 |
+
>>> a = np.array([[10., 7., 4.], [3., 2., 1.]])
|
1339 |
+
>>> a[0][1] = np.nan
|
1340 |
+
>>> a
|
1341 |
+
array([[10., nan, 4.],
|
1342 |
+
[ 3., 2., 1.]])
|
1343 |
+
>>> np.percentile(a, 50)
|
1344 |
+
nan
|
1345 |
+
>>> np.nanpercentile(a, 50)
|
1346 |
+
3.0
|
1347 |
+
>>> np.nanpercentile(a, 50, axis=0)
|
1348 |
+
array([6.5, 2. , 2.5])
|
1349 |
+
>>> np.nanpercentile(a, 50, axis=1, keepdims=True)
|
1350 |
+
array([[7.],
|
1351 |
+
[2.]])
|
1352 |
+
>>> m = np.nanpercentile(a, 50, axis=0)
|
1353 |
+
>>> out = np.zeros_like(m)
|
1354 |
+
>>> np.nanpercentile(a, 50, axis=0, out=out)
|
1355 |
+
array([6.5, 2. , 2.5])
|
1356 |
+
>>> m
|
1357 |
+
array([6.5, 2. , 2.5])
|
1358 |
+
|
1359 |
+
>>> b = a.copy()
|
1360 |
+
>>> np.nanpercentile(b, 50, axis=1, overwrite_input=True)
|
1361 |
+
array([7., 2.])
|
1362 |
+
>>> assert not np.all(a==b)
|
1363 |
+
|
1364 |
+
References
|
1365 |
+
----------
|
1366 |
+
.. [1] R. J. Hyndman and Y. Fan,
|
1367 |
+
"Sample quantiles in statistical packages,"
|
1368 |
+
The American Statistician, 50(4), pp. 361-365, 1996
|
1369 |
+
|
1370 |
+
"""
|
1371 |
+
if interpolation is not None:
|
1372 |
+
method = function_base._check_interpolation_as_method(
|
1373 |
+
method, interpolation, "nanpercentile")
|
1374 |
+
|
1375 |
+
a = np.asanyarray(a)
|
1376 |
+
if a.dtype.kind == "c":
|
1377 |
+
raise TypeError("a must be an array of real numbers")
|
1378 |
+
|
1379 |
+
q = np.true_divide(q, 100.0)
|
1380 |
+
# undo any decay that the ufunc performed (see gh-13105)
|
1381 |
+
q = np.asanyarray(q)
|
1382 |
+
if not function_base._quantile_is_valid(q):
|
1383 |
+
raise ValueError("Percentiles must be in the range [0, 100]")
|
1384 |
+
return _nanquantile_unchecked(
|
1385 |
+
a, q, axis, out, overwrite_input, method, keepdims)
|
1386 |
+
|
1387 |
+
|
1388 |
+
def _nanquantile_dispatcher(a, q, axis=None, out=None, overwrite_input=None,
|
1389 |
+
method=None, keepdims=None, *, interpolation=None):
|
1390 |
+
return (a, q, out)
|
1391 |
+
|
1392 |
+
|
1393 |
+
@array_function_dispatch(_nanquantile_dispatcher)
|
1394 |
+
def nanquantile(
|
1395 |
+
a,
|
1396 |
+
q,
|
1397 |
+
axis=None,
|
1398 |
+
out=None,
|
1399 |
+
overwrite_input=False,
|
1400 |
+
method="linear",
|
1401 |
+
keepdims=np._NoValue,
|
1402 |
+
*,
|
1403 |
+
interpolation=None,
|
1404 |
+
):
|
1405 |
+
"""
|
1406 |
+
Compute the qth quantile of the data along the specified axis,
|
1407 |
+
while ignoring nan values.
|
1408 |
+
Returns the qth quantile(s) of the array elements.
|
1409 |
+
|
1410 |
+
.. versionadded:: 1.15.0
|
1411 |
+
|
1412 |
+
Parameters
|
1413 |
+
----------
|
1414 |
+
a : array_like
|
1415 |
+
Input array or object that can be converted to an array, containing
|
1416 |
+
nan values to be ignored
|
1417 |
+
q : array_like of float
|
1418 |
+
Probability or sequence of probabilities for the quantiles to compute.
|
1419 |
+
Values must be between 0 and 1 inclusive.
|
1420 |
+
axis : {int, tuple of int, None}, optional
|
1421 |
+
Axis or axes along which the quantiles are computed. The
|
1422 |
+
default is to compute the quantile(s) along a flattened
|
1423 |
+
version of the array.
|
1424 |
+
out : ndarray, optional
|
1425 |
+
Alternative output array in which to place the result. It must
|
1426 |
+
have the same shape and buffer length as the expected output,
|
1427 |
+
but the type (of the output) will be cast if necessary.
|
1428 |
+
overwrite_input : bool, optional
|
1429 |
+
If True, then allow the input array `a` to be modified by intermediate
|
1430 |
+
calculations, to save memory. In this case, the contents of the input
|
1431 |
+
`a` after this function completes is undefined.
|
1432 |
+
method : str, optional
|
1433 |
+
This parameter specifies the method to use for estimating the
|
1434 |
+
quantile. There are many different methods, some unique to NumPy.
|
1435 |
+
See the notes for explanation. The options sorted by their R type
|
1436 |
+
as summarized in the H&F paper [1]_ are:
|
1437 |
+
|
1438 |
+
1. 'inverted_cdf'
|
1439 |
+
2. 'averaged_inverted_cdf'
|
1440 |
+
3. 'closest_observation'
|
1441 |
+
4. 'interpolated_inverted_cdf'
|
1442 |
+
5. 'hazen'
|
1443 |
+
6. 'weibull'
|
1444 |
+
7. 'linear' (default)
|
1445 |
+
8. 'median_unbiased'
|
1446 |
+
9. 'normal_unbiased'
|
1447 |
+
|
1448 |
+
The first three methods are discontinuous. NumPy further defines the
|
1449 |
+
following discontinuous variations of the default 'linear' (7.) option:
|
1450 |
+
|
1451 |
+
* 'lower'
|
1452 |
+
* 'higher',
|
1453 |
+
* 'midpoint'
|
1454 |
+
* 'nearest'
|
1455 |
+
|
1456 |
+
.. versionchanged:: 1.22.0
|
1457 |
+
This argument was previously called "interpolation" and only
|
1458 |
+
offered the "linear" default and last four options.
|
1459 |
+
|
1460 |
+
keepdims : bool, optional
|
1461 |
+
If this is set to True, the axes which are reduced are left in
|
1462 |
+
the result as dimensions with size one. With this option, the
|
1463 |
+
result will broadcast correctly against the original array `a`.
|
1464 |
+
|
1465 |
+
If this is anything but the default value it will be passed
|
1466 |
+
through (in the special case of an empty array) to the
|
1467 |
+
`mean` function of the underlying array. If the array is
|
1468 |
+
a sub-class and `mean` does not have the kwarg `keepdims` this
|
1469 |
+
will raise a RuntimeError.
|
1470 |
+
|
1471 |
+
interpolation : str, optional
|
1472 |
+
Deprecated name for the method keyword argument.
|
1473 |
+
|
1474 |
+
.. deprecated:: 1.22.0
|
1475 |
+
|
1476 |
+
Returns
|
1477 |
+
-------
|
1478 |
+
quantile : scalar or ndarray
|
1479 |
+
If `q` is a single probability and `axis=None`, then the result
|
1480 |
+
is a scalar. If multiple probability levels are given, first axis of
|
1481 |
+
the result corresponds to the quantiles. The other axes are
|
1482 |
+
the axes that remain after the reduction of `a`. If the input
|
1483 |
+
contains integers or floats smaller than ``float64``, the output
|
1484 |
+
data-type is ``float64``. Otherwise, the output data-type is the
|
1485 |
+
same as that of the input. If `out` is specified, that array is
|
1486 |
+
returned instead.
|
1487 |
+
|
1488 |
+
See Also
|
1489 |
+
--------
|
1490 |
+
quantile
|
1491 |
+
nanmean, nanmedian
|
1492 |
+
nanmedian : equivalent to ``nanquantile(..., 0.5)``
|
1493 |
+
nanpercentile : same as nanquantile, but with q in the range [0, 100].
|
1494 |
+
|
1495 |
+
Notes
|
1496 |
+
-----
|
1497 |
+
For more information please see `numpy.quantile`
|
1498 |
+
|
1499 |
+
Examples
|
1500 |
+
--------
|
1501 |
+
>>> a = np.array([[10., 7., 4.], [3., 2., 1.]])
|
1502 |
+
>>> a[0][1] = np.nan
|
1503 |
+
>>> a
|
1504 |
+
array([[10., nan, 4.],
|
1505 |
+
[ 3., 2., 1.]])
|
1506 |
+
>>> np.quantile(a, 0.5)
|
1507 |
+
nan
|
1508 |
+
>>> np.nanquantile(a, 0.5)
|
1509 |
+
3.0
|
1510 |
+
>>> np.nanquantile(a, 0.5, axis=0)
|
1511 |
+
array([6.5, 2. , 2.5])
|
1512 |
+
>>> np.nanquantile(a, 0.5, axis=1, keepdims=True)
|
1513 |
+
array([[7.],
|
1514 |
+
[2.]])
|
1515 |
+
>>> m = np.nanquantile(a, 0.5, axis=0)
|
1516 |
+
>>> out = np.zeros_like(m)
|
1517 |
+
>>> np.nanquantile(a, 0.5, axis=0, out=out)
|
1518 |
+
array([6.5, 2. , 2.5])
|
1519 |
+
>>> m
|
1520 |
+
array([6.5, 2. , 2.5])
|
1521 |
+
>>> b = a.copy()
|
1522 |
+
>>> np.nanquantile(b, 0.5, axis=1, overwrite_input=True)
|
1523 |
+
array([7., 2.])
|
1524 |
+
>>> assert not np.all(a==b)
|
1525 |
+
|
1526 |
+
References
|
1527 |
+
----------
|
1528 |
+
.. [1] R. J. Hyndman and Y. Fan,
|
1529 |
+
"Sample quantiles in statistical packages,"
|
1530 |
+
The American Statistician, 50(4), pp. 361-365, 1996
|
1531 |
+
|
1532 |
+
"""
|
1533 |
+
|
1534 |
+
if interpolation is not None:
|
1535 |
+
method = function_base._check_interpolation_as_method(
|
1536 |
+
method, interpolation, "nanquantile")
|
1537 |
+
|
1538 |
+
a = np.asanyarray(a)
|
1539 |
+
if a.dtype.kind == "c":
|
1540 |
+
raise TypeError("a must be an array of real numbers")
|
1541 |
+
|
1542 |
+
q = np.asanyarray(q)
|
1543 |
+
if not function_base._quantile_is_valid(q):
|
1544 |
+
raise ValueError("Quantiles must be in the range [0, 1]")
|
1545 |
+
return _nanquantile_unchecked(
|
1546 |
+
a, q, axis, out, overwrite_input, method, keepdims)
|
1547 |
+
|
1548 |
+
|
1549 |
+
def _nanquantile_unchecked(
|
1550 |
+
a,
|
1551 |
+
q,
|
1552 |
+
axis=None,
|
1553 |
+
out=None,
|
1554 |
+
overwrite_input=False,
|
1555 |
+
method="linear",
|
1556 |
+
keepdims=np._NoValue,
|
1557 |
+
):
|
1558 |
+
"""Assumes that q is in [0, 1], and is an ndarray"""
|
1559 |
+
# apply_along_axis in _nanpercentile doesn't handle empty arrays well,
|
1560 |
+
# so deal them upfront
|
1561 |
+
if a.size == 0:
|
1562 |
+
return np.nanmean(a, axis, out=out, keepdims=keepdims)
|
1563 |
+
return function_base._ureduce(a,
|
1564 |
+
func=_nanquantile_ureduce_func,
|
1565 |
+
q=q,
|
1566 |
+
keepdims=keepdims,
|
1567 |
+
axis=axis,
|
1568 |
+
out=out,
|
1569 |
+
overwrite_input=overwrite_input,
|
1570 |
+
method=method)
|
1571 |
+
|
1572 |
+
|
1573 |
+
def _nanquantile_ureduce_func(a, q, axis=None, out=None, overwrite_input=False,
|
1574 |
+
method="linear"):
|
1575 |
+
"""
|
1576 |
+
Private function that doesn't support extended axis or keepdims.
|
1577 |
+
These methods are extended to this function using _ureduce
|
1578 |
+
See nanpercentile for parameter usage
|
1579 |
+
"""
|
1580 |
+
if axis is None or a.ndim == 1:
|
1581 |
+
part = a.ravel()
|
1582 |
+
result = _nanquantile_1d(part, q, overwrite_input, method)
|
1583 |
+
else:
|
1584 |
+
result = np.apply_along_axis(_nanquantile_1d, axis, a, q,
|
1585 |
+
overwrite_input, method)
|
1586 |
+
# apply_along_axis fills in collapsed axis with results.
|
1587 |
+
# Move that axis to the beginning to match percentile's
|
1588 |
+
# convention.
|
1589 |
+
if q.ndim != 0:
|
1590 |
+
result = np.moveaxis(result, axis, 0)
|
1591 |
+
|
1592 |
+
if out is not None:
|
1593 |
+
out[...] = result
|
1594 |
+
return result
|
1595 |
+
|
1596 |
+
|
1597 |
+
def _nanquantile_1d(arr1d, q, overwrite_input=False, method="linear"):
|
1598 |
+
"""
|
1599 |
+
Private function for rank 1 arrays. Compute quantile ignoring NaNs.
|
1600 |
+
See nanpercentile for parameter usage
|
1601 |
+
"""
|
1602 |
+
arr1d, overwrite_input = _remove_nan_1d(arr1d,
|
1603 |
+
overwrite_input=overwrite_input)
|
1604 |
+
if arr1d.size == 0:
|
1605 |
+
# convert to scalar
|
1606 |
+
return np.full(q.shape, np.nan, dtype=arr1d.dtype)[()]
|
1607 |
+
|
1608 |
+
return function_base._quantile_unchecked(
|
1609 |
+
arr1d, q, overwrite_input=overwrite_input, method=method)
|
1610 |
+
|
1611 |
+
|
1612 |
+
def _nanvar_dispatcher(a, axis=None, dtype=None, out=None, ddof=None,
|
1613 |
+
keepdims=None, *, where=None):
|
1614 |
+
return (a, out)
|
1615 |
+
|
1616 |
+
|
1617 |
+
@array_function_dispatch(_nanvar_dispatcher)
|
1618 |
+
def nanvar(a, axis=None, dtype=None, out=None, ddof=0, keepdims=np._NoValue,
|
1619 |
+
*, where=np._NoValue):
|
1620 |
+
"""
|
1621 |
+
Compute the variance along the specified axis, while ignoring NaNs.
|
1622 |
+
|
1623 |
+
Returns the variance of the array elements, a measure of the spread of
|
1624 |
+
a distribution. The variance is computed for the flattened array by
|
1625 |
+
default, otherwise over the specified axis.
|
1626 |
+
|
1627 |
+
For all-NaN slices or slices with zero degrees of freedom, NaN is
|
1628 |
+
returned and a `RuntimeWarning` is raised.
|
1629 |
+
|
1630 |
+
.. versionadded:: 1.8.0
|
1631 |
+
|
1632 |
+
Parameters
|
1633 |
+
----------
|
1634 |
+
a : array_like
|
1635 |
+
Array containing numbers whose variance is desired. If `a` is not an
|
1636 |
+
array, a conversion is attempted.
|
1637 |
+
axis : {int, tuple of int, None}, optional
|
1638 |
+
Axis or axes along which the variance is computed. The default is to compute
|
1639 |
+
the variance of the flattened array.
|
1640 |
+
dtype : data-type, optional
|
1641 |
+
Type to use in computing the variance. For arrays of integer type
|
1642 |
+
the default is `float64`; for arrays of float types it is the same as
|
1643 |
+
the array type.
|
1644 |
+
out : ndarray, optional
|
1645 |
+
Alternate output array in which to place the result. It must have
|
1646 |
+
the same shape as the expected output, but the type is cast if
|
1647 |
+
necessary.
|
1648 |
+
ddof : int, optional
|
1649 |
+
"Delta Degrees of Freedom": the divisor used in the calculation is
|
1650 |
+
``N - ddof``, where ``N`` represents the number of non-NaN
|
1651 |
+
elements. By default `ddof` is zero.
|
1652 |
+
keepdims : bool, optional
|
1653 |
+
If this is set to True, the axes which are reduced are left
|
1654 |
+
in the result as dimensions with size one. With this option,
|
1655 |
+
the result will broadcast correctly against the original `a`.
|
1656 |
+
where : array_like of bool, optional
|
1657 |
+
Elements to include in the variance. See `~numpy.ufunc.reduce` for
|
1658 |
+
details.
|
1659 |
+
|
1660 |
+
.. versionadded:: 1.22.0
|
1661 |
+
|
1662 |
+
Returns
|
1663 |
+
-------
|
1664 |
+
variance : ndarray, see dtype parameter above
|
1665 |
+
If `out` is None, return a new array containing the variance,
|
1666 |
+
otherwise return a reference to the output array. If ddof is >= the
|
1667 |
+
number of non-NaN elements in a slice or the slice contains only
|
1668 |
+
NaNs, then the result for that slice is NaN.
|
1669 |
+
|
1670 |
+
See Also
|
1671 |
+
--------
|
1672 |
+
std : Standard deviation
|
1673 |
+
mean : Average
|
1674 |
+
var : Variance while not ignoring NaNs
|
1675 |
+
nanstd, nanmean
|
1676 |
+
:ref:`ufuncs-output-type`
|
1677 |
+
|
1678 |
+
Notes
|
1679 |
+
-----
|
1680 |
+
The variance is the average of the squared deviations from the mean,
|
1681 |
+
i.e., ``var = mean(abs(x - x.mean())**2)``.
|
1682 |
+
|
1683 |
+
The mean is normally calculated as ``x.sum() / N``, where ``N = len(x)``.
|
1684 |
+
If, however, `ddof` is specified, the divisor ``N - ddof`` is used
|
1685 |
+
instead. In standard statistical practice, ``ddof=1`` provides an
|
1686 |
+
unbiased estimator of the variance of a hypothetical infinite
|
1687 |
+
population. ``ddof=0`` provides a maximum likelihood estimate of the
|
1688 |
+
variance for normally distributed variables.
|
1689 |
+
|
1690 |
+
Note that for complex numbers, the absolute value is taken before
|
1691 |
+
squaring, so that the result is always real and nonnegative.
|
1692 |
+
|
1693 |
+
For floating-point input, the variance is computed using the same
|
1694 |
+
precision the input has. Depending on the input data, this can cause
|
1695 |
+
the results to be inaccurate, especially for `float32` (see example
|
1696 |
+
below). Specifying a higher-accuracy accumulator using the ``dtype``
|
1697 |
+
keyword can alleviate this issue.
|
1698 |
+
|
1699 |
+
For this function to work on sub-classes of ndarray, they must define
|
1700 |
+
`sum` with the kwarg `keepdims`
|
1701 |
+
|
1702 |
+
Examples
|
1703 |
+
--------
|
1704 |
+
>>> a = np.array([[1, np.nan], [3, 4]])
|
1705 |
+
>>> np.nanvar(a)
|
1706 |
+
1.5555555555555554
|
1707 |
+
>>> np.nanvar(a, axis=0)
|
1708 |
+
array([1., 0.])
|
1709 |
+
>>> np.nanvar(a, axis=1)
|
1710 |
+
array([0., 0.25]) # may vary
|
1711 |
+
|
1712 |
+
"""
|
1713 |
+
arr, mask = _replace_nan(a, 0)
|
1714 |
+
if mask is None:
|
1715 |
+
return np.var(arr, axis=axis, dtype=dtype, out=out, ddof=ddof,
|
1716 |
+
keepdims=keepdims, where=where)
|
1717 |
+
|
1718 |
+
if dtype is not None:
|
1719 |
+
dtype = np.dtype(dtype)
|
1720 |
+
if dtype is not None and not issubclass(dtype.type, np.inexact):
|
1721 |
+
raise TypeError("If a is inexact, then dtype must be inexact")
|
1722 |
+
if out is not None and not issubclass(out.dtype.type, np.inexact):
|
1723 |
+
raise TypeError("If a is inexact, then out must be inexact")
|
1724 |
+
|
1725 |
+
# Compute mean
|
1726 |
+
if type(arr) is np.matrix:
|
1727 |
+
_keepdims = np._NoValue
|
1728 |
+
else:
|
1729 |
+
_keepdims = True
|
1730 |
+
# we need to special case matrix for reverse compatibility
|
1731 |
+
# in order for this to work, these sums need to be called with
|
1732 |
+
# keepdims=True, however matrix now raises an error in this case, but
|
1733 |
+
# the reason that it drops the keepdims kwarg is to force keepdims=True
|
1734 |
+
# so this used to work by serendipity.
|
1735 |
+
cnt = np.sum(~mask, axis=axis, dtype=np.intp, keepdims=_keepdims,
|
1736 |
+
where=where)
|
1737 |
+
avg = np.sum(arr, axis=axis, dtype=dtype, keepdims=_keepdims, where=where)
|
1738 |
+
avg = _divide_by_count(avg, cnt)
|
1739 |
+
|
1740 |
+
# Compute squared deviation from mean.
|
1741 |
+
np.subtract(arr, avg, out=arr, casting='unsafe', where=where)
|
1742 |
+
arr = _copyto(arr, 0, mask)
|
1743 |
+
if issubclass(arr.dtype.type, np.complexfloating):
|
1744 |
+
sqr = np.multiply(arr, arr.conj(), out=arr, where=where).real
|
1745 |
+
else:
|
1746 |
+
sqr = np.multiply(arr, arr, out=arr, where=where)
|
1747 |
+
|
1748 |
+
# Compute variance.
|
1749 |
+
var = np.sum(sqr, axis=axis, dtype=dtype, out=out, keepdims=keepdims,
|
1750 |
+
where=where)
|
1751 |
+
|
1752 |
+
# Precaution against reduced object arrays
|
1753 |
+
try:
|
1754 |
+
var_ndim = var.ndim
|
1755 |
+
except AttributeError:
|
1756 |
+
var_ndim = np.ndim(var)
|
1757 |
+
if var_ndim < cnt.ndim:
|
1758 |
+
# Subclasses of ndarray may ignore keepdims, so check here.
|
1759 |
+
cnt = cnt.squeeze(axis)
|
1760 |
+
dof = cnt - ddof
|
1761 |
+
var = _divide_by_count(var, dof)
|
1762 |
+
|
1763 |
+
isbad = (dof <= 0)
|
1764 |
+
if np.any(isbad):
|
1765 |
+
warnings.warn("Degrees of freedom <= 0 for slice.", RuntimeWarning,
|
1766 |
+
stacklevel=2)
|
1767 |
+
# NaN, inf, or negative numbers are all possible bad
|
1768 |
+
# values, so explicitly replace them with NaN.
|
1769 |
+
var = _copyto(var, np.nan, isbad)
|
1770 |
+
return var
|
1771 |
+
|
1772 |
+
|
1773 |
+
def _nanstd_dispatcher(a, axis=None, dtype=None, out=None, ddof=None,
|
1774 |
+
keepdims=None, *, where=None):
|
1775 |
+
return (a, out)
|
1776 |
+
|
1777 |
+
|
1778 |
+
@array_function_dispatch(_nanstd_dispatcher)
|
1779 |
+
def nanstd(a, axis=None, dtype=None, out=None, ddof=0, keepdims=np._NoValue,
|
1780 |
+
*, where=np._NoValue):
|
1781 |
+
"""
|
1782 |
+
Compute the standard deviation along the specified axis, while
|
1783 |
+
ignoring NaNs.
|
1784 |
+
|
1785 |
+
Returns the standard deviation, a measure of the spread of a
|
1786 |
+
distribution, of the non-NaN array elements. The standard deviation is
|
1787 |
+
computed for the flattened array by default, otherwise over the
|
1788 |
+
specified axis.
|
1789 |
+
|
1790 |
+
For all-NaN slices or slices with zero degrees of freedom, NaN is
|
1791 |
+
returned and a `RuntimeWarning` is raised.
|
1792 |
+
|
1793 |
+
.. versionadded:: 1.8.0
|
1794 |
+
|
1795 |
+
Parameters
|
1796 |
+
----------
|
1797 |
+
a : array_like
|
1798 |
+
Calculate the standard deviation of the non-NaN values.
|
1799 |
+
axis : {int, tuple of int, None}, optional
|
1800 |
+
Axis or axes along which the standard deviation is computed. The default is
|
1801 |
+
to compute the standard deviation of the flattened array.
|
1802 |
+
dtype : dtype, optional
|
1803 |
+
Type to use in computing the standard deviation. For arrays of
|
1804 |
+
integer type the default is float64, for arrays of float types it
|
1805 |
+
is the same as the array type.
|
1806 |
+
out : ndarray, optional
|
1807 |
+
Alternative output array in which to place the result. It must have
|
1808 |
+
the same shape as the expected output but the type (of the
|
1809 |
+
calculated values) will be cast if necessary.
|
1810 |
+
ddof : int, optional
|
1811 |
+
Means Delta Degrees of Freedom. The divisor used in calculations
|
1812 |
+
is ``N - ddof``, where ``N`` represents the number of non-NaN
|
1813 |
+
elements. By default `ddof` is zero.
|
1814 |
+
|
1815 |
+
keepdims : bool, optional
|
1816 |
+
If this is set to True, the axes which are reduced are left
|
1817 |
+
in the result as dimensions with size one. With this option,
|
1818 |
+
the result will broadcast correctly against the original `a`.
|
1819 |
+
|
1820 |
+
If this value is anything but the default it is passed through
|
1821 |
+
as-is to the relevant functions of the sub-classes. If these
|
1822 |
+
functions do not have a `keepdims` kwarg, a RuntimeError will
|
1823 |
+
be raised.
|
1824 |
+
where : array_like of bool, optional
|
1825 |
+
Elements to include in the standard deviation.
|
1826 |
+
See `~numpy.ufunc.reduce` for details.
|
1827 |
+
|
1828 |
+
.. versionadded:: 1.22.0
|
1829 |
+
|
1830 |
+
Returns
|
1831 |
+
-------
|
1832 |
+
standard_deviation : ndarray, see dtype parameter above.
|
1833 |
+
If `out` is None, return a new array containing the standard
|
1834 |
+
deviation, otherwise return a reference to the output array. If
|
1835 |
+
ddof is >= the number of non-NaN elements in a slice or the slice
|
1836 |
+
contains only NaNs, then the result for that slice is NaN.
|
1837 |
+
|
1838 |
+
See Also
|
1839 |
+
--------
|
1840 |
+
var, mean, std
|
1841 |
+
nanvar, nanmean
|
1842 |
+
:ref:`ufuncs-output-type`
|
1843 |
+
|
1844 |
+
Notes
|
1845 |
+
-----
|
1846 |
+
The standard deviation is the square root of the average of the squared
|
1847 |
+
deviations from the mean: ``std = sqrt(mean(abs(x - x.mean())**2))``.
|
1848 |
+
|
1849 |
+
The average squared deviation is normally calculated as
|
1850 |
+
``x.sum() / N``, where ``N = len(x)``. If, however, `ddof` is
|
1851 |
+
specified, the divisor ``N - ddof`` is used instead. In standard
|
1852 |
+
statistical practice, ``ddof=1`` provides an unbiased estimator of the
|
1853 |
+
variance of the infinite population. ``ddof=0`` provides a maximum
|
1854 |
+
likelihood estimate of the variance for normally distributed variables.
|
1855 |
+
The standard deviation computed in this function is the square root of
|
1856 |
+
the estimated variance, so even with ``ddof=1``, it will not be an
|
1857 |
+
unbiased estimate of the standard deviation per se.
|
1858 |
+
|
1859 |
+
Note that, for complex numbers, `std` takes the absolute value before
|
1860 |
+
squaring, so that the result is always real and nonnegative.
|
1861 |
+
|
1862 |
+
For floating-point input, the *std* is computed using the same
|
1863 |
+
precision the input has. Depending on the input data, this can cause
|
1864 |
+
the results to be inaccurate, especially for float32 (see example
|
1865 |
+
below). Specifying a higher-accuracy accumulator using the `dtype`
|
1866 |
+
keyword can alleviate this issue.
|
1867 |
+
|
1868 |
+
Examples
|
1869 |
+
--------
|
1870 |
+
>>> a = np.array([[1, np.nan], [3, 4]])
|
1871 |
+
>>> np.nanstd(a)
|
1872 |
+
1.247219128924647
|
1873 |
+
>>> np.nanstd(a, axis=0)
|
1874 |
+
array([1., 0.])
|
1875 |
+
>>> np.nanstd(a, axis=1)
|
1876 |
+
array([0., 0.5]) # may vary
|
1877 |
+
|
1878 |
+
"""
|
1879 |
+
var = nanvar(a, axis=axis, dtype=dtype, out=out, ddof=ddof,
|
1880 |
+
keepdims=keepdims, where=where)
|
1881 |
+
if isinstance(var, np.ndarray):
|
1882 |
+
std = np.sqrt(var, out=var)
|
1883 |
+
elif hasattr(var, 'dtype'):
|
1884 |
+
std = var.dtype.type(np.sqrt(var))
|
1885 |
+
else:
|
1886 |
+
std = np.sqrt(var)
|
1887 |
+
return std
|
env-llmeval/lib/python3.10/site-packages/numpy/lib/nanfunctions.pyi
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from numpy.core.fromnumeric import (
|
2 |
+
amin,
|
3 |
+
amax,
|
4 |
+
argmin,
|
5 |
+
argmax,
|
6 |
+
sum,
|
7 |
+
prod,
|
8 |
+
cumsum,
|
9 |
+
cumprod,
|
10 |
+
mean,
|
11 |
+
var,
|
12 |
+
std
|
13 |
+
)
|
14 |
+
|
15 |
+
from numpy.lib.function_base import (
|
16 |
+
median,
|
17 |
+
percentile,
|
18 |
+
quantile,
|
19 |
+
)
|
20 |
+
|
21 |
+
__all__: list[str]
|
22 |
+
|
23 |
+
# NOTE: In reaility these functions are not aliases but distinct functions
|
24 |
+
# with identical signatures.
|
25 |
+
nanmin = amin
|
26 |
+
nanmax = amax
|
27 |
+
nanargmin = argmin
|
28 |
+
nanargmax = argmax
|
29 |
+
nansum = sum
|
30 |
+
nanprod = prod
|
31 |
+
nancumsum = cumsum
|
32 |
+
nancumprod = cumprod
|
33 |
+
nanmean = mean
|
34 |
+
nanvar = var
|
35 |
+
nanstd = std
|
36 |
+
nanmedian = median
|
37 |
+
nanpercentile = percentile
|
38 |
+
nanquantile = quantile
|
env-llmeval/lib/python3.10/site-packages/numpy/lib/npyio.py
ADDED
@@ -0,0 +1,2547 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import re
|
3 |
+
import functools
|
4 |
+
import itertools
|
5 |
+
import warnings
|
6 |
+
import weakref
|
7 |
+
import contextlib
|
8 |
+
import operator
|
9 |
+
from operator import itemgetter, index as opindex, methodcaller
|
10 |
+
from collections.abc import Mapping
|
11 |
+
|
12 |
+
import numpy as np
|
13 |
+
from . import format
|
14 |
+
from ._datasource import DataSource
|
15 |
+
from numpy.core import overrides
|
16 |
+
from numpy.core.multiarray import packbits, unpackbits
|
17 |
+
from numpy.core._multiarray_umath import _load_from_filelike
|
18 |
+
from numpy.core.overrides import set_array_function_like_doc, set_module
|
19 |
+
from ._iotools import (
|
20 |
+
LineSplitter, NameValidator, StringConverter, ConverterError,
|
21 |
+
ConverterLockError, ConversionWarning, _is_string_like,
|
22 |
+
has_nested_fields, flatten_dtype, easy_dtype, _decode_line
|
23 |
+
)
|
24 |
+
|
25 |
+
from numpy.compat import (
|
26 |
+
asbytes, asstr, asunicode, os_fspath, os_PathLike,
|
27 |
+
pickle
|
28 |
+
)
|
29 |
+
|
30 |
+
|
31 |
+
__all__ = [
|
32 |
+
'savetxt', 'loadtxt', 'genfromtxt',
|
33 |
+
'recfromtxt', 'recfromcsv', 'load', 'save', 'savez',
|
34 |
+
'savez_compressed', 'packbits', 'unpackbits', 'fromregex', 'DataSource'
|
35 |
+
]
|
36 |
+
|
37 |
+
|
38 |
+
array_function_dispatch = functools.partial(
|
39 |
+
overrides.array_function_dispatch, module='numpy')
|
40 |
+
|
41 |
+
|
42 |
+
class BagObj:
|
43 |
+
"""
|
44 |
+
BagObj(obj)
|
45 |
+
|
46 |
+
Convert attribute look-ups to getitems on the object passed in.
|
47 |
+
|
48 |
+
Parameters
|
49 |
+
----------
|
50 |
+
obj : class instance
|
51 |
+
Object on which attribute look-up is performed.
|
52 |
+
|
53 |
+
Examples
|
54 |
+
--------
|
55 |
+
>>> from numpy.lib.npyio import BagObj as BO
|
56 |
+
>>> class BagDemo:
|
57 |
+
... def __getitem__(self, key): # An instance of BagObj(BagDemo)
|
58 |
+
... # will call this method when any
|
59 |
+
... # attribute look-up is required
|
60 |
+
... result = "Doesn't matter what you want, "
|
61 |
+
... return result + "you're gonna get this"
|
62 |
+
...
|
63 |
+
>>> demo_obj = BagDemo()
|
64 |
+
>>> bagobj = BO(demo_obj)
|
65 |
+
>>> bagobj.hello_there
|
66 |
+
"Doesn't matter what you want, you're gonna get this"
|
67 |
+
>>> bagobj.I_can_be_anything
|
68 |
+
"Doesn't matter what you want, you're gonna get this"
|
69 |
+
|
70 |
+
"""
|
71 |
+
|
72 |
+
def __init__(self, obj):
|
73 |
+
# Use weakref to make NpzFile objects collectable by refcount
|
74 |
+
self._obj = weakref.proxy(obj)
|
75 |
+
|
76 |
+
def __getattribute__(self, key):
|
77 |
+
try:
|
78 |
+
return object.__getattribute__(self, '_obj')[key]
|
79 |
+
except KeyError:
|
80 |
+
raise AttributeError(key) from None
|
81 |
+
|
82 |
+
def __dir__(self):
|
83 |
+
"""
|
84 |
+
Enables dir(bagobj) to list the files in an NpzFile.
|
85 |
+
|
86 |
+
This also enables tab-completion in an interpreter or IPython.
|
87 |
+
"""
|
88 |
+
return list(object.__getattribute__(self, '_obj').keys())
|
89 |
+
|
90 |
+
|
91 |
+
def zipfile_factory(file, *args, **kwargs):
|
92 |
+
"""
|
93 |
+
Create a ZipFile.
|
94 |
+
|
95 |
+
Allows for Zip64, and the `file` argument can accept file, str, or
|
96 |
+
pathlib.Path objects. `args` and `kwargs` are passed to the zipfile.ZipFile
|
97 |
+
constructor.
|
98 |
+
"""
|
99 |
+
if not hasattr(file, 'read'):
|
100 |
+
file = os_fspath(file)
|
101 |
+
import zipfile
|
102 |
+
kwargs['allowZip64'] = True
|
103 |
+
return zipfile.ZipFile(file, *args, **kwargs)
|
104 |
+
|
105 |
+
|
106 |
+
class NpzFile(Mapping):
|
107 |
+
"""
|
108 |
+
NpzFile(fid)
|
109 |
+
|
110 |
+
A dictionary-like object with lazy-loading of files in the zipped
|
111 |
+
archive provided on construction.
|
112 |
+
|
113 |
+
`NpzFile` is used to load files in the NumPy ``.npz`` data archive
|
114 |
+
format. It assumes that files in the archive have a ``.npy`` extension,
|
115 |
+
other files are ignored.
|
116 |
+
|
117 |
+
The arrays and file strings are lazily loaded on either
|
118 |
+
getitem access using ``obj['key']`` or attribute lookup using
|
119 |
+
``obj.f.key``. A list of all files (without ``.npy`` extensions) can
|
120 |
+
be obtained with ``obj.files`` and the ZipFile object itself using
|
121 |
+
``obj.zip``.
|
122 |
+
|
123 |
+
Attributes
|
124 |
+
----------
|
125 |
+
files : list of str
|
126 |
+
List of all files in the archive with a ``.npy`` extension.
|
127 |
+
zip : ZipFile instance
|
128 |
+
The ZipFile object initialized with the zipped archive.
|
129 |
+
f : BagObj instance
|
130 |
+
An object on which attribute can be performed as an alternative
|
131 |
+
to getitem access on the `NpzFile` instance itself.
|
132 |
+
allow_pickle : bool, optional
|
133 |
+
Allow loading pickled data. Default: False
|
134 |
+
|
135 |
+
.. versionchanged:: 1.16.3
|
136 |
+
Made default False in response to CVE-2019-6446.
|
137 |
+
|
138 |
+
pickle_kwargs : dict, optional
|
139 |
+
Additional keyword arguments to pass on to pickle.load.
|
140 |
+
These are only useful when loading object arrays saved on
|
141 |
+
Python 2 when using Python 3.
|
142 |
+
max_header_size : int, optional
|
143 |
+
Maximum allowed size of the header. Large headers may not be safe
|
144 |
+
to load securely and thus require explicitly passing a larger value.
|
145 |
+
See :py:func:`ast.literal_eval()` for details.
|
146 |
+
This option is ignored when `allow_pickle` is passed. In that case
|
147 |
+
the file is by definition trusted and the limit is unnecessary.
|
148 |
+
|
149 |
+
Parameters
|
150 |
+
----------
|
151 |
+
fid : file or str
|
152 |
+
The zipped archive to open. This is either a file-like object
|
153 |
+
or a string containing the path to the archive.
|
154 |
+
own_fid : bool, optional
|
155 |
+
Whether NpzFile should close the file handle.
|
156 |
+
Requires that `fid` is a file-like object.
|
157 |
+
|
158 |
+
Examples
|
159 |
+
--------
|
160 |
+
>>> from tempfile import TemporaryFile
|
161 |
+
>>> outfile = TemporaryFile()
|
162 |
+
>>> x = np.arange(10)
|
163 |
+
>>> y = np.sin(x)
|
164 |
+
>>> np.savez(outfile, x=x, y=y)
|
165 |
+
>>> _ = outfile.seek(0)
|
166 |
+
|
167 |
+
>>> npz = np.load(outfile)
|
168 |
+
>>> isinstance(npz, np.lib.npyio.NpzFile)
|
169 |
+
True
|
170 |
+
>>> npz
|
171 |
+
NpzFile 'object' with keys x, y
|
172 |
+
>>> sorted(npz.files)
|
173 |
+
['x', 'y']
|
174 |
+
>>> npz['x'] # getitem access
|
175 |
+
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
|
176 |
+
>>> npz.f.x # attribute lookup
|
177 |
+
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
|
178 |
+
|
179 |
+
"""
|
180 |
+
# Make __exit__ safe if zipfile_factory raises an exception
|
181 |
+
zip = None
|
182 |
+
fid = None
|
183 |
+
_MAX_REPR_ARRAY_COUNT = 5
|
184 |
+
|
185 |
+
def __init__(self, fid, own_fid=False, allow_pickle=False,
|
186 |
+
pickle_kwargs=None, *,
|
187 |
+
max_header_size=format._MAX_HEADER_SIZE):
|
188 |
+
# Import is postponed to here since zipfile depends on gzip, an
|
189 |
+
# optional component of the so-called standard library.
|
190 |
+
_zip = zipfile_factory(fid)
|
191 |
+
self._files = _zip.namelist()
|
192 |
+
self.files = []
|
193 |
+
self.allow_pickle = allow_pickle
|
194 |
+
self.max_header_size = max_header_size
|
195 |
+
self.pickle_kwargs = pickle_kwargs
|
196 |
+
for x in self._files:
|
197 |
+
if x.endswith('.npy'):
|
198 |
+
self.files.append(x[:-4])
|
199 |
+
else:
|
200 |
+
self.files.append(x)
|
201 |
+
self.zip = _zip
|
202 |
+
self.f = BagObj(self)
|
203 |
+
if own_fid:
|
204 |
+
self.fid = fid
|
205 |
+
|
206 |
+
def __enter__(self):
|
207 |
+
return self
|
208 |
+
|
209 |
+
def __exit__(self, exc_type, exc_value, traceback):
|
210 |
+
self.close()
|
211 |
+
|
212 |
+
def close(self):
|
213 |
+
"""
|
214 |
+
Close the file.
|
215 |
+
|
216 |
+
"""
|
217 |
+
if self.zip is not None:
|
218 |
+
self.zip.close()
|
219 |
+
self.zip = None
|
220 |
+
if self.fid is not None:
|
221 |
+
self.fid.close()
|
222 |
+
self.fid = None
|
223 |
+
self.f = None # break reference cycle
|
224 |
+
|
225 |
+
def __del__(self):
|
226 |
+
self.close()
|
227 |
+
|
228 |
+
# Implement the Mapping ABC
|
229 |
+
def __iter__(self):
|
230 |
+
return iter(self.files)
|
231 |
+
|
232 |
+
def __len__(self):
|
233 |
+
return len(self.files)
|
234 |
+
|
235 |
+
def __getitem__(self, key):
|
236 |
+
# FIXME: This seems like it will copy strings around
|
237 |
+
# more than is strictly necessary. The zipfile
|
238 |
+
# will read the string and then
|
239 |
+
# the format.read_array will copy the string
|
240 |
+
# to another place in memory.
|
241 |
+
# It would be better if the zipfile could read
|
242 |
+
# (or at least uncompress) the data
|
243 |
+
# directly into the array memory.
|
244 |
+
member = False
|
245 |
+
if key in self._files:
|
246 |
+
member = True
|
247 |
+
elif key in self.files:
|
248 |
+
member = True
|
249 |
+
key += '.npy'
|
250 |
+
if member:
|
251 |
+
bytes = self.zip.open(key)
|
252 |
+
magic = bytes.read(len(format.MAGIC_PREFIX))
|
253 |
+
bytes.close()
|
254 |
+
if magic == format.MAGIC_PREFIX:
|
255 |
+
bytes = self.zip.open(key)
|
256 |
+
return format.read_array(bytes,
|
257 |
+
allow_pickle=self.allow_pickle,
|
258 |
+
pickle_kwargs=self.pickle_kwargs,
|
259 |
+
max_header_size=self.max_header_size)
|
260 |
+
else:
|
261 |
+
return self.zip.read(key)
|
262 |
+
else:
|
263 |
+
raise KeyError(f"{key} is not a file in the archive")
|
264 |
+
|
265 |
+
def __contains__(self, key):
|
266 |
+
return (key in self._files or key in self.files)
|
267 |
+
|
268 |
+
def __repr__(self):
|
269 |
+
# Get filename or default to `object`
|
270 |
+
if isinstance(self.fid, str):
|
271 |
+
filename = self.fid
|
272 |
+
else:
|
273 |
+
filename = getattr(self.fid, "name", "object")
|
274 |
+
|
275 |
+
# Get the name of arrays
|
276 |
+
array_names = ', '.join(self.files[:self._MAX_REPR_ARRAY_COUNT])
|
277 |
+
if len(self.files) > self._MAX_REPR_ARRAY_COUNT:
|
278 |
+
array_names += "..."
|
279 |
+
return f"NpzFile {filename!r} with keys: {array_names}"
|
280 |
+
|
281 |
+
|
282 |
+
@set_module('numpy')
|
283 |
+
def load(file, mmap_mode=None, allow_pickle=False, fix_imports=True,
|
284 |
+
encoding='ASCII', *, max_header_size=format._MAX_HEADER_SIZE):
|
285 |
+
"""
|
286 |
+
Load arrays or pickled objects from ``.npy``, ``.npz`` or pickled files.
|
287 |
+
|
288 |
+
.. warning:: Loading files that contain object arrays uses the ``pickle``
|
289 |
+
module, which is not secure against erroneous or maliciously
|
290 |
+
constructed data. Consider passing ``allow_pickle=False`` to
|
291 |
+
load data that is known not to contain object arrays for the
|
292 |
+
safer handling of untrusted sources.
|
293 |
+
|
294 |
+
Parameters
|
295 |
+
----------
|
296 |
+
file : file-like object, string, or pathlib.Path
|
297 |
+
The file to read. File-like objects must support the
|
298 |
+
``seek()`` and ``read()`` methods and must always
|
299 |
+
be opened in binary mode. Pickled files require that the
|
300 |
+
file-like object support the ``readline()`` method as well.
|
301 |
+
mmap_mode : {None, 'r+', 'r', 'w+', 'c'}, optional
|
302 |
+
If not None, then memory-map the file, using the given mode (see
|
303 |
+
`numpy.memmap` for a detailed description of the modes). A
|
304 |
+
memory-mapped array is kept on disk. However, it can be accessed
|
305 |
+
and sliced like any ndarray. Memory mapping is especially useful
|
306 |
+
for accessing small fragments of large files without reading the
|
307 |
+
entire file into memory.
|
308 |
+
allow_pickle : bool, optional
|
309 |
+
Allow loading pickled object arrays stored in npy files. Reasons for
|
310 |
+
disallowing pickles include security, as loading pickled data can
|
311 |
+
execute arbitrary code. If pickles are disallowed, loading object
|
312 |
+
arrays will fail. Default: False
|
313 |
+
|
314 |
+
.. versionchanged:: 1.16.3
|
315 |
+
Made default False in response to CVE-2019-6446.
|
316 |
+
|
317 |
+
fix_imports : bool, optional
|
318 |
+
Only useful when loading Python 2 generated pickled files on Python 3,
|
319 |
+
which includes npy/npz files containing object arrays. If `fix_imports`
|
320 |
+
is True, pickle will try to map the old Python 2 names to the new names
|
321 |
+
used in Python 3.
|
322 |
+
encoding : str, optional
|
323 |
+
What encoding to use when reading Python 2 strings. Only useful when
|
324 |
+
loading Python 2 generated pickled files in Python 3, which includes
|
325 |
+
npy/npz files containing object arrays. Values other than 'latin1',
|
326 |
+
'ASCII', and 'bytes' are not allowed, as they can corrupt numerical
|
327 |
+
data. Default: 'ASCII'
|
328 |
+
max_header_size : int, optional
|
329 |
+
Maximum allowed size of the header. Large headers may not be safe
|
330 |
+
to load securely and thus require explicitly passing a larger value.
|
331 |
+
See :py:func:`ast.literal_eval()` for details.
|
332 |
+
This option is ignored when `allow_pickle` is passed. In that case
|
333 |
+
the file is by definition trusted and the limit is unnecessary.
|
334 |
+
|
335 |
+
Returns
|
336 |
+
-------
|
337 |
+
result : array, tuple, dict, etc.
|
338 |
+
Data stored in the file. For ``.npz`` files, the returned instance
|
339 |
+
of NpzFile class must be closed to avoid leaking file descriptors.
|
340 |
+
|
341 |
+
Raises
|
342 |
+
------
|
343 |
+
OSError
|
344 |
+
If the input file does not exist or cannot be read.
|
345 |
+
UnpicklingError
|
346 |
+
If ``allow_pickle=True``, but the file cannot be loaded as a pickle.
|
347 |
+
ValueError
|
348 |
+
The file contains an object array, but ``allow_pickle=False`` given.
|
349 |
+
EOFError
|
350 |
+
When calling ``np.load`` multiple times on the same file handle,
|
351 |
+
if all data has already been read
|
352 |
+
|
353 |
+
See Also
|
354 |
+
--------
|
355 |
+
save, savez, savez_compressed, loadtxt
|
356 |
+
memmap : Create a memory-map to an array stored in a file on disk.
|
357 |
+
lib.format.open_memmap : Create or load a memory-mapped ``.npy`` file.
|
358 |
+
|
359 |
+
Notes
|
360 |
+
-----
|
361 |
+
- If the file contains pickle data, then whatever object is stored
|
362 |
+
in the pickle is returned.
|
363 |
+
- If the file is a ``.npy`` file, then a single array is returned.
|
364 |
+
- If the file is a ``.npz`` file, then a dictionary-like object is
|
365 |
+
returned, containing ``{filename: array}`` key-value pairs, one for
|
366 |
+
each file in the archive.
|
367 |
+
- If the file is a ``.npz`` file, the returned value supports the
|
368 |
+
context manager protocol in a similar fashion to the open function::
|
369 |
+
|
370 |
+
with load('foo.npz') as data:
|
371 |
+
a = data['a']
|
372 |
+
|
373 |
+
The underlying file descriptor is closed when exiting the 'with'
|
374 |
+
block.
|
375 |
+
|
376 |
+
Examples
|
377 |
+
--------
|
378 |
+
Store data to disk, and load it again:
|
379 |
+
|
380 |
+
>>> np.save('/tmp/123', np.array([[1, 2, 3], [4, 5, 6]]))
|
381 |
+
>>> np.load('/tmp/123.npy')
|
382 |
+
array([[1, 2, 3],
|
383 |
+
[4, 5, 6]])
|
384 |
+
|
385 |
+
Store compressed data to disk, and load it again:
|
386 |
+
|
387 |
+
>>> a=np.array([[1, 2, 3], [4, 5, 6]])
|
388 |
+
>>> b=np.array([1, 2])
|
389 |
+
>>> np.savez('/tmp/123.npz', a=a, b=b)
|
390 |
+
>>> data = np.load('/tmp/123.npz')
|
391 |
+
>>> data['a']
|
392 |
+
array([[1, 2, 3],
|
393 |
+
[4, 5, 6]])
|
394 |
+
>>> data['b']
|
395 |
+
array([1, 2])
|
396 |
+
>>> data.close()
|
397 |
+
|
398 |
+
Mem-map the stored array, and then access the second row
|
399 |
+
directly from disk:
|
400 |
+
|
401 |
+
>>> X = np.load('/tmp/123.npy', mmap_mode='r')
|
402 |
+
>>> X[1, :]
|
403 |
+
memmap([4, 5, 6])
|
404 |
+
|
405 |
+
"""
|
406 |
+
if encoding not in ('ASCII', 'latin1', 'bytes'):
|
407 |
+
# The 'encoding' value for pickle also affects what encoding
|
408 |
+
# the serialized binary data of NumPy arrays is loaded
|
409 |
+
# in. Pickle does not pass on the encoding information to
|
410 |
+
# NumPy. The unpickling code in numpy.core.multiarray is
|
411 |
+
# written to assume that unicode data appearing where binary
|
412 |
+
# should be is in 'latin1'. 'bytes' is also safe, as is 'ASCII'.
|
413 |
+
#
|
414 |
+
# Other encoding values can corrupt binary data, and we
|
415 |
+
# purposefully disallow them. For the same reason, the errors=
|
416 |
+
# argument is not exposed, as values other than 'strict'
|
417 |
+
# result can similarly silently corrupt numerical data.
|
418 |
+
raise ValueError("encoding must be 'ASCII', 'latin1', or 'bytes'")
|
419 |
+
|
420 |
+
pickle_kwargs = dict(encoding=encoding, fix_imports=fix_imports)
|
421 |
+
|
422 |
+
with contextlib.ExitStack() as stack:
|
423 |
+
if hasattr(file, 'read'):
|
424 |
+
fid = file
|
425 |
+
own_fid = False
|
426 |
+
else:
|
427 |
+
fid = stack.enter_context(open(os_fspath(file), "rb"))
|
428 |
+
own_fid = True
|
429 |
+
|
430 |
+
# Code to distinguish from NumPy binary files and pickles.
|
431 |
+
_ZIP_PREFIX = b'PK\x03\x04'
|
432 |
+
_ZIP_SUFFIX = b'PK\x05\x06' # empty zip files start with this
|
433 |
+
N = len(format.MAGIC_PREFIX)
|
434 |
+
magic = fid.read(N)
|
435 |
+
if not magic:
|
436 |
+
raise EOFError("No data left in file")
|
437 |
+
# If the file size is less than N, we need to make sure not
|
438 |
+
# to seek past the beginning of the file
|
439 |
+
fid.seek(-min(N, len(magic)), 1) # back-up
|
440 |
+
if magic.startswith(_ZIP_PREFIX) or magic.startswith(_ZIP_SUFFIX):
|
441 |
+
# zip-file (assume .npz)
|
442 |
+
# Potentially transfer file ownership to NpzFile
|
443 |
+
stack.pop_all()
|
444 |
+
ret = NpzFile(fid, own_fid=own_fid, allow_pickle=allow_pickle,
|
445 |
+
pickle_kwargs=pickle_kwargs,
|
446 |
+
max_header_size=max_header_size)
|
447 |
+
return ret
|
448 |
+
elif magic == format.MAGIC_PREFIX:
|
449 |
+
# .npy file
|
450 |
+
if mmap_mode:
|
451 |
+
if allow_pickle:
|
452 |
+
max_header_size = 2**64
|
453 |
+
return format.open_memmap(file, mode=mmap_mode,
|
454 |
+
max_header_size=max_header_size)
|
455 |
+
else:
|
456 |
+
return format.read_array(fid, allow_pickle=allow_pickle,
|
457 |
+
pickle_kwargs=pickle_kwargs,
|
458 |
+
max_header_size=max_header_size)
|
459 |
+
else:
|
460 |
+
# Try a pickle
|
461 |
+
if not allow_pickle:
|
462 |
+
raise ValueError("Cannot load file containing pickled data "
|
463 |
+
"when allow_pickle=False")
|
464 |
+
try:
|
465 |
+
return pickle.load(fid, **pickle_kwargs)
|
466 |
+
except Exception as e:
|
467 |
+
raise pickle.UnpicklingError(
|
468 |
+
f"Failed to interpret file {file!r} as a pickle") from e
|
469 |
+
|
470 |
+
|
471 |
+
def _save_dispatcher(file, arr, allow_pickle=None, fix_imports=None):
|
472 |
+
return (arr,)
|
473 |
+
|
474 |
+
|
475 |
+
@array_function_dispatch(_save_dispatcher)
|
476 |
+
def save(file, arr, allow_pickle=True, fix_imports=True):
|
477 |
+
"""
|
478 |
+
Save an array to a binary file in NumPy ``.npy`` format.
|
479 |
+
|
480 |
+
Parameters
|
481 |
+
----------
|
482 |
+
file : file, str, or pathlib.Path
|
483 |
+
File or filename to which the data is saved. If file is a file-object,
|
484 |
+
then the filename is unchanged. If file is a string or Path, a ``.npy``
|
485 |
+
extension will be appended to the filename if it does not already
|
486 |
+
have one.
|
487 |
+
arr : array_like
|
488 |
+
Array data to be saved.
|
489 |
+
allow_pickle : bool, optional
|
490 |
+
Allow saving object arrays using Python pickles. Reasons for disallowing
|
491 |
+
pickles include security (loading pickled data can execute arbitrary
|
492 |
+
code) and portability (pickled objects may not be loadable on different
|
493 |
+
Python installations, for example if the stored objects require libraries
|
494 |
+
that are not available, and not all pickled data is compatible between
|
495 |
+
Python 2 and Python 3).
|
496 |
+
Default: True
|
497 |
+
fix_imports : bool, optional
|
498 |
+
Only useful in forcing objects in object arrays on Python 3 to be
|
499 |
+
pickled in a Python 2 compatible way. If `fix_imports` is True, pickle
|
500 |
+
will try to map the new Python 3 names to the old module names used in
|
501 |
+
Python 2, so that the pickle data stream is readable with Python 2.
|
502 |
+
|
503 |
+
See Also
|
504 |
+
--------
|
505 |
+
savez : Save several arrays into a ``.npz`` archive
|
506 |
+
savetxt, load
|
507 |
+
|
508 |
+
Notes
|
509 |
+
-----
|
510 |
+
For a description of the ``.npy`` format, see :py:mod:`numpy.lib.format`.
|
511 |
+
|
512 |
+
Any data saved to the file is appended to the end of the file.
|
513 |
+
|
514 |
+
Examples
|
515 |
+
--------
|
516 |
+
>>> from tempfile import TemporaryFile
|
517 |
+
>>> outfile = TemporaryFile()
|
518 |
+
|
519 |
+
>>> x = np.arange(10)
|
520 |
+
>>> np.save(outfile, x)
|
521 |
+
|
522 |
+
>>> _ = outfile.seek(0) # Only needed here to simulate closing & reopening file
|
523 |
+
>>> np.load(outfile)
|
524 |
+
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
|
525 |
+
|
526 |
+
|
527 |
+
>>> with open('test.npy', 'wb') as f:
|
528 |
+
... np.save(f, np.array([1, 2]))
|
529 |
+
... np.save(f, np.array([1, 3]))
|
530 |
+
>>> with open('test.npy', 'rb') as f:
|
531 |
+
... a = np.load(f)
|
532 |
+
... b = np.load(f)
|
533 |
+
>>> print(a, b)
|
534 |
+
# [1 2] [1 3]
|
535 |
+
"""
|
536 |
+
if hasattr(file, 'write'):
|
537 |
+
file_ctx = contextlib.nullcontext(file)
|
538 |
+
else:
|
539 |
+
file = os_fspath(file)
|
540 |
+
if not file.endswith('.npy'):
|
541 |
+
file = file + '.npy'
|
542 |
+
file_ctx = open(file, "wb")
|
543 |
+
|
544 |
+
with file_ctx as fid:
|
545 |
+
arr = np.asanyarray(arr)
|
546 |
+
format.write_array(fid, arr, allow_pickle=allow_pickle,
|
547 |
+
pickle_kwargs=dict(fix_imports=fix_imports))
|
548 |
+
|
549 |
+
|
550 |
+
def _savez_dispatcher(file, *args, **kwds):
|
551 |
+
yield from args
|
552 |
+
yield from kwds.values()
|
553 |
+
|
554 |
+
|
555 |
+
@array_function_dispatch(_savez_dispatcher)
|
556 |
+
def savez(file, *args, **kwds):
|
557 |
+
"""Save several arrays into a single file in uncompressed ``.npz`` format.
|
558 |
+
|
559 |
+
Provide arrays as keyword arguments to store them under the
|
560 |
+
corresponding name in the output file: ``savez(fn, x=x, y=y)``.
|
561 |
+
|
562 |
+
If arrays are specified as positional arguments, i.e., ``savez(fn,
|
563 |
+
x, y)``, their names will be `arr_0`, `arr_1`, etc.
|
564 |
+
|
565 |
+
Parameters
|
566 |
+
----------
|
567 |
+
file : str or file
|
568 |
+
Either the filename (string) or an open file (file-like object)
|
569 |
+
where the data will be saved. If file is a string or a Path, the
|
570 |
+
``.npz`` extension will be appended to the filename if it is not
|
571 |
+
already there.
|
572 |
+
args : Arguments, optional
|
573 |
+
Arrays to save to the file. Please use keyword arguments (see
|
574 |
+
`kwds` below) to assign names to arrays. Arrays specified as
|
575 |
+
args will be named "arr_0", "arr_1", and so on.
|
576 |
+
kwds : Keyword arguments, optional
|
577 |
+
Arrays to save to the file. Each array will be saved to the
|
578 |
+
output file with its corresponding keyword name.
|
579 |
+
|
580 |
+
Returns
|
581 |
+
-------
|
582 |
+
None
|
583 |
+
|
584 |
+
See Also
|
585 |
+
--------
|
586 |
+
save : Save a single array to a binary file in NumPy format.
|
587 |
+
savetxt : Save an array to a file as plain text.
|
588 |
+
savez_compressed : Save several arrays into a compressed ``.npz`` archive
|
589 |
+
|
590 |
+
Notes
|
591 |
+
-----
|
592 |
+
The ``.npz`` file format is a zipped archive of files named after the
|
593 |
+
variables they contain. The archive is not compressed and each file
|
594 |
+
in the archive contains one variable in ``.npy`` format. For a
|
595 |
+
description of the ``.npy`` format, see :py:mod:`numpy.lib.format`.
|
596 |
+
|
597 |
+
When opening the saved ``.npz`` file with `load` a `NpzFile` object is
|
598 |
+
returned. This is a dictionary-like object which can be queried for
|
599 |
+
its list of arrays (with the ``.files`` attribute), and for the arrays
|
600 |
+
themselves.
|
601 |
+
|
602 |
+
Keys passed in `kwds` are used as filenames inside the ZIP archive.
|
603 |
+
Therefore, keys should be valid filenames; e.g., avoid keys that begin with
|
604 |
+
``/`` or contain ``.``.
|
605 |
+
|
606 |
+
When naming variables with keyword arguments, it is not possible to name a
|
607 |
+
variable ``file``, as this would cause the ``file`` argument to be defined
|
608 |
+
twice in the call to ``savez``.
|
609 |
+
|
610 |
+
Examples
|
611 |
+
--------
|
612 |
+
>>> from tempfile import TemporaryFile
|
613 |
+
>>> outfile = TemporaryFile()
|
614 |
+
>>> x = np.arange(10)
|
615 |
+
>>> y = np.sin(x)
|
616 |
+
|
617 |
+
Using `savez` with \\*args, the arrays are saved with default names.
|
618 |
+
|
619 |
+
>>> np.savez(outfile, x, y)
|
620 |
+
>>> _ = outfile.seek(0) # Only needed here to simulate closing & reopening file
|
621 |
+
>>> npzfile = np.load(outfile)
|
622 |
+
>>> npzfile.files
|
623 |
+
['arr_0', 'arr_1']
|
624 |
+
>>> npzfile['arr_0']
|
625 |
+
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
|
626 |
+
|
627 |
+
Using `savez` with \\**kwds, the arrays are saved with the keyword names.
|
628 |
+
|
629 |
+
>>> outfile = TemporaryFile()
|
630 |
+
>>> np.savez(outfile, x=x, y=y)
|
631 |
+
>>> _ = outfile.seek(0)
|
632 |
+
>>> npzfile = np.load(outfile)
|
633 |
+
>>> sorted(npzfile.files)
|
634 |
+
['x', 'y']
|
635 |
+
>>> npzfile['x']
|
636 |
+
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
|
637 |
+
|
638 |
+
"""
|
639 |
+
_savez(file, args, kwds, False)
|
640 |
+
|
641 |
+
|
642 |
+
def _savez_compressed_dispatcher(file, *args, **kwds):
|
643 |
+
yield from args
|
644 |
+
yield from kwds.values()
|
645 |
+
|
646 |
+
|
647 |
+
@array_function_dispatch(_savez_compressed_dispatcher)
|
648 |
+
def savez_compressed(file, *args, **kwds):
|
649 |
+
"""
|
650 |
+
Save several arrays into a single file in compressed ``.npz`` format.
|
651 |
+
|
652 |
+
Provide arrays as keyword arguments to store them under the
|
653 |
+
corresponding name in the output file: ``savez(fn, x=x, y=y)``.
|
654 |
+
|
655 |
+
If arrays are specified as positional arguments, i.e., ``savez(fn,
|
656 |
+
x, y)``, their names will be `arr_0`, `arr_1`, etc.
|
657 |
+
|
658 |
+
Parameters
|
659 |
+
----------
|
660 |
+
file : str or file
|
661 |
+
Either the filename (string) or an open file (file-like object)
|
662 |
+
where the data will be saved. If file is a string or a Path, the
|
663 |
+
``.npz`` extension will be appended to the filename if it is not
|
664 |
+
already there.
|
665 |
+
args : Arguments, optional
|
666 |
+
Arrays to save to the file. Please use keyword arguments (see
|
667 |
+
`kwds` below) to assign names to arrays. Arrays specified as
|
668 |
+
args will be named "arr_0", "arr_1", and so on.
|
669 |
+
kwds : Keyword arguments, optional
|
670 |
+
Arrays to save to the file. Each array will be saved to the
|
671 |
+
output file with its corresponding keyword name.
|
672 |
+
|
673 |
+
Returns
|
674 |
+
-------
|
675 |
+
None
|
676 |
+
|
677 |
+
See Also
|
678 |
+
--------
|
679 |
+
numpy.save : Save a single array to a binary file in NumPy format.
|
680 |
+
numpy.savetxt : Save an array to a file as plain text.
|
681 |
+
numpy.savez : Save several arrays into an uncompressed ``.npz`` file format
|
682 |
+
numpy.load : Load the files created by savez_compressed.
|
683 |
+
|
684 |
+
Notes
|
685 |
+
-----
|
686 |
+
The ``.npz`` file format is a zipped archive of files named after the
|
687 |
+
variables they contain. The archive is compressed with
|
688 |
+
``zipfile.ZIP_DEFLATED`` and each file in the archive contains one variable
|
689 |
+
in ``.npy`` format. For a description of the ``.npy`` format, see
|
690 |
+
:py:mod:`numpy.lib.format`.
|
691 |
+
|
692 |
+
|
693 |
+
When opening the saved ``.npz`` file with `load` a `NpzFile` object is
|
694 |
+
returned. This is a dictionary-like object which can be queried for
|
695 |
+
its list of arrays (with the ``.files`` attribute), and for the arrays
|
696 |
+
themselves.
|
697 |
+
|
698 |
+
Examples
|
699 |
+
--------
|
700 |
+
>>> test_array = np.random.rand(3, 2)
|
701 |
+
>>> test_vector = np.random.rand(4)
|
702 |
+
>>> np.savez_compressed('/tmp/123', a=test_array, b=test_vector)
|
703 |
+
>>> loaded = np.load('/tmp/123.npz')
|
704 |
+
>>> print(np.array_equal(test_array, loaded['a']))
|
705 |
+
True
|
706 |
+
>>> print(np.array_equal(test_vector, loaded['b']))
|
707 |
+
True
|
708 |
+
|
709 |
+
"""
|
710 |
+
_savez(file, args, kwds, True)
|
711 |
+
|
712 |
+
|
713 |
+
def _savez(file, args, kwds, compress, allow_pickle=True, pickle_kwargs=None):
|
714 |
+
# Import is postponed to here since zipfile depends on gzip, an optional
|
715 |
+
# component of the so-called standard library.
|
716 |
+
import zipfile
|
717 |
+
|
718 |
+
if not hasattr(file, 'write'):
|
719 |
+
file = os_fspath(file)
|
720 |
+
if not file.endswith('.npz'):
|
721 |
+
file = file + '.npz'
|
722 |
+
|
723 |
+
namedict = kwds
|
724 |
+
for i, val in enumerate(args):
|
725 |
+
key = 'arr_%d' % i
|
726 |
+
if key in namedict.keys():
|
727 |
+
raise ValueError(
|
728 |
+
"Cannot use un-named variables and keyword %s" % key)
|
729 |
+
namedict[key] = val
|
730 |
+
|
731 |
+
if compress:
|
732 |
+
compression = zipfile.ZIP_DEFLATED
|
733 |
+
else:
|
734 |
+
compression = zipfile.ZIP_STORED
|
735 |
+
|
736 |
+
zipf = zipfile_factory(file, mode="w", compression=compression)
|
737 |
+
|
738 |
+
for key, val in namedict.items():
|
739 |
+
fname = key + '.npy'
|
740 |
+
val = np.asanyarray(val)
|
741 |
+
# always force zip64, gh-10776
|
742 |
+
with zipf.open(fname, 'w', force_zip64=True) as fid:
|
743 |
+
format.write_array(fid, val,
|
744 |
+
allow_pickle=allow_pickle,
|
745 |
+
pickle_kwargs=pickle_kwargs)
|
746 |
+
|
747 |
+
zipf.close()
|
748 |
+
|
749 |
+
|
750 |
+
def _ensure_ndmin_ndarray_check_param(ndmin):
|
751 |
+
"""Just checks if the param ndmin is supported on
|
752 |
+
_ensure_ndmin_ndarray. It is intended to be used as
|
753 |
+
verification before running anything expensive.
|
754 |
+
e.g. loadtxt, genfromtxt
|
755 |
+
"""
|
756 |
+
# Check correctness of the values of `ndmin`
|
757 |
+
if ndmin not in [0, 1, 2]:
|
758 |
+
raise ValueError(f"Illegal value of ndmin keyword: {ndmin}")
|
759 |
+
|
760 |
+
def _ensure_ndmin_ndarray(a, *, ndmin: int):
|
761 |
+
"""This is a helper function of loadtxt and genfromtxt to ensure
|
762 |
+
proper minimum dimension as requested
|
763 |
+
|
764 |
+
ndim : int. Supported values 1, 2, 3
|
765 |
+
^^ whenever this changes, keep in sync with
|
766 |
+
_ensure_ndmin_ndarray_check_param
|
767 |
+
"""
|
768 |
+
# Verify that the array has at least dimensions `ndmin`.
|
769 |
+
# Tweak the size and shape of the arrays - remove extraneous dimensions
|
770 |
+
if a.ndim > ndmin:
|
771 |
+
a = np.squeeze(a)
|
772 |
+
# and ensure we have the minimum number of dimensions asked for
|
773 |
+
# - has to be in this order for the odd case ndmin=1, a.squeeze().ndim=0
|
774 |
+
if a.ndim < ndmin:
|
775 |
+
if ndmin == 1:
|
776 |
+
a = np.atleast_1d(a)
|
777 |
+
elif ndmin == 2:
|
778 |
+
a = np.atleast_2d(a).T
|
779 |
+
|
780 |
+
return a
|
781 |
+
|
782 |
+
|
783 |
+
# amount of lines loadtxt reads in one chunk, can be overridden for testing
|
784 |
+
_loadtxt_chunksize = 50000
|
785 |
+
|
786 |
+
|
787 |
+
def _check_nonneg_int(value, name="argument"):
|
788 |
+
try:
|
789 |
+
operator.index(value)
|
790 |
+
except TypeError:
|
791 |
+
raise TypeError(f"{name} must be an integer") from None
|
792 |
+
if value < 0:
|
793 |
+
raise ValueError(f"{name} must be nonnegative")
|
794 |
+
|
795 |
+
|
796 |
+
def _preprocess_comments(iterable, comments, encoding):
|
797 |
+
"""
|
798 |
+
Generator that consumes a line iterated iterable and strips out the
|
799 |
+
multiple (or multi-character) comments from lines.
|
800 |
+
This is a pre-processing step to achieve feature parity with loadtxt
|
801 |
+
(we assume that this feature is a nieche feature).
|
802 |
+
"""
|
803 |
+
for line in iterable:
|
804 |
+
if isinstance(line, bytes):
|
805 |
+
# Need to handle conversion here, or the splitting would fail
|
806 |
+
line = line.decode(encoding)
|
807 |
+
|
808 |
+
for c in comments:
|
809 |
+
line = line.split(c, 1)[0]
|
810 |
+
|
811 |
+
yield line
|
812 |
+
|
813 |
+
|
814 |
+
# The number of rows we read in one go if confronted with a parametric dtype
|
815 |
+
_loadtxt_chunksize = 50000
|
816 |
+
|
817 |
+
|
818 |
+
def _read(fname, *, delimiter=',', comment='#', quote='"',
|
819 |
+
imaginary_unit='j', usecols=None, skiplines=0,
|
820 |
+
max_rows=None, converters=None, ndmin=None, unpack=False,
|
821 |
+
dtype=np.float64, encoding="bytes"):
|
822 |
+
r"""
|
823 |
+
Read a NumPy array from a text file.
|
824 |
+
|
825 |
+
Parameters
|
826 |
+
----------
|
827 |
+
fname : str or file object
|
828 |
+
The filename or the file to be read.
|
829 |
+
delimiter : str, optional
|
830 |
+
Field delimiter of the fields in line of the file.
|
831 |
+
Default is a comma, ','. If None any sequence of whitespace is
|
832 |
+
considered a delimiter.
|
833 |
+
comment : str or sequence of str or None, optional
|
834 |
+
Character that begins a comment. All text from the comment
|
835 |
+
character to the end of the line is ignored.
|
836 |
+
Multiple comments or multiple-character comment strings are supported,
|
837 |
+
but may be slower and `quote` must be empty if used.
|
838 |
+
Use None to disable all use of comments.
|
839 |
+
quote : str or None, optional
|
840 |
+
Character that is used to quote string fields. Default is '"'
|
841 |
+
(a double quote). Use None to disable quote support.
|
842 |
+
imaginary_unit : str, optional
|
843 |
+
Character that represent the imaginay unit `sqrt(-1)`.
|
844 |
+
Default is 'j'.
|
845 |
+
usecols : array_like, optional
|
846 |
+
A one-dimensional array of integer column numbers. These are the
|
847 |
+
columns from the file to be included in the array. If this value
|
848 |
+
is not given, all the columns are used.
|
849 |
+
skiplines : int, optional
|
850 |
+
Number of lines to skip before interpreting the data in the file.
|
851 |
+
max_rows : int, optional
|
852 |
+
Maximum number of rows of data to read. Default is to read the
|
853 |
+
entire file.
|
854 |
+
converters : dict or callable, optional
|
855 |
+
A function to parse all columns strings into the desired value, or
|
856 |
+
a dictionary mapping column number to a parser function.
|
857 |
+
E.g. if column 0 is a date string: ``converters = {0: datestr2num}``.
|
858 |
+
Converters can also be used to provide a default value for missing
|
859 |
+
data, e.g. ``converters = lambda s: float(s.strip() or 0)`` will
|
860 |
+
convert empty fields to 0.
|
861 |
+
Default: None
|
862 |
+
ndmin : int, optional
|
863 |
+
Minimum dimension of the array returned.
|
864 |
+
Allowed values are 0, 1 or 2. Default is 0.
|
865 |
+
unpack : bool, optional
|
866 |
+
If True, the returned array is transposed, so that arguments may be
|
867 |
+
unpacked using ``x, y, z = read(...)``. When used with a structured
|
868 |
+
data-type, arrays are returned for each field. Default is False.
|
869 |
+
dtype : numpy data type
|
870 |
+
A NumPy dtype instance, can be a structured dtype to map to the
|
871 |
+
columns of the file.
|
872 |
+
encoding : str, optional
|
873 |
+
Encoding used to decode the inputfile. The special value 'bytes'
|
874 |
+
(the default) enables backwards-compatible behavior for `converters`,
|
875 |
+
ensuring that inputs to the converter functions are encoded
|
876 |
+
bytes objects. The special value 'bytes' has no additional effect if
|
877 |
+
``converters=None``. If encoding is ``'bytes'`` or ``None``, the
|
878 |
+
default system encoding is used.
|
879 |
+
|
880 |
+
Returns
|
881 |
+
-------
|
882 |
+
ndarray
|
883 |
+
NumPy array.
|
884 |
+
|
885 |
+
Examples
|
886 |
+
--------
|
887 |
+
First we create a file for the example.
|
888 |
+
|
889 |
+
>>> s1 = '1.0,2.0,3.0\n4.0,5.0,6.0\n'
|
890 |
+
>>> with open('example1.csv', 'w') as f:
|
891 |
+
... f.write(s1)
|
892 |
+
>>> a1 = read_from_filename('example1.csv')
|
893 |
+
>>> a1
|
894 |
+
array([[1., 2., 3.],
|
895 |
+
[4., 5., 6.]])
|
896 |
+
|
897 |
+
The second example has columns with different data types, so a
|
898 |
+
one-dimensional array with a structured data type is returned.
|
899 |
+
The tab character is used as the field delimiter.
|
900 |
+
|
901 |
+
>>> s2 = '1.0\t10\talpha\n2.3\t25\tbeta\n4.5\t16\tgamma\n'
|
902 |
+
>>> with open('example2.tsv', 'w') as f:
|
903 |
+
... f.write(s2)
|
904 |
+
>>> a2 = read_from_filename('example2.tsv', delimiter='\t')
|
905 |
+
>>> a2
|
906 |
+
array([(1. , 10, b'alpha'), (2.3, 25, b'beta'), (4.5, 16, b'gamma')],
|
907 |
+
dtype=[('f0', '<f8'), ('f1', 'u1'), ('f2', 'S5')])
|
908 |
+
"""
|
909 |
+
# Handle special 'bytes' keyword for encoding
|
910 |
+
byte_converters = False
|
911 |
+
if encoding == 'bytes':
|
912 |
+
encoding = None
|
913 |
+
byte_converters = True
|
914 |
+
|
915 |
+
if dtype is None:
|
916 |
+
raise TypeError("a dtype must be provided.")
|
917 |
+
dtype = np.dtype(dtype)
|
918 |
+
|
919 |
+
read_dtype_via_object_chunks = None
|
920 |
+
if dtype.kind in 'SUM' and (
|
921 |
+
dtype == "S0" or dtype == "U0" or dtype == "M8" or dtype == 'm8'):
|
922 |
+
# This is a legacy "flexible" dtype. We do not truly support
|
923 |
+
# parametric dtypes currently (no dtype discovery step in the core),
|
924 |
+
# but have to support these for backward compatibility.
|
925 |
+
read_dtype_via_object_chunks = dtype
|
926 |
+
dtype = np.dtype(object)
|
927 |
+
|
928 |
+
if usecols is not None:
|
929 |
+
# Allow usecols to be a single int or a sequence of ints, the C-code
|
930 |
+
# handles the rest
|
931 |
+
try:
|
932 |
+
usecols = list(usecols)
|
933 |
+
except TypeError:
|
934 |
+
usecols = [usecols]
|
935 |
+
|
936 |
+
_ensure_ndmin_ndarray_check_param(ndmin)
|
937 |
+
|
938 |
+
if comment is None:
|
939 |
+
comments = None
|
940 |
+
else:
|
941 |
+
# assume comments are a sequence of strings
|
942 |
+
if "" in comment:
|
943 |
+
raise ValueError(
|
944 |
+
"comments cannot be an empty string. Use comments=None to "
|
945 |
+
"disable comments."
|
946 |
+
)
|
947 |
+
comments = tuple(comment)
|
948 |
+
comment = None
|
949 |
+
if len(comments) == 0:
|
950 |
+
comments = None # No comments at all
|
951 |
+
elif len(comments) == 1:
|
952 |
+
# If there is only one comment, and that comment has one character,
|
953 |
+
# the normal parsing can deal with it just fine.
|
954 |
+
if isinstance(comments[0], str) and len(comments[0]) == 1:
|
955 |
+
comment = comments[0]
|
956 |
+
comments = None
|
957 |
+
else:
|
958 |
+
# Input validation if there are multiple comment characters
|
959 |
+
if delimiter in comments:
|
960 |
+
raise TypeError(
|
961 |
+
f"Comment characters '{comments}' cannot include the "
|
962 |
+
f"delimiter '{delimiter}'"
|
963 |
+
)
|
964 |
+
|
965 |
+
# comment is now either a 1 or 0 character string or a tuple:
|
966 |
+
if comments is not None:
|
967 |
+
# Note: An earlier version support two character comments (and could
|
968 |
+
# have been extended to multiple characters, we assume this is
|
969 |
+
# rare enough to not optimize for.
|
970 |
+
if quote is not None:
|
971 |
+
raise ValueError(
|
972 |
+
"when multiple comments or a multi-character comment is "
|
973 |
+
"given, quotes are not supported. In this case quotechar "
|
974 |
+
"must be set to None.")
|
975 |
+
|
976 |
+
if len(imaginary_unit) != 1:
|
977 |
+
raise ValueError('len(imaginary_unit) must be 1.')
|
978 |
+
|
979 |
+
_check_nonneg_int(skiplines)
|
980 |
+
if max_rows is not None:
|
981 |
+
_check_nonneg_int(max_rows)
|
982 |
+
else:
|
983 |
+
# Passing -1 to the C code means "read the entire file".
|
984 |
+
max_rows = -1
|
985 |
+
|
986 |
+
fh_closing_ctx = contextlib.nullcontext()
|
987 |
+
filelike = False
|
988 |
+
try:
|
989 |
+
if isinstance(fname, os.PathLike):
|
990 |
+
fname = os.fspath(fname)
|
991 |
+
if isinstance(fname, str):
|
992 |
+
fh = np.lib._datasource.open(fname, 'rt', encoding=encoding)
|
993 |
+
if encoding is None:
|
994 |
+
encoding = getattr(fh, 'encoding', 'latin1')
|
995 |
+
|
996 |
+
fh_closing_ctx = contextlib.closing(fh)
|
997 |
+
data = fh
|
998 |
+
filelike = True
|
999 |
+
else:
|
1000 |
+
if encoding is None:
|
1001 |
+
encoding = getattr(fname, 'encoding', 'latin1')
|
1002 |
+
data = iter(fname)
|
1003 |
+
except TypeError as e:
|
1004 |
+
raise ValueError(
|
1005 |
+
f"fname must be a string, filehandle, list of strings,\n"
|
1006 |
+
f"or generator. Got {type(fname)} instead.") from e
|
1007 |
+
|
1008 |
+
with fh_closing_ctx:
|
1009 |
+
if comments is not None:
|
1010 |
+
if filelike:
|
1011 |
+
data = iter(data)
|
1012 |
+
filelike = False
|
1013 |
+
data = _preprocess_comments(data, comments, encoding)
|
1014 |
+
|
1015 |
+
if read_dtype_via_object_chunks is None:
|
1016 |
+
arr = _load_from_filelike(
|
1017 |
+
data, delimiter=delimiter, comment=comment, quote=quote,
|
1018 |
+
imaginary_unit=imaginary_unit,
|
1019 |
+
usecols=usecols, skiplines=skiplines, max_rows=max_rows,
|
1020 |
+
converters=converters, dtype=dtype,
|
1021 |
+
encoding=encoding, filelike=filelike,
|
1022 |
+
byte_converters=byte_converters)
|
1023 |
+
|
1024 |
+
else:
|
1025 |
+
# This branch reads the file into chunks of object arrays and then
|
1026 |
+
# casts them to the desired actual dtype. This ensures correct
|
1027 |
+
# string-length and datetime-unit discovery (like `arr.astype()`).
|
1028 |
+
# Due to chunking, certain error reports are less clear, currently.
|
1029 |
+
if filelike:
|
1030 |
+
data = iter(data) # cannot chunk when reading from file
|
1031 |
+
|
1032 |
+
c_byte_converters = False
|
1033 |
+
if read_dtype_via_object_chunks == "S":
|
1034 |
+
c_byte_converters = True # Use latin1 rather than ascii
|
1035 |
+
|
1036 |
+
chunks = []
|
1037 |
+
while max_rows != 0:
|
1038 |
+
if max_rows < 0:
|
1039 |
+
chunk_size = _loadtxt_chunksize
|
1040 |
+
else:
|
1041 |
+
chunk_size = min(_loadtxt_chunksize, max_rows)
|
1042 |
+
|
1043 |
+
next_arr = _load_from_filelike(
|
1044 |
+
data, delimiter=delimiter, comment=comment, quote=quote,
|
1045 |
+
imaginary_unit=imaginary_unit,
|
1046 |
+
usecols=usecols, skiplines=skiplines, max_rows=max_rows,
|
1047 |
+
converters=converters, dtype=dtype,
|
1048 |
+
encoding=encoding, filelike=filelike,
|
1049 |
+
byte_converters=byte_converters,
|
1050 |
+
c_byte_converters=c_byte_converters)
|
1051 |
+
# Cast here already. We hope that this is better even for
|
1052 |
+
# large files because the storage is more compact. It could
|
1053 |
+
# be adapted (in principle the concatenate could cast).
|
1054 |
+
chunks.append(next_arr.astype(read_dtype_via_object_chunks))
|
1055 |
+
|
1056 |
+
skiprows = 0 # Only have to skip for first chunk
|
1057 |
+
if max_rows >= 0:
|
1058 |
+
max_rows -= chunk_size
|
1059 |
+
if len(next_arr) < chunk_size:
|
1060 |
+
# There was less data than requested, so we are done.
|
1061 |
+
break
|
1062 |
+
|
1063 |
+
# Need at least one chunk, but if empty, the last one may have
|
1064 |
+
# the wrong shape.
|
1065 |
+
if len(chunks) > 1 and len(chunks[-1]) == 0:
|
1066 |
+
del chunks[-1]
|
1067 |
+
if len(chunks) == 1:
|
1068 |
+
arr = chunks[0]
|
1069 |
+
else:
|
1070 |
+
arr = np.concatenate(chunks, axis=0)
|
1071 |
+
|
1072 |
+
# NOTE: ndmin works as advertised for structured dtypes, but normally
|
1073 |
+
# these would return a 1D result plus the structured dimension,
|
1074 |
+
# so ndmin=2 adds a third dimension even when no squeezing occurs.
|
1075 |
+
# A `squeeze=False` could be a better solution (pandas uses squeeze).
|
1076 |
+
arr = _ensure_ndmin_ndarray(arr, ndmin=ndmin)
|
1077 |
+
|
1078 |
+
if arr.shape:
|
1079 |
+
if arr.shape[0] == 0:
|
1080 |
+
warnings.warn(
|
1081 |
+
f'loadtxt: input contained no data: "{fname}"',
|
1082 |
+
category=UserWarning,
|
1083 |
+
stacklevel=3
|
1084 |
+
)
|
1085 |
+
|
1086 |
+
if unpack:
|
1087 |
+
# Unpack structured dtypes if requested:
|
1088 |
+
dt = arr.dtype
|
1089 |
+
if dt.names is not None:
|
1090 |
+
# For structured arrays, return an array for each field.
|
1091 |
+
return [arr[field] for field in dt.names]
|
1092 |
+
else:
|
1093 |
+
return arr.T
|
1094 |
+
else:
|
1095 |
+
return arr
|
1096 |
+
|
1097 |
+
|
1098 |
+
@set_array_function_like_doc
|
1099 |
+
@set_module('numpy')
|
1100 |
+
def loadtxt(fname, dtype=float, comments='#', delimiter=None,
|
1101 |
+
converters=None, skiprows=0, usecols=None, unpack=False,
|
1102 |
+
ndmin=0, encoding='bytes', max_rows=None, *, quotechar=None,
|
1103 |
+
like=None):
|
1104 |
+
r"""
|
1105 |
+
Load data from a text file.
|
1106 |
+
|
1107 |
+
Parameters
|
1108 |
+
----------
|
1109 |
+
fname : file, str, pathlib.Path, list of str, generator
|
1110 |
+
File, filename, list, or generator to read. If the filename
|
1111 |
+
extension is ``.gz`` or ``.bz2``, the file is first decompressed. Note
|
1112 |
+
that generators must return bytes or strings. The strings
|
1113 |
+
in a list or produced by a generator are treated as lines.
|
1114 |
+
dtype : data-type, optional
|
1115 |
+
Data-type of the resulting array; default: float. If this is a
|
1116 |
+
structured data-type, the resulting array will be 1-dimensional, and
|
1117 |
+
each row will be interpreted as an element of the array. In this
|
1118 |
+
case, the number of columns used must match the number of fields in
|
1119 |
+
the data-type.
|
1120 |
+
comments : str or sequence of str or None, optional
|
1121 |
+
The characters or list of characters used to indicate the start of a
|
1122 |
+
comment. None implies no comments. For backwards compatibility, byte
|
1123 |
+
strings will be decoded as 'latin1'. The default is '#'.
|
1124 |
+
delimiter : str, optional
|
1125 |
+
The character used to separate the values. For backwards compatibility,
|
1126 |
+
byte strings will be decoded as 'latin1'. The default is whitespace.
|
1127 |
+
|
1128 |
+
.. versionchanged:: 1.23.0
|
1129 |
+
Only single character delimiters are supported. Newline characters
|
1130 |
+
cannot be used as the delimiter.
|
1131 |
+
|
1132 |
+
converters : dict or callable, optional
|
1133 |
+
Converter functions to customize value parsing. If `converters` is
|
1134 |
+
callable, the function is applied to all columns, else it must be a
|
1135 |
+
dict that maps column number to a parser function.
|
1136 |
+
See examples for further details.
|
1137 |
+
Default: None.
|
1138 |
+
|
1139 |
+
.. versionchanged:: 1.23.0
|
1140 |
+
The ability to pass a single callable to be applied to all columns
|
1141 |
+
was added.
|
1142 |
+
|
1143 |
+
skiprows : int, optional
|
1144 |
+
Skip the first `skiprows` lines, including comments; default: 0.
|
1145 |
+
usecols : int or sequence, optional
|
1146 |
+
Which columns to read, with 0 being the first. For example,
|
1147 |
+
``usecols = (1,4,5)`` will extract the 2nd, 5th and 6th columns.
|
1148 |
+
The default, None, results in all columns being read.
|
1149 |
+
|
1150 |
+
.. versionchanged:: 1.11.0
|
1151 |
+
When a single column has to be read it is possible to use
|
1152 |
+
an integer instead of a tuple. E.g ``usecols = 3`` reads the
|
1153 |
+
fourth column the same way as ``usecols = (3,)`` would.
|
1154 |
+
unpack : bool, optional
|
1155 |
+
If True, the returned array is transposed, so that arguments may be
|
1156 |
+
unpacked using ``x, y, z = loadtxt(...)``. When used with a
|
1157 |
+
structured data-type, arrays are returned for each field.
|
1158 |
+
Default is False.
|
1159 |
+
ndmin : int, optional
|
1160 |
+
The returned array will have at least `ndmin` dimensions.
|
1161 |
+
Otherwise mono-dimensional axes will be squeezed.
|
1162 |
+
Legal values: 0 (default), 1 or 2.
|
1163 |
+
|
1164 |
+
.. versionadded:: 1.6.0
|
1165 |
+
encoding : str, optional
|
1166 |
+
Encoding used to decode the inputfile. Does not apply to input streams.
|
1167 |
+
The special value 'bytes' enables backward compatibility workarounds
|
1168 |
+
that ensures you receive byte arrays as results if possible and passes
|
1169 |
+
'latin1' encoded strings to converters. Override this value to receive
|
1170 |
+
unicode arrays and pass strings as input to converters. If set to None
|
1171 |
+
the system default is used. The default value is 'bytes'.
|
1172 |
+
|
1173 |
+
.. versionadded:: 1.14.0
|
1174 |
+
max_rows : int, optional
|
1175 |
+
Read `max_rows` rows of content after `skiprows` lines. The default is
|
1176 |
+
to read all the rows. Note that empty rows containing no data such as
|
1177 |
+
empty lines and comment lines are not counted towards `max_rows`,
|
1178 |
+
while such lines are counted in `skiprows`.
|
1179 |
+
|
1180 |
+
.. versionadded:: 1.16.0
|
1181 |
+
|
1182 |
+
.. versionchanged:: 1.23.0
|
1183 |
+
Lines containing no data, including comment lines (e.g., lines
|
1184 |
+
starting with '#' or as specified via `comments`) are not counted
|
1185 |
+
towards `max_rows`.
|
1186 |
+
quotechar : unicode character or None, optional
|
1187 |
+
The character used to denote the start and end of a quoted item.
|
1188 |
+
Occurrences of the delimiter or comment characters are ignored within
|
1189 |
+
a quoted item. The default value is ``quotechar=None``, which means
|
1190 |
+
quoting support is disabled.
|
1191 |
+
|
1192 |
+
If two consecutive instances of `quotechar` are found within a quoted
|
1193 |
+
field, the first is treated as an escape character. See examples.
|
1194 |
+
|
1195 |
+
.. versionadded:: 1.23.0
|
1196 |
+
${ARRAY_FUNCTION_LIKE}
|
1197 |
+
|
1198 |
+
.. versionadded:: 1.20.0
|
1199 |
+
|
1200 |
+
Returns
|
1201 |
+
-------
|
1202 |
+
out : ndarray
|
1203 |
+
Data read from the text file.
|
1204 |
+
|
1205 |
+
See Also
|
1206 |
+
--------
|
1207 |
+
load, fromstring, fromregex
|
1208 |
+
genfromtxt : Load data with missing values handled as specified.
|
1209 |
+
scipy.io.loadmat : reads MATLAB data files
|
1210 |
+
|
1211 |
+
Notes
|
1212 |
+
-----
|
1213 |
+
This function aims to be a fast reader for simply formatted files. The
|
1214 |
+
`genfromtxt` function provides more sophisticated handling of, e.g.,
|
1215 |
+
lines with missing values.
|
1216 |
+
|
1217 |
+
Each row in the input text file must have the same number of values to be
|
1218 |
+
able to read all values. If all rows do not have same number of values, a
|
1219 |
+
subset of up to n columns (where n is the least number of values present
|
1220 |
+
in all rows) can be read by specifying the columns via `usecols`.
|
1221 |
+
|
1222 |
+
.. versionadded:: 1.10.0
|
1223 |
+
|
1224 |
+
The strings produced by the Python float.hex method can be used as
|
1225 |
+
input for floats.
|
1226 |
+
|
1227 |
+
Examples
|
1228 |
+
--------
|
1229 |
+
>>> from io import StringIO # StringIO behaves like a file object
|
1230 |
+
>>> c = StringIO("0 1\n2 3")
|
1231 |
+
>>> np.loadtxt(c)
|
1232 |
+
array([[0., 1.],
|
1233 |
+
[2., 3.]])
|
1234 |
+
|
1235 |
+
>>> d = StringIO("M 21 72\nF 35 58")
|
1236 |
+
>>> np.loadtxt(d, dtype={'names': ('gender', 'age', 'weight'),
|
1237 |
+
... 'formats': ('S1', 'i4', 'f4')})
|
1238 |
+
array([(b'M', 21, 72.), (b'F', 35, 58.)],
|
1239 |
+
dtype=[('gender', 'S1'), ('age', '<i4'), ('weight', '<f4')])
|
1240 |
+
|
1241 |
+
>>> c = StringIO("1,0,2\n3,0,4")
|
1242 |
+
>>> x, y = np.loadtxt(c, delimiter=',', usecols=(0, 2), unpack=True)
|
1243 |
+
>>> x
|
1244 |
+
array([1., 3.])
|
1245 |
+
>>> y
|
1246 |
+
array([2., 4.])
|
1247 |
+
|
1248 |
+
The `converters` argument is used to specify functions to preprocess the
|
1249 |
+
text prior to parsing. `converters` can be a dictionary that maps
|
1250 |
+
preprocessing functions to each column:
|
1251 |
+
|
1252 |
+
>>> s = StringIO("1.618, 2.296\n3.141, 4.669\n")
|
1253 |
+
>>> conv = {
|
1254 |
+
... 0: lambda x: np.floor(float(x)), # conversion fn for column 0
|
1255 |
+
... 1: lambda x: np.ceil(float(x)), # conversion fn for column 1
|
1256 |
+
... }
|
1257 |
+
>>> np.loadtxt(s, delimiter=",", converters=conv)
|
1258 |
+
array([[1., 3.],
|
1259 |
+
[3., 5.]])
|
1260 |
+
|
1261 |
+
`converters` can be a callable instead of a dictionary, in which case it
|
1262 |
+
is applied to all columns:
|
1263 |
+
|
1264 |
+
>>> s = StringIO("0xDE 0xAD\n0xC0 0xDE")
|
1265 |
+
>>> import functools
|
1266 |
+
>>> conv = functools.partial(int, base=16)
|
1267 |
+
>>> np.loadtxt(s, converters=conv)
|
1268 |
+
array([[222., 173.],
|
1269 |
+
[192., 222.]])
|
1270 |
+
|
1271 |
+
This example shows how `converters` can be used to convert a field
|
1272 |
+
with a trailing minus sign into a negative number.
|
1273 |
+
|
1274 |
+
>>> s = StringIO('10.01 31.25-\n19.22 64.31\n17.57- 63.94')
|
1275 |
+
>>> def conv(fld):
|
1276 |
+
... return -float(fld[:-1]) if fld.endswith(b'-') else float(fld)
|
1277 |
+
...
|
1278 |
+
>>> np.loadtxt(s, converters=conv)
|
1279 |
+
array([[ 10.01, -31.25],
|
1280 |
+
[ 19.22, 64.31],
|
1281 |
+
[-17.57, 63.94]])
|
1282 |
+
|
1283 |
+
Using a callable as the converter can be particularly useful for handling
|
1284 |
+
values with different formatting, e.g. floats with underscores:
|
1285 |
+
|
1286 |
+
>>> s = StringIO("1 2.7 100_000")
|
1287 |
+
>>> np.loadtxt(s, converters=float)
|
1288 |
+
array([1.e+00, 2.7e+00, 1.e+05])
|
1289 |
+
|
1290 |
+
This idea can be extended to automatically handle values specified in
|
1291 |
+
many different formats:
|
1292 |
+
|
1293 |
+
>>> def conv(val):
|
1294 |
+
... try:
|
1295 |
+
... return float(val)
|
1296 |
+
... except ValueError:
|
1297 |
+
... return float.fromhex(val)
|
1298 |
+
>>> s = StringIO("1, 2.5, 3_000, 0b4, 0x1.4000000000000p+2")
|
1299 |
+
>>> np.loadtxt(s, delimiter=",", converters=conv, encoding=None)
|
1300 |
+
array([1.0e+00, 2.5e+00, 3.0e+03, 1.8e+02, 5.0e+00])
|
1301 |
+
|
1302 |
+
Note that with the default ``encoding="bytes"``, the inputs to the
|
1303 |
+
converter function are latin-1 encoded byte strings. To deactivate the
|
1304 |
+
implicit encoding prior to conversion, use ``encoding=None``
|
1305 |
+
|
1306 |
+
>>> s = StringIO('10.01 31.25-\n19.22 64.31\n17.57- 63.94')
|
1307 |
+
>>> conv = lambda x: -float(x[:-1]) if x.endswith('-') else float(x)
|
1308 |
+
>>> np.loadtxt(s, converters=conv, encoding=None)
|
1309 |
+
array([[ 10.01, -31.25],
|
1310 |
+
[ 19.22, 64.31],
|
1311 |
+
[-17.57, 63.94]])
|
1312 |
+
|
1313 |
+
Support for quoted fields is enabled with the `quotechar` parameter.
|
1314 |
+
Comment and delimiter characters are ignored when they appear within a
|
1315 |
+
quoted item delineated by `quotechar`:
|
1316 |
+
|
1317 |
+
>>> s = StringIO('"alpha, #42", 10.0\n"beta, #64", 2.0\n')
|
1318 |
+
>>> dtype = np.dtype([("label", "U12"), ("value", float)])
|
1319 |
+
>>> np.loadtxt(s, dtype=dtype, delimiter=",", quotechar='"')
|
1320 |
+
array([('alpha, #42', 10.), ('beta, #64', 2.)],
|
1321 |
+
dtype=[('label', '<U12'), ('value', '<f8')])
|
1322 |
+
|
1323 |
+
Quoted fields can be separated by multiple whitespace characters:
|
1324 |
+
|
1325 |
+
>>> s = StringIO('"alpha, #42" 10.0\n"beta, #64" 2.0\n')
|
1326 |
+
>>> dtype = np.dtype([("label", "U12"), ("value", float)])
|
1327 |
+
>>> np.loadtxt(s, dtype=dtype, delimiter=None, quotechar='"')
|
1328 |
+
array([('alpha, #42', 10.), ('beta, #64', 2.)],
|
1329 |
+
dtype=[('label', '<U12'), ('value', '<f8')])
|
1330 |
+
|
1331 |
+
Two consecutive quote characters within a quoted field are treated as a
|
1332 |
+
single escaped character:
|
1333 |
+
|
1334 |
+
>>> s = StringIO('"Hello, my name is ""Monty""!"')
|
1335 |
+
>>> np.loadtxt(s, dtype="U", delimiter=",", quotechar='"')
|
1336 |
+
array('Hello, my name is "Monty"!', dtype='<U26')
|
1337 |
+
|
1338 |
+
Read subset of columns when all rows do not contain equal number of values:
|
1339 |
+
|
1340 |
+
>>> d = StringIO("1 2\n2 4\n3 9 12\n4 16 20")
|
1341 |
+
>>> np.loadtxt(d, usecols=(0, 1))
|
1342 |
+
array([[ 1., 2.],
|
1343 |
+
[ 2., 4.],
|
1344 |
+
[ 3., 9.],
|
1345 |
+
[ 4., 16.]])
|
1346 |
+
|
1347 |
+
"""
|
1348 |
+
|
1349 |
+
if like is not None:
|
1350 |
+
return _loadtxt_with_like(
|
1351 |
+
like, fname, dtype=dtype, comments=comments, delimiter=delimiter,
|
1352 |
+
converters=converters, skiprows=skiprows, usecols=usecols,
|
1353 |
+
unpack=unpack, ndmin=ndmin, encoding=encoding,
|
1354 |
+
max_rows=max_rows
|
1355 |
+
)
|
1356 |
+
|
1357 |
+
if isinstance(delimiter, bytes):
|
1358 |
+
delimiter.decode("latin1")
|
1359 |
+
|
1360 |
+
if dtype is None:
|
1361 |
+
dtype = np.float64
|
1362 |
+
|
1363 |
+
comment = comments
|
1364 |
+
# Control character type conversions for Py3 convenience
|
1365 |
+
if comment is not None:
|
1366 |
+
if isinstance(comment, (str, bytes)):
|
1367 |
+
comment = [comment]
|
1368 |
+
comment = [
|
1369 |
+
x.decode('latin1') if isinstance(x, bytes) else x for x in comment]
|
1370 |
+
if isinstance(delimiter, bytes):
|
1371 |
+
delimiter = delimiter.decode('latin1')
|
1372 |
+
|
1373 |
+
arr = _read(fname, dtype=dtype, comment=comment, delimiter=delimiter,
|
1374 |
+
converters=converters, skiplines=skiprows, usecols=usecols,
|
1375 |
+
unpack=unpack, ndmin=ndmin, encoding=encoding,
|
1376 |
+
max_rows=max_rows, quote=quotechar)
|
1377 |
+
|
1378 |
+
return arr
|
1379 |
+
|
1380 |
+
|
1381 |
+
_loadtxt_with_like = array_function_dispatch()(loadtxt)
|
1382 |
+
|
1383 |
+
|
1384 |
+
def _savetxt_dispatcher(fname, X, fmt=None, delimiter=None, newline=None,
|
1385 |
+
header=None, footer=None, comments=None,
|
1386 |
+
encoding=None):
|
1387 |
+
return (X,)
|
1388 |
+
|
1389 |
+
|
1390 |
+
@array_function_dispatch(_savetxt_dispatcher)
|
1391 |
+
def savetxt(fname, X, fmt='%.18e', delimiter=' ', newline='\n', header='',
|
1392 |
+
footer='', comments='# ', encoding=None):
|
1393 |
+
"""
|
1394 |
+
Save an array to a text file.
|
1395 |
+
|
1396 |
+
Parameters
|
1397 |
+
----------
|
1398 |
+
fname : filename or file handle
|
1399 |
+
If the filename ends in ``.gz``, the file is automatically saved in
|
1400 |
+
compressed gzip format. `loadtxt` understands gzipped files
|
1401 |
+
transparently.
|
1402 |
+
X : 1D or 2D array_like
|
1403 |
+
Data to be saved to a text file.
|
1404 |
+
fmt : str or sequence of strs, optional
|
1405 |
+
A single format (%10.5f), a sequence of formats, or a
|
1406 |
+
multi-format string, e.g. 'Iteration %d -- %10.5f', in which
|
1407 |
+
case `delimiter` is ignored. For complex `X`, the legal options
|
1408 |
+
for `fmt` are:
|
1409 |
+
|
1410 |
+
* a single specifier, `fmt='%.4e'`, resulting in numbers formatted
|
1411 |
+
like `' (%s+%sj)' % (fmt, fmt)`
|
1412 |
+
* a full string specifying every real and imaginary part, e.g.
|
1413 |
+
`' %.4e %+.4ej %.4e %+.4ej %.4e %+.4ej'` for 3 columns
|
1414 |
+
* a list of specifiers, one per column - in this case, the real
|
1415 |
+
and imaginary part must have separate specifiers,
|
1416 |
+
e.g. `['%.3e + %.3ej', '(%.15e%+.15ej)']` for 2 columns
|
1417 |
+
delimiter : str, optional
|
1418 |
+
String or character separating columns.
|
1419 |
+
newline : str, optional
|
1420 |
+
String or character separating lines.
|
1421 |
+
|
1422 |
+
.. versionadded:: 1.5.0
|
1423 |
+
header : str, optional
|
1424 |
+
String that will be written at the beginning of the file.
|
1425 |
+
|
1426 |
+
.. versionadded:: 1.7.0
|
1427 |
+
footer : str, optional
|
1428 |
+
String that will be written at the end of the file.
|
1429 |
+
|
1430 |
+
.. versionadded:: 1.7.0
|
1431 |
+
comments : str, optional
|
1432 |
+
String that will be prepended to the ``header`` and ``footer`` strings,
|
1433 |
+
to mark them as comments. Default: '# ', as expected by e.g.
|
1434 |
+
``numpy.loadtxt``.
|
1435 |
+
|
1436 |
+
.. versionadded:: 1.7.0
|
1437 |
+
encoding : {None, str}, optional
|
1438 |
+
Encoding used to encode the outputfile. Does not apply to output
|
1439 |
+
streams. If the encoding is something other than 'bytes' or 'latin1'
|
1440 |
+
you will not be able to load the file in NumPy versions < 1.14. Default
|
1441 |
+
is 'latin1'.
|
1442 |
+
|
1443 |
+
.. versionadded:: 1.14.0
|
1444 |
+
|
1445 |
+
|
1446 |
+
See Also
|
1447 |
+
--------
|
1448 |
+
save : Save an array to a binary file in NumPy ``.npy`` format
|
1449 |
+
savez : Save several arrays into an uncompressed ``.npz`` archive
|
1450 |
+
savez_compressed : Save several arrays into a compressed ``.npz`` archive
|
1451 |
+
|
1452 |
+
Notes
|
1453 |
+
-----
|
1454 |
+
Further explanation of the `fmt` parameter
|
1455 |
+
(``%[flag]width[.precision]specifier``):
|
1456 |
+
|
1457 |
+
flags:
|
1458 |
+
``-`` : left justify
|
1459 |
+
|
1460 |
+
``+`` : Forces to precede result with + or -.
|
1461 |
+
|
1462 |
+
``0`` : Left pad the number with zeros instead of space (see width).
|
1463 |
+
|
1464 |
+
width:
|
1465 |
+
Minimum number of characters to be printed. The value is not truncated
|
1466 |
+
if it has more characters.
|
1467 |
+
|
1468 |
+
precision:
|
1469 |
+
- For integer specifiers (eg. ``d,i,o,x``), the minimum number of
|
1470 |
+
digits.
|
1471 |
+
- For ``e, E`` and ``f`` specifiers, the number of digits to print
|
1472 |
+
after the decimal point.
|
1473 |
+
- For ``g`` and ``G``, the maximum number of significant digits.
|
1474 |
+
- For ``s``, the maximum number of characters.
|
1475 |
+
|
1476 |
+
specifiers:
|
1477 |
+
``c`` : character
|
1478 |
+
|
1479 |
+
``d`` or ``i`` : signed decimal integer
|
1480 |
+
|
1481 |
+
``e`` or ``E`` : scientific notation with ``e`` or ``E``.
|
1482 |
+
|
1483 |
+
``f`` : decimal floating point
|
1484 |
+
|
1485 |
+
``g,G`` : use the shorter of ``e,E`` or ``f``
|
1486 |
+
|
1487 |
+
``o`` : signed octal
|
1488 |
+
|
1489 |
+
``s`` : string of characters
|
1490 |
+
|
1491 |
+
``u`` : unsigned decimal integer
|
1492 |
+
|
1493 |
+
``x,X`` : unsigned hexadecimal integer
|
1494 |
+
|
1495 |
+
This explanation of ``fmt`` is not complete, for an exhaustive
|
1496 |
+
specification see [1]_.
|
1497 |
+
|
1498 |
+
References
|
1499 |
+
----------
|
1500 |
+
.. [1] `Format Specification Mini-Language
|
1501 |
+
<https://docs.python.org/library/string.html#format-specification-mini-language>`_,
|
1502 |
+
Python Documentation.
|
1503 |
+
|
1504 |
+
Examples
|
1505 |
+
--------
|
1506 |
+
>>> x = y = z = np.arange(0.0,5.0,1.0)
|
1507 |
+
>>> np.savetxt('test.out', x, delimiter=',') # X is an array
|
1508 |
+
>>> np.savetxt('test.out', (x,y,z)) # x,y,z equal sized 1D arrays
|
1509 |
+
>>> np.savetxt('test.out', x, fmt='%1.4e') # use exponential notation
|
1510 |
+
|
1511 |
+
"""
|
1512 |
+
|
1513 |
+
# Py3 conversions first
|
1514 |
+
if isinstance(fmt, bytes):
|
1515 |
+
fmt = asstr(fmt)
|
1516 |
+
delimiter = asstr(delimiter)
|
1517 |
+
|
1518 |
+
class WriteWrap:
|
1519 |
+
"""Convert to bytes on bytestream inputs.
|
1520 |
+
|
1521 |
+
"""
|
1522 |
+
def __init__(self, fh, encoding):
|
1523 |
+
self.fh = fh
|
1524 |
+
self.encoding = encoding
|
1525 |
+
self.do_write = self.first_write
|
1526 |
+
|
1527 |
+
def close(self):
|
1528 |
+
self.fh.close()
|
1529 |
+
|
1530 |
+
def write(self, v):
|
1531 |
+
self.do_write(v)
|
1532 |
+
|
1533 |
+
def write_bytes(self, v):
|
1534 |
+
if isinstance(v, bytes):
|
1535 |
+
self.fh.write(v)
|
1536 |
+
else:
|
1537 |
+
self.fh.write(v.encode(self.encoding))
|
1538 |
+
|
1539 |
+
def write_normal(self, v):
|
1540 |
+
self.fh.write(asunicode(v))
|
1541 |
+
|
1542 |
+
def first_write(self, v):
|
1543 |
+
try:
|
1544 |
+
self.write_normal(v)
|
1545 |
+
self.write = self.write_normal
|
1546 |
+
except TypeError:
|
1547 |
+
# input is probably a bytestream
|
1548 |
+
self.write_bytes(v)
|
1549 |
+
self.write = self.write_bytes
|
1550 |
+
|
1551 |
+
own_fh = False
|
1552 |
+
if isinstance(fname, os_PathLike):
|
1553 |
+
fname = os_fspath(fname)
|
1554 |
+
if _is_string_like(fname):
|
1555 |
+
# datasource doesn't support creating a new file ...
|
1556 |
+
open(fname, 'wt').close()
|
1557 |
+
fh = np.lib._datasource.open(fname, 'wt', encoding=encoding)
|
1558 |
+
own_fh = True
|
1559 |
+
elif hasattr(fname, 'write'):
|
1560 |
+
# wrap to handle byte output streams
|
1561 |
+
fh = WriteWrap(fname, encoding or 'latin1')
|
1562 |
+
else:
|
1563 |
+
raise ValueError('fname must be a string or file handle')
|
1564 |
+
|
1565 |
+
try:
|
1566 |
+
X = np.asarray(X)
|
1567 |
+
|
1568 |
+
# Handle 1-dimensional arrays
|
1569 |
+
if X.ndim == 0 or X.ndim > 2:
|
1570 |
+
raise ValueError(
|
1571 |
+
"Expected 1D or 2D array, got %dD array instead" % X.ndim)
|
1572 |
+
elif X.ndim == 1:
|
1573 |
+
# Common case -- 1d array of numbers
|
1574 |
+
if X.dtype.names is None:
|
1575 |
+
X = np.atleast_2d(X).T
|
1576 |
+
ncol = 1
|
1577 |
+
|
1578 |
+
# Complex dtype -- each field indicates a separate column
|
1579 |
+
else:
|
1580 |
+
ncol = len(X.dtype.names)
|
1581 |
+
else:
|
1582 |
+
ncol = X.shape[1]
|
1583 |
+
|
1584 |
+
iscomplex_X = np.iscomplexobj(X)
|
1585 |
+
# `fmt` can be a string with multiple insertion points or a
|
1586 |
+
# list of formats. E.g. '%10.5f\t%10d' or ('%10.5f', '$10d')
|
1587 |
+
if type(fmt) in (list, tuple):
|
1588 |
+
if len(fmt) != ncol:
|
1589 |
+
raise AttributeError('fmt has wrong shape. %s' % str(fmt))
|
1590 |
+
format = asstr(delimiter).join(map(asstr, fmt))
|
1591 |
+
elif isinstance(fmt, str):
|
1592 |
+
n_fmt_chars = fmt.count('%')
|
1593 |
+
error = ValueError('fmt has wrong number of %% formats: %s' % fmt)
|
1594 |
+
if n_fmt_chars == 1:
|
1595 |
+
if iscomplex_X:
|
1596 |
+
fmt = [' (%s+%sj)' % (fmt, fmt), ] * ncol
|
1597 |
+
else:
|
1598 |
+
fmt = [fmt, ] * ncol
|
1599 |
+
format = delimiter.join(fmt)
|
1600 |
+
elif iscomplex_X and n_fmt_chars != (2 * ncol):
|
1601 |
+
raise error
|
1602 |
+
elif ((not iscomplex_X) and n_fmt_chars != ncol):
|
1603 |
+
raise error
|
1604 |
+
else:
|
1605 |
+
format = fmt
|
1606 |
+
else:
|
1607 |
+
raise ValueError('invalid fmt: %r' % (fmt,))
|
1608 |
+
|
1609 |
+
if len(header) > 0:
|
1610 |
+
header = header.replace('\n', '\n' + comments)
|
1611 |
+
fh.write(comments + header + newline)
|
1612 |
+
if iscomplex_X:
|
1613 |
+
for row in X:
|
1614 |
+
row2 = []
|
1615 |
+
for number in row:
|
1616 |
+
row2.append(number.real)
|
1617 |
+
row2.append(number.imag)
|
1618 |
+
s = format % tuple(row2) + newline
|
1619 |
+
fh.write(s.replace('+-', '-'))
|
1620 |
+
else:
|
1621 |
+
for row in X:
|
1622 |
+
try:
|
1623 |
+
v = format % tuple(row) + newline
|
1624 |
+
except TypeError as e:
|
1625 |
+
raise TypeError("Mismatch between array dtype ('%s') and "
|
1626 |
+
"format specifier ('%s')"
|
1627 |
+
% (str(X.dtype), format)) from e
|
1628 |
+
fh.write(v)
|
1629 |
+
|
1630 |
+
if len(footer) > 0:
|
1631 |
+
footer = footer.replace('\n', '\n' + comments)
|
1632 |
+
fh.write(comments + footer + newline)
|
1633 |
+
finally:
|
1634 |
+
if own_fh:
|
1635 |
+
fh.close()
|
1636 |
+
|
1637 |
+
|
1638 |
+
@set_module('numpy')
|
1639 |
+
def fromregex(file, regexp, dtype, encoding=None):
|
1640 |
+
r"""
|
1641 |
+
Construct an array from a text file, using regular expression parsing.
|
1642 |
+
|
1643 |
+
The returned array is always a structured array, and is constructed from
|
1644 |
+
all matches of the regular expression in the file. Groups in the regular
|
1645 |
+
expression are converted to fields of the structured array.
|
1646 |
+
|
1647 |
+
Parameters
|
1648 |
+
----------
|
1649 |
+
file : path or file
|
1650 |
+
Filename or file object to read.
|
1651 |
+
|
1652 |
+
.. versionchanged:: 1.22.0
|
1653 |
+
Now accepts `os.PathLike` implementations.
|
1654 |
+
regexp : str or regexp
|
1655 |
+
Regular expression used to parse the file.
|
1656 |
+
Groups in the regular expression correspond to fields in the dtype.
|
1657 |
+
dtype : dtype or list of dtypes
|
1658 |
+
Dtype for the structured array; must be a structured datatype.
|
1659 |
+
encoding : str, optional
|
1660 |
+
Encoding used to decode the inputfile. Does not apply to input streams.
|
1661 |
+
|
1662 |
+
.. versionadded:: 1.14.0
|
1663 |
+
|
1664 |
+
Returns
|
1665 |
+
-------
|
1666 |
+
output : ndarray
|
1667 |
+
The output array, containing the part of the content of `file` that
|
1668 |
+
was matched by `regexp`. `output` is always a structured array.
|
1669 |
+
|
1670 |
+
Raises
|
1671 |
+
------
|
1672 |
+
TypeError
|
1673 |
+
When `dtype` is not a valid dtype for a structured array.
|
1674 |
+
|
1675 |
+
See Also
|
1676 |
+
--------
|
1677 |
+
fromstring, loadtxt
|
1678 |
+
|
1679 |
+
Notes
|
1680 |
+
-----
|
1681 |
+
Dtypes for structured arrays can be specified in several forms, but all
|
1682 |
+
forms specify at least the data type and field name. For details see
|
1683 |
+
`basics.rec`.
|
1684 |
+
|
1685 |
+
Examples
|
1686 |
+
--------
|
1687 |
+
>>> from io import StringIO
|
1688 |
+
>>> text = StringIO("1312 foo\n1534 bar\n444 qux")
|
1689 |
+
|
1690 |
+
>>> regexp = r"(\d+)\s+(...)" # match [digits, whitespace, anything]
|
1691 |
+
>>> output = np.fromregex(text, regexp,
|
1692 |
+
... [('num', np.int64), ('key', 'S3')])
|
1693 |
+
>>> output
|
1694 |
+
array([(1312, b'foo'), (1534, b'bar'), ( 444, b'qux')],
|
1695 |
+
dtype=[('num', '<i8'), ('key', 'S3')])
|
1696 |
+
>>> output['num']
|
1697 |
+
array([1312, 1534, 444])
|
1698 |
+
|
1699 |
+
"""
|
1700 |
+
own_fh = False
|
1701 |
+
if not hasattr(file, "read"):
|
1702 |
+
file = os.fspath(file)
|
1703 |
+
file = np.lib._datasource.open(file, 'rt', encoding=encoding)
|
1704 |
+
own_fh = True
|
1705 |
+
|
1706 |
+
try:
|
1707 |
+
if not isinstance(dtype, np.dtype):
|
1708 |
+
dtype = np.dtype(dtype)
|
1709 |
+
if dtype.names is None:
|
1710 |
+
raise TypeError('dtype must be a structured datatype.')
|
1711 |
+
|
1712 |
+
content = file.read()
|
1713 |
+
if isinstance(content, bytes) and isinstance(regexp, str):
|
1714 |
+
regexp = asbytes(regexp)
|
1715 |
+
elif isinstance(content, str) and isinstance(regexp, bytes):
|
1716 |
+
regexp = asstr(regexp)
|
1717 |
+
|
1718 |
+
if not hasattr(regexp, 'match'):
|
1719 |
+
regexp = re.compile(regexp)
|
1720 |
+
seq = regexp.findall(content)
|
1721 |
+
if seq and not isinstance(seq[0], tuple):
|
1722 |
+
# Only one group is in the regexp.
|
1723 |
+
# Create the new array as a single data-type and then
|
1724 |
+
# re-interpret as a single-field structured array.
|
1725 |
+
newdtype = np.dtype(dtype[dtype.names[0]])
|
1726 |
+
output = np.array(seq, dtype=newdtype)
|
1727 |
+
output.dtype = dtype
|
1728 |
+
else:
|
1729 |
+
output = np.array(seq, dtype=dtype)
|
1730 |
+
|
1731 |
+
return output
|
1732 |
+
finally:
|
1733 |
+
if own_fh:
|
1734 |
+
file.close()
|
1735 |
+
|
1736 |
+
|
1737 |
+
#####--------------------------------------------------------------------------
|
1738 |
+
#---- --- ASCII functions ---
|
1739 |
+
#####--------------------------------------------------------------------------
|
1740 |
+
|
1741 |
+
|
1742 |
+
@set_array_function_like_doc
|
1743 |
+
@set_module('numpy')
|
1744 |
+
def genfromtxt(fname, dtype=float, comments='#', delimiter=None,
|
1745 |
+
skip_header=0, skip_footer=0, converters=None,
|
1746 |
+
missing_values=None, filling_values=None, usecols=None,
|
1747 |
+
names=None, excludelist=None,
|
1748 |
+
deletechars=''.join(sorted(NameValidator.defaultdeletechars)),
|
1749 |
+
replace_space='_', autostrip=False, case_sensitive=True,
|
1750 |
+
defaultfmt="f%i", unpack=None, usemask=False, loose=True,
|
1751 |
+
invalid_raise=True, max_rows=None, encoding='bytes',
|
1752 |
+
*, ndmin=0, like=None):
|
1753 |
+
"""
|
1754 |
+
Load data from a text file, with missing values handled as specified.
|
1755 |
+
|
1756 |
+
Each line past the first `skip_header` lines is split at the `delimiter`
|
1757 |
+
character, and characters following the `comments` character are discarded.
|
1758 |
+
|
1759 |
+
Parameters
|
1760 |
+
----------
|
1761 |
+
fname : file, str, pathlib.Path, list of str, generator
|
1762 |
+
File, filename, list, or generator to read. If the filename
|
1763 |
+
extension is ``.gz`` or ``.bz2``, the file is first decompressed. Note
|
1764 |
+
that generators must return bytes or strings. The strings
|
1765 |
+
in a list or produced by a generator are treated as lines.
|
1766 |
+
dtype : dtype, optional
|
1767 |
+
Data type of the resulting array.
|
1768 |
+
If None, the dtypes will be determined by the contents of each
|
1769 |
+
column, individually.
|
1770 |
+
comments : str, optional
|
1771 |
+
The character used to indicate the start of a comment.
|
1772 |
+
All the characters occurring on a line after a comment are discarded.
|
1773 |
+
delimiter : str, int, or sequence, optional
|
1774 |
+
The string used to separate values. By default, any consecutive
|
1775 |
+
whitespaces act as delimiter. An integer or sequence of integers
|
1776 |
+
can also be provided as width(s) of each field.
|
1777 |
+
skiprows : int, optional
|
1778 |
+
`skiprows` was removed in numpy 1.10. Please use `skip_header` instead.
|
1779 |
+
skip_header : int, optional
|
1780 |
+
The number of lines to skip at the beginning of the file.
|
1781 |
+
skip_footer : int, optional
|
1782 |
+
The number of lines to skip at the end of the file.
|
1783 |
+
converters : variable, optional
|
1784 |
+
The set of functions that convert the data of a column to a value.
|
1785 |
+
The converters can also be used to provide a default value
|
1786 |
+
for missing data: ``converters = {3: lambda s: float(s or 0)}``.
|
1787 |
+
missing : variable, optional
|
1788 |
+
`missing` was removed in numpy 1.10. Please use `missing_values`
|
1789 |
+
instead.
|
1790 |
+
missing_values : variable, optional
|
1791 |
+
The set of strings corresponding to missing data.
|
1792 |
+
filling_values : variable, optional
|
1793 |
+
The set of values to be used as default when the data are missing.
|
1794 |
+
usecols : sequence, optional
|
1795 |
+
Which columns to read, with 0 being the first. For example,
|
1796 |
+
``usecols = (1, 4, 5)`` will extract the 2nd, 5th and 6th columns.
|
1797 |
+
names : {None, True, str, sequence}, optional
|
1798 |
+
If `names` is True, the field names are read from the first line after
|
1799 |
+
the first `skip_header` lines. This line can optionally be preceded
|
1800 |
+
by a comment delimiter. If `names` is a sequence or a single-string of
|
1801 |
+
comma-separated names, the names will be used to define the field names
|
1802 |
+
in a structured dtype. If `names` is None, the names of the dtype
|
1803 |
+
fields will be used, if any.
|
1804 |
+
excludelist : sequence, optional
|
1805 |
+
A list of names to exclude. This list is appended to the default list
|
1806 |
+
['return','file','print']. Excluded names are appended with an
|
1807 |
+
underscore: for example, `file` would become `file_`.
|
1808 |
+
deletechars : str, optional
|
1809 |
+
A string combining invalid characters that must be deleted from the
|
1810 |
+
names.
|
1811 |
+
defaultfmt : str, optional
|
1812 |
+
A format used to define default field names, such as "f%i" or "f_%02i".
|
1813 |
+
autostrip : bool, optional
|
1814 |
+
Whether to automatically strip white spaces from the variables.
|
1815 |
+
replace_space : char, optional
|
1816 |
+
Character(s) used in replacement of white spaces in the variable
|
1817 |
+
names. By default, use a '_'.
|
1818 |
+
case_sensitive : {True, False, 'upper', 'lower'}, optional
|
1819 |
+
If True, field names are case sensitive.
|
1820 |
+
If False or 'upper', field names are converted to upper case.
|
1821 |
+
If 'lower', field names are converted to lower case.
|
1822 |
+
unpack : bool, optional
|
1823 |
+
If True, the returned array is transposed, so that arguments may be
|
1824 |
+
unpacked using ``x, y, z = genfromtxt(...)``. When used with a
|
1825 |
+
structured data-type, arrays are returned for each field.
|
1826 |
+
Default is False.
|
1827 |
+
usemask : bool, optional
|
1828 |
+
If True, return a masked array.
|
1829 |
+
If False, return a regular array.
|
1830 |
+
loose : bool, optional
|
1831 |
+
If True, do not raise errors for invalid values.
|
1832 |
+
invalid_raise : bool, optional
|
1833 |
+
If True, an exception is raised if an inconsistency is detected in the
|
1834 |
+
number of columns.
|
1835 |
+
If False, a warning is emitted and the offending lines are skipped.
|
1836 |
+
max_rows : int, optional
|
1837 |
+
The maximum number of rows to read. Must not be used with skip_footer
|
1838 |
+
at the same time. If given, the value must be at least 1. Default is
|
1839 |
+
to read the entire file.
|
1840 |
+
|
1841 |
+
.. versionadded:: 1.10.0
|
1842 |
+
encoding : str, optional
|
1843 |
+
Encoding used to decode the inputfile. Does not apply when `fname` is
|
1844 |
+
a file object. The special value 'bytes' enables backward compatibility
|
1845 |
+
workarounds that ensure that you receive byte arrays when possible
|
1846 |
+
and passes latin1 encoded strings to converters. Override this value to
|
1847 |
+
receive unicode arrays and pass strings as input to converters. If set
|
1848 |
+
to None the system default is used. The default value is 'bytes'.
|
1849 |
+
|
1850 |
+
.. versionadded:: 1.14.0
|
1851 |
+
ndmin : int, optional
|
1852 |
+
Same parameter as `loadtxt`
|
1853 |
+
|
1854 |
+
.. versionadded:: 1.23.0
|
1855 |
+
${ARRAY_FUNCTION_LIKE}
|
1856 |
+
|
1857 |
+
.. versionadded:: 1.20.0
|
1858 |
+
|
1859 |
+
Returns
|
1860 |
+
-------
|
1861 |
+
out : ndarray
|
1862 |
+
Data read from the text file. If `usemask` is True, this is a
|
1863 |
+
masked array.
|
1864 |
+
|
1865 |
+
See Also
|
1866 |
+
--------
|
1867 |
+
numpy.loadtxt : equivalent function when no data is missing.
|
1868 |
+
|
1869 |
+
Notes
|
1870 |
+
-----
|
1871 |
+
* When spaces are used as delimiters, or when no delimiter has been given
|
1872 |
+
as input, there should not be any missing data between two fields.
|
1873 |
+
* When the variables are named (either by a flexible dtype or with `names`),
|
1874 |
+
there must not be any header in the file (else a ValueError
|
1875 |
+
exception is raised).
|
1876 |
+
* Individual values are not stripped of spaces by default.
|
1877 |
+
When using a custom converter, make sure the function does remove spaces.
|
1878 |
+
|
1879 |
+
References
|
1880 |
+
----------
|
1881 |
+
.. [1] NumPy User Guide, section `I/O with NumPy
|
1882 |
+
<https://docs.scipy.org/doc/numpy/user/basics.io.genfromtxt.html>`_.
|
1883 |
+
|
1884 |
+
Examples
|
1885 |
+
--------
|
1886 |
+
>>> from io import StringIO
|
1887 |
+
>>> import numpy as np
|
1888 |
+
|
1889 |
+
Comma delimited file with mixed dtype
|
1890 |
+
|
1891 |
+
>>> s = StringIO(u"1,1.3,abcde")
|
1892 |
+
>>> data = np.genfromtxt(s, dtype=[('myint','i8'),('myfloat','f8'),
|
1893 |
+
... ('mystring','S5')], delimiter=",")
|
1894 |
+
>>> data
|
1895 |
+
array((1, 1.3, b'abcde'),
|
1896 |
+
dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', 'S5')])
|
1897 |
+
|
1898 |
+
Using dtype = None
|
1899 |
+
|
1900 |
+
>>> _ = s.seek(0) # needed for StringIO example only
|
1901 |
+
>>> data = np.genfromtxt(s, dtype=None,
|
1902 |
+
... names = ['myint','myfloat','mystring'], delimiter=",")
|
1903 |
+
>>> data
|
1904 |
+
array((1, 1.3, b'abcde'),
|
1905 |
+
dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', 'S5')])
|
1906 |
+
|
1907 |
+
Specifying dtype and names
|
1908 |
+
|
1909 |
+
>>> _ = s.seek(0)
|
1910 |
+
>>> data = np.genfromtxt(s, dtype="i8,f8,S5",
|
1911 |
+
... names=['myint','myfloat','mystring'], delimiter=",")
|
1912 |
+
>>> data
|
1913 |
+
array((1, 1.3, b'abcde'),
|
1914 |
+
dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', 'S5')])
|
1915 |
+
|
1916 |
+
An example with fixed-width columns
|
1917 |
+
|
1918 |
+
>>> s = StringIO(u"11.3abcde")
|
1919 |
+
>>> data = np.genfromtxt(s, dtype=None, names=['intvar','fltvar','strvar'],
|
1920 |
+
... delimiter=[1,3,5])
|
1921 |
+
>>> data
|
1922 |
+
array((1, 1.3, b'abcde'),
|
1923 |
+
dtype=[('intvar', '<i8'), ('fltvar', '<f8'), ('strvar', 'S5')])
|
1924 |
+
|
1925 |
+
An example to show comments
|
1926 |
+
|
1927 |
+
>>> f = StringIO('''
|
1928 |
+
... text,# of chars
|
1929 |
+
... hello world,11
|
1930 |
+
... numpy,5''')
|
1931 |
+
>>> np.genfromtxt(f, dtype='S12,S12', delimiter=',')
|
1932 |
+
array([(b'text', b''), (b'hello world', b'11'), (b'numpy', b'5')],
|
1933 |
+
dtype=[('f0', 'S12'), ('f1', 'S12')])
|
1934 |
+
|
1935 |
+
"""
|
1936 |
+
|
1937 |
+
if like is not None:
|
1938 |
+
return _genfromtxt_with_like(
|
1939 |
+
like, fname, dtype=dtype, comments=comments, delimiter=delimiter,
|
1940 |
+
skip_header=skip_header, skip_footer=skip_footer,
|
1941 |
+
converters=converters, missing_values=missing_values,
|
1942 |
+
filling_values=filling_values, usecols=usecols, names=names,
|
1943 |
+
excludelist=excludelist, deletechars=deletechars,
|
1944 |
+
replace_space=replace_space, autostrip=autostrip,
|
1945 |
+
case_sensitive=case_sensitive, defaultfmt=defaultfmt,
|
1946 |
+
unpack=unpack, usemask=usemask, loose=loose,
|
1947 |
+
invalid_raise=invalid_raise, max_rows=max_rows, encoding=encoding,
|
1948 |
+
ndmin=ndmin,
|
1949 |
+
)
|
1950 |
+
|
1951 |
+
_ensure_ndmin_ndarray_check_param(ndmin)
|
1952 |
+
|
1953 |
+
if max_rows is not None:
|
1954 |
+
if skip_footer:
|
1955 |
+
raise ValueError(
|
1956 |
+
"The keywords 'skip_footer' and 'max_rows' can not be "
|
1957 |
+
"specified at the same time.")
|
1958 |
+
if max_rows < 1:
|
1959 |
+
raise ValueError("'max_rows' must be at least 1.")
|
1960 |
+
|
1961 |
+
if usemask:
|
1962 |
+
from numpy.ma import MaskedArray, make_mask_descr
|
1963 |
+
# Check the input dictionary of converters
|
1964 |
+
user_converters = converters or {}
|
1965 |
+
if not isinstance(user_converters, dict):
|
1966 |
+
raise TypeError(
|
1967 |
+
"The input argument 'converter' should be a valid dictionary "
|
1968 |
+
"(got '%s' instead)" % type(user_converters))
|
1969 |
+
|
1970 |
+
if encoding == 'bytes':
|
1971 |
+
encoding = None
|
1972 |
+
byte_converters = True
|
1973 |
+
else:
|
1974 |
+
byte_converters = False
|
1975 |
+
|
1976 |
+
# Initialize the filehandle, the LineSplitter and the NameValidator
|
1977 |
+
if isinstance(fname, os_PathLike):
|
1978 |
+
fname = os_fspath(fname)
|
1979 |
+
if isinstance(fname, str):
|
1980 |
+
fid = np.lib._datasource.open(fname, 'rt', encoding=encoding)
|
1981 |
+
fid_ctx = contextlib.closing(fid)
|
1982 |
+
else:
|
1983 |
+
fid = fname
|
1984 |
+
fid_ctx = contextlib.nullcontext(fid)
|
1985 |
+
try:
|
1986 |
+
fhd = iter(fid)
|
1987 |
+
except TypeError as e:
|
1988 |
+
raise TypeError(
|
1989 |
+
"fname must be a string, a filehandle, a sequence of strings,\n"
|
1990 |
+
f"or an iterator of strings. Got {type(fname)} instead."
|
1991 |
+
) from e
|
1992 |
+
with fid_ctx:
|
1993 |
+
split_line = LineSplitter(delimiter=delimiter, comments=comments,
|
1994 |
+
autostrip=autostrip, encoding=encoding)
|
1995 |
+
validate_names = NameValidator(excludelist=excludelist,
|
1996 |
+
deletechars=deletechars,
|
1997 |
+
case_sensitive=case_sensitive,
|
1998 |
+
replace_space=replace_space)
|
1999 |
+
|
2000 |
+
# Skip the first `skip_header` rows
|
2001 |
+
try:
|
2002 |
+
for i in range(skip_header):
|
2003 |
+
next(fhd)
|
2004 |
+
|
2005 |
+
# Keep on until we find the first valid values
|
2006 |
+
first_values = None
|
2007 |
+
|
2008 |
+
while not first_values:
|
2009 |
+
first_line = _decode_line(next(fhd), encoding)
|
2010 |
+
if (names is True) and (comments is not None):
|
2011 |
+
if comments in first_line:
|
2012 |
+
first_line = (
|
2013 |
+
''.join(first_line.split(comments)[1:]))
|
2014 |
+
first_values = split_line(first_line)
|
2015 |
+
except StopIteration:
|
2016 |
+
# return an empty array if the datafile is empty
|
2017 |
+
first_line = ''
|
2018 |
+
first_values = []
|
2019 |
+
warnings.warn('genfromtxt: Empty input file: "%s"' % fname, stacklevel=2)
|
2020 |
+
|
2021 |
+
# Should we take the first values as names ?
|
2022 |
+
if names is True:
|
2023 |
+
fval = first_values[0].strip()
|
2024 |
+
if comments is not None:
|
2025 |
+
if fval in comments:
|
2026 |
+
del first_values[0]
|
2027 |
+
|
2028 |
+
# Check the columns to use: make sure `usecols` is a list
|
2029 |
+
if usecols is not None:
|
2030 |
+
try:
|
2031 |
+
usecols = [_.strip() for _ in usecols.split(",")]
|
2032 |
+
except AttributeError:
|
2033 |
+
try:
|
2034 |
+
usecols = list(usecols)
|
2035 |
+
except TypeError:
|
2036 |
+
usecols = [usecols, ]
|
2037 |
+
nbcols = len(usecols or first_values)
|
2038 |
+
|
2039 |
+
# Check the names and overwrite the dtype.names if needed
|
2040 |
+
if names is True:
|
2041 |
+
names = validate_names([str(_.strip()) for _ in first_values])
|
2042 |
+
first_line = ''
|
2043 |
+
elif _is_string_like(names):
|
2044 |
+
names = validate_names([_.strip() for _ in names.split(',')])
|
2045 |
+
elif names:
|
2046 |
+
names = validate_names(names)
|
2047 |
+
# Get the dtype
|
2048 |
+
if dtype is not None:
|
2049 |
+
dtype = easy_dtype(dtype, defaultfmt=defaultfmt, names=names,
|
2050 |
+
excludelist=excludelist,
|
2051 |
+
deletechars=deletechars,
|
2052 |
+
case_sensitive=case_sensitive,
|
2053 |
+
replace_space=replace_space)
|
2054 |
+
# Make sure the names is a list (for 2.5)
|
2055 |
+
if names is not None:
|
2056 |
+
names = list(names)
|
2057 |
+
|
2058 |
+
if usecols:
|
2059 |
+
for (i, current) in enumerate(usecols):
|
2060 |
+
# if usecols is a list of names, convert to a list of indices
|
2061 |
+
if _is_string_like(current):
|
2062 |
+
usecols[i] = names.index(current)
|
2063 |
+
elif current < 0:
|
2064 |
+
usecols[i] = current + len(first_values)
|
2065 |
+
# If the dtype is not None, make sure we update it
|
2066 |
+
if (dtype is not None) and (len(dtype) > nbcols):
|
2067 |
+
descr = dtype.descr
|
2068 |
+
dtype = np.dtype([descr[_] for _ in usecols])
|
2069 |
+
names = list(dtype.names)
|
2070 |
+
# If `names` is not None, update the names
|
2071 |
+
elif (names is not None) and (len(names) > nbcols):
|
2072 |
+
names = [names[_] for _ in usecols]
|
2073 |
+
elif (names is not None) and (dtype is not None):
|
2074 |
+
names = list(dtype.names)
|
2075 |
+
|
2076 |
+
# Process the missing values ...............................
|
2077 |
+
# Rename missing_values for convenience
|
2078 |
+
user_missing_values = missing_values or ()
|
2079 |
+
if isinstance(user_missing_values, bytes):
|
2080 |
+
user_missing_values = user_missing_values.decode('latin1')
|
2081 |
+
|
2082 |
+
# Define the list of missing_values (one column: one list)
|
2083 |
+
missing_values = [list(['']) for _ in range(nbcols)]
|
2084 |
+
|
2085 |
+
# We have a dictionary: process it field by field
|
2086 |
+
if isinstance(user_missing_values, dict):
|
2087 |
+
# Loop on the items
|
2088 |
+
for (key, val) in user_missing_values.items():
|
2089 |
+
# Is the key a string ?
|
2090 |
+
if _is_string_like(key):
|
2091 |
+
try:
|
2092 |
+
# Transform it into an integer
|
2093 |
+
key = names.index(key)
|
2094 |
+
except ValueError:
|
2095 |
+
# We couldn't find it: the name must have been dropped
|
2096 |
+
continue
|
2097 |
+
# Redefine the key as needed if it's a column number
|
2098 |
+
if usecols:
|
2099 |
+
try:
|
2100 |
+
key = usecols.index(key)
|
2101 |
+
except ValueError:
|
2102 |
+
pass
|
2103 |
+
# Transform the value as a list of string
|
2104 |
+
if isinstance(val, (list, tuple)):
|
2105 |
+
val = [str(_) for _ in val]
|
2106 |
+
else:
|
2107 |
+
val = [str(val), ]
|
2108 |
+
# Add the value(s) to the current list of missing
|
2109 |
+
if key is None:
|
2110 |
+
# None acts as default
|
2111 |
+
for miss in missing_values:
|
2112 |
+
miss.extend(val)
|
2113 |
+
else:
|
2114 |
+
missing_values[key].extend(val)
|
2115 |
+
# We have a sequence : each item matches a column
|
2116 |
+
elif isinstance(user_missing_values, (list, tuple)):
|
2117 |
+
for (value, entry) in zip(user_missing_values, missing_values):
|
2118 |
+
value = str(value)
|
2119 |
+
if value not in entry:
|
2120 |
+
entry.append(value)
|
2121 |
+
# We have a string : apply it to all entries
|
2122 |
+
elif isinstance(user_missing_values, str):
|
2123 |
+
user_value = user_missing_values.split(",")
|
2124 |
+
for entry in missing_values:
|
2125 |
+
entry.extend(user_value)
|
2126 |
+
# We have something else: apply it to all entries
|
2127 |
+
else:
|
2128 |
+
for entry in missing_values:
|
2129 |
+
entry.extend([str(user_missing_values)])
|
2130 |
+
|
2131 |
+
# Process the filling_values ...............................
|
2132 |
+
# Rename the input for convenience
|
2133 |
+
user_filling_values = filling_values
|
2134 |
+
if user_filling_values is None:
|
2135 |
+
user_filling_values = []
|
2136 |
+
# Define the default
|
2137 |
+
filling_values = [None] * nbcols
|
2138 |
+
# We have a dictionary : update each entry individually
|
2139 |
+
if isinstance(user_filling_values, dict):
|
2140 |
+
for (key, val) in user_filling_values.items():
|
2141 |
+
if _is_string_like(key):
|
2142 |
+
try:
|
2143 |
+
# Transform it into an integer
|
2144 |
+
key = names.index(key)
|
2145 |
+
except ValueError:
|
2146 |
+
# We couldn't find it: the name must have been dropped,
|
2147 |
+
continue
|
2148 |
+
# Redefine the key if it's a column number and usecols is defined
|
2149 |
+
if usecols:
|
2150 |
+
try:
|
2151 |
+
key = usecols.index(key)
|
2152 |
+
except ValueError:
|
2153 |
+
pass
|
2154 |
+
# Add the value to the list
|
2155 |
+
filling_values[key] = val
|
2156 |
+
# We have a sequence : update on a one-to-one basis
|
2157 |
+
elif isinstance(user_filling_values, (list, tuple)):
|
2158 |
+
n = len(user_filling_values)
|
2159 |
+
if (n <= nbcols):
|
2160 |
+
filling_values[:n] = user_filling_values
|
2161 |
+
else:
|
2162 |
+
filling_values = user_filling_values[:nbcols]
|
2163 |
+
# We have something else : use it for all entries
|
2164 |
+
else:
|
2165 |
+
filling_values = [user_filling_values] * nbcols
|
2166 |
+
|
2167 |
+
# Initialize the converters ................................
|
2168 |
+
if dtype is None:
|
2169 |
+
# Note: we can't use a [...]*nbcols, as we would have 3 times the same
|
2170 |
+
# ... converter, instead of 3 different converters.
|
2171 |
+
converters = [StringConverter(None, missing_values=miss, default=fill)
|
2172 |
+
for (miss, fill) in zip(missing_values, filling_values)]
|
2173 |
+
else:
|
2174 |
+
dtype_flat = flatten_dtype(dtype, flatten_base=True)
|
2175 |
+
# Initialize the converters
|
2176 |
+
if len(dtype_flat) > 1:
|
2177 |
+
# Flexible type : get a converter from each dtype
|
2178 |
+
zipit = zip(dtype_flat, missing_values, filling_values)
|
2179 |
+
converters = [StringConverter(dt, locked=True,
|
2180 |
+
missing_values=miss, default=fill)
|
2181 |
+
for (dt, miss, fill) in zipit]
|
2182 |
+
else:
|
2183 |
+
# Set to a default converter (but w/ different missing values)
|
2184 |
+
zipit = zip(missing_values, filling_values)
|
2185 |
+
converters = [StringConverter(dtype, locked=True,
|
2186 |
+
missing_values=miss, default=fill)
|
2187 |
+
for (miss, fill) in zipit]
|
2188 |
+
# Update the converters to use the user-defined ones
|
2189 |
+
uc_update = []
|
2190 |
+
for (j, conv) in user_converters.items():
|
2191 |
+
# If the converter is specified by column names, use the index instead
|
2192 |
+
if _is_string_like(j):
|
2193 |
+
try:
|
2194 |
+
j = names.index(j)
|
2195 |
+
i = j
|
2196 |
+
except ValueError:
|
2197 |
+
continue
|
2198 |
+
elif usecols:
|
2199 |
+
try:
|
2200 |
+
i = usecols.index(j)
|
2201 |
+
except ValueError:
|
2202 |
+
# Unused converter specified
|
2203 |
+
continue
|
2204 |
+
else:
|
2205 |
+
i = j
|
2206 |
+
# Find the value to test - first_line is not filtered by usecols:
|
2207 |
+
if len(first_line):
|
2208 |
+
testing_value = first_values[j]
|
2209 |
+
else:
|
2210 |
+
testing_value = None
|
2211 |
+
if conv is bytes:
|
2212 |
+
user_conv = asbytes
|
2213 |
+
elif byte_converters:
|
2214 |
+
# converters may use decode to workaround numpy's old behaviour,
|
2215 |
+
# so encode the string again before passing to the user converter
|
2216 |
+
def tobytes_first(x, conv):
|
2217 |
+
if type(x) is bytes:
|
2218 |
+
return conv(x)
|
2219 |
+
return conv(x.encode("latin1"))
|
2220 |
+
user_conv = functools.partial(tobytes_first, conv=conv)
|
2221 |
+
else:
|
2222 |
+
user_conv = conv
|
2223 |
+
converters[i].update(user_conv, locked=True,
|
2224 |
+
testing_value=testing_value,
|
2225 |
+
default=filling_values[i],
|
2226 |
+
missing_values=missing_values[i],)
|
2227 |
+
uc_update.append((i, user_conv))
|
2228 |
+
# Make sure we have the corrected keys in user_converters...
|
2229 |
+
user_converters.update(uc_update)
|
2230 |
+
|
2231 |
+
# Fixme: possible error as following variable never used.
|
2232 |
+
# miss_chars = [_.missing_values for _ in converters]
|
2233 |
+
|
2234 |
+
# Initialize the output lists ...
|
2235 |
+
# ... rows
|
2236 |
+
rows = []
|
2237 |
+
append_to_rows = rows.append
|
2238 |
+
# ... masks
|
2239 |
+
if usemask:
|
2240 |
+
masks = []
|
2241 |
+
append_to_masks = masks.append
|
2242 |
+
# ... invalid
|
2243 |
+
invalid = []
|
2244 |
+
append_to_invalid = invalid.append
|
2245 |
+
|
2246 |
+
# Parse each line
|
2247 |
+
for (i, line) in enumerate(itertools.chain([first_line, ], fhd)):
|
2248 |
+
values = split_line(line)
|
2249 |
+
nbvalues = len(values)
|
2250 |
+
# Skip an empty line
|
2251 |
+
if nbvalues == 0:
|
2252 |
+
continue
|
2253 |
+
if usecols:
|
2254 |
+
# Select only the columns we need
|
2255 |
+
try:
|
2256 |
+
values = [values[_] for _ in usecols]
|
2257 |
+
except IndexError:
|
2258 |
+
append_to_invalid((i + skip_header + 1, nbvalues))
|
2259 |
+
continue
|
2260 |
+
elif nbvalues != nbcols:
|
2261 |
+
append_to_invalid((i + skip_header + 1, nbvalues))
|
2262 |
+
continue
|
2263 |
+
# Store the values
|
2264 |
+
append_to_rows(tuple(values))
|
2265 |
+
if usemask:
|
2266 |
+
append_to_masks(tuple([v.strip() in m
|
2267 |
+
for (v, m) in zip(values,
|
2268 |
+
missing_values)]))
|
2269 |
+
if len(rows) == max_rows:
|
2270 |
+
break
|
2271 |
+
|
2272 |
+
# Upgrade the converters (if needed)
|
2273 |
+
if dtype is None:
|
2274 |
+
for (i, converter) in enumerate(converters):
|
2275 |
+
current_column = [itemgetter(i)(_m) for _m in rows]
|
2276 |
+
try:
|
2277 |
+
converter.iterupgrade(current_column)
|
2278 |
+
except ConverterLockError:
|
2279 |
+
errmsg = "Converter #%i is locked and cannot be upgraded: " % i
|
2280 |
+
current_column = map(itemgetter(i), rows)
|
2281 |
+
for (j, value) in enumerate(current_column):
|
2282 |
+
try:
|
2283 |
+
converter.upgrade(value)
|
2284 |
+
except (ConverterError, ValueError):
|
2285 |
+
errmsg += "(occurred line #%i for value '%s')"
|
2286 |
+
errmsg %= (j + 1 + skip_header, value)
|
2287 |
+
raise ConverterError(errmsg)
|
2288 |
+
|
2289 |
+
# Check that we don't have invalid values
|
2290 |
+
nbinvalid = len(invalid)
|
2291 |
+
if nbinvalid > 0:
|
2292 |
+
nbrows = len(rows) + nbinvalid - skip_footer
|
2293 |
+
# Construct the error message
|
2294 |
+
template = " Line #%%i (got %%i columns instead of %i)" % nbcols
|
2295 |
+
if skip_footer > 0:
|
2296 |
+
nbinvalid_skipped = len([_ for _ in invalid
|
2297 |
+
if _[0] > nbrows + skip_header])
|
2298 |
+
invalid = invalid[:nbinvalid - nbinvalid_skipped]
|
2299 |
+
skip_footer -= nbinvalid_skipped
|
2300 |
+
#
|
2301 |
+
# nbrows -= skip_footer
|
2302 |
+
# errmsg = [template % (i, nb)
|
2303 |
+
# for (i, nb) in invalid if i < nbrows]
|
2304 |
+
# else:
|
2305 |
+
errmsg = [template % (i, nb)
|
2306 |
+
for (i, nb) in invalid]
|
2307 |
+
if len(errmsg):
|
2308 |
+
errmsg.insert(0, "Some errors were detected !")
|
2309 |
+
errmsg = "\n".join(errmsg)
|
2310 |
+
# Raise an exception ?
|
2311 |
+
if invalid_raise:
|
2312 |
+
raise ValueError(errmsg)
|
2313 |
+
# Issue a warning ?
|
2314 |
+
else:
|
2315 |
+
warnings.warn(errmsg, ConversionWarning, stacklevel=2)
|
2316 |
+
|
2317 |
+
# Strip the last skip_footer data
|
2318 |
+
if skip_footer > 0:
|
2319 |
+
rows = rows[:-skip_footer]
|
2320 |
+
if usemask:
|
2321 |
+
masks = masks[:-skip_footer]
|
2322 |
+
|
2323 |
+
# Convert each value according to the converter:
|
2324 |
+
# We want to modify the list in place to avoid creating a new one...
|
2325 |
+
if loose:
|
2326 |
+
rows = list(
|
2327 |
+
zip(*[[conv._loose_call(_r) for _r in map(itemgetter(i), rows)]
|
2328 |
+
for (i, conv) in enumerate(converters)]))
|
2329 |
+
else:
|
2330 |
+
rows = list(
|
2331 |
+
zip(*[[conv._strict_call(_r) for _r in map(itemgetter(i), rows)]
|
2332 |
+
for (i, conv) in enumerate(converters)]))
|
2333 |
+
|
2334 |
+
# Reset the dtype
|
2335 |
+
data = rows
|
2336 |
+
if dtype is None:
|
2337 |
+
# Get the dtypes from the types of the converters
|
2338 |
+
column_types = [conv.type for conv in converters]
|
2339 |
+
# Find the columns with strings...
|
2340 |
+
strcolidx = [i for (i, v) in enumerate(column_types)
|
2341 |
+
if v == np.str_]
|
2342 |
+
|
2343 |
+
if byte_converters and strcolidx:
|
2344 |
+
# convert strings back to bytes for backward compatibility
|
2345 |
+
warnings.warn(
|
2346 |
+
"Reading unicode strings without specifying the encoding "
|
2347 |
+
"argument is deprecated. Set the encoding, use None for the "
|
2348 |
+
"system default.",
|
2349 |
+
np.VisibleDeprecationWarning, stacklevel=2)
|
2350 |
+
def encode_unicode_cols(row_tup):
|
2351 |
+
row = list(row_tup)
|
2352 |
+
for i in strcolidx:
|
2353 |
+
row[i] = row[i].encode('latin1')
|
2354 |
+
return tuple(row)
|
2355 |
+
|
2356 |
+
try:
|
2357 |
+
data = [encode_unicode_cols(r) for r in data]
|
2358 |
+
except UnicodeEncodeError:
|
2359 |
+
pass
|
2360 |
+
else:
|
2361 |
+
for i in strcolidx:
|
2362 |
+
column_types[i] = np.bytes_
|
2363 |
+
|
2364 |
+
# Update string types to be the right length
|
2365 |
+
sized_column_types = column_types[:]
|
2366 |
+
for i, col_type in enumerate(column_types):
|
2367 |
+
if np.issubdtype(col_type, np.character):
|
2368 |
+
n_chars = max(len(row[i]) for row in data)
|
2369 |
+
sized_column_types[i] = (col_type, n_chars)
|
2370 |
+
|
2371 |
+
if names is None:
|
2372 |
+
# If the dtype is uniform (before sizing strings)
|
2373 |
+
base = {
|
2374 |
+
c_type
|
2375 |
+
for c, c_type in zip(converters, column_types)
|
2376 |
+
if c._checked}
|
2377 |
+
if len(base) == 1:
|
2378 |
+
uniform_type, = base
|
2379 |
+
(ddtype, mdtype) = (uniform_type, bool)
|
2380 |
+
else:
|
2381 |
+
ddtype = [(defaultfmt % i, dt)
|
2382 |
+
for (i, dt) in enumerate(sized_column_types)]
|
2383 |
+
if usemask:
|
2384 |
+
mdtype = [(defaultfmt % i, bool)
|
2385 |
+
for (i, dt) in enumerate(sized_column_types)]
|
2386 |
+
else:
|
2387 |
+
ddtype = list(zip(names, sized_column_types))
|
2388 |
+
mdtype = list(zip(names, [bool] * len(sized_column_types)))
|
2389 |
+
output = np.array(data, dtype=ddtype)
|
2390 |
+
if usemask:
|
2391 |
+
outputmask = np.array(masks, dtype=mdtype)
|
2392 |
+
else:
|
2393 |
+
# Overwrite the initial dtype names if needed
|
2394 |
+
if names and dtype.names is not None:
|
2395 |
+
dtype.names = names
|
2396 |
+
# Case 1. We have a structured type
|
2397 |
+
if len(dtype_flat) > 1:
|
2398 |
+
# Nested dtype, eg [('a', int), ('b', [('b0', int), ('b1', 'f4')])]
|
2399 |
+
# First, create the array using a flattened dtype:
|
2400 |
+
# [('a', int), ('b1', int), ('b2', float)]
|
2401 |
+
# Then, view the array using the specified dtype.
|
2402 |
+
if 'O' in (_.char for _ in dtype_flat):
|
2403 |
+
if has_nested_fields(dtype):
|
2404 |
+
raise NotImplementedError(
|
2405 |
+
"Nested fields involving objects are not supported...")
|
2406 |
+
else:
|
2407 |
+
output = np.array(data, dtype=dtype)
|
2408 |
+
else:
|
2409 |
+
rows = np.array(data, dtype=[('', _) for _ in dtype_flat])
|
2410 |
+
output = rows.view(dtype)
|
2411 |
+
# Now, process the rowmasks the same way
|
2412 |
+
if usemask:
|
2413 |
+
rowmasks = np.array(
|
2414 |
+
masks, dtype=np.dtype([('', bool) for t in dtype_flat]))
|
2415 |
+
# Construct the new dtype
|
2416 |
+
mdtype = make_mask_descr(dtype)
|
2417 |
+
outputmask = rowmasks.view(mdtype)
|
2418 |
+
# Case #2. We have a basic dtype
|
2419 |
+
else:
|
2420 |
+
# We used some user-defined converters
|
2421 |
+
if user_converters:
|
2422 |
+
ishomogeneous = True
|
2423 |
+
descr = []
|
2424 |
+
for i, ttype in enumerate([conv.type for conv in converters]):
|
2425 |
+
# Keep the dtype of the current converter
|
2426 |
+
if i in user_converters:
|
2427 |
+
ishomogeneous &= (ttype == dtype.type)
|
2428 |
+
if np.issubdtype(ttype, np.character):
|
2429 |
+
ttype = (ttype, max(len(row[i]) for row in data))
|
2430 |
+
descr.append(('', ttype))
|
2431 |
+
else:
|
2432 |
+
descr.append(('', dtype))
|
2433 |
+
# So we changed the dtype ?
|
2434 |
+
if not ishomogeneous:
|
2435 |
+
# We have more than one field
|
2436 |
+
if len(descr) > 1:
|
2437 |
+
dtype = np.dtype(descr)
|
2438 |
+
# We have only one field: drop the name if not needed.
|
2439 |
+
else:
|
2440 |
+
dtype = np.dtype(ttype)
|
2441 |
+
#
|
2442 |
+
output = np.array(data, dtype)
|
2443 |
+
if usemask:
|
2444 |
+
if dtype.names is not None:
|
2445 |
+
mdtype = [(_, bool) for _ in dtype.names]
|
2446 |
+
else:
|
2447 |
+
mdtype = bool
|
2448 |
+
outputmask = np.array(masks, dtype=mdtype)
|
2449 |
+
# Try to take care of the missing data we missed
|
2450 |
+
names = output.dtype.names
|
2451 |
+
if usemask and names:
|
2452 |
+
for (name, conv) in zip(names, converters):
|
2453 |
+
missing_values = [conv(_) for _ in conv.missing_values
|
2454 |
+
if _ != '']
|
2455 |
+
for mval in missing_values:
|
2456 |
+
outputmask[name] |= (output[name] == mval)
|
2457 |
+
# Construct the final array
|
2458 |
+
if usemask:
|
2459 |
+
output = output.view(MaskedArray)
|
2460 |
+
output._mask = outputmask
|
2461 |
+
|
2462 |
+
output = _ensure_ndmin_ndarray(output, ndmin=ndmin)
|
2463 |
+
|
2464 |
+
if unpack:
|
2465 |
+
if names is None:
|
2466 |
+
return output.T
|
2467 |
+
elif len(names) == 1:
|
2468 |
+
# squeeze single-name dtypes too
|
2469 |
+
return output[names[0]]
|
2470 |
+
else:
|
2471 |
+
# For structured arrays with multiple fields,
|
2472 |
+
# return an array for each field.
|
2473 |
+
return [output[field] for field in names]
|
2474 |
+
return output
|
2475 |
+
|
2476 |
+
|
2477 |
+
_genfromtxt_with_like = array_function_dispatch()(genfromtxt)
|
2478 |
+
|
2479 |
+
|
2480 |
+
def recfromtxt(fname, **kwargs):
|
2481 |
+
"""
|
2482 |
+
Load ASCII data from a file and return it in a record array.
|
2483 |
+
|
2484 |
+
If ``usemask=False`` a standard `recarray` is returned,
|
2485 |
+
if ``usemask=True`` a MaskedRecords array is returned.
|
2486 |
+
|
2487 |
+
Parameters
|
2488 |
+
----------
|
2489 |
+
fname, kwargs : For a description of input parameters, see `genfromtxt`.
|
2490 |
+
|
2491 |
+
See Also
|
2492 |
+
--------
|
2493 |
+
numpy.genfromtxt : generic function
|
2494 |
+
|
2495 |
+
Notes
|
2496 |
+
-----
|
2497 |
+
By default, `dtype` is None, which means that the data-type of the output
|
2498 |
+
array will be determined from the data.
|
2499 |
+
|
2500 |
+
"""
|
2501 |
+
kwargs.setdefault("dtype", None)
|
2502 |
+
usemask = kwargs.get('usemask', False)
|
2503 |
+
output = genfromtxt(fname, **kwargs)
|
2504 |
+
if usemask:
|
2505 |
+
from numpy.ma.mrecords import MaskedRecords
|
2506 |
+
output = output.view(MaskedRecords)
|
2507 |
+
else:
|
2508 |
+
output = output.view(np.recarray)
|
2509 |
+
return output
|
2510 |
+
|
2511 |
+
|
2512 |
+
def recfromcsv(fname, **kwargs):
|
2513 |
+
"""
|
2514 |
+
Load ASCII data stored in a comma-separated file.
|
2515 |
+
|
2516 |
+
The returned array is a record array (if ``usemask=False``, see
|
2517 |
+
`recarray`) or a masked record array (if ``usemask=True``,
|
2518 |
+
see `ma.mrecords.MaskedRecords`).
|
2519 |
+
|
2520 |
+
Parameters
|
2521 |
+
----------
|
2522 |
+
fname, kwargs : For a description of input parameters, see `genfromtxt`.
|
2523 |
+
|
2524 |
+
See Also
|
2525 |
+
--------
|
2526 |
+
numpy.genfromtxt : generic function to load ASCII data.
|
2527 |
+
|
2528 |
+
Notes
|
2529 |
+
-----
|
2530 |
+
By default, `dtype` is None, which means that the data-type of the output
|
2531 |
+
array will be determined from the data.
|
2532 |
+
|
2533 |
+
"""
|
2534 |
+
# Set default kwargs for genfromtxt as relevant to csv import.
|
2535 |
+
kwargs.setdefault("case_sensitive", "lower")
|
2536 |
+
kwargs.setdefault("names", True)
|
2537 |
+
kwargs.setdefault("delimiter", ",")
|
2538 |
+
kwargs.setdefault("dtype", None)
|
2539 |
+
output = genfromtxt(fname, **kwargs)
|
2540 |
+
|
2541 |
+
usemask = kwargs.get("usemask", False)
|
2542 |
+
if usemask:
|
2543 |
+
from numpy.ma.mrecords import MaskedRecords
|
2544 |
+
output = output.view(MaskedRecords)
|
2545 |
+
else:
|
2546 |
+
output = output.view(np.recarray)
|
2547 |
+
return output
|
env-llmeval/lib/python3.10/site-packages/numpy/lib/polynomial.py
ADDED
@@ -0,0 +1,1453 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Functions to operate on polynomials.
|
3 |
+
|
4 |
+
"""
|
5 |
+
__all__ = ['poly', 'roots', 'polyint', 'polyder', 'polyadd',
|
6 |
+
'polysub', 'polymul', 'polydiv', 'polyval', 'poly1d',
|
7 |
+
'polyfit', 'RankWarning']
|
8 |
+
|
9 |
+
import functools
|
10 |
+
import re
|
11 |
+
import warnings
|
12 |
+
|
13 |
+
from .._utils import set_module
|
14 |
+
import numpy.core.numeric as NX
|
15 |
+
|
16 |
+
from numpy.core import (isscalar, abs, finfo, atleast_1d, hstack, dot, array,
|
17 |
+
ones)
|
18 |
+
from numpy.core import overrides
|
19 |
+
from numpy.lib.twodim_base import diag, vander
|
20 |
+
from numpy.lib.function_base import trim_zeros
|
21 |
+
from numpy.lib.type_check import iscomplex, real, imag, mintypecode
|
22 |
+
from numpy.linalg import eigvals, lstsq, inv
|
23 |
+
|
24 |
+
|
25 |
+
array_function_dispatch = functools.partial(
|
26 |
+
overrides.array_function_dispatch, module='numpy')
|
27 |
+
|
28 |
+
|
29 |
+
@set_module('numpy')
|
30 |
+
class RankWarning(UserWarning):
|
31 |
+
"""
|
32 |
+
Issued by `polyfit` when the Vandermonde matrix is rank deficient.
|
33 |
+
|
34 |
+
For more information, a way to suppress the warning, and an example of
|
35 |
+
`RankWarning` being issued, see `polyfit`.
|
36 |
+
|
37 |
+
"""
|
38 |
+
pass
|
39 |
+
|
40 |
+
|
41 |
+
def _poly_dispatcher(seq_of_zeros):
|
42 |
+
return seq_of_zeros
|
43 |
+
|
44 |
+
|
45 |
+
@array_function_dispatch(_poly_dispatcher)
|
46 |
+
def poly(seq_of_zeros):
|
47 |
+
"""
|
48 |
+
Find the coefficients of a polynomial with the given sequence of roots.
|
49 |
+
|
50 |
+
.. note::
|
51 |
+
This forms part of the old polynomial API. Since version 1.4, the
|
52 |
+
new polynomial API defined in `numpy.polynomial` is preferred.
|
53 |
+
A summary of the differences can be found in the
|
54 |
+
:doc:`transition guide </reference/routines.polynomials>`.
|
55 |
+
|
56 |
+
Returns the coefficients of the polynomial whose leading coefficient
|
57 |
+
is one for the given sequence of zeros (multiple roots must be included
|
58 |
+
in the sequence as many times as their multiplicity; see Examples).
|
59 |
+
A square matrix (or array, which will be treated as a matrix) can also
|
60 |
+
be given, in which case the coefficients of the characteristic polynomial
|
61 |
+
of the matrix are returned.
|
62 |
+
|
63 |
+
Parameters
|
64 |
+
----------
|
65 |
+
seq_of_zeros : array_like, shape (N,) or (N, N)
|
66 |
+
A sequence of polynomial roots, or a square array or matrix object.
|
67 |
+
|
68 |
+
Returns
|
69 |
+
-------
|
70 |
+
c : ndarray
|
71 |
+
1D array of polynomial coefficients from highest to lowest degree:
|
72 |
+
|
73 |
+
``c[0] * x**(N) + c[1] * x**(N-1) + ... + c[N-1] * x + c[N]``
|
74 |
+
where c[0] always equals 1.
|
75 |
+
|
76 |
+
Raises
|
77 |
+
------
|
78 |
+
ValueError
|
79 |
+
If input is the wrong shape (the input must be a 1-D or square
|
80 |
+
2-D array).
|
81 |
+
|
82 |
+
See Also
|
83 |
+
--------
|
84 |
+
polyval : Compute polynomial values.
|
85 |
+
roots : Return the roots of a polynomial.
|
86 |
+
polyfit : Least squares polynomial fit.
|
87 |
+
poly1d : A one-dimensional polynomial class.
|
88 |
+
|
89 |
+
Notes
|
90 |
+
-----
|
91 |
+
Specifying the roots of a polynomial still leaves one degree of
|
92 |
+
freedom, typically represented by an undetermined leading
|
93 |
+
coefficient. [1]_ In the case of this function, that coefficient -
|
94 |
+
the first one in the returned array - is always taken as one. (If
|
95 |
+
for some reason you have one other point, the only automatic way
|
96 |
+
presently to leverage that information is to use ``polyfit``.)
|
97 |
+
|
98 |
+
The characteristic polynomial, :math:`p_a(t)`, of an `n`-by-`n`
|
99 |
+
matrix **A** is given by
|
100 |
+
|
101 |
+
:math:`p_a(t) = \\mathrm{det}(t\\, \\mathbf{I} - \\mathbf{A})`,
|
102 |
+
|
103 |
+
where **I** is the `n`-by-`n` identity matrix. [2]_
|
104 |
+
|
105 |
+
References
|
106 |
+
----------
|
107 |
+
.. [1] M. Sullivan and M. Sullivan, III, "Algebra and Trigonometry,
|
108 |
+
Enhanced With Graphing Utilities," Prentice-Hall, pg. 318, 1996.
|
109 |
+
|
110 |
+
.. [2] G. Strang, "Linear Algebra and Its Applications, 2nd Edition,"
|
111 |
+
Academic Press, pg. 182, 1980.
|
112 |
+
|
113 |
+
Examples
|
114 |
+
--------
|
115 |
+
Given a sequence of a polynomial's zeros:
|
116 |
+
|
117 |
+
>>> np.poly((0, 0, 0)) # Multiple root example
|
118 |
+
array([1., 0., 0., 0.])
|
119 |
+
|
120 |
+
The line above represents z**3 + 0*z**2 + 0*z + 0.
|
121 |
+
|
122 |
+
>>> np.poly((-1./2, 0, 1./2))
|
123 |
+
array([ 1. , 0. , -0.25, 0. ])
|
124 |
+
|
125 |
+
The line above represents z**3 - z/4
|
126 |
+
|
127 |
+
>>> np.poly((np.random.random(1)[0], 0, np.random.random(1)[0]))
|
128 |
+
array([ 1. , -0.77086955, 0.08618131, 0. ]) # random
|
129 |
+
|
130 |
+
Given a square array object:
|
131 |
+
|
132 |
+
>>> P = np.array([[0, 1./3], [-1./2, 0]])
|
133 |
+
>>> np.poly(P)
|
134 |
+
array([1. , 0. , 0.16666667])
|
135 |
+
|
136 |
+
Note how in all cases the leading coefficient is always 1.
|
137 |
+
|
138 |
+
"""
|
139 |
+
seq_of_zeros = atleast_1d(seq_of_zeros)
|
140 |
+
sh = seq_of_zeros.shape
|
141 |
+
|
142 |
+
if len(sh) == 2 and sh[0] == sh[1] and sh[0] != 0:
|
143 |
+
seq_of_zeros = eigvals(seq_of_zeros)
|
144 |
+
elif len(sh) == 1:
|
145 |
+
dt = seq_of_zeros.dtype
|
146 |
+
# Let object arrays slip through, e.g. for arbitrary precision
|
147 |
+
if dt != object:
|
148 |
+
seq_of_zeros = seq_of_zeros.astype(mintypecode(dt.char))
|
149 |
+
else:
|
150 |
+
raise ValueError("input must be 1d or non-empty square 2d array.")
|
151 |
+
|
152 |
+
if len(seq_of_zeros) == 0:
|
153 |
+
return 1.0
|
154 |
+
dt = seq_of_zeros.dtype
|
155 |
+
a = ones((1,), dtype=dt)
|
156 |
+
for zero in seq_of_zeros:
|
157 |
+
a = NX.convolve(a, array([1, -zero], dtype=dt), mode='full')
|
158 |
+
|
159 |
+
if issubclass(a.dtype.type, NX.complexfloating):
|
160 |
+
# if complex roots are all complex conjugates, the roots are real.
|
161 |
+
roots = NX.asarray(seq_of_zeros, complex)
|
162 |
+
if NX.all(NX.sort(roots) == NX.sort(roots.conjugate())):
|
163 |
+
a = a.real.copy()
|
164 |
+
|
165 |
+
return a
|
166 |
+
|
167 |
+
|
168 |
+
def _roots_dispatcher(p):
|
169 |
+
return p
|
170 |
+
|
171 |
+
|
172 |
+
@array_function_dispatch(_roots_dispatcher)
|
173 |
+
def roots(p):
|
174 |
+
"""
|
175 |
+
Return the roots of a polynomial with coefficients given in p.
|
176 |
+
|
177 |
+
.. note::
|
178 |
+
This forms part of the old polynomial API. Since version 1.4, the
|
179 |
+
new polynomial API defined in `numpy.polynomial` is preferred.
|
180 |
+
A summary of the differences can be found in the
|
181 |
+
:doc:`transition guide </reference/routines.polynomials>`.
|
182 |
+
|
183 |
+
The values in the rank-1 array `p` are coefficients of a polynomial.
|
184 |
+
If the length of `p` is n+1 then the polynomial is described by::
|
185 |
+
|
186 |
+
p[0] * x**n + p[1] * x**(n-1) + ... + p[n-1]*x + p[n]
|
187 |
+
|
188 |
+
Parameters
|
189 |
+
----------
|
190 |
+
p : array_like
|
191 |
+
Rank-1 array of polynomial coefficients.
|
192 |
+
|
193 |
+
Returns
|
194 |
+
-------
|
195 |
+
out : ndarray
|
196 |
+
An array containing the roots of the polynomial.
|
197 |
+
|
198 |
+
Raises
|
199 |
+
------
|
200 |
+
ValueError
|
201 |
+
When `p` cannot be converted to a rank-1 array.
|
202 |
+
|
203 |
+
See also
|
204 |
+
--------
|
205 |
+
poly : Find the coefficients of a polynomial with a given sequence
|
206 |
+
of roots.
|
207 |
+
polyval : Compute polynomial values.
|
208 |
+
polyfit : Least squares polynomial fit.
|
209 |
+
poly1d : A one-dimensional polynomial class.
|
210 |
+
|
211 |
+
Notes
|
212 |
+
-----
|
213 |
+
The algorithm relies on computing the eigenvalues of the
|
214 |
+
companion matrix [1]_.
|
215 |
+
|
216 |
+
References
|
217 |
+
----------
|
218 |
+
.. [1] R. A. Horn & C. R. Johnson, *Matrix Analysis*. Cambridge, UK:
|
219 |
+
Cambridge University Press, 1999, pp. 146-7.
|
220 |
+
|
221 |
+
Examples
|
222 |
+
--------
|
223 |
+
>>> coeff = [3.2, 2, 1]
|
224 |
+
>>> np.roots(coeff)
|
225 |
+
array([-0.3125+0.46351241j, -0.3125-0.46351241j])
|
226 |
+
|
227 |
+
"""
|
228 |
+
# If input is scalar, this makes it an array
|
229 |
+
p = atleast_1d(p)
|
230 |
+
if p.ndim != 1:
|
231 |
+
raise ValueError("Input must be a rank-1 array.")
|
232 |
+
|
233 |
+
# find non-zero array entries
|
234 |
+
non_zero = NX.nonzero(NX.ravel(p))[0]
|
235 |
+
|
236 |
+
# Return an empty array if polynomial is all zeros
|
237 |
+
if len(non_zero) == 0:
|
238 |
+
return NX.array([])
|
239 |
+
|
240 |
+
# find the number of trailing zeros -- this is the number of roots at 0.
|
241 |
+
trailing_zeros = len(p) - non_zero[-1] - 1
|
242 |
+
|
243 |
+
# strip leading and trailing zeros
|
244 |
+
p = p[int(non_zero[0]):int(non_zero[-1])+1]
|
245 |
+
|
246 |
+
# casting: if incoming array isn't floating point, make it floating point.
|
247 |
+
if not issubclass(p.dtype.type, (NX.floating, NX.complexfloating)):
|
248 |
+
p = p.astype(float)
|
249 |
+
|
250 |
+
N = len(p)
|
251 |
+
if N > 1:
|
252 |
+
# build companion matrix and find its eigenvalues (the roots)
|
253 |
+
A = diag(NX.ones((N-2,), p.dtype), -1)
|
254 |
+
A[0,:] = -p[1:] / p[0]
|
255 |
+
roots = eigvals(A)
|
256 |
+
else:
|
257 |
+
roots = NX.array([])
|
258 |
+
|
259 |
+
# tack any zeros onto the back of the array
|
260 |
+
roots = hstack((roots, NX.zeros(trailing_zeros, roots.dtype)))
|
261 |
+
return roots
|
262 |
+
|
263 |
+
|
264 |
+
def _polyint_dispatcher(p, m=None, k=None):
|
265 |
+
return (p,)
|
266 |
+
|
267 |
+
|
268 |
+
@array_function_dispatch(_polyint_dispatcher)
|
269 |
+
def polyint(p, m=1, k=None):
|
270 |
+
"""
|
271 |
+
Return an antiderivative (indefinite integral) of a polynomial.
|
272 |
+
|
273 |
+
.. note::
|
274 |
+
This forms part of the old polynomial API. Since version 1.4, the
|
275 |
+
new polynomial API defined in `numpy.polynomial` is preferred.
|
276 |
+
A summary of the differences can be found in the
|
277 |
+
:doc:`transition guide </reference/routines.polynomials>`.
|
278 |
+
|
279 |
+
The returned order `m` antiderivative `P` of polynomial `p` satisfies
|
280 |
+
:math:`\\frac{d^m}{dx^m}P(x) = p(x)` and is defined up to `m - 1`
|
281 |
+
integration constants `k`. The constants determine the low-order
|
282 |
+
polynomial part
|
283 |
+
|
284 |
+
.. math:: \\frac{k_{m-1}}{0!} x^0 + \\ldots + \\frac{k_0}{(m-1)!}x^{m-1}
|
285 |
+
|
286 |
+
of `P` so that :math:`P^{(j)}(0) = k_{m-j-1}`.
|
287 |
+
|
288 |
+
Parameters
|
289 |
+
----------
|
290 |
+
p : array_like or poly1d
|
291 |
+
Polynomial to integrate.
|
292 |
+
A sequence is interpreted as polynomial coefficients, see `poly1d`.
|
293 |
+
m : int, optional
|
294 |
+
Order of the antiderivative. (Default: 1)
|
295 |
+
k : list of `m` scalars or scalar, optional
|
296 |
+
Integration constants. They are given in the order of integration:
|
297 |
+
those corresponding to highest-order terms come first.
|
298 |
+
|
299 |
+
If ``None`` (default), all constants are assumed to be zero.
|
300 |
+
If `m = 1`, a single scalar can be given instead of a list.
|
301 |
+
|
302 |
+
See Also
|
303 |
+
--------
|
304 |
+
polyder : derivative of a polynomial
|
305 |
+
poly1d.integ : equivalent method
|
306 |
+
|
307 |
+
Examples
|
308 |
+
--------
|
309 |
+
The defining property of the antiderivative:
|
310 |
+
|
311 |
+
>>> p = np.poly1d([1,1,1])
|
312 |
+
>>> P = np.polyint(p)
|
313 |
+
>>> P
|
314 |
+
poly1d([ 0.33333333, 0.5 , 1. , 0. ]) # may vary
|
315 |
+
>>> np.polyder(P) == p
|
316 |
+
True
|
317 |
+
|
318 |
+
The integration constants default to zero, but can be specified:
|
319 |
+
|
320 |
+
>>> P = np.polyint(p, 3)
|
321 |
+
>>> P(0)
|
322 |
+
0.0
|
323 |
+
>>> np.polyder(P)(0)
|
324 |
+
0.0
|
325 |
+
>>> np.polyder(P, 2)(0)
|
326 |
+
0.0
|
327 |
+
>>> P = np.polyint(p, 3, k=[6,5,3])
|
328 |
+
>>> P
|
329 |
+
poly1d([ 0.01666667, 0.04166667, 0.16666667, 3. , 5. , 3. ]) # may vary
|
330 |
+
|
331 |
+
Note that 3 = 6 / 2!, and that the constants are given in the order of
|
332 |
+
integrations. Constant of the highest-order polynomial term comes first:
|
333 |
+
|
334 |
+
>>> np.polyder(P, 2)(0)
|
335 |
+
6.0
|
336 |
+
>>> np.polyder(P, 1)(0)
|
337 |
+
5.0
|
338 |
+
>>> P(0)
|
339 |
+
3.0
|
340 |
+
|
341 |
+
"""
|
342 |
+
m = int(m)
|
343 |
+
if m < 0:
|
344 |
+
raise ValueError("Order of integral must be positive (see polyder)")
|
345 |
+
if k is None:
|
346 |
+
k = NX.zeros(m, float)
|
347 |
+
k = atleast_1d(k)
|
348 |
+
if len(k) == 1 and m > 1:
|
349 |
+
k = k[0]*NX.ones(m, float)
|
350 |
+
if len(k) < m:
|
351 |
+
raise ValueError(
|
352 |
+
"k must be a scalar or a rank-1 array of length 1 or >m.")
|
353 |
+
|
354 |
+
truepoly = isinstance(p, poly1d)
|
355 |
+
p = NX.asarray(p)
|
356 |
+
if m == 0:
|
357 |
+
if truepoly:
|
358 |
+
return poly1d(p)
|
359 |
+
return p
|
360 |
+
else:
|
361 |
+
# Note: this must work also with object and integer arrays
|
362 |
+
y = NX.concatenate((p.__truediv__(NX.arange(len(p), 0, -1)), [k[0]]))
|
363 |
+
val = polyint(y, m - 1, k=k[1:])
|
364 |
+
if truepoly:
|
365 |
+
return poly1d(val)
|
366 |
+
return val
|
367 |
+
|
368 |
+
|
369 |
+
def _polyder_dispatcher(p, m=None):
|
370 |
+
return (p,)
|
371 |
+
|
372 |
+
|
373 |
+
@array_function_dispatch(_polyder_dispatcher)
|
374 |
+
def polyder(p, m=1):
|
375 |
+
"""
|
376 |
+
Return the derivative of the specified order of a polynomial.
|
377 |
+
|
378 |
+
.. note::
|
379 |
+
This forms part of the old polynomial API. Since version 1.4, the
|
380 |
+
new polynomial API defined in `numpy.polynomial` is preferred.
|
381 |
+
A summary of the differences can be found in the
|
382 |
+
:doc:`transition guide </reference/routines.polynomials>`.
|
383 |
+
|
384 |
+
Parameters
|
385 |
+
----------
|
386 |
+
p : poly1d or sequence
|
387 |
+
Polynomial to differentiate.
|
388 |
+
A sequence is interpreted as polynomial coefficients, see `poly1d`.
|
389 |
+
m : int, optional
|
390 |
+
Order of differentiation (default: 1)
|
391 |
+
|
392 |
+
Returns
|
393 |
+
-------
|
394 |
+
der : poly1d
|
395 |
+
A new polynomial representing the derivative.
|
396 |
+
|
397 |
+
See Also
|
398 |
+
--------
|
399 |
+
polyint : Anti-derivative of a polynomial.
|
400 |
+
poly1d : Class for one-dimensional polynomials.
|
401 |
+
|
402 |
+
Examples
|
403 |
+
--------
|
404 |
+
The derivative of the polynomial :math:`x^3 + x^2 + x^1 + 1` is:
|
405 |
+
|
406 |
+
>>> p = np.poly1d([1,1,1,1])
|
407 |
+
>>> p2 = np.polyder(p)
|
408 |
+
>>> p2
|
409 |
+
poly1d([3, 2, 1])
|
410 |
+
|
411 |
+
which evaluates to:
|
412 |
+
|
413 |
+
>>> p2(2.)
|
414 |
+
17.0
|
415 |
+
|
416 |
+
We can verify this, approximating the derivative with
|
417 |
+
``(f(x + h) - f(x))/h``:
|
418 |
+
|
419 |
+
>>> (p(2. + 0.001) - p(2.)) / 0.001
|
420 |
+
17.007000999997857
|
421 |
+
|
422 |
+
The fourth-order derivative of a 3rd-order polynomial is zero:
|
423 |
+
|
424 |
+
>>> np.polyder(p, 2)
|
425 |
+
poly1d([6, 2])
|
426 |
+
>>> np.polyder(p, 3)
|
427 |
+
poly1d([6])
|
428 |
+
>>> np.polyder(p, 4)
|
429 |
+
poly1d([0])
|
430 |
+
|
431 |
+
"""
|
432 |
+
m = int(m)
|
433 |
+
if m < 0:
|
434 |
+
raise ValueError("Order of derivative must be positive (see polyint)")
|
435 |
+
|
436 |
+
truepoly = isinstance(p, poly1d)
|
437 |
+
p = NX.asarray(p)
|
438 |
+
n = len(p) - 1
|
439 |
+
y = p[:-1] * NX.arange(n, 0, -1)
|
440 |
+
if m == 0:
|
441 |
+
val = p
|
442 |
+
else:
|
443 |
+
val = polyder(y, m - 1)
|
444 |
+
if truepoly:
|
445 |
+
val = poly1d(val)
|
446 |
+
return val
|
447 |
+
|
448 |
+
|
449 |
+
def _polyfit_dispatcher(x, y, deg, rcond=None, full=None, w=None, cov=None):
|
450 |
+
return (x, y, w)
|
451 |
+
|
452 |
+
|
453 |
+
@array_function_dispatch(_polyfit_dispatcher)
|
454 |
+
def polyfit(x, y, deg, rcond=None, full=False, w=None, cov=False):
|
455 |
+
"""
|
456 |
+
Least squares polynomial fit.
|
457 |
+
|
458 |
+
.. note::
|
459 |
+
This forms part of the old polynomial API. Since version 1.4, the
|
460 |
+
new polynomial API defined in `numpy.polynomial` is preferred.
|
461 |
+
A summary of the differences can be found in the
|
462 |
+
:doc:`transition guide </reference/routines.polynomials>`.
|
463 |
+
|
464 |
+
Fit a polynomial ``p(x) = p[0] * x**deg + ... + p[deg]`` of degree `deg`
|
465 |
+
to points `(x, y)`. Returns a vector of coefficients `p` that minimises
|
466 |
+
the squared error in the order `deg`, `deg-1`, ... `0`.
|
467 |
+
|
468 |
+
The `Polynomial.fit <numpy.polynomial.polynomial.Polynomial.fit>` class
|
469 |
+
method is recommended for new code as it is more stable numerically. See
|
470 |
+
the documentation of the method for more information.
|
471 |
+
|
472 |
+
Parameters
|
473 |
+
----------
|
474 |
+
x : array_like, shape (M,)
|
475 |
+
x-coordinates of the M sample points ``(x[i], y[i])``.
|
476 |
+
y : array_like, shape (M,) or (M, K)
|
477 |
+
y-coordinates of the sample points. Several data sets of sample
|
478 |
+
points sharing the same x-coordinates can be fitted at once by
|
479 |
+
passing in a 2D-array that contains one dataset per column.
|
480 |
+
deg : int
|
481 |
+
Degree of the fitting polynomial
|
482 |
+
rcond : float, optional
|
483 |
+
Relative condition number of the fit. Singular values smaller than
|
484 |
+
this relative to the largest singular value will be ignored. The
|
485 |
+
default value is len(x)*eps, where eps is the relative precision of
|
486 |
+
the float type, about 2e-16 in most cases.
|
487 |
+
full : bool, optional
|
488 |
+
Switch determining nature of return value. When it is False (the
|
489 |
+
default) just the coefficients are returned, when True diagnostic
|
490 |
+
information from the singular value decomposition is also returned.
|
491 |
+
w : array_like, shape (M,), optional
|
492 |
+
Weights. If not None, the weight ``w[i]`` applies to the unsquared
|
493 |
+
residual ``y[i] - y_hat[i]`` at ``x[i]``. Ideally the weights are
|
494 |
+
chosen so that the errors of the products ``w[i]*y[i]`` all have the
|
495 |
+
same variance. When using inverse-variance weighting, use
|
496 |
+
``w[i] = 1/sigma(y[i])``. The default value is None.
|
497 |
+
cov : bool or str, optional
|
498 |
+
If given and not `False`, return not just the estimate but also its
|
499 |
+
covariance matrix. By default, the covariance are scaled by
|
500 |
+
chi2/dof, where dof = M - (deg + 1), i.e., the weights are presumed
|
501 |
+
to be unreliable except in a relative sense and everything is scaled
|
502 |
+
such that the reduced chi2 is unity. This scaling is omitted if
|
503 |
+
``cov='unscaled'``, as is relevant for the case that the weights are
|
504 |
+
w = 1/sigma, with sigma known to be a reliable estimate of the
|
505 |
+
uncertainty.
|
506 |
+
|
507 |
+
Returns
|
508 |
+
-------
|
509 |
+
p : ndarray, shape (deg + 1,) or (deg + 1, K)
|
510 |
+
Polynomial coefficients, highest power first. If `y` was 2-D, the
|
511 |
+
coefficients for `k`-th data set are in ``p[:,k]``.
|
512 |
+
|
513 |
+
residuals, rank, singular_values, rcond
|
514 |
+
These values are only returned if ``full == True``
|
515 |
+
|
516 |
+
- residuals -- sum of squared residuals of the least squares fit
|
517 |
+
- rank -- the effective rank of the scaled Vandermonde
|
518 |
+
coefficient matrix
|
519 |
+
- singular_values -- singular values of the scaled Vandermonde
|
520 |
+
coefficient matrix
|
521 |
+
- rcond -- value of `rcond`.
|
522 |
+
|
523 |
+
For more details, see `numpy.linalg.lstsq`.
|
524 |
+
|
525 |
+
V : ndarray, shape (M,M) or (M,M,K)
|
526 |
+
Present only if ``full == False`` and ``cov == True``. The covariance
|
527 |
+
matrix of the polynomial coefficient estimates. The diagonal of
|
528 |
+
this matrix are the variance estimates for each coefficient. If y
|
529 |
+
is a 2-D array, then the covariance matrix for the `k`-th data set
|
530 |
+
are in ``V[:,:,k]``
|
531 |
+
|
532 |
+
|
533 |
+
Warns
|
534 |
+
-----
|
535 |
+
RankWarning
|
536 |
+
The rank of the coefficient matrix in the least-squares fit is
|
537 |
+
deficient. The warning is only raised if ``full == False``.
|
538 |
+
|
539 |
+
The warnings can be turned off by
|
540 |
+
|
541 |
+
>>> import warnings
|
542 |
+
>>> warnings.simplefilter('ignore', np.RankWarning)
|
543 |
+
|
544 |
+
See Also
|
545 |
+
--------
|
546 |
+
polyval : Compute polynomial values.
|
547 |
+
linalg.lstsq : Computes a least-squares fit.
|
548 |
+
scipy.interpolate.UnivariateSpline : Computes spline fits.
|
549 |
+
|
550 |
+
Notes
|
551 |
+
-----
|
552 |
+
The solution minimizes the squared error
|
553 |
+
|
554 |
+
.. math::
|
555 |
+
E = \\sum_{j=0}^k |p(x_j) - y_j|^2
|
556 |
+
|
557 |
+
in the equations::
|
558 |
+
|
559 |
+
x[0]**n * p[0] + ... + x[0] * p[n-1] + p[n] = y[0]
|
560 |
+
x[1]**n * p[0] + ... + x[1] * p[n-1] + p[n] = y[1]
|
561 |
+
...
|
562 |
+
x[k]**n * p[0] + ... + x[k] * p[n-1] + p[n] = y[k]
|
563 |
+
|
564 |
+
The coefficient matrix of the coefficients `p` is a Vandermonde matrix.
|
565 |
+
|
566 |
+
`polyfit` issues a `RankWarning` when the least-squares fit is badly
|
567 |
+
conditioned. This implies that the best fit is not well-defined due
|
568 |
+
to numerical error. The results may be improved by lowering the polynomial
|
569 |
+
degree or by replacing `x` by `x` - `x`.mean(). The `rcond` parameter
|
570 |
+
can also be set to a value smaller than its default, but the resulting
|
571 |
+
fit may be spurious: including contributions from the small singular
|
572 |
+
values can add numerical noise to the result.
|
573 |
+
|
574 |
+
Note that fitting polynomial coefficients is inherently badly conditioned
|
575 |
+
when the degree of the polynomial is large or the interval of sample points
|
576 |
+
is badly centered. The quality of the fit should always be checked in these
|
577 |
+
cases. When polynomial fits are not satisfactory, splines may be a good
|
578 |
+
alternative.
|
579 |
+
|
580 |
+
References
|
581 |
+
----------
|
582 |
+
.. [1] Wikipedia, "Curve fitting",
|
583 |
+
https://en.wikipedia.org/wiki/Curve_fitting
|
584 |
+
.. [2] Wikipedia, "Polynomial interpolation",
|
585 |
+
https://en.wikipedia.org/wiki/Polynomial_interpolation
|
586 |
+
|
587 |
+
Examples
|
588 |
+
--------
|
589 |
+
>>> import warnings
|
590 |
+
>>> x = np.array([0.0, 1.0, 2.0, 3.0, 4.0, 5.0])
|
591 |
+
>>> y = np.array([0.0, 0.8, 0.9, 0.1, -0.8, -1.0])
|
592 |
+
>>> z = np.polyfit(x, y, 3)
|
593 |
+
>>> z
|
594 |
+
array([ 0.08703704, -0.81349206, 1.69312169, -0.03968254]) # may vary
|
595 |
+
|
596 |
+
It is convenient to use `poly1d` objects for dealing with polynomials:
|
597 |
+
|
598 |
+
>>> p = np.poly1d(z)
|
599 |
+
>>> p(0.5)
|
600 |
+
0.6143849206349179 # may vary
|
601 |
+
>>> p(3.5)
|
602 |
+
-0.34732142857143039 # may vary
|
603 |
+
>>> p(10)
|
604 |
+
22.579365079365115 # may vary
|
605 |
+
|
606 |
+
High-order polynomials may oscillate wildly:
|
607 |
+
|
608 |
+
>>> with warnings.catch_warnings():
|
609 |
+
... warnings.simplefilter('ignore', np.RankWarning)
|
610 |
+
... p30 = np.poly1d(np.polyfit(x, y, 30))
|
611 |
+
...
|
612 |
+
>>> p30(4)
|
613 |
+
-0.80000000000000204 # may vary
|
614 |
+
>>> p30(5)
|
615 |
+
-0.99999999999999445 # may vary
|
616 |
+
>>> p30(4.5)
|
617 |
+
-0.10547061179440398 # may vary
|
618 |
+
|
619 |
+
Illustration:
|
620 |
+
|
621 |
+
>>> import matplotlib.pyplot as plt
|
622 |
+
>>> xp = np.linspace(-2, 6, 100)
|
623 |
+
>>> _ = plt.plot(x, y, '.', xp, p(xp), '-', xp, p30(xp), '--')
|
624 |
+
>>> plt.ylim(-2,2)
|
625 |
+
(-2, 2)
|
626 |
+
>>> plt.show()
|
627 |
+
|
628 |
+
"""
|
629 |
+
order = int(deg) + 1
|
630 |
+
x = NX.asarray(x) + 0.0
|
631 |
+
y = NX.asarray(y) + 0.0
|
632 |
+
|
633 |
+
# check arguments.
|
634 |
+
if deg < 0:
|
635 |
+
raise ValueError("expected deg >= 0")
|
636 |
+
if x.ndim != 1:
|
637 |
+
raise TypeError("expected 1D vector for x")
|
638 |
+
if x.size == 0:
|
639 |
+
raise TypeError("expected non-empty vector for x")
|
640 |
+
if y.ndim < 1 or y.ndim > 2:
|
641 |
+
raise TypeError("expected 1D or 2D array for y")
|
642 |
+
if x.shape[0] != y.shape[0]:
|
643 |
+
raise TypeError("expected x and y to have same length")
|
644 |
+
|
645 |
+
# set rcond
|
646 |
+
if rcond is None:
|
647 |
+
rcond = len(x)*finfo(x.dtype).eps
|
648 |
+
|
649 |
+
# set up least squares equation for powers of x
|
650 |
+
lhs = vander(x, order)
|
651 |
+
rhs = y
|
652 |
+
|
653 |
+
# apply weighting
|
654 |
+
if w is not None:
|
655 |
+
w = NX.asarray(w) + 0.0
|
656 |
+
if w.ndim != 1:
|
657 |
+
raise TypeError("expected a 1-d array for weights")
|
658 |
+
if w.shape[0] != y.shape[0]:
|
659 |
+
raise TypeError("expected w and y to have the same length")
|
660 |
+
lhs *= w[:, NX.newaxis]
|
661 |
+
if rhs.ndim == 2:
|
662 |
+
rhs *= w[:, NX.newaxis]
|
663 |
+
else:
|
664 |
+
rhs *= w
|
665 |
+
|
666 |
+
# scale lhs to improve condition number and solve
|
667 |
+
scale = NX.sqrt((lhs*lhs).sum(axis=0))
|
668 |
+
lhs /= scale
|
669 |
+
c, resids, rank, s = lstsq(lhs, rhs, rcond)
|
670 |
+
c = (c.T/scale).T # broadcast scale coefficients
|
671 |
+
|
672 |
+
# warn on rank reduction, which indicates an ill conditioned matrix
|
673 |
+
if rank != order and not full:
|
674 |
+
msg = "Polyfit may be poorly conditioned"
|
675 |
+
warnings.warn(msg, RankWarning, stacklevel=2)
|
676 |
+
|
677 |
+
if full:
|
678 |
+
return c, resids, rank, s, rcond
|
679 |
+
elif cov:
|
680 |
+
Vbase = inv(dot(lhs.T, lhs))
|
681 |
+
Vbase /= NX.outer(scale, scale)
|
682 |
+
if cov == "unscaled":
|
683 |
+
fac = 1
|
684 |
+
else:
|
685 |
+
if len(x) <= order:
|
686 |
+
raise ValueError("the number of data points must exceed order "
|
687 |
+
"to scale the covariance matrix")
|
688 |
+
# note, this used to be: fac = resids / (len(x) - order - 2.0)
|
689 |
+
# it was deciced that the "- 2" (originally justified by "Bayesian
|
690 |
+
# uncertainty analysis") is not what the user expects
|
691 |
+
# (see gh-11196 and gh-11197)
|
692 |
+
fac = resids / (len(x) - order)
|
693 |
+
if y.ndim == 1:
|
694 |
+
return c, Vbase * fac
|
695 |
+
else:
|
696 |
+
return c, Vbase[:,:, NX.newaxis] * fac
|
697 |
+
else:
|
698 |
+
return c
|
699 |
+
|
700 |
+
|
701 |
+
def _polyval_dispatcher(p, x):
|
702 |
+
return (p, x)
|
703 |
+
|
704 |
+
|
705 |
+
@array_function_dispatch(_polyval_dispatcher)
|
706 |
+
def polyval(p, x):
|
707 |
+
"""
|
708 |
+
Evaluate a polynomial at specific values.
|
709 |
+
|
710 |
+
.. note::
|
711 |
+
This forms part of the old polynomial API. Since version 1.4, the
|
712 |
+
new polynomial API defined in `numpy.polynomial` is preferred.
|
713 |
+
A summary of the differences can be found in the
|
714 |
+
:doc:`transition guide </reference/routines.polynomials>`.
|
715 |
+
|
716 |
+
If `p` is of length N, this function returns the value:
|
717 |
+
|
718 |
+
``p[0]*x**(N-1) + p[1]*x**(N-2) + ... + p[N-2]*x + p[N-1]``
|
719 |
+
|
720 |
+
If `x` is a sequence, then ``p(x)`` is returned for each element of ``x``.
|
721 |
+
If `x` is another polynomial then the composite polynomial ``p(x(t))``
|
722 |
+
is returned.
|
723 |
+
|
724 |
+
Parameters
|
725 |
+
----------
|
726 |
+
p : array_like or poly1d object
|
727 |
+
1D array of polynomial coefficients (including coefficients equal
|
728 |
+
to zero) from highest degree to the constant term, or an
|
729 |
+
instance of poly1d.
|
730 |
+
x : array_like or poly1d object
|
731 |
+
A number, an array of numbers, or an instance of poly1d, at
|
732 |
+
which to evaluate `p`.
|
733 |
+
|
734 |
+
Returns
|
735 |
+
-------
|
736 |
+
values : ndarray or poly1d
|
737 |
+
If `x` is a poly1d instance, the result is the composition of the two
|
738 |
+
polynomials, i.e., `x` is "substituted" in `p` and the simplified
|
739 |
+
result is returned. In addition, the type of `x` - array_like or
|
740 |
+
poly1d - governs the type of the output: `x` array_like => `values`
|
741 |
+
array_like, `x` a poly1d object => `values` is also.
|
742 |
+
|
743 |
+
See Also
|
744 |
+
--------
|
745 |
+
poly1d: A polynomial class.
|
746 |
+
|
747 |
+
Notes
|
748 |
+
-----
|
749 |
+
Horner's scheme [1]_ is used to evaluate the polynomial. Even so,
|
750 |
+
for polynomials of high degree the values may be inaccurate due to
|
751 |
+
rounding errors. Use carefully.
|
752 |
+
|
753 |
+
If `x` is a subtype of `ndarray` the return value will be of the same type.
|
754 |
+
|
755 |
+
References
|
756 |
+
----------
|
757 |
+
.. [1] I. N. Bronshtein, K. A. Semendyayev, and K. A. Hirsch (Eng.
|
758 |
+
trans. Ed.), *Handbook of Mathematics*, New York, Van Nostrand
|
759 |
+
Reinhold Co., 1985, pg. 720.
|
760 |
+
|
761 |
+
Examples
|
762 |
+
--------
|
763 |
+
>>> np.polyval([3,0,1], 5) # 3 * 5**2 + 0 * 5**1 + 1
|
764 |
+
76
|
765 |
+
>>> np.polyval([3,0,1], np.poly1d(5))
|
766 |
+
poly1d([76])
|
767 |
+
>>> np.polyval(np.poly1d([3,0,1]), 5)
|
768 |
+
76
|
769 |
+
>>> np.polyval(np.poly1d([3,0,1]), np.poly1d(5))
|
770 |
+
poly1d([76])
|
771 |
+
|
772 |
+
"""
|
773 |
+
p = NX.asarray(p)
|
774 |
+
if isinstance(x, poly1d):
|
775 |
+
y = 0
|
776 |
+
else:
|
777 |
+
x = NX.asanyarray(x)
|
778 |
+
y = NX.zeros_like(x)
|
779 |
+
for pv in p:
|
780 |
+
y = y * x + pv
|
781 |
+
return y
|
782 |
+
|
783 |
+
|
784 |
+
def _binary_op_dispatcher(a1, a2):
|
785 |
+
return (a1, a2)
|
786 |
+
|
787 |
+
|
788 |
+
@array_function_dispatch(_binary_op_dispatcher)
|
789 |
+
def polyadd(a1, a2):
|
790 |
+
"""
|
791 |
+
Find the sum of two polynomials.
|
792 |
+
|
793 |
+
.. note::
|
794 |
+
This forms part of the old polynomial API. Since version 1.4, the
|
795 |
+
new polynomial API defined in `numpy.polynomial` is preferred.
|
796 |
+
A summary of the differences can be found in the
|
797 |
+
:doc:`transition guide </reference/routines.polynomials>`.
|
798 |
+
|
799 |
+
Returns the polynomial resulting from the sum of two input polynomials.
|
800 |
+
Each input must be either a poly1d object or a 1D sequence of polynomial
|
801 |
+
coefficients, from highest to lowest degree.
|
802 |
+
|
803 |
+
Parameters
|
804 |
+
----------
|
805 |
+
a1, a2 : array_like or poly1d object
|
806 |
+
Input polynomials.
|
807 |
+
|
808 |
+
Returns
|
809 |
+
-------
|
810 |
+
out : ndarray or poly1d object
|
811 |
+
The sum of the inputs. If either input is a poly1d object, then the
|
812 |
+
output is also a poly1d object. Otherwise, it is a 1D array of
|
813 |
+
polynomial coefficients from highest to lowest degree.
|
814 |
+
|
815 |
+
See Also
|
816 |
+
--------
|
817 |
+
poly1d : A one-dimensional polynomial class.
|
818 |
+
poly, polyadd, polyder, polydiv, polyfit, polyint, polysub, polyval
|
819 |
+
|
820 |
+
Examples
|
821 |
+
--------
|
822 |
+
>>> np.polyadd([1, 2], [9, 5, 4])
|
823 |
+
array([9, 6, 6])
|
824 |
+
|
825 |
+
Using poly1d objects:
|
826 |
+
|
827 |
+
>>> p1 = np.poly1d([1, 2])
|
828 |
+
>>> p2 = np.poly1d([9, 5, 4])
|
829 |
+
>>> print(p1)
|
830 |
+
1 x + 2
|
831 |
+
>>> print(p2)
|
832 |
+
2
|
833 |
+
9 x + 5 x + 4
|
834 |
+
>>> print(np.polyadd(p1, p2))
|
835 |
+
2
|
836 |
+
9 x + 6 x + 6
|
837 |
+
|
838 |
+
"""
|
839 |
+
truepoly = (isinstance(a1, poly1d) or isinstance(a2, poly1d))
|
840 |
+
a1 = atleast_1d(a1)
|
841 |
+
a2 = atleast_1d(a2)
|
842 |
+
diff = len(a2) - len(a1)
|
843 |
+
if diff == 0:
|
844 |
+
val = a1 + a2
|
845 |
+
elif diff > 0:
|
846 |
+
zr = NX.zeros(diff, a1.dtype)
|
847 |
+
val = NX.concatenate((zr, a1)) + a2
|
848 |
+
else:
|
849 |
+
zr = NX.zeros(abs(diff), a2.dtype)
|
850 |
+
val = a1 + NX.concatenate((zr, a2))
|
851 |
+
if truepoly:
|
852 |
+
val = poly1d(val)
|
853 |
+
return val
|
854 |
+
|
855 |
+
|
856 |
+
@array_function_dispatch(_binary_op_dispatcher)
|
857 |
+
def polysub(a1, a2):
|
858 |
+
"""
|
859 |
+
Difference (subtraction) of two polynomials.
|
860 |
+
|
861 |
+
.. note::
|
862 |
+
This forms part of the old polynomial API. Since version 1.4, the
|
863 |
+
new polynomial API defined in `numpy.polynomial` is preferred.
|
864 |
+
A summary of the differences can be found in the
|
865 |
+
:doc:`transition guide </reference/routines.polynomials>`.
|
866 |
+
|
867 |
+
Given two polynomials `a1` and `a2`, returns ``a1 - a2``.
|
868 |
+
`a1` and `a2` can be either array_like sequences of the polynomials'
|
869 |
+
coefficients (including coefficients equal to zero), or `poly1d` objects.
|
870 |
+
|
871 |
+
Parameters
|
872 |
+
----------
|
873 |
+
a1, a2 : array_like or poly1d
|
874 |
+
Minuend and subtrahend polynomials, respectively.
|
875 |
+
|
876 |
+
Returns
|
877 |
+
-------
|
878 |
+
out : ndarray or poly1d
|
879 |
+
Array or `poly1d` object of the difference polynomial's coefficients.
|
880 |
+
|
881 |
+
See Also
|
882 |
+
--------
|
883 |
+
polyval, polydiv, polymul, polyadd
|
884 |
+
|
885 |
+
Examples
|
886 |
+
--------
|
887 |
+
.. math:: (2 x^2 + 10 x - 2) - (3 x^2 + 10 x -4) = (-x^2 + 2)
|
888 |
+
|
889 |
+
>>> np.polysub([2, 10, -2], [3, 10, -4])
|
890 |
+
array([-1, 0, 2])
|
891 |
+
|
892 |
+
"""
|
893 |
+
truepoly = (isinstance(a1, poly1d) or isinstance(a2, poly1d))
|
894 |
+
a1 = atleast_1d(a1)
|
895 |
+
a2 = atleast_1d(a2)
|
896 |
+
diff = len(a2) - len(a1)
|
897 |
+
if diff == 0:
|
898 |
+
val = a1 - a2
|
899 |
+
elif diff > 0:
|
900 |
+
zr = NX.zeros(diff, a1.dtype)
|
901 |
+
val = NX.concatenate((zr, a1)) - a2
|
902 |
+
else:
|
903 |
+
zr = NX.zeros(abs(diff), a2.dtype)
|
904 |
+
val = a1 - NX.concatenate((zr, a2))
|
905 |
+
if truepoly:
|
906 |
+
val = poly1d(val)
|
907 |
+
return val
|
908 |
+
|
909 |
+
|
910 |
+
@array_function_dispatch(_binary_op_dispatcher)
|
911 |
+
def polymul(a1, a2):
|
912 |
+
"""
|
913 |
+
Find the product of two polynomials.
|
914 |
+
|
915 |
+
.. note::
|
916 |
+
This forms part of the old polynomial API. Since version 1.4, the
|
917 |
+
new polynomial API defined in `numpy.polynomial` is preferred.
|
918 |
+
A summary of the differences can be found in the
|
919 |
+
:doc:`transition guide </reference/routines.polynomials>`.
|
920 |
+
|
921 |
+
Finds the polynomial resulting from the multiplication of the two input
|
922 |
+
polynomials. Each input must be either a poly1d object or a 1D sequence
|
923 |
+
of polynomial coefficients, from highest to lowest degree.
|
924 |
+
|
925 |
+
Parameters
|
926 |
+
----------
|
927 |
+
a1, a2 : array_like or poly1d object
|
928 |
+
Input polynomials.
|
929 |
+
|
930 |
+
Returns
|
931 |
+
-------
|
932 |
+
out : ndarray or poly1d object
|
933 |
+
The polynomial resulting from the multiplication of the inputs. If
|
934 |
+
either inputs is a poly1d object, then the output is also a poly1d
|
935 |
+
object. Otherwise, it is a 1D array of polynomial coefficients from
|
936 |
+
highest to lowest degree.
|
937 |
+
|
938 |
+
See Also
|
939 |
+
--------
|
940 |
+
poly1d : A one-dimensional polynomial class.
|
941 |
+
poly, polyadd, polyder, polydiv, polyfit, polyint, polysub, polyval
|
942 |
+
convolve : Array convolution. Same output as polymul, but has parameter
|
943 |
+
for overlap mode.
|
944 |
+
|
945 |
+
Examples
|
946 |
+
--------
|
947 |
+
>>> np.polymul([1, 2, 3], [9, 5, 1])
|
948 |
+
array([ 9, 23, 38, 17, 3])
|
949 |
+
|
950 |
+
Using poly1d objects:
|
951 |
+
|
952 |
+
>>> p1 = np.poly1d([1, 2, 3])
|
953 |
+
>>> p2 = np.poly1d([9, 5, 1])
|
954 |
+
>>> print(p1)
|
955 |
+
2
|
956 |
+
1 x + 2 x + 3
|
957 |
+
>>> print(p2)
|
958 |
+
2
|
959 |
+
9 x + 5 x + 1
|
960 |
+
>>> print(np.polymul(p1, p2))
|
961 |
+
4 3 2
|
962 |
+
9 x + 23 x + 38 x + 17 x + 3
|
963 |
+
|
964 |
+
"""
|
965 |
+
truepoly = (isinstance(a1, poly1d) or isinstance(a2, poly1d))
|
966 |
+
a1, a2 = poly1d(a1), poly1d(a2)
|
967 |
+
val = NX.convolve(a1, a2)
|
968 |
+
if truepoly:
|
969 |
+
val = poly1d(val)
|
970 |
+
return val
|
971 |
+
|
972 |
+
|
973 |
+
def _polydiv_dispatcher(u, v):
|
974 |
+
return (u, v)
|
975 |
+
|
976 |
+
|
977 |
+
@array_function_dispatch(_polydiv_dispatcher)
|
978 |
+
def polydiv(u, v):
|
979 |
+
"""
|
980 |
+
Returns the quotient and remainder of polynomial division.
|
981 |
+
|
982 |
+
.. note::
|
983 |
+
This forms part of the old polynomial API. Since version 1.4, the
|
984 |
+
new polynomial API defined in `numpy.polynomial` is preferred.
|
985 |
+
A summary of the differences can be found in the
|
986 |
+
:doc:`transition guide </reference/routines.polynomials>`.
|
987 |
+
|
988 |
+
The input arrays are the coefficients (including any coefficients
|
989 |
+
equal to zero) of the "numerator" (dividend) and "denominator"
|
990 |
+
(divisor) polynomials, respectively.
|
991 |
+
|
992 |
+
Parameters
|
993 |
+
----------
|
994 |
+
u : array_like or poly1d
|
995 |
+
Dividend polynomial's coefficients.
|
996 |
+
|
997 |
+
v : array_like or poly1d
|
998 |
+
Divisor polynomial's coefficients.
|
999 |
+
|
1000 |
+
Returns
|
1001 |
+
-------
|
1002 |
+
q : ndarray
|
1003 |
+
Coefficients, including those equal to zero, of the quotient.
|
1004 |
+
r : ndarray
|
1005 |
+
Coefficients, including those equal to zero, of the remainder.
|
1006 |
+
|
1007 |
+
See Also
|
1008 |
+
--------
|
1009 |
+
poly, polyadd, polyder, polydiv, polyfit, polyint, polymul, polysub
|
1010 |
+
polyval
|
1011 |
+
|
1012 |
+
Notes
|
1013 |
+
-----
|
1014 |
+
Both `u` and `v` must be 0-d or 1-d (ndim = 0 or 1), but `u.ndim` need
|
1015 |
+
not equal `v.ndim`. In other words, all four possible combinations -
|
1016 |
+
``u.ndim = v.ndim = 0``, ``u.ndim = v.ndim = 1``,
|
1017 |
+
``u.ndim = 1, v.ndim = 0``, and ``u.ndim = 0, v.ndim = 1`` - work.
|
1018 |
+
|
1019 |
+
Examples
|
1020 |
+
--------
|
1021 |
+
.. math:: \\frac{3x^2 + 5x + 2}{2x + 1} = 1.5x + 1.75, remainder 0.25
|
1022 |
+
|
1023 |
+
>>> x = np.array([3.0, 5.0, 2.0])
|
1024 |
+
>>> y = np.array([2.0, 1.0])
|
1025 |
+
>>> np.polydiv(x, y)
|
1026 |
+
(array([1.5 , 1.75]), array([0.25]))
|
1027 |
+
|
1028 |
+
"""
|
1029 |
+
truepoly = (isinstance(u, poly1d) or isinstance(v, poly1d))
|
1030 |
+
u = atleast_1d(u) + 0.0
|
1031 |
+
v = atleast_1d(v) + 0.0
|
1032 |
+
# w has the common type
|
1033 |
+
w = u[0] + v[0]
|
1034 |
+
m = len(u) - 1
|
1035 |
+
n = len(v) - 1
|
1036 |
+
scale = 1. / v[0]
|
1037 |
+
q = NX.zeros((max(m - n + 1, 1),), w.dtype)
|
1038 |
+
r = u.astype(w.dtype)
|
1039 |
+
for k in range(0, m-n+1):
|
1040 |
+
d = scale * r[k]
|
1041 |
+
q[k] = d
|
1042 |
+
r[k:k+n+1] -= d*v
|
1043 |
+
while NX.allclose(r[0], 0, rtol=1e-14) and (r.shape[-1] > 1):
|
1044 |
+
r = r[1:]
|
1045 |
+
if truepoly:
|
1046 |
+
return poly1d(q), poly1d(r)
|
1047 |
+
return q, r
|
1048 |
+
|
1049 |
+
_poly_mat = re.compile(r"\*\*([0-9]*)")
|
1050 |
+
def _raise_power(astr, wrap=70):
|
1051 |
+
n = 0
|
1052 |
+
line1 = ''
|
1053 |
+
line2 = ''
|
1054 |
+
output = ' '
|
1055 |
+
while True:
|
1056 |
+
mat = _poly_mat.search(astr, n)
|
1057 |
+
if mat is None:
|
1058 |
+
break
|
1059 |
+
span = mat.span()
|
1060 |
+
power = mat.groups()[0]
|
1061 |
+
partstr = astr[n:span[0]]
|
1062 |
+
n = span[1]
|
1063 |
+
toadd2 = partstr + ' '*(len(power)-1)
|
1064 |
+
toadd1 = ' '*(len(partstr)-1) + power
|
1065 |
+
if ((len(line2) + len(toadd2) > wrap) or
|
1066 |
+
(len(line1) + len(toadd1) > wrap)):
|
1067 |
+
output += line1 + "\n" + line2 + "\n "
|
1068 |
+
line1 = toadd1
|
1069 |
+
line2 = toadd2
|
1070 |
+
else:
|
1071 |
+
line2 += partstr + ' '*(len(power)-1)
|
1072 |
+
line1 += ' '*(len(partstr)-1) + power
|
1073 |
+
output += line1 + "\n" + line2
|
1074 |
+
return output + astr[n:]
|
1075 |
+
|
1076 |
+
|
1077 |
+
@set_module('numpy')
|
1078 |
+
class poly1d:
|
1079 |
+
"""
|
1080 |
+
A one-dimensional polynomial class.
|
1081 |
+
|
1082 |
+
.. note::
|
1083 |
+
This forms part of the old polynomial API. Since version 1.4, the
|
1084 |
+
new polynomial API defined in `numpy.polynomial` is preferred.
|
1085 |
+
A summary of the differences can be found in the
|
1086 |
+
:doc:`transition guide </reference/routines.polynomials>`.
|
1087 |
+
|
1088 |
+
A convenience class, used to encapsulate "natural" operations on
|
1089 |
+
polynomials so that said operations may take on their customary
|
1090 |
+
form in code (see Examples).
|
1091 |
+
|
1092 |
+
Parameters
|
1093 |
+
----------
|
1094 |
+
c_or_r : array_like
|
1095 |
+
The polynomial's coefficients, in decreasing powers, or if
|
1096 |
+
the value of the second parameter is True, the polynomial's
|
1097 |
+
roots (values where the polynomial evaluates to 0). For example,
|
1098 |
+
``poly1d([1, 2, 3])`` returns an object that represents
|
1099 |
+
:math:`x^2 + 2x + 3`, whereas ``poly1d([1, 2, 3], True)`` returns
|
1100 |
+
one that represents :math:`(x-1)(x-2)(x-3) = x^3 - 6x^2 + 11x -6`.
|
1101 |
+
r : bool, optional
|
1102 |
+
If True, `c_or_r` specifies the polynomial's roots; the default
|
1103 |
+
is False.
|
1104 |
+
variable : str, optional
|
1105 |
+
Changes the variable used when printing `p` from `x` to `variable`
|
1106 |
+
(see Examples).
|
1107 |
+
|
1108 |
+
Examples
|
1109 |
+
--------
|
1110 |
+
Construct the polynomial :math:`x^2 + 2x + 3`:
|
1111 |
+
|
1112 |
+
>>> p = np.poly1d([1, 2, 3])
|
1113 |
+
>>> print(np.poly1d(p))
|
1114 |
+
2
|
1115 |
+
1 x + 2 x + 3
|
1116 |
+
|
1117 |
+
Evaluate the polynomial at :math:`x = 0.5`:
|
1118 |
+
|
1119 |
+
>>> p(0.5)
|
1120 |
+
4.25
|
1121 |
+
|
1122 |
+
Find the roots:
|
1123 |
+
|
1124 |
+
>>> p.r
|
1125 |
+
array([-1.+1.41421356j, -1.-1.41421356j])
|
1126 |
+
>>> p(p.r)
|
1127 |
+
array([ -4.44089210e-16+0.j, -4.44089210e-16+0.j]) # may vary
|
1128 |
+
|
1129 |
+
These numbers in the previous line represent (0, 0) to machine precision
|
1130 |
+
|
1131 |
+
Show the coefficients:
|
1132 |
+
|
1133 |
+
>>> p.c
|
1134 |
+
array([1, 2, 3])
|
1135 |
+
|
1136 |
+
Display the order (the leading zero-coefficients are removed):
|
1137 |
+
|
1138 |
+
>>> p.order
|
1139 |
+
2
|
1140 |
+
|
1141 |
+
Show the coefficient of the k-th power in the polynomial
|
1142 |
+
(which is equivalent to ``p.c[-(i+1)]``):
|
1143 |
+
|
1144 |
+
>>> p[1]
|
1145 |
+
2
|
1146 |
+
|
1147 |
+
Polynomials can be added, subtracted, multiplied, and divided
|
1148 |
+
(returns quotient and remainder):
|
1149 |
+
|
1150 |
+
>>> p * p
|
1151 |
+
poly1d([ 1, 4, 10, 12, 9])
|
1152 |
+
|
1153 |
+
>>> (p**3 + 4) / p
|
1154 |
+
(poly1d([ 1., 4., 10., 12., 9.]), poly1d([4.]))
|
1155 |
+
|
1156 |
+
``asarray(p)`` gives the coefficient array, so polynomials can be
|
1157 |
+
used in all functions that accept arrays:
|
1158 |
+
|
1159 |
+
>>> p**2 # square of polynomial
|
1160 |
+
poly1d([ 1, 4, 10, 12, 9])
|
1161 |
+
|
1162 |
+
>>> np.square(p) # square of individual coefficients
|
1163 |
+
array([1, 4, 9])
|
1164 |
+
|
1165 |
+
The variable used in the string representation of `p` can be modified,
|
1166 |
+
using the `variable` parameter:
|
1167 |
+
|
1168 |
+
>>> p = np.poly1d([1,2,3], variable='z')
|
1169 |
+
>>> print(p)
|
1170 |
+
2
|
1171 |
+
1 z + 2 z + 3
|
1172 |
+
|
1173 |
+
Construct a polynomial from its roots:
|
1174 |
+
|
1175 |
+
>>> np.poly1d([1, 2], True)
|
1176 |
+
poly1d([ 1., -3., 2.])
|
1177 |
+
|
1178 |
+
This is the same polynomial as obtained by:
|
1179 |
+
|
1180 |
+
>>> np.poly1d([1, -1]) * np.poly1d([1, -2])
|
1181 |
+
poly1d([ 1, -3, 2])
|
1182 |
+
|
1183 |
+
"""
|
1184 |
+
__hash__ = None
|
1185 |
+
|
1186 |
+
@property
|
1187 |
+
def coeffs(self):
|
1188 |
+
""" The polynomial coefficients """
|
1189 |
+
return self._coeffs
|
1190 |
+
|
1191 |
+
@coeffs.setter
|
1192 |
+
def coeffs(self, value):
|
1193 |
+
# allowing this makes p.coeffs *= 2 legal
|
1194 |
+
if value is not self._coeffs:
|
1195 |
+
raise AttributeError("Cannot set attribute")
|
1196 |
+
|
1197 |
+
@property
|
1198 |
+
def variable(self):
|
1199 |
+
""" The name of the polynomial variable """
|
1200 |
+
return self._variable
|
1201 |
+
|
1202 |
+
# calculated attributes
|
1203 |
+
@property
|
1204 |
+
def order(self):
|
1205 |
+
""" The order or degree of the polynomial """
|
1206 |
+
return len(self._coeffs) - 1
|
1207 |
+
|
1208 |
+
@property
|
1209 |
+
def roots(self):
|
1210 |
+
""" The roots of the polynomial, where self(x) == 0 """
|
1211 |
+
return roots(self._coeffs)
|
1212 |
+
|
1213 |
+
# our internal _coeffs property need to be backed by __dict__['coeffs'] for
|
1214 |
+
# scipy to work correctly.
|
1215 |
+
@property
|
1216 |
+
def _coeffs(self):
|
1217 |
+
return self.__dict__['coeffs']
|
1218 |
+
@_coeffs.setter
|
1219 |
+
def _coeffs(self, coeffs):
|
1220 |
+
self.__dict__['coeffs'] = coeffs
|
1221 |
+
|
1222 |
+
# alias attributes
|
1223 |
+
r = roots
|
1224 |
+
c = coef = coefficients = coeffs
|
1225 |
+
o = order
|
1226 |
+
|
1227 |
+
def __init__(self, c_or_r, r=False, variable=None):
|
1228 |
+
if isinstance(c_or_r, poly1d):
|
1229 |
+
self._variable = c_or_r._variable
|
1230 |
+
self._coeffs = c_or_r._coeffs
|
1231 |
+
|
1232 |
+
if set(c_or_r.__dict__) - set(self.__dict__):
|
1233 |
+
msg = ("In the future extra properties will not be copied "
|
1234 |
+
"across when constructing one poly1d from another")
|
1235 |
+
warnings.warn(msg, FutureWarning, stacklevel=2)
|
1236 |
+
self.__dict__.update(c_or_r.__dict__)
|
1237 |
+
|
1238 |
+
if variable is not None:
|
1239 |
+
self._variable = variable
|
1240 |
+
return
|
1241 |
+
if r:
|
1242 |
+
c_or_r = poly(c_or_r)
|
1243 |
+
c_or_r = atleast_1d(c_or_r)
|
1244 |
+
if c_or_r.ndim > 1:
|
1245 |
+
raise ValueError("Polynomial must be 1d only.")
|
1246 |
+
c_or_r = trim_zeros(c_or_r, trim='f')
|
1247 |
+
if len(c_or_r) == 0:
|
1248 |
+
c_or_r = NX.array([0], dtype=c_or_r.dtype)
|
1249 |
+
self._coeffs = c_or_r
|
1250 |
+
if variable is None:
|
1251 |
+
variable = 'x'
|
1252 |
+
self._variable = variable
|
1253 |
+
|
1254 |
+
def __array__(self, t=None):
|
1255 |
+
if t:
|
1256 |
+
return NX.asarray(self.coeffs, t)
|
1257 |
+
else:
|
1258 |
+
return NX.asarray(self.coeffs)
|
1259 |
+
|
1260 |
+
def __repr__(self):
|
1261 |
+
vals = repr(self.coeffs)
|
1262 |
+
vals = vals[6:-1]
|
1263 |
+
return "poly1d(%s)" % vals
|
1264 |
+
|
1265 |
+
def __len__(self):
|
1266 |
+
return self.order
|
1267 |
+
|
1268 |
+
def __str__(self):
|
1269 |
+
thestr = "0"
|
1270 |
+
var = self.variable
|
1271 |
+
|
1272 |
+
# Remove leading zeros
|
1273 |
+
coeffs = self.coeffs[NX.logical_or.accumulate(self.coeffs != 0)]
|
1274 |
+
N = len(coeffs)-1
|
1275 |
+
|
1276 |
+
def fmt_float(q):
|
1277 |
+
s = '%.4g' % q
|
1278 |
+
if s.endswith('.0000'):
|
1279 |
+
s = s[:-5]
|
1280 |
+
return s
|
1281 |
+
|
1282 |
+
for k, coeff in enumerate(coeffs):
|
1283 |
+
if not iscomplex(coeff):
|
1284 |
+
coefstr = fmt_float(real(coeff))
|
1285 |
+
elif real(coeff) == 0:
|
1286 |
+
coefstr = '%sj' % fmt_float(imag(coeff))
|
1287 |
+
else:
|
1288 |
+
coefstr = '(%s + %sj)' % (fmt_float(real(coeff)),
|
1289 |
+
fmt_float(imag(coeff)))
|
1290 |
+
|
1291 |
+
power = (N-k)
|
1292 |
+
if power == 0:
|
1293 |
+
if coefstr != '0':
|
1294 |
+
newstr = '%s' % (coefstr,)
|
1295 |
+
else:
|
1296 |
+
if k == 0:
|
1297 |
+
newstr = '0'
|
1298 |
+
else:
|
1299 |
+
newstr = ''
|
1300 |
+
elif power == 1:
|
1301 |
+
if coefstr == '0':
|
1302 |
+
newstr = ''
|
1303 |
+
elif coefstr == 'b':
|
1304 |
+
newstr = var
|
1305 |
+
else:
|
1306 |
+
newstr = '%s %s' % (coefstr, var)
|
1307 |
+
else:
|
1308 |
+
if coefstr == '0':
|
1309 |
+
newstr = ''
|
1310 |
+
elif coefstr == 'b':
|
1311 |
+
newstr = '%s**%d' % (var, power,)
|
1312 |
+
else:
|
1313 |
+
newstr = '%s %s**%d' % (coefstr, var, power)
|
1314 |
+
|
1315 |
+
if k > 0:
|
1316 |
+
if newstr != '':
|
1317 |
+
if newstr.startswith('-'):
|
1318 |
+
thestr = "%s - %s" % (thestr, newstr[1:])
|
1319 |
+
else:
|
1320 |
+
thestr = "%s + %s" % (thestr, newstr)
|
1321 |
+
else:
|
1322 |
+
thestr = newstr
|
1323 |
+
return _raise_power(thestr)
|
1324 |
+
|
1325 |
+
def __call__(self, val):
|
1326 |
+
return polyval(self.coeffs, val)
|
1327 |
+
|
1328 |
+
def __neg__(self):
|
1329 |
+
return poly1d(-self.coeffs)
|
1330 |
+
|
1331 |
+
def __pos__(self):
|
1332 |
+
return self
|
1333 |
+
|
1334 |
+
def __mul__(self, other):
|
1335 |
+
if isscalar(other):
|
1336 |
+
return poly1d(self.coeffs * other)
|
1337 |
+
else:
|
1338 |
+
other = poly1d(other)
|
1339 |
+
return poly1d(polymul(self.coeffs, other.coeffs))
|
1340 |
+
|
1341 |
+
def __rmul__(self, other):
|
1342 |
+
if isscalar(other):
|
1343 |
+
return poly1d(other * self.coeffs)
|
1344 |
+
else:
|
1345 |
+
other = poly1d(other)
|
1346 |
+
return poly1d(polymul(self.coeffs, other.coeffs))
|
1347 |
+
|
1348 |
+
def __add__(self, other):
|
1349 |
+
other = poly1d(other)
|
1350 |
+
return poly1d(polyadd(self.coeffs, other.coeffs))
|
1351 |
+
|
1352 |
+
def __radd__(self, other):
|
1353 |
+
other = poly1d(other)
|
1354 |
+
return poly1d(polyadd(self.coeffs, other.coeffs))
|
1355 |
+
|
1356 |
+
def __pow__(self, val):
|
1357 |
+
if not isscalar(val) or int(val) != val or val < 0:
|
1358 |
+
raise ValueError("Power to non-negative integers only.")
|
1359 |
+
res = [1]
|
1360 |
+
for _ in range(val):
|
1361 |
+
res = polymul(self.coeffs, res)
|
1362 |
+
return poly1d(res)
|
1363 |
+
|
1364 |
+
def __sub__(self, other):
|
1365 |
+
other = poly1d(other)
|
1366 |
+
return poly1d(polysub(self.coeffs, other.coeffs))
|
1367 |
+
|
1368 |
+
def __rsub__(self, other):
|
1369 |
+
other = poly1d(other)
|
1370 |
+
return poly1d(polysub(other.coeffs, self.coeffs))
|
1371 |
+
|
1372 |
+
def __div__(self, other):
|
1373 |
+
if isscalar(other):
|
1374 |
+
return poly1d(self.coeffs/other)
|
1375 |
+
else:
|
1376 |
+
other = poly1d(other)
|
1377 |
+
return polydiv(self, other)
|
1378 |
+
|
1379 |
+
__truediv__ = __div__
|
1380 |
+
|
1381 |
+
def __rdiv__(self, other):
|
1382 |
+
if isscalar(other):
|
1383 |
+
return poly1d(other/self.coeffs)
|
1384 |
+
else:
|
1385 |
+
other = poly1d(other)
|
1386 |
+
return polydiv(other, self)
|
1387 |
+
|
1388 |
+
__rtruediv__ = __rdiv__
|
1389 |
+
|
1390 |
+
def __eq__(self, other):
|
1391 |
+
if not isinstance(other, poly1d):
|
1392 |
+
return NotImplemented
|
1393 |
+
if self.coeffs.shape != other.coeffs.shape:
|
1394 |
+
return False
|
1395 |
+
return (self.coeffs == other.coeffs).all()
|
1396 |
+
|
1397 |
+
def __ne__(self, other):
|
1398 |
+
if not isinstance(other, poly1d):
|
1399 |
+
return NotImplemented
|
1400 |
+
return not self.__eq__(other)
|
1401 |
+
|
1402 |
+
|
1403 |
+
def __getitem__(self, val):
|
1404 |
+
ind = self.order - val
|
1405 |
+
if val > self.order:
|
1406 |
+
return self.coeffs.dtype.type(0)
|
1407 |
+
if val < 0:
|
1408 |
+
return self.coeffs.dtype.type(0)
|
1409 |
+
return self.coeffs[ind]
|
1410 |
+
|
1411 |
+
def __setitem__(self, key, val):
|
1412 |
+
ind = self.order - key
|
1413 |
+
if key < 0:
|
1414 |
+
raise ValueError("Does not support negative powers.")
|
1415 |
+
if key > self.order:
|
1416 |
+
zr = NX.zeros(key-self.order, self.coeffs.dtype)
|
1417 |
+
self._coeffs = NX.concatenate((zr, self.coeffs))
|
1418 |
+
ind = 0
|
1419 |
+
self._coeffs[ind] = val
|
1420 |
+
return
|
1421 |
+
|
1422 |
+
def __iter__(self):
|
1423 |
+
return iter(self.coeffs)
|
1424 |
+
|
1425 |
+
def integ(self, m=1, k=0):
|
1426 |
+
"""
|
1427 |
+
Return an antiderivative (indefinite integral) of this polynomial.
|
1428 |
+
|
1429 |
+
Refer to `polyint` for full documentation.
|
1430 |
+
|
1431 |
+
See Also
|
1432 |
+
--------
|
1433 |
+
polyint : equivalent function
|
1434 |
+
|
1435 |
+
"""
|
1436 |
+
return poly1d(polyint(self.coeffs, m=m, k=k))
|
1437 |
+
|
1438 |
+
def deriv(self, m=1):
|
1439 |
+
"""
|
1440 |
+
Return a derivative of this polynomial.
|
1441 |
+
|
1442 |
+
Refer to `polyder` for full documentation.
|
1443 |
+
|
1444 |
+
See Also
|
1445 |
+
--------
|
1446 |
+
polyder : equivalent function
|
1447 |
+
|
1448 |
+
"""
|
1449 |
+
return poly1d(polyder(self.coeffs, m=m))
|
1450 |
+
|
1451 |
+
# Stuff to do on module import
|
1452 |
+
|
1453 |
+
warnings.simplefilter('always', RankWarning)
|
env-llmeval/lib/python3.10/site-packages/numpy/lib/polynomial.pyi
ADDED
@@ -0,0 +1,303 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import (
|
2 |
+
Literal as L,
|
3 |
+
overload,
|
4 |
+
Any,
|
5 |
+
SupportsInt,
|
6 |
+
SupportsIndex,
|
7 |
+
TypeVar,
|
8 |
+
NoReturn,
|
9 |
+
)
|
10 |
+
|
11 |
+
from numpy import (
|
12 |
+
RankWarning as RankWarning,
|
13 |
+
poly1d as poly1d,
|
14 |
+
unsignedinteger,
|
15 |
+
signedinteger,
|
16 |
+
floating,
|
17 |
+
complexfloating,
|
18 |
+
bool_,
|
19 |
+
int32,
|
20 |
+
int64,
|
21 |
+
float64,
|
22 |
+
complex128,
|
23 |
+
object_,
|
24 |
+
)
|
25 |
+
|
26 |
+
from numpy._typing import (
|
27 |
+
NDArray,
|
28 |
+
ArrayLike,
|
29 |
+
_ArrayLikeBool_co,
|
30 |
+
_ArrayLikeUInt_co,
|
31 |
+
_ArrayLikeInt_co,
|
32 |
+
_ArrayLikeFloat_co,
|
33 |
+
_ArrayLikeComplex_co,
|
34 |
+
_ArrayLikeObject_co,
|
35 |
+
)
|
36 |
+
|
37 |
+
_T = TypeVar("_T")
|
38 |
+
|
39 |
+
_2Tup = tuple[_T, _T]
|
40 |
+
_5Tup = tuple[
|
41 |
+
_T,
|
42 |
+
NDArray[float64],
|
43 |
+
NDArray[int32],
|
44 |
+
NDArray[float64],
|
45 |
+
NDArray[float64],
|
46 |
+
]
|
47 |
+
|
48 |
+
__all__: list[str]
|
49 |
+
|
50 |
+
def poly(seq_of_zeros: ArrayLike) -> NDArray[floating[Any]]: ...
|
51 |
+
|
52 |
+
# Returns either a float or complex array depending on the input values.
|
53 |
+
# See `np.linalg.eigvals`.
|
54 |
+
def roots(p: ArrayLike) -> NDArray[complexfloating[Any, Any]] | NDArray[floating[Any]]: ...
|
55 |
+
|
56 |
+
@overload
|
57 |
+
def polyint(
|
58 |
+
p: poly1d,
|
59 |
+
m: SupportsInt | SupportsIndex = ...,
|
60 |
+
k: None | _ArrayLikeComplex_co | _ArrayLikeObject_co = ...,
|
61 |
+
) -> poly1d: ...
|
62 |
+
@overload
|
63 |
+
def polyint(
|
64 |
+
p: _ArrayLikeFloat_co,
|
65 |
+
m: SupportsInt | SupportsIndex = ...,
|
66 |
+
k: None | _ArrayLikeFloat_co = ...,
|
67 |
+
) -> NDArray[floating[Any]]: ...
|
68 |
+
@overload
|
69 |
+
def polyint(
|
70 |
+
p: _ArrayLikeComplex_co,
|
71 |
+
m: SupportsInt | SupportsIndex = ...,
|
72 |
+
k: None | _ArrayLikeComplex_co = ...,
|
73 |
+
) -> NDArray[complexfloating[Any, Any]]: ...
|
74 |
+
@overload
|
75 |
+
def polyint(
|
76 |
+
p: _ArrayLikeObject_co,
|
77 |
+
m: SupportsInt | SupportsIndex = ...,
|
78 |
+
k: None | _ArrayLikeObject_co = ...,
|
79 |
+
) -> NDArray[object_]: ...
|
80 |
+
|
81 |
+
@overload
|
82 |
+
def polyder(
|
83 |
+
p: poly1d,
|
84 |
+
m: SupportsInt | SupportsIndex = ...,
|
85 |
+
) -> poly1d: ...
|
86 |
+
@overload
|
87 |
+
def polyder(
|
88 |
+
p: _ArrayLikeFloat_co,
|
89 |
+
m: SupportsInt | SupportsIndex = ...,
|
90 |
+
) -> NDArray[floating[Any]]: ...
|
91 |
+
@overload
|
92 |
+
def polyder(
|
93 |
+
p: _ArrayLikeComplex_co,
|
94 |
+
m: SupportsInt | SupportsIndex = ...,
|
95 |
+
) -> NDArray[complexfloating[Any, Any]]: ...
|
96 |
+
@overload
|
97 |
+
def polyder(
|
98 |
+
p: _ArrayLikeObject_co,
|
99 |
+
m: SupportsInt | SupportsIndex = ...,
|
100 |
+
) -> NDArray[object_]: ...
|
101 |
+
|
102 |
+
@overload
|
103 |
+
def polyfit(
|
104 |
+
x: _ArrayLikeFloat_co,
|
105 |
+
y: _ArrayLikeFloat_co,
|
106 |
+
deg: SupportsIndex | SupportsInt,
|
107 |
+
rcond: None | float = ...,
|
108 |
+
full: L[False] = ...,
|
109 |
+
w: None | _ArrayLikeFloat_co = ...,
|
110 |
+
cov: L[False] = ...,
|
111 |
+
) -> NDArray[float64]: ...
|
112 |
+
@overload
|
113 |
+
def polyfit(
|
114 |
+
x: _ArrayLikeComplex_co,
|
115 |
+
y: _ArrayLikeComplex_co,
|
116 |
+
deg: SupportsIndex | SupportsInt,
|
117 |
+
rcond: None | float = ...,
|
118 |
+
full: L[False] = ...,
|
119 |
+
w: None | _ArrayLikeFloat_co = ...,
|
120 |
+
cov: L[False] = ...,
|
121 |
+
) -> NDArray[complex128]: ...
|
122 |
+
@overload
|
123 |
+
def polyfit(
|
124 |
+
x: _ArrayLikeFloat_co,
|
125 |
+
y: _ArrayLikeFloat_co,
|
126 |
+
deg: SupportsIndex | SupportsInt,
|
127 |
+
rcond: None | float = ...,
|
128 |
+
full: L[False] = ...,
|
129 |
+
w: None | _ArrayLikeFloat_co = ...,
|
130 |
+
cov: L[True, "unscaled"] = ...,
|
131 |
+
) -> _2Tup[NDArray[float64]]: ...
|
132 |
+
@overload
|
133 |
+
def polyfit(
|
134 |
+
x: _ArrayLikeComplex_co,
|
135 |
+
y: _ArrayLikeComplex_co,
|
136 |
+
deg: SupportsIndex | SupportsInt,
|
137 |
+
rcond: None | float = ...,
|
138 |
+
full: L[False] = ...,
|
139 |
+
w: None | _ArrayLikeFloat_co = ...,
|
140 |
+
cov: L[True, "unscaled"] = ...,
|
141 |
+
) -> _2Tup[NDArray[complex128]]: ...
|
142 |
+
@overload
|
143 |
+
def polyfit(
|
144 |
+
x: _ArrayLikeFloat_co,
|
145 |
+
y: _ArrayLikeFloat_co,
|
146 |
+
deg: SupportsIndex | SupportsInt,
|
147 |
+
rcond: None | float = ...,
|
148 |
+
full: L[True] = ...,
|
149 |
+
w: None | _ArrayLikeFloat_co = ...,
|
150 |
+
cov: bool | L["unscaled"] = ...,
|
151 |
+
) -> _5Tup[NDArray[float64]]: ...
|
152 |
+
@overload
|
153 |
+
def polyfit(
|
154 |
+
x: _ArrayLikeComplex_co,
|
155 |
+
y: _ArrayLikeComplex_co,
|
156 |
+
deg: SupportsIndex | SupportsInt,
|
157 |
+
rcond: None | float = ...,
|
158 |
+
full: L[True] = ...,
|
159 |
+
w: None | _ArrayLikeFloat_co = ...,
|
160 |
+
cov: bool | L["unscaled"] = ...,
|
161 |
+
) -> _5Tup[NDArray[complex128]]: ...
|
162 |
+
|
163 |
+
@overload
|
164 |
+
def polyval(
|
165 |
+
p: _ArrayLikeBool_co,
|
166 |
+
x: _ArrayLikeBool_co,
|
167 |
+
) -> NDArray[int64]: ...
|
168 |
+
@overload
|
169 |
+
def polyval(
|
170 |
+
p: _ArrayLikeUInt_co,
|
171 |
+
x: _ArrayLikeUInt_co,
|
172 |
+
) -> NDArray[unsignedinteger[Any]]: ...
|
173 |
+
@overload
|
174 |
+
def polyval(
|
175 |
+
p: _ArrayLikeInt_co,
|
176 |
+
x: _ArrayLikeInt_co,
|
177 |
+
) -> NDArray[signedinteger[Any]]: ...
|
178 |
+
@overload
|
179 |
+
def polyval(
|
180 |
+
p: _ArrayLikeFloat_co,
|
181 |
+
x: _ArrayLikeFloat_co,
|
182 |
+
) -> NDArray[floating[Any]]: ...
|
183 |
+
@overload
|
184 |
+
def polyval(
|
185 |
+
p: _ArrayLikeComplex_co,
|
186 |
+
x: _ArrayLikeComplex_co,
|
187 |
+
) -> NDArray[complexfloating[Any, Any]]: ...
|
188 |
+
@overload
|
189 |
+
def polyval(
|
190 |
+
p: _ArrayLikeObject_co,
|
191 |
+
x: _ArrayLikeObject_co,
|
192 |
+
) -> NDArray[object_]: ...
|
193 |
+
|
194 |
+
@overload
|
195 |
+
def polyadd(
|
196 |
+
a1: poly1d,
|
197 |
+
a2: _ArrayLikeComplex_co | _ArrayLikeObject_co,
|
198 |
+
) -> poly1d: ...
|
199 |
+
@overload
|
200 |
+
def polyadd(
|
201 |
+
a1: _ArrayLikeComplex_co | _ArrayLikeObject_co,
|
202 |
+
a2: poly1d,
|
203 |
+
) -> poly1d: ...
|
204 |
+
@overload
|
205 |
+
def polyadd(
|
206 |
+
a1: _ArrayLikeBool_co,
|
207 |
+
a2: _ArrayLikeBool_co,
|
208 |
+
) -> NDArray[bool_]: ...
|
209 |
+
@overload
|
210 |
+
def polyadd(
|
211 |
+
a1: _ArrayLikeUInt_co,
|
212 |
+
a2: _ArrayLikeUInt_co,
|
213 |
+
) -> NDArray[unsignedinteger[Any]]: ...
|
214 |
+
@overload
|
215 |
+
def polyadd(
|
216 |
+
a1: _ArrayLikeInt_co,
|
217 |
+
a2: _ArrayLikeInt_co,
|
218 |
+
) -> NDArray[signedinteger[Any]]: ...
|
219 |
+
@overload
|
220 |
+
def polyadd(
|
221 |
+
a1: _ArrayLikeFloat_co,
|
222 |
+
a2: _ArrayLikeFloat_co,
|
223 |
+
) -> NDArray[floating[Any]]: ...
|
224 |
+
@overload
|
225 |
+
def polyadd(
|
226 |
+
a1: _ArrayLikeComplex_co,
|
227 |
+
a2: _ArrayLikeComplex_co,
|
228 |
+
) -> NDArray[complexfloating[Any, Any]]: ...
|
229 |
+
@overload
|
230 |
+
def polyadd(
|
231 |
+
a1: _ArrayLikeObject_co,
|
232 |
+
a2: _ArrayLikeObject_co,
|
233 |
+
) -> NDArray[object_]: ...
|
234 |
+
|
235 |
+
@overload
|
236 |
+
def polysub(
|
237 |
+
a1: poly1d,
|
238 |
+
a2: _ArrayLikeComplex_co | _ArrayLikeObject_co,
|
239 |
+
) -> poly1d: ...
|
240 |
+
@overload
|
241 |
+
def polysub(
|
242 |
+
a1: _ArrayLikeComplex_co | _ArrayLikeObject_co,
|
243 |
+
a2: poly1d,
|
244 |
+
) -> poly1d: ...
|
245 |
+
@overload
|
246 |
+
def polysub(
|
247 |
+
a1: _ArrayLikeBool_co,
|
248 |
+
a2: _ArrayLikeBool_co,
|
249 |
+
) -> NoReturn: ...
|
250 |
+
@overload
|
251 |
+
def polysub(
|
252 |
+
a1: _ArrayLikeUInt_co,
|
253 |
+
a2: _ArrayLikeUInt_co,
|
254 |
+
) -> NDArray[unsignedinteger[Any]]: ...
|
255 |
+
@overload
|
256 |
+
def polysub(
|
257 |
+
a1: _ArrayLikeInt_co,
|
258 |
+
a2: _ArrayLikeInt_co,
|
259 |
+
) -> NDArray[signedinteger[Any]]: ...
|
260 |
+
@overload
|
261 |
+
def polysub(
|
262 |
+
a1: _ArrayLikeFloat_co,
|
263 |
+
a2: _ArrayLikeFloat_co,
|
264 |
+
) -> NDArray[floating[Any]]: ...
|
265 |
+
@overload
|
266 |
+
def polysub(
|
267 |
+
a1: _ArrayLikeComplex_co,
|
268 |
+
a2: _ArrayLikeComplex_co,
|
269 |
+
) -> NDArray[complexfloating[Any, Any]]: ...
|
270 |
+
@overload
|
271 |
+
def polysub(
|
272 |
+
a1: _ArrayLikeObject_co,
|
273 |
+
a2: _ArrayLikeObject_co,
|
274 |
+
) -> NDArray[object_]: ...
|
275 |
+
|
276 |
+
# NOTE: Not an alias, but they do have the same signature (that we can reuse)
|
277 |
+
polymul = polyadd
|
278 |
+
|
279 |
+
@overload
|
280 |
+
def polydiv(
|
281 |
+
u: poly1d,
|
282 |
+
v: _ArrayLikeComplex_co | _ArrayLikeObject_co,
|
283 |
+
) -> _2Tup[poly1d]: ...
|
284 |
+
@overload
|
285 |
+
def polydiv(
|
286 |
+
u: _ArrayLikeComplex_co | _ArrayLikeObject_co,
|
287 |
+
v: poly1d,
|
288 |
+
) -> _2Tup[poly1d]: ...
|
289 |
+
@overload
|
290 |
+
def polydiv(
|
291 |
+
u: _ArrayLikeFloat_co,
|
292 |
+
v: _ArrayLikeFloat_co,
|
293 |
+
) -> _2Tup[NDArray[floating[Any]]]: ...
|
294 |
+
@overload
|
295 |
+
def polydiv(
|
296 |
+
u: _ArrayLikeComplex_co,
|
297 |
+
v: _ArrayLikeComplex_co,
|
298 |
+
) -> _2Tup[NDArray[complexfloating[Any, Any]]]: ...
|
299 |
+
@overload
|
300 |
+
def polydiv(
|
301 |
+
u: _ArrayLikeObject_co,
|
302 |
+
v: _ArrayLikeObject_co,
|
303 |
+
) -> _2Tup[NDArray[Any]]: ...
|
env-llmeval/lib/python3.10/site-packages/numpy/lib/recfunctions.py
ADDED
@@ -0,0 +1,1673 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Collection of utilities to manipulate structured arrays.
|
3 |
+
|
4 |
+
Most of these functions were initially implemented by John Hunter for
|
5 |
+
matplotlib. They have been rewritten and extended for convenience.
|
6 |
+
|
7 |
+
"""
|
8 |
+
import itertools
|
9 |
+
import numpy as np
|
10 |
+
import numpy.ma as ma
|
11 |
+
from numpy import ndarray, recarray
|
12 |
+
from numpy.ma import MaskedArray
|
13 |
+
from numpy.ma.mrecords import MaskedRecords
|
14 |
+
from numpy.core.overrides import array_function_dispatch
|
15 |
+
from numpy.lib._iotools import _is_string_like
|
16 |
+
|
17 |
+
_check_fill_value = np.ma.core._check_fill_value
|
18 |
+
|
19 |
+
|
20 |
+
__all__ = [
|
21 |
+
'append_fields', 'apply_along_fields', 'assign_fields_by_name',
|
22 |
+
'drop_fields', 'find_duplicates', 'flatten_descr',
|
23 |
+
'get_fieldstructure', 'get_names', 'get_names_flat',
|
24 |
+
'join_by', 'merge_arrays', 'rec_append_fields',
|
25 |
+
'rec_drop_fields', 'rec_join', 'recursive_fill_fields',
|
26 |
+
'rename_fields', 'repack_fields', 'require_fields',
|
27 |
+
'stack_arrays', 'structured_to_unstructured', 'unstructured_to_structured',
|
28 |
+
]
|
29 |
+
|
30 |
+
|
31 |
+
def _recursive_fill_fields_dispatcher(input, output):
|
32 |
+
return (input, output)
|
33 |
+
|
34 |
+
|
35 |
+
@array_function_dispatch(_recursive_fill_fields_dispatcher)
|
36 |
+
def recursive_fill_fields(input, output):
|
37 |
+
"""
|
38 |
+
Fills fields from output with fields from input,
|
39 |
+
with support for nested structures.
|
40 |
+
|
41 |
+
Parameters
|
42 |
+
----------
|
43 |
+
input : ndarray
|
44 |
+
Input array.
|
45 |
+
output : ndarray
|
46 |
+
Output array.
|
47 |
+
|
48 |
+
Notes
|
49 |
+
-----
|
50 |
+
* `output` should be at least the same size as `input`
|
51 |
+
|
52 |
+
Examples
|
53 |
+
--------
|
54 |
+
>>> from numpy.lib import recfunctions as rfn
|
55 |
+
>>> a = np.array([(1, 10.), (2, 20.)], dtype=[('A', np.int64), ('B', np.float64)])
|
56 |
+
>>> b = np.zeros((3,), dtype=a.dtype)
|
57 |
+
>>> rfn.recursive_fill_fields(a, b)
|
58 |
+
array([(1, 10.), (2, 20.), (0, 0.)], dtype=[('A', '<i8'), ('B', '<f8')])
|
59 |
+
|
60 |
+
"""
|
61 |
+
newdtype = output.dtype
|
62 |
+
for field in newdtype.names:
|
63 |
+
try:
|
64 |
+
current = input[field]
|
65 |
+
except ValueError:
|
66 |
+
continue
|
67 |
+
if current.dtype.names is not None:
|
68 |
+
recursive_fill_fields(current, output[field])
|
69 |
+
else:
|
70 |
+
output[field][:len(current)] = current
|
71 |
+
return output
|
72 |
+
|
73 |
+
|
74 |
+
def _get_fieldspec(dtype):
|
75 |
+
"""
|
76 |
+
Produce a list of name/dtype pairs corresponding to the dtype fields
|
77 |
+
|
78 |
+
Similar to dtype.descr, but the second item of each tuple is a dtype, not a
|
79 |
+
string. As a result, this handles subarray dtypes
|
80 |
+
|
81 |
+
Can be passed to the dtype constructor to reconstruct the dtype, noting that
|
82 |
+
this (deliberately) discards field offsets.
|
83 |
+
|
84 |
+
Examples
|
85 |
+
--------
|
86 |
+
>>> dt = np.dtype([(('a', 'A'), np.int64), ('b', np.double, 3)])
|
87 |
+
>>> dt.descr
|
88 |
+
[(('a', 'A'), '<i8'), ('b', '<f8', (3,))]
|
89 |
+
>>> _get_fieldspec(dt)
|
90 |
+
[(('a', 'A'), dtype('int64')), ('b', dtype(('<f8', (3,))))]
|
91 |
+
|
92 |
+
"""
|
93 |
+
if dtype.names is None:
|
94 |
+
# .descr returns a nameless field, so we should too
|
95 |
+
return [('', dtype)]
|
96 |
+
else:
|
97 |
+
fields = ((name, dtype.fields[name]) for name in dtype.names)
|
98 |
+
# keep any titles, if present
|
99 |
+
return [
|
100 |
+
(name if len(f) == 2 else (f[2], name), f[0])
|
101 |
+
for name, f in fields
|
102 |
+
]
|
103 |
+
|
104 |
+
|
105 |
+
def get_names(adtype):
|
106 |
+
"""
|
107 |
+
Returns the field names of the input datatype as a tuple. Input datatype
|
108 |
+
must have fields otherwise error is raised.
|
109 |
+
|
110 |
+
Parameters
|
111 |
+
----------
|
112 |
+
adtype : dtype
|
113 |
+
Input datatype
|
114 |
+
|
115 |
+
Examples
|
116 |
+
--------
|
117 |
+
>>> from numpy.lib import recfunctions as rfn
|
118 |
+
>>> rfn.get_names(np.empty((1,), dtype=[('A', int)]).dtype)
|
119 |
+
('A',)
|
120 |
+
>>> rfn.get_names(np.empty((1,), dtype=[('A',int), ('B', float)]).dtype)
|
121 |
+
('A', 'B')
|
122 |
+
>>> adtype = np.dtype([('a', int), ('b', [('ba', int), ('bb', int)])])
|
123 |
+
>>> rfn.get_names(adtype)
|
124 |
+
('a', ('b', ('ba', 'bb')))
|
125 |
+
"""
|
126 |
+
listnames = []
|
127 |
+
names = adtype.names
|
128 |
+
for name in names:
|
129 |
+
current = adtype[name]
|
130 |
+
if current.names is not None:
|
131 |
+
listnames.append((name, tuple(get_names(current))))
|
132 |
+
else:
|
133 |
+
listnames.append(name)
|
134 |
+
return tuple(listnames)
|
135 |
+
|
136 |
+
|
137 |
+
def get_names_flat(adtype):
|
138 |
+
"""
|
139 |
+
Returns the field names of the input datatype as a tuple. Input datatype
|
140 |
+
must have fields otherwise error is raised.
|
141 |
+
Nested structure are flattened beforehand.
|
142 |
+
|
143 |
+
Parameters
|
144 |
+
----------
|
145 |
+
adtype : dtype
|
146 |
+
Input datatype
|
147 |
+
|
148 |
+
Examples
|
149 |
+
--------
|
150 |
+
>>> from numpy.lib import recfunctions as rfn
|
151 |
+
>>> rfn.get_names_flat(np.empty((1,), dtype=[('A', int)]).dtype) is None
|
152 |
+
False
|
153 |
+
>>> rfn.get_names_flat(np.empty((1,), dtype=[('A',int), ('B', str)]).dtype)
|
154 |
+
('A', 'B')
|
155 |
+
>>> adtype = np.dtype([('a', int), ('b', [('ba', int), ('bb', int)])])
|
156 |
+
>>> rfn.get_names_flat(adtype)
|
157 |
+
('a', 'b', 'ba', 'bb')
|
158 |
+
"""
|
159 |
+
listnames = []
|
160 |
+
names = adtype.names
|
161 |
+
for name in names:
|
162 |
+
listnames.append(name)
|
163 |
+
current = adtype[name]
|
164 |
+
if current.names is not None:
|
165 |
+
listnames.extend(get_names_flat(current))
|
166 |
+
return tuple(listnames)
|
167 |
+
|
168 |
+
|
169 |
+
def flatten_descr(ndtype):
|
170 |
+
"""
|
171 |
+
Flatten a structured data-type description.
|
172 |
+
|
173 |
+
Examples
|
174 |
+
--------
|
175 |
+
>>> from numpy.lib import recfunctions as rfn
|
176 |
+
>>> ndtype = np.dtype([('a', '<i4'), ('b', [('ba', '<f8'), ('bb', '<i4')])])
|
177 |
+
>>> rfn.flatten_descr(ndtype)
|
178 |
+
(('a', dtype('int32')), ('ba', dtype('float64')), ('bb', dtype('int32')))
|
179 |
+
|
180 |
+
"""
|
181 |
+
names = ndtype.names
|
182 |
+
if names is None:
|
183 |
+
return (('', ndtype),)
|
184 |
+
else:
|
185 |
+
descr = []
|
186 |
+
for field in names:
|
187 |
+
(typ, _) = ndtype.fields[field]
|
188 |
+
if typ.names is not None:
|
189 |
+
descr.extend(flatten_descr(typ))
|
190 |
+
else:
|
191 |
+
descr.append((field, typ))
|
192 |
+
return tuple(descr)
|
193 |
+
|
194 |
+
|
195 |
+
def _zip_dtype(seqarrays, flatten=False):
|
196 |
+
newdtype = []
|
197 |
+
if flatten:
|
198 |
+
for a in seqarrays:
|
199 |
+
newdtype.extend(flatten_descr(a.dtype))
|
200 |
+
else:
|
201 |
+
for a in seqarrays:
|
202 |
+
current = a.dtype
|
203 |
+
if current.names is not None and len(current.names) == 1:
|
204 |
+
# special case - dtypes of 1 field are flattened
|
205 |
+
newdtype.extend(_get_fieldspec(current))
|
206 |
+
else:
|
207 |
+
newdtype.append(('', current))
|
208 |
+
return np.dtype(newdtype)
|
209 |
+
|
210 |
+
|
211 |
+
def _zip_descr(seqarrays, flatten=False):
|
212 |
+
"""
|
213 |
+
Combine the dtype description of a series of arrays.
|
214 |
+
|
215 |
+
Parameters
|
216 |
+
----------
|
217 |
+
seqarrays : sequence of arrays
|
218 |
+
Sequence of arrays
|
219 |
+
flatten : {boolean}, optional
|
220 |
+
Whether to collapse nested descriptions.
|
221 |
+
"""
|
222 |
+
return _zip_dtype(seqarrays, flatten=flatten).descr
|
223 |
+
|
224 |
+
|
225 |
+
def get_fieldstructure(adtype, lastname=None, parents=None,):
|
226 |
+
"""
|
227 |
+
Returns a dictionary with fields indexing lists of their parent fields.
|
228 |
+
|
229 |
+
This function is used to simplify access to fields nested in other fields.
|
230 |
+
|
231 |
+
Parameters
|
232 |
+
----------
|
233 |
+
adtype : np.dtype
|
234 |
+
Input datatype
|
235 |
+
lastname : optional
|
236 |
+
Last processed field name (used internally during recursion).
|
237 |
+
parents : dictionary
|
238 |
+
Dictionary of parent fields (used interbally during recursion).
|
239 |
+
|
240 |
+
Examples
|
241 |
+
--------
|
242 |
+
>>> from numpy.lib import recfunctions as rfn
|
243 |
+
>>> ndtype = np.dtype([('A', int),
|
244 |
+
... ('B', [('BA', int),
|
245 |
+
... ('BB', [('BBA', int), ('BBB', int)])])])
|
246 |
+
>>> rfn.get_fieldstructure(ndtype)
|
247 |
+
... # XXX: possible regression, order of BBA and BBB is swapped
|
248 |
+
{'A': [], 'B': [], 'BA': ['B'], 'BB': ['B'], 'BBA': ['B', 'BB'], 'BBB': ['B', 'BB']}
|
249 |
+
|
250 |
+
"""
|
251 |
+
if parents is None:
|
252 |
+
parents = {}
|
253 |
+
names = adtype.names
|
254 |
+
for name in names:
|
255 |
+
current = adtype[name]
|
256 |
+
if current.names is not None:
|
257 |
+
if lastname:
|
258 |
+
parents[name] = [lastname, ]
|
259 |
+
else:
|
260 |
+
parents[name] = []
|
261 |
+
parents.update(get_fieldstructure(current, name, parents))
|
262 |
+
else:
|
263 |
+
lastparent = [_ for _ in (parents.get(lastname, []) or [])]
|
264 |
+
if lastparent:
|
265 |
+
lastparent.append(lastname)
|
266 |
+
elif lastname:
|
267 |
+
lastparent = [lastname, ]
|
268 |
+
parents[name] = lastparent or []
|
269 |
+
return parents
|
270 |
+
|
271 |
+
|
272 |
+
def _izip_fields_flat(iterable):
|
273 |
+
"""
|
274 |
+
Returns an iterator of concatenated fields from a sequence of arrays,
|
275 |
+
collapsing any nested structure.
|
276 |
+
|
277 |
+
"""
|
278 |
+
for element in iterable:
|
279 |
+
if isinstance(element, np.void):
|
280 |
+
yield from _izip_fields_flat(tuple(element))
|
281 |
+
else:
|
282 |
+
yield element
|
283 |
+
|
284 |
+
|
285 |
+
def _izip_fields(iterable):
|
286 |
+
"""
|
287 |
+
Returns an iterator of concatenated fields from a sequence of arrays.
|
288 |
+
|
289 |
+
"""
|
290 |
+
for element in iterable:
|
291 |
+
if (hasattr(element, '__iter__') and
|
292 |
+
not isinstance(element, str)):
|
293 |
+
yield from _izip_fields(element)
|
294 |
+
elif isinstance(element, np.void) and len(tuple(element)) == 1:
|
295 |
+
# this statement is the same from the previous expression
|
296 |
+
yield from _izip_fields(element)
|
297 |
+
else:
|
298 |
+
yield element
|
299 |
+
|
300 |
+
|
301 |
+
def _izip_records(seqarrays, fill_value=None, flatten=True):
|
302 |
+
"""
|
303 |
+
Returns an iterator of concatenated items from a sequence of arrays.
|
304 |
+
|
305 |
+
Parameters
|
306 |
+
----------
|
307 |
+
seqarrays : sequence of arrays
|
308 |
+
Sequence of arrays.
|
309 |
+
fill_value : {None, integer}
|
310 |
+
Value used to pad shorter iterables.
|
311 |
+
flatten : {True, False},
|
312 |
+
Whether to
|
313 |
+
"""
|
314 |
+
|
315 |
+
# Should we flatten the items, or just use a nested approach
|
316 |
+
if flatten:
|
317 |
+
zipfunc = _izip_fields_flat
|
318 |
+
else:
|
319 |
+
zipfunc = _izip_fields
|
320 |
+
|
321 |
+
for tup in itertools.zip_longest(*seqarrays, fillvalue=fill_value):
|
322 |
+
yield tuple(zipfunc(tup))
|
323 |
+
|
324 |
+
|
325 |
+
def _fix_output(output, usemask=True, asrecarray=False):
|
326 |
+
"""
|
327 |
+
Private function: return a recarray, a ndarray, a MaskedArray
|
328 |
+
or a MaskedRecords depending on the input parameters
|
329 |
+
"""
|
330 |
+
if not isinstance(output, MaskedArray):
|
331 |
+
usemask = False
|
332 |
+
if usemask:
|
333 |
+
if asrecarray:
|
334 |
+
output = output.view(MaskedRecords)
|
335 |
+
else:
|
336 |
+
output = ma.filled(output)
|
337 |
+
if asrecarray:
|
338 |
+
output = output.view(recarray)
|
339 |
+
return output
|
340 |
+
|
341 |
+
|
342 |
+
def _fix_defaults(output, defaults=None):
|
343 |
+
"""
|
344 |
+
Update the fill_value and masked data of `output`
|
345 |
+
from the default given in a dictionary defaults.
|
346 |
+
"""
|
347 |
+
names = output.dtype.names
|
348 |
+
(data, mask, fill_value) = (output.data, output.mask, output.fill_value)
|
349 |
+
for (k, v) in (defaults or {}).items():
|
350 |
+
if k in names:
|
351 |
+
fill_value[k] = v
|
352 |
+
data[k][mask[k]] = v
|
353 |
+
return output
|
354 |
+
|
355 |
+
|
356 |
+
def _merge_arrays_dispatcher(seqarrays, fill_value=None, flatten=None,
|
357 |
+
usemask=None, asrecarray=None):
|
358 |
+
return seqarrays
|
359 |
+
|
360 |
+
|
361 |
+
@array_function_dispatch(_merge_arrays_dispatcher)
|
362 |
+
def merge_arrays(seqarrays, fill_value=-1, flatten=False,
|
363 |
+
usemask=False, asrecarray=False):
|
364 |
+
"""
|
365 |
+
Merge arrays field by field.
|
366 |
+
|
367 |
+
Parameters
|
368 |
+
----------
|
369 |
+
seqarrays : sequence of ndarrays
|
370 |
+
Sequence of arrays
|
371 |
+
fill_value : {float}, optional
|
372 |
+
Filling value used to pad missing data on the shorter arrays.
|
373 |
+
flatten : {False, True}, optional
|
374 |
+
Whether to collapse nested fields.
|
375 |
+
usemask : {False, True}, optional
|
376 |
+
Whether to return a masked array or not.
|
377 |
+
asrecarray : {False, True}, optional
|
378 |
+
Whether to return a recarray (MaskedRecords) or not.
|
379 |
+
|
380 |
+
Examples
|
381 |
+
--------
|
382 |
+
>>> from numpy.lib import recfunctions as rfn
|
383 |
+
>>> rfn.merge_arrays((np.array([1, 2]), np.array([10., 20., 30.])))
|
384 |
+
array([( 1, 10.), ( 2, 20.), (-1, 30.)],
|
385 |
+
dtype=[('f0', '<i8'), ('f1', '<f8')])
|
386 |
+
|
387 |
+
>>> rfn.merge_arrays((np.array([1, 2], dtype=np.int64),
|
388 |
+
... np.array([10., 20., 30.])), usemask=False)
|
389 |
+
array([(1, 10.0), (2, 20.0), (-1, 30.0)],
|
390 |
+
dtype=[('f0', '<i8'), ('f1', '<f8')])
|
391 |
+
>>> rfn.merge_arrays((np.array([1, 2]).view([('a', np.int64)]),
|
392 |
+
... np.array([10., 20., 30.])),
|
393 |
+
... usemask=False, asrecarray=True)
|
394 |
+
rec.array([( 1, 10.), ( 2, 20.), (-1, 30.)],
|
395 |
+
dtype=[('a', '<i8'), ('f1', '<f8')])
|
396 |
+
|
397 |
+
Notes
|
398 |
+
-----
|
399 |
+
* Without a mask, the missing value will be filled with something,
|
400 |
+
depending on what its corresponding type:
|
401 |
+
|
402 |
+
* ``-1`` for integers
|
403 |
+
* ``-1.0`` for floating point numbers
|
404 |
+
* ``'-'`` for characters
|
405 |
+
* ``'-1'`` for strings
|
406 |
+
* ``True`` for boolean values
|
407 |
+
* XXX: I just obtained these values empirically
|
408 |
+
"""
|
409 |
+
# Only one item in the input sequence ?
|
410 |
+
if (len(seqarrays) == 1):
|
411 |
+
seqarrays = np.asanyarray(seqarrays[0])
|
412 |
+
# Do we have a single ndarray as input ?
|
413 |
+
if isinstance(seqarrays, (ndarray, np.void)):
|
414 |
+
seqdtype = seqarrays.dtype
|
415 |
+
# Make sure we have named fields
|
416 |
+
if seqdtype.names is None:
|
417 |
+
seqdtype = np.dtype([('', seqdtype)])
|
418 |
+
if not flatten or _zip_dtype((seqarrays,), flatten=True) == seqdtype:
|
419 |
+
# Minimal processing needed: just make sure everything's a-ok
|
420 |
+
seqarrays = seqarrays.ravel()
|
421 |
+
# Find what type of array we must return
|
422 |
+
if usemask:
|
423 |
+
if asrecarray:
|
424 |
+
seqtype = MaskedRecords
|
425 |
+
else:
|
426 |
+
seqtype = MaskedArray
|
427 |
+
elif asrecarray:
|
428 |
+
seqtype = recarray
|
429 |
+
else:
|
430 |
+
seqtype = ndarray
|
431 |
+
return seqarrays.view(dtype=seqdtype, type=seqtype)
|
432 |
+
else:
|
433 |
+
seqarrays = (seqarrays,)
|
434 |
+
else:
|
435 |
+
# Make sure we have arrays in the input sequence
|
436 |
+
seqarrays = [np.asanyarray(_m) for _m in seqarrays]
|
437 |
+
# Find the sizes of the inputs and their maximum
|
438 |
+
sizes = tuple(a.size for a in seqarrays)
|
439 |
+
maxlength = max(sizes)
|
440 |
+
# Get the dtype of the output (flattening if needed)
|
441 |
+
newdtype = _zip_dtype(seqarrays, flatten=flatten)
|
442 |
+
# Initialize the sequences for data and mask
|
443 |
+
seqdata = []
|
444 |
+
seqmask = []
|
445 |
+
# If we expect some kind of MaskedArray, make a special loop.
|
446 |
+
if usemask:
|
447 |
+
for (a, n) in zip(seqarrays, sizes):
|
448 |
+
nbmissing = (maxlength - n)
|
449 |
+
# Get the data and mask
|
450 |
+
data = a.ravel().__array__()
|
451 |
+
mask = ma.getmaskarray(a).ravel()
|
452 |
+
# Get the filling value (if needed)
|
453 |
+
if nbmissing:
|
454 |
+
fval = _check_fill_value(fill_value, a.dtype)
|
455 |
+
if isinstance(fval, (ndarray, np.void)):
|
456 |
+
if len(fval.dtype) == 1:
|
457 |
+
fval = fval.item()[0]
|
458 |
+
fmsk = True
|
459 |
+
else:
|
460 |
+
fval = np.array(fval, dtype=a.dtype, ndmin=1)
|
461 |
+
fmsk = np.ones((1,), dtype=mask.dtype)
|
462 |
+
else:
|
463 |
+
fval = None
|
464 |
+
fmsk = True
|
465 |
+
# Store an iterator padding the input to the expected length
|
466 |
+
seqdata.append(itertools.chain(data, [fval] * nbmissing))
|
467 |
+
seqmask.append(itertools.chain(mask, [fmsk] * nbmissing))
|
468 |
+
# Create an iterator for the data
|
469 |
+
data = tuple(_izip_records(seqdata, flatten=flatten))
|
470 |
+
output = ma.array(np.fromiter(data, dtype=newdtype, count=maxlength),
|
471 |
+
mask=list(_izip_records(seqmask, flatten=flatten)))
|
472 |
+
if asrecarray:
|
473 |
+
output = output.view(MaskedRecords)
|
474 |
+
else:
|
475 |
+
# Same as before, without the mask we don't need...
|
476 |
+
for (a, n) in zip(seqarrays, sizes):
|
477 |
+
nbmissing = (maxlength - n)
|
478 |
+
data = a.ravel().__array__()
|
479 |
+
if nbmissing:
|
480 |
+
fval = _check_fill_value(fill_value, a.dtype)
|
481 |
+
if isinstance(fval, (ndarray, np.void)):
|
482 |
+
if len(fval.dtype) == 1:
|
483 |
+
fval = fval.item()[0]
|
484 |
+
else:
|
485 |
+
fval = np.array(fval, dtype=a.dtype, ndmin=1)
|
486 |
+
else:
|
487 |
+
fval = None
|
488 |
+
seqdata.append(itertools.chain(data, [fval] * nbmissing))
|
489 |
+
output = np.fromiter(tuple(_izip_records(seqdata, flatten=flatten)),
|
490 |
+
dtype=newdtype, count=maxlength)
|
491 |
+
if asrecarray:
|
492 |
+
output = output.view(recarray)
|
493 |
+
# And we're done...
|
494 |
+
return output
|
495 |
+
|
496 |
+
|
497 |
+
def _drop_fields_dispatcher(base, drop_names, usemask=None, asrecarray=None):
|
498 |
+
return (base,)
|
499 |
+
|
500 |
+
|
501 |
+
@array_function_dispatch(_drop_fields_dispatcher)
|
502 |
+
def drop_fields(base, drop_names, usemask=True, asrecarray=False):
|
503 |
+
"""
|
504 |
+
Return a new array with fields in `drop_names` dropped.
|
505 |
+
|
506 |
+
Nested fields are supported.
|
507 |
+
|
508 |
+
.. versionchanged:: 1.18.0
|
509 |
+
`drop_fields` returns an array with 0 fields if all fields are dropped,
|
510 |
+
rather than returning ``None`` as it did previously.
|
511 |
+
|
512 |
+
Parameters
|
513 |
+
----------
|
514 |
+
base : array
|
515 |
+
Input array
|
516 |
+
drop_names : string or sequence
|
517 |
+
String or sequence of strings corresponding to the names of the
|
518 |
+
fields to drop.
|
519 |
+
usemask : {False, True}, optional
|
520 |
+
Whether to return a masked array or not.
|
521 |
+
asrecarray : string or sequence, optional
|
522 |
+
Whether to return a recarray or a mrecarray (`asrecarray=True`) or
|
523 |
+
a plain ndarray or masked array with flexible dtype. The default
|
524 |
+
is False.
|
525 |
+
|
526 |
+
Examples
|
527 |
+
--------
|
528 |
+
>>> from numpy.lib import recfunctions as rfn
|
529 |
+
>>> a = np.array([(1, (2, 3.0)), (4, (5, 6.0))],
|
530 |
+
... dtype=[('a', np.int64), ('b', [('ba', np.double), ('bb', np.int64)])])
|
531 |
+
>>> rfn.drop_fields(a, 'a')
|
532 |
+
array([((2., 3),), ((5., 6),)],
|
533 |
+
dtype=[('b', [('ba', '<f8'), ('bb', '<i8')])])
|
534 |
+
>>> rfn.drop_fields(a, 'ba')
|
535 |
+
array([(1, (3,)), (4, (6,))], dtype=[('a', '<i8'), ('b', [('bb', '<i8')])])
|
536 |
+
>>> rfn.drop_fields(a, ['ba', 'bb'])
|
537 |
+
array([(1,), (4,)], dtype=[('a', '<i8')])
|
538 |
+
"""
|
539 |
+
if _is_string_like(drop_names):
|
540 |
+
drop_names = [drop_names]
|
541 |
+
else:
|
542 |
+
drop_names = set(drop_names)
|
543 |
+
|
544 |
+
def _drop_descr(ndtype, drop_names):
|
545 |
+
names = ndtype.names
|
546 |
+
newdtype = []
|
547 |
+
for name in names:
|
548 |
+
current = ndtype[name]
|
549 |
+
if name in drop_names:
|
550 |
+
continue
|
551 |
+
if current.names is not None:
|
552 |
+
descr = _drop_descr(current, drop_names)
|
553 |
+
if descr:
|
554 |
+
newdtype.append((name, descr))
|
555 |
+
else:
|
556 |
+
newdtype.append((name, current))
|
557 |
+
return newdtype
|
558 |
+
|
559 |
+
newdtype = _drop_descr(base.dtype, drop_names)
|
560 |
+
|
561 |
+
output = np.empty(base.shape, dtype=newdtype)
|
562 |
+
output = recursive_fill_fields(base, output)
|
563 |
+
return _fix_output(output, usemask=usemask, asrecarray=asrecarray)
|
564 |
+
|
565 |
+
|
566 |
+
def _keep_fields(base, keep_names, usemask=True, asrecarray=False):
|
567 |
+
"""
|
568 |
+
Return a new array keeping only the fields in `keep_names`,
|
569 |
+
and preserving the order of those fields.
|
570 |
+
|
571 |
+
Parameters
|
572 |
+
----------
|
573 |
+
base : array
|
574 |
+
Input array
|
575 |
+
keep_names : string or sequence
|
576 |
+
String or sequence of strings corresponding to the names of the
|
577 |
+
fields to keep. Order of the names will be preserved.
|
578 |
+
usemask : {False, True}, optional
|
579 |
+
Whether to return a masked array or not.
|
580 |
+
asrecarray : string or sequence, optional
|
581 |
+
Whether to return a recarray or a mrecarray (`asrecarray=True`) or
|
582 |
+
a plain ndarray or masked array with flexible dtype. The default
|
583 |
+
is False.
|
584 |
+
"""
|
585 |
+
newdtype = [(n, base.dtype[n]) for n in keep_names]
|
586 |
+
output = np.empty(base.shape, dtype=newdtype)
|
587 |
+
output = recursive_fill_fields(base, output)
|
588 |
+
return _fix_output(output, usemask=usemask, asrecarray=asrecarray)
|
589 |
+
|
590 |
+
|
591 |
+
def _rec_drop_fields_dispatcher(base, drop_names):
|
592 |
+
return (base,)
|
593 |
+
|
594 |
+
|
595 |
+
@array_function_dispatch(_rec_drop_fields_dispatcher)
|
596 |
+
def rec_drop_fields(base, drop_names):
|
597 |
+
"""
|
598 |
+
Returns a new numpy.recarray with fields in `drop_names` dropped.
|
599 |
+
"""
|
600 |
+
return drop_fields(base, drop_names, usemask=False, asrecarray=True)
|
601 |
+
|
602 |
+
|
603 |
+
def _rename_fields_dispatcher(base, namemapper):
|
604 |
+
return (base,)
|
605 |
+
|
606 |
+
|
607 |
+
@array_function_dispatch(_rename_fields_dispatcher)
|
608 |
+
def rename_fields(base, namemapper):
|
609 |
+
"""
|
610 |
+
Rename the fields from a flexible-datatype ndarray or recarray.
|
611 |
+
|
612 |
+
Nested fields are supported.
|
613 |
+
|
614 |
+
Parameters
|
615 |
+
----------
|
616 |
+
base : ndarray
|
617 |
+
Input array whose fields must be modified.
|
618 |
+
namemapper : dictionary
|
619 |
+
Dictionary mapping old field names to their new version.
|
620 |
+
|
621 |
+
Examples
|
622 |
+
--------
|
623 |
+
>>> from numpy.lib import recfunctions as rfn
|
624 |
+
>>> a = np.array([(1, (2, [3.0, 30.])), (4, (5, [6.0, 60.]))],
|
625 |
+
... dtype=[('a', int),('b', [('ba', float), ('bb', (float, 2))])])
|
626 |
+
>>> rfn.rename_fields(a, {'a':'A', 'bb':'BB'})
|
627 |
+
array([(1, (2., [ 3., 30.])), (4, (5., [ 6., 60.]))],
|
628 |
+
dtype=[('A', '<i8'), ('b', [('ba', '<f8'), ('BB', '<f8', (2,))])])
|
629 |
+
|
630 |
+
"""
|
631 |
+
def _recursive_rename_fields(ndtype, namemapper):
|
632 |
+
newdtype = []
|
633 |
+
for name in ndtype.names:
|
634 |
+
newname = namemapper.get(name, name)
|
635 |
+
current = ndtype[name]
|
636 |
+
if current.names is not None:
|
637 |
+
newdtype.append(
|
638 |
+
(newname, _recursive_rename_fields(current, namemapper))
|
639 |
+
)
|
640 |
+
else:
|
641 |
+
newdtype.append((newname, current))
|
642 |
+
return newdtype
|
643 |
+
newdtype = _recursive_rename_fields(base.dtype, namemapper)
|
644 |
+
return base.view(newdtype)
|
645 |
+
|
646 |
+
|
647 |
+
def _append_fields_dispatcher(base, names, data, dtypes=None,
|
648 |
+
fill_value=None, usemask=None, asrecarray=None):
|
649 |
+
yield base
|
650 |
+
yield from data
|
651 |
+
|
652 |
+
|
653 |
+
@array_function_dispatch(_append_fields_dispatcher)
|
654 |
+
def append_fields(base, names, data, dtypes=None,
|
655 |
+
fill_value=-1, usemask=True, asrecarray=False):
|
656 |
+
"""
|
657 |
+
Add new fields to an existing array.
|
658 |
+
|
659 |
+
The names of the fields are given with the `names` arguments,
|
660 |
+
the corresponding values with the `data` arguments.
|
661 |
+
If a single field is appended, `names`, `data` and `dtypes` do not have
|
662 |
+
to be lists but just values.
|
663 |
+
|
664 |
+
Parameters
|
665 |
+
----------
|
666 |
+
base : array
|
667 |
+
Input array to extend.
|
668 |
+
names : string, sequence
|
669 |
+
String or sequence of strings corresponding to the names
|
670 |
+
of the new fields.
|
671 |
+
data : array or sequence of arrays
|
672 |
+
Array or sequence of arrays storing the fields to add to the base.
|
673 |
+
dtypes : sequence of datatypes, optional
|
674 |
+
Datatype or sequence of datatypes.
|
675 |
+
If None, the datatypes are estimated from the `data`.
|
676 |
+
fill_value : {float}, optional
|
677 |
+
Filling value used to pad missing data on the shorter arrays.
|
678 |
+
usemask : {False, True}, optional
|
679 |
+
Whether to return a masked array or not.
|
680 |
+
asrecarray : {False, True}, optional
|
681 |
+
Whether to return a recarray (MaskedRecords) or not.
|
682 |
+
|
683 |
+
"""
|
684 |
+
# Check the names
|
685 |
+
if isinstance(names, (tuple, list)):
|
686 |
+
if len(names) != len(data):
|
687 |
+
msg = "The number of arrays does not match the number of names"
|
688 |
+
raise ValueError(msg)
|
689 |
+
elif isinstance(names, str):
|
690 |
+
names = [names, ]
|
691 |
+
data = [data, ]
|
692 |
+
#
|
693 |
+
if dtypes is None:
|
694 |
+
data = [np.array(a, copy=False, subok=True) for a in data]
|
695 |
+
data = [a.view([(name, a.dtype)]) for (name, a) in zip(names, data)]
|
696 |
+
else:
|
697 |
+
if not isinstance(dtypes, (tuple, list)):
|
698 |
+
dtypes = [dtypes, ]
|
699 |
+
if len(data) != len(dtypes):
|
700 |
+
if len(dtypes) == 1:
|
701 |
+
dtypes = dtypes * len(data)
|
702 |
+
else:
|
703 |
+
msg = "The dtypes argument must be None, a dtype, or a list."
|
704 |
+
raise ValueError(msg)
|
705 |
+
data = [np.array(a, copy=False, subok=True, dtype=d).view([(n, d)])
|
706 |
+
for (a, n, d) in zip(data, names, dtypes)]
|
707 |
+
#
|
708 |
+
base = merge_arrays(base, usemask=usemask, fill_value=fill_value)
|
709 |
+
if len(data) > 1:
|
710 |
+
data = merge_arrays(data, flatten=True, usemask=usemask,
|
711 |
+
fill_value=fill_value)
|
712 |
+
else:
|
713 |
+
data = data.pop()
|
714 |
+
#
|
715 |
+
output = ma.masked_all(
|
716 |
+
max(len(base), len(data)),
|
717 |
+
dtype=_get_fieldspec(base.dtype) + _get_fieldspec(data.dtype))
|
718 |
+
output = recursive_fill_fields(base, output)
|
719 |
+
output = recursive_fill_fields(data, output)
|
720 |
+
#
|
721 |
+
return _fix_output(output, usemask=usemask, asrecarray=asrecarray)
|
722 |
+
|
723 |
+
|
724 |
+
def _rec_append_fields_dispatcher(base, names, data, dtypes=None):
|
725 |
+
yield base
|
726 |
+
yield from data
|
727 |
+
|
728 |
+
|
729 |
+
@array_function_dispatch(_rec_append_fields_dispatcher)
|
730 |
+
def rec_append_fields(base, names, data, dtypes=None):
|
731 |
+
"""
|
732 |
+
Add new fields to an existing array.
|
733 |
+
|
734 |
+
The names of the fields are given with the `names` arguments,
|
735 |
+
the corresponding values with the `data` arguments.
|
736 |
+
If a single field is appended, `names`, `data` and `dtypes` do not have
|
737 |
+
to be lists but just values.
|
738 |
+
|
739 |
+
Parameters
|
740 |
+
----------
|
741 |
+
base : array
|
742 |
+
Input array to extend.
|
743 |
+
names : string, sequence
|
744 |
+
String or sequence of strings corresponding to the names
|
745 |
+
of the new fields.
|
746 |
+
data : array or sequence of arrays
|
747 |
+
Array or sequence of arrays storing the fields to add to the base.
|
748 |
+
dtypes : sequence of datatypes, optional
|
749 |
+
Datatype or sequence of datatypes.
|
750 |
+
If None, the datatypes are estimated from the `data`.
|
751 |
+
|
752 |
+
See Also
|
753 |
+
--------
|
754 |
+
append_fields
|
755 |
+
|
756 |
+
Returns
|
757 |
+
-------
|
758 |
+
appended_array : np.recarray
|
759 |
+
"""
|
760 |
+
return append_fields(base, names, data=data, dtypes=dtypes,
|
761 |
+
asrecarray=True, usemask=False)
|
762 |
+
|
763 |
+
|
764 |
+
def _repack_fields_dispatcher(a, align=None, recurse=None):
|
765 |
+
return (a,)
|
766 |
+
|
767 |
+
|
768 |
+
@array_function_dispatch(_repack_fields_dispatcher)
|
769 |
+
def repack_fields(a, align=False, recurse=False):
|
770 |
+
"""
|
771 |
+
Re-pack the fields of a structured array or dtype in memory.
|
772 |
+
|
773 |
+
The memory layout of structured datatypes allows fields at arbitrary
|
774 |
+
byte offsets. This means the fields can be separated by padding bytes,
|
775 |
+
their offsets can be non-monotonically increasing, and they can overlap.
|
776 |
+
|
777 |
+
This method removes any overlaps and reorders the fields in memory so they
|
778 |
+
have increasing byte offsets, and adds or removes padding bytes depending
|
779 |
+
on the `align` option, which behaves like the `align` option to
|
780 |
+
`numpy.dtype`.
|
781 |
+
|
782 |
+
If `align=False`, this method produces a "packed" memory layout in which
|
783 |
+
each field starts at the byte the previous field ended, and any padding
|
784 |
+
bytes are removed.
|
785 |
+
|
786 |
+
If `align=True`, this methods produces an "aligned" memory layout in which
|
787 |
+
each field's offset is a multiple of its alignment, and the total itemsize
|
788 |
+
is a multiple of the largest alignment, by adding padding bytes as needed.
|
789 |
+
|
790 |
+
Parameters
|
791 |
+
----------
|
792 |
+
a : ndarray or dtype
|
793 |
+
array or dtype for which to repack the fields.
|
794 |
+
align : boolean
|
795 |
+
If true, use an "aligned" memory layout, otherwise use a "packed" layout.
|
796 |
+
recurse : boolean
|
797 |
+
If True, also repack nested structures.
|
798 |
+
|
799 |
+
Returns
|
800 |
+
-------
|
801 |
+
repacked : ndarray or dtype
|
802 |
+
Copy of `a` with fields repacked, or `a` itself if no repacking was
|
803 |
+
needed.
|
804 |
+
|
805 |
+
Examples
|
806 |
+
--------
|
807 |
+
|
808 |
+
>>> from numpy.lib import recfunctions as rfn
|
809 |
+
>>> def print_offsets(d):
|
810 |
+
... print("offsets:", [d.fields[name][1] for name in d.names])
|
811 |
+
... print("itemsize:", d.itemsize)
|
812 |
+
...
|
813 |
+
>>> dt = np.dtype('u1, <i8, <f8', align=True)
|
814 |
+
>>> dt
|
815 |
+
dtype({'names': ['f0', 'f1', 'f2'], 'formats': ['u1', '<i8', '<f8'], \
|
816 |
+
'offsets': [0, 8, 16], 'itemsize': 24}, align=True)
|
817 |
+
>>> print_offsets(dt)
|
818 |
+
offsets: [0, 8, 16]
|
819 |
+
itemsize: 24
|
820 |
+
>>> packed_dt = rfn.repack_fields(dt)
|
821 |
+
>>> packed_dt
|
822 |
+
dtype([('f0', 'u1'), ('f1', '<i8'), ('f2', '<f8')])
|
823 |
+
>>> print_offsets(packed_dt)
|
824 |
+
offsets: [0, 1, 9]
|
825 |
+
itemsize: 17
|
826 |
+
|
827 |
+
"""
|
828 |
+
if not isinstance(a, np.dtype):
|
829 |
+
dt = repack_fields(a.dtype, align=align, recurse=recurse)
|
830 |
+
return a.astype(dt, copy=False)
|
831 |
+
|
832 |
+
if a.names is None:
|
833 |
+
return a
|
834 |
+
|
835 |
+
fieldinfo = []
|
836 |
+
for name in a.names:
|
837 |
+
tup = a.fields[name]
|
838 |
+
if recurse:
|
839 |
+
fmt = repack_fields(tup[0], align=align, recurse=True)
|
840 |
+
else:
|
841 |
+
fmt = tup[0]
|
842 |
+
|
843 |
+
if len(tup) == 3:
|
844 |
+
name = (tup[2], name)
|
845 |
+
|
846 |
+
fieldinfo.append((name, fmt))
|
847 |
+
|
848 |
+
dt = np.dtype(fieldinfo, align=align)
|
849 |
+
return np.dtype((a.type, dt))
|
850 |
+
|
851 |
+
def _get_fields_and_offsets(dt, offset=0):
|
852 |
+
"""
|
853 |
+
Returns a flat list of (dtype, count, offset) tuples of all the
|
854 |
+
scalar fields in the dtype "dt", including nested fields, in left
|
855 |
+
to right order.
|
856 |
+
"""
|
857 |
+
|
858 |
+
# counts up elements in subarrays, including nested subarrays, and returns
|
859 |
+
# base dtype and count
|
860 |
+
def count_elem(dt):
|
861 |
+
count = 1
|
862 |
+
while dt.shape != ():
|
863 |
+
for size in dt.shape:
|
864 |
+
count *= size
|
865 |
+
dt = dt.base
|
866 |
+
return dt, count
|
867 |
+
|
868 |
+
fields = []
|
869 |
+
for name in dt.names:
|
870 |
+
field = dt.fields[name]
|
871 |
+
f_dt, f_offset = field[0], field[1]
|
872 |
+
f_dt, n = count_elem(f_dt)
|
873 |
+
|
874 |
+
if f_dt.names is None:
|
875 |
+
fields.append((np.dtype((f_dt, (n,))), n, f_offset + offset))
|
876 |
+
else:
|
877 |
+
subfields = _get_fields_and_offsets(f_dt, f_offset + offset)
|
878 |
+
size = f_dt.itemsize
|
879 |
+
|
880 |
+
for i in range(n):
|
881 |
+
if i == 0:
|
882 |
+
# optimization: avoid list comprehension if no subarray
|
883 |
+
fields.extend(subfields)
|
884 |
+
else:
|
885 |
+
fields.extend([(d, c, o + i*size) for d, c, o in subfields])
|
886 |
+
return fields
|
887 |
+
|
888 |
+
def _common_stride(offsets, counts, itemsize):
|
889 |
+
"""
|
890 |
+
Returns the stride between the fields, or None if the stride is not
|
891 |
+
constant. The values in "counts" designate the lengths of
|
892 |
+
subarrays. Subarrays are treated as many contiguous fields, with
|
893 |
+
always positive stride.
|
894 |
+
"""
|
895 |
+
if len(offsets) <= 1:
|
896 |
+
return itemsize
|
897 |
+
|
898 |
+
negative = offsets[1] < offsets[0] # negative stride
|
899 |
+
if negative:
|
900 |
+
# reverse, so offsets will be ascending
|
901 |
+
it = zip(reversed(offsets), reversed(counts))
|
902 |
+
else:
|
903 |
+
it = zip(offsets, counts)
|
904 |
+
|
905 |
+
prev_offset = None
|
906 |
+
stride = None
|
907 |
+
for offset, count in it:
|
908 |
+
if count != 1: # subarray: always c-contiguous
|
909 |
+
if negative:
|
910 |
+
return None # subarrays can never have a negative stride
|
911 |
+
if stride is None:
|
912 |
+
stride = itemsize
|
913 |
+
if stride != itemsize:
|
914 |
+
return None
|
915 |
+
end_offset = offset + (count - 1) * itemsize
|
916 |
+
else:
|
917 |
+
end_offset = offset
|
918 |
+
|
919 |
+
if prev_offset is not None:
|
920 |
+
new_stride = offset - prev_offset
|
921 |
+
if stride is None:
|
922 |
+
stride = new_stride
|
923 |
+
if stride != new_stride:
|
924 |
+
return None
|
925 |
+
|
926 |
+
prev_offset = end_offset
|
927 |
+
|
928 |
+
if negative:
|
929 |
+
return -stride
|
930 |
+
return stride
|
931 |
+
|
932 |
+
|
933 |
+
def _structured_to_unstructured_dispatcher(arr, dtype=None, copy=None,
|
934 |
+
casting=None):
|
935 |
+
return (arr,)
|
936 |
+
|
937 |
+
@array_function_dispatch(_structured_to_unstructured_dispatcher)
|
938 |
+
def structured_to_unstructured(arr, dtype=None, copy=False, casting='unsafe'):
|
939 |
+
"""
|
940 |
+
Converts an n-D structured array into an (n+1)-D unstructured array.
|
941 |
+
|
942 |
+
The new array will have a new last dimension equal in size to the
|
943 |
+
number of field-elements of the input array. If not supplied, the output
|
944 |
+
datatype is determined from the numpy type promotion rules applied to all
|
945 |
+
the field datatypes.
|
946 |
+
|
947 |
+
Nested fields, as well as each element of any subarray fields, all count
|
948 |
+
as a single field-elements.
|
949 |
+
|
950 |
+
Parameters
|
951 |
+
----------
|
952 |
+
arr : ndarray
|
953 |
+
Structured array or dtype to convert. Cannot contain object datatype.
|
954 |
+
dtype : dtype, optional
|
955 |
+
The dtype of the output unstructured array.
|
956 |
+
copy : bool, optional
|
957 |
+
If true, always return a copy. If false, a view is returned if
|
958 |
+
possible, such as when the `dtype` and strides of the fields are
|
959 |
+
suitable and the array subtype is one of `np.ndarray`, `np.recarray`
|
960 |
+
or `np.memmap`.
|
961 |
+
|
962 |
+
.. versionchanged:: 1.25.0
|
963 |
+
A view can now be returned if the fields are separated by a
|
964 |
+
uniform stride.
|
965 |
+
|
966 |
+
casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional
|
967 |
+
See casting argument of `numpy.ndarray.astype`. Controls what kind of
|
968 |
+
data casting may occur.
|
969 |
+
|
970 |
+
Returns
|
971 |
+
-------
|
972 |
+
unstructured : ndarray
|
973 |
+
Unstructured array with one more dimension.
|
974 |
+
|
975 |
+
Examples
|
976 |
+
--------
|
977 |
+
|
978 |
+
>>> from numpy.lib import recfunctions as rfn
|
979 |
+
>>> a = np.zeros(4, dtype=[('a', 'i4'), ('b', 'f4,u2'), ('c', 'f4', 2)])
|
980 |
+
>>> a
|
981 |
+
array([(0, (0., 0), [0., 0.]), (0, (0., 0), [0., 0.]),
|
982 |
+
(0, (0., 0), [0., 0.]), (0, (0., 0), [0., 0.])],
|
983 |
+
dtype=[('a', '<i4'), ('b', [('f0', '<f4'), ('f1', '<u2')]), ('c', '<f4', (2,))])
|
984 |
+
>>> rfn.structured_to_unstructured(a)
|
985 |
+
array([[0., 0., 0., 0., 0.],
|
986 |
+
[0., 0., 0., 0., 0.],
|
987 |
+
[0., 0., 0., 0., 0.],
|
988 |
+
[0., 0., 0., 0., 0.]])
|
989 |
+
|
990 |
+
>>> b = np.array([(1, 2, 5), (4, 5, 7), (7, 8 ,11), (10, 11, 12)],
|
991 |
+
... dtype=[('x', 'i4'), ('y', 'f4'), ('z', 'f8')])
|
992 |
+
>>> np.mean(rfn.structured_to_unstructured(b[['x', 'z']]), axis=-1)
|
993 |
+
array([ 3. , 5.5, 9. , 11. ])
|
994 |
+
|
995 |
+
"""
|
996 |
+
if arr.dtype.names is None:
|
997 |
+
raise ValueError('arr must be a structured array')
|
998 |
+
|
999 |
+
fields = _get_fields_and_offsets(arr.dtype)
|
1000 |
+
n_fields = len(fields)
|
1001 |
+
if n_fields == 0 and dtype is None:
|
1002 |
+
raise ValueError("arr has no fields. Unable to guess dtype")
|
1003 |
+
elif n_fields == 0:
|
1004 |
+
# too many bugs elsewhere for this to work now
|
1005 |
+
raise NotImplementedError("arr with no fields is not supported")
|
1006 |
+
|
1007 |
+
dts, counts, offsets = zip(*fields)
|
1008 |
+
names = ['f{}'.format(n) for n in range(n_fields)]
|
1009 |
+
|
1010 |
+
if dtype is None:
|
1011 |
+
out_dtype = np.result_type(*[dt.base for dt in dts])
|
1012 |
+
else:
|
1013 |
+
out_dtype = np.dtype(dtype)
|
1014 |
+
|
1015 |
+
# Use a series of views and casts to convert to an unstructured array:
|
1016 |
+
|
1017 |
+
# first view using flattened fields (doesn't work for object arrays)
|
1018 |
+
# Note: dts may include a shape for subarrays
|
1019 |
+
flattened_fields = np.dtype({'names': names,
|
1020 |
+
'formats': dts,
|
1021 |
+
'offsets': offsets,
|
1022 |
+
'itemsize': arr.dtype.itemsize})
|
1023 |
+
arr = arr.view(flattened_fields)
|
1024 |
+
|
1025 |
+
# we only allow a few types to be unstructured by manipulating the
|
1026 |
+
# strides, because we know it won't work with, for example, np.matrix nor
|
1027 |
+
# np.ma.MaskedArray.
|
1028 |
+
can_view = type(arr) in (np.ndarray, np.recarray, np.memmap)
|
1029 |
+
if (not copy) and can_view and all(dt.base == out_dtype for dt in dts):
|
1030 |
+
# all elements have the right dtype already; if they have a common
|
1031 |
+
# stride, we can just return a view
|
1032 |
+
common_stride = _common_stride(offsets, counts, out_dtype.itemsize)
|
1033 |
+
if common_stride is not None:
|
1034 |
+
wrap = arr.__array_wrap__
|
1035 |
+
|
1036 |
+
new_shape = arr.shape + (sum(counts), out_dtype.itemsize)
|
1037 |
+
new_strides = arr.strides + (abs(common_stride), 1)
|
1038 |
+
|
1039 |
+
arr = arr[..., np.newaxis].view(np.uint8) # view as bytes
|
1040 |
+
arr = arr[..., min(offsets):] # remove the leading unused data
|
1041 |
+
arr = np.lib.stride_tricks.as_strided(arr,
|
1042 |
+
new_shape,
|
1043 |
+
new_strides,
|
1044 |
+
subok=True)
|
1045 |
+
|
1046 |
+
# cast and drop the last dimension again
|
1047 |
+
arr = arr.view(out_dtype)[..., 0]
|
1048 |
+
|
1049 |
+
if common_stride < 0:
|
1050 |
+
arr = arr[..., ::-1] # reverse, if the stride was negative
|
1051 |
+
if type(arr) is not type(wrap.__self__):
|
1052 |
+
# Some types (e.g. recarray) turn into an ndarray along the
|
1053 |
+
# way, so we have to wrap it again in order to match the
|
1054 |
+
# behavior with copy=True.
|
1055 |
+
arr = wrap(arr)
|
1056 |
+
return arr
|
1057 |
+
|
1058 |
+
# next cast to a packed format with all fields converted to new dtype
|
1059 |
+
packed_fields = np.dtype({'names': names,
|
1060 |
+
'formats': [(out_dtype, dt.shape) for dt in dts]})
|
1061 |
+
arr = arr.astype(packed_fields, copy=copy, casting=casting)
|
1062 |
+
|
1063 |
+
# finally is it safe to view the packed fields as the unstructured type
|
1064 |
+
return arr.view((out_dtype, (sum(counts),)))
|
1065 |
+
|
1066 |
+
|
1067 |
+
def _unstructured_to_structured_dispatcher(arr, dtype=None, names=None,
|
1068 |
+
align=None, copy=None, casting=None):
|
1069 |
+
return (arr,)
|
1070 |
+
|
1071 |
+
@array_function_dispatch(_unstructured_to_structured_dispatcher)
|
1072 |
+
def unstructured_to_structured(arr, dtype=None, names=None, align=False,
|
1073 |
+
copy=False, casting='unsafe'):
|
1074 |
+
"""
|
1075 |
+
Converts an n-D unstructured array into an (n-1)-D structured array.
|
1076 |
+
|
1077 |
+
The last dimension of the input array is converted into a structure, with
|
1078 |
+
number of field-elements equal to the size of the last dimension of the
|
1079 |
+
input array. By default all output fields have the input array's dtype, but
|
1080 |
+
an output structured dtype with an equal number of fields-elements can be
|
1081 |
+
supplied instead.
|
1082 |
+
|
1083 |
+
Nested fields, as well as each element of any subarray fields, all count
|
1084 |
+
towards the number of field-elements.
|
1085 |
+
|
1086 |
+
Parameters
|
1087 |
+
----------
|
1088 |
+
arr : ndarray
|
1089 |
+
Unstructured array or dtype to convert.
|
1090 |
+
dtype : dtype, optional
|
1091 |
+
The structured dtype of the output array
|
1092 |
+
names : list of strings, optional
|
1093 |
+
If dtype is not supplied, this specifies the field names for the output
|
1094 |
+
dtype, in order. The field dtypes will be the same as the input array.
|
1095 |
+
align : boolean, optional
|
1096 |
+
Whether to create an aligned memory layout.
|
1097 |
+
copy : bool, optional
|
1098 |
+
See copy argument to `numpy.ndarray.astype`. If true, always return a
|
1099 |
+
copy. If false, and `dtype` requirements are satisfied, a view is
|
1100 |
+
returned.
|
1101 |
+
casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional
|
1102 |
+
See casting argument of `numpy.ndarray.astype`. Controls what kind of
|
1103 |
+
data casting may occur.
|
1104 |
+
|
1105 |
+
Returns
|
1106 |
+
-------
|
1107 |
+
structured : ndarray
|
1108 |
+
Structured array with fewer dimensions.
|
1109 |
+
|
1110 |
+
Examples
|
1111 |
+
--------
|
1112 |
+
|
1113 |
+
>>> from numpy.lib import recfunctions as rfn
|
1114 |
+
>>> dt = np.dtype([('a', 'i4'), ('b', 'f4,u2'), ('c', 'f4', 2)])
|
1115 |
+
>>> a = np.arange(20).reshape((4,5))
|
1116 |
+
>>> a
|
1117 |
+
array([[ 0, 1, 2, 3, 4],
|
1118 |
+
[ 5, 6, 7, 8, 9],
|
1119 |
+
[10, 11, 12, 13, 14],
|
1120 |
+
[15, 16, 17, 18, 19]])
|
1121 |
+
>>> rfn.unstructured_to_structured(a, dt)
|
1122 |
+
array([( 0, ( 1., 2), [ 3., 4.]), ( 5, ( 6., 7), [ 8., 9.]),
|
1123 |
+
(10, (11., 12), [13., 14.]), (15, (16., 17), [18., 19.])],
|
1124 |
+
dtype=[('a', '<i4'), ('b', [('f0', '<f4'), ('f1', '<u2')]), ('c', '<f4', (2,))])
|
1125 |
+
|
1126 |
+
"""
|
1127 |
+
if arr.shape == ():
|
1128 |
+
raise ValueError('arr must have at least one dimension')
|
1129 |
+
n_elem = arr.shape[-1]
|
1130 |
+
if n_elem == 0:
|
1131 |
+
# too many bugs elsewhere for this to work now
|
1132 |
+
raise NotImplementedError("last axis with size 0 is not supported")
|
1133 |
+
|
1134 |
+
if dtype is None:
|
1135 |
+
if names is None:
|
1136 |
+
names = ['f{}'.format(n) for n in range(n_elem)]
|
1137 |
+
out_dtype = np.dtype([(n, arr.dtype) for n in names], align=align)
|
1138 |
+
fields = _get_fields_and_offsets(out_dtype)
|
1139 |
+
dts, counts, offsets = zip(*fields)
|
1140 |
+
else:
|
1141 |
+
if names is not None:
|
1142 |
+
raise ValueError("don't supply both dtype and names")
|
1143 |
+
# if dtype is the args of np.dtype, construct it
|
1144 |
+
dtype = np.dtype(dtype)
|
1145 |
+
# sanity check of the input dtype
|
1146 |
+
fields = _get_fields_and_offsets(dtype)
|
1147 |
+
if len(fields) == 0:
|
1148 |
+
dts, counts, offsets = [], [], []
|
1149 |
+
else:
|
1150 |
+
dts, counts, offsets = zip(*fields)
|
1151 |
+
|
1152 |
+
if n_elem != sum(counts):
|
1153 |
+
raise ValueError('The length of the last dimension of arr must '
|
1154 |
+
'be equal to the number of fields in dtype')
|
1155 |
+
out_dtype = dtype
|
1156 |
+
if align and not out_dtype.isalignedstruct:
|
1157 |
+
raise ValueError("align was True but dtype is not aligned")
|
1158 |
+
|
1159 |
+
names = ['f{}'.format(n) for n in range(len(fields))]
|
1160 |
+
|
1161 |
+
# Use a series of views and casts to convert to a structured array:
|
1162 |
+
|
1163 |
+
# first view as a packed structured array of one dtype
|
1164 |
+
packed_fields = np.dtype({'names': names,
|
1165 |
+
'formats': [(arr.dtype, dt.shape) for dt in dts]})
|
1166 |
+
arr = np.ascontiguousarray(arr).view(packed_fields)
|
1167 |
+
|
1168 |
+
# next cast to an unpacked but flattened format with varied dtypes
|
1169 |
+
flattened_fields = np.dtype({'names': names,
|
1170 |
+
'formats': dts,
|
1171 |
+
'offsets': offsets,
|
1172 |
+
'itemsize': out_dtype.itemsize})
|
1173 |
+
arr = arr.astype(flattened_fields, copy=copy, casting=casting)
|
1174 |
+
|
1175 |
+
# finally view as the final nested dtype and remove the last axis
|
1176 |
+
return arr.view(out_dtype)[..., 0]
|
1177 |
+
|
1178 |
+
def _apply_along_fields_dispatcher(func, arr):
|
1179 |
+
return (arr,)
|
1180 |
+
|
1181 |
+
@array_function_dispatch(_apply_along_fields_dispatcher)
|
1182 |
+
def apply_along_fields(func, arr):
|
1183 |
+
"""
|
1184 |
+
Apply function 'func' as a reduction across fields of a structured array.
|
1185 |
+
|
1186 |
+
This is similar to `apply_along_axis`, but treats the fields of a
|
1187 |
+
structured array as an extra axis. The fields are all first cast to a
|
1188 |
+
common type following the type-promotion rules from `numpy.result_type`
|
1189 |
+
applied to the field's dtypes.
|
1190 |
+
|
1191 |
+
Parameters
|
1192 |
+
----------
|
1193 |
+
func : function
|
1194 |
+
Function to apply on the "field" dimension. This function must
|
1195 |
+
support an `axis` argument, like np.mean, np.sum, etc.
|
1196 |
+
arr : ndarray
|
1197 |
+
Structured array for which to apply func.
|
1198 |
+
|
1199 |
+
Returns
|
1200 |
+
-------
|
1201 |
+
out : ndarray
|
1202 |
+
Result of the recution operation
|
1203 |
+
|
1204 |
+
Examples
|
1205 |
+
--------
|
1206 |
+
|
1207 |
+
>>> from numpy.lib import recfunctions as rfn
|
1208 |
+
>>> b = np.array([(1, 2, 5), (4, 5, 7), (7, 8 ,11), (10, 11, 12)],
|
1209 |
+
... dtype=[('x', 'i4'), ('y', 'f4'), ('z', 'f8')])
|
1210 |
+
>>> rfn.apply_along_fields(np.mean, b)
|
1211 |
+
array([ 2.66666667, 5.33333333, 8.66666667, 11. ])
|
1212 |
+
>>> rfn.apply_along_fields(np.mean, b[['x', 'z']])
|
1213 |
+
array([ 3. , 5.5, 9. , 11. ])
|
1214 |
+
|
1215 |
+
"""
|
1216 |
+
if arr.dtype.names is None:
|
1217 |
+
raise ValueError('arr must be a structured array')
|
1218 |
+
|
1219 |
+
uarr = structured_to_unstructured(arr)
|
1220 |
+
return func(uarr, axis=-1)
|
1221 |
+
# works and avoids axis requirement, but very, very slow:
|
1222 |
+
#return np.apply_along_axis(func, -1, uarr)
|
1223 |
+
|
1224 |
+
def _assign_fields_by_name_dispatcher(dst, src, zero_unassigned=None):
|
1225 |
+
return dst, src
|
1226 |
+
|
1227 |
+
@array_function_dispatch(_assign_fields_by_name_dispatcher)
|
1228 |
+
def assign_fields_by_name(dst, src, zero_unassigned=True):
|
1229 |
+
"""
|
1230 |
+
Assigns values from one structured array to another by field name.
|
1231 |
+
|
1232 |
+
Normally in numpy >= 1.14, assignment of one structured array to another
|
1233 |
+
copies fields "by position", meaning that the first field from the src is
|
1234 |
+
copied to the first field of the dst, and so on, regardless of field name.
|
1235 |
+
|
1236 |
+
This function instead copies "by field name", such that fields in the dst
|
1237 |
+
are assigned from the identically named field in the src. This applies
|
1238 |
+
recursively for nested structures. This is how structure assignment worked
|
1239 |
+
in numpy >= 1.6 to <= 1.13.
|
1240 |
+
|
1241 |
+
Parameters
|
1242 |
+
----------
|
1243 |
+
dst : ndarray
|
1244 |
+
src : ndarray
|
1245 |
+
The source and destination arrays during assignment.
|
1246 |
+
zero_unassigned : bool, optional
|
1247 |
+
If True, fields in the dst for which there was no matching
|
1248 |
+
field in the src are filled with the value 0 (zero). This
|
1249 |
+
was the behavior of numpy <= 1.13. If False, those fields
|
1250 |
+
are not modified.
|
1251 |
+
"""
|
1252 |
+
|
1253 |
+
if dst.dtype.names is None:
|
1254 |
+
dst[...] = src
|
1255 |
+
return
|
1256 |
+
|
1257 |
+
for name in dst.dtype.names:
|
1258 |
+
if name not in src.dtype.names:
|
1259 |
+
if zero_unassigned:
|
1260 |
+
dst[name] = 0
|
1261 |
+
else:
|
1262 |
+
assign_fields_by_name(dst[name], src[name],
|
1263 |
+
zero_unassigned)
|
1264 |
+
|
1265 |
+
def _require_fields_dispatcher(array, required_dtype):
|
1266 |
+
return (array,)
|
1267 |
+
|
1268 |
+
@array_function_dispatch(_require_fields_dispatcher)
|
1269 |
+
def require_fields(array, required_dtype):
|
1270 |
+
"""
|
1271 |
+
Casts a structured array to a new dtype using assignment by field-name.
|
1272 |
+
|
1273 |
+
This function assigns from the old to the new array by name, so the
|
1274 |
+
value of a field in the output array is the value of the field with the
|
1275 |
+
same name in the source array. This has the effect of creating a new
|
1276 |
+
ndarray containing only the fields "required" by the required_dtype.
|
1277 |
+
|
1278 |
+
If a field name in the required_dtype does not exist in the
|
1279 |
+
input array, that field is created and set to 0 in the output array.
|
1280 |
+
|
1281 |
+
Parameters
|
1282 |
+
----------
|
1283 |
+
a : ndarray
|
1284 |
+
array to cast
|
1285 |
+
required_dtype : dtype
|
1286 |
+
datatype for output array
|
1287 |
+
|
1288 |
+
Returns
|
1289 |
+
-------
|
1290 |
+
out : ndarray
|
1291 |
+
array with the new dtype, with field values copied from the fields in
|
1292 |
+
the input array with the same name
|
1293 |
+
|
1294 |
+
Examples
|
1295 |
+
--------
|
1296 |
+
|
1297 |
+
>>> from numpy.lib import recfunctions as rfn
|
1298 |
+
>>> a = np.ones(4, dtype=[('a', 'i4'), ('b', 'f8'), ('c', 'u1')])
|
1299 |
+
>>> rfn.require_fields(a, [('b', 'f4'), ('c', 'u1')])
|
1300 |
+
array([(1., 1), (1., 1), (1., 1), (1., 1)],
|
1301 |
+
dtype=[('b', '<f4'), ('c', 'u1')])
|
1302 |
+
>>> rfn.require_fields(a, [('b', 'f4'), ('newf', 'u1')])
|
1303 |
+
array([(1., 0), (1., 0), (1., 0), (1., 0)],
|
1304 |
+
dtype=[('b', '<f4'), ('newf', 'u1')])
|
1305 |
+
|
1306 |
+
"""
|
1307 |
+
out = np.empty(array.shape, dtype=required_dtype)
|
1308 |
+
assign_fields_by_name(out, array)
|
1309 |
+
return out
|
1310 |
+
|
1311 |
+
|
1312 |
+
def _stack_arrays_dispatcher(arrays, defaults=None, usemask=None,
|
1313 |
+
asrecarray=None, autoconvert=None):
|
1314 |
+
return arrays
|
1315 |
+
|
1316 |
+
|
1317 |
+
@array_function_dispatch(_stack_arrays_dispatcher)
|
1318 |
+
def stack_arrays(arrays, defaults=None, usemask=True, asrecarray=False,
|
1319 |
+
autoconvert=False):
|
1320 |
+
"""
|
1321 |
+
Superposes arrays fields by fields
|
1322 |
+
|
1323 |
+
Parameters
|
1324 |
+
----------
|
1325 |
+
arrays : array or sequence
|
1326 |
+
Sequence of input arrays.
|
1327 |
+
defaults : dictionary, optional
|
1328 |
+
Dictionary mapping field names to the corresponding default values.
|
1329 |
+
usemask : {True, False}, optional
|
1330 |
+
Whether to return a MaskedArray (or MaskedRecords is
|
1331 |
+
`asrecarray==True`) or a ndarray.
|
1332 |
+
asrecarray : {False, True}, optional
|
1333 |
+
Whether to return a recarray (or MaskedRecords if `usemask==True`)
|
1334 |
+
or just a flexible-type ndarray.
|
1335 |
+
autoconvert : {False, True}, optional
|
1336 |
+
Whether automatically cast the type of the field to the maximum.
|
1337 |
+
|
1338 |
+
Examples
|
1339 |
+
--------
|
1340 |
+
>>> from numpy.lib import recfunctions as rfn
|
1341 |
+
>>> x = np.array([1, 2,])
|
1342 |
+
>>> rfn.stack_arrays(x) is x
|
1343 |
+
True
|
1344 |
+
>>> z = np.array([('A', 1), ('B', 2)], dtype=[('A', '|S3'), ('B', float)])
|
1345 |
+
>>> zz = np.array([('a', 10., 100.), ('b', 20., 200.), ('c', 30., 300.)],
|
1346 |
+
... dtype=[('A', '|S3'), ('B', np.double), ('C', np.double)])
|
1347 |
+
>>> test = rfn.stack_arrays((z,zz))
|
1348 |
+
>>> test
|
1349 |
+
masked_array(data=[(b'A', 1.0, --), (b'B', 2.0, --), (b'a', 10.0, 100.0),
|
1350 |
+
(b'b', 20.0, 200.0), (b'c', 30.0, 300.0)],
|
1351 |
+
mask=[(False, False, True), (False, False, True),
|
1352 |
+
(False, False, False), (False, False, False),
|
1353 |
+
(False, False, False)],
|
1354 |
+
fill_value=(b'N/A', 1.e+20, 1.e+20),
|
1355 |
+
dtype=[('A', 'S3'), ('B', '<f8'), ('C', '<f8')])
|
1356 |
+
|
1357 |
+
"""
|
1358 |
+
if isinstance(arrays, ndarray):
|
1359 |
+
return arrays
|
1360 |
+
elif len(arrays) == 1:
|
1361 |
+
return arrays[0]
|
1362 |
+
seqarrays = [np.asanyarray(a).ravel() for a in arrays]
|
1363 |
+
nrecords = [len(a) for a in seqarrays]
|
1364 |
+
ndtype = [a.dtype for a in seqarrays]
|
1365 |
+
fldnames = [d.names for d in ndtype]
|
1366 |
+
#
|
1367 |
+
dtype_l = ndtype[0]
|
1368 |
+
newdescr = _get_fieldspec(dtype_l)
|
1369 |
+
names = [n for n, d in newdescr]
|
1370 |
+
for dtype_n in ndtype[1:]:
|
1371 |
+
for fname, fdtype in _get_fieldspec(dtype_n):
|
1372 |
+
if fname not in names:
|
1373 |
+
newdescr.append((fname, fdtype))
|
1374 |
+
names.append(fname)
|
1375 |
+
else:
|
1376 |
+
nameidx = names.index(fname)
|
1377 |
+
_, cdtype = newdescr[nameidx]
|
1378 |
+
if autoconvert:
|
1379 |
+
newdescr[nameidx] = (fname, max(fdtype, cdtype))
|
1380 |
+
elif fdtype != cdtype:
|
1381 |
+
raise TypeError("Incompatible type '%s' <> '%s'" %
|
1382 |
+
(cdtype, fdtype))
|
1383 |
+
# Only one field: use concatenate
|
1384 |
+
if len(newdescr) == 1:
|
1385 |
+
output = ma.concatenate(seqarrays)
|
1386 |
+
else:
|
1387 |
+
#
|
1388 |
+
output = ma.masked_all((np.sum(nrecords),), newdescr)
|
1389 |
+
offset = np.cumsum(np.r_[0, nrecords])
|
1390 |
+
seen = []
|
1391 |
+
for (a, n, i, j) in zip(seqarrays, fldnames, offset[:-1], offset[1:]):
|
1392 |
+
names = a.dtype.names
|
1393 |
+
if names is None:
|
1394 |
+
output['f%i' % len(seen)][i:j] = a
|
1395 |
+
else:
|
1396 |
+
for name in n:
|
1397 |
+
output[name][i:j] = a[name]
|
1398 |
+
if name not in seen:
|
1399 |
+
seen.append(name)
|
1400 |
+
#
|
1401 |
+
return _fix_output(_fix_defaults(output, defaults),
|
1402 |
+
usemask=usemask, asrecarray=asrecarray)
|
1403 |
+
|
1404 |
+
|
1405 |
+
def _find_duplicates_dispatcher(
|
1406 |
+
a, key=None, ignoremask=None, return_index=None):
|
1407 |
+
return (a,)
|
1408 |
+
|
1409 |
+
|
1410 |
+
@array_function_dispatch(_find_duplicates_dispatcher)
|
1411 |
+
def find_duplicates(a, key=None, ignoremask=True, return_index=False):
|
1412 |
+
"""
|
1413 |
+
Find the duplicates in a structured array along a given key
|
1414 |
+
|
1415 |
+
Parameters
|
1416 |
+
----------
|
1417 |
+
a : array-like
|
1418 |
+
Input array
|
1419 |
+
key : {string, None}, optional
|
1420 |
+
Name of the fields along which to check the duplicates.
|
1421 |
+
If None, the search is performed by records
|
1422 |
+
ignoremask : {True, False}, optional
|
1423 |
+
Whether masked data should be discarded or considered as duplicates.
|
1424 |
+
return_index : {False, True}, optional
|
1425 |
+
Whether to return the indices of the duplicated values.
|
1426 |
+
|
1427 |
+
Examples
|
1428 |
+
--------
|
1429 |
+
>>> from numpy.lib import recfunctions as rfn
|
1430 |
+
>>> ndtype = [('a', int)]
|
1431 |
+
>>> a = np.ma.array([1, 1, 1, 2, 2, 3, 3],
|
1432 |
+
... mask=[0, 0, 1, 0, 0, 0, 1]).view(ndtype)
|
1433 |
+
>>> rfn.find_duplicates(a, ignoremask=True, return_index=True)
|
1434 |
+
(masked_array(data=[(1,), (1,), (2,), (2,)],
|
1435 |
+
mask=[(False,), (False,), (False,), (False,)],
|
1436 |
+
fill_value=(999999,),
|
1437 |
+
dtype=[('a', '<i8')]), array([0, 1, 3, 4]))
|
1438 |
+
"""
|
1439 |
+
a = np.asanyarray(a).ravel()
|
1440 |
+
# Get a dictionary of fields
|
1441 |
+
fields = get_fieldstructure(a.dtype)
|
1442 |
+
# Get the sorting data (by selecting the corresponding field)
|
1443 |
+
base = a
|
1444 |
+
if key:
|
1445 |
+
for f in fields[key]:
|
1446 |
+
base = base[f]
|
1447 |
+
base = base[key]
|
1448 |
+
# Get the sorting indices and the sorted data
|
1449 |
+
sortidx = base.argsort()
|
1450 |
+
sortedbase = base[sortidx]
|
1451 |
+
sorteddata = sortedbase.filled()
|
1452 |
+
# Compare the sorting data
|
1453 |
+
flag = (sorteddata[:-1] == sorteddata[1:])
|
1454 |
+
# If masked data must be ignored, set the flag to false where needed
|
1455 |
+
if ignoremask:
|
1456 |
+
sortedmask = sortedbase.recordmask
|
1457 |
+
flag[sortedmask[1:]] = False
|
1458 |
+
flag = np.concatenate(([False], flag))
|
1459 |
+
# We need to take the point on the left as well (else we're missing it)
|
1460 |
+
flag[:-1] = flag[:-1] + flag[1:]
|
1461 |
+
duplicates = a[sortidx][flag]
|
1462 |
+
if return_index:
|
1463 |
+
return (duplicates, sortidx[flag])
|
1464 |
+
else:
|
1465 |
+
return duplicates
|
1466 |
+
|
1467 |
+
|
1468 |
+
def _join_by_dispatcher(
|
1469 |
+
key, r1, r2, jointype=None, r1postfix=None, r2postfix=None,
|
1470 |
+
defaults=None, usemask=None, asrecarray=None):
|
1471 |
+
return (r1, r2)
|
1472 |
+
|
1473 |
+
|
1474 |
+
@array_function_dispatch(_join_by_dispatcher)
|
1475 |
+
def join_by(key, r1, r2, jointype='inner', r1postfix='1', r2postfix='2',
|
1476 |
+
defaults=None, usemask=True, asrecarray=False):
|
1477 |
+
"""
|
1478 |
+
Join arrays `r1` and `r2` on key `key`.
|
1479 |
+
|
1480 |
+
The key should be either a string or a sequence of string corresponding
|
1481 |
+
to the fields used to join the array. An exception is raised if the
|
1482 |
+
`key` field cannot be found in the two input arrays. Neither `r1` nor
|
1483 |
+
`r2` should have any duplicates along `key`: the presence of duplicates
|
1484 |
+
will make the output quite unreliable. Note that duplicates are not
|
1485 |
+
looked for by the algorithm.
|
1486 |
+
|
1487 |
+
Parameters
|
1488 |
+
----------
|
1489 |
+
key : {string, sequence}
|
1490 |
+
A string or a sequence of strings corresponding to the fields used
|
1491 |
+
for comparison.
|
1492 |
+
r1, r2 : arrays
|
1493 |
+
Structured arrays.
|
1494 |
+
jointype : {'inner', 'outer', 'leftouter'}, optional
|
1495 |
+
If 'inner', returns the elements common to both r1 and r2.
|
1496 |
+
If 'outer', returns the common elements as well as the elements of
|
1497 |
+
r1 not in r2 and the elements of not in r2.
|
1498 |
+
If 'leftouter', returns the common elements and the elements of r1
|
1499 |
+
not in r2.
|
1500 |
+
r1postfix : string, optional
|
1501 |
+
String appended to the names of the fields of r1 that are present
|
1502 |
+
in r2 but absent of the key.
|
1503 |
+
r2postfix : string, optional
|
1504 |
+
String appended to the names of the fields of r2 that are present
|
1505 |
+
in r1 but absent of the key.
|
1506 |
+
defaults : {dictionary}, optional
|
1507 |
+
Dictionary mapping field names to the corresponding default values.
|
1508 |
+
usemask : {True, False}, optional
|
1509 |
+
Whether to return a MaskedArray (or MaskedRecords is
|
1510 |
+
`asrecarray==True`) or a ndarray.
|
1511 |
+
asrecarray : {False, True}, optional
|
1512 |
+
Whether to return a recarray (or MaskedRecords if `usemask==True`)
|
1513 |
+
or just a flexible-type ndarray.
|
1514 |
+
|
1515 |
+
Notes
|
1516 |
+
-----
|
1517 |
+
* The output is sorted along the key.
|
1518 |
+
* A temporary array is formed by dropping the fields not in the key for
|
1519 |
+
the two arrays and concatenating the result. This array is then
|
1520 |
+
sorted, and the common entries selected. The output is constructed by
|
1521 |
+
filling the fields with the selected entries. Matching is not
|
1522 |
+
preserved if there are some duplicates...
|
1523 |
+
|
1524 |
+
"""
|
1525 |
+
# Check jointype
|
1526 |
+
if jointype not in ('inner', 'outer', 'leftouter'):
|
1527 |
+
raise ValueError(
|
1528 |
+
"The 'jointype' argument should be in 'inner', "
|
1529 |
+
"'outer' or 'leftouter' (got '%s' instead)" % jointype
|
1530 |
+
)
|
1531 |
+
# If we have a single key, put it in a tuple
|
1532 |
+
if isinstance(key, str):
|
1533 |
+
key = (key,)
|
1534 |
+
|
1535 |
+
# Check the keys
|
1536 |
+
if len(set(key)) != len(key):
|
1537 |
+
dup = next(x for n,x in enumerate(key) if x in key[n+1:])
|
1538 |
+
raise ValueError("duplicate join key %r" % dup)
|
1539 |
+
for name in key:
|
1540 |
+
if name not in r1.dtype.names:
|
1541 |
+
raise ValueError('r1 does not have key field %r' % name)
|
1542 |
+
if name not in r2.dtype.names:
|
1543 |
+
raise ValueError('r2 does not have key field %r' % name)
|
1544 |
+
|
1545 |
+
# Make sure we work with ravelled arrays
|
1546 |
+
r1 = r1.ravel()
|
1547 |
+
r2 = r2.ravel()
|
1548 |
+
# Fixme: nb2 below is never used. Commenting out for pyflakes.
|
1549 |
+
# (nb1, nb2) = (len(r1), len(r2))
|
1550 |
+
nb1 = len(r1)
|
1551 |
+
(r1names, r2names) = (r1.dtype.names, r2.dtype.names)
|
1552 |
+
|
1553 |
+
# Check the names for collision
|
1554 |
+
collisions = (set(r1names) & set(r2names)) - set(key)
|
1555 |
+
if collisions and not (r1postfix or r2postfix):
|
1556 |
+
msg = "r1 and r2 contain common names, r1postfix and r2postfix "
|
1557 |
+
msg += "can't both be empty"
|
1558 |
+
raise ValueError(msg)
|
1559 |
+
|
1560 |
+
# Make temporary arrays of just the keys
|
1561 |
+
# (use order of keys in `r1` for back-compatibility)
|
1562 |
+
key1 = [ n for n in r1names if n in key ]
|
1563 |
+
r1k = _keep_fields(r1, key1)
|
1564 |
+
r2k = _keep_fields(r2, key1)
|
1565 |
+
|
1566 |
+
# Concatenate the two arrays for comparison
|
1567 |
+
aux = ma.concatenate((r1k, r2k))
|
1568 |
+
idx_sort = aux.argsort(order=key)
|
1569 |
+
aux = aux[idx_sort]
|
1570 |
+
#
|
1571 |
+
# Get the common keys
|
1572 |
+
flag_in = ma.concatenate(([False], aux[1:] == aux[:-1]))
|
1573 |
+
flag_in[:-1] = flag_in[1:] + flag_in[:-1]
|
1574 |
+
idx_in = idx_sort[flag_in]
|
1575 |
+
idx_1 = idx_in[(idx_in < nb1)]
|
1576 |
+
idx_2 = idx_in[(idx_in >= nb1)] - nb1
|
1577 |
+
(r1cmn, r2cmn) = (len(idx_1), len(idx_2))
|
1578 |
+
if jointype == 'inner':
|
1579 |
+
(r1spc, r2spc) = (0, 0)
|
1580 |
+
elif jointype == 'outer':
|
1581 |
+
idx_out = idx_sort[~flag_in]
|
1582 |
+
idx_1 = np.concatenate((idx_1, idx_out[(idx_out < nb1)]))
|
1583 |
+
idx_2 = np.concatenate((idx_2, idx_out[(idx_out >= nb1)] - nb1))
|
1584 |
+
(r1spc, r2spc) = (len(idx_1) - r1cmn, len(idx_2) - r2cmn)
|
1585 |
+
elif jointype == 'leftouter':
|
1586 |
+
idx_out = idx_sort[~flag_in]
|
1587 |
+
idx_1 = np.concatenate((idx_1, idx_out[(idx_out < nb1)]))
|
1588 |
+
(r1spc, r2spc) = (len(idx_1) - r1cmn, 0)
|
1589 |
+
# Select the entries from each input
|
1590 |
+
(s1, s2) = (r1[idx_1], r2[idx_2])
|
1591 |
+
#
|
1592 |
+
# Build the new description of the output array .......
|
1593 |
+
# Start with the key fields
|
1594 |
+
ndtype = _get_fieldspec(r1k.dtype)
|
1595 |
+
|
1596 |
+
# Add the fields from r1
|
1597 |
+
for fname, fdtype in _get_fieldspec(r1.dtype):
|
1598 |
+
if fname not in key:
|
1599 |
+
ndtype.append((fname, fdtype))
|
1600 |
+
|
1601 |
+
# Add the fields from r2
|
1602 |
+
for fname, fdtype in _get_fieldspec(r2.dtype):
|
1603 |
+
# Have we seen the current name already ?
|
1604 |
+
# we need to rebuild this list every time
|
1605 |
+
names = list(name for name, dtype in ndtype)
|
1606 |
+
try:
|
1607 |
+
nameidx = names.index(fname)
|
1608 |
+
except ValueError:
|
1609 |
+
#... we haven't: just add the description to the current list
|
1610 |
+
ndtype.append((fname, fdtype))
|
1611 |
+
else:
|
1612 |
+
# collision
|
1613 |
+
_, cdtype = ndtype[nameidx]
|
1614 |
+
if fname in key:
|
1615 |
+
# The current field is part of the key: take the largest dtype
|
1616 |
+
ndtype[nameidx] = (fname, max(fdtype, cdtype))
|
1617 |
+
else:
|
1618 |
+
# The current field is not part of the key: add the suffixes,
|
1619 |
+
# and place the new field adjacent to the old one
|
1620 |
+
ndtype[nameidx:nameidx + 1] = [
|
1621 |
+
(fname + r1postfix, cdtype),
|
1622 |
+
(fname + r2postfix, fdtype)
|
1623 |
+
]
|
1624 |
+
# Rebuild a dtype from the new fields
|
1625 |
+
ndtype = np.dtype(ndtype)
|
1626 |
+
# Find the largest nb of common fields :
|
1627 |
+
# r1cmn and r2cmn should be equal, but...
|
1628 |
+
cmn = max(r1cmn, r2cmn)
|
1629 |
+
# Construct an empty array
|
1630 |
+
output = ma.masked_all((cmn + r1spc + r2spc,), dtype=ndtype)
|
1631 |
+
names = output.dtype.names
|
1632 |
+
for f in r1names:
|
1633 |
+
selected = s1[f]
|
1634 |
+
if f not in names or (f in r2names and not r2postfix and f not in key):
|
1635 |
+
f += r1postfix
|
1636 |
+
current = output[f]
|
1637 |
+
current[:r1cmn] = selected[:r1cmn]
|
1638 |
+
if jointype in ('outer', 'leftouter'):
|
1639 |
+
current[cmn:cmn + r1spc] = selected[r1cmn:]
|
1640 |
+
for f in r2names:
|
1641 |
+
selected = s2[f]
|
1642 |
+
if f not in names or (f in r1names and not r1postfix and f not in key):
|
1643 |
+
f += r2postfix
|
1644 |
+
current = output[f]
|
1645 |
+
current[:r2cmn] = selected[:r2cmn]
|
1646 |
+
if (jointype == 'outer') and r2spc:
|
1647 |
+
current[-r2spc:] = selected[r2cmn:]
|
1648 |
+
# Sort and finalize the output
|
1649 |
+
output.sort(order=key)
|
1650 |
+
kwargs = dict(usemask=usemask, asrecarray=asrecarray)
|
1651 |
+
return _fix_output(_fix_defaults(output, defaults), **kwargs)
|
1652 |
+
|
1653 |
+
|
1654 |
+
def _rec_join_dispatcher(
|
1655 |
+
key, r1, r2, jointype=None, r1postfix=None, r2postfix=None,
|
1656 |
+
defaults=None):
|
1657 |
+
return (r1, r2)
|
1658 |
+
|
1659 |
+
|
1660 |
+
@array_function_dispatch(_rec_join_dispatcher)
|
1661 |
+
def rec_join(key, r1, r2, jointype='inner', r1postfix='1', r2postfix='2',
|
1662 |
+
defaults=None):
|
1663 |
+
"""
|
1664 |
+
Join arrays `r1` and `r2` on keys.
|
1665 |
+
Alternative to join_by, that always returns a np.recarray.
|
1666 |
+
|
1667 |
+
See Also
|
1668 |
+
--------
|
1669 |
+
join_by : equivalent function
|
1670 |
+
"""
|
1671 |
+
kwargs = dict(jointype=jointype, r1postfix=r1postfix, r2postfix=r2postfix,
|
1672 |
+
defaults=defaults, usemask=False, asrecarray=True)
|
1673 |
+
return join_by(key, r1, r2, **kwargs)
|
env-llmeval/lib/python3.10/site-packages/numpy/lib/scimath.py
ADDED
@@ -0,0 +1,625 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Wrapper functions to more user-friendly calling of certain math functions
|
3 |
+
whose output data-type is different than the input data-type in certain
|
4 |
+
domains of the input.
|
5 |
+
|
6 |
+
For example, for functions like `log` with branch cuts, the versions in this
|
7 |
+
module provide the mathematically valid answers in the complex plane::
|
8 |
+
|
9 |
+
>>> import math
|
10 |
+
>>> np.emath.log(-math.exp(1)) == (1+1j*math.pi)
|
11 |
+
True
|
12 |
+
|
13 |
+
Similarly, `sqrt`, other base logarithms, `power` and trig functions are
|
14 |
+
correctly handled. See their respective docstrings for specific examples.
|
15 |
+
|
16 |
+
Functions
|
17 |
+
---------
|
18 |
+
|
19 |
+
.. autosummary::
|
20 |
+
:toctree: generated/
|
21 |
+
|
22 |
+
sqrt
|
23 |
+
log
|
24 |
+
log2
|
25 |
+
logn
|
26 |
+
log10
|
27 |
+
power
|
28 |
+
arccos
|
29 |
+
arcsin
|
30 |
+
arctanh
|
31 |
+
|
32 |
+
"""
|
33 |
+
import numpy.core.numeric as nx
|
34 |
+
import numpy.core.numerictypes as nt
|
35 |
+
from numpy.core.numeric import asarray, any
|
36 |
+
from numpy.core.overrides import array_function_dispatch
|
37 |
+
from numpy.lib.type_check import isreal
|
38 |
+
|
39 |
+
|
40 |
+
__all__ = [
|
41 |
+
'sqrt', 'log', 'log2', 'logn', 'log10', 'power', 'arccos', 'arcsin',
|
42 |
+
'arctanh'
|
43 |
+
]
|
44 |
+
|
45 |
+
|
46 |
+
_ln2 = nx.log(2.0)
|
47 |
+
|
48 |
+
|
49 |
+
def _tocomplex(arr):
|
50 |
+
"""Convert its input `arr` to a complex array.
|
51 |
+
|
52 |
+
The input is returned as a complex array of the smallest type that will fit
|
53 |
+
the original data: types like single, byte, short, etc. become csingle,
|
54 |
+
while others become cdouble.
|
55 |
+
|
56 |
+
A copy of the input is always made.
|
57 |
+
|
58 |
+
Parameters
|
59 |
+
----------
|
60 |
+
arr : array
|
61 |
+
|
62 |
+
Returns
|
63 |
+
-------
|
64 |
+
array
|
65 |
+
An array with the same input data as the input but in complex form.
|
66 |
+
|
67 |
+
Examples
|
68 |
+
--------
|
69 |
+
|
70 |
+
First, consider an input of type short:
|
71 |
+
|
72 |
+
>>> a = np.array([1,2,3],np.short)
|
73 |
+
|
74 |
+
>>> ac = np.lib.scimath._tocomplex(a); ac
|
75 |
+
array([1.+0.j, 2.+0.j, 3.+0.j], dtype=complex64)
|
76 |
+
|
77 |
+
>>> ac.dtype
|
78 |
+
dtype('complex64')
|
79 |
+
|
80 |
+
If the input is of type double, the output is correspondingly of the
|
81 |
+
complex double type as well:
|
82 |
+
|
83 |
+
>>> b = np.array([1,2,3],np.double)
|
84 |
+
|
85 |
+
>>> bc = np.lib.scimath._tocomplex(b); bc
|
86 |
+
array([1.+0.j, 2.+0.j, 3.+0.j])
|
87 |
+
|
88 |
+
>>> bc.dtype
|
89 |
+
dtype('complex128')
|
90 |
+
|
91 |
+
Note that even if the input was complex to begin with, a copy is still
|
92 |
+
made, since the astype() method always copies:
|
93 |
+
|
94 |
+
>>> c = np.array([1,2,3],np.csingle)
|
95 |
+
|
96 |
+
>>> cc = np.lib.scimath._tocomplex(c); cc
|
97 |
+
array([1.+0.j, 2.+0.j, 3.+0.j], dtype=complex64)
|
98 |
+
|
99 |
+
>>> c *= 2; c
|
100 |
+
array([2.+0.j, 4.+0.j, 6.+0.j], dtype=complex64)
|
101 |
+
|
102 |
+
>>> cc
|
103 |
+
array([1.+0.j, 2.+0.j, 3.+0.j], dtype=complex64)
|
104 |
+
"""
|
105 |
+
if issubclass(arr.dtype.type, (nt.single, nt.byte, nt.short, nt.ubyte,
|
106 |
+
nt.ushort, nt.csingle)):
|
107 |
+
return arr.astype(nt.csingle)
|
108 |
+
else:
|
109 |
+
return arr.astype(nt.cdouble)
|
110 |
+
|
111 |
+
|
112 |
+
def _fix_real_lt_zero(x):
|
113 |
+
"""Convert `x` to complex if it has real, negative components.
|
114 |
+
|
115 |
+
Otherwise, output is just the array version of the input (via asarray).
|
116 |
+
|
117 |
+
Parameters
|
118 |
+
----------
|
119 |
+
x : array_like
|
120 |
+
|
121 |
+
Returns
|
122 |
+
-------
|
123 |
+
array
|
124 |
+
|
125 |
+
Examples
|
126 |
+
--------
|
127 |
+
>>> np.lib.scimath._fix_real_lt_zero([1,2])
|
128 |
+
array([1, 2])
|
129 |
+
|
130 |
+
>>> np.lib.scimath._fix_real_lt_zero([-1,2])
|
131 |
+
array([-1.+0.j, 2.+0.j])
|
132 |
+
|
133 |
+
"""
|
134 |
+
x = asarray(x)
|
135 |
+
if any(isreal(x) & (x < 0)):
|
136 |
+
x = _tocomplex(x)
|
137 |
+
return x
|
138 |
+
|
139 |
+
|
140 |
+
def _fix_int_lt_zero(x):
|
141 |
+
"""Convert `x` to double if it has real, negative components.
|
142 |
+
|
143 |
+
Otherwise, output is just the array version of the input (via asarray).
|
144 |
+
|
145 |
+
Parameters
|
146 |
+
----------
|
147 |
+
x : array_like
|
148 |
+
|
149 |
+
Returns
|
150 |
+
-------
|
151 |
+
array
|
152 |
+
|
153 |
+
Examples
|
154 |
+
--------
|
155 |
+
>>> np.lib.scimath._fix_int_lt_zero([1,2])
|
156 |
+
array([1, 2])
|
157 |
+
|
158 |
+
>>> np.lib.scimath._fix_int_lt_zero([-1,2])
|
159 |
+
array([-1., 2.])
|
160 |
+
"""
|
161 |
+
x = asarray(x)
|
162 |
+
if any(isreal(x) & (x < 0)):
|
163 |
+
x = x * 1.0
|
164 |
+
return x
|
165 |
+
|
166 |
+
|
167 |
+
def _fix_real_abs_gt_1(x):
|
168 |
+
"""Convert `x` to complex if it has real components x_i with abs(x_i)>1.
|
169 |
+
|
170 |
+
Otherwise, output is just the array version of the input (via asarray).
|
171 |
+
|
172 |
+
Parameters
|
173 |
+
----------
|
174 |
+
x : array_like
|
175 |
+
|
176 |
+
Returns
|
177 |
+
-------
|
178 |
+
array
|
179 |
+
|
180 |
+
Examples
|
181 |
+
--------
|
182 |
+
>>> np.lib.scimath._fix_real_abs_gt_1([0,1])
|
183 |
+
array([0, 1])
|
184 |
+
|
185 |
+
>>> np.lib.scimath._fix_real_abs_gt_1([0,2])
|
186 |
+
array([0.+0.j, 2.+0.j])
|
187 |
+
"""
|
188 |
+
x = asarray(x)
|
189 |
+
if any(isreal(x) & (abs(x) > 1)):
|
190 |
+
x = _tocomplex(x)
|
191 |
+
return x
|
192 |
+
|
193 |
+
|
194 |
+
def _unary_dispatcher(x):
|
195 |
+
return (x,)
|
196 |
+
|
197 |
+
|
198 |
+
@array_function_dispatch(_unary_dispatcher)
|
199 |
+
def sqrt(x):
|
200 |
+
"""
|
201 |
+
Compute the square root of x.
|
202 |
+
|
203 |
+
For negative input elements, a complex value is returned
|
204 |
+
(unlike `numpy.sqrt` which returns NaN).
|
205 |
+
|
206 |
+
Parameters
|
207 |
+
----------
|
208 |
+
x : array_like
|
209 |
+
The input value(s).
|
210 |
+
|
211 |
+
Returns
|
212 |
+
-------
|
213 |
+
out : ndarray or scalar
|
214 |
+
The square root of `x`. If `x` was a scalar, so is `out`,
|
215 |
+
otherwise an array is returned.
|
216 |
+
|
217 |
+
See Also
|
218 |
+
--------
|
219 |
+
numpy.sqrt
|
220 |
+
|
221 |
+
Examples
|
222 |
+
--------
|
223 |
+
For real, non-negative inputs this works just like `numpy.sqrt`:
|
224 |
+
|
225 |
+
>>> np.emath.sqrt(1)
|
226 |
+
1.0
|
227 |
+
>>> np.emath.sqrt([1, 4])
|
228 |
+
array([1., 2.])
|
229 |
+
|
230 |
+
But it automatically handles negative inputs:
|
231 |
+
|
232 |
+
>>> np.emath.sqrt(-1)
|
233 |
+
1j
|
234 |
+
>>> np.emath.sqrt([-1,4])
|
235 |
+
array([0.+1.j, 2.+0.j])
|
236 |
+
|
237 |
+
Different results are expected because:
|
238 |
+
floating point 0.0 and -0.0 are distinct.
|
239 |
+
|
240 |
+
For more control, explicitly use complex() as follows:
|
241 |
+
|
242 |
+
>>> np.emath.sqrt(complex(-4.0, 0.0))
|
243 |
+
2j
|
244 |
+
>>> np.emath.sqrt(complex(-4.0, -0.0))
|
245 |
+
-2j
|
246 |
+
"""
|
247 |
+
x = _fix_real_lt_zero(x)
|
248 |
+
return nx.sqrt(x)
|
249 |
+
|
250 |
+
|
251 |
+
@array_function_dispatch(_unary_dispatcher)
|
252 |
+
def log(x):
|
253 |
+
"""
|
254 |
+
Compute the natural logarithm of `x`.
|
255 |
+
|
256 |
+
Return the "principal value" (for a description of this, see `numpy.log`)
|
257 |
+
of :math:`log_e(x)`. For real `x > 0`, this is a real number (``log(0)``
|
258 |
+
returns ``-inf`` and ``log(np.inf)`` returns ``inf``). Otherwise, the
|
259 |
+
complex principle value is returned.
|
260 |
+
|
261 |
+
Parameters
|
262 |
+
----------
|
263 |
+
x : array_like
|
264 |
+
The value(s) whose log is (are) required.
|
265 |
+
|
266 |
+
Returns
|
267 |
+
-------
|
268 |
+
out : ndarray or scalar
|
269 |
+
The log of the `x` value(s). If `x` was a scalar, so is `out`,
|
270 |
+
otherwise an array is returned.
|
271 |
+
|
272 |
+
See Also
|
273 |
+
--------
|
274 |
+
numpy.log
|
275 |
+
|
276 |
+
Notes
|
277 |
+
-----
|
278 |
+
For a log() that returns ``NAN`` when real `x < 0`, use `numpy.log`
|
279 |
+
(note, however, that otherwise `numpy.log` and this `log` are identical,
|
280 |
+
i.e., both return ``-inf`` for `x = 0`, ``inf`` for `x = inf`, and,
|
281 |
+
notably, the complex principle value if ``x.imag != 0``).
|
282 |
+
|
283 |
+
Examples
|
284 |
+
--------
|
285 |
+
>>> np.emath.log(np.exp(1))
|
286 |
+
1.0
|
287 |
+
|
288 |
+
Negative arguments are handled "correctly" (recall that
|
289 |
+
``exp(log(x)) == x`` does *not* hold for real ``x < 0``):
|
290 |
+
|
291 |
+
>>> np.emath.log(-np.exp(1)) == (1 + np.pi * 1j)
|
292 |
+
True
|
293 |
+
|
294 |
+
"""
|
295 |
+
x = _fix_real_lt_zero(x)
|
296 |
+
return nx.log(x)
|
297 |
+
|
298 |
+
|
299 |
+
@array_function_dispatch(_unary_dispatcher)
|
300 |
+
def log10(x):
|
301 |
+
"""
|
302 |
+
Compute the logarithm base 10 of `x`.
|
303 |
+
|
304 |
+
Return the "principal value" (for a description of this, see
|
305 |
+
`numpy.log10`) of :math:`log_{10}(x)`. For real `x > 0`, this
|
306 |
+
is a real number (``log10(0)`` returns ``-inf`` and ``log10(np.inf)``
|
307 |
+
returns ``inf``). Otherwise, the complex principle value is returned.
|
308 |
+
|
309 |
+
Parameters
|
310 |
+
----------
|
311 |
+
x : array_like or scalar
|
312 |
+
The value(s) whose log base 10 is (are) required.
|
313 |
+
|
314 |
+
Returns
|
315 |
+
-------
|
316 |
+
out : ndarray or scalar
|
317 |
+
The log base 10 of the `x` value(s). If `x` was a scalar, so is `out`,
|
318 |
+
otherwise an array object is returned.
|
319 |
+
|
320 |
+
See Also
|
321 |
+
--------
|
322 |
+
numpy.log10
|
323 |
+
|
324 |
+
Notes
|
325 |
+
-----
|
326 |
+
For a log10() that returns ``NAN`` when real `x < 0`, use `numpy.log10`
|
327 |
+
(note, however, that otherwise `numpy.log10` and this `log10` are
|
328 |
+
identical, i.e., both return ``-inf`` for `x = 0`, ``inf`` for `x = inf`,
|
329 |
+
and, notably, the complex principle value if ``x.imag != 0``).
|
330 |
+
|
331 |
+
Examples
|
332 |
+
--------
|
333 |
+
|
334 |
+
(We set the printing precision so the example can be auto-tested)
|
335 |
+
|
336 |
+
>>> np.set_printoptions(precision=4)
|
337 |
+
|
338 |
+
>>> np.emath.log10(10**1)
|
339 |
+
1.0
|
340 |
+
|
341 |
+
>>> np.emath.log10([-10**1, -10**2, 10**2])
|
342 |
+
array([1.+1.3644j, 2.+1.3644j, 2.+0.j ])
|
343 |
+
|
344 |
+
"""
|
345 |
+
x = _fix_real_lt_zero(x)
|
346 |
+
return nx.log10(x)
|
347 |
+
|
348 |
+
|
349 |
+
def _logn_dispatcher(n, x):
|
350 |
+
return (n, x,)
|
351 |
+
|
352 |
+
|
353 |
+
@array_function_dispatch(_logn_dispatcher)
|
354 |
+
def logn(n, x):
|
355 |
+
"""
|
356 |
+
Take log base n of x.
|
357 |
+
|
358 |
+
If `x` contains negative inputs, the answer is computed and returned in the
|
359 |
+
complex domain.
|
360 |
+
|
361 |
+
Parameters
|
362 |
+
----------
|
363 |
+
n : array_like
|
364 |
+
The integer base(s) in which the log is taken.
|
365 |
+
x : array_like
|
366 |
+
The value(s) whose log base `n` is (are) required.
|
367 |
+
|
368 |
+
Returns
|
369 |
+
-------
|
370 |
+
out : ndarray or scalar
|
371 |
+
The log base `n` of the `x` value(s). If `x` was a scalar, so is
|
372 |
+
`out`, otherwise an array is returned.
|
373 |
+
|
374 |
+
Examples
|
375 |
+
--------
|
376 |
+
>>> np.set_printoptions(precision=4)
|
377 |
+
|
378 |
+
>>> np.emath.logn(2, [4, 8])
|
379 |
+
array([2., 3.])
|
380 |
+
>>> np.emath.logn(2, [-4, -8, 8])
|
381 |
+
array([2.+4.5324j, 3.+4.5324j, 3.+0.j ])
|
382 |
+
|
383 |
+
"""
|
384 |
+
x = _fix_real_lt_zero(x)
|
385 |
+
n = _fix_real_lt_zero(n)
|
386 |
+
return nx.log(x)/nx.log(n)
|
387 |
+
|
388 |
+
|
389 |
+
@array_function_dispatch(_unary_dispatcher)
|
390 |
+
def log2(x):
|
391 |
+
"""
|
392 |
+
Compute the logarithm base 2 of `x`.
|
393 |
+
|
394 |
+
Return the "principal value" (for a description of this, see
|
395 |
+
`numpy.log2`) of :math:`log_2(x)`. For real `x > 0`, this is
|
396 |
+
a real number (``log2(0)`` returns ``-inf`` and ``log2(np.inf)`` returns
|
397 |
+
``inf``). Otherwise, the complex principle value is returned.
|
398 |
+
|
399 |
+
Parameters
|
400 |
+
----------
|
401 |
+
x : array_like
|
402 |
+
The value(s) whose log base 2 is (are) required.
|
403 |
+
|
404 |
+
Returns
|
405 |
+
-------
|
406 |
+
out : ndarray or scalar
|
407 |
+
The log base 2 of the `x` value(s). If `x` was a scalar, so is `out`,
|
408 |
+
otherwise an array is returned.
|
409 |
+
|
410 |
+
See Also
|
411 |
+
--------
|
412 |
+
numpy.log2
|
413 |
+
|
414 |
+
Notes
|
415 |
+
-----
|
416 |
+
For a log2() that returns ``NAN`` when real `x < 0`, use `numpy.log2`
|
417 |
+
(note, however, that otherwise `numpy.log2` and this `log2` are
|
418 |
+
identical, i.e., both return ``-inf`` for `x = 0`, ``inf`` for `x = inf`,
|
419 |
+
and, notably, the complex principle value if ``x.imag != 0``).
|
420 |
+
|
421 |
+
Examples
|
422 |
+
--------
|
423 |
+
We set the printing precision so the example can be auto-tested:
|
424 |
+
|
425 |
+
>>> np.set_printoptions(precision=4)
|
426 |
+
|
427 |
+
>>> np.emath.log2(8)
|
428 |
+
3.0
|
429 |
+
>>> np.emath.log2([-4, -8, 8])
|
430 |
+
array([2.+4.5324j, 3.+4.5324j, 3.+0.j ])
|
431 |
+
|
432 |
+
"""
|
433 |
+
x = _fix_real_lt_zero(x)
|
434 |
+
return nx.log2(x)
|
435 |
+
|
436 |
+
|
437 |
+
def _power_dispatcher(x, p):
|
438 |
+
return (x, p)
|
439 |
+
|
440 |
+
|
441 |
+
@array_function_dispatch(_power_dispatcher)
|
442 |
+
def power(x, p):
|
443 |
+
"""
|
444 |
+
Return x to the power p, (x**p).
|
445 |
+
|
446 |
+
If `x` contains negative values, the output is converted to the
|
447 |
+
complex domain.
|
448 |
+
|
449 |
+
Parameters
|
450 |
+
----------
|
451 |
+
x : array_like
|
452 |
+
The input value(s).
|
453 |
+
p : array_like of ints
|
454 |
+
The power(s) to which `x` is raised. If `x` contains multiple values,
|
455 |
+
`p` has to either be a scalar, or contain the same number of values
|
456 |
+
as `x`. In the latter case, the result is
|
457 |
+
``x[0]**p[0], x[1]**p[1], ...``.
|
458 |
+
|
459 |
+
Returns
|
460 |
+
-------
|
461 |
+
out : ndarray or scalar
|
462 |
+
The result of ``x**p``. If `x` and `p` are scalars, so is `out`,
|
463 |
+
otherwise an array is returned.
|
464 |
+
|
465 |
+
See Also
|
466 |
+
--------
|
467 |
+
numpy.power
|
468 |
+
|
469 |
+
Examples
|
470 |
+
--------
|
471 |
+
>>> np.set_printoptions(precision=4)
|
472 |
+
|
473 |
+
>>> np.emath.power([2, 4], 2)
|
474 |
+
array([ 4, 16])
|
475 |
+
>>> np.emath.power([2, 4], -2)
|
476 |
+
array([0.25 , 0.0625])
|
477 |
+
>>> np.emath.power([-2, 4], 2)
|
478 |
+
array([ 4.-0.j, 16.+0.j])
|
479 |
+
|
480 |
+
"""
|
481 |
+
x = _fix_real_lt_zero(x)
|
482 |
+
p = _fix_int_lt_zero(p)
|
483 |
+
return nx.power(x, p)
|
484 |
+
|
485 |
+
|
486 |
+
@array_function_dispatch(_unary_dispatcher)
|
487 |
+
def arccos(x):
|
488 |
+
"""
|
489 |
+
Compute the inverse cosine of x.
|
490 |
+
|
491 |
+
Return the "principal value" (for a description of this, see
|
492 |
+
`numpy.arccos`) of the inverse cosine of `x`. For real `x` such that
|
493 |
+
`abs(x) <= 1`, this is a real number in the closed interval
|
494 |
+
:math:`[0, \\pi]`. Otherwise, the complex principle value is returned.
|
495 |
+
|
496 |
+
Parameters
|
497 |
+
----------
|
498 |
+
x : array_like or scalar
|
499 |
+
The value(s) whose arccos is (are) required.
|
500 |
+
|
501 |
+
Returns
|
502 |
+
-------
|
503 |
+
out : ndarray or scalar
|
504 |
+
The inverse cosine(s) of the `x` value(s). If `x` was a scalar, so
|
505 |
+
is `out`, otherwise an array object is returned.
|
506 |
+
|
507 |
+
See Also
|
508 |
+
--------
|
509 |
+
numpy.arccos
|
510 |
+
|
511 |
+
Notes
|
512 |
+
-----
|
513 |
+
For an arccos() that returns ``NAN`` when real `x` is not in the
|
514 |
+
interval ``[-1,1]``, use `numpy.arccos`.
|
515 |
+
|
516 |
+
Examples
|
517 |
+
--------
|
518 |
+
>>> np.set_printoptions(precision=4)
|
519 |
+
|
520 |
+
>>> np.emath.arccos(1) # a scalar is returned
|
521 |
+
0.0
|
522 |
+
|
523 |
+
>>> np.emath.arccos([1,2])
|
524 |
+
array([0.-0.j , 0.-1.317j])
|
525 |
+
|
526 |
+
"""
|
527 |
+
x = _fix_real_abs_gt_1(x)
|
528 |
+
return nx.arccos(x)
|
529 |
+
|
530 |
+
|
531 |
+
@array_function_dispatch(_unary_dispatcher)
|
532 |
+
def arcsin(x):
|
533 |
+
"""
|
534 |
+
Compute the inverse sine of x.
|
535 |
+
|
536 |
+
Return the "principal value" (for a description of this, see
|
537 |
+
`numpy.arcsin`) of the inverse sine of `x`. For real `x` such that
|
538 |
+
`abs(x) <= 1`, this is a real number in the closed interval
|
539 |
+
:math:`[-\\pi/2, \\pi/2]`. Otherwise, the complex principle value is
|
540 |
+
returned.
|
541 |
+
|
542 |
+
Parameters
|
543 |
+
----------
|
544 |
+
x : array_like or scalar
|
545 |
+
The value(s) whose arcsin is (are) required.
|
546 |
+
|
547 |
+
Returns
|
548 |
+
-------
|
549 |
+
out : ndarray or scalar
|
550 |
+
The inverse sine(s) of the `x` value(s). If `x` was a scalar, so
|
551 |
+
is `out`, otherwise an array object is returned.
|
552 |
+
|
553 |
+
See Also
|
554 |
+
--------
|
555 |
+
numpy.arcsin
|
556 |
+
|
557 |
+
Notes
|
558 |
+
-----
|
559 |
+
For an arcsin() that returns ``NAN`` when real `x` is not in the
|
560 |
+
interval ``[-1,1]``, use `numpy.arcsin`.
|
561 |
+
|
562 |
+
Examples
|
563 |
+
--------
|
564 |
+
>>> np.set_printoptions(precision=4)
|
565 |
+
|
566 |
+
>>> np.emath.arcsin(0)
|
567 |
+
0.0
|
568 |
+
|
569 |
+
>>> np.emath.arcsin([0,1])
|
570 |
+
array([0. , 1.5708])
|
571 |
+
|
572 |
+
"""
|
573 |
+
x = _fix_real_abs_gt_1(x)
|
574 |
+
return nx.arcsin(x)
|
575 |
+
|
576 |
+
|
577 |
+
@array_function_dispatch(_unary_dispatcher)
|
578 |
+
def arctanh(x):
|
579 |
+
"""
|
580 |
+
Compute the inverse hyperbolic tangent of `x`.
|
581 |
+
|
582 |
+
Return the "principal value" (for a description of this, see
|
583 |
+
`numpy.arctanh`) of ``arctanh(x)``. For real `x` such that
|
584 |
+
``abs(x) < 1``, this is a real number. If `abs(x) > 1`, or if `x` is
|
585 |
+
complex, the result is complex. Finally, `x = 1` returns``inf`` and
|
586 |
+
``x=-1`` returns ``-inf``.
|
587 |
+
|
588 |
+
Parameters
|
589 |
+
----------
|
590 |
+
x : array_like
|
591 |
+
The value(s) whose arctanh is (are) required.
|
592 |
+
|
593 |
+
Returns
|
594 |
+
-------
|
595 |
+
out : ndarray or scalar
|
596 |
+
The inverse hyperbolic tangent(s) of the `x` value(s). If `x` was
|
597 |
+
a scalar so is `out`, otherwise an array is returned.
|
598 |
+
|
599 |
+
|
600 |
+
See Also
|
601 |
+
--------
|
602 |
+
numpy.arctanh
|
603 |
+
|
604 |
+
Notes
|
605 |
+
-----
|
606 |
+
For an arctanh() that returns ``NAN`` when real `x` is not in the
|
607 |
+
interval ``(-1,1)``, use `numpy.arctanh` (this latter, however, does
|
608 |
+
return +/-inf for ``x = +/-1``).
|
609 |
+
|
610 |
+
Examples
|
611 |
+
--------
|
612 |
+
>>> np.set_printoptions(precision=4)
|
613 |
+
|
614 |
+
>>> from numpy.testing import suppress_warnings
|
615 |
+
>>> with suppress_warnings() as sup:
|
616 |
+
... sup.filter(RuntimeWarning)
|
617 |
+
... np.emath.arctanh(np.eye(2))
|
618 |
+
array([[inf, 0.],
|
619 |
+
[ 0., inf]])
|
620 |
+
>>> np.emath.arctanh([1j])
|
621 |
+
array([0.+0.7854j])
|
622 |
+
|
623 |
+
"""
|
624 |
+
x = _fix_real_abs_gt_1(x)
|
625 |
+
return nx.arctanh(x)
|
env-llmeval/lib/python3.10/site-packages/numpy/lib/scimath.pyi
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import overload, Any
|
2 |
+
|
3 |
+
from numpy import complexfloating
|
4 |
+
|
5 |
+
from numpy._typing import (
|
6 |
+
NDArray,
|
7 |
+
_ArrayLikeFloat_co,
|
8 |
+
_ArrayLikeComplex_co,
|
9 |
+
_ComplexLike_co,
|
10 |
+
_FloatLike_co,
|
11 |
+
)
|
12 |
+
|
13 |
+
__all__: list[str]
|
14 |
+
|
15 |
+
@overload
|
16 |
+
def sqrt(x: _FloatLike_co) -> Any: ...
|
17 |
+
@overload
|
18 |
+
def sqrt(x: _ComplexLike_co) -> complexfloating[Any, Any]: ...
|
19 |
+
@overload
|
20 |
+
def sqrt(x: _ArrayLikeFloat_co) -> NDArray[Any]: ...
|
21 |
+
@overload
|
22 |
+
def sqrt(x: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ...
|
23 |
+
|
24 |
+
@overload
|
25 |
+
def log(x: _FloatLike_co) -> Any: ...
|
26 |
+
@overload
|
27 |
+
def log(x: _ComplexLike_co) -> complexfloating[Any, Any]: ...
|
28 |
+
@overload
|
29 |
+
def log(x: _ArrayLikeFloat_co) -> NDArray[Any]: ...
|
30 |
+
@overload
|
31 |
+
def log(x: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ...
|
32 |
+
|
33 |
+
@overload
|
34 |
+
def log10(x: _FloatLike_co) -> Any: ...
|
35 |
+
@overload
|
36 |
+
def log10(x: _ComplexLike_co) -> complexfloating[Any, Any]: ...
|
37 |
+
@overload
|
38 |
+
def log10(x: _ArrayLikeFloat_co) -> NDArray[Any]: ...
|
39 |
+
@overload
|
40 |
+
def log10(x: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ...
|
41 |
+
|
42 |
+
@overload
|
43 |
+
def log2(x: _FloatLike_co) -> Any: ...
|
44 |
+
@overload
|
45 |
+
def log2(x: _ComplexLike_co) -> complexfloating[Any, Any]: ...
|
46 |
+
@overload
|
47 |
+
def log2(x: _ArrayLikeFloat_co) -> NDArray[Any]: ...
|
48 |
+
@overload
|
49 |
+
def log2(x: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ...
|
50 |
+
|
51 |
+
@overload
|
52 |
+
def logn(n: _FloatLike_co, x: _FloatLike_co) -> Any: ...
|
53 |
+
@overload
|
54 |
+
def logn(n: _ComplexLike_co, x: _ComplexLike_co) -> complexfloating[Any, Any]: ...
|
55 |
+
@overload
|
56 |
+
def logn(n: _ArrayLikeFloat_co, x: _ArrayLikeFloat_co) -> NDArray[Any]: ...
|
57 |
+
@overload
|
58 |
+
def logn(n: _ArrayLikeComplex_co, x: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ...
|
59 |
+
|
60 |
+
@overload
|
61 |
+
def power(x: _FloatLike_co, p: _FloatLike_co) -> Any: ...
|
62 |
+
@overload
|
63 |
+
def power(x: _ComplexLike_co, p: _ComplexLike_co) -> complexfloating[Any, Any]: ...
|
64 |
+
@overload
|
65 |
+
def power(x: _ArrayLikeFloat_co, p: _ArrayLikeFloat_co) -> NDArray[Any]: ...
|
66 |
+
@overload
|
67 |
+
def power(x: _ArrayLikeComplex_co, p: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ...
|
68 |
+
|
69 |
+
@overload
|
70 |
+
def arccos(x: _FloatLike_co) -> Any: ...
|
71 |
+
@overload
|
72 |
+
def arccos(x: _ComplexLike_co) -> complexfloating[Any, Any]: ...
|
73 |
+
@overload
|
74 |
+
def arccos(x: _ArrayLikeFloat_co) -> NDArray[Any]: ...
|
75 |
+
@overload
|
76 |
+
def arccos(x: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ...
|
77 |
+
|
78 |
+
@overload
|
79 |
+
def arcsin(x: _FloatLike_co) -> Any: ...
|
80 |
+
@overload
|
81 |
+
def arcsin(x: _ComplexLike_co) -> complexfloating[Any, Any]: ...
|
82 |
+
@overload
|
83 |
+
def arcsin(x: _ArrayLikeFloat_co) -> NDArray[Any]: ...
|
84 |
+
@overload
|
85 |
+
def arcsin(x: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ...
|
86 |
+
|
87 |
+
@overload
|
88 |
+
def arctanh(x: _FloatLike_co) -> Any: ...
|
89 |
+
@overload
|
90 |
+
def arctanh(x: _ComplexLike_co) -> complexfloating[Any, Any]: ...
|
91 |
+
@overload
|
92 |
+
def arctanh(x: _ArrayLikeFloat_co) -> NDArray[Any]: ...
|
93 |
+
@overload
|
94 |
+
def arctanh(x: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ...
|
env-llmeval/lib/python3.10/site-packages/numpy/lib/shape_base.py
ADDED
@@ -0,0 +1,1274 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import functools
|
2 |
+
|
3 |
+
import numpy.core.numeric as _nx
|
4 |
+
from numpy.core.numeric import asarray, zeros, array, asanyarray
|
5 |
+
from numpy.core.fromnumeric import reshape, transpose
|
6 |
+
from numpy.core.multiarray import normalize_axis_index
|
7 |
+
from numpy.core import overrides
|
8 |
+
from numpy.core import vstack, atleast_3d
|
9 |
+
from numpy.core.numeric import normalize_axis_tuple
|
10 |
+
from numpy.core.shape_base import _arrays_for_stack_dispatcher
|
11 |
+
from numpy.lib.index_tricks import ndindex
|
12 |
+
from numpy.matrixlib.defmatrix import matrix # this raises all the right alarm bells
|
13 |
+
|
14 |
+
|
15 |
+
__all__ = [
|
16 |
+
'column_stack', 'row_stack', 'dstack', 'array_split', 'split',
|
17 |
+
'hsplit', 'vsplit', 'dsplit', 'apply_over_axes', 'expand_dims',
|
18 |
+
'apply_along_axis', 'kron', 'tile', 'get_array_wrap', 'take_along_axis',
|
19 |
+
'put_along_axis'
|
20 |
+
]
|
21 |
+
|
22 |
+
|
23 |
+
array_function_dispatch = functools.partial(
|
24 |
+
overrides.array_function_dispatch, module='numpy')
|
25 |
+
|
26 |
+
|
27 |
+
def _make_along_axis_idx(arr_shape, indices, axis):
|
28 |
+
# compute dimensions to iterate over
|
29 |
+
if not _nx.issubdtype(indices.dtype, _nx.integer):
|
30 |
+
raise IndexError('`indices` must be an integer array')
|
31 |
+
if len(arr_shape) != indices.ndim:
|
32 |
+
raise ValueError(
|
33 |
+
"`indices` and `arr` must have the same number of dimensions")
|
34 |
+
shape_ones = (1,) * indices.ndim
|
35 |
+
dest_dims = list(range(axis)) + [None] + list(range(axis+1, indices.ndim))
|
36 |
+
|
37 |
+
# build a fancy index, consisting of orthogonal aranges, with the
|
38 |
+
# requested index inserted at the right location
|
39 |
+
fancy_index = []
|
40 |
+
for dim, n in zip(dest_dims, arr_shape):
|
41 |
+
if dim is None:
|
42 |
+
fancy_index.append(indices)
|
43 |
+
else:
|
44 |
+
ind_shape = shape_ones[:dim] + (-1,) + shape_ones[dim+1:]
|
45 |
+
fancy_index.append(_nx.arange(n).reshape(ind_shape))
|
46 |
+
|
47 |
+
return tuple(fancy_index)
|
48 |
+
|
49 |
+
|
50 |
+
def _take_along_axis_dispatcher(arr, indices, axis):
|
51 |
+
return (arr, indices)
|
52 |
+
|
53 |
+
|
54 |
+
@array_function_dispatch(_take_along_axis_dispatcher)
|
55 |
+
def take_along_axis(arr, indices, axis):
|
56 |
+
"""
|
57 |
+
Take values from the input array by matching 1d index and data slices.
|
58 |
+
|
59 |
+
This iterates over matching 1d slices oriented along the specified axis in
|
60 |
+
the index and data arrays, and uses the former to look up values in the
|
61 |
+
latter. These slices can be different lengths.
|
62 |
+
|
63 |
+
Functions returning an index along an axis, like `argsort` and
|
64 |
+
`argpartition`, produce suitable indices for this function.
|
65 |
+
|
66 |
+
.. versionadded:: 1.15.0
|
67 |
+
|
68 |
+
Parameters
|
69 |
+
----------
|
70 |
+
arr : ndarray (Ni..., M, Nk...)
|
71 |
+
Source array
|
72 |
+
indices : ndarray (Ni..., J, Nk...)
|
73 |
+
Indices to take along each 1d slice of `arr`. This must match the
|
74 |
+
dimension of arr, but dimensions Ni and Nj only need to broadcast
|
75 |
+
against `arr`.
|
76 |
+
axis : int
|
77 |
+
The axis to take 1d slices along. If axis is None, the input array is
|
78 |
+
treated as if it had first been flattened to 1d, for consistency with
|
79 |
+
`sort` and `argsort`.
|
80 |
+
|
81 |
+
Returns
|
82 |
+
-------
|
83 |
+
out: ndarray (Ni..., J, Nk...)
|
84 |
+
The indexed result.
|
85 |
+
|
86 |
+
Notes
|
87 |
+
-----
|
88 |
+
This is equivalent to (but faster than) the following use of `ndindex` and
|
89 |
+
`s_`, which sets each of ``ii`` and ``kk`` to a tuple of indices::
|
90 |
+
|
91 |
+
Ni, M, Nk = a.shape[:axis], a.shape[axis], a.shape[axis+1:]
|
92 |
+
J = indices.shape[axis] # Need not equal M
|
93 |
+
out = np.empty(Ni + (J,) + Nk)
|
94 |
+
|
95 |
+
for ii in ndindex(Ni):
|
96 |
+
for kk in ndindex(Nk):
|
97 |
+
a_1d = a [ii + s_[:,] + kk]
|
98 |
+
indices_1d = indices[ii + s_[:,] + kk]
|
99 |
+
out_1d = out [ii + s_[:,] + kk]
|
100 |
+
for j in range(J):
|
101 |
+
out_1d[j] = a_1d[indices_1d[j]]
|
102 |
+
|
103 |
+
Equivalently, eliminating the inner loop, the last two lines would be::
|
104 |
+
|
105 |
+
out_1d[:] = a_1d[indices_1d]
|
106 |
+
|
107 |
+
See Also
|
108 |
+
--------
|
109 |
+
take : Take along an axis, using the same indices for every 1d slice
|
110 |
+
put_along_axis :
|
111 |
+
Put values into the destination array by matching 1d index and data slices
|
112 |
+
|
113 |
+
Examples
|
114 |
+
--------
|
115 |
+
|
116 |
+
For this sample array
|
117 |
+
|
118 |
+
>>> a = np.array([[10, 30, 20], [60, 40, 50]])
|
119 |
+
|
120 |
+
We can sort either by using sort directly, or argsort and this function
|
121 |
+
|
122 |
+
>>> np.sort(a, axis=1)
|
123 |
+
array([[10, 20, 30],
|
124 |
+
[40, 50, 60]])
|
125 |
+
>>> ai = np.argsort(a, axis=1)
|
126 |
+
>>> ai
|
127 |
+
array([[0, 2, 1],
|
128 |
+
[1, 2, 0]])
|
129 |
+
>>> np.take_along_axis(a, ai, axis=1)
|
130 |
+
array([[10, 20, 30],
|
131 |
+
[40, 50, 60]])
|
132 |
+
|
133 |
+
The same works for max and min, if you maintain the trivial dimension
|
134 |
+
with ``keepdims``:
|
135 |
+
|
136 |
+
>>> np.max(a, axis=1, keepdims=True)
|
137 |
+
array([[30],
|
138 |
+
[60]])
|
139 |
+
>>> ai = np.argmax(a, axis=1, keepdims=True)
|
140 |
+
>>> ai
|
141 |
+
array([[1],
|
142 |
+
[0]])
|
143 |
+
>>> np.take_along_axis(a, ai, axis=1)
|
144 |
+
array([[30],
|
145 |
+
[60]])
|
146 |
+
|
147 |
+
If we want to get the max and min at the same time, we can stack the
|
148 |
+
indices first
|
149 |
+
|
150 |
+
>>> ai_min = np.argmin(a, axis=1, keepdims=True)
|
151 |
+
>>> ai_max = np.argmax(a, axis=1, keepdims=True)
|
152 |
+
>>> ai = np.concatenate([ai_min, ai_max], axis=1)
|
153 |
+
>>> ai
|
154 |
+
array([[0, 1],
|
155 |
+
[1, 0]])
|
156 |
+
>>> np.take_along_axis(a, ai, axis=1)
|
157 |
+
array([[10, 30],
|
158 |
+
[40, 60]])
|
159 |
+
"""
|
160 |
+
# normalize inputs
|
161 |
+
if axis is None:
|
162 |
+
arr = arr.flat
|
163 |
+
arr_shape = (len(arr),) # flatiter has no .shape
|
164 |
+
axis = 0
|
165 |
+
else:
|
166 |
+
axis = normalize_axis_index(axis, arr.ndim)
|
167 |
+
arr_shape = arr.shape
|
168 |
+
|
169 |
+
# use the fancy index
|
170 |
+
return arr[_make_along_axis_idx(arr_shape, indices, axis)]
|
171 |
+
|
172 |
+
|
173 |
+
def _put_along_axis_dispatcher(arr, indices, values, axis):
|
174 |
+
return (arr, indices, values)
|
175 |
+
|
176 |
+
|
177 |
+
@array_function_dispatch(_put_along_axis_dispatcher)
|
178 |
+
def put_along_axis(arr, indices, values, axis):
|
179 |
+
"""
|
180 |
+
Put values into the destination array by matching 1d index and data slices.
|
181 |
+
|
182 |
+
This iterates over matching 1d slices oriented along the specified axis in
|
183 |
+
the index and data arrays, and uses the former to place values into the
|
184 |
+
latter. These slices can be different lengths.
|
185 |
+
|
186 |
+
Functions returning an index along an axis, like `argsort` and
|
187 |
+
`argpartition`, produce suitable indices for this function.
|
188 |
+
|
189 |
+
.. versionadded:: 1.15.0
|
190 |
+
|
191 |
+
Parameters
|
192 |
+
----------
|
193 |
+
arr : ndarray (Ni..., M, Nk...)
|
194 |
+
Destination array.
|
195 |
+
indices : ndarray (Ni..., J, Nk...)
|
196 |
+
Indices to change along each 1d slice of `arr`. This must match the
|
197 |
+
dimension of arr, but dimensions in Ni and Nj may be 1 to broadcast
|
198 |
+
against `arr`.
|
199 |
+
values : array_like (Ni..., J, Nk...)
|
200 |
+
values to insert at those indices. Its shape and dimension are
|
201 |
+
broadcast to match that of `indices`.
|
202 |
+
axis : int
|
203 |
+
The axis to take 1d slices along. If axis is None, the destination
|
204 |
+
array is treated as if a flattened 1d view had been created of it.
|
205 |
+
|
206 |
+
Notes
|
207 |
+
-----
|
208 |
+
This is equivalent to (but faster than) the following use of `ndindex` and
|
209 |
+
`s_`, which sets each of ``ii`` and ``kk`` to a tuple of indices::
|
210 |
+
|
211 |
+
Ni, M, Nk = a.shape[:axis], a.shape[axis], a.shape[axis+1:]
|
212 |
+
J = indices.shape[axis] # Need not equal M
|
213 |
+
|
214 |
+
for ii in ndindex(Ni):
|
215 |
+
for kk in ndindex(Nk):
|
216 |
+
a_1d = a [ii + s_[:,] + kk]
|
217 |
+
indices_1d = indices[ii + s_[:,] + kk]
|
218 |
+
values_1d = values [ii + s_[:,] + kk]
|
219 |
+
for j in range(J):
|
220 |
+
a_1d[indices_1d[j]] = values_1d[j]
|
221 |
+
|
222 |
+
Equivalently, eliminating the inner loop, the last two lines would be::
|
223 |
+
|
224 |
+
a_1d[indices_1d] = values_1d
|
225 |
+
|
226 |
+
See Also
|
227 |
+
--------
|
228 |
+
take_along_axis :
|
229 |
+
Take values from the input array by matching 1d index and data slices
|
230 |
+
|
231 |
+
Examples
|
232 |
+
--------
|
233 |
+
|
234 |
+
For this sample array
|
235 |
+
|
236 |
+
>>> a = np.array([[10, 30, 20], [60, 40, 50]])
|
237 |
+
|
238 |
+
We can replace the maximum values with:
|
239 |
+
|
240 |
+
>>> ai = np.argmax(a, axis=1, keepdims=True)
|
241 |
+
>>> ai
|
242 |
+
array([[1],
|
243 |
+
[0]])
|
244 |
+
>>> np.put_along_axis(a, ai, 99, axis=1)
|
245 |
+
>>> a
|
246 |
+
array([[10, 99, 20],
|
247 |
+
[99, 40, 50]])
|
248 |
+
|
249 |
+
"""
|
250 |
+
# normalize inputs
|
251 |
+
if axis is None:
|
252 |
+
arr = arr.flat
|
253 |
+
axis = 0
|
254 |
+
arr_shape = (len(arr),) # flatiter has no .shape
|
255 |
+
else:
|
256 |
+
axis = normalize_axis_index(axis, arr.ndim)
|
257 |
+
arr_shape = arr.shape
|
258 |
+
|
259 |
+
# use the fancy index
|
260 |
+
arr[_make_along_axis_idx(arr_shape, indices, axis)] = values
|
261 |
+
|
262 |
+
|
263 |
+
def _apply_along_axis_dispatcher(func1d, axis, arr, *args, **kwargs):
|
264 |
+
return (arr,)
|
265 |
+
|
266 |
+
|
267 |
+
@array_function_dispatch(_apply_along_axis_dispatcher)
|
268 |
+
def apply_along_axis(func1d, axis, arr, *args, **kwargs):
|
269 |
+
"""
|
270 |
+
Apply a function to 1-D slices along the given axis.
|
271 |
+
|
272 |
+
Execute `func1d(a, *args, **kwargs)` where `func1d` operates on 1-D arrays
|
273 |
+
and `a` is a 1-D slice of `arr` along `axis`.
|
274 |
+
|
275 |
+
This is equivalent to (but faster than) the following use of `ndindex` and
|
276 |
+
`s_`, which sets each of ``ii``, ``jj``, and ``kk`` to a tuple of indices::
|
277 |
+
|
278 |
+
Ni, Nk = a.shape[:axis], a.shape[axis+1:]
|
279 |
+
for ii in ndindex(Ni):
|
280 |
+
for kk in ndindex(Nk):
|
281 |
+
f = func1d(arr[ii + s_[:,] + kk])
|
282 |
+
Nj = f.shape
|
283 |
+
for jj in ndindex(Nj):
|
284 |
+
out[ii + jj + kk] = f[jj]
|
285 |
+
|
286 |
+
Equivalently, eliminating the inner loop, this can be expressed as::
|
287 |
+
|
288 |
+
Ni, Nk = a.shape[:axis], a.shape[axis+1:]
|
289 |
+
for ii in ndindex(Ni):
|
290 |
+
for kk in ndindex(Nk):
|
291 |
+
out[ii + s_[...,] + kk] = func1d(arr[ii + s_[:,] + kk])
|
292 |
+
|
293 |
+
Parameters
|
294 |
+
----------
|
295 |
+
func1d : function (M,) -> (Nj...)
|
296 |
+
This function should accept 1-D arrays. It is applied to 1-D
|
297 |
+
slices of `arr` along the specified axis.
|
298 |
+
axis : integer
|
299 |
+
Axis along which `arr` is sliced.
|
300 |
+
arr : ndarray (Ni..., M, Nk...)
|
301 |
+
Input array.
|
302 |
+
args : any
|
303 |
+
Additional arguments to `func1d`.
|
304 |
+
kwargs : any
|
305 |
+
Additional named arguments to `func1d`.
|
306 |
+
|
307 |
+
.. versionadded:: 1.9.0
|
308 |
+
|
309 |
+
|
310 |
+
Returns
|
311 |
+
-------
|
312 |
+
out : ndarray (Ni..., Nj..., Nk...)
|
313 |
+
The output array. The shape of `out` is identical to the shape of
|
314 |
+
`arr`, except along the `axis` dimension. This axis is removed, and
|
315 |
+
replaced with new dimensions equal to the shape of the return value
|
316 |
+
of `func1d`. So if `func1d` returns a scalar `out` will have one
|
317 |
+
fewer dimensions than `arr`.
|
318 |
+
|
319 |
+
See Also
|
320 |
+
--------
|
321 |
+
apply_over_axes : Apply a function repeatedly over multiple axes.
|
322 |
+
|
323 |
+
Examples
|
324 |
+
--------
|
325 |
+
>>> def my_func(a):
|
326 |
+
... \"\"\"Average first and last element of a 1-D array\"\"\"
|
327 |
+
... return (a[0] + a[-1]) * 0.5
|
328 |
+
>>> b = np.array([[1,2,3], [4,5,6], [7,8,9]])
|
329 |
+
>>> np.apply_along_axis(my_func, 0, b)
|
330 |
+
array([4., 5., 6.])
|
331 |
+
>>> np.apply_along_axis(my_func, 1, b)
|
332 |
+
array([2., 5., 8.])
|
333 |
+
|
334 |
+
For a function that returns a 1D array, the number of dimensions in
|
335 |
+
`outarr` is the same as `arr`.
|
336 |
+
|
337 |
+
>>> b = np.array([[8,1,7], [4,3,9], [5,2,6]])
|
338 |
+
>>> np.apply_along_axis(sorted, 1, b)
|
339 |
+
array([[1, 7, 8],
|
340 |
+
[3, 4, 9],
|
341 |
+
[2, 5, 6]])
|
342 |
+
|
343 |
+
For a function that returns a higher dimensional array, those dimensions
|
344 |
+
are inserted in place of the `axis` dimension.
|
345 |
+
|
346 |
+
>>> b = np.array([[1,2,3], [4,5,6], [7,8,9]])
|
347 |
+
>>> np.apply_along_axis(np.diag, -1, b)
|
348 |
+
array([[[1, 0, 0],
|
349 |
+
[0, 2, 0],
|
350 |
+
[0, 0, 3]],
|
351 |
+
[[4, 0, 0],
|
352 |
+
[0, 5, 0],
|
353 |
+
[0, 0, 6]],
|
354 |
+
[[7, 0, 0],
|
355 |
+
[0, 8, 0],
|
356 |
+
[0, 0, 9]]])
|
357 |
+
"""
|
358 |
+
# handle negative axes
|
359 |
+
arr = asanyarray(arr)
|
360 |
+
nd = arr.ndim
|
361 |
+
axis = normalize_axis_index(axis, nd)
|
362 |
+
|
363 |
+
# arr, with the iteration axis at the end
|
364 |
+
in_dims = list(range(nd))
|
365 |
+
inarr_view = transpose(arr, in_dims[:axis] + in_dims[axis+1:] + [axis])
|
366 |
+
|
367 |
+
# compute indices for the iteration axes, and append a trailing ellipsis to
|
368 |
+
# prevent 0d arrays decaying to scalars, which fixes gh-8642
|
369 |
+
inds = ndindex(inarr_view.shape[:-1])
|
370 |
+
inds = (ind + (Ellipsis,) for ind in inds)
|
371 |
+
|
372 |
+
# invoke the function on the first item
|
373 |
+
try:
|
374 |
+
ind0 = next(inds)
|
375 |
+
except StopIteration:
|
376 |
+
raise ValueError(
|
377 |
+
'Cannot apply_along_axis when any iteration dimensions are 0'
|
378 |
+
) from None
|
379 |
+
res = asanyarray(func1d(inarr_view[ind0], *args, **kwargs))
|
380 |
+
|
381 |
+
# build a buffer for storing evaluations of func1d.
|
382 |
+
# remove the requested axis, and add the new ones on the end.
|
383 |
+
# laid out so that each write is contiguous.
|
384 |
+
# for a tuple index inds, buff[inds] = func1d(inarr_view[inds])
|
385 |
+
buff = zeros(inarr_view.shape[:-1] + res.shape, res.dtype)
|
386 |
+
|
387 |
+
# permutation of axes such that out = buff.transpose(buff_permute)
|
388 |
+
buff_dims = list(range(buff.ndim))
|
389 |
+
buff_permute = (
|
390 |
+
buff_dims[0 : axis] +
|
391 |
+
buff_dims[buff.ndim-res.ndim : buff.ndim] +
|
392 |
+
buff_dims[axis : buff.ndim-res.ndim]
|
393 |
+
)
|
394 |
+
|
395 |
+
# matrices have a nasty __array_prepare__ and __array_wrap__
|
396 |
+
if not isinstance(res, matrix):
|
397 |
+
buff = res.__array_prepare__(buff)
|
398 |
+
|
399 |
+
# save the first result, then compute and save all remaining results
|
400 |
+
buff[ind0] = res
|
401 |
+
for ind in inds:
|
402 |
+
buff[ind] = asanyarray(func1d(inarr_view[ind], *args, **kwargs))
|
403 |
+
|
404 |
+
if not isinstance(res, matrix):
|
405 |
+
# wrap the array, to preserve subclasses
|
406 |
+
buff = res.__array_wrap__(buff)
|
407 |
+
|
408 |
+
# finally, rotate the inserted axes back to where they belong
|
409 |
+
return transpose(buff, buff_permute)
|
410 |
+
|
411 |
+
else:
|
412 |
+
# matrices have to be transposed first, because they collapse dimensions!
|
413 |
+
out_arr = transpose(buff, buff_permute)
|
414 |
+
return res.__array_wrap__(out_arr)
|
415 |
+
|
416 |
+
|
417 |
+
def _apply_over_axes_dispatcher(func, a, axes):
|
418 |
+
return (a,)
|
419 |
+
|
420 |
+
|
421 |
+
@array_function_dispatch(_apply_over_axes_dispatcher)
|
422 |
+
def apply_over_axes(func, a, axes):
|
423 |
+
"""
|
424 |
+
Apply a function repeatedly over multiple axes.
|
425 |
+
|
426 |
+
`func` is called as `res = func(a, axis)`, where `axis` is the first
|
427 |
+
element of `axes`. The result `res` of the function call must have
|
428 |
+
either the same dimensions as `a` or one less dimension. If `res`
|
429 |
+
has one less dimension than `a`, a dimension is inserted before
|
430 |
+
`axis`. The call to `func` is then repeated for each axis in `axes`,
|
431 |
+
with `res` as the first argument.
|
432 |
+
|
433 |
+
Parameters
|
434 |
+
----------
|
435 |
+
func : function
|
436 |
+
This function must take two arguments, `func(a, axis)`.
|
437 |
+
a : array_like
|
438 |
+
Input array.
|
439 |
+
axes : array_like
|
440 |
+
Axes over which `func` is applied; the elements must be integers.
|
441 |
+
|
442 |
+
Returns
|
443 |
+
-------
|
444 |
+
apply_over_axis : ndarray
|
445 |
+
The output array. The number of dimensions is the same as `a`,
|
446 |
+
but the shape can be different. This depends on whether `func`
|
447 |
+
changes the shape of its output with respect to its input.
|
448 |
+
|
449 |
+
See Also
|
450 |
+
--------
|
451 |
+
apply_along_axis :
|
452 |
+
Apply a function to 1-D slices of an array along the given axis.
|
453 |
+
|
454 |
+
Notes
|
455 |
+
-----
|
456 |
+
This function is equivalent to tuple axis arguments to reorderable ufuncs
|
457 |
+
with keepdims=True. Tuple axis arguments to ufuncs have been available since
|
458 |
+
version 1.7.0.
|
459 |
+
|
460 |
+
Examples
|
461 |
+
--------
|
462 |
+
>>> a = np.arange(24).reshape(2,3,4)
|
463 |
+
>>> a
|
464 |
+
array([[[ 0, 1, 2, 3],
|
465 |
+
[ 4, 5, 6, 7],
|
466 |
+
[ 8, 9, 10, 11]],
|
467 |
+
[[12, 13, 14, 15],
|
468 |
+
[16, 17, 18, 19],
|
469 |
+
[20, 21, 22, 23]]])
|
470 |
+
|
471 |
+
Sum over axes 0 and 2. The result has same number of dimensions
|
472 |
+
as the original array:
|
473 |
+
|
474 |
+
>>> np.apply_over_axes(np.sum, a, [0,2])
|
475 |
+
array([[[ 60],
|
476 |
+
[ 92],
|
477 |
+
[124]]])
|
478 |
+
|
479 |
+
Tuple axis arguments to ufuncs are equivalent:
|
480 |
+
|
481 |
+
>>> np.sum(a, axis=(0,2), keepdims=True)
|
482 |
+
array([[[ 60],
|
483 |
+
[ 92],
|
484 |
+
[124]]])
|
485 |
+
|
486 |
+
"""
|
487 |
+
val = asarray(a)
|
488 |
+
N = a.ndim
|
489 |
+
if array(axes).ndim == 0:
|
490 |
+
axes = (axes,)
|
491 |
+
for axis in axes:
|
492 |
+
if axis < 0:
|
493 |
+
axis = N + axis
|
494 |
+
args = (val, axis)
|
495 |
+
res = func(*args)
|
496 |
+
if res.ndim == val.ndim:
|
497 |
+
val = res
|
498 |
+
else:
|
499 |
+
res = expand_dims(res, axis)
|
500 |
+
if res.ndim == val.ndim:
|
501 |
+
val = res
|
502 |
+
else:
|
503 |
+
raise ValueError("function is not returning "
|
504 |
+
"an array of the correct shape")
|
505 |
+
return val
|
506 |
+
|
507 |
+
|
508 |
+
def _expand_dims_dispatcher(a, axis):
|
509 |
+
return (a,)
|
510 |
+
|
511 |
+
|
512 |
+
@array_function_dispatch(_expand_dims_dispatcher)
|
513 |
+
def expand_dims(a, axis):
|
514 |
+
"""
|
515 |
+
Expand the shape of an array.
|
516 |
+
|
517 |
+
Insert a new axis that will appear at the `axis` position in the expanded
|
518 |
+
array shape.
|
519 |
+
|
520 |
+
Parameters
|
521 |
+
----------
|
522 |
+
a : array_like
|
523 |
+
Input array.
|
524 |
+
axis : int or tuple of ints
|
525 |
+
Position in the expanded axes where the new axis (or axes) is placed.
|
526 |
+
|
527 |
+
.. deprecated:: 1.13.0
|
528 |
+
Passing an axis where ``axis > a.ndim`` will be treated as
|
529 |
+
``axis == a.ndim``, and passing ``axis < -a.ndim - 1`` will
|
530 |
+
be treated as ``axis == 0``. This behavior is deprecated.
|
531 |
+
|
532 |
+
.. versionchanged:: 1.18.0
|
533 |
+
A tuple of axes is now supported. Out of range axes as
|
534 |
+
described above are now forbidden and raise an `AxisError`.
|
535 |
+
|
536 |
+
Returns
|
537 |
+
-------
|
538 |
+
result : ndarray
|
539 |
+
View of `a` with the number of dimensions increased.
|
540 |
+
|
541 |
+
See Also
|
542 |
+
--------
|
543 |
+
squeeze : The inverse operation, removing singleton dimensions
|
544 |
+
reshape : Insert, remove, and combine dimensions, and resize existing ones
|
545 |
+
doc.indexing, atleast_1d, atleast_2d, atleast_3d
|
546 |
+
|
547 |
+
Examples
|
548 |
+
--------
|
549 |
+
>>> x = np.array([1, 2])
|
550 |
+
>>> x.shape
|
551 |
+
(2,)
|
552 |
+
|
553 |
+
The following is equivalent to ``x[np.newaxis, :]`` or ``x[np.newaxis]``:
|
554 |
+
|
555 |
+
>>> y = np.expand_dims(x, axis=0)
|
556 |
+
>>> y
|
557 |
+
array([[1, 2]])
|
558 |
+
>>> y.shape
|
559 |
+
(1, 2)
|
560 |
+
|
561 |
+
The following is equivalent to ``x[:, np.newaxis]``:
|
562 |
+
|
563 |
+
>>> y = np.expand_dims(x, axis=1)
|
564 |
+
>>> y
|
565 |
+
array([[1],
|
566 |
+
[2]])
|
567 |
+
>>> y.shape
|
568 |
+
(2, 1)
|
569 |
+
|
570 |
+
``axis`` may also be a tuple:
|
571 |
+
|
572 |
+
>>> y = np.expand_dims(x, axis=(0, 1))
|
573 |
+
>>> y
|
574 |
+
array([[[1, 2]]])
|
575 |
+
|
576 |
+
>>> y = np.expand_dims(x, axis=(2, 0))
|
577 |
+
>>> y
|
578 |
+
array([[[1],
|
579 |
+
[2]]])
|
580 |
+
|
581 |
+
Note that some examples may use ``None`` instead of ``np.newaxis``. These
|
582 |
+
are the same objects:
|
583 |
+
|
584 |
+
>>> np.newaxis is None
|
585 |
+
True
|
586 |
+
|
587 |
+
"""
|
588 |
+
if isinstance(a, matrix):
|
589 |
+
a = asarray(a)
|
590 |
+
else:
|
591 |
+
a = asanyarray(a)
|
592 |
+
|
593 |
+
if type(axis) not in (tuple, list):
|
594 |
+
axis = (axis,)
|
595 |
+
|
596 |
+
out_ndim = len(axis) + a.ndim
|
597 |
+
axis = normalize_axis_tuple(axis, out_ndim)
|
598 |
+
|
599 |
+
shape_it = iter(a.shape)
|
600 |
+
shape = [1 if ax in axis else next(shape_it) for ax in range(out_ndim)]
|
601 |
+
|
602 |
+
return a.reshape(shape)
|
603 |
+
|
604 |
+
|
605 |
+
row_stack = vstack
|
606 |
+
|
607 |
+
|
608 |
+
def _column_stack_dispatcher(tup):
|
609 |
+
return _arrays_for_stack_dispatcher(tup)
|
610 |
+
|
611 |
+
|
612 |
+
@array_function_dispatch(_column_stack_dispatcher)
|
613 |
+
def column_stack(tup):
|
614 |
+
"""
|
615 |
+
Stack 1-D arrays as columns into a 2-D array.
|
616 |
+
|
617 |
+
Take a sequence of 1-D arrays and stack them as columns
|
618 |
+
to make a single 2-D array. 2-D arrays are stacked as-is,
|
619 |
+
just like with `hstack`. 1-D arrays are turned into 2-D columns
|
620 |
+
first.
|
621 |
+
|
622 |
+
Parameters
|
623 |
+
----------
|
624 |
+
tup : sequence of 1-D or 2-D arrays.
|
625 |
+
Arrays to stack. All of them must have the same first dimension.
|
626 |
+
|
627 |
+
Returns
|
628 |
+
-------
|
629 |
+
stacked : 2-D array
|
630 |
+
The array formed by stacking the given arrays.
|
631 |
+
|
632 |
+
See Also
|
633 |
+
--------
|
634 |
+
stack, hstack, vstack, concatenate
|
635 |
+
|
636 |
+
Examples
|
637 |
+
--------
|
638 |
+
>>> a = np.array((1,2,3))
|
639 |
+
>>> b = np.array((2,3,4))
|
640 |
+
>>> np.column_stack((a,b))
|
641 |
+
array([[1, 2],
|
642 |
+
[2, 3],
|
643 |
+
[3, 4]])
|
644 |
+
|
645 |
+
"""
|
646 |
+
arrays = []
|
647 |
+
for v in tup:
|
648 |
+
arr = asanyarray(v)
|
649 |
+
if arr.ndim < 2:
|
650 |
+
arr = array(arr, copy=False, subok=True, ndmin=2).T
|
651 |
+
arrays.append(arr)
|
652 |
+
return _nx.concatenate(arrays, 1)
|
653 |
+
|
654 |
+
|
655 |
+
def _dstack_dispatcher(tup):
|
656 |
+
return _arrays_for_stack_dispatcher(tup)
|
657 |
+
|
658 |
+
|
659 |
+
@array_function_dispatch(_dstack_dispatcher)
|
660 |
+
def dstack(tup):
|
661 |
+
"""
|
662 |
+
Stack arrays in sequence depth wise (along third axis).
|
663 |
+
|
664 |
+
This is equivalent to concatenation along the third axis after 2-D arrays
|
665 |
+
of shape `(M,N)` have been reshaped to `(M,N,1)` and 1-D arrays of shape
|
666 |
+
`(N,)` have been reshaped to `(1,N,1)`. Rebuilds arrays divided by
|
667 |
+
`dsplit`.
|
668 |
+
|
669 |
+
This function makes most sense for arrays with up to 3 dimensions. For
|
670 |
+
instance, for pixel-data with a height (first axis), width (second axis),
|
671 |
+
and r/g/b channels (third axis). The functions `concatenate`, `stack` and
|
672 |
+
`block` provide more general stacking and concatenation operations.
|
673 |
+
|
674 |
+
Parameters
|
675 |
+
----------
|
676 |
+
tup : sequence of arrays
|
677 |
+
The arrays must have the same shape along all but the third axis.
|
678 |
+
1-D or 2-D arrays must have the same shape.
|
679 |
+
|
680 |
+
Returns
|
681 |
+
-------
|
682 |
+
stacked : ndarray
|
683 |
+
The array formed by stacking the given arrays, will be at least 3-D.
|
684 |
+
|
685 |
+
See Also
|
686 |
+
--------
|
687 |
+
concatenate : Join a sequence of arrays along an existing axis.
|
688 |
+
stack : Join a sequence of arrays along a new axis.
|
689 |
+
block : Assemble an nd-array from nested lists of blocks.
|
690 |
+
vstack : Stack arrays in sequence vertically (row wise).
|
691 |
+
hstack : Stack arrays in sequence horizontally (column wise).
|
692 |
+
column_stack : Stack 1-D arrays as columns into a 2-D array.
|
693 |
+
dsplit : Split array along third axis.
|
694 |
+
|
695 |
+
Examples
|
696 |
+
--------
|
697 |
+
>>> a = np.array((1,2,3))
|
698 |
+
>>> b = np.array((2,3,4))
|
699 |
+
>>> np.dstack((a,b))
|
700 |
+
array([[[1, 2],
|
701 |
+
[2, 3],
|
702 |
+
[3, 4]]])
|
703 |
+
|
704 |
+
>>> a = np.array([[1],[2],[3]])
|
705 |
+
>>> b = np.array([[2],[3],[4]])
|
706 |
+
>>> np.dstack((a,b))
|
707 |
+
array([[[1, 2]],
|
708 |
+
[[2, 3]],
|
709 |
+
[[3, 4]]])
|
710 |
+
|
711 |
+
"""
|
712 |
+
arrs = atleast_3d(*tup)
|
713 |
+
if not isinstance(arrs, list):
|
714 |
+
arrs = [arrs]
|
715 |
+
return _nx.concatenate(arrs, 2)
|
716 |
+
|
717 |
+
|
718 |
+
def _replace_zero_by_x_arrays(sub_arys):
|
719 |
+
for i in range(len(sub_arys)):
|
720 |
+
if _nx.ndim(sub_arys[i]) == 0:
|
721 |
+
sub_arys[i] = _nx.empty(0, dtype=sub_arys[i].dtype)
|
722 |
+
elif _nx.sometrue(_nx.equal(_nx.shape(sub_arys[i]), 0)):
|
723 |
+
sub_arys[i] = _nx.empty(0, dtype=sub_arys[i].dtype)
|
724 |
+
return sub_arys
|
725 |
+
|
726 |
+
|
727 |
+
def _array_split_dispatcher(ary, indices_or_sections, axis=None):
|
728 |
+
return (ary, indices_or_sections)
|
729 |
+
|
730 |
+
|
731 |
+
@array_function_dispatch(_array_split_dispatcher)
|
732 |
+
def array_split(ary, indices_or_sections, axis=0):
|
733 |
+
"""
|
734 |
+
Split an array into multiple sub-arrays.
|
735 |
+
|
736 |
+
Please refer to the ``split`` documentation. The only difference
|
737 |
+
between these functions is that ``array_split`` allows
|
738 |
+
`indices_or_sections` to be an integer that does *not* equally
|
739 |
+
divide the axis. For an array of length l that should be split
|
740 |
+
into n sections, it returns l % n sub-arrays of size l//n + 1
|
741 |
+
and the rest of size l//n.
|
742 |
+
|
743 |
+
See Also
|
744 |
+
--------
|
745 |
+
split : Split array into multiple sub-arrays of equal size.
|
746 |
+
|
747 |
+
Examples
|
748 |
+
--------
|
749 |
+
>>> x = np.arange(8.0)
|
750 |
+
>>> np.array_split(x, 3)
|
751 |
+
[array([0., 1., 2.]), array([3., 4., 5.]), array([6., 7.])]
|
752 |
+
|
753 |
+
>>> x = np.arange(9)
|
754 |
+
>>> np.array_split(x, 4)
|
755 |
+
[array([0, 1, 2]), array([3, 4]), array([5, 6]), array([7, 8])]
|
756 |
+
|
757 |
+
"""
|
758 |
+
try:
|
759 |
+
Ntotal = ary.shape[axis]
|
760 |
+
except AttributeError:
|
761 |
+
Ntotal = len(ary)
|
762 |
+
try:
|
763 |
+
# handle array case.
|
764 |
+
Nsections = len(indices_or_sections) + 1
|
765 |
+
div_points = [0] + list(indices_or_sections) + [Ntotal]
|
766 |
+
except TypeError:
|
767 |
+
# indices_or_sections is a scalar, not an array.
|
768 |
+
Nsections = int(indices_or_sections)
|
769 |
+
if Nsections <= 0:
|
770 |
+
raise ValueError('number sections must be larger than 0.') from None
|
771 |
+
Neach_section, extras = divmod(Ntotal, Nsections)
|
772 |
+
section_sizes = ([0] +
|
773 |
+
extras * [Neach_section+1] +
|
774 |
+
(Nsections-extras) * [Neach_section])
|
775 |
+
div_points = _nx.array(section_sizes, dtype=_nx.intp).cumsum()
|
776 |
+
|
777 |
+
sub_arys = []
|
778 |
+
sary = _nx.swapaxes(ary, axis, 0)
|
779 |
+
for i in range(Nsections):
|
780 |
+
st = div_points[i]
|
781 |
+
end = div_points[i + 1]
|
782 |
+
sub_arys.append(_nx.swapaxes(sary[st:end], axis, 0))
|
783 |
+
|
784 |
+
return sub_arys
|
785 |
+
|
786 |
+
|
787 |
+
def _split_dispatcher(ary, indices_or_sections, axis=None):
|
788 |
+
return (ary, indices_or_sections)
|
789 |
+
|
790 |
+
|
791 |
+
@array_function_dispatch(_split_dispatcher)
|
792 |
+
def split(ary, indices_or_sections, axis=0):
|
793 |
+
"""
|
794 |
+
Split an array into multiple sub-arrays as views into `ary`.
|
795 |
+
|
796 |
+
Parameters
|
797 |
+
----------
|
798 |
+
ary : ndarray
|
799 |
+
Array to be divided into sub-arrays.
|
800 |
+
indices_or_sections : int or 1-D array
|
801 |
+
If `indices_or_sections` is an integer, N, the array will be divided
|
802 |
+
into N equal arrays along `axis`. If such a split is not possible,
|
803 |
+
an error is raised.
|
804 |
+
|
805 |
+
If `indices_or_sections` is a 1-D array of sorted integers, the entries
|
806 |
+
indicate where along `axis` the array is split. For example,
|
807 |
+
``[2, 3]`` would, for ``axis=0``, result in
|
808 |
+
|
809 |
+
- ary[:2]
|
810 |
+
- ary[2:3]
|
811 |
+
- ary[3:]
|
812 |
+
|
813 |
+
If an index exceeds the dimension of the array along `axis`,
|
814 |
+
an empty sub-array is returned correspondingly.
|
815 |
+
axis : int, optional
|
816 |
+
The axis along which to split, default is 0.
|
817 |
+
|
818 |
+
Returns
|
819 |
+
-------
|
820 |
+
sub-arrays : list of ndarrays
|
821 |
+
A list of sub-arrays as views into `ary`.
|
822 |
+
|
823 |
+
Raises
|
824 |
+
------
|
825 |
+
ValueError
|
826 |
+
If `indices_or_sections` is given as an integer, but
|
827 |
+
a split does not result in equal division.
|
828 |
+
|
829 |
+
See Also
|
830 |
+
--------
|
831 |
+
array_split : Split an array into multiple sub-arrays of equal or
|
832 |
+
near-equal size. Does not raise an exception if
|
833 |
+
an equal division cannot be made.
|
834 |
+
hsplit : Split array into multiple sub-arrays horizontally (column-wise).
|
835 |
+
vsplit : Split array into multiple sub-arrays vertically (row wise).
|
836 |
+
dsplit : Split array into multiple sub-arrays along the 3rd axis (depth).
|
837 |
+
concatenate : Join a sequence of arrays along an existing axis.
|
838 |
+
stack : Join a sequence of arrays along a new axis.
|
839 |
+
hstack : Stack arrays in sequence horizontally (column wise).
|
840 |
+
vstack : Stack arrays in sequence vertically (row wise).
|
841 |
+
dstack : Stack arrays in sequence depth wise (along third dimension).
|
842 |
+
|
843 |
+
Examples
|
844 |
+
--------
|
845 |
+
>>> x = np.arange(9.0)
|
846 |
+
>>> np.split(x, 3)
|
847 |
+
[array([0., 1., 2.]), array([3., 4., 5.]), array([6., 7., 8.])]
|
848 |
+
|
849 |
+
>>> x = np.arange(8.0)
|
850 |
+
>>> np.split(x, [3, 5, 6, 10])
|
851 |
+
[array([0., 1., 2.]),
|
852 |
+
array([3., 4.]),
|
853 |
+
array([5.]),
|
854 |
+
array([6., 7.]),
|
855 |
+
array([], dtype=float64)]
|
856 |
+
|
857 |
+
"""
|
858 |
+
try:
|
859 |
+
len(indices_or_sections)
|
860 |
+
except TypeError:
|
861 |
+
sections = indices_or_sections
|
862 |
+
N = ary.shape[axis]
|
863 |
+
if N % sections:
|
864 |
+
raise ValueError(
|
865 |
+
'array split does not result in an equal division') from None
|
866 |
+
return array_split(ary, indices_or_sections, axis)
|
867 |
+
|
868 |
+
|
869 |
+
def _hvdsplit_dispatcher(ary, indices_or_sections):
|
870 |
+
return (ary, indices_or_sections)
|
871 |
+
|
872 |
+
|
873 |
+
@array_function_dispatch(_hvdsplit_dispatcher)
|
874 |
+
def hsplit(ary, indices_or_sections):
|
875 |
+
"""
|
876 |
+
Split an array into multiple sub-arrays horizontally (column-wise).
|
877 |
+
|
878 |
+
Please refer to the `split` documentation. `hsplit` is equivalent
|
879 |
+
to `split` with ``axis=1``, the array is always split along the second
|
880 |
+
axis except for 1-D arrays, where it is split at ``axis=0``.
|
881 |
+
|
882 |
+
See Also
|
883 |
+
--------
|
884 |
+
split : Split an array into multiple sub-arrays of equal size.
|
885 |
+
|
886 |
+
Examples
|
887 |
+
--------
|
888 |
+
>>> x = np.arange(16.0).reshape(4, 4)
|
889 |
+
>>> x
|
890 |
+
array([[ 0., 1., 2., 3.],
|
891 |
+
[ 4., 5., 6., 7.],
|
892 |
+
[ 8., 9., 10., 11.],
|
893 |
+
[12., 13., 14., 15.]])
|
894 |
+
>>> np.hsplit(x, 2)
|
895 |
+
[array([[ 0., 1.],
|
896 |
+
[ 4., 5.],
|
897 |
+
[ 8., 9.],
|
898 |
+
[12., 13.]]),
|
899 |
+
array([[ 2., 3.],
|
900 |
+
[ 6., 7.],
|
901 |
+
[10., 11.],
|
902 |
+
[14., 15.]])]
|
903 |
+
>>> np.hsplit(x, np.array([3, 6]))
|
904 |
+
[array([[ 0., 1., 2.],
|
905 |
+
[ 4., 5., 6.],
|
906 |
+
[ 8., 9., 10.],
|
907 |
+
[12., 13., 14.]]),
|
908 |
+
array([[ 3.],
|
909 |
+
[ 7.],
|
910 |
+
[11.],
|
911 |
+
[15.]]),
|
912 |
+
array([], shape=(4, 0), dtype=float64)]
|
913 |
+
|
914 |
+
With a higher dimensional array the split is still along the second axis.
|
915 |
+
|
916 |
+
>>> x = np.arange(8.0).reshape(2, 2, 2)
|
917 |
+
>>> x
|
918 |
+
array([[[0., 1.],
|
919 |
+
[2., 3.]],
|
920 |
+
[[4., 5.],
|
921 |
+
[6., 7.]]])
|
922 |
+
>>> np.hsplit(x, 2)
|
923 |
+
[array([[[0., 1.]],
|
924 |
+
[[4., 5.]]]),
|
925 |
+
array([[[2., 3.]],
|
926 |
+
[[6., 7.]]])]
|
927 |
+
|
928 |
+
With a 1-D array, the split is along axis 0.
|
929 |
+
|
930 |
+
>>> x = np.array([0, 1, 2, 3, 4, 5])
|
931 |
+
>>> np.hsplit(x, 2)
|
932 |
+
[array([0, 1, 2]), array([3, 4, 5])]
|
933 |
+
|
934 |
+
"""
|
935 |
+
if _nx.ndim(ary) == 0:
|
936 |
+
raise ValueError('hsplit only works on arrays of 1 or more dimensions')
|
937 |
+
if ary.ndim > 1:
|
938 |
+
return split(ary, indices_or_sections, 1)
|
939 |
+
else:
|
940 |
+
return split(ary, indices_or_sections, 0)
|
941 |
+
|
942 |
+
|
943 |
+
@array_function_dispatch(_hvdsplit_dispatcher)
|
944 |
+
def vsplit(ary, indices_or_sections):
|
945 |
+
"""
|
946 |
+
Split an array into multiple sub-arrays vertically (row-wise).
|
947 |
+
|
948 |
+
Please refer to the ``split`` documentation. ``vsplit`` is equivalent
|
949 |
+
to ``split`` with `axis=0` (default), the array is always split along the
|
950 |
+
first axis regardless of the array dimension.
|
951 |
+
|
952 |
+
See Also
|
953 |
+
--------
|
954 |
+
split : Split an array into multiple sub-arrays of equal size.
|
955 |
+
|
956 |
+
Examples
|
957 |
+
--------
|
958 |
+
>>> x = np.arange(16.0).reshape(4, 4)
|
959 |
+
>>> x
|
960 |
+
array([[ 0., 1., 2., 3.],
|
961 |
+
[ 4., 5., 6., 7.],
|
962 |
+
[ 8., 9., 10., 11.],
|
963 |
+
[12., 13., 14., 15.]])
|
964 |
+
>>> np.vsplit(x, 2)
|
965 |
+
[array([[0., 1., 2., 3.],
|
966 |
+
[4., 5., 6., 7.]]), array([[ 8., 9., 10., 11.],
|
967 |
+
[12., 13., 14., 15.]])]
|
968 |
+
>>> np.vsplit(x, np.array([3, 6]))
|
969 |
+
[array([[ 0., 1., 2., 3.],
|
970 |
+
[ 4., 5., 6., 7.],
|
971 |
+
[ 8., 9., 10., 11.]]), array([[12., 13., 14., 15.]]), array([], shape=(0, 4), dtype=float64)]
|
972 |
+
|
973 |
+
With a higher dimensional array the split is still along the first axis.
|
974 |
+
|
975 |
+
>>> x = np.arange(8.0).reshape(2, 2, 2)
|
976 |
+
>>> x
|
977 |
+
array([[[0., 1.],
|
978 |
+
[2., 3.]],
|
979 |
+
[[4., 5.],
|
980 |
+
[6., 7.]]])
|
981 |
+
>>> np.vsplit(x, 2)
|
982 |
+
[array([[[0., 1.],
|
983 |
+
[2., 3.]]]), array([[[4., 5.],
|
984 |
+
[6., 7.]]])]
|
985 |
+
|
986 |
+
"""
|
987 |
+
if _nx.ndim(ary) < 2:
|
988 |
+
raise ValueError('vsplit only works on arrays of 2 or more dimensions')
|
989 |
+
return split(ary, indices_or_sections, 0)
|
990 |
+
|
991 |
+
|
992 |
+
@array_function_dispatch(_hvdsplit_dispatcher)
|
993 |
+
def dsplit(ary, indices_or_sections):
|
994 |
+
"""
|
995 |
+
Split array into multiple sub-arrays along the 3rd axis (depth).
|
996 |
+
|
997 |
+
Please refer to the `split` documentation. `dsplit` is equivalent
|
998 |
+
to `split` with ``axis=2``, the array is always split along the third
|
999 |
+
axis provided the array dimension is greater than or equal to 3.
|
1000 |
+
|
1001 |
+
See Also
|
1002 |
+
--------
|
1003 |
+
split : Split an array into multiple sub-arrays of equal size.
|
1004 |
+
|
1005 |
+
Examples
|
1006 |
+
--------
|
1007 |
+
>>> x = np.arange(16.0).reshape(2, 2, 4)
|
1008 |
+
>>> x
|
1009 |
+
array([[[ 0., 1., 2., 3.],
|
1010 |
+
[ 4., 5., 6., 7.]],
|
1011 |
+
[[ 8., 9., 10., 11.],
|
1012 |
+
[12., 13., 14., 15.]]])
|
1013 |
+
>>> np.dsplit(x, 2)
|
1014 |
+
[array([[[ 0., 1.],
|
1015 |
+
[ 4., 5.]],
|
1016 |
+
[[ 8., 9.],
|
1017 |
+
[12., 13.]]]), array([[[ 2., 3.],
|
1018 |
+
[ 6., 7.]],
|
1019 |
+
[[10., 11.],
|
1020 |
+
[14., 15.]]])]
|
1021 |
+
>>> np.dsplit(x, np.array([3, 6]))
|
1022 |
+
[array([[[ 0., 1., 2.],
|
1023 |
+
[ 4., 5., 6.]],
|
1024 |
+
[[ 8., 9., 10.],
|
1025 |
+
[12., 13., 14.]]]),
|
1026 |
+
array([[[ 3.],
|
1027 |
+
[ 7.]],
|
1028 |
+
[[11.],
|
1029 |
+
[15.]]]),
|
1030 |
+
array([], shape=(2, 2, 0), dtype=float64)]
|
1031 |
+
"""
|
1032 |
+
if _nx.ndim(ary) < 3:
|
1033 |
+
raise ValueError('dsplit only works on arrays of 3 or more dimensions')
|
1034 |
+
return split(ary, indices_or_sections, 2)
|
1035 |
+
|
1036 |
+
|
1037 |
+
def get_array_prepare(*args):
|
1038 |
+
"""Find the wrapper for the array with the highest priority.
|
1039 |
+
|
1040 |
+
In case of ties, leftmost wins. If no wrapper is found, return None
|
1041 |
+
"""
|
1042 |
+
wrappers = sorted((getattr(x, '__array_priority__', 0), -i,
|
1043 |
+
x.__array_prepare__) for i, x in enumerate(args)
|
1044 |
+
if hasattr(x, '__array_prepare__'))
|
1045 |
+
if wrappers:
|
1046 |
+
return wrappers[-1][-1]
|
1047 |
+
return None
|
1048 |
+
|
1049 |
+
|
1050 |
+
def get_array_wrap(*args):
|
1051 |
+
"""Find the wrapper for the array with the highest priority.
|
1052 |
+
|
1053 |
+
In case of ties, leftmost wins. If no wrapper is found, return None
|
1054 |
+
"""
|
1055 |
+
wrappers = sorted((getattr(x, '__array_priority__', 0), -i,
|
1056 |
+
x.__array_wrap__) for i, x in enumerate(args)
|
1057 |
+
if hasattr(x, '__array_wrap__'))
|
1058 |
+
if wrappers:
|
1059 |
+
return wrappers[-1][-1]
|
1060 |
+
return None
|
1061 |
+
|
1062 |
+
|
1063 |
+
def _kron_dispatcher(a, b):
|
1064 |
+
return (a, b)
|
1065 |
+
|
1066 |
+
|
1067 |
+
@array_function_dispatch(_kron_dispatcher)
|
1068 |
+
def kron(a, b):
|
1069 |
+
"""
|
1070 |
+
Kronecker product of two arrays.
|
1071 |
+
|
1072 |
+
Computes the Kronecker product, a composite array made of blocks of the
|
1073 |
+
second array scaled by the first.
|
1074 |
+
|
1075 |
+
Parameters
|
1076 |
+
----------
|
1077 |
+
a, b : array_like
|
1078 |
+
|
1079 |
+
Returns
|
1080 |
+
-------
|
1081 |
+
out : ndarray
|
1082 |
+
|
1083 |
+
See Also
|
1084 |
+
--------
|
1085 |
+
outer : The outer product
|
1086 |
+
|
1087 |
+
Notes
|
1088 |
+
-----
|
1089 |
+
The function assumes that the number of dimensions of `a` and `b`
|
1090 |
+
are the same, if necessary prepending the smallest with ones.
|
1091 |
+
If ``a.shape = (r0,r1,..,rN)`` and ``b.shape = (s0,s1,...,sN)``,
|
1092 |
+
the Kronecker product has shape ``(r0*s0, r1*s1, ..., rN*SN)``.
|
1093 |
+
The elements are products of elements from `a` and `b`, organized
|
1094 |
+
explicitly by::
|
1095 |
+
|
1096 |
+
kron(a,b)[k0,k1,...,kN] = a[i0,i1,...,iN] * b[j0,j1,...,jN]
|
1097 |
+
|
1098 |
+
where::
|
1099 |
+
|
1100 |
+
kt = it * st + jt, t = 0,...,N
|
1101 |
+
|
1102 |
+
In the common 2-D case (N=1), the block structure can be visualized::
|
1103 |
+
|
1104 |
+
[[ a[0,0]*b, a[0,1]*b, ... , a[0,-1]*b ],
|
1105 |
+
[ ... ... ],
|
1106 |
+
[ a[-1,0]*b, a[-1,1]*b, ... , a[-1,-1]*b ]]
|
1107 |
+
|
1108 |
+
|
1109 |
+
Examples
|
1110 |
+
--------
|
1111 |
+
>>> np.kron([1,10,100], [5,6,7])
|
1112 |
+
array([ 5, 6, 7, ..., 500, 600, 700])
|
1113 |
+
>>> np.kron([5,6,7], [1,10,100])
|
1114 |
+
array([ 5, 50, 500, ..., 7, 70, 700])
|
1115 |
+
|
1116 |
+
>>> np.kron(np.eye(2), np.ones((2,2)))
|
1117 |
+
array([[1., 1., 0., 0.],
|
1118 |
+
[1., 1., 0., 0.],
|
1119 |
+
[0., 0., 1., 1.],
|
1120 |
+
[0., 0., 1., 1.]])
|
1121 |
+
|
1122 |
+
>>> a = np.arange(100).reshape((2,5,2,5))
|
1123 |
+
>>> b = np.arange(24).reshape((2,3,4))
|
1124 |
+
>>> c = np.kron(a,b)
|
1125 |
+
>>> c.shape
|
1126 |
+
(2, 10, 6, 20)
|
1127 |
+
>>> I = (1,3,0,2)
|
1128 |
+
>>> J = (0,2,1)
|
1129 |
+
>>> J1 = (0,) + J # extend to ndim=4
|
1130 |
+
>>> S1 = (1,) + b.shape
|
1131 |
+
>>> K = tuple(np.array(I) * np.array(S1) + np.array(J1))
|
1132 |
+
>>> c[K] == a[I]*b[J]
|
1133 |
+
True
|
1134 |
+
|
1135 |
+
"""
|
1136 |
+
# Working:
|
1137 |
+
# 1. Equalise the shapes by prepending smaller array with 1s
|
1138 |
+
# 2. Expand shapes of both the arrays by adding new axes at
|
1139 |
+
# odd positions for 1st array and even positions for 2nd
|
1140 |
+
# 3. Compute the product of the modified array
|
1141 |
+
# 4. The inner most array elements now contain the rows of
|
1142 |
+
# the Kronecker product
|
1143 |
+
# 5. Reshape the result to kron's shape, which is same as
|
1144 |
+
# product of shapes of the two arrays.
|
1145 |
+
b = asanyarray(b)
|
1146 |
+
a = array(a, copy=False, subok=True, ndmin=b.ndim)
|
1147 |
+
is_any_mat = isinstance(a, matrix) or isinstance(b, matrix)
|
1148 |
+
ndb, nda = b.ndim, a.ndim
|
1149 |
+
nd = max(ndb, nda)
|
1150 |
+
|
1151 |
+
if (nda == 0 or ndb == 0):
|
1152 |
+
return _nx.multiply(a, b)
|
1153 |
+
|
1154 |
+
as_ = a.shape
|
1155 |
+
bs = b.shape
|
1156 |
+
if not a.flags.contiguous:
|
1157 |
+
a = reshape(a, as_)
|
1158 |
+
if not b.flags.contiguous:
|
1159 |
+
b = reshape(b, bs)
|
1160 |
+
|
1161 |
+
# Equalise the shapes by prepending smaller one with 1s
|
1162 |
+
as_ = (1,)*max(0, ndb-nda) + as_
|
1163 |
+
bs = (1,)*max(0, nda-ndb) + bs
|
1164 |
+
|
1165 |
+
# Insert empty dimensions
|
1166 |
+
a_arr = expand_dims(a, axis=tuple(range(ndb-nda)))
|
1167 |
+
b_arr = expand_dims(b, axis=tuple(range(nda-ndb)))
|
1168 |
+
|
1169 |
+
# Compute the product
|
1170 |
+
a_arr = expand_dims(a_arr, axis=tuple(range(1, nd*2, 2)))
|
1171 |
+
b_arr = expand_dims(b_arr, axis=tuple(range(0, nd*2, 2)))
|
1172 |
+
# In case of `mat`, convert result to `array`
|
1173 |
+
result = _nx.multiply(a_arr, b_arr, subok=(not is_any_mat))
|
1174 |
+
|
1175 |
+
# Reshape back
|
1176 |
+
result = result.reshape(_nx.multiply(as_, bs))
|
1177 |
+
|
1178 |
+
return result if not is_any_mat else matrix(result, copy=False)
|
1179 |
+
|
1180 |
+
|
1181 |
+
def _tile_dispatcher(A, reps):
|
1182 |
+
return (A, reps)
|
1183 |
+
|
1184 |
+
|
1185 |
+
@array_function_dispatch(_tile_dispatcher)
|
1186 |
+
def tile(A, reps):
|
1187 |
+
"""
|
1188 |
+
Construct an array by repeating A the number of times given by reps.
|
1189 |
+
|
1190 |
+
If `reps` has length ``d``, the result will have dimension of
|
1191 |
+
``max(d, A.ndim)``.
|
1192 |
+
|
1193 |
+
If ``A.ndim < d``, `A` is promoted to be d-dimensional by prepending new
|
1194 |
+
axes. So a shape (3,) array is promoted to (1, 3) for 2-D replication,
|
1195 |
+
or shape (1, 1, 3) for 3-D replication. If this is not the desired
|
1196 |
+
behavior, promote `A` to d-dimensions manually before calling this
|
1197 |
+
function.
|
1198 |
+
|
1199 |
+
If ``A.ndim > d``, `reps` is promoted to `A`.ndim by pre-pending 1's to it.
|
1200 |
+
Thus for an `A` of shape (2, 3, 4, 5), a `reps` of (2, 2) is treated as
|
1201 |
+
(1, 1, 2, 2).
|
1202 |
+
|
1203 |
+
Note : Although tile may be used for broadcasting, it is strongly
|
1204 |
+
recommended to use numpy's broadcasting operations and functions.
|
1205 |
+
|
1206 |
+
Parameters
|
1207 |
+
----------
|
1208 |
+
A : array_like
|
1209 |
+
The input array.
|
1210 |
+
reps : array_like
|
1211 |
+
The number of repetitions of `A` along each axis.
|
1212 |
+
|
1213 |
+
Returns
|
1214 |
+
-------
|
1215 |
+
c : ndarray
|
1216 |
+
The tiled output array.
|
1217 |
+
|
1218 |
+
See Also
|
1219 |
+
--------
|
1220 |
+
repeat : Repeat elements of an array.
|
1221 |
+
broadcast_to : Broadcast an array to a new shape
|
1222 |
+
|
1223 |
+
Examples
|
1224 |
+
--------
|
1225 |
+
>>> a = np.array([0, 1, 2])
|
1226 |
+
>>> np.tile(a, 2)
|
1227 |
+
array([0, 1, 2, 0, 1, 2])
|
1228 |
+
>>> np.tile(a, (2, 2))
|
1229 |
+
array([[0, 1, 2, 0, 1, 2],
|
1230 |
+
[0, 1, 2, 0, 1, 2]])
|
1231 |
+
>>> np.tile(a, (2, 1, 2))
|
1232 |
+
array([[[0, 1, 2, 0, 1, 2]],
|
1233 |
+
[[0, 1, 2, 0, 1, 2]]])
|
1234 |
+
|
1235 |
+
>>> b = np.array([[1, 2], [3, 4]])
|
1236 |
+
>>> np.tile(b, 2)
|
1237 |
+
array([[1, 2, 1, 2],
|
1238 |
+
[3, 4, 3, 4]])
|
1239 |
+
>>> np.tile(b, (2, 1))
|
1240 |
+
array([[1, 2],
|
1241 |
+
[3, 4],
|
1242 |
+
[1, 2],
|
1243 |
+
[3, 4]])
|
1244 |
+
|
1245 |
+
>>> c = np.array([1,2,3,4])
|
1246 |
+
>>> np.tile(c,(4,1))
|
1247 |
+
array([[1, 2, 3, 4],
|
1248 |
+
[1, 2, 3, 4],
|
1249 |
+
[1, 2, 3, 4],
|
1250 |
+
[1, 2, 3, 4]])
|
1251 |
+
"""
|
1252 |
+
try:
|
1253 |
+
tup = tuple(reps)
|
1254 |
+
except TypeError:
|
1255 |
+
tup = (reps,)
|
1256 |
+
d = len(tup)
|
1257 |
+
if all(x == 1 for x in tup) and isinstance(A, _nx.ndarray):
|
1258 |
+
# Fixes the problem that the function does not make a copy if A is a
|
1259 |
+
# numpy array and the repetitions are 1 in all dimensions
|
1260 |
+
return _nx.array(A, copy=True, subok=True, ndmin=d)
|
1261 |
+
else:
|
1262 |
+
# Note that no copy of zero-sized arrays is made. However since they
|
1263 |
+
# have no data there is no risk of an inadvertent overwrite.
|
1264 |
+
c = _nx.array(A, copy=False, subok=True, ndmin=d)
|
1265 |
+
if (d < c.ndim):
|
1266 |
+
tup = (1,)*(c.ndim-d) + tup
|
1267 |
+
shape_out = tuple(s*t for s, t in zip(c.shape, tup))
|
1268 |
+
n = c.size
|
1269 |
+
if n > 0:
|
1270 |
+
for dim_in, nrep in zip(c.shape, tup):
|
1271 |
+
if nrep != 1:
|
1272 |
+
c = c.reshape(-1, n).repeat(nrep, 0)
|
1273 |
+
n //= dim_in
|
1274 |
+
return c.reshape(shape_out)
|
env-llmeval/lib/python3.10/site-packages/numpy/lib/twodim_base.py
ADDED
@@ -0,0 +1,1183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" Basic functions for manipulating 2d arrays
|
2 |
+
|
3 |
+
"""
|
4 |
+
import functools
|
5 |
+
import operator
|
6 |
+
|
7 |
+
from numpy.core.numeric import (
|
8 |
+
asanyarray, arange, zeros, greater_equal, multiply, ones,
|
9 |
+
asarray, where, int8, int16, int32, int64, intp, empty, promote_types,
|
10 |
+
diagonal, nonzero, indices
|
11 |
+
)
|
12 |
+
from numpy.core.overrides import set_array_function_like_doc, set_module
|
13 |
+
from numpy.core import overrides
|
14 |
+
from numpy.core import iinfo
|
15 |
+
from numpy.lib.stride_tricks import broadcast_to
|
16 |
+
|
17 |
+
|
18 |
+
__all__ = [
|
19 |
+
'diag', 'diagflat', 'eye', 'fliplr', 'flipud', 'tri', 'triu',
|
20 |
+
'tril', 'vander', 'histogram2d', 'mask_indices', 'tril_indices',
|
21 |
+
'tril_indices_from', 'triu_indices', 'triu_indices_from', ]
|
22 |
+
|
23 |
+
|
24 |
+
array_function_dispatch = functools.partial(
|
25 |
+
overrides.array_function_dispatch, module='numpy')
|
26 |
+
|
27 |
+
|
28 |
+
i1 = iinfo(int8)
|
29 |
+
i2 = iinfo(int16)
|
30 |
+
i4 = iinfo(int32)
|
31 |
+
|
32 |
+
|
33 |
+
def _min_int(low, high):
|
34 |
+
""" get small int that fits the range """
|
35 |
+
if high <= i1.max and low >= i1.min:
|
36 |
+
return int8
|
37 |
+
if high <= i2.max and low >= i2.min:
|
38 |
+
return int16
|
39 |
+
if high <= i4.max and low >= i4.min:
|
40 |
+
return int32
|
41 |
+
return int64
|
42 |
+
|
43 |
+
|
44 |
+
def _flip_dispatcher(m):
|
45 |
+
return (m,)
|
46 |
+
|
47 |
+
|
48 |
+
@array_function_dispatch(_flip_dispatcher)
|
49 |
+
def fliplr(m):
|
50 |
+
"""
|
51 |
+
Reverse the order of elements along axis 1 (left/right).
|
52 |
+
|
53 |
+
For a 2-D array, this flips the entries in each row in the left/right
|
54 |
+
direction. Columns are preserved, but appear in a different order than
|
55 |
+
before.
|
56 |
+
|
57 |
+
Parameters
|
58 |
+
----------
|
59 |
+
m : array_like
|
60 |
+
Input array, must be at least 2-D.
|
61 |
+
|
62 |
+
Returns
|
63 |
+
-------
|
64 |
+
f : ndarray
|
65 |
+
A view of `m` with the columns reversed. Since a view
|
66 |
+
is returned, this operation is :math:`\\mathcal O(1)`.
|
67 |
+
|
68 |
+
See Also
|
69 |
+
--------
|
70 |
+
flipud : Flip array in the up/down direction.
|
71 |
+
flip : Flip array in one or more dimensions.
|
72 |
+
rot90 : Rotate array counterclockwise.
|
73 |
+
|
74 |
+
Notes
|
75 |
+
-----
|
76 |
+
Equivalent to ``m[:,::-1]`` or ``np.flip(m, axis=1)``.
|
77 |
+
Requires the array to be at least 2-D.
|
78 |
+
|
79 |
+
Examples
|
80 |
+
--------
|
81 |
+
>>> A = np.diag([1.,2.,3.])
|
82 |
+
>>> A
|
83 |
+
array([[1., 0., 0.],
|
84 |
+
[0., 2., 0.],
|
85 |
+
[0., 0., 3.]])
|
86 |
+
>>> np.fliplr(A)
|
87 |
+
array([[0., 0., 1.],
|
88 |
+
[0., 2., 0.],
|
89 |
+
[3., 0., 0.]])
|
90 |
+
|
91 |
+
>>> A = np.random.randn(2,3,5)
|
92 |
+
>>> np.all(np.fliplr(A) == A[:,::-1,...])
|
93 |
+
True
|
94 |
+
|
95 |
+
"""
|
96 |
+
m = asanyarray(m)
|
97 |
+
if m.ndim < 2:
|
98 |
+
raise ValueError("Input must be >= 2-d.")
|
99 |
+
return m[:, ::-1]
|
100 |
+
|
101 |
+
|
102 |
+
@array_function_dispatch(_flip_dispatcher)
|
103 |
+
def flipud(m):
|
104 |
+
"""
|
105 |
+
Reverse the order of elements along axis 0 (up/down).
|
106 |
+
|
107 |
+
For a 2-D array, this flips the entries in each column in the up/down
|
108 |
+
direction. Rows are preserved, but appear in a different order than before.
|
109 |
+
|
110 |
+
Parameters
|
111 |
+
----------
|
112 |
+
m : array_like
|
113 |
+
Input array.
|
114 |
+
|
115 |
+
Returns
|
116 |
+
-------
|
117 |
+
out : array_like
|
118 |
+
A view of `m` with the rows reversed. Since a view is
|
119 |
+
returned, this operation is :math:`\\mathcal O(1)`.
|
120 |
+
|
121 |
+
See Also
|
122 |
+
--------
|
123 |
+
fliplr : Flip array in the left/right direction.
|
124 |
+
flip : Flip array in one or more dimensions.
|
125 |
+
rot90 : Rotate array counterclockwise.
|
126 |
+
|
127 |
+
Notes
|
128 |
+
-----
|
129 |
+
Equivalent to ``m[::-1, ...]`` or ``np.flip(m, axis=0)``.
|
130 |
+
Requires the array to be at least 1-D.
|
131 |
+
|
132 |
+
Examples
|
133 |
+
--------
|
134 |
+
>>> A = np.diag([1.0, 2, 3])
|
135 |
+
>>> A
|
136 |
+
array([[1., 0., 0.],
|
137 |
+
[0., 2., 0.],
|
138 |
+
[0., 0., 3.]])
|
139 |
+
>>> np.flipud(A)
|
140 |
+
array([[0., 0., 3.],
|
141 |
+
[0., 2., 0.],
|
142 |
+
[1., 0., 0.]])
|
143 |
+
|
144 |
+
>>> A = np.random.randn(2,3,5)
|
145 |
+
>>> np.all(np.flipud(A) == A[::-1,...])
|
146 |
+
True
|
147 |
+
|
148 |
+
>>> np.flipud([1,2])
|
149 |
+
array([2, 1])
|
150 |
+
|
151 |
+
"""
|
152 |
+
m = asanyarray(m)
|
153 |
+
if m.ndim < 1:
|
154 |
+
raise ValueError("Input must be >= 1-d.")
|
155 |
+
return m[::-1, ...]
|
156 |
+
|
157 |
+
|
158 |
+
@set_array_function_like_doc
|
159 |
+
@set_module('numpy')
|
160 |
+
def eye(N, M=None, k=0, dtype=float, order='C', *, like=None):
|
161 |
+
"""
|
162 |
+
Return a 2-D array with ones on the diagonal and zeros elsewhere.
|
163 |
+
|
164 |
+
Parameters
|
165 |
+
----------
|
166 |
+
N : int
|
167 |
+
Number of rows in the output.
|
168 |
+
M : int, optional
|
169 |
+
Number of columns in the output. If None, defaults to `N`.
|
170 |
+
k : int, optional
|
171 |
+
Index of the diagonal: 0 (the default) refers to the main diagonal,
|
172 |
+
a positive value refers to an upper diagonal, and a negative value
|
173 |
+
to a lower diagonal.
|
174 |
+
dtype : data-type, optional
|
175 |
+
Data-type of the returned array.
|
176 |
+
order : {'C', 'F'}, optional
|
177 |
+
Whether the output should be stored in row-major (C-style) or
|
178 |
+
column-major (Fortran-style) order in memory.
|
179 |
+
|
180 |
+
.. versionadded:: 1.14.0
|
181 |
+
${ARRAY_FUNCTION_LIKE}
|
182 |
+
|
183 |
+
.. versionadded:: 1.20.0
|
184 |
+
|
185 |
+
Returns
|
186 |
+
-------
|
187 |
+
I : ndarray of shape (N,M)
|
188 |
+
An array where all elements are equal to zero, except for the `k`-th
|
189 |
+
diagonal, whose values are equal to one.
|
190 |
+
|
191 |
+
See Also
|
192 |
+
--------
|
193 |
+
identity : (almost) equivalent function
|
194 |
+
diag : diagonal 2-D array from a 1-D array specified by the user.
|
195 |
+
|
196 |
+
Examples
|
197 |
+
--------
|
198 |
+
>>> np.eye(2, dtype=int)
|
199 |
+
array([[1, 0],
|
200 |
+
[0, 1]])
|
201 |
+
>>> np.eye(3, k=1)
|
202 |
+
array([[0., 1., 0.],
|
203 |
+
[0., 0., 1.],
|
204 |
+
[0., 0., 0.]])
|
205 |
+
|
206 |
+
"""
|
207 |
+
if like is not None:
|
208 |
+
return _eye_with_like(like, N, M=M, k=k, dtype=dtype, order=order)
|
209 |
+
if M is None:
|
210 |
+
M = N
|
211 |
+
m = zeros((N, M), dtype=dtype, order=order)
|
212 |
+
if k >= M:
|
213 |
+
return m
|
214 |
+
# Ensure M and k are integers, so we don't get any surprise casting
|
215 |
+
# results in the expressions `M-k` and `M+1` used below. This avoids
|
216 |
+
# a problem with inputs with type (for example) np.uint64.
|
217 |
+
M = operator.index(M)
|
218 |
+
k = operator.index(k)
|
219 |
+
if k >= 0:
|
220 |
+
i = k
|
221 |
+
else:
|
222 |
+
i = (-k) * M
|
223 |
+
m[:M-k].flat[i::M+1] = 1
|
224 |
+
return m
|
225 |
+
|
226 |
+
|
227 |
+
_eye_with_like = array_function_dispatch()(eye)
|
228 |
+
|
229 |
+
|
230 |
+
def _diag_dispatcher(v, k=None):
|
231 |
+
return (v,)
|
232 |
+
|
233 |
+
|
234 |
+
@array_function_dispatch(_diag_dispatcher)
|
235 |
+
def diag(v, k=0):
|
236 |
+
"""
|
237 |
+
Extract a diagonal or construct a diagonal array.
|
238 |
+
|
239 |
+
See the more detailed documentation for ``numpy.diagonal`` if you use this
|
240 |
+
function to extract a diagonal and wish to write to the resulting array;
|
241 |
+
whether it returns a copy or a view depends on what version of numpy you
|
242 |
+
are using.
|
243 |
+
|
244 |
+
Parameters
|
245 |
+
----------
|
246 |
+
v : array_like
|
247 |
+
If `v` is a 2-D array, return a copy of its `k`-th diagonal.
|
248 |
+
If `v` is a 1-D array, return a 2-D array with `v` on the `k`-th
|
249 |
+
diagonal.
|
250 |
+
k : int, optional
|
251 |
+
Diagonal in question. The default is 0. Use `k>0` for diagonals
|
252 |
+
above the main diagonal, and `k<0` for diagonals below the main
|
253 |
+
diagonal.
|
254 |
+
|
255 |
+
Returns
|
256 |
+
-------
|
257 |
+
out : ndarray
|
258 |
+
The extracted diagonal or constructed diagonal array.
|
259 |
+
|
260 |
+
See Also
|
261 |
+
--------
|
262 |
+
diagonal : Return specified diagonals.
|
263 |
+
diagflat : Create a 2-D array with the flattened input as a diagonal.
|
264 |
+
trace : Sum along diagonals.
|
265 |
+
triu : Upper triangle of an array.
|
266 |
+
tril : Lower triangle of an array.
|
267 |
+
|
268 |
+
Examples
|
269 |
+
--------
|
270 |
+
>>> x = np.arange(9).reshape((3,3))
|
271 |
+
>>> x
|
272 |
+
array([[0, 1, 2],
|
273 |
+
[3, 4, 5],
|
274 |
+
[6, 7, 8]])
|
275 |
+
|
276 |
+
>>> np.diag(x)
|
277 |
+
array([0, 4, 8])
|
278 |
+
>>> np.diag(x, k=1)
|
279 |
+
array([1, 5])
|
280 |
+
>>> np.diag(x, k=-1)
|
281 |
+
array([3, 7])
|
282 |
+
|
283 |
+
>>> np.diag(np.diag(x))
|
284 |
+
array([[0, 0, 0],
|
285 |
+
[0, 4, 0],
|
286 |
+
[0, 0, 8]])
|
287 |
+
|
288 |
+
"""
|
289 |
+
v = asanyarray(v)
|
290 |
+
s = v.shape
|
291 |
+
if len(s) == 1:
|
292 |
+
n = s[0]+abs(k)
|
293 |
+
res = zeros((n, n), v.dtype)
|
294 |
+
if k >= 0:
|
295 |
+
i = k
|
296 |
+
else:
|
297 |
+
i = (-k) * n
|
298 |
+
res[:n-k].flat[i::n+1] = v
|
299 |
+
return res
|
300 |
+
elif len(s) == 2:
|
301 |
+
return diagonal(v, k)
|
302 |
+
else:
|
303 |
+
raise ValueError("Input must be 1- or 2-d.")
|
304 |
+
|
305 |
+
|
306 |
+
@array_function_dispatch(_diag_dispatcher)
|
307 |
+
def diagflat(v, k=0):
|
308 |
+
"""
|
309 |
+
Create a two-dimensional array with the flattened input as a diagonal.
|
310 |
+
|
311 |
+
Parameters
|
312 |
+
----------
|
313 |
+
v : array_like
|
314 |
+
Input data, which is flattened and set as the `k`-th
|
315 |
+
diagonal of the output.
|
316 |
+
k : int, optional
|
317 |
+
Diagonal to set; 0, the default, corresponds to the "main" diagonal,
|
318 |
+
a positive (negative) `k` giving the number of the diagonal above
|
319 |
+
(below) the main.
|
320 |
+
|
321 |
+
Returns
|
322 |
+
-------
|
323 |
+
out : ndarray
|
324 |
+
The 2-D output array.
|
325 |
+
|
326 |
+
See Also
|
327 |
+
--------
|
328 |
+
diag : MATLAB work-alike for 1-D and 2-D arrays.
|
329 |
+
diagonal : Return specified diagonals.
|
330 |
+
trace : Sum along diagonals.
|
331 |
+
|
332 |
+
Examples
|
333 |
+
--------
|
334 |
+
>>> np.diagflat([[1,2], [3,4]])
|
335 |
+
array([[1, 0, 0, 0],
|
336 |
+
[0, 2, 0, 0],
|
337 |
+
[0, 0, 3, 0],
|
338 |
+
[0, 0, 0, 4]])
|
339 |
+
|
340 |
+
>>> np.diagflat([1,2], 1)
|
341 |
+
array([[0, 1, 0],
|
342 |
+
[0, 0, 2],
|
343 |
+
[0, 0, 0]])
|
344 |
+
|
345 |
+
"""
|
346 |
+
try:
|
347 |
+
wrap = v.__array_wrap__
|
348 |
+
except AttributeError:
|
349 |
+
wrap = None
|
350 |
+
v = asarray(v).ravel()
|
351 |
+
s = len(v)
|
352 |
+
n = s + abs(k)
|
353 |
+
res = zeros((n, n), v.dtype)
|
354 |
+
if (k >= 0):
|
355 |
+
i = arange(0, n-k, dtype=intp)
|
356 |
+
fi = i+k+i*n
|
357 |
+
else:
|
358 |
+
i = arange(0, n+k, dtype=intp)
|
359 |
+
fi = i+(i-k)*n
|
360 |
+
res.flat[fi] = v
|
361 |
+
if not wrap:
|
362 |
+
return res
|
363 |
+
return wrap(res)
|
364 |
+
|
365 |
+
|
366 |
+
@set_array_function_like_doc
|
367 |
+
@set_module('numpy')
|
368 |
+
def tri(N, M=None, k=0, dtype=float, *, like=None):
|
369 |
+
"""
|
370 |
+
An array with ones at and below the given diagonal and zeros elsewhere.
|
371 |
+
|
372 |
+
Parameters
|
373 |
+
----------
|
374 |
+
N : int
|
375 |
+
Number of rows in the array.
|
376 |
+
M : int, optional
|
377 |
+
Number of columns in the array.
|
378 |
+
By default, `M` is taken equal to `N`.
|
379 |
+
k : int, optional
|
380 |
+
The sub-diagonal at and below which the array is filled.
|
381 |
+
`k` = 0 is the main diagonal, while `k` < 0 is below it,
|
382 |
+
and `k` > 0 is above. The default is 0.
|
383 |
+
dtype : dtype, optional
|
384 |
+
Data type of the returned array. The default is float.
|
385 |
+
${ARRAY_FUNCTION_LIKE}
|
386 |
+
|
387 |
+
.. versionadded:: 1.20.0
|
388 |
+
|
389 |
+
Returns
|
390 |
+
-------
|
391 |
+
tri : ndarray of shape (N, M)
|
392 |
+
Array with its lower triangle filled with ones and zero elsewhere;
|
393 |
+
in other words ``T[i,j] == 1`` for ``j <= i + k``, 0 otherwise.
|
394 |
+
|
395 |
+
Examples
|
396 |
+
--------
|
397 |
+
>>> np.tri(3, 5, 2, dtype=int)
|
398 |
+
array([[1, 1, 1, 0, 0],
|
399 |
+
[1, 1, 1, 1, 0],
|
400 |
+
[1, 1, 1, 1, 1]])
|
401 |
+
|
402 |
+
>>> np.tri(3, 5, -1)
|
403 |
+
array([[0., 0., 0., 0., 0.],
|
404 |
+
[1., 0., 0., 0., 0.],
|
405 |
+
[1., 1., 0., 0., 0.]])
|
406 |
+
|
407 |
+
"""
|
408 |
+
if like is not None:
|
409 |
+
return _tri_with_like(like, N, M=M, k=k, dtype=dtype)
|
410 |
+
|
411 |
+
if M is None:
|
412 |
+
M = N
|
413 |
+
|
414 |
+
m = greater_equal.outer(arange(N, dtype=_min_int(0, N)),
|
415 |
+
arange(-k, M-k, dtype=_min_int(-k, M - k)))
|
416 |
+
|
417 |
+
# Avoid making a copy if the requested type is already bool
|
418 |
+
m = m.astype(dtype, copy=False)
|
419 |
+
|
420 |
+
return m
|
421 |
+
|
422 |
+
|
423 |
+
_tri_with_like = array_function_dispatch()(tri)
|
424 |
+
|
425 |
+
|
426 |
+
def _trilu_dispatcher(m, k=None):
|
427 |
+
return (m,)
|
428 |
+
|
429 |
+
|
430 |
+
@array_function_dispatch(_trilu_dispatcher)
|
431 |
+
def tril(m, k=0):
|
432 |
+
"""
|
433 |
+
Lower triangle of an array.
|
434 |
+
|
435 |
+
Return a copy of an array with elements above the `k`-th diagonal zeroed.
|
436 |
+
For arrays with ``ndim`` exceeding 2, `tril` will apply to the final two
|
437 |
+
axes.
|
438 |
+
|
439 |
+
Parameters
|
440 |
+
----------
|
441 |
+
m : array_like, shape (..., M, N)
|
442 |
+
Input array.
|
443 |
+
k : int, optional
|
444 |
+
Diagonal above which to zero elements. `k = 0` (the default) is the
|
445 |
+
main diagonal, `k < 0` is below it and `k > 0` is above.
|
446 |
+
|
447 |
+
Returns
|
448 |
+
-------
|
449 |
+
tril : ndarray, shape (..., M, N)
|
450 |
+
Lower triangle of `m`, of same shape and data-type as `m`.
|
451 |
+
|
452 |
+
See Also
|
453 |
+
--------
|
454 |
+
triu : same thing, only for the upper triangle
|
455 |
+
|
456 |
+
Examples
|
457 |
+
--------
|
458 |
+
>>> np.tril([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1)
|
459 |
+
array([[ 0, 0, 0],
|
460 |
+
[ 4, 0, 0],
|
461 |
+
[ 7, 8, 0],
|
462 |
+
[10, 11, 12]])
|
463 |
+
|
464 |
+
>>> np.tril(np.arange(3*4*5).reshape(3, 4, 5))
|
465 |
+
array([[[ 0, 0, 0, 0, 0],
|
466 |
+
[ 5, 6, 0, 0, 0],
|
467 |
+
[10, 11, 12, 0, 0],
|
468 |
+
[15, 16, 17, 18, 0]],
|
469 |
+
[[20, 0, 0, 0, 0],
|
470 |
+
[25, 26, 0, 0, 0],
|
471 |
+
[30, 31, 32, 0, 0],
|
472 |
+
[35, 36, 37, 38, 0]],
|
473 |
+
[[40, 0, 0, 0, 0],
|
474 |
+
[45, 46, 0, 0, 0],
|
475 |
+
[50, 51, 52, 0, 0],
|
476 |
+
[55, 56, 57, 58, 0]]])
|
477 |
+
|
478 |
+
"""
|
479 |
+
m = asanyarray(m)
|
480 |
+
mask = tri(*m.shape[-2:], k=k, dtype=bool)
|
481 |
+
|
482 |
+
return where(mask, m, zeros(1, m.dtype))
|
483 |
+
|
484 |
+
|
485 |
+
@array_function_dispatch(_trilu_dispatcher)
|
486 |
+
def triu(m, k=0):
|
487 |
+
"""
|
488 |
+
Upper triangle of an array.
|
489 |
+
|
490 |
+
Return a copy of an array with the elements below the `k`-th diagonal
|
491 |
+
zeroed. For arrays with ``ndim`` exceeding 2, `triu` will apply to the
|
492 |
+
final two axes.
|
493 |
+
|
494 |
+
Please refer to the documentation for `tril` for further details.
|
495 |
+
|
496 |
+
See Also
|
497 |
+
--------
|
498 |
+
tril : lower triangle of an array
|
499 |
+
|
500 |
+
Examples
|
501 |
+
--------
|
502 |
+
>>> np.triu([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1)
|
503 |
+
array([[ 1, 2, 3],
|
504 |
+
[ 4, 5, 6],
|
505 |
+
[ 0, 8, 9],
|
506 |
+
[ 0, 0, 12]])
|
507 |
+
|
508 |
+
>>> np.triu(np.arange(3*4*5).reshape(3, 4, 5))
|
509 |
+
array([[[ 0, 1, 2, 3, 4],
|
510 |
+
[ 0, 6, 7, 8, 9],
|
511 |
+
[ 0, 0, 12, 13, 14],
|
512 |
+
[ 0, 0, 0, 18, 19]],
|
513 |
+
[[20, 21, 22, 23, 24],
|
514 |
+
[ 0, 26, 27, 28, 29],
|
515 |
+
[ 0, 0, 32, 33, 34],
|
516 |
+
[ 0, 0, 0, 38, 39]],
|
517 |
+
[[40, 41, 42, 43, 44],
|
518 |
+
[ 0, 46, 47, 48, 49],
|
519 |
+
[ 0, 0, 52, 53, 54],
|
520 |
+
[ 0, 0, 0, 58, 59]]])
|
521 |
+
|
522 |
+
"""
|
523 |
+
m = asanyarray(m)
|
524 |
+
mask = tri(*m.shape[-2:], k=k-1, dtype=bool)
|
525 |
+
|
526 |
+
return where(mask, zeros(1, m.dtype), m)
|
527 |
+
|
528 |
+
|
529 |
+
def _vander_dispatcher(x, N=None, increasing=None):
|
530 |
+
return (x,)
|
531 |
+
|
532 |
+
|
533 |
+
# Originally borrowed from John Hunter and matplotlib
|
534 |
+
@array_function_dispatch(_vander_dispatcher)
|
535 |
+
def vander(x, N=None, increasing=False):
|
536 |
+
"""
|
537 |
+
Generate a Vandermonde matrix.
|
538 |
+
|
539 |
+
The columns of the output matrix are powers of the input vector. The
|
540 |
+
order of the powers is determined by the `increasing` boolean argument.
|
541 |
+
Specifically, when `increasing` is False, the `i`-th output column is
|
542 |
+
the input vector raised element-wise to the power of ``N - i - 1``. Such
|
543 |
+
a matrix with a geometric progression in each row is named for Alexandre-
|
544 |
+
Theophile Vandermonde.
|
545 |
+
|
546 |
+
Parameters
|
547 |
+
----------
|
548 |
+
x : array_like
|
549 |
+
1-D input array.
|
550 |
+
N : int, optional
|
551 |
+
Number of columns in the output. If `N` is not specified, a square
|
552 |
+
array is returned (``N = len(x)``).
|
553 |
+
increasing : bool, optional
|
554 |
+
Order of the powers of the columns. If True, the powers increase
|
555 |
+
from left to right, if False (the default) they are reversed.
|
556 |
+
|
557 |
+
.. versionadded:: 1.9.0
|
558 |
+
|
559 |
+
Returns
|
560 |
+
-------
|
561 |
+
out : ndarray
|
562 |
+
Vandermonde matrix. If `increasing` is False, the first column is
|
563 |
+
``x^(N-1)``, the second ``x^(N-2)`` and so forth. If `increasing` is
|
564 |
+
True, the columns are ``x^0, x^1, ..., x^(N-1)``.
|
565 |
+
|
566 |
+
See Also
|
567 |
+
--------
|
568 |
+
polynomial.polynomial.polyvander
|
569 |
+
|
570 |
+
Examples
|
571 |
+
--------
|
572 |
+
>>> x = np.array([1, 2, 3, 5])
|
573 |
+
>>> N = 3
|
574 |
+
>>> np.vander(x, N)
|
575 |
+
array([[ 1, 1, 1],
|
576 |
+
[ 4, 2, 1],
|
577 |
+
[ 9, 3, 1],
|
578 |
+
[25, 5, 1]])
|
579 |
+
|
580 |
+
>>> np.column_stack([x**(N-1-i) for i in range(N)])
|
581 |
+
array([[ 1, 1, 1],
|
582 |
+
[ 4, 2, 1],
|
583 |
+
[ 9, 3, 1],
|
584 |
+
[25, 5, 1]])
|
585 |
+
|
586 |
+
>>> x = np.array([1, 2, 3, 5])
|
587 |
+
>>> np.vander(x)
|
588 |
+
array([[ 1, 1, 1, 1],
|
589 |
+
[ 8, 4, 2, 1],
|
590 |
+
[ 27, 9, 3, 1],
|
591 |
+
[125, 25, 5, 1]])
|
592 |
+
>>> np.vander(x, increasing=True)
|
593 |
+
array([[ 1, 1, 1, 1],
|
594 |
+
[ 1, 2, 4, 8],
|
595 |
+
[ 1, 3, 9, 27],
|
596 |
+
[ 1, 5, 25, 125]])
|
597 |
+
|
598 |
+
The determinant of a square Vandermonde matrix is the product
|
599 |
+
of the differences between the values of the input vector:
|
600 |
+
|
601 |
+
>>> np.linalg.det(np.vander(x))
|
602 |
+
48.000000000000043 # may vary
|
603 |
+
>>> (5-3)*(5-2)*(5-1)*(3-2)*(3-1)*(2-1)
|
604 |
+
48
|
605 |
+
|
606 |
+
"""
|
607 |
+
x = asarray(x)
|
608 |
+
if x.ndim != 1:
|
609 |
+
raise ValueError("x must be a one-dimensional array or sequence.")
|
610 |
+
if N is None:
|
611 |
+
N = len(x)
|
612 |
+
|
613 |
+
v = empty((len(x), N), dtype=promote_types(x.dtype, int))
|
614 |
+
tmp = v[:, ::-1] if not increasing else v
|
615 |
+
|
616 |
+
if N > 0:
|
617 |
+
tmp[:, 0] = 1
|
618 |
+
if N > 1:
|
619 |
+
tmp[:, 1:] = x[:, None]
|
620 |
+
multiply.accumulate(tmp[:, 1:], out=tmp[:, 1:], axis=1)
|
621 |
+
|
622 |
+
return v
|
623 |
+
|
624 |
+
|
625 |
+
def _histogram2d_dispatcher(x, y, bins=None, range=None, density=None,
|
626 |
+
weights=None):
|
627 |
+
yield x
|
628 |
+
yield y
|
629 |
+
|
630 |
+
# This terrible logic is adapted from the checks in histogram2d
|
631 |
+
try:
|
632 |
+
N = len(bins)
|
633 |
+
except TypeError:
|
634 |
+
N = 1
|
635 |
+
if N == 2:
|
636 |
+
yield from bins # bins=[x, y]
|
637 |
+
else:
|
638 |
+
yield bins
|
639 |
+
|
640 |
+
yield weights
|
641 |
+
|
642 |
+
|
643 |
+
@array_function_dispatch(_histogram2d_dispatcher)
|
644 |
+
def histogram2d(x, y, bins=10, range=None, density=None, weights=None):
|
645 |
+
"""
|
646 |
+
Compute the bi-dimensional histogram of two data samples.
|
647 |
+
|
648 |
+
Parameters
|
649 |
+
----------
|
650 |
+
x : array_like, shape (N,)
|
651 |
+
An array containing the x coordinates of the points to be
|
652 |
+
histogrammed.
|
653 |
+
y : array_like, shape (N,)
|
654 |
+
An array containing the y coordinates of the points to be
|
655 |
+
histogrammed.
|
656 |
+
bins : int or array_like or [int, int] or [array, array], optional
|
657 |
+
The bin specification:
|
658 |
+
|
659 |
+
* If int, the number of bins for the two dimensions (nx=ny=bins).
|
660 |
+
* If array_like, the bin edges for the two dimensions
|
661 |
+
(x_edges=y_edges=bins).
|
662 |
+
* If [int, int], the number of bins in each dimension
|
663 |
+
(nx, ny = bins).
|
664 |
+
* If [array, array], the bin edges in each dimension
|
665 |
+
(x_edges, y_edges = bins).
|
666 |
+
* A combination [int, array] or [array, int], where int
|
667 |
+
is the number of bins and array is the bin edges.
|
668 |
+
|
669 |
+
range : array_like, shape(2,2), optional
|
670 |
+
The leftmost and rightmost edges of the bins along each dimension
|
671 |
+
(if not specified explicitly in the `bins` parameters):
|
672 |
+
``[[xmin, xmax], [ymin, ymax]]``. All values outside of this range
|
673 |
+
will be considered outliers and not tallied in the histogram.
|
674 |
+
density : bool, optional
|
675 |
+
If False, the default, returns the number of samples in each bin.
|
676 |
+
If True, returns the probability *density* function at the bin,
|
677 |
+
``bin_count / sample_count / bin_area``.
|
678 |
+
weights : array_like, shape(N,), optional
|
679 |
+
An array of values ``w_i`` weighing each sample ``(x_i, y_i)``.
|
680 |
+
Weights are normalized to 1 if `density` is True. If `density` is
|
681 |
+
False, the values of the returned histogram are equal to the sum of
|
682 |
+
the weights belonging to the samples falling into each bin.
|
683 |
+
|
684 |
+
Returns
|
685 |
+
-------
|
686 |
+
H : ndarray, shape(nx, ny)
|
687 |
+
The bi-dimensional histogram of samples `x` and `y`. Values in `x`
|
688 |
+
are histogrammed along the first dimension and values in `y` are
|
689 |
+
histogrammed along the second dimension.
|
690 |
+
xedges : ndarray, shape(nx+1,)
|
691 |
+
The bin edges along the first dimension.
|
692 |
+
yedges : ndarray, shape(ny+1,)
|
693 |
+
The bin edges along the second dimension.
|
694 |
+
|
695 |
+
See Also
|
696 |
+
--------
|
697 |
+
histogram : 1D histogram
|
698 |
+
histogramdd : Multidimensional histogram
|
699 |
+
|
700 |
+
Notes
|
701 |
+
-----
|
702 |
+
When `density` is True, then the returned histogram is the sample
|
703 |
+
density, defined such that the sum over bins of the product
|
704 |
+
``bin_value * bin_area`` is 1.
|
705 |
+
|
706 |
+
Please note that the histogram does not follow the Cartesian convention
|
707 |
+
where `x` values are on the abscissa and `y` values on the ordinate
|
708 |
+
axis. Rather, `x` is histogrammed along the first dimension of the
|
709 |
+
array (vertical), and `y` along the second dimension of the array
|
710 |
+
(horizontal). This ensures compatibility with `histogramdd`.
|
711 |
+
|
712 |
+
Examples
|
713 |
+
--------
|
714 |
+
>>> from matplotlib.image import NonUniformImage
|
715 |
+
>>> import matplotlib.pyplot as plt
|
716 |
+
|
717 |
+
Construct a 2-D histogram with variable bin width. First define the bin
|
718 |
+
edges:
|
719 |
+
|
720 |
+
>>> xedges = [0, 1, 3, 5]
|
721 |
+
>>> yedges = [0, 2, 3, 4, 6]
|
722 |
+
|
723 |
+
Next we create a histogram H with random bin content:
|
724 |
+
|
725 |
+
>>> x = np.random.normal(2, 1, 100)
|
726 |
+
>>> y = np.random.normal(1, 1, 100)
|
727 |
+
>>> H, xedges, yedges = np.histogram2d(x, y, bins=(xedges, yedges))
|
728 |
+
>>> # Histogram does not follow Cartesian convention (see Notes),
|
729 |
+
>>> # therefore transpose H for visualization purposes.
|
730 |
+
>>> H = H.T
|
731 |
+
|
732 |
+
:func:`imshow <matplotlib.pyplot.imshow>` can only display square bins:
|
733 |
+
|
734 |
+
>>> fig = plt.figure(figsize=(7, 3))
|
735 |
+
>>> ax = fig.add_subplot(131, title='imshow: square bins')
|
736 |
+
>>> plt.imshow(H, interpolation='nearest', origin='lower',
|
737 |
+
... extent=[xedges[0], xedges[-1], yedges[0], yedges[-1]])
|
738 |
+
<matplotlib.image.AxesImage object at 0x...>
|
739 |
+
|
740 |
+
:func:`pcolormesh <matplotlib.pyplot.pcolormesh>` can display actual edges:
|
741 |
+
|
742 |
+
>>> ax = fig.add_subplot(132, title='pcolormesh: actual edges',
|
743 |
+
... aspect='equal')
|
744 |
+
>>> X, Y = np.meshgrid(xedges, yedges)
|
745 |
+
>>> ax.pcolormesh(X, Y, H)
|
746 |
+
<matplotlib.collections.QuadMesh object at 0x...>
|
747 |
+
|
748 |
+
:class:`NonUniformImage <matplotlib.image.NonUniformImage>` can be used to
|
749 |
+
display actual bin edges with interpolation:
|
750 |
+
|
751 |
+
>>> ax = fig.add_subplot(133, title='NonUniformImage: interpolated',
|
752 |
+
... aspect='equal', xlim=xedges[[0, -1]], ylim=yedges[[0, -1]])
|
753 |
+
>>> im = NonUniformImage(ax, interpolation='bilinear')
|
754 |
+
>>> xcenters = (xedges[:-1] + xedges[1:]) / 2
|
755 |
+
>>> ycenters = (yedges[:-1] + yedges[1:]) / 2
|
756 |
+
>>> im.set_data(xcenters, ycenters, H)
|
757 |
+
>>> ax.add_image(im)
|
758 |
+
>>> plt.show()
|
759 |
+
|
760 |
+
It is also possible to construct a 2-D histogram without specifying bin
|
761 |
+
edges:
|
762 |
+
|
763 |
+
>>> # Generate non-symmetric test data
|
764 |
+
>>> n = 10000
|
765 |
+
>>> x = np.linspace(1, 100, n)
|
766 |
+
>>> y = 2*np.log(x) + np.random.rand(n) - 0.5
|
767 |
+
>>> # Compute 2d histogram. Note the order of x/y and xedges/yedges
|
768 |
+
>>> H, yedges, xedges = np.histogram2d(y, x, bins=20)
|
769 |
+
|
770 |
+
Now we can plot the histogram using
|
771 |
+
:func:`pcolormesh <matplotlib.pyplot.pcolormesh>`, and a
|
772 |
+
:func:`hexbin <matplotlib.pyplot.hexbin>` for comparison.
|
773 |
+
|
774 |
+
>>> # Plot histogram using pcolormesh
|
775 |
+
>>> fig, (ax1, ax2) = plt.subplots(ncols=2, sharey=True)
|
776 |
+
>>> ax1.pcolormesh(xedges, yedges, H, cmap='rainbow')
|
777 |
+
>>> ax1.plot(x, 2*np.log(x), 'k-')
|
778 |
+
>>> ax1.set_xlim(x.min(), x.max())
|
779 |
+
>>> ax1.set_ylim(y.min(), y.max())
|
780 |
+
>>> ax1.set_xlabel('x')
|
781 |
+
>>> ax1.set_ylabel('y')
|
782 |
+
>>> ax1.set_title('histogram2d')
|
783 |
+
>>> ax1.grid()
|
784 |
+
|
785 |
+
>>> # Create hexbin plot for comparison
|
786 |
+
>>> ax2.hexbin(x, y, gridsize=20, cmap='rainbow')
|
787 |
+
>>> ax2.plot(x, 2*np.log(x), 'k-')
|
788 |
+
>>> ax2.set_title('hexbin')
|
789 |
+
>>> ax2.set_xlim(x.min(), x.max())
|
790 |
+
>>> ax2.set_xlabel('x')
|
791 |
+
>>> ax2.grid()
|
792 |
+
|
793 |
+
>>> plt.show()
|
794 |
+
"""
|
795 |
+
from numpy import histogramdd
|
796 |
+
|
797 |
+
if len(x) != len(y):
|
798 |
+
raise ValueError('x and y must have the same length.')
|
799 |
+
|
800 |
+
try:
|
801 |
+
N = len(bins)
|
802 |
+
except TypeError:
|
803 |
+
N = 1
|
804 |
+
|
805 |
+
if N != 1 and N != 2:
|
806 |
+
xedges = yedges = asarray(bins)
|
807 |
+
bins = [xedges, yedges]
|
808 |
+
hist, edges = histogramdd([x, y], bins, range, density, weights)
|
809 |
+
return hist, edges[0], edges[1]
|
810 |
+
|
811 |
+
|
812 |
+
@set_module('numpy')
|
813 |
+
def mask_indices(n, mask_func, k=0):
|
814 |
+
"""
|
815 |
+
Return the indices to access (n, n) arrays, given a masking function.
|
816 |
+
|
817 |
+
Assume `mask_func` is a function that, for a square array a of size
|
818 |
+
``(n, n)`` with a possible offset argument `k`, when called as
|
819 |
+
``mask_func(a, k)`` returns a new array with zeros in certain locations
|
820 |
+
(functions like `triu` or `tril` do precisely this). Then this function
|
821 |
+
returns the indices where the non-zero values would be located.
|
822 |
+
|
823 |
+
Parameters
|
824 |
+
----------
|
825 |
+
n : int
|
826 |
+
The returned indices will be valid to access arrays of shape (n, n).
|
827 |
+
mask_func : callable
|
828 |
+
A function whose call signature is similar to that of `triu`, `tril`.
|
829 |
+
That is, ``mask_func(x, k)`` returns a boolean array, shaped like `x`.
|
830 |
+
`k` is an optional argument to the function.
|
831 |
+
k : scalar
|
832 |
+
An optional argument which is passed through to `mask_func`. Functions
|
833 |
+
like `triu`, `tril` take a second argument that is interpreted as an
|
834 |
+
offset.
|
835 |
+
|
836 |
+
Returns
|
837 |
+
-------
|
838 |
+
indices : tuple of arrays.
|
839 |
+
The `n` arrays of indices corresponding to the locations where
|
840 |
+
``mask_func(np.ones((n, n)), k)`` is True.
|
841 |
+
|
842 |
+
See Also
|
843 |
+
--------
|
844 |
+
triu, tril, triu_indices, tril_indices
|
845 |
+
|
846 |
+
Notes
|
847 |
+
-----
|
848 |
+
.. versionadded:: 1.4.0
|
849 |
+
|
850 |
+
Examples
|
851 |
+
--------
|
852 |
+
These are the indices that would allow you to access the upper triangular
|
853 |
+
part of any 3x3 array:
|
854 |
+
|
855 |
+
>>> iu = np.mask_indices(3, np.triu)
|
856 |
+
|
857 |
+
For example, if `a` is a 3x3 array:
|
858 |
+
|
859 |
+
>>> a = np.arange(9).reshape(3, 3)
|
860 |
+
>>> a
|
861 |
+
array([[0, 1, 2],
|
862 |
+
[3, 4, 5],
|
863 |
+
[6, 7, 8]])
|
864 |
+
>>> a[iu]
|
865 |
+
array([0, 1, 2, 4, 5, 8])
|
866 |
+
|
867 |
+
An offset can be passed also to the masking function. This gets us the
|
868 |
+
indices starting on the first diagonal right of the main one:
|
869 |
+
|
870 |
+
>>> iu1 = np.mask_indices(3, np.triu, 1)
|
871 |
+
|
872 |
+
with which we now extract only three elements:
|
873 |
+
|
874 |
+
>>> a[iu1]
|
875 |
+
array([1, 2, 5])
|
876 |
+
|
877 |
+
"""
|
878 |
+
m = ones((n, n), int)
|
879 |
+
a = mask_func(m, k)
|
880 |
+
return nonzero(a != 0)
|
881 |
+
|
882 |
+
|
883 |
+
@set_module('numpy')
|
884 |
+
def tril_indices(n, k=0, m=None):
|
885 |
+
"""
|
886 |
+
Return the indices for the lower-triangle of an (n, m) array.
|
887 |
+
|
888 |
+
Parameters
|
889 |
+
----------
|
890 |
+
n : int
|
891 |
+
The row dimension of the arrays for which the returned
|
892 |
+
indices will be valid.
|
893 |
+
k : int, optional
|
894 |
+
Diagonal offset (see `tril` for details).
|
895 |
+
m : int, optional
|
896 |
+
.. versionadded:: 1.9.0
|
897 |
+
|
898 |
+
The column dimension of the arrays for which the returned
|
899 |
+
arrays will be valid.
|
900 |
+
By default `m` is taken equal to `n`.
|
901 |
+
|
902 |
+
|
903 |
+
Returns
|
904 |
+
-------
|
905 |
+
inds : tuple of arrays
|
906 |
+
The indices for the triangle. The returned tuple contains two arrays,
|
907 |
+
each with the indices along one dimension of the array.
|
908 |
+
|
909 |
+
See also
|
910 |
+
--------
|
911 |
+
triu_indices : similar function, for upper-triangular.
|
912 |
+
mask_indices : generic function accepting an arbitrary mask function.
|
913 |
+
tril, triu
|
914 |
+
|
915 |
+
Notes
|
916 |
+
-----
|
917 |
+
.. versionadded:: 1.4.0
|
918 |
+
|
919 |
+
Examples
|
920 |
+
--------
|
921 |
+
Compute two different sets of indices to access 4x4 arrays, one for the
|
922 |
+
lower triangular part starting at the main diagonal, and one starting two
|
923 |
+
diagonals further right:
|
924 |
+
|
925 |
+
>>> il1 = np.tril_indices(4)
|
926 |
+
>>> il2 = np.tril_indices(4, 2)
|
927 |
+
|
928 |
+
Here is how they can be used with a sample array:
|
929 |
+
|
930 |
+
>>> a = np.arange(16).reshape(4, 4)
|
931 |
+
>>> a
|
932 |
+
array([[ 0, 1, 2, 3],
|
933 |
+
[ 4, 5, 6, 7],
|
934 |
+
[ 8, 9, 10, 11],
|
935 |
+
[12, 13, 14, 15]])
|
936 |
+
|
937 |
+
Both for indexing:
|
938 |
+
|
939 |
+
>>> a[il1]
|
940 |
+
array([ 0, 4, 5, ..., 13, 14, 15])
|
941 |
+
|
942 |
+
And for assigning values:
|
943 |
+
|
944 |
+
>>> a[il1] = -1
|
945 |
+
>>> a
|
946 |
+
array([[-1, 1, 2, 3],
|
947 |
+
[-1, -1, 6, 7],
|
948 |
+
[-1, -1, -1, 11],
|
949 |
+
[-1, -1, -1, -1]])
|
950 |
+
|
951 |
+
These cover almost the whole array (two diagonals right of the main one):
|
952 |
+
|
953 |
+
>>> a[il2] = -10
|
954 |
+
>>> a
|
955 |
+
array([[-10, -10, -10, 3],
|
956 |
+
[-10, -10, -10, -10],
|
957 |
+
[-10, -10, -10, -10],
|
958 |
+
[-10, -10, -10, -10]])
|
959 |
+
|
960 |
+
"""
|
961 |
+
tri_ = tri(n, m, k=k, dtype=bool)
|
962 |
+
|
963 |
+
return tuple(broadcast_to(inds, tri_.shape)[tri_]
|
964 |
+
for inds in indices(tri_.shape, sparse=True))
|
965 |
+
|
966 |
+
|
967 |
+
def _trilu_indices_form_dispatcher(arr, k=None):
|
968 |
+
return (arr,)
|
969 |
+
|
970 |
+
|
971 |
+
@array_function_dispatch(_trilu_indices_form_dispatcher)
|
972 |
+
def tril_indices_from(arr, k=0):
|
973 |
+
"""
|
974 |
+
Return the indices for the lower-triangle of arr.
|
975 |
+
|
976 |
+
See `tril_indices` for full details.
|
977 |
+
|
978 |
+
Parameters
|
979 |
+
----------
|
980 |
+
arr : array_like
|
981 |
+
The indices will be valid for square arrays whose dimensions are
|
982 |
+
the same as arr.
|
983 |
+
k : int, optional
|
984 |
+
Diagonal offset (see `tril` for details).
|
985 |
+
|
986 |
+
Examples
|
987 |
+
--------
|
988 |
+
|
989 |
+
Create a 4 by 4 array.
|
990 |
+
|
991 |
+
>>> a = np.arange(16).reshape(4, 4)
|
992 |
+
>>> a
|
993 |
+
array([[ 0, 1, 2, 3],
|
994 |
+
[ 4, 5, 6, 7],
|
995 |
+
[ 8, 9, 10, 11],
|
996 |
+
[12, 13, 14, 15]])
|
997 |
+
|
998 |
+
Pass the array to get the indices of the lower triangular elements.
|
999 |
+
|
1000 |
+
>>> trili = np.tril_indices_from(a)
|
1001 |
+
>>> trili
|
1002 |
+
(array([0, 1, 1, 2, 2, 2, 3, 3, 3, 3]), array([0, 0, 1, 0, 1, 2, 0, 1, 2, 3]))
|
1003 |
+
|
1004 |
+
>>> a[trili]
|
1005 |
+
array([ 0, 4, 5, 8, 9, 10, 12, 13, 14, 15])
|
1006 |
+
|
1007 |
+
This is syntactic sugar for tril_indices().
|
1008 |
+
|
1009 |
+
>>> np.tril_indices(a.shape[0])
|
1010 |
+
(array([0, 1, 1, 2, 2, 2, 3, 3, 3, 3]), array([0, 0, 1, 0, 1, 2, 0, 1, 2, 3]))
|
1011 |
+
|
1012 |
+
Use the `k` parameter to return the indices for the lower triangular array
|
1013 |
+
up to the k-th diagonal.
|
1014 |
+
|
1015 |
+
>>> trili1 = np.tril_indices_from(a, k=1)
|
1016 |
+
>>> a[trili1]
|
1017 |
+
array([ 0, 1, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15])
|
1018 |
+
|
1019 |
+
See Also
|
1020 |
+
--------
|
1021 |
+
tril_indices, tril, triu_indices_from
|
1022 |
+
|
1023 |
+
Notes
|
1024 |
+
-----
|
1025 |
+
.. versionadded:: 1.4.0
|
1026 |
+
|
1027 |
+
"""
|
1028 |
+
if arr.ndim != 2:
|
1029 |
+
raise ValueError("input array must be 2-d")
|
1030 |
+
return tril_indices(arr.shape[-2], k=k, m=arr.shape[-1])
|
1031 |
+
|
1032 |
+
|
1033 |
+
@set_module('numpy')
|
1034 |
+
def triu_indices(n, k=0, m=None):
|
1035 |
+
"""
|
1036 |
+
Return the indices for the upper-triangle of an (n, m) array.
|
1037 |
+
|
1038 |
+
Parameters
|
1039 |
+
----------
|
1040 |
+
n : int
|
1041 |
+
The size of the arrays for which the returned indices will
|
1042 |
+
be valid.
|
1043 |
+
k : int, optional
|
1044 |
+
Diagonal offset (see `triu` for details).
|
1045 |
+
m : int, optional
|
1046 |
+
.. versionadded:: 1.9.0
|
1047 |
+
|
1048 |
+
The column dimension of the arrays for which the returned
|
1049 |
+
arrays will be valid.
|
1050 |
+
By default `m` is taken equal to `n`.
|
1051 |
+
|
1052 |
+
|
1053 |
+
Returns
|
1054 |
+
-------
|
1055 |
+
inds : tuple, shape(2) of ndarrays, shape(`n`)
|
1056 |
+
The indices for the triangle. The returned tuple contains two arrays,
|
1057 |
+
each with the indices along one dimension of the array. Can be used
|
1058 |
+
to slice a ndarray of shape(`n`, `n`).
|
1059 |
+
|
1060 |
+
See also
|
1061 |
+
--------
|
1062 |
+
tril_indices : similar function, for lower-triangular.
|
1063 |
+
mask_indices : generic function accepting an arbitrary mask function.
|
1064 |
+
triu, tril
|
1065 |
+
|
1066 |
+
Notes
|
1067 |
+
-----
|
1068 |
+
.. versionadded:: 1.4.0
|
1069 |
+
|
1070 |
+
Examples
|
1071 |
+
--------
|
1072 |
+
Compute two different sets of indices to access 4x4 arrays, one for the
|
1073 |
+
upper triangular part starting at the main diagonal, and one starting two
|
1074 |
+
diagonals further right:
|
1075 |
+
|
1076 |
+
>>> iu1 = np.triu_indices(4)
|
1077 |
+
>>> iu2 = np.triu_indices(4, 2)
|
1078 |
+
|
1079 |
+
Here is how they can be used with a sample array:
|
1080 |
+
|
1081 |
+
>>> a = np.arange(16).reshape(4, 4)
|
1082 |
+
>>> a
|
1083 |
+
array([[ 0, 1, 2, 3],
|
1084 |
+
[ 4, 5, 6, 7],
|
1085 |
+
[ 8, 9, 10, 11],
|
1086 |
+
[12, 13, 14, 15]])
|
1087 |
+
|
1088 |
+
Both for indexing:
|
1089 |
+
|
1090 |
+
>>> a[iu1]
|
1091 |
+
array([ 0, 1, 2, ..., 10, 11, 15])
|
1092 |
+
|
1093 |
+
And for assigning values:
|
1094 |
+
|
1095 |
+
>>> a[iu1] = -1
|
1096 |
+
>>> a
|
1097 |
+
array([[-1, -1, -1, -1],
|
1098 |
+
[ 4, -1, -1, -1],
|
1099 |
+
[ 8, 9, -1, -1],
|
1100 |
+
[12, 13, 14, -1]])
|
1101 |
+
|
1102 |
+
These cover only a small part of the whole array (two diagonals right
|
1103 |
+
of the main one):
|
1104 |
+
|
1105 |
+
>>> a[iu2] = -10
|
1106 |
+
>>> a
|
1107 |
+
array([[ -1, -1, -10, -10],
|
1108 |
+
[ 4, -1, -1, -10],
|
1109 |
+
[ 8, 9, -1, -1],
|
1110 |
+
[ 12, 13, 14, -1]])
|
1111 |
+
|
1112 |
+
"""
|
1113 |
+
tri_ = ~tri(n, m, k=k - 1, dtype=bool)
|
1114 |
+
|
1115 |
+
return tuple(broadcast_to(inds, tri_.shape)[tri_]
|
1116 |
+
for inds in indices(tri_.shape, sparse=True))
|
1117 |
+
|
1118 |
+
|
1119 |
+
@array_function_dispatch(_trilu_indices_form_dispatcher)
|
1120 |
+
def triu_indices_from(arr, k=0):
|
1121 |
+
"""
|
1122 |
+
Return the indices for the upper-triangle of arr.
|
1123 |
+
|
1124 |
+
See `triu_indices` for full details.
|
1125 |
+
|
1126 |
+
Parameters
|
1127 |
+
----------
|
1128 |
+
arr : ndarray, shape(N, N)
|
1129 |
+
The indices will be valid for square arrays.
|
1130 |
+
k : int, optional
|
1131 |
+
Diagonal offset (see `triu` for details).
|
1132 |
+
|
1133 |
+
Returns
|
1134 |
+
-------
|
1135 |
+
triu_indices_from : tuple, shape(2) of ndarray, shape(N)
|
1136 |
+
Indices for the upper-triangle of `arr`.
|
1137 |
+
|
1138 |
+
Examples
|
1139 |
+
--------
|
1140 |
+
|
1141 |
+
Create a 4 by 4 array.
|
1142 |
+
|
1143 |
+
>>> a = np.arange(16).reshape(4, 4)
|
1144 |
+
>>> a
|
1145 |
+
array([[ 0, 1, 2, 3],
|
1146 |
+
[ 4, 5, 6, 7],
|
1147 |
+
[ 8, 9, 10, 11],
|
1148 |
+
[12, 13, 14, 15]])
|
1149 |
+
|
1150 |
+
Pass the array to get the indices of the upper triangular elements.
|
1151 |
+
|
1152 |
+
>>> triui = np.triu_indices_from(a)
|
1153 |
+
>>> triui
|
1154 |
+
(array([0, 0, 0, 0, 1, 1, 1, 2, 2, 3]), array([0, 1, 2, 3, 1, 2, 3, 2, 3, 3]))
|
1155 |
+
|
1156 |
+
>>> a[triui]
|
1157 |
+
array([ 0, 1, 2, 3, 5, 6, 7, 10, 11, 15])
|
1158 |
+
|
1159 |
+
This is syntactic sugar for triu_indices().
|
1160 |
+
|
1161 |
+
>>> np.triu_indices(a.shape[0])
|
1162 |
+
(array([0, 0, 0, 0, 1, 1, 1, 2, 2, 3]), array([0, 1, 2, 3, 1, 2, 3, 2, 3, 3]))
|
1163 |
+
|
1164 |
+
Use the `k` parameter to return the indices for the upper triangular array
|
1165 |
+
from the k-th diagonal.
|
1166 |
+
|
1167 |
+
>>> triuim1 = np.triu_indices_from(a, k=1)
|
1168 |
+
>>> a[triuim1]
|
1169 |
+
array([ 1, 2, 3, 6, 7, 11])
|
1170 |
+
|
1171 |
+
|
1172 |
+
See Also
|
1173 |
+
--------
|
1174 |
+
triu_indices, triu, tril_indices_from
|
1175 |
+
|
1176 |
+
Notes
|
1177 |
+
-----
|
1178 |
+
.. versionadded:: 1.4.0
|
1179 |
+
|
1180 |
+
"""
|
1181 |
+
if arr.ndim != 2:
|
1182 |
+
raise ValueError("input array must be 2-d")
|
1183 |
+
return triu_indices(arr.shape[-2], k=k, m=arr.shape[-1])
|
env-llmeval/lib/python3.10/site-packages/numpy/lib/twodim_base.pyi
ADDED
@@ -0,0 +1,239 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections.abc import Callable, Sequence
|
2 |
+
from typing import (
|
3 |
+
Any,
|
4 |
+
overload,
|
5 |
+
TypeVar,
|
6 |
+
Union,
|
7 |
+
)
|
8 |
+
|
9 |
+
from numpy import (
|
10 |
+
generic,
|
11 |
+
number,
|
12 |
+
bool_,
|
13 |
+
timedelta64,
|
14 |
+
datetime64,
|
15 |
+
int_,
|
16 |
+
intp,
|
17 |
+
float64,
|
18 |
+
signedinteger,
|
19 |
+
floating,
|
20 |
+
complexfloating,
|
21 |
+
object_,
|
22 |
+
_OrderCF,
|
23 |
+
)
|
24 |
+
|
25 |
+
from numpy._typing import (
|
26 |
+
DTypeLike,
|
27 |
+
_DTypeLike,
|
28 |
+
ArrayLike,
|
29 |
+
_ArrayLike,
|
30 |
+
NDArray,
|
31 |
+
_SupportsArrayFunc,
|
32 |
+
_ArrayLikeInt_co,
|
33 |
+
_ArrayLikeFloat_co,
|
34 |
+
_ArrayLikeComplex_co,
|
35 |
+
_ArrayLikeObject_co,
|
36 |
+
)
|
37 |
+
|
38 |
+
_T = TypeVar("_T")
|
39 |
+
_SCT = TypeVar("_SCT", bound=generic)
|
40 |
+
|
41 |
+
# The returned arrays dtype must be compatible with `np.equal`
|
42 |
+
_MaskFunc = Callable[
|
43 |
+
[NDArray[int_], _T],
|
44 |
+
NDArray[Union[number[Any], bool_, timedelta64, datetime64, object_]],
|
45 |
+
]
|
46 |
+
|
47 |
+
__all__: list[str]
|
48 |
+
|
49 |
+
@overload
|
50 |
+
def fliplr(m: _ArrayLike[_SCT]) -> NDArray[_SCT]: ...
|
51 |
+
@overload
|
52 |
+
def fliplr(m: ArrayLike) -> NDArray[Any]: ...
|
53 |
+
|
54 |
+
@overload
|
55 |
+
def flipud(m: _ArrayLike[_SCT]) -> NDArray[_SCT]: ...
|
56 |
+
@overload
|
57 |
+
def flipud(m: ArrayLike) -> NDArray[Any]: ...
|
58 |
+
|
59 |
+
@overload
|
60 |
+
def eye(
|
61 |
+
N: int,
|
62 |
+
M: None | int = ...,
|
63 |
+
k: int = ...,
|
64 |
+
dtype: None = ...,
|
65 |
+
order: _OrderCF = ...,
|
66 |
+
*,
|
67 |
+
like: None | _SupportsArrayFunc = ...,
|
68 |
+
) -> NDArray[float64]: ...
|
69 |
+
@overload
|
70 |
+
def eye(
|
71 |
+
N: int,
|
72 |
+
M: None | int = ...,
|
73 |
+
k: int = ...,
|
74 |
+
dtype: _DTypeLike[_SCT] = ...,
|
75 |
+
order: _OrderCF = ...,
|
76 |
+
*,
|
77 |
+
like: None | _SupportsArrayFunc = ...,
|
78 |
+
) -> NDArray[_SCT]: ...
|
79 |
+
@overload
|
80 |
+
def eye(
|
81 |
+
N: int,
|
82 |
+
M: None | int = ...,
|
83 |
+
k: int = ...,
|
84 |
+
dtype: DTypeLike = ...,
|
85 |
+
order: _OrderCF = ...,
|
86 |
+
*,
|
87 |
+
like: None | _SupportsArrayFunc = ...,
|
88 |
+
) -> NDArray[Any]: ...
|
89 |
+
|
90 |
+
@overload
|
91 |
+
def diag(v: _ArrayLike[_SCT], k: int = ...) -> NDArray[_SCT]: ...
|
92 |
+
@overload
|
93 |
+
def diag(v: ArrayLike, k: int = ...) -> NDArray[Any]: ...
|
94 |
+
|
95 |
+
@overload
|
96 |
+
def diagflat(v: _ArrayLike[_SCT], k: int = ...) -> NDArray[_SCT]: ...
|
97 |
+
@overload
|
98 |
+
def diagflat(v: ArrayLike, k: int = ...) -> NDArray[Any]: ...
|
99 |
+
|
100 |
+
@overload
|
101 |
+
def tri(
|
102 |
+
N: int,
|
103 |
+
M: None | int = ...,
|
104 |
+
k: int = ...,
|
105 |
+
dtype: None = ...,
|
106 |
+
*,
|
107 |
+
like: None | _SupportsArrayFunc = ...
|
108 |
+
) -> NDArray[float64]: ...
|
109 |
+
@overload
|
110 |
+
def tri(
|
111 |
+
N: int,
|
112 |
+
M: None | int = ...,
|
113 |
+
k: int = ...,
|
114 |
+
dtype: _DTypeLike[_SCT] = ...,
|
115 |
+
*,
|
116 |
+
like: None | _SupportsArrayFunc = ...
|
117 |
+
) -> NDArray[_SCT]: ...
|
118 |
+
@overload
|
119 |
+
def tri(
|
120 |
+
N: int,
|
121 |
+
M: None | int = ...,
|
122 |
+
k: int = ...,
|
123 |
+
dtype: DTypeLike = ...,
|
124 |
+
*,
|
125 |
+
like: None | _SupportsArrayFunc = ...
|
126 |
+
) -> NDArray[Any]: ...
|
127 |
+
|
128 |
+
@overload
|
129 |
+
def tril(v: _ArrayLike[_SCT], k: int = ...) -> NDArray[_SCT]: ...
|
130 |
+
@overload
|
131 |
+
def tril(v: ArrayLike, k: int = ...) -> NDArray[Any]: ...
|
132 |
+
|
133 |
+
@overload
|
134 |
+
def triu(v: _ArrayLike[_SCT], k: int = ...) -> NDArray[_SCT]: ...
|
135 |
+
@overload
|
136 |
+
def triu(v: ArrayLike, k: int = ...) -> NDArray[Any]: ...
|
137 |
+
|
138 |
+
@overload
|
139 |
+
def vander( # type: ignore[misc]
|
140 |
+
x: _ArrayLikeInt_co,
|
141 |
+
N: None | int = ...,
|
142 |
+
increasing: bool = ...,
|
143 |
+
) -> NDArray[signedinteger[Any]]: ...
|
144 |
+
@overload
|
145 |
+
def vander( # type: ignore[misc]
|
146 |
+
x: _ArrayLikeFloat_co,
|
147 |
+
N: None | int = ...,
|
148 |
+
increasing: bool = ...,
|
149 |
+
) -> NDArray[floating[Any]]: ...
|
150 |
+
@overload
|
151 |
+
def vander(
|
152 |
+
x: _ArrayLikeComplex_co,
|
153 |
+
N: None | int = ...,
|
154 |
+
increasing: bool = ...,
|
155 |
+
) -> NDArray[complexfloating[Any, Any]]: ...
|
156 |
+
@overload
|
157 |
+
def vander(
|
158 |
+
x: _ArrayLikeObject_co,
|
159 |
+
N: None | int = ...,
|
160 |
+
increasing: bool = ...,
|
161 |
+
) -> NDArray[object_]: ...
|
162 |
+
|
163 |
+
@overload
|
164 |
+
def histogram2d( # type: ignore[misc]
|
165 |
+
x: _ArrayLikeFloat_co,
|
166 |
+
y: _ArrayLikeFloat_co,
|
167 |
+
bins: int | Sequence[int] = ...,
|
168 |
+
range: None | _ArrayLikeFloat_co = ...,
|
169 |
+
density: None | bool = ...,
|
170 |
+
weights: None | _ArrayLikeFloat_co = ...,
|
171 |
+
) -> tuple[
|
172 |
+
NDArray[float64],
|
173 |
+
NDArray[floating[Any]],
|
174 |
+
NDArray[floating[Any]],
|
175 |
+
]: ...
|
176 |
+
@overload
|
177 |
+
def histogram2d(
|
178 |
+
x: _ArrayLikeComplex_co,
|
179 |
+
y: _ArrayLikeComplex_co,
|
180 |
+
bins: int | Sequence[int] = ...,
|
181 |
+
range: None | _ArrayLikeFloat_co = ...,
|
182 |
+
density: None | bool = ...,
|
183 |
+
weights: None | _ArrayLikeFloat_co = ...,
|
184 |
+
) -> tuple[
|
185 |
+
NDArray[float64],
|
186 |
+
NDArray[complexfloating[Any, Any]],
|
187 |
+
NDArray[complexfloating[Any, Any]],
|
188 |
+
]: ...
|
189 |
+
@overload # TODO: Sort out `bins`
|
190 |
+
def histogram2d(
|
191 |
+
x: _ArrayLikeComplex_co,
|
192 |
+
y: _ArrayLikeComplex_co,
|
193 |
+
bins: Sequence[_ArrayLikeInt_co],
|
194 |
+
range: None | _ArrayLikeFloat_co = ...,
|
195 |
+
density: None | bool = ...,
|
196 |
+
weights: None | _ArrayLikeFloat_co = ...,
|
197 |
+
) -> tuple[
|
198 |
+
NDArray[float64],
|
199 |
+
NDArray[Any],
|
200 |
+
NDArray[Any],
|
201 |
+
]: ...
|
202 |
+
|
203 |
+
# NOTE: we're assuming/demanding here the `mask_func` returns
|
204 |
+
# an ndarray of shape `(n, n)`; otherwise there is the possibility
|
205 |
+
# of the output tuple having more or less than 2 elements
|
206 |
+
@overload
|
207 |
+
def mask_indices(
|
208 |
+
n: int,
|
209 |
+
mask_func: _MaskFunc[int],
|
210 |
+
k: int = ...,
|
211 |
+
) -> tuple[NDArray[intp], NDArray[intp]]: ...
|
212 |
+
@overload
|
213 |
+
def mask_indices(
|
214 |
+
n: int,
|
215 |
+
mask_func: _MaskFunc[_T],
|
216 |
+
k: _T,
|
217 |
+
) -> tuple[NDArray[intp], NDArray[intp]]: ...
|
218 |
+
|
219 |
+
def tril_indices(
|
220 |
+
n: int,
|
221 |
+
k: int = ...,
|
222 |
+
m: None | int = ...,
|
223 |
+
) -> tuple[NDArray[int_], NDArray[int_]]: ...
|
224 |
+
|
225 |
+
def tril_indices_from(
|
226 |
+
arr: NDArray[Any],
|
227 |
+
k: int = ...,
|
228 |
+
) -> tuple[NDArray[int_], NDArray[int_]]: ...
|
229 |
+
|
230 |
+
def triu_indices(
|
231 |
+
n: int,
|
232 |
+
k: int = ...,
|
233 |
+
m: None | int = ...,
|
234 |
+
) -> tuple[NDArray[int_], NDArray[int_]]: ...
|
235 |
+
|
236 |
+
def triu_indices_from(
|
237 |
+
arr: NDArray[Any],
|
238 |
+
k: int = ...,
|
239 |
+
) -> tuple[NDArray[int_], NDArray[int_]]: ...
|
env-llmeval/lib/python3.10/site-packages/numpy/lib/type_check.py
ADDED
@@ -0,0 +1,735 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Automatically adapted for numpy Sep 19, 2005 by convertcode.py
|
2 |
+
|
3 |
+
"""
|
4 |
+
import functools
|
5 |
+
|
6 |
+
__all__ = ['iscomplexobj', 'isrealobj', 'imag', 'iscomplex',
|
7 |
+
'isreal', 'nan_to_num', 'real', 'real_if_close',
|
8 |
+
'typename', 'asfarray', 'mintypecode',
|
9 |
+
'common_type']
|
10 |
+
|
11 |
+
from .._utils import set_module
|
12 |
+
import numpy.core.numeric as _nx
|
13 |
+
from numpy.core.numeric import asarray, asanyarray, isnan, zeros
|
14 |
+
from numpy.core import overrides, getlimits
|
15 |
+
from .ufunclike import isneginf, isposinf
|
16 |
+
|
17 |
+
|
18 |
+
array_function_dispatch = functools.partial(
|
19 |
+
overrides.array_function_dispatch, module='numpy')
|
20 |
+
|
21 |
+
|
22 |
+
_typecodes_by_elsize = 'GDFgdfQqLlIiHhBb?'
|
23 |
+
|
24 |
+
|
25 |
+
@set_module('numpy')
|
26 |
+
def mintypecode(typechars, typeset='GDFgdf', default='d'):
|
27 |
+
"""
|
28 |
+
Return the character for the minimum-size type to which given types can
|
29 |
+
be safely cast.
|
30 |
+
|
31 |
+
The returned type character must represent the smallest size dtype such
|
32 |
+
that an array of the returned type can handle the data from an array of
|
33 |
+
all types in `typechars` (or if `typechars` is an array, then its
|
34 |
+
dtype.char).
|
35 |
+
|
36 |
+
Parameters
|
37 |
+
----------
|
38 |
+
typechars : list of str or array_like
|
39 |
+
If a list of strings, each string should represent a dtype.
|
40 |
+
If array_like, the character representation of the array dtype is used.
|
41 |
+
typeset : str or list of str, optional
|
42 |
+
The set of characters that the returned character is chosen from.
|
43 |
+
The default set is 'GDFgdf'.
|
44 |
+
default : str, optional
|
45 |
+
The default character, this is returned if none of the characters in
|
46 |
+
`typechars` matches a character in `typeset`.
|
47 |
+
|
48 |
+
Returns
|
49 |
+
-------
|
50 |
+
typechar : str
|
51 |
+
The character representing the minimum-size type that was found.
|
52 |
+
|
53 |
+
See Also
|
54 |
+
--------
|
55 |
+
dtype, sctype2char, maximum_sctype
|
56 |
+
|
57 |
+
Examples
|
58 |
+
--------
|
59 |
+
>>> np.mintypecode(['d', 'f', 'S'])
|
60 |
+
'd'
|
61 |
+
>>> x = np.array([1.1, 2-3.j])
|
62 |
+
>>> np.mintypecode(x)
|
63 |
+
'D'
|
64 |
+
|
65 |
+
>>> np.mintypecode('abceh', default='G')
|
66 |
+
'G'
|
67 |
+
|
68 |
+
"""
|
69 |
+
typecodes = ((isinstance(t, str) and t) or asarray(t).dtype.char
|
70 |
+
for t in typechars)
|
71 |
+
intersection = set(t for t in typecodes if t in typeset)
|
72 |
+
if not intersection:
|
73 |
+
return default
|
74 |
+
if 'F' in intersection and 'd' in intersection:
|
75 |
+
return 'D'
|
76 |
+
return min(intersection, key=_typecodes_by_elsize.index)
|
77 |
+
|
78 |
+
|
79 |
+
def _asfarray_dispatcher(a, dtype=None):
|
80 |
+
return (a,)
|
81 |
+
|
82 |
+
|
83 |
+
@array_function_dispatch(_asfarray_dispatcher)
|
84 |
+
def asfarray(a, dtype=_nx.float_):
|
85 |
+
"""
|
86 |
+
Return an array converted to a float type.
|
87 |
+
|
88 |
+
Parameters
|
89 |
+
----------
|
90 |
+
a : array_like
|
91 |
+
The input array.
|
92 |
+
dtype : str or dtype object, optional
|
93 |
+
Float type code to coerce input array `a`. If `dtype` is one of the
|
94 |
+
'int' dtypes, it is replaced with float64.
|
95 |
+
|
96 |
+
Returns
|
97 |
+
-------
|
98 |
+
out : ndarray
|
99 |
+
The input `a` as a float ndarray.
|
100 |
+
|
101 |
+
Examples
|
102 |
+
--------
|
103 |
+
>>> np.asfarray([2, 3])
|
104 |
+
array([2., 3.])
|
105 |
+
>>> np.asfarray([2, 3], dtype='float')
|
106 |
+
array([2., 3.])
|
107 |
+
>>> np.asfarray([2, 3], dtype='int8')
|
108 |
+
array([2., 3.])
|
109 |
+
|
110 |
+
"""
|
111 |
+
if not _nx.issubdtype(dtype, _nx.inexact):
|
112 |
+
dtype = _nx.float_
|
113 |
+
return asarray(a, dtype=dtype)
|
114 |
+
|
115 |
+
|
116 |
+
def _real_dispatcher(val):
|
117 |
+
return (val,)
|
118 |
+
|
119 |
+
|
120 |
+
@array_function_dispatch(_real_dispatcher)
|
121 |
+
def real(val):
|
122 |
+
"""
|
123 |
+
Return the real part of the complex argument.
|
124 |
+
|
125 |
+
Parameters
|
126 |
+
----------
|
127 |
+
val : array_like
|
128 |
+
Input array.
|
129 |
+
|
130 |
+
Returns
|
131 |
+
-------
|
132 |
+
out : ndarray or scalar
|
133 |
+
The real component of the complex argument. If `val` is real, the type
|
134 |
+
of `val` is used for the output. If `val` has complex elements, the
|
135 |
+
returned type is float.
|
136 |
+
|
137 |
+
See Also
|
138 |
+
--------
|
139 |
+
real_if_close, imag, angle
|
140 |
+
|
141 |
+
Examples
|
142 |
+
--------
|
143 |
+
>>> a = np.array([1+2j, 3+4j, 5+6j])
|
144 |
+
>>> a.real
|
145 |
+
array([1., 3., 5.])
|
146 |
+
>>> a.real = 9
|
147 |
+
>>> a
|
148 |
+
array([9.+2.j, 9.+4.j, 9.+6.j])
|
149 |
+
>>> a.real = np.array([9, 8, 7])
|
150 |
+
>>> a
|
151 |
+
array([9.+2.j, 8.+4.j, 7.+6.j])
|
152 |
+
>>> np.real(1 + 1j)
|
153 |
+
1.0
|
154 |
+
|
155 |
+
"""
|
156 |
+
try:
|
157 |
+
return val.real
|
158 |
+
except AttributeError:
|
159 |
+
return asanyarray(val).real
|
160 |
+
|
161 |
+
|
162 |
+
def _imag_dispatcher(val):
|
163 |
+
return (val,)
|
164 |
+
|
165 |
+
|
166 |
+
@array_function_dispatch(_imag_dispatcher)
|
167 |
+
def imag(val):
|
168 |
+
"""
|
169 |
+
Return the imaginary part of the complex argument.
|
170 |
+
|
171 |
+
Parameters
|
172 |
+
----------
|
173 |
+
val : array_like
|
174 |
+
Input array.
|
175 |
+
|
176 |
+
Returns
|
177 |
+
-------
|
178 |
+
out : ndarray or scalar
|
179 |
+
The imaginary component of the complex argument. If `val` is real,
|
180 |
+
the type of `val` is used for the output. If `val` has complex
|
181 |
+
elements, the returned type is float.
|
182 |
+
|
183 |
+
See Also
|
184 |
+
--------
|
185 |
+
real, angle, real_if_close
|
186 |
+
|
187 |
+
Examples
|
188 |
+
--------
|
189 |
+
>>> a = np.array([1+2j, 3+4j, 5+6j])
|
190 |
+
>>> a.imag
|
191 |
+
array([2., 4., 6.])
|
192 |
+
>>> a.imag = np.array([8, 10, 12])
|
193 |
+
>>> a
|
194 |
+
array([1. +8.j, 3.+10.j, 5.+12.j])
|
195 |
+
>>> np.imag(1 + 1j)
|
196 |
+
1.0
|
197 |
+
|
198 |
+
"""
|
199 |
+
try:
|
200 |
+
return val.imag
|
201 |
+
except AttributeError:
|
202 |
+
return asanyarray(val).imag
|
203 |
+
|
204 |
+
|
205 |
+
def _is_type_dispatcher(x):
|
206 |
+
return (x,)
|
207 |
+
|
208 |
+
|
209 |
+
@array_function_dispatch(_is_type_dispatcher)
|
210 |
+
def iscomplex(x):
|
211 |
+
"""
|
212 |
+
Returns a bool array, where True if input element is complex.
|
213 |
+
|
214 |
+
What is tested is whether the input has a non-zero imaginary part, not if
|
215 |
+
the input type is complex.
|
216 |
+
|
217 |
+
Parameters
|
218 |
+
----------
|
219 |
+
x : array_like
|
220 |
+
Input array.
|
221 |
+
|
222 |
+
Returns
|
223 |
+
-------
|
224 |
+
out : ndarray of bools
|
225 |
+
Output array.
|
226 |
+
|
227 |
+
See Also
|
228 |
+
--------
|
229 |
+
isreal
|
230 |
+
iscomplexobj : Return True if x is a complex type or an array of complex
|
231 |
+
numbers.
|
232 |
+
|
233 |
+
Examples
|
234 |
+
--------
|
235 |
+
>>> np.iscomplex([1+1j, 1+0j, 4.5, 3, 2, 2j])
|
236 |
+
array([ True, False, False, False, False, True])
|
237 |
+
|
238 |
+
"""
|
239 |
+
ax = asanyarray(x)
|
240 |
+
if issubclass(ax.dtype.type, _nx.complexfloating):
|
241 |
+
return ax.imag != 0
|
242 |
+
res = zeros(ax.shape, bool)
|
243 |
+
return res[()] # convert to scalar if needed
|
244 |
+
|
245 |
+
|
246 |
+
@array_function_dispatch(_is_type_dispatcher)
|
247 |
+
def isreal(x):
|
248 |
+
"""
|
249 |
+
Returns a bool array, where True if input element is real.
|
250 |
+
|
251 |
+
If element has complex type with zero complex part, the return value
|
252 |
+
for that element is True.
|
253 |
+
|
254 |
+
Parameters
|
255 |
+
----------
|
256 |
+
x : array_like
|
257 |
+
Input array.
|
258 |
+
|
259 |
+
Returns
|
260 |
+
-------
|
261 |
+
out : ndarray, bool
|
262 |
+
Boolean array of same shape as `x`.
|
263 |
+
|
264 |
+
Notes
|
265 |
+
-----
|
266 |
+
`isreal` may behave unexpectedly for string or object arrays (see examples)
|
267 |
+
|
268 |
+
See Also
|
269 |
+
--------
|
270 |
+
iscomplex
|
271 |
+
isrealobj : Return True if x is not a complex type.
|
272 |
+
|
273 |
+
Examples
|
274 |
+
--------
|
275 |
+
>>> a = np.array([1+1j, 1+0j, 4.5, 3, 2, 2j], dtype=complex)
|
276 |
+
>>> np.isreal(a)
|
277 |
+
array([False, True, True, True, True, False])
|
278 |
+
|
279 |
+
The function does not work on string arrays.
|
280 |
+
|
281 |
+
>>> a = np.array([2j, "a"], dtype="U")
|
282 |
+
>>> np.isreal(a) # Warns about non-elementwise comparison
|
283 |
+
False
|
284 |
+
|
285 |
+
Returns True for all elements in input array of ``dtype=object`` even if
|
286 |
+
any of the elements is complex.
|
287 |
+
|
288 |
+
>>> a = np.array([1, "2", 3+4j], dtype=object)
|
289 |
+
>>> np.isreal(a)
|
290 |
+
array([ True, True, True])
|
291 |
+
|
292 |
+
isreal should not be used with object arrays
|
293 |
+
|
294 |
+
>>> a = np.array([1+2j, 2+1j], dtype=object)
|
295 |
+
>>> np.isreal(a)
|
296 |
+
array([ True, True])
|
297 |
+
|
298 |
+
"""
|
299 |
+
return imag(x) == 0
|
300 |
+
|
301 |
+
|
302 |
+
@array_function_dispatch(_is_type_dispatcher)
|
303 |
+
def iscomplexobj(x):
|
304 |
+
"""
|
305 |
+
Check for a complex type or an array of complex numbers.
|
306 |
+
|
307 |
+
The type of the input is checked, not the value. Even if the input
|
308 |
+
has an imaginary part equal to zero, `iscomplexobj` evaluates to True.
|
309 |
+
|
310 |
+
Parameters
|
311 |
+
----------
|
312 |
+
x : any
|
313 |
+
The input can be of any type and shape.
|
314 |
+
|
315 |
+
Returns
|
316 |
+
-------
|
317 |
+
iscomplexobj : bool
|
318 |
+
The return value, True if `x` is of a complex type or has at least
|
319 |
+
one complex element.
|
320 |
+
|
321 |
+
See Also
|
322 |
+
--------
|
323 |
+
isrealobj, iscomplex
|
324 |
+
|
325 |
+
Examples
|
326 |
+
--------
|
327 |
+
>>> np.iscomplexobj(1)
|
328 |
+
False
|
329 |
+
>>> np.iscomplexobj(1+0j)
|
330 |
+
True
|
331 |
+
>>> np.iscomplexobj([3, 1+0j, True])
|
332 |
+
True
|
333 |
+
|
334 |
+
"""
|
335 |
+
try:
|
336 |
+
dtype = x.dtype
|
337 |
+
type_ = dtype.type
|
338 |
+
except AttributeError:
|
339 |
+
type_ = asarray(x).dtype.type
|
340 |
+
return issubclass(type_, _nx.complexfloating)
|
341 |
+
|
342 |
+
|
343 |
+
@array_function_dispatch(_is_type_dispatcher)
|
344 |
+
def isrealobj(x):
|
345 |
+
"""
|
346 |
+
Return True if x is a not complex type or an array of complex numbers.
|
347 |
+
|
348 |
+
The type of the input is checked, not the value. So even if the input
|
349 |
+
has an imaginary part equal to zero, `isrealobj` evaluates to False
|
350 |
+
if the data type is complex.
|
351 |
+
|
352 |
+
Parameters
|
353 |
+
----------
|
354 |
+
x : any
|
355 |
+
The input can be of any type and shape.
|
356 |
+
|
357 |
+
Returns
|
358 |
+
-------
|
359 |
+
y : bool
|
360 |
+
The return value, False if `x` is of a complex type.
|
361 |
+
|
362 |
+
See Also
|
363 |
+
--------
|
364 |
+
iscomplexobj, isreal
|
365 |
+
|
366 |
+
Notes
|
367 |
+
-----
|
368 |
+
The function is only meant for arrays with numerical values but it
|
369 |
+
accepts all other objects. Since it assumes array input, the return
|
370 |
+
value of other objects may be True.
|
371 |
+
|
372 |
+
>>> np.isrealobj('A string')
|
373 |
+
True
|
374 |
+
>>> np.isrealobj(False)
|
375 |
+
True
|
376 |
+
>>> np.isrealobj(None)
|
377 |
+
True
|
378 |
+
|
379 |
+
Examples
|
380 |
+
--------
|
381 |
+
>>> np.isrealobj(1)
|
382 |
+
True
|
383 |
+
>>> np.isrealobj(1+0j)
|
384 |
+
False
|
385 |
+
>>> np.isrealobj([3, 1+0j, True])
|
386 |
+
False
|
387 |
+
|
388 |
+
"""
|
389 |
+
return not iscomplexobj(x)
|
390 |
+
|
391 |
+
#-----------------------------------------------------------------------------
|
392 |
+
|
393 |
+
def _getmaxmin(t):
|
394 |
+
from numpy.core import getlimits
|
395 |
+
f = getlimits.finfo(t)
|
396 |
+
return f.max, f.min
|
397 |
+
|
398 |
+
|
399 |
+
def _nan_to_num_dispatcher(x, copy=None, nan=None, posinf=None, neginf=None):
|
400 |
+
return (x,)
|
401 |
+
|
402 |
+
|
403 |
+
@array_function_dispatch(_nan_to_num_dispatcher)
|
404 |
+
def nan_to_num(x, copy=True, nan=0.0, posinf=None, neginf=None):
|
405 |
+
"""
|
406 |
+
Replace NaN with zero and infinity with large finite numbers (default
|
407 |
+
behaviour) or with the numbers defined by the user using the `nan`,
|
408 |
+
`posinf` and/or `neginf` keywords.
|
409 |
+
|
410 |
+
If `x` is inexact, NaN is replaced by zero or by the user defined value in
|
411 |
+
`nan` keyword, infinity is replaced by the largest finite floating point
|
412 |
+
values representable by ``x.dtype`` or by the user defined value in
|
413 |
+
`posinf` keyword and -infinity is replaced by the most negative finite
|
414 |
+
floating point values representable by ``x.dtype`` or by the user defined
|
415 |
+
value in `neginf` keyword.
|
416 |
+
|
417 |
+
For complex dtypes, the above is applied to each of the real and
|
418 |
+
imaginary components of `x` separately.
|
419 |
+
|
420 |
+
If `x` is not inexact, then no replacements are made.
|
421 |
+
|
422 |
+
Parameters
|
423 |
+
----------
|
424 |
+
x : scalar or array_like
|
425 |
+
Input data.
|
426 |
+
copy : bool, optional
|
427 |
+
Whether to create a copy of `x` (True) or to replace values
|
428 |
+
in-place (False). The in-place operation only occurs if
|
429 |
+
casting to an array does not require a copy.
|
430 |
+
Default is True.
|
431 |
+
|
432 |
+
.. versionadded:: 1.13
|
433 |
+
nan : int, float, optional
|
434 |
+
Value to be used to fill NaN values. If no value is passed
|
435 |
+
then NaN values will be replaced with 0.0.
|
436 |
+
|
437 |
+
.. versionadded:: 1.17
|
438 |
+
posinf : int, float, optional
|
439 |
+
Value to be used to fill positive infinity values. If no value is
|
440 |
+
passed then positive infinity values will be replaced with a very
|
441 |
+
large number.
|
442 |
+
|
443 |
+
.. versionadded:: 1.17
|
444 |
+
neginf : int, float, optional
|
445 |
+
Value to be used to fill negative infinity values. If no value is
|
446 |
+
passed then negative infinity values will be replaced with a very
|
447 |
+
small (or negative) number.
|
448 |
+
|
449 |
+
.. versionadded:: 1.17
|
450 |
+
|
451 |
+
|
452 |
+
|
453 |
+
Returns
|
454 |
+
-------
|
455 |
+
out : ndarray
|
456 |
+
`x`, with the non-finite values replaced. If `copy` is False, this may
|
457 |
+
be `x` itself.
|
458 |
+
|
459 |
+
See Also
|
460 |
+
--------
|
461 |
+
isinf : Shows which elements are positive or negative infinity.
|
462 |
+
isneginf : Shows which elements are negative infinity.
|
463 |
+
isposinf : Shows which elements are positive infinity.
|
464 |
+
isnan : Shows which elements are Not a Number (NaN).
|
465 |
+
isfinite : Shows which elements are finite (not NaN, not infinity)
|
466 |
+
|
467 |
+
Notes
|
468 |
+
-----
|
469 |
+
NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic
|
470 |
+
(IEEE 754). This means that Not a Number is not equivalent to infinity.
|
471 |
+
|
472 |
+
Examples
|
473 |
+
--------
|
474 |
+
>>> np.nan_to_num(np.inf)
|
475 |
+
1.7976931348623157e+308
|
476 |
+
>>> np.nan_to_num(-np.inf)
|
477 |
+
-1.7976931348623157e+308
|
478 |
+
>>> np.nan_to_num(np.nan)
|
479 |
+
0.0
|
480 |
+
>>> x = np.array([np.inf, -np.inf, np.nan, -128, 128])
|
481 |
+
>>> np.nan_to_num(x)
|
482 |
+
array([ 1.79769313e+308, -1.79769313e+308, 0.00000000e+000, # may vary
|
483 |
+
-1.28000000e+002, 1.28000000e+002])
|
484 |
+
>>> np.nan_to_num(x, nan=-9999, posinf=33333333, neginf=33333333)
|
485 |
+
array([ 3.3333333e+07, 3.3333333e+07, -9.9990000e+03,
|
486 |
+
-1.2800000e+02, 1.2800000e+02])
|
487 |
+
>>> y = np.array([complex(np.inf, np.nan), np.nan, complex(np.nan, np.inf)])
|
488 |
+
array([ 1.79769313e+308, -1.79769313e+308, 0.00000000e+000, # may vary
|
489 |
+
-1.28000000e+002, 1.28000000e+002])
|
490 |
+
>>> np.nan_to_num(y)
|
491 |
+
array([ 1.79769313e+308 +0.00000000e+000j, # may vary
|
492 |
+
0.00000000e+000 +0.00000000e+000j,
|
493 |
+
0.00000000e+000 +1.79769313e+308j])
|
494 |
+
>>> np.nan_to_num(y, nan=111111, posinf=222222)
|
495 |
+
array([222222.+111111.j, 111111. +0.j, 111111.+222222.j])
|
496 |
+
"""
|
497 |
+
x = _nx.array(x, subok=True, copy=copy)
|
498 |
+
xtype = x.dtype.type
|
499 |
+
|
500 |
+
isscalar = (x.ndim == 0)
|
501 |
+
|
502 |
+
if not issubclass(xtype, _nx.inexact):
|
503 |
+
return x[()] if isscalar else x
|
504 |
+
|
505 |
+
iscomplex = issubclass(xtype, _nx.complexfloating)
|
506 |
+
|
507 |
+
dest = (x.real, x.imag) if iscomplex else (x,)
|
508 |
+
maxf, minf = _getmaxmin(x.real.dtype)
|
509 |
+
if posinf is not None:
|
510 |
+
maxf = posinf
|
511 |
+
if neginf is not None:
|
512 |
+
minf = neginf
|
513 |
+
for d in dest:
|
514 |
+
idx_nan = isnan(d)
|
515 |
+
idx_posinf = isposinf(d)
|
516 |
+
idx_neginf = isneginf(d)
|
517 |
+
_nx.copyto(d, nan, where=idx_nan)
|
518 |
+
_nx.copyto(d, maxf, where=idx_posinf)
|
519 |
+
_nx.copyto(d, minf, where=idx_neginf)
|
520 |
+
return x[()] if isscalar else x
|
521 |
+
|
522 |
+
#-----------------------------------------------------------------------------
|
523 |
+
|
524 |
+
def _real_if_close_dispatcher(a, tol=None):
|
525 |
+
return (a,)
|
526 |
+
|
527 |
+
|
528 |
+
@array_function_dispatch(_real_if_close_dispatcher)
|
529 |
+
def real_if_close(a, tol=100):
|
530 |
+
"""
|
531 |
+
If input is complex with all imaginary parts close to zero, return
|
532 |
+
real parts.
|
533 |
+
|
534 |
+
"Close to zero" is defined as `tol` * (machine epsilon of the type for
|
535 |
+
`a`).
|
536 |
+
|
537 |
+
Parameters
|
538 |
+
----------
|
539 |
+
a : array_like
|
540 |
+
Input array.
|
541 |
+
tol : float
|
542 |
+
Tolerance in machine epsilons for the complex part of the elements
|
543 |
+
in the array. If the tolerance is <=1, then the absolute tolerance
|
544 |
+
is used.
|
545 |
+
|
546 |
+
Returns
|
547 |
+
-------
|
548 |
+
out : ndarray
|
549 |
+
If `a` is real, the type of `a` is used for the output. If `a`
|
550 |
+
has complex elements, the returned type is float.
|
551 |
+
|
552 |
+
See Also
|
553 |
+
--------
|
554 |
+
real, imag, angle
|
555 |
+
|
556 |
+
Notes
|
557 |
+
-----
|
558 |
+
Machine epsilon varies from machine to machine and between data types
|
559 |
+
but Python floats on most platforms have a machine epsilon equal to
|
560 |
+
2.2204460492503131e-16. You can use 'np.finfo(float).eps' to print
|
561 |
+
out the machine epsilon for floats.
|
562 |
+
|
563 |
+
Examples
|
564 |
+
--------
|
565 |
+
>>> np.finfo(float).eps
|
566 |
+
2.2204460492503131e-16 # may vary
|
567 |
+
|
568 |
+
>>> np.real_if_close([2.1 + 4e-14j, 5.2 + 3e-15j], tol=1000)
|
569 |
+
array([2.1, 5.2])
|
570 |
+
>>> np.real_if_close([2.1 + 4e-13j, 5.2 + 3e-15j], tol=1000)
|
571 |
+
array([2.1+4.e-13j, 5.2 + 3e-15j])
|
572 |
+
|
573 |
+
"""
|
574 |
+
a = asanyarray(a)
|
575 |
+
type_ = a.dtype.type
|
576 |
+
if not issubclass(type_, _nx.complexfloating):
|
577 |
+
return a
|
578 |
+
if tol > 1:
|
579 |
+
f = getlimits.finfo(type_)
|
580 |
+
tol = f.eps * tol
|
581 |
+
if _nx.all(_nx.absolute(a.imag) < tol):
|
582 |
+
a = a.real
|
583 |
+
return a
|
584 |
+
|
585 |
+
|
586 |
+
#-----------------------------------------------------------------------------
|
587 |
+
|
588 |
+
_namefromtype = {'S1': 'character',
|
589 |
+
'?': 'bool',
|
590 |
+
'b': 'signed char',
|
591 |
+
'B': 'unsigned char',
|
592 |
+
'h': 'short',
|
593 |
+
'H': 'unsigned short',
|
594 |
+
'i': 'integer',
|
595 |
+
'I': 'unsigned integer',
|
596 |
+
'l': 'long integer',
|
597 |
+
'L': 'unsigned long integer',
|
598 |
+
'q': 'long long integer',
|
599 |
+
'Q': 'unsigned long long integer',
|
600 |
+
'f': 'single precision',
|
601 |
+
'd': 'double precision',
|
602 |
+
'g': 'long precision',
|
603 |
+
'F': 'complex single precision',
|
604 |
+
'D': 'complex double precision',
|
605 |
+
'G': 'complex long double precision',
|
606 |
+
'S': 'string',
|
607 |
+
'U': 'unicode',
|
608 |
+
'V': 'void',
|
609 |
+
'O': 'object'
|
610 |
+
}
|
611 |
+
|
612 |
+
@set_module('numpy')
|
613 |
+
def typename(char):
|
614 |
+
"""
|
615 |
+
Return a description for the given data type code.
|
616 |
+
|
617 |
+
Parameters
|
618 |
+
----------
|
619 |
+
char : str
|
620 |
+
Data type code.
|
621 |
+
|
622 |
+
Returns
|
623 |
+
-------
|
624 |
+
out : str
|
625 |
+
Description of the input data type code.
|
626 |
+
|
627 |
+
See Also
|
628 |
+
--------
|
629 |
+
dtype, typecodes
|
630 |
+
|
631 |
+
Examples
|
632 |
+
--------
|
633 |
+
>>> typechars = ['S1', '?', 'B', 'D', 'G', 'F', 'I', 'H', 'L', 'O', 'Q',
|
634 |
+
... 'S', 'U', 'V', 'b', 'd', 'g', 'f', 'i', 'h', 'l', 'q']
|
635 |
+
>>> for typechar in typechars:
|
636 |
+
... print(typechar, ' : ', np.typename(typechar))
|
637 |
+
...
|
638 |
+
S1 : character
|
639 |
+
? : bool
|
640 |
+
B : unsigned char
|
641 |
+
D : complex double precision
|
642 |
+
G : complex long double precision
|
643 |
+
F : complex single precision
|
644 |
+
I : unsigned integer
|
645 |
+
H : unsigned short
|
646 |
+
L : unsigned long integer
|
647 |
+
O : object
|
648 |
+
Q : unsigned long long integer
|
649 |
+
S : string
|
650 |
+
U : unicode
|
651 |
+
V : void
|
652 |
+
b : signed char
|
653 |
+
d : double precision
|
654 |
+
g : long precision
|
655 |
+
f : single precision
|
656 |
+
i : integer
|
657 |
+
h : short
|
658 |
+
l : long integer
|
659 |
+
q : long long integer
|
660 |
+
|
661 |
+
"""
|
662 |
+
return _namefromtype[char]
|
663 |
+
|
664 |
+
#-----------------------------------------------------------------------------
|
665 |
+
|
666 |
+
#determine the "minimum common type" for a group of arrays.
|
667 |
+
array_type = [[_nx.half, _nx.single, _nx.double, _nx.longdouble],
|
668 |
+
[None, _nx.csingle, _nx.cdouble, _nx.clongdouble]]
|
669 |
+
array_precision = {_nx.half: 0,
|
670 |
+
_nx.single: 1,
|
671 |
+
_nx.double: 2,
|
672 |
+
_nx.longdouble: 3,
|
673 |
+
_nx.csingle: 1,
|
674 |
+
_nx.cdouble: 2,
|
675 |
+
_nx.clongdouble: 3}
|
676 |
+
|
677 |
+
|
678 |
+
def _common_type_dispatcher(*arrays):
|
679 |
+
return arrays
|
680 |
+
|
681 |
+
|
682 |
+
@array_function_dispatch(_common_type_dispatcher)
|
683 |
+
def common_type(*arrays):
|
684 |
+
"""
|
685 |
+
Return a scalar type which is common to the input arrays.
|
686 |
+
|
687 |
+
The return type will always be an inexact (i.e. floating point) scalar
|
688 |
+
type, even if all the arrays are integer arrays. If one of the inputs is
|
689 |
+
an integer array, the minimum precision type that is returned is a
|
690 |
+
64-bit floating point dtype.
|
691 |
+
|
692 |
+
All input arrays except int64 and uint64 can be safely cast to the
|
693 |
+
returned dtype without loss of information.
|
694 |
+
|
695 |
+
Parameters
|
696 |
+
----------
|
697 |
+
array1, array2, ... : ndarrays
|
698 |
+
Input arrays.
|
699 |
+
|
700 |
+
Returns
|
701 |
+
-------
|
702 |
+
out : data type code
|
703 |
+
Data type code.
|
704 |
+
|
705 |
+
See Also
|
706 |
+
--------
|
707 |
+
dtype, mintypecode
|
708 |
+
|
709 |
+
Examples
|
710 |
+
--------
|
711 |
+
>>> np.common_type(np.arange(2, dtype=np.float32))
|
712 |
+
<class 'numpy.float32'>
|
713 |
+
>>> np.common_type(np.arange(2, dtype=np.float32), np.arange(2))
|
714 |
+
<class 'numpy.float64'>
|
715 |
+
>>> np.common_type(np.arange(4), np.array([45, 6.j]), np.array([45.0]))
|
716 |
+
<class 'numpy.complex128'>
|
717 |
+
|
718 |
+
"""
|
719 |
+
is_complex = False
|
720 |
+
precision = 0
|
721 |
+
for a in arrays:
|
722 |
+
t = a.dtype.type
|
723 |
+
if iscomplexobj(a):
|
724 |
+
is_complex = True
|
725 |
+
if issubclass(t, _nx.integer):
|
726 |
+
p = 2 # array_precision[_nx.double]
|
727 |
+
else:
|
728 |
+
p = array_precision.get(t, None)
|
729 |
+
if p is None:
|
730 |
+
raise TypeError("can't get common type for non-numeric array")
|
731 |
+
precision = max(precision, p)
|
732 |
+
if is_complex:
|
733 |
+
return array_type[1][precision]
|
734 |
+
else:
|
735 |
+
return array_type[0][precision]
|
env-llmeval/lib/python3.10/site-packages/numpy/lib/ufunclike.pyi
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, overload, TypeVar
|
2 |
+
|
3 |
+
from numpy import floating, bool_, object_, ndarray
|
4 |
+
from numpy._typing import (
|
5 |
+
NDArray,
|
6 |
+
_FloatLike_co,
|
7 |
+
_ArrayLikeFloat_co,
|
8 |
+
_ArrayLikeObject_co,
|
9 |
+
)
|
10 |
+
|
11 |
+
_ArrayType = TypeVar("_ArrayType", bound=ndarray[Any, Any])
|
12 |
+
|
13 |
+
__all__: list[str]
|
14 |
+
|
15 |
+
@overload
|
16 |
+
def fix( # type: ignore[misc]
|
17 |
+
x: _FloatLike_co,
|
18 |
+
out: None = ...,
|
19 |
+
) -> floating[Any]: ...
|
20 |
+
@overload
|
21 |
+
def fix(
|
22 |
+
x: _ArrayLikeFloat_co,
|
23 |
+
out: None = ...,
|
24 |
+
) -> NDArray[floating[Any]]: ...
|
25 |
+
@overload
|
26 |
+
def fix(
|
27 |
+
x: _ArrayLikeObject_co,
|
28 |
+
out: None = ...,
|
29 |
+
) -> NDArray[object_]: ...
|
30 |
+
@overload
|
31 |
+
def fix(
|
32 |
+
x: _ArrayLikeFloat_co | _ArrayLikeObject_co,
|
33 |
+
out: _ArrayType,
|
34 |
+
) -> _ArrayType: ...
|
35 |
+
|
36 |
+
@overload
|
37 |
+
def isposinf( # type: ignore[misc]
|
38 |
+
x: _FloatLike_co,
|
39 |
+
out: None = ...,
|
40 |
+
) -> bool_: ...
|
41 |
+
@overload
|
42 |
+
def isposinf(
|
43 |
+
x: _ArrayLikeFloat_co,
|
44 |
+
out: None = ...,
|
45 |
+
) -> NDArray[bool_]: ...
|
46 |
+
@overload
|
47 |
+
def isposinf(
|
48 |
+
x: _ArrayLikeFloat_co,
|
49 |
+
out: _ArrayType,
|
50 |
+
) -> _ArrayType: ...
|
51 |
+
|
52 |
+
@overload
|
53 |
+
def isneginf( # type: ignore[misc]
|
54 |
+
x: _FloatLike_co,
|
55 |
+
out: None = ...,
|
56 |
+
) -> bool_: ...
|
57 |
+
@overload
|
58 |
+
def isneginf(
|
59 |
+
x: _ArrayLikeFloat_co,
|
60 |
+
out: None = ...,
|
61 |
+
) -> NDArray[bool_]: ...
|
62 |
+
@overload
|
63 |
+
def isneginf(
|
64 |
+
x: _ArrayLikeFloat_co,
|
65 |
+
out: _ArrayType,
|
66 |
+
) -> _ArrayType: ...
|
env-llmeval/lib/python3.10/site-packages/numpy/lib/user_array.py
ADDED
@@ -0,0 +1,286 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Standard container-class for easy multiple-inheritance.
|
3 |
+
|
4 |
+
Try to inherit from the ndarray instead of using this class as this is not
|
5 |
+
complete.
|
6 |
+
|
7 |
+
"""
|
8 |
+
from numpy.core import (
|
9 |
+
array, asarray, absolute, add, subtract, multiply, divide,
|
10 |
+
remainder, power, left_shift, right_shift, bitwise_and, bitwise_or,
|
11 |
+
bitwise_xor, invert, less, less_equal, not_equal, equal, greater,
|
12 |
+
greater_equal, shape, reshape, arange, sin, sqrt, transpose
|
13 |
+
)
|
14 |
+
|
15 |
+
|
16 |
+
class container:
|
17 |
+
"""
|
18 |
+
container(data, dtype=None, copy=True)
|
19 |
+
|
20 |
+
Standard container-class for easy multiple-inheritance.
|
21 |
+
|
22 |
+
Methods
|
23 |
+
-------
|
24 |
+
copy
|
25 |
+
tostring
|
26 |
+
byteswap
|
27 |
+
astype
|
28 |
+
|
29 |
+
"""
|
30 |
+
def __init__(self, data, dtype=None, copy=True):
|
31 |
+
self.array = array(data, dtype, copy=copy)
|
32 |
+
|
33 |
+
def __repr__(self):
|
34 |
+
if self.ndim > 0:
|
35 |
+
return self.__class__.__name__ + repr(self.array)[len("array"):]
|
36 |
+
else:
|
37 |
+
return self.__class__.__name__ + "(" + repr(self.array) + ")"
|
38 |
+
|
39 |
+
def __array__(self, t=None):
|
40 |
+
if t:
|
41 |
+
return self.array.astype(t)
|
42 |
+
return self.array
|
43 |
+
|
44 |
+
# Array as sequence
|
45 |
+
def __len__(self):
|
46 |
+
return len(self.array)
|
47 |
+
|
48 |
+
def __getitem__(self, index):
|
49 |
+
return self._rc(self.array[index])
|
50 |
+
|
51 |
+
def __setitem__(self, index, value):
|
52 |
+
self.array[index] = asarray(value, self.dtype)
|
53 |
+
|
54 |
+
def __abs__(self):
|
55 |
+
return self._rc(absolute(self.array))
|
56 |
+
|
57 |
+
def __neg__(self):
|
58 |
+
return self._rc(-self.array)
|
59 |
+
|
60 |
+
def __add__(self, other):
|
61 |
+
return self._rc(self.array + asarray(other))
|
62 |
+
|
63 |
+
__radd__ = __add__
|
64 |
+
|
65 |
+
def __iadd__(self, other):
|
66 |
+
add(self.array, other, self.array)
|
67 |
+
return self
|
68 |
+
|
69 |
+
def __sub__(self, other):
|
70 |
+
return self._rc(self.array - asarray(other))
|
71 |
+
|
72 |
+
def __rsub__(self, other):
|
73 |
+
return self._rc(asarray(other) - self.array)
|
74 |
+
|
75 |
+
def __isub__(self, other):
|
76 |
+
subtract(self.array, other, self.array)
|
77 |
+
return self
|
78 |
+
|
79 |
+
def __mul__(self, other):
|
80 |
+
return self._rc(multiply(self.array, asarray(other)))
|
81 |
+
|
82 |
+
__rmul__ = __mul__
|
83 |
+
|
84 |
+
def __imul__(self, other):
|
85 |
+
multiply(self.array, other, self.array)
|
86 |
+
return self
|
87 |
+
|
88 |
+
def __div__(self, other):
|
89 |
+
return self._rc(divide(self.array, asarray(other)))
|
90 |
+
|
91 |
+
def __rdiv__(self, other):
|
92 |
+
return self._rc(divide(asarray(other), self.array))
|
93 |
+
|
94 |
+
def __idiv__(self, other):
|
95 |
+
divide(self.array, other, self.array)
|
96 |
+
return self
|
97 |
+
|
98 |
+
def __mod__(self, other):
|
99 |
+
return self._rc(remainder(self.array, other))
|
100 |
+
|
101 |
+
def __rmod__(self, other):
|
102 |
+
return self._rc(remainder(other, self.array))
|
103 |
+
|
104 |
+
def __imod__(self, other):
|
105 |
+
remainder(self.array, other, self.array)
|
106 |
+
return self
|
107 |
+
|
108 |
+
def __divmod__(self, other):
|
109 |
+
return (self._rc(divide(self.array, other)),
|
110 |
+
self._rc(remainder(self.array, other)))
|
111 |
+
|
112 |
+
def __rdivmod__(self, other):
|
113 |
+
return (self._rc(divide(other, self.array)),
|
114 |
+
self._rc(remainder(other, self.array)))
|
115 |
+
|
116 |
+
def __pow__(self, other):
|
117 |
+
return self._rc(power(self.array, asarray(other)))
|
118 |
+
|
119 |
+
def __rpow__(self, other):
|
120 |
+
return self._rc(power(asarray(other), self.array))
|
121 |
+
|
122 |
+
def __ipow__(self, other):
|
123 |
+
power(self.array, other, self.array)
|
124 |
+
return self
|
125 |
+
|
126 |
+
def __lshift__(self, other):
|
127 |
+
return self._rc(left_shift(self.array, other))
|
128 |
+
|
129 |
+
def __rshift__(self, other):
|
130 |
+
return self._rc(right_shift(self.array, other))
|
131 |
+
|
132 |
+
def __rlshift__(self, other):
|
133 |
+
return self._rc(left_shift(other, self.array))
|
134 |
+
|
135 |
+
def __rrshift__(self, other):
|
136 |
+
return self._rc(right_shift(other, self.array))
|
137 |
+
|
138 |
+
def __ilshift__(self, other):
|
139 |
+
left_shift(self.array, other, self.array)
|
140 |
+
return self
|
141 |
+
|
142 |
+
def __irshift__(self, other):
|
143 |
+
right_shift(self.array, other, self.array)
|
144 |
+
return self
|
145 |
+
|
146 |
+
def __and__(self, other):
|
147 |
+
return self._rc(bitwise_and(self.array, other))
|
148 |
+
|
149 |
+
def __rand__(self, other):
|
150 |
+
return self._rc(bitwise_and(other, self.array))
|
151 |
+
|
152 |
+
def __iand__(self, other):
|
153 |
+
bitwise_and(self.array, other, self.array)
|
154 |
+
return self
|
155 |
+
|
156 |
+
def __xor__(self, other):
|
157 |
+
return self._rc(bitwise_xor(self.array, other))
|
158 |
+
|
159 |
+
def __rxor__(self, other):
|
160 |
+
return self._rc(bitwise_xor(other, self.array))
|
161 |
+
|
162 |
+
def __ixor__(self, other):
|
163 |
+
bitwise_xor(self.array, other, self.array)
|
164 |
+
return self
|
165 |
+
|
166 |
+
def __or__(self, other):
|
167 |
+
return self._rc(bitwise_or(self.array, other))
|
168 |
+
|
169 |
+
def __ror__(self, other):
|
170 |
+
return self._rc(bitwise_or(other, self.array))
|
171 |
+
|
172 |
+
def __ior__(self, other):
|
173 |
+
bitwise_or(self.array, other, self.array)
|
174 |
+
return self
|
175 |
+
|
176 |
+
def __pos__(self):
|
177 |
+
return self._rc(self.array)
|
178 |
+
|
179 |
+
def __invert__(self):
|
180 |
+
return self._rc(invert(self.array))
|
181 |
+
|
182 |
+
def _scalarfunc(self, func):
|
183 |
+
if self.ndim == 0:
|
184 |
+
return func(self[0])
|
185 |
+
else:
|
186 |
+
raise TypeError(
|
187 |
+
"only rank-0 arrays can be converted to Python scalars.")
|
188 |
+
|
189 |
+
def __complex__(self):
|
190 |
+
return self._scalarfunc(complex)
|
191 |
+
|
192 |
+
def __float__(self):
|
193 |
+
return self._scalarfunc(float)
|
194 |
+
|
195 |
+
def __int__(self):
|
196 |
+
return self._scalarfunc(int)
|
197 |
+
|
198 |
+
def __hex__(self):
|
199 |
+
return self._scalarfunc(hex)
|
200 |
+
|
201 |
+
def __oct__(self):
|
202 |
+
return self._scalarfunc(oct)
|
203 |
+
|
204 |
+
def __lt__(self, other):
|
205 |
+
return self._rc(less(self.array, other))
|
206 |
+
|
207 |
+
def __le__(self, other):
|
208 |
+
return self._rc(less_equal(self.array, other))
|
209 |
+
|
210 |
+
def __eq__(self, other):
|
211 |
+
return self._rc(equal(self.array, other))
|
212 |
+
|
213 |
+
def __ne__(self, other):
|
214 |
+
return self._rc(not_equal(self.array, other))
|
215 |
+
|
216 |
+
def __gt__(self, other):
|
217 |
+
return self._rc(greater(self.array, other))
|
218 |
+
|
219 |
+
def __ge__(self, other):
|
220 |
+
return self._rc(greater_equal(self.array, other))
|
221 |
+
|
222 |
+
def copy(self):
|
223 |
+
""
|
224 |
+
return self._rc(self.array.copy())
|
225 |
+
|
226 |
+
def tostring(self):
|
227 |
+
""
|
228 |
+
return self.array.tostring()
|
229 |
+
|
230 |
+
def tobytes(self):
|
231 |
+
""
|
232 |
+
return self.array.tobytes()
|
233 |
+
|
234 |
+
def byteswap(self):
|
235 |
+
""
|
236 |
+
return self._rc(self.array.byteswap())
|
237 |
+
|
238 |
+
def astype(self, typecode):
|
239 |
+
""
|
240 |
+
return self._rc(self.array.astype(typecode))
|
241 |
+
|
242 |
+
def _rc(self, a):
|
243 |
+
if len(shape(a)) == 0:
|
244 |
+
return a
|
245 |
+
else:
|
246 |
+
return self.__class__(a)
|
247 |
+
|
248 |
+
def __array_wrap__(self, *args):
|
249 |
+
return self.__class__(args[0])
|
250 |
+
|
251 |
+
def __setattr__(self, attr, value):
|
252 |
+
if attr == 'array':
|
253 |
+
object.__setattr__(self, attr, value)
|
254 |
+
return
|
255 |
+
try:
|
256 |
+
self.array.__setattr__(attr, value)
|
257 |
+
except AttributeError:
|
258 |
+
object.__setattr__(self, attr, value)
|
259 |
+
|
260 |
+
# Only called after other approaches fail.
|
261 |
+
def __getattr__(self, attr):
|
262 |
+
if (attr == 'array'):
|
263 |
+
return object.__getattribute__(self, attr)
|
264 |
+
return self.array.__getattribute__(attr)
|
265 |
+
|
266 |
+
#############################################################
|
267 |
+
# Test of class container
|
268 |
+
#############################################################
|
269 |
+
if __name__ == '__main__':
|
270 |
+
temp = reshape(arange(10000), (100, 100))
|
271 |
+
|
272 |
+
ua = container(temp)
|
273 |
+
# new object created begin test
|
274 |
+
print(dir(ua))
|
275 |
+
print(shape(ua), ua.shape) # I have changed Numeric.py
|
276 |
+
|
277 |
+
ua_small = ua[:3, :5]
|
278 |
+
print(ua_small)
|
279 |
+
# this did not change ua[0,0], which is not normal behavior
|
280 |
+
ua_small[0, 0] = 10
|
281 |
+
print(ua_small[0, 0], ua[0, 0])
|
282 |
+
print(sin(ua_small) / 3. * 6. + sqrt(ua_small ** 2))
|
283 |
+
print(less(ua_small, 103), type(less(ua_small, 103)))
|
284 |
+
print(type(ua_small * reshape(arange(15), shape(ua_small))))
|
285 |
+
print(reshape(ua_small, (5, 3)))
|
286 |
+
print(transpose(ua_small))
|
env-llmeval/lib/python3.10/site-packages/numpy/matrixlib/__init__.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Sub-package containing the matrix class and related functions.
|
2 |
+
|
3 |
+
"""
|
4 |
+
from . import defmatrix
|
5 |
+
from .defmatrix import *
|
6 |
+
|
7 |
+
__all__ = defmatrix.__all__
|
8 |
+
|
9 |
+
from numpy._pytesttester import PytestTester
|
10 |
+
test = PytestTester(__name__)
|
11 |
+
del PytestTester
|
env-llmeval/lib/python3.10/site-packages/numpy/matrixlib/__init__.pyi
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from numpy._pytesttester import PytestTester
|
2 |
+
|
3 |
+
from numpy import (
|
4 |
+
matrix as matrix,
|
5 |
+
)
|
6 |
+
|
7 |
+
from numpy.matrixlib.defmatrix import (
|
8 |
+
bmat as bmat,
|
9 |
+
mat as mat,
|
10 |
+
asmatrix as asmatrix,
|
11 |
+
)
|
12 |
+
|
13 |
+
__all__: list[str]
|
14 |
+
__path__: list[str]
|
15 |
+
test: PytestTester
|
env-llmeval/lib/python3.10/site-packages/numpy/matrixlib/defmatrix.py
ADDED
@@ -0,0 +1,1114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
__all__ = ['matrix', 'bmat', 'mat', 'asmatrix']
|
2 |
+
|
3 |
+
import sys
|
4 |
+
import warnings
|
5 |
+
import ast
|
6 |
+
|
7 |
+
from .._utils import set_module
|
8 |
+
import numpy.core.numeric as N
|
9 |
+
from numpy.core.numeric import concatenate, isscalar
|
10 |
+
# While not in __all__, matrix_power used to be defined here, so we import
|
11 |
+
# it for backward compatibility.
|
12 |
+
from numpy.linalg import matrix_power
|
13 |
+
|
14 |
+
|
15 |
+
def _convert_from_string(data):
|
16 |
+
for char in '[]':
|
17 |
+
data = data.replace(char, '')
|
18 |
+
|
19 |
+
rows = data.split(';')
|
20 |
+
newdata = []
|
21 |
+
count = 0
|
22 |
+
for row in rows:
|
23 |
+
trow = row.split(',')
|
24 |
+
newrow = []
|
25 |
+
for col in trow:
|
26 |
+
temp = col.split()
|
27 |
+
newrow.extend(map(ast.literal_eval, temp))
|
28 |
+
if count == 0:
|
29 |
+
Ncols = len(newrow)
|
30 |
+
elif len(newrow) != Ncols:
|
31 |
+
raise ValueError("Rows not the same size.")
|
32 |
+
count += 1
|
33 |
+
newdata.append(newrow)
|
34 |
+
return newdata
|
35 |
+
|
36 |
+
|
37 |
+
@set_module('numpy')
|
38 |
+
def asmatrix(data, dtype=None):
|
39 |
+
"""
|
40 |
+
Interpret the input as a matrix.
|
41 |
+
|
42 |
+
Unlike `matrix`, `asmatrix` does not make a copy if the input is already
|
43 |
+
a matrix or an ndarray. Equivalent to ``matrix(data, copy=False)``.
|
44 |
+
|
45 |
+
Parameters
|
46 |
+
----------
|
47 |
+
data : array_like
|
48 |
+
Input data.
|
49 |
+
dtype : data-type
|
50 |
+
Data-type of the output matrix.
|
51 |
+
|
52 |
+
Returns
|
53 |
+
-------
|
54 |
+
mat : matrix
|
55 |
+
`data` interpreted as a matrix.
|
56 |
+
|
57 |
+
Examples
|
58 |
+
--------
|
59 |
+
>>> x = np.array([[1, 2], [3, 4]])
|
60 |
+
|
61 |
+
>>> m = np.asmatrix(x)
|
62 |
+
|
63 |
+
>>> x[0,0] = 5
|
64 |
+
|
65 |
+
>>> m
|
66 |
+
matrix([[5, 2],
|
67 |
+
[3, 4]])
|
68 |
+
|
69 |
+
"""
|
70 |
+
return matrix(data, dtype=dtype, copy=False)
|
71 |
+
|
72 |
+
|
73 |
+
@set_module('numpy')
|
74 |
+
class matrix(N.ndarray):
|
75 |
+
"""
|
76 |
+
matrix(data, dtype=None, copy=True)
|
77 |
+
|
78 |
+
.. note:: It is no longer recommended to use this class, even for linear
|
79 |
+
algebra. Instead use regular arrays. The class may be removed
|
80 |
+
in the future.
|
81 |
+
|
82 |
+
Returns a matrix from an array-like object, or from a string of data.
|
83 |
+
A matrix is a specialized 2-D array that retains its 2-D nature
|
84 |
+
through operations. It has certain special operators, such as ``*``
|
85 |
+
(matrix multiplication) and ``**`` (matrix power).
|
86 |
+
|
87 |
+
Parameters
|
88 |
+
----------
|
89 |
+
data : array_like or string
|
90 |
+
If `data` is a string, it is interpreted as a matrix with commas
|
91 |
+
or spaces separating columns, and semicolons separating rows.
|
92 |
+
dtype : data-type
|
93 |
+
Data-type of the output matrix.
|
94 |
+
copy : bool
|
95 |
+
If `data` is already an `ndarray`, then this flag determines
|
96 |
+
whether the data is copied (the default), or whether a view is
|
97 |
+
constructed.
|
98 |
+
|
99 |
+
See Also
|
100 |
+
--------
|
101 |
+
array
|
102 |
+
|
103 |
+
Examples
|
104 |
+
--------
|
105 |
+
>>> a = np.matrix('1 2; 3 4')
|
106 |
+
>>> a
|
107 |
+
matrix([[1, 2],
|
108 |
+
[3, 4]])
|
109 |
+
|
110 |
+
>>> np.matrix([[1, 2], [3, 4]])
|
111 |
+
matrix([[1, 2],
|
112 |
+
[3, 4]])
|
113 |
+
|
114 |
+
"""
|
115 |
+
__array_priority__ = 10.0
|
116 |
+
def __new__(subtype, data, dtype=None, copy=True):
|
117 |
+
warnings.warn('the matrix subclass is not the recommended way to '
|
118 |
+
'represent matrices or deal with linear algebra (see '
|
119 |
+
'https://docs.scipy.org/doc/numpy/user/'
|
120 |
+
'numpy-for-matlab-users.html). '
|
121 |
+
'Please adjust your code to use regular ndarray.',
|
122 |
+
PendingDeprecationWarning, stacklevel=2)
|
123 |
+
if isinstance(data, matrix):
|
124 |
+
dtype2 = data.dtype
|
125 |
+
if (dtype is None):
|
126 |
+
dtype = dtype2
|
127 |
+
if (dtype2 == dtype) and (not copy):
|
128 |
+
return data
|
129 |
+
return data.astype(dtype)
|
130 |
+
|
131 |
+
if isinstance(data, N.ndarray):
|
132 |
+
if dtype is None:
|
133 |
+
intype = data.dtype
|
134 |
+
else:
|
135 |
+
intype = N.dtype(dtype)
|
136 |
+
new = data.view(subtype)
|
137 |
+
if intype != data.dtype:
|
138 |
+
return new.astype(intype)
|
139 |
+
if copy: return new.copy()
|
140 |
+
else: return new
|
141 |
+
|
142 |
+
if isinstance(data, str):
|
143 |
+
data = _convert_from_string(data)
|
144 |
+
|
145 |
+
# now convert data to an array
|
146 |
+
arr = N.array(data, dtype=dtype, copy=copy)
|
147 |
+
ndim = arr.ndim
|
148 |
+
shape = arr.shape
|
149 |
+
if (ndim > 2):
|
150 |
+
raise ValueError("matrix must be 2-dimensional")
|
151 |
+
elif ndim == 0:
|
152 |
+
shape = (1, 1)
|
153 |
+
elif ndim == 1:
|
154 |
+
shape = (1, shape[0])
|
155 |
+
|
156 |
+
order = 'C'
|
157 |
+
if (ndim == 2) and arr.flags.fortran:
|
158 |
+
order = 'F'
|
159 |
+
|
160 |
+
if not (order or arr.flags.contiguous):
|
161 |
+
arr = arr.copy()
|
162 |
+
|
163 |
+
ret = N.ndarray.__new__(subtype, shape, arr.dtype,
|
164 |
+
buffer=arr,
|
165 |
+
order=order)
|
166 |
+
return ret
|
167 |
+
|
168 |
+
def __array_finalize__(self, obj):
|
169 |
+
self._getitem = False
|
170 |
+
if (isinstance(obj, matrix) and obj._getitem): return
|
171 |
+
ndim = self.ndim
|
172 |
+
if (ndim == 2):
|
173 |
+
return
|
174 |
+
if (ndim > 2):
|
175 |
+
newshape = tuple([x for x in self.shape if x > 1])
|
176 |
+
ndim = len(newshape)
|
177 |
+
if ndim == 2:
|
178 |
+
self.shape = newshape
|
179 |
+
return
|
180 |
+
elif (ndim > 2):
|
181 |
+
raise ValueError("shape too large to be a matrix.")
|
182 |
+
else:
|
183 |
+
newshape = self.shape
|
184 |
+
if ndim == 0:
|
185 |
+
self.shape = (1, 1)
|
186 |
+
elif ndim == 1:
|
187 |
+
self.shape = (1, newshape[0])
|
188 |
+
return
|
189 |
+
|
190 |
+
def __getitem__(self, index):
|
191 |
+
self._getitem = True
|
192 |
+
|
193 |
+
try:
|
194 |
+
out = N.ndarray.__getitem__(self, index)
|
195 |
+
finally:
|
196 |
+
self._getitem = False
|
197 |
+
|
198 |
+
if not isinstance(out, N.ndarray):
|
199 |
+
return out
|
200 |
+
|
201 |
+
if out.ndim == 0:
|
202 |
+
return out[()]
|
203 |
+
if out.ndim == 1:
|
204 |
+
sh = out.shape[0]
|
205 |
+
# Determine when we should have a column array
|
206 |
+
try:
|
207 |
+
n = len(index)
|
208 |
+
except Exception:
|
209 |
+
n = 0
|
210 |
+
if n > 1 and isscalar(index[1]):
|
211 |
+
out.shape = (sh, 1)
|
212 |
+
else:
|
213 |
+
out.shape = (1, sh)
|
214 |
+
return out
|
215 |
+
|
216 |
+
def __mul__(self, other):
|
217 |
+
if isinstance(other, (N.ndarray, list, tuple)) :
|
218 |
+
# This promotes 1-D vectors to row vectors
|
219 |
+
return N.dot(self, asmatrix(other))
|
220 |
+
if isscalar(other) or not hasattr(other, '__rmul__') :
|
221 |
+
return N.dot(self, other)
|
222 |
+
return NotImplemented
|
223 |
+
|
224 |
+
def __rmul__(self, other):
|
225 |
+
return N.dot(other, self)
|
226 |
+
|
227 |
+
def __imul__(self, other):
|
228 |
+
self[:] = self * other
|
229 |
+
return self
|
230 |
+
|
231 |
+
def __pow__(self, other):
|
232 |
+
return matrix_power(self, other)
|
233 |
+
|
234 |
+
def __ipow__(self, other):
|
235 |
+
self[:] = self ** other
|
236 |
+
return self
|
237 |
+
|
238 |
+
def __rpow__(self, other):
|
239 |
+
return NotImplemented
|
240 |
+
|
241 |
+
def _align(self, axis):
|
242 |
+
"""A convenience function for operations that need to preserve axis
|
243 |
+
orientation.
|
244 |
+
"""
|
245 |
+
if axis is None:
|
246 |
+
return self[0, 0]
|
247 |
+
elif axis==0:
|
248 |
+
return self
|
249 |
+
elif axis==1:
|
250 |
+
return self.transpose()
|
251 |
+
else:
|
252 |
+
raise ValueError("unsupported axis")
|
253 |
+
|
254 |
+
def _collapse(self, axis):
|
255 |
+
"""A convenience function for operations that want to collapse
|
256 |
+
to a scalar like _align, but are using keepdims=True
|
257 |
+
"""
|
258 |
+
if axis is None:
|
259 |
+
return self[0, 0]
|
260 |
+
else:
|
261 |
+
return self
|
262 |
+
|
263 |
+
# Necessary because base-class tolist expects dimension
|
264 |
+
# reduction by x[0]
|
265 |
+
def tolist(self):
|
266 |
+
"""
|
267 |
+
Return the matrix as a (possibly nested) list.
|
268 |
+
|
269 |
+
See `ndarray.tolist` for full documentation.
|
270 |
+
|
271 |
+
See Also
|
272 |
+
--------
|
273 |
+
ndarray.tolist
|
274 |
+
|
275 |
+
Examples
|
276 |
+
--------
|
277 |
+
>>> x = np.matrix(np.arange(12).reshape((3,4))); x
|
278 |
+
matrix([[ 0, 1, 2, 3],
|
279 |
+
[ 4, 5, 6, 7],
|
280 |
+
[ 8, 9, 10, 11]])
|
281 |
+
>>> x.tolist()
|
282 |
+
[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]
|
283 |
+
|
284 |
+
"""
|
285 |
+
return self.__array__().tolist()
|
286 |
+
|
287 |
+
# To preserve orientation of result...
|
288 |
+
def sum(self, axis=None, dtype=None, out=None):
|
289 |
+
"""
|
290 |
+
Returns the sum of the matrix elements, along the given axis.
|
291 |
+
|
292 |
+
Refer to `numpy.sum` for full documentation.
|
293 |
+
|
294 |
+
See Also
|
295 |
+
--------
|
296 |
+
numpy.sum
|
297 |
+
|
298 |
+
Notes
|
299 |
+
-----
|
300 |
+
This is the same as `ndarray.sum`, except that where an `ndarray` would
|
301 |
+
be returned, a `matrix` object is returned instead.
|
302 |
+
|
303 |
+
Examples
|
304 |
+
--------
|
305 |
+
>>> x = np.matrix([[1, 2], [4, 3]])
|
306 |
+
>>> x.sum()
|
307 |
+
10
|
308 |
+
>>> x.sum(axis=1)
|
309 |
+
matrix([[3],
|
310 |
+
[7]])
|
311 |
+
>>> x.sum(axis=1, dtype='float')
|
312 |
+
matrix([[3.],
|
313 |
+
[7.]])
|
314 |
+
>>> out = np.zeros((2, 1), dtype='float')
|
315 |
+
>>> x.sum(axis=1, dtype='float', out=np.asmatrix(out))
|
316 |
+
matrix([[3.],
|
317 |
+
[7.]])
|
318 |
+
|
319 |
+
"""
|
320 |
+
return N.ndarray.sum(self, axis, dtype, out, keepdims=True)._collapse(axis)
|
321 |
+
|
322 |
+
|
323 |
+
# To update docstring from array to matrix...
|
324 |
+
def squeeze(self, axis=None):
|
325 |
+
"""
|
326 |
+
Return a possibly reshaped matrix.
|
327 |
+
|
328 |
+
Refer to `numpy.squeeze` for more documentation.
|
329 |
+
|
330 |
+
Parameters
|
331 |
+
----------
|
332 |
+
axis : None or int or tuple of ints, optional
|
333 |
+
Selects a subset of the axes of length one in the shape.
|
334 |
+
If an axis is selected with shape entry greater than one,
|
335 |
+
an error is raised.
|
336 |
+
|
337 |
+
Returns
|
338 |
+
-------
|
339 |
+
squeezed : matrix
|
340 |
+
The matrix, but as a (1, N) matrix if it had shape (N, 1).
|
341 |
+
|
342 |
+
See Also
|
343 |
+
--------
|
344 |
+
numpy.squeeze : related function
|
345 |
+
|
346 |
+
Notes
|
347 |
+
-----
|
348 |
+
If `m` has a single column then that column is returned
|
349 |
+
as the single row of a matrix. Otherwise `m` is returned.
|
350 |
+
The returned matrix is always either `m` itself or a view into `m`.
|
351 |
+
Supplying an axis keyword argument will not affect the returned matrix
|
352 |
+
but it may cause an error to be raised.
|
353 |
+
|
354 |
+
Examples
|
355 |
+
--------
|
356 |
+
>>> c = np.matrix([[1], [2]])
|
357 |
+
>>> c
|
358 |
+
matrix([[1],
|
359 |
+
[2]])
|
360 |
+
>>> c.squeeze()
|
361 |
+
matrix([[1, 2]])
|
362 |
+
>>> r = c.T
|
363 |
+
>>> r
|
364 |
+
matrix([[1, 2]])
|
365 |
+
>>> r.squeeze()
|
366 |
+
matrix([[1, 2]])
|
367 |
+
>>> m = np.matrix([[1, 2], [3, 4]])
|
368 |
+
>>> m.squeeze()
|
369 |
+
matrix([[1, 2],
|
370 |
+
[3, 4]])
|
371 |
+
|
372 |
+
"""
|
373 |
+
return N.ndarray.squeeze(self, axis=axis)
|
374 |
+
|
375 |
+
|
376 |
+
# To update docstring from array to matrix...
|
377 |
+
def flatten(self, order='C'):
|
378 |
+
"""
|
379 |
+
Return a flattened copy of the matrix.
|
380 |
+
|
381 |
+
All `N` elements of the matrix are placed into a single row.
|
382 |
+
|
383 |
+
Parameters
|
384 |
+
----------
|
385 |
+
order : {'C', 'F', 'A', 'K'}, optional
|
386 |
+
'C' means to flatten in row-major (C-style) order. 'F' means to
|
387 |
+
flatten in column-major (Fortran-style) order. 'A' means to
|
388 |
+
flatten in column-major order if `m` is Fortran *contiguous* in
|
389 |
+
memory, row-major order otherwise. 'K' means to flatten `m` in
|
390 |
+
the order the elements occur in memory. The default is 'C'.
|
391 |
+
|
392 |
+
Returns
|
393 |
+
-------
|
394 |
+
y : matrix
|
395 |
+
A copy of the matrix, flattened to a `(1, N)` matrix where `N`
|
396 |
+
is the number of elements in the original matrix.
|
397 |
+
|
398 |
+
See Also
|
399 |
+
--------
|
400 |
+
ravel : Return a flattened array.
|
401 |
+
flat : A 1-D flat iterator over the matrix.
|
402 |
+
|
403 |
+
Examples
|
404 |
+
--------
|
405 |
+
>>> m = np.matrix([[1,2], [3,4]])
|
406 |
+
>>> m.flatten()
|
407 |
+
matrix([[1, 2, 3, 4]])
|
408 |
+
>>> m.flatten('F')
|
409 |
+
matrix([[1, 3, 2, 4]])
|
410 |
+
|
411 |
+
"""
|
412 |
+
return N.ndarray.flatten(self, order=order)
|
413 |
+
|
414 |
+
def mean(self, axis=None, dtype=None, out=None):
|
415 |
+
"""
|
416 |
+
Returns the average of the matrix elements along the given axis.
|
417 |
+
|
418 |
+
Refer to `numpy.mean` for full documentation.
|
419 |
+
|
420 |
+
See Also
|
421 |
+
--------
|
422 |
+
numpy.mean
|
423 |
+
|
424 |
+
Notes
|
425 |
+
-----
|
426 |
+
Same as `ndarray.mean` except that, where that returns an `ndarray`,
|
427 |
+
this returns a `matrix` object.
|
428 |
+
|
429 |
+
Examples
|
430 |
+
--------
|
431 |
+
>>> x = np.matrix(np.arange(12).reshape((3, 4)))
|
432 |
+
>>> x
|
433 |
+
matrix([[ 0, 1, 2, 3],
|
434 |
+
[ 4, 5, 6, 7],
|
435 |
+
[ 8, 9, 10, 11]])
|
436 |
+
>>> x.mean()
|
437 |
+
5.5
|
438 |
+
>>> x.mean(0)
|
439 |
+
matrix([[4., 5., 6., 7.]])
|
440 |
+
>>> x.mean(1)
|
441 |
+
matrix([[ 1.5],
|
442 |
+
[ 5.5],
|
443 |
+
[ 9.5]])
|
444 |
+
|
445 |
+
"""
|
446 |
+
return N.ndarray.mean(self, axis, dtype, out, keepdims=True)._collapse(axis)
|
447 |
+
|
448 |
+
def std(self, axis=None, dtype=None, out=None, ddof=0):
|
449 |
+
"""
|
450 |
+
Return the standard deviation of the array elements along the given axis.
|
451 |
+
|
452 |
+
Refer to `numpy.std` for full documentation.
|
453 |
+
|
454 |
+
See Also
|
455 |
+
--------
|
456 |
+
numpy.std
|
457 |
+
|
458 |
+
Notes
|
459 |
+
-----
|
460 |
+
This is the same as `ndarray.std`, except that where an `ndarray` would
|
461 |
+
be returned, a `matrix` object is returned instead.
|
462 |
+
|
463 |
+
Examples
|
464 |
+
--------
|
465 |
+
>>> x = np.matrix(np.arange(12).reshape((3, 4)))
|
466 |
+
>>> x
|
467 |
+
matrix([[ 0, 1, 2, 3],
|
468 |
+
[ 4, 5, 6, 7],
|
469 |
+
[ 8, 9, 10, 11]])
|
470 |
+
>>> x.std()
|
471 |
+
3.4520525295346629 # may vary
|
472 |
+
>>> x.std(0)
|
473 |
+
matrix([[ 3.26598632, 3.26598632, 3.26598632, 3.26598632]]) # may vary
|
474 |
+
>>> x.std(1)
|
475 |
+
matrix([[ 1.11803399],
|
476 |
+
[ 1.11803399],
|
477 |
+
[ 1.11803399]])
|
478 |
+
|
479 |
+
"""
|
480 |
+
return N.ndarray.std(self, axis, dtype, out, ddof, keepdims=True)._collapse(axis)
|
481 |
+
|
482 |
+
def var(self, axis=None, dtype=None, out=None, ddof=0):
|
483 |
+
"""
|
484 |
+
Returns the variance of the matrix elements, along the given axis.
|
485 |
+
|
486 |
+
Refer to `numpy.var` for full documentation.
|
487 |
+
|
488 |
+
See Also
|
489 |
+
--------
|
490 |
+
numpy.var
|
491 |
+
|
492 |
+
Notes
|
493 |
+
-----
|
494 |
+
This is the same as `ndarray.var`, except that where an `ndarray` would
|
495 |
+
be returned, a `matrix` object is returned instead.
|
496 |
+
|
497 |
+
Examples
|
498 |
+
--------
|
499 |
+
>>> x = np.matrix(np.arange(12).reshape((3, 4)))
|
500 |
+
>>> x
|
501 |
+
matrix([[ 0, 1, 2, 3],
|
502 |
+
[ 4, 5, 6, 7],
|
503 |
+
[ 8, 9, 10, 11]])
|
504 |
+
>>> x.var()
|
505 |
+
11.916666666666666
|
506 |
+
>>> x.var(0)
|
507 |
+
matrix([[ 10.66666667, 10.66666667, 10.66666667, 10.66666667]]) # may vary
|
508 |
+
>>> x.var(1)
|
509 |
+
matrix([[1.25],
|
510 |
+
[1.25],
|
511 |
+
[1.25]])
|
512 |
+
|
513 |
+
"""
|
514 |
+
return N.ndarray.var(self, axis, dtype, out, ddof, keepdims=True)._collapse(axis)
|
515 |
+
|
516 |
+
def prod(self, axis=None, dtype=None, out=None):
|
517 |
+
"""
|
518 |
+
Return the product of the array elements over the given axis.
|
519 |
+
|
520 |
+
Refer to `prod` for full documentation.
|
521 |
+
|
522 |
+
See Also
|
523 |
+
--------
|
524 |
+
prod, ndarray.prod
|
525 |
+
|
526 |
+
Notes
|
527 |
+
-----
|
528 |
+
Same as `ndarray.prod`, except, where that returns an `ndarray`, this
|
529 |
+
returns a `matrix` object instead.
|
530 |
+
|
531 |
+
Examples
|
532 |
+
--------
|
533 |
+
>>> x = np.matrix(np.arange(12).reshape((3,4))); x
|
534 |
+
matrix([[ 0, 1, 2, 3],
|
535 |
+
[ 4, 5, 6, 7],
|
536 |
+
[ 8, 9, 10, 11]])
|
537 |
+
>>> x.prod()
|
538 |
+
0
|
539 |
+
>>> x.prod(0)
|
540 |
+
matrix([[ 0, 45, 120, 231]])
|
541 |
+
>>> x.prod(1)
|
542 |
+
matrix([[ 0],
|
543 |
+
[ 840],
|
544 |
+
[7920]])
|
545 |
+
|
546 |
+
"""
|
547 |
+
return N.ndarray.prod(self, axis, dtype, out, keepdims=True)._collapse(axis)
|
548 |
+
|
549 |
+
def any(self, axis=None, out=None):
|
550 |
+
"""
|
551 |
+
Test whether any array element along a given axis evaluates to True.
|
552 |
+
|
553 |
+
Refer to `numpy.any` for full documentation.
|
554 |
+
|
555 |
+
Parameters
|
556 |
+
----------
|
557 |
+
axis : int, optional
|
558 |
+
Axis along which logical OR is performed
|
559 |
+
out : ndarray, optional
|
560 |
+
Output to existing array instead of creating new one, must have
|
561 |
+
same shape as expected output
|
562 |
+
|
563 |
+
Returns
|
564 |
+
-------
|
565 |
+
any : bool, ndarray
|
566 |
+
Returns a single bool if `axis` is ``None``; otherwise,
|
567 |
+
returns `ndarray`
|
568 |
+
|
569 |
+
"""
|
570 |
+
return N.ndarray.any(self, axis, out, keepdims=True)._collapse(axis)
|
571 |
+
|
572 |
+
def all(self, axis=None, out=None):
|
573 |
+
"""
|
574 |
+
Test whether all matrix elements along a given axis evaluate to True.
|
575 |
+
|
576 |
+
Parameters
|
577 |
+
----------
|
578 |
+
See `numpy.all` for complete descriptions
|
579 |
+
|
580 |
+
See Also
|
581 |
+
--------
|
582 |
+
numpy.all
|
583 |
+
|
584 |
+
Notes
|
585 |
+
-----
|
586 |
+
This is the same as `ndarray.all`, but it returns a `matrix` object.
|
587 |
+
|
588 |
+
Examples
|
589 |
+
--------
|
590 |
+
>>> x = np.matrix(np.arange(12).reshape((3,4))); x
|
591 |
+
matrix([[ 0, 1, 2, 3],
|
592 |
+
[ 4, 5, 6, 7],
|
593 |
+
[ 8, 9, 10, 11]])
|
594 |
+
>>> y = x[0]; y
|
595 |
+
matrix([[0, 1, 2, 3]])
|
596 |
+
>>> (x == y)
|
597 |
+
matrix([[ True, True, True, True],
|
598 |
+
[False, False, False, False],
|
599 |
+
[False, False, False, False]])
|
600 |
+
>>> (x == y).all()
|
601 |
+
False
|
602 |
+
>>> (x == y).all(0)
|
603 |
+
matrix([[False, False, False, False]])
|
604 |
+
>>> (x == y).all(1)
|
605 |
+
matrix([[ True],
|
606 |
+
[False],
|
607 |
+
[False]])
|
608 |
+
|
609 |
+
"""
|
610 |
+
return N.ndarray.all(self, axis, out, keepdims=True)._collapse(axis)
|
611 |
+
|
612 |
+
def max(self, axis=None, out=None):
|
613 |
+
"""
|
614 |
+
Return the maximum value along an axis.
|
615 |
+
|
616 |
+
Parameters
|
617 |
+
----------
|
618 |
+
See `amax` for complete descriptions
|
619 |
+
|
620 |
+
See Also
|
621 |
+
--------
|
622 |
+
amax, ndarray.max
|
623 |
+
|
624 |
+
Notes
|
625 |
+
-----
|
626 |
+
This is the same as `ndarray.max`, but returns a `matrix` object
|
627 |
+
where `ndarray.max` would return an ndarray.
|
628 |
+
|
629 |
+
Examples
|
630 |
+
--------
|
631 |
+
>>> x = np.matrix(np.arange(12).reshape((3,4))); x
|
632 |
+
matrix([[ 0, 1, 2, 3],
|
633 |
+
[ 4, 5, 6, 7],
|
634 |
+
[ 8, 9, 10, 11]])
|
635 |
+
>>> x.max()
|
636 |
+
11
|
637 |
+
>>> x.max(0)
|
638 |
+
matrix([[ 8, 9, 10, 11]])
|
639 |
+
>>> x.max(1)
|
640 |
+
matrix([[ 3],
|
641 |
+
[ 7],
|
642 |
+
[11]])
|
643 |
+
|
644 |
+
"""
|
645 |
+
return N.ndarray.max(self, axis, out, keepdims=True)._collapse(axis)
|
646 |
+
|
647 |
+
def argmax(self, axis=None, out=None):
|
648 |
+
"""
|
649 |
+
Indexes of the maximum values along an axis.
|
650 |
+
|
651 |
+
Return the indexes of the first occurrences of the maximum values
|
652 |
+
along the specified axis. If axis is None, the index is for the
|
653 |
+
flattened matrix.
|
654 |
+
|
655 |
+
Parameters
|
656 |
+
----------
|
657 |
+
See `numpy.argmax` for complete descriptions
|
658 |
+
|
659 |
+
See Also
|
660 |
+
--------
|
661 |
+
numpy.argmax
|
662 |
+
|
663 |
+
Notes
|
664 |
+
-----
|
665 |
+
This is the same as `ndarray.argmax`, but returns a `matrix` object
|
666 |
+
where `ndarray.argmax` would return an `ndarray`.
|
667 |
+
|
668 |
+
Examples
|
669 |
+
--------
|
670 |
+
>>> x = np.matrix(np.arange(12).reshape((3,4))); x
|
671 |
+
matrix([[ 0, 1, 2, 3],
|
672 |
+
[ 4, 5, 6, 7],
|
673 |
+
[ 8, 9, 10, 11]])
|
674 |
+
>>> x.argmax()
|
675 |
+
11
|
676 |
+
>>> x.argmax(0)
|
677 |
+
matrix([[2, 2, 2, 2]])
|
678 |
+
>>> x.argmax(1)
|
679 |
+
matrix([[3],
|
680 |
+
[3],
|
681 |
+
[3]])
|
682 |
+
|
683 |
+
"""
|
684 |
+
return N.ndarray.argmax(self, axis, out)._align(axis)
|
685 |
+
|
686 |
+
def min(self, axis=None, out=None):
|
687 |
+
"""
|
688 |
+
Return the minimum value along an axis.
|
689 |
+
|
690 |
+
Parameters
|
691 |
+
----------
|
692 |
+
See `amin` for complete descriptions.
|
693 |
+
|
694 |
+
See Also
|
695 |
+
--------
|
696 |
+
amin, ndarray.min
|
697 |
+
|
698 |
+
Notes
|
699 |
+
-----
|
700 |
+
This is the same as `ndarray.min`, but returns a `matrix` object
|
701 |
+
where `ndarray.min` would return an ndarray.
|
702 |
+
|
703 |
+
Examples
|
704 |
+
--------
|
705 |
+
>>> x = -np.matrix(np.arange(12).reshape((3,4))); x
|
706 |
+
matrix([[ 0, -1, -2, -3],
|
707 |
+
[ -4, -5, -6, -7],
|
708 |
+
[ -8, -9, -10, -11]])
|
709 |
+
>>> x.min()
|
710 |
+
-11
|
711 |
+
>>> x.min(0)
|
712 |
+
matrix([[ -8, -9, -10, -11]])
|
713 |
+
>>> x.min(1)
|
714 |
+
matrix([[ -3],
|
715 |
+
[ -7],
|
716 |
+
[-11]])
|
717 |
+
|
718 |
+
"""
|
719 |
+
return N.ndarray.min(self, axis, out, keepdims=True)._collapse(axis)
|
720 |
+
|
721 |
+
def argmin(self, axis=None, out=None):
|
722 |
+
"""
|
723 |
+
Indexes of the minimum values along an axis.
|
724 |
+
|
725 |
+
Return the indexes of the first occurrences of the minimum values
|
726 |
+
along the specified axis. If axis is None, the index is for the
|
727 |
+
flattened matrix.
|
728 |
+
|
729 |
+
Parameters
|
730 |
+
----------
|
731 |
+
See `numpy.argmin` for complete descriptions.
|
732 |
+
|
733 |
+
See Also
|
734 |
+
--------
|
735 |
+
numpy.argmin
|
736 |
+
|
737 |
+
Notes
|
738 |
+
-----
|
739 |
+
This is the same as `ndarray.argmin`, but returns a `matrix` object
|
740 |
+
where `ndarray.argmin` would return an `ndarray`.
|
741 |
+
|
742 |
+
Examples
|
743 |
+
--------
|
744 |
+
>>> x = -np.matrix(np.arange(12).reshape((3,4))); x
|
745 |
+
matrix([[ 0, -1, -2, -3],
|
746 |
+
[ -4, -5, -6, -7],
|
747 |
+
[ -8, -9, -10, -11]])
|
748 |
+
>>> x.argmin()
|
749 |
+
11
|
750 |
+
>>> x.argmin(0)
|
751 |
+
matrix([[2, 2, 2, 2]])
|
752 |
+
>>> x.argmin(1)
|
753 |
+
matrix([[3],
|
754 |
+
[3],
|
755 |
+
[3]])
|
756 |
+
|
757 |
+
"""
|
758 |
+
return N.ndarray.argmin(self, axis, out)._align(axis)
|
759 |
+
|
760 |
+
def ptp(self, axis=None, out=None):
|
761 |
+
"""
|
762 |
+
Peak-to-peak (maximum - minimum) value along the given axis.
|
763 |
+
|
764 |
+
Refer to `numpy.ptp` for full documentation.
|
765 |
+
|
766 |
+
See Also
|
767 |
+
--------
|
768 |
+
numpy.ptp
|
769 |
+
|
770 |
+
Notes
|
771 |
+
-----
|
772 |
+
Same as `ndarray.ptp`, except, where that would return an `ndarray` object,
|
773 |
+
this returns a `matrix` object.
|
774 |
+
|
775 |
+
Examples
|
776 |
+
--------
|
777 |
+
>>> x = np.matrix(np.arange(12).reshape((3,4))); x
|
778 |
+
matrix([[ 0, 1, 2, 3],
|
779 |
+
[ 4, 5, 6, 7],
|
780 |
+
[ 8, 9, 10, 11]])
|
781 |
+
>>> x.ptp()
|
782 |
+
11
|
783 |
+
>>> x.ptp(0)
|
784 |
+
matrix([[8, 8, 8, 8]])
|
785 |
+
>>> x.ptp(1)
|
786 |
+
matrix([[3],
|
787 |
+
[3],
|
788 |
+
[3]])
|
789 |
+
|
790 |
+
"""
|
791 |
+
return N.ndarray.ptp(self, axis, out)._align(axis)
|
792 |
+
|
793 |
+
@property
|
794 |
+
def I(self):
|
795 |
+
"""
|
796 |
+
Returns the (multiplicative) inverse of invertible `self`.
|
797 |
+
|
798 |
+
Parameters
|
799 |
+
----------
|
800 |
+
None
|
801 |
+
|
802 |
+
Returns
|
803 |
+
-------
|
804 |
+
ret : matrix object
|
805 |
+
If `self` is non-singular, `ret` is such that ``ret * self`` ==
|
806 |
+
``self * ret`` == ``np.matrix(np.eye(self[0,:].size))`` all return
|
807 |
+
``True``.
|
808 |
+
|
809 |
+
Raises
|
810 |
+
------
|
811 |
+
numpy.linalg.LinAlgError: Singular matrix
|
812 |
+
If `self` is singular.
|
813 |
+
|
814 |
+
See Also
|
815 |
+
--------
|
816 |
+
linalg.inv
|
817 |
+
|
818 |
+
Examples
|
819 |
+
--------
|
820 |
+
>>> m = np.matrix('[1, 2; 3, 4]'); m
|
821 |
+
matrix([[1, 2],
|
822 |
+
[3, 4]])
|
823 |
+
>>> m.getI()
|
824 |
+
matrix([[-2. , 1. ],
|
825 |
+
[ 1.5, -0.5]])
|
826 |
+
>>> m.getI() * m
|
827 |
+
matrix([[ 1., 0.], # may vary
|
828 |
+
[ 0., 1.]])
|
829 |
+
|
830 |
+
"""
|
831 |
+
M, N = self.shape
|
832 |
+
if M == N:
|
833 |
+
from numpy.linalg import inv as func
|
834 |
+
else:
|
835 |
+
from numpy.linalg import pinv as func
|
836 |
+
return asmatrix(func(self))
|
837 |
+
|
838 |
+
@property
|
839 |
+
def A(self):
|
840 |
+
"""
|
841 |
+
Return `self` as an `ndarray` object.
|
842 |
+
|
843 |
+
Equivalent to ``np.asarray(self)``.
|
844 |
+
|
845 |
+
Parameters
|
846 |
+
----------
|
847 |
+
None
|
848 |
+
|
849 |
+
Returns
|
850 |
+
-------
|
851 |
+
ret : ndarray
|
852 |
+
`self` as an `ndarray`
|
853 |
+
|
854 |
+
Examples
|
855 |
+
--------
|
856 |
+
>>> x = np.matrix(np.arange(12).reshape((3,4))); x
|
857 |
+
matrix([[ 0, 1, 2, 3],
|
858 |
+
[ 4, 5, 6, 7],
|
859 |
+
[ 8, 9, 10, 11]])
|
860 |
+
>>> x.getA()
|
861 |
+
array([[ 0, 1, 2, 3],
|
862 |
+
[ 4, 5, 6, 7],
|
863 |
+
[ 8, 9, 10, 11]])
|
864 |
+
|
865 |
+
"""
|
866 |
+
return self.__array__()
|
867 |
+
|
868 |
+
@property
|
869 |
+
def A1(self):
|
870 |
+
"""
|
871 |
+
Return `self` as a flattened `ndarray`.
|
872 |
+
|
873 |
+
Equivalent to ``np.asarray(x).ravel()``
|
874 |
+
|
875 |
+
Parameters
|
876 |
+
----------
|
877 |
+
None
|
878 |
+
|
879 |
+
Returns
|
880 |
+
-------
|
881 |
+
ret : ndarray
|
882 |
+
`self`, 1-D, as an `ndarray`
|
883 |
+
|
884 |
+
Examples
|
885 |
+
--------
|
886 |
+
>>> x = np.matrix(np.arange(12).reshape((3,4))); x
|
887 |
+
matrix([[ 0, 1, 2, 3],
|
888 |
+
[ 4, 5, 6, 7],
|
889 |
+
[ 8, 9, 10, 11]])
|
890 |
+
>>> x.getA1()
|
891 |
+
array([ 0, 1, 2, ..., 9, 10, 11])
|
892 |
+
|
893 |
+
|
894 |
+
"""
|
895 |
+
return self.__array__().ravel()
|
896 |
+
|
897 |
+
|
898 |
+
def ravel(self, order='C'):
|
899 |
+
"""
|
900 |
+
Return a flattened matrix.
|
901 |
+
|
902 |
+
Refer to `numpy.ravel` for more documentation.
|
903 |
+
|
904 |
+
Parameters
|
905 |
+
----------
|
906 |
+
order : {'C', 'F', 'A', 'K'}, optional
|
907 |
+
The elements of `m` are read using this index order. 'C' means to
|
908 |
+
index the elements in C-like order, with the last axis index
|
909 |
+
changing fastest, back to the first axis index changing slowest.
|
910 |
+
'F' means to index the elements in Fortran-like index order, with
|
911 |
+
the first index changing fastest, and the last index changing
|
912 |
+
slowest. Note that the 'C' and 'F' options take no account of the
|
913 |
+
memory layout of the underlying array, and only refer to the order
|
914 |
+
of axis indexing. 'A' means to read the elements in Fortran-like
|
915 |
+
index order if `m` is Fortran *contiguous* in memory, C-like order
|
916 |
+
otherwise. 'K' means to read the elements in the order they occur
|
917 |
+
in memory, except for reversing the data when strides are negative.
|
918 |
+
By default, 'C' index order is used.
|
919 |
+
|
920 |
+
Returns
|
921 |
+
-------
|
922 |
+
ret : matrix
|
923 |
+
Return the matrix flattened to shape `(1, N)` where `N`
|
924 |
+
is the number of elements in the original matrix.
|
925 |
+
A copy is made only if necessary.
|
926 |
+
|
927 |
+
See Also
|
928 |
+
--------
|
929 |
+
matrix.flatten : returns a similar output matrix but always a copy
|
930 |
+
matrix.flat : a flat iterator on the array.
|
931 |
+
numpy.ravel : related function which returns an ndarray
|
932 |
+
|
933 |
+
"""
|
934 |
+
return N.ndarray.ravel(self, order=order)
|
935 |
+
|
936 |
+
@property
|
937 |
+
def T(self):
|
938 |
+
"""
|
939 |
+
Returns the transpose of the matrix.
|
940 |
+
|
941 |
+
Does *not* conjugate! For the complex conjugate transpose, use ``.H``.
|
942 |
+
|
943 |
+
Parameters
|
944 |
+
----------
|
945 |
+
None
|
946 |
+
|
947 |
+
Returns
|
948 |
+
-------
|
949 |
+
ret : matrix object
|
950 |
+
The (non-conjugated) transpose of the matrix.
|
951 |
+
|
952 |
+
See Also
|
953 |
+
--------
|
954 |
+
transpose, getH
|
955 |
+
|
956 |
+
Examples
|
957 |
+
--------
|
958 |
+
>>> m = np.matrix('[1, 2; 3, 4]')
|
959 |
+
>>> m
|
960 |
+
matrix([[1, 2],
|
961 |
+
[3, 4]])
|
962 |
+
>>> m.getT()
|
963 |
+
matrix([[1, 3],
|
964 |
+
[2, 4]])
|
965 |
+
|
966 |
+
"""
|
967 |
+
return self.transpose()
|
968 |
+
|
969 |
+
@property
|
970 |
+
def H(self):
|
971 |
+
"""
|
972 |
+
Returns the (complex) conjugate transpose of `self`.
|
973 |
+
|
974 |
+
Equivalent to ``np.transpose(self)`` if `self` is real-valued.
|
975 |
+
|
976 |
+
Parameters
|
977 |
+
----------
|
978 |
+
None
|
979 |
+
|
980 |
+
Returns
|
981 |
+
-------
|
982 |
+
ret : matrix object
|
983 |
+
complex conjugate transpose of `self`
|
984 |
+
|
985 |
+
Examples
|
986 |
+
--------
|
987 |
+
>>> x = np.matrix(np.arange(12).reshape((3,4)))
|
988 |
+
>>> z = x - 1j*x; z
|
989 |
+
matrix([[ 0. +0.j, 1. -1.j, 2. -2.j, 3. -3.j],
|
990 |
+
[ 4. -4.j, 5. -5.j, 6. -6.j, 7. -7.j],
|
991 |
+
[ 8. -8.j, 9. -9.j, 10.-10.j, 11.-11.j]])
|
992 |
+
>>> z.getH()
|
993 |
+
matrix([[ 0. -0.j, 4. +4.j, 8. +8.j],
|
994 |
+
[ 1. +1.j, 5. +5.j, 9. +9.j],
|
995 |
+
[ 2. +2.j, 6. +6.j, 10.+10.j],
|
996 |
+
[ 3. +3.j, 7. +7.j, 11.+11.j]])
|
997 |
+
|
998 |
+
"""
|
999 |
+
if issubclass(self.dtype.type, N.complexfloating):
|
1000 |
+
return self.transpose().conjugate()
|
1001 |
+
else:
|
1002 |
+
return self.transpose()
|
1003 |
+
|
1004 |
+
# kept for compatibility
|
1005 |
+
getT = T.fget
|
1006 |
+
getA = A.fget
|
1007 |
+
getA1 = A1.fget
|
1008 |
+
getH = H.fget
|
1009 |
+
getI = I.fget
|
1010 |
+
|
1011 |
+
def _from_string(str, gdict, ldict):
|
1012 |
+
rows = str.split(';')
|
1013 |
+
rowtup = []
|
1014 |
+
for row in rows:
|
1015 |
+
trow = row.split(',')
|
1016 |
+
newrow = []
|
1017 |
+
for x in trow:
|
1018 |
+
newrow.extend(x.split())
|
1019 |
+
trow = newrow
|
1020 |
+
coltup = []
|
1021 |
+
for col in trow:
|
1022 |
+
col = col.strip()
|
1023 |
+
try:
|
1024 |
+
thismat = ldict[col]
|
1025 |
+
except KeyError:
|
1026 |
+
try:
|
1027 |
+
thismat = gdict[col]
|
1028 |
+
except KeyError as e:
|
1029 |
+
raise NameError(f"name {col!r} is not defined") from None
|
1030 |
+
|
1031 |
+
coltup.append(thismat)
|
1032 |
+
rowtup.append(concatenate(coltup, axis=-1))
|
1033 |
+
return concatenate(rowtup, axis=0)
|
1034 |
+
|
1035 |
+
|
1036 |
+
@set_module('numpy')
|
1037 |
+
def bmat(obj, ldict=None, gdict=None):
|
1038 |
+
"""
|
1039 |
+
Build a matrix object from a string, nested sequence, or array.
|
1040 |
+
|
1041 |
+
Parameters
|
1042 |
+
----------
|
1043 |
+
obj : str or array_like
|
1044 |
+
Input data. If a string, variables in the current scope may be
|
1045 |
+
referenced by name.
|
1046 |
+
ldict : dict, optional
|
1047 |
+
A dictionary that replaces local operands in current frame.
|
1048 |
+
Ignored if `obj` is not a string or `gdict` is None.
|
1049 |
+
gdict : dict, optional
|
1050 |
+
A dictionary that replaces global operands in current frame.
|
1051 |
+
Ignored if `obj` is not a string.
|
1052 |
+
|
1053 |
+
Returns
|
1054 |
+
-------
|
1055 |
+
out : matrix
|
1056 |
+
Returns a matrix object, which is a specialized 2-D array.
|
1057 |
+
|
1058 |
+
See Also
|
1059 |
+
--------
|
1060 |
+
block :
|
1061 |
+
A generalization of this function for N-d arrays, that returns normal
|
1062 |
+
ndarrays.
|
1063 |
+
|
1064 |
+
Examples
|
1065 |
+
--------
|
1066 |
+
>>> A = np.mat('1 1; 1 1')
|
1067 |
+
>>> B = np.mat('2 2; 2 2')
|
1068 |
+
>>> C = np.mat('3 4; 5 6')
|
1069 |
+
>>> D = np.mat('7 8; 9 0')
|
1070 |
+
|
1071 |
+
All the following expressions construct the same block matrix:
|
1072 |
+
|
1073 |
+
>>> np.bmat([[A, B], [C, D]])
|
1074 |
+
matrix([[1, 1, 2, 2],
|
1075 |
+
[1, 1, 2, 2],
|
1076 |
+
[3, 4, 7, 8],
|
1077 |
+
[5, 6, 9, 0]])
|
1078 |
+
>>> np.bmat(np.r_[np.c_[A, B], np.c_[C, D]])
|
1079 |
+
matrix([[1, 1, 2, 2],
|
1080 |
+
[1, 1, 2, 2],
|
1081 |
+
[3, 4, 7, 8],
|
1082 |
+
[5, 6, 9, 0]])
|
1083 |
+
>>> np.bmat('A,B; C,D')
|
1084 |
+
matrix([[1, 1, 2, 2],
|
1085 |
+
[1, 1, 2, 2],
|
1086 |
+
[3, 4, 7, 8],
|
1087 |
+
[5, 6, 9, 0]])
|
1088 |
+
|
1089 |
+
"""
|
1090 |
+
if isinstance(obj, str):
|
1091 |
+
if gdict is None:
|
1092 |
+
# get previous frame
|
1093 |
+
frame = sys._getframe().f_back
|
1094 |
+
glob_dict = frame.f_globals
|
1095 |
+
loc_dict = frame.f_locals
|
1096 |
+
else:
|
1097 |
+
glob_dict = gdict
|
1098 |
+
loc_dict = ldict
|
1099 |
+
|
1100 |
+
return matrix(_from_string(obj, glob_dict, loc_dict))
|
1101 |
+
|
1102 |
+
if isinstance(obj, (tuple, list)):
|
1103 |
+
# [[A,B],[C,D]]
|
1104 |
+
arr_rows = []
|
1105 |
+
for row in obj:
|
1106 |
+
if isinstance(row, N.ndarray): # not 2-d
|
1107 |
+
return matrix(concatenate(obj, axis=-1))
|
1108 |
+
else:
|
1109 |
+
arr_rows.append(concatenate(row, axis=-1))
|
1110 |
+
return matrix(concatenate(arr_rows, axis=0))
|
1111 |
+
if isinstance(obj, N.ndarray):
|
1112 |
+
return matrix(obj)
|
1113 |
+
|
1114 |
+
mat = asmatrix
|
env-llmeval/lib/python3.10/site-packages/numpy/matrixlib/defmatrix.pyi
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections.abc import Sequence, Mapping
|
2 |
+
from typing import Any
|
3 |
+
from numpy import matrix as matrix
|
4 |
+
from numpy._typing import ArrayLike, DTypeLike, NDArray
|
5 |
+
|
6 |
+
__all__: list[str]
|
7 |
+
|
8 |
+
def bmat(
|
9 |
+
obj: str | Sequence[ArrayLike] | NDArray[Any],
|
10 |
+
ldict: None | Mapping[str, Any] = ...,
|
11 |
+
gdict: None | Mapping[str, Any] = ...,
|
12 |
+
) -> matrix[Any, Any]: ...
|
13 |
+
|
14 |
+
def asmatrix(data: ArrayLike, dtype: DTypeLike = ...) -> matrix[Any, Any]: ...
|
15 |
+
|
16 |
+
mat = asmatrix
|
env-llmeval/lib/python3.10/site-packages/numpy/matrixlib/setup.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
def configuration(parent_package='', top_path=None):
|
3 |
+
from numpy.distutils.misc_util import Configuration
|
4 |
+
config = Configuration('matrixlib', parent_package, top_path)
|
5 |
+
config.add_subpackage('tests')
|
6 |
+
config.add_data_files('*.pyi')
|
7 |
+
return config
|
8 |
+
|
9 |
+
if __name__ == "__main__":
|
10 |
+
from numpy.distutils.core import setup
|
11 |
+
config = configuration(top_path='').todict()
|
12 |
+
setup(**config)
|
env-llmeval/lib/python3.10/site-packages/numpy/matrixlib/tests/__init__.py
ADDED
File without changes
|
env-llmeval/lib/python3.10/site-packages/numpy/matrixlib/tests/__pycache__/test_numeric.cpython-310.pyc
ADDED
Binary file (938 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/numpy/matrixlib/tests/test_defmatrix.py
ADDED
@@ -0,0 +1,453 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import collections.abc
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
from numpy import matrix, asmatrix, bmat
|
5 |
+
from numpy.testing import (
|
6 |
+
assert_, assert_equal, assert_almost_equal, assert_array_equal,
|
7 |
+
assert_array_almost_equal, assert_raises
|
8 |
+
)
|
9 |
+
from numpy.linalg import matrix_power
|
10 |
+
from numpy.matrixlib import mat
|
11 |
+
|
12 |
+
class TestCtor:
|
13 |
+
def test_basic(self):
|
14 |
+
A = np.array([[1, 2], [3, 4]])
|
15 |
+
mA = matrix(A)
|
16 |
+
assert_(np.all(mA.A == A))
|
17 |
+
|
18 |
+
B = bmat("A,A;A,A")
|
19 |
+
C = bmat([[A, A], [A, A]])
|
20 |
+
D = np.array([[1, 2, 1, 2],
|
21 |
+
[3, 4, 3, 4],
|
22 |
+
[1, 2, 1, 2],
|
23 |
+
[3, 4, 3, 4]])
|
24 |
+
assert_(np.all(B.A == D))
|
25 |
+
assert_(np.all(C.A == D))
|
26 |
+
|
27 |
+
E = np.array([[5, 6], [7, 8]])
|
28 |
+
AEresult = matrix([[1, 2, 5, 6], [3, 4, 7, 8]])
|
29 |
+
assert_(np.all(bmat([A, E]) == AEresult))
|
30 |
+
|
31 |
+
vec = np.arange(5)
|
32 |
+
mvec = matrix(vec)
|
33 |
+
assert_(mvec.shape == (1, 5))
|
34 |
+
|
35 |
+
def test_exceptions(self):
|
36 |
+
# Check for ValueError when called with invalid string data.
|
37 |
+
assert_raises(ValueError, matrix, "invalid")
|
38 |
+
|
39 |
+
def test_bmat_nondefault_str(self):
|
40 |
+
A = np.array([[1, 2], [3, 4]])
|
41 |
+
B = np.array([[5, 6], [7, 8]])
|
42 |
+
Aresult = np.array([[1, 2, 1, 2],
|
43 |
+
[3, 4, 3, 4],
|
44 |
+
[1, 2, 1, 2],
|
45 |
+
[3, 4, 3, 4]])
|
46 |
+
mixresult = np.array([[1, 2, 5, 6],
|
47 |
+
[3, 4, 7, 8],
|
48 |
+
[5, 6, 1, 2],
|
49 |
+
[7, 8, 3, 4]])
|
50 |
+
assert_(np.all(bmat("A,A;A,A") == Aresult))
|
51 |
+
assert_(np.all(bmat("A,A;A,A", ldict={'A':B}) == Aresult))
|
52 |
+
assert_raises(TypeError, bmat, "A,A;A,A", gdict={'A':B})
|
53 |
+
assert_(
|
54 |
+
np.all(bmat("A,A;A,A", ldict={'A':A}, gdict={'A':B}) == Aresult))
|
55 |
+
b2 = bmat("A,B;C,D", ldict={'A':A,'B':B}, gdict={'C':B,'D':A})
|
56 |
+
assert_(np.all(b2 == mixresult))
|
57 |
+
|
58 |
+
|
59 |
+
class TestProperties:
|
60 |
+
def test_sum(self):
|
61 |
+
"""Test whether matrix.sum(axis=1) preserves orientation.
|
62 |
+
Fails in NumPy <= 0.9.6.2127.
|
63 |
+
"""
|
64 |
+
M = matrix([[1, 2, 0, 0],
|
65 |
+
[3, 4, 0, 0],
|
66 |
+
[1, 2, 1, 2],
|
67 |
+
[3, 4, 3, 4]])
|
68 |
+
sum0 = matrix([8, 12, 4, 6])
|
69 |
+
sum1 = matrix([3, 7, 6, 14]).T
|
70 |
+
sumall = 30
|
71 |
+
assert_array_equal(sum0, M.sum(axis=0))
|
72 |
+
assert_array_equal(sum1, M.sum(axis=1))
|
73 |
+
assert_equal(sumall, M.sum())
|
74 |
+
|
75 |
+
assert_array_equal(sum0, np.sum(M, axis=0))
|
76 |
+
assert_array_equal(sum1, np.sum(M, axis=1))
|
77 |
+
assert_equal(sumall, np.sum(M))
|
78 |
+
|
79 |
+
def test_prod(self):
|
80 |
+
x = matrix([[1, 2, 3], [4, 5, 6]])
|
81 |
+
assert_equal(x.prod(), 720)
|
82 |
+
assert_equal(x.prod(0), matrix([[4, 10, 18]]))
|
83 |
+
assert_equal(x.prod(1), matrix([[6], [120]]))
|
84 |
+
|
85 |
+
assert_equal(np.prod(x), 720)
|
86 |
+
assert_equal(np.prod(x, axis=0), matrix([[4, 10, 18]]))
|
87 |
+
assert_equal(np.prod(x, axis=1), matrix([[6], [120]]))
|
88 |
+
|
89 |
+
y = matrix([0, 1, 3])
|
90 |
+
assert_(y.prod() == 0)
|
91 |
+
|
92 |
+
def test_max(self):
|
93 |
+
x = matrix([[1, 2, 3], [4, 5, 6]])
|
94 |
+
assert_equal(x.max(), 6)
|
95 |
+
assert_equal(x.max(0), matrix([[4, 5, 6]]))
|
96 |
+
assert_equal(x.max(1), matrix([[3], [6]]))
|
97 |
+
|
98 |
+
assert_equal(np.max(x), 6)
|
99 |
+
assert_equal(np.max(x, axis=0), matrix([[4, 5, 6]]))
|
100 |
+
assert_equal(np.max(x, axis=1), matrix([[3], [6]]))
|
101 |
+
|
102 |
+
def test_min(self):
|
103 |
+
x = matrix([[1, 2, 3], [4, 5, 6]])
|
104 |
+
assert_equal(x.min(), 1)
|
105 |
+
assert_equal(x.min(0), matrix([[1, 2, 3]]))
|
106 |
+
assert_equal(x.min(1), matrix([[1], [4]]))
|
107 |
+
|
108 |
+
assert_equal(np.min(x), 1)
|
109 |
+
assert_equal(np.min(x, axis=0), matrix([[1, 2, 3]]))
|
110 |
+
assert_equal(np.min(x, axis=1), matrix([[1], [4]]))
|
111 |
+
|
112 |
+
def test_ptp(self):
|
113 |
+
x = np.arange(4).reshape((2, 2))
|
114 |
+
assert_(x.ptp() == 3)
|
115 |
+
assert_(np.all(x.ptp(0) == np.array([2, 2])))
|
116 |
+
assert_(np.all(x.ptp(1) == np.array([1, 1])))
|
117 |
+
|
118 |
+
def test_var(self):
|
119 |
+
x = np.arange(9).reshape((3, 3))
|
120 |
+
mx = x.view(np.matrix)
|
121 |
+
assert_equal(x.var(ddof=0), mx.var(ddof=0))
|
122 |
+
assert_equal(x.var(ddof=1), mx.var(ddof=1))
|
123 |
+
|
124 |
+
def test_basic(self):
|
125 |
+
import numpy.linalg as linalg
|
126 |
+
|
127 |
+
A = np.array([[1., 2.],
|
128 |
+
[3., 4.]])
|
129 |
+
mA = matrix(A)
|
130 |
+
assert_(np.allclose(linalg.inv(A), mA.I))
|
131 |
+
assert_(np.all(np.array(np.transpose(A) == mA.T)))
|
132 |
+
assert_(np.all(np.array(np.transpose(A) == mA.H)))
|
133 |
+
assert_(np.all(A == mA.A))
|
134 |
+
|
135 |
+
B = A + 2j*A
|
136 |
+
mB = matrix(B)
|
137 |
+
assert_(np.allclose(linalg.inv(B), mB.I))
|
138 |
+
assert_(np.all(np.array(np.transpose(B) == mB.T)))
|
139 |
+
assert_(np.all(np.array(np.transpose(B).conj() == mB.H)))
|
140 |
+
|
141 |
+
def test_pinv(self):
|
142 |
+
x = matrix(np.arange(6).reshape(2, 3))
|
143 |
+
xpinv = matrix([[-0.77777778, 0.27777778],
|
144 |
+
[-0.11111111, 0.11111111],
|
145 |
+
[ 0.55555556, -0.05555556]])
|
146 |
+
assert_almost_equal(x.I, xpinv)
|
147 |
+
|
148 |
+
def test_comparisons(self):
|
149 |
+
A = np.arange(100).reshape(10, 10)
|
150 |
+
mA = matrix(A)
|
151 |
+
mB = matrix(A) + 0.1
|
152 |
+
assert_(np.all(mB == A+0.1))
|
153 |
+
assert_(np.all(mB == matrix(A+0.1)))
|
154 |
+
assert_(not np.any(mB == matrix(A-0.1)))
|
155 |
+
assert_(np.all(mA < mB))
|
156 |
+
assert_(np.all(mA <= mB))
|
157 |
+
assert_(np.all(mA <= mA))
|
158 |
+
assert_(not np.any(mA < mA))
|
159 |
+
|
160 |
+
assert_(not np.any(mB < mA))
|
161 |
+
assert_(np.all(mB >= mA))
|
162 |
+
assert_(np.all(mB >= mB))
|
163 |
+
assert_(not np.any(mB > mB))
|
164 |
+
|
165 |
+
assert_(np.all(mA == mA))
|
166 |
+
assert_(not np.any(mA == mB))
|
167 |
+
assert_(np.all(mB != mA))
|
168 |
+
|
169 |
+
assert_(not np.all(abs(mA) > 0))
|
170 |
+
assert_(np.all(abs(mB > 0)))
|
171 |
+
|
172 |
+
def test_asmatrix(self):
|
173 |
+
A = np.arange(100).reshape(10, 10)
|
174 |
+
mA = asmatrix(A)
|
175 |
+
A[0, 0] = -10
|
176 |
+
assert_(A[0, 0] == mA[0, 0])
|
177 |
+
|
178 |
+
def test_noaxis(self):
|
179 |
+
A = matrix([[1, 0], [0, 1]])
|
180 |
+
assert_(A.sum() == matrix(2))
|
181 |
+
assert_(A.mean() == matrix(0.5))
|
182 |
+
|
183 |
+
def test_repr(self):
|
184 |
+
A = matrix([[1, 0], [0, 1]])
|
185 |
+
assert_(repr(A) == "matrix([[1, 0],\n [0, 1]])")
|
186 |
+
|
187 |
+
def test_make_bool_matrix_from_str(self):
|
188 |
+
A = matrix('True; True; False')
|
189 |
+
B = matrix([[True], [True], [False]])
|
190 |
+
assert_array_equal(A, B)
|
191 |
+
|
192 |
+
class TestCasting:
|
193 |
+
def test_basic(self):
|
194 |
+
A = np.arange(100).reshape(10, 10)
|
195 |
+
mA = matrix(A)
|
196 |
+
|
197 |
+
mB = mA.copy()
|
198 |
+
O = np.ones((10, 10), np.float64) * 0.1
|
199 |
+
mB = mB + O
|
200 |
+
assert_(mB.dtype.type == np.float64)
|
201 |
+
assert_(np.all(mA != mB))
|
202 |
+
assert_(np.all(mB == mA+0.1))
|
203 |
+
|
204 |
+
mC = mA.copy()
|
205 |
+
O = np.ones((10, 10), np.complex128)
|
206 |
+
mC = mC * O
|
207 |
+
assert_(mC.dtype.type == np.complex128)
|
208 |
+
assert_(np.all(mA != mB))
|
209 |
+
|
210 |
+
|
211 |
+
class TestAlgebra:
|
212 |
+
def test_basic(self):
|
213 |
+
import numpy.linalg as linalg
|
214 |
+
|
215 |
+
A = np.array([[1., 2.], [3., 4.]])
|
216 |
+
mA = matrix(A)
|
217 |
+
|
218 |
+
B = np.identity(2)
|
219 |
+
for i in range(6):
|
220 |
+
assert_(np.allclose((mA ** i).A, B))
|
221 |
+
B = np.dot(B, A)
|
222 |
+
|
223 |
+
Ainv = linalg.inv(A)
|
224 |
+
B = np.identity(2)
|
225 |
+
for i in range(6):
|
226 |
+
assert_(np.allclose((mA ** -i).A, B))
|
227 |
+
B = np.dot(B, Ainv)
|
228 |
+
|
229 |
+
assert_(np.allclose((mA * mA).A, np.dot(A, A)))
|
230 |
+
assert_(np.allclose((mA + mA).A, (A + A)))
|
231 |
+
assert_(np.allclose((3*mA).A, (3*A)))
|
232 |
+
|
233 |
+
mA2 = matrix(A)
|
234 |
+
mA2 *= 3
|
235 |
+
assert_(np.allclose(mA2.A, 3*A))
|
236 |
+
|
237 |
+
def test_pow(self):
|
238 |
+
"""Test raising a matrix to an integer power works as expected."""
|
239 |
+
m = matrix("1. 2.; 3. 4.")
|
240 |
+
m2 = m.copy()
|
241 |
+
m2 **= 2
|
242 |
+
mi = m.copy()
|
243 |
+
mi **= -1
|
244 |
+
m4 = m2.copy()
|
245 |
+
m4 **= 2
|
246 |
+
assert_array_almost_equal(m2, m**2)
|
247 |
+
assert_array_almost_equal(m4, np.dot(m2, m2))
|
248 |
+
assert_array_almost_equal(np.dot(mi, m), np.eye(2))
|
249 |
+
|
250 |
+
def test_scalar_type_pow(self):
|
251 |
+
m = matrix([[1, 2], [3, 4]])
|
252 |
+
for scalar_t in [np.int8, np.uint8]:
|
253 |
+
two = scalar_t(2)
|
254 |
+
assert_array_almost_equal(m ** 2, m ** two)
|
255 |
+
|
256 |
+
def test_notimplemented(self):
|
257 |
+
'''Check that 'not implemented' operations produce a failure.'''
|
258 |
+
A = matrix([[1., 2.],
|
259 |
+
[3., 4.]])
|
260 |
+
|
261 |
+
# __rpow__
|
262 |
+
with assert_raises(TypeError):
|
263 |
+
1.0**A
|
264 |
+
|
265 |
+
# __mul__ with something not a list, ndarray, tuple, or scalar
|
266 |
+
with assert_raises(TypeError):
|
267 |
+
A*object()
|
268 |
+
|
269 |
+
|
270 |
+
class TestMatrixReturn:
|
271 |
+
def test_instance_methods(self):
|
272 |
+
a = matrix([1.0], dtype='f8')
|
273 |
+
methodargs = {
|
274 |
+
'astype': ('intc',),
|
275 |
+
'clip': (0.0, 1.0),
|
276 |
+
'compress': ([1],),
|
277 |
+
'repeat': (1,),
|
278 |
+
'reshape': (1,),
|
279 |
+
'swapaxes': (0, 0),
|
280 |
+
'dot': np.array([1.0]),
|
281 |
+
}
|
282 |
+
excluded_methods = [
|
283 |
+
'argmin', 'choose', 'dump', 'dumps', 'fill', 'getfield',
|
284 |
+
'getA', 'getA1', 'item', 'nonzero', 'put', 'putmask', 'resize',
|
285 |
+
'searchsorted', 'setflags', 'setfield', 'sort',
|
286 |
+
'partition', 'argpartition',
|
287 |
+
'take', 'tofile', 'tolist', 'tostring', 'tobytes', 'all', 'any',
|
288 |
+
'sum', 'argmax', 'argmin', 'min', 'max', 'mean', 'var', 'ptp',
|
289 |
+
'prod', 'std', 'ctypes', 'itemset',
|
290 |
+
]
|
291 |
+
for attrib in dir(a):
|
292 |
+
if attrib.startswith('_') or attrib in excluded_methods:
|
293 |
+
continue
|
294 |
+
f = getattr(a, attrib)
|
295 |
+
if isinstance(f, collections.abc.Callable):
|
296 |
+
# reset contents of a
|
297 |
+
a.astype('f8')
|
298 |
+
a.fill(1.0)
|
299 |
+
if attrib in methodargs:
|
300 |
+
args = methodargs[attrib]
|
301 |
+
else:
|
302 |
+
args = ()
|
303 |
+
b = f(*args)
|
304 |
+
assert_(type(b) is matrix, "%s" % attrib)
|
305 |
+
assert_(type(a.real) is matrix)
|
306 |
+
assert_(type(a.imag) is matrix)
|
307 |
+
c, d = matrix([0.0]).nonzero()
|
308 |
+
assert_(type(c) is np.ndarray)
|
309 |
+
assert_(type(d) is np.ndarray)
|
310 |
+
|
311 |
+
|
312 |
+
class TestIndexing:
|
313 |
+
def test_basic(self):
|
314 |
+
x = asmatrix(np.zeros((3, 2), float))
|
315 |
+
y = np.zeros((3, 1), float)
|
316 |
+
y[:, 0] = [0.8, 0.2, 0.3]
|
317 |
+
x[:, 1] = y > 0.5
|
318 |
+
assert_equal(x, [[0, 1], [0, 0], [0, 0]])
|
319 |
+
|
320 |
+
|
321 |
+
class TestNewScalarIndexing:
|
322 |
+
a = matrix([[1, 2], [3, 4]])
|
323 |
+
|
324 |
+
def test_dimesions(self):
|
325 |
+
a = self.a
|
326 |
+
x = a[0]
|
327 |
+
assert_equal(x.ndim, 2)
|
328 |
+
|
329 |
+
def test_array_from_matrix_list(self):
|
330 |
+
a = self.a
|
331 |
+
x = np.array([a, a])
|
332 |
+
assert_equal(x.shape, [2, 2, 2])
|
333 |
+
|
334 |
+
def test_array_to_list(self):
|
335 |
+
a = self.a
|
336 |
+
assert_equal(a.tolist(), [[1, 2], [3, 4]])
|
337 |
+
|
338 |
+
def test_fancy_indexing(self):
|
339 |
+
a = self.a
|
340 |
+
x = a[1, [0, 1, 0]]
|
341 |
+
assert_(isinstance(x, matrix))
|
342 |
+
assert_equal(x, matrix([[3, 4, 3]]))
|
343 |
+
x = a[[1, 0]]
|
344 |
+
assert_(isinstance(x, matrix))
|
345 |
+
assert_equal(x, matrix([[3, 4], [1, 2]]))
|
346 |
+
x = a[[[1], [0]], [[1, 0], [0, 1]]]
|
347 |
+
assert_(isinstance(x, matrix))
|
348 |
+
assert_equal(x, matrix([[4, 3], [1, 2]]))
|
349 |
+
|
350 |
+
def test_matrix_element(self):
|
351 |
+
x = matrix([[1, 2, 3], [4, 5, 6]])
|
352 |
+
assert_equal(x[0][0], matrix([[1, 2, 3]]))
|
353 |
+
assert_equal(x[0][0].shape, (1, 3))
|
354 |
+
assert_equal(x[0].shape, (1, 3))
|
355 |
+
assert_equal(x[:, 0].shape, (2, 1))
|
356 |
+
|
357 |
+
x = matrix(0)
|
358 |
+
assert_equal(x[0, 0], 0)
|
359 |
+
assert_equal(x[0], 0)
|
360 |
+
assert_equal(x[:, 0].shape, x.shape)
|
361 |
+
|
362 |
+
def test_scalar_indexing(self):
|
363 |
+
x = asmatrix(np.zeros((3, 2), float))
|
364 |
+
assert_equal(x[0, 0], x[0][0])
|
365 |
+
|
366 |
+
def test_row_column_indexing(self):
|
367 |
+
x = asmatrix(np.eye(2))
|
368 |
+
assert_array_equal(x[0,:], [[1, 0]])
|
369 |
+
assert_array_equal(x[1,:], [[0, 1]])
|
370 |
+
assert_array_equal(x[:, 0], [[1], [0]])
|
371 |
+
assert_array_equal(x[:, 1], [[0], [1]])
|
372 |
+
|
373 |
+
def test_boolean_indexing(self):
|
374 |
+
A = np.arange(6)
|
375 |
+
A.shape = (3, 2)
|
376 |
+
x = asmatrix(A)
|
377 |
+
assert_array_equal(x[:, np.array([True, False])], x[:, 0])
|
378 |
+
assert_array_equal(x[np.array([True, False, False]),:], x[0,:])
|
379 |
+
|
380 |
+
def test_list_indexing(self):
|
381 |
+
A = np.arange(6)
|
382 |
+
A.shape = (3, 2)
|
383 |
+
x = asmatrix(A)
|
384 |
+
assert_array_equal(x[:, [1, 0]], x[:, ::-1])
|
385 |
+
assert_array_equal(x[[2, 1, 0],:], x[::-1,:])
|
386 |
+
|
387 |
+
|
388 |
+
class TestPower:
|
389 |
+
def test_returntype(self):
|
390 |
+
a = np.array([[0, 1], [0, 0]])
|
391 |
+
assert_(type(matrix_power(a, 2)) is np.ndarray)
|
392 |
+
a = mat(a)
|
393 |
+
assert_(type(matrix_power(a, 2)) is matrix)
|
394 |
+
|
395 |
+
def test_list(self):
|
396 |
+
assert_array_equal(matrix_power([[0, 1], [0, 0]], 2), [[0, 0], [0, 0]])
|
397 |
+
|
398 |
+
|
399 |
+
class TestShape:
|
400 |
+
|
401 |
+
a = np.array([[1], [2]])
|
402 |
+
m = matrix([[1], [2]])
|
403 |
+
|
404 |
+
def test_shape(self):
|
405 |
+
assert_equal(self.a.shape, (2, 1))
|
406 |
+
assert_equal(self.m.shape, (2, 1))
|
407 |
+
|
408 |
+
def test_numpy_ravel(self):
|
409 |
+
assert_equal(np.ravel(self.a).shape, (2,))
|
410 |
+
assert_equal(np.ravel(self.m).shape, (2,))
|
411 |
+
|
412 |
+
def test_member_ravel(self):
|
413 |
+
assert_equal(self.a.ravel().shape, (2,))
|
414 |
+
assert_equal(self.m.ravel().shape, (1, 2))
|
415 |
+
|
416 |
+
def test_member_flatten(self):
|
417 |
+
assert_equal(self.a.flatten().shape, (2,))
|
418 |
+
assert_equal(self.m.flatten().shape, (1, 2))
|
419 |
+
|
420 |
+
def test_numpy_ravel_order(self):
|
421 |
+
x = np.array([[1, 2, 3], [4, 5, 6]])
|
422 |
+
assert_equal(np.ravel(x), [1, 2, 3, 4, 5, 6])
|
423 |
+
assert_equal(np.ravel(x, order='F'), [1, 4, 2, 5, 3, 6])
|
424 |
+
assert_equal(np.ravel(x.T), [1, 4, 2, 5, 3, 6])
|
425 |
+
assert_equal(np.ravel(x.T, order='A'), [1, 2, 3, 4, 5, 6])
|
426 |
+
x = matrix([[1, 2, 3], [4, 5, 6]])
|
427 |
+
assert_equal(np.ravel(x), [1, 2, 3, 4, 5, 6])
|
428 |
+
assert_equal(np.ravel(x, order='F'), [1, 4, 2, 5, 3, 6])
|
429 |
+
assert_equal(np.ravel(x.T), [1, 4, 2, 5, 3, 6])
|
430 |
+
assert_equal(np.ravel(x.T, order='A'), [1, 2, 3, 4, 5, 6])
|
431 |
+
|
432 |
+
def test_matrix_ravel_order(self):
|
433 |
+
x = matrix([[1, 2, 3], [4, 5, 6]])
|
434 |
+
assert_equal(x.ravel(), [[1, 2, 3, 4, 5, 6]])
|
435 |
+
assert_equal(x.ravel(order='F'), [[1, 4, 2, 5, 3, 6]])
|
436 |
+
assert_equal(x.T.ravel(), [[1, 4, 2, 5, 3, 6]])
|
437 |
+
assert_equal(x.T.ravel(order='A'), [[1, 2, 3, 4, 5, 6]])
|
438 |
+
|
439 |
+
def test_array_memory_sharing(self):
|
440 |
+
assert_(np.may_share_memory(self.a, self.a.ravel()))
|
441 |
+
assert_(not np.may_share_memory(self.a, self.a.flatten()))
|
442 |
+
|
443 |
+
def test_matrix_memory_sharing(self):
|
444 |
+
assert_(np.may_share_memory(self.m, self.m.ravel()))
|
445 |
+
assert_(not np.may_share_memory(self.m, self.m.flatten()))
|
446 |
+
|
447 |
+
def test_expand_dims_matrix(self):
|
448 |
+
# matrices are always 2d - so expand_dims only makes sense when the
|
449 |
+
# type is changed away from matrix.
|
450 |
+
a = np.arange(10).reshape((2, 5)).view(np.matrix)
|
451 |
+
expanded = np.expand_dims(a, axis=1)
|
452 |
+
assert_equal(expanded.ndim, 3)
|
453 |
+
assert_(not isinstance(expanded, np.matrix))
|
env-llmeval/lib/python3.10/site-packages/numpy/matrixlib/tests/test_interaction.py
ADDED
@@ -0,0 +1,354 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Tests of interaction of matrix with other parts of numpy.
|
2 |
+
|
3 |
+
Note that tests with MaskedArray and linalg are done in separate files.
|
4 |
+
"""
|
5 |
+
import pytest
|
6 |
+
|
7 |
+
import textwrap
|
8 |
+
import warnings
|
9 |
+
|
10 |
+
import numpy as np
|
11 |
+
from numpy.testing import (assert_, assert_equal, assert_raises,
|
12 |
+
assert_raises_regex, assert_array_equal,
|
13 |
+
assert_almost_equal, assert_array_almost_equal)
|
14 |
+
|
15 |
+
|
16 |
+
def test_fancy_indexing():
|
17 |
+
# The matrix class messes with the shape. While this is always
|
18 |
+
# weird (getitem is not used, it does not have setitem nor knows
|
19 |
+
# about fancy indexing), this tests gh-3110
|
20 |
+
# 2018-04-29: moved here from core.tests.test_index.
|
21 |
+
m = np.matrix([[1, 2], [3, 4]])
|
22 |
+
|
23 |
+
assert_(isinstance(m[[0, 1, 0], :], np.matrix))
|
24 |
+
|
25 |
+
# gh-3110. Note the transpose currently because matrices do *not*
|
26 |
+
# support dimension fixing for fancy indexing correctly.
|
27 |
+
x = np.asmatrix(np.arange(50).reshape(5, 10))
|
28 |
+
assert_equal(x[:2, np.array(-1)], x[:2, -1].T)
|
29 |
+
|
30 |
+
|
31 |
+
def test_polynomial_mapdomain():
|
32 |
+
# test that polynomial preserved matrix subtype.
|
33 |
+
# 2018-04-29: moved here from polynomial.tests.polyutils.
|
34 |
+
dom1 = [0, 4]
|
35 |
+
dom2 = [1, 3]
|
36 |
+
x = np.matrix([dom1, dom1])
|
37 |
+
res = np.polynomial.polyutils.mapdomain(x, dom1, dom2)
|
38 |
+
assert_(isinstance(res, np.matrix))
|
39 |
+
|
40 |
+
|
41 |
+
def test_sort_matrix_none():
|
42 |
+
# 2018-04-29: moved here from core.tests.test_multiarray
|
43 |
+
a = np.matrix([[2, 1, 0]])
|
44 |
+
actual = np.sort(a, axis=None)
|
45 |
+
expected = np.matrix([[0, 1, 2]])
|
46 |
+
assert_equal(actual, expected)
|
47 |
+
assert_(type(expected) is np.matrix)
|
48 |
+
|
49 |
+
|
50 |
+
def test_partition_matrix_none():
|
51 |
+
# gh-4301
|
52 |
+
# 2018-04-29: moved here from core.tests.test_multiarray
|
53 |
+
a = np.matrix([[2, 1, 0]])
|
54 |
+
actual = np.partition(a, 1, axis=None)
|
55 |
+
expected = np.matrix([[0, 1, 2]])
|
56 |
+
assert_equal(actual, expected)
|
57 |
+
assert_(type(expected) is np.matrix)
|
58 |
+
|
59 |
+
|
60 |
+
def test_dot_scalar_and_matrix_of_objects():
|
61 |
+
# Ticket #2469
|
62 |
+
# 2018-04-29: moved here from core.tests.test_multiarray
|
63 |
+
arr = np.matrix([1, 2], dtype=object)
|
64 |
+
desired = np.matrix([[3, 6]], dtype=object)
|
65 |
+
assert_equal(np.dot(arr, 3), desired)
|
66 |
+
assert_equal(np.dot(3, arr), desired)
|
67 |
+
|
68 |
+
|
69 |
+
def test_inner_scalar_and_matrix():
|
70 |
+
# 2018-04-29: moved here from core.tests.test_multiarray
|
71 |
+
for dt in np.typecodes['AllInteger'] + np.typecodes['AllFloat'] + '?':
|
72 |
+
sca = np.array(3, dtype=dt)[()]
|
73 |
+
arr = np.matrix([[1, 2], [3, 4]], dtype=dt)
|
74 |
+
desired = np.matrix([[3, 6], [9, 12]], dtype=dt)
|
75 |
+
assert_equal(np.inner(arr, sca), desired)
|
76 |
+
assert_equal(np.inner(sca, arr), desired)
|
77 |
+
|
78 |
+
|
79 |
+
def test_inner_scalar_and_matrix_of_objects():
|
80 |
+
# Ticket #4482
|
81 |
+
# 2018-04-29: moved here from core.tests.test_multiarray
|
82 |
+
arr = np.matrix([1, 2], dtype=object)
|
83 |
+
desired = np.matrix([[3, 6]], dtype=object)
|
84 |
+
assert_equal(np.inner(arr, 3), desired)
|
85 |
+
assert_equal(np.inner(3, arr), desired)
|
86 |
+
|
87 |
+
|
88 |
+
def test_iter_allocate_output_subtype():
|
89 |
+
# Make sure that the subtype with priority wins
|
90 |
+
# 2018-04-29: moved here from core.tests.test_nditer, given the
|
91 |
+
# matrix specific shape test.
|
92 |
+
|
93 |
+
# matrix vs ndarray
|
94 |
+
a = np.matrix([[1, 2], [3, 4]])
|
95 |
+
b = np.arange(4).reshape(2, 2).T
|
96 |
+
i = np.nditer([a, b, None], [],
|
97 |
+
[['readonly'], ['readonly'], ['writeonly', 'allocate']])
|
98 |
+
assert_(type(i.operands[2]) is np.matrix)
|
99 |
+
assert_(type(i.operands[2]) is not np.ndarray)
|
100 |
+
assert_equal(i.operands[2].shape, (2, 2))
|
101 |
+
|
102 |
+
# matrix always wants things to be 2D
|
103 |
+
b = np.arange(4).reshape(1, 2, 2)
|
104 |
+
assert_raises(RuntimeError, np.nditer, [a, b, None], [],
|
105 |
+
[['readonly'], ['readonly'], ['writeonly', 'allocate']])
|
106 |
+
# but if subtypes are disabled, the result can still work
|
107 |
+
i = np.nditer([a, b, None], [],
|
108 |
+
[['readonly'], ['readonly'],
|
109 |
+
['writeonly', 'allocate', 'no_subtype']])
|
110 |
+
assert_(type(i.operands[2]) is np.ndarray)
|
111 |
+
assert_(type(i.operands[2]) is not np.matrix)
|
112 |
+
assert_equal(i.operands[2].shape, (1, 2, 2))
|
113 |
+
|
114 |
+
|
115 |
+
def like_function():
|
116 |
+
# 2018-04-29: moved here from core.tests.test_numeric
|
117 |
+
a = np.matrix([[1, 2], [3, 4]])
|
118 |
+
for like_function in np.zeros_like, np.ones_like, np.empty_like:
|
119 |
+
b = like_function(a)
|
120 |
+
assert_(type(b) is np.matrix)
|
121 |
+
|
122 |
+
c = like_function(a, subok=False)
|
123 |
+
assert_(type(c) is not np.matrix)
|
124 |
+
|
125 |
+
|
126 |
+
def test_array_astype():
|
127 |
+
# 2018-04-29: copied here from core.tests.test_api
|
128 |
+
# subok=True passes through a matrix
|
129 |
+
a = np.matrix([[0, 1, 2], [3, 4, 5]], dtype='f4')
|
130 |
+
b = a.astype('f4', subok=True, copy=False)
|
131 |
+
assert_(a is b)
|
132 |
+
|
133 |
+
# subok=True is default, and creates a subtype on a cast
|
134 |
+
b = a.astype('i4', copy=False)
|
135 |
+
assert_equal(a, b)
|
136 |
+
assert_equal(type(b), np.matrix)
|
137 |
+
|
138 |
+
# subok=False never returns a matrix
|
139 |
+
b = a.astype('f4', subok=False, copy=False)
|
140 |
+
assert_equal(a, b)
|
141 |
+
assert_(not (a is b))
|
142 |
+
assert_(type(b) is not np.matrix)
|
143 |
+
|
144 |
+
|
145 |
+
def test_stack():
|
146 |
+
# 2018-04-29: copied here from core.tests.test_shape_base
|
147 |
+
# check np.matrix cannot be stacked
|
148 |
+
m = np.matrix([[1, 2], [3, 4]])
|
149 |
+
assert_raises_regex(ValueError, 'shape too large to be a matrix',
|
150 |
+
np.stack, [m, m])
|
151 |
+
|
152 |
+
|
153 |
+
def test_object_scalar_multiply():
|
154 |
+
# Tickets #2469 and #4482
|
155 |
+
# 2018-04-29: moved here from core.tests.test_ufunc
|
156 |
+
arr = np.matrix([1, 2], dtype=object)
|
157 |
+
desired = np.matrix([[3, 6]], dtype=object)
|
158 |
+
assert_equal(np.multiply(arr, 3), desired)
|
159 |
+
assert_equal(np.multiply(3, arr), desired)
|
160 |
+
|
161 |
+
|
162 |
+
def test_nanfunctions_matrices():
|
163 |
+
# Check that it works and that type and
|
164 |
+
# shape are preserved
|
165 |
+
# 2018-04-29: moved here from core.tests.test_nanfunctions
|
166 |
+
mat = np.matrix(np.eye(3))
|
167 |
+
for f in [np.nanmin, np.nanmax]:
|
168 |
+
res = f(mat, axis=0)
|
169 |
+
assert_(isinstance(res, np.matrix))
|
170 |
+
assert_(res.shape == (1, 3))
|
171 |
+
res = f(mat, axis=1)
|
172 |
+
assert_(isinstance(res, np.matrix))
|
173 |
+
assert_(res.shape == (3, 1))
|
174 |
+
res = f(mat)
|
175 |
+
assert_(np.isscalar(res))
|
176 |
+
# check that rows of nan are dealt with for subclasses (#4628)
|
177 |
+
mat[1] = np.nan
|
178 |
+
for f in [np.nanmin, np.nanmax]:
|
179 |
+
with warnings.catch_warnings(record=True) as w:
|
180 |
+
warnings.simplefilter('always')
|
181 |
+
res = f(mat, axis=0)
|
182 |
+
assert_(isinstance(res, np.matrix))
|
183 |
+
assert_(not np.any(np.isnan(res)))
|
184 |
+
assert_(len(w) == 0)
|
185 |
+
|
186 |
+
with warnings.catch_warnings(record=True) as w:
|
187 |
+
warnings.simplefilter('always')
|
188 |
+
res = f(mat, axis=1)
|
189 |
+
assert_(isinstance(res, np.matrix))
|
190 |
+
assert_(np.isnan(res[1, 0]) and not np.isnan(res[0, 0])
|
191 |
+
and not np.isnan(res[2, 0]))
|
192 |
+
assert_(len(w) == 1, 'no warning raised')
|
193 |
+
assert_(issubclass(w[0].category, RuntimeWarning))
|
194 |
+
|
195 |
+
with warnings.catch_warnings(record=True) as w:
|
196 |
+
warnings.simplefilter('always')
|
197 |
+
res = f(mat)
|
198 |
+
assert_(np.isscalar(res))
|
199 |
+
assert_(res != np.nan)
|
200 |
+
assert_(len(w) == 0)
|
201 |
+
|
202 |
+
|
203 |
+
def test_nanfunctions_matrices_general():
|
204 |
+
# Check that it works and that type and
|
205 |
+
# shape are preserved
|
206 |
+
# 2018-04-29: moved here from core.tests.test_nanfunctions
|
207 |
+
mat = np.matrix(np.eye(3))
|
208 |
+
for f in (np.nanargmin, np.nanargmax, np.nansum, np.nanprod,
|
209 |
+
np.nanmean, np.nanvar, np.nanstd):
|
210 |
+
res = f(mat, axis=0)
|
211 |
+
assert_(isinstance(res, np.matrix))
|
212 |
+
assert_(res.shape == (1, 3))
|
213 |
+
res = f(mat, axis=1)
|
214 |
+
assert_(isinstance(res, np.matrix))
|
215 |
+
assert_(res.shape == (3, 1))
|
216 |
+
res = f(mat)
|
217 |
+
assert_(np.isscalar(res))
|
218 |
+
|
219 |
+
for f in np.nancumsum, np.nancumprod:
|
220 |
+
res = f(mat, axis=0)
|
221 |
+
assert_(isinstance(res, np.matrix))
|
222 |
+
assert_(res.shape == (3, 3))
|
223 |
+
res = f(mat, axis=1)
|
224 |
+
assert_(isinstance(res, np.matrix))
|
225 |
+
assert_(res.shape == (3, 3))
|
226 |
+
res = f(mat)
|
227 |
+
assert_(isinstance(res, np.matrix))
|
228 |
+
assert_(res.shape == (1, 3*3))
|
229 |
+
|
230 |
+
|
231 |
+
def test_average_matrix():
|
232 |
+
# 2018-04-29: moved here from core.tests.test_function_base.
|
233 |
+
y = np.matrix(np.random.rand(5, 5))
|
234 |
+
assert_array_equal(y.mean(0), np.average(y, 0))
|
235 |
+
|
236 |
+
a = np.matrix([[1, 2], [3, 4]])
|
237 |
+
w = np.matrix([[1, 2], [3, 4]])
|
238 |
+
|
239 |
+
r = np.average(a, axis=0, weights=w)
|
240 |
+
assert_equal(type(r), np.matrix)
|
241 |
+
assert_equal(r, [[2.5, 10.0/3]])
|
242 |
+
|
243 |
+
|
244 |
+
def test_trapz_matrix():
|
245 |
+
# Test to make sure matrices give the same answer as ndarrays
|
246 |
+
# 2018-04-29: moved here from core.tests.test_function_base.
|
247 |
+
x = np.linspace(0, 5)
|
248 |
+
y = x * x
|
249 |
+
r = np.trapz(y, x)
|
250 |
+
mx = np.matrix(x)
|
251 |
+
my = np.matrix(y)
|
252 |
+
mr = np.trapz(my, mx)
|
253 |
+
assert_almost_equal(mr, r)
|
254 |
+
|
255 |
+
|
256 |
+
def test_ediff1d_matrix():
|
257 |
+
# 2018-04-29: moved here from core.tests.test_arraysetops.
|
258 |
+
assert(isinstance(np.ediff1d(np.matrix(1)), np.matrix))
|
259 |
+
assert(isinstance(np.ediff1d(np.matrix(1), to_begin=1), np.matrix))
|
260 |
+
|
261 |
+
|
262 |
+
def test_apply_along_axis_matrix():
|
263 |
+
# this test is particularly malicious because matrix
|
264 |
+
# refuses to become 1d
|
265 |
+
# 2018-04-29: moved here from core.tests.test_shape_base.
|
266 |
+
def double(row):
|
267 |
+
return row * 2
|
268 |
+
|
269 |
+
m = np.matrix([[0, 1], [2, 3]])
|
270 |
+
expected = np.matrix([[0, 2], [4, 6]])
|
271 |
+
|
272 |
+
result = np.apply_along_axis(double, 0, m)
|
273 |
+
assert_(isinstance(result, np.matrix))
|
274 |
+
assert_array_equal(result, expected)
|
275 |
+
|
276 |
+
result = np.apply_along_axis(double, 1, m)
|
277 |
+
assert_(isinstance(result, np.matrix))
|
278 |
+
assert_array_equal(result, expected)
|
279 |
+
|
280 |
+
|
281 |
+
def test_kron_matrix():
|
282 |
+
# 2018-04-29: moved here from core.tests.test_shape_base.
|
283 |
+
a = np.ones([2, 2])
|
284 |
+
m = np.asmatrix(a)
|
285 |
+
assert_equal(type(np.kron(a, a)), np.ndarray)
|
286 |
+
assert_equal(type(np.kron(m, m)), np.matrix)
|
287 |
+
assert_equal(type(np.kron(a, m)), np.matrix)
|
288 |
+
assert_equal(type(np.kron(m, a)), np.matrix)
|
289 |
+
|
290 |
+
|
291 |
+
class TestConcatenatorMatrix:
|
292 |
+
# 2018-04-29: moved here from core.tests.test_index_tricks.
|
293 |
+
def test_matrix(self):
|
294 |
+
a = [1, 2]
|
295 |
+
b = [3, 4]
|
296 |
+
|
297 |
+
ab_r = np.r_['r', a, b]
|
298 |
+
ab_c = np.r_['c', a, b]
|
299 |
+
|
300 |
+
assert_equal(type(ab_r), np.matrix)
|
301 |
+
assert_equal(type(ab_c), np.matrix)
|
302 |
+
|
303 |
+
assert_equal(np.array(ab_r), [[1, 2, 3, 4]])
|
304 |
+
assert_equal(np.array(ab_c), [[1], [2], [3], [4]])
|
305 |
+
|
306 |
+
assert_raises(ValueError, lambda: np.r_['rc', a, b])
|
307 |
+
|
308 |
+
def test_matrix_scalar(self):
|
309 |
+
r = np.r_['r', [1, 2], 3]
|
310 |
+
assert_equal(type(r), np.matrix)
|
311 |
+
assert_equal(np.array(r), [[1, 2, 3]])
|
312 |
+
|
313 |
+
def test_matrix_builder(self):
|
314 |
+
a = np.array([1])
|
315 |
+
b = np.array([2])
|
316 |
+
c = np.array([3])
|
317 |
+
d = np.array([4])
|
318 |
+
actual = np.r_['a, b; c, d']
|
319 |
+
expected = np.bmat([[a, b], [c, d]])
|
320 |
+
|
321 |
+
assert_equal(actual, expected)
|
322 |
+
assert_equal(type(actual), type(expected))
|
323 |
+
|
324 |
+
|
325 |
+
def test_array_equal_error_message_matrix():
|
326 |
+
# 2018-04-29: moved here from testing.tests.test_utils.
|
327 |
+
with pytest.raises(AssertionError) as exc_info:
|
328 |
+
assert_equal(np.array([1, 2]), np.matrix([1, 2]))
|
329 |
+
msg = str(exc_info.value)
|
330 |
+
msg_reference = textwrap.dedent("""\
|
331 |
+
|
332 |
+
Arrays are not equal
|
333 |
+
|
334 |
+
(shapes (2,), (1, 2) mismatch)
|
335 |
+
x: array([1, 2])
|
336 |
+
y: matrix([[1, 2]])""")
|
337 |
+
assert_equal(msg, msg_reference)
|
338 |
+
|
339 |
+
|
340 |
+
def test_array_almost_equal_matrix():
|
341 |
+
# Matrix slicing keeps things 2-D, while array does not necessarily.
|
342 |
+
# See gh-8452.
|
343 |
+
# 2018-04-29: moved here from testing.tests.test_utils.
|
344 |
+
m1 = np.matrix([[1., 2.]])
|
345 |
+
m2 = np.matrix([[1., np.nan]])
|
346 |
+
m3 = np.matrix([[1., -np.inf]])
|
347 |
+
m4 = np.matrix([[np.nan, np.inf]])
|
348 |
+
m5 = np.matrix([[1., 2.], [np.nan, np.inf]])
|
349 |
+
for assert_func in assert_array_almost_equal, assert_almost_equal:
|
350 |
+
for m in m1, m2, m3, m4, m5:
|
351 |
+
assert_func(m, m)
|
352 |
+
a = np.array(m)
|
353 |
+
assert_func(a, m)
|
354 |
+
assert_func(m, a)
|
env-llmeval/lib/python3.10/site-packages/numpy/matrixlib/tests/test_masked_matrix.py
ADDED
@@ -0,0 +1,231 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from numpy.testing import assert_warns
|
3 |
+
from numpy.ma.testutils import (assert_, assert_equal, assert_raises,
|
4 |
+
assert_array_equal)
|
5 |
+
from numpy.ma.core import (masked_array, masked_values, masked, allequal,
|
6 |
+
MaskType, getmask, MaskedArray, nomask,
|
7 |
+
log, add, hypot, divide)
|
8 |
+
from numpy.ma.extras import mr_
|
9 |
+
from numpy.compat import pickle
|
10 |
+
|
11 |
+
|
12 |
+
class MMatrix(MaskedArray, np.matrix,):
|
13 |
+
|
14 |
+
def __new__(cls, data, mask=nomask):
|
15 |
+
mat = np.matrix(data)
|
16 |
+
_data = MaskedArray.__new__(cls, data=mat, mask=mask)
|
17 |
+
return _data
|
18 |
+
|
19 |
+
def __array_finalize__(self, obj):
|
20 |
+
np.matrix.__array_finalize__(self, obj)
|
21 |
+
MaskedArray.__array_finalize__(self, obj)
|
22 |
+
return
|
23 |
+
|
24 |
+
@property
|
25 |
+
def _series(self):
|
26 |
+
_view = self.view(MaskedArray)
|
27 |
+
_view._sharedmask = False
|
28 |
+
return _view
|
29 |
+
|
30 |
+
|
31 |
+
class TestMaskedMatrix:
|
32 |
+
def test_matrix_indexing(self):
|
33 |
+
# Tests conversions and indexing
|
34 |
+
x1 = np.matrix([[1, 2, 3], [4, 3, 2]])
|
35 |
+
x2 = masked_array(x1, mask=[[1, 0, 0], [0, 1, 0]])
|
36 |
+
x3 = masked_array(x1, mask=[[0, 1, 0], [1, 0, 0]])
|
37 |
+
x4 = masked_array(x1)
|
38 |
+
# test conversion to strings
|
39 |
+
str(x2) # raises?
|
40 |
+
repr(x2) # raises?
|
41 |
+
# tests of indexing
|
42 |
+
assert_(type(x2[1, 0]) is type(x1[1, 0]))
|
43 |
+
assert_(x1[1, 0] == x2[1, 0])
|
44 |
+
assert_(x2[1, 1] is masked)
|
45 |
+
assert_equal(x1[0, 2], x2[0, 2])
|
46 |
+
assert_equal(x1[0, 1:], x2[0, 1:])
|
47 |
+
assert_equal(x1[:, 2], x2[:, 2])
|
48 |
+
assert_equal(x1[:], x2[:])
|
49 |
+
assert_equal(x1[1:], x3[1:])
|
50 |
+
x1[0, 2] = 9
|
51 |
+
x2[0, 2] = 9
|
52 |
+
assert_equal(x1, x2)
|
53 |
+
x1[0, 1:] = 99
|
54 |
+
x2[0, 1:] = 99
|
55 |
+
assert_equal(x1, x2)
|
56 |
+
x2[0, 1] = masked
|
57 |
+
assert_equal(x1, x2)
|
58 |
+
x2[0, 1:] = masked
|
59 |
+
assert_equal(x1, x2)
|
60 |
+
x2[0, :] = x1[0, :]
|
61 |
+
x2[0, 1] = masked
|
62 |
+
assert_(allequal(getmask(x2), np.array([[0, 1, 0], [0, 1, 0]])))
|
63 |
+
x3[1, :] = masked_array([1, 2, 3], [1, 1, 0])
|
64 |
+
assert_(allequal(getmask(x3)[1], masked_array([1, 1, 0])))
|
65 |
+
assert_(allequal(getmask(x3[1]), masked_array([1, 1, 0])))
|
66 |
+
x4[1, :] = masked_array([1, 2, 3], [1, 1, 0])
|
67 |
+
assert_(allequal(getmask(x4[1]), masked_array([1, 1, 0])))
|
68 |
+
assert_(allequal(x4[1], masked_array([1, 2, 3])))
|
69 |
+
x1 = np.matrix(np.arange(5) * 1.0)
|
70 |
+
x2 = masked_values(x1, 3.0)
|
71 |
+
assert_equal(x1, x2)
|
72 |
+
assert_(allequal(masked_array([0, 0, 0, 1, 0], dtype=MaskType),
|
73 |
+
x2.mask))
|
74 |
+
assert_equal(3.0, x2.fill_value)
|
75 |
+
|
76 |
+
def test_pickling_subbaseclass(self):
|
77 |
+
# Test pickling w/ a subclass of ndarray
|
78 |
+
a = masked_array(np.matrix(list(range(10))), mask=[1, 0, 1, 0, 0] * 2)
|
79 |
+
for proto in range(2, pickle.HIGHEST_PROTOCOL + 1):
|
80 |
+
a_pickled = pickle.loads(pickle.dumps(a, protocol=proto))
|
81 |
+
assert_equal(a_pickled._mask, a._mask)
|
82 |
+
assert_equal(a_pickled, a)
|
83 |
+
assert_(isinstance(a_pickled._data, np.matrix))
|
84 |
+
|
85 |
+
def test_count_mean_with_matrix(self):
|
86 |
+
m = masked_array(np.matrix([[1, 2], [3, 4]]), mask=np.zeros((2, 2)))
|
87 |
+
|
88 |
+
assert_equal(m.count(axis=0).shape, (1, 2))
|
89 |
+
assert_equal(m.count(axis=1).shape, (2, 1))
|
90 |
+
|
91 |
+
# Make sure broadcasting inside mean and var work
|
92 |
+
assert_equal(m.mean(axis=0), [[2., 3.]])
|
93 |
+
assert_equal(m.mean(axis=1), [[1.5], [3.5]])
|
94 |
+
|
95 |
+
def test_flat(self):
|
96 |
+
# Test that flat can return items even for matrices [#4585, #4615]
|
97 |
+
# test simple access
|
98 |
+
test = masked_array(np.matrix([[1, 2, 3]]), mask=[0, 0, 1])
|
99 |
+
assert_equal(test.flat[1], 2)
|
100 |
+
assert_equal(test.flat[2], masked)
|
101 |
+
assert_(np.all(test.flat[0:2] == test[0, 0:2]))
|
102 |
+
# Test flat on masked_matrices
|
103 |
+
test = masked_array(np.matrix([[1, 2, 3]]), mask=[0, 0, 1])
|
104 |
+
test.flat = masked_array([3, 2, 1], mask=[1, 0, 0])
|
105 |
+
control = masked_array(np.matrix([[3, 2, 1]]), mask=[1, 0, 0])
|
106 |
+
assert_equal(test, control)
|
107 |
+
# Test setting
|
108 |
+
test = masked_array(np.matrix([[1, 2, 3]]), mask=[0, 0, 1])
|
109 |
+
testflat = test.flat
|
110 |
+
testflat[:] = testflat[[2, 1, 0]]
|
111 |
+
assert_equal(test, control)
|
112 |
+
testflat[0] = 9
|
113 |
+
# test that matrices keep the correct shape (#4615)
|
114 |
+
a = masked_array(np.matrix(np.eye(2)), mask=0)
|
115 |
+
b = a.flat
|
116 |
+
b01 = b[:2]
|
117 |
+
assert_equal(b01.data, np.array([[1., 0.]]))
|
118 |
+
assert_equal(b01.mask, np.array([[False, False]]))
|
119 |
+
|
120 |
+
def test_allany_onmatrices(self):
|
121 |
+
x = np.array([[0.13, 0.26, 0.90],
|
122 |
+
[0.28, 0.33, 0.63],
|
123 |
+
[0.31, 0.87, 0.70]])
|
124 |
+
X = np.matrix(x)
|
125 |
+
m = np.array([[True, False, False],
|
126 |
+
[False, False, False],
|
127 |
+
[True, True, False]], dtype=np.bool_)
|
128 |
+
mX = masked_array(X, mask=m)
|
129 |
+
mXbig = (mX > 0.5)
|
130 |
+
mXsmall = (mX < 0.5)
|
131 |
+
|
132 |
+
assert_(not mXbig.all())
|
133 |
+
assert_(mXbig.any())
|
134 |
+
assert_equal(mXbig.all(0), np.matrix([False, False, True]))
|
135 |
+
assert_equal(mXbig.all(1), np.matrix([False, False, True]).T)
|
136 |
+
assert_equal(mXbig.any(0), np.matrix([False, False, True]))
|
137 |
+
assert_equal(mXbig.any(1), np.matrix([True, True, True]).T)
|
138 |
+
|
139 |
+
assert_(not mXsmall.all())
|
140 |
+
assert_(mXsmall.any())
|
141 |
+
assert_equal(mXsmall.all(0), np.matrix([True, True, False]))
|
142 |
+
assert_equal(mXsmall.all(1), np.matrix([False, False, False]).T)
|
143 |
+
assert_equal(mXsmall.any(0), np.matrix([True, True, False]))
|
144 |
+
assert_equal(mXsmall.any(1), np.matrix([True, True, False]).T)
|
145 |
+
|
146 |
+
def test_compressed(self):
|
147 |
+
a = masked_array(np.matrix([1, 2, 3, 4]), mask=[0, 0, 0, 0])
|
148 |
+
b = a.compressed()
|
149 |
+
assert_equal(b, a)
|
150 |
+
assert_(isinstance(b, np.matrix))
|
151 |
+
a[0, 0] = masked
|
152 |
+
b = a.compressed()
|
153 |
+
assert_equal(b, [[2, 3, 4]])
|
154 |
+
|
155 |
+
def test_ravel(self):
|
156 |
+
a = masked_array(np.matrix([1, 2, 3, 4, 5]), mask=[[0, 1, 0, 0, 0]])
|
157 |
+
aravel = a.ravel()
|
158 |
+
assert_equal(aravel.shape, (1, 5))
|
159 |
+
assert_equal(aravel._mask.shape, a.shape)
|
160 |
+
|
161 |
+
def test_view(self):
|
162 |
+
# Test view w/ flexible dtype
|
163 |
+
iterator = list(zip(np.arange(10), np.random.rand(10)))
|
164 |
+
data = np.array(iterator)
|
165 |
+
a = masked_array(iterator, dtype=[('a', float), ('b', float)])
|
166 |
+
a.mask[0] = (1, 0)
|
167 |
+
test = a.view((float, 2), np.matrix)
|
168 |
+
assert_equal(test, data)
|
169 |
+
assert_(isinstance(test, np.matrix))
|
170 |
+
assert_(not isinstance(test, MaskedArray))
|
171 |
+
|
172 |
+
|
173 |
+
class TestSubclassing:
|
174 |
+
# Test suite for masked subclasses of ndarray.
|
175 |
+
|
176 |
+
def setup_method(self):
|
177 |
+
x = np.arange(5, dtype='float')
|
178 |
+
mx = MMatrix(x, mask=[0, 1, 0, 0, 0])
|
179 |
+
self.data = (x, mx)
|
180 |
+
|
181 |
+
def test_maskedarray_subclassing(self):
|
182 |
+
# Tests subclassing MaskedArray
|
183 |
+
(x, mx) = self.data
|
184 |
+
assert_(isinstance(mx._data, np.matrix))
|
185 |
+
|
186 |
+
def test_masked_unary_operations(self):
|
187 |
+
# Tests masked_unary_operation
|
188 |
+
(x, mx) = self.data
|
189 |
+
with np.errstate(divide='ignore'):
|
190 |
+
assert_(isinstance(log(mx), MMatrix))
|
191 |
+
assert_equal(log(x), np.log(x))
|
192 |
+
|
193 |
+
def test_masked_binary_operations(self):
|
194 |
+
# Tests masked_binary_operation
|
195 |
+
(x, mx) = self.data
|
196 |
+
# Result should be a MMatrix
|
197 |
+
assert_(isinstance(add(mx, mx), MMatrix))
|
198 |
+
assert_(isinstance(add(mx, x), MMatrix))
|
199 |
+
# Result should work
|
200 |
+
assert_equal(add(mx, x), mx+x)
|
201 |
+
assert_(isinstance(add(mx, mx)._data, np.matrix))
|
202 |
+
with assert_warns(DeprecationWarning):
|
203 |
+
assert_(isinstance(add.outer(mx, mx), MMatrix))
|
204 |
+
assert_(isinstance(hypot(mx, mx), MMatrix))
|
205 |
+
assert_(isinstance(hypot(mx, x), MMatrix))
|
206 |
+
|
207 |
+
def test_masked_binary_operations2(self):
|
208 |
+
# Tests domained_masked_binary_operation
|
209 |
+
(x, mx) = self.data
|
210 |
+
xmx = masked_array(mx.data.__array__(), mask=mx.mask)
|
211 |
+
assert_(isinstance(divide(mx, mx), MMatrix))
|
212 |
+
assert_(isinstance(divide(mx, x), MMatrix))
|
213 |
+
assert_equal(divide(mx, mx), divide(xmx, xmx))
|
214 |
+
|
215 |
+
class TestConcatenator:
|
216 |
+
# Tests for mr_, the equivalent of r_ for masked arrays.
|
217 |
+
|
218 |
+
def test_matrix_builder(self):
|
219 |
+
assert_raises(np.ma.MAError, lambda: mr_['1, 2; 3, 4'])
|
220 |
+
|
221 |
+
def test_matrix(self):
|
222 |
+
# Test consistency with unmasked version. If we ever deprecate
|
223 |
+
# matrix, this test should either still pass, or both actual and
|
224 |
+
# expected should fail to be build.
|
225 |
+
actual = mr_['r', 1, 2, 3]
|
226 |
+
expected = np.ma.array(np.r_['r', 1, 2, 3])
|
227 |
+
assert_array_equal(actual, expected)
|
228 |
+
|
229 |
+
# outer type is masked array, inner type is matrix
|
230 |
+
assert_equal(type(actual), type(expected))
|
231 |
+
assert_equal(type(actual.data), type(expected.data))
|
env-llmeval/lib/python3.10/site-packages/numpy/matrixlib/tests/test_matrix_linalg.py
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" Test functions for linalg module using the matrix class."""
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
from numpy.linalg.tests.test_linalg import (
|
5 |
+
LinalgCase, apply_tag, TestQR as _TestQR, LinalgTestCase,
|
6 |
+
_TestNorm2D, _TestNormDoubleBase, _TestNormSingleBase, _TestNormInt64Base,
|
7 |
+
SolveCases, InvCases, EigvalsCases, EigCases, SVDCases, CondCases,
|
8 |
+
PinvCases, DetCases, LstsqCases)
|
9 |
+
|
10 |
+
|
11 |
+
CASES = []
|
12 |
+
|
13 |
+
# square test cases
|
14 |
+
CASES += apply_tag('square', [
|
15 |
+
LinalgCase("0x0_matrix",
|
16 |
+
np.empty((0, 0), dtype=np.double).view(np.matrix),
|
17 |
+
np.empty((0, 1), dtype=np.double).view(np.matrix),
|
18 |
+
tags={'size-0'}),
|
19 |
+
LinalgCase("matrix_b_only",
|
20 |
+
np.array([[1., 2.], [3., 4.]]),
|
21 |
+
np.matrix([2., 1.]).T),
|
22 |
+
LinalgCase("matrix_a_and_b",
|
23 |
+
np.matrix([[1., 2.], [3., 4.]]),
|
24 |
+
np.matrix([2., 1.]).T),
|
25 |
+
])
|
26 |
+
|
27 |
+
# hermitian test-cases
|
28 |
+
CASES += apply_tag('hermitian', [
|
29 |
+
LinalgCase("hmatrix_a_and_b",
|
30 |
+
np.matrix([[1., 2.], [2., 1.]]),
|
31 |
+
None),
|
32 |
+
])
|
33 |
+
# No need to make generalized or strided cases for matrices.
|
34 |
+
|
35 |
+
|
36 |
+
class MatrixTestCase(LinalgTestCase):
|
37 |
+
TEST_CASES = CASES
|
38 |
+
|
39 |
+
|
40 |
+
class TestSolveMatrix(SolveCases, MatrixTestCase):
|
41 |
+
pass
|
42 |
+
|
43 |
+
|
44 |
+
class TestInvMatrix(InvCases, MatrixTestCase):
|
45 |
+
pass
|
46 |
+
|
47 |
+
|
48 |
+
class TestEigvalsMatrix(EigvalsCases, MatrixTestCase):
|
49 |
+
pass
|
50 |
+
|
51 |
+
|
52 |
+
class TestEigMatrix(EigCases, MatrixTestCase):
|
53 |
+
pass
|
54 |
+
|
55 |
+
|
56 |
+
class TestSVDMatrix(SVDCases, MatrixTestCase):
|
57 |
+
pass
|
58 |
+
|
59 |
+
|
60 |
+
class TestCondMatrix(CondCases, MatrixTestCase):
|
61 |
+
pass
|
62 |
+
|
63 |
+
|
64 |
+
class TestPinvMatrix(PinvCases, MatrixTestCase):
|
65 |
+
pass
|
66 |
+
|
67 |
+
|
68 |
+
class TestDetMatrix(DetCases, MatrixTestCase):
|
69 |
+
pass
|
70 |
+
|
71 |
+
|
72 |
+
class TestLstsqMatrix(LstsqCases, MatrixTestCase):
|
73 |
+
pass
|
74 |
+
|
75 |
+
|
76 |
+
class _TestNorm2DMatrix(_TestNorm2D):
|
77 |
+
array = np.matrix
|
78 |
+
|
79 |
+
|
80 |
+
class TestNormDoubleMatrix(_TestNorm2DMatrix, _TestNormDoubleBase):
|
81 |
+
pass
|
82 |
+
|
83 |
+
|
84 |
+
class TestNormSingleMatrix(_TestNorm2DMatrix, _TestNormSingleBase):
|
85 |
+
pass
|
86 |
+
|
87 |
+
|
88 |
+
class TestNormInt64Matrix(_TestNorm2DMatrix, _TestNormInt64Base):
|
89 |
+
pass
|
90 |
+
|
91 |
+
|
92 |
+
class TestQRMatrix(_TestQR):
|
93 |
+
array = np.matrix
|