applied-ai-018 commited on
Commit
7322c99
·
verified ·
1 Parent(s): 023080d

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. llmeval-env/lib/python3.10/site-packages/sympy/core/assumptions.py +692 -0
  2. llmeval-env/lib/python3.10/site-packages/sympy/core/assumptions_generated.py +1615 -0
  3. llmeval-env/lib/python3.10/site-packages/sympy/core/basic.py +2233 -0
  4. llmeval-env/lib/python3.10/site-packages/sympy/core/evalf.py +1801 -0
  5. llmeval-env/lib/python3.10/site-packages/sympy/core/exprtools.py +1569 -0
  6. llmeval-env/lib/python3.10/site-packages/sympy/core/facts.py +634 -0
  7. llmeval-env/lib/python3.10/site-packages/sympy/core/kind.py +388 -0
  8. llmeval-env/lib/python3.10/site-packages/sympy/core/mul.py +2195 -0
  9. llmeval-env/lib/python3.10/site-packages/sympy/core/parameters.py +161 -0
  10. llmeval-env/lib/python3.10/site-packages/sympy/discrete/__init__.py +20 -0
  11. llmeval-env/lib/python3.10/site-packages/sympy/discrete/__pycache__/__init__.cpython-310.pyc +0 -0
  12. llmeval-env/lib/python3.10/site-packages/sympy/discrete/__pycache__/convolutions.cpython-310.pyc +0 -0
  13. llmeval-env/lib/python3.10/site-packages/sympy/discrete/__pycache__/recurrences.cpython-310.pyc +0 -0
  14. llmeval-env/lib/python3.10/site-packages/sympy/discrete/__pycache__/transforms.cpython-310.pyc +0 -0
  15. llmeval-env/lib/python3.10/site-packages/sympy/discrete/convolutions.py +488 -0
  16. llmeval-env/lib/python3.10/site-packages/sympy/discrete/recurrences.py +166 -0
  17. llmeval-env/lib/python3.10/site-packages/sympy/discrete/tests/__init__.py +0 -0
  18. llmeval-env/lib/python3.10/site-packages/sympy/discrete/tests/__pycache__/__init__.cpython-310.pyc +0 -0
  19. llmeval-env/lib/python3.10/site-packages/sympy/discrete/tests/__pycache__/test_convolutions.cpython-310.pyc +0 -0
  20. llmeval-env/lib/python3.10/site-packages/sympy/discrete/tests/__pycache__/test_recurrences.cpython-310.pyc +0 -0
  21. llmeval-env/lib/python3.10/site-packages/sympy/discrete/tests/__pycache__/test_transforms.cpython-310.pyc +0 -0
  22. llmeval-env/lib/python3.10/site-packages/sympy/discrete/tests/test_convolutions.py +365 -0
  23. llmeval-env/lib/python3.10/site-packages/sympy/discrete/tests/test_recurrences.py +59 -0
  24. llmeval-env/lib/python3.10/site-packages/sympy/discrete/tests/test_transforms.py +154 -0
  25. llmeval-env/lib/python3.10/site-packages/sympy/discrete/transforms.py +425 -0
  26. llmeval-env/lib/python3.10/site-packages/sympy/solvers/__pycache__/__init__.cpython-310.pyc +0 -0
  27. llmeval-env/lib/python3.10/site-packages/sympy/solvers/__pycache__/bivariate.cpython-310.pyc +0 -0
  28. llmeval-env/lib/python3.10/site-packages/sympy/solvers/__pycache__/decompogen.cpython-310.pyc +0 -0
  29. llmeval-env/lib/python3.10/site-packages/sympy/solvers/__pycache__/deutils.cpython-310.pyc +0 -0
  30. llmeval-env/lib/python3.10/site-packages/sympy/solvers/__pycache__/inequalities.cpython-310.pyc +0 -0
  31. llmeval-env/lib/python3.10/site-packages/sympy/solvers/__pycache__/pde.cpython-310.pyc +0 -0
  32. llmeval-env/lib/python3.10/site-packages/sympy/solvers/__pycache__/polysys.cpython-310.pyc +0 -0
  33. llmeval-env/lib/python3.10/site-packages/sympy/solvers/__pycache__/recurr.cpython-310.pyc +0 -0
  34. llmeval-env/lib/python3.10/site-packages/sympy/solvers/__pycache__/solvers.cpython-310.pyc +0 -0
  35. llmeval-env/lib/python3.10/site-packages/sympy/solvers/__pycache__/solveset.cpython-310.pyc +0 -0
  36. llmeval-env/lib/python3.10/site-packages/sympy/solvers/diophantine/__init__.py +5 -0
  37. llmeval-env/lib/python3.10/site-packages/sympy/solvers/diophantine/__pycache__/__init__.cpython-310.pyc +0 -0
  38. llmeval-env/lib/python3.10/site-packages/sympy/solvers/diophantine/__pycache__/diophantine.cpython-310.pyc +0 -0
  39. llmeval-env/lib/python3.10/site-packages/sympy/solvers/diophantine/diophantine.py +0 -0
  40. llmeval-env/lib/python3.10/site-packages/sympy/solvers/diophantine/tests/__init__.py +0 -0
  41. llmeval-env/lib/python3.10/site-packages/sympy/solvers/diophantine/tests/__pycache__/__init__.cpython-310.pyc +0 -0
  42. llmeval-env/lib/python3.10/site-packages/sympy/solvers/diophantine/tests/__pycache__/test_diophantine.cpython-310.pyc +0 -0
  43. llmeval-env/lib/python3.10/site-packages/sympy/solvers/diophantine/tests/test_diophantine.py +1037 -0
  44. llmeval-env/lib/python3.10/site-packages/sympy/solvers/ode/__pycache__/__init__.cpython-310.pyc +0 -0
  45. llmeval-env/lib/python3.10/site-packages/sympy/solvers/ode/__pycache__/hypergeometric.cpython-310.pyc +0 -0
  46. llmeval-env/lib/python3.10/site-packages/sympy/solvers/ode/__pycache__/lie_group.cpython-310.pyc +0 -0
  47. llmeval-env/lib/python3.10/site-packages/sympy/solvers/ode/__pycache__/nonhomogeneous.cpython-310.pyc +0 -0
  48. llmeval-env/lib/python3.10/site-packages/sympy/solvers/ode/__pycache__/ode.cpython-310.pyc +0 -0
  49. llmeval-env/lib/python3.10/site-packages/sympy/solvers/ode/__pycache__/riccati.cpython-310.pyc +0 -0
  50. llmeval-env/lib/python3.10/site-packages/sympy/solvers/ode/__pycache__/single.cpython-310.pyc +0 -0
llmeval-env/lib/python3.10/site-packages/sympy/core/assumptions.py ADDED
@@ -0,0 +1,692 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ This module contains the machinery handling assumptions.
3
+ Do also consider the guide :ref:`assumptions-guide`.
4
+
5
+ All symbolic objects have assumption attributes that can be accessed via
6
+ ``.is_<assumption name>`` attribute.
7
+
8
+ Assumptions determine certain properties of symbolic objects and can
9
+ have 3 possible values: ``True``, ``False``, ``None``. ``True`` is returned if the
10
+ object has the property and ``False`` is returned if it does not or cannot
11
+ (i.e. does not make sense):
12
+
13
+ >>> from sympy import I
14
+ >>> I.is_algebraic
15
+ True
16
+ >>> I.is_real
17
+ False
18
+ >>> I.is_prime
19
+ False
20
+
21
+ When the property cannot be determined (or when a method is not
22
+ implemented) ``None`` will be returned. For example, a generic symbol, ``x``,
23
+ may or may not be positive so a value of ``None`` is returned for ``x.is_positive``.
24
+
25
+ By default, all symbolic values are in the largest set in the given context
26
+ without specifying the property. For example, a symbol that has a property
27
+ being integer, is also real, complex, etc.
28
+
29
+ Here follows a list of possible assumption names:
30
+
31
+ .. glossary::
32
+
33
+ commutative
34
+ object commutes with any other object with
35
+ respect to multiplication operation. See [12]_.
36
+
37
+ complex
38
+ object can have only values from the set
39
+ of complex numbers. See [13]_.
40
+
41
+ imaginary
42
+ object value is a number that can be written as a real
43
+ number multiplied by the imaginary unit ``I``. See
44
+ [3]_. Please note that ``0`` is not considered to be an
45
+ imaginary number, see
46
+ `issue #7649 <https://github.com/sympy/sympy/issues/7649>`_.
47
+
48
+ real
49
+ object can have only values from the set
50
+ of real numbers.
51
+
52
+ extended_real
53
+ object can have only values from the set
54
+ of real numbers, ``oo`` and ``-oo``.
55
+
56
+ integer
57
+ object can have only values from the set
58
+ of integers.
59
+
60
+ odd
61
+ even
62
+ object can have only values from the set of
63
+ odd (even) integers [2]_.
64
+
65
+ prime
66
+ object is a natural number greater than 1 that has
67
+ no positive divisors other than 1 and itself. See [6]_.
68
+
69
+ composite
70
+ object is a positive integer that has at least one positive
71
+ divisor other than 1 or the number itself. See [4]_.
72
+
73
+ zero
74
+ object has the value of 0.
75
+
76
+ nonzero
77
+ object is a real number that is not zero.
78
+
79
+ rational
80
+ object can have only values from the set
81
+ of rationals.
82
+
83
+ algebraic
84
+ object can have only values from the set
85
+ of algebraic numbers [11]_.
86
+
87
+ transcendental
88
+ object can have only values from the set
89
+ of transcendental numbers [10]_.
90
+
91
+ irrational
92
+ object value cannot be represented exactly by :class:`~.Rational`, see [5]_.
93
+
94
+ finite
95
+ infinite
96
+ object absolute value is bounded (arbitrarily large).
97
+ See [7]_, [8]_, [9]_.
98
+
99
+ negative
100
+ nonnegative
101
+ object can have only negative (nonnegative)
102
+ values [1]_.
103
+
104
+ positive
105
+ nonpositive
106
+ object can have only positive (nonpositive) values.
107
+
108
+ extended_negative
109
+ extended_nonnegative
110
+ extended_positive
111
+ extended_nonpositive
112
+ extended_nonzero
113
+ as without the extended part, but also including infinity with
114
+ corresponding sign, e.g., extended_positive includes ``oo``
115
+
116
+ hermitian
117
+ antihermitian
118
+ object belongs to the field of Hermitian
119
+ (antihermitian) operators.
120
+
121
+ Examples
122
+ ========
123
+
124
+ >>> from sympy import Symbol
125
+ >>> x = Symbol('x', real=True); x
126
+ x
127
+ >>> x.is_real
128
+ True
129
+ >>> x.is_complex
130
+ True
131
+
132
+ See Also
133
+ ========
134
+
135
+ .. seealso::
136
+
137
+ :py:class:`sympy.core.numbers.ImaginaryUnit`
138
+ :py:class:`sympy.core.numbers.Zero`
139
+ :py:class:`sympy.core.numbers.One`
140
+ :py:class:`sympy.core.numbers.Infinity`
141
+ :py:class:`sympy.core.numbers.NegativeInfinity`
142
+ :py:class:`sympy.core.numbers.ComplexInfinity`
143
+
144
+ Notes
145
+ =====
146
+
147
+ The fully-resolved assumptions for any SymPy expression
148
+ can be obtained as follows:
149
+
150
+ >>> from sympy.core.assumptions import assumptions
151
+ >>> x = Symbol('x',positive=True)
152
+ >>> assumptions(x + I)
153
+ {'commutative': True, 'complex': True, 'composite': False, 'even':
154
+ False, 'extended_negative': False, 'extended_nonnegative': False,
155
+ 'extended_nonpositive': False, 'extended_nonzero': False,
156
+ 'extended_positive': False, 'extended_real': False, 'finite': True,
157
+ 'imaginary': False, 'infinite': False, 'integer': False, 'irrational':
158
+ False, 'negative': False, 'noninteger': False, 'nonnegative': False,
159
+ 'nonpositive': False, 'nonzero': False, 'odd': False, 'positive':
160
+ False, 'prime': False, 'rational': False, 'real': False, 'zero':
161
+ False}
162
+
163
+ Developers Notes
164
+ ================
165
+
166
+ The current (and possibly incomplete) values are stored
167
+ in the ``obj._assumptions dictionary``; queries to getter methods
168
+ (with property decorators) or attributes of objects/classes
169
+ will return values and update the dictionary.
170
+
171
+ >>> eq = x**2 + I
172
+ >>> eq._assumptions
173
+ {}
174
+ >>> eq.is_finite
175
+ True
176
+ >>> eq._assumptions
177
+ {'finite': True, 'infinite': False}
178
+
179
+ For a :class:`~.Symbol`, there are two locations for assumptions that may
180
+ be of interest. The ``assumptions0`` attribute gives the full set of
181
+ assumptions derived from a given set of initial assumptions. The
182
+ latter assumptions are stored as ``Symbol._assumptions_orig``
183
+
184
+ >>> Symbol('x', prime=True, even=True)._assumptions_orig
185
+ {'even': True, 'prime': True}
186
+
187
+ The ``_assumptions_orig`` are not necessarily canonical nor are they filtered
188
+ in any way: they records the assumptions used to instantiate a Symbol and (for
189
+ storage purposes) represent a more compact representation of the assumptions
190
+ needed to recreate the full set in ``Symbol.assumptions0``.
191
+
192
+
193
+ References
194
+ ==========
195
+
196
+ .. [1] https://en.wikipedia.org/wiki/Negative_number
197
+ .. [2] https://en.wikipedia.org/wiki/Parity_%28mathematics%29
198
+ .. [3] https://en.wikipedia.org/wiki/Imaginary_number
199
+ .. [4] https://en.wikipedia.org/wiki/Composite_number
200
+ .. [5] https://en.wikipedia.org/wiki/Irrational_number
201
+ .. [6] https://en.wikipedia.org/wiki/Prime_number
202
+ .. [7] https://en.wikipedia.org/wiki/Finite
203
+ .. [8] https://docs.python.org/3/library/math.html#math.isfinite
204
+ .. [9] https://numpy.org/doc/stable/reference/generated/numpy.isfinite.html
205
+ .. [10] https://en.wikipedia.org/wiki/Transcendental_number
206
+ .. [11] https://en.wikipedia.org/wiki/Algebraic_number
207
+ .. [12] https://en.wikipedia.org/wiki/Commutative_property
208
+ .. [13] https://en.wikipedia.org/wiki/Complex_number
209
+
210
+ """
211
+
212
+ from sympy.utilities.exceptions import sympy_deprecation_warning
213
+
214
+ from .facts import FactRules, FactKB
215
+ from .sympify import sympify
216
+
217
+ from sympy.core.random import _assumptions_shuffle as shuffle
218
+ from sympy.core.assumptions_generated import generated_assumptions as _assumptions
219
+
220
+ def _load_pre_generated_assumption_rules():
221
+ """ Load the assumption rules from pre-generated data
222
+
223
+ To update the pre-generated data, see :method::`_generate_assumption_rules`
224
+ """
225
+ _assume_rules=FactRules._from_python(_assumptions)
226
+ return _assume_rules
227
+
228
+ def _generate_assumption_rules():
229
+ """ Generate the default assumption rules
230
+
231
+ This method should only be called to update the pre-generated
232
+ assumption rules.
233
+
234
+ To update the pre-generated assumptions run: bin/ask_update.py
235
+
236
+ """
237
+ _assume_rules = FactRules([
238
+
239
+ 'integer -> rational',
240
+ 'rational -> real',
241
+ 'rational -> algebraic',
242
+ 'algebraic -> complex',
243
+ 'transcendental == complex & !algebraic',
244
+ 'real -> hermitian',
245
+ 'imaginary -> complex',
246
+ 'imaginary -> antihermitian',
247
+ 'extended_real -> commutative',
248
+ 'complex -> commutative',
249
+ 'complex -> finite',
250
+
251
+ 'odd == integer & !even',
252
+ 'even == integer & !odd',
253
+
254
+ 'real -> complex',
255
+ 'extended_real -> real | infinite',
256
+ 'real == extended_real & finite',
257
+
258
+ 'extended_real == extended_negative | zero | extended_positive',
259
+ 'extended_negative == extended_nonpositive & extended_nonzero',
260
+ 'extended_positive == extended_nonnegative & extended_nonzero',
261
+
262
+ 'extended_nonpositive == extended_real & !extended_positive',
263
+ 'extended_nonnegative == extended_real & !extended_negative',
264
+
265
+ 'real == negative | zero | positive',
266
+ 'negative == nonpositive & nonzero',
267
+ 'positive == nonnegative & nonzero',
268
+
269
+ 'nonpositive == real & !positive',
270
+ 'nonnegative == real & !negative',
271
+
272
+ 'positive == extended_positive & finite',
273
+ 'negative == extended_negative & finite',
274
+ 'nonpositive == extended_nonpositive & finite',
275
+ 'nonnegative == extended_nonnegative & finite',
276
+ 'nonzero == extended_nonzero & finite',
277
+
278
+ 'zero -> even & finite',
279
+ 'zero == extended_nonnegative & extended_nonpositive',
280
+ 'zero == nonnegative & nonpositive',
281
+ 'nonzero -> real',
282
+
283
+ 'prime -> integer & positive',
284
+ 'composite -> integer & positive & !prime',
285
+ '!composite -> !positive | !even | prime',
286
+
287
+ 'irrational == real & !rational',
288
+
289
+ 'imaginary -> !extended_real',
290
+
291
+ 'infinite == !finite',
292
+ 'noninteger == extended_real & !integer',
293
+ 'extended_nonzero == extended_real & !zero',
294
+ ])
295
+ return _assume_rules
296
+
297
+
298
+ _assume_rules = _load_pre_generated_assumption_rules()
299
+ _assume_defined = _assume_rules.defined_facts.copy()
300
+ _assume_defined.add('polar')
301
+ _assume_defined = frozenset(_assume_defined)
302
+
303
+
304
+ def assumptions(expr, _check=None):
305
+ """return the T/F assumptions of ``expr``"""
306
+ n = sympify(expr)
307
+ if n.is_Symbol:
308
+ rv = n.assumptions0 # are any important ones missing?
309
+ if _check is not None:
310
+ rv = {k: rv[k] for k in set(rv) & set(_check)}
311
+ return rv
312
+ rv = {}
313
+ for k in _assume_defined if _check is None else _check:
314
+ v = getattr(n, 'is_{}'.format(k))
315
+ if v is not None:
316
+ rv[k] = v
317
+ return rv
318
+
319
+
320
+ def common_assumptions(exprs, check=None):
321
+ """return those assumptions which have the same True or False
322
+ value for all the given expressions.
323
+
324
+ Examples
325
+ ========
326
+
327
+ >>> from sympy.core import common_assumptions
328
+ >>> from sympy import oo, pi, sqrt
329
+ >>> common_assumptions([-4, 0, sqrt(2), 2, pi, oo])
330
+ {'commutative': True, 'composite': False,
331
+ 'extended_real': True, 'imaginary': False, 'odd': False}
332
+
333
+ By default, all assumptions are tested; pass an iterable of the
334
+ assumptions to limit those that are reported:
335
+
336
+ >>> common_assumptions([0, 1, 2], ['positive', 'integer'])
337
+ {'integer': True}
338
+ """
339
+ check = _assume_defined if check is None else set(check)
340
+ if not check or not exprs:
341
+ return {}
342
+
343
+ # get all assumptions for each
344
+ assume = [assumptions(i, _check=check) for i in sympify(exprs)]
345
+ # focus on those of interest that are True
346
+ for i, e in enumerate(assume):
347
+ assume[i] = {k: e[k] for k in set(e) & check}
348
+ # what assumptions are in common?
349
+ common = set.intersection(*[set(i) for i in assume])
350
+ # which ones hold the same value
351
+ a = assume[0]
352
+ return {k: a[k] for k in common if all(a[k] == b[k]
353
+ for b in assume)}
354
+
355
+
356
+ def failing_assumptions(expr, **assumptions):
357
+ """
358
+ Return a dictionary containing assumptions with values not
359
+ matching those of the passed assumptions.
360
+
361
+ Examples
362
+ ========
363
+
364
+ >>> from sympy import failing_assumptions, Symbol
365
+
366
+ >>> x = Symbol('x', positive=True)
367
+ >>> y = Symbol('y')
368
+ >>> failing_assumptions(6*x + y, positive=True)
369
+ {'positive': None}
370
+
371
+ >>> failing_assumptions(x**2 - 1, positive=True)
372
+ {'positive': None}
373
+
374
+ If *expr* satisfies all of the assumptions, an empty dictionary is returned.
375
+
376
+ >>> failing_assumptions(x**2, positive=True)
377
+ {}
378
+
379
+ """
380
+ expr = sympify(expr)
381
+ failed = {}
382
+ for k in assumptions:
383
+ test = getattr(expr, 'is_%s' % k, None)
384
+ if test is not assumptions[k]:
385
+ failed[k] = test
386
+ return failed # {} or {assumption: value != desired}
387
+
388
+
389
+ def check_assumptions(expr, against=None, **assume):
390
+ """
391
+ Checks whether assumptions of ``expr`` match the T/F assumptions
392
+ given (or possessed by ``against``). True is returned if all
393
+ assumptions match; False is returned if there is a mismatch and
394
+ the assumption in ``expr`` is not None; else None is returned.
395
+
396
+ Explanation
397
+ ===========
398
+
399
+ *assume* is a dict of assumptions with True or False values
400
+
401
+ Examples
402
+ ========
403
+
404
+ >>> from sympy import Symbol, pi, I, exp, check_assumptions
405
+ >>> check_assumptions(-5, integer=True)
406
+ True
407
+ >>> check_assumptions(pi, real=True, integer=False)
408
+ True
409
+ >>> check_assumptions(pi, negative=True)
410
+ False
411
+ >>> check_assumptions(exp(I*pi/7), real=False)
412
+ True
413
+ >>> x = Symbol('x', positive=True)
414
+ >>> check_assumptions(2*x + 1, positive=True)
415
+ True
416
+ >>> check_assumptions(-2*x - 5, positive=True)
417
+ False
418
+
419
+ To check assumptions of *expr* against another variable or expression,
420
+ pass the expression or variable as ``against``.
421
+
422
+ >>> check_assumptions(2*x + 1, x)
423
+ True
424
+
425
+ To see if a number matches the assumptions of an expression, pass
426
+ the number as the first argument, else its specific assumptions
427
+ may not have a non-None value in the expression:
428
+
429
+ >>> check_assumptions(x, 3)
430
+ >>> check_assumptions(3, x)
431
+ True
432
+
433
+ ``None`` is returned if ``check_assumptions()`` could not conclude.
434
+
435
+ >>> check_assumptions(2*x - 1, x)
436
+
437
+ >>> z = Symbol('z')
438
+ >>> check_assumptions(z, real=True)
439
+
440
+ See Also
441
+ ========
442
+
443
+ failing_assumptions
444
+
445
+ """
446
+ expr = sympify(expr)
447
+ if against is not None:
448
+ if assume:
449
+ raise ValueError(
450
+ 'Expecting `against` or `assume`, not both.')
451
+ assume = assumptions(against)
452
+ known = True
453
+ for k, v in assume.items():
454
+ if v is None:
455
+ continue
456
+ e = getattr(expr, 'is_' + k, None)
457
+ if e is None:
458
+ known = None
459
+ elif v != e:
460
+ return False
461
+ return known
462
+
463
+
464
+ class StdFactKB(FactKB):
465
+ """A FactKB specialized for the built-in rules
466
+
467
+ This is the only kind of FactKB that Basic objects should use.
468
+ """
469
+ def __init__(self, facts=None):
470
+ super().__init__(_assume_rules)
471
+ # save a copy of the facts dict
472
+ if not facts:
473
+ self._generator = {}
474
+ elif not isinstance(facts, FactKB):
475
+ self._generator = facts.copy()
476
+ else:
477
+ self._generator = facts.generator
478
+ if facts:
479
+ self.deduce_all_facts(facts)
480
+
481
+ def copy(self):
482
+ return self.__class__(self)
483
+
484
+ @property
485
+ def generator(self):
486
+ return self._generator.copy()
487
+
488
+
489
+ def as_property(fact):
490
+ """Convert a fact name to the name of the corresponding property"""
491
+ return 'is_%s' % fact
492
+
493
+
494
+ def make_property(fact):
495
+ """Create the automagic property corresponding to a fact."""
496
+
497
+ def getit(self):
498
+ try:
499
+ return self._assumptions[fact]
500
+ except KeyError:
501
+ if self._assumptions is self.default_assumptions:
502
+ self._assumptions = self.default_assumptions.copy()
503
+ return _ask(fact, self)
504
+
505
+ getit.func_name = as_property(fact)
506
+ return property(getit)
507
+
508
+
509
+ def _ask(fact, obj):
510
+ """
511
+ Find the truth value for a property of an object.
512
+
513
+ This function is called when a request is made to see what a fact
514
+ value is.
515
+
516
+ For this we use several techniques:
517
+
518
+ First, the fact-evaluation function is tried, if it exists (for
519
+ example _eval_is_integer). Then we try related facts. For example
520
+
521
+ rational --> integer
522
+
523
+ another example is joined rule:
524
+
525
+ integer & !odd --> even
526
+
527
+ so in the latter case if we are looking at what 'even' value is,
528
+ 'integer' and 'odd' facts will be asked.
529
+
530
+ In all cases, when we settle on some fact value, its implications are
531
+ deduced, and the result is cached in ._assumptions.
532
+ """
533
+ # FactKB which is dict-like and maps facts to their known values:
534
+ assumptions = obj._assumptions
535
+
536
+ # A dict that maps facts to their handlers:
537
+ handler_map = obj._prop_handler
538
+
539
+ # This is our queue of facts to check:
540
+ facts_to_check = [fact]
541
+ facts_queued = {fact}
542
+
543
+ # Loop over the queue as it extends
544
+ for fact_i in facts_to_check:
545
+
546
+ # If fact_i has already been determined then we don't need to rerun the
547
+ # handler. There is a potential race condition for multithreaded code
548
+ # though because it's possible that fact_i was checked in another
549
+ # thread. The main logic of the loop below would potentially skip
550
+ # checking assumptions[fact] in this case so we check it once after the
551
+ # loop to be sure.
552
+ if fact_i in assumptions:
553
+ continue
554
+
555
+ # Now we call the associated handler for fact_i if it exists.
556
+ fact_i_value = None
557
+ handler_i = handler_map.get(fact_i)
558
+ if handler_i is not None:
559
+ fact_i_value = handler_i(obj)
560
+
561
+ # If we get a new value for fact_i then we should update our knowledge
562
+ # of fact_i as well as any related facts that can be inferred using the
563
+ # inference rules connecting the fact_i and any other fact values that
564
+ # are already known.
565
+ if fact_i_value is not None:
566
+ assumptions.deduce_all_facts(((fact_i, fact_i_value),))
567
+
568
+ # Usually if assumptions[fact] is now not None then that is because of
569
+ # the call to deduce_all_facts above. The handler for fact_i returned
570
+ # True or False and knowing fact_i (which is equal to fact in the first
571
+ # iteration) implies knowing a value for fact. It is also possible
572
+ # though that independent code e.g. called indirectly by the handler or
573
+ # called in another thread in a multithreaded context might have
574
+ # resulted in assumptions[fact] being set. Either way we return it.
575
+ fact_value = assumptions.get(fact)
576
+ if fact_value is not None:
577
+ return fact_value
578
+
579
+ # Extend the queue with other facts that might determine fact_i. Here
580
+ # we randomise the order of the facts that are checked. This should not
581
+ # lead to any non-determinism if all handlers are logically consistent
582
+ # with the inference rules for the facts. Non-deterministic assumptions
583
+ # queries can result from bugs in the handlers that are exposed by this
584
+ # call to shuffle. These are pushed to the back of the queue meaning
585
+ # that the inference graph is traversed in breadth-first order.
586
+ new_facts_to_check = list(_assume_rules.prereq[fact_i] - facts_queued)
587
+ shuffle(new_facts_to_check)
588
+ facts_to_check.extend(new_facts_to_check)
589
+ facts_queued.update(new_facts_to_check)
590
+
591
+ # The above loop should be able to handle everything fine in a
592
+ # single-threaded context but in multithreaded code it is possible that
593
+ # this thread skipped computing a particular fact that was computed in
594
+ # another thread (due to the continue). In that case it is possible that
595
+ # fact was inferred and is now stored in the assumptions dict but it wasn't
596
+ # checked for in the body of the loop. This is an obscure case but to make
597
+ # sure we catch it we check once here at the end of the loop.
598
+ if fact in assumptions:
599
+ return assumptions[fact]
600
+
601
+ # This query can not be answered. It's possible that e.g. another thread
602
+ # has already stored None for fact but assumptions._tell does not mind if
603
+ # we call _tell twice setting the same value. If this raises
604
+ # InconsistentAssumptions then it probably means that another thread
605
+ # attempted to compute this and got a value of True or False rather than
606
+ # None. In that case there must be a bug in at least one of the handlers.
607
+ # If the handlers are all deterministic and are consistent with the
608
+ # inference rules then the same value should be computed for fact in all
609
+ # threads.
610
+ assumptions._tell(fact, None)
611
+ return None
612
+
613
+
614
+ def _prepare_class_assumptions(cls):
615
+ """Precompute class level assumptions and generate handlers.
616
+
617
+ This is called by Basic.__init_subclass__ each time a Basic subclass is
618
+ defined.
619
+ """
620
+
621
+ local_defs = {}
622
+ for k in _assume_defined:
623
+ attrname = as_property(k)
624
+ v = cls.__dict__.get(attrname, '')
625
+ if isinstance(v, (bool, int, type(None))):
626
+ if v is not None:
627
+ v = bool(v)
628
+ local_defs[k] = v
629
+
630
+ defs = {}
631
+ for base in reversed(cls.__bases__):
632
+ assumptions = getattr(base, '_explicit_class_assumptions', None)
633
+ if assumptions is not None:
634
+ defs.update(assumptions)
635
+ defs.update(local_defs)
636
+
637
+ cls._explicit_class_assumptions = defs
638
+ cls.default_assumptions = StdFactKB(defs)
639
+
640
+ cls._prop_handler = {}
641
+ for k in _assume_defined:
642
+ eval_is_meth = getattr(cls, '_eval_is_%s' % k, None)
643
+ if eval_is_meth is not None:
644
+ cls._prop_handler[k] = eval_is_meth
645
+
646
+ # Put definite results directly into the class dict, for speed
647
+ for k, v in cls.default_assumptions.items():
648
+ setattr(cls, as_property(k), v)
649
+
650
+ # protection e.g. for Integer.is_even=F <- (Rational.is_integer=F)
651
+ derived_from_bases = set()
652
+ for base in cls.__bases__:
653
+ default_assumptions = getattr(base, 'default_assumptions', None)
654
+ # is an assumption-aware class
655
+ if default_assumptions is not None:
656
+ derived_from_bases.update(default_assumptions)
657
+
658
+ for fact in derived_from_bases - set(cls.default_assumptions):
659
+ pname = as_property(fact)
660
+ if pname not in cls.__dict__:
661
+ setattr(cls, pname, make_property(fact))
662
+
663
+ # Finally, add any missing automagic property (e.g. for Basic)
664
+ for fact in _assume_defined:
665
+ pname = as_property(fact)
666
+ if not hasattr(cls, pname):
667
+ setattr(cls, pname, make_property(fact))
668
+
669
+
670
+ # XXX: ManagedProperties used to be the metaclass for Basic but now Basic does
671
+ # not use a metaclass. We leave this here for backwards compatibility for now
672
+ # in case someone has been using the ManagedProperties class in downstream
673
+ # code. The reason that it might have been used is that when subclassing a
674
+ # class and wanting to use a metaclass the metaclass must be a subclass of the
675
+ # metaclass for the class that is being subclassed. Anyone wanting to subclass
676
+ # Basic and use a metaclass in their subclass would have needed to subclass
677
+ # ManagedProperties. Here ManagedProperties is not the metaclass for Basic any
678
+ # more but it should still be usable as a metaclass for Basic subclasses since
679
+ # it is a subclass of type which is now the metaclass for Basic.
680
+ class ManagedProperties(type):
681
+ def __init__(cls, *args, **kwargs):
682
+ msg = ("The ManagedProperties metaclass. "
683
+ "Basic does not use metaclasses any more")
684
+ sympy_deprecation_warning(msg,
685
+ deprecated_since_version="1.12",
686
+ active_deprecations_target='managedproperties')
687
+
688
+ # Here we still call this function in case someone is using
689
+ # ManagedProperties for something that is not a Basic subclass. For
690
+ # Basic subclasses this function is now called by __init_subclass__ and
691
+ # so this metaclass is not needed any more.
692
+ _prepare_class_assumptions(cls)
llmeval-env/lib/python3.10/site-packages/sympy/core/assumptions_generated.py ADDED
@@ -0,0 +1,1615 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Do NOT manually edit this file.
3
+ Instead, run ./bin/ask_update.py.
4
+ """
5
+
6
+ defined_facts = [
7
+ 'algebraic',
8
+ 'antihermitian',
9
+ 'commutative',
10
+ 'complex',
11
+ 'composite',
12
+ 'even',
13
+ 'extended_negative',
14
+ 'extended_nonnegative',
15
+ 'extended_nonpositive',
16
+ 'extended_nonzero',
17
+ 'extended_positive',
18
+ 'extended_real',
19
+ 'finite',
20
+ 'hermitian',
21
+ 'imaginary',
22
+ 'infinite',
23
+ 'integer',
24
+ 'irrational',
25
+ 'negative',
26
+ 'noninteger',
27
+ 'nonnegative',
28
+ 'nonpositive',
29
+ 'nonzero',
30
+ 'odd',
31
+ 'positive',
32
+ 'prime',
33
+ 'rational',
34
+ 'real',
35
+ 'transcendental',
36
+ 'zero',
37
+ ] # defined_facts
38
+
39
+
40
+ full_implications = dict( [
41
+ # Implications of algebraic = True:
42
+ (('algebraic', True), set( (
43
+ ('commutative', True),
44
+ ('complex', True),
45
+ ('finite', True),
46
+ ('infinite', False),
47
+ ('transcendental', False),
48
+ ) ),
49
+ ),
50
+ # Implications of algebraic = False:
51
+ (('algebraic', False), set( (
52
+ ('composite', False),
53
+ ('even', False),
54
+ ('integer', False),
55
+ ('odd', False),
56
+ ('prime', False),
57
+ ('rational', False),
58
+ ('zero', False),
59
+ ) ),
60
+ ),
61
+ # Implications of antihermitian = True:
62
+ (('antihermitian', True), set( (
63
+ ) ),
64
+ ),
65
+ # Implications of antihermitian = False:
66
+ (('antihermitian', False), set( (
67
+ ('imaginary', False),
68
+ ) ),
69
+ ),
70
+ # Implications of commutative = True:
71
+ (('commutative', True), set( (
72
+ ) ),
73
+ ),
74
+ # Implications of commutative = False:
75
+ (('commutative', False), set( (
76
+ ('algebraic', False),
77
+ ('complex', False),
78
+ ('composite', False),
79
+ ('even', False),
80
+ ('extended_negative', False),
81
+ ('extended_nonnegative', False),
82
+ ('extended_nonpositive', False),
83
+ ('extended_nonzero', False),
84
+ ('extended_positive', False),
85
+ ('extended_real', False),
86
+ ('imaginary', False),
87
+ ('integer', False),
88
+ ('irrational', False),
89
+ ('negative', False),
90
+ ('noninteger', False),
91
+ ('nonnegative', False),
92
+ ('nonpositive', False),
93
+ ('nonzero', False),
94
+ ('odd', False),
95
+ ('positive', False),
96
+ ('prime', False),
97
+ ('rational', False),
98
+ ('real', False),
99
+ ('transcendental', False),
100
+ ('zero', False),
101
+ ) ),
102
+ ),
103
+ # Implications of complex = True:
104
+ (('complex', True), set( (
105
+ ('commutative', True),
106
+ ('finite', True),
107
+ ('infinite', False),
108
+ ) ),
109
+ ),
110
+ # Implications of complex = False:
111
+ (('complex', False), set( (
112
+ ('algebraic', False),
113
+ ('composite', False),
114
+ ('even', False),
115
+ ('imaginary', False),
116
+ ('integer', False),
117
+ ('irrational', False),
118
+ ('negative', False),
119
+ ('nonnegative', False),
120
+ ('nonpositive', False),
121
+ ('nonzero', False),
122
+ ('odd', False),
123
+ ('positive', False),
124
+ ('prime', False),
125
+ ('rational', False),
126
+ ('real', False),
127
+ ('transcendental', False),
128
+ ('zero', False),
129
+ ) ),
130
+ ),
131
+ # Implications of composite = True:
132
+ (('composite', True), set( (
133
+ ('algebraic', True),
134
+ ('commutative', True),
135
+ ('complex', True),
136
+ ('extended_negative', False),
137
+ ('extended_nonnegative', True),
138
+ ('extended_nonpositive', False),
139
+ ('extended_nonzero', True),
140
+ ('extended_positive', True),
141
+ ('extended_real', True),
142
+ ('finite', True),
143
+ ('hermitian', True),
144
+ ('imaginary', False),
145
+ ('infinite', False),
146
+ ('integer', True),
147
+ ('irrational', False),
148
+ ('negative', False),
149
+ ('noninteger', False),
150
+ ('nonnegative', True),
151
+ ('nonpositive', False),
152
+ ('nonzero', True),
153
+ ('positive', True),
154
+ ('prime', False),
155
+ ('rational', True),
156
+ ('real', True),
157
+ ('transcendental', False),
158
+ ('zero', False),
159
+ ) ),
160
+ ),
161
+ # Implications of composite = False:
162
+ (('composite', False), set( (
163
+ ) ),
164
+ ),
165
+ # Implications of even = True:
166
+ (('even', True), set( (
167
+ ('algebraic', True),
168
+ ('commutative', True),
169
+ ('complex', True),
170
+ ('extended_real', True),
171
+ ('finite', True),
172
+ ('hermitian', True),
173
+ ('imaginary', False),
174
+ ('infinite', False),
175
+ ('integer', True),
176
+ ('irrational', False),
177
+ ('noninteger', False),
178
+ ('odd', False),
179
+ ('rational', True),
180
+ ('real', True),
181
+ ('transcendental', False),
182
+ ) ),
183
+ ),
184
+ # Implications of even = False:
185
+ (('even', False), set( (
186
+ ('zero', False),
187
+ ) ),
188
+ ),
189
+ # Implications of extended_negative = True:
190
+ (('extended_negative', True), set( (
191
+ ('commutative', True),
192
+ ('composite', False),
193
+ ('extended_nonnegative', False),
194
+ ('extended_nonpositive', True),
195
+ ('extended_nonzero', True),
196
+ ('extended_positive', False),
197
+ ('extended_real', True),
198
+ ('imaginary', False),
199
+ ('nonnegative', False),
200
+ ('positive', False),
201
+ ('prime', False),
202
+ ('zero', False),
203
+ ) ),
204
+ ),
205
+ # Implications of extended_negative = False:
206
+ (('extended_negative', False), set( (
207
+ ('negative', False),
208
+ ) ),
209
+ ),
210
+ # Implications of extended_nonnegative = True:
211
+ (('extended_nonnegative', True), set( (
212
+ ('commutative', True),
213
+ ('extended_negative', False),
214
+ ('extended_real', True),
215
+ ('imaginary', False),
216
+ ('negative', False),
217
+ ) ),
218
+ ),
219
+ # Implications of extended_nonnegative = False:
220
+ (('extended_nonnegative', False), set( (
221
+ ('composite', False),
222
+ ('extended_positive', False),
223
+ ('nonnegative', False),
224
+ ('positive', False),
225
+ ('prime', False),
226
+ ('zero', False),
227
+ ) ),
228
+ ),
229
+ # Implications of extended_nonpositive = True:
230
+ (('extended_nonpositive', True), set( (
231
+ ('commutative', True),
232
+ ('composite', False),
233
+ ('extended_positive', False),
234
+ ('extended_real', True),
235
+ ('imaginary', False),
236
+ ('positive', False),
237
+ ('prime', False),
238
+ ) ),
239
+ ),
240
+ # Implications of extended_nonpositive = False:
241
+ (('extended_nonpositive', False), set( (
242
+ ('extended_negative', False),
243
+ ('negative', False),
244
+ ('nonpositive', False),
245
+ ('zero', False),
246
+ ) ),
247
+ ),
248
+ # Implications of extended_nonzero = True:
249
+ (('extended_nonzero', True), set( (
250
+ ('commutative', True),
251
+ ('extended_real', True),
252
+ ('imaginary', False),
253
+ ('zero', False),
254
+ ) ),
255
+ ),
256
+ # Implications of extended_nonzero = False:
257
+ (('extended_nonzero', False), set( (
258
+ ('composite', False),
259
+ ('extended_negative', False),
260
+ ('extended_positive', False),
261
+ ('negative', False),
262
+ ('nonzero', False),
263
+ ('positive', False),
264
+ ('prime', False),
265
+ ) ),
266
+ ),
267
+ # Implications of extended_positive = True:
268
+ (('extended_positive', True), set( (
269
+ ('commutative', True),
270
+ ('extended_negative', False),
271
+ ('extended_nonnegative', True),
272
+ ('extended_nonpositive', False),
273
+ ('extended_nonzero', True),
274
+ ('extended_real', True),
275
+ ('imaginary', False),
276
+ ('negative', False),
277
+ ('nonpositive', False),
278
+ ('zero', False),
279
+ ) ),
280
+ ),
281
+ # Implications of extended_positive = False:
282
+ (('extended_positive', False), set( (
283
+ ('composite', False),
284
+ ('positive', False),
285
+ ('prime', False),
286
+ ) ),
287
+ ),
288
+ # Implications of extended_real = True:
289
+ (('extended_real', True), set( (
290
+ ('commutative', True),
291
+ ('imaginary', False),
292
+ ) ),
293
+ ),
294
+ # Implications of extended_real = False:
295
+ (('extended_real', False), set( (
296
+ ('composite', False),
297
+ ('even', False),
298
+ ('extended_negative', False),
299
+ ('extended_nonnegative', False),
300
+ ('extended_nonpositive', False),
301
+ ('extended_nonzero', False),
302
+ ('extended_positive', False),
303
+ ('integer', False),
304
+ ('irrational', False),
305
+ ('negative', False),
306
+ ('noninteger', False),
307
+ ('nonnegative', False),
308
+ ('nonpositive', False),
309
+ ('nonzero', False),
310
+ ('odd', False),
311
+ ('positive', False),
312
+ ('prime', False),
313
+ ('rational', False),
314
+ ('real', False),
315
+ ('zero', False),
316
+ ) ),
317
+ ),
318
+ # Implications of finite = True:
319
+ (('finite', True), set( (
320
+ ('infinite', False),
321
+ ) ),
322
+ ),
323
+ # Implications of finite = False:
324
+ (('finite', False), set( (
325
+ ('algebraic', False),
326
+ ('complex', False),
327
+ ('composite', False),
328
+ ('even', False),
329
+ ('imaginary', False),
330
+ ('infinite', True),
331
+ ('integer', False),
332
+ ('irrational', False),
333
+ ('negative', False),
334
+ ('nonnegative', False),
335
+ ('nonpositive', False),
336
+ ('nonzero', False),
337
+ ('odd', False),
338
+ ('positive', False),
339
+ ('prime', False),
340
+ ('rational', False),
341
+ ('real', False),
342
+ ('transcendental', False),
343
+ ('zero', False),
344
+ ) ),
345
+ ),
346
+ # Implications of hermitian = True:
347
+ (('hermitian', True), set( (
348
+ ) ),
349
+ ),
350
+ # Implications of hermitian = False:
351
+ (('hermitian', False), set( (
352
+ ('composite', False),
353
+ ('even', False),
354
+ ('integer', False),
355
+ ('irrational', False),
356
+ ('negative', False),
357
+ ('nonnegative', False),
358
+ ('nonpositive', False),
359
+ ('nonzero', False),
360
+ ('odd', False),
361
+ ('positive', False),
362
+ ('prime', False),
363
+ ('rational', False),
364
+ ('real', False),
365
+ ('zero', False),
366
+ ) ),
367
+ ),
368
+ # Implications of imaginary = True:
369
+ (('imaginary', True), set( (
370
+ ('antihermitian', True),
371
+ ('commutative', True),
372
+ ('complex', True),
373
+ ('composite', False),
374
+ ('even', False),
375
+ ('extended_negative', False),
376
+ ('extended_nonnegative', False),
377
+ ('extended_nonpositive', False),
378
+ ('extended_nonzero', False),
379
+ ('extended_positive', False),
380
+ ('extended_real', False),
381
+ ('finite', True),
382
+ ('infinite', False),
383
+ ('integer', False),
384
+ ('irrational', False),
385
+ ('negative', False),
386
+ ('noninteger', False),
387
+ ('nonnegative', False),
388
+ ('nonpositive', False),
389
+ ('nonzero', False),
390
+ ('odd', False),
391
+ ('positive', False),
392
+ ('prime', False),
393
+ ('rational', False),
394
+ ('real', False),
395
+ ('zero', False),
396
+ ) ),
397
+ ),
398
+ # Implications of imaginary = False:
399
+ (('imaginary', False), set( (
400
+ ) ),
401
+ ),
402
+ # Implications of infinite = True:
403
+ (('infinite', True), set( (
404
+ ('algebraic', False),
405
+ ('complex', False),
406
+ ('composite', False),
407
+ ('even', False),
408
+ ('finite', False),
409
+ ('imaginary', False),
410
+ ('integer', False),
411
+ ('irrational', False),
412
+ ('negative', False),
413
+ ('nonnegative', False),
414
+ ('nonpositive', False),
415
+ ('nonzero', False),
416
+ ('odd', False),
417
+ ('positive', False),
418
+ ('prime', False),
419
+ ('rational', False),
420
+ ('real', False),
421
+ ('transcendental', False),
422
+ ('zero', False),
423
+ ) ),
424
+ ),
425
+ # Implications of infinite = False:
426
+ (('infinite', False), set( (
427
+ ('finite', True),
428
+ ) ),
429
+ ),
430
+ # Implications of integer = True:
431
+ (('integer', True), set( (
432
+ ('algebraic', True),
433
+ ('commutative', True),
434
+ ('complex', True),
435
+ ('extended_real', True),
436
+ ('finite', True),
437
+ ('hermitian', True),
438
+ ('imaginary', False),
439
+ ('infinite', False),
440
+ ('irrational', False),
441
+ ('noninteger', False),
442
+ ('rational', True),
443
+ ('real', True),
444
+ ('transcendental', False),
445
+ ) ),
446
+ ),
447
+ # Implications of integer = False:
448
+ (('integer', False), set( (
449
+ ('composite', False),
450
+ ('even', False),
451
+ ('odd', False),
452
+ ('prime', False),
453
+ ('zero', False),
454
+ ) ),
455
+ ),
456
+ # Implications of irrational = True:
457
+ (('irrational', True), set( (
458
+ ('commutative', True),
459
+ ('complex', True),
460
+ ('composite', False),
461
+ ('even', False),
462
+ ('extended_nonzero', True),
463
+ ('extended_real', True),
464
+ ('finite', True),
465
+ ('hermitian', True),
466
+ ('imaginary', False),
467
+ ('infinite', False),
468
+ ('integer', False),
469
+ ('noninteger', True),
470
+ ('nonzero', True),
471
+ ('odd', False),
472
+ ('prime', False),
473
+ ('rational', False),
474
+ ('real', True),
475
+ ('zero', False),
476
+ ) ),
477
+ ),
478
+ # Implications of irrational = False:
479
+ (('irrational', False), set( (
480
+ ) ),
481
+ ),
482
+ # Implications of negative = True:
483
+ (('negative', True), set( (
484
+ ('commutative', True),
485
+ ('complex', True),
486
+ ('composite', False),
487
+ ('extended_negative', True),
488
+ ('extended_nonnegative', False),
489
+ ('extended_nonpositive', True),
490
+ ('extended_nonzero', True),
491
+ ('extended_positive', False),
492
+ ('extended_real', True),
493
+ ('finite', True),
494
+ ('hermitian', True),
495
+ ('imaginary', False),
496
+ ('infinite', False),
497
+ ('nonnegative', False),
498
+ ('nonpositive', True),
499
+ ('nonzero', True),
500
+ ('positive', False),
501
+ ('prime', False),
502
+ ('real', True),
503
+ ('zero', False),
504
+ ) ),
505
+ ),
506
+ # Implications of negative = False:
507
+ (('negative', False), set( (
508
+ ) ),
509
+ ),
510
+ # Implications of noninteger = True:
511
+ (('noninteger', True), set( (
512
+ ('commutative', True),
513
+ ('composite', False),
514
+ ('even', False),
515
+ ('extended_nonzero', True),
516
+ ('extended_real', True),
517
+ ('imaginary', False),
518
+ ('integer', False),
519
+ ('odd', False),
520
+ ('prime', False),
521
+ ('zero', False),
522
+ ) ),
523
+ ),
524
+ # Implications of noninteger = False:
525
+ (('noninteger', False), set( (
526
+ ) ),
527
+ ),
528
+ # Implications of nonnegative = True:
529
+ (('nonnegative', True), set( (
530
+ ('commutative', True),
531
+ ('complex', True),
532
+ ('extended_negative', False),
533
+ ('extended_nonnegative', True),
534
+ ('extended_real', True),
535
+ ('finite', True),
536
+ ('hermitian', True),
537
+ ('imaginary', False),
538
+ ('infinite', False),
539
+ ('negative', False),
540
+ ('real', True),
541
+ ) ),
542
+ ),
543
+ # Implications of nonnegative = False:
544
+ (('nonnegative', False), set( (
545
+ ('composite', False),
546
+ ('positive', False),
547
+ ('prime', False),
548
+ ('zero', False),
549
+ ) ),
550
+ ),
551
+ # Implications of nonpositive = True:
552
+ (('nonpositive', True), set( (
553
+ ('commutative', True),
554
+ ('complex', True),
555
+ ('composite', False),
556
+ ('extended_nonpositive', True),
557
+ ('extended_positive', False),
558
+ ('extended_real', True),
559
+ ('finite', True),
560
+ ('hermitian', True),
561
+ ('imaginary', False),
562
+ ('infinite', False),
563
+ ('positive', False),
564
+ ('prime', False),
565
+ ('real', True),
566
+ ) ),
567
+ ),
568
+ # Implications of nonpositive = False:
569
+ (('nonpositive', False), set( (
570
+ ('negative', False),
571
+ ('zero', False),
572
+ ) ),
573
+ ),
574
+ # Implications of nonzero = True:
575
+ (('nonzero', True), set( (
576
+ ('commutative', True),
577
+ ('complex', True),
578
+ ('extended_nonzero', True),
579
+ ('extended_real', True),
580
+ ('finite', True),
581
+ ('hermitian', True),
582
+ ('imaginary', False),
583
+ ('infinite', False),
584
+ ('real', True),
585
+ ('zero', False),
586
+ ) ),
587
+ ),
588
+ # Implications of nonzero = False:
589
+ (('nonzero', False), set( (
590
+ ('composite', False),
591
+ ('negative', False),
592
+ ('positive', False),
593
+ ('prime', False),
594
+ ) ),
595
+ ),
596
+ # Implications of odd = True:
597
+ (('odd', True), set( (
598
+ ('algebraic', True),
599
+ ('commutative', True),
600
+ ('complex', True),
601
+ ('even', False),
602
+ ('extended_nonzero', True),
603
+ ('extended_real', True),
604
+ ('finite', True),
605
+ ('hermitian', True),
606
+ ('imaginary', False),
607
+ ('infinite', False),
608
+ ('integer', True),
609
+ ('irrational', False),
610
+ ('noninteger', False),
611
+ ('nonzero', True),
612
+ ('rational', True),
613
+ ('real', True),
614
+ ('transcendental', False),
615
+ ('zero', False),
616
+ ) ),
617
+ ),
618
+ # Implications of odd = False:
619
+ (('odd', False), set( (
620
+ ) ),
621
+ ),
622
+ # Implications of positive = True:
623
+ (('positive', True), set( (
624
+ ('commutative', True),
625
+ ('complex', True),
626
+ ('extended_negative', False),
627
+ ('extended_nonnegative', True),
628
+ ('extended_nonpositive', False),
629
+ ('extended_nonzero', True),
630
+ ('extended_positive', True),
631
+ ('extended_real', True),
632
+ ('finite', True),
633
+ ('hermitian', True),
634
+ ('imaginary', False),
635
+ ('infinite', False),
636
+ ('negative', False),
637
+ ('nonnegative', True),
638
+ ('nonpositive', False),
639
+ ('nonzero', True),
640
+ ('real', True),
641
+ ('zero', False),
642
+ ) ),
643
+ ),
644
+ # Implications of positive = False:
645
+ (('positive', False), set( (
646
+ ('composite', False),
647
+ ('prime', False),
648
+ ) ),
649
+ ),
650
+ # Implications of prime = True:
651
+ (('prime', True), set( (
652
+ ('algebraic', True),
653
+ ('commutative', True),
654
+ ('complex', True),
655
+ ('composite', False),
656
+ ('extended_negative', False),
657
+ ('extended_nonnegative', True),
658
+ ('extended_nonpositive', False),
659
+ ('extended_nonzero', True),
660
+ ('extended_positive', True),
661
+ ('extended_real', True),
662
+ ('finite', True),
663
+ ('hermitian', True),
664
+ ('imaginary', False),
665
+ ('infinite', False),
666
+ ('integer', True),
667
+ ('irrational', False),
668
+ ('negative', False),
669
+ ('noninteger', False),
670
+ ('nonnegative', True),
671
+ ('nonpositive', False),
672
+ ('nonzero', True),
673
+ ('positive', True),
674
+ ('rational', True),
675
+ ('real', True),
676
+ ('transcendental', False),
677
+ ('zero', False),
678
+ ) ),
679
+ ),
680
+ # Implications of prime = False:
681
+ (('prime', False), set( (
682
+ ) ),
683
+ ),
684
+ # Implications of rational = True:
685
+ (('rational', True), set( (
686
+ ('algebraic', True),
687
+ ('commutative', True),
688
+ ('complex', True),
689
+ ('extended_real', True),
690
+ ('finite', True),
691
+ ('hermitian', True),
692
+ ('imaginary', False),
693
+ ('infinite', False),
694
+ ('irrational', False),
695
+ ('real', True),
696
+ ('transcendental', False),
697
+ ) ),
698
+ ),
699
+ # Implications of rational = False:
700
+ (('rational', False), set( (
701
+ ('composite', False),
702
+ ('even', False),
703
+ ('integer', False),
704
+ ('odd', False),
705
+ ('prime', False),
706
+ ('zero', False),
707
+ ) ),
708
+ ),
709
+ # Implications of real = True:
710
+ (('real', True), set( (
711
+ ('commutative', True),
712
+ ('complex', True),
713
+ ('extended_real', True),
714
+ ('finite', True),
715
+ ('hermitian', True),
716
+ ('imaginary', False),
717
+ ('infinite', False),
718
+ ) ),
719
+ ),
720
+ # Implications of real = False:
721
+ (('real', False), set( (
722
+ ('composite', False),
723
+ ('even', False),
724
+ ('integer', False),
725
+ ('irrational', False),
726
+ ('negative', False),
727
+ ('nonnegative', False),
728
+ ('nonpositive', False),
729
+ ('nonzero', False),
730
+ ('odd', False),
731
+ ('positive', False),
732
+ ('prime', False),
733
+ ('rational', False),
734
+ ('zero', False),
735
+ ) ),
736
+ ),
737
+ # Implications of transcendental = True:
738
+ (('transcendental', True), set( (
739
+ ('algebraic', False),
740
+ ('commutative', True),
741
+ ('complex', True),
742
+ ('composite', False),
743
+ ('even', False),
744
+ ('finite', True),
745
+ ('infinite', False),
746
+ ('integer', False),
747
+ ('odd', False),
748
+ ('prime', False),
749
+ ('rational', False),
750
+ ('zero', False),
751
+ ) ),
752
+ ),
753
+ # Implications of transcendental = False:
754
+ (('transcendental', False), set( (
755
+ ) ),
756
+ ),
757
+ # Implications of zero = True:
758
+ (('zero', True), set( (
759
+ ('algebraic', True),
760
+ ('commutative', True),
761
+ ('complex', True),
762
+ ('composite', False),
763
+ ('even', True),
764
+ ('extended_negative', False),
765
+ ('extended_nonnegative', True),
766
+ ('extended_nonpositive', True),
767
+ ('extended_nonzero', False),
768
+ ('extended_positive', False),
769
+ ('extended_real', True),
770
+ ('finite', True),
771
+ ('hermitian', True),
772
+ ('imaginary', False),
773
+ ('infinite', False),
774
+ ('integer', True),
775
+ ('irrational', False),
776
+ ('negative', False),
777
+ ('noninteger', False),
778
+ ('nonnegative', True),
779
+ ('nonpositive', True),
780
+ ('nonzero', False),
781
+ ('odd', False),
782
+ ('positive', False),
783
+ ('prime', False),
784
+ ('rational', True),
785
+ ('real', True),
786
+ ('transcendental', False),
787
+ ) ),
788
+ ),
789
+ # Implications of zero = False:
790
+ (('zero', False), set( (
791
+ ) ),
792
+ ),
793
+ ] ) # full_implications
794
+
795
+
796
+ prereq = {
797
+
798
+ # facts that could determine the value of algebraic
799
+ 'algebraic': {
800
+ 'commutative',
801
+ 'complex',
802
+ 'composite',
803
+ 'even',
804
+ 'finite',
805
+ 'infinite',
806
+ 'integer',
807
+ 'odd',
808
+ 'prime',
809
+ 'rational',
810
+ 'transcendental',
811
+ 'zero',
812
+ },
813
+
814
+ # facts that could determine the value of antihermitian
815
+ 'antihermitian': {
816
+ 'imaginary',
817
+ },
818
+
819
+ # facts that could determine the value of commutative
820
+ 'commutative': {
821
+ 'algebraic',
822
+ 'complex',
823
+ 'composite',
824
+ 'even',
825
+ 'extended_negative',
826
+ 'extended_nonnegative',
827
+ 'extended_nonpositive',
828
+ 'extended_nonzero',
829
+ 'extended_positive',
830
+ 'extended_real',
831
+ 'imaginary',
832
+ 'integer',
833
+ 'irrational',
834
+ 'negative',
835
+ 'noninteger',
836
+ 'nonnegative',
837
+ 'nonpositive',
838
+ 'nonzero',
839
+ 'odd',
840
+ 'positive',
841
+ 'prime',
842
+ 'rational',
843
+ 'real',
844
+ 'transcendental',
845
+ 'zero',
846
+ },
847
+
848
+ # facts that could determine the value of complex
849
+ 'complex': {
850
+ 'algebraic',
851
+ 'commutative',
852
+ 'composite',
853
+ 'even',
854
+ 'finite',
855
+ 'imaginary',
856
+ 'infinite',
857
+ 'integer',
858
+ 'irrational',
859
+ 'negative',
860
+ 'nonnegative',
861
+ 'nonpositive',
862
+ 'nonzero',
863
+ 'odd',
864
+ 'positive',
865
+ 'prime',
866
+ 'rational',
867
+ 'real',
868
+ 'transcendental',
869
+ 'zero',
870
+ },
871
+
872
+ # facts that could determine the value of composite
873
+ 'composite': {
874
+ 'algebraic',
875
+ 'commutative',
876
+ 'complex',
877
+ 'extended_negative',
878
+ 'extended_nonnegative',
879
+ 'extended_nonpositive',
880
+ 'extended_nonzero',
881
+ 'extended_positive',
882
+ 'extended_real',
883
+ 'finite',
884
+ 'hermitian',
885
+ 'imaginary',
886
+ 'infinite',
887
+ 'integer',
888
+ 'irrational',
889
+ 'negative',
890
+ 'noninteger',
891
+ 'nonnegative',
892
+ 'nonpositive',
893
+ 'nonzero',
894
+ 'positive',
895
+ 'prime',
896
+ 'rational',
897
+ 'real',
898
+ 'transcendental',
899
+ 'zero',
900
+ },
901
+
902
+ # facts that could determine the value of even
903
+ 'even': {
904
+ 'algebraic',
905
+ 'commutative',
906
+ 'complex',
907
+ 'extended_real',
908
+ 'finite',
909
+ 'hermitian',
910
+ 'imaginary',
911
+ 'infinite',
912
+ 'integer',
913
+ 'irrational',
914
+ 'noninteger',
915
+ 'odd',
916
+ 'rational',
917
+ 'real',
918
+ 'transcendental',
919
+ 'zero',
920
+ },
921
+
922
+ # facts that could determine the value of extended_negative
923
+ 'extended_negative': {
924
+ 'commutative',
925
+ 'composite',
926
+ 'extended_nonnegative',
927
+ 'extended_nonpositive',
928
+ 'extended_nonzero',
929
+ 'extended_positive',
930
+ 'extended_real',
931
+ 'imaginary',
932
+ 'negative',
933
+ 'nonnegative',
934
+ 'positive',
935
+ 'prime',
936
+ 'zero',
937
+ },
938
+
939
+ # facts that could determine the value of extended_nonnegative
940
+ 'extended_nonnegative': {
941
+ 'commutative',
942
+ 'composite',
943
+ 'extended_negative',
944
+ 'extended_positive',
945
+ 'extended_real',
946
+ 'imaginary',
947
+ 'negative',
948
+ 'nonnegative',
949
+ 'positive',
950
+ 'prime',
951
+ 'zero',
952
+ },
953
+
954
+ # facts that could determine the value of extended_nonpositive
955
+ 'extended_nonpositive': {
956
+ 'commutative',
957
+ 'composite',
958
+ 'extended_negative',
959
+ 'extended_positive',
960
+ 'extended_real',
961
+ 'imaginary',
962
+ 'negative',
963
+ 'nonpositive',
964
+ 'positive',
965
+ 'prime',
966
+ 'zero',
967
+ },
968
+
969
+ # facts that could determine the value of extended_nonzero
970
+ 'extended_nonzero': {
971
+ 'commutative',
972
+ 'composite',
973
+ 'extended_negative',
974
+ 'extended_positive',
975
+ 'extended_real',
976
+ 'imaginary',
977
+ 'irrational',
978
+ 'negative',
979
+ 'noninteger',
980
+ 'nonzero',
981
+ 'odd',
982
+ 'positive',
983
+ 'prime',
984
+ 'zero',
985
+ },
986
+
987
+ # facts that could determine the value of extended_positive
988
+ 'extended_positive': {
989
+ 'commutative',
990
+ 'composite',
991
+ 'extended_negative',
992
+ 'extended_nonnegative',
993
+ 'extended_nonpositive',
994
+ 'extended_nonzero',
995
+ 'extended_real',
996
+ 'imaginary',
997
+ 'negative',
998
+ 'nonpositive',
999
+ 'positive',
1000
+ 'prime',
1001
+ 'zero',
1002
+ },
1003
+
1004
+ # facts that could determine the value of extended_real
1005
+ 'extended_real': {
1006
+ 'commutative',
1007
+ 'composite',
1008
+ 'even',
1009
+ 'extended_negative',
1010
+ 'extended_nonnegative',
1011
+ 'extended_nonpositive',
1012
+ 'extended_nonzero',
1013
+ 'extended_positive',
1014
+ 'imaginary',
1015
+ 'integer',
1016
+ 'irrational',
1017
+ 'negative',
1018
+ 'noninteger',
1019
+ 'nonnegative',
1020
+ 'nonpositive',
1021
+ 'nonzero',
1022
+ 'odd',
1023
+ 'positive',
1024
+ 'prime',
1025
+ 'rational',
1026
+ 'real',
1027
+ 'zero',
1028
+ },
1029
+
1030
+ # facts that could determine the value of finite
1031
+ 'finite': {
1032
+ 'algebraic',
1033
+ 'complex',
1034
+ 'composite',
1035
+ 'even',
1036
+ 'imaginary',
1037
+ 'infinite',
1038
+ 'integer',
1039
+ 'irrational',
1040
+ 'negative',
1041
+ 'nonnegative',
1042
+ 'nonpositive',
1043
+ 'nonzero',
1044
+ 'odd',
1045
+ 'positive',
1046
+ 'prime',
1047
+ 'rational',
1048
+ 'real',
1049
+ 'transcendental',
1050
+ 'zero',
1051
+ },
1052
+
1053
+ # facts that could determine the value of hermitian
1054
+ 'hermitian': {
1055
+ 'composite',
1056
+ 'even',
1057
+ 'integer',
1058
+ 'irrational',
1059
+ 'negative',
1060
+ 'nonnegative',
1061
+ 'nonpositive',
1062
+ 'nonzero',
1063
+ 'odd',
1064
+ 'positive',
1065
+ 'prime',
1066
+ 'rational',
1067
+ 'real',
1068
+ 'zero',
1069
+ },
1070
+
1071
+ # facts that could determine the value of imaginary
1072
+ 'imaginary': {
1073
+ 'antihermitian',
1074
+ 'commutative',
1075
+ 'complex',
1076
+ 'composite',
1077
+ 'even',
1078
+ 'extended_negative',
1079
+ 'extended_nonnegative',
1080
+ 'extended_nonpositive',
1081
+ 'extended_nonzero',
1082
+ 'extended_positive',
1083
+ 'extended_real',
1084
+ 'finite',
1085
+ 'infinite',
1086
+ 'integer',
1087
+ 'irrational',
1088
+ 'negative',
1089
+ 'noninteger',
1090
+ 'nonnegative',
1091
+ 'nonpositive',
1092
+ 'nonzero',
1093
+ 'odd',
1094
+ 'positive',
1095
+ 'prime',
1096
+ 'rational',
1097
+ 'real',
1098
+ 'zero',
1099
+ },
1100
+
1101
+ # facts that could determine the value of infinite
1102
+ 'infinite': {
1103
+ 'algebraic',
1104
+ 'complex',
1105
+ 'composite',
1106
+ 'even',
1107
+ 'finite',
1108
+ 'imaginary',
1109
+ 'integer',
1110
+ 'irrational',
1111
+ 'negative',
1112
+ 'nonnegative',
1113
+ 'nonpositive',
1114
+ 'nonzero',
1115
+ 'odd',
1116
+ 'positive',
1117
+ 'prime',
1118
+ 'rational',
1119
+ 'real',
1120
+ 'transcendental',
1121
+ 'zero',
1122
+ },
1123
+
1124
+ # facts that could determine the value of integer
1125
+ 'integer': {
1126
+ 'algebraic',
1127
+ 'commutative',
1128
+ 'complex',
1129
+ 'composite',
1130
+ 'even',
1131
+ 'extended_real',
1132
+ 'finite',
1133
+ 'hermitian',
1134
+ 'imaginary',
1135
+ 'infinite',
1136
+ 'irrational',
1137
+ 'noninteger',
1138
+ 'odd',
1139
+ 'prime',
1140
+ 'rational',
1141
+ 'real',
1142
+ 'transcendental',
1143
+ 'zero',
1144
+ },
1145
+
1146
+ # facts that could determine the value of irrational
1147
+ 'irrational': {
1148
+ 'commutative',
1149
+ 'complex',
1150
+ 'composite',
1151
+ 'even',
1152
+ 'extended_real',
1153
+ 'finite',
1154
+ 'hermitian',
1155
+ 'imaginary',
1156
+ 'infinite',
1157
+ 'integer',
1158
+ 'odd',
1159
+ 'prime',
1160
+ 'rational',
1161
+ 'real',
1162
+ 'zero',
1163
+ },
1164
+
1165
+ # facts that could determine the value of negative
1166
+ 'negative': {
1167
+ 'commutative',
1168
+ 'complex',
1169
+ 'composite',
1170
+ 'extended_negative',
1171
+ 'extended_nonnegative',
1172
+ 'extended_nonpositive',
1173
+ 'extended_nonzero',
1174
+ 'extended_positive',
1175
+ 'extended_real',
1176
+ 'finite',
1177
+ 'hermitian',
1178
+ 'imaginary',
1179
+ 'infinite',
1180
+ 'nonnegative',
1181
+ 'nonpositive',
1182
+ 'nonzero',
1183
+ 'positive',
1184
+ 'prime',
1185
+ 'real',
1186
+ 'zero',
1187
+ },
1188
+
1189
+ # facts that could determine the value of noninteger
1190
+ 'noninteger': {
1191
+ 'commutative',
1192
+ 'composite',
1193
+ 'even',
1194
+ 'extended_real',
1195
+ 'imaginary',
1196
+ 'integer',
1197
+ 'irrational',
1198
+ 'odd',
1199
+ 'prime',
1200
+ 'zero',
1201
+ },
1202
+
1203
+ # facts that could determine the value of nonnegative
1204
+ 'nonnegative': {
1205
+ 'commutative',
1206
+ 'complex',
1207
+ 'composite',
1208
+ 'extended_negative',
1209
+ 'extended_nonnegative',
1210
+ 'extended_real',
1211
+ 'finite',
1212
+ 'hermitian',
1213
+ 'imaginary',
1214
+ 'infinite',
1215
+ 'negative',
1216
+ 'positive',
1217
+ 'prime',
1218
+ 'real',
1219
+ 'zero',
1220
+ },
1221
+
1222
+ # facts that could determine the value of nonpositive
1223
+ 'nonpositive': {
1224
+ 'commutative',
1225
+ 'complex',
1226
+ 'composite',
1227
+ 'extended_nonpositive',
1228
+ 'extended_positive',
1229
+ 'extended_real',
1230
+ 'finite',
1231
+ 'hermitian',
1232
+ 'imaginary',
1233
+ 'infinite',
1234
+ 'negative',
1235
+ 'positive',
1236
+ 'prime',
1237
+ 'real',
1238
+ 'zero',
1239
+ },
1240
+
1241
+ # facts that could determine the value of nonzero
1242
+ 'nonzero': {
1243
+ 'commutative',
1244
+ 'complex',
1245
+ 'composite',
1246
+ 'extended_nonzero',
1247
+ 'extended_real',
1248
+ 'finite',
1249
+ 'hermitian',
1250
+ 'imaginary',
1251
+ 'infinite',
1252
+ 'irrational',
1253
+ 'negative',
1254
+ 'odd',
1255
+ 'positive',
1256
+ 'prime',
1257
+ 'real',
1258
+ 'zero',
1259
+ },
1260
+
1261
+ # facts that could determine the value of odd
1262
+ 'odd': {
1263
+ 'algebraic',
1264
+ 'commutative',
1265
+ 'complex',
1266
+ 'even',
1267
+ 'extended_real',
1268
+ 'finite',
1269
+ 'hermitian',
1270
+ 'imaginary',
1271
+ 'infinite',
1272
+ 'integer',
1273
+ 'irrational',
1274
+ 'noninteger',
1275
+ 'rational',
1276
+ 'real',
1277
+ 'transcendental',
1278
+ 'zero',
1279
+ },
1280
+
1281
+ # facts that could determine the value of positive
1282
+ 'positive': {
1283
+ 'commutative',
1284
+ 'complex',
1285
+ 'composite',
1286
+ 'extended_negative',
1287
+ 'extended_nonnegative',
1288
+ 'extended_nonpositive',
1289
+ 'extended_nonzero',
1290
+ 'extended_positive',
1291
+ 'extended_real',
1292
+ 'finite',
1293
+ 'hermitian',
1294
+ 'imaginary',
1295
+ 'infinite',
1296
+ 'negative',
1297
+ 'nonnegative',
1298
+ 'nonpositive',
1299
+ 'nonzero',
1300
+ 'prime',
1301
+ 'real',
1302
+ 'zero',
1303
+ },
1304
+
1305
+ # facts that could determine the value of prime
1306
+ 'prime': {
1307
+ 'algebraic',
1308
+ 'commutative',
1309
+ 'complex',
1310
+ 'composite',
1311
+ 'extended_negative',
1312
+ 'extended_nonnegative',
1313
+ 'extended_nonpositive',
1314
+ 'extended_nonzero',
1315
+ 'extended_positive',
1316
+ 'extended_real',
1317
+ 'finite',
1318
+ 'hermitian',
1319
+ 'imaginary',
1320
+ 'infinite',
1321
+ 'integer',
1322
+ 'irrational',
1323
+ 'negative',
1324
+ 'noninteger',
1325
+ 'nonnegative',
1326
+ 'nonpositive',
1327
+ 'nonzero',
1328
+ 'positive',
1329
+ 'rational',
1330
+ 'real',
1331
+ 'transcendental',
1332
+ 'zero',
1333
+ },
1334
+
1335
+ # facts that could determine the value of rational
1336
+ 'rational': {
1337
+ 'algebraic',
1338
+ 'commutative',
1339
+ 'complex',
1340
+ 'composite',
1341
+ 'even',
1342
+ 'extended_real',
1343
+ 'finite',
1344
+ 'hermitian',
1345
+ 'imaginary',
1346
+ 'infinite',
1347
+ 'integer',
1348
+ 'irrational',
1349
+ 'odd',
1350
+ 'prime',
1351
+ 'real',
1352
+ 'transcendental',
1353
+ 'zero',
1354
+ },
1355
+
1356
+ # facts that could determine the value of real
1357
+ 'real': {
1358
+ 'commutative',
1359
+ 'complex',
1360
+ 'composite',
1361
+ 'even',
1362
+ 'extended_real',
1363
+ 'finite',
1364
+ 'hermitian',
1365
+ 'imaginary',
1366
+ 'infinite',
1367
+ 'integer',
1368
+ 'irrational',
1369
+ 'negative',
1370
+ 'nonnegative',
1371
+ 'nonpositive',
1372
+ 'nonzero',
1373
+ 'odd',
1374
+ 'positive',
1375
+ 'prime',
1376
+ 'rational',
1377
+ 'zero',
1378
+ },
1379
+
1380
+ # facts that could determine the value of transcendental
1381
+ 'transcendental': {
1382
+ 'algebraic',
1383
+ 'commutative',
1384
+ 'complex',
1385
+ 'composite',
1386
+ 'even',
1387
+ 'finite',
1388
+ 'infinite',
1389
+ 'integer',
1390
+ 'odd',
1391
+ 'prime',
1392
+ 'rational',
1393
+ 'zero',
1394
+ },
1395
+
1396
+ # facts that could determine the value of zero
1397
+ 'zero': {
1398
+ 'algebraic',
1399
+ 'commutative',
1400
+ 'complex',
1401
+ 'composite',
1402
+ 'even',
1403
+ 'extended_negative',
1404
+ 'extended_nonnegative',
1405
+ 'extended_nonpositive',
1406
+ 'extended_nonzero',
1407
+ 'extended_positive',
1408
+ 'extended_real',
1409
+ 'finite',
1410
+ 'hermitian',
1411
+ 'imaginary',
1412
+ 'infinite',
1413
+ 'integer',
1414
+ 'irrational',
1415
+ 'negative',
1416
+ 'noninteger',
1417
+ 'nonnegative',
1418
+ 'nonpositive',
1419
+ 'nonzero',
1420
+ 'odd',
1421
+ 'positive',
1422
+ 'prime',
1423
+ 'rational',
1424
+ 'real',
1425
+ 'transcendental',
1426
+ },
1427
+
1428
+ } # prereq
1429
+
1430
+
1431
+ # Note: the order of the beta rules is used in the beta_triggers
1432
+ beta_rules = [
1433
+
1434
+ # Rules implying composite = True
1435
+ ({('even', True), ('positive', True), ('prime', False)},
1436
+ ('composite', True)),
1437
+
1438
+ # Rules implying even = False
1439
+ ({('composite', False), ('positive', True), ('prime', False)},
1440
+ ('even', False)),
1441
+
1442
+ # Rules implying even = True
1443
+ ({('integer', True), ('odd', False)},
1444
+ ('even', True)),
1445
+
1446
+ # Rules implying extended_negative = True
1447
+ ({('extended_positive', False), ('extended_real', True), ('zero', False)},
1448
+ ('extended_negative', True)),
1449
+ ({('extended_nonpositive', True), ('extended_nonzero', True)},
1450
+ ('extended_negative', True)),
1451
+
1452
+ # Rules implying extended_nonnegative = True
1453
+ ({('extended_negative', False), ('extended_real', True)},
1454
+ ('extended_nonnegative', True)),
1455
+
1456
+ # Rules implying extended_nonpositive = True
1457
+ ({('extended_positive', False), ('extended_real', True)},
1458
+ ('extended_nonpositive', True)),
1459
+
1460
+ # Rules implying extended_nonzero = True
1461
+ ({('extended_real', True), ('zero', False)},
1462
+ ('extended_nonzero', True)),
1463
+
1464
+ # Rules implying extended_positive = True
1465
+ ({('extended_negative', False), ('extended_real', True), ('zero', False)},
1466
+ ('extended_positive', True)),
1467
+ ({('extended_nonnegative', True), ('extended_nonzero', True)},
1468
+ ('extended_positive', True)),
1469
+
1470
+ # Rules implying extended_real = False
1471
+ ({('infinite', False), ('real', False)},
1472
+ ('extended_real', False)),
1473
+ ({('extended_negative', False), ('extended_positive', False), ('zero', False)},
1474
+ ('extended_real', False)),
1475
+
1476
+ # Rules implying infinite = True
1477
+ ({('extended_real', True), ('real', False)},
1478
+ ('infinite', True)),
1479
+
1480
+ # Rules implying irrational = True
1481
+ ({('rational', False), ('real', True)},
1482
+ ('irrational', True)),
1483
+
1484
+ # Rules implying negative = True
1485
+ ({('positive', False), ('real', True), ('zero', False)},
1486
+ ('negative', True)),
1487
+ ({('nonpositive', True), ('nonzero', True)},
1488
+ ('negative', True)),
1489
+ ({('extended_negative', True), ('finite', True)},
1490
+ ('negative', True)),
1491
+
1492
+ # Rules implying noninteger = True
1493
+ ({('extended_real', True), ('integer', False)},
1494
+ ('noninteger', True)),
1495
+
1496
+ # Rules implying nonnegative = True
1497
+ ({('negative', False), ('real', True)},
1498
+ ('nonnegative', True)),
1499
+ ({('extended_nonnegative', True), ('finite', True)},
1500
+ ('nonnegative', True)),
1501
+
1502
+ # Rules implying nonpositive = True
1503
+ ({('positive', False), ('real', True)},
1504
+ ('nonpositive', True)),
1505
+ ({('extended_nonpositive', True), ('finite', True)},
1506
+ ('nonpositive', True)),
1507
+
1508
+ # Rules implying nonzero = True
1509
+ ({('extended_nonzero', True), ('finite', True)},
1510
+ ('nonzero', True)),
1511
+
1512
+ # Rules implying odd = True
1513
+ ({('even', False), ('integer', True)},
1514
+ ('odd', True)),
1515
+
1516
+ # Rules implying positive = False
1517
+ ({('composite', False), ('even', True), ('prime', False)},
1518
+ ('positive', False)),
1519
+
1520
+ # Rules implying positive = True
1521
+ ({('negative', False), ('real', True), ('zero', False)},
1522
+ ('positive', True)),
1523
+ ({('nonnegative', True), ('nonzero', True)},
1524
+ ('positive', True)),
1525
+ ({('extended_positive', True), ('finite', True)},
1526
+ ('positive', True)),
1527
+
1528
+ # Rules implying prime = True
1529
+ ({('composite', False), ('even', True), ('positive', True)},
1530
+ ('prime', True)),
1531
+
1532
+ # Rules implying real = False
1533
+ ({('negative', False), ('positive', False), ('zero', False)},
1534
+ ('real', False)),
1535
+
1536
+ # Rules implying real = True
1537
+ ({('extended_real', True), ('infinite', False)},
1538
+ ('real', True)),
1539
+ ({('extended_real', True), ('finite', True)},
1540
+ ('real', True)),
1541
+
1542
+ # Rules implying transcendental = True
1543
+ ({('algebraic', False), ('complex', True)},
1544
+ ('transcendental', True)),
1545
+
1546
+ # Rules implying zero = True
1547
+ ({('extended_negative', False), ('extended_positive', False), ('extended_real', True)},
1548
+ ('zero', True)),
1549
+ ({('negative', False), ('positive', False), ('real', True)},
1550
+ ('zero', True)),
1551
+ ({('extended_nonnegative', True), ('extended_nonpositive', True)},
1552
+ ('zero', True)),
1553
+ ({('nonnegative', True), ('nonpositive', True)},
1554
+ ('zero', True)),
1555
+
1556
+ ] # beta_rules
1557
+ beta_triggers = {
1558
+ ('algebraic', False): [32, 11, 3, 8, 29, 14, 25, 13, 17, 7],
1559
+ ('algebraic', True): [10, 30, 31, 27, 16, 21, 19, 22],
1560
+ ('antihermitian', False): [],
1561
+ ('commutative', False): [],
1562
+ ('complex', False): [10, 12, 11, 3, 8, 17, 7],
1563
+ ('complex', True): [32, 10, 30, 31, 27, 16, 21, 19, 22],
1564
+ ('composite', False): [1, 28, 24],
1565
+ ('composite', True): [23, 2],
1566
+ ('even', False): [23, 11, 3, 8, 29, 14, 25, 7],
1567
+ ('even', True): [3, 33, 8, 6, 5, 14, 34, 25, 20, 18, 27, 16, 21, 19, 22, 0, 28, 24, 7],
1568
+ ('extended_negative', False): [11, 33, 8, 5, 29, 34, 25, 18],
1569
+ ('extended_negative', True): [30, 12, 31, 29, 14, 20, 16, 21, 22, 17],
1570
+ ('extended_nonnegative', False): [11, 3, 6, 29, 14, 20, 7],
1571
+ ('extended_nonnegative', True): [30, 12, 31, 33, 8, 9, 6, 29, 34, 25, 18, 19, 35, 17, 7],
1572
+ ('extended_nonpositive', False): [11, 8, 5, 29, 25, 18, 7],
1573
+ ('extended_nonpositive', True): [30, 12, 31, 3, 33, 4, 5, 29, 14, 34, 20, 21, 35, 17, 7],
1574
+ ('extended_nonzero', False): [11, 33, 6, 5, 29, 34, 20, 18],
1575
+ ('extended_nonzero', True): [30, 12, 31, 3, 8, 4, 9, 6, 5, 29, 14, 25, 22, 17],
1576
+ ('extended_positive', False): [11, 3, 33, 6, 29, 14, 34, 20],
1577
+ ('extended_positive', True): [30, 12, 31, 29, 25, 18, 27, 19, 22, 17],
1578
+ ('extended_real', False): [],
1579
+ ('extended_real', True): [30, 12, 31, 3, 33, 8, 6, 5, 17, 7],
1580
+ ('finite', False): [11, 3, 8, 17, 7],
1581
+ ('finite', True): [10, 30, 31, 27, 16, 21, 19, 22],
1582
+ ('hermitian', False): [10, 12, 11, 3, 8, 17, 7],
1583
+ ('imaginary', True): [32],
1584
+ ('infinite', False): [10, 30, 31, 27, 16, 21, 19, 22],
1585
+ ('infinite', True): [11, 3, 8, 17, 7],
1586
+ ('integer', False): [11, 3, 8, 29, 14, 25, 17, 7],
1587
+ ('integer', True): [23, 2, 3, 33, 8, 6, 5, 14, 34, 25, 20, 18, 27, 16, 21, 19, 22, 7],
1588
+ ('irrational', True): [32, 3, 8, 4, 9, 6, 5, 14, 25, 15, 26, 20, 18, 27, 16, 21, 19],
1589
+ ('negative', False): [29, 34, 25, 18],
1590
+ ('negative', True): [32, 13, 17],
1591
+ ('noninteger', True): [30, 12, 31, 3, 8, 4, 9, 6, 5, 29, 14, 25, 22],
1592
+ ('nonnegative', False): [11, 3, 8, 29, 14, 20, 7],
1593
+ ('nonnegative', True): [32, 33, 8, 9, 6, 34, 25, 26, 20, 27, 21, 22, 35, 36, 13, 17, 7],
1594
+ ('nonpositive', False): [11, 3, 8, 29, 25, 18, 7],
1595
+ ('nonpositive', True): [32, 3, 33, 4, 5, 14, 34, 15, 18, 16, 19, 22, 35, 36, 13, 17, 7],
1596
+ ('nonzero', False): [29, 34, 20, 18],
1597
+ ('nonzero', True): [32, 3, 8, 4, 9, 6, 5, 14, 25, 15, 26, 20, 18, 27, 16, 21, 19, 13, 17],
1598
+ ('odd', False): [2],
1599
+ ('odd', True): [3, 8, 4, 9, 6, 5, 14, 25, 15, 26, 20, 18, 27, 16, 21, 19],
1600
+ ('positive', False): [29, 14, 34, 20],
1601
+ ('positive', True): [32, 0, 1, 28, 13, 17],
1602
+ ('prime', False): [0, 1, 24],
1603
+ ('prime', True): [23, 2],
1604
+ ('rational', False): [11, 3, 8, 29, 14, 25, 13, 17, 7],
1605
+ ('rational', True): [3, 33, 8, 6, 5, 14, 34, 25, 20, 18, 27, 16, 21, 19, 22, 17, 7],
1606
+ ('real', False): [10, 12, 11, 3, 8, 17, 7],
1607
+ ('real', True): [32, 3, 33, 8, 6, 5, 14, 34, 25, 20, 18, 27, 16, 21, 19, 22, 13, 17, 7],
1608
+ ('transcendental', True): [10, 30, 31, 11, 3, 8, 29, 14, 25, 27, 16, 21, 19, 22, 13, 17, 7],
1609
+ ('zero', False): [11, 3, 8, 29, 14, 25, 7],
1610
+ ('zero', True): [],
1611
+ } # beta_triggers
1612
+
1613
+
1614
+ generated_assumptions = {'defined_facts': defined_facts, 'full_implications': full_implications,
1615
+ 'prereq': prereq, 'beta_rules': beta_rules, 'beta_triggers': beta_triggers}
llmeval-env/lib/python3.10/site-packages/sympy/core/basic.py ADDED
@@ -0,0 +1,2233 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Base class for all the objects in SymPy"""
2
+ from __future__ import annotations
3
+
4
+ from collections import defaultdict
5
+ from collections.abc import Mapping
6
+ from itertools import chain, zip_longest
7
+
8
+ from .assumptions import _prepare_class_assumptions
9
+ from .cache import cacheit
10
+ from .core import ordering_of_classes
11
+ from .sympify import _sympify, sympify, SympifyError, _external_converter
12
+ from .sorting import ordered
13
+ from .kind import Kind, UndefinedKind
14
+ from ._print_helpers import Printable
15
+
16
+ from sympy.utilities.decorator import deprecated
17
+ from sympy.utilities.exceptions import sympy_deprecation_warning
18
+ from sympy.utilities.iterables import iterable, numbered_symbols
19
+ from sympy.utilities.misc import filldedent, func_name
20
+
21
+ from inspect import getmro
22
+
23
+
24
+ def as_Basic(expr):
25
+ """Return expr as a Basic instance using strict sympify
26
+ or raise a TypeError; this is just a wrapper to _sympify,
27
+ raising a TypeError instead of a SympifyError."""
28
+ try:
29
+ return _sympify(expr)
30
+ except SympifyError:
31
+ raise TypeError(
32
+ 'Argument must be a Basic object, not `%s`' % func_name(
33
+ expr))
34
+
35
+
36
+ def _old_compare(x: type, y: type) -> int:
37
+ # If the other object is not a Basic subclass, then we are not equal to it.
38
+ if not issubclass(y, Basic):
39
+ return -1
40
+
41
+ n1 = x.__name__
42
+ n2 = y.__name__
43
+ if n1 == n2:
44
+ return 0
45
+
46
+ UNKNOWN = len(ordering_of_classes) + 1
47
+ try:
48
+ i1 = ordering_of_classes.index(n1)
49
+ except ValueError:
50
+ i1 = UNKNOWN
51
+ try:
52
+ i2 = ordering_of_classes.index(n2)
53
+ except ValueError:
54
+ i2 = UNKNOWN
55
+ if i1 == UNKNOWN and i2 == UNKNOWN:
56
+ return (n1 > n2) - (n1 < n2)
57
+ return (i1 > i2) - (i1 < i2)
58
+
59
+
60
+ class Basic(Printable):
61
+ """
62
+ Base class for all SymPy objects.
63
+
64
+ Notes and conventions
65
+ =====================
66
+
67
+ 1) Always use ``.args``, when accessing parameters of some instance:
68
+
69
+ >>> from sympy import cot
70
+ >>> from sympy.abc import x, y
71
+
72
+ >>> cot(x).args
73
+ (x,)
74
+
75
+ >>> cot(x).args[0]
76
+ x
77
+
78
+ >>> (x*y).args
79
+ (x, y)
80
+
81
+ >>> (x*y).args[1]
82
+ y
83
+
84
+
85
+ 2) Never use internal methods or variables (the ones prefixed with ``_``):
86
+
87
+ >>> cot(x)._args # do not use this, use cot(x).args instead
88
+ (x,)
89
+
90
+
91
+ 3) By "SymPy object" we mean something that can be returned by
92
+ ``sympify``. But not all objects one encounters using SymPy are
93
+ subclasses of Basic. For example, mutable objects are not:
94
+
95
+ >>> from sympy import Basic, Matrix, sympify
96
+ >>> A = Matrix([[1, 2], [3, 4]]).as_mutable()
97
+ >>> isinstance(A, Basic)
98
+ False
99
+
100
+ >>> B = sympify(A)
101
+ >>> isinstance(B, Basic)
102
+ True
103
+ """
104
+ __slots__ = ('_mhash', # hash value
105
+ '_args', # arguments
106
+ '_assumptions'
107
+ )
108
+
109
+ _args: tuple[Basic, ...]
110
+ _mhash: int | None
111
+
112
+ @property
113
+ def __sympy__(self):
114
+ return True
115
+
116
+ def __init_subclass__(cls):
117
+ # Initialize the default_assumptions FactKB and also any assumptions
118
+ # property methods. This method will only be called for subclasses of
119
+ # Basic but not for Basic itself so we call
120
+ # _prepare_class_assumptions(Basic) below the class definition.
121
+ _prepare_class_assumptions(cls)
122
+
123
+ # To be overridden with True in the appropriate subclasses
124
+ is_number = False
125
+ is_Atom = False
126
+ is_Symbol = False
127
+ is_symbol = False
128
+ is_Indexed = False
129
+ is_Dummy = False
130
+ is_Wild = False
131
+ is_Function = False
132
+ is_Add = False
133
+ is_Mul = False
134
+ is_Pow = False
135
+ is_Number = False
136
+ is_Float = False
137
+ is_Rational = False
138
+ is_Integer = False
139
+ is_NumberSymbol = False
140
+ is_Order = False
141
+ is_Derivative = False
142
+ is_Piecewise = False
143
+ is_Poly = False
144
+ is_AlgebraicNumber = False
145
+ is_Relational = False
146
+ is_Equality = False
147
+ is_Boolean = False
148
+ is_Not = False
149
+ is_Matrix = False
150
+ is_Vector = False
151
+ is_Point = False
152
+ is_MatAdd = False
153
+ is_MatMul = False
154
+ is_real: bool | None
155
+ is_extended_real: bool | None
156
+ is_zero: bool | None
157
+ is_negative: bool | None
158
+ is_commutative: bool | None
159
+
160
+ kind: Kind = UndefinedKind
161
+
162
+ def __new__(cls, *args):
163
+ obj = object.__new__(cls)
164
+ obj._assumptions = cls.default_assumptions
165
+ obj._mhash = None # will be set by __hash__ method.
166
+
167
+ obj._args = args # all items in args must be Basic objects
168
+ return obj
169
+
170
+ def copy(self):
171
+ return self.func(*self.args)
172
+
173
+ def __getnewargs__(self):
174
+ return self.args
175
+
176
+ def __getstate__(self):
177
+ return None
178
+
179
+ def __setstate__(self, state):
180
+ for name, value in state.items():
181
+ setattr(self, name, value)
182
+
183
+ def __reduce_ex__(self, protocol):
184
+ if protocol < 2:
185
+ msg = "Only pickle protocol 2 or higher is supported by SymPy"
186
+ raise NotImplementedError(msg)
187
+ return super().__reduce_ex__(protocol)
188
+
189
+ def __hash__(self) -> int:
190
+ # hash cannot be cached using cache_it because infinite recurrence
191
+ # occurs as hash is needed for setting cache dictionary keys
192
+ h = self._mhash
193
+ if h is None:
194
+ h = hash((type(self).__name__,) + self._hashable_content())
195
+ self._mhash = h
196
+ return h
197
+
198
+ def _hashable_content(self):
199
+ """Return a tuple of information about self that can be used to
200
+ compute the hash. If a class defines additional attributes,
201
+ like ``name`` in Symbol, then this method should be updated
202
+ accordingly to return such relevant attributes.
203
+
204
+ Defining more than _hashable_content is necessary if __eq__ has
205
+ been defined by a class. See note about this in Basic.__eq__."""
206
+ return self._args
207
+
208
+ @property
209
+ def assumptions0(self):
210
+ """
211
+ Return object `type` assumptions.
212
+
213
+ For example:
214
+
215
+ Symbol('x', real=True)
216
+ Symbol('x', integer=True)
217
+
218
+ are different objects. In other words, besides Python type (Symbol in
219
+ this case), the initial assumptions are also forming their typeinfo.
220
+
221
+ Examples
222
+ ========
223
+
224
+ >>> from sympy import Symbol
225
+ >>> from sympy.abc import x
226
+ >>> x.assumptions0
227
+ {'commutative': True}
228
+ >>> x = Symbol("x", positive=True)
229
+ >>> x.assumptions0
230
+ {'commutative': True, 'complex': True, 'extended_negative': False,
231
+ 'extended_nonnegative': True, 'extended_nonpositive': False,
232
+ 'extended_nonzero': True, 'extended_positive': True, 'extended_real':
233
+ True, 'finite': True, 'hermitian': True, 'imaginary': False,
234
+ 'infinite': False, 'negative': False, 'nonnegative': True,
235
+ 'nonpositive': False, 'nonzero': True, 'positive': True, 'real':
236
+ True, 'zero': False}
237
+ """
238
+ return {}
239
+
240
+ def compare(self, other):
241
+ """
242
+ Return -1, 0, 1 if the object is smaller, equal, or greater than other.
243
+
244
+ Not in the mathematical sense. If the object is of a different type
245
+ from the "other" then their classes are ordered according to
246
+ the sorted_classes list.
247
+
248
+ Examples
249
+ ========
250
+
251
+ >>> from sympy.abc import x, y
252
+ >>> x.compare(y)
253
+ -1
254
+ >>> x.compare(x)
255
+ 0
256
+ >>> y.compare(x)
257
+ 1
258
+
259
+ """
260
+ # all redefinitions of __cmp__ method should start with the
261
+ # following lines:
262
+ if self is other:
263
+ return 0
264
+ n1 = self.__class__
265
+ n2 = other.__class__
266
+ c = _old_compare(n1, n2)
267
+ if c:
268
+ return c
269
+ #
270
+ st = self._hashable_content()
271
+ ot = other._hashable_content()
272
+ c = (len(st) > len(ot)) - (len(st) < len(ot))
273
+ if c:
274
+ return c
275
+ for l, r in zip(st, ot):
276
+ l = Basic(*l) if isinstance(l, frozenset) else l
277
+ r = Basic(*r) if isinstance(r, frozenset) else r
278
+ if isinstance(l, Basic):
279
+ c = l.compare(r)
280
+ else:
281
+ c = (l > r) - (l < r)
282
+ if c:
283
+ return c
284
+ return 0
285
+
286
+ @staticmethod
287
+ def _compare_pretty(a, b):
288
+ from sympy.series.order import Order
289
+ if isinstance(a, Order) and not isinstance(b, Order):
290
+ return 1
291
+ if not isinstance(a, Order) and isinstance(b, Order):
292
+ return -1
293
+
294
+ if a.is_Rational and b.is_Rational:
295
+ l = a.p * b.q
296
+ r = b.p * a.q
297
+ return (l > r) - (l < r)
298
+ else:
299
+ from .symbol import Wild
300
+ p1, p2, p3 = Wild("p1"), Wild("p2"), Wild("p3")
301
+ r_a = a.match(p1 * p2**p3)
302
+ if r_a and p3 in r_a:
303
+ a3 = r_a[p3]
304
+ r_b = b.match(p1 * p2**p3)
305
+ if r_b and p3 in r_b:
306
+ b3 = r_b[p3]
307
+ c = Basic.compare(a3, b3)
308
+ if c != 0:
309
+ return c
310
+
311
+ return Basic.compare(a, b)
312
+
313
+ @classmethod
314
+ def fromiter(cls, args, **assumptions):
315
+ """
316
+ Create a new object from an iterable.
317
+
318
+ This is a convenience function that allows one to create objects from
319
+ any iterable, without having to convert to a list or tuple first.
320
+
321
+ Examples
322
+ ========
323
+
324
+ >>> from sympy import Tuple
325
+ >>> Tuple.fromiter(i for i in range(5))
326
+ (0, 1, 2, 3, 4)
327
+
328
+ """
329
+ return cls(*tuple(args), **assumptions)
330
+
331
+ @classmethod
332
+ def class_key(cls):
333
+ """Nice order of classes."""
334
+ return 5, 0, cls.__name__
335
+
336
+ @cacheit
337
+ def sort_key(self, order=None):
338
+ """
339
+ Return a sort key.
340
+
341
+ Examples
342
+ ========
343
+
344
+ >>> from sympy import S, I
345
+
346
+ >>> sorted([S(1)/2, I, -I], key=lambda x: x.sort_key())
347
+ [1/2, -I, I]
348
+
349
+ >>> S("[x, 1/x, 1/x**2, x**2, x**(1/2), x**(1/4), x**(3/2)]")
350
+ [x, 1/x, x**(-2), x**2, sqrt(x), x**(1/4), x**(3/2)]
351
+ >>> sorted(_, key=lambda x: x.sort_key())
352
+ [x**(-2), 1/x, x**(1/4), sqrt(x), x, x**(3/2), x**2]
353
+
354
+ """
355
+
356
+ # XXX: remove this when issue 5169 is fixed
357
+ def inner_key(arg):
358
+ if isinstance(arg, Basic):
359
+ return arg.sort_key(order)
360
+ else:
361
+ return arg
362
+
363
+ args = self._sorted_args
364
+ args = len(args), tuple([inner_key(arg) for arg in args])
365
+ return self.class_key(), args, S.One.sort_key(), S.One
366
+
367
+ def _do_eq_sympify(self, other):
368
+ """Returns a boolean indicating whether a == b when either a
369
+ or b is not a Basic. This is only done for types that were either
370
+ added to `converter` by a 3rd party or when the object has `_sympy_`
371
+ defined. This essentially reuses the code in `_sympify` that is
372
+ specific for this use case. Non-user defined types that are meant
373
+ to work with SymPy should be handled directly in the __eq__ methods
374
+ of the `Basic` classes it could equate to and not be converted. Note
375
+ that after conversion, `==` is used again since it is not
376
+ necessarily clear whether `self` or `other`'s __eq__ method needs
377
+ to be used."""
378
+ for superclass in type(other).__mro__:
379
+ conv = _external_converter.get(superclass)
380
+ if conv is not None:
381
+ return self == conv(other)
382
+ if hasattr(other, '_sympy_'):
383
+ return self == other._sympy_()
384
+ return NotImplemented
385
+
386
+ def __eq__(self, other):
387
+ """Return a boolean indicating whether a == b on the basis of
388
+ their symbolic trees.
389
+
390
+ This is the same as a.compare(b) == 0 but faster.
391
+
392
+ Notes
393
+ =====
394
+
395
+ If a class that overrides __eq__() needs to retain the
396
+ implementation of __hash__() from a parent class, the
397
+ interpreter must be told this explicitly by setting
398
+ __hash__ : Callable[[object], int] = <ParentClass>.__hash__.
399
+ Otherwise the inheritance of __hash__() will be blocked,
400
+ just as if __hash__ had been explicitly set to None.
401
+
402
+ References
403
+ ==========
404
+
405
+ from https://docs.python.org/dev/reference/datamodel.html#object.__hash__
406
+ """
407
+ if self is other:
408
+ return True
409
+
410
+ if not isinstance(other, Basic):
411
+ return self._do_eq_sympify(other)
412
+
413
+ # check for pure number expr
414
+ if not (self.is_Number and other.is_Number) and (
415
+ type(self) != type(other)):
416
+ return False
417
+ a, b = self._hashable_content(), other._hashable_content()
418
+ if a != b:
419
+ return False
420
+ # check number *in* an expression
421
+ for a, b in zip(a, b):
422
+ if not isinstance(a, Basic):
423
+ continue
424
+ if a.is_Number and type(a) != type(b):
425
+ return False
426
+ return True
427
+
428
+ def __ne__(self, other):
429
+ """``a != b`` -> Compare two symbolic trees and see whether they are different
430
+
431
+ this is the same as:
432
+
433
+ ``a.compare(b) != 0``
434
+
435
+ but faster
436
+ """
437
+ return not self == other
438
+
439
+ def dummy_eq(self, other, symbol=None):
440
+ """
441
+ Compare two expressions and handle dummy symbols.
442
+
443
+ Examples
444
+ ========
445
+
446
+ >>> from sympy import Dummy
447
+ >>> from sympy.abc import x, y
448
+
449
+ >>> u = Dummy('u')
450
+
451
+ >>> (u**2 + 1).dummy_eq(x**2 + 1)
452
+ True
453
+ >>> (u**2 + 1) == (x**2 + 1)
454
+ False
455
+
456
+ >>> (u**2 + y).dummy_eq(x**2 + y, x)
457
+ True
458
+ >>> (u**2 + y).dummy_eq(x**2 + y, y)
459
+ False
460
+
461
+ """
462
+ s = self.as_dummy()
463
+ o = _sympify(other)
464
+ o = o.as_dummy()
465
+
466
+ dummy_symbols = [i for i in s.free_symbols if i.is_Dummy]
467
+
468
+ if len(dummy_symbols) == 1:
469
+ dummy = dummy_symbols.pop()
470
+ else:
471
+ return s == o
472
+
473
+ if symbol is None:
474
+ symbols = o.free_symbols
475
+
476
+ if len(symbols) == 1:
477
+ symbol = symbols.pop()
478
+ else:
479
+ return s == o
480
+
481
+ tmp = dummy.__class__()
482
+
483
+ return s.xreplace({dummy: tmp}) == o.xreplace({symbol: tmp})
484
+
485
+ def atoms(self, *types):
486
+ """Returns the atoms that form the current object.
487
+
488
+ By default, only objects that are truly atomic and cannot
489
+ be divided into smaller pieces are returned: symbols, numbers,
490
+ and number symbols like I and pi. It is possible to request
491
+ atoms of any type, however, as demonstrated below.
492
+
493
+ Examples
494
+ ========
495
+
496
+ >>> from sympy import I, pi, sin
497
+ >>> from sympy.abc import x, y
498
+ >>> (1 + x + 2*sin(y + I*pi)).atoms()
499
+ {1, 2, I, pi, x, y}
500
+
501
+ If one or more types are given, the results will contain only
502
+ those types of atoms.
503
+
504
+ >>> from sympy import Number, NumberSymbol, Symbol
505
+ >>> (1 + x + 2*sin(y + I*pi)).atoms(Symbol)
506
+ {x, y}
507
+
508
+ >>> (1 + x + 2*sin(y + I*pi)).atoms(Number)
509
+ {1, 2}
510
+
511
+ >>> (1 + x + 2*sin(y + I*pi)).atoms(Number, NumberSymbol)
512
+ {1, 2, pi}
513
+
514
+ >>> (1 + x + 2*sin(y + I*pi)).atoms(Number, NumberSymbol, I)
515
+ {1, 2, I, pi}
516
+
517
+ Note that I (imaginary unit) and zoo (complex infinity) are special
518
+ types of number symbols and are not part of the NumberSymbol class.
519
+
520
+ The type can be given implicitly, too:
521
+
522
+ >>> (1 + x + 2*sin(y + I*pi)).atoms(x) # x is a Symbol
523
+ {x, y}
524
+
525
+ Be careful to check your assumptions when using the implicit option
526
+ since ``S(1).is_Integer = True`` but ``type(S(1))`` is ``One``, a special type
527
+ of SymPy atom, while ``type(S(2))`` is type ``Integer`` and will find all
528
+ integers in an expression:
529
+
530
+ >>> from sympy import S
531
+ >>> (1 + x + 2*sin(y + I*pi)).atoms(S(1))
532
+ {1}
533
+
534
+ >>> (1 + x + 2*sin(y + I*pi)).atoms(S(2))
535
+ {1, 2}
536
+
537
+ Finally, arguments to atoms() can select more than atomic atoms: any
538
+ SymPy type (loaded in core/__init__.py) can be listed as an argument
539
+ and those types of "atoms" as found in scanning the arguments of the
540
+ expression recursively:
541
+
542
+ >>> from sympy import Function, Mul
543
+ >>> from sympy.core.function import AppliedUndef
544
+ >>> f = Function('f')
545
+ >>> (1 + f(x) + 2*sin(y + I*pi)).atoms(Function)
546
+ {f(x), sin(y + I*pi)}
547
+ >>> (1 + f(x) + 2*sin(y + I*pi)).atoms(AppliedUndef)
548
+ {f(x)}
549
+
550
+ >>> (1 + x + 2*sin(y + I*pi)).atoms(Mul)
551
+ {I*pi, 2*sin(y + I*pi)}
552
+
553
+ """
554
+ if types:
555
+ types = tuple(
556
+ [t if isinstance(t, type) else type(t) for t in types])
557
+ nodes = _preorder_traversal(self)
558
+ if types:
559
+ result = {node for node in nodes if isinstance(node, types)}
560
+ else:
561
+ result = {node for node in nodes if not node.args}
562
+ return result
563
+
564
+ @property
565
+ def free_symbols(self) -> set[Basic]:
566
+ """Return from the atoms of self those which are free symbols.
567
+
568
+ Not all free symbols are ``Symbol``. Eg: IndexedBase('I')[0].free_symbols
569
+
570
+ For most expressions, all symbols are free symbols. For some classes
571
+ this is not true. e.g. Integrals use Symbols for the dummy variables
572
+ which are bound variables, so Integral has a method to return all
573
+ symbols except those. Derivative keeps track of symbols with respect
574
+ to which it will perform a derivative; those are
575
+ bound variables, too, so it has its own free_symbols method.
576
+
577
+ Any other method that uses bound variables should implement a
578
+ free_symbols method."""
579
+ empty: set[Basic] = set()
580
+ return empty.union(*(a.free_symbols for a in self.args))
581
+
582
+ @property
583
+ def expr_free_symbols(self):
584
+ sympy_deprecation_warning("""
585
+ The expr_free_symbols property is deprecated. Use free_symbols to get
586
+ the free symbols of an expression.
587
+ """,
588
+ deprecated_since_version="1.9",
589
+ active_deprecations_target="deprecated-expr-free-symbols")
590
+ return set()
591
+
592
+ def as_dummy(self):
593
+ """Return the expression with any objects having structurally
594
+ bound symbols replaced with unique, canonical symbols within
595
+ the object in which they appear and having only the default
596
+ assumption for commutativity being True. When applied to a
597
+ symbol a new symbol having only the same commutativity will be
598
+ returned.
599
+
600
+ Examples
601
+ ========
602
+
603
+ >>> from sympy import Integral, Symbol
604
+ >>> from sympy.abc import x
605
+ >>> r = Symbol('r', real=True)
606
+ >>> Integral(r, (r, x)).as_dummy()
607
+ Integral(_0, (_0, x))
608
+ >>> _.variables[0].is_real is None
609
+ True
610
+ >>> r.as_dummy()
611
+ _r
612
+
613
+ Notes
614
+ =====
615
+
616
+ Any object that has structurally bound variables should have
617
+ a property, `bound_symbols` that returns those symbols
618
+ appearing in the object.
619
+ """
620
+ from .symbol import Dummy, Symbol
621
+ def can(x):
622
+ # mask free that shadow bound
623
+ free = x.free_symbols
624
+ bound = set(x.bound_symbols)
625
+ d = {i: Dummy() for i in bound & free}
626
+ x = x.subs(d)
627
+ # replace bound with canonical names
628
+ x = x.xreplace(x.canonical_variables)
629
+ # return after undoing masking
630
+ return x.xreplace({v: k for k, v in d.items()})
631
+ if not self.has(Symbol):
632
+ return self
633
+ return self.replace(
634
+ lambda x: hasattr(x, 'bound_symbols'),
635
+ can,
636
+ simultaneous=False)
637
+
638
+ @property
639
+ def canonical_variables(self):
640
+ """Return a dictionary mapping any variable defined in
641
+ ``self.bound_symbols`` to Symbols that do not clash
642
+ with any free symbols in the expression.
643
+
644
+ Examples
645
+ ========
646
+
647
+ >>> from sympy import Lambda
648
+ >>> from sympy.abc import x
649
+ >>> Lambda(x, 2*x).canonical_variables
650
+ {x: _0}
651
+ """
652
+ if not hasattr(self, 'bound_symbols'):
653
+ return {}
654
+ dums = numbered_symbols('_')
655
+ reps = {}
656
+ # watch out for free symbol that are not in bound symbols;
657
+ # those that are in bound symbols are about to get changed
658
+ bound = self.bound_symbols
659
+ names = {i.name for i in self.free_symbols - set(bound)}
660
+ for b in bound:
661
+ d = next(dums)
662
+ if b.is_Symbol:
663
+ while d.name in names:
664
+ d = next(dums)
665
+ reps[b] = d
666
+ return reps
667
+
668
+ def rcall(self, *args):
669
+ """Apply on the argument recursively through the expression tree.
670
+
671
+ This method is used to simulate a common abuse of notation for
672
+ operators. For instance, in SymPy the following will not work:
673
+
674
+ ``(x+Lambda(y, 2*y))(z) == x+2*z``,
675
+
676
+ however, you can use:
677
+
678
+ >>> from sympy import Lambda
679
+ >>> from sympy.abc import x, y, z
680
+ >>> (x + Lambda(y, 2*y)).rcall(z)
681
+ x + 2*z
682
+ """
683
+ return Basic._recursive_call(self, args)
684
+
685
+ @staticmethod
686
+ def _recursive_call(expr_to_call, on_args):
687
+ """Helper for rcall method."""
688
+ from .symbol import Symbol
689
+ def the_call_method_is_overridden(expr):
690
+ for cls in getmro(type(expr)):
691
+ if '__call__' in cls.__dict__:
692
+ return cls != Basic
693
+
694
+ if callable(expr_to_call) and the_call_method_is_overridden(expr_to_call):
695
+ if isinstance(expr_to_call, Symbol): # XXX When you call a Symbol it is
696
+ return expr_to_call # transformed into an UndefFunction
697
+ else:
698
+ return expr_to_call(*on_args)
699
+ elif expr_to_call.args:
700
+ args = [Basic._recursive_call(
701
+ sub, on_args) for sub in expr_to_call.args]
702
+ return type(expr_to_call)(*args)
703
+ else:
704
+ return expr_to_call
705
+
706
+ def is_hypergeometric(self, k):
707
+ from sympy.simplify.simplify import hypersimp
708
+ from sympy.functions.elementary.piecewise import Piecewise
709
+ if self.has(Piecewise):
710
+ return None
711
+ return hypersimp(self, k) is not None
712
+
713
+ @property
714
+ def is_comparable(self):
715
+ """Return True if self can be computed to a real number
716
+ (or already is a real number) with precision, else False.
717
+
718
+ Examples
719
+ ========
720
+
721
+ >>> from sympy import exp_polar, pi, I
722
+ >>> (I*exp_polar(I*pi/2)).is_comparable
723
+ True
724
+ >>> (I*exp_polar(I*pi*2)).is_comparable
725
+ False
726
+
727
+ A False result does not mean that `self` cannot be rewritten
728
+ into a form that would be comparable. For example, the
729
+ difference computed below is zero but without simplification
730
+ it does not evaluate to a zero with precision:
731
+
732
+ >>> e = 2**pi*(1 + 2**pi)
733
+ >>> dif = e - e.expand()
734
+ >>> dif.is_comparable
735
+ False
736
+ >>> dif.n(2)._prec
737
+ 1
738
+
739
+ """
740
+ is_extended_real = self.is_extended_real
741
+ if is_extended_real is False:
742
+ return False
743
+ if not self.is_number:
744
+ return False
745
+ # don't re-eval numbers that are already evaluated since
746
+ # this will create spurious precision
747
+ n, i = [p.evalf(2) if not p.is_Number else p
748
+ for p in self.as_real_imag()]
749
+ if not (i.is_Number and n.is_Number):
750
+ return False
751
+ if i:
752
+ # if _prec = 1 we can't decide and if not,
753
+ # the answer is False because numbers with
754
+ # imaginary parts can't be compared
755
+ # so return False
756
+ return False
757
+ else:
758
+ return n._prec != 1
759
+
760
+ @property
761
+ def func(self):
762
+ """
763
+ The top-level function in an expression.
764
+
765
+ The following should hold for all objects::
766
+
767
+ >> x == x.func(*x.args)
768
+
769
+ Examples
770
+ ========
771
+
772
+ >>> from sympy.abc import x
773
+ >>> a = 2*x
774
+ >>> a.func
775
+ <class 'sympy.core.mul.Mul'>
776
+ >>> a.args
777
+ (2, x)
778
+ >>> a.func(*a.args)
779
+ 2*x
780
+ >>> a == a.func(*a.args)
781
+ True
782
+
783
+ """
784
+ return self.__class__
785
+
786
+ @property
787
+ def args(self) -> tuple[Basic, ...]:
788
+ """Returns a tuple of arguments of 'self'.
789
+
790
+ Examples
791
+ ========
792
+
793
+ >>> from sympy import cot
794
+ >>> from sympy.abc import x, y
795
+
796
+ >>> cot(x).args
797
+ (x,)
798
+
799
+ >>> cot(x).args[0]
800
+ x
801
+
802
+ >>> (x*y).args
803
+ (x, y)
804
+
805
+ >>> (x*y).args[1]
806
+ y
807
+
808
+ Notes
809
+ =====
810
+
811
+ Never use self._args, always use self.args.
812
+ Only use _args in __new__ when creating a new function.
813
+ Do not override .args() from Basic (so that it is easy to
814
+ change the interface in the future if needed).
815
+ """
816
+ return self._args
817
+
818
+ @property
819
+ def _sorted_args(self):
820
+ """
821
+ The same as ``args``. Derived classes which do not fix an
822
+ order on their arguments should override this method to
823
+ produce the sorted representation.
824
+ """
825
+ return self.args
826
+
827
+ def as_content_primitive(self, radical=False, clear=True):
828
+ """A stub to allow Basic args (like Tuple) to be skipped when computing
829
+ the content and primitive components of an expression.
830
+
831
+ See Also
832
+ ========
833
+
834
+ sympy.core.expr.Expr.as_content_primitive
835
+ """
836
+ return S.One, self
837
+
838
+ def subs(self, *args, **kwargs):
839
+ """
840
+ Substitutes old for new in an expression after sympifying args.
841
+
842
+ `args` is either:
843
+ - two arguments, e.g. foo.subs(old, new)
844
+ - one iterable argument, e.g. foo.subs(iterable). The iterable may be
845
+ o an iterable container with (old, new) pairs. In this case the
846
+ replacements are processed in the order given with successive
847
+ patterns possibly affecting replacements already made.
848
+ o a dict or set whose key/value items correspond to old/new pairs.
849
+ In this case the old/new pairs will be sorted by op count and in
850
+ case of a tie, by number of args and the default_sort_key. The
851
+ resulting sorted list is then processed as an iterable container
852
+ (see previous).
853
+
854
+ If the keyword ``simultaneous`` is True, the subexpressions will not be
855
+ evaluated until all the substitutions have been made.
856
+
857
+ Examples
858
+ ========
859
+
860
+ >>> from sympy import pi, exp, limit, oo
861
+ >>> from sympy.abc import x, y
862
+ >>> (1 + x*y).subs(x, pi)
863
+ pi*y + 1
864
+ >>> (1 + x*y).subs({x:pi, y:2})
865
+ 1 + 2*pi
866
+ >>> (1 + x*y).subs([(x, pi), (y, 2)])
867
+ 1 + 2*pi
868
+ >>> reps = [(y, x**2), (x, 2)]
869
+ >>> (x + y).subs(reps)
870
+ 6
871
+ >>> (x + y).subs(reversed(reps))
872
+ x**2 + 2
873
+
874
+ >>> (x**2 + x**4).subs(x**2, y)
875
+ y**2 + y
876
+
877
+ To replace only the x**2 but not the x**4, use xreplace:
878
+
879
+ >>> (x**2 + x**4).xreplace({x**2: y})
880
+ x**4 + y
881
+
882
+ To delay evaluation until all substitutions have been made,
883
+ set the keyword ``simultaneous`` to True:
884
+
885
+ >>> (x/y).subs([(x, 0), (y, 0)])
886
+ 0
887
+ >>> (x/y).subs([(x, 0), (y, 0)], simultaneous=True)
888
+ nan
889
+
890
+ This has the added feature of not allowing subsequent substitutions
891
+ to affect those already made:
892
+
893
+ >>> ((x + y)/y).subs({x + y: y, y: x + y})
894
+ 1
895
+ >>> ((x + y)/y).subs({x + y: y, y: x + y}, simultaneous=True)
896
+ y/(x + y)
897
+
898
+ In order to obtain a canonical result, unordered iterables are
899
+ sorted by count_op length, number of arguments and by the
900
+ default_sort_key to break any ties. All other iterables are left
901
+ unsorted.
902
+
903
+ >>> from sympy import sqrt, sin, cos
904
+ >>> from sympy.abc import a, b, c, d, e
905
+
906
+ >>> A = (sqrt(sin(2*x)), a)
907
+ >>> B = (sin(2*x), b)
908
+ >>> C = (cos(2*x), c)
909
+ >>> D = (x, d)
910
+ >>> E = (exp(x), e)
911
+
912
+ >>> expr = sqrt(sin(2*x))*sin(exp(x)*x)*cos(2*x) + sin(2*x)
913
+
914
+ >>> expr.subs(dict([A, B, C, D, E]))
915
+ a*c*sin(d*e) + b
916
+
917
+ The resulting expression represents a literal replacement of the
918
+ old arguments with the new arguments. This may not reflect the
919
+ limiting behavior of the expression:
920
+
921
+ >>> (x**3 - 3*x).subs({x: oo})
922
+ nan
923
+
924
+ >>> limit(x**3 - 3*x, x, oo)
925
+ oo
926
+
927
+ If the substitution will be followed by numerical
928
+ evaluation, it is better to pass the substitution to
929
+ evalf as
930
+
931
+ >>> (1/x).evalf(subs={x: 3.0}, n=21)
932
+ 0.333333333333333333333
933
+
934
+ rather than
935
+
936
+ >>> (1/x).subs({x: 3.0}).evalf(21)
937
+ 0.333333333333333314830
938
+
939
+ as the former will ensure that the desired level of precision is
940
+ obtained.
941
+
942
+ See Also
943
+ ========
944
+ replace: replacement capable of doing wildcard-like matching,
945
+ parsing of match, and conditional replacements
946
+ xreplace: exact node replacement in expr tree; also capable of
947
+ using matching rules
948
+ sympy.core.evalf.EvalfMixin.evalf: calculates the given formula to a desired level of precision
949
+
950
+ """
951
+ from .containers import Dict
952
+ from .symbol import Dummy, Symbol
953
+ from .numbers import _illegal
954
+
955
+ unordered = False
956
+ if len(args) == 1:
957
+
958
+ sequence = args[0]
959
+ if isinstance(sequence, set):
960
+ unordered = True
961
+ elif isinstance(sequence, (Dict, Mapping)):
962
+ unordered = True
963
+ sequence = sequence.items()
964
+ elif not iterable(sequence):
965
+ raise ValueError(filldedent("""
966
+ When a single argument is passed to subs
967
+ it should be a dictionary of old: new pairs or an iterable
968
+ of (old, new) tuples."""))
969
+ elif len(args) == 2:
970
+ sequence = [args]
971
+ else:
972
+ raise ValueError("subs accepts either 1 or 2 arguments")
973
+
974
+ def sympify_old(old):
975
+ if isinstance(old, str):
976
+ # Use Symbol rather than parse_expr for old
977
+ return Symbol(old)
978
+ elif isinstance(old, type):
979
+ # Allow a type e.g. Function('f') or sin
980
+ return sympify(old, strict=False)
981
+ else:
982
+ return sympify(old, strict=True)
983
+
984
+ def sympify_new(new):
985
+ if isinstance(new, (str, type)):
986
+ # Allow a type or parse a string input
987
+ return sympify(new, strict=False)
988
+ else:
989
+ return sympify(new, strict=True)
990
+
991
+ sequence = [(sympify_old(s1), sympify_new(s2)) for s1, s2 in sequence]
992
+
993
+ # skip if there is no change
994
+ sequence = [(s1, s2) for s1, s2 in sequence if not _aresame(s1, s2)]
995
+
996
+ simultaneous = kwargs.pop('simultaneous', False)
997
+
998
+ if unordered:
999
+ from .sorting import _nodes, default_sort_key
1000
+ sequence = dict(sequence)
1001
+ # order so more complex items are first and items
1002
+ # of identical complexity are ordered so
1003
+ # f(x) < f(y) < x < y
1004
+ # \___ 2 __/ \_1_/ <- number of nodes
1005
+ #
1006
+ # For more complex ordering use an unordered sequence.
1007
+ k = list(ordered(sequence, default=False, keys=(
1008
+ lambda x: -_nodes(x),
1009
+ default_sort_key,
1010
+ )))
1011
+ sequence = [(k, sequence[k]) for k in k]
1012
+ # do infinities first
1013
+ if not simultaneous:
1014
+ redo = [i for i, seq in enumerate(sequence) if seq[1] in _illegal]
1015
+ for i in reversed(redo):
1016
+ sequence.insert(0, sequence.pop(i))
1017
+
1018
+ if simultaneous: # XXX should this be the default for dict subs?
1019
+ reps = {}
1020
+ rv = self
1021
+ kwargs['hack2'] = True
1022
+ m = Dummy('subs_m')
1023
+ for old, new in sequence:
1024
+ com = new.is_commutative
1025
+ if com is None:
1026
+ com = True
1027
+ d = Dummy('subs_d', commutative=com)
1028
+ # using d*m so Subs will be used on dummy variables
1029
+ # in things like Derivative(f(x, y), x) in which x
1030
+ # is both free and bound
1031
+ rv = rv._subs(old, d*m, **kwargs)
1032
+ if not isinstance(rv, Basic):
1033
+ break
1034
+ reps[d] = new
1035
+ reps[m] = S.One # get rid of m
1036
+ return rv.xreplace(reps)
1037
+ else:
1038
+ rv = self
1039
+ for old, new in sequence:
1040
+ rv = rv._subs(old, new, **kwargs)
1041
+ if not isinstance(rv, Basic):
1042
+ break
1043
+ return rv
1044
+
1045
+ @cacheit
1046
+ def _subs(self, old, new, **hints):
1047
+ """Substitutes an expression old -> new.
1048
+
1049
+ If self is not equal to old then _eval_subs is called.
1050
+ If _eval_subs does not want to make any special replacement
1051
+ then a None is received which indicates that the fallback
1052
+ should be applied wherein a search for replacements is made
1053
+ amongst the arguments of self.
1054
+
1055
+ >>> from sympy import Add
1056
+ >>> from sympy.abc import x, y, z
1057
+
1058
+ Examples
1059
+ ========
1060
+
1061
+ Add's _eval_subs knows how to target x + y in the following
1062
+ so it makes the change:
1063
+
1064
+ >>> (x + y + z).subs(x + y, 1)
1065
+ z + 1
1066
+
1067
+ Add's _eval_subs does not need to know how to find x + y in
1068
+ the following:
1069
+
1070
+ >>> Add._eval_subs(z*(x + y) + 3, x + y, 1) is None
1071
+ True
1072
+
1073
+ The returned None will cause the fallback routine to traverse the args and
1074
+ pass the z*(x + y) arg to Mul where the change will take place and the
1075
+ substitution will succeed:
1076
+
1077
+ >>> (z*(x + y) + 3).subs(x + y, 1)
1078
+ z + 3
1079
+
1080
+ ** Developers Notes **
1081
+
1082
+ An _eval_subs routine for a class should be written if:
1083
+
1084
+ 1) any arguments are not instances of Basic (e.g. bool, tuple);
1085
+
1086
+ 2) some arguments should not be targeted (as in integration
1087
+ variables);
1088
+
1089
+ 3) if there is something other than a literal replacement
1090
+ that should be attempted (as in Piecewise where the condition
1091
+ may be updated without doing a replacement).
1092
+
1093
+ If it is overridden, here are some special cases that might arise:
1094
+
1095
+ 1) If it turns out that no special change was made and all
1096
+ the original sub-arguments should be checked for
1097
+ replacements then None should be returned.
1098
+
1099
+ 2) If it is necessary to do substitutions on a portion of
1100
+ the expression then _subs should be called. _subs will
1101
+ handle the case of any sub-expression being equal to old
1102
+ (which usually would not be the case) while its fallback
1103
+ will handle the recursion into the sub-arguments. For
1104
+ example, after Add's _eval_subs removes some matching terms
1105
+ it must process the remaining terms so it calls _subs
1106
+ on each of the un-matched terms and then adds them
1107
+ onto the terms previously obtained.
1108
+
1109
+ 3) If the initial expression should remain unchanged then
1110
+ the original expression should be returned. (Whenever an
1111
+ expression is returned, modified or not, no further
1112
+ substitution of old -> new is attempted.) Sum's _eval_subs
1113
+ routine uses this strategy when a substitution is attempted
1114
+ on any of its summation variables.
1115
+ """
1116
+
1117
+ def fallback(self, old, new):
1118
+ """
1119
+ Try to replace old with new in any of self's arguments.
1120
+ """
1121
+ hit = False
1122
+ args = list(self.args)
1123
+ for i, arg in enumerate(args):
1124
+ if not hasattr(arg, '_eval_subs'):
1125
+ continue
1126
+ arg = arg._subs(old, new, **hints)
1127
+ if not _aresame(arg, args[i]):
1128
+ hit = True
1129
+ args[i] = arg
1130
+ if hit:
1131
+ rv = self.func(*args)
1132
+ hack2 = hints.get('hack2', False)
1133
+ if hack2 and self.is_Mul and not rv.is_Mul: # 2-arg hack
1134
+ coeff = S.One
1135
+ nonnumber = []
1136
+ for i in args:
1137
+ if i.is_Number:
1138
+ coeff *= i
1139
+ else:
1140
+ nonnumber.append(i)
1141
+ nonnumber = self.func(*nonnumber)
1142
+ if coeff is S.One:
1143
+ return nonnumber
1144
+ else:
1145
+ return self.func(coeff, nonnumber, evaluate=False)
1146
+ return rv
1147
+ return self
1148
+
1149
+ if _aresame(self, old):
1150
+ return new
1151
+
1152
+ rv = self._eval_subs(old, new)
1153
+ if rv is None:
1154
+ rv = fallback(self, old, new)
1155
+ return rv
1156
+
1157
+ def _eval_subs(self, old, new):
1158
+ """Override this stub if you want to do anything more than
1159
+ attempt a replacement of old with new in the arguments of self.
1160
+
1161
+ See also
1162
+ ========
1163
+
1164
+ _subs
1165
+ """
1166
+ return None
1167
+
1168
+ def xreplace(self, rule):
1169
+ """
1170
+ Replace occurrences of objects within the expression.
1171
+
1172
+ Parameters
1173
+ ==========
1174
+
1175
+ rule : dict-like
1176
+ Expresses a replacement rule
1177
+
1178
+ Returns
1179
+ =======
1180
+
1181
+ xreplace : the result of the replacement
1182
+
1183
+ Examples
1184
+ ========
1185
+
1186
+ >>> from sympy import symbols, pi, exp
1187
+ >>> x, y, z = symbols('x y z')
1188
+ >>> (1 + x*y).xreplace({x: pi})
1189
+ pi*y + 1
1190
+ >>> (1 + x*y).xreplace({x: pi, y: 2})
1191
+ 1 + 2*pi
1192
+
1193
+ Replacements occur only if an entire node in the expression tree is
1194
+ matched:
1195
+
1196
+ >>> (x*y + z).xreplace({x*y: pi})
1197
+ z + pi
1198
+ >>> (x*y*z).xreplace({x*y: pi})
1199
+ x*y*z
1200
+ >>> (2*x).xreplace({2*x: y, x: z})
1201
+ y
1202
+ >>> (2*2*x).xreplace({2*x: y, x: z})
1203
+ 4*z
1204
+ >>> (x + y + 2).xreplace({x + y: 2})
1205
+ x + y + 2
1206
+ >>> (x + 2 + exp(x + 2)).xreplace({x + 2: y})
1207
+ x + exp(y) + 2
1208
+
1209
+ xreplace does not differentiate between free and bound symbols. In the
1210
+ following, subs(x, y) would not change x since it is a bound symbol,
1211
+ but xreplace does:
1212
+
1213
+ >>> from sympy import Integral
1214
+ >>> Integral(x, (x, 1, 2*x)).xreplace({x: y})
1215
+ Integral(y, (y, 1, 2*y))
1216
+
1217
+ Trying to replace x with an expression raises an error:
1218
+
1219
+ >>> Integral(x, (x, 1, 2*x)).xreplace({x: 2*y}) # doctest: +SKIP
1220
+ ValueError: Invalid limits given: ((2*y, 1, 4*y),)
1221
+
1222
+ See Also
1223
+ ========
1224
+ replace: replacement capable of doing wildcard-like matching,
1225
+ parsing of match, and conditional replacements
1226
+ subs: substitution of subexpressions as defined by the objects
1227
+ themselves.
1228
+
1229
+ """
1230
+ value, _ = self._xreplace(rule)
1231
+ return value
1232
+
1233
+ def _xreplace(self, rule):
1234
+ """
1235
+ Helper for xreplace. Tracks whether a replacement actually occurred.
1236
+ """
1237
+ if self in rule:
1238
+ return rule[self], True
1239
+ elif rule:
1240
+ args = []
1241
+ changed = False
1242
+ for a in self.args:
1243
+ _xreplace = getattr(a, '_xreplace', None)
1244
+ if _xreplace is not None:
1245
+ a_xr = _xreplace(rule)
1246
+ args.append(a_xr[0])
1247
+ changed |= a_xr[1]
1248
+ else:
1249
+ args.append(a)
1250
+ args = tuple(args)
1251
+ if changed:
1252
+ return self.func(*args), True
1253
+ return self, False
1254
+
1255
+ @cacheit
1256
+ def has(self, *patterns):
1257
+ """
1258
+ Test whether any subexpression matches any of the patterns.
1259
+
1260
+ Examples
1261
+ ========
1262
+
1263
+ >>> from sympy import sin
1264
+ >>> from sympy.abc import x, y, z
1265
+ >>> (x**2 + sin(x*y)).has(z)
1266
+ False
1267
+ >>> (x**2 + sin(x*y)).has(x, y, z)
1268
+ True
1269
+ >>> x.has(x)
1270
+ True
1271
+
1272
+ Note ``has`` is a structural algorithm with no knowledge of
1273
+ mathematics. Consider the following half-open interval:
1274
+
1275
+ >>> from sympy import Interval
1276
+ >>> i = Interval.Lopen(0, 5); i
1277
+ Interval.Lopen(0, 5)
1278
+ >>> i.args
1279
+ (0, 5, True, False)
1280
+ >>> i.has(4) # there is no "4" in the arguments
1281
+ False
1282
+ >>> i.has(0) # there *is* a "0" in the arguments
1283
+ True
1284
+
1285
+ Instead, use ``contains`` to determine whether a number is in the
1286
+ interval or not:
1287
+
1288
+ >>> i.contains(4)
1289
+ True
1290
+ >>> i.contains(0)
1291
+ False
1292
+
1293
+
1294
+ Note that ``expr.has(*patterns)`` is exactly equivalent to
1295
+ ``any(expr.has(p) for p in patterns)``. In particular, ``False`` is
1296
+ returned when the list of patterns is empty.
1297
+
1298
+ >>> x.has()
1299
+ False
1300
+
1301
+ """
1302
+ return self._has(iterargs, *patterns)
1303
+
1304
+ def has_xfree(self, s: set[Basic]):
1305
+ """Return True if self has any of the patterns in s as a
1306
+ free argument, else False. This is like `Basic.has_free`
1307
+ but this will only report exact argument matches.
1308
+
1309
+ Examples
1310
+ ========
1311
+
1312
+ >>> from sympy import Function
1313
+ >>> from sympy.abc import x, y
1314
+ >>> f = Function('f')
1315
+ >>> f(x).has_xfree({f})
1316
+ False
1317
+ >>> f(x).has_xfree({f(x)})
1318
+ True
1319
+ >>> f(x + 1).has_xfree({x})
1320
+ True
1321
+ >>> f(x + 1).has_xfree({x + 1})
1322
+ True
1323
+ >>> f(x + y + 1).has_xfree({x + 1})
1324
+ False
1325
+ """
1326
+ # protect O(1) containment check by requiring:
1327
+ if type(s) is not set:
1328
+ raise TypeError('expecting set argument')
1329
+ return any(a in s for a in iterfreeargs(self))
1330
+
1331
+ @cacheit
1332
+ def has_free(self, *patterns):
1333
+ """Return True if self has object(s) ``x`` as a free expression
1334
+ else False.
1335
+
1336
+ Examples
1337
+ ========
1338
+
1339
+ >>> from sympy import Integral, Function
1340
+ >>> from sympy.abc import x, y
1341
+ >>> f = Function('f')
1342
+ >>> g = Function('g')
1343
+ >>> expr = Integral(f(x), (f(x), 1, g(y)))
1344
+ >>> expr.free_symbols
1345
+ {y}
1346
+ >>> expr.has_free(g(y))
1347
+ True
1348
+ >>> expr.has_free(*(x, f(x)))
1349
+ False
1350
+
1351
+ This works for subexpressions and types, too:
1352
+
1353
+ >>> expr.has_free(g)
1354
+ True
1355
+ >>> (x + y + 1).has_free(y + 1)
1356
+ True
1357
+ """
1358
+ if not patterns:
1359
+ return False
1360
+ p0 = patterns[0]
1361
+ if len(patterns) == 1 and iterable(p0) and not isinstance(p0, Basic):
1362
+ # Basic can contain iterables (though not non-Basic, ideally)
1363
+ # but don't encourage mixed passing patterns
1364
+ raise TypeError(filldedent('''
1365
+ Expecting 1 or more Basic args, not a single
1366
+ non-Basic iterable. Don't forget to unpack
1367
+ iterables: `eq.has_free(*patterns)`'''))
1368
+ # try quick test first
1369
+ s = set(patterns)
1370
+ rv = self.has_xfree(s)
1371
+ if rv:
1372
+ return rv
1373
+ # now try matching through slower _has
1374
+ return self._has(iterfreeargs, *patterns)
1375
+
1376
+ def _has(self, iterargs, *patterns):
1377
+ # separate out types and unhashable objects
1378
+ type_set = set() # only types
1379
+ p_set = set() # hashable non-types
1380
+ for p in patterns:
1381
+ if isinstance(p, type) and issubclass(p, Basic):
1382
+ type_set.add(p)
1383
+ continue
1384
+ if not isinstance(p, Basic):
1385
+ try:
1386
+ p = _sympify(p)
1387
+ except SympifyError:
1388
+ continue # Basic won't have this in it
1389
+ p_set.add(p) # fails if object defines __eq__ but
1390
+ # doesn't define __hash__
1391
+ types = tuple(type_set) #
1392
+ for i in iterargs(self): #
1393
+ if i in p_set: # <--- here, too
1394
+ return True
1395
+ if isinstance(i, types):
1396
+ return True
1397
+
1398
+ # use matcher if defined, e.g. operations defines
1399
+ # matcher that checks for exact subset containment,
1400
+ # (x + y + 1).has(x + 1) -> True
1401
+ for i in p_set - type_set: # types don't have matchers
1402
+ if not hasattr(i, '_has_matcher'):
1403
+ continue
1404
+ match = i._has_matcher()
1405
+ if any(match(arg) for arg in iterargs(self)):
1406
+ return True
1407
+
1408
+ # no success
1409
+ return False
1410
+
1411
+ def replace(self, query, value, map=False, simultaneous=True, exact=None):
1412
+ """
1413
+ Replace matching subexpressions of ``self`` with ``value``.
1414
+
1415
+ If ``map = True`` then also return the mapping {old: new} where ``old``
1416
+ was a sub-expression found with query and ``new`` is the replacement
1417
+ value for it. If the expression itself does not match the query, then
1418
+ the returned value will be ``self.xreplace(map)`` otherwise it should
1419
+ be ``self.subs(ordered(map.items()))``.
1420
+
1421
+ Traverses an expression tree and performs replacement of matching
1422
+ subexpressions from the bottom to the top of the tree. The default
1423
+ approach is to do the replacement in a simultaneous fashion so
1424
+ changes made are targeted only once. If this is not desired or causes
1425
+ problems, ``simultaneous`` can be set to False.
1426
+
1427
+ In addition, if an expression containing more than one Wild symbol
1428
+ is being used to match subexpressions and the ``exact`` flag is None
1429
+ it will be set to True so the match will only succeed if all non-zero
1430
+ values are received for each Wild that appears in the match pattern.
1431
+ Setting this to False accepts a match of 0; while setting it True
1432
+ accepts all matches that have a 0 in them. See example below for
1433
+ cautions.
1434
+
1435
+ The list of possible combinations of queries and replacement values
1436
+ is listed below:
1437
+
1438
+ Examples
1439
+ ========
1440
+
1441
+ Initial setup
1442
+
1443
+ >>> from sympy import log, sin, cos, tan, Wild, Mul, Add
1444
+ >>> from sympy.abc import x, y
1445
+ >>> f = log(sin(x)) + tan(sin(x**2))
1446
+
1447
+ 1.1. type -> type
1448
+ obj.replace(type, newtype)
1449
+
1450
+ When object of type ``type`` is found, replace it with the
1451
+ result of passing its argument(s) to ``newtype``.
1452
+
1453
+ >>> f.replace(sin, cos)
1454
+ log(cos(x)) + tan(cos(x**2))
1455
+ >>> sin(x).replace(sin, cos, map=True)
1456
+ (cos(x), {sin(x): cos(x)})
1457
+ >>> (x*y).replace(Mul, Add)
1458
+ x + y
1459
+
1460
+ 1.2. type -> func
1461
+ obj.replace(type, func)
1462
+
1463
+ When object of type ``type`` is found, apply ``func`` to its
1464
+ argument(s). ``func`` must be written to handle the number
1465
+ of arguments of ``type``.
1466
+
1467
+ >>> f.replace(sin, lambda arg: sin(2*arg))
1468
+ log(sin(2*x)) + tan(sin(2*x**2))
1469
+ >>> (x*y).replace(Mul, lambda *args: sin(2*Mul(*args)))
1470
+ sin(2*x*y)
1471
+
1472
+ 2.1. pattern -> expr
1473
+ obj.replace(pattern(wild), expr(wild))
1474
+
1475
+ Replace subexpressions matching ``pattern`` with the expression
1476
+ written in terms of the Wild symbols in ``pattern``.
1477
+
1478
+ >>> a, b = map(Wild, 'ab')
1479
+ >>> f.replace(sin(a), tan(a))
1480
+ log(tan(x)) + tan(tan(x**2))
1481
+ >>> f.replace(sin(a), tan(a/2))
1482
+ log(tan(x/2)) + tan(tan(x**2/2))
1483
+ >>> f.replace(sin(a), a)
1484
+ log(x) + tan(x**2)
1485
+ >>> (x*y).replace(a*x, a)
1486
+ y
1487
+
1488
+ Matching is exact by default when more than one Wild symbol
1489
+ is used: matching fails unless the match gives non-zero
1490
+ values for all Wild symbols:
1491
+
1492
+ >>> (2*x + y).replace(a*x + b, b - a)
1493
+ y - 2
1494
+ >>> (2*x).replace(a*x + b, b - a)
1495
+ 2*x
1496
+
1497
+ When set to False, the results may be non-intuitive:
1498
+
1499
+ >>> (2*x).replace(a*x + b, b - a, exact=False)
1500
+ 2/x
1501
+
1502
+ 2.2. pattern -> func
1503
+ obj.replace(pattern(wild), lambda wild: expr(wild))
1504
+
1505
+ All behavior is the same as in 2.1 but now a function in terms of
1506
+ pattern variables is used rather than an expression:
1507
+
1508
+ >>> f.replace(sin(a), lambda a: sin(2*a))
1509
+ log(sin(2*x)) + tan(sin(2*x**2))
1510
+
1511
+ 3.1. func -> func
1512
+ obj.replace(filter, func)
1513
+
1514
+ Replace subexpression ``e`` with ``func(e)`` if ``filter(e)``
1515
+ is True.
1516
+
1517
+ >>> g = 2*sin(x**3)
1518
+ >>> g.replace(lambda expr: expr.is_Number, lambda expr: expr**2)
1519
+ 4*sin(x**9)
1520
+
1521
+ The expression itself is also targeted by the query but is done in
1522
+ such a fashion that changes are not made twice.
1523
+
1524
+ >>> e = x*(x*y + 1)
1525
+ >>> e.replace(lambda x: x.is_Mul, lambda x: 2*x)
1526
+ 2*x*(2*x*y + 1)
1527
+
1528
+ When matching a single symbol, `exact` will default to True, but
1529
+ this may or may not be the behavior that is desired:
1530
+
1531
+ Here, we want `exact=False`:
1532
+
1533
+ >>> from sympy import Function
1534
+ >>> f = Function('f')
1535
+ >>> e = f(1) + f(0)
1536
+ >>> q = f(a), lambda a: f(a + 1)
1537
+ >>> e.replace(*q, exact=False)
1538
+ f(1) + f(2)
1539
+ >>> e.replace(*q, exact=True)
1540
+ f(0) + f(2)
1541
+
1542
+ But here, the nature of matching makes selecting
1543
+ the right setting tricky:
1544
+
1545
+ >>> e = x**(1 + y)
1546
+ >>> (x**(1 + y)).replace(x**(1 + a), lambda a: x**-a, exact=False)
1547
+ x
1548
+ >>> (x**(1 + y)).replace(x**(1 + a), lambda a: x**-a, exact=True)
1549
+ x**(-x - y + 1)
1550
+ >>> (x**y).replace(x**(1 + a), lambda a: x**-a, exact=False)
1551
+ x
1552
+ >>> (x**y).replace(x**(1 + a), lambda a: x**-a, exact=True)
1553
+ x**(1 - y)
1554
+
1555
+ It is probably better to use a different form of the query
1556
+ that describes the target expression more precisely:
1557
+
1558
+ >>> (1 + x**(1 + y)).replace(
1559
+ ... lambda x: x.is_Pow and x.exp.is_Add and x.exp.args[0] == 1,
1560
+ ... lambda x: x.base**(1 - (x.exp - 1)))
1561
+ ...
1562
+ x**(1 - y) + 1
1563
+
1564
+ See Also
1565
+ ========
1566
+
1567
+ subs: substitution of subexpressions as defined by the objects
1568
+ themselves.
1569
+ xreplace: exact node replacement in expr tree; also capable of
1570
+ using matching rules
1571
+
1572
+ """
1573
+
1574
+ try:
1575
+ query = _sympify(query)
1576
+ except SympifyError:
1577
+ pass
1578
+ try:
1579
+ value = _sympify(value)
1580
+ except SympifyError:
1581
+ pass
1582
+ if isinstance(query, type):
1583
+ _query = lambda expr: isinstance(expr, query)
1584
+
1585
+ if isinstance(value, type):
1586
+ _value = lambda expr, result: value(*expr.args)
1587
+ elif callable(value):
1588
+ _value = lambda expr, result: value(*expr.args)
1589
+ else:
1590
+ raise TypeError(
1591
+ "given a type, replace() expects another "
1592
+ "type or a callable")
1593
+ elif isinstance(query, Basic):
1594
+ _query = lambda expr: expr.match(query)
1595
+ if exact is None:
1596
+ from .symbol import Wild
1597
+ exact = (len(query.atoms(Wild)) > 1)
1598
+
1599
+ if isinstance(value, Basic):
1600
+ if exact:
1601
+ _value = lambda expr, result: (value.subs(result)
1602
+ if all(result.values()) else expr)
1603
+ else:
1604
+ _value = lambda expr, result: value.subs(result)
1605
+ elif callable(value):
1606
+ # match dictionary keys get the trailing underscore stripped
1607
+ # from them and are then passed as keywords to the callable;
1608
+ # if ``exact`` is True, only accept match if there are no null
1609
+ # values amongst those matched.
1610
+ if exact:
1611
+ _value = lambda expr, result: (value(**
1612
+ {str(k)[:-1]: v for k, v in result.items()})
1613
+ if all(val for val in result.values()) else expr)
1614
+ else:
1615
+ _value = lambda expr, result: value(**
1616
+ {str(k)[:-1]: v for k, v in result.items()})
1617
+ else:
1618
+ raise TypeError(
1619
+ "given an expression, replace() expects "
1620
+ "another expression or a callable")
1621
+ elif callable(query):
1622
+ _query = query
1623
+
1624
+ if callable(value):
1625
+ _value = lambda expr, result: value(expr)
1626
+ else:
1627
+ raise TypeError(
1628
+ "given a callable, replace() expects "
1629
+ "another callable")
1630
+ else:
1631
+ raise TypeError(
1632
+ "first argument to replace() must be a "
1633
+ "type, an expression or a callable")
1634
+
1635
+ def walk(rv, F):
1636
+ """Apply ``F`` to args and then to result.
1637
+ """
1638
+ args = getattr(rv, 'args', None)
1639
+ if args is not None:
1640
+ if args:
1641
+ newargs = tuple([walk(a, F) for a in args])
1642
+ if args != newargs:
1643
+ rv = rv.func(*newargs)
1644
+ if simultaneous:
1645
+ # if rv is something that was already
1646
+ # matched (that was changed) then skip
1647
+ # applying F again
1648
+ for i, e in enumerate(args):
1649
+ if rv == e and e != newargs[i]:
1650
+ return rv
1651
+ rv = F(rv)
1652
+ return rv
1653
+
1654
+ mapping = {} # changes that took place
1655
+
1656
+ def rec_replace(expr):
1657
+ result = _query(expr)
1658
+ if result or result == {}:
1659
+ v = _value(expr, result)
1660
+ if v is not None and v != expr:
1661
+ if map:
1662
+ mapping[expr] = v
1663
+ expr = v
1664
+ return expr
1665
+
1666
+ rv = walk(self, rec_replace)
1667
+ return (rv, mapping) if map else rv
1668
+
1669
+ def find(self, query, group=False):
1670
+ """Find all subexpressions matching a query."""
1671
+ query = _make_find_query(query)
1672
+ results = list(filter(query, _preorder_traversal(self)))
1673
+
1674
+ if not group:
1675
+ return set(results)
1676
+ else:
1677
+ groups = {}
1678
+
1679
+ for result in results:
1680
+ if result in groups:
1681
+ groups[result] += 1
1682
+ else:
1683
+ groups[result] = 1
1684
+
1685
+ return groups
1686
+
1687
+ def count(self, query):
1688
+ """Count the number of matching subexpressions."""
1689
+ query = _make_find_query(query)
1690
+ return sum(bool(query(sub)) for sub in _preorder_traversal(self))
1691
+
1692
+ def matches(self, expr, repl_dict=None, old=False):
1693
+ """
1694
+ Helper method for match() that looks for a match between Wild symbols
1695
+ in self and expressions in expr.
1696
+
1697
+ Examples
1698
+ ========
1699
+
1700
+ >>> from sympy import symbols, Wild, Basic
1701
+ >>> a, b, c = symbols('a b c')
1702
+ >>> x = Wild('x')
1703
+ >>> Basic(a + x, x).matches(Basic(a + b, c)) is None
1704
+ True
1705
+ >>> Basic(a + x, x).matches(Basic(a + b + c, b + c))
1706
+ {x_: b + c}
1707
+ """
1708
+ expr = sympify(expr)
1709
+ if not isinstance(expr, self.__class__):
1710
+ return None
1711
+
1712
+ if repl_dict is None:
1713
+ repl_dict = {}
1714
+ else:
1715
+ repl_dict = repl_dict.copy()
1716
+
1717
+ if self == expr:
1718
+ return repl_dict
1719
+
1720
+ if len(self.args) != len(expr.args):
1721
+ return None
1722
+
1723
+ d = repl_dict # already a copy
1724
+ for arg, other_arg in zip(self.args, expr.args):
1725
+ if arg == other_arg:
1726
+ continue
1727
+ if arg.is_Relational:
1728
+ try:
1729
+ d = arg.xreplace(d).matches(other_arg, d, old=old)
1730
+ except TypeError: # Should be InvalidComparisonError when introduced
1731
+ d = None
1732
+ else:
1733
+ d = arg.xreplace(d).matches(other_arg, d, old=old)
1734
+ if d is None:
1735
+ return None
1736
+ return d
1737
+
1738
+ def match(self, pattern, old=False):
1739
+ """
1740
+ Pattern matching.
1741
+
1742
+ Wild symbols match all.
1743
+
1744
+ Return ``None`` when expression (self) does not match
1745
+ with pattern. Otherwise return a dictionary such that::
1746
+
1747
+ pattern.xreplace(self.match(pattern)) == self
1748
+
1749
+ Examples
1750
+ ========
1751
+
1752
+ >>> from sympy import Wild, Sum
1753
+ >>> from sympy.abc import x, y
1754
+ >>> p = Wild("p")
1755
+ >>> q = Wild("q")
1756
+ >>> r = Wild("r")
1757
+ >>> e = (x+y)**(x+y)
1758
+ >>> e.match(p**p)
1759
+ {p_: x + y}
1760
+ >>> e.match(p**q)
1761
+ {p_: x + y, q_: x + y}
1762
+ >>> e = (2*x)**2
1763
+ >>> e.match(p*q**r)
1764
+ {p_: 4, q_: x, r_: 2}
1765
+ >>> (p*q**r).xreplace(e.match(p*q**r))
1766
+ 4*x**2
1767
+
1768
+ Structurally bound symbols are ignored during matching:
1769
+
1770
+ >>> Sum(x, (x, 1, 2)).match(Sum(y, (y, 1, p)))
1771
+ {p_: 2}
1772
+
1773
+ But they can be identified if desired:
1774
+
1775
+ >>> Sum(x, (x, 1, 2)).match(Sum(q, (q, 1, p)))
1776
+ {p_: 2, q_: x}
1777
+
1778
+ The ``old`` flag will give the old-style pattern matching where
1779
+ expressions and patterns are essentially solved to give the
1780
+ match. Both of the following give None unless ``old=True``:
1781
+
1782
+ >>> (x - 2).match(p - x, old=True)
1783
+ {p_: 2*x - 2}
1784
+ >>> (2/x).match(p*x, old=True)
1785
+ {p_: 2/x**2}
1786
+
1787
+ """
1788
+ pattern = sympify(pattern)
1789
+ # match non-bound symbols
1790
+ canonical = lambda x: x if x.is_Symbol else x.as_dummy()
1791
+ m = canonical(pattern).matches(canonical(self), old=old)
1792
+ if m is None:
1793
+ return m
1794
+ from .symbol import Wild
1795
+ from .function import WildFunction
1796
+ from ..tensor.tensor import WildTensor, WildTensorIndex, WildTensorHead
1797
+ wild = pattern.atoms(Wild, WildFunction, WildTensor, WildTensorIndex, WildTensorHead)
1798
+ # sanity check
1799
+ if set(m) - wild:
1800
+ raise ValueError(filldedent('''
1801
+ Some `matches` routine did not use a copy of repl_dict
1802
+ and injected unexpected symbols. Report this as an
1803
+ error at https://github.com/sympy/sympy/issues'''))
1804
+ # now see if bound symbols were requested
1805
+ bwild = wild - set(m)
1806
+ if not bwild:
1807
+ return m
1808
+ # replace free-Wild symbols in pattern with match result
1809
+ # so they will match but not be in the next match
1810
+ wpat = pattern.xreplace(m)
1811
+ # identify remaining bound wild
1812
+ w = wpat.matches(self, old=old)
1813
+ # add them to m
1814
+ if w:
1815
+ m.update(w)
1816
+ # done
1817
+ return m
1818
+
1819
+ def count_ops(self, visual=None):
1820
+ """Wrapper for count_ops that returns the operation count."""
1821
+ from .function import count_ops
1822
+ return count_ops(self, visual)
1823
+
1824
+ def doit(self, **hints):
1825
+ """Evaluate objects that are not evaluated by default like limits,
1826
+ integrals, sums and products. All objects of this kind will be
1827
+ evaluated recursively, unless some species were excluded via 'hints'
1828
+ or unless the 'deep' hint was set to 'False'.
1829
+
1830
+ >>> from sympy import Integral
1831
+ >>> from sympy.abc import x
1832
+
1833
+ >>> 2*Integral(x, x)
1834
+ 2*Integral(x, x)
1835
+
1836
+ >>> (2*Integral(x, x)).doit()
1837
+ x**2
1838
+
1839
+ >>> (2*Integral(x, x)).doit(deep=False)
1840
+ 2*Integral(x, x)
1841
+
1842
+ """
1843
+ if hints.get('deep', True):
1844
+ terms = [term.doit(**hints) if isinstance(term, Basic) else term
1845
+ for term in self.args]
1846
+ return self.func(*terms)
1847
+ else:
1848
+ return self
1849
+
1850
+ def simplify(self, **kwargs):
1851
+ """See the simplify function in sympy.simplify"""
1852
+ from sympy.simplify.simplify import simplify
1853
+ return simplify(self, **kwargs)
1854
+
1855
+ def refine(self, assumption=True):
1856
+ """See the refine function in sympy.assumptions"""
1857
+ from sympy.assumptions.refine import refine
1858
+ return refine(self, assumption)
1859
+
1860
+ def _eval_derivative_n_times(self, s, n):
1861
+ # This is the default evaluator for derivatives (as called by `diff`
1862
+ # and `Derivative`), it will attempt a loop to derive the expression
1863
+ # `n` times by calling the corresponding `_eval_derivative` method,
1864
+ # while leaving the derivative unevaluated if `n` is symbolic. This
1865
+ # method should be overridden if the object has a closed form for its
1866
+ # symbolic n-th derivative.
1867
+ from .numbers import Integer
1868
+ if isinstance(n, (int, Integer)):
1869
+ obj = self
1870
+ for i in range(n):
1871
+ obj2 = obj._eval_derivative(s)
1872
+ if obj == obj2 or obj2 is None:
1873
+ break
1874
+ obj = obj2
1875
+ return obj2
1876
+ else:
1877
+ return None
1878
+
1879
+ def rewrite(self, *args, deep=True, **hints):
1880
+ """
1881
+ Rewrite *self* using a defined rule.
1882
+
1883
+ Rewriting transforms an expression to another, which is mathematically
1884
+ equivalent but structurally different. For example you can rewrite
1885
+ trigonometric functions as complex exponentials or combinatorial
1886
+ functions as gamma function.
1887
+
1888
+ This method takes a *pattern* and a *rule* as positional arguments.
1889
+ *pattern* is optional parameter which defines the types of expressions
1890
+ that will be transformed. If it is not passed, all possible expressions
1891
+ will be rewritten. *rule* defines how the expression will be rewritten.
1892
+
1893
+ Parameters
1894
+ ==========
1895
+
1896
+ args : Expr
1897
+ A *rule*, or *pattern* and *rule*.
1898
+ - *pattern* is a type or an iterable of types.
1899
+ - *rule* can be any object.
1900
+
1901
+ deep : bool, optional
1902
+ If ``True``, subexpressions are recursively transformed. Default is
1903
+ ``True``.
1904
+
1905
+ Examples
1906
+ ========
1907
+
1908
+ If *pattern* is unspecified, all possible expressions are transformed.
1909
+
1910
+ >>> from sympy import cos, sin, exp, I
1911
+ >>> from sympy.abc import x
1912
+ >>> expr = cos(x) + I*sin(x)
1913
+ >>> expr.rewrite(exp)
1914
+ exp(I*x)
1915
+
1916
+ Pattern can be a type or an iterable of types.
1917
+
1918
+ >>> expr.rewrite(sin, exp)
1919
+ exp(I*x)/2 + cos(x) - exp(-I*x)/2
1920
+ >>> expr.rewrite([cos,], exp)
1921
+ exp(I*x)/2 + I*sin(x) + exp(-I*x)/2
1922
+ >>> expr.rewrite([cos, sin], exp)
1923
+ exp(I*x)
1924
+
1925
+ Rewriting behavior can be implemented by defining ``_eval_rewrite()``
1926
+ method.
1927
+
1928
+ >>> from sympy import Expr, sqrt, pi
1929
+ >>> class MySin(Expr):
1930
+ ... def _eval_rewrite(self, rule, args, **hints):
1931
+ ... x, = args
1932
+ ... if rule == cos:
1933
+ ... return cos(pi/2 - x, evaluate=False)
1934
+ ... if rule == sqrt:
1935
+ ... return sqrt(1 - cos(x)**2)
1936
+ >>> MySin(MySin(x)).rewrite(cos)
1937
+ cos(-cos(-x + pi/2) + pi/2)
1938
+ >>> MySin(x).rewrite(sqrt)
1939
+ sqrt(1 - cos(x)**2)
1940
+
1941
+ Defining ``_eval_rewrite_as_[...]()`` method is supported for backwards
1942
+ compatibility reason. This may be removed in the future and using it is
1943
+ discouraged.
1944
+
1945
+ >>> class MySin(Expr):
1946
+ ... def _eval_rewrite_as_cos(self, *args, **hints):
1947
+ ... x, = args
1948
+ ... return cos(pi/2 - x, evaluate=False)
1949
+ >>> MySin(x).rewrite(cos)
1950
+ cos(-x + pi/2)
1951
+
1952
+ """
1953
+ if not args:
1954
+ return self
1955
+
1956
+ hints.update(deep=deep)
1957
+
1958
+ pattern = args[:-1]
1959
+ rule = args[-1]
1960
+
1961
+ # support old design by _eval_rewrite_as_[...] method
1962
+ if isinstance(rule, str):
1963
+ method = "_eval_rewrite_as_%s" % rule
1964
+ elif hasattr(rule, "__name__"):
1965
+ # rule is class or function
1966
+ clsname = rule.__name__
1967
+ method = "_eval_rewrite_as_%s" % clsname
1968
+ else:
1969
+ # rule is instance
1970
+ clsname = rule.__class__.__name__
1971
+ method = "_eval_rewrite_as_%s" % clsname
1972
+
1973
+ if pattern:
1974
+ if iterable(pattern[0]):
1975
+ pattern = pattern[0]
1976
+ pattern = tuple(p for p in pattern if self.has(p))
1977
+ if not pattern:
1978
+ return self
1979
+ # hereafter, empty pattern is interpreted as all pattern.
1980
+
1981
+ return self._rewrite(pattern, rule, method, **hints)
1982
+
1983
+ def _rewrite(self, pattern, rule, method, **hints):
1984
+ deep = hints.pop('deep', True)
1985
+ if deep:
1986
+ args = [a._rewrite(pattern, rule, method, **hints)
1987
+ for a in self.args]
1988
+ else:
1989
+ args = self.args
1990
+ if not pattern or any(isinstance(self, p) for p in pattern):
1991
+ meth = getattr(self, method, None)
1992
+ if meth is not None:
1993
+ rewritten = meth(*args, **hints)
1994
+ else:
1995
+ rewritten = self._eval_rewrite(rule, args, **hints)
1996
+ if rewritten is not None:
1997
+ return rewritten
1998
+ if not args:
1999
+ return self
2000
+ return self.func(*args)
2001
+
2002
+ def _eval_rewrite(self, rule, args, **hints):
2003
+ return None
2004
+
2005
+ _constructor_postprocessor_mapping = {} # type: ignore
2006
+
2007
+ @classmethod
2008
+ def _exec_constructor_postprocessors(cls, obj):
2009
+ # WARNING: This API is experimental.
2010
+
2011
+ # This is an experimental API that introduces constructor
2012
+ # postprosessors for SymPy Core elements. If an argument of a SymPy
2013
+ # expression has a `_constructor_postprocessor_mapping` attribute, it will
2014
+ # be interpreted as a dictionary containing lists of postprocessing
2015
+ # functions for matching expression node names.
2016
+
2017
+ clsname = obj.__class__.__name__
2018
+ postprocessors = defaultdict(list)
2019
+ for i in obj.args:
2020
+ try:
2021
+ postprocessor_mappings = (
2022
+ Basic._constructor_postprocessor_mapping[cls].items()
2023
+ for cls in type(i).mro()
2024
+ if cls in Basic._constructor_postprocessor_mapping
2025
+ )
2026
+ for k, v in chain.from_iterable(postprocessor_mappings):
2027
+ postprocessors[k].extend([j for j in v if j not in postprocessors[k]])
2028
+ except TypeError:
2029
+ pass
2030
+
2031
+ for f in postprocessors.get(clsname, []):
2032
+ obj = f(obj)
2033
+
2034
+ return obj
2035
+
2036
+ def _sage_(self):
2037
+ """
2038
+ Convert *self* to a symbolic expression of SageMath.
2039
+
2040
+ This version of the method is merely a placeholder.
2041
+ """
2042
+ old_method = self._sage_
2043
+ from sage.interfaces.sympy import sympy_init
2044
+ sympy_init() # may monkey-patch _sage_ method into self's class or superclasses
2045
+ if old_method == self._sage_:
2046
+ raise NotImplementedError('conversion to SageMath is not implemented')
2047
+ else:
2048
+ # call the freshly monkey-patched method
2049
+ return self._sage_()
2050
+
2051
+ def could_extract_minus_sign(self):
2052
+ return False # see Expr.could_extract_minus_sign
2053
+
2054
+
2055
+ # For all Basic subclasses _prepare_class_assumptions is called by
2056
+ # Basic.__init_subclass__ but that method is not called for Basic itself so we
2057
+ # call the function here instead.
2058
+ _prepare_class_assumptions(Basic)
2059
+
2060
+
2061
+ class Atom(Basic):
2062
+ """
2063
+ A parent class for atomic things. An atom is an expression with no subexpressions.
2064
+
2065
+ Examples
2066
+ ========
2067
+
2068
+ Symbol, Number, Rational, Integer, ...
2069
+ But not: Add, Mul, Pow, ...
2070
+ """
2071
+
2072
+ is_Atom = True
2073
+
2074
+ __slots__ = ()
2075
+
2076
+ def matches(self, expr, repl_dict=None, old=False):
2077
+ if self == expr:
2078
+ if repl_dict is None:
2079
+ return {}
2080
+ return repl_dict.copy()
2081
+
2082
+ def xreplace(self, rule, hack2=False):
2083
+ return rule.get(self, self)
2084
+
2085
+ def doit(self, **hints):
2086
+ return self
2087
+
2088
+ @classmethod
2089
+ def class_key(cls):
2090
+ return 2, 0, cls.__name__
2091
+
2092
+ @cacheit
2093
+ def sort_key(self, order=None):
2094
+ return self.class_key(), (1, (str(self),)), S.One.sort_key(), S.One
2095
+
2096
+ def _eval_simplify(self, **kwargs):
2097
+ return self
2098
+
2099
+ @property
2100
+ def _sorted_args(self):
2101
+ # this is here as a safeguard against accidentally using _sorted_args
2102
+ # on Atoms -- they cannot be rebuilt as atom.func(*atom._sorted_args)
2103
+ # since there are no args. So the calling routine should be checking
2104
+ # to see that this property is not called for Atoms.
2105
+ raise AttributeError('Atoms have no args. It might be necessary'
2106
+ ' to make a check for Atoms in the calling code.')
2107
+
2108
+
2109
+ def _aresame(a, b):
2110
+ """Return True if a and b are structurally the same, else False.
2111
+
2112
+ Examples
2113
+ ========
2114
+
2115
+ In SymPy (as in Python) two numbers compare the same if they
2116
+ have the same underlying base-2 representation even though
2117
+ they may not be the same type:
2118
+
2119
+ >>> from sympy import S
2120
+ >>> 2.0 == S(2)
2121
+ True
2122
+ >>> 0.5 == S.Half
2123
+ True
2124
+
2125
+ This routine was written to provide a query for such cases that
2126
+ would give false when the types do not match:
2127
+
2128
+ >>> from sympy.core.basic import _aresame
2129
+ >>> _aresame(S(2.0), S(2))
2130
+ False
2131
+
2132
+ """
2133
+ from .numbers import Number
2134
+ from .function import AppliedUndef, UndefinedFunction as UndefFunc
2135
+ if isinstance(a, Number) and isinstance(b, Number):
2136
+ return a == b and a.__class__ == b.__class__
2137
+ for i, j in zip_longest(_preorder_traversal(a), _preorder_traversal(b)):
2138
+ if i != j or type(i) != type(j):
2139
+ if ((isinstance(i, UndefFunc) and isinstance(j, UndefFunc)) or
2140
+ (isinstance(i, AppliedUndef) and isinstance(j, AppliedUndef))):
2141
+ if i.class_key() != j.class_key():
2142
+ return False
2143
+ else:
2144
+ return False
2145
+ return True
2146
+
2147
+
2148
+ def _ne(a, b):
2149
+ # use this as a second test after `a != b` if you want to make
2150
+ # sure that things are truly equal, e.g.
2151
+ # a, b = 0.5, S.Half
2152
+ # a !=b or _ne(a, b) -> True
2153
+ from .numbers import Number
2154
+ # 0.5 == S.Half
2155
+ if isinstance(a, Number) and isinstance(b, Number):
2156
+ return a.__class__ != b.__class__
2157
+
2158
+
2159
+ def _atomic(e, recursive=False):
2160
+ """Return atom-like quantities as far as substitution is
2161
+ concerned: Derivatives, Functions and Symbols. Do not
2162
+ return any 'atoms' that are inside such quantities unless
2163
+ they also appear outside, too, unless `recursive` is True.
2164
+
2165
+ Examples
2166
+ ========
2167
+
2168
+ >>> from sympy import Derivative, Function, cos
2169
+ >>> from sympy.abc import x, y
2170
+ >>> from sympy.core.basic import _atomic
2171
+ >>> f = Function('f')
2172
+ >>> _atomic(x + y)
2173
+ {x, y}
2174
+ >>> _atomic(x + f(y))
2175
+ {x, f(y)}
2176
+ >>> _atomic(Derivative(f(x), x) + cos(x) + y)
2177
+ {y, cos(x), Derivative(f(x), x)}
2178
+
2179
+ """
2180
+ pot = _preorder_traversal(e)
2181
+ seen = set()
2182
+ if isinstance(e, Basic):
2183
+ free = getattr(e, "free_symbols", None)
2184
+ if free is None:
2185
+ return {e}
2186
+ else:
2187
+ return set()
2188
+ from .symbol import Symbol
2189
+ from .function import Derivative, Function
2190
+ atoms = set()
2191
+ for p in pot:
2192
+ if p in seen:
2193
+ pot.skip()
2194
+ continue
2195
+ seen.add(p)
2196
+ if isinstance(p, Symbol) and p in free:
2197
+ atoms.add(p)
2198
+ elif isinstance(p, (Derivative, Function)):
2199
+ if not recursive:
2200
+ pot.skip()
2201
+ atoms.add(p)
2202
+ return atoms
2203
+
2204
+
2205
+ def _make_find_query(query):
2206
+ """Convert the argument of Basic.find() into a callable"""
2207
+ try:
2208
+ query = _sympify(query)
2209
+ except SympifyError:
2210
+ pass
2211
+ if isinstance(query, type):
2212
+ return lambda expr: isinstance(expr, query)
2213
+ elif isinstance(query, Basic):
2214
+ return lambda expr: expr.match(query) is not None
2215
+ return query
2216
+
2217
+ # Delayed to avoid cyclic import
2218
+ from .singleton import S
2219
+ from .traversal import (preorder_traversal as _preorder_traversal,
2220
+ iterargs, iterfreeargs)
2221
+
2222
+ preorder_traversal = deprecated(
2223
+ """
2224
+ Using preorder_traversal from the sympy.core.basic submodule is
2225
+ deprecated.
2226
+
2227
+ Instead, use preorder_traversal from the top-level sympy namespace, like
2228
+
2229
+ sympy.preorder_traversal
2230
+ """,
2231
+ deprecated_since_version="1.10",
2232
+ active_deprecations_target="deprecated-traversal-functions-moved",
2233
+ )(_preorder_traversal)
llmeval-env/lib/python3.10/site-packages/sympy/core/evalf.py ADDED
@@ -0,0 +1,1801 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Adaptive numerical evaluation of SymPy expressions, using mpmath
3
+ for mathematical functions.
4
+ """
5
+ from __future__ import annotations
6
+ from typing import Tuple as tTuple, Optional, Union as tUnion, Callable, List, Dict as tDict, Type, TYPE_CHECKING, \
7
+ Any, overload
8
+
9
+ import math
10
+
11
+ import mpmath.libmp as libmp
12
+ from mpmath import (
13
+ make_mpc, make_mpf, mp, mpc, mpf, nsum, quadts, quadosc, workprec)
14
+ from mpmath import inf as mpmath_inf
15
+ from mpmath.libmp import (from_int, from_man_exp, from_rational, fhalf,
16
+ fnan, finf, fninf, fnone, fone, fzero, mpf_abs, mpf_add,
17
+ mpf_atan, mpf_atan2, mpf_cmp, mpf_cos, mpf_e, mpf_exp, mpf_log, mpf_lt,
18
+ mpf_mul, mpf_neg, mpf_pi, mpf_pow, mpf_pow_int, mpf_shift, mpf_sin,
19
+ mpf_sqrt, normalize, round_nearest, to_int, to_str)
20
+ from mpmath.libmp import bitcount as mpmath_bitcount
21
+ from mpmath.libmp.backend import MPZ
22
+ from mpmath.libmp.libmpc import _infs_nan
23
+ from mpmath.libmp.libmpf import dps_to_prec, prec_to_dps
24
+
25
+ from .sympify import sympify
26
+ from .singleton import S
27
+ from sympy.external.gmpy import SYMPY_INTS
28
+ from sympy.utilities.iterables import is_sequence
29
+ from sympy.utilities.lambdify import lambdify
30
+ from sympy.utilities.misc import as_int
31
+
32
+ if TYPE_CHECKING:
33
+ from sympy.core.expr import Expr
34
+ from sympy.core.add import Add
35
+ from sympy.core.mul import Mul
36
+ from sympy.core.power import Pow
37
+ from sympy.core.symbol import Symbol
38
+ from sympy.integrals.integrals import Integral
39
+ from sympy.concrete.summations import Sum
40
+ from sympy.concrete.products import Product
41
+ from sympy.functions.elementary.exponential import exp, log
42
+ from sympy.functions.elementary.complexes import Abs, re, im
43
+ from sympy.functions.elementary.integers import ceiling, floor
44
+ from sympy.functions.elementary.trigonometric import atan
45
+ from .numbers import Float, Rational, Integer, AlgebraicNumber, Number
46
+
47
+ LG10 = math.log(10, 2)
48
+ rnd = round_nearest
49
+
50
+
51
+ def bitcount(n):
52
+ """Return smallest integer, b, such that |n|/2**b < 1.
53
+ """
54
+ return mpmath_bitcount(abs(int(n)))
55
+
56
+ # Used in a few places as placeholder values to denote exponents and
57
+ # precision levels, e.g. of exact numbers. Must be careful to avoid
58
+ # passing these to mpmath functions or returning them in final results.
59
+ INF = float(mpmath_inf)
60
+ MINUS_INF = float(-mpmath_inf)
61
+
62
+ # ~= 100 digits. Real men set this to INF.
63
+ DEFAULT_MAXPREC = 333
64
+
65
+
66
+ class PrecisionExhausted(ArithmeticError):
67
+ pass
68
+
69
+ #----------------------------------------------------------------------------#
70
+ # #
71
+ # Helper functions for arithmetic and complex parts #
72
+ # #
73
+ #----------------------------------------------------------------------------#
74
+
75
+ """
76
+ An mpf value tuple is a tuple of integers (sign, man, exp, bc)
77
+ representing a floating-point number: [1, -1][sign]*man*2**exp where
78
+ sign is 0 or 1 and bc should correspond to the number of bits used to
79
+ represent the mantissa (man) in binary notation, e.g.
80
+ """
81
+ MPF_TUP = tTuple[int, int, int, int] # mpf value tuple
82
+
83
+ """
84
+ Explanation
85
+ ===========
86
+
87
+ >>> from sympy.core.evalf import bitcount
88
+ >>> sign, man, exp, bc = 0, 5, 1, 3
89
+ >>> n = [1, -1][sign]*man*2**exp
90
+ >>> n, bitcount(man)
91
+ (10, 3)
92
+
93
+ A temporary result is a tuple (re, im, re_acc, im_acc) where
94
+ re and im are nonzero mpf value tuples representing approximate
95
+ numbers, or None to denote exact zeros.
96
+
97
+ re_acc, im_acc are integers denoting log2(e) where e is the estimated
98
+ relative accuracy of the respective complex part, but may be anything
99
+ if the corresponding complex part is None.
100
+
101
+ """
102
+ TMP_RES = Any # temporary result, should be some variant of
103
+ # tUnion[tTuple[Optional[MPF_TUP], Optional[MPF_TUP],
104
+ # Optional[int], Optional[int]],
105
+ # 'ComplexInfinity']
106
+ # but mypy reports error because it doesn't know as we know
107
+ # 1. re and re_acc are either both None or both MPF_TUP
108
+ # 2. sometimes the result can't be zoo
109
+
110
+ # type of the "options" parameter in internal evalf functions
111
+ OPT_DICT = tDict[str, Any]
112
+
113
+
114
+ def fastlog(x: Optional[MPF_TUP]) -> tUnion[int, Any]:
115
+ """Fast approximation of log2(x) for an mpf value tuple x.
116
+
117
+ Explanation
118
+ ===========
119
+
120
+ Calculated as exponent + width of mantissa. This is an
121
+ approximation for two reasons: 1) it gives the ceil(log2(abs(x)))
122
+ value and 2) it is too high by 1 in the case that x is an exact
123
+ power of 2. Although this is easy to remedy by testing to see if
124
+ the odd mpf mantissa is 1 (indicating that one was dealing with
125
+ an exact power of 2) that would decrease the speed and is not
126
+ necessary as this is only being used as an approximation for the
127
+ number of bits in x. The correct return value could be written as
128
+ "x[2] + (x[3] if x[1] != 1 else 0)".
129
+ Since mpf tuples always have an odd mantissa, no check is done
130
+ to see if the mantissa is a multiple of 2 (in which case the
131
+ result would be too large by 1).
132
+
133
+ Examples
134
+ ========
135
+
136
+ >>> from sympy import log
137
+ >>> from sympy.core.evalf import fastlog, bitcount
138
+ >>> s, m, e = 0, 5, 1
139
+ >>> bc = bitcount(m)
140
+ >>> n = [1, -1][s]*m*2**e
141
+ >>> n, (log(n)/log(2)).evalf(2), fastlog((s, m, e, bc))
142
+ (10, 3.3, 4)
143
+ """
144
+
145
+ if not x or x == fzero:
146
+ return MINUS_INF
147
+ return x[2] + x[3]
148
+
149
+
150
+ def pure_complex(v: 'Expr', or_real=False) -> tuple['Number', 'Number'] | None:
151
+ """Return a and b if v matches a + I*b where b is not zero and
152
+ a and b are Numbers, else None. If `or_real` is True then 0 will
153
+ be returned for `b` if `v` is a real number.
154
+
155
+ Examples
156
+ ========
157
+
158
+ >>> from sympy.core.evalf import pure_complex
159
+ >>> from sympy import sqrt, I, S
160
+ >>> a, b, surd = S(2), S(3), sqrt(2)
161
+ >>> pure_complex(a)
162
+ >>> pure_complex(a, or_real=True)
163
+ (2, 0)
164
+ >>> pure_complex(surd)
165
+ >>> pure_complex(a + b*I)
166
+ (2, 3)
167
+ >>> pure_complex(I)
168
+ (0, 1)
169
+ """
170
+ h, t = v.as_coeff_Add()
171
+ if t:
172
+ c, i = t.as_coeff_Mul()
173
+ if i is S.ImaginaryUnit:
174
+ return h, c
175
+ elif or_real:
176
+ return h, S.Zero
177
+ return None
178
+
179
+
180
+ # I don't know what this is, see function scaled_zero below
181
+ SCALED_ZERO_TUP = tTuple[List[int], int, int, int]
182
+
183
+
184
+ @overload
185
+ def scaled_zero(mag: SCALED_ZERO_TUP, sign=1) -> MPF_TUP:
186
+ ...
187
+ @overload
188
+ def scaled_zero(mag: int, sign=1) -> tTuple[SCALED_ZERO_TUP, int]:
189
+ ...
190
+ def scaled_zero(mag: tUnion[SCALED_ZERO_TUP, int], sign=1) -> \
191
+ tUnion[MPF_TUP, tTuple[SCALED_ZERO_TUP, int]]:
192
+ """Return an mpf representing a power of two with magnitude ``mag``
193
+ and -1 for precision. Or, if ``mag`` is a scaled_zero tuple, then just
194
+ remove the sign from within the list that it was initially wrapped
195
+ in.
196
+
197
+ Examples
198
+ ========
199
+
200
+ >>> from sympy.core.evalf import scaled_zero
201
+ >>> from sympy import Float
202
+ >>> z, p = scaled_zero(100)
203
+ >>> z, p
204
+ (([0], 1, 100, 1), -1)
205
+ >>> ok = scaled_zero(z)
206
+ >>> ok
207
+ (0, 1, 100, 1)
208
+ >>> Float(ok)
209
+ 1.26765060022823e+30
210
+ >>> Float(ok, p)
211
+ 0.e+30
212
+ >>> ok, p = scaled_zero(100, -1)
213
+ >>> Float(scaled_zero(ok), p)
214
+ -0.e+30
215
+ """
216
+ if isinstance(mag, tuple) and len(mag) == 4 and iszero(mag, scaled=True):
217
+ return (mag[0][0],) + mag[1:]
218
+ elif isinstance(mag, SYMPY_INTS):
219
+ if sign not in [-1, 1]:
220
+ raise ValueError('sign must be +/-1')
221
+ rv, p = mpf_shift(fone, mag), -1
222
+ s = 0 if sign == 1 else 1
223
+ rv = ([s],) + rv[1:]
224
+ return rv, p
225
+ else:
226
+ raise ValueError('scaled zero expects int or scaled_zero tuple.')
227
+
228
+
229
+ def iszero(mpf: tUnion[MPF_TUP, SCALED_ZERO_TUP, None], scaled=False) -> Optional[bool]:
230
+ if not scaled:
231
+ return not mpf or not mpf[1] and not mpf[-1]
232
+ return mpf and isinstance(mpf[0], list) and mpf[1] == mpf[-1] == 1
233
+
234
+
235
+ def complex_accuracy(result: TMP_RES) -> tUnion[int, Any]:
236
+ """
237
+ Returns relative accuracy of a complex number with given accuracies
238
+ for the real and imaginary parts. The relative accuracy is defined
239
+ in the complex norm sense as ||z|+|error|| / |z| where error
240
+ is equal to (real absolute error) + (imag absolute error)*i.
241
+
242
+ The full expression for the (logarithmic) error can be approximated
243
+ easily by using the max norm to approximate the complex norm.
244
+
245
+ In the worst case (re and im equal), this is wrong by a factor
246
+ sqrt(2), or by log2(sqrt(2)) = 0.5 bit.
247
+ """
248
+ if result is S.ComplexInfinity:
249
+ return INF
250
+ re, im, re_acc, im_acc = result
251
+ if not im:
252
+ if not re:
253
+ return INF
254
+ return re_acc
255
+ if not re:
256
+ return im_acc
257
+ re_size = fastlog(re)
258
+ im_size = fastlog(im)
259
+ absolute_error = max(re_size - re_acc, im_size - im_acc)
260
+ relative_error = absolute_error - max(re_size, im_size)
261
+ return -relative_error
262
+
263
+
264
+ def get_abs(expr: 'Expr', prec: int, options: OPT_DICT) -> TMP_RES:
265
+ result = evalf(expr, prec + 2, options)
266
+ if result is S.ComplexInfinity:
267
+ return finf, None, prec, None
268
+ re, im, re_acc, im_acc = result
269
+ if not re:
270
+ re, re_acc, im, im_acc = im, im_acc, re, re_acc
271
+ if im:
272
+ if expr.is_number:
273
+ abs_expr, _, acc, _ = evalf(abs(N(expr, prec + 2)),
274
+ prec + 2, options)
275
+ return abs_expr, None, acc, None
276
+ else:
277
+ if 'subs' in options:
278
+ return libmp.mpc_abs((re, im), prec), None, re_acc, None
279
+ return abs(expr), None, prec, None
280
+ elif re:
281
+ return mpf_abs(re), None, re_acc, None
282
+ else:
283
+ return None, None, None, None
284
+
285
+
286
+ def get_complex_part(expr: 'Expr', no: int, prec: int, options: OPT_DICT) -> TMP_RES:
287
+ """no = 0 for real part, no = 1 for imaginary part"""
288
+ workprec = prec
289
+ i = 0
290
+ while 1:
291
+ res = evalf(expr, workprec, options)
292
+ if res is S.ComplexInfinity:
293
+ return fnan, None, prec, None
294
+ value, accuracy = res[no::2]
295
+ # XXX is the last one correct? Consider re((1+I)**2).n()
296
+ if (not value) or accuracy >= prec or -value[2] > prec:
297
+ return value, None, accuracy, None
298
+ workprec += max(30, 2**i)
299
+ i += 1
300
+
301
+
302
+ def evalf_abs(expr: 'Abs', prec: int, options: OPT_DICT) -> TMP_RES:
303
+ return get_abs(expr.args[0], prec, options)
304
+
305
+
306
+ def evalf_re(expr: 're', prec: int, options: OPT_DICT) -> TMP_RES:
307
+ return get_complex_part(expr.args[0], 0, prec, options)
308
+
309
+
310
+ def evalf_im(expr: 'im', prec: int, options: OPT_DICT) -> TMP_RES:
311
+ return get_complex_part(expr.args[0], 1, prec, options)
312
+
313
+
314
+ def finalize_complex(re: MPF_TUP, im: MPF_TUP, prec: int) -> TMP_RES:
315
+ if re == fzero and im == fzero:
316
+ raise ValueError("got complex zero with unknown accuracy")
317
+ elif re == fzero:
318
+ return None, im, None, prec
319
+ elif im == fzero:
320
+ return re, None, prec, None
321
+
322
+ size_re = fastlog(re)
323
+ size_im = fastlog(im)
324
+ if size_re > size_im:
325
+ re_acc = prec
326
+ im_acc = prec + min(-(size_re - size_im), 0)
327
+ else:
328
+ im_acc = prec
329
+ re_acc = prec + min(-(size_im - size_re), 0)
330
+ return re, im, re_acc, im_acc
331
+
332
+
333
+ def chop_parts(value: TMP_RES, prec: int) -> TMP_RES:
334
+ """
335
+ Chop off tiny real or complex parts.
336
+ """
337
+ if value is S.ComplexInfinity:
338
+ return value
339
+ re, im, re_acc, im_acc = value
340
+ # Method 1: chop based on absolute value
341
+ if re and re not in _infs_nan and (fastlog(re) < -prec + 4):
342
+ re, re_acc = None, None
343
+ if im and im not in _infs_nan and (fastlog(im) < -prec + 4):
344
+ im, im_acc = None, None
345
+ # Method 2: chop if inaccurate and relatively small
346
+ if re and im:
347
+ delta = fastlog(re) - fastlog(im)
348
+ if re_acc < 2 and (delta - re_acc <= -prec + 4):
349
+ re, re_acc = None, None
350
+ if im_acc < 2 and (delta - im_acc >= prec - 4):
351
+ im, im_acc = None, None
352
+ return re, im, re_acc, im_acc
353
+
354
+
355
+ def check_target(expr: 'Expr', result: TMP_RES, prec: int):
356
+ a = complex_accuracy(result)
357
+ if a < prec:
358
+ raise PrecisionExhausted("Failed to distinguish the expression: \n\n%s\n\n"
359
+ "from zero. Try simplifying the input, using chop=True, or providing "
360
+ "a higher maxn for evalf" % (expr))
361
+
362
+
363
+ def get_integer_part(expr: 'Expr', no: int, options: OPT_DICT, return_ints=False) -> \
364
+ tUnion[TMP_RES, tTuple[int, int]]:
365
+ """
366
+ With no = 1, computes ceiling(expr)
367
+ With no = -1, computes floor(expr)
368
+
369
+ Note: this function either gives the exact result or signals failure.
370
+ """
371
+ from sympy.functions.elementary.complexes import re, im
372
+ # The expression is likely less than 2^30 or so
373
+ assumed_size = 30
374
+ result = evalf(expr, assumed_size, options)
375
+ if result is S.ComplexInfinity:
376
+ raise ValueError("Cannot get integer part of Complex Infinity")
377
+ ire, iim, ire_acc, iim_acc = result
378
+
379
+ # We now know the size, so we can calculate how much extra precision
380
+ # (if any) is needed to get within the nearest integer
381
+ if ire and iim:
382
+ gap = max(fastlog(ire) - ire_acc, fastlog(iim) - iim_acc)
383
+ elif ire:
384
+ gap = fastlog(ire) - ire_acc
385
+ elif iim:
386
+ gap = fastlog(iim) - iim_acc
387
+ else:
388
+ # ... or maybe the expression was exactly zero
389
+ if return_ints:
390
+ return 0, 0
391
+ else:
392
+ return None, None, None, None
393
+
394
+ margin = 10
395
+
396
+ if gap >= -margin:
397
+ prec = margin + assumed_size + gap
398
+ ire, iim, ire_acc, iim_acc = evalf(
399
+ expr, prec, options)
400
+ else:
401
+ prec = assumed_size
402
+
403
+ # We can now easily find the nearest integer, but to find floor/ceil, we
404
+ # must also calculate whether the difference to the nearest integer is
405
+ # positive or negative (which may fail if very close).
406
+ def calc_part(re_im: 'Expr', nexpr: MPF_TUP):
407
+ from .add import Add
408
+ _, _, exponent, _ = nexpr
409
+ is_int = exponent == 0
410
+ nint = int(to_int(nexpr, rnd))
411
+ if is_int:
412
+ # make sure that we had enough precision to distinguish
413
+ # between nint and the re or im part (re_im) of expr that
414
+ # was passed to calc_part
415
+ ire, iim, ire_acc, iim_acc = evalf(
416
+ re_im - nint, 10, options) # don't need much precision
417
+ assert not iim
418
+ size = -fastlog(ire) + 2 # -ve b/c ire is less than 1
419
+ if size > prec:
420
+ ire, iim, ire_acc, iim_acc = evalf(
421
+ re_im, size, options)
422
+ assert not iim
423
+ nexpr = ire
424
+ nint = int(to_int(nexpr, rnd))
425
+ _, _, new_exp, _ = ire
426
+ is_int = new_exp == 0
427
+ if not is_int:
428
+ # if there are subs and they all contain integer re/im parts
429
+ # then we can (hopefully) safely substitute them into the
430
+ # expression
431
+ s = options.get('subs', False)
432
+ if s:
433
+ doit = True
434
+ # use strict=False with as_int because we take
435
+ # 2.0 == 2
436
+ for v in s.values():
437
+ try:
438
+ as_int(v, strict=False)
439
+ except ValueError:
440
+ try:
441
+ [as_int(i, strict=False) for i in v.as_real_imag()]
442
+ continue
443
+ except (ValueError, AttributeError):
444
+ doit = False
445
+ break
446
+ if doit:
447
+ re_im = re_im.subs(s)
448
+
449
+ re_im = Add(re_im, -nint, evaluate=False)
450
+ x, _, x_acc, _ = evalf(re_im, 10, options)
451
+ try:
452
+ check_target(re_im, (x, None, x_acc, None), 3)
453
+ except PrecisionExhausted:
454
+ if not re_im.equals(0):
455
+ raise PrecisionExhausted
456
+ x = fzero
457
+ nint += int(no*(mpf_cmp(x or fzero, fzero) == no))
458
+ nint = from_int(nint)
459
+ return nint, INF
460
+
461
+ re_, im_, re_acc, im_acc = None, None, None, None
462
+
463
+ if ire:
464
+ re_, re_acc = calc_part(re(expr, evaluate=False), ire)
465
+ if iim:
466
+ im_, im_acc = calc_part(im(expr, evaluate=False), iim)
467
+
468
+ if return_ints:
469
+ return int(to_int(re_ or fzero)), int(to_int(im_ or fzero))
470
+ return re_, im_, re_acc, im_acc
471
+
472
+
473
+ def evalf_ceiling(expr: 'ceiling', prec: int, options: OPT_DICT) -> TMP_RES:
474
+ return get_integer_part(expr.args[0], 1, options)
475
+
476
+
477
+ def evalf_floor(expr: 'floor', prec: int, options: OPT_DICT) -> TMP_RES:
478
+ return get_integer_part(expr.args[0], -1, options)
479
+
480
+
481
+ def evalf_float(expr: 'Float', prec: int, options: OPT_DICT) -> TMP_RES:
482
+ return expr._mpf_, None, prec, None
483
+
484
+
485
+ def evalf_rational(expr: 'Rational', prec: int, options: OPT_DICT) -> TMP_RES:
486
+ return from_rational(expr.p, expr.q, prec), None, prec, None
487
+
488
+
489
+ def evalf_integer(expr: 'Integer', prec: int, options: OPT_DICT) -> TMP_RES:
490
+ return from_int(expr.p, prec), None, prec, None
491
+
492
+ #----------------------------------------------------------------------------#
493
+ # #
494
+ # Arithmetic operations #
495
+ # #
496
+ #----------------------------------------------------------------------------#
497
+
498
+
499
+ def add_terms(terms: list, prec: int, target_prec: int) -> \
500
+ tTuple[tUnion[MPF_TUP, SCALED_ZERO_TUP, None], Optional[int]]:
501
+ """
502
+ Helper for evalf_add. Adds a list of (mpfval, accuracy) terms.
503
+
504
+ Returns
505
+ =======
506
+
507
+ - None, None if there are no non-zero terms;
508
+ - terms[0] if there is only 1 term;
509
+ - scaled_zero if the sum of the terms produces a zero by cancellation
510
+ e.g. mpfs representing 1 and -1 would produce a scaled zero which need
511
+ special handling since they are not actually zero and they are purposely
512
+ malformed to ensure that they cannot be used in anything but accuracy
513
+ calculations;
514
+ - a tuple that is scaled to target_prec that corresponds to the
515
+ sum of the terms.
516
+
517
+ The returned mpf tuple will be normalized to target_prec; the input
518
+ prec is used to define the working precision.
519
+
520
+ XXX explain why this is needed and why one cannot just loop using mpf_add
521
+ """
522
+
523
+ terms = [t for t in terms if not iszero(t[0])]
524
+ if not terms:
525
+ return None, None
526
+ elif len(terms) == 1:
527
+ return terms[0]
528
+
529
+ # see if any argument is NaN or oo and thus warrants a special return
530
+ special = []
531
+ from .numbers import Float
532
+ for t in terms:
533
+ arg = Float._new(t[0], 1)
534
+ if arg is S.NaN or arg.is_infinite:
535
+ special.append(arg)
536
+ if special:
537
+ from .add import Add
538
+ rv = evalf(Add(*special), prec + 4, {})
539
+ return rv[0], rv[2]
540
+
541
+ working_prec = 2*prec
542
+ sum_man, sum_exp = 0, 0
543
+ absolute_err: List[int] = []
544
+
545
+ for x, accuracy in terms:
546
+ sign, man, exp, bc = x
547
+ if sign:
548
+ man = -man
549
+ absolute_err.append(bc + exp - accuracy)
550
+ delta = exp - sum_exp
551
+ if exp >= sum_exp:
552
+ # x much larger than existing sum?
553
+ # first: quick test
554
+ if ((delta > working_prec) and
555
+ ((not sum_man) or
556
+ delta - bitcount(abs(sum_man)) > working_prec)):
557
+ sum_man = man
558
+ sum_exp = exp
559
+ else:
560
+ sum_man += (man << delta)
561
+ else:
562
+ delta = -delta
563
+ # x much smaller than existing sum?
564
+ if delta - bc > working_prec:
565
+ if not sum_man:
566
+ sum_man, sum_exp = man, exp
567
+ else:
568
+ sum_man = (sum_man << delta) + man
569
+ sum_exp = exp
570
+ absolute_error = max(absolute_err)
571
+ if not sum_man:
572
+ return scaled_zero(absolute_error)
573
+ if sum_man < 0:
574
+ sum_sign = 1
575
+ sum_man = -sum_man
576
+ else:
577
+ sum_sign = 0
578
+ sum_bc = bitcount(sum_man)
579
+ sum_accuracy = sum_exp + sum_bc - absolute_error
580
+ r = normalize(sum_sign, sum_man, sum_exp, sum_bc, target_prec,
581
+ rnd), sum_accuracy
582
+ return r
583
+
584
+
585
+ def evalf_add(v: 'Add', prec: int, options: OPT_DICT) -> TMP_RES:
586
+ res = pure_complex(v)
587
+ if res:
588
+ h, c = res
589
+ re, _, re_acc, _ = evalf(h, prec, options)
590
+ im, _, im_acc, _ = evalf(c, prec, options)
591
+ return re, im, re_acc, im_acc
592
+
593
+ oldmaxprec = options.get('maxprec', DEFAULT_MAXPREC)
594
+
595
+ i = 0
596
+ target_prec = prec
597
+ while 1:
598
+ options['maxprec'] = min(oldmaxprec, 2*prec)
599
+
600
+ terms = [evalf(arg, prec + 10, options) for arg in v.args]
601
+ n = terms.count(S.ComplexInfinity)
602
+ if n >= 2:
603
+ return fnan, None, prec, None
604
+ re, re_acc = add_terms(
605
+ [a[0::2] for a in terms if isinstance(a, tuple) and a[0]], prec, target_prec)
606
+ im, im_acc = add_terms(
607
+ [a[1::2] for a in terms if isinstance(a, tuple) and a[1]], prec, target_prec)
608
+ if n == 1:
609
+ if re in (finf, fninf, fnan) or im in (finf, fninf, fnan):
610
+ return fnan, None, prec, None
611
+ return S.ComplexInfinity
612
+ acc = complex_accuracy((re, im, re_acc, im_acc))
613
+ if acc >= target_prec:
614
+ if options.get('verbose'):
615
+ print("ADD: wanted", target_prec, "accurate bits, got", re_acc, im_acc)
616
+ break
617
+ else:
618
+ if (prec - target_prec) > options['maxprec']:
619
+ break
620
+
621
+ prec = prec + max(10 + 2**i, target_prec - acc)
622
+ i += 1
623
+ if options.get('verbose'):
624
+ print("ADD: restarting with prec", prec)
625
+
626
+ options['maxprec'] = oldmaxprec
627
+ if iszero(re, scaled=True):
628
+ re = scaled_zero(re)
629
+ if iszero(im, scaled=True):
630
+ im = scaled_zero(im)
631
+ return re, im, re_acc, im_acc
632
+
633
+
634
+ def evalf_mul(v: 'Mul', prec: int, options: OPT_DICT) -> TMP_RES:
635
+ res = pure_complex(v)
636
+ if res:
637
+ # the only pure complex that is a mul is h*I
638
+ _, h = res
639
+ im, _, im_acc, _ = evalf(h, prec, options)
640
+ return None, im, None, im_acc
641
+ args = list(v.args)
642
+
643
+ # see if any argument is NaN or oo and thus warrants a special return
644
+ has_zero = False
645
+ special = []
646
+ from .numbers import Float
647
+ for arg in args:
648
+ result = evalf(arg, prec, options)
649
+ if result is S.ComplexInfinity:
650
+ special.append(result)
651
+ continue
652
+ if result[0] is None:
653
+ if result[1] is None:
654
+ has_zero = True
655
+ continue
656
+ num = Float._new(result[0], 1)
657
+ if num is S.NaN:
658
+ return fnan, None, prec, None
659
+ if num.is_infinite:
660
+ special.append(num)
661
+ if special:
662
+ if has_zero:
663
+ return fnan, None, prec, None
664
+ from .mul import Mul
665
+ return evalf(Mul(*special), prec + 4, {})
666
+ if has_zero:
667
+ return None, None, None, None
668
+
669
+ # With guard digits, multiplication in the real case does not destroy
670
+ # accuracy. This is also true in the complex case when considering the
671
+ # total accuracy; however accuracy for the real or imaginary parts
672
+ # separately may be lower.
673
+ acc = prec
674
+
675
+ # XXX: big overestimate
676
+ working_prec = prec + len(args) + 5
677
+
678
+ # Empty product is 1
679
+ start = man, exp, bc = MPZ(1), 0, 1
680
+
681
+ # First, we multiply all pure real or pure imaginary numbers.
682
+ # direction tells us that the result should be multiplied by
683
+ # I**direction; all other numbers get put into complex_factors
684
+ # to be multiplied out after the first phase.
685
+ last = len(args)
686
+ direction = 0
687
+ args.append(S.One)
688
+ complex_factors = []
689
+
690
+ for i, arg in enumerate(args):
691
+ if i != last and pure_complex(arg):
692
+ args[-1] = (args[-1]*arg).expand()
693
+ continue
694
+ elif i == last and arg is S.One:
695
+ continue
696
+ re, im, re_acc, im_acc = evalf(arg, working_prec, options)
697
+ if re and im:
698
+ complex_factors.append((re, im, re_acc, im_acc))
699
+ continue
700
+ elif re:
701
+ (s, m, e, b), w_acc = re, re_acc
702
+ elif im:
703
+ (s, m, e, b), w_acc = im, im_acc
704
+ direction += 1
705
+ else:
706
+ return None, None, None, None
707
+ direction += 2*s
708
+ man *= m
709
+ exp += e
710
+ bc += b
711
+ while bc > 3*working_prec:
712
+ man >>= working_prec
713
+ exp += working_prec
714
+ bc -= working_prec
715
+ acc = min(acc, w_acc)
716
+ sign = (direction & 2) >> 1
717
+ if not complex_factors:
718
+ v = normalize(sign, man, exp, bitcount(man), prec, rnd)
719
+ # multiply by i
720
+ if direction & 1:
721
+ return None, v, None, acc
722
+ else:
723
+ return v, None, acc, None
724
+ else:
725
+ # initialize with the first term
726
+ if (man, exp, bc) != start:
727
+ # there was a real part; give it an imaginary part
728
+ re, im = (sign, man, exp, bitcount(man)), (0, MPZ(0), 0, 0)
729
+ i0 = 0
730
+ else:
731
+ # there is no real part to start (other than the starting 1)
732
+ wre, wim, wre_acc, wim_acc = complex_factors[0]
733
+ acc = min(acc,
734
+ complex_accuracy((wre, wim, wre_acc, wim_acc)))
735
+ re = wre
736
+ im = wim
737
+ i0 = 1
738
+
739
+ for wre, wim, wre_acc, wim_acc in complex_factors[i0:]:
740
+ # acc is the overall accuracy of the product; we aren't
741
+ # computing exact accuracies of the product.
742
+ acc = min(acc,
743
+ complex_accuracy((wre, wim, wre_acc, wim_acc)))
744
+
745
+ use_prec = working_prec
746
+ A = mpf_mul(re, wre, use_prec)
747
+ B = mpf_mul(mpf_neg(im), wim, use_prec)
748
+ C = mpf_mul(re, wim, use_prec)
749
+ D = mpf_mul(im, wre, use_prec)
750
+ re = mpf_add(A, B, use_prec)
751
+ im = mpf_add(C, D, use_prec)
752
+ if options.get('verbose'):
753
+ print("MUL: wanted", prec, "accurate bits, got", acc)
754
+ # multiply by I
755
+ if direction & 1:
756
+ re, im = mpf_neg(im), re
757
+ return re, im, acc, acc
758
+
759
+
760
+ def evalf_pow(v: 'Pow', prec: int, options) -> TMP_RES:
761
+
762
+ target_prec = prec
763
+ base, exp = v.args
764
+
765
+ # We handle x**n separately. This has two purposes: 1) it is much
766
+ # faster, because we avoid calling evalf on the exponent, and 2) it
767
+ # allows better handling of real/imaginary parts that are exactly zero
768
+ if exp.is_Integer:
769
+ p: int = exp.p # type: ignore
770
+ # Exact
771
+ if not p:
772
+ return fone, None, prec, None
773
+ # Exponentiation by p magnifies relative error by |p|, so the
774
+ # base must be evaluated with increased precision if p is large
775
+ prec += int(math.log(abs(p), 2))
776
+ result = evalf(base, prec + 5, options)
777
+ if result is S.ComplexInfinity:
778
+ if p < 0:
779
+ return None, None, None, None
780
+ return result
781
+ re, im, re_acc, im_acc = result
782
+ # Real to integer power
783
+ if re and not im:
784
+ return mpf_pow_int(re, p, target_prec), None, target_prec, None
785
+ # (x*I)**n = I**n * x**n
786
+ if im and not re:
787
+ z = mpf_pow_int(im, p, target_prec)
788
+ case = p % 4
789
+ if case == 0:
790
+ return z, None, target_prec, None
791
+ if case == 1:
792
+ return None, z, None, target_prec
793
+ if case == 2:
794
+ return mpf_neg(z), None, target_prec, None
795
+ if case == 3:
796
+ return None, mpf_neg(z), None, target_prec
797
+ # Zero raised to an integer power
798
+ if not re:
799
+ if p < 0:
800
+ return S.ComplexInfinity
801
+ return None, None, None, None
802
+ # General complex number to arbitrary integer power
803
+ re, im = libmp.mpc_pow_int((re, im), p, prec)
804
+ # Assumes full accuracy in input
805
+ return finalize_complex(re, im, target_prec)
806
+
807
+ result = evalf(base, prec + 5, options)
808
+ if result is S.ComplexInfinity:
809
+ if exp.is_Rational:
810
+ if exp < 0:
811
+ return None, None, None, None
812
+ return result
813
+ raise NotImplementedError
814
+
815
+ # Pure square root
816
+ if exp is S.Half:
817
+ xre, xim, _, _ = result
818
+ # General complex square root
819
+ if xim:
820
+ re, im = libmp.mpc_sqrt((xre or fzero, xim), prec)
821
+ return finalize_complex(re, im, prec)
822
+ if not xre:
823
+ return None, None, None, None
824
+ # Square root of a negative real number
825
+ if mpf_lt(xre, fzero):
826
+ return None, mpf_sqrt(mpf_neg(xre), prec), None, prec
827
+ # Positive square root
828
+ return mpf_sqrt(xre, prec), None, prec, None
829
+
830
+ # We first evaluate the exponent to find its magnitude
831
+ # This determines the working precision that must be used
832
+ prec += 10
833
+ result = evalf(exp, prec, options)
834
+ if result is S.ComplexInfinity:
835
+ return fnan, None, prec, None
836
+ yre, yim, _, _ = result
837
+ # Special cases: x**0
838
+ if not (yre or yim):
839
+ return fone, None, prec, None
840
+
841
+ ysize = fastlog(yre)
842
+ # Restart if too big
843
+ # XXX: prec + ysize might exceed maxprec
844
+ if ysize > 5:
845
+ prec += ysize
846
+ yre, yim, _, _ = evalf(exp, prec, options)
847
+
848
+ # Pure exponential function; no need to evalf the base
849
+ if base is S.Exp1:
850
+ if yim:
851
+ re, im = libmp.mpc_exp((yre or fzero, yim), prec)
852
+ return finalize_complex(re, im, target_prec)
853
+ return mpf_exp(yre, target_prec), None, target_prec, None
854
+
855
+ xre, xim, _, _ = evalf(base, prec + 5, options)
856
+ # 0**y
857
+ if not (xre or xim):
858
+ if yim:
859
+ return fnan, None, prec, None
860
+ if yre[0] == 1: # y < 0
861
+ return S.ComplexInfinity
862
+ return None, None, None, None
863
+
864
+ # (real ** complex) or (complex ** complex)
865
+ if yim:
866
+ re, im = libmp.mpc_pow(
867
+ (xre or fzero, xim or fzero), (yre or fzero, yim),
868
+ target_prec)
869
+ return finalize_complex(re, im, target_prec)
870
+ # complex ** real
871
+ if xim:
872
+ re, im = libmp.mpc_pow_mpf((xre or fzero, xim), yre, target_prec)
873
+ return finalize_complex(re, im, target_prec)
874
+ # negative ** real
875
+ elif mpf_lt(xre, fzero):
876
+ re, im = libmp.mpc_pow_mpf((xre, fzero), yre, target_prec)
877
+ return finalize_complex(re, im, target_prec)
878
+ # positive ** real
879
+ else:
880
+ return mpf_pow(xre, yre, target_prec), None, target_prec, None
881
+
882
+
883
+ #----------------------------------------------------------------------------#
884
+ # #
885
+ # Special functions #
886
+ # #
887
+ #----------------------------------------------------------------------------#
888
+
889
+
890
+ def evalf_exp(expr: 'exp', prec: int, options: OPT_DICT) -> TMP_RES:
891
+ from .power import Pow
892
+ return evalf_pow(Pow(S.Exp1, expr.exp, evaluate=False), prec, options)
893
+
894
+
895
+ def evalf_trig(v: 'Expr', prec: int, options: OPT_DICT) -> TMP_RES:
896
+ """
897
+ This function handles sin and cos of complex arguments.
898
+
899
+ TODO: should also handle tan of complex arguments.
900
+ """
901
+ from sympy.functions.elementary.trigonometric import cos, sin
902
+ if isinstance(v, cos):
903
+ func = mpf_cos
904
+ elif isinstance(v, sin):
905
+ func = mpf_sin
906
+ else:
907
+ raise NotImplementedError
908
+ arg = v.args[0]
909
+ # 20 extra bits is possibly overkill. It does make the need
910
+ # to restart very unlikely
911
+ xprec = prec + 20
912
+ re, im, re_acc, im_acc = evalf(arg, xprec, options)
913
+ if im:
914
+ if 'subs' in options:
915
+ v = v.subs(options['subs'])
916
+ return evalf(v._eval_evalf(prec), prec, options)
917
+ if not re:
918
+ if isinstance(v, cos):
919
+ return fone, None, prec, None
920
+ elif isinstance(v, sin):
921
+ return None, None, None, None
922
+ else:
923
+ raise NotImplementedError
924
+ # For trigonometric functions, we are interested in the
925
+ # fixed-point (absolute) accuracy of the argument.
926
+ xsize = fastlog(re)
927
+ # Magnitude <= 1.0. OK to compute directly, because there is no
928
+ # danger of hitting the first root of cos (with sin, magnitude
929
+ # <= 2.0 would actually be ok)
930
+ if xsize < 1:
931
+ return func(re, prec, rnd), None, prec, None
932
+ # Very large
933
+ if xsize >= 10:
934
+ xprec = prec + xsize
935
+ re, im, re_acc, im_acc = evalf(arg, xprec, options)
936
+ # Need to repeat in case the argument is very close to a
937
+ # multiple of pi (or pi/2), hitting close to a root
938
+ while 1:
939
+ y = func(re, prec, rnd)
940
+ ysize = fastlog(y)
941
+ gap = -ysize
942
+ accuracy = (xprec - xsize) - gap
943
+ if accuracy < prec:
944
+ if options.get('verbose'):
945
+ print("SIN/COS", accuracy, "wanted", prec, "gap", gap)
946
+ print(to_str(y, 10))
947
+ if xprec > options.get('maxprec', DEFAULT_MAXPREC):
948
+ return y, None, accuracy, None
949
+ xprec += gap
950
+ re, im, re_acc, im_acc = evalf(arg, xprec, options)
951
+ continue
952
+ else:
953
+ return y, None, prec, None
954
+
955
+
956
+ def evalf_log(expr: 'log', prec: int, options: OPT_DICT) -> TMP_RES:
957
+ if len(expr.args)>1:
958
+ expr = expr.doit()
959
+ return evalf(expr, prec, options)
960
+ arg = expr.args[0]
961
+ workprec = prec + 10
962
+ result = evalf(arg, workprec, options)
963
+ if result is S.ComplexInfinity:
964
+ return result
965
+ xre, xim, xacc, _ = result
966
+
967
+ # evalf can return NoneTypes if chop=True
968
+ # issue 18516, 19623
969
+ if xre is xim is None:
970
+ # Dear reviewer, I do not know what -inf is;
971
+ # it looks to be (1, 0, -789, -3)
972
+ # but I'm not sure in general,
973
+ # so we just let mpmath figure
974
+ # it out by taking log of 0 directly.
975
+ # It would be better to return -inf instead.
976
+ xre = fzero
977
+
978
+ if xim:
979
+ from sympy.functions.elementary.complexes import Abs
980
+ from sympy.functions.elementary.exponential import log
981
+
982
+ # XXX: use get_abs etc instead
983
+ re = evalf_log(
984
+ log(Abs(arg, evaluate=False), evaluate=False), prec, options)
985
+ im = mpf_atan2(xim, xre or fzero, prec)
986
+ return re[0], im, re[2], prec
987
+
988
+ imaginary_term = (mpf_cmp(xre, fzero) < 0)
989
+
990
+ re = mpf_log(mpf_abs(xre), prec, rnd)
991
+ size = fastlog(re)
992
+ if prec - size > workprec and re != fzero:
993
+ from .add import Add
994
+ # We actually need to compute 1+x accurately, not x
995
+ add = Add(S.NegativeOne, arg, evaluate=False)
996
+ xre, xim, _, _ = evalf_add(add, prec, options)
997
+ prec2 = workprec - fastlog(xre)
998
+ # xre is now x - 1 so we add 1 back here to calculate x
999
+ re = mpf_log(mpf_abs(mpf_add(xre, fone, prec2)), prec, rnd)
1000
+
1001
+ re_acc = prec
1002
+
1003
+ if imaginary_term:
1004
+ return re, mpf_pi(prec), re_acc, prec
1005
+ else:
1006
+ return re, None, re_acc, None
1007
+
1008
+
1009
+ def evalf_atan(v: 'atan', prec: int, options: OPT_DICT) -> TMP_RES:
1010
+ arg = v.args[0]
1011
+ xre, xim, reacc, imacc = evalf(arg, prec + 5, options)
1012
+ if xre is xim is None:
1013
+ return (None,)*4
1014
+ if xim:
1015
+ raise NotImplementedError
1016
+ return mpf_atan(xre, prec, rnd), None, prec, None
1017
+
1018
+
1019
+ def evalf_subs(prec: int, subs: dict) -> dict:
1020
+ """ Change all Float entries in `subs` to have precision prec. """
1021
+ newsubs = {}
1022
+ for a, b in subs.items():
1023
+ b = S(b)
1024
+ if b.is_Float:
1025
+ b = b._eval_evalf(prec)
1026
+ newsubs[a] = b
1027
+ return newsubs
1028
+
1029
+
1030
+ def evalf_piecewise(expr: 'Expr', prec: int, options: OPT_DICT) -> TMP_RES:
1031
+ from .numbers import Float, Integer
1032
+ if 'subs' in options:
1033
+ expr = expr.subs(evalf_subs(prec, options['subs']))
1034
+ newopts = options.copy()
1035
+ del newopts['subs']
1036
+ if hasattr(expr, 'func'):
1037
+ return evalf(expr, prec, newopts)
1038
+ if isinstance(expr, float):
1039
+ return evalf(Float(expr), prec, newopts)
1040
+ if isinstance(expr, int):
1041
+ return evalf(Integer(expr), prec, newopts)
1042
+
1043
+ # We still have undefined symbols
1044
+ raise NotImplementedError
1045
+
1046
+
1047
+ def evalf_alg_num(a: 'AlgebraicNumber', prec: int, options: OPT_DICT) -> TMP_RES:
1048
+ return evalf(a.to_root(), prec, options)
1049
+
1050
+ #----------------------------------------------------------------------------#
1051
+ # #
1052
+ # High-level operations #
1053
+ # #
1054
+ #----------------------------------------------------------------------------#
1055
+
1056
+
1057
+ def as_mpmath(x: Any, prec: int, options: OPT_DICT) -> tUnion[mpc, mpf]:
1058
+ from .numbers import Infinity, NegativeInfinity, Zero
1059
+ x = sympify(x)
1060
+ if isinstance(x, Zero) or x == 0.0:
1061
+ return mpf(0)
1062
+ if isinstance(x, Infinity):
1063
+ return mpf('inf')
1064
+ if isinstance(x, NegativeInfinity):
1065
+ return mpf('-inf')
1066
+ # XXX
1067
+ result = evalf(x, prec, options)
1068
+ return quad_to_mpmath(result)
1069
+
1070
+
1071
+ def do_integral(expr: 'Integral', prec: int, options: OPT_DICT) -> TMP_RES:
1072
+ func = expr.args[0]
1073
+ x, xlow, xhigh = expr.args[1]
1074
+ if xlow == xhigh:
1075
+ xlow = xhigh = 0
1076
+ elif x not in func.free_symbols:
1077
+ # only the difference in limits matters in this case
1078
+ # so if there is a symbol in common that will cancel
1079
+ # out when taking the difference, then use that
1080
+ # difference
1081
+ if xhigh.free_symbols & xlow.free_symbols:
1082
+ diff = xhigh - xlow
1083
+ if diff.is_number:
1084
+ xlow, xhigh = 0, diff
1085
+
1086
+ oldmaxprec = options.get('maxprec', DEFAULT_MAXPREC)
1087
+ options['maxprec'] = min(oldmaxprec, 2*prec)
1088
+
1089
+ with workprec(prec + 5):
1090
+ xlow = as_mpmath(xlow, prec + 15, options)
1091
+ xhigh = as_mpmath(xhigh, prec + 15, options)
1092
+
1093
+ # Integration is like summation, and we can phone home from
1094
+ # the integrand function to update accuracy summation style
1095
+ # Note that this accuracy is inaccurate, since it fails
1096
+ # to account for the variable quadrature weights,
1097
+ # but it is better than nothing
1098
+
1099
+ from sympy.functions.elementary.trigonometric import cos, sin
1100
+ from .symbol import Wild
1101
+
1102
+ have_part = [False, False]
1103
+ max_real_term: tUnion[float, int] = MINUS_INF
1104
+ max_imag_term: tUnion[float, int] = MINUS_INF
1105
+
1106
+ def f(t: 'Expr') -> tUnion[mpc, mpf]:
1107
+ nonlocal max_real_term, max_imag_term
1108
+ re, im, re_acc, im_acc = evalf(func, mp.prec, {'subs': {x: t}})
1109
+
1110
+ have_part[0] = re or have_part[0]
1111
+ have_part[1] = im or have_part[1]
1112
+
1113
+ max_real_term = max(max_real_term, fastlog(re))
1114
+ max_imag_term = max(max_imag_term, fastlog(im))
1115
+
1116
+ if im:
1117
+ return mpc(re or fzero, im)
1118
+ return mpf(re or fzero)
1119
+
1120
+ if options.get('quad') == 'osc':
1121
+ A = Wild('A', exclude=[x])
1122
+ B = Wild('B', exclude=[x])
1123
+ D = Wild('D')
1124
+ m = func.match(cos(A*x + B)*D)
1125
+ if not m:
1126
+ m = func.match(sin(A*x + B)*D)
1127
+ if not m:
1128
+ raise ValueError("An integrand of the form sin(A*x+B)*f(x) "
1129
+ "or cos(A*x+B)*f(x) is required for oscillatory quadrature")
1130
+ period = as_mpmath(2*S.Pi/m[A], prec + 15, options)
1131
+ result = quadosc(f, [xlow, xhigh], period=period)
1132
+ # XXX: quadosc does not do error detection yet
1133
+ quadrature_error = MINUS_INF
1134
+ else:
1135
+ result, quadrature_err = quadts(f, [xlow, xhigh], error=1)
1136
+ quadrature_error = fastlog(quadrature_err._mpf_)
1137
+
1138
+ options['maxprec'] = oldmaxprec
1139
+
1140
+ if have_part[0]:
1141
+ re: Optional[MPF_TUP] = result.real._mpf_
1142
+ re_acc: Optional[int]
1143
+ if re == fzero:
1144
+ re_s, re_acc = scaled_zero(int(-max(prec, max_real_term, quadrature_error)))
1145
+ re = scaled_zero(re_s) # handled ok in evalf_integral
1146
+ else:
1147
+ re_acc = int(-max(max_real_term - fastlog(re) - prec, quadrature_error))
1148
+ else:
1149
+ re, re_acc = None, None
1150
+
1151
+ if have_part[1]:
1152
+ im: Optional[MPF_TUP] = result.imag._mpf_
1153
+ im_acc: Optional[int]
1154
+ if im == fzero:
1155
+ im_s, im_acc = scaled_zero(int(-max(prec, max_imag_term, quadrature_error)))
1156
+ im = scaled_zero(im_s) # handled ok in evalf_integral
1157
+ else:
1158
+ im_acc = int(-max(max_imag_term - fastlog(im) - prec, quadrature_error))
1159
+ else:
1160
+ im, im_acc = None, None
1161
+
1162
+ result = re, im, re_acc, im_acc
1163
+ return result
1164
+
1165
+
1166
+ def evalf_integral(expr: 'Integral', prec: int, options: OPT_DICT) -> TMP_RES:
1167
+ limits = expr.limits
1168
+ if len(limits) != 1 or len(limits[0]) != 3:
1169
+ raise NotImplementedError
1170
+ workprec = prec
1171
+ i = 0
1172
+ maxprec = options.get('maxprec', INF)
1173
+ while 1:
1174
+ result = do_integral(expr, workprec, options)
1175
+ accuracy = complex_accuracy(result)
1176
+ if accuracy >= prec: # achieved desired precision
1177
+ break
1178
+ if workprec >= maxprec: # can't increase accuracy any more
1179
+ break
1180
+ if accuracy == -1:
1181
+ # maybe the answer really is zero and maybe we just haven't increased
1182
+ # the precision enough. So increase by doubling to not take too long
1183
+ # to get to maxprec.
1184
+ workprec *= 2
1185
+ else:
1186
+ workprec += max(prec, 2**i)
1187
+ workprec = min(workprec, maxprec)
1188
+ i += 1
1189
+ return result
1190
+
1191
+
1192
+ def check_convergence(numer: 'Expr', denom: 'Expr', n: 'Symbol') -> tTuple[int, Any, Any]:
1193
+ """
1194
+ Returns
1195
+ =======
1196
+
1197
+ (h, g, p) where
1198
+ -- h is:
1199
+ > 0 for convergence of rate 1/factorial(n)**h
1200
+ < 0 for divergence of rate factorial(n)**(-h)
1201
+ = 0 for geometric or polynomial convergence or divergence
1202
+
1203
+ -- abs(g) is:
1204
+ > 1 for geometric convergence of rate 1/h**n
1205
+ < 1 for geometric divergence of rate h**n
1206
+ = 1 for polynomial convergence or divergence
1207
+
1208
+ (g < 0 indicates an alternating series)
1209
+
1210
+ -- p is:
1211
+ > 1 for polynomial convergence of rate 1/n**h
1212
+ <= 1 for polynomial divergence of rate n**(-h)
1213
+
1214
+ """
1215
+ from sympy.polys.polytools import Poly
1216
+ npol = Poly(numer, n)
1217
+ dpol = Poly(denom, n)
1218
+ p = npol.degree()
1219
+ q = dpol.degree()
1220
+ rate = q - p
1221
+ if rate:
1222
+ return rate, None, None
1223
+ constant = dpol.LC() / npol.LC()
1224
+ from .numbers import equal_valued
1225
+ if not equal_valued(abs(constant), 1):
1226
+ return rate, constant, None
1227
+ if npol.degree() == dpol.degree() == 0:
1228
+ return rate, constant, 0
1229
+ pc = npol.all_coeffs()[1]
1230
+ qc = dpol.all_coeffs()[1]
1231
+ return rate, constant, (qc - pc)/dpol.LC()
1232
+
1233
+
1234
+ def hypsum(expr: 'Expr', n: 'Symbol', start: int, prec: int) -> mpf:
1235
+ """
1236
+ Sum a rapidly convergent infinite hypergeometric series with
1237
+ given general term, e.g. e = hypsum(1/factorial(n), n). The
1238
+ quotient between successive terms must be a quotient of integer
1239
+ polynomials.
1240
+ """
1241
+ from .numbers import Float, equal_valued
1242
+ from sympy.simplify.simplify import hypersimp
1243
+
1244
+ if prec == float('inf'):
1245
+ raise NotImplementedError('does not support inf prec')
1246
+
1247
+ if start:
1248
+ expr = expr.subs(n, n + start)
1249
+ hs = hypersimp(expr, n)
1250
+ if hs is None:
1251
+ raise NotImplementedError("a hypergeometric series is required")
1252
+ num, den = hs.as_numer_denom()
1253
+
1254
+ func1 = lambdify(n, num)
1255
+ func2 = lambdify(n, den)
1256
+
1257
+ h, g, p = check_convergence(num, den, n)
1258
+
1259
+ if h < 0:
1260
+ raise ValueError("Sum diverges like (n!)^%i" % (-h))
1261
+
1262
+ term = expr.subs(n, 0)
1263
+ if not term.is_Rational:
1264
+ raise NotImplementedError("Non rational term functionality is not implemented.")
1265
+
1266
+ # Direct summation if geometric or faster
1267
+ if h > 0 or (h == 0 and abs(g) > 1):
1268
+ term = (MPZ(term.p) << prec) // term.q
1269
+ s = term
1270
+ k = 1
1271
+ while abs(term) > 5:
1272
+ term *= MPZ(func1(k - 1))
1273
+ term //= MPZ(func2(k - 1))
1274
+ s += term
1275
+ k += 1
1276
+ return from_man_exp(s, -prec)
1277
+ else:
1278
+ alt = g < 0
1279
+ if abs(g) < 1:
1280
+ raise ValueError("Sum diverges like (%i)^n" % abs(1/g))
1281
+ if p < 1 or (equal_valued(p, 1) and not alt):
1282
+ raise ValueError("Sum diverges like n^%i" % (-p))
1283
+ # We have polynomial convergence: use Richardson extrapolation
1284
+ vold = None
1285
+ ndig = prec_to_dps(prec)
1286
+ while True:
1287
+ # Need to use at least quad precision because a lot of cancellation
1288
+ # might occur in the extrapolation process; we check the answer to
1289
+ # make sure that the desired precision has been reached, too.
1290
+ prec2 = 4*prec
1291
+ term0 = (MPZ(term.p) << prec2) // term.q
1292
+
1293
+ def summand(k, _term=[term0]):
1294
+ if k:
1295
+ k = int(k)
1296
+ _term[0] *= MPZ(func1(k - 1))
1297
+ _term[0] //= MPZ(func2(k - 1))
1298
+ return make_mpf(from_man_exp(_term[0], -prec2))
1299
+
1300
+ with workprec(prec):
1301
+ v = nsum(summand, [0, mpmath_inf], method='richardson')
1302
+ vf = Float(v, ndig)
1303
+ if vold is not None and vold == vf:
1304
+ break
1305
+ prec += prec # double precision each time
1306
+ vold = vf
1307
+
1308
+ return v._mpf_
1309
+
1310
+
1311
+ def evalf_prod(expr: 'Product', prec: int, options: OPT_DICT) -> TMP_RES:
1312
+ if all((l[1] - l[2]).is_Integer for l in expr.limits):
1313
+ result = evalf(expr.doit(), prec=prec, options=options)
1314
+ else:
1315
+ from sympy.concrete.summations import Sum
1316
+ result = evalf(expr.rewrite(Sum), prec=prec, options=options)
1317
+ return result
1318
+
1319
+
1320
+ def evalf_sum(expr: 'Sum', prec: int, options: OPT_DICT) -> TMP_RES:
1321
+ from .numbers import Float
1322
+ if 'subs' in options:
1323
+ expr = expr.subs(options['subs'])
1324
+ func = expr.function
1325
+ limits = expr.limits
1326
+ if len(limits) != 1 or len(limits[0]) != 3:
1327
+ raise NotImplementedError
1328
+ if func.is_zero:
1329
+ return None, None, prec, None
1330
+ prec2 = prec + 10
1331
+ try:
1332
+ n, a, b = limits[0]
1333
+ if b is not S.Infinity or a is S.NegativeInfinity or a != int(a):
1334
+ raise NotImplementedError
1335
+ # Use fast hypergeometric summation if possible
1336
+ v = hypsum(func, n, int(a), prec2)
1337
+ delta = prec - fastlog(v)
1338
+ if fastlog(v) < -10:
1339
+ v = hypsum(func, n, int(a), delta)
1340
+ return v, None, min(prec, delta), None
1341
+ except NotImplementedError:
1342
+ # Euler-Maclaurin summation for general series
1343
+ eps = Float(2.0)**(-prec)
1344
+ for i in range(1, 5):
1345
+ m = n = 2**i * prec
1346
+ s, err = expr.euler_maclaurin(m=m, n=n, eps=eps,
1347
+ eval_integral=False)
1348
+ err = err.evalf()
1349
+ if err is S.NaN:
1350
+ raise NotImplementedError
1351
+ if err <= eps:
1352
+ break
1353
+ err = fastlog(evalf(abs(err), 20, options)[0])
1354
+ re, im, re_acc, im_acc = evalf(s, prec2, options)
1355
+ if re_acc is None:
1356
+ re_acc = -err
1357
+ if im_acc is None:
1358
+ im_acc = -err
1359
+ return re, im, re_acc, im_acc
1360
+
1361
+
1362
+ #----------------------------------------------------------------------------#
1363
+ # #
1364
+ # Symbolic interface #
1365
+ # #
1366
+ #----------------------------------------------------------------------------#
1367
+
1368
+ def evalf_symbol(x: 'Expr', prec: int, options: OPT_DICT) -> TMP_RES:
1369
+ val = options['subs'][x]
1370
+ if isinstance(val, mpf):
1371
+ if not val:
1372
+ return None, None, None, None
1373
+ return val._mpf_, None, prec, None
1374
+ else:
1375
+ if '_cache' not in options:
1376
+ options['_cache'] = {}
1377
+ cache = options['_cache']
1378
+ cached, cached_prec = cache.get(x, (None, MINUS_INF))
1379
+ if cached_prec >= prec:
1380
+ return cached
1381
+ v = evalf(sympify(val), prec, options)
1382
+ cache[x] = (v, prec)
1383
+ return v
1384
+
1385
+
1386
+ evalf_table: tDict[Type['Expr'], Callable[['Expr', int, OPT_DICT], TMP_RES]] = {}
1387
+
1388
+
1389
+ def _create_evalf_table():
1390
+ global evalf_table
1391
+ from sympy.concrete.products import Product
1392
+ from sympy.concrete.summations import Sum
1393
+ from .add import Add
1394
+ from .mul import Mul
1395
+ from .numbers import Exp1, Float, Half, ImaginaryUnit, Integer, NaN, NegativeOne, One, Pi, Rational, \
1396
+ Zero, ComplexInfinity, AlgebraicNumber
1397
+ from .power import Pow
1398
+ from .symbol import Dummy, Symbol
1399
+ from sympy.functions.elementary.complexes import Abs, im, re
1400
+ from sympy.functions.elementary.exponential import exp, log
1401
+ from sympy.functions.elementary.integers import ceiling, floor
1402
+ from sympy.functions.elementary.piecewise import Piecewise
1403
+ from sympy.functions.elementary.trigonometric import atan, cos, sin
1404
+ from sympy.integrals.integrals import Integral
1405
+ evalf_table = {
1406
+ Symbol: evalf_symbol,
1407
+ Dummy: evalf_symbol,
1408
+ Float: evalf_float,
1409
+ Rational: evalf_rational,
1410
+ Integer: evalf_integer,
1411
+ Zero: lambda x, prec, options: (None, None, prec, None),
1412
+ One: lambda x, prec, options: (fone, None, prec, None),
1413
+ Half: lambda x, prec, options: (fhalf, None, prec, None),
1414
+ Pi: lambda x, prec, options: (mpf_pi(prec), None, prec, None),
1415
+ Exp1: lambda x, prec, options: (mpf_e(prec), None, prec, None),
1416
+ ImaginaryUnit: lambda x, prec, options: (None, fone, None, prec),
1417
+ NegativeOne: lambda x, prec, options: (fnone, None, prec, None),
1418
+ ComplexInfinity: lambda x, prec, options: S.ComplexInfinity,
1419
+ NaN: lambda x, prec, options: (fnan, None, prec, None),
1420
+
1421
+ exp: evalf_exp,
1422
+
1423
+ cos: evalf_trig,
1424
+ sin: evalf_trig,
1425
+
1426
+ Add: evalf_add,
1427
+ Mul: evalf_mul,
1428
+ Pow: evalf_pow,
1429
+
1430
+ log: evalf_log,
1431
+ atan: evalf_atan,
1432
+ Abs: evalf_abs,
1433
+
1434
+ re: evalf_re,
1435
+ im: evalf_im,
1436
+ floor: evalf_floor,
1437
+ ceiling: evalf_ceiling,
1438
+
1439
+ Integral: evalf_integral,
1440
+ Sum: evalf_sum,
1441
+ Product: evalf_prod,
1442
+ Piecewise: evalf_piecewise,
1443
+
1444
+ AlgebraicNumber: evalf_alg_num,
1445
+ }
1446
+
1447
+
1448
+ def evalf(x: 'Expr', prec: int, options: OPT_DICT) -> TMP_RES:
1449
+ """
1450
+ Evaluate the ``Expr`` instance, ``x``
1451
+ to a binary precision of ``prec``. This
1452
+ function is supposed to be used internally.
1453
+
1454
+ Parameters
1455
+ ==========
1456
+
1457
+ x : Expr
1458
+ The formula to evaluate to a float.
1459
+ prec : int
1460
+ The binary precision that the output should have.
1461
+ options : dict
1462
+ A dictionary with the same entries as
1463
+ ``EvalfMixin.evalf`` and in addition,
1464
+ ``maxprec`` which is the maximum working precision.
1465
+
1466
+ Returns
1467
+ =======
1468
+
1469
+ An optional tuple, ``(re, im, re_acc, im_acc)``
1470
+ which are the real, imaginary, real accuracy
1471
+ and imaginary accuracy respectively. ``re`` is
1472
+ an mpf value tuple and so is ``im``. ``re_acc``
1473
+ and ``im_acc`` are ints.
1474
+
1475
+ NB: all these return values can be ``None``.
1476
+ If all values are ``None``, then that represents 0.
1477
+ Note that 0 is also represented as ``fzero = (0, 0, 0, 0)``.
1478
+ """
1479
+ from sympy.functions.elementary.complexes import re as re_, im as im_
1480
+ try:
1481
+ rf = evalf_table[type(x)]
1482
+ r = rf(x, prec, options)
1483
+ except KeyError:
1484
+ # Fall back to ordinary evalf if possible
1485
+ if 'subs' in options:
1486
+ x = x.subs(evalf_subs(prec, options['subs']))
1487
+ xe = x._eval_evalf(prec)
1488
+ if xe is None:
1489
+ raise NotImplementedError
1490
+ as_real_imag = getattr(xe, "as_real_imag", None)
1491
+ if as_real_imag is None:
1492
+ raise NotImplementedError # e.g. FiniteSet(-1.0, 1.0).evalf()
1493
+ re, im = as_real_imag()
1494
+ if re.has(re_) or im.has(im_):
1495
+ raise NotImplementedError
1496
+ if re == 0.0:
1497
+ re = None
1498
+ reprec = None
1499
+ elif re.is_number:
1500
+ re = re._to_mpmath(prec, allow_ints=False)._mpf_
1501
+ reprec = prec
1502
+ else:
1503
+ raise NotImplementedError
1504
+ if im == 0.0:
1505
+ im = None
1506
+ imprec = None
1507
+ elif im.is_number:
1508
+ im = im._to_mpmath(prec, allow_ints=False)._mpf_
1509
+ imprec = prec
1510
+ else:
1511
+ raise NotImplementedError
1512
+ r = re, im, reprec, imprec
1513
+
1514
+ if options.get("verbose"):
1515
+ print("### input", x)
1516
+ print("### output", to_str(r[0] or fzero, 50) if isinstance(r, tuple) else r)
1517
+ print("### raw", r) # r[0], r[2]
1518
+ print()
1519
+ chop = options.get('chop', False)
1520
+ if chop:
1521
+ if chop is True:
1522
+ chop_prec = prec
1523
+ else:
1524
+ # convert (approximately) from given tolerance;
1525
+ # the formula here will will make 1e-i rounds to 0 for
1526
+ # i in the range +/-27 while 2e-i will not be chopped
1527
+ chop_prec = int(round(-3.321*math.log10(chop) + 2.5))
1528
+ if chop_prec == 3:
1529
+ chop_prec -= 1
1530
+ r = chop_parts(r, chop_prec)
1531
+ if options.get("strict"):
1532
+ check_target(x, r, prec)
1533
+ return r
1534
+
1535
+
1536
+ def quad_to_mpmath(q, ctx=None):
1537
+ """Turn the quad returned by ``evalf`` into an ``mpf`` or ``mpc``. """
1538
+ mpc = make_mpc if ctx is None else ctx.make_mpc
1539
+ mpf = make_mpf if ctx is None else ctx.make_mpf
1540
+ if q is S.ComplexInfinity:
1541
+ raise NotImplementedError
1542
+ re, im, _, _ = q
1543
+ if im:
1544
+ if not re:
1545
+ re = fzero
1546
+ return mpc((re, im))
1547
+ elif re:
1548
+ return mpf(re)
1549
+ else:
1550
+ return mpf(fzero)
1551
+
1552
+
1553
+ class EvalfMixin:
1554
+ """Mixin class adding evalf capability."""
1555
+
1556
+ __slots__ = () # type: tTuple[str, ...]
1557
+
1558
+ def evalf(self, n=15, subs=None, maxn=100, chop=False, strict=False, quad=None, verbose=False):
1559
+ """
1560
+ Evaluate the given formula to an accuracy of *n* digits.
1561
+
1562
+ Parameters
1563
+ ==========
1564
+
1565
+ subs : dict, optional
1566
+ Substitute numerical values for symbols, e.g.
1567
+ ``subs={x:3, y:1+pi}``. The substitutions must be given as a
1568
+ dictionary.
1569
+
1570
+ maxn : int, optional
1571
+ Allow a maximum temporary working precision of maxn digits.
1572
+
1573
+ chop : bool or number, optional
1574
+ Specifies how to replace tiny real or imaginary parts in
1575
+ subresults by exact zeros.
1576
+
1577
+ When ``True`` the chop value defaults to standard precision.
1578
+
1579
+ Otherwise the chop value is used to determine the
1580
+ magnitude of "small" for purposes of chopping.
1581
+
1582
+ >>> from sympy import N
1583
+ >>> x = 1e-4
1584
+ >>> N(x, chop=True)
1585
+ 0.000100000000000000
1586
+ >>> N(x, chop=1e-5)
1587
+ 0.000100000000000000
1588
+ >>> N(x, chop=1e-4)
1589
+ 0
1590
+
1591
+ strict : bool, optional
1592
+ Raise ``PrecisionExhausted`` if any subresult fails to
1593
+ evaluate to full accuracy, given the available maxprec.
1594
+
1595
+ quad : str, optional
1596
+ Choose algorithm for numerical quadrature. By default,
1597
+ tanh-sinh quadrature is used. For oscillatory
1598
+ integrals on an infinite interval, try ``quad='osc'``.
1599
+
1600
+ verbose : bool, optional
1601
+ Print debug information.
1602
+
1603
+ Notes
1604
+ =====
1605
+
1606
+ When Floats are naively substituted into an expression,
1607
+ precision errors may adversely affect the result. For example,
1608
+ adding 1e16 (a Float) to 1 will truncate to 1e16; if 1e16 is
1609
+ then subtracted, the result will be 0.
1610
+ That is exactly what happens in the following:
1611
+
1612
+ >>> from sympy.abc import x, y, z
1613
+ >>> values = {x: 1e16, y: 1, z: 1e16}
1614
+ >>> (x + y - z).subs(values)
1615
+ 0
1616
+
1617
+ Using the subs argument for evalf is the accurate way to
1618
+ evaluate such an expression:
1619
+
1620
+ >>> (x + y - z).evalf(subs=values)
1621
+ 1.00000000000000
1622
+ """
1623
+ from .numbers import Float, Number
1624
+ n = n if n is not None else 15
1625
+
1626
+ if subs and is_sequence(subs):
1627
+ raise TypeError('subs must be given as a dictionary')
1628
+
1629
+ # for sake of sage that doesn't like evalf(1)
1630
+ if n == 1 and isinstance(self, Number):
1631
+ from .expr import _mag
1632
+ rv = self.evalf(2, subs, maxn, chop, strict, quad, verbose)
1633
+ m = _mag(rv)
1634
+ rv = rv.round(1 - m)
1635
+ return rv
1636
+
1637
+ if not evalf_table:
1638
+ _create_evalf_table()
1639
+ prec = dps_to_prec(n)
1640
+ options = {'maxprec': max(prec, int(maxn*LG10)), 'chop': chop,
1641
+ 'strict': strict, 'verbose': verbose}
1642
+ if subs is not None:
1643
+ options['subs'] = subs
1644
+ if quad is not None:
1645
+ options['quad'] = quad
1646
+ try:
1647
+ result = evalf(self, prec + 4, options)
1648
+ except NotImplementedError:
1649
+ # Fall back to the ordinary evalf
1650
+ if hasattr(self, 'subs') and subs is not None: # issue 20291
1651
+ v = self.subs(subs)._eval_evalf(prec)
1652
+ else:
1653
+ v = self._eval_evalf(prec)
1654
+ if v is None:
1655
+ return self
1656
+ elif not v.is_number:
1657
+ return v
1658
+ try:
1659
+ # If the result is numerical, normalize it
1660
+ result = evalf(v, prec, options)
1661
+ except NotImplementedError:
1662
+ # Probably contains symbols or unknown functions
1663
+ return v
1664
+ if result is S.ComplexInfinity:
1665
+ return result
1666
+ re, im, re_acc, im_acc = result
1667
+ if re is S.NaN or im is S.NaN:
1668
+ return S.NaN
1669
+ if re:
1670
+ p = max(min(prec, re_acc), 1)
1671
+ re = Float._new(re, p)
1672
+ else:
1673
+ re = S.Zero
1674
+ if im:
1675
+ p = max(min(prec, im_acc), 1)
1676
+ im = Float._new(im, p)
1677
+ return re + im*S.ImaginaryUnit
1678
+ else:
1679
+ return re
1680
+
1681
+ n = evalf
1682
+
1683
+ def _evalf(self, prec):
1684
+ """Helper for evalf. Does the same thing but takes binary precision"""
1685
+ r = self._eval_evalf(prec)
1686
+ if r is None:
1687
+ r = self
1688
+ return r
1689
+
1690
+ def _eval_evalf(self, prec):
1691
+ return
1692
+
1693
+ def _to_mpmath(self, prec, allow_ints=True):
1694
+ # mpmath functions accept ints as input
1695
+ errmsg = "cannot convert to mpmath number"
1696
+ if allow_ints and self.is_Integer:
1697
+ return self.p
1698
+ if hasattr(self, '_as_mpf_val'):
1699
+ return make_mpf(self._as_mpf_val(prec))
1700
+ try:
1701
+ result = evalf(self, prec, {})
1702
+ return quad_to_mpmath(result)
1703
+ except NotImplementedError:
1704
+ v = self._eval_evalf(prec)
1705
+ if v is None:
1706
+ raise ValueError(errmsg)
1707
+ if v.is_Float:
1708
+ return make_mpf(v._mpf_)
1709
+ # Number + Number*I is also fine
1710
+ re, im = v.as_real_imag()
1711
+ if allow_ints and re.is_Integer:
1712
+ re = from_int(re.p)
1713
+ elif re.is_Float:
1714
+ re = re._mpf_
1715
+ else:
1716
+ raise ValueError(errmsg)
1717
+ if allow_ints and im.is_Integer:
1718
+ im = from_int(im.p)
1719
+ elif im.is_Float:
1720
+ im = im._mpf_
1721
+ else:
1722
+ raise ValueError(errmsg)
1723
+ return make_mpc((re, im))
1724
+
1725
+
1726
+ def N(x, n=15, **options):
1727
+ r"""
1728
+ Calls x.evalf(n, \*\*options).
1729
+
1730
+ Explanations
1731
+ ============
1732
+
1733
+ Both .n() and N() are equivalent to .evalf(); use the one that you like better.
1734
+ See also the docstring of .evalf() for information on the options.
1735
+
1736
+ Examples
1737
+ ========
1738
+
1739
+ >>> from sympy import Sum, oo, N
1740
+ >>> from sympy.abc import k
1741
+ >>> Sum(1/k**k, (k, 1, oo))
1742
+ Sum(k**(-k), (k, 1, oo))
1743
+ >>> N(_, 4)
1744
+ 1.291
1745
+
1746
+ """
1747
+ # by using rational=True, any evaluation of a string
1748
+ # will be done using exact values for the Floats
1749
+ return sympify(x, rational=True).evalf(n, **options)
1750
+
1751
+
1752
+ def _evalf_with_bounded_error(x: 'Expr', eps: 'Optional[Expr]' = None,
1753
+ m: int = 0,
1754
+ options: Optional[OPT_DICT] = None) -> TMP_RES:
1755
+ """
1756
+ Evaluate *x* to within a bounded absolute error.
1757
+
1758
+ Parameters
1759
+ ==========
1760
+
1761
+ x : Expr
1762
+ The quantity to be evaluated.
1763
+ eps : Expr, None, optional (default=None)
1764
+ Positive real upper bound on the acceptable error.
1765
+ m : int, optional (default=0)
1766
+ If *eps* is None, then use 2**(-m) as the upper bound on the error.
1767
+ options: OPT_DICT
1768
+ As in the ``evalf`` function.
1769
+
1770
+ Returns
1771
+ =======
1772
+
1773
+ A tuple ``(re, im, re_acc, im_acc)``, as returned by ``evalf``.
1774
+
1775
+ See Also
1776
+ ========
1777
+
1778
+ evalf
1779
+
1780
+ """
1781
+ if eps is not None:
1782
+ if not (eps.is_Rational or eps.is_Float) or not eps > 0:
1783
+ raise ValueError("eps must be positive")
1784
+ r, _, _, _ = evalf(1/eps, 1, {})
1785
+ m = fastlog(r)
1786
+
1787
+ c, d, _, _ = evalf(x, 1, {})
1788
+ # Note: If x = a + b*I, then |a| <= 2|c| and |b| <= 2|d|, with equality
1789
+ # only in the zero case.
1790
+ # If a is non-zero, then |c| = 2**nc for some integer nc, and c has
1791
+ # bitcount 1. Therefore 2**fastlog(c) = 2**(nc+1) = 2|c| is an upper bound
1792
+ # on |a|. Likewise for b and d.
1793
+ nr, ni = fastlog(c), fastlog(d)
1794
+ n = max(nr, ni) + 1
1795
+ # If x is 0, then n is MINUS_INF, and p will be 1. Otherwise,
1796
+ # n - 1 bits get us past the integer parts of a and b, and +1 accounts for
1797
+ # the factor of <= sqrt(2) that is |x|/max(|a|, |b|).
1798
+ p = max(1, m + n + 1)
1799
+
1800
+ options = options or {}
1801
+ return evalf(x, p, options)
llmeval-env/lib/python3.10/site-packages/sympy/core/exprtools.py ADDED
@@ -0,0 +1,1569 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Tools for manipulating of large commutative expressions. """
2
+
3
+ from .add import Add
4
+ from .mul import Mul, _keep_coeff
5
+ from .power import Pow
6
+ from .basic import Basic
7
+ from .expr import Expr
8
+ from .function import expand_power_exp
9
+ from .sympify import sympify
10
+ from .numbers import Rational, Integer, Number, I, equal_valued
11
+ from .singleton import S
12
+ from .sorting import default_sort_key, ordered
13
+ from .symbol import Dummy
14
+ from .traversal import preorder_traversal
15
+ from .coreerrors import NonCommutativeExpression
16
+ from .containers import Tuple, Dict
17
+ from sympy.external.gmpy import SYMPY_INTS
18
+ from sympy.utilities.iterables import (common_prefix, common_suffix,
19
+ variations, iterable, is_sequence)
20
+
21
+ from collections import defaultdict
22
+ from typing import Tuple as tTuple
23
+
24
+
25
+ _eps = Dummy(positive=True)
26
+
27
+
28
+ def _isnumber(i):
29
+ return isinstance(i, (SYMPY_INTS, float)) or i.is_Number
30
+
31
+
32
+ def _monotonic_sign(self):
33
+ """Return the value closest to 0 that ``self`` may have if all symbols
34
+ are signed and the result is uniformly the same sign for all values of symbols.
35
+ If a symbol is only signed but not known to be an
36
+ integer or the result is 0 then a symbol representative of the sign of self
37
+ will be returned. Otherwise, None is returned if a) the sign could be positive
38
+ or negative or b) self is not in one of the following forms:
39
+
40
+ - L(x, y, ...) + A: a function linear in all symbols x, y, ... with an
41
+ additive constant; if A is zero then the function can be a monomial whose
42
+ sign is monotonic over the range of the variables, e.g. (x + 1)**3 if x is
43
+ nonnegative.
44
+ - A/L(x, y, ...) + B: the inverse of a function linear in all symbols x, y, ...
45
+ that does not have a sign change from positive to negative for any set
46
+ of values for the variables.
47
+ - M(x, y, ...) + A: a monomial M whose factors are all signed and a constant, A.
48
+ - A/M(x, y, ...) + B: the inverse of a monomial and constants A and B.
49
+ - P(x): a univariate polynomial
50
+
51
+ Examples
52
+ ========
53
+
54
+ >>> from sympy.core.exprtools import _monotonic_sign as F
55
+ >>> from sympy import Dummy
56
+ >>> nn = Dummy(integer=True, nonnegative=True)
57
+ >>> p = Dummy(integer=True, positive=True)
58
+ >>> p2 = Dummy(integer=True, positive=True)
59
+ >>> F(nn + 1)
60
+ 1
61
+ >>> F(p - 1)
62
+ _nneg
63
+ >>> F(nn*p + 1)
64
+ 1
65
+ >>> F(p2*p + 1)
66
+ 2
67
+ >>> F(nn - 1) # could be negative, zero or positive
68
+ """
69
+ if not self.is_extended_real:
70
+ return
71
+
72
+ if (-self).is_Symbol:
73
+ rv = _monotonic_sign(-self)
74
+ return rv if rv is None else -rv
75
+
76
+ if not self.is_Add and self.as_numer_denom()[1].is_number:
77
+ s = self
78
+ if s.is_prime:
79
+ if s.is_odd:
80
+ return Integer(3)
81
+ else:
82
+ return Integer(2)
83
+ elif s.is_composite:
84
+ if s.is_odd:
85
+ return Integer(9)
86
+ else:
87
+ return Integer(4)
88
+ elif s.is_positive:
89
+ if s.is_even:
90
+ if s.is_prime is False:
91
+ return Integer(4)
92
+ else:
93
+ return Integer(2)
94
+ elif s.is_integer:
95
+ return S.One
96
+ else:
97
+ return _eps
98
+ elif s.is_extended_negative:
99
+ if s.is_even:
100
+ return Integer(-2)
101
+ elif s.is_integer:
102
+ return S.NegativeOne
103
+ else:
104
+ return -_eps
105
+ if s.is_zero or s.is_extended_nonpositive or s.is_extended_nonnegative:
106
+ return S.Zero
107
+ return None
108
+
109
+ # univariate polynomial
110
+ free = self.free_symbols
111
+ if len(free) == 1:
112
+ if self.is_polynomial():
113
+ from sympy.polys.polytools import real_roots
114
+ from sympy.polys.polyroots import roots
115
+ from sympy.polys.polyerrors import PolynomialError
116
+ x = free.pop()
117
+ x0 = _monotonic_sign(x)
118
+ if x0 in (_eps, -_eps):
119
+ x0 = S.Zero
120
+ if x0 is not None:
121
+ d = self.diff(x)
122
+ if d.is_number:
123
+ currentroots = []
124
+ else:
125
+ try:
126
+ currentroots = real_roots(d)
127
+ except (PolynomialError, NotImplementedError):
128
+ currentroots = [r for r in roots(d, x) if r.is_extended_real]
129
+ y = self.subs(x, x0)
130
+ if x.is_nonnegative and all(
131
+ (r - x0).is_nonpositive for r in currentroots):
132
+ if y.is_nonnegative and d.is_positive:
133
+ if y:
134
+ return y if y.is_positive else Dummy('pos', positive=True)
135
+ else:
136
+ return Dummy('nneg', nonnegative=True)
137
+ if y.is_nonpositive and d.is_negative:
138
+ if y:
139
+ return y if y.is_negative else Dummy('neg', negative=True)
140
+ else:
141
+ return Dummy('npos', nonpositive=True)
142
+ elif x.is_nonpositive and all(
143
+ (r - x0).is_nonnegative for r in currentroots):
144
+ if y.is_nonnegative and d.is_negative:
145
+ if y:
146
+ return Dummy('pos', positive=True)
147
+ else:
148
+ return Dummy('nneg', nonnegative=True)
149
+ if y.is_nonpositive and d.is_positive:
150
+ if y:
151
+ return Dummy('neg', negative=True)
152
+ else:
153
+ return Dummy('npos', nonpositive=True)
154
+ else:
155
+ n, d = self.as_numer_denom()
156
+ den = None
157
+ if n.is_number:
158
+ den = _monotonic_sign(d)
159
+ elif not d.is_number:
160
+ if _monotonic_sign(n) is not None:
161
+ den = _monotonic_sign(d)
162
+ if den is not None and (den.is_positive or den.is_negative):
163
+ v = n*den
164
+ if v.is_positive:
165
+ return Dummy('pos', positive=True)
166
+ elif v.is_nonnegative:
167
+ return Dummy('nneg', nonnegative=True)
168
+ elif v.is_negative:
169
+ return Dummy('neg', negative=True)
170
+ elif v.is_nonpositive:
171
+ return Dummy('npos', nonpositive=True)
172
+ return None
173
+
174
+ # multivariate
175
+ c, a = self.as_coeff_Add()
176
+ v = None
177
+ if not a.is_polynomial():
178
+ # F/A or A/F where A is a number and F is a signed, rational monomial
179
+ n, d = a.as_numer_denom()
180
+ if not (n.is_number or d.is_number):
181
+ return
182
+ if (
183
+ a.is_Mul or a.is_Pow) and \
184
+ a.is_rational and \
185
+ all(p.exp.is_Integer for p in a.atoms(Pow) if p.is_Pow) and \
186
+ (a.is_positive or a.is_negative):
187
+ v = S.One
188
+ for ai in Mul.make_args(a):
189
+ if ai.is_number:
190
+ v *= ai
191
+ continue
192
+ reps = {}
193
+ for x in ai.free_symbols:
194
+ reps[x] = _monotonic_sign(x)
195
+ if reps[x] is None:
196
+ return
197
+ v *= ai.subs(reps)
198
+ elif c:
199
+ # signed linear expression
200
+ if not any(p for p in a.atoms(Pow) if not p.is_number) and (a.is_nonpositive or a.is_nonnegative):
201
+ free = list(a.free_symbols)
202
+ p = {}
203
+ for i in free:
204
+ v = _monotonic_sign(i)
205
+ if v is None:
206
+ return
207
+ p[i] = v or (_eps if i.is_nonnegative else -_eps)
208
+ v = a.xreplace(p)
209
+ if v is not None:
210
+ rv = v + c
211
+ if v.is_nonnegative and rv.is_positive:
212
+ return rv.subs(_eps, 0)
213
+ if v.is_nonpositive and rv.is_negative:
214
+ return rv.subs(_eps, 0)
215
+
216
+
217
+ def decompose_power(expr: Expr) -> tTuple[Expr, int]:
218
+ """
219
+ Decompose power into symbolic base and integer exponent.
220
+
221
+ Examples
222
+ ========
223
+
224
+ >>> from sympy.core.exprtools import decompose_power
225
+ >>> from sympy.abc import x, y
226
+ >>> from sympy import exp
227
+
228
+ >>> decompose_power(x)
229
+ (x, 1)
230
+ >>> decompose_power(x**2)
231
+ (x, 2)
232
+ >>> decompose_power(exp(2*y/3))
233
+ (exp(y/3), 2)
234
+
235
+ """
236
+ base, exp = expr.as_base_exp()
237
+
238
+ if exp.is_Number:
239
+ if exp.is_Rational:
240
+ if not exp.is_Integer:
241
+ base = Pow(base, Rational(1, exp.q)) # type: ignore
242
+ e = exp.p # type: ignore
243
+ else:
244
+ base, e = expr, 1
245
+ else:
246
+ exp, tail = exp.as_coeff_Mul(rational=True)
247
+
248
+ if exp is S.NegativeOne:
249
+ base, e = Pow(base, tail), -1
250
+ elif exp is not S.One:
251
+ # todo: after dropping python 3.7 support, use overload and Literal
252
+ # in as_coeff_Mul to make exp Rational, and remove these 2 ignores
253
+ tail = _keep_coeff(Rational(1, exp.q), tail) # type: ignore
254
+ base, e = Pow(base, tail), exp.p # type: ignore
255
+ else:
256
+ base, e = expr, 1
257
+
258
+ return base, e
259
+
260
+
261
+ def decompose_power_rat(expr: Expr) -> tTuple[Expr, Rational]:
262
+ """
263
+ Decompose power into symbolic base and rational exponent;
264
+ if the exponent is not a Rational, then separate only the
265
+ integer coefficient.
266
+
267
+ Examples
268
+ ========
269
+
270
+ >>> from sympy.core.exprtools import decompose_power_rat
271
+ >>> from sympy.abc import x
272
+ >>> from sympy import sqrt, exp
273
+
274
+ >>> decompose_power_rat(sqrt(x))
275
+ (x, 1/2)
276
+ >>> decompose_power_rat(exp(-3*x/2))
277
+ (exp(x/2), -3)
278
+
279
+ """
280
+ _ = base, exp = expr.as_base_exp()
281
+ return _ if exp.is_Rational else decompose_power(expr)
282
+
283
+
284
+ class Factors:
285
+ """Efficient representation of ``f_1*f_2*...*f_n``."""
286
+
287
+ __slots__ = ('factors', 'gens')
288
+
289
+ def __init__(self, factors=None): # Factors
290
+ """Initialize Factors from dict or expr.
291
+
292
+ Examples
293
+ ========
294
+
295
+ >>> from sympy.core.exprtools import Factors
296
+ >>> from sympy.abc import x
297
+ >>> from sympy import I
298
+ >>> e = 2*x**3
299
+ >>> Factors(e)
300
+ Factors({2: 1, x: 3})
301
+ >>> Factors(e.as_powers_dict())
302
+ Factors({2: 1, x: 3})
303
+ >>> f = _
304
+ >>> f.factors # underlying dictionary
305
+ {2: 1, x: 3}
306
+ >>> f.gens # base of each factor
307
+ frozenset({2, x})
308
+ >>> Factors(0)
309
+ Factors({0: 1})
310
+ >>> Factors(I)
311
+ Factors({I: 1})
312
+
313
+ Notes
314
+ =====
315
+
316
+ Although a dictionary can be passed, only minimal checking is
317
+ performed: powers of -1 and I are made canonical.
318
+
319
+ """
320
+ if isinstance(factors, (SYMPY_INTS, float)):
321
+ factors = S(factors)
322
+ if isinstance(factors, Factors):
323
+ factors = factors.factors.copy()
324
+ elif factors in (None, S.One):
325
+ factors = {}
326
+ elif factors is S.Zero or factors == 0:
327
+ factors = {S.Zero: S.One}
328
+ elif isinstance(factors, Number):
329
+ n = factors
330
+ factors = {}
331
+ if n < 0:
332
+ factors[S.NegativeOne] = S.One
333
+ n = -n
334
+ if n is not S.One:
335
+ if n.is_Float or n.is_Integer or n is S.Infinity:
336
+ factors[n] = S.One
337
+ elif n.is_Rational:
338
+ # since we're processing Numbers, the denominator is
339
+ # stored with a negative exponent; all other factors
340
+ # are left .
341
+ if n.p != 1:
342
+ factors[Integer(n.p)] = S.One
343
+ factors[Integer(n.q)] = S.NegativeOne
344
+ else:
345
+ raise ValueError('Expected Float|Rational|Integer, not %s' % n)
346
+ elif isinstance(factors, Basic) and not factors.args:
347
+ factors = {factors: S.One}
348
+ elif isinstance(factors, Expr):
349
+ c, nc = factors.args_cnc()
350
+ i = c.count(I)
351
+ for _ in range(i):
352
+ c.remove(I)
353
+ factors = dict(Mul._from_args(c).as_powers_dict())
354
+ # Handle all rational Coefficients
355
+ for f in list(factors.keys()):
356
+ if isinstance(f, Rational) and not isinstance(f, Integer):
357
+ p, q = Integer(f.p), Integer(f.q)
358
+ factors[p] = (factors[p] if p in factors else S.Zero) + factors[f]
359
+ factors[q] = (factors[q] if q in factors else S.Zero) - factors[f]
360
+ factors.pop(f)
361
+ if i:
362
+ factors[I] = factors.get(I, S.Zero) + i
363
+ if nc:
364
+ factors[Mul(*nc, evaluate=False)] = S.One
365
+ else:
366
+ factors = factors.copy() # /!\ should be dict-like
367
+
368
+ # tidy up -/+1 and I exponents if Rational
369
+
370
+ handle = [k for k in factors if k is I or k in (-1, 1)]
371
+ if handle:
372
+ i1 = S.One
373
+ for k in handle:
374
+ if not _isnumber(factors[k]):
375
+ continue
376
+ i1 *= k**factors.pop(k)
377
+ if i1 is not S.One:
378
+ for a in i1.args if i1.is_Mul else [i1]: # at worst, -1.0*I*(-1)**e
379
+ if a is S.NegativeOne:
380
+ factors[a] = S.One
381
+ elif a is I:
382
+ factors[I] = S.One
383
+ elif a.is_Pow:
384
+ factors[a.base] = factors.get(a.base, S.Zero) + a.exp
385
+ elif equal_valued(a, 1):
386
+ factors[a] = S.One
387
+ elif equal_valued(a, -1):
388
+ factors[-a] = S.One
389
+ factors[S.NegativeOne] = S.One
390
+ else:
391
+ raise ValueError('unexpected factor in i1: %s' % a)
392
+
393
+ self.factors = factors
394
+ keys = getattr(factors, 'keys', None)
395
+ if keys is None:
396
+ raise TypeError('expecting Expr or dictionary')
397
+ self.gens = frozenset(keys())
398
+
399
+ def __hash__(self): # Factors
400
+ keys = tuple(ordered(self.factors.keys()))
401
+ values = [self.factors[k] for k in keys]
402
+ return hash((keys, values))
403
+
404
+ def __repr__(self): # Factors
405
+ return "Factors({%s})" % ', '.join(
406
+ ['%s: %s' % (k, v) for k, v in ordered(self.factors.items())])
407
+
408
+ @property
409
+ def is_zero(self): # Factors
410
+ """
411
+ >>> from sympy.core.exprtools import Factors
412
+ >>> Factors(0).is_zero
413
+ True
414
+ """
415
+ f = self.factors
416
+ return len(f) == 1 and S.Zero in f
417
+
418
+ @property
419
+ def is_one(self): # Factors
420
+ """
421
+ >>> from sympy.core.exprtools import Factors
422
+ >>> Factors(1).is_one
423
+ True
424
+ """
425
+ return not self.factors
426
+
427
+ def as_expr(self): # Factors
428
+ """Return the underlying expression.
429
+
430
+ Examples
431
+ ========
432
+
433
+ >>> from sympy.core.exprtools import Factors
434
+ >>> from sympy.abc import x, y
435
+ >>> Factors((x*y**2).as_powers_dict()).as_expr()
436
+ x*y**2
437
+
438
+ """
439
+
440
+ args = []
441
+ for factor, exp in self.factors.items():
442
+ if exp != 1:
443
+ if isinstance(exp, Integer):
444
+ b, e = factor.as_base_exp()
445
+ e = _keep_coeff(exp, e)
446
+ args.append(b**e)
447
+ else:
448
+ args.append(factor**exp)
449
+ else:
450
+ args.append(factor)
451
+ return Mul(*args)
452
+
453
+ def mul(self, other): # Factors
454
+ """Return Factors of ``self * other``.
455
+
456
+ Examples
457
+ ========
458
+
459
+ >>> from sympy.core.exprtools import Factors
460
+ >>> from sympy.abc import x, y, z
461
+ >>> a = Factors((x*y**2).as_powers_dict())
462
+ >>> b = Factors((x*y/z).as_powers_dict())
463
+ >>> a.mul(b)
464
+ Factors({x: 2, y: 3, z: -1})
465
+ >>> a*b
466
+ Factors({x: 2, y: 3, z: -1})
467
+ """
468
+ if not isinstance(other, Factors):
469
+ other = Factors(other)
470
+ if any(f.is_zero for f in (self, other)):
471
+ return Factors(S.Zero)
472
+ factors = dict(self.factors)
473
+
474
+ for factor, exp in other.factors.items():
475
+ if factor in factors:
476
+ exp = factors[factor] + exp
477
+
478
+ if not exp:
479
+ del factors[factor]
480
+ continue
481
+
482
+ factors[factor] = exp
483
+
484
+ return Factors(factors)
485
+
486
+ def normal(self, other):
487
+ """Return ``self`` and ``other`` with ``gcd`` removed from each.
488
+ The only differences between this and method ``div`` is that this
489
+ is 1) optimized for the case when there are few factors in common and
490
+ 2) this does not raise an error if ``other`` is zero.
491
+
492
+ See Also
493
+ ========
494
+ div
495
+
496
+ """
497
+ if not isinstance(other, Factors):
498
+ other = Factors(other)
499
+ if other.is_zero:
500
+ return (Factors(), Factors(S.Zero))
501
+ if self.is_zero:
502
+ return (Factors(S.Zero), Factors())
503
+
504
+ self_factors = dict(self.factors)
505
+ other_factors = dict(other.factors)
506
+
507
+ for factor, self_exp in self.factors.items():
508
+ try:
509
+ other_exp = other.factors[factor]
510
+ except KeyError:
511
+ continue
512
+
513
+ exp = self_exp - other_exp
514
+
515
+ if not exp:
516
+ del self_factors[factor]
517
+ del other_factors[factor]
518
+ elif _isnumber(exp):
519
+ if exp > 0:
520
+ self_factors[factor] = exp
521
+ del other_factors[factor]
522
+ else:
523
+ del self_factors[factor]
524
+ other_factors[factor] = -exp
525
+ else:
526
+ r = self_exp.extract_additively(other_exp)
527
+ if r is not None:
528
+ if r:
529
+ self_factors[factor] = r
530
+ del other_factors[factor]
531
+ else: # should be handled already
532
+ del self_factors[factor]
533
+ del other_factors[factor]
534
+ else:
535
+ sc, sa = self_exp.as_coeff_Add()
536
+ if sc:
537
+ oc, oa = other_exp.as_coeff_Add()
538
+ diff = sc - oc
539
+ if diff > 0:
540
+ self_factors[factor] -= oc
541
+ other_exp = oa
542
+ elif diff < 0:
543
+ self_factors[factor] -= sc
544
+ other_factors[factor] -= sc
545
+ other_exp = oa - diff
546
+ else:
547
+ self_factors[factor] = sa
548
+ other_exp = oa
549
+ if other_exp:
550
+ other_factors[factor] = other_exp
551
+ else:
552
+ del other_factors[factor]
553
+
554
+ return Factors(self_factors), Factors(other_factors)
555
+
556
+ def div(self, other): # Factors
557
+ """Return ``self`` and ``other`` with ``gcd`` removed from each.
558
+ This is optimized for the case when there are many factors in common.
559
+
560
+ Examples
561
+ ========
562
+
563
+ >>> from sympy.core.exprtools import Factors
564
+ >>> from sympy.abc import x, y, z
565
+ >>> from sympy import S
566
+
567
+ >>> a = Factors((x*y**2).as_powers_dict())
568
+ >>> a.div(a)
569
+ (Factors({}), Factors({}))
570
+ >>> a.div(x*z)
571
+ (Factors({y: 2}), Factors({z: 1}))
572
+
573
+ The ``/`` operator only gives ``quo``:
574
+
575
+ >>> a/x
576
+ Factors({y: 2})
577
+
578
+ Factors treats its factors as though they are all in the numerator, so
579
+ if you violate this assumption the results will be correct but will
580
+ not strictly correspond to the numerator and denominator of the ratio:
581
+
582
+ >>> a.div(x/z)
583
+ (Factors({y: 2}), Factors({z: -1}))
584
+
585
+ Factors is also naive about bases: it does not attempt any denesting
586
+ of Rational-base terms, for example the following does not become
587
+ 2**(2*x)/2.
588
+
589
+ >>> Factors(2**(2*x + 2)).div(S(8))
590
+ (Factors({2: 2*x + 2}), Factors({8: 1}))
591
+
592
+ factor_terms can clean up such Rational-bases powers:
593
+
594
+ >>> from sympy import factor_terms
595
+ >>> n, d = Factors(2**(2*x + 2)).div(S(8))
596
+ >>> n.as_expr()/d.as_expr()
597
+ 2**(2*x + 2)/8
598
+ >>> factor_terms(_)
599
+ 2**(2*x)/2
600
+
601
+ """
602
+ quo, rem = dict(self.factors), {}
603
+
604
+ if not isinstance(other, Factors):
605
+ other = Factors(other)
606
+ if other.is_zero:
607
+ raise ZeroDivisionError
608
+ if self.is_zero:
609
+ return (Factors(S.Zero), Factors())
610
+
611
+ for factor, exp in other.factors.items():
612
+ if factor in quo:
613
+ d = quo[factor] - exp
614
+ if _isnumber(d):
615
+ if d <= 0:
616
+ del quo[factor]
617
+
618
+ if d >= 0:
619
+ if d:
620
+ quo[factor] = d
621
+
622
+ continue
623
+
624
+ exp = -d
625
+
626
+ else:
627
+ r = quo[factor].extract_additively(exp)
628
+ if r is not None:
629
+ if r:
630
+ quo[factor] = r
631
+ else: # should be handled already
632
+ del quo[factor]
633
+ else:
634
+ other_exp = exp
635
+ sc, sa = quo[factor].as_coeff_Add()
636
+ if sc:
637
+ oc, oa = other_exp.as_coeff_Add()
638
+ diff = sc - oc
639
+ if diff > 0:
640
+ quo[factor] -= oc
641
+ other_exp = oa
642
+ elif diff < 0:
643
+ quo[factor] -= sc
644
+ other_exp = oa - diff
645
+ else:
646
+ quo[factor] = sa
647
+ other_exp = oa
648
+ if other_exp:
649
+ rem[factor] = other_exp
650
+ else:
651
+ assert factor not in rem
652
+ continue
653
+
654
+ rem[factor] = exp
655
+
656
+ return Factors(quo), Factors(rem)
657
+
658
+ def quo(self, other): # Factors
659
+ """Return numerator Factor of ``self / other``.
660
+
661
+ Examples
662
+ ========
663
+
664
+ >>> from sympy.core.exprtools import Factors
665
+ >>> from sympy.abc import x, y, z
666
+ >>> a = Factors((x*y**2).as_powers_dict())
667
+ >>> b = Factors((x*y/z).as_powers_dict())
668
+ >>> a.quo(b) # same as a/b
669
+ Factors({y: 1})
670
+ """
671
+ return self.div(other)[0]
672
+
673
+ def rem(self, other): # Factors
674
+ """Return denominator Factors of ``self / other``.
675
+
676
+ Examples
677
+ ========
678
+
679
+ >>> from sympy.core.exprtools import Factors
680
+ >>> from sympy.abc import x, y, z
681
+ >>> a = Factors((x*y**2).as_powers_dict())
682
+ >>> b = Factors((x*y/z).as_powers_dict())
683
+ >>> a.rem(b)
684
+ Factors({z: -1})
685
+ >>> a.rem(a)
686
+ Factors({})
687
+ """
688
+ return self.div(other)[1]
689
+
690
+ def pow(self, other): # Factors
691
+ """Return self raised to a non-negative integer power.
692
+
693
+ Examples
694
+ ========
695
+
696
+ >>> from sympy.core.exprtools import Factors
697
+ >>> from sympy.abc import x, y
698
+ >>> a = Factors((x*y**2).as_powers_dict())
699
+ >>> a**2
700
+ Factors({x: 2, y: 4})
701
+
702
+ """
703
+ if isinstance(other, Factors):
704
+ other = other.as_expr()
705
+ if other.is_Integer:
706
+ other = int(other)
707
+ if isinstance(other, SYMPY_INTS) and other >= 0:
708
+ factors = {}
709
+
710
+ if other:
711
+ for factor, exp in self.factors.items():
712
+ factors[factor] = exp*other
713
+
714
+ return Factors(factors)
715
+ else:
716
+ raise ValueError("expected non-negative integer, got %s" % other)
717
+
718
+ def gcd(self, other): # Factors
719
+ """Return Factors of ``gcd(self, other)``. The keys are
720
+ the intersection of factors with the minimum exponent for
721
+ each factor.
722
+
723
+ Examples
724
+ ========
725
+
726
+ >>> from sympy.core.exprtools import Factors
727
+ >>> from sympy.abc import x, y, z
728
+ >>> a = Factors((x*y**2).as_powers_dict())
729
+ >>> b = Factors((x*y/z).as_powers_dict())
730
+ >>> a.gcd(b)
731
+ Factors({x: 1, y: 1})
732
+ """
733
+ if not isinstance(other, Factors):
734
+ other = Factors(other)
735
+ if other.is_zero:
736
+ return Factors(self.factors)
737
+
738
+ factors = {}
739
+
740
+ for factor, exp in self.factors.items():
741
+ factor, exp = sympify(factor), sympify(exp)
742
+ if factor in other.factors:
743
+ lt = (exp - other.factors[factor]).is_negative
744
+ if lt == True:
745
+ factors[factor] = exp
746
+ elif lt == False:
747
+ factors[factor] = other.factors[factor]
748
+
749
+ return Factors(factors)
750
+
751
+ def lcm(self, other): # Factors
752
+ """Return Factors of ``lcm(self, other)`` which are
753
+ the union of factors with the maximum exponent for
754
+ each factor.
755
+
756
+ Examples
757
+ ========
758
+
759
+ >>> from sympy.core.exprtools import Factors
760
+ >>> from sympy.abc import x, y, z
761
+ >>> a = Factors((x*y**2).as_powers_dict())
762
+ >>> b = Factors((x*y/z).as_powers_dict())
763
+ >>> a.lcm(b)
764
+ Factors({x: 1, y: 2, z: -1})
765
+ """
766
+ if not isinstance(other, Factors):
767
+ other = Factors(other)
768
+ if any(f.is_zero for f in (self, other)):
769
+ return Factors(S.Zero)
770
+
771
+ factors = dict(self.factors)
772
+
773
+ for factor, exp in other.factors.items():
774
+ if factor in factors:
775
+ exp = max(exp, factors[factor])
776
+
777
+ factors[factor] = exp
778
+
779
+ return Factors(factors)
780
+
781
+ def __mul__(self, other): # Factors
782
+ return self.mul(other)
783
+
784
+ def __divmod__(self, other): # Factors
785
+ return self.div(other)
786
+
787
+ def __truediv__(self, other): # Factors
788
+ return self.quo(other)
789
+
790
+ def __mod__(self, other): # Factors
791
+ return self.rem(other)
792
+
793
+ def __pow__(self, other): # Factors
794
+ return self.pow(other)
795
+
796
+ def __eq__(self, other): # Factors
797
+ if not isinstance(other, Factors):
798
+ other = Factors(other)
799
+ return self.factors == other.factors
800
+
801
+ def __ne__(self, other): # Factors
802
+ return not self == other
803
+
804
+
805
+ class Term:
806
+ """Efficient representation of ``coeff*(numer/denom)``. """
807
+
808
+ __slots__ = ('coeff', 'numer', 'denom')
809
+
810
+ def __init__(self, term, numer=None, denom=None): # Term
811
+ if numer is None and denom is None:
812
+ if not term.is_commutative:
813
+ raise NonCommutativeExpression(
814
+ 'commutative expression expected')
815
+
816
+ coeff, factors = term.as_coeff_mul()
817
+ numer, denom = defaultdict(int), defaultdict(int)
818
+
819
+ for factor in factors:
820
+ base, exp = decompose_power(factor)
821
+
822
+ if base.is_Add:
823
+ cont, base = base.primitive()
824
+ coeff *= cont**exp
825
+
826
+ if exp > 0:
827
+ numer[base] += exp
828
+ else:
829
+ denom[base] += -exp
830
+
831
+ numer = Factors(numer)
832
+ denom = Factors(denom)
833
+ else:
834
+ coeff = term
835
+
836
+ if numer is None:
837
+ numer = Factors()
838
+
839
+ if denom is None:
840
+ denom = Factors()
841
+
842
+ self.coeff = coeff
843
+ self.numer = numer
844
+ self.denom = denom
845
+
846
+ def __hash__(self): # Term
847
+ return hash((self.coeff, self.numer, self.denom))
848
+
849
+ def __repr__(self): # Term
850
+ return "Term(%s, %s, %s)" % (self.coeff, self.numer, self.denom)
851
+
852
+ def as_expr(self): # Term
853
+ return self.coeff*(self.numer.as_expr()/self.denom.as_expr())
854
+
855
+ def mul(self, other): # Term
856
+ coeff = self.coeff*other.coeff
857
+ numer = self.numer.mul(other.numer)
858
+ denom = self.denom.mul(other.denom)
859
+
860
+ numer, denom = numer.normal(denom)
861
+
862
+ return Term(coeff, numer, denom)
863
+
864
+ def inv(self): # Term
865
+ return Term(1/self.coeff, self.denom, self.numer)
866
+
867
+ def quo(self, other): # Term
868
+ return self.mul(other.inv())
869
+
870
+ def pow(self, other): # Term
871
+ if other < 0:
872
+ return self.inv().pow(-other)
873
+ else:
874
+ return Term(self.coeff ** other,
875
+ self.numer.pow(other),
876
+ self.denom.pow(other))
877
+
878
+ def gcd(self, other): # Term
879
+ return Term(self.coeff.gcd(other.coeff),
880
+ self.numer.gcd(other.numer),
881
+ self.denom.gcd(other.denom))
882
+
883
+ def lcm(self, other): # Term
884
+ return Term(self.coeff.lcm(other.coeff),
885
+ self.numer.lcm(other.numer),
886
+ self.denom.lcm(other.denom))
887
+
888
+ def __mul__(self, other): # Term
889
+ if isinstance(other, Term):
890
+ return self.mul(other)
891
+ else:
892
+ return NotImplemented
893
+
894
+ def __truediv__(self, other): # Term
895
+ if isinstance(other, Term):
896
+ return self.quo(other)
897
+ else:
898
+ return NotImplemented
899
+
900
+ def __pow__(self, other): # Term
901
+ if isinstance(other, SYMPY_INTS):
902
+ return self.pow(other)
903
+ else:
904
+ return NotImplemented
905
+
906
+ def __eq__(self, other): # Term
907
+ return (self.coeff == other.coeff and
908
+ self.numer == other.numer and
909
+ self.denom == other.denom)
910
+
911
+ def __ne__(self, other): # Term
912
+ return not self == other
913
+
914
+
915
+ def _gcd_terms(terms, isprimitive=False, fraction=True):
916
+ """Helper function for :func:`gcd_terms`.
917
+
918
+ Parameters
919
+ ==========
920
+
921
+ isprimitive : boolean, optional
922
+ If ``isprimitive`` is True then the call to primitive
923
+ for an Add will be skipped. This is useful when the
924
+ content has already been extracted.
925
+
926
+ fraction : boolean, optional
927
+ If ``fraction`` is True then the expression will appear over a common
928
+ denominator, the lcm of all term denominators.
929
+ """
930
+
931
+ if isinstance(terms, Basic) and not isinstance(terms, Tuple):
932
+ terms = Add.make_args(terms)
933
+
934
+ terms = list(map(Term, [t for t in terms if t]))
935
+
936
+ # there is some simplification that may happen if we leave this
937
+ # here rather than duplicate it before the mapping of Term onto
938
+ # the terms
939
+ if len(terms) == 0:
940
+ return S.Zero, S.Zero, S.One
941
+
942
+ if len(terms) == 1:
943
+ cont = terms[0].coeff
944
+ numer = terms[0].numer.as_expr()
945
+ denom = terms[0].denom.as_expr()
946
+
947
+ else:
948
+ cont = terms[0]
949
+ for term in terms[1:]:
950
+ cont = cont.gcd(term)
951
+
952
+ for i, term in enumerate(terms):
953
+ terms[i] = term.quo(cont)
954
+
955
+ if fraction:
956
+ denom = terms[0].denom
957
+
958
+ for term in terms[1:]:
959
+ denom = denom.lcm(term.denom)
960
+
961
+ numers = []
962
+ for term in terms:
963
+ numer = term.numer.mul(denom.quo(term.denom))
964
+ numers.append(term.coeff*numer.as_expr())
965
+ else:
966
+ numers = [t.as_expr() for t in terms]
967
+ denom = Term(S.One).numer
968
+
969
+ cont = cont.as_expr()
970
+ numer = Add(*numers)
971
+ denom = denom.as_expr()
972
+
973
+ if not isprimitive and numer.is_Add:
974
+ _cont, numer = numer.primitive()
975
+ cont *= _cont
976
+
977
+ return cont, numer, denom
978
+
979
+
980
+ def gcd_terms(terms, isprimitive=False, clear=True, fraction=True):
981
+ """Compute the GCD of ``terms`` and put them together.
982
+
983
+ Parameters
984
+ ==========
985
+
986
+ terms : Expr
987
+ Can be an expression or a non-Basic sequence of expressions
988
+ which will be handled as though they are terms from a sum.
989
+
990
+ isprimitive : bool, optional
991
+ If ``isprimitive`` is True the _gcd_terms will not run the primitive
992
+ method on the terms.
993
+
994
+ clear : bool, optional
995
+ It controls the removal of integers from the denominator of an Add
996
+ expression. When True (default), all numerical denominator will be cleared;
997
+ when False the denominators will be cleared only if all terms had numerical
998
+ denominators other than 1.
999
+
1000
+ fraction : bool, optional
1001
+ When True (default), will put the expression over a common
1002
+ denominator.
1003
+
1004
+ Examples
1005
+ ========
1006
+
1007
+ >>> from sympy import gcd_terms
1008
+ >>> from sympy.abc import x, y
1009
+
1010
+ >>> gcd_terms((x + 1)**2*y + (x + 1)*y**2)
1011
+ y*(x + 1)*(x + y + 1)
1012
+ >>> gcd_terms(x/2 + 1)
1013
+ (x + 2)/2
1014
+ >>> gcd_terms(x/2 + 1, clear=False)
1015
+ x/2 + 1
1016
+ >>> gcd_terms(x/2 + y/2, clear=False)
1017
+ (x + y)/2
1018
+ >>> gcd_terms(x/2 + 1/x)
1019
+ (x**2 + 2)/(2*x)
1020
+ >>> gcd_terms(x/2 + 1/x, fraction=False)
1021
+ (x + 2/x)/2
1022
+ >>> gcd_terms(x/2 + 1/x, fraction=False, clear=False)
1023
+ x/2 + 1/x
1024
+
1025
+ >>> gcd_terms(x/2/y + 1/x/y)
1026
+ (x**2 + 2)/(2*x*y)
1027
+ >>> gcd_terms(x/2/y + 1/x/y, clear=False)
1028
+ (x**2/2 + 1)/(x*y)
1029
+ >>> gcd_terms(x/2/y + 1/x/y, clear=False, fraction=False)
1030
+ (x/2 + 1/x)/y
1031
+
1032
+ The ``clear`` flag was ignored in this case because the returned
1033
+ expression was a rational expression, not a simple sum.
1034
+
1035
+ See Also
1036
+ ========
1037
+
1038
+ factor_terms, sympy.polys.polytools.terms_gcd
1039
+
1040
+ """
1041
+ def mask(terms):
1042
+ """replace nc portions of each term with a unique Dummy symbols
1043
+ and return the replacements to restore them"""
1044
+ args = [(a, []) if a.is_commutative else a.args_cnc() for a in terms]
1045
+ reps = []
1046
+ for i, (c, nc) in enumerate(args):
1047
+ if nc:
1048
+ nc = Mul(*nc)
1049
+ d = Dummy()
1050
+ reps.append((d, nc))
1051
+ c.append(d)
1052
+ args[i] = Mul(*c)
1053
+ else:
1054
+ args[i] = c
1055
+ return args, dict(reps)
1056
+
1057
+ isadd = isinstance(terms, Add)
1058
+ addlike = isadd or not isinstance(terms, Basic) and \
1059
+ is_sequence(terms, include=set) and \
1060
+ not isinstance(terms, Dict)
1061
+
1062
+ if addlike:
1063
+ if isadd: # i.e. an Add
1064
+ terms = list(terms.args)
1065
+ else:
1066
+ terms = sympify(terms)
1067
+ terms, reps = mask(terms)
1068
+ cont, numer, denom = _gcd_terms(terms, isprimitive, fraction)
1069
+ numer = numer.xreplace(reps)
1070
+ coeff, factors = cont.as_coeff_Mul()
1071
+ if not clear:
1072
+ c, _coeff = coeff.as_coeff_Mul()
1073
+ if not c.is_Integer and not clear and numer.is_Add:
1074
+ n, d = c.as_numer_denom()
1075
+ _numer = numer/d
1076
+ if any(a.as_coeff_Mul()[0].is_Integer
1077
+ for a in _numer.args):
1078
+ numer = _numer
1079
+ coeff = n*_coeff
1080
+ return _keep_coeff(coeff, factors*numer/denom, clear=clear)
1081
+
1082
+ if not isinstance(terms, Basic):
1083
+ return terms
1084
+
1085
+ if terms.is_Atom:
1086
+ return terms
1087
+
1088
+ if terms.is_Mul:
1089
+ c, args = terms.as_coeff_mul()
1090
+ return _keep_coeff(c, Mul(*[gcd_terms(i, isprimitive, clear, fraction)
1091
+ for i in args]), clear=clear)
1092
+
1093
+ def handle(a):
1094
+ # don't treat internal args like terms of an Add
1095
+ if not isinstance(a, Expr):
1096
+ if isinstance(a, Basic):
1097
+ if not a.args:
1098
+ return a
1099
+ return a.func(*[handle(i) for i in a.args])
1100
+ return type(a)([handle(i) for i in a])
1101
+ return gcd_terms(a, isprimitive, clear, fraction)
1102
+
1103
+ if isinstance(terms, Dict):
1104
+ return Dict(*[(k, handle(v)) for k, v in terms.args])
1105
+ return terms.func(*[handle(i) for i in terms.args])
1106
+
1107
+
1108
+ def _factor_sum_int(expr, **kwargs):
1109
+ """Return Sum or Integral object with factors that are not
1110
+ in the wrt variables removed. In cases where there are additive
1111
+ terms in the function of the object that are independent, the
1112
+ object will be separated into two objects.
1113
+
1114
+ Examples
1115
+ ========
1116
+
1117
+ >>> from sympy import Sum, factor_terms
1118
+ >>> from sympy.abc import x, y
1119
+ >>> factor_terms(Sum(x + y, (x, 1, 3)))
1120
+ y*Sum(1, (x, 1, 3)) + Sum(x, (x, 1, 3))
1121
+ >>> factor_terms(Sum(x*y, (x, 1, 3)))
1122
+ y*Sum(x, (x, 1, 3))
1123
+
1124
+ Notes
1125
+ =====
1126
+
1127
+ If a function in the summand or integrand is replaced
1128
+ with a symbol, then this simplification should not be
1129
+ done or else an incorrect result will be obtained when
1130
+ the symbol is replaced with an expression that depends
1131
+ on the variables of summation/integration:
1132
+
1133
+ >>> eq = Sum(y, (x, 1, 3))
1134
+ >>> factor_terms(eq).subs(y, x).doit()
1135
+ 3*x
1136
+ >>> eq.subs(y, x).doit()
1137
+ 6
1138
+ """
1139
+ result = expr.function
1140
+ if result == 0:
1141
+ return S.Zero
1142
+ limits = expr.limits
1143
+
1144
+ # get the wrt variables
1145
+ wrt = {i.args[0] for i in limits}
1146
+
1147
+ # factor out any common terms that are independent of wrt
1148
+ f = factor_terms(result, **kwargs)
1149
+ i, d = f.as_independent(*wrt)
1150
+ if isinstance(f, Add):
1151
+ return i * expr.func(1, *limits) + expr.func(d, *limits)
1152
+ else:
1153
+ return i * expr.func(d, *limits)
1154
+
1155
+
1156
+ def factor_terms(expr, radical=False, clear=False, fraction=False, sign=True):
1157
+ """Remove common factors from terms in all arguments without
1158
+ changing the underlying structure of the expr. No expansion or
1159
+ simplification (and no processing of non-commutatives) is performed.
1160
+
1161
+ Parameters
1162
+ ==========
1163
+
1164
+ radical: bool, optional
1165
+ If radical=True then a radical common to all terms will be factored
1166
+ out of any Add sub-expressions of the expr.
1167
+
1168
+ clear : bool, optional
1169
+ If clear=False (default) then coefficients will not be separated
1170
+ from a single Add if they can be distributed to leave one or more
1171
+ terms with integer coefficients.
1172
+
1173
+ fraction : bool, optional
1174
+ If fraction=True (default is False) then a common denominator will be
1175
+ constructed for the expression.
1176
+
1177
+ sign : bool, optional
1178
+ If sign=True (default) then even if the only factor in common is a -1,
1179
+ it will be factored out of the expression.
1180
+
1181
+ Examples
1182
+ ========
1183
+
1184
+ >>> from sympy import factor_terms, Symbol
1185
+ >>> from sympy.abc import x, y
1186
+ >>> factor_terms(x + x*(2 + 4*y)**3)
1187
+ x*(8*(2*y + 1)**3 + 1)
1188
+ >>> A = Symbol('A', commutative=False)
1189
+ >>> factor_terms(x*A + x*A + x*y*A)
1190
+ x*(y*A + 2*A)
1191
+
1192
+ When ``clear`` is False, a rational will only be factored out of an
1193
+ Add expression if all terms of the Add have coefficients that are
1194
+ fractions:
1195
+
1196
+ >>> factor_terms(x/2 + 1, clear=False)
1197
+ x/2 + 1
1198
+ >>> factor_terms(x/2 + 1, clear=True)
1199
+ (x + 2)/2
1200
+
1201
+ If a -1 is all that can be factored out, to *not* factor it out, the
1202
+ flag ``sign`` must be False:
1203
+
1204
+ >>> factor_terms(-x - y)
1205
+ -(x + y)
1206
+ >>> factor_terms(-x - y, sign=False)
1207
+ -x - y
1208
+ >>> factor_terms(-2*x - 2*y, sign=False)
1209
+ -2*(x + y)
1210
+
1211
+ See Also
1212
+ ========
1213
+
1214
+ gcd_terms, sympy.polys.polytools.terms_gcd
1215
+
1216
+ """
1217
+ def do(expr):
1218
+ from sympy.concrete.summations import Sum
1219
+ from sympy.integrals.integrals import Integral
1220
+ is_iterable = iterable(expr)
1221
+
1222
+ if not isinstance(expr, Basic) or expr.is_Atom:
1223
+ if is_iterable:
1224
+ return type(expr)([do(i) for i in expr])
1225
+ return expr
1226
+
1227
+ if expr.is_Pow or expr.is_Function or \
1228
+ is_iterable or not hasattr(expr, 'args_cnc'):
1229
+ args = expr.args
1230
+ newargs = tuple([do(i) for i in args])
1231
+ if newargs == args:
1232
+ return expr
1233
+ return expr.func(*newargs)
1234
+
1235
+ if isinstance(expr, (Sum, Integral)):
1236
+ return _factor_sum_int(expr,
1237
+ radical=radical, clear=clear,
1238
+ fraction=fraction, sign=sign)
1239
+
1240
+ cont, p = expr.as_content_primitive(radical=radical, clear=clear)
1241
+ if p.is_Add:
1242
+ list_args = [do(a) for a in Add.make_args(p)]
1243
+ # get a common negative (if there) which gcd_terms does not remove
1244
+ if not any(a.as_coeff_Mul()[0].extract_multiplicatively(-1) is None
1245
+ for a in list_args):
1246
+ cont = -cont
1247
+ list_args = [-a for a in list_args]
1248
+ # watch out for exp(-(x+2)) which gcd_terms will change to exp(-x-2)
1249
+ special = {}
1250
+ for i, a in enumerate(list_args):
1251
+ b, e = a.as_base_exp()
1252
+ if e.is_Mul and e != Mul(*e.args):
1253
+ list_args[i] = Dummy()
1254
+ special[list_args[i]] = a
1255
+ # rebuild p not worrying about the order which gcd_terms will fix
1256
+ p = Add._from_args(list_args)
1257
+ p = gcd_terms(p,
1258
+ isprimitive=True,
1259
+ clear=clear,
1260
+ fraction=fraction).xreplace(special)
1261
+ elif p.args:
1262
+ p = p.func(
1263
+ *[do(a) for a in p.args])
1264
+ rv = _keep_coeff(cont, p, clear=clear, sign=sign)
1265
+ return rv
1266
+ expr = sympify(expr)
1267
+ return do(expr)
1268
+
1269
+
1270
+ def _mask_nc(eq, name=None):
1271
+ """
1272
+ Return ``eq`` with non-commutative objects replaced with Dummy
1273
+ symbols. A dictionary that can be used to restore the original
1274
+ values is returned: if it is None, the expression is noncommutative
1275
+ and cannot be made commutative. The third value returned is a list
1276
+ of any non-commutative symbols that appear in the returned equation.
1277
+
1278
+ Explanation
1279
+ ===========
1280
+
1281
+ All non-commutative objects other than Symbols are replaced with
1282
+ a non-commutative Symbol. Identical objects will be identified
1283
+ by identical symbols.
1284
+
1285
+ If there is only 1 non-commutative object in an expression it will
1286
+ be replaced with a commutative symbol. Otherwise, the non-commutative
1287
+ entities are retained and the calling routine should handle
1288
+ replacements in this case since some care must be taken to keep
1289
+ track of the ordering of symbols when they occur within Muls.
1290
+
1291
+ Parameters
1292
+ ==========
1293
+
1294
+ name : str
1295
+ ``name``, if given, is the name that will be used with numbered Dummy
1296
+ variables that will replace the non-commutative objects and is mainly
1297
+ used for doctesting purposes.
1298
+
1299
+ Examples
1300
+ ========
1301
+
1302
+ >>> from sympy.physics.secondquant import Commutator, NO, F, Fd
1303
+ >>> from sympy import symbols
1304
+ >>> from sympy.core.exprtools import _mask_nc
1305
+ >>> from sympy.abc import x, y
1306
+ >>> A, B, C = symbols('A,B,C', commutative=False)
1307
+
1308
+ One nc-symbol:
1309
+
1310
+ >>> _mask_nc(A**2 - x**2, 'd')
1311
+ (_d0**2 - x**2, {_d0: A}, [])
1312
+
1313
+ Multiple nc-symbols:
1314
+
1315
+ >>> _mask_nc(A**2 - B**2, 'd')
1316
+ (A**2 - B**2, {}, [A, B])
1317
+
1318
+ An nc-object with nc-symbols but no others outside of it:
1319
+
1320
+ >>> _mask_nc(1 + x*Commutator(A, B), 'd')
1321
+ (_d0*x + 1, {_d0: Commutator(A, B)}, [])
1322
+ >>> _mask_nc(NO(Fd(x)*F(y)), 'd')
1323
+ (_d0, {_d0: NO(CreateFermion(x)*AnnihilateFermion(y))}, [])
1324
+
1325
+ Multiple nc-objects:
1326
+
1327
+ >>> eq = x*Commutator(A, B) + x*Commutator(A, C)*Commutator(A, B)
1328
+ >>> _mask_nc(eq, 'd')
1329
+ (x*_d0 + x*_d1*_d0, {_d0: Commutator(A, B), _d1: Commutator(A, C)}, [_d0, _d1])
1330
+
1331
+ Multiple nc-objects and nc-symbols:
1332
+
1333
+ >>> eq = A*Commutator(A, B) + B*Commutator(A, C)
1334
+ >>> _mask_nc(eq, 'd')
1335
+ (A*_d0 + B*_d1, {_d0: Commutator(A, B), _d1: Commutator(A, C)}, [_d0, _d1, A, B])
1336
+
1337
+ """
1338
+ name = name or 'mask'
1339
+ # Make Dummy() append sequential numbers to the name
1340
+
1341
+ def numbered_names():
1342
+ i = 0
1343
+ while True:
1344
+ yield name + str(i)
1345
+ i += 1
1346
+
1347
+ names = numbered_names()
1348
+
1349
+ def Dummy(*args, **kwargs):
1350
+ from .symbol import Dummy
1351
+ return Dummy(next(names), *args, **kwargs)
1352
+
1353
+ expr = eq
1354
+ if expr.is_commutative:
1355
+ return eq, {}, []
1356
+
1357
+ # identify nc-objects; symbols and other
1358
+ rep = []
1359
+ nc_obj = set()
1360
+ nc_syms = set()
1361
+ pot = preorder_traversal(expr, keys=default_sort_key)
1362
+ for i, a in enumerate(pot):
1363
+ if any(a == r[0] for r in rep):
1364
+ pot.skip()
1365
+ elif not a.is_commutative:
1366
+ if a.is_symbol:
1367
+ nc_syms.add(a)
1368
+ pot.skip()
1369
+ elif not (a.is_Add or a.is_Mul or a.is_Pow):
1370
+ nc_obj.add(a)
1371
+ pot.skip()
1372
+
1373
+ # If there is only one nc symbol or object, it can be factored regularly
1374
+ # but polys is going to complain, so replace it with a Dummy.
1375
+ if len(nc_obj) == 1 and not nc_syms:
1376
+ rep.append((nc_obj.pop(), Dummy()))
1377
+ elif len(nc_syms) == 1 and not nc_obj:
1378
+ rep.append((nc_syms.pop(), Dummy()))
1379
+
1380
+ # Any remaining nc-objects will be replaced with an nc-Dummy and
1381
+ # identified as an nc-Symbol to watch out for
1382
+ nc_obj = sorted(nc_obj, key=default_sort_key)
1383
+ for n in nc_obj:
1384
+ nc = Dummy(commutative=False)
1385
+ rep.append((n, nc))
1386
+ nc_syms.add(nc)
1387
+ expr = expr.subs(rep)
1388
+
1389
+ nc_syms = list(nc_syms)
1390
+ nc_syms.sort(key=default_sort_key)
1391
+ return expr, {v: k for k, v in rep}, nc_syms
1392
+
1393
+
1394
+ def factor_nc(expr):
1395
+ """Return the factored form of ``expr`` while handling non-commutative
1396
+ expressions.
1397
+
1398
+ Examples
1399
+ ========
1400
+
1401
+ >>> from sympy import factor_nc, Symbol
1402
+ >>> from sympy.abc import x
1403
+ >>> A = Symbol('A', commutative=False)
1404
+ >>> B = Symbol('B', commutative=False)
1405
+ >>> factor_nc((x**2 + 2*A*x + A**2).expand())
1406
+ (x + A)**2
1407
+ >>> factor_nc(((x + A)*(x + B)).expand())
1408
+ (x + A)*(x + B)
1409
+ """
1410
+ expr = sympify(expr)
1411
+ if not isinstance(expr, Expr) or not expr.args:
1412
+ return expr
1413
+ if not expr.is_Add:
1414
+ return expr.func(*[factor_nc(a) for a in expr.args])
1415
+ expr = expr.func(*[expand_power_exp(i) for i in expr.args])
1416
+
1417
+ from sympy.polys.polytools import gcd, factor
1418
+ expr, rep, nc_symbols = _mask_nc(expr)
1419
+
1420
+ if rep:
1421
+ return factor(expr).subs(rep)
1422
+ else:
1423
+ args = [a.args_cnc() for a in Add.make_args(expr)]
1424
+ c = g = l = r = S.One
1425
+ hit = False
1426
+ # find any commutative gcd term
1427
+ for i, a in enumerate(args):
1428
+ if i == 0:
1429
+ c = Mul._from_args(a[0])
1430
+ elif a[0]:
1431
+ c = gcd(c, Mul._from_args(a[0]))
1432
+ else:
1433
+ c = S.One
1434
+ if c is not S.One:
1435
+ hit = True
1436
+ c, g = c.as_coeff_Mul()
1437
+ if g is not S.One:
1438
+ for i, (cc, _) in enumerate(args):
1439
+ cc = list(Mul.make_args(Mul._from_args(list(cc))/g))
1440
+ args[i][0] = cc
1441
+ for i, (cc, _) in enumerate(args):
1442
+ if cc:
1443
+ cc[0] = cc[0]/c
1444
+ else:
1445
+ cc = [1/c]
1446
+ args[i][0] = cc
1447
+ # find any noncommutative common prefix
1448
+ for i, a in enumerate(args):
1449
+ if i == 0:
1450
+ n = a[1][:]
1451
+ else:
1452
+ n = common_prefix(n, a[1])
1453
+ if not n:
1454
+ # is there a power that can be extracted?
1455
+ if not args[0][1]:
1456
+ break
1457
+ b, e = args[0][1][0].as_base_exp()
1458
+ ok = False
1459
+ if e.is_Integer:
1460
+ for t in args:
1461
+ if not t[1]:
1462
+ break
1463
+ bt, et = t[1][0].as_base_exp()
1464
+ if et.is_Integer and bt == b:
1465
+ e = min(e, et)
1466
+ else:
1467
+ break
1468
+ else:
1469
+ ok = hit = True
1470
+ l = b**e
1471
+ il = b**-e
1472
+ for _ in args:
1473
+ _[1][0] = il*_[1][0]
1474
+ break
1475
+ if not ok:
1476
+ break
1477
+ else:
1478
+ hit = True
1479
+ lenn = len(n)
1480
+ l = Mul(*n)
1481
+ for _ in args:
1482
+ _[1] = _[1][lenn:]
1483
+ # find any noncommutative common suffix
1484
+ for i, a in enumerate(args):
1485
+ if i == 0:
1486
+ n = a[1][:]
1487
+ else:
1488
+ n = common_suffix(n, a[1])
1489
+ if not n:
1490
+ # is there a power that can be extracted?
1491
+ if not args[0][1]:
1492
+ break
1493
+ b, e = args[0][1][-1].as_base_exp()
1494
+ ok = False
1495
+ if e.is_Integer:
1496
+ for t in args:
1497
+ if not t[1]:
1498
+ break
1499
+ bt, et = t[1][-1].as_base_exp()
1500
+ if et.is_Integer and bt == b:
1501
+ e = min(e, et)
1502
+ else:
1503
+ break
1504
+ else:
1505
+ ok = hit = True
1506
+ r = b**e
1507
+ il = b**-e
1508
+ for _ in args:
1509
+ _[1][-1] = _[1][-1]*il
1510
+ break
1511
+ if not ok:
1512
+ break
1513
+ else:
1514
+ hit = True
1515
+ lenn = len(n)
1516
+ r = Mul(*n)
1517
+ for _ in args:
1518
+ _[1] = _[1][:len(_[1]) - lenn]
1519
+ if hit:
1520
+ mid = Add(*[Mul(*cc)*Mul(*nc) for cc, nc in args])
1521
+ else:
1522
+ mid = expr
1523
+
1524
+ from sympy.simplify.powsimp import powsimp
1525
+
1526
+ # sort the symbols so the Dummys would appear in the same
1527
+ # order as the original symbols, otherwise you may introduce
1528
+ # a factor of -1, e.g. A**2 - B**2) -- {A:y, B:x} --> y**2 - x**2
1529
+ # and the former factors into two terms, (A - B)*(A + B) while the
1530
+ # latter factors into 3 terms, (-1)*(x - y)*(x + y)
1531
+ rep1 = [(n, Dummy()) for n in sorted(nc_symbols, key=default_sort_key)]
1532
+ unrep1 = [(v, k) for k, v in rep1]
1533
+ unrep1.reverse()
1534
+ new_mid, r2, _ = _mask_nc(mid.subs(rep1))
1535
+ new_mid = powsimp(factor(new_mid))
1536
+
1537
+ new_mid = new_mid.subs(r2).subs(unrep1)
1538
+
1539
+ if new_mid.is_Pow:
1540
+ return _keep_coeff(c, g*l*new_mid*r)
1541
+
1542
+ if new_mid.is_Mul:
1543
+ def _pemexpand(expr):
1544
+ "Expand with the minimal set of hints necessary to check the result."
1545
+ return expr.expand(deep=True, mul=True, power_exp=True,
1546
+ power_base=False, basic=False, multinomial=True, log=False)
1547
+ # XXX TODO there should be a way to inspect what order the terms
1548
+ # must be in and just select the plausible ordering without
1549
+ # checking permutations
1550
+ cfac = []
1551
+ ncfac = []
1552
+ for f in new_mid.args:
1553
+ if f.is_commutative:
1554
+ cfac.append(f)
1555
+ else:
1556
+ b, e = f.as_base_exp()
1557
+ if e.is_Integer:
1558
+ ncfac.extend([b]*e)
1559
+ else:
1560
+ ncfac.append(f)
1561
+ pre_mid = g*Mul(*cfac)*l
1562
+ target = _pemexpand(expr/c)
1563
+ for s in variations(ncfac, len(ncfac)):
1564
+ ok = pre_mid*Mul(*s)*r
1565
+ if _pemexpand(ok) == target:
1566
+ return _keep_coeff(c, ok)
1567
+
1568
+ # mid was an Add that didn't factor successfully
1569
+ return _keep_coeff(c, g*l*mid*r)
llmeval-env/lib/python3.10/site-packages/sympy/core/facts.py ADDED
@@ -0,0 +1,634 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ r"""This is rule-based deduction system for SymPy
2
+
3
+ The whole thing is split into two parts
4
+
5
+ - rules compilation and preparation of tables
6
+ - runtime inference
7
+
8
+ For rule-based inference engines, the classical work is RETE algorithm [1],
9
+ [2] Although we are not implementing it in full (or even significantly)
10
+ it's still worth a read to understand the underlying ideas.
11
+
12
+ In short, every rule in a system of rules is one of two forms:
13
+
14
+ - atom -> ... (alpha rule)
15
+ - And(atom1, atom2, ...) -> ... (beta rule)
16
+
17
+
18
+ The major complexity is in efficient beta-rules processing and usually for an
19
+ expert system a lot of effort goes into code that operates on beta-rules.
20
+
21
+
22
+ Here we take minimalistic approach to get something usable first.
23
+
24
+ - (preparation) of alpha- and beta- networks, everything except
25
+ - (runtime) FactRules.deduce_all_facts
26
+
27
+ _____________________________________
28
+ ( Kirr: I've never thought that doing )
29
+ ( logic stuff is that difficult... )
30
+ -------------------------------------
31
+ o ^__^
32
+ o (oo)\_______
33
+ (__)\ )\/\
34
+ ||----w |
35
+ || ||
36
+
37
+
38
+ Some references on the topic
39
+ ----------------------------
40
+
41
+ [1] https://en.wikipedia.org/wiki/Rete_algorithm
42
+ [2] http://reports-archive.adm.cs.cmu.edu/anon/1995/CMU-CS-95-113.pdf
43
+
44
+ https://en.wikipedia.org/wiki/Propositional_formula
45
+ https://en.wikipedia.org/wiki/Inference_rule
46
+ https://en.wikipedia.org/wiki/List_of_rules_of_inference
47
+ """
48
+
49
+ from collections import defaultdict
50
+ from typing import Iterator
51
+
52
+ from .logic import Logic, And, Or, Not
53
+
54
+
55
+ def _base_fact(atom):
56
+ """Return the literal fact of an atom.
57
+
58
+ Effectively, this merely strips the Not around a fact.
59
+ """
60
+ if isinstance(atom, Not):
61
+ return atom.arg
62
+ else:
63
+ return atom
64
+
65
+
66
+ def _as_pair(atom):
67
+ if isinstance(atom, Not):
68
+ return (atom.arg, False)
69
+ else:
70
+ return (atom, True)
71
+
72
+ # XXX this prepares forward-chaining rules for alpha-network
73
+
74
+
75
+ def transitive_closure(implications):
76
+ """
77
+ Computes the transitive closure of a list of implications
78
+
79
+ Uses Warshall's algorithm, as described at
80
+ http://www.cs.hope.edu/~cusack/Notes/Notes/DiscreteMath/Warshall.pdf.
81
+ """
82
+ full_implications = set(implications)
83
+ literals = set().union(*map(set, full_implications))
84
+
85
+ for k in literals:
86
+ for i in literals:
87
+ if (i, k) in full_implications:
88
+ for j in literals:
89
+ if (k, j) in full_implications:
90
+ full_implications.add((i, j))
91
+
92
+ return full_implications
93
+
94
+
95
+ def deduce_alpha_implications(implications):
96
+ """deduce all implications
97
+
98
+ Description by example
99
+ ----------------------
100
+
101
+ given set of logic rules:
102
+
103
+ a -> b
104
+ b -> c
105
+
106
+ we deduce all possible rules:
107
+
108
+ a -> b, c
109
+ b -> c
110
+
111
+
112
+ implications: [] of (a,b)
113
+ return: {} of a -> set([b, c, ...])
114
+ """
115
+ implications = implications + [(Not(j), Not(i)) for (i, j) in implications]
116
+ res = defaultdict(set)
117
+ full_implications = transitive_closure(implications)
118
+ for a, b in full_implications:
119
+ if a == b:
120
+ continue # skip a->a cyclic input
121
+
122
+ res[a].add(b)
123
+
124
+ # Clean up tautologies and check consistency
125
+ for a, impl in res.items():
126
+ impl.discard(a)
127
+ na = Not(a)
128
+ if na in impl:
129
+ raise ValueError(
130
+ 'implications are inconsistent: %s -> %s %s' % (a, na, impl))
131
+
132
+ return res
133
+
134
+
135
+ def apply_beta_to_alpha_route(alpha_implications, beta_rules):
136
+ """apply additional beta-rules (And conditions) to already-built
137
+ alpha implication tables
138
+
139
+ TODO: write about
140
+
141
+ - static extension of alpha-chains
142
+ - attaching refs to beta-nodes to alpha chains
143
+
144
+
145
+ e.g.
146
+
147
+ alpha_implications:
148
+
149
+ a -> [b, !c, d]
150
+ b -> [d]
151
+ ...
152
+
153
+
154
+ beta_rules:
155
+
156
+ &(b,d) -> e
157
+
158
+
159
+ then we'll extend a's rule to the following
160
+
161
+ a -> [b, !c, d, e]
162
+ """
163
+ x_impl = {}
164
+ for x in alpha_implications.keys():
165
+ x_impl[x] = (set(alpha_implications[x]), [])
166
+ for bcond, bimpl in beta_rules:
167
+ for bk in bcond.args:
168
+ if bk in x_impl:
169
+ continue
170
+ x_impl[bk] = (set(), [])
171
+
172
+ # static extensions to alpha rules:
173
+ # A: x -> a,b B: &(a,b) -> c ==> A: x -> a,b,c
174
+ seen_static_extension = True
175
+ while seen_static_extension:
176
+ seen_static_extension = False
177
+
178
+ for bcond, bimpl in beta_rules:
179
+ if not isinstance(bcond, And):
180
+ raise TypeError("Cond is not And")
181
+ bargs = set(bcond.args)
182
+ for x, (ximpls, bb) in x_impl.items():
183
+ x_all = ximpls | {x}
184
+ # A: ... -> a B: &(...) -> a is non-informative
185
+ if bimpl not in x_all and bargs.issubset(x_all):
186
+ ximpls.add(bimpl)
187
+
188
+ # we introduced new implication - now we have to restore
189
+ # completeness of the whole set.
190
+ bimpl_impl = x_impl.get(bimpl)
191
+ if bimpl_impl is not None:
192
+ ximpls |= bimpl_impl[0]
193
+ seen_static_extension = True
194
+
195
+ # attach beta-nodes which can be possibly triggered by an alpha-chain
196
+ for bidx, (bcond, bimpl) in enumerate(beta_rules):
197
+ bargs = set(bcond.args)
198
+ for x, (ximpls, bb) in x_impl.items():
199
+ x_all = ximpls | {x}
200
+ # A: ... -> a B: &(...) -> a (non-informative)
201
+ if bimpl in x_all:
202
+ continue
203
+ # A: x -> a... B: &(!a,...) -> ... (will never trigger)
204
+ # A: x -> a... B: &(...) -> !a (will never trigger)
205
+ if any(Not(xi) in bargs or Not(xi) == bimpl for xi in x_all):
206
+ continue
207
+
208
+ if bargs & x_all:
209
+ bb.append(bidx)
210
+
211
+ return x_impl
212
+
213
+
214
+ def rules_2prereq(rules):
215
+ """build prerequisites table from rules
216
+
217
+ Description by example
218
+ ----------------------
219
+
220
+ given set of logic rules:
221
+
222
+ a -> b, c
223
+ b -> c
224
+
225
+ we build prerequisites (from what points something can be deduced):
226
+
227
+ b <- a
228
+ c <- a, b
229
+
230
+ rules: {} of a -> [b, c, ...]
231
+ return: {} of c <- [a, b, ...]
232
+
233
+ Note however, that this prerequisites may be *not* enough to prove a
234
+ fact. An example is 'a -> b' rule, where prereq(a) is b, and prereq(b)
235
+ is a. That's because a=T -> b=T, and b=F -> a=F, but a=F -> b=?
236
+ """
237
+ prereq = defaultdict(set)
238
+ for (a, _), impl in rules.items():
239
+ if isinstance(a, Not):
240
+ a = a.args[0]
241
+ for (i, _) in impl:
242
+ if isinstance(i, Not):
243
+ i = i.args[0]
244
+ prereq[i].add(a)
245
+ return prereq
246
+
247
+ ################
248
+ # RULES PROVER #
249
+ ################
250
+
251
+
252
+ class TautologyDetected(Exception):
253
+ """(internal) Prover uses it for reporting detected tautology"""
254
+ pass
255
+
256
+
257
+ class Prover:
258
+ """ai - prover of logic rules
259
+
260
+ given a set of initial rules, Prover tries to prove all possible rules
261
+ which follow from given premises.
262
+
263
+ As a result proved_rules are always either in one of two forms: alpha or
264
+ beta:
265
+
266
+ Alpha rules
267
+ -----------
268
+
269
+ This are rules of the form::
270
+
271
+ a -> b & c & d & ...
272
+
273
+
274
+ Beta rules
275
+ ----------
276
+
277
+ This are rules of the form::
278
+
279
+ &(a,b,...) -> c & d & ...
280
+
281
+
282
+ i.e. beta rules are join conditions that say that something follows when
283
+ *several* facts are true at the same time.
284
+ """
285
+
286
+ def __init__(self):
287
+ self.proved_rules = []
288
+ self._rules_seen = set()
289
+
290
+ def split_alpha_beta(self):
291
+ """split proved rules into alpha and beta chains"""
292
+ rules_alpha = [] # a -> b
293
+ rules_beta = [] # &(...) -> b
294
+ for a, b in self.proved_rules:
295
+ if isinstance(a, And):
296
+ rules_beta.append((a, b))
297
+ else:
298
+ rules_alpha.append((a, b))
299
+ return rules_alpha, rules_beta
300
+
301
+ @property
302
+ def rules_alpha(self):
303
+ return self.split_alpha_beta()[0]
304
+
305
+ @property
306
+ def rules_beta(self):
307
+ return self.split_alpha_beta()[1]
308
+
309
+ def process_rule(self, a, b):
310
+ """process a -> b rule""" # TODO write more?
311
+ if (not a) or isinstance(b, bool):
312
+ return
313
+ if isinstance(a, bool):
314
+ return
315
+ if (a, b) in self._rules_seen:
316
+ return
317
+ else:
318
+ self._rules_seen.add((a, b))
319
+
320
+ # this is the core of processing
321
+ try:
322
+ self._process_rule(a, b)
323
+ except TautologyDetected:
324
+ pass
325
+
326
+ def _process_rule(self, a, b):
327
+ # right part first
328
+
329
+ # a -> b & c --> a -> b ; a -> c
330
+ # (?) FIXME this is only correct when b & c != null !
331
+
332
+ if isinstance(b, And):
333
+ sorted_bargs = sorted(b.args, key=str)
334
+ for barg in sorted_bargs:
335
+ self.process_rule(a, barg)
336
+
337
+ # a -> b | c --> !b & !c -> !a
338
+ # --> a & !b -> c
339
+ # --> a & !c -> b
340
+ elif isinstance(b, Or):
341
+ sorted_bargs = sorted(b.args, key=str)
342
+ # detect tautology first
343
+ if not isinstance(a, Logic): # Atom
344
+ # tautology: a -> a|c|...
345
+ if a in sorted_bargs:
346
+ raise TautologyDetected(a, b, 'a -> a|c|...')
347
+ self.process_rule(And(*[Not(barg) for barg in b.args]), Not(a))
348
+
349
+ for bidx in range(len(sorted_bargs)):
350
+ barg = sorted_bargs[bidx]
351
+ brest = sorted_bargs[:bidx] + sorted_bargs[bidx + 1:]
352
+ self.process_rule(And(a, Not(barg)), Or(*brest))
353
+
354
+ # left part
355
+
356
+ # a & b -> c --> IRREDUCIBLE CASE -- WE STORE IT AS IS
357
+ # (this will be the basis of beta-network)
358
+ elif isinstance(a, And):
359
+ sorted_aargs = sorted(a.args, key=str)
360
+ if b in sorted_aargs:
361
+ raise TautologyDetected(a, b, 'a & b -> a')
362
+ self.proved_rules.append((a, b))
363
+ # XXX NOTE at present we ignore !c -> !a | !b
364
+
365
+ elif isinstance(a, Or):
366
+ sorted_aargs = sorted(a.args, key=str)
367
+ if b in sorted_aargs:
368
+ raise TautologyDetected(a, b, 'a | b -> a')
369
+ for aarg in sorted_aargs:
370
+ self.process_rule(aarg, b)
371
+
372
+ else:
373
+ # both `a` and `b` are atoms
374
+ self.proved_rules.append((a, b)) # a -> b
375
+ self.proved_rules.append((Not(b), Not(a))) # !b -> !a
376
+
377
+ ########################################
378
+
379
+
380
+ class FactRules:
381
+ """Rules that describe how to deduce facts in logic space
382
+
383
+ When defined, these rules allow implications to quickly be determined
384
+ for a set of facts. For this precomputed deduction tables are used.
385
+ see `deduce_all_facts` (forward-chaining)
386
+
387
+ Also it is possible to gather prerequisites for a fact, which is tried
388
+ to be proven. (backward-chaining)
389
+
390
+
391
+ Definition Syntax
392
+ -----------------
393
+
394
+ a -> b -- a=T -> b=T (and automatically b=F -> a=F)
395
+ a -> !b -- a=T -> b=F
396
+ a == b -- a -> b & b -> a
397
+ a -> b & c -- a=T -> b=T & c=T
398
+ # TODO b | c
399
+
400
+
401
+ Internals
402
+ ---------
403
+
404
+ .full_implications[k, v]: all the implications of fact k=v
405
+ .beta_triggers[k, v]: beta rules that might be triggered when k=v
406
+ .prereq -- {} k <- [] of k's prerequisites
407
+
408
+ .defined_facts -- set of defined fact names
409
+ """
410
+
411
+ def __init__(self, rules):
412
+ """Compile rules into internal lookup tables"""
413
+
414
+ if isinstance(rules, str):
415
+ rules = rules.splitlines()
416
+
417
+ # --- parse and process rules ---
418
+ P = Prover()
419
+
420
+ for rule in rules:
421
+ # XXX `a` is hardcoded to be always atom
422
+ a, op, b = rule.split(None, 2)
423
+
424
+ a = Logic.fromstring(a)
425
+ b = Logic.fromstring(b)
426
+
427
+ if op == '->':
428
+ P.process_rule(a, b)
429
+ elif op == '==':
430
+ P.process_rule(a, b)
431
+ P.process_rule(b, a)
432
+ else:
433
+ raise ValueError('unknown op %r' % op)
434
+
435
+ # --- build deduction networks ---
436
+ self.beta_rules = []
437
+ for bcond, bimpl in P.rules_beta:
438
+ self.beta_rules.append(
439
+ ({_as_pair(a) for a in bcond.args}, _as_pair(bimpl)))
440
+
441
+ # deduce alpha implications
442
+ impl_a = deduce_alpha_implications(P.rules_alpha)
443
+
444
+ # now:
445
+ # - apply beta rules to alpha chains (static extension), and
446
+ # - further associate beta rules to alpha chain (for inference
447
+ # at runtime)
448
+ impl_ab = apply_beta_to_alpha_route(impl_a, P.rules_beta)
449
+
450
+ # extract defined fact names
451
+ self.defined_facts = {_base_fact(k) for k in impl_ab.keys()}
452
+
453
+ # build rels (forward chains)
454
+ full_implications = defaultdict(set)
455
+ beta_triggers = defaultdict(set)
456
+ for k, (impl, betaidxs) in impl_ab.items():
457
+ full_implications[_as_pair(k)] = {_as_pair(i) for i in impl}
458
+ beta_triggers[_as_pair(k)] = betaidxs
459
+
460
+ self.full_implications = full_implications
461
+ self.beta_triggers = beta_triggers
462
+
463
+ # build prereq (backward chains)
464
+ prereq = defaultdict(set)
465
+ rel_prereq = rules_2prereq(full_implications)
466
+ for k, pitems in rel_prereq.items():
467
+ prereq[k] |= pitems
468
+ self.prereq = prereq
469
+
470
+ def _to_python(self) -> str:
471
+ """ Generate a string with plain python representation of the instance """
472
+ return '\n'.join(self.print_rules())
473
+
474
+ @classmethod
475
+ def _from_python(cls, data : dict):
476
+ """ Generate an instance from the plain python representation """
477
+ self = cls('')
478
+ for key in ['full_implications', 'beta_triggers', 'prereq']:
479
+ d=defaultdict(set)
480
+ d.update(data[key])
481
+ setattr(self, key, d)
482
+ self.beta_rules = data['beta_rules']
483
+ self.defined_facts = set(data['defined_facts'])
484
+
485
+ return self
486
+
487
+ def _defined_facts_lines(self):
488
+ yield 'defined_facts = ['
489
+ for fact in sorted(self.defined_facts):
490
+ yield f' {fact!r},'
491
+ yield '] # defined_facts'
492
+
493
+ def _full_implications_lines(self):
494
+ yield 'full_implications = dict( ['
495
+ for fact in sorted(self.defined_facts):
496
+ for value in (True, False):
497
+ yield f' # Implications of {fact} = {value}:'
498
+ yield f' (({fact!r}, {value!r}), set( ('
499
+ implications = self.full_implications[(fact, value)]
500
+ for implied in sorted(implications):
501
+ yield f' {implied!r},'
502
+ yield ' ) ),'
503
+ yield ' ),'
504
+ yield ' ] ) # full_implications'
505
+
506
+ def _prereq_lines(self):
507
+ yield 'prereq = {'
508
+ yield ''
509
+ for fact in sorted(self.prereq):
510
+ yield f' # facts that could determine the value of {fact}'
511
+ yield f' {fact!r}: {{'
512
+ for pfact in sorted(self.prereq[fact]):
513
+ yield f' {pfact!r},'
514
+ yield ' },'
515
+ yield ''
516
+ yield '} # prereq'
517
+
518
+ def _beta_rules_lines(self):
519
+ reverse_implications = defaultdict(list)
520
+ for n, (pre, implied) in enumerate(self.beta_rules):
521
+ reverse_implications[implied].append((pre, n))
522
+
523
+ yield '# Note: the order of the beta rules is used in the beta_triggers'
524
+ yield 'beta_rules = ['
525
+ yield ''
526
+ m = 0
527
+ indices = {}
528
+ for implied in sorted(reverse_implications):
529
+ fact, value = implied
530
+ yield f' # Rules implying {fact} = {value}'
531
+ for pre, n in reverse_implications[implied]:
532
+ indices[n] = m
533
+ m += 1
534
+ setstr = ", ".join(map(str, sorted(pre)))
535
+ yield f' ({{{setstr}}},'
536
+ yield f' {implied!r}),'
537
+ yield ''
538
+ yield '] # beta_rules'
539
+
540
+ yield 'beta_triggers = {'
541
+ for query in sorted(self.beta_triggers):
542
+ fact, value = query
543
+ triggers = [indices[n] for n in self.beta_triggers[query]]
544
+ yield f' {query!r}: {triggers!r},'
545
+ yield '} # beta_triggers'
546
+
547
+ def print_rules(self) -> Iterator[str]:
548
+ """ Returns a generator with lines to represent the facts and rules """
549
+ yield from self._defined_facts_lines()
550
+ yield ''
551
+ yield ''
552
+ yield from self._full_implications_lines()
553
+ yield ''
554
+ yield ''
555
+ yield from self._prereq_lines()
556
+ yield ''
557
+ yield ''
558
+ yield from self._beta_rules_lines()
559
+ yield ''
560
+ yield ''
561
+ yield "generated_assumptions = {'defined_facts': defined_facts, 'full_implications': full_implications,"
562
+ yield " 'prereq': prereq, 'beta_rules': beta_rules, 'beta_triggers': beta_triggers}"
563
+
564
+
565
+ class InconsistentAssumptions(ValueError):
566
+ def __str__(self):
567
+ kb, fact, value = self.args
568
+ return "%s, %s=%s" % (kb, fact, value)
569
+
570
+
571
+ class FactKB(dict):
572
+ """
573
+ A simple propositional knowledge base relying on compiled inference rules.
574
+ """
575
+ def __str__(self):
576
+ return '{\n%s}' % ',\n'.join(
577
+ ["\t%s: %s" % i for i in sorted(self.items())])
578
+
579
+ def __init__(self, rules):
580
+ self.rules = rules
581
+
582
+ def _tell(self, k, v):
583
+ """Add fact k=v to the knowledge base.
584
+
585
+ Returns True if the KB has actually been updated, False otherwise.
586
+ """
587
+ if k in self and self[k] is not None:
588
+ if self[k] == v:
589
+ return False
590
+ else:
591
+ raise InconsistentAssumptions(self, k, v)
592
+ else:
593
+ self[k] = v
594
+ return True
595
+
596
+ # *********************************************
597
+ # * This is the workhorse, so keep it *fast*. *
598
+ # *********************************************
599
+ def deduce_all_facts(self, facts):
600
+ """
601
+ Update the KB with all the implications of a list of facts.
602
+
603
+ Facts can be specified as a dictionary or as a list of (key, value)
604
+ pairs.
605
+ """
606
+ # keep frequently used attributes locally, so we'll avoid extra
607
+ # attribute access overhead
608
+ full_implications = self.rules.full_implications
609
+ beta_triggers = self.rules.beta_triggers
610
+ beta_rules = self.rules.beta_rules
611
+
612
+ if isinstance(facts, dict):
613
+ facts = facts.items()
614
+
615
+ while facts:
616
+ beta_maytrigger = set()
617
+
618
+ # --- alpha chains ---
619
+ for k, v in facts:
620
+ if not self._tell(k, v) or v is None:
621
+ continue
622
+
623
+ # lookup routing tables
624
+ for key, value in full_implications[k, v]:
625
+ self._tell(key, value)
626
+
627
+ beta_maytrigger.update(beta_triggers[k, v])
628
+
629
+ # --- beta chains ---
630
+ facts = []
631
+ for bidx in beta_maytrigger:
632
+ bcond, bimpl = beta_rules[bidx]
633
+ if all(self.get(k) is v for k, v in bcond):
634
+ facts.append(bimpl)
llmeval-env/lib/python3.10/site-packages/sympy/core/kind.py ADDED
@@ -0,0 +1,388 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Module to efficiently partition SymPy objects.
3
+
4
+ This system is introduced because class of SymPy object does not always
5
+ represent the mathematical classification of the entity. For example,
6
+ ``Integral(1, x)`` and ``Integral(Matrix([1,2]), x)`` are both instance
7
+ of ``Integral`` class. However the former is number and the latter is
8
+ matrix.
9
+
10
+ One way to resolve this is defining subclass for each mathematical type,
11
+ such as ``MatAdd`` for the addition between matrices. Basic algebraic
12
+ operation such as addition or multiplication take this approach, but
13
+ defining every class for every mathematical object is not scalable.
14
+
15
+ Therefore, we define the "kind" of the object and let the expression
16
+ infer the kind of itself from its arguments. Function and class can
17
+ filter the arguments by their kind, and behave differently according to
18
+ the type of itself.
19
+
20
+ This module defines basic kinds for core objects. Other kinds such as
21
+ ``ArrayKind`` or ``MatrixKind`` can be found in corresponding modules.
22
+
23
+ .. notes::
24
+ This approach is experimental, and can be replaced or deleted in the future.
25
+ See https://github.com/sympy/sympy/pull/20549.
26
+ """
27
+
28
+ from collections import defaultdict
29
+
30
+ from .cache import cacheit
31
+ from sympy.multipledispatch.dispatcher import (Dispatcher,
32
+ ambiguity_warn, ambiguity_register_error_ignore_dup,
33
+ str_signature, RaiseNotImplementedError)
34
+
35
+
36
+ class KindMeta(type):
37
+ """
38
+ Metaclass for ``Kind``.
39
+
40
+ Assigns empty ``dict`` as class attribute ``_inst`` for every class,
41
+ in order to endow singleton-like behavior.
42
+ """
43
+ def __new__(cls, clsname, bases, dct):
44
+ dct['_inst'] = {}
45
+ return super().__new__(cls, clsname, bases, dct)
46
+
47
+
48
+ class Kind(object, metaclass=KindMeta):
49
+ """
50
+ Base class for kinds.
51
+
52
+ Kind of the object represents the mathematical classification that
53
+ the entity falls into. It is expected that functions and classes
54
+ recognize and filter the argument by its kind.
55
+
56
+ Kind of every object must be carefully selected so that it shows the
57
+ intention of design. Expressions may have different kind according
58
+ to the kind of its arguments. For example, arguments of ``Add``
59
+ must have common kind since addition is group operator, and the
60
+ resulting ``Add()`` has the same kind.
61
+
62
+ For the performance, each kind is as broad as possible and is not
63
+ based on set theory. For example, ``NumberKind`` includes not only
64
+ complex number but expression containing ``S.Infinity`` or ``S.NaN``
65
+ which are not strictly number.
66
+
67
+ Kind may have arguments as parameter. For example, ``MatrixKind()``
68
+ may be constructed with one element which represents the kind of its
69
+ elements.
70
+
71
+ ``Kind`` behaves in singleton-like fashion. Same signature will
72
+ return the same object.
73
+
74
+ """
75
+ def __new__(cls, *args):
76
+ if args in cls._inst:
77
+ inst = cls._inst[args]
78
+ else:
79
+ inst = super().__new__(cls)
80
+ cls._inst[args] = inst
81
+ return inst
82
+
83
+
84
+ class _UndefinedKind(Kind):
85
+ """
86
+ Default kind for all SymPy object. If the kind is not defined for
87
+ the object, or if the object cannot infer the kind from its
88
+ arguments, this will be returned.
89
+
90
+ Examples
91
+ ========
92
+
93
+ >>> from sympy import Expr
94
+ >>> Expr().kind
95
+ UndefinedKind
96
+ """
97
+ def __new__(cls):
98
+ return super().__new__(cls)
99
+
100
+ def __repr__(self):
101
+ return "UndefinedKind"
102
+
103
+ UndefinedKind = _UndefinedKind()
104
+
105
+
106
+ class _NumberKind(Kind):
107
+ """
108
+ Kind for all numeric object.
109
+
110
+ This kind represents every number, including complex numbers,
111
+ infinity and ``S.NaN``. Other objects such as quaternions do not
112
+ have this kind.
113
+
114
+ Most ``Expr`` are initially designed to represent the number, so
115
+ this will be the most common kind in SymPy core. For example
116
+ ``Symbol()``, which represents a scalar, has this kind as long as it
117
+ is commutative.
118
+
119
+ Numbers form a field. Any operation between number-kind objects will
120
+ result this kind as well.
121
+
122
+ Examples
123
+ ========
124
+
125
+ >>> from sympy import S, oo, Symbol
126
+ >>> S.One.kind
127
+ NumberKind
128
+ >>> (-oo).kind
129
+ NumberKind
130
+ >>> S.NaN.kind
131
+ NumberKind
132
+
133
+ Commutative symbol are treated as number.
134
+
135
+ >>> x = Symbol('x')
136
+ >>> x.kind
137
+ NumberKind
138
+ >>> Symbol('y', commutative=False).kind
139
+ UndefinedKind
140
+
141
+ Operation between numbers results number.
142
+
143
+ >>> (x+1).kind
144
+ NumberKind
145
+
146
+ See Also
147
+ ========
148
+
149
+ sympy.core.expr.Expr.is_Number : check if the object is strictly
150
+ subclass of ``Number`` class.
151
+
152
+ sympy.core.expr.Expr.is_number : check if the object is number
153
+ without any free symbol.
154
+
155
+ """
156
+ def __new__(cls):
157
+ return super().__new__(cls)
158
+
159
+ def __repr__(self):
160
+ return "NumberKind"
161
+
162
+ NumberKind = _NumberKind()
163
+
164
+
165
+ class _BooleanKind(Kind):
166
+ """
167
+ Kind for boolean objects.
168
+
169
+ SymPy's ``S.true``, ``S.false``, and built-in ``True`` and ``False``
170
+ have this kind. Boolean number ``1`` and ``0`` are not relevant.
171
+
172
+ Examples
173
+ ========
174
+
175
+ >>> from sympy import S, Q
176
+ >>> S.true.kind
177
+ BooleanKind
178
+ >>> Q.even(3).kind
179
+ BooleanKind
180
+ """
181
+ def __new__(cls):
182
+ return super().__new__(cls)
183
+
184
+ def __repr__(self):
185
+ return "BooleanKind"
186
+
187
+ BooleanKind = _BooleanKind()
188
+
189
+
190
+ class KindDispatcher:
191
+ """
192
+ Dispatcher to select a kind from multiple kinds by binary dispatching.
193
+
194
+ .. notes::
195
+ This approach is experimental, and can be replaced or deleted in
196
+ the future.
197
+
198
+ Explanation
199
+ ===========
200
+
201
+ SymPy object's :obj:`sympy.core.kind.Kind()` vaguely represents the
202
+ algebraic structure where the object belongs to. Therefore, with
203
+ given operation, we can always find a dominating kind among the
204
+ different kinds. This class selects the kind by recursive binary
205
+ dispatching. If the result cannot be determined, ``UndefinedKind``
206
+ is returned.
207
+
208
+ Examples
209
+ ========
210
+
211
+ Multiplication between numbers return number.
212
+
213
+ >>> from sympy import NumberKind, Mul
214
+ >>> Mul._kind_dispatcher(NumberKind, NumberKind)
215
+ NumberKind
216
+
217
+ Multiplication between number and unknown-kind object returns unknown kind.
218
+
219
+ >>> from sympy import UndefinedKind
220
+ >>> Mul._kind_dispatcher(NumberKind, UndefinedKind)
221
+ UndefinedKind
222
+
223
+ Any number and order of kinds is allowed.
224
+
225
+ >>> Mul._kind_dispatcher(UndefinedKind, NumberKind)
226
+ UndefinedKind
227
+ >>> Mul._kind_dispatcher(NumberKind, UndefinedKind, NumberKind)
228
+ UndefinedKind
229
+
230
+ Since matrix forms a vector space over scalar field, multiplication
231
+ between matrix with numeric element and number returns matrix with
232
+ numeric element.
233
+
234
+ >>> from sympy.matrices import MatrixKind
235
+ >>> Mul._kind_dispatcher(MatrixKind(NumberKind), NumberKind)
236
+ MatrixKind(NumberKind)
237
+
238
+ If a matrix with number element and another matrix with unknown-kind
239
+ element are multiplied, we know that the result is matrix but the
240
+ kind of its elements is unknown.
241
+
242
+ >>> Mul._kind_dispatcher(MatrixKind(NumberKind), MatrixKind(UndefinedKind))
243
+ MatrixKind(UndefinedKind)
244
+
245
+ Parameters
246
+ ==========
247
+
248
+ name : str
249
+
250
+ commutative : bool, optional
251
+ If True, binary dispatch will be automatically registered in
252
+ reversed order as well.
253
+
254
+ doc : str, optional
255
+
256
+ """
257
+ def __init__(self, name, commutative=False, doc=None):
258
+ self.name = name
259
+ self.doc = doc
260
+ self.commutative = commutative
261
+ self._dispatcher = Dispatcher(name)
262
+
263
+ def __repr__(self):
264
+ return "<dispatched %s>" % self.name
265
+
266
+ def register(self, *types, **kwargs):
267
+ """
268
+ Register the binary dispatcher for two kind classes.
269
+
270
+ If *self.commutative* is ``True``, signature in reversed order is
271
+ automatically registered as well.
272
+ """
273
+ on_ambiguity = kwargs.pop("on_ambiguity", None)
274
+ if not on_ambiguity:
275
+ if self.commutative:
276
+ on_ambiguity = ambiguity_register_error_ignore_dup
277
+ else:
278
+ on_ambiguity = ambiguity_warn
279
+ kwargs.update(on_ambiguity=on_ambiguity)
280
+
281
+ if not len(types) == 2:
282
+ raise RuntimeError(
283
+ "Only binary dispatch is supported, but got %s types: <%s>." % (
284
+ len(types), str_signature(types)
285
+ ))
286
+
287
+ def _(func):
288
+ self._dispatcher.add(types, func, **kwargs)
289
+ if self.commutative:
290
+ self._dispatcher.add(tuple(reversed(types)), func, **kwargs)
291
+ return _
292
+
293
+ def __call__(self, *args, **kwargs):
294
+ if self.commutative:
295
+ kinds = frozenset(args)
296
+ else:
297
+ kinds = []
298
+ prev = None
299
+ for a in args:
300
+ if prev is not a:
301
+ kinds.append(a)
302
+ prev = a
303
+ return self.dispatch_kinds(kinds, **kwargs)
304
+
305
+ @cacheit
306
+ def dispatch_kinds(self, kinds, **kwargs):
307
+ # Quick exit for the case where all kinds are same
308
+ if len(kinds) == 1:
309
+ result, = kinds
310
+ if not isinstance(result, Kind):
311
+ raise RuntimeError("%s is not a kind." % result)
312
+ return result
313
+
314
+ for i,kind in enumerate(kinds):
315
+ if not isinstance(kind, Kind):
316
+ raise RuntimeError("%s is not a kind." % kind)
317
+
318
+ if i == 0:
319
+ result = kind
320
+ else:
321
+ prev_kind = result
322
+
323
+ t1, t2 = type(prev_kind), type(kind)
324
+ k1, k2 = prev_kind, kind
325
+ func = self._dispatcher.dispatch(t1, t2)
326
+ if func is None and self.commutative:
327
+ # try reversed order
328
+ func = self._dispatcher.dispatch(t2, t1)
329
+ k1, k2 = k2, k1
330
+ if func is None:
331
+ # unregistered kind relation
332
+ result = UndefinedKind
333
+ else:
334
+ result = func(k1, k2)
335
+ if not isinstance(result, Kind):
336
+ raise RuntimeError(
337
+ "Dispatcher for {!r} and {!r} must return a Kind, but got {!r}".format(
338
+ prev_kind, kind, result
339
+ ))
340
+
341
+ return result
342
+
343
+ @property
344
+ def __doc__(self):
345
+ docs = [
346
+ "Kind dispatcher : %s" % self.name,
347
+ "Note that support for this is experimental. See the docs for :class:`KindDispatcher` for details"
348
+ ]
349
+
350
+ if self.doc:
351
+ docs.append(self.doc)
352
+
353
+ s = "Registered kind classes\n"
354
+ s += '=' * len(s)
355
+ docs.append(s)
356
+
357
+ amb_sigs = []
358
+
359
+ typ_sigs = defaultdict(list)
360
+ for sigs in self._dispatcher.ordering[::-1]:
361
+ key = self._dispatcher.funcs[sigs]
362
+ typ_sigs[key].append(sigs)
363
+
364
+ for func, sigs in typ_sigs.items():
365
+
366
+ sigs_str = ', '.join('<%s>' % str_signature(sig) for sig in sigs)
367
+
368
+ if isinstance(func, RaiseNotImplementedError):
369
+ amb_sigs.append(sigs_str)
370
+ continue
371
+
372
+ s = 'Inputs: %s\n' % sigs_str
373
+ s += '-' * len(s) + '\n'
374
+ if func.__doc__:
375
+ s += func.__doc__.strip()
376
+ else:
377
+ s += func.__name__
378
+ docs.append(s)
379
+
380
+ if amb_sigs:
381
+ s = "Ambiguous kind classes\n"
382
+ s += '=' * len(s)
383
+ docs.append(s)
384
+
385
+ s = '\n'.join(amb_sigs)
386
+ docs.append(s)
387
+
388
+ return '\n\n'.join(docs)
llmeval-env/lib/python3.10/site-packages/sympy/core/mul.py ADDED
@@ -0,0 +1,2195 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Tuple as tTuple
2
+ from collections import defaultdict
3
+ from functools import cmp_to_key, reduce
4
+ from itertools import product
5
+ import operator
6
+
7
+ from .sympify import sympify
8
+ from .basic import Basic
9
+ from .singleton import S
10
+ from .operations import AssocOp, AssocOpDispatcher
11
+ from .cache import cacheit
12
+ from .logic import fuzzy_not, _fuzzy_group
13
+ from .expr import Expr
14
+ from .parameters import global_parameters
15
+ from .kind import KindDispatcher
16
+ from .traversal import bottom_up
17
+
18
+ from sympy.utilities.iterables import sift
19
+
20
+ # internal marker to indicate:
21
+ # "there are still non-commutative objects -- don't forget to process them"
22
+ class NC_Marker:
23
+ is_Order = False
24
+ is_Mul = False
25
+ is_Number = False
26
+ is_Poly = False
27
+
28
+ is_commutative = False
29
+
30
+
31
+ # Key for sorting commutative args in canonical order
32
+ _args_sortkey = cmp_to_key(Basic.compare)
33
+ def _mulsort(args):
34
+ # in-place sorting of args
35
+ args.sort(key=_args_sortkey)
36
+
37
+
38
+ def _unevaluated_Mul(*args):
39
+ """Return a well-formed unevaluated Mul: Numbers are collected and
40
+ put in slot 0, any arguments that are Muls will be flattened, and args
41
+ are sorted. Use this when args have changed but you still want to return
42
+ an unevaluated Mul.
43
+
44
+ Examples
45
+ ========
46
+
47
+ >>> from sympy.core.mul import _unevaluated_Mul as uMul
48
+ >>> from sympy import S, sqrt, Mul
49
+ >>> from sympy.abc import x
50
+ >>> a = uMul(*[S(3.0), x, S(2)])
51
+ >>> a.args[0]
52
+ 6.00000000000000
53
+ >>> a.args[1]
54
+ x
55
+
56
+ Two unevaluated Muls with the same arguments will
57
+ always compare as equal during testing:
58
+
59
+ >>> m = uMul(sqrt(2), sqrt(3))
60
+ >>> m == uMul(sqrt(3), sqrt(2))
61
+ True
62
+ >>> u = Mul(sqrt(3), sqrt(2), evaluate=False)
63
+ >>> m == uMul(u)
64
+ True
65
+ >>> m == Mul(*m.args)
66
+ False
67
+
68
+ """
69
+ args = list(args)
70
+ newargs = []
71
+ ncargs = []
72
+ co = S.One
73
+ while args:
74
+ a = args.pop()
75
+ if a.is_Mul:
76
+ c, nc = a.args_cnc()
77
+ args.extend(c)
78
+ if nc:
79
+ ncargs.append(Mul._from_args(nc))
80
+ elif a.is_Number:
81
+ co *= a
82
+ else:
83
+ newargs.append(a)
84
+ _mulsort(newargs)
85
+ if co is not S.One:
86
+ newargs.insert(0, co)
87
+ if ncargs:
88
+ newargs.append(Mul._from_args(ncargs))
89
+ return Mul._from_args(newargs)
90
+
91
+
92
+ class Mul(Expr, AssocOp):
93
+ """
94
+ Expression representing multiplication operation for algebraic field.
95
+
96
+ .. deprecated:: 1.7
97
+
98
+ Using arguments that aren't subclasses of :class:`~.Expr` in core
99
+ operators (:class:`~.Mul`, :class:`~.Add`, and :class:`~.Pow`) is
100
+ deprecated. See :ref:`non-expr-args-deprecated` for details.
101
+
102
+ Every argument of ``Mul()`` must be ``Expr``. Infix operator ``*``
103
+ on most scalar objects in SymPy calls this class.
104
+
105
+ Another use of ``Mul()`` is to represent the structure of abstract
106
+ multiplication so that its arguments can be substituted to return
107
+ different class. Refer to examples section for this.
108
+
109
+ ``Mul()`` evaluates the argument unless ``evaluate=False`` is passed.
110
+ The evaluation logic includes:
111
+
112
+ 1. Flattening
113
+ ``Mul(x, Mul(y, z))`` -> ``Mul(x, y, z)``
114
+
115
+ 2. Identity removing
116
+ ``Mul(x, 1, y)`` -> ``Mul(x, y)``
117
+
118
+ 3. Exponent collecting by ``.as_base_exp()``
119
+ ``Mul(x, x**2)`` -> ``Pow(x, 3)``
120
+
121
+ 4. Term sorting
122
+ ``Mul(y, x, 2)`` -> ``Mul(2, x, y)``
123
+
124
+ Since multiplication can be vector space operation, arguments may
125
+ have the different :obj:`sympy.core.kind.Kind()`. Kind of the
126
+ resulting object is automatically inferred.
127
+
128
+ Examples
129
+ ========
130
+
131
+ >>> from sympy import Mul
132
+ >>> from sympy.abc import x, y
133
+ >>> Mul(x, 1)
134
+ x
135
+ >>> Mul(x, x)
136
+ x**2
137
+
138
+ If ``evaluate=False`` is passed, result is not evaluated.
139
+
140
+ >>> Mul(1, 2, evaluate=False)
141
+ 1*2
142
+ >>> Mul(x, x, evaluate=False)
143
+ x*x
144
+
145
+ ``Mul()`` also represents the general structure of multiplication
146
+ operation.
147
+
148
+ >>> from sympy import MatrixSymbol
149
+ >>> A = MatrixSymbol('A', 2,2)
150
+ >>> expr = Mul(x,y).subs({y:A})
151
+ >>> expr
152
+ x*A
153
+ >>> type(expr)
154
+ <class 'sympy.matrices.expressions.matmul.MatMul'>
155
+
156
+ See Also
157
+ ========
158
+
159
+ MatMul
160
+
161
+ """
162
+ __slots__ = ()
163
+
164
+ args: tTuple[Expr]
165
+
166
+ is_Mul = True
167
+
168
+ _args_type = Expr
169
+ _kind_dispatcher = KindDispatcher("Mul_kind_dispatcher", commutative=True)
170
+
171
+ @property
172
+ def kind(self):
173
+ arg_kinds = (a.kind for a in self.args)
174
+ return self._kind_dispatcher(*arg_kinds)
175
+
176
+ def could_extract_minus_sign(self):
177
+ if self == (-self):
178
+ return False # e.g. zoo*x == -zoo*x
179
+ c = self.args[0]
180
+ return c.is_Number and c.is_extended_negative
181
+
182
+ def __neg__(self):
183
+ c, args = self.as_coeff_mul()
184
+ if args[0] is not S.ComplexInfinity:
185
+ c = -c
186
+ if c is not S.One:
187
+ if args[0].is_Number:
188
+ args = list(args)
189
+ if c is S.NegativeOne:
190
+ args[0] = -args[0]
191
+ else:
192
+ args[0] *= c
193
+ else:
194
+ args = (c,) + args
195
+ return self._from_args(args, self.is_commutative)
196
+
197
+ @classmethod
198
+ def flatten(cls, seq):
199
+ """Return commutative, noncommutative and order arguments by
200
+ combining related terms.
201
+
202
+ Notes
203
+ =====
204
+ * In an expression like ``a*b*c``, Python process this through SymPy
205
+ as ``Mul(Mul(a, b), c)``. This can have undesirable consequences.
206
+
207
+ - Sometimes terms are not combined as one would like:
208
+ {c.f. https://github.com/sympy/sympy/issues/4596}
209
+
210
+ >>> from sympy import Mul, sqrt
211
+ >>> from sympy.abc import x, y, z
212
+ >>> 2*(x + 1) # this is the 2-arg Mul behavior
213
+ 2*x + 2
214
+ >>> y*(x + 1)*2
215
+ 2*y*(x + 1)
216
+ >>> 2*(x + 1)*y # 2-arg result will be obtained first
217
+ y*(2*x + 2)
218
+ >>> Mul(2, x + 1, y) # all 3 args simultaneously processed
219
+ 2*y*(x + 1)
220
+ >>> 2*((x + 1)*y) # parentheses can control this behavior
221
+ 2*y*(x + 1)
222
+
223
+ Powers with compound bases may not find a single base to
224
+ combine with unless all arguments are processed at once.
225
+ Post-processing may be necessary in such cases.
226
+ {c.f. https://github.com/sympy/sympy/issues/5728}
227
+
228
+ >>> a = sqrt(x*sqrt(y))
229
+ >>> a**3
230
+ (x*sqrt(y))**(3/2)
231
+ >>> Mul(a,a,a)
232
+ (x*sqrt(y))**(3/2)
233
+ >>> a*a*a
234
+ x*sqrt(y)*sqrt(x*sqrt(y))
235
+ >>> _.subs(a.base, z).subs(z, a.base)
236
+ (x*sqrt(y))**(3/2)
237
+
238
+ - If more than two terms are being multiplied then all the
239
+ previous terms will be re-processed for each new argument.
240
+ So if each of ``a``, ``b`` and ``c`` were :class:`Mul`
241
+ expression, then ``a*b*c`` (or building up the product
242
+ with ``*=``) will process all the arguments of ``a`` and
243
+ ``b`` twice: once when ``a*b`` is computed and again when
244
+ ``c`` is multiplied.
245
+
246
+ Using ``Mul(a, b, c)`` will process all arguments once.
247
+
248
+ * The results of Mul are cached according to arguments, so flatten
249
+ will only be called once for ``Mul(a, b, c)``. If you can
250
+ structure a calculation so the arguments are most likely to be
251
+ repeats then this can save time in computing the answer. For
252
+ example, say you had a Mul, M, that you wished to divide by ``d[i]``
253
+ and multiply by ``n[i]`` and you suspect there are many repeats
254
+ in ``n``. It would be better to compute ``M*n[i]/d[i]`` rather
255
+ than ``M/d[i]*n[i]`` since every time n[i] is a repeat, the
256
+ product, ``M*n[i]`` will be returned without flattening -- the
257
+ cached value will be returned. If you divide by the ``d[i]``
258
+ first (and those are more unique than the ``n[i]``) then that will
259
+ create a new Mul, ``M/d[i]`` the args of which will be traversed
260
+ again when it is multiplied by ``n[i]``.
261
+
262
+ {c.f. https://github.com/sympy/sympy/issues/5706}
263
+
264
+ This consideration is moot if the cache is turned off.
265
+
266
+ NB
267
+ --
268
+ The validity of the above notes depends on the implementation
269
+ details of Mul and flatten which may change at any time. Therefore,
270
+ you should only consider them when your code is highly performance
271
+ sensitive.
272
+
273
+ Removal of 1 from the sequence is already handled by AssocOp.__new__.
274
+ """
275
+
276
+ from sympy.calculus.accumulationbounds import AccumBounds
277
+ from sympy.matrices.expressions import MatrixExpr
278
+ rv = None
279
+ if len(seq) == 2:
280
+ a, b = seq
281
+ if b.is_Rational:
282
+ a, b = b, a
283
+ seq = [a, b]
284
+ assert a is not S.One
285
+ if not a.is_zero and a.is_Rational:
286
+ r, b = b.as_coeff_Mul()
287
+ if b.is_Add:
288
+ if r is not S.One: # 2-arg hack
289
+ # leave the Mul as a Mul?
290
+ ar = a*r
291
+ if ar is S.One:
292
+ arb = b
293
+ else:
294
+ arb = cls(a*r, b, evaluate=False)
295
+ rv = [arb], [], None
296
+ elif global_parameters.distribute and b.is_commutative:
297
+ newb = Add(*[_keep_coeff(a, bi) for bi in b.args])
298
+ rv = [newb], [], None
299
+ if rv:
300
+ return rv
301
+
302
+ # apply associativity, separate commutative part of seq
303
+ c_part = [] # out: commutative factors
304
+ nc_part = [] # out: non-commutative factors
305
+
306
+ nc_seq = []
307
+
308
+ coeff = S.One # standalone term
309
+ # e.g. 3 * ...
310
+
311
+ c_powers = [] # (base,exp) n
312
+ # e.g. (x,n) for x
313
+
314
+ num_exp = [] # (num-base, exp) y
315
+ # e.g. (3, y) for ... * 3 * ...
316
+
317
+ neg1e = S.Zero # exponent on -1 extracted from Number-based Pow and I
318
+
319
+ pnum_rat = {} # (num-base, Rat-exp) 1/2
320
+ # e.g. (3, 1/2) for ... * 3 * ...
321
+
322
+ order_symbols = None
323
+
324
+ # --- PART 1 ---
325
+ #
326
+ # "collect powers and coeff":
327
+ #
328
+ # o coeff
329
+ # o c_powers
330
+ # o num_exp
331
+ # o neg1e
332
+ # o pnum_rat
333
+ #
334
+ # NOTE: this is optimized for all-objects-are-commutative case
335
+ for o in seq:
336
+ # O(x)
337
+ if o.is_Order:
338
+ o, order_symbols = o.as_expr_variables(order_symbols)
339
+
340
+ # Mul([...])
341
+ if o.is_Mul:
342
+ if o.is_commutative:
343
+ seq.extend(o.args) # XXX zerocopy?
344
+
345
+ else:
346
+ # NCMul can have commutative parts as well
347
+ for q in o.args:
348
+ if q.is_commutative:
349
+ seq.append(q)
350
+ else:
351
+ nc_seq.append(q)
352
+
353
+ # append non-commutative marker, so we don't forget to
354
+ # process scheduled non-commutative objects
355
+ seq.append(NC_Marker)
356
+
357
+ continue
358
+
359
+ # 3
360
+ elif o.is_Number:
361
+ if o is S.NaN or coeff is S.ComplexInfinity and o.is_zero:
362
+ # we know for sure the result will be nan
363
+ return [S.NaN], [], None
364
+ elif coeff.is_Number or isinstance(coeff, AccumBounds): # it could be zoo
365
+ coeff *= o
366
+ if coeff is S.NaN:
367
+ # we know for sure the result will be nan
368
+ return [S.NaN], [], None
369
+ continue
370
+
371
+ elif isinstance(o, AccumBounds):
372
+ coeff = o.__mul__(coeff)
373
+ continue
374
+
375
+ elif o is S.ComplexInfinity:
376
+ if not coeff:
377
+ # 0 * zoo = NaN
378
+ return [S.NaN], [], None
379
+ coeff = S.ComplexInfinity
380
+ continue
381
+
382
+ elif o is S.ImaginaryUnit:
383
+ neg1e += S.Half
384
+ continue
385
+
386
+ elif o.is_commutative:
387
+ # e
388
+ # o = b
389
+ b, e = o.as_base_exp()
390
+
391
+ # y
392
+ # 3
393
+ if o.is_Pow:
394
+ if b.is_Number:
395
+
396
+ # get all the factors with numeric base so they can be
397
+ # combined below, but don't combine negatives unless
398
+ # the exponent is an integer
399
+ if e.is_Rational:
400
+ if e.is_Integer:
401
+ coeff *= Pow(b, e) # it is an unevaluated power
402
+ continue
403
+ elif e.is_negative: # also a sign of an unevaluated power
404
+ seq.append(Pow(b, e))
405
+ continue
406
+ elif b.is_negative:
407
+ neg1e += e
408
+ b = -b
409
+ if b is not S.One:
410
+ pnum_rat.setdefault(b, []).append(e)
411
+ continue
412
+ elif b.is_positive or e.is_integer:
413
+ num_exp.append((b, e))
414
+ continue
415
+
416
+ c_powers.append((b, e))
417
+
418
+ # NON-COMMUTATIVE
419
+ # TODO: Make non-commutative exponents not combine automatically
420
+ else:
421
+ if o is not NC_Marker:
422
+ nc_seq.append(o)
423
+
424
+ # process nc_seq (if any)
425
+ while nc_seq:
426
+ o = nc_seq.pop(0)
427
+ if not nc_part:
428
+ nc_part.append(o)
429
+ continue
430
+
431
+ # b c b+c
432
+ # try to combine last terms: a * a -> a
433
+ o1 = nc_part.pop()
434
+ b1, e1 = o1.as_base_exp()
435
+ b2, e2 = o.as_base_exp()
436
+ new_exp = e1 + e2
437
+ # Only allow powers to combine if the new exponent is
438
+ # not an Add. This allow things like a**2*b**3 == a**5
439
+ # if a.is_commutative == False, but prohibits
440
+ # a**x*a**y and x**a*x**b from combining (x,y commute).
441
+ if b1 == b2 and (not new_exp.is_Add):
442
+ o12 = b1 ** new_exp
443
+
444
+ # now o12 could be a commutative object
445
+ if o12.is_commutative:
446
+ seq.append(o12)
447
+ continue
448
+ else:
449
+ nc_seq.insert(0, o12)
450
+
451
+ else:
452
+ nc_part.extend([o1, o])
453
+
454
+ # We do want a combined exponent if it would not be an Add, such as
455
+ # y 2y 3y
456
+ # x * x -> x
457
+ # We determine if two exponents have the same term by using
458
+ # as_coeff_Mul.
459
+ #
460
+ # Unfortunately, this isn't smart enough to consider combining into
461
+ # exponents that might already be adds, so things like:
462
+ # z - y y
463
+ # x * x will be left alone. This is because checking every possible
464
+ # combination can slow things down.
465
+
466
+ # gather exponents of common bases...
467
+ def _gather(c_powers):
468
+ common_b = {} # b:e
469
+ for b, e in c_powers:
470
+ co = e.as_coeff_Mul()
471
+ common_b.setdefault(b, {}).setdefault(
472
+ co[1], []).append(co[0])
473
+ for b, d in common_b.items():
474
+ for di, li in d.items():
475
+ d[di] = Add(*li)
476
+ new_c_powers = []
477
+ for b, e in common_b.items():
478
+ new_c_powers.extend([(b, c*t) for t, c in e.items()])
479
+ return new_c_powers
480
+
481
+ # in c_powers
482
+ c_powers = _gather(c_powers)
483
+
484
+ # and in num_exp
485
+ num_exp = _gather(num_exp)
486
+
487
+ # --- PART 2 ---
488
+ #
489
+ # o process collected powers (x**0 -> 1; x**1 -> x; otherwise Pow)
490
+ # o combine collected powers (2**x * 3**x -> 6**x)
491
+ # with numeric base
492
+
493
+ # ................................
494
+ # now we have:
495
+ # - coeff:
496
+ # - c_powers: (b, e)
497
+ # - num_exp: (2, e)
498
+ # - pnum_rat: {(1/3, [1/3, 2/3, 1/4])}
499
+
500
+ # 0 1
501
+ # x -> 1 x -> x
502
+
503
+ # this should only need to run twice; if it fails because
504
+ # it needs to be run more times, perhaps this should be
505
+ # changed to a "while True" loop -- the only reason it
506
+ # isn't such now is to allow a less-than-perfect result to
507
+ # be obtained rather than raising an error or entering an
508
+ # infinite loop
509
+ for i in range(2):
510
+ new_c_powers = []
511
+ changed = False
512
+ for b, e in c_powers:
513
+ if e.is_zero:
514
+ # canceling out infinities yields NaN
515
+ if (b.is_Add or b.is_Mul) and any(infty in b.args
516
+ for infty in (S.ComplexInfinity, S.Infinity,
517
+ S.NegativeInfinity)):
518
+ return [S.NaN], [], None
519
+ continue
520
+ if e is S.One:
521
+ if b.is_Number:
522
+ coeff *= b
523
+ continue
524
+ p = b
525
+ if e is not S.One:
526
+ p = Pow(b, e)
527
+ # check to make sure that the base doesn't change
528
+ # after exponentiation; to allow for unevaluated
529
+ # Pow, we only do so if b is not already a Pow
530
+ if p.is_Pow and not b.is_Pow:
531
+ bi = b
532
+ b, e = p.as_base_exp()
533
+ if b != bi:
534
+ changed = True
535
+ c_part.append(p)
536
+ new_c_powers.append((b, e))
537
+ # there might have been a change, but unless the base
538
+ # matches some other base, there is nothing to do
539
+ if changed and len({
540
+ b for b, e in new_c_powers}) != len(new_c_powers):
541
+ # start over again
542
+ c_part = []
543
+ c_powers = _gather(new_c_powers)
544
+ else:
545
+ break
546
+
547
+ # x x x
548
+ # 2 * 3 -> 6
549
+ inv_exp_dict = {} # exp:Mul(num-bases) x x
550
+ # e.g. x:6 for ... * 2 * 3 * ...
551
+ for b, e in num_exp:
552
+ inv_exp_dict.setdefault(e, []).append(b)
553
+ for e, b in inv_exp_dict.items():
554
+ inv_exp_dict[e] = cls(*b)
555
+ c_part.extend([Pow(b, e) for e, b in inv_exp_dict.items() if e])
556
+
557
+ # b, e -> e' = sum(e), b
558
+ # {(1/5, [1/3]), (1/2, [1/12, 1/4]} -> {(1/3, [1/5, 1/2])}
559
+ comb_e = {}
560
+ for b, e in pnum_rat.items():
561
+ comb_e.setdefault(Add(*e), []).append(b)
562
+ del pnum_rat
563
+ # process them, reducing exponents to values less than 1
564
+ # and updating coeff if necessary else adding them to
565
+ # num_rat for further processing
566
+ num_rat = []
567
+ for e, b in comb_e.items():
568
+ b = cls(*b)
569
+ if e.q == 1:
570
+ coeff *= Pow(b, e)
571
+ continue
572
+ if e.p > e.q:
573
+ e_i, ep = divmod(e.p, e.q)
574
+ coeff *= Pow(b, e_i)
575
+ e = Rational(ep, e.q)
576
+ num_rat.append((b, e))
577
+ del comb_e
578
+
579
+ # extract gcd of bases in num_rat
580
+ # 2**(1/3)*6**(1/4) -> 2**(1/3+1/4)*3**(1/4)
581
+ pnew = defaultdict(list)
582
+ i = 0 # steps through num_rat which may grow
583
+ while i < len(num_rat):
584
+ bi, ei = num_rat[i]
585
+ grow = []
586
+ for j in range(i + 1, len(num_rat)):
587
+ bj, ej = num_rat[j]
588
+ g = bi.gcd(bj)
589
+ if g is not S.One:
590
+ # 4**r1*6**r2 -> 2**(r1+r2) * 2**r1 * 3**r2
591
+ # this might have a gcd with something else
592
+ e = ei + ej
593
+ if e.q == 1:
594
+ coeff *= Pow(g, e)
595
+ else:
596
+ if e.p > e.q:
597
+ e_i, ep = divmod(e.p, e.q) # change e in place
598
+ coeff *= Pow(g, e_i)
599
+ e = Rational(ep, e.q)
600
+ grow.append((g, e))
601
+ # update the jth item
602
+ num_rat[j] = (bj/g, ej)
603
+ # update bi that we are checking with
604
+ bi = bi/g
605
+ if bi is S.One:
606
+ break
607
+ if bi is not S.One:
608
+ obj = Pow(bi, ei)
609
+ if obj.is_Number:
610
+ coeff *= obj
611
+ else:
612
+ # changes like sqrt(12) -> 2*sqrt(3)
613
+ for obj in Mul.make_args(obj):
614
+ if obj.is_Number:
615
+ coeff *= obj
616
+ else:
617
+ assert obj.is_Pow
618
+ bi, ei = obj.args
619
+ pnew[ei].append(bi)
620
+
621
+ num_rat.extend(grow)
622
+ i += 1
623
+
624
+ # combine bases of the new powers
625
+ for e, b in pnew.items():
626
+ pnew[e] = cls(*b)
627
+
628
+ # handle -1 and I
629
+ if neg1e:
630
+ # treat I as (-1)**(1/2) and compute -1's total exponent
631
+ p, q = neg1e.as_numer_denom()
632
+ # if the integer part is odd, extract -1
633
+ n, p = divmod(p, q)
634
+ if n % 2:
635
+ coeff = -coeff
636
+ # if it's a multiple of 1/2 extract I
637
+ if q == 2:
638
+ c_part.append(S.ImaginaryUnit)
639
+ elif p:
640
+ # see if there is any positive base this power of
641
+ # -1 can join
642
+ neg1e = Rational(p, q)
643
+ for e, b in pnew.items():
644
+ if e == neg1e and b.is_positive:
645
+ pnew[e] = -b
646
+ break
647
+ else:
648
+ # keep it separate; we've already evaluated it as
649
+ # much as possible so evaluate=False
650
+ c_part.append(Pow(S.NegativeOne, neg1e, evaluate=False))
651
+
652
+ # add all the pnew powers
653
+ c_part.extend([Pow(b, e) for e, b in pnew.items()])
654
+
655
+ # oo, -oo
656
+ if coeff in (S.Infinity, S.NegativeInfinity):
657
+ def _handle_for_oo(c_part, coeff_sign):
658
+ new_c_part = []
659
+ for t in c_part:
660
+ if t.is_extended_positive:
661
+ continue
662
+ if t.is_extended_negative:
663
+ coeff_sign *= -1
664
+ continue
665
+ new_c_part.append(t)
666
+ return new_c_part, coeff_sign
667
+ c_part, coeff_sign = _handle_for_oo(c_part, 1)
668
+ nc_part, coeff_sign = _handle_for_oo(nc_part, coeff_sign)
669
+ coeff *= coeff_sign
670
+
671
+ # zoo
672
+ if coeff is S.ComplexInfinity:
673
+ # zoo might be
674
+ # infinite_real + bounded_im
675
+ # bounded_real + infinite_im
676
+ # infinite_real + infinite_im
677
+ # and non-zero real or imaginary will not change that status.
678
+ c_part = [c for c in c_part if not (fuzzy_not(c.is_zero) and
679
+ c.is_extended_real is not None)]
680
+ nc_part = [c for c in nc_part if not (fuzzy_not(c.is_zero) and
681
+ c.is_extended_real is not None)]
682
+
683
+ # 0
684
+ elif coeff.is_zero:
685
+ # we know for sure the result will be 0 except the multiplicand
686
+ # is infinity or a matrix
687
+ if any(isinstance(c, MatrixExpr) for c in nc_part):
688
+ return [coeff], nc_part, order_symbols
689
+ if any(c.is_finite == False for c in c_part):
690
+ return [S.NaN], [], order_symbols
691
+ return [coeff], [], order_symbols
692
+
693
+ # check for straggling Numbers that were produced
694
+ _new = []
695
+ for i in c_part:
696
+ if i.is_Number:
697
+ coeff *= i
698
+ else:
699
+ _new.append(i)
700
+ c_part = _new
701
+
702
+ # order commutative part canonically
703
+ _mulsort(c_part)
704
+
705
+ # current code expects coeff to be always in slot-0
706
+ if coeff is not S.One:
707
+ c_part.insert(0, coeff)
708
+
709
+ # we are done
710
+ if (global_parameters.distribute and not nc_part and len(c_part) == 2 and
711
+ c_part[0].is_Number and c_part[0].is_finite and c_part[1].is_Add):
712
+ # 2*(1+a) -> 2 + 2 * a
713
+ coeff = c_part[0]
714
+ c_part = [Add(*[coeff*f for f in c_part[1].args])]
715
+
716
+ return c_part, nc_part, order_symbols
717
+
718
+ def _eval_power(self, e):
719
+
720
+ # don't break up NC terms: (A*B)**3 != A**3*B**3, it is A*B*A*B*A*B
721
+ cargs, nc = self.args_cnc(split_1=False)
722
+
723
+ if e.is_Integer:
724
+ return Mul(*[Pow(b, e, evaluate=False) for b in cargs]) * \
725
+ Pow(Mul._from_args(nc), e, evaluate=False)
726
+ if e.is_Rational and e.q == 2:
727
+ if self.is_imaginary:
728
+ a = self.as_real_imag()[1]
729
+ if a.is_Rational:
730
+ from .power import integer_nthroot
731
+ n, d = abs(a/2).as_numer_denom()
732
+ n, t = integer_nthroot(n, 2)
733
+ if t:
734
+ d, t = integer_nthroot(d, 2)
735
+ if t:
736
+ from sympy.functions.elementary.complexes import sign
737
+ r = sympify(n)/d
738
+ return _unevaluated_Mul(r**e.p, (1 + sign(a)*S.ImaginaryUnit)**e.p)
739
+
740
+ p = Pow(self, e, evaluate=False)
741
+
742
+ if e.is_Rational or e.is_Float:
743
+ return p._eval_expand_power_base()
744
+
745
+ return p
746
+
747
+ @classmethod
748
+ def class_key(cls):
749
+ return 3, 0, cls.__name__
750
+
751
+ def _eval_evalf(self, prec):
752
+ c, m = self.as_coeff_Mul()
753
+ if c is S.NegativeOne:
754
+ if m.is_Mul:
755
+ rv = -AssocOp._eval_evalf(m, prec)
756
+ else:
757
+ mnew = m._eval_evalf(prec)
758
+ if mnew is not None:
759
+ m = mnew
760
+ rv = -m
761
+ else:
762
+ rv = AssocOp._eval_evalf(self, prec)
763
+ if rv.is_number:
764
+ return rv.expand()
765
+ return rv
766
+
767
+ @property
768
+ def _mpc_(self):
769
+ """
770
+ Convert self to an mpmath mpc if possible
771
+ """
772
+ from .numbers import Float
773
+ im_part, imag_unit = self.as_coeff_Mul()
774
+ if imag_unit is not S.ImaginaryUnit:
775
+ # ValueError may seem more reasonable but since it's a @property,
776
+ # we need to use AttributeError to keep from confusing things like
777
+ # hasattr.
778
+ raise AttributeError("Cannot convert Mul to mpc. Must be of the form Number*I")
779
+
780
+ return (Float(0)._mpf_, Float(im_part)._mpf_)
781
+
782
+ @cacheit
783
+ def as_two_terms(self):
784
+ """Return head and tail of self.
785
+
786
+ This is the most efficient way to get the head and tail of an
787
+ expression.
788
+
789
+ - if you want only the head, use self.args[0];
790
+ - if you want to process the arguments of the tail then use
791
+ self.as_coef_mul() which gives the head and a tuple containing
792
+ the arguments of the tail when treated as a Mul.
793
+ - if you want the coefficient when self is treated as an Add
794
+ then use self.as_coeff_add()[0]
795
+
796
+ Examples
797
+ ========
798
+
799
+ >>> from sympy.abc import x, y
800
+ >>> (3*x*y).as_two_terms()
801
+ (3, x*y)
802
+ """
803
+ args = self.args
804
+
805
+ if len(args) == 1:
806
+ return S.One, self
807
+ elif len(args) == 2:
808
+ return args
809
+
810
+ else:
811
+ return args[0], self._new_rawargs(*args[1:])
812
+
813
+ @cacheit
814
+ def as_coeff_mul(self, *deps, rational=True, **kwargs):
815
+ if deps:
816
+ l1, l2 = sift(self.args, lambda x: x.has(*deps), binary=True)
817
+ return self._new_rawargs(*l2), tuple(l1)
818
+ args = self.args
819
+ if args[0].is_Number:
820
+ if not rational or args[0].is_Rational:
821
+ return args[0], args[1:]
822
+ elif args[0].is_extended_negative:
823
+ return S.NegativeOne, (-args[0],) + args[1:]
824
+ return S.One, args
825
+
826
+ def as_coeff_Mul(self, rational=False):
827
+ """
828
+ Efficiently extract the coefficient of a product.
829
+ """
830
+ coeff, args = self.args[0], self.args[1:]
831
+
832
+ if coeff.is_Number:
833
+ if not rational or coeff.is_Rational:
834
+ if len(args) == 1:
835
+ return coeff, args[0]
836
+ else:
837
+ return coeff, self._new_rawargs(*args)
838
+ elif coeff.is_extended_negative:
839
+ return S.NegativeOne, self._new_rawargs(*((-coeff,) + args))
840
+ return S.One, self
841
+
842
+ def as_real_imag(self, deep=True, **hints):
843
+ from sympy.functions.elementary.complexes import Abs, im, re
844
+ other = []
845
+ coeffr = []
846
+ coeffi = []
847
+ addterms = S.One
848
+ for a in self.args:
849
+ r, i = a.as_real_imag()
850
+ if i.is_zero:
851
+ coeffr.append(r)
852
+ elif r.is_zero:
853
+ coeffi.append(i*S.ImaginaryUnit)
854
+ elif a.is_commutative:
855
+ aconj = a.conjugate() if other else None
856
+ # search for complex conjugate pairs:
857
+ for i, x in enumerate(other):
858
+ if x == aconj:
859
+ coeffr.append(Abs(x)**2)
860
+ del other[i]
861
+ break
862
+ else:
863
+ if a.is_Add:
864
+ addterms *= a
865
+ else:
866
+ other.append(a)
867
+ else:
868
+ other.append(a)
869
+ m = self.func(*other)
870
+ if hints.get('ignore') == m:
871
+ return
872
+ if len(coeffi) % 2:
873
+ imco = im(coeffi.pop(0))
874
+ # all other pairs make a real factor; they will be
875
+ # put into reco below
876
+ else:
877
+ imco = S.Zero
878
+ reco = self.func(*(coeffr + coeffi))
879
+ r, i = (reco*re(m), reco*im(m))
880
+ if addterms == 1:
881
+ if m == 1:
882
+ if imco.is_zero:
883
+ return (reco, S.Zero)
884
+ else:
885
+ return (S.Zero, reco*imco)
886
+ if imco is S.Zero:
887
+ return (r, i)
888
+ return (-imco*i, imco*r)
889
+ from .function import expand_mul
890
+ addre, addim = expand_mul(addterms, deep=False).as_real_imag()
891
+ if imco is S.Zero:
892
+ return (r*addre - i*addim, i*addre + r*addim)
893
+ else:
894
+ r, i = -imco*i, imco*r
895
+ return (r*addre - i*addim, r*addim + i*addre)
896
+
897
+ @staticmethod
898
+ def _expandsums(sums):
899
+ """
900
+ Helper function for _eval_expand_mul.
901
+
902
+ sums must be a list of instances of Basic.
903
+ """
904
+
905
+ L = len(sums)
906
+ if L == 1:
907
+ return sums[0].args
908
+ terms = []
909
+ left = Mul._expandsums(sums[:L//2])
910
+ right = Mul._expandsums(sums[L//2:])
911
+
912
+ terms = [Mul(a, b) for a in left for b in right]
913
+ added = Add(*terms)
914
+ return Add.make_args(added) # it may have collapsed down to one term
915
+
916
+ def _eval_expand_mul(self, **hints):
917
+ from sympy.simplify.radsimp import fraction
918
+
919
+ # Handle things like 1/(x*(x + 1)), which are automatically converted
920
+ # to 1/x*1/(x + 1)
921
+ expr = self
922
+ n, d = fraction(expr)
923
+ if d.is_Mul:
924
+ n, d = [i._eval_expand_mul(**hints) if i.is_Mul else i
925
+ for i in (n, d)]
926
+ expr = n/d
927
+ if not expr.is_Mul:
928
+ return expr
929
+
930
+ plain, sums, rewrite = [], [], False
931
+ for factor in expr.args:
932
+ if factor.is_Add:
933
+ sums.append(factor)
934
+ rewrite = True
935
+ else:
936
+ if factor.is_commutative:
937
+ plain.append(factor)
938
+ else:
939
+ sums.append(Basic(factor)) # Wrapper
940
+
941
+ if not rewrite:
942
+ return expr
943
+ else:
944
+ plain = self.func(*plain)
945
+ if sums:
946
+ deep = hints.get("deep", False)
947
+ terms = self.func._expandsums(sums)
948
+ args = []
949
+ for term in terms:
950
+ t = self.func(plain, term)
951
+ if t.is_Mul and any(a.is_Add for a in t.args) and deep:
952
+ t = t._eval_expand_mul()
953
+ args.append(t)
954
+ return Add(*args)
955
+ else:
956
+ return plain
957
+
958
+ @cacheit
959
+ def _eval_derivative(self, s):
960
+ args = list(self.args)
961
+ terms = []
962
+ for i in range(len(args)):
963
+ d = args[i].diff(s)
964
+ if d:
965
+ # Note: reduce is used in step of Mul as Mul is unable to
966
+ # handle subtypes and operation priority:
967
+ terms.append(reduce(lambda x, y: x*y, (args[:i] + [d] + args[i + 1:]), S.One))
968
+ return Add.fromiter(terms)
969
+
970
+ @cacheit
971
+ def _eval_derivative_n_times(self, s, n):
972
+ from .function import AppliedUndef
973
+ from .symbol import Symbol, symbols, Dummy
974
+ if not isinstance(s, (AppliedUndef, Symbol)):
975
+ # other types of s may not be well behaved, e.g.
976
+ # (cos(x)*sin(y)).diff([[x, y, z]])
977
+ return super()._eval_derivative_n_times(s, n)
978
+ from .numbers import Integer
979
+ args = self.args
980
+ m = len(args)
981
+ if isinstance(n, (int, Integer)):
982
+ # https://en.wikipedia.org/wiki/General_Leibniz_rule#More_than_two_factors
983
+ terms = []
984
+ from sympy.ntheory.multinomial import multinomial_coefficients_iterator
985
+ for kvals, c in multinomial_coefficients_iterator(m, n):
986
+ p = Mul(*[arg.diff((s, k)) for k, arg in zip(kvals, args)])
987
+ terms.append(c * p)
988
+ return Add(*terms)
989
+ from sympy.concrete.summations import Sum
990
+ from sympy.functions.combinatorial.factorials import factorial
991
+ from sympy.functions.elementary.miscellaneous import Max
992
+ kvals = symbols("k1:%i" % m, cls=Dummy)
993
+ klast = n - sum(kvals)
994
+ nfact = factorial(n)
995
+ e, l = (# better to use the multinomial?
996
+ nfact/prod(map(factorial, kvals))/factorial(klast)*\
997
+ Mul(*[args[t].diff((s, kvals[t])) for t in range(m-1)])*\
998
+ args[-1].diff((s, Max(0, klast))),
999
+ [(k, 0, n) for k in kvals])
1000
+ return Sum(e, *l)
1001
+
1002
+ def _eval_difference_delta(self, n, step):
1003
+ from sympy.series.limitseq import difference_delta as dd
1004
+ arg0 = self.args[0]
1005
+ rest = Mul(*self.args[1:])
1006
+ return (arg0.subs(n, n + step) * dd(rest, n, step) + dd(arg0, n, step) *
1007
+ rest)
1008
+
1009
+ def _matches_simple(self, expr, repl_dict):
1010
+ # handle (w*3).matches('x*5') -> {w: x*5/3}
1011
+ coeff, terms = self.as_coeff_Mul()
1012
+ terms = Mul.make_args(terms)
1013
+ if len(terms) == 1:
1014
+ newexpr = self.__class__._combine_inverse(expr, coeff)
1015
+ return terms[0].matches(newexpr, repl_dict)
1016
+ return
1017
+
1018
+ def matches(self, expr, repl_dict=None, old=False):
1019
+ expr = sympify(expr)
1020
+ if self.is_commutative and expr.is_commutative:
1021
+ return self._matches_commutative(expr, repl_dict, old)
1022
+ elif self.is_commutative is not expr.is_commutative:
1023
+ return None
1024
+
1025
+ # Proceed only if both both expressions are non-commutative
1026
+ c1, nc1 = self.args_cnc()
1027
+ c2, nc2 = expr.args_cnc()
1028
+ c1, c2 = [c or [1] for c in [c1, c2]]
1029
+
1030
+ # TODO: Should these be self.func?
1031
+ comm_mul_self = Mul(*c1)
1032
+ comm_mul_expr = Mul(*c2)
1033
+
1034
+ repl_dict = comm_mul_self.matches(comm_mul_expr, repl_dict, old)
1035
+
1036
+ # If the commutative arguments didn't match and aren't equal, then
1037
+ # then the expression as a whole doesn't match
1038
+ if not repl_dict and c1 != c2:
1039
+ return None
1040
+
1041
+ # Now match the non-commutative arguments, expanding powers to
1042
+ # multiplications
1043
+ nc1 = Mul._matches_expand_pows(nc1)
1044
+ nc2 = Mul._matches_expand_pows(nc2)
1045
+
1046
+ repl_dict = Mul._matches_noncomm(nc1, nc2, repl_dict)
1047
+
1048
+ return repl_dict or None
1049
+
1050
+ @staticmethod
1051
+ def _matches_expand_pows(arg_list):
1052
+ new_args = []
1053
+ for arg in arg_list:
1054
+ if arg.is_Pow and arg.exp > 0:
1055
+ new_args.extend([arg.base] * arg.exp)
1056
+ else:
1057
+ new_args.append(arg)
1058
+ return new_args
1059
+
1060
+ @staticmethod
1061
+ def _matches_noncomm(nodes, targets, repl_dict=None):
1062
+ """Non-commutative multiplication matcher.
1063
+
1064
+ `nodes` is a list of symbols within the matcher multiplication
1065
+ expression, while `targets` is a list of arguments in the
1066
+ multiplication expression being matched against.
1067
+ """
1068
+ if repl_dict is None:
1069
+ repl_dict = {}
1070
+ else:
1071
+ repl_dict = repl_dict.copy()
1072
+
1073
+ # List of possible future states to be considered
1074
+ agenda = []
1075
+ # The current matching state, storing index in nodes and targets
1076
+ state = (0, 0)
1077
+ node_ind, target_ind = state
1078
+ # Mapping between wildcard indices and the index ranges they match
1079
+ wildcard_dict = {}
1080
+
1081
+ while target_ind < len(targets) and node_ind < len(nodes):
1082
+ node = nodes[node_ind]
1083
+
1084
+ if node.is_Wild:
1085
+ Mul._matches_add_wildcard(wildcard_dict, state)
1086
+
1087
+ states_matches = Mul._matches_new_states(wildcard_dict, state,
1088
+ nodes, targets)
1089
+ if states_matches:
1090
+ new_states, new_matches = states_matches
1091
+ agenda.extend(new_states)
1092
+ if new_matches:
1093
+ for match in new_matches:
1094
+ repl_dict[match] = new_matches[match]
1095
+ if not agenda:
1096
+ return None
1097
+ else:
1098
+ state = agenda.pop()
1099
+ node_ind, target_ind = state
1100
+
1101
+ return repl_dict
1102
+
1103
+ @staticmethod
1104
+ def _matches_add_wildcard(dictionary, state):
1105
+ node_ind, target_ind = state
1106
+ if node_ind in dictionary:
1107
+ begin, end = dictionary[node_ind]
1108
+ dictionary[node_ind] = (begin, target_ind)
1109
+ else:
1110
+ dictionary[node_ind] = (target_ind, target_ind)
1111
+
1112
+ @staticmethod
1113
+ def _matches_new_states(dictionary, state, nodes, targets):
1114
+ node_ind, target_ind = state
1115
+ node = nodes[node_ind]
1116
+ target = targets[target_ind]
1117
+
1118
+ # Don't advance at all if we've exhausted the targets but not the nodes
1119
+ if target_ind >= len(targets) - 1 and node_ind < len(nodes) - 1:
1120
+ return None
1121
+
1122
+ if node.is_Wild:
1123
+ match_attempt = Mul._matches_match_wilds(dictionary, node_ind,
1124
+ nodes, targets)
1125
+ if match_attempt:
1126
+ # If the same node has been matched before, don't return
1127
+ # anything if the current match is diverging from the previous
1128
+ # match
1129
+ other_node_inds = Mul._matches_get_other_nodes(dictionary,
1130
+ nodes, node_ind)
1131
+ for ind in other_node_inds:
1132
+ other_begin, other_end = dictionary[ind]
1133
+ curr_begin, curr_end = dictionary[node_ind]
1134
+
1135
+ other_targets = targets[other_begin:other_end + 1]
1136
+ current_targets = targets[curr_begin:curr_end + 1]
1137
+
1138
+ for curr, other in zip(current_targets, other_targets):
1139
+ if curr != other:
1140
+ return None
1141
+
1142
+ # A wildcard node can match more than one target, so only the
1143
+ # target index is advanced
1144
+ new_state = [(node_ind, target_ind + 1)]
1145
+ # Only move on to the next node if there is one
1146
+ if node_ind < len(nodes) - 1:
1147
+ new_state.append((node_ind + 1, target_ind + 1))
1148
+ return new_state, match_attempt
1149
+ else:
1150
+ # If we're not at a wildcard, then make sure we haven't exhausted
1151
+ # nodes but not targets, since in this case one node can only match
1152
+ # one target
1153
+ if node_ind >= len(nodes) - 1 and target_ind < len(targets) - 1:
1154
+ return None
1155
+
1156
+ match_attempt = node.matches(target)
1157
+
1158
+ if match_attempt:
1159
+ return [(node_ind + 1, target_ind + 1)], match_attempt
1160
+ elif node == target:
1161
+ return [(node_ind + 1, target_ind + 1)], None
1162
+ else:
1163
+ return None
1164
+
1165
+ @staticmethod
1166
+ def _matches_match_wilds(dictionary, wildcard_ind, nodes, targets):
1167
+ """Determine matches of a wildcard with sub-expression in `target`."""
1168
+ wildcard = nodes[wildcard_ind]
1169
+ begin, end = dictionary[wildcard_ind]
1170
+ terms = targets[begin:end + 1]
1171
+ # TODO: Should this be self.func?
1172
+ mult = Mul(*terms) if len(terms) > 1 else terms[0]
1173
+ return wildcard.matches(mult)
1174
+
1175
+ @staticmethod
1176
+ def _matches_get_other_nodes(dictionary, nodes, node_ind):
1177
+ """Find other wildcards that may have already been matched."""
1178
+ ind_node = nodes[node_ind]
1179
+ return [ind for ind in dictionary if nodes[ind] == ind_node]
1180
+
1181
+ @staticmethod
1182
+ def _combine_inverse(lhs, rhs):
1183
+ """
1184
+ Returns lhs/rhs, but treats arguments like symbols, so things
1185
+ like oo/oo return 1 (instead of a nan) and ``I`` behaves like
1186
+ a symbol instead of sqrt(-1).
1187
+ """
1188
+ from sympy.simplify.simplify import signsimp
1189
+ from .symbol import Dummy
1190
+ if lhs == rhs:
1191
+ return S.One
1192
+
1193
+ def check(l, r):
1194
+ if l.is_Float and r.is_comparable:
1195
+ # if both objects are added to 0 they will share the same "normalization"
1196
+ # and are more likely to compare the same. Since Add(foo, 0) will not allow
1197
+ # the 0 to pass, we use __add__ directly.
1198
+ return l.__add__(0) == r.evalf().__add__(0)
1199
+ return False
1200
+ if check(lhs, rhs) or check(rhs, lhs):
1201
+ return S.One
1202
+ if any(i.is_Pow or i.is_Mul for i in (lhs, rhs)):
1203
+ # gruntz and limit wants a literal I to not combine
1204
+ # with a power of -1
1205
+ d = Dummy('I')
1206
+ _i = {S.ImaginaryUnit: d}
1207
+ i_ = {d: S.ImaginaryUnit}
1208
+ a = lhs.xreplace(_i).as_powers_dict()
1209
+ b = rhs.xreplace(_i).as_powers_dict()
1210
+ blen = len(b)
1211
+ for bi in tuple(b.keys()):
1212
+ if bi in a:
1213
+ a[bi] -= b.pop(bi)
1214
+ if not a[bi]:
1215
+ a.pop(bi)
1216
+ if len(b) != blen:
1217
+ lhs = Mul(*[k**v for k, v in a.items()]).xreplace(i_)
1218
+ rhs = Mul(*[k**v for k, v in b.items()]).xreplace(i_)
1219
+ rv = lhs/rhs
1220
+ srv = signsimp(rv)
1221
+ return srv if srv.is_Number else rv
1222
+
1223
+ def as_powers_dict(self):
1224
+ d = defaultdict(int)
1225
+ for term in self.args:
1226
+ for b, e in term.as_powers_dict().items():
1227
+ d[b] += e
1228
+ return d
1229
+
1230
+ def as_numer_denom(self):
1231
+ # don't use _from_args to rebuild the numerators and denominators
1232
+ # as the order is not guaranteed to be the same once they have
1233
+ # been separated from each other
1234
+ numers, denoms = list(zip(*[f.as_numer_denom() for f in self.args]))
1235
+ return self.func(*numers), self.func(*denoms)
1236
+
1237
+ def as_base_exp(self):
1238
+ e1 = None
1239
+ bases = []
1240
+ nc = 0
1241
+ for m in self.args:
1242
+ b, e = m.as_base_exp()
1243
+ if not b.is_commutative:
1244
+ nc += 1
1245
+ if e1 is None:
1246
+ e1 = e
1247
+ elif e != e1 or nc > 1:
1248
+ return self, S.One
1249
+ bases.append(b)
1250
+ return self.func(*bases), e1
1251
+
1252
+ def _eval_is_polynomial(self, syms):
1253
+ return all(term._eval_is_polynomial(syms) for term in self.args)
1254
+
1255
+ def _eval_is_rational_function(self, syms):
1256
+ return all(term._eval_is_rational_function(syms) for term in self.args)
1257
+
1258
+ def _eval_is_meromorphic(self, x, a):
1259
+ return _fuzzy_group((arg.is_meromorphic(x, a) for arg in self.args),
1260
+ quick_exit=True)
1261
+
1262
+ def _eval_is_algebraic_expr(self, syms):
1263
+ return all(term._eval_is_algebraic_expr(syms) for term in self.args)
1264
+
1265
+ _eval_is_commutative = lambda self: _fuzzy_group(
1266
+ a.is_commutative for a in self.args)
1267
+
1268
+ def _eval_is_complex(self):
1269
+ comp = _fuzzy_group(a.is_complex for a in self.args)
1270
+ if comp is False:
1271
+ if any(a.is_infinite for a in self.args):
1272
+ if any(a.is_zero is not False for a in self.args):
1273
+ return None
1274
+ return False
1275
+ return comp
1276
+
1277
+ def _eval_is_zero_infinite_helper(self):
1278
+ #
1279
+ # Helper used by _eval_is_zero and _eval_is_infinite.
1280
+ #
1281
+ # Three-valued logic is tricky so let us reason this carefully. It
1282
+ # would be nice to say that we just check is_zero/is_infinite in all
1283
+ # args but we need to be careful about the case that one arg is zero
1284
+ # and another is infinite like Mul(0, oo) or more importantly a case
1285
+ # where it is not known if the arguments are zero or infinite like
1286
+ # Mul(y, 1/x). If either y or x could be zero then there is a
1287
+ # *possibility* that we have Mul(0, oo) which should give None for both
1288
+ # is_zero and is_infinite.
1289
+ #
1290
+ # We keep track of whether we have seen a zero or infinity but we also
1291
+ # need to keep track of whether we have *possibly* seen one which
1292
+ # would be indicated by None.
1293
+ #
1294
+ # For each argument there is the possibility that is_zero might give
1295
+ # True, False or None and likewise that is_infinite might give True,
1296
+ # False or None, giving 9 combinations. The True cases for is_zero and
1297
+ # is_infinite are mutually exclusive though so there are 3 main cases:
1298
+ #
1299
+ # - is_zero = True
1300
+ # - is_infinite = True
1301
+ # - is_zero and is_infinite are both either False or None
1302
+ #
1303
+ # At the end seen_zero and seen_infinite can be any of 9 combinations
1304
+ # of True/False/None. Unless one is False though we cannot return
1305
+ # anything except None:
1306
+ #
1307
+ # - is_zero=True needs seen_zero=True and seen_infinite=False
1308
+ # - is_zero=False needs seen_zero=False
1309
+ # - is_infinite=True needs seen_infinite=True and seen_zero=False
1310
+ # - is_infinite=False needs seen_infinite=False
1311
+ # - anything else gives both is_zero=None and is_infinite=None
1312
+ #
1313
+ # The loop only sets the flags to True or None and never back to False.
1314
+ # Hence as soon as neither flag is False we exit early returning None.
1315
+ # In particular as soon as we encounter a single arg that has
1316
+ # is_zero=is_infinite=None we exit. This is a common case since it is
1317
+ # the default assumptions for a Symbol and also the case for most
1318
+ # expressions containing such a symbol. The early exit gives a big
1319
+ # speedup for something like Mul(*symbols('x:1000')).is_zero.
1320
+ #
1321
+ seen_zero = seen_infinite = False
1322
+
1323
+ for a in self.args:
1324
+ if a.is_zero:
1325
+ if seen_infinite is not False:
1326
+ return None, None
1327
+ seen_zero = True
1328
+ elif a.is_infinite:
1329
+ if seen_zero is not False:
1330
+ return None, None
1331
+ seen_infinite = True
1332
+ else:
1333
+ if seen_zero is False and a.is_zero is None:
1334
+ if seen_infinite is not False:
1335
+ return None, None
1336
+ seen_zero = None
1337
+ if seen_infinite is False and a.is_infinite is None:
1338
+ if seen_zero is not False:
1339
+ return None, None
1340
+ seen_infinite = None
1341
+
1342
+ return seen_zero, seen_infinite
1343
+
1344
+ def _eval_is_zero(self):
1345
+ # True iff any arg is zero and no arg is infinite but need to handle
1346
+ # three valued logic carefully.
1347
+ seen_zero, seen_infinite = self._eval_is_zero_infinite_helper()
1348
+
1349
+ if seen_zero is False:
1350
+ return False
1351
+ elif seen_zero is True and seen_infinite is False:
1352
+ return True
1353
+ else:
1354
+ return None
1355
+
1356
+ def _eval_is_infinite(self):
1357
+ # True iff any arg is infinite and no arg is zero but need to handle
1358
+ # three valued logic carefully.
1359
+ seen_zero, seen_infinite = self._eval_is_zero_infinite_helper()
1360
+
1361
+ if seen_infinite is True and seen_zero is False:
1362
+ return True
1363
+ elif seen_infinite is False:
1364
+ return False
1365
+ else:
1366
+ return None
1367
+
1368
+ # We do not need to implement _eval_is_finite because the assumptions
1369
+ # system can infer it from finite = not infinite.
1370
+
1371
+ def _eval_is_rational(self):
1372
+ r = _fuzzy_group((a.is_rational for a in self.args), quick_exit=True)
1373
+ if r:
1374
+ return r
1375
+ elif r is False:
1376
+ # All args except one are rational
1377
+ if all(a.is_zero is False for a in self.args):
1378
+ return False
1379
+
1380
+ def _eval_is_algebraic(self):
1381
+ r = _fuzzy_group((a.is_algebraic for a in self.args), quick_exit=True)
1382
+ if r:
1383
+ return r
1384
+ elif r is False:
1385
+ # All args except one are algebraic
1386
+ if all(a.is_zero is False for a in self.args):
1387
+ return False
1388
+
1389
+ # without involving odd/even checks this code would suffice:
1390
+ #_eval_is_integer = lambda self: _fuzzy_group(
1391
+ # (a.is_integer for a in self.args), quick_exit=True)
1392
+ def _eval_is_integer(self):
1393
+ from sympy.ntheory.factor_ import trailing
1394
+ is_rational = self._eval_is_rational()
1395
+ if is_rational is False:
1396
+ return False
1397
+
1398
+ numerators = []
1399
+ denominators = []
1400
+ unknown = False
1401
+ for a in self.args:
1402
+ hit = False
1403
+ if a.is_integer:
1404
+ if abs(a) is not S.One:
1405
+ numerators.append(a)
1406
+ elif a.is_Rational:
1407
+ n, d = a.as_numer_denom()
1408
+ if abs(n) is not S.One:
1409
+ numerators.append(n)
1410
+ if d is not S.One:
1411
+ denominators.append(d)
1412
+ elif a.is_Pow:
1413
+ b, e = a.as_base_exp()
1414
+ if not b.is_integer or not e.is_integer:
1415
+ hit = unknown = True
1416
+ if e.is_negative:
1417
+ denominators.append(2 if a is S.Half else
1418
+ Pow(a, S.NegativeOne))
1419
+ elif not hit:
1420
+ # int b and pos int e: a = b**e is integer
1421
+ assert not e.is_positive
1422
+ # for rational self and e equal to zero: a = b**e is 1
1423
+ assert not e.is_zero
1424
+ return # sign of e unknown -> self.is_integer unknown
1425
+ else:
1426
+ # x**2, 2**x, or x**y with x and y int-unknown -> unknown
1427
+ return
1428
+ else:
1429
+ return
1430
+
1431
+ if not denominators and not unknown:
1432
+ return True
1433
+
1434
+ allodd = lambda x: all(i.is_odd for i in x)
1435
+ alleven = lambda x: all(i.is_even for i in x)
1436
+ anyeven = lambda x: any(i.is_even for i in x)
1437
+
1438
+ from .relational import is_gt
1439
+ if not numerators and denominators and all(
1440
+ is_gt(_, S.One) for _ in denominators):
1441
+ return False
1442
+ elif unknown:
1443
+ return
1444
+ elif allodd(numerators) and anyeven(denominators):
1445
+ return False
1446
+ elif anyeven(numerators) and denominators == [2]:
1447
+ return True
1448
+ elif alleven(numerators) and allodd(denominators
1449
+ ) and (Mul(*denominators, evaluate=False) - 1
1450
+ ).is_positive:
1451
+ return False
1452
+ if len(denominators) == 1:
1453
+ d = denominators[0]
1454
+ if d.is_Integer and d.is_even:
1455
+ # if minimal power of 2 in num vs den is not
1456
+ # negative then we have an integer
1457
+ if (Add(*[i.as_base_exp()[1] for i in
1458
+ numerators if i.is_even]) - trailing(d.p)
1459
+ ).is_nonnegative:
1460
+ return True
1461
+ if len(numerators) == 1:
1462
+ n = numerators[0]
1463
+ if n.is_Integer and n.is_even:
1464
+ # if minimal power of 2 in den vs num is positive
1465
+ # then we have have a non-integer
1466
+ if (Add(*[i.as_base_exp()[1] for i in
1467
+ denominators if i.is_even]) - trailing(n.p)
1468
+ ).is_positive:
1469
+ return False
1470
+
1471
+ def _eval_is_polar(self):
1472
+ has_polar = any(arg.is_polar for arg in self.args)
1473
+ return has_polar and \
1474
+ all(arg.is_polar or arg.is_positive for arg in self.args)
1475
+
1476
+ def _eval_is_extended_real(self):
1477
+ return self._eval_real_imag(True)
1478
+
1479
+ def _eval_real_imag(self, real):
1480
+ zero = False
1481
+ t_not_re_im = None
1482
+
1483
+ for t in self.args:
1484
+ if (t.is_complex or t.is_infinite) is False and t.is_extended_real is False:
1485
+ return False
1486
+ elif t.is_imaginary: # I
1487
+ real = not real
1488
+ elif t.is_extended_real: # 2
1489
+ if not zero:
1490
+ z = t.is_zero
1491
+ if not z and zero is False:
1492
+ zero = z
1493
+ elif z:
1494
+ if all(a.is_finite for a in self.args):
1495
+ return True
1496
+ return
1497
+ elif t.is_extended_real is False:
1498
+ # symbolic or literal like `2 + I` or symbolic imaginary
1499
+ if t_not_re_im:
1500
+ return # complex terms might cancel
1501
+ t_not_re_im = t
1502
+ elif t.is_imaginary is False: # symbolic like `2` or `2 + I`
1503
+ if t_not_re_im:
1504
+ return # complex terms might cancel
1505
+ t_not_re_im = t
1506
+ else:
1507
+ return
1508
+
1509
+ if t_not_re_im:
1510
+ if t_not_re_im.is_extended_real is False:
1511
+ if real: # like 3
1512
+ return zero # 3*(smthng like 2 + I or i) is not real
1513
+ if t_not_re_im.is_imaginary is False: # symbolic 2 or 2 + I
1514
+ if not real: # like I
1515
+ return zero # I*(smthng like 2 or 2 + I) is not real
1516
+ elif zero is False:
1517
+ return real # can't be trumped by 0
1518
+ elif real:
1519
+ return real # doesn't matter what zero is
1520
+
1521
+ def _eval_is_imaginary(self):
1522
+ if all(a.is_zero is False and a.is_finite for a in self.args):
1523
+ return self._eval_real_imag(False)
1524
+
1525
+ def _eval_is_hermitian(self):
1526
+ return self._eval_herm_antiherm(True)
1527
+
1528
+ def _eval_is_antihermitian(self):
1529
+ return self._eval_herm_antiherm(False)
1530
+
1531
+ def _eval_herm_antiherm(self, herm):
1532
+ for t in self.args:
1533
+ if t.is_hermitian is None or t.is_antihermitian is None:
1534
+ return
1535
+ if t.is_hermitian:
1536
+ continue
1537
+ elif t.is_antihermitian:
1538
+ herm = not herm
1539
+ else:
1540
+ return
1541
+
1542
+ if herm is not False:
1543
+ return herm
1544
+
1545
+ is_zero = self._eval_is_zero()
1546
+ if is_zero:
1547
+ return True
1548
+ elif is_zero is False:
1549
+ return herm
1550
+
1551
+ def _eval_is_irrational(self):
1552
+ for t in self.args:
1553
+ a = t.is_irrational
1554
+ if a:
1555
+ others = list(self.args)
1556
+ others.remove(t)
1557
+ if all((x.is_rational and fuzzy_not(x.is_zero)) is True for x in others):
1558
+ return True
1559
+ return
1560
+ if a is None:
1561
+ return
1562
+ if all(x.is_real for x in self.args):
1563
+ return False
1564
+
1565
+ def _eval_is_extended_positive(self):
1566
+ """Return True if self is positive, False if not, and None if it
1567
+ cannot be determined.
1568
+
1569
+ Explanation
1570
+ ===========
1571
+
1572
+ This algorithm is non-recursive and works by keeping track of the
1573
+ sign which changes when a negative or nonpositive is encountered.
1574
+ Whether a nonpositive or nonnegative is seen is also tracked since
1575
+ the presence of these makes it impossible to return True, but
1576
+ possible to return False if the end result is nonpositive. e.g.
1577
+
1578
+ pos * neg * nonpositive -> pos or zero -> None is returned
1579
+ pos * neg * nonnegative -> neg or zero -> False is returned
1580
+ """
1581
+ return self._eval_pos_neg(1)
1582
+
1583
+ def _eval_pos_neg(self, sign):
1584
+ saw_NON = saw_NOT = False
1585
+ for t in self.args:
1586
+ if t.is_extended_positive:
1587
+ continue
1588
+ elif t.is_extended_negative:
1589
+ sign = -sign
1590
+ elif t.is_zero:
1591
+ if all(a.is_finite for a in self.args):
1592
+ return False
1593
+ return
1594
+ elif t.is_extended_nonpositive:
1595
+ sign = -sign
1596
+ saw_NON = True
1597
+ elif t.is_extended_nonnegative:
1598
+ saw_NON = True
1599
+ # FIXME: is_positive/is_negative is False doesn't take account of
1600
+ # Symbol('x', infinite=True, extended_real=True) which has
1601
+ # e.g. is_positive is False but has uncertain sign.
1602
+ elif t.is_positive is False:
1603
+ sign = -sign
1604
+ if saw_NOT:
1605
+ return
1606
+ saw_NOT = True
1607
+ elif t.is_negative is False:
1608
+ if saw_NOT:
1609
+ return
1610
+ saw_NOT = True
1611
+ else:
1612
+ return
1613
+ if sign == 1 and saw_NON is False and saw_NOT is False:
1614
+ return True
1615
+ if sign < 0:
1616
+ return False
1617
+
1618
+ def _eval_is_extended_negative(self):
1619
+ return self._eval_pos_neg(-1)
1620
+
1621
+ def _eval_is_odd(self):
1622
+ is_integer = self._eval_is_integer()
1623
+ if is_integer is not True:
1624
+ return is_integer
1625
+
1626
+ from sympy.simplify.radsimp import fraction
1627
+ n, d = fraction(self)
1628
+ if d.is_Integer and d.is_even:
1629
+ from sympy.ntheory.factor_ import trailing
1630
+ # if minimal power of 2 in num vs den is
1631
+ # positive then we have an even number
1632
+ if (Add(*[i.as_base_exp()[1] for i in
1633
+ Mul.make_args(n) if i.is_even]) - trailing(d.p)
1634
+ ).is_positive:
1635
+ return False
1636
+ return
1637
+ r, acc = True, 1
1638
+ for t in self.args:
1639
+ if abs(t) is S.One:
1640
+ continue
1641
+ if t.is_even:
1642
+ return False
1643
+ if r is False:
1644
+ pass
1645
+ elif acc != 1 and (acc + t).is_odd:
1646
+ r = False
1647
+ elif t.is_even is None:
1648
+ r = None
1649
+ acc = t
1650
+ return r
1651
+
1652
+ def _eval_is_even(self):
1653
+ from sympy.simplify.radsimp import fraction
1654
+ n, d = fraction(self)
1655
+ if n.is_Integer and n.is_even:
1656
+ # if minimal power of 2 in den vs num is not
1657
+ # negative then this is not an integer and
1658
+ # can't be even
1659
+ from sympy.ntheory.factor_ import trailing
1660
+ if (Add(*[i.as_base_exp()[1] for i in
1661
+ Mul.make_args(d) if i.is_even]) - trailing(n.p)
1662
+ ).is_nonnegative:
1663
+ return False
1664
+
1665
+ def _eval_is_composite(self):
1666
+ """
1667
+ Here we count the number of arguments that have a minimum value
1668
+ greater than two.
1669
+ If there are more than one of such a symbol then the result is composite.
1670
+ Else, the result cannot be determined.
1671
+ """
1672
+ number_of_args = 0 # count of symbols with minimum value greater than one
1673
+ for arg in self.args:
1674
+ if not (arg.is_integer and arg.is_positive):
1675
+ return None
1676
+ if (arg-1).is_positive:
1677
+ number_of_args += 1
1678
+
1679
+ if number_of_args > 1:
1680
+ return True
1681
+
1682
+ def _eval_subs(self, old, new):
1683
+ from sympy.functions.elementary.complexes import sign
1684
+ from sympy.ntheory.factor_ import multiplicity
1685
+ from sympy.simplify.powsimp import powdenest
1686
+ from sympy.simplify.radsimp import fraction
1687
+
1688
+ if not old.is_Mul:
1689
+ return None
1690
+
1691
+ # try keep replacement literal so -2*x doesn't replace 4*x
1692
+ if old.args[0].is_Number and old.args[0] < 0:
1693
+ if self.args[0].is_Number:
1694
+ if self.args[0] < 0:
1695
+ return self._subs(-old, -new)
1696
+ return None
1697
+
1698
+ def base_exp(a):
1699
+ # if I and -1 are in a Mul, they get both end up with
1700
+ # a -1 base (see issue 6421); all we want here are the
1701
+ # true Pow or exp separated into base and exponent
1702
+ from sympy.functions.elementary.exponential import exp
1703
+ if a.is_Pow or isinstance(a, exp):
1704
+ return a.as_base_exp()
1705
+ return a, S.One
1706
+
1707
+ def breakup(eq):
1708
+ """break up powers of eq when treated as a Mul:
1709
+ b**(Rational*e) -> b**e, Rational
1710
+ commutatives come back as a dictionary {b**e: Rational}
1711
+ noncommutatives come back as a list [(b**e, Rational)]
1712
+ """
1713
+
1714
+ (c, nc) = (defaultdict(int), [])
1715
+ for a in Mul.make_args(eq):
1716
+ a = powdenest(a)
1717
+ (b, e) = base_exp(a)
1718
+ if e is not S.One:
1719
+ (co, _) = e.as_coeff_mul()
1720
+ b = Pow(b, e/co)
1721
+ e = co
1722
+ if a.is_commutative:
1723
+ c[b] += e
1724
+ else:
1725
+ nc.append([b, e])
1726
+ return (c, nc)
1727
+
1728
+ def rejoin(b, co):
1729
+ """
1730
+ Put rational back with exponent; in general this is not ok, but
1731
+ since we took it from the exponent for analysis, it's ok to put
1732
+ it back.
1733
+ """
1734
+
1735
+ (b, e) = base_exp(b)
1736
+ return Pow(b, e*co)
1737
+
1738
+ def ndiv(a, b):
1739
+ """if b divides a in an extractive way (like 1/4 divides 1/2
1740
+ but not vice versa, and 2/5 does not divide 1/3) then return
1741
+ the integer number of times it divides, else return 0.
1742
+ """
1743
+ if not b.q % a.q or not a.q % b.q:
1744
+ return int(a/b)
1745
+ return 0
1746
+
1747
+ # give Muls in the denominator a chance to be changed (see issue 5651)
1748
+ # rv will be the default return value
1749
+ rv = None
1750
+ n, d = fraction(self)
1751
+ self2 = self
1752
+ if d is not S.One:
1753
+ self2 = n._subs(old, new)/d._subs(old, new)
1754
+ if not self2.is_Mul:
1755
+ return self2._subs(old, new)
1756
+ if self2 != self:
1757
+ rv = self2
1758
+
1759
+ # Now continue with regular substitution.
1760
+
1761
+ # handle the leading coefficient and use it to decide if anything
1762
+ # should even be started; we always know where to find the Rational
1763
+ # so it's a quick test
1764
+
1765
+ co_self = self2.args[0]
1766
+ co_old = old.args[0]
1767
+ co_xmul = None
1768
+ if co_old.is_Rational and co_self.is_Rational:
1769
+ # if coeffs are the same there will be no updating to do
1770
+ # below after breakup() step; so skip (and keep co_xmul=None)
1771
+ if co_old != co_self:
1772
+ co_xmul = co_self.extract_multiplicatively(co_old)
1773
+ elif co_old.is_Rational:
1774
+ return rv
1775
+
1776
+ # break self and old into factors
1777
+
1778
+ (c, nc) = breakup(self2)
1779
+ (old_c, old_nc) = breakup(old)
1780
+
1781
+ # update the coefficients if we had an extraction
1782
+ # e.g. if co_self were 2*(3/35*x)**2 and co_old = 3/5
1783
+ # then co_self in c is replaced by (3/5)**2 and co_residual
1784
+ # is 2*(1/7)**2
1785
+
1786
+ if co_xmul and co_xmul.is_Rational and abs(co_old) != 1:
1787
+ mult = S(multiplicity(abs(co_old), co_self))
1788
+ c.pop(co_self)
1789
+ if co_old in c:
1790
+ c[co_old] += mult
1791
+ else:
1792
+ c[co_old] = mult
1793
+ co_residual = co_self/co_old**mult
1794
+ else:
1795
+ co_residual = 1
1796
+
1797
+ # do quick tests to see if we can't succeed
1798
+
1799
+ ok = True
1800
+ if len(old_nc) > len(nc):
1801
+ # more non-commutative terms
1802
+ ok = False
1803
+ elif len(old_c) > len(c):
1804
+ # more commutative terms
1805
+ ok = False
1806
+ elif {i[0] for i in old_nc}.difference({i[0] for i in nc}):
1807
+ # unmatched non-commutative bases
1808
+ ok = False
1809
+ elif set(old_c).difference(set(c)):
1810
+ # unmatched commutative terms
1811
+ ok = False
1812
+ elif any(sign(c[b]) != sign(old_c[b]) for b in old_c):
1813
+ # differences in sign
1814
+ ok = False
1815
+ if not ok:
1816
+ return rv
1817
+
1818
+ if not old_c:
1819
+ cdid = None
1820
+ else:
1821
+ rat = []
1822
+ for (b, old_e) in old_c.items():
1823
+ c_e = c[b]
1824
+ rat.append(ndiv(c_e, old_e))
1825
+ if not rat[-1]:
1826
+ return rv
1827
+ cdid = min(rat)
1828
+
1829
+ if not old_nc:
1830
+ ncdid = None
1831
+ for i in range(len(nc)):
1832
+ nc[i] = rejoin(*nc[i])
1833
+ else:
1834
+ ncdid = 0 # number of nc replacements we did
1835
+ take = len(old_nc) # how much to look at each time
1836
+ limit = cdid or S.Infinity # max number that we can take
1837
+ failed = [] # failed terms will need subs if other terms pass
1838
+ i = 0
1839
+ while limit and i + take <= len(nc):
1840
+ hit = False
1841
+
1842
+ # the bases must be equivalent in succession, and
1843
+ # the powers must be extractively compatible on the
1844
+ # first and last factor but equal in between.
1845
+
1846
+ rat = []
1847
+ for j in range(take):
1848
+ if nc[i + j][0] != old_nc[j][0]:
1849
+ break
1850
+ elif j == 0:
1851
+ rat.append(ndiv(nc[i + j][1], old_nc[j][1]))
1852
+ elif j == take - 1:
1853
+ rat.append(ndiv(nc[i + j][1], old_nc[j][1]))
1854
+ elif nc[i + j][1] != old_nc[j][1]:
1855
+ break
1856
+ else:
1857
+ rat.append(1)
1858
+ j += 1
1859
+ else:
1860
+ ndo = min(rat)
1861
+ if ndo:
1862
+ if take == 1:
1863
+ if cdid:
1864
+ ndo = min(cdid, ndo)
1865
+ nc[i] = Pow(new, ndo)*rejoin(nc[i][0],
1866
+ nc[i][1] - ndo*old_nc[0][1])
1867
+ else:
1868
+ ndo = 1
1869
+
1870
+ # the left residual
1871
+
1872
+ l = rejoin(nc[i][0], nc[i][1] - ndo*
1873
+ old_nc[0][1])
1874
+
1875
+ # eliminate all middle terms
1876
+
1877
+ mid = new
1878
+
1879
+ # the right residual (which may be the same as the middle if take == 2)
1880
+
1881
+ ir = i + take - 1
1882
+ r = (nc[ir][0], nc[ir][1] - ndo*
1883
+ old_nc[-1][1])
1884
+ if r[1]:
1885
+ if i + take < len(nc):
1886
+ nc[i:i + take] = [l*mid, r]
1887
+ else:
1888
+ r = rejoin(*r)
1889
+ nc[i:i + take] = [l*mid*r]
1890
+ else:
1891
+
1892
+ # there was nothing left on the right
1893
+
1894
+ nc[i:i + take] = [l*mid]
1895
+
1896
+ limit -= ndo
1897
+ ncdid += ndo
1898
+ hit = True
1899
+ if not hit:
1900
+
1901
+ # do the subs on this failing factor
1902
+
1903
+ failed.append(i)
1904
+ i += 1
1905
+ else:
1906
+
1907
+ if not ncdid:
1908
+ return rv
1909
+
1910
+ # although we didn't fail, certain nc terms may have
1911
+ # failed so we rebuild them after attempting a partial
1912
+ # subs on them
1913
+
1914
+ failed.extend(range(i, len(nc)))
1915
+ for i in failed:
1916
+ nc[i] = rejoin(*nc[i]).subs(old, new)
1917
+
1918
+ # rebuild the expression
1919
+
1920
+ if cdid is None:
1921
+ do = ncdid
1922
+ elif ncdid is None:
1923
+ do = cdid
1924
+ else:
1925
+ do = min(ncdid, cdid)
1926
+
1927
+ margs = []
1928
+ for b in c:
1929
+ if b in old_c:
1930
+
1931
+ # calculate the new exponent
1932
+
1933
+ e = c[b] - old_c[b]*do
1934
+ margs.append(rejoin(b, e))
1935
+ else:
1936
+ margs.append(rejoin(b.subs(old, new), c[b]))
1937
+ if cdid and not ncdid:
1938
+
1939
+ # in case we are replacing commutative with non-commutative,
1940
+ # we want the new term to come at the front just like the
1941
+ # rest of this routine
1942
+
1943
+ margs = [Pow(new, cdid)] + margs
1944
+ return co_residual*self2.func(*margs)*self2.func(*nc)
1945
+
1946
+ def _eval_nseries(self, x, n, logx, cdir=0):
1947
+ from .function import PoleError
1948
+ from sympy.functions.elementary.integers import ceiling
1949
+ from sympy.series.order import Order
1950
+
1951
+ def coeff_exp(term, x):
1952
+ lt = term.as_coeff_exponent(x)
1953
+ if lt[0].has(x):
1954
+ try:
1955
+ lt = term.leadterm(x)
1956
+ except ValueError:
1957
+ return term, S.Zero
1958
+ return lt
1959
+
1960
+ ords = []
1961
+
1962
+ try:
1963
+ for t in self.args:
1964
+ coeff, exp = t.leadterm(x)
1965
+ if not coeff.has(x):
1966
+ ords.append((t, exp))
1967
+ else:
1968
+ raise ValueError
1969
+
1970
+ n0 = sum(t[1] for t in ords if t[1].is_number)
1971
+ facs = []
1972
+ for t, m in ords:
1973
+ n1 = ceiling(n - n0 + (m if m.is_number else 0))
1974
+ s = t.nseries(x, n=n1, logx=logx, cdir=cdir)
1975
+ ns = s.getn()
1976
+ if ns is not None:
1977
+ if ns < n1: # less than expected
1978
+ n -= n1 - ns # reduce n
1979
+ facs.append(s)
1980
+
1981
+ except (ValueError, NotImplementedError, TypeError, AttributeError, PoleError):
1982
+ n0 = sympify(sum(t[1] for t in ords if t[1].is_number))
1983
+ if n0.is_nonnegative:
1984
+ n0 = S.Zero
1985
+ facs = [t.nseries(x, n=ceiling(n-n0), logx=logx, cdir=cdir) for t in self.args]
1986
+ from sympy.simplify.powsimp import powsimp
1987
+ res = powsimp(self.func(*facs).expand(), combine='exp', deep=True)
1988
+ if res.has(Order):
1989
+ res += Order(x**n, x)
1990
+ return res
1991
+
1992
+ res = S.Zero
1993
+ ords2 = [Add.make_args(factor) for factor in facs]
1994
+
1995
+ for fac in product(*ords2):
1996
+ ords3 = [coeff_exp(term, x) for term in fac]
1997
+ coeffs, powers = zip(*ords3)
1998
+ power = sum(powers)
1999
+ if (power - n).is_negative:
2000
+ res += Mul(*coeffs)*(x**power)
2001
+
2002
+ def max_degree(e, x):
2003
+ if e is x:
2004
+ return S.One
2005
+ if e.is_Atom:
2006
+ return S.Zero
2007
+ if e.is_Add:
2008
+ return max(max_degree(a, x) for a in e.args)
2009
+ if e.is_Mul:
2010
+ return Add(*[max_degree(a, x) for a in e.args])
2011
+ if e.is_Pow:
2012
+ return max_degree(e.base, x)*e.exp
2013
+ return S.Zero
2014
+
2015
+ if self.is_polynomial(x):
2016
+ from sympy.polys.polyerrors import PolynomialError
2017
+ from sympy.polys.polytools import degree
2018
+ try:
2019
+ if max_degree(self, x) >= n or degree(self, x) != degree(res, x):
2020
+ res += Order(x**n, x)
2021
+ except PolynomialError:
2022
+ pass
2023
+ else:
2024
+ return res
2025
+
2026
+ if res != self:
2027
+ if (self - res).subs(x, 0) == S.Zero and n > 0:
2028
+ lt = self._eval_as_leading_term(x, logx=logx, cdir=cdir)
2029
+ if lt == S.Zero:
2030
+ return res
2031
+ res += Order(x**n, x)
2032
+ return res
2033
+
2034
+ def _eval_as_leading_term(self, x, logx=None, cdir=0):
2035
+ return self.func(*[t.as_leading_term(x, logx=logx, cdir=cdir) for t in self.args])
2036
+
2037
+ def _eval_conjugate(self):
2038
+ return self.func(*[t.conjugate() for t in self.args])
2039
+
2040
+ def _eval_transpose(self):
2041
+ return self.func(*[t.transpose() for t in self.args[::-1]])
2042
+
2043
+ def _eval_adjoint(self):
2044
+ return self.func(*[t.adjoint() for t in self.args[::-1]])
2045
+
2046
+ def as_content_primitive(self, radical=False, clear=True):
2047
+ """Return the tuple (R, self/R) where R is the positive Rational
2048
+ extracted from self.
2049
+
2050
+ Examples
2051
+ ========
2052
+
2053
+ >>> from sympy import sqrt
2054
+ >>> (-3*sqrt(2)*(2 - 2*sqrt(2))).as_content_primitive()
2055
+ (6, -sqrt(2)*(1 - sqrt(2)))
2056
+
2057
+ See docstring of Expr.as_content_primitive for more examples.
2058
+ """
2059
+
2060
+ coef = S.One
2061
+ args = []
2062
+ for a in self.args:
2063
+ c, p = a.as_content_primitive(radical=radical, clear=clear)
2064
+ coef *= c
2065
+ if p is not S.One:
2066
+ args.append(p)
2067
+ # don't use self._from_args here to reconstruct args
2068
+ # since there may be identical args now that should be combined
2069
+ # e.g. (2+2*x)*(3+3*x) should be (6, (1 + x)**2) not (6, (1+x)*(1+x))
2070
+ return coef, self.func(*args)
2071
+
2072
+ def as_ordered_factors(self, order=None):
2073
+ """Transform an expression into an ordered list of factors.
2074
+
2075
+ Examples
2076
+ ========
2077
+
2078
+ >>> from sympy import sin, cos
2079
+ >>> from sympy.abc import x, y
2080
+
2081
+ >>> (2*x*y*sin(x)*cos(x)).as_ordered_factors()
2082
+ [2, x, y, sin(x), cos(x)]
2083
+
2084
+ """
2085
+ cpart, ncpart = self.args_cnc()
2086
+ cpart.sort(key=lambda expr: expr.sort_key(order=order))
2087
+ return cpart + ncpart
2088
+
2089
+ @property
2090
+ def _sorted_args(self):
2091
+ return tuple(self.as_ordered_factors())
2092
+
2093
+ mul = AssocOpDispatcher('mul')
2094
+
2095
+
2096
+ def prod(a, start=1):
2097
+ """Return product of elements of a. Start with int 1 so if only
2098
+ ints are included then an int result is returned.
2099
+
2100
+ Examples
2101
+ ========
2102
+
2103
+ >>> from sympy import prod, S
2104
+ >>> prod(range(3))
2105
+ 0
2106
+ >>> type(_) is int
2107
+ True
2108
+ >>> prod([S(2), 3])
2109
+ 6
2110
+ >>> _.is_Integer
2111
+ True
2112
+
2113
+ You can start the product at something other than 1:
2114
+
2115
+ >>> prod([1, 2], 3)
2116
+ 6
2117
+
2118
+ """
2119
+ return reduce(operator.mul, a, start)
2120
+
2121
+
2122
+ def _keep_coeff(coeff, factors, clear=True, sign=False):
2123
+ """Return ``coeff*factors`` unevaluated if necessary.
2124
+
2125
+ If ``clear`` is False, do not keep the coefficient as a factor
2126
+ if it can be distributed on a single factor such that one or
2127
+ more terms will still have integer coefficients.
2128
+
2129
+ If ``sign`` is True, allow a coefficient of -1 to remain factored out.
2130
+
2131
+ Examples
2132
+ ========
2133
+
2134
+ >>> from sympy.core.mul import _keep_coeff
2135
+ >>> from sympy.abc import x, y
2136
+ >>> from sympy import S
2137
+
2138
+ >>> _keep_coeff(S.Half, x + 2)
2139
+ (x + 2)/2
2140
+ >>> _keep_coeff(S.Half, x + 2, clear=False)
2141
+ x/2 + 1
2142
+ >>> _keep_coeff(S.Half, (x + 2)*y, clear=False)
2143
+ y*(x + 2)/2
2144
+ >>> _keep_coeff(S(-1), x + y)
2145
+ -x - y
2146
+ >>> _keep_coeff(S(-1), x + y, sign=True)
2147
+ -(x + y)
2148
+ """
2149
+ if not coeff.is_Number:
2150
+ if factors.is_Number:
2151
+ factors, coeff = coeff, factors
2152
+ else:
2153
+ return coeff*factors
2154
+ if factors is S.One:
2155
+ return coeff
2156
+ if coeff is S.One:
2157
+ return factors
2158
+ elif coeff is S.NegativeOne and not sign:
2159
+ return -factors
2160
+ elif factors.is_Add:
2161
+ if not clear and coeff.is_Rational and coeff.q != 1:
2162
+ args = [i.as_coeff_Mul() for i in factors.args]
2163
+ args = [(_keep_coeff(c, coeff), m) for c, m in args]
2164
+ if any(c.is_Integer for c, _ in args):
2165
+ return Add._from_args([Mul._from_args(
2166
+ i[1:] if i[0] == 1 else i) for i in args])
2167
+ return Mul(coeff, factors, evaluate=False)
2168
+ elif factors.is_Mul:
2169
+ margs = list(factors.args)
2170
+ if margs[0].is_Number:
2171
+ margs[0] *= coeff
2172
+ if margs[0] == 1:
2173
+ margs.pop(0)
2174
+ else:
2175
+ margs.insert(0, coeff)
2176
+ return Mul._from_args(margs)
2177
+ else:
2178
+ m = coeff*factors
2179
+ if m.is_Number and not factors.is_Number:
2180
+ m = Mul._from_args((coeff, factors))
2181
+ return m
2182
+
2183
+ def expand_2arg(e):
2184
+ def do(e):
2185
+ if e.is_Mul:
2186
+ c, r = e.as_coeff_Mul()
2187
+ if c.is_Number and r.is_Add:
2188
+ return _unevaluated_Add(*[c*ri for ri in r.args])
2189
+ return e
2190
+ return bottom_up(e, do)
2191
+
2192
+
2193
+ from .numbers import Rational
2194
+ from .power import Pow
2195
+ from .add import Add, _unevaluated_Add
llmeval-env/lib/python3.10/site-packages/sympy/core/parameters.py ADDED
@@ -0,0 +1,161 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Thread-safe global parameters"""
2
+
3
+ from .cache import clear_cache
4
+ from contextlib import contextmanager
5
+ from threading import local
6
+
7
+ class _global_parameters(local):
8
+ """
9
+ Thread-local global parameters.
10
+
11
+ Explanation
12
+ ===========
13
+
14
+ This class generates thread-local container for SymPy's global parameters.
15
+ Every global parameters must be passed as keyword argument when generating
16
+ its instance.
17
+ A variable, `global_parameters` is provided as default instance for this class.
18
+
19
+ WARNING! Although the global parameters are thread-local, SymPy's cache is not
20
+ by now.
21
+ This may lead to undesired result in multi-threading operations.
22
+
23
+ Examples
24
+ ========
25
+
26
+ >>> from sympy.abc import x
27
+ >>> from sympy.core.cache import clear_cache
28
+ >>> from sympy.core.parameters import global_parameters as gp
29
+
30
+ >>> gp.evaluate
31
+ True
32
+ >>> x+x
33
+ 2*x
34
+
35
+ >>> log = []
36
+ >>> def f():
37
+ ... clear_cache()
38
+ ... gp.evaluate = False
39
+ ... log.append(x+x)
40
+ ... clear_cache()
41
+ >>> import threading
42
+ >>> thread = threading.Thread(target=f)
43
+ >>> thread.start()
44
+ >>> thread.join()
45
+
46
+ >>> print(log)
47
+ [x + x]
48
+
49
+ >>> gp.evaluate
50
+ True
51
+ >>> x+x
52
+ 2*x
53
+
54
+ References
55
+ ==========
56
+
57
+ .. [1] https://docs.python.org/3/library/threading.html
58
+
59
+ """
60
+ def __init__(self, **kwargs):
61
+ self.__dict__.update(kwargs)
62
+
63
+ def __setattr__(self, name, value):
64
+ if getattr(self, name) != value:
65
+ clear_cache()
66
+ return super().__setattr__(name, value)
67
+
68
+ global_parameters = _global_parameters(evaluate=True, distribute=True, exp_is_pow=False)
69
+
70
+ @contextmanager
71
+ def evaluate(x):
72
+ """ Control automatic evaluation
73
+
74
+ Explanation
75
+ ===========
76
+
77
+ This context manager controls whether or not all SymPy functions evaluate
78
+ by default.
79
+
80
+ Note that much of SymPy expects evaluated expressions. This functionality
81
+ is experimental and is unlikely to function as intended on large
82
+ expressions.
83
+
84
+ Examples
85
+ ========
86
+
87
+ >>> from sympy import evaluate
88
+ >>> from sympy.abc import x
89
+ >>> print(x + x)
90
+ 2*x
91
+ >>> with evaluate(False):
92
+ ... print(x + x)
93
+ x + x
94
+ """
95
+
96
+ old = global_parameters.evaluate
97
+
98
+ try:
99
+ global_parameters.evaluate = x
100
+ yield
101
+ finally:
102
+ global_parameters.evaluate = old
103
+
104
+
105
+ @contextmanager
106
+ def distribute(x):
107
+ """ Control automatic distribution of Number over Add
108
+
109
+ Explanation
110
+ ===========
111
+
112
+ This context manager controls whether or not Mul distribute Number over
113
+ Add. Plan is to avoid distributing Number over Add in all of sympy. Once
114
+ that is done, this contextmanager will be removed.
115
+
116
+ Examples
117
+ ========
118
+
119
+ >>> from sympy.abc import x
120
+ >>> from sympy.core.parameters import distribute
121
+ >>> print(2*(x + 1))
122
+ 2*x + 2
123
+ >>> with distribute(False):
124
+ ... print(2*(x + 1))
125
+ 2*(x + 1)
126
+ """
127
+
128
+ old = global_parameters.distribute
129
+
130
+ try:
131
+ global_parameters.distribute = x
132
+ yield
133
+ finally:
134
+ global_parameters.distribute = old
135
+
136
+
137
+ @contextmanager
138
+ def _exp_is_pow(x):
139
+ """
140
+ Control whether `e^x` should be represented as ``exp(x)`` or a ``Pow(E, x)``.
141
+
142
+ Examples
143
+ ========
144
+
145
+ >>> from sympy import exp
146
+ >>> from sympy.abc import x
147
+ >>> from sympy.core.parameters import _exp_is_pow
148
+ >>> with _exp_is_pow(True): print(type(exp(x)))
149
+ <class 'sympy.core.power.Pow'>
150
+ >>> with _exp_is_pow(False): print(type(exp(x)))
151
+ exp
152
+ """
153
+ old = global_parameters.exp_is_pow
154
+
155
+ clear_cache()
156
+ try:
157
+ global_parameters.exp_is_pow = x
158
+ yield
159
+ finally:
160
+ clear_cache()
161
+ global_parameters.exp_is_pow = old
llmeval-env/lib/python3.10/site-packages/sympy/discrete/__init__.py ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """This module contains functions which operate on discrete sequences.
2
+
3
+ Transforms - ``fft``, ``ifft``, ``ntt``, ``intt``, ``fwht``, ``ifwht``,
4
+ ``mobius_transform``, ``inverse_mobius_transform``
5
+
6
+ Convolutions - ``convolution``, ``convolution_fft``, ``convolution_ntt``,
7
+ ``convolution_fwht``, ``convolution_subset``,
8
+ ``covering_product``, ``intersecting_product``
9
+ """
10
+
11
+ from .transforms import (fft, ifft, ntt, intt, fwht, ifwht,
12
+ mobius_transform, inverse_mobius_transform)
13
+ from .convolutions import convolution, covering_product, intersecting_product
14
+
15
+ __all__ = [
16
+ 'fft', 'ifft', 'ntt', 'intt', 'fwht', 'ifwht', 'mobius_transform',
17
+ 'inverse_mobius_transform',
18
+
19
+ 'convolution', 'covering_product', 'intersecting_product',
20
+ ]
llmeval-env/lib/python3.10/site-packages/sympy/discrete/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (960 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/discrete/__pycache__/convolutions.cpython-310.pyc ADDED
Binary file (12.9 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/discrete/__pycache__/recurrences.cpython-310.pyc ADDED
Binary file (5.1 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/discrete/__pycache__/transforms.cpython-310.pyc ADDED
Binary file (11.1 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/discrete/convolutions.py ADDED
@@ -0,0 +1,488 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Convolution (using **FFT**, **NTT**, **FWHT**), Subset Convolution,
3
+ Covering Product, Intersecting Product
4
+ """
5
+
6
+ from sympy.core import S, sympify
7
+ from sympy.core.function import expand_mul
8
+ from sympy.discrete.transforms import (
9
+ fft, ifft, ntt, intt, fwht, ifwht,
10
+ mobius_transform, inverse_mobius_transform)
11
+ from sympy.utilities.iterables import iterable
12
+ from sympy.utilities.misc import as_int
13
+
14
+
15
+ def convolution(a, b, cycle=0, dps=None, prime=None, dyadic=None, subset=None):
16
+ """
17
+ Performs convolution by determining the type of desired
18
+ convolution using hints.
19
+
20
+ Exactly one of ``dps``, ``prime``, ``dyadic``, ``subset`` arguments
21
+ should be specified explicitly for identifying the type of convolution,
22
+ and the argument ``cycle`` can be specified optionally.
23
+
24
+ For the default arguments, linear convolution is performed using **FFT**.
25
+
26
+ Parameters
27
+ ==========
28
+
29
+ a, b : iterables
30
+ The sequences for which convolution is performed.
31
+ cycle : Integer
32
+ Specifies the length for doing cyclic convolution.
33
+ dps : Integer
34
+ Specifies the number of decimal digits for precision for
35
+ performing **FFT** on the sequence.
36
+ prime : Integer
37
+ Prime modulus of the form `(m 2^k + 1)` to be used for
38
+ performing **NTT** on the sequence.
39
+ dyadic : bool
40
+ Identifies the convolution type as dyadic (*bitwise-XOR*)
41
+ convolution, which is performed using **FWHT**.
42
+ subset : bool
43
+ Identifies the convolution type as subset convolution.
44
+
45
+ Examples
46
+ ========
47
+
48
+ >>> from sympy import convolution, symbols, S, I
49
+ >>> u, v, w, x, y, z = symbols('u v w x y z')
50
+
51
+ >>> convolution([1 + 2*I, 4 + 3*I], [S(5)/4, 6], dps=3)
52
+ [1.25 + 2.5*I, 11.0 + 15.8*I, 24.0 + 18.0*I]
53
+ >>> convolution([1, 2, 3], [4, 5, 6], cycle=3)
54
+ [31, 31, 28]
55
+
56
+ >>> convolution([111, 777], [888, 444], prime=19*2**10 + 1)
57
+ [1283, 19351, 14219]
58
+ >>> convolution([111, 777], [888, 444], prime=19*2**10 + 1, cycle=2)
59
+ [15502, 19351]
60
+
61
+ >>> convolution([u, v], [x, y, z], dyadic=True)
62
+ [u*x + v*y, u*y + v*x, u*z, v*z]
63
+ >>> convolution([u, v], [x, y, z], dyadic=True, cycle=2)
64
+ [u*x + u*z + v*y, u*y + v*x + v*z]
65
+
66
+ >>> convolution([u, v, w], [x, y, z], subset=True)
67
+ [u*x, u*y + v*x, u*z + w*x, v*z + w*y]
68
+ >>> convolution([u, v, w], [x, y, z], subset=True, cycle=3)
69
+ [u*x + v*z + w*y, u*y + v*x, u*z + w*x]
70
+
71
+ """
72
+
73
+ c = as_int(cycle)
74
+ if c < 0:
75
+ raise ValueError("The length for cyclic convolution "
76
+ "must be non-negative")
77
+
78
+ dyadic = True if dyadic else None
79
+ subset = True if subset else None
80
+ if sum(x is not None for x in (prime, dps, dyadic, subset)) > 1:
81
+ raise TypeError("Ambiguity in determining the type of convolution")
82
+
83
+ if prime is not None:
84
+ ls = convolution_ntt(a, b, prime=prime)
85
+ return ls if not c else [sum(ls[i::c]) % prime for i in range(c)]
86
+
87
+ if dyadic:
88
+ ls = convolution_fwht(a, b)
89
+ elif subset:
90
+ ls = convolution_subset(a, b)
91
+ else:
92
+ ls = convolution_fft(a, b, dps=dps)
93
+
94
+ return ls if not c else [sum(ls[i::c]) for i in range(c)]
95
+
96
+
97
+ #----------------------------------------------------------------------------#
98
+ # #
99
+ # Convolution for Complex domain #
100
+ # #
101
+ #----------------------------------------------------------------------------#
102
+
103
+ def convolution_fft(a, b, dps=None):
104
+ """
105
+ Performs linear convolution using Fast Fourier Transform.
106
+
107
+ Parameters
108
+ ==========
109
+
110
+ a, b : iterables
111
+ The sequences for which convolution is performed.
112
+ dps : Integer
113
+ Specifies the number of decimal digits for precision.
114
+
115
+ Examples
116
+ ========
117
+
118
+ >>> from sympy import S, I
119
+ >>> from sympy.discrete.convolutions import convolution_fft
120
+
121
+ >>> convolution_fft([2, 3], [4, 5])
122
+ [8, 22, 15]
123
+ >>> convolution_fft([2, 5], [6, 7, 3])
124
+ [12, 44, 41, 15]
125
+ >>> convolution_fft([1 + 2*I, 4 + 3*I], [S(5)/4, 6])
126
+ [5/4 + 5*I/2, 11 + 63*I/4, 24 + 18*I]
127
+
128
+ References
129
+ ==========
130
+
131
+ .. [1] https://en.wikipedia.org/wiki/Convolution_theorem
132
+ .. [2] https://en.wikipedia.org/wiki/Discrete_Fourier_transform_(general%29
133
+
134
+ """
135
+
136
+ a, b = a[:], b[:]
137
+ n = m = len(a) + len(b) - 1 # convolution size
138
+
139
+ if n > 0 and n&(n - 1): # not a power of 2
140
+ n = 2**n.bit_length()
141
+
142
+ # padding with zeros
143
+ a += [S.Zero]*(n - len(a))
144
+ b += [S.Zero]*(n - len(b))
145
+
146
+ a, b = fft(a, dps), fft(b, dps)
147
+ a = [expand_mul(x*y) for x, y in zip(a, b)]
148
+ a = ifft(a, dps)[:m]
149
+
150
+ return a
151
+
152
+
153
+ #----------------------------------------------------------------------------#
154
+ # #
155
+ # Convolution for GF(p) #
156
+ # #
157
+ #----------------------------------------------------------------------------#
158
+
159
+ def convolution_ntt(a, b, prime):
160
+ """
161
+ Performs linear convolution using Number Theoretic Transform.
162
+
163
+ Parameters
164
+ ==========
165
+
166
+ a, b : iterables
167
+ The sequences for which convolution is performed.
168
+ prime : Integer
169
+ Prime modulus of the form `(m 2^k + 1)` to be used for performing
170
+ **NTT** on the sequence.
171
+
172
+ Examples
173
+ ========
174
+
175
+ >>> from sympy.discrete.convolutions import convolution_ntt
176
+ >>> convolution_ntt([2, 3], [4, 5], prime=19*2**10 + 1)
177
+ [8, 22, 15]
178
+ >>> convolution_ntt([2, 5], [6, 7, 3], prime=19*2**10 + 1)
179
+ [12, 44, 41, 15]
180
+ >>> convolution_ntt([333, 555], [222, 666], prime=19*2**10 + 1)
181
+ [15555, 14219, 19404]
182
+
183
+ References
184
+ ==========
185
+
186
+ .. [1] https://en.wikipedia.org/wiki/Convolution_theorem
187
+ .. [2] https://en.wikipedia.org/wiki/Discrete_Fourier_transform_(general%29
188
+
189
+ """
190
+
191
+ a, b, p = a[:], b[:], as_int(prime)
192
+ n = m = len(a) + len(b) - 1 # convolution size
193
+
194
+ if n > 0 and n&(n - 1): # not a power of 2
195
+ n = 2**n.bit_length()
196
+
197
+ # padding with zeros
198
+ a += [0]*(n - len(a))
199
+ b += [0]*(n - len(b))
200
+
201
+ a, b = ntt(a, p), ntt(b, p)
202
+ a = [x*y % p for x, y in zip(a, b)]
203
+ a = intt(a, p)[:m]
204
+
205
+ return a
206
+
207
+
208
+ #----------------------------------------------------------------------------#
209
+ # #
210
+ # Convolution for 2**n-group #
211
+ # #
212
+ #----------------------------------------------------------------------------#
213
+
214
+ def convolution_fwht(a, b):
215
+ """
216
+ Performs dyadic (*bitwise-XOR*) convolution using Fast Walsh Hadamard
217
+ Transform.
218
+
219
+ The convolution is automatically padded to the right with zeros, as the
220
+ *radix-2 FWHT* requires the number of sample points to be a power of 2.
221
+
222
+ Parameters
223
+ ==========
224
+
225
+ a, b : iterables
226
+ The sequences for which convolution is performed.
227
+
228
+ Examples
229
+ ========
230
+
231
+ >>> from sympy import symbols, S, I
232
+ >>> from sympy.discrete.convolutions import convolution_fwht
233
+
234
+ >>> u, v, x, y = symbols('u v x y')
235
+ >>> convolution_fwht([u, v], [x, y])
236
+ [u*x + v*y, u*y + v*x]
237
+
238
+ >>> convolution_fwht([2, 3], [4, 5])
239
+ [23, 22]
240
+ >>> convolution_fwht([2, 5 + 4*I, 7], [6*I, 7, 3 + 4*I])
241
+ [56 + 68*I, -10 + 30*I, 6 + 50*I, 48 + 32*I]
242
+
243
+ >>> convolution_fwht([S(33)/7, S(55)/6, S(7)/4], [S(2)/3, 5])
244
+ [2057/42, 1870/63, 7/6, 35/4]
245
+
246
+ References
247
+ ==========
248
+
249
+ .. [1] https://www.radioeng.cz/fulltexts/2002/02_03_40_42.pdf
250
+ .. [2] https://en.wikipedia.org/wiki/Hadamard_transform
251
+
252
+ """
253
+
254
+ if not a or not b:
255
+ return []
256
+
257
+ a, b = a[:], b[:]
258
+ n = max(len(a), len(b))
259
+
260
+ if n&(n - 1): # not a power of 2
261
+ n = 2**n.bit_length()
262
+
263
+ # padding with zeros
264
+ a += [S.Zero]*(n - len(a))
265
+ b += [S.Zero]*(n - len(b))
266
+
267
+ a, b = fwht(a), fwht(b)
268
+ a = [expand_mul(x*y) for x, y in zip(a, b)]
269
+ a = ifwht(a)
270
+
271
+ return a
272
+
273
+
274
+ #----------------------------------------------------------------------------#
275
+ # #
276
+ # Subset Convolution #
277
+ # #
278
+ #----------------------------------------------------------------------------#
279
+
280
+ def convolution_subset(a, b):
281
+ """
282
+ Performs Subset Convolution of given sequences.
283
+
284
+ The indices of each argument, considered as bit strings, correspond to
285
+ subsets of a finite set.
286
+
287
+ The sequence is automatically padded to the right with zeros, as the
288
+ definition of subset based on bitmasks (indices) requires the size of
289
+ sequence to be a power of 2.
290
+
291
+ Parameters
292
+ ==========
293
+
294
+ a, b : iterables
295
+ The sequences for which convolution is performed.
296
+
297
+ Examples
298
+ ========
299
+
300
+ >>> from sympy import symbols, S
301
+ >>> from sympy.discrete.convolutions import convolution_subset
302
+ >>> u, v, x, y, z = symbols('u v x y z')
303
+
304
+ >>> convolution_subset([u, v], [x, y])
305
+ [u*x, u*y + v*x]
306
+ >>> convolution_subset([u, v, x], [y, z])
307
+ [u*y, u*z + v*y, x*y, x*z]
308
+
309
+ >>> convolution_subset([1, S(2)/3], [3, 4])
310
+ [3, 6]
311
+ >>> convolution_subset([1, 3, S(5)/7], [7])
312
+ [7, 21, 5, 0]
313
+
314
+ References
315
+ ==========
316
+
317
+ .. [1] https://people.csail.mit.edu/rrw/presentations/subset-conv.pdf
318
+
319
+ """
320
+
321
+ if not a or not b:
322
+ return []
323
+
324
+ if not iterable(a) or not iterable(b):
325
+ raise TypeError("Expected a sequence of coefficients for convolution")
326
+
327
+ a = [sympify(arg) for arg in a]
328
+ b = [sympify(arg) for arg in b]
329
+ n = max(len(a), len(b))
330
+
331
+ if n&(n - 1): # not a power of 2
332
+ n = 2**n.bit_length()
333
+
334
+ # padding with zeros
335
+ a += [S.Zero]*(n - len(a))
336
+ b += [S.Zero]*(n - len(b))
337
+
338
+ c = [S.Zero]*n
339
+
340
+ for mask in range(n):
341
+ smask = mask
342
+ while smask > 0:
343
+ c[mask] += expand_mul(a[smask] * b[mask^smask])
344
+ smask = (smask - 1)&mask
345
+
346
+ c[mask] += expand_mul(a[smask] * b[mask^smask])
347
+
348
+ return c
349
+
350
+
351
+ #----------------------------------------------------------------------------#
352
+ # #
353
+ # Covering Product #
354
+ # #
355
+ #----------------------------------------------------------------------------#
356
+
357
+ def covering_product(a, b):
358
+ """
359
+ Returns the covering product of given sequences.
360
+
361
+ The indices of each argument, considered as bit strings, correspond to
362
+ subsets of a finite set.
363
+
364
+ The covering product of given sequences is a sequence which contains
365
+ the sum of products of the elements of the given sequences grouped by
366
+ the *bitwise-OR* of the corresponding indices.
367
+
368
+ The sequence is automatically padded to the right with zeros, as the
369
+ definition of subset based on bitmasks (indices) requires the size of
370
+ sequence to be a power of 2.
371
+
372
+ Parameters
373
+ ==========
374
+
375
+ a, b : iterables
376
+ The sequences for which covering product is to be obtained.
377
+
378
+ Examples
379
+ ========
380
+
381
+ >>> from sympy import symbols, S, I, covering_product
382
+ >>> u, v, x, y, z = symbols('u v x y z')
383
+
384
+ >>> covering_product([u, v], [x, y])
385
+ [u*x, u*y + v*x + v*y]
386
+ >>> covering_product([u, v, x], [y, z])
387
+ [u*y, u*z + v*y + v*z, x*y, x*z]
388
+
389
+ >>> covering_product([1, S(2)/3], [3, 4 + 5*I])
390
+ [3, 26/3 + 25*I/3]
391
+ >>> covering_product([1, 3, S(5)/7], [7, 8])
392
+ [7, 53, 5, 40/7]
393
+
394
+ References
395
+ ==========
396
+
397
+ .. [1] https://people.csail.mit.edu/rrw/presentations/subset-conv.pdf
398
+
399
+ """
400
+
401
+ if not a or not b:
402
+ return []
403
+
404
+ a, b = a[:], b[:]
405
+ n = max(len(a), len(b))
406
+
407
+ if n&(n - 1): # not a power of 2
408
+ n = 2**n.bit_length()
409
+
410
+ # padding with zeros
411
+ a += [S.Zero]*(n - len(a))
412
+ b += [S.Zero]*(n - len(b))
413
+
414
+ a, b = mobius_transform(a), mobius_transform(b)
415
+ a = [expand_mul(x*y) for x, y in zip(a, b)]
416
+ a = inverse_mobius_transform(a)
417
+
418
+ return a
419
+
420
+
421
+ #----------------------------------------------------------------------------#
422
+ # #
423
+ # Intersecting Product #
424
+ # #
425
+ #----------------------------------------------------------------------------#
426
+
427
+ def intersecting_product(a, b):
428
+ """
429
+ Returns the intersecting product of given sequences.
430
+
431
+ The indices of each argument, considered as bit strings, correspond to
432
+ subsets of a finite set.
433
+
434
+ The intersecting product of given sequences is the sequence which
435
+ contains the sum of products of the elements of the given sequences
436
+ grouped by the *bitwise-AND* of the corresponding indices.
437
+
438
+ The sequence is automatically padded to the right with zeros, as the
439
+ definition of subset based on bitmasks (indices) requires the size of
440
+ sequence to be a power of 2.
441
+
442
+ Parameters
443
+ ==========
444
+
445
+ a, b : iterables
446
+ The sequences for which intersecting product is to be obtained.
447
+
448
+ Examples
449
+ ========
450
+
451
+ >>> from sympy import symbols, S, I, intersecting_product
452
+ >>> u, v, x, y, z = symbols('u v x y z')
453
+
454
+ >>> intersecting_product([u, v], [x, y])
455
+ [u*x + u*y + v*x, v*y]
456
+ >>> intersecting_product([u, v, x], [y, z])
457
+ [u*y + u*z + v*y + x*y + x*z, v*z, 0, 0]
458
+
459
+ >>> intersecting_product([1, S(2)/3], [3, 4 + 5*I])
460
+ [9 + 5*I, 8/3 + 10*I/3]
461
+ >>> intersecting_product([1, 3, S(5)/7], [7, 8])
462
+ [327/7, 24, 0, 0]
463
+
464
+ References
465
+ ==========
466
+
467
+ .. [1] https://people.csail.mit.edu/rrw/presentations/subset-conv.pdf
468
+
469
+ """
470
+
471
+ if not a or not b:
472
+ return []
473
+
474
+ a, b = a[:], b[:]
475
+ n = max(len(a), len(b))
476
+
477
+ if n&(n - 1): # not a power of 2
478
+ n = 2**n.bit_length()
479
+
480
+ # padding with zeros
481
+ a += [S.Zero]*(n - len(a))
482
+ b += [S.Zero]*(n - len(b))
483
+
484
+ a, b = mobius_transform(a, subset=False), mobius_transform(b, subset=False)
485
+ a = [expand_mul(x*y) for x, y in zip(a, b)]
486
+ a = inverse_mobius_transform(a, subset=False)
487
+
488
+ return a
llmeval-env/lib/python3.10/site-packages/sympy/discrete/recurrences.py ADDED
@@ -0,0 +1,166 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Recurrences
3
+ """
4
+
5
+ from sympy.core import S, sympify
6
+ from sympy.utilities.iterables import iterable
7
+ from sympy.utilities.misc import as_int
8
+
9
+
10
+ def linrec(coeffs, init, n):
11
+ r"""
12
+ Evaluation of univariate linear recurrences of homogeneous type
13
+ having coefficients independent of the recurrence variable.
14
+
15
+ Parameters
16
+ ==========
17
+
18
+ coeffs : iterable
19
+ Coefficients of the recurrence
20
+ init : iterable
21
+ Initial values of the recurrence
22
+ n : Integer
23
+ Point of evaluation for the recurrence
24
+
25
+ Notes
26
+ =====
27
+
28
+ Let `y(n)` be the recurrence of given type, ``c`` be the sequence
29
+ of coefficients, ``b`` be the sequence of initial/base values of the
30
+ recurrence and ``k`` (equal to ``len(c)``) be the order of recurrence.
31
+ Then,
32
+
33
+ .. math :: y(n) = \begin{cases} b_n & 0 \le n < k \\
34
+ c_0 y(n-1) + c_1 y(n-2) + \cdots + c_{k-1} y(n-k) & n \ge k
35
+ \end{cases}
36
+
37
+ Let `x_0, x_1, \ldots, x_n` be a sequence and consider the transformation
38
+ that maps each polynomial `f(x)` to `T(f(x))` where each power `x^i` is
39
+ replaced by the corresponding value `x_i`. The sequence is then a solution
40
+ of the recurrence if and only if `T(x^i p(x)) = 0` for each `i \ge 0` where
41
+ `p(x) = x^k - c_0 x^(k-1) - \cdots - c_{k-1}` is the characteristic
42
+ polynomial.
43
+
44
+ Then `T(f(x)p(x)) = 0` for each polynomial `f(x)` (as it is a linear
45
+ combination of powers `x^i`). Now, if `x^n` is congruent to
46
+ `g(x) = a_0 x^0 + a_1 x^1 + \cdots + a_{k-1} x^{k-1}` modulo `p(x)`, then
47
+ `T(x^n) = x_n` is equal to
48
+ `T(g(x)) = a_0 x_0 + a_1 x_1 + \cdots + a_{k-1} x_{k-1}`.
49
+
50
+ Computation of `x^n`,
51
+ given `x^k = c_0 x^{k-1} + c_1 x^{k-2} + \cdots + c_{k-1}`
52
+ is performed using exponentiation by squaring (refer to [1_]) with
53
+ an additional reduction step performed to retain only first `k` powers
54
+ of `x` in the representation of `x^n`.
55
+
56
+ Examples
57
+ ========
58
+
59
+ >>> from sympy.discrete.recurrences import linrec
60
+ >>> from sympy.abc import x, y, z
61
+
62
+ >>> linrec(coeffs=[1, 1], init=[0, 1], n=10)
63
+ 55
64
+
65
+ >>> linrec(coeffs=[1, 1], init=[x, y], n=10)
66
+ 34*x + 55*y
67
+
68
+ >>> linrec(coeffs=[x, y], init=[0, 1], n=5)
69
+ x**2*y + x*(x**3 + 2*x*y) + y**2
70
+
71
+ >>> linrec(coeffs=[1, 2, 3, 0, 0, 4], init=[x, y, z], n=16)
72
+ 13576*x + 5676*y + 2356*z
73
+
74
+ References
75
+ ==========
76
+
77
+ .. [1] https://en.wikipedia.org/wiki/Exponentiation_by_squaring
78
+ .. [2] https://en.wikipedia.org/w/index.php?title=Modular_exponentiation&section=6#Matrices
79
+
80
+ See Also
81
+ ========
82
+
83
+ sympy.polys.agca.extensions.ExtensionElement.__pow__
84
+
85
+ """
86
+
87
+ if not coeffs:
88
+ return S.Zero
89
+
90
+ if not iterable(coeffs):
91
+ raise TypeError("Expected a sequence of coefficients for"
92
+ " the recurrence")
93
+
94
+ if not iterable(init):
95
+ raise TypeError("Expected a sequence of values for the initialization"
96
+ " of the recurrence")
97
+
98
+ n = as_int(n)
99
+ if n < 0:
100
+ raise ValueError("Point of evaluation of recurrence must be a "
101
+ "non-negative integer")
102
+
103
+ c = [sympify(arg) for arg in coeffs]
104
+ b = [sympify(arg) for arg in init]
105
+ k = len(c)
106
+
107
+ if len(b) > k:
108
+ raise TypeError("Count of initial values should not exceed the "
109
+ "order of the recurrence")
110
+ else:
111
+ b += [S.Zero]*(k - len(b)) # remaining initial values default to zero
112
+
113
+ if n < k:
114
+ return b[n]
115
+ terms = [u*v for u, v in zip(linrec_coeffs(c, n), b)]
116
+ return sum(terms[:-1], terms[-1])
117
+
118
+
119
+ def linrec_coeffs(c, n):
120
+ r"""
121
+ Compute the coefficients of n'th term in linear recursion
122
+ sequence defined by c.
123
+
124
+ `x^k = c_0 x^{k-1} + c_1 x^{k-2} + \cdots + c_{k-1}`.
125
+
126
+ It computes the coefficients by using binary exponentiation.
127
+ This function is used by `linrec` and `_eval_pow_by_cayley`.
128
+
129
+ Parameters
130
+ ==========
131
+
132
+ c = coefficients of the divisor polynomial
133
+ n = exponent of x, so dividend is x^n
134
+
135
+ """
136
+
137
+ k = len(c)
138
+
139
+ def _square_and_reduce(u, offset):
140
+ # squares `(u_0 + u_1 x + u_2 x^2 + \cdots + u_{k-1} x^k)` (and
141
+ # multiplies by `x` if offset is 1) and reduces the above result of
142
+ # length upto `2k` to `k` using the characteristic equation of the
143
+ # recurrence given by, `x^k = c_0 x^{k-1} + c_1 x^{k-2} + \cdots + c_{k-1}`
144
+
145
+ w = [S.Zero]*(2*len(u) - 1 + offset)
146
+ for i, p in enumerate(u):
147
+ for j, q in enumerate(u):
148
+ w[offset + i + j] += p*q
149
+
150
+ for j in range(len(w) - 1, k - 1, -1):
151
+ for i in range(k):
152
+ w[j - i - 1] += w[j]*c[i]
153
+
154
+ return w[:k]
155
+
156
+ def _final_coeffs(n):
157
+ # computes the final coefficient list - `cf` corresponding to the
158
+ # point at which recurrence is to be evalauted - `n`, such that,
159
+ # `y(n) = cf_0 y(k-1) + cf_1 y(k-2) + \cdots + cf_{k-1} y(0)`
160
+
161
+ if n < k:
162
+ return [S.Zero]*n + [S.One] + [S.Zero]*(k - n - 1)
163
+ else:
164
+ return _square_and_reduce(_final_coeffs(n // 2), n % 2)
165
+
166
+ return _final_coeffs(n)
llmeval-env/lib/python3.10/site-packages/sympy/discrete/tests/__init__.py ADDED
File without changes
llmeval-env/lib/python3.10/site-packages/sympy/discrete/tests/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (193 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/discrete/tests/__pycache__/test_convolutions.cpython-310.pyc ADDED
Binary file (15.3 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/discrete/tests/__pycache__/test_recurrences.cpython-310.pyc ADDED
Binary file (3.45 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/discrete/tests/__pycache__/test_transforms.cpython-310.pyc ADDED
Binary file (6.74 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/discrete/tests/test_convolutions.py ADDED
@@ -0,0 +1,365 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.numbers import (E, Rational, pi)
2
+ from sympy.functions.elementary.exponential import exp
3
+ from sympy.functions.elementary.miscellaneous import sqrt
4
+ from sympy.core import S, symbols, I
5
+ from sympy.discrete.convolutions import (
6
+ convolution, convolution_fft, convolution_ntt, convolution_fwht,
7
+ convolution_subset, covering_product, intersecting_product)
8
+ from sympy.testing.pytest import raises
9
+ from sympy.abc import x, y
10
+
11
+ def test_convolution():
12
+ # fft
13
+ a = [1, Rational(5, 3), sqrt(3), Rational(7, 5)]
14
+ b = [9, 5, 5, 4, 3, 2]
15
+ c = [3, 5, 3, 7, 8]
16
+ d = [1422, 6572, 3213, 5552]
17
+
18
+ assert convolution(a, b) == convolution_fft(a, b)
19
+ assert convolution(a, b, dps=9) == convolution_fft(a, b, dps=9)
20
+ assert convolution(a, d, dps=7) == convolution_fft(d, a, dps=7)
21
+ assert convolution(a, d[1:], dps=3) == convolution_fft(d[1:], a, dps=3)
22
+
23
+ # prime moduli of the form (m*2**k + 1), sequence length
24
+ # should be a divisor of 2**k
25
+ p = 7*17*2**23 + 1
26
+ q = 19*2**10 + 1
27
+
28
+ # ntt
29
+ assert convolution(d, b, prime=q) == convolution_ntt(b, d, prime=q)
30
+ assert convolution(c, b, prime=p) == convolution_ntt(b, c, prime=p)
31
+ assert convolution(d, c, prime=p) == convolution_ntt(c, d, prime=p)
32
+ raises(TypeError, lambda: convolution(b, d, dps=5, prime=q))
33
+ raises(TypeError, lambda: convolution(b, d, dps=6, prime=q))
34
+
35
+ # fwht
36
+ assert convolution(a, b, dyadic=True) == convolution_fwht(a, b)
37
+ assert convolution(a, b, dyadic=False) == convolution(a, b)
38
+ raises(TypeError, lambda: convolution(b, d, dps=2, dyadic=True))
39
+ raises(TypeError, lambda: convolution(b, d, prime=p, dyadic=True))
40
+ raises(TypeError, lambda: convolution(a, b, dps=2, dyadic=True))
41
+ raises(TypeError, lambda: convolution(b, c, prime=p, dyadic=True))
42
+
43
+ # subset
44
+ assert convolution(a, b, subset=True) == convolution_subset(a, b) == \
45
+ convolution(a, b, subset=True, dyadic=False) == \
46
+ convolution(a, b, subset=True)
47
+ assert convolution(a, b, subset=False) == convolution(a, b)
48
+ raises(TypeError, lambda: convolution(a, b, subset=True, dyadic=True))
49
+ raises(TypeError, lambda: convolution(c, d, subset=True, dps=6))
50
+ raises(TypeError, lambda: convolution(a, c, subset=True, prime=q))
51
+
52
+
53
+ def test_cyclic_convolution():
54
+ # fft
55
+ a = [1, Rational(5, 3), sqrt(3), Rational(7, 5)]
56
+ b = [9, 5, 5, 4, 3, 2]
57
+
58
+ assert convolution([1, 2, 3], [4, 5, 6], cycle=0) == \
59
+ convolution([1, 2, 3], [4, 5, 6], cycle=5) == \
60
+ convolution([1, 2, 3], [4, 5, 6])
61
+
62
+ assert convolution([1, 2, 3], [4, 5, 6], cycle=3) == [31, 31, 28]
63
+
64
+ a = [Rational(1, 3), Rational(7, 3), Rational(5, 9), Rational(2, 7), Rational(5, 8)]
65
+ b = [Rational(3, 5), Rational(4, 7), Rational(7, 8), Rational(8, 9)]
66
+
67
+ assert convolution(a, b, cycle=0) == \
68
+ convolution(a, b, cycle=len(a) + len(b) - 1)
69
+
70
+ assert convolution(a, b, cycle=4) == [Rational(87277, 26460), Rational(30521, 11340),
71
+ Rational(11125, 4032), Rational(3653, 1080)]
72
+
73
+ assert convolution(a, b, cycle=6) == [Rational(20177, 20160), Rational(676, 315), Rational(47, 24),
74
+ Rational(3053, 1080), Rational(16397, 5292), Rational(2497, 2268)]
75
+
76
+ assert convolution(a, b, cycle=9) == \
77
+ convolution(a, b, cycle=0) + [S.Zero]
78
+
79
+ # ntt
80
+ a = [2313, 5323532, S(3232), 42142, 42242421]
81
+ b = [S(33456), 56757, 45754, 432423]
82
+
83
+ assert convolution(a, b, prime=19*2**10 + 1, cycle=0) == \
84
+ convolution(a, b, prime=19*2**10 + 1, cycle=8) == \
85
+ convolution(a, b, prime=19*2**10 + 1)
86
+
87
+ assert convolution(a, b, prime=19*2**10 + 1, cycle=5) == [96, 17146, 2664,
88
+ 15534, 3517]
89
+
90
+ assert convolution(a, b, prime=19*2**10 + 1, cycle=7) == [4643, 3458, 1260,
91
+ 15534, 3517, 16314, 13688]
92
+
93
+ assert convolution(a, b, prime=19*2**10 + 1, cycle=9) == \
94
+ convolution(a, b, prime=19*2**10 + 1) + [0]
95
+
96
+ # fwht
97
+ u, v, w, x, y = symbols('u v w x y')
98
+ p, q, r, s, t = symbols('p q r s t')
99
+ c = [u, v, w, x, y]
100
+ d = [p, q, r, s, t]
101
+
102
+ assert convolution(a, b, dyadic=True, cycle=3) == \
103
+ [2499522285783, 19861417974796, 4702176579021]
104
+
105
+ assert convolution(a, b, dyadic=True, cycle=5) == [2718149225143,
106
+ 2114320852171, 20571217906407, 246166418903, 1413262436976]
107
+
108
+ assert convolution(c, d, dyadic=True, cycle=4) == \
109
+ [p*u + p*y + q*v + r*w + s*x + t*u + t*y,
110
+ p*v + q*u + q*y + r*x + s*w + t*v,
111
+ p*w + q*x + r*u + r*y + s*v + t*w,
112
+ p*x + q*w + r*v + s*u + s*y + t*x]
113
+
114
+ assert convolution(c, d, dyadic=True, cycle=6) == \
115
+ [p*u + q*v + r*w + r*y + s*x + t*w + t*y,
116
+ p*v + q*u + r*x + s*w + s*y + t*x,
117
+ p*w + q*x + r*u + s*v,
118
+ p*x + q*w + r*v + s*u,
119
+ p*y + t*u,
120
+ q*y + t*v]
121
+
122
+ # subset
123
+ assert convolution(a, b, subset=True, cycle=7) == [18266671799811,
124
+ 178235365533, 213958794, 246166418903, 1413262436976,
125
+ 2397553088697, 1932759730434]
126
+
127
+ assert convolution(a[1:], b, subset=True, cycle=4) == \
128
+ [178104086592, 302255835516, 244982785880, 3717819845434]
129
+
130
+ assert convolution(a, b[:-1], subset=True, cycle=6) == [1932837114162,
131
+ 178235365533, 213958794, 245166224504, 1413262436976, 2397553088697]
132
+
133
+ assert convolution(c, d, subset=True, cycle=3) == \
134
+ [p*u + p*x + q*w + r*v + r*y + s*u + t*w,
135
+ p*v + p*y + q*u + s*y + t*u + t*x,
136
+ p*w + q*y + r*u + t*v]
137
+
138
+ assert convolution(c, d, subset=True, cycle=5) == \
139
+ [p*u + q*y + t*v,
140
+ p*v + q*u + r*y + t*w,
141
+ p*w + r*u + s*y + t*x,
142
+ p*x + q*w + r*v + s*u,
143
+ p*y + t*u]
144
+
145
+ raises(ValueError, lambda: convolution([1, 2, 3], [4, 5, 6], cycle=-1))
146
+
147
+
148
+ def test_convolution_fft():
149
+ assert all(convolution_fft([], x, dps=y) == [] for x in ([], [1]) for y in (None, 3))
150
+ assert convolution_fft([1, 2, 3], [4, 5, 6]) == [4, 13, 28, 27, 18]
151
+ assert convolution_fft([1], [5, 6, 7]) == [5, 6, 7]
152
+ assert convolution_fft([1, 3], [5, 6, 7]) == [5, 21, 25, 21]
153
+
154
+ assert convolution_fft([1 + 2*I], [2 + 3*I]) == [-4 + 7*I]
155
+ assert convolution_fft([1 + 2*I, 3 + 4*I, 5 + 3*I/5], [Rational(2, 5) + 4*I/7]) == \
156
+ [Rational(-26, 35) + I*48/35, Rational(-38, 35) + I*116/35, Rational(58, 35) + I*542/175]
157
+
158
+ assert convolution_fft([Rational(3, 4), Rational(5, 6)], [Rational(7, 8), Rational(1, 3), Rational(2, 5)]) == \
159
+ [Rational(21, 32), Rational(47, 48), Rational(26, 45), Rational(1, 3)]
160
+
161
+ assert convolution_fft([Rational(1, 9), Rational(2, 3), Rational(3, 5)], [Rational(2, 5), Rational(3, 7), Rational(4, 9)]) == \
162
+ [Rational(2, 45), Rational(11, 35), Rational(8152, 14175), Rational(523, 945), Rational(4, 15)]
163
+
164
+ assert convolution_fft([pi, E, sqrt(2)], [sqrt(3), 1/pi, 1/E]) == \
165
+ [sqrt(3)*pi, 1 + sqrt(3)*E, E/pi + pi*exp(-1) + sqrt(6),
166
+ sqrt(2)/pi + 1, sqrt(2)*exp(-1)]
167
+
168
+ assert convolution_fft([2321, 33123], [5321, 6321, 71323]) == \
169
+ [12350041, 190918524, 374911166, 2362431729]
170
+
171
+ assert convolution_fft([312313, 31278232], [32139631, 319631]) == \
172
+ [10037624576503, 1005370659728895, 9997492572392]
173
+
174
+ raises(TypeError, lambda: convolution_fft(x, y))
175
+ raises(ValueError, lambda: convolution_fft([x, y], [y, x]))
176
+
177
+
178
+ def test_convolution_ntt():
179
+ # prime moduli of the form (m*2**k + 1), sequence length
180
+ # should be a divisor of 2**k
181
+ p = 7*17*2**23 + 1
182
+ q = 19*2**10 + 1
183
+ r = 2*500000003 + 1 # only for sequences of length 1 or 2
184
+ # s = 2*3*5*7 # composite modulus
185
+
186
+ assert all(convolution_ntt([], x, prime=y) == [] for x in ([], [1]) for y in (p, q, r))
187
+ assert convolution_ntt([2], [3], r) == [6]
188
+ assert convolution_ntt([2, 3], [4], r) == [8, 12]
189
+
190
+ assert convolution_ntt([32121, 42144, 4214, 4241], [32132, 3232, 87242], p) == [33867619,
191
+ 459741727, 79180879, 831885249, 381344700, 369993322]
192
+ assert convolution_ntt([121913, 3171831, 31888131, 12], [17882, 21292, 29921, 312], q) == \
193
+ [8158, 3065, 3682, 7090, 1239, 2232, 3744]
194
+
195
+ assert convolution_ntt([12, 19, 21, 98, 67], [2, 6, 7, 8, 9], p) == \
196
+ convolution_ntt([12, 19, 21, 98, 67], [2, 6, 7, 8, 9], q)
197
+ assert convolution_ntt([12, 19, 21, 98, 67], [21, 76, 17, 78, 69], p) == \
198
+ convolution_ntt([12, 19, 21, 98, 67], [21, 76, 17, 78, 69], q)
199
+
200
+ raises(ValueError, lambda: convolution_ntt([2, 3], [4, 5], r))
201
+ raises(ValueError, lambda: convolution_ntt([x, y], [y, x], q))
202
+ raises(TypeError, lambda: convolution_ntt(x, y, p))
203
+
204
+
205
+ def test_convolution_fwht():
206
+ assert convolution_fwht([], []) == []
207
+ assert convolution_fwht([], [1]) == []
208
+ assert convolution_fwht([1, 2, 3], [4, 5, 6]) == [32, 13, 18, 27]
209
+
210
+ assert convolution_fwht([Rational(5, 7), Rational(6, 8), Rational(7, 3)], [2, 4, Rational(6, 7)]) == \
211
+ [Rational(45, 7), Rational(61, 14), Rational(776, 147), Rational(419, 42)]
212
+
213
+ a = [1, Rational(5, 3), sqrt(3), Rational(7, 5), 4 + 5*I]
214
+ b = [94, 51, 53, 45, 31, 27, 13]
215
+ c = [3 + 4*I, 5 + 7*I, 3, Rational(7, 6), 8]
216
+
217
+ assert convolution_fwht(a, b) == [53*sqrt(3) + 366 + 155*I,
218
+ 45*sqrt(3) + Rational(5848, 15) + 135*I,
219
+ 94*sqrt(3) + Rational(1257, 5) + 65*I,
220
+ 51*sqrt(3) + Rational(3974, 15),
221
+ 13*sqrt(3) + 452 + 470*I,
222
+ Rational(4513, 15) + 255*I,
223
+ 31*sqrt(3) + Rational(1314, 5) + 265*I,
224
+ 27*sqrt(3) + Rational(3676, 15) + 225*I]
225
+
226
+ assert convolution_fwht(b, c) == [Rational(1993, 2) + 733*I, Rational(6215, 6) + 862*I,
227
+ Rational(1659, 2) + 527*I, Rational(1988, 3) + 551*I, 1019 + 313*I, Rational(3955, 6) + 325*I,
228
+ Rational(1175, 2) + 52*I, Rational(3253, 6) + 91*I]
229
+
230
+ assert convolution_fwht(a[3:], c) == [Rational(-54, 5) + I*293/5, -1 + I*204/5,
231
+ Rational(133, 15) + I*35/6, Rational(409, 30) + 15*I, Rational(56, 5), 32 + 40*I, 0, 0]
232
+
233
+ u, v, w, x, y, z = symbols('u v w x y z')
234
+
235
+ assert convolution_fwht([u, v], [x, y]) == [u*x + v*y, u*y + v*x]
236
+
237
+ assert convolution_fwht([u, v, w], [x, y]) == \
238
+ [u*x + v*y, u*y + v*x, w*x, w*y]
239
+
240
+ assert convolution_fwht([u, v, w], [x, y, z]) == \
241
+ [u*x + v*y + w*z, u*y + v*x, u*z + w*x, v*z + w*y]
242
+
243
+ raises(TypeError, lambda: convolution_fwht(x, y))
244
+ raises(TypeError, lambda: convolution_fwht(x*y, u + v))
245
+
246
+
247
+ def test_convolution_subset():
248
+ assert convolution_subset([], []) == []
249
+ assert convolution_subset([], [Rational(1, 3)]) == []
250
+ assert convolution_subset([6 + I*3/7], [Rational(2, 3)]) == [4 + I*2/7]
251
+
252
+ a = [1, Rational(5, 3), sqrt(3), 4 + 5*I]
253
+ b = [64, 71, 55, 47, 33, 29, 15]
254
+ c = [3 + I*2/3, 5 + 7*I, 7, Rational(7, 5), 9]
255
+
256
+ assert convolution_subset(a, b) == [64, Rational(533, 3), 55 + 64*sqrt(3),
257
+ 71*sqrt(3) + Rational(1184, 3) + 320*I, 33, 84,
258
+ 15 + 33*sqrt(3), 29*sqrt(3) + 157 + 165*I]
259
+
260
+ assert convolution_subset(b, c) == [192 + I*128/3, 533 + I*1486/3,
261
+ 613 + I*110/3, Rational(5013, 5) + I*1249/3,
262
+ 675 + 22*I, 891 + I*751/3,
263
+ 771 + 10*I, Rational(3736, 5) + 105*I]
264
+
265
+ assert convolution_subset(a, c) == convolution_subset(c, a)
266
+ assert convolution_subset(a[:2], b) == \
267
+ [64, Rational(533, 3), 55, Rational(416, 3), 33, 84, 15, 25]
268
+
269
+ assert convolution_subset(a[:2], c) == \
270
+ [3 + I*2/3, 10 + I*73/9, 7, Rational(196, 15), 9, 15, 0, 0]
271
+
272
+ u, v, w, x, y, z = symbols('u v w x y z')
273
+
274
+ assert convolution_subset([u, v, w], [x, y]) == [u*x, u*y + v*x, w*x, w*y]
275
+ assert convolution_subset([u, v, w, x], [y, z]) == \
276
+ [u*y, u*z + v*y, w*y, w*z + x*y]
277
+
278
+ assert convolution_subset([u, v], [x, y, z]) == \
279
+ convolution_subset([x, y, z], [u, v])
280
+
281
+ raises(TypeError, lambda: convolution_subset(x, z))
282
+ raises(TypeError, lambda: convolution_subset(Rational(7, 3), u))
283
+
284
+
285
+ def test_covering_product():
286
+ assert covering_product([], []) == []
287
+ assert covering_product([], [Rational(1, 3)]) == []
288
+ assert covering_product([6 + I*3/7], [Rational(2, 3)]) == [4 + I*2/7]
289
+
290
+ a = [1, Rational(5, 8), sqrt(7), 4 + 9*I]
291
+ b = [66, 81, 95, 49, 37, 89, 17]
292
+ c = [3 + I*2/3, 51 + 72*I, 7, Rational(7, 15), 91]
293
+
294
+ assert covering_product(a, b) == [66, Rational(1383, 8), 95 + 161*sqrt(7),
295
+ 130*sqrt(7) + 1303 + 2619*I, 37,
296
+ Rational(671, 4), 17 + 54*sqrt(7),
297
+ 89*sqrt(7) + Rational(4661, 8) + 1287*I]
298
+
299
+ assert covering_product(b, c) == [198 + 44*I, 7740 + 10638*I,
300
+ 1412 + I*190/3, Rational(42684, 5) + I*31202/3,
301
+ 9484 + I*74/3, 22163 + I*27394/3,
302
+ 10621 + I*34/3, Rational(90236, 15) + 1224*I]
303
+
304
+ assert covering_product(a, c) == covering_product(c, a)
305
+ assert covering_product(b, c[:-1]) == [198 + 44*I, 7740 + 10638*I,
306
+ 1412 + I*190/3, Rational(42684, 5) + I*31202/3,
307
+ 111 + I*74/3, 6693 + I*27394/3,
308
+ 429 + I*34/3, Rational(23351, 15) + 1224*I]
309
+
310
+ assert covering_product(a, c[:-1]) == [3 + I*2/3,
311
+ Rational(339, 4) + I*1409/12, 7 + 10*sqrt(7) + 2*sqrt(7)*I/3,
312
+ -403 + 772*sqrt(7)/15 + 72*sqrt(7)*I + I*12658/15]
313
+
314
+ u, v, w, x, y, z = symbols('u v w x y z')
315
+
316
+ assert covering_product([u, v, w], [x, y]) == \
317
+ [u*x, u*y + v*x + v*y, w*x, w*y]
318
+
319
+ assert covering_product([u, v, w, x], [y, z]) == \
320
+ [u*y, u*z + v*y + v*z, w*y, w*z + x*y + x*z]
321
+
322
+ assert covering_product([u, v], [x, y, z]) == \
323
+ covering_product([x, y, z], [u, v])
324
+
325
+ raises(TypeError, lambda: covering_product(x, z))
326
+ raises(TypeError, lambda: covering_product(Rational(7, 3), u))
327
+
328
+
329
+ def test_intersecting_product():
330
+ assert intersecting_product([], []) == []
331
+ assert intersecting_product([], [Rational(1, 3)]) == []
332
+ assert intersecting_product([6 + I*3/7], [Rational(2, 3)]) == [4 + I*2/7]
333
+
334
+ a = [1, sqrt(5), Rational(3, 8) + 5*I, 4 + 7*I]
335
+ b = [67, 51, 65, 48, 36, 79, 27]
336
+ c = [3 + I*2/5, 5 + 9*I, 7, Rational(7, 19), 13]
337
+
338
+ assert intersecting_product(a, b) == [195*sqrt(5) + Rational(6979, 8) + 1886*I,
339
+ 178*sqrt(5) + 520 + 910*I, Rational(841, 2) + 1344*I,
340
+ 192 + 336*I, 0, 0, 0, 0]
341
+
342
+ assert intersecting_product(b, c) == [Rational(128553, 19) + I*9521/5,
343
+ Rational(17820, 19) + 1602*I, Rational(19264, 19), Rational(336, 19), 1846, 0, 0, 0]
344
+
345
+ assert intersecting_product(a, c) == intersecting_product(c, a)
346
+ assert intersecting_product(b[1:], c[:-1]) == [Rational(64788, 19) + I*8622/5,
347
+ Rational(12804, 19) + 1152*I, Rational(11508, 19), Rational(252, 19), 0, 0, 0, 0]
348
+
349
+ assert intersecting_product(a, c[:-2]) == \
350
+ [Rational(-99, 5) + 10*sqrt(5) + 2*sqrt(5)*I/5 + I*3021/40,
351
+ -43 + 5*sqrt(5) + 9*sqrt(5)*I + 71*I, Rational(245, 8) + 84*I, 0]
352
+
353
+ u, v, w, x, y, z = symbols('u v w x y z')
354
+
355
+ assert intersecting_product([u, v, w], [x, y]) == \
356
+ [u*x + u*y + v*x + w*x + w*y, v*y, 0, 0]
357
+
358
+ assert intersecting_product([u, v, w, x], [y, z]) == \
359
+ [u*y + u*z + v*y + w*y + w*z + x*y, v*z + x*z, 0, 0]
360
+
361
+ assert intersecting_product([u, v], [x, y, z]) == \
362
+ intersecting_product([x, y, z], [u, v])
363
+
364
+ raises(TypeError, lambda: intersecting_product(x, z))
365
+ raises(TypeError, lambda: intersecting_product(u, Rational(8, 3)))
llmeval-env/lib/python3.10/site-packages/sympy/discrete/tests/test_recurrences.py ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.numbers import Rational
2
+ from sympy.functions.combinatorial.numbers import fibonacci
3
+ from sympy.core import S, symbols
4
+ from sympy.testing.pytest import raises
5
+ from sympy.discrete.recurrences import linrec
6
+
7
+ def test_linrec():
8
+ assert linrec(coeffs=[1, 1], init=[1, 1], n=20) == 10946
9
+ assert linrec(coeffs=[1, 2, 3, 4, 5], init=[1, 1, 0, 2], n=10) == 1040
10
+ assert linrec(coeffs=[0, 0, 11, 13], init=[23, 27], n=25) == 59628567384
11
+ assert linrec(coeffs=[0, 0, 1, 1, 2], init=[1, 5, 3], n=15) == 165
12
+ assert linrec(coeffs=[11, 13, 15, 17], init=[1, 2, 3, 4], n=70) == \
13
+ 56889923441670659718376223533331214868804815612050381493741233489928913241
14
+ assert linrec(coeffs=[0]*55 + [1, 1, 2, 3], init=[0]*50 + [1, 2, 3], n=4000) == \
15
+ 702633573874937994980598979769135096432444135301118916539
16
+
17
+ assert linrec(coeffs=[11, 13, 15, 17], init=[1, 2, 3, 4], n=10**4)
18
+ assert linrec(coeffs=[11, 13, 15, 17], init=[1, 2, 3, 4], n=10**5)
19
+
20
+ assert all(linrec(coeffs=[1, 1], init=[0, 1], n=n) == fibonacci(n)
21
+ for n in range(95, 115))
22
+
23
+ assert all(linrec(coeffs=[1, 1], init=[1, 1], n=n) == fibonacci(n + 1)
24
+ for n in range(595, 615))
25
+
26
+ a = [S.Half, Rational(3, 4), Rational(5, 6), 7, Rational(8, 9), Rational(3, 5)]
27
+ b = [1, 2, 8, Rational(5, 7), Rational(3, 7), Rational(2, 9), 6]
28
+ x, y, z = symbols('x y z')
29
+
30
+ assert linrec(coeffs=a[:5], init=b[:4], n=80) == \
31
+ Rational(1726244235456268979436592226626304376013002142588105090705187189,
32
+ 1960143456748895967474334873705475211264)
33
+
34
+ assert linrec(coeffs=a[:4], init=b[:4], n=50) == \
35
+ Rational(368949940033050147080268092104304441, 504857282956046106624)
36
+
37
+ assert linrec(coeffs=a[3:], init=b[:3], n=35) == \
38
+ Rational(97409272177295731943657945116791049305244422833125109,
39
+ 814315512679031689453125)
40
+
41
+ assert linrec(coeffs=[0]*60 + [Rational(2, 3), Rational(4, 5)], init=b, n=3000) == \
42
+ Rational(26777668739896791448594650497024, 48084516708184142230517578125)
43
+
44
+ raises(TypeError, lambda: linrec(coeffs=[11, 13, 15, 17], init=[1, 2, 3, 4, 5], n=1))
45
+ raises(TypeError, lambda: linrec(coeffs=a[:4], init=b[:5], n=10000))
46
+ raises(ValueError, lambda: linrec(coeffs=a[:4], init=b[:4], n=-10000))
47
+ raises(TypeError, lambda: linrec(x, b, n=10000))
48
+ raises(TypeError, lambda: linrec(a, y, n=10000))
49
+
50
+ assert linrec(coeffs=[x, y, z], init=[1, 1, 1], n=4) == \
51
+ x**2 + x*y + x*z + y + z
52
+ assert linrec(coeffs=[1, 2, 1], init=[x, y, z], n=20) == \
53
+ 269542*x + 664575*y + 578949*z
54
+ assert linrec(coeffs=[0, 3, 1, 2], init=[x, y], n=30) == \
55
+ 58516436*x + 56372788*y
56
+ assert linrec(coeffs=[0]*50 + [1, 2, 3], init=[x, y, z], n=1000) == \
57
+ 11477135884896*x + 25999077948732*y + 41975630244216*z
58
+ assert linrec(coeffs=[], init=[1, 1], n=20) == 0
59
+ assert linrec(coeffs=[x, y, z], init=[1, 2, 3], n=2) == 3
llmeval-env/lib/python3.10/site-packages/sympy/discrete/tests/test_transforms.py ADDED
@@ -0,0 +1,154 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.functions.elementary.miscellaneous import sqrt
2
+ from sympy.core import S, Symbol, symbols, I, Rational
3
+ from sympy.discrete import (fft, ifft, ntt, intt, fwht, ifwht,
4
+ mobius_transform, inverse_mobius_transform)
5
+ from sympy.testing.pytest import raises
6
+
7
+
8
+ def test_fft_ifft():
9
+ assert all(tf(ls) == ls for tf in (fft, ifft)
10
+ for ls in ([], [Rational(5, 3)]))
11
+
12
+ ls = list(range(6))
13
+ fls = [15, -7*sqrt(2)/2 - 4 - sqrt(2)*I/2 + 2*I, 2 + 3*I,
14
+ -4 + 7*sqrt(2)/2 - 2*I - sqrt(2)*I/2, -3,
15
+ -4 + 7*sqrt(2)/2 + sqrt(2)*I/2 + 2*I,
16
+ 2 - 3*I, -7*sqrt(2)/2 - 4 - 2*I + sqrt(2)*I/2]
17
+
18
+ assert fft(ls) == fls
19
+ assert ifft(fls) == ls + [S.Zero]*2
20
+
21
+ ls = [1 + 2*I, 3 + 4*I, 5 + 6*I]
22
+ ifls = [Rational(9, 4) + 3*I, I*Rational(-7, 4), Rational(3, 4) + I, -2 - I/4]
23
+
24
+ assert ifft(ls) == ifls
25
+ assert fft(ifls) == ls + [S.Zero]
26
+
27
+ x = Symbol('x', real=True)
28
+ raises(TypeError, lambda: fft(x))
29
+ raises(ValueError, lambda: ifft([x, 2*x, 3*x**2, 4*x**3]))
30
+
31
+
32
+ def test_ntt_intt():
33
+ # prime moduli of the form (m*2**k + 1), sequence length
34
+ # should be a divisor of 2**k
35
+ p = 7*17*2**23 + 1
36
+ q = 2*500000003 + 1 # only for sequences of length 1 or 2
37
+ r = 2*3*5*7 # composite modulus
38
+
39
+ assert all(tf(ls, p) == ls for tf in (ntt, intt)
40
+ for ls in ([], [5]))
41
+
42
+ ls = list(range(6))
43
+ nls = [15, 801133602, 738493201, 334102277, 998244350, 849020224,
44
+ 259751156, 12232587]
45
+
46
+ assert ntt(ls, p) == nls
47
+ assert intt(nls, p) == ls + [0]*2
48
+
49
+ ls = [1 + 2*I, 3 + 4*I, 5 + 6*I]
50
+ x = Symbol('x', integer=True)
51
+
52
+ raises(TypeError, lambda: ntt(x, p))
53
+ raises(ValueError, lambda: intt([x, 2*x, 3*x**2, 4*x**3], p))
54
+ raises(ValueError, lambda: intt(ls, p))
55
+ raises(ValueError, lambda: ntt([1.2, 2.1, 3.5], p))
56
+ raises(ValueError, lambda: ntt([3, 5, 6], q))
57
+ raises(ValueError, lambda: ntt([4, 5, 7], r))
58
+ raises(ValueError, lambda: ntt([1.0, 2.0, 3.0], p))
59
+
60
+
61
+ def test_fwht_ifwht():
62
+ assert all(tf(ls) == ls for tf in (fwht, ifwht) \
63
+ for ls in ([], [Rational(7, 4)]))
64
+
65
+ ls = [213, 321, 43235, 5325, 312, 53]
66
+ fls = [49459, 38061, -47661, -37759, 48729, 37543, -48391, -38277]
67
+
68
+ assert fwht(ls) == fls
69
+ assert ifwht(fls) == ls + [S.Zero]*2
70
+
71
+ ls = [S.Half + 2*I, Rational(3, 7) + 4*I, Rational(5, 6) + 6*I, Rational(7, 3), Rational(9, 4)]
72
+ ifls = [Rational(533, 672) + I*3/2, Rational(23, 224) + I/2, Rational(1, 672), Rational(107, 224) - I,
73
+ Rational(155, 672) + I*3/2, Rational(-103, 224) + I/2, Rational(-377, 672), Rational(-19, 224) - I]
74
+
75
+ assert ifwht(ls) == ifls
76
+ assert fwht(ifls) == ls + [S.Zero]*3
77
+
78
+ x, y = symbols('x y')
79
+
80
+ raises(TypeError, lambda: fwht(x))
81
+
82
+ ls = [x, 2*x, 3*x**2, 4*x**3]
83
+ ifls = [x**3 + 3*x**2/4 + x*Rational(3, 4),
84
+ -x**3 + 3*x**2/4 - x/4,
85
+ -x**3 - 3*x**2/4 + x*Rational(3, 4),
86
+ x**3 - 3*x**2/4 - x/4]
87
+
88
+ assert ifwht(ls) == ifls
89
+ assert fwht(ifls) == ls
90
+
91
+ ls = [x, y, x**2, y**2, x*y]
92
+ fls = [x**2 + x*y + x + y**2 + y,
93
+ x**2 + x*y + x - y**2 - y,
94
+ -x**2 + x*y + x - y**2 + y,
95
+ -x**2 + x*y + x + y**2 - y,
96
+ x**2 - x*y + x + y**2 + y,
97
+ x**2 - x*y + x - y**2 - y,
98
+ -x**2 - x*y + x - y**2 + y,
99
+ -x**2 - x*y + x + y**2 - y]
100
+
101
+ assert fwht(ls) == fls
102
+ assert ifwht(fls) == ls + [S.Zero]*3
103
+
104
+ ls = list(range(6))
105
+
106
+ assert fwht(ls) == [x*8 for x in ifwht(ls)]
107
+
108
+
109
+ def test_mobius_transform():
110
+ assert all(tf(ls, subset=subset) == ls
111
+ for ls in ([], [Rational(7, 4)]) for subset in (True, False)
112
+ for tf in (mobius_transform, inverse_mobius_transform))
113
+
114
+ w, x, y, z = symbols('w x y z')
115
+
116
+ assert mobius_transform([x, y]) == [x, x + y]
117
+ assert inverse_mobius_transform([x, x + y]) == [x, y]
118
+ assert mobius_transform([x, y], subset=False) == [x + y, y]
119
+ assert inverse_mobius_transform([x + y, y], subset=False) == [x, y]
120
+
121
+ assert mobius_transform([w, x, y, z]) == [w, w + x, w + y, w + x + y + z]
122
+ assert inverse_mobius_transform([w, w + x, w + y, w + x + y + z]) == \
123
+ [w, x, y, z]
124
+ assert mobius_transform([w, x, y, z], subset=False) == \
125
+ [w + x + y + z, x + z, y + z, z]
126
+ assert inverse_mobius_transform([w + x + y + z, x + z, y + z, z], subset=False) == \
127
+ [w, x, y, z]
128
+
129
+ ls = [Rational(2, 3), Rational(6, 7), Rational(5, 8), 9, Rational(5, 3) + 7*I]
130
+ mls = [Rational(2, 3), Rational(32, 21), Rational(31, 24), Rational(1873, 168),
131
+ Rational(7, 3) + 7*I, Rational(67, 21) + 7*I, Rational(71, 24) + 7*I,
132
+ Rational(2153, 168) + 7*I]
133
+
134
+ assert mobius_transform(ls) == mls
135
+ assert inverse_mobius_transform(mls) == ls + [S.Zero]*3
136
+
137
+ mls = [Rational(2153, 168) + 7*I, Rational(69, 7), Rational(77, 8), 9, Rational(5, 3) + 7*I, 0, 0, 0]
138
+
139
+ assert mobius_transform(ls, subset=False) == mls
140
+ assert inverse_mobius_transform(mls, subset=False) == ls + [S.Zero]*3
141
+
142
+ ls = ls[:-1]
143
+ mls = [Rational(2, 3), Rational(32, 21), Rational(31, 24), Rational(1873, 168)]
144
+
145
+ assert mobius_transform(ls) == mls
146
+ assert inverse_mobius_transform(mls) == ls
147
+
148
+ mls = [Rational(1873, 168), Rational(69, 7), Rational(77, 8), 9]
149
+
150
+ assert mobius_transform(ls, subset=False) == mls
151
+ assert inverse_mobius_transform(mls, subset=False) == ls
152
+
153
+ raises(TypeError, lambda: mobius_transform(x, subset=True))
154
+ raises(TypeError, lambda: inverse_mobius_transform(y, subset=False))
llmeval-env/lib/python3.10/site-packages/sympy/discrete/transforms.py ADDED
@@ -0,0 +1,425 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Discrete Fourier Transform, Number Theoretic Transform,
3
+ Walsh Hadamard Transform, Mobius Transform
4
+ """
5
+
6
+ from sympy.core import S, Symbol, sympify
7
+ from sympy.core.function import expand_mul
8
+ from sympy.core.numbers import pi, I
9
+ from sympy.functions.elementary.trigonometric import sin, cos
10
+ from sympy.ntheory import isprime, primitive_root
11
+ from sympy.utilities.iterables import ibin, iterable
12
+ from sympy.utilities.misc import as_int
13
+
14
+
15
+ #----------------------------------------------------------------------------#
16
+ # #
17
+ # Discrete Fourier Transform #
18
+ # #
19
+ #----------------------------------------------------------------------------#
20
+
21
+ def _fourier_transform(seq, dps, inverse=False):
22
+ """Utility function for the Discrete Fourier Transform"""
23
+
24
+ if not iterable(seq):
25
+ raise TypeError("Expected a sequence of numeric coefficients "
26
+ "for Fourier Transform")
27
+
28
+ a = [sympify(arg) for arg in seq]
29
+ if any(x.has(Symbol) for x in a):
30
+ raise ValueError("Expected non-symbolic coefficients")
31
+
32
+ n = len(a)
33
+ if n < 2:
34
+ return a
35
+
36
+ b = n.bit_length() - 1
37
+ if n&(n - 1): # not a power of 2
38
+ b += 1
39
+ n = 2**b
40
+
41
+ a += [S.Zero]*(n - len(a))
42
+ for i in range(1, n):
43
+ j = int(ibin(i, b, str=True)[::-1], 2)
44
+ if i < j:
45
+ a[i], a[j] = a[j], a[i]
46
+
47
+ ang = -2*pi/n if inverse else 2*pi/n
48
+
49
+ if dps is not None:
50
+ ang = ang.evalf(dps + 2)
51
+
52
+ w = [cos(ang*i) + I*sin(ang*i) for i in range(n // 2)]
53
+
54
+ h = 2
55
+ while h <= n:
56
+ hf, ut = h // 2, n // h
57
+ for i in range(0, n, h):
58
+ for j in range(hf):
59
+ u, v = a[i + j], expand_mul(a[i + j + hf]*w[ut * j])
60
+ a[i + j], a[i + j + hf] = u + v, u - v
61
+ h *= 2
62
+
63
+ if inverse:
64
+ a = [(x/n).evalf(dps) for x in a] if dps is not None \
65
+ else [x/n for x in a]
66
+
67
+ return a
68
+
69
+
70
+ def fft(seq, dps=None):
71
+ r"""
72
+ Performs the Discrete Fourier Transform (**DFT**) in the complex domain.
73
+
74
+ The sequence is automatically padded to the right with zeros, as the
75
+ *radix-2 FFT* requires the number of sample points to be a power of 2.
76
+
77
+ This method should be used with default arguments only for short sequences
78
+ as the complexity of expressions increases with the size of the sequence.
79
+
80
+ Parameters
81
+ ==========
82
+
83
+ seq : iterable
84
+ The sequence on which **DFT** is to be applied.
85
+ dps : Integer
86
+ Specifies the number of decimal digits for precision.
87
+
88
+ Examples
89
+ ========
90
+
91
+ >>> from sympy import fft, ifft
92
+
93
+ >>> fft([1, 2, 3, 4])
94
+ [10, -2 - 2*I, -2, -2 + 2*I]
95
+ >>> ifft(_)
96
+ [1, 2, 3, 4]
97
+
98
+ >>> ifft([1, 2, 3, 4])
99
+ [5/2, -1/2 + I/2, -1/2, -1/2 - I/2]
100
+ >>> fft(_)
101
+ [1, 2, 3, 4]
102
+
103
+ >>> ifft([1, 7, 3, 4], dps=15)
104
+ [3.75, -0.5 - 0.75*I, -1.75, -0.5 + 0.75*I]
105
+ >>> fft(_)
106
+ [1.0, 7.0, 3.0, 4.0]
107
+
108
+ References
109
+ ==========
110
+
111
+ .. [1] https://en.wikipedia.org/wiki/Cooley%E2%80%93Tukey_FFT_algorithm
112
+ .. [2] https://mathworld.wolfram.com/FastFourierTransform.html
113
+
114
+ """
115
+
116
+ return _fourier_transform(seq, dps=dps)
117
+
118
+
119
+ def ifft(seq, dps=None):
120
+ return _fourier_transform(seq, dps=dps, inverse=True)
121
+
122
+ ifft.__doc__ = fft.__doc__
123
+
124
+
125
+ #----------------------------------------------------------------------------#
126
+ # #
127
+ # Number Theoretic Transform #
128
+ # #
129
+ #----------------------------------------------------------------------------#
130
+
131
+ def _number_theoretic_transform(seq, prime, inverse=False):
132
+ """Utility function for the Number Theoretic Transform"""
133
+
134
+ if not iterable(seq):
135
+ raise TypeError("Expected a sequence of integer coefficients "
136
+ "for Number Theoretic Transform")
137
+
138
+ p = as_int(prime)
139
+ if not isprime(p):
140
+ raise ValueError("Expected prime modulus for "
141
+ "Number Theoretic Transform")
142
+
143
+ a = [as_int(x) % p for x in seq]
144
+
145
+ n = len(a)
146
+ if n < 1:
147
+ return a
148
+
149
+ b = n.bit_length() - 1
150
+ if n&(n - 1):
151
+ b += 1
152
+ n = 2**b
153
+
154
+ if (p - 1) % n:
155
+ raise ValueError("Expected prime modulus of the form (m*2**k + 1)")
156
+
157
+ a += [0]*(n - len(a))
158
+ for i in range(1, n):
159
+ j = int(ibin(i, b, str=True)[::-1], 2)
160
+ if i < j:
161
+ a[i], a[j] = a[j], a[i]
162
+
163
+ pr = primitive_root(p)
164
+
165
+ rt = pow(pr, (p - 1) // n, p)
166
+ if inverse:
167
+ rt = pow(rt, p - 2, p)
168
+
169
+ w = [1]*(n // 2)
170
+ for i in range(1, n // 2):
171
+ w[i] = w[i - 1]*rt % p
172
+
173
+ h = 2
174
+ while h <= n:
175
+ hf, ut = h // 2, n // h
176
+ for i in range(0, n, h):
177
+ for j in range(hf):
178
+ u, v = a[i + j], a[i + j + hf]*w[ut * j]
179
+ a[i + j], a[i + j + hf] = (u + v) % p, (u - v) % p
180
+ h *= 2
181
+
182
+ if inverse:
183
+ rv = pow(n, p - 2, p)
184
+ a = [x*rv % p for x in a]
185
+
186
+ return a
187
+
188
+
189
+ def ntt(seq, prime):
190
+ r"""
191
+ Performs the Number Theoretic Transform (**NTT**), which specializes the
192
+ Discrete Fourier Transform (**DFT**) over quotient ring `Z/pZ` for prime
193
+ `p` instead of complex numbers `C`.
194
+
195
+ The sequence is automatically padded to the right with zeros, as the
196
+ *radix-2 NTT* requires the number of sample points to be a power of 2.
197
+
198
+ Parameters
199
+ ==========
200
+
201
+ seq : iterable
202
+ The sequence on which **DFT** is to be applied.
203
+ prime : Integer
204
+ Prime modulus of the form `(m 2^k + 1)` to be used for performing
205
+ **NTT** on the sequence.
206
+
207
+ Examples
208
+ ========
209
+
210
+ >>> from sympy import ntt, intt
211
+ >>> ntt([1, 2, 3, 4], prime=3*2**8 + 1)
212
+ [10, 643, 767, 122]
213
+ >>> intt(_, 3*2**8 + 1)
214
+ [1, 2, 3, 4]
215
+ >>> intt([1, 2, 3, 4], prime=3*2**8 + 1)
216
+ [387, 415, 384, 353]
217
+ >>> ntt(_, prime=3*2**8 + 1)
218
+ [1, 2, 3, 4]
219
+
220
+ References
221
+ ==========
222
+
223
+ .. [1] http://www.apfloat.org/ntt.html
224
+ .. [2] https://mathworld.wolfram.com/NumberTheoreticTransform.html
225
+ .. [3] https://en.wikipedia.org/wiki/Discrete_Fourier_transform_(general%29
226
+
227
+ """
228
+
229
+ return _number_theoretic_transform(seq, prime=prime)
230
+
231
+
232
+ def intt(seq, prime):
233
+ return _number_theoretic_transform(seq, prime=prime, inverse=True)
234
+
235
+ intt.__doc__ = ntt.__doc__
236
+
237
+
238
+ #----------------------------------------------------------------------------#
239
+ # #
240
+ # Walsh Hadamard Transform #
241
+ # #
242
+ #----------------------------------------------------------------------------#
243
+
244
+ def _walsh_hadamard_transform(seq, inverse=False):
245
+ """Utility function for the Walsh Hadamard Transform"""
246
+
247
+ if not iterable(seq):
248
+ raise TypeError("Expected a sequence of coefficients "
249
+ "for Walsh Hadamard Transform")
250
+
251
+ a = [sympify(arg) for arg in seq]
252
+ n = len(a)
253
+ if n < 2:
254
+ return a
255
+
256
+ if n&(n - 1):
257
+ n = 2**n.bit_length()
258
+
259
+ a += [S.Zero]*(n - len(a))
260
+ h = 2
261
+ while h <= n:
262
+ hf = h // 2
263
+ for i in range(0, n, h):
264
+ for j in range(hf):
265
+ u, v = a[i + j], a[i + j + hf]
266
+ a[i + j], a[i + j + hf] = u + v, u - v
267
+ h *= 2
268
+
269
+ if inverse:
270
+ a = [x/n for x in a]
271
+
272
+ return a
273
+
274
+
275
+ def fwht(seq):
276
+ r"""
277
+ Performs the Walsh Hadamard Transform (**WHT**), and uses Hadamard
278
+ ordering for the sequence.
279
+
280
+ The sequence is automatically padded to the right with zeros, as the
281
+ *radix-2 FWHT* requires the number of sample points to be a power of 2.
282
+
283
+ Parameters
284
+ ==========
285
+
286
+ seq : iterable
287
+ The sequence on which WHT is to be applied.
288
+
289
+ Examples
290
+ ========
291
+
292
+ >>> from sympy import fwht, ifwht
293
+ >>> fwht([4, 2, 2, 0, 0, 2, -2, 0])
294
+ [8, 0, 8, 0, 8, 8, 0, 0]
295
+ >>> ifwht(_)
296
+ [4, 2, 2, 0, 0, 2, -2, 0]
297
+
298
+ >>> ifwht([19, -1, 11, -9, -7, 13, -15, 5])
299
+ [2, 0, 4, 0, 3, 10, 0, 0]
300
+ >>> fwht(_)
301
+ [19, -1, 11, -9, -7, 13, -15, 5]
302
+
303
+ References
304
+ ==========
305
+
306
+ .. [1] https://en.wikipedia.org/wiki/Hadamard_transform
307
+ .. [2] https://en.wikipedia.org/wiki/Fast_Walsh%E2%80%93Hadamard_transform
308
+
309
+ """
310
+
311
+ return _walsh_hadamard_transform(seq)
312
+
313
+
314
+ def ifwht(seq):
315
+ return _walsh_hadamard_transform(seq, inverse=True)
316
+
317
+ ifwht.__doc__ = fwht.__doc__
318
+
319
+
320
+ #----------------------------------------------------------------------------#
321
+ # #
322
+ # Mobius Transform for Subset Lattice #
323
+ # #
324
+ #----------------------------------------------------------------------------#
325
+
326
+ def _mobius_transform(seq, sgn, subset):
327
+ r"""Utility function for performing Mobius Transform using
328
+ Yate's Dynamic Programming method"""
329
+
330
+ if not iterable(seq):
331
+ raise TypeError("Expected a sequence of coefficients")
332
+
333
+ a = [sympify(arg) for arg in seq]
334
+
335
+ n = len(a)
336
+ if n < 2:
337
+ return a
338
+
339
+ if n&(n - 1):
340
+ n = 2**n.bit_length()
341
+
342
+ a += [S.Zero]*(n - len(a))
343
+
344
+ if subset:
345
+ i = 1
346
+ while i < n:
347
+ for j in range(n):
348
+ if j & i:
349
+ a[j] += sgn*a[j ^ i]
350
+ i *= 2
351
+
352
+ else:
353
+ i = 1
354
+ while i < n:
355
+ for j in range(n):
356
+ if j & i:
357
+ continue
358
+ a[j] += sgn*a[j ^ i]
359
+ i *= 2
360
+
361
+ return a
362
+
363
+
364
+ def mobius_transform(seq, subset=True):
365
+ r"""
366
+ Performs the Mobius Transform for subset lattice with indices of
367
+ sequence as bitmasks.
368
+
369
+ The indices of each argument, considered as bit strings, correspond
370
+ to subsets of a finite set.
371
+
372
+ The sequence is automatically padded to the right with zeros, as the
373
+ definition of subset/superset based on bitmasks (indices) requires
374
+ the size of sequence to be a power of 2.
375
+
376
+ Parameters
377
+ ==========
378
+
379
+ seq : iterable
380
+ The sequence on which Mobius Transform is to be applied.
381
+ subset : bool
382
+ Specifies if Mobius Transform is applied by enumerating subsets
383
+ or supersets of the given set.
384
+
385
+ Examples
386
+ ========
387
+
388
+ >>> from sympy import symbols
389
+ >>> from sympy import mobius_transform, inverse_mobius_transform
390
+ >>> x, y, z = symbols('x y z')
391
+
392
+ >>> mobius_transform([x, y, z])
393
+ [x, x + y, x + z, x + y + z]
394
+ >>> inverse_mobius_transform(_)
395
+ [x, y, z, 0]
396
+
397
+ >>> mobius_transform([x, y, z], subset=False)
398
+ [x + y + z, y, z, 0]
399
+ >>> inverse_mobius_transform(_, subset=False)
400
+ [x, y, z, 0]
401
+
402
+ >>> mobius_transform([1, 2, 3, 4])
403
+ [1, 3, 4, 10]
404
+ >>> inverse_mobius_transform(_)
405
+ [1, 2, 3, 4]
406
+ >>> mobius_transform([1, 2, 3, 4], subset=False)
407
+ [10, 6, 7, 4]
408
+ >>> inverse_mobius_transform(_, subset=False)
409
+ [1, 2, 3, 4]
410
+
411
+ References
412
+ ==========
413
+
414
+ .. [1] https://en.wikipedia.org/wiki/M%C3%B6bius_inversion_formula
415
+ .. [2] https://people.csail.mit.edu/rrw/presentations/subset-conv.pdf
416
+ .. [3] https://arxiv.org/pdf/1211.0189.pdf
417
+
418
+ """
419
+
420
+ return _mobius_transform(seq, sgn=+1, subset=subset)
421
+
422
+ def inverse_mobius_transform(seq, subset=True):
423
+ return _mobius_transform(seq, sgn=-1, subset=subset)
424
+
425
+ inverse_mobius_transform.__doc__ = mobius_transform.__doc__
llmeval-env/lib/python3.10/site-packages/sympy/solvers/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (1.95 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/solvers/__pycache__/bivariate.cpython-310.pyc ADDED
Binary file (13.9 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/solvers/__pycache__/decompogen.cpython-310.pyc ADDED
Binary file (3.51 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/solvers/__pycache__/deutils.cpython-310.pyc ADDED
Binary file (8.06 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/solvers/__pycache__/inequalities.cpython-310.pyc ADDED
Binary file (23.9 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/solvers/__pycache__/pde.cpython-310.pyc ADDED
Binary file (29.8 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/solvers/__pycache__/polysys.cpython-310.pyc ADDED
Binary file (12.8 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/solvers/__pycache__/recurr.cpython-310.pyc ADDED
Binary file (22.9 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/solvers/__pycache__/solvers.cpython-310.pyc ADDED
Binary file (98.6 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/solvers/__pycache__/solveset.cpython-310.pyc ADDED
Binary file (105 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/solvers/diophantine/__init__.py ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ from .diophantine import diophantine, classify_diop, diop_solve
2
+
3
+ __all__ = [
4
+ 'diophantine', 'classify_diop', 'diop_solve'
5
+ ]
llmeval-env/lib/python3.10/site-packages/sympy/solvers/diophantine/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (296 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/solvers/diophantine/__pycache__/diophantine.cpython-310.pyc ADDED
Binary file (103 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/solvers/diophantine/diophantine.py ADDED
The diff for this file is too large to render. See raw diff
 
llmeval-env/lib/python3.10/site-packages/sympy/solvers/diophantine/tests/__init__.py ADDED
File without changes
llmeval-env/lib/python3.10/site-packages/sympy/solvers/diophantine/tests/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (204 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/solvers/diophantine/tests/__pycache__/test_diophantine.cpython-310.pyc ADDED
Binary file (46 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/solvers/diophantine/tests/test_diophantine.py ADDED
@@ -0,0 +1,1037 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.add import Add
2
+ from sympy.core.mul import Mul
3
+ from sympy.core.numbers import (Rational, oo, pi)
4
+ from sympy.core.relational import Eq
5
+ from sympy.core.singleton import S
6
+ from sympy.core.symbol import symbols
7
+ from sympy.matrices.dense import Matrix
8
+ from sympy.ntheory.factor_ import factorint
9
+ from sympy.simplify.powsimp import powsimp
10
+ from sympy.core.function import _mexpand
11
+ from sympy.core.sorting import default_sort_key, ordered
12
+ from sympy.functions.elementary.trigonometric import sin
13
+ from sympy.solvers.diophantine import diophantine
14
+ from sympy.solvers.diophantine.diophantine import (diop_DN,
15
+ diop_solve, diop_ternary_quadratic_normal,
16
+ diop_general_pythagorean, diop_ternary_quadratic, diop_linear,
17
+ diop_quadratic, diop_general_sum_of_squares, diop_general_sum_of_even_powers,
18
+ descent, diop_bf_DN, divisible, equivalent, find_DN, ldescent, length,
19
+ reconstruct, partition, power_representation,
20
+ prime_as_sum_of_two_squares, square_factor, sum_of_four_squares,
21
+ sum_of_three_squares, transformation_to_DN, transformation_to_normal,
22
+ classify_diop, base_solution_linear, cornacchia, sqf_normal, gaussian_reduce, holzer,
23
+ check_param, parametrize_ternary_quadratic, sum_of_powers, sum_of_squares,
24
+ _diop_ternary_quadratic_normal, _nint_or_floor,
25
+ _odd, _even, _remove_gcd, _can_do_sum_of_squares, DiophantineSolutionSet, GeneralPythagorean,
26
+ BinaryQuadratic)
27
+
28
+ from sympy.testing.pytest import slow, raises, XFAIL
29
+ from sympy.utilities.iterables import (
30
+ signed_permutations)
31
+
32
+ a, b, c, d, p, q, x, y, z, w, t, u, v, X, Y, Z = symbols(
33
+ "a, b, c, d, p, q, x, y, z, w, t, u, v, X, Y, Z", integer=True)
34
+ t_0, t_1, t_2, t_3, t_4, t_5, t_6 = symbols("t_:7", integer=True)
35
+ m1, m2, m3 = symbols('m1:4', integer=True)
36
+ n1 = symbols('n1', integer=True)
37
+
38
+
39
+ def diop_simplify(eq):
40
+ return _mexpand(powsimp(_mexpand(eq)))
41
+
42
+
43
+ def test_input_format():
44
+ raises(TypeError, lambda: diophantine(sin(x)))
45
+ raises(TypeError, lambda: diophantine(x/pi - 3))
46
+
47
+
48
+ def test_nosols():
49
+ # diophantine should sympify eq so that these are equivalent
50
+ assert diophantine(3) == set()
51
+ assert diophantine(S(3)) == set()
52
+
53
+
54
+ def test_univariate():
55
+ assert diop_solve((x - 1)*(x - 2)**2) == {(1,), (2,)}
56
+ assert diop_solve((x - 1)*(x - 2)) == {(1,), (2,)}
57
+
58
+
59
+ def test_classify_diop():
60
+ raises(TypeError, lambda: classify_diop(x**2/3 - 1))
61
+ raises(ValueError, lambda: classify_diop(1))
62
+ raises(NotImplementedError, lambda: classify_diop(w*x*y*z - 1))
63
+ raises(NotImplementedError, lambda: classify_diop(x**3 + y**3 + z**4 - 90))
64
+ assert classify_diop(14*x**2 + 15*x - 42) == (
65
+ [x], {1: -42, x: 15, x**2: 14}, 'univariate')
66
+ assert classify_diop(x*y + z) == (
67
+ [x, y, z], {x*y: 1, z: 1}, 'inhomogeneous_ternary_quadratic')
68
+ assert classify_diop(x*y + z + w + x**2) == (
69
+ [w, x, y, z], {x*y: 1, w: 1, x**2: 1, z: 1}, 'inhomogeneous_general_quadratic')
70
+ assert classify_diop(x*y + x*z + x**2 + 1) == (
71
+ [x, y, z], {x*y: 1, x*z: 1, x**2: 1, 1: 1}, 'inhomogeneous_general_quadratic')
72
+ assert classify_diop(x*y + z + w + 42) == (
73
+ [w, x, y, z], {x*y: 1, w: 1, 1: 42, z: 1}, 'inhomogeneous_general_quadratic')
74
+ assert classify_diop(x*y + z*w) == (
75
+ [w, x, y, z], {x*y: 1, w*z: 1}, 'homogeneous_general_quadratic')
76
+ assert classify_diop(x*y**2 + 1) == (
77
+ [x, y], {x*y**2: 1, 1: 1}, 'cubic_thue')
78
+ assert classify_diop(x**4 + y**4 + z**4 - (1 + 16 + 81)) == (
79
+ [x, y, z], {1: -98, x**4: 1, z**4: 1, y**4: 1}, 'general_sum_of_even_powers')
80
+ assert classify_diop(x**2 + y**2 + z**2) == (
81
+ [x, y, z], {x**2: 1, y**2: 1, z**2: 1}, 'homogeneous_ternary_quadratic_normal')
82
+
83
+
84
+ def test_linear():
85
+ assert diop_solve(x) == (0,)
86
+ assert diop_solve(1*x) == (0,)
87
+ assert diop_solve(3*x) == (0,)
88
+ assert diop_solve(x + 1) == (-1,)
89
+ assert diop_solve(2*x + 1) == (None,)
90
+ assert diop_solve(2*x + 4) == (-2,)
91
+ assert diop_solve(y + x) == (t_0, -t_0)
92
+ assert diop_solve(y + x + 0) == (t_0, -t_0)
93
+ assert diop_solve(y + x - 0) == (t_0, -t_0)
94
+ assert diop_solve(0*x - y - 5) == (-5,)
95
+ assert diop_solve(3*y + 2*x - 5) == (3*t_0 - 5, -2*t_0 + 5)
96
+ assert diop_solve(2*x - 3*y - 5) == (3*t_0 - 5, 2*t_0 - 5)
97
+ assert diop_solve(-2*x - 3*y - 5) == (3*t_0 + 5, -2*t_0 - 5)
98
+ assert diop_solve(7*x + 5*y) == (5*t_0, -7*t_0)
99
+ assert diop_solve(2*x + 4*y) == (2*t_0, -t_0)
100
+ assert diop_solve(4*x + 6*y - 4) == (3*t_0 - 2, -2*t_0 + 2)
101
+ assert diop_solve(4*x + 6*y - 3) == (None, None)
102
+ assert diop_solve(0*x + 3*y - 4*z + 5) == (4*t_0 + 5, 3*t_0 + 5)
103
+ assert diop_solve(4*x + 3*y - 4*z + 5) == (t_0, 8*t_0 + 4*t_1 + 5, 7*t_0 + 3*t_1 + 5)
104
+ assert diop_solve(4*x + 3*y - 4*z + 5, None) == (0, 5, 5)
105
+ assert diop_solve(4*x + 2*y + 8*z - 5) == (None, None, None)
106
+ assert diop_solve(5*x + 7*y - 2*z - 6) == (t_0, -3*t_0 + 2*t_1 + 6, -8*t_0 + 7*t_1 + 18)
107
+ assert diop_solve(3*x - 6*y + 12*z - 9) == (2*t_0 + 3, t_0 + 2*t_1, t_1)
108
+ assert diop_solve(6*w + 9*x + 20*y - z) == (t_0, t_1, t_1 + t_2, 6*t_0 + 29*t_1 + 20*t_2)
109
+
110
+ # to ignore constant factors, use diophantine
111
+ raises(TypeError, lambda: diop_solve(x/2))
112
+
113
+
114
+ def test_quadratic_simple_hyperbolic_case():
115
+ # Simple Hyperbolic case: A = C = 0 and B != 0
116
+ assert diop_solve(3*x*y + 34*x - 12*y + 1) == \
117
+ {(-133, -11), (5, -57)}
118
+ assert diop_solve(6*x*y + 2*x + 3*y + 1) == set()
119
+ assert diop_solve(-13*x*y + 2*x - 4*y - 54) == {(27, 0)}
120
+ assert diop_solve(-27*x*y - 30*x - 12*y - 54) == {(-14, -1)}
121
+ assert diop_solve(2*x*y + 5*x + 56*y + 7) == {(-161, -3), (-47, -6), (-35, -12),
122
+ (-29, -69), (-27, 64), (-21, 7),
123
+ (-9, 1), (105, -2)}
124
+ assert diop_solve(6*x*y + 9*x + 2*y + 3) == set()
125
+ assert diop_solve(x*y + x + y + 1) == {(-1, t), (t, -1)}
126
+ assert diophantine(48*x*y)
127
+
128
+
129
+ def test_quadratic_elliptical_case():
130
+ # Elliptical case: B**2 - 4AC < 0
131
+
132
+ assert diop_solve(42*x**2 + 8*x*y + 15*y**2 + 23*x + 17*y - 4915) == {(-11, -1)}
133
+ assert diop_solve(4*x**2 + 3*y**2 + 5*x - 11*y + 12) == set()
134
+ assert diop_solve(x**2 + y**2 + 2*x + 2*y + 2) == {(-1, -1)}
135
+ assert diop_solve(15*x**2 - 9*x*y + 14*y**2 - 23*x - 14*y - 4950) == {(-15, 6)}
136
+ assert diop_solve(10*x**2 + 12*x*y + 12*y**2 - 34) == \
137
+ {(-1, -1), (-1, 2), (1, -2), (1, 1)}
138
+
139
+
140
+ def test_quadratic_parabolic_case():
141
+ # Parabolic case: B**2 - 4AC = 0
142
+ assert check_solutions(8*x**2 - 24*x*y + 18*y**2 + 5*x + 7*y + 16)
143
+ assert check_solutions(8*x**2 - 24*x*y + 18*y**2 + 6*x + 12*y - 6)
144
+ assert check_solutions(8*x**2 + 24*x*y + 18*y**2 + 4*x + 6*y - 7)
145
+ assert check_solutions(-4*x**2 + 4*x*y - y**2 + 2*x - 3)
146
+ assert check_solutions(x**2 + 2*x*y + y**2 + 2*x + 2*y + 1)
147
+ assert check_solutions(x**2 - 2*x*y + y**2 + 2*x + 2*y + 1)
148
+ assert check_solutions(y**2 - 41*x + 40)
149
+
150
+
151
+ def test_quadratic_perfect_square():
152
+ # B**2 - 4*A*C > 0
153
+ # B**2 - 4*A*C is a perfect square
154
+ assert check_solutions(48*x*y)
155
+ assert check_solutions(4*x**2 - 5*x*y + y**2 + 2)
156
+ assert check_solutions(-2*x**2 - 3*x*y + 2*y**2 -2*x - 17*y + 25)
157
+ assert check_solutions(12*x**2 + 13*x*y + 3*y**2 - 2*x + 3*y - 12)
158
+ assert check_solutions(8*x**2 + 10*x*y + 2*y**2 - 32*x - 13*y - 23)
159
+ assert check_solutions(4*x**2 - 4*x*y - 3*y- 8*x - 3)
160
+ assert check_solutions(- 4*x*y - 4*y**2 - 3*y- 5*x - 10)
161
+ assert check_solutions(x**2 - y**2 - 2*x - 2*y)
162
+ assert check_solutions(x**2 - 9*y**2 - 2*x - 6*y)
163
+ assert check_solutions(4*x**2 - 9*y**2 - 4*x - 12*y - 3)
164
+
165
+
166
+ def test_quadratic_non_perfect_square():
167
+ # B**2 - 4*A*C is not a perfect square
168
+ # Used check_solutions() since the solutions are complex expressions involving
169
+ # square roots and exponents
170
+ assert check_solutions(x**2 - 2*x - 5*y**2)
171
+ assert check_solutions(3*x**2 - 2*y**2 - 2*x - 2*y)
172
+ assert check_solutions(x**2 - x*y - y**2 - 3*y)
173
+ assert check_solutions(x**2 - 9*y**2 - 2*x - 6*y)
174
+ assert BinaryQuadratic(x**2 + y**2 + 2*x + 2*y + 2).solve() == {(-1, -1)}
175
+
176
+
177
+ def test_issue_9106():
178
+ eq = -48 - 2*x*(3*x - 1) + y*(3*y - 1)
179
+ v = (x, y)
180
+ for sol in diophantine(eq):
181
+ assert not diop_simplify(eq.xreplace(dict(zip(v, sol))))
182
+
183
+
184
+ def test_issue_18138():
185
+ eq = x**2 - x - y**2
186
+ v = (x, y)
187
+ for sol in diophantine(eq):
188
+ assert not diop_simplify(eq.xreplace(dict(zip(v, sol))))
189
+
190
+
191
+ @slow
192
+ def test_quadratic_non_perfect_slow():
193
+ assert check_solutions(8*x**2 + 10*x*y - 2*y**2 - 32*x - 13*y - 23)
194
+ # This leads to very large numbers.
195
+ # assert check_solutions(5*x**2 - 13*x*y + y**2 - 4*x - 4*y - 15)
196
+ assert check_solutions(-3*x**2 - 2*x*y + 7*y**2 - 5*x - 7)
197
+ assert check_solutions(-4 - x + 4*x**2 - y - 3*x*y - 4*y**2)
198
+ assert check_solutions(1 + 2*x + 2*x**2 + 2*y + x*y - 2*y**2)
199
+
200
+
201
+ def test_DN():
202
+ # Most of the test cases were adapted from,
203
+ # Solving the generalized Pell equation x**2 - D*y**2 = N, John P. Robertson, July 31, 2004.
204
+ # https://web.archive.org/web/20160323033128/http://www.jpr2718.org/pell.pdf
205
+ # others are verified using Wolfram Alpha.
206
+
207
+ # Covers cases where D <= 0 or D > 0 and D is a square or N = 0
208
+ # Solutions are straightforward in these cases.
209
+ assert diop_DN(3, 0) == [(0, 0)]
210
+ assert diop_DN(-17, -5) == []
211
+ assert diop_DN(-19, 23) == [(2, 1)]
212
+ assert diop_DN(-13, 17) == [(2, 1)]
213
+ assert diop_DN(-15, 13) == []
214
+ assert diop_DN(0, 5) == []
215
+ assert diop_DN(0, 9) == [(3, t)]
216
+ assert diop_DN(9, 0) == [(3*t, t)]
217
+ assert diop_DN(16, 24) == []
218
+ assert diop_DN(9, 180) == [(18, 4)]
219
+ assert diop_DN(9, -180) == [(12, 6)]
220
+ assert diop_DN(7, 0) == [(0, 0)]
221
+
222
+ # When equation is x**2 + y**2 = N
223
+ # Solutions are interchangeable
224
+ assert diop_DN(-1, 5) == [(2, 1), (1, 2)]
225
+ assert diop_DN(-1, 169) == [(12, 5), (5, 12), (13, 0), (0, 13)]
226
+
227
+ # D > 0 and D is not a square
228
+
229
+ # N = 1
230
+ assert diop_DN(13, 1) == [(649, 180)]
231
+ assert diop_DN(980, 1) == [(51841, 1656)]
232
+ assert diop_DN(981, 1) == [(158070671986249, 5046808151700)]
233
+ assert diop_DN(986, 1) == [(49299, 1570)]
234
+ assert diop_DN(991, 1) == [(379516400906811930638014896080, 12055735790331359447442538767)]
235
+ assert diop_DN(17, 1) == [(33, 8)]
236
+ assert diop_DN(19, 1) == [(170, 39)]
237
+
238
+ # N = -1
239
+ assert diop_DN(13, -1) == [(18, 5)]
240
+ assert diop_DN(991, -1) == []
241
+ assert diop_DN(41, -1) == [(32, 5)]
242
+ assert diop_DN(290, -1) == [(17, 1)]
243
+ assert diop_DN(21257, -1) == [(13913102721304, 95427381109)]
244
+ assert diop_DN(32, -1) == []
245
+
246
+ # |N| > 1
247
+ # Some tests were created using calculator at
248
+ # http://www.numbertheory.org/php/patz.html
249
+
250
+ assert diop_DN(13, -4) == [(3, 1), (393, 109), (36, 10)]
251
+ # Source I referred returned (3, 1), (393, 109) and (-3, 1) as fundamental solutions
252
+ # So (-3, 1) and (393, 109) should be in the same equivalent class
253
+ assert equivalent(-3, 1, 393, 109, 13, -4) == True
254
+
255
+ assert diop_DN(13, 27) == [(220, 61), (40, 11), (768, 213), (12, 3)]
256
+ assert set(diop_DN(157, 12)) == {(13, 1), (10663, 851), (579160, 46222),
257
+ (483790960, 38610722), (26277068347, 2097138361),
258
+ (21950079635497, 1751807067011)}
259
+ assert diop_DN(13, 25) == [(3245, 900)]
260
+ assert diop_DN(192, 18) == []
261
+ assert diop_DN(23, 13) == [(-6, 1), (6, 1)]
262
+ assert diop_DN(167, 2) == [(13, 1)]
263
+ assert diop_DN(167, -2) == []
264
+
265
+ assert diop_DN(123, -2) == [(11, 1)]
266
+ # One calculator returned [(11, 1), (-11, 1)] but both of these are in
267
+ # the same equivalence class
268
+ assert equivalent(11, 1, -11, 1, 123, -2)
269
+
270
+ assert diop_DN(123, -23) == [(-10, 1), (10, 1)]
271
+
272
+ assert diop_DN(0, 0, t) == [(0, t)]
273
+ assert diop_DN(0, -1, t) == []
274
+
275
+
276
+ def test_bf_pell():
277
+ assert diop_bf_DN(13, -4) == [(3, 1), (-3, 1), (36, 10)]
278
+ assert diop_bf_DN(13, 27) == [(12, 3), (-12, 3), (40, 11), (-40, 11)]
279
+ assert diop_bf_DN(167, -2) == []
280
+ assert diop_bf_DN(1729, 1) == [(44611924489705, 1072885712316)]
281
+ assert diop_bf_DN(89, -8) == [(9, 1), (-9, 1)]
282
+ assert diop_bf_DN(21257, -1) == [(13913102721304, 95427381109)]
283
+ assert diop_bf_DN(340, -4) == [(756, 41)]
284
+ assert diop_bf_DN(-1, 0, t) == [(0, 0)]
285
+ assert diop_bf_DN(0, 0, t) == [(0, t)]
286
+ assert diop_bf_DN(4, 0, t) == [(2*t, t), (-2*t, t)]
287
+ assert diop_bf_DN(3, 0, t) == [(0, 0)]
288
+ assert diop_bf_DN(1, -2, t) == []
289
+
290
+
291
+ def test_length():
292
+ assert length(2, 1, 0) == 1
293
+ assert length(-2, 4, 5) == 3
294
+ assert length(-5, 4, 17) == 4
295
+ assert length(0, 4, 13) == 6
296
+ assert length(7, 13, 11) == 23
297
+ assert length(1, 6, 4) == 2
298
+
299
+
300
+ def is_pell_transformation_ok(eq):
301
+ """
302
+ Test whether X*Y, X, or Y terms are present in the equation
303
+ after transforming the equation using the transformation returned
304
+ by transformation_to_pell(). If they are not present we are good.
305
+ Moreover, coefficient of X**2 should be a divisor of coefficient of
306
+ Y**2 and the constant term.
307
+ """
308
+ A, B = transformation_to_DN(eq)
309
+ u = (A*Matrix([X, Y]) + B)[0]
310
+ v = (A*Matrix([X, Y]) + B)[1]
311
+ simplified = diop_simplify(eq.subs(zip((x, y), (u, v))))
312
+
313
+ coeff = dict([reversed(t.as_independent(*[X, Y])) for t in simplified.args])
314
+
315
+ for term in [X*Y, X, Y]:
316
+ if term in coeff.keys():
317
+ return False
318
+
319
+ for term in [X**2, Y**2, 1]:
320
+ if term not in coeff.keys():
321
+ coeff[term] = 0
322
+
323
+ if coeff[X**2] != 0:
324
+ return divisible(coeff[Y**2], coeff[X**2]) and \
325
+ divisible(coeff[1], coeff[X**2])
326
+
327
+ return True
328
+
329
+
330
+ def test_transformation_to_pell():
331
+ assert is_pell_transformation_ok(-13*x**2 - 7*x*y + y**2 + 2*x - 2*y - 14)
332
+ assert is_pell_transformation_ok(-17*x**2 + 19*x*y - 7*y**2 - 5*x - 13*y - 23)
333
+ assert is_pell_transformation_ok(x**2 - y**2 + 17)
334
+ assert is_pell_transformation_ok(-x**2 + 7*y**2 - 23)
335
+ assert is_pell_transformation_ok(25*x**2 - 45*x*y + 5*y**2 - 5*x - 10*y + 5)
336
+ assert is_pell_transformation_ok(190*x**2 + 30*x*y + y**2 - 3*y - 170*x - 130)
337
+ assert is_pell_transformation_ok(x**2 - 2*x*y -190*y**2 - 7*y - 23*x - 89)
338
+ assert is_pell_transformation_ok(15*x**2 - 9*x*y + 14*y**2 - 23*x - 14*y - 4950)
339
+
340
+
341
+ def test_find_DN():
342
+ assert find_DN(x**2 - 2*x - y**2) == (1, 1)
343
+ assert find_DN(x**2 - 3*y**2 - 5) == (3, 5)
344
+ assert find_DN(x**2 - 2*x*y - 4*y**2 - 7) == (5, 7)
345
+ assert find_DN(4*x**2 - 8*x*y - y**2 - 9) == (20, 36)
346
+ assert find_DN(7*x**2 - 2*x*y - y**2 - 12) == (8, 84)
347
+ assert find_DN(-3*x**2 + 4*x*y -y**2) == (1, 0)
348
+ assert find_DN(-13*x**2 - 7*x*y + y**2 + 2*x - 2*y -14) == (101, -7825480)
349
+
350
+
351
+ def test_ldescent():
352
+ # Equations which have solutions
353
+ u = ([(13, 23), (3, -11), (41, -113), (4, -7), (-7, 4), (91, -3), (1, 1), (1, -1),
354
+ (4, 32), (17, 13), (123689, 1), (19, -570)])
355
+ for a, b in u:
356
+ w, x, y = ldescent(a, b)
357
+ assert a*x**2 + b*y**2 == w**2
358
+ assert ldescent(-1, -1) is None
359
+
360
+
361
+ def test_diop_ternary_quadratic_normal():
362
+ assert check_solutions(234*x**2 - 65601*y**2 - z**2)
363
+ assert check_solutions(23*x**2 + 616*y**2 - z**2)
364
+ assert check_solutions(5*x**2 + 4*y**2 - z**2)
365
+ assert check_solutions(3*x**2 + 6*y**2 - 3*z**2)
366
+ assert check_solutions(x**2 + 3*y**2 - z**2)
367
+ assert check_solutions(4*x**2 + 5*y**2 - z**2)
368
+ assert check_solutions(x**2 + y**2 - z**2)
369
+ assert check_solutions(16*x**2 + y**2 - 25*z**2)
370
+ assert check_solutions(6*x**2 - y**2 + 10*z**2)
371
+ assert check_solutions(213*x**2 + 12*y**2 - 9*z**2)
372
+ assert check_solutions(34*x**2 - 3*y**2 - 301*z**2)
373
+ assert check_solutions(124*x**2 - 30*y**2 - 7729*z**2)
374
+
375
+
376
+ def is_normal_transformation_ok(eq):
377
+ A = transformation_to_normal(eq)
378
+ X, Y, Z = A*Matrix([x, y, z])
379
+ simplified = diop_simplify(eq.subs(zip((x, y, z), (X, Y, Z))))
380
+
381
+ coeff = dict([reversed(t.as_independent(*[X, Y, Z])) for t in simplified.args])
382
+ for term in [X*Y, Y*Z, X*Z]:
383
+ if term in coeff.keys():
384
+ return False
385
+
386
+ return True
387
+
388
+
389
+ def test_transformation_to_normal():
390
+ assert is_normal_transformation_ok(x**2 + 3*y**2 + z**2 - 13*x*y - 16*y*z + 12*x*z)
391
+ assert is_normal_transformation_ok(x**2 + 3*y**2 - 100*z**2)
392
+ assert is_normal_transformation_ok(x**2 + 23*y*z)
393
+ assert is_normal_transformation_ok(3*y**2 - 100*z**2 - 12*x*y)
394
+ assert is_normal_transformation_ok(x**2 + 23*x*y - 34*y*z + 12*x*z)
395
+ assert is_normal_transformation_ok(z**2 + 34*x*y - 23*y*z + x*z)
396
+ assert is_normal_transformation_ok(x**2 + y**2 + z**2 - x*y - y*z - x*z)
397
+ assert is_normal_transformation_ok(x**2 + 2*y*z + 3*z**2)
398
+ assert is_normal_transformation_ok(x*y + 2*x*z + 3*y*z)
399
+ assert is_normal_transformation_ok(2*x*z + 3*y*z)
400
+
401
+
402
+ def test_diop_ternary_quadratic():
403
+ assert check_solutions(2*x**2 + z**2 + y**2 - 4*x*y)
404
+ assert check_solutions(x**2 - y**2 - z**2 - x*y - y*z)
405
+ assert check_solutions(3*x**2 - x*y - y*z - x*z)
406
+ assert check_solutions(x**2 - y*z - x*z)
407
+ assert check_solutions(5*x**2 - 3*x*y - x*z)
408
+ assert check_solutions(4*x**2 - 5*y**2 - x*z)
409
+ assert check_solutions(3*x**2 + 2*y**2 - z**2 - 2*x*y + 5*y*z - 7*y*z)
410
+ assert check_solutions(8*x**2 - 12*y*z)
411
+ assert check_solutions(45*x**2 - 7*y**2 - 8*x*y - z**2)
412
+ assert check_solutions(x**2 - 49*y**2 - z**2 + 13*z*y -8*x*y)
413
+ assert check_solutions(90*x**2 + 3*y**2 + 5*x*y + 2*z*y + 5*x*z)
414
+ assert check_solutions(x**2 + 3*y**2 + z**2 - x*y - 17*y*z)
415
+ assert check_solutions(x**2 + 3*y**2 + z**2 - x*y - 16*y*z + 12*x*z)
416
+ assert check_solutions(x**2 + 3*y**2 + z**2 - 13*x*y - 16*y*z + 12*x*z)
417
+ assert check_solutions(x*y - 7*y*z + 13*x*z)
418
+
419
+ assert diop_ternary_quadratic_normal(x**2 + y**2 + z**2) == (None, None, None)
420
+ assert diop_ternary_quadratic_normal(x**2 + y**2) is None
421
+ raises(ValueError, lambda:
422
+ _diop_ternary_quadratic_normal((x, y, z),
423
+ {x*y: 1, x**2: 2, y**2: 3, z**2: 0}))
424
+ eq = -2*x*y - 6*x*z + 7*y**2 - 3*y*z + 4*z**2
425
+ assert diop_ternary_quadratic(eq) == (7, 2, 0)
426
+ assert diop_ternary_quadratic_normal(4*x**2 + 5*y**2 - z**2) == \
427
+ (1, 0, 2)
428
+ assert diop_ternary_quadratic(x*y + 2*y*z) == \
429
+ (-2, 0, n1)
430
+ eq = -5*x*y - 8*x*z - 3*y*z + 8*z**2
431
+ assert parametrize_ternary_quadratic(eq) == \
432
+ (8*p**2 - 3*p*q, -8*p*q + 8*q**2, 5*p*q)
433
+ # this cannot be tested with diophantine because it will
434
+ # factor into a product
435
+ assert diop_solve(x*y + 2*y*z) == (-2*p*q, -n1*p**2 + p**2, p*q)
436
+
437
+
438
+ def test_square_factor():
439
+ assert square_factor(1) == square_factor(-1) == 1
440
+ assert square_factor(0) == 1
441
+ assert square_factor(5) == square_factor(-5) == 1
442
+ assert square_factor(4) == square_factor(-4) == 2
443
+ assert square_factor(12) == square_factor(-12) == 2
444
+ assert square_factor(6) == 1
445
+ assert square_factor(18) == 3
446
+ assert square_factor(52) == 2
447
+ assert square_factor(49) == 7
448
+ assert square_factor(392) == 14
449
+ assert square_factor(factorint(-12)) == 2
450
+
451
+
452
+ def test_parametrize_ternary_quadratic():
453
+ assert check_solutions(x**2 + y**2 - z**2)
454
+ assert check_solutions(x**2 + 2*x*y + z**2)
455
+ assert check_solutions(234*x**2 - 65601*y**2 - z**2)
456
+ assert check_solutions(3*x**2 + 2*y**2 - z**2 - 2*x*y + 5*y*z - 7*y*z)
457
+ assert check_solutions(x**2 - y**2 - z**2)
458
+ assert check_solutions(x**2 - 49*y**2 - z**2 + 13*z*y - 8*x*y)
459
+ assert check_solutions(8*x*y + z**2)
460
+ assert check_solutions(124*x**2 - 30*y**2 - 7729*z**2)
461
+ assert check_solutions(236*x**2 - 225*y**2 - 11*x*y - 13*y*z - 17*x*z)
462
+ assert check_solutions(90*x**2 + 3*y**2 + 5*x*y + 2*z*y + 5*x*z)
463
+ assert check_solutions(124*x**2 - 30*y**2 - 7729*z**2)
464
+
465
+
466
+ def test_no_square_ternary_quadratic():
467
+ assert check_solutions(2*x*y + y*z - 3*x*z)
468
+ assert check_solutions(189*x*y - 345*y*z - 12*x*z)
469
+ assert check_solutions(23*x*y + 34*y*z)
470
+ assert check_solutions(x*y + y*z + z*x)
471
+ assert check_solutions(23*x*y + 23*y*z + 23*x*z)
472
+
473
+
474
+ def test_descent():
475
+
476
+ u = ([(13, 23), (3, -11), (41, -113), (91, -3), (1, 1), (1, -1), (17, 13), (123689, 1), (19, -570)])
477
+ for a, b in u:
478
+ w, x, y = descent(a, b)
479
+ assert a*x**2 + b*y**2 == w**2
480
+ # the docstring warns against bad input, so these are expected results
481
+ # - can't both be negative
482
+ raises(TypeError, lambda: descent(-1, -3))
483
+ # A can't be zero unless B != 1
484
+ raises(ZeroDivisionError, lambda: descent(0, 3))
485
+ # supposed to be square-free
486
+ raises(TypeError, lambda: descent(4, 3))
487
+
488
+
489
+ def test_diophantine():
490
+ assert check_solutions((x - y)*(y - z)*(z - x))
491
+ assert check_solutions((x - y)*(x**2 + y**2 - z**2))
492
+ assert check_solutions((x - 3*y + 7*z)*(x**2 + y**2 - z**2))
493
+ assert check_solutions(x**2 - 3*y**2 - 1)
494
+ assert check_solutions(y**2 + 7*x*y)
495
+ assert check_solutions(x**2 - 3*x*y + y**2)
496
+ assert check_solutions(z*(x**2 - y**2 - 15))
497
+ assert check_solutions(x*(2*y - 2*z + 5))
498
+ assert check_solutions((x**2 - 3*y**2 - 1)*(x**2 - y**2 - 15))
499
+ assert check_solutions((x**2 - 3*y**2 - 1)*(y - 7*z))
500
+ assert check_solutions((x**2 + y**2 - z**2)*(x - 7*y - 3*z + 4*w))
501
+ # Following test case caused problems in parametric representation
502
+ # But this can be solved by factoring out y.
503
+ # No need to use methods for ternary quadratic equations.
504
+ assert check_solutions(y**2 - 7*x*y + 4*y*z)
505
+ assert check_solutions(x**2 - 2*x + 1)
506
+
507
+ assert diophantine(x - y) == diophantine(Eq(x, y))
508
+ # 18196
509
+ eq = x**4 + y**4 - 97
510
+ assert diophantine(eq, permute=True) == diophantine(-eq, permute=True)
511
+ assert diophantine(3*x*pi - 2*y*pi) == {(2*t_0, 3*t_0)}
512
+ eq = x**2 + y**2 + z**2 - 14
513
+ base_sol = {(1, 2, 3)}
514
+ assert diophantine(eq) == base_sol
515
+ complete_soln = set(signed_permutations(base_sol.pop()))
516
+ assert diophantine(eq, permute=True) == complete_soln
517
+
518
+ assert diophantine(x**2 + x*Rational(15, 14) - 3) == set()
519
+ # test issue 11049
520
+ eq = 92*x**2 - 99*y**2 - z**2
521
+ coeff = eq.as_coefficients_dict()
522
+ assert _diop_ternary_quadratic_normal((x, y, z), coeff) == \
523
+ {(9, 7, 51)}
524
+ assert diophantine(eq) == {(
525
+ 891*p**2 + 9*q**2, -693*p**2 - 102*p*q + 7*q**2,
526
+ 5049*p**2 - 1386*p*q - 51*q**2)}
527
+ eq = 2*x**2 + 2*y**2 - z**2
528
+ coeff = eq.as_coefficients_dict()
529
+ assert _diop_ternary_quadratic_normal((x, y, z), coeff) == \
530
+ {(1, 1, 2)}
531
+ assert diophantine(eq) == {(
532
+ 2*p**2 - q**2, -2*p**2 + 4*p*q - q**2,
533
+ 4*p**2 - 4*p*q + 2*q**2)}
534
+ eq = 411*x**2+57*y**2-221*z**2
535
+ coeff = eq.as_coefficients_dict()
536
+ assert _diop_ternary_quadratic_normal((x, y, z), coeff) == \
537
+ {(2021, 2645, 3066)}
538
+ assert diophantine(eq) == \
539
+ {(115197*p**2 - 446641*q**2, -150765*p**2 + 1355172*p*q -
540
+ 584545*q**2, 174762*p**2 - 301530*p*q + 677586*q**2)}
541
+ eq = 573*x**2+267*y**2-984*z**2
542
+ coeff = eq.as_coefficients_dict()
543
+ assert _diop_ternary_quadratic_normal((x, y, z), coeff) == \
544
+ {(49, 233, 127)}
545
+ assert diophantine(eq) == \
546
+ {(4361*p**2 - 16072*q**2, -20737*p**2 + 83312*p*q - 76424*q**2,
547
+ 11303*p**2 - 41474*p*q + 41656*q**2)}
548
+ # this produces factors during reconstruction
549
+ eq = x**2 + 3*y**2 - 12*z**2
550
+ coeff = eq.as_coefficients_dict()
551
+ assert _diop_ternary_quadratic_normal((x, y, z), coeff) == \
552
+ {(0, 2, 1)}
553
+ assert diophantine(eq) == \
554
+ {(24*p*q, 2*p**2 - 24*q**2, p**2 + 12*q**2)}
555
+ # solvers have not been written for every type
556
+ raises(NotImplementedError, lambda: diophantine(x*y**2 + 1))
557
+
558
+ # rational expressions
559
+ assert diophantine(1/x) == set()
560
+ assert diophantine(1/x + 1/y - S.Half) == {(6, 3), (-2, 1), (4, 4), (1, -2), (3, 6)}
561
+ assert diophantine(x**2 + y**2 +3*x- 5, permute=True) == \
562
+ {(-1, 1), (-4, -1), (1, -1), (1, 1), (-4, 1), (-1, -1), (4, 1), (4, -1)}
563
+
564
+
565
+ #test issue 18186
566
+ assert diophantine(y**4 + x**4 - 2**4 - 3**4, syms=(x, y), permute=True) == \
567
+ {(-3, -2), (-3, 2), (-2, -3), (-2, 3), (2, -3), (2, 3), (3, -2), (3, 2)}
568
+ assert diophantine(y**4 + x**4 - 2**4 - 3**4, syms=(y, x), permute=True) == \
569
+ {(-3, -2), (-3, 2), (-2, -3), (-2, 3), (2, -3), (2, 3), (3, -2), (3, 2)}
570
+
571
+ # issue 18122
572
+ assert check_solutions(x**2-y)
573
+ assert check_solutions(y**2-x)
574
+ assert diophantine((x**2-y), t) == {(t, t**2)}
575
+ assert diophantine((y**2-x), t) == {(t**2, -t)}
576
+
577
+
578
+ def test_general_pythagorean():
579
+ from sympy.abc import a, b, c, d, e
580
+
581
+ assert check_solutions(a**2 + b**2 + c**2 - d**2)
582
+ assert check_solutions(a**2 + 4*b**2 + 4*c**2 - d**2)
583
+ assert check_solutions(9*a**2 + 4*b**2 + 4*c**2 - d**2)
584
+ assert check_solutions(9*a**2 + 4*b**2 - 25*d**2 + 4*c**2 )
585
+ assert check_solutions(9*a**2 - 16*d**2 + 4*b**2 + 4*c**2)
586
+ assert check_solutions(-e**2 + 9*a**2 + 4*b**2 + 4*c**2 + 25*d**2)
587
+ assert check_solutions(16*a**2 - b**2 + 9*c**2 + d**2 + 25*e**2)
588
+
589
+ assert GeneralPythagorean(a**2 + b**2 + c**2 - d**2).solve(parameters=[x, y, z]) == \
590
+ {(x**2 + y**2 - z**2, 2*x*z, 2*y*z, x**2 + y**2 + z**2)}
591
+
592
+
593
+ def test_diop_general_sum_of_squares_quick():
594
+ for i in range(3, 10):
595
+ assert check_solutions(sum(i**2 for i in symbols(':%i' % i)) - i)
596
+
597
+ assert diop_general_sum_of_squares(x**2 + y**2 - 2) is None
598
+ assert diop_general_sum_of_squares(x**2 + y**2 + z**2 + 2) == set()
599
+ eq = x**2 + y**2 + z**2 - (1 + 4 + 9)
600
+ assert diop_general_sum_of_squares(eq) == \
601
+ {(1, 2, 3)}
602
+ eq = u**2 + v**2 + x**2 + y**2 + z**2 - 1313
603
+ assert len(diop_general_sum_of_squares(eq, 3)) == 3
604
+ # issue 11016
605
+ var = symbols(':5') + (symbols('6', negative=True),)
606
+ eq = Add(*[i**2 for i in var]) - 112
607
+
608
+ base_soln = {(0, 1, 1, 5, 6, -7), (1, 1, 1, 3, 6, -8), (2, 3, 3, 4, 5, -7), (0, 1, 1, 1, 3, -10),
609
+ (0, 0, 4, 4, 4, -8), (1, 2, 3, 3, 5, -8), (0, 1, 2, 3, 7, -7), (2, 2, 4, 4, 6, -6),
610
+ (1, 1, 3, 4, 6, -7), (0, 2, 3, 3, 3, -9), (0, 0, 2, 2, 2, -10), (1, 1, 2, 3, 4, -9),
611
+ (0, 1, 1, 2, 5, -9), (0, 0, 2, 6, 6, -6), (1, 3, 4, 5, 5, -6), (0, 2, 2, 2, 6, -8),
612
+ (0, 3, 3, 3, 6, -7), (0, 2, 3, 5, 5, -7), (0, 1, 5, 5, 5, -6)}
613
+ assert diophantine(eq) == base_soln
614
+ assert len(diophantine(eq, permute=True)) == 196800
615
+
616
+ # handle negated squares with signsimp
617
+ assert diophantine(12 - x**2 - y**2 - z**2) == {(2, 2, 2)}
618
+ # diophantine handles simplification, so classify_diop should
619
+ # not have to look for additional patterns that are removed
620
+ # by diophantine
621
+ eq = a**2 + b**2 + c**2 + d**2 - 4
622
+ raises(NotImplementedError, lambda: classify_diop(-eq))
623
+
624
+
625
+ def test_issue_23807():
626
+ # fixes recursion error
627
+ eq = x**2 + y**2 + z**2 - 1000000
628
+ base_soln = {(0, 0, 1000), (0, 352, 936), (480, 600, 640), (24, 640, 768), (192, 640, 744),
629
+ (192, 480, 856), (168, 224, 960), (0, 600, 800), (280, 576, 768), (152, 480, 864),
630
+ (0, 280, 960), (352, 360, 864), (424, 480, 768), (360, 480, 800), (224, 600, 768),
631
+ (96, 360, 928), (168, 576, 800), (96, 480, 872)}
632
+
633
+ assert diophantine(eq) == base_soln
634
+
635
+
636
+ def test_diop_partition():
637
+ for n in [8, 10]:
638
+ for k in range(1, 8):
639
+ for p in partition(n, k):
640
+ assert len(p) == k
641
+ assert list(partition(3, 5)) == []
642
+ assert [list(p) for p in partition(3, 5, 1)] == [
643
+ [0, 0, 0, 0, 3], [0, 0, 0, 1, 2], [0, 0, 1, 1, 1]]
644
+ assert list(partition(0)) == [()]
645
+ assert list(partition(1, 0)) == [()]
646
+ assert [list(i) for i in partition(3)] == [[1, 1, 1], [1, 2], [3]]
647
+
648
+
649
+ def test_prime_as_sum_of_two_squares():
650
+ for i in [5, 13, 17, 29, 37, 41, 2341, 3557, 34841, 64601]:
651
+ a, b = prime_as_sum_of_two_squares(i)
652
+ assert a**2 + b**2 == i
653
+ assert prime_as_sum_of_two_squares(7) is None
654
+ ans = prime_as_sum_of_two_squares(800029)
655
+ assert ans == (450, 773) and type(ans[0]) is int
656
+
657
+
658
+ def test_sum_of_three_squares():
659
+ for i in [0, 1, 2, 34, 123, 34304595905, 34304595905394941, 343045959052344,
660
+ 800, 801, 802, 803, 804, 805, 806]:
661
+ a, b, c = sum_of_three_squares(i)
662
+ assert a**2 + b**2 + c**2 == i
663
+
664
+ assert sum_of_three_squares(7) is None
665
+ assert sum_of_three_squares((4**5)*15) is None
666
+ assert sum_of_three_squares(25) == (5, 0, 0)
667
+ assert sum_of_three_squares(4) == (0, 0, 2)
668
+
669
+
670
+ def test_sum_of_four_squares():
671
+ from sympy.core.random import randint
672
+
673
+ # this should never fail
674
+ n = randint(1, 100000000000000)
675
+ assert sum(i**2 for i in sum_of_four_squares(n)) == n
676
+
677
+ assert sum_of_four_squares(0) == (0, 0, 0, 0)
678
+ assert sum_of_four_squares(14) == (0, 1, 2, 3)
679
+ assert sum_of_four_squares(15) == (1, 1, 2, 3)
680
+ assert sum_of_four_squares(18) == (1, 2, 2, 3)
681
+ assert sum_of_four_squares(19) == (0, 1, 3, 3)
682
+ assert sum_of_four_squares(48) == (0, 4, 4, 4)
683
+
684
+
685
+ def test_power_representation():
686
+ tests = [(1729, 3, 2), (234, 2, 4), (2, 1, 2), (3, 1, 3), (5, 2, 2), (12352, 2, 4),
687
+ (32760, 2, 3)]
688
+
689
+ for test in tests:
690
+ n, p, k = test
691
+ f = power_representation(n, p, k)
692
+
693
+ while True:
694
+ try:
695
+ l = next(f)
696
+ assert len(l) == k
697
+
698
+ chk_sum = 0
699
+ for l_i in l:
700
+ chk_sum = chk_sum + l_i**p
701
+ assert chk_sum == n
702
+
703
+ except StopIteration:
704
+ break
705
+
706
+ assert list(power_representation(20, 2, 4, True)) == \
707
+ [(1, 1, 3, 3), (0, 0, 2, 4)]
708
+ raises(ValueError, lambda: list(power_representation(1.2, 2, 2)))
709
+ raises(ValueError, lambda: list(power_representation(2, 0, 2)))
710
+ raises(ValueError, lambda: list(power_representation(2, 2, 0)))
711
+ assert list(power_representation(-1, 2, 2)) == []
712
+ assert list(power_representation(1, 1, 1)) == [(1,)]
713
+ assert list(power_representation(3, 2, 1)) == []
714
+ assert list(power_representation(4, 2, 1)) == [(2,)]
715
+ assert list(power_representation(3**4, 4, 6, zeros=True)) == \
716
+ [(1, 2, 2, 2, 2, 2), (0, 0, 0, 0, 0, 3)]
717
+ assert list(power_representation(3**4, 4, 5, zeros=False)) == []
718
+ assert list(power_representation(-2, 3, 2)) == [(-1, -1)]
719
+ assert list(power_representation(-2, 4, 2)) == []
720
+ assert list(power_representation(0, 3, 2, True)) == [(0, 0)]
721
+ assert list(power_representation(0, 3, 2, False)) == []
722
+ # when we are dealing with squares, do feasibility checks
723
+ assert len(list(power_representation(4**10*(8*10 + 7), 2, 3))) == 0
724
+ # there will be a recursion error if these aren't recognized
725
+ big = 2**30
726
+ for i in [13, 10, 7, 5, 4, 2, 1]:
727
+ assert list(sum_of_powers(big, 2, big - i)) == []
728
+
729
+
730
+ def test_assumptions():
731
+ """
732
+ Test whether diophantine respects the assumptions.
733
+ """
734
+ #Test case taken from the below so question regarding assumptions in diophantine module
735
+ #https://stackoverflow.com/questions/23301941/how-can-i-declare-natural-symbols-with-sympy
736
+ m, n = symbols('m n', integer=True, positive=True)
737
+ diof = diophantine(n**2 + m*n - 500)
738
+ assert diof == {(5, 20), (40, 10), (95, 5), (121, 4), (248, 2), (499, 1)}
739
+
740
+ a, b = symbols('a b', integer=True, positive=False)
741
+ diof = diophantine(a*b + 2*a + 3*b - 6)
742
+ assert diof == {(-15, -3), (-9, -4), (-7, -5), (-6, -6), (-5, -8), (-4, -14)}
743
+
744
+
745
+ def check_solutions(eq):
746
+ """
747
+ Determines whether solutions returned by diophantine() satisfy the original
748
+ equation. Hope to generalize this so we can remove functions like check_ternay_quadratic,
749
+ check_solutions_normal, check_solutions()
750
+ """
751
+ s = diophantine(eq)
752
+
753
+ factors = Mul.make_args(eq)
754
+
755
+ var = list(eq.free_symbols)
756
+ var.sort(key=default_sort_key)
757
+
758
+ while s:
759
+ solution = s.pop()
760
+ for f in factors:
761
+ if diop_simplify(f.subs(zip(var, solution))) == 0:
762
+ break
763
+ else:
764
+ return False
765
+ return True
766
+
767
+
768
+ def test_diopcoverage():
769
+ eq = (2*x + y + 1)**2
770
+ assert diop_solve(eq) == {(t_0, -2*t_0 - 1)}
771
+ eq = 2*x**2 + 6*x*y + 12*x + 4*y**2 + 18*y + 18
772
+ assert diop_solve(eq) == {(t, -t - 3), (2*t - 3, -t)}
773
+ assert diop_quadratic(x + y**2 - 3) == {(-t**2 + 3, -t)}
774
+
775
+ assert diop_linear(x + y - 3) == (t_0, 3 - t_0)
776
+
777
+ assert base_solution_linear(0, 1, 2, t=None) == (0, 0)
778
+ ans = (3*t - 1, -2*t + 1)
779
+ assert base_solution_linear(4, 8, 12, t) == ans
780
+ assert base_solution_linear(4, 8, 12, t=None) == tuple(_.subs(t, 0) for _ in ans)
781
+
782
+ assert cornacchia(1, 1, 20) is None
783
+ assert cornacchia(1, 1, 5) == {(2, 1)}
784
+ assert cornacchia(1, 2, 17) == {(3, 2)}
785
+
786
+ raises(ValueError, lambda: reconstruct(4, 20, 1))
787
+
788
+ assert gaussian_reduce(4, 1, 3) == (1, 1)
789
+ eq = -w**2 - x**2 - y**2 + z**2
790
+
791
+ assert diop_general_pythagorean(eq) == \
792
+ diop_general_pythagorean(-eq) == \
793
+ (m1**2 + m2**2 - m3**2, 2*m1*m3,
794
+ 2*m2*m3, m1**2 + m2**2 + m3**2)
795
+
796
+ assert len(check_param(S(3) + x/3, S(4) + x/2, S(2), [x])) == 0
797
+ assert len(check_param(Rational(3, 2), S(4) + x, S(2), [x])) == 0
798
+ assert len(check_param(S(4) + x, Rational(3, 2), S(2), [x])) == 0
799
+
800
+ assert _nint_or_floor(16, 10) == 2
801
+ assert _odd(1) == (not _even(1)) == True
802
+ assert _odd(0) == (not _even(0)) == False
803
+ assert _remove_gcd(2, 4, 6) == (1, 2, 3)
804
+ raises(TypeError, lambda: _remove_gcd((2, 4, 6)))
805
+ assert sqf_normal(2*3**2*5, 2*5*11, 2*7**2*11) == \
806
+ (11, 1, 5)
807
+
808
+ # it's ok if these pass some day when the solvers are implemented
809
+ raises(NotImplementedError, lambda: diophantine(x**2 + y**2 + x*y + 2*y*z - 12))
810
+ raises(NotImplementedError, lambda: diophantine(x**3 + y**2))
811
+ assert diop_quadratic(x**2 + y**2 - 1**2 - 3**4) == \
812
+ {(-9, -1), (-9, 1), (-1, -9), (-1, 9), (1, -9), (1, 9), (9, -1), (9, 1)}
813
+
814
+
815
+ def test_holzer():
816
+ # if the input is good, don't let it diverge in holzer()
817
+ # (but see test_fail_holzer below)
818
+ assert holzer(2, 7, 13, 4, 79, 23) == (2, 7, 13)
819
+
820
+ # None in uv condition met; solution is not Holzer reduced
821
+ # so this will hopefully change but is here for coverage
822
+ assert holzer(2, 6, 2, 1, 1, 10) == (2, 6, 2)
823
+
824
+ raises(ValueError, lambda: holzer(2, 7, 14, 4, 79, 23))
825
+
826
+
827
+ @XFAIL
828
+ def test_fail_holzer():
829
+ eq = lambda x, y, z: a*x**2 + b*y**2 - c*z**2
830
+ a, b, c = 4, 79, 23
831
+ x, y, z = xyz = 26, 1, 11
832
+ X, Y, Z = ans = 2, 7, 13
833
+ assert eq(*xyz) == 0
834
+ assert eq(*ans) == 0
835
+ assert max(a*x**2, b*y**2, c*z**2) <= a*b*c
836
+ assert max(a*X**2, b*Y**2, c*Z**2) <= a*b*c
837
+ h = holzer(x, y, z, a, b, c)
838
+ assert h == ans # it would be nice to get the smaller soln
839
+
840
+
841
+ def test_issue_9539():
842
+ assert diophantine(6*w + 9*y + 20*x - z) == \
843
+ {(t_0, t_1, t_1 + t_2, 6*t_0 + 29*t_1 + 9*t_2)}
844
+
845
+
846
+ def test_issue_8943():
847
+ assert diophantine(
848
+ 3*(x**2 + y**2 + z**2) - 14*(x*y + y*z + z*x)) == \
849
+ {(0, 0, 0)}
850
+
851
+
852
+ def test_diop_sum_of_even_powers():
853
+ eq = x**4 + y**4 + z**4 - 2673
854
+ assert diop_solve(eq) == {(3, 6, 6), (2, 4, 7)}
855
+ assert diop_general_sum_of_even_powers(eq, 2) == {(3, 6, 6), (2, 4, 7)}
856
+ raises(NotImplementedError, lambda: diop_general_sum_of_even_powers(-eq, 2))
857
+ neg = symbols('neg', negative=True)
858
+ eq = x**4 + y**4 + neg**4 - 2673
859
+ assert diop_general_sum_of_even_powers(eq) == {(-3, 6, 6)}
860
+ assert diophantine(x**4 + y**4 + 2) == set()
861
+ assert diop_general_sum_of_even_powers(x**4 + y**4 - 2, limit=0) == set()
862
+
863
+
864
+ def test_sum_of_squares_powers():
865
+ tru = {(0, 0, 1, 1, 11), (0, 0, 5, 7, 7), (0, 1, 3, 7, 8), (0, 1, 4, 5, 9), (0, 3, 4, 7, 7), (0, 3, 5, 5, 8),
866
+ (1, 1, 2, 6, 9), (1, 1, 6, 6, 7), (1, 2, 3, 3, 10), (1, 3, 4, 4, 9), (1, 5, 5, 6, 6), (2, 2, 3, 5, 9),
867
+ (2, 3, 5, 6, 7), (3, 3, 4, 5, 8)}
868
+ eq = u**2 + v**2 + x**2 + y**2 + z**2 - 123
869
+ ans = diop_general_sum_of_squares(eq, oo) # allow oo to be used
870
+ assert len(ans) == 14
871
+ assert ans == tru
872
+
873
+ raises(ValueError, lambda: list(sum_of_squares(10, -1)))
874
+ assert list(sum_of_squares(-10, 2)) == []
875
+ assert list(sum_of_squares(2, 3)) == []
876
+ assert list(sum_of_squares(0, 3, True)) == [(0, 0, 0)]
877
+ assert list(sum_of_squares(0, 3)) == []
878
+ assert list(sum_of_squares(4, 1)) == [(2,)]
879
+ assert list(sum_of_squares(5, 1)) == []
880
+ assert list(sum_of_squares(50, 2)) == [(5, 5), (1, 7)]
881
+ assert list(sum_of_squares(11, 5, True)) == [
882
+ (1, 1, 1, 2, 2), (0, 0, 1, 1, 3)]
883
+ assert list(sum_of_squares(8, 8)) == [(1, 1, 1, 1, 1, 1, 1, 1)]
884
+
885
+ assert [len(list(sum_of_squares(i, 5, True))) for i in range(30)] == [
886
+ 1, 1, 1, 1, 2,
887
+ 2, 1, 1, 2, 2,
888
+ 2, 2, 2, 3, 2,
889
+ 1, 3, 3, 3, 3,
890
+ 4, 3, 3, 2, 2,
891
+ 4, 4, 4, 4, 5]
892
+ assert [len(list(sum_of_squares(i, 5))) for i in range(30)] == [
893
+ 0, 0, 0, 0, 0,
894
+ 1, 0, 0, 1, 0,
895
+ 0, 1, 0, 1, 1,
896
+ 0, 1, 1, 0, 1,
897
+ 2, 1, 1, 1, 1,
898
+ 1, 1, 1, 1, 3]
899
+ for i in range(30):
900
+ s1 = set(sum_of_squares(i, 5, True))
901
+ assert not s1 or all(sum(j**2 for j in t) == i for t in s1)
902
+ s2 = set(sum_of_squares(i, 5))
903
+ assert all(sum(j**2 for j in t) == i for t in s2)
904
+
905
+ raises(ValueError, lambda: list(sum_of_powers(2, -1, 1)))
906
+ raises(ValueError, lambda: list(sum_of_powers(2, 1, -1)))
907
+ assert list(sum_of_powers(-2, 3, 2)) == [(-1, -1)]
908
+ assert list(sum_of_powers(-2, 4, 2)) == []
909
+ assert list(sum_of_powers(2, 1, 1)) == [(2,)]
910
+ assert list(sum_of_powers(2, 1, 3, True)) == [(0, 0, 2), (0, 1, 1)]
911
+ assert list(sum_of_powers(5, 1, 2, True)) == [(0, 5), (1, 4), (2, 3)]
912
+ assert list(sum_of_powers(6, 2, 2)) == []
913
+ assert list(sum_of_powers(3**5, 3, 1)) == []
914
+ assert list(sum_of_powers(3**6, 3, 1)) == [(9,)] and (9**3 == 3**6)
915
+ assert list(sum_of_powers(2**1000, 5, 2)) == []
916
+
917
+
918
+ def test__can_do_sum_of_squares():
919
+ assert _can_do_sum_of_squares(3, -1) is False
920
+ assert _can_do_sum_of_squares(-3, 1) is False
921
+ assert _can_do_sum_of_squares(0, 1)
922
+ assert _can_do_sum_of_squares(4, 1)
923
+ assert _can_do_sum_of_squares(1, 2)
924
+ assert _can_do_sum_of_squares(2, 2)
925
+ assert _can_do_sum_of_squares(3, 2) is False
926
+
927
+
928
+ def test_diophantine_permute_sign():
929
+ from sympy.abc import a, b, c, d, e
930
+ eq = a**4 + b**4 - (2**4 + 3**4)
931
+ base_sol = {(2, 3)}
932
+ assert diophantine(eq) == base_sol
933
+ complete_soln = set(signed_permutations(base_sol.pop()))
934
+ assert diophantine(eq, permute=True) == complete_soln
935
+
936
+ eq = a**2 + b**2 + c**2 + d**2 + e**2 - 234
937
+ assert len(diophantine(eq)) == 35
938
+ assert len(diophantine(eq, permute=True)) == 62000
939
+ soln = {(-1, -1), (-1, 2), (1, -2), (1, 1)}
940
+ assert diophantine(10*x**2 + 12*x*y + 12*y**2 - 34, permute=True) == soln
941
+
942
+
943
+ @XFAIL
944
+ def test_not_implemented():
945
+ eq = x**2 + y**4 - 1**2 - 3**4
946
+ assert diophantine(eq, syms=[x, y]) == {(9, 1), (1, 3)}
947
+
948
+
949
+ def test_issue_9538():
950
+ eq = x - 3*y + 2
951
+ assert diophantine(eq, syms=[y,x]) == {(t_0, 3*t_0 - 2)}
952
+ raises(TypeError, lambda: diophantine(eq, syms={y, x}))
953
+
954
+
955
+ def test_ternary_quadratic():
956
+ # solution with 3 parameters
957
+ s = diophantine(2*x**2 + y**2 - 2*z**2)
958
+ p, q, r = ordered(S(s).free_symbols)
959
+ assert s == {(
960
+ p**2 - 2*q**2,
961
+ -2*p**2 + 4*p*q - 4*p*r - 4*q**2,
962
+ p**2 - 4*p*q + 2*q**2 - 4*q*r)}
963
+ # solution with Mul in solution
964
+ s = diophantine(x**2 + 2*y**2 - 2*z**2)
965
+ assert s == {(4*p*q, p**2 - 2*q**2, p**2 + 2*q**2)}
966
+ # solution with no Mul in solution
967
+ s = diophantine(2*x**2 + 2*y**2 - z**2)
968
+ assert s == {(2*p**2 - q**2, -2*p**2 + 4*p*q - q**2,
969
+ 4*p**2 - 4*p*q + 2*q**2)}
970
+ # reduced form when parametrized
971
+ s = diophantine(3*x**2 + 72*y**2 - 27*z**2)
972
+ assert s == {(24*p**2 - 9*q**2, 6*p*q, 8*p**2 + 3*q**2)}
973
+ assert parametrize_ternary_quadratic(
974
+ 3*x**2 + 2*y**2 - z**2 - 2*x*y + 5*y*z - 7*y*z) == (
975
+ 2*p**2 - 2*p*q - q**2, 2*p**2 + 2*p*q - q**2, 2*p**2 -
976
+ 2*p*q + 3*q**2)
977
+ assert parametrize_ternary_quadratic(
978
+ 124*x**2 - 30*y**2 - 7729*z**2) == (
979
+ -1410*p**2 - 363263*q**2, 2700*p**2 + 30916*p*q -
980
+ 695610*q**2, -60*p**2 + 5400*p*q + 15458*q**2)
981
+
982
+
983
+ def test_diophantine_solution_set():
984
+ s1 = DiophantineSolutionSet([], [])
985
+ assert set(s1) == set()
986
+ assert s1.symbols == ()
987
+ assert s1.parameters == ()
988
+ raises(ValueError, lambda: s1.add((x,)))
989
+ assert list(s1.dict_iterator()) == []
990
+
991
+ s2 = DiophantineSolutionSet([x, y], [t, u])
992
+ assert s2.symbols == (x, y)
993
+ assert s2.parameters == (t, u)
994
+ raises(ValueError, lambda: s2.add((1,)))
995
+ s2.add((3, 4))
996
+ assert set(s2) == {(3, 4)}
997
+ s2.update((3, 4), (-1, u))
998
+ assert set(s2) == {(3, 4), (-1, u)}
999
+ raises(ValueError, lambda: s1.update(s2))
1000
+ assert list(s2.dict_iterator()) == [{x: -1, y: u}, {x: 3, y: 4}]
1001
+
1002
+ s3 = DiophantineSolutionSet([x, y, z], [t, u])
1003
+ assert len(s3.parameters) == 2
1004
+ s3.add((t**2 + u, t - u, 1))
1005
+ assert set(s3) == {(t**2 + u, t - u, 1)}
1006
+ assert s3.subs(t, 2) == {(u + 4, 2 - u, 1)}
1007
+ assert s3(2) == {(u + 4, 2 - u, 1)}
1008
+ assert s3.subs({t: 7, u: 8}) == {(57, -1, 1)}
1009
+ assert s3(7, 8) == {(57, -1, 1)}
1010
+ assert s3.subs({t: 5}) == {(u + 25, 5 - u, 1)}
1011
+ assert s3(5) == {(u + 25, 5 - u, 1)}
1012
+ assert s3.subs(u, -3) == {(t**2 - 3, t + 3, 1)}
1013
+ assert s3(None, -3) == {(t**2 - 3, t + 3, 1)}
1014
+ assert s3.subs({t: 2, u: 8}) == {(12, -6, 1)}
1015
+ assert s3(2, 8) == {(12, -6, 1)}
1016
+ assert s3.subs({t: 5, u: -3}) == {(22, 8, 1)}
1017
+ assert s3(5, -3) == {(22, 8, 1)}
1018
+ raises(ValueError, lambda: s3.subs(x=1))
1019
+ raises(ValueError, lambda: s3.subs(1, 2, 3))
1020
+ raises(ValueError, lambda: s3.add(()))
1021
+ raises(ValueError, lambda: s3.add((1, 2, 3, 4)))
1022
+ raises(ValueError, lambda: s3.add((1, 2)))
1023
+ raises(ValueError, lambda: s3(1, 2, 3))
1024
+ raises(TypeError, lambda: s3(t=1))
1025
+
1026
+ s4 = DiophantineSolutionSet([x, y], [t, u])
1027
+ s4.add((t, 11*t))
1028
+ s4.add((-t, 22*t))
1029
+ assert s4(0, 0) == {(0, 0)}
1030
+
1031
+
1032
+ def test_quadratic_parameter_passing():
1033
+ eq = -33*x*y + 3*y**2
1034
+ solution = BinaryQuadratic(eq).solve(parameters=[t, u])
1035
+ # test that parameters are passed all the way to the final solution
1036
+ assert solution == {(t, 11*t), (-t, 22*t)}
1037
+ assert solution(0, 0) == {(0, 0)}
llmeval-env/lib/python3.10/site-packages/sympy/solvers/ode/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (607 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/solvers/ode/__pycache__/hypergeometric.cpython-310.pyc ADDED
Binary file (7.08 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/solvers/ode/__pycache__/lie_group.cpython-310.pyc ADDED
Binary file (30.8 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/solvers/ode/__pycache__/nonhomogeneous.cpython-310.pyc ADDED
Binary file (14.8 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/solvers/ode/__pycache__/ode.cpython-310.pyc ADDED
Binary file (121 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/solvers/ode/__pycache__/riccati.cpython-310.pyc ADDED
Binary file (24.4 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/solvers/ode/__pycache__/single.cpython-310.pyc ADDED
Binary file (105 kB). View file