Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- llmeval-env/lib/python3.10/site-packages/torch/_dynamo/_trace_wrapped_higher_order_op.py +120 -0
- llmeval-env/lib/python3.10/site-packages/torch/_dynamo/bytecode_transformation.py +1114 -0
- llmeval-env/lib/python3.10/site-packages/torch/_dynamo/cache_size.py +172 -0
- llmeval-env/lib/python3.10/site-packages/torch/_dynamo/code_context.py +29 -0
- llmeval-env/lib/python3.10/site-packages/torch/_dynamo/codegen.py +398 -0
- llmeval-env/lib/python3.10/site-packages/torch/_dynamo/compiled_autograd.py +280 -0
- llmeval-env/lib/python3.10/site-packages/torch/_dynamo/comptime.py +373 -0
- llmeval-env/lib/python3.10/site-packages/torch/_dynamo/config.py +423 -0
- llmeval-env/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py +924 -0
- llmeval-env/lib/python3.10/site-packages/torch/_dynamo/current_scope_id.py +23 -0
- llmeval-env/lib/python3.10/site-packages/torch/_dynamo/device_interface.py +199 -0
- llmeval-env/lib/python3.10/site-packages/torch/_dynamo/exc.py +335 -0
- llmeval-env/lib/python3.10/site-packages/torch/_dynamo/external_utils.py +103 -0
- llmeval-env/lib/python3.10/site-packages/torch/_dynamo/funcname_cache.py +57 -0
- llmeval-env/lib/python3.10/site-packages/torch/_dynamo/guards.py +1505 -0
- llmeval-env/lib/python3.10/site-packages/torch/_dynamo/logging.py +57 -0
- llmeval-env/lib/python3.10/site-packages/torch/_dynamo/output_graph.py +2063 -0
- llmeval-env/lib/python3.10/site-packages/torch/_dynamo/polyfill.py +47 -0
- llmeval-env/lib/python3.10/site-packages/torch/_dynamo/profiler.py +155 -0
- llmeval-env/lib/python3.10/site-packages/torch/_dynamo/resume_execution.py +648 -0
- llmeval-env/lib/python3.10/site-packages/torch/_dynamo/side_effects.py +542 -0
- llmeval-env/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py +2603 -0
- llmeval-env/lib/python3.10/site-packages/torch/_dynamo/tensor_version_op.py +57 -0
- llmeval-env/lib/python3.10/site-packages/torch/_dynamo/test_minifier_common.py +244 -0
- llmeval-env/lib/python3.10/site-packages/torch/_dynamo/testing.py +378 -0
- llmeval-env/lib/python3.10/site-packages/torch/_dynamo/trace_rules.py +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/_dynamo/utils.py +2548 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/__pycache__/_config_module.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/__pycache__/_contextlib.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/__pycache__/_cxx_pytree.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/__pycache__/_freeze.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/__pycache__/_import_utils.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/__pycache__/_stats.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/__pycache__/_traceback.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/__pycache__/_triton.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/__pycache__/_typing_utils.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/__pycache__/bundled_inputs.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/__pycache__/collect_env.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/__pycache__/cpp_backtrace.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/__pycache__/cpp_extension.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/__pycache__/dlpack.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/__pycache__/weak.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/_sympy/__init__.py +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/_sympy/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/_sympy/__pycache__/functions.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/_sympy/__pycache__/interp.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/_sympy/__pycache__/reference.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/_sympy/__pycache__/singleton_int.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/utils/_sympy/__pycache__/solve.cpython-310.pyc +0 -0
llmeval-env/lib/python3.10/site-packages/torch/_dynamo/_trace_wrapped_higher_order_op.py
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch._C import DispatchKey
|
3 |
+
from torch._higher_order_ops.utils import autograd_not_implemented
|
4 |
+
|
5 |
+
from torch._ops import HigherOrderOperator
|
6 |
+
from torch._subclasses import FakeTensorMode
|
7 |
+
from torch.fx.experimental._backward_state import BackwardState
|
8 |
+
|
9 |
+
from torch.fx.experimental.proxy_tensor import ProxyTorchDispatchMode, track_tensor_tree
|
10 |
+
from torch.utils._python_dispatch import _get_current_dispatch_mode
|
11 |
+
from torch.utils._pytree import tree_map_only
|
12 |
+
|
13 |
+
|
14 |
+
__all__ = ["trace_wrapped"]
|
15 |
+
|
16 |
+
|
17 |
+
# trace_wrapped(*args, fn) is equivalent to fn(*args), but with a twist:
|
18 |
+
# if you make_fx trace through this call, we will not actually trace into fn; instead,
|
19 |
+
# we will directly insert it as a call_function to fn in the graph.
|
20 |
+
# (Unlike make_fx, Dynamo WILL inline into fn.)
|
21 |
+
# You can think of this as a one off allow_in_graph equivalent for proxy tensor tracing.
|
22 |
+
#
|
23 |
+
# Because proxy tensor tracing does not actually run the function, there are
|
24 |
+
# requirements on the behavior of fn. We are still figuring it out, but here is the current state:
|
25 |
+
#
|
26 |
+
# 1) fn SHOULD only take a single argument, which must be a tensor
|
27 |
+
# 2) fn MUST return a new tensor with the same metadata as the original tensor
|
28 |
+
# (e.g., zeros_like(input) is a permissible implementation of fn).
|
29 |
+
# This is verified via an extra assert that is inserted into the traced graph.
|
30 |
+
# 3) fn MAY have side effects, but it MAY NOT perform metadata mutation on other tensors
|
31 |
+
# participating in proxy tensor tracing (it MAY mutate other tensors, it MAY mutate Python state)
|
32 |
+
# These requirements stem from the requirement that we need to continue performing proxy tensor tracing,
|
33 |
+
# which assumes accurate fake tensor metadata, without actually running fn.
|
34 |
+
# In the future, we may allow for a "meta" function associated with fn to allow for more interesting input-output patterns.
|
35 |
+
#
|
36 |
+
# Note that tensors / Python state are allowed to be mutated.
|
37 |
+
# This is relaxed constraint is not always sound, but it is sound for backward tracing with fake
|
38 |
+
# tensors as it takes place in AOTAutograd, as the backward pass is guaranteed not to depend on concrete
|
39 |
+
# tensor values (via fake tensor) or Python state (because the autograd engine doesn't depend on Python).
|
40 |
+
#
|
41 |
+
# The intended use case for this function is to allow AOTAutograd to defer complex
|
42 |
+
# backward hooks to compiled autograd. AOTAutograd performs a make_fx trace which preserves
|
43 |
+
# the function call as is in the graph, and only when we Dynamo through the backward graph in
|
44 |
+
# compiled autograd do we inline into the function.
|
45 |
+
|
46 |
+
|
47 |
+
def trace_wrapped(*args, **kwargs):
|
48 |
+
with torch.no_grad():
|
49 |
+
return _trace_wrapped_op(*args, **kwargs)
|
50 |
+
|
51 |
+
|
52 |
+
# TODO(jansel): need to ensure this does not get DCEed
|
53 |
+
_trace_wrapped_op = HigherOrderOperator("trace_wrapped")
|
54 |
+
|
55 |
+
|
56 |
+
def _assert_meta(grad, size, stride, dtype):
|
57 |
+
assert grad.size() == size, "size mismatch"
|
58 |
+
assert grad.stride() == stride, "stride mismatch"
|
59 |
+
assert grad.dtype == dtype, "dtype mismatch"
|
60 |
+
return grad
|
61 |
+
|
62 |
+
|
63 |
+
@_trace_wrapped_op.py_impl(ProxyTorchDispatchMode)
|
64 |
+
def inner_trace(mode, *args, bw_state=None, **kwargs):
|
65 |
+
def self_invoke(*args, **dyn_kwargs):
|
66 |
+
with torch.no_grad():
|
67 |
+
return _trace_wrapped_op(*args, **dyn_kwargs, **kwargs)
|
68 |
+
|
69 |
+
def unwrap_proxies(x):
|
70 |
+
if isinstance(x, torch.Tensor):
|
71 |
+
return mode.tracer.unwrap_proxy(x)
|
72 |
+
if isinstance(x, (list, tuple)):
|
73 |
+
return type(x)(map(unwrap_proxies, x))
|
74 |
+
if x is None:
|
75 |
+
return None
|
76 |
+
raise AssertionError(f"unhandled type: {type(x)}")
|
77 |
+
|
78 |
+
proxy_kwargs = {}
|
79 |
+
if bw_state is not None:
|
80 |
+
assert isinstance(bw_state, BackwardState) and bw_state.proxy is not None
|
81 |
+
proxy_kwargs["bw_state"] = bw_state.proxy
|
82 |
+
out_proxy = mode.tracer.create_proxy(
|
83 |
+
"call_function",
|
84 |
+
self_invoke,
|
85 |
+
unwrap_proxies(args),
|
86 |
+
proxy_kwargs,
|
87 |
+
name="trace_wrapped",
|
88 |
+
)
|
89 |
+
|
90 |
+
if args[0] is None:
|
91 |
+
grad = args[1] # module backward hooks
|
92 |
+
else:
|
93 |
+
grad = args[0] # other backward hooks
|
94 |
+
grad = tree_map_only(torch.Tensor, torch.empty_like, grad)
|
95 |
+
track_tensor_tree(grad, out_proxy, constant=None, tracer=mode.tracer)
|
96 |
+
return grad
|
97 |
+
|
98 |
+
|
99 |
+
@_trace_wrapped_op.py_impl(FakeTensorMode)
|
100 |
+
def inner_fake(*args, **kwargs):
|
101 |
+
raise RuntimeError("This op should never be invoked here")
|
102 |
+
|
103 |
+
|
104 |
+
@_trace_wrapped_op.py_impl(DispatchKey.CompositeExplicitAutograd)
|
105 |
+
def _trace_wrapped_op_dense(*args, fn, **kwargs):
|
106 |
+
mode = _get_current_dispatch_mode()
|
107 |
+
assert mode is None, "Mode should never be enabled for CPU/CUDA key"
|
108 |
+
return fn(*args, **kwargs)
|
109 |
+
|
110 |
+
|
111 |
+
_trace_wrapped_op.py_impl(DispatchKey.Autograd)(
|
112 |
+
autograd_not_implemented(_trace_wrapped_op, deferred_error=True)
|
113 |
+
)
|
114 |
+
|
115 |
+
|
116 |
+
@_trace_wrapped_op.py_functionalize_impl
|
117 |
+
def _trace_wrapped_functionalized(ctx, *args, **kwargs):
|
118 |
+
unwrapped_args = ctx.unwrap_tensors(args)
|
119 |
+
with ctx.redispatch_to_next():
|
120 |
+
return ctx.wrap_tensors(_trace_wrapped_op(*unwrapped_args, **kwargs))
|
llmeval-env/lib/python3.10/site-packages/torch/_dynamo/bytecode_transformation.py
ADDED
@@ -0,0 +1,1114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import dataclasses
|
3 |
+
import dis
|
4 |
+
import itertools
|
5 |
+
import sys
|
6 |
+
import types
|
7 |
+
from typing import Any, Callable, cast, Dict, Iterator, List, Optional, Tuple
|
8 |
+
|
9 |
+
from .bytecode_analysis import (
|
10 |
+
get_indexof,
|
11 |
+
propagate_line_nums,
|
12 |
+
remove_extra_line_nums,
|
13 |
+
stacksize_analysis,
|
14 |
+
)
|
15 |
+
|
16 |
+
|
17 |
+
@dataclasses.dataclass
|
18 |
+
class InstructionExnTabEntry:
|
19 |
+
start: "Instruction"
|
20 |
+
end: "Instruction"
|
21 |
+
target: "Instruction"
|
22 |
+
depth: int
|
23 |
+
lasti: bool
|
24 |
+
|
25 |
+
def __repr__(self) -> str:
|
26 |
+
return (
|
27 |
+
f"InstructionExnTabEntry(start={self.start.short_inst_repr()}, "
|
28 |
+
f"end={self.end.short_inst_repr()}, "
|
29 |
+
f"target={self.target.short_inst_repr()}, "
|
30 |
+
f"depth={self.depth}, lasti={self.lasti})"
|
31 |
+
)
|
32 |
+
|
33 |
+
def __eq__(self, o) -> bool:
|
34 |
+
return (
|
35 |
+
self.start is o.start
|
36 |
+
and self.end is o.end
|
37 |
+
and self.target is o.target
|
38 |
+
and self.depth == o.depth
|
39 |
+
and self.lasti == o.lasti
|
40 |
+
)
|
41 |
+
|
42 |
+
|
43 |
+
@dataclasses.dataclass
|
44 |
+
class Instruction:
|
45 |
+
"""A mutable version of dis.Instruction"""
|
46 |
+
|
47 |
+
opcode: int
|
48 |
+
opname: str
|
49 |
+
arg: Optional[int]
|
50 |
+
argval: Any
|
51 |
+
offset: Optional[int] = None
|
52 |
+
starts_line: Optional[int] = None
|
53 |
+
is_jump_target: bool = False
|
54 |
+
positions: Optional["dis.Positions"] = None
|
55 |
+
# extra fields to make modification easier:
|
56 |
+
target: Optional["Instruction"] = None
|
57 |
+
exn_tab_entry: Optional[InstructionExnTabEntry] = None
|
58 |
+
|
59 |
+
def __hash__(self) -> int:
|
60 |
+
return id(self)
|
61 |
+
|
62 |
+
def __eq__(self, other) -> bool:
|
63 |
+
return id(self) == id(other)
|
64 |
+
|
65 |
+
def short_inst_repr(self) -> str:
|
66 |
+
return f"Instruction(opname={self.opname}, offset={self.offset})"
|
67 |
+
|
68 |
+
|
69 |
+
def convert_instruction(i: dis.Instruction) -> Instruction:
|
70 |
+
return Instruction(
|
71 |
+
i.opcode,
|
72 |
+
i.opname,
|
73 |
+
i.arg,
|
74 |
+
i.argval,
|
75 |
+
i.offset,
|
76 |
+
i.starts_line,
|
77 |
+
i.is_jump_target,
|
78 |
+
getattr(i, "positions", None),
|
79 |
+
)
|
80 |
+
|
81 |
+
|
82 |
+
class _NotProvided:
|
83 |
+
def __repr__(self) -> str:
|
84 |
+
return "_NotProvided"
|
85 |
+
|
86 |
+
|
87 |
+
def create_instruction(
|
88 |
+
name, *, arg=None, argval=_NotProvided, target=None
|
89 |
+
) -> Instruction:
|
90 |
+
"""
|
91 |
+
At most one of `arg`, `argval`, and `target` can be not None/_NotProvided.
|
92 |
+
This is to prevent ambiguity, e.g. does
|
93 |
+
create_instruction("LOAD_CONST", 5)
|
94 |
+
mean load the constant at co_consts[5], or load the constant 5?
|
95 |
+
|
96 |
+
If `arg` is not provided, it will be computed during assembly from
|
97 |
+
`argval` or `target`.
|
98 |
+
|
99 |
+
Do not use for LOAD_GLOBAL - use create_load_global instead.
|
100 |
+
"""
|
101 |
+
assert name != "LOAD_GLOBAL"
|
102 |
+
cnt = (arg is not None) + (argval is not _NotProvided) + (target is not None)
|
103 |
+
if cnt > 1:
|
104 |
+
raise RuntimeError(
|
105 |
+
"only one of arg, argval, and target can be not None/_NotProvided"
|
106 |
+
)
|
107 |
+
if arg is not None and not isinstance(arg, int):
|
108 |
+
raise RuntimeError("instruction arg must be int or None")
|
109 |
+
return Instruction(
|
110 |
+
opcode=dis.opmap[name], opname=name, arg=arg, argval=argval, target=target
|
111 |
+
)
|
112 |
+
|
113 |
+
|
114 |
+
# Python 3.11 remaps
|
115 |
+
def create_jump_absolute(target) -> Instruction:
|
116 |
+
inst = "JUMP_FORWARD" if sys.version_info >= (3, 11) else "JUMP_ABSOLUTE"
|
117 |
+
return create_instruction(inst, target=target)
|
118 |
+
|
119 |
+
|
120 |
+
def create_load_global(name, push_null) -> Instruction:
|
121 |
+
"""
|
122 |
+
`name` is the name of the global to be loaded.
|
123 |
+
`push_null` specifies whether or not a NULL should be pushed to the stack
|
124 |
+
before the global (Python 3.11+ only).
|
125 |
+
|
126 |
+
Python 3.11 changed the LOAD_GLOBAL instruction in that the first bit of
|
127 |
+
the instruction arg specifies whether a NULL should be pushed to the stack
|
128 |
+
before the global. The remaining bits of the instruction arg contain the
|
129 |
+
name index. See `create_call_function` for why this NULL is needed.
|
130 |
+
|
131 |
+
The instruction's `arg` is actually computed when assembling the bytecode.
|
132 |
+
For Python 3.11, push_null information is propagated through the arg.
|
133 |
+
|
134 |
+
NOTE: we don't use create_instruction since LOAD_GLOBAL is the only instruction
|
135 |
+
where both arg and argval need to be specified.
|
136 |
+
"""
|
137 |
+
return Instruction(
|
138 |
+
opcode=dis.opmap["LOAD_GLOBAL"],
|
139 |
+
opname="LOAD_GLOBAL",
|
140 |
+
arg=push_null,
|
141 |
+
argval=name,
|
142 |
+
)
|
143 |
+
|
144 |
+
|
145 |
+
def create_dup_top() -> Instruction:
|
146 |
+
if sys.version_info >= (3, 11):
|
147 |
+
return create_instruction("COPY", arg=1)
|
148 |
+
return create_instruction("DUP_TOP")
|
149 |
+
|
150 |
+
|
151 |
+
def create_rot_n(n) -> List[Instruction]:
|
152 |
+
"""
|
153 |
+
Returns a "simple" sequence of instructions that rotates TOS to the n-th
|
154 |
+
position in the stack. For Python < 3.11, returns a single ROT_*
|
155 |
+
instruction. If no such instruction exists, an error is raised and the
|
156 |
+
caller is expected to generate an equivalent sequence of instructions.
|
157 |
+
For Python >= 3.11, any rotation can be expressed as a simple sequence of
|
158 |
+
swaps.
|
159 |
+
"""
|
160 |
+
if n <= 1:
|
161 |
+
# don't rotate
|
162 |
+
return []
|
163 |
+
|
164 |
+
if sys.version_info >= (3, 11):
|
165 |
+
# rotate can be expressed as a sequence of swap operations
|
166 |
+
# e.g. rotate 3 is equivalent to swap 3, swap 2
|
167 |
+
return [create_instruction("SWAP", arg=i) for i in range(n, 1, -1)]
|
168 |
+
|
169 |
+
# ensure desired rotate function exists
|
170 |
+
if sys.version_info < (3, 8) and n >= 4:
|
171 |
+
raise AttributeError(f"rotate {n} not supported for Python < 3.8")
|
172 |
+
if sys.version_info < (3, 10) and n >= 5:
|
173 |
+
raise AttributeError(f"rotate {n} not supported for Python < 3.10")
|
174 |
+
|
175 |
+
if n <= 4:
|
176 |
+
return [create_instruction("ROT_" + ["TWO", "THREE", "FOUR"][n - 2])]
|
177 |
+
return [create_instruction("ROT_N", arg=n)]
|
178 |
+
|
179 |
+
|
180 |
+
def create_call_function(nargs, push_null) -> List[Instruction]:
|
181 |
+
"""
|
182 |
+
Creates a sequence of instructions that makes a function call.
|
183 |
+
|
184 |
+
`push_null` is used in Python 3.11+ only. It is used in codegen when
|
185 |
+
a function call is intended to be made with the NULL + fn convention,
|
186 |
+
and we know that the NULL has not been pushed yet. We will push a
|
187 |
+
NULL and rotate it to the correct position immediately before making
|
188 |
+
the function call.
|
189 |
+
push_null should default to True unless you know you are calling a function
|
190 |
+
that you codegen'd with a null already pushed, for example
|
191 |
+
(assume `math` is available in the global scope),
|
192 |
+
|
193 |
+
create_load_global("math", True) # pushes a null
|
194 |
+
create_instruction("LOAD_ATTR", argval="sqrt")
|
195 |
+
create_instruction("LOAD_CONST", argval=25)
|
196 |
+
create_call_function(1, False)
|
197 |
+
"""
|
198 |
+
if sys.version_info >= (3, 11):
|
199 |
+
output = []
|
200 |
+
if push_null:
|
201 |
+
output.append(create_instruction("PUSH_NULL"))
|
202 |
+
output.extend(create_rot_n(nargs + 2))
|
203 |
+
output.append(create_instruction("PRECALL", arg=nargs))
|
204 |
+
output.append(create_instruction("CALL", arg=nargs))
|
205 |
+
return output
|
206 |
+
return [create_instruction("CALL_FUNCTION", arg=nargs)]
|
207 |
+
|
208 |
+
|
209 |
+
def create_call_method(nargs) -> List[Instruction]:
|
210 |
+
if sys.version_info >= (3, 11):
|
211 |
+
return [
|
212 |
+
create_instruction("PRECALL", arg=nargs),
|
213 |
+
create_instruction("CALL", arg=nargs),
|
214 |
+
]
|
215 |
+
return [create_instruction("CALL_METHOD", arg=nargs)]
|
216 |
+
|
217 |
+
|
218 |
+
def lnotab_writer(
|
219 |
+
lineno: int, byteno: int = 0
|
220 |
+
) -> Tuple[List[int], Callable[[int, int], None]]:
|
221 |
+
"""
|
222 |
+
Used to create typing.CodeType.co_lnotab
|
223 |
+
See https://github.com/python/cpython/blob/main/Objects/lnotab_notes.txt
|
224 |
+
This is the internal format of the line number table if Python < 3.10
|
225 |
+
"""
|
226 |
+
assert sys.version_info < (3, 10)
|
227 |
+
lnotab: List[int] = []
|
228 |
+
|
229 |
+
def update(lineno_new, byteno_new):
|
230 |
+
nonlocal byteno, lineno
|
231 |
+
while byteno_new != byteno or lineno_new != lineno:
|
232 |
+
byte_offset = max(0, min(byteno_new - byteno, 255))
|
233 |
+
line_offset = max(-128, min(lineno_new - lineno, 127))
|
234 |
+
assert byte_offset != 0 or line_offset != 0
|
235 |
+
byteno += byte_offset
|
236 |
+
lineno += line_offset
|
237 |
+
lnotab.extend((byte_offset, line_offset & 0xFF))
|
238 |
+
|
239 |
+
return lnotab, update
|
240 |
+
|
241 |
+
|
242 |
+
def linetable_310_writer(first_lineno):
|
243 |
+
"""
|
244 |
+
Used to create typing.CodeType.co_linetable
|
245 |
+
See https://github.com/python/cpython/blob/main/Objects/lnotab_notes.txt
|
246 |
+
This is the internal format of the line number table for Python 3.10
|
247 |
+
"""
|
248 |
+
assert sys.version_info >= (3, 10) and sys.version_info < (3, 11)
|
249 |
+
linetable: List[int] = []
|
250 |
+
lineno = first_lineno
|
251 |
+
lineno_delta = 0
|
252 |
+
byteno = 0
|
253 |
+
|
254 |
+
def _update(byteno_delta, lineno_delta):
|
255 |
+
while byteno_delta != 0 or lineno_delta != 0:
|
256 |
+
byte_offset = max(0, min(byteno_delta, 254))
|
257 |
+
line_offset = max(-127, min(lineno_delta, 127))
|
258 |
+
assert byte_offset != 0 or line_offset != 0
|
259 |
+
byteno_delta -= byte_offset
|
260 |
+
lineno_delta -= line_offset
|
261 |
+
linetable.extend((byte_offset, line_offset & 0xFF))
|
262 |
+
|
263 |
+
def update(lineno_new, byteno_new):
|
264 |
+
nonlocal lineno, lineno_delta, byteno
|
265 |
+
byteno_delta = byteno_new - byteno
|
266 |
+
byteno = byteno_new
|
267 |
+
_update(byteno_delta, lineno_delta)
|
268 |
+
lineno_delta = lineno_new - lineno
|
269 |
+
lineno = lineno_new
|
270 |
+
|
271 |
+
def end(total_bytes):
|
272 |
+
_update(total_bytes - byteno, lineno_delta)
|
273 |
+
|
274 |
+
return linetable, update, end
|
275 |
+
|
276 |
+
|
277 |
+
def encode_varint(n: int) -> List[int]:
|
278 |
+
"""
|
279 |
+
6-bit chunk encoding of an unsigned integer
|
280 |
+
See https://github.com/python/cpython/blob/3.11/Objects/locations.md
|
281 |
+
"""
|
282 |
+
assert n >= 0
|
283 |
+
b = [n & 63]
|
284 |
+
n >>= 6
|
285 |
+
while n > 0:
|
286 |
+
b[-1] |= 64
|
287 |
+
b.append(n & 63)
|
288 |
+
n >>= 6
|
289 |
+
return b
|
290 |
+
|
291 |
+
|
292 |
+
def linetable_311_writer(first_lineno: int):
|
293 |
+
"""
|
294 |
+
Used to create typing.CodeType.co_linetable
|
295 |
+
See https://github.com/python/cpython/blob/3.11/Objects/locations.md
|
296 |
+
This is the internal format of the line number table for Python 3.11
|
297 |
+
"""
|
298 |
+
assert sys.version_info >= (3, 11)
|
299 |
+
linetable = []
|
300 |
+
lineno = first_lineno
|
301 |
+
|
302 |
+
def update(positions: "dis.Positions", inst_size):
|
303 |
+
nonlocal lineno
|
304 |
+
lineno_new = positions.lineno if positions else None
|
305 |
+
|
306 |
+
def _update(delta, size):
|
307 |
+
assert 0 < size <= 8
|
308 |
+
# first byte - use 13 (no column info) is positions is
|
309 |
+
# malformed, otherwise use 14 (long form)
|
310 |
+
other_varints: Tuple[int, ...] = ()
|
311 |
+
if (
|
312 |
+
positions
|
313 |
+
and positions.lineno is not None
|
314 |
+
and positions.end_lineno is not None
|
315 |
+
and positions.col_offset is not None
|
316 |
+
and positions.end_col_offset is not None
|
317 |
+
):
|
318 |
+
linetable.append(0b1_1110_000 + size - 1)
|
319 |
+
# for whatever reason, column offset needs `+ 1`
|
320 |
+
# https://github.com/python/cpython/blob/1931c2a438c50e6250725c84dff94fc760b9b951/Python/compile.c#L7603
|
321 |
+
other_varints = (
|
322 |
+
positions.end_lineno - positions.lineno,
|
323 |
+
positions.col_offset + 1,
|
324 |
+
positions.end_col_offset + 1,
|
325 |
+
)
|
326 |
+
else:
|
327 |
+
linetable.append(0b1_1101_000 + size - 1)
|
328 |
+
# encode signed int
|
329 |
+
if delta < 0:
|
330 |
+
delta = ((-delta) << 1) | 1
|
331 |
+
else:
|
332 |
+
delta <<= 1
|
333 |
+
# encode unsigned int
|
334 |
+
linetable.extend(encode_varint(delta))
|
335 |
+
for n in other_varints:
|
336 |
+
linetable.extend(encode_varint(n))
|
337 |
+
|
338 |
+
if lineno_new is None:
|
339 |
+
lineno_delta = 0
|
340 |
+
else:
|
341 |
+
lineno_delta = lineno_new - lineno
|
342 |
+
lineno = lineno_new
|
343 |
+
while inst_size > 8:
|
344 |
+
_update(lineno_delta, 8)
|
345 |
+
inst_size -= 8
|
346 |
+
_update(lineno_delta, inst_size)
|
347 |
+
|
348 |
+
return linetable, update
|
349 |
+
|
350 |
+
|
351 |
+
@dataclasses.dataclass
|
352 |
+
class ExceptionTableEntry:
|
353 |
+
start: int
|
354 |
+
end: int
|
355 |
+
target: int
|
356 |
+
depth: int
|
357 |
+
lasti: bool
|
358 |
+
|
359 |
+
|
360 |
+
def encode_exception_table_varint(n: int) -> List[int]:
|
361 |
+
"""
|
362 |
+
Similar to `encode_varint`, but the 6-bit chunks are ordered in reverse.
|
363 |
+
"""
|
364 |
+
assert n >= 0
|
365 |
+
b = [n & 63]
|
366 |
+
n >>= 6
|
367 |
+
while n > 0:
|
368 |
+
b.append(n & 63)
|
369 |
+
n >>= 6
|
370 |
+
b.reverse()
|
371 |
+
for i in range(len(b) - 1):
|
372 |
+
b[i] |= 64
|
373 |
+
return b
|
374 |
+
|
375 |
+
|
376 |
+
def decode_exception_table_varint(bytes_iter: Iterator[int]) -> int:
|
377 |
+
"""
|
378 |
+
Inverse of `encode_exception_table_varint`.
|
379 |
+
"""
|
380 |
+
b = next(bytes_iter)
|
381 |
+
val = b & 63
|
382 |
+
while b & 64:
|
383 |
+
val <<= 6
|
384 |
+
b = next(bytes_iter)
|
385 |
+
val |= b & 63
|
386 |
+
return val
|
387 |
+
|
388 |
+
|
389 |
+
def check_exception_table(tab: List[ExceptionTableEntry]) -> None:
|
390 |
+
"""
|
391 |
+
Verifies that a list of ExceptionTableEntries will make a well-formed
|
392 |
+
jump table: entries are non-empty, sorted, and do not overlap.
|
393 |
+
"""
|
394 |
+
for i in range(len(tab) - 1):
|
395 |
+
assert (
|
396 |
+
tab[i].start <= tab[i].end
|
397 |
+
and tab[i].end < tab[i + 1].start
|
398 |
+
and tab[i + 1].start <= tab[i + 1].end
|
399 |
+
)
|
400 |
+
|
401 |
+
|
402 |
+
def parse_exception_table(exntab: bytes) -> List[ExceptionTableEntry]:
|
403 |
+
"""
|
404 |
+
Parse the exception table according to
|
405 |
+
https://github.com/python/cpython/blob/3.11/Objects/exception_handling_notes.txt
|
406 |
+
"""
|
407 |
+
exntab_iter = iter(exntab)
|
408 |
+
tab = []
|
409 |
+
try:
|
410 |
+
while True:
|
411 |
+
start = decode_exception_table_varint(exntab_iter) * 2
|
412 |
+
length = decode_exception_table_varint(exntab_iter) * 2
|
413 |
+
end = start + length - 2
|
414 |
+
target = decode_exception_table_varint(exntab_iter) * 2
|
415 |
+
dl = decode_exception_table_varint(exntab_iter)
|
416 |
+
depth = dl >> 1
|
417 |
+
lasti = bool(dl & 1)
|
418 |
+
tab.append(ExceptionTableEntry(start, end, target, depth, lasti))
|
419 |
+
except StopIteration:
|
420 |
+
check_exception_table(tab)
|
421 |
+
return tab
|
422 |
+
|
423 |
+
|
424 |
+
def assemble_exception_table(tab: List[ExceptionTableEntry]) -> bytes:
|
425 |
+
"""
|
426 |
+
Inverse of parse_exception_table - encodes list of exception
|
427 |
+
table entries into bytes.
|
428 |
+
"""
|
429 |
+
b = []
|
430 |
+
for entry in tab:
|
431 |
+
first_entry = encode_exception_table_varint(entry.start // 2)
|
432 |
+
first_entry[0] |= 1 << 7
|
433 |
+
b.extend(first_entry)
|
434 |
+
length = entry.end - entry.start + 2
|
435 |
+
b.extend(encode_exception_table_varint(length // 2))
|
436 |
+
b.extend(encode_exception_table_varint(entry.target // 2))
|
437 |
+
dl = (entry.depth << 1) + entry.lasti
|
438 |
+
b.extend(encode_exception_table_varint(dl))
|
439 |
+
return bytes(b)
|
440 |
+
|
441 |
+
|
442 |
+
def assemble(instructions: List[Instruction], firstlineno: int) -> Tuple[bytes, bytes]:
|
443 |
+
"""Do the opposite of dis.get_instructions()"""
|
444 |
+
code: List[int] = []
|
445 |
+
if sys.version_info >= (3, 11):
|
446 |
+
lnotab, update_lineno = linetable_311_writer(firstlineno)
|
447 |
+
num_ext = 0
|
448 |
+
for i, inst in enumerate(instructions):
|
449 |
+
if inst.opname == "EXTENDED_ARG":
|
450 |
+
inst_size = 1
|
451 |
+
num_ext += 1
|
452 |
+
# copy positions from the actual instruction
|
453 |
+
for j in (1, 2, 3):
|
454 |
+
if instructions[i + j].opname != "EXTENDED_ARG":
|
455 |
+
inst.positions = instructions[i + j].positions
|
456 |
+
break
|
457 |
+
else:
|
458 |
+
inst_size = instruction_size(inst) // 2 + num_ext
|
459 |
+
num_ext = 0
|
460 |
+
update_lineno(inst.positions, inst_size)
|
461 |
+
num_ext = 0
|
462 |
+
arg = inst.arg or 0
|
463 |
+
code.extend((inst.opcode, arg & 0xFF))
|
464 |
+
for _ in range(instruction_size(inst) // 2 - 1):
|
465 |
+
code.extend((0, 0))
|
466 |
+
else:
|
467 |
+
if sys.version_info < (3, 10):
|
468 |
+
lnotab, update_lineno = lnotab_writer(firstlineno)
|
469 |
+
else:
|
470 |
+
lnotab, update_lineno, end = linetable_310_writer(firstlineno)
|
471 |
+
|
472 |
+
for inst in instructions:
|
473 |
+
if inst.starts_line is not None:
|
474 |
+
update_lineno(inst.starts_line, len(code))
|
475 |
+
arg = inst.arg or 0
|
476 |
+
code.extend((inst.opcode, arg & 0xFF))
|
477 |
+
|
478 |
+
if sys.version_info >= (3, 10):
|
479 |
+
end(len(code))
|
480 |
+
|
481 |
+
return bytes(code), bytes(lnotab)
|
482 |
+
|
483 |
+
|
484 |
+
def _get_instruction_by_offset(offset_to_inst: Dict[int, Instruction], offset: int):
|
485 |
+
"""
|
486 |
+
Get the instruction located at a given offset, accounting for EXTENDED_ARGs
|
487 |
+
"""
|
488 |
+
for n in (0, 2, 4, 6):
|
489 |
+
if offset_to_inst[offset + n].opcode != dis.EXTENDED_ARG:
|
490 |
+
return offset_to_inst[offset + n]
|
491 |
+
return None
|
492 |
+
|
493 |
+
|
494 |
+
def virtualize_jumps(instructions) -> None:
|
495 |
+
"""Replace jump targets with pointers to make editing easier"""
|
496 |
+
jump_targets = {inst.offset: inst for inst in instructions}
|
497 |
+
|
498 |
+
for inst in instructions:
|
499 |
+
if inst.opcode in dis.hasjabs or inst.opcode in dis.hasjrel:
|
500 |
+
inst.target = _get_instruction_by_offset(jump_targets, inst.argval)
|
501 |
+
|
502 |
+
|
503 |
+
_REL_JUMPS = set(dis.hasjrel)
|
504 |
+
|
505 |
+
|
506 |
+
def flip_jump_direction(instruction: Instruction) -> None:
|
507 |
+
if sys.version_info < (3, 11):
|
508 |
+
raise RuntimeError("Cannot flip jump direction in Python < 3.11")
|
509 |
+
if "FORWARD" in instruction.opname:
|
510 |
+
instruction.opname = instruction.opname.replace("FORWARD", "BACKWARD")
|
511 |
+
elif "BACKWARD" in instruction.opname:
|
512 |
+
instruction.opname = instruction.opname.replace("BACKWARD", "FORWARD")
|
513 |
+
else:
|
514 |
+
raise AttributeError("Instruction is not a forward or backward jump")
|
515 |
+
instruction.opcode = dis.opmap[instruction.opname]
|
516 |
+
assert instruction.opcode in _REL_JUMPS
|
517 |
+
|
518 |
+
|
519 |
+
def _get_instruction_front(instructions: List[Instruction], idx: int):
|
520 |
+
"""
|
521 |
+
i.e. get the first EXTENDED_ARG instruction (if any) when targeting
|
522 |
+
instructions[idx] with a jump.
|
523 |
+
"""
|
524 |
+
target = instructions[idx]
|
525 |
+
for offset in (1, 2, 3):
|
526 |
+
if idx >= offset and instructions[idx - offset].opcode == dis.EXTENDED_ARG:
|
527 |
+
target = instructions[idx - offset]
|
528 |
+
else:
|
529 |
+
break
|
530 |
+
return target
|
531 |
+
|
532 |
+
|
533 |
+
def devirtualize_jumps(instructions):
|
534 |
+
"""Fill in args for virtualized jump target after instructions may have moved"""
|
535 |
+
indexof = get_indexof(instructions)
|
536 |
+
jumps = set(dis.hasjabs).union(set(dis.hasjrel))
|
537 |
+
|
538 |
+
for inst in instructions:
|
539 |
+
if inst.opcode in jumps:
|
540 |
+
target = _get_instruction_front(instructions, indexof[inst.target])
|
541 |
+
if inst.opcode in dis.hasjabs:
|
542 |
+
if sys.version_info < (3, 10):
|
543 |
+
inst.arg = target.offset
|
544 |
+
elif sys.version_info < (3, 11):
|
545 |
+
# `arg` is expected to be bytecode offset, whereas `offset` is byte offset.
|
546 |
+
# Divide since bytecode is 2 bytes large.
|
547 |
+
inst.arg = int(target.offset / 2)
|
548 |
+
else:
|
549 |
+
raise RuntimeError("Python 3.11+ should not have absolute jumps")
|
550 |
+
else: # relative jump
|
551 |
+
# byte offset between target and next instruction
|
552 |
+
inst.arg = int(target.offset - inst.offset - instruction_size(inst))
|
553 |
+
if inst.arg < 0:
|
554 |
+
if sys.version_info < (3, 11):
|
555 |
+
raise RuntimeError("Got negative jump offset for Python < 3.11")
|
556 |
+
inst.arg = -inst.arg
|
557 |
+
# forward jumps become backward
|
558 |
+
if "FORWARD" in inst.opname:
|
559 |
+
flip_jump_direction(inst)
|
560 |
+
elif inst.arg > 0:
|
561 |
+
# backward jumps become forward
|
562 |
+
if sys.version_info >= (3, 11) and "BACKWARD" in inst.opname:
|
563 |
+
flip_jump_direction(inst)
|
564 |
+
if sys.version_info >= (3, 10):
|
565 |
+
# see bytecode size comment in the absolute jump case above
|
566 |
+
inst.arg //= 2
|
567 |
+
inst.argval = target.offset
|
568 |
+
inst.argrepr = f"to {target.offset}"
|
569 |
+
|
570 |
+
|
571 |
+
def virtualize_exception_table(exn_tab_bytes: bytes, instructions: List[Instruction]):
|
572 |
+
"""Replace exception table entries with pointers to make editing easier"""
|
573 |
+
exn_tab = parse_exception_table(exn_tab_bytes)
|
574 |
+
offset_to_inst = {cast(int, inst.offset): inst for inst in instructions}
|
575 |
+
offsets = sorted(offset_to_inst.keys())
|
576 |
+
end_offset_idx = 0
|
577 |
+
exn_tab_iter = iter(exn_tab)
|
578 |
+
try:
|
579 |
+
|
580 |
+
def step():
|
581 |
+
nonlocal end_offset_idx
|
582 |
+
entry = next(exn_tab_iter)
|
583 |
+
# find rightmost offset <= entry.end, since entry.end may not be
|
584 |
+
# an actual instruction, e.g. if the end instruction is LOAD_GLOBAL,
|
585 |
+
# which takes more than 2 bytes, then entry.end points to the end
|
586 |
+
# of the LOAD_GLOBAL instruction, not the beginning.
|
587 |
+
while (
|
588 |
+
end_offset_idx < len(offsets) and offsets[end_offset_idx] <= entry.end
|
589 |
+
):
|
590 |
+
end_offset_idx += 1
|
591 |
+
assert end_offset_idx > 0
|
592 |
+
end_offset = offsets[end_offset_idx - 1]
|
593 |
+
inst_entry = InstructionExnTabEntry(
|
594 |
+
_get_instruction_by_offset(offset_to_inst, entry.start),
|
595 |
+
_get_instruction_by_offset(offset_to_inst, end_offset),
|
596 |
+
_get_instruction_by_offset(offset_to_inst, entry.target),
|
597 |
+
entry.depth,
|
598 |
+
entry.lasti,
|
599 |
+
)
|
600 |
+
return entry, inst_entry
|
601 |
+
|
602 |
+
entry, inst_entry = step()
|
603 |
+
for inst in instructions:
|
604 |
+
while inst.offset > entry.end:
|
605 |
+
entry, inst_entry = step()
|
606 |
+
if inst.offset >= entry.start:
|
607 |
+
inst.exn_tab_entry = copy.copy(inst_entry)
|
608 |
+
except StopIteration:
|
609 |
+
pass
|
610 |
+
|
611 |
+
|
612 |
+
def compute_exception_table(
|
613 |
+
instructions: List[Instruction],
|
614 |
+
) -> List[ExceptionTableEntry]:
|
615 |
+
"""Compute exception table in list format from instructions with exn_tab_entries"""
|
616 |
+
exn_dict: Dict[Tuple[int, int], Tuple[int, int, bool]] = {}
|
617 |
+
indexof = get_indexof(instructions)
|
618 |
+
|
619 |
+
for inst in instructions:
|
620 |
+
if inst.exn_tab_entry:
|
621 |
+
# account for prefixed EXTENDED_ARGS
|
622 |
+
start = _get_instruction_front(
|
623 |
+
instructions, indexof[inst.exn_tab_entry.start]
|
624 |
+
).offset
|
625 |
+
# point to the last 2 bytes of the end instruction
|
626 |
+
end = (
|
627 |
+
cast(int, inst.exn_tab_entry.end.offset)
|
628 |
+
+ instruction_size(inst.exn_tab_entry.end)
|
629 |
+
- 2
|
630 |
+
)
|
631 |
+
target = _get_instruction_front(
|
632 |
+
instructions, indexof[inst.exn_tab_entry.target]
|
633 |
+
).offset
|
634 |
+
key = (start, end)
|
635 |
+
val = (target, inst.exn_tab_entry.depth, inst.exn_tab_entry.lasti)
|
636 |
+
if key in exn_dict:
|
637 |
+
assert exn_dict[key] == val
|
638 |
+
exn_dict[key] = val
|
639 |
+
|
640 |
+
# Dynamo may construct nested exception table entries for convenience,
|
641 |
+
# but Python expects exception table entries to not overlap.
|
642 |
+
# NOTE: below, "keys" refer to old instruction entries' starts and ends,
|
643 |
+
# and "entries" refer to the generated exception table entries.
|
644 |
+
|
645 |
+
# Sort keys by increasing start, then decreasing end
|
646 |
+
keys_sorted = sorted(exn_dict.keys(), key=lambda t: (t[0], -t[1]))
|
647 |
+
# smallest byte that the next exception table entry can start at
|
648 |
+
nexti = 0
|
649 |
+
# stack of current nested keys
|
650 |
+
key_stack: List[Tuple[int, int]] = []
|
651 |
+
exn_tab: List[ExceptionTableEntry] = []
|
652 |
+
|
653 |
+
def pop():
|
654 |
+
"""
|
655 |
+
Pop the key_stack and append an exception table entry if possible.
|
656 |
+
"""
|
657 |
+
nonlocal nexti
|
658 |
+
if key_stack:
|
659 |
+
key = key_stack.pop()
|
660 |
+
if nexti <= key[1]:
|
661 |
+
exn_tab.append(
|
662 |
+
ExceptionTableEntry(max(key[0], nexti), key[1], *exn_dict[key])
|
663 |
+
)
|
664 |
+
nexti = key[1] + 2
|
665 |
+
|
666 |
+
for key in keys_sorted:
|
667 |
+
# pop keys that are no longer nested over the current key
|
668 |
+
while key_stack and key_stack[-1][1] < key[0]:
|
669 |
+
pop()
|
670 |
+
if key_stack:
|
671 |
+
# create an entry covering to the current key, if possible
|
672 |
+
assert key_stack[-1][0] <= key[0] <= key[1] <= key_stack[-1][1]
|
673 |
+
left = max(nexti, key_stack[-1][0])
|
674 |
+
if left < key[0]:
|
675 |
+
exn_tab.append(
|
676 |
+
ExceptionTableEntry(left, key[0] - 2, *exn_dict[key_stack[-1]])
|
677 |
+
)
|
678 |
+
nexti = key[0]
|
679 |
+
key_stack.append(key)
|
680 |
+
while key_stack:
|
681 |
+
pop()
|
682 |
+
check_exception_table(exn_tab)
|
683 |
+
return exn_tab
|
684 |
+
|
685 |
+
|
686 |
+
def check_inst_exn_tab_entries_nested(
|
687 |
+
tab: List[InstructionExnTabEntry], indexof
|
688 |
+
) -> None:
|
689 |
+
"""
|
690 |
+
Checks `tab` is a properly sorted list of nested InstructionExnTabEntry's,
|
691 |
+
i.e. no entries partially overlap.
|
692 |
+
"Properly sorted" means entries are sorted by increasing starts, then
|
693 |
+
decreasing ends.
|
694 |
+
"""
|
695 |
+
entry_stack: List[Tuple[int, int]] = []
|
696 |
+
for entry in tab:
|
697 |
+
key = (indexof[entry.start], indexof[entry.end])
|
698 |
+
while entry_stack and entry_stack[-1][1] < key[0]:
|
699 |
+
entry_stack.pop()
|
700 |
+
if entry_stack:
|
701 |
+
assert entry_stack[-1][0] <= key[0] <= key[1] <= entry_stack[-1][1]
|
702 |
+
entry_stack.append(key)
|
703 |
+
|
704 |
+
|
705 |
+
def propagate_inst_exn_table_entries(instructions: List[Instruction]) -> None:
|
706 |
+
"""
|
707 |
+
Copies exception table entries to all instructions in an entry's range.
|
708 |
+
Supports nested exception table entries.
|
709 |
+
"""
|
710 |
+
indexof = get_indexof(instructions)
|
711 |
+
entries: Dict[Tuple[int, int], InstructionExnTabEntry] = {}
|
712 |
+
for inst in instructions:
|
713 |
+
if inst.exn_tab_entry:
|
714 |
+
key = (
|
715 |
+
indexof[inst.exn_tab_entry.start],
|
716 |
+
indexof[inst.exn_tab_entry.end],
|
717 |
+
)
|
718 |
+
if key in entries:
|
719 |
+
assert inst.exn_tab_entry == entries[key]
|
720 |
+
entries[key] = inst.exn_tab_entry
|
721 |
+
sorted_entries = [
|
722 |
+
entries[key] for key in sorted(entries.keys(), key=lambda t: (t[0], -t[1]))
|
723 |
+
]
|
724 |
+
check_inst_exn_tab_entries_nested(sorted_entries, indexof)
|
725 |
+
# Propagation of nested entries works since nested entries come later
|
726 |
+
# in sorted order.
|
727 |
+
for entry in sorted_entries:
|
728 |
+
for i in range(indexof[entry.start], indexof[entry.end] + 1):
|
729 |
+
instructions[i].exn_tab_entry = copy.copy(entry)
|
730 |
+
|
731 |
+
|
732 |
+
def check_inst_exn_tab_entries_valid(instructions: List[Instruction]):
|
733 |
+
"""
|
734 |
+
Checks that exn_tab_entries of instructions are valid.
|
735 |
+
An entry's start, end, and target must be in instructions.
|
736 |
+
Instructions with an exn_tab_entry are located within
|
737 |
+
the entry's start and end instructions.
|
738 |
+
Instructions do not share exn_tab_entries.
|
739 |
+
|
740 |
+
Implicitly checks for no duplicate instructions.
|
741 |
+
"""
|
742 |
+
indexof = get_indexof(instructions)
|
743 |
+
exn_tab_entry_set = set()
|
744 |
+
for i, inst in enumerate(instructions):
|
745 |
+
if inst.exn_tab_entry:
|
746 |
+
assert sys.version_info >= (3, 11)
|
747 |
+
assert id(inst.exn_tab_entry) not in exn_tab_entry_set
|
748 |
+
exn_tab_entry_set.add(id(inst.exn_tab_entry))
|
749 |
+
entry = inst.exn_tab_entry
|
750 |
+
assert entry.start in indexof
|
751 |
+
assert entry.end in indexof
|
752 |
+
assert entry.target in indexof
|
753 |
+
assert indexof[entry.start] <= i <= indexof[entry.end]
|
754 |
+
|
755 |
+
|
756 |
+
def strip_extended_args(instructions: List[Instruction]) -> None:
|
757 |
+
instructions[:] = [i for i in instructions if i.opcode != dis.EXTENDED_ARG]
|
758 |
+
|
759 |
+
|
760 |
+
def remove_load_call_method(instructions: List[Instruction]) -> List[Instruction]:
|
761 |
+
"""LOAD_METHOD puts a NULL on the stack which causes issues, so remove it"""
|
762 |
+
rewrites = {"LOAD_METHOD": "LOAD_ATTR", "CALL_METHOD": "CALL_FUNCTION"}
|
763 |
+
for inst in instructions:
|
764 |
+
if inst.opname in rewrites:
|
765 |
+
inst.opname = rewrites[inst.opname]
|
766 |
+
inst.opcode = dis.opmap[inst.opname]
|
767 |
+
return instructions
|
768 |
+
|
769 |
+
|
770 |
+
def remove_jump_if_none(instructions: List[Instruction]) -> None:
|
771 |
+
new_insts = []
|
772 |
+
for inst in instructions:
|
773 |
+
new_insts.append(inst)
|
774 |
+
if "_NONE" in inst.opname:
|
775 |
+
is_op = create_instruction("IS_OP", arg=int("NOT" in inst.opname))
|
776 |
+
is_op.argval = is_op.arg
|
777 |
+
jump_op = create_instruction(
|
778 |
+
"POP_JUMP_FORWARD_IF_TRUE"
|
779 |
+
if "FORWARD" in inst.opname
|
780 |
+
else "POP_JUMP_BACKWARD_IF_TRUE",
|
781 |
+
target=inst.target,
|
782 |
+
)
|
783 |
+
# modify inst in-place to preserve jump target
|
784 |
+
inst.opcode = dis.opmap["LOAD_CONST"]
|
785 |
+
inst.opname = "LOAD_CONST"
|
786 |
+
inst.arg = None
|
787 |
+
inst.argval = None
|
788 |
+
new_insts.extend([is_op, jump_op])
|
789 |
+
instructions[:] = new_insts
|
790 |
+
|
791 |
+
|
792 |
+
def explicit_super(code: types.CodeType, instructions: List[Instruction]) -> None:
|
793 |
+
"""convert super() with no args into explicit arg form"""
|
794 |
+
cell_and_free = (code.co_cellvars or tuple()) + (code.co_freevars or tuple())
|
795 |
+
if not len(code.co_varnames):
|
796 |
+
# A function with no argument cannot contain a valid "super()" call
|
797 |
+
return
|
798 |
+
output = []
|
799 |
+
for idx, inst in enumerate(instructions):
|
800 |
+
output.append(inst)
|
801 |
+
if inst.opname == "LOAD_GLOBAL" and inst.argval == "super":
|
802 |
+
nexti = instructions[idx + 1]
|
803 |
+
if nexti.opname in ("CALL_FUNCTION", "PRECALL") and nexti.arg == 0:
|
804 |
+
assert "__class__" in cell_and_free
|
805 |
+
output.append(create_instruction("LOAD_DEREF", argval="__class__"))
|
806 |
+
first_var = code.co_varnames[0]
|
807 |
+
if first_var in cell_and_free:
|
808 |
+
output.append(create_instruction("LOAD_DEREF", argval=first_var))
|
809 |
+
else:
|
810 |
+
output.append(create_instruction("LOAD_FAST", argval=first_var))
|
811 |
+
nexti.arg = 2
|
812 |
+
nexti.argval = 2
|
813 |
+
if nexti.opname == "PRECALL":
|
814 |
+
# also update the following CALL instruction
|
815 |
+
call_inst = instructions[idx + 2]
|
816 |
+
call_inst.arg = 2
|
817 |
+
call_inst.argval = 2
|
818 |
+
|
819 |
+
instructions[:] = output
|
820 |
+
|
821 |
+
|
822 |
+
def fix_extended_args(instructions: List[Instruction]) -> int:
|
823 |
+
"""Fill in correct argvals for EXTENDED_ARG ops"""
|
824 |
+
output: List[Instruction] = []
|
825 |
+
|
826 |
+
def maybe_pop_n(n):
|
827 |
+
for _ in range(n):
|
828 |
+
if output and output[-1].opcode == dis.EXTENDED_ARG:
|
829 |
+
output.pop()
|
830 |
+
|
831 |
+
for inst in instructions:
|
832 |
+
if inst.opcode == dis.EXTENDED_ARG:
|
833 |
+
# Leave this instruction alone for now so we never shrink code
|
834 |
+
inst.arg = 0
|
835 |
+
elif inst.arg and inst.arg > 0xFFFFFF:
|
836 |
+
maybe_pop_n(3)
|
837 |
+
output.append(create_instruction("EXTENDED_ARG", arg=inst.arg >> 24))
|
838 |
+
output.append(create_instruction("EXTENDED_ARG", arg=inst.arg >> 16))
|
839 |
+
output.append(create_instruction("EXTENDED_ARG", arg=inst.arg >> 8))
|
840 |
+
elif inst.arg and inst.arg > 0xFFFF:
|
841 |
+
maybe_pop_n(2)
|
842 |
+
output.append(create_instruction("EXTENDED_ARG", arg=inst.arg >> 16))
|
843 |
+
output.append(create_instruction("EXTENDED_ARG", arg=inst.arg >> 8))
|
844 |
+
elif inst.arg and inst.arg > 0xFF:
|
845 |
+
maybe_pop_n(1)
|
846 |
+
output.append(create_instruction("EXTENDED_ARG", arg=inst.arg >> 8))
|
847 |
+
output.append(inst)
|
848 |
+
|
849 |
+
added = len(output) - len(instructions)
|
850 |
+
assert added >= 0
|
851 |
+
instructions[:] = output
|
852 |
+
return added
|
853 |
+
|
854 |
+
|
855 |
+
# from https://github.com/python/cpython/blob/v3.11.1/Include/internal/pycore_opcode.h#L41
|
856 |
+
# TODO use the actual object instead, can interface from eval_frame.c
|
857 |
+
_PYOPCODE_CACHES = {
|
858 |
+
"BINARY_SUBSCR": 4,
|
859 |
+
"STORE_SUBSCR": 1,
|
860 |
+
"UNPACK_SEQUENCE": 1,
|
861 |
+
"STORE_ATTR": 4,
|
862 |
+
"LOAD_ATTR": 4,
|
863 |
+
"COMPARE_OP": 2,
|
864 |
+
"LOAD_GLOBAL": 5,
|
865 |
+
"BINARY_OP": 1,
|
866 |
+
"LOAD_METHOD": 10,
|
867 |
+
"PRECALL": 1,
|
868 |
+
"CALL": 4,
|
869 |
+
}
|
870 |
+
|
871 |
+
|
872 |
+
def instruction_size(inst) -> int:
|
873 |
+
if sys.version_info >= (3, 11):
|
874 |
+
return 2 * (_PYOPCODE_CACHES.get(dis.opname[inst.opcode], 0) + 1)
|
875 |
+
return 2
|
876 |
+
|
877 |
+
|
878 |
+
def check_offsets(instructions) -> None:
|
879 |
+
offset = 0
|
880 |
+
for inst in instructions:
|
881 |
+
assert inst.offset == offset
|
882 |
+
offset += instruction_size(inst)
|
883 |
+
|
884 |
+
|
885 |
+
def update_offsets(instructions) -> None:
|
886 |
+
offset = 0
|
887 |
+
for inst in instructions:
|
888 |
+
inst.offset = offset
|
889 |
+
offset += instruction_size(inst)
|
890 |
+
|
891 |
+
|
892 |
+
def debug_bytes(*args) -> str:
|
893 |
+
index = range(max(map(len, args)))
|
894 |
+
result = []
|
895 |
+
for arg in (
|
896 |
+
[index] + list(args) + [[int(a != b) for a, b in zip(args[-1], args[-2])]]
|
897 |
+
):
|
898 |
+
result.append(" ".join(f"{x:03}" for x in arg))
|
899 |
+
|
900 |
+
return "bytes mismatch\n" + "\n".join(result)
|
901 |
+
|
902 |
+
|
903 |
+
def debug_checks(code):
|
904 |
+
"""Make sure our assembler produces same bytes as we start with"""
|
905 |
+
dode = transform_code_object(code, lambda x, y: None, safe=True)
|
906 |
+
assert code.co_code == dode.co_code, debug_bytes(code.co_code, dode.co_code)
|
907 |
+
assert code.co_lnotab == dode.co_lnotab, debug_bytes(code.co_lnotab, dode.co_lnotab)
|
908 |
+
|
909 |
+
|
910 |
+
HAS_LOCAL = set(dis.haslocal)
|
911 |
+
HAS_NAME = set(dis.hasname)
|
912 |
+
HAS_FREE = set(dis.hasfree)
|
913 |
+
HAS_CONST = set(dis.hasconst)
|
914 |
+
|
915 |
+
|
916 |
+
def get_const_index(code_options, val) -> int:
|
917 |
+
for i, v in enumerate(code_options["co_consts"]):
|
918 |
+
# NOTE: stronger comparison is required, since we have
|
919 |
+
# examples where two values compare equal but have
|
920 |
+
# different semantic meaning in some cases, e.g.
|
921 |
+
# 0.0 == -0.0 but have different effects in torch.copysign.
|
922 |
+
if val is v:
|
923 |
+
return i
|
924 |
+
code_options["co_consts"] += (val,)
|
925 |
+
return len(code_options["co_consts"]) - 1
|
926 |
+
|
927 |
+
|
928 |
+
def fix_vars(instructions: List[Instruction], code_options, varname_from_oparg=None):
|
929 |
+
# compute instruction arg from argval if arg is not provided
|
930 |
+
names = {name: idx for idx, name in enumerate(code_options["co_names"])}
|
931 |
+
if sys.version_info < (3, 11):
|
932 |
+
assert varname_from_oparg is None
|
933 |
+
varnames = {name: idx for idx, name in enumerate(code_options["co_varnames"])}
|
934 |
+
freenames = {
|
935 |
+
name: idx
|
936 |
+
for idx, name in enumerate(
|
937 |
+
code_options["co_cellvars"] + code_options["co_freevars"]
|
938 |
+
)
|
939 |
+
}
|
940 |
+
else:
|
941 |
+
assert callable(varname_from_oparg)
|
942 |
+
allnames = {}
|
943 |
+
for idx in itertools.count():
|
944 |
+
try:
|
945 |
+
name = varname_from_oparg(idx)
|
946 |
+
allnames[name] = idx
|
947 |
+
except IndexError:
|
948 |
+
break
|
949 |
+
varnames = {name: allnames[name] for name in code_options["co_varnames"]}
|
950 |
+
freenames = {
|
951 |
+
name: allnames[name]
|
952 |
+
for name in code_options["co_cellvars"] + code_options["co_freevars"]
|
953 |
+
}
|
954 |
+
for i in range(len(instructions)):
|
955 |
+
|
956 |
+
def should_compute_arg():
|
957 |
+
# argval is prioritized over arg
|
958 |
+
return instructions[i].argval is not _NotProvided
|
959 |
+
|
960 |
+
if instructions[i].opname == "LOAD_GLOBAL":
|
961 |
+
# 3.11 LOAD_GLOBAL requires both arg and argval - see create_load_global
|
962 |
+
assert instructions[i].arg is not None
|
963 |
+
assert instructions[i].argval is not _NotProvided
|
964 |
+
if sys.version_info >= (3, 11):
|
965 |
+
instructions[i].arg = (names[instructions[i].argval] << 1) + (
|
966 |
+
cast(int, instructions[i].arg) % 2
|
967 |
+
)
|
968 |
+
else:
|
969 |
+
instructions[i].arg = names[instructions[i].argval]
|
970 |
+
elif instructions[i].opcode in HAS_LOCAL:
|
971 |
+
if should_compute_arg():
|
972 |
+
instructions[i].arg = varnames[instructions[i].argval]
|
973 |
+
elif instructions[i].opcode in HAS_NAME:
|
974 |
+
if should_compute_arg():
|
975 |
+
instructions[i].arg = names[instructions[i].argval]
|
976 |
+
elif instructions[i].opcode in HAS_FREE:
|
977 |
+
if should_compute_arg():
|
978 |
+
instructions[i].arg = freenames[instructions[i].argval]
|
979 |
+
elif instructions[i].opcode in HAS_CONST:
|
980 |
+
# NOTE: only update argval if arg is not provided. This assumes
|
981 |
+
# that any additions to co_consts are appended.
|
982 |
+
if instructions[i].arg is None:
|
983 |
+
# cannot use a dictionary since consts may not be hashable
|
984 |
+
idx = get_const_index(code_options, instructions[i].argval)
|
985 |
+
assert idx >= 0
|
986 |
+
instructions[i].arg = idx
|
987 |
+
|
988 |
+
|
989 |
+
def get_code_keys() -> List[str]:
|
990 |
+
# Python 3.11 changes to code keys are not fully documented.
|
991 |
+
# See https://github.com/python/cpython/blob/3.11/Objects/clinic/codeobject.c.h#L24
|
992 |
+
# for new format.
|
993 |
+
keys = ["co_argcount"]
|
994 |
+
keys.append("co_posonlyargcount")
|
995 |
+
keys.extend(
|
996 |
+
[
|
997 |
+
"co_kwonlyargcount",
|
998 |
+
"co_nlocals",
|
999 |
+
"co_stacksize",
|
1000 |
+
"co_flags",
|
1001 |
+
"co_code",
|
1002 |
+
"co_consts",
|
1003 |
+
"co_names",
|
1004 |
+
"co_varnames",
|
1005 |
+
"co_filename",
|
1006 |
+
"co_name",
|
1007 |
+
]
|
1008 |
+
)
|
1009 |
+
if sys.version_info >= (3, 11):
|
1010 |
+
keys.append("co_qualname")
|
1011 |
+
keys.append("co_firstlineno")
|
1012 |
+
if sys.version_info >= (3, 10):
|
1013 |
+
keys.append("co_linetable")
|
1014 |
+
else:
|
1015 |
+
keys.append("co_lnotab")
|
1016 |
+
if sys.version_info >= (3, 11):
|
1017 |
+
# not documented, but introduced in https://github.com/python/cpython/issues/84403
|
1018 |
+
keys.append("co_exceptiontable")
|
1019 |
+
keys.extend(
|
1020 |
+
[
|
1021 |
+
"co_freevars",
|
1022 |
+
"co_cellvars",
|
1023 |
+
]
|
1024 |
+
)
|
1025 |
+
return keys
|
1026 |
+
|
1027 |
+
|
1028 |
+
def transform_code_object(code, transformations, safe=False) -> types.CodeType:
|
1029 |
+
keys = get_code_keys()
|
1030 |
+
code_options = {k: getattr(code, k) for k in keys}
|
1031 |
+
assert len(code_options["co_varnames"]) == code_options["co_nlocals"]
|
1032 |
+
|
1033 |
+
instructions = cleaned_instructions(code, safe)
|
1034 |
+
propagate_line_nums(instructions)
|
1035 |
+
|
1036 |
+
transformations(instructions, code_options)
|
1037 |
+
return clean_and_assemble_instructions(instructions, keys, code_options)[1]
|
1038 |
+
|
1039 |
+
|
1040 |
+
def clean_and_assemble_instructions(
|
1041 |
+
instructions: List[Instruction], keys: List[str], code_options: Dict[str, Any]
|
1042 |
+
) -> Tuple[List[Instruction], types.CodeType]:
|
1043 |
+
# also implicitly checks for no duplicate instructions
|
1044 |
+
check_inst_exn_tab_entries_valid(instructions)
|
1045 |
+
|
1046 |
+
code_options["co_nlocals"] = len(code_options["co_varnames"])
|
1047 |
+
varname_from_oparg = None
|
1048 |
+
if sys.version_info >= (3, 11):
|
1049 |
+
# temporary code object with updated names
|
1050 |
+
tmp_code = types.CodeType(*[code_options[k] for k in keys])
|
1051 |
+
varname_from_oparg = tmp_code._varname_from_oparg # type: ignore[attr-defined]
|
1052 |
+
fix_vars(instructions, code_options, varname_from_oparg=varname_from_oparg)
|
1053 |
+
|
1054 |
+
dirty = True
|
1055 |
+
while dirty:
|
1056 |
+
update_offsets(instructions)
|
1057 |
+
devirtualize_jumps(instructions)
|
1058 |
+
# this pass might change offsets, if so we need to try again
|
1059 |
+
dirty = bool(fix_extended_args(instructions))
|
1060 |
+
|
1061 |
+
remove_extra_line_nums(instructions)
|
1062 |
+
bytecode, lnotab = assemble(instructions, code_options["co_firstlineno"])
|
1063 |
+
if sys.version_info < (3, 10):
|
1064 |
+
code_options["co_lnotab"] = lnotab
|
1065 |
+
else:
|
1066 |
+
code_options["co_linetable"] = lnotab
|
1067 |
+
|
1068 |
+
code_options["co_code"] = bytecode
|
1069 |
+
code_options["co_stacksize"] = stacksize_analysis(instructions)
|
1070 |
+
assert set(keys) - {"co_posonlyargcount"} == set(code_options.keys()) - {
|
1071 |
+
"co_posonlyargcount"
|
1072 |
+
}
|
1073 |
+
if sys.version_info >= (3, 11):
|
1074 |
+
code_options["co_exceptiontable"] = assemble_exception_table(
|
1075 |
+
compute_exception_table(instructions)
|
1076 |
+
)
|
1077 |
+
return instructions, types.CodeType(*[code_options[k] for k in keys])
|
1078 |
+
|
1079 |
+
|
1080 |
+
def populate_kw_names_argval(instructions, consts):
|
1081 |
+
for inst in instructions:
|
1082 |
+
if inst.opname == "KW_NAMES":
|
1083 |
+
inst.argval = consts[inst.arg]
|
1084 |
+
|
1085 |
+
|
1086 |
+
def cleaned_instructions(code, safe=False) -> List[Instruction]:
|
1087 |
+
instructions = list(map(convert_instruction, dis.get_instructions(code)))
|
1088 |
+
check_offsets(instructions)
|
1089 |
+
if sys.version_info >= (3, 11):
|
1090 |
+
populate_kw_names_argval(instructions, code.co_consts)
|
1091 |
+
virtualize_exception_table(code.co_exceptiontable, instructions)
|
1092 |
+
virtualize_jumps(instructions)
|
1093 |
+
strip_extended_args(instructions)
|
1094 |
+
if not safe:
|
1095 |
+
if sys.version_info < (3, 11):
|
1096 |
+
remove_load_call_method(instructions)
|
1097 |
+
else:
|
1098 |
+
remove_jump_if_none(instructions)
|
1099 |
+
update_offsets(instructions)
|
1100 |
+
devirtualize_jumps(instructions)
|
1101 |
+
explicit_super(code, instructions)
|
1102 |
+
return instructions
|
1103 |
+
|
1104 |
+
|
1105 |
+
_unique_id_counter = itertools.count()
|
1106 |
+
|
1107 |
+
|
1108 |
+
def unique_id(name) -> str:
|
1109 |
+
return f"{name}_{next(_unique_id_counter)}"
|
1110 |
+
|
1111 |
+
|
1112 |
+
def is_generator(code: types.CodeType) -> bool:
|
1113 |
+
co_generator = 0x20
|
1114 |
+
return (code.co_flags & co_generator) > 0
|
llmeval-env/lib/python3.10/site-packages/torch/_dynamo/cache_size.py
ADDED
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import types
|
3 |
+
import weakref
|
4 |
+
from dataclasses import dataclass
|
5 |
+
from typing import Tuple
|
6 |
+
|
7 |
+
from . import config
|
8 |
+
|
9 |
+
log = logging.getLogger(__name__)
|
10 |
+
"""
|
11 |
+
[Note on cache size limit]
|
12 |
+
|
13 |
+
Background - TorchDynamo cache is a linked list. Each cache entry is a
|
14 |
+
(check_fn, out_code, next pointer). These are stored on the f_code's co_extra
|
15 |
+
scratch space. When a frame is invoked, we walk this linked list and run
|
16 |
+
check_fn in each cache_entry to decide if the frame needs recompilation. If none
|
17 |
+
of the check_fn's returns True, we recompile and add a new entry. To ensure we
|
18 |
+
don't end up recompiling infinitely, we put limits on the cache size.
|
19 |
+
|
20 |
+
There are two limits
|
21 |
+
1) cache_size_limit
|
22 |
+
2) accumulated_cache_size_limit
|
23 |
+
|
24 |
+
|
25 |
+
Earlier we used to have only limit - maximum number of entries in 1 cache line
|
26 |
+
(which is now represented by (2) above). So, why do we need two limits? Lets try
|
27 |
+
to understand that.
|
28 |
+
|
29 |
+
In general, we want our cache limit value to be a small number (e.g. 8 or even
|
30 |
+
lower). This ensures that for frames that cause too many recompilation fall to
|
31 |
+
eager quickly. However, there is another problem that prevents us from lowering
|
32 |
+
the value of cache_size_limit. This is due to ID_MATCH'd guards. Today, we put
|
33 |
+
ID_MATCH guards on nn module if there is a graph break. This means we will have
|
34 |
+
many recompilations for the same code object because the ID_MATCH guard fails
|
35 |
+
for different instances of the nn module. This is a common pattern in how models
|
36 |
+
are authored. Therefore, this requires us to keep the cache_size_limit high.
|
37 |
+
|
38 |
+
We resolve this by introducing these two limits. The first limit (1) limits the
|
39 |
+
number of cache entries that have an ID_MATCH'd guard for an nn module instance.
|
40 |
+
And, (2)nd limit becomes a safeguard mechanism to have a maximum compilations
|
41 |
+
for a code object. One important question is - what is the limit for the code
|
42 |
+
object that does not have any ID_MATCH guard? For such code objects, we choose
|
43 |
+
(1) as the cache size limit.
|
44 |
+
|
45 |
+
Lets take an example to understand how these limits help. Suppose, we have 16
|
46 |
+
instances of a nn module and we ID_MATCH on the self object. Further, suppose
|
47 |
+
the inputs to these functions have varying batch size, leading to one
|
48 |
+
recompilation. In total, there will be 32 recompilations, and therefore 32 cache
|
49 |
+
entries on the forward code object. In the older case when we had only 1 limit,
|
50 |
+
our cache size limit must be >= 32 to capture all these recompilations. Now,
|
51 |
+
suppose there is a separate function in the same program which is very dynamic
|
52 |
+
and unsuitable for compilation. Such a function will need to undergo 32
|
53 |
+
compilations to burst the cache and fallback to eager. These 32 recompilations
|
54 |
+
are too many and we want to fallback for these compilation-unfriendly functions
|
55 |
+
sooner.
|
56 |
+
|
57 |
+
In the new scenario, we can have (1) cache_size_limit = 2, (2)
|
58 |
+
accumulated_cache_size_limit = 32. This means that each ID_MATCH'd object can
|
59 |
+
have maximum of two cache entries, and the maximum number of cache entries
|
60 |
+
(irrespective of ID_MATCH obj) is 32. This covers the case of forward code
|
61 |
+
object which has 32 recompilations. For the other function, the one unsuitable
|
62 |
+
for recompilation, our limit is 2. So, we will burst the cache in just 2
|
63 |
+
recompilations. In this manner, these 2 limits help us resolve the tension
|
64 |
+
mentioned earlier.
|
65 |
+
"""
|
66 |
+
|
67 |
+
|
68 |
+
@dataclass
|
69 |
+
class CacheSizeRelevantForFrame:
|
70 |
+
"""
|
71 |
+
We track the number of cache entries that have same id_match objects as the
|
72 |
+
given frame.
|
73 |
+
|
74 |
+
TODO(janimesh) - Consider adding a map from tuple_of_match_ids to count -
|
75 |
+
https://github.com/pytorch/pytorch/pull/107496#discussion_r1304564682 - this
|
76 |
+
could be useful for debugging as well.
|
77 |
+
"""
|
78 |
+
|
79 |
+
# Total number of CacheEntry objects in the Dynamo linked list
|
80 |
+
num_cache_entries: int = 0
|
81 |
+
|
82 |
+
# Number of CacheEntry objects having same ID_MATCH'd objects as given frame.
|
83 |
+
num_cache_entries_with_same_id_matched_objs: int = 0
|
84 |
+
|
85 |
+
def will_compilation_exceed(self, limit: int) -> bool:
|
86 |
+
# Checks if a compilation will exceed the given limit (thats why >=).
|
87 |
+
return (
|
88 |
+
self.will_compilation_exceed_accumulated_limit()
|
89 |
+
or self.will_compilation_exceed_specific_limit(limit)
|
90 |
+
)
|
91 |
+
|
92 |
+
def will_compilation_exceed_accumulated_limit(self) -> bool:
|
93 |
+
return self.num_cache_entries >= config.accumulated_cache_size_limit
|
94 |
+
|
95 |
+
def will_compilation_exceed_specific_limit(self, limit: int) -> bool:
|
96 |
+
return self.num_cache_entries_with_same_id_matched_objs >= limit
|
97 |
+
|
98 |
+
|
99 |
+
def _get_weakref_from_f_locals(frame: types.FrameType, local_name: str):
|
100 |
+
obj = frame.f_locals.get(local_name, None)
|
101 |
+
weak_id = None
|
102 |
+
try:
|
103 |
+
weak_id = weakref.ref(obj)
|
104 |
+
except TypeError:
|
105 |
+
pass # cannot weakref bool object
|
106 |
+
return weak_id
|
107 |
+
|
108 |
+
|
109 |
+
def _has_same_id_matched_objs(frame: types.FrameType, cache_entry) -> bool:
|
110 |
+
"""
|
111 |
+
Checks if the ID_MATCH'd objects saved on cache_entry are same as the ones
|
112 |
+
in frame.f_locals.
|
113 |
+
"""
|
114 |
+
if not cache_entry:
|
115 |
+
return False
|
116 |
+
|
117 |
+
for (
|
118 |
+
local_name,
|
119 |
+
weakref_from_cache_entry,
|
120 |
+
) in cache_entry.check_fn.id_matched_objs.items():
|
121 |
+
if weakref_from_cache_entry() is not None:
|
122 |
+
weakref_from_frame = _get_weakref_from_f_locals(frame, local_name)
|
123 |
+
if weakref_from_frame != weakref_from_cache_entry:
|
124 |
+
return False
|
125 |
+
|
126 |
+
# Also covers the case where no ID_MATCH objects are saved in frame.f_locals
|
127 |
+
return True
|
128 |
+
|
129 |
+
|
130 |
+
def compute_cache_size(
|
131 |
+
frame: types.FrameType, cache_entry
|
132 |
+
) -> CacheSizeRelevantForFrame:
|
133 |
+
# Walk the linked list to calculate the cache size
|
134 |
+
num_cache_entries = 0
|
135 |
+
num_cache_entries_with_same_id_matched_objs = 0
|
136 |
+
|
137 |
+
while cache_entry:
|
138 |
+
num_cache_entries += 1
|
139 |
+
# Track the number of cache entries having same ID_MATCH'd objects as
|
140 |
+
# that of frame.f_locals. This will be used later to compare against the
|
141 |
+
# cache_size_limit.
|
142 |
+
if _has_same_id_matched_objs(frame, cache_entry):
|
143 |
+
num_cache_entries_with_same_id_matched_objs += 1
|
144 |
+
cache_entry = cache_entry.next
|
145 |
+
|
146 |
+
return CacheSizeRelevantForFrame(
|
147 |
+
num_cache_entries, num_cache_entries_with_same_id_matched_objs
|
148 |
+
)
|
149 |
+
|
150 |
+
|
151 |
+
def is_recompilation(cache_size: CacheSizeRelevantForFrame) -> bool:
|
152 |
+
"""
|
153 |
+
If the frame (earlier parsed by compute_cache_size) has more than 1 cache
|
154 |
+
entry with same ID_MATCH'd objects, then its a recompilation.
|
155 |
+
"""
|
156 |
+
# Note that you can have multiple entries in the cache but still not a
|
157 |
+
# recompile, e.g., you can have 64 nn module instances, each one having an
|
158 |
+
# ID_MATCH guard, and each one having just 1 cache entry in the cache. In
|
159 |
+
# this case, we can have 64 entries in the cache, but no recompilation
|
160 |
+
# because there is only one entry for each id_matched_obj.
|
161 |
+
return cache_size.will_compilation_exceed(1)
|
162 |
+
|
163 |
+
|
164 |
+
def exceeds_cache_size_limit(cache_size: CacheSizeRelevantForFrame) -> Tuple[bool, str]:
|
165 |
+
"""
|
166 |
+
Checks if we are exceeding the cache size limit.
|
167 |
+
"""
|
168 |
+
if cache_size.will_compilation_exceed_accumulated_limit():
|
169 |
+
return True, "accumulated_cache_size_limit"
|
170 |
+
if cache_size.will_compilation_exceed_specific_limit(config.cache_size_limit):
|
171 |
+
return True, "cache_size_limit"
|
172 |
+
return False, ""
|
llmeval-env/lib/python3.10/site-packages/torch/_dynamo/code_context.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import types
|
2 |
+
|
3 |
+
from .utils import ExactWeakKeyDictionary
|
4 |
+
|
5 |
+
|
6 |
+
class CodeContextDict:
|
7 |
+
def __init__(self):
|
8 |
+
self.code_context = ExactWeakKeyDictionary()
|
9 |
+
|
10 |
+
def has_context(self, code: types.CodeType):
|
11 |
+
return code in self.code_context
|
12 |
+
|
13 |
+
def get_context(self, code: types.CodeType):
|
14 |
+
ctx = self.code_context.get(code)
|
15 |
+
if ctx is None:
|
16 |
+
ctx = {}
|
17 |
+
self.code_context[code] = ctx
|
18 |
+
return ctx
|
19 |
+
|
20 |
+
def pop_context(self, code: types.CodeType):
|
21 |
+
ctx = self.get_context(code)
|
22 |
+
self.code_context._remove_id(id(code))
|
23 |
+
return ctx
|
24 |
+
|
25 |
+
def clear(self):
|
26 |
+
self.code_context.clear()
|
27 |
+
|
28 |
+
|
29 |
+
code_context = CodeContextDict()
|
llmeval-env/lib/python3.10/site-packages/torch/_dynamo/codegen.py
ADDED
@@ -0,0 +1,398 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import collections
|
2 |
+
import dataclasses
|
3 |
+
import re
|
4 |
+
import sys
|
5 |
+
import types
|
6 |
+
from typing import Counter, Dict, List, Optional
|
7 |
+
|
8 |
+
import torch.nn
|
9 |
+
from . import utils
|
10 |
+
|
11 |
+
from .bytecode_transformation import (
|
12 |
+
create_call_function,
|
13 |
+
create_dup_top,
|
14 |
+
create_instruction,
|
15 |
+
create_load_global,
|
16 |
+
create_rot_n,
|
17 |
+
Instruction,
|
18 |
+
)
|
19 |
+
from .exc import unimplemented
|
20 |
+
from .source import AttrSource, Source
|
21 |
+
from .utils import is_safe_constant, rot_n_helper
|
22 |
+
from .variables.base import VariableTracker
|
23 |
+
from .variables.nn_module import NNModuleVariable
|
24 |
+
from .variables.tensor import (
|
25 |
+
NumpyNdarrayVariable,
|
26 |
+
SymNodeVariable,
|
27 |
+
TensorVariable,
|
28 |
+
UnspecializedPythonVariable,
|
29 |
+
)
|
30 |
+
from .variables.torch_function import TensorWithTFOverrideVariable
|
31 |
+
|
32 |
+
|
33 |
+
@dataclasses.dataclass
|
34 |
+
class GraphOutputEntry:
|
35 |
+
index: int
|
36 |
+
variable: VariableTracker
|
37 |
+
|
38 |
+
|
39 |
+
class PyCodegen:
|
40 |
+
"""
|
41 |
+
Helper class uses for constructing Python bytecode
|
42 |
+
"""
|
43 |
+
|
44 |
+
def __init__(
|
45 |
+
self,
|
46 |
+
tx=None,
|
47 |
+
root: Optional[torch.nn.Module] = None,
|
48 |
+
graph_output_var: Optional[str] = None,
|
49 |
+
tempvars=None,
|
50 |
+
):
|
51 |
+
self.root = root
|
52 |
+
self.top_of_stack: Optional[VariableTracker] = None
|
53 |
+
self.uses: Counter[VariableTracker] = collections.Counter()
|
54 |
+
self.graph_outputs: Dict[int, GraphOutputEntry] = {}
|
55 |
+
self._output: List[Instruction] = []
|
56 |
+
self.tempvars = tempvars or {}
|
57 |
+
self.tx = tx
|
58 |
+
self.graph_output_var = graph_output_var
|
59 |
+
self.code_options = self.tx.output.code_options
|
60 |
+
self.cell_and_freevars = self.tx.cell_and_freevars
|
61 |
+
self.new_var = self.tx.output.new_var
|
62 |
+
self.mutable_side_effects_from_source = False
|
63 |
+
self.value_from_source: bool = True
|
64 |
+
|
65 |
+
def restore_stack(self, stack_values, *, value_from_source=True):
|
66 |
+
prior = self.mutable_side_effects_from_source
|
67 |
+
self.mutable_side_effects_from_source = True
|
68 |
+
prev = self.value_from_source
|
69 |
+
self.value_from_source &= value_from_source
|
70 |
+
try:
|
71 |
+
self.foreach(stack_values)
|
72 |
+
finally:
|
73 |
+
self.mutable_side_effects_from_source = prior
|
74 |
+
self.value_from_source = prev
|
75 |
+
|
76 |
+
def graph_output_vars(self):
|
77 |
+
return [x.variable for x in self.graph_outputs.values()]
|
78 |
+
|
79 |
+
def call_reconstruct(self, value):
|
80 |
+
res = value.reconstruct(self)
|
81 |
+
assert res is None, f"reconstruct!=None {value}"
|
82 |
+
|
83 |
+
def __call__(self, value, allow_cache=True):
|
84 |
+
"""Generate code such that top-of-stack (TOS) is set to value"""
|
85 |
+
if isinstance(value, Source):
|
86 |
+
self.call_reconstruct(value)
|
87 |
+
self.clear_tos()
|
88 |
+
return
|
89 |
+
|
90 |
+
assert isinstance(value, VariableTracker)
|
91 |
+
output = self._output
|
92 |
+
graph_outputs = self.graph_outputs
|
93 |
+
|
94 |
+
if self.top_of_stack is value and allow_cache:
|
95 |
+
output.append(create_dup_top())
|
96 |
+
return
|
97 |
+
|
98 |
+
if self.mutable_side_effects_from_source:
|
99 |
+
# this is needed to get aliasing relationships right
|
100 |
+
# value.mutable_local.source will get mutated to hold `value`
|
101 |
+
# mutable_side_effects_from_source=False is used to codegen the mutation
|
102 |
+
# mutable_side_effects_from_source=True is used to codegen a reference
|
103 |
+
from .side_effects import MutableSideEffects
|
104 |
+
|
105 |
+
if isinstance(value.mutable_local, MutableSideEffects):
|
106 |
+
self(value.mutable_local.source)
|
107 |
+
return
|
108 |
+
|
109 |
+
if allow_cache:
|
110 |
+
if value.mutable_local and value.mutable_local in self.tempvars:
|
111 |
+
output.append(self.create_load(self.tempvars[value.mutable_local]))
|
112 |
+
self.top_of_stack = value
|
113 |
+
return
|
114 |
+
if self.tempvars.get(value) is not None:
|
115 |
+
output.append(self.create_load(self.tempvars[value]))
|
116 |
+
self.top_of_stack = value
|
117 |
+
return
|
118 |
+
|
119 |
+
if value.source is not None and allow_cache and self.value_from_source:
|
120 |
+
self.call_reconstruct(value.source)
|
121 |
+
elif value.is_python_constant() and is_safe_constant(
|
122 |
+
value.as_python_constant()
|
123 |
+
):
|
124 |
+
output.append(self.create_load_const(value.as_python_constant()))
|
125 |
+
elif isinstance(value, TensorWithTFOverrideVariable):
|
126 |
+
graph_outputs_key = self.add_graph_output(value)
|
127 |
+
|
128 |
+
self.load_import_from(utils.__name__, "to_subclass")
|
129 |
+
self.load_graph_output(graph_outputs[graph_outputs_key].index)
|
130 |
+
output.append(
|
131 |
+
self.create_load_global(
|
132 |
+
value.global_mangled_class_name(self.tx), False, add=True
|
133 |
+
)
|
134 |
+
)
|
135 |
+
output.extend(create_call_function(2, True))
|
136 |
+
elif isinstance(
|
137 |
+
value,
|
138 |
+
(
|
139 |
+
TensorVariable,
|
140 |
+
SymNodeVariable,
|
141 |
+
UnspecializedPythonVariable,
|
142 |
+
NumpyNdarrayVariable,
|
143 |
+
),
|
144 |
+
):
|
145 |
+
graph_outputs_key = self.add_graph_output(value)
|
146 |
+
|
147 |
+
if isinstance(value, NumpyNdarrayVariable):
|
148 |
+
self.load_import_from(utils.__name__, "to_numpy_helper")
|
149 |
+
|
150 |
+
self.load_graph_output(graph_outputs[graph_outputs_key].index)
|
151 |
+
|
152 |
+
if isinstance(value, NumpyNdarrayVariable):
|
153 |
+
output.extend(create_call_function(1, True))
|
154 |
+
elif isinstance(value, UnspecializedPythonVariable) and value.need_unwrap:
|
155 |
+
output.extend(
|
156 |
+
[self.create_load_attr("item")] + create_call_function(0, True)
|
157 |
+
)
|
158 |
+
elif isinstance(value, NNModuleVariable):
|
159 |
+
parts = value.module_key.split(".")
|
160 |
+
if parts[0] in self.code_options["co_varnames"]:
|
161 |
+
output.append(self.create_load(parts[0]))
|
162 |
+
parts = parts[1:]
|
163 |
+
else:
|
164 |
+
assert self.root is not None
|
165 |
+
output.append(self.create_load_output(self.root))
|
166 |
+
for part in parts:
|
167 |
+
output.append(self.create_load_attr(part))
|
168 |
+
else:
|
169 |
+
self.uses[value] += 1
|
170 |
+
try:
|
171 |
+
self.call_reconstruct(value)
|
172 |
+
except NotImplementedError:
|
173 |
+
unimplemented(f"reconstruct: {value}")
|
174 |
+
if allow_cache and value in self.tempvars:
|
175 |
+
self._output.append(create_dup_top())
|
176 |
+
self.add_cache(value)
|
177 |
+
|
178 |
+
self.top_of_stack = value
|
179 |
+
|
180 |
+
def add_graph_output(self, value):
|
181 |
+
graph_outputs_key = id(value.as_proxy())
|
182 |
+
if graph_outputs_key not in self.graph_outputs:
|
183 |
+
self.graph_outputs[graph_outputs_key] = GraphOutputEntry(
|
184 |
+
len(self.graph_outputs), value
|
185 |
+
)
|
186 |
+
return graph_outputs_key
|
187 |
+
|
188 |
+
def load_graph_output(self, index):
|
189 |
+
output = self._output
|
190 |
+
output.append(self.create_load(self.graph_output_var))
|
191 |
+
output.append(self._create_load_const(index))
|
192 |
+
output.append(create_instruction("BINARY_SUBSCR"))
|
193 |
+
|
194 |
+
def add_cache(self, value):
|
195 |
+
var = self.new_var()
|
196 |
+
self.tempvars[value] = var
|
197 |
+
if value.mutable_local:
|
198 |
+
self.tempvars[value.mutable_local] = var
|
199 |
+
self._output.append(self.create_store(var))
|
200 |
+
|
201 |
+
def foreach(self, items):
|
202 |
+
for i in items:
|
203 |
+
self(i)
|
204 |
+
|
205 |
+
def setup_globally_cached(self, name, value, push_null):
|
206 |
+
"""Store value in a new global"""
|
207 |
+
name = re.sub(r"[^a-zA-Z0-9_]+", "_", name)
|
208 |
+
f_globals = self.tx.f_globals
|
209 |
+
if name in f_globals:
|
210 |
+
assert id(f_globals[name]) == id(value)
|
211 |
+
else:
|
212 |
+
f_globals[name] = value
|
213 |
+
return [self.create_load_global(name, push_null, add=True)]
|
214 |
+
|
215 |
+
def clear_tos(self):
|
216 |
+
self.top_of_stack = None
|
217 |
+
|
218 |
+
def append_output(self, inst):
|
219 |
+
assert isinstance(inst, Instruction)
|
220 |
+
self._output.append(inst)
|
221 |
+
self.clear_tos()
|
222 |
+
|
223 |
+
def extend_output(self, insts):
|
224 |
+
assert all(isinstance(x, Instruction) for x in insts)
|
225 |
+
self._output.extend(insts)
|
226 |
+
self.clear_tos()
|
227 |
+
|
228 |
+
def get_instructions(self) -> List[Instruction]:
|
229 |
+
return self._output
|
230 |
+
|
231 |
+
def create_load(self, name) -> Instruction:
|
232 |
+
if name in self.cell_and_freevars():
|
233 |
+
return create_instruction("LOAD_DEREF", argval=name)
|
234 |
+
assert name in self.code_options["co_varnames"], f"{name} missing"
|
235 |
+
return create_instruction("LOAD_FAST", argval=name)
|
236 |
+
|
237 |
+
def create_load_closure(self, name) -> Instruction:
|
238 |
+
assert name in self.cell_and_freevars()
|
239 |
+
return create_instruction("LOAD_CLOSURE", argval=name)
|
240 |
+
|
241 |
+
def create_store(self, name) -> Instruction:
|
242 |
+
if name in self.cell_and_freevars():
|
243 |
+
return create_instruction("STORE_DEREF", argval=name)
|
244 |
+
assert name in self.code_options["co_varnames"]
|
245 |
+
return create_instruction("STORE_FAST", argval=name)
|
246 |
+
|
247 |
+
def create_load_global(self, name, push_null, add=False) -> Instruction:
|
248 |
+
if add:
|
249 |
+
self.tx.output.update_co_names(name)
|
250 |
+
assert name in self.code_options["co_names"], f"{name} not in co_names"
|
251 |
+
return create_load_global(name, push_null)
|
252 |
+
|
253 |
+
def create_load_const(self, value) -> Instruction:
|
254 |
+
assert is_safe_constant(value), f"unsafe constant {value}"
|
255 |
+
return self._create_load_const(value)
|
256 |
+
|
257 |
+
def _create_load_const(self, value) -> Instruction:
|
258 |
+
return create_instruction("LOAD_CONST", argval=value)
|
259 |
+
|
260 |
+
create_load_output = _create_load_const
|
261 |
+
|
262 |
+
def create_load_method(self, name):
|
263 |
+
self.tx.output.update_co_names(name)
|
264 |
+
return create_instruction("LOAD_METHOD", argval=name)
|
265 |
+
|
266 |
+
def create_load_attr(self, name) -> Instruction:
|
267 |
+
if name not in self.code_options["co_names"]:
|
268 |
+
self.code_options["co_names"] += (name,)
|
269 |
+
return create_instruction("LOAD_ATTR", argval=name)
|
270 |
+
|
271 |
+
def load_attr(self, name):
|
272 |
+
self.append_output(self.create_load_attr(name))
|
273 |
+
|
274 |
+
def create_load_attrs(self, names):
|
275 |
+
return [self.create_load_attr(name) for name in names.split(".")]
|
276 |
+
|
277 |
+
def create_store_attr(self, name) -> Instruction:
|
278 |
+
if name not in self.code_options["co_names"]:
|
279 |
+
self.code_options["co_names"] += (name,)
|
280 |
+
return create_instruction("STORE_ATTR", argval=name)
|
281 |
+
|
282 |
+
def store_attr(self, name):
|
283 |
+
self.append_output(self.create_store_attr(name))
|
284 |
+
|
285 |
+
def load_function_name(self, fn_name, push_null, num_on_stack=0):
|
286 |
+
"""Load the global fn_name on the stack num_on_stack down"""
|
287 |
+
output = []
|
288 |
+
if push_null and sys.version_info >= (3, 11):
|
289 |
+
output.extend(
|
290 |
+
[create_instruction("PUSH_NULL"), *self.rot_n(num_on_stack + 1)]
|
291 |
+
)
|
292 |
+
output.extend(
|
293 |
+
[
|
294 |
+
self.create_load_global(fn_name, False, add=True),
|
295 |
+
*self.rot_n(num_on_stack + 1),
|
296 |
+
]
|
297 |
+
)
|
298 |
+
return output
|
299 |
+
|
300 |
+
def rot_n(self, n):
|
301 |
+
try:
|
302 |
+
return create_rot_n(n)
|
303 |
+
except AttributeError:
|
304 |
+
# desired rotate bytecode doesn't exist, generate equivalent bytecode
|
305 |
+
return [
|
306 |
+
create_instruction("BUILD_TUPLE", arg=n),
|
307 |
+
self._create_load_const(rot_n_helper(n)),
|
308 |
+
*create_rot_n(2),
|
309 |
+
create_instruction("CALL_FUNCTION_EX", arg=0),
|
310 |
+
create_instruction("UNPACK_SEQUENCE", arg=n),
|
311 |
+
]
|
312 |
+
|
313 |
+
def pop_null(self):
|
314 |
+
# POP_TOP doesn't work for null, so we pop nulls by pushing in a
|
315 |
+
# nop function, calling it (which consumes the null), and popping the result.
|
316 |
+
assert sys.version_info >= (3, 11)
|
317 |
+
return [
|
318 |
+
self._create_load_const(lambda: None),
|
319 |
+
*create_call_function(0, False),
|
320 |
+
create_instruction("POP_TOP"),
|
321 |
+
]
|
322 |
+
|
323 |
+
def call_function(self, nargs: int, push_null: bool):
|
324 |
+
self.extend_output(create_call_function(nargs, push_null=push_null))
|
325 |
+
|
326 |
+
def dup_top(self):
|
327 |
+
self.append_output(create_dup_top())
|
328 |
+
|
329 |
+
def store(self, varname):
|
330 |
+
self.append_output(self.create_store(varname))
|
331 |
+
|
332 |
+
def make_function_with_closure(
|
333 |
+
self, fn_name: str, code: types.CodeType, push_null: bool, num_on_stack=0
|
334 |
+
):
|
335 |
+
freevars = code.co_freevars
|
336 |
+
assert freevars
|
337 |
+
output = self._output
|
338 |
+
if sys.version_info >= (3, 11) and push_null:
|
339 |
+
output.append(create_instruction("PUSH_NULL"))
|
340 |
+
output.extend(self.rot_n(num_on_stack + 1))
|
341 |
+
for var in freevars:
|
342 |
+
assert var in self.cell_and_freevars()
|
343 |
+
output.append(create_instruction("LOAD_CLOSURE", argval=var))
|
344 |
+
output.append(create_instruction("BUILD_TUPLE", arg=len(freevars)))
|
345 |
+
output.append(self.create_load_const(code))
|
346 |
+
if sys.version_info < (3, 11):
|
347 |
+
output.append(self.create_load_const(fn_name))
|
348 |
+
output.append(create_instruction("MAKE_FUNCTION", arg=0x08))
|
349 |
+
output.extend(self.rot_n(num_on_stack + 1))
|
350 |
+
self.clear_tos()
|
351 |
+
|
352 |
+
def create_load_python_module(self, mod, push_null) -> Instruction:
|
353 |
+
"""
|
354 |
+
Generate a LOAD_GLOBAL instruction to fetch a given python module.
|
355 |
+
"""
|
356 |
+
output = self.tx.output
|
357 |
+
global_scope = output.global_scope
|
358 |
+
name = re.sub(r"^.*[.]", "", mod.__name__)
|
359 |
+
if global_scope.get(name, None) is mod:
|
360 |
+
return self.create_load_global(name, push_null, add=True)
|
361 |
+
prefix = f"___module_{name}"
|
362 |
+
global_name = self.tx.output.install_global_by_id(prefix, mod)
|
363 |
+
return self.create_load_global(global_name, push_null, add=True)
|
364 |
+
|
365 |
+
def make_call_generated_code(self, fn_name: str) -> None:
|
366 |
+
"""Call the generated code function stored in fn_name"""
|
367 |
+
self.extend_output(self.load_function_name(fn_name, True))
|
368 |
+
|
369 |
+
graphargs = self.tx.output.graphargs
|
370 |
+
for arg in graphargs:
|
371 |
+
if arg.is_unspecialized:
|
372 |
+
self.extend_output(
|
373 |
+
[
|
374 |
+
self.create_load_python_module(torch, True),
|
375 |
+
self.create_load_attr("as_tensor"),
|
376 |
+
]
|
377 |
+
)
|
378 |
+
self.call_reconstruct(arg)
|
379 |
+
self.extend_output(create_call_function(1, False))
|
380 |
+
else:
|
381 |
+
self.call_reconstruct(arg)
|
382 |
+
|
383 |
+
self.extend_output(create_call_function(len(graphargs), False))
|
384 |
+
|
385 |
+
def load_import_from(self, module_name, object_name) -> None:
|
386 |
+
self(AttrSource(self.tx.import_source(module_name), object_name))
|
387 |
+
|
388 |
+
def create_call_function_kw(self, nargs, kw_names, push_null) -> List[Instruction]:
|
389 |
+
if sys.version_info >= (3, 11):
|
390 |
+
output = create_call_function(nargs, push_null)
|
391 |
+
assert output[-2].opname == "PRECALL"
|
392 |
+
kw_names_inst = create_instruction("KW_NAMES", argval=kw_names)
|
393 |
+
output.insert(-2, kw_names_inst)
|
394 |
+
return output
|
395 |
+
return [
|
396 |
+
self.create_load_const(kw_names),
|
397 |
+
create_instruction("CALL_FUNCTION_KW", arg=nargs),
|
398 |
+
]
|
llmeval-env/lib/python3.10/site-packages/torch/_dynamo/compiled_autograd.py
ADDED
@@ -0,0 +1,280 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import contextlib
|
2 |
+
import functools
|
3 |
+
from typing import List, Optional
|
4 |
+
|
5 |
+
import torch
|
6 |
+
from torch._dynamo.external_utils import call_backward, call_hook
|
7 |
+
from torch._dynamo.source import GetItemSource, LocalSource
|
8 |
+
from torch._dynamo.utils import counters, lazy_format_graph_code
|
9 |
+
from torch._logging import getArtifactLogger, trace_structured
|
10 |
+
from torch._prims_common import clone_preserve_strides
|
11 |
+
from torch._subclasses import FakeTensorMode
|
12 |
+
from torch.fx import GraphModule
|
13 |
+
from torch.fx.experimental._backward_state import BackwardState
|
14 |
+
from torch.fx.experimental.proxy_tensor import (
|
15 |
+
decompose,
|
16 |
+
disable_autocast_cache,
|
17 |
+
disable_proxy_modes_tracing,
|
18 |
+
fetch_object_proxy,
|
19 |
+
ProxyTorchDispatchMode,
|
20 |
+
PythonKeyTracer,
|
21 |
+
track_tensor_tree,
|
22 |
+
)
|
23 |
+
from torch.fx.experimental.symbolic_shapes import DimDynamic, ShapeEnv
|
24 |
+
from torch.fx.proxy import Proxy
|
25 |
+
|
26 |
+
compiled_autograd_log = getArtifactLogger(__name__, "compiled_autograd")
|
27 |
+
|
28 |
+
|
29 |
+
def maybe_clone(x):
|
30 |
+
if x is not None:
|
31 |
+
return clone_preserve_strides(x)
|
32 |
+
return x
|
33 |
+
|
34 |
+
|
35 |
+
class AutogradCompilerInstance:
|
36 |
+
def __init__(self, compiler_fn) -> None:
|
37 |
+
self.compiler_fn = compiler_fn
|
38 |
+
self.stack = contextlib.ExitStack()
|
39 |
+
self.close = self.stack.close
|
40 |
+
self.shape_env = ShapeEnv()
|
41 |
+
self.fake_tensor_mode = FakeTensorMode(
|
42 |
+
allow_fallback_kernels=True,
|
43 |
+
allow_non_fake_inputs=True,
|
44 |
+
shape_env=self.shape_env,
|
45 |
+
)
|
46 |
+
self.fx_tracer = PythonKeyTracer()
|
47 |
+
self.proxy_mode = ProxyTorchDispatchMode(self.fx_tracer, "symbolic")
|
48 |
+
self.hooks_proxy: Optional[Proxy] = None
|
49 |
+
|
50 |
+
def wrap_fake(self, x, source):
|
51 |
+
assert isinstance(x, torch.Tensor)
|
52 |
+
return self.fake_tensor_mode.from_tensor(x, source=source)
|
53 |
+
|
54 |
+
@staticmethod
|
55 |
+
def source(name, idx) -> GetItemSource:
|
56 |
+
return GetItemSource(LocalSource(name), idx)
|
57 |
+
|
58 |
+
def begin_capture(self, inputs: List[torch.Tensor], sizes: List[int]):
|
59 |
+
counters["compiled_autograd"]["captures"] += 1
|
60 |
+
self.fx_tracer.root = torch.nn.Module()
|
61 |
+
self.fx_tracer.graph = torch.fx.Graph(tracer_cls=PythonKeyTracer)
|
62 |
+
self.fx_tracer.tensor_attrs = {}
|
63 |
+
args_proxy = self.fx_tracer.create_proxy("placeholder", "inputs", (), {})
|
64 |
+
sizes_proxy = self.fx_tracer.create_proxy("placeholder", "sizes", (), {})
|
65 |
+
self.hooks_proxy = self.fx_tracer.create_proxy("placeholder", "hooks", (), {})
|
66 |
+
|
67 |
+
# tensor inputs to fake tensors
|
68 |
+
inputs = [
|
69 |
+
self.wrap_fake(x, self.source("inputs", idx))
|
70 |
+
for idx, x in enumerate(inputs)
|
71 |
+
]
|
72 |
+
proxies = [args_proxy[i] for i in range(len(inputs))]
|
73 |
+
self.bind_tensors_to_proxies(inputs, proxies)
|
74 |
+
|
75 |
+
# size inputs to symints
|
76 |
+
sizes = [
|
77 |
+
self.shape_env.create_unspecified_symint_and_symbol(
|
78 |
+
val,
|
79 |
+
self.source("sizes", idx),
|
80 |
+
DimDynamic.DYNAMIC,
|
81 |
+
)
|
82 |
+
for idx, val in enumerate(sizes)
|
83 |
+
]
|
84 |
+
self.bind_tensors_to_proxies(sizes, sizes_proxy)
|
85 |
+
|
86 |
+
# TODO(jansel): are all these modes needed?
|
87 |
+
self.stack.enter_context(decompose({}))
|
88 |
+
self.stack.enter_context(self.fake_tensor_mode)
|
89 |
+
self.stack.enter_context(self.proxy_mode.sym_mode)
|
90 |
+
self.stack.enter_context(self.proxy_mode)
|
91 |
+
self.stack.enter_context(disable_autocast_cache())
|
92 |
+
return inputs, sizes
|
93 |
+
|
94 |
+
def proxy_call_backward(
|
95 |
+
self,
|
96 |
+
inputs,
|
97 |
+
output_metadatas,
|
98 |
+
saved_tensors,
|
99 |
+
backward_idx: int,
|
100 |
+
):
|
101 |
+
assert self.hooks_proxy is not None
|
102 |
+
backward_fn = self.hooks_proxy[backward_idx] # type: ignore[index]
|
103 |
+
proxies = self.fx_tracer.create_proxy(
|
104 |
+
kind="call_function",
|
105 |
+
target=call_backward,
|
106 |
+
args=(
|
107 |
+
backward_fn,
|
108 |
+
self.to_proxy(saved_tensors),
|
109 |
+
*self.to_proxy(inputs),
|
110 |
+
),
|
111 |
+
kwargs={},
|
112 |
+
)
|
113 |
+
|
114 |
+
with disable_proxy_modes_tracing():
|
115 |
+
# create fake Tensors
|
116 |
+
grad_ins: List[Optional[torch.Tensor]] = []
|
117 |
+
for output_metadata in output_metadatas:
|
118 |
+
if output_metadata is None:
|
119 |
+
grad_ins.append(None)
|
120 |
+
continue
|
121 |
+
|
122 |
+
layout, device, dtype, size = output_metadata
|
123 |
+
grad_ins.append(
|
124 |
+
torch.empty(size=size, dtype=dtype, layout=layout, device=device)
|
125 |
+
)
|
126 |
+
self.bind_tensors_to_proxies(grad_ins, proxies)
|
127 |
+
return tuple(grad_ins)
|
128 |
+
|
129 |
+
def proxy_call_hook(self, hook, *args):
|
130 |
+
return self.fx_tracer.create_proxy(
|
131 |
+
"call_function",
|
132 |
+
call_hook,
|
133 |
+
(
|
134 |
+
hook,
|
135 |
+
*[self.to_proxy(x) for x in args],
|
136 |
+
),
|
137 |
+
{},
|
138 |
+
)
|
139 |
+
|
140 |
+
def tensor_pre_hook(self, inputs, hook_id, i: int):
|
141 |
+
assert self.hooks_proxy is not None
|
142 |
+
hook = self.hooks_proxy[hook_id] # type: ignore[index]
|
143 |
+
proxy = self.proxy_call_hook(
|
144 |
+
hook,
|
145 |
+
inputs[i],
|
146 |
+
)
|
147 |
+
with disable_proxy_modes_tracing():
|
148 |
+
inputs[i] = maybe_clone(inputs[i])
|
149 |
+
self.bind_tensors_to_proxies([inputs[i]], [proxy])
|
150 |
+
return inputs
|
151 |
+
|
152 |
+
def pre_hook(self, inputs, hook_id):
|
153 |
+
assert self.hooks_proxy is not None
|
154 |
+
hook = self.hooks_proxy[hook_id] # type: ignore[index]
|
155 |
+
proxies = self.proxy_call_hook(
|
156 |
+
hook,
|
157 |
+
inputs,
|
158 |
+
)
|
159 |
+
with disable_proxy_modes_tracing():
|
160 |
+
inputs = [maybe_clone(x) for x in inputs]
|
161 |
+
self.bind_tensors_to_proxies(inputs, proxies)
|
162 |
+
return inputs
|
163 |
+
|
164 |
+
def post_hook(self, outputs, inputs, hook_id):
|
165 |
+
assert self.hooks_proxy is not None
|
166 |
+
hook = self.hooks_proxy[hook_id] # type: ignore[index]
|
167 |
+
proxies = self.proxy_call_hook(
|
168 |
+
hook,
|
169 |
+
outputs,
|
170 |
+
inputs,
|
171 |
+
)
|
172 |
+
with disable_proxy_modes_tracing():
|
173 |
+
outputs = [maybe_clone(x) for x in outputs]
|
174 |
+
self.bind_tensors_to_proxies(outputs, proxies)
|
175 |
+
return outputs
|
176 |
+
|
177 |
+
def post_acc_grad_hook(self, input, hook_id):
|
178 |
+
assert isinstance(input, torch.Tensor)
|
179 |
+
assert self.hooks_proxy is not None
|
180 |
+
hook = self.hooks_proxy[hook_id] # type: ignore[index]
|
181 |
+
proxies = self.proxy_call_hook(
|
182 |
+
hook,
|
183 |
+
input,
|
184 |
+
)
|
185 |
+
with disable_proxy_modes_tracing():
|
186 |
+
input = [maybe_clone(input)]
|
187 |
+
self.bind_tensors_to_proxies(input, proxies)
|
188 |
+
return input
|
189 |
+
|
190 |
+
def end_capture(self, outputs):
|
191 |
+
self.stack.close()
|
192 |
+
self.fx_tracer.create_node(
|
193 |
+
"output",
|
194 |
+
"output",
|
195 |
+
(self.fx_tracer.create_arg(self.to_proxy(outputs)),),
|
196 |
+
{},
|
197 |
+
)
|
198 |
+
graph = GraphModule(
|
199 |
+
self.fx_tracer.root, self.fx_tracer.graph, "CompiledAutograd"
|
200 |
+
)
|
201 |
+
compiled_autograd_log.info(
|
202 |
+
"%s", lazy_format_graph_code("Compiled autograd graph", graph)
|
203 |
+
)
|
204 |
+
trace_structured(
|
205 |
+
"compiled_autograd_graph",
|
206 |
+
payload_fn=lambda: graph.print_readable(print_output=False),
|
207 |
+
)
|
208 |
+
return self.compiler_fn(graph)
|
209 |
+
|
210 |
+
def to_proxy(self, t):
|
211 |
+
if t is None:
|
212 |
+
return None
|
213 |
+
if isinstance(t, list):
|
214 |
+
return [self.to_proxy(x) for x in t]
|
215 |
+
if isinstance(t, tuple):
|
216 |
+
return tuple(self.to_proxy(x) for x in t)
|
217 |
+
assert isinstance(t, (torch.Tensor, torch.SymInt))
|
218 |
+
return fetch_object_proxy(self.fx_tracer)(t).proxy
|
219 |
+
|
220 |
+
def bind_tensors_to_proxies(self, tensors, proxies):
|
221 |
+
if isinstance(proxies, torch.fx.Proxy):
|
222 |
+
proxies = [proxies[i] for i in range(len(tensors))]
|
223 |
+
assert len(tensors) == len(proxies)
|
224 |
+
track_tensor_tree(tensors, proxies, constant=None, tracer=self.fx_tracer)
|
225 |
+
|
226 |
+
def bind_backward_state(self, index: int):
|
227 |
+
assert self.hooks_proxy is not None
|
228 |
+
proxy = self.hooks_proxy[index] # type: ignore[index]
|
229 |
+
bw_state = BackwardState()
|
230 |
+
track_tensor_tree(bw_state, proxy, constant=None, tracer=self.fx_tracer)
|
231 |
+
return bw_state
|
232 |
+
|
233 |
+
|
234 |
+
compiled_autograd_enabled = False
|
235 |
+
|
236 |
+
# We may have code like:
|
237 |
+
# with enable(compiler_fn):
|
238 |
+
# ...
|
239 |
+
# with disable():
|
240 |
+
# ...
|
241 |
+
# ...
|
242 |
+
# The disable() call just want to disable compiled autograd temporarily.
|
243 |
+
# But overall the feature is enabled.
|
244 |
+
#
|
245 |
+
# The code covered by the disable context manager has no way to know if
|
246 |
+
# compiled autograd is overall eanbled. Use another variable
|
247 |
+
# compiled_autograd_enabled_count to indicate how many times compiled
|
248 |
+
# autograd has been enabled in the call stack for this purpose.
|
249 |
+
compiled_autograd_enabled_count = 0
|
250 |
+
|
251 |
+
|
252 |
+
@contextlib.contextmanager
|
253 |
+
def enable(compiler_fn):
|
254 |
+
prior = torch._C._dynamo.compiled_autograd.set_autograd_compiler(
|
255 |
+
functools.partial(AutogradCompilerInstance, compiler_fn)
|
256 |
+
)
|
257 |
+
global compiled_autograd_enabled, compiled_autograd_enabled_count
|
258 |
+
compiled_autograd_enabled = True
|
259 |
+
compiled_autograd_enabled_count += 1
|
260 |
+
try:
|
261 |
+
with torch.autograd.set_multithreading_enabled(False):
|
262 |
+
yield
|
263 |
+
finally:
|
264 |
+
compiled_autograd_enabled_count -= 1
|
265 |
+
if not prior:
|
266 |
+
compiled_autograd_enabled = False
|
267 |
+
torch._C._dynamo.compiled_autograd.set_autograd_compiler(prior)
|
268 |
+
|
269 |
+
|
270 |
+
@contextlib.contextmanager
|
271 |
+
def disable():
|
272 |
+
prior = torch._C._dynamo.compiled_autograd.set_autograd_compiler(None)
|
273 |
+
global compiled_autograd_enabled
|
274 |
+
compiled_autograd_enabled = False
|
275 |
+
try:
|
276 |
+
yield
|
277 |
+
finally:
|
278 |
+
if prior:
|
279 |
+
compiled_autograd_enabled = True
|
280 |
+
torch._C._dynamo.compiled_autograd.set_autograd_compiler(prior)
|
llmeval-env/lib/python3.10/site-packages/torch/_dynamo/comptime.py
ADDED
@@ -0,0 +1,373 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This file establishes the public comptime interface to Dynamo.
|
2 |
+
# This allows Dynamo users to execute arbitrary Python code while
|
3 |
+
# Dynamo is symbolically evaluating their original programs.
|
4 |
+
#
|
5 |
+
# The goal of the public API is to give users rope, without actually
|
6 |
+
# leaking private implementation details of Dynamo.
|
7 |
+
|
8 |
+
import builtins
|
9 |
+
import dis
|
10 |
+
import traceback
|
11 |
+
from typing import Optional, Union
|
12 |
+
|
13 |
+
import torch
|
14 |
+
from torch.fx.experimental.symbolic_shapes import free_symbols
|
15 |
+
|
16 |
+
from .exc import unimplemented
|
17 |
+
from .variables.constant import ConstantVariable
|
18 |
+
from .variables.tensor import SymNodeVariable
|
19 |
+
|
20 |
+
|
21 |
+
class ComptimeVar:
|
22 |
+
"""
|
23 |
+
A ComptimeVar represents a Python value, at some particular point
|
24 |
+
in time, in the Python code we are symbolically evaluating with
|
25 |
+
torchdynamo. This must be distinguished from a runtime value, as
|
26 |
+
at compile-time there are some properties of the variable we
|
27 |
+
do not know (for example, if the ComptimeVar represents a Tensor,
|
28 |
+
we only know metadata about the tensor; we do NOT know what the
|
29 |
+
actual data in the Tensor is.)
|
30 |
+
"""
|
31 |
+
|
32 |
+
def __init__(self, v):
|
33 |
+
self.__variable = v
|
34 |
+
|
35 |
+
def as_proxy(self):
|
36 |
+
"""
|
37 |
+
Returns an fx.Proxy (or tuple/list of fx.Proxy) representing
|
38 |
+
this variable in the FX graph we are assembling to pass
|
39 |
+
to the user compiler.
|
40 |
+
|
41 |
+
This method only works for variables we actually track in
|
42 |
+
the FX graph, aka Tensors (and ints, if you are compiling
|
43 |
+
with dynamic shapes). In particular, if you have a list
|
44 |
+
or tuple of tensors, you will get a list/tuple of proxies
|
45 |
+
(not a single proxy representing the entire list/tuple).
|
46 |
+
"""
|
47 |
+
return self.__variable.as_proxy()
|
48 |
+
|
49 |
+
def is_proxy(self):
|
50 |
+
"""
|
51 |
+
Returns True if as_proxy() would succeed.
|
52 |
+
"""
|
53 |
+
return self.__variable.is_proxy()
|
54 |
+
|
55 |
+
def as_fake(self):
|
56 |
+
"""
|
57 |
+
Returns a "fake" value (either a FakeTensor or a SymInt)
|
58 |
+
representing the variable in question. This only works
|
59 |
+
for variables that denote Tensor or int. You can use
|
60 |
+
this to query metadata; e.g., v.as_fake().size(0) will
|
61 |
+
tell you the compile-time known size of the tensor.
|
62 |
+
|
63 |
+
WARNING: Do NOT mutate the returned tensor.
|
64 |
+
"""
|
65 |
+
return self.__variable.as_proxy().node.meta["example_value"]
|
66 |
+
|
67 |
+
def size(self, dim: Optional[int] = None) -> Union[int, torch.SymInt]:
|
68 |
+
"""
|
69 |
+
Returns the size of the tensor (if dim is None) or the size
|
70 |
+
at the dimension dim. The returned size may be a SymInt.
|
71 |
+
"""
|
72 |
+
return self.as_fake().size(dim)
|
73 |
+
|
74 |
+
def python_type(self):
|
75 |
+
"""
|
76 |
+
Returns what type(v) would have returned for the variable
|
77 |
+
at compile time.
|
78 |
+
"""
|
79 |
+
return self.__variable.python_type()
|
80 |
+
|
81 |
+
def as_python_constant(self):
|
82 |
+
"""
|
83 |
+
Returns the Python value this variable would have, but only if it is
|
84 |
+
completely known at compile-time (e.g., it is constant).
|
85 |
+
|
86 |
+
WARNING: Do NOT mutate the returned constant. The returned constant
|
87 |
+
may or may not correspond to the actual value this variable may take
|
88 |
+
on at runtime; for example, if the variable in question is a constant
|
89 |
+
list, we may return a copy of that list.
|
90 |
+
"""
|
91 |
+
return self.__variable.as_python_constant()
|
92 |
+
|
93 |
+
def is_python_constant(self):
|
94 |
+
"""
|
95 |
+
Returns True if as_python_constant would succeed.
|
96 |
+
"""
|
97 |
+
return self.__variable.is_python_constant()
|
98 |
+
|
99 |
+
def is_dynamic(self):
|
100 |
+
if isinstance(self.__variable, SymNodeVariable):
|
101 |
+
fs = free_symbols(self.__variable.sym_num)
|
102 |
+
return bool(fs)
|
103 |
+
return False
|
104 |
+
|
105 |
+
def force_static(self):
|
106 |
+
"""
|
107 |
+
Forces that a value is static, inducing a guard on its specific value
|
108 |
+
"""
|
109 |
+
if isinstance(self.__variable, SymNodeVariable):
|
110 |
+
self.__variable.evaluate_expr()
|
111 |
+
elif isinstance(self.__variable, ConstantVariable):
|
112 |
+
# TODO: Maybe complain if this isn't a int/bool/float variable
|
113 |
+
pass
|
114 |
+
else:
|
115 |
+
raise AssertionError(
|
116 |
+
f"cannot force {self.__variable} ({type(self.__variable)}) static"
|
117 |
+
)
|
118 |
+
|
119 |
+
def _i_will_not_complain_if_bc_breaks_VariableTracker(self):
|
120 |
+
"""
|
121 |
+
Returns the internal data structure VariableTracker that Dynamo uses
|
122 |
+
to represent variables at compile time. There are no BC guarantees on
|
123 |
+
this API and WE RESERVE THE RIGHT TO BREAK YOUR CODE if you rely on
|
124 |
+
it.
|
125 |
+
"""
|
126 |
+
return self.__variable
|
127 |
+
|
128 |
+
def __repr__(self):
|
129 |
+
# TODO: The default repr is pretty bad, do better
|
130 |
+
return repr(self.__variable)
|
131 |
+
|
132 |
+
# TODO: API for adding a custom guard
|
133 |
+
|
134 |
+
|
135 |
+
class ComptimeContext:
|
136 |
+
"""
|
137 |
+
This context class provides access to a public API for Dynamo's internals.
|
138 |
+
If there is something here you would find useful that is missing, please
|
139 |
+
file a feature request at https://github.com/pytorch/pytorch/
|
140 |
+
"""
|
141 |
+
|
142 |
+
def __init__(self, tx):
|
143 |
+
self.__tx = tx
|
144 |
+
|
145 |
+
def get_local(self, name: str, *, stacklevel=0) -> ComptimeVar:
|
146 |
+
"""
|
147 |
+
Retrieve the compile-time known information about a local.
|
148 |
+
"""
|
149 |
+
tx = self.__get_tx(stacklevel)
|
150 |
+
return ComptimeVar(tx.symbolic_locals[name])
|
151 |
+
|
152 |
+
def graph_break(self, msg="ComptimeContext.graph_break"):
|
153 |
+
"""
|
154 |
+
Manually trigger a graph break
|
155 |
+
"""
|
156 |
+
unimplemented(msg)
|
157 |
+
|
158 |
+
def graph(self):
|
159 |
+
"""
|
160 |
+
Retrieve the partially constructed FX graph that would be
|
161 |
+
passed to the user compiler after compilation.
|
162 |
+
"""
|
163 |
+
return self.__tx.output.graph
|
164 |
+
|
165 |
+
def assert_static(self, val):
|
166 |
+
"""
|
167 |
+
Asserts that the int is static (and not dynamic, per dynamic shapes)
|
168 |
+
"""
|
169 |
+
assert (
|
170 |
+
not val.is_dynamic()
|
171 |
+
), "expected static but got dynamic (run with TORCH_LOGS=dynamic for more info)"
|
172 |
+
|
173 |
+
def print_graph(self, *, verbose=True, file=None):
|
174 |
+
"""
|
175 |
+
Print the partially constructed FX graph that would be passed
|
176 |
+
to the user compiler after compilation.
|
177 |
+
"""
|
178 |
+
print(
|
179 |
+
self.__tx.output.graph.python_code("self", verbose=verbose).src, file=file
|
180 |
+
)
|
181 |
+
|
182 |
+
def parent(self):
|
183 |
+
return ComptimeContext(self.__tx.parent)
|
184 |
+
|
185 |
+
def __get_tx(self, stacklevel):
|
186 |
+
tx = self.__tx
|
187 |
+
for _ in range(stacklevel):
|
188 |
+
tx = tx.parent
|
189 |
+
return tx
|
190 |
+
|
191 |
+
def print_disas(self, *, file=None, stacklevel=0):
|
192 |
+
"""
|
193 |
+
Print the current series of opcodes being executed (not including
|
194 |
+
parent frames), including where you are in the particular opcode
|
195 |
+
stream.
|
196 |
+
"""
|
197 |
+
tx = self.__get_tx(stacklevel)
|
198 |
+
print(
|
199 |
+
dis.Bytecode(
|
200 |
+
tx.f_code,
|
201 |
+
current_offset=tx.instructions[tx.instruction_pointer].offset,
|
202 |
+
).dis(),
|
203 |
+
file=file,
|
204 |
+
)
|
205 |
+
|
206 |
+
def print_value_stack(self, *, file=None, stacklevel=0):
|
207 |
+
"""
|
208 |
+
Print the current Python value stack. Note that this is NOT the same
|
209 |
+
as the traceback; use print_bt() to print that. Note that at
|
210 |
+
stacklevel=0, this will typically be empty, as comptime cannot
|
211 |
+
currently be used in an expression context where there would be
|
212 |
+
intermediates on the stack. If you would find this useful, please
|
213 |
+
file a bug at https://github.com/pytorch/pytorch/
|
214 |
+
|
215 |
+
NB: Stack grows downwards in our print
|
216 |
+
"""
|
217 |
+
# TODO: improve printing
|
218 |
+
tx = self.__get_tx(stacklevel)
|
219 |
+
for s in tx.stack:
|
220 |
+
print(f"- {s}", file=file)
|
221 |
+
|
222 |
+
def print_locals(self, *, file=None, stacklevel=0):
|
223 |
+
"""
|
224 |
+
Print all of the locals available in the current context.
|
225 |
+
By default this view is very limited; you can get more information
|
226 |
+
about any individual local using get_local().
|
227 |
+
"""
|
228 |
+
# TODO: improve by improving the VariableTracker printing
|
229 |
+
tx = self.__get_tx(stacklevel)
|
230 |
+
for k, v in tx.symbolic_locals.items():
|
231 |
+
print(f"{k} = {v}", file=file)
|
232 |
+
|
233 |
+
def print_bt(self, *, file=None, stacklevel=0):
|
234 |
+
"""
|
235 |
+
Print the user code backtrace, starting at the beginning of the
|
236 |
+
frame Dynamo started evaluating. Note that this MAY NOT go all
|
237 |
+
the way to the torch.compile invocation, as we may have done
|
238 |
+
a graph break and are compiling an intermediate frame as the
|
239 |
+
starting point. If you think the other behavior would be better,
|
240 |
+
file a bug at https://github.com/pytorch/pytorch/
|
241 |
+
"""
|
242 |
+
stack = []
|
243 |
+
tx = self.__get_tx(stacklevel)
|
244 |
+
while tx is not None:
|
245 |
+
stack.append(tx.frame_summary())
|
246 |
+
tx = getattr(tx, "parent", None)
|
247 |
+
print(
|
248 |
+
"".join(traceback.StackSummary.from_list(reversed(stack)).format()),
|
249 |
+
file=file,
|
250 |
+
)
|
251 |
+
|
252 |
+
def print_guards(self, *, file=None):
|
253 |
+
"""
|
254 |
+
Print the currently installed guards for the Dynamo context.
|
255 |
+
This does NOT include guards associated with variables that
|
256 |
+
may or may not be installed in the future if those variables
|
257 |
+
are used.
|
258 |
+
"""
|
259 |
+
# TODO: improve print format, current guard format is extremely
|
260 |
+
# verbose
|
261 |
+
print(
|
262 |
+
"\n".join(f"{repr(guard)}" for guard in sorted(self.__tx.output.guards)),
|
263 |
+
file=file,
|
264 |
+
)
|
265 |
+
|
266 |
+
def _i_will_not_complain_if_bc_breaks_InstructionTranslator(self):
|
267 |
+
"""
|
268 |
+
Returns the internal data structure InstructionTranslator that Dynamo
|
269 |
+
uses to track state of symbolic evaluation. There are no BC
|
270 |
+
guarantees on this API and WE RESERVE THE RIGHT TO BREAK YOUR CODE if
|
271 |
+
you rely on it.
|
272 |
+
"""
|
273 |
+
return self.__tx
|
274 |
+
|
275 |
+
|
276 |
+
class _Comptime:
|
277 |
+
@staticmethod
|
278 |
+
def __call__(fn):
|
279 |
+
"""fn gets called at compile time in TorchDynamo, does nothing otherwise"""
|
280 |
+
return
|
281 |
+
|
282 |
+
# Convenience wrappers that are more compact to use
|
283 |
+
|
284 |
+
@staticmethod
|
285 |
+
def graph_break():
|
286 |
+
comptime(lambda ctx: ctx.graph_break())
|
287 |
+
|
288 |
+
@staticmethod
|
289 |
+
def print_graph():
|
290 |
+
comptime(lambda ctx: ctx.print_graph())
|
291 |
+
|
292 |
+
@staticmethod
|
293 |
+
def print_disas(*, stacklevel=0):
|
294 |
+
comptime(
|
295 |
+
lambda ctx: ctx.print_disas(
|
296 |
+
stacklevel=ctx.get_local("stacklevel").as_python_constant() + 1
|
297 |
+
)
|
298 |
+
)
|
299 |
+
|
300 |
+
@staticmethod
|
301 |
+
def print_value_stack(*, stacklevel=0):
|
302 |
+
comptime(
|
303 |
+
lambda ctx: ctx.print_value_stack(
|
304 |
+
stacklevel=ctx.get_local("stacklevel").as_python_constant() + 1
|
305 |
+
)
|
306 |
+
)
|
307 |
+
|
308 |
+
# This is a more useful variant of print_value_stack that can be used
|
309 |
+
# in an expression context; e.g., x + print_value_stack_and_return(y + z),
|
310 |
+
# you will see x on the stack prior to the addition operation
|
311 |
+
@staticmethod
|
312 |
+
def print_value_stack_and_return(e, *, stacklevel=0):
|
313 |
+
comptime(
|
314 |
+
lambda ctx: ctx.print_value_stack(
|
315 |
+
stacklevel=ctx.get_local("stacklevel").as_python_constant() + 1
|
316 |
+
)
|
317 |
+
)
|
318 |
+
return e
|
319 |
+
|
320 |
+
@staticmethod
|
321 |
+
def print_locals(*, stacklevel=0):
|
322 |
+
comptime(
|
323 |
+
lambda ctx: ctx.print_locals(
|
324 |
+
stacklevel=ctx.get_local("stacklevel").as_python_constant() + 1
|
325 |
+
)
|
326 |
+
)
|
327 |
+
|
328 |
+
@staticmethod
|
329 |
+
def print_bt(*, stacklevel=0):
|
330 |
+
comptime(
|
331 |
+
lambda ctx: ctx.print_bt(
|
332 |
+
stacklevel=ctx.get_local("stacklevel").as_python_constant() + 1
|
333 |
+
)
|
334 |
+
)
|
335 |
+
|
336 |
+
@staticmethod
|
337 |
+
def print_guards():
|
338 |
+
comptime(lambda ctx: ctx.print_guards())
|
339 |
+
|
340 |
+
@staticmethod
|
341 |
+
def assert_static(val):
|
342 |
+
comptime(lambda ctx: ctx.assert_static(ctx.get_local("val")))
|
343 |
+
|
344 |
+
@staticmethod
|
345 |
+
def force_static(val):
|
346 |
+
comptime(lambda ctx: ctx.get_local("val").force_static())
|
347 |
+
|
348 |
+
@staticmethod
|
349 |
+
def breakpoint():
|
350 |
+
"""
|
351 |
+
Like pdb breakpoint(), but drop into pdb whenever this line
|
352 |
+
of code is compiled by dynamo. Use it by putting
|
353 |
+
this in your model code::
|
354 |
+
|
355 |
+
from torch._dynamo.comptime import comptime
|
356 |
+
comptime.breakpoint()
|
357 |
+
|
358 |
+
And then, inside pdb, you can access 'ctx' to query things
|
359 |
+
about the compilation context::
|
360 |
+
|
361 |
+
(Pdb) !ctx.print_bt()
|
362 |
+
(Pdb) !ctx.print_locals()
|
363 |
+
(Pdb) p ctx.get_local("attention").as_fake()
|
364 |
+
"""
|
365 |
+
|
366 |
+
def inner(inner_ctx):
|
367 |
+
ctx = inner_ctx.parent()
|
368 |
+
builtins.breakpoint()
|
369 |
+
|
370 |
+
comptime(inner)
|
371 |
+
|
372 |
+
|
373 |
+
comptime = _Comptime()
|
llmeval-env/lib/python3.10/site-packages/torch/_dynamo/config.py
ADDED
@@ -0,0 +1,423 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import getpass
|
2 |
+
import inspect
|
3 |
+
import os
|
4 |
+
import re
|
5 |
+
import sys
|
6 |
+
import tempfile
|
7 |
+
from os.path import abspath, dirname
|
8 |
+
from typing import Any, Callable, Dict, Optional, Set, Type, TYPE_CHECKING, Union
|
9 |
+
|
10 |
+
import torch
|
11 |
+
|
12 |
+
# to configure logging for dynamo, aot, and inductor
|
13 |
+
# use the following API in the torch._logging module
|
14 |
+
# torch._logging.set_logs(dynamo=<level>, aot=<level>, inductor<level>)
|
15 |
+
# or use the environment variable TORCH_LOGS="dynamo,aot,inductor" (use a prefix + to indicate higher verbosity)
|
16 |
+
# see this design doc for more detailed info
|
17 |
+
# Design doc: https://docs.google.com/document/d/1ZRfTWKa8eaPq1AxaiHrq4ASTPouzzlPiuquSBEJYwS8/edit#
|
18 |
+
# the name of a file to write the logs to
|
19 |
+
# [@compile_ignored: debug]
|
20 |
+
log_file_name: Optional[str] = None
|
21 |
+
|
22 |
+
# [@compile_ignored: debug] Verbose will print full stack traces on warnings and errors
|
23 |
+
verbose = os.environ.get("TORCHDYNAMO_VERBOSE", "0") == "1"
|
24 |
+
|
25 |
+
# [@compile_ignored: runtime_behaviour] verify the correctness of optimized backend
|
26 |
+
verify_correctness = False
|
27 |
+
|
28 |
+
# need this many ops to create an FX graph
|
29 |
+
minimum_call_count = 1
|
30 |
+
|
31 |
+
# turn on/off DCE pass
|
32 |
+
dead_code_elimination = True
|
33 |
+
|
34 |
+
# disable (for a function) when cache reaches this size
|
35 |
+
|
36 |
+
# controls the maximum number of cache entries with a guard on same ID_MATCH'd
|
37 |
+
# object. It also controls the maximum size of cache entries if they don't have
|
38 |
+
# any ID_MATCH'd guards.
|
39 |
+
# [@compile_ignored: runtime_behaviour]
|
40 |
+
cache_size_limit = 8
|
41 |
+
|
42 |
+
# [@compile_ignored: runtime_behaviour] controls the maximum number of entries for a code object.
|
43 |
+
accumulated_cache_size_limit = 64
|
44 |
+
|
45 |
+
# whether or not to specialize on int inputs. This only has an effect with
|
46 |
+
# dynamic_shapes; when dynamic_shapes is False, we ALWAYS specialize on int
|
47 |
+
# inputs. Note that assume_static_by_default will also cause ints to get
|
48 |
+
# specialized, so this is mostly useful for export, where we want inputs
|
49 |
+
# to be dynamic, but accesses to ints should NOT get promoted into inputs.
|
50 |
+
specialize_int = False
|
51 |
+
|
52 |
+
# legacy config, does nothing now!
|
53 |
+
dynamic_shapes = True
|
54 |
+
|
55 |
+
use_lazy_graph_module = (
|
56 |
+
os.environ.get("TORCH_COMPILE_USE_LAZY_GRAPH_MODULE", "1") == "1"
|
57 |
+
)
|
58 |
+
|
59 |
+
# This is a temporarily flag, which changes the behavior of dynamic_shapes=True.
|
60 |
+
# When assume_static_by_default is True, we only allocate symbols for shapes marked dynamic via mark_dynamic.
|
61 |
+
# NOTE - this flag can be removed once we can run dynamic_shapes=False w/ the mark_dynamic API
|
62 |
+
# see [Note - on the state of mark_dynamic]
|
63 |
+
assume_static_by_default = True
|
64 |
+
|
65 |
+
# This flag changes how dynamic_shapes=True works, and is meant to be used in conjunction
|
66 |
+
# with assume_static_by_default=True.
|
67 |
+
# With this flag enabled, we always compile a frame as fully static for the first time, and, if we fail
|
68 |
+
# any guards due to wobbles in shape, we recompile with *all* the wobbled shapes as being marked dynamic.
|
69 |
+
automatic_dynamic_shapes = True
|
70 |
+
|
71 |
+
# This flag changes how the shapes of parameters are treated.
|
72 |
+
# If this flag is set to True, then the shapes of torch.nn.Parameter as well as of torch.Tensor are attempted to be dynamic
|
73 |
+
# If this flag is set to False, then the shapes of torch.nn.Parameter are assumed to be static,
|
74 |
+
# while the shapes of torch.Tensor are assumed to be dynamic.
|
75 |
+
force_parameter_static_shapes = True
|
76 |
+
|
77 |
+
# This flag ensures that the shapes of a nn module are always assumed to be static
|
78 |
+
# If the flag is set to True, then the shapes of a nn.module are assumed to be static
|
79 |
+
# If the flag is set to False, then the shapes of a nn.module can be dynamic
|
80 |
+
force_nn_module_property_static_shapes = True
|
81 |
+
|
82 |
+
# Typically, if you mark_dynamic a dimension, we will error if the dimension
|
83 |
+
# actually ended up getting specialized. This knob changes the behavior so
|
84 |
+
# that we don't error at all. This is helpful for our CI where I'm using a
|
85 |
+
# heuristic to mark batch dimensions as dynamic and the heuristic may get it
|
86 |
+
# wrong.
|
87 |
+
allow_ignore_mark_dynamic = False
|
88 |
+
|
89 |
+
# Set this to False to assume nn.Modules() contents are immutable (similar assumption as freezing)
|
90 |
+
guard_nn_modules = False
|
91 |
+
|
92 |
+
# Uses CPython internal dictionary tags to detect mutation. There is some
|
93 |
+
# overlap between guard_nn_modules_using_dict_tags and guard_nn_modules flag.
|
94 |
+
# guard_nn_modules unspecializes the nn module instance and adds guard for each
|
95 |
+
# relevant member of the nn modules. On the other hand,
|
96 |
+
# guard_nn_modules_using_dict_tags specializes on each nn module instance but
|
97 |
+
# uses low overhead dict version matching to detect mutations, obviating the
|
98 |
+
# need to guard on members of the nn modules. With
|
99 |
+
# guard_nn_modules_using_dict_tags, the guard_nn_modules is not really required
|
100 |
+
# but kept around for debugging and discussing unspecializing nn module
|
101 |
+
# variables.
|
102 |
+
# TODO(janimesh, voz): Remove both of these flags (or atleast guard_nn_modules)
|
103 |
+
# once we have reached stability for the guard_nn_modules_using_dict_tags.
|
104 |
+
guard_nn_modules_using_dict_tags = True
|
105 |
+
|
106 |
+
# This feature doesn't really work. We offer this flag for experimental
|
107 |
+
# purposes / if you want to help us build out support.
|
108 |
+
#
|
109 |
+
# torchdynamo has very limited support for tensor subclasses that implement
|
110 |
+
# __torch_function__. Our current support is limited to tensor subclasses
|
111 |
+
# that DO NOT store metadata on the tensor (in general, dynamo does not
|
112 |
+
# support Python code that stores extra attributes on tensors at present).
|
113 |
+
# If your tensor subclass purely changes function call behavior via
|
114 |
+
# __torch_function__, you can allow torchdynamo to trace into it by
|
115 |
+
# adding it to traceable_tensor_subclasses. We don't do any safety checks,
|
116 |
+
# so it is up to you to ensure that your subclass is well behaved. See also
|
117 |
+
# https://github.com/pytorch/torchdynamo/issues/1948
|
118 |
+
#
|
119 |
+
# We do NOT currently support __torch_dispatch__. The implementation is
|
120 |
+
# currently buggy, the main show stopper for nontrivial use is
|
121 |
+
# https://github.com/pytorch/torchdynamo/issues/1952
|
122 |
+
traceable_tensor_subclasses: Set[Type[Any]] = set()
|
123 |
+
|
124 |
+
# Suppress errors in torch._dynamo.optimize, instead forcing a fallback to eager.
|
125 |
+
# This is a good way to get your model to work one way or another, but you may
|
126 |
+
# lose optimization opportunities this way. Devs, if your benchmark model is failing
|
127 |
+
# this way, you should figure out why instead of suppressing it.
|
128 |
+
suppress_errors = bool(os.environ.get("TORCHDYNAMO_SUPPRESS_ERRORS", False))
|
129 |
+
|
130 |
+
# Record and write an execution record of the current frame to a file
|
131 |
+
# if an exception is encountered
|
132 |
+
# @compile_ignored[debug]
|
133 |
+
replay_record_enabled = os.environ.get("TORCH_COMPILE_DEBUG", "0") == "1"
|
134 |
+
|
135 |
+
# Rewrite assert statement in python with torch._assert
|
136 |
+
rewrite_assert_with_torch_assert = True
|
137 |
+
|
138 |
+
# Disable dynamo
|
139 |
+
disable = os.environ.get("TORCH_COMPILE_DISABLE", False)
|
140 |
+
|
141 |
+
# [@compile_ignored: runtime_behaviour] Get a cprofile trace of Dynamo
|
142 |
+
cprofile = os.environ.get("TORCH_COMPILE_CPROFILE", False)
|
143 |
+
|
144 |
+
# legacy config, does nothing now!
|
145 |
+
skipfiles_inline_module_allowlist: Dict[Any, Any] = {}
|
146 |
+
|
147 |
+
# If a string representing a PyTorch module is in this ignorelist,
|
148 |
+
# the `allowed_functions.is_allowed` function will not consider it
|
149 |
+
# when creating a list of PyTorch functions that will appear in
|
150 |
+
# FX IR.
|
151 |
+
allowed_functions_module_string_ignorelist = {
|
152 |
+
"torch.distributions",
|
153 |
+
"torch.testing",
|
154 |
+
"torch._refs",
|
155 |
+
"torch._prims",
|
156 |
+
"torch._decomp",
|
157 |
+
}
|
158 |
+
|
159 |
+
# Debug Flag to try minifier at different stages. Possible values are {None, "aot", "dynamo"}
|
160 |
+
# None - Minifier is switched off
|
161 |
+
# dynamo - Runs minifier on the TorchDynamo produced graphs, if compilation fails
|
162 |
+
# aot - Runs minifier on the Aot Autograd produced graphs, if compilation fails
|
163 |
+
# [@compile_ignored: debug]
|
164 |
+
repro_after = os.environ.get("TORCHDYNAMO_REPRO_AFTER", None)
|
165 |
+
|
166 |
+
# Compiler compilation debug info
|
167 |
+
# 1: Dumps the original graph out to repro.py if compilation fails
|
168 |
+
# 2: Dumps a minifier_launcher.py if compilation fails.
|
169 |
+
# 3: Always dumps a minifier_launcher.py. Good for segfaults.
|
170 |
+
# 4: Dumps a minifier_launcher.py if the accuracy fails.
|
171 |
+
# [@compile_ignored: debug]
|
172 |
+
repro_level = int(os.environ.get("TORCHDYNAMO_REPRO_LEVEL", 2))
|
173 |
+
|
174 |
+
# By default, we try to detect accuracy failure by running both forward
|
175 |
+
# and backward of a torchdynamo produced graph (if you are using repro_after
|
176 |
+
# 'dynamo'). This setting forces us to only test the forward graph and
|
177 |
+
# not the backward graph. This can be helpful if you're trying to debug
|
178 |
+
# an inference only problem, but the minifier seems to be choking on the
|
179 |
+
# backwards step
|
180 |
+
# TODO: Detect this situation automatically so the user doesn't need
|
181 |
+
# to manually configure this
|
182 |
+
# [@compile_ignored: debug]
|
183 |
+
repro_forward_only = os.environ.get("TORCHDYNAMO_REPRO_FORWARD_ONLY") == "1"
|
184 |
+
|
185 |
+
# The tolerance we should use when testing if a compiled graph
|
186 |
+
# has diverged so that we should treat it as an accuracy failure
|
187 |
+
# [@compile_ignored: debug]
|
188 |
+
repro_tolerance = 1e-3
|
189 |
+
|
190 |
+
# If True, when testing if two models are the same, we will test them against
|
191 |
+
# a third fp64 reference and only report a problem if the RMSE relative to the
|
192 |
+
# fp64 is greater. However, this will use more memory; you may disable this
|
193 |
+
# if memory usage is too high.
|
194 |
+
# [@compile_ignored: runtime_behaviour]
|
195 |
+
same_two_models_use_fp64 = True
|
196 |
+
|
197 |
+
# Not all backends support scalars. Some calls on torch.Tensor (like .item()) return a scalar type.
|
198 |
+
# When this flag is set to False, we introduce a graph break instead of capturing.
|
199 |
+
# This requires dynamic_shapes to be True.
|
200 |
+
capture_scalar_outputs = False
|
201 |
+
|
202 |
+
# Not all backends support operators that have dynamic output shape (e.g.,
|
203 |
+
# nonzero, unique). When this flag is set to False, we introduce a graph
|
204 |
+
# break instead of capturing. This requires dynamic_shapes to be True.
|
205 |
+
# If you set this to True, you probably also want capture_scalar_outputs
|
206 |
+
# (these are separated for historical reasons).
|
207 |
+
capture_dynamic_output_shape_ops = False
|
208 |
+
|
209 |
+
# By default, dynamo will treat all ints as backed SymInts, which means (1) it
|
210 |
+
# will wait to see the int change over multiple runs before generalizing and
|
211 |
+
# (2) it will still always 0/1 specialize an int. When true, this knob
|
212 |
+
# forces dynamo to treat _length_per_key and _offset_per_key on
|
213 |
+
# KeyedJaggedTensor from torchrec as size-like unbacked SymInts, so that
|
214 |
+
# they (1) generalize immediately and (2) unsoundly never compare equal to
|
215 |
+
# 0/1. This is not on by default as AOTAutograd/Inductor cannot currently
|
216 |
+
# compile this code; however, this can be useful for export.
|
217 |
+
force_unspec_int_unbacked_size_like_on_torchrec_kjt = False
|
218 |
+
|
219 |
+
# Should almost always be true in prod. This relaxes the requirement that cond's true_fn and
|
220 |
+
# false_fn produces code with identical guards.
|
221 |
+
enforce_cond_guards_match = True
|
222 |
+
|
223 |
+
# Specify how to optimize a compiiled DDP module. The flag accepts a bollean
|
224 |
+
# value or a string. There are 4 modes.
|
225 |
+
# 1. "ddp_optimizer" (or True): with "ddp_ptimizer", Dynamo will automatically
|
226 |
+
# split model graph into pieces to match DDP bucket sizes to allow DDP
|
227 |
+
# comm/compute overlap.
|
228 |
+
# 2. "python_reducer" (experimental): this optimization requires the usage
|
229 |
+
# of compiled_autograd. With "python_reducer", DDP will disable the C++ reducer
|
230 |
+
# and use the Python reducer to allow compiled_autograd to trace the
|
231 |
+
# communication and allow comm/compute overlap without graph-breaks.
|
232 |
+
# 3. "python_reducer_without_compiled_forward" (experimental): this mode is
|
233 |
+
# similar to "python_reducer". One should only use this optimization mode
|
234 |
+
# when compiled_autograd is used but the DDP module is not compiled.
|
235 |
+
# 4. "no_optimization" (or False): Dynamo won't split the model graph, nor
|
236 |
+
# will Python reducer be used. With this mode, there will be no graph-breaks
|
237 |
+
# and the original DDP C++ reducer will be used. There will no comm/compute
|
238 |
+
# overlap. This mode CANNOT be used with compiled_autograd.
|
239 |
+
# Note that to avoid breaking the existing usage, mode 1 and mode 4 can be
|
240 |
+
# specified with a boolean value. True is using ddp_optimizer and False is
|
241 |
+
# no optimization.
|
242 |
+
optimize_ddp: Union[bool, str] = True
|
243 |
+
|
244 |
+
_ddp_optimization_mode = [
|
245 |
+
"ddp_optimizer",
|
246 |
+
"python_reducer", # experimental mode
|
247 |
+
"python_reducer_without_compiled_forward", # experimental mode
|
248 |
+
"no_optimization",
|
249 |
+
]
|
250 |
+
|
251 |
+
|
252 |
+
def _get_optimize_ddp_mode():
|
253 |
+
m = sys.modules[__name__]
|
254 |
+
if isinstance(m.optimize_ddp, bool):
|
255 |
+
if m.optimize_ddp:
|
256 |
+
mode = "ddp_optimizer"
|
257 |
+
else:
|
258 |
+
mode = "no_optimization"
|
259 |
+
elif isinstance(m.optimize_ddp, str):
|
260 |
+
mode = m.optimize_ddp
|
261 |
+
else:
|
262 |
+
raise ValueError(f"Invalid type, {type(optimize_ddp)=}")
|
263 |
+
|
264 |
+
assert mode in m._ddp_optimization_mode, f"Invalid mode {mode=}"
|
265 |
+
return mode
|
266 |
+
|
267 |
+
|
268 |
+
# If True, delays DDPOptimizer submodule compilation to 1st run of the model,
|
269 |
+
# so that real tensor strides are used in all submodules
|
270 |
+
# (instead of using FakeTensor strides which can differ from real tensor strides and causes error in some cases).
|
271 |
+
# This feature is not hardened yet and it's known to cause issues to some models, so False by default.
|
272 |
+
optimize_ddp_lazy_compile = False
|
273 |
+
|
274 |
+
# Whether to skip guarding on FSDP-managed modules
|
275 |
+
skip_fsdp_guards = True
|
276 |
+
|
277 |
+
# Make dynamo skip guarding on hooks on nn modules
|
278 |
+
# Note: unsafe: if your model actually has hooks and you remove them, or doesn't and you add them,
|
279 |
+
# dynamo will not notice and will execute whichever version you first compiled.
|
280 |
+
skip_nnmodule_hook_guards = True
|
281 |
+
|
282 |
+
# If True, raises exception if TorchDynamo is called with a context manager
|
283 |
+
raise_on_ctx_manager_usage = True
|
284 |
+
|
285 |
+
# If True, raise when aot autograd is unsafe to use
|
286 |
+
raise_on_unsafe_aot_autograd = False
|
287 |
+
|
288 |
+
# If true, error if you torch.jit.trace over a dynamo-optimized function.
|
289 |
+
# If false, silently suppress dynamo
|
290 |
+
error_on_nested_jit_trace = True
|
291 |
+
|
292 |
+
# If true, error with a better message if we symbolically trace over a
|
293 |
+
# dynamo-optimized function. If false, silently suppress dynamo.
|
294 |
+
error_on_nested_fx_trace = True
|
295 |
+
|
296 |
+
# Disables graph breaking on rnn. YMMV with backends.
|
297 |
+
allow_rnn = False
|
298 |
+
|
299 |
+
# If true, error if we try to compile a function that has
|
300 |
+
# been seen before.
|
301 |
+
# [@compile_ignored: runtime_behaviour]
|
302 |
+
error_on_recompile = False
|
303 |
+
|
304 |
+
# [@compile_ignored: debug] Whether to report any guard failures (deprecated: does not do anything)
|
305 |
+
report_guard_failures = True
|
306 |
+
|
307 |
+
# [@compile_ignored: debug] root folder of the project
|
308 |
+
base_dir = dirname(dirname(dirname(abspath(__file__))))
|
309 |
+
|
310 |
+
# Trace through NumPy or graphbreak
|
311 |
+
trace_numpy = True
|
312 |
+
|
313 |
+
# Trace through torch.distributed code
|
314 |
+
trace_distributed = False
|
315 |
+
|
316 |
+
# Default NumPy dtypes when tracing with torch.compile
|
317 |
+
# We default to 64bits. For efficiency, one may want to change these to float32
|
318 |
+
numpy_default_float = "float64"
|
319 |
+
numpy_default_complex = "complex128"
|
320 |
+
numpy_default_int = "int64"
|
321 |
+
|
322 |
+
# use numpy's PRNG if True, pytorch otherwise
|
323 |
+
use_numpy_random_stream = False
|
324 |
+
|
325 |
+
|
326 |
+
def is_fbcode():
|
327 |
+
return not hasattr(torch.version, "git_version")
|
328 |
+
|
329 |
+
|
330 |
+
def default_debug_dir_root():
|
331 |
+
# [@compile_ignored: debug]
|
332 |
+
DEBUG_DIR_VAR_NAME = "TORCH_COMPILE_DEBUG_DIR"
|
333 |
+
if DEBUG_DIR_VAR_NAME in os.environ:
|
334 |
+
return os.path.join(os.environ[DEBUG_DIR_VAR_NAME], "torch_compile_debug")
|
335 |
+
elif is_fbcode():
|
336 |
+
return os.path.join(
|
337 |
+
tempfile.gettempdir(), getpass.getuser(), "torch_compile_debug"
|
338 |
+
)
|
339 |
+
else:
|
340 |
+
return os.path.join(os.getcwd(), "torch_compile_debug")
|
341 |
+
|
342 |
+
|
343 |
+
# [@compile_ignored: debug]
|
344 |
+
debug_dir_root = default_debug_dir_root()
|
345 |
+
|
346 |
+
# [@compile_ignored: debug]
|
347 |
+
_save_config_ignore = {
|
348 |
+
"repro_after",
|
349 |
+
"repro_level",
|
350 |
+
# workaround: "cannot pickle PyCapsule"
|
351 |
+
"constant_functions",
|
352 |
+
# workaround: "cannot pickle module"
|
353 |
+
"skipfiles_inline_module_allowlist",
|
354 |
+
}
|
355 |
+
|
356 |
+
# for backend="cudagraphs", mutations on input be sent to the cudagraph backend
|
357 |
+
# or replayed in aot_autograd epilogue. default is False because mutation on inputs
|
358 |
+
# can prevent cudagraphing.
|
359 |
+
cudagraph_backend_keep_input_mutation = False
|
360 |
+
|
361 |
+
# When True, only ops that have the torch.Tag.pt2_compliant tag
|
362 |
+
# will be allowed into the graph; all other ops will be disallowed
|
363 |
+
# and will fall back to eager-mode PyTorch. Useful to ensure
|
364 |
+
# correctness of custom ops.
|
365 |
+
only_allow_pt2_compliant_ops = False
|
366 |
+
|
367 |
+
capture_autograd_function = True
|
368 |
+
|
369 |
+
# enable/disable dynamo tracing for `torch.func` transforms
|
370 |
+
capture_func_transforms = False
|
371 |
+
|
372 |
+
# enable/disable user-defined triton kernel optimizations
|
373 |
+
optimize_user_defined_triton_kernels = True
|
374 |
+
|
375 |
+
# If to log Dynamo compilation metrics into log files (for OSS) and Scuba tables (for fbcode).
|
376 |
+
log_compilation_metrics = True
|
377 |
+
|
378 |
+
# A set of logging functions which will be reordered to the end of graph breaks,
|
379 |
+
# allowing dynamo to construct larget graph. Note that there are some
|
380 |
+
# limitations to this, such as how it does not correctly print objects that were
|
381 |
+
# mutated after the print statement.
|
382 |
+
reorderable_logging_functions: Set[Callable[[Any], None]] = set()
|
383 |
+
|
384 |
+
# simulates what would happen if we didn't have support for BUILD_SET opcode,
|
385 |
+
# used for testing
|
386 |
+
inject_BUILD_SET_unimplemented_TESTING_ONLY = False
|
387 |
+
|
388 |
+
_autograd_backward_strict_mode_banned_ops = [
|
389 |
+
"stride",
|
390 |
+
"requires_grad",
|
391 |
+
"storage_offset",
|
392 |
+
"layout",
|
393 |
+
"data",
|
394 |
+
]
|
395 |
+
|
396 |
+
_autograd_backward_strict_mode_banned_ops.extend(
|
397 |
+
[name for name, _ in inspect.getmembers(torch.Tensor) if re.match(r"^is_.*", name)]
|
398 |
+
)
|
399 |
+
|
400 |
+
# Enables caching of dispatches to fake tensors.
|
401 |
+
fake_tensor_cache_enabled = (
|
402 |
+
os.environ.get("TORCH_FAKE_TENSOR_DISPATCH_CACHE", "1") == "1"
|
403 |
+
)
|
404 |
+
|
405 |
+
# Enables cross checking between the fake tensor cache and dispatch.
|
406 |
+
fake_tensor_cache_crosscheck_enabled = (
|
407 |
+
os.environ.get("TORCH_FAKE_TENSOR_DISPATCH_CACHE_CROSSCHECK", "0") == "1"
|
408 |
+
)
|
409 |
+
|
410 |
+
# support `context_fn` in torch.utils.checkpoint.checkpoint API under torch.compile().
|
411 |
+
# WARNING: this is an experimental flag and is subject to change.
|
412 |
+
_experimental_support_context_fn_in_torch_utils_checkpoint = False
|
413 |
+
|
414 |
+
if TYPE_CHECKING:
|
415 |
+
from torch.utils._config_typing import * # noqa: F401, F403
|
416 |
+
|
417 |
+
def _make_closure_patcher(**changes):
|
418 |
+
...
|
419 |
+
|
420 |
+
|
421 |
+
from torch.utils._config_module import install_config_module
|
422 |
+
|
423 |
+
install_config_module(sys.modules[__name__])
|
llmeval-env/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py
ADDED
@@ -0,0 +1,924 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import collections
|
2 |
+
import dis
|
3 |
+
import functools
|
4 |
+
import itertools
|
5 |
+
import logging
|
6 |
+
import os
|
7 |
+
import random
|
8 |
+
import sys
|
9 |
+
import threading
|
10 |
+
import time
|
11 |
+
import traceback
|
12 |
+
import types
|
13 |
+
import typing
|
14 |
+
import weakref
|
15 |
+
from typing import Any, Callable, Dict, List, Optional, Set
|
16 |
+
|
17 |
+
from torch.fx._lazy_graph_module import ( # type: ignore[attr-defined]
|
18 |
+
_use_lazy_graph_module,
|
19 |
+
)
|
20 |
+
|
21 |
+
try:
|
22 |
+
import numpy as np
|
23 |
+
except ModuleNotFoundError:
|
24 |
+
np = None # type: ignore[assignment]
|
25 |
+
|
26 |
+
import torch
|
27 |
+
import torch._logging
|
28 |
+
from torch._guards import compile_context, CompileContext, CompileId, tracing
|
29 |
+
from torch._logging import structured
|
30 |
+
from torch._utils_internal import signpost_event
|
31 |
+
from torch.fx.experimental.symbolic_shapes import (
|
32 |
+
ConstraintViolationError,
|
33 |
+
GuardOnDataDependentSymNode,
|
34 |
+
)
|
35 |
+
from torch.fx.graph_module import _forward_from_src as original_forward_from_src
|
36 |
+
from torch.nn.parallel.distributed import DistributedDataParallel
|
37 |
+
from torch.utils._python_dispatch import _disable_current_modes
|
38 |
+
from torch.utils._traceback import format_traceback_short
|
39 |
+
|
40 |
+
from . import config, exc, trace_rules
|
41 |
+
from .backends.registry import CompilerFn
|
42 |
+
from .bytecode_analysis import remove_dead_code, remove_pointless_jumps
|
43 |
+
from .bytecode_transformation import (
|
44 |
+
check_inst_exn_tab_entries_valid,
|
45 |
+
Instruction,
|
46 |
+
is_generator,
|
47 |
+
propagate_inst_exn_table_entries,
|
48 |
+
transform_code_object,
|
49 |
+
)
|
50 |
+
from .cache_size import (
|
51 |
+
CacheSizeRelevantForFrame,
|
52 |
+
compute_cache_size,
|
53 |
+
exceeds_cache_size_limit,
|
54 |
+
is_recompilation,
|
55 |
+
)
|
56 |
+
from .eval_frame import always_optimize_code_objects, skip_code, TorchPatcher
|
57 |
+
from .exc import (
|
58 |
+
augment_exc_message,
|
59 |
+
BackendCompilerFailed,
|
60 |
+
format_error_msg,
|
61 |
+
InternalTorchDynamoError,
|
62 |
+
TorchRuntimeError,
|
63 |
+
UncapturedHigherOrderOpError,
|
64 |
+
unimplemented,
|
65 |
+
Unsupported,
|
66 |
+
)
|
67 |
+
from .guards import (
|
68 |
+
CheckFunctionManager,
|
69 |
+
get_and_maybe_log_recompilation_reason,
|
70 |
+
GuardedCode,
|
71 |
+
)
|
72 |
+
from .hooks import Hooks
|
73 |
+
from .output_graph import OutputGraph
|
74 |
+
from .replay_record import ExecutionRecord
|
75 |
+
from .symbolic_convert import InstructionTranslator, SpeculationLog
|
76 |
+
from .trace_rules import is_numpy
|
77 |
+
from .types import BytecodeHook
|
78 |
+
from .utils import (
|
79 |
+
CleanupManager,
|
80 |
+
CompilationMetrics,
|
81 |
+
counters,
|
82 |
+
dynamo_timed,
|
83 |
+
format_bytecode,
|
84 |
+
frame_phase_timing,
|
85 |
+
gen_record_file_name,
|
86 |
+
increment_frame,
|
87 |
+
is_namedtuple,
|
88 |
+
istype,
|
89 |
+
LazyString,
|
90 |
+
maybe_cprofile,
|
91 |
+
orig_code_map,
|
92 |
+
record_compilation_metrics,
|
93 |
+
reset_graph_break_dup_checker,
|
94 |
+
setup_compile_debug,
|
95 |
+
troubleshooting_url,
|
96 |
+
write_record_to_file,
|
97 |
+
)
|
98 |
+
|
99 |
+
log = logging.getLogger(__name__)
|
100 |
+
bytecode_log = torch._logging.getArtifactLogger(__name__, "bytecode")
|
101 |
+
GlobalStateGuard = torch._C._dynamo.guards.GlobalStateGuard
|
102 |
+
|
103 |
+
compile_lock = threading.RLock()
|
104 |
+
|
105 |
+
|
106 |
+
class Tracker:
|
107 |
+
def __init__(self):
|
108 |
+
self.seen = []
|
109 |
+
self.seen_ids = set()
|
110 |
+
|
111 |
+
def add(self, strong_obj):
|
112 |
+
idx = id(strong_obj)
|
113 |
+
if idx not in self.seen_ids:
|
114 |
+
obj = weakref.ref(strong_obj, lambda _: self.seen_ids.remove(idx))
|
115 |
+
self.seen.append(obj)
|
116 |
+
self.seen_ids.add(idx)
|
117 |
+
|
118 |
+
def __contains__(self, item):
|
119 |
+
return id(item) in self.seen_ids
|
120 |
+
|
121 |
+
def clear(self):
|
122 |
+
self.seen.clear()
|
123 |
+
self.seen_ids.clear()
|
124 |
+
|
125 |
+
|
126 |
+
input_codes = Tracker()
|
127 |
+
output_codes = Tracker()
|
128 |
+
|
129 |
+
initial_global_state: Optional[GlobalStateGuard] = None
|
130 |
+
|
131 |
+
|
132 |
+
@functools.wraps(original_forward_from_src)
|
133 |
+
def fx_forward_from_src_skip_result(*args, **kwargs):
|
134 |
+
# we monkey patch FX to prevent infinite loop of trying to convert
|
135 |
+
# our generated code
|
136 |
+
result: types.FunctionType = original_forward_from_src(*args, **kwargs)
|
137 |
+
skip_code(result.__code__)
|
138 |
+
return result
|
139 |
+
|
140 |
+
|
141 |
+
def preserve_global_state(fn):
|
142 |
+
"""
|
143 |
+
Context manager to:
|
144 |
+
1) Save/restore torch.is_grad_enabled() state
|
145 |
+
2) Save/restore python random state
|
146 |
+
3) Save/restore torch random state
|
147 |
+
4) Monkey patch torch.fx.graph_module._forward_from_src
|
148 |
+
"""
|
149 |
+
|
150 |
+
@functools.wraps(fn)
|
151 |
+
def _fn(*args, **kwargs):
|
152 |
+
guards = GlobalStateGuard()
|
153 |
+
prior_grad_mode = torch.is_grad_enabled()
|
154 |
+
prior_inference_mode = torch.is_inference_mode_enabled()
|
155 |
+
prior_deterministic = torch.are_deterministic_algorithms_enabled()
|
156 |
+
prior_warn_only = torch.is_deterministic_algorithms_warn_only_enabled()
|
157 |
+
py_rng_state = random.getstate()
|
158 |
+
torch_rng_state = torch.random.get_rng_state()
|
159 |
+
if torch.cuda.is_available():
|
160 |
+
cuda_rng_state = torch.cuda.get_rng_state()
|
161 |
+
prior_fwd_from_src = torch.fx.graph_module._forward_from_src
|
162 |
+
torch.fx.graph_module._forward_from_src = fx_forward_from_src_skip_result
|
163 |
+
cleanup = setup_compile_debug()
|
164 |
+
try:
|
165 |
+
return fn(*args, **kwargs)
|
166 |
+
finally:
|
167 |
+
cleanup.close()
|
168 |
+
torch._C._set_grad_enabled(prior_grad_mode)
|
169 |
+
torch.torch.autograd.grad_mode._enter_inference_mode(prior_inference_mode)
|
170 |
+
torch.use_deterministic_algorithms(
|
171 |
+
prior_deterministic, warn_only=prior_warn_only
|
172 |
+
)
|
173 |
+
random.setstate(py_rng_state)
|
174 |
+
torch.random.set_rng_state(torch_rng_state)
|
175 |
+
if torch.cuda.is_available():
|
176 |
+
torch.cuda.set_rng_state(cuda_rng_state) # type: ignore[possibly-undefined]
|
177 |
+
torch.fx.graph_module._forward_from_src = prior_fwd_from_src
|
178 |
+
assert (
|
179 |
+
guards.check()
|
180 |
+
), "Global state changed while dynamo tracing, please report a bug"
|
181 |
+
|
182 |
+
_fn._torchdynamo_orig_callable = fn # type: ignore[attr-defined]
|
183 |
+
return _fn
|
184 |
+
|
185 |
+
|
186 |
+
@TorchPatcher.suppress_torch_distributed_warnings
|
187 |
+
def has_tensor_in_frame(frame):
|
188 |
+
"""Check if the frame has torch.* related bits"""
|
189 |
+
# Check if the function was decorated using torch._dynamo.optimize
|
190 |
+
if frame.f_code in always_optimize_code_objects:
|
191 |
+
return True
|
192 |
+
|
193 |
+
# Check if there is global import of torch.*
|
194 |
+
for co_name in frame.f_code.co_names:
|
195 |
+
if co_name in frame.f_globals:
|
196 |
+
obj = frame.f_globals[co_name]
|
197 |
+
if isinstance(obj, types.ModuleType) and (
|
198 |
+
obj.__name__.startswith("torch.") or obj is torch
|
199 |
+
):
|
200 |
+
return True
|
201 |
+
# ... or a global import of numpy.*
|
202 |
+
if np and config.trace_numpy and (obj is np or is_numpy(obj)):
|
203 |
+
return True
|
204 |
+
|
205 |
+
seen_ids: Dict[int, bool] = dict()
|
206 |
+
|
207 |
+
def has_tensor(obj):
|
208 |
+
"""Recursively check if the obj has a tensor"""
|
209 |
+
obj_id = id(obj)
|
210 |
+
if obj_id in seen_ids:
|
211 |
+
return seen_ids[obj_id]
|
212 |
+
seen_ids[obj_id] = False
|
213 |
+
|
214 |
+
if isinstance(obj, (torch.Tensor, torch.nn.Module)) or (
|
215 |
+
istype(obj, type) and issubclass(obj, torch.nn.Module)
|
216 |
+
):
|
217 |
+
seen_ids[obj_id] = True
|
218 |
+
return seen_ids[obj_id]
|
219 |
+
elif (
|
220 |
+
config.trace_numpy
|
221 |
+
and np
|
222 |
+
and (istype(obj, np.ndarray) or isinstance(obj, np.generic))
|
223 |
+
):
|
224 |
+
seen_ids[obj_id] = True
|
225 |
+
return seen_ids[obj_id]
|
226 |
+
elif istype(obj, (list, tuple)):
|
227 |
+
seen_ids[obj_id] = any(has_tensor(v) for v in obj)
|
228 |
+
return seen_ids[obj_id]
|
229 |
+
elif istype(obj, dict):
|
230 |
+
# Some packages like pytest can be updated during runtime. So, make a
|
231 |
+
# copy of values to avoid issues like "RuntimeError: dictionary
|
232 |
+
# changed size during iteration"
|
233 |
+
values = list(obj.values())
|
234 |
+
seen_ids[obj_id] = any(has_tensor(v) for v in values)
|
235 |
+
return seen_ids[obj_id]
|
236 |
+
elif istype(obj, (str, int, float, type(None), bool)):
|
237 |
+
seen_ids[obj_id] = False
|
238 |
+
return seen_ids[obj_id]
|
239 |
+
elif is_namedtuple(obj) and hasattr(obj, "_fields"):
|
240 |
+
seen_ids[obj_id] = any(has_tensor(getattr(obj, v)) for v in obj._fields)
|
241 |
+
return seen_ids[obj_id]
|
242 |
+
else:
|
243 |
+
# if config.debug:
|
244 |
+
# print(
|
245 |
+
# f"Assuming that object of type {type(obj)} does not have a tensor"
|
246 |
+
# )
|
247 |
+
return False
|
248 |
+
|
249 |
+
# Check if the passed arguments are of type Tensor
|
250 |
+
for value in frame.f_locals.values():
|
251 |
+
if has_tensor(value):
|
252 |
+
return True
|
253 |
+
|
254 |
+
log.debug(
|
255 |
+
"skipping because no torch.* %s \
|
256 |
+
%s %s",
|
257 |
+
frame.f_code.co_name,
|
258 |
+
frame.f_code.co_filename,
|
259 |
+
frame.f_code.co_firstlineno,
|
260 |
+
)
|
261 |
+
|
262 |
+
return False
|
263 |
+
|
264 |
+
|
265 |
+
def exception_handler(e, code, frame=None, export=False):
|
266 |
+
record_filename = None
|
267 |
+
if hasattr(e, "exec_record"):
|
268 |
+
record_filename = gen_record_file_name(e, code)
|
269 |
+
write_record_to_file(record_filename, e.exec_record)
|
270 |
+
e.record_filename = record_filename
|
271 |
+
|
272 |
+
augment_exc_message(e, export=export)
|
273 |
+
|
274 |
+
|
275 |
+
FRAME_COUNTER = 0
|
276 |
+
FRAME_COMPILE_COUNTER: typing.Counter[int] = collections.Counter()
|
277 |
+
|
278 |
+
|
279 |
+
def convert_frame_assert(
|
280 |
+
compiler_fn: CompilerFn,
|
281 |
+
one_graph: bool = True,
|
282 |
+
export: bool = False,
|
283 |
+
export_constraints=None,
|
284 |
+
):
|
285 |
+
"""Fully convert a frame into an FX graph"""
|
286 |
+
reset_graph_break_dup_checker()
|
287 |
+
|
288 |
+
def _convert_frame_assert(
|
289 |
+
frame: types.FrameType, cache_entry, hooks: Hooks, frame_state, *, skip: int = 0
|
290 |
+
):
|
291 |
+
increment_frame()
|
292 |
+
|
293 |
+
code = frame.f_code
|
294 |
+
|
295 |
+
cache_size = compute_cache_size(frame, cache_entry)
|
296 |
+
recompile_reasons = None
|
297 |
+
if is_recompilation(cache_size):
|
298 |
+
recompile_reasons = get_and_maybe_log_recompilation_reason(
|
299 |
+
cache_entry, frame
|
300 |
+
)
|
301 |
+
|
302 |
+
input_codes.add(code)
|
303 |
+
if code in output_codes:
|
304 |
+
return None
|
305 |
+
if (
|
306 |
+
os.environ.get("TORCHDYNAMO_DEBUG_FUNCTION")
|
307 |
+
and os.environ.get("TORCHDYNAMO_DEBUG_FUNCTION") != code.co_name
|
308 |
+
):
|
309 |
+
return None
|
310 |
+
if code.co_name == "<genexpr>" and code.co_filename.endswith(
|
311 |
+
(
|
312 |
+
"transformers/file_utils.py",
|
313 |
+
"transformers/utils/generic.py",
|
314 |
+
"diffusers/utils/outputs.py",
|
315 |
+
)
|
316 |
+
):
|
317 |
+
# not needed, but cleans up torchbench error stats
|
318 |
+
return None
|
319 |
+
if code.co_name == "__setattr__":
|
320 |
+
# setattr could be tricky to handle generally,
|
321 |
+
# but also not likely useful to compile- skip the whole frame
|
322 |
+
return None
|
323 |
+
if code.co_name == "__init__" and code.co_filename.startswith(
|
324 |
+
os.path.dirname(torch.optim.__file__)
|
325 |
+
):
|
326 |
+
# optimizer support is still incomplete see
|
327 |
+
# test_state_dict in test/dynamo/test_optimizers.py
|
328 |
+
return None
|
329 |
+
|
330 |
+
# Check if the frame is generated by an exec builtin call
|
331 |
+
# TODO - Running exec generated frame seems propagates f_globals to the
|
332 |
+
# next frames.
|
333 |
+
if code.co_name == "<module>" and code.co_filename == "<string>":
|
334 |
+
return None
|
335 |
+
|
336 |
+
if (
|
337 |
+
code.co_name == "<lambda>"
|
338 |
+
and code.co_filename == "<string>"
|
339 |
+
and not bool(frame.f_builtins)
|
340 |
+
):
|
341 |
+
# namedtuple subclass constructor. Empty builtins cause issue with
|
342 |
+
# len keyword in LIST_LEN guard.
|
343 |
+
return None
|
344 |
+
|
345 |
+
if is_generator(code):
|
346 |
+
unimplemented("generator")
|
347 |
+
exceeded, limit_type = exceeds_cache_size_limit(cache_size)
|
348 |
+
if exceeded:
|
349 |
+
|
350 |
+
def format_func_info(code):
|
351 |
+
return f"'{code.co_name}' ({code.co_filename}:{code.co_firstlineno})"
|
352 |
+
|
353 |
+
def format_guard_failures():
|
354 |
+
assert recompile_reasons, "TODO(whc) any other recompile reasons?"
|
355 |
+
return recompile_reasons[-1]
|
356 |
+
|
357 |
+
log.warning(
|
358 |
+
"torch._dynamo hit config.%s (%s)\n"
|
359 |
+
" function: %s\n"
|
360 |
+
" last reason: %s\n"
|
361 |
+
'To log all recompilation reasons, use TORCH_LOGS="recompiles".\n'
|
362 |
+
"To diagnose recompilation issues, see %s.",
|
363 |
+
limit_type,
|
364 |
+
getattr(config, limit_type),
|
365 |
+
format_func_info(code),
|
366 |
+
format_guard_failures(),
|
367 |
+
troubleshooting_url,
|
368 |
+
)
|
369 |
+
unimplemented(f"{limit_type} reached")
|
370 |
+
|
371 |
+
if not has_tensor_in_frame(frame):
|
372 |
+
return None
|
373 |
+
|
374 |
+
global initial_global_state
|
375 |
+
initial_global_state = GlobalStateGuard()
|
376 |
+
|
377 |
+
global FRAME_COUNTER
|
378 |
+
if "_id" not in frame_state:
|
379 |
+
frame_state["_id"] = FRAME_COUNTER
|
380 |
+
FRAME_COUNTER += 1
|
381 |
+
frame_id = frame_state["_id"]
|
382 |
+
|
383 |
+
frame_compile_id = FRAME_COMPILE_COUNTER[frame_id]
|
384 |
+
FRAME_COMPILE_COUNTER[frame_id] += 1
|
385 |
+
|
386 |
+
compile_id = CompileId(frame_id, frame_compile_id)
|
387 |
+
|
388 |
+
signpost_event(
|
389 |
+
"dynamo",
|
390 |
+
"_convert_frame_assert._compile",
|
391 |
+
{
|
392 |
+
"co_name": code.co_name,
|
393 |
+
"co_filename": code.co_filename,
|
394 |
+
"co_firstlineno": code.co_firstlineno,
|
395 |
+
"cache_size": cache_size.num_cache_entries_with_same_id_matched_objs,
|
396 |
+
"accumulated_cache_size": cache_size.num_cache_entries,
|
397 |
+
},
|
398 |
+
)
|
399 |
+
|
400 |
+
return _compile(
|
401 |
+
frame.f_code,
|
402 |
+
frame.f_globals,
|
403 |
+
frame.f_locals,
|
404 |
+
frame.f_builtins,
|
405 |
+
compiler_fn,
|
406 |
+
one_graph,
|
407 |
+
export,
|
408 |
+
export_constraints,
|
409 |
+
hooks,
|
410 |
+
cache_size,
|
411 |
+
frame,
|
412 |
+
frame_state=frame_state,
|
413 |
+
compile_id=compile_id,
|
414 |
+
skip=skip + 1,
|
415 |
+
)
|
416 |
+
|
417 |
+
_convert_frame_assert._torchdynamo_orig_callable = compiler_fn # type: ignore[attr-defined]
|
418 |
+
|
419 |
+
def _clone_with_backend(backend):
|
420 |
+
return convert_frame_assert(backend, one_graph, export, export_constraints)
|
421 |
+
|
422 |
+
_convert_frame_assert._clone_with_backend = _clone_with_backend # type: ignore[attr-defined]
|
423 |
+
return _convert_frame_assert
|
424 |
+
|
425 |
+
|
426 |
+
from collections import OrderedDict
|
427 |
+
|
428 |
+
from torch.utils.hooks import RemovableHandle
|
429 |
+
|
430 |
+
# we have to use `OrderedDict` to make `RemovableHandle` work.
|
431 |
+
_bytecode_hooks: Dict[int, BytecodeHook] = OrderedDict()
|
432 |
+
|
433 |
+
|
434 |
+
def register_bytecode_hook(hook: BytecodeHook) -> RemovableHandle:
|
435 |
+
"""Register hooks for bytecode generated by Dynamo. The hook can do some
|
436 |
+
logging, as well as return a new code object to be used. Please refer
|
437 |
+
to `BytecodeHook` for the hook signature.
|
438 |
+
"""
|
439 |
+
handle = RemovableHandle(_bytecode_hooks)
|
440 |
+
_bytecode_hooks[handle.id] = hook
|
441 |
+
return handle
|
442 |
+
|
443 |
+
|
444 |
+
@_use_lazy_graph_module(config.use_lazy_graph_module)
|
445 |
+
@maybe_cprofile
|
446 |
+
def _compile(
|
447 |
+
code: types.CodeType,
|
448 |
+
globals: Dict[str, object],
|
449 |
+
locals: Dict[str, object],
|
450 |
+
builtins: Dict[str, object],
|
451 |
+
compiler_fn: CompilerFn,
|
452 |
+
one_graph: bool,
|
453 |
+
export: bool,
|
454 |
+
export_constraints,
|
455 |
+
hooks: Hooks,
|
456 |
+
cache_size: CacheSizeRelevantForFrame,
|
457 |
+
frame: Optional[types.FrameType] = None,
|
458 |
+
frame_state=None,
|
459 |
+
compile_id=None,
|
460 |
+
*,
|
461 |
+
skip: int = 0,
|
462 |
+
) -> Optional[GuardedCode]:
|
463 |
+
from torch.fx.experimental.validator import (
|
464 |
+
bisect,
|
465 |
+
BisectValidationException,
|
466 |
+
translation_validation_enabled,
|
467 |
+
ValidationException,
|
468 |
+
)
|
469 |
+
|
470 |
+
output: Optional[OutputGraph] = None
|
471 |
+
tracer: Optional[InstructionTranslator] = None
|
472 |
+
# This is shared across restarts
|
473 |
+
mutated_closure_cell_contents: Set[str] = set()
|
474 |
+
speculation_log = SpeculationLog()
|
475 |
+
torch._dynamo.callback_handler.run_start_callbacks()
|
476 |
+
|
477 |
+
@preserve_global_state
|
478 |
+
def transform(instructions, code_options):
|
479 |
+
nonlocal output
|
480 |
+
nonlocal tracer
|
481 |
+
speculation_log.restart()
|
482 |
+
tracer = InstructionTranslator(
|
483 |
+
instructions,
|
484 |
+
code,
|
485 |
+
locals,
|
486 |
+
globals,
|
487 |
+
builtins,
|
488 |
+
code_options,
|
489 |
+
compiler_fn,
|
490 |
+
one_graph,
|
491 |
+
export,
|
492 |
+
export_constraints,
|
493 |
+
mutated_closure_cell_contents,
|
494 |
+
frame_state=frame_state,
|
495 |
+
speculation_log=speculation_log,
|
496 |
+
)
|
497 |
+
|
498 |
+
try:
|
499 |
+
with tracing(tracer.output.tracing_context), tracer.set_current_tx():
|
500 |
+
tracer.run()
|
501 |
+
except exc.UnspecializeRestartAnalysis:
|
502 |
+
speculation_log.clear()
|
503 |
+
raise
|
504 |
+
except (exc.SpeculationRestartAnalysis, exc.SkipFrame):
|
505 |
+
raise
|
506 |
+
except Exception:
|
507 |
+
if translation_validation_enabled():
|
508 |
+
bisect(tracer.output.shape_env)
|
509 |
+
raise
|
510 |
+
finally:
|
511 |
+
tracer.output.call_cleanup_hooks()
|
512 |
+
|
513 |
+
output = tracer.output
|
514 |
+
assert output is not None
|
515 |
+
assert output.output_instructions
|
516 |
+
instructions[:] = output.output_instructions
|
517 |
+
code_options.update(output.code_options)
|
518 |
+
|
519 |
+
if config.dead_code_elimination:
|
520 |
+
propagate_inst_exn_table_entries(instructions)
|
521 |
+
check_inst_exn_tab_entries_valid(instructions)
|
522 |
+
instructions[:] = remove_pointless_jumps(remove_dead_code(instructions))
|
523 |
+
|
524 |
+
@dynamo_timed(phase_name="entire_frame_compile")
|
525 |
+
def compile_inner(
|
526 |
+
code: types.CodeType,
|
527 |
+
one_graph: bool,
|
528 |
+
hooks: Hooks,
|
529 |
+
transform: Callable[[List[Instruction], Dict[str, Any]], Any],
|
530 |
+
) -> Optional[GuardedCode]:
|
531 |
+
nonlocal output
|
532 |
+
for attempt in itertools.count():
|
533 |
+
CompileContext.get().attempt = attempt
|
534 |
+
try:
|
535 |
+
out_code = transform_code_object(code, transform)
|
536 |
+
break
|
537 |
+
except exc.RestartAnalysis as e:
|
538 |
+
log.info(
|
539 |
+
"Restarting analysis due to %s",
|
540 |
+
LazyString(format_traceback_short, e.__traceback__),
|
541 |
+
)
|
542 |
+
if attempt > 100:
|
543 |
+
unimplemented("100+ RestartAnalysis() calls")
|
544 |
+
except exc.SkipFrame as e:
|
545 |
+
log.debug(
|
546 |
+
"Skipping frame %s %s \
|
547 |
+
%s %s",
|
548 |
+
e,
|
549 |
+
code.co_name,
|
550 |
+
code.co_filename,
|
551 |
+
code.co_firstlineno,
|
552 |
+
)
|
553 |
+
if one_graph:
|
554 |
+
log.debug("No graph captured with one_graph=True")
|
555 |
+
return None
|
556 |
+
|
557 |
+
def log_bytecode(prefix, name, filename, line_no, code):
|
558 |
+
if bytecode_log.isEnabledFor(logging.DEBUG):
|
559 |
+
bytecode_log.debug(
|
560 |
+
format_bytecode(prefix, name, filename, line_no, code)
|
561 |
+
)
|
562 |
+
|
563 |
+
log_bytecode(
|
564 |
+
"ORIGINAL BYTECODE",
|
565 |
+
code.co_name,
|
566 |
+
code.co_filename,
|
567 |
+
code.co_firstlineno,
|
568 |
+
code,
|
569 |
+
)
|
570 |
+
log_bytecode(
|
571 |
+
"MODIFIED BYTECODE",
|
572 |
+
code.co_name,
|
573 |
+
code.co_filename,
|
574 |
+
code.co_firstlineno,
|
575 |
+
out_code, # type: ignore[possibly-undefined]
|
576 |
+
)
|
577 |
+
|
578 |
+
for hook in _bytecode_hooks.values():
|
579 |
+
hook_output = hook(code, out_code)
|
580 |
+
if hook_output is not None:
|
581 |
+
out_code = hook_output
|
582 |
+
|
583 |
+
orig_code_map[out_code] = code
|
584 |
+
output_codes.add(out_code)
|
585 |
+
|
586 |
+
assert output is not None
|
587 |
+
|
588 |
+
# Tests for new code objects.
|
589 |
+
# The rationale for these tests can be found in torch/csrc/dynamo/eval_frame.c
|
590 |
+
# Only test once the code object is created.
|
591 |
+
# They are not tested during runtime.
|
592 |
+
|
593 |
+
def count_args(code):
|
594 |
+
import inspect
|
595 |
+
|
596 |
+
return (
|
597 |
+
code.co_argcount
|
598 |
+
+ code.co_kwonlyargcount
|
599 |
+
+ bool(code.co_flags & inspect.CO_VARARGS)
|
600 |
+
+ bool(code.co_flags & inspect.CO_VARKEYWORDS)
|
601 |
+
)
|
602 |
+
|
603 |
+
total_argcount_old = count_args(code)
|
604 |
+
total_argcount_new = count_args(out_code)
|
605 |
+
msg = "arg mismatch: "
|
606 |
+
msg += f"old code object has args {code.co_varnames[:total_argcount_old]}, "
|
607 |
+
msg += f"new code object has args {out_code.co_varnames[:total_argcount_new]}"
|
608 |
+
assert (
|
609 |
+
code.co_varnames[:total_argcount_old]
|
610 |
+
== out_code.co_varnames[:total_argcount_new]
|
611 |
+
), msg
|
612 |
+
|
613 |
+
msg = "free var mismatch: "
|
614 |
+
msg += f"old code object has free var {code.co_freevars}, "
|
615 |
+
msg += f"new code object has free var {out_code.co_freevars}"
|
616 |
+
assert code.co_freevars == out_code.co_freevars, msg
|
617 |
+
|
618 |
+
msg = "cell var mismatch: "
|
619 |
+
msg += f"old code object has cell var {code.co_cellvars}, "
|
620 |
+
msg += f"new code object has cell var {out_code.co_cellvars}"
|
621 |
+
assert code.co_cellvars == out_code.co_cellvars, msg
|
622 |
+
|
623 |
+
# Skipping Dynamo on a frame without any extracted graph.
|
624 |
+
# This does not affect eager functionality. But this is necessary
|
625 |
+
# for export for cases where Dynamo-reconstructed bytecode can create
|
626 |
+
# new function frames, confusing export in thinking that there
|
627 |
+
# are extra graphs now.
|
628 |
+
|
629 |
+
if output.export and output.is_empty_graph():
|
630 |
+
return None
|
631 |
+
|
632 |
+
assert output.guards is not None
|
633 |
+
CleanupManager.instance[out_code] = output.cleanups
|
634 |
+
check_fn = CheckFunctionManager(
|
635 |
+
output,
|
636 |
+
hooks.guard_fail_fn if hooks else None,
|
637 |
+
)
|
638 |
+
|
639 |
+
guarded_code = GuardedCode(out_code, check_fn.check_fn)
|
640 |
+
|
641 |
+
if not output.is_empty_graph() and hooks.guard_export_fn is not None:
|
642 |
+
# We should not run the guard_export_fn when Dynamo does not
|
643 |
+
# generate any graph. This can happen in export when TorchDynamo
|
644 |
+
# generated bytecode has some reconstruction logic for mutated
|
645 |
+
# variables which can trigger TorchDynamo on the children frames but
|
646 |
+
# they are benign and do not generate any new graphs.
|
647 |
+
hooks.guard_export_fn(output.guards)
|
648 |
+
|
649 |
+
return guarded_code
|
650 |
+
|
651 |
+
with compile_context(CompileContext(compile_id)):
|
652 |
+
log.debug(
|
653 |
+
"torchdynamo start compiling %s %s:%s, stack (elided %s frames):\n%s",
|
654 |
+
code.co_name,
|
655 |
+
code.co_filename,
|
656 |
+
code.co_firstlineno,
|
657 |
+
skip + 2,
|
658 |
+
# -2: omit current frame, omit contextlib decorator
|
659 |
+
"".join(traceback.format_list(traceback.extract_stack()[: -2 - skip])),
|
660 |
+
)
|
661 |
+
# -4: -2 as above, plus trace_structured frames
|
662 |
+
torch._logging.trace_structured(
|
663 |
+
"dynamo_start",
|
664 |
+
lambda: {
|
665 |
+
"stack": structured.from_traceback(
|
666 |
+
traceback.extract_stack()[: -4 - skip]
|
667 |
+
)
|
668 |
+
},
|
669 |
+
)
|
670 |
+
start_time = time.time()
|
671 |
+
fail_type: Optional[str] = None
|
672 |
+
fail_reason: Optional[str] = None
|
673 |
+
fail_user_frame_filename: Optional[str] = None
|
674 |
+
fail_user_frame_lineno: Optional[int] = None
|
675 |
+
try:
|
676 |
+
guarded_code = compile_inner(code, one_graph, hooks, transform)
|
677 |
+
return guarded_code
|
678 |
+
except (
|
679 |
+
Unsupported,
|
680 |
+
TorchRuntimeError,
|
681 |
+
BackendCompilerFailed,
|
682 |
+
AssertionError,
|
683 |
+
ConstraintViolationError,
|
684 |
+
GuardOnDataDependentSymNode,
|
685 |
+
ValidationException,
|
686 |
+
UncapturedHigherOrderOpError,
|
687 |
+
BisectValidationException,
|
688 |
+
) as e:
|
689 |
+
fail_type = str(type(e))
|
690 |
+
fail_reason = str(e)
|
691 |
+
exception_handler(e, code, frame, export=export)
|
692 |
+
if e.innermost_user_frame_summary is not None: # type: ignore[union-attr]
|
693 |
+
fail_user_frame_filename = e.innermost_user_frame_summary.filename # type: ignore[union-attr]
|
694 |
+
fail_user_frame_lineno = e.innermost_user_frame_summary.lineno # type: ignore[union-attr]
|
695 |
+
raise
|
696 |
+
except Exception as e:
|
697 |
+
fail_type = str(type(e))
|
698 |
+
fail_reason = str(e)
|
699 |
+
exception_handler(e, code, frame, export=export)
|
700 |
+
if e.innermost_user_frame_summary is not None: # type: ignore[attr-defined]
|
701 |
+
fail_user_frame_filename = e.innermost_user_frame_summary.filename # type: ignore[attr-defined]
|
702 |
+
fail_user_frame_lineno = e.innermost_user_frame_summary.lineno # type: ignore[attr-defined]
|
703 |
+
raise InternalTorchDynamoError(str(e)).with_traceback(
|
704 |
+
e.__traceback__
|
705 |
+
) from None
|
706 |
+
finally:
|
707 |
+
if tracer:
|
708 |
+
tracer.output.local_scope = {}
|
709 |
+
|
710 |
+
from .utils import curr_frame
|
711 |
+
|
712 |
+
frame_key = str(curr_frame)
|
713 |
+
if (
|
714 |
+
fail_reason is None
|
715 |
+
and output is not None
|
716 |
+
and frame_key in frame_phase_timing
|
717 |
+
):
|
718 |
+
guard_count = len(output.guards)
|
719 |
+
shape_env_guard_count = len(output.shape_env.guards)
|
720 |
+
graph_op_count = output.count_calls()
|
721 |
+
graph_node_count = len(output.graph.nodes)
|
722 |
+
graph_input_count = len(output.placeholders)
|
723 |
+
entire_frame_compile_time = frame_phase_timing[frame_key].get(
|
724 |
+
"entire_frame_compile", None
|
725 |
+
)
|
726 |
+
backend_compile_time = frame_phase_timing[frame_key].get(
|
727 |
+
"backend_compile", None
|
728 |
+
)
|
729 |
+
inductor_compile_time = frame_phase_timing[frame_key].get(
|
730 |
+
"inductor_compile", None
|
731 |
+
)
|
732 |
+
code_gen_time = frame_phase_timing[frame_key].get("code_gen", None)
|
733 |
+
non_compliant_ops = {op.__qualname__ for op in output.non_compliant_ops}
|
734 |
+
compliant_custom_ops = {
|
735 |
+
op.__qualname__ for op in output.compliant_custom_ops
|
736 |
+
}
|
737 |
+
else:
|
738 |
+
guard_count = None
|
739 |
+
shape_env_guard_count = None
|
740 |
+
graph_op_count = None
|
741 |
+
graph_node_count = None
|
742 |
+
graph_input_count = None
|
743 |
+
entire_frame_compile_time = None
|
744 |
+
backend_compile_time = None
|
745 |
+
inductor_compile_time = None
|
746 |
+
code_gen_time = None
|
747 |
+
non_compliant_ops = set({})
|
748 |
+
compliant_custom_ops = set({})
|
749 |
+
metrics = CompilationMetrics(
|
750 |
+
frame_key,
|
751 |
+
code.co_name,
|
752 |
+
code.co_filename,
|
753 |
+
code.co_firstlineno,
|
754 |
+
cache_size.num_cache_entries_with_same_id_matched_objs,
|
755 |
+
cache_size.num_cache_entries,
|
756 |
+
guard_count,
|
757 |
+
shape_env_guard_count,
|
758 |
+
graph_op_count,
|
759 |
+
graph_node_count,
|
760 |
+
graph_input_count,
|
761 |
+
start_time,
|
762 |
+
entire_frame_compile_time,
|
763 |
+
backend_compile_time,
|
764 |
+
inductor_compile_time,
|
765 |
+
code_gen_time,
|
766 |
+
fail_type,
|
767 |
+
fail_reason,
|
768 |
+
fail_user_frame_filename,
|
769 |
+
fail_user_frame_lineno,
|
770 |
+
non_compliant_ops,
|
771 |
+
compliant_custom_ops,
|
772 |
+
)
|
773 |
+
record_compilation_metrics(metrics)
|
774 |
+
torch._dynamo.callback_handler.run_end_callbacks()
|
775 |
+
|
776 |
+
|
777 |
+
def convert_frame(compiler_fn: CompilerFn, hooks: Hooks):
|
778 |
+
"""Try to convert a frame into an FX graph, if error leave frame unmodified"""
|
779 |
+
inner_convert = convert_frame_assert(compiler_fn, one_graph=False)
|
780 |
+
|
781 |
+
def _convert_frame(
|
782 |
+
frame: types.FrameType, cache_entry, hooks: Hooks, frame_state, skip: int = 0
|
783 |
+
):
|
784 |
+
counters["frames"]["total"] += 1
|
785 |
+
try:
|
786 |
+
result = inner_convert(
|
787 |
+
frame, cache_entry, hooks, frame_state, skip=skip + 1
|
788 |
+
)
|
789 |
+
counters["frames"]["ok"] += 1
|
790 |
+
return result
|
791 |
+
except Exception as e:
|
792 |
+
# These two exception types are "soft" failure, in the sense that
|
793 |
+
# we know this is due to something we didn't implement all the
|
794 |
+
# way, scare the user less about it. That being said, if you
|
795 |
+
# are trying to understand why a graph break happened, it's still
|
796 |
+
# important to have this information, so offer it.
|
797 |
+
#
|
798 |
+
# NB: NotImplementedError used to be on this list, but actually
|
799 |
+
# it is impossible for it to reach here, as it is converted into
|
800 |
+
# InternalTorchDynamoError. This behavior seemed reasonable
|
801 |
+
# to me (ezyang, Aug 2023) so I kept it, but maybe at some point
|
802 |
+
# someone wanted these to also get suppressed. If so, you'll
|
803 |
+
# need to make these exceptions not get wrapped
|
804 |
+
|
805 |
+
# We intentionally don't want to suppress error here.
|
806 |
+
if isinstance(e, UncapturedHigherOrderOpError):
|
807 |
+
raise
|
808 |
+
|
809 |
+
soft_fail = isinstance(e, Unsupported)
|
810 |
+
if not config.suppress_errors and not soft_fail:
|
811 |
+
raise
|
812 |
+
|
813 |
+
# Suppress the error. NB: It's very important to do the
|
814 |
+
# suppression logging HERE, where the actual suppression
|
815 |
+
# happens. Previously it was somewhere else and so it was
|
816 |
+
# possible to accidentally not log at all.
|
817 |
+
record_filename = getattr(e, "record_filename", None)
|
818 |
+
code = frame.f_code
|
819 |
+
error_msg = format_error_msg(e, code, record_filename, frame)
|
820 |
+
|
821 |
+
if soft_fail:
|
822 |
+
log.info(error_msg, exc_info=True)
|
823 |
+
else:
|
824 |
+
log.warning(error_msg, exc_info=True)
|
825 |
+
return None
|
826 |
+
|
827 |
+
_convert_frame._torchdynamo_orig_callable = compiler_fn # type: ignore[attr-defined]
|
828 |
+
_convert_frame._clone_with_backend = lambda backend: convert_frame(backend, hooks) # type: ignore[attr-defined]
|
829 |
+
return _convert_frame
|
830 |
+
|
831 |
+
|
832 |
+
# TODO mlazos: add support for same args, or record them
|
833 |
+
def replay(filename):
|
834 |
+
from .backends.debugging import eager
|
835 |
+
|
836 |
+
original_replay_val = config.replay_record_enabled
|
837 |
+
config.replay_record_enabled = False
|
838 |
+
with open(filename, "rb") as in_file:
|
839 |
+
record = ExecutionRecord.load(in_file)
|
840 |
+
record.globals = dict(itertools.chain(record.globals.items(), globals().items()))
|
841 |
+
|
842 |
+
try:
|
843 |
+
_compile(
|
844 |
+
record.code,
|
845 |
+
record.globals,
|
846 |
+
record.locals,
|
847 |
+
record.builtins,
|
848 |
+
compiler_fn=eager,
|
849 |
+
one_graph=False,
|
850 |
+
export=False,
|
851 |
+
export_constraints=None,
|
852 |
+
hooks=Hooks(),
|
853 |
+
cache_size=CacheSizeRelevantForFrame(0, 0),
|
854 |
+
frame=None,
|
855 |
+
frame_state={},
|
856 |
+
)
|
857 |
+
finally:
|
858 |
+
config.replay_record_enabled = original_replay_val
|
859 |
+
|
860 |
+
|
861 |
+
def first_real_inst_idx(code):
|
862 |
+
if sys.version_info < (3, 11):
|
863 |
+
return 0
|
864 |
+
for inst in dis.get_instructions(code):
|
865 |
+
if inst.opname == "RESUME":
|
866 |
+
return inst.offset // 2
|
867 |
+
raise RuntimeError("RESUME instruction not found in code")
|
868 |
+
|
869 |
+
|
870 |
+
def catch_errors_wrapper(callback, hooks: Hooks):
|
871 |
+
@functools.wraps(callback)
|
872 |
+
def catch_errors(frame, cache_entry, frame_state):
|
873 |
+
assert frame_state is not None
|
874 |
+
|
875 |
+
is_skipfile = trace_rules.check(frame.f_code)
|
876 |
+
if (
|
877 |
+
# TODO: the first condition is not covered by any test
|
878 |
+
frame.f_lasti >= first_real_inst_idx(frame.f_code)
|
879 |
+
or is_skipfile
|
880 |
+
or config.disable
|
881 |
+
):
|
882 |
+
if log.isEnabledFor(logging.DEBUG):
|
883 |
+
skip_reason = (
|
884 |
+
"traced frame already"
|
885 |
+
if frame.f_lasti >= first_real_inst_idx(frame.f_code)
|
886 |
+
else "in skipfiles"
|
887 |
+
if trace_rules.check(frame.f_code)
|
888 |
+
else "dynamo tracing is disabled"
|
889 |
+
)
|
890 |
+
if not is_skipfile or config.verbose:
|
891 |
+
log.debug(
|
892 |
+
"skipping: %s (reason: %s, file: %s)",
|
893 |
+
frame.f_code.co_name,
|
894 |
+
skip_reason,
|
895 |
+
frame.f_code.co_filename,
|
896 |
+
)
|
897 |
+
return None
|
898 |
+
if frame.f_code.co_filename == "<string>" and frame.f_code.co_name == "__new__":
|
899 |
+
# nametuple constructor
|
900 |
+
return None
|
901 |
+
if config._get_optimize_ddp_mode() == "ddp_optimizer":
|
902 |
+
ddp_module = DistributedDataParallel._get_active_ddp_module()
|
903 |
+
if ddp_module:
|
904 |
+
with compile_lock:
|
905 |
+
from torch._dynamo.backends.distributed import DDPOptimizer
|
906 |
+
|
907 |
+
ddp_optimizer = DDPOptimizer(
|
908 |
+
bucket_bytes_cap=ddp_module.bucket_bytes_cap,
|
909 |
+
backend_compile_fn=callback._torchdynamo_orig_callable,
|
910 |
+
)
|
911 |
+
assert hasattr(
|
912 |
+
callback, "_clone_with_backend"
|
913 |
+
), "DDPOptimizer only supports callback fns that know how to clone themselves."
|
914 |
+
hijacked_callback = callback._clone_with_backend(
|
915 |
+
ddp_optimizer.compile_fn,
|
916 |
+
)
|
917 |
+
return hijacked_callback(frame, cache_entry, hooks, frame_state)
|
918 |
+
|
919 |
+
with compile_lock, _disable_current_modes():
|
920 |
+
# skip=1: skip this frame
|
921 |
+
return callback(frame, cache_entry, hooks, frame_state, skip=1)
|
922 |
+
|
923 |
+
catch_errors._torchdynamo_orig_callable = callback # type: ignore[attr-defined]
|
924 |
+
return catch_errors
|
llmeval-env/lib/python3.10/site-packages/torch/_dynamo/current_scope_id.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import contextlib
|
2 |
+
import threading
|
3 |
+
|
4 |
+
# Global variable to identify which SubgraphTracer we are in.
|
5 |
+
# It is sometimes difficult to find an InstructionTranslator to use.
|
6 |
+
_current_scope_id = threading.local()
|
7 |
+
|
8 |
+
|
9 |
+
def current_scope_id():
|
10 |
+
global _current_scope_id
|
11 |
+
if not hasattr(_current_scope_id, "value"):
|
12 |
+
_current_scope_id.value = 1
|
13 |
+
return _current_scope_id.value
|
14 |
+
|
15 |
+
|
16 |
+
@contextlib.contextmanager
|
17 |
+
def enter_new_scope():
|
18 |
+
global _current_scope_id
|
19 |
+
try:
|
20 |
+
_current_scope_id.value = current_scope_id() + 1
|
21 |
+
yield
|
22 |
+
finally:
|
23 |
+
_current_scope_id.value = current_scope_id() - 1
|
llmeval-env/lib/python3.10/site-packages/torch/_dynamo/device_interface.py
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import inspect
|
2 |
+
from typing import Any, Callable, Dict, Iterable, Optional, Tuple, Type, Union
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from torch._streambase import _EventBase, _StreamBase
|
6 |
+
|
7 |
+
get_cuda_stream: Optional[Callable[[int], int]]
|
8 |
+
if torch.cuda._is_compiled():
|
9 |
+
from torch._C import _cuda_getCurrentRawStream as get_cuda_stream
|
10 |
+
else:
|
11 |
+
get_cuda_stream = None
|
12 |
+
|
13 |
+
_device_t = Union[torch.device, str, int, None]
|
14 |
+
|
15 |
+
# Recording the device properties in the main process but used in worker process.
|
16 |
+
caching_worker_device_properties: Dict[str, Any] = {}
|
17 |
+
caching_worker_current_devices: Dict[str, int] = {}
|
18 |
+
|
19 |
+
|
20 |
+
class DeviceInterfaceMeta(type):
|
21 |
+
def __new__(metacls, *args, **kwargs):
|
22 |
+
class_member = args[2]
|
23 |
+
if "Event" in class_member:
|
24 |
+
assert inspect.isclass(class_member["Event"]) and issubclass(
|
25 |
+
class_member["Event"], _EventBase
|
26 |
+
), "DeviceInterface member Event should be inherit from _EventBase"
|
27 |
+
if "Stream" in class_member:
|
28 |
+
assert inspect.isclass(class_member["Stream"]) and issubclass(
|
29 |
+
class_member["Stream"], _StreamBase
|
30 |
+
), "DeviceInterface member Stream should be inherit from _StreamBase"
|
31 |
+
return super().__new__(metacls, *args, **kwargs)
|
32 |
+
|
33 |
+
|
34 |
+
class DeviceInterface(metaclass=DeviceInterfaceMeta):
|
35 |
+
"""
|
36 |
+
This is a simple device runtime interface for Inductor. It enables custom
|
37 |
+
backends to be integrated with Inductor in a device-agnostic semantic.
|
38 |
+
"""
|
39 |
+
|
40 |
+
class device:
|
41 |
+
def __new__(cls, device: _device_t):
|
42 |
+
raise NotImplementedError()
|
43 |
+
|
44 |
+
class Worker:
|
45 |
+
"""
|
46 |
+
Worker API to query device properties that will work in multi processing
|
47 |
+
workers that cannot use the GPU APIs (due to processing fork() and
|
48 |
+
initialization time issues). Properties are recorded in the main process
|
49 |
+
before we fork the workers.
|
50 |
+
"""
|
51 |
+
|
52 |
+
@staticmethod
|
53 |
+
def set_device(device: int):
|
54 |
+
raise NotImplementedError()
|
55 |
+
|
56 |
+
@staticmethod
|
57 |
+
def current_device() -> int:
|
58 |
+
raise NotImplementedError()
|
59 |
+
|
60 |
+
@staticmethod
|
61 |
+
def get_device_properties(device: _device_t = None):
|
62 |
+
raise NotImplementedError()
|
63 |
+
|
64 |
+
@staticmethod
|
65 |
+
def current_device():
|
66 |
+
raise NotImplementedError()
|
67 |
+
|
68 |
+
@staticmethod
|
69 |
+
def set_device(device: _device_t):
|
70 |
+
raise NotImplementedError()
|
71 |
+
|
72 |
+
@staticmethod
|
73 |
+
def device_count():
|
74 |
+
raise NotImplementedError()
|
75 |
+
|
76 |
+
@staticmethod
|
77 |
+
def is_available() -> bool:
|
78 |
+
raise NotImplementedError()
|
79 |
+
|
80 |
+
@staticmethod
|
81 |
+
def stream(stream: torch.Stream):
|
82 |
+
raise NotImplementedError()
|
83 |
+
|
84 |
+
@staticmethod
|
85 |
+
def current_stream():
|
86 |
+
raise NotImplementedError()
|
87 |
+
|
88 |
+
@staticmethod
|
89 |
+
def set_stream(stream: torch.Stream):
|
90 |
+
raise NotImplementedError()
|
91 |
+
|
92 |
+
@staticmethod
|
93 |
+
def _set_stream_by_id(stream_id: int, device_index: int, device_type: int):
|
94 |
+
raise NotImplementedError()
|
95 |
+
|
96 |
+
@staticmethod
|
97 |
+
def get_raw_stream():
|
98 |
+
raise NotImplementedError()
|
99 |
+
|
100 |
+
@staticmethod
|
101 |
+
def synchronize(device: _device_t = None):
|
102 |
+
raise NotImplementedError()
|
103 |
+
|
104 |
+
@staticmethod
|
105 |
+
def get_device_properties(device: _device_t = None):
|
106 |
+
raise NotImplementedError()
|
107 |
+
|
108 |
+
@staticmethod
|
109 |
+
def get_compute_capability(device: _device_t = None):
|
110 |
+
raise NotImplementedError()
|
111 |
+
|
112 |
+
|
113 |
+
class CudaInterface(DeviceInterface):
|
114 |
+
device = torch.cuda.device
|
115 |
+
|
116 |
+
# register Event and Stream class into the backend interface
|
117 |
+
# make sure Event and Stream are implemented and inherited from the _EventBase and _StreamBase
|
118 |
+
Event = torch.cuda.Event
|
119 |
+
Stream = torch.cuda.Stream
|
120 |
+
|
121 |
+
class Worker:
|
122 |
+
@staticmethod
|
123 |
+
def set_device(device: int):
|
124 |
+
caching_worker_current_devices["cuda"] = device
|
125 |
+
|
126 |
+
@staticmethod
|
127 |
+
def current_device() -> int:
|
128 |
+
if "cuda" in caching_worker_current_devices:
|
129 |
+
return caching_worker_current_devices["cuda"]
|
130 |
+
return torch.cuda.current_device()
|
131 |
+
|
132 |
+
@staticmethod
|
133 |
+
def get_device_properties(device: _device_t = None):
|
134 |
+
if device is not None:
|
135 |
+
if isinstance(device, str):
|
136 |
+
device = torch.device(device)
|
137 |
+
assert device.type == "cuda"
|
138 |
+
if isinstance(device, torch.device):
|
139 |
+
device = device.index
|
140 |
+
if device is None:
|
141 |
+
device = CudaInterface.Worker.current_device()
|
142 |
+
|
143 |
+
if "cuda" not in caching_worker_device_properties:
|
144 |
+
device_prop = [
|
145 |
+
torch.cuda.get_device_properties(i)
|
146 |
+
for i in range(torch.cuda.device_count())
|
147 |
+
]
|
148 |
+
caching_worker_device_properties["cuda"] = device_prop
|
149 |
+
|
150 |
+
return caching_worker_device_properties["cuda"][device]
|
151 |
+
|
152 |
+
current_device = staticmethod(torch.cuda.current_device)
|
153 |
+
set_device = staticmethod(torch.cuda.set_device)
|
154 |
+
device_count = staticmethod(torch.cuda.device_count)
|
155 |
+
stream = staticmethod(torch.cuda.stream) # type: ignore[assignment]
|
156 |
+
current_stream = staticmethod(torch.cuda.current_stream)
|
157 |
+
set_stream = staticmethod(torch.cuda.set_stream) # type: ignore[assignment]
|
158 |
+
_set_stream_by_id = staticmethod(torch.cuda._set_stream_by_id) # type: ignore[assignment]
|
159 |
+
synchronize = staticmethod(torch.cuda.synchronize)
|
160 |
+
get_device_properties = staticmethod(torch.cuda.get_device_properties) # type: ignore[assignment]
|
161 |
+
get_raw_stream = staticmethod(get_cuda_stream) # type: ignore[arg-type]
|
162 |
+
|
163 |
+
# Can be mock patched by @patch decorator.
|
164 |
+
@staticmethod
|
165 |
+
def is_available() -> bool:
|
166 |
+
return torch.cuda.is_available()
|
167 |
+
|
168 |
+
@staticmethod
|
169 |
+
def get_compute_capability(device: _device_t = None):
|
170 |
+
major, min = torch.cuda.get_device_capability(device)
|
171 |
+
return major * 10 + min
|
172 |
+
|
173 |
+
|
174 |
+
device_interfaces: Dict[str, Type[DeviceInterface]] = {}
|
175 |
+
|
176 |
+
|
177 |
+
def register_interface_for_device(
|
178 |
+
device: Union[str, torch.device], device_interface: Type[DeviceInterface]
|
179 |
+
):
|
180 |
+
if isinstance(device, torch.device):
|
181 |
+
device = str(device)
|
182 |
+
device_interfaces[device] = device_interface
|
183 |
+
|
184 |
+
|
185 |
+
def get_interface_for_device(device: Union[str, torch.device]) -> Type[DeviceInterface]:
|
186 |
+
if isinstance(device, torch.device):
|
187 |
+
device = str(device)
|
188 |
+
if device in device_interfaces:
|
189 |
+
return device_interfaces[device]
|
190 |
+
raise NotImplementedError(f"No interface for device {device}")
|
191 |
+
|
192 |
+
|
193 |
+
def get_registered_device_interfaces() -> Iterable[Tuple[str, Type[DeviceInterface]]]:
|
194 |
+
return device_interfaces.items()
|
195 |
+
|
196 |
+
|
197 |
+
register_interface_for_device("cuda", CudaInterface)
|
198 |
+
for i in range(torch.cuda.device_count()):
|
199 |
+
register_interface_for_device(f"cuda:{i}", CudaInterface)
|
llmeval-env/lib/python3.10/site-packages/torch/_dynamo/exc.py
ADDED
@@ -0,0 +1,335 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import textwrap
|
3 |
+
from enum import auto, Enum
|
4 |
+
from traceback import extract_stack, format_exc, format_list, StackSummary
|
5 |
+
from typing import cast, NoReturn, Optional
|
6 |
+
|
7 |
+
import torch._guards
|
8 |
+
|
9 |
+
from . import config
|
10 |
+
|
11 |
+
from .utils import counters
|
12 |
+
|
13 |
+
|
14 |
+
def exportdb_error_message(case_name):
|
15 |
+
return (
|
16 |
+
"For more information about this error, see: "
|
17 |
+
+ "https://pytorch.org/docs/main/generated/exportdb/index.html#"
|
18 |
+
+ case_name.replace("_", "-")
|
19 |
+
)
|
20 |
+
|
21 |
+
|
22 |
+
import logging
|
23 |
+
|
24 |
+
log = logging.getLogger(__name__)
|
25 |
+
graph_breaks_log = torch._logging.getArtifactLogger(__name__, "graph_breaks")
|
26 |
+
|
27 |
+
|
28 |
+
class TorchDynamoException(RuntimeError):
|
29 |
+
pass
|
30 |
+
|
31 |
+
|
32 |
+
class InternalTorchDynamoError(TorchDynamoException):
|
33 |
+
pass
|
34 |
+
|
35 |
+
|
36 |
+
class RestartAnalysis(TorchDynamoException):
|
37 |
+
pass
|
38 |
+
|
39 |
+
|
40 |
+
class SpeculationRestartAnalysis(RestartAnalysis):
|
41 |
+
pass
|
42 |
+
|
43 |
+
|
44 |
+
class UnspecializeRestartAnalysis(RestartAnalysis):
|
45 |
+
pass
|
46 |
+
|
47 |
+
|
48 |
+
class SkipFrame(TorchDynamoException):
|
49 |
+
pass
|
50 |
+
|
51 |
+
|
52 |
+
class TorchRuntimeError(TorchDynamoException):
|
53 |
+
pass
|
54 |
+
|
55 |
+
|
56 |
+
class InvalidBackend(TorchDynamoException):
|
57 |
+
def __init__(self, name):
|
58 |
+
super().__init__(
|
59 |
+
f"Invalid backend: {name!r}, see `torch._dynamo.list_backends()` for available backends."
|
60 |
+
)
|
61 |
+
|
62 |
+
|
63 |
+
class ResetRequired(TorchDynamoException):
|
64 |
+
def __init__(self):
|
65 |
+
super().__init__(
|
66 |
+
textwrap.dedent(
|
67 |
+
"""
|
68 |
+
Must call `torch._dynamo.reset()` before changing backends. Detected two calls to
|
69 |
+
`torch.compile()` with a different backend compiler arguments.
|
70 |
+
"""
|
71 |
+
)
|
72 |
+
)
|
73 |
+
|
74 |
+
|
75 |
+
class BackendCompilerFailed(TorchDynamoException):
|
76 |
+
def __init__(self, backend_fn, inner_exception):
|
77 |
+
self.backend_name = getattr(backend_fn, "__name__", "?")
|
78 |
+
self.inner_exception = inner_exception
|
79 |
+
msg = f"backend={self.backend_name!r} raised:\n{type(inner_exception).__name__}: {inner_exception}"
|
80 |
+
super().__init__(msg)
|
81 |
+
|
82 |
+
|
83 |
+
class Unsupported(TorchDynamoException):
|
84 |
+
def __init__(self, msg):
|
85 |
+
super().__init__(msg)
|
86 |
+
self.real_stack = torch._guards.TracingContext.extract_stack()
|
87 |
+
self.msg = msg
|
88 |
+
self.category: Optional[str] = None
|
89 |
+
self.add_to_stats()
|
90 |
+
|
91 |
+
def remove_from_stats(self):
|
92 |
+
assert self.category is not None
|
93 |
+
counters[self.category][self.msg] -= 1
|
94 |
+
if counters[self.category][self.msg] <= 0:
|
95 |
+
del counters[self.category][self.msg]
|
96 |
+
|
97 |
+
def add_to_stats(self, category="unimplemented"):
|
98 |
+
self.category = category
|
99 |
+
counters[category][self.msg] += 1
|
100 |
+
|
101 |
+
|
102 |
+
class RecompileError(TorchDynamoException):
|
103 |
+
pass
|
104 |
+
|
105 |
+
|
106 |
+
class ArgsMismatchError(Unsupported):
|
107 |
+
def __init__(self, msg):
|
108 |
+
super().__init__(msg)
|
109 |
+
|
110 |
+
|
111 |
+
class AttributeMutationError(Unsupported):
|
112 |
+
def __init__(self, msg):
|
113 |
+
super().__init__(msg)
|
114 |
+
|
115 |
+
|
116 |
+
class CondOpArgsMismatchError(ArgsMismatchError):
|
117 |
+
"""
|
118 |
+
Internal error from cond() due to arguments mismatch.
|
119 |
+
"""
|
120 |
+
|
121 |
+
def __init__(self, msg):
|
122 |
+
super().__init__(msg)
|
123 |
+
|
124 |
+
|
125 |
+
class UserErrorType(Enum):
|
126 |
+
DYNAMIC_CONTROL_FLOW = auto()
|
127 |
+
ANTI_PATTERN = auto()
|
128 |
+
STANDARD_LIBRARY = auto()
|
129 |
+
CONSTRAINT_VIOLATION = auto()
|
130 |
+
DYNAMIC_DIM = auto()
|
131 |
+
INVALID_INPUT = auto()
|
132 |
+
INVALID_OUTPUT = auto()
|
133 |
+
|
134 |
+
|
135 |
+
class UserError(Unsupported):
|
136 |
+
def __init__(self, error_type: UserErrorType, msg, case_name=None):
|
137 |
+
"""
|
138 |
+
Type of errors that would be valid in Eager, but not supported in TorchDynamo.
|
139 |
+
The error message should tell user about next actions.
|
140 |
+
|
141 |
+
error_type: Type of user error
|
142 |
+
msg: Actionable error message
|
143 |
+
case_name: (Optional) Unique name (snake case) for the usage example in exportdb.
|
144 |
+
"""
|
145 |
+
if case_name is not None:
|
146 |
+
assert isinstance(case_name, str)
|
147 |
+
if msg.endswith("."):
|
148 |
+
msg += " "
|
149 |
+
else:
|
150 |
+
msg += "\n"
|
151 |
+
msg += exportdb_error_message(case_name)
|
152 |
+
super().__init__(msg)
|
153 |
+
self.error_type = error_type
|
154 |
+
self.message = msg
|
155 |
+
|
156 |
+
|
157 |
+
class UncapturedHigherOrderOpError(TorchDynamoException):
|
158 |
+
pass
|
159 |
+
|
160 |
+
|
161 |
+
class IncorrectUsage(Exception):
|
162 |
+
pass
|
163 |
+
|
164 |
+
|
165 |
+
# These exceptions are ok to fallback to eager/graph_break.
|
166 |
+
exceptions_allowed_to_be_fallback = (
|
167 |
+
torch._subclasses.fake_tensor.DataDependentOutputException,
|
168 |
+
torch._subclasses.fake_tensor.DynamicOutputShapeException,
|
169 |
+
torch._subclasses.fake_tensor.UnsupportedOperatorException,
|
170 |
+
torch._subclasses.fake_tensor.UnsupportedFakeTensorException,
|
171 |
+
)
|
172 |
+
|
173 |
+
|
174 |
+
def unimplemented_with_warning(e: Exception, code, msg: str) -> NoReturn:
|
175 |
+
# This function calls unimplemented internally and eventually graph breaks
|
176 |
+
# or falls to eager. unimplemented itself does not print any user warnings,
|
177 |
+
# i.e., its very silent. This helper function is intended when an error is
|
178 |
+
# encountered in the torch.compile stack which is worth showing as warning
|
179 |
+
# to the user. For example, if AOT Autograd backend fails with a fake tensor
|
180 |
+
# exception, its ok to fallback to eager but not silently. Here, we can use
|
181 |
+
# this function to log the message and the stack trace.
|
182 |
+
graph_break_msg = format_error_msg_verbose(e, code)
|
183 |
+
graph_breaks_log.debug("%s", graph_break_msg)
|
184 |
+
log.warning(msg)
|
185 |
+
raise unimplemented(msg) from e
|
186 |
+
|
187 |
+
|
188 |
+
def unimplemented(msg: str) -> NoReturn:
|
189 |
+
assert msg != os.environ.get("BREAK", False)
|
190 |
+
raise Unsupported(msg)
|
191 |
+
|
192 |
+
|
193 |
+
def warning(msg: str) -> None:
|
194 |
+
counters["warnings"][msg] += 1
|
195 |
+
assert msg != os.environ.get("BREAK", False)
|
196 |
+
|
197 |
+
|
198 |
+
# KeyError has special handling for its args
|
199 |
+
# see https://github.com/python/cpython/blob/3.11/Objects/exceptions.c#L2534 for details
|
200 |
+
class KeyErrorMsg:
|
201 |
+
def __init__(self, value):
|
202 |
+
self.value = value
|
203 |
+
|
204 |
+
def __str__(self):
|
205 |
+
return str(self.value)
|
206 |
+
|
207 |
+
def __repr__(self) -> str:
|
208 |
+
return self.__str__()
|
209 |
+
|
210 |
+
|
211 |
+
def augment_exc_message(exc: Exception, msg: str = "\n", export: bool = False) -> None:
|
212 |
+
import traceback
|
213 |
+
|
214 |
+
exc.innermost_user_frame_summary = None # type: ignore[attr-defined]
|
215 |
+
|
216 |
+
real_stack = get_real_stack(exc)
|
217 |
+
if real_stack is not None and len(real_stack) > 0:
|
218 |
+
exc.innermost_user_frame_summary = real_stack[-1] # type: ignore[attr-defined]
|
219 |
+
msg += f"\nfrom user code:\n {''.join(traceback.format_list(real_stack))}"
|
220 |
+
|
221 |
+
if config.replay_record_enabled and hasattr(exc, "record_filename"):
|
222 |
+
msg += f"\nLast frame execution written to {exc.record_filename}. To run only this frame while debugging, run\
|
223 |
+
torch._dynamo.replay('{exc.record_filename}').\n"
|
224 |
+
|
225 |
+
if not config.verbose and hasattr(exc, "real_stack"):
|
226 |
+
msg += '\nSet TORCH_LOGS="+dynamo" and TORCHDYNAMO_VERBOSE=1 for more information\n'
|
227 |
+
|
228 |
+
if hasattr(exc, "inner_exception") and hasattr(
|
229 |
+
exc.inner_exception, "minifier_path"
|
230 |
+
):
|
231 |
+
if hasattr(exc.inner_exception, "buck_command"):
|
232 |
+
msg += (
|
233 |
+
f"\nMinifier script written to {exc.inner_exception.minifier_path}. Run "
|
234 |
+
f"this buck command to find the smallest traced graph "
|
235 |
+
f"which reproduces this error: {exc.inner_exception.buck_command}\n"
|
236 |
+
)
|
237 |
+
else:
|
238 |
+
msg += (
|
239 |
+
f"\nMinifier script written to {exc.inner_exception.minifier_path}. Run "
|
240 |
+
"this script to find the smallest traced graph which reproduces this error.\n"
|
241 |
+
)
|
242 |
+
|
243 |
+
if not config.suppress_errors and not export:
|
244 |
+
msg += (
|
245 |
+
"\n\n"
|
246 |
+
"You can suppress this exception and fall back to eager by setting:\n"
|
247 |
+
" import torch._dynamo\n"
|
248 |
+
" torch._dynamo.config.suppress_errors = True\n"
|
249 |
+
)
|
250 |
+
|
251 |
+
old_msg = "" if len(exc.args) == 0 else str(exc.args[0])
|
252 |
+
|
253 |
+
if isinstance(exc, KeyError):
|
254 |
+
exc.args = (KeyErrorMsg(old_msg + msg),) + exc.args[1:]
|
255 |
+
else:
|
256 |
+
new_msg = old_msg + msg
|
257 |
+
exc.args = (new_msg,) + exc.args[1:]
|
258 |
+
|
259 |
+
|
260 |
+
def get_real_stack(exc: Exception, frame=None) -> Optional[StackSummary]:
|
261 |
+
real_stack = getattr(exc, "real_stack", None)
|
262 |
+
if real_stack is None:
|
263 |
+
return None
|
264 |
+
|
265 |
+
# NB: it's possible for real_stack to be []; we still attempt to
|
266 |
+
# report a stack anyway because the stack_above_dynamo may still
|
267 |
+
# be useful for debugging
|
268 |
+
|
269 |
+
stack_above_dynamo = []
|
270 |
+
if frame is not None:
|
271 |
+
# NB: frame is PyInterpreterFrame on Python 3.11 and later,
|
272 |
+
# not a TRUE frame object. You can't actually feed it
|
273 |
+
# to traceback because it doesn't have enough information.
|
274 |
+
# To solve this problem, we technically should just materialize
|
275 |
+
# the frame, the same way _PyFrame_GetFrameObject would do
|
276 |
+
# (but we cannot actually do this, because this populates
|
277 |
+
# frame_obj field, which default eval frame doesn't like).
|
278 |
+
#
|
279 |
+
# Fortunately, in this case, we can hack it: there's no need
|
280 |
+
# to actually use the truly top frame, we can just extract
|
281 |
+
# from where we are right now and rely on filter_stack to
|
282 |
+
# get rid of all the dynamo frames. For ease of testing
|
283 |
+
# we apply this behavior to ALL Python versions
|
284 |
+
stack_above_dynamo = filter_stack(extract_stack())
|
285 |
+
|
286 |
+
return cast(StackSummary, stack_above_dynamo + real_stack)
|
287 |
+
|
288 |
+
|
289 |
+
# filter out all frames after entering dynamo
|
290 |
+
def filter_stack(stack):
|
291 |
+
user_stack = []
|
292 |
+
for frame in stack:
|
293 |
+
if "convert_frame" in frame.filename:
|
294 |
+
break
|
295 |
+
if "eval_frame" in frame.filename or "torch._dynamo.optimize(" in frame.line:
|
296 |
+
continue
|
297 |
+
user_stack.append(frame)
|
298 |
+
|
299 |
+
return user_stack
|
300 |
+
|
301 |
+
|
302 |
+
def format_error_msg_verbose(
|
303 |
+
exc: Exception, code, record_filename=None, frame=None
|
304 |
+
) -> str:
|
305 |
+
msg = (
|
306 |
+
f"WON'T CONVERT {code.co_name} {code.co_filename} line {code.co_firstlineno}\n"
|
307 |
+
)
|
308 |
+
msg += "=" * 10 + " TorchDynamo Stack Trace " + "=" * 10 + "\n"
|
309 |
+
msg += format_exc()
|
310 |
+
real_stack = get_real_stack(exc, frame)
|
311 |
+
if real_stack is not None:
|
312 |
+
msg += (
|
313 |
+
"\n"
|
314 |
+
+ "=" * 10
|
315 |
+
+ " The above exception occurred while processing the following code "
|
316 |
+
+ "=" * 10
|
317 |
+
+ "\n\n"
|
318 |
+
)
|
319 |
+
msg += "".join(format_list(real_stack))
|
320 |
+
msg += "\n"
|
321 |
+
msg += "=" * 10
|
322 |
+
|
323 |
+
return msg
|
324 |
+
|
325 |
+
|
326 |
+
def format_error_msg(exc: Exception, code, record_filename=None, frame=None) -> str:
|
327 |
+
msg = os.linesep * 2
|
328 |
+
|
329 |
+
if config.verbose:
|
330 |
+
msg = format_error_msg_verbose(exc, code, record_filename, frame)
|
331 |
+
else:
|
332 |
+
msg = f"WON'T CONVERT {code.co_name} {code.co_filename}\
|
333 |
+
line {code.co_firstlineno} \ndue to: \n{format_exc()}"
|
334 |
+
|
335 |
+
return msg
|
llmeval-env/lib/python3.10/site-packages/torch/_dynamo/external_utils.py
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This module contains functions that *will be allowed* by dynamo
|
2 |
+
|
3 |
+
import functools
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.utils._pytree as pytree
|
7 |
+
|
8 |
+
try:
|
9 |
+
import numpy as np
|
10 |
+
except ModuleNotFoundError:
|
11 |
+
np = None # type: ignore[assignment]
|
12 |
+
|
13 |
+
|
14 |
+
def is_compiling() -> bool:
|
15 |
+
"""
|
16 |
+
Indicates whether we are tracing/compiling with torch.compile() or torch.export().
|
17 |
+
|
18 |
+
If need to check specifically that TorchDynamo is used, then use
|
19 |
+
torch.compiler.is_dynamo_compiling().
|
20 |
+
|
21 |
+
TODO(khabinov): we should deprecate this function and use one of these two:
|
22 |
+
* torch.compiler.is_compiling(),
|
23 |
+
* torch.compiler.is_dynamo_compiling().
|
24 |
+
It will depend on the context where to use what.
|
25 |
+
"""
|
26 |
+
return torch.compiler.is_compiling()
|
27 |
+
|
28 |
+
|
29 |
+
def wrap_inline(fn):
|
30 |
+
"""
|
31 |
+
Create an extra frame around fn that is not in skipfiles
|
32 |
+
"""
|
33 |
+
|
34 |
+
@functools.wraps(fn)
|
35 |
+
def inner(*args, **kwargs):
|
36 |
+
return fn(*args, **kwargs)
|
37 |
+
|
38 |
+
return inner
|
39 |
+
|
40 |
+
|
41 |
+
def call_hook(hook, *args):
|
42 |
+
"""
|
43 |
+
Used by compiled autograd to handle hook returning None
|
44 |
+
"""
|
45 |
+
result = hook(*args)
|
46 |
+
if result is None:
|
47 |
+
return args[0]
|
48 |
+
return result
|
49 |
+
|
50 |
+
|
51 |
+
def wrap_numpy(f):
|
52 |
+
r"""Decorator that turns a function from ``np.ndarray``s to ``np.ndarray``s into a function
|
53 |
+
from ``torch.Tensor``s to ``torch.Tensor``s.
|
54 |
+
"""
|
55 |
+
if not np:
|
56 |
+
return f
|
57 |
+
|
58 |
+
@functools.wraps(f)
|
59 |
+
def wrap(*args, **kwargs):
|
60 |
+
args, kwargs = pytree.tree_map_only(
|
61 |
+
torch.Tensor, lambda x: x.numpy(), (args, kwargs)
|
62 |
+
)
|
63 |
+
out = f(*args, **kwargs)
|
64 |
+
return pytree.tree_map_only(np.ndarray, lambda x: torch.as_tensor(x), out)
|
65 |
+
|
66 |
+
return wrap
|
67 |
+
|
68 |
+
|
69 |
+
class FakeContext:
|
70 |
+
def __init__(self, saved_tensors):
|
71 |
+
# this will cache the results of saved_tensors
|
72 |
+
# and will no longer call into c++ binding
|
73 |
+
self.saved_tensors = saved_tensors
|
74 |
+
|
75 |
+
|
76 |
+
def call_backward(backward_fn, saved_tensors, *args):
|
77 |
+
grads = backward_fn(FakeContext(saved_tensors), *args)
|
78 |
+
|
79 |
+
# in eager, we wrap in a tuple when there's only one grad output
|
80 |
+
if type(grads) is not tuple:
|
81 |
+
grads = (grads,)
|
82 |
+
|
83 |
+
return grads
|
84 |
+
|
85 |
+
|
86 |
+
def untyped_storage_size(x: torch.Tensor):
|
87 |
+
return x.untyped_storage().size()
|
88 |
+
|
89 |
+
|
90 |
+
def call_hook_from_backward_state(*args, bw_state, hook_name: str, **kwargs):
|
91 |
+
return getattr(bw_state, hook_name)(*args, **kwargs)
|
92 |
+
|
93 |
+
|
94 |
+
def call_module_hooks_from_backward_state(
|
95 |
+
_, result, *args, bw_state, hooks_name: str, module_name: str
|
96 |
+
):
|
97 |
+
module = getattr(bw_state, module_name)
|
98 |
+
hooks = getattr(bw_state, hooks_name)
|
99 |
+
for hook in hooks:
|
100 |
+
new_result = hook(module, result, *args)
|
101 |
+
if new_result is not None:
|
102 |
+
result = new_result
|
103 |
+
return result
|
llmeval-env/lib/python3.10/site-packages/torch/_dynamo/funcname_cache.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import tokenize
|
2 |
+
|
3 |
+
from typing import Dict, List, Optional
|
4 |
+
|
5 |
+
cache: Dict[str, Dict[int, str]] = {}
|
6 |
+
|
7 |
+
|
8 |
+
def clearcache() -> None:
|
9 |
+
cache.clear()
|
10 |
+
|
11 |
+
|
12 |
+
def _add_file(filename: str) -> None:
|
13 |
+
try:
|
14 |
+
with open(filename) as f:
|
15 |
+
tokens = list(tokenize.generate_tokens(f.readline))
|
16 |
+
except OSError:
|
17 |
+
cache[filename] = {}
|
18 |
+
return
|
19 |
+
|
20 |
+
# NOTE: undefined behavior if file is not valid Python source,
|
21 |
+
# since tokenize will have undefined behavior.
|
22 |
+
result: Dict[int, str] = {}
|
23 |
+
# current full funcname, e.g. xxx.yyy.zzz
|
24 |
+
cur_name = ""
|
25 |
+
cur_indent = 0
|
26 |
+
significant_indents: List[int] = []
|
27 |
+
|
28 |
+
for i, token in enumerate(tokens):
|
29 |
+
if token.type == tokenize.INDENT:
|
30 |
+
cur_indent += 1
|
31 |
+
elif token.type == tokenize.DEDENT:
|
32 |
+
cur_indent -= 1
|
33 |
+
# possible end of function or class
|
34 |
+
if significant_indents and cur_indent == significant_indents[-1]:
|
35 |
+
significant_indents.pop()
|
36 |
+
# pop the last name
|
37 |
+
cur_name = cur_name.rpartition(".")[0]
|
38 |
+
elif (
|
39 |
+
token.type == tokenize.NAME
|
40 |
+
and i + 1 < len(tokens)
|
41 |
+
and tokens[i + 1].type == tokenize.NAME
|
42 |
+
and (token.string == "class" or token.string == "def")
|
43 |
+
):
|
44 |
+
# name of class/function always follows class/def token
|
45 |
+
significant_indents.append(cur_indent)
|
46 |
+
if cur_name:
|
47 |
+
cur_name += "."
|
48 |
+
cur_name += tokens[i + 1].string
|
49 |
+
result[token.start[0]] = cur_name
|
50 |
+
|
51 |
+
cache[filename] = result
|
52 |
+
|
53 |
+
|
54 |
+
def get_funcname(filename: str, lineno: int) -> Optional[str]:
|
55 |
+
if filename not in cache:
|
56 |
+
_add_file(filename)
|
57 |
+
return cache[filename].get(lineno, None)
|
llmeval-env/lib/python3.10/site-packages/torch/_dynamo/guards.py
ADDED
@@ -0,0 +1,1505 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
import ast
|
4 |
+
import builtins
|
5 |
+
import collections
|
6 |
+
import dataclasses
|
7 |
+
import enum
|
8 |
+
import functools
|
9 |
+
import importlib
|
10 |
+
import inspect
|
11 |
+
import itertools
|
12 |
+
import logging
|
13 |
+
import math
|
14 |
+
import os
|
15 |
+
import re
|
16 |
+
import sys
|
17 |
+
import textwrap
|
18 |
+
import types
|
19 |
+
import weakref
|
20 |
+
from inspect import currentframe, getframeinfo
|
21 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Type, Union
|
22 |
+
from weakref import ReferenceType
|
23 |
+
|
24 |
+
|
25 |
+
try:
|
26 |
+
import numpy as np
|
27 |
+
except ModuleNotFoundError:
|
28 |
+
np = None # type: ignore[assignment]
|
29 |
+
|
30 |
+
import torch
|
31 |
+
import torch.utils._device
|
32 |
+
from torch._dynamo.source import (
|
33 |
+
is_from_local_source,
|
34 |
+
TensorProperty,
|
35 |
+
TensorPropertySource,
|
36 |
+
)
|
37 |
+
|
38 |
+
from torch._guards import (
|
39 |
+
DuplicateInputs,
|
40 |
+
Guard,
|
41 |
+
GuardBuilderBase,
|
42 |
+
GuardEnvExpr,
|
43 |
+
GuardSource,
|
44 |
+
Source,
|
45 |
+
)
|
46 |
+
|
47 |
+
from torch._logging import structured
|
48 |
+
from torch.fx.experimental.symbolic_shapes import (
|
49 |
+
EqualityConstraint,
|
50 |
+
is_symbolic,
|
51 |
+
SYMPY_INTERP,
|
52 |
+
)
|
53 |
+
from torch.utils._traceback import format_frame, report_compile_source_on_error
|
54 |
+
from torch.utils.weak import TensorWeakRef
|
55 |
+
|
56 |
+
from . import config, convert_frame, exc, mutation_guard
|
57 |
+
from .eval_frame import set_guard_error_hook
|
58 |
+
from .source import AttrSource, DefaultsSource, LocalSource, TypeSource
|
59 |
+
from .types import CacheEntry, ExtraState, GuardedCode, GuardFail, GuardFn # noqa: F401
|
60 |
+
from .utils import (
|
61 |
+
common_constant_types,
|
62 |
+
dict_keys_repr,
|
63 |
+
guard_failures,
|
64 |
+
istype,
|
65 |
+
key_is_id,
|
66 |
+
key_to_id,
|
67 |
+
orig_code_map,
|
68 |
+
tensor_always_has_static_shape,
|
69 |
+
tuple_iterator_getitem,
|
70 |
+
tuple_iterator_len,
|
71 |
+
)
|
72 |
+
|
73 |
+
log = logging.getLogger(__name__)
|
74 |
+
guards_log = torch._logging.getArtifactLogger(__name__, "guards")
|
75 |
+
recompiles_log = torch._logging.getArtifactLogger(__name__, "recompiles")
|
76 |
+
recompiles_verbose_log = torch._logging.getArtifactLogger(
|
77 |
+
__name__, "recompiles_verbose"
|
78 |
+
)
|
79 |
+
verbose_guards_log = torch._logging.getArtifactLogger(__name__, "verbose_guards")
|
80 |
+
|
81 |
+
TensorGuards = torch._C._dynamo.guards.TensorGuards
|
82 |
+
check_obj_id = torch._C._dynamo.guards.check_obj_id
|
83 |
+
check_type_id = torch._C._dynamo.guards.check_type_id
|
84 |
+
dict_version = torch._C._dynamo.guards.dict_version
|
85 |
+
|
86 |
+
|
87 |
+
# For user stack printing
|
88 |
+
@functools.lru_cache(None)
|
89 |
+
def uninteresting_files():
|
90 |
+
import torch._dynamo.external_utils
|
91 |
+
|
92 |
+
mods = [
|
93 |
+
torch._dynamo.external_utils,
|
94 |
+
]
|
95 |
+
return {inspect.getfile(m) for m in mods}
|
96 |
+
|
97 |
+
|
98 |
+
CLOSURE_VARS = {
|
99 |
+
"___check_type_id": check_type_id,
|
100 |
+
"___check_obj_id": check_obj_id,
|
101 |
+
"___odict_getitem": collections.OrderedDict.__getitem__,
|
102 |
+
"___key_to_id": key_to_id,
|
103 |
+
"___dict_version": dict_version,
|
104 |
+
"___dict_contains": lambda a, b: a in b,
|
105 |
+
"___tuple_iterator_len": tuple_iterator_len,
|
106 |
+
"___tuple_iterator_getitem": tuple_iterator_getitem,
|
107 |
+
"__math_isnan": math.isnan,
|
108 |
+
"__numpy_isnan": None if np is None else np.isnan,
|
109 |
+
"inf": float("inf"),
|
110 |
+
"__load_module": importlib.import_module,
|
111 |
+
"utils_device": torch.utils._device,
|
112 |
+
"device": torch.device,
|
113 |
+
"___from_numpy":
|
114 |
+
# If not numpy array, piggy back on e.g. tensor guards to check type
|
115 |
+
(lambda a: torch.as_tensor(a) if isinstance(a, (np.generic, np.ndarray)) else a),
|
116 |
+
"torch": torch,
|
117 |
+
"inspect": inspect,
|
118 |
+
}
|
119 |
+
|
120 |
+
if sys.version_info[:2] <= (3, 8):
|
121 |
+
# [Note: Python Version <= 3.8]
|
122 |
+
# This branch should be dropped when we drop support for Python 3.8.
|
123 |
+
# Reason: 'ast.unparse' function was introduced in Python 3.9.
|
124 |
+
|
125 |
+
try:
|
126 |
+
import astunparse # type: ignore[import]
|
127 |
+
|
128 |
+
def _ast_unparse(node: ast.AST) -> str:
|
129 |
+
return astunparse.unparse(node).replace("\n", "")
|
130 |
+
|
131 |
+
HAS_UNPARSE_FUNCTIONS = True
|
132 |
+
except ImportError:
|
133 |
+
HAS_UNPARSE_FUNCTIONS = False
|
134 |
+
pass
|
135 |
+
else:
|
136 |
+
HAS_UNPARSE_FUNCTIONS = True
|
137 |
+
|
138 |
+
def _ast_unparse(node: ast.AST) -> str:
|
139 |
+
return ast.unparse(node).replace("\n", "")
|
140 |
+
|
141 |
+
|
142 |
+
def strip_function_call(name):
|
143 |
+
"""
|
144 |
+
"___odict_getitem(a, 1)" => "a"
|
145 |
+
"a.layers[slice(2)][0]._xyz" ==> "a"
|
146 |
+
"getattr(a.layers[slice(2)][0]._abc, '0')" ==> "a"
|
147 |
+
"getattr(getattr(a.x[3], '0'), '3')" ==> "a"
|
148 |
+
"a.layers[slice(None, -1, None)][0]._xyz" ==> "a"
|
149 |
+
"""
|
150 |
+
# recursively find valid object name in function
|
151 |
+
valid_name = re.compile("[A-Za-z_].*")
|
152 |
+
curr = ""
|
153 |
+
for char in name:
|
154 |
+
if char in " (":
|
155 |
+
curr = ""
|
156 |
+
elif char in "),[]":
|
157 |
+
if curr and curr != "None" and valid_name.match(curr):
|
158 |
+
return strip_function_call(curr)
|
159 |
+
else:
|
160 |
+
curr += char
|
161 |
+
|
162 |
+
return strip_getattr_getitem(name)
|
163 |
+
|
164 |
+
|
165 |
+
def strip_getattr_getitem(name):
|
166 |
+
"""
|
167 |
+
"a[1]" => "a"
|
168 |
+
"a.foo" => "a"
|
169 |
+
"""
|
170 |
+
return re.split(r"[.\[]", name)[0]
|
171 |
+
|
172 |
+
|
173 |
+
def get_verbose_code_part(code_part, guard):
|
174 |
+
extra = ""
|
175 |
+
if guard.user_stack:
|
176 |
+
for fs in reversed(guard.user_stack):
|
177 |
+
if fs.filename not in uninteresting_files():
|
178 |
+
extra = f" # {format_frame(fs, line=True)}"
|
179 |
+
break
|
180 |
+
elif guard.stack:
|
181 |
+
extra = f" # {format_frame(guard.stack.summary()[-1])}"
|
182 |
+
|
183 |
+
return f"{code_part:<60}{extra}"
|
184 |
+
|
185 |
+
|
186 |
+
def convert_to_concrete_values(size_or_stride):
|
187 |
+
converted: List[Optional[int]] = []
|
188 |
+
for dim in size_or_stride:
|
189 |
+
if not is_symbolic(dim):
|
190 |
+
converted.append(dim)
|
191 |
+
else:
|
192 |
+
assert isinstance(dim, torch.SymInt)
|
193 |
+
converted.append(dim.node.maybe_as_int())
|
194 |
+
return converted
|
195 |
+
|
196 |
+
|
197 |
+
def get_tensor_guard_code_part(value, name, sizes, strides):
|
198 |
+
pytype = type(value)
|
199 |
+
dispatch_key = (
|
200 |
+
torch._C._dispatch_keys(value) | torch._C._dispatch_tls_local_include_set()
|
201 |
+
) - torch._C._dispatch_tls_local_exclude_set()
|
202 |
+
dtype = value.dtype
|
203 |
+
device_index = value.device.index
|
204 |
+
requires_grad = value.requires_grad
|
205 |
+
guard_str = (
|
206 |
+
f"check_tensor({name}, {pytype.__qualname__}, {dispatch_key}, {dtype}, "
|
207 |
+
f"device={device_index}, requires_grad={requires_grad}, size={sizes}, stride={strides})"
|
208 |
+
)
|
209 |
+
return guard_str
|
210 |
+
|
211 |
+
|
212 |
+
# The ready to eval generated code (possibly multiple parts) for a guard, plus
|
213 |
+
# the original guard object that created it for provenance
|
214 |
+
@dataclasses.dataclass
|
215 |
+
class GuardCodeList:
|
216 |
+
code_list: List[str]
|
217 |
+
guard: Guard
|
218 |
+
|
219 |
+
|
220 |
+
class GuardBuilder(GuardBuilderBase):
|
221 |
+
def __init__(
|
222 |
+
self,
|
223 |
+
id_ref: Callable[[Any], str],
|
224 |
+
source_ref: Callable[[Source], str],
|
225 |
+
lookup_weakrefs: Callable[[object], ReferenceType[object]],
|
226 |
+
local_scope: Dict[str, object],
|
227 |
+
global_scope: Dict[str, object],
|
228 |
+
check_fn_manager: CheckFunctionManager,
|
229 |
+
):
|
230 |
+
self.id_ref = id_ref
|
231 |
+
self.source_ref = source_ref
|
232 |
+
self.lookup_weakrefs = lookup_weakrefs
|
233 |
+
self.scope: Dict[str, Dict[str, object]] = {"L": local_scope, "G": global_scope}
|
234 |
+
self.scope["__builtins__"] = builtins.__dict__.copy()
|
235 |
+
for (
|
236 |
+
name,
|
237 |
+
package_module,
|
238 |
+
) in torch.package.package_importer._package_imported_modules.items():
|
239 |
+
name = name.replace(">", "_").replace("<", "_").replace(".", "_dot_")
|
240 |
+
# Write the package module into the scope so that we can import it
|
241 |
+
self.scope["__builtins__"][name] = package_module
|
242 |
+
# Write the demangled name to the scope so that we can use it
|
243 |
+
self.scope[name] = package_module
|
244 |
+
|
245 |
+
self.argnames: List[str] = []
|
246 |
+
# Code is python expression strings generated for each guard
|
247 |
+
self.code: List[GuardCodeList] = []
|
248 |
+
# shape_env_code is only used by builder and is used for
|
249 |
+
# shape env code. This exists only because we need to make sure
|
250 |
+
# shape env guards get run after tensor match guards (since the
|
251 |
+
# tensor match guards make sure we actually have tensors)
|
252 |
+
self.shape_env_code: List[GuardCodeList] = []
|
253 |
+
|
254 |
+
# [Note - On Eager Tensor Guards]
|
255 |
+
# Most of the time, we generate Python code in a guard to directly
|
256 |
+
# check various properties. However, tensors are a bit special;
|
257 |
+
# it is too slow to check their properties one-by-one in Python.
|
258 |
+
# Instead, there is a C++ function TensorGuards.check which takes
|
259 |
+
# all of the tensor arguments and checks them all against compile-time
|
260 |
+
# examples entirely in C++. Thus, every time we process a
|
261 |
+
# TENSOR_MATCH guard, we just add another entry to
|
262 |
+
# tensor_check_names/tensor_check_examples, saying "for this local,
|
263 |
+
# check it against this example", and it all ends up getting
|
264 |
+
# swept up into a single call to ___check_tensors. Invariant:
|
265 |
+
# len(tensor_check_names) == len(tensor_check_examples).
|
266 |
+
# TODO: something here
|
267 |
+
self.tensor_check_names: List[str] = []
|
268 |
+
self.tensor_check_examples: List[torch.Tensor] = []
|
269 |
+
self.tensor_check_guards: List[Guard] = []
|
270 |
+
|
271 |
+
self.check_fn_manager: CheckFunctionManager = check_fn_manager
|
272 |
+
# Keep track of weak references of objects with ID_MATCH guard. This
|
273 |
+
# info is stored alongside optimized_code and check_fn and is used to
|
274 |
+
# limit the number of cache entries with same ID_MATCH'd object.
|
275 |
+
self.id_matched_objs: Dict[str, ReferenceType[object]] = {}
|
276 |
+
|
277 |
+
# Warning: use this with care! This lets you access what the current
|
278 |
+
# value of the value you are guarding on is. You probably don't want
|
279 |
+
# to actually durably save this value though (because it's specific
|
280 |
+
# to this frame!) Instead, you should be reading out some property
|
281 |
+
# (like its type) which is what you permanently install into the
|
282 |
+
# guard code.
|
283 |
+
def get(self, name: str) -> Any:
|
284 |
+
return eval(name, self.scope, CLOSURE_VARS)
|
285 |
+
|
286 |
+
# Registers the usage of the source name referenced by the
|
287 |
+
# string (or stored in the Guard) as being guarded upon. It's important
|
288 |
+
# to call this before generating some code that makes use of 'guard',
|
289 |
+
# because without this call, we won't actually bind the variable
|
290 |
+
# you reference in the actual guard closure (oops!)
|
291 |
+
def arg_ref(self, guard: Union[str, Guard]) -> str:
|
292 |
+
name: str
|
293 |
+
if isinstance(guard, str):
|
294 |
+
name = guard
|
295 |
+
else:
|
296 |
+
name = guard.name
|
297 |
+
base = strip_getattr_getitem(strip_function_call(name))
|
298 |
+
if base not in self.argnames:
|
299 |
+
if re.match(r"[a-zA-Z0-9_]+", base):
|
300 |
+
if re.match(r"^\d+$", base):
|
301 |
+
log.warning("invalid var name: %s", guard)
|
302 |
+
self.argnames.append(base)
|
303 |
+
|
304 |
+
return name
|
305 |
+
|
306 |
+
def _guard_on_attribute(self, guard: Guard, attr_name: str, guard_fn):
|
307 |
+
attr_source = AttrSource(guard.originating_source, attr_name)
|
308 |
+
# Copy the stack info
|
309 |
+
new_guard = Guard(
|
310 |
+
attr_source, guard_fn, stack=guard.stack, user_stack=guard.user_stack
|
311 |
+
)
|
312 |
+
new_guard.create(self)
|
313 |
+
|
314 |
+
def TYPE_MATCH(self, guard: Guard) -> None:
|
315 |
+
# ___check_type_id is same as `id(type(x)) == y`
|
316 |
+
t = type(self.get(guard.name))
|
317 |
+
obj_id = self.id_ref(t)
|
318 |
+
code = f"___check_type_id({self.arg_ref(guard)}, {obj_id})"
|
319 |
+
self._produce_guard_code(guard, [code])
|
320 |
+
|
321 |
+
def DICT_VERSION(self, guard: Guard):
|
322 |
+
# ___check_dict_version is same as `dict_version(x) == y`
|
323 |
+
ref = self.arg_ref(guard)
|
324 |
+
version = dict_version(self.get(guard.name))
|
325 |
+
code = f"___dict_version({ref}) == {version}"
|
326 |
+
self._produce_guard_code(guard, [code])
|
327 |
+
|
328 |
+
def DICT_CONTAINS(self, guard: Guard, key: str, invert: bool):
|
329 |
+
dict_ref = self.arg_ref(guard)
|
330 |
+
|
331 |
+
maybe_not = "not " if invert else ""
|
332 |
+
code = f"{maybe_not}___dict_contains({key!r}, {dict_ref})"
|
333 |
+
return self._produce_guard_code(guard, [code])
|
334 |
+
|
335 |
+
def BOOL_FALSE(self, guard: Guard):
|
336 |
+
# Guard on the runtime value being 'False',
|
337 |
+
# can be faster than seemingly equivalent checks like DICT_KEYS for empty dict
|
338 |
+
#
|
339 |
+
# WARNING: this guard is not safe to use generally. It only works if the runtime
|
340 |
+
# value is of a type that supports bool(), and some types e.g. Tensor do not.
|
341 |
+
# Only use this guard in cases you can guarantee the runtime type will be friendly.
|
342 |
+
# (e.g. Specialized NNModule with mutation protection via setattr)
|
343 |
+
#
|
344 |
+
# Why not simply check the runtime type inside this guard? It's slow enough to defeat
|
345 |
+
# the purpose of using this guard, which itself is supposed to be a faster alternative
|
346 |
+
# to DICT_KEYS.
|
347 |
+
ref = self.arg_ref(guard)
|
348 |
+
code = f"not {ref}"
|
349 |
+
self._produce_guard_code(guard, [code])
|
350 |
+
|
351 |
+
def ID_MATCH(self, guard: Guard):
|
352 |
+
# ___check_obj_id is same as `id(x) == y`
|
353 |
+
if isinstance(guard.originating_source, TypeSource):
|
354 |
+
# optional optimization to produce cleaner/faster guard code
|
355 |
+
return self.TYPE_MATCH(
|
356 |
+
Guard(guard.originating_source.base, GuardBuilder.TYPE_MATCH) # type: ignore[arg-type]
|
357 |
+
)
|
358 |
+
|
359 |
+
ref = self.arg_ref(guard)
|
360 |
+
val = self.get(guard.name)
|
361 |
+
code = f"___check_obj_id({ref}, {self.id_ref(val)})"
|
362 |
+
self._produce_guard_code(guard, [code])
|
363 |
+
|
364 |
+
# Keep track of ID_MATCH'd objects. This will be used to modify the
|
365 |
+
# cache size logic
|
366 |
+
if isinstance(guard.originating_source, LocalSource):
|
367 |
+
# TODO(janimesh) - This is currently restricted to nn.Module objects
|
368 |
+
# because many other ID_MATCH'd objects fail - like DeviceMesh.
|
369 |
+
# Increase the scope of ID_MATCH'd objects.
|
370 |
+
if isinstance(val, torch.nn.Module):
|
371 |
+
local_name = guard.originating_source.local_name
|
372 |
+
weak_id = self.lookup_weakrefs(val)
|
373 |
+
if weak_id is not None:
|
374 |
+
self.id_matched_objs[local_name] = weak_id
|
375 |
+
|
376 |
+
def NAME_MATCH(self, guard: Guard):
|
377 |
+
obj = self.get(guard.name)
|
378 |
+
self._guard_on_attribute(guard, "__name__", GuardBuilder.EQUALS_MATCH)
|
379 |
+
|
380 |
+
def DATA_PTR_MATCH(self, guard: Guard):
|
381 |
+
obj = self.get(guard.name)
|
382 |
+
code = f"{self.arg_ref(guard)}.data_ptr() == {obj.data_ptr()}"
|
383 |
+
self._produce_guard_code(guard, [code])
|
384 |
+
|
385 |
+
def HASATTR(self, guard: Guard):
|
386 |
+
assert isinstance(
|
387 |
+
guard.originating_source, AttrSource
|
388 |
+
), f"invalid source {guard.name}"
|
389 |
+
base_source = guard.originating_source.base
|
390 |
+
base = base_source.name()
|
391 |
+
attr = guard.originating_source.member
|
392 |
+
|
393 |
+
ref = self.arg_ref(base)
|
394 |
+
val = hasattr(self.get(base), attr)
|
395 |
+
code = None
|
396 |
+
if val:
|
397 |
+
code = f"hasattr({ref}, {attr!r})"
|
398 |
+
else:
|
399 |
+
code = f"not hasattr({ref}, {attr!r})"
|
400 |
+
|
401 |
+
self._produce_guard_code(guard, [code], provided_guarded_object=self.get(base))
|
402 |
+
|
403 |
+
def FUNCTORCH_STACK_MATCH(self, guard: Guard):
|
404 |
+
# Invalidate functorch code if current level is different than
|
405 |
+
# the one when FX graph was generated
|
406 |
+
# if torch._C._functorch.peek_interpreter_stack() is not None:
|
407 |
+
cis = torch._functorch.pyfunctorch.retrieve_all_functorch_interpreters()
|
408 |
+
states = [ci.get_state() for ci in cis]
|
409 |
+
code = [f"torch._functorch.pyfunctorch.compare_functorch_state({states})"]
|
410 |
+
self._produce_guard_code(guard, code)
|
411 |
+
|
412 |
+
def EQUALS_MATCH(self, guard: Guard):
|
413 |
+
ref = self.arg_ref(guard)
|
414 |
+
val = self.get(guard.name)
|
415 |
+
t = type(val)
|
416 |
+
if np:
|
417 |
+
np_types: Tuple[Type[Any], ...] = (
|
418 |
+
np.int8,
|
419 |
+
np.int16,
|
420 |
+
np.int32,
|
421 |
+
np.int64,
|
422 |
+
np.uint8,
|
423 |
+
np.uint16,
|
424 |
+
np.uint32,
|
425 |
+
np.uint64,
|
426 |
+
np.float16,
|
427 |
+
np.float32,
|
428 |
+
np.float64,
|
429 |
+
)
|
430 |
+
else:
|
431 |
+
np_types = ()
|
432 |
+
ok_types = tuple(
|
433 |
+
common_constant_types
|
434 |
+
| {
|
435 |
+
type,
|
436 |
+
list,
|
437 |
+
tuple,
|
438 |
+
set,
|
439 |
+
frozenset,
|
440 |
+
slice,
|
441 |
+
range,
|
442 |
+
torch.Size,
|
443 |
+
*np_types,
|
444 |
+
}
|
445 |
+
)
|
446 |
+
if istype(val, dict):
|
447 |
+
assert all(
|
448 |
+
istype(x, ok_types) for x in itertools.chain(val.keys(), val.values())
|
449 |
+
)
|
450 |
+
else:
|
451 |
+
assert istype(
|
452 |
+
val,
|
453 |
+
ok_types,
|
454 |
+
), f"Unexpected type {type(val)}, not in {ok_types}"
|
455 |
+
|
456 |
+
# Special case for nan because float("nan") == float("nan") evaluates to False
|
457 |
+
if istype(val, float) and math.isnan(val):
|
458 |
+
self.TYPE_MATCH(guard)
|
459 |
+
code = list()
|
460 |
+
code.append(f"__math_isnan({ref})")
|
461 |
+
self._produce_guard_code(guard, code)
|
462 |
+
return
|
463 |
+
# Python math library doesn't support complex nan, so we need to use numpy
|
464 |
+
elif istype(val, complex) and np.isnan(val):
|
465 |
+
self.TYPE_MATCH(guard)
|
466 |
+
code = list()
|
467 |
+
code.append(f"__numpy_isnan({ref})")
|
468 |
+
self._produce_guard_code(guard, code)
|
469 |
+
return
|
470 |
+
|
471 |
+
code = list()
|
472 |
+
|
473 |
+
# If matching equality against list/tuple, we must also check that
|
474 |
+
# the internal types match. (TODO: what about nested lists?)
|
475 |
+
if istype(val, (list, tuple)):
|
476 |
+
# NB: SEQUENCE_LENGTH takes care of the outer __check_type_id test
|
477 |
+
self.SEQUENCE_LENGTH(guard)
|
478 |
+
|
479 |
+
for idx, elem in enumerate(val):
|
480 |
+
code.append(
|
481 |
+
f"___check_type_id({ref}[{idx}], {self.id_ref(type(elem))})"
|
482 |
+
)
|
483 |
+
else:
|
484 |
+
# Add type check to prevent equality check between tensor and non-tensor.
|
485 |
+
self.TYPE_MATCH(guard)
|
486 |
+
|
487 |
+
if istype(val, torch.Size):
|
488 |
+
val = tuple(val)
|
489 |
+
|
490 |
+
# Code object can not be compared against their string representation
|
491 |
+
# I.e `eval(f"{compile('2+2','','exec')!r}")` raises SyntaxError
|
492 |
+
assert not istype(val, types.CodeType)
|
493 |
+
|
494 |
+
# TODO: It feels like it would be better to just implement our own
|
495 |
+
# equality test in C that handles all of the necessary type checking
|
496 |
+
# and NaN tests
|
497 |
+
code.append(f"{ref} == {val!r}")
|
498 |
+
self._produce_guard_code(guard, code)
|
499 |
+
|
500 |
+
def CONSTANT_MATCH(self, guard: Guard):
|
501 |
+
val = self.get(guard.name)
|
502 |
+
if istype(val, (bool, type(None), types.CodeType)):
|
503 |
+
self.ID_MATCH(guard)
|
504 |
+
else:
|
505 |
+
self.EQUALS_MATCH(guard)
|
506 |
+
|
507 |
+
def NN_MODULE(self, guard: Guard):
|
508 |
+
self.ID_MATCH(guard)
|
509 |
+
ref = self.arg_ref(guard)
|
510 |
+
val = self.get(guard.name)
|
511 |
+
|
512 |
+
def setup_guard():
|
513 |
+
assert istype(val.training, bool)
|
514 |
+
self._guard_on_attribute(guard, "training", GuardBuilder.CONSTANT_MATCH)
|
515 |
+
|
516 |
+
if hasattr(val, "training"):
|
517 |
+
# There are cases where a monkeypatched object has a guard made between __new__ and __init__
|
518 |
+
setup_guard()
|
519 |
+
else:
|
520 |
+
exc.unimplemented(f"Guard setup for uninitialized class {type(val)}")
|
521 |
+
|
522 |
+
def FUNCTION_MATCH(self, guard: Guard):
|
523 |
+
"""things like torch.add and user defined functions"""
|
524 |
+
if guard.is_local():
|
525 |
+
return self.ID_MATCH(guard)
|
526 |
+
|
527 |
+
def CLOSURE_MATCH(self, guard: Guard):
|
528 |
+
"""matches a closure by __code__ id."""
|
529 |
+
if guard.is_local():
|
530 |
+
val = self.get(guard.name)
|
531 |
+
# Strictly only want user-defined functions
|
532 |
+
if type(val) == types.FunctionType and hasattr(val, "__code__"):
|
533 |
+
self._guard_on_attribute(guard, "__code__", GuardBuilder.HASATTR)
|
534 |
+
self._guard_on_attribute(guard, "__code__", GuardBuilder.FUNCTION_MATCH)
|
535 |
+
else:
|
536 |
+
self.FUNCTION_MATCH(guard)
|
537 |
+
|
538 |
+
def BUILTIN_MATCH(self, guard: Guard):
|
539 |
+
return self.FUNCTION_MATCH(guard)
|
540 |
+
|
541 |
+
def PYMODULE_MATCH(self, guard: Guard):
|
542 |
+
return self.FUNCTION_MATCH(guard)
|
543 |
+
|
544 |
+
def SEQUENCE_LENGTH(self, guard):
|
545 |
+
# This guard is used to check lenght of PySequence objects like list,
|
546 |
+
# tuple, collections.deque etc
|
547 |
+
ref = self.arg_ref(guard)
|
548 |
+
value = self.get(guard.name)
|
549 |
+
t = type(value)
|
550 |
+
|
551 |
+
self.TYPE_MATCH(guard)
|
552 |
+
code = list()
|
553 |
+
if len(value) == 0:
|
554 |
+
code.append(f"not {ref}")
|
555 |
+
else:
|
556 |
+
code.append(f"len({ref}) == {len(value)}")
|
557 |
+
|
558 |
+
self._produce_guard_code(guard, code)
|
559 |
+
|
560 |
+
def DICT_LENGTH(self, guard):
|
561 |
+
self.SEQUENCE_LENGTH(guard)
|
562 |
+
|
563 |
+
def TUPLE_ITERATOR_LEN(self, guard):
|
564 |
+
ref = self.arg_ref(guard)
|
565 |
+
value = self.get(guard.name)
|
566 |
+
t = type(value)
|
567 |
+
|
568 |
+
self.TYPE_MATCH(guard)
|
569 |
+
code = list()
|
570 |
+
code.append(f"___tuple_iterator_len({ref}) == {tuple_iterator_len(value)}")
|
571 |
+
|
572 |
+
self._produce_guard_code(guard, code)
|
573 |
+
|
574 |
+
# TODO(voz): Deduplicate w/ AOTAutograd dupe input guards
|
575 |
+
def DUPLICATE_INPUT(self, guard, source_b):
|
576 |
+
ref_a = self.arg_ref(guard)
|
577 |
+
ref_b = self.arg_ref(source_b.name())
|
578 |
+
|
579 |
+
code = [f"{ref_b} is {ref_a}"]
|
580 |
+
self._produce_guard_code(guard, code)
|
581 |
+
|
582 |
+
def DICT_KEYS(self, guard):
|
583 |
+
# Guard on the keys and their order
|
584 |
+
ref = self.arg_ref(guard)
|
585 |
+
value = self.get(guard.name)
|
586 |
+
t = type(value)
|
587 |
+
|
588 |
+
self.TYPE_MATCH(guard)
|
589 |
+
code = list()
|
590 |
+
any_key_is_id = any(key_is_id(k) for k in value.keys())
|
591 |
+
const_keys_repr = dict_keys_repr(
|
592 |
+
key_to_id(value),
|
593 |
+
local=is_from_local_source(guard.originating_source),
|
594 |
+
)
|
595 |
+
if any_key_is_id:
|
596 |
+
code.append(f"___key_to_id({ref}) == {const_keys_repr}")
|
597 |
+
else:
|
598 |
+
code.append(f"list({ref}.keys()) == {const_keys_repr}")
|
599 |
+
|
600 |
+
self._produce_guard_code(guard, code)
|
601 |
+
|
602 |
+
def WEAKREF_ALIVE(self, guard):
|
603 |
+
self._produce_guard_code(guard, [f"{self.arg_ref(guard)} is not None"])
|
604 |
+
|
605 |
+
def NN_MODULE_PARAM_NAMES(self, guard):
|
606 |
+
ref = self.arg_ref(guard)
|
607 |
+
value = self.get(guard.name)
|
608 |
+
t = type(value)
|
609 |
+
keys = {k for k, v in value.named_parameters()}
|
610 |
+
|
611 |
+
self.TYPE_MATCH(guard)
|
612 |
+
code = list()
|
613 |
+
code.append(f"{{k for k, v in {ref}.named_parameters()}} == {keys!r}")
|
614 |
+
|
615 |
+
self._produce_guard_code(guard, code)
|
616 |
+
|
617 |
+
def DICT_CONST_KEYS(self, guard):
|
618 |
+
"""Constant keys match"""
|
619 |
+
ref = self.arg_ref(guard)
|
620 |
+
value = self.get(guard.name)
|
621 |
+
t = type(value)
|
622 |
+
|
623 |
+
self.TYPE_MATCH(guard)
|
624 |
+
code = list()
|
625 |
+
code.append(f"list({ref}.keys()) == {list(value.keys())!r}")
|
626 |
+
|
627 |
+
self._produce_guard_code(guard, code)
|
628 |
+
|
629 |
+
def OBJECT_MUTATION(self, guard: Guard):
|
630 |
+
mutation_guard.watch(self.get(guard.name), self.check_fn_manager)
|
631 |
+
|
632 |
+
def GRAD_MODE(self, guard: Guard):
|
633 |
+
pass # we always guard on this via GlobalStateGuard()
|
634 |
+
|
635 |
+
def DETERMINISTIC_ALGORITHMS(self, guard: Guard):
|
636 |
+
pass # we always guard on this via GlobalStateGuard()
|
637 |
+
|
638 |
+
def TORCH_FUNCTION_STATE(self, guard: Guard):
|
639 |
+
pass # we always guard on this via GlobalStateGuard()
|
640 |
+
|
641 |
+
def DEFAULT_DEVICE(self, guard: Guard):
|
642 |
+
"""Guard on CURRENT_DEVICE per torch.utils._device"""
|
643 |
+
assert guard.source is GuardSource.GLOBAL
|
644 |
+
import torch.utils._device as m
|
645 |
+
|
646 |
+
self._produce_guard_code(
|
647 |
+
guard, [f"utils_device.CURRENT_DEVICE == {m.CURRENT_DEVICE!r}"]
|
648 |
+
)
|
649 |
+
|
650 |
+
def BACKEND_MATCH(self, guard: Guard):
|
651 |
+
"""Guard on backend matching based on id of current_backend"""
|
652 |
+
assert guard.source is GuardSource.GLOBAL
|
653 |
+
backend_id = (
|
654 |
+
f"{id(torch._dynamo.eval_frame.guarded_backend_cache.current_backend)}"
|
655 |
+
)
|
656 |
+
code = [f"___check_current_backend({backend_id})"]
|
657 |
+
self._produce_guard_code(guard, code)
|
658 |
+
|
659 |
+
def SHAPE_ENV(self, guard: Guard):
|
660 |
+
# Let's handle ShapeEnv guards. To do this, we will resolve
|
661 |
+
# shape variables to sources from tracked_fakes. This must happen after
|
662 |
+
# tensor checks.
|
663 |
+
assert guard.name == ""
|
664 |
+
output_graph = self.check_fn_manager.output_graph
|
665 |
+
# NB: self.output_graph can be None in the debug_nops tests
|
666 |
+
fs = output_graph.tracked_fakes
|
667 |
+
input_contexts = [a.symbolic_context for a in fs]
|
668 |
+
|
669 |
+
def get_sources(t_id, dim):
|
670 |
+
# Looks up base sources mapped to a tensor id and uses them to create
|
671 |
+
# sources for the corresponding tensor dimension.
|
672 |
+
return [
|
673 |
+
TensorPropertySource(source, TensorProperty.SIZE, dim)
|
674 |
+
for source in output_graph.tracked_fakes_id_to_source[t_id]
|
675 |
+
]
|
676 |
+
|
677 |
+
if output_graph.export_constraints:
|
678 |
+
from sympy import Symbol
|
679 |
+
|
680 |
+
source_pairs: List[Tuple[Source, Source]] = []
|
681 |
+
derived_equalities: List[ # type: ignore[type-arg]
|
682 |
+
Tuple[Source, Union[Source, Symbol], Callable]
|
683 |
+
] = []
|
684 |
+
phantom_symbols: Dict[str, Symbol] = {}
|
685 |
+
for constraint in output_graph.export_constraints:
|
686 |
+
if constraint.t_id in output_graph.tracked_fakes_id_to_source:
|
687 |
+
torch.export.dynamic_shapes._process_equalities(
|
688 |
+
constraint,
|
689 |
+
get_sources,
|
690 |
+
output_graph.shape_env,
|
691 |
+
source_pairs,
|
692 |
+
derived_equalities,
|
693 |
+
phantom_symbols,
|
694 |
+
)
|
695 |
+
else:
|
696 |
+
log.warning("Untracked tensor used in export constraints")
|
697 |
+
equalities_inputs = EqualityConstraint(
|
698 |
+
source_pairs=source_pairs,
|
699 |
+
derived_equalities=derived_equalities,
|
700 |
+
phantom_symbols=list(phantom_symbols.values()),
|
701 |
+
warn_only=False,
|
702 |
+
)
|
703 |
+
else:
|
704 |
+
equalities_inputs = None
|
705 |
+
guards = output_graph.shape_env.produce_guards(
|
706 |
+
[a.fake for a in fs],
|
707 |
+
[a.source for a in fs],
|
708 |
+
input_contexts=input_contexts,
|
709 |
+
equalities_inputs=equalities_inputs,
|
710 |
+
source_ref=self.source_ref,
|
711 |
+
# Export keeps static.
|
712 |
+
ignore_static=(not self.check_fn_manager.output_graph.export),
|
713 |
+
)
|
714 |
+
# When exporting, we may work with the shape constraints some more in
|
715 |
+
# postprocessing, so don't freeze yet
|
716 |
+
if not self.check_fn_manager.output_graph.export:
|
717 |
+
output_graph.shape_env.freeze()
|
718 |
+
for shape_guard in guards:
|
719 |
+
self._produce_guard_code(guard, [shape_guard], shape_env=True)
|
720 |
+
|
721 |
+
def TENSOR_MATCH(self, guard: Guard, value=None):
|
722 |
+
if guard.is_nn_module() or guard.originating_source.is_dict_key():
|
723 |
+
self.ID_MATCH(guard)
|
724 |
+
else:
|
725 |
+
if isinstance(value, TensorWeakRef):
|
726 |
+
value = value()
|
727 |
+
|
728 |
+
value = value if value is not None else self.get(guard.name)
|
729 |
+
assert isinstance(value, torch.Tensor)
|
730 |
+
|
731 |
+
tensor_name = self.arg_ref(guard)
|
732 |
+
# [Note - On Export Tensor Guards]
|
733 |
+
#
|
734 |
+
# In eager mode, tensor guards are evaluated through C++, in guards.cpp
|
735 |
+
# see [Note - On Eager Tensor Guards] for more info.
|
736 |
+
#
|
737 |
+
# In export mode, we instead maintain parallel logic between C++ and python
|
738 |
+
# here, with an exception of checking the dispatch key - with the idea that a dispatch key
|
739 |
+
# is an entirely runtime notion that would make no sense to keep in an exported graph.
|
740 |
+
#
|
741 |
+
# Now, this idea is okay, but to paraphrase @ezyang, this mental model is sufficient for now, although
|
742 |
+
# not entirely true.
|
743 |
+
# For example, suppose one of the input tensors had the negative dispatch key.
|
744 |
+
# You should end up with a graph that is specialized for tensors that have a negative dispatch key.
|
745 |
+
# If you allow a Tensor that does NOT have this bit set, you will accidentally run it "as if" it were negated.
|
746 |
+
# Now, negative key only shows up for complex numbers, and most likely, the exported to target doesn't
|
747 |
+
# support this feature at all, but the point stands that :some: tensor state only shows up on dispatch key.
|
748 |
+
# TODO(voz): Either populate a dispatch_key check into the guards, or error on users passing in an unsupported
|
749 |
+
# subset of keys during export.
|
750 |
+
#
|
751 |
+
# The list of tensor fields and calls we care about can be found in `terms` below.
|
752 |
+
# TODO(voz): We are missing storage offset in all our tensor guards?
|
753 |
+
code: List[str] = list()
|
754 |
+
if self.check_fn_manager.output_graph.export:
|
755 |
+
self.TYPE_MATCH(guard)
|
756 |
+
terms = [
|
757 |
+
"dtype",
|
758 |
+
"device",
|
759 |
+
"requires_grad",
|
760 |
+
"ndimension()",
|
761 |
+
]
|
762 |
+
|
763 |
+
for term in terms:
|
764 |
+
real_value = self.get(tensor_name + "." + term)
|
765 |
+
if istype(real_value, (torch.device, torch.dtype)):
|
766 |
+
# copy pasted from EQUALS_MATCH
|
767 |
+
code.append(f"str({tensor_name}.{term}) == {str(real_value)!r}")
|
768 |
+
else:
|
769 |
+
code.append(f"{tensor_name}.{term} == {real_value}")
|
770 |
+
else:
|
771 |
+
self.tensor_check_names.append(tensor_name)
|
772 |
+
self.tensor_check_examples.append(value)
|
773 |
+
self.tensor_check_guards.append(guard)
|
774 |
+
|
775 |
+
# A frame is valid for reuse with dynamic dimensions if the new
|
776 |
+
# (user-requested) dynamic dimensions are a subset of the old
|
777 |
+
# (already compiled) dynamic dimensions.
|
778 |
+
#
|
779 |
+
# It's a little non-obvious why you'd want this: in particular,
|
780 |
+
# if an already compiled frame matches all of the guards, why
|
781 |
+
# not just use it, why force a recompile?
|
782 |
+
#
|
783 |
+
# We force it for two reasons:
|
784 |
+
#
|
785 |
+
# - The user *required* us to compile with a new dynamic dimension,
|
786 |
+
# we should not ignore that and serve up the old, specialized
|
787 |
+
# frame. Listen to the user!
|
788 |
+
#
|
789 |
+
# - In fact, we are obligated to *raise an error* if we fail to
|
790 |
+
# make the requested dimension dynamic. If we don't
|
791 |
+
# recompile, we can't tell if that dimension can actually be
|
792 |
+
# made dynamic.
|
793 |
+
#
|
794 |
+
# If the new dynamic dims are a subset of the old, we already know
|
795 |
+
# we can make them dynamic (since we made them dynamic in old).
|
796 |
+
# This is slightly unsound, because maybe your input size is
|
797 |
+
# [s0, s0, s1] and so you can do it dynamic if you say dynamic
|
798 |
+
# dims {0, 1, 2} but you can't if you only do {0, 2} (because now
|
799 |
+
# the second s0 is specialized). But we're not entirely sure if
|
800 |
+
# this is a good idea anyway lol... (if you want to try removing
|
801 |
+
# this logic, be my guest! -- ezyang 2024)
|
802 |
+
#
|
803 |
+
assert guard.source is not None
|
804 |
+
static, reason = tensor_always_has_static_shape(
|
805 |
+
value, is_tensor=True, guard_source=guard.source
|
806 |
+
)
|
807 |
+
if not static:
|
808 |
+
if hasattr(value, "_dynamo_dynamic_indices"):
|
809 |
+
code.append(
|
810 |
+
f"(({tensor_name}._dynamo_dynamic_indices.issubset({value._dynamo_dynamic_indices})) if hasattr({tensor_name}, '_dynamo_dynamic_indices') else True)" # noqa: B950
|
811 |
+
)
|
812 |
+
# In the case of us not having any dynamic dimension indices, we compiled the frame with no chance of
|
813 |
+
# raising for this specific tensor - and any inputs with more dynamic user directives specified must be recompiled.
|
814 |
+
else:
|
815 |
+
code.append(
|
816 |
+
f"hasattr({tensor_name}, '_dynamo_dynamic_indices') == False"
|
817 |
+
)
|
818 |
+
if len(code) > 0:
|
819 |
+
self._produce_guard_code(guard, code)
|
820 |
+
|
821 |
+
# A util that appends guarded code, or, in the case of export, adds data onto guards
|
822 |
+
def _produce_guard_code(
|
823 |
+
self, guard, code_list, provided_guarded_object=None, shape_env=False
|
824 |
+
):
|
825 |
+
# WARNING: It is important that cur_frame/caller do NOT stay in
|
826 |
+
# the current frame, because they will keep things live longer
|
827 |
+
# than they should. See TestMisc.test_release_module_memory
|
828 |
+
cur_frame = currentframe()
|
829 |
+
assert cur_frame is not None
|
830 |
+
caller = cur_frame.f_back
|
831 |
+
del cur_frame
|
832 |
+
assert caller is not None
|
833 |
+
func_name = getframeinfo(caller)[2]
|
834 |
+
del caller
|
835 |
+
# We use func_name for export, so might as well get a nice defensive check out of it
|
836 |
+
assert func_name in dir(
|
837 |
+
self.__class__
|
838 |
+
), f"_produce_guard_code must be called from inside GuardedCode. Called from {func_name}"
|
839 |
+
|
840 |
+
if shape_env:
|
841 |
+
self.shape_env_code.append(GuardCodeList(code_list, guard))
|
842 |
+
else:
|
843 |
+
self.code.append(GuardCodeList(code_list, guard))
|
844 |
+
|
845 |
+
# Not all guards have names, some can be installed globally (see asserts on HAS_GRAD)
|
846 |
+
if provided_guarded_object is None:
|
847 |
+
name_valid = guard.name is not None and guard.name != ""
|
848 |
+
|
849 |
+
guarded_object = self.get(guard.name) if name_valid else None
|
850 |
+
else:
|
851 |
+
guarded_object = provided_guarded_object
|
852 |
+
|
853 |
+
guarded_object_type = (
|
854 |
+
weakref.ref(type(guarded_object)) if guarded_object is not None else None
|
855 |
+
)
|
856 |
+
obj_ref = None
|
857 |
+
# Not necessary to have weakref for Enum type, but there is a bug that
|
858 |
+
# makes hasattr(guarded_object.__class__, "__weakref__") return True.
|
859 |
+
if hasattr(guarded_object.__class__, "__weakref__") and not isinstance(
|
860 |
+
guarded_object, enum.Enum
|
861 |
+
):
|
862 |
+
obj_ref = weakref.ref(guarded_object)
|
863 |
+
|
864 |
+
guard.set_export_info(
|
865 |
+
func_name,
|
866 |
+
guarded_object_type,
|
867 |
+
code_list,
|
868 |
+
obj_ref,
|
869 |
+
)
|
870 |
+
|
871 |
+
|
872 |
+
# Common Sub-Expression Elimination for Python expressions.
|
873 |
+
#
|
874 |
+
# There are 2 steps to this pass:
|
875 |
+
# 1. Count the frequency of each sub-expression (i.e. inner
|
876 |
+
# node in the AST tree)
|
877 |
+
#
|
878 |
+
# 2. Replace those that occur more than once by a fresh variable 'v'.
|
879 |
+
# 'v' will be defined in the 'preface' list (output argument to
|
880 |
+
# 'NodeTransformer')
|
881 |
+
#
|
882 |
+
# NB: the use of 'ast.unparse' while visiting the nodes makes this pass
|
883 |
+
# quadratic on the depth of the tree.
|
884 |
+
#
|
885 |
+
# NB: this pass creates a new variable for each AST node that is repeated
|
886 |
+
# more than 'USE_THRESHOLD'. e.g. if 'a.b.c.d' is used 10 times, 'a.b.c'
|
887 |
+
# and 'a.b' are also used 10 times. So, there will be a new variable for
|
888 |
+
# each of them.
|
889 |
+
class PyExprCSEPass:
|
890 |
+
# Maximum number of times a given expression can be used without being
|
891 |
+
# replaced by a fresh variable.
|
892 |
+
USE_THRESHOLD = 1
|
893 |
+
|
894 |
+
# Ad-Hoc: AST nodes this pass focuses on.
|
895 |
+
ALLOWED_NODE_TYPES = (ast.Attribute, ast.Call, ast.Subscript)
|
896 |
+
|
897 |
+
@dataclasses.dataclass
|
898 |
+
class Config:
|
899 |
+
expr_count: Dict[str, int]
|
900 |
+
expr_to_name: Dict[str, str]
|
901 |
+
|
902 |
+
class ExprCounter(ast.NodeVisitor):
|
903 |
+
def __init__(self, config: PyExprCSEPass.Config) -> None:
|
904 |
+
self._config = config
|
905 |
+
|
906 |
+
def visit(self, node: ast.AST) -> Any:
|
907 |
+
if isinstance(node, PyExprCSEPass.ALLOWED_NODE_TYPES):
|
908 |
+
self._config.expr_count[_ast_unparse(node)] += 1
|
909 |
+
super().visit(node)
|
910 |
+
|
911 |
+
class Replacer(ast.NodeTransformer):
|
912 |
+
def __init__(
|
913 |
+
self,
|
914 |
+
config: PyExprCSEPass.Config,
|
915 |
+
gen_name: Callable[[], str],
|
916 |
+
) -> None:
|
917 |
+
super().__init__()
|
918 |
+
self._config = config
|
919 |
+
self._gen_name = gen_name
|
920 |
+
self.preface: List[str] = []
|
921 |
+
|
922 |
+
def visit(self, node: ast.AST) -> Any:
|
923 |
+
if isinstance(node, PyExprCSEPass.ALLOWED_NODE_TYPES):
|
924 |
+
expr = _ast_unparse(node)
|
925 |
+
|
926 |
+
# Replacement only occurs if a given expression is used more
|
927 |
+
# than once.
|
928 |
+
if self._config.expr_count[expr] > PyExprCSEPass.USE_THRESHOLD:
|
929 |
+
if expr not in self._config.expr_to_name:
|
930 |
+
# Parent 'visit' is called so that we CSE the inner expressions first.
|
931 |
+
#
|
932 |
+
# The resulting expression is used as right-hand-side of the variable
|
933 |
+
# assignment. i.e. we are CSE-ing the children before the parents.
|
934 |
+
#
|
935 |
+
# Indexing still uses the old 'node', since that's what was counted
|
936 |
+
# by the 'NodeVisitor'.
|
937 |
+
node_ = super().visit(node)
|
938 |
+
expr_ = _ast_unparse(node_)
|
939 |
+
var_name = self._gen_name()
|
940 |
+
self.preface.append(f"{var_name} = {expr_}")
|
941 |
+
self._config.expr_to_name[expr] = var_name
|
942 |
+
else:
|
943 |
+
var_name = self._config.expr_to_name[expr]
|
944 |
+
return ast.Name(var_name, ast.Load())
|
945 |
+
|
946 |
+
return super().visit(node)
|
947 |
+
|
948 |
+
def __init__(self) -> None:
|
949 |
+
self._counter = 0
|
950 |
+
self._config = self.Config(
|
951 |
+
expr_count=collections.defaultdict(lambda: 0), expr_to_name={}
|
952 |
+
)
|
953 |
+
|
954 |
+
def _new_var(self, prefix: str = "_var") -> str:
|
955 |
+
name = f"{prefix}{self._counter}"
|
956 |
+
self._counter += 1
|
957 |
+
return name
|
958 |
+
|
959 |
+
def count(self, exprs: List[str]) -> None:
|
960 |
+
counter = self.ExprCounter(self._config)
|
961 |
+
for e in exprs:
|
962 |
+
try:
|
963 |
+
counter.visit(ast.parse(e))
|
964 |
+
except SyntaxError as ex:
|
965 |
+
log.exception("Failed to visit expr at line %s.\n%s", ex.lineno, e)
|
966 |
+
raise
|
967 |
+
|
968 |
+
def replace(self, expr: str) -> Tuple[List[str], str]:
|
969 |
+
replacer = self.Replacer(self._config, self._new_var)
|
970 |
+
new_node = replacer.visit(ast.parse(expr))
|
971 |
+
return replacer.preface, _ast_unparse(new_node)
|
972 |
+
|
973 |
+
|
974 |
+
def must_add_nn_module_guards(guard):
|
975 |
+
# For config.guard_nn_modules=False, we can skip all the guards that
|
976 |
+
# originate from inside of nn module except for a few categories.
|
977 |
+
return (
|
978 |
+
# Guard for defaults
|
979 |
+
isinstance(guard.originating_source, DefaultsSource)
|
980 |
+
# Guard using dict tags if the config flag is set
|
981 |
+
or (
|
982 |
+
config.guard_nn_modules_using_dict_tags
|
983 |
+
and guard.create_fn is GuardBuilder.NN_MODULE
|
984 |
+
)
|
985 |
+
)
|
986 |
+
|
987 |
+
|
988 |
+
class DeletedGuardFn:
|
989 |
+
pass
|
990 |
+
|
991 |
+
|
992 |
+
# NB: Naively, you'd expect this to only be a function that produces
|
993 |
+
# the callable that constitutes the guard. However, there is some
|
994 |
+
# delicate handling for invalidating this check function when the
|
995 |
+
# locals/globals get invalidated, so there's some extra state
|
996 |
+
# we have to hold in this manager class.
|
997 |
+
class CheckFunctionManager:
|
998 |
+
def __init__(
|
999 |
+
self,
|
1000 |
+
output_graph=None,
|
1001 |
+
guard_fail_fn: Optional[Callable[[GuardFail], None]] = None,
|
1002 |
+
):
|
1003 |
+
guards = output_graph.guards if output_graph else None
|
1004 |
+
self._weakrefs: Dict[int, ReferenceType[object]] = {}
|
1005 |
+
self.output_graph = output_graph
|
1006 |
+
w_builder = None
|
1007 |
+
|
1008 |
+
def source_ref(source):
|
1009 |
+
guard_source = source.guard_source()
|
1010 |
+
if guard_source is GuardSource.CONSTANT:
|
1011 |
+
# No need to track constants
|
1012 |
+
return source.name()
|
1013 |
+
assert w_builder
|
1014 |
+
r_builder = w_builder()
|
1015 |
+
assert r_builder is not None
|
1016 |
+
return r_builder.arg_ref(source.name())
|
1017 |
+
|
1018 |
+
builder = GuardBuilder(
|
1019 |
+
self.id_ref,
|
1020 |
+
source_ref,
|
1021 |
+
self.lookup_weakrefs,
|
1022 |
+
output_graph.local_scope,
|
1023 |
+
output_graph.global_scope,
|
1024 |
+
self,
|
1025 |
+
)
|
1026 |
+
|
1027 |
+
# Break retain cycle. See test_release_scope_memory
|
1028 |
+
def cleanup_builder(weak_b):
|
1029 |
+
b = weak_b()
|
1030 |
+
if b:
|
1031 |
+
b.scope = None
|
1032 |
+
|
1033 |
+
# Break retain cycle. See test_release_input_memory
|
1034 |
+
w_builder = weakref.ref(builder, cleanup_builder)
|
1035 |
+
|
1036 |
+
for guard in sorted(guards or [], key=Guard.sort_key):
|
1037 |
+
if (
|
1038 |
+
not config.guard_nn_modules
|
1039 |
+
and guard.is_nn_module()
|
1040 |
+
# Default func args must be guarded on.
|
1041 |
+
# TODO: we could make use of 'DefaultsSource' and offer a .guard.is_defaults() API
|
1042 |
+
and "__defaults__" not in guard.name
|
1043 |
+
and "__kwdefaults__" not in guard.name
|
1044 |
+
and (config.skip_nnmodule_hook_guards or "hooks" not in guard.name)
|
1045 |
+
):
|
1046 |
+
continue
|
1047 |
+
|
1048 |
+
guard.create(builder)
|
1049 |
+
self.check_fn = self.compile_check_fn(builder, guards, guard_fail_fn)
|
1050 |
+
# Keep track of weak references of objects with ID_MATCH guard. This
|
1051 |
+
# info is stored alongside optimized_code and check_fn and is used to
|
1052 |
+
# limit the number of cache entries with same ID_MATCH'd object.
|
1053 |
+
# TODO(janimesh) - Currently this information is stored as an attr on
|
1054 |
+
# the check_fn itself to avoid changing CacehEntry datastructure in
|
1055 |
+
# eval_frame.c. In future, we should probably replace check_fn with a
|
1056 |
+
# queryable data structure such that this information is already present
|
1057 |
+
# in some form.
|
1058 |
+
self.check_fn.id_matched_objs = builder.id_matched_objs
|
1059 |
+
|
1060 |
+
# NB - We have to very careful of cleaning up here. Because of the
|
1061 |
+
# invalidate function, we can create a weakref finalizer that keeps
|
1062 |
+
# `self` alive for very long. Sometimes by mistake, we can run
|
1063 |
+
# invalidate for a type/object (check id_ref method) that Python can
|
1064 |
+
# leak by design, preventing us from calling the finalizer. In that
|
1065 |
+
# case, the `self` will be alive even though the cache entry will be
|
1066 |
+
# deleted (check invalidate method), which can cause a memory leak,
|
1067 |
+
# e.g., not setting output_graph = None can keep hold of nn_modules.
|
1068 |
+
self._weakrefs.clear()
|
1069 |
+
self.output_graph = None
|
1070 |
+
|
1071 |
+
def compile_check_fn(self, builder, guards_out, guard_fail_fn):
|
1072 |
+
# see parallel handling of ".0" / "___implicit0" in _eval_frame.c
|
1073 |
+
largs = builder.argnames
|
1074 |
+
largs += ["**___kwargs_ignored"]
|
1075 |
+
|
1076 |
+
guards_log.debug("GUARDS:")
|
1077 |
+
|
1078 |
+
# Don't report this guard, it's always the same, useless!
|
1079 |
+
code_parts = ["___check_global_state()"]
|
1080 |
+
verbose_code_parts = code_parts[:]
|
1081 |
+
structured_guard_fns = []
|
1082 |
+
|
1083 |
+
def add_code_part(code_part, guard, log_only=False):
|
1084 |
+
verbose_code_part = get_verbose_code_part(code_part, guard)
|
1085 |
+
guards_log.debug("%s", verbose_code_part)
|
1086 |
+
|
1087 |
+
structured_guard_fns.append(
|
1088 |
+
lambda: {
|
1089 |
+
"code": code_part,
|
1090 |
+
"stack": structured.from_traceback(guard.stack.summary())
|
1091 |
+
if guard.stack
|
1092 |
+
else None,
|
1093 |
+
"user_stack": structured.from_traceback(guard.user_stack)
|
1094 |
+
if guard.user_stack
|
1095 |
+
else None,
|
1096 |
+
}
|
1097 |
+
)
|
1098 |
+
|
1099 |
+
if verbose_guards_log.isEnabledFor(logging.DEBUG):
|
1100 |
+
maybe_stack = ""
|
1101 |
+
maybe_user_stack = ""
|
1102 |
+
if guard is not None:
|
1103 |
+
if guard.stack:
|
1104 |
+
maybe_stack = f"\nStack:\n{''.join(guard.stack.format())}"
|
1105 |
+
if guard.user_stack:
|
1106 |
+
maybe_user_stack = (
|
1107 |
+
f"\nUser stack:\n{''.join(guard.user_stack.format())}"
|
1108 |
+
)
|
1109 |
+
verbose_guards_log.debug(
|
1110 |
+
"Guard: %s%s%s",
|
1111 |
+
code_part,
|
1112 |
+
maybe_stack,
|
1113 |
+
maybe_user_stack,
|
1114 |
+
)
|
1115 |
+
|
1116 |
+
if not log_only:
|
1117 |
+
code_parts.append(code_part)
|
1118 |
+
verbose_code_parts.append(verbose_code_part)
|
1119 |
+
|
1120 |
+
seen = set()
|
1121 |
+
for gcl in builder.code:
|
1122 |
+
for code in gcl.code_list:
|
1123 |
+
if code not in seen:
|
1124 |
+
add_code_part(code, gcl.guard)
|
1125 |
+
seen.add(code)
|
1126 |
+
|
1127 |
+
tensor_check_names = builder.tensor_check_names
|
1128 |
+
check_tensors_fn = None
|
1129 |
+
check_tensors_verbose_fn = None
|
1130 |
+
if tensor_check_names:
|
1131 |
+
assert (
|
1132 |
+
not self.output_graph.export
|
1133 |
+
), "Illegal to set tensor_check_names in export."
|
1134 |
+
tensor_check_examples = builder.tensor_check_examples
|
1135 |
+
|
1136 |
+
dynamic_dims_sizes = [
|
1137 |
+
convert_to_concrete_values(
|
1138 |
+
self.output_graph.tensor_weakref_to_sizes_strides[t]["size"]
|
1139 |
+
)
|
1140 |
+
for t in tensor_check_examples
|
1141 |
+
]
|
1142 |
+
|
1143 |
+
dynamic_dims_strides = [
|
1144 |
+
convert_to_concrete_values(
|
1145 |
+
self.output_graph.tensor_weakref_to_sizes_strides[t]["stride"]
|
1146 |
+
)
|
1147 |
+
for t in tensor_check_examples
|
1148 |
+
]
|
1149 |
+
|
1150 |
+
tensor_guards = TensorGuards(
|
1151 |
+
*tensor_check_examples,
|
1152 |
+
dynamic_dims_sizes=dynamic_dims_sizes,
|
1153 |
+
dynamic_dims_strides=dynamic_dims_strides,
|
1154 |
+
)
|
1155 |
+
check_tensors_fn = tensor_guards.check
|
1156 |
+
check_tensors_verbose_fn = tensor_guards.check_verbose
|
1157 |
+
tensor_check_args = ", ".join(
|
1158 |
+
tensor_check_names + ["tensor_check_names=tensor_check_names"]
|
1159 |
+
)
|
1160 |
+
# Do this manually, to un-stagger the guards in log message
|
1161 |
+
code_parts.append(f"___check_tensors({tensor_check_args})")
|
1162 |
+
verbose_code_parts.append(f"___check_tensors({tensor_check_args})")
|
1163 |
+
tensor_check_guards = builder.tensor_check_guards
|
1164 |
+
|
1165 |
+
for i, name in enumerate(tensor_check_names):
|
1166 |
+
# This is a copy of what guards.cpp checks against
|
1167 |
+
# Keep this in sync with TensorCheck constructor
|
1168 |
+
t = tensor_check_examples[i]
|
1169 |
+
sizes = dynamic_dims_sizes[i]
|
1170 |
+
strides = dynamic_dims_strides[i]
|
1171 |
+
code_part = get_tensor_guard_code_part(t, name, sizes, strides)
|
1172 |
+
add_code_part(code_part, tensor_check_guards[i], log_only=True)
|
1173 |
+
|
1174 |
+
aotautograd_guards: List[GuardEnvExpr] = (
|
1175 |
+
self.output_graph.tracing_context.guards_context.aotautograd_guards
|
1176 |
+
if self.output_graph
|
1177 |
+
else []
|
1178 |
+
)
|
1179 |
+
for guard in aotautograd_guards:
|
1180 |
+
if isinstance(guard, DuplicateInputs):
|
1181 |
+
source_a = guard.input_source_a
|
1182 |
+
source_b = guard.input_source_b
|
1183 |
+
add_code_part(f"{source_a.name()} is {source_b.name()}", None)
|
1184 |
+
else:
|
1185 |
+
raise RuntimeError(f"Unknown GuardEnvExpr: {guard}")
|
1186 |
+
|
1187 |
+
# TODO: the "guard" here is actually just the top level SHAPE_ENV
|
1188 |
+
# which is useless. Get ShapeEnv to pass in more provenance.
|
1189 |
+
for gcl in builder.shape_env_code:
|
1190 |
+
for code in gcl.code_list:
|
1191 |
+
add_code_part(code, gcl.guard)
|
1192 |
+
|
1193 |
+
# OK, all done generating guards
|
1194 |
+
torch._logging.trace_structured(
|
1195 |
+
"dynamo_guards", payload_fn=lambda: [f() for f in structured_guard_fns]
|
1196 |
+
)
|
1197 |
+
|
1198 |
+
global_state = convert_frame.initial_global_state
|
1199 |
+
if global_state is None:
|
1200 |
+
# we should only hit this case in NopTests()
|
1201 |
+
global_state = convert_frame.GlobalStateGuard()
|
1202 |
+
closure_vars = {
|
1203 |
+
"___check_tensors": check_tensors_fn,
|
1204 |
+
"___check_tensors_verbose": check_tensors_verbose_fn,
|
1205 |
+
"___check_global_state": global_state.check,
|
1206 |
+
"___check_current_backend": torch._dynamo.eval_frame.check_current_backend,
|
1207 |
+
"tensor_check_names": tensor_check_names,
|
1208 |
+
**SYMPY_INTERP,
|
1209 |
+
**CLOSURE_VARS,
|
1210 |
+
}
|
1211 |
+
|
1212 |
+
unique_code_parts = list(unique(code_parts))
|
1213 |
+
make_guard_fn_args = ", ".join(closure_vars.keys())
|
1214 |
+
guard_body, pycode = build_guard_function(unique_code_parts, make_guard_fn_args)
|
1215 |
+
|
1216 |
+
if os.environ.get("TORCHDYNAMO_PRINT_GUARDS", None) == "1":
|
1217 |
+
print("GUARDS\n", guard_body)
|
1218 |
+
|
1219 |
+
out: Dict[str, Any] = dict()
|
1220 |
+
|
1221 |
+
# We don't put builder.scope as the globals in exec call because
|
1222 |
+
# guard_fn.__globals__ becomes equal to builder.scope. This causes
|
1223 |
+
# guard_fn to hold a referece to f_locals sitting in builder.scope["L"]
|
1224 |
+
globals_for_guard_fn = {"G": builder.scope["G"]}
|
1225 |
+
try:
|
1226 |
+
exec(pycode, globals_for_guard_fn, out)
|
1227 |
+
except SyntaxError as ex:
|
1228 |
+
log.exception("Failed to exec guard at line %s.\n%s", ex.lineno, pycode)
|
1229 |
+
raise
|
1230 |
+
guard_fn = out["___make_guard_fn"](*closure_vars.values())
|
1231 |
+
guard_fn.closure_vars = closure_vars
|
1232 |
+
# TODO(whc) maybe '.code_parts' was only kept around for the guard callback? so we don't need both
|
1233 |
+
guard_fn.args = largs
|
1234 |
+
guard_fn.code_parts = code_parts
|
1235 |
+
guard_fn.verbose_code_parts = verbose_code_parts
|
1236 |
+
# Grab only G, but preserve "G" because guards access it as "G"
|
1237 |
+
guard_fn.global_scope = globals_for_guard_fn
|
1238 |
+
guard_fn.guard_fail_fn = guard_fail_fn
|
1239 |
+
# will be populated by a non-owning reference to CacheEntry/ExtraState
|
1240 |
+
# when the CacheEntry is constructed
|
1241 |
+
guard_fn.cache_entry = None
|
1242 |
+
guard_fn.extra_state = None
|
1243 |
+
return guard_fn
|
1244 |
+
|
1245 |
+
def invalidate(self):
|
1246 |
+
# Some tests reveal that CheckFunctionManager has no attribute
|
1247 |
+
# check_fn, but this case should not be of any concern.
|
1248 |
+
# This case doesn't seem easy to repro.
|
1249 |
+
if (
|
1250 |
+
hasattr(self, "check_fn")
|
1251 |
+
and self.check_fn is not DeletedGuardFn
|
1252 |
+
and (cache_entry := self.check_fn.cache_entry) is not None
|
1253 |
+
and (extra_state := self.check_fn.extra_state) is not None
|
1254 |
+
):
|
1255 |
+
assert isinstance(cache_entry, CacheEntry)
|
1256 |
+
assert isinstance(extra_state, ExtraState)
|
1257 |
+
extra_state.invalidate(cache_entry)
|
1258 |
+
self.check_fn.cache_entry = None
|
1259 |
+
self.check_fn.extra_state = None
|
1260 |
+
self.check_fn = DeletedGuardFn
|
1261 |
+
|
1262 |
+
def id_ref(self, obj):
|
1263 |
+
"""add a weakref, return the id"""
|
1264 |
+
try:
|
1265 |
+
if id(obj) not in self._weakrefs:
|
1266 |
+
# We will clear the _weakrefs dict at the end of __init__
|
1267 |
+
# function, which will delete the callbacks as well. Therefore,
|
1268 |
+
# we are using a finalizer which is kept alive.
|
1269 |
+
self._weakrefs[id(obj)] = weakref.ref(obj)
|
1270 |
+
weakref.finalize(obj, self.invalidate)
|
1271 |
+
except TypeError:
|
1272 |
+
pass # cannot weakref bool object
|
1273 |
+
return id(obj)
|
1274 |
+
|
1275 |
+
def lookup_weakrefs(self, obj):
|
1276 |
+
"""Lookup the _weakrefs created in id_ref function for ID_MATCH'd objects"""
|
1277 |
+
if id(obj) in self._weakrefs:
|
1278 |
+
return self._weakrefs[id(obj)]
|
1279 |
+
return None
|
1280 |
+
|
1281 |
+
|
1282 |
+
def build_guard_function(code_parts, closure_args) -> Tuple[str, str]:
|
1283 |
+
from torch._inductor.utils import IndentedBuffer
|
1284 |
+
|
1285 |
+
if HAS_UNPARSE_FUNCTIONS:
|
1286 |
+
csepass = PyExprCSEPass()
|
1287 |
+
csepass.count(code_parts)
|
1288 |
+
|
1289 |
+
def replace(expr: str) -> Tuple[List[str], str]:
|
1290 |
+
return csepass.replace(expr)
|
1291 |
+
|
1292 |
+
else:
|
1293 |
+
|
1294 |
+
def replace(expr: str) -> Tuple[List[str], str]:
|
1295 |
+
return [], expr
|
1296 |
+
|
1297 |
+
# Generate the inner body of the guard function.
|
1298 |
+
# i.e. if-chain of the guard expressions.
|
1299 |
+
guard_body = IndentedBuffer()
|
1300 |
+
for expr in code_parts:
|
1301 |
+
preface, expr = replace(expr)
|
1302 |
+
guard_body.writelines(preface)
|
1303 |
+
guard_body.writeline(f"if not ({expr}):")
|
1304 |
+
with guard_body.indent():
|
1305 |
+
guard_body.writeline("return False")
|
1306 |
+
|
1307 |
+
# Wrap the inner body into the actual guard function.
|
1308 |
+
guard = IndentedBuffer()
|
1309 |
+
guard.writeline("def guard(L):")
|
1310 |
+
with guard.indent():
|
1311 |
+
guard.splice(guard_body)
|
1312 |
+
guard.writeline("return True")
|
1313 |
+
|
1314 |
+
# Wrap the whole guard function into another function
|
1315 |
+
# with the closure variables.
|
1316 |
+
make_guard_fn = IndentedBuffer()
|
1317 |
+
make_guard_fn.writeline(f"def ___make_guard_fn({closure_args}):")
|
1318 |
+
with make_guard_fn.indent():
|
1319 |
+
make_guard_fn.splice(guard)
|
1320 |
+
make_guard_fn.writeline("return guard")
|
1321 |
+
|
1322 |
+
return guard_body.getvalue(), make_guard_fn.getvalue()
|
1323 |
+
|
1324 |
+
|
1325 |
+
def is_recompiles_enabled():
|
1326 |
+
return torch._logging._internal.log_state.is_artifact_enabled("recompiles")
|
1327 |
+
|
1328 |
+
|
1329 |
+
def is_recompiles_verbose_enabled():
|
1330 |
+
return torch._logging._internal.log_state.is_artifact_enabled("recompiles_verbose")
|
1331 |
+
|
1332 |
+
|
1333 |
+
def get_guard_fail_reason(
|
1334 |
+
guard_fn: GuardFn,
|
1335 |
+
code: types.CodeType,
|
1336 |
+
f_locals: Dict[str, object],
|
1337 |
+
) -> str:
|
1338 |
+
"""
|
1339 |
+
Return the reason why `guard_fn` failed.
|
1340 |
+
Updates `guard_failures` with the generated reason.
|
1341 |
+
Only the first failed check of guard_fn is reported.
|
1342 |
+
"""
|
1343 |
+
scope = {"L": f_locals, "G": guard_fn.global_scope["G"]}
|
1344 |
+
scope.update(guard_fn.closure_vars)
|
1345 |
+
scope["___check_tensors"] = scope["___check_tensors_verbose"]
|
1346 |
+
reasons: List[str] = []
|
1347 |
+
for part in guard_fn.verbose_code_parts:
|
1348 |
+
global_scope = dict(guard_fn.global_scope)
|
1349 |
+
global_scope["__compile_source__"] = part
|
1350 |
+
with report_compile_source_on_error():
|
1351 |
+
try:
|
1352 |
+
fail_reason = eval(part, global_scope, scope)
|
1353 |
+
except Exception as e:
|
1354 |
+
if is_recompiles_verbose_enabled():
|
1355 |
+
continue
|
1356 |
+
else:
|
1357 |
+
raise
|
1358 |
+
# Only ___check_tensors knows how to return a fancy fail reason;
|
1359 |
+
# for everything else we just report the code that failed
|
1360 |
+
|
1361 |
+
if isinstance(fail_reason, bool) and not fail_reason:
|
1362 |
+
fail_reason = part
|
1363 |
+
if isinstance(fail_reason, str):
|
1364 |
+
reasons.append(fail_reason)
|
1365 |
+
if not is_recompiles_verbose_enabled():
|
1366 |
+
break
|
1367 |
+
|
1368 |
+
reason_str = "\n".join(reasons)
|
1369 |
+
guard_failures[orig_code_map[code]].append(reason_str)
|
1370 |
+
|
1371 |
+
try:
|
1372 |
+
if guard_fn.guard_fail_fn is not None:
|
1373 |
+
guard_fn.guard_fail_fn(
|
1374 |
+
GuardFail(reason_str or "unknown reason", orig_code_map[code])
|
1375 |
+
)
|
1376 |
+
except Exception as e:
|
1377 |
+
log.exception(
|
1378 |
+
"Failure in guard_fail_fn callback - raising here will cause a NULL Error on guard eval",
|
1379 |
+
)
|
1380 |
+
|
1381 |
+
return reason_str
|
1382 |
+
|
1383 |
+
|
1384 |
+
def get_and_maybe_log_recompilation_reason(
|
1385 |
+
cache_entry, frame: types.FrameType
|
1386 |
+
) -> List[str]:
|
1387 |
+
"""
|
1388 |
+
Return the list of guard failure reasons using cache_entry.
|
1389 |
+
Logs the recompilation reason if `recompiles` logging is enabled.
|
1390 |
+
Raises a RecompileError if `config.error_on_recompile` is enabled.
|
1391 |
+
"""
|
1392 |
+
reasons = []
|
1393 |
+
while cache_entry is not None:
|
1394 |
+
reason = get_guard_fail_reason(
|
1395 |
+
cache_entry.check_fn, cache_entry.code, frame.f_locals
|
1396 |
+
)
|
1397 |
+
if reason:
|
1398 |
+
reasons.append(reason)
|
1399 |
+
cache_entry = cache_entry.next
|
1400 |
+
|
1401 |
+
code = frame.f_code
|
1402 |
+
|
1403 |
+
# at least one of "recompiles" or "recompiles_verbose" is enabled
|
1404 |
+
do_recompiles_log = is_recompiles_enabled() or is_recompiles_verbose_enabled()
|
1405 |
+
|
1406 |
+
if do_recompiles_log or config.error_on_recompile:
|
1407 |
+
if is_recompiles_verbose_enabled():
|
1408 |
+
failures = "\n\n".join(
|
1409 |
+
f"guard {i} failures:\n" + textwrap.indent(reason, "- ")
|
1410 |
+
for i, reason in enumerate(reasons)
|
1411 |
+
)
|
1412 |
+
else:
|
1413 |
+
failures = textwrap.indent("\n".join(reasons), "- ")
|
1414 |
+
guard_failure_details = (
|
1415 |
+
f"triggered by the following guard failure(s):\n{failures}"
|
1416 |
+
)
|
1417 |
+
message = (
|
1418 |
+
f"Recompiling function {code.co_name} in {code.co_filename}:{code.co_firstlineno}\n"
|
1419 |
+
f"{textwrap.indent(guard_failure_details, ' ')}"
|
1420 |
+
)
|
1421 |
+
if do_recompiles_log:
|
1422 |
+
if is_recompiles_verbose_enabled():
|
1423 |
+
recompiles_verbose_log.debug(message)
|
1424 |
+
else:
|
1425 |
+
recompiles_log.debug(message)
|
1426 |
+
if config.error_on_recompile:
|
1427 |
+
raise exc.RecompileError(message)
|
1428 |
+
|
1429 |
+
return reasons
|
1430 |
+
|
1431 |
+
|
1432 |
+
def guard_error_hook(
|
1433 |
+
guard_fn: GuardFn,
|
1434 |
+
code: types.CodeType,
|
1435 |
+
f_locals: Dict[str, object],
|
1436 |
+
index: int,
|
1437 |
+
last: bool,
|
1438 |
+
):
|
1439 |
+
print(
|
1440 |
+
f"ERROR RUNNING GUARDS {code.co_name} {code.co_filename}:{code.co_firstlineno}"
|
1441 |
+
)
|
1442 |
+
print("lambda " + ", ".join(guard_fn.args) + ":")
|
1443 |
+
print(" ", " and\n ".join(guard_fn.code_parts))
|
1444 |
+
local_scope = {"L": f_locals, **guard_fn.closure_vars}
|
1445 |
+
for guard in guard_fn.code_parts:
|
1446 |
+
try:
|
1447 |
+
eval(guard, guard_fn.global_scope, local_scope)
|
1448 |
+
except: # noqa: B001,E722
|
1449 |
+
print(f"Malformed guard:\n{guard}")
|
1450 |
+
|
1451 |
+
|
1452 |
+
set_guard_error_hook(guard_error_hook)
|
1453 |
+
|
1454 |
+
|
1455 |
+
def unique(seq):
|
1456 |
+
seen = set()
|
1457 |
+
for x in seq:
|
1458 |
+
if x not in seen:
|
1459 |
+
yield x
|
1460 |
+
seen.add(x)
|
1461 |
+
|
1462 |
+
|
1463 |
+
def make_dupe_guard(obj_source, dupe_source):
|
1464 |
+
# Note - we may end up in a situation where we invoke something like
|
1465 |
+
# def fn(x, y)
|
1466 |
+
# with fn(x, x)
|
1467 |
+
# Prior to the addition of tracking to all relevant objects, we would handle this just fine by
|
1468 |
+
# eagerly re-entering VB and rewrapping inputs, correctly creating graphargs and placeholders. However,
|
1469 |
+
# with tracking on inputs, duplicate inputs or aliased relationships may end up getting erased here -
|
1470 |
+
# In the fn(x, x) example call above look like a graph with a single input.
|
1471 |
+
# In order to ensure that we do not reuse fn(x, x) for fn(x, y), we create a duplicate input guard.
|
1472 |
+
|
1473 |
+
# Note - we may not have a source, that is fine, it just means we had an object that is safe to have
|
1474 |
+
# leave unsourced - like a local list created and discharged entirely within a local scope.
|
1475 |
+
if dupe_source and dupe_source != obj_source:
|
1476 |
+
ser_source_is_local = is_from_local_source(dupe_source)
|
1477 |
+
source_is_local = is_from_local_source(obj_source)
|
1478 |
+
# Note - both must be local, or global, or we will run afoul of a lack of merging in how we currently
|
1479 |
+
# reconcile guards builder scopes in compile_check_fn. This technically means we miss a guard here,
|
1480 |
+
# so maybe we should do this refactor before we land this...
|
1481 |
+
# TODO(voz): Combine local and global guard builders.
|
1482 |
+
if ser_source_is_local == source_is_local:
|
1483 |
+
# Note - this is a little aggressive - these being duplicate input does not always matter.
|
1484 |
+
# However, this should always be a sound guard to add here.
|
1485 |
+
return functools.partial(GuardBuilder.DUPLICATE_INPUT, source_b=dupe_source)
|
1486 |
+
return None
|
1487 |
+
|
1488 |
+
|
1489 |
+
def install_guard(*guards, skip=0):
|
1490 |
+
"""
|
1491 |
+
Add dynamo guards to the current tracing context.
|
1492 |
+
|
1493 |
+
Args:
|
1494 |
+
guards: guard(s) to add
|
1495 |
+
skip: number of stack frames to ignore for debug stack trace
|
1496 |
+
"""
|
1497 |
+
from torch._guards import TracingContext
|
1498 |
+
|
1499 |
+
collect_debug_stack = guards_log.isEnabledFor(
|
1500 |
+
logging.DEBUG
|
1501 |
+
) or verbose_guards_log.isEnabledFor(logging.DEBUG)
|
1502 |
+
add = TracingContext.get().guards_context.dynamo_guards.add
|
1503 |
+
for guard in guards:
|
1504 |
+
assert isinstance(guard, Guard)
|
1505 |
+
add(guard, collect_debug_stack=collect_debug_stack, skip=skip + 1)
|
llmeval-env/lib/python3.10/site-packages/torch/_dynamo/logging.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import itertools
|
2 |
+
import logging
|
3 |
+
|
4 |
+
from torch.hub import _Faketqdm, tqdm
|
5 |
+
|
6 |
+
# Disable progress bar by default, not in dynamo config because otherwise get a circular import
|
7 |
+
disable_progress = True
|
8 |
+
|
9 |
+
|
10 |
+
# Return all loggers that torchdynamo/torchinductor is responsible for
|
11 |
+
def get_loggers():
|
12 |
+
return [
|
13 |
+
logging.getLogger("torch.fx.experimental.symbolic_shapes"),
|
14 |
+
logging.getLogger("torch._dynamo"),
|
15 |
+
logging.getLogger("torch._inductor"),
|
16 |
+
]
|
17 |
+
|
18 |
+
|
19 |
+
# Creates a logging function that logs a message with a step # prepended.
|
20 |
+
# get_step_logger should be lazily called (i.e. at runtime, not at module-load time)
|
21 |
+
# so that step numbers are initialized properly. e.g.:
|
22 |
+
|
23 |
+
# @functools.lru_cache(None)
|
24 |
+
# def _step_logger():
|
25 |
+
# return get_step_logger(logging.getLogger(...))
|
26 |
+
|
27 |
+
# def fn():
|
28 |
+
# _step_logger()(logging.INFO, "msg")
|
29 |
+
|
30 |
+
_step_counter = itertools.count(1)
|
31 |
+
|
32 |
+
# Update num_steps if more phases are added: Dynamo, AOT, Backend
|
33 |
+
# This is very inductor centric
|
34 |
+
# _inductor.utils.has_triton() gives a circular import error here
|
35 |
+
|
36 |
+
if not disable_progress:
|
37 |
+
try:
|
38 |
+
import triton # noqa: F401
|
39 |
+
|
40 |
+
num_steps = 3
|
41 |
+
except ImportError:
|
42 |
+
num_steps = 2
|
43 |
+
pbar = tqdm(total=num_steps, desc="torch.compile()", delay=0)
|
44 |
+
|
45 |
+
|
46 |
+
def get_step_logger(logger):
|
47 |
+
if not disable_progress:
|
48 |
+
pbar.update(1)
|
49 |
+
if not isinstance(pbar, _Faketqdm):
|
50 |
+
pbar.set_postfix_str(f"{logger.name}")
|
51 |
+
|
52 |
+
step = next(_step_counter)
|
53 |
+
|
54 |
+
def log(level, msg, **kwargs):
|
55 |
+
logger.log(level, "Step %s: %s", step, msg, **kwargs)
|
56 |
+
|
57 |
+
return log
|
llmeval-env/lib/python3.10/site-packages/torch/_dynamo/output_graph.py
ADDED
@@ -0,0 +1,2063 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import collections
|
2 |
+
import contextlib
|
3 |
+
import copy
|
4 |
+
import functools
|
5 |
+
import itertools
|
6 |
+
import logging
|
7 |
+
import operator
|
8 |
+
import re
|
9 |
+
import sys
|
10 |
+
import traceback
|
11 |
+
import weakref
|
12 |
+
from dataclasses import dataclass
|
13 |
+
from typing import Any, Callable, Dict, List, NamedTuple, Optional, Set, Tuple, Union
|
14 |
+
|
15 |
+
import sympy
|
16 |
+
|
17 |
+
import torch._guards
|
18 |
+
|
19 |
+
import torch._logging
|
20 |
+
|
21 |
+
import torch.nn
|
22 |
+
import torch.utils._pytree as pytree
|
23 |
+
from torch import fx
|
24 |
+
from torch._guards import (
|
25 |
+
Checkpointable,
|
26 |
+
GlobalContextCheckpointState,
|
27 |
+
GuardsCheckpointState,
|
28 |
+
Source,
|
29 |
+
TracingContext,
|
30 |
+
)
|
31 |
+
from torch._utils_internal import signpost_event
|
32 |
+
from torch.fx._lazy_graph_module import _make_graph_module # type: ignore[attr-defined]
|
33 |
+
from torch.fx.experimental._backward_state import BackwardState
|
34 |
+
from torch.fx.experimental.sym_node import SymNode
|
35 |
+
from torch.fx.experimental.symbolic_shapes import free_symbols, is_symbolic, ShapeEnv
|
36 |
+
from torch.utils._python_dispatch import is_traceable_wrapper_subclass
|
37 |
+
from torch.utils._sympy.interp import sympy_interp
|
38 |
+
from torch.utils._sympy.reference import PythonReferenceAnalysis
|
39 |
+
from torch.utils.weak import WeakTensorKeyDictionary
|
40 |
+
|
41 |
+
from . import config, logging as torchdynamo_logging, variables
|
42 |
+
from .backends.registry import CompiledFn, CompilerFn
|
43 |
+
from .bytecode_transformation import (
|
44 |
+
create_call_function,
|
45 |
+
create_instruction,
|
46 |
+
Instruction,
|
47 |
+
unique_id,
|
48 |
+
)
|
49 |
+
from .code_context import code_context
|
50 |
+
from .codegen import PyCodegen
|
51 |
+
from .current_scope_id import enter_new_scope
|
52 |
+
from .exc import (
|
53 |
+
BackendCompilerFailed,
|
54 |
+
exceptions_allowed_to_be_fallback,
|
55 |
+
SkipFrame,
|
56 |
+
unimplemented,
|
57 |
+
unimplemented_with_warning,
|
58 |
+
)
|
59 |
+
from .guards import GuardBuilder, install_guard
|
60 |
+
from .mutation_guard import is_dynamic_nn_module
|
61 |
+
from .side_effects import SideEffects
|
62 |
+
from .source import (
|
63 |
+
AttrSource,
|
64 |
+
BackwardStateSource,
|
65 |
+
ConstantSource,
|
66 |
+
GlobalStateSource,
|
67 |
+
is_constant_source,
|
68 |
+
is_from_local_source,
|
69 |
+
LocalSource,
|
70 |
+
ParamBufferSource,
|
71 |
+
ShapeEnvSource,
|
72 |
+
TensorProperty,
|
73 |
+
TensorPropertySource,
|
74 |
+
)
|
75 |
+
from .utils import (
|
76 |
+
checkpoint_params,
|
77 |
+
CleanupHook,
|
78 |
+
clone_inputs,
|
79 |
+
count_calls,
|
80 |
+
counters,
|
81 |
+
dynamo_timed,
|
82 |
+
get_instruction_source_311,
|
83 |
+
get_static_address_type,
|
84 |
+
graph_break_reasons,
|
85 |
+
increment_op_count,
|
86 |
+
lazy_format_graph_code,
|
87 |
+
lazy_format_graph_tabular,
|
88 |
+
LazyString,
|
89 |
+
same,
|
90 |
+
)
|
91 |
+
from .variables.base import VariableTracker
|
92 |
+
from .variables.builder import (
|
93 |
+
BackwardStateGraphArg,
|
94 |
+
GraphArg,
|
95 |
+
TrackedFake,
|
96 |
+
VariableBuilder,
|
97 |
+
wrap_fx_proxy,
|
98 |
+
)
|
99 |
+
from .variables.nn_module import NNModuleVariable
|
100 |
+
from .variables.tensor import (
|
101 |
+
NumpyNdarrayVariable,
|
102 |
+
SymNodeVariable,
|
103 |
+
TensorVariable,
|
104 |
+
UnspecializedPythonVariable,
|
105 |
+
)
|
106 |
+
|
107 |
+
from .variables.torch_function import TensorWithTFOverrideVariable
|
108 |
+
|
109 |
+
log = logging.getLogger(__name__)
|
110 |
+
graph_tabular_log = torch._logging.getArtifactLogger(__name__, "graph")
|
111 |
+
graph_code_log = torch._logging.getArtifactLogger(__name__, "graph_code")
|
112 |
+
graph_sizes_log = torch._logging.getArtifactLogger(__name__, "graph_sizes")
|
113 |
+
trace_call_log = torch._logging.getArtifactLogger(__name__, "trace_call")
|
114 |
+
|
115 |
+
|
116 |
+
class OutputGraphState(NamedTuple):
|
117 |
+
input_source_to_var: Dict[Source, VariableTracker]
|
118 |
+
tracked_fakes: List[TrackedFake]
|
119 |
+
guard_state: GuardsCheckpointState
|
120 |
+
nn_modules: Optional[Dict[str, torch.nn.Module]]
|
121 |
+
register_finalizer_fns: List[Callable[[fx.GraphModule], None]]
|
122 |
+
global_state: Optional[Dict[str, bool]]
|
123 |
+
param_name_to_source: Optional[Dict[str, Source]]
|
124 |
+
side_effects: SideEffects
|
125 |
+
timestamp: int
|
126 |
+
non_compliant_ops: Set[torch._ops.OpOverload]
|
127 |
+
compliant_custom_ops: Set[torch._ops.OpOverload]
|
128 |
+
|
129 |
+
def diff(self, other: "OutputGraphState", *, prefix: str = "") -> Optional[str]:
|
130 |
+
for k in self._fields:
|
131 |
+
if k == "guard_state":
|
132 |
+
r = self.guard_state.diff(other.guard_state)
|
133 |
+
if r is not None:
|
134 |
+
return r
|
135 |
+
continue
|
136 |
+
elif k == "side_effects":
|
137 |
+
r = self.side_effects.diff(other.side_effects)
|
138 |
+
if r is not None:
|
139 |
+
return r
|
140 |
+
continue
|
141 |
+
|
142 |
+
sv = getattr(self, k)
|
143 |
+
ov = getattr(other, k)
|
144 |
+
if sv != ov:
|
145 |
+
return f"{prefix}{k} mismatch: {sv} != {ov}"
|
146 |
+
return None
|
147 |
+
|
148 |
+
# Back compat .guards api
|
149 |
+
@property
|
150 |
+
def guards(self):
|
151 |
+
return self.guard_state.dynamo_guards
|
152 |
+
|
153 |
+
|
154 |
+
@functools.lru_cache(None)
|
155 |
+
def _step_logger():
|
156 |
+
return torchdynamo_logging.get_step_logger(log)
|
157 |
+
|
158 |
+
|
159 |
+
@dataclass
|
160 |
+
class GraphCompileReason:
|
161 |
+
"""Stores why a given output graph was compiled; i.e. what caused the graph break."""
|
162 |
+
|
163 |
+
reason: str
|
164 |
+
user_stack: List[traceback.FrameSummary]
|
165 |
+
|
166 |
+
# Indicates if this was a graph compile reason due to graph break.
|
167 |
+
graph_break: bool = True
|
168 |
+
|
169 |
+
def __post_init__(self):
|
170 |
+
if self.graph_break:
|
171 |
+
graph_break_reasons.append(self)
|
172 |
+
|
173 |
+
|
174 |
+
def _get_gen_rand_values_fn(random_calls):
|
175 |
+
def _gen_rand_values():
|
176 |
+
return [fn(*args, **kwargs) for fn, args, kwargs in random_calls]
|
177 |
+
|
178 |
+
return _gen_rand_values
|
179 |
+
|
180 |
+
|
181 |
+
class FakeRootModule(torch.nn.Module):
|
182 |
+
"""Trick the constructor of fx.GraphModule"""
|
183 |
+
|
184 |
+
def __init__(self, nn_modules: Dict[str, torch.nn.Module]):
|
185 |
+
super().__init__()
|
186 |
+
for k, v in nn_modules.items():
|
187 |
+
setattr(self, k, v)
|
188 |
+
|
189 |
+
def __repr__(self):
|
190 |
+
return "FakeRootModule(...)"
|
191 |
+
|
192 |
+
|
193 |
+
class WrapperBackend:
|
194 |
+
def __init__(self, backend: CompilerFn):
|
195 |
+
self.backend: CompilerFn = backend
|
196 |
+
|
197 |
+
def __call__(self, gm: torch.fx.GraphModule, example_inputs: List[torch.Tensor]):
|
198 |
+
self.restore = checkpoint_params(gm)
|
199 |
+
self.gm = gm
|
200 |
+
copy_gm = copy.deepcopy(self.gm)
|
201 |
+
self.candidate = self.backend(copy_gm, example_inputs)
|
202 |
+
|
203 |
+
if self.candidate is None or self.candidate is self.gm.forward:
|
204 |
+
return self.gm.forward
|
205 |
+
|
206 |
+
if not config.verify_correctness:
|
207 |
+
return self.candidate
|
208 |
+
|
209 |
+
# if verify_correctness=True
|
210 |
+
try:
|
211 |
+
correct = self.gm.forward(*clone_inputs(example_inputs))
|
212 |
+
result = self.candidate(*clone_inputs(example_inputs))
|
213 |
+
|
214 |
+
# TODO: replace `same` function with the one in testing
|
215 |
+
if same(correct, result):
|
216 |
+
return self.candidate
|
217 |
+
|
218 |
+
raise RuntimeError(f"incorrect results of backend {self}")
|
219 |
+
return self.gm.forward
|
220 |
+
|
221 |
+
except Exception:
|
222 |
+
log.exception("error in verify_correctness")
|
223 |
+
raise
|
224 |
+
finally:
|
225 |
+
self.restore()
|
226 |
+
|
227 |
+
|
228 |
+
Scope = Dict[str, object]
|
229 |
+
|
230 |
+
|
231 |
+
class OutputGraph(Checkpointable[OutputGraphState]):
|
232 |
+
"""
|
233 |
+
Wrapper class to hold outputs of InstructionTranslator. Mainly the
|
234 |
+
generated fx.Graph.
|
235 |
+
|
236 |
+
OutputGraph is 1:1 with a frame being processed. Each frame is associated
|
237 |
+
with some root InstructionTranslator. When user code calls a function,
|
238 |
+
we construct a InliningInstructionTranslator that continues to write into
|
239 |
+
the root InstructionTranslator's OutputGraph.
|
240 |
+
"""
|
241 |
+
|
242 |
+
def __init__(
|
243 |
+
self,
|
244 |
+
code_options: Dict[str, Any],
|
245 |
+
compiler_fn: Optional[CompilerFn],
|
246 |
+
root_tx,
|
247 |
+
export: bool,
|
248 |
+
export_constraints,
|
249 |
+
frame_state,
|
250 |
+
local_scope: Scope,
|
251 |
+
global_scope: Scope,
|
252 |
+
f_code,
|
253 |
+
):
|
254 |
+
super().__init__()
|
255 |
+
self.tracers = [SubgraphTracer(self, export_root=export)]
|
256 |
+
# Map from graph input's `Source` to its `VariableTracker` to
|
257 |
+
# de-duplicate graph inputs by source and reuse the tracker
|
258 |
+
self.input_source_to_var: Dict[Source, VariableTracker] = {}
|
259 |
+
self.export = export
|
260 |
+
self.export_constraints = export_constraints
|
261 |
+
self.frame_state = frame_state
|
262 |
+
self.tensor_weakref_to_sizes_strides = WeakTensorKeyDictionary()
|
263 |
+
self.cleanup_hooks: List[Callable[[], Any]] = []
|
264 |
+
# compile_id is an id number for the current torch.compile
|
265 |
+
self.compile_id: int = next(_compile_id_counter)
|
266 |
+
# Set of globals installed via install_global* APIs
|
267 |
+
self.installed_globals: Set[str] = set()
|
268 |
+
|
269 |
+
# TODO: maybe should just pass the entire f_code in here? Not
|
270 |
+
# sure...
|
271 |
+
self.co_fields = {
|
272 |
+
"co_name": f_code.co_name,
|
273 |
+
"co_filename": f_code.co_filename,
|
274 |
+
"co_firstlineno": f_code.co_firstlineno,
|
275 |
+
}
|
276 |
+
|
277 |
+
# tracked_fakes says where any tensor that was wrapped to fake came
|
278 |
+
# from. It is similar to GraphArg, in that all GraphArgs will get
|
279 |
+
# will get added to TrackedFakes, but TrackedFakes also contains
|
280 |
+
# GraphArgs that got pruned, and things like Tensor attributes which
|
281 |
+
# aren't explicit graph inputs. Used by shape guard
|
282 |
+
self.tracked_fakes: List[TrackedFake] = []
|
283 |
+
|
284 |
+
# List of symbols for which we have exact bindings in the arguments
|
285 |
+
# already
|
286 |
+
self.bound_symbols: Set[sympy.Symbol] = set()
|
287 |
+
|
288 |
+
shape_env = ShapeEnv(
|
289 |
+
# Reference Cycle!
|
290 |
+
# Share a reference to the list of TrackedFake.
|
291 |
+
#
|
292 |
+
# ShapeEnv needs this in order to be able to reproduce the call
|
293 |
+
# to produce_guards at an arbitrary time point. That is because
|
294 |
+
# TrackedFake instances may have its metadata changed throughout
|
295 |
+
# the program execution.
|
296 |
+
tracked_fakes=self.tracked_fakes,
|
297 |
+
allow_scalar_outputs=config.capture_scalar_outputs,
|
298 |
+
allow_dynamic_output_shape_ops=config.capture_dynamic_output_shape_ops,
|
299 |
+
co_fields=self.co_fields,
|
300 |
+
)
|
301 |
+
|
302 |
+
# In export mode, we force the shape_env to strictly disallow any constraining
|
303 |
+
# of the user marked dynamic dims
|
304 |
+
fake_mode = torch._subclasses.FakeTensorMode(
|
305 |
+
shape_env=shape_env,
|
306 |
+
# TODO (tmanlaibaatar) Remove this once we always lift params and buffers
|
307 |
+
allow_non_fake_inputs=True if self.export else False,
|
308 |
+
)
|
309 |
+
self.tracing_context: TracingContext = TracingContext(fake_mode)
|
310 |
+
self.init_ambient_guards()
|
311 |
+
|
312 |
+
# Map each tensor id to a list of sources. This is necessary because
|
313 |
+
# tensor ids cannot be recovered from tracked fakes (in general).
|
314 |
+
# We use this map to interpret (i.e., check for violations of) constraints,
|
315 |
+
# specifically equality constraints, which have shared tensor ids in them.
|
316 |
+
# This map should also be generally useful, e.g., for (de)serialization.
|
317 |
+
self.tracked_fakes_id_to_source: Dict[
|
318 |
+
int, List[Source]
|
319 |
+
] = collections.defaultdict(list)
|
320 |
+
# Stores the full fqn of a param or buffer to the relevant source.
|
321 |
+
self.param_name_to_source: Optional[Dict[str, Source]] = dict()
|
322 |
+
self.side_effects = SideEffects()
|
323 |
+
self.code_options = dict(code_options)
|
324 |
+
self.output_instructions: List[Instruction] = []
|
325 |
+
# used to track nodes that are added between calls of copy_graphstate
|
326 |
+
# and restore_graphstate
|
327 |
+
self.timestamp = 0
|
328 |
+
|
329 |
+
# A list of register_finalizer_fns to apply to the output graph module
|
330 |
+
self.register_finalizer_fns: List[Callable[[fx.GraphModule], None]] = []
|
331 |
+
|
332 |
+
# Not checkpointed
|
333 |
+
self.compiler_fn: Optional[CompilerFn] = compiler_fn
|
334 |
+
self.global_scope = global_scope
|
335 |
+
self.local_scope = local_scope
|
336 |
+
self.root_tx = root_tx
|
337 |
+
from torch._dynamo.symbolic_convert import InstructionTranslatorBase
|
338 |
+
|
339 |
+
# Given a source, what are the user stacks of all locations that
|
340 |
+
# accessed it?
|
341 |
+
#
|
342 |
+
# For efficiency, we only populate this:
|
343 |
+
# - During export, and
|
344 |
+
# - If the source could potentially lead to a spurious export input
|
345 |
+
#
|
346 |
+
# Feel free to populate this more frequently if other use-cases arise,
|
347 |
+
# but be aware that we have to generate full stacks for each
|
348 |
+
# recording!
|
349 |
+
self.source_to_user_stacks: Dict[Source, List[traceback.StackSummary]] = {}
|
350 |
+
|
351 |
+
self._current_tx: List[InstructionTranslatorBase] = []
|
352 |
+
self.cleanups: List[CleanupHook] = []
|
353 |
+
self.should_exit = False
|
354 |
+
self.unspec_variable_map: Dict[str, UnspecializedPythonVariable] = {}
|
355 |
+
self.torch_function_enabled = torch._C._is_torch_function_enabled()
|
356 |
+
# Tracks if the output graph has a user defined allowed function in the
|
357 |
+
# graph. This is used later to determine if we should fallback to eager
|
358 |
+
# for certain exceptions. THe idea is that if the user has applied
|
359 |
+
# allow_in_graph, they would like to see the error instead of falling
|
360 |
+
# back for backend errors.
|
361 |
+
self.has_user_defined_allowed_in_graph = False
|
362 |
+
|
363 |
+
# Tracks a list of called ops that were not tagged with "pt2_compliant_tag".
|
364 |
+
# This information is useful for logging.
|
365 |
+
self.non_compliant_ops: Set[torch._ops.OpOverload] = set({})
|
366 |
+
|
367 |
+
# Tracks a list of called custom ops that were tagged with "pt2_compliant_tag".
|
368 |
+
# This information is useful for logging.
|
369 |
+
self.compliant_custom_ops: Set[torch._ops.OpOverload] = set({})
|
370 |
+
|
371 |
+
# We save the global torch state here to be restored in case of graph
|
372 |
+
# breaks. The relevant issue is seen here
|
373 |
+
# https://github.com/pytorch/pytorch/pull/100570#issuecomment-1543427086
|
374 |
+
# where inlining of a function changes the global state (because of the
|
375 |
+
# presence of torch.no_grad) and there is a graph break.
|
376 |
+
self.save_global_state()
|
377 |
+
|
378 |
+
# Tracks the original FQNs of the constant tensors from the original graph,
|
379 |
+
# i.e. buffers and parameters.
|
380 |
+
self.dynamo_flat_name_to_original_fqn: Dict[str, str] = {}
|
381 |
+
|
382 |
+
# All calls to random() are replaced with a single call to __gen_rand_values
|
383 |
+
# functions that returns a tuple of random values for each original call.
|
384 |
+
# random_calls tracks calls to random() and random_values_var stores the name of
|
385 |
+
# the variable that stores __gen_rand_values results.
|
386 |
+
self.random_calls: List[
|
387 |
+
Tuple[Callable[..., object], Tuple[object, ...], Dict[str, object]]
|
388 |
+
] = []
|
389 |
+
self.random_values_var = None
|
390 |
+
|
391 |
+
# Bytecode to insert right before we call the graph
|
392 |
+
self.pregraph_bytecode: List[Instruction] = []
|
393 |
+
|
394 |
+
# Use to pass values to backward hooks when using compiled autograd
|
395 |
+
self.backward_state: Dict[str, VariableTracker] = {}
|
396 |
+
self.backward_state_proxy: Optional[torch.fx.Proxy] = None
|
397 |
+
self.backward_state_var: Optional[str] = None
|
398 |
+
|
399 |
+
def add_backward_state_hook(self, hook: VariableTracker):
|
400 |
+
name = f"hook{len(self.backward_state)}"
|
401 |
+
assert name not in self.backward_state
|
402 |
+
self.backward_state[name] = hook
|
403 |
+
return name, self.get_backward_state_proxy()
|
404 |
+
|
405 |
+
def get_backward_state_proxy(self):
|
406 |
+
if self.backward_state_proxy is None:
|
407 |
+
if self.export:
|
408 |
+
unimplemented("backward_state does not support export")
|
409 |
+
self.backward_state_proxy = self.root_tracer.create_graph_input(
|
410 |
+
"dynamo_backward_state", BackwardState, source=BackwardStateSource()
|
411 |
+
)
|
412 |
+
self.backward_state_proxy.node.meta["grapharg"] = BackwardStateGraphArg()
|
413 |
+
self.backward_state_proxy.node.meta["example_value"] = BackwardState()
|
414 |
+
self.backward_state_var = self.new_var()
|
415 |
+
return self.backward_state_proxy
|
416 |
+
|
417 |
+
# This gets its own helper function so guards DEBUG logs are more informative
|
418 |
+
def init_ambient_guards(self):
|
419 |
+
# Register a SHAPE_ENV guard to make sure we setup shape guards
|
420 |
+
# that show up in ShapeEnv
|
421 |
+
self.guards.add(ShapeEnvSource().make_guard(GuardBuilder.SHAPE_ENV))
|
422 |
+
|
423 |
+
self.guards.add(
|
424 |
+
GlobalStateSource().make_guard(GuardBuilder.DETERMINISTIC_ALGORITHMS)
|
425 |
+
)
|
426 |
+
|
427 |
+
self.guards.add(GlobalStateSource().make_guard(GuardBuilder.GRAD_MODE))
|
428 |
+
|
429 |
+
self.guards.add(GlobalStateSource().make_guard(GuardBuilder.DEFAULT_DEVICE))
|
430 |
+
|
431 |
+
self.guards.add(
|
432 |
+
GlobalStateSource().make_guard(GuardBuilder.TORCH_FUNCTION_STATE)
|
433 |
+
)
|
434 |
+
|
435 |
+
self.guards.add(GlobalStateSource().make_guard(GuardBuilder.BACKEND_MATCH))
|
436 |
+
|
437 |
+
def add_cleanup_hook(self, fn: Callable[[], Any]):
|
438 |
+
self.cleanup_hooks.append(fn)
|
439 |
+
|
440 |
+
def call_cleanup_hooks(self):
|
441 |
+
for hook in reversed(self.cleanup_hooks):
|
442 |
+
hook()
|
443 |
+
self.cleanup_hooks.clear()
|
444 |
+
|
445 |
+
@property
|
446 |
+
def root_tracer(self):
|
447 |
+
return self.tracers[0]
|
448 |
+
|
449 |
+
@property
|
450 |
+
def current_tracer(self):
|
451 |
+
return self.tracers[-1]
|
452 |
+
|
453 |
+
def is_root_tracer(self):
|
454 |
+
# Helper to tell if we are inside the higher order operator tracing.
|
455 |
+
return len(self.tracers) == 1
|
456 |
+
|
457 |
+
@property
|
458 |
+
def graph(self):
|
459 |
+
return self.current_tracer.graph
|
460 |
+
|
461 |
+
# TODO(rzou): can delete after we refactor speculate_subgraph to use nested GraphTracer.
|
462 |
+
@graph.setter
|
463 |
+
def graph(self, value):
|
464 |
+
self.current_tracer.graph = value
|
465 |
+
|
466 |
+
@property
|
467 |
+
def input_name_to_proxy(self):
|
468 |
+
return self.current_tracer.input_name_to_proxy
|
469 |
+
|
470 |
+
@property
|
471 |
+
def real_value_cache(self):
|
472 |
+
return self.current_tracer.real_value_cache
|
473 |
+
|
474 |
+
# If you are here, and you're looking for create_graph_input,
|
475 |
+
# to avoid ambiguity, please call one of the following:
|
476 |
+
# - self.current_tracer.create_graph_input
|
477 |
+
# - self.root_tracer.create_graph_input
|
478 |
+
# See NOTE [HigherOrderOperator tracing design] for more context.
|
479 |
+
|
480 |
+
def create_proxy(self, *args, **kwargs):
|
481 |
+
return self.current_tracer.create_proxy(*args, **kwargs)
|
482 |
+
|
483 |
+
def create_node(self, *args, **kwargs):
|
484 |
+
return self.current_tracer.create_node(*args, **kwargs)
|
485 |
+
|
486 |
+
def remove_node(self, *args, **kwargs):
|
487 |
+
return self.current_tracer.remove_node(*args, **kwargs)
|
488 |
+
|
489 |
+
@contextlib.contextmanager
|
490 |
+
def subtracer(self, source_target, prior_tracer):
|
491 |
+
new_scope_ctx = enter_new_scope()
|
492 |
+
try:
|
493 |
+
if prior_tracer:
|
494 |
+
# Lineage MUST stay preserved
|
495 |
+
assert prior_tracer.parent is self.current_tracer
|
496 |
+
new_scope_ctx.__enter__()
|
497 |
+
tracer = (
|
498 |
+
prior_tracer
|
499 |
+
if prior_tracer
|
500 |
+
else SubgraphTracer(
|
501 |
+
self, parent=self.current_tracer, source_target=source_target
|
502 |
+
)
|
503 |
+
)
|
504 |
+
self.tracers.append(tracer)
|
505 |
+
yield tracer
|
506 |
+
finally:
|
507 |
+
new_scope_ctx.__exit__(None, None, None)
|
508 |
+
self.tracers.pop()
|
509 |
+
|
510 |
+
@property
|
511 |
+
def output(self):
|
512 |
+
return self
|
513 |
+
|
514 |
+
@property
|
515 |
+
def fake_mode(self):
|
516 |
+
return self.tracing_context.fake_mode
|
517 |
+
|
518 |
+
@property
|
519 |
+
def shape_env(self):
|
520 |
+
return self.tracing_context.fake_mode.shape_env
|
521 |
+
|
522 |
+
@property
|
523 |
+
def guards(self) -> torch._guards.GuardsSet:
|
524 |
+
return self.tracing_context.guards_context.dynamo_guards
|
525 |
+
|
526 |
+
@property
|
527 |
+
def nn_modules(self) -> Dict[str, Any]:
|
528 |
+
return self.tracing_context.module_context.nn_modules
|
529 |
+
|
530 |
+
def save_global_state(self, out=None):
|
531 |
+
"""
|
532 |
+
Saves to out if it is provided. Else saves to the tracing context's global_state.
|
533 |
+
"""
|
534 |
+
global_state = (
|
535 |
+
out if out is not None else self.tracing_context.global_context.global_state
|
536 |
+
)
|
537 |
+
|
538 |
+
# TODO - Consider having a torch level API for torch_function_state. As
|
539 |
+
# of now, we create a ref cycle by passing the
|
540 |
+
# output.set_torch_function_state to
|
541 |
+
# output.tracing_context.global_context.global_state. In the interim,
|
542 |
+
# the problem can be solved by manually set
|
543 |
+
# output.tracing_context.global_context.global_state to None at cleanup.
|
544 |
+
global_state["torch_function_enabled"] = (
|
545 |
+
self.set_torch_function_state,
|
546 |
+
self.torch_function_enabled,
|
547 |
+
)
|
548 |
+
global_state["grad_enabled"] = (torch.set_grad_enabled, torch.is_grad_enabled())
|
549 |
+
global_state["autocast_enabled"] = (
|
550 |
+
torch.set_autocast_enabled,
|
551 |
+
torch.is_autocast_enabled(),
|
552 |
+
)
|
553 |
+
global_state["autocast_cpu_enabled"] = (
|
554 |
+
torch.set_autocast_cpu_enabled,
|
555 |
+
torch.is_autocast_cpu_enabled(),
|
556 |
+
)
|
557 |
+
global_state["autocast_gpu_dtype"] = (
|
558 |
+
torch.set_autocast_gpu_dtype,
|
559 |
+
torch.get_autocast_gpu_dtype(),
|
560 |
+
)
|
561 |
+
global_state["autocast_cpu_dtype"] = (
|
562 |
+
torch.set_autocast_cpu_dtype,
|
563 |
+
torch.get_autocast_cpu_dtype(),
|
564 |
+
)
|
565 |
+
global_state["autocast_cache_enabled"] = (
|
566 |
+
torch.set_autocast_cache_enabled,
|
567 |
+
torch.is_autocast_cache_enabled(),
|
568 |
+
)
|
569 |
+
|
570 |
+
def push_tx(self, tx):
|
571 |
+
self._current_tx.append(tx)
|
572 |
+
|
573 |
+
def pop_tx(self):
|
574 |
+
return self._current_tx.pop()
|
575 |
+
|
576 |
+
@property
|
577 |
+
def current_tx(self):
|
578 |
+
return self.root_tx if not self._current_tx else self._current_tx[-1]
|
579 |
+
|
580 |
+
def copy_graphstate(self) -> OutputGraphState:
|
581 |
+
"""Create a checkpoint of the current state by copying everything"""
|
582 |
+
assert self.param_name_to_source is not None
|
583 |
+
guards_graph_state = self.tracing_context.guards_context.copy_graphstate()
|
584 |
+
module_state = self.tracing_context.module_context.copy_graphstate()
|
585 |
+
global_state = self.tracing_context.global_context.copy_graphstate()
|
586 |
+
state = OutputGraphState(
|
587 |
+
dict(self.input_source_to_var),
|
588 |
+
list(self.tracked_fakes),
|
589 |
+
guards_graph_state,
|
590 |
+
module_state,
|
591 |
+
list(self.register_finalizer_fns),
|
592 |
+
global_state,
|
593 |
+
dict(self.param_name_to_source),
|
594 |
+
self.side_effects.clone(),
|
595 |
+
self.timestamp,
|
596 |
+
set(self.non_compliant_ops),
|
597 |
+
set(self.compliant_custom_ops),
|
598 |
+
)
|
599 |
+
self.timestamp += 1
|
600 |
+
return state
|
601 |
+
|
602 |
+
def restore_graphstate(self, state: OutputGraphState):
|
603 |
+
"""Restore a checkpoint created by self.copy_graphstate()"""
|
604 |
+
(
|
605 |
+
self.input_source_to_var,
|
606 |
+
self.tracked_fakes,
|
607 |
+
guards_state,
|
608 |
+
module_state,
|
609 |
+
self.register_finalizer_fns,
|
610 |
+
global_state,
|
611 |
+
self.param_name_to_source,
|
612 |
+
self.side_effects,
|
613 |
+
self.timestamp,
|
614 |
+
self.non_compliant_ops,
|
615 |
+
self.compliant_custom_ops,
|
616 |
+
) = state
|
617 |
+
self.tracing_context.guards_context.restore_graphstate(guards_state)
|
618 |
+
self.tracing_context.module_context.restore_graphstate(module_state)
|
619 |
+
self.tracing_context.global_context.restore_graphstate(global_state)
|
620 |
+
|
621 |
+
# FX deepcopy doesn't work for a partially created graph, so just remove new nodes
|
622 |
+
removed_nodes = 0
|
623 |
+
for node in reversed(list(self.graph.nodes)):
|
624 |
+
if (
|
625 |
+
node.meta["creation_timestamp"] > self.timestamp
|
626 |
+
# placeholders here may have been lazily added by existing objects
|
627 |
+
and node.op != "placeholder"
|
628 |
+
):
|
629 |
+
# Erasing node alone does not remove the meta information
|
630 |
+
# So, remove the help tensor explicitly
|
631 |
+
if "example_value" in node.meta:
|
632 |
+
del node.meta["example_value"]
|
633 |
+
self.remove_node(node)
|
634 |
+
self.real_value_cache.pop(node, None)
|
635 |
+
removed_nodes += 1
|
636 |
+
log.debug("restore_graphstate: removed %s nodes", removed_nodes)
|
637 |
+
|
638 |
+
def add_symbol_bindings(self, arg: GraphArg):
|
639 |
+
# Insert implicit size vars as necessary. With dynamic shapes, we
|
640 |
+
# maintain the invariant that every sizevar gets a direct SymInt input
|
641 |
+
# into the graph. This means downstream graph transforms can assume
|
642 |
+
# every size variable is explicitly bound and accessible, instead of
|
643 |
+
# having to pull it out implicitly from tensors.
|
644 |
+
|
645 |
+
if self.export:
|
646 |
+
return
|
647 |
+
|
648 |
+
assert arg.fake_tensor is not None
|
649 |
+
|
650 |
+
def bind_symint(s, prop):
|
651 |
+
if not (is_symbolic(s) and isinstance(s.node.expr, sympy.Symbol)):
|
652 |
+
return
|
653 |
+
s0 = s.node.expr
|
654 |
+
if s0 in self.bound_symbols:
|
655 |
+
return
|
656 |
+
self.bound_symbols.add(s0)
|
657 |
+
log.debug("bind_symint %s %s", s, prop.name())
|
658 |
+
# TODO: don't readd symint if we already have it in graph
|
659 |
+
# (this is harmless because we do remove the unused ones later)
|
660 |
+
proxy = self.root_tracer.create_graph_input(
|
661 |
+
str(s0),
|
662 |
+
torch.SymInt,
|
663 |
+
before=True,
|
664 |
+
source=prop,
|
665 |
+
)
|
666 |
+
proxy.node.meta["example_value"] = s
|
667 |
+
proxy.node.meta["grapharg"] = GraphArg(
|
668 |
+
prop,
|
669 |
+
s,
|
670 |
+
is_unspecialized=False,
|
671 |
+
fake_tensor=None,
|
672 |
+
is_tensor=False,
|
673 |
+
)
|
674 |
+
|
675 |
+
def handle_tensor(t, src):
|
676 |
+
for i, s in enumerate(t.size()):
|
677 |
+
bind_symint(s, TensorPropertySource(src, TensorProperty.SIZE, i))
|
678 |
+
for i, s in enumerate(t.stride()):
|
679 |
+
bind_symint(s, TensorPropertySource(src, TensorProperty.STRIDE, i))
|
680 |
+
bind_symint(
|
681 |
+
t.storage_offset(),
|
682 |
+
TensorPropertySource(src, TensorProperty.STORAGE_OFFSET),
|
683 |
+
)
|
684 |
+
if is_traceable_wrapper_subclass(t):
|
685 |
+
attrs, ctx = t.__tensor_flatten__()
|
686 |
+
for attr in attrs:
|
687 |
+
inner_t = getattr(t, attr)
|
688 |
+
handle_tensor(inner_t, AttrSource(src, attr))
|
689 |
+
|
690 |
+
handle_tensor(arg.fake_tensor, arg.source)
|
691 |
+
|
692 |
+
def count_calls(self):
|
693 |
+
return count_calls(self.graph)
|
694 |
+
|
695 |
+
def is_empty_graph(self):
|
696 |
+
return len(list(self.graph.nodes)) == 0
|
697 |
+
|
698 |
+
def get_submodule(self, keys):
|
699 |
+
assert keys
|
700 |
+
obj: Union[torch.nn.Module, Dict[str, torch.nn.Module]] = self.nn_modules
|
701 |
+
for k in keys.split("."):
|
702 |
+
if isinstance(obj, dict):
|
703 |
+
obj = obj[k]
|
704 |
+
else:
|
705 |
+
obj = getattr(obj, k)
|
706 |
+
return obj
|
707 |
+
|
708 |
+
def new_var(self, name="tmp"):
|
709 |
+
existing = set(self.code_options["co_varnames"])
|
710 |
+
for i in itertools.count():
|
711 |
+
var = f"{name}_{i}"
|
712 |
+
if var not in existing:
|
713 |
+
self.code_options["co_varnames"] += (var,)
|
714 |
+
return var
|
715 |
+
|
716 |
+
def update_co_names(self, name):
|
717 |
+
"""Ensure self.code_options.co_names contains name"""
|
718 |
+
if name not in self.code_options["co_names"]:
|
719 |
+
self.code_options["co_names"] += (name,)
|
720 |
+
|
721 |
+
@staticmethod
|
722 |
+
def module_key_name(*names):
|
723 |
+
# create a new unique name
|
724 |
+
name = "_".join(map(str, names))
|
725 |
+
# Strip the guard lookup L/G access
|
726 |
+
name = re.sub(r"^[GL]\['?(.*?)'?\]$", r"\1", name)
|
727 |
+
# e.g. replace abc.xyz[123].qkv with abc.xyz_123.qkv
|
728 |
+
name = re.sub(r"\[(\d+)\]", r"_\g<1>", name)
|
729 |
+
# e.g. replace abc.xyz_123.qkv with abc_xyz_123_qkv
|
730 |
+
name = re.sub(r"[^a-zA-Z0-9]", "_", name)
|
731 |
+
|
732 |
+
if not name or not name[0].isalpha():
|
733 |
+
name = "sub" + name
|
734 |
+
|
735 |
+
return name
|
736 |
+
|
737 |
+
def register_attr_or_module(
|
738 |
+
self,
|
739 |
+
target: Union[torch.nn.Module, torch.Tensor, Any],
|
740 |
+
*names,
|
741 |
+
**options,
|
742 |
+
):
|
743 |
+
if is_dynamic_nn_module(target):
|
744 |
+
return variables.UnspecializedNNModuleVariable(target, **options)
|
745 |
+
|
746 |
+
options = dict(options)
|
747 |
+
assert "source" in options
|
748 |
+
source = options["source"]
|
749 |
+
assert not isinstance(source, ParamBufferSource)
|
750 |
+
|
751 |
+
if isinstance(target, torch.Tensor):
|
752 |
+
tracer = self.current_tracer
|
753 |
+
if not self.is_root_tracer():
|
754 |
+
# For higher order ops, we don't want to insert the get_attr in
|
755 |
+
# innermost graph. Instead, we want to raise the params/buffers
|
756 |
+
# as inputs to the higher-order graph, and register them as
|
757 |
+
# get_attrs in the root tracer.
|
758 |
+
|
759 |
+
# Note that Dynamo will still call lift_tracked_freevar_to_input
|
760 |
+
# when these inputs are encountered for the inner graph. The
|
761 |
+
# only difference is what happens at the root tracer for
|
762 |
+
# nn.Parameters vs free inputs. The free inputs are registered
|
763 |
+
# as placeholders in the root graph, whereas the nn.Parameters
|
764 |
+
# are registered as get_attr nodes in the root graph.
|
765 |
+
tracer = self.root_tracer
|
766 |
+
|
767 |
+
if not is_constant_source(source):
|
768 |
+
install_guard(source.make_guard(GuardBuilder.TENSOR_MATCH))
|
769 |
+
|
770 |
+
if get_static_address_type(target) == "guarded":
|
771 |
+
install_guard(source.make_guard(GuardBuilder.DATA_PTR_MATCH))
|
772 |
+
|
773 |
+
def wrap_name(module_key):
|
774 |
+
assert self.param_name_to_source is not None
|
775 |
+
self.param_name_to_source[module_key] = source
|
776 |
+
|
777 |
+
return wrap_fx_proxy(
|
778 |
+
self.root_tx,
|
779 |
+
tracer.create_proxy("get_attr", module_key, tuple(), {}),
|
780 |
+
example_value=target,
|
781 |
+
**options,
|
782 |
+
)
|
783 |
+
|
784 |
+
elif isinstance(target, torch.nn.Module):
|
785 |
+
assert isinstance(target, torch.nn.Module)
|
786 |
+
|
787 |
+
install_guard(source.make_guard(GuardBuilder.NN_MODULE))
|
788 |
+
|
789 |
+
def wrap_name(module_key):
|
790 |
+
return NNModuleVariable(type(target), module_key, target, **options)
|
791 |
+
|
792 |
+
elif isinstance(target, (torch.SymInt, torch.SymFloat)):
|
793 |
+
# HACKY CODE REGION BEGIN
|
794 |
+
# WE ARE PIGGYBACKING ON EXISTING INFRA TO REGISTER ATTRS
|
795 |
+
# This ultimately gets written to self.nn_modules, which is unfortunate
|
796 |
+
# Attrs that are tenors and symints and such need to be migrated to have their
|
797 |
+
# own storage
|
798 |
+
# alas, this is like this for now
|
799 |
+
|
800 |
+
def wrap_name(module_key):
|
801 |
+
return SymNodeVariable.create(
|
802 |
+
self,
|
803 |
+
self.create_proxy("get_attr", module_key, tuple(), {}),
|
804 |
+
sym_num=target,
|
805 |
+
**options,
|
806 |
+
)
|
807 |
+
|
808 |
+
# HACKY CODE REGION END
|
809 |
+
else:
|
810 |
+
|
811 |
+
def wrap_name(module_key):
|
812 |
+
self.output.update_co_names(module_key)
|
813 |
+
self.global_scope[module_key] = target
|
814 |
+
return VariableBuilder(self, ConstantSource(source_name=module_key))(
|
815 |
+
target
|
816 |
+
)
|
817 |
+
|
818 |
+
for k, v in self.nn_modules.items():
|
819 |
+
if v is target:
|
820 |
+
# it already exists
|
821 |
+
return wrap_name(k)
|
822 |
+
|
823 |
+
name = OutputGraph.module_key_name(*names)
|
824 |
+
|
825 |
+
base = name
|
826 |
+
for i in itertools.count():
|
827 |
+
if name not in self.nn_modules:
|
828 |
+
self.nn_modules[name] = target
|
829 |
+
if isinstance(target, torch.nn.Module):
|
830 |
+
|
831 |
+
def register_leaf_name(leaf_name):
|
832 |
+
assert self.param_name_to_source is not None
|
833 |
+
new_source = ParamBufferSource(source, leaf_name)
|
834 |
+
new_name = f"{name}.{leaf_name}"
|
835 |
+
self.param_name_to_source[new_name] = new_source
|
836 |
+
if isinstance(source, LocalSource):
|
837 |
+
self.dynamo_flat_name_to_original_fqn[
|
838 |
+
OutputGraph.module_key_name(new_source.name())
|
839 |
+
] = leaf_name
|
840 |
+
|
841 |
+
# annoying, but there are cases when we do not have parameters
|
842 |
+
# see test_nn_moduledict_contains
|
843 |
+
if hasattr(target, "_parameters"):
|
844 |
+
for leaf_name, _ in target.named_parameters():
|
845 |
+
register_leaf_name(leaf_name)
|
846 |
+
if hasattr(target, "_buffers"):
|
847 |
+
for leaf_name, _ in target.named_buffers():
|
848 |
+
register_leaf_name(leaf_name)
|
849 |
+
|
850 |
+
return wrap_name(name)
|
851 |
+
name = f"{base}_{i}"
|
852 |
+
|
853 |
+
raise AssertionError("unreachable")
|
854 |
+
|
855 |
+
def compile_subgraph(
|
856 |
+
self, tx, partial_convert=False, reason: Optional[GraphCompileReason] = None
|
857 |
+
):
|
858 |
+
"""
|
859 |
+
Generate a subgraph to continue execution on user code.
|
860 |
+
Automatically restore live variables.
|
861 |
+
"""
|
862 |
+
assert reason is not None
|
863 |
+
|
864 |
+
from .decorators import disable
|
865 |
+
|
866 |
+
self.partial_convert = partial_convert
|
867 |
+
self.compile_subgraph_reason = reason
|
868 |
+
self.should_exit = True
|
869 |
+
|
870 |
+
log.debug("COMPILING GRAPH due to %s", reason)
|
871 |
+
|
872 |
+
if not all(block.can_restore() for block in tx.block_stack):
|
873 |
+
unimplemented("compile_subgraph with block_depth != 0")
|
874 |
+
|
875 |
+
prefix_insts: List[Instruction] = []
|
876 |
+
if sys.version_info >= (3, 11):
|
877 |
+
# prefix instructions (Python 3.11+)
|
878 |
+
for inst in tx.prefix_insts:
|
879 |
+
if inst.opname == "MAKE_CELL":
|
880 |
+
prefix_insts.append(
|
881 |
+
create_instruction("MAKE_CELL", argval=inst.argval)
|
882 |
+
)
|
883 |
+
elif inst.opname == "COPY_FREE_VARS":
|
884 |
+
prefix_insts.append(
|
885 |
+
create_instruction(
|
886 |
+
"COPY_FREE_VARS", arg=len(tx.code_options["co_freevars"])
|
887 |
+
)
|
888 |
+
)
|
889 |
+
else:
|
890 |
+
prefix_insts.append(copy.copy(inst))
|
891 |
+
assert not (
|
892 |
+
self.pregraph_bytecode and self.export
|
893 |
+
), "export does not support pregraph_bytecode"
|
894 |
+
prefix_insts.extend(self.pregraph_bytecode)
|
895 |
+
|
896 |
+
def append_prefix_insts():
|
897 |
+
self.add_output_instructions(prefix_insts)
|
898 |
+
prefix_insts.clear()
|
899 |
+
|
900 |
+
for block in reversed(tx.block_stack):
|
901 |
+
block.exit(tx)
|
902 |
+
|
903 |
+
self.cleanup_graph()
|
904 |
+
tx.prune_dead_locals()
|
905 |
+
stack_values = list(tx.stack)
|
906 |
+
root = FakeRootModule(self.nn_modules)
|
907 |
+
# Add all the local vars to the "stack" so restore at the end
|
908 |
+
restore_vars = []
|
909 |
+
val_to_names: Dict[VariableTracker, List[str]] = {}
|
910 |
+
if stack_values:
|
911 |
+
val_to_names[stack_values[-1]] = list()
|
912 |
+
# NB: Typically (i.e., for graph compile from RETURN_VALUE),
|
913 |
+
# symbolic_locals will be empty at this point, as prune_dead_locals
|
914 |
+
# will clear out all of symbolic_locals because RETURN_VALUE is the
|
915 |
+
# last instruction and no more locals are used. The fanciness here
|
916 |
+
# is only needed for partial graphs.
|
917 |
+
for k, v in tx.symbolic_locals.items():
|
918 |
+
# Note! this explicitly uses .local_name for matching
|
919 |
+
# Failure to do so will cause spurious registrations in val_to_names.
|
920 |
+
# This will in turn result in spurious variables showing up in the graph.
|
921 |
+
# This was very tricky to debug. For an example, dump the graph at call_user_compiler
|
922 |
+
# while running test_subgraphs.py
|
923 |
+
if isinstance(v.source, LocalSource) and v.source.local_name == k:
|
924 |
+
continue # no need to restore initial state
|
925 |
+
if v not in val_to_names:
|
926 |
+
val_to_names[v] = list()
|
927 |
+
val_to_names[v].append(k)
|
928 |
+
for v in val_to_names.keys():
|
929 |
+
restore_vars.extend(val_to_names[v])
|
930 |
+
stack_values.extend([v] * len(val_to_names[v]))
|
931 |
+
|
932 |
+
# to handle random calls
|
933 |
+
if len(self.random_calls) > 0:
|
934 |
+
append_prefix_insts()
|
935 |
+
random_calls_instructions = []
|
936 |
+
self.random_values_var = self.new_var("random_values")
|
937 |
+
rand_fn = disable(_get_gen_rand_values_fn(self.random_calls))
|
938 |
+
rand_fn_name = self.install_global("__gen_rand_values", rand_fn)
|
939 |
+
codegen = PyCodegen(tx, root)
|
940 |
+
random_calls_instructions.extend(
|
941 |
+
codegen.load_function_name(rand_fn_name, True)
|
942 |
+
)
|
943 |
+
random_calls_instructions.extend(create_call_function(0, False))
|
944 |
+
random_calls_instructions.append(
|
945 |
+
codegen.create_store(tx.output.random_values_var),
|
946 |
+
)
|
947 |
+
self.add_output_instructions(random_calls_instructions)
|
948 |
+
|
949 |
+
if (
|
950 |
+
stack_values
|
951 |
+
and all(
|
952 |
+
not isinstance(
|
953 |
+
v,
|
954 |
+
(
|
955 |
+
UnspecializedPythonVariable,
|
956 |
+
NumpyNdarrayVariable,
|
957 |
+
TensorWithTFOverrideVariable,
|
958 |
+
),
|
959 |
+
)
|
960 |
+
for v in stack_values
|
961 |
+
)
|
962 |
+
and all(isinstance(x, TensorVariable) for x in stack_values)
|
963 |
+
and len(set(stack_values)) == len(stack_values)
|
964 |
+
and self.side_effects.is_empty()
|
965 |
+
and not len(tx.debug_locals) != 0
|
966 |
+
and not self.backward_state
|
967 |
+
):
|
968 |
+
append_prefix_insts()
|
969 |
+
# optimization to generate better code in a common case
|
970 |
+
self.add_output_instructions(
|
971 |
+
self.compile_and_call_fx_graph(tx, list(reversed(stack_values)), root)
|
972 |
+
+ [create_instruction("UNPACK_SEQUENCE", arg=len(stack_values))]
|
973 |
+
)
|
974 |
+
else:
|
975 |
+
graph_output_var = self.new_var("graph_out")
|
976 |
+
pass1 = PyCodegen(tx, root, graph_output_var)
|
977 |
+
self.codegen_suffix(tx, stack_values, pass1)
|
978 |
+
|
979 |
+
# one more time now that we have established tempvars
|
980 |
+
pass2 = PyCodegen(
|
981 |
+
tx,
|
982 |
+
root,
|
983 |
+
graph_output_var,
|
984 |
+
tempvars={val: None for val, count in pass1.uses.items() if count > 1},
|
985 |
+
)
|
986 |
+
self.codegen_suffix(tx, stack_values, pass2)
|
987 |
+
|
988 |
+
output = []
|
989 |
+
if count_calls(self.graph) != 0 or len(pass2.graph_outputs) != 0:
|
990 |
+
output.extend(
|
991 |
+
self.compile_and_call_fx_graph(tx, pass2.graph_output_vars(), root)
|
992 |
+
)
|
993 |
+
|
994 |
+
if len(pass2.graph_outputs) != 0:
|
995 |
+
output.append(pass2.create_store(graph_output_var))
|
996 |
+
else:
|
997 |
+
output.append(create_instruction("POP_TOP"))
|
998 |
+
append_prefix_insts()
|
999 |
+
self.add_output_instructions(output + pass2.get_instructions())
|
1000 |
+
|
1001 |
+
# restore all the live local vars
|
1002 |
+
self.add_output_instructions(
|
1003 |
+
[PyCodegen(tx).create_store(var) for var in reversed(restore_vars)]
|
1004 |
+
)
|
1005 |
+
|
1006 |
+
def codegen_suffix(self, tx, stack_values, cg):
|
1007 |
+
if self.backward_state:
|
1008 |
+
assert not self.export
|
1009 |
+
for name, val in self.backward_state.items():
|
1010 |
+
cg(val)
|
1011 |
+
cg.append_output(cg.create_load(self.backward_state_var))
|
1012 |
+
cg.store_attr(name)
|
1013 |
+
self.side_effects.codegen_hooks(cg)
|
1014 |
+
self.side_effects.codegen_save_tempvars(cg)
|
1015 |
+
|
1016 |
+
# Return variables used for logging at the end
|
1017 |
+
for debug_var, args in tx.debug_locals:
|
1018 |
+
cg(debug_var)
|
1019 |
+
for arg in args:
|
1020 |
+
cg(arg)
|
1021 |
+
cg.extend_output(create_call_function(len(args), True))
|
1022 |
+
|
1023 |
+
cg.restore_stack(stack_values, value_from_source=not tx.export)
|
1024 |
+
self.side_effects.codegen_update_mutated(cg)
|
1025 |
+
|
1026 |
+
def cleanup_graph(self):
|
1027 |
+
"""
|
1028 |
+
Remove "creation_timestamp" from node meta
|
1029 |
+
|
1030 |
+
Remove this pattern from the graph:
|
1031 |
+
torch._C._set_grad_enabled(False)
|
1032 |
+
torch._C._set_grad_enabled(True)
|
1033 |
+
"""
|
1034 |
+
assert self.should_exit
|
1035 |
+
nodes = list(self.graph.nodes)
|
1036 |
+
for node in nodes:
|
1037 |
+
node.meta.pop("creation_timestamp", None)
|
1038 |
+
|
1039 |
+
grad_enabled = torch.is_grad_enabled()
|
1040 |
+
for node1, node2 in zip(nodes, nodes[1:]):
|
1041 |
+
if (
|
1042 |
+
node1.target is torch._C._set_grad_enabled
|
1043 |
+
and tuple(node1.args) == (not grad_enabled,)
|
1044 |
+
and not node1._erased
|
1045 |
+
):
|
1046 |
+
grad_enabled = node1.args[0]
|
1047 |
+
if (
|
1048 |
+
node2.target is torch._C._set_grad_enabled
|
1049 |
+
and tuple(node2.args) == (not grad_enabled,)
|
1050 |
+
and not node2._erased
|
1051 |
+
):
|
1052 |
+
grad_enabled = node2.args[0]
|
1053 |
+
self.graph.erase_node(node1)
|
1054 |
+
self.graph.erase_node(node2)
|
1055 |
+
|
1056 |
+
def get_graph_sizes_structured(self):
|
1057 |
+
ret = {}
|
1058 |
+
for node in self.graph.nodes:
|
1059 |
+
example_value = node.meta.get("example_value", None)
|
1060 |
+
if isinstance(example_value, torch._subclasses.FakeTensor):
|
1061 |
+
size = example_value.size()
|
1062 |
+
ret[node.name] = [s if isinstance(s, int) else repr(s) for s in size]
|
1063 |
+
return ret
|
1064 |
+
|
1065 |
+
def get_graph_sizes(self, name: str):
|
1066 |
+
graph_sizes_str = "TRACED GRAPH TENSOR SIZES\n"
|
1067 |
+
graph_sizes_str += f"===== {name} =====\n"
|
1068 |
+
for node in self.graph.nodes:
|
1069 |
+
example_value = node.meta.get("example_value", None)
|
1070 |
+
if isinstance(example_value, torch._subclasses.FakeTensor):
|
1071 |
+
size = example_value.size()
|
1072 |
+
graph_sizes_str += f"{node.name}: {tuple(size)}\n"
|
1073 |
+
concrete_size = []
|
1074 |
+
has_symint = False
|
1075 |
+
for sz in size:
|
1076 |
+
if isinstance(sz, int):
|
1077 |
+
concrete_size.append(sz)
|
1078 |
+
elif isinstance(sz, torch.SymInt):
|
1079 |
+
has_symint = True
|
1080 |
+
concrete_size.append(sz.node.hint)
|
1081 |
+
else:
|
1082 |
+
break
|
1083 |
+
else:
|
1084 |
+
if has_symint:
|
1085 |
+
graph_sizes_str += (
|
1086 |
+
f"{node.name} (concrete): {tuple(concrete_size)}\n"
|
1087 |
+
)
|
1088 |
+
return graph_sizes_str
|
1089 |
+
|
1090 |
+
@contextlib.contextmanager
|
1091 |
+
def restore_global_state(self):
|
1092 |
+
"""
|
1093 |
+
Momentarily restores the global state to what it was prior to tracing the current output
|
1094 |
+
"""
|
1095 |
+
prior_global_state = self.tracing_context.global_context.copy_graphstate()
|
1096 |
+
current_global_state: Dict[str, Tuple[Any, bool]] = {}
|
1097 |
+
self.save_global_state(out=current_global_state)
|
1098 |
+
try:
|
1099 |
+
# Set to state prior to tracing the graph
|
1100 |
+
self.tracing_context.global_context.restore_graphstate(prior_global_state)
|
1101 |
+
yield
|
1102 |
+
finally:
|
1103 |
+
# Reset to state at the current time (e.g. before calling the user compiler)
|
1104 |
+
self.tracing_context.global_context.restore_graphstate(
|
1105 |
+
GlobalContextCheckpointState(current_global_state)
|
1106 |
+
)
|
1107 |
+
|
1108 |
+
@torch._guards.TracingContext.clear_frame()
|
1109 |
+
def compile_and_call_fx_graph(self, tx, rv, root):
|
1110 |
+
"""
|
1111 |
+
Generate code from self.graph and return the Instruction()s to
|
1112 |
+
call that generated code.
|
1113 |
+
"""
|
1114 |
+
from .decorators import disable
|
1115 |
+
|
1116 |
+
assert self.should_exit
|
1117 |
+
|
1118 |
+
name = unique_id("__compiled_fn")
|
1119 |
+
|
1120 |
+
assert isinstance(rv, list)
|
1121 |
+
assert isinstance(root, FakeRootModule)
|
1122 |
+
self.create_node(
|
1123 |
+
"output",
|
1124 |
+
"output",
|
1125 |
+
(self.current_tracer.create_arg(tuple(x.as_proxy() for x in rv)),),
|
1126 |
+
{},
|
1127 |
+
)
|
1128 |
+
self.insert_deferred_runtime_asserts(root, name)
|
1129 |
+
# NB: deferred runtime asserts can keep graphargs live, so make sure
|
1130 |
+
# those are inserted before pruning
|
1131 |
+
self.remove_unused_graphargs()
|
1132 |
+
ncalls = count_calls(self.graph)
|
1133 |
+
counters["stats"]["calls_captured"] += ncalls
|
1134 |
+
|
1135 |
+
# free a bit of memory
|
1136 |
+
self.real_value_cache.clear()
|
1137 |
+
|
1138 |
+
gm = _make_graph_module(root, self.graph)
|
1139 |
+
for register_finalizer in self.register_finalizer_fns:
|
1140 |
+
register_finalizer(gm)
|
1141 |
+
|
1142 |
+
gm.compile_subgraph_reason = self.compile_subgraph_reason
|
1143 |
+
gm.meta[
|
1144 |
+
"dynamo_flat_name_to_original_fqn"
|
1145 |
+
] = self.dynamo_flat_name_to_original_fqn.copy()
|
1146 |
+
|
1147 |
+
graph_code_log.debug("%s", lazy_format_graph_code(name, gm))
|
1148 |
+
torch._logging.trace_structured(
|
1149 |
+
"dynamo_output_graph",
|
1150 |
+
lambda: {"sizes": self.get_graph_sizes_structured()},
|
1151 |
+
payload_fn=lambda: gm.print_readable(print_output=False),
|
1152 |
+
)
|
1153 |
+
graph_tabular_log.debug("%s", lazy_format_graph_tabular(name, gm))
|
1154 |
+
graph_sizes_log.debug("%s", LazyString(lambda: self.get_graph_sizes(name)))
|
1155 |
+
self.call_cleanup_hooks()
|
1156 |
+
old_fake_mode = self.tracing_context.fake_mode
|
1157 |
+
if not self.export:
|
1158 |
+
# TODO(voz): The way export uses gm, and fake tensors, is not supported with us resetting
|
1159 |
+
backend_fake_mode = torch._subclasses.FakeTensorMode(
|
1160 |
+
shape_env=old_fake_mode.shape_env,
|
1161 |
+
)
|
1162 |
+
# TODO(voz): Ostensibily, this should be scoped and
|
1163 |
+
# restore back to old_fake_mode, but doing so currently violates
|
1164 |
+
# a lot of fake_tensor ownership assumptions and runs afoul of detect_fake_mode
|
1165 |
+
self.tracing_context.fake_mode = backend_fake_mode
|
1166 |
+
|
1167 |
+
with self.restore_global_state():
|
1168 |
+
compiled_fn = self.call_user_compiler(gm)
|
1169 |
+
compiled_fn = disable(compiled_fn)
|
1170 |
+
|
1171 |
+
counters["stats"]["unique_graphs"] += 1
|
1172 |
+
# This is safe because we pre-process name to be unique
|
1173 |
+
self.install_global_unsafe(name, compiled_fn)
|
1174 |
+
|
1175 |
+
cg = PyCodegen(tx)
|
1176 |
+
cg.make_call_generated_code(name)
|
1177 |
+
return cg.get_instructions()
|
1178 |
+
|
1179 |
+
@property
|
1180 |
+
def placeholders(self) -> List[fx.Node]:
|
1181 |
+
r = []
|
1182 |
+
for node in self.graph.nodes:
|
1183 |
+
if node.op == "placeholder":
|
1184 |
+
r.append(node)
|
1185 |
+
continue
|
1186 |
+
break
|
1187 |
+
return r
|
1188 |
+
|
1189 |
+
@property
|
1190 |
+
def graphargs(self) -> List[GraphArg]:
|
1191 |
+
return [node.meta["grapharg"] for node in self.placeholders]
|
1192 |
+
|
1193 |
+
@dynamo_timed(phase_name="backend_compile")
|
1194 |
+
def call_user_compiler(self, gm: fx.GraphModule) -> CompiledFn:
|
1195 |
+
assert self.compiler_fn is not None
|
1196 |
+
tot = 0
|
1197 |
+
placeholders = []
|
1198 |
+
for node in gm.graph.nodes:
|
1199 |
+
if node.op in ("call_function", "call_method", "call_module"):
|
1200 |
+
tot += 1
|
1201 |
+
if node.op == "placeholder":
|
1202 |
+
placeholders.append(node)
|
1203 |
+
increment_op_count(tot)
|
1204 |
+
for pl in placeholders:
|
1205 |
+
arg = pl.meta["grapharg"]
|
1206 |
+
# TODO: Why isn't this stored in meta :think:
|
1207 |
+
pl._dynamo_source = arg.source
|
1208 |
+
|
1209 |
+
gm._param_name_to_source = self.param_name_to_source # type: ignore[assignment]
|
1210 |
+
gm._source_to_user_stacks = self.source_to_user_stacks # type: ignore[assignment]
|
1211 |
+
|
1212 |
+
try:
|
1213 |
+
name = (
|
1214 |
+
self.compiler_fn.__name__
|
1215 |
+
if hasattr(self.compiler_fn, "__name__")
|
1216 |
+
else ""
|
1217 |
+
)
|
1218 |
+
_step_logger()(logging.INFO, f"calling compiler function {name}")
|
1219 |
+
compiler_fn = self.compiler_fn
|
1220 |
+
if config.verify_correctness:
|
1221 |
+
compiler_fn = WrapperBackend(compiler_fn)
|
1222 |
+
compiled_fn = compiler_fn(gm, self.example_inputs())
|
1223 |
+
_step_logger()(logging.INFO, f"done compiler function {name}")
|
1224 |
+
assert callable(compiled_fn), "compiler_fn did not return callable"
|
1225 |
+
except exceptions_allowed_to_be_fallback as e:
|
1226 |
+
if self.has_user_defined_allowed_in_graph:
|
1227 |
+
raise BackendCompilerFailed(self.compiler_fn, e).with_traceback(
|
1228 |
+
e.__traceback__
|
1229 |
+
) from None
|
1230 |
+
msg = (
|
1231 |
+
"Backend compiler failed with a fake tensor exception at \n"
|
1232 |
+
f"{self.root_tx.format_frame_summary()}"
|
1233 |
+
"Adding a graph break."
|
1234 |
+
)
|
1235 |
+
unimplemented_with_warning(e, self.root_tx.f_code, msg)
|
1236 |
+
except SkipFrame as e:
|
1237 |
+
# The backend compiler has requested that we skip the frame, instead of
|
1238 |
+
# aborting execution.
|
1239 |
+
raise e
|
1240 |
+
except Exception as e:
|
1241 |
+
raise BackendCompilerFailed(self.compiler_fn, e).with_traceback(
|
1242 |
+
e.__traceback__
|
1243 |
+
) from None
|
1244 |
+
|
1245 |
+
signpost_event(
|
1246 |
+
"dynamo",
|
1247 |
+
"OutputGraph.call_user_compiler",
|
1248 |
+
{
|
1249 |
+
**self.co_fields,
|
1250 |
+
"op_count": tot,
|
1251 |
+
"node_count": len(gm.graph.nodes),
|
1252 |
+
"input_count": len(placeholders),
|
1253 |
+
},
|
1254 |
+
)
|
1255 |
+
|
1256 |
+
return compiled_fn
|
1257 |
+
|
1258 |
+
def example_inputs(self) -> List[torch.Tensor]:
|
1259 |
+
result = []
|
1260 |
+
for arg in self.graphargs:
|
1261 |
+
result.append(arg.example)
|
1262 |
+
return result
|
1263 |
+
|
1264 |
+
def remove_unused_graphargs(self) -> None:
|
1265 |
+
assert self.should_exit
|
1266 |
+
# Miniature DCE pass, but only for obviously trivial operations
|
1267 |
+
for node in reversed(list(self.graph.nodes)):
|
1268 |
+
if len(list(node.users)) == 0:
|
1269 |
+
if node.op == "get_attr":
|
1270 |
+
self.remove_node(node)
|
1271 |
+
elif node.op == "call_function" and node.target is operator.getitem:
|
1272 |
+
self.remove_node(node)
|
1273 |
+
|
1274 |
+
def placeholder_binds_symbol(node):
|
1275 |
+
arg = node.meta["grapharg"]
|
1276 |
+
example = arg.example
|
1277 |
+
if isinstance(example, torch.SymInt) and isinstance(
|
1278 |
+
example.node.expr, sympy.Symbol
|
1279 |
+
):
|
1280 |
+
return example.node.expr
|
1281 |
+
return None
|
1282 |
+
|
1283 |
+
def remove_unused(node):
|
1284 |
+
log.debug("REMOVE UNUSED GRAPHARG %s", node.meta["grapharg"].source.name())
|
1285 |
+
# I'm not really sure why you need to delete these from the
|
1286 |
+
# node since the node is going to get removed
|
1287 |
+
del node.meta["grapharg"]
|
1288 |
+
self.remove_node(node)
|
1289 |
+
self.real_value_cache.pop(node, None)
|
1290 |
+
|
1291 |
+
used_symbols = set()
|
1292 |
+
recheck_placeholders = []
|
1293 |
+
for node in self.placeholders:
|
1294 |
+
binds_symbol = placeholder_binds_symbol(node) is not None
|
1295 |
+
# Don't delete symbol bindings yet
|
1296 |
+
if binds_symbol:
|
1297 |
+
if not node.users:
|
1298 |
+
recheck_placeholders.append(node)
|
1299 |
+
else:
|
1300 |
+
if not node.users and not isinstance(
|
1301 |
+
node.meta["grapharg"], BackwardStateGraphArg
|
1302 |
+
):
|
1303 |
+
remove_unused(node)
|
1304 |
+
else:
|
1305 |
+
# Register the free symbols as uses
|
1306 |
+
arg = node.meta["grapharg"]
|
1307 |
+
if isinstance(arg, BackwardStateGraphArg):
|
1308 |
+
continue
|
1309 |
+
fake = (
|
1310 |
+
arg.fake_tensor if arg.fake_tensor is not None else arg.example
|
1311 |
+
)
|
1312 |
+
used_symbols |= free_symbols(fake)
|
1313 |
+
|
1314 |
+
# After removing unused graphargs, prune unused binds_symbol
|
1315 |
+
for node in recheck_placeholders:
|
1316 |
+
symbol = placeholder_binds_symbol(node)
|
1317 |
+
if symbol is not None:
|
1318 |
+
if symbol not in used_symbols:
|
1319 |
+
remove_unused(node)
|
1320 |
+
else:
|
1321 |
+
# Make sure we delete later occurrences of the same symbol
|
1322 |
+
used_symbols.remove(symbol)
|
1323 |
+
|
1324 |
+
# TODO: this is a generic pass that should live outside of Dynamo
|
1325 |
+
def insert_deferred_runtime_asserts(self, root, name) -> None:
|
1326 |
+
"""
|
1327 |
+
During tracing, we may have discovered that some data-dependent values
|
1328 |
+
had runtime assert on them; e.g., torch.empty(x.item()) induces a runtime
|
1329 |
+
that x.item() >= 0. This asserts can happen unpredictably during fake
|
1330 |
+
tensor propagation, so we cannot conveniently insert them into the FX graph
|
1331 |
+
when they occur. Instead, we accumulate them in the ShapeEnv, and in this
|
1332 |
+
pass insert them into the graph as proper tests.
|
1333 |
+
"""
|
1334 |
+
# TODO: Request simplification on runtime asserts before emitting them
|
1335 |
+
ras_by_symbol = self.shape_env.deferred_runtime_asserts.copy()
|
1336 |
+
|
1337 |
+
if not any(ras for ras in ras_by_symbol.values()):
|
1338 |
+
return
|
1339 |
+
|
1340 |
+
gm = fx.GraphModule(root, self.graph)
|
1341 |
+
graph_code_log.debug(
|
1342 |
+
"%s",
|
1343 |
+
lazy_format_graph_code(f"pre insert_deferred_runtime_asserts {name}", gm),
|
1344 |
+
)
|
1345 |
+
|
1346 |
+
# We are going to mutate the dict
|
1347 |
+
symbol_to_proxy = {}
|
1348 |
+
placeholders = set()
|
1349 |
+
last_placeholder = None
|
1350 |
+
for node in self.graph.nodes:
|
1351 |
+
if node.op != "placeholder":
|
1352 |
+
last_placeholder = node
|
1353 |
+
break
|
1354 |
+
placeholders.add(node)
|
1355 |
+
assert last_placeholder is not None
|
1356 |
+
|
1357 |
+
# Identify what symbols we need to reify. This isn't strictly needed
|
1358 |
+
# but helps reduce churn on the graph
|
1359 |
+
needed_symbols: Set[sympy.Symbol] = set()
|
1360 |
+
for ras in ras_by_symbol.values():
|
1361 |
+
for ra in ras:
|
1362 |
+
needed_symbols.update(free_symbols(ra.expr))
|
1363 |
+
|
1364 |
+
log.debug("needed_symbols = %s", needed_symbols)
|
1365 |
+
|
1366 |
+
for node in self.graph.nodes:
|
1367 |
+
# Placeholders can match symbols, but when we destructure them
|
1368 |
+
# with size we have to make sure we insert the nodes after all
|
1369 |
+
# the placeholders
|
1370 |
+
with self.graph.inserting_before(
|
1371 |
+
node.next if node not in placeholders else last_placeholder.next
|
1372 |
+
):
|
1373 |
+
if "example_value" not in node.meta:
|
1374 |
+
continue
|
1375 |
+
|
1376 |
+
defs = []
|
1377 |
+
|
1378 |
+
# For every new unbacked symbol, we need an fx.Node representing
|
1379 |
+
# precisely this value. There are a few places where the unbacked
|
1380 |
+
# symbol could have come from, and we will check them to setup
|
1381 |
+
# these nodes.
|
1382 |
+
#
|
1383 |
+
# For a case like item(), this is trivial (no new node is added.)
|
1384 |
+
#
|
1385 |
+
# For nonzero(), we need to add something like i0 = out.size(0)
|
1386 |
+
#
|
1387 |
+
# We could end up with duplicate nodes this way but it is not a
|
1388 |
+
# big deal.
|
1389 |
+
#
|
1390 |
+
# We also do this to setup backed SymInts, but those are all going
|
1391 |
+
# to be matched from placeholders
|
1392 |
+
def match_symbol(symint, cb):
|
1393 |
+
if (
|
1394 |
+
isinstance(symint, torch.SymInt)
|
1395 |
+
and isinstance(symint.node, SymNode)
|
1396 |
+
and isinstance(s := symint.node.expr, sympy.Symbol)
|
1397 |
+
and s not in symbol_to_proxy
|
1398 |
+
and s in needed_symbols
|
1399 |
+
):
|
1400 |
+
symbol_to_proxy[s] = fx.Proxy(cb())
|
1401 |
+
log.debug("symbol_to_proxy[%s] = %s", s, symbol_to_proxy[s])
|
1402 |
+
defs.append(s)
|
1403 |
+
|
1404 |
+
match_symbol(node.meta["example_value"], lambda: node)
|
1405 |
+
if isinstance(t := node.meta["example_value"], torch.Tensor):
|
1406 |
+
for i, s in enumerate(t.size()):
|
1407 |
+
match_symbol(
|
1408 |
+
s, lambda: self.graph.call_method("size", (node, i))
|
1409 |
+
)
|
1410 |
+
for i, s in enumerate(t.stride()):
|
1411 |
+
match_symbol(
|
1412 |
+
s, lambda: self.graph.call_method("stride", (node, i))
|
1413 |
+
)
|
1414 |
+
match_symbol(
|
1415 |
+
t.storage_offset(),
|
1416 |
+
lambda: self.graph.call_method("storage_offset", (node,)),
|
1417 |
+
)
|
1418 |
+
|
1419 |
+
for i0 in defs:
|
1420 |
+
ras = ras_by_symbol.pop(i0, [])
|
1421 |
+
# Before we perform any asserts, first apply range
|
1422 |
+
# refinement. This is important, because if we are going
|
1423 |
+
# to retrace the graph (and we typically are if we send
|
1424 |
+
# the graph to AOTAutograd), we need to make sure we apply
|
1425 |
+
# range refinement (ala _check_is_size) first, BEFORE we
|
1426 |
+
# run any of the asserts. Otherwise, we may decide to
|
1427 |
+
# perform substitutions based on the asserts which we then
|
1428 |
+
# can't back out, because value ranges can only be applied
|
1429 |
+
# to asserts.)
|
1430 |
+
#
|
1431 |
+
# A perhaps better long term plan is to avoid this order
|
1432 |
+
# dependence by making it possible to refine ranges on
|
1433 |
+
# arbitrary expressions, not just symbols. But it is not
|
1434 |
+
# so easy to make use of this information, see
|
1435 |
+
# https://twitter.com/ezyang/status/1745801370299482492
|
1436 |
+
# We actually made an attempt at this in
|
1437 |
+
# https://github.com/pytorch/pytorch/pull/119043
|
1438 |
+
# which didn't work.
|
1439 |
+
#
|
1440 |
+
# Another ideas for how to do this:
|
1441 |
+
# - Have bound_sympy be the source of truth of the ranges of any expression
|
1442 |
+
# - Cache intermediate results for every subexpression of bound_sympy
|
1443 |
+
# - This cache should be possible to edit to refine ranges
|
1444 |
+
#
|
1445 |
+
# One issue with this proposal is that if
|
1446 |
+
# we have a bound on 2x, we are not going to be able to
|
1447 |
+
# apply it for 4x. Similarly, we may have bounds for an
|
1448 |
+
# equivalent expression that we are not applying because
|
1449 |
+
# it's not a perfect match (e.g. x < y vs y > x)".
|
1450 |
+
#
|
1451 |
+
# The first issue we already have it and it's impossible
|
1452 |
+
# to solve in general, so any implementation on a best
|
1453 |
+
# effort basis should do.
|
1454 |
+
#
|
1455 |
+
# The second issue is a preexisting one. It can be mitigated
|
1456 |
+
# with a normalisation algorithm. In general, it may also
|
1457 |
+
# be on a best effort basis, but since our grammar is not
|
1458 |
+
# terribly difficult, chances are we could even fully
|
1459 |
+
# normalise SymPy expressions... who knows.
|
1460 |
+
|
1461 |
+
if i0 in self.shape_env.size_like:
|
1462 |
+
self.graph.call_function(
|
1463 |
+
torch._check_is_size, (symbol_to_proxy[i0].node,)
|
1464 |
+
)
|
1465 |
+
|
1466 |
+
vr = self.shape_env.var_to_range[i0]
|
1467 |
+
if not self.shape_env._default_unspecified_value_range().issubset(
|
1468 |
+
vr
|
1469 |
+
):
|
1470 |
+
# The runtime range is constrained, so add a runtime
|
1471 |
+
# assert and also explicitly refine the range
|
1472 |
+
# (refinement should not be necessary once runtime
|
1473 |
+
# asserts cause refinement, but that's NYI)
|
1474 |
+
def convert(s):
|
1475 |
+
try:
|
1476 |
+
return int(s)
|
1477 |
+
except TypeError:
|
1478 |
+
return None
|
1479 |
+
|
1480 |
+
self.graph.call_function(
|
1481 |
+
torch._constrain_as_value,
|
1482 |
+
(
|
1483 |
+
symbol_to_proxy[i0].node,
|
1484 |
+
convert(vr.lower),
|
1485 |
+
convert(vr.upper),
|
1486 |
+
),
|
1487 |
+
)
|
1488 |
+
|
1489 |
+
for ra in ras:
|
1490 |
+
log.debug("inserting runtime assert %s", ra.expr)
|
1491 |
+
# Need to process ALL free symbols, not just unbacked ones
|
1492 |
+
fvs = free_symbols(ra.expr)
|
1493 |
+
missing = fvs - symbol_to_proxy.keys()
|
1494 |
+
if missing:
|
1495 |
+
i1 = sorted(missing)[0]
|
1496 |
+
# TODO: Remove relaxing assert on unbacked_symint https://github.com/pytorch/pytorch/issues/119689
|
1497 |
+
# assert self.shape_env.is_unbacked_symint(i1), i1
|
1498 |
+
ras_by_symbol.setdefault(i1, []).append(ra)
|
1499 |
+
else:
|
1500 |
+
# Convert the sympy expression into a sequence of FX
|
1501 |
+
# nodes
|
1502 |
+
res = sympy_interp(
|
1503 |
+
PythonReferenceAnalysis, symbol_to_proxy, ra.expr
|
1504 |
+
).node
|
1505 |
+
self.graph.call_function(
|
1506 |
+
torch.ops.aten._assert_scalar.default,
|
1507 |
+
# TODO: use ra.msg here, but it's pretty
|
1508 |
+
# useless right now
|
1509 |
+
(
|
1510 |
+
res,
|
1511 |
+
f"Deferred runtime assertion failed {ra.expr}",
|
1512 |
+
),
|
1513 |
+
)
|
1514 |
+
|
1515 |
+
def add_output_instructions(self, prefix: List[Instruction]) -> None:
|
1516 |
+
"""
|
1517 |
+
We call this on the creation of a new compiled subgraph that is inserted
|
1518 |
+
before user code.
|
1519 |
+
"""
|
1520 |
+
self.output_instructions.extend(prefix)
|
1521 |
+
self.should_exit = True
|
1522 |
+
|
1523 |
+
def install_global_unsafe(self, name, value) -> None:
|
1524 |
+
"""
|
1525 |
+
WARNING: prefer the safer `install_global_by_id/install_global`.
|
1526 |
+
torch.compile instances should be independent of each other;
|
1527 |
+
one footgun is to have one instance depend on the existence of
|
1528 |
+
a global installed by another instance. This can happen if we mangle
|
1529 |
+
a global the same way across both instances.
|
1530 |
+
"""
|
1531 |
+
assert name not in self.installed_globals
|
1532 |
+
self.installed_globals.add(name)
|
1533 |
+
self.cleanups.append(CleanupHook.create(self.global_scope, name, value))
|
1534 |
+
|
1535 |
+
def install_global_by_id(self, prefix, value) -> str:
|
1536 |
+
"""
|
1537 |
+
Installs a global if it hasn't been installed already.
|
1538 |
+
This is determined by (prefix, id(value)) pair.
|
1539 |
+
|
1540 |
+
Returns the name of the newly installed global.
|
1541 |
+
"""
|
1542 |
+
# NB: need self.compile_id to distinguish this global
|
1543 |
+
# from another global created in a different torch.compile instance
|
1544 |
+
name = f"{prefix}_{id(value)}_c{self.compile_id}"
|
1545 |
+
if name in self.installed_globals:
|
1546 |
+
return name
|
1547 |
+
self.install_global_unsafe(name, value)
|
1548 |
+
return name
|
1549 |
+
|
1550 |
+
def install_global(self, prefix, value) -> str:
|
1551 |
+
"""
|
1552 |
+
Installs a global, generating a unique name for it.
|
1553 |
+
|
1554 |
+
Returns the name of the newly installed global.
|
1555 |
+
"""
|
1556 |
+
# NB: unique_id is unique, even across torch.compile instances
|
1557 |
+
name = unique_id(prefix)
|
1558 |
+
self.install_global_unsafe(name, value)
|
1559 |
+
return name
|
1560 |
+
|
1561 |
+
def cleanup(self) -> None:
|
1562 |
+
# There is a reference cycle between tracer and OutputGraph, causing
|
1563 |
+
# some of the tensor objects to be held alive for longer than necessary.
|
1564 |
+
self.root_tx = None
|
1565 |
+
self.nn_modules.clear()
|
1566 |
+
self.param_name_to_source = None
|
1567 |
+
|
1568 |
+
for node in self.graph.nodes:
|
1569 |
+
if "grapharg" in node.meta:
|
1570 |
+
del node.meta["grapharg"]
|
1571 |
+
self.real_value_cache.clear()
|
1572 |
+
self.input_name_to_proxy.clear()
|
1573 |
+
self.side_effects.clear()
|
1574 |
+
self.register_finalizer_fns.clear()
|
1575 |
+
self.dynamo_flat_name_to_original_fqn.clear()
|
1576 |
+
self.tracing_context.clear()
|
1577 |
+
|
1578 |
+
def set_torch_function_state(self, enabled: bool) -> None:
|
1579 |
+
self.torch_function_enabled = enabled
|
1580 |
+
|
1581 |
+
def add_graph_finalizer(
|
1582 |
+
self, register_finalizer: Callable[[fx.GraphModule], None]
|
1583 |
+
) -> None:
|
1584 |
+
self.register_finalizer_fns.append(register_finalizer)
|
1585 |
+
|
1586 |
+
def example_value_from_input_node(self, node: torch.fx.Node):
|
1587 |
+
"""Extract the non-fake example tensor"""
|
1588 |
+
if node.op == "placeholder":
|
1589 |
+
return node.meta["grapharg"].example
|
1590 |
+
assert node.op == "get_attr"
|
1591 |
+
return self.nn_modules[node.target] # type: ignore[index]
|
1592 |
+
|
1593 |
+
|
1594 |
+
err_epilogue = (
|
1595 |
+
"With the current config, we will graph break "
|
1596 |
+
"(and fall back to eager-mode PyTorch) on all ops "
|
1597 |
+
"that have do not have the 'pt2_compliant_tag'. "
|
1598 |
+
"Please see the following doc for how to mark this op as PT2 compliant "
|
1599 |
+
"https://docs.google.com/document/d/1W--T6wz8IY8fOI0Vm8BF44PdBgs283QvpelJZWieQWQ"
|
1600 |
+
)
|
1601 |
+
|
1602 |
+
|
1603 |
+
def check_pt2_compliant_op(output_graph, kind, target, args, kwargs):
|
1604 |
+
if kind != "call_function":
|
1605 |
+
return
|
1606 |
+
|
1607 |
+
def encountered_compliant_op(target):
|
1608 |
+
if target.namespace in {"prim", "prims", "aten"}:
|
1609 |
+
return
|
1610 |
+
output_graph.compliant_custom_ops.add(target)
|
1611 |
+
|
1612 |
+
def encountered_non_compliant_op(target, msg):
|
1613 |
+
output_graph.non_compliant_ops.add(target)
|
1614 |
+
if config.only_allow_pt2_compliant_ops:
|
1615 |
+
unimplemented(msg + " " + err_epilogue)
|
1616 |
+
|
1617 |
+
if isinstance(target, torch._ops.OpOverload):
|
1618 |
+
if torch.Tag.pt2_compliant_tag in target.tags:
|
1619 |
+
encountered_compliant_op(target)
|
1620 |
+
return
|
1621 |
+
encountered_non_compliant_op(
|
1622 |
+
target,
|
1623 |
+
f"Encountered the torch.ops.OpOverload {target} "
|
1624 |
+
f"that is not PT2 compliant.",
|
1625 |
+
)
|
1626 |
+
return
|
1627 |
+
|
1628 |
+
if isinstance(target, torch._ops.OpOverloadPacket):
|
1629 |
+
overloads = tuple(target.overloads())
|
1630 |
+
# Optimization: Overload resolution is expensive.
|
1631 |
+
# If there's only one overload, we know what it will resolve to.
|
1632 |
+
if len(overloads) == 1:
|
1633 |
+
op = getattr(target, overloads[0])
|
1634 |
+
if torch.Tag.pt2_compliant_tag in op.tags:
|
1635 |
+
encountered_compliant_op(op)
|
1636 |
+
return
|
1637 |
+
encountered_non_compliant_op(
|
1638 |
+
op,
|
1639 |
+
f"Encountered the non-overloaded "
|
1640 |
+
f"torch.ops.OpOverloadPacket {target} "
|
1641 |
+
f"that is not PT2 compliant. ",
|
1642 |
+
)
|
1643 |
+
return
|
1644 |
+
|
1645 |
+
args, kwargs = torch._dynamo.utils.get_fake_values_from_nodes(
|
1646 |
+
output_graph.current_tx, (args, kwargs), False
|
1647 |
+
)
|
1648 |
+
try:
|
1649 |
+
overload = torch._C._jit_resolve_packet(
|
1650 |
+
target._qualified_op_name, *args, **kwargs
|
1651 |
+
)
|
1652 |
+
except RuntimeError as e:
|
1653 |
+
unimplemented(str(e))
|
1654 |
+
|
1655 |
+
op = getattr(target, overload)
|
1656 |
+
if torch.Tag.pt2_compliant_tag in op.tags:
|
1657 |
+
encountered_compliant_op(op)
|
1658 |
+
else:
|
1659 |
+
encountered_non_compliant_op(
|
1660 |
+
op,
|
1661 |
+
f"Encountered the torch.ops.OpOverloadPacket {target} "
|
1662 |
+
f"which resolves to the overload ({overload}) that is "
|
1663 |
+
f"not PT2 compliant.",
|
1664 |
+
)
|
1665 |
+
|
1666 |
+
|
1667 |
+
_compile_id_counter = itertools.count()
|
1668 |
+
|
1669 |
+
|
1670 |
+
class SubgraphTracer(fx.Tracer):
|
1671 |
+
"""
|
1672 |
+
Holds an FX graph that is being traced. OutputGraph owns a SubgraphTracer
|
1673 |
+
and the separation of responsibilities is that SubgraphTracer is
|
1674 |
+
responsible for building the graph while OutputGraph is responsible for
|
1675 |
+
compiling and executing the graph.
|
1676 |
+
"""
|
1677 |
+
|
1678 |
+
def __init__(
|
1679 |
+
self, output_graph, parent=None, export_root=False, source_target=None
|
1680 |
+
):
|
1681 |
+
super().__init__()
|
1682 |
+
self.output_graph = weakref.proxy(output_graph)
|
1683 |
+
self.graph = torch.fx.Graph()
|
1684 |
+
|
1685 |
+
# The export is only ever set for the ROOT tracer. It controls
|
1686 |
+
# whether or not certain inputs are allowed to be added or not.
|
1687 |
+
# Look at call sites of create_graph_input to see how it is used.
|
1688 |
+
if export_root:
|
1689 |
+
assert parent is None
|
1690 |
+
self.export_root = export_root
|
1691 |
+
# Map from graph input name to its placeholder proxy object, where the
|
1692 |
+
# map's keys give all current placeholder node names and can be used to
|
1693 |
+
# create unique node names
|
1694 |
+
self.input_name_to_proxy: Dict[str, fx.Proxy] = {}
|
1695 |
+
# Node => computed real value (see utils.get_real_value)
|
1696 |
+
self.real_value_cache: Dict[fx.Node, torch.Tensor] = {}
|
1697 |
+
|
1698 |
+
# SubgraphTracers can be nested. See NOTE [HigherOrderOperator tracing design]
|
1699 |
+
self.parent = parent
|
1700 |
+
# A dict mapping previously free variables (Proxy objects)
|
1701 |
+
# to new Proxy objects that wrap inputs to this subgraph.
|
1702 |
+
#
|
1703 |
+
# This dict serves two purposes:
|
1704 |
+
# - Proxies are associated with VariableTrackers. If we see
|
1705 |
+
# the same VariableTracker twice (and it is a free variable),
|
1706 |
+
# then we want to use the same Proxy in the current subgraph to
|
1707 |
+
# record the tracing.
|
1708 |
+
# - If we are tracing a HigherOrderOperator's body_fn, then we
|
1709 |
+
# need to keep track of what free variables were lifted so we can
|
1710 |
+
# rewrite the HigherOrderOperator call using the traced body_fn.
|
1711 |
+
# Dicts maintain the order of args for the HigherOrderOperator call.
|
1712 |
+
self.lifted_freevars = {}
|
1713 |
+
self.prev_inst = None
|
1714 |
+
|
1715 |
+
self._cur_code = None
|
1716 |
+
self._orig_gm_meta = None
|
1717 |
+
self._orig_gm_lineno_map = None
|
1718 |
+
self._orig_gm_firstlineno = None
|
1719 |
+
# Each SubgraphTracer is associated with a source target, which indicates
|
1720 |
+
# which operator this subgraph is attached to. We compute a source_fn_stack
|
1721 |
+
# based on the source target. For the root tracer, it's set to [].
|
1722 |
+
# This is useful for debugging and transforming the exported graph.
|
1723 |
+
if self.parent is None:
|
1724 |
+
self.source_fn_stack = []
|
1725 |
+
else:
|
1726 |
+
self.source_fn_stack = self.parent.source_fn_stack + [
|
1727 |
+
(self.graph._target_to_str(source_target), source_target)
|
1728 |
+
]
|
1729 |
+
|
1730 |
+
def create_proxy(
|
1731 |
+
self,
|
1732 |
+
kind,
|
1733 |
+
target,
|
1734 |
+
args,
|
1735 |
+
kwargs,
|
1736 |
+
name=None,
|
1737 |
+
type_expr=None,
|
1738 |
+
proxy_factory_fn=None,
|
1739 |
+
):
|
1740 |
+
# NOTE: [Nested SubgraphTracer and free_variable handling]
|
1741 |
+
# --------------------------------------------------------
|
1742 |
+
# Read NOTE [HigherOrderOperator tracing design] first.
|
1743 |
+
#
|
1744 |
+
# Let's say we're in the middle of introspecting the body of a possibly
|
1745 |
+
# nested HigherOrderOperator, and we see a free variable.
|
1746 |
+
#
|
1747 |
+
# There are two cases:
|
1748 |
+
# 1. We see a free variable that is already tracked by Dynamo.
|
1749 |
+
# 2. We see a free variable that has not been tracked by Dynamo
|
1750 |
+
#
|
1751 |
+
# In case 1, we call `maybe_lift_tracked_freevar_to_input` (below)
|
1752 |
+
# which will lift the freevar to be an input of this subgraph
|
1753 |
+
# and also recursively lift it to be an input on the parent(s).
|
1754 |
+
#
|
1755 |
+
# In case 2, before the call to `create_proxy`, the InstructionTranslator
|
1756 |
+
# will see the freevar when it gets loaded by Python bytecode.
|
1757 |
+
# E.g. for Python 3.11 the bytecodes that may do this are LOAD_DEREF or
|
1758 |
+
# LOAD_GLOBAL.
|
1759 |
+
# There, the InstructionTranslator asks Dynamo to begin tracking the
|
1760 |
+
# freevar by building a new Variable.
|
1761 |
+
# Building a new Variable automatically lifts the freevar to be an
|
1762 |
+
# input of the root SubgraphTracer.
|
1763 |
+
#
|
1764 |
+
# The implications for the code below are:
|
1765 |
+
# - We will always be in Case 1 when we get to this code.
|
1766 |
+
# - Any "free variable" we encounter here is guaranteed to already be
|
1767 |
+
# bound, that is, it is either a graph input of the root graph, or
|
1768 |
+
# some local variable of the root graph or a subgraph.
|
1769 |
+
# - The additional work we need to do here is *only* that we need to
|
1770 |
+
# lift this free variable into inputs (recursively) of each nested
|
1771 |
+
# higher-order-op subgraph until we hit the subgraph where the free
|
1772 |
+
# variable is bound
|
1773 |
+
if self.parent is not None:
|
1774 |
+
flat_args, tree_spec = pytree.tree_flatten((args, kwargs))
|
1775 |
+
new_flat_args = []
|
1776 |
+
for arg in flat_args:
|
1777 |
+
maybe_new_arg = self.maybe_lift_tracked_freevar_to_input(arg)
|
1778 |
+
new_flat_args.append(maybe_new_arg)
|
1779 |
+
|
1780 |
+
args, kwargs = pytree.tree_unflatten(new_flat_args, tree_spec)
|
1781 |
+
|
1782 |
+
rv = super().create_proxy(
|
1783 |
+
kind, target, args, kwargs, name, type_expr, proxy_factory_fn
|
1784 |
+
)
|
1785 |
+
|
1786 |
+
# append stack trace to fx node
|
1787 |
+
tx = self.output_graph.current_tx
|
1788 |
+
|
1789 |
+
# log detailed location of line of code in 3.11
|
1790 |
+
if sys.version_info >= (3, 11) and kind in (
|
1791 |
+
"call_function",
|
1792 |
+
"call_method",
|
1793 |
+
"call_module",
|
1794 |
+
):
|
1795 |
+
cur_inst = tx.current_instruction
|
1796 |
+
if (
|
1797 |
+
cur_inst is not self.prev_inst
|
1798 |
+
and cur_inst.positions is not None
|
1799 |
+
and cur_inst.positions.lineno is not None
|
1800 |
+
):
|
1801 |
+
tx_code = tx.f_code
|
1802 |
+
header = tx.get_line_of_code_header(lineno=cur_inst.positions.lineno)
|
1803 |
+
|
1804 |
+
def get_trace_call_log_str():
|
1805 |
+
line = get_instruction_source_311(tx_code, cur_inst).rstrip()
|
1806 |
+
return f"TRACE FX call {rv.node.name} from {header}\n{line}"
|
1807 |
+
|
1808 |
+
trace_call_log.debug("%s", LazyString(get_trace_call_log_str))
|
1809 |
+
self.prev_inst = cur_inst
|
1810 |
+
|
1811 |
+
# update reference to original meta if we're tracing a new code object
|
1812 |
+
is_retracing = False
|
1813 |
+
if tx.f_code is not self._cur_code:
|
1814 |
+
orig_graphmodule_maybe = code_context.get_context(tx.f_code).get(
|
1815 |
+
"orig_graphmodule", lambda: None
|
1816 |
+
)()
|
1817 |
+
if isinstance(orig_graphmodule_maybe, torch.fx.GraphModule):
|
1818 |
+
is_retracing = True
|
1819 |
+
self._orig_gm_meta = [
|
1820 |
+
nd.meta for nd in orig_graphmodule_maybe.graph.nodes
|
1821 |
+
]
|
1822 |
+
self._orig_gm_lineno_map = orig_graphmodule_maybe._lineno_map
|
1823 |
+
self._orig_gm_firstlineno = (
|
1824 |
+
orig_graphmodule_maybe.forward.__code__.co_firstlineno
|
1825 |
+
)
|
1826 |
+
else:
|
1827 |
+
self._orig_gm_meta = None
|
1828 |
+
self._orig_gm_lineno_map = None
|
1829 |
+
self._orig_gm_firstlineno = None
|
1830 |
+
nn_module_stack = tx.nn_module_stack
|
1831 |
+
if nn_module_stack:
|
1832 |
+
rv.node.meta["nn_module_stack"] = nn_module_stack.copy()
|
1833 |
+
|
1834 |
+
if kind in {"call_function", "call_method"}:
|
1835 |
+
rv.node.meta["source_fn_stack"] = self.source_fn_stack + [
|
1836 |
+
(rv.node.name, target)
|
1837 |
+
]
|
1838 |
+
elif kind == "call_module":
|
1839 |
+
if self.parent is not None:
|
1840 |
+
unimplemented("Invoking an nn.Module inside HigherOrderOperator")
|
1841 |
+
# For modules we store the class
|
1842 |
+
rv.node.meta["source_fn_stack"] = self.source_fn_stack + [
|
1843 |
+
(
|
1844 |
+
rv.node.name,
|
1845 |
+
rv.node.meta["nn_module_stack"][target][1],
|
1846 |
+
)
|
1847 |
+
]
|
1848 |
+
|
1849 |
+
# preserve original meta if it is available
|
1850 |
+
if (
|
1851 |
+
self._orig_gm_meta
|
1852 |
+
and self._orig_gm_lineno_map
|
1853 |
+
and self._orig_gm_firstlineno
|
1854 |
+
):
|
1855 |
+
lineno = tx.current_instruction.starts_line
|
1856 |
+
node_idx = None
|
1857 |
+
if lineno is not None:
|
1858 |
+
node_idx = self._orig_gm_lineno_map.get(
|
1859 |
+
lineno - self._orig_gm_firstlineno, None
|
1860 |
+
)
|
1861 |
+
if node_idx is not None:
|
1862 |
+
meta = self._orig_gm_meta[node_idx]
|
1863 |
+
for field in fx.proxy._COPY_META_FIELDS:
|
1864 |
+
if field in meta:
|
1865 |
+
rv.node.meta[field] = meta[field]
|
1866 |
+
if "stack_trace" in meta:
|
1867 |
+
rv.node.meta["stack_trace"] = meta["stack_trace"]
|
1868 |
+
|
1869 |
+
if not is_retracing:
|
1870 |
+
if "nn_module_stack" not in rv.node.meta:
|
1871 |
+
nn_module_stack = tx.nn_module_stack
|
1872 |
+
if nn_module_stack:
|
1873 |
+
rv.node.meta["nn_module_stack"] = nn_module_stack.copy()
|
1874 |
+
|
1875 |
+
if "source_fn_stack" not in rv.node.meta:
|
1876 |
+
if kind in {"call_function", "call_method"}:
|
1877 |
+
rv.node.meta["source_fn_stack"] = self.source_fn_stack + [
|
1878 |
+
(rv.node.name, target)
|
1879 |
+
]
|
1880 |
+
elif kind == "call_module":
|
1881 |
+
if self.parent is not None:
|
1882 |
+
unimplemented(
|
1883 |
+
"Invoking an nn.Module inside HigherOrderOperator"
|
1884 |
+
)
|
1885 |
+
# For modules we store the class
|
1886 |
+
rv.node.meta["source_fn_stack"] = self.source_fn_stack + [
|
1887 |
+
(
|
1888 |
+
rv.node.name,
|
1889 |
+
rv.node.meta["nn_module_stack"][target][1],
|
1890 |
+
)
|
1891 |
+
]
|
1892 |
+
|
1893 |
+
if "stack_trace" not in rv.node.meta:
|
1894 |
+
frame_summaries: List[traceback.FrameSummary] = []
|
1895 |
+
while tx:
|
1896 |
+
frame_summaries.append(tx.frame_summary())
|
1897 |
+
tx = getattr(tx, "parent", None)
|
1898 |
+
# Reverse the frame_summaries, such that the innermost frame is at the last
|
1899 |
+
frame_summaries.reverse()
|
1900 |
+
|
1901 |
+
# official from_list stub doesn't have new-style type
|
1902 |
+
msgs = traceback.StackSummary.from_list(frame_summaries).format()
|
1903 |
+
rv.node.stack_trace = "".join(msgs)
|
1904 |
+
|
1905 |
+
return rv
|
1906 |
+
|
1907 |
+
def create_node(
|
1908 |
+
self, op, target, args=None, kwargs=None, name=None, type_expr=None
|
1909 |
+
):
|
1910 |
+
check_pt2_compliant_op(self.output_graph, op, target, args, kwargs)
|
1911 |
+
if self.parent is not None:
|
1912 |
+
flat_args = pytree.arg_tree_leaves(*args, **kwargs)
|
1913 |
+
for arg in flat_args:
|
1914 |
+
if not isinstance(arg, torch.fx.Node):
|
1915 |
+
continue
|
1916 |
+
assert (
|
1917 |
+
arg.graph == self.graph
|
1918 |
+
), "create_node using arg not from this SubgraphTracer"
|
1919 |
+
|
1920 |
+
node = super().create_node(op, target, args, kwargs, name, type_expr)
|
1921 |
+
node.meta["creation_timestamp"] = self.output_graph.timestamp
|
1922 |
+
return node
|
1923 |
+
|
1924 |
+
# Note: we did not override erase_node since
|
1925 |
+
# we call self.graph.erase_node elsewhere
|
1926 |
+
def remove_node(self, node):
|
1927 |
+
if len(node.users) > 0:
|
1928 |
+
user_graph_nodes: List[torch.fx.Node] = []
|
1929 |
+
for user in node.users.keys():
|
1930 |
+
# For the case where user.graph == self.graph, that is a real bug and will raise
|
1931 |
+
# properly.
|
1932 |
+
if user.graph != self.graph:
|
1933 |
+
# This is a nested graph, which needs to be deleted.
|
1934 |
+
# If we do not do this, we will raise on attempting to remove this.
|
1935 |
+
# As we only get here during restoration cleanup, this is sound.
|
1936 |
+
user_graph_nodes.extend(reversed(list(user.graph.nodes)))
|
1937 |
+
for other_graph_node in user_graph_nodes:
|
1938 |
+
other_graph_node.graph.erase_node(other_graph_node)
|
1939 |
+
self.graph.erase_node(node)
|
1940 |
+
self.input_name_to_proxy.pop(node.name, None)
|
1941 |
+
|
1942 |
+
# when before=True, we will insert this input before the most recent
|
1943 |
+
# inserted proxy. This is a hack to get around an ordering problem,
|
1944 |
+
# where we first insert a tensor argument, and then insert bindings
|
1945 |
+
# for SymInts that may occur in the tensor argument.
|
1946 |
+
# Remove this if https://github.com/pytorch/pytorch/issues/99007 gets
|
1947 |
+
# fixed.
|
1948 |
+
def create_graph_input(self, name, type_expr=None, before=False, source=None):
|
1949 |
+
log.debug(
|
1950 |
+
"create_graph_input %s %s",
|
1951 |
+
name,
|
1952 |
+
source.name() if source is not None else "(none)",
|
1953 |
+
)
|
1954 |
+
if source is None:
|
1955 |
+
assert (
|
1956 |
+
self.parent is not None
|
1957 |
+
), "you are required to provide a source for inputs on the root tracer"
|
1958 |
+
|
1959 |
+
# In eager, we are generally OK with adding graph inputs whenever we
|
1960 |
+
# want, because we take care of writing the bytecode that knows how
|
1961 |
+
# to source all the inputs.
|
1962 |
+
#
|
1963 |
+
# In export, this is bad, because you want a self-contained export
|
1964 |
+
# object which only depends on the inputs you explicitly passed to it.
|
1965 |
+
# So we are a bit more strict about what sources can become inputs
|
1966 |
+
# in export
|
1967 |
+
if self.export_root:
|
1968 |
+
if not is_from_local_source(source, allow_cell_or_freevar=False):
|
1969 |
+
self.output_graph.source_to_user_stacks.setdefault(source, []).append(
|
1970 |
+
TracingContext.extract_stack()
|
1971 |
+
)
|
1972 |
+
|
1973 |
+
# unique
|
1974 |
+
if name in self.input_name_to_proxy:
|
1975 |
+
for i in itertools.count():
|
1976 |
+
candidate_name = f"{name}_{i}"
|
1977 |
+
if candidate_name not in self.input_name_to_proxy:
|
1978 |
+
name = candidate_name
|
1979 |
+
break
|
1980 |
+
|
1981 |
+
if self.input_name_to_proxy:
|
1982 |
+
prev_name = next(reversed(self.input_name_to_proxy))
|
1983 |
+
node = self.input_name_to_proxy[prev_name].node
|
1984 |
+
if before:
|
1985 |
+
ctx = self.graph.inserting_before(node)
|
1986 |
+
else:
|
1987 |
+
ctx = self.graph.inserting_after(node)
|
1988 |
+
else:
|
1989 |
+
ctx = self.graph.inserting_before(None)
|
1990 |
+
with ctx:
|
1991 |
+
proxy = self.create_proxy("placeholder", name, (), {}, type_expr=type_expr)
|
1992 |
+
if self.input_name_to_proxy and before:
|
1993 |
+
k, v = self.input_name_to_proxy.popitem()
|
1994 |
+
self.input_name_to_proxy[name] = proxy
|
1995 |
+
self.input_name_to_proxy[k] = v
|
1996 |
+
else:
|
1997 |
+
self.input_name_to_proxy[name] = proxy
|
1998 |
+
return proxy
|
1999 |
+
|
2000 |
+
# See NOTE: [Nested SubgraphTracer and free_variable handling] for more details
|
2001 |
+
def lift_tracked_freevar_to_input(self, proxy):
|
2002 |
+
# You're doing something wrong if we are the root SubgraphTracer because
|
2003 |
+
# Dynamo adds tensors to graph inputs before creating a proxy for them.
|
2004 |
+
assert (
|
2005 |
+
self.parent is not None
|
2006 |
+
), "lift_tracked_freevar_to_input should not be called on root SubgraphTracer"
|
2007 |
+
# Proxys are associated with VariableTracker.
|
2008 |
+
# It is possible that we've already lifted the Proxy to be an input.
|
2009 |
+
# If that is the case, just return the already lifted Proxy.
|
2010 |
+
if proxy in self.lifted_freevars:
|
2011 |
+
return self.lifted_freevars[proxy]
|
2012 |
+
new_proxy = self.create_graph_input(proxy.node.name)
|
2013 |
+
new_proxy.node.meta["example_value"] = proxy.node.meta["example_value"]
|
2014 |
+
self.lifted_freevars[proxy] = new_proxy
|
2015 |
+
if self.parent is not None and proxy.tracer != self.parent:
|
2016 |
+
self.parent.lift_tracked_freevar_to_input(proxy)
|
2017 |
+
return new_proxy
|
2018 |
+
|
2019 |
+
def maybe_lift_tracked_freevar_to_input(self, arg):
|
2020 |
+
"""
|
2021 |
+
If arg is a free variable, then lift it to be an input.
|
2022 |
+
Returns the new lifted arg (if arg was a freevar), else the
|
2023 |
+
original arg.
|
2024 |
+
"""
|
2025 |
+
if not isinstance(arg, torch.fx.Proxy):
|
2026 |
+
return arg
|
2027 |
+
elif arg.tracer == self:
|
2028 |
+
return arg
|
2029 |
+
return self.lift_tracked_freevar_to_input(arg)
|
2030 |
+
|
2031 |
+
|
2032 |
+
# NOTE: [HigherOrderOperator tracing design]
|
2033 |
+
# Ignoring HigherOrderOperators for a moment,
|
2034 |
+
# OutputGraph represents the graph being built by Dynamo that may be compiled
|
2035 |
+
# and executed. It holds a root SubgraphTracer where the FX graph is built.
|
2036 |
+
#
|
2037 |
+
# HigherOrderOperators are operators that take functions as their arguments.
|
2038 |
+
# When Dynamo encounters a HigherOrderOperator, then it attempts to introspect
|
2039 |
+
# the function passed to it (call this the "body function"), capture it into a
|
2040 |
+
# GraphModule, and rewrite the call to the HigherOrderOperator to use the
|
2041 |
+
# GraphModule.
|
2042 |
+
#
|
2043 |
+
# The way we handle the capture of body functions is through having
|
2044 |
+
# (possibly nested) SubgraphTracers, one per body function.
|
2045 |
+
#
|
2046 |
+
# Mechanically, we do the introspection by:
|
2047 |
+
# - Creating a new SubgraphTracer via OutputGraph.subtracer
|
2048 |
+
# - Executing the body function.
|
2049 |
+
# This constructs the graph of the body function in the new SubgraphTracer
|
2050 |
+
# while modifying the state of the OutputGraph. For example:
|
2051 |
+
# - the OutputGraph can receive new GraphArgs (if we discover any new
|
2052 |
+
# untracked Tensors)
|
2053 |
+
# - side effects from the body function get accumulated into
|
2054 |
+
# OutputGraph.side_effects
|
2055 |
+
# - guards produced by the body function get accumulated into OutputGraph.guards
|
2056 |
+
#
|
2057 |
+
# The traced function has some special properties that make it easier for us
|
2058 |
+
# to transform later down the line:
|
2059 |
+
# - we lift all free variables to being inputs.
|
2060 |
+
#
|
2061 |
+
# If the introspection fails (due to the existence of graph breaks), then
|
2062 |
+
# we roll back the current OutputGraph state and graph break on the
|
2063 |
+
# HigherOrderOperator.
|
llmeval-env/lib/python3.10/site-packages/torch/_dynamo/polyfill.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# mypy: ignore-errors
|
2 |
+
|
3 |
+
"""
|
4 |
+
Python polyfills for common builtins.
|
5 |
+
"""
|
6 |
+
import math
|
7 |
+
|
8 |
+
import torch
|
9 |
+
|
10 |
+
|
11 |
+
def all(iterator):
|
12 |
+
for elem in iterator:
|
13 |
+
if not elem:
|
14 |
+
return False
|
15 |
+
return True
|
16 |
+
|
17 |
+
|
18 |
+
def any(iterator):
|
19 |
+
for elem in iterator:
|
20 |
+
if elem:
|
21 |
+
return True
|
22 |
+
return False
|
23 |
+
|
24 |
+
|
25 |
+
def index(iterator, item, start=0, end=None):
|
26 |
+
for i, elem in enumerate(list(iterator))[start:end]:
|
27 |
+
if item == elem:
|
28 |
+
return i
|
29 |
+
# This will not run in dynamo
|
30 |
+
raise ValueError(f"{item} is not in {type(iterator)}")
|
31 |
+
|
32 |
+
|
33 |
+
def repeat(item, count):
|
34 |
+
for i in range(count):
|
35 |
+
yield item
|
36 |
+
|
37 |
+
|
38 |
+
def radians(x):
|
39 |
+
return math.pi / 180.0 * x
|
40 |
+
|
41 |
+
|
42 |
+
def accumulate_grad(x, new_grad):
|
43 |
+
new_grad = torch.clone(new_grad)
|
44 |
+
if x.grad is None:
|
45 |
+
x.grad = new_grad
|
46 |
+
else:
|
47 |
+
x.grad.add_(new_grad)
|
llmeval-env/lib/python3.10/site-packages/torch/_dynamo/profiler.py
ADDED
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import dataclasses
|
2 |
+
import os
|
3 |
+
from typing import Any, List
|
4 |
+
|
5 |
+
import torch
|
6 |
+
|
7 |
+
from .utils import print_once
|
8 |
+
|
9 |
+
|
10 |
+
@dataclasses.dataclass
|
11 |
+
class ProfileMetrics:
|
12 |
+
microseconds: float = 0.0
|
13 |
+
operators: int = 0
|
14 |
+
fusions: int = 0
|
15 |
+
graphs: int = 0
|
16 |
+
|
17 |
+
def __iadd__(self, other: "ProfileMetrics"):
|
18 |
+
self.microseconds += other.microseconds
|
19 |
+
self.operators += other.operators
|
20 |
+
self.fusions += other.fusions
|
21 |
+
return self
|
22 |
+
|
23 |
+
def __add__(self, other: "ProfileMetrics"):
|
24 |
+
assert isinstance(other, ProfileMetrics)
|
25 |
+
return ProfileMetrics(
|
26 |
+
self.microseconds + other.microseconds,
|
27 |
+
self.operators + other.operators,
|
28 |
+
self.fusions + other.fusions,
|
29 |
+
)
|
30 |
+
|
31 |
+
def __truediv__(self, other):
|
32 |
+
if isinstance(other, int):
|
33 |
+
other = ProfileMetrics(other, other, other)
|
34 |
+
return ProfileMetrics(
|
35 |
+
self.microseconds / max(1, other.microseconds),
|
36 |
+
self.operators / max(1, other.operators),
|
37 |
+
self.fusions / max(1, other.fusions),
|
38 |
+
)
|
39 |
+
|
40 |
+
def __str__(self):
|
41 |
+
return f"{self.operators:4.0%} ops {self.microseconds:4.0%} time"
|
42 |
+
|
43 |
+
def tocsv(self):
|
44 |
+
return [self.operators, self.microseconds]
|
45 |
+
|
46 |
+
|
47 |
+
class ProfileResult:
|
48 |
+
def __init__(self, captured, total, unique_graphs):
|
49 |
+
self.captured: ProfileMetrics = captured or ProfileMetrics()
|
50 |
+
self.total: ProfileMetrics = total or ProfileMetrics()
|
51 |
+
self.unique_graphs: int = unique_graphs
|
52 |
+
|
53 |
+
def __iadd__(self, other: "ProfileResult"):
|
54 |
+
self.captured += other.captured
|
55 |
+
self.total += other.total
|
56 |
+
self.unique_graphs += other.unique_graphs
|
57 |
+
return self
|
58 |
+
|
59 |
+
def percent(self):
|
60 |
+
return self.captured / self.total
|
61 |
+
|
62 |
+
def __str__(self):
|
63 |
+
return (
|
64 |
+
f"{self.unique_graphs:2} graphs {self.captured.graphs:2} graph calls "
|
65 |
+
f"{self.captured.operators:4}/{self.total.operators:4} = "
|
66 |
+
+ str(self.percent())
|
67 |
+
)
|
68 |
+
|
69 |
+
def tocsv(self):
|
70 |
+
return [
|
71 |
+
self.unique_graphs,
|
72 |
+
self.captured.graphs,
|
73 |
+
self.captured.operators,
|
74 |
+
self.total.operators,
|
75 |
+
] + self.percent().tocsv()
|
76 |
+
|
77 |
+
|
78 |
+
def should_print_missing():
|
79 |
+
return os.environ.get("TORCHDYNAMO_PRINT_MISSING") == "1"
|
80 |
+
|
81 |
+
|
82 |
+
def print_missing(stack):
|
83 |
+
if any("/torch/autograd/profiler.py" in x for x in stack):
|
84 |
+
return
|
85 |
+
stack = [
|
86 |
+
x for x in stack if ("<built-in" not in x and "site-packages/torch/" not in x)
|
87 |
+
]
|
88 |
+
print_once("MISSING", " >> ".join(stack[-3:]))
|
89 |
+
|
90 |
+
|
91 |
+
class Profiler:
|
92 |
+
unique_graphs = 0
|
93 |
+
|
94 |
+
def __init__(self):
|
95 |
+
self.prof = torch.profiler.profile(
|
96 |
+
activities=[torch.profiler.ProfilerActivity.CPU],
|
97 |
+
with_stack=should_print_missing(),
|
98 |
+
)
|
99 |
+
|
100 |
+
def results(self):
|
101 |
+
captured_regions = 0
|
102 |
+
captured_ops = 0
|
103 |
+
captured_microseconds = 0
|
104 |
+
total_ops = 0
|
105 |
+
total_microseconds = 0
|
106 |
+
|
107 |
+
last_op_end_time = -1
|
108 |
+
captured_region_end_time = -1
|
109 |
+
events = sorted(self.prof.events(), key=lambda x: x.time_range.start)
|
110 |
+
for e in events:
|
111 |
+
if e.name == "TORCHDYNAMO":
|
112 |
+
captured_region_end_time = e.time_range.end
|
113 |
+
captured_regions += 1
|
114 |
+
# ignore `handle = torch.zeros(1)` in record_function.__init__()
|
115 |
+
total_ops -= 1
|
116 |
+
elif e.time_range.start >= last_op_end_time:
|
117 |
+
last_op_end_time = e.time_range.end
|
118 |
+
if e.time_range.end <= captured_region_end_time:
|
119 |
+
captured_ops += 1
|
120 |
+
captured_microseconds += e.time_range.elapsed_us()
|
121 |
+
elif should_print_missing():
|
122 |
+
print_missing(e.stack)
|
123 |
+
total_ops += 1
|
124 |
+
total_microseconds += e.time_range.elapsed_us()
|
125 |
+
else:
|
126 |
+
pass # ops recursively called from other ops (ignored)
|
127 |
+
|
128 |
+
unique_graphs = Profiler.unique_graphs
|
129 |
+
Profiler.unique_graphs = 0
|
130 |
+
# we counted one extra op that is part of the profiler setup code
|
131 |
+
total_ops -= 1
|
132 |
+
|
133 |
+
return ProfileResult(
|
134 |
+
captured=ProfileMetrics(
|
135 |
+
microseconds=captured_microseconds,
|
136 |
+
operators=captured_ops,
|
137 |
+
fusions=captured_ops - captured_regions,
|
138 |
+
graphs=captured_regions,
|
139 |
+
),
|
140 |
+
total=ProfileMetrics(
|
141 |
+
microseconds=total_microseconds,
|
142 |
+
operators=total_ops,
|
143 |
+
fusions=total_ops - 1,
|
144 |
+
),
|
145 |
+
unique_graphs=unique_graphs,
|
146 |
+
)
|
147 |
+
|
148 |
+
|
149 |
+
def fx_insert_profiling(gm: torch.fx.GraphModule, example_inputs: List[Any]):
|
150 |
+
def _wrapped(*args):
|
151 |
+
with torch.profiler.record_function("TORCHDYNAMO"):
|
152 |
+
return gm.forward(*args)
|
153 |
+
|
154 |
+
Profiler.unique_graphs += 1
|
155 |
+
return _wrapped
|
llmeval-env/lib/python3.10/site-packages/torch/_dynamo/resume_execution.py
ADDED
@@ -0,0 +1,648 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import dataclasses
|
3 |
+
import sys
|
4 |
+
import types
|
5 |
+
from typing import Any, cast, Dict, List, Optional, Tuple
|
6 |
+
|
7 |
+
from .bytecode_transformation import (
|
8 |
+
create_call_function,
|
9 |
+
create_call_method,
|
10 |
+
create_dup_top,
|
11 |
+
create_instruction,
|
12 |
+
create_jump_absolute,
|
13 |
+
Instruction,
|
14 |
+
InstructionExnTabEntry,
|
15 |
+
transform_code_object,
|
16 |
+
unique_id,
|
17 |
+
)
|
18 |
+
from .utils import ExactWeakKeyDictionary
|
19 |
+
|
20 |
+
# taken from code.h in cpython
|
21 |
+
CO_OPTIMIZED = 0x0001
|
22 |
+
CO_NEWLOCALS = 0x0002
|
23 |
+
CO_VARARGS = 0x0004
|
24 |
+
CO_VARKEYWORDS = 0x0008
|
25 |
+
CO_NESTED = 0x0010
|
26 |
+
CO_GENERATOR = 0x0020
|
27 |
+
CO_NOFREE = 0x0040
|
28 |
+
CO_COROUTINE = 0x0080
|
29 |
+
CO_ITERABLE_COROUTINE = 0x0100
|
30 |
+
CO_ASYNC_GENERATOR = 0x0200
|
31 |
+
|
32 |
+
|
33 |
+
@dataclasses.dataclass(frozen=True)
|
34 |
+
class ReenterWith:
|
35 |
+
stack_index: int
|
36 |
+
target_values: Optional[Tuple[Any, ...]] = None
|
37 |
+
|
38 |
+
# If we do not want to destroy the stack, we can do the same thing as a
|
39 |
+
# `SETUP_WITH` block, only that we store the context manager in a local_symbol
|
40 |
+
def try_except(self, code_options, cleanup: List[Instruction]):
|
41 |
+
"""
|
42 |
+
Codegen based off of:
|
43 |
+
load args
|
44 |
+
enter context
|
45 |
+
try:
|
46 |
+
(rest)
|
47 |
+
finally:
|
48 |
+
exit context
|
49 |
+
"""
|
50 |
+
load_args = []
|
51 |
+
if self.target_values:
|
52 |
+
load_args = [
|
53 |
+
create_instruction("LOAD_CONST", argval=val)
|
54 |
+
for val in self.target_values
|
55 |
+
]
|
56 |
+
ctx_name = unique_id(f"___context_manager_{self.stack_index}")
|
57 |
+
if ctx_name not in code_options["co_varnames"]:
|
58 |
+
code_options["co_varnames"] += (ctx_name,)
|
59 |
+
for name in ["__enter__", "__exit__"]:
|
60 |
+
if name not in code_options["co_names"]:
|
61 |
+
code_options["co_names"] += (name,)
|
62 |
+
|
63 |
+
except_jump_target = create_instruction(
|
64 |
+
"NOP" if sys.version_info < (3, 11) else "PUSH_EXC_INFO"
|
65 |
+
)
|
66 |
+
cleanup_complete_jump_target = create_instruction("NOP")
|
67 |
+
|
68 |
+
setup_finally = [
|
69 |
+
*load_args,
|
70 |
+
*create_call_function(len(load_args), True),
|
71 |
+
create_instruction("STORE_FAST", argval=ctx_name),
|
72 |
+
create_instruction("LOAD_FAST", argval=ctx_name),
|
73 |
+
create_instruction("LOAD_METHOD", argval="__enter__"),
|
74 |
+
*create_call_method(0),
|
75 |
+
create_instruction("POP_TOP"),
|
76 |
+
]
|
77 |
+
|
78 |
+
if sys.version_info < (3, 11):
|
79 |
+
setup_finally.append(
|
80 |
+
create_instruction("SETUP_FINALLY", target=except_jump_target)
|
81 |
+
)
|
82 |
+
else:
|
83 |
+
exn_tab_begin = create_instruction("NOP")
|
84 |
+
exn_tab_end = create_instruction("NOP")
|
85 |
+
exn_tab_begin.exn_tab_entry = InstructionExnTabEntry(
|
86 |
+
exn_tab_begin,
|
87 |
+
exn_tab_end,
|
88 |
+
except_jump_target,
|
89 |
+
self.stack_index + 1,
|
90 |
+
False,
|
91 |
+
)
|
92 |
+
setup_finally.append(exn_tab_begin)
|
93 |
+
|
94 |
+
def create_reset():
|
95 |
+
return [
|
96 |
+
create_instruction("LOAD_FAST", argval=ctx_name),
|
97 |
+
create_instruction("LOAD_METHOD", argval="__exit__"),
|
98 |
+
create_instruction("LOAD_CONST", argval=None),
|
99 |
+
create_dup_top(),
|
100 |
+
create_dup_top(),
|
101 |
+
*create_call_method(3),
|
102 |
+
create_instruction("POP_TOP"),
|
103 |
+
]
|
104 |
+
|
105 |
+
if sys.version_info < (3, 9):
|
106 |
+
epilogue = [
|
107 |
+
create_instruction("POP_BLOCK"),
|
108 |
+
create_instruction("BEGIN_FINALLY"),
|
109 |
+
except_jump_target,
|
110 |
+
*create_reset(),
|
111 |
+
create_instruction("END_FINALLY"),
|
112 |
+
]
|
113 |
+
elif sys.version_info < (3, 11):
|
114 |
+
epilogue = [
|
115 |
+
create_instruction("POP_BLOCK"),
|
116 |
+
*create_reset(),
|
117 |
+
create_instruction("JUMP_FORWARD", target=cleanup_complete_jump_target),
|
118 |
+
except_jump_target,
|
119 |
+
*create_reset(),
|
120 |
+
create_instruction("RERAISE"),
|
121 |
+
cleanup_complete_jump_target,
|
122 |
+
]
|
123 |
+
else:
|
124 |
+
finally_exn_tab_end = create_instruction("RERAISE", arg=0)
|
125 |
+
finally_exn_tab_target = create_instruction("COPY", arg=3)
|
126 |
+
except_jump_target.exn_tab_entry = InstructionExnTabEntry(
|
127 |
+
except_jump_target,
|
128 |
+
finally_exn_tab_end,
|
129 |
+
finally_exn_tab_target,
|
130 |
+
self.stack_index + 2,
|
131 |
+
True,
|
132 |
+
)
|
133 |
+
epilogue = [
|
134 |
+
exn_tab_end,
|
135 |
+
*create_reset(),
|
136 |
+
create_instruction("JUMP_FORWARD", target=cleanup_complete_jump_target),
|
137 |
+
except_jump_target, # PUSH_EXC_INFO
|
138 |
+
*create_reset(),
|
139 |
+
finally_exn_tab_end, # RERAISE 0
|
140 |
+
finally_exn_tab_target, # COPY 3
|
141 |
+
create_instruction("POP_EXCEPT"),
|
142 |
+
create_instruction("RERAISE", arg=1),
|
143 |
+
cleanup_complete_jump_target,
|
144 |
+
]
|
145 |
+
|
146 |
+
cleanup[:] = epilogue + cleanup
|
147 |
+
return setup_finally
|
148 |
+
|
149 |
+
def __call__(self, code_options, cleanup):
|
150 |
+
"""
|
151 |
+
Codegen based off of:
|
152 |
+
with ctx(args):
|
153 |
+
(rest)
|
154 |
+
"""
|
155 |
+
load_args = []
|
156 |
+
if self.target_values:
|
157 |
+
load_args = [
|
158 |
+
create_instruction("LOAD_CONST", argval=val)
|
159 |
+
for val in self.target_values
|
160 |
+
]
|
161 |
+
if sys.version_info < (3, 9):
|
162 |
+
with_cleanup_start = create_instruction("WITH_CLEANUP_START")
|
163 |
+
begin_finally = create_instruction("BEGIN_FINALLY")
|
164 |
+
cleanup[:] = [
|
165 |
+
create_instruction("POP_BLOCK"),
|
166 |
+
begin_finally,
|
167 |
+
with_cleanup_start,
|
168 |
+
create_instruction("WITH_CLEANUP_FINISH"),
|
169 |
+
create_instruction("END_FINALLY"),
|
170 |
+
] + cleanup
|
171 |
+
|
172 |
+
return [
|
173 |
+
*load_args,
|
174 |
+
create_instruction("CALL_FUNCTION", arg=len(load_args)),
|
175 |
+
create_instruction("SETUP_WITH", target=with_cleanup_start),
|
176 |
+
create_instruction("POP_TOP"),
|
177 |
+
], None
|
178 |
+
elif sys.version_info < (3, 11):
|
179 |
+
with_except_start = create_instruction("WITH_EXCEPT_START")
|
180 |
+
pop_top_after_with_except_start = create_instruction("POP_TOP")
|
181 |
+
|
182 |
+
cleanup_complete_jump_target = create_instruction("NOP")
|
183 |
+
|
184 |
+
cleanup[:] = [
|
185 |
+
create_instruction("POP_BLOCK"),
|
186 |
+
create_instruction("LOAD_CONST", argval=None),
|
187 |
+
create_instruction("DUP_TOP"),
|
188 |
+
create_instruction("DUP_TOP"),
|
189 |
+
create_instruction("CALL_FUNCTION", arg=3),
|
190 |
+
create_instruction("POP_TOP"),
|
191 |
+
create_instruction("JUMP_FORWARD", target=cleanup_complete_jump_target),
|
192 |
+
with_except_start,
|
193 |
+
create_instruction(
|
194 |
+
"POP_JUMP_IF_TRUE", target=pop_top_after_with_except_start
|
195 |
+
),
|
196 |
+
create_instruction("RERAISE"),
|
197 |
+
pop_top_after_with_except_start,
|
198 |
+
create_instruction("POP_TOP"),
|
199 |
+
create_instruction("POP_TOP"),
|
200 |
+
create_instruction("POP_EXCEPT"),
|
201 |
+
create_instruction("POP_TOP"),
|
202 |
+
cleanup_complete_jump_target,
|
203 |
+
] + cleanup
|
204 |
+
|
205 |
+
return [
|
206 |
+
*load_args,
|
207 |
+
create_instruction("CALL_FUNCTION", arg=len(load_args)),
|
208 |
+
create_instruction("SETUP_WITH", target=with_except_start),
|
209 |
+
create_instruction("POP_TOP"),
|
210 |
+
], None
|
211 |
+
else:
|
212 |
+
pop_top_after_with_except_start = create_instruction("POP_TOP")
|
213 |
+
cleanup_complete_jump_target = create_instruction("NOP")
|
214 |
+
|
215 |
+
def create_load_none():
|
216 |
+
return create_instruction("LOAD_CONST", argval=None)
|
217 |
+
|
218 |
+
exn_tab_1_begin = create_instruction("POP_TOP")
|
219 |
+
exn_tab_1_end = create_instruction("NOP")
|
220 |
+
exn_tab_1_target = create_instruction("PUSH_EXC_INFO")
|
221 |
+
exn_tab_2_end = create_instruction("RERAISE", arg=2)
|
222 |
+
exn_tab_2_target = create_instruction("COPY", arg=3)
|
223 |
+
|
224 |
+
exn_tab_1_begin.exn_tab_entry = InstructionExnTabEntry(
|
225 |
+
exn_tab_1_begin,
|
226 |
+
exn_tab_1_end,
|
227 |
+
exn_tab_1_target,
|
228 |
+
self.stack_index + 1,
|
229 |
+
True,
|
230 |
+
)
|
231 |
+
exn_tab_1_target.exn_tab_entry = InstructionExnTabEntry(
|
232 |
+
exn_tab_1_target,
|
233 |
+
exn_tab_2_end,
|
234 |
+
exn_tab_2_target,
|
235 |
+
self.stack_index + 3,
|
236 |
+
True,
|
237 |
+
)
|
238 |
+
pop_top_after_with_except_start.exn_tab_entry = InstructionExnTabEntry(
|
239 |
+
pop_top_after_with_except_start,
|
240 |
+
pop_top_after_with_except_start,
|
241 |
+
exn_tab_2_target,
|
242 |
+
self.stack_index + 3,
|
243 |
+
True,
|
244 |
+
)
|
245 |
+
|
246 |
+
cleanup[:] = [
|
247 |
+
exn_tab_1_end,
|
248 |
+
create_load_none(),
|
249 |
+
create_load_none(),
|
250 |
+
create_load_none(),
|
251 |
+
*create_call_function(2, False),
|
252 |
+
create_instruction("POP_TOP"),
|
253 |
+
create_instruction("JUMP_FORWARD", target=cleanup_complete_jump_target),
|
254 |
+
exn_tab_1_target, # PUSH_EXC_INFO
|
255 |
+
create_instruction("WITH_EXCEPT_START"),
|
256 |
+
create_instruction(
|
257 |
+
"POP_JUMP_FORWARD_IF_TRUE",
|
258 |
+
target=pop_top_after_with_except_start,
|
259 |
+
),
|
260 |
+
exn_tab_2_end, # RERAISE 2
|
261 |
+
exn_tab_2_target, # COPY 3
|
262 |
+
create_instruction("POP_EXCEPT"),
|
263 |
+
create_instruction("RERAISE", arg=1),
|
264 |
+
pop_top_after_with_except_start,
|
265 |
+
create_instruction("POP_EXCEPT"),
|
266 |
+
create_instruction("POP_TOP"),
|
267 |
+
create_instruction("POP_TOP"),
|
268 |
+
cleanup_complete_jump_target,
|
269 |
+
] + cleanup
|
270 |
+
|
271 |
+
return [
|
272 |
+
*load_args,
|
273 |
+
*create_call_function(len(load_args), True),
|
274 |
+
create_instruction("BEFORE_WITH"),
|
275 |
+
exn_tab_1_begin, # POP_TOP
|
276 |
+
], exn_tab_1_target
|
277 |
+
|
278 |
+
|
279 |
+
@dataclasses.dataclass
|
280 |
+
class ResumeFunctionMetadata:
|
281 |
+
code: types.CodeType
|
282 |
+
instructions: List[Instruction] = dataclasses.field(default_factory=list)
|
283 |
+
# Python 3.11+ fields
|
284 |
+
# NOTE: Python 3.11 removed blocks, but for our purposes, a "block" consists
|
285 |
+
# of instructions of all exception table entries that have the same target.
|
286 |
+
|
287 |
+
# map from PUSH_EXC_INFO's in the prefix to original block target offset
|
288 |
+
prefix_block_target_offset_remap: List[int] = dataclasses.field(
|
289 |
+
default_factory=list
|
290 |
+
)
|
291 |
+
# map from new block target offsets to original block target offsets
|
292 |
+
block_target_offset_remap: Optional[Dict[int, int]] = None
|
293 |
+
|
294 |
+
|
295 |
+
def _filter_iter(l1, l2, cond):
|
296 |
+
"""
|
297 |
+
Two-pointer conditional filter.
|
298 |
+
e.g. _filter_iter(insts, sorted_offsets, lambda i, o: i.offset == o)
|
299 |
+
returns the instructions with offsets in sorted_offsets
|
300 |
+
"""
|
301 |
+
it = iter(l2)
|
302 |
+
res = []
|
303 |
+
try:
|
304 |
+
cur = next(it)
|
305 |
+
for val in l1:
|
306 |
+
if cond(val, cur):
|
307 |
+
res.append(val)
|
308 |
+
cur = next(it)
|
309 |
+
except StopIteration:
|
310 |
+
pass
|
311 |
+
return res
|
312 |
+
|
313 |
+
|
314 |
+
class ContinueExecutionCache:
|
315 |
+
cache = ExactWeakKeyDictionary()
|
316 |
+
generated_code_metadata = ExactWeakKeyDictionary()
|
317 |
+
|
318 |
+
@classmethod
|
319 |
+
def lookup(cls, code, lineno, *key):
|
320 |
+
if code not in cls.cache:
|
321 |
+
cls.cache[code] = dict()
|
322 |
+
key = tuple(key)
|
323 |
+
if key not in cls.cache[code]:
|
324 |
+
cls.cache[code][key] = cls.generate(code, lineno, *key)
|
325 |
+
return cls.cache[code][key]
|
326 |
+
|
327 |
+
@classmethod
|
328 |
+
def generate(
|
329 |
+
cls,
|
330 |
+
code,
|
331 |
+
lineno,
|
332 |
+
offset: int,
|
333 |
+
setup_fn_target_offsets: Tuple[int], # only used in Python 3.11+
|
334 |
+
nstack: int,
|
335 |
+
argnames: Tuple[str],
|
336 |
+
setup_fns: Tuple[ReenterWith],
|
337 |
+
null_idxes: Tuple[int],
|
338 |
+
) -> types.CodeType:
|
339 |
+
assert offset is not None
|
340 |
+
assert not (
|
341 |
+
code.co_flags
|
342 |
+
& (CO_GENERATOR | CO_COROUTINE | CO_ITERABLE_COROUTINE | CO_ASYNC_GENERATOR)
|
343 |
+
)
|
344 |
+
assert code.co_flags & CO_OPTIMIZED
|
345 |
+
if code in ContinueExecutionCache.generated_code_metadata:
|
346 |
+
return cls.generate_based_on_original_code_object(
|
347 |
+
code,
|
348 |
+
lineno,
|
349 |
+
offset,
|
350 |
+
setup_fn_target_offsets,
|
351 |
+
nstack,
|
352 |
+
argnames,
|
353 |
+
setup_fns,
|
354 |
+
null_idxes,
|
355 |
+
)
|
356 |
+
|
357 |
+
is_py311_plus = sys.version_info >= (3, 11)
|
358 |
+
meta = ResumeFunctionMetadata(code)
|
359 |
+
|
360 |
+
def update(instructions: List[Instruction], code_options: Dict[str, Any]):
|
361 |
+
meta.instructions = copy.deepcopy(instructions)
|
362 |
+
|
363 |
+
args = [f"___stack{i}" for i in range(nstack)]
|
364 |
+
args.extend(v for v in argnames if v not in args)
|
365 |
+
freevars = tuple(code_options["co_cellvars"] or []) + tuple(
|
366 |
+
code_options["co_freevars"] or []
|
367 |
+
)
|
368 |
+
code_options[
|
369 |
+
"co_name"
|
370 |
+
] = f"torch_dynamo_resume_in_{code_options['co_name']}_at_{lineno}"
|
371 |
+
if is_py311_plus:
|
372 |
+
qualified_path = code_options["co_qualname"].rsplit(".", maxsplit=1)
|
373 |
+
if len(qualified_path) == 1:
|
374 |
+
code_options["co_qualname"] = code_options["co_name"]
|
375 |
+
else:
|
376 |
+
assert len(qualified_path) == 2
|
377 |
+
module_name, co_name = qualified_path
|
378 |
+
code_options[
|
379 |
+
"co_qualname"
|
380 |
+
] = f"{module_name}.torch_dynamo_resume_in_{co_name}_at_{lineno}"
|
381 |
+
code_options["co_firstlineno"] = lineno
|
382 |
+
code_options["co_cellvars"] = tuple()
|
383 |
+
code_options["co_freevars"] = freevars
|
384 |
+
code_options["co_argcount"] = len(args)
|
385 |
+
code_options["co_posonlyargcount"] = 0
|
386 |
+
code_options["co_kwonlyargcount"] = 0
|
387 |
+
code_options["co_varnames"] = tuple(
|
388 |
+
args + [v for v in code_options["co_varnames"] if v not in args]
|
389 |
+
)
|
390 |
+
code_options["co_flags"] = code_options["co_flags"] & ~(
|
391 |
+
CO_VARARGS | CO_VARKEYWORDS
|
392 |
+
)
|
393 |
+
target = next(i for i in instructions if i.offset == offset)
|
394 |
+
|
395 |
+
prefix = []
|
396 |
+
if is_py311_plus:
|
397 |
+
if freevars:
|
398 |
+
prefix.append(
|
399 |
+
create_instruction("COPY_FREE_VARS", arg=len(freevars))
|
400 |
+
)
|
401 |
+
prefix.append(create_instruction("RESUME", arg=0))
|
402 |
+
|
403 |
+
cleanup: List[Instruction] = []
|
404 |
+
hooks = {fn.stack_index: fn for fn in setup_fns}
|
405 |
+
hook_target_offsets = {
|
406 |
+
fn.stack_index: setup_fn_target_offsets[i]
|
407 |
+
for i, fn in enumerate(setup_fns)
|
408 |
+
}
|
409 |
+
offset_to_inst = {inst.offset: inst for inst in instructions}
|
410 |
+
# map old hook targets to new targets generated by the hook
|
411 |
+
old_hook_target_remap = {}
|
412 |
+
null_idxes_i = 0
|
413 |
+
for i in range(nstack):
|
414 |
+
while (
|
415 |
+
null_idxes_i < len(null_idxes)
|
416 |
+
and null_idxes[null_idxes_i] == i + null_idxes_i
|
417 |
+
):
|
418 |
+
prefix.append(create_instruction("PUSH_NULL"))
|
419 |
+
null_idxes_i += 1
|
420 |
+
prefix.append(create_instruction("LOAD_FAST", argval=f"___stack{i}"))
|
421 |
+
if i in hooks:
|
422 |
+
hook = hooks.pop(i)
|
423 |
+
hook_insts, exn_target = hook(code_options, cleanup)
|
424 |
+
prefix.extend(hook_insts)
|
425 |
+
if is_py311_plus:
|
426 |
+
hook_target_offset = hook_target_offsets.pop(i)
|
427 |
+
old_hook_target = offset_to_inst[hook_target_offset]
|
428 |
+
meta.prefix_block_target_offset_remap.append(hook_target_offset)
|
429 |
+
old_hook_target_remap[old_hook_target] = exn_target
|
430 |
+
if is_py311_plus:
|
431 |
+
# reverse the mapping since targets of later/nested contexts are inserted
|
432 |
+
# into the mapping later, but show up earlier in the prefix.
|
433 |
+
meta.prefix_block_target_offset_remap = list(
|
434 |
+
reversed(meta.prefix_block_target_offset_remap)
|
435 |
+
)
|
436 |
+
|
437 |
+
assert not hooks
|
438 |
+
|
439 |
+
prefix.append(create_jump_absolute(target))
|
440 |
+
|
441 |
+
# because the line number table monotonically increases from co_firstlineno
|
442 |
+
# remove starts_line for any instructions before the graph break instruction
|
443 |
+
# this will ensure the instructions after the break have the correct line numbers
|
444 |
+
for inst in instructions:
|
445 |
+
if inst.offset == target.offset:
|
446 |
+
break
|
447 |
+
inst.starts_line = None
|
448 |
+
if sys.version_info >= (3, 11):
|
449 |
+
inst.positions = None
|
450 |
+
|
451 |
+
if cleanup:
|
452 |
+
prefix.extend(cleanup)
|
453 |
+
prefix.extend(cls.unreachable_codes(code_options))
|
454 |
+
|
455 |
+
# remap original instructions' exception table entries
|
456 |
+
if old_hook_target_remap:
|
457 |
+
assert is_py311_plus
|
458 |
+
for inst in instructions:
|
459 |
+
if (
|
460 |
+
inst.exn_tab_entry
|
461 |
+
and inst.exn_tab_entry.target in old_hook_target_remap
|
462 |
+
):
|
463 |
+
inst.exn_tab_entry.target = old_hook_target_remap[
|
464 |
+
inst.exn_tab_entry.target
|
465 |
+
]
|
466 |
+
|
467 |
+
# TODO(jansel): add dead code elimination here
|
468 |
+
instructions[:] = prefix + instructions
|
469 |
+
|
470 |
+
new_code = transform_code_object(code, update)
|
471 |
+
ContinueExecutionCache.generated_code_metadata[new_code] = meta
|
472 |
+
return new_code
|
473 |
+
|
474 |
+
@staticmethod
|
475 |
+
def unreachable_codes(code_options) -> List[Instruction]:
|
476 |
+
"""Codegen a `raise None` to make analysis work for unreachable code"""
|
477 |
+
return [
|
478 |
+
create_instruction("LOAD_CONST", argval=None),
|
479 |
+
create_instruction("RAISE_VARARGS", arg=1),
|
480 |
+
]
|
481 |
+
|
482 |
+
@classmethod
|
483 |
+
def generate_based_on_original_code_object(
|
484 |
+
cls, code, lineno, offset: int, setup_fn_target_offsets: Tuple[int, ...], *args
|
485 |
+
):
|
486 |
+
"""
|
487 |
+
This handles the case of generating a resume into code generated
|
488 |
+
to resume something else. We want to always generate starting
|
489 |
+
from the original code object so that if control flow paths
|
490 |
+
converge we only generated 1 resume function (rather than 2^n
|
491 |
+
resume functions).
|
492 |
+
"""
|
493 |
+
|
494 |
+
meta: ResumeFunctionMetadata = ContinueExecutionCache.generated_code_metadata[
|
495 |
+
code
|
496 |
+
]
|
497 |
+
new_offset = None
|
498 |
+
|
499 |
+
def find_new_offset(
|
500 |
+
instructions: List[Instruction], code_options: Dict[str, Any]
|
501 |
+
):
|
502 |
+
nonlocal new_offset
|
503 |
+
(target,) = (i for i in instructions if i.offset == offset)
|
504 |
+
# match the functions starting at the last instruction as we have added a prefix
|
505 |
+
(new_target,) = (
|
506 |
+
i2
|
507 |
+
for i1, i2 in zip(reversed(instructions), reversed(meta.instructions))
|
508 |
+
if i1 is target
|
509 |
+
)
|
510 |
+
assert target.opcode == new_target.opcode
|
511 |
+
new_offset = new_target.offset
|
512 |
+
|
513 |
+
transform_code_object(code, find_new_offset)
|
514 |
+
|
515 |
+
if sys.version_info >= (3, 11):
|
516 |
+
# setup_fn_target_offsets currently contains the target offset of
|
517 |
+
# each setup_fn, based on `code`. When we codegen the resume function
|
518 |
+
# based on the original code object, `meta.code`, the offsets in
|
519 |
+
# setup_fn_target_offsets must be based on `meta.code` instead.
|
520 |
+
if not meta.block_target_offset_remap:
|
521 |
+
block_target_offset_remap = meta.block_target_offset_remap = {}
|
522 |
+
|
523 |
+
def remap_block_offsets(
|
524 |
+
instructions: List[Instruction], code_options: Dict[str, Any]
|
525 |
+
):
|
526 |
+
# NOTE: each prefix block generates exactly one PUSH_EXC_INFO,
|
527 |
+
# so we can tell which block a prefix PUSH_EXC_INFO belongs to,
|
528 |
+
# by counting. Then we can use meta.prefix_block-target_offset_remap
|
529 |
+
# to determine where in the original code the PUSH_EXC_INFO offset
|
530 |
+
# replaced.
|
531 |
+
prefix_blocks: List[Instruction] = []
|
532 |
+
for inst in instructions:
|
533 |
+
if len(prefix_blocks) == len(
|
534 |
+
meta.prefix_block_target_offset_remap
|
535 |
+
):
|
536 |
+
break
|
537 |
+
if inst.opname == "PUSH_EXC_INFO":
|
538 |
+
prefix_blocks.append(inst)
|
539 |
+
|
540 |
+
# offsets into prefix
|
541 |
+
for inst, o in zip(
|
542 |
+
prefix_blocks, meta.prefix_block_target_offset_remap
|
543 |
+
):
|
544 |
+
block_target_offset_remap[cast(int, inst.offset)] = o
|
545 |
+
|
546 |
+
# old bytecode targets are after the prefix PUSH_EXC_INFO's
|
547 |
+
old_start_offset = (
|
548 |
+
cast(int, prefix_blocks[-1].offset) if prefix_blocks else -1
|
549 |
+
)
|
550 |
+
# offsets into old bytecode
|
551 |
+
old_inst_offsets = sorted(
|
552 |
+
n for n in setup_fn_target_offsets if n > old_start_offset
|
553 |
+
)
|
554 |
+
targets = _filter_iter(
|
555 |
+
instructions, old_inst_offsets, lambda inst, o: inst.offset == o
|
556 |
+
)
|
557 |
+
new_targets = _filter_iter(
|
558 |
+
zip(reversed(instructions), reversed(meta.instructions)),
|
559 |
+
targets,
|
560 |
+
lambda v1, v2: v1[0] is v2,
|
561 |
+
)
|
562 |
+
for new, old in zip(new_targets, targets):
|
563 |
+
block_target_offset_remap[old.offset] = new[1].offset
|
564 |
+
|
565 |
+
transform_code_object(code, remap_block_offsets)
|
566 |
+
|
567 |
+
# if offset is not in setup_fn_target_offsets, it is an error
|
568 |
+
setup_fn_target_offsets = tuple(
|
569 |
+
meta.block_target_offset_remap[n] for n in setup_fn_target_offsets
|
570 |
+
)
|
571 |
+
return ContinueExecutionCache.lookup(
|
572 |
+
meta.code, lineno, new_offset, setup_fn_target_offsets, *args
|
573 |
+
)
|
574 |
+
|
575 |
+
|
576 |
+
"""
|
577 |
+
# partially finished support for with statements
|
578 |
+
|
579 |
+
def convert_locals_to_cells(
|
580 |
+
instructions: List[Instruction],
|
581 |
+
code_options: Dict[str, Any]):
|
582 |
+
|
583 |
+
code_options["co_cellvars"] = tuple(
|
584 |
+
var
|
585 |
+
for var in code_options["co_varnames"]
|
586 |
+
if var not in code_options["co_freevars"]
|
587 |
+
and not var.startswith("___stack")
|
588 |
+
)
|
589 |
+
cell_and_free = code_options["co_cellvars"] + code_options["co_freevars"]
|
590 |
+
for inst in instructions:
|
591 |
+
if str(inst.argval).startswith("___stack"):
|
592 |
+
continue
|
593 |
+
elif inst.opname == "LOAD_FAST":
|
594 |
+
inst.opname = "LOAD_DEREF"
|
595 |
+
elif inst.opname == "STORE_FAST":
|
596 |
+
inst.opname = "STORE_DEREF"
|
597 |
+
elif inst.opname == "DELETE_FAST":
|
598 |
+
inst.opname = "DELETE_DEREF"
|
599 |
+
else:
|
600 |
+
continue
|
601 |
+
inst.opcode = dis.opmap[inst.opname]
|
602 |
+
assert inst.argval in cell_and_free, inst.argval
|
603 |
+
inst.arg = cell_and_free.index(inst.argval)
|
604 |
+
|
605 |
+
def patch_setup_with(
|
606 |
+
instructions: List[Instruction],
|
607 |
+
code_options: Dict[str, Any]
|
608 |
+
):
|
609 |
+
nonlocal need_skip
|
610 |
+
need_skip = True
|
611 |
+
target_index = next(
|
612 |
+
idx for idx, i in enumerate(instructions) if i.offset == offset
|
613 |
+
)
|
614 |
+
assert instructions[target_index].opname == "SETUP_WITH"
|
615 |
+
convert_locals_to_cells(instructions, code_options)
|
616 |
+
|
617 |
+
stack_depth_before = nstack + stack_effect(instructions[target_index].opcode,
|
618 |
+
instructions[target_index].arg)
|
619 |
+
|
620 |
+
inside_with = []
|
621 |
+
inside_with_resume_at = None
|
622 |
+
stack_depth = stack_depth_before
|
623 |
+
idx = target_index + 1
|
624 |
+
for idx in range(idx, len(instructions)):
|
625 |
+
inst = instructions[idx]
|
626 |
+
if inst.opname == "BEGIN_FINALLY":
|
627 |
+
inside_with_resume_at = inst
|
628 |
+
break
|
629 |
+
elif inst.target is not None:
|
630 |
+
unimplemented("jump from with not supported")
|
631 |
+
elif inst.opname in ("BEGIN_FINALLY", "WITH_CLEANUP_START", "WITH_CLEANUP_FINISH", "END_FINALLY",
|
632 |
+
"POP_FINALLY", "POP_EXCEPT",
|
633 |
+
"POP_BLOCK", "END_ASYNC_FOR"):
|
634 |
+
unimplemented("block ops not supported")
|
635 |
+
inside_with.append(inst)
|
636 |
+
stack_depth += stack_effect(inst.opcode, inst.arg)
|
637 |
+
assert inside_with_resume_at
|
638 |
+
|
639 |
+
instructions = [
|
640 |
+
create_instruction("LOAD_FAST", f"___stack{i}") for i in range(nstack)
|
641 |
+
] + [
|
642 |
+
create_instruction("SETUP_WITH", target=instructions[target_index].target)
|
643 |
+
... call the function ...
|
644 |
+
unpack_tuple
|
645 |
+
] + [
|
646 |
+
create_instruction("JUMP_ABSOLUTE", target=inside_with_resume_at)
|
647 |
+
]
|
648 |
+
"""
|
llmeval-env/lib/python3.10/site-packages/torch/_dynamo/side_effects.py
ADDED
@@ -0,0 +1,542 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import inspect
|
2 |
+
from typing import Any, Dict, List, Optional, Union
|
3 |
+
|
4 |
+
import torch.nn
|
5 |
+
|
6 |
+
from . import utils, variables
|
7 |
+
from .bytecode_transformation import (
|
8 |
+
create_call_function,
|
9 |
+
create_call_method,
|
10 |
+
create_instruction,
|
11 |
+
)
|
12 |
+
from .codegen import PyCodegen
|
13 |
+
from .exc import unimplemented
|
14 |
+
from .source import LocalSource, Source
|
15 |
+
from .utils import nn_module_new, object_new
|
16 |
+
from .variables.base import (
|
17 |
+
is_side_effect_safe,
|
18 |
+
MutableLocalBase,
|
19 |
+
MutableLocalSource,
|
20 |
+
VariableTracker,
|
21 |
+
)
|
22 |
+
|
23 |
+
|
24 |
+
class MutableSideEffects(MutableLocalBase):
|
25 |
+
"""
|
26 |
+
VariableTracker.mutable_local marker to indicate a list passed as
|
27 |
+
an input that if we mutate we need to re-apply those mutations after
|
28 |
+
the graph runs.
|
29 |
+
"""
|
30 |
+
|
31 |
+
def __init__(self, source: Source, is_modified: bool = False):
|
32 |
+
super().__init__(MutableLocalSource.Existing)
|
33 |
+
self.source = source
|
34 |
+
self.is_modified = is_modified
|
35 |
+
|
36 |
+
|
37 |
+
class AttributeMutation(MutableLocalBase):
|
38 |
+
"""
|
39 |
+
VariableTracker.mutable_local marker to track changes to attributes
|
40 |
+
"""
|
41 |
+
|
42 |
+
def __init__(self, typ: MutableLocalSource, source: Optional[Source]):
|
43 |
+
super().__init__(typ)
|
44 |
+
self.source = source
|
45 |
+
|
46 |
+
|
47 |
+
class AttributeMutationExisting(AttributeMutation):
|
48 |
+
def __init__(self, source: Source):
|
49 |
+
super().__init__(MutableLocalSource.Existing, source)
|
50 |
+
self.source = source
|
51 |
+
|
52 |
+
|
53 |
+
class AttributeMutationNew(AttributeMutation):
|
54 |
+
def __init__(self, source: Optional[Source], cls_source: Optional[Source]):
|
55 |
+
super().__init__(MutableLocalSource.Local, source)
|
56 |
+
self.cls_source = cls_source
|
57 |
+
|
58 |
+
|
59 |
+
class SideEffects:
|
60 |
+
"""
|
61 |
+
Track side effects (list mutation, setattr, etc) that need to be
|
62 |
+
applied after an FX graph is run.
|
63 |
+
"""
|
64 |
+
|
65 |
+
id_to_variable: Dict[int, VariableTracker]
|
66 |
+
store_attr_mutations: Dict[MutableLocalBase, Dict[str, VariableTracker]]
|
67 |
+
keepalive: List[Any]
|
68 |
+
|
69 |
+
def __init__(
|
70 |
+
self,
|
71 |
+
id_to_variable=None,
|
72 |
+
store_attr_mutations=None,
|
73 |
+
keepalive=None,
|
74 |
+
save_for_backward=None,
|
75 |
+
tensor_hooks=None,
|
76 |
+
):
|
77 |
+
super().__init__()
|
78 |
+
self.id_to_variable = id_to_variable or {}
|
79 |
+
self.store_attr_mutations = store_attr_mutations or {}
|
80 |
+
self.keepalive = keepalive or []
|
81 |
+
self.save_for_backward = save_for_backward or []
|
82 |
+
self.tensor_hooks = tensor_hooks or {}
|
83 |
+
|
84 |
+
def __eq__(self, other: object) -> bool:
|
85 |
+
assert isinstance(other, SideEffects)
|
86 |
+
# NB: do NOT test keepalive
|
87 |
+
return (
|
88 |
+
self.id_to_variable == other.id_to_variable
|
89 |
+
and self.store_attr_mutations == other.store_attr_mutations
|
90 |
+
and self.save_for_backward == other.save_for_backward
|
91 |
+
and self.tensor_hooks == other.tensor_hooks
|
92 |
+
)
|
93 |
+
|
94 |
+
def diff(self, other: "SideEffects") -> Optional[str]:
|
95 |
+
if self.id_to_variable != other.id_to_variable:
|
96 |
+
sk_itv = self.id_to_variable.keys()
|
97 |
+
ok_itv = other.id_to_variable.keys()
|
98 |
+
if sk_itv != ok_itv:
|
99 |
+
return f"id_to_variable keys: {sk_itv} != {ok_itv}"
|
100 |
+
# Feel free to augment this with more fancy diffing logic
|
101 |
+
# if needed for debugging
|
102 |
+
return "id_to_variable: unknown diff"
|
103 |
+
elif self.store_attr_mutations != other.store_attr_mutations:
|
104 |
+
sk_sam = self.store_attr_mutations.keys()
|
105 |
+
ok_sam = other.store_attr_mutations.keys()
|
106 |
+
if sk_sam != ok_sam:
|
107 |
+
return f"store_attr_mutations keys: {sk_sam} != {ok_sam}"
|
108 |
+
return "store_attr_mutations: unknown diff"
|
109 |
+
elif self.save_for_backward != other.save_for_backward:
|
110 |
+
return "save_for_backward"
|
111 |
+
elif self.tensor_hooks != other.tensor_hooks:
|
112 |
+
return "tensor_hooks"
|
113 |
+
else:
|
114 |
+
return None
|
115 |
+
|
116 |
+
def clone(self):
|
117 |
+
"""Create a shallow copy"""
|
118 |
+
return self.__class__(
|
119 |
+
id_to_variable=dict(self.id_to_variable),
|
120 |
+
store_attr_mutations={
|
121 |
+
k: dict(v) for k, v in self.store_attr_mutations.items()
|
122 |
+
},
|
123 |
+
keepalive=list(self.keepalive),
|
124 |
+
save_for_backward=self.save_for_backward,
|
125 |
+
tensor_hooks=self.tensor_hooks,
|
126 |
+
)
|
127 |
+
|
128 |
+
def apply(self, fn, cache=None, skip_fn=lambda _: False):
|
129 |
+
if cache is None:
|
130 |
+
cache = dict()
|
131 |
+
|
132 |
+
self.id_to_variable = {
|
133 |
+
k: VariableTracker.apply(fn, v, cache, skip_fn)
|
134 |
+
for k, v in self.id_to_variable.items()
|
135 |
+
}
|
136 |
+
self.store_attr_mutations = {
|
137 |
+
k: VariableTracker.apply(fn, v, cache, skip_fn)
|
138 |
+
for k, v in self.store_attr_mutations.items()
|
139 |
+
}
|
140 |
+
self.save_for_backward = VariableTracker.apply(
|
141 |
+
fn, self.save_for_backward, cache, skip_fn
|
142 |
+
)
|
143 |
+
self.tensor_hooks = VariableTracker.apply(fn, self.tensor_hooks, cache, skip_fn)
|
144 |
+
|
145 |
+
def __contains__(self, item):
|
146 |
+
return id(item) in self.id_to_variable
|
147 |
+
|
148 |
+
def __getitem__(self, item):
|
149 |
+
return self.id_to_variable[id(item)]
|
150 |
+
|
151 |
+
def check_allowed_side_effect(self, item):
|
152 |
+
from torch._dynamo.variables.misc import AutogradFunctionContextVariable
|
153 |
+
|
154 |
+
# People do things like self.dim = dim inside autograd.Function.
|
155 |
+
# These are benign.
|
156 |
+
if isinstance(item, AutogradFunctionContextVariable):
|
157 |
+
return True
|
158 |
+
if not is_side_effect_safe(item.mutable_local):
|
159 |
+
unimplemented(
|
160 |
+
"HigherOrderOperator: Mutating a variable not in the current scope (SideEffects)"
|
161 |
+
)
|
162 |
+
|
163 |
+
def store_attr(self, item: VariableTracker, name: str, value: VariableTracker):
|
164 |
+
assert self.is_attribute_mutation(item)
|
165 |
+
self.check_allowed_side_effect(item)
|
166 |
+
if item.mutable_local not in self.store_attr_mutations:
|
167 |
+
self.store_attr_mutations[item.mutable_local] = {}
|
168 |
+
self.store_attr_mutations[item.mutable_local][name] = value
|
169 |
+
|
170 |
+
def load_attr(self, item, name, deleted_ok=False):
|
171 |
+
assert self.is_attribute_mutation(item)
|
172 |
+
result = self.store_attr_mutations[item.mutable_local][name]
|
173 |
+
if not deleted_ok and isinstance(result, variables.DeletedVariable):
|
174 |
+
unimplemented("read deleted attribute")
|
175 |
+
return result
|
176 |
+
|
177 |
+
def store_cell(self, cellvar, value):
|
178 |
+
assert isinstance(cellvar, variables.NewCellVariable)
|
179 |
+
assert isinstance(value, variables.VariableTracker)
|
180 |
+
self.store_attr(cellvar, "cell_contents", value)
|
181 |
+
|
182 |
+
def load_cell(self, cellvar):
|
183 |
+
assert isinstance(cellvar, variables.NewCellVariable)
|
184 |
+
return self.load_attr(cellvar, "cell_contents")
|
185 |
+
|
186 |
+
def load_global(self, gvar: VariableTracker, name: str):
|
187 |
+
assert isinstance(gvar, variables.VariableTracker)
|
188 |
+
return self.load_attr(gvar, name)
|
189 |
+
|
190 |
+
def store_global(self, gvar: VariableTracker, name: str, value: VariableTracker):
|
191 |
+
assert isinstance(gvar, variables.VariableTracker)
|
192 |
+
assert isinstance(value, variables.VariableTracker)
|
193 |
+
self.store_attr(gvar, name, value)
|
194 |
+
|
195 |
+
@staticmethod
|
196 |
+
def cls_supports_mutation_side_effects(cls):
|
197 |
+
return inspect.getattr_static(cls, "__setattr__", None) in (
|
198 |
+
object.__setattr__,
|
199 |
+
torch.nn.Module.__setattr__,
|
200 |
+
)
|
201 |
+
|
202 |
+
def is_attribute_mutation(self, item):
|
203 |
+
return isinstance(item.mutable_local, AttributeMutation)
|
204 |
+
|
205 |
+
def has_pending_mutation(self, item):
|
206 |
+
return self.is_attribute_mutation(item) and bool(
|
207 |
+
self.store_attr_mutations.get(item.mutable_local)
|
208 |
+
)
|
209 |
+
|
210 |
+
def is_modified(self, item):
|
211 |
+
if isinstance(item.mutable_local, AttributeMutationNew):
|
212 |
+
return True
|
213 |
+
if self.is_attribute_mutation(item):
|
214 |
+
return item.mutable_local in self.store_attr_mutations
|
215 |
+
return item.mutable_local.is_modified
|
216 |
+
|
217 |
+
def _track_obj(
|
218 |
+
self,
|
219 |
+
item: Any,
|
220 |
+
variable: VariableTracker,
|
221 |
+
mutable_cls=MutableSideEffects,
|
222 |
+
):
|
223 |
+
"""Start tracking a new variable for mutation"""
|
224 |
+
assert variable.source is not None
|
225 |
+
variable.mutable_local = mutable_cls(variable.source)
|
226 |
+
self.id_to_variable[id(item)] = variable
|
227 |
+
self.keepalive.append(item)
|
228 |
+
return variable
|
229 |
+
|
230 |
+
track_mutable = _track_obj
|
231 |
+
|
232 |
+
def track_object_existing(
|
233 |
+
self,
|
234 |
+
item: Any,
|
235 |
+
variable: VariableTracker,
|
236 |
+
):
|
237 |
+
return self._track_obj(item, variable, mutable_cls=AttributeMutationExisting)
|
238 |
+
|
239 |
+
def track_object_new(
|
240 |
+
self,
|
241 |
+
cls_source: Source,
|
242 |
+
user_cls: Any,
|
243 |
+
variable_cls: Any,
|
244 |
+
options,
|
245 |
+
):
|
246 |
+
if user_cls is torch.autograd.function.FunctionCtx:
|
247 |
+
obj = torch.autograd.Function()
|
248 |
+
elif issubclass(user_cls, torch.nn.Module):
|
249 |
+
obj = nn_module_new(user_cls)
|
250 |
+
else:
|
251 |
+
obj = object_new(user_cls)
|
252 |
+
variable = variable_cls(
|
253 |
+
obj,
|
254 |
+
mutable_local=AttributeMutationNew(None, cls_source),
|
255 |
+
**options,
|
256 |
+
)
|
257 |
+
self.id_to_variable[id(obj)] = variable
|
258 |
+
self.keepalive.append(obj)
|
259 |
+
return variable
|
260 |
+
|
261 |
+
def track_cell_new(
|
262 |
+
self,
|
263 |
+
):
|
264 |
+
obj = object()
|
265 |
+
variable = variables.NewCellVariable(
|
266 |
+
mutable_local=AttributeMutationNew(None, None),
|
267 |
+
)
|
268 |
+
self.id_to_variable[id(obj)] = variable
|
269 |
+
self.keepalive.append(obj)
|
270 |
+
return variable
|
271 |
+
|
272 |
+
def track_cell_existing(self, source: Source, item: Any):
|
273 |
+
variable = variables.NewCellVariable(
|
274 |
+
mutable_local=AttributeMutationExisting(source),
|
275 |
+
)
|
276 |
+
self.id_to_variable[id(item)] = variable
|
277 |
+
self.keepalive.append(item)
|
278 |
+
return variable
|
279 |
+
|
280 |
+
def track_global_existing(self, source: Source, item: Any):
|
281 |
+
variable = variables.NewGlobalVariable(
|
282 |
+
mutable_local=AttributeMutationExisting(source),
|
283 |
+
)
|
284 |
+
self.id_to_variable[id(item)] = variable
|
285 |
+
self.keepalive.append(item)
|
286 |
+
return variable
|
287 |
+
|
288 |
+
def track_save_for_backward(self, ctx, args):
|
289 |
+
assert isinstance(ctx, variables.AutogradFunctionContextVariable)
|
290 |
+
self.save_for_backward.append((ctx, args))
|
291 |
+
|
292 |
+
def track_tensor_variables_from_runahead_side_effects(self, other):
|
293 |
+
# In higher order ops we want to keep track of tensors seen in the
|
294 |
+
# speculate_subgraph so that we don't lift them again as a new input in
|
295 |
+
# other speculate_subgraph or in the root tracer.
|
296 |
+
for other_item in other.keepalive:
|
297 |
+
other_id = id(other_item)
|
298 |
+
other_variable = other.id_to_variable[other_id]
|
299 |
+
if other_id not in self.id_to_variable and isinstance(
|
300 |
+
other_variable, variables.TensorVariable
|
301 |
+
):
|
302 |
+
self.track_object_existing(other_item, other_variable)
|
303 |
+
|
304 |
+
def prune_dead_object_new(self, tx):
|
305 |
+
live_new_objects = set()
|
306 |
+
skip_obj = None
|
307 |
+
|
308 |
+
def visit(var: VariableTracker):
|
309 |
+
if (
|
310 |
+
isinstance(var.mutable_local, AttributeMutationNew)
|
311 |
+
and var.mutable_local is not skip_obj
|
312 |
+
):
|
313 |
+
live_new_objects.add(var.mutable_local)
|
314 |
+
return var
|
315 |
+
|
316 |
+
def is_live(var: Union[MutableLocalBase, VariableTracker]):
|
317 |
+
if isinstance(var, AttributeMutationNew):
|
318 |
+
return var in live_new_objects
|
319 |
+
if isinstance(var, VariableTracker):
|
320 |
+
return is_live(var.mutable_local)
|
321 |
+
return True
|
322 |
+
|
323 |
+
VariableTracker.apply(visit, (tx.stack, tx.symbolic_locals))
|
324 |
+
for var in self.id_to_variable.values():
|
325 |
+
if not isinstance(var.mutable_local, AttributeMutationNew):
|
326 |
+
VariableTracker.apply(visit, var)
|
327 |
+
|
328 |
+
for skip_obj, setattrs in self.store_attr_mutations.items():
|
329 |
+
VariableTracker.apply(visit, setattrs)
|
330 |
+
|
331 |
+
self.id_to_variable = {
|
332 |
+
k: v for k, v in self.id_to_variable.items() if is_live(v)
|
333 |
+
}
|
334 |
+
self.store_attr_mutations = {
|
335 |
+
k: v for k, v in self.store_attr_mutations.items() if is_live(k)
|
336 |
+
}
|
337 |
+
|
338 |
+
def mutation(self, var):
|
339 |
+
self.check_allowed_side_effect(var)
|
340 |
+
if isinstance(var.mutable_local, MutableSideEffects):
|
341 |
+
var.mutable_local = MutableSideEffects(var.mutable_local.source, True)
|
342 |
+
|
343 |
+
def _get_modified_vars(self):
|
344 |
+
return [var for var in self.id_to_variable.values() if self.is_modified(var)]
|
345 |
+
|
346 |
+
def codegen_save_tempvars(self, cg: PyCodegen):
|
347 |
+
for var in self._get_modified_vars():
|
348 |
+
if isinstance(
|
349 |
+
var.mutable_local, (AttributeMutationExisting, AttributeMutationNew)
|
350 |
+
) and isinstance(var, variables.NewCellVariable):
|
351 |
+
cg.load_import_from(utils.__name__, "make_cell")
|
352 |
+
cg.extend_output(create_call_function(0, True))
|
353 |
+
cg.add_cache(var)
|
354 |
+
if isinstance(var.mutable_local, AttributeMutationNew):
|
355 |
+
var.mutable_local.source = LocalSource(cg.tempvars[var]) # type: ignore[attr-defined]
|
356 |
+
elif isinstance(var.mutable_local, AttributeMutationNew):
|
357 |
+
if isinstance(var, variables.AutogradFunctionContextVariable):
|
358 |
+
unimplemented("AutogradFunctionContextVariable escaped")
|
359 |
+
if "__call_nn_module_init" in self.store_attr_mutations.get(
|
360 |
+
var.mutable_local, {}
|
361 |
+
):
|
362 |
+
assert isinstance(var, variables.UnspecializedNNModuleVariable)
|
363 |
+
cg.load_import_from(utils.__name__, "nn_module_new")
|
364 |
+
else:
|
365 |
+
cg.load_import_from(utils.__name__, "object_new")
|
366 |
+
cg(var.mutable_local.cls_source)
|
367 |
+
cg.extend_output(create_call_function(1, True))
|
368 |
+
cg.add_cache(var)
|
369 |
+
var.mutable_local.source = LocalSource(cg.tempvars[var])
|
370 |
+
elif var in cg.tempvars:
|
371 |
+
assert cg.tempvars.get(var) is None
|
372 |
+
# subsequent usage should point to the original variable
|
373 |
+
cg(var.mutable_local.source)
|
374 |
+
cg.add_cache(var)
|
375 |
+
|
376 |
+
for ctx, args in self.save_for_backward:
|
377 |
+
cg(ctx.source)
|
378 |
+
cg.extend_output(
|
379 |
+
[create_instruction("LOAD_METHOD", argval="save_for_backward")]
|
380 |
+
)
|
381 |
+
for arg in args:
|
382 |
+
cg(arg)
|
383 |
+
cg.extend_output(
|
384 |
+
[
|
385 |
+
*create_call_method(len(args)),
|
386 |
+
create_instruction("POP_TOP"),
|
387 |
+
]
|
388 |
+
)
|
389 |
+
|
390 |
+
def register_hook(self, tensor, hook, handle, name):
|
391 |
+
assert isinstance(tensor, variables.TensorVariable)
|
392 |
+
assert isinstance(hook, variables.VariableTracker)
|
393 |
+
assert (
|
394 |
+
isinstance(handle, variables.RemovableHandleVariable)
|
395 |
+
and handle.mutable_local
|
396 |
+
)
|
397 |
+
assert hasattr(torch.Tensor, name)
|
398 |
+
idx = len(self.tensor_hooks.keys())
|
399 |
+
# duplicate index possible because of self.remove_hook()
|
400 |
+
while idx in self.tensor_hooks:
|
401 |
+
idx += 1
|
402 |
+
self.tensor_hooks[idx] = (tensor, hook, handle, name)
|
403 |
+
assert not handle.idx
|
404 |
+
handle.idx = idx
|
405 |
+
|
406 |
+
def remove_hook(self, idx):
|
407 |
+
del self.tensor_hooks[idx]
|
408 |
+
|
409 |
+
def codegen_hooks(self, cg):
|
410 |
+
for (
|
411 |
+
tensor,
|
412 |
+
hook,
|
413 |
+
handle,
|
414 |
+
name,
|
415 |
+
) in self.tensor_hooks.values():
|
416 |
+
# Note: [On tensor.register_hook]
|
417 |
+
#
|
418 |
+
# register_hook on a tensor, AKA backward hooks, have slightly nuanced differences in how they are implemented
|
419 |
+
# when it comes to hooks on objects with sources (inputs, params) vs objects without sources (intermediaries).
|
420 |
+
#
|
421 |
+
# For tensors with a source, we bypass direct inclusion of register_hook calls in the graph.
|
422 |
+
# Instead, these are tracked and stashed as a global variable, enabling their association with tensors in
|
423 |
+
# the residuals. During dynamo's frame creation, these hooks are invoked seamlessly on known reconstructible/fetch-able
|
424 |
+
# tensors. Because a source indicates knowledge of this object outside the torch compile region, and
|
425 |
+
# because we are running residuals firmly before .backward() can be run, it is sound to invoke
|
426 |
+
# `register_hook` on a known tensor.
|
427 |
+
#
|
428 |
+
# For tensors without a source, we support a limited subset of hooks. Global functions only, and
|
429 |
+
# compiled_autograd must be enabled or we will graph break.
|
430 |
+
#
|
431 |
+
# Handling the Handle: When a user retains the register_hook result in a handle, we intercept the
|
432 |
+
# STORE_FAST operation to record the user-designated local variable name. This ensures the reconstructed
|
433 |
+
# bytecode retains this name. If no handle is defined, we simply pop the generated value to keep the
|
434 |
+
# stack intact.
|
435 |
+
#
|
436 |
+
# Dynamo Tensor Hooks Workflow:
|
437 |
+
# - Functions passed to register_hook are lifted globally.
|
438 |
+
# - For tensors with sources:
|
439 |
+
# - In the "side_effects" phase of codegen, we iterate over tensors with hooks to:
|
440 |
+
# - Generate the tensor.
|
441 |
+
# - Issue a register_hook call on the tensor, linking to the globally stored function.
|
442 |
+
# - Incorporate a handle if one was established in the eager phase.
|
443 |
+
# - For tensors without sources:
|
444 |
+
# - We don't generate any instructions for registering a hook.
|
445 |
+
# - Handles from intermediary hooks are NYI.
|
446 |
+
# - We produce a call function that utilizes the trace_wrapped higher order op, closing over it.
|
447 |
+
# - We then manually insert the call function above into the graph.
|
448 |
+
# - The handle's exact user-specified name, "user_code_variable_name", is discerned and associated during STORE_FAST.
|
449 |
+
assert tensor.source, "Hooks on non input tensors NYI - should not get here"
|
450 |
+
cg(tensor)
|
451 |
+
cg.extend_output([cg.create_load_attr(name)])
|
452 |
+
cg(hook)
|
453 |
+
cg.extend_output(create_call_function(1, True))
|
454 |
+
|
455 |
+
# Adding the handle to the cache means RemovableHandleVariable().reconstruct() will
|
456 |
+
# be associated with the return value of register_hook(). This consumes the top of stack.
|
457 |
+
cg.add_cache(handle)
|
458 |
+
|
459 |
+
def codegen_update_mutated(self, cg: PyCodegen):
|
460 |
+
suffixes = []
|
461 |
+
for var in self._get_modified_vars():
|
462 |
+
if isinstance(var, variables.ListVariable):
|
463 |
+
# old[:] = new
|
464 |
+
cg(var, allow_cache=False)
|
465 |
+
cg(var.mutable_local.source) # type: ignore[attr-defined]
|
466 |
+
cg.extend_output(
|
467 |
+
[
|
468 |
+
cg.create_load_const(None),
|
469 |
+
cg.create_load_const(None),
|
470 |
+
create_instruction("BUILD_SLICE", arg=2),
|
471 |
+
]
|
472 |
+
)
|
473 |
+
suffixes.append([create_instruction("STORE_SUBSCR")])
|
474 |
+
elif isinstance(var, variables.ConstDictVariable):
|
475 |
+
cg.tx.output.update_co_names("clear")
|
476 |
+
cg.tx.output.update_co_names("update")
|
477 |
+
|
478 |
+
cg(var.mutable_local.source) # type: ignore[attr-defined]
|
479 |
+
cg.extend_output([create_instruction("LOAD_METHOD", argval="update")])
|
480 |
+
cg(var, allow_cache=False)
|
481 |
+
|
482 |
+
cg(var.mutable_local.source) # type: ignore[attr-defined]
|
483 |
+
cg.extend_output([create_instruction("LOAD_METHOD", argval="clear")])
|
484 |
+
|
485 |
+
suffixes.append(
|
486 |
+
[
|
487 |
+
*create_call_method(0), # clear
|
488 |
+
create_instruction("POP_TOP"),
|
489 |
+
*create_call_method(1), # update
|
490 |
+
create_instruction("POP_TOP"),
|
491 |
+
]
|
492 |
+
)
|
493 |
+
elif self.is_attribute_mutation(var):
|
494 |
+
for name, value in self.store_attr_mutations.get(
|
495 |
+
var.mutable_local, {}
|
496 |
+
).items():
|
497 |
+
if isinstance(var, variables.NewGlobalVariable):
|
498 |
+
cg.tx.output.update_co_names(name)
|
499 |
+
cg(value)
|
500 |
+
suffixes.append(
|
501 |
+
[create_instruction("STORE_GLOBAL", argval=name)]
|
502 |
+
)
|
503 |
+
elif name == "__call_nn_module_init":
|
504 |
+
pass # handled in codegen_save_tempvars
|
505 |
+
elif isinstance(value, variables.DeletedVariable):
|
506 |
+
if isinstance(
|
507 |
+
var.mutable_local, AttributeMutationExisting
|
508 |
+
) and hasattr(getattr(var, "value", None), name):
|
509 |
+
cg.tx.output.update_co_names(name)
|
510 |
+
cg(var.mutable_local.source)
|
511 |
+
suffixes.append(
|
512 |
+
[create_instruction("DELETE_ATTR", argval=name)]
|
513 |
+
)
|
514 |
+
else:
|
515 |
+
cg.tx.output.update_co_names(name)
|
516 |
+
cg(value)
|
517 |
+
cg(var.mutable_local.source)
|
518 |
+
suffixes.append([create_instruction("STORE_ATTR", argval=name)])
|
519 |
+
elif isinstance(var, variables.TupleIteratorVariable):
|
520 |
+
for _ in range(var.index):
|
521 |
+
cg.load_import_from(utils.__name__, "iter_next")
|
522 |
+
cg(var.mutable_local.source) # type: ignore[attr-defined]
|
523 |
+
cg.extend_output(create_call_function(1, True))
|
524 |
+
cg.append_output(create_instruction("POP_TOP"))
|
525 |
+
else:
|
526 |
+
raise AssertionError(type(var))
|
527 |
+
|
528 |
+
# do all the actual mutations at the very end to handle dependencies
|
529 |
+
for suffix in reversed(suffixes):
|
530 |
+
cg.extend_output(suffix)
|
531 |
+
|
532 |
+
def is_empty(self):
|
533 |
+
return not (
|
534 |
+
any(map(self.is_modified, self.id_to_variable.values()))
|
535 |
+
or self.tensor_hooks
|
536 |
+
or self.save_for_backward
|
537 |
+
or self.tensor_hooks
|
538 |
+
)
|
539 |
+
|
540 |
+
def clear(self):
|
541 |
+
self.keepalive.clear()
|
542 |
+
self.id_to_variable.clear()
|
llmeval-env/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py
ADDED
@@ -0,0 +1,2603 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import collections
|
2 |
+
import contextlib
|
3 |
+
import copy
|
4 |
+
import dataclasses
|
5 |
+
import dis
|
6 |
+
import functools
|
7 |
+
import importlib
|
8 |
+
import inspect
|
9 |
+
import itertools
|
10 |
+
import linecache
|
11 |
+
import logging
|
12 |
+
import operator
|
13 |
+
import sys
|
14 |
+
import textwrap
|
15 |
+
import threading
|
16 |
+
import traceback
|
17 |
+
import types
|
18 |
+
import typing
|
19 |
+
import weakref
|
20 |
+
from typing import Any, Dict, List, NamedTuple, Optional, Set, Tuple, Type
|
21 |
+
from unittest.mock import patch
|
22 |
+
|
23 |
+
import torch
|
24 |
+
import torch._logging
|
25 |
+
from torch._guards import Checkpointable, tracing, TracingContext
|
26 |
+
|
27 |
+
from . import config, exc, logging as torchdynamo_logging, trace_rules, variables
|
28 |
+
from .bytecode_analysis import (
|
29 |
+
get_indexof,
|
30 |
+
JUMP_OPNAMES,
|
31 |
+
livevars_analysis,
|
32 |
+
propagate_line_nums,
|
33 |
+
)
|
34 |
+
from .bytecode_transformation import (
|
35 |
+
cleaned_instructions,
|
36 |
+
create_call_function,
|
37 |
+
create_instruction,
|
38 |
+
create_jump_absolute,
|
39 |
+
Instruction,
|
40 |
+
is_generator,
|
41 |
+
unique_id,
|
42 |
+
)
|
43 |
+
from .code_context import code_context
|
44 |
+
from .codegen import PyCodegen
|
45 |
+
from .current_scope_id import current_scope_id
|
46 |
+
from .exc import ArgsMismatchError, BackendCompilerFailed, unimplemented, Unsupported
|
47 |
+
from .funcname_cache import get_funcname
|
48 |
+
from .guards import GuardBuilder, install_guard
|
49 |
+
from .output_graph import GraphCompileReason, OutputGraph, OutputGraphState
|
50 |
+
from .replay_record import DummyModule, ExecutionRecorder
|
51 |
+
from .resume_execution import ContinueExecutionCache, ReenterWith
|
52 |
+
from .source import (
|
53 |
+
AttrSource,
|
54 |
+
GetItemSource,
|
55 |
+
GlobalSource,
|
56 |
+
GlobalWeakRefSource,
|
57 |
+
LocalSource,
|
58 |
+
Source,
|
59 |
+
)
|
60 |
+
from .trace_rules import is_builtin_constant, is_forbidden
|
61 |
+
from .utils import (
|
62 |
+
counters,
|
63 |
+
get_fake_value,
|
64 |
+
get_instruction_source_311,
|
65 |
+
graph_break_dup_warning_checker,
|
66 |
+
istype,
|
67 |
+
LazyString,
|
68 |
+
proxy_args_kwargs,
|
69 |
+
)
|
70 |
+
from .variables.base import (
|
71 |
+
_is_top_level_scope,
|
72 |
+
is_side_effect_safe,
|
73 |
+
MutableLocal,
|
74 |
+
typestr,
|
75 |
+
VariableTracker,
|
76 |
+
)
|
77 |
+
from .variables.builder import VariableBuilder, wrap_fx_proxy
|
78 |
+
from .variables.builtin import BuiltinVariable
|
79 |
+
from .variables.constant import ConstantVariable
|
80 |
+
from .variables.ctx_manager import (
|
81 |
+
ContextWrappingVariable,
|
82 |
+
GenericContextWrappingVariable,
|
83 |
+
WithExitFunctionVariable,
|
84 |
+
)
|
85 |
+
from .variables.dicts import ConstDictVariable, SetVariable
|
86 |
+
from .variables.functions import (
|
87 |
+
BaseUserFunctionVariable,
|
88 |
+
NestedUserFunctionVariable,
|
89 |
+
SkipFunctionVariable,
|
90 |
+
UserFunctionVariable,
|
91 |
+
UserMethodVariable,
|
92 |
+
)
|
93 |
+
from .variables.lists import (
|
94 |
+
BaseListVariable,
|
95 |
+
ListIteratorVariable,
|
96 |
+
ListVariable,
|
97 |
+
SliceVariable,
|
98 |
+
TupleVariable,
|
99 |
+
)
|
100 |
+
from .variables.misc import (
|
101 |
+
ClosureVariable,
|
102 |
+
GetAttrVariable,
|
103 |
+
InlinedClosureVariable,
|
104 |
+
NullVariable,
|
105 |
+
PythonModuleVariable,
|
106 |
+
UnknownVariable,
|
107 |
+
)
|
108 |
+
from .variables.nn_module import NNModuleVariable
|
109 |
+
from .variables.tensor import (
|
110 |
+
supported_const_comparison_ops,
|
111 |
+
supported_tensor_comparison_ops,
|
112 |
+
SymNodeVariable,
|
113 |
+
TensorVariable,
|
114 |
+
)
|
115 |
+
from .variables.user_defined import (
|
116 |
+
RemovableHandleVariable,
|
117 |
+
UserDefinedClassVariable,
|
118 |
+
UserDefinedObjectVariable,
|
119 |
+
UserDefinedVariable,
|
120 |
+
)
|
121 |
+
|
122 |
+
log = logging.getLogger(__name__)
|
123 |
+
graph_break_log = torch._logging.getArtifactLogger(__name__, "graph_breaks")
|
124 |
+
trace_call_log = torch._logging.getArtifactLogger(__name__, "trace_call")
|
125 |
+
trace_source_log = torch._logging.getArtifactLogger(__name__, "trace_source")
|
126 |
+
tls = threading.local()
|
127 |
+
|
128 |
+
|
129 |
+
@dataclasses.dataclass
|
130 |
+
class SpeculationEntry:
|
131 |
+
filename: str
|
132 |
+
lineno: int
|
133 |
+
instruction_pointer: int
|
134 |
+
failed: bool = False
|
135 |
+
reason: Optional[GraphCompileReason] = None
|
136 |
+
|
137 |
+
def fail_and_restart_analysis(self):
|
138 |
+
"""
|
139 |
+
Start tracing of the current frame over again, and don't take this branch.
|
140 |
+
"""
|
141 |
+
self.failed = True
|
142 |
+
raise exc.SpeculationRestartAnalysis()
|
143 |
+
|
144 |
+
|
145 |
+
@dataclasses.dataclass
|
146 |
+
class SpeculationLog:
|
147 |
+
"""
|
148 |
+
SpeculationLog replaces the prior copy_graphstate/restore_graphstate
|
149 |
+
checkpointing. Rather than saving/restoring state, we restart the
|
150 |
+
dynamo conversion process over from the beginning -- but when we
|
151 |
+
hit the start of the speculation that failed, we instead generate
|
152 |
+
a graph break.
|
153 |
+
"""
|
154 |
+
|
155 |
+
entries: List[SpeculationEntry] = dataclasses.field(default_factory=list)
|
156 |
+
index: int = 0
|
157 |
+
|
158 |
+
def restart(self):
|
159 |
+
self.index = 0
|
160 |
+
|
161 |
+
def clear(self):
|
162 |
+
self.entries.clear()
|
163 |
+
self.index = 0
|
164 |
+
|
165 |
+
def next(self, filename: str, lineno: int, instruction_pointer) -> SpeculationEntry:
|
166 |
+
"""
|
167 |
+
Lookup or create a SpeculationEntry() that is shared across
|
168 |
+
RestartAnalysis calls. Args are used only for debug checks.
|
169 |
+
"""
|
170 |
+
if len(self.entries) == self.index:
|
171 |
+
self.entries.append(SpeculationEntry(filename, lineno, instruction_pointer))
|
172 |
+
entry = self.entries[self.index]
|
173 |
+
self.index += 1
|
174 |
+
assert (
|
175 |
+
entry.instruction_pointer == instruction_pointer
|
176 |
+
and entry.filename == filename
|
177 |
+
and entry.lineno == lineno
|
178 |
+
), textwrap.dedent(
|
179 |
+
f"""
|
180 |
+
SpecuationLog diverged at {self.index} of {len(self.entries)}:
|
181 |
+
- Run1: {entry.filename}:{entry.lineno} (ip={entry.instruction_pointer})
|
182 |
+
- Run2: {filename}:{lineno} (ip={instruction_pointer})
|
183 |
+
Please submit a bug report.
|
184 |
+
"""
|
185 |
+
)
|
186 |
+
return entry
|
187 |
+
|
188 |
+
|
189 |
+
@functools.lru_cache(None)
|
190 |
+
def _step_logger():
|
191 |
+
return torchdynamo_logging.get_step_logger(log)
|
192 |
+
|
193 |
+
|
194 |
+
@dataclasses.dataclass
|
195 |
+
class BlockStackEntry:
|
196 |
+
target: Instruction
|
197 |
+
stack_index: Optional[int] = None
|
198 |
+
with_context: Optional[ContextWrappingVariable] = None
|
199 |
+
|
200 |
+
def can_restore(self):
|
201 |
+
return self.with_context is not None
|
202 |
+
|
203 |
+
def resume_fn(self):
|
204 |
+
assert self.stack_index is not None
|
205 |
+
if self.with_context and self.with_context.target_values:
|
206 |
+
return ReenterWith(self.stack_index, tuple(self.with_context.target_values))
|
207 |
+
else:
|
208 |
+
return ReenterWith(self.stack_index)
|
209 |
+
|
210 |
+
def exit(self, tx):
|
211 |
+
assert self.with_context is not None
|
212 |
+
return self.with_context.exit(tx)
|
213 |
+
|
214 |
+
|
215 |
+
class InstructionTranslatorGraphState(NamedTuple):
|
216 |
+
output: OutputGraphState
|
217 |
+
symbolic_locals: Dict[str, VariableTracker]
|
218 |
+
stack: List[VariableTracker]
|
219 |
+
block_stack: List[BlockStackEntry]
|
220 |
+
instruction_pointer: Optional[int]
|
221 |
+
current_instruction: Instruction
|
222 |
+
next_instruction: Optional[Instruction]
|
223 |
+
lineno: int
|
224 |
+
|
225 |
+
def diff(self, other: "InstructionTranslatorGraphState") -> Optional[str]:
|
226 |
+
for k in self._fields:
|
227 |
+
if k == "output":
|
228 |
+
return self.output.diff(other.output, prefix=f"{k}.")
|
229 |
+
sv = getattr(self, k)
|
230 |
+
ov = getattr(other, k)
|
231 |
+
if sv != ov:
|
232 |
+
return f"{k} mismatch: {sv} != {ov}"
|
233 |
+
return None
|
234 |
+
|
235 |
+
|
236 |
+
def stack_op(fn: typing.Callable[..., object]):
|
237 |
+
nargs = len(inspect.signature(fn).parameters)
|
238 |
+
fn_var = BuiltinVariable(fn)
|
239 |
+
|
240 |
+
@functools.wraps(fn)
|
241 |
+
def impl(self: "InstructionTranslatorBase", inst: Instruction):
|
242 |
+
self.push(fn_var.call_function(self, self.popn(nargs), {}))
|
243 |
+
|
244 |
+
return impl
|
245 |
+
|
246 |
+
|
247 |
+
def _detect_and_normalize_assert_statement(
|
248 |
+
self: "InstructionTranslatorBase",
|
249 |
+
truth_fn: typing.Callable[[object], bool],
|
250 |
+
push: bool,
|
251 |
+
):
|
252 |
+
# Detect if this jump instruction is assert and normalize the assert
|
253 |
+
# by pushing dummy error message when nothing is given.
|
254 |
+
#
|
255 |
+
# Python 3.9 assertion is in following format:
|
256 |
+
# 18 POP_JUMP_IF_TRUE 28
|
257 |
+
# 20 LOAD_ASSERTION_ERROR
|
258 |
+
# 22 LOAD_CONST 3 ('Assert message') -> optional instruction
|
259 |
+
# 24 CALL_FUNCTION 1 -> optional instruction
|
260 |
+
# 26 RAISE_VARARGS
|
261 |
+
#
|
262 |
+
# Python 3.8 assertion is in following format:
|
263 |
+
# 18 POP_JUMP_IF_TRUE 28
|
264 |
+
# 20 LOAD_GLOBAL 0 (Assertion type)
|
265 |
+
# 22 LOAD_CONST 3 ('Assert message') -> optional instruction
|
266 |
+
# 24 CALL_FUNCTION 1 -> optional instruction
|
267 |
+
# 26 RAISE_VARARGS 1
|
268 |
+
|
269 |
+
if (truth_fn is not operator.truth) or push:
|
270 |
+
return False
|
271 |
+
|
272 |
+
assert isinstance(self.instruction_pointer, int)
|
273 |
+
current_instruction_pointer = self.instruction_pointer
|
274 |
+
inst = self.instructions[current_instruction_pointer]
|
275 |
+
# Detect LOAD_ASSERTION_ERROR or LOAD_GLOBAL 0
|
276 |
+
if sys.version_info < (3, 9):
|
277 |
+
if inst.opname != "LOAD_GLOBAL" or inst.argval != "AssertionError":
|
278 |
+
return False
|
279 |
+
else:
|
280 |
+
if inst.opname != "LOAD_ASSERTION_ERROR":
|
281 |
+
return False
|
282 |
+
|
283 |
+
current_instruction_pointer += 1
|
284 |
+
|
285 |
+
# Use dummy error message if its hard to extract
|
286 |
+
error_msg = "assertion error"
|
287 |
+
|
288 |
+
inst = self.instructions[current_instruction_pointer]
|
289 |
+
# DETECT RAISE_VARARGS or LOAD CONST
|
290 |
+
if inst.opname == "LOAD_CONST":
|
291 |
+
if not isinstance(inst.argval, str):
|
292 |
+
return False
|
293 |
+
error_msg = inst.argval
|
294 |
+
|
295 |
+
# if it is LOAD_CONSTANT, it must be followed by CALL_FUNCTION
|
296 |
+
# (PRECALL for Python 3.11+)
|
297 |
+
current_instruction_pointer += 1
|
298 |
+
inst = self.instructions[current_instruction_pointer]
|
299 |
+
if inst.opname not in ("CALL_FUNCTION", "PRECALL"):
|
300 |
+
return False
|
301 |
+
|
302 |
+
# for Python 3.11+, PRECALL should be followed by CALL, then RAISE_VARARGS
|
303 |
+
# for Python < 3.11, CALL_FUNCTION should be followed by RAISE_VARARGS
|
304 |
+
current_instruction_pointer += 1
|
305 |
+
if inst.opname == "PRECALL":
|
306 |
+
current_instruction_pointer += 1
|
307 |
+
inst = self.instructions[current_instruction_pointer]
|
308 |
+
|
309 |
+
if inst.opname != "RAISE_VARARGS":
|
310 |
+
return False
|
311 |
+
|
312 |
+
self.push(ConstantVariable.create(error_msg))
|
313 |
+
|
314 |
+
return True
|
315 |
+
|
316 |
+
|
317 |
+
def generic_jump(truth_fn: typing.Callable[[object], bool], push: bool):
|
318 |
+
def inner(self: "InstructionTranslatorBase", inst: Instruction):
|
319 |
+
value: VariableTracker = self.pop()
|
320 |
+
if (
|
321 |
+
config.rewrite_assert_with_torch_assert
|
322 |
+
and _detect_and_normalize_assert_statement(self, truth_fn, push)
|
323 |
+
):
|
324 |
+
error_msg: VariableTracker = self.pop()
|
325 |
+
# Skip over things like `assert True`
|
326 |
+
if value.is_python_constant() and bool(value.as_python_constant()):
|
327 |
+
self.jump(inst)
|
328 |
+
return
|
329 |
+
|
330 |
+
# TODO maybe should respect DtoH sync intention of users later??
|
331 |
+
# Manually insert torch._assert_async instead of python assert and jump over
|
332 |
+
# assert related instructions as we don't need them anymore.
|
333 |
+
|
334 |
+
# if we see Tensor as assert statement, no need to call scalar_tensor
|
335 |
+
if isinstance(value, TensorVariable):
|
336 |
+
self.output.create_proxy(
|
337 |
+
"call_function",
|
338 |
+
torch._assert_async,
|
339 |
+
*proxy_args_kwargs((value, error_msg), {}),
|
340 |
+
)
|
341 |
+
self.jump(inst)
|
342 |
+
return
|
343 |
+
|
344 |
+
if isinstance(value, SymNodeVariable):
|
345 |
+
# if the assertion is normal shape expression.
|
346 |
+
# just install guard and bail out.
|
347 |
+
sym_expr = value.sym_num
|
348 |
+
if not isinstance(sym_expr, torch.SymBool):
|
349 |
+
sym_expr = sym_expr != 0
|
350 |
+
|
351 |
+
result = torch.fx.experimental.symbolic_shapes.expect_true(sym_expr)
|
352 |
+
if not result:
|
353 |
+
raise unimplemented(
|
354 |
+
"Assertion failed on symbolic shapes. Did you make sure eager mode succeeds?"
|
355 |
+
)
|
356 |
+
self.jump(inst)
|
357 |
+
return
|
358 |
+
|
359 |
+
scalar_to_tensor_proxy = self.output.create_proxy(
|
360 |
+
"call_function", torch.scalar_tensor, *proxy_args_kwargs((value,), {})
|
361 |
+
)
|
362 |
+
|
363 |
+
scalar_to_tensor = wrap_fx_proxy(
|
364 |
+
self,
|
365 |
+
scalar_to_tensor_proxy,
|
366 |
+
example_value=get_fake_value(scalar_to_tensor_proxy.node, self),
|
367 |
+
)
|
368 |
+
|
369 |
+
self.output.create_proxy(
|
370 |
+
"call_function",
|
371 |
+
torch._assert_async,
|
372 |
+
*proxy_args_kwargs((scalar_to_tensor, error_msg), {}),
|
373 |
+
)
|
374 |
+
self.jump(inst)
|
375 |
+
return
|
376 |
+
|
377 |
+
if value.is_python_constant():
|
378 |
+
if truth_fn(value.as_python_constant()):
|
379 |
+
push and self.push(value)
|
380 |
+
self.jump(inst)
|
381 |
+
elif (
|
382 |
+
isinstance(value, (TensorVariable)) and self.should_compile_partial_graph()
|
383 |
+
):
|
384 |
+
# compile a partial subgraph prefix then jump into user code
|
385 |
+
if self.has_backedge():
|
386 |
+
msg = (
|
387 |
+
"Skipping frame because there is a graph break in a for/while loop\n"
|
388 |
+
f"{self.frame_summary()}"
|
389 |
+
)
|
390 |
+
log.info(msg)
|
391 |
+
raise exc.SkipFrame(msg)
|
392 |
+
|
393 |
+
self.push(value)
|
394 |
+
log.debug("generic_jump triggered compile")
|
395 |
+
self.output.compile_subgraph(
|
396 |
+
self,
|
397 |
+
reason=GraphCompileReason(
|
398 |
+
f"generic_jump {typestr(value)}", [self.frame_summary()]
|
399 |
+
),
|
400 |
+
)
|
401 |
+
self.pop()
|
402 |
+
|
403 |
+
if_next = self.create_call_resume_at(self.next_instruction)
|
404 |
+
push and self.push(value)
|
405 |
+
if_jump = self.create_call_resume_at(inst.target)
|
406 |
+
|
407 |
+
self.output.add_output_instructions(
|
408 |
+
[create_instruction(inst.opname, target=if_jump[0])] + if_next + if_jump
|
409 |
+
)
|
410 |
+
elif isinstance(value, NNModuleVariable):
|
411 |
+
# Equivalent of "self.nn_module is not None"
|
412 |
+
mod = self.output.get_submodule(value.module_key)
|
413 |
+
if truth_fn(mod):
|
414 |
+
push and self.push(value)
|
415 |
+
self.jump(inst)
|
416 |
+
elif isinstance(value, UserDefinedObjectVariable):
|
417 |
+
x = value.var_getattr(self, "__bool__")
|
418 |
+
# if __bool__ is missing, trying __len__ to infer a truth value.
|
419 |
+
if isinstance(x, GetAttrVariable):
|
420 |
+
x = value.var_getattr(self, "__len__")
|
421 |
+
|
422 |
+
# __bool__ or __len__ is function
|
423 |
+
if isinstance(x, UserMethodVariable):
|
424 |
+
result = x.call_function(self, [], {})
|
425 |
+
if isinstance(result, ConstantVariable) and isinstance(
|
426 |
+
result.value, (bool, int)
|
427 |
+
):
|
428 |
+
if truth_fn(result.value):
|
429 |
+
push and self.push(value)
|
430 |
+
self.jump(inst)
|
431 |
+
else:
|
432 |
+
unimplemented(
|
433 |
+
"generic_jump on UserDefined with __bool__ returning non-constant"
|
434 |
+
)
|
435 |
+
# __bool__ or __len__ is non-function or not existed in the user defined object
|
436 |
+
else:
|
437 |
+
if truth_fn(True):
|
438 |
+
push and self.push(value)
|
439 |
+
self.jump(inst)
|
440 |
+
elif not isinstance(value, TensorVariable) and value.has_unpack_var_sequence(
|
441 |
+
self
|
442 |
+
):
|
443 |
+
if truth_fn(len(value.unpack_var_sequence(self))):
|
444 |
+
push and self.push(value)
|
445 |
+
self.jump(inst)
|
446 |
+
elif isinstance(value, SymNodeVariable):
|
447 |
+
eval_result = value.evaluate_expr(self.output)
|
448 |
+
if truth_fn(eval_result):
|
449 |
+
push and self.push(value)
|
450 |
+
self.jump(inst)
|
451 |
+
elif isinstance(value, variables.BackwardHookVariable):
|
452 |
+
if truth_fn(True):
|
453 |
+
push and self.push(value)
|
454 |
+
self.jump(inst)
|
455 |
+
else:
|
456 |
+
from .source import is_constant_source
|
457 |
+
|
458 |
+
if value.source is not None and is_constant_source(value.source):
|
459 |
+
if truth_fn(value.get_real_value()): # type: ignore[attr-defined]
|
460 |
+
push and self.push(value)
|
461 |
+
self.jump(inst)
|
462 |
+
else:
|
463 |
+
# TODO link the torch.cond doc later
|
464 |
+
raise exc.UserError(
|
465 |
+
exc.UserErrorType.DYNAMIC_CONTROL_FLOW,
|
466 |
+
"Dynamic control flow is not supported at the moment. Please use "
|
467 |
+
"functorch.experimental.control_flow.cond to explicitly capture the control flow.",
|
468 |
+
case_name="cond_operands",
|
469 |
+
)
|
470 |
+
|
471 |
+
return inner
|
472 |
+
|
473 |
+
|
474 |
+
explain = False
|
475 |
+
|
476 |
+
|
477 |
+
def break_graph_if_unsupported(*, push):
|
478 |
+
def decorator(inner_fn):
|
479 |
+
@functools.wraps(inner_fn)
|
480 |
+
def wrapper(self: "InstructionTranslatorBase", inst: Instruction):
|
481 |
+
speculation = self.speculate()
|
482 |
+
if speculation.failed:
|
483 |
+
assert speculation.reason is not None
|
484 |
+
return handle_graph_break(self, inst, speculation.reason)
|
485 |
+
try:
|
486 |
+
TracingContext.set_current_loc(
|
487 |
+
self.f_code.co_filename, self.lineno, self.f_code.co_name
|
488 |
+
)
|
489 |
+
return inner_fn(self, inst)
|
490 |
+
except Unsupported as excp:
|
491 |
+
if self.generic_context_manager_depth > 0:
|
492 |
+
# We don't support graph break under GenericContextWrappingVariable,
|
493 |
+
# If there is, we roll back to the checkpoint and fall back.
|
494 |
+
excp.remove_from_stats()
|
495 |
+
unimplemented("Graph break under GenericContextWrappingVariable")
|
496 |
+
|
497 |
+
if isinstance(excp, exc.UncapturedHigherOrderOpError):
|
498 |
+
raise
|
499 |
+
|
500 |
+
if not self.should_compile_partial_graph():
|
501 |
+
raise
|
502 |
+
|
503 |
+
user_stack = excp.real_stack
|
504 |
+
# TODO: Also report the traceback from the parent frame
|
505 |
+
user_stack_formatted = "".join(traceback.format_list(user_stack))
|
506 |
+
frame_loc = (user_stack[-1].filename, user_stack[-1].lineno)
|
507 |
+
# torch._dynamo.explain() formats this a little nicer, and presents a slightly
|
508 |
+
# more actionable user code pointer
|
509 |
+
if (
|
510 |
+
graph_break_log.isEnabledFor(logging.DEBUG)
|
511 |
+
and not explain
|
512 |
+
and graph_break_dup_warning_checker.add(frame_loc)
|
513 |
+
):
|
514 |
+
# This log line is exercised from
|
515 |
+
# python test/dynamo/test_exc.py -k test_graph_break_log
|
516 |
+
graph_break_log.debug(
|
517 |
+
"Graph break: from user code at:\n%s",
|
518 |
+
user_stack_formatted,
|
519 |
+
exc_info=True,
|
520 |
+
)
|
521 |
+
else:
|
522 |
+
# This log line MUST NOT contain the string "Graph break",
|
523 |
+
# exercised by
|
524 |
+
# python test/dynamo/test_misc.py -k test_duplicate_graph_break_log
|
525 |
+
log.debug(
|
526 |
+
"Unsupported break in user code at %s:%s (details suppressed)",
|
527 |
+
*frame_loc,
|
528 |
+
)
|
529 |
+
|
530 |
+
if self.has_backedge():
|
531 |
+
msg = (
|
532 |
+
"Skipping frame because there is a graph break in a for/while loop\n"
|
533 |
+
f"{self.frame_summary()}"
|
534 |
+
)
|
535 |
+
log.info(msg)
|
536 |
+
raise exc.SkipFrame(msg) from excp
|
537 |
+
|
538 |
+
excp.remove_from_stats()
|
539 |
+
excp.add_to_stats("graph_break")
|
540 |
+
speculation.reason = GraphCompileReason(excp.msg, user_stack)
|
541 |
+
speculation.fail_and_restart_analysis()
|
542 |
+
|
543 |
+
def handle_graph_break(
|
544 |
+
self: "InstructionTranslatorBase",
|
545 |
+
inst: Instruction,
|
546 |
+
reason: GraphCompileReason,
|
547 |
+
):
|
548 |
+
self.output.compile_subgraph(self, reason=reason)
|
549 |
+
cg = PyCodegen(self)
|
550 |
+
cleanup: List[Instruction] = []
|
551 |
+
# Reconstruct the context variables in the block stack
|
552 |
+
for b in self.block_stack:
|
553 |
+
assert b.with_context is not None
|
554 |
+
cg(b.with_context)
|
555 |
+
cg.extend_output(b.resume_fn().try_except(cg.code_options, cleanup))
|
556 |
+
self.output.add_output_instructions(cg.get_instructions())
|
557 |
+
del cg
|
558 |
+
|
559 |
+
if sys.version_info >= (3, 11) and inst.opname == "CALL":
|
560 |
+
kw_names = (
|
561 |
+
self.kw_names.as_python_constant()
|
562 |
+
if self.kw_names is not None
|
563 |
+
else ()
|
564 |
+
)
|
565 |
+
if len(kw_names) > 0:
|
566 |
+
self.output.add_output_instructions(
|
567 |
+
[create_instruction("KW_NAMES", argval=kw_names)]
|
568 |
+
)
|
569 |
+
self.output.add_output_instructions(
|
570 |
+
create_call_function(inst.arg, False)
|
571 |
+
)
|
572 |
+
else:
|
573 |
+
# copy instruction, but without exception table data
|
574 |
+
assert inst.target is None
|
575 |
+
inst_copy = copy.copy(inst)
|
576 |
+
inst_copy.exn_tab_entry = None
|
577 |
+
self.output.add_output_instructions([inst_copy])
|
578 |
+
|
579 |
+
self.output.add_output_instructions(cleanup)
|
580 |
+
|
581 |
+
if sys.version_info >= (3, 11) and inst.opname == "CALL":
|
582 |
+
# stack effect for PRECALL + CALL is split between the two instructions
|
583 |
+
stack_effect = dis.stack_effect(
|
584 |
+
dis.opmap["PRECALL"], inst.arg
|
585 |
+
) + dis.stack_effect(dis.opmap["CALL"], inst.arg)
|
586 |
+
else:
|
587 |
+
stack_effect = dis.stack_effect(inst.opcode, inst.arg)
|
588 |
+
self.popn(push - stack_effect)
|
589 |
+
|
590 |
+
for _ in range(push):
|
591 |
+
self.push(UnknownVariable())
|
592 |
+
self.output.add_output_instructions(
|
593 |
+
self.create_call_resume_at(self.next_instruction)
|
594 |
+
)
|
595 |
+
|
596 |
+
return wrapper
|
597 |
+
|
598 |
+
return decorator
|
599 |
+
|
600 |
+
|
601 |
+
class InstructionTranslatorBase(Checkpointable[InstructionTranslatorGraphState]):
|
602 |
+
output: OutputGraph
|
603 |
+
symbolic_locals: Dict[str, VariableTracker]
|
604 |
+
symbolic_globals: Dict[str, VariableTracker]
|
605 |
+
stack: List[VariableTracker]
|
606 |
+
instruction_pointer: Optional[int]
|
607 |
+
current_instruction: Instruction
|
608 |
+
next_instruction: Optional[Instruction]
|
609 |
+
block_stack: List[BlockStackEntry]
|
610 |
+
lineno: int
|
611 |
+
kw_names: Optional[ConstantVariable]
|
612 |
+
accept_prefix_inst: bool
|
613 |
+
prefix_insts: List[Instruction]
|
614 |
+
inline_depth: int
|
615 |
+
inconsistent_side_effects: bool
|
616 |
+
current_speculation: Optional[SpeculationEntry]
|
617 |
+
|
618 |
+
def mark_inconsistent_side_effects(self):
|
619 |
+
"""
|
620 |
+
InstructionTranslator has encountered instructions which may cause
|
621 |
+
dynamo to see a different version of history from eager
|
622 |
+
See: https://github.com/pytorch/pytorch/issues/110765
|
623 |
+
"""
|
624 |
+
self.inconsistent_side_effects = True
|
625 |
+
|
626 |
+
def has_backedge(self):
|
627 |
+
cur_offset = self.current_instruction.offset
|
628 |
+
assert self.instruction_pointer is not None
|
629 |
+
for inst in self.instructions[self.instruction_pointer :]:
|
630 |
+
if inst.opname in JUMP_OPNAMES:
|
631 |
+
jump_offset = inst.argval
|
632 |
+
if jump_offset < cur_offset:
|
633 |
+
return True
|
634 |
+
return False
|
635 |
+
|
636 |
+
def cell_and_freevars(self):
|
637 |
+
if not hasattr(self, "_cell_and_freevars"):
|
638 |
+
self._cell_and_freevars = tuple(
|
639 |
+
self.code_options["co_cellvars"] or []
|
640 |
+
) + tuple(self.code_options["co_freevars"] or [])
|
641 |
+
return self._cell_and_freevars
|
642 |
+
|
643 |
+
def prune_dead_locals(self):
|
644 |
+
reads = livevars_analysis(self.instructions, self.current_instruction)
|
645 |
+
# implicit use by super()
|
646 |
+
# reads = reads | {"__class__"}
|
647 |
+
# output variables?
|
648 |
+
reads = reads | set(self.cell_and_freevars())
|
649 |
+
self.symbolic_locals = {
|
650 |
+
k: v for k, v in self.symbolic_locals.items() if k in reads
|
651 |
+
}
|
652 |
+
self.output.side_effects.prune_dead_object_new(self)
|
653 |
+
|
654 |
+
def call_function(
|
655 |
+
self,
|
656 |
+
fn: VariableTracker,
|
657 |
+
args: List[VariableTracker],
|
658 |
+
kwargs: Dict[str, VariableTracker],
|
659 |
+
):
|
660 |
+
assert isinstance(fn, VariableTracker)
|
661 |
+
assert isinstance(args, list)
|
662 |
+
assert isinstance(kwargs, dict)
|
663 |
+
assert all(
|
664 |
+
isinstance(x, VariableTracker)
|
665 |
+
for x in itertools.chain(args, kwargs.values())
|
666 |
+
)
|
667 |
+
inner_fn = None
|
668 |
+
if hasattr(fn, "value"):
|
669 |
+
inner_fn = fn.value
|
670 |
+
if hasattr(fn, "fn"):
|
671 |
+
inner_fn = fn.fn
|
672 |
+
if inner_fn and callable(inner_fn) and is_forbidden(inner_fn):
|
673 |
+
raise AssertionError(f"Attempt to trace forbidden callable {inner_fn}")
|
674 |
+
self.push(fn.call_function(self, args, kwargs))
|
675 |
+
|
676 |
+
def inline_user_function_return(self, fn, args, kwargs):
|
677 |
+
"""
|
678 |
+
A call to some user defined function by inlining it.
|
679 |
+
"""
|
680 |
+
return InliningInstructionTranslator.inline_call(self, fn, args, kwargs)
|
681 |
+
|
682 |
+
def get_line_of_code_header(self, lineno=None):
|
683 |
+
if lineno is None:
|
684 |
+
lineno = self.lineno
|
685 |
+
inline_depth_str = (
|
686 |
+
f" (inline depth: {self.inline_depth})" if self.inline_depth > 0 else ""
|
687 |
+
)
|
688 |
+
funcname = get_funcname(self.f_code.co_filename, lineno)
|
689 |
+
funcname_str = "" if funcname is None else f" ({funcname})"
|
690 |
+
return f"{self.f_code.co_filename}:{lineno} in {self.f_code.co_name}{funcname_str}{inline_depth_str}"
|
691 |
+
|
692 |
+
def get_log_starts_line_log_str(self):
|
693 |
+
log_str = f"TRACE starts_line {self.get_line_of_code_header()}\n"
|
694 |
+
line = linecache.getline(self.f_code.co_filename, self.lineno).rstrip()
|
695 |
+
log_str += f" {line}"
|
696 |
+
return log_str
|
697 |
+
|
698 |
+
def log_starts_line(self):
|
699 |
+
trace_source_log.debug("%s", LazyString(self.get_log_starts_line_log_str))
|
700 |
+
|
701 |
+
def step(self):
|
702 |
+
"""Process exactly one instruction, return False we should exit"""
|
703 |
+
assert isinstance(self.instruction_pointer, int)
|
704 |
+
inst = self.instructions[self.instruction_pointer]
|
705 |
+
self.current_instruction = inst
|
706 |
+
self.instruction_pointer += 1
|
707 |
+
if self.instruction_pointer < len(self.instructions):
|
708 |
+
self.next_instruction = self.instructions[self.instruction_pointer]
|
709 |
+
else:
|
710 |
+
self.instruction_pointer = None
|
711 |
+
self.next_instruction = None
|
712 |
+
if inst.starts_line and self.lineno != inst.starts_line:
|
713 |
+
self.lineno = inst.starts_line
|
714 |
+
self.log_starts_line()
|
715 |
+
|
716 |
+
if (
|
717 |
+
len(self.stack) == 0
|
718 |
+
and self.should_compile_partial_graph()
|
719 |
+
and self.is_non_empty_graph()
|
720 |
+
):
|
721 |
+
self.current_speculation = self.speculate()
|
722 |
+
if self.current_speculation.failed:
|
723 |
+
return self.step_graph_break(inst)
|
724 |
+
|
725 |
+
log.debug("TRACE %s %s %s", inst.opname, inst.argval, self.stack)
|
726 |
+
|
727 |
+
# 3.11 no longer uses a block stack, but we still keep track of one
|
728 |
+
# so that we know which contexts are currently active.
|
729 |
+
# For our purposes, all exception table entries with the same target
|
730 |
+
# are considered to be part of the same "block".
|
731 |
+
if sys.version_info >= (3, 11):
|
732 |
+
entry = inst.exn_tab_entry
|
733 |
+
if not (
|
734 |
+
# still in the same block
|
735 |
+
self.block_stack
|
736 |
+
and entry
|
737 |
+
and self.block_stack[-1].target is entry.target
|
738 |
+
):
|
739 |
+
if not entry:
|
740 |
+
# no longer in any block
|
741 |
+
# It is possible for NOPs to be between two instructions
|
742 |
+
# in the same block, but the NOPs are not covered by an
|
743 |
+
# exception table entry. In this case, assume that we
|
744 |
+
# are still in the same block.
|
745 |
+
if self.block_stack and inst.opname != "NOP":
|
746 |
+
# If we really escape from a block and the current
|
747 |
+
# instruction is not in another block, then there
|
748 |
+
# should be no other nested blocks that we are in.
|
749 |
+
assert len(self.block_stack) == 1
|
750 |
+
self.block_stack.pop()
|
751 |
+
elif (
|
752 |
+
# current instruction is in the previous block
|
753 |
+
len(self.block_stack) > 1
|
754 |
+
and self.block_stack[-2].target is entry.target
|
755 |
+
):
|
756 |
+
# exit the current block
|
757 |
+
self.block_stack.pop()
|
758 |
+
else:
|
759 |
+
# current instruction is in a new block
|
760 |
+
# push block to stack - note, BEFORE_WITH blocks won't
|
761 |
+
# be pushed here since BEFORE_WITH pushes the block, and
|
762 |
+
# the current instruction would be counted as being in that block.
|
763 |
+
self.block_stack.append(
|
764 |
+
BlockStackEntry(entry.target, len(self.stack))
|
765 |
+
)
|
766 |
+
|
767 |
+
try:
|
768 |
+
if not hasattr(self, inst.opname):
|
769 |
+
unimplemented(f"missing: {inst.opname}")
|
770 |
+
TracingContext.set_current_loc(
|
771 |
+
self.f_code.co_filename, self.lineno, self.f_code.co_name
|
772 |
+
)
|
773 |
+
getattr(self, inst.opname)(inst)
|
774 |
+
|
775 |
+
return inst.opname != "RETURN_VALUE"
|
776 |
+
except Unsupported:
|
777 |
+
if self.current_speculation is None:
|
778 |
+
log.debug("empty checkpoint")
|
779 |
+
raise
|
780 |
+
log.debug("step triggered compile", exc_info=True)
|
781 |
+
|
782 |
+
self.current_speculation.fail_and_restart_analysis()
|
783 |
+
|
784 |
+
def step_graph_break(self, continue_inst):
|
785 |
+
# generate code from checkpoint
|
786 |
+
assert not self.output.output_instructions
|
787 |
+
assert self.current_speculation is not None
|
788 |
+
self.output.compile_subgraph(
|
789 |
+
self,
|
790 |
+
partial_convert=True,
|
791 |
+
reason=GraphCompileReason("step_unsupported", [self.frame_summary()]),
|
792 |
+
)
|
793 |
+
self.output.add_output_instructions(
|
794 |
+
[create_jump_absolute(continue_inst)] + self.instructions
|
795 |
+
)
|
796 |
+
|
797 |
+
def run_ctx_mgr(self):
|
798 |
+
# NB: Don't push the top level frame summary; set_current_loc will
|
799 |
+
# take care of it. However, DO make sure we attach real_stack to
|
800 |
+
# exceptions
|
801 |
+
return TracingContext.current_frame(None)
|
802 |
+
|
803 |
+
def run(self):
|
804 |
+
with self.run_ctx_mgr():
|
805 |
+
try:
|
806 |
+
self.output.push_tx(self)
|
807 |
+
while (
|
808 |
+
self.instruction_pointer is not None
|
809 |
+
and not self.output.should_exit
|
810 |
+
and self.step()
|
811 |
+
):
|
812 |
+
pass
|
813 |
+
except BackendCompilerFailed:
|
814 |
+
raise
|
815 |
+
except Exception as e:
|
816 |
+
if config.replay_record_enabled:
|
817 |
+
e.exec_record = self.exec_recorder.get_record() # type: ignore[attr-defined]
|
818 |
+
raise
|
819 |
+
finally:
|
820 |
+
self.output.pop_tx()
|
821 |
+
# Cleanup the outputGraph to delete the held tensors. We perform the
|
822 |
+
# cleanup only for InstructionTranslator and not
|
823 |
+
# InliningInstructionTranslator. The InliningInstructionTranslator
|
824 |
+
# mutates the output object and is restored to original state if
|
825 |
+
# there was an exception.
|
826 |
+
if isinstance(self, InstructionTranslator):
|
827 |
+
self.output.cleanup()
|
828 |
+
|
829 |
+
def push(self, val: Optional[VariableTracker]):
|
830 |
+
assert val is None or isinstance(
|
831 |
+
val, VariableTracker
|
832 |
+
), f"push expects VariableTracker, got {typestr(val)}"
|
833 |
+
self.stack.append(val) # type: ignore[arg-type]
|
834 |
+
|
835 |
+
def push_many(self, vals: List[VariableTracker]):
|
836 |
+
for val in vals:
|
837 |
+
self.push(val)
|
838 |
+
|
839 |
+
def pop(self) -> VariableTracker:
|
840 |
+
return self.stack.pop()
|
841 |
+
|
842 |
+
def popn(self, n: int) -> List[VariableTracker]:
|
843 |
+
assert n >= 0
|
844 |
+
return list(reversed([self.pop() for _ in range(n)]))
|
845 |
+
|
846 |
+
def LOAD_FAST(self, inst):
|
847 |
+
name = inst.argval
|
848 |
+
if name in self.f_locals and config.replay_record_enabled:
|
849 |
+
self.exec_recorder.add_local_var(name, self.f_locals[name])
|
850 |
+
|
851 |
+
if name.startswith(".") and name not in self.symbolic_locals:
|
852 |
+
# This happens in dict/list comprehensions
|
853 |
+
name = name.replace(".", "implicit")
|
854 |
+
assert name not in self.cell_and_freevars()
|
855 |
+
if name not in self.symbolic_locals:
|
856 |
+
unimplemented("undefined LOAD_FAST")
|
857 |
+
self.push(self.symbolic_locals[name])
|
858 |
+
if name.startswith("___stack"):
|
859 |
+
self.symbolic_locals.pop(name)
|
860 |
+
|
861 |
+
def LOAD_DEREF(self, inst):
|
862 |
+
assert inst.argval in self.cell_and_freevars()
|
863 |
+
|
864 |
+
if inst.argval in self.f_locals and config.replay_record_enabled:
|
865 |
+
self.exec_recorder.add_local_var(inst.argval, self.f_locals[inst.argval])
|
866 |
+
|
867 |
+
if inst.argval not in self.symbolic_locals:
|
868 |
+
unimplemented(f"undefined LOAD_DEREF {inst.argval}")
|
869 |
+
self.push(self.symbolic_locals[inst.argval])
|
870 |
+
|
871 |
+
def STORE_FAST(self, inst):
|
872 |
+
loaded_vt = self.pop()
|
873 |
+
name = inst.argval
|
874 |
+
# Only rename at the top-level scope, this is to avoid the confusion between
|
875 |
+
# mutating a variable vs renaming it (e.g. a = b) during speculating a higher order op,
|
876 |
+
# where mutation is prohibited and it's difficult to differentiate it with renaming.
|
877 |
+
if _is_top_level_scope(current_scope_id()):
|
878 |
+
loaded_vt = loaded_vt.rename(self, name)
|
879 |
+
self.symbolic_locals[name] = loaded_vt
|
880 |
+
|
881 |
+
def DELETE_FAST(self, inst):
|
882 |
+
del self.symbolic_locals[inst.argval]
|
883 |
+
|
884 |
+
STORE_DEREF = STORE_FAST
|
885 |
+
|
886 |
+
def LOAD_CLOSURE(self, inst):
|
887 |
+
self.push(ClosureVariable(name=inst.argval))
|
888 |
+
|
889 |
+
def LOAD_CONST(self, inst):
|
890 |
+
# For empty tuples, create empty TupleVariable
|
891 |
+
if isinstance(inst.argval, tuple) and not inst.argval:
|
892 |
+
self.push(TupleVariable([]))
|
893 |
+
else:
|
894 |
+
self.push(ConstantVariable.create(value=inst.argval))
|
895 |
+
|
896 |
+
def get_global_source(self, name):
|
897 |
+
source: Source
|
898 |
+
if self.output.global_scope is self.f_globals:
|
899 |
+
source = GlobalSource(name)
|
900 |
+
else:
|
901 |
+
if "__name__" in self.f_globals:
|
902 |
+
source = AttrSource(
|
903 |
+
self.import_source(self.f_globals["__name__"]), name
|
904 |
+
)
|
905 |
+
else:
|
906 |
+
mangled_name = self.output.install_global_by_id(
|
907 |
+
"___unnamed_scope", self.f_globals
|
908 |
+
)
|
909 |
+
source = GetItemSource(GlobalSource(mangled_name), name)
|
910 |
+
return source
|
911 |
+
|
912 |
+
def LOAD_GLOBAL(self, inst):
|
913 |
+
if sys.version_info >= (3, 11):
|
914 |
+
if inst.arg % 2:
|
915 |
+
self.PUSH_NULL(inst)
|
916 |
+
|
917 |
+
name = inst.argval
|
918 |
+
|
919 |
+
if config.replay_record_enabled:
|
920 |
+
if name in self.f_globals:
|
921 |
+
self.exec_recorder.add_global_var(name, self.f_globals[name])
|
922 |
+
else:
|
923 |
+
assert name in self.f_builtins
|
924 |
+
self.exec_recorder.builtins[name] = self.f_builtins[name]
|
925 |
+
|
926 |
+
if inst.argval == "AssertionError":
|
927 |
+
unimplemented("assert with non-string message")
|
928 |
+
|
929 |
+
if name in self.symbolic_globals:
|
930 |
+
variable = self.output.side_effects[self.symbolic_globals[name]]
|
931 |
+
self.push(self.output.side_effects.load_global(variable, name))
|
932 |
+
return
|
933 |
+
|
934 |
+
try:
|
935 |
+
value = self.f_globals[name]
|
936 |
+
except KeyError:
|
937 |
+
return self.load_builtin(inst)
|
938 |
+
|
939 |
+
source = self.get_global_source(name)
|
940 |
+
self.push(VariableBuilder(self, source)(value))
|
941 |
+
|
942 |
+
def STORE_GLOBAL(self, inst):
|
943 |
+
value = self.pop()
|
944 |
+
name = inst.argval
|
945 |
+
source = self.get_global_source(name)
|
946 |
+
if name not in self.symbolic_globals:
|
947 |
+
self.symbolic_globals[name] = object() # type: ignore[assignment] # sentinel object
|
948 |
+
variable = self.output.side_effects.track_global_existing(
|
949 |
+
source, self.symbolic_globals[name]
|
950 |
+
)
|
951 |
+
if isinstance(value, RemovableHandleVariable):
|
952 |
+
unimplemented("Storing handles in globals - NYI")
|
953 |
+
self.output.side_effects.store_global(variable, name, value)
|
954 |
+
|
955 |
+
def import_source(self, module_name):
|
956 |
+
"""Create an alias to a module for use in guards"""
|
957 |
+
if "torch_package" in module_name:
|
958 |
+
value = torch.package.package_importer._package_imported_modules[
|
959 |
+
module_name
|
960 |
+
]
|
961 |
+
alias = (
|
962 |
+
module_name.replace(">", "_").replace("<", "_").replace(".", "_dot_")
|
963 |
+
)
|
964 |
+
else:
|
965 |
+
value = importlib.import_module(module_name)
|
966 |
+
alias = f"__import_{module_name.replace('.', '_dot_')}"
|
967 |
+
f_globals = self.output.global_scope
|
968 |
+
assert alias not in f_globals or f_globals[alias] is value
|
969 |
+
f_globals[alias] = value
|
970 |
+
self.output.update_co_names(alias)
|
971 |
+
return GlobalSource(alias)
|
972 |
+
|
973 |
+
def resolve_name(self, name, package, level):
|
974 |
+
"""
|
975 |
+
Copied from the Cpython implementation of __import__
|
976 |
+
Resolve a relative module name to an absolute one.
|
977 |
+
https://github.com/python/cpython/blob/5a094f0255eea1db58fb2cf14c200971e64ec36e/Lib/importlib/_bootstrap.py#L902
|
978 |
+
"""
|
979 |
+
bits = package.rsplit(".", level - 1)
|
980 |
+
if len(bits) < level:
|
981 |
+
raise ImportError("attempted relative import beyond top-level package")
|
982 |
+
base = bits[0]
|
983 |
+
return f"{base}.{name}" if name else base
|
984 |
+
|
985 |
+
def calc_package(self):
|
986 |
+
"""
|
987 |
+
Copied from the Cpython implementation of __import__
|
988 |
+
https://github.com/python/cpython/blob/5a094f0255eea1db58fb2cf14c200971e64ec36e/Lib/importlib/_bootstrap.py#L1090
|
989 |
+
"""
|
990 |
+
package = self.f_globals.get("__package__")
|
991 |
+
spec = self.f_globals.get("__spec__")
|
992 |
+
if package is not None:
|
993 |
+
if spec is not None and package != spec.parent:
|
994 |
+
log.warning(
|
995 |
+
"__package__ != __spec__.parent (%r != %r)",
|
996 |
+
package,
|
997 |
+
spec.parent,
|
998 |
+
stacklevel=3,
|
999 |
+
)
|
1000 |
+
return package
|
1001 |
+
elif spec is not None:
|
1002 |
+
return spec.parent
|
1003 |
+
else:
|
1004 |
+
log.warning(
|
1005 |
+
"can't resolve package from __spec__ or __package__, "
|
1006 |
+
"falling back on __name__ and __path__",
|
1007 |
+
stacklevel=3,
|
1008 |
+
)
|
1009 |
+
package = self.f_globals["__name__"]
|
1010 |
+
if "__path__" not in self.f_globals:
|
1011 |
+
package = package.rpartition(".")[0]
|
1012 |
+
return package
|
1013 |
+
|
1014 |
+
def IMPORT_NAME(self, inst):
|
1015 |
+
level, fromlist = self.popn(2)
|
1016 |
+
level = level.as_python_constant()
|
1017 |
+
fromlist = fromlist.as_python_constant()
|
1018 |
+
module_name = inst.argval
|
1019 |
+
|
1020 |
+
# Are we replaying? if so, load recorded module
|
1021 |
+
recorded_name = (
|
1022 |
+
f"{ExecutionRecorder.LOCAL_MOD_PREFIX}_{level}_{fromlist}_{module_name}"
|
1023 |
+
)
|
1024 |
+
if recorded_name in self.f_globals:
|
1025 |
+
value = self.f_globals[recorded_name]
|
1026 |
+
source = GlobalSource(recorded_name)
|
1027 |
+
else:
|
1028 |
+
value = __import__(
|
1029 |
+
module_name,
|
1030 |
+
fromlist=fromlist,
|
1031 |
+
level=level,
|
1032 |
+
globals=self.f_globals,
|
1033 |
+
)
|
1034 |
+
|
1035 |
+
if level != 0:
|
1036 |
+
pkg = self.calc_package()
|
1037 |
+
module_name = self.resolve_name(module_name, pkg, level)
|
1038 |
+
|
1039 |
+
# For __import__, when the name variable is of the form package.module,
|
1040 |
+
# normally, the top-level package (the name up till the first dot) is
|
1041 |
+
# returned, not the module named by module_name. However, when a
|
1042 |
+
# non-empty fromlist argument is given, the module named by name is
|
1043 |
+
# returned. Therefore, we set the source correctly here.
|
1044 |
+
if not fromlist:
|
1045 |
+
top_level_module_name = module_name.partition(".")[0]
|
1046 |
+
source = self.import_source(top_level_module_name)
|
1047 |
+
else:
|
1048 |
+
source = self.import_source(module_name)
|
1049 |
+
|
1050 |
+
if config.replay_record_enabled:
|
1051 |
+
self.exec_recorder.add_local_mod(recorded_name, value)
|
1052 |
+
|
1053 |
+
if istype(value, (types.ModuleType, DummyModule)):
|
1054 |
+
self.push(PythonModuleVariable(value, source=source))
|
1055 |
+
else:
|
1056 |
+
unimplemented(f"IMPORT_NAME {typestr(value)}")
|
1057 |
+
|
1058 |
+
def IMPORT_FROM(self, inst):
|
1059 |
+
self.DUP_TOP(inst)
|
1060 |
+
self.LOAD_ATTR(inst)
|
1061 |
+
|
1062 |
+
def load_builtin(self, inst):
|
1063 |
+
if inst.argval not in self.f_builtins:
|
1064 |
+
raise NameError(f"name '{inst.argval}' is not defined")
|
1065 |
+
val = self.f_builtins[inst.argval]
|
1066 |
+
|
1067 |
+
if callable(val):
|
1068 |
+
self.push(VariableBuilder(self, GlobalSource(inst.argval))(val))
|
1069 |
+
else:
|
1070 |
+
assert is_builtin_constant(val)
|
1071 |
+
self.push(ConstantVariable.create(value=val))
|
1072 |
+
|
1073 |
+
def jump(self, inst):
|
1074 |
+
self.instruction_pointer = self.indexof[inst.target]
|
1075 |
+
|
1076 |
+
JUMP_FORWARD = jump
|
1077 |
+
JUMP_ABSOLUTE = jump
|
1078 |
+
|
1079 |
+
POP_JUMP_IF_FALSE = generic_jump(operator.not_, False)
|
1080 |
+
POP_JUMP_IF_TRUE = generic_jump(operator.truth, False)
|
1081 |
+
JUMP_IF_FALSE_OR_POP = generic_jump(operator.not_, True)
|
1082 |
+
JUMP_IF_TRUE_OR_POP = generic_jump(operator.truth, True)
|
1083 |
+
|
1084 |
+
def SETUP_LOOP(self, inst):
|
1085 |
+
# only exists in python<=3.7
|
1086 |
+
self.block_stack.append(BlockStackEntry(inst.target))
|
1087 |
+
|
1088 |
+
def SETUP_EXCEPT(self, inst):
|
1089 |
+
# only exists in python<=3.7
|
1090 |
+
self.block_stack.append(BlockStackEntry(inst.target))
|
1091 |
+
|
1092 |
+
def POP_BLOCK(self, inst):
|
1093 |
+
self.block_stack.pop()
|
1094 |
+
|
1095 |
+
def SETUP_WITH(self, inst):
|
1096 |
+
self.setup_or_before_with(inst)
|
1097 |
+
|
1098 |
+
def SETUP_FINALLY(self, inst):
|
1099 |
+
self.block_stack.append(BlockStackEntry(inst.target))
|
1100 |
+
|
1101 |
+
def BEGIN_FINALLY(self, inst):
|
1102 |
+
self.push(None)
|
1103 |
+
|
1104 |
+
def WITH_CLEANUP_START(self, inst):
|
1105 |
+
exit, exc = self.popn(2)
|
1106 |
+
assert exc is None
|
1107 |
+
self.push(exc)
|
1108 |
+
self.push(exit.call_function(self, [ConstantVariable.create(None)] * 3, {}))
|
1109 |
+
|
1110 |
+
def WITH_CLEANUP_FINISH(self, inst):
|
1111 |
+
self.popn(2)
|
1112 |
+
self.push(None)
|
1113 |
+
|
1114 |
+
def CALL_FINALLY(self, inst):
|
1115 |
+
"""
|
1116 |
+
pushes the address of the next instruction onto the stack and increments
|
1117 |
+
bytecode counter by delta
|
1118 |
+
"""
|
1119 |
+
# Python 3.8 only
|
1120 |
+
assert self.next_instruction is not None
|
1121 |
+
addr = self.indexof[self.next_instruction]
|
1122 |
+
self.push(ConstantVariable.create(addr))
|
1123 |
+
self.instruction_pointer = self.indexof[inst.target]
|
1124 |
+
|
1125 |
+
def END_FINALLY(self, inst):
|
1126 |
+
# Python 3.8 only
|
1127 |
+
# https://docs.python.org/3.8/library/dis.html#opcode-END_FINALLY
|
1128 |
+
tos = self.pop()
|
1129 |
+
if isinstance(tos, ConstantVariable):
|
1130 |
+
self.instruction_pointer = tos.as_python_constant()
|
1131 |
+
else:
|
1132 |
+
pass
|
1133 |
+
|
1134 |
+
def POP_FINALLY(self, inst):
|
1135 |
+
# Python 3.8 only
|
1136 |
+
preserve_tos = inst.argval
|
1137 |
+
if preserve_tos:
|
1138 |
+
tos = self.pop()
|
1139 |
+
_ = self.pop()
|
1140 |
+
if preserve_tos:
|
1141 |
+
self.push(tos) # type: ignore[possibly-undefined]
|
1142 |
+
|
1143 |
+
def FOR_ITER(self, inst):
|
1144 |
+
it = self.pop().realize()
|
1145 |
+
if isinstance(it, (variables.ListIteratorVariable, variables.IteratorVariable)):
|
1146 |
+
try:
|
1147 |
+
val, next_iter = it.next_variables(self)
|
1148 |
+
self.push(next_iter)
|
1149 |
+
self.push(val)
|
1150 |
+
except StopIteration:
|
1151 |
+
self.jump(inst)
|
1152 |
+
else:
|
1153 |
+
unimplemented(f"FOR_ITER {typestr(it)}")
|
1154 |
+
|
1155 |
+
def COMPARE_OP(self, inst):
|
1156 |
+
left, right = self.popn(2)
|
1157 |
+
op = inst.argval
|
1158 |
+
supported_any = dict(
|
1159 |
+
itertools.chain(
|
1160 |
+
supported_tensor_comparison_ops.items(),
|
1161 |
+
supported_const_comparison_ops.items(),
|
1162 |
+
)
|
1163 |
+
)
|
1164 |
+
if (
|
1165 |
+
isinstance(
|
1166 |
+
left,
|
1167 |
+
(
|
1168 |
+
TensorVariable,
|
1169 |
+
SymNodeVariable,
|
1170 |
+
NNModuleVariable,
|
1171 |
+
BaseListVariable,
|
1172 |
+
UserDefinedVariable,
|
1173 |
+
BaseUserFunctionVariable,
|
1174 |
+
ConstDictVariable,
|
1175 |
+
),
|
1176 |
+
)
|
1177 |
+
and isinstance(right, ConstantVariable)
|
1178 |
+
and right.value is None
|
1179 |
+
and op in supported_const_comparison_ops
|
1180 |
+
):
|
1181 |
+
# <non-None> is None
|
1182 |
+
self.push(
|
1183 |
+
ConstantVariable.create(
|
1184 |
+
supported_const_comparison_ops[op](object(), right.value)
|
1185 |
+
)
|
1186 |
+
)
|
1187 |
+
|
1188 |
+
elif (
|
1189 |
+
left.is_python_constant()
|
1190 |
+
and right.is_python_constant()
|
1191 |
+
and op in supported_any
|
1192 |
+
):
|
1193 |
+
# constant fold
|
1194 |
+
self.push(
|
1195 |
+
ConstantVariable.create(
|
1196 |
+
supported_any[op](
|
1197 |
+
left.as_python_constant(), right.as_python_constant()
|
1198 |
+
),
|
1199 |
+
)
|
1200 |
+
)
|
1201 |
+
elif op in ("in", "not in"):
|
1202 |
+
self.push(right.call_method(self, "__contains__", [left], {}))
|
1203 |
+
if op == "not in":
|
1204 |
+
self.UNARY_NOT(inst)
|
1205 |
+
else:
|
1206 |
+
self.push(
|
1207 |
+
BuiltinVariable(supported_any[op]).call_function(
|
1208 |
+
self, [left, right], {}
|
1209 |
+
)
|
1210 |
+
)
|
1211 |
+
|
1212 |
+
def GET_ITER(self, inst):
|
1213 |
+
self.call_function(BuiltinVariable(iter), [self.pop()], {})
|
1214 |
+
|
1215 |
+
@break_graph_if_unsupported(push=1)
|
1216 |
+
def CALL_FUNCTION(self, inst):
|
1217 |
+
args = self.popn(inst.argval)
|
1218 |
+
fn = self.pop()
|
1219 |
+
self.call_function(fn, args, {})
|
1220 |
+
|
1221 |
+
@break_graph_if_unsupported(push=1)
|
1222 |
+
def CALL_FUNCTION_EX(self, inst):
|
1223 |
+
kwargsvars: VariableTracker
|
1224 |
+
if inst.argval == 0:
|
1225 |
+
kwargsvars = ConstDictVariable({})
|
1226 |
+
argsvars = self.pop()
|
1227 |
+
elif inst.argval == 1:
|
1228 |
+
kwargsvars = self.pop()
|
1229 |
+
argsvars = self.pop()
|
1230 |
+
else:
|
1231 |
+
unimplemented("CALL_FUNCTION_EX")
|
1232 |
+
fn = self.pop()
|
1233 |
+
if sys.version_info >= (3, 11):
|
1234 |
+
null = self.pop()
|
1235 |
+
assert isinstance(null, NullVariable)
|
1236 |
+
|
1237 |
+
if (
|
1238 |
+
isinstance(fn, GetAttrVariable)
|
1239 |
+
and isinstance(fn.obj, TensorVariable)
|
1240 |
+
and fn.name == "view"
|
1241 |
+
and isinstance(argsvars, (ConstantVariable, TensorVariable))
|
1242 |
+
):
|
1243 |
+
# Hack to handle special case in some bert models. Converts
|
1244 |
+
# x.view(*shape) into x.view(shape), which is correct for view()
|
1245 |
+
# but not generally. See test_transpose_for_scores().
|
1246 |
+
argsvars = TupleVariable([argsvars])
|
1247 |
+
|
1248 |
+
if not isinstance(
|
1249 |
+
argsvars, BaseListVariable
|
1250 |
+
) and argsvars.has_unpack_var_sequence(self):
|
1251 |
+
argsvars = TupleVariable(argsvars.unpack_var_sequence(self))
|
1252 |
+
|
1253 |
+
if not isinstance(argsvars, BaseListVariable) or not isinstance(
|
1254 |
+
kwargsvars, ConstDictVariable
|
1255 |
+
):
|
1256 |
+
unimplemented(f"non-static call {typestr(argsvars)} {typestr(kwargsvars)}")
|
1257 |
+
|
1258 |
+
# Map to a dictionary of str -> VariableTracker
|
1259 |
+
kwargsvars = kwargsvars.keys_as_python_constant()
|
1260 |
+
self.call_function(fn, argsvars.items, kwargsvars)
|
1261 |
+
|
1262 |
+
@break_graph_if_unsupported(push=1)
|
1263 |
+
def CALL_FUNCTION_KW(self, inst):
|
1264 |
+
argnames = self.pop()
|
1265 |
+
args = self.popn(inst.argval)
|
1266 |
+
fn = self.pop()
|
1267 |
+
assert isinstance(argnames, TupleVariable) and argnames.is_python_constant()
|
1268 |
+
argnames = argnames.as_python_constant()
|
1269 |
+
args, kwargs_list = args[: -len(argnames)], args[-len(argnames) :]
|
1270 |
+
kwargs = dict(zip(argnames, kwargs_list))
|
1271 |
+
assert len(kwargs) == len(argnames)
|
1272 |
+
self.call_function(fn, args, kwargs)
|
1273 |
+
|
1274 |
+
def LOAD_METHOD_SUPER(self, inst):
|
1275 |
+
self.CALL_FUNCTION(dataclasses.replace(inst, argval=2))
|
1276 |
+
arg = inst.argval[0]
|
1277 |
+
argval = self.code_options["co_names"][arg]
|
1278 |
+
if sys.version_info < (3, 11):
|
1279 |
+
self.LOAD_ATTR(dataclasses.replace(inst, argval=argval))
|
1280 |
+
else:
|
1281 |
+
self.LOAD_METHOD(dataclasses.replace(inst, argval=argval))
|
1282 |
+
|
1283 |
+
def LOAD_ATTR_SUPER(self, inst):
|
1284 |
+
self.CALL_FUNCTION(dataclasses.replace(inst, argval=2))
|
1285 |
+
arg = inst.argval[0]
|
1286 |
+
argval = self.code_options["co_names"][arg]
|
1287 |
+
self.LOAD_ATTR(dataclasses.replace(inst, argval=argval))
|
1288 |
+
|
1289 |
+
def LOAD_METHOD(self, inst):
|
1290 |
+
self.LOAD_ATTR(inst)
|
1291 |
+
obj = self.pop()
|
1292 |
+
if sys.version_info >= (3, 11):
|
1293 |
+
# always follow the NULL + fn convention, since if obj
|
1294 |
+
# is actually a method, self is already bound to it, so it
|
1295 |
+
# doesn't need to be passed in as an arg.
|
1296 |
+
self.PUSH_NULL(inst)
|
1297 |
+
self.push(obj)
|
1298 |
+
else:
|
1299 |
+
self.push(obj)
|
1300 |
+
self.push(None)
|
1301 |
+
|
1302 |
+
def CALL_METHOD(self, inst):
|
1303 |
+
args = self.popn(inst.argval)
|
1304 |
+
dummy = self.pop()
|
1305 |
+
assert dummy is None
|
1306 |
+
fn = self.pop()
|
1307 |
+
self.call_function(fn, args, {})
|
1308 |
+
|
1309 |
+
def LOAD_ATTR(self, inst):
|
1310 |
+
obj = self.pop()
|
1311 |
+
result = BuiltinVariable(getattr).call_function(
|
1312 |
+
self, [obj, ConstantVariable.create(inst.argval)], {}
|
1313 |
+
)
|
1314 |
+
self.push(result)
|
1315 |
+
|
1316 |
+
def STORE_ATTR(self, inst):
|
1317 |
+
speculation = self.speculate()
|
1318 |
+
if speculation.failed:
|
1319 |
+
return self.store_attr_graph_break(inst)
|
1320 |
+
val, obj = self.popn(2)
|
1321 |
+
|
1322 |
+
if isinstance(obj, NNModuleVariable):
|
1323 |
+
# We don't allow side effects during export
|
1324 |
+
# https://github.com/pytorch/torchdynamo/issues/1475
|
1325 |
+
assert (
|
1326 |
+
not self.export
|
1327 |
+
), f"Mutating module attribute {inst.argval} during export."
|
1328 |
+
|
1329 |
+
try:
|
1330 |
+
BuiltinVariable(setattr).call_function(
|
1331 |
+
self, [obj, ConstantVariable.create(inst.argval), val], {}
|
1332 |
+
)
|
1333 |
+
return
|
1334 |
+
except Unsupported as e:
|
1335 |
+
if not self.should_compile_partial_graph():
|
1336 |
+
raise
|
1337 |
+
log.debug("STORE_ATTR triggered compile", exc_info=True)
|
1338 |
+
e.remove_from_stats()
|
1339 |
+
e.add_to_stats("graph_break")
|
1340 |
+
speculation.fail_and_restart_analysis()
|
1341 |
+
|
1342 |
+
def store_attr_graph_break(self, inst):
|
1343 |
+
self.output.compile_subgraph(
|
1344 |
+
self, reason=GraphCompileReason("store_attr", [self.frame_summary()])
|
1345 |
+
)
|
1346 |
+
self.output.add_output_instructions([copy.copy(inst)])
|
1347 |
+
self.popn(2)
|
1348 |
+
self.output.add_output_instructions(
|
1349 |
+
self.create_call_resume_at(self.next_instruction)
|
1350 |
+
)
|
1351 |
+
|
1352 |
+
def DELETE_ATTR(self, inst):
|
1353 |
+
obj = self.pop()
|
1354 |
+
BuiltinVariable(delattr).call_function(
|
1355 |
+
self, [obj, ConstantVariable.create(inst.argval)], {}
|
1356 |
+
)
|
1357 |
+
|
1358 |
+
def create_call_resume_at(self, offset):
|
1359 |
+
raise AssertionError(
|
1360 |
+
f"create_call_resume_at not overridden by subclass {type(self)}"
|
1361 |
+
)
|
1362 |
+
|
1363 |
+
def should_compile_partial_graph(self) -> bool:
|
1364 |
+
raise AssertionError(
|
1365 |
+
f"should_compile_partial_graph not overridden by subclass {type(self)}"
|
1366 |
+
)
|
1367 |
+
|
1368 |
+
@break_graph_if_unsupported(push=0)
|
1369 |
+
def STORE_SUBSCR(self, inst):
|
1370 |
+
val, obj, key = self.popn(3)
|
1371 |
+
result = obj.call_method(self, "__setitem__", [key, val], {})
|
1372 |
+
|
1373 |
+
def BUILD_TUPLE(self, inst):
|
1374 |
+
items = self.popn(inst.argval)
|
1375 |
+
self.push(TupleVariable(items))
|
1376 |
+
|
1377 |
+
def BUILD_SLICE(self, inst):
|
1378 |
+
items = self.popn(inst.argval)
|
1379 |
+
self.push(SliceVariable(items))
|
1380 |
+
|
1381 |
+
def BUILD_LIST(self, inst):
|
1382 |
+
items = self.popn(inst.argval)
|
1383 |
+
self.push(ListVariable(items, mutable_local=MutableLocal()))
|
1384 |
+
|
1385 |
+
def BUILD_SET(self, inst):
|
1386 |
+
if config.inject_BUILD_SET_unimplemented_TESTING_ONLY:
|
1387 |
+
unimplemented("missing: BUILD_SET")
|
1388 |
+
items = self.popn(inst.argval)
|
1389 |
+
new_set = SetVariable(items, mutable_local=MutableLocal())
|
1390 |
+
self.push(new_set)
|
1391 |
+
|
1392 |
+
def BUILD_LIST_UNPACK(self, inst, cls=ListVariable):
|
1393 |
+
seqs = self.popn(inst.argval)
|
1394 |
+
items = list()
|
1395 |
+
for seq in seqs:
|
1396 |
+
try:
|
1397 |
+
items.extend(seq.unpack_var_sequence(self))
|
1398 |
+
except NotImplementedError:
|
1399 |
+
unimplemented(f"BUILD_LIST_UNPACK {seq}")
|
1400 |
+
self.push(cls(items, mutable_local=MutableLocal()))
|
1401 |
+
|
1402 |
+
def BUILD_TUPLE_UNPACK(self, inst):
|
1403 |
+
self.BUILD_LIST_UNPACK(inst, cls=TupleVariable)
|
1404 |
+
|
1405 |
+
BUILD_TUPLE_UNPACK_WITH_CALL = BUILD_TUPLE_UNPACK
|
1406 |
+
|
1407 |
+
def BUILD_MAP(self, inst):
|
1408 |
+
items = self.popn(inst.argval * 2)
|
1409 |
+
d = dict(zip(items[::2], items[1::2]))
|
1410 |
+
self.push(ConstDictVariable(d, mutable_local=MutableLocal()))
|
1411 |
+
|
1412 |
+
def BUILD_MAP_UNPACK(self, inst):
|
1413 |
+
items = self.popn(inst.argval)
|
1414 |
+
# ensure everything is a dict
|
1415 |
+
items = [BuiltinVariable(dict).call_function(self, [x], {}) for x in items]
|
1416 |
+
result = dict()
|
1417 |
+
for x in items:
|
1418 |
+
assert isinstance(x, ConstDictVariable)
|
1419 |
+
result.update(x.items)
|
1420 |
+
self.push(
|
1421 |
+
ConstDictVariable(
|
1422 |
+
result,
|
1423 |
+
mutable_local=MutableLocal(),
|
1424 |
+
)
|
1425 |
+
)
|
1426 |
+
|
1427 |
+
BUILD_MAP_UNPACK_WITH_CALL = BUILD_MAP_UNPACK
|
1428 |
+
|
1429 |
+
def BUILD_CONST_KEY_MAP(self, inst):
|
1430 |
+
keys = self.pop()
|
1431 |
+
values = self.popn(inst.argval)
|
1432 |
+
assert isinstance(keys, TupleVariable)
|
1433 |
+
assert keys.is_python_constant()
|
1434 |
+
|
1435 |
+
keys = keys.unpack_var_sequence(self)
|
1436 |
+
assert len(keys) == len(values)
|
1437 |
+
|
1438 |
+
self.push(
|
1439 |
+
ConstDictVariable(
|
1440 |
+
dict(zip(keys, values)),
|
1441 |
+
mutable_local=MutableLocal(),
|
1442 |
+
)
|
1443 |
+
)
|
1444 |
+
|
1445 |
+
def MAP_ADD(self, inst):
|
1446 |
+
k, v = self.popn(2)
|
1447 |
+
assert inst.argval > 0
|
1448 |
+
obj = self.stack[-inst.arg].realize()
|
1449 |
+
assert isinstance(obj, ConstDictVariable)
|
1450 |
+
obj.call_method(self, "__setitem__", (k, v), {}) # type: ignore[arg-type]
|
1451 |
+
|
1452 |
+
def SET_ADD(self, inst):
|
1453 |
+
v = self.pop()
|
1454 |
+
assert inst.argval > 0
|
1455 |
+
obj = self.stack[-inst.arg]
|
1456 |
+
assert isinstance(obj, SetVariable)
|
1457 |
+
assert obj.mutable_local
|
1458 |
+
return obj.call_method(self, "add", [v], {})
|
1459 |
+
|
1460 |
+
def LIST_APPEND(self, inst):
|
1461 |
+
v = self.pop()
|
1462 |
+
assert inst.argval > 0
|
1463 |
+
obj = self.stack[-inst.arg].realize()
|
1464 |
+
assert isinstance(obj, ListVariable)
|
1465 |
+
assert obj.mutable_local
|
1466 |
+
self.output.side_effects.mutation(obj)
|
1467 |
+
obj.items.append(v)
|
1468 |
+
|
1469 |
+
def MAKE_FUNCTION(self, inst):
|
1470 |
+
flags = inst.arg
|
1471 |
+
old_stack = list(self.stack)
|
1472 |
+
if sys.version_info < (3, 11):
|
1473 |
+
fn_name = self.pop()
|
1474 |
+
code = self.pop()
|
1475 |
+
if sys.version_info >= (3, 11):
|
1476 |
+
# MAKE_FUNCTION behavior actually changed in 3.11, see
|
1477 |
+
# https://github.com/python/cpython/pull/93189/
|
1478 |
+
assert hasattr(code.value, "co_qualname") # type: ignore[attr-defined]
|
1479 |
+
fn_name = ConstantVariable.create(value=code.value.co_qualname) # type: ignore[attr-defined]
|
1480 |
+
defaults = None
|
1481 |
+
closure = None
|
1482 |
+
annotations = None
|
1483 |
+
kwdefaults = None
|
1484 |
+
|
1485 |
+
if flags & 0x08:
|
1486 |
+
closure = self.pop()
|
1487 |
+
if flags & 0x04:
|
1488 |
+
annotations = self.pop()
|
1489 |
+
if flags & 0x02:
|
1490 |
+
kwdefaults = self.pop()
|
1491 |
+
if flags & 0x01:
|
1492 |
+
defaults = self.pop()
|
1493 |
+
|
1494 |
+
self.push(
|
1495 |
+
NestedUserFunctionVariable(
|
1496 |
+
fn_name,
|
1497 |
+
code,
|
1498 |
+
self.f_globals,
|
1499 |
+
defaults,
|
1500 |
+
kwdefaults,
|
1501 |
+
annotations,
|
1502 |
+
closure,
|
1503 |
+
closure_scope=self,
|
1504 |
+
)
|
1505 |
+
)
|
1506 |
+
|
1507 |
+
def UNPACK_SEQUENCE(self, inst):
|
1508 |
+
seq = self.pop()
|
1509 |
+
if isinstance(seq, TensorVariable):
|
1510 |
+
val = seq.unpack_var_sequence(self, idxes=range(inst.argval))
|
1511 |
+
elif isinstance(seq, GetAttrVariable) and isinstance(seq.obj, TensorVariable):
|
1512 |
+
# x, y = a.shape
|
1513 |
+
proxy = getattr(seq.obj.as_proxy(), seq.name)
|
1514 |
+
val = [wrap_fx_proxy(self, proxy[i]) for i in range(inst.argval)]
|
1515 |
+
elif seq.has_unpack_var_sequence(self):
|
1516 |
+
val = seq.unpack_var_sequence(self)
|
1517 |
+
else:
|
1518 |
+
unimplemented(f"UNPACK_SEQUENCE {seq}")
|
1519 |
+
if len(val) != inst.argval:
|
1520 |
+
unimplemented("UNPACK_SEQUENCE length mismatch")
|
1521 |
+
for i in reversed(val):
|
1522 |
+
self.push(i)
|
1523 |
+
|
1524 |
+
def UNPACK_EX(self, inst):
|
1525 |
+
assert 0 <= inst.argval <= 0xFFFF
|
1526 |
+
prefix = inst.argval & 0xFF # low byte
|
1527 |
+
suffix = inst.argval >> 8 # high byte
|
1528 |
+
seq = self.pop()
|
1529 |
+
if seq.has_unpack_var_sequence(self):
|
1530 |
+
vals = list(seq.unpack_var_sequence(self))
|
1531 |
+
assert len(vals) >= prefix + suffix
|
1532 |
+
vals_prefix = vals[:prefix]
|
1533 |
+
vals_list = vals[prefix : len(vals) - suffix]
|
1534 |
+
vals_suffix = vals[len(vals) - suffix :]
|
1535 |
+
for item in reversed(vals_suffix):
|
1536 |
+
self.push(item)
|
1537 |
+
self.push(TupleVariable(vals_list))
|
1538 |
+
for item in reversed(vals_prefix):
|
1539 |
+
self.push(item)
|
1540 |
+
else:
|
1541 |
+
unimplemented(f"UNPACK_EX {seq}")
|
1542 |
+
|
1543 |
+
def NOP(self, inst):
|
1544 |
+
pass
|
1545 |
+
|
1546 |
+
def POP_TOP(self, inst):
|
1547 |
+
self.pop()
|
1548 |
+
|
1549 |
+
def ROT_TWO(self, inst):
|
1550 |
+
a = self.pop()
|
1551 |
+
b = self.pop()
|
1552 |
+
self.push(a)
|
1553 |
+
self.push(b)
|
1554 |
+
|
1555 |
+
def ROT_THREE(self, inst):
|
1556 |
+
a = self.pop()
|
1557 |
+
b = self.pop()
|
1558 |
+
c = self.pop()
|
1559 |
+
self.push(a)
|
1560 |
+
self.push(c)
|
1561 |
+
self.push(b)
|
1562 |
+
|
1563 |
+
def ROT_FOUR(self, inst):
|
1564 |
+
a = self.pop()
|
1565 |
+
b = self.pop()
|
1566 |
+
c = self.pop()
|
1567 |
+
d = self.pop()
|
1568 |
+
self.push(a)
|
1569 |
+
self.push(d)
|
1570 |
+
self.push(c)
|
1571 |
+
self.push(b)
|
1572 |
+
|
1573 |
+
def DUP_TOP(self, inst):
|
1574 |
+
a = self.pop()
|
1575 |
+
self.push(a)
|
1576 |
+
self.push(a)
|
1577 |
+
|
1578 |
+
def DUP_TOP_TWO(self, inst):
|
1579 |
+
a = self.pop()
|
1580 |
+
b = self.pop()
|
1581 |
+
self.push(b)
|
1582 |
+
self.push(a)
|
1583 |
+
self.push(b)
|
1584 |
+
self.push(a)
|
1585 |
+
|
1586 |
+
def FORMAT_VALUE(self, inst):
|
1587 |
+
flags = inst.arg
|
1588 |
+
if (flags & 0x04) == 0x04:
|
1589 |
+
fmt_spec = self.pop()
|
1590 |
+
else:
|
1591 |
+
fmt_spec = ConstantVariable.create("")
|
1592 |
+
|
1593 |
+
value = self.pop()
|
1594 |
+
if isinstance(value, SymNodeVariable):
|
1595 |
+
value = ConstantVariable.create(str(value.sym_num))
|
1596 |
+
if (flags & 0x03) == 0x01:
|
1597 |
+
value = BuiltinVariable(str).call_function(self, [value], {})
|
1598 |
+
elif (flags & 0x03) == 0x02:
|
1599 |
+
value = BuiltinVariable(repr).call_function(self, [value], {})
|
1600 |
+
elif (flags & 0x03) == 0x03:
|
1601 |
+
value = BuiltinVariable(ascii).call_function(self, [value], {})
|
1602 |
+
|
1603 |
+
fmt_var = ConstantVariable.create("{:" + fmt_spec.as_python_constant() + "}")
|
1604 |
+
|
1605 |
+
self.call_function(BuiltinVariable(str.format), [fmt_var, value], {})
|
1606 |
+
|
1607 |
+
def BUILD_STRING(self, inst):
|
1608 |
+
format_string_parts: List[str] = []
|
1609 |
+
args: List[VariableTracker] = []
|
1610 |
+
kwargs: Dict[str, VariableTracker] = {}
|
1611 |
+
for part in self.popn(inst.arg):
|
1612 |
+
if isinstance(part, ConstantVariable):
|
1613 |
+
format_string_parts.append("{}")
|
1614 |
+
args.append(part)
|
1615 |
+
elif isinstance(part, variables.StringFormatVariable):
|
1616 |
+
format_string_parts.append(part.format_string)
|
1617 |
+
args.extend(part.sym_args)
|
1618 |
+
if set(kwargs.keys()) & set(part.sym_kwargs.keys()):
|
1619 |
+
unimplemented(
|
1620 |
+
f"BUILD_STRING key conflict {kwargs} & {part.sym_kwargs}"
|
1621 |
+
)
|
1622 |
+
kwargs.update(part.sym_kwargs)
|
1623 |
+
else:
|
1624 |
+
unimplemented(f"BUILD_STRING {part}")
|
1625 |
+
self.push(
|
1626 |
+
variables.StringFormatVariable.create(
|
1627 |
+
"".join(format_string_parts), args, kwargs
|
1628 |
+
)
|
1629 |
+
)
|
1630 |
+
|
1631 |
+
def IS_OP(self, inst):
|
1632 |
+
assert inst.argval == 0 or inst.argval == 1
|
1633 |
+
if inst.argval == 0:
|
1634 |
+
new_argval = "is"
|
1635 |
+
else:
|
1636 |
+
new_argval = "is not"
|
1637 |
+
new_inst = create_instruction("COMPARE_OP", argval=new_argval)
|
1638 |
+
self.COMPARE_OP(new_inst)
|
1639 |
+
|
1640 |
+
def CONTAINS_OP(self, inst):
|
1641 |
+
assert inst.argval == 0 or inst.argval == 1
|
1642 |
+
left, right = self.popn(2)
|
1643 |
+
op = inst.argval
|
1644 |
+
self.push(right.call_method(self, "__contains__", [left], {}))
|
1645 |
+
if op == 1:
|
1646 |
+
self.UNARY_NOT(inst)
|
1647 |
+
|
1648 |
+
def LIST_EXTEND(self, inst):
|
1649 |
+
v = self.pop()
|
1650 |
+
assert inst.argval > 0
|
1651 |
+
obj = self.stack[-inst.arg]
|
1652 |
+
assert isinstance(obj, ListVariable)
|
1653 |
+
assert obj.mutable_local
|
1654 |
+
obj.call_method(self, "extend", [v], {})
|
1655 |
+
|
1656 |
+
def LIST_TO_TUPLE(self, inst):
|
1657 |
+
self.push(BuiltinVariable(tuple).call_function(self, [self.pop()], {}))
|
1658 |
+
|
1659 |
+
def DICT_MERGE(self, inst):
|
1660 |
+
v = self.pop()
|
1661 |
+
assert inst.argval > 0
|
1662 |
+
obj = self.stack[-inst.arg].realize()
|
1663 |
+
assert isinstance(obj, ConstDictVariable)
|
1664 |
+
assert obj.mutable_local
|
1665 |
+
obj.call_method(self, "update", [v], {})
|
1666 |
+
|
1667 |
+
DICT_UPDATE = DICT_MERGE
|
1668 |
+
|
1669 |
+
def GEN_START(self, inst):
|
1670 |
+
self.pop()
|
1671 |
+
|
1672 |
+
def GET_LEN(self, inst):
|
1673 |
+
tos = self.stack[-1]
|
1674 |
+
if tos.is_python_constant():
|
1675 |
+
self.push(ConstantVariable.create(len(tos.as_python_constant())))
|
1676 |
+
else:
|
1677 |
+
self.push(tos.call_method(self, "__len__", [], {}))
|
1678 |
+
|
1679 |
+
def MATCH_MAPPING(self, inst):
|
1680 |
+
tos = self.stack[-1]
|
1681 |
+
assert isinstance(tos, ConstDictVariable)
|
1682 |
+
if isinstance(tos.items, collections.abc.Mapping):
|
1683 |
+
self.push(ConstantVariable.create(True))
|
1684 |
+
else:
|
1685 |
+
self.push(ConstantVariable.create(False))
|
1686 |
+
|
1687 |
+
def MATCH_SEQUENCE(self, inst):
|
1688 |
+
tos = self.stack[-1]
|
1689 |
+
assert tos.is_python_constant()
|
1690 |
+
tos_value = tos.as_python_constant()
|
1691 |
+
if isinstance(tos_value, collections.abc.Sequence) and not isinstance(
|
1692 |
+
tos_value, (str, bytes, bytearray)
|
1693 |
+
):
|
1694 |
+
self.push(ConstantVariable.create(True))
|
1695 |
+
else:
|
1696 |
+
self.push(ConstantVariable.create(False))
|
1697 |
+
|
1698 |
+
def MATCH_KEYS(self, inst):
|
1699 |
+
tos = self.stack[-1]
|
1700 |
+
tos1 = self.stack[-2]
|
1701 |
+
assert isinstance(tos1, ConstDictVariable)
|
1702 |
+
|
1703 |
+
if all(k in tos1 for k in tos): # type: ignore[attr-defined]
|
1704 |
+
self.push(TupleVariable([tos1.getitem_const(k) for k in tos])) # type: ignore[attr-defined]
|
1705 |
+
if sys.version_info < (3, 11):
|
1706 |
+
self.push(ConstantVariable.create(True))
|
1707 |
+
else:
|
1708 |
+
self.push(ConstantVariable.create(None))
|
1709 |
+
if sys.version_info < (3, 11):
|
1710 |
+
self.push(ConstantVariable.create(False))
|
1711 |
+
|
1712 |
+
def LOAD_ASSERTION_ERROR(self, inst):
|
1713 |
+
unimplemented("assert with non-string message")
|
1714 |
+
|
1715 |
+
UNARY_POSITIVE = stack_op(operator.pos)
|
1716 |
+
UNARY_NEGATIVE = stack_op(operator.neg)
|
1717 |
+
UNARY_NOT = stack_op(operator.not_)
|
1718 |
+
UNARY_INVERT = stack_op(operator.invert)
|
1719 |
+
|
1720 |
+
BINARY_POWER = stack_op(operator.pow)
|
1721 |
+
BINARY_MULTIPLY = stack_op(operator.mul)
|
1722 |
+
BINARY_MATRIX_MULTIPLY = stack_op(operator.matmul)
|
1723 |
+
BINARY_FLOOR_DIVIDE = stack_op(operator.floordiv)
|
1724 |
+
BINARY_TRUE_DIVIDE = stack_op(operator.truediv)
|
1725 |
+
BINARY_MODULO = stack_op(operator.mod)
|
1726 |
+
BINARY_REMAINDER = stack_op(operator.mod)
|
1727 |
+
BINARY_ADD = stack_op(operator.add)
|
1728 |
+
BINARY_SUBTRACT = stack_op(operator.sub)
|
1729 |
+
BINARY_SUBSCR = break_graph_if_unsupported(push=1)(stack_op(operator.getitem))
|
1730 |
+
BINARY_LSHIFT = stack_op(operator.lshift)
|
1731 |
+
BINARY_RSHIFT = stack_op(operator.rshift)
|
1732 |
+
BINARY_AND = stack_op(operator.and_)
|
1733 |
+
BINARY_OR = stack_op(operator.or_)
|
1734 |
+
BINARY_XOR = stack_op(operator.xor)
|
1735 |
+
|
1736 |
+
INPLACE_POWER = stack_op(operator.ipow)
|
1737 |
+
INPLACE_MULTIPLY = stack_op(operator.imul)
|
1738 |
+
INPLACE_MATRIX_MULTIPLY = stack_op(operator.imatmul)
|
1739 |
+
INPLACE_FLOOR_DIVIDE = stack_op(operator.ifloordiv)
|
1740 |
+
INPLACE_TRUE_DIVIDE = stack_op(operator.itruediv)
|
1741 |
+
INPLACE_MODULO = stack_op(operator.imod)
|
1742 |
+
INPLACE_REMAINDER = stack_op(operator.imod)
|
1743 |
+
INPLACE_ADD = stack_op(operator.iadd)
|
1744 |
+
INPLACE_SUBTRACT = stack_op(operator.isub)
|
1745 |
+
INPLACE_LSHIFT = stack_op(operator.ilshift)
|
1746 |
+
INPLACE_RSHIFT = stack_op(operator.irshift)
|
1747 |
+
INPLACE_AND = stack_op(operator.iand)
|
1748 |
+
INPLACE_XOR = stack_op(operator.ixor)
|
1749 |
+
INPLACE_OR = stack_op(operator.ior)
|
1750 |
+
|
1751 |
+
# 3.11 opcodes
|
1752 |
+
def RESUME(self, inst):
|
1753 |
+
if inst.arg == 0:
|
1754 |
+
self.append_prefix_inst(inst)
|
1755 |
+
self.accept_prefix_inst = False
|
1756 |
+
else:
|
1757 |
+
assert not self.accept_prefix_inst
|
1758 |
+
|
1759 |
+
def BINARY_OP(self, inst):
|
1760 |
+
if sys.version_info >= (3, 11):
|
1761 |
+
opname = dis._nb_ops[inst.arg][0][3:] # type: ignore[attr-defined]
|
1762 |
+
if opname.startswith("INPLACE"):
|
1763 |
+
return getattr(self, "INPLACE_" + opname[8:])(inst)
|
1764 |
+
return getattr(self, "BINARY_" + opname)(inst)
|
1765 |
+
else:
|
1766 |
+
unimplemented("BINARY_OP requires Python 3.11+")
|
1767 |
+
|
1768 |
+
def PRECALL(self, inst):
|
1769 |
+
pass
|
1770 |
+
|
1771 |
+
def KW_NAMES(self, inst):
|
1772 |
+
kw_names = self.code_options["co_consts"][inst.arg]
|
1773 |
+
assert isinstance(kw_names, tuple)
|
1774 |
+
for name in kw_names:
|
1775 |
+
assert isinstance(name, str)
|
1776 |
+
assert self.kw_names is None
|
1777 |
+
self.kw_names = ConstantVariable.create(value=kw_names) # type: ignore[assignment]
|
1778 |
+
|
1779 |
+
def PUSH_NULL(self, inst):
|
1780 |
+
self.push(NullVariable())
|
1781 |
+
|
1782 |
+
@break_graph_if_unsupported(push=1)
|
1783 |
+
def CALL(self, inst):
|
1784 |
+
# see https://docs.python.org/3.11/library/dis.html#opcode-CALL
|
1785 |
+
# for convention
|
1786 |
+
contents = self.popn(inst.arg + 2)
|
1787 |
+
if isinstance(contents[0], NullVariable):
|
1788 |
+
fn = contents[1]
|
1789 |
+
args = []
|
1790 |
+
else:
|
1791 |
+
fn = contents[0]
|
1792 |
+
args = [contents[1]]
|
1793 |
+
kw_names = self.kw_names.value if self.kw_names else ()
|
1794 |
+
if kw_names:
|
1795 |
+
args = args + contents[2 : -len(kw_names)]
|
1796 |
+
kwargs_list = contents[-len(kw_names) :]
|
1797 |
+
kwargs = dict(zip(kw_names, kwargs_list))
|
1798 |
+
assert len(kwargs) == len(kw_names)
|
1799 |
+
else:
|
1800 |
+
args = args + contents[2:]
|
1801 |
+
kwargs = {}
|
1802 |
+
self.call_function(fn, args, kwargs)
|
1803 |
+
self.kw_names = None
|
1804 |
+
|
1805 |
+
def COPY(self, inst):
|
1806 |
+
self.push(self.stack[-inst.arg])
|
1807 |
+
|
1808 |
+
def SWAP(self, inst):
|
1809 |
+
self.stack[-1], self.stack[-inst.arg] = self.stack[-inst.arg], self.stack[-1]
|
1810 |
+
|
1811 |
+
JUMP_BACKWARD = jump
|
1812 |
+
JUMP_BACKWARD_NO_INTERRUPT = jump
|
1813 |
+
|
1814 |
+
POP_JUMP_FORWARD_IF_TRUE = generic_jump(operator.truth, False)
|
1815 |
+
POP_JUMP_BACKWARD_IF_TRUE = generic_jump(operator.truth, False)
|
1816 |
+
POP_JUMP_FORWARD_IF_FALSE = generic_jump(operator.not_, False)
|
1817 |
+
POP_JUMP_BACKWARD_IF_FALSE = generic_jump(operator.not_, False)
|
1818 |
+
|
1819 |
+
def CACHE(self, inst):
|
1820 |
+
pass
|
1821 |
+
|
1822 |
+
def BEFORE_WITH(self, inst):
|
1823 |
+
self.setup_or_before_with(inst)
|
1824 |
+
|
1825 |
+
def setup_or_before_with(self, inst):
|
1826 |
+
ctx = self.pop()
|
1827 |
+
if not isinstance(ctx, ContextWrappingVariable):
|
1828 |
+
unimplemented(f"{inst.opname} {ctx}")
|
1829 |
+
|
1830 |
+
if isinstance(ctx, GenericContextWrappingVariable):
|
1831 |
+
self.generic_context_manager_depth += 1
|
1832 |
+
|
1833 |
+
exit = WithExitFunctionVariable(
|
1834 |
+
ctx,
|
1835 |
+
inst.target,
|
1836 |
+
)
|
1837 |
+
if sys.version_info >= (3, 11):
|
1838 |
+
# see create_call_resume_at for block stack details
|
1839 |
+
assert self.next_instruction
|
1840 |
+
assert self.next_instruction.exn_tab_entry
|
1841 |
+
target = self.next_instruction.exn_tab_entry.target
|
1842 |
+
else:
|
1843 |
+
target = inst.target
|
1844 |
+
if isinstance(self, InstructionTranslator):
|
1845 |
+
self.block_stack.append(BlockStackEntry(target, len(self.stack), ctx))
|
1846 |
+
else:
|
1847 |
+
self.block_stack.append(BlockStackEntry(target))
|
1848 |
+
|
1849 |
+
self.push(exit)
|
1850 |
+
self.push(ctx.enter(self))
|
1851 |
+
|
1852 |
+
def append_prefix_inst(self, inst):
|
1853 |
+
assert self.accept_prefix_inst
|
1854 |
+
self.prefix_insts.append(inst)
|
1855 |
+
|
1856 |
+
def MAKE_CELL(self, inst):
|
1857 |
+
self.append_prefix_inst(inst)
|
1858 |
+
|
1859 |
+
def COPY_FREE_VARS(self, inst):
|
1860 |
+
self.append_prefix_inst(inst)
|
1861 |
+
|
1862 |
+
def RETURN_GENERATOR(self, inst):
|
1863 |
+
self.append_prefix_inst(inst)
|
1864 |
+
|
1865 |
+
def copy_graphstate(self) -> InstructionTranslatorGraphState:
|
1866 |
+
"""Create a checkpoint of the current state by copying everything"""
|
1867 |
+
return InstructionTranslatorGraphState(
|
1868 |
+
self.output.copy_graphstate(),
|
1869 |
+
dict(self.symbolic_locals),
|
1870 |
+
list(self.stack),
|
1871 |
+
list(self.block_stack),
|
1872 |
+
self.instruction_pointer,
|
1873 |
+
self.current_instruction,
|
1874 |
+
self.next_instruction,
|
1875 |
+
self.lineno,
|
1876 |
+
)
|
1877 |
+
|
1878 |
+
def restore_graphstate(self, state: InstructionTranslatorGraphState):
|
1879 |
+
"""Restore a checkpoint created by self.copy_graphstate()"""
|
1880 |
+
(
|
1881 |
+
output_state,
|
1882 |
+
self.symbolic_locals,
|
1883 |
+
self.stack,
|
1884 |
+
self.block_stack,
|
1885 |
+
self.instruction_pointer,
|
1886 |
+
self.current_instruction,
|
1887 |
+
self.next_instruction,
|
1888 |
+
self.lineno,
|
1889 |
+
) = state
|
1890 |
+
self.output.restore_graphstate(output_state)
|
1891 |
+
|
1892 |
+
def is_non_empty_graph(self):
|
1893 |
+
if self.output.count_calls() > 1:
|
1894 |
+
# perf optimization only
|
1895 |
+
self.is_non_empty_graph = lambda: True # type: ignore[method-assign]
|
1896 |
+
return True
|
1897 |
+
return False
|
1898 |
+
|
1899 |
+
def format_frame_summary(self, additional_stack_frames=None):
|
1900 |
+
if additional_stack_frames is None:
|
1901 |
+
additional_stack_frames = []
|
1902 |
+
return "".join(
|
1903 |
+
traceback.format_list(
|
1904 |
+
[self.frame_summary()] + list(reversed(additional_stack_frames))
|
1905 |
+
)
|
1906 |
+
)
|
1907 |
+
|
1908 |
+
def frame_summary(self):
|
1909 |
+
return traceback.FrameSummary(
|
1910 |
+
getattr(self.f_code, "co_filename", "<unknown>"),
|
1911 |
+
self.lineno,
|
1912 |
+
getattr(self.f_code, "co_name", "<unknown>"),
|
1913 |
+
lookup_line=False,
|
1914 |
+
)
|
1915 |
+
|
1916 |
+
def store_global_weakref_by_id(self, prefix, value):
|
1917 |
+
global_name = self.output.install_global_by_id(prefix, weakref.ref(value))
|
1918 |
+
install_guard(
|
1919 |
+
GlobalWeakRefSource(global_name).make_guard(GuardBuilder.WEAKREF_ALIVE)
|
1920 |
+
)
|
1921 |
+
return global_name
|
1922 |
+
|
1923 |
+
@property
|
1924 |
+
def fake_mode(self):
|
1925 |
+
return self.output.tracing_context.fake_mode
|
1926 |
+
|
1927 |
+
def find_symbolic_locals_name(self, tensor_variable):
|
1928 |
+
for key, value in self.symbolic_locals.items():
|
1929 |
+
if value is tensor_variable:
|
1930 |
+
return key
|
1931 |
+
return None
|
1932 |
+
|
1933 |
+
@contextlib.contextmanager
|
1934 |
+
def strict_translation_mode(self):
|
1935 |
+
self.strict_checks_enabled = True
|
1936 |
+
try:
|
1937 |
+
yield
|
1938 |
+
finally:
|
1939 |
+
self.strict_checks_enabled = False
|
1940 |
+
|
1941 |
+
def speculate(self) -> SpeculationEntry:
|
1942 |
+
return self.speculation_log.next(
|
1943 |
+
self.f_code.co_filename, self.lineno, self.instruction_pointer
|
1944 |
+
)
|
1945 |
+
|
1946 |
+
def __init__(
|
1947 |
+
self,
|
1948 |
+
output: OutputGraph,
|
1949 |
+
instructions: List[Instruction],
|
1950 |
+
f_locals: Dict[str, Any],
|
1951 |
+
f_globals: Dict[str, Any],
|
1952 |
+
f_builtins: Dict[str, Any],
|
1953 |
+
code_options: Dict[str, Any],
|
1954 |
+
symbolic_locals: Dict[str, VariableTracker],
|
1955 |
+
symbolic_globals: Dict[str, VariableTracker],
|
1956 |
+
f_code: types.CodeType,
|
1957 |
+
export: bool,
|
1958 |
+
inline_depth: int,
|
1959 |
+
speculation_log: SpeculationLog,
|
1960 |
+
):
|
1961 |
+
super().__init__()
|
1962 |
+
self.speculation_log = speculation_log
|
1963 |
+
|
1964 |
+
# Mutable state checkpointed by copy_graphstate()
|
1965 |
+
self.output = output
|
1966 |
+
self.symbolic_locals = symbolic_locals
|
1967 |
+
self.symbolic_globals = symbolic_globals
|
1968 |
+
self.stack = []
|
1969 |
+
self.instruction_pointer = 0
|
1970 |
+
self.current_instruction = create_instruction("NOP")
|
1971 |
+
self.next_instruction = None
|
1972 |
+
self.block_stack = []
|
1973 |
+
# states before SETUP_WITH for checkpointing and fallback
|
1974 |
+
self.generic_context_manager_depth = 0
|
1975 |
+
self.lineno = code_options["co_firstlineno"]
|
1976 |
+
self.kw_names = None
|
1977 |
+
self.accept_prefix_inst = True
|
1978 |
+
self.prefix_insts = []
|
1979 |
+
|
1980 |
+
# Properties of the input/output code
|
1981 |
+
self.instructions: List[Instruction] = instructions
|
1982 |
+
self.indexof: Dict[Instruction, int] = get_indexof(self.instructions)
|
1983 |
+
self.f_locals: Dict[
|
1984 |
+
str, Any
|
1985 |
+
] = f_locals # needed for recording accessed locals for replay
|
1986 |
+
self.f_globals: Dict[str, Any] = f_globals
|
1987 |
+
self.f_builtins: Dict[str, Any] = f_builtins
|
1988 |
+
self.code_options: Dict[str, Any] = code_options
|
1989 |
+
self.f_code: types.CodeType = f_code
|
1990 |
+
|
1991 |
+
# Execution record for replaying errors
|
1992 |
+
self.exec_recorder = ExecutionRecorder(code=f_code, code_options=code_options)
|
1993 |
+
# Stack of module being parsed, current nn.module is at the end of ordered dict.
|
1994 |
+
# The first field of tuple is the fully qualified name of current module
|
1995 |
+
# in original hierarchy. The second field is the type of current nn.module
|
1996 |
+
self.nn_module_stack: Dict[str, Tuple[str, Type[Any]]] = {}
|
1997 |
+
# Flag to indicate whether tracing is used for export.
|
1998 |
+
self.export = export
|
1999 |
+
|
2000 |
+
self.current_speculation = None
|
2001 |
+
|
2002 |
+
self.strict_checks_enabled = False
|
2003 |
+
|
2004 |
+
if sys.version_info >= (3, 10):
|
2005 |
+
from .resume_execution import (
|
2006 |
+
CO_ASYNC_GENERATOR,
|
2007 |
+
CO_COROUTINE,
|
2008 |
+
CO_GENERATOR,
|
2009 |
+
CO_ITERABLE_COROUTINE,
|
2010 |
+
)
|
2011 |
+
|
2012 |
+
if f_code.co_flags & (
|
2013 |
+
CO_GENERATOR | CO_COROUTINE | CO_ITERABLE_COROUTINE | CO_ASYNC_GENERATOR
|
2014 |
+
):
|
2015 |
+
self.push(BuiltinVariable(None))
|
2016 |
+
|
2017 |
+
self.inline_depth = inline_depth
|
2018 |
+
self.inconsistent_side_effects = False
|
2019 |
+
linecache.lazycache(f_code.co_filename, f_globals)
|
2020 |
+
self.log_starts_line()
|
2021 |
+
|
2022 |
+
|
2023 |
+
class InstructionTranslator(InstructionTranslatorBase):
|
2024 |
+
mutated_closure_cell_contents: Set[str]
|
2025 |
+
|
2026 |
+
@staticmethod
|
2027 |
+
def current_tx() -> "InstructionTranslator":
|
2028 |
+
return tls.current_tx
|
2029 |
+
|
2030 |
+
@contextlib.contextmanager
|
2031 |
+
def set_current_tx(self):
|
2032 |
+
prior = getattr(tls, "current_tx", None)
|
2033 |
+
tls.current_tx = self
|
2034 |
+
try:
|
2035 |
+
yield
|
2036 |
+
finally:
|
2037 |
+
tls.current_tx = prior
|
2038 |
+
|
2039 |
+
def __init__(
|
2040 |
+
self,
|
2041 |
+
instructions: List[Instruction],
|
2042 |
+
f_code,
|
2043 |
+
f_locals,
|
2044 |
+
f_globals,
|
2045 |
+
f_builtins,
|
2046 |
+
code_options,
|
2047 |
+
compiler_fn,
|
2048 |
+
one_graph,
|
2049 |
+
export,
|
2050 |
+
export_constraints,
|
2051 |
+
mutated_closure_cell_contents: Set[str],
|
2052 |
+
frame_state,
|
2053 |
+
speculation_log: SpeculationLog,
|
2054 |
+
):
|
2055 |
+
_step_logger()(
|
2056 |
+
logging.INFO,
|
2057 |
+
f"torchdynamo start tracing {f_code.co_name} {code_options['co_filename']}:{code_options['co_firstlineno']}",
|
2058 |
+
)
|
2059 |
+
super().__init__(
|
2060 |
+
output=OutputGraph(
|
2061 |
+
code_options,
|
2062 |
+
compiler_fn,
|
2063 |
+
self,
|
2064 |
+
export,
|
2065 |
+
export_constraints,
|
2066 |
+
frame_state,
|
2067 |
+
local_scope=f_locals,
|
2068 |
+
global_scope=f_globals,
|
2069 |
+
f_code=f_code,
|
2070 |
+
),
|
2071 |
+
instructions=instructions,
|
2072 |
+
f_locals=f_locals,
|
2073 |
+
f_globals=f_globals,
|
2074 |
+
f_builtins=f_builtins,
|
2075 |
+
code_options=code_options,
|
2076 |
+
symbolic_locals={}, # set below
|
2077 |
+
# A global var is inserted only after a STORE_GLOBAL happens to it
|
2078 |
+
symbolic_globals={},
|
2079 |
+
f_code=f_code,
|
2080 |
+
export=export,
|
2081 |
+
inline_depth=0,
|
2082 |
+
speculation_log=speculation_log,
|
2083 |
+
)
|
2084 |
+
|
2085 |
+
self._throw_if_in_functorch()
|
2086 |
+
|
2087 |
+
# as soon as we create the tracing context we should keep it active, so any calls
|
2088 |
+
# into dynamo apis can rely on finding it
|
2089 |
+
with tracing(self.output.tracing_context), self.set_current_tx():
|
2090 |
+
self.one_graph: bool = one_graph
|
2091 |
+
self.export = export
|
2092 |
+
self.mutated_closure_cell_contents = mutated_closure_cell_contents
|
2093 |
+
if self.export:
|
2094 |
+
assert (
|
2095 |
+
self.one_graph
|
2096 |
+
), "Export without one graph - something has gone wrong."
|
2097 |
+
|
2098 |
+
vars = list(code_options["co_varnames"])
|
2099 |
+
cells_and_freevars = [x for x in self.cell_and_freevars() if x not in vars]
|
2100 |
+
vars.extend(cells_and_freevars)
|
2101 |
+
cells_and_freevars_set = set(cells_and_freevars)
|
2102 |
+
|
2103 |
+
self.symbolic_locals = {
|
2104 |
+
k: variables.LazyVariableTracker.create(
|
2105 |
+
f_locals[k],
|
2106 |
+
source=LocalSource(k, cell_or_freevar=k in cells_and_freevars_set),
|
2107 |
+
)
|
2108 |
+
for k in vars
|
2109 |
+
if k in f_locals
|
2110 |
+
}
|
2111 |
+
self.debug_locals: List[Tuple[VariableTracker, List[VariableTracker]]] = []
|
2112 |
+
if export:
|
2113 |
+
# export gets confused if we never realize unused inputs
|
2114 |
+
# in export mode just eagerly realize everything
|
2115 |
+
self.symbolic_locals = VariableTracker.apply(
|
2116 |
+
lambda x: x.realize(), self.symbolic_locals
|
2117 |
+
)
|
2118 |
+
|
2119 |
+
self._freevars_ids = dict()
|
2120 |
+
for name in self.code_options["co_freevars"]:
|
2121 |
+
if name in f_locals:
|
2122 |
+
self._freevars_ids[name] = id(f_locals[name])
|
2123 |
+
|
2124 |
+
def _throw_if_in_functorch(self):
|
2125 |
+
# Fallback to eager in case of a graph break inside vmap
|
2126 |
+
eager = torch._dynamo.lookup_backend("eager")
|
2127 |
+
compiler_fn = inspect.getattr_static(
|
2128 |
+
self.output.compiler_fn, "compiler_fn", self.output.compiler_fn
|
2129 |
+
)
|
2130 |
+
ci = torch._C._functorch.peek_interpreter_stack()
|
2131 |
+
forbidden_keys = (
|
2132 |
+
torch._C._functorch.TransformType.Vmap,
|
2133 |
+
torch._C._functorch.TransformType.Grad,
|
2134 |
+
)
|
2135 |
+
if ci is not None and ci.key() in forbidden_keys and compiler_fn is not eager:
|
2136 |
+
# if it reaches here, it means Dynamo failed to inline a functorch function
|
2137 |
+
name = ci.key().name.lower()
|
2138 |
+
msg = f"torch.func.{name}(fn) requires the function to be inlined by dynamo"
|
2139 |
+
unimplemented(msg)
|
2140 |
+
|
2141 |
+
def get_example_value(self, source: Source):
|
2142 |
+
if isinstance(source, LocalSource):
|
2143 |
+
return self.f_locals[source.local_name]
|
2144 |
+
if isinstance(source, GlobalSource):
|
2145 |
+
return self.f_globals[source.global_name]
|
2146 |
+
raise KeyError()
|
2147 |
+
|
2148 |
+
def run(self):
|
2149 |
+
super().run()
|
2150 |
+
|
2151 |
+
def match_nested_cell(self, name, cell):
|
2152 |
+
"""Match a cell in this method to one in a function we are inlining"""
|
2153 |
+
try:
|
2154 |
+
value = cell.cell_contents
|
2155 |
+
except ValueError:
|
2156 |
+
return None
|
2157 |
+
# TODO(jansel): check the id of the cell rather than the contents
|
2158 |
+
if id(value) != self._freevars_ids.get(name):
|
2159 |
+
return None
|
2160 |
+
return self.symbolic_locals[name]
|
2161 |
+
|
2162 |
+
def should_compile_partial_graph(self):
|
2163 |
+
return (
|
2164 |
+
all(b.can_restore() for b in self.block_stack)
|
2165 |
+
and not self.one_graph
|
2166 |
+
and self.generic_context_manager_depth == 0
|
2167 |
+
)
|
2168 |
+
|
2169 |
+
def create_call_resume_at(self, inst):
|
2170 |
+
self.instruction_pointer = None
|
2171 |
+
|
2172 |
+
if inst.opname == "RETURN_VALUE":
|
2173 |
+
return [create_instruction("RETURN_VALUE")]
|
2174 |
+
|
2175 |
+
reads = livevars_analysis(self.instructions, inst)
|
2176 |
+
argnames = tuple(
|
2177 |
+
k
|
2178 |
+
for k in self.symbolic_locals.keys()
|
2179 |
+
if k in reads and k not in self.cell_and_freevars()
|
2180 |
+
)
|
2181 |
+
|
2182 |
+
cg = PyCodegen(self)
|
2183 |
+
|
2184 |
+
# Python does not allow null to be an arg to a function, so
|
2185 |
+
# we remove nulls from the stack and restore them in the
|
2186 |
+
# prologue of the resume function
|
2187 |
+
|
2188 |
+
# sorted list of indices of nulls on the stack
|
2189 |
+
null_idxes: List[int] = []
|
2190 |
+
if sys.version_info >= (3, 11):
|
2191 |
+
# find indices of NullVariables
|
2192 |
+
for i, var in enumerate(self.stack):
|
2193 |
+
if isinstance(var, NullVariable):
|
2194 |
+
null_idxes.append(i)
|
2195 |
+
# generate bytecode to pop the nulls
|
2196 |
+
null_cnt = 0
|
2197 |
+
for i, var in enumerate(reversed(self.stack)):
|
2198 |
+
if isinstance(var, NullVariable):
|
2199 |
+
for j in range(2, i + 2 - null_cnt):
|
2200 |
+
cg.append_output(create_instruction("SWAP", arg=j))
|
2201 |
+
cg.extend_output(cg.pop_null())
|
2202 |
+
null_cnt += 1
|
2203 |
+
|
2204 |
+
# we popped all nulls from the stack at runtime,
|
2205 |
+
# so we should not count NullVariables
|
2206 |
+
stack_len = len(self.stack) - len(null_idxes)
|
2207 |
+
nargs = stack_len + len(argnames)
|
2208 |
+
|
2209 |
+
name = unique_id(f"__resume_at_{inst.offset}")
|
2210 |
+
|
2211 |
+
new_code: types.CodeType = ContinueExecutionCache.lookup(
|
2212 |
+
self.f_code,
|
2213 |
+
self.lineno,
|
2214 |
+
inst.offset,
|
2215 |
+
tuple(b.target.offset for b in self.block_stack),
|
2216 |
+
stack_len,
|
2217 |
+
argnames,
|
2218 |
+
tuple(b.resume_fn() for b in self.block_stack),
|
2219 |
+
tuple(null_idxes),
|
2220 |
+
)
|
2221 |
+
|
2222 |
+
# Add original GraphModule context to the resume function to handle
|
2223 |
+
# the case of a graph break while tracing a GraphModule
|
2224 |
+
orig_graphmodule_maybe = code_context.get_context(self.f_code).get(
|
2225 |
+
"orig_graphmodule", lambda: None
|
2226 |
+
)()
|
2227 |
+
if orig_graphmodule_maybe is not None:
|
2228 |
+
code_context.get_context(new_code)["orig_graphmodule"] = weakref.ref(
|
2229 |
+
orig_graphmodule_maybe
|
2230 |
+
)
|
2231 |
+
|
2232 |
+
if new_code.co_freevars:
|
2233 |
+
cg.make_function_with_closure(name, new_code, True, stack_len)
|
2234 |
+
else:
|
2235 |
+
# This is safe: we pre-generate a unique name
|
2236 |
+
self.output.install_global_unsafe(
|
2237 |
+
name, types.FunctionType(new_code, self.f_globals, name)
|
2238 |
+
)
|
2239 |
+
cg.extend_output(cg.load_function_name(name, True, stack_len))
|
2240 |
+
|
2241 |
+
cg.extend_output([cg.create_load(k) for k in argnames])
|
2242 |
+
cg.extend_output(create_call_function(nargs, False))
|
2243 |
+
cg.append_output(create_instruction("RETURN_VALUE"))
|
2244 |
+
return cg.get_instructions()
|
2245 |
+
|
2246 |
+
def symbolic_locals_contain_module_class(self):
|
2247 |
+
for v in self.symbolic_locals.values():
|
2248 |
+
if isinstance(v, UserDefinedClassVariable) and issubclass(
|
2249 |
+
v.as_python_constant(), torch.nn.Module
|
2250 |
+
):
|
2251 |
+
return True
|
2252 |
+
return False
|
2253 |
+
|
2254 |
+
def RETURN_VALUE(self, inst):
|
2255 |
+
if (
|
2256 |
+
self.output.count_calls() == 0
|
2257 |
+
and not self.inconsistent_side_effects
|
2258 |
+
and not self.symbolic_locals_contain_module_class()
|
2259 |
+
and not self.export
|
2260 |
+
):
|
2261 |
+
raise exc.SkipFrame("because no content in function call")
|
2262 |
+
self.instruction_pointer = None
|
2263 |
+
_step_logger()(
|
2264 |
+
logging.INFO,
|
2265 |
+
f"torchdynamo done tracing {self.f_code.co_name} (RETURN_VALUE)",
|
2266 |
+
)
|
2267 |
+
log.debug("RETURN_VALUE triggered compile")
|
2268 |
+
self.output.compile_subgraph(
|
2269 |
+
self,
|
2270 |
+
reason=GraphCompileReason(
|
2271 |
+
"return_value", [self.frame_summary()], graph_break=False
|
2272 |
+
),
|
2273 |
+
)
|
2274 |
+
self.output.add_output_instructions([create_instruction("RETURN_VALUE")])
|
2275 |
+
|
2276 |
+
|
2277 |
+
class InliningInstructionTranslator(InstructionTranslatorBase):
|
2278 |
+
"""Trace and inline a called method"""
|
2279 |
+
|
2280 |
+
symbolic_result: Optional[TensorVariable]
|
2281 |
+
|
2282 |
+
@classmethod
|
2283 |
+
def inline_call(cls, parent, func, args, kwargs):
|
2284 |
+
with patch.dict(counters, {"unimplemented": counters["inline_call"]}):
|
2285 |
+
return cls.inline_call_(parent, func, args, kwargs)
|
2286 |
+
|
2287 |
+
@staticmethod
|
2288 |
+
def check_inlineable(func):
|
2289 |
+
if func.has_self():
|
2290 |
+
unimplemented("inline with __self__")
|
2291 |
+
|
2292 |
+
result = trace_rules.check_verbose(func, is_inlined_call=True)
|
2293 |
+
if result.skipped:
|
2294 |
+
from torch._dynamo.variables.misc import produce_trampoline_autograd_apply
|
2295 |
+
|
2296 |
+
# _origin marks this as coming from an internal dynamo known function that is safe to
|
2297 |
+
# trace through.
|
2298 |
+
if hasattr(getattr(func, "fn", None), "_origin") and func.fn._origin in [
|
2299 |
+
produce_trampoline_autograd_apply,
|
2300 |
+
]:
|
2301 |
+
# Known sound
|
2302 |
+
return trace_rules.SkipResult(
|
2303 |
+
False, "allowlist in dynamo known function"
|
2304 |
+
)
|
2305 |
+
fn_qualname = func.fn.__qualname__ if hasattr(func, "fn") else ""
|
2306 |
+
unimplemented(
|
2307 |
+
f"'inline in skipfiles: {fn_qualname} | {func.get_name()} {func.get_filename()}, {result.reason}'"
|
2308 |
+
)
|
2309 |
+
|
2310 |
+
if isinstance(func, UserFunctionVariable) and inspect.getattr_static(
|
2311 |
+
func.get_function(), "_torchdynamo_disable", False
|
2312 |
+
):
|
2313 |
+
unimplemented(
|
2314 |
+
f"call torch._dynamo.disable() wrapped function {func.get_function()}"
|
2315 |
+
)
|
2316 |
+
else:
|
2317 |
+
return result
|
2318 |
+
|
2319 |
+
@staticmethod
|
2320 |
+
def inline_call_(
|
2321 |
+
parent, func: VariableTracker, args: List[VariableTracker], kwargs
|
2322 |
+
):
|
2323 |
+
if isinstance(func, SkipFunctionVariable):
|
2324 |
+
unimplemented("inline with functions in skip files")
|
2325 |
+
assert isinstance(
|
2326 |
+
func,
|
2327 |
+
(UserFunctionVariable, NestedUserFunctionVariable),
|
2328 |
+
)
|
2329 |
+
result = InliningInstructionTranslator.check_inlineable(func)
|
2330 |
+
assert result.skipped is False
|
2331 |
+
try:
|
2332 |
+
sub_locals, closure_cells = func.bind_args(parent, args, kwargs)
|
2333 |
+
except TypeError as e:
|
2334 |
+
# Wrap the general TypeError during bind_args() to the internal ArgsMismatchError with detailed info
|
2335 |
+
raise ArgsMismatchError( # noqa: TRY200
|
2336 |
+
"{reason}.\n func = {func}, args = {args}, kwargs = {kwargs}".format(
|
2337 |
+
reason=str(e),
|
2338 |
+
func=f"'{func.get_name()}' {func.get_filename()}:{func.get_code().co_firstlineno}",
|
2339 |
+
args=[arg.python_type() for arg in args],
|
2340 |
+
kwargs=kwargs,
|
2341 |
+
),
|
2342 |
+
)
|
2343 |
+
|
2344 |
+
for v in itertools.chain(sub_locals.values(), closure_cells.values()):
|
2345 |
+
if not isinstance(v, VariableTracker):
|
2346 |
+
unimplemented(f"unconverted arg {v}")
|
2347 |
+
|
2348 |
+
code: types.CodeType = func.get_code()
|
2349 |
+
if code.co_name in ("__setitem__", "__setattr__") and not (
|
2350 |
+
args is not None
|
2351 |
+
and len(args) > 0
|
2352 |
+
and isinstance(args[0], variables.CustomizedDictVariable)
|
2353 |
+
):
|
2354 |
+
unimplemented(f"inline {code.co_name}")
|
2355 |
+
|
2356 |
+
suffix = ""
|
2357 |
+
# TODO: mlazos, add support for enabling multiple artifact logs
|
2358 |
+
# with a single alias
|
2359 |
+
if torch._logging._internal.log_state.is_artifact_enabled("output_code"):
|
2360 |
+
suffix = f"\n{dis.Bytecode(code).dis()}"
|
2361 |
+
if sys.version_info >= (3, 11):
|
2362 |
+
cur_inst = parent.current_instruction
|
2363 |
+
parent_code = parent.f_code
|
2364 |
+
header = parent.get_line_of_code_header(lineno=cur_inst.positions.lineno)
|
2365 |
+
|
2366 |
+
def get_trace_call_log_str():
|
2367 |
+
line = get_instruction_source_311(parent_code, cur_inst).rstrip()
|
2368 |
+
return f"TRACE inlined call {code.co_name} from {header}\n{line}"
|
2369 |
+
|
2370 |
+
trace_call_log.debug("%s", LazyString(get_trace_call_log_str))
|
2371 |
+
log.debug("INLINING %s%s, %s", code, suffix, result.reason)
|
2372 |
+
|
2373 |
+
# Detect inline GraphModule calls in order to propagate node metadata,
|
2374 |
+
# by checking if the first argument (self) is a variable tracking a GraphModule.
|
2375 |
+
if args and isinstance(args[0], NNModuleVariable):
|
2376 |
+
module = parent.output.get_submodule(args[0].module_key)
|
2377 |
+
if isinstance(module, torch.fx.GraphModule):
|
2378 |
+
# The inline call might not actually be a call to `forward`,
|
2379 |
+
# but it is enough to add a context for `forward` in case it is called.
|
2380 |
+
code_context.get_context(module.forward.__code__)[
|
2381 |
+
"orig_graphmodule"
|
2382 |
+
] = weakref.ref(module)
|
2383 |
+
|
2384 |
+
tracer: InliningInstructionTranslator
|
2385 |
+
if is_generator(code):
|
2386 |
+
tracer = InliningGeneratorInstructionTranslator(
|
2387 |
+
parent, code, sub_locals, parent.symbolic_globals, closure_cells, func
|
2388 |
+
)
|
2389 |
+
else:
|
2390 |
+
tracer = InliningInstructionTranslator(
|
2391 |
+
parent, code, sub_locals, parent.symbolic_globals, closure_cells, func
|
2392 |
+
)
|
2393 |
+
|
2394 |
+
strict_ctx: Any = contextlib.nullcontext()
|
2395 |
+
if parent.strict_checks_enabled:
|
2396 |
+
strict_ctx = tracer.strict_translation_mode()
|
2397 |
+
try:
|
2398 |
+
with strict_ctx:
|
2399 |
+
tracer.run()
|
2400 |
+
except exc.SkipFrame as e:
|
2401 |
+
msg = f"SKIPPED INLINING {code}: {e}"
|
2402 |
+
log.debug(msg)
|
2403 |
+
raise Unsupported(msg) from e
|
2404 |
+
except Exception as e:
|
2405 |
+
log.debug("FAILED INLINING %s", code)
|
2406 |
+
raise
|
2407 |
+
assert tracer.symbolic_result is not None
|
2408 |
+
func.export_freevars(parent, tracer)
|
2409 |
+
|
2410 |
+
if tracer.f_globals is parent.f_globals:
|
2411 |
+
# Merge symbolic_globals back if parent and child are in the same namespace
|
2412 |
+
parent.symbolic_globals.update(tracer.symbolic_globals)
|
2413 |
+
|
2414 |
+
parent.inconsistent_side_effects |= tracer.inconsistent_side_effects
|
2415 |
+
|
2416 |
+
log.debug("DONE INLINING %s", code)
|
2417 |
+
|
2418 |
+
if is_generator(code):
|
2419 |
+
assert isinstance(tracer, InliningGeneratorInstructionTranslator)
|
2420 |
+
assert tracer.symbolic_result.as_python_constant() is None
|
2421 |
+
return ListIteratorVariable(
|
2422 |
+
tracer.generated_items,
|
2423 |
+
mutable_local=MutableLocal(),
|
2424 |
+
)
|
2425 |
+
else:
|
2426 |
+
return tracer.symbolic_result
|
2427 |
+
|
2428 |
+
def __init__(
|
2429 |
+
self,
|
2430 |
+
parent: InstructionTranslatorBase,
|
2431 |
+
code: types.CodeType,
|
2432 |
+
symbolic_locals: Dict[str, VariableTracker],
|
2433 |
+
symbolic_globals: Dict[str, VariableTracker],
|
2434 |
+
closure_cells: Dict[str, VariableTracker],
|
2435 |
+
funcvar: BaseUserFunctionVariable,
|
2436 |
+
):
|
2437 |
+
f_globals = funcvar.get_globals() # type: ignore[attr-defined]
|
2438 |
+
f_builtins = f_globals["__builtins__"]
|
2439 |
+
if not isinstance(f_builtins, dict):
|
2440 |
+
f_builtins = f_builtins.__dict__
|
2441 |
+
instructions = cleaned_instructions(code)
|
2442 |
+
propagate_line_nums(instructions)
|
2443 |
+
super().__init__(
|
2444 |
+
output=parent.output,
|
2445 |
+
f_locals={},
|
2446 |
+
f_globals=f_globals,
|
2447 |
+
f_builtins=f_builtins,
|
2448 |
+
symbolic_locals=symbolic_locals,
|
2449 |
+
symbolic_globals=symbolic_globals,
|
2450 |
+
instructions=instructions,
|
2451 |
+
code_options={k: getattr(code, k) for k in dir(code)},
|
2452 |
+
f_code=code,
|
2453 |
+
export=parent.export,
|
2454 |
+
inline_depth=parent.inline_depth + 1,
|
2455 |
+
speculation_log=parent.speculation_log,
|
2456 |
+
)
|
2457 |
+
self.parent = parent
|
2458 |
+
self.symbolic_result = None
|
2459 |
+
self.closure_cells = closure_cells
|
2460 |
+
self.nn_module_stack = parent.nn_module_stack.copy()
|
2461 |
+
|
2462 |
+
@property
|
2463 |
+
def fake_mode(self):
|
2464 |
+
return self.parent.fake_mode
|
2465 |
+
|
2466 |
+
def run_ctx_mgr(self):
|
2467 |
+
return TracingContext.current_frame(self.parent.frame_summary())
|
2468 |
+
|
2469 |
+
def STORE_DEREF(self, inst):
|
2470 |
+
if inst.argval in self.closure_cells:
|
2471 |
+
cell = self.closure_cells[inst.argval]
|
2472 |
+
val = self.pop()
|
2473 |
+
if isinstance(cell, ClosureVariable):
|
2474 |
+
if not self.output.is_root_tracer():
|
2475 |
+
unimplemented(
|
2476 |
+
"HigherOrderOperator: Mutating a variable not in the current scope (ClosureVariable)"
|
2477 |
+
)
|
2478 |
+
self.output.root_tx.symbolic_locals[cell.name] = val
|
2479 |
+
else:
|
2480 |
+
self.output.side_effects.store_cell(cell, val)
|
2481 |
+
else:
|
2482 |
+
maybe_cell = self.symbolic_locals.get(inst.argval)
|
2483 |
+
if isinstance(
|
2484 |
+
maybe_cell,
|
2485 |
+
variables.NewCellVariable,
|
2486 |
+
):
|
2487 |
+
self.output.side_effects.store_cell(
|
2488 |
+
self.symbolic_locals[inst.argval], self.pop()
|
2489 |
+
)
|
2490 |
+
else:
|
2491 |
+
if (
|
2492 |
+
maybe_cell is not None
|
2493 |
+
and maybe_cell.source.name()
|
2494 |
+
not in self.output.root_tx.mutated_closure_cell_contents
|
2495 |
+
):
|
2496 |
+
# Why is the source name here unique?
|
2497 |
+
# mutated_closure_cell_contents is a per-frame
|
2498 |
+
# concept, and sources identify, e.g., particular
|
2499 |
+
# locals from the frame. If you had two locals,
|
2500 |
+
# they'll get different source names, and therefore
|
2501 |
+
# differ here.
|
2502 |
+
self.output.root_tx.mutated_closure_cell_contents.add(
|
2503 |
+
maybe_cell.source.name()
|
2504 |
+
)
|
2505 |
+
raise exc.UnspecializeRestartAnalysis()
|
2506 |
+
unimplemented("write to __closure__ while inlining")
|
2507 |
+
|
2508 |
+
def LOAD_DEREF(self, inst):
|
2509 |
+
if inst.argval in self.closure_cells:
|
2510 |
+
cell = self.closure_cells[inst.argval]
|
2511 |
+
if isinstance(cell, ClosureVariable):
|
2512 |
+
self.push(self.output.root_tx.symbolic_locals[cell.name])
|
2513 |
+
else:
|
2514 |
+
self.push(self.output.side_effects.load_cell(cell))
|
2515 |
+
else:
|
2516 |
+
maybe_sym_local = self.symbolic_locals.get(inst.argval, None)
|
2517 |
+
if isinstance(maybe_sym_local, variables.NewCellVariable):
|
2518 |
+
self.push(self.output.side_effects.load_cell(maybe_sym_local))
|
2519 |
+
else:
|
2520 |
+
super().LOAD_DEREF(inst)
|
2521 |
+
|
2522 |
+
def LOAD_CLOSURE(self, inst):
|
2523 |
+
assert inst.argval in self.cell_and_freevars()
|
2524 |
+
if inst.argval in self.closure_cells:
|
2525 |
+
self.push(self.closure_cells[inst.argval])
|
2526 |
+
else:
|
2527 |
+
self.push(InlinedClosureVariable(name=inst.argval))
|
2528 |
+
|
2529 |
+
def check_replace_is_safe(self, oldvar):
|
2530 |
+
if not is_side_effect_safe(oldvar.mutable_local):
|
2531 |
+
unimplemented(
|
2532 |
+
"HigherOrderOperator: Mutating a variable not in the current scope (replace_all)"
|
2533 |
+
)
|
2534 |
+
|
2535 |
+
def should_compile_partial_graph(self):
|
2536 |
+
return False # inlining functions is all-or-nothing
|
2537 |
+
|
2538 |
+
def create_call_resume_at(self, offset):
|
2539 |
+
unimplemented("cant resume while inlining")
|
2540 |
+
|
2541 |
+
def RETURN_VALUE(self, inst):
|
2542 |
+
self.symbolic_result = self.pop() # type: ignore[assignment]
|
2543 |
+
self.instruction_pointer = None
|
2544 |
+
|
2545 |
+
|
2546 |
+
class InliningGeneratorInstructionTranslator(InliningInstructionTranslator):
|
2547 |
+
generated_items: List[VariableTracker]
|
2548 |
+
|
2549 |
+
def __init__(self, *args, **kwargs):
|
2550 |
+
super().__init__(*args, **kwargs)
|
2551 |
+
self.generated_items = []
|
2552 |
+
|
2553 |
+
def YIELD_VALUE(self, inst: Instruction):
|
2554 |
+
self.generated_items.append(self.pop())
|
2555 |
+
# TODO(jansel): figure out why this is needed, it isn't in the docs for YIELD_VALUE
|
2556 |
+
self.push(ConstantVariable.create(None))
|
2557 |
+
|
2558 |
+
def GET_YIELD_FROM_ITER(self, inst):
|
2559 |
+
tos = self.stack[-1]
|
2560 |
+
if not isinstance(tos, ListIteratorVariable):
|
2561 |
+
self.pop()
|
2562 |
+
res = BuiltinVariable(iter).call_function(self, [tos], {})
|
2563 |
+
self.push(res)
|
2564 |
+
return self.YIELD_FROM(inst)
|
2565 |
+
|
2566 |
+
def YIELD_FROM(self, inst):
|
2567 |
+
while True:
|
2568 |
+
tos = self.stack[-1].realize()
|
2569 |
+
if isinstance(tos, ConstantVariable) and tos.value is None:
|
2570 |
+
self.pop()
|
2571 |
+
return
|
2572 |
+
if isinstance(
|
2573 |
+
tos, (variables.ListIteratorVariable, variables.IteratorVariable)
|
2574 |
+
):
|
2575 |
+
try:
|
2576 |
+
val, next_iter = tos.next_variables(self)
|
2577 |
+
self.push(val)
|
2578 |
+
# TODO(voz): Unclear if we need the push None in YIELD_VALUE?
|
2579 |
+
self.YIELD_VALUE(inst)
|
2580 |
+
self.pop()
|
2581 |
+
self.push(next_iter)
|
2582 |
+
except StopIteration:
|
2583 |
+
return
|
2584 |
+
else:
|
2585 |
+
unimplemented(f"YIELD_FROM {typestr(tos)}")
|
2586 |
+
|
2587 |
+
def SEND(self, inst):
|
2588 |
+
assert len(self.stack) >= 2
|
2589 |
+
val = self.pop()
|
2590 |
+
tos = self.stack[-1]
|
2591 |
+
if isinstance(tos, ListIteratorVariable):
|
2592 |
+
if isinstance(val, ConstantVariable) and val.value is None:
|
2593 |
+
self.push(val)
|
2594 |
+
self.instruction_pointer = self.indexof[inst.target]
|
2595 |
+
else:
|
2596 |
+
# invoke send
|
2597 |
+
# Unreachable code - if you hit this, you are implementing generator support and have
|
2598 |
+
# lifted the `unimplemented("generator")` in frame conversion. This codepath handles
|
2599 |
+
# subgenerator and lines up with this line in Python 3.11
|
2600 |
+
# https://github.com/python/cpython/blob/3.11/Python/ceval.c#L2597
|
2601 |
+
unimplemented("Unreachable sub-generator code")
|
2602 |
+
else:
|
2603 |
+
unimplemented(f"SEND {typestr(tos)}")
|
llmeval-env/lib/python3.10/site-packages/torch/_dynamo/tensor_version_op.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch._prims import _make_prim, RETURN_TYPE
|
3 |
+
from torch._subclasses import FakeTensorMode
|
4 |
+
from torch._subclasses.functional_tensor import FunctionalTensorMode
|
5 |
+
|
6 |
+
_tensor_version = _make_prim(
|
7 |
+
schema="_tensor_version(Tensor self) -> SymInt",
|
8 |
+
return_type=RETURN_TYPE.NEW,
|
9 |
+
meta=torch.ops.aten._version.default,
|
10 |
+
impl_aten=torch.ops.aten._version.default,
|
11 |
+
doc="Tracable unbacked SymInt version of torch.Tensor._version",
|
12 |
+
)
|
13 |
+
|
14 |
+
|
15 |
+
@_tensor_version.py_impl(FakeTensorMode)
|
16 |
+
def _tensor_version_fake(self):
|
17 |
+
"""
|
18 |
+
The initial dynamo capture of _tensor_version + _unsafe_set_version_counter turns the
|
19 |
+
`._version` into an unbacked SymInt so that we don't need to specialize on the `._version`
|
20 |
+
of input tensors to the graph.
|
21 |
+
"""
|
22 |
+
return self.fake_mode.shape_env.create_unbacked_symint()
|
23 |
+
|
24 |
+
|
25 |
+
_unsafe_set_version_counter = _make_prim(
|
26 |
+
schema="_unsafe_set_version_counter(Tensor self, SymInt version) -> ()",
|
27 |
+
return_type=RETURN_TYPE.NEW,
|
28 |
+
meta=lambda self, version: None,
|
29 |
+
impl_aten=torch._C._autograd._unsafe_set_version_counter,
|
30 |
+
doc="Tracable+SymInt version of torch._C._autograd._unsafe_set_version_counter",
|
31 |
+
)
|
32 |
+
torch.fx.node.has_side_effect(_unsafe_set_version_counter)
|
33 |
+
|
34 |
+
|
35 |
+
"""
|
36 |
+
When we functionalize _tensor_version + _unsafe_set_version_counter,
|
37 |
+
the ops disappear from the traced graph. We run them eagerly on the
|
38 |
+
fake tensors used for tracing, in order to get past asserts that would
|
39 |
+
fail in autograd.
|
40 |
+
|
41 |
+
Why is this ok?
|
42 |
+
1) Versions on functional tensors don't make any sense since you can't mutate a functional tensor.
|
43 |
+
2) The whole point of version munging is to trick autograd into doing what we want, and after
|
44 |
+
AotAtuograd there is no longer any need for these ops.
|
45 |
+
|
46 |
+
Note this is similar to how no_grad is handled.
|
47 |
+
"""
|
48 |
+
|
49 |
+
|
50 |
+
@_tensor_version.py_impl(FunctionalTensorMode)
|
51 |
+
def _tensor_version_functional(self):
|
52 |
+
return self._version
|
53 |
+
|
54 |
+
|
55 |
+
@_unsafe_set_version_counter.py_impl(FunctionalTensorMode)
|
56 |
+
def _unsafe_set_version_counter_functional(self, version):
|
57 |
+
torch._C._autograd._unsafe_set_version_counter(self, version)
|
llmeval-env/lib/python3.10/site-packages/torch/_dynamo/test_minifier_common.py
ADDED
@@ -0,0 +1,244 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import dataclasses
|
2 |
+
import io
|
3 |
+
import logging
|
4 |
+
import os
|
5 |
+
import re
|
6 |
+
import shutil
|
7 |
+
import subprocess
|
8 |
+
import sys
|
9 |
+
import tempfile
|
10 |
+
import traceback
|
11 |
+
from typing import Optional
|
12 |
+
from unittest.mock import patch
|
13 |
+
|
14 |
+
import torch
|
15 |
+
import torch._dynamo
|
16 |
+
import torch._dynamo.test_case
|
17 |
+
from torch.utils._traceback import report_compile_source_on_error
|
18 |
+
|
19 |
+
|
20 |
+
@dataclasses.dataclass
|
21 |
+
class MinifierTestResult:
|
22 |
+
minifier_code: str
|
23 |
+
repro_code: str
|
24 |
+
|
25 |
+
def _get_module(self, t):
|
26 |
+
match = re.search(r"class Repro\(torch\.nn\.Module\):\s+([ ].*\n| *\n)+", t)
|
27 |
+
assert match is not None, "failed to find module"
|
28 |
+
r = match.group(0)
|
29 |
+
r = re.sub(r"\s+$", "\n", r, flags=re.MULTILINE)
|
30 |
+
r = re.sub(r"\n{3,}", "\n\n", r)
|
31 |
+
return r.strip()
|
32 |
+
|
33 |
+
def minifier_module(self):
|
34 |
+
return self._get_module(self.minifier_code)
|
35 |
+
|
36 |
+
def repro_module(self):
|
37 |
+
return self._get_module(self.repro_code)
|
38 |
+
|
39 |
+
|
40 |
+
class MinifierTestBase(torch._dynamo.test_case.TestCase):
|
41 |
+
DEBUG_DIR = tempfile.mkdtemp()
|
42 |
+
|
43 |
+
@classmethod
|
44 |
+
def setUpClass(cls):
|
45 |
+
super().setUpClass()
|
46 |
+
cls._exit_stack.enter_context( # type: ignore[attr-defined]
|
47 |
+
torch._dynamo.config.patch(debug_dir_root=cls.DEBUG_DIR)
|
48 |
+
)
|
49 |
+
# These configurations make new process startup slower. Disable them
|
50 |
+
# for the minification tests to speed them up.
|
51 |
+
cls._exit_stack.enter_context( # type: ignore[attr-defined]
|
52 |
+
torch._inductor.config.patch(
|
53 |
+
{
|
54 |
+
# https://github.com/pytorch/pytorch/issues/100376
|
55 |
+
"pattern_matcher": False,
|
56 |
+
# multiprocess compilation takes a long time to warmup
|
57 |
+
"compile_threads": 1,
|
58 |
+
# https://github.com/pytorch/pytorch/issues/100378
|
59 |
+
"cpp.vec_isa_ok": False,
|
60 |
+
}
|
61 |
+
)
|
62 |
+
)
|
63 |
+
|
64 |
+
@classmethod
|
65 |
+
def tearDownClass(cls):
|
66 |
+
if os.getenv("PYTORCH_KEEP_TMPDIR", "0") != "1":
|
67 |
+
shutil.rmtree(cls.DEBUG_DIR)
|
68 |
+
else:
|
69 |
+
print(f"test_minifier_common tmpdir kept at: {cls.DEBUG_DIR}")
|
70 |
+
cls._exit_stack.close() # type: ignore[attr-defined]
|
71 |
+
|
72 |
+
def _gen_codegen_fn_patch_code(self, device, bug_type):
|
73 |
+
assert bug_type in ("compile_error", "runtime_error", "accuracy")
|
74 |
+
return f"""\
|
75 |
+
{torch._dynamo.config.codegen_config()}
|
76 |
+
{torch._inductor.config.codegen_config()}
|
77 |
+
torch._inductor.config.{"cpp" if device == "cpu" else "triton"}.inject_relu_bug_TESTING_ONLY = {bug_type!r}
|
78 |
+
"""
|
79 |
+
|
80 |
+
def _maybe_subprocess_run(self, args, *, isolate, cwd=None):
|
81 |
+
if not isolate:
|
82 |
+
assert len(args) >= 2, args
|
83 |
+
assert args[0] == "python3", args
|
84 |
+
if args[1] == "-c":
|
85 |
+
assert len(args) == 3, args
|
86 |
+
code = args[2]
|
87 |
+
args = ["-c"]
|
88 |
+
else:
|
89 |
+
assert len(args) >= 2, args
|
90 |
+
with open(args[1]) as f:
|
91 |
+
code = f.read()
|
92 |
+
args = args[1:]
|
93 |
+
|
94 |
+
# WARNING: This is not a perfect simulation of running
|
95 |
+
# the program out of tree. We only interpose on things we KNOW we
|
96 |
+
# need to handle for tests. If you need more stuff, you will
|
97 |
+
# need to augment this appropriately.
|
98 |
+
|
99 |
+
# NB: Can't use save_config because that will omit some fields,
|
100 |
+
# but we must save and reset ALL fields
|
101 |
+
dynamo_config = torch._dynamo.config.shallow_copy_dict()
|
102 |
+
inductor_config = torch._inductor.config.shallow_copy_dict()
|
103 |
+
try:
|
104 |
+
stderr = io.StringIO()
|
105 |
+
log_handler = logging.StreamHandler(stderr)
|
106 |
+
log = logging.getLogger("torch._dynamo")
|
107 |
+
log.addHandler(log_handler)
|
108 |
+
try:
|
109 |
+
prev_cwd = os.getcwd()
|
110 |
+
if cwd is not None:
|
111 |
+
os.chdir(cwd)
|
112 |
+
with patch("sys.argv", args), report_compile_source_on_error():
|
113 |
+
exec(code, {"__name__": "__main__", "__compile_source__": code})
|
114 |
+
rc = 0
|
115 |
+
except Exception:
|
116 |
+
rc = 1
|
117 |
+
traceback.print_exc(file=stderr)
|
118 |
+
finally:
|
119 |
+
log.removeHandler(log_handler)
|
120 |
+
if cwd is not None:
|
121 |
+
os.chdir(prev_cwd) # type: ignore[possibly-undefined]
|
122 |
+
# Make sure we don't leave buggy compiled frames lying
|
123 |
+
# around
|
124 |
+
torch._dynamo.reset()
|
125 |
+
finally:
|
126 |
+
torch._dynamo.config.load_config(dynamo_config)
|
127 |
+
torch._inductor.config.load_config(inductor_config)
|
128 |
+
|
129 |
+
# TODO: return a more appropriate data structure here
|
130 |
+
return subprocess.CompletedProcess(
|
131 |
+
args,
|
132 |
+
rc,
|
133 |
+
b"",
|
134 |
+
stderr.getvalue().encode("utf-8"),
|
135 |
+
)
|
136 |
+
else:
|
137 |
+
return subprocess.run(args, capture_output=True, cwd=cwd, check=False)
|
138 |
+
|
139 |
+
# Run `code` in a separate python process.
|
140 |
+
# Returns the completed process state and the directory containing the
|
141 |
+
# minifier launcher script, if `code` outputted it.
|
142 |
+
def _run_test_code(self, code, *, isolate):
|
143 |
+
proc = self._maybe_subprocess_run(
|
144 |
+
["python3", "-c", code], isolate=isolate, cwd=self.DEBUG_DIR
|
145 |
+
)
|
146 |
+
|
147 |
+
print("test stdout:", proc.stdout.decode("utf-8"))
|
148 |
+
print("test stderr:", proc.stderr.decode("utf-8"))
|
149 |
+
repro_dir_match = re.search(
|
150 |
+
r"(\S+)minifier_launcher.py", proc.stderr.decode("utf-8")
|
151 |
+
)
|
152 |
+
if repro_dir_match is not None:
|
153 |
+
return proc, repro_dir_match.group(1)
|
154 |
+
return proc, None
|
155 |
+
|
156 |
+
# Runs the minifier launcher script in `repro_dir`
|
157 |
+
def _run_minifier_launcher(self, repro_dir, isolate, *, minifier_args=()):
|
158 |
+
self.assertIsNotNone(repro_dir)
|
159 |
+
launch_file = os.path.join(repro_dir, "minifier_launcher.py")
|
160 |
+
with open(launch_file) as f:
|
161 |
+
launch_code = f.read()
|
162 |
+
self.assertTrue(os.path.exists(launch_file))
|
163 |
+
|
164 |
+
args = ["python3", launch_file, "minify", *minifier_args]
|
165 |
+
if not isolate:
|
166 |
+
args.append("--no-isolate")
|
167 |
+
launch_proc = self._maybe_subprocess_run(args, isolate=isolate, cwd=repro_dir)
|
168 |
+
print("minifier stdout:", launch_proc.stdout.decode("utf-8"))
|
169 |
+
stderr = launch_proc.stderr.decode("utf-8")
|
170 |
+
print("minifier stderr:", stderr)
|
171 |
+
self.assertNotIn("Input graph did not fail the tester", stderr)
|
172 |
+
|
173 |
+
return launch_proc, launch_code
|
174 |
+
|
175 |
+
# Runs the repro script in `repro_dir`
|
176 |
+
def _run_repro(self, repro_dir, *, isolate=True):
|
177 |
+
self.assertIsNotNone(repro_dir)
|
178 |
+
repro_file = os.path.join(repro_dir, "repro.py")
|
179 |
+
with open(repro_file) as f:
|
180 |
+
repro_code = f.read()
|
181 |
+
self.assertTrue(os.path.exists(repro_file))
|
182 |
+
|
183 |
+
repro_proc = self._maybe_subprocess_run(
|
184 |
+
["python3", repro_file], isolate=isolate, cwd=repro_dir
|
185 |
+
)
|
186 |
+
print("repro stdout:", repro_proc.stdout.decode("utf-8"))
|
187 |
+
print("repro stderr:", repro_proc.stderr.decode("utf-8"))
|
188 |
+
return repro_proc, repro_code
|
189 |
+
|
190 |
+
# Template for testing code.
|
191 |
+
# `run_code` is the code to run for the test case.
|
192 |
+
# `patch_code` is the code to be patched in every generated file; usually
|
193 |
+
# just use this to turn on bugs via the config
|
194 |
+
def _gen_test_code(self, run_code, repro_after, repro_level):
|
195 |
+
return f"""\
|
196 |
+
import torch
|
197 |
+
import torch._dynamo
|
198 |
+
{torch._dynamo.config.codegen_config()}
|
199 |
+
{torch._inductor.config.codegen_config()}
|
200 |
+
torch._dynamo.config.repro_after = "{repro_after}"
|
201 |
+
torch._dynamo.config.repro_level = {repro_level}
|
202 |
+
torch._dynamo.config.debug_dir_root = "{self.DEBUG_DIR}"
|
203 |
+
{run_code}
|
204 |
+
"""
|
205 |
+
|
206 |
+
# Runs a full minifier test.
|
207 |
+
# Minifier tests generally consist of 3 stages:
|
208 |
+
# 1. Run the problematic code
|
209 |
+
# 2. Run the generated minifier launcher script
|
210 |
+
# 3. Run the generated repro script
|
211 |
+
#
|
212 |
+
# If possible, you should run the test with isolate=False; use
|
213 |
+
# isolate=True only if the bug you're testing would otherwise
|
214 |
+
# crash the process
|
215 |
+
def _run_full_test(
|
216 |
+
self, run_code, repro_after, expected_error, *, isolate, minifier_args=()
|
217 |
+
) -> Optional[MinifierTestResult]:
|
218 |
+
if isolate:
|
219 |
+
repro_level = 3
|
220 |
+
elif expected_error is None or expected_error == "AccuracyError":
|
221 |
+
repro_level = 4
|
222 |
+
else:
|
223 |
+
repro_level = 2
|
224 |
+
test_code = self._gen_test_code(run_code, repro_after, repro_level)
|
225 |
+
print("running test", file=sys.stderr)
|
226 |
+
test_proc, repro_dir = self._run_test_code(test_code, isolate=isolate)
|
227 |
+
if expected_error is None:
|
228 |
+
# Just check that there was no error
|
229 |
+
self.assertEqual(test_proc.returncode, 0)
|
230 |
+
self.assertIsNone(repro_dir)
|
231 |
+
return None
|
232 |
+
# NB: Intentionally do not test return code; we only care about
|
233 |
+
# actually generating the repro, we don't have to crash
|
234 |
+
self.assertIn(expected_error, test_proc.stderr.decode("utf-8"))
|
235 |
+
self.assertIsNotNone(repro_dir)
|
236 |
+
print("running minifier", file=sys.stderr)
|
237 |
+
minifier_proc, minifier_code = self._run_minifier_launcher(
|
238 |
+
repro_dir, isolate=isolate, minifier_args=minifier_args
|
239 |
+
)
|
240 |
+
print("running repro", file=sys.stderr)
|
241 |
+
repro_proc, repro_code = self._run_repro(repro_dir, isolate=isolate)
|
242 |
+
self.assertIn(expected_error, repro_proc.stderr.decode("utf-8"))
|
243 |
+
self.assertNotEqual(repro_proc.returncode, 0)
|
244 |
+
return MinifierTestResult(minifier_code=minifier_code, repro_code=repro_code)
|
llmeval-env/lib/python3.10/site-packages/torch/_dynamo/testing.py
ADDED
@@ -0,0 +1,378 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import contextlib
|
2 |
+
import dis
|
3 |
+
import functools
|
4 |
+
import logging
|
5 |
+
import os.path
|
6 |
+
import random
|
7 |
+
import re
|
8 |
+
import sys
|
9 |
+
import types
|
10 |
+
import unittest
|
11 |
+
from typing import List, Optional, Sequence, Union
|
12 |
+
from unittest.mock import patch
|
13 |
+
|
14 |
+
np: Optional[types.ModuleType] = None
|
15 |
+
try:
|
16 |
+
import numpy as np
|
17 |
+
except ModuleNotFoundError:
|
18 |
+
np = None
|
19 |
+
|
20 |
+
import torch
|
21 |
+
from torch import fx
|
22 |
+
from torch._dynamo.output_graph import OutputGraph
|
23 |
+
|
24 |
+
from . import config, eval_frame, optimize_assert, reset
|
25 |
+
from .bytecode_transformation import (
|
26 |
+
create_instruction,
|
27 |
+
debug_checks,
|
28 |
+
is_generator,
|
29 |
+
transform_code_object,
|
30 |
+
)
|
31 |
+
from .guards import CheckFunctionManager, GuardedCode
|
32 |
+
from .utils import same
|
33 |
+
|
34 |
+
unsupported = eval_frame.unsupported
|
35 |
+
three = 3
|
36 |
+
|
37 |
+
log = logging.getLogger(__name__)
|
38 |
+
|
39 |
+
|
40 |
+
def clone_me(x):
|
41 |
+
if x is None:
|
42 |
+
return None
|
43 |
+
return x.detach().clone().requires_grad_(x.requires_grad)
|
44 |
+
|
45 |
+
|
46 |
+
def named_parameters_for_optimized_module(mod):
|
47 |
+
assert isinstance(mod, eval_frame.OptimizedModule)
|
48 |
+
return mod._orig_mod.named_parameters
|
49 |
+
|
50 |
+
|
51 |
+
def named_buffers_for_optimized_module(mod):
|
52 |
+
assert isinstance(mod, eval_frame.OptimizedModule)
|
53 |
+
return mod._orig_mod.named_buffers
|
54 |
+
|
55 |
+
|
56 |
+
def remove_optimized_module_prefix(name) -> str:
|
57 |
+
return re.sub(r"^_orig_mod[.]", "", name)
|
58 |
+
|
59 |
+
|
60 |
+
def collect_results(model, prediction, loss, example_inputs):
|
61 |
+
results = []
|
62 |
+
results.append(prediction)
|
63 |
+
results.append(loss)
|
64 |
+
# if isinstance(loss, torch.Tensor) and loss.item() > 1:
|
65 |
+
# log.warning(
|
66 |
+
# f"High loss value alert - {loss:.2f}. Can result in unstable gradients."
|
67 |
+
# )
|
68 |
+
|
69 |
+
grads = dict()
|
70 |
+
params = dict()
|
71 |
+
for name, param in model.named_parameters():
|
72 |
+
if isinstance(model, eval_frame.OptimizedModule):
|
73 |
+
name = remove_optimized_module_prefix(name)
|
74 |
+
param_copy = param
|
75 |
+
grad = param.grad
|
76 |
+
# Treat None and zero grad as same
|
77 |
+
if param.grad is None:
|
78 |
+
grad = torch.zeros_like(param)
|
79 |
+
grads[name + ".grad"] = grad
|
80 |
+
params[name] = param_copy
|
81 |
+
results.append(grads)
|
82 |
+
results.append(params)
|
83 |
+
buffers = dict()
|
84 |
+
for name, buffer in model.named_buffers():
|
85 |
+
if isinstance(model, eval_frame.OptimizedModule):
|
86 |
+
name = remove_optimized_module_prefix(name)
|
87 |
+
buffers[name] = buffer
|
88 |
+
results.append(buffers)
|
89 |
+
for example in example_inputs:
|
90 |
+
if isinstance(example, (tuple, list)):
|
91 |
+
for inp in example:
|
92 |
+
if isinstance(inp, torch.Tensor):
|
93 |
+
results.append(inp.grad)
|
94 |
+
else:
|
95 |
+
if isinstance(example, torch.Tensor):
|
96 |
+
results.append(example.grad)
|
97 |
+
return results
|
98 |
+
|
99 |
+
|
100 |
+
def requires_bwd_pass(out):
|
101 |
+
if isinstance(out, torch.Tensor):
|
102 |
+
return out.requires_grad
|
103 |
+
elif isinstance(out, (list, tuple)):
|
104 |
+
return any(requires_bwd_pass(x) for x in out)
|
105 |
+
elif out is None:
|
106 |
+
return False
|
107 |
+
elif isinstance(out, int):
|
108 |
+
return False
|
109 |
+
raise NotImplementedError("Don't know how to reduce", type(out))
|
110 |
+
|
111 |
+
|
112 |
+
def reduce_to_scalar_loss(out):
|
113 |
+
"""Reduce the output of a model to get scalar loss"""
|
114 |
+
if isinstance(out, torch.Tensor):
|
115 |
+
# Mean does not work on integer tensors
|
116 |
+
return out.sum() / out.numel()
|
117 |
+
elif isinstance(out, (list, tuple)):
|
118 |
+
return sum([reduce_to_scalar_loss(x) for x in out]) / len(out)
|
119 |
+
elif type(out).__name__ in (
|
120 |
+
"MaskedLMOutput",
|
121 |
+
"Seq2SeqLMOutput",
|
122 |
+
"CausalLMOutputWithCrossAttentions",
|
123 |
+
):
|
124 |
+
return reduce_to_scalar_loss(out.logits)
|
125 |
+
elif type(out).__name__ == "SquashedNormal":
|
126 |
+
return out.mean.sum()
|
127 |
+
elif isinstance(out, dict):
|
128 |
+
return sum([reduce_to_scalar_loss(value) for value in out.values()]) / len(
|
129 |
+
out.keys()
|
130 |
+
)
|
131 |
+
raise NotImplementedError("Don't know how to reduce", type(out))
|
132 |
+
|
133 |
+
|
134 |
+
def debug_dir() -> str:
|
135 |
+
path = os.path.join(os.path.dirname(__file__), "../debug")
|
136 |
+
if not os.path.exists(path):
|
137 |
+
os.mkdir(path)
|
138 |
+
return path
|
139 |
+
|
140 |
+
|
141 |
+
def debug_dump(name, code: types.CodeType, extra="") -> None:
|
142 |
+
with open(os.path.join(debug_dir(), name), "w") as fd:
|
143 |
+
fd.write(
|
144 |
+
f"{dis.Bytecode(code).info()}\n\n{dis.Bytecode(code).dis()}\n\n{extra}\n"
|
145 |
+
)
|
146 |
+
|
147 |
+
|
148 |
+
def debug_insert_nops(
|
149 |
+
frame, cache_size, hooks, _, *, skip: int = 0
|
150 |
+
) -> Optional[GuardedCode]:
|
151 |
+
"""used to debug jump updates"""
|
152 |
+
|
153 |
+
def insert_nops(instructions, code_options):
|
154 |
+
instructions.insert(0, create_instruction("NOP"))
|
155 |
+
instructions.insert(0, create_instruction("NOP"))
|
156 |
+
|
157 |
+
if is_generator(frame.f_code):
|
158 |
+
return None
|
159 |
+
|
160 |
+
debug_checks(frame.f_code)
|
161 |
+
code = transform_code_object(frame.f_code, insert_nops)
|
162 |
+
graph = OutputGraph(
|
163 |
+
code_options={},
|
164 |
+
compiler_fn=None,
|
165 |
+
root_tx=None,
|
166 |
+
export=False,
|
167 |
+
export_constraints=None,
|
168 |
+
frame_state={"_id": 0},
|
169 |
+
# TODO: shouldn't this be f_locals/f_globals from frame?
|
170 |
+
local_scope=locals(),
|
171 |
+
global_scope=globals(),
|
172 |
+
f_code=frame.f_code,
|
173 |
+
)
|
174 |
+
|
175 |
+
return GuardedCode(code, CheckFunctionManager(graph).check_fn)
|
176 |
+
|
177 |
+
|
178 |
+
class CompileCounter:
|
179 |
+
def __init__(self):
|
180 |
+
self.frame_count = 0
|
181 |
+
self.op_count = 0
|
182 |
+
|
183 |
+
def __call__(self, gm: torch.fx.GraphModule, example_inputs: List[torch.Tensor]):
|
184 |
+
self.frame_count += 1
|
185 |
+
for node in gm.graph.nodes:
|
186 |
+
if "call" in node.op:
|
187 |
+
self.op_count += 1
|
188 |
+
return gm.forward
|
189 |
+
|
190 |
+
def clear(self):
|
191 |
+
self.frame_count = 0
|
192 |
+
self.op_count = 0
|
193 |
+
|
194 |
+
|
195 |
+
class CompileCounterWithBackend:
|
196 |
+
def __init__(self, backend):
|
197 |
+
self.frame_count = 0
|
198 |
+
self.op_count = 0
|
199 |
+
self.backend = backend
|
200 |
+
self.graphs = []
|
201 |
+
|
202 |
+
def __call__(self, gm: torch.fx.GraphModule, example_inputs: List[torch.Tensor]):
|
203 |
+
from .backends.registry import lookup_backend
|
204 |
+
|
205 |
+
self.frame_count += 1
|
206 |
+
for node in gm.graph.nodes:
|
207 |
+
if "call" in node.op:
|
208 |
+
self.op_count += 1
|
209 |
+
self.graphs.append(gm)
|
210 |
+
return lookup_backend(self.backend)(gm, example_inputs)
|
211 |
+
|
212 |
+
|
213 |
+
# Equivalent to backend="eager", but also records graphs that
|
214 |
+
# we can assert on
|
215 |
+
class EagerAndRecordGraphs:
|
216 |
+
def __init__(self):
|
217 |
+
self.graphs = []
|
218 |
+
|
219 |
+
def __call__(self, gm: torch.fx.GraphModule, example_inputs: List[torch.Tensor]):
|
220 |
+
self.graphs.append(gm)
|
221 |
+
return gm
|
222 |
+
|
223 |
+
|
224 |
+
def strip_comment(code) -> str:
|
225 |
+
code = str(code)
|
226 |
+
return re.sub(r"(?m)^ *#.*\n?", "", code)
|
227 |
+
|
228 |
+
|
229 |
+
def remove_trailing_space(code) -> str:
|
230 |
+
return "\n".join([line.rstrip() for line in code.split("\n")])
|
231 |
+
|
232 |
+
|
233 |
+
def normalize_gm(gm_str) -> str:
|
234 |
+
# strip comments as comments have path to files which may differ from
|
235 |
+
# system to system.
|
236 |
+
return remove_trailing_space(strip_comment(gm_str))
|
237 |
+
|
238 |
+
|
239 |
+
def standard_test(
|
240 |
+
self,
|
241 |
+
fn,
|
242 |
+
nargs,
|
243 |
+
expected_ops=None,
|
244 |
+
expected_ops_dynamic=None,
|
245 |
+
expected_frame_count=1,
|
246 |
+
):
|
247 |
+
if not config.assume_static_by_default and expected_ops_dynamic is not None:
|
248 |
+
expected_ops = expected_ops_dynamic
|
249 |
+
|
250 |
+
actual = CompileCounter()
|
251 |
+
|
252 |
+
args1 = [torch.randn(10, 10) for _ in range(nargs)]
|
253 |
+
args2 = [torch.randn(10, 10) for _ in range(nargs)]
|
254 |
+
correct1 = fn(*args1)
|
255 |
+
correct2 = fn(*args2)
|
256 |
+
reset()
|
257 |
+
opt_fn = optimize_assert(actual)(fn)
|
258 |
+
val1a = opt_fn(*args1)
|
259 |
+
val2a = opt_fn(*args2)
|
260 |
+
val1b = opt_fn(*args1)
|
261 |
+
val2b = opt_fn(*args2)
|
262 |
+
reset()
|
263 |
+
self.assertTrue(same(val1a, correct1))
|
264 |
+
self.assertTrue(same(val1b, correct1))
|
265 |
+
self.assertTrue(same(val2a, correct2))
|
266 |
+
self.assertTrue(same(val2b, correct2))
|
267 |
+
self.assertEqual(actual.frame_count, expected_frame_count)
|
268 |
+
if expected_ops is not None:
|
269 |
+
self.assertEqual(actual.op_count, expected_ops)
|
270 |
+
|
271 |
+
|
272 |
+
def dummy_fx_compile(gm: fx.GraphModule, example_inputs):
|
273 |
+
return gm.forward
|
274 |
+
|
275 |
+
|
276 |
+
def format_speedup(speedup, pvalue, is_correct=True, pvalue_threshold=0.1):
|
277 |
+
if not is_correct:
|
278 |
+
return "ERROR"
|
279 |
+
if pvalue > pvalue_threshold:
|
280 |
+
return f"{speedup:.3f}x SAME"
|
281 |
+
return f"{speedup:.3f}x p={pvalue:.2f}"
|
282 |
+
|
283 |
+
|
284 |
+
def rand_strided(
|
285 |
+
size: Sequence[int],
|
286 |
+
stride: Sequence[int],
|
287 |
+
dtype: torch.dtype = torch.float32,
|
288 |
+
device: Union[str, torch.device] = "cpu",
|
289 |
+
extra_size: int = 0,
|
290 |
+
):
|
291 |
+
needed_size = (
|
292 |
+
sum((shape - 1) * stride for shape, stride in zip(size, stride))
|
293 |
+
+ 1
|
294 |
+
+ extra_size
|
295 |
+
)
|
296 |
+
if dtype.is_floating_point:
|
297 |
+
buffer = torch.randn(needed_size, dtype=dtype, device=device)
|
298 |
+
else:
|
299 |
+
buffer = torch.zeros(size=[needed_size], dtype=dtype, device=device)
|
300 |
+
return torch.as_strided(buffer, size, stride)
|
301 |
+
|
302 |
+
|
303 |
+
def _make_fn_with_patches(fn, *patches):
|
304 |
+
@functools.wraps(fn)
|
305 |
+
def _fn(*args, **kwargs):
|
306 |
+
with contextlib.ExitStack() as stack:
|
307 |
+
for module, attr, val in patches:
|
308 |
+
stack.enter_context(patch.object(module, attr, val))
|
309 |
+
|
310 |
+
return fn(*args, **kwargs)
|
311 |
+
|
312 |
+
return _fn
|
313 |
+
|
314 |
+
|
315 |
+
def make_test_cls_with_patches(cls, cls_prefix, fn_suffix, *patches, xfail_prop=None):
|
316 |
+
DummyTestClass = type(f"{cls_prefix}{cls.__name__}", cls.__bases__, {})
|
317 |
+
DummyTestClass.__qualname__ = DummyTestClass.__name__
|
318 |
+
|
319 |
+
for name in dir(cls):
|
320 |
+
if name.startswith("test_"):
|
321 |
+
fn = getattr(cls, name)
|
322 |
+
if not callable(fn):
|
323 |
+
setattr(DummyTestClass, name, getattr(cls, name))
|
324 |
+
continue
|
325 |
+
new_name = f"{name}{fn_suffix}"
|
326 |
+
new_fn = _make_fn_with_patches(fn, *patches)
|
327 |
+
new_fn.__name__ = new_name
|
328 |
+
if xfail_prop is not None and hasattr(fn, xfail_prop):
|
329 |
+
new_fn = unittest.expectedFailure(new_fn)
|
330 |
+
setattr(DummyTestClass, new_name, new_fn)
|
331 |
+
# NB: Doesn't handle slots correctly, but whatever
|
332 |
+
elif not hasattr(DummyTestClass, name):
|
333 |
+
setattr(DummyTestClass, name, getattr(cls, name))
|
334 |
+
|
335 |
+
return DummyTestClass
|
336 |
+
|
337 |
+
|
338 |
+
# test Python 3.11+ specific features
|
339 |
+
def skipIfNotPy311(fn):
|
340 |
+
if sys.version_info >= (3, 11):
|
341 |
+
return fn
|
342 |
+
return unittest.skip(fn)
|
343 |
+
|
344 |
+
|
345 |
+
def xfailIfPy311(fn):
|
346 |
+
if sys.version_info >= (3, 11):
|
347 |
+
return unittest.expectedFailure(fn)
|
348 |
+
return fn
|
349 |
+
|
350 |
+
|
351 |
+
# Controls tests generated in test/inductor/test_torchinductor_dynamic_shapes.py
|
352 |
+
# and test/dynamo/test_dynamic_shapes.py
|
353 |
+
def expectedFailureDynamic(fn):
|
354 |
+
fn._expected_failure_dynamic = True
|
355 |
+
return fn
|
356 |
+
|
357 |
+
|
358 |
+
# Controls tests generated in test/inductor/test_torchinductor_codegen_dynamic_shapes.py
|
359 |
+
def expectedFailureCodegenDynamic(fn):
|
360 |
+
fn._expected_failure_codegen_dynamic = True
|
361 |
+
return fn
|
362 |
+
|
363 |
+
|
364 |
+
# Controls test generated in test/inductor/test_cpp_wrapper.py
|
365 |
+
def expectedFailureDynamicWrapper(fn):
|
366 |
+
fn._expected_failure_dynamic_wrapper = True
|
367 |
+
return fn
|
368 |
+
|
369 |
+
|
370 |
+
def reset_rng_state(use_xla=False):
|
371 |
+
torch.manual_seed(1337)
|
372 |
+
random.seed(1337)
|
373 |
+
if np:
|
374 |
+
np.random.seed(1337)
|
375 |
+
if use_xla:
|
376 |
+
import torch_xla.core.xla_model as xm
|
377 |
+
|
378 |
+
xm.set_rng_state(1337, str(xm.xla_device()))
|
llmeval-env/lib/python3.10/site-packages/torch/_dynamo/trace_rules.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
llmeval-env/lib/python3.10/site-packages/torch/_dynamo/utils.py
ADDED
@@ -0,0 +1,2548 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import atexit
|
2 |
+
import collections
|
3 |
+
import contextlib
|
4 |
+
import copy
|
5 |
+
import cProfile
|
6 |
+
import dataclasses
|
7 |
+
import datetime
|
8 |
+
import dis
|
9 |
+
import enum
|
10 |
+
import functools
|
11 |
+
import gc
|
12 |
+
import inspect
|
13 |
+
import itertools
|
14 |
+
import linecache
|
15 |
+
import logging
|
16 |
+
import math
|
17 |
+
import operator
|
18 |
+
import os
|
19 |
+
import pstats
|
20 |
+
import re
|
21 |
+
import subprocess
|
22 |
+
import sys
|
23 |
+
import textwrap
|
24 |
+
import threading
|
25 |
+
import time
|
26 |
+
import types
|
27 |
+
import typing
|
28 |
+
import weakref
|
29 |
+
from contextlib import contextmanager
|
30 |
+
from functools import lru_cache, wraps
|
31 |
+
from pathlib import Path
|
32 |
+
from types import MethodWrapperType
|
33 |
+
from typing import (
|
34 |
+
Any,
|
35 |
+
Callable,
|
36 |
+
cast,
|
37 |
+
ClassVar,
|
38 |
+
Counter,
|
39 |
+
DefaultDict,
|
40 |
+
Deque,
|
41 |
+
Dict,
|
42 |
+
Iterator,
|
43 |
+
KeysView,
|
44 |
+
List,
|
45 |
+
Optional,
|
46 |
+
Set,
|
47 |
+
Tuple,
|
48 |
+
Type,
|
49 |
+
Union,
|
50 |
+
ValuesView,
|
51 |
+
)
|
52 |
+
|
53 |
+
from ..utils.hooks import RemovableHandle
|
54 |
+
|
55 |
+
try:
|
56 |
+
import numpy as np
|
57 |
+
except ModuleNotFoundError:
|
58 |
+
np = None # type: ignore[assignment]
|
59 |
+
|
60 |
+
try:
|
61 |
+
import torch._logging
|
62 |
+
import torch._numpy as tnp
|
63 |
+
from torch._guards import detect_fake_mode # noqa: F401n
|
64 |
+
from torch._logging import LazyString
|
65 |
+
from . import config
|
66 |
+
|
67 |
+
# NOTE: Make sure `NP_SUPPORTED_MODULES` and `NP_TO_TNP_MODULE` are in sync.
|
68 |
+
if np:
|
69 |
+
NP_SUPPORTED_MODULES: Tuple[types.ModuleType, ...] = (
|
70 |
+
np,
|
71 |
+
np.fft,
|
72 |
+
np.linalg,
|
73 |
+
np.random,
|
74 |
+
)
|
75 |
+
|
76 |
+
NP_TO_TNP_MODULE = {
|
77 |
+
np: tnp,
|
78 |
+
np.fft: tnp.fft,
|
79 |
+
np.linalg: tnp.linalg,
|
80 |
+
np.random: tnp.random,
|
81 |
+
}
|
82 |
+
else:
|
83 |
+
NP_SUPPORTED_MODULES = tuple()
|
84 |
+
|
85 |
+
NP_TO_TNP_MODULE = {}
|
86 |
+
from torch._subclasses.fake_tensor import FakeTensor, is_fake, maybe_get_fake_mode
|
87 |
+
except ImportError:
|
88 |
+
pass
|
89 |
+
|
90 |
+
import importlib
|
91 |
+
|
92 |
+
import torch
|
93 |
+
import torch._functorch.config
|
94 |
+
import torch.fx.experimental.symbolic_shapes
|
95 |
+
from torch import fx
|
96 |
+
from torch._dispatch.python import enable_python_dispatcher
|
97 |
+
from torch._utils_internal import log_compilation_event
|
98 |
+
|
99 |
+
from torch.nn.modules.lazy import LazyModuleMixin
|
100 |
+
from torch.utils._pytree import tree_map_only
|
101 |
+
|
102 |
+
|
103 |
+
counters: DefaultDict[str, Counter[str]] = collections.defaultdict(collections.Counter)
|
104 |
+
optimus_scuba_log: Dict[str, Any] = {}
|
105 |
+
troubleshooting_url = "https://pytorch.org/docs/master/compile/troubleshooting.html"
|
106 |
+
nnmodule_doc_url = "https://pytorch.org/docs/master/compile/nn-module.html"
|
107 |
+
nnmodule_doc_url_msg = f"See {nnmodule_doc_url} for more information and limitations."
|
108 |
+
log = logging.getLogger(__name__)
|
109 |
+
|
110 |
+
# profiling compilation time by function
|
111 |
+
compilation_time_metrics: Dict[str, List[float]] = {}
|
112 |
+
|
113 |
+
# profiling compilation time by frame phase
|
114 |
+
frame_phase_timing: Dict[str, Dict[str, float]] = {}
|
115 |
+
|
116 |
+
timer_counter = itertools.count()
|
117 |
+
|
118 |
+
|
119 |
+
def tabulate(rows, headers):
|
120 |
+
try:
|
121 |
+
import tabulate
|
122 |
+
|
123 |
+
return tabulate.tabulate(rows, headers=headers)
|
124 |
+
except ImportError:
|
125 |
+
return "\n".join(
|
126 |
+
", ".join(map(str, row)) for row in itertools.chain([headers], rows)
|
127 |
+
)
|
128 |
+
|
129 |
+
|
130 |
+
def maybe_cprofile(func):
|
131 |
+
if config.cprofile:
|
132 |
+
return cprofile_wrapper(func)
|
133 |
+
return func
|
134 |
+
|
135 |
+
|
136 |
+
def cprofile_wrapper(func):
|
137 |
+
@wraps(func)
|
138 |
+
def profile_wrapper(*args, **kwargs):
|
139 |
+
global timer_counter
|
140 |
+
profile_cnt = next(timer_counter)
|
141 |
+
profile_path = Path(func.__name__ + f"{profile_cnt}.profile")
|
142 |
+
prof = cProfile.Profile()
|
143 |
+
prof.enable()
|
144 |
+
start_ts = time.time()
|
145 |
+
retval = prof.runcall(func, *args, **kwargs)
|
146 |
+
profile_latency = time.time() - start_ts
|
147 |
+
prof.disable()
|
148 |
+
print(
|
149 |
+
f"### Cprofile for {func.__name__} iter {profile_cnt} took {profile_latency:.3f} seconds ###"
|
150 |
+
)
|
151 |
+
ps = pstats.Stats(prof)
|
152 |
+
prof.dump_stats(profile_path)
|
153 |
+
svg_path = profile_path.with_suffix(".svg")
|
154 |
+
try:
|
155 |
+
gprof2dot_process = subprocess.Popen(
|
156 |
+
[
|
157 |
+
"gprof2dot",
|
158 |
+
"-f",
|
159 |
+
"pstats",
|
160 |
+
"--node-label=total-time-percentage",
|
161 |
+
"--node-label=self-time-percentage",
|
162 |
+
"--node-label=total-time",
|
163 |
+
str(profile_path),
|
164 |
+
],
|
165 |
+
stdout=subprocess.PIPE,
|
166 |
+
)
|
167 |
+
subprocess.check_call(
|
168 |
+
["dot", "-Tsvg", "-o", str(svg_path)],
|
169 |
+
stdin=gprof2dot_process.stdout,
|
170 |
+
)
|
171 |
+
print(f"Generated SVG from profile at {str(svg_path)}")
|
172 |
+
except FileNotFoundError:
|
173 |
+
print(
|
174 |
+
"Failed to generate SVG from profile -- dumping stats instead."
|
175 |
+
"Try installing gprof2dot and dot for a better visualization"
|
176 |
+
)
|
177 |
+
ps.sort_stats(pstats.SortKey.TIME).print_stats(20)
|
178 |
+
ps.sort_stats(pstats.SortKey.CUMULATIVE).print_stats(20)
|
179 |
+
return retval
|
180 |
+
|
181 |
+
return profile_wrapper
|
182 |
+
|
183 |
+
|
184 |
+
curr_frame = 0
|
185 |
+
|
186 |
+
|
187 |
+
# Note: Called for you by dynamo - you almost never ever want to invoke this yourself.
|
188 |
+
def increment_frame():
|
189 |
+
global curr_frame
|
190 |
+
curr_frame = curr_frame + 1
|
191 |
+
|
192 |
+
|
193 |
+
# Note: Called for you by dynamo - you almost never ever want to invoke this yourself.
|
194 |
+
def reset_frame_count():
|
195 |
+
global curr_frame
|
196 |
+
frame_phase_timing.clear()
|
197 |
+
compilation_time_metrics.clear()
|
198 |
+
curr_frame = 0
|
199 |
+
|
200 |
+
|
201 |
+
op_count = 0
|
202 |
+
|
203 |
+
|
204 |
+
def increment_op_count(cnt):
|
205 |
+
global op_count
|
206 |
+
op_count += cnt
|
207 |
+
|
208 |
+
|
209 |
+
# Print a report of time spent so far
|
210 |
+
# Ex:
|
211 |
+
# TIMING:
|
212 |
+
# entire_frame_compile:8.574629999999999
|
213 |
+
# backend_compile:5.26806
|
214 |
+
def print_time_report():
|
215 |
+
total = 0.0
|
216 |
+
total_by_key = {}
|
217 |
+
for timings in frame_phase_timing.values():
|
218 |
+
for key, timing in timings.items():
|
219 |
+
total += timing
|
220 |
+
if key not in total_by_key:
|
221 |
+
total_by_key[key] = timing
|
222 |
+
else:
|
223 |
+
total_by_key[key] += timing
|
224 |
+
|
225 |
+
out = "TIMING:"
|
226 |
+
for key, value in total_by_key.items():
|
227 |
+
out = f"{out} {key}:{round(value, 5)}"
|
228 |
+
|
229 |
+
print(out)
|
230 |
+
|
231 |
+
|
232 |
+
# dynamo_timed API works as a function decorator
|
233 |
+
# By wrapping a function in dynamo_timed, we can store a record in compilation_time_metrics
|
234 |
+
# where the key is the functions name.
|
235 |
+
# For example:
|
236 |
+
#
|
237 |
+
# @dynamo_timed
|
238 |
+
# def _foo(...):
|
239 |
+
#
|
240 |
+
# Would show up as an entry in our timing dict:
|
241 |
+
# OrderedDict([('bar.<locals>._foo', [0.083690, 0.23949, 3.1425e-05])])
|
242 |
+
# This is extremely useful for granular debugging.
|
243 |
+
#
|
244 |
+
# For a higher-level mode, pass a phase_name into dynamo_timed
|
245 |
+
# phase_names record an extra record into a separate compilation timing structure,
|
246 |
+
# one keyed on frame+name rather than function.
|
247 |
+
# The frame is incremented outside of this function, in def increment_frame() above.
|
248 |
+
|
249 |
+
|
250 |
+
def dynamo_timed(original_function=None, phase_name=None):
|
251 |
+
def dynamo_timed_inner(func):
|
252 |
+
if config.cprofile:
|
253 |
+
return func
|
254 |
+
|
255 |
+
@wraps(func)
|
256 |
+
def time_wrapper(*args, **kwargs):
|
257 |
+
key = func.__qualname__
|
258 |
+
if key not in compilation_time_metrics:
|
259 |
+
compilation_time_metrics[key] = []
|
260 |
+
with torch.profiler.record_function(f"{key} (dynamo_timed)"):
|
261 |
+
t0 = time.time()
|
262 |
+
r = func(*args, **kwargs)
|
263 |
+
time_spent = time.time() - t0
|
264 |
+
compilation_time_metrics[key].append(time_spent)
|
265 |
+
if phase_name:
|
266 |
+
frame_key = str(curr_frame)
|
267 |
+
if frame_key not in frame_phase_timing:
|
268 |
+
frame_phase_timing[frame_key] = {}
|
269 |
+
if phase_name not in frame_phase_timing[frame_key]:
|
270 |
+
frame_phase_timing[frame_key][phase_name] = time_spent
|
271 |
+
else:
|
272 |
+
frame_phase_timing[frame_key][phase_name] += time_spent
|
273 |
+
return r
|
274 |
+
|
275 |
+
return time_wrapper
|
276 |
+
|
277 |
+
if original_function:
|
278 |
+
return dynamo_timed_inner(original_function)
|
279 |
+
return dynamo_timed_inner
|
280 |
+
|
281 |
+
|
282 |
+
def compile_times(repr="str", aggregate=False):
|
283 |
+
"""
|
284 |
+
Get metrics about torchdynamo frontend/backend compilation times.
|
285 |
+
|
286 |
+
Accumulates information from functions tagged with `@dynamo_timed`.
|
287 |
+
|
288 |
+
repr='str' returns a printable string for user interaction, and 'csv'
|
289 |
+
returns headers, rows which can be logged for output
|
290 |
+
|
291 |
+
aggregate causes values from multiple compilations (e.g. split graphs)
|
292 |
+
to be accumulated into one value. If false, expect more than one value
|
293 |
+
per metric.
|
294 |
+
"""
|
295 |
+
|
296 |
+
def fmt_fn(values, item_fn=lambda x: x):
|
297 |
+
if aggregate:
|
298 |
+
return item_fn(sum(values))
|
299 |
+
return ", ".join(map(item_fn, values))
|
300 |
+
|
301 |
+
if repr == "str":
|
302 |
+
rows = [
|
303 |
+
(k, fmt_fn(compilation_time_metrics[k], item_fn=lambda x: f"{x:.4f}"))
|
304 |
+
for k in compilation_time_metrics
|
305 |
+
]
|
306 |
+
out = "TorchDynamo compilation metrics:\n"
|
307 |
+
out += tabulate(rows, headers=("Function", "Runtimes (s)"))
|
308 |
+
return out
|
309 |
+
elif repr == "csv":
|
310 |
+
values = [
|
311 |
+
fmt_fn(v, item_fn=lambda x: f"{x:.6f}")
|
312 |
+
for v in compilation_time_metrics.values()
|
313 |
+
]
|
314 |
+
headers = list(compilation_time_metrics.keys())
|
315 |
+
return headers, values
|
316 |
+
|
317 |
+
|
318 |
+
@atexit.register
|
319 |
+
def dump_compile_times():
|
320 |
+
log.info(compile_times(repr="str", aggregate=True))
|
321 |
+
|
322 |
+
|
323 |
+
tensortype_to_dtype = {
|
324 |
+
torch.FloatTensor: (torch.float32, torch.float),
|
325 |
+
torch.DoubleTensor: (torch.float64, torch.double),
|
326 |
+
torch.HalfTensor: (torch.float16, torch.half),
|
327 |
+
torch.BFloat16Tensor: (torch.bfloat16,),
|
328 |
+
torch.ByteTensor: (torch.uint8,),
|
329 |
+
torch.CharTensor: (torch.int8,),
|
330 |
+
torch.LongTensor: (torch.int64, torch.long),
|
331 |
+
torch.IntTensor: (torch.int32, torch.int),
|
332 |
+
torch.ShortTensor: (torch.int16, torch.short),
|
333 |
+
torch.BoolTensor: (torch.bool,),
|
334 |
+
}
|
335 |
+
|
336 |
+
|
337 |
+
class DuplicateWarningChecker:
|
338 |
+
def __init__(self, maxsize=4096):
|
339 |
+
self.maxsize = maxsize
|
340 |
+
self.reset()
|
341 |
+
|
342 |
+
def reset(self):
|
343 |
+
self.set = collections.OrderedDict()
|
344 |
+
|
345 |
+
def add(self, key):
|
346 |
+
if key in self.set:
|
347 |
+
self.set.move_to_end(key, last=True)
|
348 |
+
if not config.verbose:
|
349 |
+
return False
|
350 |
+
else:
|
351 |
+
self.set[key] = None
|
352 |
+
while len(self.set) > self.maxsize:
|
353 |
+
self.set.popitem(last=False)
|
354 |
+
return True
|
355 |
+
|
356 |
+
|
357 |
+
graph_break_dup_warning_checker = DuplicateWarningChecker()
|
358 |
+
|
359 |
+
|
360 |
+
def setup_compile_debug():
|
361 |
+
compile_debug = os.environ.get("TORCH_COMPILE_DEBUG", "0") == "1"
|
362 |
+
|
363 |
+
if compile_debug:
|
364 |
+
torch._logging.set_logs(
|
365 |
+
dynamo=logging.DEBUG,
|
366 |
+
aot=logging.DEBUG,
|
367 |
+
inductor=logging.DEBUG,
|
368 |
+
output_code=True, # this is off by default
|
369 |
+
)
|
370 |
+
return add_file_handler()
|
371 |
+
|
372 |
+
return contextlib.ExitStack()
|
373 |
+
|
374 |
+
|
375 |
+
def reset_graph_break_dup_checker():
|
376 |
+
graph_break_dup_warning_checker.reset()
|
377 |
+
|
378 |
+
|
379 |
+
def add_file_handler():
|
380 |
+
log_path = os.path.join(get_debug_dir(), "torchdynamo")
|
381 |
+
os.makedirs(log_path, exist_ok=True)
|
382 |
+
|
383 |
+
log_file_handler = logging.FileHandler(os.path.join(log_path, "debug.log"))
|
384 |
+
logger = logging.getLogger("torch._dynamo")
|
385 |
+
logger.addHandler(log_file_handler)
|
386 |
+
|
387 |
+
exitstack = contextlib.ExitStack()
|
388 |
+
exitstack.callback(lambda: logger.removeHandler(log_file_handler))
|
389 |
+
return exitstack
|
390 |
+
|
391 |
+
|
392 |
+
def setup_log_file():
|
393 |
+
exitstack = contextlib.ExitStack()
|
394 |
+
if config.log_file_name is not None:
|
395 |
+
log_file_handler = logging.FileHandler(config.log_file_name)
|
396 |
+
for logger in torch._logging._internal.get_loggers():
|
397 |
+
logger.addHandler(log_file_handler)
|
398 |
+
exitstack.callback(lambda: logger.removeHandler(log_file_handler))
|
399 |
+
return exitstack
|
400 |
+
|
401 |
+
return exitstack
|
402 |
+
|
403 |
+
|
404 |
+
def gen_record_file_name(exc, code):
|
405 |
+
return f"{get_debug_dir()}/error_recordings/\
|
406 |
+
{code.co_name}_{type(exc).__name__}_{code.co_firstlineno}.rec"
|
407 |
+
|
408 |
+
|
409 |
+
def write_record_to_file(filename, exec_record):
|
410 |
+
try:
|
411 |
+
if os.path.exists(filename):
|
412 |
+
log.warning(
|
413 |
+
"Unable to write execution record %s; file already exists.", filename
|
414 |
+
)
|
415 |
+
else:
|
416 |
+
os.makedirs(os.path.dirname(filename), exist_ok=True)
|
417 |
+
with open(filename, "wb") as f:
|
418 |
+
exec_record.dump(f)
|
419 |
+
except Exception:
|
420 |
+
log.exception("Unable to write execution record %s", filename)
|
421 |
+
|
422 |
+
|
423 |
+
def count_calls(g: fx.Graph):
|
424 |
+
c = 0
|
425 |
+
for n in g.nodes:
|
426 |
+
if "call" in n.op:
|
427 |
+
c += 1
|
428 |
+
return c
|
429 |
+
|
430 |
+
|
431 |
+
def identity(x):
|
432 |
+
return x
|
433 |
+
|
434 |
+
|
435 |
+
def hashable(x):
|
436 |
+
try:
|
437 |
+
hash(x)
|
438 |
+
return True
|
439 |
+
except TypeError:
|
440 |
+
return False
|
441 |
+
# cannot hash writable memoryview object
|
442 |
+
except ValueError:
|
443 |
+
return False
|
444 |
+
|
445 |
+
|
446 |
+
def nothing(*args, **kwargs):
|
447 |
+
pass
|
448 |
+
|
449 |
+
|
450 |
+
class ExactWeakKeyDictionary:
|
451 |
+
"""Similar to weakref.WeakKeyDictionary, but use `is`/`id` rather than `==` to compare equality"""
|
452 |
+
|
453 |
+
def __init__(self):
|
454 |
+
self.values = dict()
|
455 |
+
self.refs = dict()
|
456 |
+
|
457 |
+
def __getitem__(self, key):
|
458 |
+
return self.values[id(key)]
|
459 |
+
|
460 |
+
def get(self, key, default=None):
|
461 |
+
return self.values.get(id(key), default)
|
462 |
+
|
463 |
+
def __contains__(self, key):
|
464 |
+
return id(key) in self.values
|
465 |
+
|
466 |
+
def __setitem__(self, key, value):
|
467 |
+
idx = id(key)
|
468 |
+
if idx not in self.refs:
|
469 |
+
self.refs[idx] = weakref.ref(key, lambda ref: self._remove_id(idx))
|
470 |
+
self.values[idx] = value
|
471 |
+
|
472 |
+
def _remove_id(self, idx):
|
473 |
+
if idx in self.values:
|
474 |
+
del self.values[idx]
|
475 |
+
if idx in self.refs:
|
476 |
+
del self.refs[idx]
|
477 |
+
|
478 |
+
def clear(self):
|
479 |
+
self.refs.clear()
|
480 |
+
self.values.clear()
|
481 |
+
|
482 |
+
|
483 |
+
def istype(obj, allowed_types):
|
484 |
+
"""isinstance() without subclasses"""
|
485 |
+
if isinstance(allowed_types, (tuple, list, set)):
|
486 |
+
return type(obj) in allowed_types
|
487 |
+
return type(obj) is allowed_types
|
488 |
+
|
489 |
+
|
490 |
+
def is_typing(value):
|
491 |
+
# _Final catches most of typing classes:
|
492 |
+
# - Any
|
493 |
+
# - Callable
|
494 |
+
# - Union
|
495 |
+
# ...
|
496 |
+
#
|
497 |
+
# NB: we intentionally ignore classes that inherit from Generic, since they
|
498 |
+
# can be used as both TypingVariable as well as UserDefinedClassVariable.
|
499 |
+
return isinstance(value, typing._Final) or value is typing.Generic # type: ignore[attr-defined]
|
500 |
+
|
501 |
+
|
502 |
+
def is_numpy_int_type(value):
|
503 |
+
if not np:
|
504 |
+
return False
|
505 |
+
|
506 |
+
return istype(
|
507 |
+
value,
|
508 |
+
(
|
509 |
+
np.int8,
|
510 |
+
np.int16,
|
511 |
+
np.int32,
|
512 |
+
np.int64,
|
513 |
+
np.uint8,
|
514 |
+
np.uint16,
|
515 |
+
np.uint32,
|
516 |
+
np.uint64,
|
517 |
+
),
|
518 |
+
)
|
519 |
+
|
520 |
+
|
521 |
+
def is_numpy_float_type(value):
|
522 |
+
if not np:
|
523 |
+
return False
|
524 |
+
|
525 |
+
return istype(
|
526 |
+
value,
|
527 |
+
(
|
528 |
+
np.float16,
|
529 |
+
np.float32,
|
530 |
+
np.float64,
|
531 |
+
),
|
532 |
+
)
|
533 |
+
|
534 |
+
|
535 |
+
def is_function_or_wrapper(value):
|
536 |
+
return (
|
537 |
+
is_function(value)
|
538 |
+
or isinstance(value, functools._lru_cache_wrapper)
|
539 |
+
and is_function(inspect.getattr_static(value, "__wrapped__"))
|
540 |
+
or isinstance(value, (torch._ops.OpOverloadPacket, torch._ops.OpOverload))
|
541 |
+
)
|
542 |
+
|
543 |
+
|
544 |
+
def is_function(value):
|
545 |
+
return isinstance(
|
546 |
+
value,
|
547 |
+
(
|
548 |
+
types.FunctionType,
|
549 |
+
types.BuiltinFunctionType,
|
550 |
+
types.MethodDescriptorType,
|
551 |
+
types.WrapperDescriptorType,
|
552 |
+
torch.jit.ScriptFunction,
|
553 |
+
),
|
554 |
+
)
|
555 |
+
|
556 |
+
|
557 |
+
def unwrap_if_wrapper(fn):
|
558 |
+
return unwrap_with_attr_name_if_wrapper(fn)[0]
|
559 |
+
|
560 |
+
|
561 |
+
def unwrap_with_attr_name_if_wrapper(fn):
|
562 |
+
# unpack @functools.lru_cache wrapped function
|
563 |
+
if isinstance(fn, functools._lru_cache_wrapper):
|
564 |
+
fn = inspect.getattr_static(fn, "__wrapped__")
|
565 |
+
attr_name = "__wrapped__"
|
566 |
+
# unpack @torch._dynamo.optimize()(fn) wrapped function
|
567 |
+
elif is_function(fn) and inspect.getattr_static(fn, "_torchdynamo_inline", False):
|
568 |
+
fn = inspect.getattr_static(fn, "_torchdynamo_inline", fn)
|
569 |
+
attr_name = "_torchdynamo_inline"
|
570 |
+
# unpack torch.jit.script_if_tracing
|
571 |
+
elif is_function(fn) and inspect.getattr_static(
|
572 |
+
fn, "__script_if_tracing_wrapper", False
|
573 |
+
):
|
574 |
+
fn = inspect.getattr_static(fn, "__original_fn", fn)
|
575 |
+
attr_name = "__original_fn"
|
576 |
+
else:
|
577 |
+
attr_name = None
|
578 |
+
return fn, attr_name
|
579 |
+
|
580 |
+
|
581 |
+
def is_numpy_ndarray(value):
|
582 |
+
if not np:
|
583 |
+
return False
|
584 |
+
|
585 |
+
return istype(value, np.ndarray)
|
586 |
+
|
587 |
+
|
588 |
+
def istensor(obj):
|
589 |
+
"""Check of obj is a tensor"""
|
590 |
+
tensor_list = (
|
591 |
+
torch.Tensor,
|
592 |
+
torch.nn.Parameter,
|
593 |
+
*config.traceable_tensor_subclasses,
|
594 |
+
)
|
595 |
+
tensor_list = tensor_list + (torch._subclasses.FakeTensor,)
|
596 |
+
return istype(obj, tensor_list)
|
597 |
+
|
598 |
+
|
599 |
+
def is_lazy_module(mod):
|
600 |
+
return isinstance(mod, LazyModuleMixin)
|
601 |
+
|
602 |
+
|
603 |
+
@functools.lru_cache(4096)
|
604 |
+
def print_once(*args):
|
605 |
+
print(*args)
|
606 |
+
|
607 |
+
|
608 |
+
def make_cell(val=None):
|
609 |
+
"""Some black magic to create a cell object that usually only exists in a closure"""
|
610 |
+
x = val
|
611 |
+
|
612 |
+
def f():
|
613 |
+
return x
|
614 |
+
|
615 |
+
assert f.__closure__ is not None and len(f.__closure__) == 1
|
616 |
+
return f.__closure__[0]
|
617 |
+
|
618 |
+
|
619 |
+
def proxy_args_kwargs(args, kwargs):
|
620 |
+
try:
|
621 |
+
proxy_args = tuple(arg.as_proxy() for arg in args)
|
622 |
+
proxy_kwargs = {key: arg.as_proxy() for key, arg in kwargs.items()}
|
623 |
+
return proxy_args, proxy_kwargs
|
624 |
+
except NotImplementedError as e:
|
625 |
+
from .exc import unimplemented
|
626 |
+
from .variables.base import typestr
|
627 |
+
|
628 |
+
raise unimplemented(
|
629 |
+
f"call_function args: {typestr(*args)} {typestr(*list(kwargs.values()))}"
|
630 |
+
) from e
|
631 |
+
|
632 |
+
|
633 |
+
@dataclasses.dataclass
|
634 |
+
class CompilationMetrics:
|
635 |
+
frame_key: str
|
636 |
+
co_name: str
|
637 |
+
co_filename: str
|
638 |
+
co_firstlineno: int
|
639 |
+
cache_size: int
|
640 |
+
accumulated_cache_size: int
|
641 |
+
guard_count: Optional[int]
|
642 |
+
shape_env_guard_count: Optional[int]
|
643 |
+
graph_op_count: Optional[int]
|
644 |
+
graph_node_count: Optional[int]
|
645 |
+
graph_input_count: Optional[int]
|
646 |
+
start_time: float
|
647 |
+
entire_frame_compile_time_s: Optional[float]
|
648 |
+
backend_compile_time_s: Optional[float]
|
649 |
+
inductor_compile_time_s: Optional[float]
|
650 |
+
code_gen_time_s: Optional[float]
|
651 |
+
fail_type: Optional[str]
|
652 |
+
fail_reason: Optional[str]
|
653 |
+
fail_user_frame_filename: Optional[str]
|
654 |
+
fail_user_frame_lineno: Optional[int]
|
655 |
+
non_compliant_ops: Set[str]
|
656 |
+
compliant_custom_ops: Set[str]
|
657 |
+
|
658 |
+
|
659 |
+
DEFAULT_COMPILATION_METRICS_LIMIT = 64
|
660 |
+
|
661 |
+
|
662 |
+
_compilation_metrics: Deque[CompilationMetrics] = collections.deque(
|
663 |
+
maxlen=DEFAULT_COMPILATION_METRICS_LIMIT
|
664 |
+
)
|
665 |
+
|
666 |
+
|
667 |
+
def record_compilation_metrics(compilation_metrics: CompilationMetrics):
|
668 |
+
global _compilation_metrics
|
669 |
+
_compilation_metrics.append(compilation_metrics)
|
670 |
+
if config.log_compilation_metrics:
|
671 |
+
log_compilation_event(compilation_metrics)
|
672 |
+
|
673 |
+
|
674 |
+
def set_compilation_metrics_limit(new_size: int) -> None:
|
675 |
+
global _compilation_metrics
|
676 |
+
while len(_compilation_metrics) > new_size:
|
677 |
+
_compilation_metrics.popleft()
|
678 |
+
new_deque = collections.deque(_compilation_metrics, maxlen=new_size)
|
679 |
+
_compilation_metrics = new_deque
|
680 |
+
|
681 |
+
|
682 |
+
def clear_compilation_metrics() -> None:
|
683 |
+
global _compilation_metrics
|
684 |
+
_compilation_metrics.clear()
|
685 |
+
|
686 |
+
|
687 |
+
def get_compilation_metrics() -> List[CompilationMetrics]:
|
688 |
+
return list(_compilation_metrics)
|
689 |
+
|
690 |
+
|
691 |
+
@dataclasses.dataclass
|
692 |
+
class CleanupHook:
|
693 |
+
"""Remove a global variable when hook is called"""
|
694 |
+
|
695 |
+
scope: Dict[str, Any]
|
696 |
+
name: str
|
697 |
+
|
698 |
+
def __call__(self, *args):
|
699 |
+
CleanupManager.count -= 1
|
700 |
+
del self.scope[self.name]
|
701 |
+
|
702 |
+
@staticmethod
|
703 |
+
def create(scope, name, val):
|
704 |
+
assert name not in scope
|
705 |
+
CleanupManager.count += 1
|
706 |
+
scope[name] = val
|
707 |
+
return CleanupHook(scope, name)
|
708 |
+
|
709 |
+
|
710 |
+
class CleanupManager(ExactWeakKeyDictionary):
|
711 |
+
count = 0
|
712 |
+
instance: ClassVar["CleanupManager"]
|
713 |
+
|
714 |
+
def _remove_id(self, idx):
|
715 |
+
for hook in self.values[idx]:
|
716 |
+
hook()
|
717 |
+
super()._remove_id(idx)
|
718 |
+
|
719 |
+
|
720 |
+
CleanupManager.instance = CleanupManager()
|
721 |
+
|
722 |
+
|
723 |
+
def clone_tensor(x):
|
724 |
+
"""Clone the tensor and its gradient"""
|
725 |
+
y = x.clone().requires_grad_(x.requires_grad)
|
726 |
+
if x.is_leaf and x.grad is not None:
|
727 |
+
y.grad = x.grad.clone()
|
728 |
+
return y
|
729 |
+
|
730 |
+
|
731 |
+
def clone_input(x, *, dtype=None):
|
732 |
+
"""copy while preserving strides"""
|
733 |
+
# TODO: this is questionable
|
734 |
+
if is_fake(x):
|
735 |
+
# this func fails on fake tensors in __torch_dispatch__
|
736 |
+
return x
|
737 |
+
|
738 |
+
def torch_clone(x):
|
739 |
+
y = torch.clone(x)
|
740 |
+
if x.is_leaf:
|
741 |
+
y.requires_grad_(x.requires_grad)
|
742 |
+
if x.is_leaf and x.grad is not None:
|
743 |
+
y.grad = clone_input(x.grad, dtype=dtype)
|
744 |
+
if hasattr(x, "_dynamo_dynamic_indices"):
|
745 |
+
y._dynamo_dynamic_indices = x._dynamo_dynamic_indices.copy() # type: ignore[attr-defined]
|
746 |
+
return y
|
747 |
+
|
748 |
+
with torch.no_grad():
|
749 |
+
if x.device.type == "xla":
|
750 |
+
# Access data_ptr() for a xla tensor will cause crash
|
751 |
+
return torch_clone(x)
|
752 |
+
|
753 |
+
needed_size = sum(
|
754 |
+
(shape - 1) * stride for shape, stride in zip(x.size(), x.stride())
|
755 |
+
)
|
756 |
+
if x.is_quantized:
|
757 |
+
result = torch.empty_quantized((needed_size + 32,), x)
|
758 |
+
else:
|
759 |
+
result = torch.empty(
|
760 |
+
needed_size + 32, dtype=dtype or x.dtype, device=x.device
|
761 |
+
)
|
762 |
+
cache_line_offset = (
|
763 |
+
(x.data_ptr() - result.data_ptr()) % 32
|
764 |
+
) // x.element_size()
|
765 |
+
result.as_strided_(x.size(), x.stride(), cache_line_offset)
|
766 |
+
try:
|
767 |
+
result.copy_(x.clone())
|
768 |
+
if x.is_leaf:
|
769 |
+
result.requires_grad_(x.requires_grad)
|
770 |
+
if x.is_leaf and x.grad is not None:
|
771 |
+
result.grad = clone_input(x.grad, dtype=dtype)
|
772 |
+
except RuntimeError:
|
773 |
+
# RuntimeError: unsupported operation: more than one element of the written-to
|
774 |
+
# tensor refers to a single memory location. Please clone() the tensor before
|
775 |
+
# performing the operation.
|
776 |
+
return torch_clone(x)
|
777 |
+
if hasattr(x, "_dynamo_dynamic_indices"):
|
778 |
+
result._dynamo_dynamic_indices = x._dynamo_dynamic_indices.copy() # type: ignore[attr-defined]
|
779 |
+
return result
|
780 |
+
|
781 |
+
|
782 |
+
def clone_inputs(example_inputs):
|
783 |
+
res: Union[Dict[Any, Any], List[Any]]
|
784 |
+
if type(example_inputs) is dict:
|
785 |
+
res = dict(example_inputs)
|
786 |
+
for key, value in res.items():
|
787 |
+
if isinstance(value, tuple):
|
788 |
+
res[key] = clone_inputs(value)
|
789 |
+
else:
|
790 |
+
assert isinstance(value, torch.Tensor), type(value)
|
791 |
+
res[key] = clone_input(value)
|
792 |
+
return res
|
793 |
+
|
794 |
+
res = list(example_inputs)
|
795 |
+
for i in range(len(res)):
|
796 |
+
if isinstance(res[i], torch.Tensor):
|
797 |
+
res[i] = clone_input(res[i])
|
798 |
+
return res
|
799 |
+
|
800 |
+
|
801 |
+
def skip_frame_if_in_functorch_mode(val: torch.Tensor):
|
802 |
+
try:
|
803 |
+
val.data_ptr() # will throw for functorch tensors
|
804 |
+
except RuntimeError as e:
|
805 |
+
from .exc import SkipFrame
|
806 |
+
|
807 |
+
# This will be GradTrackingTensor/BatchedTensor/etc
|
808 |
+
functorch_subclass_name = re.sub(r"\(.*", "", repr(val))
|
809 |
+
raise SkipFrame(
|
810 |
+
f"torch.compile cannot be run in context: {functorch_subclass_name}"
|
811 |
+
) from e
|
812 |
+
|
813 |
+
|
814 |
+
@contextmanager
|
815 |
+
def preserve_rng_state():
|
816 |
+
disable_functorch = torch._C._DisableFuncTorch
|
817 |
+
disable_current_modes = torch.utils._python_dispatch._disable_current_modes
|
818 |
+
with disable_current_modes(), disable_functorch():
|
819 |
+
rng_state = torch.clone(torch.random.get_rng_state())
|
820 |
+
skip_frame_if_in_functorch_mode(rng_state)
|
821 |
+
if torch.cuda.is_available():
|
822 |
+
cuda_rng_state = torch.clone(torch.cuda.get_rng_state())
|
823 |
+
try:
|
824 |
+
yield
|
825 |
+
finally:
|
826 |
+
with torch.utils._python_dispatch._disable_current_modes():
|
827 |
+
torch.random.set_rng_state(rng_state)
|
828 |
+
if torch.cuda.is_available():
|
829 |
+
torch.cuda.set_rng_state(cuda_rng_state) # type: ignore[possibly-undefined]
|
830 |
+
|
831 |
+
|
832 |
+
def is_jit_model(model0):
|
833 |
+
return isinstance(
|
834 |
+
model0,
|
835 |
+
(
|
836 |
+
torch.jit._trace.TopLevelTracedModule,
|
837 |
+
torch.jit._script.RecursiveScriptModule,
|
838 |
+
torch.jit.ScriptFunction,
|
839 |
+
torch.jit.ScriptModule,
|
840 |
+
),
|
841 |
+
)
|
842 |
+
|
843 |
+
|
844 |
+
def torchscript(model, example_inputs, verbose=False):
|
845 |
+
if is_jit_model(model):
|
846 |
+
# already done?
|
847 |
+
return model
|
848 |
+
|
849 |
+
try:
|
850 |
+
return torch.jit.trace(model, example_inputs)
|
851 |
+
except Exception:
|
852 |
+
try:
|
853 |
+
return torch.jit.script(model)
|
854 |
+
except Exception:
|
855 |
+
if verbose:
|
856 |
+
log.exception("jit error")
|
857 |
+
else:
|
858 |
+
log.error("Both torch.jit.trace and torch.jit.script failed")
|
859 |
+
return None
|
860 |
+
|
861 |
+
|
862 |
+
def getfile(obj):
|
863 |
+
try:
|
864 |
+
return inspect.getfile(obj)
|
865 |
+
except (TypeError, OSError):
|
866 |
+
return None
|
867 |
+
|
868 |
+
|
869 |
+
def is_namedtuple(obj):
|
870 |
+
"""Test if an object is a namedtuple or a torch.return_types.* quasi-namedtuple"""
|
871 |
+
return is_namedtuple_cls(type(obj))
|
872 |
+
|
873 |
+
|
874 |
+
def is_namedtuple_cls(cls):
|
875 |
+
"""Test if an object is a namedtuple or a torch.return_types.* quasi-namedtuple"""
|
876 |
+
try:
|
877 |
+
if issubclass(cls, tuple):
|
878 |
+
bases = getattr(cls, "__bases__", []) or [None]
|
879 |
+
module = getattr(cls, "__module__", None)
|
880 |
+
return module == "torch.return_types" or (
|
881 |
+
bases[0] is tuple and hasattr(cls, "_make") and hasattr(cls, "_fields")
|
882 |
+
)
|
883 |
+
except TypeError:
|
884 |
+
pass
|
885 |
+
return False
|
886 |
+
|
887 |
+
|
888 |
+
@functools.lru_cache(1)
|
889 |
+
def namedtuple_fields(cls):
|
890 |
+
"""Get the fields of a namedtuple or a torch.return_types.* quasi-namedtuple"""
|
891 |
+
if cls is slice:
|
892 |
+
return ["start", "stop", "step"]
|
893 |
+
|
894 |
+
assert issubclass(cls, tuple)
|
895 |
+
if hasattr(cls, "_fields"):
|
896 |
+
# normal namedtuples
|
897 |
+
return cls._fields
|
898 |
+
|
899 |
+
@dataclasses.dataclass
|
900 |
+
class Marker:
|
901 |
+
index: int
|
902 |
+
|
903 |
+
# frustrating ones e.g. torch.return_types.max
|
904 |
+
assert cls.__module__ == "torch.return_types"
|
905 |
+
obj = cls(map(Marker, range(cls.n_fields)))
|
906 |
+
fields: List[Optional[str]] = [None] * cls.n_fields
|
907 |
+
for name in dir(obj):
|
908 |
+
if name[0] != "_" and isinstance(getattr(obj, name), Marker):
|
909 |
+
fields[getattr(obj, name).index] = name
|
910 |
+
return fields
|
911 |
+
|
912 |
+
|
913 |
+
def checkpoint_params(gm):
|
914 |
+
with torch.no_grad():
|
915 |
+
rng_state = torch.clone(torch.random.get_rng_state())
|
916 |
+
if torch.cuda.is_available():
|
917 |
+
cuda_rng_state = torch.clone(torch.cuda.get_rng_state())
|
918 |
+
saved_state = []
|
919 |
+
for param in itertools.chain(gm.parameters(), gm.buffers()):
|
920 |
+
saved_state.append((param, param._version, torch.clone(param)))
|
921 |
+
|
922 |
+
def restore():
|
923 |
+
with torch.no_grad():
|
924 |
+
torch.random.set_rng_state(rng_state)
|
925 |
+
if torch.cuda.is_available():
|
926 |
+
torch.cuda.set_rng_state(cuda_rng_state)
|
927 |
+
for param, version, original_value in saved_state:
|
928 |
+
if param._version != version:
|
929 |
+
param.copy_(original_value)
|
930 |
+
|
931 |
+
return restore
|
932 |
+
|
933 |
+
|
934 |
+
def timed(model, example_inputs, times=1):
|
935 |
+
if torch.cuda.is_available():
|
936 |
+
synchronize = torch.cuda.synchronize
|
937 |
+
else:
|
938 |
+
synchronize = nothing
|
939 |
+
|
940 |
+
synchronize()
|
941 |
+
gc.collect()
|
942 |
+
torch.manual_seed(1337)
|
943 |
+
t0 = time.perf_counter()
|
944 |
+
for _ in range(times):
|
945 |
+
result = model(*example_inputs)
|
946 |
+
synchronize()
|
947 |
+
t1 = time.perf_counter()
|
948 |
+
return result, t1 - t0 # type: ignore[possibly-undefined]
|
949 |
+
|
950 |
+
|
951 |
+
def check_is_cuda(gm, example_inputs):
|
952 |
+
return all(x.is_cuda for x in itertools.chain(example_inputs, gm.parameters(True)))
|
953 |
+
|
954 |
+
|
955 |
+
@lru_cache(32)
|
956 |
+
def rot_n_helper(n):
|
957 |
+
assert n > 1
|
958 |
+
vars = [f"v{i}" for i in range(n)]
|
959 |
+
rotated = reversed(vars[-1:] + vars[:-1])
|
960 |
+
fn = eval(f"lambda {','.join(vars)}: ({','.join(rotated)})")
|
961 |
+
fn.__name__ = f"rot_{n}_helper"
|
962 |
+
return fn
|
963 |
+
|
964 |
+
|
965 |
+
common_constant_types = {
|
966 |
+
int,
|
967 |
+
float,
|
968 |
+
complex,
|
969 |
+
bool,
|
970 |
+
str,
|
971 |
+
bytes,
|
972 |
+
type(None),
|
973 |
+
Ellipsis.__class__,
|
974 |
+
types.CodeType,
|
975 |
+
torch.device,
|
976 |
+
torch.dtype,
|
977 |
+
torch.memory_format,
|
978 |
+
torch.layout,
|
979 |
+
}
|
980 |
+
|
981 |
+
|
982 |
+
def is_safe_constant(v):
|
983 |
+
if istype(v, (tuple, frozenset)):
|
984 |
+
return all(map(is_safe_constant, v))
|
985 |
+
return isinstance(v, (enum.Enum, type)) or istype(
|
986 |
+
v,
|
987 |
+
common_constant_types | {slice},
|
988 |
+
)
|
989 |
+
|
990 |
+
|
991 |
+
def specialize_symnode(arg):
|
992 |
+
from .variables import ConstantVariable, SymNodeVariable
|
993 |
+
|
994 |
+
# Guard and specialize
|
995 |
+
if isinstance(arg, SymNodeVariable):
|
996 |
+
return ConstantVariable.create(arg.evaluate_expr())
|
997 |
+
|
998 |
+
return arg
|
999 |
+
|
1000 |
+
|
1001 |
+
def guard_if_dyn(arg):
|
1002 |
+
from .variables import ConstantVariable
|
1003 |
+
|
1004 |
+
arg = specialize_symnode(arg)
|
1005 |
+
|
1006 |
+
if isinstance(arg, ConstantVariable):
|
1007 |
+
return arg.as_python_constant()
|
1008 |
+
|
1009 |
+
return arg
|
1010 |
+
|
1011 |
+
|
1012 |
+
def check_constant_args(args, kwargs):
|
1013 |
+
return all(x.is_python_constant() for x in itertools.chain(args, kwargs.values()))
|
1014 |
+
|
1015 |
+
|
1016 |
+
def check_unspec_python_args(args, kwargs):
|
1017 |
+
from .variables.constant import ConstantVariable
|
1018 |
+
from .variables.tensor import UnspecializedPythonVariable
|
1019 |
+
|
1020 |
+
unspec_count = 0
|
1021 |
+
for x in itertools.chain(args, kwargs.values()):
|
1022 |
+
if isinstance(x, UnspecializedPythonVariable):
|
1023 |
+
unspec_count += 1
|
1024 |
+
elif not isinstance(x, (UnspecializedPythonVariable, ConstantVariable)):
|
1025 |
+
return False
|
1026 |
+
else:
|
1027 |
+
pass
|
1028 |
+
|
1029 |
+
return unspec_count > 0
|
1030 |
+
|
1031 |
+
|
1032 |
+
def check_numpy_ndarray_args(args, kwargs):
|
1033 |
+
from .variables.tensor import NumpyNdarrayVariable
|
1034 |
+
|
1035 |
+
return any(
|
1036 |
+
isinstance(x, NumpyNdarrayVariable)
|
1037 |
+
for x in itertools.chain(args, kwargs.values())
|
1038 |
+
)
|
1039 |
+
|
1040 |
+
|
1041 |
+
dict_keys: Type[KeysView[Any]] = type(dict().keys())
|
1042 |
+
dict_values: Type[ValuesView[Any]] = type(dict().values())
|
1043 |
+
odict_values: Type[ValuesView[Any]] = type(collections.OrderedDict().values())
|
1044 |
+
tuple_iterator: Type[Iterator[Any]] = type(iter(tuple()))
|
1045 |
+
tuple_iterator_len = tuple_iterator.__length_hint__ # type: ignore[attr-defined]
|
1046 |
+
object_new = object.__new__
|
1047 |
+
|
1048 |
+
|
1049 |
+
def nn_module_new(cls):
|
1050 |
+
obj = object_new(cls)
|
1051 |
+
torch.nn.Module.__init__(obj)
|
1052 |
+
return obj
|
1053 |
+
|
1054 |
+
|
1055 |
+
def product(it):
|
1056 |
+
return functools.reduce(operator.mul, it, 1)
|
1057 |
+
|
1058 |
+
|
1059 |
+
def tuple_iterator_getitem(it, index):
|
1060 |
+
_, (obj,), start = it.__reduce__()
|
1061 |
+
return obj[start + index]
|
1062 |
+
|
1063 |
+
|
1064 |
+
iter_next = next
|
1065 |
+
|
1066 |
+
|
1067 |
+
def to_subclass(t, cls):
|
1068 |
+
return t.as_subclass(cls)
|
1069 |
+
|
1070 |
+
|
1071 |
+
def dict_keys_getitem(d, n):
|
1072 |
+
return next(itertools.islice(iter(d), n, n + 1))
|
1073 |
+
|
1074 |
+
|
1075 |
+
def enum_repr(value, local):
|
1076 |
+
# enum class can override __str__ method. Use __class__ and name attribute
|
1077 |
+
# to extract the class name and key name.
|
1078 |
+
name = value.__class__.__name__
|
1079 |
+
val = value.name
|
1080 |
+
scope = "L" if local else "G"
|
1081 |
+
local_name = f'{scope}["{name}"].{val}'
|
1082 |
+
return local_name
|
1083 |
+
|
1084 |
+
|
1085 |
+
def _get_fake_tensor(vt):
|
1086 |
+
fake_tensor = vt.as_proxy().node.meta.get("example_value")
|
1087 |
+
if not is_fake(fake_tensor):
|
1088 |
+
from .exc import unimplemented
|
1089 |
+
|
1090 |
+
unimplemented("Cannot check Tensor object identity without its fake value")
|
1091 |
+
return fake_tensor
|
1092 |
+
|
1093 |
+
|
1094 |
+
def iter_contains(items, search, tx, check_tensor_identity=False):
|
1095 |
+
from .variables import (
|
1096 |
+
BuiltinVariable,
|
1097 |
+
ConstantVariable,
|
1098 |
+
TensorVariable,
|
1099 |
+
VariableTracker,
|
1100 |
+
)
|
1101 |
+
|
1102 |
+
if search.is_python_constant():
|
1103 |
+
found_const = any(
|
1104 |
+
x.is_python_constant()
|
1105 |
+
and x.as_python_constant() == search.as_python_constant()
|
1106 |
+
for x in items
|
1107 |
+
)
|
1108 |
+
return ConstantVariable.create(found_const)
|
1109 |
+
|
1110 |
+
must_check_tensor_id = False
|
1111 |
+
if check_tensor_identity and isinstance(search, TensorVariable):
|
1112 |
+
must_check_tensor_id = True
|
1113 |
+
# Match of Tensor means match of FakeTensor
|
1114 |
+
search = _get_fake_tensor(search)
|
1115 |
+
|
1116 |
+
found: Optional[VariableTracker] = None
|
1117 |
+
for x in items:
|
1118 |
+
if must_check_tensor_id:
|
1119 |
+
if isinstance(x, TensorVariable):
|
1120 |
+
if search is _get_fake_tensor(x): # Object equivalence
|
1121 |
+
return ConstantVariable.create(True)
|
1122 |
+
else:
|
1123 |
+
check = BuiltinVariable(operator.eq).call_function(tx, [x, search], {})
|
1124 |
+
if found is None:
|
1125 |
+
found = check
|
1126 |
+
else:
|
1127 |
+
found = BuiltinVariable(operator.or_).call_function(
|
1128 |
+
tx, [check, found], {}
|
1129 |
+
)
|
1130 |
+
if found is None:
|
1131 |
+
found = ConstantVariable.create(False)
|
1132 |
+
return found
|
1133 |
+
|
1134 |
+
|
1135 |
+
def key_is_id(k):
|
1136 |
+
"""Returns whether it indexes dictionaries using its id"""
|
1137 |
+
return isinstance(k, (torch.Tensor, torch.nn.Module, MethodWrapperType))
|
1138 |
+
|
1139 |
+
|
1140 |
+
def key_to_id(value):
|
1141 |
+
return [id(k) if key_is_id(k) else k for k in value.keys()]
|
1142 |
+
|
1143 |
+
|
1144 |
+
def const_repr(x, *, local) -> str:
|
1145 |
+
from .trace_rules import is_builtin_callable
|
1146 |
+
|
1147 |
+
if isinstance(x, (list, tuple)):
|
1148 |
+
elems_repr = ",".join(const_repr(s, local=local) for s in x)
|
1149 |
+
if isinstance(x, list):
|
1150 |
+
return f"[{elems_repr}]"
|
1151 |
+
else:
|
1152 |
+
assert isinstance(x, tuple)
|
1153 |
+
if len(x) == 1:
|
1154 |
+
return f"({elems_repr},)"
|
1155 |
+
else:
|
1156 |
+
return f"({elems_repr})"
|
1157 |
+
elif isinstance(x, enum.Enum):
|
1158 |
+
# To workaround repr(Enum) returning invalid global reference before python 3.11
|
1159 |
+
# by calling enum_repr and removing quotes to render enum in guard code.
|
1160 |
+
return enum_repr(x, local=local).replace("'", "")
|
1161 |
+
elif is_builtin_callable(x):
|
1162 |
+
return x.__name__
|
1163 |
+
elif isinstance(x, type):
|
1164 |
+
|
1165 |
+
def fullname(o):
|
1166 |
+
klass = o.__class__
|
1167 |
+
module = klass.__module__
|
1168 |
+
if module == "builtins":
|
1169 |
+
return klass.__qualname__ # avoid outputs like 'builtins.str'
|
1170 |
+
return module + "." + klass.__qualname__
|
1171 |
+
|
1172 |
+
return fullname(x)
|
1173 |
+
else:
|
1174 |
+
return f"{x!r}"
|
1175 |
+
|
1176 |
+
|
1177 |
+
def dict_keys_repr(const_keys, *, local) -> str:
|
1178 |
+
keys_str = ",".join(const_repr(s, local=local) for s in const_keys)
|
1179 |
+
return "[" + keys_str + "]"
|
1180 |
+
|
1181 |
+
|
1182 |
+
GLOBAL_KEY_PREFIX = "__dict_key"
|
1183 |
+
|
1184 |
+
|
1185 |
+
from torch._subclasses import UnsupportedFakeTensorException # noqa: F401
|
1186 |
+
|
1187 |
+
|
1188 |
+
def wrap_fake_exception(fn):
|
1189 |
+
try:
|
1190 |
+
return fn()
|
1191 |
+
except UnsupportedFakeTensorException as e:
|
1192 |
+
from .exc import unimplemented
|
1193 |
+
|
1194 |
+
msg = f"Unsupported: {e.reason} with fake tensor propagation."
|
1195 |
+
log.warning(msg)
|
1196 |
+
raise unimplemented(msg) from e
|
1197 |
+
|
1198 |
+
|
1199 |
+
def deepcopy_to_fake_tensor(obj, fake_mode):
|
1200 |
+
with torch._subclasses.fake_tensor.FakeCopyMode(fake_mode):
|
1201 |
+
return wrap_fake_exception(lambda: copy.deepcopy(obj))
|
1202 |
+
|
1203 |
+
|
1204 |
+
def rmse(ref, res):
|
1205 |
+
"""
|
1206 |
+
Calculate root mean squared error
|
1207 |
+
"""
|
1208 |
+
return torch.sqrt(torch.mean(torch.square(ref - res)))
|
1209 |
+
|
1210 |
+
|
1211 |
+
def same(
|
1212 |
+
ref,
|
1213 |
+
res,
|
1214 |
+
fp64_ref=None,
|
1215 |
+
cos_similarity=False,
|
1216 |
+
tol=1e-4,
|
1217 |
+
equal_nan=False,
|
1218 |
+
exact_dtype=True,
|
1219 |
+
relax_numpy_equality=False,
|
1220 |
+
ignore_non_fp=False,
|
1221 |
+
log_error=log.error,
|
1222 |
+
):
|
1223 |
+
"""Check correctness to see if ref and res match"""
|
1224 |
+
if fp64_ref is None:
|
1225 |
+
fp64_ref = ref
|
1226 |
+
if isinstance(ref, (list, tuple, torch.nn.ParameterList, torch.Size)):
|
1227 |
+
assert isinstance(res, (list, tuple)), f"type mismatch {type(ref)} {type(res)}"
|
1228 |
+
if len(ref) != len(res):
|
1229 |
+
log_error("Length mismatch")
|
1230 |
+
return False
|
1231 |
+
return len(ref) == len(res) and all(
|
1232 |
+
same(
|
1233 |
+
ai,
|
1234 |
+
bi,
|
1235 |
+
fp64_refi,
|
1236 |
+
cos_similarity,
|
1237 |
+
tol,
|
1238 |
+
equal_nan,
|
1239 |
+
exact_dtype,
|
1240 |
+
relax_numpy_equality,
|
1241 |
+
ignore_non_fp,
|
1242 |
+
log_error=log_error,
|
1243 |
+
)
|
1244 |
+
for ai, bi, fp64_refi in zip(ref, res, fp64_ref)
|
1245 |
+
)
|
1246 |
+
elif isinstance(ref, dict):
|
1247 |
+
assert isinstance(res, dict)
|
1248 |
+
assert set(ref.keys()) == set(
|
1249 |
+
res.keys()
|
1250 |
+
), f"keys mismatch {set(ref.keys())} == {set(res.keys())}"
|
1251 |
+
for k in sorted(ref.keys()):
|
1252 |
+
if not (
|
1253 |
+
same(
|
1254 |
+
ref[k],
|
1255 |
+
res[k],
|
1256 |
+
fp64_ref[k],
|
1257 |
+
cos_similarity=cos_similarity,
|
1258 |
+
tol=tol,
|
1259 |
+
equal_nan=equal_nan,
|
1260 |
+
exact_dtype=exact_dtype,
|
1261 |
+
relax_numpy_equality=relax_numpy_equality,
|
1262 |
+
ignore_non_fp=ignore_non_fp,
|
1263 |
+
log_error=log_error,
|
1264 |
+
)
|
1265 |
+
):
|
1266 |
+
log_error("Accuracy failed for key name %s", k)
|
1267 |
+
return False
|
1268 |
+
return True
|
1269 |
+
elif isinstance(ref, (torch.Tensor, float)):
|
1270 |
+
assert not isinstance(ref, torch._subclasses.FakeTensor)
|
1271 |
+
assert not isinstance(res, torch._subclasses.FakeTensor)
|
1272 |
+
|
1273 |
+
def to_tensor(t):
|
1274 |
+
return t if isinstance(t, torch.Tensor) else torch.tensor(t)
|
1275 |
+
|
1276 |
+
ref, res, fp64_ref = (to_tensor(val) for val in (ref, res, fp64_ref))
|
1277 |
+
|
1278 |
+
if ref.is_sparse:
|
1279 |
+
assert res.is_sparse
|
1280 |
+
ref = ref.to_dense()
|
1281 |
+
res = res.to_dense()
|
1282 |
+
assert isinstance(res, torch.Tensor), f"type mismatch {type(ref)} {type(res)}"
|
1283 |
+
if exact_dtype:
|
1284 |
+
if ref.dtype != res.dtype:
|
1285 |
+
log_error("dtype mismatch %s, %s", ref.dtype, res.dtype)
|
1286 |
+
return False
|
1287 |
+
if ref.dtype == torch.bool:
|
1288 |
+
if ignore_non_fp:
|
1289 |
+
return True
|
1290 |
+
# triton stores bool as int8, so add this for more accurate checking
|
1291 |
+
r = torch.allclose(
|
1292 |
+
ref.to(dtype=torch.uint8),
|
1293 |
+
res.to(dtype=torch.uint8),
|
1294 |
+
atol=tol,
|
1295 |
+
rtol=tol,
|
1296 |
+
equal_nan=equal_nan,
|
1297 |
+
)
|
1298 |
+
if not r:
|
1299 |
+
log_error("Accuracy failed: uint8 tensor did not match")
|
1300 |
+
return r
|
1301 |
+
|
1302 |
+
if cos_similarity:
|
1303 |
+
ref = ref.flatten().to(torch.float32)
|
1304 |
+
res = res.flatten().to(torch.float32)
|
1305 |
+
if torch.allclose(ref, res, atol=tol, rtol=tol, equal_nan=True):
|
1306 |
+
# early exit that handles zero/nan better
|
1307 |
+
# cosine_similarity(zeros(10), zeros(10), dim=0) is 0
|
1308 |
+
return True
|
1309 |
+
score = torch.nn.functional.cosine_similarity(ref, res, dim=0, eps=1e-6)
|
1310 |
+
if score < 0.99:
|
1311 |
+
log.warning("Similarity score=%s", score.cpu().detach().item())
|
1312 |
+
return score >= 0.99
|
1313 |
+
else:
|
1314 |
+
if not exact_dtype:
|
1315 |
+
ref = ref.to(res.dtype)
|
1316 |
+
|
1317 |
+
# First try usual allclose
|
1318 |
+
if torch.allclose(ref, res, atol=tol, rtol=tol, equal_nan=equal_nan):
|
1319 |
+
return True
|
1320 |
+
|
1321 |
+
# Check error from fp64 version
|
1322 |
+
if fp64_ref.dtype == torch.float64:
|
1323 |
+
ref_error = rmse(fp64_ref, ref).item()
|
1324 |
+
# ref unable to produce this with stable numerics in this precision, ignore
|
1325 |
+
if math.isnan(ref_error):
|
1326 |
+
log.warning(
|
1327 |
+
"Found nan in reference. Consider running in higher precision."
|
1328 |
+
)
|
1329 |
+
|
1330 |
+
res_error = rmse(fp64_ref, res).item()
|
1331 |
+
|
1332 |
+
# In the case of using AMP (Automatic Mixed Precision), certain models have
|
1333 |
+
# failed the benchmark's correctness check. However, the end-to-end model's
|
1334 |
+
# accuracy when comparing AMP with FP32 is within a difference of less than 0.1%.
|
1335 |
+
# Thus, it's possible that the correctness check failures for these models are
|
1336 |
+
# false alarms. We use multiplier of 3 instead of 2 to avoid these false alarms.
|
1337 |
+
multiplier = 3.0 if res.dtype == torch.bfloat16 else 2.0
|
1338 |
+
|
1339 |
+
if (
|
1340 |
+
fp64_ref.numel() < 1000
|
1341 |
+
or (ref.ndim == 4 and ref.shape[-1] == ref.shape[-2] == 1)
|
1342 |
+
# large tol means a benchmark has been specified as REQUIRE_HIGHER_TOLERANCE
|
1343 |
+
or tol >= 2 * 1e-2
|
1344 |
+
):
|
1345 |
+
# In the presence of noise, noise might dominate our error
|
1346 |
+
# metric for smaller tensors.
|
1347 |
+
# Similary, for 1x1 kernels, there seems to be high noise with amp.
|
1348 |
+
multiplier = 3.0
|
1349 |
+
|
1350 |
+
passes_test = res_error <= (multiplier * ref_error + tol / 10.0)
|
1351 |
+
if not passes_test:
|
1352 |
+
log_error(
|
1353 |
+
"RMSE (res-fp64): %.5f, (ref-fp64): %.5f and shape=%s",
|
1354 |
+
res_error,
|
1355 |
+
ref_error,
|
1356 |
+
res.size(),
|
1357 |
+
)
|
1358 |
+
# import pdb; pdb.set_trace()
|
1359 |
+
return passes_test
|
1360 |
+
|
1361 |
+
if ignore_non_fp:
|
1362 |
+
return True
|
1363 |
+
|
1364 |
+
log_error("Accuracy failed: allclose not within tol=%s", tol)
|
1365 |
+
return False
|
1366 |
+
elif isinstance(ref, (str, int, type(None), bool, torch.device)):
|
1367 |
+
if ignore_non_fp:
|
1368 |
+
return True
|
1369 |
+
r = ref == res
|
1370 |
+
if not r:
|
1371 |
+
log_error("Accuracy failed (%s): %s != %s", type(ref), ref, res)
|
1372 |
+
return r
|
1373 |
+
elif is_numpy_int_type(ref) or is_numpy_float_type(ref):
|
1374 |
+
if relax_numpy_equality and not (
|
1375 |
+
is_numpy_int_type(res) or is_numpy_float_type(res)
|
1376 |
+
):
|
1377 |
+
ref = ref.item()
|
1378 |
+
r = (type(ref) is type(res)) and (ref == res)
|
1379 |
+
if not r:
|
1380 |
+
log_error("Accuracy failed (numpy): %s != %s", ref, res)
|
1381 |
+
return r
|
1382 |
+
elif is_numpy_ndarray(ref):
|
1383 |
+
return (type(ref) is type(res)) and same(
|
1384 |
+
torch.as_tensor(ref),
|
1385 |
+
torch.as_tensor(res),
|
1386 |
+
fp64_ref,
|
1387 |
+
cos_similarity=cos_similarity,
|
1388 |
+
tol=tol,
|
1389 |
+
equal_nan=equal_nan,
|
1390 |
+
exact_dtype=exact_dtype,
|
1391 |
+
relax_numpy_equality=relax_numpy_equality,
|
1392 |
+
ignore_non_fp=ignore_non_fp,
|
1393 |
+
log_error=log_error,
|
1394 |
+
)
|
1395 |
+
elif type(ref).__name__ in (
|
1396 |
+
"MaskedLMOutput",
|
1397 |
+
"Seq2SeqLMOutput",
|
1398 |
+
"CausalLMOutputWithCrossAttentions",
|
1399 |
+
"LongformerMaskedLMOutput",
|
1400 |
+
"Instances",
|
1401 |
+
"SquashedNormal",
|
1402 |
+
"Boxes",
|
1403 |
+
"Normal",
|
1404 |
+
"TanhTransform",
|
1405 |
+
"Foo",
|
1406 |
+
"Variable",
|
1407 |
+
):
|
1408 |
+
assert type(ref) is type(res)
|
1409 |
+
return all(
|
1410 |
+
same(
|
1411 |
+
getattr(ref, key),
|
1412 |
+
getattr(res, key),
|
1413 |
+
getattr(fp64_ref, key),
|
1414 |
+
cos_similarity=cos_similarity,
|
1415 |
+
tol=tol,
|
1416 |
+
equal_nan=equal_nan,
|
1417 |
+
exact_dtype=exact_dtype,
|
1418 |
+
relax_numpy_equality=relax_numpy_equality,
|
1419 |
+
ignore_non_fp=ignore_non_fp,
|
1420 |
+
log_error=log_error,
|
1421 |
+
)
|
1422 |
+
for key in ref.__dict__.keys()
|
1423 |
+
)
|
1424 |
+
else:
|
1425 |
+
raise RuntimeError(f"unsupported type: {type(ref).__name__}")
|
1426 |
+
|
1427 |
+
|
1428 |
+
def format_func_info(code):
|
1429 |
+
short_filename = code.co_filename.split("/")[-1]
|
1430 |
+
return f"'{code.co_name}' ({short_filename}:{code.co_firstlineno})"
|
1431 |
+
|
1432 |
+
|
1433 |
+
@contextlib.contextmanager
|
1434 |
+
def disable_cache_limit():
|
1435 |
+
prior = config.cache_size_limit
|
1436 |
+
config.cache_size_limit = sys.maxsize
|
1437 |
+
prior_acc_limit = config.accumulated_cache_size_limit
|
1438 |
+
config.accumulated_cache_size_limit = sys.maxsize
|
1439 |
+
|
1440 |
+
try:
|
1441 |
+
yield
|
1442 |
+
finally:
|
1443 |
+
config.cache_size_limit = prior
|
1444 |
+
config.accumulated_cache_size_limit = prior_acc_limit
|
1445 |
+
|
1446 |
+
|
1447 |
+
# map from transformed code back to original user code
|
1448 |
+
orig_code_map = ExactWeakKeyDictionary()
|
1449 |
+
|
1450 |
+
# keep a record of code_obj -> list of guard failure reasons for logging
|
1451 |
+
guard_failures: DefaultDict[Any, List[Any]] = collections.defaultdict(list)
|
1452 |
+
|
1453 |
+
# Keep a record of graph break reasons for logging
|
1454 |
+
graph_break_reasons: List["torch._dynamo.output_graph.GraphCompileReason"] = list()
|
1455 |
+
|
1456 |
+
# keep record of compiled code, if we are in "error if recompile"
|
1457 |
+
# to track code that dynamo has compiled previously
|
1458 |
+
seen_code_map = ExactWeakKeyDictionary()
|
1459 |
+
|
1460 |
+
|
1461 |
+
class CompileProfiler:
|
1462 |
+
"""Utility for profiling how and what dynamo would compile.
|
1463 |
+
|
1464 |
+
Can be used for
|
1465 |
+
* diagnosing recompilation issues
|
1466 |
+
* determining an appropriate compile cache limit
|
1467 |
+
* (TODO)confirming which functions got compiled/skipped
|
1468 |
+
"""
|
1469 |
+
|
1470 |
+
def __init__(self):
|
1471 |
+
self.frame_count = 0
|
1472 |
+
self.op_count = 0
|
1473 |
+
self.backend_ctx_ctor = disable_cache_limit
|
1474 |
+
|
1475 |
+
def __call__(self, gm: torch.fx.GraphModule, example_inputs):
|
1476 |
+
self.frame_count += 1
|
1477 |
+
for node in gm.graph.nodes:
|
1478 |
+
if "call" in node.op:
|
1479 |
+
self.op_count += 1
|
1480 |
+
return gm.forward
|
1481 |
+
|
1482 |
+
# no-op __enter__ and __exit__ to preserve BC
|
1483 |
+
def __enter__(self):
|
1484 |
+
return self
|
1485 |
+
|
1486 |
+
def __exit__(self, typ, val, traceback):
|
1487 |
+
pass
|
1488 |
+
|
1489 |
+
def get_metrics(self):
|
1490 |
+
return {"guard_failures": guard_failures}
|
1491 |
+
|
1492 |
+
def report(self):
|
1493 |
+
metrics = self.get_metrics()
|
1494 |
+
gf = metrics["guard_failures"]
|
1495 |
+
|
1496 |
+
def num_recompiles(code):
|
1497 |
+
return len(gf[code])
|
1498 |
+
|
1499 |
+
def recompile_reasons(code):
|
1500 |
+
return "\n".join([str(x) for x in gf[code]])
|
1501 |
+
|
1502 |
+
summarized_gf = [
|
1503 |
+
[format_func_info(code), num_recompiles(code), recompile_reasons(code)]
|
1504 |
+
for code in gf
|
1505 |
+
]
|
1506 |
+
|
1507 |
+
def graph_break_report():
|
1508 |
+
if "graph_break" in counters:
|
1509 |
+
graph_breaks = counters["graph_break"]
|
1510 |
+
return tabulate(
|
1511 |
+
[[msg, graph_breaks[msg]] for msg in graph_breaks],
|
1512 |
+
headers=["Graph Break Reason", "Count"],
|
1513 |
+
)
|
1514 |
+
|
1515 |
+
def recompilation_report():
|
1516 |
+
if len(gf):
|
1517 |
+
max_recompiles = max([num_recompiles(code) for code in gf])
|
1518 |
+
recomp_table = tabulate(
|
1519 |
+
summarized_gf,
|
1520 |
+
headers=["Function", "Recompiles", "Recompile Reasons"],
|
1521 |
+
)
|
1522 |
+
return recomp_table + textwrap.dedent(
|
1523 |
+
f"""
|
1524 |
+
|
1525 |
+
Set torch._dynamo.config.cache_size_limit to {max_recompiles} to avoid being cache limited.
|
1526 |
+
"""
|
1527 |
+
)
|
1528 |
+
|
1529 |
+
report = textwrap.dedent(
|
1530 |
+
"""
|
1531 |
+
Torchdynamo Profiler Report
|
1532 |
+
===========================
|
1533 |
+
|
1534 |
+
Graph Breaks
|
1535 |
+
------------
|
1536 |
+
Graph breaks happen when torchdynamo encounters code it can't safely trace.
|
1537 |
+
If you want to find out why breaks are happening, check below for each break reason
|
1538 |
+
You may gain additional insight by passing `fullgraph=True` to torch.compile,
|
1539 |
+
to stop at the first break.
|
1540 |
+
|
1541 |
+
"""
|
1542 |
+
)
|
1543 |
+
report += graph_break_report() or "No graph breaks detected."
|
1544 |
+
report += textwrap.dedent(
|
1545 |
+
"""
|
1546 |
+
|
1547 |
+
Recompilation
|
1548 |
+
-------------
|
1549 |
+
These subgraphs were recompiled more than once due to guard failures
|
1550 |
+
Guard failures indicate some condition assumed to be static by the tracer changed,
|
1551 |
+
making it unsafe to reuse the compiled program.
|
1552 |
+
|
1553 |
+
"""
|
1554 |
+
)
|
1555 |
+
report += recompilation_report() or "No recompilation detected.\n"
|
1556 |
+
return report
|
1557 |
+
|
1558 |
+
|
1559 |
+
# return same dir unless user changes config between calls
|
1560 |
+
@functools.lru_cache(None)
|
1561 |
+
def _get_debug_dir(root_dir):
|
1562 |
+
dir_name = (
|
1563 |
+
"run_"
|
1564 |
+
+ datetime.datetime.now().strftime("%Y_%m_%d_%H_%M_%S_%f")
|
1565 |
+
# use pid to avoid conflicts among ranks
|
1566 |
+
+ "-pid_"
|
1567 |
+
+ str(os.getpid())
|
1568 |
+
)
|
1569 |
+
return os.path.join(root_dir, dir_name)
|
1570 |
+
|
1571 |
+
|
1572 |
+
def get_debug_dir():
|
1573 |
+
debug_root = config.debug_dir_root
|
1574 |
+
return _get_debug_dir(debug_root)
|
1575 |
+
|
1576 |
+
|
1577 |
+
def extract_fake_example_value(node, required=True):
|
1578 |
+
if "example_value" in node.meta and is_fake(node.meta["example_value"]):
|
1579 |
+
return node.meta["example_value"]
|
1580 |
+
elif required:
|
1581 |
+
from torch._dynamo.exc import unimplemented
|
1582 |
+
|
1583 |
+
unimplemented("`FakeTensor` example value was required but not available")
|
1584 |
+
else:
|
1585 |
+
return None
|
1586 |
+
|
1587 |
+
|
1588 |
+
def ensure_graph_fake(e, tx):
|
1589 |
+
assert maybe_get_fake_mode(e) is tx.fake_mode
|
1590 |
+
return e
|
1591 |
+
|
1592 |
+
|
1593 |
+
def get_fake_values_from_nodes(tx, nodes, allow_non_graph_fake):
|
1594 |
+
def visit(n: torch.fx.Node):
|
1595 |
+
if n.op == "call_function" and "example_value" not in n.meta:
|
1596 |
+
# fake tensor validity is checked inside get_fake_value using
|
1597 |
+
# ensure_graph_fake
|
1598 |
+
return get_fake_value(n, tx, allow_non_graph_fake)
|
1599 |
+
|
1600 |
+
out = n.meta["example_value"]
|
1601 |
+
if not allow_non_graph_fake and isinstance(out, torch.Tensor):
|
1602 |
+
return ensure_graph_fake(out, tx)
|
1603 |
+
return out
|
1604 |
+
|
1605 |
+
return torch.fx.node.map_arg(nodes, visit)
|
1606 |
+
|
1607 |
+
|
1608 |
+
def get_fake_value(node, tx, allow_non_graph_fake=False):
|
1609 |
+
"""
|
1610 |
+
Run the computation represented by `node` using fake tensors and return the result.
|
1611 |
+
|
1612 |
+
allow_non_graph_fake: whether to allow the return result to be:
|
1613 |
+
1. non-fake or 2. fake that is not created by this instance of Dynamo.
|
1614 |
+
If `True`, you must be prepared to deal with such return values, ideally
|
1615 |
+
by further wrapping them as this graph's fakes.
|
1616 |
+
"""
|
1617 |
+
from torch.utils._sympy.value_ranges import ValueRangeError
|
1618 |
+
from .exc import (
|
1619 |
+
TorchRuntimeError,
|
1620 |
+
unimplemented,
|
1621 |
+
Unsupported,
|
1622 |
+
UserError,
|
1623 |
+
UserErrorType,
|
1624 |
+
)
|
1625 |
+
|
1626 |
+
op = node.op
|
1627 |
+
|
1628 |
+
# FX Node should always return the same fake value
|
1629 |
+
if "example_value" in node.meta and is_fake(node.meta["example_value"]):
|
1630 |
+
return node.meta["example_value"]
|
1631 |
+
|
1632 |
+
args, kwargs = get_fake_values_from_nodes(
|
1633 |
+
tx, (node.args, node.kwargs), allow_non_graph_fake
|
1634 |
+
)
|
1635 |
+
|
1636 |
+
nnmodule = None
|
1637 |
+
if op == "call_method" and len(args) > 0 and isinstance(args[0], torch.nn.Module):
|
1638 |
+
# If the first argument is nn.Module, should copy to fake mode.
|
1639 |
+
args = (deepcopy_to_fake_tensor(args[0], tx.fake_mode),) + tuple(args[1:])
|
1640 |
+
|
1641 |
+
if op == "call_module":
|
1642 |
+
nnmodule = tx.output.nn_modules[node.target]
|
1643 |
+
|
1644 |
+
if is_lazy_module(nnmodule) and hasattr(nnmodule, "_initialize_hook"):
|
1645 |
+
# In the case of a lazy module, we want to run
|
1646 |
+
# the pre-hooks which initialize it.
|
1647 |
+
# Afterwards, lazy module deletes its pre-hooks
|
1648 |
+
# to avoid treating it as lazy on subsequent recompile.
|
1649 |
+
nnmodule._infer_parameters(nnmodule, args)
|
1650 |
+
|
1651 |
+
# no matter it's lazy module or not, we should copy to fake mode.
|
1652 |
+
nnmodule = deepcopy_to_fake_tensor(nnmodule, tx.fake_mode)
|
1653 |
+
|
1654 |
+
try:
|
1655 |
+
with tx.fake_mode, enable_python_dispatcher():
|
1656 |
+
ret_val = wrap_fake_exception(
|
1657 |
+
lambda: run_node(tx.output, node, args, kwargs, nnmodule)
|
1658 |
+
)
|
1659 |
+
except Unsupported:
|
1660 |
+
raise
|
1661 |
+
except RuntimeError as e:
|
1662 |
+
cause: BaseException = e
|
1663 |
+
if e.__cause__ is not None:
|
1664 |
+
cause = e.__cause__
|
1665 |
+
|
1666 |
+
if isinstance(
|
1667 |
+
cause, torch._subclasses.fake_tensor.DataDependentOutputException
|
1668 |
+
):
|
1669 |
+
unimplemented(
|
1670 |
+
f"data dependent operator: {cause.func}; "
|
1671 |
+
"to enable, set torch._dynamo.config.capture_scalar_outputs = True"
|
1672 |
+
)
|
1673 |
+
elif isinstance(
|
1674 |
+
cause, torch._subclasses.fake_tensor.DynamicOutputShapeException
|
1675 |
+
):
|
1676 |
+
unimplemented(
|
1677 |
+
f"dynamic shape operator: {cause.func}; "
|
1678 |
+
"to enable, set torch._dynamo.config.capture_dynamic_output_shape_ops = True"
|
1679 |
+
)
|
1680 |
+
elif isinstance(
|
1681 |
+
cause, torch._subclasses.fake_tensor.UnsupportedOperatorException
|
1682 |
+
):
|
1683 |
+
op = cause.func
|
1684 |
+
import_suggestion = ""
|
1685 |
+
if isinstance(op, torch._ops.OpOverload):
|
1686 |
+
maybe_pystub = torch._C._dispatch_pystub(
|
1687 |
+
op._schema.name, op._schema.overload_name
|
1688 |
+
)
|
1689 |
+
if maybe_pystub is not None:
|
1690 |
+
module, ctx = maybe_pystub
|
1691 |
+
import_suggestion = (
|
1692 |
+
f"It's possible that the support was implemented in "
|
1693 |
+
f"module `{module}` and you may need to `import {module}`"
|
1694 |
+
f"({ctx}), otherwise "
|
1695 |
+
)
|
1696 |
+
unimplemented(
|
1697 |
+
f"unsupported operator: {cause.func} ({import_suggestion}see "
|
1698 |
+
"https://docs.google.com/document/d/1GgvOe7C8_NVOMLOCwDaYV1mXXyHMXY7ExoewHqooxrs/edit#heading=h.64r4npvq0w0"
|
1699 |
+
" for how to fix)"
|
1700 |
+
)
|
1701 |
+
elif isinstance(
|
1702 |
+
cause, torch.fx.experimental.symbolic_shapes.GuardOnDataDependentSymNode
|
1703 |
+
):
|
1704 |
+
raise UserError( # noqa: TRY200
|
1705 |
+
UserErrorType.CONSTRAINT_VIOLATION,
|
1706 |
+
"Tried to use data-dependent value in the subsequent computation. "
|
1707 |
+
"This can happen when we encounter unbounded dynamic value that is unknown during tracing time. "
|
1708 |
+
"You will need to explicitly give hint to the compiler. Please take a look at "
|
1709 |
+
f"constrain_as_value OR constrain_as_size APIs. {cause}",
|
1710 |
+
case_name="constrain_as_size_example",
|
1711 |
+
)
|
1712 |
+
elif isinstance(cause, ValueRangeError):
|
1713 |
+
raise UserError(UserErrorType.CONSTRAINT_VIOLATION, e.args[0]) from e
|
1714 |
+
raise TorchRuntimeError(str(e)).with_traceback(e.__traceback__) from None
|
1715 |
+
|
1716 |
+
if not allow_non_graph_fake:
|
1717 |
+
_ = tree_map_only(
|
1718 |
+
torch.Tensor, functools.partial(ensure_graph_fake, tx=tx), ret_val
|
1719 |
+
)
|
1720 |
+
return ret_val
|
1721 |
+
|
1722 |
+
|
1723 |
+
_current_node = threading.local()
|
1724 |
+
|
1725 |
+
|
1726 |
+
def get_current_node():
|
1727 |
+
return getattr(_current_node, "value", None)
|
1728 |
+
|
1729 |
+
|
1730 |
+
@contextmanager
|
1731 |
+
def set_current_node(node):
|
1732 |
+
old = get_current_node()
|
1733 |
+
_current_node.value = node
|
1734 |
+
try:
|
1735 |
+
yield
|
1736 |
+
finally:
|
1737 |
+
_current_node.value = old
|
1738 |
+
|
1739 |
+
|
1740 |
+
def run_node(tracer, node, args, kwargs, nnmodule):
|
1741 |
+
"""
|
1742 |
+
Runs a given node, with the given args and kwargs.
|
1743 |
+
|
1744 |
+
Behavior is dictated by a node's op.
|
1745 |
+
|
1746 |
+
run_node is useful for extracting real values out of nodes.
|
1747 |
+
See get_real_value for more info on common usage.
|
1748 |
+
|
1749 |
+
Note: The tracer arg is only used for 'get_attr' ops
|
1750 |
+
Note: The nnmodule arg is only used for 'call_module' ops
|
1751 |
+
|
1752 |
+
Nodes that are not call_function, call_method, call_module, or get_attr will
|
1753 |
+
raise an AssertionError.
|
1754 |
+
"""
|
1755 |
+
op = node.op
|
1756 |
+
|
1757 |
+
with set_current_node(node):
|
1758 |
+
|
1759 |
+
def make_error_message(e):
|
1760 |
+
return f"Failed running {op} {node.target}(*{args}, **{kwargs}):\n" + str(e)
|
1761 |
+
|
1762 |
+
try:
|
1763 |
+
if op == "call_function":
|
1764 |
+
return node.target(*args, **kwargs)
|
1765 |
+
elif op == "call_method":
|
1766 |
+
return getattr(args[0], node.target)(*args[1:], **kwargs)
|
1767 |
+
elif op == "call_module":
|
1768 |
+
assert nnmodule is not None
|
1769 |
+
return nnmodule(*args, **kwargs)
|
1770 |
+
elif op == "get_attr":
|
1771 |
+
return tracer.get_submodule(node.target)
|
1772 |
+
elif op == "placeholder":
|
1773 |
+
assert "example_value" in node.meta
|
1774 |
+
return node.meta["example_value"]
|
1775 |
+
|
1776 |
+
except (NotImplementedError, UnsupportedFakeTensorException) as e:
|
1777 |
+
# NB: mimic how wrap_fake_exception does it
|
1778 |
+
from .exc import unimplemented
|
1779 |
+
|
1780 |
+
raise unimplemented(make_error_message(e)) from e
|
1781 |
+
except Exception as e:
|
1782 |
+
raise RuntimeError(make_error_message(e)).with_traceback(
|
1783 |
+
e.__traceback__
|
1784 |
+
) from e
|
1785 |
+
|
1786 |
+
raise AssertionError(op)
|
1787 |
+
|
1788 |
+
|
1789 |
+
def get_real_value(node, tracer):
|
1790 |
+
"""
|
1791 |
+
Run the actual computation represented by `node` and return the result.
|
1792 |
+
This will execute any dependent nodes in the graph as well.
|
1793 |
+
"""
|
1794 |
+
from .exc import TorchRuntimeError
|
1795 |
+
|
1796 |
+
cache = tracer.real_value_cache
|
1797 |
+
if node in cache:
|
1798 |
+
return cache[node]
|
1799 |
+
|
1800 |
+
op = node.op
|
1801 |
+
args, kwargs = torch.fx.node.map_arg(
|
1802 |
+
(node.args, node.kwargs),
|
1803 |
+
lambda n: get_real_value(n, tracer),
|
1804 |
+
)
|
1805 |
+
|
1806 |
+
if op == "call_module":
|
1807 |
+
nn_module = tracer.output_graph.nn_modules[node.target]
|
1808 |
+
if not is_lazy_module(nn_module):
|
1809 |
+
nn_module = copy.deepcopy(nn_module)
|
1810 |
+
else:
|
1811 |
+
# In the case of a lazy module, we want to run
|
1812 |
+
# the pre-hooks which initialize it
|
1813 |
+
nn_module(*args, **kwargs)
|
1814 |
+
else:
|
1815 |
+
nn_module = None
|
1816 |
+
|
1817 |
+
try:
|
1818 |
+
real_value = run_node(tracer, node, args, kwargs, nn_module)
|
1819 |
+
cache[node] = real_value
|
1820 |
+
except RuntimeError as e:
|
1821 |
+
raise TorchRuntimeError(str(e)).with_traceback(e.__traceback__) from None
|
1822 |
+
return real_value
|
1823 |
+
|
1824 |
+
|
1825 |
+
def assert_no_fake_params_or_buffers(gm):
|
1826 |
+
from torch._subclasses.fake_tensor import FakeTensorConfig
|
1827 |
+
|
1828 |
+
def stack_or_hint(t):
|
1829 |
+
if FakeTensorConfig.debug:
|
1830 |
+
import traceback
|
1831 |
+
|
1832 |
+
return f"FAKE TENSOR CREATION TRACEBACK: \n {traceback.format_list(t._debug_trace)}"
|
1833 |
+
else:
|
1834 |
+
return "Enable TORCH_FAKE_TENSOR_DEBUG=1 to get creation stack traces on fake tensors."
|
1835 |
+
|
1836 |
+
for name, buffer in gm.named_buffers():
|
1837 |
+
assert not isinstance(
|
1838 |
+
buffer, torch._subclasses.FakeTensor
|
1839 |
+
), f"Unexpected fake buffer {name} {stack_or_hint(buffer)}"
|
1840 |
+
for name, param in gm.named_parameters():
|
1841 |
+
assert not isinstance(
|
1842 |
+
param, torch._subclasses.FakeTensor
|
1843 |
+
), f"Unexpected fake param {name} {stack_or_hint(param)}"
|
1844 |
+
|
1845 |
+
|
1846 |
+
def fqn(obj: Any):
|
1847 |
+
"""
|
1848 |
+
Returns the fully qualified name of the object.
|
1849 |
+
"""
|
1850 |
+
return f"{obj.__module__}.{obj.__qualname__}"
|
1851 |
+
|
1852 |
+
|
1853 |
+
def ifdynstaticdefault(count1, count2):
|
1854 |
+
if torch._dynamo.config.assume_static_by_default:
|
1855 |
+
return count1
|
1856 |
+
else:
|
1857 |
+
return count2
|
1858 |
+
|
1859 |
+
|
1860 |
+
def import_submodule(mod: types.ModuleType):
|
1861 |
+
"""
|
1862 |
+
Ensure all the files in a given submodule are imported
|
1863 |
+
"""
|
1864 |
+
for filename in sorted(os.listdir(os.path.dirname(cast(str, mod.__file__)))):
|
1865 |
+
if filename.endswith(".py") and filename[0] != "_":
|
1866 |
+
importlib.import_module(f"{mod.__name__}.{filename[:-3]}")
|
1867 |
+
|
1868 |
+
|
1869 |
+
def object_has_getattribute(value: Any):
|
1870 |
+
try:
|
1871 |
+
if isinstance(
|
1872 |
+
inspect.getattr_static(type(value), "__getattribute__"),
|
1873 |
+
types.FunctionType,
|
1874 |
+
):
|
1875 |
+
return True
|
1876 |
+
except AttributeError:
|
1877 |
+
pass
|
1878 |
+
return False
|
1879 |
+
|
1880 |
+
|
1881 |
+
def get_custom_getattr(value: Any):
|
1882 |
+
try:
|
1883 |
+
getattr_fn = inspect.getattr_static(type(value), "__getattr__")
|
1884 |
+
except AttributeError:
|
1885 |
+
getattr_fn = None
|
1886 |
+
if getattr_fn is torch.nn.Module.__getattr__:
|
1887 |
+
# ignore this case of getattr
|
1888 |
+
getattr_fn = None
|
1889 |
+
return getattr_fn
|
1890 |
+
|
1891 |
+
|
1892 |
+
class TensorStaticReason(enum.Enum):
|
1893 |
+
PARAMETER = 2
|
1894 |
+
NOT_TENSOR = 4
|
1895 |
+
NN_MODULE_PROPERTY = 5
|
1896 |
+
|
1897 |
+
|
1898 |
+
def tensor_static_reason_to_message(reason: TensorStaticReason):
|
1899 |
+
if reason == TensorStaticReason.PARAMETER:
|
1900 |
+
return "mark_dynamic on parameter, parameters are always static today."
|
1901 |
+
if reason == TensorStaticReason.NOT_TENSOR:
|
1902 |
+
return "mark_dynamic on a non tensor, how did this happen?"
|
1903 |
+
if reason == TensorStaticReason.NN_MODULE_PROPERTY:
|
1904 |
+
return "tensor is static because it is nn module associated."
|
1905 |
+
raise AssertionError(f"Illegal reason {reason}")
|
1906 |
+
|
1907 |
+
|
1908 |
+
def tensor_always_has_static_shape(
|
1909 |
+
tensor: Union[torch.Tensor, Any],
|
1910 |
+
is_tensor: bool,
|
1911 |
+
guard_source: "torch._guards.GuardSource",
|
1912 |
+
) -> Tuple[bool, Optional[TensorStaticReason]]:
|
1913 |
+
"""
|
1914 |
+
Given a tensor, source, and is_tensor flag, determine if a shape should be static.
|
1915 |
+
|
1916 |
+
Args:
|
1917 |
+
tensor - the real tensor to evaluate, parameters force a static shape.
|
1918 |
+
is_tensor - internal dynamo check, essentially "is_tensor": target_cls is TensorVariable,
|
1919 |
+
tensors not in a TensorVariable for whatever reason are forced static.
|
1920 |
+
|
1921 |
+
Returns a tuple, where the first element is the bool of whether or not this tensor should have a static shape.
|
1922 |
+
The second element is a TensorStaticReason, useful for passing to tensor_static_reason_to_message if needed.
|
1923 |
+
"""
|
1924 |
+
if guard_source.is_nn_module() and config.force_nn_module_property_static_shapes:
|
1925 |
+
return True, TensorStaticReason.NN_MODULE_PROPERTY
|
1926 |
+
if type(tensor) is torch.nn.Parameter and config.force_parameter_static_shapes:
|
1927 |
+
return True, TensorStaticReason.PARAMETER
|
1928 |
+
if not is_tensor:
|
1929 |
+
return True, TensorStaticReason.NOT_TENSOR
|
1930 |
+
return False, None
|
1931 |
+
|
1932 |
+
|
1933 |
+
def lazy_format_graph_code(name, gm, maybe_id=None):
|
1934 |
+
def format_name():
|
1935 |
+
if maybe_id is not None:
|
1936 |
+
return f"{name} {maybe_id}"
|
1937 |
+
else:
|
1938 |
+
return name
|
1939 |
+
|
1940 |
+
return LazyString(
|
1941 |
+
lambda: _format_graph_code(
|
1942 |
+
f"===== {format_name()} =====\n",
|
1943 |
+
gm.forward.__code__.co_filename,
|
1944 |
+
gm.print_readable(print_output=False),
|
1945 |
+
)
|
1946 |
+
)
|
1947 |
+
|
1948 |
+
|
1949 |
+
def _format_graph_code(name, filename, graph_str):
|
1950 |
+
return f"TRACED GRAPH\n {name} {filename} {graph_str}\n"
|
1951 |
+
|
1952 |
+
|
1953 |
+
def lazy_format_graph_tabular(fn_name, gm):
|
1954 |
+
def inner():
|
1955 |
+
try:
|
1956 |
+
from tabulate import tabulate # TODO: Check that this is installed
|
1957 |
+
except ImportError:
|
1958 |
+
return (
|
1959 |
+
"Tabulate module missing, please install tabulate to log the graph in tabular format, logging code instead:\n"
|
1960 |
+
+ str(lazy_format_graph_code(fn_name, gm))
|
1961 |
+
)
|
1962 |
+
|
1963 |
+
node_specs = [
|
1964 |
+
[n.op, n.name, n.target, n.args, n.kwargs] for n in gm.graph.nodes
|
1965 |
+
]
|
1966 |
+
graph_str = tabulate(
|
1967 |
+
node_specs, headers=["opcode", "name", "target", "args", "kwargs"]
|
1968 |
+
)
|
1969 |
+
return _format_graph_code(fn_name, gm.forward.__code__.co_filename, graph_str)
|
1970 |
+
|
1971 |
+
return LazyString(inner)
|
1972 |
+
|
1973 |
+
|
1974 |
+
def format_bytecode(prefix, name, filename, line_no, code):
|
1975 |
+
return f"{prefix} {name} {filename} line {line_no} \n{dis.Bytecode(code).dis()}\n"
|
1976 |
+
|
1977 |
+
|
1978 |
+
forward_hook_names = ["_forward_pre_hooks", "_forward_hooks"]
|
1979 |
+
backward_hook_names = ["_backward_pre_hooks", "_backward_hooks"]
|
1980 |
+
state_dict_hook_names = [
|
1981 |
+
"_state_dict_pre_hooks",
|
1982 |
+
"_state_dict_hooks",
|
1983 |
+
"_load_state_dict_pre_hooks",
|
1984 |
+
"_load_state_dict_post_hooks",
|
1985 |
+
]
|
1986 |
+
all_hook_names = forward_hook_names + backward_hook_names + state_dict_hook_names
|
1987 |
+
|
1988 |
+
|
1989 |
+
def nn_module_get_all_hooks(
|
1990 |
+
mod,
|
1991 |
+
check_forward_hooks=False,
|
1992 |
+
check_backward_hooks=False,
|
1993 |
+
check_state_dict_hooks=False,
|
1994 |
+
):
|
1995 |
+
reset_code = torch._C._dynamo.eval_frame.reset_code
|
1996 |
+
"""
|
1997 |
+
Sometimes its useful to differentiate between types of hooks such as forward/backward/pre
|
1998 |
+
hooks executed during module.__call__, and state_dict hooks which are executed separately.
|
1999 |
+
"""
|
2000 |
+
hook_dicts_to_check = []
|
2001 |
+
check_all_hooks = (
|
2002 |
+
not check_forward_hooks
|
2003 |
+
and not check_backward_hooks
|
2004 |
+
and not check_state_dict_hooks
|
2005 |
+
)
|
2006 |
+
if check_forward_hooks or check_all_hooks:
|
2007 |
+
hook_dicts_to_check.extend(forward_hook_names)
|
2008 |
+
if check_backward_hooks or check_all_hooks:
|
2009 |
+
hook_dicts_to_check.extend(backward_hook_names)
|
2010 |
+
if check_state_dict_hooks:
|
2011 |
+
hook_dicts_to_check.extend(state_dict_hook_names)
|
2012 |
+
|
2013 |
+
all_hooks = []
|
2014 |
+
for hook_dict_name in hook_dicts_to_check:
|
2015 |
+
hooks = getattr(mod, hook_dict_name, [])
|
2016 |
+
for hook_name in hooks:
|
2017 |
+
hook = hooks[hook_name]
|
2018 |
+
|
2019 |
+
all_hooks.append(hook)
|
2020 |
+
return all_hooks
|
2021 |
+
|
2022 |
+
|
2023 |
+
def nnmodule_has_hooks(
|
2024 |
+
mod,
|
2025 |
+
check_forward_hooks=False,
|
2026 |
+
check_backward_hooks=False,
|
2027 |
+
check_state_dict_hooks=False,
|
2028 |
+
):
|
2029 |
+
"""
|
2030 |
+
Helper function to check if a module has any hooks attached to it.
|
2031 |
+
"""
|
2032 |
+
hooks = nn_module_get_all_hooks(
|
2033 |
+
mod,
|
2034 |
+
check_forward_hooks=check_forward_hooks,
|
2035 |
+
check_backward_hooks=check_backward_hooks,
|
2036 |
+
check_state_dict_hooks=check_state_dict_hooks,
|
2037 |
+
)
|
2038 |
+
return bool(hooks)
|
2039 |
+
|
2040 |
+
|
2041 |
+
def to_numpy_helper(value):
|
2042 |
+
"""Convert tensor and tnp.ndarray to numpy.ndarray."""
|
2043 |
+
if is_fake(value):
|
2044 |
+
return value
|
2045 |
+
if isinstance(value, tnp.ndarray):
|
2046 |
+
return to_numpy_helper(value.tensor)
|
2047 |
+
elif isinstance(value, torch.Tensor):
|
2048 |
+
return value.numpy(force=True)
|
2049 |
+
elif isinstance(value, (tuple, list)):
|
2050 |
+
return type(value)(to_numpy_helper(obj) for obj in value)
|
2051 |
+
else:
|
2052 |
+
return value
|
2053 |
+
|
2054 |
+
|
2055 |
+
def numpy_to_tensor(value):
|
2056 |
+
"""Convert tnp.ndarray to tensor, leave other types intact. If a list/tuple, loop through it to convert."""
|
2057 |
+
assert np is not None
|
2058 |
+
if isinstance(value, np.ndarray):
|
2059 |
+
return torch.as_tensor(value)
|
2060 |
+
if isinstance(value, tnp.ndarray):
|
2061 |
+
return value.tensor
|
2062 |
+
elif isinstance(value, (tuple, list)):
|
2063 |
+
return type(value)(numpy_to_tensor(obj) for obj in value)
|
2064 |
+
else:
|
2065 |
+
return value
|
2066 |
+
|
2067 |
+
|
2068 |
+
class numpy_to_tensor_wrapper:
|
2069 |
+
def __init__(self, f):
|
2070 |
+
self.f = f
|
2071 |
+
self.__name__ = "wrapped_" + self.f.__name__
|
2072 |
+
|
2073 |
+
def __repr__(self):
|
2074 |
+
return f"<Wrapped function <original {self.f.__name__}>>"
|
2075 |
+
|
2076 |
+
def __call__(self, *args, **kwargs):
|
2077 |
+
out = self.f(*args, **kwargs)
|
2078 |
+
return numpy_to_tensor(out)
|
2079 |
+
|
2080 |
+
|
2081 |
+
def numpy_attr_wrapper(obj, name):
|
2082 |
+
if isinstance(obj, tnp.ndarray):
|
2083 |
+
out = getattr(obj, name)
|
2084 |
+
return numpy_to_tensor(out)
|
2085 |
+
elif isinstance(obj, torch.Tensor):
|
2086 |
+
out = getattr(tnp.ndarray(obj), name)
|
2087 |
+
return numpy_to_tensor(out)
|
2088 |
+
|
2089 |
+
|
2090 |
+
class numpy_method_wrapper:
|
2091 |
+
"""Convert obj from torch.Tensor to tnp.ndarray and call method. Then convert result back to torch.Tensor."""
|
2092 |
+
|
2093 |
+
def __init__(self, method: str):
|
2094 |
+
self.method = method
|
2095 |
+
self.__name__ = "wrapped_" + self.method
|
2096 |
+
|
2097 |
+
def __repr__(self):
|
2098 |
+
return f"<Wrapped method <original {self.method}>>"
|
2099 |
+
|
2100 |
+
def __call__(self, *args, **kwargs):
|
2101 |
+
obj = args[0]
|
2102 |
+
if isinstance(obj, torch.Tensor):
|
2103 |
+
obj = tnp.ndarray(obj)
|
2104 |
+
method_callable = getattr(obj, self.method)
|
2105 |
+
out = method_callable(*args[1:], **kwargs)
|
2106 |
+
return numpy_to_tensor(out)
|
2107 |
+
|
2108 |
+
|
2109 |
+
class numpy_operator_wrapper:
|
2110 |
+
"""Implements dunder methods for tnp.ndarray via functions from the operator library"""
|
2111 |
+
|
2112 |
+
def __init__(self, op: Callable[..., Any]):
|
2113 |
+
self.op = op
|
2114 |
+
self.__name__ = f"wrapped_{op.__name__}"
|
2115 |
+
|
2116 |
+
def __repr__(self):
|
2117 |
+
return f"<Wrapped operator <original {self.__name__}>>"
|
2118 |
+
|
2119 |
+
def __call__(self, *args, **kwargs):
|
2120 |
+
assert not kwargs
|
2121 |
+
|
2122 |
+
args = (
|
2123 |
+
tnp.ndarray(arg) if isinstance(arg, torch.Tensor) else arg for arg in args
|
2124 |
+
)
|
2125 |
+
out = self.op(*args)
|
2126 |
+
return numpy_to_tensor(out)
|
2127 |
+
|
2128 |
+
|
2129 |
+
def defake(x):
|
2130 |
+
if not isinstance(x, FakeTensor):
|
2131 |
+
return x
|
2132 |
+
size: "torch._prims_common.ShapeType"
|
2133 |
+
stride: "torch._prims_common.StrideType"
|
2134 |
+
if x._has_symbolic_sizes_strides:
|
2135 |
+
size = []
|
2136 |
+
for s in x.size():
|
2137 |
+
if isinstance(s, torch.SymInt):
|
2138 |
+
size.append(s.node.shape_env.size_hint(s.node.expr))
|
2139 |
+
else:
|
2140 |
+
size.append(s)
|
2141 |
+
stride = []
|
2142 |
+
for s in x.stride():
|
2143 |
+
if isinstance(s, torch.SymInt):
|
2144 |
+
stride.append(s.node.shape_env.size_hint(s.node.expr))
|
2145 |
+
else:
|
2146 |
+
stride.append(s)
|
2147 |
+
else:
|
2148 |
+
size = x.size()
|
2149 |
+
stride = x.stride()
|
2150 |
+
y = torch.empty_strided(
|
2151 |
+
size,
|
2152 |
+
stride,
|
2153 |
+
dtype=x.dtype,
|
2154 |
+
device=x.device,
|
2155 |
+
requires_grad=x.requires_grad,
|
2156 |
+
)
|
2157 |
+
y.zero_()
|
2158 |
+
return y
|
2159 |
+
|
2160 |
+
|
2161 |
+
def is_utils_checkpoint(obj):
|
2162 |
+
# Lazy import to avoid circular dependencies
|
2163 |
+
import torch.utils.checkpoint
|
2164 |
+
|
2165 |
+
return obj is torch.utils.checkpoint.checkpoint
|
2166 |
+
|
2167 |
+
|
2168 |
+
def build_checkpoint_variable(**options):
|
2169 |
+
import torch._higher_order_ops.wrap as higher_order_ops
|
2170 |
+
from .variables.higher_order_ops import TorchHigherOrderOperatorVariable
|
2171 |
+
|
2172 |
+
# TODO - This is a temporary situation where we have two versions of
|
2173 |
+
# checkpointing implementation. We will converge on one and remove the other.
|
2174 |
+
activation_checkpoint_op: "torch._ops.HigherOrderOperator" = (
|
2175 |
+
higher_order_ops.tag_activation_checkpoint
|
2176 |
+
)
|
2177 |
+
if torch._functorch.config.functionalize_rng_ops:
|
2178 |
+
activation_checkpoint_op = higher_order_ops.wrap_activation_checkpoint
|
2179 |
+
|
2180 |
+
return TorchHigherOrderOperatorVariable.make(
|
2181 |
+
activation_checkpoint_op,
|
2182 |
+
**options,
|
2183 |
+
)
|
2184 |
+
|
2185 |
+
|
2186 |
+
def is_compile_supported(device_type):
|
2187 |
+
from .eval_frame import is_dynamo_supported
|
2188 |
+
|
2189 |
+
compile_supported = is_dynamo_supported()
|
2190 |
+
if device_type == "cpu":
|
2191 |
+
pass
|
2192 |
+
elif device_type == "cuda" and compile_supported:
|
2193 |
+
from torch.utils._triton import has_triton
|
2194 |
+
|
2195 |
+
compile_supported = has_triton()
|
2196 |
+
else:
|
2197 |
+
compile_supported = False
|
2198 |
+
return compile_supported
|
2199 |
+
|
2200 |
+
|
2201 |
+
# The following 3.11 source code functions are adapted from
|
2202 |
+
# https://github.com/python/cpython/blob/v3.11.4/Lib/traceback.py
|
2203 |
+
# in order to output source code corresponding to bytecode in 3.11+.
|
2204 |
+
# We need our own versions since we want to support multiline expressions.
|
2205 |
+
def _fix_offset(str: str, offset: int) -> int:
|
2206 |
+
"""
|
2207 |
+
Convert byte offset `offset` of `str` into character offset.
|
2208 |
+
Byte offset is used for 3.11+ instruction column data.
|
2209 |
+
Takes things like unicode characters into consideration.
|
2210 |
+
|
2211 |
+
Unchanged from CPython implementation.
|
2212 |
+
"""
|
2213 |
+
as_utf8 = str.encode("utf-8")
|
2214 |
+
return len(as_utf8[:offset].decode("utf-8", errors="replace"))
|
2215 |
+
|
2216 |
+
|
2217 |
+
@dataclasses.dataclass
|
2218 |
+
class _Anchors:
|
2219 |
+
# inclusive
|
2220 |
+
left_end_lineno: int
|
2221 |
+
left_end_offset: int
|
2222 |
+
right_start_lineno: int
|
2223 |
+
# exclusive
|
2224 |
+
right_start_offset: int
|
2225 |
+
|
2226 |
+
|
2227 |
+
def _extract_anchors_from_expr(segment: str) -> Optional[_Anchors]:
|
2228 |
+
"""
|
2229 |
+
Given source code `segment` corresponding to a bytecode
|
2230 |
+
instruction, determine:
|
2231 |
+
- for binary ops, the location of the binary op
|
2232 |
+
- for indexing, the location of the brackets.
|
2233 |
+
`segment` is expected to be a valid Python expression
|
2234 |
+
"""
|
2235 |
+
assert sys.version_info >= (3, 11)
|
2236 |
+
|
2237 |
+
import ast
|
2238 |
+
|
2239 |
+
try:
|
2240 |
+
# Without brackets, `segment` is parsed as a statement.
|
2241 |
+
# We expect an expression, so wrap `segment` in
|
2242 |
+
# brackets to handle multi-line expressions.
|
2243 |
+
tree = ast.parse("(\n" + segment + "\n)")
|
2244 |
+
except SyntaxError:
|
2245 |
+
return None
|
2246 |
+
|
2247 |
+
if len(tree.body) != 1:
|
2248 |
+
return None
|
2249 |
+
|
2250 |
+
lines = segment.split("\n")
|
2251 |
+
|
2252 |
+
# get character index given byte offset
|
2253 |
+
def normalize(lineno, offset):
|
2254 |
+
return _fix_offset(lines[lineno], offset)
|
2255 |
+
|
2256 |
+
# Gets the next valid character index in `lines`, if
|
2257 |
+
# the current location is not valid. Handles empty lines.
|
2258 |
+
def next_valid_char(lineno, col):
|
2259 |
+
while lineno < len(lines) and col >= len(lines[lineno]):
|
2260 |
+
col = 0
|
2261 |
+
lineno += 1
|
2262 |
+
assert lineno < len(lines) and col < len(lines[lineno])
|
2263 |
+
return lineno, col
|
2264 |
+
|
2265 |
+
# Get the next valid character index in `lines`.
|
2266 |
+
def increment(lineno, col):
|
2267 |
+
col += 1
|
2268 |
+
lineno, col = next_valid_char(lineno, col)
|
2269 |
+
assert lineno < len(lines) and col < len(lines[lineno])
|
2270 |
+
return lineno, col
|
2271 |
+
|
2272 |
+
# Get the next valid character at least on the next line
|
2273 |
+
def nextline(lineno, col):
|
2274 |
+
col = 0
|
2275 |
+
lineno += 1
|
2276 |
+
lineno, col = next_valid_char(lineno, col)
|
2277 |
+
assert lineno < len(lines) and col < len(lines[lineno])
|
2278 |
+
return lineno, col
|
2279 |
+
|
2280 |
+
statement = tree.body[0]
|
2281 |
+
if isinstance(statement, ast.Expr):
|
2282 |
+
expr = statement.value
|
2283 |
+
if isinstance(expr, ast.BinOp):
|
2284 |
+
# ast gives locations for BinOp subexpressions, e.g.
|
2285 |
+
# ( left_expr ) + ( right_expr )
|
2286 |
+
# left^^^^^ right^^^^^
|
2287 |
+
# -2 since end_lineno is 1-indexed and because we added an extra
|
2288 |
+
# bracket to `segment` when calling ast.parse
|
2289 |
+
cur_lineno = cast(int, expr.left.end_lineno) - 2
|
2290 |
+
cur_col = normalize(cur_lineno, expr.left.end_col_offset)
|
2291 |
+
cur_lineno, cur_col = next_valid_char(cur_lineno, cur_col)
|
2292 |
+
|
2293 |
+
# Heuristic to find the operator character.
|
2294 |
+
# The original CPython implementation did not look for ), \, or #,
|
2295 |
+
# leading to incorrect anchor location, e.g.
|
2296 |
+
# (x) + (y)
|
2297 |
+
# ~~^~~~~~~
|
2298 |
+
while (ch := lines[cur_lineno][cur_col]).isspace() or ch in ")\\#":
|
2299 |
+
if ch in "\\#":
|
2300 |
+
cur_lineno, cur_col = nextline(cur_lineno, cur_col)
|
2301 |
+
else:
|
2302 |
+
cur_lineno, cur_col = increment(cur_lineno, cur_col)
|
2303 |
+
|
2304 |
+
# binary op is 1 or 2 characters long, on the same line
|
2305 |
+
right_col = cur_col + 1
|
2306 |
+
if (
|
2307 |
+
right_col < len(lines[cur_lineno])
|
2308 |
+
and not (ch := lines[cur_lineno][right_col]).isspace()
|
2309 |
+
and ch not in "\\#"
|
2310 |
+
):
|
2311 |
+
right_col += 1
|
2312 |
+
# right_col can be invalid since it is exclusive
|
2313 |
+
|
2314 |
+
return _Anchors(cur_lineno, cur_col, cur_lineno, right_col)
|
2315 |
+
elif isinstance(expr, ast.Subscript):
|
2316 |
+
# ast gives locations for value and slice subexpressions, e.g.
|
2317 |
+
# ( value_expr ) [ slice_expr ]
|
2318 |
+
# value^^^^^ slice^^^^^
|
2319 |
+
# subscript^^^^^^^^^^^^^^^^^^^^
|
2320 |
+
# find left bracket (first '[' after value)
|
2321 |
+
left_lineno = cast(int, expr.value.end_lineno) - 2
|
2322 |
+
left_col = normalize(left_lineno, expr.value.end_col_offset)
|
2323 |
+
left_lineno, left_col = next_valid_char(left_lineno, left_col)
|
2324 |
+
while lines[left_lineno][left_col] != "[":
|
2325 |
+
left_lineno, left_col = increment(left_lineno, left_col)
|
2326 |
+
# find right bracket (final character of expression)
|
2327 |
+
right_lineno = cast(int, expr.end_lineno) - 2
|
2328 |
+
right_col = normalize(right_lineno, expr.end_col_offset)
|
2329 |
+
return _Anchors(left_lineno, left_col, right_lineno, right_col)
|
2330 |
+
elif isinstance(expr, ast.Call):
|
2331 |
+
# ( func_expr ) (args, kwargs)
|
2332 |
+
# func^^^^^
|
2333 |
+
# call^^^^^^^^^^^^^^^^^^^^^^^^
|
2334 |
+
# find left bracket (first '(' after func)
|
2335 |
+
left_lineno = cast(int, expr.func.end_lineno) - 2
|
2336 |
+
left_col = normalize(left_lineno, expr.func.end_col_offset)
|
2337 |
+
left_lineno, left_col = next_valid_char(left_lineno, left_col)
|
2338 |
+
while lines[left_lineno][left_col] != "(":
|
2339 |
+
left_lineno, left_col = increment(left_lineno, left_col)
|
2340 |
+
# find right bracket (final character of expression)
|
2341 |
+
right_lineno = cast(int, expr.end_lineno) - 2
|
2342 |
+
right_col = normalize(right_lineno, expr.end_col_offset)
|
2343 |
+
return _Anchors(left_lineno, left_col, right_lineno, right_col)
|
2344 |
+
|
2345 |
+
return None
|
2346 |
+
|
2347 |
+
|
2348 |
+
def get_instruction_source_311(code: types.CodeType, inst: dis.Instruction) -> str:
|
2349 |
+
"""
|
2350 |
+
Python 3.11+ only. Returns lines of source code (from code object `code`)
|
2351 |
+
corresponding to `inst`'s location data, and underlines relevant code to `inst`.
|
2352 |
+
|
2353 |
+
Example: CALL on `g`:
|
2354 |
+
f(g(
|
2355 |
+
^^
|
2356 |
+
h(x)))
|
2357 |
+
^^^^^
|
2358 |
+
|
2359 |
+
We need our own implementation since `format_frame_summary` in
|
2360 |
+
Python's `traceback` module doesn't handle multi-line expressions
|
2361 |
+
(and their anchor extraction code is not completely correct).
|
2362 |
+
"""
|
2363 |
+
assert inst.positions is not None
|
2364 |
+
if inst.positions.lineno is None:
|
2365 |
+
return ""
|
2366 |
+
# The rstrip + "\n" pattern is used throughout this function to handle
|
2367 |
+
# linecache.getline errors. Error lines are treated as empty strings "", but we want
|
2368 |
+
# to treat them as blank lines "\n".
|
2369 |
+
first_line = linecache.getline(code.co_filename, inst.positions.lineno).rstrip()
|
2370 |
+
if inst.positions.end_lineno is None:
|
2371 |
+
return first_line
|
2372 |
+
if inst.positions.col_offset is None or inst.positions.end_col_offset is None:
|
2373 |
+
return first_line
|
2374 |
+
|
2375 |
+
# character index of the start of the instruction
|
2376 |
+
start_offset = _fix_offset(first_line, inst.positions.col_offset)
|
2377 |
+
# character index of the end of the instruction
|
2378 |
+
# compute later since end may be a different line
|
2379 |
+
end_offset = None
|
2380 |
+
# expression corresponding to the instruction so we can get anchors
|
2381 |
+
segment = ""
|
2382 |
+
# underline markers to be printed - start with `~` marker and replace with `^` later
|
2383 |
+
markers = []
|
2384 |
+
|
2385 |
+
# Compute segment and initial markers
|
2386 |
+
if inst.positions.end_lineno == inst.positions.lineno:
|
2387 |
+
end_offset = _fix_offset(first_line, inst.positions.end_col_offset)
|
2388 |
+
segment = first_line[start_offset:end_offset]
|
2389 |
+
markers.append(" " * start_offset + "~" * (end_offset - start_offset))
|
2390 |
+
else:
|
2391 |
+
segment = first_line[start_offset:] + "\n"
|
2392 |
+
markers.append(" " * start_offset + "~" * (len(first_line) - start_offset))
|
2393 |
+
last_line = linecache.getline(
|
2394 |
+
code.co_filename, inst.positions.end_lineno
|
2395 |
+
).rstrip()
|
2396 |
+
end_offset = _fix_offset(last_line, inst.positions.end_col_offset)
|
2397 |
+
for lineno in range(inst.positions.lineno + 1, inst.positions.end_lineno):
|
2398 |
+
line = linecache.getline(code.co_filename, lineno).rstrip()
|
2399 |
+
segment += line + "\n"
|
2400 |
+
# don't underline leading spaces
|
2401 |
+
num_spaces = len(line) - len(line.lstrip())
|
2402 |
+
markers.append(" " * num_spaces + "~" * (len(line) - num_spaces))
|
2403 |
+
segment += last_line[:end_offset]
|
2404 |
+
num_spaces = len(last_line) - len(last_line.lstrip())
|
2405 |
+
markers.append(" " * num_spaces + "~" * (end_offset - num_spaces))
|
2406 |
+
|
2407 |
+
anchors: Optional[_Anchors] = None
|
2408 |
+
try:
|
2409 |
+
anchors = _extract_anchors_from_expr(segment)
|
2410 |
+
except AssertionError:
|
2411 |
+
pass
|
2412 |
+
|
2413 |
+
# replace `~` markers with `^` where necessary
|
2414 |
+
if anchors is None:
|
2415 |
+
markers = [marker.replace("~", "^") for marker in markers]
|
2416 |
+
else:
|
2417 |
+
# make markers mutable
|
2418 |
+
mutable_markers: List[List[str]] = [list(marker) for marker in markers]
|
2419 |
+
|
2420 |
+
# anchor positions do not take start_offset into account
|
2421 |
+
if anchors.left_end_lineno == 0:
|
2422 |
+
anchors.left_end_offset += start_offset
|
2423 |
+
if anchors.right_start_lineno == 0:
|
2424 |
+
anchors.right_start_offset += start_offset
|
2425 |
+
|
2426 |
+
# Turn `~`` markers between anchors to `^`
|
2427 |
+
for lineno in range(len(markers)):
|
2428 |
+
for col in range(len(mutable_markers[lineno])):
|
2429 |
+
if lineno < anchors.left_end_lineno:
|
2430 |
+
continue
|
2431 |
+
if lineno == anchors.left_end_lineno and col < anchors.left_end_offset:
|
2432 |
+
continue
|
2433 |
+
if (
|
2434 |
+
lineno == anchors.right_start_lineno
|
2435 |
+
and col >= anchors.right_start_offset
|
2436 |
+
):
|
2437 |
+
continue
|
2438 |
+
if lineno > anchors.right_start_lineno:
|
2439 |
+
continue
|
2440 |
+
if mutable_markers[lineno][col] == "~":
|
2441 |
+
mutable_markers[lineno][col] = "^"
|
2442 |
+
|
2443 |
+
# make markers into strings again
|
2444 |
+
markers = ["".join(marker) for marker in mutable_markers]
|
2445 |
+
|
2446 |
+
result = ""
|
2447 |
+
for i in range(len(markers)):
|
2448 |
+
result += (
|
2449 |
+
linecache.getline(code.co_filename, inst.positions.lineno + i).rstrip()
|
2450 |
+
+ "\n"
|
2451 |
+
)
|
2452 |
+
result += markers[i] + "\n"
|
2453 |
+
return result
|
2454 |
+
|
2455 |
+
|
2456 |
+
def get_static_address_type(t):
|
2457 |
+
if isinstance(t, torch.Tensor):
|
2458 |
+
return getattr(t, "_dynamo_static_input_type", None)
|
2459 |
+
|
2460 |
+
return None
|
2461 |
+
|
2462 |
+
|
2463 |
+
def is_rng_state_getter_or_setter(value):
|
2464 |
+
getters = (
|
2465 |
+
# The following two functions are not identical, so don't remove anyone!
|
2466 |
+
torch._C.Generator.get_state,
|
2467 |
+
torch.default_generator.get_state,
|
2468 |
+
torch.get_rng_state,
|
2469 |
+
torch.cuda.get_rng_state,
|
2470 |
+
)
|
2471 |
+
setters = (
|
2472 |
+
torch._C.Generator.set_state,
|
2473 |
+
torch.default_generator.set_state,
|
2474 |
+
torch.set_rng_state,
|
2475 |
+
torch.cuda.set_rng_state,
|
2476 |
+
)
|
2477 |
+
return value in (*setters, *getters)
|
2478 |
+
|
2479 |
+
|
2480 |
+
def is_tensor_base_attr_getter(value):
|
2481 |
+
return (
|
2482 |
+
isinstance(value, types.MethodWrapperType)
|
2483 |
+
and value.__name__ == "__get__"
|
2484 |
+
and value.__self__.__objclass__ is torch._C._TensorBase # type: ignore[attr-defined]
|
2485 |
+
)
|
2486 |
+
|
2487 |
+
|
2488 |
+
def is_torch_function_object(value):
|
2489 |
+
return hasattr(value, "__torch_function__")
|
2490 |
+
|
2491 |
+
|
2492 |
+
def has_torch_function(vt: "torch._dynamo.variables.base.VariableTracker") -> bool:
|
2493 |
+
from torch._dynamo.variables import UserDefinedObjectVariable
|
2494 |
+
from torch._dynamo.variables.torch_function import TensorWithTFOverrideVariable
|
2495 |
+
|
2496 |
+
return isinstance(vt, TensorWithTFOverrideVariable) or (
|
2497 |
+
isinstance(vt, UserDefinedObjectVariable)
|
2498 |
+
and hasattr(vt.value, "__torch_function__")
|
2499 |
+
)
|
2500 |
+
|
2501 |
+
|
2502 |
+
# see note [Tensor Fakification and Symbol Caching]
|
2503 |
+
def to_fake_tensor(t, fake_mode):
|
2504 |
+
symbolic_context = None
|
2505 |
+
source = None
|
2506 |
+
if tracing_context := torch._guards.TracingContext.try_get():
|
2507 |
+
if t in tracing_context.tensor_to_context:
|
2508 |
+
symbolic_context = tracing_context.tensor_to_context[t]
|
2509 |
+
source = symbolic_context.tensor_source
|
2510 |
+
|
2511 |
+
return fake_mode.from_tensor(
|
2512 |
+
t, static_shapes=False, symbolic_context=symbolic_context, source=source
|
2513 |
+
)
|
2514 |
+
|
2515 |
+
|
2516 |
+
def get_first_attr(obj, *attrs):
|
2517 |
+
"""
|
2518 |
+
Return the first available attribute or throw an exception if none is present.
|
2519 |
+
"""
|
2520 |
+
for attr in attrs:
|
2521 |
+
if hasattr(obj, attr):
|
2522 |
+
return getattr(obj, attr)
|
2523 |
+
|
2524 |
+
raise AssertionError(f"{obj} does not has any of the attributes: {attrs}")
|
2525 |
+
|
2526 |
+
|
2527 |
+
@contextlib.contextmanager
|
2528 |
+
def maybe_enable_compiled_autograd(should_enable):
|
2529 |
+
def compiler_fn(gm):
|
2530 |
+
def inner_compiler(gm_, example_inputs_):
|
2531 |
+
torch._dynamo.utils.counters["compiled_autograd"]["compiles"] += 1
|
2532 |
+
return torch._inductor.compile(gm_, example_inputs_)
|
2533 |
+
|
2534 |
+
return torch.compile(gm, backend=inner_compiler, fullgraph=True, dynamic=True)
|
2535 |
+
|
2536 |
+
if should_enable:
|
2537 |
+
with torch._dynamo.compiled_autograd.enable(compiler_fn) as ctx:
|
2538 |
+
yield ctx
|
2539 |
+
else:
|
2540 |
+
yield
|
2541 |
+
|
2542 |
+
|
2543 |
+
def invalid_removeable_handle():
|
2544 |
+
# need a subclass so weakref works
|
2545 |
+
class Invalid(dict): # type: ignore[type-arg]
|
2546 |
+
pass
|
2547 |
+
|
2548 |
+
return RemovableHandle(Invalid())
|
llmeval-env/lib/python3.10/site-packages/torch/utils/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (2.17 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/utils/__pycache__/_config_module.cpython-310.pyc
ADDED
Binary file (11.7 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/utils/__pycache__/_contextlib.cpython-310.pyc
ADDED
Binary file (5.34 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/utils/__pycache__/_cxx_pytree.cpython-310.pyc
ADDED
Binary file (31.6 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/utils/__pycache__/_freeze.cpython-310.pyc
ADDED
Binary file (8.24 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/utils/__pycache__/_import_utils.cpython-310.pyc
ADDED
Binary file (1.21 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/utils/__pycache__/_stats.cpython-310.pyc
ADDED
Binary file (849 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/utils/__pycache__/_traceback.cpython-310.pyc
ADDED
Binary file (5.92 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/utils/__pycache__/_triton.cpython-310.pyc
ADDED
Binary file (2.89 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/utils/__pycache__/_typing_utils.cpython-310.pyc
ADDED
Binary file (545 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/utils/__pycache__/bundled_inputs.cpython-310.pyc
ADDED
Binary file (17.1 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/utils/__pycache__/collect_env.cpython-310.pyc
ADDED
Binary file (15.4 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/utils/__pycache__/cpp_backtrace.cpython-310.pyc
ADDED
Binary file (690 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/utils/__pycache__/cpp_extension.cpython-310.pyc
ADDED
Binary file (71.6 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/utils/__pycache__/dlpack.cpython-310.pyc
ADDED
Binary file (3.86 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/utils/__pycache__/weak.cpython-310.pyc
ADDED
Binary file (9.14 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/utils/_sympy/__init__.py
ADDED
File without changes
|
llmeval-env/lib/python3.10/site-packages/torch/utils/_sympy/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (191 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/utils/_sympy/__pycache__/functions.cpython-310.pyc
ADDED
Binary file (9.69 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/utils/_sympy/__pycache__/interp.cpython-310.pyc
ADDED
Binary file (3 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/utils/_sympy/__pycache__/reference.cpython-310.pyc
ADDED
Binary file (6.59 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/utils/_sympy/__pycache__/singleton_int.cpython-310.pyc
ADDED
Binary file (2.82 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/utils/_sympy/__pycache__/solve.cpython-310.pyc
ADDED
Binary file (2.89 kB). View file
|
|