Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +1 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/Allocator.h +277 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/AutogradState.h +72 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/Backend.h +350 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/CompileTimeFunctionPointer.h +56 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/ConstantSymNodeImpl.h +97 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/Contiguity.h +126 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/DefaultDtype.h +15 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/DefaultTensorOptions.h +44 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/Device.h +215 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/DeviceArray.h +24 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/DispatchKey.h +732 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/DispatchKeySet.h +928 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/DynamicCast.h +119 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/GeneratorImpl.h +107 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/GradMode.h +44 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/Layout.h +73 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/MemoryFormat.h +287 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/OptionalRef.h +31 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/QScheme.h +49 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/Scalar.h +383 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/ScalarTypeToTypeMeta.h +57 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/SingletonSymNodeImpl.h +176 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/Storage.h +261 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/StorageImpl.h +237 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/Stream.h +169 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/SymFloat.h +109 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/SymInt.h +362 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/SymIntArrayRef.h +71 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/SymbolicShapeMeta.h +210 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/TensorImpl.h +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/TensorOptions.h +773 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/UndefinedTensorImpl.h +37 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/WrapDimMinimal.h +44 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/impl/DeviceGuardImplInterface.h +336 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/impl/FakeGuardImpl.h +104 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/impl/GPUTrace.h +30 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/impl/HermeticPyObjectTLS.h +61 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/impl/InlineDeviceGuard.h +431 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/impl/InlineEvent.h +110 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/impl/InlineStreamGuard.h +256 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/impl/LocalDispatchKeySet.h +164 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/impl/PyInterpreter.h +242 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/impl/PyObjectSlot.h +192 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/impl/PythonDispatcherTLS.h +26 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/impl/SizesAndStrides.h +308 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/impl/TorchDispatchModeTLS.h +65 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/impl/VirtualGuardImpl.h +93 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/impl/alloc_cpu.h +12 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/impl/cow/COW.h +29 -0
.gitattributes
CHANGED
@@ -202,3 +202,4 @@ llmeval-env/lib/python3.10/site-packages/safetensors/_safetensors_rust.cpython-3
|
|
202 |
llmeval-env/lib/python3.10/site-packages/nvidia/cudnn/lib/libcudnn_cnn_infer.so.8 filter=lfs diff=lfs merge=lfs -text
|
203 |
env-llmeval/lib/python3.10/site-packages/torch/bin/protoc filter=lfs diff=lfs merge=lfs -text
|
204 |
env-llmeval/lib/python3.10/site-packages/torch/bin/protoc-3.13.0.0 filter=lfs diff=lfs merge=lfs -text
|
|
|
|
202 |
llmeval-env/lib/python3.10/site-packages/nvidia/cudnn/lib/libcudnn_cnn_infer.so.8 filter=lfs diff=lfs merge=lfs -text
|
203 |
env-llmeval/lib/python3.10/site-packages/torch/bin/protoc filter=lfs diff=lfs merge=lfs -text
|
204 |
env-llmeval/lib/python3.10/site-packages/torch/bin/protoc-3.13.0.0 filter=lfs diff=lfs merge=lfs -text
|
205 |
+
env-llmeval/lib/python3.10/site-packages/torch/lib/libc10.so filter=lfs diff=lfs merge=lfs -text
|
env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/Allocator.h
ADDED
@@ -0,0 +1,277 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <stddef.h>
|
4 |
+
#include <memory>
|
5 |
+
|
6 |
+
#include <c10/core/Device.h>
|
7 |
+
#include <c10/util/Exception.h>
|
8 |
+
#include <c10/util/ThreadLocalDebugInfo.h>
|
9 |
+
#include <c10/util/UniqueVoidPtr.h>
|
10 |
+
|
11 |
+
namespace c10 {
|
12 |
+
|
13 |
+
// A DataPtr is a unique pointer (with an attached deleter and some
|
14 |
+
// context for the deleter) to some memory, which also records what
|
15 |
+
// device is for its data.
|
16 |
+
//
|
17 |
+
// nullptr DataPtrs can still have a nontrivial device; this allows
|
18 |
+
// us to treat zero-size allocations uniformly with non-zero allocations.
|
19 |
+
//
|
20 |
+
class C10_API DataPtr {
|
21 |
+
private:
|
22 |
+
c10::detail::UniqueVoidPtr ptr_;
|
23 |
+
Device device_;
|
24 |
+
|
25 |
+
public:
|
26 |
+
// Choice of CPU here is arbitrary; if there's an "undefined" device
|
27 |
+
// we could use that too
|
28 |
+
DataPtr() : ptr_(), device_(DeviceType::CPU) {}
|
29 |
+
DataPtr(void* data, Device device) : ptr_(data), device_(device) {}
|
30 |
+
DataPtr(void* data, void* ctx, DeleterFnPtr ctx_deleter, Device device)
|
31 |
+
: ptr_(data, ctx, ctx_deleter), device_(device) {}
|
32 |
+
void* operator->() const {
|
33 |
+
return ptr_.get();
|
34 |
+
}
|
35 |
+
void clear() {
|
36 |
+
ptr_.clear();
|
37 |
+
}
|
38 |
+
void* get() const {
|
39 |
+
return ptr_.get();
|
40 |
+
}
|
41 |
+
void* mutable_get() {
|
42 |
+
return ptr_.get();
|
43 |
+
}
|
44 |
+
void* get_context() const {
|
45 |
+
return ptr_.get_context();
|
46 |
+
}
|
47 |
+
void* release_context() {
|
48 |
+
return ptr_.release_context();
|
49 |
+
}
|
50 |
+
std::unique_ptr<void, DeleterFnPtr>&& move_context() {
|
51 |
+
return ptr_.move_context();
|
52 |
+
}
|
53 |
+
operator bool() const {
|
54 |
+
return static_cast<bool>(ptr_);
|
55 |
+
}
|
56 |
+
template <typename T>
|
57 |
+
T* cast_context(DeleterFnPtr expected_deleter) const {
|
58 |
+
return ptr_.cast_context<T>(expected_deleter);
|
59 |
+
}
|
60 |
+
DeleterFnPtr get_deleter() const {
|
61 |
+
return ptr_.get_deleter();
|
62 |
+
}
|
63 |
+
/**
|
64 |
+
* Compare the deleter in a DataPtr to expected_deleter.
|
65 |
+
* If it matches, replace the deleter with new_deleter
|
66 |
+
* and return true; otherwise, does nothing and returns
|
67 |
+
* false.
|
68 |
+
*
|
69 |
+
* In general, it is not safe to unconditionally set the
|
70 |
+
* deleter on a DataPtr, because you don't know what
|
71 |
+
* the deleter is, and thus will have a hard time properly
|
72 |
+
* disposing of the deleter without storing the original
|
73 |
+
* deleter (this is difficult to do, because DeleterFnPtr
|
74 |
+
* is not a closure, and because the context on DataPtr is
|
75 |
+
* only a single word, you generally don't have enough
|
76 |
+
* space to store both the original deleter and its context).
|
77 |
+
* However, in some cases, you know /exactly/ what the deleter
|
78 |
+
* is, and you have a new deleter that manually wraps
|
79 |
+
* the old one. In this case, you can safely swap the deleter
|
80 |
+
* after asserting that the deleters line up.
|
81 |
+
*
|
82 |
+
* What are the requirements on new_deleter? It must still
|
83 |
+
* properly dispose of the void* pointer passed in as its argument,
|
84 |
+
* where void* is whatever the context of the original deleter
|
85 |
+
* is. So in general, you expect the new deleter to look something
|
86 |
+
* like this:
|
87 |
+
*
|
88 |
+
* [](void* ptr) {
|
89 |
+
* some_new_stuff(ptr);
|
90 |
+
* get_orig_allocator()->raw_deleter(ptr);
|
91 |
+
* }
|
92 |
+
*
|
93 |
+
* Note that it won't work to close over the original
|
94 |
+
* allocator; you don't have enough space to do that! Also,
|
95 |
+
* it's unsafe to assume that the passed in pointer in
|
96 |
+
* question is the memory pointer in question; it might not
|
97 |
+
* be; be sure to read the source code of the Allocator
|
98 |
+
* in question to confirm this.
|
99 |
+
*/
|
100 |
+
C10_NODISCARD bool compare_exchange_deleter(
|
101 |
+
DeleterFnPtr expected_deleter,
|
102 |
+
DeleterFnPtr new_deleter) {
|
103 |
+
return ptr_.compare_exchange_deleter(expected_deleter, new_deleter);
|
104 |
+
}
|
105 |
+
Device device() const {
|
106 |
+
return device_;
|
107 |
+
}
|
108 |
+
// Unsafely mutates the device on a DataPtr. Under normal use,
|
109 |
+
// you should never actually need to call this function.
|
110 |
+
// We need this for the implementation of the hack detailed
|
111 |
+
// in Note [Masquerading as CUDA]
|
112 |
+
void unsafe_set_device(Device device) {
|
113 |
+
device_ = device;
|
114 |
+
}
|
115 |
+
};
|
116 |
+
|
117 |
+
// NB: Device is NOT tested for here; a CUDA nullptr is as much a nullptr as a
|
118 |
+
// CPU nullptr
|
119 |
+
|
120 |
+
inline bool operator==(const DataPtr& dp, std::nullptr_t) noexcept {
|
121 |
+
return !dp;
|
122 |
+
}
|
123 |
+
inline bool operator==(std::nullptr_t, const DataPtr& dp) noexcept {
|
124 |
+
return !dp;
|
125 |
+
}
|
126 |
+
inline bool operator!=(const DataPtr& dp, std::nullptr_t) noexcept {
|
127 |
+
return dp;
|
128 |
+
}
|
129 |
+
inline bool operator!=(std::nullptr_t, const DataPtr& dp) noexcept {
|
130 |
+
return dp;
|
131 |
+
}
|
132 |
+
|
133 |
+
// Note [raw_allocate/raw_deallocate and Thrust]
|
134 |
+
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
135 |
+
// Thrust's support for custom allocators requires us to write something
|
136 |
+
// like this:
|
137 |
+
//
|
138 |
+
// class ThrustAllocator {
|
139 |
+
// char* allocate(size_t);
|
140 |
+
// void deallocate(char*, size_t);
|
141 |
+
// };
|
142 |
+
//
|
143 |
+
// This is not good for our unique_ptr based allocator interface, as
|
144 |
+
// there is no way to get to the context when we free.
|
145 |
+
//
|
146 |
+
// However, in some cases the context is exactly the same as
|
147 |
+
// the data pointer. In this case, we can support the "raw"
|
148 |
+
// allocate and deallocate interface. This is what
|
149 |
+
// raw_deleter signifies. By default, it returns a nullptr, which means that
|
150 |
+
// the raw interface is not implemented. Be sure to implement it whenever
|
151 |
+
// possible, or the raw interface will incorrectly reported as unsupported,
|
152 |
+
// when it is actually possible.
|
153 |
+
|
154 |
+
struct C10_API Allocator {
|
155 |
+
virtual ~Allocator() = default;
|
156 |
+
|
157 |
+
virtual DataPtr allocate(size_t n) const = 0;
|
158 |
+
|
159 |
+
// If this returns a non nullptr, it means that allocate()
|
160 |
+
// is guaranteed to return a unique_ptr with this deleter attached;
|
161 |
+
// it means the rawAllocate and rawDeallocate APIs are safe to use.
|
162 |
+
// This function MUST always return the same BoundDeleter.
|
163 |
+
virtual DeleterFnPtr raw_deleter() const {
|
164 |
+
return nullptr;
|
165 |
+
}
|
166 |
+
void* raw_allocate(size_t n) {
|
167 |
+
auto dptr = allocate(n);
|
168 |
+
AT_ASSERT(dptr.get() == dptr.get_context());
|
169 |
+
return dptr.release_context();
|
170 |
+
}
|
171 |
+
void raw_deallocate(void* ptr) {
|
172 |
+
auto d = raw_deleter();
|
173 |
+
AT_ASSERT(d);
|
174 |
+
d(ptr);
|
175 |
+
}
|
176 |
+
};
|
177 |
+
|
178 |
+
// This context is used to generate DataPtr which have arbitrary
|
179 |
+
// std::function deleters associated with them. In some user facing
|
180 |
+
// functions, we give a (user-friendly) interface for constructing
|
181 |
+
// tensors from external data which take an arbitrary std::function
|
182 |
+
// deleter. Grep for InefficientStdFunctionContext to find these
|
183 |
+
// occurrences.
|
184 |
+
//
|
185 |
+
// This context is inefficient because we have to do a dynamic
|
186 |
+
// allocation InefficientStdFunctionContext, on top of the dynamic
|
187 |
+
// allocation which is implied by std::function itself.
|
188 |
+
struct C10_API InefficientStdFunctionContext {
|
189 |
+
std::unique_ptr<void, std::function<void(void*)>> ptr_;
|
190 |
+
InefficientStdFunctionContext(
|
191 |
+
std::unique_ptr<void, std::function<void(void*)>>&& ptr)
|
192 |
+
: ptr_(std::move(ptr)) {}
|
193 |
+
static DataPtr makeDataPtr(
|
194 |
+
void* ptr,
|
195 |
+
const std::function<void(void*)>& deleter,
|
196 |
+
Device device);
|
197 |
+
};
|
198 |
+
|
199 |
+
/** Set the allocator for DeviceType `t`. The passed in allocator pointer is
|
200 |
+
* expected to have static lifetime; this function does NOT take ownership
|
201 |
+
* of the raw pointer. (The reason for this is to prevent existing pointers
|
202 |
+
* to an allocator of a particular device from being invalidated when
|
203 |
+
* SetAllocator is called.)
|
204 |
+
*
|
205 |
+
* Also note that this is not thread-safe, and we assume this function will
|
206 |
+
* only be called during initialization.
|
207 |
+
*
|
208 |
+
* The 'priority' flag is introduced when we want to overwrite the default
|
209 |
+
* allocator, since the allocators are set statically. The default priority
|
210 |
+
* is 0, which means the lowest. Only higher or equal priority can overwrite
|
211 |
+
* existing ones.
|
212 |
+
*/
|
213 |
+
C10_API void SetAllocator(DeviceType t, Allocator* alloc, uint8_t priority = 0);
|
214 |
+
C10_API Allocator* GetAllocator(const DeviceType& t);
|
215 |
+
|
216 |
+
template <DeviceType t>
|
217 |
+
struct AllocatorRegisterer {
|
218 |
+
explicit AllocatorRegisterer(Allocator* alloc) {
|
219 |
+
SetAllocator(t, alloc);
|
220 |
+
}
|
221 |
+
};
|
222 |
+
|
223 |
+
#define REGISTER_ALLOCATOR(t, f) \
|
224 |
+
namespace { \
|
225 |
+
static c10::AllocatorRegisterer<t> g_allocator_d(f); \
|
226 |
+
}
|
227 |
+
|
228 |
+
// An interface for reporting thread local memory usage
|
229 |
+
// per device
|
230 |
+
struct C10_API MemoryReportingInfoBase : public c10::DebugInfoBase {
|
231 |
+
MemoryReportingInfoBase();
|
232 |
+
~MemoryReportingInfoBase() override = default;
|
233 |
+
|
234 |
+
/**
|
235 |
+
* alloc_size corresponds to the size of the ptr.
|
236 |
+
*
|
237 |
+
* total_allocated corresponds to total allocated memory.
|
238 |
+
*
|
239 |
+
* total_reserved corresponds to total size of memory pool, both used and
|
240 |
+
* unused, if applicable.
|
241 |
+
*/
|
242 |
+
virtual void reportMemoryUsage(
|
243 |
+
void* ptr,
|
244 |
+
int64_t alloc_size,
|
245 |
+
size_t total_allocated,
|
246 |
+
size_t total_reserved,
|
247 |
+
Device device) = 0;
|
248 |
+
|
249 |
+
virtual void reportOutOfMemory(
|
250 |
+
int64_t alloc_size,
|
251 |
+
size_t total_allocated,
|
252 |
+
size_t total_reserved,
|
253 |
+
Device device);
|
254 |
+
|
255 |
+
virtual bool memoryProfilingEnabled() const = 0;
|
256 |
+
};
|
257 |
+
|
258 |
+
C10_API bool memoryProfilingEnabled();
|
259 |
+
C10_API void reportMemoryUsageToProfiler(
|
260 |
+
void* ptr,
|
261 |
+
int64_t alloc_size,
|
262 |
+
size_t total_allocated,
|
263 |
+
size_t total_reserved,
|
264 |
+
Device device);
|
265 |
+
|
266 |
+
C10_API void reportOutOfMemoryToProfiler(
|
267 |
+
int64_t alloc_size,
|
268 |
+
size_t total_allocated,
|
269 |
+
size_t total_reserved,
|
270 |
+
Device device);
|
271 |
+
|
272 |
+
// used to hold traceback information in allocators
|
273 |
+
struct GatheredContext {
|
274 |
+
virtual ~GatheredContext() = default;
|
275 |
+
};
|
276 |
+
|
277 |
+
} // namespace c10
|
env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/AutogradState.h
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <c10/macros/Export.h>
|
4 |
+
|
5 |
+
namespace c10 {
|
6 |
+
|
7 |
+
// Structure used to pack all the thread local boolean
|
8 |
+
// flags used by autograd
|
9 |
+
struct C10_API AutogradState {
|
10 |
+
static AutogradState& get_tls_state();
|
11 |
+
static void set_tls_state(AutogradState state);
|
12 |
+
|
13 |
+
AutogradState(
|
14 |
+
bool grad_mode,
|
15 |
+
bool inference_mode,
|
16 |
+
bool fw_grad_mode,
|
17 |
+
bool multithreading_enabled)
|
18 |
+
: grad_mode_(grad_mode),
|
19 |
+
inference_mode_(inference_mode),
|
20 |
+
fw_grad_mode_(fw_grad_mode),
|
21 |
+
multithreading_enabled_(multithreading_enabled),
|
22 |
+
view_replay_enabled_(false) {}
|
23 |
+
|
24 |
+
void set_grad_mode(bool enabled) {
|
25 |
+
grad_mode_ = enabled;
|
26 |
+
}
|
27 |
+
|
28 |
+
void set_fw_grad_mode(bool enabled) {
|
29 |
+
fw_grad_mode_ = enabled;
|
30 |
+
}
|
31 |
+
|
32 |
+
void set_inference_mode(bool enabled) {
|
33 |
+
inference_mode_ = enabled;
|
34 |
+
}
|
35 |
+
|
36 |
+
void set_multithreading_enabled(bool multithreading_enabled) {
|
37 |
+
multithreading_enabled_ = multithreading_enabled;
|
38 |
+
}
|
39 |
+
|
40 |
+
void set_view_replay_enabled(bool view_replay_enabled) {
|
41 |
+
view_replay_enabled_ = view_replay_enabled;
|
42 |
+
}
|
43 |
+
|
44 |
+
bool get_grad_mode() const {
|
45 |
+
return grad_mode_;
|
46 |
+
}
|
47 |
+
|
48 |
+
bool get_fw_grad_mode() const {
|
49 |
+
return fw_grad_mode_;
|
50 |
+
}
|
51 |
+
|
52 |
+
bool get_inference_mode() const {
|
53 |
+
return inference_mode_;
|
54 |
+
}
|
55 |
+
|
56 |
+
bool get_multithreading_enabled() const {
|
57 |
+
return multithreading_enabled_;
|
58 |
+
}
|
59 |
+
|
60 |
+
bool get_view_replay_enabled() const {
|
61 |
+
return view_replay_enabled_;
|
62 |
+
}
|
63 |
+
|
64 |
+
private:
|
65 |
+
bool grad_mode_ : 1;
|
66 |
+
bool inference_mode_ : 1;
|
67 |
+
bool fw_grad_mode_ : 1;
|
68 |
+
bool multithreading_enabled_ : 1;
|
69 |
+
bool view_replay_enabled_ : 1;
|
70 |
+
};
|
71 |
+
|
72 |
+
} // namespace c10
|
env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/Backend.h
ADDED
@@ -0,0 +1,350 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <c10/core/DeviceType.h>
|
4 |
+
#include <c10/core/DispatchKey.h>
|
5 |
+
#include <c10/core/DispatchKeySet.h>
|
6 |
+
#include <c10/util/Exception.h>
|
7 |
+
|
8 |
+
#include <stdexcept>
|
9 |
+
|
10 |
+
namespace c10 {
|
11 |
+
|
12 |
+
/**
|
13 |
+
* This legacy enum class defines the set of backends supported by old school,
|
14 |
+
* code generated Type-based ATen. A "backend" in this sense roughly
|
15 |
+
* corresponds to the cartesian product of (device type, layout), but restricted
|
16 |
+
* only to combinations which we actually have kernels for. Backend does NOT
|
17 |
+
* include dtype.
|
18 |
+
*
|
19 |
+
* The reason we are sunsetting this enum class is because it doesn't allow for
|
20 |
+
* open registration; e.g., if you want to add SparseXLA, you'd have to
|
21 |
+
* edit this enum; you wouldn't be able to do it out of tree. DispatchKey is
|
22 |
+
* the replacement for Backend which supports open registration.
|
23 |
+
*
|
24 |
+
* NB: The concept of 'Backend' here disagrees with the notion of backend
|
25 |
+
* exposed to users in torch.backends. Backend here is something like "CPU"
|
26 |
+
* or "SparseCUDA"; backend in torch.backends is something like "MKL" or
|
27 |
+
* "CUDNN".
|
28 |
+
*/
|
29 |
+
enum class Backend {
|
30 |
+
CPU,
|
31 |
+
CUDA,
|
32 |
+
HIP,
|
33 |
+
VE,
|
34 |
+
FPGA,
|
35 |
+
IPU,
|
36 |
+
XPU,
|
37 |
+
SparseCPU,
|
38 |
+
SparseCUDA,
|
39 |
+
SparseCsrCPU,
|
40 |
+
SparseCsrCUDA,
|
41 |
+
SparseHIP,
|
42 |
+
SparseVE,
|
43 |
+
SparseXPU,
|
44 |
+
SparsePrivateUse1,
|
45 |
+
ORT,
|
46 |
+
XLA,
|
47 |
+
Vulkan,
|
48 |
+
Metal,
|
49 |
+
Meta,
|
50 |
+
QuantizedCPU,
|
51 |
+
QuantizedCUDA,
|
52 |
+
QuantizedXPU,
|
53 |
+
QuantizedPrivateUse1,
|
54 |
+
Undefined,
|
55 |
+
MkldnnCPU,
|
56 |
+
MPS,
|
57 |
+
HPU,
|
58 |
+
Lazy,
|
59 |
+
MTIA,
|
60 |
+
PrivateUse1,
|
61 |
+
NumOptions
|
62 |
+
};
|
63 |
+
|
64 |
+
static inline Backend dispatchKeyToBackend(DispatchKey t) {
|
65 |
+
if (t == DispatchKey::CPU || t == DispatchKey::AutogradCPU) {
|
66 |
+
return Backend::CPU;
|
67 |
+
} else if (t == DispatchKey::CUDA || t == DispatchKey::AutogradCUDA) {
|
68 |
+
return Backend::CUDA;
|
69 |
+
} else if (t == DispatchKey::HIP) {
|
70 |
+
return Backend::HIP;
|
71 |
+
} else if (t == DispatchKey::VE) {
|
72 |
+
return Backend::VE;
|
73 |
+
} else if (t == DispatchKey::FPGA) {
|
74 |
+
return Backend::FPGA;
|
75 |
+
} else if (t == DispatchKey::ORT) {
|
76 |
+
return Backend::ORT;
|
77 |
+
} else if (t == DispatchKey::XLA || t == DispatchKey::AutogradXLA) {
|
78 |
+
return Backend::XLA;
|
79 |
+
} else if (t == DispatchKey::Lazy || t == DispatchKey::AutogradLazy) {
|
80 |
+
return Backend::Lazy;
|
81 |
+
} else if (t == DispatchKey::MPS || t == DispatchKey::AutogradMPS) {
|
82 |
+
return Backend::MPS;
|
83 |
+
} else if (t == DispatchKey::Vulkan) {
|
84 |
+
return Backend::Vulkan;
|
85 |
+
} else if (t == DispatchKey::Metal) {
|
86 |
+
return Backend::Metal;
|
87 |
+
} else if (t == DispatchKey::Meta) {
|
88 |
+
return Backend::Meta;
|
89 |
+
} else if (t == DispatchKey::SparseCPU) {
|
90 |
+
return Backend::SparseCPU;
|
91 |
+
} else if (t == DispatchKey::SparseCUDA) {
|
92 |
+
return Backend::SparseCUDA;
|
93 |
+
} else if (t == DispatchKey::SparseHIP) {
|
94 |
+
return Backend::SparseHIP;
|
95 |
+
} else if (t == DispatchKey::SparseVE) {
|
96 |
+
return Backend::SparseVE;
|
97 |
+
} else if (t == DispatchKey::SparsePrivateUse1) {
|
98 |
+
return Backend::SparsePrivateUse1;
|
99 |
+
} else if (t == DispatchKey::SparseCsrCPU) {
|
100 |
+
return Backend::SparseCsrCPU;
|
101 |
+
} else if (t == DispatchKey::SparseCsrCUDA) {
|
102 |
+
return Backend::SparseCsrCUDA;
|
103 |
+
} else if (t == DispatchKey::MkldnnCPU) {
|
104 |
+
return Backend::MkldnnCPU;
|
105 |
+
} else if (t == DispatchKey::QuantizedCPU) {
|
106 |
+
return Backend::QuantizedCPU;
|
107 |
+
} else if (t == DispatchKey::QuantizedCUDA) {
|
108 |
+
return Backend::QuantizedCUDA;
|
109 |
+
} else if (t == DispatchKey::IPU || t == DispatchKey::AutogradIPU) {
|
110 |
+
return Backend::IPU;
|
111 |
+
} else if (t == DispatchKey::XPU || t == DispatchKey::AutogradXPU) {
|
112 |
+
return Backend::XPU;
|
113 |
+
} else if (t == DispatchKey::SparseXPU) {
|
114 |
+
return Backend::SparseXPU;
|
115 |
+
} else if (t == DispatchKey::QuantizedXPU) {
|
116 |
+
return Backend::QuantizedXPU;
|
117 |
+
} else if (t == DispatchKey::QuantizedPrivateUse1) {
|
118 |
+
return Backend::QuantizedPrivateUse1;
|
119 |
+
} else if (t == DispatchKey::HPU || t == DispatchKey::AutogradHPU) {
|
120 |
+
return Backend::HPU;
|
121 |
+
} else if (t == DispatchKey::MTIA || t == DispatchKey::AutogradMTIA) {
|
122 |
+
return Backend::MTIA;
|
123 |
+
} else if (
|
124 |
+
t == DispatchKey::PrivateUse1 || t == DispatchKey::AutogradPrivateUse1) {
|
125 |
+
return Backend::PrivateUse1;
|
126 |
+
} else if (t == DispatchKey::Undefined) {
|
127 |
+
return Backend::Undefined;
|
128 |
+
} else {
|
129 |
+
TORCH_CHECK(false, "Unrecognized tensor type ID: ", t);
|
130 |
+
}
|
131 |
+
}
|
132 |
+
|
133 |
+
static inline DispatchKey backendToDispatchKey(Backend b) {
|
134 |
+
switch (b) {
|
135 |
+
case Backend::CPU:
|
136 |
+
return DispatchKey::CPU;
|
137 |
+
case Backend::CUDA:
|
138 |
+
return DispatchKey::CUDA;
|
139 |
+
case Backend::HIP:
|
140 |
+
return DispatchKey::HIP;
|
141 |
+
case Backend::VE:
|
142 |
+
return DispatchKey::VE;
|
143 |
+
case Backend::FPGA:
|
144 |
+
return DispatchKey::FPGA;
|
145 |
+
case Backend::ORT:
|
146 |
+
return DispatchKey::ORT;
|
147 |
+
case Backend::XLA:
|
148 |
+
return DispatchKey::XLA;
|
149 |
+
case Backend::Lazy:
|
150 |
+
return DispatchKey::Lazy;
|
151 |
+
case Backend::IPU:
|
152 |
+
return DispatchKey::IPU;
|
153 |
+
case Backend::XPU:
|
154 |
+
return DispatchKey::XPU;
|
155 |
+
case Backend::SparseXPU:
|
156 |
+
return DispatchKey::SparseXPU;
|
157 |
+
case Backend::SparseCPU:
|
158 |
+
return DispatchKey::SparseCPU;
|
159 |
+
case Backend::SparseCUDA:
|
160 |
+
return DispatchKey::SparseCUDA;
|
161 |
+
case Backend::SparseHIP:
|
162 |
+
return DispatchKey::SparseHIP;
|
163 |
+
case Backend::SparseVE:
|
164 |
+
return DispatchKey::SparseVE;
|
165 |
+
case Backend::SparsePrivateUse1:
|
166 |
+
return DispatchKey::SparsePrivateUse1;
|
167 |
+
case Backend::SparseCsrCPU:
|
168 |
+
return DispatchKey::SparseCsrCPU;
|
169 |
+
case Backend::SparseCsrCUDA:
|
170 |
+
return DispatchKey::SparseCsrCUDA;
|
171 |
+
case Backend::MkldnnCPU:
|
172 |
+
return DispatchKey::MkldnnCPU;
|
173 |
+
case Backend::Vulkan:
|
174 |
+
return DispatchKey::Vulkan;
|
175 |
+
case Backend::Metal:
|
176 |
+
return DispatchKey::Metal;
|
177 |
+
case Backend::Meta:
|
178 |
+
return DispatchKey::Meta;
|
179 |
+
case Backend::QuantizedCPU:
|
180 |
+
return DispatchKey::QuantizedCPU;
|
181 |
+
case Backend::QuantizedCUDA:
|
182 |
+
return DispatchKey::QuantizedCUDA;
|
183 |
+
case Backend::QuantizedPrivateUse1:
|
184 |
+
return DispatchKey::QuantizedPrivateUse1;
|
185 |
+
case Backend::Undefined:
|
186 |
+
return DispatchKey::Undefined;
|
187 |
+
case Backend::MPS:
|
188 |
+
return DispatchKey::MPS;
|
189 |
+
case Backend::HPU:
|
190 |
+
return DispatchKey::HPU;
|
191 |
+
case Backend::MTIA:
|
192 |
+
return DispatchKey::MTIA;
|
193 |
+
case Backend::PrivateUse1:
|
194 |
+
return DispatchKey::PrivateUse1;
|
195 |
+
default:
|
196 |
+
throw std::runtime_error("Unknown backend");
|
197 |
+
}
|
198 |
+
}
|
199 |
+
|
200 |
+
static inline DeviceType backendToDeviceType(Backend b) {
|
201 |
+
switch (b) {
|
202 |
+
case Backend::CPU:
|
203 |
+
case Backend::MkldnnCPU:
|
204 |
+
case Backend::SparseCPU:
|
205 |
+
case Backend::SparseCsrCPU:
|
206 |
+
case Backend::QuantizedCPU:
|
207 |
+
return DeviceType::CPU;
|
208 |
+
case Backend::CUDA:
|
209 |
+
case Backend::SparseCUDA:
|
210 |
+
case Backend::QuantizedCUDA:
|
211 |
+
case Backend::SparseCsrCUDA:
|
212 |
+
return DeviceType::CUDA;
|
213 |
+
case Backend::HIP:
|
214 |
+
return DeviceType::HIP;
|
215 |
+
case Backend::VE:
|
216 |
+
return DeviceType::VE;
|
217 |
+
case Backend::FPGA:
|
218 |
+
return DeviceType::FPGA;
|
219 |
+
case Backend::ORT:
|
220 |
+
return DeviceType::ORT;
|
221 |
+
case Backend::XLA:
|
222 |
+
return DeviceType::XLA;
|
223 |
+
case Backend::Lazy:
|
224 |
+
return DeviceType::Lazy;
|
225 |
+
case Backend::SparseHIP:
|
226 |
+
return DeviceType::HIP;
|
227 |
+
case Backend::SparseVE:
|
228 |
+
return DeviceType::VE;
|
229 |
+
case Backend::IPU:
|
230 |
+
return DeviceType::IPU;
|
231 |
+
case Backend::XPU:
|
232 |
+
case Backend::SparseXPU:
|
233 |
+
case Backend::QuantizedXPU:
|
234 |
+
return DeviceType::XPU;
|
235 |
+
case Backend::Vulkan:
|
236 |
+
return DeviceType::Vulkan;
|
237 |
+
case Backend::Metal:
|
238 |
+
return DeviceType::Metal;
|
239 |
+
case Backend::Meta:
|
240 |
+
return DeviceType::Meta;
|
241 |
+
case Backend::MPS:
|
242 |
+
return DeviceType::MPS;
|
243 |
+
case Backend::HPU:
|
244 |
+
return DeviceType::HPU;
|
245 |
+
case Backend::MTIA:
|
246 |
+
return DeviceType::MTIA;
|
247 |
+
case Backend::PrivateUse1:
|
248 |
+
case Backend::SparsePrivateUse1:
|
249 |
+
case Backend::QuantizedPrivateUse1:
|
250 |
+
return DeviceType::PrivateUse1;
|
251 |
+
case Backend::Undefined:
|
252 |
+
TORCH_CHECK(false, "Undefined backend is not a valid device type");
|
253 |
+
default:
|
254 |
+
TORCH_CHECK(false, "Unknown backend");
|
255 |
+
}
|
256 |
+
}
|
257 |
+
|
258 |
+
// TODO: This probably shouldn't actually be static inline
|
259 |
+
static inline const char* toString(Backend b) {
|
260 |
+
switch (b) {
|
261 |
+
case Backend::CPU:
|
262 |
+
return "CPU";
|
263 |
+
case Backend::CUDA:
|
264 |
+
return "CUDA";
|
265 |
+
case Backend::HIP:
|
266 |
+
return "HIP";
|
267 |
+
case Backend::VE:
|
268 |
+
return "VE";
|
269 |
+
case Backend::FPGA:
|
270 |
+
return "FPGA";
|
271 |
+
case Backend::XPU:
|
272 |
+
return "XPU";
|
273 |
+
case Backend::IPU:
|
274 |
+
return "IPU";
|
275 |
+
case Backend::ORT:
|
276 |
+
return "ORT";
|
277 |
+
case Backend::XLA:
|
278 |
+
return "XLA";
|
279 |
+
case Backend::Lazy:
|
280 |
+
return "Lazy";
|
281 |
+
case Backend::MPS:
|
282 |
+
return "MPS";
|
283 |
+
case Backend::SparseCPU:
|
284 |
+
return "SparseCPU";
|
285 |
+
case Backend::SparseCUDA:
|
286 |
+
return "SparseCUDA";
|
287 |
+
case Backend::SparseHIP:
|
288 |
+
return "SparseHIP";
|
289 |
+
case Backend::SparseVE:
|
290 |
+
return "SparseVE";
|
291 |
+
case Backend::SparseXPU:
|
292 |
+
return "SparseXPU";
|
293 |
+
case Backend::SparsePrivateUse1:
|
294 |
+
return "SparsePrivateUse1";
|
295 |
+
case Backend::SparseCsrCPU:
|
296 |
+
return "SparseCsrCPU";
|
297 |
+
case Backend::SparseCsrCUDA:
|
298 |
+
return "SparseCsrCUDA";
|
299 |
+
case Backend::MkldnnCPU:
|
300 |
+
return "MkldnnCPU";
|
301 |
+
case Backend::Vulkan:
|
302 |
+
return "Vulkan";
|
303 |
+
case Backend::Metal:
|
304 |
+
return "Metal";
|
305 |
+
case Backend::Meta:
|
306 |
+
return "Meta";
|
307 |
+
case Backend::QuantizedCPU:
|
308 |
+
return "QuantizedCPU";
|
309 |
+
case Backend::QuantizedCUDA:
|
310 |
+
return "QuantizedCUDA";
|
311 |
+
case Backend::QuantizedXPU:
|
312 |
+
return "QuantizedXPU";
|
313 |
+
case Backend::QuantizedPrivateUse1:
|
314 |
+
return "QuantizedPrivateUse1";
|
315 |
+
case Backend::HPU:
|
316 |
+
return "HPU";
|
317 |
+
case Backend::MTIA:
|
318 |
+
return "MTIA";
|
319 |
+
case Backend::PrivateUse1:
|
320 |
+
return "PrivateUseOne";
|
321 |
+
default:
|
322 |
+
return "UNKNOWN_BACKEND";
|
323 |
+
}
|
324 |
+
}
|
325 |
+
|
326 |
+
static inline bool isSparse(Backend b) {
|
327 |
+
switch (b) {
|
328 |
+
case Backend::SparseXPU:
|
329 |
+
case Backend::SparseCPU:
|
330 |
+
case Backend::SparseCUDA:
|
331 |
+
case Backend::SparseHIP:
|
332 |
+
case Backend::SparseVE:
|
333 |
+
case Backend::SparsePrivateUse1:
|
334 |
+
return true;
|
335 |
+
default:
|
336 |
+
return false;
|
337 |
+
}
|
338 |
+
}
|
339 |
+
|
340 |
+
static inline bool isSparseCsr(Backend b) {
|
341 |
+
switch (b) {
|
342 |
+
case Backend::SparseCsrCPU:
|
343 |
+
case Backend::SparseCsrCUDA:
|
344 |
+
return true;
|
345 |
+
default:
|
346 |
+
return false;
|
347 |
+
}
|
348 |
+
}
|
349 |
+
|
350 |
+
} // namespace c10
|
env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/CompileTimeFunctionPointer.h
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <c10/util/TypeTraits.h>
|
4 |
+
|
5 |
+
namespace c10 {
|
6 |
+
|
7 |
+
/**
|
8 |
+
* Represent a function pointer as a C++ type.
|
9 |
+
* This allows using the function pointer as a type
|
10 |
+
* in a template and calling it from inside the template
|
11 |
+
* allows the compiler to inline the call because it
|
12 |
+
* knows the function pointer at compile time.
|
13 |
+
*
|
14 |
+
* Example 1:
|
15 |
+
* int add(int a, int b) {return a + b;}
|
16 |
+
* using Add = TORCH_FN_TYPE(add);
|
17 |
+
* template<class Func> struct Executor {
|
18 |
+
* int execute(int a, int b) {
|
19 |
+
* return Func::func_ptr()(a, b);
|
20 |
+
* }
|
21 |
+
* };
|
22 |
+
* Executor<Add> executor;
|
23 |
+
* EXPECT_EQ(3, executor.execute(1, 2));
|
24 |
+
*
|
25 |
+
* Example 2:
|
26 |
+
* int add(int a, int b) {return a + b;}
|
27 |
+
* template<class Func> int execute(Func, int a, int b) {
|
28 |
+
* return Func::func_ptr()(a, b);
|
29 |
+
* }
|
30 |
+
* EXPECT_EQ(3, execute(TORCH_FN(add), 1, 2));
|
31 |
+
*/
|
32 |
+
template <class FuncType_, FuncType_* func_ptr_>
|
33 |
+
struct CompileTimeFunctionPointer final {
|
34 |
+
static_assert(
|
35 |
+
guts::is_function_type<FuncType_>::value,
|
36 |
+
"TORCH_FN can only wrap function types.");
|
37 |
+
using FuncType = FuncType_;
|
38 |
+
|
39 |
+
static constexpr FuncType* func_ptr() {
|
40 |
+
return func_ptr_;
|
41 |
+
}
|
42 |
+
};
|
43 |
+
|
44 |
+
template <class T>
|
45 |
+
struct is_compile_time_function_pointer : std::false_type {};
|
46 |
+
template <class FuncType, FuncType* func_ptr>
|
47 |
+
struct is_compile_time_function_pointer<
|
48 |
+
CompileTimeFunctionPointer<FuncType, func_ptr>> : std::true_type {};
|
49 |
+
|
50 |
+
} // namespace c10
|
51 |
+
|
52 |
+
#define TORCH_FN_TYPE(func) \
|
53 |
+
::c10::CompileTimeFunctionPointer< \
|
54 |
+
std::remove_pointer_t<std::remove_reference_t<decltype(func)>>, \
|
55 |
+
func>
|
56 |
+
#define TORCH_FN(func) TORCH_FN_TYPE(func)()
|
env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/ConstantSymNodeImpl.h
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#include <c10/core/SymNodeImpl.h>
|
2 |
+
#include <variant>
|
3 |
+
|
4 |
+
namespace c10 {
|
5 |
+
|
6 |
+
// Unlike other SymNodeImpl, this cannot be "dispatched" conventionally,
|
7 |
+
// as it typically needs to defer to another SymNodeImpl
|
8 |
+
//
|
9 |
+
// Can either represent a bool, int (don't support float yet) this is useful
|
10 |
+
// for representing otherwise unrepresentable large negative integer constant.
|
11 |
+
template <typename T>
|
12 |
+
class C10_API ConstantSymNodeImpl : public SymNodeImpl {
|
13 |
+
static_assert(
|
14 |
+
std::is_same<T, int64_t>::value || std::is_same<T, bool>::value,
|
15 |
+
"ConstantSymNodeImpl can only accept int64_t or bool types");
|
16 |
+
|
17 |
+
public:
|
18 |
+
ConstantSymNodeImpl(T val) : value_(val) {}
|
19 |
+
|
20 |
+
bool is_int() override {
|
21 |
+
return is_int_();
|
22 |
+
}
|
23 |
+
bool is_bool() override {
|
24 |
+
return is_bool_();
|
25 |
+
}
|
26 |
+
bool is_float() override {
|
27 |
+
return false;
|
28 |
+
}
|
29 |
+
int64_t guard_int(const char* file, int64_t line) override {
|
30 |
+
TORCH_CHECK(is_int(), "not an int");
|
31 |
+
return int_();
|
32 |
+
}
|
33 |
+
bool guard_bool(const char* file, int64_t line) override {
|
34 |
+
TORCH_CHECK(is_bool(), "not a bool");
|
35 |
+
return bool_();
|
36 |
+
}
|
37 |
+
double guard_float(const char* file, int64_t line) override {
|
38 |
+
TORCH_CHECK(false, "not a float");
|
39 |
+
}
|
40 |
+
int64_t int_() override {
|
41 |
+
TORCH_CHECK(is_int(), "not an int");
|
42 |
+
return std::get<int64_t>(value_);
|
43 |
+
}
|
44 |
+
bool bool_() override {
|
45 |
+
TORCH_CHECK(is_bool(), "not a bool");
|
46 |
+
return std::get<bool>(value_);
|
47 |
+
}
|
48 |
+
bool has_hint() override {
|
49 |
+
return true;
|
50 |
+
}
|
51 |
+
c10::SymNode eq(const c10::SymNode& other) override;
|
52 |
+
c10::SymNode ne(const c10::SymNode& other) override;
|
53 |
+
c10::SymNode ge(const c10::SymNode& other) override;
|
54 |
+
c10::SymNode le(const c10::SymNode& other) override;
|
55 |
+
c10::SymNode lt(const c10::SymNode& other) override;
|
56 |
+
c10::SymNode gt(const c10::SymNode& other) override;
|
57 |
+
c10::SymNode mul(const c10::SymNode& other) override;
|
58 |
+
std::string str() override {
|
59 |
+
if constexpr (is_int_()) {
|
60 |
+
return std::to_string(std::get<int64_t>(value_));
|
61 |
+
} else {
|
62 |
+
return std::get<bool>(value_) ? "true" : "false";
|
63 |
+
}
|
64 |
+
}
|
65 |
+
c10::optional<int64_t> constant_int() override {
|
66 |
+
if constexpr (is_int_()) {
|
67 |
+
return std::get<int64_t>(value_);
|
68 |
+
} else {
|
69 |
+
return c10::nullopt;
|
70 |
+
}
|
71 |
+
}
|
72 |
+
c10::optional<bool> constant_bool() override {
|
73 |
+
if constexpr (is_bool_()) {
|
74 |
+
return std::get<bool>(value_);
|
75 |
+
} else {
|
76 |
+
return c10::nullopt;
|
77 |
+
}
|
78 |
+
}
|
79 |
+
bool is_constant() override {
|
80 |
+
return true;
|
81 |
+
}
|
82 |
+
bool is_symbolic() override {
|
83 |
+
return false;
|
84 |
+
}
|
85 |
+
|
86 |
+
private:
|
87 |
+
std::variant<int64_t, bool> value_;
|
88 |
+
|
89 |
+
static constexpr bool is_int_() {
|
90 |
+
return std::is_same<T, int64_t>::value;
|
91 |
+
}
|
92 |
+
static constexpr bool is_bool_() {
|
93 |
+
return std::is_same<T, bool>::value;
|
94 |
+
}
|
95 |
+
};
|
96 |
+
|
97 |
+
} // namespace c10
|
env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/Contiguity.h
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
#include <c10/util/ArrayRef.h>
|
3 |
+
#include <c10/util/SmallVector.h>
|
4 |
+
#include <c10/util/irange.h>
|
5 |
+
|
6 |
+
#include <algorithm>
|
7 |
+
#include <cstdint>
|
8 |
+
|
9 |
+
namespace c10 {
|
10 |
+
|
11 |
+
template <typename T>
|
12 |
+
bool _compute_contiguous(ArrayRef<T> sizes, ArrayRef<T> strides, T numel) {
|
13 |
+
bool is_contiguous = true;
|
14 |
+
if (numel == 0)
|
15 |
+
return is_contiguous;
|
16 |
+
T z = 1;
|
17 |
+
// NB: make sure we do signed arithmetic
|
18 |
+
for (int64_t d = int64_t(sizes.size()) - 1; d >= 0; d--) {
|
19 |
+
const auto& size_d = sizes[d];
|
20 |
+
if (size_d != 1) {
|
21 |
+
if (strides[d] == z) {
|
22 |
+
z *= size_d;
|
23 |
+
} else {
|
24 |
+
is_contiguous = false;
|
25 |
+
break;
|
26 |
+
}
|
27 |
+
}
|
28 |
+
}
|
29 |
+
return is_contiguous;
|
30 |
+
}
|
31 |
+
|
32 |
+
template <typename T>
|
33 |
+
bool _compute_channels_last_contiguous_2d(
|
34 |
+
ArrayRef<T> sizes,
|
35 |
+
ArrayRef<T> strides) {
|
36 |
+
// Please don't combine these code, constant array is used here to let
|
37 |
+
// compiler fully unroll the loop to get better performance
|
38 |
+
switch (sizes.size()) {
|
39 |
+
case 4: {
|
40 |
+
T expected = 1;
|
41 |
+
for (auto& d : {1, 3, 2, 0}) {
|
42 |
+
const auto& size_d = sizes[d];
|
43 |
+
if (size_d != 1) {
|
44 |
+
if (strides[d] != expected) {
|
45 |
+
return false;
|
46 |
+
}
|
47 |
+
expected *= size_d;
|
48 |
+
}
|
49 |
+
}
|
50 |
+
return true;
|
51 |
+
}
|
52 |
+
// NOLINTNEXTLINE(bugprone-branch-clone)
|
53 |
+
case 3:
|
54 |
+
// TODO dim == 3 case will be enabled once it is fully tested
|
55 |
+
return false;
|
56 |
+
default:
|
57 |
+
return false;
|
58 |
+
}
|
59 |
+
}
|
60 |
+
|
61 |
+
template <typename T>
|
62 |
+
bool _compute_channels_last_contiguous_3d(
|
63 |
+
ArrayRef<T> sizes,
|
64 |
+
ArrayRef<T> strides) {
|
65 |
+
// Please don't combine these code, constant array is used here to let
|
66 |
+
// compiler fully unroll the loop to get better performance
|
67 |
+
switch (sizes.size()) {
|
68 |
+
case 5: {
|
69 |
+
T expected = 1;
|
70 |
+
for (auto& d : {1, 4, 3, 2, 0}) {
|
71 |
+
const auto& size_d = sizes[d];
|
72 |
+
if (size_d != 1) {
|
73 |
+
if (strides[d] != expected) {
|
74 |
+
return false;
|
75 |
+
}
|
76 |
+
expected *= size_d;
|
77 |
+
}
|
78 |
+
}
|
79 |
+
return true;
|
80 |
+
}
|
81 |
+
// NOLINTNEXTLINE(bugprone-branch-clone)
|
82 |
+
case 4:
|
83 |
+
// TODO dim == 4 case will be enabled once it is fully tested
|
84 |
+
return false;
|
85 |
+
default:
|
86 |
+
return false;
|
87 |
+
}
|
88 |
+
}
|
89 |
+
|
90 |
+
template <typename T>
|
91 |
+
bool _compute_non_overlapping_and_dense(
|
92 |
+
ArrayRef<T> sizes,
|
93 |
+
ArrayRef<T> strides) {
|
94 |
+
auto dim = sizes.size();
|
95 |
+
if (dim == 1) {
|
96 |
+
return sizes[0] < 2 || strides[0] == 1;
|
97 |
+
}
|
98 |
+
SmallVector<int64_t, 5> perm;
|
99 |
+
perm.resize(dim);
|
100 |
+
for (const auto i : c10::irange(dim)) {
|
101 |
+
perm[i] = i;
|
102 |
+
}
|
103 |
+
// Sort by strides, leaving 0 and 1 sized dims at the end of the array
|
104 |
+
std::sort(perm.begin(), perm.end(), [&](int64_t a, int64_t b) {
|
105 |
+
if (sizes[a] < 2) {
|
106 |
+
return false;
|
107 |
+
} else if (sizes[b] < 2) {
|
108 |
+
return true;
|
109 |
+
}
|
110 |
+
return strides[a] < strides[b];
|
111 |
+
});
|
112 |
+
T require_stride = 1;
|
113 |
+
for (const auto i : c10::irange(dim)) {
|
114 |
+
const auto& size_perm_i = sizes[perm[i]];
|
115 |
+
if (size_perm_i < 2) {
|
116 |
+
return true;
|
117 |
+
}
|
118 |
+
if (strides[perm[i]] != require_stride) {
|
119 |
+
return false;
|
120 |
+
}
|
121 |
+
require_stride *= size_perm_i;
|
122 |
+
}
|
123 |
+
return true;
|
124 |
+
}
|
125 |
+
|
126 |
+
} // namespace c10
|
env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/DefaultDtype.h
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <c10/core/ScalarType.h>
|
4 |
+
#include <c10/macros/Export.h>
|
5 |
+
|
6 |
+
namespace caffe2 {
|
7 |
+
class TypeMeta;
|
8 |
+
} // namespace caffe2
|
9 |
+
|
10 |
+
namespace c10 {
|
11 |
+
C10_API void set_default_dtype(caffe2::TypeMeta dtype);
|
12 |
+
C10_API const caffe2::TypeMeta get_default_dtype();
|
13 |
+
C10_API ScalarType get_default_dtype_as_scalartype();
|
14 |
+
C10_API const caffe2::TypeMeta get_default_complex_dtype();
|
15 |
+
} // namespace c10
|
env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/DefaultTensorOptions.h
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <c10/core/Backend.h>
|
4 |
+
#include <c10/core/Device.h>
|
5 |
+
#include <c10/core/Layout.h>
|
6 |
+
#include <c10/core/ScalarType.h>
|
7 |
+
|
8 |
+
namespace c10 {
|
9 |
+
|
10 |
+
struct TensorOptions;
|
11 |
+
|
12 |
+
/// Like TensorOptions, but all fields are guaranteed to be filled.
|
13 |
+
struct DefaultTensorOptions {
|
14 |
+
DefaultTensorOptions() = default;
|
15 |
+
|
16 |
+
caffe2::TypeMeta dtype() const noexcept {
|
17 |
+
return dtype_;
|
18 |
+
}
|
19 |
+
Device device() const noexcept {
|
20 |
+
return device_;
|
21 |
+
}
|
22 |
+
Layout layout() const noexcept {
|
23 |
+
return layout_;
|
24 |
+
}
|
25 |
+
bool requires_grad() const noexcept {
|
26 |
+
return requires_grad_;
|
27 |
+
}
|
28 |
+
|
29 |
+
// Defined in TensorOptions.h
|
30 |
+
inline DefaultTensorOptions& merge(const TensorOptions& options);
|
31 |
+
|
32 |
+
private:
|
33 |
+
caffe2::TypeMeta dtype_ = caffe2::TypeMeta::Make<float>(); // 64-bit
|
34 |
+
Device device_ = at::kCPU; // 32-bit
|
35 |
+
Layout layout_ = at::kStrided; // 8-bit
|
36 |
+
bool requires_grad_ = false; // 8-bit
|
37 |
+
};
|
38 |
+
|
39 |
+
inline const DefaultTensorOptions& getDefaultTensorOptions() {
|
40 |
+
static const auto options = DefaultTensorOptions();
|
41 |
+
return options;
|
42 |
+
}
|
43 |
+
|
44 |
+
} // namespace c10
|
env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/Device.h
ADDED
@@ -0,0 +1,215 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <c10/core/DeviceType.h>
|
4 |
+
#include <c10/macros/Export.h>
|
5 |
+
#include <c10/util/Exception.h>
|
6 |
+
|
7 |
+
#include <cstddef>
|
8 |
+
#include <functional>
|
9 |
+
#include <iosfwd>
|
10 |
+
#include <string>
|
11 |
+
|
12 |
+
namespace c10 {
|
13 |
+
|
14 |
+
/// An index representing a specific device; e.g., the 1 in GPU 1.
|
15 |
+
/// A DeviceIndex is not independently meaningful without knowing
|
16 |
+
/// the DeviceType it is associated; try to use Device rather than
|
17 |
+
/// DeviceIndex directly.
|
18 |
+
using DeviceIndex = int8_t;
|
19 |
+
|
20 |
+
/// Represents a compute device on which a tensor is located. A device is
|
21 |
+
/// uniquely identified by a type, which specifies the type of machine it is
|
22 |
+
/// (e.g. CPU or CUDA GPU), and a device index or ordinal, which identifies the
|
23 |
+
/// specific compute device when there is more than one of a certain type. The
|
24 |
+
/// device index is optional, and in its defaulted state represents (abstractly)
|
25 |
+
/// "the current device". Further, there are two constraints on the value of the
|
26 |
+
/// device index, if one is explicitly stored:
|
27 |
+
/// 1. A negative index represents the current device, a non-negative index
|
28 |
+
/// represents a specific, concrete device,
|
29 |
+
/// 2. When the device type is CPU, the device index must be zero.
|
30 |
+
struct C10_API Device final {
|
31 |
+
using Type = DeviceType;
|
32 |
+
|
33 |
+
/// Constructs a new `Device` from a `DeviceType` and an optional device
|
34 |
+
/// index.
|
35 |
+
/* implicit */ Device(DeviceType type, DeviceIndex index = -1)
|
36 |
+
: type_(type), index_(index) {
|
37 |
+
validate();
|
38 |
+
}
|
39 |
+
|
40 |
+
/// Constructs a `Device` from a string description, for convenience.
|
41 |
+
/// The string supplied must follow the following schema:
|
42 |
+
/// `(cpu|cuda)[:<device-index>]`
|
43 |
+
/// where `cpu` or `cuda` specifies the device type, and
|
44 |
+
/// `:<device-index>` optionally specifies a device index.
|
45 |
+
/* implicit */ Device(const std::string& device_string);
|
46 |
+
|
47 |
+
/// Returns true if the type and index of this `Device` matches that of
|
48 |
+
/// `other`.
|
49 |
+
bool operator==(const Device& other) const noexcept {
|
50 |
+
return this->type_ == other.type_ && this->index_ == other.index_;
|
51 |
+
}
|
52 |
+
|
53 |
+
/// Returns true if the type or index of this `Device` differs from that of
|
54 |
+
/// `other`.
|
55 |
+
bool operator!=(const Device& other) const noexcept {
|
56 |
+
return !(*this == other);
|
57 |
+
}
|
58 |
+
|
59 |
+
/// Sets the device index.
|
60 |
+
void set_index(DeviceIndex index) {
|
61 |
+
index_ = index;
|
62 |
+
}
|
63 |
+
|
64 |
+
/// Returns the type of device this is.
|
65 |
+
DeviceType type() const noexcept {
|
66 |
+
return type_;
|
67 |
+
}
|
68 |
+
|
69 |
+
/// Returns the optional index.
|
70 |
+
DeviceIndex index() const noexcept {
|
71 |
+
return index_;
|
72 |
+
}
|
73 |
+
|
74 |
+
/// Returns true if the device has a non-default index.
|
75 |
+
bool has_index() const noexcept {
|
76 |
+
return index_ != -1;
|
77 |
+
}
|
78 |
+
|
79 |
+
/// Return true if the device is of CUDA type.
|
80 |
+
bool is_cuda() const noexcept {
|
81 |
+
return type_ == DeviceType::CUDA;
|
82 |
+
}
|
83 |
+
|
84 |
+
/// Return true if the device is of PrivateUse1 type.
|
85 |
+
bool is_privateuseone() const noexcept {
|
86 |
+
return type_ == DeviceType::PrivateUse1;
|
87 |
+
}
|
88 |
+
|
89 |
+
/// Return true if the device is of MPS type.
|
90 |
+
bool is_mps() const noexcept {
|
91 |
+
return type_ == DeviceType::MPS;
|
92 |
+
}
|
93 |
+
|
94 |
+
/// Return true if the device is of HIP type.
|
95 |
+
bool is_hip() const noexcept {
|
96 |
+
return type_ == DeviceType::HIP;
|
97 |
+
}
|
98 |
+
|
99 |
+
/// Return true if the device is of VE type.
|
100 |
+
bool is_ve() const noexcept {
|
101 |
+
return type_ == DeviceType::VE;
|
102 |
+
}
|
103 |
+
|
104 |
+
/// Return true if the device is of XPU type.
|
105 |
+
bool is_xpu() const noexcept {
|
106 |
+
return type_ == DeviceType::XPU;
|
107 |
+
}
|
108 |
+
|
109 |
+
/// Return true if the device is of IPU type.
|
110 |
+
bool is_ipu() const noexcept {
|
111 |
+
return type_ == DeviceType::IPU;
|
112 |
+
}
|
113 |
+
|
114 |
+
/// Return true if the device is of XLA type.
|
115 |
+
bool is_xla() const noexcept {
|
116 |
+
return type_ == DeviceType::XLA;
|
117 |
+
}
|
118 |
+
|
119 |
+
/// Return true if the device is of MTIA type.
|
120 |
+
bool is_mtia() const noexcept {
|
121 |
+
return type_ == DeviceType::MTIA;
|
122 |
+
}
|
123 |
+
|
124 |
+
/// Return true if the device is of HPU type.
|
125 |
+
bool is_hpu() const noexcept {
|
126 |
+
return type_ == DeviceType::HPU;
|
127 |
+
}
|
128 |
+
|
129 |
+
/// Return true if the device is of Lazy type.
|
130 |
+
bool is_lazy() const noexcept {
|
131 |
+
return type_ == DeviceType::Lazy;
|
132 |
+
}
|
133 |
+
|
134 |
+
/// Return true if the device is of Vulkan type.
|
135 |
+
bool is_vulkan() const noexcept {
|
136 |
+
return type_ == DeviceType::Vulkan;
|
137 |
+
}
|
138 |
+
|
139 |
+
/// Return true if the device is of Metal type.
|
140 |
+
bool is_metal() const noexcept {
|
141 |
+
return type_ == DeviceType::Metal;
|
142 |
+
}
|
143 |
+
|
144 |
+
/// Return true if the device is of ORT type.
|
145 |
+
bool is_ort() const noexcept {
|
146 |
+
return type_ == DeviceType::ORT;
|
147 |
+
}
|
148 |
+
|
149 |
+
/// Return true if the device is of META type.
|
150 |
+
bool is_meta() const noexcept {
|
151 |
+
return type_ == DeviceType::Meta;
|
152 |
+
}
|
153 |
+
|
154 |
+
/// Return true if the device is of CPU type.
|
155 |
+
bool is_cpu() const noexcept {
|
156 |
+
return type_ == DeviceType::CPU;
|
157 |
+
}
|
158 |
+
|
159 |
+
/// Return true if the device supports arbitrary strides.
|
160 |
+
bool supports_as_strided() const noexcept {
|
161 |
+
return type_ != DeviceType::IPU && type_ != DeviceType::XLA &&
|
162 |
+
type_ != DeviceType::Lazy && type_ != DeviceType::MTIA;
|
163 |
+
}
|
164 |
+
|
165 |
+
/// Same string as returned from operator<<.
|
166 |
+
std::string str() const;
|
167 |
+
|
168 |
+
private:
|
169 |
+
DeviceType type_;
|
170 |
+
DeviceIndex index_ = -1;
|
171 |
+
void validate() {
|
172 |
+
// Removing these checks in release builds noticeably improves
|
173 |
+
// performance in micro-benchmarks.
|
174 |
+
// This is safe to do, because backends that use the DeviceIndex
|
175 |
+
// have a later check when we actually try to switch to that device.
|
176 |
+
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(
|
177 |
+
index_ >= -1,
|
178 |
+
"Device index must be -1 or non-negative, got ",
|
179 |
+
static_cast<int>(index_));
|
180 |
+
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(
|
181 |
+
!is_cpu() || index_ <= 0,
|
182 |
+
"CPU device index must be -1 or zero, got ",
|
183 |
+
static_cast<int>(index_));
|
184 |
+
}
|
185 |
+
};
|
186 |
+
|
187 |
+
C10_API std::ostream& operator<<(std::ostream& stream, const Device& device);
|
188 |
+
|
189 |
+
} // namespace c10
|
190 |
+
|
191 |
+
namespace std {
|
192 |
+
template <>
|
193 |
+
struct hash<c10::Device> {
|
194 |
+
size_t operator()(c10::Device d) const noexcept {
|
195 |
+
// Are you here because this static assert failed? Make sure you ensure
|
196 |
+
// that the bitmasking code below is updated accordingly!
|
197 |
+
static_assert(sizeof(c10::DeviceType) == 1, "DeviceType is not 8-bit");
|
198 |
+
static_assert(sizeof(c10::DeviceIndex) == 1, "DeviceIndex is not 8-bit");
|
199 |
+
// Note [Hazard when concatenating signed integers]
|
200 |
+
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
201 |
+
// We must first convert to a same-sized unsigned type, before promoting to
|
202 |
+
// the result type, to prevent sign extension when any of the values is -1.
|
203 |
+
// If sign extension occurs, you'll clobber all of the values in the MSB
|
204 |
+
// half of the resulting integer.
|
205 |
+
//
|
206 |
+
// Technically, by C/C++ integer promotion rules, we only need one of the
|
207 |
+
// uint32_t casts to the result type, but we put in both for explicitness's
|
208 |
+
// sake.
|
209 |
+
uint32_t bits = static_cast<uint32_t>(static_cast<uint8_t>(d.type()))
|
210 |
+
<< 16 |
|
211 |
+
static_cast<uint32_t>(static_cast<uint8_t>(d.index()));
|
212 |
+
return std::hash<uint32_t>{}(bits);
|
213 |
+
}
|
214 |
+
};
|
215 |
+
} // namespace std
|
env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/DeviceArray.h
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#include <c10/core/Allocator.h>
|
2 |
+
|
3 |
+
namespace c10 {
|
4 |
+
|
5 |
+
template <typename T>
|
6 |
+
class DeviceArray {
|
7 |
+
public:
|
8 |
+
DeviceArray(c10::Allocator& allocator, size_t size)
|
9 |
+
: data_ptr_(allocator.allocate(size * sizeof(T))) {
|
10 |
+
static_assert(std::is_trivial<T>::value, "T must be a trivial type");
|
11 |
+
TORCH_INTERNAL_ASSERT(
|
12 |
+
0 == (reinterpret_cast<intptr_t>(data_ptr_.get()) % alignof(T)),
|
13 |
+
"c10::DeviceArray: Allocated memory is not aligned for this data type");
|
14 |
+
}
|
15 |
+
|
16 |
+
T* get() {
|
17 |
+
return static_cast<T*>(data_ptr_.get());
|
18 |
+
}
|
19 |
+
|
20 |
+
private:
|
21 |
+
c10::DataPtr data_ptr_;
|
22 |
+
};
|
23 |
+
|
24 |
+
} // namespace c10
|
env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/DispatchKey.h
ADDED
@@ -0,0 +1,732 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <c10/core/DeviceType.h>
|
4 |
+
#include <c10/macros/Export.h>
|
5 |
+
#include <cstdint>
|
6 |
+
#include <ostream>
|
7 |
+
#include <string>
|
8 |
+
|
9 |
+
namespace c10 {
|
10 |
+
|
11 |
+
// Semantically, each value of BackendComponent identifies a "backend" for our
|
12 |
+
// dispatch. Some functionalities that we may dispatch to are allowed to
|
13 |
+
// register different handlers for each backend. The BackendComponent is then
|
14 |
+
// used to figure out which backend implementation to dispatch to.
|
15 |
+
|
16 |
+
// In implementation terms, the backend component identifies a specific "bit" in
|
17 |
+
// a DispatchKeySet. The bits in the DispatchKeySet are split between the bottom
|
18 |
+
// ~12 "BackendComponent" bits, while the remaining upper bits are assigned to
|
19 |
+
// functionalities. When we encounter a functionality bit that is known to be
|
20 |
+
// customizable per-backend, then we also look at the lower BackendComponent
|
21 |
+
// bits and take the highest bit to determine which backend's implementation to
|
22 |
+
// use.
|
23 |
+
|
24 |
+
// WARNING! If you add a new backend component to the end of this list,
|
25 |
+
// make sure you register it before Meta.
|
26 |
+
// Meta must be at the end so that meta key in tls triggers meta kernels.
|
27 |
+
// (But you shouldn't: private use keys should have higher precedence than all
|
28 |
+
// built-in keys)
|
29 |
+
|
30 |
+
// If you add a new (non-privateuse) backend here,
|
31 |
+
// make sure to add an Autograd<Backend> fallthrough kernel
|
32 |
+
// in aten/src/ATen/core/VariableFallbackKernel.cpp
|
33 |
+
|
34 |
+
#define C10_FORALL_BACKEND_COMPONENTS(_, extra) \
|
35 |
+
_(CPU, extra) \
|
36 |
+
_(CUDA, extra) \
|
37 |
+
_(HIP, extra) \
|
38 |
+
_(XLA, extra) \
|
39 |
+
_(MPS, extra) \
|
40 |
+
_(IPU, extra) \
|
41 |
+
_(XPU, extra) \
|
42 |
+
_(HPU, extra) \
|
43 |
+
_(VE, extra) \
|
44 |
+
_(Lazy, extra) \
|
45 |
+
_(MTIA, extra) \
|
46 |
+
_(PrivateUse1, extra) \
|
47 |
+
_(PrivateUse2, extra) \
|
48 |
+
_(PrivateUse3, extra) \
|
49 |
+
_(Meta, extra)
|
50 |
+
|
51 |
+
// WARNING! If we add a new per-backend functionality key that has higher
|
52 |
+
// priority than Autograd, then make sure you update EndOfRuntimeBackendKeys
|
53 |
+
|
54 |
+
#define C10_FORALL_FUNCTIONALITY_KEYS(_) \
|
55 |
+
_(Dense, ) \
|
56 |
+
_(Quantized, Quantized) \
|
57 |
+
_(Sparse, Sparse) \
|
58 |
+
_(NestedTensor, NestedTensor) \
|
59 |
+
_(AutogradFunctionality, Autograd)
|
60 |
+
|
61 |
+
enum class BackendComponent : uint8_t {
|
62 |
+
|
63 |
+
// A "backend" is colloquially used to refer to handlers for dispatch
|
64 |
+
// which actually implement the numerics of an operation in question.
|
65 |
+
//
|
66 |
+
// Due to the nature of the enum, these backends are specified in
|
67 |
+
// an ordered way, but for most backends this order is not semantically
|
68 |
+
// meaningful (e.g., it's valid to reorder these backends without changing
|
69 |
+
// semantics). The only situation when backend ordering is meaningful
|
70 |
+
// is when the backend participates in multiple dispatch with another
|
71 |
+
// backend; e.g., CPU and CUDA (cuda must have higher priority).
|
72 |
+
|
73 |
+
// These keys don't correspond to individual kernels.
|
74 |
+
// Instead, they represent the backends that are allowed to override specific
|
75 |
+
// pieces of functionality:
|
76 |
+
// - dense kernels (e.g. DispatchKey::CPU)
|
77 |
+
// - sparse kernels (e.g. DispatchKey::SparseCPU)
|
78 |
+
// - quantized kernels (e.g. DispatchKey::QuantizedCPU)
|
79 |
+
// - autograd kernels (e.g. DispatchKey::AutogradCPU)
|
80 |
+
// We reserve space in the runtime operator table for this full cross product
|
81 |
+
// of
|
82 |
+
// [backends in this enum] x [keys below that are explicitly marked as having
|
83 |
+
// per-backend functionality]
|
84 |
+
//
|
85 |
+
// A meta tensor is a tensor without any data associated with it. (They
|
86 |
+
// have also colloquially been referred to as tensors on the "null" device).
|
87 |
+
// A meta tensor can be used to dry run operators without actually doing any
|
88 |
+
// computation, e.g., add on two meta tensors would give you another meta
|
89 |
+
// tensor with the output shape and dtype, but wouldn't actually add anything.
|
90 |
+
|
91 |
+
InvalidBit = 0,
|
92 |
+
#define DEFINE_BACKEND_COMPONENT(n, _) n##Bit,
|
93 |
+
C10_FORALL_BACKEND_COMPONENTS(DEFINE_BACKEND_COMPONENT, unused)
|
94 |
+
#undef DEFINE_BACKEND_COMPONENT
|
95 |
+
|
96 |
+
// Define an alias to represent end of backend dispatch keys.
|
97 |
+
// If you add new backend keys after PrivateUse3, please also update it here.
|
98 |
+
EndOfBackendKeys = MetaBit,
|
99 |
+
};
|
100 |
+
|
101 |
+
// Semantically, a dispatch key identifies a possible "level" in our
|
102 |
+
// dispatch, for which a handler may be registered. Each handler corresponds
|
103 |
+
// to a type of functionality.
|
104 |
+
//
|
105 |
+
// In implementation terms, the dispatch key identifies a specific "bit" in a
|
106 |
+
// DispatchKeySet. Higher bit indexes get handled by dispatching first (because
|
107 |
+
// we "count leading zeros" when we extract the highest priority dispatch
|
108 |
+
// key.)
|
109 |
+
//
|
110 |
+
// Note [DispatchKey Classification]
|
111 |
+
// This enum actually contains several types of keys, which are explained
|
112 |
+
// in more detail further down:
|
113 |
+
// (1) non-customizable backends (e.g. FPGA)
|
114 |
+
// (2) non-customizable functionalities (e.g. Functionalize)
|
115 |
+
// (3) functionalized that are customizable per backend (e.g. Dense, Sparse,
|
116 |
+
// AutogradFunctionality) (4) per-backend instances of customizable
|
117 |
+
// functionalities (e.g. CPU, SparseCPU, AutogradCPU) (5) alias keys (e.g.
|
118 |
+
// CompositeImplicitAutograd)
|
119 |
+
//
|
120 |
+
// Of the categories above, it's important to note:
|
121 |
+
// (a) which keys are assigned individual bits in a DispatchKeySet
|
122 |
+
// (b) which keys are assigned individual slots in the runtime operator table
|
123 |
+
// ("Runtime keys")
|
124 |
+
//
|
125 |
+
// (1), (2) and (3) all get their own dedicated bits in the DispatchKeySet.
|
126 |
+
// (1), (2) and (4) all get their own dedicated slots in the runtime operator
|
127 |
+
// table.
|
128 |
+
|
129 |
+
// See Note [DispatchKeySet Internal Representation] for more details.
|
130 |
+
//
|
131 |
+
// NOTE: Keep the list in sync with `DispatchKey` in torchgen/model.py
|
132 |
+
enum class DispatchKey : uint16_t {
|
133 |
+
|
134 |
+
// ~~~~~~~~~~~~~~~~~~~~~~~~~~ UNDEFINED ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ //
|
135 |
+
// This is not a "real" functionality, but it exists to give us a "nullopt"
|
136 |
+
// element we can return for cases when a DispatchKeySet contains no elements.
|
137 |
+
// You can think a more semantically accurate definition of DispatchKey is:
|
138 |
+
//
|
139 |
+
// using DispatchKey = optional<RealDispatchKey>
|
140 |
+
//
|
141 |
+
// and Undefined == nullopt. We didn't actually represent
|
142 |
+
// it this way because optional<RealDispatchKey> would take two
|
143 |
+
// words, when DispatchKey fits in eight bits.
|
144 |
+
|
145 |
+
Undefined = 0,
|
146 |
+
|
147 |
+
// Define an alias for Undefined to represent CatchAll (long term
|
148 |
+
// this will get eliminated, but for now it's convenient)
|
149 |
+
CatchAll = Undefined,
|
150 |
+
|
151 |
+
// ~~~~~~~~~~~~~~~~~~~~~~~~~~ Functionality Keys ~~~~~~~~~~~~~~~~~~~~~~ //
|
152 |
+
// Every value in the enum (up to EndOfFunctionalityKeys)
|
153 |
+
// corresponds to an individual "functionality" that can be dispatched to.
|
154 |
+
// This is represented in the DispatchKeySet by assigning each of these enum
|
155 |
+
// values
|
156 |
+
// to each of the remaining (64 - len(BackendComponent)) bits.
|
157 |
+
//
|
158 |
+
// Most of these functionalities have a single handler assigned to them,
|
159 |
+
// making them "runtime keys".
|
160 |
+
// That map to a single slot in the runtime operator table.
|
161 |
+
//
|
162 |
+
// A few functionalities are allowed to be customizable per backend.
|
163 |
+
// See [Note: Per-Backend Functionality Dispatch Keys] for details.
|
164 |
+
|
165 |
+
// See [Note: Per-Backend Functionality Dispatch Keys]
|
166 |
+
Dense,
|
167 |
+
|
168 |
+
// Below are non-extensible backends.
|
169 |
+
// These are backends that currently don't have their own overrides for
|
170 |
+
// Autograd/Sparse/Quantized kernels,
|
171 |
+
// and we therefore don't waste space in the runtime operator table allocating
|
172 |
+
// space for them.
|
173 |
+
// If any of these backends ever need to customize, e.g., Autograd, then we'll
|
174 |
+
// need to add a DispatchKey::*Bit for them.
|
175 |
+
|
176 |
+
// TODO: put this in BackendComponents
|
177 |
+
FPGA, // Xilinx support lives out of tree at
|
178 |
+
// https://gitlab.com/pytorch-complex/vitis_kernels
|
179 |
+
|
180 |
+
// TODO: put this in BackendComponents
|
181 |
+
// ONNX Runtime, lives out of tree at https://github.com/pytorch/ort and
|
182 |
+
// https://github.com/microsoft/onnxruntime, and is also used to test general
|
183 |
+
// backend/extension machinery in the core. cf:
|
184 |
+
// - test/cpp_extensions/ort_extension.cpp
|
185 |
+
// - test/test_torch.py
|
186 |
+
// - aten/src/ATen/test/extension_backend_test.cpp
|
187 |
+
ORT,
|
188 |
+
|
189 |
+
Vulkan, // TODO: put this in BackendComponents
|
190 |
+
Metal, // TODO: put this in BackendComponents
|
191 |
+
|
192 |
+
// See [Note: Per-Backend Functionality Dispatch Keys]
|
193 |
+
Quantized,
|
194 |
+
|
195 |
+
// This backend is to support custom RNGs; it lets you go
|
196 |
+
// to a different kernel if you pass in a generator that is not a
|
197 |
+
// traditional CPUGeneratorImpl/CUDAGeneratorImpl. To make use of this
|
198 |
+
// key:
|
199 |
+
// 1) set it as a second parameter of at::Generator constructor call in
|
200 |
+
// the user-defined PRNG class.
|
201 |
+
// 2) use it as a dispatch key while registering custom kernels
|
202 |
+
// (templatized kernels specialized for user-defined PRNG class)
|
203 |
+
// intended for out of tree use; tested by aten/src/ATen/test/rng_test.cpp
|
204 |
+
CustomRNGKeyId,
|
205 |
+
|
206 |
+
// TODO: Make Mkldnn a functionality key, so we can give it Meta
|
207 |
+
// support
|
208 |
+
// Here are backends which specify more specialized operators
|
209 |
+
// based on the layout of the tensor. Note that the sparse backends
|
210 |
+
// are one case where ordering matters: sparse multi-dispatches with
|
211 |
+
// the corresponding dense tensors, and must be handled before them.
|
212 |
+
MkldnnCPU, // registered at build/aten/src/ATen/RegisterMkldnnCPU.cpp
|
213 |
+
// NB: not to be confused with MKLDNN, which is Caffe2 only
|
214 |
+
|
215 |
+
// See [Note: Per-Backend Functionality Dispatch Keys]
|
216 |
+
Sparse,
|
217 |
+
|
218 |
+
// TODO: Make SparseCsr a functionality key
|
219 |
+
SparseCsrCPU,
|
220 |
+
SparseCsrCUDA,
|
221 |
+
|
222 |
+
NestedTensor,
|
223 |
+
|
224 |
+
// In some situations, it is not immediately obvious what the correct
|
225 |
+
// backend for function is, because the function in question doesn't
|
226 |
+
// have any "tensor" arguments. In this case, a BackendSelect function
|
227 |
+
// can be registered to implement the custom determination of the
|
228 |
+
// correct backend.
|
229 |
+
BackendSelect,
|
230 |
+
|
231 |
+
Python,
|
232 |
+
|
233 |
+
// Out-of-core key for Fake Tensor in torchdistx.
|
234 |
+
// See https://pytorch.org/torchdistx/latest/fake_tensor.html
|
235 |
+
// TODO: delete this in favor of Python-implemented fake tensor
|
236 |
+
Fake,
|
237 |
+
// See Note [Out-of-tree vmap+grad prototype]. The purpose of this key
|
238 |
+
// is to insert code after the "autograd subsystem" runs, so this key should
|
239 |
+
// be directly after ADInplaceOrView and all of the autograd keys.
|
240 |
+
FuncTorchDynamicLayerBackMode,
|
241 |
+
|
242 |
+
// Alias and mutation removal.
|
243 |
+
// If some backends want to opt into only alias removal or only mutation
|
244 |
+
// removal,
|
245 |
+
// we can consider adding separate keys dedicated to those individual passes.
|
246 |
+
// See Note [Functionalization Pass In Core] for details.
|
247 |
+
Functionalize,
|
248 |
+
|
249 |
+
// The named dispatch key is set for any tensors with named dimensions.
|
250 |
+
// Although we have a dispatch key for named tensors, for historical reasons,
|
251 |
+
// this dispatch key doesn't do any of the substantive functionality for named
|
252 |
+
// tensor (though, hypothetically, it could!) At the moment, it's just
|
253 |
+
// responsible for letting us give good error messages when operations
|
254 |
+
// don't support named tensors.
|
255 |
+
//
|
256 |
+
// NB: If you ever consider moving named tensor functionality into
|
257 |
+
// this dispatch key, note that it might be necessary add another dispatch
|
258 |
+
// key that triggers before composite operators, in case a composite operator
|
259 |
+
// has named dimension propagation that doesn't match that of its
|
260 |
+
// constituent parts.
|
261 |
+
// TODO: delete this once torchdim lands in functorch
|
262 |
+
Named,
|
263 |
+
|
264 |
+
// The Conjugate dispatch key is set for any tensors that need to perform
|
265 |
+
// conjugation
|
266 |
+
// This is implemented at a dispatch level right before any backends run
|
267 |
+
Conjugate,
|
268 |
+
|
269 |
+
// The Negative dispatch key is set for any tensors that need to perform
|
270 |
+
// negation
|
271 |
+
// This is implemented at a dispatch level right before any backends run
|
272 |
+
Negative,
|
273 |
+
|
274 |
+
ZeroTensor, // registered at build/aten/src/ATen/RegisterZeroTensor.cpp
|
275 |
+
|
276 |
+
// Note [ADInplaceOrView key]
|
277 |
+
// ADInplaceOrView key is used by inplace or view ops to register a kernel
|
278 |
+
// that does additional setup for future autograd computation.
|
279 |
+
//
|
280 |
+
// 1. For inplace ops this kernel does version bump
|
281 |
+
// 2. For view ops this kernel does `as_view` setup where we properly setup
|
282 |
+
// DifferentiableViewMeta on the view tensors.
|
283 |
+
//
|
284 |
+
// For other ops it's fallthrough kernel since there's no extra
|
285 |
+
// work to do.
|
286 |
+
//
|
287 |
+
// Note [Dream: skip VariableType kernel when requires_grad=false]
|
288 |
+
//
|
289 |
+
// In an ideal world where we can skip VariableType kernel for inputs
|
290 |
+
// with requires_grad=false, instead of a fallthrough kernel, we'll
|
291 |
+
// register a kernel shown below to all functional ops as well:
|
292 |
+
// torch::Tensor my_functional_op(...) {
|
293 |
+
// {
|
294 |
+
// // Note for every op in VariableType, you need to go through
|
295 |
+
// // `AutoDispatchBelowADInplaceOrView` guard exactly once to add the
|
296 |
+
// // key to TLS excluded set. If you don't go through it at all,
|
297 |
+
// // inplace/view ops called through `at::` inside your backend
|
298 |
+
// // kernel will dispatch to ADInplaceOrView kernels and do a lot
|
299 |
+
// // of extra work.
|
300 |
+
// at::AutoDispatchBelowADInplaceOrView guard;
|
301 |
+
// at::redispatch::my_functional_op(...);
|
302 |
+
// }
|
303 |
+
// }
|
304 |
+
// But this work is currently blocked since it adds an extra dispatch
|
305 |
+
// for all ops and it's non-trivial overhead at model level(a few percents).
|
306 |
+
// Thus our current approach takes advantage of the fact every kernel go
|
307 |
+
// through VariableType kernel first and pulls the
|
308 |
+
// `at::AutoDispatchBelowADInplaceOrView` guard of functional ops
|
309 |
+
// up to the `VariableType` kernel. Thus we only add the extra dispatch
|
310 |
+
// to view/inplace ops to minimize its perf impact to real models.
|
311 |
+
ADInplaceOrView,
|
312 |
+
// Note [Alias Dispatch Key : Autograd]
|
313 |
+
// All backends are oblivious to autograd; autograd is handled as a
|
314 |
+
// layer which happens on top of all backends. It inspects the autograd
|
315 |
+
// metadata of all inputs, determines what autograd metadata should be
|
316 |
+
// constructed by the output, and otherwise defers to the backend to
|
317 |
+
// actually do the numeric computation. Autograd contains
|
318 |
+
// the bulk of this logic.
|
319 |
+
|
320 |
+
// Autograd is now an alias dispatch key which by default maps to all
|
321 |
+
// backend-specific autograd keys.
|
322 |
+
// Backend-specific allow backends to override the default kernel registered
|
323 |
+
// to Autograd key as needed.
|
324 |
+
// For example, XLA wants to define autograd for einsum directly.
|
325 |
+
// Registering a custom autograd implementation at the XLA key won't work
|
326 |
+
// because we process Autograd before XLA. This key has higher priority and
|
327 |
+
// gets processed first. You generally should NOT redispatch after handling
|
328 |
+
// autograd here (since that would result in execution of the Autograd
|
329 |
+
// operator, which you're trying to skip). In AutogradXLA implementations,
|
330 |
+
// you are responsible for handling autograd yourself, or deferring to other
|
331 |
+
// operators which support autograd.
|
332 |
+
|
333 |
+
// Currently we only have backend-specific autograd keys for CPU/CUDA/XLA and
|
334 |
+
// reserved user-defined backends. All other in-tree backends share the
|
335 |
+
// AutogradOther key. We can add specific autograd key for those backends
|
336 |
+
// upon request.
|
337 |
+
AutogradOther,
|
338 |
+
|
339 |
+
// See [Note: Per-Backend Functionality Dispatch Keys]
|
340 |
+
AutogradFunctionality,
|
341 |
+
|
342 |
+
// NestedTensor is an example of something that isn't a "real backend"
|
343 |
+
// (because it mostly consists of redispatching kernels)
|
344 |
+
// but it would like to override autograd functionality in C++.
|
345 |
+
// We can handle cases like this by adding an extra functionality key
|
346 |
+
// exclusively for handling autograd for NestedTensor.
|
347 |
+
// lives out of tree at
|
348 |
+
// https://github.com/pytorch/nestedtensor
|
349 |
+
AutogradNestedTensor,
|
350 |
+
|
351 |
+
Tracer,
|
352 |
+
|
353 |
+
// TODO: make Autocast a functionality key
|
354 |
+
// Autocasting precedes VariableTypeId, to ensure casts are autograd-exposed
|
355 |
+
// and inputs are saved for backward in the post-autocast type.
|
356 |
+
AutocastCPU,
|
357 |
+
AutocastXPU,
|
358 |
+
AutocastIPU,
|
359 |
+
AutocastHPU,
|
360 |
+
AutocastXLA,
|
361 |
+
// AutocastXLA is only being used for TPUs. XLA GPUs continue to use
|
362 |
+
// AutocastCUDA.
|
363 |
+
AutocastCUDA,
|
364 |
+
AutocastPrivateUse1,
|
365 |
+
|
366 |
+
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~ WRAPPERS ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ //
|
367 |
+
// There are a number of alternative modes which may want to handle before
|
368 |
+
// autograd; for example, error checking, tracing, profiling or vmap. They
|
369 |
+
// go here.
|
370 |
+
|
371 |
+
FuncTorchBatched, // See Note [Out-of-tree vmap+grad prototype]
|
372 |
+
|
373 |
+
// Dispatch key for BatchedTensorImpl wrapping a nested tensor.
|
374 |
+
BatchedNestedTensor,
|
375 |
+
|
376 |
+
FuncTorchVmapMode, // See Note [Out-of-tree vmap+grad prototype]
|
377 |
+
|
378 |
+
// This is the dispatch key for BatchedTensorImpl, which is used to implement
|
379 |
+
// batching rules for vmap.
|
380 |
+
Batched,
|
381 |
+
|
382 |
+
// When we are inside a vmap, all tensors dispatch on this key.
|
383 |
+
// See Note: [DispatchKey::VmapMode usage] for more details.
|
384 |
+
VmapMode,
|
385 |
+
|
386 |
+
FuncTorchGradWrapper, // See Note [Out-of-tree vmap+grad prototype]
|
387 |
+
|
388 |
+
// Out-of-core key for Deferred Module Initialization in torchdistx.
|
389 |
+
// See https://pytorch.org/torchdistx/latest/deferred_init.html
|
390 |
+
DeferredInit,
|
391 |
+
|
392 |
+
// Used by Python key logic to know the set of tls on entry to the dispatcher
|
393 |
+
// This kernel assumes it is the top-most non-functorch-related DispatchKey.
|
394 |
+
// If you add a key above, make sure to update the fallback implementation for
|
395 |
+
// this.
|
396 |
+
PythonTLSSnapshot,
|
397 |
+
|
398 |
+
// This key should be at the very top of the dispatcher
|
399 |
+
FuncTorchDynamicLayerFrontMode, // See Note [Out-of-tree vmap+grad prototype]
|
400 |
+
|
401 |
+
// TESTING: This is intended to be a generic testing tensor type id.
|
402 |
+
// Don't use it for anything real; its only acceptable use is within a single
|
403 |
+
// process test. Use it by creating a TensorImpl with this DispatchKey, and
|
404 |
+
// then registering operators to operate on this type id. See
|
405 |
+
// aten/src/ATen/core/dispatch/backend_fallback_test.cpp for a usage example.
|
406 |
+
TESTING_ONLY_GenericWrapper,
|
407 |
+
|
408 |
+
// TESTING: This is intended to be a generic testing tensor type id.
|
409 |
+
// Don't use it for anything real; its only acceptable use is within a ingle
|
410 |
+
// process test. Use it by toggling the mode on and off via
|
411 |
+
// TESTING_ONLY_tls_generic_mode_set_enabled and then registering operators
|
412 |
+
// to operate on this type id. See
|
413 |
+
// aten/src/ATen/core/dispatch/backend_fallback_test.cpp
|
414 |
+
// for a usage example
|
415 |
+
TESTING_ONLY_GenericMode,
|
416 |
+
|
417 |
+
// This key is used for pre-dispatch tracing in make_fx.
|
418 |
+
// It has lower priority than the PythonDispatcher key
|
419 |
+
// because we use the PythonDispatcher to intercept the key from python,
|
420 |
+
// and avoid having to implement it in C++.
|
421 |
+
PreDispatch,
|
422 |
+
|
423 |
+
// This is a bypass that allows you to skip running the C++ dispatcher
|
424 |
+
// entirely
|
425 |
+
PythonDispatcher,
|
426 |
+
|
427 |
+
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ FIN ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ //
|
428 |
+
EndOfFunctionalityKeys, // End of functionality keys.
|
429 |
+
|
430 |
+
// ~~~~~~~~~~~~~~ "Dense" Per-Backend Dispatch keys ~~~~~~~~~~~~~~~~~~~~ //
|
431 |
+
// Here are backends which you think of as traditionally specifying
|
432 |
+
// how to implement operations on some device.
|
433 |
+
|
434 |
+
#define DEFINE_PER_BACKEND_KEYS_FOR_BACKEND(n, prefix) prefix##n,
|
435 |
+
|
436 |
+
#define DEFINE_PER_BACKEND_KEYS(fullname, prefix) \
|
437 |
+
StartOf##fullname##Backends, \
|
438 |
+
C10_FORALL_BACKEND_COMPONENTS( \
|
439 |
+
DEFINE_PER_BACKEND_KEYS_FOR_BACKEND, prefix) \
|
440 |
+
EndOf##fullname##Backends = prefix##Meta,
|
441 |
+
|
442 |
+
C10_FORALL_FUNCTIONALITY_KEYS(DEFINE_PER_BACKEND_KEYS)
|
443 |
+
|
444 |
+
#undef DEFINE_PER_BACKEND_KEYS
|
445 |
+
#undef DEFINE_PER_BACKEND_KEYS_FOR_BACKEND
|
446 |
+
|
447 |
+
EndOfRuntimeBackendKeys = EndOfAutogradFunctionalityBackends,
|
448 |
+
|
449 |
+
// ~~~~~~~~~~~~~~~~~~~~~~ Alias Dispatch Keys ~~~~~~~~~~~~~~~~~~~~~~~~~~ //
|
450 |
+
// Note [Alias Dispatch Keys]
|
451 |
+
// Alias dispatch keys are synthetic dispatch keys which map to multiple
|
452 |
+
// runtime dispatch keys. Alisa keys have precedence, but they are always
|
453 |
+
// lower precedence than runtime keys. You can register a kernel to an
|
454 |
+
// alias key, the kernel might be populated to the mapped runtime keys
|
455 |
+
// during dispatch table computation.
|
456 |
+
// If a runtime dispatch key has multiple kernels from alias keys, which
|
457 |
+
// kernel wins is done based on the precedence of alias keys (but runtime
|
458 |
+
// keys always have precedence over alias keys).
|
459 |
+
// Alias keys won't be directly called during runtime.
|
460 |
+
|
461 |
+
// See Note [Alias Dispatch Key : Autograd]
|
462 |
+
Autograd,
|
463 |
+
CompositeImplicitAutograd, // registered at
|
464 |
+
// build/aten/src/ATen/RegisterCompositeImplicitAutograd.cpp
|
465 |
+
|
466 |
+
// Note: The alias keyset for FuncTorchBatchedDecomposition is disjoint from
|
467 |
+
// all
|
468 |
+
// other alias keysets
|
469 |
+
// and so precedence order doesn't matter
|
470 |
+
FuncTorchBatchedDecomposition, // registered at
|
471 |
+
// build/aten/src/ATen/RegisterFuncTorchBatchedDecomposition.cpp
|
472 |
+
// Note: The alias keyset for CompositeImplicitAutogradNestedTensor is
|
473 |
+
// disjoint from all other alias keysets
|
474 |
+
CompositeImplicitAutogradNestedTensor, // registered at
|
475 |
+
// build/aten/src/ATen/RegisterCompositeImplicitAutogradNestedTensor.cpp
|
476 |
+
CompositeExplicitAutograd, // registered at
|
477 |
+
// build/aten/src/ATen/RegisterCompositeExplicitAutograd.cpp
|
478 |
+
// See Note [CompositeExplicitAutogradNonFunctional Key]
|
479 |
+
CompositeExplicitAutogradNonFunctional, // registered at
|
480 |
+
// build/aten/src/ATen/RegisterCompositeExplicitAutograd.cpp
|
481 |
+
|
482 |
+
// Define an alias key to represent end of alias dispatch keys.
|
483 |
+
// If you add new alias keys after Autograd, please also update it here.
|
484 |
+
StartOfAliasKeys = Autograd,
|
485 |
+
EndOfAliasKeys = CompositeExplicitAutogradNonFunctional, //
|
486 |
+
|
487 |
+
// ~~~~~~~~~~~~~~~~~~~~~~~~~ BC ALIASES ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ //
|
488 |
+
// The aliases exist for backwards compatibility reasons, they shouldn't
|
489 |
+
// be used
|
490 |
+
CPUTensorId = CPU,
|
491 |
+
CUDATensorId = CUDA,
|
492 |
+
DefaultBackend = CompositeExplicitAutograd,
|
493 |
+
PrivateUse1_PreAutograd = AutogradPrivateUse1,
|
494 |
+
PrivateUse2_PreAutograd = AutogradPrivateUse2,
|
495 |
+
PrivateUse3_PreAutograd = AutogradPrivateUse3,
|
496 |
+
Autocast = AutocastCUDA,
|
497 |
+
};
|
498 |
+
|
499 |
+
// Note [Private use DispatchKey]
|
500 |
+
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
501 |
+
// Private use tensor IDs are preallocated tensor type IDs for use in user
|
502 |
+
// applications. Similar to private use fields in HTTP, they can be used
|
503 |
+
// by end users for experimental or private applications, without needing
|
504 |
+
// to "standardize" the tensor ID (which would be done by submitting a PR
|
505 |
+
// to PyTorch to add your type ID).
|
506 |
+
//
|
507 |
+
// Private use tensor IDs are appropriate to use if you want to experiment
|
508 |
+
// with adding a new tensor type (without having to patch PyTorch first) or
|
509 |
+
// have a private, non-distributed application that needs to make use of a
|
510 |
+
// new tensor type. Private use tensor IDs are NOT appropriate to use for
|
511 |
+
// libraries intended to be distributed to further users: please contact
|
512 |
+
// the PyTorch developers to get a type ID registered in this case.
|
513 |
+
//
|
514 |
+
// We provide two classes of private user tensor id: regular DispatchKeys
|
515 |
+
// and Autograd DispatchKeys. DispatchKeys serve the role of ordinary "backend"
|
516 |
+
// DispatchKeys; if you were adding support for a new type of accelerator, you
|
517 |
+
// would use a backend DispatchKey, and ideally automatically reuse
|
518 |
+
// AutogradOther definitions already defined in PyTorch. AutogradPrivateUse
|
519 |
+
// DispatchKeys serve as "wrapper" DispatchKeys: they are only necessary for
|
520 |
+
// tensors that compose multiple internal tensors, and for cases when the
|
521 |
+
// built-in autograd formulas for operators are not appropriate.
|
522 |
+
|
523 |
+
static_assert(
|
524 |
+
(static_cast<uint8_t>(BackendComponent::EndOfBackendKeys) +
|
525 |
+
static_cast<uint8_t>(DispatchKey::EndOfFunctionalityKeys)) <= 64,
|
526 |
+
"The BackendComponent and DispatchKey enums (below EndOfFunctionalityKeys)"
|
527 |
+
" both map to backend and functionality bits"
|
528 |
+
" into a 64-bit bitmask; you must have less than 64 total entries between them");
|
529 |
+
|
530 |
+
// Check if a DispatchKey is an alias mapping to other runtime keys.
|
531 |
+
constexpr bool isAliasDispatchKey(DispatchKey k) {
|
532 |
+
return k >= DispatchKey::StartOfAliasKeys && k <= DispatchKey::EndOfAliasKeys;
|
533 |
+
}
|
534 |
+
|
535 |
+
// [Note: Per-Backend Functionality Dispatch Keys]
|
536 |
+
// Check if a DispatchKey is a per-backend functionality key
|
537 |
+
// Any functionalities that can be customized per-backend should be added here.
|
538 |
+
// These keys correspond to functionalities that can be customized individually
|
539 |
+
// per backend. While they only take up one bit in the `DispatchKeySet` bitset,
|
540 |
+
// they map to (# backends) slots in the operator table.
|
541 |
+
// Each of these keys also has a separate set of "runtime keys" in the dispatch
|
542 |
+
// key enum, per backend, which *do* map to the individual operator table slots.
|
543 |
+
// For example, the "Sparse" key maps to an individual bit in the
|
544 |
+
// DispatchKeySet, while `SparseCPU`, `SparseCUDA`, etc all map to individual
|
545 |
+
// slots in the runtime operator table.
|
546 |
+
|
547 |
+
constexpr bool isPerBackendFunctionalityKey(DispatchKey k) {
|
548 |
+
if (k == DispatchKey::Dense || k == DispatchKey::Quantized ||
|
549 |
+
k == DispatchKey::Sparse || k == DispatchKey::AutogradFunctionality ||
|
550 |
+
k == DispatchKey::NestedTensor) {
|
551 |
+
return true;
|
552 |
+
} else {
|
553 |
+
return false;
|
554 |
+
}
|
555 |
+
}
|
556 |
+
|
557 |
+
// Note that this includes Undefined in the total count.
|
558 |
+
// BUT EndOfFunctionalityKeys is its own (placeholder) key.
|
559 |
+
// e.g. Undefined=0, Dense=1, Sparse=2, EndOfFunctionalityKeys=3.
|
560 |
+
// In the above example, there are 3 total functionality keys.
|
561 |
+
constexpr uint8_t num_functionality_keys =
|
562 |
+
static_cast<uint8_t>(DispatchKey::EndOfFunctionalityKeys);
|
563 |
+
|
564 |
+
constexpr uint8_t num_backends =
|
565 |
+
static_cast<uint8_t>(BackendComponent::EndOfBackendKeys);
|
566 |
+
|
567 |
+
// Note [No More Than 16 Backends]
|
568 |
+
// Search for this note to find places in the code where the "no more than 16
|
569 |
+
// backends" invariant is baked in.
|
570 |
+
static_assert(
|
571 |
+
static_cast<uint8_t>(BackendComponent::EndOfBackendKeys) <= 16,
|
572 |
+
"BackendComponent currently only supports <= 16 backends. If we really need to extend this, \
|
573 |
+
there are a few places where this invariant is baked in");
|
574 |
+
|
575 |
+
constexpr uint8_t numPerBackendFunctionalityKeys() {
|
576 |
+
uint8_t count = 0;
|
577 |
+
for (uint8_t k = 0; k <= num_functionality_keys; ++k) {
|
578 |
+
if (isPerBackendFunctionalityKey(static_cast<DispatchKey>(k)))
|
579 |
+
++count;
|
580 |
+
}
|
581 |
+
return count;
|
582 |
+
}
|
583 |
+
|
584 |
+
#if defined(C10_MOBILE_TRIM_DISPATCH_KEYS)
|
585 |
+
// See [Note: Trimmed Mobile Dispatch Keys]
|
586 |
+
constexpr uint16_t num_runtime_entries = 8;
|
587 |
+
#else
|
588 |
+
constexpr uint16_t num_runtime_entries = num_functionality_keys +
|
589 |
+
(numPerBackendFunctionalityKeys() * (num_backends - 1));
|
590 |
+
#endif
|
591 |
+
|
592 |
+
// See Note [No More Than 16 Backends]
|
593 |
+
constexpr uint16_t full_backend_mask =
|
594 |
+
(static_cast<uint16_t>(1) << num_backends) - 1;
|
595 |
+
|
596 |
+
C10_API const char* toString(DispatchKey);
|
597 |
+
C10_API const char* toString(BackendComponent);
|
598 |
+
C10_API std::ostream& operator<<(std::ostream&, DispatchKey);
|
599 |
+
C10_API std::ostream& operator<<(std::ostream&, BackendComponent);
|
600 |
+
|
601 |
+
C10_API DispatchKey getAutogradKeyFromBackend(BackendComponent k);
|
602 |
+
|
603 |
+
// Parses a string into a dispatch key.
|
604 |
+
// If the string cannot be correctly parsed, throws an exception.
|
605 |
+
C10_API c10::DispatchKey parseDispatchKey(const std::string& k);
|
606 |
+
|
607 |
+
// These are some convenience identifiers for dispatch keys which are
|
608 |
+
// shorter to type than their long counterparts. Note that some of these
|
609 |
+
// dispatch keys directly correspond to DeviceType; and most APIs that
|
610 |
+
// accept DispatchKey also accept DeviceType; e.g.,
|
611 |
+
// torch::dispatch(torch::kCPU, ...) is also valid.
|
612 |
+
constexpr DispatchKey kAutograd = DispatchKey::Autograd;
|
613 |
+
|
614 |
+
// See Note [The Ordering of Per-Backend Dispatch Keys Matters!]
|
615 |
+
// This function relies on the invariant that the dispatch keys between
|
616 |
+
// StartOfDenseBackends and EndOfRuntimeBackendKeys are ordered by backend
|
617 |
+
// in the same order as `BackendComponent`.
|
618 |
+
constexpr BackendComponent toBackendComponent(DispatchKey k) {
|
619 |
+
if (k >= DispatchKey::StartOfDenseBackends &&
|
620 |
+
k <= DispatchKey::EndOfDenseBackends) {
|
621 |
+
return static_cast<BackendComponent>(
|
622 |
+
static_cast<uint8_t>(k) -
|
623 |
+
static_cast<uint8_t>(DispatchKey::StartOfDenseBackends));
|
624 |
+
} else if (
|
625 |
+
k >= DispatchKey::StartOfQuantizedBackends &&
|
626 |
+
k <= DispatchKey::EndOfQuantizedBackends) {
|
627 |
+
return static_cast<BackendComponent>(
|
628 |
+
static_cast<uint8_t>(k) -
|
629 |
+
static_cast<uint8_t>(DispatchKey::StartOfQuantizedBackends));
|
630 |
+
} else if (
|
631 |
+
k >= DispatchKey::StartOfSparseBackends &&
|
632 |
+
k <= DispatchKey::EndOfSparseBackends) {
|
633 |
+
return static_cast<BackendComponent>(
|
634 |
+
static_cast<uint8_t>(k) -
|
635 |
+
static_cast<uint8_t>(DispatchKey::StartOfSparseBackends));
|
636 |
+
} else if (
|
637 |
+
k >= DispatchKey::StartOfNestedTensorBackends &&
|
638 |
+
k <= DispatchKey::EndOfNestedTensorBackends) {
|
639 |
+
return static_cast<BackendComponent>(
|
640 |
+
static_cast<uint8_t>(k) -
|
641 |
+
static_cast<uint8_t>(DispatchKey::StartOfNestedTensorBackends));
|
642 |
+
} else if (
|
643 |
+
k >= DispatchKey::StartOfAutogradFunctionalityBackends &&
|
644 |
+
k <= DispatchKey::EndOfAutogradFunctionalityBackends) {
|
645 |
+
return static_cast<BackendComponent>(
|
646 |
+
static_cast<uint8_t>(k) -
|
647 |
+
static_cast<uint8_t>(
|
648 |
+
DispatchKey::StartOfAutogradFunctionalityBackends));
|
649 |
+
} else {
|
650 |
+
return BackendComponent::InvalidBit;
|
651 |
+
}
|
652 |
+
}
|
653 |
+
|
654 |
+
constexpr DispatchKey toFunctionalityKey(DispatchKey k) {
|
655 |
+
if (k <= DispatchKey::EndOfFunctionalityKeys) {
|
656 |
+
return k;
|
657 |
+
} else if (k <= DispatchKey::EndOfDenseBackends) {
|
658 |
+
return DispatchKey::Dense;
|
659 |
+
} else if (k <= DispatchKey::EndOfQuantizedBackends) {
|
660 |
+
return DispatchKey::Quantized;
|
661 |
+
} else if (k <= DispatchKey::EndOfSparseBackends) {
|
662 |
+
return DispatchKey::Sparse;
|
663 |
+
} else if (k <= DispatchKey::EndOfNestedTensorBackends) {
|
664 |
+
return DispatchKey::NestedTensor;
|
665 |
+
} else if (k <= DispatchKey::EndOfAutogradFunctionalityBackends) {
|
666 |
+
return DispatchKey::AutogradFunctionality;
|
667 |
+
} else {
|
668 |
+
return DispatchKey::Undefined;
|
669 |
+
}
|
670 |
+
}
|
671 |
+
|
672 |
+
BackendComponent toBackendComponent(DeviceType device_type);
|
673 |
+
|
674 |
+
// Given (DispatchKey::Dense, BackendComponent::CUDABit), returns
|
675 |
+
// DispatchKey::CUDA.
|
676 |
+
// See Note [The Ordering of Per-Backend Dispatch Keys Matters!]
|
677 |
+
// This function relies on the invariant that the dispatch keys between
|
678 |
+
// StartOfDenseBackends and EndOfRuntimeBackendKeys are ordered by backend
|
679 |
+
// in the same order as `BackendComponent`.
|
680 |
+
constexpr DispatchKey toRuntimePerBackendFunctionalityKey(
|
681 |
+
DispatchKey functionality_k,
|
682 |
+
BackendComponent backend_k) {
|
683 |
+
if (functionality_k == DispatchKey::Dense) {
|
684 |
+
return static_cast<DispatchKey>(
|
685 |
+
static_cast<uint8_t>(DispatchKey::StartOfDenseBackends) +
|
686 |
+
static_cast<uint8_t>(backend_k));
|
687 |
+
}
|
688 |
+
if (functionality_k == DispatchKey::Sparse) {
|
689 |
+
return static_cast<DispatchKey>(
|
690 |
+
static_cast<uint8_t>(DispatchKey::StartOfSparseBackends) +
|
691 |
+
static_cast<uint8_t>(backend_k));
|
692 |
+
}
|
693 |
+
if (functionality_k == DispatchKey::Quantized) {
|
694 |
+
return static_cast<DispatchKey>(
|
695 |
+
static_cast<uint8_t>(DispatchKey::StartOfQuantizedBackends) +
|
696 |
+
static_cast<uint8_t>(backend_k));
|
697 |
+
}
|
698 |
+
if (functionality_k == DispatchKey::NestedTensor) {
|
699 |
+
return static_cast<DispatchKey>(
|
700 |
+
static_cast<uint8_t>(DispatchKey::StartOfNestedTensorBackends) +
|
701 |
+
static_cast<uint8_t>(backend_k));
|
702 |
+
}
|
703 |
+
if (functionality_k == DispatchKey::AutogradFunctionality) {
|
704 |
+
return static_cast<DispatchKey>(
|
705 |
+
static_cast<uint8_t>(
|
706 |
+
DispatchKey::StartOfAutogradFunctionalityBackends) +
|
707 |
+
static_cast<uint8_t>(backend_k));
|
708 |
+
}
|
709 |
+
return DispatchKey::Undefined;
|
710 |
+
}
|
711 |
+
|
712 |
+
} // namespace c10
|
713 |
+
|
714 |
+
namespace torch {
|
715 |
+
// Expose the constant, but not the TYPE (DispatchKey is an implementation
|
716 |
+
// detail!)
|
717 |
+
using c10::kAutograd;
|
718 |
+
} // namespace torch
|
719 |
+
|
720 |
+
// NB: You really shouldn't use this instance; this enum is guaranteed
|
721 |
+
// to be pretty small so a regular array should be acceptable.
|
722 |
+
namespace std {
|
723 |
+
template <>
|
724 |
+
struct hash<c10::DispatchKey> {
|
725 |
+
typedef size_t result_type;
|
726 |
+
typedef c10::DispatchKey argument_type;
|
727 |
+
|
728 |
+
size_t operator()(c10::DispatchKey x) const {
|
729 |
+
return static_cast<size_t>(x);
|
730 |
+
}
|
731 |
+
};
|
732 |
+
} // namespace std
|
env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/DispatchKeySet.h
ADDED
@@ -0,0 +1,928 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
#include <c10/core/DispatchKey.h>
|
3 |
+
#include <c10/util/Exception.h>
|
4 |
+
#include <c10/util/Metaprogramming.h>
|
5 |
+
#include <c10/util/llvmMathExtras.h>
|
6 |
+
#include <array>
|
7 |
+
#include <ostream>
|
8 |
+
|
9 |
+
namespace c10 {
|
10 |
+
|
11 |
+
struct FunctionalityOffsetAndMask {
|
12 |
+
// empty constructor shouldn't be used; only needed to initialize
|
13 |
+
// the array before populating it.
|
14 |
+
FunctionalityOffsetAndMask() = default;
|
15 |
+
FunctionalityOffsetAndMask(uint16_t offset, uint16_t mask)
|
16 |
+
: offset(offset), mask(mask) {}
|
17 |
+
// This needs to big enough to cover the size of the operator table.
|
18 |
+
uint16_t offset{};
|
19 |
+
// See Note [No More Than 16 Backends]
|
20 |
+
// This mask needs to be big enough to mask all of the backend bits.
|
21 |
+
// We probably don't ever want to have more than 16 backend bits, so uint16_t
|
22 |
+
// should be enough.
|
23 |
+
uint16_t mask{};
|
24 |
+
};
|
25 |
+
static_assert(
|
26 |
+
c10::num_runtime_entries < 65536,
|
27 |
+
"The dispatcher currently only supports up to 2^16 runtime entries");
|
28 |
+
|
29 |
+
C10_API std::array<FunctionalityOffsetAndMask, num_functionality_keys>
|
30 |
+
initializeFunctionalityOffsetsAndMasks();
|
31 |
+
|
32 |
+
C10_ALWAYS_INLINE static const std::
|
33 |
+
array<FunctionalityOffsetAndMask, num_functionality_keys>&
|
34 |
+
offsetsAndMasks() {
|
35 |
+
static auto offsets_and_masks_ = initializeFunctionalityOffsetsAndMasks();
|
36 |
+
return offsets_and_masks_;
|
37 |
+
}
|
38 |
+
|
39 |
+
// A representation of a set of DispatchKeys. A DispatchKeySet contains both
|
40 |
+
// "functionality" bits and "backend bits", and every tensor holds its own
|
41 |
+
// DispatchKeySet. The Dispatcher implements multiple dispatch by grabbing the
|
42 |
+
// keyset on every input tensor, or’ing them together, and dispatching to a
|
43 |
+
// specific piece of functionality. The functionality bits are *ordered*. When
|
44 |
+
// multiple functionality bits are set, we use the highest priority
|
45 |
+
// functionality. Similarly, multiple backend bits can theoretically be set if
|
46 |
+
// you call an operator with multiple tensors from difference devices (e.g. CPU
|
47 |
+
// and CUDA), although support for mixed device dispatch is limited (the only
|
48 |
+
// kernels that gracefully handle mixed device inputs for now are cuda kernels
|
49 |
+
// that take in a scalar cpu tensor).
|
50 |
+
|
51 |
+
// A representation of a set of DispatchKeys. A tensor may have multiple
|
52 |
+
// tensor type ids, e.g., a Variable tensor can also be a CPU tensor; the
|
53 |
+
// DispatchKeySet specifies what type ids apply. The internal representation is
|
54 |
+
// as a 64-bit bit set (this means only 64 tensor type ids are supported).
|
55 |
+
//
|
56 |
+
// As mentioned above, DispatchKeys are ordered; thus, we can ask questions like
|
57 |
+
// "what is the highest priority DispatchKey in the set"? (The set itself is
|
58 |
+
// not ordered; two sets with the same ids will always have the ids ordered in
|
59 |
+
// the same way.)
|
60 |
+
//
|
61 |
+
// Note [DispatchKeySet Internal Representation]
|
62 |
+
// Internally, dispatch keys are packed into 64-bit DispatchKeySet objects
|
63 |
+
// that get passed around at runtime.
|
64 |
+
// However, there isn't necessarily a 1-to-1 mapping between bits in the keyset
|
65 |
+
// and individual dispatch keys.
|
66 |
+
//
|
67 |
+
// First: why do we have this distinction, and why not map every dispatch key
|
68 |
+
// directly to a bit? This is mostly because we have several types of
|
69 |
+
// functionalities that different backends would like to customize. For example,
|
70 |
+
// we have:
|
71 |
+
// - "Dense": CPU, CUDA, XLA, ... (~12 keys)
|
72 |
+
// - "Sparse": SparseCPU, SparseCUDA, ...
|
73 |
+
// - "Quantized": QuantizedCPU, QuantizedCUDA, QuantizedXLA, ...
|
74 |
+
// - "Autograd": AutogradCPU, AutogradCUDA, Autograd XLA, ...
|
75 |
+
// The problem is that total number of keys grows quadratically with [#
|
76 |
+
// backends] x [# functionalities], making it very difficult to map each key
|
77 |
+
// directly to a bit in a bitset without dramatically increasing the size of the
|
78 |
+
// bitset over time.
|
79 |
+
//
|
80 |
+
// The two enums (BackendComponent and DispatchKey) can be divided roughly into
|
81 |
+
// 5 categories.
|
82 |
+
//
|
83 |
+
// (1) "Building block" keys
|
84 |
+
// (a) backends: Everything in the BackendComponent enum (e.g. CPUBit,
|
85 |
+
// CUDABit) (b) functionalities: (per-backend) functionality-bit DispatchKeys
|
86 |
+
// (e.g. AutogradFunctionality, Sparse, Dense)
|
87 |
+
// (2) "Runtime" keys
|
88 |
+
// (a) "non-customizable backends" (e.g. FPGA)
|
89 |
+
// (b) "non-customizable functionalities" (e.g. Functionalize)
|
90 |
+
// (c) "per-backend instances of customizable functionalities" (e.g. CPU,
|
91 |
+
// SparseCPU, AutogradCPU)
|
92 |
+
// (3) "Alias" DispatchKeys (see Note [Alias Dispatch Keys])
|
93 |
+
//
|
94 |
+
// (1) Building block keys always correspond to individual bits in a
|
95 |
+
// DispatchKeySet. They can also be combined in a DispatchKeySet to form actual
|
96 |
+
// runtime keys. e.g.
|
97 |
+
// auto dense_cpu_ks = DispatchKeySet({DispatchKey::CPUBit,
|
98 |
+
// DispatchKey::Dense});
|
99 |
+
// // The keyset has the runtime dense-cpu key.
|
100 |
+
// dense_cpu_ks.has(DispatchKey::CPU);
|
101 |
+
// // And it contains the building block keys too.
|
102 |
+
// dense_cpu_ks.has(DispatchKey::CPUBit);
|
103 |
+
// dense_cpu_ks.has(DispatchKey::Dense);
|
104 |
+
//
|
105 |
+
// Not every backend and not every functionality counts as a "building block
|
106 |
+
// key". This is mostly to give us more levers to pull in the design space.
|
107 |
+
// Backend keys and functionality keys that count as "building blocks" will
|
108 |
+
// contribute to a full cross product of functionality that can be overriden.
|
109 |
+
//
|
110 |
+
// For example, right now we have at least 12 "backend" building blocks (CPU,
|
111 |
+
// CUDA, XLA, ...) and at least 4 "functionality" building blocks (Dense,
|
112 |
+
// Sparse, Quantized, AutogradFunctionality, ...). These keys together allow
|
113 |
+
// every dispatcher operator to be customized in up to 12*4 different ways. Each
|
114 |
+
// of those requires a slot in the operator table of every dispatcher operator.
|
115 |
+
// Not every piece of functionality necessarily needs to be customizable
|
116 |
+
// per-backend, and not every backend necessarily needs to be able to customize
|
117 |
+
// every type of functionality.
|
118 |
+
//
|
119 |
+
//
|
120 |
+
// (2) Every runtime key corresponds directly to a slot in an operator's runtime
|
121 |
+
// dispatch table, and you can directly register kernels to a runtime dispatch
|
122 |
+
// key.
|
123 |
+
//
|
124 |
+
// For per-backend functionalities like "Dense" or "AutogradFunctionality",
|
125 |
+
// you can think of the corresponding runtime dispatch keys as "instances" of
|
126 |
+
// that functionality, per backend. E.g. "CPU", "CUDA", "XLA", etc. are all
|
127 |
+
// runtime instances of the "Dense" building block key.
|
128 |
+
|
129 |
+
// (2a) and (2b) are represented identically in the DispatchKeySet logic:
|
130 |
+
// - backend-agnostic functionalities (e.g. FuncTorchBatched) are NOT
|
131 |
+
// customizable per backend.
|
132 |
+
// In order to do so, we'd need to promote it to a per-backend functionality
|
133 |
+
// "building block" key.
|
134 |
+
// - non-customizable backends (e.g. FPGA) can NOT customize existing
|
135 |
+
// functionality like Sparse, Autograd, etc.
|
136 |
+
// In order to do so, we'd need to promote it to a backend "building block"
|
137 |
+
// key.
|
138 |
+
//
|
139 |
+
// In both cases, these keys directly correspond to runtime slots in the
|
140 |
+
// operator table.
|
141 |
+
//
|
142 |
+
//
|
143 |
+
// (3) "Alias" keys
|
144 |
+
// See Note [Alias Dispatch Keys]
|
145 |
+
//
|
146 |
+
// Final note: for anyone making future changes to the Dispatcher +
|
147 |
+
// DispatchKeySet internals, there's a closed PR with a basic
|
148 |
+
// python-implementation of the Dispatcher that might be useful in quickly
|
149 |
+
// testing out and validating changes. See it at
|
150 |
+
// https://github.com/pytorch/pytorch/pull/68743
|
151 |
+
|
152 |
+
// An undefined tensor is one with an empty tensor type set.
|
153 |
+
class DispatchKeySet final {
|
154 |
+
public:
|
155 |
+
enum Full { FULL };
|
156 |
+
enum FullAfter { FULL_AFTER };
|
157 |
+
enum Raw { RAW };
|
158 |
+
|
159 |
+
// NB: default constructor representation as zero is MANDATORY as
|
160 |
+
// use of DispatchKeySet in TLS requires this.
|
161 |
+
constexpr DispatchKeySet() = default;
|
162 |
+
|
163 |
+
constexpr DispatchKeySet(Full)
|
164 |
+
: repr_((1ULL << (num_backends + num_functionality_keys - 1)) - 1) {}
|
165 |
+
|
166 |
+
constexpr DispatchKeySet(FullAfter, DispatchKey t)
|
167 |
+
// LSB after t are OK, but not t itself.
|
168 |
+
// "functionalities" have a notion of ordering (e.g. Autograd > Sparse >
|
169 |
+
// Quantized > Dense). But backends don't really have an ordering.
|
170 |
+
// Therefore, we're enforcing that FullAfter can only be used on
|
171 |
+
// "functionality" keys.
|
172 |
+
: repr_(
|
173 |
+
(1ULL
|
174 |
+
<< (num_backends + static_cast<uint8_t>(toFunctionalityKey(t)) -
|
175 |
+
1)) -
|
176 |
+
1) {
|
177 |
+
*this = add(DispatchKey::PythonDispatcher);
|
178 |
+
}
|
179 |
+
|
180 |
+
// Public version of DispatchKeySet(uint64_t) API; external users
|
181 |
+
// must be explicit when they do this!
|
182 |
+
constexpr DispatchKeySet(Raw, uint64_t x) : repr_(x) {}
|
183 |
+
|
184 |
+
constexpr explicit DispatchKeySet(BackendComponent k) {
|
185 |
+
if (k == BackendComponent::InvalidBit) {
|
186 |
+
repr_ = 0;
|
187 |
+
} else {
|
188 |
+
repr_ = 1ULL << (static_cast<uint8_t>(k) - 1);
|
189 |
+
}
|
190 |
+
}
|
191 |
+
|
192 |
+
constexpr explicit DispatchKeySet(DispatchKey k) {
|
193 |
+
if (k == DispatchKey::Undefined) {
|
194 |
+
// Case 1: handle Undefined specifically
|
195 |
+
repr_ = 0;
|
196 |
+
} else if (k <= DispatchKey::EndOfFunctionalityKeys) {
|
197 |
+
// Case 2: handle "functionality-only" keys
|
198 |
+
// These keys have a functionality bit set, but no backend bits
|
199 |
+
// These can technically be either:
|
200 |
+
// - valid runtime keys (e.g. DispatchKey::AutogradOther,
|
201 |
+
// DispatchKey::FuncTorchBatched, etc)
|
202 |
+
// - "building block" keys that aren't actual runtime keys (e.g.
|
203 |
+
// DispatchKey::Dense or Sparse)
|
204 |
+
uint64_t functionality_val = 1ULL
|
205 |
+
<< (num_backends + static_cast<uint8_t>(k) - 1);
|
206 |
+
repr_ = functionality_val;
|
207 |
+
} else if (k <= DispatchKey::EndOfRuntimeBackendKeys) {
|
208 |
+
// Case 3: "runtime" keys that have a functionality bit AND a backend bit.
|
209 |
+
// First compute which bit to flip for the functionality.
|
210 |
+
auto functionality_k = toFunctionalityKey(k);
|
211 |
+
// The - 1 is because Undefined is technically a "functionality" that
|
212 |
+
// doesn't show up in the bitset. So e.g. Dense is technically the second
|
213 |
+
// functionality, but the lowest functionality bit.
|
214 |
+
uint64_t functionality_val = 1ULL
|
215 |
+
<< (num_backends + static_cast<uint8_t>(functionality_k) - 1);
|
216 |
+
|
217 |
+
// then compute which bit to flip for the backend
|
218 |
+
// Case 4a: handle the runtime instances of "per-backend functionality"
|
219 |
+
// keys For example, given DispatchKey::CPU, we should set:
|
220 |
+
// - the Dense functionality bit
|
221 |
+
// - the CPUBit backend bit
|
222 |
+
// first compute which bit to flip for the backend
|
223 |
+
auto backend_k = toBackendComponent(k);
|
224 |
+
uint64_t backend_val = backend_k == BackendComponent::InvalidBit
|
225 |
+
? 0
|
226 |
+
: 1ULL << (static_cast<uint8_t>(backend_k) - 1);
|
227 |
+
repr_ = functionality_val + backend_val;
|
228 |
+
} else {
|
229 |
+
// At this point, we should have covered every case except for alias keys.
|
230 |
+
// Technically it would be possible to add alias dispatch keys to a
|
231 |
+
// DispatchKeySet, but the semantics are a little confusing and this
|
232 |
+
// currently isn't needed anywhere.
|
233 |
+
repr_ = 0;
|
234 |
+
}
|
235 |
+
}
|
236 |
+
|
237 |
+
constexpr uint64_t keys_to_repr(std::initializer_list<DispatchKey> ks) {
|
238 |
+
uint64_t repr = 0;
|
239 |
+
for (auto k : ks) {
|
240 |
+
repr |= DispatchKeySet(k).repr_;
|
241 |
+
}
|
242 |
+
return repr;
|
243 |
+
}
|
244 |
+
|
245 |
+
constexpr uint64_t backend_bits_to_repr(
|
246 |
+
std::initializer_list<BackendComponent> ks) {
|
247 |
+
uint64_t repr = 0;
|
248 |
+
for (auto k : ks) {
|
249 |
+
repr |= DispatchKeySet(k).repr_;
|
250 |
+
}
|
251 |
+
return repr;
|
252 |
+
}
|
253 |
+
|
254 |
+
explicit constexpr DispatchKeySet(std::initializer_list<DispatchKey> ks)
|
255 |
+
: repr_(keys_to_repr(ks)) {}
|
256 |
+
|
257 |
+
explicit constexpr DispatchKeySet(std::initializer_list<BackendComponent> ks)
|
258 |
+
// Note: for some reason, putting this logic directly in the constructor
|
259 |
+
// appears to fail to compile on CUDA 10.1.
|
260 |
+
// See an example internal failure at
|
261 |
+
// https://www.internalfb.com/intern/skycastle/run/76561193669136035/artifact/actionlog.76561193742069401.stderr
|
262 |
+
: repr_(backend_bits_to_repr(ks)) {}
|
263 |
+
|
264 |
+
// Test if a DispatchKey is in the set
|
265 |
+
inline bool has(DispatchKey t) const {
|
266 |
+
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(t != DispatchKey::Undefined);
|
267 |
+
return has_all(DispatchKeySet(t));
|
268 |
+
}
|
269 |
+
constexpr bool has_backend(BackendComponent t) const {
|
270 |
+
return has_all(DispatchKeySet(t));
|
271 |
+
}
|
272 |
+
|
273 |
+
// Test if a DispatchKey is in the set
|
274 |
+
// Given a DispatchKeySet of functionality keys and (potentially) backend
|
275 |
+
// keys, tests if all of them are in the current set.
|
276 |
+
constexpr bool has_all(DispatchKeySet ks) const {
|
277 |
+
return static_cast<bool>((repr_ & ks.repr_) == ks.repr_);
|
278 |
+
}
|
279 |
+
|
280 |
+
// Given a DispatchKeySet of functionality keys and (potentially) backend
|
281 |
+
// keys, tests if any of them are in the current set. This could technically
|
282 |
+
// be pretty easily implemented using has(). It is strictly a perf
|
283 |
+
// optimization though. There are many places in the code base where we want
|
284 |
+
// to test for multiple functionality keys together. HOWEVER, runtime
|
285 |
+
// per-backend functionality keys aren't allowed to be used with this
|
286 |
+
// function, because you can end up with weird results. e.g.
|
287 |
+
// DispatchKeySet(DispatchKey::AutogradCPU).has_any(DispatchKeySet(DispatchKey::CPU))
|
288 |
+
// would return true.
|
289 |
+
inline bool has_any(DispatchKeySet ks) const {
|
290 |
+
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(
|
291 |
+
// Either there are no backend bits in the input keyset
|
292 |
+
((ks.repr_ & full_backend_mask) == 0) ||
|
293 |
+
// or there are no per-backend-functionality bits
|
294 |
+
// See [Note: Per-Backend Functionality Dispatch Keys]
|
295 |
+
((ks &
|
296 |
+
DispatchKeySet({
|
297 |
+
DispatchKey::Dense,
|
298 |
+
DispatchKey::Quantized,
|
299 |
+
DispatchKey::Sparse,
|
300 |
+
DispatchKey::AutogradFunctionality,
|
301 |
+
})
|
302 |
+
.repr_) == 0));
|
303 |
+
return static_cast<bool>((repr_ & ks.repr_) != 0);
|
304 |
+
}
|
305 |
+
// Test if DispatchKeySet is a superset of ks.
|
306 |
+
bool isSupersetOf(DispatchKeySet ks) const {
|
307 |
+
return (repr_ & ks.repr_) == ks.repr_;
|
308 |
+
}
|
309 |
+
// Perform set union
|
310 |
+
constexpr DispatchKeySet operator|(DispatchKeySet other) const {
|
311 |
+
return DispatchKeySet(repr_ | other.repr_);
|
312 |
+
}
|
313 |
+
// Perform set intersection
|
314 |
+
constexpr DispatchKeySet operator&(DispatchKeySet other) const {
|
315 |
+
return DispatchKeySet(repr_ & other.repr_);
|
316 |
+
}
|
317 |
+
// Compute the set difference self - other,
|
318 |
+
// but ONLY for the functionality keys.
|
319 |
+
// Any backend bits set on self will remain unchanged.
|
320 |
+
// See Note [Removing keys from DispatchKeySet Only Affects Functionality
|
321 |
+
// Keys]
|
322 |
+
constexpr DispatchKeySet operator-(DispatchKeySet other) const {
|
323 |
+
return DispatchKeySet(repr_ & (full_backend_mask | ~other.repr_));
|
324 |
+
}
|
325 |
+
|
326 |
+
// Compute self ^ other
|
327 |
+
constexpr DispatchKeySet operator^(DispatchKeySet other) const {
|
328 |
+
return DispatchKeySet(repr_ ^ other.repr_);
|
329 |
+
}
|
330 |
+
bool operator==(DispatchKeySet other) const {
|
331 |
+
return repr_ == other.repr_;
|
332 |
+
}
|
333 |
+
bool operator!=(DispatchKeySet other) const {
|
334 |
+
return repr_ != other.repr_;
|
335 |
+
}
|
336 |
+
// Add a DispatchKey to the DispatchKey set. Does NOT mutate,
|
337 |
+
// returns the extended DispatchKeySet!
|
338 |
+
C10_NODISCARD constexpr DispatchKeySet add(DispatchKey t) const {
|
339 |
+
return *this | DispatchKeySet(t);
|
340 |
+
}
|
341 |
+
C10_NODISCARD constexpr DispatchKeySet add(DispatchKeySet ks) const {
|
342 |
+
return *this | ks;
|
343 |
+
}
|
344 |
+
|
345 |
+
// Remove a DispatchKey from the DispatchKey set.
|
346 |
+
// This is generally not an operation you should be doing
|
347 |
+
// (it's used to implement the printing overload, operator<<)
|
348 |
+
//
|
349 |
+
// Note [Removing keys from DispatchKeySet Only Affects Functionality Keys]
|
350 |
+
// Only functionality bits are allowed to be removed from a keyset.
|
351 |
+
// For now, we're only allowing removal of "functionality bits" from the
|
352 |
+
// keyset, which is specifically needed by the fallthrough key calculation
|
353 |
+
// logic. Why is removing backend bits problematic? Consider this example:
|
354 |
+
//
|
355 |
+
// DispatchKeySet([DispatchKey.CPU, DispatchKey.AutogradCUDA,
|
356 |
+
// DispatchKey.CUDA]).remove(DispatchKey.AutogradCUDA)
|
357 |
+
// DispatchKeySet([DispatchKey.CPU,
|
358 |
+
// DispatchKey.AutogradCUDA]).remove(DispatchKey.AutogradCUDA)
|
359 |
+
//
|
360 |
+
// What do we want to happen?
|
361 |
+
// Technically, we'd like it to be true that after removal,
|
362 |
+
// the first keyset still has the CUDA dispatch key while the second doesn't.
|
363 |
+
// Unfortunately there's no way to represent that, because the two keysets are
|
364 |
+
// represented the same way internally: functionality bits: Autograd, Dense
|
365 |
+
// backend bits: CPU, CUDA
|
366 |
+
//
|
367 |
+
// Instead, remove(DispatchKey.AutogradCPU) will only remove the "Autograd"
|
368 |
+
// bit from the bitset.
|
369 |
+
C10_NODISCARD constexpr DispatchKeySet remove(DispatchKey t) const {
|
370 |
+
return DispatchKeySet(
|
371 |
+
repr_ & ~(DispatchKeySet(t).repr_ & ~full_backend_mask));
|
372 |
+
}
|
373 |
+
// You're allowed to remove a backend bit from a DispatchKeySet,
|
374 |
+
// but you have to be explicit about it (remove_backend() instead of
|
375 |
+
// remove()).
|
376 |
+
constexpr DispatchKeySet remove_backend(BackendComponent b) const {
|
377 |
+
return DispatchKeySet(repr_ & ~(DispatchKeySet(b).repr_));
|
378 |
+
}
|
379 |
+
// Is the set empty? (AKA undefined tensor)
|
380 |
+
bool empty() const {
|
381 |
+
return repr_ == 0;
|
382 |
+
}
|
383 |
+
uint64_t raw_repr() {
|
384 |
+
return repr_;
|
385 |
+
}
|
386 |
+
|
387 |
+
DispatchKey highestFunctionalityKey() const {
|
388 |
+
auto functionality_idx = indexOfHighestBit();
|
389 |
+
// This means that none of the functionality bits were set.
|
390 |
+
if (functionality_idx < num_backends)
|
391 |
+
return DispatchKey::Undefined;
|
392 |
+
// The first num_backend bits in the keyset don't correspond to real
|
393 |
+
// dispatch keys.
|
394 |
+
return static_cast<DispatchKey>(functionality_idx - num_backends);
|
395 |
+
}
|
396 |
+
|
397 |
+
// This is similar like toBackendComponent(DispatchKey), but less restrictive.
|
398 |
+
// toBackendComponent() errors out if the key that it was passed has no
|
399 |
+
// backend bits, which is useful for error checking. We need a version of that
|
400 |
+
// here that can also handle "fake" backends like FPGA, because they need to
|
401 |
+
// map to the AutogradOther key. For those backends, we return
|
402 |
+
// BackendComponent::InvalidBit.
|
403 |
+
BackendComponent highestBackendKey() const {
|
404 |
+
// mask to mask out functionality bits
|
405 |
+
auto backend_idx =
|
406 |
+
DispatchKeySet(repr_ & full_backend_mask).indexOfHighestBit();
|
407 |
+
// all zeros across the backend bits means that no backend bits are set.
|
408 |
+
if (backend_idx == 0)
|
409 |
+
return BackendComponent::InvalidBit;
|
410 |
+
return static_cast<BackendComponent>(backend_idx);
|
411 |
+
}
|
412 |
+
|
413 |
+
// returns the DispatchKey of highest priority in the set.
|
414 |
+
DispatchKey highestPriorityTypeId() const {
|
415 |
+
auto functionality_k = highestFunctionalityKey();
|
416 |
+
if (isPerBackendFunctionalityKey(functionality_k)) {
|
417 |
+
return toRuntimePerBackendFunctionalityKey(
|
418 |
+
functionality_k, highestBackendKey());
|
419 |
+
}
|
420 |
+
return functionality_k;
|
421 |
+
}
|
422 |
+
|
423 |
+
// Returns the index of the most-significant bit in the keyset.
|
424 |
+
// This is used to as part of the calculation into the operator table to get:
|
425 |
+
// - the highest "functionality" bit in the keyset.
|
426 |
+
// - the highest "backend" bit in the keyset.
|
427 |
+
uint8_t indexOfHighestBit() const {
|
428 |
+
return 64 - llvm::countLeadingZeros(repr_);
|
429 |
+
}
|
430 |
+
|
431 |
+
#if defined(C10_MOBILE_TRIM_DISPATCH_KEYS)
|
432 |
+
// [Note: Trimmed Mobile Dispatch Keys]
|
433 |
+
/**
|
434 |
+
* The method below maps the dispatch key in the enum DispatchKey to an
|
435 |
+
* integer index in the dispatchTable_ array in OperatorEntry. The array
|
436 |
+
* is trimmed for mobile to reduce peak memory usage since it's
|
437 |
+
* unnecessary to reserve additional space for dispatch keys that will
|
438 |
+
* never be used on mobile.
|
439 |
+
*/
|
440 |
+
int getDispatchTableIndexForDispatchKeySet() const {
|
441 |
+
auto dk = highestPriorityTypeId();
|
442 |
+
switch (dk) {
|
443 |
+
case DispatchKey::Undefined:
|
444 |
+
return 0;
|
445 |
+
case DispatchKey::CPU:
|
446 |
+
return 1;
|
447 |
+
case DispatchKey::QuantizedCPU:
|
448 |
+
return 2;
|
449 |
+
case DispatchKey::SparseCPU:
|
450 |
+
return 3;
|
451 |
+
case DispatchKey::BackendSelect:
|
452 |
+
return 4;
|
453 |
+
case DispatchKey::ADInplaceOrView:
|
454 |
+
return 5;
|
455 |
+
case DispatchKey::AutogradOther:
|
456 |
+
return 6;
|
457 |
+
case DispatchKey::AutogradCPU:
|
458 |
+
return 7;
|
459 |
+
default:
|
460 |
+
return -1;
|
461 |
+
}
|
462 |
+
}
|
463 |
+
#else
|
464 |
+
// returns the index in the operator table of highest priority key in the the
|
465 |
+
// keyset Note that we could in theory implement this using
|
466 |
+
// highestPriorityTypeId(), but this code is very hotpath and we can do it
|
467 |
+
// faster without it.
|
468 |
+
int getDispatchTableIndexForDispatchKeySet() const {
|
469 |
+
auto functionality_idx =
|
470 |
+
DispatchKeySet(repr_ >> num_backends).indexOfHighestBit();
|
471 |
+
auto offset_and_mask = offsetsAndMasks()[functionality_idx];
|
472 |
+
// Mask the functionality bits out first, then right-shift by 1.
|
473 |
+
// right-shifting by 1 because everything is zero-indexed.
|
474 |
+
// E.g. 000001 (CPU) should give us an offset of 0, 000010 (CUDA) should
|
475 |
+
// give us an offset of 1, etc.
|
476 |
+
auto backend_idx =
|
477 |
+
DispatchKeySet((repr_ & offset_and_mask.mask) >> 1).indexOfHighestBit();
|
478 |
+
return offset_and_mask.offset + backend_idx;
|
479 |
+
}
|
480 |
+
#endif
|
481 |
+
|
482 |
+
// returns the "index" of the highest priority backend in the keyset.
|
483 |
+
// This is pretty similar to getBackendKey(), but:
|
484 |
+
// - It's hotpath code (part of the runtime bitset calculation)
|
485 |
+
// - I's returns an integer index, not an enum value
|
486 |
+
// - Everything is shifted to the right by 1.
|
487 |
+
// BackendComponent::InvalidBit is technically the lowest enum value,
|
488 |
+
// but it isn't included in the runtime table. So CPUBit = 1, CUDABit = 2,
|
489 |
+
// etc.
|
490 |
+
uint64_t getBackendIndex() const {
|
491 |
+
return DispatchKeySet((repr_ & full_backend_mask) >> 1).indexOfHighestBit();
|
492 |
+
}
|
493 |
+
|
494 |
+
private:
|
495 |
+
constexpr DispatchKeySet(uint64_t repr) : repr_(repr) {}
|
496 |
+
uint64_t repr_ = 0;
|
497 |
+
|
498 |
+
public:
|
499 |
+
// STL iterator for DispatchKeySet. Iterates through all runtime DispatchKeys
|
500 |
+
// in the set. The iterator is only invalidated by the destruction of the
|
501 |
+
// underlying DispatchKeySet as the iterator stores a pointer to the raw
|
502 |
+
// representation of the DispatchKeySet. Note: When we encounter a per-backend
|
503 |
+
// functionality (e.g. Dense or Sparse), we will iterate through EVERY backend
|
504 |
+
// in the keyset, for that functionality. For example, if the next
|
505 |
+
// functionality key to iterate over is Autograd, and the backend bits in the
|
506 |
+
// keyset correspond to [BackendComponent::CPUBit, BackendComponent::CUDABit],
|
507 |
+
// then the next two keys we return will be DispatchKey::AutogradCPU,
|
508 |
+
// DispatchKey::AutogradCUDA (CPU first because it has lower precedence than
|
509 |
+
// CUDA in DispatchKey.h).
|
510 |
+
class iterator {
|
511 |
+
public:
|
512 |
+
using self_type = iterator;
|
513 |
+
using iterator_category = std::input_iterator_tag;
|
514 |
+
using value_type = DispatchKey;
|
515 |
+
using difference_type = ptrdiff_t;
|
516 |
+
using reference = value_type&;
|
517 |
+
using pointer = value_type*;
|
518 |
+
// final mask value should mask out the entire keyset
|
519 |
+
static const uint8_t end_iter_mask_val =
|
520 |
+
num_backends + num_functionality_keys;
|
521 |
+
// final key value should be the last DispatchKey
|
522 |
+
static const uint8_t end_iter_key_val = num_functionality_keys;
|
523 |
+
|
524 |
+
// current_dispatchkey_idx_ will iterate through all functionality bits.
|
525 |
+
// current_backendcomponent_idx_ will iterate through all backend bits.
|
526 |
+
explicit iterator(
|
527 |
+
const uint64_t* data_ptr,
|
528 |
+
uint8_t next_functionality = num_backends,
|
529 |
+
uint8_t next_backend = 0)
|
530 |
+
: data_ptr_(data_ptr),
|
531 |
+
next_functionality_(next_functionality),
|
532 |
+
next_backend_(next_backend),
|
533 |
+
// These are in an invalid state at construction time, and set by the
|
534 |
+
// first increment call
|
535 |
+
current_dispatchkey_idx_(end_iter_key_val),
|
536 |
+
current_backendcomponent_idx_(end_iter_key_val) {
|
537 |
+
// Go to the first key in the set
|
538 |
+
TORCH_INTERNAL_ASSERT(
|
539 |
+
next_functionality_ >= num_backends,
|
540 |
+
"num_backends=",
|
541 |
+
static_cast<uint32_t>(num_backends),
|
542 |
+
"next_functionality_=",
|
543 |
+
static_cast<uint32_t>(next_functionality_));
|
544 |
+
++(*this);
|
545 |
+
}
|
546 |
+
|
547 |
+
C10_API self_type& operator++();
|
548 |
+
|
549 |
+
self_type operator++(int) {
|
550 |
+
self_type previous_iterator = *this;
|
551 |
+
++(*this);
|
552 |
+
return previous_iterator;
|
553 |
+
}
|
554 |
+
|
555 |
+
bool operator==(const self_type& rhs) const {
|
556 |
+
return next_functionality_ == rhs.next_functionality_ &&
|
557 |
+
current_dispatchkey_idx_ == rhs.current_dispatchkey_idx_ &&
|
558 |
+
next_backend_ == rhs.next_backend_ &&
|
559 |
+
current_backendcomponent_idx_ == rhs.current_backendcomponent_idx_;
|
560 |
+
}
|
561 |
+
bool operator!=(const self_type& rhs) const {
|
562 |
+
return next_functionality_ != rhs.next_functionality_ ||
|
563 |
+
current_dispatchkey_idx_ != rhs.current_dispatchkey_idx_ ||
|
564 |
+
next_backend_ != rhs.next_backend_ ||
|
565 |
+
current_backendcomponent_idx_ != rhs.current_backendcomponent_idx_;
|
566 |
+
}
|
567 |
+
DispatchKey operator*() const {
|
568 |
+
auto functionality_key =
|
569 |
+
static_cast<DispatchKey>(current_dispatchkey_idx_);
|
570 |
+
if (isPerBackendFunctionalityKey(functionality_key)) {
|
571 |
+
auto next_key = toRuntimePerBackendFunctionalityKey(
|
572 |
+
functionality_key,
|
573 |
+
static_cast<BackendComponent>(current_backendcomponent_idx_));
|
574 |
+
// We expect all of the Dense, Sparse, Quantized, and Autograd keys to
|
575 |
+
// be ordered the same way with respect to their backends
|
576 |
+
TORCH_INTERNAL_ASSERT(
|
577 |
+
toBackendComponent(next_key) ==
|
578 |
+
static_cast<BackendComponent>(current_backendcomponent_idx_),
|
579 |
+
"Tried to map functionality key ",
|
580 |
+
toString(functionality_key),
|
581 |
+
" and backend bit ",
|
582 |
+
toString(
|
583 |
+
static_cast<BackendComponent>(current_backendcomponent_idx_)),
|
584 |
+
" to a runtime key, but ended up with ",
|
585 |
+
toString(next_key),
|
586 |
+
". This can happen if the order of the backend dispatch keys in DispatchKey.h isn't consistent.",
|
587 |
+
" Please double check that enum for inconsistencies.");
|
588 |
+
return next_key;
|
589 |
+
} else {
|
590 |
+
return functionality_key;
|
591 |
+
}
|
592 |
+
}
|
593 |
+
|
594 |
+
private:
|
595 |
+
const uint64_t* data_ptr_;
|
596 |
+
uint8_t next_functionality_;
|
597 |
+
uint8_t next_backend_;
|
598 |
+
uint8_t current_dispatchkey_idx_;
|
599 |
+
uint8_t current_backendcomponent_idx_;
|
600 |
+
};
|
601 |
+
|
602 |
+
public:
|
603 |
+
// Returns iterator to the first key in the set. If no keys are in the
|
604 |
+
// set, then will return the end iterator.
|
605 |
+
iterator begin() const {
|
606 |
+
return iterator(&repr_);
|
607 |
+
}
|
608 |
+
|
609 |
+
// We do not need to iterate beyond EndOfFunctionalityKeys so we will treat
|
610 |
+
// this as the end iterator.
|
611 |
+
iterator end() const {
|
612 |
+
return iterator(&repr_, iterator::end_iter_mask_val);
|
613 |
+
}
|
614 |
+
};
|
615 |
+
|
616 |
+
C10_API std::string toString(DispatchKeySet);
|
617 |
+
C10_API std::ostream& operator<<(std::ostream&, DispatchKeySet);
|
618 |
+
|
619 |
+
C10_API inline int getDispatchTableIndexForDispatchKey(DispatchKey k) {
|
620 |
+
return DispatchKeySet(k).getDispatchTableIndexForDispatchKeySet();
|
621 |
+
}
|
622 |
+
|
623 |
+
// Alias key DispatchKey::Autograd maps to
|
624 |
+
// (autograd_dispatch_keyset x full_backend_mask)
|
625 |
+
// NB: keys in this set also get associated with CompositeImplicitAutograd
|
626 |
+
//
|
627 |
+
// Note [autograd_dispatch_keyset Does Not Include Backend Bits]
|
628 |
+
// We don't want to include any backend bits (BackendComponent::CPUBit, etc)
|
629 |
+
// directly in autograd_dispatch_keyset.
|
630 |
+
// Why? keysets like autograd_dispatch_keyset are commonly used to remove
|
631 |
+
// autograd keys from a DispatchKeySet throughout the code base. However, you
|
632 |
+
// are only allowed to remove functionality bits from a keyset, not backend
|
633 |
+
// bits. See Note [Removing keys from DispatchKeySet Only Affects Functionality
|
634 |
+
// Keys] for details. To be consistent and avoid confusion, we're explicitly
|
635 |
+
// setting up autograd_dispatch_keyset to not have any backend bits.
|
636 |
+
constexpr DispatchKeySet autograd_dispatch_keyset = DispatchKeySet({
|
637 |
+
DispatchKey::AutogradFunctionality,
|
638 |
+
DispatchKey::AutogradOther,
|
639 |
+
DispatchKey::AutogradNestedTensor,
|
640 |
+
});
|
641 |
+
|
642 |
+
constexpr DispatchKeySet autocast_dispatch_keyset = DispatchKeySet({
|
643 |
+
DispatchKey::AutocastCPU,
|
644 |
+
DispatchKey::AutocastCUDA,
|
645 |
+
DispatchKey::AutocastXPU,
|
646 |
+
DispatchKey::AutocastIPU,
|
647 |
+
DispatchKey::AutocastHPU,
|
648 |
+
DispatchKey::AutocastXLA,
|
649 |
+
DispatchKey::AutocastPrivateUse1,
|
650 |
+
});
|
651 |
+
|
652 |
+
// See Note [TLS Initialization]
|
653 |
+
constexpr DispatchKeySet default_included_set = DispatchKeySet({
|
654 |
+
DispatchKey::BackendSelect,
|
655 |
+
DispatchKey::ADInplaceOrView,
|
656 |
+
});
|
657 |
+
|
658 |
+
constexpr DispatchKeySet default_excluded_set = DispatchKeySet({
|
659 |
+
DispatchKey::AutocastCPU,
|
660 |
+
DispatchKey::AutocastCUDA,
|
661 |
+
DispatchKey::AutocastXPU,
|
662 |
+
DispatchKey::AutocastIPU,
|
663 |
+
DispatchKey::AutocastHPU,
|
664 |
+
DispatchKey::AutocastXLA,
|
665 |
+
DispatchKey::AutocastPrivateUse1,
|
666 |
+
});
|
667 |
+
|
668 |
+
constexpr DispatchKeySet autograd_dispatch_keyset_with_ADInplaceOrView =
|
669 |
+
autograd_dispatch_keyset | DispatchKeySet(DispatchKey::ADInplaceOrView);
|
670 |
+
|
671 |
+
constexpr DispatchKeySet python_ks = DispatchKeySet({
|
672 |
+
DispatchKey::Python,
|
673 |
+
DispatchKey::PythonTLSSnapshot,
|
674 |
+
});
|
675 |
+
|
676 |
+
constexpr DispatchKeySet sparse_ks = DispatchKeySet(DispatchKey::Sparse);
|
677 |
+
|
678 |
+
constexpr DispatchKeySet sparse_csr_ks =
|
679 |
+
DispatchKeySet({DispatchKey::SparseCsrCPU, DispatchKey::SparseCsrCUDA});
|
680 |
+
|
681 |
+
constexpr DispatchKeySet mkldnn_ks = DispatchKeySet(DispatchKey::MkldnnCPU);
|
682 |
+
|
683 |
+
// backend dispatch keys that map to DispatchKey::AutogradOther
|
684 |
+
// NB: keys in this set also get associated with CompositeImplicitAutograd
|
685 |
+
constexpr DispatchKeySet autogradother_backends =
|
686 |
+
DispatchKeySet(
|
687 |
+
// HIP and VE aren't in this list: they now have their own backend bits
|
688 |
+
// which means that they can now have their own Autograd keys.
|
689 |
+
// Technically, HIP will now redispatch to its own custom AutogradHIP
|
690 |
+
// slot in the runtime table.
|
691 |
+
{DispatchKey::FPGA,
|
692 |
+
DispatchKey::ORT,
|
693 |
+
DispatchKey::Vulkan,
|
694 |
+
DispatchKey::Metal,
|
695 |
+
DispatchKey::SparseCsrCPU,
|
696 |
+
DispatchKey::SparseCsrCUDA,
|
697 |
+
DispatchKey::CustomRNGKeyId,
|
698 |
+
DispatchKey::MkldnnCPU,
|
699 |
+
// Sparse and Quantized backends also live here.
|
700 |
+
DispatchKey::Sparse,
|
701 |
+
DispatchKey::Quantized})
|
702 |
+
// Including the backend bits because this keyset is used during op
|
703 |
+
// registration, which requires looping over all runtime autogradother
|
704 |
+
// backend keys.
|
705 |
+
| DispatchKeySet(DispatchKeySet::RAW, full_backend_mask);
|
706 |
+
|
707 |
+
// The set of dispatch keys that come after autograd
|
708 |
+
// n.b. this relies on the fact that AutogradOther is currently the lowest
|
709 |
+
// Autograd key
|
710 |
+
constexpr DispatchKeySet after_autograd_keyset =
|
711 |
+
DispatchKeySet(DispatchKeySet::FULL_AFTER, c10::DispatchKey::AutogradOther);
|
712 |
+
|
713 |
+
// The set of dispatch keys that come after ADInplaceOrView
|
714 |
+
constexpr DispatchKeySet after_ADInplaceOrView_keyset = DispatchKeySet(
|
715 |
+
DispatchKeySet::FULL_AFTER,
|
716 |
+
c10::DispatchKey::ADInplaceOrView);
|
717 |
+
|
718 |
+
// The set of dispatch keys that come after Functionalize
|
719 |
+
constexpr DispatchKeySet after_func_keyset =
|
720 |
+
DispatchKeySet(DispatchKeySet::FULL_AFTER, c10::DispatchKey::Functionalize)
|
721 |
+
.remove(
|
722 |
+
// NOTE: we also need to remove ADInplaceOrView from the keyset when
|
723 |
+
// redispatching after the func kernels. This is because we're not
|
724 |
+
// calling the same op; we originally called an inplace op, and now
|
725 |
+
// we aren't. The original key calculation figured out which keys
|
726 |
+
// were Fallthrough based on the inplace op. That means that it did
|
727 |
+
// not include the ADInPlaceOrView kernel as a fallthrough key.
|
728 |
+
// However, we WANT the ADInPlaceOrView kernel to be ignored now
|
729 |
+
// that we're calling an out-of-place op. Re-invoking
|
730 |
+
// Dispatcher::call would re-run the Fallthrough key calculation and
|
731 |
+
// get us that, But at::redispatch is more performant. We can get
|
732 |
+
// away with it by explicitly removing the key here.
|
733 |
+
c10::DispatchKey::ADInplaceOrView);
|
734 |
+
|
735 |
+
constexpr DispatchKeySet backend_bitset_mask =
|
736 |
+
DispatchKeySet(DispatchKeySet::RAW, (1ULL << num_backends) - 1);
|
737 |
+
|
738 |
+
constexpr auto inplace_or_view_ks =
|
739 |
+
DispatchKeySet(DispatchKey::ADInplaceOrView);
|
740 |
+
constexpr auto autograd_cpu_ks = DispatchKeySet(DispatchKey::AutogradCPU);
|
741 |
+
constexpr auto autograd_ipu_ks = DispatchKeySet(DispatchKey::AutogradIPU);
|
742 |
+
constexpr auto autograd_xpu_ks = DispatchKeySet(DispatchKey::AutogradXPU);
|
743 |
+
constexpr auto autograd_cuda_ks = DispatchKeySet(DispatchKey::AutogradCUDA);
|
744 |
+
constexpr auto autograd_xla_ks = DispatchKeySet(DispatchKey::AutogradXLA);
|
745 |
+
constexpr auto autograd_lazy_ks = DispatchKeySet(DispatchKey::AutogradLazy);
|
746 |
+
constexpr auto autograd_meta_ks = DispatchKeySet(DispatchKey::AutogradMeta);
|
747 |
+
constexpr auto autograd_mps_ks = DispatchKeySet(DispatchKey::AutogradMPS);
|
748 |
+
constexpr auto autograd_hpu_ks = DispatchKeySet(DispatchKey::AutogradHPU);
|
749 |
+
constexpr auto autograd_privateuse1_ks =
|
750 |
+
DispatchKeySet(DispatchKey::AutogradPrivateUse1);
|
751 |
+
constexpr auto autograd_privateuse2_ks =
|
752 |
+
DispatchKeySet(DispatchKey::AutogradPrivateUse2);
|
753 |
+
constexpr auto autograd_privateuse3_ks =
|
754 |
+
DispatchKeySet(DispatchKey::AutogradPrivateUse3);
|
755 |
+
constexpr auto autograd_other_ks = DispatchKeySet(DispatchKey::AutogradOther);
|
756 |
+
constexpr auto autograd_nested =
|
757 |
+
DispatchKeySet(DispatchKey::AutogradNestedTensor);
|
758 |
+
// keyset corresponding to functorch keys that have their own dedicated
|
759 |
+
// TensorImpl subclass.
|
760 |
+
constexpr auto functorch_transforms_ks = DispatchKeySet(
|
761 |
+
{DispatchKey::FuncTorchBatched,
|
762 |
+
DispatchKey::FuncTorchVmapMode,
|
763 |
+
DispatchKey::Batched,
|
764 |
+
DispatchKey::VmapMode,
|
765 |
+
DispatchKey::FuncTorchGradWrapper});
|
766 |
+
|
767 |
+
constexpr auto functorch_batched_ks =
|
768 |
+
DispatchKeySet({DispatchKey::FuncTorchBatched});
|
769 |
+
|
770 |
+
// This keyset has:
|
771 |
+
// (1) the functionality bits corresponding to backends (dense, sparse,
|
772 |
+
// quantized) (2) all of the backend bits set
|
773 |
+
constexpr DispatchKeySet backend_functionality_keys =
|
774 |
+
DispatchKeySet({
|
775 |
+
DispatchKey::Dense,
|
776 |
+
DispatchKey::Quantized,
|
777 |
+
DispatchKey::Sparse,
|
778 |
+
}) |
|
779 |
+
DispatchKeySet(DispatchKeySet::RAW, full_backend_mask);
|
780 |
+
|
781 |
+
struct OpTableOffsetAndMask {
|
782 |
+
uint16_t offset;
|
783 |
+
uint16_t backend_mask;
|
784 |
+
};
|
785 |
+
|
786 |
+
static_assert(
|
787 |
+
num_backends <= 16,
|
788 |
+
"Right now we expect the number of backends not to exceed 16. In the (unlikely) event"
|
789 |
+
" that this changes, the size of OpTableOffsetAndMask::backend_mask needs to be increased too.");
|
790 |
+
|
791 |
+
// true if t is a backend dispatch key
|
792 |
+
C10_API bool isBackendDispatchKey(DispatchKey t);
|
793 |
+
|
794 |
+
// Resolve alias dispatch key to DispatchKeySet if applicable
|
795 |
+
C10_API DispatchKeySet getRuntimeDispatchKeySet(DispatchKey t);
|
796 |
+
|
797 |
+
// Resolve alias dispatch key to DispatchKeySet if applicable,
|
798 |
+
// and check if k is a part of that set
|
799 |
+
C10_API bool runtimeDispatchKeySetHas(DispatchKey t, DispatchKey k);
|
800 |
+
|
801 |
+
// Returns a DispatchKeySet of all backend keys mapped to Autograd dispatch key
|
802 |
+
// t, DispatchKeySet is empty if t is not alias of DispatchKey::Autograd.
|
803 |
+
C10_API DispatchKeySet getBackendKeySetFromAutograd(DispatchKey t);
|
804 |
+
|
805 |
+
// Returns a DispatchKeySet of autograd related keys mapped to backend.
|
806 |
+
// for a given backend key, use the associated autograd key.
|
807 |
+
// for non-backend keys, use AutogradOther as a default.
|
808 |
+
// Note: it's convenient and fast to return a default here rather than (say)
|
809 |
+
// returning an optional<DispatchKey>, or throwing. But it makes callers
|
810 |
+
// responsible for either a) enforcing the invariant that only backend keys
|
811 |
+
// be passed as arguments, or b) interpreting our return value carefully.
|
812 |
+
inline DispatchKeySet getAutogradRelatedKeySetFromBackend(BackendComponent t) {
|
813 |
+
switch (t) {
|
814 |
+
case BackendComponent::CPUBit:
|
815 |
+
return inplace_or_view_ks | autograd_cpu_ks;
|
816 |
+
case BackendComponent::IPUBit:
|
817 |
+
return inplace_or_view_ks | autograd_ipu_ks;
|
818 |
+
case BackendComponent::XPUBit:
|
819 |
+
return inplace_or_view_ks | autograd_xpu_ks;
|
820 |
+
case BackendComponent::CUDABit:
|
821 |
+
return inplace_or_view_ks | autograd_cuda_ks;
|
822 |
+
case BackendComponent::XLABit:
|
823 |
+
return inplace_or_view_ks | autograd_xla_ks;
|
824 |
+
case BackendComponent::LazyBit:
|
825 |
+
return inplace_or_view_ks | autograd_lazy_ks;
|
826 |
+
case BackendComponent::MetaBit:
|
827 |
+
return inplace_or_view_ks | autograd_meta_ks;
|
828 |
+
case BackendComponent::MPSBit:
|
829 |
+
return inplace_or_view_ks | autograd_mps_ks;
|
830 |
+
case BackendComponent::HPUBit:
|
831 |
+
return inplace_or_view_ks | autograd_hpu_ks;
|
832 |
+
case BackendComponent::PrivateUse1Bit:
|
833 |
+
return inplace_or_view_ks | autograd_privateuse1_ks;
|
834 |
+
case BackendComponent::PrivateUse2Bit:
|
835 |
+
return inplace_or_view_ks | autograd_privateuse2_ks;
|
836 |
+
case BackendComponent::PrivateUse3Bit:
|
837 |
+
return inplace_or_view_ks | autograd_privateuse3_ks;
|
838 |
+
default:
|
839 |
+
return inplace_or_view_ks | autograd_other_ks;
|
840 |
+
}
|
841 |
+
}
|
842 |
+
|
843 |
+
// Returns a DispatchKeySet of autocast related keys mapped to backend.
|
844 |
+
inline DispatchKeySet getAutocastRelatedKeySetFromBackend(BackendComponent t) {
|
845 |
+
constexpr auto autocast_cpu_ks = DispatchKeySet(DispatchKey::AutocastCPU);
|
846 |
+
constexpr auto autocast_xpu_ks = DispatchKeySet(DispatchKey::AutocastXPU);
|
847 |
+
constexpr auto autocast_ipu_ks = DispatchKeySet(DispatchKey::AutocastIPU);
|
848 |
+
constexpr auto autocast_hpu_ks = DispatchKeySet(DispatchKey::AutocastHPU);
|
849 |
+
constexpr auto autocast_cuda_ks = DispatchKeySet(DispatchKey::AutocastCUDA);
|
850 |
+
constexpr auto autocast_xla_ks = DispatchKeySet(DispatchKey::AutocastXLA);
|
851 |
+
constexpr auto autocast_privateuse1_ks =
|
852 |
+
DispatchKeySet(DispatchKey::AutocastPrivateUse1);
|
853 |
+
switch (t) {
|
854 |
+
case BackendComponent::CPUBit:
|
855 |
+
return autocast_cpu_ks;
|
856 |
+
case BackendComponent::XPUBit:
|
857 |
+
return autocast_xpu_ks;
|
858 |
+
case BackendComponent::IPUBit:
|
859 |
+
return autocast_ipu_ks;
|
860 |
+
case BackendComponent::HPUBit:
|
861 |
+
return autocast_hpu_ks;
|
862 |
+
case BackendComponent::CUDABit:
|
863 |
+
return autocast_cuda_ks;
|
864 |
+
case BackendComponent::XLABit:
|
865 |
+
return autocast_xla_ks;
|
866 |
+
case BackendComponent::PrivateUse1Bit:
|
867 |
+
return autocast_privateuse1_ks;
|
868 |
+
default:
|
869 |
+
return DispatchKeySet();
|
870 |
+
}
|
871 |
+
}
|
872 |
+
|
873 |
+
// returns the "backend" DispatchKey of highest priority in the set.
|
874 |
+
// This is basically like highestBackendKey(), except that we have some
|
875 |
+
// "functionality" bits that correspond to backends (Sparse, Quantized)
|
876 |
+
inline DispatchKey highestPriorityBackendTypeId(DispatchKeySet ks) {
|
877 |
+
return (ks & backend_functionality_keys).highestPriorityTypeId();
|
878 |
+
}
|
879 |
+
|
880 |
+
// This API exists because we have a use case for checking
|
881 |
+
// getRuntimeDispatchKeySet(alias).has(DispatchKey::Undefined)
|
882 |
+
// in OperatorEntry.cpp but we disallow it in has() API.
|
883 |
+
C10_API bool isIncludedInAlias(DispatchKey k, DispatchKey alias);
|
884 |
+
|
885 |
+
// Historically, every tensor only had a single DispatchKey, and it was always
|
886 |
+
// something like CPU, and there wasn't any of this business where TLS
|
887 |
+
// could cause the DispatchKey of a tensor to change. But we still have some
|
888 |
+
// legacy code that is still using DispatchKey for things like instanceof
|
889 |
+
// checks; if at all possible, refactor the code to stop using DispatchKey in
|
890 |
+
// those cases.
|
891 |
+
static inline DispatchKey legacyExtractDispatchKey(DispatchKeySet s) {
|
892 |
+
// NB: If you add any extra keys that can be stored in TensorImpl on
|
893 |
+
// top of existing "backend" keys like CPU/CUDA, you need to add it
|
894 |
+
// here. At the moment, autograd keys and ADInplaceOrView key need this
|
895 |
+
// treatment;
|
896 |
+
return (s - autograd_dispatch_keyset_with_ADInplaceOrView -
|
897 |
+
autocast_dispatch_keyset -
|
898 |
+
DispatchKeySet(
|
899 |
+
{DispatchKey::Functionalize,
|
900 |
+
DispatchKey::PythonTLSSnapshot,
|
901 |
+
DispatchKey::Python}))
|
902 |
+
.highestPriorityTypeId();
|
903 |
+
}
|
904 |
+
|
905 |
+
template <class T>
|
906 |
+
using is_not_DispatchKeySet = guts::negation<std::is_same<DispatchKeySet, T>>;
|
907 |
+
|
908 |
+
// Given a function type, constructs a function_traits type that drops the first
|
909 |
+
// parameter type if the first parameter is of type DispatchKeySet. NB:
|
910 |
+
// DispatchKeySet is currently explicitly hidden from JIT (mainly to avoid
|
911 |
+
// pushing unnecessary arguments on the stack - see Note [ Plumbing Keys Through
|
912 |
+
// the Dispatcher] for details). If at any point in the future we need to expose
|
913 |
+
// this type to JIT, revisit the usage of this type alias.
|
914 |
+
template <class FuncType>
|
915 |
+
using remove_DispatchKeySet_arg_from_func = guts::make_function_traits_t<
|
916 |
+
typename guts::infer_function_traits_t<FuncType>::return_type,
|
917 |
+
typename std::conditional_t<
|
918 |
+
std::is_same<
|
919 |
+
DispatchKeySet,
|
920 |
+
typename guts::typelist::head_with_default_t<
|
921 |
+
void,
|
922 |
+
typename guts::infer_function_traits_t<
|
923 |
+
FuncType>::parameter_types>>::value,
|
924 |
+
guts::typelist::drop_if_nonempty_t<
|
925 |
+
typename guts::infer_function_traits_t<FuncType>::parameter_types,
|
926 |
+
1>,
|
927 |
+
typename guts::infer_function_traits_t<FuncType>::parameter_types>>;
|
928 |
+
} // namespace c10
|
env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/DynamicCast.h
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <c10/core/ScalarType.h>
|
4 |
+
#include <c10/macros/Macros.h>
|
5 |
+
#include <c10/util/Load.h>
|
6 |
+
#include <c10/util/TypeCast.h>
|
7 |
+
|
8 |
+
namespace c10 {
|
9 |
+
|
10 |
+
// Dynamic type casting utils:
|
11 |
+
// - fetch_and_cast
|
12 |
+
// - cast_and_store
|
13 |
+
//
|
14 |
+
// fetch_and_cast fetch a value with dynamic type specified by a ScalarType
|
15 |
+
// from a void pointer and cast it to a static type.
|
16 |
+
//
|
17 |
+
// cast_and_store casts a static typed value into dynamic type specified
|
18 |
+
// by a ScalarType, and store it into a void pointer.
|
19 |
+
//
|
20 |
+
// NOTE:
|
21 |
+
//
|
22 |
+
// Dynamic casting allows us to support type promotion without blowing up
|
23 |
+
// the combination space: For example, without dynamic cast, in order to
|
24 |
+
// implement `add_` with type promotion, we would need something like
|
25 |
+
//
|
26 |
+
// AT_DISPATCH_ALL_TYPES(output.dtype(),
|
27 |
+
// AT_DISPATCH_ALL_TYPES(input1.dtype(),
|
28 |
+
// AT_DISPATCH_ALL_TYPES(input2.dtype(),
|
29 |
+
// [](arg0_t a, arg1_t b) -> out_t { return a + b; }
|
30 |
+
// )
|
31 |
+
// )
|
32 |
+
// )
|
33 |
+
//
|
34 |
+
// If we support N dtypes, the above code would generate the a+b kernel for
|
35 |
+
// all the N * N * N different supported types, the compilation time and
|
36 |
+
// binary size would become horrible.
|
37 |
+
//
|
38 |
+
// Dynamic casting might sounds like a bad idea in terms of performance.
|
39 |
+
// Especially if you ever do it in a loop, you are going to do a billion tests.
|
40 |
+
// But in practice it is not as bad as it might look:
|
41 |
+
//
|
42 |
+
// - on CPU, this is a branch that always has the same outcome, therefore
|
43 |
+
// hopefully the branch predictor could do the job pretty well
|
44 |
+
// - on GPU, these branches will not diverge, so we could still have the same
|
45 |
+
// warp executing the same line of code
|
46 |
+
// - Most kernels, like `add`, are bandwidth bound, adding a few clock cycles to
|
47 |
+
// check an integer does not hurt the performance much because the ALUs would
|
48 |
+
// wait for load instructions anyway.
|
49 |
+
//
|
50 |
+
// For the discussion and benchmark, refer to:
|
51 |
+
// - https://github.com/pytorch/pytorch/pull/28343
|
52 |
+
// - https://github.com/pytorch/pytorch/pull/28344
|
53 |
+
// - https://github.com/pytorch/pytorch/pull/28345
|
54 |
+
//
|
55 |
+
|
56 |
+
#ifdef C10_HOST_DEVICE
|
57 |
+
#define ERROR_UNSUPPORTED_CAST CUDA_KERNEL_ASSERT(false);
|
58 |
+
#else
|
59 |
+
#define ERROR_UNSUPPORTED_CAST TORCH_CHECK(false, "Unexpected scalar type");
|
60 |
+
#endif
|
61 |
+
|
62 |
+
// Fetch a value with dynamic type src_type from ptr, and cast it to static type
|
63 |
+
// dest_t.
|
64 |
+
#define FETCH_AND_CAST_CASE(type, scalartype) \
|
65 |
+
case ScalarType::scalartype: \
|
66 |
+
return c10::convert<dest_t>(c10::load<type>(ptr));
|
67 |
+
|
68 |
+
template <typename dest_t>
|
69 |
+
C10_HOST_DEVICE inline dest_t fetch_and_cast(
|
70 |
+
const ScalarType src_type,
|
71 |
+
const void* ptr) {
|
72 |
+
switch (src_type) {
|
73 |
+
AT_FORALL_SCALAR_TYPES_WITH_COMPLEX(FETCH_AND_CAST_CASE)
|
74 |
+
default:
|
75 |
+
ERROR_UNSUPPORTED_CAST
|
76 |
+
}
|
77 |
+
return dest_t(0); // just to avoid compiler warning
|
78 |
+
}
|
79 |
+
|
80 |
+
// Cast a value with static type src_t into dynamic dest_type, and store it to
|
81 |
+
// ptr.
|
82 |
+
#define CAST_AND_STORE_CASE(type, scalartype) \
|
83 |
+
case ScalarType::scalartype: \
|
84 |
+
*(type*)ptr = c10::convert<type>(value); \
|
85 |
+
return;
|
86 |
+
template <typename src_t>
|
87 |
+
C10_HOST_DEVICE inline void cast_and_store(
|
88 |
+
const ScalarType dest_type,
|
89 |
+
void* ptr,
|
90 |
+
src_t value) {
|
91 |
+
switch (dest_type) {
|
92 |
+
AT_FORALL_SCALAR_TYPES_WITH_COMPLEX(CAST_AND_STORE_CASE)
|
93 |
+
default:;
|
94 |
+
}
|
95 |
+
ERROR_UNSUPPORTED_CAST
|
96 |
+
}
|
97 |
+
|
98 |
+
#define DEFINE_UNCASTABLE(T, scalartype_) \
|
99 |
+
template <> \
|
100 |
+
C10_HOST_DEVICE inline T fetch_and_cast<T>( \
|
101 |
+
const ScalarType src_type, const void* ptr) { \
|
102 |
+
CUDA_KERNEL_ASSERT(ScalarType::scalartype_ == src_type); \
|
103 |
+
return c10::load<T>(ptr); \
|
104 |
+
} \
|
105 |
+
template <> \
|
106 |
+
C10_HOST_DEVICE inline void cast_and_store<T>( \
|
107 |
+
const ScalarType dest_type, void* ptr, T value) { \
|
108 |
+
CUDA_KERNEL_ASSERT(ScalarType::scalartype_ == dest_type); \
|
109 |
+
*(T*)ptr = value; \
|
110 |
+
}
|
111 |
+
|
112 |
+
AT_FORALL_QINT_TYPES(DEFINE_UNCASTABLE)
|
113 |
+
|
114 |
+
#undef FETCH_AND_CAST_CASE
|
115 |
+
#undef CAST_AND_STORE_CASE
|
116 |
+
#undef DEFINE_UNCASTABLE
|
117 |
+
#undef ERROR_UNSUPPORTED_CAST
|
118 |
+
|
119 |
+
} // namespace c10
|
env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/GeneratorImpl.h
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <cstdint>
|
4 |
+
#include <mutex>
|
5 |
+
|
6 |
+
#include <c10/core/Device.h>
|
7 |
+
#include <c10/core/DispatchKeySet.h>
|
8 |
+
#include <c10/core/TensorImpl.h>
|
9 |
+
#include <c10/macros/Export.h>
|
10 |
+
#include <c10/util/intrusive_ptr.h>
|
11 |
+
#include <c10/util/python_stub.h>
|
12 |
+
|
13 |
+
/**
|
14 |
+
* Note [Generator]
|
15 |
+
* ~~~~~~~~~~~~~~~~
|
16 |
+
* A Pseudo Random Number Generator (PRNG) is an engine that uses an algorithm
|
17 |
+
* to generate a seemingly random sequence of numbers, that may be later be used
|
18 |
+
* in creating a random distribution. Such an engine almost always maintains a
|
19 |
+
* state and requires a seed to start off the creation of random numbers. Often
|
20 |
+
* times, users have found it beneficial to be able to explicitly create,
|
21 |
+
* retain, and destroy PRNG states and also be able to have control over the
|
22 |
+
* seed value.
|
23 |
+
*
|
24 |
+
* A Generator in ATen gives users the ability to read, write and modify a PRNG
|
25 |
+
* engine. For instance, it does so by letting users seed a PRNG engine, fork
|
26 |
+
* the state of the engine, etc.
|
27 |
+
*
|
28 |
+
* By default, there is one generator per device, and a device's generator is
|
29 |
+
* lazily created. A user can use the torch.Generator() api to create their own
|
30 |
+
* generator. Currently torch.Generator() can only create a CPUGeneratorImpl.
|
31 |
+
*/
|
32 |
+
|
33 |
+
/**
|
34 |
+
* Note [Acquire lock when using random generators]
|
35 |
+
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
36 |
+
* Generator and its derived classes are NOT thread-safe. Please note that most
|
37 |
+
* of the places where we have inserted locking for generators are historically
|
38 |
+
* based, and we haven't actually checked that everything is truly thread safe
|
39 |
+
* (and it probably isn't). Please use the public mutex_ when using any methods
|
40 |
+
* from these classes, except for the read-only methods. You can learn about the
|
41 |
+
* usage by looking into the unittests (aten/src/ATen/cpu_generator_test.cpp)
|
42 |
+
* and other places where we have used lock_guard.
|
43 |
+
*
|
44 |
+
* TODO: Look into changing the threading semantics of Generators in ATen (e.g.,
|
45 |
+
* making them non-thread safe and instead making the generator state
|
46 |
+
* splittable, to accommodate forks into other threads).
|
47 |
+
*/
|
48 |
+
|
49 |
+
namespace c10 {
|
50 |
+
|
51 |
+
// The default seed is selected to be a large number
|
52 |
+
// with good distribution of 0s and 1s in bit representation
|
53 |
+
constexpr uint64_t default_rng_seed_val = 67280421310721;
|
54 |
+
|
55 |
+
struct C10_API GeneratorImpl : public c10::intrusive_ptr_target {
|
56 |
+
// Constructors
|
57 |
+
GeneratorImpl(Device device_in, DispatchKeySet key_set);
|
58 |
+
|
59 |
+
// Delete all copy and move assignment in favor of clone()
|
60 |
+
// method
|
61 |
+
GeneratorImpl(const GeneratorImpl& other) = delete;
|
62 |
+
GeneratorImpl(GeneratorImpl&& other) = delete;
|
63 |
+
GeneratorImpl& operator=(const GeneratorImpl& other) = delete;
|
64 |
+
|
65 |
+
~GeneratorImpl() override = default;
|
66 |
+
c10::intrusive_ptr<GeneratorImpl> clone() const;
|
67 |
+
|
68 |
+
// Common methods for all generators
|
69 |
+
virtual void set_current_seed(uint64_t seed) = 0;
|
70 |
+
virtual void set_offset(uint64_t offset) = 0;
|
71 |
+
virtual uint64_t get_offset() const = 0;
|
72 |
+
virtual uint64_t current_seed() const = 0;
|
73 |
+
virtual uint64_t seed() = 0;
|
74 |
+
virtual void set_state(const c10::TensorImpl& new_state) = 0;
|
75 |
+
virtual c10::intrusive_ptr<c10::TensorImpl> get_state() const = 0;
|
76 |
+
Device device() const;
|
77 |
+
|
78 |
+
// See Note [Acquire lock when using random generators]
|
79 |
+
std::mutex mutex_;
|
80 |
+
|
81 |
+
DispatchKeySet key_set() const {
|
82 |
+
return key_set_;
|
83 |
+
}
|
84 |
+
|
85 |
+
inline void set_pyobj(PyObject* pyobj) noexcept {
|
86 |
+
pyobj_ = pyobj;
|
87 |
+
}
|
88 |
+
|
89 |
+
inline PyObject* pyobj() const noexcept {
|
90 |
+
return pyobj_;
|
91 |
+
}
|
92 |
+
|
93 |
+
protected:
|
94 |
+
Device device_;
|
95 |
+
DispatchKeySet key_set_;
|
96 |
+
PyObject* pyobj_ = nullptr;
|
97 |
+
|
98 |
+
virtual GeneratorImpl* clone_impl() const = 0;
|
99 |
+
};
|
100 |
+
|
101 |
+
namespace detail {
|
102 |
+
|
103 |
+
C10_API uint64_t getNonDeterministicRandom(bool is_cuda = false);
|
104 |
+
|
105 |
+
} // namespace detail
|
106 |
+
|
107 |
+
} // namespace c10
|
env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/GradMode.h
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <c10/core/AutogradState.h>
|
4 |
+
#include <c10/macros/Export.h>
|
5 |
+
|
6 |
+
namespace c10 {
|
7 |
+
|
8 |
+
struct C10_API GradMode {
|
9 |
+
static bool is_enabled();
|
10 |
+
static void set_enabled(bool enabled);
|
11 |
+
};
|
12 |
+
|
13 |
+
// A RAII, thread local (!) guard that enables or disables grad mode upon
|
14 |
+
// construction, and sets it back to the original value upon destruction.
|
15 |
+
struct C10_API AutoGradMode {
|
16 |
+
AutoGradMode(bool enabled) : prev_mode(GradMode::is_enabled()) {
|
17 |
+
GradMode::set_enabled(enabled);
|
18 |
+
}
|
19 |
+
~AutoGradMode() {
|
20 |
+
GradMode::set_enabled(prev_mode);
|
21 |
+
}
|
22 |
+
bool prev_mode;
|
23 |
+
};
|
24 |
+
|
25 |
+
// A RAII, thread local (!) guard that stops future operations from building
|
26 |
+
// gradients.
|
27 |
+
struct C10_API NoGradGuard : public AutoGradMode {
|
28 |
+
NoGradGuard() : AutoGradMode(/*enabled=*/false) {}
|
29 |
+
};
|
30 |
+
|
31 |
+
// A RAII, thread local (!) guard that enables or disables forward grad mode
|
32 |
+
// upon construction, and sets it back to the original value upon destruction.
|
33 |
+
struct C10_API AutoFwGradMode {
|
34 |
+
AutoFwGradMode(bool enabled)
|
35 |
+
: prev_mode(AutogradState::get_tls_state().get_fw_grad_mode()) {
|
36 |
+
AutogradState::get_tls_state().set_fw_grad_mode(enabled);
|
37 |
+
}
|
38 |
+
~AutoFwGradMode() {
|
39 |
+
AutogradState::get_tls_state().set_fw_grad_mode(prev_mode);
|
40 |
+
}
|
41 |
+
bool prev_mode;
|
42 |
+
};
|
43 |
+
|
44 |
+
} // namespace c10
|
env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/Layout.h
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <c10/core/Backend.h>
|
4 |
+
#include <c10/util/Exception.h>
|
5 |
+
|
6 |
+
#include <ostream>
|
7 |
+
|
8 |
+
namespace c10 {
|
9 |
+
enum class Layout : int8_t {
|
10 |
+
Strided,
|
11 |
+
Sparse,
|
12 |
+
SparseCsr,
|
13 |
+
Mkldnn,
|
14 |
+
SparseCsc,
|
15 |
+
SparseBsr,
|
16 |
+
SparseBsc,
|
17 |
+
Jagged,
|
18 |
+
NumOptions
|
19 |
+
};
|
20 |
+
|
21 |
+
constexpr auto kStrided = Layout::Strided;
|
22 |
+
constexpr auto kSparse = Layout::Sparse;
|
23 |
+
constexpr auto kSparseCsr = Layout::SparseCsr;
|
24 |
+
constexpr auto kMkldnn = Layout::Mkldnn;
|
25 |
+
constexpr auto kSparseCsc = Layout::SparseCsc;
|
26 |
+
constexpr auto kSparseBsr = Layout::SparseBsr;
|
27 |
+
constexpr auto kSparseBsc = Layout::SparseBsc;
|
28 |
+
constexpr auto kJagged = Layout::Jagged;
|
29 |
+
|
30 |
+
inline Layout layout_from_backend(Backend backend) {
|
31 |
+
switch (backend) {
|
32 |
+
case Backend::SparseCPU:
|
33 |
+
case Backend::SparseCUDA:
|
34 |
+
case Backend::SparseHIP:
|
35 |
+
case Backend::SparseVE:
|
36 |
+
case Backend::SparseXPU:
|
37 |
+
return Layout::Sparse;
|
38 |
+
case Backend::MkldnnCPU:
|
39 |
+
return Layout::Mkldnn;
|
40 |
+
case Backend::SparseCsrCPU:
|
41 |
+
case Backend::SparseCsrCUDA:
|
42 |
+
TORCH_CHECK(
|
43 |
+
false,
|
44 |
+
"Cannot map Backend SparseCsrCPU|SparseCsrCUDA to a unique layout.");
|
45 |
+
default:
|
46 |
+
return Layout::Strided;
|
47 |
+
}
|
48 |
+
}
|
49 |
+
|
50 |
+
inline std::ostream& operator<<(std::ostream& stream, at::Layout layout) {
|
51 |
+
switch (layout) {
|
52 |
+
case at::kStrided:
|
53 |
+
return stream << "Strided";
|
54 |
+
case at::kSparse:
|
55 |
+
return stream << "Sparse";
|
56 |
+
case at::kSparseCsr:
|
57 |
+
return stream << "SparseCsr";
|
58 |
+
case at::kSparseCsc:
|
59 |
+
return stream << "SparseCsc";
|
60 |
+
case at::kSparseBsr:
|
61 |
+
return stream << "SparseBsr";
|
62 |
+
case at::kSparseBsc:
|
63 |
+
return stream << "SparseBsc";
|
64 |
+
case at::kMkldnn:
|
65 |
+
return stream << "Mkldnn";
|
66 |
+
case at::kJagged:
|
67 |
+
return stream << "Jagged";
|
68 |
+
default:
|
69 |
+
TORCH_CHECK(false, "Unknown layout");
|
70 |
+
}
|
71 |
+
}
|
72 |
+
|
73 |
+
} // namespace c10
|
env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/MemoryFormat.h
ADDED
@@ -0,0 +1,287 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <c10/core/Backend.h>
|
4 |
+
#include <c10/util/ArrayRef.h>
|
5 |
+
#include <c10/util/Exception.h>
|
6 |
+
|
7 |
+
#include <ostream>
|
8 |
+
|
9 |
+
// Memory format is not the property of a Tensor. It is the way to tell an
|
10 |
+
// operator how the result should be organized in memory and nothing more. That
|
11 |
+
// means memory format should never be used as return value for any tensor state
|
12 |
+
// interrogation functions (internally and externally).
|
13 |
+
//
|
14 |
+
// Possible options are:
|
15 |
+
// Preserve:
|
16 |
+
// If any of the input tensors is in channels_last format, operator output
|
17 |
+
// should be in channels_last format
|
18 |
+
//
|
19 |
+
// Contiguous:
|
20 |
+
// Regardless of input tensors format, the output should be contiguous
|
21 |
+
// Tensor.
|
22 |
+
//
|
23 |
+
// ChannelsLast:
|
24 |
+
// Regardless of input tensors format, the output should be in channels_last
|
25 |
+
// format.
|
26 |
+
|
27 |
+
namespace c10 {
|
28 |
+
enum class MemoryFormat : int8_t {
|
29 |
+
Contiguous,
|
30 |
+
Preserve,
|
31 |
+
ChannelsLast,
|
32 |
+
ChannelsLast3d,
|
33 |
+
NumOptions
|
34 |
+
};
|
35 |
+
|
36 |
+
// If you are seeing this, it means that this call site was not checked if
|
37 |
+
// the memory format could be preserved, and it was switched to old default
|
38 |
+
// behaviour of contiguous
|
39 |
+
#define LEGACY_CONTIGUOUS_MEMORY_FORMAT c10::get_contiguous_memory_format()
|
40 |
+
|
41 |
+
inline MemoryFormat get_contiguous_memory_format() {
|
42 |
+
return MemoryFormat::Contiguous;
|
43 |
+
}
|
44 |
+
|
45 |
+
inline std::ostream& operator<<(
|
46 |
+
std::ostream& stream,
|
47 |
+
at::MemoryFormat memory_format) {
|
48 |
+
switch (memory_format) {
|
49 |
+
case MemoryFormat::Preserve:
|
50 |
+
return stream << "Preserve";
|
51 |
+
case MemoryFormat::Contiguous:
|
52 |
+
return stream << "Contiguous";
|
53 |
+
case MemoryFormat::ChannelsLast:
|
54 |
+
return stream << "ChannelsLast";
|
55 |
+
case MemoryFormat::ChannelsLast3d:
|
56 |
+
return stream << "ChannelsLast3d";
|
57 |
+
default:
|
58 |
+
TORCH_CHECK(false, "Unknown memory format ", memory_format);
|
59 |
+
}
|
60 |
+
}
|
61 |
+
|
62 |
+
// Note: Hardcoded the channel last stride indices here to get better
|
63 |
+
// performance
|
64 |
+
template <typename T>
|
65 |
+
inline std::vector<T> get_channels_last_strides_2d(ArrayRef<T> sizes) {
|
66 |
+
std::vector<T> strides(sizes.size());
|
67 |
+
switch (sizes.size()) {
|
68 |
+
case 4:
|
69 |
+
strides[1] = 1;
|
70 |
+
strides[3] = sizes[1];
|
71 |
+
strides[2] = strides[3] * sizes[3];
|
72 |
+
strides[0] = strides[2] * sizes[2];
|
73 |
+
return strides;
|
74 |
+
case 3:
|
75 |
+
strides[0] = 1;
|
76 |
+
strides[2] = sizes[0];
|
77 |
+
strides[1] = strides[2] * sizes[2];
|
78 |
+
return strides;
|
79 |
+
default:
|
80 |
+
TORCH_INTERNAL_ASSERT(
|
81 |
+
false, "ChannelsLast2d doesn't support size ", sizes.size());
|
82 |
+
}
|
83 |
+
}
|
84 |
+
|
85 |
+
inline std::vector<int64_t> get_channels_last_strides_2d(IntArrayRef sizes) {
|
86 |
+
return get_channels_last_strides_2d<int64_t>(sizes);
|
87 |
+
}
|
88 |
+
|
89 |
+
template <typename T>
|
90 |
+
std::vector<T> get_channels_last_strides_3d(ArrayRef<T> sizes) {
|
91 |
+
std::vector<T> strides(sizes.size());
|
92 |
+
switch (sizes.size()) {
|
93 |
+
case 5:
|
94 |
+
strides[1] = 1;
|
95 |
+
strides[4] = sizes[1];
|
96 |
+
strides[3] = strides[4] * sizes[4];
|
97 |
+
strides[2] = strides[3] * sizes[3];
|
98 |
+
strides[0] = strides[2] * sizes[2];
|
99 |
+
return strides;
|
100 |
+
case 4:
|
101 |
+
strides[0] = 1;
|
102 |
+
strides[3] = sizes[0];
|
103 |
+
strides[2] = strides[3] * sizes[3];
|
104 |
+
strides[1] = strides[2] * sizes[2];
|
105 |
+
return strides;
|
106 |
+
default:
|
107 |
+
TORCH_INTERNAL_ASSERT(
|
108 |
+
false, "ChannelsLast3d doesn't support size ", sizes.size());
|
109 |
+
}
|
110 |
+
}
|
111 |
+
|
112 |
+
inline std::vector<int64_t> get_channels_last_strides_3d(IntArrayRef sizes) {
|
113 |
+
return get_channels_last_strides_3d<int64_t>(sizes);
|
114 |
+
}
|
115 |
+
|
116 |
+
// NOTE:
|
117 |
+
// Below are Helper functions for is_channels_last_strides_xd.
|
118 |
+
// 1. Please do not combine these helper functions, each helper function handles
|
119 |
+
// exactly one case of sizes + memory_format, by doing this, the strides indices
|
120 |
+
// will be a constant array and we can access it using constant index number,
|
121 |
+
// the compiler will fully unroll the loop on strides indices to gain a better
|
122 |
+
// performance.
|
123 |
+
// 2. No error check in helper function, caller ensures the correctness of the
|
124 |
+
// input
|
125 |
+
// 3. All helper functions have similar comments, only 1st helper function is
|
126 |
+
// commented here.
|
127 |
+
template <typename T>
|
128 |
+
inline bool is_channels_last_strides_2d_s4(
|
129 |
+
const ArrayRef<T> sizes,
|
130 |
+
const ArrayRef<T> strides) {
|
131 |
+
T min = 0;
|
132 |
+
// special case for trivial C dimension. default to NCHW
|
133 |
+
if (strides[1] == 0) {
|
134 |
+
return false;
|
135 |
+
}
|
136 |
+
// loop strides indices
|
137 |
+
for (auto& d : {1, 3, 2, 0}) {
|
138 |
+
if (sizes[d] == 0) {
|
139 |
+
return false;
|
140 |
+
}
|
141 |
+
if (strides[d] < min) {
|
142 |
+
return false;
|
143 |
+
}
|
144 |
+
// Fallback to NCHW as default layout for ambiguous cases
|
145 |
+
// This is the flaw of implicit memory_format from strides.
|
146 |
+
// N111 tensor with identical strides for size 1 dimension;
|
147 |
+
// Two cases could lead us here:
|
148 |
+
// a. N111 contiguous Tensor ([N,1,1,1]@[1,1,1,1])
|
149 |
+
// b. N11W contiguous Tensor sliced on the W-dimension.
|
150 |
+
// ([N,1,1,1]@[W,W,W,W])
|
151 |
+
if (d == 0 && min == strides[1]) {
|
152 |
+
return false;
|
153 |
+
}
|
154 |
+
// This is necessary to:
|
155 |
+
// 1. distinguish the memory_format of N1H1;
|
156 |
+
// [H, 1, 1, 1] channels_last stride
|
157 |
+
// [H, H, 1, 1] contiguous stride
|
158 |
+
// 2. permutation of 1C1W:
|
159 |
+
// [1, C, 1, H]@[HC, H, H, 1] transpose(1, 3)
|
160 |
+
// [1, H, 1, C]@[HC, 1, H, H] shouldn't be identified as channels_last
|
161 |
+
min = strides[d];
|
162 |
+
if (sizes[d] > 1) {
|
163 |
+
min *= sizes[d];
|
164 |
+
}
|
165 |
+
}
|
166 |
+
return true;
|
167 |
+
}
|
168 |
+
|
169 |
+
template <typename T>
|
170 |
+
inline bool is_channels_last_strides_3d_s5(
|
171 |
+
const ArrayRef<T> sizes,
|
172 |
+
const ArrayRef<T> strides) {
|
173 |
+
T min = 0;
|
174 |
+
if (strides[1] == 0) {
|
175 |
+
return false;
|
176 |
+
}
|
177 |
+
for (auto& d : {1, 4, 3, 2, 0}) {
|
178 |
+
if (sizes[d] == 0) {
|
179 |
+
return false;
|
180 |
+
}
|
181 |
+
if (strides[d] < min) {
|
182 |
+
return false;
|
183 |
+
}
|
184 |
+
if (d == 0 && min == strides[1]) {
|
185 |
+
return false;
|
186 |
+
}
|
187 |
+
min = strides[d];
|
188 |
+
if (sizes[d] > 1) {
|
189 |
+
min *= sizes[d];
|
190 |
+
}
|
191 |
+
}
|
192 |
+
return true;
|
193 |
+
}
|
194 |
+
|
195 |
+
// Note [Ambiguous is_channels_last_strides_xd]
|
196 |
+
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
197 |
+
// The flaw of carrying memory_format implicitly through strides is very hard
|
198 |
+
// to WAR properly. issue #24090
|
199 |
+
// Without the history of permutation, we can't infer the memory_format of a
|
200 |
+
// tensor from the snapshot of its size & stride
|
201 |
+
// e.g.
|
202 |
+
//
|
203 |
+
// 1. We can NOT specify the memory_format of N111 tensor through strides in a
|
204 |
+
// meaningful way;
|
205 |
+
//
|
206 |
+
// 2. Two path that ended up with identical size/stride
|
207 |
+
// N11W contiguous tensor sliced at w-dimension becomes [N,1,1,1]@[W,W,W,W]
|
208 |
+
// NC11 channels_last tensor sliced at c-dimension becomes [N,1,1,1]@[C,C,C,C]
|
209 |
+
// So if we see a tensor [N,1,1,1]@[X,X,X,X], there's no way for us to infer
|
210 |
+
// the memory_format of the original tensor.
|
211 |
+
//
|
212 |
+
// Due to the limitations, our temporary WAR `is_channels_last_strides` does the
|
213 |
+
// best effort to infer whether the original memory_format of a tensor is
|
214 |
+
// at::MemoryFormat::ChannelsLast. The two objectives of this function (ordered
|
215 |
+
// by their importance):
|
216 |
+
// 1. Ensure that normal shape manipulation does not accidentally change the
|
217 |
+
// MemoryFormat of an existing tensor.
|
218 |
+
// 2. Allows user to mark MemoryFormat::ChannelsLast to tensors;
|
219 |
+
//
|
220 |
+
// The function does so via checking strides of the tensor, including strides of
|
221 |
+
// size-1 dimensions. Although conventionally PyTorch implies no restriction on
|
222 |
+
// trivial stride (stride for size-1 dimension).
|
223 |
+
//
|
224 |
+
// Note that this approach is a compromise. We did not solve the problem
|
225 |
+
// completely. Many cases we will not be able to infer the correct memory
|
226 |
+
// format.
|
227 |
+
// The implementation of `is_channels_last_strides` is to serve the objectives:
|
228 |
+
// MemoryFormat::ChannelsLast has to be explicitly opted-in (no accidental
|
229 |
+
// conversion); Best effort to maintain the ChannelsLast flag.
|
230 |
+
//
|
231 |
+
// Due to the fact that this is not a bulletproof solution, through testing
|
232 |
+
// (aten/src/ATen/test/memory_format_test.cpp)
|
233 |
+
// a. we ensure that the common tasks are supported;
|
234 |
+
// a. we identify corner cases where the implementation compromises on.
|
235 |
+
//
|
236 |
+
// By the time accumulated permutation is enabled to replace implicit
|
237 |
+
// memory_format through strides, we should be updating our tests and fix the
|
238 |
+
// issues in our tests.
|
239 |
+
//
|
240 |
+
// We use Channels Last 2d as an example above.
|
241 |
+
// This is a general problem for all the is_channels_last_strides_xd
|
242 |
+
// implementation. Please check the helper functions
|
243 |
+
// (is_channels_last_strides_*d_s*) for more details.
|
244 |
+
|
245 |
+
template <typename T>
|
246 |
+
inline bool is_channels_last_strides_2d(
|
247 |
+
const ArrayRef<T> sizes,
|
248 |
+
const ArrayRef<T> strides) {
|
249 |
+
switch (sizes.size()) {
|
250 |
+
case 4:
|
251 |
+
return is_channels_last_strides_2d_s4(sizes, strides);
|
252 |
+
case 3:
|
253 |
+
// TODO dim == 3 case will be enabled once it is fully tested
|
254 |
+
return false;
|
255 |
+
default:
|
256 |
+
return false;
|
257 |
+
}
|
258 |
+
}
|
259 |
+
|
260 |
+
template <typename T>
|
261 |
+
inline bool is_channels_last_strides_3d(
|
262 |
+
const ArrayRef<T> sizes,
|
263 |
+
const ArrayRef<T> strides) {
|
264 |
+
switch (sizes.size()) {
|
265 |
+
case 5:
|
266 |
+
return is_channels_last_strides_3d_s5(sizes, strides);
|
267 |
+
case 4:
|
268 |
+
// TODO dim == 4 case will be enabled once it is fully tested
|
269 |
+
return false;
|
270 |
+
default:
|
271 |
+
return false;
|
272 |
+
}
|
273 |
+
}
|
274 |
+
|
275 |
+
inline bool is_channels_last_strides_2d(
|
276 |
+
const IntArrayRef sizes,
|
277 |
+
const IntArrayRef strides) {
|
278 |
+
return is_channels_last_strides_2d<int64_t>(sizes, strides);
|
279 |
+
}
|
280 |
+
|
281 |
+
inline bool is_channels_last_strides_3d(
|
282 |
+
const IntArrayRef sizes,
|
283 |
+
const IntArrayRef strides) {
|
284 |
+
return is_channels_last_strides_3d<int64_t>(sizes, strides);
|
285 |
+
}
|
286 |
+
|
287 |
+
} // namespace c10
|
env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/OptionalRef.h
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
namespace c10 {
|
4 |
+
|
5 |
+
template <typename T>
|
6 |
+
class OptionalRef {
|
7 |
+
public:
|
8 |
+
OptionalRef() : data_(nullptr) {}
|
9 |
+
OptionalRef(const T* data) : data_(data) {
|
10 |
+
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(data_);
|
11 |
+
}
|
12 |
+
OptionalRef(const T& data) : data_(&data) {}
|
13 |
+
|
14 |
+
bool has_value() const {
|
15 |
+
return data_ != nullptr;
|
16 |
+
}
|
17 |
+
|
18 |
+
const T& get() const {
|
19 |
+
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(data_);
|
20 |
+
return *data_;
|
21 |
+
}
|
22 |
+
|
23 |
+
operator bool() const {
|
24 |
+
return has_value();
|
25 |
+
}
|
26 |
+
|
27 |
+
private:
|
28 |
+
const T* data_;
|
29 |
+
};
|
30 |
+
|
31 |
+
} // namespace c10
|
env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/QScheme.h
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <c10/core/DeviceType.h>
|
4 |
+
#include <c10/util/Exception.h>
|
5 |
+
|
6 |
+
namespace c10 {
|
7 |
+
|
8 |
+
/**
|
9 |
+
* QScheme is an enum that specifies the type of quantization. This has a one
|
10 |
+
* to one correspondence with Quantizer
|
11 |
+
* Please refer to ATen/quantized/Quantizer.h to see the Quantizers classes.
|
12 |
+
* Keep this file in sync with torch/nn/_qscheme.py
|
13 |
+
*/
|
14 |
+
enum class QScheme : uint8_t {
|
15 |
+
PER_TENSOR_AFFINE = 0,
|
16 |
+
PER_CHANNEL_AFFINE = 1,
|
17 |
+
PER_TENSOR_SYMMETRIC = 2,
|
18 |
+
PER_CHANNEL_SYMMETRIC = 3,
|
19 |
+
PER_CHANNEL_AFFINE_FLOAT_QPARAMS = 4,
|
20 |
+
COMPILE_TIME_NUM_QSCHEMES = 5,
|
21 |
+
};
|
22 |
+
|
23 |
+
constexpr auto kPerTensorAffine = QScheme::PER_TENSOR_AFFINE;
|
24 |
+
constexpr auto kPerChannelAffine = QScheme::PER_CHANNEL_AFFINE;
|
25 |
+
constexpr auto kPerTensorSymmetric = QScheme::PER_TENSOR_SYMMETRIC;
|
26 |
+
constexpr auto kPerChannelSymmetric = QScheme::PER_CHANNEL_SYMMETRIC;
|
27 |
+
constexpr auto kPerChannelAffineFloatQParams =
|
28 |
+
QScheme::PER_CHANNEL_AFFINE_FLOAT_QPARAMS;
|
29 |
+
constexpr int COMPILE_TIME_NUM_QSCHEMES =
|
30 |
+
static_cast<int>(QScheme::COMPILE_TIME_NUM_QSCHEMES);
|
31 |
+
|
32 |
+
inline std::string toString(QScheme qscheme) {
|
33 |
+
switch (qscheme) {
|
34 |
+
case kPerTensorAffine:
|
35 |
+
return "per_tensor_affine";
|
36 |
+
case kPerChannelAffine:
|
37 |
+
return "per_channel_affine";
|
38 |
+
case kPerTensorSymmetric:
|
39 |
+
return "per_tensor_symmetric";
|
40 |
+
case kPerChannelSymmetric:
|
41 |
+
return "per_channel_symmetric";
|
42 |
+
case kPerChannelAffineFloatQParams:
|
43 |
+
return "per_channel_affine_float_qparams";
|
44 |
+
default:
|
45 |
+
TORCH_CHECK(false, "Unrecognized qscheme: ", static_cast<int>(qscheme));
|
46 |
+
}
|
47 |
+
}
|
48 |
+
|
49 |
+
} // namespace c10
|
env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/Scalar.h
ADDED
@@ -0,0 +1,383 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <stdint.h>
|
4 |
+
#include <stdexcept>
|
5 |
+
#include <type_traits>
|
6 |
+
#include <utility>
|
7 |
+
|
8 |
+
#include <c10/core/OptionalRef.h>
|
9 |
+
#include <c10/core/ScalarType.h>
|
10 |
+
#include <c10/core/SymFloat.h>
|
11 |
+
#include <c10/core/SymInt.h>
|
12 |
+
#include <c10/macros/Macros.h>
|
13 |
+
#include <c10/util/Exception.h>
|
14 |
+
#include <c10/util/Half.h>
|
15 |
+
#include <c10/util/TypeCast.h>
|
16 |
+
#include <c10/util/intrusive_ptr.h>
|
17 |
+
|
18 |
+
C10_CLANG_DIAGNOSTIC_PUSH()
|
19 |
+
#if C10_CLANG_HAS_WARNING("-Wimplicit-int-float-conversion")
|
20 |
+
C10_CLANG_DIAGNOSTIC_IGNORE("-Wimplicit-int-float-conversion")
|
21 |
+
#endif
|
22 |
+
|
23 |
+
namespace c10 {
|
24 |
+
|
25 |
+
/**
|
26 |
+
* Scalar represents a 0-dimensional tensor which contains a single element.
|
27 |
+
* Unlike a tensor, numeric literals (in C++) are implicitly convertible to
|
28 |
+
* Scalar (which is why, for example, we provide both add(Tensor) and
|
29 |
+
* add(Scalar) overloads for many operations). It may also be used in
|
30 |
+
* circumstances where you statically know a tensor is 0-dim and single size,
|
31 |
+
* but don't know its type.
|
32 |
+
*/
|
33 |
+
class C10_API Scalar {
|
34 |
+
public:
|
35 |
+
Scalar() : Scalar(int64_t(0)) {}
|
36 |
+
|
37 |
+
void destroy() {
|
38 |
+
if (Tag::HAS_si == tag || Tag::HAS_sd == tag || Tag::HAS_sb == tag) {
|
39 |
+
raw::intrusive_ptr::decref(v.p);
|
40 |
+
v.p = nullptr;
|
41 |
+
}
|
42 |
+
}
|
43 |
+
|
44 |
+
~Scalar() {
|
45 |
+
destroy();
|
46 |
+
}
|
47 |
+
|
48 |
+
#define DEFINE_IMPLICIT_CTOR(type, name) \
|
49 |
+
Scalar(type vv) : Scalar(vv, true) {}
|
50 |
+
|
51 |
+
AT_FORALL_SCALAR_TYPES_AND7(
|
52 |
+
Half,
|
53 |
+
BFloat16,
|
54 |
+
Float8_e5m2,
|
55 |
+
Float8_e4m3fn,
|
56 |
+
Float8_e5m2fnuz,
|
57 |
+
Float8_e4m3fnuz,
|
58 |
+
ComplexHalf,
|
59 |
+
DEFINE_IMPLICIT_CTOR)
|
60 |
+
AT_FORALL_COMPLEX_TYPES(DEFINE_IMPLICIT_CTOR)
|
61 |
+
|
62 |
+
#undef DEFINE_IMPLICIT_CTOR
|
63 |
+
|
64 |
+
// Value* is both implicitly convertible to SymbolicVariable and bool which
|
65 |
+
// causes ambiguity error. Specialized constructor for bool resolves this
|
66 |
+
// problem.
|
67 |
+
template <
|
68 |
+
typename T,
|
69 |
+
typename std::enable_if<std::is_same<T, bool>::value, bool>::type* =
|
70 |
+
nullptr>
|
71 |
+
Scalar(T vv) : tag(Tag::HAS_b) {
|
72 |
+
v.i = convert<int64_t, bool>(vv);
|
73 |
+
}
|
74 |
+
|
75 |
+
template <
|
76 |
+
typename T,
|
77 |
+
typename std::enable_if<std::is_same<T, c10::SymBool>::value, bool>::
|
78 |
+
type* = nullptr>
|
79 |
+
Scalar(T vv) : tag(Tag::HAS_sb) {
|
80 |
+
v.i = convert<int64_t, c10::SymBool>(vv);
|
81 |
+
}
|
82 |
+
|
83 |
+
#define DEFINE_ACCESSOR(type, name) \
|
84 |
+
type to##name() const { \
|
85 |
+
if (Tag::HAS_d == tag) { \
|
86 |
+
return checked_convert<type, double>(v.d, #type); \
|
87 |
+
} else if (Tag::HAS_z == tag) { \
|
88 |
+
return checked_convert<type, c10::complex<double>>(v.z, #type); \
|
89 |
+
} \
|
90 |
+
if (Tag::HAS_b == tag) { \
|
91 |
+
return checked_convert<type, bool>(v.i, #type); \
|
92 |
+
} else if (Tag::HAS_i == tag) { \
|
93 |
+
return checked_convert<type, int64_t>(v.i, #type); \
|
94 |
+
} else if (Tag::HAS_si == tag) { \
|
95 |
+
return checked_convert<type, int64_t>( \
|
96 |
+
toSymInt().guard_int(__FILE__, __LINE__), #type); \
|
97 |
+
} else if (Tag::HAS_sd == tag) { \
|
98 |
+
return checked_convert<type, int64_t>( \
|
99 |
+
toSymFloat().guard_float(__FILE__, __LINE__), #type); \
|
100 |
+
} else if (Tag::HAS_sb == tag) { \
|
101 |
+
return checked_convert<type, int64_t>( \
|
102 |
+
toSymBool().guard_bool(__FILE__, __LINE__), #type); \
|
103 |
+
} \
|
104 |
+
TORCH_CHECK(false) \
|
105 |
+
}
|
106 |
+
|
107 |
+
// TODO: Support ComplexHalf accessor
|
108 |
+
AT_FORALL_SCALAR_TYPES_WITH_COMPLEX(DEFINE_ACCESSOR)
|
109 |
+
|
110 |
+
#undef DEFINE_ACCESSOR
|
111 |
+
|
112 |
+
SymInt toSymInt() const {
|
113 |
+
if (Tag::HAS_si == tag) {
|
114 |
+
return c10::SymInt(intrusive_ptr<SymNodeImpl>::reclaim_copy(
|
115 |
+
static_cast<SymNodeImpl*>(v.p)));
|
116 |
+
} else {
|
117 |
+
return toLong();
|
118 |
+
}
|
119 |
+
}
|
120 |
+
|
121 |
+
SymFloat toSymFloat() const {
|
122 |
+
if (Tag::HAS_sd == tag) {
|
123 |
+
return c10::SymFloat(intrusive_ptr<SymNodeImpl>::reclaim_copy(
|
124 |
+
static_cast<SymNodeImpl*>(v.p)));
|
125 |
+
} else {
|
126 |
+
return toDouble();
|
127 |
+
}
|
128 |
+
}
|
129 |
+
|
130 |
+
SymBool toSymBool() const {
|
131 |
+
if (Tag::HAS_sb == tag) {
|
132 |
+
return c10::SymBool(intrusive_ptr<SymNodeImpl>::reclaim_copy(
|
133 |
+
static_cast<SymNodeImpl*>(v.p)));
|
134 |
+
} else {
|
135 |
+
return toBool();
|
136 |
+
}
|
137 |
+
}
|
138 |
+
|
139 |
+
// also support scalar.to<int64_t>();
|
140 |
+
// Deleted for unsupported types, but specialized below for supported types
|
141 |
+
template <typename T>
|
142 |
+
T to() const = delete;
|
143 |
+
|
144 |
+
// audit uses of data_ptr
|
145 |
+
const void* data_ptr() const {
|
146 |
+
TORCH_INTERNAL_ASSERT(!isSymbolic());
|
147 |
+
return static_cast<const void*>(&v);
|
148 |
+
}
|
149 |
+
|
150 |
+
bool isFloatingPoint() const {
|
151 |
+
return Tag::HAS_d == tag || Tag::HAS_sd == tag;
|
152 |
+
}
|
153 |
+
|
154 |
+
C10_DEPRECATED_MESSAGE(
|
155 |
+
"isIntegral is deprecated. Please use the overload with 'includeBool' parameter instead.")
|
156 |
+
bool isIntegral() const {
|
157 |
+
return Tag::HAS_i == tag || Tag::HAS_si == tag;
|
158 |
+
}
|
159 |
+
bool isIntegral(bool includeBool) const {
|
160 |
+
return Tag::HAS_i == tag || Tag::HAS_si == tag ||
|
161 |
+
(includeBool && isBoolean());
|
162 |
+
}
|
163 |
+
|
164 |
+
bool isComplex() const {
|
165 |
+
return Tag::HAS_z == tag;
|
166 |
+
}
|
167 |
+
bool isBoolean() const {
|
168 |
+
return Tag::HAS_b == tag || Tag::HAS_sb == tag;
|
169 |
+
}
|
170 |
+
|
171 |
+
// you probably don't actually want these; they're mostly for testing
|
172 |
+
bool isSymInt() const {
|
173 |
+
return Tag::HAS_si == tag;
|
174 |
+
}
|
175 |
+
bool isSymFloat() const {
|
176 |
+
return Tag::HAS_sd == tag;
|
177 |
+
}
|
178 |
+
bool isSymBool() const {
|
179 |
+
return Tag::HAS_sb == tag;
|
180 |
+
}
|
181 |
+
|
182 |
+
bool isSymbolic() const {
|
183 |
+
return Tag::HAS_si == tag || Tag::HAS_sd == tag || Tag::HAS_sb == tag;
|
184 |
+
}
|
185 |
+
|
186 |
+
C10_ALWAYS_INLINE Scalar& operator=(Scalar&& other) noexcept {
|
187 |
+
if (&other == this) {
|
188 |
+
return *this;
|
189 |
+
}
|
190 |
+
|
191 |
+
destroy();
|
192 |
+
moveFrom(std::move(other));
|
193 |
+
return *this;
|
194 |
+
}
|
195 |
+
|
196 |
+
C10_ALWAYS_INLINE Scalar& operator=(const Scalar& other) {
|
197 |
+
if (&other == this) {
|
198 |
+
return *this;
|
199 |
+
}
|
200 |
+
|
201 |
+
*this = Scalar(other);
|
202 |
+
return *this;
|
203 |
+
}
|
204 |
+
|
205 |
+
Scalar operator-() const;
|
206 |
+
Scalar conj() const;
|
207 |
+
Scalar log() const;
|
208 |
+
|
209 |
+
template <
|
210 |
+
typename T,
|
211 |
+
typename std::enable_if<!c10::is_complex<T>::value, int>::type = 0>
|
212 |
+
bool equal(T num) const {
|
213 |
+
if (isComplex()) {
|
214 |
+
TORCH_INTERNAL_ASSERT(!isSymbolic());
|
215 |
+
auto val = v.z;
|
216 |
+
return (val.real() == num) && (val.imag() == T());
|
217 |
+
} else if (isFloatingPoint()) {
|
218 |
+
TORCH_CHECK(!isSymbolic(), "NYI SymFloat equality");
|
219 |
+
return v.d == num;
|
220 |
+
} else if (isIntegral(/*includeBool=*/false)) {
|
221 |
+
TORCH_CHECK(!isSymbolic(), "NYI SymInt equality");
|
222 |
+
return v.i == num;
|
223 |
+
} else if (isBoolean()) {
|
224 |
+
// boolean scalar does not equal to a non boolean value
|
225 |
+
TORCH_INTERNAL_ASSERT(!isSymbolic());
|
226 |
+
return false;
|
227 |
+
} else {
|
228 |
+
TORCH_INTERNAL_ASSERT(false);
|
229 |
+
}
|
230 |
+
}
|
231 |
+
|
232 |
+
template <
|
233 |
+
typename T,
|
234 |
+
typename std::enable_if<c10::is_complex<T>::value, int>::type = 0>
|
235 |
+
bool equal(T num) const {
|
236 |
+
if (isComplex()) {
|
237 |
+
TORCH_INTERNAL_ASSERT(!isSymbolic());
|
238 |
+
return v.z == num;
|
239 |
+
} else if (isFloatingPoint()) {
|
240 |
+
TORCH_CHECK(!isSymbolic(), "NYI SymFloat equality");
|
241 |
+
return (v.d == num.real()) && (num.imag() == T());
|
242 |
+
} else if (isIntegral(/*includeBool=*/false)) {
|
243 |
+
TORCH_CHECK(!isSymbolic(), "NYI SymInt equality");
|
244 |
+
return (v.i == num.real()) && (num.imag() == T());
|
245 |
+
} else if (isBoolean()) {
|
246 |
+
// boolean scalar does not equal to a non boolean value
|
247 |
+
TORCH_INTERNAL_ASSERT(!isSymbolic());
|
248 |
+
return false;
|
249 |
+
} else {
|
250 |
+
TORCH_INTERNAL_ASSERT(false);
|
251 |
+
}
|
252 |
+
}
|
253 |
+
|
254 |
+
bool equal(bool num) const {
|
255 |
+
if (isBoolean()) {
|
256 |
+
TORCH_INTERNAL_ASSERT(!isSymbolic());
|
257 |
+
return static_cast<bool>(v.i) == num;
|
258 |
+
} else {
|
259 |
+
return false;
|
260 |
+
}
|
261 |
+
}
|
262 |
+
|
263 |
+
ScalarType type() const {
|
264 |
+
if (isComplex()) {
|
265 |
+
return ScalarType::ComplexDouble;
|
266 |
+
} else if (isFloatingPoint()) {
|
267 |
+
return ScalarType::Double;
|
268 |
+
} else if (isIntegral(/*includeBool=*/false)) {
|
269 |
+
return ScalarType::Long;
|
270 |
+
} else if (isBoolean()) {
|
271 |
+
return ScalarType::Bool;
|
272 |
+
} else {
|
273 |
+
throw std::runtime_error("Unknown scalar type.");
|
274 |
+
}
|
275 |
+
}
|
276 |
+
|
277 |
+
Scalar(Scalar&& rhs) noexcept : tag(rhs.tag) {
|
278 |
+
moveFrom(std::move(rhs));
|
279 |
+
}
|
280 |
+
|
281 |
+
Scalar(const Scalar& rhs) : tag(rhs.tag), v(rhs.v) {
|
282 |
+
if (isSymbolic()) {
|
283 |
+
c10::raw::intrusive_ptr::incref(v.p);
|
284 |
+
}
|
285 |
+
}
|
286 |
+
|
287 |
+
Scalar(c10::SymInt si) {
|
288 |
+
if (auto m = si.maybe_as_int()) {
|
289 |
+
tag = Tag::HAS_i;
|
290 |
+
v.i = *m;
|
291 |
+
} else {
|
292 |
+
tag = Tag::HAS_si;
|
293 |
+
v.p = std::move(si).release();
|
294 |
+
}
|
295 |
+
}
|
296 |
+
|
297 |
+
Scalar(c10::SymFloat sd) {
|
298 |
+
if (sd.is_symbolic()) {
|
299 |
+
tag = Tag::HAS_sd;
|
300 |
+
v.p = std::move(sd).release();
|
301 |
+
} else {
|
302 |
+
tag = Tag::HAS_d;
|
303 |
+
v.d = sd.as_float_unchecked();
|
304 |
+
}
|
305 |
+
}
|
306 |
+
|
307 |
+
Scalar(c10::SymBool sb) {
|
308 |
+
if (auto m = sb.maybe_as_bool()) {
|
309 |
+
tag = Tag::HAS_b;
|
310 |
+
v.i = *m;
|
311 |
+
} else {
|
312 |
+
tag = Tag::HAS_sb;
|
313 |
+
v.p = std::move(sb).release();
|
314 |
+
}
|
315 |
+
}
|
316 |
+
|
317 |
+
// We can't set v in the initializer list using the
|
318 |
+
// syntax v{ .member = ... } because it doesn't work on MSVC
|
319 |
+
private:
|
320 |
+
enum class Tag { HAS_d, HAS_i, HAS_z, HAS_b, HAS_sd, HAS_si, HAS_sb };
|
321 |
+
|
322 |
+
// NB: assumes that self has already been cleared
|
323 |
+
C10_ALWAYS_INLINE void moveFrom(Scalar&& rhs) noexcept {
|
324 |
+
v = rhs.v;
|
325 |
+
tag = rhs.tag;
|
326 |
+
if (rhs.tag == Tag::HAS_si || rhs.tag == Tag::HAS_sd ||
|
327 |
+
rhs.tag == Tag::HAS_sb) {
|
328 |
+
// Move out of scalar
|
329 |
+
rhs.tag = Tag::HAS_i;
|
330 |
+
rhs.v.i = 0;
|
331 |
+
}
|
332 |
+
}
|
333 |
+
|
334 |
+
Tag tag;
|
335 |
+
|
336 |
+
union v_t {
|
337 |
+
double d{};
|
338 |
+
int64_t i;
|
339 |
+
c10::complex<double> z;
|
340 |
+
c10::intrusive_ptr_target* p;
|
341 |
+
v_t() {} // default constructor
|
342 |
+
} v;
|
343 |
+
|
344 |
+
template <
|
345 |
+
typename T,
|
346 |
+
typename std::enable_if<
|
347 |
+
std::is_integral<T>::value && !std::is_same<T, bool>::value,
|
348 |
+
bool>::type* = nullptr>
|
349 |
+
Scalar(T vv, bool) : tag(Tag::HAS_i) {
|
350 |
+
v.i = convert<decltype(v.i), T>(vv);
|
351 |
+
}
|
352 |
+
|
353 |
+
template <
|
354 |
+
typename T,
|
355 |
+
typename std::enable_if<
|
356 |
+
!std::is_integral<T>::value && !c10::is_complex<T>::value,
|
357 |
+
bool>::type* = nullptr>
|
358 |
+
Scalar(T vv, bool) : tag(Tag::HAS_d) {
|
359 |
+
v.d = convert<decltype(v.d), T>(vv);
|
360 |
+
}
|
361 |
+
|
362 |
+
template <
|
363 |
+
typename T,
|
364 |
+
typename std::enable_if<c10::is_complex<T>::value, bool>::type* = nullptr>
|
365 |
+
Scalar(T vv, bool) : tag(Tag::HAS_z) {
|
366 |
+
v.z = convert<decltype(v.z), T>(vv);
|
367 |
+
}
|
368 |
+
};
|
369 |
+
|
370 |
+
using OptionalScalarRef = c10::OptionalRef<Scalar>;
|
371 |
+
|
372 |
+
// define the scalar.to<int64_t>() specializations
|
373 |
+
#define DEFINE_TO(T, name) \
|
374 |
+
template <> \
|
375 |
+
inline T Scalar::to<T>() const { \
|
376 |
+
return to##name(); \
|
377 |
+
}
|
378 |
+
AT_FORALL_SCALAR_TYPES_WITH_COMPLEX(DEFINE_TO)
|
379 |
+
#undef DEFINE_TO
|
380 |
+
|
381 |
+
} // namespace c10
|
382 |
+
|
383 |
+
C10_CLANG_DIAGNOSTIC_POP()
|
env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/ScalarTypeToTypeMeta.h
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <c10/core/ScalarType.h>
|
4 |
+
#include <c10/util/Optional.h>
|
5 |
+
#include <c10/util/typeid.h>
|
6 |
+
|
7 |
+
// these just expose TypeMeta/ScalarType bridge functions in c10
|
8 |
+
// TODO move to typeid.h (or codemod away) when TypeMeta et al
|
9 |
+
// are moved from caffe2 to c10 (see note at top of typeid.h)
|
10 |
+
|
11 |
+
namespace c10 {
|
12 |
+
|
13 |
+
/**
|
14 |
+
* convert ScalarType enum values to TypeMeta handles
|
15 |
+
*/
|
16 |
+
static inline caffe2::TypeMeta scalarTypeToTypeMeta(ScalarType scalar_type) {
|
17 |
+
return caffe2::TypeMeta::fromScalarType(scalar_type);
|
18 |
+
}
|
19 |
+
|
20 |
+
/**
|
21 |
+
* convert TypeMeta handles to ScalarType enum values
|
22 |
+
*/
|
23 |
+
static inline ScalarType typeMetaToScalarType(caffe2::TypeMeta dtype) {
|
24 |
+
return dtype.toScalarType();
|
25 |
+
}
|
26 |
+
|
27 |
+
/**
|
28 |
+
* typeMetaToScalarType(), lifted to optional
|
29 |
+
*/
|
30 |
+
static inline optional<at::ScalarType> optTypeMetaToScalarType(
|
31 |
+
optional<caffe2::TypeMeta> type_meta) {
|
32 |
+
if (!type_meta.has_value()) {
|
33 |
+
return c10::nullopt;
|
34 |
+
}
|
35 |
+
return type_meta->toScalarType();
|
36 |
+
}
|
37 |
+
|
38 |
+
/**
|
39 |
+
* convenience: equality across TypeMeta/ScalarType conversion
|
40 |
+
*/
|
41 |
+
static inline bool operator==(ScalarType t, caffe2::TypeMeta m) {
|
42 |
+
return m.isScalarType(t);
|
43 |
+
}
|
44 |
+
|
45 |
+
static inline bool operator==(caffe2::TypeMeta m, ScalarType t) {
|
46 |
+
return t == m;
|
47 |
+
}
|
48 |
+
|
49 |
+
static inline bool operator!=(ScalarType t, caffe2::TypeMeta m) {
|
50 |
+
return !(t == m);
|
51 |
+
}
|
52 |
+
|
53 |
+
static inline bool operator!=(caffe2::TypeMeta m, ScalarType t) {
|
54 |
+
return !(t == m);
|
55 |
+
}
|
56 |
+
|
57 |
+
} // namespace c10
|
env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/SingletonSymNodeImpl.h
ADDED
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#include <c10/core/ConstantSymNodeImpl.h>
|
2 |
+
#include <c10/core/SymBool.h>
|
3 |
+
#include <c10/core/SymNodeImpl.h>
|
4 |
+
#include <iostream>
|
5 |
+
|
6 |
+
namespace c10 {
|
7 |
+
|
8 |
+
// The motivating usecase for this is to represent the ragged size structure
|
9 |
+
// of a jagged tensor [B, [s_0, s_1, s_2], D] as a single integer j0. This
|
10 |
+
// allows us to simply return [B, j0, D] if someone queries for the size of our
|
11 |
+
// tensor.
|
12 |
+
//
|
13 |
+
// Morally we define comparison between two singleton ints to return true if
|
14 |
+
// that comparison holds for all corresponding elements of the arrays they
|
15 |
+
// represent. Comparison between a singleton int and a plain int is defined
|
16 |
+
// similarly.
|
17 |
+
//
|
18 |
+
// To simulate this desired behavior but also avoid the O(N) cost of checking,
|
19 |
+
// we associate each raggedness pattern with an integer "id" that can be used as
|
20 |
+
// a proxy to evaluate equality. We also constrain the range of values for this
|
21 |
+
// as to enable inequality checks.
|
22 |
+
//
|
23 |
+
// We also support a positive integer scalar "coeff" that is used for computing
|
24 |
+
// strides. For example given, a [B, j0, D] tensor, it can be strided in two
|
25 |
+
// different ways: [D * j0, D, 1] and [j0, 1, sum(j0)]. The coeff is used to
|
26 |
+
// differentiate the two cases.
|
27 |
+
//
|
28 |
+
// During tracing the strides of the outputs need to be a function of the size
|
29 |
+
// and strides of the inputs so it is important that SingletonSymNode itself is
|
30 |
+
// able to express this.
|
31 |
+
class C10_API SingletonSymNodeImpl : public SymNodeImpl {
|
32 |
+
public:
|
33 |
+
// CAUTION: you should probably not be constructing these directly; please
|
34 |
+
// the higher-level API in python instead (TODO: actually introduce that).
|
35 |
+
explicit SingletonSymNodeImpl(int64_t val, int64_t coeff)
|
36 |
+
: val_(val), coeff_(coeff) {}
|
37 |
+
|
38 |
+
bool bool_() override {
|
39 |
+
return false;
|
40 |
+
}
|
41 |
+
|
42 |
+
bool is_int() override {
|
43 |
+
return true;
|
44 |
+
}
|
45 |
+
|
46 |
+
bool is_float() override {
|
47 |
+
return false;
|
48 |
+
}
|
49 |
+
|
50 |
+
bool is_bool() override {
|
51 |
+
return false;
|
52 |
+
}
|
53 |
+
|
54 |
+
bool has_hint() override {
|
55 |
+
return true;
|
56 |
+
}
|
57 |
+
|
58 |
+
c10::SymNode wrap_int(int64_t num) override {
|
59 |
+
return SymNode(c10::make_intrusive<ConstantSymNodeImpl<int64_t>>(num));
|
60 |
+
};
|
61 |
+
|
62 |
+
int64_t guard_int(const char* file, int64_t line) override {
|
63 |
+
TORCH_CHECK(false);
|
64 |
+
}
|
65 |
+
|
66 |
+
double guard_float(const char* file, int64_t line) override {
|
67 |
+
TORCH_CHECK(false, "not a float");
|
68 |
+
}
|
69 |
+
|
70 |
+
bool guard_bool(const char* file, int64_t line) override {
|
71 |
+
TORCH_CHECK(false, "not a bool");
|
72 |
+
}
|
73 |
+
|
74 |
+
int64_t int_() override {
|
75 |
+
TORCH_CHECK(false);
|
76 |
+
}
|
77 |
+
|
78 |
+
std::string str() override {
|
79 |
+
if (coeff_ == 1) {
|
80 |
+
return "j" + std::to_string(val_);
|
81 |
+
}
|
82 |
+
return std::to_string(coeff_) + "*j" + std::to_string(val_);
|
83 |
+
}
|
84 |
+
|
85 |
+
// NOTE [ Inequalities with SingletonInt ]
|
86 |
+
//
|
87 |
+
// The semantics of SingletonInt when it comes to relations is that it is
|
88 |
+
// treated as integer known to be within a certain range,
|
89 |
+
//
|
90 |
+
// j0 \in [2, int64_t::max]
|
91 |
+
//
|
92 |
+
// allowing us to answer queries like j0 >= 1 (True), and j0 == 0 (False).
|
93 |
+
// This is a useful default range for the raggedness pattern of a jagged
|
94 |
+
// tensor (1) since sizes are non-negative, and (2) we need to get past 0/1
|
95 |
+
// specialization checks.
|
96 |
+
//
|
97 |
+
// [ Indeterminate inequalities error out ]
|
98 |
+
//
|
99 |
+
// Given the semantic defined above, certain relations like j0 < 3 are thus
|
100 |
+
// indeterminable. In our impl today, evaluating such relations error
|
101 |
+
//
|
102 |
+
// It may seem convenient to just define indeterminate relations to return
|
103 |
+
// False, but the implementation we maintain in parallel using sympy does not
|
104 |
+
// allow this.
|
105 |
+
//
|
106 |
+
// Sympy only allows overriding of Ge. The other relations (Lt, Gt, Le) are,
|
107 |
+
// by consequence, all derived from Ge e.g., Lt(a, b) := !Ge(a, b). This
|
108 |
+
// would mean that means that if we define the indeterminate j0 >= 3 to be
|
109 |
+
// False, the also indeterminate j0 < 3 will be evaluated to be True!
|
110 |
+
//
|
111 |
+
// [ Coefficient are assumed positive ]
|
112 |
+
//
|
113 |
+
// For the purpose of computing inequalities, we consider the coefficient of
|
114 |
+
// the SingletonInt to be a positive integer.
|
115 |
+
//
|
116 |
+
// Thus, no modifications are needed to the logic since
|
117 |
+
// j0 >= k implies coeff * j0 >= k
|
118 |
+
//
|
119 |
+
c10::SymNode eq(const c10::SymNode& other) override;
|
120 |
+
c10::SymNode ne(const c10::SymNode& other) override;
|
121 |
+
c10::SymNode ge(const c10::SymNode& other) override;
|
122 |
+
c10::SymNode gt(const c10::SymNode& other) override;
|
123 |
+
c10::SymNode lt(const c10::SymNode& other) override;
|
124 |
+
c10::SymNode le(const c10::SymNode& other) override;
|
125 |
+
c10::SymNode mul(const c10::SymNode& other) override;
|
126 |
+
|
127 |
+
c10::optional<int64_t> singleton_int() override {
|
128 |
+
return val_;
|
129 |
+
}
|
130 |
+
|
131 |
+
c10::optional<int64_t> singleton_coeff() override {
|
132 |
+
return coeff_;
|
133 |
+
}
|
134 |
+
|
135 |
+
bool is_symbolic() override {
|
136 |
+
return false;
|
137 |
+
}
|
138 |
+
|
139 |
+
#define DEFINE_BINARY_NOT_SUPPORTED(name) \
|
140 |
+
c10::SymNode name(const c10::SymNode& other) override { \
|
141 |
+
TORCH_CHECK(false, #name " not supported by SingletonSymNode"); \
|
142 |
+
}
|
143 |
+
|
144 |
+
DEFINE_BINARY_NOT_SUPPORTED(add)
|
145 |
+
DEFINE_BINARY_NOT_SUPPORTED(sub)
|
146 |
+
DEFINE_BINARY_NOT_SUPPORTED(truediv)
|
147 |
+
DEFINE_BINARY_NOT_SUPPORTED(pow)
|
148 |
+
DEFINE_BINARY_NOT_SUPPORTED(floordiv)
|
149 |
+
DEFINE_BINARY_NOT_SUPPORTED(mod)
|
150 |
+
DEFINE_BINARY_NOT_SUPPORTED(sym_min)
|
151 |
+
DEFINE_BINARY_NOT_SUPPORTED(sym_max)
|
152 |
+
DEFINE_BINARY_NOT_SUPPORTED(sym_and)
|
153 |
+
DEFINE_BINARY_NOT_SUPPORTED(sym_or)
|
154 |
+
|
155 |
+
#undef DEFINE_BINARY_NOT_SUPPORTED
|
156 |
+
|
157 |
+
#define DEFINE_NOT_SUPPORTED(name) \
|
158 |
+
c10::SymNode name() override { \
|
159 |
+
TORCH_CHECK(false, #name " is not supported by SingletonSymNode"); \
|
160 |
+
}
|
161 |
+
|
162 |
+
DEFINE_NOT_SUPPORTED(sym_not)
|
163 |
+
DEFINE_NOT_SUPPORTED(ceil)
|
164 |
+
DEFINE_NOT_SUPPORTED(floor)
|
165 |
+
DEFINE_NOT_SUPPORTED(neg)
|
166 |
+
DEFINE_NOT_SUPPORTED(clone)
|
167 |
+
DEFINE_NOT_SUPPORTED(sym_float)
|
168 |
+
|
169 |
+
#undef DEFINE_NOT_SUPPORTED
|
170 |
+
|
171 |
+
private:
|
172 |
+
int64_t val_;
|
173 |
+
int64_t coeff_;
|
174 |
+
};
|
175 |
+
|
176 |
+
} // namespace c10
|
env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/Storage.h
ADDED
@@ -0,0 +1,261 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <c10/core/StorageImpl.h>
|
4 |
+
#include <c10/util/ExclusivelyOwned.h>
|
5 |
+
|
6 |
+
namespace c10 {
|
7 |
+
|
8 |
+
struct Storage;
|
9 |
+
|
10 |
+
C10_API bool isSharedStorageAlias(
|
11 |
+
const Storage& storage0,
|
12 |
+
const Storage& storage1);
|
13 |
+
|
14 |
+
struct C10_API Storage {
|
15 |
+
public:
|
16 |
+
struct use_byte_size_t {};
|
17 |
+
struct unsafe_borrow_t {
|
18 |
+
explicit unsafe_borrow_t() = default;
|
19 |
+
};
|
20 |
+
|
21 |
+
Storage() = default;
|
22 |
+
Storage(c10::intrusive_ptr<StorageImpl> ptr)
|
23 |
+
: storage_impl_(std::move(ptr)) {}
|
24 |
+
|
25 |
+
// Allocates memory buffer using given allocator and creates a storage with it
|
26 |
+
Storage(
|
27 |
+
use_byte_size_t /*use_byte_size*/,
|
28 |
+
SymInt size_bytes,
|
29 |
+
Allocator* allocator = nullptr,
|
30 |
+
bool resizable = false)
|
31 |
+
: storage_impl_(c10::make_intrusive<StorageImpl>(
|
32 |
+
StorageImpl::use_byte_size_t(),
|
33 |
+
std::move(size_bytes),
|
34 |
+
allocator,
|
35 |
+
resizable)) {}
|
36 |
+
|
37 |
+
// Creates storage with pre-allocated memory buffer. Allocator is given for
|
38 |
+
// potential future reallocations, however it can be nullptr if the storage
|
39 |
+
// is non-resizable
|
40 |
+
Storage(
|
41 |
+
use_byte_size_t /*use_byte_size*/,
|
42 |
+
size_t size_bytes,
|
43 |
+
at::DataPtr data_ptr,
|
44 |
+
at::Allocator* allocator = nullptr,
|
45 |
+
bool resizable = false)
|
46 |
+
: storage_impl_(c10::make_intrusive<StorageImpl>(
|
47 |
+
StorageImpl::use_byte_size_t(),
|
48 |
+
size_bytes,
|
49 |
+
std::move(data_ptr),
|
50 |
+
allocator,
|
51 |
+
resizable)) {}
|
52 |
+
|
53 |
+
protected:
|
54 |
+
explicit Storage(unsafe_borrow_t, const Storage& rhs)
|
55 |
+
: storage_impl_(c10::intrusive_ptr<c10::StorageImpl>::reclaim(
|
56 |
+
rhs.storage_impl_.get())) {}
|
57 |
+
|
58 |
+
friend MaybeOwnedTraits<Storage>;
|
59 |
+
|
60 |
+
public:
|
61 |
+
// Legacy constructor for partially initialized (dtype or memory) storages
|
62 |
+
// that can be temporarily created with Caffe2 APIs. See the note on top of
|
63 |
+
// TensorImpl.h for details.
|
64 |
+
static Storage create_legacy(at::Device device) {
|
65 |
+
auto allocator = GetAllocator(device.type());
|
66 |
+
return Storage(c10::make_intrusive<StorageImpl>(
|
67 |
+
StorageImpl::use_byte_size_t(),
|
68 |
+
0,
|
69 |
+
allocator->allocate(0), // materialize a non-default Device.
|
70 |
+
allocator,
|
71 |
+
true));
|
72 |
+
}
|
73 |
+
|
74 |
+
// Mimic create_legacy, but without requiring a newly-created StorageImpl.
|
75 |
+
void reset_legacy() {
|
76 |
+
TORCH_CHECK(resizable() && allocator());
|
77 |
+
set_nbytes(0);
|
78 |
+
set_data_ptr_noswap(allocator()->allocate(0));
|
79 |
+
}
|
80 |
+
|
81 |
+
// TODO: remove later
|
82 |
+
void set_nbytes(size_t size_bytes) const {
|
83 |
+
storage_impl_.get()->set_nbytes(size_bytes);
|
84 |
+
}
|
85 |
+
|
86 |
+
void set_nbytes(c10::SymInt size_bytes) const {
|
87 |
+
storage_impl_.get()->set_nbytes(std::move(size_bytes));
|
88 |
+
}
|
89 |
+
|
90 |
+
bool resizable() const {
|
91 |
+
return storage_impl_->resizable();
|
92 |
+
}
|
93 |
+
|
94 |
+
size_t nbytes() const {
|
95 |
+
return storage_impl_->nbytes();
|
96 |
+
}
|
97 |
+
|
98 |
+
SymInt sym_nbytes() const {
|
99 |
+
return storage_impl_->sym_nbytes();
|
100 |
+
}
|
101 |
+
// get() use here is to get const-correctness
|
102 |
+
|
103 |
+
const void* data() const {
|
104 |
+
return storage_impl_->data();
|
105 |
+
}
|
106 |
+
|
107 |
+
void* mutable_data() const {
|
108 |
+
return storage_impl_->mutable_data();
|
109 |
+
}
|
110 |
+
|
111 |
+
at::DataPtr& mutable_data_ptr() const {
|
112 |
+
return storage_impl_->mutable_data_ptr();
|
113 |
+
}
|
114 |
+
|
115 |
+
const at::DataPtr& data_ptr() const {
|
116 |
+
return storage_impl_->data_ptr();
|
117 |
+
}
|
118 |
+
|
119 |
+
// Returns the previous data_ptr
|
120 |
+
at::DataPtr set_data_ptr(at::DataPtr&& data_ptr) const {
|
121 |
+
return storage_impl_.get()->set_data_ptr(std::move(data_ptr));
|
122 |
+
}
|
123 |
+
|
124 |
+
void set_data_ptr_noswap(at::DataPtr&& data_ptr) const {
|
125 |
+
return storage_impl_.get()->set_data_ptr_noswap(std::move(data_ptr));
|
126 |
+
}
|
127 |
+
|
128 |
+
DeviceType device_type() const {
|
129 |
+
return storage_impl_->device_type();
|
130 |
+
}
|
131 |
+
|
132 |
+
at::Allocator* allocator() const {
|
133 |
+
return storage_impl_.get()->allocator();
|
134 |
+
}
|
135 |
+
|
136 |
+
at::Device device() const {
|
137 |
+
return storage_impl_->device();
|
138 |
+
}
|
139 |
+
|
140 |
+
StorageImpl* unsafeReleaseStorageImpl() {
|
141 |
+
return storage_impl_.release();
|
142 |
+
}
|
143 |
+
|
144 |
+
StorageImpl* unsafeGetStorageImpl() const noexcept {
|
145 |
+
return storage_impl_.get();
|
146 |
+
}
|
147 |
+
|
148 |
+
c10::weak_intrusive_ptr<StorageImpl> getWeakStorageImpl() const {
|
149 |
+
return c10::weak_intrusive_ptr<StorageImpl>(storage_impl_);
|
150 |
+
}
|
151 |
+
|
152 |
+
operator bool() const {
|
153 |
+
return storage_impl_;
|
154 |
+
}
|
155 |
+
|
156 |
+
size_t use_count() const {
|
157 |
+
return storage_impl_.use_count();
|
158 |
+
}
|
159 |
+
|
160 |
+
inline bool unique() const {
|
161 |
+
return storage_impl_.unique();
|
162 |
+
}
|
163 |
+
|
164 |
+
bool is_alias_of(const Storage& other) const {
|
165 |
+
return (
|
166 |
+
storage_impl_ == other.storage_impl_ ||
|
167 |
+
isSharedStorageAlias(*this, other));
|
168 |
+
}
|
169 |
+
|
170 |
+
void UniqueStorageShareExternalPointer(
|
171 |
+
void* src,
|
172 |
+
size_t capacity,
|
173 |
+
DeleterFnPtr d = nullptr) {
|
174 |
+
if (!storage_impl_.unique()) {
|
175 |
+
TORCH_CHECK(
|
176 |
+
false,
|
177 |
+
"UniqueStorageShareExternalPointer can only be called when use_count == 1");
|
178 |
+
}
|
179 |
+
storage_impl_->UniqueStorageShareExternalPointer(src, capacity, d);
|
180 |
+
}
|
181 |
+
|
182 |
+
void UniqueStorageShareExternalPointer(
|
183 |
+
at::DataPtr&& data_ptr,
|
184 |
+
size_t capacity) {
|
185 |
+
if (!storage_impl_.unique()) {
|
186 |
+
TORCH_CHECK(
|
187 |
+
false,
|
188 |
+
"UniqueStorageShareExternalPointer can only be called when use_count == 1");
|
189 |
+
}
|
190 |
+
storage_impl_->UniqueStorageShareExternalPointer(
|
191 |
+
std::move(data_ptr), capacity);
|
192 |
+
}
|
193 |
+
|
194 |
+
protected:
|
195 |
+
c10::intrusive_ptr<StorageImpl> storage_impl_;
|
196 |
+
};
|
197 |
+
|
198 |
+
template <>
|
199 |
+
struct MaybeOwnedTraits<c10::Storage> {
|
200 |
+
using owned_type = c10::Storage;
|
201 |
+
using borrow_type = c10::Storage;
|
202 |
+
|
203 |
+
static borrow_type createBorrow(const owned_type& from) {
|
204 |
+
return borrow_type(borrow_type::unsafe_borrow_t{}, from);
|
205 |
+
}
|
206 |
+
|
207 |
+
static void assignBorrow(borrow_type& lhs, const borrow_type& rhs) {
|
208 |
+
lhs.unsafeReleaseStorageImpl();
|
209 |
+
lhs = borrow_type(borrow_type::unsafe_borrow_t{}, rhs);
|
210 |
+
}
|
211 |
+
|
212 |
+
static void destroyBorrow(borrow_type& toDestroy) {
|
213 |
+
toDestroy.unsafeReleaseStorageImpl(); // "leak" it, but it was already +0.
|
214 |
+
}
|
215 |
+
|
216 |
+
static const owned_type& referenceFromBorrow(const borrow_type& borrow) {
|
217 |
+
return borrow;
|
218 |
+
}
|
219 |
+
|
220 |
+
static const owned_type* pointerFromBorrow(const borrow_type& borrow) {
|
221 |
+
return &borrow;
|
222 |
+
}
|
223 |
+
|
224 |
+
static bool debugBorrowIsValid(const borrow_type& /*borrow*/) {
|
225 |
+
return true;
|
226 |
+
}
|
227 |
+
};
|
228 |
+
|
229 |
+
template <>
|
230 |
+
struct ExclusivelyOwnedTraits<c10::Storage> {
|
231 |
+
using repr_type = c10::Storage;
|
232 |
+
using pointer_type = c10::Storage*;
|
233 |
+
using const_pointer_type = const c10::Storage*;
|
234 |
+
|
235 |
+
static repr_type nullRepr() {
|
236 |
+
return c10::Storage();
|
237 |
+
}
|
238 |
+
|
239 |
+
template <class... Args>
|
240 |
+
static repr_type createInPlace(Args&&... args) {
|
241 |
+
return c10::Storage(std::forward<Args>(args)...);
|
242 |
+
}
|
243 |
+
|
244 |
+
static repr_type moveToRepr(c10::Storage&& x) {
|
245 |
+
return std::move(x);
|
246 |
+
}
|
247 |
+
|
248 |
+
static c10::Storage take(c10::Storage& x) {
|
249 |
+
return std::move(x);
|
250 |
+
}
|
251 |
+
|
252 |
+
static pointer_type getImpl(repr_type& x) {
|
253 |
+
return &x;
|
254 |
+
}
|
255 |
+
|
256 |
+
static const_pointer_type getImpl(const repr_type& x) {
|
257 |
+
return &x;
|
258 |
+
}
|
259 |
+
};
|
260 |
+
|
261 |
+
} // namespace c10
|
env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/StorageImpl.h
ADDED
@@ -0,0 +1,237 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <c10/core/Allocator.h>
|
4 |
+
#include <c10/core/SymInt.h>
|
5 |
+
#include <c10/core/impl/PyObjectSlot.h>
|
6 |
+
|
7 |
+
#include <c10/util/intrusive_ptr.h>
|
8 |
+
|
9 |
+
namespace c10 {
|
10 |
+
|
11 |
+
// A storage represents the underlying backing data buffer for a
|
12 |
+
// tensor. This concept was inherited from the original Torch7
|
13 |
+
// codebase; we'd kind of like to get rid of the concept
|
14 |
+
// (see https://github.com/pytorch/pytorch/issues/14797) but
|
15 |
+
// it's hard work and no one has gotten around to doing it.
|
16 |
+
//
|
17 |
+
// NB: storage is supposed to uniquely own a data pointer; e.g.,
|
18 |
+
// two non-null data pointers alias if and only if they are from
|
19 |
+
// the same storage. Technically you can violate this invariant
|
20 |
+
// (e.g., you can create a non-owning StorageImpl with at::from_blob)
|
21 |
+
// but a lot of things won't work correctly, including:
|
22 |
+
//
|
23 |
+
// - An ordinary deleter on such a storage is wrong, because normal deleters
|
24 |
+
// assume unique ownership, but if you have two storages at the same data,
|
25 |
+
// that implies there is some sort of shared ownership. So your deleter would
|
26 |
+
// have to actually be internally doing some sort of refcount thing
|
27 |
+
// - Deepcopy in Python side relies on storage equality and not data pointer
|
28 |
+
// equality; so if there are two separate storages pointing to the same data,
|
29 |
+
// the data will actually get duplicated in that case (one data ptr before,
|
30 |
+
// two data ptrs after)
|
31 |
+
// - Version counts won't work correctly, because we do all VC tracking at the
|
32 |
+
// level of storages (unless you explicitly disconnect the VC with detach);
|
33 |
+
// mutation because data pointers are the same are totally untracked
|
34 |
+
struct C10_API StorageImpl : public c10::intrusive_ptr_target {
|
35 |
+
public:
|
36 |
+
struct use_byte_size_t {};
|
37 |
+
|
38 |
+
StorageImpl(
|
39 |
+
use_byte_size_t /*use_byte_size*/,
|
40 |
+
SymInt size_bytes,
|
41 |
+
at::DataPtr data_ptr,
|
42 |
+
at::Allocator* allocator,
|
43 |
+
bool resizable)
|
44 |
+
: data_ptr_(std::move(data_ptr)),
|
45 |
+
size_bytes_(std::move(size_bytes)),
|
46 |
+
size_bytes_is_heap_allocated_(size_bytes_.is_heap_allocated()),
|
47 |
+
resizable_(resizable),
|
48 |
+
received_cuda_(false),
|
49 |
+
allocator_(allocator) {
|
50 |
+
if (resizable) {
|
51 |
+
TORCH_INTERNAL_ASSERT(
|
52 |
+
allocator_, "For resizable storage, allocator must be provided");
|
53 |
+
}
|
54 |
+
}
|
55 |
+
|
56 |
+
StorageImpl(
|
57 |
+
use_byte_size_t /*use_byte_size*/,
|
58 |
+
const SymInt& size_bytes,
|
59 |
+
at::Allocator* allocator,
|
60 |
+
bool resizable)
|
61 |
+
: StorageImpl(
|
62 |
+
use_byte_size_t(),
|
63 |
+
size_bytes,
|
64 |
+
size_bytes.is_heap_allocated()
|
65 |
+
? allocator->allocate(0)
|
66 |
+
: allocator->allocate(size_bytes.as_int_unchecked()),
|
67 |
+
allocator,
|
68 |
+
resizable) {}
|
69 |
+
|
70 |
+
StorageImpl& operator=(StorageImpl&& other) = delete;
|
71 |
+
StorageImpl& operator=(const StorageImpl&) = delete;
|
72 |
+
StorageImpl() = delete;
|
73 |
+
StorageImpl(StorageImpl&& other) = delete;
|
74 |
+
StorageImpl(const StorageImpl&) = delete;
|
75 |
+
~StorageImpl() override = default;
|
76 |
+
|
77 |
+
void reset() {
|
78 |
+
data_ptr_.clear();
|
79 |
+
size_bytes_ = 0;
|
80 |
+
size_bytes_is_heap_allocated_ = false;
|
81 |
+
}
|
82 |
+
|
83 |
+
// Destructor doesn't call release_resources because it's
|
84 |
+
// unnecessary; don't forget to change that if needed!
|
85 |
+
void release_resources() override {
|
86 |
+
data_ptr_.clear();
|
87 |
+
}
|
88 |
+
|
89 |
+
size_t nbytes() const {
|
90 |
+
// OK to do this instead of maybe_as_int as nbytes is guaranteed positive
|
91 |
+
TORCH_CHECK(!size_bytes_is_heap_allocated_);
|
92 |
+
return size_bytes_.as_int_unchecked();
|
93 |
+
}
|
94 |
+
|
95 |
+
SymInt sym_nbytes() const {
|
96 |
+
return size_bytes_;
|
97 |
+
}
|
98 |
+
|
99 |
+
// TODO: remove later
|
100 |
+
void set_nbytes(size_t size_bytes) {
|
101 |
+
size_bytes_ = size_bytes;
|
102 |
+
size_bytes_is_heap_allocated_ = false;
|
103 |
+
}
|
104 |
+
|
105 |
+
void set_nbytes(c10::SymInt size_bytes) {
|
106 |
+
size_bytes_ = std::move(size_bytes);
|
107 |
+
}
|
108 |
+
|
109 |
+
bool resizable() const {
|
110 |
+
return resizable_;
|
111 |
+
}
|
112 |
+
|
113 |
+
at::DataPtr& mutable_data_ptr() {
|
114 |
+
return data_ptr_;
|
115 |
+
}
|
116 |
+
|
117 |
+
const at::DataPtr& data_ptr() const {
|
118 |
+
return data_ptr_;
|
119 |
+
}
|
120 |
+
|
121 |
+
// Returns the previous data_ptr
|
122 |
+
at::DataPtr set_data_ptr(at::DataPtr&& data_ptr) {
|
123 |
+
at::DataPtr old_data_ptr(std::move(data_ptr_));
|
124 |
+
data_ptr_ = std::move(data_ptr);
|
125 |
+
return old_data_ptr;
|
126 |
+
}
|
127 |
+
|
128 |
+
void set_data_ptr_noswap(at::DataPtr&& data_ptr) {
|
129 |
+
data_ptr_ = std::move(data_ptr);
|
130 |
+
}
|
131 |
+
|
132 |
+
const void* data() const {
|
133 |
+
return data_ptr_.get();
|
134 |
+
}
|
135 |
+
|
136 |
+
void* mutable_data() {
|
137 |
+
return data_ptr_.mutable_get();
|
138 |
+
}
|
139 |
+
|
140 |
+
at::DeviceType device_type() const {
|
141 |
+
return data_ptr_.device().type();
|
142 |
+
}
|
143 |
+
|
144 |
+
at::Allocator* allocator() {
|
145 |
+
return allocator_;
|
146 |
+
}
|
147 |
+
|
148 |
+
const at::Allocator* allocator() const {
|
149 |
+
return allocator_;
|
150 |
+
}
|
151 |
+
|
152 |
+
// You generally shouldn't use this method, but it is occasionally
|
153 |
+
// useful if you want to override how a tensor will be reallocated,
|
154 |
+
// after it was already allocated (and its initial allocator was
|
155 |
+
// set)
|
156 |
+
void set_allocator(at::Allocator* allocator) {
|
157 |
+
allocator_ = allocator;
|
158 |
+
}
|
159 |
+
|
160 |
+
Device device() const {
|
161 |
+
return data_ptr_.device();
|
162 |
+
}
|
163 |
+
|
164 |
+
void set_resizable(bool resizable) {
|
165 |
+
if (resizable) {
|
166 |
+
// We need an allocator to be resizable
|
167 |
+
AT_ASSERT(allocator_);
|
168 |
+
}
|
169 |
+
resizable_ = resizable;
|
170 |
+
}
|
171 |
+
|
172 |
+
/**
|
173 |
+
* Can only be called when use_count is 1
|
174 |
+
*/
|
175 |
+
void UniqueStorageShareExternalPointer(
|
176 |
+
void* src,
|
177 |
+
size_t size_bytes,
|
178 |
+
DeleterFnPtr d = nullptr) {
|
179 |
+
UniqueStorageShareExternalPointer(
|
180 |
+
at::DataPtr(src, src, d, data_ptr_.device()), size_bytes);
|
181 |
+
}
|
182 |
+
|
183 |
+
/**
|
184 |
+
* Can only be called when use_count is 1
|
185 |
+
*/
|
186 |
+
void UniqueStorageShareExternalPointer(
|
187 |
+
at::DataPtr&& data_ptr,
|
188 |
+
size_t size_bytes) {
|
189 |
+
data_ptr_ = std::move(data_ptr);
|
190 |
+
size_bytes_ = size_bytes;
|
191 |
+
size_bytes_is_heap_allocated_ = false;
|
192 |
+
allocator_ = nullptr;
|
193 |
+
resizable_ = false;
|
194 |
+
}
|
195 |
+
|
196 |
+
// This method can be used only after storage construction and cannot be used
|
197 |
+
// to modify storage status
|
198 |
+
void set_received_cuda(bool received_cuda) {
|
199 |
+
received_cuda_ = received_cuda;
|
200 |
+
}
|
201 |
+
|
202 |
+
bool received_cuda() {
|
203 |
+
return received_cuda_;
|
204 |
+
}
|
205 |
+
|
206 |
+
impl::PyObjectSlot* pyobj_slot() {
|
207 |
+
return &pyobj_slot_;
|
208 |
+
}
|
209 |
+
|
210 |
+
const impl::PyObjectSlot* pyobj_slot() const {
|
211 |
+
return &pyobj_slot_;
|
212 |
+
}
|
213 |
+
|
214 |
+
private:
|
215 |
+
DataPtr data_ptr_;
|
216 |
+
SymInt size_bytes_;
|
217 |
+
bool size_bytes_is_heap_allocated_;
|
218 |
+
bool resizable_;
|
219 |
+
// Identifies that Storage was received from another process and doesn't have
|
220 |
+
// local to process cuda memory allocation
|
221 |
+
bool received_cuda_;
|
222 |
+
Allocator* allocator_;
|
223 |
+
impl::PyObjectSlot pyobj_slot_;
|
224 |
+
};
|
225 |
+
|
226 |
+
// Declare StorageImpl create function pointer types.
|
227 |
+
using StorageImplCreateHelper = intrusive_ptr<StorageImpl> (*)(
|
228 |
+
StorageImpl::use_byte_size_t,
|
229 |
+
SymInt size_bytes,
|
230 |
+
Allocator* allocator,
|
231 |
+
bool resizable);
|
232 |
+
|
233 |
+
C10_API void SetStorageImplCreate(DeviceType t, StorageImplCreateHelper fptr);
|
234 |
+
|
235 |
+
C10_API StorageImplCreateHelper GetStorageImplCreate(DeviceType t);
|
236 |
+
|
237 |
+
} // namespace c10
|
env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/Stream.h
ADDED
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <c10/core/Device.h>
|
4 |
+
|
5 |
+
namespace c10 {
|
6 |
+
|
7 |
+
/// An index representing a specific stream. A StreamId is not independently
|
8 |
+
/// meaningful without knowing the Device it is associated with; try to
|
9 |
+
/// use Stream rather than StreamId directly.
|
10 |
+
///
|
11 |
+
/// StreamIds are opaque; they are assigned by some DeviceType-specific
|
12 |
+
/// numbering system which is not visible to the user. HOWEVER, we
|
13 |
+
/// guarantee that StreamId 0 is always a valid stream, and corresponds
|
14 |
+
/// to some sort of "default" stream.
|
15 |
+
using StreamId = int64_t;
|
16 |
+
|
17 |
+
struct C10_API StreamData3 {
|
18 |
+
StreamId stream_id;
|
19 |
+
DeviceIndex device_index;
|
20 |
+
DeviceType device_type;
|
21 |
+
};
|
22 |
+
|
23 |
+
// NB: I decided not to call the above StreamIndex to avoid confusion with
|
24 |
+
// DeviceIndex. This way, you access device index with index(), and stream id
|
25 |
+
// with id()
|
26 |
+
|
27 |
+
/**
|
28 |
+
* A stream is a software mechanism used to synchronize launched kernels
|
29 |
+
* without requiring explicit synchronizations between kernels. The basic
|
30 |
+
* model is that every kernel launch is associated with a stream: every
|
31 |
+
* kernel on the same stream is implicitly synchronized so that if I launch
|
32 |
+
* kernels A and B on the same stream, A is guaranteed to finish before B
|
33 |
+
* launches. If I want B to run concurrently with A, I must schedule
|
34 |
+
* it on a different stream.
|
35 |
+
*
|
36 |
+
* The Stream class is a backend agnostic value class representing a stream
|
37 |
+
* which I may schedule a kernel on. Every stream is associated with a device,
|
38 |
+
* which is recorded in stream, which is used to avoid confusion about which
|
39 |
+
* device a stream refers to.
|
40 |
+
*
|
41 |
+
* Streams are explicitly thread-safe, in the sense that it is OK to pass
|
42 |
+
* a Stream from one thread to another, and kernels queued from two different
|
43 |
+
* threads will still get serialized appropriately. (Of course, the
|
44 |
+
* time when the kernels get queued is undetermined unless you synchronize
|
45 |
+
* host side ;)
|
46 |
+
*
|
47 |
+
* Stream does NOT have a default constructor. Streams are for expert
|
48 |
+
* users; if you want to use Streams, we're going to assume you know
|
49 |
+
* how to deal with C++ template error messages if you try to
|
50 |
+
* resize() a vector of Streams.
|
51 |
+
*
|
52 |
+
* Known instances of streams in backends:
|
53 |
+
*
|
54 |
+
* - cudaStream_t (CUDA)
|
55 |
+
* - hipStream_t (HIP)
|
56 |
+
* - cl_command_queue (OpenCL) (NB: Caffe2's existing OpenCL integration
|
57 |
+
* does NOT support command queues.)
|
58 |
+
*
|
59 |
+
* Because this class is device agnostic, it cannot provide backend-specific
|
60 |
+
* functionality (e.g., get the cudaStream_t of a CUDA stream.) There are
|
61 |
+
* wrapper classes which provide this functionality, e.g., CUDAStream.
|
62 |
+
*/
|
63 |
+
class C10_API Stream final {
|
64 |
+
private:
|
65 |
+
Device device_;
|
66 |
+
StreamId id_;
|
67 |
+
|
68 |
+
public:
|
69 |
+
enum Unsafe { UNSAFE };
|
70 |
+
enum Default { DEFAULT };
|
71 |
+
|
72 |
+
/// Unsafely construct a stream from a Device and a StreamId. In
|
73 |
+
/// general, only specific implementations of streams for a
|
74 |
+
/// backend should manufacture Stream directly in this way; other users
|
75 |
+
/// should use the provided APIs to get a stream. In particular,
|
76 |
+
/// we don't require backends to give any guarantees about non-zero
|
77 |
+
/// StreamIds; they are welcome to allocate in whatever way they like.
|
78 |
+
explicit Stream(Unsafe, Device device, StreamId id)
|
79 |
+
: device_(device), id_(id) {}
|
80 |
+
|
81 |
+
/// Construct the default stream of a Device. The default stream is
|
82 |
+
/// NOT the same as the current stream; default stream is a fixed stream
|
83 |
+
/// that never changes, whereas the current stream may be changed by
|
84 |
+
/// StreamGuard.
|
85 |
+
explicit Stream(Default, Device device) : device_(device), id_(0) {}
|
86 |
+
|
87 |
+
bool operator==(const Stream& other) const noexcept {
|
88 |
+
return this->device_ == other.device_ && this->id_ == other.id_;
|
89 |
+
}
|
90 |
+
bool operator!=(const Stream& other) const noexcept {
|
91 |
+
return !(*this == other);
|
92 |
+
}
|
93 |
+
|
94 |
+
Device device() const noexcept {
|
95 |
+
return device_;
|
96 |
+
}
|
97 |
+
DeviceType device_type() const noexcept {
|
98 |
+
return device_.type();
|
99 |
+
}
|
100 |
+
DeviceIndex device_index() const noexcept {
|
101 |
+
return device_.index();
|
102 |
+
}
|
103 |
+
StreamId id() const noexcept {
|
104 |
+
return id_;
|
105 |
+
}
|
106 |
+
|
107 |
+
// Enqueues a wait instruction in the stream's work queue.
|
108 |
+
// This instruction is a no-op unless the event is marked
|
109 |
+
// for recording. In that case the stream stops processing
|
110 |
+
// until the event is recorded.
|
111 |
+
template <typename T>
|
112 |
+
void wait(const T& event) const {
|
113 |
+
event.block(*this);
|
114 |
+
}
|
115 |
+
|
116 |
+
// Return whether all asynchronous work previously enqueued on this stream
|
117 |
+
// has completed running on the device.
|
118 |
+
bool query() const;
|
119 |
+
|
120 |
+
// Wait (by blocking the calling thread) until all asynchronous work enqueued
|
121 |
+
// on this stream has completed running on the device.
|
122 |
+
void synchronize() const;
|
123 |
+
|
124 |
+
// The purpose of this function is to more conveniently permit binding
|
125 |
+
// of Stream to and from Python. Without packing, I have to setup a whole
|
126 |
+
// class with two fields (device and stream id); with packing I can just
|
127 |
+
// store a single uint64_t.
|
128 |
+
//
|
129 |
+
// The particular way we pack streams into a uint64_t is considered an
|
130 |
+
// implementation detail and should not be relied upon.
|
131 |
+
uint64_t hash() const noexcept {
|
132 |
+
// Concat these together into a 64-bit integer
|
133 |
+
uint64_t bits = static_cast<uint64_t>(device_type()) << 56 |
|
134 |
+
static_cast<uint64_t>(device_index()) << 48 |
|
135 |
+
// Remove the sign extension part of the 64-bit address because
|
136 |
+
// the id might be used to hold a pointer.
|
137 |
+
(static_cast<uint64_t>(id()) & ((1ull << 48) - 1));
|
138 |
+
return bits;
|
139 |
+
}
|
140 |
+
|
141 |
+
struct StreamData3 pack3() const {
|
142 |
+
return {id(), device_index(), device_type()};
|
143 |
+
}
|
144 |
+
|
145 |
+
static Stream unpack3(
|
146 |
+
StreamId stream_id,
|
147 |
+
DeviceIndex device_index,
|
148 |
+
DeviceType device_type) {
|
149 |
+
TORCH_CHECK(isValidDeviceType(device_type));
|
150 |
+
return Stream(UNSAFE, Device(device_type, device_index), stream_id);
|
151 |
+
}
|
152 |
+
|
153 |
+
// I decided NOT to provide setters on this class, because really,
|
154 |
+
// why would you change the device of a stream? Just construct
|
155 |
+
// it correctly from the beginning dude.
|
156 |
+
};
|
157 |
+
|
158 |
+
C10_API std::ostream& operator<<(std::ostream& stream, const Stream& s);
|
159 |
+
|
160 |
+
} // namespace c10
|
161 |
+
|
162 |
+
namespace std {
|
163 |
+
template <>
|
164 |
+
struct hash<c10::Stream> {
|
165 |
+
size_t operator()(c10::Stream s) const noexcept {
|
166 |
+
return std::hash<uint64_t>{}(s.hash());
|
167 |
+
}
|
168 |
+
};
|
169 |
+
} // namespace std
|
env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/SymFloat.h
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <c10/core/SymBool.h>
|
4 |
+
#include <c10/core/SymNodeImpl.h>
|
5 |
+
#include <c10/macros/Macros.h>
|
6 |
+
#include <c10/util/Exception.h>
|
7 |
+
#include <c10/util/intrusive_ptr.h>
|
8 |
+
|
9 |
+
#include <limits>
|
10 |
+
|
11 |
+
namespace c10 {
|
12 |
+
|
13 |
+
// NB: this is actually double precision; we're using the Python naming here
|
14 |
+
class C10_API SymFloat {
|
15 |
+
public:
|
16 |
+
/*implicit*/ SymFloat(double d) : data_(d){};
|
17 |
+
SymFloat(SymNode ptr)
|
18 |
+
: data_(std::numeric_limits<double>::quiet_NaN()), ptr_(std::move(ptr)) {
|
19 |
+
TORCH_CHECK(ptr_->is_float());
|
20 |
+
};
|
21 |
+
SymFloat() : data_(0.0) {}
|
22 |
+
|
23 |
+
SymNodeImpl* toSymNodeImplUnowned() const {
|
24 |
+
return ptr_.get();
|
25 |
+
}
|
26 |
+
|
27 |
+
SymNodeImpl* release() && {
|
28 |
+
return std::move(ptr_).release();
|
29 |
+
}
|
30 |
+
|
31 |
+
// Only valid if is_symbolic()
|
32 |
+
SymNode toSymNodeImpl() const;
|
33 |
+
|
34 |
+
// Guaranteed to return a SymNode, wrapping using base if necessary
|
35 |
+
SymNode wrap_node(const SymNode& base) const;
|
36 |
+
|
37 |
+
double expect_float() const {
|
38 |
+
TORCH_CHECK(!is_symbolic());
|
39 |
+
return data_;
|
40 |
+
}
|
41 |
+
|
42 |
+
SymFloat operator+(const SymFloat&) const;
|
43 |
+
SymFloat operator-(const SymFloat&) const;
|
44 |
+
SymFloat operator*(const SymFloat&) const;
|
45 |
+
SymFloat operator/(const SymFloat&) const;
|
46 |
+
|
47 |
+
SymBool sym_eq(const SymFloat&) const;
|
48 |
+
SymBool sym_ne(const SymFloat&) const;
|
49 |
+
SymBool sym_lt(const SymFloat&) const;
|
50 |
+
SymBool sym_le(const SymFloat&) const;
|
51 |
+
SymBool sym_gt(const SymFloat&) const;
|
52 |
+
SymBool sym_ge(const SymFloat&) const;
|
53 |
+
|
54 |
+
bool operator==(const SymFloat& o) const {
|
55 |
+
return sym_eq(o).guard_bool(__FILE__, __LINE__);
|
56 |
+
}
|
57 |
+
bool operator!=(const SymFloat& o) const {
|
58 |
+
return sym_ne(o).guard_bool(__FILE__, __LINE__);
|
59 |
+
}
|
60 |
+
bool operator<(const SymFloat& o) const {
|
61 |
+
return sym_lt(o).guard_bool(__FILE__, __LINE__);
|
62 |
+
}
|
63 |
+
bool operator<=(const SymFloat& o) const {
|
64 |
+
return sym_le(o).guard_bool(__FILE__, __LINE__);
|
65 |
+
}
|
66 |
+
bool operator>(const SymFloat& o) const {
|
67 |
+
return sym_gt(o).guard_bool(__FILE__, __LINE__);
|
68 |
+
}
|
69 |
+
bool operator>=(const SymFloat& o) const {
|
70 |
+
return sym_ge(o).guard_bool(__FILE__, __LINE__);
|
71 |
+
}
|
72 |
+
|
73 |
+
SymFloat min(const SymFloat& sci) const;
|
74 |
+
SymFloat max(const SymFloat& sci) const;
|
75 |
+
|
76 |
+
// Need guidance on where to put this code
|
77 |
+
SymFloat sqrt() const;
|
78 |
+
|
79 |
+
// Insert a guard for the float to be its concrete value, and then return
|
80 |
+
// that value. This operation always works, even if the float is symbolic,
|
81 |
+
// so long as we know what the underlying value is. Don't blindly put this
|
82 |
+
// everywhere; you can cause overspecialization of PyTorch programs with
|
83 |
+
// this method.
|
84 |
+
//
|
85 |
+
// It should be called as guard_float(__FILE__, __LINE__). The file and line
|
86 |
+
// number can be used to diagnose overspecialization.
|
87 |
+
double guard_float(const char* file, int64_t line) const;
|
88 |
+
|
89 |
+
bool has_hint() const;
|
90 |
+
|
91 |
+
// N.B. It's important to keep this definition in the header
|
92 |
+
// as we expect if checks to be folded for mobile builds
|
93 |
+
// where `is_symbolic` is always false
|
94 |
+
C10_ALWAYS_INLINE bool is_symbolic() const {
|
95 |
+
return ptr_;
|
96 |
+
}
|
97 |
+
|
98 |
+
double as_float_unchecked() const {
|
99 |
+
return data_;
|
100 |
+
}
|
101 |
+
|
102 |
+
private:
|
103 |
+
// TODO: optimize to union
|
104 |
+
double data_;
|
105 |
+
SymNode ptr_;
|
106 |
+
};
|
107 |
+
|
108 |
+
C10_API std::ostream& operator<<(std::ostream& os, const SymFloat& s);
|
109 |
+
} // namespace c10
|
env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/SymInt.h
ADDED
@@ -0,0 +1,362 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <c10/core/SymBool.h>
|
4 |
+
#include <c10/core/SymNodeImpl.h>
|
5 |
+
#include <c10/macros/Macros.h>
|
6 |
+
#include <c10/util/Exception.h>
|
7 |
+
#include <c10/util/Optional.h>
|
8 |
+
|
9 |
+
#include <numeric>
|
10 |
+
#include <type_traits>
|
11 |
+
|
12 |
+
namespace c10 {
|
13 |
+
|
14 |
+
class SymFloat;
|
15 |
+
|
16 |
+
// SymInt represents either a regular int64_t, or a symbolic integer
|
17 |
+
// (represented in a type erased way as SymNode). The intention is for SymInt
|
18 |
+
// to represent symbolic sizes that arise when doing shape computation in
|
19 |
+
// operator kernels. This allows for tracing through programs without baking in
|
20 |
+
// concrete sizes into kernel calls.
|
21 |
+
//
|
22 |
+
// SymInt has an API equivalent to int64_t. In particular, it is a value type.
|
23 |
+
// Internally, SymInt is represented in a clever packed way, so that it only
|
24 |
+
// occupies one word of space; but morally, it is a union between an int64_t
|
25 |
+
// and an intrusive pointer to SymNodeImpl.
|
26 |
+
//
|
27 |
+
// Invariant: the referenced SymNodeImpl is guaranteed to be a SymNode where
|
28 |
+
// is_int() returns true
|
29 |
+
|
30 |
+
class C10_API SymInt {
|
31 |
+
public:
|
32 |
+
enum Unchecked {
|
33 |
+
UNCHECKED,
|
34 |
+
};
|
35 |
+
|
36 |
+
/*implicit*/ SymInt(int64_t d) : data_(d) {
|
37 |
+
if (is_heap_allocated()) {
|
38 |
+
// Large negative number, heap allocate it
|
39 |
+
promote_to_negative();
|
40 |
+
}
|
41 |
+
};
|
42 |
+
SymInt() : data_(0) {}
|
43 |
+
SymInt(SymNode n);
|
44 |
+
|
45 |
+
// unchecked c-tor accepting raw `data_`
|
46 |
+
// One appropriate use for this is when you are constructing a symint
|
47 |
+
// in a situation where you know it is non-negative (or, if it is negative,
|
48 |
+
// the negative value is -1; i.e., not user controlled)
|
49 |
+
SymInt(Unchecked, int64_t d) : data_(d) {}
|
50 |
+
|
51 |
+
// TODO: these implementations are not optimal because they allocate a
|
52 |
+
// temporary and then use the move constructor/assignment
|
53 |
+
SymInt(const SymInt& s) : data_(0) {
|
54 |
+
if (s.is_heap_allocated()) {
|
55 |
+
*this = SymInt(s.toSymNode());
|
56 |
+
} else {
|
57 |
+
data_ = s.data_;
|
58 |
+
}
|
59 |
+
}
|
60 |
+
SymInt(SymInt&& s) noexcept : data_(s.data_) {
|
61 |
+
s.data_ = 0;
|
62 |
+
}
|
63 |
+
|
64 |
+
SymInt& operator=(const SymInt& s) {
|
65 |
+
if (this != &s) {
|
66 |
+
if (s.is_heap_allocated()) {
|
67 |
+
*this = SymInt(s.toSymNode());
|
68 |
+
} else {
|
69 |
+
data_ = s.data_;
|
70 |
+
}
|
71 |
+
}
|
72 |
+
return *this;
|
73 |
+
}
|
74 |
+
SymInt& operator=(SymInt&& s) noexcept {
|
75 |
+
if (this != &s) {
|
76 |
+
release_(); // release the current SymNode if any
|
77 |
+
data_ = s.data_;
|
78 |
+
if (s.is_heap_allocated())
|
79 |
+
s.data_ = 0;
|
80 |
+
};
|
81 |
+
return *this;
|
82 |
+
}
|
83 |
+
|
84 |
+
SymNodeImpl* toSymNodeImplUnowned() const {
|
85 |
+
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(is_heap_allocated());
|
86 |
+
uint64_t unextended_bits = static_cast<uint64_t>(data_) & ~MASK;
|
87 |
+
uint64_t sign_bit_mask = 1ULL << (62 - 1);
|
88 |
+
// https://stackoverflow.com/questions/42534749/signed-extension-from-24-bit-to-32-bit-in-c
|
89 |
+
uint64_t extended_bits = (unextended_bits ^ sign_bit_mask) - sign_bit_mask;
|
90 |
+
return static_cast<SymNodeImpl*>(
|
91 |
+
reinterpret_cast<void*>(static_cast<uintptr_t>(extended_bits)));
|
92 |
+
}
|
93 |
+
|
94 |
+
void release_() {
|
95 |
+
if (is_heap_allocated()) {
|
96 |
+
SymNode::reclaim(toSymNodeImplUnowned()); // steal
|
97 |
+
}
|
98 |
+
}
|
99 |
+
|
100 |
+
SymNodeImpl* release() && {
|
101 |
+
#ifndef C10_MOBILE
|
102 |
+
TORCH_INTERNAL_ASSERT(is_heap_allocated());
|
103 |
+
auto* r = toSymNodeImplUnowned();
|
104 |
+
data_ = 0; // transfer ownership
|
105 |
+
return r;
|
106 |
+
#else
|
107 |
+
TORCH_INTERNAL_ASSERT(false);
|
108 |
+
#endif
|
109 |
+
}
|
110 |
+
|
111 |
+
// Only valid if is_heap_allocated()
|
112 |
+
SymNode toSymNode() const;
|
113 |
+
|
114 |
+
// Guaranteed to return a SymNode, wrapping using base if necessary
|
115 |
+
SymNode wrap_node(const SymNode& base) const;
|
116 |
+
|
117 |
+
~SymInt() {
|
118 |
+
release_();
|
119 |
+
}
|
120 |
+
|
121 |
+
// Require the int to be non-symbolic, and if it is symbolic raise an
|
122 |
+
// error. This is safe to use for C++ code that doesn't work for symbolic
|
123 |
+
// shapes, and you don't have time to fix it immediately, as if we
|
124 |
+
// try to trigger the path in C++ you'll appropriately get an error
|
125 |
+
int64_t expect_int() const {
|
126 |
+
if (auto r = maybe_as_int()) {
|
127 |
+
return *r;
|
128 |
+
}
|
129 |
+
TORCH_CHECK_ALWAYS_SHOW_CPP_STACKTRACE(
|
130 |
+
false, "when unpacking SymInt, expected int but got ", *this);
|
131 |
+
}
|
132 |
+
|
133 |
+
// Test if we have a hint for this int (e.g., guard_int would work).
|
134 |
+
// Most of the time this is true; it is only false when you have
|
135 |
+
// an unbacked SymInt.
|
136 |
+
bool has_hint() const;
|
137 |
+
|
138 |
+
// Insert a guard for the int to be its concrete value, and then return
|
139 |
+
// that value. This operation always works, even if the int is symbolic,
|
140 |
+
// so long as we know what the underlying value is (e.g., this won't work
|
141 |
+
// if you call it on the size of nonzero output). Don't blindly put this
|
142 |
+
// everywhere; you can cause overspecialization of PyTorch programs with
|
143 |
+
// this method.
|
144 |
+
//
|
145 |
+
// It should be called as guard_int(__FILE__, __LINE__). The file and line
|
146 |
+
// number can be used to diagnose overspecialization.
|
147 |
+
int64_t guard_int(const char* file, int64_t line) const;
|
148 |
+
|
149 |
+
// Insert a guard that this SymInt must be size-like, returning true if
|
150 |
+
// the integer actually is >= 0. Unlike manually performing a >= 0 test,
|
151 |
+
// if the SymInt in question is an unbacked SymInt (or, potentially in the
|
152 |
+
// future, if it contains unbacked SymInts), we will also treat the
|
153 |
+
// unbacked SymInt as statically testing >= 2 (which will prevent us from
|
154 |
+
// choking on, e.g., contiguity checks.)
|
155 |
+
bool expect_size(const char* file, int64_t line) const;
|
156 |
+
|
157 |
+
// Distinguish actual symbolic values from constants stored on the heap
|
158 |
+
bool is_symbolic() const {
|
159 |
+
return is_heap_allocated() &&
|
160 |
+
!toSymNodeImplUnowned()->constant_int().has_value();
|
161 |
+
}
|
162 |
+
|
163 |
+
// N.B. It's important to keep this definition in the header
|
164 |
+
// as we expect if checks to be folded for mobile builds
|
165 |
+
// where `is_heap_allocated` is always false and optimize dead code paths
|
166 |
+
C10_ALWAYS_INLINE bool is_heap_allocated() const {
|
167 |
+
#ifdef C10_MOBILE
|
168 |
+
return false;
|
169 |
+
#else
|
170 |
+
return !check_range(data_);
|
171 |
+
#endif
|
172 |
+
}
|
173 |
+
|
174 |
+
SymInt operator+(const SymInt& sci) const;
|
175 |
+
SymInt operator-(const SymInt& sci) const;
|
176 |
+
SymInt operator*(const SymInt& sci) const;
|
177 |
+
SymInt operator/(const SymInt& sci) const;
|
178 |
+
SymInt operator%(const SymInt& sci) const;
|
179 |
+
void operator*=(const SymInt& sci);
|
180 |
+
void operator+=(const SymInt& sci);
|
181 |
+
void operator/=(const SymInt& sci);
|
182 |
+
|
183 |
+
SymInt clone() const;
|
184 |
+
|
185 |
+
SymBool sym_eq(const SymInt&) const;
|
186 |
+
SymBool sym_ne(const SymInt&) const;
|
187 |
+
SymBool sym_lt(const SymInt&) const;
|
188 |
+
SymBool sym_le(const SymInt&) const;
|
189 |
+
SymBool sym_gt(const SymInt&) const;
|
190 |
+
SymBool sym_ge(const SymInt&) const;
|
191 |
+
|
192 |
+
bool operator==(const SymInt& o) const {
|
193 |
+
return sym_eq(o).guard_bool(__FILE__, __LINE__);
|
194 |
+
}
|
195 |
+
bool operator!=(const SymInt& o) const {
|
196 |
+
return sym_ne(o).guard_bool(__FILE__, __LINE__);
|
197 |
+
}
|
198 |
+
bool operator<(const SymInt& o) const {
|
199 |
+
return sym_lt(o).guard_bool(__FILE__, __LINE__);
|
200 |
+
}
|
201 |
+
bool operator<=(const SymInt& o) const {
|
202 |
+
return sym_le(o).guard_bool(__FILE__, __LINE__);
|
203 |
+
}
|
204 |
+
bool operator>(const SymInt& o) const {
|
205 |
+
return sym_gt(o).guard_bool(__FILE__, __LINE__);
|
206 |
+
}
|
207 |
+
bool operator>=(const SymInt& o) const {
|
208 |
+
return sym_ge(o).guard_bool(__FILE__, __LINE__);
|
209 |
+
}
|
210 |
+
|
211 |
+
SymInt min(const SymInt& sci) const;
|
212 |
+
SymInt max(const SymInt& sci) const;
|
213 |
+
|
214 |
+
// If both are symbolic, this checks if
|
215 |
+
// they share the same node.
|
216 |
+
// If both are not symbolic this just checks normal equality.
|
217 |
+
bool is_same(const SymInt& other) const;
|
218 |
+
|
219 |
+
operator SymFloat() const;
|
220 |
+
|
221 |
+
// Don't use this. Prefer maybe_as_int instead
|
222 |
+
int64_t as_int_unchecked() const {
|
223 |
+
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(!is_heap_allocated());
|
224 |
+
return data_;
|
225 |
+
}
|
226 |
+
|
227 |
+
c10::optional<int64_t> maybe_as_int() const {
|
228 |
+
if (!is_heap_allocated()) {
|
229 |
+
return c10::make_optional(data_);
|
230 |
+
}
|
231 |
+
auto* node = toSymNodeImplUnowned();
|
232 |
+
if (auto c = node->constant_int()) {
|
233 |
+
return c;
|
234 |
+
}
|
235 |
+
return node->maybe_as_int();
|
236 |
+
}
|
237 |
+
|
238 |
+
// Return whether the integer is directly coercible to a SymInt
|
239 |
+
// without requiring heap allocation. You don't need to use this
|
240 |
+
// to check if you can pass an integer to SymInt; this is guaranteed
|
241 |
+
// to work (it just might heap allocate!)
|
242 |
+
static bool check_range(int64_t i) {
|
243 |
+
return i > MAX_UNREPRESENTABLE_INT;
|
244 |
+
}
|
245 |
+
|
246 |
+
// Return the min representable integer as a SymInt without
|
247 |
+
// heap allocation. For quantities that count bytes (or larger),
|
248 |
+
// this is still much larger than you need, so you may consider
|
249 |
+
// using this as a more efficient version of MIN_INT
|
250 |
+
static constexpr int64_t min_representable_int() {
|
251 |
+
return MAX_UNREPRESENTABLE_INT + 1;
|
252 |
+
}
|
253 |
+
|
254 |
+
private:
|
255 |
+
void promote_to_negative();
|
256 |
+
|
257 |
+
// Constraints on the internal representation:
|
258 |
+
//
|
259 |
+
// - Should represent positive and small negative ints
|
260 |
+
// - No conversion necessary for operations on ints
|
261 |
+
// - Must represent valid 64-bit pointers
|
262 |
+
// - Is symbolic test should be FAST (two arithmetic instructions is too
|
263 |
+
// much).
|
264 |
+
// This code being a hotpath is based on Strobelight profiles of
|
265 |
+
// is_heap_allocated(). FB only: https://fburl.com/strobelight/5l50ncxd
|
266 |
+
// (you will need to change the time window).
|
267 |
+
//
|
268 |
+
// So, the scheme is to reserve large negative numbers (assuming
|
269 |
+
// two's complement):
|
270 |
+
//
|
271 |
+
// - 0b0.... means we are a positive int
|
272 |
+
// - 0b11... means we are a small negative int
|
273 |
+
// - 0b10... means we are are a pointer. This means that
|
274 |
+
// [-2^63, -2^62-1] are not representable as ints.
|
275 |
+
// We don't actually need all of this space as on x86_64
|
276 |
+
// as the top 16bits aren't used for anything
|
277 |
+
static constexpr uint64_t MASK = 1ULL << 63 | 1ULL << 62 | 1ULL << 61;
|
278 |
+
static constexpr uint64_t IS_SYM = 1ULL << 63 | 1ULL << 61;
|
279 |
+
// We must manually translate the bit pattern test into a greater
|
280 |
+
// than test because compiler doesn't figure it out:
|
281 |
+
// https://godbolt.org/z/356aferaW
|
282 |
+
static constexpr int64_t MAX_UNREPRESENTABLE_INT =
|
283 |
+
-1LL & static_cast<int64_t>(~(1ULL << 62));
|
284 |
+
int64_t data_;
|
285 |
+
};
|
286 |
+
|
287 |
+
/// Sum of a list of SymInt; accumulates into the c10::SymInt expression
|
288 |
+
template <
|
289 |
+
typename C,
|
290 |
+
typename std::enable_if<
|
291 |
+
std::is_same<typename C::value_type, c10::SymInt>::value,
|
292 |
+
int>::type = 0>
|
293 |
+
inline c10::SymInt multiply_integers(const C& container) {
|
294 |
+
return std::accumulate(
|
295 |
+
container.begin(),
|
296 |
+
container.end(),
|
297 |
+
c10::SymInt(1),
|
298 |
+
[](const c10::SymInt& a, const c10::SymInt& b) { return a * b; });
|
299 |
+
}
|
300 |
+
|
301 |
+
template <
|
302 |
+
typename Iter,
|
303 |
+
typename = std::enable_if_t<std::is_same<
|
304 |
+
typename std::iterator_traits<Iter>::value_type,
|
305 |
+
c10::SymInt>::value>>
|
306 |
+
inline c10::SymInt multiply_integers(Iter begin, Iter end) {
|
307 |
+
return std::accumulate(
|
308 |
+
begin,
|
309 |
+
end,
|
310 |
+
c10::SymInt(1),
|
311 |
+
[](const c10::SymInt& a, const c10::SymInt& b) { return a * b; });
|
312 |
+
}
|
313 |
+
|
314 |
+
#define DECLARE_SYMINT_OP_INTONLY(scalar_t, RetTy) \
|
315 |
+
C10_API RetTy operator%(const SymInt& a, scalar_t b); \
|
316 |
+
C10_API RetTy operator%(scalar_t a, const SymInt& b);
|
317 |
+
|
318 |
+
#define DECLARE_SYMINT_OP(scalar_t, RetTy) \
|
319 |
+
C10_API RetTy operator+(const SymInt& a, scalar_t b); \
|
320 |
+
C10_API RetTy operator-(const SymInt& a, scalar_t b); \
|
321 |
+
C10_API RetTy operator*(const SymInt& a, scalar_t b); \
|
322 |
+
C10_API RetTy operator/(const SymInt& a, scalar_t b); \
|
323 |
+
C10_API RetTy operator+(scalar_t a, const SymInt& b); \
|
324 |
+
C10_API RetTy operator-(scalar_t a, const SymInt& b); \
|
325 |
+
C10_API RetTy operator*(scalar_t a, const SymInt& b); \
|
326 |
+
C10_API RetTy operator/(scalar_t a, const SymInt& b); \
|
327 |
+
C10_API bool operator==(const SymInt& a, scalar_t b); \
|
328 |
+
C10_API bool operator!=(const SymInt& a, scalar_t b); \
|
329 |
+
C10_API bool operator<(const SymInt& a, scalar_t b); \
|
330 |
+
C10_API bool operator<=(const SymInt& a, scalar_t b); \
|
331 |
+
C10_API bool operator>(const SymInt& a, scalar_t b); \
|
332 |
+
C10_API bool operator>=(const SymInt& a, scalar_t b); \
|
333 |
+
C10_API bool operator==(scalar_t a, const SymInt& b); \
|
334 |
+
C10_API bool operator!=(scalar_t a, const SymInt& b); \
|
335 |
+
C10_API bool operator<(scalar_t a, const SymInt& b); \
|
336 |
+
C10_API bool operator<=(scalar_t a, const SymInt& b); \
|
337 |
+
C10_API bool operator>(scalar_t a, const SymInt& b); \
|
338 |
+
C10_API bool operator>=(scalar_t a, const SymInt& b);
|
339 |
+
|
340 |
+
DECLARE_SYMINT_OP_INTONLY(int64_t, SymInt)
|
341 |
+
DECLARE_SYMINT_OP_INTONLY(int32_t, SymInt)
|
342 |
+
DECLARE_SYMINT_OP_INTONLY(uint64_t, SymInt)
|
343 |
+
DECLARE_SYMINT_OP_INTONLY(uint32_t, SymInt)
|
344 |
+
DECLARE_SYMINT_OP(int64_t, SymInt)
|
345 |
+
DECLARE_SYMINT_OP(int32_t, SymInt) // make sure constants work
|
346 |
+
DECLARE_SYMINT_OP(uint64_t, SymInt)
|
347 |
+
DECLARE_SYMINT_OP(uint32_t, SymInt)
|
348 |
+
DECLARE_SYMINT_OP(double, SymFloat)
|
349 |
+
DECLARE_SYMINT_OP(float, SymFloat) // just for completeness
|
350 |
+
|
351 |
+
// On OSX size_t is different than uint64_t so we have to
|
352 |
+
// define it separately
|
353 |
+
#if defined(__APPLE__)
|
354 |
+
DECLARE_SYMINT_OP_INTONLY(size_t, SymInt)
|
355 |
+
DECLARE_SYMINT_OP(size_t, SymInt)
|
356 |
+
#endif
|
357 |
+
|
358 |
+
#undef DECLARE_SYMINT_OP
|
359 |
+
|
360 |
+
C10_API std::ostream& operator<<(std::ostream& os, const SymInt& s);
|
361 |
+
C10_API SymInt operator-(const SymInt& s);
|
362 |
+
} // namespace c10
|
env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/SymIntArrayRef.h
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <c10/core/SymInt.h>
|
4 |
+
#include <c10/util/ArrayRef.h>
|
5 |
+
#include <c10/util/Exception.h>
|
6 |
+
#include <c10/util/Optional.h>
|
7 |
+
|
8 |
+
namespace c10 {
|
9 |
+
using SymIntArrayRef = ArrayRef<SymInt>;
|
10 |
+
|
11 |
+
inline at::IntArrayRef asIntArrayRefUnchecked(c10::SymIntArrayRef ar) {
|
12 |
+
return IntArrayRef(reinterpret_cast<const int64_t*>(ar.data()), ar.size());
|
13 |
+
}
|
14 |
+
|
15 |
+
// TODO: a SymIntArrayRef containing a heap allocated large negative integer
|
16 |
+
// can actually technically be converted to an IntArrayRef... but not with
|
17 |
+
// the non-owning API we have here. We can't reinterpet cast; we have to
|
18 |
+
// allocate another buffer and write the integers into it. If you need it,
|
19 |
+
// we can do it. But I don't think you need it.
|
20 |
+
|
21 |
+
inline c10::optional<at::IntArrayRef> asIntArrayRefSlowOpt(
|
22 |
+
c10::SymIntArrayRef ar) {
|
23 |
+
for (const c10::SymInt& sci : ar) {
|
24 |
+
if (sci.is_heap_allocated()) {
|
25 |
+
return c10::nullopt;
|
26 |
+
}
|
27 |
+
}
|
28 |
+
|
29 |
+
return {asIntArrayRefUnchecked(ar)};
|
30 |
+
}
|
31 |
+
|
32 |
+
inline at::IntArrayRef asIntArrayRefSlow(
|
33 |
+
c10::SymIntArrayRef ar,
|
34 |
+
const char* file,
|
35 |
+
int64_t line) {
|
36 |
+
for (const c10::SymInt& sci : ar) {
|
37 |
+
TORCH_CHECK(
|
38 |
+
!sci.is_heap_allocated(),
|
39 |
+
file,
|
40 |
+
":",
|
41 |
+
line,
|
42 |
+
": SymIntArrayRef expected to contain only concrete integers");
|
43 |
+
}
|
44 |
+
return asIntArrayRefUnchecked(ar);
|
45 |
+
}
|
46 |
+
|
47 |
+
#define C10_AS_INTARRAYREF_SLOW(a) c10::asIntArrayRefSlow(a, __FILE__, __LINE__)
|
48 |
+
|
49 |
+
// Prefer using a more semantic constructor, like
|
50 |
+
// fromIntArrayRefKnownNonNegative
|
51 |
+
inline SymIntArrayRef fromIntArrayRefUnchecked(IntArrayRef array_ref) {
|
52 |
+
return SymIntArrayRef(
|
53 |
+
reinterpret_cast<const SymInt*>(array_ref.data()), array_ref.size());
|
54 |
+
}
|
55 |
+
|
56 |
+
inline SymIntArrayRef fromIntArrayRefKnownNonNegative(IntArrayRef array_ref) {
|
57 |
+
return fromIntArrayRefUnchecked(array_ref);
|
58 |
+
}
|
59 |
+
|
60 |
+
inline SymIntArrayRef fromIntArrayRefSlow(IntArrayRef array_ref) {
|
61 |
+
for (long i : array_ref) {
|
62 |
+
TORCH_CHECK(
|
63 |
+
SymInt::check_range(i),
|
64 |
+
"IntArrayRef contains an int that cannot be represented as a SymInt: ",
|
65 |
+
i);
|
66 |
+
}
|
67 |
+
return SymIntArrayRef(
|
68 |
+
reinterpret_cast<const SymInt*>(array_ref.data()), array_ref.size());
|
69 |
+
}
|
70 |
+
|
71 |
+
} // namespace c10
|
env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/SymbolicShapeMeta.h
ADDED
@@ -0,0 +1,210 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
#include <c10/core/SymBool.h>
|
3 |
+
#include <c10/core/SymInt.h>
|
4 |
+
#include <c10/util/DimVector.h>
|
5 |
+
|
6 |
+
#include <atomic>
|
7 |
+
#include <mutex>
|
8 |
+
|
9 |
+
namespace c10 {
|
10 |
+
|
11 |
+
class C10_API SymbolicShapeMeta {
|
12 |
+
public:
|
13 |
+
// Basic metadata from which other quantities are derived
|
14 |
+
SymDimVector sizes_ = {0};
|
15 |
+
SymDimVector strides_ = {1};
|
16 |
+
SymInt storage_offset_ = 0;
|
17 |
+
|
18 |
+
bool strides_valid_ = true; // e.g. for sparse where there are no strides
|
19 |
+
|
20 |
+
SymbolicShapeMeta() = default;
|
21 |
+
SymbolicShapeMeta(const SymbolicShapeMeta& other);
|
22 |
+
|
23 |
+
void refresh_numel() {
|
24 |
+
// Non-const, don't need to hold mutables_ lock
|
25 |
+
available_.fetch_and(~numel_avail);
|
26 |
+
numel_ = 1;
|
27 |
+
}
|
28 |
+
|
29 |
+
void refresh_contiguous() {
|
30 |
+
// Non-const, don't need to hold mutables_ lock
|
31 |
+
available_.fetch_and(numel_avail);
|
32 |
+
is_contiguous_ = false;
|
33 |
+
is_channels_last_contiguous_ = false;
|
34 |
+
is_channels_last_3d_contiguous_ = false;
|
35 |
+
is_channels_last_ = false;
|
36 |
+
is_channels_last_3d_ = false;
|
37 |
+
is_non_overlapping_and_dense_ = false;
|
38 |
+
}
|
39 |
+
|
40 |
+
int64_t dim() const {
|
41 |
+
return static_cast<int64_t>(sizes_.size());
|
42 |
+
}
|
43 |
+
|
44 |
+
// Accessors for derived quantities, computed lazily on first access
|
45 |
+
|
46 |
+
bool has_numel() const {
|
47 |
+
return available_.load() & numel_avail;
|
48 |
+
}
|
49 |
+
bool has_is_contiguous() const {
|
50 |
+
return available_.load() & is_contiguous_avail;
|
51 |
+
}
|
52 |
+
bool has_is_channels_last_contiguous() const {
|
53 |
+
return available_.load() & is_channels_last_contiguous_avail;
|
54 |
+
}
|
55 |
+
bool has_is_channels_last_3d_contiguous() const {
|
56 |
+
return available_.load() & is_channels_last_3d_contiguous_avail;
|
57 |
+
}
|
58 |
+
bool has_is_channels_last() const {
|
59 |
+
return available_.load() & is_channels_last_avail;
|
60 |
+
}
|
61 |
+
bool has_is_channels_last_3d() const {
|
62 |
+
return available_.load() & is_channels_last_3d_avail;
|
63 |
+
}
|
64 |
+
bool has_is_non_overlapping_and_dense() const {
|
65 |
+
return available_.load() & is_non_overlapping_and_dense_avail;
|
66 |
+
}
|
67 |
+
|
68 |
+
// Accessors to cached derived properties
|
69 |
+
// DO NOT call with mutables_ lock held
|
70 |
+
const SymInt& numel() const {
|
71 |
+
if (C10_UNLIKELY(!has_numel())) {
|
72 |
+
init_numel();
|
73 |
+
}
|
74 |
+
return numel_;
|
75 |
+
}
|
76 |
+
|
77 |
+
const SymBool& is_contiguous() const {
|
78 |
+
if (C10_UNLIKELY(!has_is_contiguous())) {
|
79 |
+
init_is_contiguous();
|
80 |
+
}
|
81 |
+
return is_contiguous_;
|
82 |
+
}
|
83 |
+
|
84 |
+
const SymBool& is_channels_last_contiguous() const {
|
85 |
+
if (C10_UNLIKELY(!has_is_channels_last_contiguous())) {
|
86 |
+
init_is_channels_last_contiguous();
|
87 |
+
}
|
88 |
+
return is_channels_last_contiguous_;
|
89 |
+
}
|
90 |
+
|
91 |
+
const SymBool& is_channels_last_3d_contiguous() const {
|
92 |
+
if (C10_UNLIKELY(!has_is_channels_last_3d_contiguous())) {
|
93 |
+
init_is_channels_last_3d_contiguous();
|
94 |
+
}
|
95 |
+
return is_channels_last_3d_contiguous_;
|
96 |
+
}
|
97 |
+
|
98 |
+
const SymBool& is_channels_last() const {
|
99 |
+
if (C10_UNLIKELY(!has_is_channels_last())) {
|
100 |
+
init_is_channels_last();
|
101 |
+
}
|
102 |
+
return is_channels_last_;
|
103 |
+
}
|
104 |
+
|
105 |
+
const SymBool& is_channels_last_3d() const {
|
106 |
+
if (C10_UNLIKELY(!has_is_channels_last_3d())) {
|
107 |
+
init_is_channels_last_3d();
|
108 |
+
}
|
109 |
+
return is_channels_last_3d_;
|
110 |
+
}
|
111 |
+
|
112 |
+
const SymBool& is_non_overlapping_and_dense() const {
|
113 |
+
if (C10_UNLIKELY(!has_is_non_overlapping_and_dense())) {
|
114 |
+
init_is_non_overlapping_and_dense();
|
115 |
+
}
|
116 |
+
return is_non_overlapping_and_dense_;
|
117 |
+
}
|
118 |
+
|
119 |
+
// Assumptions so we can short-circuit computation
|
120 |
+
// NOTE: Don't need to lock mutables_ since these aren't const
|
121 |
+
void assume_contiguous(SymBool val = true) {
|
122 |
+
is_contiguous_ = std::move(val);
|
123 |
+
available_.fetch_or(is_contiguous_avail);
|
124 |
+
}
|
125 |
+
void assume_channels_last_contiguous(SymBool val = true) {
|
126 |
+
is_contiguous_ = std::move(val);
|
127 |
+
available_.fetch_or(is_channels_last_contiguous_avail);
|
128 |
+
}
|
129 |
+
void assume_channels_last_3d_contiguous(SymBool val = true) {
|
130 |
+
is_channels_last_3d_contiguous_ = std::move(val);
|
131 |
+
available_.fetch_or(is_channels_last_3d_contiguous_avail);
|
132 |
+
}
|
133 |
+
void assume_channels_last(SymBool val = true) {
|
134 |
+
is_channels_last_ = std::move(val);
|
135 |
+
available_.fetch_or(is_channels_last_avail);
|
136 |
+
}
|
137 |
+
void assume_channels_last_3d(SymBool val = true) {
|
138 |
+
is_channels_last_3d_ = std::move(val);
|
139 |
+
available_.fetch_or(is_channels_last_3d_avail);
|
140 |
+
}
|
141 |
+
void assume_non_overlapping_and_dense(SymBool val = true) {
|
142 |
+
is_non_overlapping_and_dense_ = std::move(val);
|
143 |
+
available_.fetch_or(is_non_overlapping_and_dense_avail);
|
144 |
+
}
|
145 |
+
|
146 |
+
private:
|
147 |
+
SymBool compute_contiguous() const;
|
148 |
+
SymBool compute_channels_last_contiguous_2d() const;
|
149 |
+
SymBool compute_channels_last_contiguous_3d() const;
|
150 |
+
SymBool compute_strides_like_channels_last_2d() const;
|
151 |
+
SymBool compute_strides_like_channels_last_3d() const;
|
152 |
+
SymBool compute_non_overlapping_and_dense() const;
|
153 |
+
|
154 |
+
// These are little wrappers over the real compute_ functions that
|
155 |
+
// can make use of other contiguity fields to short circuit.
|
156 |
+
// They need to be implemented separately for SymBool, as SymBool does
|
157 |
+
// not short circuit.
|
158 |
+
// TODO: should the SymBool cases avoid the short circuit? Need to reason
|
159 |
+
// if its correct, and reason if the simpler expressions are better for
|
160 |
+
// analysis (maybe not!)
|
161 |
+
|
162 |
+
SymBool compute_channels_last_contiguous_3d_dim5() const;
|
163 |
+
SymBool compute_channels_last_2d_dim5() const;
|
164 |
+
SymBool compute_channels_last_3d_dim5() const;
|
165 |
+
SymBool compute_is_non_overlapping_and_dense_dim4() const;
|
166 |
+
SymBool compute_is_non_overlapping_and_dense_dim5() const;
|
167 |
+
SymBool compute_is_non_overlapping_and_dense_anydim() const;
|
168 |
+
|
169 |
+
void init_numel() const;
|
170 |
+
void init_is_contiguous() const;
|
171 |
+
void init_is_channels_last_contiguous() const;
|
172 |
+
void init_is_channels_last_3d_contiguous() const;
|
173 |
+
void init_is_channels_last() const;
|
174 |
+
void init_is_channels_last_3d() const;
|
175 |
+
void init_is_non_overlapping_and_dense() const;
|
176 |
+
|
177 |
+
// NOTE: These only set if !has_foo()
|
178 |
+
void set_numel(SymInt val) const;
|
179 |
+
void set_is_contiguous(SymBool val) const;
|
180 |
+
void set_is_channels_last_contiguous(SymBool val) const;
|
181 |
+
void set_is_channels_last_3d_contiguous(SymBool val) const;
|
182 |
+
void set_is_channels_last(SymBool val) const;
|
183 |
+
void set_is_channels_last_3d(SymBool val) const;
|
184 |
+
void set_is_non_overlapping_and_dense(SymBool val) const;
|
185 |
+
|
186 |
+
// Lazily initialized variables, with the corresponding available_ flag
|
187 |
+
// indicating whether the value has been initialized
|
188 |
+
mutable std::atomic<int> available_{0};
|
189 |
+
enum avail {
|
190 |
+
numel_avail = 1 << 0,
|
191 |
+
is_contiguous_avail = 1 << 1,
|
192 |
+
is_channels_last_contiguous_avail = 1 << 2,
|
193 |
+
is_channels_last_3d_contiguous_avail = 1 << 3,
|
194 |
+
is_channels_last_avail = 1 << 4,
|
195 |
+
is_channels_last_3d_avail = 1 << 5,
|
196 |
+
is_non_overlapping_and_dense_avail = 1 << 6,
|
197 |
+
};
|
198 |
+
|
199 |
+
// Mutex to prevent races when initializing the variable from const accessors
|
200 |
+
mutable std::mutex mutables_;
|
201 |
+
mutable SymInt numel_ = 1;
|
202 |
+
mutable SymBool is_contiguous_{true};
|
203 |
+
mutable SymBool is_channels_last_contiguous_{false};
|
204 |
+
mutable SymBool is_channels_last_3d_contiguous_{false};
|
205 |
+
mutable SymBool is_channels_last_{false};
|
206 |
+
mutable SymBool is_channels_last_3d_{false};
|
207 |
+
mutable SymBool is_non_overlapping_and_dense_{true};
|
208 |
+
};
|
209 |
+
|
210 |
+
} // namespace c10
|
env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/TensorImpl.h
ADDED
The diff for this file is too large to render.
See raw diff
|
|
env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/TensorOptions.h
ADDED
@@ -0,0 +1,773 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <c10/core/Backend.h>
|
4 |
+
#include <c10/core/DefaultDtype.h>
|
5 |
+
#include <c10/core/Device.h>
|
6 |
+
#include <c10/core/Layout.h>
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/ScalarType.h>
|
9 |
+
#include <c10/core/ScalarTypeToTypeMeta.h>
|
10 |
+
|
11 |
+
#include <c10/macros/Macros.h>
|
12 |
+
#include <c10/util/Optional.h>
|
13 |
+
|
14 |
+
#include <iosfwd>
|
15 |
+
#include <utility>
|
16 |
+
|
17 |
+
namespace c10 {
|
18 |
+
|
19 |
+
DispatchKey computeDispatchKey(
|
20 |
+
c10::optional<ScalarType> dtype,
|
21 |
+
c10::optional<Layout> layout,
|
22 |
+
c10::optional<Device> device);
|
23 |
+
|
24 |
+
inline ScalarType dtype_or_default(c10::optional<ScalarType> dtype) {
|
25 |
+
return value_or_else(dtype, [] { return get_default_dtype_as_scalartype(); });
|
26 |
+
}
|
27 |
+
|
28 |
+
inline caffe2::TypeMeta dtype_or_default(
|
29 |
+
c10::optional<caffe2::TypeMeta> dtype) {
|
30 |
+
return value_or_else(dtype, [] { return get_default_dtype(); });
|
31 |
+
}
|
32 |
+
|
33 |
+
inline Layout layout_or_default(c10::optional<Layout> layout) {
|
34 |
+
return layout.value_or(kStrided);
|
35 |
+
}
|
36 |
+
|
37 |
+
inline Device device_or_default(c10::optional<Device> device) {
|
38 |
+
return value_or_else(device, [] { return Device(kCPU); });
|
39 |
+
}
|
40 |
+
|
41 |
+
inline bool pinned_memory_or_default(c10::optional<bool> pinned_memory) {
|
42 |
+
return pinned_memory.value_or(false);
|
43 |
+
}
|
44 |
+
|
45 |
+
/// A class to encapsulate construction axes of an Tensor. TensorOptions was
|
46 |
+
/// designed to support the Python style API for specifying construction options
|
47 |
+
/// on factory functions, e.g.,
|
48 |
+
///
|
49 |
+
/// torch.zeros(2, 3, dtype=torch.int32)
|
50 |
+
///
|
51 |
+
/// Because C++ doesn't natively support keyword arguments, there must be
|
52 |
+
/// another way of specifying keyword-like arguments. TensorOptions is a
|
53 |
+
/// builder class which can be used to construct this "dictionary" of keyword
|
54 |
+
/// arguments: functions which support TensorOptions conventionally take this
|
55 |
+
/// argument optionally as their last argument.
|
56 |
+
///
|
57 |
+
/// WARNING: In PyTorch, there are `torch::` variants of factory functions,
|
58 |
+
/// e.g., torch::zeros for at::zeros. These return Variables (while the
|
59 |
+
/// stock ATen functions return plain Tensors). If you mix these functions
|
60 |
+
/// up, you WILL BE SAD.
|
61 |
+
///
|
62 |
+
/// Rather than use the constructor of this class directly, you should prefer to
|
63 |
+
/// use the constructor functions, and then chain setter methods on top of them.
|
64 |
+
///
|
65 |
+
/// at::device(at::kCUDA).dtype(kInt)
|
66 |
+
/// at::dtype(at::kInt)
|
67 |
+
///
|
68 |
+
/// Additionally, anywhere a TensorOptions is expected, you can directly
|
69 |
+
/// pass at::kCUDA / at::kInt, and it will implicitly convert to a
|
70 |
+
/// TensorOptions.
|
71 |
+
///
|
72 |
+
/// Here are some recommended ways to create a 2x2 tensor of zeros
|
73 |
+
/// with certain properties. These all *implicitly* make use of
|
74 |
+
/// TensorOptions, even if they don't mention the class explicitly:
|
75 |
+
///
|
76 |
+
/// at::zeros({2,2}, at::kCUDA);
|
77 |
+
/// at::zeros({2,2}, at::kLong);
|
78 |
+
/// at::zeros({2,2}, at::device(at::kCUDA).dtype(at::kLong()));
|
79 |
+
/// at::zeros({2,2}, at::device({at::kCUDA, 1})); // place on device 1
|
80 |
+
/// at::zeros({2,2}, at::requires_grad());
|
81 |
+
///
|
82 |
+
|
83 |
+
/// NOTE [ TensorOptions Constructors ]
|
84 |
+
///
|
85 |
+
/// TensorOptions is like a dictionary with entries from the set:
|
86 |
+
/// {requires_grad, device, dtype, layout}, where each entry may be
|
87 |
+
/// unspecified (i.e., is optional). It is used to specify the properties of
|
88 |
+
/// tensors in many places both in C++ internal and API, e.g., tensor factory
|
89 |
+
/// methods like `at::empty({10}, options)`, tensor conversions like
|
90 |
+
/// `tensor.to(...)`, etc.
|
91 |
+
///
|
92 |
+
/// To provide a simple API that is consistent with Python, where one can do
|
93 |
+
/// `torch.empty(sizes, X)` with `X` being a `torch.device`, `torch.dtype`, or a
|
94 |
+
/// `torch.layout`, we want TensorOptions to be implicitly convertible from
|
95 |
+
/// `ScalarType dtype`, `Layout layout` and `Device device`. Therefore, we have
|
96 |
+
/// three implicit constructors from each of these three types.
|
97 |
+
///
|
98 |
+
/// This is sufficient for `ScalarType` and `Layout` as they are simple Enum
|
99 |
+
/// classes. However, `Device` is an ordinary class with implicit constructors
|
100 |
+
/// `Device(DeviceType, DeviceIndex = -1)` and `Device(std::string)` to be
|
101 |
+
/// consistent with Python API, where strings are treated as equivalent with a
|
102 |
+
/// `torch.device` object (e.g., "cuda:1" can be passed to everywhere a
|
103 |
+
/// `torch.device("cuda:1")` is accepted). To support the syntax
|
104 |
+
/// `at::empty({10}, {kCUDA, 1})` and `tensor.to(kCUDA)`, we need to make sure
|
105 |
+
/// that `TensorOptions` is implicitly constructible with any arguments that a
|
106 |
+
/// `Device` can constructed from. So we have,
|
107 |
+
///
|
108 |
+
/// /* implicit */ TensorOptions(T&& device) : TensorOptions() {
|
109 |
+
/// this->set_device(device);
|
110 |
+
/// }
|
111 |
+
///
|
112 |
+
/// template <typename... Args,
|
113 |
+
/// typename = std::enable_if_t<std::is_constructible<Device,
|
114 |
+
/// Args&&...>::value>>
|
115 |
+
/// /* implicit */ TensorOptions(Args&&... args)
|
116 |
+
/// : TensorOptions(Device(std::forward<Args>(args)...)) {}
|
117 |
+
///
|
118 |
+
///
|
119 |
+
/// But this will be problematic. Consider this: `TensorOptions({kCUDA, 1})`.
|
120 |
+
/// Compiler will complain about ambiguity between the copy constructor and the
|
121 |
+
/// `Device` constructor because `{kCUDA, 1}` can be converted to both a
|
122 |
+
/// `TensorOption` and a `Device`.
|
123 |
+
///
|
124 |
+
/// To get around this, we templatize the `Device` constructor. Since overload
|
125 |
+
/// resolution is done before template resolution, our problem is solved.
|
126 |
+
|
127 |
+
DispatchKey computeDispatchKey(
|
128 |
+
optional<ScalarType> dtype,
|
129 |
+
optional<Layout> layout,
|
130 |
+
optional<Device> device);
|
131 |
+
|
132 |
+
struct C10_API TensorOptions {
|
133 |
+
TensorOptions()
|
134 |
+
: requires_grad_(false),
|
135 |
+
pinned_memory_(false),
|
136 |
+
has_device_(false),
|
137 |
+
has_dtype_(false),
|
138 |
+
has_layout_(false),
|
139 |
+
has_requires_grad_(false),
|
140 |
+
has_pinned_memory_(false),
|
141 |
+
has_memory_format_(false) {}
|
142 |
+
|
143 |
+
/// Constructs a `TensorOptions` object with the given layout.
|
144 |
+
/* implicit */ TensorOptions(Layout layout) : TensorOptions() {
|
145 |
+
this->set_layout(layout);
|
146 |
+
}
|
147 |
+
|
148 |
+
/// Constructs a `TensorOptions` object with the given device.
|
149 |
+
/// See NOTE [ TensorOptions Constructors ] on why this is templatized.
|
150 |
+
template <
|
151 |
+
typename T,
|
152 |
+
typename = std::enable_if_t<std::is_same<std::decay_t<T>, Device>::value>>
|
153 |
+
/* implicit */ TensorOptions(T&& device) : TensorOptions() {
|
154 |
+
this->set_device(std::forward<T>(device));
|
155 |
+
}
|
156 |
+
|
157 |
+
/// Constructs a `TensorOptions` object from arguments allowed in `Device`
|
158 |
+
/// constructors.
|
159 |
+
///
|
160 |
+
/// See NOTE [ TensorOptions Constructors ].
|
161 |
+
///
|
162 |
+
/// NB: Ideally we only allow implicit constructors here. But there is no easy
|
163 |
+
/// way to detect them. So we have this one that allows explicit
|
164 |
+
/// constructors too.
|
165 |
+
template <
|
166 |
+
typename... Args,
|
167 |
+
typename =
|
168 |
+
std::enable_if_t<std::is_constructible<Device, Args&&...>::value>>
|
169 |
+
/* implicit */ TensorOptions(Args&&... args)
|
170 |
+
: TensorOptions(Device(std::forward<Args>(args)...)) {}
|
171 |
+
|
172 |
+
/// Constructs a `TensorOptions` object with the given dtype.
|
173 |
+
/* implicit */ TensorOptions(caffe2::TypeMeta dtype) : TensorOptions() {
|
174 |
+
this->set_dtype(dtype);
|
175 |
+
}
|
176 |
+
|
177 |
+
/// legacy constructor to support ScalarType
|
178 |
+
/* implicit */ TensorOptions(ScalarType dtype) : TensorOptions() {
|
179 |
+
this->set_dtype(dtype);
|
180 |
+
}
|
181 |
+
|
182 |
+
/// Constructs a `TensorOptions` object with the given memory format.
|
183 |
+
/* implicit */ TensorOptions(MemoryFormat memory_format) : TensorOptions() {
|
184 |
+
set_memory_format(memory_format);
|
185 |
+
}
|
186 |
+
|
187 |
+
/// Return a copy of `TensorOptions` with `device` set to the given one, or
|
188 |
+
/// cleared if `device` is `nullopt`.
|
189 |
+
C10_NODISCARD TensorOptions
|
190 |
+
device(c10::optional<Device> device) const noexcept {
|
191 |
+
TensorOptions r = *this;
|
192 |
+
r.set_device(device);
|
193 |
+
return r;
|
194 |
+
}
|
195 |
+
|
196 |
+
/// Return a copy of `TensorOptions` with `device` set to the given one.
|
197 |
+
/// (This overload ensures that variadic template c10::optional constructor
|
198 |
+
/// for Device work correctly.)
|
199 |
+
template <typename... Args>
|
200 |
+
C10_NODISCARD TensorOptions device(Args&&... args) const noexcept {
|
201 |
+
return device(
|
202 |
+
c10::optional<Device>(c10::in_place, std::forward<Args>(args)...));
|
203 |
+
}
|
204 |
+
|
205 |
+
/// Return a copy of `TensorOptions`, but with device set to CUDA, and the
|
206 |
+
/// device index set to the given one.
|
207 |
+
///
|
208 |
+
/// TODO: This function encourages bad behavior (assuming CUDA is
|
209 |
+
/// the only device that matters). Get rid of it / rename it.
|
210 |
+
C10_NODISCARD TensorOptions
|
211 |
+
device_index(c10::DeviceIndex device_index) const noexcept {
|
212 |
+
return device(Device::Type::CUDA, device_index);
|
213 |
+
}
|
214 |
+
|
215 |
+
/// Return a copy of `TensorOptions` with `dtype` set to the given one.
|
216 |
+
C10_NODISCARD TensorOptions
|
217 |
+
dtype(c10::optional<caffe2::TypeMeta> dtype) const noexcept {
|
218 |
+
TensorOptions r = *this;
|
219 |
+
r.set_dtype(dtype);
|
220 |
+
return r;
|
221 |
+
}
|
222 |
+
|
223 |
+
// legacy function to support ScalarType
|
224 |
+
C10_NODISCARD TensorOptions
|
225 |
+
dtype(c10::optional<ScalarType> dtype) const noexcept {
|
226 |
+
TensorOptions r = *this;
|
227 |
+
r.set_dtype(dtype);
|
228 |
+
return r;
|
229 |
+
}
|
230 |
+
|
231 |
+
// Since dtype is taken...
|
232 |
+
template <typename T>
|
233 |
+
TensorOptions& dtype() {
|
234 |
+
dtype_ = caffe2::TypeMeta::Make<T>();
|
235 |
+
has_dtype_ = true;
|
236 |
+
return *this;
|
237 |
+
}
|
238 |
+
|
239 |
+
/// Sets the layout of the `TensorOptions`.
|
240 |
+
C10_NODISCARD TensorOptions
|
241 |
+
layout(c10::optional<Layout> layout) const noexcept {
|
242 |
+
TensorOptions r = *this;
|
243 |
+
r.set_layout(layout);
|
244 |
+
return r;
|
245 |
+
}
|
246 |
+
|
247 |
+
/// Sets the `requires_grad` property of the `TensorOptions`.
|
248 |
+
C10_NODISCARD TensorOptions
|
249 |
+
requires_grad(c10::optional<bool> requires_grad) const noexcept {
|
250 |
+
TensorOptions r = *this;
|
251 |
+
r.set_requires_grad(requires_grad);
|
252 |
+
return r;
|
253 |
+
}
|
254 |
+
|
255 |
+
/// Sets the `pinned_memory` property on the `TensorOptions`.
|
256 |
+
C10_NODISCARD TensorOptions
|
257 |
+
pinned_memory(c10::optional<bool> pinned_memory) const noexcept {
|
258 |
+
TensorOptions r = *this;
|
259 |
+
r.set_pinned_memory(pinned_memory);
|
260 |
+
return r;
|
261 |
+
}
|
262 |
+
|
263 |
+
/// Sets the `memory_format` property on `TensorOptions`.
|
264 |
+
C10_NODISCARD TensorOptions
|
265 |
+
memory_format(c10::optional<MemoryFormat> memory_format) const noexcept {
|
266 |
+
TensorOptions r = *this;
|
267 |
+
r.set_memory_format(memory_format);
|
268 |
+
return r;
|
269 |
+
}
|
270 |
+
|
271 |
+
/// Returns the device of the `TensorOptions`.
|
272 |
+
Device device() const noexcept {
|
273 |
+
return device_or_default(device_opt());
|
274 |
+
}
|
275 |
+
|
276 |
+
/// Returns whether the device is specified.
|
277 |
+
bool has_device() const noexcept {
|
278 |
+
return has_device_;
|
279 |
+
}
|
280 |
+
|
281 |
+
/// Returns the device of the `TensorOptions`, or `c10::nullopt` if
|
282 |
+
/// device is not specified.
|
283 |
+
c10::optional<Device> device_opt() const noexcept {
|
284 |
+
return has_device_ ? c10::make_optional(device_) : c10::nullopt;
|
285 |
+
}
|
286 |
+
|
287 |
+
/// Returns the device index of the `TensorOptions`.
|
288 |
+
int32_t device_index() const noexcept {
|
289 |
+
return device().index();
|
290 |
+
}
|
291 |
+
|
292 |
+
/// Returns the dtype of the `TensorOptions`.
|
293 |
+
caffe2::TypeMeta dtype() const noexcept {
|
294 |
+
return dtype_or_default(dtype_opt());
|
295 |
+
}
|
296 |
+
|
297 |
+
/// Returns whether the dtype is specified.
|
298 |
+
bool has_dtype() const noexcept {
|
299 |
+
return has_dtype_;
|
300 |
+
}
|
301 |
+
|
302 |
+
/// Returns the dtype of the `TensorOptions`, or `c10::nullopt` if
|
303 |
+
/// device is not specified.
|
304 |
+
c10::optional<caffe2::TypeMeta> dtype_opt() const noexcept {
|
305 |
+
return has_dtype_ ? c10::make_optional(dtype_) : c10::nullopt;
|
306 |
+
}
|
307 |
+
|
308 |
+
/// Returns the layout of the `TensorOptions`.
|
309 |
+
Layout layout() const noexcept {
|
310 |
+
return layout_or_default(layout_opt());
|
311 |
+
}
|
312 |
+
|
313 |
+
/// Returns whether the layout is specified.
|
314 |
+
bool has_layout() const noexcept {
|
315 |
+
return has_layout_;
|
316 |
+
}
|
317 |
+
|
318 |
+
/// Returns the layout of the `TensorOptions`, or `c10::nullopt` if
|
319 |
+
/// layout is not specified.
|
320 |
+
c10::optional<Layout> layout_opt() const noexcept {
|
321 |
+
return has_layout_ ? c10::make_optional(layout_) : c10::nullopt;
|
322 |
+
}
|
323 |
+
|
324 |
+
/// Returns the `requires_grad` property of the `TensorOptions`.
|
325 |
+
bool requires_grad() const noexcept {
|
326 |
+
return has_requires_grad_ ? requires_grad_ : false;
|
327 |
+
}
|
328 |
+
|
329 |
+
/// Returns whether the `requires_grad` is specified.
|
330 |
+
bool has_requires_grad() const noexcept {
|
331 |
+
return has_requires_grad_;
|
332 |
+
}
|
333 |
+
|
334 |
+
/// Returns the `requires_grad` property of the `TensorOptions`, or
|
335 |
+
/// `c10::nullopt` if `requires_grad` is not specified.
|
336 |
+
c10::optional<bool> requires_grad_opt() const noexcept {
|
337 |
+
return has_requires_grad_ ? c10::make_optional(requires_grad_)
|
338 |
+
: c10::nullopt;
|
339 |
+
}
|
340 |
+
|
341 |
+
/// Returns the `pinned_memory` property of the `TensorOptions`.
|
342 |
+
bool pinned_memory() const noexcept {
|
343 |
+
return pinned_memory_or_default(pinned_memory_opt());
|
344 |
+
}
|
345 |
+
|
346 |
+
/// Returns whether the `pinned_memory` is specified.
|
347 |
+
bool has_pinned_memory() const noexcept {
|
348 |
+
return has_pinned_memory_;
|
349 |
+
}
|
350 |
+
|
351 |
+
/// Returns if the layout is sparse
|
352 |
+
bool is_sparse() const {
|
353 |
+
return layout_ == c10::Layout::Sparse;
|
354 |
+
}
|
355 |
+
|
356 |
+
bool is_sparse_csr() const {
|
357 |
+
return layout_ == c10::Layout::SparseCsr;
|
358 |
+
}
|
359 |
+
|
360 |
+
// For compatibility with legacy tensor.type() comparisons
|
361 |
+
bool type_equal(const TensorOptions& other) const {
|
362 |
+
return computeDispatchKey() == other.computeDispatchKey() &&
|
363 |
+
typeMetaToScalarType(dtype_) == typeMetaToScalarType(other.dtype());
|
364 |
+
}
|
365 |
+
|
366 |
+
/// Returns the `pinned_memory` property of the `TensorOptions`, or
|
367 |
+
/// `c10::nullopt` if `pinned_memory` is not specified.
|
368 |
+
c10::optional<bool> pinned_memory_opt() const noexcept {
|
369 |
+
return has_pinned_memory_ ? c10::make_optional(pinned_memory_)
|
370 |
+
: c10::nullopt;
|
371 |
+
}
|
372 |
+
|
373 |
+
/// Returns whether the `memory_layout` is specified
|
374 |
+
bool has_memory_format() const noexcept {
|
375 |
+
return has_memory_format_;
|
376 |
+
}
|
377 |
+
|
378 |
+
// NB: memory_format() getter is PURPOSELY not defined, as the default
|
379 |
+
// behavior of memory_format varies from function to function.
|
380 |
+
|
381 |
+
/// Returns the `memory_layout` property of `TensorOptions, or
|
382 |
+
/// `c10::nullopt` if `memory_format` is not specified.
|
383 |
+
c10::optional<MemoryFormat> memory_format_opt() const noexcept {
|
384 |
+
return has_memory_format_ ? c10::make_optional(memory_format_)
|
385 |
+
: c10::nullopt;
|
386 |
+
}
|
387 |
+
|
388 |
+
// Resolves the ATen backend specified by the current construction axes.
|
389 |
+
// TODO: Deprecate this
|
390 |
+
Backend backend() const {
|
391 |
+
return at::dispatchKeyToBackend(computeDispatchKey());
|
392 |
+
}
|
393 |
+
|
394 |
+
/// Return the right-biased merge of two TensorOptions. This has the
|
395 |
+
/// effect of overwriting settings from self with specified options
|
396 |
+
/// of options.
|
397 |
+
///
|
398 |
+
/// NB: This merging operation does NOT respect device merges.
|
399 |
+
/// For example, if you device({kCUDA, 1}).merge_in(kCUDA)
|
400 |
+
/// you will get kCUDA in the end! Functions like Tensor.new_empty
|
401 |
+
/// ensure the right device is selected anyway by way of a
|
402 |
+
/// device guard.
|
403 |
+
///
|
404 |
+
TensorOptions merge_in(TensorOptions options) const noexcept {
|
405 |
+
TensorOptions merged = *this;
|
406 |
+
if (options.has_device())
|
407 |
+
merged.set_device(options.device_opt());
|
408 |
+
if (options.has_dtype())
|
409 |
+
merged.set_dtype(options.dtype_opt());
|
410 |
+
if (options.has_layout())
|
411 |
+
merged.set_layout(options.layout_opt());
|
412 |
+
// NB: requires grad is right biased; not a logical AND/OR!
|
413 |
+
if (options.has_requires_grad())
|
414 |
+
merged.set_requires_grad(options.requires_grad_opt());
|
415 |
+
if (options.has_pinned_memory())
|
416 |
+
merged.set_pinned_memory(options.pinned_memory_opt());
|
417 |
+
if (options.has_memory_format())
|
418 |
+
merged.set_memory_format(options.memory_format_opt());
|
419 |
+
return merged;
|
420 |
+
}
|
421 |
+
|
422 |
+
// TODO remove after TensorOptions rationalization
|
423 |
+
TensorOptions merge_memory_format(
|
424 |
+
c10::optional<MemoryFormat> optional_memory_format) const noexcept {
|
425 |
+
TensorOptions merged = *this;
|
426 |
+
if (optional_memory_format.has_value()) {
|
427 |
+
merged.set_memory_format(*optional_memory_format);
|
428 |
+
}
|
429 |
+
return merged;
|
430 |
+
}
|
431 |
+
|
432 |
+
// INVARIANT: computeDispatchKey returns only the subset of dispatch keys for
|
433 |
+
// which dispatchKeyToBackend is injective, if it is defined at all (for
|
434 |
+
// the most part, this just means that this function never returns an
|
435 |
+
// Autograd key)
|
436 |
+
DispatchKey computeDispatchKey() const {
|
437 |
+
return c10::computeDispatchKey(
|
438 |
+
optTypeMetaToScalarType(dtype_opt()), layout_opt(), device_opt());
|
439 |
+
}
|
440 |
+
|
441 |
+
private:
|
442 |
+
// These methods are currently private because I'm not sure if it's wise
|
443 |
+
// to actually publish them. They are methods because I need them in
|
444 |
+
// the constructor and the functional API implementation.
|
445 |
+
//
|
446 |
+
// If you really, really need it, you can make these public, but check if you
|
447 |
+
// couldn't just do what you need with the functional API. Similarly, these
|
448 |
+
// methods are not chainable, because if you wanted chaining, you probably
|
449 |
+
// want to use the functional API instead. (It's probably OK to make
|
450 |
+
// these chainable, because these functions are all explicitly annotated
|
451 |
+
// with a ref-qualifier, the trailing &, that makes them illegal to call
|
452 |
+
// on temporaries.)
|
453 |
+
|
454 |
+
/// Mutably set the device of `TensorOptions`.
|
455 |
+
void set_device(c10::optional<Device> device) & noexcept {
|
456 |
+
if (device) {
|
457 |
+
device_ = *device;
|
458 |
+
has_device_ = true;
|
459 |
+
} else {
|
460 |
+
has_device_ = false;
|
461 |
+
}
|
462 |
+
}
|
463 |
+
|
464 |
+
/// Mutably set the dtype of `TensorOptions`.
|
465 |
+
void set_dtype(c10::optional<caffe2::TypeMeta> dtype) & noexcept {
|
466 |
+
if (dtype) {
|
467 |
+
dtype_ = *dtype;
|
468 |
+
has_dtype_ = true;
|
469 |
+
} else {
|
470 |
+
has_dtype_ = false;
|
471 |
+
}
|
472 |
+
}
|
473 |
+
|
474 |
+
// legacy function to support ScalarType
|
475 |
+
void set_dtype(c10::optional<ScalarType> dtype) & noexcept {
|
476 |
+
if (dtype) {
|
477 |
+
dtype_ = scalarTypeToTypeMeta(*dtype);
|
478 |
+
has_dtype_ = true;
|
479 |
+
} else {
|
480 |
+
has_dtype_ = false;
|
481 |
+
}
|
482 |
+
}
|
483 |
+
|
484 |
+
/// Mutably set the layout of `TensorOptions`.
|
485 |
+
void set_layout(c10::optional<Layout> layout) & noexcept {
|
486 |
+
if (layout) {
|
487 |
+
layout_ = *layout;
|
488 |
+
has_layout_ = true;
|
489 |
+
} else {
|
490 |
+
has_layout_ = false;
|
491 |
+
}
|
492 |
+
}
|
493 |
+
|
494 |
+
/// Mutably set the `requires_grad` property of `TensorOptions`.
|
495 |
+
void set_requires_grad(c10::optional<bool> requires_grad) & noexcept {
|
496 |
+
if (requires_grad) {
|
497 |
+
requires_grad_ = *requires_grad;
|
498 |
+
has_requires_grad_ = true;
|
499 |
+
} else {
|
500 |
+
has_requires_grad_ = false;
|
501 |
+
}
|
502 |
+
}
|
503 |
+
|
504 |
+
/// Mutably set the `pinned_memory` property of `TensorOptions`.
|
505 |
+
void set_pinned_memory(c10::optional<bool> pinned_memory) & noexcept {
|
506 |
+
if (pinned_memory) {
|
507 |
+
pinned_memory_ = *pinned_memory;
|
508 |
+
has_pinned_memory_ = true;
|
509 |
+
} else {
|
510 |
+
has_pinned_memory_ = false;
|
511 |
+
}
|
512 |
+
}
|
513 |
+
|
514 |
+
/// Mutably set the `memory_Format` property of `TensorOptions`.
|
515 |
+
void set_memory_format(c10::optional<MemoryFormat> memory_format) & noexcept {
|
516 |
+
if (memory_format) {
|
517 |
+
memory_format_ = *memory_format;
|
518 |
+
has_memory_format_ = true;
|
519 |
+
} else {
|
520 |
+
has_memory_format_ = false;
|
521 |
+
}
|
522 |
+
}
|
523 |
+
|
524 |
+
// WARNING: If you edit TensorOptions to add more options, you
|
525 |
+
// may need to adjust the implementation of Tensor::options.
|
526 |
+
// The criteria for whether or not Tensor::options must be adjusted
|
527 |
+
// is whether or not the new option you added should preserved
|
528 |
+
// by functions such as empty_like(); if it should be preserved,
|
529 |
+
// you must adjust options().
|
530 |
+
//
|
531 |
+
// TODO: MemoryFormat is not implemented in this way
|
532 |
+
|
533 |
+
// NB: We didn't use c10::optional here, because then we can't pack
|
534 |
+
// the has_***_ boolean fields.
|
535 |
+
|
536 |
+
Device device_ = at::kCPU; // 16-bit
|
537 |
+
caffe2::TypeMeta dtype_ = caffe2::TypeMeta::Make<float>(); // 16-bit
|
538 |
+
Layout layout_ = at::kStrided; // 8-bit
|
539 |
+
MemoryFormat memory_format_ = MemoryFormat::Contiguous; // 8-bit
|
540 |
+
|
541 |
+
// Bitmask required here to get this to fit inside 32 bits (or even 64 bits,
|
542 |
+
// for that matter)
|
543 |
+
|
544 |
+
bool requires_grad_ : 1;
|
545 |
+
bool pinned_memory_ : 1;
|
546 |
+
|
547 |
+
bool has_device_ : 1;
|
548 |
+
bool has_dtype_ : 1;
|
549 |
+
bool has_layout_ : 1;
|
550 |
+
bool has_requires_grad_ : 1;
|
551 |
+
bool has_pinned_memory_ : 1;
|
552 |
+
bool has_memory_format_ : 1;
|
553 |
+
};
|
554 |
+
|
555 |
+
// We should aspire to fit in one machine-size word; but a size greater than two
|
556 |
+
// words is too much. (We are doing terribly on 32-bit archs, where we require
|
557 |
+
// three machine size words to store tensor options. Eek!)
|
558 |
+
static_assert(
|
559 |
+
sizeof(TensorOptions) <= sizeof(int64_t) * 2,
|
560 |
+
"TensorOptions must fit in 128-bits");
|
561 |
+
|
562 |
+
/// Convenience function that returns a `TensorOptions` object with the `dtype`
|
563 |
+
/// set to the given one.
|
564 |
+
inline TensorOptions dtype(caffe2::TypeMeta dtype) {
|
565 |
+
return TensorOptions().dtype(dtype);
|
566 |
+
}
|
567 |
+
|
568 |
+
// legacy function to support ScalarType
|
569 |
+
inline TensorOptions dtype(ScalarType dtype) {
|
570 |
+
return TensorOptions().dtype(scalarTypeToTypeMeta(dtype));
|
571 |
+
}
|
572 |
+
|
573 |
+
/// Convenience function that returns a `TensorOptions` object with the `layout`
|
574 |
+
/// set to the given one.
|
575 |
+
inline TensorOptions layout(Layout layout) {
|
576 |
+
return TensorOptions().layout(layout);
|
577 |
+
}
|
578 |
+
|
579 |
+
/// Convenience function that returns a `TensorOptions` object with the `device`
|
580 |
+
/// set to the given one.
|
581 |
+
inline TensorOptions device(Device device) {
|
582 |
+
return TensorOptions().device(device);
|
583 |
+
}
|
584 |
+
|
585 |
+
/// Convenience function that returns a `TensorOptions` object with the
|
586 |
+
/// `device` set to CUDA and the `device_index` set to the given one.
|
587 |
+
inline TensorOptions device_index(int16_t device_index) {
|
588 |
+
return TensorOptions().device_index(
|
589 |
+
static_cast<c10::DeviceIndex>(device_index));
|
590 |
+
}
|
591 |
+
|
592 |
+
/// Convenience function that returns a `TensorOptions` object with the
|
593 |
+
/// `requires_grad` set to the given one.
|
594 |
+
inline TensorOptions requires_grad(bool requires_grad = true) {
|
595 |
+
return TensorOptions().requires_grad(requires_grad);
|
596 |
+
}
|
597 |
+
|
598 |
+
/// Convenience function that returns a `TensorOptions` object with the
|
599 |
+
/// `memory_format` set to the given one.
|
600 |
+
inline TensorOptions memory_format(MemoryFormat memory_format) {
|
601 |
+
return TensorOptions().memory_format(memory_format);
|
602 |
+
}
|
603 |
+
|
604 |
+
C10_API std::ostream& operator<<(
|
605 |
+
std::ostream& stream,
|
606 |
+
const TensorOptions& options);
|
607 |
+
|
608 |
+
template <typename T>
|
609 |
+
inline TensorOptions dtype() {
|
610 |
+
return dtype(caffe2::TypeMeta::Make<T>());
|
611 |
+
}
|
612 |
+
|
613 |
+
inline std::string toString(const TensorOptions& options) {
|
614 |
+
std::ostringstream stream;
|
615 |
+
stream << options;
|
616 |
+
return stream.str();
|
617 |
+
}
|
618 |
+
|
619 |
+
// This is intended to be a centralized location by which we can determine
|
620 |
+
// what an appropriate DispatchKey for a tensor is.
|
621 |
+
inline DispatchKey computeDispatchKey(
|
622 |
+
c10::optional<ScalarType> dtype,
|
623 |
+
c10::optional<Layout> layout,
|
624 |
+
c10::optional<Device> device) {
|
625 |
+
const auto layout_ = layout_or_default(layout);
|
626 |
+
const auto device_ = device_or_default(device);
|
627 |
+
switch (layout_) {
|
628 |
+
case Layout::Jagged:
|
629 |
+
case Layout::Strided: {
|
630 |
+
const auto dtype_ = dtype_or_default(dtype);
|
631 |
+
switch (device_.type()) {
|
632 |
+
#define DO_CASE(device, _) \
|
633 |
+
case c10::DeviceType::device: { \
|
634 |
+
if (isQIntType(dtype_)) { \
|
635 |
+
return DispatchKey::Quantized##device; \
|
636 |
+
} \
|
637 |
+
return DispatchKey::device; \
|
638 |
+
}
|
639 |
+
C10_FORALL_BACKEND_DEVICE_TYPES(DO_CASE, unused)
|
640 |
+
#undef DO_CASE
|
641 |
+
case c10::DeviceType::FPGA:
|
642 |
+
return DispatchKey::FPGA;
|
643 |
+
case c10::DeviceType::ORT:
|
644 |
+
return DispatchKey::ORT;
|
645 |
+
case c10::DeviceType::Vulkan:
|
646 |
+
return DispatchKey::Vulkan;
|
647 |
+
case c10::DeviceType::Metal:
|
648 |
+
return DispatchKey::Metal;
|
649 |
+
case c10::DeviceType::MKLDNN:
|
650 |
+
case c10::DeviceType::OPENGL:
|
651 |
+
case c10::DeviceType::OPENCL:
|
652 |
+
case c10::DeviceType::IDEEP:
|
653 |
+
TORCH_INTERNAL_ASSERT(
|
654 |
+
0,
|
655 |
+
"This is a grandfathered Caffe2 device type ",
|
656 |
+
device_.type(),
|
657 |
+
", it shouldn't ever convert to a DispatchKey. File a bug describing what you were doing if you think this is in error.");
|
658 |
+
default:
|
659 |
+
TORCH_CHECK_NOT_IMPLEMENTED(
|
660 |
+
false,
|
661 |
+
"Unsupported device type for dense layout: ",
|
662 |
+
device_.type());
|
663 |
+
}
|
664 |
+
}
|
665 |
+
case Layout::Sparse:
|
666 |
+
switch (device_.type()) {
|
667 |
+
#define DO_CASE(device, _) \
|
668 |
+
case c10::DeviceType::device: { \
|
669 |
+
return DispatchKey::Sparse##device; \
|
670 |
+
}
|
671 |
+
C10_FORALL_BACKEND_DEVICE_TYPES(DO_CASE, unused)
|
672 |
+
#undef DO_CASE
|
673 |
+
default:
|
674 |
+
TORCH_CHECK_NOT_IMPLEMENTED(
|
675 |
+
false,
|
676 |
+
"Unsupported device type for sparse layout: ",
|
677 |
+
device_.type());
|
678 |
+
}
|
679 |
+
case Layout::Mkldnn:
|
680 |
+
switch (device_.type()) {
|
681 |
+
case c10::DeviceType::CPU:
|
682 |
+
return DispatchKey::MkldnnCPU;
|
683 |
+
default:
|
684 |
+
TORCH_CHECK_NOT_IMPLEMENTED(
|
685 |
+
false,
|
686 |
+
"Unsupported device type for mkldnn layout: ",
|
687 |
+
device_.type());
|
688 |
+
}
|
689 |
+
case Layout::SparseCsr:
|
690 |
+
case Layout::SparseCsc:
|
691 |
+
case Layout::SparseBsr:
|
692 |
+
case Layout::SparseBsc:
|
693 |
+
switch (device_.type()) {
|
694 |
+
case c10::DeviceType::CPU:
|
695 |
+
return DispatchKey::SparseCsrCPU;
|
696 |
+
case c10::DeviceType::CUDA:
|
697 |
+
return DispatchKey::SparseCsrCUDA;
|
698 |
+
default:
|
699 |
+
AT_ERROR(
|
700 |
+
"Unsupported device type for ",
|
701 |
+
layout_,
|
702 |
+
" layout: ",
|
703 |
+
device_.type());
|
704 |
+
}
|
705 |
+
default:
|
706 |
+
TORCH_CHECK(false, "Unsupported layout: ", layout_);
|
707 |
+
}
|
708 |
+
}
|
709 |
+
|
710 |
+
inline Layout dispatchKeyToLayout(DispatchKey dispatch_key) {
|
711 |
+
switch (dispatch_key) {
|
712 |
+
#define DO_CASE(bc, _) case DispatchKey::Sparse##bc:
|
713 |
+
C10_FORALL_BACKEND_COMPONENTS(DO_CASE, unused)
|
714 |
+
#undef DO_CASE
|
715 |
+
return Layout::Sparse;
|
716 |
+
case DispatchKey::SparseCsrCPU:
|
717 |
+
case DispatchKey::SparseCsrCUDA:
|
718 |
+
TORCH_CHECK(
|
719 |
+
false,
|
720 |
+
"Cannot map DispatchKey ",
|
721 |
+
dispatch_key,
|
722 |
+
" to a unique layout.");
|
723 |
+
case DispatchKey::MkldnnCPU:
|
724 |
+
return Layout::Mkldnn;
|
725 |
+
default:
|
726 |
+
return Layout::Strided;
|
727 |
+
}
|
728 |
+
}
|
729 |
+
|
730 |
+
inline c10::DeviceType dispatchKeyToDeviceType(DispatchKey dispatch_key) {
|
731 |
+
switch (dispatch_key) {
|
732 |
+
// stuff that's real
|
733 |
+
#define DO_CASE(suffix, prefix) \
|
734 |
+
case DispatchKey::prefix##suffix: \
|
735 |
+
return c10::DeviceType::suffix;
|
736 |
+
#define DO_CASES(_, prefix) C10_FORALL_BACKEND_DEVICE_TYPES(DO_CASE, prefix)
|
737 |
+
C10_FORALL_FUNCTIONALITY_KEYS(DO_CASES)
|
738 |
+
#undef DO_CASES
|
739 |
+
#undef DO_CASE
|
740 |
+
|
741 |
+
case DispatchKey::MkldnnCPU:
|
742 |
+
return c10::DeviceType::CPU;
|
743 |
+
case DispatchKey::Vulkan:
|
744 |
+
return c10::DeviceType::Vulkan;
|
745 |
+
|
746 |
+
case DispatchKey::ORT:
|
747 |
+
return c10::DeviceType::ORT;
|
748 |
+
default:
|
749 |
+
TORCH_CHECK(
|
750 |
+
false,
|
751 |
+
"DispatchKey ",
|
752 |
+
dispatch_key,
|
753 |
+
" doesn't correspond to a device");
|
754 |
+
}
|
755 |
+
}
|
756 |
+
|
757 |
+
inline TensorOptions dispatchKeyToTensorOptions(DispatchKey dispatch_key) {
|
758 |
+
return TensorOptions()
|
759 |
+
.layout(dispatchKeyToLayout(dispatch_key))
|
760 |
+
.device(dispatchKeyToDeviceType(dispatch_key));
|
761 |
+
}
|
762 |
+
|
763 |
+
namespace detail {
|
764 |
+
inline bool backend_supports_empty_operator(const TensorOptions& options) {
|
765 |
+
// Quantized backends don't support at::empty().
|
766 |
+
// They have separate operators like at::empty_quantized() that take in
|
767 |
+
// extra information about how to quantize the tensor.
|
768 |
+
return !isQIntType(typeMetaToScalarType(options.dtype()));
|
769 |
+
}
|
770 |
+
|
771 |
+
} // namespace detail
|
772 |
+
|
773 |
+
} // namespace c10
|
env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/UndefinedTensorImpl.h
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <c10/core/TensorImpl.h>
|
4 |
+
|
5 |
+
namespace c10 {
|
6 |
+
|
7 |
+
struct C10_API UndefinedTensorImpl final : public TensorImpl {
|
8 |
+
public:
|
9 |
+
// Without this, we get:
|
10 |
+
// error: identifier "at::UndefinedTensorImpl::_singleton" is undefined in
|
11 |
+
// device code
|
12 |
+
// (ostensibly because the constexpr tricks MSVC into trying to compile this
|
13 |
+
// function for device as well).
|
14 |
+
#ifdef _WIN32
|
15 |
+
static inline TensorImpl* singleton() {
|
16 |
+
#else
|
17 |
+
static constexpr inline TensorImpl* singleton() {
|
18 |
+
#endif
|
19 |
+
return &_singleton;
|
20 |
+
}
|
21 |
+
#ifdef DEBUG
|
22 |
+
bool has_storage() const override;
|
23 |
+
#endif
|
24 |
+
void set_storage_offset(int64_t offset) override;
|
25 |
+
|
26 |
+
protected:
|
27 |
+
bool is_contiguous_custom(MemoryFormat format) const override;
|
28 |
+
IntArrayRef strides_custom() const override;
|
29 |
+
SymIntArrayRef sym_strides_custom() const override;
|
30 |
+
|
31 |
+
private:
|
32 |
+
UndefinedTensorImpl();
|
33 |
+
static UndefinedTensorImpl _singleton;
|
34 |
+
const char* tensorimpl_type_name() const override;
|
35 |
+
};
|
36 |
+
|
37 |
+
} // namespace c10
|
env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/WrapDimMinimal.h
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <c10/core/SymInt.h>
|
4 |
+
|
5 |
+
namespace c10 {
|
6 |
+
|
7 |
+
namespace detail {
|
8 |
+
// This template can only be specialized at int64_t and c10::SymInt;
|
9 |
+
// you'll get linker errors otherwise
|
10 |
+
template <typename T>
|
11 |
+
C10_API T maybe_wrap_dim_slow(T dim, T dim_post_expr, bool wrap_scalar);
|
12 |
+
} // namespace detail
|
13 |
+
|
14 |
+
template <typename T>
|
15 |
+
T _maybe_wrap_dim(T dim, T dim_post_expr, bool wrap_scalar = true) {
|
16 |
+
// Inline the fast paths
|
17 |
+
if (C10_LIKELY(dim_post_expr * -1 <= dim && dim < dim_post_expr)) {
|
18 |
+
// For SymInts, we want an explicit control flow to trigger a guard, so we
|
19 |
+
// may as well branch too.
|
20 |
+
if (dim < 0) {
|
21 |
+
return dim + dim_post_expr;
|
22 |
+
}
|
23 |
+
return dim;
|
24 |
+
}
|
25 |
+
// Check edge-cases out-of-line (wrapping scalars and out-of-bounds errors)
|
26 |
+
return c10::detail::maybe_wrap_dim_slow<T>(
|
27 |
+
std::move(dim), std::move(dim_post_expr), wrap_scalar);
|
28 |
+
}
|
29 |
+
|
30 |
+
inline int64_t maybe_wrap_dim(
|
31 |
+
int64_t dim,
|
32 |
+
int64_t dim_post_expr,
|
33 |
+
bool wrap_scalar = true) {
|
34 |
+
return _maybe_wrap_dim(dim, dim_post_expr, wrap_scalar);
|
35 |
+
}
|
36 |
+
|
37 |
+
inline c10::SymInt maybe_wrap_dim(
|
38 |
+
c10::SymInt dim,
|
39 |
+
c10::SymInt dim_post_expr,
|
40 |
+
bool wrap_scalar = true) {
|
41 |
+
return _maybe_wrap_dim(std::move(dim), std::move(dim_post_expr), wrap_scalar);
|
42 |
+
}
|
43 |
+
|
44 |
+
} // namespace c10
|
env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/impl/DeviceGuardImplInterface.h
ADDED
@@ -0,0 +1,336 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <c10/core/Device.h>
|
4 |
+
#include <c10/core/DeviceType.h>
|
5 |
+
#include <c10/core/Stream.h>
|
6 |
+
#include <c10/util/Exception.h>
|
7 |
+
|
8 |
+
// Just for C10_ANONYMOUS_VARIABLE
|
9 |
+
#include <c10/util/Registry.h>
|
10 |
+
|
11 |
+
#include <atomic>
|
12 |
+
|
13 |
+
namespace c10 {
|
14 |
+
|
15 |
+
// Forward declaration
|
16 |
+
class DataPtr;
|
17 |
+
|
18 |
+
/**
|
19 |
+
* Flags defining the behavior of events.
|
20 |
+
*
|
21 |
+
* PYTORCH_DEFAULT and BACKEND_DEFAULT are valid for all backends. The
|
22 |
+
* BACKEND_DEFAULT is what a particular backend would select if no
|
23 |
+
* flags were given. PYTORCH_DEFAULT is the PyTorch's framework default
|
24 |
+
* choice for events on that backend, which may not be the same. For example,
|
25 |
+
* when PyTorch creates a CUDA event it sets the flag
|
26 |
+
* CUDA_EVENT_DISABLING_TIMING by default to improve performance.
|
27 |
+
*
|
28 |
+
* The mapping of PYTORCH_DEFAULT and BACKEND_DEFAULT is done by each
|
29 |
+
* backend implementation. Backend-specific flags, like CUDA_EVENT_DEFAULT,
|
30 |
+
* should map one-to-one with actual event flags for those backends.
|
31 |
+
*/
|
32 |
+
enum class EventFlag {
|
33 |
+
PYTORCH_DEFAULT,
|
34 |
+
BACKEND_DEFAULT,
|
35 |
+
// CUDA flags
|
36 |
+
CUDA_EVENT_DEFAULT,
|
37 |
+
CUDA_EVENT_DISABLE_TIMING, // PyTorch-default for CUDA
|
38 |
+
// HIP flags
|
39 |
+
HIP_EVENT_DEFAULT,
|
40 |
+
HIP_EVENT_DISABLE_TIMING, // PyTorch-default for HIP
|
41 |
+
// FOR TESTING ONLY
|
42 |
+
INVALID
|
43 |
+
};
|
44 |
+
|
45 |
+
namespace impl {
|
46 |
+
|
47 |
+
/**
|
48 |
+
* DeviceGuardImplInterface represents the virtual interface which provides
|
49 |
+
* functionality to provide an RAII class for device and stream switching,
|
50 |
+
* via DeviceGuard. Every distinct device type, e.g., CUDA and HIP, is
|
51 |
+
* expected to implement and register an implementation of this interface.
|
52 |
+
* All classes which inherit from DeviceGuardImplInterface should be declared
|
53 |
+
* 'final'.
|
54 |
+
*
|
55 |
+
* This class exists because we provide a unified interface for performing
|
56 |
+
* device guards via DeviceGuard, but we cannot assume that we have actually
|
57 |
+
* compiled against the, e.g., CUDA library, which actually implements
|
58 |
+
* this guard functionality. In this case, a dynamic dispatch is required
|
59 |
+
* to cross the library boundary.
|
60 |
+
*
|
61 |
+
* If possible, you should directly use implementations of this interface;
|
62 |
+
* those uses will be devirtualized.
|
63 |
+
*/
|
64 |
+
struct C10_API DeviceGuardImplInterface {
|
65 |
+
DeviceGuardImplInterface() = default;
|
66 |
+
DeviceGuardImplInterface(const DeviceGuardImplInterface&) = default;
|
67 |
+
DeviceGuardImplInterface& operator=(const DeviceGuardImplInterface&) =
|
68 |
+
default;
|
69 |
+
DeviceGuardImplInterface(DeviceGuardImplInterface&&) noexcept = default;
|
70 |
+
DeviceGuardImplInterface& operator=(DeviceGuardImplInterface&&) noexcept =
|
71 |
+
default;
|
72 |
+
|
73 |
+
/**
|
74 |
+
* Return the type of device managed by this guard implementation.
|
75 |
+
*/
|
76 |
+
virtual DeviceType type() const = 0;
|
77 |
+
|
78 |
+
/**
|
79 |
+
* Set the current device to Device, and return the previous Device.
|
80 |
+
*/
|
81 |
+
virtual Device exchangeDevice(Device) const = 0;
|
82 |
+
// NB: Implementations of exchangeDevice can be a bit boilerplatey. You might
|
83 |
+
// consider replacing exchangeDevice with a non-virtual function with a baked
|
84 |
+
// in implementation; however, note that this will triple the number of
|
85 |
+
// virtual calls (when you implement exchangeDevice in a final subclass,
|
86 |
+
// the compiler gets to devirtualize everything; it won't do that if you don't
|
87 |
+
// define it in the subclass!) A common way to solve this problem is to use
|
88 |
+
// some sort of CRTP; however, we can template DeviceGuardImplInterface since
|
89 |
+
// we really *do* need it to be virtual. A little boilerplate seems easiest
|
90 |
+
// to explain. (Another way around this problem is to provide inline
|
91 |
+
// functions that provide the default implementations, but this seems a little
|
92 |
+
// hard to explain. In any case, we're only going to have on order of ten
|
93 |
+
// implementations of this anyway.)
|
94 |
+
|
95 |
+
/**
|
96 |
+
* Get the current device.
|
97 |
+
*/
|
98 |
+
virtual Device getDevice() const = 0;
|
99 |
+
|
100 |
+
/**
|
101 |
+
* Set the current device to Device.
|
102 |
+
*/
|
103 |
+
virtual void setDevice(Device) const = 0;
|
104 |
+
|
105 |
+
/**
|
106 |
+
* Set the current device to Device, without checking for errors
|
107 |
+
* (so, e.g., this can be called from a destructor).
|
108 |
+
*/
|
109 |
+
virtual void uncheckedSetDevice(Device) const noexcept = 0;
|
110 |
+
|
111 |
+
/**
|
112 |
+
* Get the current stream for a given device.
|
113 |
+
*/
|
114 |
+
virtual Stream getStream(Device) const noexcept = 0;
|
115 |
+
|
116 |
+
/**
|
117 |
+
* Get the default stream for a given device.
|
118 |
+
*/
|
119 |
+
virtual Stream getDefaultStream(Device) const {
|
120 |
+
TORCH_CHECK(false, "Backend doesn't support acquiring a default stream.")
|
121 |
+
}
|
122 |
+
|
123 |
+
/**
|
124 |
+
* Get a stream from the global pool for a given device.
|
125 |
+
*/
|
126 |
+
virtual Stream getStreamFromGlobalPool(Device, bool isHighPriority = false)
|
127 |
+
const {
|
128 |
+
(void)isHighPriority; // Suppress unused variable warning
|
129 |
+
TORCH_CHECK(false, "Backend doesn't support acquiring a stream from pool.")
|
130 |
+
}
|
131 |
+
|
132 |
+
/**
|
133 |
+
* Set a stream to be the thread local current stream for its device.
|
134 |
+
* Return the previous stream for that device. You are NOT required
|
135 |
+
* to set the current device to match the device of this stream.
|
136 |
+
*/
|
137 |
+
virtual Stream exchangeStream(Stream) const noexcept = 0;
|
138 |
+
|
139 |
+
/**
|
140 |
+
* Destroys the given event.
|
141 |
+
*/
|
142 |
+
virtual void destroyEvent(void* /*event*/, const DeviceIndex /*device_index*/)
|
143 |
+
const noexcept {}
|
144 |
+
|
145 |
+
/**
|
146 |
+
* Increments the event's version and enqueues a job with this version
|
147 |
+
* in the stream's work queue. When the stream process that job
|
148 |
+
* it notifies all streams waiting on / blocked by that version of the
|
149 |
+
* event to continue and marks that version as recorded.
|
150 |
+
* */
|
151 |
+
virtual void record(
|
152 |
+
void** /*event*/,
|
153 |
+
const Stream& /*stream*/,
|
154 |
+
const DeviceIndex /*device_index*/,
|
155 |
+
const c10::EventFlag /*flag*/) const {
|
156 |
+
TORCH_CHECK(false, "Backend doesn't support events.");
|
157 |
+
}
|
158 |
+
|
159 |
+
/**
|
160 |
+
* Does nothing if the event has not been scheduled to be recorded.
|
161 |
+
* If the event was previously enqueued to be recorded, a command
|
162 |
+
* to wait for the version of the event that exists at the time of this call
|
163 |
+
* is inserted in the stream's work queue.
|
164 |
+
* When the stream reaches this command it will stop processing
|
165 |
+
* additional commands until that version of the event is marked as recorded.
|
166 |
+
*/
|
167 |
+
virtual void block(void* /*event*/, const Stream& /*stream*/) const {
|
168 |
+
TORCH_CHECK(false, "Backend doesn't support events.");
|
169 |
+
}
|
170 |
+
|
171 |
+
/**
|
172 |
+
* Returns true if (and only if)
|
173 |
+
* (1) the event has never been scheduled to be recorded
|
174 |
+
* (2) the current version is marked as recorded.
|
175 |
+
* Returns false otherwise.
|
176 |
+
*/
|
177 |
+
virtual bool queryEvent(void* /*event*/) const {
|
178 |
+
TORCH_CHECK(false, "Backend doesn't support events.");
|
179 |
+
}
|
180 |
+
|
181 |
+
/**
|
182 |
+
* Get the number of devices. WARNING: This is REQUIRED to not raise
|
183 |
+
* an exception. If there is some sort of problem, e.g., driver error,
|
184 |
+
* you should report that there are zero available devices.
|
185 |
+
*/
|
186 |
+
virtual DeviceIndex deviceCount() const noexcept = 0;
|
187 |
+
|
188 |
+
/**
|
189 |
+
* Return true if all the work previously enqueued on the stream for
|
190 |
+
* asynchronous execution has completed running on the device.
|
191 |
+
*/
|
192 |
+
virtual bool queryStream(const Stream& /*stream*/) const {
|
193 |
+
TORCH_CHECK(false, "Backend doesn't support querying streams.");
|
194 |
+
}
|
195 |
+
|
196 |
+
/**
|
197 |
+
* Wait (by blocking the calling thread) until all the work previously
|
198 |
+
* enqueued on the stream has completed running on the device.
|
199 |
+
*/
|
200 |
+
virtual void synchronizeStream(const Stream& /*stream*/) const {
|
201 |
+
TORCH_CHECK(false, "Backend doesn't support synchronizing streams.");
|
202 |
+
}
|
203 |
+
|
204 |
+
/**
|
205 |
+
* Ensure the caching allocator (if any) is aware that the given DataPtr is
|
206 |
+
* being used on the given stream, and that it should thus avoid recycling the
|
207 |
+
* DataPtr until all work on that stream is done.
|
208 |
+
*/
|
209 |
+
virtual void recordDataPtrOnStream(const c10::DataPtr&, const Stream&) const {
|
210 |
+
}
|
211 |
+
|
212 |
+
/**
|
213 |
+
* Intended use of this class is to leak the DeviceGuardImpl at program end.
|
214 |
+
* So you better not call the destructor, buster!
|
215 |
+
*/
|
216 |
+
virtual ~DeviceGuardImplInterface() = default;
|
217 |
+
};
|
218 |
+
|
219 |
+
// A no-op device guard impl that doesn't do anything interesting. Useful
|
220 |
+
// for devices that don't actually have a concept of device index. Prominent
|
221 |
+
// examples are CPU and Meta.
|
222 |
+
template <DeviceType D>
|
223 |
+
struct NoOpDeviceGuardImpl final : public DeviceGuardImplInterface {
|
224 |
+
NoOpDeviceGuardImpl() = default;
|
225 |
+
DeviceType type() const override {
|
226 |
+
return D;
|
227 |
+
}
|
228 |
+
Device exchangeDevice(Device) const override {
|
229 |
+
return Device(D, -1); // no-op
|
230 |
+
}
|
231 |
+
Device getDevice() const override {
|
232 |
+
return Device(D, -1);
|
233 |
+
}
|
234 |
+
void setDevice(Device) const override {
|
235 |
+
// no-op
|
236 |
+
}
|
237 |
+
void uncheckedSetDevice(Device) const noexcept override {
|
238 |
+
// no-op
|
239 |
+
}
|
240 |
+
Stream getStream(Device) const noexcept override {
|
241 |
+
// no-op
|
242 |
+
return Stream(Stream::DEFAULT, Device(D, -1));
|
243 |
+
}
|
244 |
+
// NB: These do NOT set the current device
|
245 |
+
Stream exchangeStream(Stream) const noexcept override {
|
246 |
+
// no-op
|
247 |
+
return Stream(Stream::DEFAULT, Device(D, -1));
|
248 |
+
}
|
249 |
+
DeviceIndex deviceCount() const noexcept override {
|
250 |
+
return 1;
|
251 |
+
}
|
252 |
+
|
253 |
+
// Event-related functions
|
254 |
+
void record(
|
255 |
+
void** /*event*/,
|
256 |
+
const Stream& /*stream*/,
|
257 |
+
const DeviceIndex /*device_index*/,
|
258 |
+
const EventFlag /*flag*/) const override {
|
259 |
+
TORCH_CHECK(false, D, " backend doesn't support events.");
|
260 |
+
}
|
261 |
+
void block(void* /*event*/, const Stream& /*stream*/) const override {
|
262 |
+
TORCH_CHECK(false, D, " backend doesn't support events.")
|
263 |
+
}
|
264 |
+
bool queryEvent(void* /*event*/) const override {
|
265 |
+
TORCH_CHECK(false, D, " backend doesn't support events.")
|
266 |
+
}
|
267 |
+
void destroyEvent(void* /*event*/, const DeviceIndex /*device_index*/)
|
268 |
+
const noexcept override {}
|
269 |
+
|
270 |
+
// Stream-related functions
|
271 |
+
bool queryStream(const Stream& /*stream*/) const override {
|
272 |
+
return true;
|
273 |
+
}
|
274 |
+
void synchronizeStream(const Stream& /*stream*/) const override {
|
275 |
+
// Don't wait for anything.
|
276 |
+
}
|
277 |
+
};
|
278 |
+
|
279 |
+
// The registry is NON-owning. Each stored pointer is std::atomic so
|
280 |
+
// that under all interleavings of registry calls the structure is
|
281 |
+
// race-free. This doesn't cost us anything on reads in X86. (An
|
282 |
+
// unsynchronized implementation probably is OK too, but I didn't want
|
283 |
+
// to prove that we never read from device_guard_impl_registry at the
|
284 |
+
// same time some registration is occurring. Shiver.)
|
285 |
+
//
|
286 |
+
// I'd like this registry to be valid even at program destruction time
|
287 |
+
// (in case someone uses a DeviceGuard in a destructor to do some cleanup
|
288 |
+
// in the CUDA API.) Since there are no direct accesses of the underlying
|
289 |
+
// owning objects which I can use to enforce initialization order (unlike
|
290 |
+
// in a Meyer singleton), it implies that you must *leak* objects when
|
291 |
+
// putting them in the registry. This is done by deleting the destructor
|
292 |
+
// on DeviceGuardImplInterface.
|
293 |
+
extern C10_API std::atomic<const DeviceGuardImplInterface*>
|
294 |
+
device_guard_impl_registry[static_cast<size_t>(
|
295 |
+
DeviceType::COMPILE_TIME_MAX_DEVICE_TYPES)];
|
296 |
+
|
297 |
+
// I can't conveniently use c10/util/Registry.h for the following reason:
|
298 |
+
// c10/util/Registry.h gives me a slow way of Create'ing a object of some
|
299 |
+
// interface from the registry, but no way of quickly accessing an already
|
300 |
+
// created object. I'll be banging on getDeviceGuardImpl every time we do a
|
301 |
+
// DeviceGuard, so I really don't want to be doing an unordered_map lookup.
|
302 |
+
// Better if the registration mechanism directly drops its implementation
|
303 |
+
// into device_guard_impl_registry.
|
304 |
+
|
305 |
+
class C10_API DeviceGuardImplRegistrar {
|
306 |
+
public:
|
307 |
+
DeviceGuardImplRegistrar(DeviceType, const DeviceGuardImplInterface*);
|
308 |
+
};
|
309 |
+
|
310 |
+
#define C10_REGISTER_GUARD_IMPL(DevType, DeviceGuardImpl) \
|
311 |
+
static ::c10::impl::DeviceGuardImplRegistrar C10_ANONYMOUS_VARIABLE( \
|
312 |
+
g_##DeviceType)(::c10::DeviceType::DevType, new DeviceGuardImpl());
|
313 |
+
|
314 |
+
inline const DeviceGuardImplInterface* getDeviceGuardImpl(DeviceType type) {
|
315 |
+
// Two adjacent int16_t fields DeviceType and DeviceIndex has field access
|
316 |
+
// miscompiled on NVCC. To workaround this issue, we apply a mask to the
|
317 |
+
// DeviceType. First check if the DeviceType is 16-bit.
|
318 |
+
// FB employees can see
|
319 |
+
// https://fb.workplace.com/groups/llvm.gcc/permalink/4053565044692080/
|
320 |
+
// for more details
|
321 |
+
static_assert(sizeof(DeviceType) == 1, "DeviceType is not 8-bit");
|
322 |
+
auto p = device_guard_impl_registry[static_cast<size_t>(type) & 0xFF].load();
|
323 |
+
|
324 |
+
// This seems to be the first place where you make use of a device
|
325 |
+
// when you pass devices to factory functions. Give a nicer error
|
326 |
+
// message in this case.
|
327 |
+
TORCH_CHECK(p, "PyTorch is not linked with support for ", type, " devices");
|
328 |
+
return p;
|
329 |
+
}
|
330 |
+
|
331 |
+
inline bool hasDeviceGuardImpl(DeviceType type) {
|
332 |
+
return device_guard_impl_registry[static_cast<size_t>(type)].load();
|
333 |
+
}
|
334 |
+
|
335 |
+
} // namespace impl
|
336 |
+
} // namespace c10
|
env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/impl/FakeGuardImpl.h
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <c10/core/impl/DeviceGuardImplInterface.h>
|
4 |
+
|
5 |
+
#include <array>
|
6 |
+
|
7 |
+
namespace c10 {
|
8 |
+
namespace impl {
|
9 |
+
|
10 |
+
// FakeGuardImpl is hardcoded to have eight devices. Not for
|
11 |
+
// any good reason, just to simplify code.
|
12 |
+
constexpr DeviceIndex kFakeGuardImplMaxDevices = 8;
|
13 |
+
|
14 |
+
/**
|
15 |
+
* A fake implementation of DeviceGuardImplInterface suitable for testing.
|
16 |
+
* The current device is modeled as a mutable field in the guard implementation
|
17 |
+
* class. See DeviceGuard_test.cpp for an example use.
|
18 |
+
*/
|
19 |
+
template <DeviceType T>
|
20 |
+
struct FakeGuardImpl final : public DeviceGuardImplInterface {
|
21 |
+
static constexpr DeviceType static_type = T;
|
22 |
+
// Runtime device type is not used
|
23 |
+
FakeGuardImpl(DeviceType) {}
|
24 |
+
FakeGuardImpl() = default;
|
25 |
+
DeviceType type() const override {
|
26 |
+
return T;
|
27 |
+
}
|
28 |
+
Device exchangeDevice(Device d) const override {
|
29 |
+
AT_ASSERT(d.type() == type());
|
30 |
+
AT_ASSERT(d.index() < kFakeGuardImplMaxDevices);
|
31 |
+
Device old_device = getDevice();
|
32 |
+
if (old_device.index() != d.index()) {
|
33 |
+
current_device_ = d.index();
|
34 |
+
}
|
35 |
+
return old_device;
|
36 |
+
}
|
37 |
+
Device getDevice() const override {
|
38 |
+
return Device(type(), current_device_);
|
39 |
+
}
|
40 |
+
void setDevice(Device d) const override {
|
41 |
+
AT_ASSERT(d.type() == type());
|
42 |
+
AT_ASSERT(d.index() >= 0);
|
43 |
+
AT_ASSERT(d.index() < kFakeGuardImplMaxDevices);
|
44 |
+
current_device_ = d.index();
|
45 |
+
}
|
46 |
+
void uncheckedSetDevice(Device d) const noexcept override {
|
47 |
+
current_device_ = d.index();
|
48 |
+
}
|
49 |
+
Stream getStream(Device d) const noexcept override {
|
50 |
+
return Stream(Stream::UNSAFE, d, current_streams_[d.index()]);
|
51 |
+
}
|
52 |
+
Stream exchangeStream(Stream s) const noexcept override {
|
53 |
+
auto old_id = current_streams_[s.device_index()];
|
54 |
+
current_streams_[s.device_index()] = s.id();
|
55 |
+
return Stream(Stream::UNSAFE, s.device(), old_id);
|
56 |
+
}
|
57 |
+
DeviceIndex deviceCount() const noexcept override {
|
58 |
+
return kFakeGuardImplMaxDevices;
|
59 |
+
}
|
60 |
+
|
61 |
+
// Event-related functions
|
62 |
+
void record(
|
63 |
+
void** event,
|
64 |
+
const Stream& stream,
|
65 |
+
const DeviceIndex device_index,
|
66 |
+
const EventFlag flag) const override {}
|
67 |
+
void block(void* event, const Stream& stream) const override {}
|
68 |
+
bool queryEvent(void* event) const override {
|
69 |
+
return true;
|
70 |
+
}
|
71 |
+
void destroyEvent(void* event, const DeviceIndex device_index)
|
72 |
+
const noexcept override {}
|
73 |
+
|
74 |
+
// Convenience methods for testing
|
75 |
+
static DeviceIndex getDeviceIndex() {
|
76 |
+
return current_device_;
|
77 |
+
}
|
78 |
+
static void setDeviceIndex(DeviceIndex i) {
|
79 |
+
AT_ASSERT(i >= 0);
|
80 |
+
AT_ASSERT(i < kFakeGuardImplMaxDevices);
|
81 |
+
current_device_ = i;
|
82 |
+
}
|
83 |
+
static StreamId getCurrentStreamIdFor(DeviceIndex i) {
|
84 |
+
return current_streams_.at(i);
|
85 |
+
}
|
86 |
+
static void resetStreams() {
|
87 |
+
current_streams_.fill(0);
|
88 |
+
}
|
89 |
+
|
90 |
+
private:
|
91 |
+
thread_local static DeviceIndex current_device_;
|
92 |
+
thread_local static std::array<StreamId, kFakeGuardImplMaxDevices>
|
93 |
+
current_streams_;
|
94 |
+
};
|
95 |
+
|
96 |
+
template <DeviceType T>
|
97 |
+
thread_local DeviceIndex FakeGuardImpl<T>::current_device_ = 0;
|
98 |
+
|
99 |
+
template <DeviceType T>
|
100 |
+
thread_local std::array<StreamId, kFakeGuardImplMaxDevices>
|
101 |
+
FakeGuardImpl<T>::current_streams_ = {0, 0, 0, 0, 0, 0, 0, 0};
|
102 |
+
|
103 |
+
} // namespace impl
|
104 |
+
} // namespace c10
|
env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/impl/GPUTrace.h
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <c10/core/impl/PyInterpreter.h>
|
4 |
+
|
5 |
+
namespace c10 {
|
6 |
+
namespace impl {
|
7 |
+
|
8 |
+
struct C10_API GPUTrace {
|
9 |
+
// On the x86 architecture the atomic operations are lock-less.
|
10 |
+
static std::atomic<const PyInterpreter*> gpuTraceState;
|
11 |
+
|
12 |
+
// When PyTorch migrates to C++20, this should be changed to an atomic flag.
|
13 |
+
// Currently, the access to this variable is not synchronized, on the basis
|
14 |
+
// that it will only be flipped once and by the first interpreter that
|
15 |
+
// accesses it.
|
16 |
+
static bool haveState;
|
17 |
+
|
18 |
+
// This function will only register the first interpreter that tries to invoke
|
19 |
+
// it. For all of the next ones it will be a no-op.
|
20 |
+
static void set_trace(const PyInterpreter*);
|
21 |
+
|
22 |
+
static const PyInterpreter* get_trace() {
|
23 |
+
if (!haveState)
|
24 |
+
return nullptr;
|
25 |
+
return gpuTraceState.load(std::memory_order_acquire);
|
26 |
+
}
|
27 |
+
};
|
28 |
+
|
29 |
+
} // namespace impl
|
30 |
+
} // namespace c10
|
env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/impl/HermeticPyObjectTLS.h
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <c10/macros/Export.h>
|
4 |
+
#include <atomic>
|
5 |
+
|
6 |
+
namespace c10 {
|
7 |
+
namespace impl {
|
8 |
+
|
9 |
+
// This TLS controls whether or not we permanently associate PyObject
|
10 |
+
// with Tensor the first time it is allocated. When hermetic PyObject
|
11 |
+
// TLS is enabled (state is true), we DO NOT save PyObjects to Tensor,
|
12 |
+
// meaning you get a distinct PyObject whenever you execute the code in
|
13 |
+
// question.
|
14 |
+
struct C10_API HermeticPyObjectTLS {
|
15 |
+
static void set_state(bool state);
|
16 |
+
static bool get_state() {
|
17 |
+
// Hypothetical fastpath if torchdeploy/multipy isn't used. Per
|
18 |
+
// https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2055r0.pdf
|
19 |
+
// this qualifies relaxed access because it is a single-location data
|
20 |
+
// structure (only the boolean here).
|
21 |
+
//
|
22 |
+
// Forgetting about data races for a moment, is there a logical race?
|
23 |
+
//
|
24 |
+
// - Boolean only ever transitions from false to true. So the
|
25 |
+
// critical situation is when one interpreter is already running
|
26 |
+
// when a second interpreter switches haveState from false to true.
|
27 |
+
//
|
28 |
+
// - The first interpreter is indifferent whether or not it sees
|
29 |
+
// hasState true/false; obviously false works (this is what the
|
30 |
+
// interpreter was previously using; more directly, the interpreter
|
31 |
+
// calls into itself as the handler, so being hermetic is not
|
32 |
+
// required), and true simply means serviced python operator calls will
|
33 |
+
// be hermetic; in these cases it is expected to be functionally
|
34 |
+
// equivalent.
|
35 |
+
//
|
36 |
+
// - The second interpreter MUST see hasState true (as its requests will
|
37 |
+
// be forwarded to the first interpreter), but it is assumed that there
|
38 |
+
// is a synchronization between the interpreter initialization, and
|
39 |
+
// when we actually perform operations, so it is guaranteed to see
|
40 |
+
// hasState true.
|
41 |
+
//
|
42 |
+
// QED.
|
43 |
+
//
|
44 |
+
// This fastpath is currently disabled so that we can more easily test that
|
45 |
+
// hermetic mode works correctly even on stock build of PyTorch.
|
46 |
+
if (false && !haveState_.load(std::memory_order_relaxed))
|
47 |
+
return false;
|
48 |
+
return get_tls_state();
|
49 |
+
}
|
50 |
+
// Call this from the multipy/torchdeploy top level
|
51 |
+
static void init_state();
|
52 |
+
|
53 |
+
private:
|
54 |
+
// This only flipped once from false to true during torchdeploy/multipy
|
55 |
+
// initialization, and never again.
|
56 |
+
static std::atomic<bool> haveState_;
|
57 |
+
static bool get_tls_state();
|
58 |
+
};
|
59 |
+
|
60 |
+
} // namespace impl
|
61 |
+
} // namespace c10
|
env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/impl/InlineDeviceGuard.h
ADDED
@@ -0,0 +1,431 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// This file provides implementations of InlineDeviceGuard and
|
4 |
+
// InlineOptionalDeviceGuard.
|
5 |
+
|
6 |
+
#include <c10/core/Device.h>
|
7 |
+
#include <c10/core/impl/DeviceGuardImplInterface.h>
|
8 |
+
#include <c10/core/impl/VirtualGuardImpl.h>
|
9 |
+
#include <c10/util/C++17.h>
|
10 |
+
#include <c10/util/Optional.h>
|
11 |
+
|
12 |
+
namespace c10 {
|
13 |
+
namespace impl {
|
14 |
+
|
15 |
+
/**
|
16 |
+
* A DeviceGuard is an RAII class that sets a device to some value
|
17 |
+
* on construction, and resets the device to its original value on
|
18 |
+
* destruction.
|
19 |
+
*
|
20 |
+
* InlineDeviceGuard is a helper class for implementing DeviceGuards.
|
21 |
+
* It is templated over a DeviceGuardImpl (anything that implements
|
22 |
+
* DeviceGuardImplInterface). There are two primary ways to instantiate
|
23 |
+
* InlineDeviceGuard:
|
24 |
+
*
|
25 |
+
* - With a concrete implementation of DeviceGuardImpl, e.g., CUDAGuardImpl.
|
26 |
+
* This is the best way to use InlineDeviceGuard, as all calls are
|
27 |
+
* devirtualized, giving you code as efficient as straight line
|
28 |
+
* calls to cudaGetDevice/cudaSetDevice.
|
29 |
+
*
|
30 |
+
* - With VirtualGuardImpl, which does a virtual dispatch to a DeviceGuardImpl
|
31 |
+
* retrieved from a DeviceType registry. We have explicitly instantiated
|
32 |
+
* InlineDeviceGuard this way as c10::DeviceGuard.
|
33 |
+
*
|
34 |
+
* If you are in a hurry, you can use InlineDeviceGuard directly:
|
35 |
+
*
|
36 |
+
* using CUDAGuard = impl::InlineDeviceGuard<CUDAGuardImpl>;
|
37 |
+
*
|
38 |
+
* However, you can provide a better user experience if you explicitly write a
|
39 |
+
* wrapper class that itself contains the template instantiation:
|
40 |
+
*
|
41 |
+
* class CUDAGuard {
|
42 |
+
* public:
|
43 |
+
* // ... the API ...
|
44 |
+
* private:
|
45 |
+
* impl::InlineDeviceGuard<CUDAGuardImpl> guard_;
|
46 |
+
* }
|
47 |
+
*
|
48 |
+
* The wrapper class provides a good place to write documentation, and helps
|
49 |
+
* avoid weird template instantiation errors when a user incorrectly uses the
|
50 |
+
* class.
|
51 |
+
*
|
52 |
+
* If you need to test this class, consider instantiating it with FakeGuardImpl.
|
53 |
+
*/
|
54 |
+
template <typename T>
|
55 |
+
class InlineDeviceGuard {
|
56 |
+
public:
|
57 |
+
// Note [Omitted default constructor from RAII]
|
58 |
+
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
59 |
+
// In principle, we could add a default constructor to
|
60 |
+
// DeviceGuard which reads the current device and promises to
|
61 |
+
// restore to that device on exit. However, most cases where you
|
62 |
+
// would have written this, you probably meant to actually just
|
63 |
+
// use OptionalDeviceGuard (since you don't actually need the
|
64 |
+
// restore to happen if you don't ever actually set the device).
|
65 |
+
// We remove the constructor here to encourage you to think about
|
66 |
+
// what you actually want to happen.
|
67 |
+
explicit InlineDeviceGuard() = delete;
|
68 |
+
|
69 |
+
/// Set the current device to the passed Device.
|
70 |
+
explicit InlineDeviceGuard(Device device)
|
71 |
+
: impl_(device.type()),
|
72 |
+
original_device_(
|
73 |
+
device.index() == -1 ? impl_.getDevice()
|
74 |
+
: impl_.exchangeDevice(device)),
|
75 |
+
current_device_(device.index() == -1 ? original_device_ : device) {}
|
76 |
+
|
77 |
+
/// Set the current device index to the passed DeviceIndex. (The
|
78 |
+
/// device type is inferred from the template parameter T).
|
79 |
+
template <
|
80 |
+
typename U = T,
|
81 |
+
typename = typename std::enable_if<
|
82 |
+
!std::is_same<U, VirtualGuardImpl>::value>::type>
|
83 |
+
explicit InlineDeviceGuard(DeviceIndex device_index)
|
84 |
+
: InlineDeviceGuard(Device(U::static_type, device_index)) {}
|
85 |
+
|
86 |
+
/// Construct an InlineDeviceGuard using VirtualGuardImpl with an explicit
|
87 |
+
/// DeviceGuardImplInterface pointer.
|
88 |
+
template <
|
89 |
+
typename U = T,
|
90 |
+
typename = typename std::enable_if<
|
91 |
+
std::is_same<U, VirtualGuardImpl>::value>::type>
|
92 |
+
explicit InlineDeviceGuard(
|
93 |
+
Device device,
|
94 |
+
const DeviceGuardImplInterface* impl)
|
95 |
+
: impl_(
|
96 |
+
VirtualGuardImpl(impl ? impl : getDeviceGuardImpl(device.type()))),
|
97 |
+
original_device_(
|
98 |
+
device.index() == -1 ? impl_.getDevice()
|
99 |
+
: impl_.exchangeDevice(device)),
|
100 |
+
current_device_(device.index() == -1 ? original_device_ : device) {}
|
101 |
+
|
102 |
+
/// Copy is disallowed
|
103 |
+
InlineDeviceGuard(const InlineDeviceGuard<T>&) = delete;
|
104 |
+
InlineDeviceGuard<T>& operator=(const InlineDeviceGuard<T>&) = delete;
|
105 |
+
|
106 |
+
/// Move is disallowed, as DeviceGuard does not have an uninitialized state,
|
107 |
+
/// which is required for moves on types with nontrivial destructors.
|
108 |
+
InlineDeviceGuard(InlineDeviceGuard<T>&& other) = delete;
|
109 |
+
InlineDeviceGuard& operator=(InlineDeviceGuard<T>&& other) = delete;
|
110 |
+
|
111 |
+
~InlineDeviceGuard() {
|
112 |
+
impl_.uncheckedSetDevice(original_device_);
|
113 |
+
}
|
114 |
+
|
115 |
+
/// Sets the device to the given one.
|
116 |
+
template <
|
117 |
+
typename U = T,
|
118 |
+
typename std::enable_if<!std::is_same<U, VirtualGuardImpl>::value, int>::
|
119 |
+
type = 0>
|
120 |
+
void set_device(at::Device device) {
|
121 |
+
AT_ASSERT(
|
122 |
+
(U::static_type == DeviceType::HIP && device.is_cuda()) ||
|
123 |
+
device.type() == U::static_type);
|
124 |
+
auto index = device.index();
|
125 |
+
if (index == -1)
|
126 |
+
return;
|
127 |
+
impl_.setDevice(device);
|
128 |
+
current_device_ = device;
|
129 |
+
}
|
130 |
+
|
131 |
+
/// Resets the currently set device to its original device, and then sets the
|
132 |
+
/// current device to the passed device. This is effectively equivalent to
|
133 |
+
/// set_device when a guard supports only a single device type.
|
134 |
+
template <typename U = T>
|
135 |
+
typename std::enable_if<!std::is_same<U, VirtualGuardImpl>::value>::type
|
136 |
+
reset_device(at::Device device) {
|
137 |
+
set_device(device);
|
138 |
+
}
|
139 |
+
|
140 |
+
/// Resets the currently set device to its original device, and then sets the
|
141 |
+
/// current device to the passed device (for a possibly different device
|
142 |
+
/// type).
|
143 |
+
///
|
144 |
+
/// This method is named reset_device to highlight the fact that previous
|
145 |
+
/// device settings from this guard are NOT preserved, even if the device
|
146 |
+
/// has a different device type. For example:
|
147 |
+
///
|
148 |
+
/// // CUDA device is 0
|
149 |
+
/// DeviceGuard g(Device(kCUDA, 1));
|
150 |
+
/// g.reset_device(Device(kHIP, 2));
|
151 |
+
/// // CUDA device is 0 (!!)
|
152 |
+
///
|
153 |
+
/// NOTE: this implementation may skip some device setting if it can prove
|
154 |
+
/// that it is unnecessary.
|
155 |
+
///
|
156 |
+
/// Optional argument is for testing only.
|
157 |
+
template <typename U = T>
|
158 |
+
typename std::enable_if<std::is_same<U, VirtualGuardImpl>::value>::type
|
159 |
+
reset_device(
|
160 |
+
at::Device device,
|
161 |
+
const impl::DeviceGuardImplInterface* impl = nullptr) {
|
162 |
+
auto index = device.index();
|
163 |
+
if (index == -1)
|
164 |
+
return;
|
165 |
+
if (device.type() == original_device_.type()) {
|
166 |
+
AT_ASSERT(impl == nullptr || impl->type() == device.type());
|
167 |
+
impl_.setDevice(device);
|
168 |
+
current_device_ = device;
|
169 |
+
} else {
|
170 |
+
// Destruct and reconstruct the DeviceGuard in place
|
171 |
+
impl_.setDevice(original_device_);
|
172 |
+
impl_ = !impl ? VirtualGuardImpl(device.type()) : VirtualGuardImpl(impl);
|
173 |
+
original_device_ = impl_.exchangeDevice(device);
|
174 |
+
current_device_ = device;
|
175 |
+
}
|
176 |
+
}
|
177 |
+
|
178 |
+
/// Sets the device index to the given one. The device type is inferred
|
179 |
+
/// from the original device type.
|
180 |
+
void set_index(DeviceIndex index) {
|
181 |
+
reset_device(Device(original_device_.type(), index));
|
182 |
+
}
|
183 |
+
|
184 |
+
/// Returns the device that was set at the time the most recent
|
185 |
+
/// reset_device(), or otherwise the device at construction time.
|
186 |
+
Device original_device() const {
|
187 |
+
return original_device_;
|
188 |
+
}
|
189 |
+
|
190 |
+
/// Returns the most recent device that was set using this device guard,
|
191 |
+
/// either from construction, or via set_device/reset_device/set_index.
|
192 |
+
Device current_device() const {
|
193 |
+
return current_device_;
|
194 |
+
}
|
195 |
+
|
196 |
+
protected:
|
197 |
+
T impl_;
|
198 |
+
|
199 |
+
private:
|
200 |
+
Device original_device_;
|
201 |
+
Device current_device_;
|
202 |
+
};
|
203 |
+
|
204 |
+
/**
|
205 |
+
* A OptionalDeviceGuard is an RAII class that sets a device to some value on
|
206 |
+
* initialization, and resets the device to its original value on destruction.
|
207 |
+
*
|
208 |
+
* InlineOptionalDeviceGuard is a helper class for implementing
|
209 |
+
* OptionalDeviceGuards. See guidance in InlineDeviceGuard on how to
|
210 |
+
* use this. See OptionalDeviceGuard for user-oriented usage notes.
|
211 |
+
*/
|
212 |
+
template <typename T>
|
213 |
+
class InlineOptionalDeviceGuard {
|
214 |
+
public:
|
215 |
+
// Note [Explicit initialization of optional fields]
|
216 |
+
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
217 |
+
// Explicit initialization of optional fields
|
218 |
+
// required to workaround an nvcc bug; see
|
219 |
+
// https://github.com/pytorch/pytorch/issues/12117
|
220 |
+
|
221 |
+
/// Creates an uninitialized OptionalDeviceGuard.
|
222 |
+
explicit InlineOptionalDeviceGuard()
|
223 |
+
: guard_() // See Note [Explicit initialization of optional fields]
|
224 |
+
{}
|
225 |
+
|
226 |
+
/// Set the current device to the passed Device, if it is not nullopt.
|
227 |
+
explicit InlineOptionalDeviceGuard(optional<Device> device_opt)
|
228 |
+
: guard_() { // See Note [Explicit initialization of optional fields]
|
229 |
+
if (device_opt.has_value()) {
|
230 |
+
guard_.emplace(device_opt.value());
|
231 |
+
}
|
232 |
+
}
|
233 |
+
|
234 |
+
/// Set the current device to the passed DeviceIndex, if it is not nullopt.
|
235 |
+
template <
|
236 |
+
typename U = T,
|
237 |
+
typename = typename std::enable_if<
|
238 |
+
!std::is_same<U, VirtualGuardImpl>::value>::type>
|
239 |
+
explicit InlineOptionalDeviceGuard(optional<DeviceIndex> device_index_opt)
|
240 |
+
: guard_() { // See Note [Explicit initialization of optional fields]
|
241 |
+
if (device_index_opt.has_value()) {
|
242 |
+
guard_.emplace(device_index_opt.value());
|
243 |
+
}
|
244 |
+
}
|
245 |
+
|
246 |
+
/// All constructors of DeviceGuard are valid for OptionalDeviceGuard
|
247 |
+
/// and result in initialized OptionalDeviceGuard.
|
248 |
+
template <typename... Args>
|
249 |
+
explicit InlineOptionalDeviceGuard(Args&&... args)
|
250 |
+
: guard_(in_place, std::forward<Args>(args)...) {}
|
251 |
+
|
252 |
+
// TODO: Consider reading Tensor and TensorList constructors here, when
|
253 |
+
// Tensor moves to c10. (These are only valid on OptionalDeviceGuard,
|
254 |
+
// because a Tensor may be undefined, in which case we need an uninitialized
|
255 |
+
// tensor guard.)
|
256 |
+
|
257 |
+
// Note [Move construction for RAII guards is tricky]
|
258 |
+
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
259 |
+
// In principle, move construction is useful for terminating
|
260 |
+
// the lifetime of a `OptionalDeviceGuard` early; for example:
|
261 |
+
//
|
262 |
+
// // current device is d0
|
263 |
+
// OptionalDeviceGuard g1(d1);
|
264 |
+
// // current device is d1
|
265 |
+
// {
|
266 |
+
// OptionalDeviceGuard g2(std::move(g1));
|
267 |
+
// }
|
268 |
+
// // current device is d0!!
|
269 |
+
//
|
270 |
+
// However, it's difficult to implement the move constructor
|
271 |
+
// in a way that works in all situations. For example, consider
|
272 |
+
// the following example:
|
273 |
+
//
|
274 |
+
// OptionalDeviceGuard g1(d1);
|
275 |
+
// {
|
276 |
+
// OptionalDeviceGuard g2(d2);
|
277 |
+
// {
|
278 |
+
// OptionalDeviceGuard g3(std::move(g1)); // !!!
|
279 |
+
// }
|
280 |
+
// }
|
281 |
+
//
|
282 |
+
// What should the current device be while g3 in scope... and what
|
283 |
+
// should it be after it goes out of scope? What about g2?
|
284 |
+
// There don't seem to be satisfactory answers for these questions.
|
285 |
+
//
|
286 |
+
// It's in principle possible to raise an error when this occurs
|
287 |
+
// by doing some extra thread-local bookkeeping. But why bother?
|
288 |
+
// Just don't provide the constructor.
|
289 |
+
InlineOptionalDeviceGuard(InlineOptionalDeviceGuard<T>&& other) = delete;
|
290 |
+
|
291 |
+
// Note [Move assignment for RAII guards is tricky]
|
292 |
+
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
293 |
+
// Move assignment is deleted, because you need to know which guard was
|
294 |
+
// defined "first", as that guard's original_device_ wins--with the current
|
295 |
+
// representation, we have no way of telling which is the case. (Move
|
296 |
+
// construction does not have this problem, as one guard is always
|
297 |
+
// uninitialized.)
|
298 |
+
//
|
299 |
+
// We can make this clear by way of a pair of examples:
|
300 |
+
//
|
301 |
+
// Example 1:
|
302 |
+
//
|
303 |
+
// // initial device is n0
|
304 |
+
// {
|
305 |
+
// CUDAGuard g1(n1);
|
306 |
+
// {
|
307 |
+
// CUDAGuard g2(n2);
|
308 |
+
// // current device should be n2
|
309 |
+
// g1 = std::move(g2);
|
310 |
+
// // current device should still be n2
|
311 |
+
// }
|
312 |
+
// // current device should still be n2
|
313 |
+
// }
|
314 |
+
// // current device should be n0
|
315 |
+
//
|
316 |
+
// Example 2 (flip the order of the two guards):
|
317 |
+
//
|
318 |
+
// // initial device is n0
|
319 |
+
// {
|
320 |
+
// CUDAGuard g2(n2);
|
321 |
+
// {
|
322 |
+
// CUDAGuard g1(n1);
|
323 |
+
// // current device should be n1
|
324 |
+
// g1 = std::move(g2);
|
325 |
+
// // current device should be n2
|
326 |
+
// }
|
327 |
+
// // current device should be n0 (since g2 has been vacated)
|
328 |
+
// }
|
329 |
+
//
|
330 |
+
// In both examples, we need g1 to restore to n0 after move assignment.
|
331 |
+
// However, in example 1, this is determined by the restore value of g1
|
332 |
+
// (prior to the move). In example 2, however, it is determined by the the
|
333 |
+
// restore value of g2(!!). We don't know which one should win, without having
|
334 |
+
// a way of telling which guard was allocated first.
|
335 |
+
//
|
336 |
+
// We could solve this with an extra thread-local variable. But no one is
|
337 |
+
// actually using move-assignment. So just get rid of it.
|
338 |
+
InlineOptionalDeviceGuard& operator=(InlineOptionalDeviceGuard&& other) =
|
339 |
+
delete;
|
340 |
+
|
341 |
+
/// Sets the device to the given one. Initializes OptionalDeviceGuard if it
|
342 |
+
/// is not already initialized.
|
343 |
+
template <
|
344 |
+
typename U = T,
|
345 |
+
typename = typename std::enable_if<
|
346 |
+
!std::is_same<U, VirtualGuardImpl>::value>::type>
|
347 |
+
void set_device(at::Device device) {
|
348 |
+
if (!guard_.has_value()) {
|
349 |
+
guard_.emplace(device);
|
350 |
+
} else {
|
351 |
+
guard_->set_device(device);
|
352 |
+
}
|
353 |
+
}
|
354 |
+
|
355 |
+
/// Resets the currently set device to its original device, and then sets the
|
356 |
+
/// current device to the passed device (for a possibly different device
|
357 |
+
/// type). Initializes OptionalDeviceGuard if it is not already initialized.
|
358 |
+
///
|
359 |
+
/// See notes on why this is called reset_device on InlineDeviceGuard.
|
360 |
+
///
|
361 |
+
/// Optional argument is for testing only.
|
362 |
+
template <
|
363 |
+
typename U = T,
|
364 |
+
typename = typename std::enable_if<
|
365 |
+
std::is_same<U, VirtualGuardImpl>::value>::type>
|
366 |
+
void reset_device(
|
367 |
+
at::Device device,
|
368 |
+
const DeviceGuardImplInterface* impl = nullptr) {
|
369 |
+
if (!guard_.has_value()) {
|
370 |
+
guard_.emplace(device, impl);
|
371 |
+
} else {
|
372 |
+
guard_->reset_device(device, impl);
|
373 |
+
}
|
374 |
+
}
|
375 |
+
|
376 |
+
/// Resets the currently set device to its original device, and then sets the
|
377 |
+
/// current device to the passed device. Initializes the guard if it is
|
378 |
+
/// not already initialized. This is effectively equivalent to set_device
|
379 |
+
/// when a guard supports only a single device type.
|
380 |
+
template <
|
381 |
+
typename U = T,
|
382 |
+
typename = typename std::enable_if<
|
383 |
+
!std::is_same<U, VirtualGuardImpl>::value>::type>
|
384 |
+
void reset_device(at::Device device) {
|
385 |
+
if (!guard_.has_value()) {
|
386 |
+
guard_.emplace(device);
|
387 |
+
} else {
|
388 |
+
guard_->reset_device(device);
|
389 |
+
}
|
390 |
+
}
|
391 |
+
|
392 |
+
/// Sets the device index to the given one. The device type is statically
|
393 |
+
/// known.
|
394 |
+
template <
|
395 |
+
typename U = T,
|
396 |
+
typename = typename std::enable_if<
|
397 |
+
!std::is_same<U, VirtualGuardImpl>::value>::type>
|
398 |
+
void set_index(DeviceIndex index) {
|
399 |
+
if (!guard_.has_value()) {
|
400 |
+
guard_.emplace(index);
|
401 |
+
} else {
|
402 |
+
guard_->set_index(index);
|
403 |
+
}
|
404 |
+
}
|
405 |
+
|
406 |
+
/// Returns the device that was set immediately prior to initialization of
|
407 |
+
/// the, guard, or nullopt if the guard is uninitialized.
|
408 |
+
optional<Device> original_device() const {
|
409 |
+
return guard_.has_value() ? make_optional(guard_->original_device())
|
410 |
+
: nullopt;
|
411 |
+
}
|
412 |
+
|
413 |
+
/// Returns the most recent device that was set using this device guard,
|
414 |
+
/// either from construction, or via set_device, if the guard is initialized,
|
415 |
+
/// or nullopt if the guard is uninitialized.
|
416 |
+
optional<Device> current_device() const {
|
417 |
+
return guard_.has_value() ? make_optional(guard_->current_device())
|
418 |
+
: nullopt;
|
419 |
+
}
|
420 |
+
|
421 |
+
/// Restore the original device, resetting this guard to uninitialized state.
|
422 |
+
void reset() {
|
423 |
+
guard_.reset();
|
424 |
+
}
|
425 |
+
|
426 |
+
private:
|
427 |
+
optional<InlineDeviceGuard<T>> guard_;
|
428 |
+
};
|
429 |
+
|
430 |
+
} // namespace impl
|
431 |
+
} // namespace c10
|
env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/impl/InlineEvent.h
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <c10/core/DeviceType.h>
|
4 |
+
#include <c10/core/Stream.h>
|
5 |
+
#include <c10/core/impl/DeviceGuardImplInterface.h>
|
6 |
+
#include <c10/util/Exception.h>
|
7 |
+
|
8 |
+
namespace c10 {
|
9 |
+
namespace impl {
|
10 |
+
|
11 |
+
template <typename T>
|
12 |
+
struct InlineEvent final {
|
13 |
+
InlineEvent() = delete;
|
14 |
+
InlineEvent(
|
15 |
+
const DeviceType _device_type,
|
16 |
+
const EventFlag _flag = EventFlag::PYTORCH_DEFAULT)
|
17 |
+
: backend_{_device_type}, device_type_{_device_type}, flag_{_flag} {}
|
18 |
+
|
19 |
+
// Copy constructor and copy assignment operator (deleted)
|
20 |
+
InlineEvent(const InlineEvent&) = delete;
|
21 |
+
InlineEvent& operator=(const InlineEvent&) = delete;
|
22 |
+
|
23 |
+
// Move constructor and move assignment operator
|
24 |
+
InlineEvent(InlineEvent&& other) noexcept
|
25 |
+
: InlineEvent(other.device_type_, other.flag_) {
|
26 |
+
swap(std::move(other));
|
27 |
+
}
|
28 |
+
InlineEvent& operator=(InlineEvent&& other) noexcept {
|
29 |
+
swap(std::move(other));
|
30 |
+
return *this;
|
31 |
+
}
|
32 |
+
|
33 |
+
void swap(InlineEvent&& other) {
|
34 |
+
std::swap(event_, other.event_);
|
35 |
+
std::swap(backend_, other.backend_);
|
36 |
+
std::swap(device_type_, other.device_type_);
|
37 |
+
std::swap(device_index_, other.device_index_);
|
38 |
+
std::swap(flag_, other.flag_);
|
39 |
+
std::swap(was_marked_for_recording_, other.was_marked_for_recording_);
|
40 |
+
}
|
41 |
+
|
42 |
+
~InlineEvent() noexcept {
|
43 |
+
if (event_)
|
44 |
+
backend_.destroyEvent(event_, device_index_);
|
45 |
+
}
|
46 |
+
|
47 |
+
DeviceType device_type() const noexcept {
|
48 |
+
return device_type_;
|
49 |
+
}
|
50 |
+
DeviceIndex device_index() const noexcept {
|
51 |
+
return device_index_;
|
52 |
+
}
|
53 |
+
EventFlag flag() const noexcept {
|
54 |
+
return flag_;
|
55 |
+
}
|
56 |
+
bool was_marked_for_recording() const noexcept {
|
57 |
+
return was_marked_for_recording_;
|
58 |
+
}
|
59 |
+
|
60 |
+
void recordOnce(const Stream& stream) {
|
61 |
+
if (!was_marked_for_recording_)
|
62 |
+
record(stream);
|
63 |
+
}
|
64 |
+
|
65 |
+
void record(const Stream& stream) {
|
66 |
+
TORCH_CHECK(
|
67 |
+
stream.device_type() == device_type_,
|
68 |
+
"Event device type ",
|
69 |
+
DeviceTypeName(device_type_),
|
70 |
+
" does not match recording stream's device type ",
|
71 |
+
DeviceTypeName(stream.device_type()),
|
72 |
+
".");
|
73 |
+
|
74 |
+
backend_.record(&event_, stream, device_index_, flag_);
|
75 |
+
was_marked_for_recording_ = true;
|
76 |
+
device_index_ = stream.device_index();
|
77 |
+
}
|
78 |
+
|
79 |
+
void block(const Stream& stream) const {
|
80 |
+
if (!was_marked_for_recording_)
|
81 |
+
return;
|
82 |
+
|
83 |
+
TORCH_CHECK(
|
84 |
+
stream.device_type() == device_type_,
|
85 |
+
"Event device type ",
|
86 |
+
DeviceTypeName(device_type_),
|
87 |
+
" does not match blocking stream's device type ",
|
88 |
+
DeviceTypeName(stream.device_type()),
|
89 |
+
".");
|
90 |
+
|
91 |
+
backend_.block(event_, stream);
|
92 |
+
}
|
93 |
+
|
94 |
+
bool query() const {
|
95 |
+
if (!was_marked_for_recording_)
|
96 |
+
return true;
|
97 |
+
return backend_.queryEvent(event_);
|
98 |
+
}
|
99 |
+
|
100 |
+
private:
|
101 |
+
void* event_ = nullptr;
|
102 |
+
T backend_;
|
103 |
+
DeviceType device_type_;
|
104 |
+
DeviceIndex device_index_ = -1;
|
105 |
+
EventFlag flag_ = EventFlag::PYTORCH_DEFAULT;
|
106 |
+
bool was_marked_for_recording_ = false;
|
107 |
+
};
|
108 |
+
|
109 |
+
} // namespace impl
|
110 |
+
} // namespace c10
|
env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/impl/InlineStreamGuard.h
ADDED
@@ -0,0 +1,256 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <c10/core/impl/InlineDeviceGuard.h>
|
4 |
+
#include <c10/util/ArrayRef.h>
|
5 |
+
#include <c10/util/irange.h>
|
6 |
+
|
7 |
+
namespace c10 {
|
8 |
+
namespace impl {
|
9 |
+
|
10 |
+
/**
|
11 |
+
* A StreamGuard is an RAII class that changes the current device
|
12 |
+
* to the device corresponding to some stream, and changes the
|
13 |
+
* default stream on that device to be this stream.
|
14 |
+
*
|
15 |
+
* InlineStreamGuard is a helper class for implementing StreamGuards.
|
16 |
+
* See InlineDeviceGuard for guidance on how to use this class.
|
17 |
+
*/
|
18 |
+
template <typename T>
|
19 |
+
class InlineStreamGuard : private InlineDeviceGuard<T> {
|
20 |
+
public:
|
21 |
+
/// No default constructor, see Note [Omitted default constructor from RAII]
|
22 |
+
explicit InlineStreamGuard() = delete;
|
23 |
+
|
24 |
+
/// Set the current device to the device associated with the passed stream,
|
25 |
+
/// and set the current stream on that device to the passed stream.
|
26 |
+
explicit InlineStreamGuard(Stream stream)
|
27 |
+
: InlineDeviceGuard<T>(stream.device()),
|
28 |
+
original_stream_of_original_device_(
|
29 |
+
this->impl_.getStream(original_device())),
|
30 |
+
original_stream_of_current_device_(this->impl_.exchangeStream(stream)),
|
31 |
+
current_stream_(stream) {}
|
32 |
+
|
33 |
+
/// This constructor exists purely for testing
|
34 |
+
template <
|
35 |
+
typename U = T,
|
36 |
+
typename = typename std::enable_if<
|
37 |
+
std::is_same<U, VirtualGuardImpl>::value>::type>
|
38 |
+
explicit InlineStreamGuard(
|
39 |
+
Stream stream,
|
40 |
+
const DeviceGuardImplInterface* impl)
|
41 |
+
: InlineDeviceGuard<T>(
|
42 |
+
stream.device(),
|
43 |
+
impl ? impl : getDeviceGuardImpl(stream.device_type())),
|
44 |
+
original_stream_of_original_device_(
|
45 |
+
this->impl_.getStream(original_device())),
|
46 |
+
original_stream_of_current_device_(this->impl_.exchangeStream(stream)),
|
47 |
+
current_stream_(stream) {}
|
48 |
+
|
49 |
+
/// Copy is disallowed
|
50 |
+
InlineStreamGuard(const InlineStreamGuard<T>&) = delete;
|
51 |
+
InlineStreamGuard<T>& operator=(const InlineStreamGuard<T>&) = delete;
|
52 |
+
|
53 |
+
/// Move is disallowed, as StreamGuard does not have an uninitialized state,
|
54 |
+
/// which is required for moves on types with nontrivial destructors.
|
55 |
+
InlineStreamGuard(InlineStreamGuard<T>&& other) = delete;
|
56 |
+
InlineStreamGuard& operator=(InlineStreamGuard<T>&& other) = delete;
|
57 |
+
|
58 |
+
~InlineStreamGuard() {
|
59 |
+
this->impl_.exchangeStream(original_stream_of_current_device_);
|
60 |
+
}
|
61 |
+
|
62 |
+
/// Resets the currently set stream to the original stream and
|
63 |
+
/// the currently set device to the original device. Then,
|
64 |
+
/// set the current device to the device associated with the passed stream,
|
65 |
+
/// and set the current stream on that device to the passed stream.
|
66 |
+
///
|
67 |
+
/// NOTE: this implementation may skip some stream/device setting if
|
68 |
+
/// it can prove that it is unnecessary.
|
69 |
+
///
|
70 |
+
/// WARNING: reset_stream does NOT preserve previously set streams on
|
71 |
+
/// different devices. If you need to set streams on multiple devices
|
72 |
+
/// use MultiStreamGuard instead.
|
73 |
+
void reset_stream(Stream stream) {
|
74 |
+
// TODO: make a version that takes an impl argument. Unfortunately,
|
75 |
+
// that will require SFINAE because impl is only valid for the
|
76 |
+
// VirtualGuardImpl specialization.
|
77 |
+
if (stream.device() == this->current_device()) {
|
78 |
+
this->impl_.exchangeStream(stream);
|
79 |
+
current_stream_ = stream;
|
80 |
+
} else {
|
81 |
+
// Destruct and reconstruct the StreamGuard in-place
|
82 |
+
this->impl_.exchangeStream(original_stream_of_current_device_);
|
83 |
+
this->reset_device(stream.device());
|
84 |
+
original_stream_of_current_device_ = this->impl_.exchangeStream(stream);
|
85 |
+
current_stream_ = stream;
|
86 |
+
}
|
87 |
+
}
|
88 |
+
|
89 |
+
// It's not clear if set_device should also reset the current stream
|
90 |
+
// if the device is unchanged; therefore, we don't provide it.
|
91 |
+
// The situation is somewhat clearer with reset_device, but it's still
|
92 |
+
// a pretty weird thing to do, so haven't added this either.
|
93 |
+
|
94 |
+
/// Returns the stream of the original device prior to this guard. Subtly,
|
95 |
+
/// the stream returned here is the original stream of the *original*
|
96 |
+
/// device; i.e., it's the stream that your computation *would* have
|
97 |
+
/// been put on, if it hadn't been for this meddling stream guard.
|
98 |
+
/// This is usually what you want.
|
99 |
+
Stream original_stream() const {
|
100 |
+
return original_stream_of_original_device_;
|
101 |
+
}
|
102 |
+
|
103 |
+
/// Returns the most recent stream that was set using this device guard,
|
104 |
+
/// either from construction, or via set_stream.
|
105 |
+
Stream current_stream() const {
|
106 |
+
return current_stream_;
|
107 |
+
}
|
108 |
+
|
109 |
+
/// Returns the most recent device that was set using this device guard,
|
110 |
+
/// either from construction, or via set_device/reset_device/set_index.
|
111 |
+
Device current_device() const {
|
112 |
+
return InlineDeviceGuard<T>::current_device();
|
113 |
+
}
|
114 |
+
|
115 |
+
/// Returns the device that was set at the most recent reset_stream(),
|
116 |
+
/// or otherwise the device at construction time.
|
117 |
+
Device original_device() const {
|
118 |
+
return InlineDeviceGuard<T>::original_device();
|
119 |
+
}
|
120 |
+
|
121 |
+
private:
|
122 |
+
Stream
|
123 |
+
original_stream_of_original_device_; // what the user probably cares about
|
124 |
+
Stream original_stream_of_current_device_; // what we need to restore
|
125 |
+
Stream current_stream_;
|
126 |
+
};
|
127 |
+
|
128 |
+
/**
|
129 |
+
* An OptionalStreamGuard is an RAII class that sets a device to some value on
|
130 |
+
* initialization, and resets the device to its original value on destruction.
|
131 |
+
* See InlineOptionalDeviceGuard for more guidance on how to use this class.
|
132 |
+
*/
|
133 |
+
template <typename T>
|
134 |
+
class InlineOptionalStreamGuard {
|
135 |
+
public:
|
136 |
+
/// Creates an uninitialized stream guard.
|
137 |
+
explicit InlineOptionalStreamGuard()
|
138 |
+
: guard_() // See Note [Explicit initialization of optional fields]
|
139 |
+
{}
|
140 |
+
|
141 |
+
/// Set the current device to the device associated with the passed stream,
|
142 |
+
/// and set the current stream on that device to the passed stream,
|
143 |
+
/// if the passed stream is not nullopt.
|
144 |
+
explicit InlineOptionalStreamGuard(optional<Stream> stream_opt) : guard_() {
|
145 |
+
if (stream_opt.has_value()) {
|
146 |
+
guard_.emplace(stream_opt.value());
|
147 |
+
}
|
148 |
+
}
|
149 |
+
|
150 |
+
/// All constructors of StreamGuard are valid for OptionalStreamGuard
|
151 |
+
template <typename... Args>
|
152 |
+
explicit InlineOptionalStreamGuard(Args&&... args)
|
153 |
+
: guard_(in_place, std::forward<Args>(args)...) {}
|
154 |
+
|
155 |
+
// See Note [Move construction for RAII guards is tricky]
|
156 |
+
InlineOptionalStreamGuard(InlineOptionalStreamGuard<T>&& other) = delete;
|
157 |
+
|
158 |
+
// See Note [Move assignment for RAII guards is tricky]
|
159 |
+
InlineOptionalStreamGuard& operator=(InlineOptionalStreamGuard&& other) =
|
160 |
+
delete;
|
161 |
+
|
162 |
+
/// Resets the currently set stream to the original stream and
|
163 |
+
/// the currently set device to the original device. Then,
|
164 |
+
/// set the current device to the device associated with the passed stream,
|
165 |
+
/// and set the current stream on that device to the passed stream.
|
166 |
+
/// Initializes the OptionalStreamGuard if it was not previously initialized.
|
167 |
+
void reset_stream(Stream stream) {
|
168 |
+
if (guard_.has_value()) {
|
169 |
+
guard_->reset_stream(stream);
|
170 |
+
} else {
|
171 |
+
guard_.emplace(stream);
|
172 |
+
}
|
173 |
+
}
|
174 |
+
|
175 |
+
/// Returns the stream that was set at the time the guard was most recently
|
176 |
+
/// initialized, or nullopt if the guard is uninitialized.
|
177 |
+
optional<Stream> original_stream() const {
|
178 |
+
return guard_.has_value() ? make_optional(guard_->original_stream())
|
179 |
+
: nullopt;
|
180 |
+
}
|
181 |
+
|
182 |
+
/// Returns the most recent stream that was set using this stream guard,
|
183 |
+
/// either from construction, or via reset_stream, if the guard is
|
184 |
+
/// initialized, or nullopt if the guard is uninitialized.
|
185 |
+
optional<Stream> current_stream() const {
|
186 |
+
return guard_.has_value() ? make_optional(guard_->current_stream())
|
187 |
+
: nullopt;
|
188 |
+
}
|
189 |
+
|
190 |
+
/// Restore the original device and stream, resetting this guard to
|
191 |
+
/// uninitialized state.
|
192 |
+
void reset() {
|
193 |
+
guard_.reset();
|
194 |
+
}
|
195 |
+
|
196 |
+
private:
|
197 |
+
optional<InlineStreamGuard<T>> guard_;
|
198 |
+
};
|
199 |
+
|
200 |
+
template <typename T>
|
201 |
+
class InlineMultiStreamGuard {
|
202 |
+
public:
|
203 |
+
/// Calls `set_stream` on each of the streams in the list.
|
204 |
+
/// This may be useful if you need to set different streams
|
205 |
+
/// for different devices.
|
206 |
+
explicit InlineMultiStreamGuard(ArrayRef<Stream> streams) {
|
207 |
+
if (!streams.empty()) {
|
208 |
+
impl_.emplace(getDeviceTypeOfStreams(streams));
|
209 |
+
original_streams_.reserve(streams.size());
|
210 |
+
for (const Stream& s : streams) {
|
211 |
+
original_streams_.emplace_back(this->impl_->exchangeStream(s));
|
212 |
+
}
|
213 |
+
}
|
214 |
+
}
|
215 |
+
|
216 |
+
/// Copy is disallowed
|
217 |
+
InlineMultiStreamGuard(const InlineMultiStreamGuard&) = delete;
|
218 |
+
InlineMultiStreamGuard<T>& operator=(const InlineMultiStreamGuard&) = delete;
|
219 |
+
|
220 |
+
/// Move is disallowed, as StreamGuard does not have an uninitialized state,
|
221 |
+
/// which is required for moves on types with nontrivial destructors.
|
222 |
+
InlineMultiStreamGuard(InlineMultiStreamGuard&& other) = delete;
|
223 |
+
InlineMultiStreamGuard& operator=(InlineMultiStreamGuard&& other) = delete;
|
224 |
+
|
225 |
+
~InlineMultiStreamGuard() {
|
226 |
+
for (const Stream& s : original_streams_) {
|
227 |
+
this->impl_->exchangeStream(s);
|
228 |
+
}
|
229 |
+
}
|
230 |
+
|
231 |
+
protected:
|
232 |
+
optional<T> impl_;
|
233 |
+
|
234 |
+
private:
|
235 |
+
/// The original streams that were active on all devices.
|
236 |
+
std::vector<Stream> original_streams_;
|
237 |
+
|
238 |
+
static DeviceType getDeviceTypeOfStreams(ArrayRef<Stream> streams) {
|
239 |
+
TORCH_INTERNAL_ASSERT(!streams.empty());
|
240 |
+
DeviceType type = streams[0].device_type();
|
241 |
+
for (const auto idx : c10::irange(1, streams.size())) {
|
242 |
+
TORCH_CHECK_VALUE(
|
243 |
+
streams[idx].device_type() == type,
|
244 |
+
"Streams have a mix of device types: stream 0 is on ",
|
245 |
+
streams[0].device(),
|
246 |
+
" while stream ",
|
247 |
+
idx,
|
248 |
+
" is on device ",
|
249 |
+
streams[idx].device());
|
250 |
+
}
|
251 |
+
return type;
|
252 |
+
}
|
253 |
+
};
|
254 |
+
|
255 |
+
} // namespace impl
|
256 |
+
} // namespace c10
|
env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/impl/LocalDispatchKeySet.h
ADDED
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <c10/core/DispatchKeySet.h>
|
4 |
+
#include <c10/macros/Export.h>
|
5 |
+
|
6 |
+
// TLS management for DispatchKeySet (the "local" DispatchKeySet(s))
|
7 |
+
//
|
8 |
+
// This manages two thread-local DispatchKeySets:
|
9 |
+
//
|
10 |
+
// - The included type set, which adds a tensor type for consideration
|
11 |
+
// in dispatch. (For example, you might add Profiling to
|
12 |
+
// the included type set to turn on profiling on all tensor operations.)
|
13 |
+
//
|
14 |
+
// - The excluded type set, which disqualifies a tensor type from dispatch.
|
15 |
+
// (For example, after redispatching on variable, we disqualify
|
16 |
+
// Autograd so we don't attempt to handle variable again.)
|
17 |
+
// (Exclusion wins over inclusion.)
|
18 |
+
//
|
19 |
+
// NB: Originally, I implemented the excluded type set as storing the inverted
|
20 |
+
// set, but TLS is defined to be zero-initialized, so this doesn't actually work
|
21 |
+
// (if it's inverted, you want the set to be -1 initialized).
|
22 |
+
|
23 |
+
namespace c10 {
|
24 |
+
namespace impl {
|
25 |
+
|
26 |
+
// POD version of LocalDispatchKeySet. Declared here just so that
|
27 |
+
// we can put it in the guards.
|
28 |
+
// This struct encapsulates special handling for TLS initialization
|
29 |
+
// in set_included()/included() API so that they reflect the truth.
|
30 |
+
// If you want to create PODLocalDispatchKeySet with non-zero state,
|
31 |
+
// use set_included() instead of default constructor.
|
32 |
+
struct C10_API PODLocalDispatchKeySet {
|
33 |
+
uint64_t included_;
|
34 |
+
uint64_t excluded_;
|
35 |
+
|
36 |
+
// See Note [TLS Initialization]
|
37 |
+
DispatchKeySet included() const {
|
38 |
+
return DispatchKeySet(DispatchKeySet::RAW, included_) ^
|
39 |
+
c10::default_included_set;
|
40 |
+
}
|
41 |
+
DispatchKeySet excluded() const {
|
42 |
+
return DispatchKeySet(DispatchKeySet::RAW, excluded_) ^
|
43 |
+
c10::default_excluded_set;
|
44 |
+
}
|
45 |
+
|
46 |
+
void set_included(DispatchKeySet x) {
|
47 |
+
included_ = (x ^ c10::default_included_set).raw_repr();
|
48 |
+
}
|
49 |
+
void set_excluded(DispatchKeySet x) {
|
50 |
+
excluded_ = (x ^ c10::default_excluded_set).raw_repr();
|
51 |
+
}
|
52 |
+
};
|
53 |
+
static_assert(
|
54 |
+
std::is_trivial<PODLocalDispatchKeySet>::value,
|
55 |
+
"PODLocalDispatchKeySet must be a POD type.");
|
56 |
+
|
57 |
+
struct C10_API LocalDispatchKeySet {
|
58 |
+
/* implicit */ LocalDispatchKeySet(PODLocalDispatchKeySet x)
|
59 |
+
: included_(x.included()), excluded_(x.excluded()) {}
|
60 |
+
DispatchKeySet included_;
|
61 |
+
DispatchKeySet excluded_;
|
62 |
+
};
|
63 |
+
|
64 |
+
// thread_local variables cannot be C10_API on Windows.
|
65 |
+
// Inlining this seems to break AutoDispatchBelowAutograd on Android.
|
66 |
+
#if defined(_MSC_VER) || defined(C10_ANDROID) || defined(C10_IPHONE)
|
67 |
+
C10_API LocalDispatchKeySet tls_local_dispatch_key_set();
|
68 |
+
#else // defined(_MSC_VER) || defined(C10_ANDROID) || defined(C10_IPHONE)
|
69 |
+
extern C10_API thread_local PODLocalDispatchKeySet raw_local_dispatch_key_set;
|
70 |
+
|
71 |
+
inline C10_API LocalDispatchKeySet tls_local_dispatch_key_set() {
|
72 |
+
// Don't let people fiddle with the thread_local directly just
|
73 |
+
// because they include this header.
|
74 |
+
return raw_local_dispatch_key_set;
|
75 |
+
}
|
76 |
+
#endif // defined(_MSC_VER) || defined(C10_ANDROID) || defined(C10_IPHONE)
|
77 |
+
|
78 |
+
// Internal, use ThreadLocalStateGuard
|
79 |
+
C10_API void _force_tls_local_dispatch_key_set(LocalDispatchKeySet key_set);
|
80 |
+
|
81 |
+
// RAII API for manipulating the thread-local dispatch state.
|
82 |
+
|
83 |
+
class C10_API IncludeDispatchKeyGuard {
|
84 |
+
public:
|
85 |
+
IncludeDispatchKeyGuard(DispatchKeySet);
|
86 |
+
IncludeDispatchKeyGuard(DispatchKey k)
|
87 |
+
: IncludeDispatchKeyGuard(DispatchKeySet(k)) {}
|
88 |
+
IncludeDispatchKeyGuard(const IncludeDispatchKeyGuard&) = delete;
|
89 |
+
IncludeDispatchKeyGuard operator=(const IncludeDispatchKeyGuard&) = delete;
|
90 |
+
IncludeDispatchKeyGuard(IncludeDispatchKeyGuard&&) = delete;
|
91 |
+
IncludeDispatchKeyGuard operator=(IncludeDispatchKeyGuard&&) = delete;
|
92 |
+
~IncludeDispatchKeyGuard();
|
93 |
+
|
94 |
+
private:
|
95 |
+
// A little micro-optimization to save us from tls_get_addr call
|
96 |
+
// on destruction
|
97 |
+
PODLocalDispatchKeySet* tls_;
|
98 |
+
DispatchKeySet include_;
|
99 |
+
};
|
100 |
+
|
101 |
+
class C10_API ExcludeDispatchKeyGuard {
|
102 |
+
public:
|
103 |
+
ExcludeDispatchKeyGuard(DispatchKeySet);
|
104 |
+
ExcludeDispatchKeyGuard(DispatchKey k)
|
105 |
+
: ExcludeDispatchKeyGuard(DispatchKeySet(k)) {}
|
106 |
+
ExcludeDispatchKeyGuard(const ExcludeDispatchKeyGuard&) = delete;
|
107 |
+
ExcludeDispatchKeyGuard operator=(const ExcludeDispatchKeyGuard&) = delete;
|
108 |
+
ExcludeDispatchKeyGuard(ExcludeDispatchKeyGuard&&) = delete;
|
109 |
+
ExcludeDispatchKeyGuard operator=(ExcludeDispatchKeyGuard&&) = delete;
|
110 |
+
~ExcludeDispatchKeyGuard();
|
111 |
+
|
112 |
+
private:
|
113 |
+
// A little micro-optimization to save us from tls_get_addr call
|
114 |
+
// on destruction
|
115 |
+
PODLocalDispatchKeySet* tls_;
|
116 |
+
DispatchKeySet exclude_;
|
117 |
+
};
|
118 |
+
|
119 |
+
struct C10_API ForceDispatchKeyGuard {
|
120 |
+
public:
|
121 |
+
ForceDispatchKeyGuard(c10::impl::LocalDispatchKeySet key_set)
|
122 |
+
: saved_keyset_(c10::impl::tls_local_dispatch_key_set()) {
|
123 |
+
c10::impl::_force_tls_local_dispatch_key_set(key_set);
|
124 |
+
}
|
125 |
+
ForceDispatchKeyGuard(
|
126 |
+
c10::DispatchKeySet include,
|
127 |
+
c10::DispatchKeySet exclude)
|
128 |
+
: saved_keyset_(c10::impl::tls_local_dispatch_key_set()) {
|
129 |
+
auto updated_set = saved_keyset_;
|
130 |
+
updated_set.included_ = include;
|
131 |
+
updated_set.excluded_ = exclude;
|
132 |
+
c10::impl::_force_tls_local_dispatch_key_set(updated_set);
|
133 |
+
}
|
134 |
+
~ForceDispatchKeyGuard() {
|
135 |
+
c10::impl::_force_tls_local_dispatch_key_set(saved_keyset_);
|
136 |
+
}
|
137 |
+
|
138 |
+
private:
|
139 |
+
c10::impl::LocalDispatchKeySet saved_keyset_;
|
140 |
+
};
|
141 |
+
|
142 |
+
// Non-RAII API for manipulating the thread-local dispatch state.
|
143 |
+
// Please prefer the RAII API. The non-RAII API may be useful when
|
144 |
+
// the included/excluded state of a given DispatchKey must span
|
145 |
+
// many calls from the Python to the C++, so you cannot conveniently
|
146 |
+
// use an RAII guard.
|
147 |
+
//
|
148 |
+
// Example use case: a Python context manager that includes a certain
|
149 |
+
// DispatchKey, to ensure ops running under the context manager dispatch
|
150 |
+
// through that DispatchKey's registered overrides.
|
151 |
+
//
|
152 |
+
// The non-RAII API is less efficient than the RAII guards because both the
|
153 |
+
// getter and setter will do a tls_getaddr lookup (the RAII struct only needs
|
154 |
+
// one!)
|
155 |
+
|
156 |
+
C10_API bool tls_is_dispatch_key_excluded(DispatchKey x);
|
157 |
+
C10_API void tls_set_dispatch_key_excluded(DispatchKey x, bool desired_state);
|
158 |
+
C10_API bool tls_is_dispatch_key_included(DispatchKey x);
|
159 |
+
C10_API void tls_set_dispatch_key_included(DispatchKey x, bool desired_state);
|
160 |
+
C10_API bool tls_is_dispatch_keyset_excluded(DispatchKeySet ks);
|
161 |
+
C10_API bool tls_is_dispatch_keyset_included(DispatchKeySet ks);
|
162 |
+
|
163 |
+
} // namespace impl
|
164 |
+
} // namespace c10
|
env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/impl/PyInterpreter.h
ADDED
@@ -0,0 +1,242 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <c10/core/Device.h>
|
4 |
+
#include <c10/core/Layout.h>
|
5 |
+
#include <c10/core/MemoryFormat.h>
|
6 |
+
#include <c10/core/SymIntArrayRef.h>
|
7 |
+
#include <c10/macros/Export.h>
|
8 |
+
#include <c10/util/ArrayRef.h>
|
9 |
+
#include <c10/util/intrusive_ptr.h>
|
10 |
+
#include <c10/util/python_stub.h>
|
11 |
+
#include <string>
|
12 |
+
#include <vector>
|
13 |
+
|
14 |
+
// Forward declarations
|
15 |
+
|
16 |
+
namespace c10 {
|
17 |
+
struct IValue;
|
18 |
+
class OperatorHandle;
|
19 |
+
struct TensorImpl;
|
20 |
+
} // namespace c10
|
21 |
+
|
22 |
+
namespace torch {
|
23 |
+
namespace jit {
|
24 |
+
using Stack = std::vector<c10::IValue>;
|
25 |
+
}
|
26 |
+
} // namespace torch
|
27 |
+
|
28 |
+
// Actual implementation
|
29 |
+
|
30 |
+
namespace c10 {
|
31 |
+
namespace impl {
|
32 |
+
|
33 |
+
struct C10_API PyInterpreter;
|
34 |
+
|
35 |
+
// Note [Python interpreter tag]
|
36 |
+
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
37 |
+
// Traditionally, PyTorch is layered such that our Python library
|
38 |
+
// (libtorch_python) references our pure C++ library (libtorch) as the
|
39 |
+
// natural order of things. However, sometimes this natural order is
|
40 |
+
// subverted: C++ objects refer to Python objects (for example, we
|
41 |
+
// store a PyObject* pointer on TensorImpl so that converting from a
|
42 |
+
// C++ Tensor to a Python Tensor is just a memory dereference).
|
43 |
+
//
|
44 |
+
// These unusual orderings must be treated with care. To start, you need to
|
45 |
+
// virtualize the destructor so that the PyObject can be decref'ed on
|
46 |
+
// destruction (because the C++ object itself doesn't know anything about
|
47 |
+
// Python--remember, layering!). This process itself is fraught, since
|
48 |
+
// acquiring the GIL could lead to deadlocks if someone is blocking on you
|
49 |
+
// while holding the GIL. Furthermore, if the C++ objects outlive the
|
50 |
+
// interpreter (which can happen if you stash them in a static global
|
51 |
+
// variable defined in libtorch), you may attempt to decref the object when
|
52 |
+
// the Python interpreter has already been shutdown.
|
53 |
+
//
|
54 |
+
// BUT WAIT, IT GETS WORSE. With torchdeploy, there may be multiple Python
|
55 |
+
// interpreters in a single process. If a C++ object is accessible from
|
56 |
+
// multiple interpreters, we must take care not to accidentally pass a
|
57 |
+
// PyObject from one interpreter with another interpreter.
|
58 |
+
//
|
59 |
+
// To prevent these mixups, we introduce a PyInterpreter "tag" (object with
|
60 |
+
// a vtable), which specifies a specific Python interpreter.
|
61 |
+
//
|
62 |
+
// - Any given object can be associated with AT MOST one Python interpreter.
|
63 |
+
// We represent the interpreter tag as a memory address to an instance of
|
64 |
+
// a virtual class that is allocated once per interpreter (this is so that
|
65 |
+
// we can request the interpreter to perform operations for us, if
|
66 |
+
// necessary).
|
67 |
+
//
|
68 |
+
// - It can be recorded with a PyObject (PyInterpreterObject) so that
|
69 |
+
// we know what interpreter the object is associated with, and we can
|
70 |
+
// raise an error if you try to use the PyObject from the wrong
|
71 |
+
// interpreter context.
|
72 |
+
//
|
73 |
+
// - It contains a vtable that can be used to perform various Python
|
74 |
+
// operations from ordinary C++ code that ordinarily wouldn't be accessible
|
75 |
+
// from libtorch.
|
76 |
+
//
|
77 |
+
// A simple use case is when a C++ object must be associated with a PyObject.
|
78 |
+
// However, for TensorImpl, we lazily allocate a PyObject the first time the
|
79 |
+
// object passes into Python. The invariants for this situation are more
|
80 |
+
// subtle:
|
81 |
+
//
|
82 |
+
// - A given TensorImpl's interpreter tag can only go from uninitialized to
|
83 |
+
// tagged; once tagged, this is a quiescent state (once tagged to an
|
84 |
+
// interpreter, ALWAYS tagged to that interpreter)
|
85 |
+
//
|
86 |
+
// - A thread may mutate the PyObject field of a TensorImpl if and only if it
|
87 |
+
// holds the GIL for the interpreter tagged on the TensorImpl. (If the
|
88 |
+
// TensorImpl is not tagged, it must first atomically claim its tag before it
|
89 |
+
// can validly write)
|
90 |
+
//
|
91 |
+
// WARNING: This class has to be written very carefully, because it may be
|
92 |
+
// possible for a Tensor to have a reference an interpreter corresponding to
|
93 |
+
// a shared library that has ALREADY BEEN UNLOADED. This makes blindly calling
|
94 |
+
// virtual methods very dangerous, because the vtable may be garbage at that
|
95 |
+
// point (on a good day, you might get "pure virtual method called").
|
96 |
+
//
|
97 |
+
// The idea to solve this problem is we always leak PyInterpreters (so they
|
98 |
+
// always stay live even after dlclose), and make sure we can disarm their
|
99 |
+
// virtual methods by indirecting through a separate PyInterpreterVTable
|
100 |
+
// object. This can be replaced with a no-op vtable from libc10.so, which
|
101 |
+
// is guaranteed to stick around until the bitter end.
|
102 |
+
//
|
103 |
+
// NB: The downside with representing PyInterpreter tags as full objects is that
|
104 |
+
// it takes an extra word on TensorImpl. If tags were instead just integer
|
105 |
+
// indices, on 64-bit architectures we could pack the tag and PyObject together
|
106 |
+
// into a single atomic word. On 32-bit architectures we could simply say that
|
107 |
+
// only one Python interpreter is supported (erroring if a nontrivial
|
108 |
+
// interpreter tag is attempted to be set).
|
109 |
+
//
|
110 |
+
// The difficulty with this scheme is we need to maintain an out-of-line table
|
111 |
+
// to get at the PyInterpreters so that we can do virtual method calls on them,
|
112 |
+
// and registration/deregistration to this table must be done in a thread safe
|
113 |
+
// manner. This can be easily done if the number of possible PyInterpreters is
|
114 |
+
// small enough (e.g., 8-bit integer) by simply preallocating an array of
|
115 |
+
// sufficient size to hold all possible interpreters. Surely 128 threads is
|
116 |
+
// more than enough for anyone!
|
117 |
+
//
|
118 |
+
// I didn't decide to do this technique at the moment, because the extra word
|
119 |
+
// added by the PyInterpreter tag takes us to 24 words, which means that we
|
120 |
+
// still fit inside three eight word cache lines. If you need to penny pinch
|
121 |
+
// another word consider doing this!
|
122 |
+
|
123 |
+
struct C10_API PyInterpreterVTable {
|
124 |
+
virtual ~PyInterpreterVTable() = default;
|
125 |
+
|
126 |
+
// Report the name of this interpreter
|
127 |
+
virtual std::string name() const = 0;
|
128 |
+
|
129 |
+
// Run Py_DECREF on a PyObject. We DO NOT assume the GIL is held on call
|
130 |
+
// See NOTE [PyInterpreter::decref takes a `has_pyobj_slot` arg]
|
131 |
+
virtual void decref(PyObject* pyobj, bool has_pyobj_slot) const = 0;
|
132 |
+
|
133 |
+
// Perform a detach by deferring to the __torch_dispatch__ implementation of
|
134 |
+
// detach, which will also arrange for the PyObject to get copied in this
|
135 |
+
// situation
|
136 |
+
virtual c10::intrusive_ptr<TensorImpl> detach(
|
137 |
+
const TensorImpl* self) const = 0;
|
138 |
+
|
139 |
+
// Invoke the Python boxed fallback dispatch to go back into Python
|
140 |
+
virtual void dispatch(const c10::OperatorHandle& op, torch::jit::Stack* stack)
|
141 |
+
const = 0;
|
142 |
+
|
143 |
+
virtual void reportErrorCallback(PyObject* callback, DispatchKey key)
|
144 |
+
const = 0;
|
145 |
+
|
146 |
+
// This is only invoked in the multipy/torchdeploy situation from
|
147 |
+
// pythonOpRegistrationTrampoline; this lets us get to the Python
|
148 |
+
// interpreter to actually find the appropriate Python op registration
|
149 |
+
// entry to call.
|
150 |
+
virtual void python_op_registration_trampoline(
|
151 |
+
const c10::OperatorHandle& op,
|
152 |
+
c10::DispatchKey,
|
153 |
+
torch::jit::Stack* stack) const = 0;
|
154 |
+
|
155 |
+
virtual void throw_abstract_impl_not_imported_error(
|
156 |
+
std::string opname,
|
157 |
+
const char* pymodule,
|
158 |
+
const char* context) const = 0;
|
159 |
+
|
160 |
+
// Invoke the Python dispatcher to handle this call
|
161 |
+
virtual void python_dispatcher(
|
162 |
+
const c10::OperatorHandle& op,
|
163 |
+
c10::DispatchKeySet,
|
164 |
+
torch::jit::Stack* stack) const = 0;
|
165 |
+
|
166 |
+
virtual bool is_contiguous(const TensorImpl* self, at::MemoryFormat)
|
167 |
+
const = 0;
|
168 |
+
virtual bool is_strides_like(const TensorImpl* self, at::MemoryFormat)
|
169 |
+
const = 0;
|
170 |
+
virtual bool is_non_overlapping_and_dense(const TensorImpl* self) const = 0;
|
171 |
+
virtual c10::Device device(const TensorImpl* self) const = 0;
|
172 |
+
virtual int64_t dim(const TensorImpl* self) const = 0;
|
173 |
+
virtual c10::IntArrayRef strides(const TensorImpl* self) const = 0;
|
174 |
+
virtual c10::IntArrayRef sizes(const TensorImpl* self) const = 0;
|
175 |
+
virtual c10::SymIntArrayRef sym_sizes(const TensorImpl* self) const = 0;
|
176 |
+
virtual c10::Layout layout(const TensorImpl* self) const = 0;
|
177 |
+
virtual int64_t numel(const TensorImpl* self) const = 0;
|
178 |
+
virtual c10::SymInt sym_numel(const TensorImpl* self) const = 0;
|
179 |
+
virtual c10::SymIntArrayRef sym_strides(const TensorImpl* self) const = 0;
|
180 |
+
virtual c10::SymInt sym_storage_offset(const TensorImpl* self) const = 0;
|
181 |
+
|
182 |
+
virtual void trace_gpu_event_creation(uintptr_t event) const = 0;
|
183 |
+
virtual void trace_gpu_event_deletion(uintptr_t event) const = 0;
|
184 |
+
virtual void trace_gpu_event_record(uintptr_t event, uintptr_t stream)
|
185 |
+
const = 0;
|
186 |
+
virtual void trace_gpu_event_wait(uintptr_t event, uintptr_t stream)
|
187 |
+
const = 0;
|
188 |
+
virtual void trace_gpu_memory_allocation(uintptr_t ptr) const = 0;
|
189 |
+
virtual void trace_gpu_memory_deallocation(uintptr_t ptr) const = 0;
|
190 |
+
virtual void trace_gpu_stream_creation(uintptr_t stream) const = 0;
|
191 |
+
virtual void trace_gpu_device_synchronization() const = 0;
|
192 |
+
virtual void trace_gpu_stream_synchronization(uintptr_t stream) const = 0;
|
193 |
+
virtual void trace_gpu_event_synchronization(uintptr_t event) const = 0;
|
194 |
+
|
195 |
+
virtual void reset_backward_hooks(const TensorImpl* self) const = 0;
|
196 |
+
};
|
197 |
+
|
198 |
+
struct C10_API PyInterpreter {
|
199 |
+
const PyInterpreterVTable* vtable_;
|
200 |
+
|
201 |
+
PyInterpreter(const PyInterpreterVTable* vtable) : vtable_(vtable){};
|
202 |
+
|
203 |
+
const PyInterpreterVTable& operator*() const noexcept {
|
204 |
+
return *vtable_;
|
205 |
+
}
|
206 |
+
const PyInterpreterVTable* operator->() const noexcept {
|
207 |
+
return vtable_;
|
208 |
+
}
|
209 |
+
|
210 |
+
// Disarm this PyInterpreter, making all of its methods noops.
|
211 |
+
// The vtable pointer is not an atomic at the moment, which means
|
212 |
+
// a disarm() invocation that is concurrent with active destructors
|
213 |
+
// is not thread safe and will trigger TSAN. My hope is that this
|
214 |
+
// situations doesn't ever actually happen; tensor destruction should
|
215 |
+
// quiesce when a dlclose happens, and any long lived tensors whose
|
216 |
+
// destructors would be disarmed here only begin the destruction process
|
217 |
+
// on process shutdown (long after the dlclose has occurred).
|
218 |
+
void disarm() noexcept;
|
219 |
+
};
|
220 |
+
|
221 |
+
// PyInterpreterStatus describes what the state of its interpreter tag
|
222 |
+
// is, relative to the thread currently holding the GIL.
|
223 |
+
enum class PyInterpreterStatus {
|
224 |
+
// We just allocated the Tensor, it hasn't escaped to other threads,
|
225 |
+
// we know that it definitely hasn't been tagged to be associated
|
226 |
+
// with an interpreter.
|
227 |
+
DEFINITELY_UNINITIALIZED,
|
228 |
+
// We queried the interpreter field and it looked uninitialized. But
|
229 |
+
// another thread may have raced with us to tag it with some other
|
230 |
+
// interpreter id. So we will have to do a CEX to make sure we can
|
231 |
+
// actually nab it.
|
232 |
+
MAYBE_UNINITIALIZED,
|
233 |
+
// We queried the interpreter field and it was tagged to belong to us.
|
234 |
+
// This means we have sole write access (as we hold the GIL for this
|
235 |
+
// interpreter)
|
236 |
+
TAGGED_BY_US,
|
237 |
+
// Someone else tagged this. We can't use this TensorImpl from Python.
|
238 |
+
TAGGED_BY_OTHER,
|
239 |
+
};
|
240 |
+
|
241 |
+
} // namespace impl
|
242 |
+
} // namespace c10
|
env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/impl/PyObjectSlot.h
ADDED
@@ -0,0 +1,192 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <c10/core/impl/HermeticPyObjectTLS.h>
|
4 |
+
#include <c10/core/impl/PyInterpreter.h>
|
5 |
+
#include <c10/util/Optional.h>
|
6 |
+
#include <c10/util/python_stub.h>
|
7 |
+
|
8 |
+
#include <atomic>
|
9 |
+
|
10 |
+
namespace c10 {
|
11 |
+
namespace impl {
|
12 |
+
|
13 |
+
struct C10_API PyObjectSlot {
|
14 |
+
public:
|
15 |
+
PyObjectSlot();
|
16 |
+
|
17 |
+
~PyObjectSlot();
|
18 |
+
|
19 |
+
void maybe_destroy_pyobj();
|
20 |
+
|
21 |
+
// Associate the TensorImpl with the specified PyObject, and, if necessary,
|
22 |
+
// also tag the interpreter.
|
23 |
+
//
|
24 |
+
// NB: This lives in a header so that we can inline away the switch on status
|
25 |
+
//
|
26 |
+
// NB: THIS FUNCTION CAN RAISE AN EXCEPTION. Make sure to clean up after
|
27 |
+
// PyObject if necessary!
|
28 |
+
void init_pyobj(
|
29 |
+
PyInterpreter* self_interpreter,
|
30 |
+
PyObject* pyobj,
|
31 |
+
PyInterpreterStatus status) {
|
32 |
+
impl::PyInterpreter* expected = nullptr;
|
33 |
+
switch (status) {
|
34 |
+
case impl::PyInterpreterStatus::DEFINITELY_UNINITIALIZED:
|
35 |
+
// caller guarantees there is no multithreaded access; if there is
|
36 |
+
// no data race OK to do a relaxed store
|
37 |
+
pyobj_interpreter_.store(self_interpreter, std::memory_order_relaxed);
|
38 |
+
break;
|
39 |
+
case impl::PyInterpreterStatus::TAGGED_BY_US:
|
40 |
+
// no tagging is necessary, the tag is already correct
|
41 |
+
break;
|
42 |
+
case impl::PyInterpreterStatus::MAYBE_UNINITIALIZED:
|
43 |
+
// attempt to claim this TensorImpl with the specified interpreter
|
44 |
+
// tag
|
45 |
+
if (pyobj_interpreter_.compare_exchange_strong(
|
46 |
+
expected, self_interpreter, std::memory_order_acq_rel)) {
|
47 |
+
break;
|
48 |
+
}
|
49 |
+
// test if, actually, it was already tagged by us! this situation can't
|
50 |
+
// be caused by a race, but it could be caused by a situation
|
51 |
+
// where someone conservatively tagged the tensor as MAYBE_UNINITIALIZED
|
52 |
+
// (because they didn't pre-check the tag) when actually it was
|
53 |
+
// owned by the interpreter
|
54 |
+
if (expected == self_interpreter) {
|
55 |
+
break;
|
56 |
+
}
|
57 |
+
// fallthrough, we lost the race. We are guaranteed not to lose the
|
58 |
+
// race with ourself, as calls to init_pyobj with the same interpreter
|
59 |
+
// ID must be sequentialized by the GIL
|
60 |
+
C10_FALLTHROUGH;
|
61 |
+
case impl::PyInterpreterStatus::TAGGED_BY_OTHER:
|
62 |
+
TORCH_CHECK(
|
63 |
+
false,
|
64 |
+
"cannot allocate PyObject for Tensor on interpreter ",
|
65 |
+
self_interpreter,
|
66 |
+
" that has already been used by another torch deploy interpreter ",
|
67 |
+
pyobj_interpreter_.load());
|
68 |
+
}
|
69 |
+
|
70 |
+
// we are the ONLY thread that can have gotten to this point. It is not
|
71 |
+
// possible to conflict with another zero interpreter as access is protected
|
72 |
+
// by GIL
|
73 |
+
// NB: owns_pyobj tag is initially false
|
74 |
+
pyobj_ = pyobj;
|
75 |
+
}
|
76 |
+
|
77 |
+
// Query the PyObject interpreter. This may return null if there is no
|
78 |
+
// interpreter. This is racy!
|
79 |
+
PyInterpreter* pyobj_interpreter();
|
80 |
+
|
81 |
+
PyObject* _unchecked_untagged_pyobj() const;
|
82 |
+
|
83 |
+
// Test the interpreter tag. If tagged for the current interpreter, return
|
84 |
+
// a non-nullopt (but possibly null) PyObject. If (possibly) untagged,
|
85 |
+
// returns a nullopt. If it is definitely invalid, raises an error.
|
86 |
+
//
|
87 |
+
// If `ignore_hermetic_tls` is false and this function is called from a
|
88 |
+
// hermetic context (ie, `HermeticPyObjectTLS::get_state()` is true), then
|
89 |
+
// nullopt is returned. If `ignore_hermetic_tls` is true, then the hermetic
|
90 |
+
// context is ignored, allowing you to check the interpreter tag of a
|
91 |
+
// nonhermetic PyObject from within a hermetic context. This is necessary
|
92 |
+
// because there are some cases where the deallocator function of a
|
93 |
+
// nonhermetic PyObject is called from within a hermetic context, so it must
|
94 |
+
// be properly treated as a nonhermetic PyObject.
|
95 |
+
//
|
96 |
+
// NB: this lives in header so that we can avoid actually creating the
|
97 |
+
// c10::optional
|
98 |
+
c10::optional<PyObject*> check_pyobj(
|
99 |
+
PyInterpreter* self_interpreter,
|
100 |
+
bool ignore_hermetic_tls = false) const {
|
101 |
+
// Note [Memory ordering on Python interpreter tag]
|
102 |
+
impl::PyInterpreter* interpreter =
|
103 |
+
pyobj_interpreter_.load(std::memory_order_acquire);
|
104 |
+
if (interpreter == nullptr) {
|
105 |
+
// NB: This never returns DEFINITELY_UNINITIALIZED because there is
|
106 |
+
// always the possibility that another thread races to initialize
|
107 |
+
// after we query here. The only time when we can conclude a tensor
|
108 |
+
// is definitely uninitialized is when we have just allocated it and
|
109 |
+
// it cannot have escaped to other threads yet
|
110 |
+
return c10::nullopt;
|
111 |
+
} else if (interpreter == self_interpreter) {
|
112 |
+
// NB: pyobj_ could still be null!
|
113 |
+
if (!ignore_hermetic_tls && c10::impl::HermeticPyObjectTLS::get_state()) {
|
114 |
+
return c10::nullopt;
|
115 |
+
} else {
|
116 |
+
return c10::make_optional(_unchecked_untagged_pyobj());
|
117 |
+
}
|
118 |
+
} else {
|
119 |
+
TORCH_CHECK(
|
120 |
+
false,
|
121 |
+
"cannot access PyObject for Tensor on interpreter ",
|
122 |
+
(*self_interpreter)->name(),
|
123 |
+
" that has already been used by another torch deploy interpreter ",
|
124 |
+
(*pyobj_interpreter_.load())->name());
|
125 |
+
}
|
126 |
+
}
|
127 |
+
|
128 |
+
// Clear the PyObject field for an interpreter, in situations where we
|
129 |
+
// statically know the tensor is tagged with our interpreter.
|
130 |
+
void unchecked_clear_pyobj(PyInterpreter* interpreter);
|
131 |
+
|
132 |
+
PyInterpreter& load_pyobj_interpreter() const;
|
133 |
+
|
134 |
+
// Check if the PyObjectSlot's interpreter is the same as the specified
|
135 |
+
// interpreter
|
136 |
+
bool check_interpreter(PyInterpreter* interpreter);
|
137 |
+
|
138 |
+
// Check if the PyObjectSlot is holding a PyObject, owned or non-owned
|
139 |
+
bool has_pyobj_nonhermetic();
|
140 |
+
|
141 |
+
bool owns_pyobj();
|
142 |
+
|
143 |
+
void set_owns_pyobj(bool b);
|
144 |
+
|
145 |
+
private:
|
146 |
+
// This field contains the interpreter tag for this object. See
|
147 |
+
// Note [Python interpreter tag] for general context
|
148 |
+
//
|
149 |
+
// Note [Memory ordering on Python interpreter tag]
|
150 |
+
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
151 |
+
// What memory_order do we need when accessing this atomic? We don't
|
152 |
+
// need a single total modification order (as provided by
|
153 |
+
// memory_order_seq_cst) as pyobj_interpreter_ is monotonic: it can only
|
154 |
+
// transition from -1 to some positive integer and never changes afterwards.
|
155 |
+
// Because there is only one modification, it trivially already has a total
|
156 |
+
// modification order (e.g., we don't need fences or locked instructions on
|
157 |
+
// x86)
|
158 |
+
//
|
159 |
+
// In fact, one could make a reasonable argument that relaxed reads are OK,
|
160 |
+
// due to the presence of external locking (GIL) to ensure that interactions
|
161 |
+
// with other data structures are still correctly synchronized, so that
|
162 |
+
// we fall in the "Single-Location Data Structures" case as described in
|
163 |
+
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2055r0.pdf
|
164 |
+
// However, on x86, it doesn't matter if I use acquire or relaxed on the load
|
165 |
+
// as I get the same assembly in both cases. So I just use the more
|
166 |
+
// conservative acquire (which will impede compiler optimizations but I don't
|
167 |
+
// care)
|
168 |
+
std::atomic<PyInterpreter*> pyobj_interpreter_;
|
169 |
+
|
170 |
+
// This field contains a reference to a PyObject representing this Tensor.
|
171 |
+
// If pyobj is nullptr, when we transfer Tensor to Python, we allocate a new
|
172 |
+
// PyObject for it and set this field. This field does not have to be
|
173 |
+
// protected by an atomic as it is only allowed to be accessed when you hold
|
174 |
+
// the GIL, or during destruction of the tensor.
|
175 |
+
//
|
176 |
+
// When a PyObject dies, you are obligated to clear this field
|
177 |
+
// (otherwise, you will try to use-after-free the pyobj); this currently
|
178 |
+
// occurs in THPVariable_clear in torch/csrc/autograd/python_variable.cpp
|
179 |
+
//
|
180 |
+
// NB: Ordinarily, this should not be a strong reference, as if the
|
181 |
+
// PyObject owns the Tensor, this would create a reference cycle.
|
182 |
+
// However, sometimes this ownership flips. To track who owns
|
183 |
+
// who, this has a single pointer tag indicating whether or not the
|
184 |
+
// C++ object owns the PyObject (the common case, zero, means PyObject
|
185 |
+
// owns the C++ object); see _unchecked_untagged_pyobj for raw access
|
186 |
+
// or check_pyobj for checked access. See references to PyObject
|
187 |
+
// resurrection in torch/csrc/autograd/python_variable.cpp
|
188 |
+
PyObject* pyobj_;
|
189 |
+
};
|
190 |
+
|
191 |
+
} // namespace impl
|
192 |
+
} // namespace c10
|
env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/impl/PythonDispatcherTLS.h
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <c10/core/impl/PyInterpreter.h>
|
4 |
+
#include <c10/macros/Export.h>
|
5 |
+
|
6 |
+
namespace c10 {
|
7 |
+
namespace impl {
|
8 |
+
|
9 |
+
struct C10_API PythonDispatcherTLS {
|
10 |
+
static void set_state(PyInterpreter* state);
|
11 |
+
static PyInterpreter* get_state();
|
12 |
+
static void reset_state();
|
13 |
+
};
|
14 |
+
|
15 |
+
struct C10_API DisablePythonDispatcher {
|
16 |
+
DisablePythonDispatcher() : old_(PythonDispatcherTLS::get_state()) {
|
17 |
+
PythonDispatcherTLS::set_state({});
|
18 |
+
}
|
19 |
+
~DisablePythonDispatcher() {
|
20 |
+
PythonDispatcherTLS::set_state(old_);
|
21 |
+
}
|
22 |
+
PyInterpreter* old_;
|
23 |
+
};
|
24 |
+
|
25 |
+
} // namespace impl
|
26 |
+
} // namespace c10
|
env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/impl/SizesAndStrides.h
ADDED
@@ -0,0 +1,308 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <algorithm>
|
4 |
+
#include <cstdint>
|
5 |
+
|
6 |
+
#include <c10/macros/Macros.h>
|
7 |
+
#include <c10/util/ArrayRef.h>
|
8 |
+
#include <c10/util/SmallVector.h>
|
9 |
+
|
10 |
+
#define C10_SIZES_AND_STRIDES_MAX_INLINE_SIZE 5
|
11 |
+
|
12 |
+
namespace c10 {
|
13 |
+
namespace impl {
|
14 |
+
|
15 |
+
// Packed container for TensorImpl sizes and strides.
|
16 |
+
// This design improves on the previous approach of using a pair of
|
17 |
+
// c10::SmallVector<int64_t, 5> by specializing for the operations we
|
18 |
+
// actually use and enforcing that the number of sizes is the same as
|
19 |
+
// the number of strides. The memory layout is as follows:
|
20 |
+
//
|
21 |
+
// 1 size_t for the size
|
22 |
+
// 5 eightbytes of inline sizes and 5 eightbytes of inline strides, OR pointer
|
23 |
+
// to out-of-line array
|
24 |
+
class C10_API SizesAndStrides {
|
25 |
+
public:
|
26 |
+
// TODO: different iterator types for sizes & strides to prevent
|
27 |
+
// mixing the two accidentally.
|
28 |
+
using sizes_iterator = int64_t*;
|
29 |
+
using sizes_const_iterator = const int64_t*;
|
30 |
+
using strides_iterator = int64_t*;
|
31 |
+
using strides_const_iterator = const int64_t*;
|
32 |
+
|
33 |
+
SizesAndStrides() : size_(1) {
|
34 |
+
size_at_unchecked(0) = 0;
|
35 |
+
stride_at_unchecked(0) = 1;
|
36 |
+
}
|
37 |
+
|
38 |
+
~SizesAndStrides() {
|
39 |
+
if (C10_UNLIKELY(!isInline())) {
|
40 |
+
free(outOfLineStorage_);
|
41 |
+
}
|
42 |
+
}
|
43 |
+
|
44 |
+
SizesAndStrides(const SizesAndStrides& rhs) : size_(rhs.size_) {
|
45 |
+
if (C10_LIKELY(rhs.isInline())) {
|
46 |
+
copyDataInline(rhs);
|
47 |
+
} else {
|
48 |
+
allocateOutOfLineStorage(size_);
|
49 |
+
copyDataOutline(rhs);
|
50 |
+
}
|
51 |
+
}
|
52 |
+
|
53 |
+
SizesAndStrides& operator=(const SizesAndStrides& rhs) {
|
54 |
+
if (this == &rhs) {
|
55 |
+
return *this;
|
56 |
+
}
|
57 |
+
if (C10_LIKELY(rhs.isInline())) {
|
58 |
+
if (C10_UNLIKELY(!isInline())) {
|
59 |
+
free(outOfLineStorage_);
|
60 |
+
}
|
61 |
+
copyDataInline(rhs);
|
62 |
+
} else {
|
63 |
+
if (isInline()) {
|
64 |
+
allocateOutOfLineStorage(rhs.size_);
|
65 |
+
} else {
|
66 |
+
resizeOutOfLineStorage(rhs.size_);
|
67 |
+
}
|
68 |
+
copyDataOutline(rhs);
|
69 |
+
}
|
70 |
+
size_ = rhs.size_;
|
71 |
+
return *this;
|
72 |
+
}
|
73 |
+
|
74 |
+
// Move from rhs. rhs.size() == 0 afterwards.
|
75 |
+
SizesAndStrides(SizesAndStrides&& rhs) noexcept : size_(rhs.size_) {
|
76 |
+
if (C10_LIKELY(isInline())) {
|
77 |
+
memcpy(inlineStorage_, rhs.inlineStorage_, sizeof(inlineStorage_));
|
78 |
+
} else {
|
79 |
+
outOfLineStorage_ = rhs.outOfLineStorage_;
|
80 |
+
rhs.outOfLineStorage_ = nullptr;
|
81 |
+
}
|
82 |
+
|
83 |
+
rhs.size_ = 0;
|
84 |
+
}
|
85 |
+
|
86 |
+
// Move from rhs. rhs.size() == 0 afterwards.
|
87 |
+
SizesAndStrides& operator=(SizesAndStrides&& rhs) noexcept {
|
88 |
+
if (this == &rhs) {
|
89 |
+
return *this;
|
90 |
+
}
|
91 |
+
if (C10_LIKELY(rhs.isInline())) {
|
92 |
+
if (C10_UNLIKELY(!isInline())) {
|
93 |
+
free(outOfLineStorage_);
|
94 |
+
}
|
95 |
+
copyDataInline(rhs);
|
96 |
+
} else {
|
97 |
+
// They're outline. We're going to steal their vector.
|
98 |
+
if (!isInline()) {
|
99 |
+
free(outOfLineStorage_);
|
100 |
+
}
|
101 |
+
outOfLineStorage_ = rhs.outOfLineStorage_;
|
102 |
+
rhs.outOfLineStorage_ = nullptr;
|
103 |
+
}
|
104 |
+
size_ = rhs.size_;
|
105 |
+
rhs.size_ = 0;
|
106 |
+
|
107 |
+
return *this;
|
108 |
+
}
|
109 |
+
|
110 |
+
size_t size() const noexcept {
|
111 |
+
return size_;
|
112 |
+
}
|
113 |
+
|
114 |
+
const int64_t* sizes_data() const noexcept {
|
115 |
+
if (C10_LIKELY(isInline())) {
|
116 |
+
return &inlineStorage_[0];
|
117 |
+
} else {
|
118 |
+
return &outOfLineStorage_[0];
|
119 |
+
}
|
120 |
+
}
|
121 |
+
|
122 |
+
int64_t* sizes_data() noexcept {
|
123 |
+
if (C10_LIKELY(isInline())) {
|
124 |
+
return &inlineStorage_[0];
|
125 |
+
} else {
|
126 |
+
return &outOfLineStorage_[0];
|
127 |
+
}
|
128 |
+
}
|
129 |
+
|
130 |
+
sizes_const_iterator sizes_begin() const noexcept {
|
131 |
+
return sizes_data();
|
132 |
+
}
|
133 |
+
|
134 |
+
sizes_iterator sizes_begin() noexcept {
|
135 |
+
return sizes_data();
|
136 |
+
}
|
137 |
+
|
138 |
+
sizes_const_iterator sizes_end() const noexcept {
|
139 |
+
return sizes_begin() + size();
|
140 |
+
}
|
141 |
+
|
142 |
+
sizes_iterator sizes_end() noexcept {
|
143 |
+
return sizes_begin() + size();
|
144 |
+
}
|
145 |
+
|
146 |
+
IntArrayRef sizes_arrayref() const noexcept {
|
147 |
+
return IntArrayRef{sizes_data(), size()};
|
148 |
+
}
|
149 |
+
|
150 |
+
void set_sizes(IntArrayRef newSizes) {
|
151 |
+
resize(newSizes.size());
|
152 |
+
std::copy(newSizes.begin(), newSizes.end(), sizes_begin());
|
153 |
+
}
|
154 |
+
|
155 |
+
void set_strides(IntArrayRef strides) {
|
156 |
+
TORCH_INTERNAL_ASSERT(strides.size() == size());
|
157 |
+
std::copy(strides.begin(), strides.end(), strides_begin());
|
158 |
+
}
|
159 |
+
|
160 |
+
const int64_t* strides_data() const noexcept {
|
161 |
+
if (C10_LIKELY(isInline())) {
|
162 |
+
return &inlineStorage_[C10_SIZES_AND_STRIDES_MAX_INLINE_SIZE];
|
163 |
+
} else {
|
164 |
+
return &outOfLineStorage_[size()];
|
165 |
+
}
|
166 |
+
}
|
167 |
+
|
168 |
+
int64_t* strides_data() noexcept {
|
169 |
+
if (C10_LIKELY(isInline())) {
|
170 |
+
return &inlineStorage_[C10_SIZES_AND_STRIDES_MAX_INLINE_SIZE];
|
171 |
+
} else {
|
172 |
+
return &outOfLineStorage_[size()];
|
173 |
+
}
|
174 |
+
}
|
175 |
+
|
176 |
+
strides_const_iterator strides_begin() const noexcept {
|
177 |
+
if (C10_LIKELY(isInline())) {
|
178 |
+
return &inlineStorage_[C10_SIZES_AND_STRIDES_MAX_INLINE_SIZE];
|
179 |
+
} else {
|
180 |
+
return &outOfLineStorage_[size()];
|
181 |
+
}
|
182 |
+
}
|
183 |
+
|
184 |
+
strides_iterator strides_begin() noexcept {
|
185 |
+
if (C10_LIKELY(isInline())) {
|
186 |
+
return &inlineStorage_[C10_SIZES_AND_STRIDES_MAX_INLINE_SIZE];
|
187 |
+
} else {
|
188 |
+
return &outOfLineStorage_[size()];
|
189 |
+
}
|
190 |
+
}
|
191 |
+
|
192 |
+
strides_const_iterator strides_end() const noexcept {
|
193 |
+
return strides_begin() + size();
|
194 |
+
}
|
195 |
+
|
196 |
+
strides_iterator strides_end() noexcept {
|
197 |
+
return strides_begin() + size();
|
198 |
+
}
|
199 |
+
|
200 |
+
IntArrayRef strides_arrayref() const noexcept {
|
201 |
+
return IntArrayRef{strides_data(), size()};
|
202 |
+
}
|
203 |
+
|
204 |
+
// Size accessors.
|
205 |
+
int64_t size_at(size_t idx) const noexcept {
|
206 |
+
assert(idx < size());
|
207 |
+
return sizes_data()[idx];
|
208 |
+
}
|
209 |
+
|
210 |
+
int64_t& size_at(size_t idx) noexcept {
|
211 |
+
assert(idx < size());
|
212 |
+
return sizes_data()[idx];
|
213 |
+
}
|
214 |
+
|
215 |
+
int64_t size_at_unchecked(size_t idx) const noexcept {
|
216 |
+
return sizes_data()[idx];
|
217 |
+
}
|
218 |
+
|
219 |
+
int64_t& size_at_unchecked(size_t idx) noexcept {
|
220 |
+
return sizes_data()[idx];
|
221 |
+
}
|
222 |
+
|
223 |
+
// Size accessors.
|
224 |
+
int64_t stride_at(size_t idx) const noexcept {
|
225 |
+
assert(idx < size());
|
226 |
+
return strides_data()[idx];
|
227 |
+
}
|
228 |
+
|
229 |
+
int64_t& stride_at(size_t idx) noexcept {
|
230 |
+
assert(idx < size());
|
231 |
+
return strides_data()[idx];
|
232 |
+
}
|
233 |
+
|
234 |
+
int64_t stride_at_unchecked(size_t idx) const noexcept {
|
235 |
+
return strides_data()[idx];
|
236 |
+
}
|
237 |
+
|
238 |
+
int64_t& stride_at_unchecked(size_t idx) noexcept {
|
239 |
+
return strides_data()[idx];
|
240 |
+
}
|
241 |
+
|
242 |
+
void resize(size_t newSize) {
|
243 |
+
const auto oldSize = size();
|
244 |
+
if (newSize == oldSize) {
|
245 |
+
return;
|
246 |
+
}
|
247 |
+
if (C10_LIKELY(
|
248 |
+
newSize <= C10_SIZES_AND_STRIDES_MAX_INLINE_SIZE && isInline())) {
|
249 |
+
if (oldSize < newSize) {
|
250 |
+
const auto bytesToZero =
|
251 |
+
(newSize - oldSize) * sizeof(inlineStorage_[0]);
|
252 |
+
memset(&inlineStorage_[oldSize], 0, bytesToZero);
|
253 |
+
memset(
|
254 |
+
&inlineStorage_[C10_SIZES_AND_STRIDES_MAX_INLINE_SIZE + oldSize],
|
255 |
+
0,
|
256 |
+
bytesToZero);
|
257 |
+
}
|
258 |
+
size_ = newSize;
|
259 |
+
} else {
|
260 |
+
resizeSlowPath(newSize, oldSize);
|
261 |
+
}
|
262 |
+
}
|
263 |
+
|
264 |
+
void resizeSlowPath(size_t newSize, size_t oldSize);
|
265 |
+
|
266 |
+
private:
|
267 |
+
bool isInline() const noexcept {
|
268 |
+
return size_ <= C10_SIZES_AND_STRIDES_MAX_INLINE_SIZE;
|
269 |
+
}
|
270 |
+
|
271 |
+
void copyDataInline(const SizesAndStrides& rhs) {
|
272 |
+
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(rhs.isInline());
|
273 |
+
memcpy(inlineStorage_, rhs.inlineStorage_, sizeof(inlineStorage_));
|
274 |
+
}
|
275 |
+
|
276 |
+
static size_t storageBytes(size_t size) noexcept {
|
277 |
+
return size * 2 * sizeof(int64_t);
|
278 |
+
}
|
279 |
+
|
280 |
+
void allocateOutOfLineStorage(size_t size) {
|
281 |
+
outOfLineStorage_ = static_cast<int64_t*>(malloc(storageBytes(size)));
|
282 |
+
TORCH_CHECK(
|
283 |
+
outOfLineStorage_,
|
284 |
+
"Could not allocate memory for Tensor SizesAndStrides!");
|
285 |
+
}
|
286 |
+
|
287 |
+
void resizeOutOfLineStorage(size_t newSize) {
|
288 |
+
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(!isInline());
|
289 |
+
outOfLineStorage_ = static_cast<int64_t*>(
|
290 |
+
realloc(outOfLineStorage_, storageBytes(newSize)));
|
291 |
+
TORCH_CHECK(
|
292 |
+
outOfLineStorage_,
|
293 |
+
"Could not allocate memory for Tensor SizesAndStrides!");
|
294 |
+
}
|
295 |
+
|
296 |
+
void copyDataOutline(const SizesAndStrides& rhs) noexcept {
|
297 |
+
memcpy(outOfLineStorage_, rhs.outOfLineStorage_, storageBytes(rhs.size_));
|
298 |
+
}
|
299 |
+
|
300 |
+
size_t size_;
|
301 |
+
union {
|
302 |
+
int64_t* outOfLineStorage_;
|
303 |
+
int64_t inlineStorage_[C10_SIZES_AND_STRIDES_MAX_INLINE_SIZE * 2]{};
|
304 |
+
};
|
305 |
+
};
|
306 |
+
|
307 |
+
} // namespace impl
|
308 |
+
} // namespace c10
|
env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/impl/TorchDispatchModeTLS.h
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <c10/core/SafePyObject.h>
|
4 |
+
#include <c10/macros/Export.h>
|
5 |
+
|
6 |
+
namespace c10 {
|
7 |
+
namespace impl {
|
8 |
+
|
9 |
+
enum class TorchDispatchModeKey : int8_t {
|
10 |
+
FAKE,
|
11 |
+
PROXY,
|
12 |
+
FUNCTIONAL,
|
13 |
+
NUM_MODE_KEYS
|
14 |
+
};
|
15 |
+
|
16 |
+
struct C10_API TorchDispatchModeTLS {
|
17 |
+
// This API is NOT invariant safe.
|
18 |
+
// It must not take in an infra mode that uses TorchDispatchModeKey
|
19 |
+
// If you're pushing an infra mode onto the stack, we expect
|
20 |
+
// you to use set_mode
|
21 |
+
static void push_non_infra_mode_onto_stack(
|
22 |
+
std::shared_ptr<SafePyObject> mode);
|
23 |
+
// Pops the top mode of the stack,
|
24 |
+
// giving precedence to user modes before attempting to pop
|
25 |
+
// any infra modes
|
26 |
+
static const std::shared_ptr<SafePyObject> pop_stack();
|
27 |
+
// Returns the highest-priority infra mode on the stack,
|
28 |
+
// along with its mode key.
|
29 |
+
static const std::tuple<std::shared_ptr<SafePyObject>, TorchDispatchModeKey>
|
30 |
+
pop_highest_infra_mode();
|
31 |
+
|
32 |
+
static const std::shared_ptr<SafePyObject>& get_stack_at(int64_t idx);
|
33 |
+
static int64_t stack_len();
|
34 |
+
|
35 |
+
static const c10::optional<std::shared_ptr<SafePyObject>> get_mode(
|
36 |
+
TorchDispatchModeKey mode_key);
|
37 |
+
static const c10::optional<std::shared_ptr<SafePyObject>> unset_mode(
|
38 |
+
TorchDispatchModeKey mode_key);
|
39 |
+
static void set_mode(
|
40 |
+
const std::shared_ptr<SafePyObject>& mode,
|
41 |
+
TorchDispatchModeKey mode_key);
|
42 |
+
|
43 |
+
static const TorchDispatchModeTLS& get_state();
|
44 |
+
static void set_state(TorchDispatchModeTLS state);
|
45 |
+
|
46 |
+
static bool any_modes_set(bool skip_infra_modes = false);
|
47 |
+
|
48 |
+
private:
|
49 |
+
std::vector<std::shared_ptr<c10::SafePyObject>> stack_;
|
50 |
+
// Users are allowed to push multiple ProxyTorchDispatchMode objects onto the
|
51 |
+
// stack
|
52 |
+
// However, we only allow a single FakeTensorMode onto the stack at a time
|
53 |
+
// (Pushing additional FakeTensorModes onto the stack is a no-op)
|
54 |
+
std::array<
|
55 |
+
c10::optional<std::shared_ptr<c10::SafePyObject>>,
|
56 |
+
static_cast<size_t>(TorchDispatchModeKey::NUM_MODE_KEYS)>
|
57 |
+
infra_modes_;
|
58 |
+
};
|
59 |
+
|
60 |
+
C10_API bool dispatch_mode_enabled();
|
61 |
+
|
62 |
+
C10_API std::string to_string(TorchDispatchModeKey mode_key);
|
63 |
+
|
64 |
+
} // namespace impl
|
65 |
+
} // namespace c10
|
env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/impl/VirtualGuardImpl.h
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <c10/core/impl/DeviceGuardImplInterface.h>
|
4 |
+
|
5 |
+
namespace c10 {
|
6 |
+
namespace impl {
|
7 |
+
|
8 |
+
/**
|
9 |
+
* An implementation of DeviceGuardImplInterface which delegates
|
10 |
+
* to virtual dispatch on the DeviceGuardImpl registry.
|
11 |
+
*/
|
12 |
+
class VirtualGuardImpl final : public DeviceGuardImplInterface {
|
13 |
+
public:
|
14 |
+
VirtualGuardImpl(DeviceType device_type)
|
15 |
+
: impl_(getDeviceGuardImpl(device_type)) {}
|
16 |
+
// This constructor exists purely for testing
|
17 |
+
VirtualGuardImpl(const DeviceGuardImplInterface* impl) : impl_(impl) {}
|
18 |
+
|
19 |
+
// Copying and moving is OK!
|
20 |
+
VirtualGuardImpl(const VirtualGuardImpl&) = default;
|
21 |
+
VirtualGuardImpl& operator=(const VirtualGuardImpl&) = default;
|
22 |
+
VirtualGuardImpl(VirtualGuardImpl&&) noexcept = default;
|
23 |
+
VirtualGuardImpl& operator=(VirtualGuardImpl&&) noexcept = default;
|
24 |
+
|
25 |
+
DeviceType type() const override {
|
26 |
+
return impl_->type();
|
27 |
+
}
|
28 |
+
Device exchangeDevice(Device d) const override {
|
29 |
+
return impl_->exchangeDevice(d);
|
30 |
+
}
|
31 |
+
Device getDevice() const override {
|
32 |
+
return impl_->getDevice();
|
33 |
+
}
|
34 |
+
void setDevice(Device d) const override {
|
35 |
+
impl_->setDevice(d);
|
36 |
+
}
|
37 |
+
void uncheckedSetDevice(Device d) const noexcept override {
|
38 |
+
impl_->uncheckedSetDevice(d);
|
39 |
+
}
|
40 |
+
Stream getStream(Device d) const noexcept override {
|
41 |
+
return impl_->getStream(d);
|
42 |
+
}
|
43 |
+
Stream getDefaultStream(Device d) const override {
|
44 |
+
return impl_->getDefaultStream(d);
|
45 |
+
}
|
46 |
+
Stream getStreamFromGlobalPool(Device d, bool isHighPriority = false)
|
47 |
+
const override {
|
48 |
+
return impl_->getStreamFromGlobalPool(d, isHighPriority);
|
49 |
+
}
|
50 |
+
Stream exchangeStream(Stream s) const noexcept override {
|
51 |
+
return impl_->exchangeStream(s);
|
52 |
+
}
|
53 |
+
DeviceIndex deviceCount() const noexcept override {
|
54 |
+
return impl_->deviceCount();
|
55 |
+
}
|
56 |
+
|
57 |
+
// Event functions
|
58 |
+
void record(
|
59 |
+
void** event,
|
60 |
+
const Stream& stream,
|
61 |
+
const DeviceIndex device_index,
|
62 |
+
const EventFlag flag) const override {
|
63 |
+
impl_->record(event, stream, device_index, flag);
|
64 |
+
}
|
65 |
+
void block(void* event, const Stream& stream) const override {
|
66 |
+
impl_->block(event, stream);
|
67 |
+
}
|
68 |
+
bool queryEvent(void* event) const override {
|
69 |
+
return impl_->queryEvent(event);
|
70 |
+
}
|
71 |
+
void destroyEvent(void* event, const DeviceIndex device_index)
|
72 |
+
const noexcept override {
|
73 |
+
impl_->destroyEvent(event, device_index);
|
74 |
+
}
|
75 |
+
|
76 |
+
bool queryStream(const Stream& stream) const override {
|
77 |
+
return impl_->queryStream(stream);
|
78 |
+
}
|
79 |
+
void synchronizeStream(const Stream& stream) const override {
|
80 |
+
impl_->synchronizeStream(stream);
|
81 |
+
}
|
82 |
+
|
83 |
+
void recordDataPtrOnStream(const c10::DataPtr& data_ptr, const Stream& stream)
|
84 |
+
const override {
|
85 |
+
impl_->recordDataPtrOnStream(data_ptr, stream);
|
86 |
+
}
|
87 |
+
|
88 |
+
private:
|
89 |
+
const DeviceGuardImplInterface* impl_ = nullptr;
|
90 |
+
};
|
91 |
+
|
92 |
+
} // namespace impl
|
93 |
+
} // namespace c10
|
env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/impl/alloc_cpu.h
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <c10/macros/Export.h>
|
4 |
+
|
5 |
+
#include <cstddef>
|
6 |
+
|
7 |
+
namespace c10 {
|
8 |
+
|
9 |
+
C10_API void* alloc_cpu(size_t nbytes);
|
10 |
+
C10_API void free_cpu(void* data);
|
11 |
+
|
12 |
+
} // namespace c10
|
env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/impl/cow/COW.h
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <c10/macros/Macros.h>
|
4 |
+
#include <c10/util/intrusive_ptr.h>
|
5 |
+
|
6 |
+
namespace c10 {
|
7 |
+
struct StorageImpl;
|
8 |
+
class DataPtr;
|
9 |
+
}; // namespace c10
|
10 |
+
|
11 |
+
namespace c10::impl::cow {
|
12 |
+
|
13 |
+
// Creates a Copy-on-write (COW) clone of the given storage. This will also
|
14 |
+
// convert the given storage into a COW storage if it is not COW already.
|
15 |
+
//
|
16 |
+
// Converting the storage into a COW storage will not be successful if the
|
17 |
+
// storage's DataPtr has some context (`DataPtr::get_context()`) which is not
|
18 |
+
// equal to the data pointer (`DataPtr::get()`). In this case, a nullptr is
|
19 |
+
// returned.
|
20 |
+
C10_API c10::intrusive_ptr<StorageImpl> lazy_clone_storage(
|
21 |
+
StorageImpl& storage);
|
22 |
+
|
23 |
+
// Check if a storage has a simple DataPtr with no abnormal context
|
24 |
+
C10_API bool has_simple_data_ptr(const c10::StorageImpl& storage);
|
25 |
+
|
26 |
+
// Check if a DataPtr is COW
|
27 |
+
C10_API bool is_cow_data_ptr(const c10::DataPtr& data_ptr);
|
28 |
+
|
29 |
+
} // namespace c10::impl::cow
|