Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- env-llmeval/lib/python3.10/site-packages/torch/_decomp/__init__.py +444 -0
- env-llmeval/lib/python3.10/site-packages/torch/_decomp/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/_decomp/__pycache__/decompositions.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/_decomp/__pycache__/decompositions_for_jvp.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/_decomp/__pycache__/decompositions_for_rng.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/_decomp/decompositions.py +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/_decomp/decompositions_for_jvp.py +302 -0
- env-llmeval/lib/python3.10/site-packages/torch/_decomp/decompositions_for_rng.py +263 -0
- env-llmeval/lib/python3.10/site-packages/torch/_dispatch/__init__.py +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/_dispatch/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/_dispatch/__pycache__/python.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/_dispatch/python.py +178 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/THC/THCAtomics.cuh +3 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/THC/THCDeviceUtils.cuh +3 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/CPUAllocator.h +57 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/CopyBytes.h +44 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/DeviceGuard.h +195 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/DeviceType.h +117 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/Event.h +121 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/InferenceMode.h +84 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/PyHandleCache.h +75 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/QEngine.h +46 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/RefcountedDeleter.h +51 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/SafePyObject.h +82 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/ScalarType.h +672 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/StreamGuard.h +165 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/SymBool.h +88 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/SymNodeImpl.h +207 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/alignment.h +21 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/clog.h +100 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/cpuinfo.h +1939 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/dnnl.h +22 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/dnnl_config.h +22 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/dnnl_debug.h +22 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/dnnl_ocl.h +22 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/dnnl_sycl.h +22 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/dnnl_sycl_types.h +22 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/dnnl_threadpool.h +22 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/dnnl_types.h +22 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/dnnl_version.h +22 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/fp16.h +11 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/fxdiv.h +425 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/libshm.h +46 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/nnpack.h +659 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/psimd.h +1384 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/pthreadpool.h +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/qnnpack.h +336 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/qnnpack_func.h +166 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/sleef.h +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/xnnpack.h +0 -0
env-llmeval/lib/python3.10/site-packages/torch/_decomp/__init__.py
ADDED
@@ -0,0 +1,444 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import inspect
|
2 |
+
from collections import defaultdict
|
3 |
+
from functools import wraps
|
4 |
+
from itertools import chain
|
5 |
+
from typing import Callable, Dict, List, Sequence, Union
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import torch.library
|
9 |
+
from torch._ops import HigherOrderOperator, OpOverload, OpOverloadPacket
|
10 |
+
from torch._prims_common import CustomOutParamAnnotation
|
11 |
+
from torch.utils import _pytree as pytree
|
12 |
+
|
13 |
+
__all__ = [
|
14 |
+
"decomposition_table",
|
15 |
+
"pre_autograd_decomposition_table",
|
16 |
+
"meta_table",
|
17 |
+
"register_decomposition",
|
18 |
+
"get_decompositions",
|
19 |
+
"core_aten_decompositions",
|
20 |
+
]
|
21 |
+
|
22 |
+
|
23 |
+
# TODO: relax key type here; torch registrations should be possible to; but
|
24 |
+
# right now this type is accurate
|
25 |
+
global_decomposition_table: Dict[
|
26 |
+
str, Dict[torch._ops.OperatorBase, Callable]
|
27 |
+
] = defaultdict(dict)
|
28 |
+
|
29 |
+
decomposition_table = global_decomposition_table["post_autograd"]
|
30 |
+
pre_autograd_decomposition_table = global_decomposition_table["pre_autograd"]
|
31 |
+
meta_table = global_decomposition_table["meta"]
|
32 |
+
|
33 |
+
|
34 |
+
def _add_op_to_registry(registry, op, fn):
|
35 |
+
"""
|
36 |
+
This is an internal API for adding an op to the decomposition table.
|
37 |
+
|
38 |
+
If op is OpOverload, it will be added to the registry directly.
|
39 |
+
If op is OpOverloadPacket, all the valid op_overloads in the packet will be added to the registry.
|
40 |
+
"""
|
41 |
+
overloads: List[Union[torch._ops.OperatorBase]] = []
|
42 |
+
if isinstance(op, HigherOrderOperator):
|
43 |
+
# There's no concept of overloads for HigherOrderOperator
|
44 |
+
registry[op] = fn
|
45 |
+
return
|
46 |
+
elif isinstance(op, OpOverload):
|
47 |
+
overloads.append(op)
|
48 |
+
else:
|
49 |
+
assert isinstance(op, OpOverloadPacket)
|
50 |
+
for ol in op.overloads():
|
51 |
+
overloads.append(getattr(op, ol))
|
52 |
+
|
53 |
+
for op_overload in overloads:
|
54 |
+
if op_overload in registry:
|
55 |
+
raise RuntimeError(f"duplicate registrations for {op_overload}")
|
56 |
+
# TorchScript dumps a bunch of extra nonsense overloads
|
57 |
+
# which don't have corresponding dispatcher entries, we need
|
58 |
+
# to filter those out, e.g aten.add.float_int
|
59 |
+
if torch._C._dispatch_has_kernel(op_overload.name()):
|
60 |
+
registry[op_overload] = fn
|
61 |
+
|
62 |
+
|
63 |
+
def _convert_out_params(f):
|
64 |
+
out_annotation = f.__annotations__.get("out")
|
65 |
+
|
66 |
+
# If there are no out params, do not wrap the function.
|
67 |
+
if not out_annotation:
|
68 |
+
return f
|
69 |
+
|
70 |
+
# Hack to detect when out is a Tuple. There seems to be no pretty way of doing this
|
71 |
+
if getattr(out_annotation, "__origin__", None) is tuple:
|
72 |
+
sig = inspect.signature(f)
|
73 |
+
out_names = sig.return_annotation._fields
|
74 |
+
# If out is a tuple, we need to register a function that unpacks all the out
|
75 |
+
# elements as this is what native_functions.yaml expects
|
76 |
+
|
77 |
+
@wraps(f)
|
78 |
+
def _fn(*args, **kwargs):
|
79 |
+
out_kwargs = tuple(kwargs.pop(o, None) for o in out_names)
|
80 |
+
# Either all of the out kwargs are set or none of them
|
81 |
+
is_none = out_kwargs[0] is None
|
82 |
+
assert all((o is None) == is_none for o in out_kwargs)
|
83 |
+
return f(*args, **kwargs, out=None if is_none else out_kwargs)
|
84 |
+
|
85 |
+
out_params = [
|
86 |
+
inspect.Parameter(
|
87 |
+
o,
|
88 |
+
kind=inspect.Parameter.KEYWORD_ONLY,
|
89 |
+
default=None,
|
90 |
+
annotation=t,
|
91 |
+
)
|
92 |
+
for o, t in zip(out_names, out_annotation.__args__)
|
93 |
+
]
|
94 |
+
# Drop the out parameter and concatenate the new kwargs in the signature
|
95 |
+
params = chain((v for k, v in sig.parameters.items() if k != "out"), out_params)
|
96 |
+
_fn.__signature__ = inspect.Signature( # type: ignore[attr-defined]
|
97 |
+
parameters=params, return_annotation=sig.return_annotation # type: ignore[arg-type]
|
98 |
+
)
|
99 |
+
# Drop the out parameter and concatenate the new kwargs in the annotations
|
100 |
+
_fn.__annotations__ = {k: v for k, v in f.__annotations__.items() if k != "out"}
|
101 |
+
for o in out_params:
|
102 |
+
_fn.__annotations__[o.name] = o.annotation
|
103 |
+
|
104 |
+
# Propagate that this function is wrapped by `out_wrapper`
|
105 |
+
_fn._torch_decompositions_out_wrapper = f._torch_decompositions_out_wrapper # type: ignore[attr-defined]
|
106 |
+
|
107 |
+
return _fn
|
108 |
+
|
109 |
+
# Alternatively, there may be a single tensor out parameter with a name
|
110 |
+
# other than "out". This will need special treatment and is indicated by an
|
111 |
+
# annotation, which we will remove here so it is not exposed after wrapping.
|
112 |
+
custom_out_param_name = f.__annotations__.pop(CustomOutParamAnnotation, None)
|
113 |
+
if custom_out_param_name:
|
114 |
+
|
115 |
+
@wraps(f)
|
116 |
+
def _fn(*args, **kwargs):
|
117 |
+
out_kwarg = kwargs.pop(custom_out_param_name, None)
|
118 |
+
return f(*args, **kwargs, out=out_kwarg)
|
119 |
+
|
120 |
+
out_param = inspect.Parameter(
|
121 |
+
custom_out_param_name,
|
122 |
+
kind=inspect.Parameter.KEYWORD_ONLY,
|
123 |
+
default=None,
|
124 |
+
annotation=out_annotation,
|
125 |
+
)
|
126 |
+
|
127 |
+
# Drop the out parameter and concatenate the new kwarg in the signature
|
128 |
+
sig = inspect.signature(f)
|
129 |
+
params = chain(
|
130 |
+
(v for k, v in sig.parameters.items() if k != "out"), (out_param,)
|
131 |
+
)
|
132 |
+
_fn.__signature__ = inspect.Signature( # type: ignore[attr-defined]
|
133 |
+
parameters=params, return_annotation=sig.return_annotation # type: ignore[arg-type]
|
134 |
+
)
|
135 |
+
|
136 |
+
# Drop the out parameter and concatenate the new kwargs in the annotations
|
137 |
+
_fn.__annotations__ = {k: v for k, v in f.__annotations__.items() if k != "out"}
|
138 |
+
_fn.__annotations__[out_param.name] = out_param.annotation
|
139 |
+
|
140 |
+
return _fn
|
141 |
+
|
142 |
+
return f
|
143 |
+
|
144 |
+
|
145 |
+
def register_decomposition(
|
146 |
+
aten_op, registry=None, *, type="post_autograd", unsafe=False
|
147 |
+
):
|
148 |
+
"""
|
149 |
+
A decorator to register a function as a decomposition to the Python
|
150 |
+
decomposition table. Use it like this::
|
151 |
+
|
152 |
+
@register_decomposition(torch.ops.aten.clamp_min)
|
153 |
+
def clamp_min(x):
|
154 |
+
return torch.clamp(self, min=min)
|
155 |
+
|
156 |
+
If you are writing a new decomposition, consider contributing it
|
157 |
+
directly to PyTorch in torch._decomp.decompositions.
|
158 |
+
|
159 |
+
This API is experimental; we are almost certainly going to extend
|
160 |
+
the API when we make decompositions eligible for use in transforms (e.g.,
|
161 |
+
autograd) and not just backend tracing, where we then need to know if a
|
162 |
+
decomposition can be used to simulate a transform.
|
163 |
+
|
164 |
+
By default, we also will register it to the Meta key of dispatcher,
|
165 |
+
and replace the c++ Meta implementation if there is already one.
|
166 |
+
|
167 |
+
unsafe kwarg is for reuse of this function for registering non-function
|
168 |
+
things
|
169 |
+
"""
|
170 |
+
|
171 |
+
assert type in {"post_autograd", "pre_autograd", "meta"}
|
172 |
+
|
173 |
+
def decomposition_decorator(fn: Callable) -> Callable:
|
174 |
+
if not unsafe:
|
175 |
+
fn = _convert_out_params(fn)
|
176 |
+
|
177 |
+
nonlocal registry
|
178 |
+
if registry is None:
|
179 |
+
registry = global_decomposition_table[type]
|
180 |
+
|
181 |
+
def register(op):
|
182 |
+
_add_op_to_registry(registry, op, fn)
|
183 |
+
|
184 |
+
# To handle allowing multiple aten_ops at once
|
185 |
+
pytree.tree_map_(register, aten_op)
|
186 |
+
return fn
|
187 |
+
|
188 |
+
return decomposition_decorator
|
189 |
+
|
190 |
+
|
191 |
+
def get_decompositions(
|
192 |
+
aten_ops: Sequence[Union[torch._ops.OperatorBase, OpOverloadPacket]],
|
193 |
+
type: str = "post_autograd",
|
194 |
+
) -> Dict[torch._ops.OperatorBase, Callable]:
|
195 |
+
"""
|
196 |
+
Retrieve a dictionary of decompositions corresponding to the list of
|
197 |
+
operator overloads and overload packets passed as input. Overload
|
198 |
+
packets will include all decomposed overloads in the packet. If there is
|
199 |
+
no decomposition for a requested operator, it is silently ignored.
|
200 |
+
|
201 |
+
This API is experimental; we are almost certainly going to give an alternate,
|
202 |
+
more recommended formulation, where a user provides the set of operators
|
203 |
+
they know how to implement, and we provide decompositions for everything
|
204 |
+
not in this set.
|
205 |
+
"""
|
206 |
+
assert type in {"post_autograd", "pre_autograd", "meta"}
|
207 |
+
|
208 |
+
registry = global_decomposition_table[type]
|
209 |
+
packets_to_overloads = defaultdict(list)
|
210 |
+
for opo in registry:
|
211 |
+
if isinstance(opo, (OpOverload, OpOverloadPacket)):
|
212 |
+
packets_to_overloads[opo.overloadpacket].append(opo)
|
213 |
+
decompositions: Dict[torch._ops.OperatorBase, Callable] = {}
|
214 |
+
for op in aten_ops:
|
215 |
+
if isinstance(op, OpOverloadPacket) and op in packets_to_overloads:
|
216 |
+
for op_overload in packets_to_overloads[op]:
|
217 |
+
decompositions[op_overload] = registry[op_overload]
|
218 |
+
elif isinstance(op, (torch._ops.OperatorBase)) and op in registry:
|
219 |
+
decompositions[op] = registry[op]
|
220 |
+
return decompositions
|
221 |
+
|
222 |
+
|
223 |
+
def remove_decompositions(
|
224 |
+
decompositions: Dict[torch._ops.OperatorBase, Callable],
|
225 |
+
aten_ops: Sequence[Union[OpOverload, OpOverloadPacket]],
|
226 |
+
) -> None:
|
227 |
+
"""
|
228 |
+
Given a dictionary of decompositions obtained from get_decompositions(), removes
|
229 |
+
operators associated with a list of operator overloads and overload packets passed
|
230 |
+
as input. If the decomposition dictionary does not contain a decomposition that is
|
231 |
+
specified to be removed, it is silently ignored.
|
232 |
+
"""
|
233 |
+
for op in aten_ops:
|
234 |
+
if isinstance(op, OpOverloadPacket):
|
235 |
+
for overload_name in op.overloads():
|
236 |
+
opo = getattr(op, overload_name)
|
237 |
+
decompositions.pop(opo, None)
|
238 |
+
elif isinstance(op, OpOverload):
|
239 |
+
decompositions.pop(op, None)
|
240 |
+
|
241 |
+
|
242 |
+
# populate the table
|
243 |
+
import torch._decomp.decompositions
|
244 |
+
import torch._refs
|
245 |
+
|
246 |
+
|
247 |
+
# See NOTE [Core ATen Ops]
|
248 |
+
#
|
249 |
+
# list was copied from torch/_inductor/decomposition.py
|
250 |
+
# excluding decompositions that results in prim ops
|
251 |
+
# Resulting opset of decomposition is core aten ops
|
252 |
+
def core_aten_decompositions() -> Dict[torch._ops.OperatorBase, Callable]:
|
253 |
+
aten = torch.ops.aten
|
254 |
+
return get_decompositions(
|
255 |
+
[
|
256 |
+
aten.addcdiv,
|
257 |
+
aten.addcdiv_,
|
258 |
+
aten.addcmul,
|
259 |
+
aten.addcmul_,
|
260 |
+
aten.addr,
|
261 |
+
aten.affine_grid_generator,
|
262 |
+
aten.all,
|
263 |
+
aten.aminmax,
|
264 |
+
aten.arange.default,
|
265 |
+
aten.arange.start,
|
266 |
+
aten.avg_pool2d_backward,
|
267 |
+
aten.baddbmm,
|
268 |
+
aten.binary_cross_entropy,
|
269 |
+
aten.binary_cross_entropy_backward,
|
270 |
+
aten.binary_cross_entropy_with_logits,
|
271 |
+
aten.celu,
|
272 |
+
aten.celu_,
|
273 |
+
aten.clamp_max,
|
274 |
+
aten.clamp_min,
|
275 |
+
aten.col2im,
|
276 |
+
aten.count_nonzero,
|
277 |
+
aten.cudnn_batch_norm,
|
278 |
+
aten.cudnn_batch_norm_backward,
|
279 |
+
aten.deg2rad,
|
280 |
+
aten.deg2rad_,
|
281 |
+
aten.detach,
|
282 |
+
aten.diag_embed,
|
283 |
+
aten.diagonal_backward,
|
284 |
+
aten.dot,
|
285 |
+
aten.vdot,
|
286 |
+
aten.elu,
|
287 |
+
aten.elu_,
|
288 |
+
aten.elu_backward,
|
289 |
+
aten._embedding_bag,
|
290 |
+
aten.embedding_dense_backward,
|
291 |
+
aten.empty_like,
|
292 |
+
aten._euclidean_dist.default,
|
293 |
+
aten.expand_as,
|
294 |
+
aten.eye,
|
295 |
+
aten.fill,
|
296 |
+
aten.fill_,
|
297 |
+
aten.floor_divide,
|
298 |
+
aten.frac,
|
299 |
+
aten.frac_,
|
300 |
+
aten._fused_moving_avg_obs_fq_helper,
|
301 |
+
aten.gelu_,
|
302 |
+
aten.gelu_backward,
|
303 |
+
aten.glu,
|
304 |
+
aten.glu_backward,
|
305 |
+
aten.hardshrink,
|
306 |
+
aten.hardsigmoid,
|
307 |
+
aten.hardsigmoid_,
|
308 |
+
aten.hardsigmoid_backward,
|
309 |
+
aten.hardswish,
|
310 |
+
aten.hardswish_,
|
311 |
+
aten.hardswish_backward,
|
312 |
+
aten.hardtanh_,
|
313 |
+
aten.hardtanh_backward,
|
314 |
+
aten.heaviside,
|
315 |
+
aten.heaviside_,
|
316 |
+
aten.huber_loss,
|
317 |
+
aten.huber_loss_backward,
|
318 |
+
aten.im2col,
|
319 |
+
aten.index_add,
|
320 |
+
aten.index_add_,
|
321 |
+
aten.index_copy,
|
322 |
+
aten.index_copy_,
|
323 |
+
aten.index_fill,
|
324 |
+
aten.index_fill_,
|
325 |
+
aten.isneginf,
|
326 |
+
aten.isposinf,
|
327 |
+
aten.l1_loss,
|
328 |
+
aten.leaky_relu_,
|
329 |
+
aten.leaky_relu_backward,
|
330 |
+
aten.lerp,
|
331 |
+
aten.lerp_,
|
332 |
+
aten.linspace,
|
333 |
+
aten.logaddexp,
|
334 |
+
aten.logaddexp2,
|
335 |
+
aten.logit,
|
336 |
+
aten.logit_,
|
337 |
+
aten.logit_backward,
|
338 |
+
aten.log_sigmoid_backward,
|
339 |
+
aten.log_sigmoid_forward,
|
340 |
+
aten._log_softmax_backward_data,
|
341 |
+
aten.logspace,
|
342 |
+
aten.logsumexp.default,
|
343 |
+
aten.masked_fill,
|
344 |
+
aten.masked_fill_,
|
345 |
+
aten.mish,
|
346 |
+
aten.mish_,
|
347 |
+
aten.mse_loss,
|
348 |
+
aten.mse_loss_backward,
|
349 |
+
aten.multi_margin_loss,
|
350 |
+
aten.multilabel_margin_loss_forward,
|
351 |
+
aten.mv,
|
352 |
+
aten.mvlgamma,
|
353 |
+
aten.mvlgamma_,
|
354 |
+
aten.nansum,
|
355 |
+
aten.nan_to_num,
|
356 |
+
aten.nan_to_num_,
|
357 |
+
aten.narrow,
|
358 |
+
aten.native_batch_norm_backward,
|
359 |
+
aten.native_dropout_backward,
|
360 |
+
aten.native_group_norm_backward,
|
361 |
+
aten.native_layer_norm_backward,
|
362 |
+
aten.new_empty,
|
363 |
+
aten.new_full,
|
364 |
+
aten.new_ones,
|
365 |
+
aten.new_zeros,
|
366 |
+
aten.nll_loss_backward,
|
367 |
+
aten.nll_loss_forward,
|
368 |
+
aten.norm,
|
369 |
+
aten.ones,
|
370 |
+
aten.ones_like,
|
371 |
+
aten._prelu_kernel,
|
372 |
+
aten._prelu_kernel_backward,
|
373 |
+
aten._reshape_alias,
|
374 |
+
aten.rad2deg,
|
375 |
+
aten.rad2deg_,
|
376 |
+
aten.renorm,
|
377 |
+
aten.renorm_,
|
378 |
+
aten.replication_pad2d,
|
379 |
+
aten.rot90,
|
380 |
+
aten.rrelu_with_noise,
|
381 |
+
aten.rrelu_with_noise_,
|
382 |
+
aten.rsub.Scalar,
|
383 |
+
aten.rsub.Tensor,
|
384 |
+
aten._scaled_dot_product_flash_attention.default,
|
385 |
+
aten.select_backward,
|
386 |
+
aten.select_scatter,
|
387 |
+
aten.sgn,
|
388 |
+
aten.sgn_,
|
389 |
+
aten.sigmoid_backward,
|
390 |
+
aten.silu,
|
391 |
+
aten.silu_,
|
392 |
+
aten.silu_backward,
|
393 |
+
aten.sinc,
|
394 |
+
aten.sinc_,
|
395 |
+
aten.slice_backward,
|
396 |
+
aten.smooth_l1_loss,
|
397 |
+
aten.smooth_l1_loss_backward,
|
398 |
+
aten.soft_margin_loss,
|
399 |
+
aten.soft_margin_loss_backward,
|
400 |
+
aten._softmax_backward_data,
|
401 |
+
aten.softplus,
|
402 |
+
aten.softplus_backward,
|
403 |
+
aten.softshrink,
|
404 |
+
aten.special_entr,
|
405 |
+
aten.special_log_ndtr,
|
406 |
+
aten.special_xlog1py,
|
407 |
+
aten.split.Tensor,
|
408 |
+
aten.squeeze.default,
|
409 |
+
aten.squeeze.dim,
|
410 |
+
aten.std,
|
411 |
+
aten.std_mean,
|
412 |
+
aten.stack,
|
413 |
+
aten.sum.default,
|
414 |
+
aten.sum.out,
|
415 |
+
aten.t,
|
416 |
+
aten.tanh_backward,
|
417 |
+
aten.threshold,
|
418 |
+
aten.threshold_,
|
419 |
+
aten.threshold_backward,
|
420 |
+
aten.trace,
|
421 |
+
aten.transpose.int,
|
422 |
+
aten.tril,
|
423 |
+
aten.tril_,
|
424 |
+
aten.triu,
|
425 |
+
aten.triu_,
|
426 |
+
aten.unbind,
|
427 |
+
aten.unfold_backward,
|
428 |
+
aten.unfold_copy,
|
429 |
+
aten._unsafe_index,
|
430 |
+
aten.unsafe_split.Tensor,
|
431 |
+
aten.unsafe_split_with_sizes,
|
432 |
+
aten._unsafe_view,
|
433 |
+
aten.upsample_bilinear2d,
|
434 |
+
aten.upsample_nearest2d_backward,
|
435 |
+
aten.view_as_complex,
|
436 |
+
aten.xlogy,
|
437 |
+
aten.xlogy_,
|
438 |
+
aten.zero,
|
439 |
+
aten.zero_,
|
440 |
+
aten.zeros,
|
441 |
+
aten.zeros_like,
|
442 |
+
aten._weight_norm_interface,
|
443 |
+
]
|
444 |
+
)
|
env-llmeval/lib/python3.10/site-packages/torch/_decomp/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (12.2 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/_decomp/__pycache__/decompositions.cpython-310.pyc
ADDED
Binary file (102 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/_decomp/__pycache__/decompositions_for_jvp.cpython-310.pyc
ADDED
Binary file (6.29 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/_decomp/__pycache__/decompositions_for_rng.cpython-310.pyc
ADDED
Binary file (8.02 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/_decomp/decompositions.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
env-llmeval/lib/python3.10/site-packages/torch/_decomp/decompositions_for_jvp.py
ADDED
@@ -0,0 +1,302 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import inspect
|
2 |
+
from typing import Callable, Dict, List, Optional, Tuple
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch._decomp
|
6 |
+
from torch import Tensor
|
7 |
+
from torch._prims_common.wrappers import _maybe_remove_out_wrapper
|
8 |
+
|
9 |
+
decomposition_table = torch._decomp.decomposition_table
|
10 |
+
decomposition_table_for_jvp: Dict[torch._ops.OperatorBase, Callable] = {}
|
11 |
+
register_decomposition = torch._decomp.register_decomposition
|
12 |
+
aten = torch.ops.aten
|
13 |
+
|
14 |
+
# NOTE: [forward-mode AD decompositions mechanism]
|
15 |
+
#
|
16 |
+
# The mechanism is in VariableType,
|
17 |
+
# IF any inputs have forward grad
|
18 |
+
# AND there is no forward AD formula implemented
|
19 |
+
# AND the functions is actually differentiable
|
20 |
+
# run the decomposition
|
21 |
+
# See run_jit_decomposition_with_args_for_jvp
|
22 |
+
# We currently use python decompositions that we torchscript.
|
23 |
+
#
|
24 |
+
# Note that we would be building the backward graph at the decomposed level
|
25 |
+
# too, but that is OK, because we would've errored out otherwise anyway.
|
26 |
+
#
|
27 |
+
# TODO: The mechanism we are using to register decompositions doesn't
|
28 |
+
# seem to be exclusively used for jvp. So open question here is whether
|
29 |
+
# torch/csrc/jit/runtime/decomposition_registry.cpp is being used for other things.
|
30 |
+
# If that is the case, we may go down the decomposition path unexpectedly
|
31 |
+
# (and possibly produce an unintelligible error) vs erroring out earlier and
|
32 |
+
# printing that the forward AD formula is not implemented.
|
33 |
+
#
|
34 |
+
# The solution to this may be to have a explicitly white list control when
|
35 |
+
# to enable the decomposition.
|
36 |
+
|
37 |
+
|
38 |
+
def maybe_register_decomposition(op):
|
39 |
+
def decorator(f):
|
40 |
+
try:
|
41 |
+
return register_decomposition(op)(f)
|
42 |
+
except Exception:
|
43 |
+
return f
|
44 |
+
|
45 |
+
return decorator
|
46 |
+
|
47 |
+
|
48 |
+
# Functions where we need a special decomposition for jvp but there's another version that
|
49 |
+
# should be used more generally (ex. for jvp we need to recompute the mean and variance for
|
50 |
+
# the backwards of a normalization function. Without jvp, it should use the saved value)
|
51 |
+
decomposition_table_for_jvp = {}
|
52 |
+
|
53 |
+
|
54 |
+
def register_decomposition_for_jvp(fn):
|
55 |
+
return register_decomposition(fn, registry=decomposition_table_for_jvp)
|
56 |
+
|
57 |
+
|
58 |
+
def _register_jit_decomposition_for_jvp(decomp, use_python=False):
|
59 |
+
if decomp in decomposition_table_for_jvp:
|
60 |
+
decomposition_table_used = decomposition_table_for_jvp
|
61 |
+
elif decomp in decomposition_table:
|
62 |
+
decomposition_table_used = decomposition_table
|
63 |
+
else:
|
64 |
+
raise RuntimeError(f"could not find decomposition for {decomp}")
|
65 |
+
decomp_fn = decomposition_table_used[decomp]
|
66 |
+
|
67 |
+
# `out_wrapper` extends a decompositions signature with
|
68 |
+
# an `out` parameter. However jit will use the unwrapped function's
|
69 |
+
# signature instead so we need to unwrap here to prevent an error
|
70 |
+
decomp_fn = _maybe_remove_out_wrapper(decomp_fn)
|
71 |
+
|
72 |
+
if use_python:
|
73 |
+
decomp_fn = torch.jit.ignore(decomp_fn)
|
74 |
+
sig = inspect.signature(decomp_fn)
|
75 |
+
|
76 |
+
# Create a string wrapping the function from the signature
|
77 |
+
# example output:
|
78 |
+
# def wrapped_decomp(x: torch.Tensor, y: int, z: int):
|
79 |
+
# return decomp_fn(x, y, z)
|
80 |
+
# Thanks copilot!
|
81 |
+
def get_function_def(sig):
|
82 |
+
param_def = [f"{param_str}" for param_str in sig.parameters.values()]
|
83 |
+
param_use = [f"{param_str}" for param_str in sig.parameters.keys()]
|
84 |
+
|
85 |
+
return f"def wrapped_decomp({', '.join(param_def)}):\n return decomp_fn({', '.join(param_use)})\n"
|
86 |
+
|
87 |
+
f_str = get_function_def(sig)
|
88 |
+
graph = torch.jit.CompilationUnit(f_str).wrapped_decomp.graph
|
89 |
+
else:
|
90 |
+
graph = torch.jit.script(decomp_fn).graph
|
91 |
+
torch.jit._register_decomposition(decomp, graph)
|
92 |
+
|
93 |
+
|
94 |
+
# The only decompositions here are temporary or hacks for the purposes of jvp
|
95 |
+
|
96 |
+
|
97 |
+
# TODO: do these also belong here?
|
98 |
+
@maybe_register_decomposition(aten.trace.default)
|
99 |
+
def trace(self: Tensor) -> Tensor:
|
100 |
+
return torch.sum(torch.diag(self))
|
101 |
+
|
102 |
+
|
103 |
+
@maybe_register_decomposition(aten.log_sigmoid_forward.default)
|
104 |
+
def log_sigmoid_forward(self: Tensor) -> Tuple[Tensor, Tensor]:
|
105 |
+
min = torch.minimum(self.new_zeros(()), self)
|
106 |
+
z = torch.exp(-torch.abs(self))
|
107 |
+
if self.is_cuda:
|
108 |
+
buffer = self.new_zeros((0,))
|
109 |
+
else:
|
110 |
+
buffer = z
|
111 |
+
return min - torch.log1p(z), buffer
|
112 |
+
|
113 |
+
|
114 |
+
def recompute_mean_var(
|
115 |
+
input: Tensor, rstd: Tensor, inner_dim_indices: List[int], keepdim: bool
|
116 |
+
):
|
117 |
+
# for most norm decompositions, it will be the same as the core version except for here.
|
118 |
+
# We recompute the mean and variance so that they track gradients through input
|
119 |
+
|
120 |
+
mean = torch.mean(input, dim=inner_dim_indices, keepdim=keepdim)
|
121 |
+
var = torch.var(input, dim=inner_dim_indices, unbiased=False, keepdim=keepdim)
|
122 |
+
eps = torch.pow(1 / rstd, 2) - var # this makes me so sad inside
|
123 |
+
eps = eps.detach()
|
124 |
+
rstd = 1 / torch.sqrt(var + eps)
|
125 |
+
return mean, rstd
|
126 |
+
|
127 |
+
|
128 |
+
@register_decomposition_for_jvp(aten.native_layer_norm_backward)
|
129 |
+
def native_layer_norm_backward(
|
130 |
+
grad_out: Tensor,
|
131 |
+
input: Tensor,
|
132 |
+
normalized_shape: List[int],
|
133 |
+
mean: Tensor,
|
134 |
+
rstd: Tensor,
|
135 |
+
weight: Optional[Tensor],
|
136 |
+
bias: Optional[Tensor],
|
137 |
+
output_mask: List[bool],
|
138 |
+
) -> Tuple[Optional[Tensor], Optional[Tensor], Optional[Tensor]]:
|
139 |
+
input_shape = input.shape
|
140 |
+
input_ndim = input.dim()
|
141 |
+
|
142 |
+
axis = input_ndim - len(normalized_shape)
|
143 |
+
inner_dims = input_shape[axis:]
|
144 |
+
outer_dims = input_shape[:axis]
|
145 |
+
inner_dim_indices = list(range(axis, input_ndim))
|
146 |
+
outer_dim_indices = list(range(0, axis))
|
147 |
+
|
148 |
+
N = 1
|
149 |
+
for i in inner_dims:
|
150 |
+
N *= i
|
151 |
+
M = 1
|
152 |
+
for i in outer_dims:
|
153 |
+
M *= i
|
154 |
+
if M <= 0 or N <= 0:
|
155 |
+
return (
|
156 |
+
input.new_zeros(input_shape),
|
157 |
+
input.new_zeros(input_shape[axis:]),
|
158 |
+
input.new_zeros(input_shape[axis:]),
|
159 |
+
)
|
160 |
+
|
161 |
+
mean_, rstd_ = recompute_mean_var(input, rstd, inner_dim_indices, keepdim=True)
|
162 |
+
|
163 |
+
x_hat = (input - mean_) * rstd_
|
164 |
+
if weight is not None:
|
165 |
+
grad_x_hat = grad_out * weight
|
166 |
+
else:
|
167 |
+
grad_x_hat = grad_out
|
168 |
+
a = grad_x_hat * N
|
169 |
+
b = torch.sum(grad_x_hat, inner_dim_indices, True)
|
170 |
+
c1 = torch.mul(grad_x_hat, x_hat)
|
171 |
+
c2 = torch.sum(c1, inner_dim_indices, True)
|
172 |
+
c3 = torch.mul(x_hat, c2)
|
173 |
+
inner = a - b - c3
|
174 |
+
|
175 |
+
if output_mask[0]:
|
176 |
+
d_input: Optional[Tensor] = (rstd_ / N) * inner
|
177 |
+
else:
|
178 |
+
d_input = torch.zeros_like(input) # should be None but doesn't work with vjp
|
179 |
+
|
180 |
+
if output_mask[1] and weight is not None:
|
181 |
+
if len(outer_dim_indices) > 0:
|
182 |
+
d_weight: Optional[Tensor] = torch.sum(
|
183 |
+
grad_out * x_hat, outer_dim_indices, False
|
184 |
+
)
|
185 |
+
else:
|
186 |
+
d_weight = grad_out * x_hat
|
187 |
+
elif weight is not None:
|
188 |
+
d_weight = torch.zeros_like(weight) # should be None but doesn't work with vjp
|
189 |
+
else:
|
190 |
+
d_weight = torch.zeros(()) # should be None but doesn't work with vjp
|
191 |
+
|
192 |
+
if output_mask[2] and bias is not None:
|
193 |
+
if len(outer_dim_indices) > 0:
|
194 |
+
d_bias: Optional[Tensor] = torch.sum(grad_out, outer_dim_indices, False)
|
195 |
+
else:
|
196 |
+
d_bias = grad_out.clone()
|
197 |
+
elif bias is not None:
|
198 |
+
d_bias = torch.zeros_like(bias) # should be None but doesn't work with vjp
|
199 |
+
else:
|
200 |
+
d_bias = torch.zeros(()) # should be None but doesn't work with vjp
|
201 |
+
|
202 |
+
return (d_input, d_weight, d_bias)
|
203 |
+
|
204 |
+
|
205 |
+
def prod(x: List[int]):
|
206 |
+
r = 1
|
207 |
+
for i in x:
|
208 |
+
r *= i
|
209 |
+
return r
|
210 |
+
|
211 |
+
|
212 |
+
@register_decomposition_for_jvp(aten.native_batch_norm_backward)
|
213 |
+
def native_batch_norm_backward(
|
214 |
+
grad_out: Tensor,
|
215 |
+
input: Tensor,
|
216 |
+
weight: Optional[Tensor],
|
217 |
+
running_mean: Optional[Tensor],
|
218 |
+
running_var: Optional[Tensor],
|
219 |
+
save_mean: Optional[Tensor],
|
220 |
+
save_invstd: Optional[Tensor],
|
221 |
+
train: bool,
|
222 |
+
eps: float,
|
223 |
+
output_mask: List[bool],
|
224 |
+
) -> Tuple[Tensor, Optional[Tensor], Optional[Tensor]]:
|
225 |
+
input_shape = input.shape
|
226 |
+
input_rank = input.dim()
|
227 |
+
assert input_rank >= 2, "rank of the input must be at least 2"
|
228 |
+
|
229 |
+
axis = 1
|
230 |
+
num_features = prod(input_shape) / input_shape[axis] # type: ignore[arg-type]
|
231 |
+
mean = save_mean
|
232 |
+
invstd = save_invstd
|
233 |
+
if train:
|
234 |
+
assert (
|
235 |
+
save_mean is not None and save_invstd is not None
|
236 |
+
), "when train=True, save_mean and save_invstd are required"
|
237 |
+
|
238 |
+
reduciton_dims = [0] + list(range(2, input.dim()))
|
239 |
+
assert invstd is not None # for typing
|
240 |
+
mean, invstd = recompute_mean_var(input, invstd, reduciton_dims, keepdim=False)
|
241 |
+
else:
|
242 |
+
assert running_mean is not None and running_var is not None
|
243 |
+
mean = running_mean
|
244 |
+
invstd = torch.rsqrt(running_var + eps)
|
245 |
+
|
246 |
+
assert invstd is not None and mean is not None
|
247 |
+
|
248 |
+
broadcast_mask = [1] * input_rank
|
249 |
+
broadcast_mask[axis] = input_shape[axis]
|
250 |
+
|
251 |
+
reduction_axes: List[int] = []
|
252 |
+
for i in range(input_rank):
|
253 |
+
if i != axis:
|
254 |
+
reduction_axes.append(i)
|
255 |
+
|
256 |
+
mean = torch.reshape(mean, broadcast_mask)
|
257 |
+
norm = 1.0 / num_features
|
258 |
+
grad_output_sum = torch.sum(grad_out, reduction_axes)
|
259 |
+
dot_p = torch.sum(grad_out * (input - mean), reduction_axes)
|
260 |
+
|
261 |
+
grad_mean = torch.reshape(grad_output_sum * norm, broadcast_mask)
|
262 |
+
proj_scale = torch.reshape(torch.mul(dot_p * norm, invstd * invstd), broadcast_mask)
|
263 |
+
|
264 |
+
if weight is None:
|
265 |
+
grad_scale = torch.reshape(invstd, broadcast_mask) * 1.0
|
266 |
+
else:
|
267 |
+
grad_scale = torch.reshape(invstd * weight, broadcast_mask)
|
268 |
+
|
269 |
+
if train:
|
270 |
+
proj = (input - mean) * proj_scale
|
271 |
+
grad_input = ((grad_out - proj) - grad_mean) * grad_scale
|
272 |
+
else:
|
273 |
+
grad_input = grad_out * grad_scale
|
274 |
+
|
275 |
+
if output_mask[1]:
|
276 |
+
grad_weight = dot_p * invstd
|
277 |
+
elif weight is not None:
|
278 |
+
grad_weight = torch.zeros_like(
|
279 |
+
weight
|
280 |
+
) # should be None but doesn't work with vjp
|
281 |
+
else:
|
282 |
+
grad_weight = torch.zeros(()) # should be None but doesn't work with vjp
|
283 |
+
|
284 |
+
if output_mask[2]:
|
285 |
+
grad_bias = grad_output_sum
|
286 |
+
else:
|
287 |
+
grad_bias = torch.zeros_like(
|
288 |
+
grad_output_sum
|
289 |
+
) # should be None but doesn't work with vjp
|
290 |
+
|
291 |
+
return (grad_input, grad_weight, grad_bias)
|
292 |
+
|
293 |
+
|
294 |
+
_register_jit_decomposition_for_jvp(torch.ops.aten.trace.default, use_python=True)
|
295 |
+
_register_jit_decomposition_for_jvp(torch.ops.aten.nll_loss_backward.default)
|
296 |
+
_register_jit_decomposition_for_jvp(torch.ops.aten.nll_loss2d_backward.default)
|
297 |
+
_register_jit_decomposition_for_jvp(torch.ops.aten._log_softmax_backward_data.default)
|
298 |
+
_register_jit_decomposition_for_jvp(torch.ops.aten._softmax_backward_data.default)
|
299 |
+
_register_jit_decomposition_for_jvp(torch.ops.aten.log_sigmoid_forward.default)
|
300 |
+
_register_jit_decomposition_for_jvp(torch.ops.aten.native_layer_norm_backward.default)
|
301 |
+
_register_jit_decomposition_for_jvp(torch.ops.aten.native_batch_norm_backward.default)
|
302 |
+
_register_jit_decomposition_for_jvp(torch.ops.aten.cudnn_batch_norm_backward.default)
|
env-llmeval/lib/python3.10/site-packages/torch/_decomp/decompositions_for_rng.py
ADDED
@@ -0,0 +1,263 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import functools
|
2 |
+
from collections import defaultdict
|
3 |
+
from typing import Callable, Dict
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch._decomp as decomp
|
7 |
+
from torch._decomp import get_decompositions
|
8 |
+
from torch._ops import OpOverload
|
9 |
+
|
10 |
+
aten = torch.ops.aten
|
11 |
+
|
12 |
+
rng_decompositions: Dict[str, Dict[OpOverload, Callable]] = defaultdict(dict)
|
13 |
+
|
14 |
+
|
15 |
+
def register_rng_decomposition(aten_op):
|
16 |
+
return decomp.register_decomposition(aten_op, rng_decompositions)
|
17 |
+
|
18 |
+
|
19 |
+
def throw_on_non_cuda(device):
|
20 |
+
raise RuntimeError(
|
21 |
+
f"You are trying to functionalize a {device.type} RNG operator but {device.type} does not "
|
22 |
+
f"use Philox/counter-based RNG. Therefore, functionalizing a {device.type} RNG operator is "
|
23 |
+
"not supported. We are discussing the possibility of a Philox-based RNG implementation for CPU."
|
24 |
+
)
|
25 |
+
|
26 |
+
|
27 |
+
# TODO - We have to register many more distributions here, and also higher level
|
28 |
+
# ops like dropout which have fused implementation and can hide the rand inside.
|
29 |
+
@register_rng_decomposition(aten.rand)
|
30 |
+
def rand(shape, dtype=None, layout=torch.strided, device=None, pin_memory=False):
|
31 |
+
if device and device.type != "cuda":
|
32 |
+
throw_on_non_cuda(device)
|
33 |
+
seed, offset = PhiloxStateTracker.get_state_as_tuple()
|
34 |
+
dtype = dtype or torch.float32
|
35 |
+
out, offset_jump = torch.ops.rngprims.philox_rand(
|
36 |
+
shape, seed, offset, None, device, dtype
|
37 |
+
)
|
38 |
+
PhiloxStateTracker.advance_offset(offset_jump)
|
39 |
+
return out
|
40 |
+
|
41 |
+
|
42 |
+
@register_rng_decomposition(aten.rand_like)
|
43 |
+
def rand_like(
|
44 |
+
x: torch.Tensor,
|
45 |
+
dtype=None,
|
46 |
+
layout=None,
|
47 |
+
device=None,
|
48 |
+
pin_memory=False,
|
49 |
+
memory_format=torch.preserve_format,
|
50 |
+
):
|
51 |
+
device = device or x.device
|
52 |
+
if device.type != "cuda":
|
53 |
+
throw_on_non_cuda(device)
|
54 |
+
dtype = dtype or x.dtype
|
55 |
+
seed, offset = PhiloxStateTracker.get_state_as_tuple()
|
56 |
+
out, offset_jump = torch.ops.rngprims.philox_rand(
|
57 |
+
x.shape, seed, offset, None, device, dtype
|
58 |
+
)
|
59 |
+
PhiloxStateTracker.advance_offset(offset_jump)
|
60 |
+
return out
|
61 |
+
|
62 |
+
|
63 |
+
class PhiloxState:
|
64 |
+
"""
|
65 |
+
Represents a PhiloxRngState - (seed, offset) where offset = base_offset +
|
66 |
+
relative_offset. seed and base_offset basically point to the rng state just
|
67 |
+
before tracing starts. relative offset tracks the totally consumed offset at
|
68 |
+
trace time.
|
69 |
+
"""
|
70 |
+
|
71 |
+
def __init__(self):
|
72 |
+
self.reset()
|
73 |
+
|
74 |
+
def reset(self):
|
75 |
+
self.seed = torch.tensor(())
|
76 |
+
self.base_offset = torch.tensor(())
|
77 |
+
self.relative_offset = 0
|
78 |
+
self.offset_advanced_alteast_once = False
|
79 |
+
|
80 |
+
def validate_state(self):
|
81 |
+
assert self.seed.numel() != 0 and self.base_offset.numel() != 0
|
82 |
+
|
83 |
+
def advance_offset(self, consumed_offset):
|
84 |
+
self.offset_advanced_alteast_once = True
|
85 |
+
self.relative_offset = self.relative_offset + consumed_offset
|
86 |
+
|
87 |
+
def set_state(self, seed, base_offset, relative_offset=0):
|
88 |
+
self.seed = seed
|
89 |
+
self.base_offset = base_offset
|
90 |
+
self.relative_offset = relative_offset
|
91 |
+
|
92 |
+
def get_state_as_tuple(self):
|
93 |
+
self.validate_state()
|
94 |
+
return (self.seed, self.base_offset + self.relative_offset)
|
95 |
+
|
96 |
+
def get_state_as_tensor(self):
|
97 |
+
# Only needed because we override get_rng_state.
|
98 |
+
self.validate_state()
|
99 |
+
return torch.stack([self.seed, self.base_offset + self.relative_offset])
|
100 |
+
|
101 |
+
def set_state_from_tensor(self, state):
|
102 |
+
# Only needed because we override set_rng_state.
|
103 |
+
self.seed, self.base_offset = torch.unbind(state)
|
104 |
+
self.relative_offset = 0
|
105 |
+
|
106 |
+
|
107 |
+
class PhiloxStateTracker:
|
108 |
+
"""
|
109 |
+
Singleton class to track the philox rng state during AOT Autograd tracing.
|
110 |
+
For each aot tracing instance, AOT Autograd resets this tracker and keeps
|
111 |
+
track of both forward and backward offsets. At runtime, we only care about
|
112 |
+
the total consumed forward and backward offsets. For dynamic shapes, these
|
113 |
+
offsets are a function of input shapes. Therefore, the AOT generated graphs
|
114 |
+
have additional outputs that compute total consumed forward and backward
|
115 |
+
offsets.
|
116 |
+
"""
|
117 |
+
|
118 |
+
running_state: PhiloxState
|
119 |
+
fwd_state: PhiloxState
|
120 |
+
bwd_state: PhiloxState
|
121 |
+
|
122 |
+
def __enter__(self):
|
123 |
+
PhiloxStateTracker.reset()
|
124 |
+
return self
|
125 |
+
|
126 |
+
def __exit__(self, exc_type, exc_cal, exc_tb):
|
127 |
+
PhiloxStateTracker.reset()
|
128 |
+
|
129 |
+
@classmethod
|
130 |
+
def reset(cls):
|
131 |
+
cls.running_state = PhiloxState()
|
132 |
+
cls.fwd_state = PhiloxState()
|
133 |
+
cls.bwd_state = PhiloxState()
|
134 |
+
|
135 |
+
@classmethod
|
136 |
+
def mark_beginning_of_forward(cls):
|
137 |
+
# Tells the tracker to use fwd_state as the running state
|
138 |
+
cls.running_state = cls.fwd_state
|
139 |
+
|
140 |
+
@classmethod
|
141 |
+
def mark_beginning_of_backward(cls):
|
142 |
+
# Tells the tracker to use bwd_state as the running state
|
143 |
+
cls.running_state = cls.bwd_state
|
144 |
+
|
145 |
+
@classmethod
|
146 |
+
def record_state(cls, seed, offset, mode):
|
147 |
+
# Records the seed and offset tensors. These tensors are used to invoke
|
148 |
+
# the philox_rand functional primitives.
|
149 |
+
if mode == "forward":
|
150 |
+
cls.fwd_state.set_state(seed, offset)
|
151 |
+
cls.mark_beginning_of_forward()
|
152 |
+
else:
|
153 |
+
assert mode == "backward"
|
154 |
+
cls.bwd_state.set_state(seed, offset)
|
155 |
+
|
156 |
+
@classmethod
|
157 |
+
def get_state_as_tensor(cls):
|
158 |
+
# The only reason this exists is because we override get_rng_state and
|
159 |
+
# set_rng_state during tracing. get_rng_state expects a tensor output,
|
160 |
+
# so return (seed, offset) tuple upset other parts of the program like
|
161 |
+
# ctx.saved_tensors.
|
162 |
+
|
163 |
+
# A bad consequence is that if user saves and restores rng state, we
|
164 |
+
# have little bit of ugliness in the generated code, where we first
|
165 |
+
# concat the (seed, offset) to create a tensor for get_rng_state, and
|
166 |
+
# then split it back to get (seed, offset) tuple in set_rng_state.
|
167 |
+
|
168 |
+
# TODO: Investigate if there is be a better way to wrap the tuple in a
|
169 |
+
# false Tensor object, and then desugar it later on.
|
170 |
+
return cls.running_state.get_state_as_tensor()
|
171 |
+
|
172 |
+
@classmethod
|
173 |
+
def get_state_as_tuple(cls):
|
174 |
+
return cls.running_state.get_state_as_tuple()
|
175 |
+
|
176 |
+
@classmethod
|
177 |
+
def set_state_from_tensor(cls, x):
|
178 |
+
# This is only needed because we override set_rng_state. Look at the
|
179 |
+
# comment in get_state_from_tensor method.
|
180 |
+
cls.running_state.set_state_from_tensor(x)
|
181 |
+
|
182 |
+
@classmethod
|
183 |
+
def advance_offset(cls, consumed_offset):
|
184 |
+
cls.running_state.advance_offset(consumed_offset)
|
185 |
+
|
186 |
+
@classmethod
|
187 |
+
def get_current_relative_offset(cls):
|
188 |
+
return cls.running_state.relative_offset
|
189 |
+
|
190 |
+
@staticmethod
|
191 |
+
def multiple_of_4(offset):
|
192 |
+
# torch cuda rng state offset must be a multiple of 4. For inductor, as
|
193 |
+
# we sum up all the numel, the result might not be a multiple of 4. This
|
194 |
+
# method achieves that.
|
195 |
+
return (offset + 3) // 4 * 4
|
196 |
+
|
197 |
+
@classmethod
|
198 |
+
def get_updated_fwd_offset(cls):
|
199 |
+
# Short circuit if no rand ops were observed
|
200 |
+
if not cls.fwd_state.offset_advanced_alteast_once:
|
201 |
+
return cls.fwd_state.base_offset
|
202 |
+
return cls.multiple_of_4(
|
203 |
+
cls.fwd_state.base_offset + cls.fwd_state.relative_offset
|
204 |
+
)
|
205 |
+
|
206 |
+
@classmethod
|
207 |
+
def get_updated_bwd_offset(cls):
|
208 |
+
# Short circuit if no rand ops were observed
|
209 |
+
if not cls.bwd_state.offset_advanced_alteast_once:
|
210 |
+
return cls.bwd_state.base_offset
|
211 |
+
return cls.multiple_of_4(
|
212 |
+
cls.bwd_state.base_offset + cls.bwd_state.relative_offset
|
213 |
+
)
|
214 |
+
|
215 |
+
|
216 |
+
# Adding more decompositions which eventually use rand_like inside decomps.
|
217 |
+
# Adding these in rng_decompositions ensures the functionalization of rand_like
|
218 |
+
# ops used in these decomps. The list is copied from inductor codebase, which
|
219 |
+
# uses it for similar purpose.
|
220 |
+
#
|
221 |
+
# Caution - These decomps do not have same accuracy as that of eager. However,
|
222 |
+
# we can't just disable them with a config flag like fallback_random, because
|
223 |
+
# for functionalization of rng ops, we have to decompose these ops.
|
224 |
+
extra_random_decomps = get_decompositions(
|
225 |
+
[
|
226 |
+
aten.cauchy,
|
227 |
+
aten.cauchy_,
|
228 |
+
aten.exponential,
|
229 |
+
aten.exponential_,
|
230 |
+
aten.geometric,
|
231 |
+
aten.geometric_,
|
232 |
+
aten.native_dropout,
|
233 |
+
aten.normal,
|
234 |
+
aten.normal_,
|
235 |
+
aten.normal_functional,
|
236 |
+
aten.log_normal,
|
237 |
+
aten.log_normal_,
|
238 |
+
aten.rrelu_with_noise,
|
239 |
+
aten.rrelu_with_noise_,
|
240 |
+
aten.uniform_,
|
241 |
+
]
|
242 |
+
)
|
243 |
+
register_extra_random_decomp = functools.partial(
|
244 |
+
decomp.register_decomposition, registry=extra_random_decomps
|
245 |
+
)
|
246 |
+
|
247 |
+
|
248 |
+
@register_extra_random_decomp([aten.bernoulli_])
|
249 |
+
def bernoulli_(self, p=0.5):
|
250 |
+
if self.device == torch.device("cpu"):
|
251 |
+
return NotImplemented
|
252 |
+
return self.copy_(torch.rand_like(self, dtype=torch.float32) < p)
|
253 |
+
|
254 |
+
|
255 |
+
@register_extra_random_decomp([aten.bernoulli.p])
|
256 |
+
def bernoulli_p(self, p=0.5, *, generator=None):
|
257 |
+
if self.device == torch.device("cpu"):
|
258 |
+
return NotImplemented
|
259 |
+
assert generator is None
|
260 |
+
return torch.rand_like(self, dtype=torch.float32) < p
|
261 |
+
|
262 |
+
|
263 |
+
rng_decompositions.update(extra_random_decomps) # type: ignore[arg-type]
|
env-llmeval/lib/python3.10/site-packages/torch/_dispatch/__init__.py
ADDED
File without changes
|
env-llmeval/lib/python3.10/site-packages/torch/_dispatch/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (180 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/_dispatch/__pycache__/python.cpython-310.pyc
ADDED
Binary file (6.67 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/_dispatch/python.py
ADDED
@@ -0,0 +1,178 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import itertools
|
2 |
+
import unittest.mock
|
3 |
+
from contextlib import contextmanager
|
4 |
+
from typing import Iterator
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch._C
|
8 |
+
import torch._ops
|
9 |
+
import torch.utils._python_dispatch
|
10 |
+
import torch.utils._pytree as pytree
|
11 |
+
|
12 |
+
__all__ = ["enable_python_dispatcher", "no_python_dispatcher", "enable_pre_dispatch"]
|
13 |
+
|
14 |
+
no_python_dispatcher = torch._C._DisablePythonDispatcher
|
15 |
+
enable_python_dispatcher = torch._C._EnablePythonDispatcher
|
16 |
+
enable_pre_dispatch = torch._C._EnablePreDispatch
|
17 |
+
|
18 |
+
CROSSREF_FUNCTIONALIZE = False
|
19 |
+
|
20 |
+
|
21 |
+
def all_py_loaded_overloads() -> Iterator[torch._ops.OpOverload]:
|
22 |
+
"""
|
23 |
+
Warning: the set of overloads this will report is very subtle. It is precisely
|
24 |
+
the set of torch.ops functions that have actually been accessed from Python
|
25 |
+
(e.g., we actually called torch.ops.aten.blah at some point. This is DIFFERENT
|
26 |
+
from the set of registered operators, which will in general be a larger set,
|
27 |
+
as this would include all operators which we ran C++ static initializers or
|
28 |
+
Python operator registration on. This does not eagerly populate the list on
|
29 |
+
torch.ops.aten; this list is lazy!
|
30 |
+
|
31 |
+
In other words, this is good for traversing over everything that has an
|
32 |
+
OpOverload object allocated in Python. We use it for cache invalidation, but
|
33 |
+
don't rely on this list being complete.
|
34 |
+
|
35 |
+
Note that even if we did report all C++ registered overloads, this isn't guaranteed
|
36 |
+
to be complete either, as a subsequent lazy load of a library which triggers more
|
37 |
+
registrations could add more things to the set.
|
38 |
+
"""
|
39 |
+
for ns in torch.ops:
|
40 |
+
packets = getattr(torch.ops, ns)
|
41 |
+
for op_name in packets:
|
42 |
+
packet = getattr(packets, op_name)
|
43 |
+
for overload in packet:
|
44 |
+
yield getattr(packet, overload)
|
45 |
+
|
46 |
+
|
47 |
+
@contextmanager
|
48 |
+
def suspend_functionalization():
|
49 |
+
f_tls = torch._C._dispatch_tls_is_dispatch_key_included(
|
50 |
+
torch._C.DispatchKey.Functionalize
|
51 |
+
)
|
52 |
+
f_rv = torch._C._functionalization_reapply_views_tls()
|
53 |
+
if f_tls:
|
54 |
+
torch._disable_functionalization()
|
55 |
+
try:
|
56 |
+
yield
|
57 |
+
finally:
|
58 |
+
if f_tls:
|
59 |
+
torch._enable_functionalization(reapply_views=f_rv)
|
60 |
+
|
61 |
+
|
62 |
+
def check_tensor_metadata_matches(nv, rv, desc):
|
63 |
+
assert callable(desc)
|
64 |
+
assert nv.size() == rv.size(), f"{desc()}: sizes {nv.size()} != {rv.size()}"
|
65 |
+
assert nv.dtype == rv.dtype, f"{desc()}: dtype {nv.dtype} != {rv.dtype}"
|
66 |
+
same_strides, idx = torch._prims_common.check_significant_strides(
|
67 |
+
nv, rv, only_cuda=False
|
68 |
+
)
|
69 |
+
assert (
|
70 |
+
same_strides
|
71 |
+
), f"{desc()}: strides {nv.stride()} != {rv.stride()} (mismatch at index {idx})"
|
72 |
+
|
73 |
+
|
74 |
+
def check_metadata_matches(n, r, desc):
|
75 |
+
assert callable(desc)
|
76 |
+
n_vals, n_spec = pytree.tree_flatten(n)
|
77 |
+
r_vals, r_spec = pytree.tree_flatten(r)
|
78 |
+
# TODO: test the specs match; empirically sometimes we have a tuple
|
79 |
+
# on one side and a list on the other
|
80 |
+
assert len(n_vals) == len(r_vals), f"{len(n_vals)} != {len(r_vals)}"
|
81 |
+
for i, nv, rv in zip(range(len(n_vals)), n_vals, r_vals):
|
82 |
+
if not isinstance(rv, torch.Tensor):
|
83 |
+
continue
|
84 |
+
check_tensor_metadata_matches(nv, rv, lambda: f"{desc()} output {i}")
|
85 |
+
|
86 |
+
|
87 |
+
class Lit:
|
88 |
+
def __init__(self, s):
|
89 |
+
self.s = s
|
90 |
+
|
91 |
+
def __repr__(self):
|
92 |
+
return self.s
|
93 |
+
|
94 |
+
|
95 |
+
def _fmt(a: object) -> object:
|
96 |
+
if isinstance(a, torch.Tensor):
|
97 |
+
return Lit(
|
98 |
+
f"torch.empty_strided({tuple(a.size())}, {a.stride()}, dtype={a.dtype})"
|
99 |
+
)
|
100 |
+
else:
|
101 |
+
return a
|
102 |
+
|
103 |
+
|
104 |
+
def make_crossref_functionalize(op, final_key):
|
105 |
+
from torch._subclasses.fake_tensor import FakeTensorMode
|
106 |
+
|
107 |
+
# This case is pretty weird, suppress it for now
|
108 |
+
if op == torch.ops.aten.lift_fresh.default:
|
109 |
+
return final_key
|
110 |
+
|
111 |
+
def handler(*args, **kwargs):
|
112 |
+
fake_mode = FakeTensorMode()
|
113 |
+
|
114 |
+
def fakeify_defun(t):
|
115 |
+
if isinstance(t, torch.Tensor):
|
116 |
+
if torch._is_functional_tensor(t):
|
117 |
+
r = torch._from_functional_tensor(t)
|
118 |
+
# NB: This assumes that the inner tensor sizes/strides match
|
119 |
+
# the outer tensor sizes/strides. This doesn't necessarily have to
|
120 |
+
# be the case, see discussion at
|
121 |
+
# https://github.com/pytorch/pytorch/pull/87610/files/401ddeda1d769bedc88a12de332c7357b60e51a4#r1007264456
|
122 |
+
assert t.size() == r.size()
|
123 |
+
assert t.stride() == r.stride()
|
124 |
+
else:
|
125 |
+
r = t
|
126 |
+
# TODO: suppress guards
|
127 |
+
return fake_mode.from_tensor(r)
|
128 |
+
return t
|
129 |
+
|
130 |
+
def maybe_detach(t):
|
131 |
+
if isinstance(t, torch.Tensor):
|
132 |
+
return t.detach()
|
133 |
+
else:
|
134 |
+
return t
|
135 |
+
|
136 |
+
# TODO: This probably does the wrong thing if you're running other
|
137 |
+
# substantive modes with the normal op outside here
|
138 |
+
with torch.utils._python_dispatch._disable_current_modes(), suspend_functionalization():
|
139 |
+
f_args, f_kwargs = pytree.tree_map(fakeify_defun, (args, kwargs))
|
140 |
+
orig_f_args, orig_f_kwargs = pytree.tree_map(
|
141 |
+
maybe_detach, (f_args, f_kwargs)
|
142 |
+
)
|
143 |
+
with fake_mode:
|
144 |
+
f_r = op(*f_args, **f_kwargs)
|
145 |
+
r = op._op_dk(final_key, *args, **kwargs)
|
146 |
+
|
147 |
+
def desc():
|
148 |
+
fmt_args = ", ".join(
|
149 |
+
itertools.chain(
|
150 |
+
(repr(pytree.tree_map(_fmt, a)) for a in orig_f_args),
|
151 |
+
(
|
152 |
+
f"{k}={pytree.tree_map(_fmt, v)}"
|
153 |
+
for k, v in orig_f_kwargs.items()
|
154 |
+
),
|
155 |
+
)
|
156 |
+
)
|
157 |
+
return f"{op}({fmt_args})"
|
158 |
+
|
159 |
+
check_metadata_matches(f_r, r, desc)
|
160 |
+
return r
|
161 |
+
|
162 |
+
return handler
|
163 |
+
|
164 |
+
|
165 |
+
# NB: enabling this is slow, don't do it in a hot loop. This is purely
|
166 |
+
# for debugging purposes.
|
167 |
+
@contextmanager
|
168 |
+
def enable_crossref_functionalize():
|
169 |
+
for op in all_py_loaded_overloads():
|
170 |
+
op._uncache_dispatch(torch._C.DispatchKey.Functionalize)
|
171 |
+
try:
|
172 |
+
with enable_python_dispatcher(), unittest.mock.patch(
|
173 |
+
"torch._dispatch.python.CROSSREF_FUNCTIONALIZE", True
|
174 |
+
):
|
175 |
+
yield
|
176 |
+
finally:
|
177 |
+
for op in all_py_loaded_overloads():
|
178 |
+
op._uncache_dispatch(torch._C.DispatchKey.Functionalize)
|
env-llmeval/lib/python3.10/site-packages/torch/include/THC/THCAtomics.cuh
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// TODO: Remove once torchvision has been updated to use the ATen header
|
3 |
+
#include <ATen/cuda/Atomic.cuh>
|
env-llmeval/lib/python3.10/site-packages/torch/include/THC/THCDeviceUtils.cuh
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// TODO: Remove this header
|
3 |
+
#include <ATen/cuda/DeviceUtils.cuh>
|
env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/CPUAllocator.h
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <cstring>
|
4 |
+
#include <mutex>
|
5 |
+
#include <unordered_map>
|
6 |
+
|
7 |
+
#include <c10/core/Allocator.h>
|
8 |
+
#include <c10/util/Flags.h>
|
9 |
+
|
10 |
+
// TODO: rename to c10
|
11 |
+
C10_DECLARE_bool(caffe2_report_cpu_memory_usage);
|
12 |
+
|
13 |
+
namespace c10 {
|
14 |
+
|
15 |
+
using MemoryDeleter = void (*)(void*);
|
16 |
+
|
17 |
+
// A helper function that is basically doing nothing.
|
18 |
+
C10_API void NoDelete(void*);
|
19 |
+
|
20 |
+
// A simple struct that is used to report C10's memory allocation,
|
21 |
+
// deallocation status and out-of-memory events to the profiler
|
22 |
+
class C10_API ProfiledCPUMemoryReporter {
|
23 |
+
public:
|
24 |
+
ProfiledCPUMemoryReporter() = default;
|
25 |
+
void New(void* ptr, size_t nbytes);
|
26 |
+
void OutOfMemory(size_t nbytes);
|
27 |
+
void Delete(void* ptr);
|
28 |
+
|
29 |
+
private:
|
30 |
+
std::mutex mutex_;
|
31 |
+
std::unordered_map<void*, size_t> size_table_;
|
32 |
+
size_t allocated_ = 0;
|
33 |
+
size_t log_cnt_ = 0;
|
34 |
+
};
|
35 |
+
|
36 |
+
C10_API ProfiledCPUMemoryReporter& profiledCPUMemoryReporter();
|
37 |
+
|
38 |
+
// Get the CPU Allocator.
|
39 |
+
C10_API at::Allocator* GetCPUAllocator();
|
40 |
+
// Sets the CPU allocator to the given allocator: the caller gives away the
|
41 |
+
// ownership of the pointer.
|
42 |
+
C10_API void SetCPUAllocator(at::Allocator* alloc, uint8_t priority = 0);
|
43 |
+
|
44 |
+
// Get the Default CPU Allocator
|
45 |
+
C10_API at::Allocator* GetDefaultCPUAllocator();
|
46 |
+
|
47 |
+
// Get the Default Mobile CPU Allocator
|
48 |
+
C10_API at::Allocator* GetDefaultMobileCPUAllocator();
|
49 |
+
|
50 |
+
// The CPUCachingAllocator is experimental and might disappear in the future.
|
51 |
+
// The only place that uses it is in StaticRuntime.
|
52 |
+
// Set the CPU Caching Allocator
|
53 |
+
C10_API void SetCPUCachingAllocator(Allocator* alloc, uint8_t priority = 0);
|
54 |
+
// Get the CPU Caching Allocator
|
55 |
+
C10_API Allocator* GetCPUCachingAllocator();
|
56 |
+
|
57 |
+
} // namespace c10
|
env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/CopyBytes.h
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <c10/core/Device.h>
|
4 |
+
|
5 |
+
namespace c10 {
|
6 |
+
|
7 |
+
using CopyBytesFunction = void (*)(
|
8 |
+
size_t nbytes,
|
9 |
+
const void* src,
|
10 |
+
Device src_device,
|
11 |
+
void* dst,
|
12 |
+
Device dst_device);
|
13 |
+
|
14 |
+
struct C10_API _CopyBytesFunctionRegisterer {
|
15 |
+
_CopyBytesFunctionRegisterer(
|
16 |
+
DeviceType from,
|
17 |
+
DeviceType to,
|
18 |
+
CopyBytesFunction func_sync,
|
19 |
+
CopyBytesFunction func_async = nullptr);
|
20 |
+
};
|
21 |
+
|
22 |
+
#define REGISTER_COPY_BYTES_FUNCTION(from, to, ...) \
|
23 |
+
namespace { \
|
24 |
+
static _CopyBytesFunctionRegisterer C10_ANONYMOUS_VARIABLE( \
|
25 |
+
g_copy_function)(from, to, __VA_ARGS__); \
|
26 |
+
}
|
27 |
+
|
28 |
+
/*
|
29 |
+
* WARNING: Implementations for this function are currently registered from
|
30 |
+
* ATen and caffe2, not yet from c10. Don't use this if not either ATen
|
31 |
+
* or caffe2 is present as well.
|
32 |
+
* We can't move them yet, because the CUDA implementations aren't unified yet
|
33 |
+
* between ATen and caffe2.
|
34 |
+
* We're planning to move the implementations into c10/backend/xxx
|
35 |
+
* to make c10 self contained again.
|
36 |
+
*/
|
37 |
+
C10_API void CopyBytes(
|
38 |
+
size_t nbytes,
|
39 |
+
const void* src,
|
40 |
+
Device src_device,
|
41 |
+
void* dst,
|
42 |
+
Device dst_device,
|
43 |
+
bool async);
|
44 |
+
} // namespace c10
|
env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/DeviceGuard.h
ADDED
@@ -0,0 +1,195 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <c10/core/impl/InlineDeviceGuard.h>
|
4 |
+
|
5 |
+
namespace c10 {
|
6 |
+
|
7 |
+
/// RAII guard that sets a certain default device in its constructor, and
|
8 |
+
/// changes it back to the device that was originally active upon destruction.
|
9 |
+
///
|
10 |
+
/// The device is always reset to the one that was active at the time of
|
11 |
+
/// construction of the guard. Even if you `set_device` after construction, the
|
12 |
+
/// destructor will still reset the device to the one that was active at
|
13 |
+
/// construction time.
|
14 |
+
///
|
15 |
+
/// This device guard does NOT have an uninitialized state; it is guaranteed
|
16 |
+
/// to reset a device on exit. If you are in a situation where you *might*
|
17 |
+
/// want to setup a guard (i.e., are looking for the moral equivalent
|
18 |
+
/// of optional<DeviceGuard>), see OptionalDeviceGuard.
|
19 |
+
class DeviceGuard {
|
20 |
+
public:
|
21 |
+
/// No default constructor; see Note [Omitted default constructor from RAII]
|
22 |
+
explicit DeviceGuard() = delete;
|
23 |
+
|
24 |
+
/// Set the current device to the passed Device.
|
25 |
+
explicit DeviceGuard(Device device) : guard_(device) {}
|
26 |
+
|
27 |
+
/// This constructor is for testing only.
|
28 |
+
explicit DeviceGuard(
|
29 |
+
Device device,
|
30 |
+
const impl::DeviceGuardImplInterface* impl)
|
31 |
+
: guard_(device, impl) {}
|
32 |
+
|
33 |
+
/// Copy is disallowed
|
34 |
+
DeviceGuard(const DeviceGuard&) = delete;
|
35 |
+
DeviceGuard& operator=(const DeviceGuard&) = delete;
|
36 |
+
|
37 |
+
/// Move is disallowed, as DeviceGuard does not have an uninitialized state,
|
38 |
+
/// which is required for moves on types with nontrivial destructors.
|
39 |
+
DeviceGuard(DeviceGuard&& other) = delete;
|
40 |
+
DeviceGuard& operator=(DeviceGuard&& other) = delete;
|
41 |
+
|
42 |
+
/// Sets the device to the given one. The specified device must be consistent
|
43 |
+
/// with the device type originally specified during guard construction.
|
44 |
+
///
|
45 |
+
/// TODO: The consistency check here is inconsistent with StreamGuard's
|
46 |
+
/// behavior with set_stream, where a stream on a different device than
|
47 |
+
/// the original one isn't an error; we just reset the stream and then
|
48 |
+
/// switch devices.
|
49 |
+
void reset_device(at::Device device) {
|
50 |
+
guard_.reset_device(device);
|
51 |
+
}
|
52 |
+
|
53 |
+
/// This method is for testing only.
|
54 |
+
void reset_device(
|
55 |
+
at::Device device,
|
56 |
+
const impl::DeviceGuardImplInterface* impl) {
|
57 |
+
guard_.reset_device(device, impl);
|
58 |
+
}
|
59 |
+
|
60 |
+
/// Sets the device index to the given one. The device type is inferred
|
61 |
+
/// from the original device type the guard was constructed with.
|
62 |
+
void set_index(DeviceIndex index) {
|
63 |
+
guard_.set_index(index);
|
64 |
+
}
|
65 |
+
|
66 |
+
/// Returns the device that was set at the time the guard was constructed.
|
67 |
+
Device original_device() const {
|
68 |
+
return guard_.original_device();
|
69 |
+
}
|
70 |
+
|
71 |
+
/// Returns the most recent device that was set using this device guard,
|
72 |
+
/// either from construction, or via set_device.
|
73 |
+
Device current_device() const {
|
74 |
+
return guard_.current_device();
|
75 |
+
}
|
76 |
+
|
77 |
+
private:
|
78 |
+
impl::InlineDeviceGuard<impl::VirtualGuardImpl> guard_;
|
79 |
+
};
|
80 |
+
|
81 |
+
/**
|
82 |
+
* A OptionalDeviceGuard is an RAII class that sets a device to some value on
|
83 |
+
* initialization, and resets the device to its original value on destruction.
|
84 |
+
* Morally, a OptionalDeviceGuard is equivalent to optional<DeviceGuard>, but
|
85 |
+
* with extra constructors and methods as appropriate.
|
86 |
+
*
|
87 |
+
* Besides its obvious use (optionally applying a DeviceGuard),
|
88 |
+
* OptionalDeviceGuard is often also used for the following idiom:
|
89 |
+
*
|
90 |
+
* OptionalDeviceGuard g;
|
91 |
+
* for (const auto& t : tensors) {
|
92 |
+
* g.set_device(t.device());
|
93 |
+
* do_something_with(t);
|
94 |
+
* }
|
95 |
+
*
|
96 |
+
* This usage is marginally more efficient than constructing a DeviceGuard every
|
97 |
+
* iteration of the for loop, as it avoids an unnecessary device reset.
|
98 |
+
*
|
99 |
+
* Unlike DeviceGuard, a OptionalDeviceGuard may be uninitialized. This occurs
|
100 |
+
* when you use the nullary constructor, or pass a nullopt to the constructor.
|
101 |
+
* Uninitialized OptionalDeviceGuards do *nothing*; they do not know what the
|
102 |
+
* original device was and they do not reset on destruction. This is why
|
103 |
+
* original_device() and current_device() return optional<Device> rather than
|
104 |
+
* Device (as they do in DeviceGuard), and also is why we didn't just
|
105 |
+
* provide OptionalDeviceGuard by default and hide DeviceGuard from users.
|
106 |
+
*
|
107 |
+
* The semantics of an OptionalDeviceGuard are exactly explained by thinking
|
108 |
+
* of it as an optional<DeviceGuard>. In particular, an initialized
|
109 |
+
* OptionalDeviceGuard doesn't restore device to its value at construction; it
|
110 |
+
* restores device to its value *at initialization*. So if you have the
|
111 |
+
* program:
|
112 |
+
*
|
113 |
+
* setDevice(1);
|
114 |
+
* OptionalDeviceGuard g;
|
115 |
+
* setDevice(2);
|
116 |
+
* g.reset_device(Device(DeviceType::CUDA, 3)); // initializes!
|
117 |
+
*
|
118 |
+
* On destruction, g will reset device to 2, rather than 1.
|
119 |
+
*
|
120 |
+
* An uninitialized OptionalDeviceGuard is distinct from a (initialized)
|
121 |
+
* DeviceGuard whose original_device_ and current_device_ match, since the
|
122 |
+
* DeviceGuard will still reset the device to original_device_.
|
123 |
+
*/
|
124 |
+
class OptionalDeviceGuard {
|
125 |
+
public:
|
126 |
+
/// Create an uninitialized guard. Set the guard later using reset_device.
|
127 |
+
explicit OptionalDeviceGuard() = default;
|
128 |
+
|
129 |
+
/// Initialize the guard, setting the current device to the passed Device.
|
130 |
+
explicit OptionalDeviceGuard(Device device) : guard_(device) {}
|
131 |
+
|
132 |
+
/// Initialize the guard if a Device is passed; otherwise leave the
|
133 |
+
/// guard uninitialized.
|
134 |
+
explicit OptionalDeviceGuard(optional<Device> device) : guard_(device) {}
|
135 |
+
|
136 |
+
/// Constructor for testing only.
|
137 |
+
explicit OptionalDeviceGuard(
|
138 |
+
Device device,
|
139 |
+
const impl::DeviceGuardImplInterface* impl)
|
140 |
+
: guard_(device, impl) {}
|
141 |
+
|
142 |
+
/// Copy is disallowed
|
143 |
+
OptionalDeviceGuard(const OptionalDeviceGuard&) = delete;
|
144 |
+
OptionalDeviceGuard& operator=(const OptionalDeviceGuard&) = delete;
|
145 |
+
|
146 |
+
/// Move is disallowed
|
147 |
+
/// See Note [Explicit initialization of optional fields]
|
148 |
+
/// and // Note [Move construction for RAII guards is tricky]
|
149 |
+
/// for rationale.
|
150 |
+
OptionalDeviceGuard(OptionalDeviceGuard&& other) = delete;
|
151 |
+
OptionalDeviceGuard& operator=(OptionalDeviceGuard&& other) = delete;
|
152 |
+
|
153 |
+
/// Sets the device to the given one. The specified device must be consistent
|
154 |
+
/// with the device type originally specified during guard construction.
|
155 |
+
void reset_device(at::Device device) {
|
156 |
+
guard_.reset_device(device);
|
157 |
+
}
|
158 |
+
|
159 |
+
/// For testing only
|
160 |
+
void reset_device(
|
161 |
+
at::Device device,
|
162 |
+
const impl::DeviceGuardImplInterface* impl) {
|
163 |
+
guard_.reset_device(device, impl);
|
164 |
+
}
|
165 |
+
|
166 |
+
/// Returns the device that was set at the time the guard was constructed.
|
167 |
+
optional<Device> original_device() const {
|
168 |
+
return guard_.original_device();
|
169 |
+
}
|
170 |
+
|
171 |
+
/// Returns the most recent device that was set using this device guard,
|
172 |
+
/// either from construction, or via reset_device.
|
173 |
+
optional<Device> current_device() const {
|
174 |
+
return guard_.current_device();
|
175 |
+
}
|
176 |
+
|
177 |
+
private:
|
178 |
+
impl::InlineOptionalDeviceGuard<impl::VirtualGuardImpl> guard_{};
|
179 |
+
};
|
180 |
+
|
181 |
+
// Note [Whither the DeviceGuard boilerplate]
|
182 |
+
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
183 |
+
// Design note: in principle, we could avoid these wrappers using:
|
184 |
+
//
|
185 |
+
// using DeviceGuard = impl::InlineDeviceGuard<impl::VirtualGuardImpl>;
|
186 |
+
// using OptionalDeviceGuard =
|
187 |
+
// impl::InlineOptionalDeviceGuard<impl::VirtualGuardImpl>;
|
188 |
+
//
|
189 |
+
// But the error messages are worse, and our users can't just look at the
|
190 |
+
// header file to find out what's going on. Furthermore, for specializations
|
191 |
+
// like CUDAStreamGuard, it can be profitable to replace some interfaces with
|
192 |
+
// refined types (e.g., return CUDAStream instead of Stream). So, we eat
|
193 |
+
// the boilerplate and write out the API explicitly.
|
194 |
+
|
195 |
+
} // namespace c10
|
env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/DeviceType.h
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// This is directly synchronized with caffe2/proto/caffe2.proto, but
|
4 |
+
// doesn't require me to figure out how to get Protobuf headers into
|
5 |
+
// ATen/core (which would require a lot more build system hacking.)
|
6 |
+
// If you modify me, keep me synchronized with that file.
|
7 |
+
|
8 |
+
#include <c10/macros/Export.h>
|
9 |
+
|
10 |
+
#include <functional>
|
11 |
+
#include <ostream>
|
12 |
+
|
13 |
+
namespace c10 {
|
14 |
+
|
15 |
+
// These contains all device types that also have a BackendComponent
|
16 |
+
// and therefore participate in per-backend functionality dispatch keys.
|
17 |
+
// This is most backends except PrivateUse2 and PrivateUse3
|
18 |
+
#define C10_FORALL_BACKEND_DEVICE_TYPES(_, extra) \
|
19 |
+
_(CPU, extra) \
|
20 |
+
_(CUDA, extra) \
|
21 |
+
_(HIP, extra) \
|
22 |
+
_(XLA, extra) \
|
23 |
+
_(MPS, extra) \
|
24 |
+
_(IPU, extra) \
|
25 |
+
_(XPU, extra) \
|
26 |
+
_(HPU, extra) \
|
27 |
+
_(VE, extra) \
|
28 |
+
_(Lazy, extra) \
|
29 |
+
_(Meta, extra) \
|
30 |
+
_(MTIA, extra) \
|
31 |
+
_(PrivateUse1, extra)
|
32 |
+
|
33 |
+
enum class DeviceType : int8_t {
|
34 |
+
CPU = 0,
|
35 |
+
CUDA = 1, // CUDA.
|
36 |
+
MKLDNN = 2, // Reserved for explicit MKLDNN
|
37 |
+
OPENGL = 3, // OpenGL
|
38 |
+
OPENCL = 4, // OpenCL
|
39 |
+
IDEEP = 5, // IDEEP.
|
40 |
+
HIP = 6, // AMD HIP
|
41 |
+
FPGA = 7, // FPGA
|
42 |
+
ORT = 8, // ONNX Runtime / Microsoft
|
43 |
+
XLA = 9, // XLA / TPU
|
44 |
+
Vulkan = 10, // Vulkan
|
45 |
+
Metal = 11, // Metal
|
46 |
+
XPU = 12, // XPU
|
47 |
+
MPS = 13, // MPS
|
48 |
+
Meta = 14, // Meta (tensors with no data)
|
49 |
+
HPU = 15, // HPU / HABANA
|
50 |
+
VE = 16, // SX-Aurora / NEC
|
51 |
+
Lazy = 17, // Lazy Tensors
|
52 |
+
IPU = 18, // Graphcore IPU
|
53 |
+
MTIA = 19, // Meta training and inference devices
|
54 |
+
PrivateUse1 = 20, // PrivateUse1 device
|
55 |
+
// NB: If you add more devices:
|
56 |
+
// - Change the implementations of DeviceTypeName and isValidDeviceType
|
57 |
+
// in DeviceType.cpp
|
58 |
+
// - Change the number below
|
59 |
+
COMPILE_TIME_MAX_DEVICE_TYPES = 21,
|
60 |
+
};
|
61 |
+
|
62 |
+
constexpr DeviceType kCPU = DeviceType::CPU;
|
63 |
+
constexpr DeviceType kCUDA = DeviceType::CUDA;
|
64 |
+
constexpr DeviceType kHIP = DeviceType::HIP;
|
65 |
+
constexpr DeviceType kFPGA = DeviceType::FPGA;
|
66 |
+
constexpr DeviceType kORT = DeviceType::ORT;
|
67 |
+
constexpr DeviceType kXLA = DeviceType::XLA;
|
68 |
+
constexpr DeviceType kMPS = DeviceType::MPS;
|
69 |
+
constexpr DeviceType kMeta = DeviceType::Meta;
|
70 |
+
constexpr DeviceType kVulkan = DeviceType::Vulkan;
|
71 |
+
constexpr DeviceType kMetal = DeviceType::Metal;
|
72 |
+
constexpr DeviceType kXPU = DeviceType::XPU;
|
73 |
+
constexpr DeviceType kHPU = DeviceType::HPU;
|
74 |
+
constexpr DeviceType kVE = DeviceType::VE;
|
75 |
+
constexpr DeviceType kLazy = DeviceType::Lazy;
|
76 |
+
constexpr DeviceType kIPU = DeviceType::IPU;
|
77 |
+
constexpr DeviceType kMTIA = DeviceType::MTIA;
|
78 |
+
constexpr DeviceType kPrivateUse1 = DeviceType::PrivateUse1;
|
79 |
+
|
80 |
+
// define explicit int constant
|
81 |
+
constexpr int COMPILE_TIME_MAX_DEVICE_TYPES =
|
82 |
+
static_cast<int>(DeviceType::COMPILE_TIME_MAX_DEVICE_TYPES);
|
83 |
+
|
84 |
+
static_assert(
|
85 |
+
COMPILE_TIME_MAX_DEVICE_TYPES <= 21,
|
86 |
+
"Hey! You seem to be adding a lot of new DeviceTypes. The intent was "
|
87 |
+
"for this constant to reflect the actual number of DeviceTypes we support "
|
88 |
+
"in PyTorch; it's important that this number is not too large as we "
|
89 |
+
"use this to allocate stack arrays in some places in our code. If you "
|
90 |
+
"are indeed just adding the 20th device type, feel free to change "
|
91 |
+
"the check to 32; but if you are adding some sort of extensible device "
|
92 |
+
"types registration, please be aware that you are affecting code that "
|
93 |
+
"this number is small. Try auditing uses of this constant.");
|
94 |
+
|
95 |
+
C10_API std::string DeviceTypeName(DeviceType d, bool lower_case = false);
|
96 |
+
|
97 |
+
C10_API bool isValidDeviceType(DeviceType d);
|
98 |
+
|
99 |
+
C10_API std::ostream& operator<<(std::ostream& stream, DeviceType type);
|
100 |
+
|
101 |
+
C10_API void register_privateuse1_backend(const std::string& backend_name);
|
102 |
+
C10_API std::string get_privateuse1_backend(bool lower_case = true);
|
103 |
+
|
104 |
+
} // namespace c10
|
105 |
+
|
106 |
+
namespace std {
|
107 |
+
template <>
|
108 |
+
struct hash<c10::DeviceType> {
|
109 |
+
std::size_t operator()(c10::DeviceType k) const {
|
110 |
+
return std::hash<int>()(static_cast<int>(k));
|
111 |
+
}
|
112 |
+
};
|
113 |
+
} // namespace std
|
114 |
+
|
115 |
+
namespace torch {
|
116 |
+
using c10::DeviceType;
|
117 |
+
}
|
env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/Event.h
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <c10/core/impl/InlineEvent.h>
|
4 |
+
#include <c10/core/impl/VirtualGuardImpl.h>
|
5 |
+
|
6 |
+
namespace c10 {
|
7 |
+
|
8 |
+
/**
|
9 |
+
* A backend-generic movable, not copyable, not thread-safe event.
|
10 |
+
*
|
11 |
+
* The design of this event follows that of CUDA and HIP events. These events
|
12 |
+
* are recorded and waited on by streams and can be rerecorded to,
|
13 |
+
* each rerecording essentially creating a new version of the event.
|
14 |
+
* For example, if (in CPU time), stream X is asked to record E,
|
15 |
+
* stream Y waits on E, and stream X is asked to record E again, then Y will
|
16 |
+
* wait for X to finish the first call to record and not the second, because
|
17 |
+
* it's waiting on the first version of event E, not the second.
|
18 |
+
* Querying an event only returns the status of its most recent version.
|
19 |
+
*
|
20 |
+
* Backend-generic events are implemented by this class and
|
21 |
+
* impl::InlineEvent. In addition to these events there are also
|
22 |
+
* some backend-specific events, like ATen's CUDAEvent. Each of these
|
23 |
+
* classes has its own use.
|
24 |
+
*
|
25 |
+
* impl::InlineEvent<...> or a backend-specific event should be
|
26 |
+
* preferred when the backend is known at compile time and known to
|
27 |
+
* be compiled. Backend-specific events may have additional functionality.
|
28 |
+
*
|
29 |
+
* This Event should be used if a particular backend may not be available,
|
30 |
+
* or the backend required is not known at compile time.
|
31 |
+
*
|
32 |
+
* These generic events are built on top of DeviceGuardImpls, analogous
|
33 |
+
* to DeviceGuard and InlineDeviceGuard. The name "DeviceGuardImpls,"
|
34 |
+
* is no longer entirely accurate, as these classes implement the
|
35 |
+
* backend-specific logic for a generic backend interface.
|
36 |
+
*
|
37 |
+
* See DeviceGuardImplInterface.h for a list of all supported flags.
|
38 |
+
*/
|
39 |
+
|
40 |
+
struct Event final {
|
41 |
+
// Constructors
|
42 |
+
Event() = delete;
|
43 |
+
Event(
|
44 |
+
const DeviceType _device_type,
|
45 |
+
const EventFlag _flag = EventFlag::PYTORCH_DEFAULT)
|
46 |
+
: impl_{_device_type, _flag} {}
|
47 |
+
|
48 |
+
// Copy constructor and copy assignment operator (deleted)
|
49 |
+
Event(const Event&) = delete;
|
50 |
+
Event& operator=(const Event&) = delete;
|
51 |
+
|
52 |
+
// Move constructor and move assignment operator
|
53 |
+
Event(Event&&) noexcept = default;
|
54 |
+
Event& operator=(Event&&) noexcept = default;
|
55 |
+
|
56 |
+
// Destructor
|
57 |
+
~Event() = default;
|
58 |
+
|
59 |
+
// Getters
|
60 |
+
Device device() const noexcept {
|
61 |
+
return Device(device_type(), device_index());
|
62 |
+
}
|
63 |
+
DeviceType device_type() const noexcept {
|
64 |
+
return impl_.device_type();
|
65 |
+
}
|
66 |
+
DeviceIndex device_index() const noexcept {
|
67 |
+
return impl_.device_index();
|
68 |
+
}
|
69 |
+
EventFlag flag() const noexcept {
|
70 |
+
return impl_.flag();
|
71 |
+
}
|
72 |
+
bool was_marked_for_recording() const noexcept {
|
73 |
+
return impl_.was_marked_for_recording();
|
74 |
+
}
|
75 |
+
|
76 |
+
/**
|
77 |
+
* Calls record() if and only if record() has never been called for this
|
78 |
+
* event. Note: because Event is not thread-safe recordOnce() may call
|
79 |
+
* record() multiple times if called from multiple threads.
|
80 |
+
*/
|
81 |
+
void recordOnce(const Stream& stream) {
|
82 |
+
impl_.recordOnce(stream);
|
83 |
+
}
|
84 |
+
|
85 |
+
/**
|
86 |
+
* Increments the event's version and enqueues a job with this version
|
87 |
+
* in the stream's work queue. When the stream process that job
|
88 |
+
* it notifies all streams waiting on / blocked by that version of the
|
89 |
+
* event to continue and marks that version as recorded.
|
90 |
+
* */
|
91 |
+
void record(const Stream& stream) {
|
92 |
+
impl_.record(stream);
|
93 |
+
}
|
94 |
+
|
95 |
+
/**
|
96 |
+
* Does nothing if the event has not been scheduled to be recorded.
|
97 |
+
* If the event was previously enqueued to be recorded, a command
|
98 |
+
* to wait for the version of the event that exists at the time of this call
|
99 |
+
* is inserted in the stream's work queue.
|
100 |
+
* When the stream reaches this command it will stop processing
|
101 |
+
* additional commands until that version of the event is marked as recorded.
|
102 |
+
*/
|
103 |
+
void block(const Stream& stream) const {
|
104 |
+
impl_.block(stream);
|
105 |
+
}
|
106 |
+
|
107 |
+
/**
|
108 |
+
* Returns true if (and only if)
|
109 |
+
* (1) the event has never been scheduled to be recorded
|
110 |
+
* (2) the current version is marked as recorded.
|
111 |
+
* Returns false otherwise.
|
112 |
+
*/
|
113 |
+
bool query() const {
|
114 |
+
return impl_.query();
|
115 |
+
}
|
116 |
+
|
117 |
+
private:
|
118 |
+
impl::InlineEvent<impl::VirtualGuardImpl> impl_;
|
119 |
+
};
|
120 |
+
|
121 |
+
} // namespace c10
|
env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/InferenceMode.h
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <c10/core/AutogradState.h>
|
4 |
+
#include <c10/core/impl/LocalDispatchKeySet.h>
|
5 |
+
#include <c10/macros/Export.h>
|
6 |
+
|
7 |
+
namespace c10 {
|
8 |
+
|
9 |
+
// A RAII, thread local (!) guard that enables or disables inference mode upon
|
10 |
+
// construction, and sets it back to the original value upon destruction.
|
11 |
+
struct C10_API InferenceMode {
|
12 |
+
// Note [Expected TLS state in InferenceMode]:
|
13 |
+
// InferenceMode: ADInplaceOrView not in
|
14 |
+
// raw_local_dispatch_key_set.included(),
|
15 |
+
// Autograd in raw_local_dispatch_key_set.excluded()
|
16 |
+
// GradMode is disabled.
|
17 |
+
// NormalMode: ADInplaceOrView in raw_local_dispatch_key_set.included(),
|
18 |
+
// Autograd not in raw_local_dispatch_key_set.excluded()
|
19 |
+
// GradMode is enabled by default unless toggled manually
|
20 |
+
// through other APIs, e.g. NoGradGuard.
|
21 |
+
//
|
22 |
+
// Invariant:
|
23 |
+
// - ADInplaceOrView is never in the excluded set
|
24 |
+
// - Autograd is never in the included set
|
25 |
+
// - Setting InferenceMode will set GradMode accordingly, but not vice versa.
|
26 |
+
//
|
27 |
+
// 1. Why do we put ADInplaceOrView in included set outside InferenceMode?
|
28 |
+
//
|
29 |
+
// Inplace update to inference tensor outside InferenceMode is not
|
30 |
+
// allowed. See Note [Inplace update inference tensor] for more details.
|
31 |
+
// Without going through ADInplaceOrView kernel, we cannot throw error
|
32 |
+
// for `inference_tensor.add_(1)` case.
|
33 |
+
//
|
34 |
+
// 2. Why not put ADInplaceOrView in the excluded set inside InferenceMode?
|
35 |
+
//
|
36 |
+
// For example:
|
37 |
+
// torch::Tensor a = torch::ones({1, 2, 3}).set_requires_grad(true);
|
38 |
+
// torch::Tensor k = a + 2;
|
39 |
+
// {
|
40 |
+
// c10::InferenceMode guard(true);
|
41 |
+
// k.add_(2);
|
42 |
+
// }
|
43 |
+
// `k.add_(2)` still need to go through ADInplaceOrView kernel so that it's
|
44 |
+
// prepared for future autograd.
|
45 |
+
//
|
46 |
+
// 3. Why does setting InferenceMode also set GradMode?
|
47 |
+
//
|
48 |
+
// This is required since InferenceMode is a faster and more restrictive
|
49 |
+
// version of NoGradGuard. All runtime checks using GradMode::is_enabled()
|
50 |
+
// are applicable to InferenceMode as well, e.g.
|
51 |
+
// `tensorTypeInCurrentExecutionContext` in interpreter.cpp.
|
52 |
+
InferenceMode(bool enabled = true)
|
53 |
+
: prev_mode(AutogradState::get_tls_state()),
|
54 |
+
prev_keyset(c10::impl::tls_local_dispatch_key_set()) {
|
55 |
+
// Enabling inference mode means disabling grad modes
|
56 |
+
// And disabling inference mode means enabling grad modes
|
57 |
+
AutogradState::set_tls_state(AutogradState(
|
58 |
+
/* grad_mode */ !enabled,
|
59 |
+
/* inference_mode */ enabled,
|
60 |
+
/* fw_grad_mode */ !enabled,
|
61 |
+
/* multithreading_enabled*/ !enabled));
|
62 |
+
DispatchKeySet included = enabled
|
63 |
+
? prev_keyset.included_.remove(c10::DispatchKey::ADInplaceOrView)
|
64 |
+
: prev_keyset.included_.add(c10::DispatchKey::ADInplaceOrView);
|
65 |
+
DispatchKeySet excluded = enabled
|
66 |
+
? (prev_keyset.excluded_ | c10::autograd_dispatch_keyset)
|
67 |
+
: (prev_keyset.excluded_ - c10::autograd_dispatch_keyset);
|
68 |
+
c10::impl::PODLocalDispatchKeySet cur_keyset{};
|
69 |
+
cur_keyset.set_included(included);
|
70 |
+
cur_keyset.set_excluded(excluded);
|
71 |
+
c10::impl::_force_tls_local_dispatch_key_set(cur_keyset);
|
72 |
+
}
|
73 |
+
|
74 |
+
~InferenceMode() {
|
75 |
+
AutogradState::set_tls_state(prev_mode);
|
76 |
+
c10::impl::_force_tls_local_dispatch_key_set(prev_keyset);
|
77 |
+
}
|
78 |
+
static bool is_enabled();
|
79 |
+
|
80 |
+
private:
|
81 |
+
AutogradState prev_mode;
|
82 |
+
c10::impl::LocalDispatchKeySet prev_keyset;
|
83 |
+
};
|
84 |
+
} // namespace c10
|
env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/PyHandleCache.h
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <c10/core/impl/PyInterpreter.h>
|
4 |
+
#include <c10/macros/Macros.h>
|
5 |
+
#include <c10/util/python_stub.h>
|
6 |
+
|
7 |
+
#include <atomic>
|
8 |
+
|
9 |
+
namespace c10 {
|
10 |
+
|
11 |
+
// A PyHandleCache represents a cached pointer from a C++ object to
|
12 |
+
// a Python object that represents that object analogously in Python.
|
13 |
+
// Upon a cache hit, the relevant object can be retrieved after a test
|
14 |
+
// and then a memory load. Two conditions must hold to be able to use this
|
15 |
+
// class:
|
16 |
+
//
|
17 |
+
// - This must truly be a cache; e.g., the caller must be able to produce
|
18 |
+
// the object some other way if the cache hit misses.
|
19 |
+
//
|
20 |
+
// - This must truly be a handle; e.g., the Python object referenced by
|
21 |
+
// this class must have static lifetime. This means we don't have to
|
22 |
+
// maintain strong ownership or deallocate the object when the C++ object
|
23 |
+
// dies. Static lifetime is a good idea in conjunction with the cache,
|
24 |
+
// since if you are producing a fresh object on miss you won't be
|
25 |
+
// maintaining object identity. If you need bidirectional ownership,
|
26 |
+
// you will want to factor out the pattern in TensorImpl with
|
27 |
+
// resurrection.
|
28 |
+
//
|
29 |
+
// This cache is expected to not improve perf under torchdeploy, as one
|
30 |
+
// interpreter will fill up the cache, and all the interpreters will be
|
31 |
+
// unable to use the slot. A potential improvement is to have multiple
|
32 |
+
// slots (one per interpreter), which will work in deployment scenarios
|
33 |
+
// where there a stable, fixed number of interpreters. You can also store
|
34 |
+
// the relevant state in the Python library, rather than in the non-Python
|
35 |
+
// library (although in many cases, this is not convenient, as there may
|
36 |
+
// not be a way to conveniently index based on the object.)
|
37 |
+
class PyHandleCache {
|
38 |
+
public:
|
39 |
+
PyHandleCache() : pyinterpreter_(nullptr), data_(nullptr) {}
|
40 |
+
|
41 |
+
// Attempt to fetch the pointer from the cache, if the PyInterpreter
|
42 |
+
// matches. If it doesn't exist, or the cache entry is not valid,
|
43 |
+
// use slow_accessor to get the real pointer value and return that
|
44 |
+
// (possibly writing it to the cache, if the cache entry is
|
45 |
+
// available.)
|
46 |
+
template <typename F>
|
47 |
+
PyObject* ptr_or(impl::PyInterpreter* self_interpreter, F slow_accessor)
|
48 |
+
const {
|
49 |
+
// Note [Memory ordering on Python interpreter tag]
|
50 |
+
impl::PyInterpreter* interpreter =
|
51 |
+
pyinterpreter_.load(std::memory_order_acquire);
|
52 |
+
if (C10_LIKELY(interpreter == self_interpreter)) {
|
53 |
+
return data_;
|
54 |
+
} else if (interpreter == nullptr) {
|
55 |
+
auto* r = slow_accessor();
|
56 |
+
impl::PyInterpreter* expected = nullptr;
|
57 |
+
// attempt to claim this cache entry with the specified interpreter tag
|
58 |
+
if (pyinterpreter_.compare_exchange_strong(
|
59 |
+
expected, self_interpreter, std::memory_order_acq_rel)) {
|
60 |
+
data_ = r;
|
61 |
+
}
|
62 |
+
// This shouldn't be possible, as you should be GIL protected
|
63 |
+
TORCH_INTERNAL_ASSERT(expected != self_interpreter);
|
64 |
+
return r;
|
65 |
+
} else {
|
66 |
+
return slow_accessor();
|
67 |
+
}
|
68 |
+
}
|
69 |
+
|
70 |
+
private:
|
71 |
+
mutable std::atomic<impl::PyInterpreter*> pyinterpreter_;
|
72 |
+
mutable PyObject* data_;
|
73 |
+
};
|
74 |
+
|
75 |
+
} // namespace c10
|
env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/QEngine.h
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <c10/core/DeviceType.h>
|
4 |
+
#include <c10/core/DispatchKey.h>
|
5 |
+
#include <c10/util/Exception.h>
|
6 |
+
|
7 |
+
namespace c10 {
|
8 |
+
|
9 |
+
/**
|
10 |
+
* QEngine is an enum that is used to select the engine to run quantized ops.
|
11 |
+
* Keep this enum in sync with get_qengine_id() in
|
12 |
+
* torch/backends/quantized/__init__.py
|
13 |
+
*/
|
14 |
+
enum class QEngine : uint8_t {
|
15 |
+
NoQEngine = 0,
|
16 |
+
FBGEMM = 1,
|
17 |
+
QNNPACK = 2,
|
18 |
+
ONEDNN = 3,
|
19 |
+
X86 = 4,
|
20 |
+
};
|
21 |
+
|
22 |
+
constexpr auto kNoQEngine = QEngine::NoQEngine;
|
23 |
+
constexpr auto kFBGEMM = QEngine::FBGEMM;
|
24 |
+
constexpr auto kQNNPACK = QEngine::QNNPACK;
|
25 |
+
constexpr auto kONEDNN = QEngine::ONEDNN;
|
26 |
+
constexpr auto kX86 = QEngine::X86;
|
27 |
+
|
28 |
+
inline std::string toString(QEngine qengine) {
|
29 |
+
switch (qengine) {
|
30 |
+
case kNoQEngine:
|
31 |
+
return "NoQEngine";
|
32 |
+
case kFBGEMM:
|
33 |
+
return "FBGEMM";
|
34 |
+
case kQNNPACK:
|
35 |
+
return "QNNPACK";
|
36 |
+
case kONEDNN:
|
37 |
+
return "ONEDNN";
|
38 |
+
case kX86:
|
39 |
+
return "X86";
|
40 |
+
default:
|
41 |
+
TORCH_CHECK(
|
42 |
+
false, "Unrecognized Quantized Engine: ", static_cast<int>(qengine));
|
43 |
+
}
|
44 |
+
}
|
45 |
+
|
46 |
+
} // namespace c10
|
env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/RefcountedDeleter.h
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <c10/core/Storage.h>
|
4 |
+
#include <c10/util/UniqueVoidPtr.h>
|
5 |
+
|
6 |
+
#include <atomic>
|
7 |
+
#include <memory>
|
8 |
+
|
9 |
+
namespace c10 {
|
10 |
+
|
11 |
+
// A RefcountedDeleterContext object is used as the `ctx` argument for DataPtr
|
12 |
+
// to implement a shared DataPtr. Normally, a DataPtr is unique, but we use
|
13 |
+
// this custom context and the `refcounted_deleter` function below to make the
|
14 |
+
// DataPtr act like a non-unique DataPtr. This context object holds onto an
|
15 |
+
// inner context and deleter function which handle the actual deletion of the
|
16 |
+
// data when the refcount reaches 0.
|
17 |
+
//
|
18 |
+
// This shared DataPtr feature is only used when storages are shared between
|
19 |
+
// multiple Python interpreters in MultiPy. Before storages had PyObject
|
20 |
+
// preservation, interpreters could just share the same StorageImpl instance.
|
21 |
+
// But now a StorageImpl can only be associated with one interpreter in order
|
22 |
+
// to properly manage a zombie PyObject. So we share storages across Python
|
23 |
+
// interpreters by creating a different StorageImpl instance for each one, but
|
24 |
+
// they all point to the same data.
|
25 |
+
struct C10_API RefcountedDeleterContext {
|
26 |
+
RefcountedDeleterContext(void* other_ctx, c10::DeleterFnPtr other_deleter)
|
27 |
+
: other_ctx(other_ctx, other_deleter), refcount(1) {}
|
28 |
+
|
29 |
+
std::unique_ptr<void, c10::DeleterFnPtr> other_ctx;
|
30 |
+
std::atomic_int refcount;
|
31 |
+
};
|
32 |
+
|
33 |
+
// `refcounted_deleter` is used as the `ctx_deleter` for DataPtr to implement
|
34 |
+
// a shared DataPtr.
|
35 |
+
//
|
36 |
+
// Warning: This should only be called on a pointer to
|
37 |
+
// a RefcountedDeleterContext that was allocated on the heap with `new`,
|
38 |
+
// because when the refcount reaches 0, the context is deleted with `delete`
|
39 |
+
C10_API void refcounted_deleter(void* ctx_);
|
40 |
+
|
41 |
+
// If the storage's DataPtr does not use `refcounted_deleter`, replace it with
|
42 |
+
// a DataPtr that does, so it can be shared between multiple StorageImpls
|
43 |
+
C10_API void maybeApplyRefcountedDeleter(const c10::Storage& storage);
|
44 |
+
|
45 |
+
// Create a new StorageImpl that points to the same data. If the original
|
46 |
+
// StorageImpl's DataPtr does not use `refcounted_deleter`, it will be replaced
|
47 |
+
// with one that does
|
48 |
+
C10_API c10::Storage newStorageImplFromRefcountedDataPtr(
|
49 |
+
const c10::Storage& storage);
|
50 |
+
|
51 |
+
} // namespace c10
|
env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/SafePyObject.h
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <c10/core/impl/PyInterpreter.h>
|
4 |
+
#include <c10/macros/Export.h>
|
5 |
+
#include <c10/util/python_stub.h>
|
6 |
+
|
7 |
+
namespace c10 {
|
8 |
+
|
9 |
+
// This is an safe owning holder for a PyObject, akin to pybind11's
|
10 |
+
// py::object, with two major differences:
|
11 |
+
//
|
12 |
+
// - It is in c10/core; i.e., you can use this type in contexts where
|
13 |
+
// you do not have a libpython dependency
|
14 |
+
//
|
15 |
+
// - It is multi-interpreter safe (ala torchdeploy); when you fetch
|
16 |
+
// the underlying PyObject* you are required to specify what the current
|
17 |
+
// interpreter context is and we will check that you match it.
|
18 |
+
//
|
19 |
+
// It is INVALID to store a reference to a Tensor object in this way;
|
20 |
+
// you should just use TensorImpl directly in that case!
|
21 |
+
struct C10_API SafePyObject {
|
22 |
+
// Steals a reference to data
|
23 |
+
SafePyObject(PyObject* data, c10::impl::PyInterpreter* pyinterpreter)
|
24 |
+
: data_(data), pyinterpreter_(pyinterpreter) {}
|
25 |
+
SafePyObject(SafePyObject&& other) noexcept
|
26 |
+
: data_(std::exchange(other.data_, nullptr)),
|
27 |
+
pyinterpreter_(other.pyinterpreter_) {}
|
28 |
+
|
29 |
+
// In principle this could be copyable if we add an incref to PyInterpreter
|
30 |
+
// but for now it's easier to just disallow it.
|
31 |
+
SafePyObject(SafePyObject const&) = delete;
|
32 |
+
SafePyObject& operator=(SafePyObject const&) = delete;
|
33 |
+
|
34 |
+
~SafePyObject() {
|
35 |
+
if (data_ != nullptr) {
|
36 |
+
(*pyinterpreter_)->decref(data_, /*has_pyobj_slot*/ false);
|
37 |
+
}
|
38 |
+
}
|
39 |
+
|
40 |
+
c10::impl::PyInterpreter& pyinterpreter() const {
|
41 |
+
return *pyinterpreter_;
|
42 |
+
}
|
43 |
+
PyObject* ptr(const c10::impl::PyInterpreter*) const;
|
44 |
+
|
45 |
+
// stop tracking the current object, and return it
|
46 |
+
PyObject* release() {
|
47 |
+
auto rv = data_;
|
48 |
+
data_ = nullptr;
|
49 |
+
return rv;
|
50 |
+
}
|
51 |
+
|
52 |
+
private:
|
53 |
+
PyObject* data_;
|
54 |
+
c10::impl::PyInterpreter* pyinterpreter_;
|
55 |
+
};
|
56 |
+
|
57 |
+
// Like SafePyObject, but non-owning. Good for references to global PyObjects
|
58 |
+
// that will be leaked on interpreter exit. You get a copy constructor/assign
|
59 |
+
// this way.
|
60 |
+
struct C10_API SafePyHandle {
|
61 |
+
SafePyHandle() : data_(nullptr), pyinterpreter_(nullptr) {}
|
62 |
+
SafePyHandle(PyObject* data, c10::impl::PyInterpreter* pyinterpreter)
|
63 |
+
: data_(data), pyinterpreter_(pyinterpreter) {}
|
64 |
+
|
65 |
+
c10::impl::PyInterpreter& pyinterpreter() const {
|
66 |
+
return *pyinterpreter_;
|
67 |
+
}
|
68 |
+
PyObject* ptr(const c10::impl::PyInterpreter*) const;
|
69 |
+
void reset() {
|
70 |
+
data_ = nullptr;
|
71 |
+
pyinterpreter_ = nullptr;
|
72 |
+
}
|
73 |
+
operator bool() {
|
74 |
+
return data_;
|
75 |
+
}
|
76 |
+
|
77 |
+
private:
|
78 |
+
PyObject* data_;
|
79 |
+
c10::impl::PyInterpreter* pyinterpreter_;
|
80 |
+
};
|
81 |
+
|
82 |
+
} // namespace c10
|
env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/ScalarType.h
ADDED
@@ -0,0 +1,672 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <c10/util/BFloat16.h>
|
4 |
+
#include <c10/util/Deprecated.h>
|
5 |
+
#include <c10/util/Exception.h>
|
6 |
+
#include <c10/util/Float8_e4m3fn.h>
|
7 |
+
#include <c10/util/Float8_e4m3fnuz.h>
|
8 |
+
#include <c10/util/Float8_e5m2.h>
|
9 |
+
#include <c10/util/Float8_e5m2fnuz.h>
|
10 |
+
#include <c10/util/Half.h>
|
11 |
+
#include <c10/util/bits.h>
|
12 |
+
#include <c10/util/complex.h>
|
13 |
+
#include <c10/util/qint32.h>
|
14 |
+
#include <c10/util/qint8.h>
|
15 |
+
#include <c10/util/quint2x4.h>
|
16 |
+
#include <c10/util/quint4x2.h>
|
17 |
+
#include <c10/util/quint8.h>
|
18 |
+
|
19 |
+
#include <array>
|
20 |
+
#include <complex>
|
21 |
+
#include <cstdint>
|
22 |
+
#include <ostream>
|
23 |
+
|
24 |
+
namespace c10 {
|
25 |
+
|
26 |
+
// For the macros below:
|
27 |
+
// NB: If you want to macro some code for all non-QInt scalar types (i.e. types
|
28 |
+
// with complete information, you probably want one of the
|
29 |
+
// AT_FORALL_SCALAR_TYPES / AT_FORALL_SCALAR_TYPES_AND
|
30 |
+
// macros below, which are designed to behave similarly to the Dispatch macros
|
31 |
+
// with the same name.
|
32 |
+
|
33 |
+
// NB: Order matters for this macro; it is relied upon in
|
34 |
+
// _promoteTypesLookup and the serialization format.
|
35 |
+
#define AT_FORALL_SCALAR_TYPES_WITH_COMPLEX_AND_QINTS(_) \
|
36 |
+
_(uint8_t, Byte) /* 0 */ \
|
37 |
+
_(int8_t, Char) /* 1 */ \
|
38 |
+
_(int16_t, Short) /* 2 */ \
|
39 |
+
_(int, Int) /* 3 */ \
|
40 |
+
_(int64_t, Long) /* 4 */ \
|
41 |
+
_(at::Half, Half) /* 5 */ \
|
42 |
+
_(float, Float) /* 6 */ \
|
43 |
+
_(double, Double) /* 7 */ \
|
44 |
+
_(c10::complex<c10::Half>, ComplexHalf) /* 8 */ \
|
45 |
+
_(c10::complex<float>, ComplexFloat) /* 9 */ \
|
46 |
+
_(c10::complex<double>, ComplexDouble) /* 10 */ \
|
47 |
+
_(bool, Bool) /* 11 */ \
|
48 |
+
_(c10::qint8, QInt8) /* 12 */ \
|
49 |
+
_(c10::quint8, QUInt8) /* 13 */ \
|
50 |
+
_(c10::qint32, QInt32) /* 14 */ \
|
51 |
+
_(at::BFloat16, BFloat16) /* 15 */ \
|
52 |
+
_(c10::quint4x2, QUInt4x2) /* 16 */ \
|
53 |
+
_(c10::quint2x4, QUInt2x4) /* 17 */ \
|
54 |
+
_(c10::bits1x8, Bits1x8) /* 18 */ \
|
55 |
+
_(c10::bits2x4, Bits2x4) /* 19 */ \
|
56 |
+
_(c10::bits4x2, Bits4x2) /* 20 */ \
|
57 |
+
_(c10::bits8, Bits8) /* 21 */ \
|
58 |
+
_(c10::bits16, Bits16) /* 22 */ \
|
59 |
+
_(c10::Float8_e5m2, Float8_e5m2) /* 23 */ \
|
60 |
+
_(c10::Float8_e4m3fn, Float8_e4m3fn) /* 24 */ \
|
61 |
+
_(c10::Float8_e5m2fnuz, Float8_e5m2fnuz) /* 25 */ \
|
62 |
+
_(c10::Float8_e4m3fnuz, Float8_e4m3fnuz) /* 26 */
|
63 |
+
|
64 |
+
// If you want to support ComplexHalf for real, add ComplexHalf
|
65 |
+
// into this macro (and change the name). But beware: convert()
|
66 |
+
// doesn't work for all the conversions you need...
|
67 |
+
#define AT_FORALL_SCALAR_TYPES_WITH_COMPLEX_EXCEPT_COMPLEX_HALF_F8NZ(_) \
|
68 |
+
_(uint8_t, Byte) \
|
69 |
+
_(int8_t, Char) \
|
70 |
+
_(int16_t, Short) \
|
71 |
+
_(int, Int) \
|
72 |
+
_(int64_t, Long) \
|
73 |
+
_(at::Half, Half) \
|
74 |
+
_(float, Float) \
|
75 |
+
_(double, Double) \
|
76 |
+
_(c10::complex<float>, ComplexFloat) \
|
77 |
+
_(c10::complex<double>, ComplexDouble) \
|
78 |
+
_(bool, Bool) \
|
79 |
+
_(at::BFloat16, BFloat16) \
|
80 |
+
_(at::Float8_e5m2, Float8_e5m2) \
|
81 |
+
_(at::Float8_e4m3fn, Float8_e4m3fn)
|
82 |
+
|
83 |
+
#define AT_FORALL_SCALAR_TYPES_WITH_COMPLEX(_) \
|
84 |
+
_(uint8_t, Byte) \
|
85 |
+
_(int8_t, Char) \
|
86 |
+
_(int16_t, Short) \
|
87 |
+
_(int, Int) \
|
88 |
+
_(int64_t, Long) \
|
89 |
+
_(at::Half, Half) \
|
90 |
+
_(float, Float) \
|
91 |
+
_(double, Double) \
|
92 |
+
_(c10::complex<c10::Half>, ComplexHalf) \
|
93 |
+
_(c10::complex<float>, ComplexFloat) \
|
94 |
+
_(c10::complex<double>, ComplexDouble) \
|
95 |
+
_(bool, Bool) \
|
96 |
+
_(at::BFloat16, BFloat16) \
|
97 |
+
_(at::Float8_e5m2, Float8_e5m2) \
|
98 |
+
_(at::Float8_e4m3fn, Float8_e4m3fn) \
|
99 |
+
_(at::Float8_e5m2fnuz, Float8_e5m2fnuz) \
|
100 |
+
_(at::Float8_e4m3fnuz, Float8_e4m3fnuz)
|
101 |
+
|
102 |
+
enum class ScalarType : int8_t {
|
103 |
+
#define DEFINE_ST_ENUM_VAL_(_1, n) n,
|
104 |
+
AT_FORALL_SCALAR_TYPES_WITH_COMPLEX_AND_QINTS(DEFINE_ST_ENUM_VAL_)
|
105 |
+
#undef DEFINE_ENUM_ST_ENUM_VAL_
|
106 |
+
Undefined,
|
107 |
+
NumOptions
|
108 |
+
};
|
109 |
+
|
110 |
+
constexpr uint16_t NumScalarTypes =
|
111 |
+
static_cast<uint16_t>(ScalarType::NumOptions);
|
112 |
+
|
113 |
+
namespace impl {
|
114 |
+
|
115 |
+
// These are used to map ScalarTypes to C++ types.
|
116 |
+
|
117 |
+
template <c10::ScalarType N>
|
118 |
+
struct ScalarTypeToCPPType;
|
119 |
+
|
120 |
+
#define SPECIALIZE_ScalarTypeToCPPType(cpp_type, scalar_type) \
|
121 |
+
template <> \
|
122 |
+
struct ScalarTypeToCPPType<c10::ScalarType::scalar_type> { \
|
123 |
+
using type = cpp_type; \
|
124 |
+
\
|
125 |
+
/* This is a workaround for the CUDA bug which prevents */ \
|
126 |
+
/* ::detail::ScalarTypeToCType<T>::type being used directly due to */ \
|
127 |
+
/* ambiguous reference which can't to be resolved. For some reason it */ \
|
128 |
+
/* can't pick between at::detail and at::cuda::detail. */ \
|
129 |
+
/* For repro example, please see: */ \
|
130 |
+
/* https://gist.github.com/izdeby/952ae7cf256ddb740a73776d39a7e7ba */ \
|
131 |
+
/* TODO: remove once the bug is fixed. */ \
|
132 |
+
static type t; \
|
133 |
+
};
|
134 |
+
|
135 |
+
AT_FORALL_SCALAR_TYPES_WITH_COMPLEX_AND_QINTS(SPECIALIZE_ScalarTypeToCPPType)
|
136 |
+
|
137 |
+
#undef SPECIALIZE_ScalarTypeToCPPType
|
138 |
+
|
139 |
+
template <c10::ScalarType N>
|
140 |
+
using ScalarTypeToCPPTypeT = typename ScalarTypeToCPPType<N>::type;
|
141 |
+
|
142 |
+
} // namespace impl
|
143 |
+
|
144 |
+
template <typename T>
|
145 |
+
struct CppTypeToScalarType;
|
146 |
+
|
147 |
+
#define SPECIALIZE_CppTypeToScalarType(cpp_type, scalar_type) \
|
148 |
+
template <> \
|
149 |
+
struct CppTypeToScalarType<cpp_type> \
|
150 |
+
: std:: \
|
151 |
+
integral_constant<c10::ScalarType, c10::ScalarType::scalar_type> { \
|
152 |
+
};
|
153 |
+
|
154 |
+
AT_FORALL_SCALAR_TYPES_WITH_COMPLEX_AND_QINTS(SPECIALIZE_CppTypeToScalarType)
|
155 |
+
|
156 |
+
#undef SPECIALIZE_CppTypeToScalarType
|
157 |
+
|
158 |
+
#define AT_FORALL_INT_TYPES(_) \
|
159 |
+
_(uint8_t, Byte) \
|
160 |
+
_(int8_t, Char) \
|
161 |
+
_(int16_t, Short) \
|
162 |
+
_(int, Int) \
|
163 |
+
_(int64_t, Long)
|
164 |
+
|
165 |
+
#define AT_FORALL_SCALAR_TYPES(_) \
|
166 |
+
_(uint8_t, Byte) \
|
167 |
+
_(int8_t, Char) \
|
168 |
+
_(int16_t, Short) \
|
169 |
+
_(int, Int) \
|
170 |
+
_(int64_t, Long) \
|
171 |
+
_(float, Float) \
|
172 |
+
_(double, Double)
|
173 |
+
|
174 |
+
#define AT_FORALL_SCALAR_TYPES_AND(SCALARTYPE, _) \
|
175 |
+
_(uint8_t, Byte) \
|
176 |
+
_(int8_t, Char) \
|
177 |
+
_(int16_t, Short) \
|
178 |
+
_(int, Int) \
|
179 |
+
_(int64_t, Long) \
|
180 |
+
_(float, Float) \
|
181 |
+
_(double, Double) \
|
182 |
+
_(decltype(::c10::impl::ScalarTypeToCPPType< \
|
183 |
+
::c10::ScalarType::SCALARTYPE>::t), \
|
184 |
+
SCALARTYPE)
|
185 |
+
|
186 |
+
#define AT_FORALL_SCALAR_TYPES_AND2(SCALARTYPE1, SCALARTYPE2, _) \
|
187 |
+
_(uint8_t, Byte) \
|
188 |
+
_(int8_t, Char) \
|
189 |
+
_(int16_t, Short) \
|
190 |
+
_(int, Int) \
|
191 |
+
_(int64_t, Long) \
|
192 |
+
_(float, Float) \
|
193 |
+
_(double, Double) \
|
194 |
+
_(decltype(::c10::impl::ScalarTypeToCPPType< \
|
195 |
+
::c10::ScalarType::SCALARTYPE1>::t), \
|
196 |
+
SCALARTYPE1) \
|
197 |
+
_(decltype(::c10::impl::ScalarTypeToCPPType< \
|
198 |
+
::c10::ScalarType::SCALARTYPE2>::t), \
|
199 |
+
SCALARTYPE2)
|
200 |
+
|
201 |
+
#define AT_FORALL_SCALAR_TYPES_AND3(SCALARTYPE1, SCALARTYPE2, SCALARTYPE3, _) \
|
202 |
+
_(uint8_t, Byte) \
|
203 |
+
_(int8_t, Char) \
|
204 |
+
_(int16_t, Short) \
|
205 |
+
_(int, Int) \
|
206 |
+
_(int64_t, Long) \
|
207 |
+
_(float, Float) \
|
208 |
+
_(double, Double) \
|
209 |
+
_(decltype(::c10::impl::ScalarTypeToCPPType< \
|
210 |
+
::c10::ScalarType::SCALARTYPE1>::t), \
|
211 |
+
SCALARTYPE1) \
|
212 |
+
_(decltype(::c10::impl::ScalarTypeToCPPType< \
|
213 |
+
::c10::ScalarType::SCALARTYPE2>::t), \
|
214 |
+
SCALARTYPE2) \
|
215 |
+
_(decltype(::c10::impl::ScalarTypeToCPPType< \
|
216 |
+
::c10::ScalarType::SCALARTYPE3>::t), \
|
217 |
+
SCALARTYPE3)
|
218 |
+
|
219 |
+
#define AT_FORALL_SCALAR_TYPES_AND4( \
|
220 |
+
SCALARTYPE1, SCALARTYPE2, SCALARTYPE3, SCALARTYPE4, _) \
|
221 |
+
_(uint8_t, Byte) \
|
222 |
+
_(int8_t, Char) \
|
223 |
+
_(int16_t, Short) \
|
224 |
+
_(int, Int) \
|
225 |
+
_(int64_t, Long) \
|
226 |
+
_(float, Float) \
|
227 |
+
_(double, Double) \
|
228 |
+
_(decltype(::c10::impl::ScalarTypeToCPPType< \
|
229 |
+
::c10::ScalarType::SCALARTYPE1>::t), \
|
230 |
+
SCALARTYPE1) \
|
231 |
+
_(decltype(::c10::impl::ScalarTypeToCPPType< \
|
232 |
+
::c10::ScalarType::SCALARTYPE2>::t), \
|
233 |
+
SCALARTYPE2) \
|
234 |
+
_(decltype(::c10::impl::ScalarTypeToCPPType< \
|
235 |
+
::c10::ScalarType::SCALARTYPE3>::t), \
|
236 |
+
SCALARTYPE3) \
|
237 |
+
_(decltype(::c10::impl::ScalarTypeToCPPType< \
|
238 |
+
::c10::ScalarType::SCALARTYPE4>::t), \
|
239 |
+
SCALARTYPE4)
|
240 |
+
|
241 |
+
#define AT_FORALL_SCALAR_TYPES_AND5( \
|
242 |
+
SCALARTYPE1, SCALARTYPE2, SCALARTYPE3, SCALARTYPE4, SCALARTYPE5, _) \
|
243 |
+
_(uint8_t, Byte) \
|
244 |
+
_(int8_t, Char) \
|
245 |
+
_(int16_t, Short) \
|
246 |
+
_(int, Int) \
|
247 |
+
_(int64_t, Long) \
|
248 |
+
_(float, Float) \
|
249 |
+
_(double, Double) \
|
250 |
+
_(decltype(::c10::impl::ScalarTypeToCPPType< \
|
251 |
+
::c10::ScalarType::SCALARTYPE1>::t), \
|
252 |
+
SCALARTYPE1) \
|
253 |
+
_(decltype(::c10::impl::ScalarTypeToCPPType< \
|
254 |
+
::c10::ScalarType::SCALARTYPE2>::t), \
|
255 |
+
SCALARTYPE2) \
|
256 |
+
_(decltype(::c10::impl::ScalarTypeToCPPType< \
|
257 |
+
::c10::ScalarType::SCALARTYPE3>::t), \
|
258 |
+
SCALARTYPE3) \
|
259 |
+
_(decltype(::c10::impl::ScalarTypeToCPPType< \
|
260 |
+
::c10::ScalarType::SCALARTYPE4>::t), \
|
261 |
+
SCALARTYPE4) \
|
262 |
+
_(decltype(::c10::impl::ScalarTypeToCPPType< \
|
263 |
+
::c10::ScalarType::SCALARTYPE5>::t), \
|
264 |
+
SCALARTYPE5)
|
265 |
+
|
266 |
+
#define AT_FORALL_SCALAR_TYPES_AND6( \
|
267 |
+
SCALARTYPE1, \
|
268 |
+
SCALARTYPE2, \
|
269 |
+
SCALARTYPE3, \
|
270 |
+
SCALARTYPE4, \
|
271 |
+
SCALARTYPE5, \
|
272 |
+
SCALARTYPE6, \
|
273 |
+
_) \
|
274 |
+
_(uint8_t, Byte) \
|
275 |
+
_(int8_t, Char) \
|
276 |
+
_(int16_t, Short) \
|
277 |
+
_(int, Int) \
|
278 |
+
_(int64_t, Long) \
|
279 |
+
_(float, Float) \
|
280 |
+
_(double, Double) \
|
281 |
+
_(decltype(::c10::impl::ScalarTypeToCPPType< \
|
282 |
+
::c10::ScalarType::SCALARTYPE1>::t), \
|
283 |
+
SCALARTYPE1) \
|
284 |
+
_(decltype(::c10::impl::ScalarTypeToCPPType< \
|
285 |
+
::c10::ScalarType::SCALARTYPE2>::t), \
|
286 |
+
SCALARTYPE2) \
|
287 |
+
_(decltype(::c10::impl::ScalarTypeToCPPType< \
|
288 |
+
::c10::ScalarType::SCALARTYPE3>::t), \
|
289 |
+
SCALARTYPE3) \
|
290 |
+
_(decltype(::c10::impl::ScalarTypeToCPPType< \
|
291 |
+
::c10::ScalarType::SCALARTYPE4>::t), \
|
292 |
+
SCALARTYPE4) \
|
293 |
+
_(decltype(::c10::impl::ScalarTypeToCPPType< \
|
294 |
+
::c10::ScalarType::SCALARTYPE5>::t), \
|
295 |
+
SCALARTYPE5) \
|
296 |
+
_(decltype(::c10::impl::ScalarTypeToCPPType< \
|
297 |
+
::c10::ScalarType::SCALARTYPE6>::t), \
|
298 |
+
SCALARTYPE6)
|
299 |
+
|
300 |
+
#define AT_FORALL_SCALAR_TYPES_AND7( \
|
301 |
+
SCALARTYPE1, \
|
302 |
+
SCALARTYPE2, \
|
303 |
+
SCALARTYPE3, \
|
304 |
+
SCALARTYPE4, \
|
305 |
+
SCALARTYPE5, \
|
306 |
+
SCALARTYPE6, \
|
307 |
+
SCALARTYPE7, \
|
308 |
+
_) \
|
309 |
+
_(uint8_t, Byte) \
|
310 |
+
_(int8_t, Char) \
|
311 |
+
_(int16_t, Short) \
|
312 |
+
_(int, Int) \
|
313 |
+
_(int64_t, Long) \
|
314 |
+
_(float, Float) \
|
315 |
+
_(double, Double) \
|
316 |
+
_(decltype(::c10::impl::ScalarTypeToCPPType< \
|
317 |
+
::c10::ScalarType::SCALARTYPE1>::t), \
|
318 |
+
SCALARTYPE1) \
|
319 |
+
_(decltype(::c10::impl::ScalarTypeToCPPType< \
|
320 |
+
::c10::ScalarType::SCALARTYPE2>::t), \
|
321 |
+
SCALARTYPE2) \
|
322 |
+
_(decltype(::c10::impl::ScalarTypeToCPPType< \
|
323 |
+
::c10::ScalarType::SCALARTYPE3>::t), \
|
324 |
+
SCALARTYPE3) \
|
325 |
+
_(decltype(::c10::impl::ScalarTypeToCPPType< \
|
326 |
+
::c10::ScalarType::SCALARTYPE4>::t), \
|
327 |
+
SCALARTYPE4) \
|
328 |
+
_(decltype(::c10::impl::ScalarTypeToCPPType< \
|
329 |
+
::c10::ScalarType::SCALARTYPE5>::t), \
|
330 |
+
SCALARTYPE5) \
|
331 |
+
_(decltype(::c10::impl::ScalarTypeToCPPType< \
|
332 |
+
::c10::ScalarType::SCALARTYPE6>::t), \
|
333 |
+
SCALARTYPE6) \
|
334 |
+
_(decltype(::c10::impl::ScalarTypeToCPPType< \
|
335 |
+
::c10::ScalarType::SCALARTYPE7>::t), \
|
336 |
+
SCALARTYPE7)
|
337 |
+
|
338 |
+
#define AT_FORALL_QINT_TYPES(_) \
|
339 |
+
_(c10::qint8, QInt8) \
|
340 |
+
_(c10::quint8, QUInt8) \
|
341 |
+
_(c10::qint32, QInt32) \
|
342 |
+
_(c10::quint4x2, QUInt4x2) \
|
343 |
+
_(c10::quint2x4, QUInt2x4)
|
344 |
+
|
345 |
+
#define AT_FORALL_COMPLEX_TYPES(_) \
|
346 |
+
_(c10::complex<float>, ComplexFloat) \
|
347 |
+
_(c10::complex<double>, ComplexDouble)
|
348 |
+
|
349 |
+
#define DEFINE_CONSTANT(_, name) \
|
350 |
+
constexpr ScalarType k##name = ScalarType::name;
|
351 |
+
|
352 |
+
AT_FORALL_SCALAR_TYPES_WITH_COMPLEX_AND_QINTS(DEFINE_CONSTANT)
|
353 |
+
#undef DEFINE_CONSTANT
|
354 |
+
|
355 |
+
static inline const char* toString(ScalarType t) {
|
356 |
+
#define DEFINE_CASE(_, name) \
|
357 |
+
case ScalarType::name: \
|
358 |
+
return #name;
|
359 |
+
|
360 |
+
switch (t) {
|
361 |
+
AT_FORALL_SCALAR_TYPES_WITH_COMPLEX_AND_QINTS(DEFINE_CASE)
|
362 |
+
default:
|
363 |
+
return "UNKNOWN_SCALAR";
|
364 |
+
}
|
365 |
+
#undef DEFINE_CASE
|
366 |
+
}
|
367 |
+
|
368 |
+
static inline size_t elementSize(ScalarType t) {
|
369 |
+
#define CASE_ELEMENTSIZE_CASE(ctype, name) \
|
370 |
+
case ScalarType::name: \
|
371 |
+
return sizeof(ctype);
|
372 |
+
|
373 |
+
switch (t) {
|
374 |
+
AT_FORALL_SCALAR_TYPES_WITH_COMPLEX_AND_QINTS(CASE_ELEMENTSIZE_CASE)
|
375 |
+
default:
|
376 |
+
TORCH_CHECK(false, "Unknown ScalarType");
|
377 |
+
}
|
378 |
+
#undef CASE_ELEMENTSIZE_CASE
|
379 |
+
}
|
380 |
+
|
381 |
+
static inline bool isIntegralType(ScalarType t, bool includeBool) {
|
382 |
+
bool isIntegral =
|
383 |
+
(t == ScalarType::Byte || t == ScalarType::Char || t == ScalarType::Int ||
|
384 |
+
t == ScalarType::Long || t == ScalarType::Short);
|
385 |
+
|
386 |
+
return isIntegral || (includeBool && t == ScalarType::Bool);
|
387 |
+
}
|
388 |
+
|
389 |
+
C10_DEPRECATED_MESSAGE(
|
390 |
+
"isIntegralType is deprecated. Please use the overload with 'includeBool' parameter instead.")
|
391 |
+
static inline bool isIntegralType(ScalarType t) {
|
392 |
+
return isIntegralType(t, /*includeBool=*/false);
|
393 |
+
}
|
394 |
+
|
395 |
+
static inline bool isFloat8Type(ScalarType t) {
|
396 |
+
return t == ScalarType::Float8_e5m2 || t == ScalarType::Float8_e5m2fnuz ||
|
397 |
+
t == ScalarType::Float8_e4m3fn || t == ScalarType::Float8_e4m3fnuz;
|
398 |
+
}
|
399 |
+
|
400 |
+
static inline bool isReducedFloatingType(ScalarType t) {
|
401 |
+
return t == ScalarType::Half || t == ScalarType::BFloat16 || isFloat8Type(t);
|
402 |
+
}
|
403 |
+
|
404 |
+
static inline bool isFloatingType(ScalarType t) {
|
405 |
+
return t == ScalarType::Double || t == ScalarType::Float ||
|
406 |
+
isReducedFloatingType(t);
|
407 |
+
}
|
408 |
+
|
409 |
+
static inline bool isComplexType(ScalarType t) {
|
410 |
+
return (
|
411 |
+
t == ScalarType::ComplexHalf || t == ScalarType::ComplexFloat ||
|
412 |
+
t == ScalarType::ComplexDouble);
|
413 |
+
}
|
414 |
+
|
415 |
+
static inline bool isQIntType(ScalarType t) {
|
416 |
+
// Don't forget to extend this when adding new QInt types
|
417 |
+
return t == ScalarType::QInt8 || t == ScalarType::QUInt8 ||
|
418 |
+
t == ScalarType::QInt32 || t == ScalarType::QUInt4x2 ||
|
419 |
+
t == ScalarType::QUInt2x4;
|
420 |
+
}
|
421 |
+
|
422 |
+
static inline bool isBitsType(ScalarType t) {
|
423 |
+
return t == ScalarType::Bits1x8 || t == ScalarType::Bits2x4 ||
|
424 |
+
t == ScalarType::Bits4x2 || t == ScalarType::Bits8 ||
|
425 |
+
t == ScalarType::Bits16;
|
426 |
+
}
|
427 |
+
|
428 |
+
static inline ScalarType toQIntType(ScalarType t) {
|
429 |
+
switch (t) {
|
430 |
+
case ScalarType::Byte:
|
431 |
+
return ScalarType::QUInt8;
|
432 |
+
case ScalarType::Char:
|
433 |
+
return ScalarType::QInt8;
|
434 |
+
case ScalarType::Int:
|
435 |
+
return ScalarType::QInt32;
|
436 |
+
default:
|
437 |
+
return t;
|
438 |
+
}
|
439 |
+
}
|
440 |
+
|
441 |
+
static inline ScalarType toUnderlying(ScalarType t) {
|
442 |
+
switch (t) {
|
443 |
+
case ScalarType::QUInt8:
|
444 |
+
return ScalarType::Byte;
|
445 |
+
case ScalarType::QInt8:
|
446 |
+
return ScalarType::Char;
|
447 |
+
case ScalarType::QInt32:
|
448 |
+
return ScalarType::Int;
|
449 |
+
case ScalarType::QUInt4x2:
|
450 |
+
return ScalarType::Byte;
|
451 |
+
case ScalarType::QUInt2x4:
|
452 |
+
return ScalarType::Byte;
|
453 |
+
default:
|
454 |
+
return t;
|
455 |
+
}
|
456 |
+
}
|
457 |
+
|
458 |
+
static inline bool isSignedType(ScalarType t) {
|
459 |
+
TORCH_CHECK(!isQIntType(t), "isSignedType not supported for quantized types");
|
460 |
+
#define CASE_SIGNED(ctype, name) \
|
461 |
+
case ScalarType::name: \
|
462 |
+
return std::numeric_limits<ctype>::is_signed;
|
463 |
+
|
464 |
+
switch (t) {
|
465 |
+
case ScalarType::Bits1x8:
|
466 |
+
case ScalarType::Bits2x4:
|
467 |
+
case ScalarType::Bits4x2:
|
468 |
+
case ScalarType::Bits8:
|
469 |
+
case ScalarType::Bits16:
|
470 |
+
TORCH_CHECK(false, "Bits types are undefined");
|
471 |
+
case ScalarType::ComplexHalf:
|
472 |
+
case ScalarType::ComplexFloat:
|
473 |
+
case ScalarType::ComplexDouble:
|
474 |
+
return true;
|
475 |
+
AT_FORALL_SCALAR_TYPES_AND5(
|
476 |
+
Half, Bool, BFloat16, Float8_e5m2, Float8_e4m3fn, CASE_SIGNED)
|
477 |
+
default:
|
478 |
+
TORCH_CHECK(false, "Unknown ScalarType");
|
479 |
+
}
|
480 |
+
#undef CASE_SIGNED
|
481 |
+
}
|
482 |
+
|
483 |
+
static inline bool isUnderlying(ScalarType type, ScalarType qtype) {
|
484 |
+
return type == toUnderlying(qtype);
|
485 |
+
}
|
486 |
+
|
487 |
+
static inline ScalarType toRealValueType(ScalarType t) {
|
488 |
+
switch (t) {
|
489 |
+
case ScalarType::ComplexHalf:
|
490 |
+
return ScalarType::Half;
|
491 |
+
case ScalarType::ComplexFloat:
|
492 |
+
return ScalarType::Float;
|
493 |
+
case ScalarType::ComplexDouble:
|
494 |
+
return ScalarType::Double;
|
495 |
+
default:
|
496 |
+
return t;
|
497 |
+
}
|
498 |
+
}
|
499 |
+
|
500 |
+
static inline ScalarType toComplexType(ScalarType t) {
|
501 |
+
switch (t) {
|
502 |
+
case ScalarType::BFloat16:
|
503 |
+
// BFloat16 has range equivalent to Float,
|
504 |
+
// so we map it to ComplexFloat.
|
505 |
+
return ScalarType::ComplexFloat;
|
506 |
+
case ScalarType::Half:
|
507 |
+
return ScalarType::ComplexHalf;
|
508 |
+
case ScalarType::Float:
|
509 |
+
return ScalarType::ComplexFloat;
|
510 |
+
case ScalarType::Double:
|
511 |
+
return ScalarType::ComplexDouble;
|
512 |
+
case ScalarType::ComplexHalf:
|
513 |
+
return ScalarType::ComplexHalf;
|
514 |
+
case ScalarType::ComplexFloat:
|
515 |
+
return ScalarType::ComplexFloat;
|
516 |
+
case ScalarType::ComplexDouble:
|
517 |
+
return ScalarType::ComplexDouble;
|
518 |
+
default:
|
519 |
+
TORCH_CHECK(false, "Unknown Complex ScalarType for ", t);
|
520 |
+
}
|
521 |
+
}
|
522 |
+
|
523 |
+
// see tensor_attributes.rst for detailed explanation and examples
|
524 |
+
// of casting rules.
|
525 |
+
static inline bool canCast(const ScalarType from, const ScalarType to) {
|
526 |
+
// We disallow complex -> non complex, e.g., float_tensor *= complex is
|
527 |
+
// disallowed.
|
528 |
+
if (isComplexType(from) && !isComplexType(to)) {
|
529 |
+
return false;
|
530 |
+
}
|
531 |
+
// We disallow float -> integral, e.g., int_tensor *= float is disallowed.
|
532 |
+
if (isFloatingType(from) && isIntegralType(to, false)) {
|
533 |
+
return false;
|
534 |
+
}
|
535 |
+
|
536 |
+
// Treat bool as a distinct "category," to be consistent with type promotion
|
537 |
+
// rules (e.g. `bool_tensor + 5 -> int64_tensor`). If `5` was in the same
|
538 |
+
// category as `bool_tensor`, we would not promote. Differing categories
|
539 |
+
// implies `bool_tensor += 5` is disallowed.
|
540 |
+
//
|
541 |
+
// NB: numpy distinguishes "unsigned" as a category to get the desired
|
542 |
+
// `bool_tensor + 5 -> int64_tensor` behavior. We don't, because:
|
543 |
+
// * We don't want the performance hit of checking the runtime sign of
|
544 |
+
// Scalars.
|
545 |
+
// * `uint8_tensor + 5 -> int64_tensor` would be undesirable.
|
546 |
+
if (from != ScalarType::Bool && to == ScalarType::Bool) {
|
547 |
+
return false;
|
548 |
+
}
|
549 |
+
return true;
|
550 |
+
}
|
551 |
+
|
552 |
+
static inline ScalarType promoteTypes(ScalarType a, ScalarType b) {
|
553 |
+
// This is generated according to NumPy's promote_types
|
554 |
+
constexpr auto u1 = ScalarType::Byte;
|
555 |
+
constexpr auto i1 = ScalarType::Char;
|
556 |
+
constexpr auto i2 = ScalarType::Short;
|
557 |
+
constexpr auto i4 = ScalarType::Int;
|
558 |
+
constexpr auto i8 = ScalarType::Long;
|
559 |
+
constexpr auto f2 = ScalarType::Half;
|
560 |
+
constexpr auto f4 = ScalarType::Float;
|
561 |
+
constexpr auto f8 = ScalarType::Double;
|
562 |
+
constexpr auto c2 = ScalarType::ComplexHalf;
|
563 |
+
constexpr auto c4 = ScalarType::ComplexFloat;
|
564 |
+
constexpr auto c8 = ScalarType::ComplexDouble;
|
565 |
+
constexpr auto b1 = ScalarType::Bool;
|
566 |
+
constexpr auto bf = ScalarType::BFloat16;
|
567 |
+
constexpr auto ud = ScalarType::Undefined;
|
568 |
+
if (a == ud || b == ud) {
|
569 |
+
return ScalarType::Undefined;
|
570 |
+
}
|
571 |
+
|
572 |
+
// If the two types are equal, return that type
|
573 |
+
if (a == b) {
|
574 |
+
return a;
|
575 |
+
}
|
576 |
+
|
577 |
+
// Handle identically equal types
|
578 |
+
if (isQIntType(a) || isQIntType(b)) {
|
579 |
+
TORCH_CHECK(
|
580 |
+
false,
|
581 |
+
"promoteTypes with quantized numbers is not handled yet; figure out what the correct rules should be, offending types: ",
|
582 |
+
toString(a),
|
583 |
+
" ",
|
584 |
+
toString(b));
|
585 |
+
}
|
586 |
+
|
587 |
+
if (isBitsType(a) || isBitsType(b)) {
|
588 |
+
return ScalarType::Undefined;
|
589 |
+
}
|
590 |
+
|
591 |
+
if (isFloat8Type(a) || isFloat8Type(b)) {
|
592 |
+
TORCH_CHECK(
|
593 |
+
false,
|
594 |
+
"Promotion for Float8 Types is not supported, attempted to promote ",
|
595 |
+
toString(a),
|
596 |
+
" and ",
|
597 |
+
toString(b));
|
598 |
+
}
|
599 |
+
|
600 |
+
// Bits, Quantized and Float8 are 14 dtypes already handled and not included
|
601 |
+
// in the promotion table below.
|
602 |
+
static constexpr int num_bits_types = static_cast<int>(ScalarType::Bits16) -
|
603 |
+
static_cast<int>(ScalarType::Bits1x8) + 1;
|
604 |
+
|
605 |
+
static constexpr int num_float8_types =
|
606 |
+
static_cast<int>(ScalarType::Float8_e4m3fnuz) -
|
607 |
+
static_cast<int>(ScalarType::Float8_e5m2) + 1;
|
608 |
+
|
609 |
+
static constexpr int num_qint_types = static_cast<int>(ScalarType::QInt32) -
|
610 |
+
static_cast<int>(ScalarType::QInt8) + 1;
|
611 |
+
|
612 |
+
static constexpr int num_quint_types =
|
613 |
+
static_cast<int>(ScalarType::QUInt2x4) -
|
614 |
+
static_cast<int>(ScalarType::QUInt4x2) + 1;
|
615 |
+
|
616 |
+
static constexpr int num_quantized_types = num_qint_types + num_quint_types;
|
617 |
+
|
618 |
+
static constexpr int num_missing_types =
|
619 |
+
num_bits_types + num_float8_types + num_quantized_types;
|
620 |
+
|
621 |
+
// Bfloat16 is at position 15 in the ScalerType enum, There are three types
|
622 |
+
// below bf16 not included in the table, Qint8, QUInt8, QInt32. Every other
|
623 |
+
// type above bf16, i.e. {Bits, Quantized, Float8} are not included in the
|
624 |
+
// table.
|
625 |
+
|
626 |
+
// If either of the types is bf16, we need to shift the type down by the one
|
627 |
+
// missing section in the table that is less then bf16 i.e {QInt8, QUInt8,
|
628 |
+
// QInt32}
|
629 |
+
a = a == bf ? static_cast<ScalarType>(static_cast<int>(a) - num_qint_types)
|
630 |
+
: a;
|
631 |
+
b = b == bf ? static_cast<ScalarType>(static_cast<int>(b) - num_qint_types)
|
632 |
+
: b;
|
633 |
+
|
634 |
+
// We decrease the promotion table by the number of missing types -> 14
|
635 |
+
// and then subtract 1 more from the table since we don't store ud to ud
|
636 |
+
// mapping.
|
637 |
+
static constexpr int NUM_PROMOTE_TYPES =
|
638 |
+
static_cast<int>(ScalarType::NumOptions) - num_missing_types - 1;
|
639 |
+
|
640 |
+
// this matrix has to be consistent with
|
641 |
+
// AT_FORALL_SCALAR_TYPES_WITH_COMPLEX_AND_QINTS undefined is used where we
|
642 |
+
// are not sure about the correct value for type promotion.
|
643 |
+
// clang-format off
|
644 |
+
static constexpr std::
|
645 |
+
array<std::array<ScalarType, NUM_PROMOTE_TYPES>, NUM_PROMOTE_TYPES>
|
646 |
+
_promoteTypesLookup = {{
|
647 |
+
/* u1 i1 i2 i4 i8 f2 f4 f8 c2 c4 c8 b1 bf*/
|
648 |
+
/* u1 */ {u1, i2, i2, i4, i8, f2, f4, f8, c2, c4, c8, u1, bf},
|
649 |
+
/* i1 */ {i2, i1, i2, i4, i8, f2, f4, f8, c2, c4, c8, i1, bf},
|
650 |
+
/* i2 */ {i2, i2, i2, i4, i8, f2, f4, f8, c2, c4, c8, i2, bf},
|
651 |
+
/* i4 */ {i4, i4, i4, i4, i8, f2, f4, f8, c2, c4, c8, i4, bf},
|
652 |
+
/* i8 */ {i8, i8, i8, i8, i8, f2, f4, f8, c2, c4, c8, i8, bf},
|
653 |
+
/* f2 */ {f2, f2, f2, f2, f2, f2, f4, f8, c2, c4, c8, f2, f4},
|
654 |
+
/* f4 */ {f4, f4, f4, f4, f4, f4, f4, f8, c4, c4, c8, f4, f4},
|
655 |
+
/* f8 */ {f8, f8, f8, f8, f8, f8, f8, f8, c8, c8, c8, f8, f8},
|
656 |
+
/* c2 */ {c2, c2, c2, c2, c2, c2, c4, c8, c2, c4, c8, c2, c4},
|
657 |
+
/* c4 */ {c4, c4, c4, c4, c4, c4, c4, c8, c4, c4, c8, c4, c4},
|
658 |
+
/* c8 */ {c8, c8, c8, c8, c8, c8, c8, c8, c8, c8, c8, c8, c8},
|
659 |
+
/* b1 */ {u1, i1, i2, i4, i8, f2, f4, f8, c2, c4, c8, b1, bf},
|
660 |
+
/* bf */ {bf, bf, bf, bf, bf, f4, f4, f8, c4, c4, c8, bf, bf},
|
661 |
+
}};
|
662 |
+
// clang-format on
|
663 |
+
return _promoteTypesLookup[static_cast<int>(a)][static_cast<int>(b)];
|
664 |
+
}
|
665 |
+
|
666 |
+
inline std::ostream& operator<<(
|
667 |
+
std::ostream& stream,
|
668 |
+
at::ScalarType scalar_type) {
|
669 |
+
return stream << toString(scalar_type);
|
670 |
+
}
|
671 |
+
|
672 |
+
} // namespace c10
|
env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/StreamGuard.h
ADDED
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <c10/core/impl/InlineStreamGuard.h>
|
4 |
+
|
5 |
+
namespace c10 {
|
6 |
+
|
7 |
+
/**
|
8 |
+
* A StreamGuard is an RAII class that changes the current device
|
9 |
+
* to the device corresponding to some stream, and changes the
|
10 |
+
* default stream on that device to be this stream.
|
11 |
+
*
|
12 |
+
* Use of StreamGuard is HIGHLY discouraged in operator definitions. In
|
13 |
+
* a single operator, you probably don't know enough about the global
|
14 |
+
* state of the world to profitably decide how to set streams. Let
|
15 |
+
* the caller handle this appropriately, and just use the current stream
|
16 |
+
* in your operator code.
|
17 |
+
*
|
18 |
+
* This StreamGuard does NOT have an uninitialized state; it is guaranteed
|
19 |
+
* to reset the stream and device on exit. If you are in a situation
|
20 |
+
* where you *might* want to setup a stream guard, see OptionalStreamGuard.
|
21 |
+
*/
|
22 |
+
struct StreamGuard {
|
23 |
+
/// No default constructor, see Note [Omitted default constructor from RAII]
|
24 |
+
explicit StreamGuard() = delete;
|
25 |
+
|
26 |
+
/// Set the current device to the device associated with the passed stream,
|
27 |
+
/// and set the current stream on that device to the passed stream.
|
28 |
+
explicit StreamGuard(Stream stream) : guard_(stream) {}
|
29 |
+
|
30 |
+
/// Copy is disallowed
|
31 |
+
StreamGuard(const StreamGuard&) = delete;
|
32 |
+
StreamGuard& operator=(const StreamGuard&) = delete;
|
33 |
+
|
34 |
+
/// Move is disallowed, as StreamGuard does not have an uninitialized state,
|
35 |
+
/// which is required for moves on types with nontrivial destructors.
|
36 |
+
StreamGuard(StreamGuard&& other) = delete;
|
37 |
+
StreamGuard& operator=(StreamGuard&& other) = delete;
|
38 |
+
|
39 |
+
/// Resets the currently set stream to the original stream and
|
40 |
+
/// the currently set device to the original device. Then,
|
41 |
+
/// set the current device to the device associated with the passed stream,
|
42 |
+
/// and set the current stream on that device to the passed stream.
|
43 |
+
///
|
44 |
+
/// NOTE: this implementation may skip some stream/device setting if
|
45 |
+
/// it can prove that it is unnecessary.
|
46 |
+
///
|
47 |
+
/// WARNING: reset_stream does NOT preserve previously set streams on
|
48 |
+
/// different devices. If you need to set streams on multiple devices
|
49 |
+
/// on , use MultiStreamGuard instead.
|
50 |
+
void reset_stream(Stream stream) {
|
51 |
+
guard_.reset_stream(stream);
|
52 |
+
}
|
53 |
+
|
54 |
+
/// Returns the stream that was set at the time the guard was constructed.
|
55 |
+
Stream original_stream() const {
|
56 |
+
return guard_.original_stream();
|
57 |
+
}
|
58 |
+
|
59 |
+
/// Returns the most recent stream that was set using this device guard,
|
60 |
+
/// either from construction, or via set_stream.
|
61 |
+
Stream current_stream() const {
|
62 |
+
return guard_.current_stream();
|
63 |
+
}
|
64 |
+
|
65 |
+
/// Returns the most recent device that was set using this device guard,
|
66 |
+
/// either from construction, or via set_device/reset_device/set_index.
|
67 |
+
Device current_device() const {
|
68 |
+
return guard_.current_device();
|
69 |
+
}
|
70 |
+
|
71 |
+
/// Returns the device that was set at the most recent reset_stream(),
|
72 |
+
/// or otherwise the device at construction time.
|
73 |
+
Device original_device() const {
|
74 |
+
return guard_.original_device();
|
75 |
+
}
|
76 |
+
|
77 |
+
private:
|
78 |
+
c10::impl::InlineStreamGuard<impl::VirtualGuardImpl> guard_;
|
79 |
+
};
|
80 |
+
|
81 |
+
/**
|
82 |
+
* An OptionalStreamGuard is an RAII class that sets a device to some value on
|
83 |
+
* initialization, and resets the device to its original value on destruction.
|
84 |
+
* See OptionalDeviceGuard for more guidance on how to use this class.
|
85 |
+
*/
|
86 |
+
struct OptionalStreamGuard {
|
87 |
+
/// Create an uninitialized guard.
|
88 |
+
explicit OptionalStreamGuard() = default;
|
89 |
+
|
90 |
+
/// Set the current device to the device associated with the passed stream,
|
91 |
+
/// and set the current stream on that device to the passed stream.
|
92 |
+
explicit OptionalStreamGuard(Stream stream) : guard_(stream) {}
|
93 |
+
|
94 |
+
/// Set the current device to the device associated with the passed stream,
|
95 |
+
/// and set the current stream on that device to the passed stream,
|
96 |
+
/// if the passed stream is not nullopt.
|
97 |
+
explicit OptionalStreamGuard(optional<Stream> stream_opt)
|
98 |
+
: guard_(stream_opt) {}
|
99 |
+
|
100 |
+
/// Copy is disallowed
|
101 |
+
OptionalStreamGuard(const OptionalStreamGuard&) = delete;
|
102 |
+
OptionalStreamGuard& operator=(const OptionalStreamGuard&) = delete;
|
103 |
+
|
104 |
+
// See Note [Move construction for RAII guards is tricky]
|
105 |
+
OptionalStreamGuard(OptionalStreamGuard&& other) = delete;
|
106 |
+
|
107 |
+
// See Note [Move assignment for RAII guards is tricky]
|
108 |
+
OptionalStreamGuard& operator=(OptionalStreamGuard&& other) = delete;
|
109 |
+
|
110 |
+
/// Resets the currently set stream to the original stream and
|
111 |
+
/// the currently set device to the original device. Then,
|
112 |
+
/// set the current device to the device associated with the passed stream,
|
113 |
+
/// and set the current stream on that device to the passed stream.
|
114 |
+
/// Initializes the guard if it was not previously initialized.
|
115 |
+
void reset_stream(Stream stream) {
|
116 |
+
guard_.reset_stream(stream);
|
117 |
+
}
|
118 |
+
|
119 |
+
/// Returns the stream that was set at the time the guard was most recently
|
120 |
+
/// initialized, or nullopt if the guard is uninitialized.
|
121 |
+
optional<Stream> original_stream() const {
|
122 |
+
return guard_.original_stream();
|
123 |
+
}
|
124 |
+
|
125 |
+
/// Returns the most recent stream that was set using this stream guard,
|
126 |
+
/// either from construction, or via reset_stream, if the guard is
|
127 |
+
/// initialized, or nullopt if the guard is uninitialized.
|
128 |
+
optional<Stream> current_stream() const {
|
129 |
+
return guard_.current_stream();
|
130 |
+
}
|
131 |
+
|
132 |
+
/// Restore the original device and stream, resetting this guard to
|
133 |
+
/// uninitialized state.
|
134 |
+
void reset() {
|
135 |
+
guard_.reset();
|
136 |
+
}
|
137 |
+
|
138 |
+
private:
|
139 |
+
c10::impl::InlineOptionalStreamGuard<impl::VirtualGuardImpl> guard_{};
|
140 |
+
};
|
141 |
+
|
142 |
+
/**
|
143 |
+
* A MultiStreamGuard is an RAII class that sets the current streams of a set of
|
144 |
+
* devices all at once, and resets them to their original values on destruction.
|
145 |
+
*/
|
146 |
+
struct MultiStreamGuard {
|
147 |
+
/// Set the current streams to the passed streams on each of their respective
|
148 |
+
/// devices.
|
149 |
+
explicit MultiStreamGuard(ArrayRef<Stream> streams) : guard_(streams) {}
|
150 |
+
|
151 |
+
/// Copy is disallowed
|
152 |
+
MultiStreamGuard(const MultiStreamGuard&) = delete;
|
153 |
+
MultiStreamGuard& operator=(const MultiStreamGuard&) = delete;
|
154 |
+
|
155 |
+
// See Note [Move construction for RAII guards is tricky]
|
156 |
+
MultiStreamGuard(MultiStreamGuard&& other) = delete;
|
157 |
+
|
158 |
+
// See Note [Move assignment for RAII guards is tricky]
|
159 |
+
MultiStreamGuard& operator=(MultiStreamGuard&& other) = delete;
|
160 |
+
|
161 |
+
private:
|
162 |
+
c10::impl::InlineMultiStreamGuard<impl::VirtualGuardImpl> guard_;
|
163 |
+
};
|
164 |
+
|
165 |
+
} // namespace c10
|
env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/SymBool.h
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <c10/core/SymNodeImpl.h>
|
4 |
+
#include <c10/macros/Macros.h>
|
5 |
+
#include <c10/util/Exception.h>
|
6 |
+
#include <c10/util/intrusive_ptr.h>
|
7 |
+
|
8 |
+
namespace c10 {
|
9 |
+
|
10 |
+
class C10_API SymBool {
|
11 |
+
public:
|
12 |
+
/*implicit*/ SymBool(bool b) : data_(b){};
|
13 |
+
SymBool(SymNode ptr) : data_(false), ptr_(std::move(ptr)) {
|
14 |
+
TORCH_CHECK(ptr_->is_bool());
|
15 |
+
};
|
16 |
+
SymBool() : data_(false) {}
|
17 |
+
|
18 |
+
SymNodeImpl* toSymNodeImplUnowned() const {
|
19 |
+
return ptr_.get();
|
20 |
+
}
|
21 |
+
|
22 |
+
SymNodeImpl* release() && {
|
23 |
+
return std::move(ptr_).release();
|
24 |
+
}
|
25 |
+
|
26 |
+
// Only valid if is_heap_allocated()
|
27 |
+
SymNode toSymNodeImpl() const;
|
28 |
+
|
29 |
+
// Guaranteed to return a SymNode, wrapping using base if necessary
|
30 |
+
SymNode wrap_node(const SymNode& base) const;
|
31 |
+
|
32 |
+
bool expect_bool() const {
|
33 |
+
c10::optional<bool> c = maybe_as_bool();
|
34 |
+
TORCH_CHECK(c.has_value());
|
35 |
+
return *c;
|
36 |
+
}
|
37 |
+
|
38 |
+
SymBool sym_and(const SymBool&) const;
|
39 |
+
SymBool sym_or(const SymBool&) const;
|
40 |
+
SymBool sym_not() const;
|
41 |
+
|
42 |
+
SymBool operator&(const SymBool& other) const {
|
43 |
+
return sym_and(other);
|
44 |
+
}
|
45 |
+
SymBool operator|(const SymBool& other) const {
|
46 |
+
return sym_or(other);
|
47 |
+
}
|
48 |
+
SymBool operator~() const {
|
49 |
+
return sym_not();
|
50 |
+
}
|
51 |
+
|
52 |
+
// Insert a guard for the bool to be its concrete value, and then return
|
53 |
+
// that value. Note that C++ comparison operations default to returning
|
54 |
+
// bool, so it's not so common to have to call this
|
55 |
+
bool guard_bool(const char* file, int64_t line) const;
|
56 |
+
bool expect_true(const char* file, int64_t line) const;
|
57 |
+
|
58 |
+
bool has_hint() const;
|
59 |
+
|
60 |
+
bool as_bool_unchecked() const {
|
61 |
+
return data_;
|
62 |
+
}
|
63 |
+
|
64 |
+
c10::optional<bool> maybe_as_bool() const {
|
65 |
+
if (!is_heap_allocated()) {
|
66 |
+
return c10::make_optional(data_);
|
67 |
+
}
|
68 |
+
return toSymNodeImplUnowned()->constant_bool();
|
69 |
+
}
|
70 |
+
|
71 |
+
bool is_heap_allocated() const {
|
72 |
+
return ptr_;
|
73 |
+
}
|
74 |
+
|
75 |
+
private:
|
76 |
+
// TODO: optimize to union
|
77 |
+
bool data_;
|
78 |
+
SymNode ptr_;
|
79 |
+
};
|
80 |
+
|
81 |
+
C10_API std::ostream& operator<<(std::ostream& os, const SymBool& s);
|
82 |
+
|
83 |
+
#define TORCH_SYM_CHECK(cond, ...) \
|
84 |
+
TORCH_CHECK((cond).expect_true(__FILE__, __LINE__), __VA_ARGS__)
|
85 |
+
#define TORCH_SYM_INTERNAL_ASSERT(cond, ...) \
|
86 |
+
TORCH_INTERNAL_ASSERT((cond).expect_true(__FILE__, __LINE__), __VA_ARGS__)
|
87 |
+
|
88 |
+
} // namespace c10
|
env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/SymNodeImpl.h
ADDED
@@ -0,0 +1,207 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <c10/macros/Export.h>
|
4 |
+
#include <c10/util/ArrayRef.h>
|
5 |
+
#include <c10/util/Exception.h>
|
6 |
+
#include <c10/util/Optional.h>
|
7 |
+
#include <c10/util/intrusive_ptr.h>
|
8 |
+
|
9 |
+
namespace c10 {
|
10 |
+
|
11 |
+
class SymNodeImpl;
|
12 |
+
using SymNode = c10::intrusive_ptr<SymNodeImpl>;
|
13 |
+
|
14 |
+
// When you add a method, you also need to edit
|
15 |
+
// torch/csrc/jit/python/init.cpp
|
16 |
+
// torch/csrc/utils/python_symnode.h
|
17 |
+
// c10/core/ConstantSymNodeImpl.h
|
18 |
+
class C10_API SymNodeImpl : public c10::intrusive_ptr_target {
|
19 |
+
public:
|
20 |
+
~SymNodeImpl() override = default;
|
21 |
+
|
22 |
+
template <typename T>
|
23 |
+
c10::intrusive_ptr<T> dyn_cast() const {
|
24 |
+
return c10::intrusive_ptr<T>::reclaim_copy(dynamic_cast<T*>(this));
|
25 |
+
}
|
26 |
+
|
27 |
+
// these could be pure virtual when we implement LTC versions
|
28 |
+
virtual bool is_int() {
|
29 |
+
TORCH_CHECK(false, "NYI");
|
30 |
+
};
|
31 |
+
virtual bool is_bool() {
|
32 |
+
TORCH_CHECK(false, "NYI");
|
33 |
+
};
|
34 |
+
virtual bool is_float() {
|
35 |
+
TORCH_CHECK(false, "NYI");
|
36 |
+
};
|
37 |
+
virtual SymNode add(const SymNode& other) {
|
38 |
+
TORCH_CHECK(false, "NYI");
|
39 |
+
};
|
40 |
+
virtual SymNode sub(const SymNode& other) {
|
41 |
+
TORCH_CHECK(false, "NYI");
|
42 |
+
};
|
43 |
+
virtual SymNode mul(const SymNode& other) {
|
44 |
+
TORCH_CHECK(false, "NYI");
|
45 |
+
};
|
46 |
+
virtual SymNode truediv(const SymNode& other) {
|
47 |
+
TORCH_CHECK(false, "NYI");
|
48 |
+
};
|
49 |
+
virtual SymNode pow(const SymNode& other) {
|
50 |
+
TORCH_CHECK(false, "NYI");
|
51 |
+
};
|
52 |
+
virtual SymNode floordiv(const SymNode& other) {
|
53 |
+
TORCH_CHECK(false, "NYI");
|
54 |
+
};
|
55 |
+
virtual SymNode mod(const SymNode& other) {
|
56 |
+
TORCH_CHECK(false, "NYI");
|
57 |
+
};
|
58 |
+
virtual SymNode eq(const SymNode& other) {
|
59 |
+
TORCH_CHECK(false, "NYI");
|
60 |
+
};
|
61 |
+
virtual SymNode ne(const SymNode& other) {
|
62 |
+
TORCH_CHECK(false, "NYI");
|
63 |
+
};
|
64 |
+
virtual SymNode gt(const SymNode& other) {
|
65 |
+
TORCH_CHECK(false, "NYI");
|
66 |
+
};
|
67 |
+
virtual SymNode lt(const SymNode& other) {
|
68 |
+
TORCH_CHECK(false, "NYI");
|
69 |
+
};
|
70 |
+
virtual SymNode le(const SymNode& other) {
|
71 |
+
TORCH_CHECK(false, "NYI");
|
72 |
+
};
|
73 |
+
virtual SymNode ge(const SymNode& other) {
|
74 |
+
TORCH_CHECK(false, "NYI");
|
75 |
+
};
|
76 |
+
virtual SymNode ceil() {
|
77 |
+
TORCH_CHECK(false, "NYI");
|
78 |
+
};
|
79 |
+
virtual SymNode floor() {
|
80 |
+
TORCH_CHECK(false, "NYI");
|
81 |
+
};
|
82 |
+
virtual SymNode neg() {
|
83 |
+
TORCH_CHECK(false, "NYI");
|
84 |
+
};
|
85 |
+
virtual SymNode sym_min(const SymNode& other) {
|
86 |
+
TORCH_CHECK(false, "NYI");
|
87 |
+
};
|
88 |
+
virtual SymNode sym_max(const SymNode& other) {
|
89 |
+
TORCH_CHECK(false, "NYI");
|
90 |
+
};
|
91 |
+
virtual SymNode sym_or(const SymNode& other) {
|
92 |
+
TORCH_CHECK(false, "NYI");
|
93 |
+
};
|
94 |
+
virtual SymNode sym_and(const SymNode& other) {
|
95 |
+
TORCH_CHECK(false, "NYI");
|
96 |
+
};
|
97 |
+
virtual SymNode sym_not() {
|
98 |
+
TORCH_CHECK(false, "NYI");
|
99 |
+
};
|
100 |
+
virtual SymNode sym_ite(const SymNode& then_val, const SymNode& else_val) {
|
101 |
+
TORCH_CHECK(false, "NYI");
|
102 |
+
};
|
103 |
+
// NB: self is ignored here, only the arguments are used
|
104 |
+
virtual SymNode is_contiguous(
|
105 |
+
ArrayRef<SymNode> sizes,
|
106 |
+
ArrayRef<SymNode> strides) {
|
107 |
+
TORCH_CHECK(false, "NYI");
|
108 |
+
};
|
109 |
+
virtual SymNode is_channels_last_contiguous_2d(
|
110 |
+
ArrayRef<SymNode> sizes,
|
111 |
+
ArrayRef<SymNode> strides) {
|
112 |
+
TORCH_CHECK(false, "NYI");
|
113 |
+
};
|
114 |
+
virtual SymNode is_channels_last_contiguous_3d(
|
115 |
+
ArrayRef<SymNode> sizes,
|
116 |
+
ArrayRef<SymNode> strides) {
|
117 |
+
TORCH_CHECK(false, "NYI");
|
118 |
+
};
|
119 |
+
virtual SymNode is_channels_last_strides_2d(
|
120 |
+
ArrayRef<SymNode> sizes,
|
121 |
+
ArrayRef<SymNode> strides) {
|
122 |
+
TORCH_CHECK(false, "NYI");
|
123 |
+
};
|
124 |
+
virtual SymNode is_channels_last_strides_3d(
|
125 |
+
ArrayRef<SymNode> sizes,
|
126 |
+
ArrayRef<SymNode> strides) {
|
127 |
+
TORCH_CHECK(false, "NYI");
|
128 |
+
};
|
129 |
+
virtual SymNode is_non_overlapping_and_dense(
|
130 |
+
ArrayRef<SymNode> sizes,
|
131 |
+
ArrayRef<SymNode> strides) {
|
132 |
+
TORCH_CHECK(false, "NYI");
|
133 |
+
};
|
134 |
+
virtual SymNode clone() {
|
135 |
+
TORCH_CHECK(false, "NYI");
|
136 |
+
};
|
137 |
+
virtual SymNode sym_float() {
|
138 |
+
TORCH_CHECK(false, "NYI");
|
139 |
+
}
|
140 |
+
virtual SymNode wrap_int(int64_t num) {
|
141 |
+
TORCH_CHECK(false, "NYI");
|
142 |
+
};
|
143 |
+
virtual SymNode wrap_float(double num) {
|
144 |
+
TORCH_CHECK(false, "NYI");
|
145 |
+
};
|
146 |
+
virtual SymNode wrap_bool(bool num) {
|
147 |
+
TORCH_CHECK(false, "NYI");
|
148 |
+
};
|
149 |
+
virtual int64_t guard_int(const char* file, int64_t line) {
|
150 |
+
TORCH_CHECK(false, "NYI");
|
151 |
+
};
|
152 |
+
virtual bool guard_bool(const char* file, int64_t line) {
|
153 |
+
TORCH_CHECK(false, "NYI");
|
154 |
+
};
|
155 |
+
virtual double guard_float(const char* file, int64_t line) {
|
156 |
+
TORCH_CHECK(false, "NYI");
|
157 |
+
};
|
158 |
+
virtual bool expect_true(const char* file, int64_t line) {
|
159 |
+
// No improvement for unbacked SymBools by default, replace this
|
160 |
+
// with a better implementation!
|
161 |
+
return guard_bool(file, line);
|
162 |
+
};
|
163 |
+
virtual bool expect_size(const char* file, int64_t line) {
|
164 |
+
// No improvement for unbacked SymInts by default, replace this
|
165 |
+
// with a better implementation!
|
166 |
+
return ge(wrap_int(0))->guard_bool(file, line);
|
167 |
+
};
|
168 |
+
virtual int64_t int_() {
|
169 |
+
TORCH_CHECK(false, "NYI");
|
170 |
+
};
|
171 |
+
virtual bool bool_() {
|
172 |
+
TORCH_CHECK(false, "NYI");
|
173 |
+
};
|
174 |
+
virtual bool has_hint() {
|
175 |
+
TORCH_CHECK(false, "NYI");
|
176 |
+
};
|
177 |
+
virtual std::string str() {
|
178 |
+
TORCH_CHECK(false, "NYI");
|
179 |
+
};
|
180 |
+
virtual c10::optional<int64_t> singleton_int() {
|
181 |
+
return c10::nullopt;
|
182 |
+
}
|
183 |
+
virtual c10::optional<int64_t> singleton_coeff() {
|
184 |
+
return c10::nullopt;
|
185 |
+
}
|
186 |
+
virtual c10::optional<int64_t> constant_int() {
|
187 |
+
return c10::nullopt;
|
188 |
+
}
|
189 |
+
virtual c10::optional<bool> constant_bool() {
|
190 |
+
return c10::nullopt;
|
191 |
+
}
|
192 |
+
virtual c10::optional<int64_t> maybe_as_int() {
|
193 |
+
return c10::nullopt;
|
194 |
+
}
|
195 |
+
virtual bool is_constant() {
|
196 |
+
return false;
|
197 |
+
}
|
198 |
+
virtual bool is_symbolic() {
|
199 |
+
return true;
|
200 |
+
}
|
201 |
+
std::ostream& operator<<(std::ostream& os) {
|
202 |
+
os << str();
|
203 |
+
return os;
|
204 |
+
}
|
205 |
+
};
|
206 |
+
|
207 |
+
} // namespace c10
|
env-llmeval/lib/python3.10/site-packages/torch/include/c10/core/alignment.h
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <cstddef>
|
4 |
+
|
5 |
+
namespace c10 {
|
6 |
+
|
7 |
+
#ifdef C10_MOBILE
|
8 |
+
// Use 16-byte alignment on mobile
|
9 |
+
// - ARM NEON AArch32 and AArch64
|
10 |
+
// - x86[-64] < AVX
|
11 |
+
constexpr size_t gAlignment = 16;
|
12 |
+
#else
|
13 |
+
// Use 64-byte alignment should be enough for computation up to AVX512.
|
14 |
+
constexpr size_t gAlignment = 64;
|
15 |
+
#endif
|
16 |
+
|
17 |
+
constexpr size_t gPagesize = 4096;
|
18 |
+
// since the default thp pagesize is 2MB, enable thp only
|
19 |
+
// for buffers of size 2MB or larger to avoid memory bloating
|
20 |
+
constexpr size_t gAlloc_threshold_thp = 2 * 1024 * 1024;
|
21 |
+
} // namespace c10
|
env-llmeval/lib/python3.10/site-packages/torch/include/clog.h
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <stdarg.h>
|
4 |
+
#include <stdlib.h>
|
5 |
+
#include <inttypes.h>
|
6 |
+
|
7 |
+
#define CLOG_NONE 0
|
8 |
+
#define CLOG_FATAL 1
|
9 |
+
#define CLOG_ERROR 2
|
10 |
+
#define CLOG_WARNING 3
|
11 |
+
#define CLOG_INFO 4
|
12 |
+
#define CLOG_DEBUG 5
|
13 |
+
|
14 |
+
#ifndef CLOG_VISIBILITY
|
15 |
+
#if defined(__ELF__)
|
16 |
+
#define CLOG_VISIBILITY __attribute__((__visibility__("internal")))
|
17 |
+
#elif defined(__MACH__)
|
18 |
+
#define CLOG_VISIBILITY __attribute__((__visibility__("hidden")))
|
19 |
+
#else
|
20 |
+
#define CLOG_VISIBILITY
|
21 |
+
#endif
|
22 |
+
#endif
|
23 |
+
|
24 |
+
#ifndef CLOG_ARGUMENTS_FORMAT
|
25 |
+
#if defined(__GNUC__)
|
26 |
+
#define CLOG_ARGUMENTS_FORMAT __attribute__((__format__(__printf__, 1, 2)))
|
27 |
+
#else
|
28 |
+
#define CLOG_ARGUMENTS_FORMAT
|
29 |
+
#endif
|
30 |
+
#endif
|
31 |
+
|
32 |
+
#ifdef __cplusplus
|
33 |
+
extern "C" {
|
34 |
+
#endif
|
35 |
+
|
36 |
+
CLOG_VISIBILITY void clog_vlog_debug(const char* module, const char* format, va_list args);
|
37 |
+
CLOG_VISIBILITY void clog_vlog_info(const char* module, const char* format, va_list args);
|
38 |
+
CLOG_VISIBILITY void clog_vlog_warning(const char* module, const char* format, va_list args);
|
39 |
+
CLOG_VISIBILITY void clog_vlog_error(const char* module, const char* format, va_list args);
|
40 |
+
CLOG_VISIBILITY void clog_vlog_fatal(const char* module, const char* format, va_list args);
|
41 |
+
|
42 |
+
#define CLOG_DEFINE_LOG_DEBUG(log_debug_function_name, module, level) \
|
43 |
+
CLOG_ARGUMENTS_FORMAT \
|
44 |
+
inline static void log_debug_function_name(const char* format, ...) { \
|
45 |
+
if (level >= CLOG_DEBUG) { \
|
46 |
+
va_list args; \
|
47 |
+
va_start(args, format); \
|
48 |
+
clog_vlog_debug(module, format, args); \
|
49 |
+
va_end(args); \
|
50 |
+
} \
|
51 |
+
}
|
52 |
+
|
53 |
+
#define CLOG_DEFINE_LOG_INFO(log_info_function_name, module, level) \
|
54 |
+
CLOG_ARGUMENTS_FORMAT \
|
55 |
+
inline static void log_info_function_name(const char* format, ...) { \
|
56 |
+
if (level >= CLOG_INFO) { \
|
57 |
+
va_list args; \
|
58 |
+
va_start(args, format); \
|
59 |
+
clog_vlog_info(module, format, args); \
|
60 |
+
va_end(args); \
|
61 |
+
} \
|
62 |
+
}
|
63 |
+
|
64 |
+
#define CLOG_DEFINE_LOG_WARNING(log_warning_function_name, module, level) \
|
65 |
+
CLOG_ARGUMENTS_FORMAT \
|
66 |
+
inline static void log_warning_function_name(const char* format, ...) { \
|
67 |
+
if (level >= CLOG_WARNING) { \
|
68 |
+
va_list args; \
|
69 |
+
va_start(args, format); \
|
70 |
+
clog_vlog_warning(module, format, args); \
|
71 |
+
va_end(args); \
|
72 |
+
} \
|
73 |
+
}
|
74 |
+
|
75 |
+
#define CLOG_DEFINE_LOG_ERROR(log_error_function_name, module, level) \
|
76 |
+
CLOG_ARGUMENTS_FORMAT \
|
77 |
+
inline static void log_error_function_name(const char* format, ...) { \
|
78 |
+
if (level >= CLOG_ERROR) { \
|
79 |
+
va_list args; \
|
80 |
+
va_start(args, format); \
|
81 |
+
clog_vlog_error(module, format, args); \
|
82 |
+
va_end(args); \
|
83 |
+
} \
|
84 |
+
}
|
85 |
+
|
86 |
+
#define CLOG_DEFINE_LOG_FATAL(log_fatal_function_name, module, level) \
|
87 |
+
CLOG_ARGUMENTS_FORMAT \
|
88 |
+
inline static void log_fatal_function_name(const char* format, ...) { \
|
89 |
+
if (level >= CLOG_FATAL) { \
|
90 |
+
va_list args; \
|
91 |
+
va_start(args, format); \
|
92 |
+
clog_vlog_fatal(module, format, args); \
|
93 |
+
va_end(args); \
|
94 |
+
} \
|
95 |
+
abort(); \
|
96 |
+
}
|
97 |
+
|
98 |
+
#ifdef __cplusplus
|
99 |
+
} /* extern "C" */
|
100 |
+
#endif
|
env-llmeval/lib/python3.10/site-packages/torch/include/cpuinfo.h
ADDED
@@ -0,0 +1,1939 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
#ifndef CPUINFO_H
|
3 |
+
#define CPUINFO_H
|
4 |
+
|
5 |
+
#ifndef __cplusplus
|
6 |
+
#include <stdbool.h>
|
7 |
+
#endif
|
8 |
+
|
9 |
+
#ifdef __APPLE__
|
10 |
+
#include <TargetConditionals.h>
|
11 |
+
#endif
|
12 |
+
|
13 |
+
#include <stdint.h>
|
14 |
+
|
15 |
+
/* Identify architecture and define corresponding macro */
|
16 |
+
|
17 |
+
#if defined(__i386__) || defined(__i486__) || defined(__i586__) || defined(__i686__) || defined(_M_IX86)
|
18 |
+
#define CPUINFO_ARCH_X86 1
|
19 |
+
#endif
|
20 |
+
|
21 |
+
#if defined(__x86_64__) || defined(__x86_64) || defined(_M_X64) || defined(_M_AMD64)
|
22 |
+
#define CPUINFO_ARCH_X86_64 1
|
23 |
+
#endif
|
24 |
+
|
25 |
+
#if defined(__arm__) || defined(_M_ARM)
|
26 |
+
#define CPUINFO_ARCH_ARM 1
|
27 |
+
#endif
|
28 |
+
|
29 |
+
#if defined(__aarch64__) || defined(_M_ARM64)
|
30 |
+
#define CPUINFO_ARCH_ARM64 1
|
31 |
+
#endif
|
32 |
+
|
33 |
+
#if defined(__PPC64__) || defined(__powerpc64__) || defined(_ARCH_PPC64)
|
34 |
+
#define CPUINFO_ARCH_PPC64 1
|
35 |
+
#endif
|
36 |
+
|
37 |
+
#if defined(__asmjs__)
|
38 |
+
#define CPUINFO_ARCH_ASMJS 1
|
39 |
+
#endif
|
40 |
+
|
41 |
+
#if defined(__wasm__)
|
42 |
+
#if defined(__wasm_simd128__)
|
43 |
+
#define CPUINFO_ARCH_WASMSIMD 1
|
44 |
+
#else
|
45 |
+
#define CPUINFO_ARCH_WASM 1
|
46 |
+
#endif
|
47 |
+
#endif
|
48 |
+
|
49 |
+
/* Define other architecture-specific macros as 0 */
|
50 |
+
|
51 |
+
#ifndef CPUINFO_ARCH_X86
|
52 |
+
#define CPUINFO_ARCH_X86 0
|
53 |
+
#endif
|
54 |
+
|
55 |
+
#ifndef CPUINFO_ARCH_X86_64
|
56 |
+
#define CPUINFO_ARCH_X86_64 0
|
57 |
+
#endif
|
58 |
+
|
59 |
+
#ifndef CPUINFO_ARCH_ARM
|
60 |
+
#define CPUINFO_ARCH_ARM 0
|
61 |
+
#endif
|
62 |
+
|
63 |
+
#ifndef CPUINFO_ARCH_ARM64
|
64 |
+
#define CPUINFO_ARCH_ARM64 0
|
65 |
+
#endif
|
66 |
+
|
67 |
+
#ifndef CPUINFO_ARCH_PPC64
|
68 |
+
#define CPUINFO_ARCH_PPC64 0
|
69 |
+
#endif
|
70 |
+
|
71 |
+
#ifndef CPUINFO_ARCH_ASMJS
|
72 |
+
#define CPUINFO_ARCH_ASMJS 0
|
73 |
+
#endif
|
74 |
+
|
75 |
+
#ifndef CPUINFO_ARCH_WASM
|
76 |
+
#define CPUINFO_ARCH_WASM 0
|
77 |
+
#endif
|
78 |
+
|
79 |
+
#ifndef CPUINFO_ARCH_WASMSIMD
|
80 |
+
#define CPUINFO_ARCH_WASMSIMD 0
|
81 |
+
#endif
|
82 |
+
|
83 |
+
#if CPUINFO_ARCH_X86 && defined(_MSC_VER)
|
84 |
+
#define CPUINFO_ABI __cdecl
|
85 |
+
#elif CPUINFO_ARCH_X86 && defined(__GNUC__)
|
86 |
+
#define CPUINFO_ABI __attribute__((__cdecl__))
|
87 |
+
#else
|
88 |
+
#define CPUINFO_ABI
|
89 |
+
#endif
|
90 |
+
|
91 |
+
#define CPUINFO_CACHE_UNIFIED 0x00000001
|
92 |
+
#define CPUINFO_CACHE_INCLUSIVE 0x00000002
|
93 |
+
#define CPUINFO_CACHE_COMPLEX_INDEXING 0x00000004
|
94 |
+
|
95 |
+
struct cpuinfo_cache {
|
96 |
+
/** Cache size in bytes */
|
97 |
+
uint32_t size;
|
98 |
+
/** Number of ways of associativity */
|
99 |
+
uint32_t associativity;
|
100 |
+
/** Number of sets */
|
101 |
+
uint32_t sets;
|
102 |
+
/** Number of partitions */
|
103 |
+
uint32_t partitions;
|
104 |
+
/** Line size in bytes */
|
105 |
+
uint32_t line_size;
|
106 |
+
/**
|
107 |
+
* Binary characteristics of the cache (unified cache, inclusive cache, cache with complex indexing).
|
108 |
+
*
|
109 |
+
* @see CPUINFO_CACHE_UNIFIED, CPUINFO_CACHE_INCLUSIVE, CPUINFO_CACHE_COMPLEX_INDEXING
|
110 |
+
*/
|
111 |
+
uint32_t flags;
|
112 |
+
/** Index of the first logical processor that shares this cache */
|
113 |
+
uint32_t processor_start;
|
114 |
+
/** Number of logical processors that share this cache */
|
115 |
+
uint32_t processor_count;
|
116 |
+
};
|
117 |
+
|
118 |
+
struct cpuinfo_trace_cache {
|
119 |
+
uint32_t uops;
|
120 |
+
uint32_t associativity;
|
121 |
+
};
|
122 |
+
|
123 |
+
#define CPUINFO_PAGE_SIZE_4KB 0x1000
|
124 |
+
#define CPUINFO_PAGE_SIZE_1MB 0x100000
|
125 |
+
#define CPUINFO_PAGE_SIZE_2MB 0x200000
|
126 |
+
#define CPUINFO_PAGE_SIZE_4MB 0x400000
|
127 |
+
#define CPUINFO_PAGE_SIZE_16MB 0x1000000
|
128 |
+
#define CPUINFO_PAGE_SIZE_1GB 0x40000000
|
129 |
+
|
130 |
+
struct cpuinfo_tlb {
|
131 |
+
uint32_t entries;
|
132 |
+
uint32_t associativity;
|
133 |
+
uint64_t pages;
|
134 |
+
};
|
135 |
+
|
136 |
+
/** Vendor of processor core design */
|
137 |
+
enum cpuinfo_vendor {
|
138 |
+
/** Processor vendor is not known to the library, or the library failed to get vendor information from the OS. */
|
139 |
+
cpuinfo_vendor_unknown = 0,
|
140 |
+
|
141 |
+
/* Active vendors of modern CPUs */
|
142 |
+
|
143 |
+
/**
|
144 |
+
* Intel Corporation. Vendor of x86, x86-64, IA64, and ARM processor microarchitectures.
|
145 |
+
*
|
146 |
+
* Sold its ARM design subsidiary in 2006. The last ARM processor design was released in 2004.
|
147 |
+
*/
|
148 |
+
cpuinfo_vendor_intel = 1,
|
149 |
+
/** Advanced Micro Devices, Inc. Vendor of x86 and x86-64 processor microarchitectures. */
|
150 |
+
cpuinfo_vendor_amd = 2,
|
151 |
+
/** ARM Holdings plc. Vendor of ARM and ARM64 processor microarchitectures. */
|
152 |
+
cpuinfo_vendor_arm = 3,
|
153 |
+
/** Qualcomm Incorporated. Vendor of ARM and ARM64 processor microarchitectures. */
|
154 |
+
cpuinfo_vendor_qualcomm = 4,
|
155 |
+
/** Apple Inc. Vendor of ARM and ARM64 processor microarchitectures. */
|
156 |
+
cpuinfo_vendor_apple = 5,
|
157 |
+
/** Samsung Electronics Co., Ltd. Vendir if ARM64 processor microarchitectures. */
|
158 |
+
cpuinfo_vendor_samsung = 6,
|
159 |
+
/** Nvidia Corporation. Vendor of ARM64-compatible processor microarchitectures. */
|
160 |
+
cpuinfo_vendor_nvidia = 7,
|
161 |
+
/** MIPS Technologies, Inc. Vendor of MIPS processor microarchitectures. */
|
162 |
+
cpuinfo_vendor_mips = 8,
|
163 |
+
/** International Business Machines Corporation. Vendor of PowerPC processor microarchitectures. */
|
164 |
+
cpuinfo_vendor_ibm = 9,
|
165 |
+
/** Ingenic Semiconductor. Vendor of MIPS processor microarchitectures. */
|
166 |
+
cpuinfo_vendor_ingenic = 10,
|
167 |
+
/**
|
168 |
+
* VIA Technologies, Inc. Vendor of x86 and x86-64 processor microarchitectures.
|
169 |
+
*
|
170 |
+
* Processors are designed by Centaur Technology, a subsidiary of VIA Technologies.
|
171 |
+
*/
|
172 |
+
cpuinfo_vendor_via = 11,
|
173 |
+
/** Cavium, Inc. Vendor of ARM64 processor microarchitectures. */
|
174 |
+
cpuinfo_vendor_cavium = 12,
|
175 |
+
/** Broadcom, Inc. Vendor of ARM processor microarchitectures. */
|
176 |
+
cpuinfo_vendor_broadcom = 13,
|
177 |
+
/** Applied Micro Circuits Corporation (APM). Vendor of ARM64 processor microarchitectures. */
|
178 |
+
cpuinfo_vendor_apm = 14,
|
179 |
+
/**
|
180 |
+
* Huawei Technologies Co., Ltd. Vendor of ARM64 processor microarchitectures.
|
181 |
+
*
|
182 |
+
* Processors are designed by HiSilicon, a subsidiary of Huawei.
|
183 |
+
*/
|
184 |
+
cpuinfo_vendor_huawei = 15,
|
185 |
+
/**
|
186 |
+
* Hygon (Chengdu Haiguang Integrated Circuit Design Co., Ltd), Vendor of x86-64 processor microarchitectures.
|
187 |
+
*
|
188 |
+
* Processors are variants of AMD cores.
|
189 |
+
*/
|
190 |
+
cpuinfo_vendor_hygon = 16,
|
191 |
+
|
192 |
+
/* Active vendors of embedded CPUs */
|
193 |
+
|
194 |
+
/** Texas Instruments Inc. Vendor of ARM processor microarchitectures. */
|
195 |
+
cpuinfo_vendor_texas_instruments = 30,
|
196 |
+
/** Marvell Technology Group Ltd. Vendor of ARM processor microarchitectures. */
|
197 |
+
cpuinfo_vendor_marvell = 31,
|
198 |
+
/** RDC Semiconductor Co., Ltd. Vendor of x86 processor microarchitectures. */
|
199 |
+
cpuinfo_vendor_rdc = 32,
|
200 |
+
/** DM&P Electronics Inc. Vendor of x86 processor microarchitectures. */
|
201 |
+
cpuinfo_vendor_dmp = 33,
|
202 |
+
/** Motorola, Inc. Vendor of PowerPC and ARM processor microarchitectures. */
|
203 |
+
cpuinfo_vendor_motorola = 34,
|
204 |
+
|
205 |
+
/* Defunct CPU vendors */
|
206 |
+
|
207 |
+
/**
|
208 |
+
* Transmeta Corporation. Vendor of x86 processor microarchitectures.
|
209 |
+
*
|
210 |
+
* Now defunct. The last processor design was released in 2004.
|
211 |
+
* Transmeta processors implemented VLIW ISA and used binary translation to execute x86 code.
|
212 |
+
*/
|
213 |
+
cpuinfo_vendor_transmeta = 50,
|
214 |
+
/**
|
215 |
+
* Cyrix Corporation. Vendor of x86 processor microarchitectures.
|
216 |
+
*
|
217 |
+
* Now defunct. The last processor design was released in 1996.
|
218 |
+
*/
|
219 |
+
cpuinfo_vendor_cyrix = 51,
|
220 |
+
/**
|
221 |
+
* Rise Technology. Vendor of x86 processor microarchitectures.
|
222 |
+
*
|
223 |
+
* Now defunct. The last processor design was released in 1999.
|
224 |
+
*/
|
225 |
+
cpuinfo_vendor_rise = 52,
|
226 |
+
/**
|
227 |
+
* National Semiconductor. Vendor of x86 processor microarchitectures.
|
228 |
+
*
|
229 |
+
* Sold its x86 design subsidiary in 1999. The last processor design was released in 1998.
|
230 |
+
*/
|
231 |
+
cpuinfo_vendor_nsc = 53,
|
232 |
+
/**
|
233 |
+
* Silicon Integrated Systems. Vendor of x86 processor microarchitectures.
|
234 |
+
*
|
235 |
+
* Sold its x86 design subsidiary in 2001. The last processor design was released in 2001.
|
236 |
+
*/
|
237 |
+
cpuinfo_vendor_sis = 54,
|
238 |
+
/**
|
239 |
+
* NexGen. Vendor of x86 processor microarchitectures.
|
240 |
+
*
|
241 |
+
* Now defunct. The last processor design was released in 1994.
|
242 |
+
* NexGen designed the first x86 microarchitecture which decomposed x86 instructions into simple microoperations.
|
243 |
+
*/
|
244 |
+
cpuinfo_vendor_nexgen = 55,
|
245 |
+
/**
|
246 |
+
* United Microelectronics Corporation. Vendor of x86 processor microarchitectures.
|
247 |
+
*
|
248 |
+
* Ceased x86 in the early 1990s. The last processor design was released in 1991.
|
249 |
+
* Designed U5C and U5D processors. Both are 486 level.
|
250 |
+
*/
|
251 |
+
cpuinfo_vendor_umc = 56,
|
252 |
+
/**
|
253 |
+
* Digital Equipment Corporation. Vendor of ARM processor microarchitecture.
|
254 |
+
*
|
255 |
+
* Sold its ARM designs in 1997. The last processor design was released in 1997.
|
256 |
+
*/
|
257 |
+
cpuinfo_vendor_dec = 57,
|
258 |
+
};
|
259 |
+
|
260 |
+
/**
|
261 |
+
* Processor microarchitecture
|
262 |
+
*
|
263 |
+
* Processors with different microarchitectures often have different instruction performance characteristics,
|
264 |
+
* and may have dramatically different pipeline organization.
|
265 |
+
*/
|
266 |
+
enum cpuinfo_uarch {
|
267 |
+
/** Microarchitecture is unknown, or the library failed to get information about the microarchitecture from OS */
|
268 |
+
cpuinfo_uarch_unknown = 0,
|
269 |
+
|
270 |
+
/** Pentium and Pentium MMX microarchitecture. */
|
271 |
+
cpuinfo_uarch_p5 = 0x00100100,
|
272 |
+
/** Intel Quark microarchitecture. */
|
273 |
+
cpuinfo_uarch_quark = 0x00100101,
|
274 |
+
|
275 |
+
/** Pentium Pro, Pentium II, and Pentium III. */
|
276 |
+
cpuinfo_uarch_p6 = 0x00100200,
|
277 |
+
/** Pentium M. */
|
278 |
+
cpuinfo_uarch_dothan = 0x00100201,
|
279 |
+
/** Intel Core microarchitecture. */
|
280 |
+
cpuinfo_uarch_yonah = 0x00100202,
|
281 |
+
/** Intel Core 2 microarchitecture on 65 nm process. */
|
282 |
+
cpuinfo_uarch_conroe = 0x00100203,
|
283 |
+
/** Intel Core 2 microarchitecture on 45 nm process. */
|
284 |
+
cpuinfo_uarch_penryn = 0x00100204,
|
285 |
+
/** Intel Nehalem and Westmere microarchitectures (Core i3/i5/i7 1st gen). */
|
286 |
+
cpuinfo_uarch_nehalem = 0x00100205,
|
287 |
+
/** Intel Sandy Bridge microarchitecture (Core i3/i5/i7 2nd gen). */
|
288 |
+
cpuinfo_uarch_sandy_bridge = 0x00100206,
|
289 |
+
/** Intel Ivy Bridge microarchitecture (Core i3/i5/i7 3rd gen). */
|
290 |
+
cpuinfo_uarch_ivy_bridge = 0x00100207,
|
291 |
+
/** Intel Haswell microarchitecture (Core i3/i5/i7 4th gen). */
|
292 |
+
cpuinfo_uarch_haswell = 0x00100208,
|
293 |
+
/** Intel Broadwell microarchitecture. */
|
294 |
+
cpuinfo_uarch_broadwell = 0x00100209,
|
295 |
+
/** Intel Sky Lake microarchitecture (14 nm, including Kaby/Coffee/Whiskey/Amber/Comet/Cascade/Cooper Lake). */
|
296 |
+
cpuinfo_uarch_sky_lake = 0x0010020A,
|
297 |
+
/** DEPRECATED (Intel Kaby Lake microarchitecture). */
|
298 |
+
cpuinfo_uarch_kaby_lake = 0x0010020A,
|
299 |
+
/** Intel Palm Cove microarchitecture (10 nm, Cannon Lake). */
|
300 |
+
cpuinfo_uarch_palm_cove = 0x0010020B,
|
301 |
+
/** Intel Sunny Cove microarchitecture (10 nm, Ice Lake). */
|
302 |
+
cpuinfo_uarch_sunny_cove = 0x0010020C,
|
303 |
+
|
304 |
+
/** Pentium 4 with Willamette, Northwood, or Foster cores. */
|
305 |
+
cpuinfo_uarch_willamette = 0x00100300,
|
306 |
+
/** Pentium 4 with Prescott and later cores. */
|
307 |
+
cpuinfo_uarch_prescott = 0x00100301,
|
308 |
+
|
309 |
+
/** Intel Atom on 45 nm process. */
|
310 |
+
cpuinfo_uarch_bonnell = 0x00100400,
|
311 |
+
/** Intel Atom on 32 nm process. */
|
312 |
+
cpuinfo_uarch_saltwell = 0x00100401,
|
313 |
+
/** Intel Silvermont microarchitecture (22 nm out-of-order Atom). */
|
314 |
+
cpuinfo_uarch_silvermont = 0x00100402,
|
315 |
+
/** Intel Airmont microarchitecture (14 nm out-of-order Atom). */
|
316 |
+
cpuinfo_uarch_airmont = 0x00100403,
|
317 |
+
/** Intel Goldmont microarchitecture (Denverton, Apollo Lake). */
|
318 |
+
cpuinfo_uarch_goldmont = 0x00100404,
|
319 |
+
/** Intel Goldmont Plus microarchitecture (Gemini Lake). */
|
320 |
+
cpuinfo_uarch_goldmont_plus = 0x00100405,
|
321 |
+
|
322 |
+
/** Intel Knights Ferry HPC boards. */
|
323 |
+
cpuinfo_uarch_knights_ferry = 0x00100500,
|
324 |
+
/** Intel Knights Corner HPC boards (aka Xeon Phi). */
|
325 |
+
cpuinfo_uarch_knights_corner = 0x00100501,
|
326 |
+
/** Intel Knights Landing microarchitecture (second-gen MIC). */
|
327 |
+
cpuinfo_uarch_knights_landing = 0x00100502,
|
328 |
+
/** Intel Knights Hill microarchitecture (third-gen MIC). */
|
329 |
+
cpuinfo_uarch_knights_hill = 0x00100503,
|
330 |
+
/** Intel Knights Mill Xeon Phi. */
|
331 |
+
cpuinfo_uarch_knights_mill = 0x00100504,
|
332 |
+
|
333 |
+
/** Intel/Marvell XScale series. */
|
334 |
+
cpuinfo_uarch_xscale = 0x00100600,
|
335 |
+
|
336 |
+
/** AMD K5. */
|
337 |
+
cpuinfo_uarch_k5 = 0x00200100,
|
338 |
+
/** AMD K6 and alike. */
|
339 |
+
cpuinfo_uarch_k6 = 0x00200101,
|
340 |
+
/** AMD Athlon and Duron. */
|
341 |
+
cpuinfo_uarch_k7 = 0x00200102,
|
342 |
+
/** AMD Athlon 64, Opteron 64. */
|
343 |
+
cpuinfo_uarch_k8 = 0x00200103,
|
344 |
+
/** AMD Family 10h (Barcelona, Istambul, Magny-Cours). */
|
345 |
+
cpuinfo_uarch_k10 = 0x00200104,
|
346 |
+
/**
|
347 |
+
* AMD Bulldozer microarchitecture
|
348 |
+
* Zambezi FX-series CPUs, Zurich, Valencia and Interlagos Opteron CPUs.
|
349 |
+
*/
|
350 |
+
cpuinfo_uarch_bulldozer = 0x00200105,
|
351 |
+
/**
|
352 |
+
* AMD Piledriver microarchitecture
|
353 |
+
* Vishera FX-series CPUs, Trinity and Richland APUs, Delhi, Seoul, Abu Dhabi Opteron CPUs.
|
354 |
+
*/
|
355 |
+
cpuinfo_uarch_piledriver = 0x00200106,
|
356 |
+
/** AMD Steamroller microarchitecture (Kaveri APUs). */
|
357 |
+
cpuinfo_uarch_steamroller = 0x00200107,
|
358 |
+
/** AMD Excavator microarchitecture (Carizzo APUs). */
|
359 |
+
cpuinfo_uarch_excavator = 0x00200108,
|
360 |
+
/** AMD Zen microarchitecture (12/14 nm Ryzen and EPYC CPUs). */
|
361 |
+
cpuinfo_uarch_zen = 0x00200109,
|
362 |
+
/** AMD Zen 2 microarchitecture (7 nm Ryzen and EPYC CPUs). */
|
363 |
+
cpuinfo_uarch_zen2 = 0x0020010A,
|
364 |
+
/** AMD Zen 3 microarchitecture. */
|
365 |
+
cpuinfo_uarch_zen3 = 0x0020010B,
|
366 |
+
|
367 |
+
/** NSC Geode and AMD Geode GX and LX. */
|
368 |
+
cpuinfo_uarch_geode = 0x00200200,
|
369 |
+
/** AMD Bobcat mobile microarchitecture. */
|
370 |
+
cpuinfo_uarch_bobcat = 0x00200201,
|
371 |
+
/** AMD Jaguar mobile microarchitecture. */
|
372 |
+
cpuinfo_uarch_jaguar = 0x00200202,
|
373 |
+
/** AMD Puma mobile microarchitecture. */
|
374 |
+
cpuinfo_uarch_puma = 0x00200203,
|
375 |
+
|
376 |
+
/** ARM7 series. */
|
377 |
+
cpuinfo_uarch_arm7 = 0x00300100,
|
378 |
+
/** ARM9 series. */
|
379 |
+
cpuinfo_uarch_arm9 = 0x00300101,
|
380 |
+
/** ARM 1136, ARM 1156, ARM 1176, or ARM 11MPCore. */
|
381 |
+
cpuinfo_uarch_arm11 = 0x00300102,
|
382 |
+
|
383 |
+
/** ARM Cortex-A5. */
|
384 |
+
cpuinfo_uarch_cortex_a5 = 0x00300205,
|
385 |
+
/** ARM Cortex-A7. */
|
386 |
+
cpuinfo_uarch_cortex_a7 = 0x00300207,
|
387 |
+
/** ARM Cortex-A8. */
|
388 |
+
cpuinfo_uarch_cortex_a8 = 0x00300208,
|
389 |
+
/** ARM Cortex-A9. */
|
390 |
+
cpuinfo_uarch_cortex_a9 = 0x00300209,
|
391 |
+
/** ARM Cortex-A12. */
|
392 |
+
cpuinfo_uarch_cortex_a12 = 0x00300212,
|
393 |
+
/** ARM Cortex-A15. */
|
394 |
+
cpuinfo_uarch_cortex_a15 = 0x00300215,
|
395 |
+
/** ARM Cortex-A17. */
|
396 |
+
cpuinfo_uarch_cortex_a17 = 0x00300217,
|
397 |
+
|
398 |
+
/** ARM Cortex-A32. */
|
399 |
+
cpuinfo_uarch_cortex_a32 = 0x00300332,
|
400 |
+
/** ARM Cortex-A35. */
|
401 |
+
cpuinfo_uarch_cortex_a35 = 0x00300335,
|
402 |
+
/** ARM Cortex-A53. */
|
403 |
+
cpuinfo_uarch_cortex_a53 = 0x00300353,
|
404 |
+
/** ARM Cortex-A55 revision 0 (restricted dual-issue capabilities compared to revision 1+). */
|
405 |
+
cpuinfo_uarch_cortex_a55r0 = 0x00300354,
|
406 |
+
/** ARM Cortex-A55. */
|
407 |
+
cpuinfo_uarch_cortex_a55 = 0x00300355,
|
408 |
+
/** ARM Cortex-A57. */
|
409 |
+
cpuinfo_uarch_cortex_a57 = 0x00300357,
|
410 |
+
/** ARM Cortex-A65. */
|
411 |
+
cpuinfo_uarch_cortex_a65 = 0x00300365,
|
412 |
+
/** ARM Cortex-A72. */
|
413 |
+
cpuinfo_uarch_cortex_a72 = 0x00300372,
|
414 |
+
/** ARM Cortex-A73. */
|
415 |
+
cpuinfo_uarch_cortex_a73 = 0x00300373,
|
416 |
+
/** ARM Cortex-A75. */
|
417 |
+
cpuinfo_uarch_cortex_a75 = 0x00300375,
|
418 |
+
/** ARM Cortex-A76. */
|
419 |
+
cpuinfo_uarch_cortex_a76 = 0x00300376,
|
420 |
+
/** ARM Cortex-A77. */
|
421 |
+
cpuinfo_uarch_cortex_a77 = 0x00300377,
|
422 |
+
/** ARM Cortex-A78. */
|
423 |
+
cpuinfo_uarch_cortex_a78 = 0x00300378,
|
424 |
+
|
425 |
+
/** ARM Neoverse N1. */
|
426 |
+
cpuinfo_uarch_neoverse_n1 = 0x00300400,
|
427 |
+
/** ARM Neoverse E1. */
|
428 |
+
cpuinfo_uarch_neoverse_e1 = 0x00300401,
|
429 |
+
/** ARM Neoverse V1. */
|
430 |
+
cpuinfo_uarch_neoverse_v1 = 0x00300402,
|
431 |
+
/** ARM Neoverse N2. */
|
432 |
+
cpuinfo_uarch_neoverse_n2 = 0x00300403,
|
433 |
+
|
434 |
+
/** ARM Cortex-X1. */
|
435 |
+
cpuinfo_uarch_cortex_x1 = 0x00300501,
|
436 |
+
/** ARM Cortex-X2. */
|
437 |
+
cpuinfo_uarch_cortex_x2 = 0x00300502,
|
438 |
+
|
439 |
+
/** ARM Cortex-A510. */
|
440 |
+
cpuinfo_uarch_cortex_a510 = 0x00300551,
|
441 |
+
/** ARM Cortex-A710. */
|
442 |
+
cpuinfo_uarch_cortex_a710 = 0x00300571,
|
443 |
+
|
444 |
+
/** Qualcomm Scorpion. */
|
445 |
+
cpuinfo_uarch_scorpion = 0x00400100,
|
446 |
+
/** Qualcomm Krait. */
|
447 |
+
cpuinfo_uarch_krait = 0x00400101,
|
448 |
+
/** Qualcomm Kryo. */
|
449 |
+
cpuinfo_uarch_kryo = 0x00400102,
|
450 |
+
/** Qualcomm Falkor. */
|
451 |
+
cpuinfo_uarch_falkor = 0x00400103,
|
452 |
+
/** Qualcomm Saphira. */
|
453 |
+
cpuinfo_uarch_saphira = 0x00400104,
|
454 |
+
|
455 |
+
/** Nvidia Denver. */
|
456 |
+
cpuinfo_uarch_denver = 0x00500100,
|
457 |
+
/** Nvidia Denver 2. */
|
458 |
+
cpuinfo_uarch_denver2 = 0x00500101,
|
459 |
+
/** Nvidia Carmel. */
|
460 |
+
cpuinfo_uarch_carmel = 0x00500102,
|
461 |
+
|
462 |
+
/** Samsung Exynos M1 (Exynos 8890 big cores). */
|
463 |
+
cpuinfo_uarch_exynos_m1 = 0x00600100,
|
464 |
+
/** Samsung Exynos M2 (Exynos 8895 big cores). */
|
465 |
+
cpuinfo_uarch_exynos_m2 = 0x00600101,
|
466 |
+
/** Samsung Exynos M3 (Exynos 9810 big cores). */
|
467 |
+
cpuinfo_uarch_exynos_m3 = 0x00600102,
|
468 |
+
/** Samsung Exynos M4 (Exynos 9820 big cores). */
|
469 |
+
cpuinfo_uarch_exynos_m4 = 0x00600103,
|
470 |
+
/** Samsung Exynos M5 (Exynos 9830 big cores). */
|
471 |
+
cpuinfo_uarch_exynos_m5 = 0x00600104,
|
472 |
+
|
473 |
+
/* Deprecated synonym for Cortex-A76 */
|
474 |
+
cpuinfo_uarch_cortex_a76ae = 0x00300376,
|
475 |
+
/* Deprecated names for Exynos. */
|
476 |
+
cpuinfo_uarch_mongoose_m1 = 0x00600100,
|
477 |
+
cpuinfo_uarch_mongoose_m2 = 0x00600101,
|
478 |
+
cpuinfo_uarch_meerkat_m3 = 0x00600102,
|
479 |
+
cpuinfo_uarch_meerkat_m4 = 0x00600103,
|
480 |
+
|
481 |
+
/** Apple A6 and A6X processors. */
|
482 |
+
cpuinfo_uarch_swift = 0x00700100,
|
483 |
+
/** Apple A7 processor. */
|
484 |
+
cpuinfo_uarch_cyclone = 0x00700101,
|
485 |
+
/** Apple A8 and A8X processor. */
|
486 |
+
cpuinfo_uarch_typhoon = 0x00700102,
|
487 |
+
/** Apple A9 and A9X processor. */
|
488 |
+
cpuinfo_uarch_twister = 0x00700103,
|
489 |
+
/** Apple A10 and A10X processor. */
|
490 |
+
cpuinfo_uarch_hurricane = 0x00700104,
|
491 |
+
/** Apple A11 processor (big cores). */
|
492 |
+
cpuinfo_uarch_monsoon = 0x00700105,
|
493 |
+
/** Apple A11 processor (little cores). */
|
494 |
+
cpuinfo_uarch_mistral = 0x00700106,
|
495 |
+
/** Apple A12 processor (big cores). */
|
496 |
+
cpuinfo_uarch_vortex = 0x00700107,
|
497 |
+
/** Apple A12 processor (little cores). */
|
498 |
+
cpuinfo_uarch_tempest = 0x00700108,
|
499 |
+
/** Apple A13 processor (big cores). */
|
500 |
+
cpuinfo_uarch_lightning = 0x00700109,
|
501 |
+
/** Apple A13 processor (little cores). */
|
502 |
+
cpuinfo_uarch_thunder = 0x0070010A,
|
503 |
+
/** Apple A14 / M1 processor (big cores). */
|
504 |
+
cpuinfo_uarch_firestorm = 0x0070010B,
|
505 |
+
/** Apple A14 / M1 processor (little cores). */
|
506 |
+
cpuinfo_uarch_icestorm = 0x0070010C,
|
507 |
+
/** Apple A15 / M2 processor (big cores). */
|
508 |
+
cpuinfo_uarch_avalanche = 0x0070010D,
|
509 |
+
/** Apple A15 / M2 processor (little cores). */
|
510 |
+
cpuinfo_uarch_blizzard = 0x0070010E,
|
511 |
+
|
512 |
+
/** Cavium ThunderX. */
|
513 |
+
cpuinfo_uarch_thunderx = 0x00800100,
|
514 |
+
/** Cavium ThunderX2 (originally Broadcom Vulkan). */
|
515 |
+
cpuinfo_uarch_thunderx2 = 0x00800200,
|
516 |
+
|
517 |
+
/** Marvell PJ4. */
|
518 |
+
cpuinfo_uarch_pj4 = 0x00900100,
|
519 |
+
|
520 |
+
/** Broadcom Brahma B15. */
|
521 |
+
cpuinfo_uarch_brahma_b15 = 0x00A00100,
|
522 |
+
/** Broadcom Brahma B53. */
|
523 |
+
cpuinfo_uarch_brahma_b53 = 0x00A00101,
|
524 |
+
|
525 |
+
/** Applied Micro X-Gene. */
|
526 |
+
cpuinfo_uarch_xgene = 0x00B00100,
|
527 |
+
|
528 |
+
/* Hygon Dhyana (a modification of AMD Zen for Chinese market). */
|
529 |
+
cpuinfo_uarch_dhyana = 0x01000100,
|
530 |
+
|
531 |
+
/** HiSilicon TaiShan v110 (Huawei Kunpeng 920 series processors). */
|
532 |
+
cpuinfo_uarch_taishan_v110 = 0x00C00100,
|
533 |
+
};
|
534 |
+
|
535 |
+
struct cpuinfo_processor {
|
536 |
+
/** SMT (hyperthread) ID within a core */
|
537 |
+
uint32_t smt_id;
|
538 |
+
/** Core containing this logical processor */
|
539 |
+
const struct cpuinfo_core* core;
|
540 |
+
/** Cluster of cores containing this logical processor */
|
541 |
+
const struct cpuinfo_cluster* cluster;
|
542 |
+
/** Physical package containing this logical processor */
|
543 |
+
const struct cpuinfo_package* package;
|
544 |
+
#if defined(__linux__)
|
545 |
+
/**
|
546 |
+
* Linux-specific ID for the logical processor:
|
547 |
+
* - Linux kernel exposes information about this logical processor in /sys/devices/system/cpu/cpu<linux_id>/
|
548 |
+
* - Bit <linux_id> in the cpu_set_t identifies this logical processor
|
549 |
+
*/
|
550 |
+
int linux_id;
|
551 |
+
#endif
|
552 |
+
#if defined(_WIN32) || defined(__CYGWIN__)
|
553 |
+
/** Windows-specific ID for the group containing the logical processor. */
|
554 |
+
uint16_t windows_group_id;
|
555 |
+
/**
|
556 |
+
* Windows-specific ID of the logical processor within its group:
|
557 |
+
* - Bit <windows_processor_id> in the KAFFINITY mask identifies this logical processor within its group.
|
558 |
+
*/
|
559 |
+
uint16_t windows_processor_id;
|
560 |
+
#endif
|
561 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
562 |
+
/** APIC ID (unique x86-specific ID of the logical processor) */
|
563 |
+
uint32_t apic_id;
|
564 |
+
#endif
|
565 |
+
struct {
|
566 |
+
/** Level 1 instruction cache */
|
567 |
+
const struct cpuinfo_cache* l1i;
|
568 |
+
/** Level 1 data cache */
|
569 |
+
const struct cpuinfo_cache* l1d;
|
570 |
+
/** Level 2 unified or data cache */
|
571 |
+
const struct cpuinfo_cache* l2;
|
572 |
+
/** Level 3 unified or data cache */
|
573 |
+
const struct cpuinfo_cache* l3;
|
574 |
+
/** Level 4 unified or data cache */
|
575 |
+
const struct cpuinfo_cache* l4;
|
576 |
+
} cache;
|
577 |
+
};
|
578 |
+
|
579 |
+
struct cpuinfo_core {
|
580 |
+
/** Index of the first logical processor on this core. */
|
581 |
+
uint32_t processor_start;
|
582 |
+
/** Number of logical processors on this core */
|
583 |
+
uint32_t processor_count;
|
584 |
+
/** Core ID within a package */
|
585 |
+
uint32_t core_id;
|
586 |
+
/** Cluster containing this core */
|
587 |
+
const struct cpuinfo_cluster* cluster;
|
588 |
+
/** Physical package containing this core. */
|
589 |
+
const struct cpuinfo_package* package;
|
590 |
+
/** Vendor of the CPU microarchitecture for this core */
|
591 |
+
enum cpuinfo_vendor vendor;
|
592 |
+
/** CPU microarchitecture for this core */
|
593 |
+
enum cpuinfo_uarch uarch;
|
594 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
595 |
+
/** Value of CPUID leaf 1 EAX register for this core */
|
596 |
+
uint32_t cpuid;
|
597 |
+
#elif CPUINFO_ARCH_ARM || CPUINFO_ARCH_ARM64
|
598 |
+
/** Value of Main ID Register (MIDR) for this core */
|
599 |
+
uint32_t midr;
|
600 |
+
#endif
|
601 |
+
/** Clock rate (non-Turbo) of the core, in Hz */
|
602 |
+
uint64_t frequency;
|
603 |
+
};
|
604 |
+
|
605 |
+
struct cpuinfo_cluster {
|
606 |
+
/** Index of the first logical processor in the cluster */
|
607 |
+
uint32_t processor_start;
|
608 |
+
/** Number of logical processors in the cluster */
|
609 |
+
uint32_t processor_count;
|
610 |
+
/** Index of the first core in the cluster */
|
611 |
+
uint32_t core_start;
|
612 |
+
/** Number of cores on the cluster */
|
613 |
+
uint32_t core_count;
|
614 |
+
/** Cluster ID within a package */
|
615 |
+
uint32_t cluster_id;
|
616 |
+
/** Physical package containing the cluster */
|
617 |
+
const struct cpuinfo_package* package;
|
618 |
+
/** CPU microarchitecture vendor of the cores in the cluster */
|
619 |
+
enum cpuinfo_vendor vendor;
|
620 |
+
/** CPU microarchitecture of the cores in the cluster */
|
621 |
+
enum cpuinfo_uarch uarch;
|
622 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
623 |
+
/** Value of CPUID leaf 1 EAX register of the cores in the cluster */
|
624 |
+
uint32_t cpuid;
|
625 |
+
#elif CPUINFO_ARCH_ARM || CPUINFO_ARCH_ARM64
|
626 |
+
/** Value of Main ID Register (MIDR) of the cores in the cluster */
|
627 |
+
uint32_t midr;
|
628 |
+
#endif
|
629 |
+
/** Clock rate (non-Turbo) of the cores in the cluster, in Hz */
|
630 |
+
uint64_t frequency;
|
631 |
+
};
|
632 |
+
|
633 |
+
#define CPUINFO_PACKAGE_NAME_MAX 48
|
634 |
+
|
635 |
+
struct cpuinfo_package {
|
636 |
+
/** SoC or processor chip model name */
|
637 |
+
char name[CPUINFO_PACKAGE_NAME_MAX];
|
638 |
+
/** Index of the first logical processor on this physical package */
|
639 |
+
uint32_t processor_start;
|
640 |
+
/** Number of logical processors on this physical package */
|
641 |
+
uint32_t processor_count;
|
642 |
+
/** Index of the first core on this physical package */
|
643 |
+
uint32_t core_start;
|
644 |
+
/** Number of cores on this physical package */
|
645 |
+
uint32_t core_count;
|
646 |
+
/** Index of the first cluster of cores on this physical package */
|
647 |
+
uint32_t cluster_start;
|
648 |
+
/** Number of clusters of cores on this physical package */
|
649 |
+
uint32_t cluster_count;
|
650 |
+
};
|
651 |
+
|
652 |
+
struct cpuinfo_uarch_info {
|
653 |
+
/** Type of CPU microarchitecture */
|
654 |
+
enum cpuinfo_uarch uarch;
|
655 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
656 |
+
/** Value of CPUID leaf 1 EAX register for the microarchitecture */
|
657 |
+
uint32_t cpuid;
|
658 |
+
#elif CPUINFO_ARCH_ARM || CPUINFO_ARCH_ARM64
|
659 |
+
/** Value of Main ID Register (MIDR) for the microarchitecture */
|
660 |
+
uint32_t midr;
|
661 |
+
#endif
|
662 |
+
/** Number of logical processors with the microarchitecture */
|
663 |
+
uint32_t processor_count;
|
664 |
+
/** Number of cores with the microarchitecture */
|
665 |
+
uint32_t core_count;
|
666 |
+
};
|
667 |
+
|
668 |
+
#ifdef __cplusplus
|
669 |
+
extern "C" {
|
670 |
+
#endif
|
671 |
+
|
672 |
+
bool CPUINFO_ABI cpuinfo_initialize(void);
|
673 |
+
|
674 |
+
void CPUINFO_ABI cpuinfo_deinitialize(void);
|
675 |
+
|
676 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
677 |
+
/* This structure is not a part of stable API. Use cpuinfo_has_x86_* functions instead. */
|
678 |
+
struct cpuinfo_x86_isa {
|
679 |
+
#if CPUINFO_ARCH_X86
|
680 |
+
bool rdtsc;
|
681 |
+
#endif
|
682 |
+
bool rdtscp;
|
683 |
+
bool rdpid;
|
684 |
+
bool sysenter;
|
685 |
+
#if CPUINFO_ARCH_X86
|
686 |
+
bool syscall;
|
687 |
+
#endif
|
688 |
+
bool msr;
|
689 |
+
bool clzero;
|
690 |
+
bool clflush;
|
691 |
+
bool clflushopt;
|
692 |
+
bool mwait;
|
693 |
+
bool mwaitx;
|
694 |
+
#if CPUINFO_ARCH_X86
|
695 |
+
bool emmx;
|
696 |
+
#endif
|
697 |
+
bool fxsave;
|
698 |
+
bool xsave;
|
699 |
+
#if CPUINFO_ARCH_X86
|
700 |
+
bool fpu;
|
701 |
+
bool mmx;
|
702 |
+
bool mmx_plus;
|
703 |
+
#endif
|
704 |
+
bool three_d_now;
|
705 |
+
bool three_d_now_plus;
|
706 |
+
#if CPUINFO_ARCH_X86
|
707 |
+
bool three_d_now_geode;
|
708 |
+
#endif
|
709 |
+
bool prefetch;
|
710 |
+
bool prefetchw;
|
711 |
+
bool prefetchwt1;
|
712 |
+
#if CPUINFO_ARCH_X86
|
713 |
+
bool daz;
|
714 |
+
bool sse;
|
715 |
+
bool sse2;
|
716 |
+
#endif
|
717 |
+
bool sse3;
|
718 |
+
bool ssse3;
|
719 |
+
bool sse4_1;
|
720 |
+
bool sse4_2;
|
721 |
+
bool sse4a;
|
722 |
+
bool misaligned_sse;
|
723 |
+
bool avx;
|
724 |
+
bool fma3;
|
725 |
+
bool fma4;
|
726 |
+
bool xop;
|
727 |
+
bool f16c;
|
728 |
+
bool avx2;
|
729 |
+
bool avx512f;
|
730 |
+
bool avx512pf;
|
731 |
+
bool avx512er;
|
732 |
+
bool avx512cd;
|
733 |
+
bool avx512dq;
|
734 |
+
bool avx512bw;
|
735 |
+
bool avx512vl;
|
736 |
+
bool avx512ifma;
|
737 |
+
bool avx512vbmi;
|
738 |
+
bool avx512vbmi2;
|
739 |
+
bool avx512bitalg;
|
740 |
+
bool avx512vpopcntdq;
|
741 |
+
bool avx512vnni;
|
742 |
+
bool avx512bf16;
|
743 |
+
bool avx512fp16;
|
744 |
+
bool avx512vp2intersect;
|
745 |
+
bool avx512_4vnniw;
|
746 |
+
bool avx512_4fmaps;
|
747 |
+
bool hle;
|
748 |
+
bool rtm;
|
749 |
+
bool xtest;
|
750 |
+
bool mpx;
|
751 |
+
#if CPUINFO_ARCH_X86
|
752 |
+
bool cmov;
|
753 |
+
bool cmpxchg8b;
|
754 |
+
#endif
|
755 |
+
bool cmpxchg16b;
|
756 |
+
bool clwb;
|
757 |
+
bool movbe;
|
758 |
+
#if CPUINFO_ARCH_X86_64
|
759 |
+
bool lahf_sahf;
|
760 |
+
#endif
|
761 |
+
bool fs_gs_base;
|
762 |
+
bool lzcnt;
|
763 |
+
bool popcnt;
|
764 |
+
bool tbm;
|
765 |
+
bool bmi;
|
766 |
+
bool bmi2;
|
767 |
+
bool adx;
|
768 |
+
bool aes;
|
769 |
+
bool vaes;
|
770 |
+
bool pclmulqdq;
|
771 |
+
bool vpclmulqdq;
|
772 |
+
bool gfni;
|
773 |
+
bool rdrand;
|
774 |
+
bool rdseed;
|
775 |
+
bool sha;
|
776 |
+
bool rng;
|
777 |
+
bool ace;
|
778 |
+
bool ace2;
|
779 |
+
bool phe;
|
780 |
+
bool pmm;
|
781 |
+
bool lwp;
|
782 |
+
};
|
783 |
+
|
784 |
+
extern struct cpuinfo_x86_isa cpuinfo_isa;
|
785 |
+
#endif
|
786 |
+
|
787 |
+
static inline bool cpuinfo_has_x86_rdtsc(void) {
|
788 |
+
#if CPUINFO_ARCH_X86_64
|
789 |
+
return true;
|
790 |
+
#elif CPUINFO_ARCH_X86
|
791 |
+
#if defined(__ANDROID__)
|
792 |
+
return true;
|
793 |
+
#else
|
794 |
+
return cpuinfo_isa.rdtsc;
|
795 |
+
#endif
|
796 |
+
#else
|
797 |
+
return false;
|
798 |
+
#endif
|
799 |
+
}
|
800 |
+
|
801 |
+
static inline bool cpuinfo_has_x86_rdtscp(void) {
|
802 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
803 |
+
return cpuinfo_isa.rdtscp;
|
804 |
+
#else
|
805 |
+
return false;
|
806 |
+
#endif
|
807 |
+
}
|
808 |
+
|
809 |
+
static inline bool cpuinfo_has_x86_rdpid(void) {
|
810 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
811 |
+
return cpuinfo_isa.rdpid;
|
812 |
+
#else
|
813 |
+
return false;
|
814 |
+
#endif
|
815 |
+
}
|
816 |
+
|
817 |
+
static inline bool cpuinfo_has_x86_clzero(void) {
|
818 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
819 |
+
return cpuinfo_isa.clzero;
|
820 |
+
#else
|
821 |
+
return false;
|
822 |
+
#endif
|
823 |
+
}
|
824 |
+
|
825 |
+
static inline bool cpuinfo_has_x86_mwait(void) {
|
826 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
827 |
+
return cpuinfo_isa.mwait;
|
828 |
+
#else
|
829 |
+
return false;
|
830 |
+
#endif
|
831 |
+
}
|
832 |
+
|
833 |
+
static inline bool cpuinfo_has_x86_mwaitx(void) {
|
834 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
835 |
+
return cpuinfo_isa.mwaitx;
|
836 |
+
#else
|
837 |
+
return false;
|
838 |
+
#endif
|
839 |
+
}
|
840 |
+
|
841 |
+
static inline bool cpuinfo_has_x86_fxsave(void) {
|
842 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
843 |
+
return cpuinfo_isa.fxsave;
|
844 |
+
#else
|
845 |
+
return false;
|
846 |
+
#endif
|
847 |
+
}
|
848 |
+
|
849 |
+
static inline bool cpuinfo_has_x86_xsave(void) {
|
850 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
851 |
+
return cpuinfo_isa.xsave;
|
852 |
+
#else
|
853 |
+
return false;
|
854 |
+
#endif
|
855 |
+
}
|
856 |
+
|
857 |
+
static inline bool cpuinfo_has_x86_fpu(void) {
|
858 |
+
#if CPUINFO_ARCH_X86_64
|
859 |
+
return true;
|
860 |
+
#elif CPUINFO_ARCH_X86
|
861 |
+
#if defined(__ANDROID__)
|
862 |
+
return true;
|
863 |
+
#else
|
864 |
+
return cpuinfo_isa.fpu;
|
865 |
+
#endif
|
866 |
+
#else
|
867 |
+
return false;
|
868 |
+
#endif
|
869 |
+
}
|
870 |
+
|
871 |
+
static inline bool cpuinfo_has_x86_mmx(void) {
|
872 |
+
#if CPUINFO_ARCH_X86_64
|
873 |
+
return true;
|
874 |
+
#elif CPUINFO_ARCH_X86
|
875 |
+
#if defined(__ANDROID__)
|
876 |
+
return true;
|
877 |
+
#else
|
878 |
+
return cpuinfo_isa.mmx;
|
879 |
+
#endif
|
880 |
+
#else
|
881 |
+
return false;
|
882 |
+
#endif
|
883 |
+
}
|
884 |
+
|
885 |
+
static inline bool cpuinfo_has_x86_mmx_plus(void) {
|
886 |
+
#if CPUINFO_ARCH_X86_64
|
887 |
+
return true;
|
888 |
+
#elif CPUINFO_ARCH_X86
|
889 |
+
#if defined(__ANDROID__)
|
890 |
+
return true;
|
891 |
+
#else
|
892 |
+
return cpuinfo_isa.mmx_plus;
|
893 |
+
#endif
|
894 |
+
#else
|
895 |
+
return false;
|
896 |
+
#endif
|
897 |
+
}
|
898 |
+
|
899 |
+
static inline bool cpuinfo_has_x86_3dnow(void) {
|
900 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
901 |
+
return cpuinfo_isa.three_d_now;
|
902 |
+
#else
|
903 |
+
return false;
|
904 |
+
#endif
|
905 |
+
}
|
906 |
+
|
907 |
+
static inline bool cpuinfo_has_x86_3dnow_plus(void) {
|
908 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
909 |
+
return cpuinfo_isa.three_d_now_plus;
|
910 |
+
#else
|
911 |
+
return false;
|
912 |
+
#endif
|
913 |
+
}
|
914 |
+
|
915 |
+
static inline bool cpuinfo_has_x86_3dnow_geode(void) {
|
916 |
+
#if CPUINFO_ARCH_X86_64
|
917 |
+
return false;
|
918 |
+
#elif CPUINFO_ARCH_X86
|
919 |
+
#if defined(__ANDROID__)
|
920 |
+
return false;
|
921 |
+
#else
|
922 |
+
return cpuinfo_isa.three_d_now_geode;
|
923 |
+
#endif
|
924 |
+
#else
|
925 |
+
return false;
|
926 |
+
#endif
|
927 |
+
}
|
928 |
+
|
929 |
+
static inline bool cpuinfo_has_x86_prefetch(void) {
|
930 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
931 |
+
return cpuinfo_isa.prefetch;
|
932 |
+
#else
|
933 |
+
return false;
|
934 |
+
#endif
|
935 |
+
}
|
936 |
+
|
937 |
+
static inline bool cpuinfo_has_x86_prefetchw(void) {
|
938 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
939 |
+
return cpuinfo_isa.prefetchw;
|
940 |
+
#else
|
941 |
+
return false;
|
942 |
+
#endif
|
943 |
+
}
|
944 |
+
|
945 |
+
static inline bool cpuinfo_has_x86_prefetchwt1(void) {
|
946 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
947 |
+
return cpuinfo_isa.prefetchwt1;
|
948 |
+
#else
|
949 |
+
return false;
|
950 |
+
#endif
|
951 |
+
}
|
952 |
+
|
953 |
+
static inline bool cpuinfo_has_x86_daz(void) {
|
954 |
+
#if CPUINFO_ARCH_X86_64
|
955 |
+
return true;
|
956 |
+
#elif CPUINFO_ARCH_X86
|
957 |
+
#if defined(__ANDROID__)
|
958 |
+
return true;
|
959 |
+
#else
|
960 |
+
return cpuinfo_isa.daz;
|
961 |
+
#endif
|
962 |
+
#else
|
963 |
+
return false;
|
964 |
+
#endif
|
965 |
+
}
|
966 |
+
|
967 |
+
static inline bool cpuinfo_has_x86_sse(void) {
|
968 |
+
#if CPUINFO_ARCH_X86_64
|
969 |
+
return true;
|
970 |
+
#elif CPUINFO_ARCH_X86
|
971 |
+
#if defined(__ANDROID__)
|
972 |
+
return true;
|
973 |
+
#else
|
974 |
+
return cpuinfo_isa.sse;
|
975 |
+
#endif
|
976 |
+
#else
|
977 |
+
return false;
|
978 |
+
#endif
|
979 |
+
}
|
980 |
+
|
981 |
+
static inline bool cpuinfo_has_x86_sse2(void) {
|
982 |
+
#if CPUINFO_ARCH_X86_64
|
983 |
+
return true;
|
984 |
+
#elif CPUINFO_ARCH_X86
|
985 |
+
#if defined(__ANDROID__)
|
986 |
+
return true;
|
987 |
+
#else
|
988 |
+
return cpuinfo_isa.sse2;
|
989 |
+
#endif
|
990 |
+
#else
|
991 |
+
return false;
|
992 |
+
#endif
|
993 |
+
}
|
994 |
+
|
995 |
+
static inline bool cpuinfo_has_x86_sse3(void) {
|
996 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
997 |
+
#if defined(__ANDROID__)
|
998 |
+
return true;
|
999 |
+
#else
|
1000 |
+
return cpuinfo_isa.sse3;
|
1001 |
+
#endif
|
1002 |
+
#else
|
1003 |
+
return false;
|
1004 |
+
#endif
|
1005 |
+
}
|
1006 |
+
|
1007 |
+
static inline bool cpuinfo_has_x86_ssse3(void) {
|
1008 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1009 |
+
#if defined(__ANDROID__)
|
1010 |
+
return true;
|
1011 |
+
#else
|
1012 |
+
return cpuinfo_isa.ssse3;
|
1013 |
+
#endif
|
1014 |
+
#else
|
1015 |
+
return false;
|
1016 |
+
#endif
|
1017 |
+
}
|
1018 |
+
|
1019 |
+
static inline bool cpuinfo_has_x86_sse4_1(void) {
|
1020 |
+
#if CPUINFO_ARCH_X86_64
|
1021 |
+
#if defined(__ANDROID__)
|
1022 |
+
return true;
|
1023 |
+
#else
|
1024 |
+
return cpuinfo_isa.sse4_1;
|
1025 |
+
#endif
|
1026 |
+
#elif CPUINFO_ARCH_X86
|
1027 |
+
return cpuinfo_isa.sse4_1;
|
1028 |
+
#else
|
1029 |
+
return false;
|
1030 |
+
#endif
|
1031 |
+
}
|
1032 |
+
|
1033 |
+
static inline bool cpuinfo_has_x86_sse4_2(void) {
|
1034 |
+
#if CPUINFO_ARCH_X86_64
|
1035 |
+
#if defined(__ANDROID__)
|
1036 |
+
return true;
|
1037 |
+
#else
|
1038 |
+
return cpuinfo_isa.sse4_2;
|
1039 |
+
#endif
|
1040 |
+
#elif CPUINFO_ARCH_X86
|
1041 |
+
return cpuinfo_isa.sse4_2;
|
1042 |
+
#else
|
1043 |
+
return false;
|
1044 |
+
#endif
|
1045 |
+
}
|
1046 |
+
|
1047 |
+
static inline bool cpuinfo_has_x86_sse4a(void) {
|
1048 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1049 |
+
return cpuinfo_isa.sse4a;
|
1050 |
+
#else
|
1051 |
+
return false;
|
1052 |
+
#endif
|
1053 |
+
}
|
1054 |
+
|
1055 |
+
static inline bool cpuinfo_has_x86_misaligned_sse(void) {
|
1056 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1057 |
+
return cpuinfo_isa.misaligned_sse;
|
1058 |
+
#else
|
1059 |
+
return false;
|
1060 |
+
#endif
|
1061 |
+
}
|
1062 |
+
|
1063 |
+
static inline bool cpuinfo_has_x86_avx(void) {
|
1064 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1065 |
+
return cpuinfo_isa.avx;
|
1066 |
+
#else
|
1067 |
+
return false;
|
1068 |
+
#endif
|
1069 |
+
}
|
1070 |
+
|
1071 |
+
static inline bool cpuinfo_has_x86_fma3(void) {
|
1072 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1073 |
+
return cpuinfo_isa.fma3;
|
1074 |
+
#else
|
1075 |
+
return false;
|
1076 |
+
#endif
|
1077 |
+
}
|
1078 |
+
|
1079 |
+
static inline bool cpuinfo_has_x86_fma4(void) {
|
1080 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1081 |
+
return cpuinfo_isa.fma4;
|
1082 |
+
#else
|
1083 |
+
return false;
|
1084 |
+
#endif
|
1085 |
+
}
|
1086 |
+
|
1087 |
+
static inline bool cpuinfo_has_x86_xop(void) {
|
1088 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1089 |
+
return cpuinfo_isa.xop;
|
1090 |
+
#else
|
1091 |
+
return false;
|
1092 |
+
#endif
|
1093 |
+
}
|
1094 |
+
|
1095 |
+
static inline bool cpuinfo_has_x86_f16c(void) {
|
1096 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1097 |
+
return cpuinfo_isa.f16c;
|
1098 |
+
#else
|
1099 |
+
return false;
|
1100 |
+
#endif
|
1101 |
+
}
|
1102 |
+
|
1103 |
+
static inline bool cpuinfo_has_x86_avx2(void) {
|
1104 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1105 |
+
return cpuinfo_isa.avx2;
|
1106 |
+
#else
|
1107 |
+
return false;
|
1108 |
+
#endif
|
1109 |
+
}
|
1110 |
+
|
1111 |
+
static inline bool cpuinfo_has_x86_avx512f(void) {
|
1112 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1113 |
+
return cpuinfo_isa.avx512f;
|
1114 |
+
#else
|
1115 |
+
return false;
|
1116 |
+
#endif
|
1117 |
+
}
|
1118 |
+
|
1119 |
+
static inline bool cpuinfo_has_x86_avx512pf(void) {
|
1120 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1121 |
+
return cpuinfo_isa.avx512pf;
|
1122 |
+
#else
|
1123 |
+
return false;
|
1124 |
+
#endif
|
1125 |
+
}
|
1126 |
+
|
1127 |
+
static inline bool cpuinfo_has_x86_avx512er(void) {
|
1128 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1129 |
+
return cpuinfo_isa.avx512er;
|
1130 |
+
#else
|
1131 |
+
return false;
|
1132 |
+
#endif
|
1133 |
+
}
|
1134 |
+
|
1135 |
+
static inline bool cpuinfo_has_x86_avx512cd(void) {
|
1136 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1137 |
+
return cpuinfo_isa.avx512cd;
|
1138 |
+
#else
|
1139 |
+
return false;
|
1140 |
+
#endif
|
1141 |
+
}
|
1142 |
+
|
1143 |
+
static inline bool cpuinfo_has_x86_avx512dq(void) {
|
1144 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1145 |
+
return cpuinfo_isa.avx512dq;
|
1146 |
+
#else
|
1147 |
+
return false;
|
1148 |
+
#endif
|
1149 |
+
}
|
1150 |
+
|
1151 |
+
static inline bool cpuinfo_has_x86_avx512bw(void) {
|
1152 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1153 |
+
return cpuinfo_isa.avx512bw;
|
1154 |
+
#else
|
1155 |
+
return false;
|
1156 |
+
#endif
|
1157 |
+
}
|
1158 |
+
|
1159 |
+
static inline bool cpuinfo_has_x86_avx512vl(void) {
|
1160 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1161 |
+
return cpuinfo_isa.avx512vl;
|
1162 |
+
#else
|
1163 |
+
return false;
|
1164 |
+
#endif
|
1165 |
+
}
|
1166 |
+
|
1167 |
+
static inline bool cpuinfo_has_x86_avx512ifma(void) {
|
1168 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1169 |
+
return cpuinfo_isa.avx512ifma;
|
1170 |
+
#else
|
1171 |
+
return false;
|
1172 |
+
#endif
|
1173 |
+
}
|
1174 |
+
|
1175 |
+
static inline bool cpuinfo_has_x86_avx512vbmi(void) {
|
1176 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1177 |
+
return cpuinfo_isa.avx512vbmi;
|
1178 |
+
#else
|
1179 |
+
return false;
|
1180 |
+
#endif
|
1181 |
+
}
|
1182 |
+
|
1183 |
+
static inline bool cpuinfo_has_x86_avx512vbmi2(void) {
|
1184 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1185 |
+
return cpuinfo_isa.avx512vbmi2;
|
1186 |
+
#else
|
1187 |
+
return false;
|
1188 |
+
#endif
|
1189 |
+
}
|
1190 |
+
|
1191 |
+
static inline bool cpuinfo_has_x86_avx512bitalg(void) {
|
1192 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1193 |
+
return cpuinfo_isa.avx512bitalg;
|
1194 |
+
#else
|
1195 |
+
return false;
|
1196 |
+
#endif
|
1197 |
+
}
|
1198 |
+
|
1199 |
+
static inline bool cpuinfo_has_x86_avx512vpopcntdq(void) {
|
1200 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1201 |
+
return cpuinfo_isa.avx512vpopcntdq;
|
1202 |
+
#else
|
1203 |
+
return false;
|
1204 |
+
#endif
|
1205 |
+
}
|
1206 |
+
|
1207 |
+
static inline bool cpuinfo_has_x86_avx512vnni(void) {
|
1208 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1209 |
+
return cpuinfo_isa.avx512vnni;
|
1210 |
+
#else
|
1211 |
+
return false;
|
1212 |
+
#endif
|
1213 |
+
}
|
1214 |
+
|
1215 |
+
static inline bool cpuinfo_has_x86_avx512bf16(void) {
|
1216 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1217 |
+
return cpuinfo_isa.avx512bf16;
|
1218 |
+
#else
|
1219 |
+
return false;
|
1220 |
+
#endif
|
1221 |
+
}
|
1222 |
+
|
1223 |
+
static inline bool cpuinfo_has_x86_avx512fp16(void) {
|
1224 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1225 |
+
return cpuinfo_isa.avx512fp16;
|
1226 |
+
#else
|
1227 |
+
return false;
|
1228 |
+
#endif
|
1229 |
+
}
|
1230 |
+
|
1231 |
+
static inline bool cpuinfo_has_x86_avx512vp2intersect(void) {
|
1232 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1233 |
+
return cpuinfo_isa.avx512vp2intersect;
|
1234 |
+
#else
|
1235 |
+
return false;
|
1236 |
+
#endif
|
1237 |
+
}
|
1238 |
+
|
1239 |
+
static inline bool cpuinfo_has_x86_avx512_4vnniw(void) {
|
1240 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1241 |
+
return cpuinfo_isa.avx512_4vnniw;
|
1242 |
+
#else
|
1243 |
+
return false;
|
1244 |
+
#endif
|
1245 |
+
}
|
1246 |
+
|
1247 |
+
static inline bool cpuinfo_has_x86_avx512_4fmaps(void) {
|
1248 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1249 |
+
return cpuinfo_isa.avx512_4fmaps;
|
1250 |
+
#else
|
1251 |
+
return false;
|
1252 |
+
#endif
|
1253 |
+
}
|
1254 |
+
|
1255 |
+
static inline bool cpuinfo_has_x86_hle(void) {
|
1256 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1257 |
+
return cpuinfo_isa.hle;
|
1258 |
+
#else
|
1259 |
+
return false;
|
1260 |
+
#endif
|
1261 |
+
}
|
1262 |
+
|
1263 |
+
static inline bool cpuinfo_has_x86_rtm(void) {
|
1264 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1265 |
+
return cpuinfo_isa.rtm;
|
1266 |
+
#else
|
1267 |
+
return false;
|
1268 |
+
#endif
|
1269 |
+
}
|
1270 |
+
|
1271 |
+
static inline bool cpuinfo_has_x86_xtest(void) {
|
1272 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1273 |
+
return cpuinfo_isa.xtest;
|
1274 |
+
#else
|
1275 |
+
return false;
|
1276 |
+
#endif
|
1277 |
+
}
|
1278 |
+
|
1279 |
+
static inline bool cpuinfo_has_x86_mpx(void) {
|
1280 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1281 |
+
return cpuinfo_isa.mpx;
|
1282 |
+
#else
|
1283 |
+
return false;
|
1284 |
+
#endif
|
1285 |
+
}
|
1286 |
+
|
1287 |
+
static inline bool cpuinfo_has_x86_cmov(void) {
|
1288 |
+
#if CPUINFO_ARCH_X86_64
|
1289 |
+
return true;
|
1290 |
+
#elif CPUINFO_ARCH_X86
|
1291 |
+
return cpuinfo_isa.cmov;
|
1292 |
+
#else
|
1293 |
+
return false;
|
1294 |
+
#endif
|
1295 |
+
}
|
1296 |
+
|
1297 |
+
static inline bool cpuinfo_has_x86_cmpxchg8b(void) {
|
1298 |
+
#if CPUINFO_ARCH_X86_64
|
1299 |
+
return true;
|
1300 |
+
#elif CPUINFO_ARCH_X86
|
1301 |
+
return cpuinfo_isa.cmpxchg8b;
|
1302 |
+
#else
|
1303 |
+
return false;
|
1304 |
+
#endif
|
1305 |
+
}
|
1306 |
+
|
1307 |
+
static inline bool cpuinfo_has_x86_cmpxchg16b(void) {
|
1308 |
+
#if CPUINFO_ARCH_X86_64
|
1309 |
+
return cpuinfo_isa.cmpxchg16b;
|
1310 |
+
#else
|
1311 |
+
return false;
|
1312 |
+
#endif
|
1313 |
+
}
|
1314 |
+
|
1315 |
+
static inline bool cpuinfo_has_x86_clwb(void) {
|
1316 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1317 |
+
return cpuinfo_isa.clwb;
|
1318 |
+
#else
|
1319 |
+
return false;
|
1320 |
+
#endif
|
1321 |
+
}
|
1322 |
+
|
1323 |
+
static inline bool cpuinfo_has_x86_movbe(void) {
|
1324 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1325 |
+
return cpuinfo_isa.movbe;
|
1326 |
+
#else
|
1327 |
+
return false;
|
1328 |
+
#endif
|
1329 |
+
}
|
1330 |
+
|
1331 |
+
static inline bool cpuinfo_has_x86_lahf_sahf(void) {
|
1332 |
+
#if CPUINFO_ARCH_X86
|
1333 |
+
return true;
|
1334 |
+
#elif CPUINFO_ARCH_X86_64
|
1335 |
+
return cpuinfo_isa.lahf_sahf;
|
1336 |
+
#else
|
1337 |
+
return false;
|
1338 |
+
#endif
|
1339 |
+
}
|
1340 |
+
|
1341 |
+
static inline bool cpuinfo_has_x86_lzcnt(void) {
|
1342 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1343 |
+
return cpuinfo_isa.lzcnt;
|
1344 |
+
#else
|
1345 |
+
return false;
|
1346 |
+
#endif
|
1347 |
+
}
|
1348 |
+
|
1349 |
+
static inline bool cpuinfo_has_x86_popcnt(void) {
|
1350 |
+
#if CPUINFO_ARCH_X86_64
|
1351 |
+
#if defined(__ANDROID__)
|
1352 |
+
return true;
|
1353 |
+
#else
|
1354 |
+
return cpuinfo_isa.popcnt;
|
1355 |
+
#endif
|
1356 |
+
#elif CPUINFO_ARCH_X86
|
1357 |
+
return cpuinfo_isa.popcnt;
|
1358 |
+
#else
|
1359 |
+
return false;
|
1360 |
+
#endif
|
1361 |
+
}
|
1362 |
+
|
1363 |
+
static inline bool cpuinfo_has_x86_tbm(void) {
|
1364 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1365 |
+
return cpuinfo_isa.tbm;
|
1366 |
+
#else
|
1367 |
+
return false;
|
1368 |
+
#endif
|
1369 |
+
}
|
1370 |
+
|
1371 |
+
static inline bool cpuinfo_has_x86_bmi(void) {
|
1372 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1373 |
+
return cpuinfo_isa.bmi;
|
1374 |
+
#else
|
1375 |
+
return false;
|
1376 |
+
#endif
|
1377 |
+
}
|
1378 |
+
|
1379 |
+
static inline bool cpuinfo_has_x86_bmi2(void) {
|
1380 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1381 |
+
return cpuinfo_isa.bmi2;
|
1382 |
+
#else
|
1383 |
+
return false;
|
1384 |
+
#endif
|
1385 |
+
}
|
1386 |
+
|
1387 |
+
static inline bool cpuinfo_has_x86_adx(void) {
|
1388 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1389 |
+
return cpuinfo_isa.adx;
|
1390 |
+
#else
|
1391 |
+
return false;
|
1392 |
+
#endif
|
1393 |
+
}
|
1394 |
+
|
1395 |
+
static inline bool cpuinfo_has_x86_aes(void) {
|
1396 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1397 |
+
return cpuinfo_isa.aes;
|
1398 |
+
#else
|
1399 |
+
return false;
|
1400 |
+
#endif
|
1401 |
+
}
|
1402 |
+
|
1403 |
+
static inline bool cpuinfo_has_x86_vaes(void) {
|
1404 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1405 |
+
return cpuinfo_isa.vaes;
|
1406 |
+
#else
|
1407 |
+
return false;
|
1408 |
+
#endif
|
1409 |
+
}
|
1410 |
+
|
1411 |
+
static inline bool cpuinfo_has_x86_pclmulqdq(void) {
|
1412 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1413 |
+
return cpuinfo_isa.pclmulqdq;
|
1414 |
+
#else
|
1415 |
+
return false;
|
1416 |
+
#endif
|
1417 |
+
}
|
1418 |
+
|
1419 |
+
static inline bool cpuinfo_has_x86_vpclmulqdq(void) {
|
1420 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1421 |
+
return cpuinfo_isa.vpclmulqdq;
|
1422 |
+
#else
|
1423 |
+
return false;
|
1424 |
+
#endif
|
1425 |
+
}
|
1426 |
+
|
1427 |
+
static inline bool cpuinfo_has_x86_gfni(void) {
|
1428 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1429 |
+
return cpuinfo_isa.gfni;
|
1430 |
+
#else
|
1431 |
+
return false;
|
1432 |
+
#endif
|
1433 |
+
}
|
1434 |
+
|
1435 |
+
static inline bool cpuinfo_has_x86_rdrand(void) {
|
1436 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1437 |
+
return cpuinfo_isa.rdrand;
|
1438 |
+
#else
|
1439 |
+
return false;
|
1440 |
+
#endif
|
1441 |
+
}
|
1442 |
+
|
1443 |
+
static inline bool cpuinfo_has_x86_rdseed(void) {
|
1444 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1445 |
+
return cpuinfo_isa.rdseed;
|
1446 |
+
#else
|
1447 |
+
return false;
|
1448 |
+
#endif
|
1449 |
+
}
|
1450 |
+
|
1451 |
+
static inline bool cpuinfo_has_x86_sha(void) {
|
1452 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1453 |
+
return cpuinfo_isa.sha;
|
1454 |
+
#else
|
1455 |
+
return false;
|
1456 |
+
#endif
|
1457 |
+
}
|
1458 |
+
|
1459 |
+
#if CPUINFO_ARCH_ARM || CPUINFO_ARCH_ARM64
|
1460 |
+
/* This structure is not a part of stable API. Use cpuinfo_has_arm_* functions instead. */
|
1461 |
+
struct cpuinfo_arm_isa {
|
1462 |
+
#if CPUINFO_ARCH_ARM
|
1463 |
+
bool thumb;
|
1464 |
+
bool thumb2;
|
1465 |
+
bool thumbee;
|
1466 |
+
bool jazelle;
|
1467 |
+
bool armv5e;
|
1468 |
+
bool armv6;
|
1469 |
+
bool armv6k;
|
1470 |
+
bool armv7;
|
1471 |
+
bool armv7mp;
|
1472 |
+
bool armv8;
|
1473 |
+
bool idiv;
|
1474 |
+
|
1475 |
+
bool vfpv2;
|
1476 |
+
bool vfpv3;
|
1477 |
+
bool d32;
|
1478 |
+
bool fp16;
|
1479 |
+
bool fma;
|
1480 |
+
|
1481 |
+
bool wmmx;
|
1482 |
+
bool wmmx2;
|
1483 |
+
bool neon;
|
1484 |
+
#endif
|
1485 |
+
#if CPUINFO_ARCH_ARM64
|
1486 |
+
bool atomics;
|
1487 |
+
bool bf16;
|
1488 |
+
bool sve;
|
1489 |
+
bool sve2;
|
1490 |
+
bool i8mm;
|
1491 |
+
#endif
|
1492 |
+
bool rdm;
|
1493 |
+
bool fp16arith;
|
1494 |
+
bool dot;
|
1495 |
+
bool jscvt;
|
1496 |
+
bool fcma;
|
1497 |
+
bool fhm;
|
1498 |
+
|
1499 |
+
bool aes;
|
1500 |
+
bool sha1;
|
1501 |
+
bool sha2;
|
1502 |
+
bool pmull;
|
1503 |
+
bool crc32;
|
1504 |
+
};
|
1505 |
+
|
1506 |
+
extern struct cpuinfo_arm_isa cpuinfo_isa;
|
1507 |
+
#endif
|
1508 |
+
|
1509 |
+
static inline bool cpuinfo_has_arm_thumb(void) {
|
1510 |
+
#if CPUINFO_ARCH_ARM
|
1511 |
+
return cpuinfo_isa.thumb;
|
1512 |
+
#else
|
1513 |
+
return false;
|
1514 |
+
#endif
|
1515 |
+
}
|
1516 |
+
|
1517 |
+
static inline bool cpuinfo_has_arm_thumb2(void) {
|
1518 |
+
#if CPUINFO_ARCH_ARM
|
1519 |
+
return cpuinfo_isa.thumb2;
|
1520 |
+
#else
|
1521 |
+
return false;
|
1522 |
+
#endif
|
1523 |
+
}
|
1524 |
+
|
1525 |
+
static inline bool cpuinfo_has_arm_v5e(void) {
|
1526 |
+
#if CPUINFO_ARCH_ARM
|
1527 |
+
return cpuinfo_isa.armv5e;
|
1528 |
+
#else
|
1529 |
+
return false;
|
1530 |
+
#endif
|
1531 |
+
}
|
1532 |
+
|
1533 |
+
static inline bool cpuinfo_has_arm_v6(void) {
|
1534 |
+
#if CPUINFO_ARCH_ARM
|
1535 |
+
return cpuinfo_isa.armv6;
|
1536 |
+
#else
|
1537 |
+
return false;
|
1538 |
+
#endif
|
1539 |
+
}
|
1540 |
+
|
1541 |
+
static inline bool cpuinfo_has_arm_v6k(void) {
|
1542 |
+
#if CPUINFO_ARCH_ARM
|
1543 |
+
return cpuinfo_isa.armv6k;
|
1544 |
+
#else
|
1545 |
+
return false;
|
1546 |
+
#endif
|
1547 |
+
}
|
1548 |
+
|
1549 |
+
static inline bool cpuinfo_has_arm_v7(void) {
|
1550 |
+
#if CPUINFO_ARCH_ARM
|
1551 |
+
return cpuinfo_isa.armv7;
|
1552 |
+
#else
|
1553 |
+
return false;
|
1554 |
+
#endif
|
1555 |
+
}
|
1556 |
+
|
1557 |
+
static inline bool cpuinfo_has_arm_v7mp(void) {
|
1558 |
+
#if CPUINFO_ARCH_ARM
|
1559 |
+
return cpuinfo_isa.armv7mp;
|
1560 |
+
#else
|
1561 |
+
return false;
|
1562 |
+
#endif
|
1563 |
+
}
|
1564 |
+
|
1565 |
+
static inline bool cpuinfo_has_arm_v8(void) {
|
1566 |
+
#if CPUINFO_ARCH_ARM64
|
1567 |
+
return true;
|
1568 |
+
#elif CPUINFO_ARCH_ARM
|
1569 |
+
return cpuinfo_isa.armv8;
|
1570 |
+
#else
|
1571 |
+
return false;
|
1572 |
+
#endif
|
1573 |
+
}
|
1574 |
+
|
1575 |
+
static inline bool cpuinfo_has_arm_idiv(void) {
|
1576 |
+
#if CPUINFO_ARCH_ARM64
|
1577 |
+
return true;
|
1578 |
+
#elif CPUINFO_ARCH_ARM
|
1579 |
+
return cpuinfo_isa.idiv;
|
1580 |
+
#else
|
1581 |
+
return false;
|
1582 |
+
#endif
|
1583 |
+
}
|
1584 |
+
|
1585 |
+
static inline bool cpuinfo_has_arm_vfpv2(void) {
|
1586 |
+
#if CPUINFO_ARCH_ARM
|
1587 |
+
return cpuinfo_isa.vfpv2;
|
1588 |
+
#else
|
1589 |
+
return false;
|
1590 |
+
#endif
|
1591 |
+
}
|
1592 |
+
|
1593 |
+
static inline bool cpuinfo_has_arm_vfpv3(void) {
|
1594 |
+
#if CPUINFO_ARCH_ARM64
|
1595 |
+
return true;
|
1596 |
+
#elif CPUINFO_ARCH_ARM
|
1597 |
+
return cpuinfo_isa.vfpv3;
|
1598 |
+
#else
|
1599 |
+
return false;
|
1600 |
+
#endif
|
1601 |
+
}
|
1602 |
+
|
1603 |
+
static inline bool cpuinfo_has_arm_vfpv3_d32(void) {
|
1604 |
+
#if CPUINFO_ARCH_ARM64
|
1605 |
+
return true;
|
1606 |
+
#elif CPUINFO_ARCH_ARM
|
1607 |
+
return cpuinfo_isa.vfpv3 && cpuinfo_isa.d32;
|
1608 |
+
#else
|
1609 |
+
return false;
|
1610 |
+
#endif
|
1611 |
+
}
|
1612 |
+
|
1613 |
+
static inline bool cpuinfo_has_arm_vfpv3_fp16(void) {
|
1614 |
+
#if CPUINFO_ARCH_ARM64
|
1615 |
+
return true;
|
1616 |
+
#elif CPUINFO_ARCH_ARM
|
1617 |
+
return cpuinfo_isa.vfpv3 && cpuinfo_isa.fp16;
|
1618 |
+
#else
|
1619 |
+
return false;
|
1620 |
+
#endif
|
1621 |
+
}
|
1622 |
+
|
1623 |
+
static inline bool cpuinfo_has_arm_vfpv3_fp16_d32(void) {
|
1624 |
+
#if CPUINFO_ARCH_ARM64
|
1625 |
+
return true;
|
1626 |
+
#elif CPUINFO_ARCH_ARM
|
1627 |
+
return cpuinfo_isa.vfpv3 && cpuinfo_isa.fp16 && cpuinfo_isa.d32;
|
1628 |
+
#else
|
1629 |
+
return false;
|
1630 |
+
#endif
|
1631 |
+
}
|
1632 |
+
|
1633 |
+
static inline bool cpuinfo_has_arm_vfpv4(void) {
|
1634 |
+
#if CPUINFO_ARCH_ARM64
|
1635 |
+
return true;
|
1636 |
+
#elif CPUINFO_ARCH_ARM
|
1637 |
+
return cpuinfo_isa.vfpv3 && cpuinfo_isa.fma;
|
1638 |
+
#else
|
1639 |
+
return false;
|
1640 |
+
#endif
|
1641 |
+
}
|
1642 |
+
|
1643 |
+
static inline bool cpuinfo_has_arm_vfpv4_d32(void) {
|
1644 |
+
#if CPUINFO_ARCH_ARM64
|
1645 |
+
return true;
|
1646 |
+
#elif CPUINFO_ARCH_ARM
|
1647 |
+
return cpuinfo_isa.vfpv3 && cpuinfo_isa.fma && cpuinfo_isa.d32;
|
1648 |
+
#else
|
1649 |
+
return false;
|
1650 |
+
#endif
|
1651 |
+
}
|
1652 |
+
|
1653 |
+
static inline bool cpuinfo_has_arm_fp16_arith(void) {
|
1654 |
+
#if CPUINFO_ARCH_ARM || CPUINFO_ARCH_ARM64
|
1655 |
+
return cpuinfo_isa.fp16arith;
|
1656 |
+
#else
|
1657 |
+
return false;
|
1658 |
+
#endif
|
1659 |
+
}
|
1660 |
+
|
1661 |
+
static inline bool cpuinfo_has_arm_bf16(void) {
|
1662 |
+
#if CPUINFO_ARCH_ARM64
|
1663 |
+
return cpuinfo_isa.bf16;
|
1664 |
+
#else
|
1665 |
+
return false;
|
1666 |
+
#endif
|
1667 |
+
}
|
1668 |
+
|
1669 |
+
static inline bool cpuinfo_has_arm_wmmx(void) {
|
1670 |
+
#if CPUINFO_ARCH_ARM
|
1671 |
+
return cpuinfo_isa.wmmx;
|
1672 |
+
#else
|
1673 |
+
return false;
|
1674 |
+
#endif
|
1675 |
+
}
|
1676 |
+
|
1677 |
+
static inline bool cpuinfo_has_arm_wmmx2(void) {
|
1678 |
+
#if CPUINFO_ARCH_ARM
|
1679 |
+
return cpuinfo_isa.wmmx2;
|
1680 |
+
#else
|
1681 |
+
return false;
|
1682 |
+
#endif
|
1683 |
+
}
|
1684 |
+
|
1685 |
+
static inline bool cpuinfo_has_arm_neon(void) {
|
1686 |
+
#if CPUINFO_ARCH_ARM64
|
1687 |
+
return true;
|
1688 |
+
#elif CPUINFO_ARCH_ARM
|
1689 |
+
return cpuinfo_isa.neon;
|
1690 |
+
#else
|
1691 |
+
return false;
|
1692 |
+
#endif
|
1693 |
+
}
|
1694 |
+
|
1695 |
+
static inline bool cpuinfo_has_arm_neon_fp16(void) {
|
1696 |
+
#if CPUINFO_ARCH_ARM64
|
1697 |
+
return true;
|
1698 |
+
#elif CPUINFO_ARCH_ARM
|
1699 |
+
return cpuinfo_isa.neon && cpuinfo_isa.fp16;
|
1700 |
+
#else
|
1701 |
+
return false;
|
1702 |
+
#endif
|
1703 |
+
}
|
1704 |
+
|
1705 |
+
static inline bool cpuinfo_has_arm_neon_fma(void) {
|
1706 |
+
#if CPUINFO_ARCH_ARM64
|
1707 |
+
return true;
|
1708 |
+
#elif CPUINFO_ARCH_ARM
|
1709 |
+
return cpuinfo_isa.neon && cpuinfo_isa.fma;
|
1710 |
+
#else
|
1711 |
+
return false;
|
1712 |
+
#endif
|
1713 |
+
}
|
1714 |
+
|
1715 |
+
static inline bool cpuinfo_has_arm_neon_v8(void) {
|
1716 |
+
#if CPUINFO_ARCH_ARM64
|
1717 |
+
return true;
|
1718 |
+
#elif CPUINFO_ARCH_ARM
|
1719 |
+
return cpuinfo_isa.neon && cpuinfo_isa.armv8;
|
1720 |
+
#else
|
1721 |
+
return false;
|
1722 |
+
#endif
|
1723 |
+
}
|
1724 |
+
|
1725 |
+
static inline bool cpuinfo_has_arm_atomics(void) {
|
1726 |
+
#if CPUINFO_ARCH_ARM64
|
1727 |
+
return cpuinfo_isa.atomics;
|
1728 |
+
#else
|
1729 |
+
return false;
|
1730 |
+
#endif
|
1731 |
+
}
|
1732 |
+
|
1733 |
+
static inline bool cpuinfo_has_arm_neon_rdm(void) {
|
1734 |
+
#if CPUINFO_ARCH_ARM || CPUINFO_ARCH_ARM64
|
1735 |
+
return cpuinfo_isa.rdm;
|
1736 |
+
#else
|
1737 |
+
return false;
|
1738 |
+
#endif
|
1739 |
+
}
|
1740 |
+
|
1741 |
+
static inline bool cpuinfo_has_arm_neon_fp16_arith(void) {
|
1742 |
+
#if CPUINFO_ARCH_ARM
|
1743 |
+
return cpuinfo_isa.neon && cpuinfo_isa.fp16arith;
|
1744 |
+
#elif CPUINFO_ARCH_ARM64
|
1745 |
+
return cpuinfo_isa.fp16arith;
|
1746 |
+
#else
|
1747 |
+
return false;
|
1748 |
+
#endif
|
1749 |
+
}
|
1750 |
+
|
1751 |
+
static inline bool cpuinfo_has_arm_fhm(void) {
|
1752 |
+
#if CPUINFO_ARCH_ARM || CPUINFO_ARCH_ARM64
|
1753 |
+
return cpuinfo_isa.fhm;
|
1754 |
+
#else
|
1755 |
+
return false;
|
1756 |
+
#endif
|
1757 |
+
}
|
1758 |
+
|
1759 |
+
static inline bool cpuinfo_has_arm_neon_dot(void) {
|
1760 |
+
#if CPUINFO_ARCH_ARM || CPUINFO_ARCH_ARM64
|
1761 |
+
return cpuinfo_isa.dot;
|
1762 |
+
#else
|
1763 |
+
return false;
|
1764 |
+
#endif
|
1765 |
+
}
|
1766 |
+
|
1767 |
+
static inline bool cpuinfo_has_arm_neon_bf16(void) {
|
1768 |
+
#if CPUINFO_ARCH_ARM64
|
1769 |
+
return cpuinfo_isa.bf16;
|
1770 |
+
#else
|
1771 |
+
return false;
|
1772 |
+
#endif
|
1773 |
+
}
|
1774 |
+
|
1775 |
+
static inline bool cpuinfo_has_arm_jscvt(void) {
|
1776 |
+
#if CPUINFO_ARCH_ARM || CPUINFO_ARCH_ARM64
|
1777 |
+
return cpuinfo_isa.jscvt;
|
1778 |
+
#else
|
1779 |
+
return false;
|
1780 |
+
#endif
|
1781 |
+
}
|
1782 |
+
|
1783 |
+
static inline bool cpuinfo_has_arm_fcma(void) {
|
1784 |
+
#if CPUINFO_ARCH_ARM || CPUINFO_ARCH_ARM64
|
1785 |
+
return cpuinfo_isa.fcma;
|
1786 |
+
#else
|
1787 |
+
return false;
|
1788 |
+
#endif
|
1789 |
+
}
|
1790 |
+
|
1791 |
+
static inline bool cpuinfo_has_arm_i8mm(void) {
|
1792 |
+
#if CPUINFO_ARCH_ARM64
|
1793 |
+
return cpuinfo_isa.i8mm;
|
1794 |
+
#else
|
1795 |
+
return false;
|
1796 |
+
#endif
|
1797 |
+
}
|
1798 |
+
|
1799 |
+
static inline bool cpuinfo_has_arm_aes(void) {
|
1800 |
+
#if CPUINFO_ARCH_ARM || CPUINFO_ARCH_ARM64
|
1801 |
+
return cpuinfo_isa.aes;
|
1802 |
+
#else
|
1803 |
+
return false;
|
1804 |
+
#endif
|
1805 |
+
}
|
1806 |
+
|
1807 |
+
static inline bool cpuinfo_has_arm_sha1(void) {
|
1808 |
+
#if CPUINFO_ARCH_ARM || CPUINFO_ARCH_ARM64
|
1809 |
+
return cpuinfo_isa.sha1;
|
1810 |
+
#else
|
1811 |
+
return false;
|
1812 |
+
#endif
|
1813 |
+
}
|
1814 |
+
|
1815 |
+
static inline bool cpuinfo_has_arm_sha2(void) {
|
1816 |
+
#if CPUINFO_ARCH_ARM || CPUINFO_ARCH_ARM64
|
1817 |
+
return cpuinfo_isa.sha2;
|
1818 |
+
#else
|
1819 |
+
return false;
|
1820 |
+
#endif
|
1821 |
+
}
|
1822 |
+
|
1823 |
+
static inline bool cpuinfo_has_arm_pmull(void) {
|
1824 |
+
#if CPUINFO_ARCH_ARM || CPUINFO_ARCH_ARM64
|
1825 |
+
return cpuinfo_isa.pmull;
|
1826 |
+
#else
|
1827 |
+
return false;
|
1828 |
+
#endif
|
1829 |
+
}
|
1830 |
+
|
1831 |
+
static inline bool cpuinfo_has_arm_crc32(void) {
|
1832 |
+
#if CPUINFO_ARCH_ARM || CPUINFO_ARCH_ARM64
|
1833 |
+
return cpuinfo_isa.crc32;
|
1834 |
+
#else
|
1835 |
+
return false;
|
1836 |
+
#endif
|
1837 |
+
}
|
1838 |
+
|
1839 |
+
static inline bool cpuinfo_has_arm_sve(void) {
|
1840 |
+
#if CPUINFO_ARCH_ARM64
|
1841 |
+
return cpuinfo_isa.sve;
|
1842 |
+
#else
|
1843 |
+
return false;
|
1844 |
+
#endif
|
1845 |
+
}
|
1846 |
+
|
1847 |
+
static inline bool cpuinfo_has_arm_sve_bf16(void) {
|
1848 |
+
#if CPUINFO_ARCH_ARM64
|
1849 |
+
return cpuinfo_isa.sve && cpuinfo_isa.bf16;
|
1850 |
+
#else
|
1851 |
+
return false;
|
1852 |
+
#endif
|
1853 |
+
}
|
1854 |
+
|
1855 |
+
static inline bool cpuinfo_has_arm_sve2(void) {
|
1856 |
+
#if CPUINFO_ARCH_ARM64
|
1857 |
+
return cpuinfo_isa.sve2;
|
1858 |
+
#else
|
1859 |
+
return false;
|
1860 |
+
#endif
|
1861 |
+
}
|
1862 |
+
|
1863 |
+
const struct cpuinfo_processor* CPUINFO_ABI cpuinfo_get_processors(void);
|
1864 |
+
const struct cpuinfo_core* CPUINFO_ABI cpuinfo_get_cores(void);
|
1865 |
+
const struct cpuinfo_cluster* CPUINFO_ABI cpuinfo_get_clusters(void);
|
1866 |
+
const struct cpuinfo_package* CPUINFO_ABI cpuinfo_get_packages(void);
|
1867 |
+
const struct cpuinfo_uarch_info* CPUINFO_ABI cpuinfo_get_uarchs(void);
|
1868 |
+
const struct cpuinfo_cache* CPUINFO_ABI cpuinfo_get_l1i_caches(void);
|
1869 |
+
const struct cpuinfo_cache* CPUINFO_ABI cpuinfo_get_l1d_caches(void);
|
1870 |
+
const struct cpuinfo_cache* CPUINFO_ABI cpuinfo_get_l2_caches(void);
|
1871 |
+
const struct cpuinfo_cache* CPUINFO_ABI cpuinfo_get_l3_caches(void);
|
1872 |
+
const struct cpuinfo_cache* CPUINFO_ABI cpuinfo_get_l4_caches(void);
|
1873 |
+
|
1874 |
+
const struct cpuinfo_processor* CPUINFO_ABI cpuinfo_get_processor(uint32_t index);
|
1875 |
+
const struct cpuinfo_core* CPUINFO_ABI cpuinfo_get_core(uint32_t index);
|
1876 |
+
const struct cpuinfo_cluster* CPUINFO_ABI cpuinfo_get_cluster(uint32_t index);
|
1877 |
+
const struct cpuinfo_package* CPUINFO_ABI cpuinfo_get_package(uint32_t index);
|
1878 |
+
const struct cpuinfo_uarch_info* CPUINFO_ABI cpuinfo_get_uarch(uint32_t index);
|
1879 |
+
const struct cpuinfo_cache* CPUINFO_ABI cpuinfo_get_l1i_cache(uint32_t index);
|
1880 |
+
const struct cpuinfo_cache* CPUINFO_ABI cpuinfo_get_l1d_cache(uint32_t index);
|
1881 |
+
const struct cpuinfo_cache* CPUINFO_ABI cpuinfo_get_l2_cache(uint32_t index);
|
1882 |
+
const struct cpuinfo_cache* CPUINFO_ABI cpuinfo_get_l3_cache(uint32_t index);
|
1883 |
+
const struct cpuinfo_cache* CPUINFO_ABI cpuinfo_get_l4_cache(uint32_t index);
|
1884 |
+
|
1885 |
+
uint32_t CPUINFO_ABI cpuinfo_get_processors_count(void);
|
1886 |
+
uint32_t CPUINFO_ABI cpuinfo_get_cores_count(void);
|
1887 |
+
uint32_t CPUINFO_ABI cpuinfo_get_clusters_count(void);
|
1888 |
+
uint32_t CPUINFO_ABI cpuinfo_get_packages_count(void);
|
1889 |
+
uint32_t CPUINFO_ABI cpuinfo_get_uarchs_count(void);
|
1890 |
+
uint32_t CPUINFO_ABI cpuinfo_get_l1i_caches_count(void);
|
1891 |
+
uint32_t CPUINFO_ABI cpuinfo_get_l1d_caches_count(void);
|
1892 |
+
uint32_t CPUINFO_ABI cpuinfo_get_l2_caches_count(void);
|
1893 |
+
uint32_t CPUINFO_ABI cpuinfo_get_l3_caches_count(void);
|
1894 |
+
uint32_t CPUINFO_ABI cpuinfo_get_l4_caches_count(void);
|
1895 |
+
|
1896 |
+
/**
|
1897 |
+
* Returns upper bound on cache size.
|
1898 |
+
*/
|
1899 |
+
uint32_t CPUINFO_ABI cpuinfo_get_max_cache_size(void);
|
1900 |
+
|
1901 |
+
/**
|
1902 |
+
* Identify the logical processor that executes the current thread.
|
1903 |
+
*
|
1904 |
+
* There is no guarantee that the thread will stay on the same logical processor for any time.
|
1905 |
+
* Callers should treat the result as only a hint, and be prepared to handle NULL return value.
|
1906 |
+
*/
|
1907 |
+
const struct cpuinfo_processor* CPUINFO_ABI cpuinfo_get_current_processor(void);
|
1908 |
+
|
1909 |
+
/**
|
1910 |
+
* Identify the core that executes the current thread.
|
1911 |
+
*
|
1912 |
+
* There is no guarantee that the thread will stay on the same core for any time.
|
1913 |
+
* Callers should treat the result as only a hint, and be prepared to handle NULL return value.
|
1914 |
+
*/
|
1915 |
+
const struct cpuinfo_core* CPUINFO_ABI cpuinfo_get_current_core(void);
|
1916 |
+
|
1917 |
+
/**
|
1918 |
+
* Identify the microarchitecture index of the core that executes the current thread.
|
1919 |
+
* If the system does not support such identification, the function returns 0.
|
1920 |
+
*
|
1921 |
+
* There is no guarantee that the thread will stay on the same type of core for any time.
|
1922 |
+
* Callers should treat the result as only a hint.
|
1923 |
+
*/
|
1924 |
+
uint32_t CPUINFO_ABI cpuinfo_get_current_uarch_index(void);
|
1925 |
+
|
1926 |
+
/**
|
1927 |
+
* Identify the microarchitecture index of the core that executes the current thread.
|
1928 |
+
* If the system does not support such identification, the function returns the user-specified default value.
|
1929 |
+
*
|
1930 |
+
* There is no guarantee that the thread will stay on the same type of core for any time.
|
1931 |
+
* Callers should treat the result as only a hint.
|
1932 |
+
*/
|
1933 |
+
uint32_t CPUINFO_ABI cpuinfo_get_current_uarch_index_with_default(uint32_t default_uarch_index);
|
1934 |
+
|
1935 |
+
#ifdef __cplusplus
|
1936 |
+
} /* extern "C" */
|
1937 |
+
#endif
|
1938 |
+
|
1939 |
+
#endif /* CPUINFO_H */
|
env-llmeval/lib/python3.10/site-packages/torch/include/dnnl.h
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/*******************************************************************************
|
2 |
+
* Copyright 2020 Intel Corporation
|
3 |
+
*
|
4 |
+
* Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
* you may not use this file except in compliance with the License.
|
6 |
+
* You may obtain a copy of the License at
|
7 |
+
*
|
8 |
+
* http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
*
|
10 |
+
* Unless required by applicable law or agreed to in writing, software
|
11 |
+
* distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
* See the License for the specific language governing permissions and
|
14 |
+
* limitations under the License.
|
15 |
+
*******************************************************************************/
|
16 |
+
|
17 |
+
#ifndef DNNL_H
|
18 |
+
#define DNNL_H
|
19 |
+
|
20 |
+
#include "oneapi/dnnl/dnnl.h"
|
21 |
+
|
22 |
+
#endif /* DNNL_H */
|
env-llmeval/lib/python3.10/site-packages/torch/include/dnnl_config.h
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/*******************************************************************************
|
2 |
+
* Copyright 2020 Intel Corporation
|
3 |
+
*
|
4 |
+
* Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
* you may not use this file except in compliance with the License.
|
6 |
+
* You may obtain a copy of the License at
|
7 |
+
*
|
8 |
+
* http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
*
|
10 |
+
* Unless required by applicable law or agreed to in writing, software
|
11 |
+
* distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
* See the License for the specific language governing permissions and
|
14 |
+
* limitations under the License.
|
15 |
+
*******************************************************************************/
|
16 |
+
|
17 |
+
#ifndef DNNL_CONFIG_H
|
18 |
+
#define DNNL_CONFIG_H
|
19 |
+
|
20 |
+
#include "oneapi/dnnl/dnnl_config.h"
|
21 |
+
|
22 |
+
#endif /* DNNL_CONFIG_H */
|
env-llmeval/lib/python3.10/site-packages/torch/include/dnnl_debug.h
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/*******************************************************************************
|
2 |
+
* Copyright 2020 Intel Corporation
|
3 |
+
*
|
4 |
+
* Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
* you may not use this file except in compliance with the License.
|
6 |
+
* You may obtain a copy of the License at
|
7 |
+
*
|
8 |
+
* http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
*
|
10 |
+
* Unless required by applicable law or agreed to in writing, software
|
11 |
+
* distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
* See the License for the specific language governing permissions and
|
14 |
+
* limitations under the License.
|
15 |
+
*******************************************************************************/
|
16 |
+
|
17 |
+
#ifndef DNNL_DEBUG_H
|
18 |
+
#define DNNL_DEBUG_H
|
19 |
+
|
20 |
+
#include "oneapi/dnnl/dnnl_debug.h"
|
21 |
+
|
22 |
+
#endif /* DNNL_DEBUG_H */
|
env-llmeval/lib/python3.10/site-packages/torch/include/dnnl_ocl.h
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/*******************************************************************************
|
2 |
+
* Copyright 2020 Intel Corporation
|
3 |
+
*
|
4 |
+
* Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
* you may not use this file except in compliance with the License.
|
6 |
+
* You may obtain a copy of the License at
|
7 |
+
*
|
8 |
+
* http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
*
|
10 |
+
* Unless required by applicable law or agreed to in writing, software
|
11 |
+
* distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
* See the License for the specific language governing permissions and
|
14 |
+
* limitations under the License.
|
15 |
+
*******************************************************************************/
|
16 |
+
|
17 |
+
#ifndef DNNL_OCL_H
|
18 |
+
#define DNNL_OCL_H
|
19 |
+
|
20 |
+
#include "oneapi/dnnl/dnnl_ocl.h"
|
21 |
+
|
22 |
+
#endif /* DNNL_OCL_H */
|
env-llmeval/lib/python3.10/site-packages/torch/include/dnnl_sycl.h
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/*******************************************************************************
|
2 |
+
* Copyright 2020 Intel Corporation
|
3 |
+
*
|
4 |
+
* Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
* you may not use this file except in compliance with the License.
|
6 |
+
* You may obtain a copy of the License at
|
7 |
+
*
|
8 |
+
* http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
*
|
10 |
+
* Unless required by applicable law or agreed to in writing, software
|
11 |
+
* distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
* See the License for the specific language governing permissions and
|
14 |
+
* limitations under the License.
|
15 |
+
*******************************************************************************/
|
16 |
+
|
17 |
+
#ifndef DNNL_SYCL_H
|
18 |
+
#define DNNL_SYCL_H
|
19 |
+
|
20 |
+
#include "oneapi/dnnl/dnnl_sycl.h"
|
21 |
+
|
22 |
+
#endif /* DNNL_SYCL_H */
|
env-llmeval/lib/python3.10/site-packages/torch/include/dnnl_sycl_types.h
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/*******************************************************************************
|
2 |
+
* Copyright 2020 Intel Corporation
|
3 |
+
*
|
4 |
+
* Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
* you may not use this file except in compliance with the License.
|
6 |
+
* You may obtain a copy of the License at
|
7 |
+
*
|
8 |
+
* http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
*
|
10 |
+
* Unless required by applicable law or agreed to in writing, software
|
11 |
+
* distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
* See the License for the specific language governing permissions and
|
14 |
+
* limitations under the License.
|
15 |
+
*******************************************************************************/
|
16 |
+
|
17 |
+
#ifndef DNNL_SYCL_TYPES_H
|
18 |
+
#define DNNL_SYCL_TYPES_H
|
19 |
+
|
20 |
+
#include "oneapi/dnnl/dnnl_sycl_types.h"
|
21 |
+
|
22 |
+
#endif /* DNNL_SYCL_TYPES_H */
|
env-llmeval/lib/python3.10/site-packages/torch/include/dnnl_threadpool.h
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/*******************************************************************************
|
2 |
+
* Copyright 2020 Intel Corporation
|
3 |
+
*
|
4 |
+
* Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
* you may not use this file except in compliance with the License.
|
6 |
+
* You may obtain a copy of the License at
|
7 |
+
*
|
8 |
+
* http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
*
|
10 |
+
* Unless required by applicable law or agreed to in writing, software
|
11 |
+
* distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
* See the License for the specific language governing permissions and
|
14 |
+
* limitations under the License.
|
15 |
+
*******************************************************************************/
|
16 |
+
|
17 |
+
#ifndef DNNL_THREADPOOL_H
|
18 |
+
#define DNNL_THREADPOOL_H
|
19 |
+
|
20 |
+
#include "oneapi/dnnl/dnnl_threadpool.h"
|
21 |
+
|
22 |
+
#endif /* DNNL_THREADPOOL_H */
|
env-llmeval/lib/python3.10/site-packages/torch/include/dnnl_types.h
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/*******************************************************************************
|
2 |
+
* Copyright 2020 Intel Corporation
|
3 |
+
*
|
4 |
+
* Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
* you may not use this file except in compliance with the License.
|
6 |
+
* You may obtain a copy of the License at
|
7 |
+
*
|
8 |
+
* http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
*
|
10 |
+
* Unless required by applicable law or agreed to in writing, software
|
11 |
+
* distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
* See the License for the specific language governing permissions and
|
14 |
+
* limitations under the License.
|
15 |
+
*******************************************************************************/
|
16 |
+
|
17 |
+
#ifndef DNNL_TYPES_H
|
18 |
+
#define DNNL_TYPES_H
|
19 |
+
|
20 |
+
#include "oneapi/dnnl/dnnl_types.h"
|
21 |
+
|
22 |
+
#endif /* DNNL_TYPES_H */
|
env-llmeval/lib/python3.10/site-packages/torch/include/dnnl_version.h
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/*******************************************************************************
|
2 |
+
* Copyright 2020 Intel Corporation
|
3 |
+
*
|
4 |
+
* Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
* you may not use this file except in compliance with the License.
|
6 |
+
* You may obtain a copy of the License at
|
7 |
+
*
|
8 |
+
* http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
*
|
10 |
+
* Unless required by applicable law or agreed to in writing, software
|
11 |
+
* distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
* See the License for the specific language governing permissions and
|
14 |
+
* limitations under the License.
|
15 |
+
*******************************************************************************/
|
16 |
+
|
17 |
+
#ifndef DNNL_VERSION_H
|
18 |
+
#define DNNL_VERSION_H
|
19 |
+
|
20 |
+
#include "oneapi/dnnl/dnnl_version.h"
|
21 |
+
|
22 |
+
#endif /* DNNL_VERSION_H */
|
env-llmeval/lib/python3.10/site-packages/torch/include/fp16.h
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
#ifndef FP16_H
|
3 |
+
#define FP16_H
|
4 |
+
|
5 |
+
#include <fp16/fp16.h>
|
6 |
+
|
7 |
+
#if defined(PSIMD_H)
|
8 |
+
#include <fp16/psimd.h>
|
9 |
+
#endif
|
10 |
+
|
11 |
+
#endif /* FP16_H */
|
env-llmeval/lib/python3.10/site-packages/torch/include/fxdiv.h
ADDED
@@ -0,0 +1,425 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
#ifndef FXDIV_H
|
3 |
+
#define FXDIV_H
|
4 |
+
|
5 |
+
#if defined(__cplusplus) && (__cplusplus >= 201103L)
|
6 |
+
#include <cstddef>
|
7 |
+
#include <cstdint>
|
8 |
+
#include <climits>
|
9 |
+
#elif !defined(__OPENCL_VERSION__)
|
10 |
+
#include <stddef.h>
|
11 |
+
#include <stdint.h>
|
12 |
+
#include <limits.h>
|
13 |
+
#endif
|
14 |
+
|
15 |
+
#if defined(_MSC_VER)
|
16 |
+
#include <intrin.h>
|
17 |
+
#if defined(_M_IX86) || defined(_M_X64)
|
18 |
+
#include <immintrin.h>
|
19 |
+
#endif
|
20 |
+
#endif
|
21 |
+
|
22 |
+
#ifndef FXDIV_USE_INLINE_ASSEMBLY
|
23 |
+
#define FXDIV_USE_INLINE_ASSEMBLY 0
|
24 |
+
#endif
|
25 |
+
|
26 |
+
static inline uint64_t fxdiv_mulext_uint32_t(uint32_t a, uint32_t b) {
|
27 |
+
#if defined(_MSC_VER) && defined(_M_IX86)
|
28 |
+
return (uint64_t) __emulu((unsigned int) a, (unsigned int) b);
|
29 |
+
#else
|
30 |
+
return (uint64_t) a * (uint64_t) b;
|
31 |
+
#endif
|
32 |
+
}
|
33 |
+
|
34 |
+
static inline uint32_t fxdiv_mulhi_uint32_t(uint32_t a, uint32_t b) {
|
35 |
+
#if defined(__OPENCL_VERSION__)
|
36 |
+
return mul_hi(a, b);
|
37 |
+
#elif defined(__CUDA_ARCH__)
|
38 |
+
return (uint32_t) __umulhi((unsigned int) a, (unsigned int) b);
|
39 |
+
#elif defined(_MSC_VER) && defined(_M_IX86)
|
40 |
+
return (uint32_t) (__emulu((unsigned int) a, (unsigned int) b) >> 32);
|
41 |
+
#elif defined(_MSC_VER) && defined(_M_ARM)
|
42 |
+
return (uint32_t) _MulUnsignedHigh((unsigned long) a, (unsigned long) b);
|
43 |
+
#else
|
44 |
+
return (uint32_t) (((uint64_t) a * (uint64_t) b) >> 32);
|
45 |
+
#endif
|
46 |
+
}
|
47 |
+
|
48 |
+
static inline uint64_t fxdiv_mulhi_uint64_t(uint64_t a, uint64_t b) {
|
49 |
+
#if defined(__OPENCL_VERSION__)
|
50 |
+
return mul_hi(a, b);
|
51 |
+
#elif defined(__CUDA_ARCH__)
|
52 |
+
return (uint64_t) __umul64hi((unsigned long long) a, (unsigned long long) b);
|
53 |
+
#elif defined(_MSC_VER) && defined(_M_X64)
|
54 |
+
return (uint64_t) __umulh((unsigned __int64) a, (unsigned __int64) b);
|
55 |
+
#elif defined(__GNUC__) && defined(__SIZEOF_INT128__)
|
56 |
+
return (uint64_t) (((((unsigned __int128) a) * ((unsigned __int128) b))) >> 64);
|
57 |
+
#else
|
58 |
+
const uint32_t a_lo = (uint32_t) a;
|
59 |
+
const uint32_t a_hi = (uint32_t) (a >> 32);
|
60 |
+
const uint32_t b_lo = (uint32_t) b;
|
61 |
+
const uint32_t b_hi = (uint32_t) (b >> 32);
|
62 |
+
|
63 |
+
const uint64_t t = fxdiv_mulext_uint32_t(a_hi, b_lo) +
|
64 |
+
(uint64_t) fxdiv_mulhi_uint32_t(a_lo, b_lo);
|
65 |
+
return fxdiv_mulext_uint32_t(a_hi, b_hi) + (t >> 32) +
|
66 |
+
((fxdiv_mulext_uint32_t(a_lo, b_hi) + (uint64_t) (uint32_t) t) >> 32);
|
67 |
+
#endif
|
68 |
+
}
|
69 |
+
|
70 |
+
static inline size_t fxdiv_mulhi_size_t(size_t a, size_t b) {
|
71 |
+
#if SIZE_MAX == UINT32_MAX
|
72 |
+
return (size_t) fxdiv_mulhi_uint32_t((uint32_t) a, (uint32_t) b);
|
73 |
+
#elif SIZE_MAX == UINT64_MAX
|
74 |
+
return (size_t) fxdiv_mulhi_uint64_t((uint64_t) a, (uint64_t) b);
|
75 |
+
#else
|
76 |
+
#error Unsupported platform
|
77 |
+
#endif
|
78 |
+
}
|
79 |
+
|
80 |
+
struct fxdiv_divisor_uint32_t {
|
81 |
+
uint32_t value;
|
82 |
+
uint32_t m;
|
83 |
+
uint8_t s1;
|
84 |
+
uint8_t s2;
|
85 |
+
};
|
86 |
+
|
87 |
+
struct fxdiv_result_uint32_t {
|
88 |
+
uint32_t quotient;
|
89 |
+
uint32_t remainder;
|
90 |
+
};
|
91 |
+
|
92 |
+
struct fxdiv_divisor_uint64_t {
|
93 |
+
uint64_t value;
|
94 |
+
uint64_t m;
|
95 |
+
uint8_t s1;
|
96 |
+
uint8_t s2;
|
97 |
+
};
|
98 |
+
|
99 |
+
struct fxdiv_result_uint64_t {
|
100 |
+
uint64_t quotient;
|
101 |
+
uint64_t remainder;
|
102 |
+
};
|
103 |
+
|
104 |
+
struct fxdiv_divisor_size_t {
|
105 |
+
size_t value;
|
106 |
+
size_t m;
|
107 |
+
uint8_t s1;
|
108 |
+
uint8_t s2;
|
109 |
+
};
|
110 |
+
|
111 |
+
struct fxdiv_result_size_t {
|
112 |
+
size_t quotient;
|
113 |
+
size_t remainder;
|
114 |
+
};
|
115 |
+
|
116 |
+
static inline struct fxdiv_divisor_uint32_t fxdiv_init_uint32_t(uint32_t d) {
|
117 |
+
struct fxdiv_divisor_uint32_t result = { d };
|
118 |
+
if (d == 1) {
|
119 |
+
result.m = UINT32_C(1);
|
120 |
+
result.s1 = 0;
|
121 |
+
result.s2 = 0;
|
122 |
+
} else {
|
123 |
+
#if defined(__OPENCL_VERSION__)
|
124 |
+
const uint32_t l_minus_1 = 31 - clz(d - 1);
|
125 |
+
#elif defined(__CUDA_ARCH__)
|
126 |
+
const uint32_t l_minus_1 = 31 - __clz((int) (d - 1));
|
127 |
+
#elif defined(_MSC_VER) && (defined(_M_IX86) || defined(_M_X64) || defined(_M_ARM) || defined(_M_ARM64))
|
128 |
+
unsigned long l_minus_1;
|
129 |
+
_BitScanReverse(&l_minus_1, (unsigned long) (d - 1));
|
130 |
+
#elif defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__)) && FXDIV_USE_INLINE_ASSEMBLY
|
131 |
+
uint32_t l_minus_1;
|
132 |
+
__asm__("BSRL %[d_minus_1], %[l_minus_1]"
|
133 |
+
: [l_minus_1] "=r" (l_minus_1)
|
134 |
+
: [d_minus_1] "r" (d - 1)
|
135 |
+
: "cc");
|
136 |
+
#elif defined(__GNUC__)
|
137 |
+
const uint32_t l_minus_1 = 31 - __builtin_clz(d - 1);
|
138 |
+
#else
|
139 |
+
/* Based on Algorithm 2 from Hacker's delight */
|
140 |
+
|
141 |
+
uint32_t l_minus_1 = 0;
|
142 |
+
uint32_t x = d - 1;
|
143 |
+
uint32_t y = x >> 16;
|
144 |
+
if (y != 0) {
|
145 |
+
l_minus_1 += 16;
|
146 |
+
x = y;
|
147 |
+
}
|
148 |
+
y = x >> 8;
|
149 |
+
if (y != 0) {
|
150 |
+
l_minus_1 += 8;
|
151 |
+
x = y;
|
152 |
+
}
|
153 |
+
y = x >> 4;
|
154 |
+
if (y != 0) {
|
155 |
+
l_minus_1 += 4;
|
156 |
+
x = y;
|
157 |
+
}
|
158 |
+
y = x >> 2;
|
159 |
+
if (y != 0) {
|
160 |
+
l_minus_1 += 2;
|
161 |
+
x = y;
|
162 |
+
}
|
163 |
+
if ((x & 2) != 0) {
|
164 |
+
l_minus_1 += 1;
|
165 |
+
}
|
166 |
+
#endif
|
167 |
+
uint32_t u_hi = (UINT32_C(2) << (uint32_t) l_minus_1) - d;
|
168 |
+
|
169 |
+
/* Division of 64-bit number u_hi:UINT32_C(0) by 32-bit number d, 32-bit quotient output q */
|
170 |
+
#if defined(__GNUC__) && defined(__i386__) && FXDIV_USE_INLINE_ASSEMBLY
|
171 |
+
uint32_t q;
|
172 |
+
__asm__("DIVL %[d]"
|
173 |
+
: "=a" (q), "+d" (u_hi)
|
174 |
+
: [d] "r" (d), "a" (0)
|
175 |
+
: "cc");
|
176 |
+
#elif (defined(_MSC_VER) && _MSC_VER >= 1920) && !defined(__clang__) && !defined(__INTEL_COMPILER) && (defined(_M_IX86) || defined(_M_X64))
|
177 |
+
unsigned int remainder;
|
178 |
+
const uint32_t q = (uint32_t) _udiv64((unsigned __int64) ((uint64_t) u_hi << 32), (unsigned int) d, &remainder);
|
179 |
+
#else
|
180 |
+
const uint32_t q = ((uint64_t) u_hi << 32) / d;
|
181 |
+
#endif
|
182 |
+
|
183 |
+
result.m = q + UINT32_C(1);
|
184 |
+
result.s1 = 1;
|
185 |
+
result.s2 = (uint8_t) l_minus_1;
|
186 |
+
}
|
187 |
+
return result;
|
188 |
+
}
|
189 |
+
|
190 |
+
static inline struct fxdiv_divisor_uint64_t fxdiv_init_uint64_t(uint64_t d) {
|
191 |
+
struct fxdiv_divisor_uint64_t result = { d };
|
192 |
+
if (d == 1) {
|
193 |
+
result.m = UINT64_C(1);
|
194 |
+
result.s1 = 0;
|
195 |
+
result.s2 = 0;
|
196 |
+
} else {
|
197 |
+
#if defined(__OPENCL_VERSION__)
|
198 |
+
const uint32_t nlz_d = clz(d);
|
199 |
+
const uint32_t l_minus_1 = 63 - clz(d - 1);
|
200 |
+
#elif defined(__CUDA_ARCH__)
|
201 |
+
const uint32_t nlz_d = __clzll((long long) d);
|
202 |
+
const uint32_t l_minus_1 = 63 - __clzll((long long) (d - 1));
|
203 |
+
#elif defined(_MSC_VER) && (defined(_M_X64) || defined(_M_ARM64))
|
204 |
+
unsigned long l_minus_1;
|
205 |
+
_BitScanReverse64(&l_minus_1, (unsigned __int64) (d - 1));
|
206 |
+
unsigned long bsr_d;
|
207 |
+
_BitScanReverse64(&bsr_d, (unsigned __int64) d);
|
208 |
+
const uint32_t nlz_d = bsr_d ^ 0x3F;
|
209 |
+
#elif defined(_MSC_VER) && (defined(_M_IX86) || defined(_M_ARM))
|
210 |
+
const uint64_t d_minus_1 = d - 1;
|
211 |
+
const uint8_t d_is_power_of_2 = (d & d_minus_1) == 0;
|
212 |
+
unsigned long l_minus_1;
|
213 |
+
if ((uint32_t) (d_minus_1 >> 32) == 0) {
|
214 |
+
_BitScanReverse(&l_minus_1, (unsigned long) d_minus_1);
|
215 |
+
} else {
|
216 |
+
_BitScanReverse(&l_minus_1, (unsigned long) (uint32_t) (d_minus_1 >> 32));
|
217 |
+
l_minus_1 += 32;
|
218 |
+
}
|
219 |
+
const uint32_t nlz_d = ((uint8_t) l_minus_1 ^ UINT8_C(0x3F)) - d_is_power_of_2;
|
220 |
+
#elif defined(__GNUC__) && defined(__x86_64__) && FXDIV_USE_INLINE_ASSEMBLY
|
221 |
+
uint64_t l_minus_1;
|
222 |
+
__asm__("BSRQ %[d_minus_1], %[l_minus_1]"
|
223 |
+
: [l_minus_1] "=r" (l_minus_1)
|
224 |
+
: [d_minus_1] "r" (d - 1)
|
225 |
+
: "cc");
|
226 |
+
#elif defined(__GNUC__)
|
227 |
+
const uint32_t l_minus_1 = 63 - __builtin_clzll(d - 1);
|
228 |
+
const uint32_t nlz_d = __builtin_clzll(d);
|
229 |
+
#else
|
230 |
+
/* Based on Algorithm 2 from Hacker's delight */
|
231 |
+
const uint64_t d_minus_1 = d - 1;
|
232 |
+
const uint32_t d_is_power_of_2 = (d & d_minus_1) == 0;
|
233 |
+
uint32_t l_minus_1 = 0;
|
234 |
+
uint32_t x = (uint32_t) d_minus_1;
|
235 |
+
uint32_t y = d_minus_1 >> 32;
|
236 |
+
if (y != 0) {
|
237 |
+
l_minus_1 += 32;
|
238 |
+
x = y;
|
239 |
+
}
|
240 |
+
y = x >> 16;
|
241 |
+
if (y != 0) {
|
242 |
+
l_minus_1 += 16;
|
243 |
+
x = y;
|
244 |
+
}
|
245 |
+
y = x >> 8;
|
246 |
+
if (y != 0) {
|
247 |
+
l_minus_1 += 8;
|
248 |
+
x = y;
|
249 |
+
}
|
250 |
+
y = x >> 4;
|
251 |
+
if (y != 0) {
|
252 |
+
l_minus_1 += 4;
|
253 |
+
x = y;
|
254 |
+
}
|
255 |
+
y = x >> 2;
|
256 |
+
if (y != 0) {
|
257 |
+
l_minus_1 += 2;
|
258 |
+
x = y;
|
259 |
+
}
|
260 |
+
if ((x & 2) != 0) {
|
261 |
+
l_minus_1 += 1;
|
262 |
+
}
|
263 |
+
const uint32_t nlz_d = (l_minus_1 ^ UINT32_C(0x3F)) - d_is_power_of_2;
|
264 |
+
#endif
|
265 |
+
uint64_t u_hi = (UINT64_C(2) << (uint32_t) l_minus_1) - d;
|
266 |
+
|
267 |
+
/* Division of 128-bit number u_hi:UINT64_C(0) by 64-bit number d, 64-bit quotient output q */
|
268 |
+
#if defined(__GNUC__) && defined(__x86_64__) && FXDIV_USE_INLINE_ASSEMBLY
|
269 |
+
uint64_t q;
|
270 |
+
__asm__("DIVQ %[d]"
|
271 |
+
: "=a" (q), "+d" (u_hi)
|
272 |
+
: [d] "r" (d), "a" (UINT64_C(0))
|
273 |
+
: "cc");
|
274 |
+
#elif 0 && defined(__GNUC__) && defined(__SIZEOF_INT128__)
|
275 |
+
/* GCC, Clang, and Intel Compiler fail to inline optimized implementation and call into support library for 128-bit division */
|
276 |
+
const uint64_t q = (uint64_t) (((unsigned __int128) u_hi << 64) / ((unsigned __int128) d));
|
277 |
+
#elif (defined(_MSC_VER) && _MSC_VER >= 1920) && !defined(__clang__) && !defined(__INTEL_COMPILER) && defined(_M_X64)
|
278 |
+
unsigned __int64 remainder;
|
279 |
+
const uint64_t q = (uint64_t) _udiv128((unsigned __int64) u_hi, 0, (unsigned __int64) d, &remainder);
|
280 |
+
#else
|
281 |
+
/* Implementation based on code from Hacker's delight */
|
282 |
+
|
283 |
+
/* Normalize divisor and shift divident left */
|
284 |
+
d <<= nlz_d;
|
285 |
+
u_hi <<= nlz_d;
|
286 |
+
/* Break divisor up into two 32-bit digits */
|
287 |
+
const uint64_t d_hi = (uint32_t) (d >> 32);
|
288 |
+
const uint32_t d_lo = (uint32_t) d;
|
289 |
+
|
290 |
+
/* Compute the first quotient digit, q1 */
|
291 |
+
uint64_t q1 = u_hi / d_hi;
|
292 |
+
uint64_t r1 = u_hi - q1 * d_hi;
|
293 |
+
|
294 |
+
while ((q1 >> 32) != 0 || fxdiv_mulext_uint32_t((uint32_t) q1, d_lo) > (r1 << 32)) {
|
295 |
+
q1 -= 1;
|
296 |
+
r1 += d_hi;
|
297 |
+
if ((r1 >> 32) != 0) {
|
298 |
+
break;
|
299 |
+
}
|
300 |
+
}
|
301 |
+
|
302 |
+
/* Multiply and subtract. */
|
303 |
+
u_hi = (u_hi << 32) - q1 * d;
|
304 |
+
|
305 |
+
/* Compute the second quotient digit, q0 */
|
306 |
+
uint64_t q0 = u_hi / d_hi;
|
307 |
+
uint64_t r0 = u_hi - q0 * d_hi;
|
308 |
+
|
309 |
+
while ((q0 >> 32) != 0 || fxdiv_mulext_uint32_t((uint32_t) q0, d_lo) > (r0 << 32)) {
|
310 |
+
q0 -= 1;
|
311 |
+
r0 += d_hi;
|
312 |
+
if ((r0 >> 32) != 0) {
|
313 |
+
break;
|
314 |
+
}
|
315 |
+
}
|
316 |
+
const uint64_t q = (q1 << 32) | (uint32_t) q0;
|
317 |
+
#endif
|
318 |
+
result.m = q + UINT64_C(1);
|
319 |
+
result.s1 = 1;
|
320 |
+
result.s2 = (uint8_t) l_minus_1;
|
321 |
+
}
|
322 |
+
return result;
|
323 |
+
}
|
324 |
+
|
325 |
+
static inline struct fxdiv_divisor_size_t fxdiv_init_size_t(size_t d) {
|
326 |
+
#if SIZE_MAX == UINT32_MAX
|
327 |
+
const struct fxdiv_divisor_uint32_t uint_result = fxdiv_init_uint32_t((uint32_t) d);
|
328 |
+
#elif SIZE_MAX == UINT64_MAX
|
329 |
+
const struct fxdiv_divisor_uint64_t uint_result = fxdiv_init_uint64_t((uint64_t) d);
|
330 |
+
#else
|
331 |
+
#error Unsupported platform
|
332 |
+
#endif
|
333 |
+
struct fxdiv_divisor_size_t size_result = {
|
334 |
+
(size_t) uint_result.value,
|
335 |
+
(size_t) uint_result.m,
|
336 |
+
uint_result.s1,
|
337 |
+
uint_result.s2
|
338 |
+
};
|
339 |
+
return size_result;
|
340 |
+
}
|
341 |
+
|
342 |
+
static inline uint32_t fxdiv_quotient_uint32_t(uint32_t n, const struct fxdiv_divisor_uint32_t divisor) {
|
343 |
+
const uint32_t t = fxdiv_mulhi_uint32_t(n, divisor.m);
|
344 |
+
return (t + ((n - t) >> divisor.s1)) >> divisor.s2;
|
345 |
+
}
|
346 |
+
|
347 |
+
static inline uint64_t fxdiv_quotient_uint64_t(uint64_t n, const struct fxdiv_divisor_uint64_t divisor) {
|
348 |
+
const uint64_t t = fxdiv_mulhi_uint64_t(n, divisor.m);
|
349 |
+
return (t + ((n - t) >> divisor.s1)) >> divisor.s2;
|
350 |
+
}
|
351 |
+
|
352 |
+
static inline size_t fxdiv_quotient_size_t(size_t n, const struct fxdiv_divisor_size_t divisor) {
|
353 |
+
#if SIZE_MAX == UINT32_MAX
|
354 |
+
const struct fxdiv_divisor_uint32_t uint32_divisor = {
|
355 |
+
(uint32_t) divisor.value,
|
356 |
+
(uint32_t) divisor.m,
|
357 |
+
divisor.s1,
|
358 |
+
divisor.s2
|
359 |
+
};
|
360 |
+
return fxdiv_quotient_uint32_t((uint32_t) n, uint32_divisor);
|
361 |
+
#elif SIZE_MAX == UINT64_MAX
|
362 |
+
const struct fxdiv_divisor_uint64_t uint64_divisor = {
|
363 |
+
(uint64_t) divisor.value,
|
364 |
+
(uint64_t) divisor.m,
|
365 |
+
divisor.s1,
|
366 |
+
divisor.s2
|
367 |
+
};
|
368 |
+
return fxdiv_quotient_uint64_t((uint64_t) n, uint64_divisor);
|
369 |
+
#else
|
370 |
+
#error Unsupported platform
|
371 |
+
#endif
|
372 |
+
}
|
373 |
+
|
374 |
+
static inline uint32_t fxdiv_remainder_uint32_t(uint32_t n, const struct fxdiv_divisor_uint32_t divisor) {
|
375 |
+
const uint32_t quotient = fxdiv_quotient_uint32_t(n, divisor);
|
376 |
+
return n - quotient * divisor.value;
|
377 |
+
}
|
378 |
+
|
379 |
+
static inline uint64_t fxdiv_remainder_uint64_t(uint64_t n, const struct fxdiv_divisor_uint64_t divisor) {
|
380 |
+
const uint64_t quotient = fxdiv_quotient_uint64_t(n, divisor);
|
381 |
+
return n - quotient * divisor.value;
|
382 |
+
}
|
383 |
+
|
384 |
+
static inline size_t fxdiv_remainder_size_t(size_t n, const struct fxdiv_divisor_size_t divisor) {
|
385 |
+
const size_t quotient = fxdiv_quotient_size_t(n, divisor);
|
386 |
+
return n - quotient * divisor.value;
|
387 |
+
}
|
388 |
+
|
389 |
+
static inline uint32_t fxdiv_round_down_uint32_t(uint32_t n, const struct fxdiv_divisor_uint32_t granularity) {
|
390 |
+
const uint32_t quotient = fxdiv_quotient_uint32_t(n, granularity);
|
391 |
+
return quotient * granularity.value;
|
392 |
+
}
|
393 |
+
|
394 |
+
static inline uint64_t fxdiv_round_down_uint64_t(uint64_t n, const struct fxdiv_divisor_uint64_t granularity) {
|
395 |
+
const uint64_t quotient = fxdiv_quotient_uint64_t(n, granularity);
|
396 |
+
return quotient * granularity.value;
|
397 |
+
}
|
398 |
+
|
399 |
+
static inline size_t fxdiv_round_down_size_t(size_t n, const struct fxdiv_divisor_size_t granularity) {
|
400 |
+
const size_t quotient = fxdiv_quotient_size_t(n, granularity);
|
401 |
+
return quotient * granularity.value;
|
402 |
+
}
|
403 |
+
|
404 |
+
static inline struct fxdiv_result_uint32_t fxdiv_divide_uint32_t(uint32_t n, const struct fxdiv_divisor_uint32_t divisor) {
|
405 |
+
const uint32_t quotient = fxdiv_quotient_uint32_t(n, divisor);
|
406 |
+
const uint32_t remainder = n - quotient * divisor.value;
|
407 |
+
struct fxdiv_result_uint32_t result = { quotient, remainder };
|
408 |
+
return result;
|
409 |
+
}
|
410 |
+
|
411 |
+
static inline struct fxdiv_result_uint64_t fxdiv_divide_uint64_t(uint64_t n, const struct fxdiv_divisor_uint64_t divisor) {
|
412 |
+
const uint64_t quotient = fxdiv_quotient_uint64_t(n, divisor);
|
413 |
+
const uint64_t remainder = n - quotient * divisor.value;
|
414 |
+
struct fxdiv_result_uint64_t result = { quotient, remainder };
|
415 |
+
return result;
|
416 |
+
}
|
417 |
+
|
418 |
+
static inline struct fxdiv_result_size_t fxdiv_divide_size_t(size_t n, const struct fxdiv_divisor_size_t divisor) {
|
419 |
+
const size_t quotient = fxdiv_quotient_size_t(n, divisor);
|
420 |
+
const size_t remainder = n - quotient * divisor.value;
|
421 |
+
struct fxdiv_result_size_t result = { quotient, remainder };
|
422 |
+
return result;
|
423 |
+
}
|
424 |
+
|
425 |
+
#endif /* FXDIV_H */
|
env-llmeval/lib/python3.10/site-packages/torch/include/libshm.h
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/MapAllocator.h>
|
4 |
+
|
5 |
+
#ifdef __cplusplus
|
6 |
+
|
7 |
+
void libshm_init(const char* manager_exec_path);
|
8 |
+
|
9 |
+
// Superclass to run a constructor before at::RefcountedMapAllocator
|
10 |
+
class THManagedMapAllocatorInit {
|
11 |
+
protected:
|
12 |
+
THManagedMapAllocatorInit(const char* manager_handle, const char* filename);
|
13 |
+
std::string manager_handle_;
|
14 |
+
};
|
15 |
+
|
16 |
+
// Like a at::RefcountedMapAllocator, but it also makes use of an external
|
17 |
+
// shared memory manager process to ensure that shared memory regions actually
|
18 |
+
// get freed in the end (even if processes lose the memory).
|
19 |
+
class THManagedMapAllocator : private THManagedMapAllocatorInit,
|
20 |
+
public at::RefcountedMapAllocator {
|
21 |
+
public:
|
22 |
+
THManagedMapAllocator(
|
23 |
+
const char* manager_handle,
|
24 |
+
const char* filename,
|
25 |
+
int flags,
|
26 |
+
size_t size);
|
27 |
+
|
28 |
+
void close() override;
|
29 |
+
|
30 |
+
~THManagedMapAllocator() override {
|
31 |
+
close();
|
32 |
+
}
|
33 |
+
|
34 |
+
static at::DataPtr makeDataPtr(
|
35 |
+
const char* manager_handle,
|
36 |
+
const char* filename,
|
37 |
+
int flags,
|
38 |
+
size_t size);
|
39 |
+
static THManagedMapAllocator* fromDataPtr(const at::DataPtr&);
|
40 |
+
|
41 |
+
const char* manager_handle() const {
|
42 |
+
return manager_handle_.c_str();
|
43 |
+
}
|
44 |
+
};
|
45 |
+
|
46 |
+
#endif
|
env-llmeval/lib/python3.10/site-packages/torch/include/nnpack.h
ADDED
@@ -0,0 +1,659 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <stddef.h>
|
4 |
+
#include <stdint.h>
|
5 |
+
#include <stdbool.h>
|
6 |
+
|
7 |
+
#include <pthreadpool.h>
|
8 |
+
|
9 |
+
#ifdef __cplusplus
|
10 |
+
extern "C" {
|
11 |
+
#endif
|
12 |
+
|
13 |
+
/**
|
14 |
+
* @brief Status code for any NNPACK function call.
|
15 |
+
*/
|
16 |
+
enum nnp_status {
|
17 |
+
/** The call succeeded, and all output arguments now contain valid data. */
|
18 |
+
nnp_status_success = 0,
|
19 |
+
/** NNPACK function was called with batch_size == 0. */
|
20 |
+
nnp_status_invalid_batch_size = 2,
|
21 |
+
/** NNPACK function was called with channels == 0. */
|
22 |
+
nnp_status_invalid_channels = 3,
|
23 |
+
/** NNPACK function was called with input_channels == 0. */
|
24 |
+
nnp_status_invalid_input_channels = 4,
|
25 |
+
/** NNPACK function was called with output_channels == 0. */
|
26 |
+
nnp_status_invalid_output_channels = 5,
|
27 |
+
/** NNPACK function was called with input_size.height == 0 or input_size.width == 0 */
|
28 |
+
nnp_status_invalid_input_size = 10,
|
29 |
+
/** NNPACK function was called with input_stride.height == 0 or input_stride.width == 0 */
|
30 |
+
nnp_status_invalid_input_stride = 11,
|
31 |
+
/** NNPACK function was called with input_padding not less than respective kernel (or pooling) size, i.e.:
|
32 |
+
*
|
33 |
+
* - input_padding.left >= kernel_size.width (>= pooling_size.width)
|
34 |
+
* - input_padding.right >= kernel_size.width (>= pooling_size.width)
|
35 |
+
* - input_padding.top >= kernel_size.height (>= pooling_size.height)
|
36 |
+
* - input_padding.bottom >= kernel_size.height (>= pooling_size.height)
|
37 |
+
*/
|
38 |
+
nnp_status_invalid_input_padding = 12,
|
39 |
+
/** NNPACK function was called with kernel_size.height == 0 or kernel_size.width == 0 */
|
40 |
+
nnp_status_invalid_kernel_size = 13,
|
41 |
+
/** NNPACK function was called with pooling_size.height == 0 or pooling_size.width == 0 */
|
42 |
+
nnp_status_invalid_pooling_size = 14,
|
43 |
+
/** NNPACK function was called with pooling_stride.height == 0 or pooling_stride.width == 0 */
|
44 |
+
nnp_status_invalid_pooling_stride = 15,
|
45 |
+
/** NNPACK function was called with convolution algorithm not in nnp_convolution_algorithm enumeration */
|
46 |
+
nnp_status_invalid_algorithm = 16,
|
47 |
+
/** NNPACK function was called with convolution transform strategy not in nnp_convolution_transform_strategy enum */
|
48 |
+
nnp_status_invalid_transform_strategy = 17,
|
49 |
+
/** NNPACK function was called with output_subsampling.height == 0 or output_subsampling.width == 0 */
|
50 |
+
nnp_status_invalid_output_subsampling = 13,
|
51 |
+
/** NNPACK function was called with activation not in nnp_activation enum */
|
52 |
+
nnp_status_invalid_activation = 14,
|
53 |
+
/** NNPACK function was called with invalid activation parameters */
|
54 |
+
nnp_status_invalid_activation_parameters = 15,
|
55 |
+
|
56 |
+
/** NNPACK does not support the particular input size for the function */
|
57 |
+
nnp_status_unsupported_input_size = 20,
|
58 |
+
/** NNPACK does not support the particular input stride for the function */
|
59 |
+
nnp_status_unsupported_input_stride = 21,
|
60 |
+
/** NNPACK does not support the particular input padding for the function */
|
61 |
+
nnp_status_unsupported_input_padding = 22,
|
62 |
+
/** NNPACK does not support the particular kernel size for the function */
|
63 |
+
nnp_status_unsupported_kernel_size = 23,
|
64 |
+
/** NNPACK does not support the particular pooling size for the function */
|
65 |
+
nnp_status_unsupported_pooling_size = 24,
|
66 |
+
/** NNPACK does not support the particular pooling stride for the function */
|
67 |
+
nnp_status_unsupported_pooling_stride = 25,
|
68 |
+
/** NNPACK does not support the particular convolution algorithm for the function */
|
69 |
+
nnp_status_unsupported_algorithm = 26,
|
70 |
+
/** NNPACK does not support the particular convolution transform strategy for the algorithm */
|
71 |
+
nnp_status_unsupported_transform_strategy = 27,
|
72 |
+
/** NNPACK does not support the particular activation function for the function */
|
73 |
+
nnp_status_unsupported_activation = 28,
|
74 |
+
/** NNPACK does not support the particular activation function parameters for the function */
|
75 |
+
nnp_status_unsupported_activation_parameters = 29,
|
76 |
+
|
77 |
+
/** NNPACK function was called before the library was initialized */
|
78 |
+
nnp_status_uninitialized = 50,
|
79 |
+
/** NNPACK does not implement this function for the host CPU */
|
80 |
+
nnp_status_unsupported_hardware = 51,
|
81 |
+
/** NNPACK failed to allocate memory for temporary buffers */
|
82 |
+
nnp_status_out_of_memory = 52,
|
83 |
+
/** Scratch space buffer is too small */
|
84 |
+
nnp_status_insufficient_buffer = 53,
|
85 |
+
/** Scratch space buffer is not properly aligned */
|
86 |
+
nnp_status_misaligned_buffer = 54
|
87 |
+
};
|
88 |
+
|
89 |
+
/**
|
90 |
+
* @brief Activation applied applied after a convolutional or fully-connected layer.
|
91 |
+
*/
|
92 |
+
enum nnp_activation {
|
93 |
+
/** Identity activation f(x) := x, i.e. no transformation */
|
94 |
+
nnp_activation_identity = 0,
|
95 |
+
/** ReLU activation f(x) := max(0, x) */
|
96 |
+
nnp_activation_relu = 1,
|
97 |
+
};
|
98 |
+
|
99 |
+
/**
|
100 |
+
* @brief Algorithm for computing convolutional layers.
|
101 |
+
*/
|
102 |
+
enum nnp_convolution_algorithm {
|
103 |
+
/** Let NNPACK choose the algorithm depending on layer parameters */
|
104 |
+
nnp_convolution_algorithm_auto = 0,
|
105 |
+
/** Tiled convolution based on 2D Fourier transform with 8x8 blocks. Supports kernels up to 8x8. */
|
106 |
+
nnp_convolution_algorithm_ft8x8 = 1,
|
107 |
+
/** Tiled convolution based on 2D Fourier transform with 16x16 blocks. Supports kernels up to 16x16. */
|
108 |
+
nnp_convolution_algorithm_ft16x16 = 2,
|
109 |
+
/** Tiled convolution based on 2D Winograd transform F(3x3, 6x6) with 8x8 blocks. Supports only 3x3 kernels. */
|
110 |
+
nnp_convolution_algorithm_wt8x8 = 3,
|
111 |
+
/** Direct convolution via implicit GEMM. */
|
112 |
+
nnp_convolution_algorithm_implicit_gemm = 4,
|
113 |
+
/** Direct convolution implementation. */
|
114 |
+
nnp_convolution_algorithm_direct = 5,
|
115 |
+
/**
|
116 |
+
* Tiled convolution based on 2D Winograd transform F(3x3, 6x6) with 8x8 blocks in FP16.
|
117 |
+
* Supports only 3x3 kernels. Implemented only for new ARM processors (with NEON-HP),
|
118 |
+
* on non-supported processors falls back to nnp_convolution_algorithm_wt8x8.
|
119 |
+
*/
|
120 |
+
nnp_convolution_algorithm_wt8x8_fp16 = 6,
|
121 |
+
};
|
122 |
+
|
123 |
+
enum nnp_convolution_transform_strategy {
|
124 |
+
nnp_convolution_transform_strategy_compute = 1,
|
125 |
+
nnp_convolution_transform_strategy_precompute = 2,
|
126 |
+
nnp_convolution_transform_strategy_reuse = 3
|
127 |
+
};
|
128 |
+
|
129 |
+
/* For backward compatibility */
|
130 |
+
#define nnp_convolution_transform_strategy_block_based nnp_convolution_transform_strategy_compute
|
131 |
+
#define nnp_convolution_transform_strategy_tuple_based nnp_convolution_transform_strategy_compute
|
132 |
+
|
133 |
+
/**
|
134 |
+
* @brief Size of images, kernels, and pooling filters in NNPACK.
|
135 |
+
*/
|
136 |
+
struct nnp_size {
|
137 |
+
/** Width (horizontal size) of an image, kernel, or pooling filter. */
|
138 |
+
size_t width;
|
139 |
+
/** Height (vertical size) of an image, kernel, or pooling filter. */
|
140 |
+
size_t height;
|
141 |
+
};
|
142 |
+
|
143 |
+
/**
|
144 |
+
* @brief Padding of images in NNPACK.
|
145 |
+
*/
|
146 |
+
struct nnp_padding {
|
147 |
+
/** Padding above the image data */
|
148 |
+
size_t top;
|
149 |
+
/** Padding on the right of image data */
|
150 |
+
size_t right;
|
151 |
+
/** Padding below the image data */
|
152 |
+
size_t bottom;
|
153 |
+
/** Padding on the left of image data */
|
154 |
+
size_t left;
|
155 |
+
};
|
156 |
+
|
157 |
+
/**
|
158 |
+
* @brief Profiling information about time spent in different phases of a function call.
|
159 |
+
*/
|
160 |
+
struct nnp_profile {
|
161 |
+
/** Time spent inside the function call, in seconds. */
|
162 |
+
double total;
|
163 |
+
/** Time spend on transformation of the input or input gradient tensor, in seconds. */
|
164 |
+
double input_transform;
|
165 |
+
/** Time spend on transformation of the kernel or kernel gradient tensor, in seconds. */
|
166 |
+
double kernel_transform;
|
167 |
+
/** Time spend on transformation of the output or output gradient tensor, in seconds. */
|
168 |
+
double output_transform;
|
169 |
+
/** Time spend on multiplication-accumulation of transformed coefficients, in seconds. */
|
170 |
+
double block_multiplication;
|
171 |
+
};
|
172 |
+
|
173 |
+
enum nnp_status nnp_initialize(void);
|
174 |
+
|
175 |
+
enum nnp_status nnp_deinitialize(void);
|
176 |
+
|
177 |
+
/**
|
178 |
+
* @brief Computes output of a 2D convolutional layer from input and kernel tensors.
|
179 |
+
* @details This function targets training of convolutional neural networks and performs forward propagation.
|
180 |
+
* It is optimized for moderate minibatch sizes (64-128) and can be inefficient on a small minibatch.
|
181 |
+
* For minibatch size 1, use nnp_convolution_inference for optimal performance.
|
182 |
+
* @param algorithm The type of algorithm to use for convolution. Possible values are:
|
183 |
+
*
|
184 |
+
* - nnp_convolution_algorithm_auto -- let the function choose the algorithm.
|
185 |
+
* - nnp_convolution_algorithm_ft8x8 -- tiled convolution based on 2D Fourier transform with 8x8 blocks.
|
186 |
+
* Supports kernels up to 8x8.
|
187 |
+
* - nnp_convolution_algorithm_ft16x16 -- tiled convolution based on 2D Fourier transform with 16x16 blocks.
|
188 |
+
* Supports kernels up to 16x16.
|
189 |
+
* - nnp_convolution_algorithm_wt8x8 -- tiled convolution based on 2D Winograd transform F(3x3, 6x6).
|
190 |
+
* Supports only 3x3 kernels.
|
191 |
+
*
|
192 |
+
* @param batch_size The number of images on the input and output of the convolutional layer.
|
193 |
+
* @param input_channels The number of channels (AKA features, dimensions) in the input images.
|
194 |
+
* @param output_channels The number of channels (AKA features, dimensions) in the output images.
|
195 |
+
* @param input_size Size of input images, excluding implicit zero-padding.
|
196 |
+
* @param input_padding Implicit zero-padding of input images.
|
197 |
+
* @param kernel_size Kernel size.
|
198 |
+
* @param[in] input A 4D tensor input[batch_size][input_channels][input_size.height][input_size.width].
|
199 |
+
* @param[in] kernel A 4D tensor kernel[output_channels][input_channels][kernel_size.height][kernel_size.width].
|
200 |
+
* @param[in] bias A 1D array bias[output_channels].
|
201 |
+
* @param[out] output A 4D tensor output[batch_size][output_channels][output_size.height][output_size.width] where
|
202 |
+
* output_size.height = (input_padding.top + input_size.height + input_padding.bottom) -
|
203 |
+
* (kernel_size.height - 1)
|
204 |
+
* output_size.width = (input_padding.left + input_size.width + input_padding.right) -
|
205 |
+
* (kernel_size.width - 1)
|
206 |
+
* @param threadpool A thread pool for parallelization of the computation.
|
207 |
+
* If threadpool is NULL, the computation would run on the caller thread without parallelization.
|
208 |
+
* @param[out] profile An optional pointer to profiling structure.
|
209 |
+
* If provided, the structure would record time spent in different phases of the computation.
|
210 |
+
*/
|
211 |
+
|
212 |
+
enum nnp_status nnp_convolution_output(
|
213 |
+
enum nnp_convolution_algorithm algorithm,
|
214 |
+
size_t batch_size,
|
215 |
+
size_t input_channels,
|
216 |
+
size_t output_channels,
|
217 |
+
struct nnp_size input_size,
|
218 |
+
struct nnp_padding input_padding,
|
219 |
+
struct nnp_size kernel_size,
|
220 |
+
const float* input,
|
221 |
+
const float* kernel,
|
222 |
+
const float* bias,
|
223 |
+
float* output,
|
224 |
+
void* workspace_buffer,
|
225 |
+
size_t* workspace_size,
|
226 |
+
enum nnp_activation activation,
|
227 |
+
const void* activation_parameters,
|
228 |
+
pthreadpool_t threadpool,
|
229 |
+
struct nnp_profile* profile);
|
230 |
+
|
231 |
+
/**
|
232 |
+
* @brief Computes gradient of input of a 2D convolutional layer from gradient of output and kernel tensors.
|
233 |
+
* @details This function targets training of convolutional neural networks and performs backward propagation.
|
234 |
+
* It is optimized for moderate minibatch sizes (64-128) and can be inefficient on a small minibatch.
|
235 |
+
* @param algorithm The type of algorithm to use for convolution. Possible values are:
|
236 |
+
*
|
237 |
+
* - nnp_convolution_algorithm_auto -- let the function choose the algorithm.
|
238 |
+
* - nnp_convolution_algorithm_ft8x8 -- tiled convolution based on 2D Fourier transform with 8x8 blocks.
|
239 |
+
* Supports kernels up to 8x8.
|
240 |
+
* - nnp_convolution_algorithm_ft16x16 -- tiled convolution based on 2D Fourier transform with 16x16 blocks.
|
241 |
+
* Supports kernels up to 16x16.
|
242 |
+
* - nnp_convolution_algorithm_wt8x8 -- tiled convolution based on 2D Winograd transform F(3x3, 6x6).
|
243 |
+
* Supports only 3x3 kernels.
|
244 |
+
*
|
245 |
+
* @param batch_size The number of images (and their gradients) on the input and output of the convolutional layer.
|
246 |
+
* @param input_channels The number of channels (AKA features, dimensions) in the input images (and gradients).
|
247 |
+
* @param output_channels The number of channels (AKA features, dimensions) in the output images (and gradients).
|
248 |
+
* @param input_size Size of input images and their gradients, excluding implicit zero-padding.
|
249 |
+
* @param input_padding Implicit zero-padding of input images.
|
250 |
+
* @param kernel_size Kernel size.
|
251 |
+
* @param[in] grad_output A 4D tensor grad_output[batch_size][output_channels][output_size.height][output_size.width]
|
252 |
+
* where
|
253 |
+
* output_size.height = (input_padding.top + input_size.height + input_padding.bottom) -
|
254 |
+
* (kernel_size.height - 1)
|
255 |
+
* output_size.width = (input_padding.left + input_size.width + input_padding.right) -
|
256 |
+
* (kernel_size.width - 1)
|
257 |
+
* @param[in] kernel A 4D tensor kernel[output_channels][input_channels][kernel_size.height][kernel_size.width].
|
258 |
+
* @param[out] grad_input A 4D tensor grad_input[batch_size][input_channels][input_size.height][input_size.width].
|
259 |
+
* @param threadpool A thread pool for parallelization of the computation.
|
260 |
+
* If threadpool is NULL, the computation would run on the caller thread without parallelization.
|
261 |
+
* @param[out] profile An optional pointer to profiling structure.
|
262 |
+
* If provided, the structure would record time spent in different phases of the computation.
|
263 |
+
*/
|
264 |
+
enum nnp_status nnp_convolution_input_gradient(
|
265 |
+
enum nnp_convolution_algorithm algorithm,
|
266 |
+
size_t batch_size,
|
267 |
+
size_t input_channels,
|
268 |
+
size_t output_channels,
|
269 |
+
struct nnp_size input_size,
|
270 |
+
struct nnp_padding input_padding,
|
271 |
+
struct nnp_size kernel_size,
|
272 |
+
const float* grad_output,
|
273 |
+
const float* kernel,
|
274 |
+
float* grad_input,
|
275 |
+
void* workspace_buffer,
|
276 |
+
size_t* workspace_size,
|
277 |
+
enum nnp_activation activation,
|
278 |
+
const void* activation_parameters,
|
279 |
+
pthreadpool_t threadpool,
|
280 |
+
struct nnp_profile* profile);
|
281 |
+
|
282 |
+
/**
|
283 |
+
* @brief Computes gradient of kernel of a 2D convolutional layer from gradient of output and input tensors.
|
284 |
+
* @details This function targets training of convolutional neural networks and performs backward propagation.
|
285 |
+
* It is optimized for moderate minibatch sizes (64-128) and can be inefficient on a small minibatch.
|
286 |
+
* @param algorithm The type of algorithm to use for convolution. Possible values are:
|
287 |
+
*
|
288 |
+
* - nnp_convolution_algorithm_auto -- let the function choose the algorithm.
|
289 |
+
* - nnp_convolution_algorithm_ft8x8 -- tiled convolution based on 2D Fourier transform with 8x8 blocks.
|
290 |
+
* Supports kernels up to 8x8.
|
291 |
+
* - nnp_convolution_algorithm_ft16x16 -- tiled convolution based on 2D Fourier transform with 16x16 blocks.
|
292 |
+
* Supports kernels up to 16x16.
|
293 |
+
*
|
294 |
+
* @param batch_size The number of images (and their gradients) on the input and output of the convolutional layer.
|
295 |
+
* @param input_channels The number of channels (AKA features, dimensions) in the input images.
|
296 |
+
* @param output_channels The number of channels (AKA features, dimensions) in the output images (and gradients).
|
297 |
+
* @param input_size Size of input images and their gradients, excluding implicit zero-padding.
|
298 |
+
* @param input_padding Implicit zero-padding of input images.
|
299 |
+
* @param kernel_size Kernel size.
|
300 |
+
* @param[in] input A 4D tensor input[batch_size][input_channels][input_size.height][input_size.width].
|
301 |
+
* @param[in] grad_output A 4D tensor grad_output[batch_size][output_channels][output_size.height][output_size.width]
|
302 |
+
* where
|
303 |
+
* output_size.height = (input_padding.top + input_size.height + input_padding.bottom) -
|
304 |
+
* (kernel_size.height - 1)
|
305 |
+
* output_size.width = (input_padding.left + input_size.width + input_padding.right) -
|
306 |
+
* (kernel_size.width - 1)
|
307 |
+
* @param[out] grad_kernel A 4D tensor
|
308 |
+
* grad_kernel[output_channels][input_channels][kernel_size.height][kernel_size.width].
|
309 |
+
* @param threadpool A thread pool for parallelization of the computation.
|
310 |
+
* If threadpool is NULL, the computation would run on the caller thread without parallelization.
|
311 |
+
* @param[out] profile An optional pointer to profiling structure.
|
312 |
+
* If provided, the structure would record time spent in different phases of the computation.
|
313 |
+
*/
|
314 |
+
enum nnp_status nnp_convolution_kernel_gradient(
|
315 |
+
enum nnp_convolution_algorithm algorithm,
|
316 |
+
size_t batch_size,
|
317 |
+
size_t input_channels,
|
318 |
+
size_t output_channels,
|
319 |
+
struct nnp_size input_size,
|
320 |
+
struct nnp_padding input_padding,
|
321 |
+
struct nnp_size kernel_size,
|
322 |
+
const float* input,
|
323 |
+
const float* grad_output,
|
324 |
+
float* grad_kernel,
|
325 |
+
void* workspace_buffer,
|
326 |
+
size_t* workspace_size,
|
327 |
+
enum nnp_activation activation,
|
328 |
+
const void* activation_parameters,
|
329 |
+
pthreadpool_t threadpool,
|
330 |
+
struct nnp_profile* profile);
|
331 |
+
|
332 |
+
/**
|
333 |
+
* @brief Computes output of a 2D convolutional layer for a single input image and a kernel tensor.
|
334 |
+
* @details This function targets prediction with convolutional neural networks and performs forward propagation.
|
335 |
+
* @param algorithm The type of algorithm to use for convolution. Possible values are:
|
336 |
+
*
|
337 |
+
* - nnp_convolution_algorithm_auto -- let the function choose the algorithm.
|
338 |
+
* - nnp_convolution_algorithm_ft8x8 -- tiled convolution based on 2D Fourier transform with 8x8 blocks.
|
339 |
+
* Supports kernels up to 8x8.
|
340 |
+
* - nnp_convolution_algorithm_ft16x16 -- tiled convolution based on 2D Fourier transform with 16x16 blocks.
|
341 |
+
* Supports kernels up to 16x16.
|
342 |
+
* - nnp_convolution_algorithm_wt8x8 -- tiled convolution based on 2D Winograd transform F(3x3, 6x6).
|
343 |
+
* Supports only 3x3 kernels.
|
344 |
+
*
|
345 |
+
* @param transform_strategy A strategy that guides computation of kernel transforms coefficients.
|
346 |
+
* Possible values are:
|
347 |
+
*
|
348 |
+
* - nnp_convolution_transform_strategy_block_based -- do multiplication-accumulations on blocks of transformed
|
349 |
+
* coefficients.
|
350 |
+
* - nnp_convolution_transform_strategy_tuple_based -- do multiplication-accumulations on tuples of transformed
|
351 |
+
* coefficients.
|
352 |
+
*
|
353 |
+
* @param input_channels The number of channels (AKA features, dimensions) in the input image.
|
354 |
+
* @param output_channels The number of channels (AKA features, dimensions) in the output image.
|
355 |
+
* @param input_size Size of input image, excluding implicit zero-padding.
|
356 |
+
* @param input_padding Implicit zero-padding of input image.
|
357 |
+
* @param kernel_size Kernel size.
|
358 |
+
* @param output_subsampling Subsample region for output, also known as convolution stride.
|
359 |
+
* @param[in] input A 3D tensor input[input_channels][input_size.height][input_size.width].
|
360 |
+
* @param[in] kernel A 4D tensor kernel[output_channels][input_channels][kernel_size.height][kernel_size.width].
|
361 |
+
* @param[in] bias A 1D array bias[output_channels].
|
362 |
+
* @param[out] output A 3D tensor output[output_channels][output_size.height][output_size.width] where
|
363 |
+
* output_size.height = (input_padding.top + input_size.height + input_padding.bottom) -
|
364 |
+
* (kernel_size.height - 1)
|
365 |
+
* output_size.width = (input_padding.left + input_size.width + input_padding.right) -
|
366 |
+
* (kernel_size.width - 1)
|
367 |
+
* @param[in] workspace_buffer Buffer for scratch memory used during computation. Buffer must be aligned on 64 bytes.
|
368 |
+
* If workspace_buffer is NULL and workspace_size is non-NULL, NNPACK would store the size
|
369 |
+
* of required workspace memory at the workspace_size location, and exit without
|
370 |
+
* computations.
|
371 |
+
* If workspace_buffer is NULL and workspace_size is NULL, NNPACK would allocate memory
|
372 |
+
* before and deallocate after this computation, potentially at significant runtime cost.
|
373 |
+
* @param[in,out] workspace_size Pointer to the size of workspace buffer.
|
374 |
+
* If workspace_buffer is NULL, NNPACK will write the size of required scratch memory to
|
375 |
+
* the location specified by this pointer.
|
376 |
+
* If workspace_buffer is non-NULL, NNPACK expects workspace_size to specify the size of
|
377 |
+
* the buffer, in bytes.
|
378 |
+
* If workspace_size is NULL, workspace_buffer must be NULL as well. In this case NNPACK
|
379 |
+
* would allocate memory before and deallocate after this computation, potentially at
|
380 |
+
* significant runtime cost.
|
381 |
+
* @param threadpool A thread pool for parallelization of the computation.
|
382 |
+
* If threadpool is NULL, the computation would run on the caller thread without parallelization.
|
383 |
+
* @param[out] profile An optional pointer to profiling structure.
|
384 |
+
* If provided, the structure would record time spent in different phases of the computation.
|
385 |
+
*/
|
386 |
+
enum nnp_status nnp_convolution_inference(
|
387 |
+
enum nnp_convolution_algorithm algorithm,
|
388 |
+
enum nnp_convolution_transform_strategy transform_strategy,
|
389 |
+
size_t input_channels,
|
390 |
+
size_t output_channels,
|
391 |
+
struct nnp_size input_size,
|
392 |
+
struct nnp_padding input_padding,
|
393 |
+
struct nnp_size kernel_size,
|
394 |
+
struct nnp_size output_subsampling,
|
395 |
+
const float* input,
|
396 |
+
const float* kernel,
|
397 |
+
const float* bias,
|
398 |
+
float* output,
|
399 |
+
void* workspace_buffer,
|
400 |
+
size_t* workspace_size,
|
401 |
+
enum nnp_activation activation,
|
402 |
+
const void* activation_parameters,
|
403 |
+
pthreadpool_t threadpool,
|
404 |
+
struct nnp_profile* profile);
|
405 |
+
|
406 |
+
/**
|
407 |
+
* @brief Computes output of a fully connected layer from input and kernel matrices.
|
408 |
+
* @details This function targets training of convolutional neural networks and performs forward propagation.
|
409 |
+
* It is optimized for moderate minibatch sizes (64-128) and can be inefficient on a small minibatch.
|
410 |
+
* For minibatch size 1, use nnp_fully_connected_inference for optimal performance.
|
411 |
+
* @param batch_size The number of vectors on the input and output of the fully connected layer.
|
412 |
+
* @param input_channels The number of channels (AKA features, dimensions) in the input matrix.
|
413 |
+
* @param output_channels The number of channels (AKA features, dimensions) in the output matrix.
|
414 |
+
* @param[in] input A 2D matrix input[batch_size][input_channels].
|
415 |
+
* @param[in] kernel A 2D matrix kernel[output_channels][input_channels].
|
416 |
+
* @param[out] output A 2D matrix output[batch_size][output_channels].
|
417 |
+
* @param threadpool A thread pool for parallelization of the computation.
|
418 |
+
* If threadpool is NULL, the computation would run on the caller thread without parallelization.
|
419 |
+
*/
|
420 |
+
enum nnp_status nnp_fully_connected_output(
|
421 |
+
size_t batch_size,
|
422 |
+
size_t input_channels,
|
423 |
+
size_t output_channels,
|
424 |
+
const float input[],
|
425 |
+
const float kernel[],
|
426 |
+
float output[],
|
427 |
+
pthreadpool_t threadpool,
|
428 |
+
struct nnp_profile* profile);
|
429 |
+
|
430 |
+
/**
|
431 |
+
* @brief Computes output of a fully connected layer for a single input vector and a kernel matrix.
|
432 |
+
* @details This function targets prediction with convolutional neural networks and performs forward propagation.
|
433 |
+
* @param input_channels The number of channels (AKA features, dimensions) in the input vector.
|
434 |
+
* @param output_channels The number of channels (AKA features, dimensions) in the output vector.
|
435 |
+
* @param[in] input A 1D array input[input_channels] of FP32 elements.
|
436 |
+
* @param[in] kernel A 2D matrix kernel[output_channels][input_channels] of FP32 elements.
|
437 |
+
* @param[out] output A 1D array output[output_channels] of FP32 elements.
|
438 |
+
* @param threadpool A thread pool for parallelization of the computation.
|
439 |
+
* If threadpool is NULL, the computation would run on the caller thread without parallelization.
|
440 |
+
*/
|
441 |
+
enum nnp_status nnp_fully_connected_inference(
|
442 |
+
size_t input_channels,
|
443 |
+
size_t output_channels,
|
444 |
+
const float* input,
|
445 |
+
const float* kernel,
|
446 |
+
float* output,
|
447 |
+
pthreadpool_t threadpool);
|
448 |
+
|
449 |
+
/**
|
450 |
+
* @brief Computes output of a fully connected layer for a single input vector and a kernel matrix.
|
451 |
+
* @details This function targets prediction with convolutional neural networks and performs forward propagation.
|
452 |
+
* @param input_channels The number of channels (AKA features, dimensions) in the input vector.
|
453 |
+
* @param output_channels The number of channels (AKA features, dimensions) in the output vector.
|
454 |
+
* @param[in] input A 1D array input[input_channels] of FP32 elements.
|
455 |
+
* @param[in] kernel A 2D matrix kernel[output_channels][input_channels] of FP16 (ARM alternative format) elements.
|
456 |
+
* @param[out] output A 1D array output[output_channels] of FP32 elements.
|
457 |
+
* @param threadpool A thread pool for parallelization of the computation.
|
458 |
+
* If threadpool is NULL, the computation would run on the caller thread without parallelization.
|
459 |
+
*/
|
460 |
+
enum nnp_status nnp_fully_connected_inference_f16f32(
|
461 |
+
size_t input_channels,
|
462 |
+
size_t output_channels,
|
463 |
+
const float* input,
|
464 |
+
const void* kernel,
|
465 |
+
float* output,
|
466 |
+
pthreadpool_t threadpool);
|
467 |
+
|
468 |
+
/**
|
469 |
+
* @brief Computes output of a max-pooling layer for an input tensor.
|
470 |
+
* @details This function targets both prediction and training of convolutional neural networks and performs forward
|
471 |
+
* propagation. Is is optimized for both large and small minibatch sizes.
|
472 |
+
* @param batch_size The number of images on the input and output of the max-pooling layer.
|
473 |
+
* @param channels The number of channels (AKA features, dimensions) in both input and output images.
|
474 |
+
* @param input_size Size of input images, excluding implicit zero-padding.
|
475 |
+
* @param input_padding Implicit padding of input images. The padding pixels are ignored by the pooling filter, but
|
476 |
+
* affect the output size.
|
477 |
+
* @param pooling_size Size of the pooling filter. Only 2x2 filter are currently supported.
|
478 |
+
* @param pooling_stride Stride of the pooling filter. Only 2x2 strides are currently supported.
|
479 |
+
* @param[in] input A 4D tensor input[batch_size][channels][input_size.height][input_size.width].
|
480 |
+
* @param[out] output A 4D tensor output[batch_size][channels][output_size.height][output_size.width] where
|
481 |
+
* output_size.height = ceil(
|
482 |
+
* (input_padding.top + input_size.height + input_padding.bottom - pooling_size.height) /
|
483 |
+
* pooling_stride.height) + 1
|
484 |
+
* output_size.width = ceil(
|
485 |
+
* (input_padding.left + input_size.width + input_padding.right - pooling_size.width) /
|
486 |
+
* pooling_stride.width) + 1
|
487 |
+
* @param threadpool A thread pool for parallelization of the computation.
|
488 |
+
* If threadpool is NULL, the computation would run on the caller thread without parallelization.
|
489 |
+
*/
|
490 |
+
enum nnp_status nnp_max_pooling_output(
|
491 |
+
size_t batch_size,
|
492 |
+
size_t channels,
|
493 |
+
struct nnp_size input_size,
|
494 |
+
struct nnp_padding input_padding,
|
495 |
+
struct nnp_size pooling_size,
|
496 |
+
struct nnp_size pooling_stride,
|
497 |
+
const float input[],
|
498 |
+
float output[],
|
499 |
+
pthreadpool_t threadpool);
|
500 |
+
|
501 |
+
/**
|
502 |
+
* @brief Computes output of a softmax layer for an input matrix.
|
503 |
+
* @details This function targets both prediction and training of convolutional neural networks and performs forward
|
504 |
+
* propagation. Is is optimized for both large and small minibatch sizes.
|
505 |
+
* @param batch_size The number of vectors on the input and output of the softmax layer.
|
506 |
+
* @param channels The number of channels (AKA features, dimensions) in both input and output vectors.
|
507 |
+
* @param[in] input A 2D matrix input[batch_size][channels].
|
508 |
+
* @param[out] output A 2D matrix output[batch_size][channels].
|
509 |
+
* @param threadpool A thread pool for parallelization of the computation.
|
510 |
+
* If threadpool is NULL, the computation would run on the caller thread without parallelization.
|
511 |
+
*/
|
512 |
+
enum nnp_status nnp_softmax_output(
|
513 |
+
size_t batch_size,
|
514 |
+
size_t channels,
|
515 |
+
const float input[],
|
516 |
+
float output[],
|
517 |
+
pthreadpool_t threadpool);
|
518 |
+
|
519 |
+
/**
|
520 |
+
* @brief Computes output of a rectified linear unit (ReLU) layer for an input matrix.
|
521 |
+
* @details This function targets both prediction and training of convolutional neural networks and performs forward
|
522 |
+
* propagation. Is is optimized for both large and small minibatch sizes.
|
523 |
+
* @param batch_size The number of vectors on the input and output of the ReLU layer.
|
524 |
+
* @param channels The number of channels (AKA features, dimensions) in both input and output matrices.
|
525 |
+
* @param[in] input A 2D matrix input[batch_size][channels].
|
526 |
+
* @param[out] output A 2D matrix output[batch_size][channels].
|
527 |
+
* @param threadpool A thread pool for parallelization of the computation.
|
528 |
+
* If threadpool is NULL, the computation would run on the caller thread without parallelization.
|
529 |
+
*/
|
530 |
+
enum nnp_status nnp_relu_output(
|
531 |
+
size_t batch_size,
|
532 |
+
size_t channels,
|
533 |
+
const float input[],
|
534 |
+
float output[],
|
535 |
+
float negative_slope,
|
536 |
+
pthreadpool_t threadpool);
|
537 |
+
|
538 |
+
/**
|
539 |
+
* @brief Computes gradient of input of a rectified linear unit (ReLU) layer from gradient of output and input matrices.
|
540 |
+
* @details This function targets training of convolutional neural networks and performs backward propagation.
|
541 |
+
* Is is optimized for both large and small minibatch sizes.
|
542 |
+
* @param batch_size The number of vectors on the input and output of the ReLU layer.
|
543 |
+
* @param channels The number of channels (AKA features, dimensions) in both input and output matrices.
|
544 |
+
* @param[in] input A 2D matrix input[batch_size][channels].
|
545 |
+
* @param[out] output A 2D matrix output[batch_size][channels].
|
546 |
+
* @param threadpool A thread pool for parallelization of the computation.
|
547 |
+
* If threadpool is NULL, the computation would run on the caller thread without parallelization.
|
548 |
+
*/
|
549 |
+
enum nnp_status nnp_relu_input_gradient(
|
550 |
+
size_t batch_size,
|
551 |
+
size_t channels,
|
552 |
+
const float grad_output[],
|
553 |
+
const float input[],
|
554 |
+
float grad_input[],
|
555 |
+
float negative_slope,
|
556 |
+
pthreadpool_t threadpool);
|
557 |
+
|
558 |
+
#ifdef __cplusplus
|
559 |
+
} /* extern "C" */
|
560 |
+
#endif
|
561 |
+
|
562 |
+
#ifdef __cplusplus
|
563 |
+
// Backward compatible implementations for nnp_convolution_*, if we are in C++
|
564 |
+
// mode.
|
565 |
+
inline enum nnp_status nnp_convolution_output(
|
566 |
+
enum nnp_convolution_algorithm algorithm,
|
567 |
+
size_t batch_size,
|
568 |
+
size_t input_channels,
|
569 |
+
size_t output_channels,
|
570 |
+
struct nnp_size input_size,
|
571 |
+
struct nnp_padding input_padding,
|
572 |
+
struct nnp_size kernel_size,
|
573 |
+
const float input[],
|
574 |
+
const float kernel[],
|
575 |
+
const float bias[],
|
576 |
+
float output[],
|
577 |
+
pthreadpool_t threadpool,
|
578 |
+
struct nnp_profile* profile)
|
579 |
+
{
|
580 |
+
return nnp_convolution_output(
|
581 |
+
algorithm,
|
582 |
+
batch_size, input_channels, output_channels,
|
583 |
+
input_size, input_padding, kernel_size,
|
584 |
+
input, kernel, bias, output,
|
585 |
+
NULL, NULL,
|
586 |
+
nnp_activation_identity, NULL, threadpool, profile);
|
587 |
+
}
|
588 |
+
|
589 |
+
inline enum nnp_status nnp_convolution_input_gradient(
|
590 |
+
enum nnp_convolution_algorithm algorithm,
|
591 |
+
size_t batch_size,
|
592 |
+
size_t input_channels,
|
593 |
+
size_t output_channels,
|
594 |
+
struct nnp_size input_size,
|
595 |
+
struct nnp_padding input_padding,
|
596 |
+
struct nnp_size kernel_size,
|
597 |
+
const float grad_output[],
|
598 |
+
const float kernel[],
|
599 |
+
float grad_input[],
|
600 |
+
pthreadpool_t threadpool,
|
601 |
+
struct nnp_profile* profile)
|
602 |
+
{
|
603 |
+
return nnp_convolution_input_gradient(
|
604 |
+
algorithm,
|
605 |
+
batch_size, input_channels, output_channels,
|
606 |
+
input_size, input_padding, kernel_size,
|
607 |
+
grad_output, kernel, grad_input,
|
608 |
+
NULL, NULL,
|
609 |
+
nnp_activation_identity, NULL, threadpool, profile);
|
610 |
+
}
|
611 |
+
|
612 |
+
inline enum nnp_status nnp_convolution_kernel_gradient(
|
613 |
+
enum nnp_convolution_algorithm algorithm,
|
614 |
+
size_t batch_size,
|
615 |
+
size_t input_channels,
|
616 |
+
size_t output_channels,
|
617 |
+
struct nnp_size input_size,
|
618 |
+
struct nnp_padding input_padding,
|
619 |
+
struct nnp_size kernel_size,
|
620 |
+
const float input[],
|
621 |
+
const float grad_output[],
|
622 |
+
float grad_kernel[],
|
623 |
+
pthreadpool_t threadpool,
|
624 |
+
struct nnp_profile* profile)
|
625 |
+
{
|
626 |
+
return nnp_convolution_kernel_gradient(
|
627 |
+
algorithm,
|
628 |
+
batch_size, input_channels, output_channels,
|
629 |
+
input_size, input_padding, kernel_size,
|
630 |
+
input, grad_output, grad_kernel,
|
631 |
+
NULL, NULL,
|
632 |
+
nnp_activation_identity, NULL, threadpool, profile);
|
633 |
+
}
|
634 |
+
|
635 |
+
inline enum nnp_status nnp_convolution_inference(
|
636 |
+
enum nnp_convolution_algorithm algorithm,
|
637 |
+
enum nnp_convolution_transform_strategy transform_strategy,
|
638 |
+
size_t input_channels,
|
639 |
+
size_t output_channels,
|
640 |
+
struct nnp_size input_size,
|
641 |
+
struct nnp_padding input_padding,
|
642 |
+
struct nnp_size kernel_size,
|
643 |
+
struct nnp_size output_subsampling,
|
644 |
+
const float input[],
|
645 |
+
const float kernel[],
|
646 |
+
const float bias[],
|
647 |
+
float output[],
|
648 |
+
pthreadpool_t threadpool,
|
649 |
+
struct nnp_profile* profile) {
|
650 |
+
return nnp_convolution_inference(
|
651 |
+
algorithm, transform_strategy,
|
652 |
+
input_channels, output_channels,
|
653 |
+
input_size, input_padding, kernel_size, output_subsampling,
|
654 |
+
input, kernel, bias, output, NULL, NULL,
|
655 |
+
nnp_activation_identity, NULL,
|
656 |
+
threadpool, profile);
|
657 |
+
}
|
658 |
+
|
659 |
+
#endif // __cplusplus
|
env-llmeval/lib/python3.10/site-packages/torch/include/psimd.h
ADDED
@@ -0,0 +1,1384 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
#ifndef PSIMD_H
|
3 |
+
#define PSIMD_H
|
4 |
+
|
5 |
+
#if defined(__CUDA_ARCH__)
|
6 |
+
/* CUDA compiler */
|
7 |
+
#define PSIMD_INTRINSIC __forceinline__ __device__
|
8 |
+
#elif defined(__OPENCL_VERSION__)
|
9 |
+
/* OpenCL compiler */
|
10 |
+
#define PSIMD_INTRINSIC inline static
|
11 |
+
#elif defined(__INTEL_COMPILER)
|
12 |
+
/* Intel compiler, even on Windows */
|
13 |
+
#define PSIMD_INTRINSIC inline static __attribute__((__always_inline__))
|
14 |
+
#elif defined(__GNUC__)
|
15 |
+
/* GCC-compatible compiler (gcc/clang/icc) */
|
16 |
+
#define PSIMD_INTRINSIC inline static __attribute__((__always_inline__))
|
17 |
+
#elif defined(_MSC_VER)
|
18 |
+
/* MSVC-compatible compiler (cl/icl/clang-cl) */
|
19 |
+
#define PSIMD_INTRINSIC __forceinline static
|
20 |
+
#elif defined(__cplusplus)
|
21 |
+
/* Generic C++ compiler */
|
22 |
+
#define PSIMD_INTRINSIC inline static
|
23 |
+
#elif defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L)
|
24 |
+
/* Generic C99 compiler */
|
25 |
+
#define PSIMD_INTRINSIC inline static
|
26 |
+
#else
|
27 |
+
/* Generic C compiler */
|
28 |
+
#define PSIMD_INTRINSIC static
|
29 |
+
#endif
|
30 |
+
|
31 |
+
#if defined(__GNUC__) || defined(__clang__)
|
32 |
+
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
|
33 |
+
#include <arm_neon.h>
|
34 |
+
#endif
|
35 |
+
|
36 |
+
#if defined(__SSE2__)
|
37 |
+
#include <emmintrin.h>
|
38 |
+
#endif
|
39 |
+
|
40 |
+
#if defined(__SSE3__)
|
41 |
+
#include <pmmintrin.h>
|
42 |
+
#endif
|
43 |
+
|
44 |
+
#if defined(__SSSE3__)
|
45 |
+
#include <tmmintrin.h>
|
46 |
+
#endif
|
47 |
+
|
48 |
+
#if defined(__SSE4_1__)
|
49 |
+
#include <smmintrin.h>
|
50 |
+
#endif
|
51 |
+
|
52 |
+
#if defined(__SSE4_2__)
|
53 |
+
#include <nmmintrin.h>
|
54 |
+
#endif
|
55 |
+
|
56 |
+
#if defined(__AVX__)
|
57 |
+
#include <immintrin.h>
|
58 |
+
#endif
|
59 |
+
#elif defined(_MSC_VER)
|
60 |
+
#include <intrin.h>
|
61 |
+
#endif
|
62 |
+
|
63 |
+
#if defined(__cplusplus)
|
64 |
+
#define PSIMD_CXX_SYNTAX
|
65 |
+
#elif defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L)
|
66 |
+
#define PSIMD_C11_SYNTAX
|
67 |
+
#elif defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L)
|
68 |
+
#define PSIMD_C99_SYNTAX
|
69 |
+
#else
|
70 |
+
#define PSIMD_C89_SYNTAX
|
71 |
+
#endif
|
72 |
+
|
73 |
+
#if defined(__cplusplus) && (__cplusplus >= 201103L)
|
74 |
+
#include <cstddef>
|
75 |
+
#include <cstdint>
|
76 |
+
#elif !defined(__OPENCL_VERSION__)
|
77 |
+
#include <stddef.h>
|
78 |
+
#include <stdint.h>
|
79 |
+
#endif
|
80 |
+
|
81 |
+
#if defined(__GNUC__) || defined(__clang__)
|
82 |
+
#define PSIMD_HAVE_F64 0
|
83 |
+
#define PSIMD_HAVE_F32 1
|
84 |
+
#define PSIMD_HAVE_U8 1
|
85 |
+
#define PSIMD_HAVE_S8 1
|
86 |
+
#define PSIMD_HAVE_U16 1
|
87 |
+
#define PSIMD_HAVE_S16 1
|
88 |
+
#define PSIMD_HAVE_U32 1
|
89 |
+
#define PSIMD_HAVE_S32 1
|
90 |
+
#define PSIMD_HAVE_U64 0
|
91 |
+
#define PSIMD_HAVE_S64 0
|
92 |
+
|
93 |
+
typedef int8_t psimd_s8 __attribute__((vector_size(16), aligned(1)));
|
94 |
+
typedef uint8_t psimd_u8 __attribute__((vector_size(16), aligned(1)));
|
95 |
+
typedef int16_t psimd_s16 __attribute__((vector_size(16), aligned(2)));
|
96 |
+
typedef uint16_t psimd_u16 __attribute__((vector_size(16), aligned(2)));
|
97 |
+
typedef int32_t psimd_s32 __attribute__((vector_size(16), aligned(4)));
|
98 |
+
typedef uint32_t psimd_u32 __attribute__((vector_size(16), aligned(4)));
|
99 |
+
typedef float psimd_f32 __attribute__((vector_size(16), aligned(4)));
|
100 |
+
|
101 |
+
typedef struct {
|
102 |
+
psimd_s8 lo;
|
103 |
+
psimd_s8 hi;
|
104 |
+
} psimd_s8x2;
|
105 |
+
|
106 |
+
typedef struct {
|
107 |
+
psimd_u8 lo;
|
108 |
+
psimd_u8 hi;
|
109 |
+
} psimd_u8x2;
|
110 |
+
|
111 |
+
typedef struct {
|
112 |
+
psimd_s16 lo;
|
113 |
+
psimd_s16 hi;
|
114 |
+
} psimd_s16x2;
|
115 |
+
|
116 |
+
typedef struct {
|
117 |
+
psimd_u16 lo;
|
118 |
+
psimd_u16 hi;
|
119 |
+
} psimd_u16x2;
|
120 |
+
|
121 |
+
typedef struct {
|
122 |
+
psimd_s32 lo;
|
123 |
+
psimd_s32 hi;
|
124 |
+
} psimd_s32x2;
|
125 |
+
|
126 |
+
typedef struct {
|
127 |
+
psimd_u32 lo;
|
128 |
+
psimd_u32 hi;
|
129 |
+
} psimd_u32x2;
|
130 |
+
|
131 |
+
typedef struct {
|
132 |
+
psimd_f32 lo;
|
133 |
+
psimd_f32 hi;
|
134 |
+
} psimd_f32x2;
|
135 |
+
|
136 |
+
/* Bit casts */
|
137 |
+
PSIMD_INTRINSIC psimd_u32x2 psimd_cast_s32x2_u32x2(psimd_s32x2 v) {
|
138 |
+
return (psimd_u32x2) { .lo = (psimd_u32) v.lo, .hi = (psimd_u32) v.hi };
|
139 |
+
}
|
140 |
+
|
141 |
+
PSIMD_INTRINSIC psimd_f32x2 psimd_cast_s32x2_f32x2(psimd_s32x2 v) {
|
142 |
+
return (psimd_f32x2) { .lo = (psimd_f32) v.lo, .hi = (psimd_f32) v.hi };
|
143 |
+
}
|
144 |
+
|
145 |
+
PSIMD_INTRINSIC psimd_s32x2 psimd_cast_u32x2_s32x2(psimd_u32x2 v) {
|
146 |
+
return (psimd_s32x2) { .lo = (psimd_s32) v.lo, .hi = (psimd_s32) v.hi };
|
147 |
+
}
|
148 |
+
|
149 |
+
PSIMD_INTRINSIC psimd_f32x2 psimd_cast_u32x2_f32x2(psimd_u32x2 v) {
|
150 |
+
return (psimd_f32x2) { .lo = (psimd_f32) v.lo, .hi = (psimd_f32) v.hi };
|
151 |
+
}
|
152 |
+
|
153 |
+
PSIMD_INTRINSIC psimd_s32x2 psimd_cast_f32x2_s32x2(psimd_f32x2 v) {
|
154 |
+
return (psimd_s32x2) { .lo = (psimd_s32) v.lo, .hi = (psimd_s32) v.hi };
|
155 |
+
}
|
156 |
+
|
157 |
+
PSIMD_INTRINSIC psimd_u32x2 psimd_cast_f32x2_u32x2(psimd_f32x2 v) {
|
158 |
+
return (psimd_u32x2) { .lo = (psimd_u32) v.lo, .hi = (psimd_u32) v.hi };
|
159 |
+
}
|
160 |
+
|
161 |
+
/* Swap */
|
162 |
+
PSIMD_INTRINSIC void psimd_swap_s8(psimd_s8 a[1], psimd_s8 b[1]) {
|
163 |
+
const psimd_s8 new_a = *b;
|
164 |
+
const psimd_s8 new_b = *a;
|
165 |
+
*a = new_a;
|
166 |
+
*b = new_b;
|
167 |
+
}
|
168 |
+
|
169 |
+
PSIMD_INTRINSIC void psimd_swap_u8(psimd_u8 a[1], psimd_u8 b[1]) {
|
170 |
+
const psimd_u8 new_a = *b;
|
171 |
+
const psimd_u8 new_b = *a;
|
172 |
+
*a = new_a;
|
173 |
+
*b = new_b;
|
174 |
+
}
|
175 |
+
|
176 |
+
PSIMD_INTRINSIC void psimd_swap_s16(psimd_s16 a[1], psimd_s16 b[1]) {
|
177 |
+
const psimd_s16 new_a = *b;
|
178 |
+
const psimd_s16 new_b = *a;
|
179 |
+
*a = new_a;
|
180 |
+
*b = new_b;
|
181 |
+
}
|
182 |
+
|
183 |
+
PSIMD_INTRINSIC void psimd_swap_u16(psimd_u16 a[1], psimd_u16 b[1]) {
|
184 |
+
const psimd_u16 new_a = *b;
|
185 |
+
const psimd_u16 new_b = *a;
|
186 |
+
*a = new_a;
|
187 |
+
*b = new_b;
|
188 |
+
}
|
189 |
+
|
190 |
+
PSIMD_INTRINSIC void psimd_swap_s32(psimd_s32 a[1], psimd_s32 b[1]) {
|
191 |
+
const psimd_s32 new_a = *b;
|
192 |
+
const psimd_s32 new_b = *a;
|
193 |
+
*a = new_a;
|
194 |
+
*b = new_b;
|
195 |
+
}
|
196 |
+
|
197 |
+
PSIMD_INTRINSIC void psimd_swap_u32(psimd_u32 a[1], psimd_u32 b[1]) {
|
198 |
+
const psimd_u32 new_a = *b;
|
199 |
+
const psimd_u32 new_b = *a;
|
200 |
+
*a = new_a;
|
201 |
+
*b = new_b;
|
202 |
+
}
|
203 |
+
|
204 |
+
PSIMD_INTRINSIC void psimd_swap_f32(psimd_f32 a[1], psimd_f32 b[1]) {
|
205 |
+
const psimd_f32 new_a = *b;
|
206 |
+
const psimd_f32 new_b = *a;
|
207 |
+
*a = new_a;
|
208 |
+
*b = new_b;
|
209 |
+
}
|
210 |
+
|
211 |
+
/* Zero-initialization */
|
212 |
+
PSIMD_INTRINSIC psimd_s8 psimd_zero_s8(void) {
|
213 |
+
return (psimd_s8) { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
|
214 |
+
}
|
215 |
+
|
216 |
+
PSIMD_INTRINSIC psimd_u8 psimd_zero_u8(void) {
|
217 |
+
return (psimd_u8) { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
|
218 |
+
}
|
219 |
+
|
220 |
+
PSIMD_INTRINSIC psimd_s16 psimd_zero_s16(void) {
|
221 |
+
return (psimd_s16) { 0, 0, 0, 0, 0, 0, 0, 0 };
|
222 |
+
}
|
223 |
+
|
224 |
+
PSIMD_INTRINSIC psimd_u16 psimd_zero_u16(void) {
|
225 |
+
return (psimd_u16) { 0, 0, 0, 0, 0, 0, 0, 0 };
|
226 |
+
}
|
227 |
+
|
228 |
+
PSIMD_INTRINSIC psimd_s32 psimd_zero_s32(void) {
|
229 |
+
return (psimd_s32) { 0, 0, 0, 0 };
|
230 |
+
}
|
231 |
+
|
232 |
+
PSIMD_INTRINSIC psimd_u32 psimd_zero_u32(void) {
|
233 |
+
return (psimd_u32) { 0, 0, 0, 0 };
|
234 |
+
}
|
235 |
+
|
236 |
+
PSIMD_INTRINSIC psimd_f32 psimd_zero_f32(void) {
|
237 |
+
return (psimd_f32) { 0.0f, 0.0f, 0.0f, 0.0f };
|
238 |
+
}
|
239 |
+
|
240 |
+
/* Initialization to the same constant */
|
241 |
+
PSIMD_INTRINSIC psimd_s8 psimd_splat_s8(int8_t c) {
|
242 |
+
return (psimd_s8) { c, c, c, c, c, c, c, c, c, c, c, c, c, c, c, c };
|
243 |
+
}
|
244 |
+
|
245 |
+
PSIMD_INTRINSIC psimd_u8 psimd_splat_u8(uint8_t c) {
|
246 |
+
return (psimd_u8) { c, c, c, c, c, c, c, c, c, c, c, c, c, c, c, c };
|
247 |
+
}
|
248 |
+
|
249 |
+
PSIMD_INTRINSIC psimd_s16 psimd_splat_s16(int16_t c) {
|
250 |
+
return (psimd_s16) { c, c, c, c, c, c, c, c };
|
251 |
+
}
|
252 |
+
|
253 |
+
PSIMD_INTRINSIC psimd_u16 psimd_splat_u16(uint16_t c) {
|
254 |
+
return (psimd_u16) { c, c, c, c, c, c, c, c };
|
255 |
+
}
|
256 |
+
|
257 |
+
PSIMD_INTRINSIC psimd_s32 psimd_splat_s32(int32_t c) {
|
258 |
+
return (psimd_s32) { c, c, c, c };
|
259 |
+
}
|
260 |
+
|
261 |
+
PSIMD_INTRINSIC psimd_u32 psimd_splat_u32(uint32_t c) {
|
262 |
+
return (psimd_u32) { c, c, c, c };
|
263 |
+
}
|
264 |
+
|
265 |
+
PSIMD_INTRINSIC psimd_f32 psimd_splat_f32(float c) {
|
266 |
+
return (psimd_f32) { c, c, c, c };
|
267 |
+
}
|
268 |
+
|
269 |
+
/* Load vector */
|
270 |
+
PSIMD_INTRINSIC psimd_s8 psimd_load_s8(const void* address) {
|
271 |
+
return *((const psimd_s8*) address);
|
272 |
+
}
|
273 |
+
|
274 |
+
PSIMD_INTRINSIC psimd_u8 psimd_load_u8(const void* address) {
|
275 |
+
return *((const psimd_u8*) address);
|
276 |
+
}
|
277 |
+
|
278 |
+
PSIMD_INTRINSIC psimd_s16 psimd_load_s16(const void* address) {
|
279 |
+
return *((const psimd_s16*) address);
|
280 |
+
}
|
281 |
+
|
282 |
+
PSIMD_INTRINSIC psimd_u16 psimd_load_u16(const void* address) {
|
283 |
+
return *((const psimd_u16*) address);
|
284 |
+
}
|
285 |
+
|
286 |
+
PSIMD_INTRINSIC psimd_s32 psimd_load_s32(const void* address) {
|
287 |
+
return *((const psimd_s32*) address);
|
288 |
+
}
|
289 |
+
|
290 |
+
PSIMD_INTRINSIC psimd_u32 psimd_load_u32(const void* address) {
|
291 |
+
return *((const psimd_u32*) address);
|
292 |
+
}
|
293 |
+
|
294 |
+
PSIMD_INTRINSIC psimd_f32 psimd_load_f32(const void* address) {
|
295 |
+
return *((const psimd_f32*) address);
|
296 |
+
}
|
297 |
+
|
298 |
+
PSIMD_INTRINSIC psimd_s8 psimd_load_splat_s8(const void* address) {
|
299 |
+
return psimd_splat_s8(*((const int8_t*) address));
|
300 |
+
}
|
301 |
+
|
302 |
+
PSIMD_INTRINSIC psimd_u8 psimd_load_splat_u8(const void* address) {
|
303 |
+
return psimd_splat_u8(*((const uint8_t*) address));
|
304 |
+
}
|
305 |
+
|
306 |
+
PSIMD_INTRINSIC psimd_s16 psimd_load_splat_s16(const void* address) {
|
307 |
+
return psimd_splat_s16(*((const int16_t*) address));
|
308 |
+
}
|
309 |
+
|
310 |
+
PSIMD_INTRINSIC psimd_u16 psimd_load_splat_u16(const void* address) {
|
311 |
+
return psimd_splat_u16(*((const uint16_t*) address));
|
312 |
+
}
|
313 |
+
|
314 |
+
PSIMD_INTRINSIC psimd_s32 psimd_load_splat_s32(const void* address) {
|
315 |
+
return psimd_splat_s32(*((const int32_t*) address));
|
316 |
+
}
|
317 |
+
|
318 |
+
PSIMD_INTRINSIC psimd_u32 psimd_load_splat_u32(const void* address) {
|
319 |
+
return psimd_splat_u32(*((const uint32_t*) address));
|
320 |
+
}
|
321 |
+
|
322 |
+
PSIMD_INTRINSIC psimd_f32 psimd_load_splat_f32(const void* address) {
|
323 |
+
return psimd_splat_f32(*((const float*) address));
|
324 |
+
}
|
325 |
+
|
326 |
+
PSIMD_INTRINSIC psimd_s32 psimd_load1_s32(const void* address) {
|
327 |
+
return (psimd_s32) { *((const int32_t*) address), 0, 0, 0 };
|
328 |
+
}
|
329 |
+
|
330 |
+
PSIMD_INTRINSIC psimd_u32 psimd_load1_u32(const void* address) {
|
331 |
+
return (psimd_u32) { *((const uint32_t*) address), 0, 0, 0 };
|
332 |
+
}
|
333 |
+
|
334 |
+
PSIMD_INTRINSIC psimd_f32 psimd_load1_f32(const void* address) {
|
335 |
+
return (psimd_f32) { *((const float*) address), 0.0f, 0.0f, 0.0f };
|
336 |
+
}
|
337 |
+
|
338 |
+
PSIMD_INTRINSIC psimd_s32 psimd_load2_s32(const void* address) {
|
339 |
+
const int32_t* address_s32 = (const int32_t*) address;
|
340 |
+
return (psimd_s32) { address_s32[0], address_s32[1], 0, 0 };
|
341 |
+
}
|
342 |
+
|
343 |
+
PSIMD_INTRINSIC psimd_u32 psimd_load2_u32(const void* address) {
|
344 |
+
const uint32_t* address_u32 = (const uint32_t*) address;
|
345 |
+
return (psimd_u32) { address_u32[0], address_u32[1], 0, 0 };
|
346 |
+
}
|
347 |
+
|
348 |
+
PSIMD_INTRINSIC psimd_f32 psimd_load2_f32(const void* address) {
|
349 |
+
const float* address_f32 = (const float*) address;
|
350 |
+
return (psimd_f32) { address_f32[0], address_f32[1], 0.0f, 0.0f };
|
351 |
+
}
|
352 |
+
|
353 |
+
PSIMD_INTRINSIC psimd_s32 psimd_load3_s32(const void* address) {
|
354 |
+
const int32_t* address_s32 = (const int32_t*) address;
|
355 |
+
return (psimd_s32) { address_s32[0], address_s32[1], address_s32[2], 0 };
|
356 |
+
}
|
357 |
+
|
358 |
+
PSIMD_INTRINSIC psimd_u32 psimd_load3_u32(const void* address) {
|
359 |
+
const uint32_t* address_u32 = (const uint32_t*) address;
|
360 |
+
return (psimd_u32) { address_u32[0], address_u32[1], address_u32[2], 0 };
|
361 |
+
}
|
362 |
+
|
363 |
+
PSIMD_INTRINSIC psimd_f32 psimd_load3_f32(const void* address) {
|
364 |
+
const float* address_f32 = (const float*) address;
|
365 |
+
return (psimd_f32) { address_f32[0], address_f32[1], address_f32[2], 0.0f };
|
366 |
+
}
|
367 |
+
|
368 |
+
PSIMD_INTRINSIC psimd_s32 psimd_load4_s32(const void* address) {
|
369 |
+
return psimd_load_s32(address);
|
370 |
+
}
|
371 |
+
|
372 |
+
PSIMD_INTRINSIC psimd_u32 psimd_load4_u32(const void* address) {
|
373 |
+
return psimd_load_u32(address);
|
374 |
+
}
|
375 |
+
|
376 |
+
PSIMD_INTRINSIC psimd_f32 psimd_load4_f32(const void* address) {
|
377 |
+
return psimd_load_f32(address);
|
378 |
+
}
|
379 |
+
|
380 |
+
PSIMD_INTRINSIC psimd_f32 psimd_load_stride2_f32(const void* address) {
|
381 |
+
const psimd_f32 v0x1x = psimd_load_f32(address);
|
382 |
+
const psimd_f32 vx2x3 = psimd_load_f32((const float*) address + 3);
|
383 |
+
#if defined(__clang__)
|
384 |
+
return __builtin_shufflevector(v0x1x, vx2x3, 0, 2, 5, 7);
|
385 |
+
#else
|
386 |
+
return __builtin_shuffle(v0x1x, vx2x3, (psimd_s32) { 0, 2, 5, 7 });
|
387 |
+
#endif
|
388 |
+
}
|
389 |
+
|
390 |
+
PSIMD_INTRINSIC psimd_f32 psimd_load1_stride2_f32(const void* address) {
|
391 |
+
return psimd_load_f32(address);
|
392 |
+
}
|
393 |
+
|
394 |
+
PSIMD_INTRINSIC psimd_f32 psimd_load2_stride2_f32(const void* address) {
|
395 |
+
const float* address_f32 = (const float*) address;
|
396 |
+
return (psimd_f32) { address_f32[0], address_f32[2], 0.0f, 0.0f };
|
397 |
+
}
|
398 |
+
|
399 |
+
PSIMD_INTRINSIC psimd_f32 psimd_load3_stride2_f32(const void* address) {
|
400 |
+
const psimd_f32 v0x1x = psimd_load_f32(address);
|
401 |
+
const psimd_f32 v2zzz = psimd_load1_f32((const float*) address + 2);
|
402 |
+
#if defined(__clang__)
|
403 |
+
return __builtin_shufflevector(v0x1x, v2zzz, 0, 2, 4, 6);
|
404 |
+
#else
|
405 |
+
return __builtin_shuffle(v0x1x, v2zzz, (psimd_s32) { 0, 2, 4, 6 });
|
406 |
+
#endif
|
407 |
+
}
|
408 |
+
|
409 |
+
PSIMD_INTRINSIC psimd_f32 psimd_load4_stride2_f32(const void* address) {
|
410 |
+
return psimd_load_stride2_f32(address);
|
411 |
+
}
|
412 |
+
|
413 |
+
PSIMD_INTRINSIC psimd_f32 psimd_load_stride_f32(const void* address, size_t stride) {
|
414 |
+
const float* address0_f32 = (const float*) address;
|
415 |
+
const float* address1_f32 = address0_f32 + stride;
|
416 |
+
const float* address2_f32 = address1_f32 + stride;
|
417 |
+
const float* address3_f32 = address2_f32 + stride;
|
418 |
+
return (psimd_f32) { *address0_f32, *address1_f32, *address2_f32, *address3_f32 };
|
419 |
+
}
|
420 |
+
|
421 |
+
PSIMD_INTRINSIC psimd_f32 psimd_load1_stride_f32(const void* address, size_t stride) {
|
422 |
+
return psimd_load1_f32(address);
|
423 |
+
}
|
424 |
+
|
425 |
+
PSIMD_INTRINSIC psimd_f32 psimd_load2_stride_f32(const void* address, size_t stride) {
|
426 |
+
const float* address_f32 = (const float*) address;
|
427 |
+
return (psimd_f32) { address_f32[0], address_f32[stride], 0.0f, 0.0f };
|
428 |
+
}
|
429 |
+
|
430 |
+
PSIMD_INTRINSIC psimd_f32 psimd_load3_stride_f32(const void* address, size_t stride) {
|
431 |
+
const float* address0_f32 = (const float*) address;
|
432 |
+
const float* address1_f32 = address0_f32 + stride;
|
433 |
+
const float* address2_f32 = address1_f32 + stride;
|
434 |
+
return (psimd_f32) { *address0_f32, *address1_f32, *address2_f32, 0.0f };
|
435 |
+
}
|
436 |
+
|
437 |
+
PSIMD_INTRINSIC psimd_f32 psimd_load4_stride_f32(const void* address, size_t stride) {
|
438 |
+
return psimd_load_stride_f32(address, stride);
|
439 |
+
}
|
440 |
+
|
441 |
+
/* Store vector */
|
442 |
+
PSIMD_INTRINSIC void psimd_store_s8(void* address, psimd_s8 value) {
|
443 |
+
*((psimd_s8*) address) = value;
|
444 |
+
}
|
445 |
+
|
446 |
+
PSIMD_INTRINSIC void psimd_store_u8(void* address, psimd_u8 value) {
|
447 |
+
*((psimd_u8*) address) = value;
|
448 |
+
}
|
449 |
+
|
450 |
+
PSIMD_INTRINSIC void psimd_store_s16(void* address, psimd_s16 value) {
|
451 |
+
*((psimd_s16*) address) = value;
|
452 |
+
}
|
453 |
+
|
454 |
+
PSIMD_INTRINSIC void psimd_store_u16(void* address, psimd_u16 value) {
|
455 |
+
*((psimd_u16*) address) = value;
|
456 |
+
}
|
457 |
+
|
458 |
+
PSIMD_INTRINSIC void psimd_store_s32(void* address, psimd_s32 value) {
|
459 |
+
*((psimd_s32*) address) = value;
|
460 |
+
}
|
461 |
+
|
462 |
+
PSIMD_INTRINSIC void psimd_store_u32(void* address, psimd_u32 value) {
|
463 |
+
*((psimd_u32*) address) = value;
|
464 |
+
}
|
465 |
+
|
466 |
+
PSIMD_INTRINSIC void psimd_store_f32(void* address, psimd_f32 value) {
|
467 |
+
*((psimd_f32*) address) = value;
|
468 |
+
}
|
469 |
+
|
470 |
+
PSIMD_INTRINSIC void psimd_store1_s32(void* address, psimd_s32 value) {
|
471 |
+
*((int32_t*) address) = value[0];
|
472 |
+
}
|
473 |
+
|
474 |
+
PSIMD_INTRINSIC void psimd_store1_u32(void* address, psimd_u32 value) {
|
475 |
+
*((uint32_t*) address) = value[0];
|
476 |
+
}
|
477 |
+
|
478 |
+
PSIMD_INTRINSIC void psimd_store1_f32(void* address, psimd_f32 value) {
|
479 |
+
*((float*) address) = value[0];
|
480 |
+
}
|
481 |
+
|
482 |
+
PSIMD_INTRINSIC void psimd_store2_s32(void* address, psimd_s32 value) {
|
483 |
+
int32_t* address_s32 = (int32_t*) address;
|
484 |
+
address_s32[0] = value[0];
|
485 |
+
address_s32[1] = value[1];
|
486 |
+
}
|
487 |
+
|
488 |
+
PSIMD_INTRINSIC void psimd_store2_u32(void* address, psimd_u32 value) {
|
489 |
+
uint32_t* address_u32 = (uint32_t*) address;
|
490 |
+
address_u32[0] = value[0];
|
491 |
+
address_u32[1] = value[1];
|
492 |
+
}
|
493 |
+
|
494 |
+
PSIMD_INTRINSIC void psimd_store2_f32(void* address, psimd_f32 value) {
|
495 |
+
float* address_f32 = (float*) address;
|
496 |
+
address_f32[0] = value[0];
|
497 |
+
address_f32[1] = value[1];
|
498 |
+
}
|
499 |
+
|
500 |
+
PSIMD_INTRINSIC void psimd_store3_s32(void* address, psimd_s32 value) {
|
501 |
+
int32_t* address_s32 = (int32_t*) address;
|
502 |
+
address_s32[0] = value[0];
|
503 |
+
address_s32[1] = value[1];
|
504 |
+
address_s32[2] = value[2];
|
505 |
+
}
|
506 |
+
|
507 |
+
PSIMD_INTRINSIC void psimd_store3_u32(void* address, psimd_u32 value) {
|
508 |
+
uint32_t* address_u32 = (uint32_t*) address;
|
509 |
+
address_u32[0] = value[0];
|
510 |
+
address_u32[1] = value[1];
|
511 |
+
address_u32[2] = value[2];
|
512 |
+
}
|
513 |
+
|
514 |
+
PSIMD_INTRINSIC void psimd_store3_f32(void* address, psimd_f32 value) {
|
515 |
+
float* address_f32 = (float*) address;
|
516 |
+
address_f32[0] = value[0];
|
517 |
+
address_f32[1] = value[1];
|
518 |
+
address_f32[2] = value[2];
|
519 |
+
}
|
520 |
+
|
521 |
+
PSIMD_INTRINSIC void psimd_store4_s32(void* address, psimd_s32 value) {
|
522 |
+
psimd_store_s32(address, value);
|
523 |
+
}
|
524 |
+
|
525 |
+
PSIMD_INTRINSIC void psimd_store4_u32(void* address, psimd_u32 value) {
|
526 |
+
psimd_store_u32(address, value);
|
527 |
+
}
|
528 |
+
|
529 |
+
PSIMD_INTRINSIC void psimd_store4_f32(void* address, psimd_f32 value) {
|
530 |
+
psimd_store_f32(address, value);
|
531 |
+
}
|
532 |
+
|
533 |
+
PSIMD_INTRINSIC void psimd_store_stride_f32(void* address, size_t stride, psimd_f32 value) {
|
534 |
+
float* address0_f32 = (float*) address;
|
535 |
+
float* address1_f32 = address0_f32 + stride;
|
536 |
+
float* address2_f32 = address1_f32 + stride;
|
537 |
+
float* address3_f32 = address2_f32 + stride;
|
538 |
+
*address0_f32 = value[0];
|
539 |
+
*address1_f32 = value[1];
|
540 |
+
*address2_f32 = value[2];
|
541 |
+
*address3_f32 = value[3];
|
542 |
+
}
|
543 |
+
|
544 |
+
PSIMD_INTRINSIC void psimd_store1_stride_f32(void* address, size_t stride, psimd_f32 value) {
|
545 |
+
psimd_store1_f32(address, value);
|
546 |
+
}
|
547 |
+
|
548 |
+
PSIMD_INTRINSIC void psimd_store2_stride_f32(void* address, size_t stride, psimd_f32 value) {
|
549 |
+
float* address_f32 = (float*) address;
|
550 |
+
address_f32[0] = value[0];
|
551 |
+
address_f32[stride] = value[1];
|
552 |
+
}
|
553 |
+
|
554 |
+
PSIMD_INTRINSIC void psimd_store3_stride_f32(void* address, size_t stride, psimd_f32 value) {
|
555 |
+
float* address0_f32 = (float*) address;
|
556 |
+
float* address1_f32 = address0_f32 + stride;
|
557 |
+
float* address2_f32 = address1_f32 + stride;
|
558 |
+
*address0_f32 = value[0];
|
559 |
+
*address1_f32 = value[1];
|
560 |
+
*address2_f32 = value[2];
|
561 |
+
}
|
562 |
+
|
563 |
+
/* Vector addition */
|
564 |
+
PSIMD_INTRINSIC psimd_s8 psimd_add_s8(psimd_s8 a, psimd_s8 b) {
|
565 |
+
return a + b;
|
566 |
+
}
|
567 |
+
|
568 |
+
PSIMD_INTRINSIC psimd_u8 psimd_add_u8(psimd_u8 a, psimd_u8 b) {
|
569 |
+
return a + b;
|
570 |
+
}
|
571 |
+
|
572 |
+
PSIMD_INTRINSIC psimd_s16 psimd_add_s16(psimd_s16 a, psimd_s16 b) {
|
573 |
+
return a + b;
|
574 |
+
}
|
575 |
+
|
576 |
+
PSIMD_INTRINSIC psimd_u16 psimd_add_u16(psimd_u16 a, psimd_u16 b) {
|
577 |
+
return a + b;
|
578 |
+
}
|
579 |
+
|
580 |
+
PSIMD_INTRINSIC psimd_s32 psimd_add_s32(psimd_s32 a, psimd_s32 b) {
|
581 |
+
return a + b;
|
582 |
+
}
|
583 |
+
|
584 |
+
PSIMD_INTRINSIC psimd_u32 psimd_add_u32(psimd_u32 a, psimd_u32 b) {
|
585 |
+
return a + b;
|
586 |
+
}
|
587 |
+
|
588 |
+
PSIMD_INTRINSIC psimd_f32 psimd_add_f32(psimd_f32 a, psimd_f32 b) {
|
589 |
+
#if defined(__ARM_ARCH_7A__) && defined(__ARM_NEON__) && !defined(__FAST_MATH__)
|
590 |
+
return (psimd_f32) vaddq_f32((float32x4_t) a, (float32x4_t) b);
|
591 |
+
#else
|
592 |
+
return a + b;
|
593 |
+
#endif
|
594 |
+
}
|
595 |
+
|
596 |
+
/* Vector subtraction */
|
597 |
+
PSIMD_INTRINSIC psimd_s8 psimd_sub_s8(psimd_s8 a, psimd_s8 b) {
|
598 |
+
return a - b;
|
599 |
+
}
|
600 |
+
|
601 |
+
PSIMD_INTRINSIC psimd_u8 psimd_sub_u8(psimd_u8 a, psimd_u8 b) {
|
602 |
+
return a - b;
|
603 |
+
}
|
604 |
+
|
605 |
+
PSIMD_INTRINSIC psimd_s16 psimd_sub_s16(psimd_s16 a, psimd_s16 b) {
|
606 |
+
return a - b;
|
607 |
+
}
|
608 |
+
|
609 |
+
PSIMD_INTRINSIC psimd_u16 psimd_sub_u16(psimd_u16 a, psimd_u16 b) {
|
610 |
+
return a - b;
|
611 |
+
}
|
612 |
+
|
613 |
+
PSIMD_INTRINSIC psimd_s32 psimd_sub_s32(psimd_s32 a, psimd_s32 b) {
|
614 |
+
return a - b;
|
615 |
+
}
|
616 |
+
|
617 |
+
PSIMD_INTRINSIC psimd_u32 psimd_sub_u32(psimd_u32 a, psimd_u32 b) {
|
618 |
+
return a - b;
|
619 |
+
}
|
620 |
+
|
621 |
+
PSIMD_INTRINSIC psimd_f32 psimd_sub_f32(psimd_f32 a, psimd_f32 b) {
|
622 |
+
#if defined(__ARM_ARCH_7A__) && defined(__ARM_NEON__) && !defined(__FAST_MATH__)
|
623 |
+
return (psimd_f32) vsubq_f32((float32x4_t) a, (float32x4_t) b);
|
624 |
+
#else
|
625 |
+
return a - b;
|
626 |
+
#endif
|
627 |
+
}
|
628 |
+
|
629 |
+
/* Vector multiplication */
|
630 |
+
PSIMD_INTRINSIC psimd_s8 psimd_mul_s8(psimd_s8 a, psimd_s8 b) {
|
631 |
+
return a * b;
|
632 |
+
}
|
633 |
+
|
634 |
+
PSIMD_INTRINSIC psimd_u8 psimd_mul_u8(psimd_u8 a, psimd_u8 b) {
|
635 |
+
return a * b;
|
636 |
+
}
|
637 |
+
|
638 |
+
PSIMD_INTRINSIC psimd_s16 psimd_mul_s16(psimd_s16 a, psimd_s16 b) {
|
639 |
+
return a * b;
|
640 |
+
}
|
641 |
+
|
642 |
+
PSIMD_INTRINSIC psimd_u16 psimd_mul_u16(psimd_u16 a, psimd_u16 b) {
|
643 |
+
return a * b;
|
644 |
+
}
|
645 |
+
|
646 |
+
PSIMD_INTRINSIC psimd_s32 psimd_mul_s32(psimd_s32 a, psimd_s32 b) {
|
647 |
+
return a * b;
|
648 |
+
}
|
649 |
+
|
650 |
+
PSIMD_INTRINSIC psimd_u32 psimd_mul_u32(psimd_u32 a, psimd_u32 b) {
|
651 |
+
return a * b;
|
652 |
+
}
|
653 |
+
|
654 |
+
PSIMD_INTRINSIC psimd_f32 psimd_mul_f32(psimd_f32 a, psimd_f32 b) {
|
655 |
+
#if defined(__ARM_ARCH_7A__) && defined(__ARM_NEON__) && !defined(__FAST_MATH__)
|
656 |
+
return (psimd_f32) vmulq_f32((float32x4_t) a, (float32x4_t) b);
|
657 |
+
#else
|
658 |
+
return a * b;
|
659 |
+
#endif
|
660 |
+
}
|
661 |
+
|
662 |
+
/* Quasi-Fused Multiply-Add */
|
663 |
+
PSIMD_INTRINSIC psimd_f32 psimd_qfma_f32(psimd_f32 a, psimd_f32 b, psimd_f32 c) {
|
664 |
+
#if defined(__aarch64__) || defined(__ARM_NEON__) && defined(__ARM_FEATURE_FMA)
|
665 |
+
return (psimd_f32) vfmaq_f32((float32x4_t) a, (float32x4_t) b, (float32x4_t) c);
|
666 |
+
#elif (defined(__x86_64__) || defined(__i386__) || defined(__i686__)) && defined(__FMA__)
|
667 |
+
return (psimd_f32) _mm_fmadd_ps((__m128) b, (__m128) c, (__m128) a);
|
668 |
+
#elif (defined(__x86_64__) || defined(__i386__) || defined(__i686__)) && defined(__FMA4__)
|
669 |
+
return (psimd_f32) _mm_macc_ps((__m128) b, (__m128) c, (__m128) a);
|
670 |
+
#elif defined(__wasm__) && defined(__wasm_simd128__) && defined(__clang__) && PSIMD_ENABLE_WASM_QFMA
|
671 |
+
return (psimd_f32) __builtin_wasm_qfma_f32x4(a, b, c);
|
672 |
+
#else
|
673 |
+
return a + b * c;
|
674 |
+
#endif
|
675 |
+
}
|
676 |
+
|
677 |
+
PSIMD_INTRINSIC psimd_f32 psimd_div_f32(psimd_f32 a, psimd_f32 b) {
|
678 |
+
return a / b;
|
679 |
+
}
|
680 |
+
|
681 |
+
/* Vector and */
|
682 |
+
PSIMD_INTRINSIC psimd_f32 psimd_andmask_f32(psimd_s32 mask, psimd_f32 v) {
|
683 |
+
return (psimd_f32) (mask & (psimd_s32) v);
|
684 |
+
}
|
685 |
+
|
686 |
+
/* Vector and-not */
|
687 |
+
PSIMD_INTRINSIC psimd_f32 psimd_andnotmask_f32(psimd_s32 mask, psimd_f32 v) {
|
688 |
+
return (psimd_f32) (~mask & (psimd_s32) v);
|
689 |
+
}
|
690 |
+
|
691 |
+
/* Vector blend */
|
692 |
+
PSIMD_INTRINSIC psimd_s8 psimd_blend_s8(psimd_s8 mask, psimd_s8 a, psimd_s8 b) {
|
693 |
+
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
|
694 |
+
return (psimd_s8) vbslq_s8((uint8x16_t) mask, (int8x16_t) a, (int8x16_t) b);
|
695 |
+
#elif defined(__wasm__) && defined(__wasm_simd128__) && defined(__clang__)
|
696 |
+
return (psimd_s8) __builtin_wasm_bitselect(a, b, mask);
|
697 |
+
#else
|
698 |
+
return (mask & a) | (~mask & b);
|
699 |
+
#endif
|
700 |
+
}
|
701 |
+
|
702 |
+
PSIMD_INTRINSIC psimd_u8 psimd_blend_u8(psimd_s8 mask, psimd_u8 a, psimd_u8 b) {
|
703 |
+
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
|
704 |
+
return (psimd_u8) vbslq_u8((uint8x16_t) mask, (uint8x16_t) a, (uint8x16_t) b);
|
705 |
+
#elif defined(__wasm__) && defined(__wasm_simd128__) && defined(__clang__)
|
706 |
+
return (psimd_u8) __builtin_wasm_bitselect(a, b, mask);
|
707 |
+
#else
|
708 |
+
return (psimd_u8) ((mask & (psimd_s8) a) | (~mask & (psimd_s8) b));
|
709 |
+
#endif
|
710 |
+
}
|
711 |
+
|
712 |
+
PSIMD_INTRINSIC psimd_s16 psimd_blend_s16(psimd_s16 mask, psimd_s16 a, psimd_s16 b) {
|
713 |
+
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
|
714 |
+
return (psimd_s16) vbslq_s16((uint16x8_t) mask, (int16x8_t) a, (int16x8_t) b);
|
715 |
+
#elif defined(__wasm__) && defined(__wasm_simd128__) && defined(__clang__)
|
716 |
+
return (psimd_s16) __builtin_wasm_bitselect(a, b, mask);
|
717 |
+
#else
|
718 |
+
return (mask & a) | (~mask & b);
|
719 |
+
#endif
|
720 |
+
}
|
721 |
+
|
722 |
+
PSIMD_INTRINSIC psimd_u16 psimd_blend_u16(psimd_s16 mask, psimd_u16 a, psimd_u16 b) {
|
723 |
+
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
|
724 |
+
return (psimd_u16) vbslq_u16((uint16x8_t) mask, (uint16x8_t) a, (uint16x8_t) b);
|
725 |
+
#elif defined(__wasm__) && defined(__wasm_simd128__) && defined(__clang__)
|
726 |
+
return (psimd_u16) __builtin_wasm_bitselect(a, b, mask);
|
727 |
+
#else
|
728 |
+
return (psimd_u16) ((mask & (psimd_s16) a) | (~mask & (psimd_s16) b));
|
729 |
+
#endif
|
730 |
+
}
|
731 |
+
|
732 |
+
PSIMD_INTRINSIC psimd_s32 psimd_blend_s32(psimd_s32 mask, psimd_s32 a, psimd_s32 b) {
|
733 |
+
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
|
734 |
+
return (psimd_s32) vbslq_s32((uint32x4_t) mask, (int32x4_t) a, (int32x4_t) b);
|
735 |
+
#elif defined(__wasm__) && defined(__wasm_simd128__) && defined(__clang__)
|
736 |
+
return (psimd_s32) __builtin_wasm_bitselect(a, b, mask);
|
737 |
+
#else
|
738 |
+
return (mask & a) | (~mask & b);
|
739 |
+
#endif
|
740 |
+
}
|
741 |
+
|
742 |
+
PSIMD_INTRINSIC psimd_u32 psimd_blend_u32(psimd_s32 mask, psimd_u32 a, psimd_u32 b) {
|
743 |
+
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
|
744 |
+
return (psimd_u32) vbslq_u32((uint32x4_t) mask, (uint32x4_t) a, (uint32x4_t) b);
|
745 |
+
#elif defined(__wasm__) && defined(__wasm_simd128__) && defined(__clang__)
|
746 |
+
return (psimd_u32) __builtin_wasm_bitselect(a, b, mask);
|
747 |
+
#else
|
748 |
+
return (psimd_u32) ((mask & (psimd_s32) a) | (~mask & (psimd_s32) b));
|
749 |
+
#endif
|
750 |
+
}
|
751 |
+
|
752 |
+
PSIMD_INTRINSIC psimd_f32 psimd_blend_f32(psimd_s32 mask, psimd_f32 a, psimd_f32 b) {
|
753 |
+
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
|
754 |
+
return (psimd_f32) vbslq_f32((uint32x4_t) mask, (float32x4_t) a, (float32x4_t) b);
|
755 |
+
#elif defined(__wasm__) && defined(__wasm_simd128__) && defined(__clang__)
|
756 |
+
return (psimd_f32) __builtin_wasm_bitselect(a, b, mask);
|
757 |
+
#else
|
758 |
+
return (psimd_f32) ((mask & (psimd_s32) a) | (~mask & (psimd_s32) b));
|
759 |
+
#endif
|
760 |
+
}
|
761 |
+
|
762 |
+
/* Vector blend on sign */
|
763 |
+
PSIMD_INTRINSIC psimd_s8 psimd_signblend_s8(psimd_s8 x, psimd_s8 a, psimd_s8 b) {
|
764 |
+
return psimd_blend_s8(x >> psimd_splat_s8(7), a, b);
|
765 |
+
}
|
766 |
+
|
767 |
+
PSIMD_INTRINSIC psimd_u8 psimd_signblend_u8(psimd_s8 x, psimd_u8 a, psimd_u8 b) {
|
768 |
+
return psimd_blend_u8((x >> psimd_splat_s8(7)), a, b);
|
769 |
+
}
|
770 |
+
|
771 |
+
PSIMD_INTRINSIC psimd_s16 psimd_signblend_s16(psimd_s16 x, psimd_s16 a, psimd_s16 b) {
|
772 |
+
return psimd_blend_s16(x >> psimd_splat_s16(15), a, b);
|
773 |
+
}
|
774 |
+
|
775 |
+
PSIMD_INTRINSIC psimd_u16 psimd_signblend_u16(psimd_s16 x, psimd_u16 a, psimd_u16 b) {
|
776 |
+
return psimd_blend_u16((x >> psimd_splat_s16(15)), a, b);
|
777 |
+
}
|
778 |
+
|
779 |
+
PSIMD_INTRINSIC psimd_s32 psimd_signblend_s32(psimd_s32 x, psimd_s32 a, psimd_s32 b) {
|
780 |
+
return psimd_blend_s32(x >> psimd_splat_s32(31), a, b);
|
781 |
+
}
|
782 |
+
|
783 |
+
PSIMD_INTRINSIC psimd_u32 psimd_signblend_u32(psimd_s32 x, psimd_u32 a, psimd_u32 b) {
|
784 |
+
return psimd_blend_u32((x >> psimd_splat_s32(31)), a, b);
|
785 |
+
}
|
786 |
+
|
787 |
+
PSIMD_INTRINSIC psimd_f32 psimd_signblend_f32(psimd_f32 x, psimd_f32 a, psimd_f32 b) {
|
788 |
+
const psimd_s32 mask = (psimd_s32) x >> psimd_splat_s32(31);
|
789 |
+
return psimd_blend_f32(mask, a, b);
|
790 |
+
}
|
791 |
+
|
792 |
+
/* Vector absolute value */
|
793 |
+
PSIMD_INTRINSIC psimd_f32 psimd_abs_f32(psimd_f32 v) {
|
794 |
+
const psimd_s32 mask = (psimd_s32) psimd_splat_f32(-0.0f);
|
795 |
+
return (psimd_f32) ((psimd_s32) v & ~mask);
|
796 |
+
}
|
797 |
+
|
798 |
+
/* Vector negation */
|
799 |
+
PSIMD_INTRINSIC psimd_f32 psimd_neg_f32(psimd_f32 v) {
|
800 |
+
const psimd_s32 mask = (psimd_s32) psimd_splat_f32(-0.0f);
|
801 |
+
return (psimd_f32) ((psimd_s32) v ^ mask);
|
802 |
+
}
|
803 |
+
|
804 |
+
/* Vector maximum */
|
805 |
+
PSIMD_INTRINSIC psimd_s8 psimd_max_s8(psimd_s8 a, psimd_s8 b) {
|
806 |
+
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
|
807 |
+
return (psimd_s8) vmaxq_s8((int8x16_t) a, (int8x16_t) b);
|
808 |
+
#else
|
809 |
+
return psimd_blend_s8(a > b, a, b);
|
810 |
+
#endif
|
811 |
+
}
|
812 |
+
|
813 |
+
PSIMD_INTRINSIC psimd_u8 psimd_max_u8(psimd_u8 a, psimd_u8 b) {
|
814 |
+
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
|
815 |
+
return (psimd_u8) vmaxq_u8((uint8x16_t) a, (uint8x16_t) b);
|
816 |
+
#else
|
817 |
+
return psimd_blend_u8(a > b, a, b);
|
818 |
+
#endif
|
819 |
+
}
|
820 |
+
|
821 |
+
PSIMD_INTRINSIC psimd_s16 psimd_max_s16(psimd_s16 a, psimd_s16 b) {
|
822 |
+
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
|
823 |
+
return (psimd_s16) vmaxq_s16((int16x8_t) a, (int16x8_t) b);
|
824 |
+
#else
|
825 |
+
return psimd_blend_s16(a > b, a, b);
|
826 |
+
#endif
|
827 |
+
}
|
828 |
+
|
829 |
+
PSIMD_INTRINSIC psimd_u16 psimd_max_u16(psimd_u16 a, psimd_u16 b) {
|
830 |
+
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
|
831 |
+
return (psimd_u16) vmaxq_u16((uint16x8_t) a, (uint16x8_t) b);
|
832 |
+
#else
|
833 |
+
return psimd_blend_u16(a > b, a, b);
|
834 |
+
#endif
|
835 |
+
}
|
836 |
+
|
837 |
+
PSIMD_INTRINSIC psimd_s32 psimd_max_s32(psimd_s32 a, psimd_s32 b) {
|
838 |
+
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
|
839 |
+
return (psimd_s32) vmaxq_s32((int32x4_t) a, (int32x4_t) b);
|
840 |
+
#else
|
841 |
+
return psimd_blend_s32(a > b, a, b);
|
842 |
+
#endif
|
843 |
+
}
|
844 |
+
|
845 |
+
PSIMD_INTRINSIC psimd_u32 psimd_max_u32(psimd_u32 a, psimd_u32 b) {
|
846 |
+
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
|
847 |
+
return (psimd_u32) vmaxq_u32((uint32x4_t) a, (uint32x4_t) b);
|
848 |
+
#else
|
849 |
+
return psimd_blend_u32(a > b, a, b);
|
850 |
+
#endif
|
851 |
+
}
|
852 |
+
|
853 |
+
PSIMD_INTRINSIC psimd_f32 psimd_max_f32(psimd_f32 a, psimd_f32 b) {
|
854 |
+
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
|
855 |
+
return (psimd_f32) vmaxq_f32((float32x4_t) a, (float32x4_t) b);
|
856 |
+
#elif defined(__wasm__) && defined(__wasm_simd128__) && defined(__clang__)
|
857 |
+
return __builtin_wasm_max_f32x4(a, b);
|
858 |
+
#else
|
859 |
+
return psimd_blend_f32(a > b, a, b);
|
860 |
+
#endif
|
861 |
+
}
|
862 |
+
|
863 |
+
/* Vector minimum */
|
864 |
+
PSIMD_INTRINSIC psimd_s8 psimd_min_s8(psimd_s8 a, psimd_s8 b) {
|
865 |
+
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
|
866 |
+
return (psimd_s8) vminq_s8((int8x16_t) a, (int8x16_t) b);
|
867 |
+
#else
|
868 |
+
return psimd_blend_s8(a < b, a, b);
|
869 |
+
#endif
|
870 |
+
}
|
871 |
+
|
872 |
+
PSIMD_INTRINSIC psimd_u8 psimd_min_u8(psimd_u8 a, psimd_u8 b) {
|
873 |
+
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
|
874 |
+
return (psimd_u8) vminq_u8((uint8x16_t) a, (uint8x16_t) b);
|
875 |
+
#else
|
876 |
+
return psimd_blend_u8(a < b, a, b);
|
877 |
+
#endif
|
878 |
+
}
|
879 |
+
|
880 |
+
PSIMD_INTRINSIC psimd_s16 psimd_min_s16(psimd_s16 a, psimd_s16 b) {
|
881 |
+
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
|
882 |
+
return (psimd_s16) vminq_s16((int16x8_t) a, (int16x8_t) b);
|
883 |
+
#else
|
884 |
+
return psimd_blend_s16(a < b, a, b);
|
885 |
+
#endif
|
886 |
+
}
|
887 |
+
|
888 |
+
PSIMD_INTRINSIC psimd_u16 psimd_min_u16(psimd_u16 a, psimd_u16 b) {
|
889 |
+
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
|
890 |
+
return (psimd_u16) vminq_u16((uint16x8_t) a, (uint16x8_t) b);
|
891 |
+
#else
|
892 |
+
return psimd_blend_u16(a < b, a, b);
|
893 |
+
#endif
|
894 |
+
}
|
895 |
+
|
896 |
+
PSIMD_INTRINSIC psimd_s32 psimd_min_s32(psimd_s32 a, psimd_s32 b) {
|
897 |
+
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
|
898 |
+
return (psimd_s32) vminq_s32((int32x4_t) a, (int32x4_t) b);
|
899 |
+
#else
|
900 |
+
return psimd_blend_s32(a < b, a, b);
|
901 |
+
#endif
|
902 |
+
}
|
903 |
+
|
904 |
+
PSIMD_INTRINSIC psimd_u32 psimd_min_u32(psimd_u32 a, psimd_u32 b) {
|
905 |
+
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
|
906 |
+
return (psimd_u32) vminq_u32((uint32x4_t) a, (uint32x4_t) b);
|
907 |
+
#else
|
908 |
+
return psimd_blend_u32(a < b, a, b);
|
909 |
+
#endif
|
910 |
+
}
|
911 |
+
|
912 |
+
PSIMD_INTRINSIC psimd_f32 psimd_min_f32(psimd_f32 a, psimd_f32 b) {
|
913 |
+
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
|
914 |
+
return (psimd_f32) vminq_f32((float32x4_t) a, (float32x4_t) b);
|
915 |
+
#elif defined(__wasm__) && defined(__wasm_simd128__) && defined(__clang__)
|
916 |
+
return __builtin_wasm_min_f32x4(a, b);
|
917 |
+
#else
|
918 |
+
return psimd_blend_f32(a < b, a, b);
|
919 |
+
#endif
|
920 |
+
}
|
921 |
+
|
922 |
+
PSIMD_INTRINSIC psimd_f32 psimd_cvt_s32_f32(psimd_s32 v) {
|
923 |
+
#if defined(__clang__)
|
924 |
+
return __builtin_convertvector(v, psimd_f32);
|
925 |
+
#elif defined(__ARM_NEON__) || defined(__ARM_NEON)
|
926 |
+
return (psimd_f32) vcvtq_f32_s32((int32x4_t) v);
|
927 |
+
#elif defined(__SSE2__)
|
928 |
+
return (psimd_f32) _mm_cvtepi32_ps((__m128i) v);
|
929 |
+
#else
|
930 |
+
return (psimd_f32) { (float) v[0], (float) v[1], (float) v[2], (float) v[3] };
|
931 |
+
#endif
|
932 |
+
}
|
933 |
+
|
934 |
+
/* Broadcast vector element */
|
935 |
+
#if defined(__clang__)
|
936 |
+
PSIMD_INTRINSIC psimd_f32 psimd_splat0_f32(psimd_f32 v) {
|
937 |
+
return __builtin_shufflevector(v, v, 0, 0, 0, 0);
|
938 |
+
}
|
939 |
+
|
940 |
+
PSIMD_INTRINSIC psimd_f32 psimd_splat1_f32(psimd_f32 v) {
|
941 |
+
return __builtin_shufflevector(v, v, 1, 1, 1, 1);
|
942 |
+
}
|
943 |
+
|
944 |
+
PSIMD_INTRINSIC psimd_f32 psimd_splat2_f32(psimd_f32 v) {
|
945 |
+
return __builtin_shufflevector(v, v, 2, 2, 2, 2);
|
946 |
+
}
|
947 |
+
|
948 |
+
PSIMD_INTRINSIC psimd_f32 psimd_splat3_f32(psimd_f32 v) {
|
949 |
+
return __builtin_shufflevector(v, v, 3, 3, 3, 3);
|
950 |
+
}
|
951 |
+
#else
|
952 |
+
PSIMD_INTRINSIC psimd_f32 psimd_splat0_f32(psimd_f32 v) {
|
953 |
+
return __builtin_shuffle(v, (psimd_s32) { 0, 0, 0, 0 });
|
954 |
+
}
|
955 |
+
|
956 |
+
PSIMD_INTRINSIC psimd_f32 psimd_splat1_f32(psimd_f32 v) {
|
957 |
+
return __builtin_shuffle(v, (psimd_s32) { 1, 1, 1, 1 });
|
958 |
+
}
|
959 |
+
|
960 |
+
PSIMD_INTRINSIC psimd_f32 psimd_splat2_f32(psimd_f32 v) {
|
961 |
+
return __builtin_shuffle(v, (psimd_s32) { 2, 2, 2, 2 });
|
962 |
+
}
|
963 |
+
|
964 |
+
PSIMD_INTRINSIC psimd_f32 psimd_splat3_f32(psimd_f32 v) {
|
965 |
+
return __builtin_shuffle(v, (psimd_s32) { 3, 3, 3, 3 });
|
966 |
+
}
|
967 |
+
#endif
|
968 |
+
|
969 |
+
/* Reversal of vector elements */
|
970 |
+
#if defined(__clang__)
|
971 |
+
PSIMD_INTRINSIC psimd_s8 psimd_reverse_s8(psimd_s8 v) {
|
972 |
+
return __builtin_shufflevector(v, v, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0);
|
973 |
+
}
|
974 |
+
|
975 |
+
PSIMD_INTRINSIC psimd_u8 psimd_reverse_u8(psimd_u8 v) {
|
976 |
+
return __builtin_shufflevector(v, v, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0);
|
977 |
+
}
|
978 |
+
|
979 |
+
PSIMD_INTRINSIC psimd_s16 psimd_reverse_s16(psimd_s16 v) {
|
980 |
+
return __builtin_shufflevector(v, v, 7, 6, 5, 4, 3, 2, 1, 0);
|
981 |
+
}
|
982 |
+
|
983 |
+
PSIMD_INTRINSIC psimd_u16 psimd_reverse_u16(psimd_u16 v) {
|
984 |
+
return __builtin_shufflevector(v, v, 7, 6, 5, 4, 3, 2, 1, 0);
|
985 |
+
}
|
986 |
+
|
987 |
+
PSIMD_INTRINSIC psimd_s32 psimd_reverse_s32(psimd_s32 v) {
|
988 |
+
return __builtin_shufflevector(v, v, 3, 2, 1, 0);
|
989 |
+
}
|
990 |
+
|
991 |
+
PSIMD_INTRINSIC psimd_u32 psimd_reverse_u32(psimd_u32 v) {
|
992 |
+
return __builtin_shufflevector(v, v, 3, 2, 1, 0);
|
993 |
+
}
|
994 |
+
|
995 |
+
PSIMD_INTRINSIC psimd_f32 psimd_reverse_f32(psimd_f32 v) {
|
996 |
+
return __builtin_shufflevector(v, v, 3, 2, 1, 0);
|
997 |
+
}
|
998 |
+
#else
|
999 |
+
PSIMD_INTRINSIC psimd_s8 psimd_reverse_s8(psimd_s8 v) {
|
1000 |
+
return __builtin_shuffle(v, (psimd_s8) { 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0 });
|
1001 |
+
}
|
1002 |
+
|
1003 |
+
PSIMD_INTRINSIC psimd_u8 psimd_reverse_u8(psimd_u8 v) {
|
1004 |
+
return __builtin_shuffle(v, (psimd_s8) { 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0 });
|
1005 |
+
}
|
1006 |
+
|
1007 |
+
PSIMD_INTRINSIC psimd_s16 psimd_reverse_s16(psimd_s16 v) {
|
1008 |
+
return __builtin_shuffle(v, (psimd_s16) { 7, 6, 5, 4, 3, 2, 1, 0 });
|
1009 |
+
}
|
1010 |
+
|
1011 |
+
PSIMD_INTRINSIC psimd_u16 psimd_reverse_u16(psimd_u16 v) {
|
1012 |
+
return __builtin_shuffle(v, (psimd_s16) { 7, 6, 5, 4, 3, 2, 1, 0 });
|
1013 |
+
}
|
1014 |
+
|
1015 |
+
PSIMD_INTRINSIC psimd_s32 psimd_reverse_s32(psimd_s32 v) {
|
1016 |
+
return __builtin_shuffle(v, (psimd_s32) { 3, 2, 1, 0 });
|
1017 |
+
}
|
1018 |
+
|
1019 |
+
PSIMD_INTRINSIC psimd_u32 psimd_reverse_u32(psimd_u32 v) {
|
1020 |
+
return __builtin_shuffle(v, (psimd_s32) { 3, 2, 1, 0 });
|
1021 |
+
}
|
1022 |
+
|
1023 |
+
PSIMD_INTRINSIC psimd_f32 psimd_reverse_f32(psimd_f32 v) {
|
1024 |
+
return __builtin_shuffle(v, (psimd_s32) { 3, 2, 1, 0 });
|
1025 |
+
}
|
1026 |
+
#endif
|
1027 |
+
|
1028 |
+
/* Interleaving of vector elements */
|
1029 |
+
#if defined(__clang__)
|
1030 |
+
PSIMD_INTRINSIC psimd_s16 psimd_interleave_lo_s16(psimd_s16 a, psimd_s16 b) {
|
1031 |
+
return __builtin_shufflevector(a, b, 0, 8+0, 1, 8+1, 2, 8+2, 3, 8+3);
|
1032 |
+
}
|
1033 |
+
|
1034 |
+
PSIMD_INTRINSIC psimd_s16 psimd_interleave_hi_s16(psimd_s16 a, psimd_s16 b) {
|
1035 |
+
return __builtin_shufflevector(a, b, 4, 8+4, 5, 8+5, 6, 8+6, 7, 8+7);
|
1036 |
+
}
|
1037 |
+
|
1038 |
+
PSIMD_INTRINSIC psimd_u16 psimd_interleave_lo_u16(psimd_u16 a, psimd_u16 b) {
|
1039 |
+
return __builtin_shufflevector(a, b, 0, 8+0, 1, 8+1, 2, 8+2, 3, 8+3);
|
1040 |
+
}
|
1041 |
+
|
1042 |
+
PSIMD_INTRINSIC psimd_u16 psimd_interleave_hi_u16(psimd_u16 a, psimd_u16 b) {
|
1043 |
+
return __builtin_shufflevector(a, b, 4, 8+4, 5, 8+5, 6, 8+6, 7, 8+7);
|
1044 |
+
}
|
1045 |
+
|
1046 |
+
PSIMD_INTRINSIC psimd_s32 psimd_interleave_lo_s32(psimd_s32 a, psimd_s32 b) {
|
1047 |
+
return __builtin_shufflevector(a, b, 0, 4+0, 1, 4+1);
|
1048 |
+
}
|
1049 |
+
|
1050 |
+
PSIMD_INTRINSIC psimd_s32 psimd_interleave_hi_s32(psimd_s32 a, psimd_s32 b) {
|
1051 |
+
return __builtin_shufflevector(a, b, 2, 4+2, 3, 4+3);
|
1052 |
+
}
|
1053 |
+
|
1054 |
+
PSIMD_INTRINSIC psimd_u32 psimd_interleave_lo_u32(psimd_u32 a, psimd_u32 b) {
|
1055 |
+
return __builtin_shufflevector(a, b, 0, 4+0, 1, 4+1);
|
1056 |
+
}
|
1057 |
+
|
1058 |
+
PSIMD_INTRINSIC psimd_u32 psimd_interleave_hi_u32(psimd_u32 a, psimd_u32 b) {
|
1059 |
+
return __builtin_shufflevector(a, b, 2, 4+2, 3, 4+3);
|
1060 |
+
}
|
1061 |
+
|
1062 |
+
PSIMD_INTRINSIC psimd_f32 psimd_interleave_lo_f32(psimd_f32 a, psimd_f32 b) {
|
1063 |
+
return __builtin_shufflevector(a, b, 0, 4+0, 1, 4+1);
|
1064 |
+
}
|
1065 |
+
|
1066 |
+
PSIMD_INTRINSIC psimd_f32 psimd_interleave_hi_f32(psimd_f32 a, psimd_f32 b) {
|
1067 |
+
return __builtin_shufflevector(a, b, 2, 4+2, 3, 4+3);
|
1068 |
+
}
|
1069 |
+
#else
|
1070 |
+
PSIMD_INTRINSIC psimd_s16 psimd_interleave_lo_s16(psimd_s16 a, psimd_s16 b) {
|
1071 |
+
return __builtin_shuffle(a, b, (psimd_s16) { 0, 8+0, 1, 8+1, 2, 8+2, 3, 8+3 });
|
1072 |
+
}
|
1073 |
+
|
1074 |
+
PSIMD_INTRINSIC psimd_s16 psimd_interleave_hi_s16(psimd_s16 a, psimd_s16 b) {
|
1075 |
+
return __builtin_shuffle(a, b, (psimd_s16) { 4, 8+4, 5, 8+5, 6, 8+6, 7, 8+7 });
|
1076 |
+
}
|
1077 |
+
|
1078 |
+
PSIMD_INTRINSIC psimd_u16 psimd_interleave_lo_u16(psimd_u16 a, psimd_u16 b) {
|
1079 |
+
return __builtin_shuffle(a, b, (psimd_s16) { 0, 8+0, 1, 8+1, 2, 8+2, 3, 8+3 });
|
1080 |
+
}
|
1081 |
+
|
1082 |
+
PSIMD_INTRINSIC psimd_u16 psimd_interleave_hi_u16(psimd_u16 a, psimd_u16 b) {
|
1083 |
+
return __builtin_shuffle(a, b, (psimd_s16) { 4, 8+4, 5, 8+5, 6, 8+6, 7, 8+7 });
|
1084 |
+
}
|
1085 |
+
|
1086 |
+
PSIMD_INTRINSIC psimd_s32 psimd_interleave_lo_s32(psimd_s32 a, psimd_s32 b) {
|
1087 |
+
return __builtin_shuffle(a, b, (psimd_s32) { 0, 4+0, 1, 4+1 });
|
1088 |
+
}
|
1089 |
+
|
1090 |
+
PSIMD_INTRINSIC psimd_s32 psimd_interleave_hi_s32(psimd_s32 a, psimd_s32 b) {
|
1091 |
+
return __builtin_shuffle(a, b, (psimd_s32) { 2, 4+2, 3, 4+3 });
|
1092 |
+
}
|
1093 |
+
|
1094 |
+
PSIMD_INTRINSIC psimd_u32 psimd_interleave_lo_u32(psimd_u32 a, psimd_u32 b) {
|
1095 |
+
return __builtin_shuffle(a, b, (psimd_s32) { 0, 4+0, 1, 4+1 });
|
1096 |
+
}
|
1097 |
+
|
1098 |
+
PSIMD_INTRINSIC psimd_u32 psimd_interleave_hi_u32(psimd_u32 a, psimd_u32 b) {
|
1099 |
+
return __builtin_shuffle(a, b, (psimd_s32) { 2, 4+2, 3, 4+3 });
|
1100 |
+
}
|
1101 |
+
|
1102 |
+
PSIMD_INTRINSIC psimd_f32 psimd_interleave_lo_f32(psimd_f32 a, psimd_f32 b) {
|
1103 |
+
return __builtin_shuffle(a, b, (psimd_s32) { 0, 4+0, 1, 4+1 });
|
1104 |
+
}
|
1105 |
+
|
1106 |
+
PSIMD_INTRINSIC psimd_f32 psimd_interleave_hi_f32(psimd_f32 a, psimd_f32 b) {
|
1107 |
+
return __builtin_shuffle(a, b, (psimd_s32) { 2, 4+2, 3, 4+3 });
|
1108 |
+
}
|
1109 |
+
#endif
|
1110 |
+
|
1111 |
+
/* Concatenation of low/high vector elements */
|
1112 |
+
#if defined(__clang__)
|
1113 |
+
PSIMD_INTRINSIC psimd_s16 psimd_concat_lo_s16(psimd_s16 a, psimd_s16 b) {
|
1114 |
+
return __builtin_shufflevector(a, b, 0, 1, 2, 3, 8+0, 8+1, 8+2, 8+3);
|
1115 |
+
}
|
1116 |
+
|
1117 |
+
PSIMD_INTRINSIC psimd_s16 psimd_concat_hi_s16(psimd_s16 a, psimd_s16 b) {
|
1118 |
+
return __builtin_shufflevector(a, b, 4, 5, 6, 7, 8+4, 8+5, 8+6, 8+7);
|
1119 |
+
}
|
1120 |
+
|
1121 |
+
PSIMD_INTRINSIC psimd_u16 psimd_concat_lo_u16(psimd_u16 a, psimd_u16 b) {
|
1122 |
+
return __builtin_shufflevector(a, b, 0, 1, 2, 3, 8+0, 8+1, 8+2, 8+3);
|
1123 |
+
}
|
1124 |
+
|
1125 |
+
PSIMD_INTRINSIC psimd_u16 psimd_concat_hi_u16(psimd_u16 a, psimd_u16 b) {
|
1126 |
+
return __builtin_shufflevector(a, b, 4, 5, 6, 7, 8+4, 8+5, 8+6, 8+7);
|
1127 |
+
}
|
1128 |
+
|
1129 |
+
PSIMD_INTRINSIC psimd_s32 psimd_concat_lo_s32(psimd_s32 a, psimd_s32 b) {
|
1130 |
+
return __builtin_shufflevector(a, b, 0, 1, 4+0, 4+1);
|
1131 |
+
}
|
1132 |
+
|
1133 |
+
PSIMD_INTRINSIC psimd_s32 psimd_concat_hi_s32(psimd_s32 a, psimd_s32 b) {
|
1134 |
+
return __builtin_shufflevector(a, b, 2, 3, 4+2, 4+3);
|
1135 |
+
}
|
1136 |
+
|
1137 |
+
PSIMD_INTRINSIC psimd_u32 psimd_concat_lo_u32(psimd_u32 a, psimd_u32 b) {
|
1138 |
+
return __builtin_shufflevector(a, b, 0, 1, 4+0, 4+1);
|
1139 |
+
}
|
1140 |
+
|
1141 |
+
PSIMD_INTRINSIC psimd_u32 psimd_concat_hi_u32(psimd_u32 a, psimd_u32 b) {
|
1142 |
+
return __builtin_shufflevector(a, b, 2, 3, 4+2, 4+3);
|
1143 |
+
}
|
1144 |
+
|
1145 |
+
PSIMD_INTRINSIC psimd_f32 psimd_concat_lo_f32(psimd_f32 a, psimd_f32 b) {
|
1146 |
+
return __builtin_shufflevector(a, b, 0, 1, 4+0, 4+1);
|
1147 |
+
}
|
1148 |
+
|
1149 |
+
PSIMD_INTRINSIC psimd_f32 psimd_concat_hi_f32(psimd_f32 a, psimd_f32 b) {
|
1150 |
+
return __builtin_shufflevector(a, b, 2, 3, 4+2, 4+3);
|
1151 |
+
}
|
1152 |
+
#else
|
1153 |
+
PSIMD_INTRINSIC psimd_s16 psimd_concat_lo_s16(psimd_s16 a, psimd_s16 b) {
|
1154 |
+
return __builtin_shuffle(a, b, (psimd_s16) { 0, 1, 2, 3, 8+0, 8+1, 8+2, 8+3 });
|
1155 |
+
}
|
1156 |
+
|
1157 |
+
PSIMD_INTRINSIC psimd_s16 psimd_concat_hi_s16(psimd_s16 a, psimd_s16 b) {
|
1158 |
+
return __builtin_shuffle(a, b, (psimd_s16) { 4, 5, 6, 7, 8+4, 8+5, 8+6, 8+7 });
|
1159 |
+
}
|
1160 |
+
|
1161 |
+
PSIMD_INTRINSIC psimd_u16 psimd_concat_lo_u16(psimd_u16 a, psimd_u16 b) {
|
1162 |
+
return __builtin_shuffle(a, b, (psimd_s16) { 0, 1, 2, 3, 8+0, 8+1, 8+2, 8+3 });
|
1163 |
+
}
|
1164 |
+
|
1165 |
+
PSIMD_INTRINSIC psimd_u16 psimd_concat_hi_u16(psimd_u16 a, psimd_u16 b) {
|
1166 |
+
return __builtin_shuffle(a, b, (psimd_s16) { 4, 5, 6, 7, 8+4, 8+5, 8+6, 8+7 });
|
1167 |
+
}
|
1168 |
+
|
1169 |
+
PSIMD_INTRINSIC psimd_s32 psimd_concat_lo_s32(psimd_s32 a, psimd_s32 b) {
|
1170 |
+
return __builtin_shuffle(a, b, (psimd_s32) { 0, 1, 4+0, 4+1 });
|
1171 |
+
}
|
1172 |
+
|
1173 |
+
PSIMD_INTRINSIC psimd_s32 psimd_concat_hi_s32(psimd_s32 a, psimd_s32 b) {
|
1174 |
+
return __builtin_shuffle(a, b, (psimd_s32) { 2, 3, 4+2, 4+3 });
|
1175 |
+
}
|
1176 |
+
|
1177 |
+
PSIMD_INTRINSIC psimd_u32 psimd_concat_lo_u32(psimd_u32 a, psimd_u32 b) {
|
1178 |
+
return __builtin_shuffle(a, b, (psimd_s32) { 0, 1, 4+0, 4+1 });
|
1179 |
+
}
|
1180 |
+
|
1181 |
+
PSIMD_INTRINSIC psimd_u32 psimd_concat_hi_u32(psimd_u32 a, psimd_u32 b) {
|
1182 |
+
return __builtin_shuffle(a, b, (psimd_s32) { 2, 3, 4+2, 4+3 });
|
1183 |
+
}
|
1184 |
+
|
1185 |
+
PSIMD_INTRINSIC psimd_f32 psimd_concat_lo_f32(psimd_f32 a, psimd_f32 b) {
|
1186 |
+
return __builtin_shuffle(a, b, (psimd_s32) { 0, 1, 4+0, 4+1 });
|
1187 |
+
}
|
1188 |
+
|
1189 |
+
PSIMD_INTRINSIC psimd_f32 psimd_concat_hi_f32(psimd_f32 a, psimd_f32 b) {
|
1190 |
+
return __builtin_shuffle(a, b, (psimd_s32) { 2, 3, 4+2, 4+3 });
|
1191 |
+
}
|
1192 |
+
#endif
|
1193 |
+
|
1194 |
+
/* Concatenation of even/odd vector elements */
|
1195 |
+
#if defined(__clang__)
|
1196 |
+
PSIMD_INTRINSIC psimd_s8 psimd_concat_even_s8(psimd_s8 a, psimd_s8 b) {
|
1197 |
+
return __builtin_shufflevector(a, b,
|
1198 |
+
0, 2, 4, 6, 8, 10, 12, 14, 16+0, 16+2, 16+4, 16+6, 16+8, 16+10, 16+12, 16+14);
|
1199 |
+
}
|
1200 |
+
|
1201 |
+
PSIMD_INTRINSIC psimd_s8 psimd_concat_odd_s8(psimd_s8 a, psimd_s8 b) {
|
1202 |
+
return __builtin_shufflevector(a, b,
|
1203 |
+
1, 3, 5, 7, 9, 11, 13, 15, 16+1, 16+3, 16+5, 16+7, 16+9, 16+11, 16+13, 16+15);
|
1204 |
+
}
|
1205 |
+
|
1206 |
+
PSIMD_INTRINSIC psimd_u8 psimd_concat_even_u8(psimd_u8 a, psimd_u8 b) {
|
1207 |
+
return __builtin_shufflevector(a, b,
|
1208 |
+
0, 2, 4, 6, 8, 10, 12, 14, 16+0, 16+2, 16+4, 16+6, 16+8, 16+10, 16+12, 16+14);
|
1209 |
+
}
|
1210 |
+
|
1211 |
+
PSIMD_INTRINSIC psimd_u8 psimd_concat_odd_u8(psimd_u8 a, psimd_u8 b) {
|
1212 |
+
return __builtin_shufflevector(a, b,
|
1213 |
+
1, 3, 5, 7, 9, 11, 13, 15, 16+1, 16+3, 16+5, 16+7, 16+9, 16+11, 16+13, 16+15);
|
1214 |
+
}
|
1215 |
+
|
1216 |
+
PSIMD_INTRINSIC psimd_s16 psimd_concat_even_s16(psimd_s16 a, psimd_s16 b) {
|
1217 |
+
return __builtin_shufflevector(a, b, 0, 2, 4, 6, 8+0, 8+2, 8+4, 8+6);
|
1218 |
+
}
|
1219 |
+
|
1220 |
+
PSIMD_INTRINSIC psimd_s16 psimd_concat_odd_s16(psimd_s16 a, psimd_s16 b) {
|
1221 |
+
return __builtin_shufflevector(a, b, 1, 3, 5, 7, 8+1, 8+3, 8+5, 8+7);
|
1222 |
+
}
|
1223 |
+
|
1224 |
+
PSIMD_INTRINSIC psimd_u16 psimd_concat_even_u16(psimd_u16 a, psimd_u16 b) {
|
1225 |
+
return __builtin_shufflevector(a, b, 0, 2, 4, 6, 8+0, 8+2, 8+4, 8+6);
|
1226 |
+
}
|
1227 |
+
|
1228 |
+
PSIMD_INTRINSIC psimd_u16 psimd_concat_odd_u16(psimd_u16 a, psimd_u16 b) {
|
1229 |
+
return __builtin_shufflevector(a, b, 1, 3, 5, 7, 8+1, 8+3, 8+5, 8+7);
|
1230 |
+
}
|
1231 |
+
|
1232 |
+
PSIMD_INTRINSIC psimd_s32 psimd_concat_even_s32(psimd_s32 a, psimd_s32 b) {
|
1233 |
+
return __builtin_shufflevector(a, b, 0, 2, 4+0, 4+2);
|
1234 |
+
}
|
1235 |
+
|
1236 |
+
PSIMD_INTRINSIC psimd_s32 psimd_concat_odd_s32(psimd_s32 a, psimd_s32 b) {
|
1237 |
+
return __builtin_shufflevector(a, b, 1, 3, 4+1, 4+3);
|
1238 |
+
}
|
1239 |
+
|
1240 |
+
PSIMD_INTRINSIC psimd_u32 psimd_concat_even_u32(psimd_u32 a, psimd_u32 b) {
|
1241 |
+
return __builtin_shufflevector(a, b, 0, 2, 4+0, 4+2);
|
1242 |
+
}
|
1243 |
+
|
1244 |
+
PSIMD_INTRINSIC psimd_u32 psimd_concat_odd_u32(psimd_u32 a, psimd_u32 b) {
|
1245 |
+
return __builtin_shufflevector(a, b, 1, 3, 4+1, 4+3);
|
1246 |
+
}
|
1247 |
+
|
1248 |
+
PSIMD_INTRINSIC psimd_f32 psimd_concat_even_f32(psimd_f32 a, psimd_f32 b) {
|
1249 |
+
return __builtin_shufflevector(a, b, 0, 2, 4+0, 4+2);
|
1250 |
+
}
|
1251 |
+
|
1252 |
+
PSIMD_INTRINSIC psimd_f32 psimd_concat_odd_f32(psimd_f32 a, psimd_f32 b) {
|
1253 |
+
return __builtin_shufflevector(a, b, 1, 3, 4+1, 4+3);
|
1254 |
+
}
|
1255 |
+
#else
|
1256 |
+
PSIMD_INTRINSIC psimd_s8 psimd_concat_even_s8(psimd_s8 a, psimd_s8 b) {
|
1257 |
+
return __builtin_shuffle(a, b,
|
1258 |
+
(psimd_s8) { 0, 2, 4, 6, 8, 10, 12, 14, 16+0, 16+2, 16+4, 16+6, 16+8, 16+10, 16+12, 16+14 });
|
1259 |
+
}
|
1260 |
+
|
1261 |
+
PSIMD_INTRINSIC psimd_s8 psimd_concat_odd_s8(psimd_s8 a, psimd_s8 b) {
|
1262 |
+
return __builtin_shuffle(a, b,
|
1263 |
+
(psimd_s8) { 1, 3, 5, 7, 9, 11, 13, 15, 16+1, 16+3, 16+5, 16+7, 16+9, 16+11, 16+13, 16+15 });
|
1264 |
+
}
|
1265 |
+
|
1266 |
+
PSIMD_INTRINSIC psimd_u8 psimd_concat_even_u8(psimd_u8 a, psimd_u8 b) {
|
1267 |
+
return __builtin_shuffle(a, b,
|
1268 |
+
(psimd_s8) { 0, 2, 4, 6, 8, 10, 12, 14, 16+0, 16+2, 16+4, 16+6, 16+8, 16+10, 16+12, 16+14 });
|
1269 |
+
}
|
1270 |
+
|
1271 |
+
PSIMD_INTRINSIC psimd_u8 psimd_concat_odd_u8(psimd_u8 a, psimd_u8 b) {
|
1272 |
+
return __builtin_shuffle(a, b,
|
1273 |
+
(psimd_s8) { 1, 3, 5, 7, 9, 11, 13, 15, 16+1, 16+3, 16+5, 16+7, 16+9, 16+11, 16+13, 16+15 });
|
1274 |
+
}
|
1275 |
+
|
1276 |
+
PSIMD_INTRINSIC psimd_s16 psimd_concat_even_s16(psimd_s16 a, psimd_s16 b) {
|
1277 |
+
return __builtin_shuffle(a, b, (psimd_s16) { 0, 2, 4, 6, 8+0, 8+2, 8+4, 8+6 });
|
1278 |
+
}
|
1279 |
+
|
1280 |
+
PSIMD_INTRINSIC psimd_s16 psimd_concat_odd_s16(psimd_s16 a, psimd_s16 b) {
|
1281 |
+
return __builtin_shuffle(a, b, (psimd_s16) { 1, 3, 5, 7, 8+1, 8+3, 8+5, 8+7 });
|
1282 |
+
}
|
1283 |
+
|
1284 |
+
PSIMD_INTRINSIC psimd_u16 psimd_concat_even_u16(psimd_u16 a, psimd_u16 b) {
|
1285 |
+
return __builtin_shuffle(a, b, (psimd_s16) { 0, 2, 4, 6, 8+0, 8+2, 8+4, 8+6 });
|
1286 |
+
}
|
1287 |
+
|
1288 |
+
PSIMD_INTRINSIC psimd_u16 psimd_concat_odd_u16(psimd_u16 a, psimd_u16 b) {
|
1289 |
+
return __builtin_shuffle(a, b, (psimd_s16) { 1, 3, 5, 7, 8+1, 8+3, 8+5, 8+7 });
|
1290 |
+
}
|
1291 |
+
|
1292 |
+
PSIMD_INTRINSIC psimd_s32 psimd_concat_even_s32(psimd_s32 a, psimd_s32 b) {
|
1293 |
+
return __builtin_shuffle(a, b, (psimd_s32) { 0, 2, 4+0, 4+2 });
|
1294 |
+
}
|
1295 |
+
|
1296 |
+
PSIMD_INTRINSIC psimd_s32 psimd_concat_odd_s32(psimd_s32 a, psimd_s32 b) {
|
1297 |
+
return __builtin_shuffle(a, b, (psimd_s32) { 1, 3, 4+1, 4+3 });
|
1298 |
+
}
|
1299 |
+
|
1300 |
+
PSIMD_INTRINSIC psimd_u32 psimd_concat_even_u32(psimd_u32 a, psimd_u32 b) {
|
1301 |
+
return __builtin_shuffle(a, b, (psimd_s32) { 0, 2, 4+0, 4+2 });
|
1302 |
+
}
|
1303 |
+
|
1304 |
+
PSIMD_INTRINSIC psimd_u32 psimd_concat_odd_u32(psimd_u32 a, psimd_u32 b) {
|
1305 |
+
return __builtin_shuffle(a, b, (psimd_s32) { 1, 3, 4+1, 4+3 });
|
1306 |
+
}
|
1307 |
+
|
1308 |
+
PSIMD_INTRINSIC psimd_f32 psimd_concat_even_f32(psimd_f32 a, psimd_f32 b) {
|
1309 |
+
return __builtin_shuffle(a, b, (psimd_s32) { 0, 2, 4+0, 4+2 });
|
1310 |
+
}
|
1311 |
+
|
1312 |
+
PSIMD_INTRINSIC psimd_f32 psimd_concat_odd_f32(psimd_f32 a, psimd_f32 b) {
|
1313 |
+
return __builtin_shuffle(a, b, (psimd_s32) { 1, 3, 4+1, 4+3 });
|
1314 |
+
}
|
1315 |
+
#endif
|
1316 |
+
|
1317 |
+
/* Vector reduce */
|
1318 |
+
#if defined(__clang__)
|
1319 |
+
PSIMD_INTRINSIC psimd_f32 psimd_allreduce_sum_f32(psimd_f32 v) {
|
1320 |
+
const psimd_f32 temp = v + __builtin_shufflevector(v, v, 2, 3, 0, 1);
|
1321 |
+
return temp + __builtin_shufflevector(temp, temp, 1, 0, 3, 2);
|
1322 |
+
}
|
1323 |
+
|
1324 |
+
PSIMD_INTRINSIC psimd_f32 psimd_allreduce_max_f32(psimd_f32 v) {
|
1325 |
+
const psimd_f32 temp = psimd_max_f32(v, __builtin_shufflevector(v, v, 2, 3, 0, 1));
|
1326 |
+
return psimd_max_f32(temp, __builtin_shufflevector(temp, temp, 1, 0, 3, 2));
|
1327 |
+
}
|
1328 |
+
|
1329 |
+
PSIMD_INTRINSIC psimd_f32 psimd_allreduce_min_f32(psimd_f32 v) {
|
1330 |
+
const psimd_f32 temp = psimd_min_f32(v, __builtin_shufflevector(v, v, 2, 3, 0, 1));
|
1331 |
+
return psimd_min_f32(temp, __builtin_shufflevector(temp, temp, 1, 0, 3, 2));
|
1332 |
+
}
|
1333 |
+
|
1334 |
+
PSIMD_INTRINSIC float psimd_reduce_sum_f32(psimd_f32 v) {
|
1335 |
+
const psimd_f32 temp = v + __builtin_shufflevector(v, v, 2, 3, -1, -1);
|
1336 |
+
const psimd_f32 result = temp + __builtin_shufflevector(temp, temp, 1, -1, -1, -1);
|
1337 |
+
return result[0];
|
1338 |
+
}
|
1339 |
+
|
1340 |
+
PSIMD_INTRINSIC float psimd_reduce_max_f32(psimd_f32 v) {
|
1341 |
+
const psimd_f32 temp = psimd_max_f32(v, __builtin_shufflevector(v, v, 2, 3, -1, -1));
|
1342 |
+
const psimd_f32 result = psimd_max_f32(temp, __builtin_shufflevector(temp, temp, 1, -1, -1, -1));
|
1343 |
+
return result[0];
|
1344 |
+
}
|
1345 |
+
|
1346 |
+
PSIMD_INTRINSIC float psimd_reduce_min_f32(psimd_f32 v) {
|
1347 |
+
const psimd_f32 temp = psimd_min_f32(v, __builtin_shufflevector(v, v, 2, 3, -1, -1));
|
1348 |
+
const psimd_f32 result = psimd_min_f32(temp, __builtin_shufflevector(temp, temp, 1, -1, -1, -1));
|
1349 |
+
return result[0];
|
1350 |
+
}
|
1351 |
+
#else
|
1352 |
+
PSIMD_INTRINSIC psimd_f32 psimd_allreduce_sum_f32(psimd_f32 v) {
|
1353 |
+
const psimd_f32 temp = v + __builtin_shuffle(v, (psimd_s32) { 2, 3, 0, 1 });
|
1354 |
+
return temp + __builtin_shuffle(temp, (psimd_s32) { 1, 0, 3, 2 });
|
1355 |
+
}
|
1356 |
+
|
1357 |
+
PSIMD_INTRINSIC psimd_f32 psimd_allreduce_max_f32(psimd_f32 v) {
|
1358 |
+
const psimd_f32 temp = psimd_max_f32(v, __builtin_shuffle(v, (psimd_s32) { 2, 3, 0, 1 }));
|
1359 |
+
return psimd_max_f32(temp, __builtin_shuffle(temp, (psimd_s32) { 1, 0, 3, 2 }));
|
1360 |
+
}
|
1361 |
+
|
1362 |
+
PSIMD_INTRINSIC psimd_f32 psimd_allreduce_min_f32(psimd_f32 v) {
|
1363 |
+
const psimd_f32 temp = psimd_min_f32(v, __builtin_shuffle(v, (psimd_s32) { 2, 3, 0, 1 }));
|
1364 |
+
return psimd_min_f32(temp, __builtin_shuffle(temp, (psimd_s32) { 1, 0, 3, 2 }));
|
1365 |
+
}
|
1366 |
+
|
1367 |
+
PSIMD_INTRINSIC float psimd_reduce_sum_f32(psimd_f32 v) {
|
1368 |
+
const psimd_f32 result = psimd_allreduce_sum_f32(v);
|
1369 |
+
return result[0];
|
1370 |
+
}
|
1371 |
+
|
1372 |
+
PSIMD_INTRINSIC float psimd_reduce_max_f32(psimd_f32 v) {
|
1373 |
+
const psimd_f32 result = psimd_allreduce_max_f32(v);
|
1374 |
+
return result[0];
|
1375 |
+
}
|
1376 |
+
|
1377 |
+
PSIMD_INTRINSIC float psimd_reduce_min_f32(psimd_f32 v) {
|
1378 |
+
const psimd_f32 result = psimd_allreduce_min_f32(v);
|
1379 |
+
return result[0];
|
1380 |
+
}
|
1381 |
+
#endif
|
1382 |
+
#endif
|
1383 |
+
|
1384 |
+
#endif /* PSIMD_H */
|
env-llmeval/lib/python3.10/site-packages/torch/include/pthreadpool.h
ADDED
The diff for this file is too large to render.
See raw diff
|
|
env-llmeval/lib/python3.10/site-packages/torch/include/qnnpack.h
ADDED
@@ -0,0 +1,336 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/*
|
2 |
+
* Copyright (c) Facebook, Inc. and its affiliates.
|
3 |
+
* All rights reserved.
|
4 |
+
*
|
5 |
+
* This source code is licensed under the BSD-style license found in the
|
6 |
+
* LICENSE file in the root directory of this source tree.
|
7 |
+
*/
|
8 |
+
|
9 |
+
#pragma once
|
10 |
+
|
11 |
+
#include <stdbool.h>
|
12 |
+
#include <stddef.h>
|
13 |
+
#include <stdint.h>
|
14 |
+
|
15 |
+
#include <pthreadpool.h>
|
16 |
+
|
17 |
+
#ifdef __cplusplus
|
18 |
+
extern "C" {
|
19 |
+
#endif
|
20 |
+
|
21 |
+
/**
|
22 |
+
* @brief Status code for any QNNPACK function call.
|
23 |
+
*/
|
24 |
+
enum qnnp_status {
|
25 |
+
/** The call succeeded, and all output arguments now contain valid data. */
|
26 |
+
qnnp_status_success = 0,
|
27 |
+
qnnp_status_uninitialized = 1,
|
28 |
+
qnnp_status_invalid_parameter = 2,
|
29 |
+
qnnp_status_unsupported_parameter = 3,
|
30 |
+
qnnp_status_unsupported_hardware = 4,
|
31 |
+
qnnp_status_out_of_memory = 5,
|
32 |
+
};
|
33 |
+
|
34 |
+
enum qnnp_status qnnp_initialize(void);
|
35 |
+
|
36 |
+
enum qnnp_status qnnp_deinitialize(void);
|
37 |
+
|
38 |
+
typedef struct qnnp_operator* qnnp_operator_t;
|
39 |
+
|
40 |
+
enum qnnp_status qnnp_create_convolution2d_nhwc_q8(
|
41 |
+
uint32_t input_padding_top,
|
42 |
+
uint32_t input_padding_right,
|
43 |
+
uint32_t input_padding_bottom,
|
44 |
+
uint32_t input_padding_left,
|
45 |
+
uint32_t kernel_height,
|
46 |
+
uint32_t kernel_width,
|
47 |
+
uint32_t subsampling_height,
|
48 |
+
uint32_t subsampling_width,
|
49 |
+
uint32_t dilation_height,
|
50 |
+
uint32_t dilation_width,
|
51 |
+
uint32_t groups,
|
52 |
+
size_t group_input_channels,
|
53 |
+
size_t group_output_channels,
|
54 |
+
uint8_t input_zero_point,
|
55 |
+
float input_scale,
|
56 |
+
uint8_t kernel_zero_point,
|
57 |
+
float kernel_scale,
|
58 |
+
const uint8_t* kernel,
|
59 |
+
const int32_t* bias,
|
60 |
+
uint8_t output_zero_point,
|
61 |
+
float output_scale,
|
62 |
+
uint8_t output_min,
|
63 |
+
uint8_t output_max,
|
64 |
+
uint32_t flags,
|
65 |
+
qnnp_operator_t* convolution);
|
66 |
+
|
67 |
+
enum qnnp_status qnnp_setup_convolution2d_nhwc_q8(
|
68 |
+
qnnp_operator_t convolution,
|
69 |
+
size_t batch_size,
|
70 |
+
size_t input_height,
|
71 |
+
size_t input_width,
|
72 |
+
const uint8_t* input,
|
73 |
+
size_t input_stride,
|
74 |
+
uint8_t* output,
|
75 |
+
size_t output_stride,
|
76 |
+
pthreadpool_t threadpool);
|
77 |
+
|
78 |
+
enum qnnp_status qnnp_create_deconvolution2d_nhwc_q8(
|
79 |
+
uint32_t input_padding_top,
|
80 |
+
uint32_t input_padding_right,
|
81 |
+
uint32_t input_padding_bottom,
|
82 |
+
uint32_t input_padding_left,
|
83 |
+
uint32_t adjustment_height,
|
84 |
+
uint32_t adjustment_width,
|
85 |
+
uint32_t kernel_height,
|
86 |
+
uint32_t kernel_width,
|
87 |
+
uint32_t stride_height,
|
88 |
+
uint32_t stride_width,
|
89 |
+
uint32_t dilation_height,
|
90 |
+
uint32_t dilation_width,
|
91 |
+
uint32_t groups,
|
92 |
+
size_t group_input_channels,
|
93 |
+
size_t group_output_channels,
|
94 |
+
uint8_t input_zero_point,
|
95 |
+
float input_scale,
|
96 |
+
uint8_t kernel_zero_point,
|
97 |
+
float kernel_scale,
|
98 |
+
const uint8_t* kernel,
|
99 |
+
const int32_t* bias,
|
100 |
+
uint8_t output_zero_point,
|
101 |
+
float output_scale,
|
102 |
+
uint8_t output_min,
|
103 |
+
uint8_t output_max,
|
104 |
+
uint32_t flags,
|
105 |
+
qnnp_operator_t* deconvolution);
|
106 |
+
|
107 |
+
enum qnnp_status qnnp_setup_deconvolution2d_nhwc_q8(
|
108 |
+
qnnp_operator_t deconvolution,
|
109 |
+
size_t batch_size,
|
110 |
+
size_t input_height,
|
111 |
+
size_t input_width,
|
112 |
+
const uint8_t* input,
|
113 |
+
size_t input_stride,
|
114 |
+
uint8_t* output,
|
115 |
+
size_t output_stride,
|
116 |
+
pthreadpool_t threadpool);
|
117 |
+
|
118 |
+
enum qnnp_status qnnp_create_fully_connected_nc_q8(
|
119 |
+
size_t input_channels,
|
120 |
+
size_t output_channels,
|
121 |
+
uint8_t input_zero_point,
|
122 |
+
float input_scale,
|
123 |
+
uint8_t kernel_zero_point,
|
124 |
+
float kernel_scale,
|
125 |
+
const uint8_t* kernel,
|
126 |
+
const int32_t* bias,
|
127 |
+
uint8_t output_zero_point,
|
128 |
+
float output_scale,
|
129 |
+
uint8_t output_min,
|
130 |
+
uint8_t output_max,
|
131 |
+
uint32_t flags,
|
132 |
+
qnnp_operator_t* fully_connected);
|
133 |
+
|
134 |
+
enum qnnp_status qnnp_setup_fully_connected_nc_q8(
|
135 |
+
qnnp_operator_t fully_connected,
|
136 |
+
size_t batch_size,
|
137 |
+
const uint8_t* input,
|
138 |
+
size_t input_stride,
|
139 |
+
uint8_t* output,
|
140 |
+
size_t output_stride);
|
141 |
+
|
142 |
+
enum qnnp_status qnnp_create_global_average_pooling_nwc_q8(
|
143 |
+
size_t channels,
|
144 |
+
uint8_t input_zero_point,
|
145 |
+
float input_scale,
|
146 |
+
uint8_t output_zero_point,
|
147 |
+
float output_scale,
|
148 |
+
uint8_t output_min,
|
149 |
+
uint8_t output_max,
|
150 |
+
uint32_t flags,
|
151 |
+
qnnp_operator_t* global_average_pooling);
|
152 |
+
|
153 |
+
enum qnnp_status qnnp_setup_global_average_pooling_nwc_q8(
|
154 |
+
qnnp_operator_t global_average_pooling,
|
155 |
+
size_t batch_size,
|
156 |
+
size_t width,
|
157 |
+
const uint8_t* input,
|
158 |
+
size_t input_stride,
|
159 |
+
uint8_t* output,
|
160 |
+
size_t output_stride);
|
161 |
+
|
162 |
+
enum qnnp_status qnnp_create_average_pooling2d_nhwc_q8(
|
163 |
+
uint32_t input_padding_top,
|
164 |
+
uint32_t input_padding_right,
|
165 |
+
uint32_t input_padding_bottom,
|
166 |
+
uint32_t input_padding_left,
|
167 |
+
uint32_t pooling_height,
|
168 |
+
uint32_t pooling_width,
|
169 |
+
uint32_t stride_height,
|
170 |
+
uint32_t stride_width,
|
171 |
+
size_t channels,
|
172 |
+
uint8_t input_zero_point,
|
173 |
+
float input_scale,
|
174 |
+
uint8_t output_zero_point,
|
175 |
+
float output_scale,
|
176 |
+
uint8_t output_min,
|
177 |
+
uint8_t output_max,
|
178 |
+
uint32_t flags,
|
179 |
+
qnnp_operator_t* average_pooling);
|
180 |
+
|
181 |
+
enum qnnp_status qnnp_setup_average_pooling2d_nhwc_q8(
|
182 |
+
qnnp_operator_t average_pooling,
|
183 |
+
size_t batch_size,
|
184 |
+
size_t input_height,
|
185 |
+
size_t input_width,
|
186 |
+
const uint8_t* input,
|
187 |
+
size_t input_stride,
|
188 |
+
uint8_t* output,
|
189 |
+
size_t output_stride,
|
190 |
+
pthreadpool_t threadpool);
|
191 |
+
|
192 |
+
enum qnnp_status qnnp_create_max_pooling2d_nhwc_u8(
|
193 |
+
uint32_t input_padding_top,
|
194 |
+
uint32_t input_padding_right,
|
195 |
+
uint32_t input_padding_bottom,
|
196 |
+
uint32_t input_padding_left,
|
197 |
+
uint32_t pooling_height,
|
198 |
+
uint32_t pooling_width,
|
199 |
+
uint32_t stride_height,
|
200 |
+
uint32_t stride_width,
|
201 |
+
uint32_t dilation_height,
|
202 |
+
uint32_t dilation_width,
|
203 |
+
size_t channels,
|
204 |
+
uint8_t output_min,
|
205 |
+
uint8_t output_max,
|
206 |
+
uint32_t flags,
|
207 |
+
qnnp_operator_t* max_pooling);
|
208 |
+
|
209 |
+
enum qnnp_status qnnp_setup_max_pooling2d_nhwc_u8(
|
210 |
+
qnnp_operator_t max_pooling,
|
211 |
+
size_t batch_size,
|
212 |
+
size_t input_height,
|
213 |
+
size_t input_width,
|
214 |
+
const uint8_t* input,
|
215 |
+
size_t input_stride,
|
216 |
+
uint8_t* output,
|
217 |
+
size_t output_stride,
|
218 |
+
pthreadpool_t threadpool);
|
219 |
+
|
220 |
+
enum qnnp_status qnnp_create_channel_shuffle_nc_x8(
|
221 |
+
size_t groups,
|
222 |
+
size_t group_channels,
|
223 |
+
uint32_t flags,
|
224 |
+
qnnp_operator_t* channel_shuffle);
|
225 |
+
|
226 |
+
enum qnnp_status qnnp_setup_channel_shuffle_nc_x8(
|
227 |
+
qnnp_operator_t channel_shuffle,
|
228 |
+
size_t batch_size,
|
229 |
+
const uint8_t* input,
|
230 |
+
size_t input_stride,
|
231 |
+
uint8_t* output,
|
232 |
+
size_t output_stride);
|
233 |
+
|
234 |
+
enum qnnp_status qnnp_create_add_nc_q8(
|
235 |
+
size_t channels,
|
236 |
+
uint8_t a_zero_point,
|
237 |
+
float a_scale,
|
238 |
+
uint8_t b_zero_point,
|
239 |
+
float b_scale,
|
240 |
+
uint8_t sum_zero_point,
|
241 |
+
float sum_scale,
|
242 |
+
uint8_t sum_min,
|
243 |
+
uint8_t sum_max,
|
244 |
+
uint32_t flags,
|
245 |
+
qnnp_operator_t* add);
|
246 |
+
|
247 |
+
enum qnnp_status qnnp_setup_add_nc_q8(
|
248 |
+
qnnp_operator_t add,
|
249 |
+
size_t batch_size,
|
250 |
+
const uint8_t* a,
|
251 |
+
size_t a_stride,
|
252 |
+
const uint8_t* b,
|
253 |
+
size_t b_stride,
|
254 |
+
uint8_t* sum,
|
255 |
+
size_t sum_stride);
|
256 |
+
|
257 |
+
enum qnnp_status qnnp_create_clamp_nc_u8(
|
258 |
+
size_t channels,
|
259 |
+
uint8_t output_min,
|
260 |
+
uint8_t output_max,
|
261 |
+
uint32_t flags,
|
262 |
+
qnnp_operator_t* clamp);
|
263 |
+
|
264 |
+
enum qnnp_status qnnp_setup_clamp_nc_u8(
|
265 |
+
qnnp_operator_t clamp,
|
266 |
+
size_t batch_size,
|
267 |
+
const uint8_t* input,
|
268 |
+
size_t input_stride,
|
269 |
+
uint8_t* output,
|
270 |
+
size_t output_stride);
|
271 |
+
|
272 |
+
enum qnnp_status qnnp_create_sigmoid_nc_q8(
|
273 |
+
size_t channels,
|
274 |
+
uint8_t input_zero_point,
|
275 |
+
float input_scale,
|
276 |
+
uint8_t output_zero_point,
|
277 |
+
float output_scale,
|
278 |
+
uint8_t output_min,
|
279 |
+
uint8_t output_max,
|
280 |
+
uint32_t flags,
|
281 |
+
qnnp_operator_t* sigmoid);
|
282 |
+
|
283 |
+
enum qnnp_status qnnp_setup_sigmoid_nc_q8(
|
284 |
+
qnnp_operator_t sigmoid,
|
285 |
+
size_t batch_size,
|
286 |
+
const uint8_t* input,
|
287 |
+
size_t input_stride,
|
288 |
+
uint8_t* output,
|
289 |
+
size_t output_stride);
|
290 |
+
|
291 |
+
enum qnnp_status qnnp_create_leaky_relu_nc_q8(
|
292 |
+
size_t channels,
|
293 |
+
float negative_slope,
|
294 |
+
uint8_t input_zero_point,
|
295 |
+
float input_scale,
|
296 |
+
uint8_t output_zero_point,
|
297 |
+
float output_scale,
|
298 |
+
uint8_t output_min,
|
299 |
+
uint8_t output_max,
|
300 |
+
uint32_t flags,
|
301 |
+
qnnp_operator_t* leaky_relu);
|
302 |
+
|
303 |
+
enum qnnp_status qnnp_setup_leaky_relu_nc_q8(
|
304 |
+
qnnp_operator_t leaky_relu,
|
305 |
+
size_t batch_size,
|
306 |
+
const uint8_t* input,
|
307 |
+
size_t input_stride,
|
308 |
+
uint8_t* output,
|
309 |
+
size_t output_stride);
|
310 |
+
|
311 |
+
enum qnnp_status qnnp_create_softargmax_nc_q8(
|
312 |
+
size_t channels,
|
313 |
+
float input_scale,
|
314 |
+
uint8_t output_zero_point,
|
315 |
+
float output_scale,
|
316 |
+
uint32_t flags,
|
317 |
+
qnnp_operator_t* softargmax);
|
318 |
+
|
319 |
+
enum qnnp_status qnnp_setup_softargmax_nc_q8(
|
320 |
+
qnnp_operator_t softargmax,
|
321 |
+
size_t batch_size,
|
322 |
+
const uint8_t* input,
|
323 |
+
size_t input_stride,
|
324 |
+
uint8_t* output,
|
325 |
+
size_t output_stride);
|
326 |
+
|
327 |
+
enum qnnp_status qnnp_run_operator(
|
328 |
+
qnnp_operator_t op,
|
329 |
+
pthreadpool_t threadpool);
|
330 |
+
|
331 |
+
enum qnnp_status qnnp_delete_operator(
|
332 |
+
qnnp_operator_t op);
|
333 |
+
|
334 |
+
#ifdef __cplusplus
|
335 |
+
} /* extern "C" */
|
336 |
+
#endif
|
env-llmeval/lib/python3.10/site-packages/torch/include/qnnpack_func.h
ADDED
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <cstdlib>
|
4 |
+
#include <qnnpack/operator.h>
|
5 |
+
|
6 |
+
namespace qnnpack {
|
7 |
+
class PrePackConvWeights final {
|
8 |
+
public:
|
9 |
+
PrePackConvWeights(
|
10 |
+
const pytorch_qnnp_operator_t convolution,
|
11 |
+
const uint8_t* kernel_zero_points,
|
12 |
+
const uint8_t* kernel,
|
13 |
+
const int32_t* bias);
|
14 |
+
|
15 |
+
void* getPackedWeights() const
|
16 |
+
{
|
17 |
+
return packed_weights_;
|
18 |
+
}
|
19 |
+
|
20 |
+
int64_t getOutputChannels() const
|
21 |
+
{
|
22 |
+
return output_channels_;
|
23 |
+
}
|
24 |
+
|
25 |
+
~PrePackConvWeights()
|
26 |
+
{
|
27 |
+
if (packed_weights_ != nullptr) {
|
28 |
+
free(packed_weights_);
|
29 |
+
}
|
30 |
+
}
|
31 |
+
|
32 |
+
PrePackConvWeights() = delete;
|
33 |
+
PrePackConvWeights(const PrePackConvWeights&) = delete;
|
34 |
+
PrePackConvWeights& operator=(const PrePackConvWeights&) = delete;
|
35 |
+
|
36 |
+
private:
|
37 |
+
void* packed_weights_ = nullptr;
|
38 |
+
int64_t output_channels_;
|
39 |
+
};
|
40 |
+
|
41 |
+
class PackBMatrix final {
|
42 |
+
public:
|
43 |
+
PackBMatrix(
|
44 |
+
size_t input_channels,
|
45 |
+
size_t output_channels,
|
46 |
+
const uint8_t* kernel_zero_points,
|
47 |
+
const float* requantization_scale,
|
48 |
+
const uint8_t* kernel,
|
49 |
+
const int32_t* bias);
|
50 |
+
|
51 |
+
// This constructor is to be used for dynamic mode
|
52 |
+
// quantization. In dynamic mode, we dont yet support
|
53 |
+
// per channel quantization, and paying the cost of
|
54 |
+
// memory allocation for per channel zero point and
|
55 |
+
// requant scale will hurt performance.
|
56 |
+
PackBMatrix(
|
57 |
+
size_t input_channels,
|
58 |
+
size_t output_channels,
|
59 |
+
const uint8_t kernel_zero_point,
|
60 |
+
const float requantization_scale,
|
61 |
+
const uint8_t* kernel,
|
62 |
+
const int32_t* bias);
|
63 |
+
|
64 |
+
void* getPackedWeights() const
|
65 |
+
{
|
66 |
+
return packed_weights_;
|
67 |
+
}
|
68 |
+
|
69 |
+
void unpackWeights(
|
70 |
+
const uint8_t* kernel_zero_points,
|
71 |
+
int8_t* kernel
|
72 |
+
) const;
|
73 |
+
|
74 |
+
size_t getInputChannels() const
|
75 |
+
{
|
76 |
+
return input_channels_;
|
77 |
+
}
|
78 |
+
|
79 |
+
size_t getOutputChannels() const
|
80 |
+
{
|
81 |
+
return output_channels_;
|
82 |
+
}
|
83 |
+
|
84 |
+
~PackBMatrix()
|
85 |
+
{
|
86 |
+
if (packed_weights_ != nullptr) {
|
87 |
+
free(packed_weights_);
|
88 |
+
}
|
89 |
+
}
|
90 |
+
|
91 |
+
PackBMatrix() = delete;
|
92 |
+
PackBMatrix(const PackBMatrix&) = delete;
|
93 |
+
PackBMatrix& operator=(const PackBMatrix&) = delete;
|
94 |
+
|
95 |
+
private:
|
96 |
+
void* packed_weights_ = nullptr;
|
97 |
+
size_t input_channels_;
|
98 |
+
size_t output_channels_;
|
99 |
+
};
|
100 |
+
|
101 |
+
enum pytorch_qnnp_status qnnpackLinear(
|
102 |
+
const size_t batch_size,
|
103 |
+
const size_t input_channels,
|
104 |
+
const size_t output_channels,
|
105 |
+
const uint8_t input_zero_point,
|
106 |
+
const uint8_t* kernel_zero_points,
|
107 |
+
const float* requantization_scales,
|
108 |
+
const uint8_t output_zero_point,
|
109 |
+
const uint8_t output_min,
|
110 |
+
const uint8_t output_max,
|
111 |
+
const uint8_t* input,
|
112 |
+
const size_t input_stride,
|
113 |
+
void* packed_weights,
|
114 |
+
uint8_t* output,
|
115 |
+
const size_t output_stride,
|
116 |
+
pthreadpool_t threadpool);
|
117 |
+
|
118 |
+
enum pytorch_qnnp_status qnnpackConv(
|
119 |
+
const pytorch_qnnp_operator_t convolution,
|
120 |
+
void* packed_weights,
|
121 |
+
const size_t batch_size,
|
122 |
+
const size_t input_depth,
|
123 |
+
const size_t input_height,
|
124 |
+
const size_t input_width,
|
125 |
+
const uint8_t input_zero_point,
|
126 |
+
const uint8_t* input,
|
127 |
+
const uint8_t* kernel_zero_points,
|
128 |
+
const float* requantization_scales,
|
129 |
+
const uint8_t output_zero_point,
|
130 |
+
const uint8_t output_min,
|
131 |
+
const uint8_t output_max,
|
132 |
+
uint8_t* output,
|
133 |
+
pthreadpool_t threadpool);
|
134 |
+
|
135 |
+
enum pytorch_qnnp_status qnnpackDeConv(
|
136 |
+
const pytorch_qnnp_operator_t deconvolution,
|
137 |
+
void* packed_weights,
|
138 |
+
const size_t batch_size,
|
139 |
+
const size_t input_height,
|
140 |
+
const size_t input_width,
|
141 |
+
const uint8_t input_zero_point,
|
142 |
+
const uint8_t* input,
|
143 |
+
const uint8_t* kernel_zero_points,
|
144 |
+
const float* requantization_scales,
|
145 |
+
const uint8_t output_zero_point,
|
146 |
+
const uint8_t output_min,
|
147 |
+
const uint8_t output_max,
|
148 |
+
uint8_t* output,
|
149 |
+
pthreadpool_t threadpool);
|
150 |
+
|
151 |
+
enum pytorch_qnnp_status qnnpackLinearDynamic(
|
152 |
+
const size_t batch_size,
|
153 |
+
const size_t input_channels,
|
154 |
+
const size_t output_channels,
|
155 |
+
const uint8_t input_zero_point,
|
156 |
+
const uint8_t* kernel_zero_points,
|
157 |
+
const float* dequantization_scales,
|
158 |
+
const uint8_t* input,
|
159 |
+
const size_t input_stride,
|
160 |
+
void* packed_weights,
|
161 |
+
const float* bias,
|
162 |
+
float* output,
|
163 |
+
const size_t output_stride,
|
164 |
+
pthreadpool_t threadpool);
|
165 |
+
|
166 |
+
} // namespace qnnpack
|
env-llmeval/lib/python3.10/site-packages/torch/include/sleef.h
ADDED
The diff for this file is too large to render.
See raw diff
|
|
env-llmeval/lib/python3.10/site-packages/torch/include/xnnpack.h
ADDED
The diff for this file is too large to render.
See raw diff
|
|