Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- env-llmeval/lib/python3.10/site-packages/transformers/models/barthez/__init__.py +59 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/barthez/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/barthez/__pycache__/tokenization_barthez.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/barthez/__pycache__/tokenization_barthez_fast.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/barthez/tokenization_barthez.py +304 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/barthez/tokenization_barthez_fast.py +219 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/decision_transformer/__init__.py +65 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/decision_transformer/configuration_decision_transformer.py +161 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/decision_transformer/modeling_decision_transformer.py +938 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/electra/__init__.py +168 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/electra/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/electra/__pycache__/configuration_electra.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/electra/__pycache__/convert_electra_original_tf_checkpoint_to_pytorch.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/electra/__pycache__/modeling_electra.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/electra/__pycache__/modeling_flax_electra.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/electra/__pycache__/modeling_tf_electra.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/electra/__pycache__/tokenization_electra.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/electra/__pycache__/tokenization_electra_fast.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/electra/configuration_electra.py +199 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/electra/convert_electra_original_tf_checkpoint_to_pytorch.py +80 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/electra/modeling_electra.py +1686 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/electra/modeling_flax_electra.py +1601 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/electra/modeling_tf_electra.py +1775 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/electra/tokenization_electra.py +546 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/electra/tokenization_electra_fast.py +231 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/mluke/__init__.py +44 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/mluke/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/mluke/__pycache__/convert_mluke_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/mluke/__pycache__/tokenization_mluke.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/mluke/convert_mluke_original_pytorch_checkpoint_to_pytorch.py +229 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/mluke/tokenization_mluke.py +1631 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/mpnet/__init__.py +130 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/mpnet/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/mpnet/__pycache__/configuration_mpnet.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/mpnet/__pycache__/modeling_mpnet.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/mpnet/__pycache__/modeling_tf_mpnet.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/mpnet/__pycache__/tokenization_mpnet.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/mpnet/__pycache__/tokenization_mpnet_fast.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/mpnet/configuration_mpnet.py +117 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/mpnet/modeling_mpnet.py +1055 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/mpnet/modeling_tf_mpnet.py +1346 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/mpnet/tokenization_mpnet.py +546 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/mpnet/tokenization_mpnet_fast.py +226 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/timm_backbone/__init__.py +49 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/timm_backbone/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/timm_backbone/__pycache__/configuration_timm_backbone.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/timm_backbone/__pycache__/modeling_timm_backbone.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/timm_backbone/configuration_timm_backbone.py +83 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/timm_backbone/modeling_timm_backbone.py +158 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/videomae/__init__.py +75 -0
env-llmeval/lib/python3.10/site-packages/transformers/models/barthez/__init__.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from typing import TYPE_CHECKING
|
16 |
+
|
17 |
+
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available
|
18 |
+
|
19 |
+
|
20 |
+
_import_structure = {}
|
21 |
+
|
22 |
+
try:
|
23 |
+
if not is_sentencepiece_available():
|
24 |
+
raise OptionalDependencyNotAvailable()
|
25 |
+
except OptionalDependencyNotAvailable:
|
26 |
+
pass
|
27 |
+
else:
|
28 |
+
_import_structure["tokenization_barthez"] = ["BarthezTokenizer"]
|
29 |
+
|
30 |
+
try:
|
31 |
+
if not is_tokenizers_available():
|
32 |
+
raise OptionalDependencyNotAvailable()
|
33 |
+
except OptionalDependencyNotAvailable:
|
34 |
+
pass
|
35 |
+
else:
|
36 |
+
_import_structure["tokenization_barthez_fast"] = ["BarthezTokenizerFast"]
|
37 |
+
|
38 |
+
|
39 |
+
if TYPE_CHECKING:
|
40 |
+
try:
|
41 |
+
if not is_sentencepiece_available():
|
42 |
+
raise OptionalDependencyNotAvailable()
|
43 |
+
except OptionalDependencyNotAvailable:
|
44 |
+
pass
|
45 |
+
else:
|
46 |
+
from .tokenization_barthez import BarthezTokenizer
|
47 |
+
|
48 |
+
try:
|
49 |
+
if not is_tokenizers_available():
|
50 |
+
raise OptionalDependencyNotAvailable()
|
51 |
+
except OptionalDependencyNotAvailable:
|
52 |
+
pass
|
53 |
+
else:
|
54 |
+
from .tokenization_barthez_fast import BarthezTokenizerFast
|
55 |
+
|
56 |
+
else:
|
57 |
+
import sys
|
58 |
+
|
59 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
env-llmeval/lib/python3.10/site-packages/transformers/models/barthez/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (919 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/barthez/__pycache__/tokenization_barthez.cpython-310.pyc
ADDED
Binary file (11.6 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/barthez/__pycache__/tokenization_barthez_fast.cpython-310.pyc
ADDED
Binary file (7.87 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/barthez/tokenization_barthez.py
ADDED
@@ -0,0 +1,304 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 Ecole Polytechnique and the HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License
|
15 |
+
""" Tokenization classes for the BARThez model."""
|
16 |
+
|
17 |
+
|
18 |
+
import os
|
19 |
+
from shutil import copyfile
|
20 |
+
from typing import Any, Dict, List, Optional, Tuple
|
21 |
+
|
22 |
+
import sentencepiece as spm
|
23 |
+
|
24 |
+
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
|
25 |
+
from ...utils import logging
|
26 |
+
|
27 |
+
|
28 |
+
logger = logging.get_logger(__name__)
|
29 |
+
|
30 |
+
VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model"}
|
31 |
+
|
32 |
+
PRETRAINED_VOCAB_FILES_MAP = {
|
33 |
+
"vocab_file": {
|
34 |
+
"moussaKam/mbarthez": "https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model",
|
35 |
+
"moussaKam/barthez": "https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model",
|
36 |
+
"moussaKam/barthez-orangesum-title": (
|
37 |
+
"https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model"
|
38 |
+
),
|
39 |
+
},
|
40 |
+
}
|
41 |
+
|
42 |
+
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
|
43 |
+
"moussaKam/mbarthez": 1024,
|
44 |
+
"moussaKam/barthez": 1024,
|
45 |
+
"moussaKam/barthez-orangesum-title": 1024,
|
46 |
+
}
|
47 |
+
|
48 |
+
SPIECE_UNDERLINE = "▁"
|
49 |
+
|
50 |
+
# TODO this class is useless. This is the most standard sentencpiece model. Let's find which one is closest and nuke this.
|
51 |
+
|
52 |
+
|
53 |
+
class BarthezTokenizer(PreTrainedTokenizer):
|
54 |
+
"""
|
55 |
+
Adapted from [`CamembertTokenizer`] and [`BartTokenizer`]. Construct a BARThez tokenizer. Based on
|
56 |
+
[SentencePiece](https://github.com/google/sentencepiece).
|
57 |
+
|
58 |
+
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
|
59 |
+
this superclass for more information regarding those methods.
|
60 |
+
|
61 |
+
Args:
|
62 |
+
vocab_file (`str`):
|
63 |
+
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that
|
64 |
+
contains the vocabulary necessary to instantiate a tokenizer.
|
65 |
+
bos_token (`str`, *optional*, defaults to `"<s>"`):
|
66 |
+
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
|
67 |
+
|
68 |
+
<Tip>
|
69 |
+
|
70 |
+
When building a sequence using special tokens, this is not the token that is used for the beginning of
|
71 |
+
sequence. The token used is the `cls_token`.
|
72 |
+
|
73 |
+
</Tip>
|
74 |
+
|
75 |
+
eos_token (`str`, *optional*, defaults to `"</s>"`):
|
76 |
+
The end of sequence token.
|
77 |
+
|
78 |
+
<Tip>
|
79 |
+
|
80 |
+
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
|
81 |
+
The token used is the `sep_token`.
|
82 |
+
|
83 |
+
</Tip>
|
84 |
+
|
85 |
+
sep_token (`str`, *optional*, defaults to `"</s>"`):
|
86 |
+
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
|
87 |
+
sequence classification or for a text and a question for question answering. It is also used as the last
|
88 |
+
token of a sequence built with special tokens.
|
89 |
+
cls_token (`str`, *optional*, defaults to `"<s>"`):
|
90 |
+
The classifier token which is used when doing sequence classification (classification of the whole sequence
|
91 |
+
instead of per-token classification). It is the first token of the sequence when built with special tokens.
|
92 |
+
unk_token (`str`, *optional*, defaults to `"<unk>"`):
|
93 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
94 |
+
token instead.
|
95 |
+
pad_token (`str`, *optional*, defaults to `"<pad>"`):
|
96 |
+
The token used for padding, for example when batching sequences of different lengths.
|
97 |
+
mask_token (`str`, *optional*, defaults to `"<mask>"`):
|
98 |
+
The token used for masking values. This is the token used when training this model with masked language
|
99 |
+
modeling. This is the token which the model will try to predict.
|
100 |
+
sp_model_kwargs (`dict`, *optional*):
|
101 |
+
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
|
102 |
+
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
|
103 |
+
to set:
|
104 |
+
|
105 |
+
- `enable_sampling`: Enable subword regularization.
|
106 |
+
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
|
107 |
+
|
108 |
+
- `nbest_size = {0,1}`: No sampling is performed.
|
109 |
+
- `nbest_size > 1`: samples from the nbest_size results.
|
110 |
+
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
|
111 |
+
using forward-filtering-and-backward-sampling algorithm.
|
112 |
+
|
113 |
+
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
|
114 |
+
BPE-dropout.
|
115 |
+
|
116 |
+
Attributes:
|
117 |
+
sp_model (`SentencePieceProcessor`):
|
118 |
+
The *SentencePiece* processor that is used for every conversion (string, tokens and IDs).
|
119 |
+
"""
|
120 |
+
|
121 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
122 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
123 |
+
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
124 |
+
model_input_names = ["input_ids", "attention_mask"]
|
125 |
+
|
126 |
+
def __init__(
|
127 |
+
self,
|
128 |
+
vocab_file,
|
129 |
+
bos_token="<s>",
|
130 |
+
eos_token="</s>",
|
131 |
+
sep_token="</s>",
|
132 |
+
cls_token="<s>",
|
133 |
+
unk_token="<unk>",
|
134 |
+
pad_token="<pad>",
|
135 |
+
mask_token="<mask>",
|
136 |
+
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
137 |
+
**kwargs,
|
138 |
+
) -> None:
|
139 |
+
# Mask token behave like a normal word, i.e. include the space before it. Will have normalized=False by default this way
|
140 |
+
mask_token = AddedToken(mask_token, lstrip=True, special=True) if isinstance(mask_token, str) else mask_token
|
141 |
+
|
142 |
+
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
143 |
+
|
144 |
+
self.vocab_file = vocab_file
|
145 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
146 |
+
self.sp_model.Load(str(vocab_file))
|
147 |
+
super().__init__(
|
148 |
+
bos_token=bos_token,
|
149 |
+
eos_token=eos_token,
|
150 |
+
unk_token=unk_token,
|
151 |
+
sep_token=sep_token,
|
152 |
+
cls_token=cls_token,
|
153 |
+
pad_token=pad_token,
|
154 |
+
mask_token=mask_token,
|
155 |
+
sp_model_kwargs=self.sp_model_kwargs,
|
156 |
+
**kwargs,
|
157 |
+
)
|
158 |
+
|
159 |
+
def build_inputs_with_special_tokens(
|
160 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
161 |
+
) -> List[int]:
|
162 |
+
"""
|
163 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
164 |
+
adding special tokens. A BARThez sequence has the following format:
|
165 |
+
|
166 |
+
- single sequence: `<s> X </s>`
|
167 |
+
- pair of sequences: `<s> A </s></s> B </s>`
|
168 |
+
|
169 |
+
Args:
|
170 |
+
token_ids_0 (`List[int]`):
|
171 |
+
List of IDs to which the special tokens will be added.
|
172 |
+
token_ids_1 (`List[int]`, *optional*):
|
173 |
+
Optional second list of IDs for sequence pairs.
|
174 |
+
|
175 |
+
Returns:
|
176 |
+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
177 |
+
"""
|
178 |
+
|
179 |
+
if token_ids_1 is None:
|
180 |
+
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
|
181 |
+
cls = [self.cls_token_id]
|
182 |
+
sep = [self.sep_token_id]
|
183 |
+
return cls + token_ids_0 + sep + sep + token_ids_1 + sep
|
184 |
+
|
185 |
+
def get_special_tokens_mask(
|
186 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
187 |
+
) -> List[int]:
|
188 |
+
"""
|
189 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
190 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
191 |
+
|
192 |
+
Args:
|
193 |
+
token_ids_0 (`List[int]`):
|
194 |
+
List of IDs.
|
195 |
+
token_ids_1 (`List[int]`, *optional*):
|
196 |
+
Optional second list of IDs for sequence pairs.
|
197 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
198 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
199 |
+
|
200 |
+
Returns:
|
201 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
202 |
+
"""
|
203 |
+
if already_has_special_tokens:
|
204 |
+
return super().get_special_tokens_mask(
|
205 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
206 |
+
)
|
207 |
+
|
208 |
+
if token_ids_1 is None:
|
209 |
+
return [1] + ([0] * len(token_ids_0)) + [1]
|
210 |
+
return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
|
211 |
+
|
212 |
+
def create_token_type_ids_from_sequences(
|
213 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
214 |
+
) -> List[int]:
|
215 |
+
"""
|
216 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task.
|
217 |
+
|
218 |
+
Args:
|
219 |
+
token_ids_0 (`List[int]`):
|
220 |
+
List of IDs.
|
221 |
+
token_ids_1 (`List[int]`, *optional*):
|
222 |
+
Optional second list of IDs for sequence pairs.
|
223 |
+
|
224 |
+
Returns:
|
225 |
+
`List[int]`: List of zeros.
|
226 |
+
"""
|
227 |
+
sep = [self.sep_token_id]
|
228 |
+
cls = [self.cls_token_id]
|
229 |
+
|
230 |
+
if token_ids_1 is None:
|
231 |
+
return len(cls + token_ids_0 + sep) * [0]
|
232 |
+
return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
|
233 |
+
|
234 |
+
@property
|
235 |
+
def vocab_size(self):
|
236 |
+
return len(self.sp_model)
|
237 |
+
|
238 |
+
def get_vocab(self):
|
239 |
+
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
240 |
+
vocab.update(self.added_tokens_encoder)
|
241 |
+
return vocab
|
242 |
+
|
243 |
+
def _tokenize(self, text: str) -> List[str]:
|
244 |
+
return self.sp_model.encode(text, out_type=str)
|
245 |
+
|
246 |
+
def _convert_token_to_id(self, token):
|
247 |
+
"""Converts a token (str) in an id using the vocab."""
|
248 |
+
return self.sp_model.PieceToId(token)
|
249 |
+
|
250 |
+
def _convert_id_to_token(self, index):
|
251 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
252 |
+
return self.sp_model.IdToPiece(index)
|
253 |
+
|
254 |
+
# Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.convert_tokens_to_string
|
255 |
+
def convert_tokens_to_string(self, tokens):
|
256 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
257 |
+
current_sub_tokens = []
|
258 |
+
out_string = ""
|
259 |
+
prev_is_special = False
|
260 |
+
for token in tokens:
|
261 |
+
# make sure that special tokens are not decoded using sentencepiece model
|
262 |
+
if token in self.all_special_tokens:
|
263 |
+
if not prev_is_special:
|
264 |
+
out_string += " "
|
265 |
+
out_string += self.sp_model.decode(current_sub_tokens) + token
|
266 |
+
prev_is_special = True
|
267 |
+
current_sub_tokens = []
|
268 |
+
else:
|
269 |
+
current_sub_tokens.append(token)
|
270 |
+
prev_is_special = False
|
271 |
+
out_string += self.sp_model.decode(current_sub_tokens)
|
272 |
+
return out_string.strip()
|
273 |
+
|
274 |
+
def __getstate__(self):
|
275 |
+
state = self.__dict__.copy()
|
276 |
+
state["sp_model"] = None
|
277 |
+
return state
|
278 |
+
|
279 |
+
def __setstate__(self, d):
|
280 |
+
self.__dict__ = d
|
281 |
+
|
282 |
+
# for backward compatibility
|
283 |
+
if not hasattr(self, "sp_model_kwargs"):
|
284 |
+
self.sp_model_kwargs = {}
|
285 |
+
|
286 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
287 |
+
self.sp_model.Load(self.vocab_file)
|
288 |
+
|
289 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
290 |
+
if not os.path.isdir(save_directory):
|
291 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
292 |
+
return
|
293 |
+
out_vocab_file = os.path.join(
|
294 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
295 |
+
)
|
296 |
+
|
297 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
298 |
+
copyfile(self.vocab_file, out_vocab_file)
|
299 |
+
elif not os.path.isfile(self.vocab_file):
|
300 |
+
with open(out_vocab_file, "wb") as fi:
|
301 |
+
content_spiece_model = self.sp_model.serialized_model_proto()
|
302 |
+
fi.write(content_spiece_model)
|
303 |
+
|
304 |
+
return (out_vocab_file,)
|
env-llmeval/lib/python3.10/site-packages/transformers/models/barthez/tokenization_barthez_fast.py
ADDED
@@ -0,0 +1,219 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 Ecole Polytechnique and the HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License
|
15 |
+
""" Tokenization classes for the BARThez model."""
|
16 |
+
|
17 |
+
|
18 |
+
import os
|
19 |
+
from shutil import copyfile
|
20 |
+
from typing import List, Optional, Tuple
|
21 |
+
|
22 |
+
from ...tokenization_utils import AddedToken
|
23 |
+
from ...tokenization_utils_fast import PreTrainedTokenizerFast
|
24 |
+
from ...utils import is_sentencepiece_available, logging
|
25 |
+
|
26 |
+
|
27 |
+
if is_sentencepiece_available():
|
28 |
+
from .tokenization_barthez import BarthezTokenizer
|
29 |
+
else:
|
30 |
+
BarthezTokenizer = None
|
31 |
+
|
32 |
+
logger = logging.get_logger(__name__)
|
33 |
+
|
34 |
+
VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"}
|
35 |
+
|
36 |
+
PRETRAINED_VOCAB_FILES_MAP = {
|
37 |
+
"vocab_file": {
|
38 |
+
"moussaKam/mbarthez": "https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model",
|
39 |
+
"moussaKam/barthez": "https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model",
|
40 |
+
"moussaKam/barthez-orangesum-title": (
|
41 |
+
"https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model"
|
42 |
+
),
|
43 |
+
},
|
44 |
+
"tokenizer_file": {
|
45 |
+
"moussaKam/mbarthez": "https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json",
|
46 |
+
"moussaKam/barthez": "https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json",
|
47 |
+
"moussaKam/barthez-orangesum-title": (
|
48 |
+
"https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json"
|
49 |
+
),
|
50 |
+
},
|
51 |
+
}
|
52 |
+
|
53 |
+
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
|
54 |
+
"moussaKam/mbarthez": 1024,
|
55 |
+
"moussaKam/barthez": 1024,
|
56 |
+
"moussaKam/barthez-orangesum-title": 1024,
|
57 |
+
}
|
58 |
+
|
59 |
+
SPIECE_UNDERLINE = "▁"
|
60 |
+
|
61 |
+
|
62 |
+
class BarthezTokenizerFast(PreTrainedTokenizerFast):
|
63 |
+
"""
|
64 |
+
Adapted from [`CamembertTokenizer`] and [`BartTokenizer`]. Construct a "fast" BARThez tokenizer. Based on
|
65 |
+
[SentencePiece](https://github.com/google/sentencepiece).
|
66 |
+
|
67 |
+
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
|
68 |
+
refer to this superclass for more information regarding those methods.
|
69 |
+
|
70 |
+
Args:
|
71 |
+
vocab_file (`str`):
|
72 |
+
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that
|
73 |
+
contains the vocabulary necessary to instantiate a tokenizer.
|
74 |
+
bos_token (`str`, *optional*, defaults to `"<s>"`):
|
75 |
+
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
|
76 |
+
|
77 |
+
<Tip>
|
78 |
+
|
79 |
+
When building a sequence using special tokens, this is not the token that is used for the beginning of
|
80 |
+
sequence. The token used is the `cls_token`.
|
81 |
+
|
82 |
+
</Tip>
|
83 |
+
|
84 |
+
eos_token (`str`, *optional*, defaults to `"</s>"`):
|
85 |
+
The end of sequence token.
|
86 |
+
|
87 |
+
<Tip>
|
88 |
+
|
89 |
+
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
|
90 |
+
The token used is the `sep_token`.
|
91 |
+
|
92 |
+
</Tip>
|
93 |
+
|
94 |
+
sep_token (`str`, *optional*, defaults to `"</s>"`):
|
95 |
+
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
|
96 |
+
sequence classification or for a text and a question for question answering. It is also used as the last
|
97 |
+
token of a sequence built with special tokens.
|
98 |
+
cls_token (`str`, *optional*, defaults to `"<s>"`):
|
99 |
+
The classifier token which is used when doing sequence classification (classification of the whole sequence
|
100 |
+
instead of per-token classification). It is the first token of the sequence when built with special tokens.
|
101 |
+
unk_token (`str`, *optional*, defaults to `"<unk>"`):
|
102 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
103 |
+
token instead.
|
104 |
+
pad_token (`str`, *optional*, defaults to `"<pad>"`):
|
105 |
+
The token used for padding, for example when batching sequences of different lengths.
|
106 |
+
mask_token (`str`, *optional*, defaults to `"<mask>"`):
|
107 |
+
The token used for masking values. This is the token used when training this model with masked language
|
108 |
+
modeling. This is the token which the model will try to predict.
|
109 |
+
additional_special_tokens (`List[str]`, *optional*, defaults to `["<s>NOTUSED", "</s>NOTUSED"]`):
|
110 |
+
Additional special tokens used by the tokenizer.
|
111 |
+
"""
|
112 |
+
|
113 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
114 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
115 |
+
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
116 |
+
model_input_names = ["input_ids", "attention_mask"]
|
117 |
+
slow_tokenizer_class = BarthezTokenizer
|
118 |
+
|
119 |
+
def __init__(
|
120 |
+
self,
|
121 |
+
vocab_file=None,
|
122 |
+
tokenizer_file=None,
|
123 |
+
bos_token="<s>",
|
124 |
+
eos_token="</s>",
|
125 |
+
sep_token="</s>",
|
126 |
+
cls_token="<s>",
|
127 |
+
unk_token="<unk>",
|
128 |
+
pad_token="<pad>",
|
129 |
+
mask_token="<mask>",
|
130 |
+
**kwargs,
|
131 |
+
):
|
132 |
+
# Mask token behave like a normal word, i.e. include the space before it
|
133 |
+
mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token
|
134 |
+
|
135 |
+
super().__init__(
|
136 |
+
vocab_file,
|
137 |
+
tokenizer_file=tokenizer_file,
|
138 |
+
bos_token=bos_token,
|
139 |
+
eos_token=eos_token,
|
140 |
+
unk_token=unk_token,
|
141 |
+
sep_token=sep_token,
|
142 |
+
cls_token=cls_token,
|
143 |
+
pad_token=pad_token,
|
144 |
+
mask_token=mask_token,
|
145 |
+
**kwargs,
|
146 |
+
)
|
147 |
+
|
148 |
+
self.vocab_file = vocab_file
|
149 |
+
|
150 |
+
@property
|
151 |
+
def can_save_slow_tokenizer(self) -> bool:
|
152 |
+
return os.path.isfile(self.vocab_file) if self.vocab_file else False
|
153 |
+
|
154 |
+
def build_inputs_with_special_tokens(
|
155 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
156 |
+
) -> List[int]:
|
157 |
+
"""
|
158 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
159 |
+
adding special tokens. A BARThez sequence has the following format:
|
160 |
+
|
161 |
+
- single sequence: `<s> X </s>`
|
162 |
+
- pair of sequences: `<s> A </s></s> B </s>`
|
163 |
+
|
164 |
+
Args:
|
165 |
+
token_ids_0 (`List[int]`):
|
166 |
+
List of IDs to which the special tokens will be added.
|
167 |
+
token_ids_1 (`List[int]`, *optional*):
|
168 |
+
Optional second list of IDs for sequence pairs.
|
169 |
+
|
170 |
+
Returns:
|
171 |
+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
172 |
+
"""
|
173 |
+
|
174 |
+
if token_ids_1 is None:
|
175 |
+
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
|
176 |
+
cls = [self.cls_token_id]
|
177 |
+
sep = [self.sep_token_id]
|
178 |
+
return cls + token_ids_0 + sep + sep + token_ids_1 + sep
|
179 |
+
|
180 |
+
def create_token_type_ids_from_sequences(
|
181 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
182 |
+
) -> List[int]:
|
183 |
+
"""
|
184 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task.
|
185 |
+
|
186 |
+
Args:
|
187 |
+
token_ids_0 (`List[int]`):
|
188 |
+
List of IDs.
|
189 |
+
token_ids_1 (`List[int]`, *optional*):
|
190 |
+
Optional second list of IDs for sequence pairs.
|
191 |
+
|
192 |
+
Returns:
|
193 |
+
`List[int]`: List of zeros.
|
194 |
+
"""
|
195 |
+
sep = [self.sep_token_id]
|
196 |
+
cls = [self.cls_token_id]
|
197 |
+
|
198 |
+
if token_ids_1 is None:
|
199 |
+
return len(cls + token_ids_0 + sep) * [0]
|
200 |
+
return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
|
201 |
+
|
202 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
203 |
+
if not self.can_save_slow_tokenizer:
|
204 |
+
raise ValueError(
|
205 |
+
"Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
|
206 |
+
"tokenizer."
|
207 |
+
)
|
208 |
+
|
209 |
+
if not os.path.isdir(save_directory):
|
210 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
211 |
+
return
|
212 |
+
out_vocab_file = os.path.join(
|
213 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
214 |
+
)
|
215 |
+
|
216 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
|
217 |
+
copyfile(self.vocab_file, out_vocab_file)
|
218 |
+
|
219 |
+
return (out_vocab_file,)
|
env-llmeval/lib/python3.10/site-packages/transformers/models/decision_transformer/__init__.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import TYPE_CHECKING
|
15 |
+
|
16 |
+
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
|
17 |
+
|
18 |
+
|
19 |
+
_import_structure = {
|
20 |
+
"configuration_decision_transformer": [
|
21 |
+
"DECISION_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
|
22 |
+
"DecisionTransformerConfig",
|
23 |
+
],
|
24 |
+
}
|
25 |
+
|
26 |
+
try:
|
27 |
+
if not is_torch_available():
|
28 |
+
raise OptionalDependencyNotAvailable()
|
29 |
+
except OptionalDependencyNotAvailable:
|
30 |
+
pass
|
31 |
+
else:
|
32 |
+
_import_structure["modeling_decision_transformer"] = [
|
33 |
+
"DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
|
34 |
+
"DecisionTransformerGPT2Model",
|
35 |
+
"DecisionTransformerGPT2PreTrainedModel",
|
36 |
+
"DecisionTransformerModel",
|
37 |
+
"DecisionTransformerPreTrainedModel",
|
38 |
+
]
|
39 |
+
|
40 |
+
|
41 |
+
if TYPE_CHECKING:
|
42 |
+
from .configuration_decision_transformer import (
|
43 |
+
DECISION_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
44 |
+
DecisionTransformerConfig,
|
45 |
+
)
|
46 |
+
|
47 |
+
try:
|
48 |
+
if not is_torch_available():
|
49 |
+
raise OptionalDependencyNotAvailable()
|
50 |
+
except OptionalDependencyNotAvailable:
|
51 |
+
pass
|
52 |
+
else:
|
53 |
+
from .modeling_decision_transformer import (
|
54 |
+
DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
|
55 |
+
DecisionTransformerGPT2Model,
|
56 |
+
DecisionTransformerGPT2PreTrainedModel,
|
57 |
+
DecisionTransformerModel,
|
58 |
+
DecisionTransformerPreTrainedModel,
|
59 |
+
)
|
60 |
+
|
61 |
+
|
62 |
+
else:
|
63 |
+
import sys
|
64 |
+
|
65 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
env-llmeval/lib/python3.10/site-packages/transformers/models/decision_transformer/configuration_decision_transformer.py
ADDED
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Team and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Decision Transformer model configuration"""
|
16 |
+
|
17 |
+
from ...configuration_utils import PretrainedConfig
|
18 |
+
from ...utils import logging
|
19 |
+
|
20 |
+
|
21 |
+
logger = logging.get_logger(__name__)
|
22 |
+
|
23 |
+
DECISION_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
24 |
+
"edbeeching/decision-transformer-gym-hopper-medium": (
|
25 |
+
"https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json"
|
26 |
+
),
|
27 |
+
# See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer
|
28 |
+
}
|
29 |
+
|
30 |
+
|
31 |
+
class DecisionTransformerConfig(PretrainedConfig):
|
32 |
+
"""
|
33 |
+
This is the configuration class to store the configuration of a [`DecisionTransformerModel`]. It is used to
|
34 |
+
instantiate a Decision Transformer model according to the specified arguments, defining the model architecture.
|
35 |
+
Instantiating a configuration with the defaults will yield a similar configuration to that of the standard
|
36 |
+
DecisionTransformer architecture. Many of the config options are used to instatiate the GPT2 model that is used as
|
37 |
+
part of the architecture.
|
38 |
+
|
39 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
40 |
+
documentation from [`PretrainedConfig`] for more information.
|
41 |
+
|
42 |
+
|
43 |
+
Args:
|
44 |
+
state_dim (`int`, *optional*, defaults to 17):
|
45 |
+
The state size for the RL environment
|
46 |
+
act_dim (`int`, *optional*, defaults to 4):
|
47 |
+
The size of the output action space
|
48 |
+
hidden_size (`int`, *optional*, defaults to 128):
|
49 |
+
The size of the hidden layers
|
50 |
+
max_ep_len (`int`, *optional*, defaults to 4096):
|
51 |
+
The maximum length of an episode in the environment
|
52 |
+
action_tanh (`bool`, *optional*, defaults to True):
|
53 |
+
Whether to use a tanh activation on action prediction
|
54 |
+
vocab_size (`int`, *optional*, defaults to 50257):
|
55 |
+
Vocabulary size of the GPT-2 model. Defines the number of different tokens that can be represented by the
|
56 |
+
`inputs_ids` passed when calling [`DecisionTransformerModel`].
|
57 |
+
n_positions (`int`, *optional*, defaults to 1024):
|
58 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
59 |
+
just in case (e.g., 512 or 1024 or 2048).
|
60 |
+
n_layer (`int`, *optional*, defaults to 3):
|
61 |
+
Number of hidden layers in the Transformer encoder.
|
62 |
+
n_head (`int`, *optional*, defaults to 1):
|
63 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
64 |
+
n_inner (`int`, *optional*):
|
65 |
+
Dimensionality of the inner feed-forward layers. If unset, will default to 4 times `n_embd`.
|
66 |
+
activation_function (`str`, *optional*, defaults to `"gelu"`):
|
67 |
+
Activation function, to be selected in the list `["relu", "silu", "gelu", "tanh", "gelu_new"]`.
|
68 |
+
resid_pdrop (`float`, *optional*, defaults to 0.1):
|
69 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
70 |
+
embd_pdrop (`int`, *optional*, defaults to 0.1):
|
71 |
+
The dropout ratio for the embeddings.
|
72 |
+
attn_pdrop (`float`, *optional*, defaults to 0.1):
|
73 |
+
The dropout ratio for the attention.
|
74 |
+
layer_norm_epsilon (`float`, *optional*, defaults to 1e-5):
|
75 |
+
The epsilon to use in the layer normalization layers.
|
76 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
77 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
78 |
+
scale_attn_weights (`bool`, *optional*, defaults to `True`):
|
79 |
+
Scale attention weights by dividing by sqrt(hidden_size)..
|
80 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
81 |
+
Whether or not the model should return the last key/values attentions (not used by all models).
|
82 |
+
scale_attn_by_inverse_layer_idx (`bool`, *optional*, defaults to `False`):
|
83 |
+
Whether to additionally scale attention weights by `1 / layer_idx + 1`.
|
84 |
+
reorder_and_upcast_attn (`bool`, *optional*, defaults to `False`):
|
85 |
+
Whether to scale keys (K) prior to computing attention (dot-product) and upcast attention
|
86 |
+
dot-product/softmax to float() when training with mixed precision.
|
87 |
+
|
88 |
+
Example:
|
89 |
+
|
90 |
+
```python
|
91 |
+
>>> from transformers import DecisionTransformerConfig, DecisionTransformerModel
|
92 |
+
|
93 |
+
>>> # Initializing a DecisionTransformer configuration
|
94 |
+
>>> configuration = DecisionTransformerConfig()
|
95 |
+
|
96 |
+
>>> # Initializing a model (with random weights) from the configuration
|
97 |
+
>>> model = DecisionTransformerModel(configuration)
|
98 |
+
|
99 |
+
>>> # Accessing the model configuration
|
100 |
+
>>> configuration = model.config
|
101 |
+
```"""
|
102 |
+
|
103 |
+
model_type = "decision_transformer"
|
104 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
105 |
+
attribute_map = {
|
106 |
+
"max_position_embeddings": "n_positions",
|
107 |
+
"num_attention_heads": "n_head",
|
108 |
+
"num_hidden_layers": "n_layer",
|
109 |
+
}
|
110 |
+
|
111 |
+
def __init__(
|
112 |
+
self,
|
113 |
+
state_dim=17,
|
114 |
+
act_dim=4,
|
115 |
+
hidden_size=128,
|
116 |
+
max_ep_len=4096,
|
117 |
+
action_tanh=True,
|
118 |
+
vocab_size=1,
|
119 |
+
n_positions=1024,
|
120 |
+
n_layer=3,
|
121 |
+
n_head=1,
|
122 |
+
n_inner=None,
|
123 |
+
activation_function="relu",
|
124 |
+
resid_pdrop=0.1,
|
125 |
+
embd_pdrop=0.1,
|
126 |
+
attn_pdrop=0.1,
|
127 |
+
layer_norm_epsilon=1e-5,
|
128 |
+
initializer_range=0.02,
|
129 |
+
scale_attn_weights=True,
|
130 |
+
use_cache=True,
|
131 |
+
bos_token_id=50256,
|
132 |
+
eos_token_id=50256,
|
133 |
+
scale_attn_by_inverse_layer_idx=False,
|
134 |
+
reorder_and_upcast_attn=False,
|
135 |
+
**kwargs,
|
136 |
+
):
|
137 |
+
self.state_dim = state_dim
|
138 |
+
self.act_dim = act_dim
|
139 |
+
self.hidden_size = hidden_size
|
140 |
+
self.max_ep_len = max_ep_len
|
141 |
+
self.action_tanh = action_tanh
|
142 |
+
self.vocab_size = vocab_size
|
143 |
+
self.n_positions = n_positions
|
144 |
+
self.n_layer = n_layer
|
145 |
+
self.n_head = n_head
|
146 |
+
self.n_inner = n_inner
|
147 |
+
self.activation_function = activation_function
|
148 |
+
self.resid_pdrop = resid_pdrop
|
149 |
+
self.embd_pdrop = embd_pdrop
|
150 |
+
self.attn_pdrop = attn_pdrop
|
151 |
+
self.layer_norm_epsilon = layer_norm_epsilon
|
152 |
+
self.initializer_range = initializer_range
|
153 |
+
self.scale_attn_weights = scale_attn_weights
|
154 |
+
self.use_cache = use_cache
|
155 |
+
self.scale_attn_by_inverse_layer_idx = scale_attn_by_inverse_layer_idx
|
156 |
+
self.reorder_and_upcast_attn = reorder_and_upcast_attn
|
157 |
+
|
158 |
+
self.bos_token_id = bos_token_id
|
159 |
+
self.eos_token_id = eos_token_id
|
160 |
+
|
161 |
+
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
env-llmeval/lib/python3.10/site-packages/transformers/models/decision_transformer/modeling_decision_transformer.py
ADDED
@@ -0,0 +1,938 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Team The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch DecisionTransformer model."""
|
16 |
+
|
17 |
+
import math
|
18 |
+
import os
|
19 |
+
from dataclasses import dataclass
|
20 |
+
from typing import Optional, Tuple, Union
|
21 |
+
|
22 |
+
import torch
|
23 |
+
import torch.utils.checkpoint
|
24 |
+
from torch import nn
|
25 |
+
from torch.cuda.amp import autocast
|
26 |
+
|
27 |
+
from ...activations import ACT2FN
|
28 |
+
from ...modeling_outputs import BaseModelOutputWithPastAndCrossAttentions
|
29 |
+
from ...modeling_utils import PreTrainedModel
|
30 |
+
from ...pytorch_utils import Conv1D, find_pruneable_heads_and_indices, prune_conv1d_layer
|
31 |
+
from ...utils import (
|
32 |
+
ModelOutput,
|
33 |
+
add_start_docstrings,
|
34 |
+
add_start_docstrings_to_model_forward,
|
35 |
+
logging,
|
36 |
+
replace_return_docstrings,
|
37 |
+
)
|
38 |
+
from .configuration_decision_transformer import DecisionTransformerConfig
|
39 |
+
|
40 |
+
|
41 |
+
logger = logging.get_logger(__name__)
|
42 |
+
|
43 |
+
_CHECKPOINT_FOR_DOC = "edbeeching/decision-transformer-gym-hopper-medium"
|
44 |
+
_CONFIG_FOR_DOC = "DecisionTransformerConfig"
|
45 |
+
|
46 |
+
DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
47 |
+
"edbeeching/decision-transformer-gym-hopper-medium",
|
48 |
+
# See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer
|
49 |
+
]
|
50 |
+
|
51 |
+
|
52 |
+
# Copied from transformers.models.gpt2.modeling_gpt2.load_tf_weights_in_gpt2
|
53 |
+
def load_tf_weights_in_gpt2(model, config, gpt2_checkpoint_path):
|
54 |
+
"""Load tf checkpoints in a pytorch model"""
|
55 |
+
try:
|
56 |
+
import re
|
57 |
+
|
58 |
+
import tensorflow as tf
|
59 |
+
except ImportError:
|
60 |
+
logger.error(
|
61 |
+
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
|
62 |
+
"https://www.tensorflow.org/install/ for installation instructions."
|
63 |
+
)
|
64 |
+
raise
|
65 |
+
tf_path = os.path.abspath(gpt2_checkpoint_path)
|
66 |
+
logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
|
67 |
+
# Load weights from TF model
|
68 |
+
init_vars = tf.train.list_variables(tf_path)
|
69 |
+
names = []
|
70 |
+
arrays = []
|
71 |
+
for name, shape in init_vars:
|
72 |
+
logger.info(f"Loading TF weight {name} with shape {shape}")
|
73 |
+
array = tf.train.load_variable(tf_path, name)
|
74 |
+
names.append(name)
|
75 |
+
arrays.append(array.squeeze())
|
76 |
+
|
77 |
+
for name, array in zip(names, arrays):
|
78 |
+
name = name[6:] # skip "model/"
|
79 |
+
name = name.split("/")
|
80 |
+
pointer = model
|
81 |
+
for m_name in name:
|
82 |
+
if re.fullmatch(r"[A-Za-z]+\d+", m_name):
|
83 |
+
scope_names = re.split(r"(\d+)", m_name)
|
84 |
+
else:
|
85 |
+
scope_names = [m_name]
|
86 |
+
if scope_names[0] == "w" or scope_names[0] == "g":
|
87 |
+
pointer = getattr(pointer, "weight")
|
88 |
+
elif scope_names[0] == "b":
|
89 |
+
pointer = getattr(pointer, "bias")
|
90 |
+
elif scope_names[0] == "wpe" or scope_names[0] == "wte":
|
91 |
+
pointer = getattr(pointer, scope_names[0])
|
92 |
+
pointer = getattr(pointer, "weight")
|
93 |
+
else:
|
94 |
+
pointer = getattr(pointer, scope_names[0])
|
95 |
+
if len(scope_names) >= 2:
|
96 |
+
num = int(scope_names[1])
|
97 |
+
pointer = pointer[num]
|
98 |
+
try:
|
99 |
+
if pointer.shape != array.shape:
|
100 |
+
raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched")
|
101 |
+
except ValueError as e:
|
102 |
+
e.args += (pointer.shape, array.shape)
|
103 |
+
raise
|
104 |
+
logger.info(f"Initialize PyTorch weight {name}")
|
105 |
+
pointer.data = torch.from_numpy(array)
|
106 |
+
return model
|
107 |
+
|
108 |
+
|
109 |
+
# Copied from transformers.models.gpt2.modeling_gpt2.GPT2Attention with GPT2->DecisionTransformerGPT2
|
110 |
+
class DecisionTransformerGPT2Attention(nn.Module):
|
111 |
+
def __init__(self, config, is_cross_attention=False, layer_idx=None):
|
112 |
+
super().__init__()
|
113 |
+
|
114 |
+
max_positions = config.max_position_embeddings
|
115 |
+
self.register_buffer(
|
116 |
+
"bias",
|
117 |
+
torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool)).view(
|
118 |
+
1, 1, max_positions, max_positions
|
119 |
+
),
|
120 |
+
persistent=False,
|
121 |
+
)
|
122 |
+
self.register_buffer("masked_bias", torch.tensor(-1e4), persistent=False)
|
123 |
+
|
124 |
+
self.embed_dim = config.hidden_size
|
125 |
+
self.num_heads = config.num_attention_heads
|
126 |
+
self.head_dim = self.embed_dim // self.num_heads
|
127 |
+
self.split_size = self.embed_dim
|
128 |
+
if self.head_dim * self.num_heads != self.embed_dim:
|
129 |
+
raise ValueError(
|
130 |
+
f"`embed_dim` must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
|
131 |
+
f" {self.num_heads})."
|
132 |
+
)
|
133 |
+
|
134 |
+
self.scale_attn_weights = config.scale_attn_weights
|
135 |
+
self.is_cross_attention = is_cross_attention
|
136 |
+
|
137 |
+
# Layer-wise attention scaling, reordering, and upcasting
|
138 |
+
self.scale_attn_by_inverse_layer_idx = config.scale_attn_by_inverse_layer_idx
|
139 |
+
self.layer_idx = layer_idx
|
140 |
+
self.reorder_and_upcast_attn = config.reorder_and_upcast_attn
|
141 |
+
|
142 |
+
if self.is_cross_attention:
|
143 |
+
self.c_attn = Conv1D(2 * self.embed_dim, self.embed_dim)
|
144 |
+
self.q_attn = Conv1D(self.embed_dim, self.embed_dim)
|
145 |
+
else:
|
146 |
+
self.c_attn = Conv1D(3 * self.embed_dim, self.embed_dim)
|
147 |
+
self.c_proj = Conv1D(self.embed_dim, self.embed_dim)
|
148 |
+
|
149 |
+
self.attn_dropout = nn.Dropout(config.attn_pdrop)
|
150 |
+
self.resid_dropout = nn.Dropout(config.resid_pdrop)
|
151 |
+
|
152 |
+
self.pruned_heads = set()
|
153 |
+
|
154 |
+
def prune_heads(self, heads):
|
155 |
+
if len(heads) == 0:
|
156 |
+
return
|
157 |
+
heads, index = find_pruneable_heads_and_indices(heads, self.num_heads, self.head_dim, self.pruned_heads)
|
158 |
+
index_attn = torch.cat([index, index + self.split_size, index + (2 * self.split_size)])
|
159 |
+
|
160 |
+
# Prune conv1d layers
|
161 |
+
self.c_attn = prune_conv1d_layer(self.c_attn, index_attn, dim=1)
|
162 |
+
self.c_proj = prune_conv1d_layer(self.c_proj, index, dim=0)
|
163 |
+
|
164 |
+
# Update hyper params
|
165 |
+
self.split_size = (self.split_size // self.num_heads) * (self.num_heads - len(heads))
|
166 |
+
self.num_heads = self.num_heads - len(heads)
|
167 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
168 |
+
|
169 |
+
def _attn(self, query, key, value, attention_mask=None, head_mask=None):
|
170 |
+
attn_weights = torch.matmul(query, key.transpose(-1, -2))
|
171 |
+
|
172 |
+
if self.scale_attn_weights:
|
173 |
+
attn_weights = attn_weights / torch.full(
|
174 |
+
[], value.size(-1) ** 0.5, dtype=attn_weights.dtype, device=attn_weights.device
|
175 |
+
)
|
176 |
+
|
177 |
+
# Layer-wise attention scaling
|
178 |
+
if self.scale_attn_by_inverse_layer_idx:
|
179 |
+
attn_weights = attn_weights / float(self.layer_idx + 1)
|
180 |
+
|
181 |
+
if not self.is_cross_attention:
|
182 |
+
# if only "normal" attention layer implements causal mask
|
183 |
+
query_length, key_length = query.size(-2), key.size(-2)
|
184 |
+
causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length]
|
185 |
+
mask_value = torch.finfo(attn_weights.dtype).min
|
186 |
+
# Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
|
187 |
+
# Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
|
188 |
+
mask_value = torch.full([], mask_value, dtype=attn_weights.dtype, device=attn_weights.device)
|
189 |
+
attn_weights = torch.where(causal_mask, attn_weights.to(attn_weights.dtype), mask_value)
|
190 |
+
|
191 |
+
if attention_mask is not None:
|
192 |
+
# Apply the attention mask
|
193 |
+
attn_weights = attn_weights + attention_mask
|
194 |
+
|
195 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
196 |
+
|
197 |
+
# Downcast (if necessary) back to V's dtype (if in mixed-precision) -- No-Op otherwise
|
198 |
+
attn_weights = attn_weights.type(value.dtype)
|
199 |
+
attn_weights = self.attn_dropout(attn_weights)
|
200 |
+
|
201 |
+
# Mask heads if we want to
|
202 |
+
if head_mask is not None:
|
203 |
+
attn_weights = attn_weights * head_mask
|
204 |
+
|
205 |
+
attn_output = torch.matmul(attn_weights, value)
|
206 |
+
|
207 |
+
return attn_output, attn_weights
|
208 |
+
|
209 |
+
def _upcast_and_reordered_attn(self, query, key, value, attention_mask=None, head_mask=None):
|
210 |
+
# Use `torch.baddbmm` (a bit more efficient w/ alpha param for scaling -- from Megatron-LM)
|
211 |
+
bsz, num_heads, q_seq_len, dk = query.size()
|
212 |
+
_, _, k_seq_len, _ = key.size()
|
213 |
+
|
214 |
+
# Preallocate attn_weights for `baddbmm`
|
215 |
+
attn_weights = torch.empty(bsz * num_heads, q_seq_len, k_seq_len, dtype=torch.float32, device=query.device)
|
216 |
+
|
217 |
+
# Compute Scale Factor
|
218 |
+
scale_factor = 1.0
|
219 |
+
if self.scale_attn_weights:
|
220 |
+
scale_factor /= float(value.size(-1)) ** 0.5
|
221 |
+
|
222 |
+
if self.scale_attn_by_inverse_layer_idx:
|
223 |
+
scale_factor /= float(self.layer_idx + 1)
|
224 |
+
|
225 |
+
# Upcast (turn off autocast) and reorder (Scale K by 1 / root(dk))
|
226 |
+
with autocast(enabled=False):
|
227 |
+
q, k = query.reshape(-1, q_seq_len, dk), key.transpose(-1, -2).reshape(-1, dk, k_seq_len)
|
228 |
+
attn_weights = torch.baddbmm(attn_weights, q.float(), k.float(), beta=0, alpha=scale_factor)
|
229 |
+
attn_weights = attn_weights.reshape(bsz, num_heads, q_seq_len, k_seq_len)
|
230 |
+
|
231 |
+
if not self.is_cross_attention:
|
232 |
+
# if only "normal" attention layer implements causal mask
|
233 |
+
query_length, key_length = query.size(-2), key.size(-2)
|
234 |
+
causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length]
|
235 |
+
mask_value = torch.finfo(attn_weights.dtype).min
|
236 |
+
# Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
|
237 |
+
# Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
|
238 |
+
mask_value = torch.tensor(mask_value, dtype=attn_weights.dtype).to(attn_weights.device)
|
239 |
+
attn_weights = torch.where(causal_mask, attn_weights, mask_value)
|
240 |
+
|
241 |
+
if attention_mask is not None:
|
242 |
+
# Apply the attention mask
|
243 |
+
attn_weights = attn_weights + attention_mask
|
244 |
+
|
245 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
246 |
+
|
247 |
+
# Downcast (if necessary) back to V's dtype (if in mixed-precision) -- No-Op if otherwise
|
248 |
+
if attn_weights.dtype != torch.float32:
|
249 |
+
raise RuntimeError("Error with upcasting, attn_weights does not have dtype torch.float32")
|
250 |
+
attn_weights = attn_weights.type(value.dtype)
|
251 |
+
attn_weights = self.attn_dropout(attn_weights)
|
252 |
+
|
253 |
+
# Mask heads if we want to
|
254 |
+
if head_mask is not None:
|
255 |
+
attn_weights = attn_weights * head_mask
|
256 |
+
|
257 |
+
attn_output = torch.matmul(attn_weights, value)
|
258 |
+
|
259 |
+
return attn_output, attn_weights
|
260 |
+
|
261 |
+
def _split_heads(self, tensor, num_heads, attn_head_size):
|
262 |
+
"""
|
263 |
+
Splits hidden_size dim into attn_head_size and num_heads
|
264 |
+
"""
|
265 |
+
new_shape = tensor.size()[:-1] + (num_heads, attn_head_size)
|
266 |
+
tensor = tensor.view(new_shape)
|
267 |
+
return tensor.permute(0, 2, 1, 3) # (batch, head, seq_length, head_features)
|
268 |
+
|
269 |
+
def _merge_heads(self, tensor, num_heads, attn_head_size):
|
270 |
+
"""
|
271 |
+
Merges attn_head_size dim and num_attn_heads dim into hidden_size
|
272 |
+
"""
|
273 |
+
tensor = tensor.permute(0, 2, 1, 3).contiguous()
|
274 |
+
new_shape = tensor.size()[:-2] + (num_heads * attn_head_size,)
|
275 |
+
return tensor.view(new_shape)
|
276 |
+
|
277 |
+
def forward(
|
278 |
+
self,
|
279 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]],
|
280 |
+
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
281 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
282 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
283 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
284 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
285 |
+
use_cache: Optional[bool] = False,
|
286 |
+
output_attentions: Optional[bool] = False,
|
287 |
+
) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]], ...]:
|
288 |
+
if encoder_hidden_states is not None:
|
289 |
+
if not hasattr(self, "q_attn"):
|
290 |
+
raise ValueError(
|
291 |
+
"If class is used as cross attention, the weights `q_attn` have to be defined. "
|
292 |
+
"Please make sure to instantiate class with `DecisionTransformerGPT2Attention(..., is_cross_attention=True)`."
|
293 |
+
)
|
294 |
+
|
295 |
+
query = self.q_attn(hidden_states)
|
296 |
+
key, value = self.c_attn(encoder_hidden_states).split(self.split_size, dim=2)
|
297 |
+
attention_mask = encoder_attention_mask
|
298 |
+
else:
|
299 |
+
query, key, value = self.c_attn(hidden_states).split(self.split_size, dim=2)
|
300 |
+
|
301 |
+
query = self._split_heads(query, self.num_heads, self.head_dim)
|
302 |
+
key = self._split_heads(key, self.num_heads, self.head_dim)
|
303 |
+
value = self._split_heads(value, self.num_heads, self.head_dim)
|
304 |
+
|
305 |
+
if layer_past is not None:
|
306 |
+
past_key, past_value = layer_past
|
307 |
+
key = torch.cat((past_key, key), dim=-2)
|
308 |
+
value = torch.cat((past_value, value), dim=-2)
|
309 |
+
|
310 |
+
if use_cache is True:
|
311 |
+
present = (key, value)
|
312 |
+
else:
|
313 |
+
present = None
|
314 |
+
|
315 |
+
if self.reorder_and_upcast_attn:
|
316 |
+
attn_output, attn_weights = self._upcast_and_reordered_attn(query, key, value, attention_mask, head_mask)
|
317 |
+
else:
|
318 |
+
attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask)
|
319 |
+
|
320 |
+
attn_output = self._merge_heads(attn_output, self.num_heads, self.head_dim)
|
321 |
+
attn_output = self.c_proj(attn_output)
|
322 |
+
attn_output = self.resid_dropout(attn_output)
|
323 |
+
|
324 |
+
outputs = (attn_output, present)
|
325 |
+
if output_attentions:
|
326 |
+
outputs += (attn_weights,)
|
327 |
+
|
328 |
+
return outputs # a, present, (attentions)
|
329 |
+
|
330 |
+
|
331 |
+
# Copied from transformers.models.gpt2.modeling_gpt2.GPT2MLP with GPT2->DecisionTransformerGPT2
|
332 |
+
class DecisionTransformerGPT2MLP(nn.Module):
|
333 |
+
def __init__(self, intermediate_size, config):
|
334 |
+
super().__init__()
|
335 |
+
embed_dim = config.hidden_size
|
336 |
+
self.c_fc = Conv1D(intermediate_size, embed_dim)
|
337 |
+
self.c_proj = Conv1D(embed_dim, intermediate_size)
|
338 |
+
self.act = ACT2FN[config.activation_function]
|
339 |
+
self.dropout = nn.Dropout(config.resid_pdrop)
|
340 |
+
|
341 |
+
def forward(self, hidden_states: Optional[Tuple[torch.FloatTensor]]) -> torch.FloatTensor:
|
342 |
+
hidden_states = self.c_fc(hidden_states)
|
343 |
+
hidden_states = self.act(hidden_states)
|
344 |
+
hidden_states = self.c_proj(hidden_states)
|
345 |
+
hidden_states = self.dropout(hidden_states)
|
346 |
+
return hidden_states
|
347 |
+
|
348 |
+
|
349 |
+
# Copied from transformers.models.gpt2.modeling_gpt2.GPT2Block with GPT2->DecisionTransformerGPT2
|
350 |
+
class DecisionTransformerGPT2Block(nn.Module):
|
351 |
+
def __init__(self, config, layer_idx=None):
|
352 |
+
super().__init__()
|
353 |
+
hidden_size = config.hidden_size
|
354 |
+
inner_dim = config.n_inner if config.n_inner is not None else 4 * hidden_size
|
355 |
+
|
356 |
+
self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
357 |
+
self.attn = DecisionTransformerGPT2Attention(config, layer_idx=layer_idx)
|
358 |
+
self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
359 |
+
|
360 |
+
if config.add_cross_attention:
|
361 |
+
self.crossattention = DecisionTransformerGPT2Attention(
|
362 |
+
config, is_cross_attention=True, layer_idx=layer_idx
|
363 |
+
)
|
364 |
+
self.ln_cross_attn = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
365 |
+
|
366 |
+
self.mlp = DecisionTransformerGPT2MLP(inner_dim, config)
|
367 |
+
|
368 |
+
def forward(
|
369 |
+
self,
|
370 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]],
|
371 |
+
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
372 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
373 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
374 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
375 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
376 |
+
use_cache: Optional[bool] = False,
|
377 |
+
output_attentions: Optional[bool] = False,
|
378 |
+
) -> Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]:
|
379 |
+
residual = hidden_states
|
380 |
+
hidden_states = self.ln_1(hidden_states)
|
381 |
+
attn_outputs = self.attn(
|
382 |
+
hidden_states,
|
383 |
+
layer_past=layer_past,
|
384 |
+
attention_mask=attention_mask,
|
385 |
+
head_mask=head_mask,
|
386 |
+
use_cache=use_cache,
|
387 |
+
output_attentions=output_attentions,
|
388 |
+
)
|
389 |
+
attn_output = attn_outputs[0] # output_attn: a, present, (attentions)
|
390 |
+
outputs = attn_outputs[1:]
|
391 |
+
# residual connection
|
392 |
+
hidden_states = attn_output + residual
|
393 |
+
|
394 |
+
if encoder_hidden_states is not None:
|
395 |
+
# add one self-attention block for cross-attention
|
396 |
+
if not hasattr(self, "crossattention"):
|
397 |
+
raise ValueError(
|
398 |
+
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with "
|
399 |
+
"cross-attention layers by setting `config.add_cross_attention=True`"
|
400 |
+
)
|
401 |
+
residual = hidden_states
|
402 |
+
hidden_states = self.ln_cross_attn(hidden_states)
|
403 |
+
cross_attn_outputs = self.crossattention(
|
404 |
+
hidden_states,
|
405 |
+
attention_mask=attention_mask,
|
406 |
+
head_mask=head_mask,
|
407 |
+
encoder_hidden_states=encoder_hidden_states,
|
408 |
+
encoder_attention_mask=encoder_attention_mask,
|
409 |
+
output_attentions=output_attentions,
|
410 |
+
)
|
411 |
+
attn_output = cross_attn_outputs[0]
|
412 |
+
# residual connection
|
413 |
+
hidden_states = residual + attn_output
|
414 |
+
outputs = outputs + cross_attn_outputs[2:] # add cross attentions if we output attention weights
|
415 |
+
|
416 |
+
residual = hidden_states
|
417 |
+
hidden_states = self.ln_2(hidden_states)
|
418 |
+
feed_forward_hidden_states = self.mlp(hidden_states)
|
419 |
+
# residual connection
|
420 |
+
hidden_states = residual + feed_forward_hidden_states
|
421 |
+
|
422 |
+
if use_cache:
|
423 |
+
outputs = (hidden_states,) + outputs
|
424 |
+
else:
|
425 |
+
outputs = (hidden_states,) + outputs[1:]
|
426 |
+
|
427 |
+
return outputs # hidden_states, present, (attentions, cross_attentions)
|
428 |
+
|
429 |
+
|
430 |
+
class DecisionTransformerGPT2PreTrainedModel(PreTrainedModel):
|
431 |
+
"""
|
432 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
433 |
+
models.
|
434 |
+
"""
|
435 |
+
|
436 |
+
config_class = DecisionTransformerConfig
|
437 |
+
load_tf_weights = load_tf_weights_in_gpt2
|
438 |
+
base_model_prefix = "transformer"
|
439 |
+
is_parallelizable = True
|
440 |
+
supports_gradient_checkpointing = True
|
441 |
+
|
442 |
+
def __init__(self, *inputs, **kwargs):
|
443 |
+
super().__init__(*inputs, **kwargs)
|
444 |
+
|
445 |
+
def _init_weights(self, module):
|
446 |
+
"""Initialize the weights."""
|
447 |
+
if isinstance(module, (nn.Linear, Conv1D)):
|
448 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
449 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
450 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
451 |
+
if module.bias is not None:
|
452 |
+
module.bias.data.zero_()
|
453 |
+
elif isinstance(module, nn.Embedding):
|
454 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
455 |
+
if module.padding_idx is not None:
|
456 |
+
module.weight.data[module.padding_idx].zero_()
|
457 |
+
elif isinstance(module, nn.LayerNorm):
|
458 |
+
module.bias.data.zero_()
|
459 |
+
module.weight.data.fill_(1.0)
|
460 |
+
|
461 |
+
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
|
462 |
+
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
|
463 |
+
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
|
464 |
+
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
|
465 |
+
#
|
466 |
+
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
|
467 |
+
for name, p in module.named_parameters():
|
468 |
+
if "c_proj" in name and "weight" in name:
|
469 |
+
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
|
470 |
+
p.data.normal_(mean=0.0, std=(self.config.initializer_range / math.sqrt(2 * self.config.n_layer)))
|
471 |
+
|
472 |
+
|
473 |
+
class DecisionTransformerGPT2Model(DecisionTransformerGPT2PreTrainedModel):
|
474 |
+
def __init__(self, config):
|
475 |
+
super().__init__(config)
|
476 |
+
|
477 |
+
self.embed_dim = config.hidden_size
|
478 |
+
|
479 |
+
self.wte = nn.Embedding(config.vocab_size, self.embed_dim)
|
480 |
+
self.wpe = nn.Embedding(config.max_position_embeddings, self.embed_dim)
|
481 |
+
|
482 |
+
self.drop = nn.Dropout(config.embd_pdrop)
|
483 |
+
self.h = nn.ModuleList(
|
484 |
+
[DecisionTransformerGPT2Block(config, layer_idx=i) for i in range(config.num_hidden_layers)]
|
485 |
+
)
|
486 |
+
self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
|
487 |
+
|
488 |
+
# Model parallel
|
489 |
+
self.model_parallel = False
|
490 |
+
self.device_map = None
|
491 |
+
self.gradient_checkpointing = False
|
492 |
+
|
493 |
+
# Initialize weights and apply final processing
|
494 |
+
self.post_init()
|
495 |
+
|
496 |
+
def get_input_embeddings(self):
|
497 |
+
return self.wte
|
498 |
+
|
499 |
+
def set_input_embeddings(self, new_embeddings):
|
500 |
+
self.wte = new_embeddings
|
501 |
+
|
502 |
+
# Copied from transformers.models.gpt2.modeling_gpt2.GPT2Model.forward
|
503 |
+
def forward(
|
504 |
+
self,
|
505 |
+
input_ids: Optional[torch.LongTensor] = None,
|
506 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
507 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
508 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
509 |
+
position_ids: Optional[torch.LongTensor] = None,
|
510 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
511 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
512 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
513 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
514 |
+
use_cache: Optional[bool] = None,
|
515 |
+
output_attentions: Optional[bool] = None,
|
516 |
+
output_hidden_states: Optional[bool] = None,
|
517 |
+
return_dict: Optional[bool] = None,
|
518 |
+
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
|
519 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
520 |
+
output_hidden_states = (
|
521 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
522 |
+
)
|
523 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
524 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
525 |
+
|
526 |
+
if input_ids is not None and inputs_embeds is not None:
|
527 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
528 |
+
elif input_ids is not None:
|
529 |
+
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
530 |
+
input_shape = input_ids.size()
|
531 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
532 |
+
batch_size = input_ids.shape[0]
|
533 |
+
elif inputs_embeds is not None:
|
534 |
+
input_shape = inputs_embeds.size()[:-1]
|
535 |
+
batch_size = inputs_embeds.shape[0]
|
536 |
+
else:
|
537 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
538 |
+
|
539 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
540 |
+
|
541 |
+
if token_type_ids is not None:
|
542 |
+
token_type_ids = token_type_ids.view(-1, input_shape[-1])
|
543 |
+
|
544 |
+
if past_key_values is None:
|
545 |
+
past_length = 0
|
546 |
+
past_key_values = tuple([None] * len(self.h))
|
547 |
+
else:
|
548 |
+
past_length = past_key_values[0][0].size(-2)
|
549 |
+
if position_ids is None:
|
550 |
+
position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device)
|
551 |
+
position_ids = position_ids.unsqueeze(0)
|
552 |
+
|
553 |
+
# GPT2Attention mask.
|
554 |
+
if attention_mask is not None:
|
555 |
+
if batch_size <= 0:
|
556 |
+
raise ValueError("batch_size has to be defined and > 0")
|
557 |
+
attention_mask = attention_mask.view(batch_size, -1)
|
558 |
+
# We create a 3D attention mask from a 2D tensor mask.
|
559 |
+
# Sizes are [batch_size, 1, 1, to_seq_length]
|
560 |
+
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
|
561 |
+
# this attention mask is more simple than the triangular masking of causal attention
|
562 |
+
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
|
563 |
+
attention_mask = attention_mask[:, None, None, :]
|
564 |
+
|
565 |
+
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
566 |
+
# masked positions, this operation will create a tensor which is 0.0 for
|
567 |
+
# positions we want to attend and the dtype's smallest value for masked positions.
|
568 |
+
# Since we are adding it to the raw scores before the softmax, this is
|
569 |
+
# effectively the same as removing these entirely.
|
570 |
+
attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility
|
571 |
+
attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
|
572 |
+
|
573 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
574 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
575 |
+
if self.config.add_cross_attention and encoder_hidden_states is not None:
|
576 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
577 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
578 |
+
if encoder_attention_mask is None:
|
579 |
+
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
580 |
+
encoder_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
581 |
+
else:
|
582 |
+
encoder_attention_mask = None
|
583 |
+
|
584 |
+
# Prepare head mask if needed
|
585 |
+
# 1.0 in head_mask indicate we keep the head
|
586 |
+
# attention_probs has shape bsz x n_heads x N x N
|
587 |
+
# head_mask has shape n_layer x batch x n_heads x N x N
|
588 |
+
head_mask = self.get_head_mask(head_mask, self.config.n_layer)
|
589 |
+
|
590 |
+
if inputs_embeds is None:
|
591 |
+
inputs_embeds = self.wte(input_ids)
|
592 |
+
position_embeds = self.wpe(position_ids)
|
593 |
+
hidden_states = inputs_embeds + position_embeds
|
594 |
+
|
595 |
+
if token_type_ids is not None:
|
596 |
+
token_type_embeds = self.wte(token_type_ids)
|
597 |
+
hidden_states = hidden_states + token_type_embeds
|
598 |
+
|
599 |
+
hidden_states = self.drop(hidden_states)
|
600 |
+
|
601 |
+
output_shape = (-1,) + input_shape[1:] + (hidden_states.size(-1),)
|
602 |
+
|
603 |
+
if self.gradient_checkpointing and self.training:
|
604 |
+
if use_cache:
|
605 |
+
logger.warning_once(
|
606 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
607 |
+
)
|
608 |
+
use_cache = False
|
609 |
+
|
610 |
+
presents = () if use_cache else None
|
611 |
+
all_self_attentions = () if output_attentions else None
|
612 |
+
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
|
613 |
+
all_hidden_states = () if output_hidden_states else None
|
614 |
+
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
|
615 |
+
# Model parallel
|
616 |
+
if self.model_parallel:
|
617 |
+
torch.cuda.set_device(hidden_states.device)
|
618 |
+
# Ensure layer_past is on same device as hidden_states (might not be correct)
|
619 |
+
if layer_past is not None:
|
620 |
+
layer_past = tuple(past_state.to(hidden_states.device) for past_state in layer_past)
|
621 |
+
# Ensure that attention_mask is always on the same device as hidden_states
|
622 |
+
if attention_mask is not None:
|
623 |
+
attention_mask = attention_mask.to(hidden_states.device)
|
624 |
+
if isinstance(head_mask, torch.Tensor):
|
625 |
+
head_mask = head_mask.to(hidden_states.device)
|
626 |
+
if output_hidden_states:
|
627 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
628 |
+
|
629 |
+
if self.gradient_checkpointing and self.training:
|
630 |
+
outputs = self._gradient_checkpointing_func(
|
631 |
+
block.__call__,
|
632 |
+
hidden_states,
|
633 |
+
None,
|
634 |
+
attention_mask,
|
635 |
+
head_mask[i],
|
636 |
+
encoder_hidden_states,
|
637 |
+
encoder_attention_mask,
|
638 |
+
use_cache,
|
639 |
+
output_attentions,
|
640 |
+
)
|
641 |
+
else:
|
642 |
+
outputs = block(
|
643 |
+
hidden_states,
|
644 |
+
layer_past=layer_past,
|
645 |
+
attention_mask=attention_mask,
|
646 |
+
head_mask=head_mask[i],
|
647 |
+
encoder_hidden_states=encoder_hidden_states,
|
648 |
+
encoder_attention_mask=encoder_attention_mask,
|
649 |
+
use_cache=use_cache,
|
650 |
+
output_attentions=output_attentions,
|
651 |
+
)
|
652 |
+
|
653 |
+
hidden_states = outputs[0]
|
654 |
+
if use_cache is True:
|
655 |
+
presents = presents + (outputs[1],)
|
656 |
+
|
657 |
+
if output_attentions:
|
658 |
+
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
|
659 |
+
if self.config.add_cross_attention:
|
660 |
+
all_cross_attentions = all_cross_attentions + (outputs[3 if use_cache else 2],)
|
661 |
+
|
662 |
+
# Model Parallel: If it's the last layer for that device, put things on the next device
|
663 |
+
if self.model_parallel:
|
664 |
+
for k, v in self.device_map.items():
|
665 |
+
if i == v[-1] and "cuda:" + str(k) != self.last_device:
|
666 |
+
hidden_states = hidden_states.to("cuda:" + str(k + 1))
|
667 |
+
|
668 |
+
hidden_states = self.ln_f(hidden_states)
|
669 |
+
|
670 |
+
hidden_states = hidden_states.view(output_shape)
|
671 |
+
# Add last hidden state
|
672 |
+
if output_hidden_states:
|
673 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
674 |
+
|
675 |
+
if not return_dict:
|
676 |
+
return tuple(
|
677 |
+
v
|
678 |
+
for v in [hidden_states, presents, all_hidden_states, all_self_attentions, all_cross_attentions]
|
679 |
+
if v is not None
|
680 |
+
)
|
681 |
+
|
682 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
683 |
+
last_hidden_state=hidden_states,
|
684 |
+
past_key_values=presents,
|
685 |
+
hidden_states=all_hidden_states,
|
686 |
+
attentions=all_self_attentions,
|
687 |
+
cross_attentions=all_cross_attentions,
|
688 |
+
)
|
689 |
+
|
690 |
+
|
691 |
+
@dataclass
|
692 |
+
class DecisionTransformerOutput(ModelOutput):
|
693 |
+
"""
|
694 |
+
Base class for model's outputs that also contains a pooling of the last hidden states.
|
695 |
+
|
696 |
+
Args:
|
697 |
+
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
698 |
+
Sequence of hidden-states at the output of the last layer of the model.
|
699 |
+
state_preds (`torch.FloatTensor` of shape `(batch_size, sequence_length, state_dim)`):
|
700 |
+
Environment state predictions
|
701 |
+
action_preds (`torch.FloatTensor` of shape `(batch_size, sequence_length, action_dim)`):
|
702 |
+
Model action predictions
|
703 |
+
return_preds (`torch.FloatTensor` of shape `(batch_size, sequence_length, 1)`):
|
704 |
+
Predicted returns for each state
|
705 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
706 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
|
707 |
+
shape `(batch_size, sequence_length, hidden_size)`.
|
708 |
+
|
709 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
710 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
711 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
712 |
+
sequence_length)`.
|
713 |
+
|
714 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
715 |
+
heads.
|
716 |
+
"""
|
717 |
+
|
718 |
+
state_preds: torch.FloatTensor = None
|
719 |
+
action_preds: torch.FloatTensor = None
|
720 |
+
return_preds: torch.FloatTensor = None
|
721 |
+
hidden_states: torch.FloatTensor = None
|
722 |
+
attentions: torch.FloatTensor = None
|
723 |
+
last_hidden_state: torch.FloatTensor = None
|
724 |
+
|
725 |
+
|
726 |
+
class DecisionTransformerPreTrainedModel(PreTrainedModel):
|
727 |
+
"""
|
728 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
729 |
+
models.
|
730 |
+
"""
|
731 |
+
|
732 |
+
config_class = DecisionTransformerConfig
|
733 |
+
base_model_prefix = "decision_transformer"
|
734 |
+
main_input_name = "states"
|
735 |
+
supports_gradient_checkpointing = False
|
736 |
+
|
737 |
+
def _init_weights(self, module):
|
738 |
+
"""Initialize the weights"""
|
739 |
+
if isinstance(module, nn.Linear):
|
740 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
741 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
742 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
743 |
+
if module.bias is not None:
|
744 |
+
module.bias.data.zero_()
|
745 |
+
elif isinstance(module, nn.Embedding):
|
746 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
747 |
+
if module.padding_idx is not None:
|
748 |
+
module.weight.data[module.padding_idx].zero_()
|
749 |
+
elif isinstance(module, nn.LayerNorm):
|
750 |
+
module.bias.data.zero_()
|
751 |
+
module.weight.data.fill_(1.0)
|
752 |
+
|
753 |
+
|
754 |
+
DECISION_TRANSFORMER_START_DOCSTRING = r"""
|
755 |
+
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
|
756 |
+
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
|
757 |
+
behavior.
|
758 |
+
|
759 |
+
Parameters:
|
760 |
+
config ([`~DecisionTransformerConfig`]): Model configuration class with all the parameters of the model.
|
761 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
762 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
763 |
+
"""
|
764 |
+
|
765 |
+
DECISION_TRANSFORMER_INPUTS_DOCSTRING = r"""
|
766 |
+
Args:
|
767 |
+
states (`torch.FloatTensor` of shape `(batch_size, episode_length, state_dim)`):
|
768 |
+
The states for each step in the trajectory
|
769 |
+
actions (`torch.FloatTensor` of shape `(batch_size, episode_length, act_dim)`):
|
770 |
+
The actions taken by the "expert" policy for the current state, these are masked for auto regressive
|
771 |
+
prediction
|
772 |
+
rewards (`torch.FloatTensor` of shape `(batch_size, episode_length, 1)`):
|
773 |
+
The rewards for each state, action
|
774 |
+
returns_to_go (`torch.FloatTensor` of shape `(batch_size, episode_length, 1)`):
|
775 |
+
The returns for each state in the trajectory
|
776 |
+
timesteps (`torch.LongTensor` of shape `(batch_size, episode_length)`):
|
777 |
+
The timestep for each step in the trajectory
|
778 |
+
attention_mask (`torch.FloatTensor` of shape `(batch_size, episode_length)`):
|
779 |
+
Masking, used to mask the actions when performing autoregressive prediction
|
780 |
+
"""
|
781 |
+
|
782 |
+
|
783 |
+
@add_start_docstrings("The Decision Transformer Model", DECISION_TRANSFORMER_START_DOCSTRING)
|
784 |
+
class DecisionTransformerModel(DecisionTransformerPreTrainedModel):
|
785 |
+
"""
|
786 |
+
|
787 |
+
The model builds upon the GPT2 architecture to perform autoregressive prediction of actions in an offline RL
|
788 |
+
setting. Refer to the paper for more details: https://arxiv.org/abs/2106.01345
|
789 |
+
|
790 |
+
"""
|
791 |
+
|
792 |
+
def __init__(self, config):
|
793 |
+
super().__init__(config)
|
794 |
+
self.config = config
|
795 |
+
self.hidden_size = config.hidden_size
|
796 |
+
# note: the only difference between this GPT2Model and the default Huggingface version
|
797 |
+
# is that the positional embeddings are removed (since we'll add those ourselves)
|
798 |
+
self.encoder = DecisionTransformerGPT2Model(config)
|
799 |
+
|
800 |
+
self.embed_timestep = nn.Embedding(config.max_ep_len, config.hidden_size)
|
801 |
+
self.embed_return = torch.nn.Linear(1, config.hidden_size)
|
802 |
+
self.embed_state = torch.nn.Linear(config.state_dim, config.hidden_size)
|
803 |
+
self.embed_action = torch.nn.Linear(config.act_dim, config.hidden_size)
|
804 |
+
|
805 |
+
self.embed_ln = nn.LayerNorm(config.hidden_size)
|
806 |
+
|
807 |
+
# note: we don't predict states or returns for the paper
|
808 |
+
self.predict_state = torch.nn.Linear(config.hidden_size, config.state_dim)
|
809 |
+
self.predict_action = nn.Sequential(
|
810 |
+
*([nn.Linear(config.hidden_size, config.act_dim)] + ([nn.Tanh()] if config.action_tanh else []))
|
811 |
+
)
|
812 |
+
self.predict_return = torch.nn.Linear(config.hidden_size, 1)
|
813 |
+
|
814 |
+
# Initialize weights and apply final processing
|
815 |
+
self.post_init()
|
816 |
+
|
817 |
+
@add_start_docstrings_to_model_forward(DECISION_TRANSFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
818 |
+
@replace_return_docstrings(output_type=DecisionTransformerOutput, config_class=_CONFIG_FOR_DOC)
|
819 |
+
def forward(
|
820 |
+
self,
|
821 |
+
states: Optional[torch.FloatTensor] = None,
|
822 |
+
actions: Optional[torch.FloatTensor] = None,
|
823 |
+
rewards: Optional[torch.FloatTensor] = None,
|
824 |
+
returns_to_go: Optional[torch.FloatTensor] = None,
|
825 |
+
timesteps: Optional[torch.LongTensor] = None,
|
826 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
827 |
+
output_hidden_states: Optional[bool] = None,
|
828 |
+
output_attentions: Optional[bool] = None,
|
829 |
+
return_dict: Optional[bool] = None,
|
830 |
+
) -> Union[Tuple[torch.FloatTensor], DecisionTransformerOutput]:
|
831 |
+
r"""
|
832 |
+
Returns:
|
833 |
+
|
834 |
+
Examples:
|
835 |
+
|
836 |
+
```python
|
837 |
+
>>> from transformers import DecisionTransformerModel
|
838 |
+
>>> import torch
|
839 |
+
|
840 |
+
>>> model = DecisionTransformerModel.from_pretrained("edbeeching/decision-transformer-gym-hopper-medium")
|
841 |
+
>>> # evaluation
|
842 |
+
>>> model = model.to(device)
|
843 |
+
>>> model.eval()
|
844 |
+
|
845 |
+
>>> env = gym.make("Hopper-v3")
|
846 |
+
>>> state_dim = env.observation_space.shape[0]
|
847 |
+
>>> act_dim = env.action_space.shape[0]
|
848 |
+
|
849 |
+
>>> state = env.reset()
|
850 |
+
>>> states = torch.from_numpy(state).reshape(1, 1, state_dim).to(device=device, dtype=torch.float32)
|
851 |
+
>>> actions = torch.zeros((1, 1, act_dim), device=device, dtype=torch.float32)
|
852 |
+
>>> rewards = torch.zeros(1, 1, device=device, dtype=torch.float32)
|
853 |
+
>>> target_return = torch.tensor(TARGET_RETURN, dtype=torch.float32).reshape(1, 1)
|
854 |
+
>>> timesteps = torch.tensor(0, device=device, dtype=torch.long).reshape(1, 1)
|
855 |
+
>>> attention_mask = torch.zeros(1, 1, device=device, dtype=torch.float32)
|
856 |
+
|
857 |
+
>>> # forward pass
|
858 |
+
>>> with torch.no_grad():
|
859 |
+
... state_preds, action_preds, return_preds = model(
|
860 |
+
... states=states,
|
861 |
+
... actions=actions,
|
862 |
+
... rewards=rewards,
|
863 |
+
... returns_to_go=target_return,
|
864 |
+
... timesteps=timesteps,
|
865 |
+
... attention_mask=attention_mask,
|
866 |
+
... return_dict=False,
|
867 |
+
... )
|
868 |
+
```"""
|
869 |
+
|
870 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
871 |
+
output_hidden_states = (
|
872 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
873 |
+
)
|
874 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
875 |
+
|
876 |
+
batch_size, seq_length = states.shape[0], states.shape[1]
|
877 |
+
|
878 |
+
if attention_mask is None:
|
879 |
+
# attention mask for GPT: 1 if can be attended to, 0 if not
|
880 |
+
attention_mask = torch.ones((batch_size, seq_length), dtype=torch.long)
|
881 |
+
|
882 |
+
# embed each modality with a different head
|
883 |
+
state_embeddings = self.embed_state(states)
|
884 |
+
action_embeddings = self.embed_action(actions)
|
885 |
+
returns_embeddings = self.embed_return(returns_to_go)
|
886 |
+
time_embeddings = self.embed_timestep(timesteps)
|
887 |
+
|
888 |
+
# time embeddings are treated similar to positional embeddings
|
889 |
+
state_embeddings = state_embeddings + time_embeddings
|
890 |
+
action_embeddings = action_embeddings + time_embeddings
|
891 |
+
returns_embeddings = returns_embeddings + time_embeddings
|
892 |
+
|
893 |
+
# this makes the sequence look like (R_1, s_1, a_1, R_2, s_2, a_2, ...)
|
894 |
+
# which works nice in an autoregressive sense since states predict actions
|
895 |
+
stacked_inputs = (
|
896 |
+
torch.stack((returns_embeddings, state_embeddings, action_embeddings), dim=1)
|
897 |
+
.permute(0, 2, 1, 3)
|
898 |
+
.reshape(batch_size, 3 * seq_length, self.hidden_size)
|
899 |
+
)
|
900 |
+
stacked_inputs = self.embed_ln(stacked_inputs)
|
901 |
+
|
902 |
+
# to make the attention mask fit the stacked inputs, have to stack it as well
|
903 |
+
stacked_attention_mask = (
|
904 |
+
torch.stack((attention_mask, attention_mask, attention_mask), dim=1)
|
905 |
+
.permute(0, 2, 1)
|
906 |
+
.reshape(batch_size, 3 * seq_length)
|
907 |
+
)
|
908 |
+
device = stacked_inputs.device
|
909 |
+
# we feed in the input embeddings (not word indices as in NLP) to the model
|
910 |
+
encoder_outputs = self.encoder(
|
911 |
+
inputs_embeds=stacked_inputs,
|
912 |
+
attention_mask=stacked_attention_mask,
|
913 |
+
position_ids=torch.zeros(stacked_attention_mask.shape, device=device, dtype=torch.long),
|
914 |
+
output_attentions=output_attentions,
|
915 |
+
output_hidden_states=output_hidden_states,
|
916 |
+
return_dict=return_dict,
|
917 |
+
)
|
918 |
+
x = encoder_outputs[0]
|
919 |
+
|
920 |
+
# reshape x so that the second dimension corresponds to the original
|
921 |
+
# returns (0), states (1), or actions (2); i.e. x[:,1,t] is the token for s_t
|
922 |
+
x = x.reshape(batch_size, seq_length, 3, self.hidden_size).permute(0, 2, 1, 3)
|
923 |
+
|
924 |
+
# get predictions
|
925 |
+
return_preds = self.predict_return(x[:, 2]) # predict next return given state and action
|
926 |
+
state_preds = self.predict_state(x[:, 2]) # predict next state given state and action
|
927 |
+
action_preds = self.predict_action(x[:, 1]) # predict next action given state
|
928 |
+
if not return_dict:
|
929 |
+
return (state_preds, action_preds, return_preds)
|
930 |
+
|
931 |
+
return DecisionTransformerOutput(
|
932 |
+
last_hidden_state=encoder_outputs.last_hidden_state,
|
933 |
+
state_preds=state_preds,
|
934 |
+
action_preds=action_preds,
|
935 |
+
return_preds=return_preds,
|
936 |
+
hidden_states=encoder_outputs.hidden_states,
|
937 |
+
attentions=encoder_outputs.attentions,
|
938 |
+
)
|
env-llmeval/lib/python3.10/site-packages/transformers/models/electra/__init__.py
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from typing import TYPE_CHECKING
|
16 |
+
|
17 |
+
from ...utils import (
|
18 |
+
OptionalDependencyNotAvailable,
|
19 |
+
_LazyModule,
|
20 |
+
is_flax_available,
|
21 |
+
is_tf_available,
|
22 |
+
is_tokenizers_available,
|
23 |
+
is_torch_available,
|
24 |
+
)
|
25 |
+
|
26 |
+
|
27 |
+
_import_structure = {
|
28 |
+
"configuration_electra": ["ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP", "ElectraConfig", "ElectraOnnxConfig"],
|
29 |
+
"tokenization_electra": ["ElectraTokenizer"],
|
30 |
+
}
|
31 |
+
|
32 |
+
try:
|
33 |
+
if not is_tokenizers_available():
|
34 |
+
raise OptionalDependencyNotAvailable()
|
35 |
+
except OptionalDependencyNotAvailable:
|
36 |
+
pass
|
37 |
+
else:
|
38 |
+
_import_structure["tokenization_electra_fast"] = ["ElectraTokenizerFast"]
|
39 |
+
|
40 |
+
try:
|
41 |
+
if not is_torch_available():
|
42 |
+
raise OptionalDependencyNotAvailable()
|
43 |
+
except OptionalDependencyNotAvailable:
|
44 |
+
pass
|
45 |
+
else:
|
46 |
+
_import_structure["modeling_electra"] = [
|
47 |
+
"ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST",
|
48 |
+
"ElectraForCausalLM",
|
49 |
+
"ElectraForMaskedLM",
|
50 |
+
"ElectraForMultipleChoice",
|
51 |
+
"ElectraForPreTraining",
|
52 |
+
"ElectraForQuestionAnswering",
|
53 |
+
"ElectraForSequenceClassification",
|
54 |
+
"ElectraForTokenClassification",
|
55 |
+
"ElectraModel",
|
56 |
+
"ElectraPreTrainedModel",
|
57 |
+
"load_tf_weights_in_electra",
|
58 |
+
]
|
59 |
+
|
60 |
+
try:
|
61 |
+
if not is_tf_available():
|
62 |
+
raise OptionalDependencyNotAvailable()
|
63 |
+
except OptionalDependencyNotAvailable:
|
64 |
+
pass
|
65 |
+
else:
|
66 |
+
_import_structure["modeling_tf_electra"] = [
|
67 |
+
"TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST",
|
68 |
+
"TFElectraForMaskedLM",
|
69 |
+
"TFElectraForMultipleChoice",
|
70 |
+
"TFElectraForPreTraining",
|
71 |
+
"TFElectraForQuestionAnswering",
|
72 |
+
"TFElectraForSequenceClassification",
|
73 |
+
"TFElectraForTokenClassification",
|
74 |
+
"TFElectraModel",
|
75 |
+
"TFElectraPreTrainedModel",
|
76 |
+
]
|
77 |
+
|
78 |
+
try:
|
79 |
+
if not is_flax_available():
|
80 |
+
raise OptionalDependencyNotAvailable()
|
81 |
+
except OptionalDependencyNotAvailable:
|
82 |
+
pass
|
83 |
+
else:
|
84 |
+
_import_structure["modeling_flax_electra"] = [
|
85 |
+
"FlaxElectraForCausalLM",
|
86 |
+
"FlaxElectraForMaskedLM",
|
87 |
+
"FlaxElectraForMultipleChoice",
|
88 |
+
"FlaxElectraForPreTraining",
|
89 |
+
"FlaxElectraForQuestionAnswering",
|
90 |
+
"FlaxElectraForSequenceClassification",
|
91 |
+
"FlaxElectraForTokenClassification",
|
92 |
+
"FlaxElectraModel",
|
93 |
+
"FlaxElectraPreTrainedModel",
|
94 |
+
]
|
95 |
+
|
96 |
+
|
97 |
+
if TYPE_CHECKING:
|
98 |
+
from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig
|
99 |
+
from .tokenization_electra import ElectraTokenizer
|
100 |
+
|
101 |
+
try:
|
102 |
+
if not is_tokenizers_available():
|
103 |
+
raise OptionalDependencyNotAvailable()
|
104 |
+
except OptionalDependencyNotAvailable:
|
105 |
+
pass
|
106 |
+
else:
|
107 |
+
from .tokenization_electra_fast import ElectraTokenizerFast
|
108 |
+
|
109 |
+
try:
|
110 |
+
if not is_torch_available():
|
111 |
+
raise OptionalDependencyNotAvailable()
|
112 |
+
except OptionalDependencyNotAvailable:
|
113 |
+
pass
|
114 |
+
else:
|
115 |
+
from .modeling_electra import (
|
116 |
+
ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST,
|
117 |
+
ElectraForCausalLM,
|
118 |
+
ElectraForMaskedLM,
|
119 |
+
ElectraForMultipleChoice,
|
120 |
+
ElectraForPreTraining,
|
121 |
+
ElectraForQuestionAnswering,
|
122 |
+
ElectraForSequenceClassification,
|
123 |
+
ElectraForTokenClassification,
|
124 |
+
ElectraModel,
|
125 |
+
ElectraPreTrainedModel,
|
126 |
+
load_tf_weights_in_electra,
|
127 |
+
)
|
128 |
+
|
129 |
+
try:
|
130 |
+
if not is_tf_available():
|
131 |
+
raise OptionalDependencyNotAvailable()
|
132 |
+
except OptionalDependencyNotAvailable:
|
133 |
+
pass
|
134 |
+
else:
|
135 |
+
from .modeling_tf_electra import (
|
136 |
+
TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST,
|
137 |
+
TFElectraForMaskedLM,
|
138 |
+
TFElectraForMultipleChoice,
|
139 |
+
TFElectraForPreTraining,
|
140 |
+
TFElectraForQuestionAnswering,
|
141 |
+
TFElectraForSequenceClassification,
|
142 |
+
TFElectraForTokenClassification,
|
143 |
+
TFElectraModel,
|
144 |
+
TFElectraPreTrainedModel,
|
145 |
+
)
|
146 |
+
|
147 |
+
try:
|
148 |
+
if not is_flax_available():
|
149 |
+
raise OptionalDependencyNotAvailable()
|
150 |
+
except OptionalDependencyNotAvailable:
|
151 |
+
pass
|
152 |
+
else:
|
153 |
+
from .modeling_flax_electra import (
|
154 |
+
FlaxElectraForCausalLM,
|
155 |
+
FlaxElectraForMaskedLM,
|
156 |
+
FlaxElectraForMultipleChoice,
|
157 |
+
FlaxElectraForPreTraining,
|
158 |
+
FlaxElectraForQuestionAnswering,
|
159 |
+
FlaxElectraForSequenceClassification,
|
160 |
+
FlaxElectraForTokenClassification,
|
161 |
+
FlaxElectraModel,
|
162 |
+
FlaxElectraPreTrainedModel,
|
163 |
+
)
|
164 |
+
|
165 |
+
else:
|
166 |
+
import sys
|
167 |
+
|
168 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
env-llmeval/lib/python3.10/site-packages/transformers/models/electra/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (2.54 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/electra/__pycache__/configuration_electra.cpython-310.pyc
ADDED
Binary file (8.92 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/electra/__pycache__/convert_electra_original_tf_checkpoint_to_pytorch.cpython-310.pyc
ADDED
Binary file (1.86 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/electra/__pycache__/modeling_electra.cpython-310.pyc
ADDED
Binary file (49.2 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/electra/__pycache__/modeling_flax_electra.cpython-310.pyc
ADDED
Binary file (40.6 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/electra/__pycache__/modeling_tf_electra.cpython-310.pyc
ADDED
Binary file (51.7 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/electra/__pycache__/tokenization_electra.cpython-310.pyc
ADDED
Binary file (18 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/electra/__pycache__/tokenization_electra_fast.cpython-310.pyc
ADDED
Binary file (8.25 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/electra/configuration_electra.py
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
""" ELECTRA model configuration"""
|
17 |
+
|
18 |
+
from collections import OrderedDict
|
19 |
+
from typing import Mapping
|
20 |
+
|
21 |
+
from ...configuration_utils import PretrainedConfig
|
22 |
+
from ...onnx import OnnxConfig
|
23 |
+
from ...utils import logging
|
24 |
+
|
25 |
+
|
26 |
+
logger = logging.get_logger(__name__)
|
27 |
+
|
28 |
+
ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
29 |
+
"google/electra-small-generator": "https://huggingface.co/google/electra-small-generator/resolve/main/config.json",
|
30 |
+
"google/electra-base-generator": "https://huggingface.co/google/electra-base-generator/resolve/main/config.json",
|
31 |
+
"google/electra-large-generator": "https://huggingface.co/google/electra-large-generator/resolve/main/config.json",
|
32 |
+
"google/electra-small-discriminator": (
|
33 |
+
"https://huggingface.co/google/electra-small-discriminator/resolve/main/config.json"
|
34 |
+
),
|
35 |
+
"google/electra-base-discriminator": (
|
36 |
+
"https://huggingface.co/google/electra-base-discriminator/resolve/main/config.json"
|
37 |
+
),
|
38 |
+
"google/electra-large-discriminator": (
|
39 |
+
"https://huggingface.co/google/electra-large-discriminator/resolve/main/config.json"
|
40 |
+
),
|
41 |
+
}
|
42 |
+
|
43 |
+
|
44 |
+
class ElectraConfig(PretrainedConfig):
|
45 |
+
r"""
|
46 |
+
This is the configuration class to store the configuration of a [`ElectraModel`] or a [`TFElectraModel`]. It is
|
47 |
+
used to instantiate a ELECTRA model according to the specified arguments, defining the model architecture.
|
48 |
+
Instantiating a configuration with the defaults will yield a similar configuration to that of the ELECTRA
|
49 |
+
[google/electra-small-discriminator](https://huggingface.co/google/electra-small-discriminator) architecture.
|
50 |
+
|
51 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
52 |
+
documentation from [`PretrainedConfig`] for more information.
|
53 |
+
|
54 |
+
|
55 |
+
Args:
|
56 |
+
vocab_size (`int`, *optional*, defaults to 30522):
|
57 |
+
Vocabulary size of the ELECTRA model. Defines the number of different tokens that can be represented by the
|
58 |
+
`inputs_ids` passed when calling [`ElectraModel`] or [`TFElectraModel`].
|
59 |
+
embedding_size (`int`, *optional*, defaults to 128):
|
60 |
+
Dimensionality of the encoder layers and the pooler layer.
|
61 |
+
hidden_size (`int`, *optional*, defaults to 256):
|
62 |
+
Dimensionality of the encoder layers and the pooler layer.
|
63 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
64 |
+
Number of hidden layers in the Transformer encoder.
|
65 |
+
num_attention_heads (`int`, *optional*, defaults to 4):
|
66 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
67 |
+
intermediate_size (`int`, *optional*, defaults to 1024):
|
68 |
+
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
69 |
+
hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
|
70 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
71 |
+
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
72 |
+
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
|
73 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
74 |
+
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
|
75 |
+
The dropout ratio for the attention probabilities.
|
76 |
+
max_position_embeddings (`int`, *optional*, defaults to 512):
|
77 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
78 |
+
just in case (e.g., 512 or 1024 or 2048).
|
79 |
+
type_vocab_size (`int`, *optional*, defaults to 2):
|
80 |
+
The vocabulary size of the `token_type_ids` passed when calling [`ElectraModel`] or [`TFElectraModel`].
|
81 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
82 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
83 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
84 |
+
The epsilon used by the layer normalization layers.
|
85 |
+
summary_type (`str`, *optional*, defaults to `"first"`):
|
86 |
+
Argument used when doing sequence summary. Used in the sequence classification and multiple choice models.
|
87 |
+
|
88 |
+
Has to be one of the following options:
|
89 |
+
|
90 |
+
- `"last"`: Take the last token hidden state (like XLNet).
|
91 |
+
- `"first"`: Take the first token hidden state (like BERT).
|
92 |
+
- `"mean"`: Take the mean of all tokens hidden states.
|
93 |
+
- `"cls_index"`: Supply a Tensor of classification token position (like GPT/GPT-2).
|
94 |
+
- `"attn"`: Not implemented now, use multi-head attention.
|
95 |
+
summary_use_proj (`bool`, *optional*, defaults to `True`):
|
96 |
+
Argument used when doing sequence summary. Used in the sequence classification and multiple choice models.
|
97 |
+
|
98 |
+
Whether or not to add a projection after the vector extraction.
|
99 |
+
summary_activation (`str`, *optional*):
|
100 |
+
Argument used when doing sequence summary. Used in the sequence classification and multiple choice models.
|
101 |
+
|
102 |
+
Pass `"gelu"` for a gelu activation to the output, any other value will result in no activation.
|
103 |
+
summary_last_dropout (`float`, *optional*, defaults to 0.0):
|
104 |
+
Argument used when doing sequence summary. Used in the sequence classification and multiple choice models.
|
105 |
+
|
106 |
+
The dropout ratio to be used after the projection and activation.
|
107 |
+
position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
|
108 |
+
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
|
109 |
+
positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
|
110 |
+
[Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
|
111 |
+
For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
|
112 |
+
with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
|
113 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
114 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
115 |
+
relevant if `config.is_decoder=True`.
|
116 |
+
classifier_dropout (`float`, *optional*):
|
117 |
+
The dropout ratio for the classification head.
|
118 |
+
|
119 |
+
Examples:
|
120 |
+
|
121 |
+
```python
|
122 |
+
>>> from transformers import ElectraConfig, ElectraModel
|
123 |
+
|
124 |
+
>>> # Initializing a ELECTRA electra-base-uncased style configuration
|
125 |
+
>>> configuration = ElectraConfig()
|
126 |
+
|
127 |
+
>>> # Initializing a model (with random weights) from the electra-base-uncased style configuration
|
128 |
+
>>> model = ElectraModel(configuration)
|
129 |
+
|
130 |
+
>>> # Accessing the model configuration
|
131 |
+
>>> configuration = model.config
|
132 |
+
```"""
|
133 |
+
|
134 |
+
model_type = "electra"
|
135 |
+
|
136 |
+
def __init__(
|
137 |
+
self,
|
138 |
+
vocab_size=30522,
|
139 |
+
embedding_size=128,
|
140 |
+
hidden_size=256,
|
141 |
+
num_hidden_layers=12,
|
142 |
+
num_attention_heads=4,
|
143 |
+
intermediate_size=1024,
|
144 |
+
hidden_act="gelu",
|
145 |
+
hidden_dropout_prob=0.1,
|
146 |
+
attention_probs_dropout_prob=0.1,
|
147 |
+
max_position_embeddings=512,
|
148 |
+
type_vocab_size=2,
|
149 |
+
initializer_range=0.02,
|
150 |
+
layer_norm_eps=1e-12,
|
151 |
+
summary_type="first",
|
152 |
+
summary_use_proj=True,
|
153 |
+
summary_activation="gelu",
|
154 |
+
summary_last_dropout=0.1,
|
155 |
+
pad_token_id=0,
|
156 |
+
position_embedding_type="absolute",
|
157 |
+
use_cache=True,
|
158 |
+
classifier_dropout=None,
|
159 |
+
**kwargs,
|
160 |
+
):
|
161 |
+
super().__init__(pad_token_id=pad_token_id, **kwargs)
|
162 |
+
|
163 |
+
self.vocab_size = vocab_size
|
164 |
+
self.embedding_size = embedding_size
|
165 |
+
self.hidden_size = hidden_size
|
166 |
+
self.num_hidden_layers = num_hidden_layers
|
167 |
+
self.num_attention_heads = num_attention_heads
|
168 |
+
self.intermediate_size = intermediate_size
|
169 |
+
self.hidden_act = hidden_act
|
170 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
171 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
172 |
+
self.max_position_embeddings = max_position_embeddings
|
173 |
+
self.type_vocab_size = type_vocab_size
|
174 |
+
self.initializer_range = initializer_range
|
175 |
+
self.layer_norm_eps = layer_norm_eps
|
176 |
+
|
177 |
+
self.summary_type = summary_type
|
178 |
+
self.summary_use_proj = summary_use_proj
|
179 |
+
self.summary_activation = summary_activation
|
180 |
+
self.summary_last_dropout = summary_last_dropout
|
181 |
+
self.position_embedding_type = position_embedding_type
|
182 |
+
self.use_cache = use_cache
|
183 |
+
self.classifier_dropout = classifier_dropout
|
184 |
+
|
185 |
+
|
186 |
+
class ElectraOnnxConfig(OnnxConfig):
|
187 |
+
@property
|
188 |
+
def inputs(self) -> Mapping[str, Mapping[int, str]]:
|
189 |
+
if self.task == "multiple-choice":
|
190 |
+
dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"}
|
191 |
+
else:
|
192 |
+
dynamic_axis = {0: "batch", 1: "sequence"}
|
193 |
+
return OrderedDict(
|
194 |
+
[
|
195 |
+
("input_ids", dynamic_axis),
|
196 |
+
("attention_mask", dynamic_axis),
|
197 |
+
("token_type_ids", dynamic_axis),
|
198 |
+
]
|
199 |
+
)
|
env-llmeval/lib/python3.10/site-packages/transformers/models/electra/convert_electra_original_tf_checkpoint_to_pytorch.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Convert ELECTRA checkpoint."""
|
16 |
+
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
|
20 |
+
import torch
|
21 |
+
|
22 |
+
from transformers import ElectraConfig, ElectraForMaskedLM, ElectraForPreTraining, load_tf_weights_in_electra
|
23 |
+
from transformers.utils import logging
|
24 |
+
|
25 |
+
|
26 |
+
logging.set_verbosity_info()
|
27 |
+
|
28 |
+
|
29 |
+
def convert_tf_checkpoint_to_pytorch(tf_checkpoint_path, config_file, pytorch_dump_path, discriminator_or_generator):
|
30 |
+
# Initialise PyTorch model
|
31 |
+
config = ElectraConfig.from_json_file(config_file)
|
32 |
+
print(f"Building PyTorch model from configuration: {config}")
|
33 |
+
|
34 |
+
if discriminator_or_generator == "discriminator":
|
35 |
+
model = ElectraForPreTraining(config)
|
36 |
+
elif discriminator_or_generator == "generator":
|
37 |
+
model = ElectraForMaskedLM(config)
|
38 |
+
else:
|
39 |
+
raise ValueError("The discriminator_or_generator argument should be either 'discriminator' or 'generator'")
|
40 |
+
|
41 |
+
# Load weights from tf checkpoint
|
42 |
+
load_tf_weights_in_electra(
|
43 |
+
model, config, tf_checkpoint_path, discriminator_or_generator=discriminator_or_generator
|
44 |
+
)
|
45 |
+
|
46 |
+
# Save pytorch-model
|
47 |
+
print(f"Save PyTorch model to {pytorch_dump_path}")
|
48 |
+
torch.save(model.state_dict(), pytorch_dump_path)
|
49 |
+
|
50 |
+
|
51 |
+
if __name__ == "__main__":
|
52 |
+
parser = argparse.ArgumentParser()
|
53 |
+
# Required parameters
|
54 |
+
parser.add_argument(
|
55 |
+
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
|
56 |
+
)
|
57 |
+
parser.add_argument(
|
58 |
+
"--config_file",
|
59 |
+
default=None,
|
60 |
+
type=str,
|
61 |
+
required=True,
|
62 |
+
help="The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.",
|
63 |
+
)
|
64 |
+
parser.add_argument(
|
65 |
+
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
|
66 |
+
)
|
67 |
+
parser.add_argument(
|
68 |
+
"--discriminator_or_generator",
|
69 |
+
default=None,
|
70 |
+
type=str,
|
71 |
+
required=True,
|
72 |
+
help=(
|
73 |
+
"Whether to export the generator or the discriminator. Should be a string, either 'discriminator' or "
|
74 |
+
"'generator'."
|
75 |
+
),
|
76 |
+
)
|
77 |
+
args = parser.parse_args()
|
78 |
+
convert_tf_checkpoint_to_pytorch(
|
79 |
+
args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.discriminator_or_generator
|
80 |
+
)
|
env-llmeval/lib/python3.10/site-packages/transformers/models/electra/modeling_electra.py
ADDED
@@ -0,0 +1,1686 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2019 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""PyTorch ELECTRA model."""
|
16 |
+
|
17 |
+
import math
|
18 |
+
import os
|
19 |
+
from dataclasses import dataclass
|
20 |
+
from typing import List, Optional, Tuple, Union
|
21 |
+
|
22 |
+
import torch
|
23 |
+
import torch.utils.checkpoint
|
24 |
+
from torch import nn
|
25 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
26 |
+
|
27 |
+
from ...activations import ACT2FN, get_activation
|
28 |
+
from ...modeling_outputs import (
|
29 |
+
BaseModelOutputWithCrossAttentions,
|
30 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
31 |
+
CausalLMOutputWithCrossAttentions,
|
32 |
+
MaskedLMOutput,
|
33 |
+
MultipleChoiceModelOutput,
|
34 |
+
QuestionAnsweringModelOutput,
|
35 |
+
SequenceClassifierOutput,
|
36 |
+
TokenClassifierOutput,
|
37 |
+
)
|
38 |
+
from ...modeling_utils import PreTrainedModel, SequenceSummary
|
39 |
+
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
|
40 |
+
from ...utils import (
|
41 |
+
ModelOutput,
|
42 |
+
add_code_sample_docstrings,
|
43 |
+
add_start_docstrings,
|
44 |
+
add_start_docstrings_to_model_forward,
|
45 |
+
logging,
|
46 |
+
replace_return_docstrings,
|
47 |
+
)
|
48 |
+
from .configuration_electra import ElectraConfig
|
49 |
+
|
50 |
+
|
51 |
+
logger = logging.get_logger(__name__)
|
52 |
+
|
53 |
+
_CHECKPOINT_FOR_DOC = "google/electra-small-discriminator"
|
54 |
+
_CONFIG_FOR_DOC = "ElectraConfig"
|
55 |
+
|
56 |
+
ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
57 |
+
"google/electra-small-generator",
|
58 |
+
"google/electra-base-generator",
|
59 |
+
"google/electra-large-generator",
|
60 |
+
"google/electra-small-discriminator",
|
61 |
+
"google/electra-base-discriminator",
|
62 |
+
"google/electra-large-discriminator",
|
63 |
+
# See all ELECTRA models at https://huggingface.co/models?filter=electra
|
64 |
+
]
|
65 |
+
|
66 |
+
|
67 |
+
def load_tf_weights_in_electra(model, config, tf_checkpoint_path, discriminator_or_generator="discriminator"):
|
68 |
+
"""Load tf checkpoints in a pytorch model."""
|
69 |
+
try:
|
70 |
+
import re
|
71 |
+
|
72 |
+
import numpy as np
|
73 |
+
import tensorflow as tf
|
74 |
+
except ImportError:
|
75 |
+
logger.error(
|
76 |
+
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
|
77 |
+
"https://www.tensorflow.org/install/ for installation instructions."
|
78 |
+
)
|
79 |
+
raise
|
80 |
+
tf_path = os.path.abspath(tf_checkpoint_path)
|
81 |
+
logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
|
82 |
+
# Load weights from TF model
|
83 |
+
init_vars = tf.train.list_variables(tf_path)
|
84 |
+
names = []
|
85 |
+
arrays = []
|
86 |
+
for name, shape in init_vars:
|
87 |
+
logger.info(f"Loading TF weight {name} with shape {shape}")
|
88 |
+
array = tf.train.load_variable(tf_path, name)
|
89 |
+
names.append(name)
|
90 |
+
arrays.append(array)
|
91 |
+
for name, array in zip(names, arrays):
|
92 |
+
original_name: str = name
|
93 |
+
|
94 |
+
try:
|
95 |
+
if isinstance(model, ElectraForMaskedLM):
|
96 |
+
name = name.replace("electra/embeddings/", "generator/embeddings/")
|
97 |
+
|
98 |
+
if discriminator_or_generator == "generator":
|
99 |
+
name = name.replace("electra/", "discriminator/")
|
100 |
+
name = name.replace("generator/", "electra/")
|
101 |
+
|
102 |
+
name = name.replace("dense_1", "dense_prediction")
|
103 |
+
name = name.replace("generator_predictions/output_bias", "generator_lm_head/bias")
|
104 |
+
|
105 |
+
name = name.split("/")
|
106 |
+
# print(original_name, name)
|
107 |
+
# adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
|
108 |
+
# which are not required for using pretrained model
|
109 |
+
if any(n in ["global_step", "temperature"] for n in name):
|
110 |
+
logger.info(f"Skipping {original_name}")
|
111 |
+
continue
|
112 |
+
pointer = model
|
113 |
+
for m_name in name:
|
114 |
+
if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
|
115 |
+
scope_names = re.split(r"_(\d+)", m_name)
|
116 |
+
else:
|
117 |
+
scope_names = [m_name]
|
118 |
+
if scope_names[0] == "kernel" or scope_names[0] == "gamma":
|
119 |
+
pointer = getattr(pointer, "weight")
|
120 |
+
elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
|
121 |
+
pointer = getattr(pointer, "bias")
|
122 |
+
elif scope_names[0] == "output_weights":
|
123 |
+
pointer = getattr(pointer, "weight")
|
124 |
+
elif scope_names[0] == "squad":
|
125 |
+
pointer = getattr(pointer, "classifier")
|
126 |
+
else:
|
127 |
+
pointer = getattr(pointer, scope_names[0])
|
128 |
+
if len(scope_names) >= 2:
|
129 |
+
num = int(scope_names[1])
|
130 |
+
pointer = pointer[num]
|
131 |
+
if m_name.endswith("_embeddings"):
|
132 |
+
pointer = getattr(pointer, "weight")
|
133 |
+
elif m_name == "kernel":
|
134 |
+
array = np.transpose(array)
|
135 |
+
try:
|
136 |
+
if pointer.shape != array.shape:
|
137 |
+
raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched")
|
138 |
+
except ValueError as e:
|
139 |
+
e.args += (pointer.shape, array.shape)
|
140 |
+
raise
|
141 |
+
print(f"Initialize PyTorch weight {name}", original_name)
|
142 |
+
pointer.data = torch.from_numpy(array)
|
143 |
+
except AttributeError as e:
|
144 |
+
print(f"Skipping {original_name}", name, e)
|
145 |
+
continue
|
146 |
+
return model
|
147 |
+
|
148 |
+
|
149 |
+
class ElectraEmbeddings(nn.Module):
|
150 |
+
"""Construct the embeddings from word, position and token_type embeddings."""
|
151 |
+
|
152 |
+
def __init__(self, config):
|
153 |
+
super().__init__()
|
154 |
+
self.word_embeddings = nn.Embedding(config.vocab_size, config.embedding_size, padding_idx=config.pad_token_id)
|
155 |
+
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.embedding_size)
|
156 |
+
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.embedding_size)
|
157 |
+
|
158 |
+
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
|
159 |
+
# any TensorFlow checkpoint file
|
160 |
+
self.LayerNorm = nn.LayerNorm(config.embedding_size, eps=config.layer_norm_eps)
|
161 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
162 |
+
|
163 |
+
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
164 |
+
self.register_buffer(
|
165 |
+
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
|
166 |
+
)
|
167 |
+
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
|
168 |
+
self.register_buffer(
|
169 |
+
"token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False
|
170 |
+
)
|
171 |
+
|
172 |
+
# Copied from transformers.models.bert.modeling_bert.BertEmbeddings.forward
|
173 |
+
def forward(
|
174 |
+
self,
|
175 |
+
input_ids: Optional[torch.LongTensor] = None,
|
176 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
177 |
+
position_ids: Optional[torch.LongTensor] = None,
|
178 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
179 |
+
past_key_values_length: int = 0,
|
180 |
+
) -> torch.Tensor:
|
181 |
+
if input_ids is not None:
|
182 |
+
input_shape = input_ids.size()
|
183 |
+
else:
|
184 |
+
input_shape = inputs_embeds.size()[:-1]
|
185 |
+
|
186 |
+
seq_length = input_shape[1]
|
187 |
+
|
188 |
+
if position_ids is None:
|
189 |
+
position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
|
190 |
+
|
191 |
+
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
|
192 |
+
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
|
193 |
+
# issue #5664
|
194 |
+
if token_type_ids is None:
|
195 |
+
if hasattr(self, "token_type_ids"):
|
196 |
+
buffered_token_type_ids = self.token_type_ids[:, :seq_length]
|
197 |
+
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
|
198 |
+
token_type_ids = buffered_token_type_ids_expanded
|
199 |
+
else:
|
200 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
|
201 |
+
|
202 |
+
if inputs_embeds is None:
|
203 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
204 |
+
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
205 |
+
|
206 |
+
embeddings = inputs_embeds + token_type_embeddings
|
207 |
+
if self.position_embedding_type == "absolute":
|
208 |
+
position_embeddings = self.position_embeddings(position_ids)
|
209 |
+
embeddings += position_embeddings
|
210 |
+
embeddings = self.LayerNorm(embeddings)
|
211 |
+
embeddings = self.dropout(embeddings)
|
212 |
+
return embeddings
|
213 |
+
|
214 |
+
|
215 |
+
# Copied from transformers.models.bert.modeling_bert.BertSelfAttention with Bert->Electra
|
216 |
+
class ElectraSelfAttention(nn.Module):
|
217 |
+
def __init__(self, config, position_embedding_type=None):
|
218 |
+
super().__init__()
|
219 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
|
220 |
+
raise ValueError(
|
221 |
+
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
|
222 |
+
f"heads ({config.num_attention_heads})"
|
223 |
+
)
|
224 |
+
|
225 |
+
self.num_attention_heads = config.num_attention_heads
|
226 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
227 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
228 |
+
|
229 |
+
self.query = nn.Linear(config.hidden_size, self.all_head_size)
|
230 |
+
self.key = nn.Linear(config.hidden_size, self.all_head_size)
|
231 |
+
self.value = nn.Linear(config.hidden_size, self.all_head_size)
|
232 |
+
|
233 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
234 |
+
self.position_embedding_type = position_embedding_type or getattr(
|
235 |
+
config, "position_embedding_type", "absolute"
|
236 |
+
)
|
237 |
+
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
238 |
+
self.max_position_embeddings = config.max_position_embeddings
|
239 |
+
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
|
240 |
+
|
241 |
+
self.is_decoder = config.is_decoder
|
242 |
+
|
243 |
+
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
|
244 |
+
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
245 |
+
x = x.view(new_x_shape)
|
246 |
+
return x.permute(0, 2, 1, 3)
|
247 |
+
|
248 |
+
def forward(
|
249 |
+
self,
|
250 |
+
hidden_states: torch.Tensor,
|
251 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
252 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
253 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
254 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
255 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
256 |
+
output_attentions: Optional[bool] = False,
|
257 |
+
) -> Tuple[torch.Tensor]:
|
258 |
+
mixed_query_layer = self.query(hidden_states)
|
259 |
+
|
260 |
+
# If this is instantiated as a cross-attention module, the keys
|
261 |
+
# and values come from an encoder; the attention mask needs to be
|
262 |
+
# such that the encoder's padding tokens are not attended to.
|
263 |
+
is_cross_attention = encoder_hidden_states is not None
|
264 |
+
|
265 |
+
if is_cross_attention and past_key_value is not None:
|
266 |
+
# reuse k,v, cross_attentions
|
267 |
+
key_layer = past_key_value[0]
|
268 |
+
value_layer = past_key_value[1]
|
269 |
+
attention_mask = encoder_attention_mask
|
270 |
+
elif is_cross_attention:
|
271 |
+
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
|
272 |
+
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
|
273 |
+
attention_mask = encoder_attention_mask
|
274 |
+
elif past_key_value is not None:
|
275 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
276 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
277 |
+
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
|
278 |
+
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
|
279 |
+
else:
|
280 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
281 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
282 |
+
|
283 |
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
284 |
+
|
285 |
+
use_cache = past_key_value is not None
|
286 |
+
if self.is_decoder:
|
287 |
+
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
|
288 |
+
# Further calls to cross_attention layer can then reuse all cross-attention
|
289 |
+
# key/value_states (first "if" case)
|
290 |
+
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
|
291 |
+
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
292 |
+
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
293 |
+
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
294 |
+
past_key_value = (key_layer, value_layer)
|
295 |
+
|
296 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
297 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
298 |
+
|
299 |
+
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
300 |
+
query_length, key_length = query_layer.shape[2], key_layer.shape[2]
|
301 |
+
if use_cache:
|
302 |
+
position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view(
|
303 |
+
-1, 1
|
304 |
+
)
|
305 |
+
else:
|
306 |
+
position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
|
307 |
+
position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
|
308 |
+
distance = position_ids_l - position_ids_r
|
309 |
+
|
310 |
+
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
|
311 |
+
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
|
312 |
+
|
313 |
+
if self.position_embedding_type == "relative_key":
|
314 |
+
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
315 |
+
attention_scores = attention_scores + relative_position_scores
|
316 |
+
elif self.position_embedding_type == "relative_key_query":
|
317 |
+
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
318 |
+
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
|
319 |
+
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
|
320 |
+
|
321 |
+
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
322 |
+
if attention_mask is not None:
|
323 |
+
# Apply the attention mask is (precomputed for all layers in ElectraModel forward() function)
|
324 |
+
attention_scores = attention_scores + attention_mask
|
325 |
+
|
326 |
+
# Normalize the attention scores to probabilities.
|
327 |
+
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
|
328 |
+
|
329 |
+
# This is actually dropping out entire tokens to attend to, which might
|
330 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
331 |
+
attention_probs = self.dropout(attention_probs)
|
332 |
+
|
333 |
+
# Mask heads if we want to
|
334 |
+
if head_mask is not None:
|
335 |
+
attention_probs = attention_probs * head_mask
|
336 |
+
|
337 |
+
context_layer = torch.matmul(attention_probs, value_layer)
|
338 |
+
|
339 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
340 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
341 |
+
context_layer = context_layer.view(new_context_layer_shape)
|
342 |
+
|
343 |
+
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
344 |
+
|
345 |
+
if self.is_decoder:
|
346 |
+
outputs = outputs + (past_key_value,)
|
347 |
+
return outputs
|
348 |
+
|
349 |
+
|
350 |
+
# Copied from transformers.models.bert.modeling_bert.BertSelfOutput
|
351 |
+
class ElectraSelfOutput(nn.Module):
|
352 |
+
def __init__(self, config):
|
353 |
+
super().__init__()
|
354 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
355 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
356 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
357 |
+
|
358 |
+
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
359 |
+
hidden_states = self.dense(hidden_states)
|
360 |
+
hidden_states = self.dropout(hidden_states)
|
361 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
362 |
+
return hidden_states
|
363 |
+
|
364 |
+
|
365 |
+
# Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->Electra
|
366 |
+
class ElectraAttention(nn.Module):
|
367 |
+
def __init__(self, config, position_embedding_type=None):
|
368 |
+
super().__init__()
|
369 |
+
self.self = ElectraSelfAttention(config, position_embedding_type=position_embedding_type)
|
370 |
+
self.output = ElectraSelfOutput(config)
|
371 |
+
self.pruned_heads = set()
|
372 |
+
|
373 |
+
def prune_heads(self, heads):
|
374 |
+
if len(heads) == 0:
|
375 |
+
return
|
376 |
+
heads, index = find_pruneable_heads_and_indices(
|
377 |
+
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
|
378 |
+
)
|
379 |
+
|
380 |
+
# Prune linear layers
|
381 |
+
self.self.query = prune_linear_layer(self.self.query, index)
|
382 |
+
self.self.key = prune_linear_layer(self.self.key, index)
|
383 |
+
self.self.value = prune_linear_layer(self.self.value, index)
|
384 |
+
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
385 |
+
|
386 |
+
# Update hyper params and store pruned heads
|
387 |
+
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
|
388 |
+
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
|
389 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
390 |
+
|
391 |
+
def forward(
|
392 |
+
self,
|
393 |
+
hidden_states: torch.Tensor,
|
394 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
395 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
396 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
397 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
398 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
399 |
+
output_attentions: Optional[bool] = False,
|
400 |
+
) -> Tuple[torch.Tensor]:
|
401 |
+
self_outputs = self.self(
|
402 |
+
hidden_states,
|
403 |
+
attention_mask,
|
404 |
+
head_mask,
|
405 |
+
encoder_hidden_states,
|
406 |
+
encoder_attention_mask,
|
407 |
+
past_key_value,
|
408 |
+
output_attentions,
|
409 |
+
)
|
410 |
+
attention_output = self.output(self_outputs[0], hidden_states)
|
411 |
+
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
|
412 |
+
return outputs
|
413 |
+
|
414 |
+
|
415 |
+
# Copied from transformers.models.bert.modeling_bert.BertIntermediate
|
416 |
+
class ElectraIntermediate(nn.Module):
|
417 |
+
def __init__(self, config):
|
418 |
+
super().__init__()
|
419 |
+
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
420 |
+
if isinstance(config.hidden_act, str):
|
421 |
+
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
422 |
+
else:
|
423 |
+
self.intermediate_act_fn = config.hidden_act
|
424 |
+
|
425 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
426 |
+
hidden_states = self.dense(hidden_states)
|
427 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
428 |
+
return hidden_states
|
429 |
+
|
430 |
+
|
431 |
+
# Copied from transformers.models.bert.modeling_bert.BertOutput
|
432 |
+
class ElectraOutput(nn.Module):
|
433 |
+
def __init__(self, config):
|
434 |
+
super().__init__()
|
435 |
+
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
436 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
437 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
438 |
+
|
439 |
+
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
440 |
+
hidden_states = self.dense(hidden_states)
|
441 |
+
hidden_states = self.dropout(hidden_states)
|
442 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
443 |
+
return hidden_states
|
444 |
+
|
445 |
+
|
446 |
+
# Copied from transformers.models.bert.modeling_bert.BertLayer with Bert->Electra
|
447 |
+
class ElectraLayer(nn.Module):
|
448 |
+
def __init__(self, config):
|
449 |
+
super().__init__()
|
450 |
+
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
451 |
+
self.seq_len_dim = 1
|
452 |
+
self.attention = ElectraAttention(config)
|
453 |
+
self.is_decoder = config.is_decoder
|
454 |
+
self.add_cross_attention = config.add_cross_attention
|
455 |
+
if self.add_cross_attention:
|
456 |
+
if not self.is_decoder:
|
457 |
+
raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
|
458 |
+
self.crossattention = ElectraAttention(config, position_embedding_type="absolute")
|
459 |
+
self.intermediate = ElectraIntermediate(config)
|
460 |
+
self.output = ElectraOutput(config)
|
461 |
+
|
462 |
+
def forward(
|
463 |
+
self,
|
464 |
+
hidden_states: torch.Tensor,
|
465 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
466 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
467 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
468 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
469 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
470 |
+
output_attentions: Optional[bool] = False,
|
471 |
+
) -> Tuple[torch.Tensor]:
|
472 |
+
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
473 |
+
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
|
474 |
+
self_attention_outputs = self.attention(
|
475 |
+
hidden_states,
|
476 |
+
attention_mask,
|
477 |
+
head_mask,
|
478 |
+
output_attentions=output_attentions,
|
479 |
+
past_key_value=self_attn_past_key_value,
|
480 |
+
)
|
481 |
+
attention_output = self_attention_outputs[0]
|
482 |
+
|
483 |
+
# if decoder, the last output is tuple of self-attn cache
|
484 |
+
if self.is_decoder:
|
485 |
+
outputs = self_attention_outputs[1:-1]
|
486 |
+
present_key_value = self_attention_outputs[-1]
|
487 |
+
else:
|
488 |
+
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
|
489 |
+
|
490 |
+
cross_attn_present_key_value = None
|
491 |
+
if self.is_decoder and encoder_hidden_states is not None:
|
492 |
+
if not hasattr(self, "crossattention"):
|
493 |
+
raise ValueError(
|
494 |
+
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
|
495 |
+
" by setting `config.add_cross_attention=True`"
|
496 |
+
)
|
497 |
+
|
498 |
+
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
|
499 |
+
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
|
500 |
+
cross_attention_outputs = self.crossattention(
|
501 |
+
attention_output,
|
502 |
+
attention_mask,
|
503 |
+
head_mask,
|
504 |
+
encoder_hidden_states,
|
505 |
+
encoder_attention_mask,
|
506 |
+
cross_attn_past_key_value,
|
507 |
+
output_attentions,
|
508 |
+
)
|
509 |
+
attention_output = cross_attention_outputs[0]
|
510 |
+
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
|
511 |
+
|
512 |
+
# add cross-attn cache to positions 3,4 of present_key_value tuple
|
513 |
+
cross_attn_present_key_value = cross_attention_outputs[-1]
|
514 |
+
present_key_value = present_key_value + cross_attn_present_key_value
|
515 |
+
|
516 |
+
layer_output = apply_chunking_to_forward(
|
517 |
+
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
|
518 |
+
)
|
519 |
+
outputs = (layer_output,) + outputs
|
520 |
+
|
521 |
+
# if decoder, return the attn key/values as the last output
|
522 |
+
if self.is_decoder:
|
523 |
+
outputs = outputs + (present_key_value,)
|
524 |
+
|
525 |
+
return outputs
|
526 |
+
|
527 |
+
def feed_forward_chunk(self, attention_output):
|
528 |
+
intermediate_output = self.intermediate(attention_output)
|
529 |
+
layer_output = self.output(intermediate_output, attention_output)
|
530 |
+
return layer_output
|
531 |
+
|
532 |
+
|
533 |
+
# Copied from transformers.models.bert.modeling_bert.BertEncoder with Bert->Electra
|
534 |
+
class ElectraEncoder(nn.Module):
|
535 |
+
def __init__(self, config):
|
536 |
+
super().__init__()
|
537 |
+
self.config = config
|
538 |
+
self.layer = nn.ModuleList([ElectraLayer(config) for _ in range(config.num_hidden_layers)])
|
539 |
+
self.gradient_checkpointing = False
|
540 |
+
|
541 |
+
def forward(
|
542 |
+
self,
|
543 |
+
hidden_states: torch.Tensor,
|
544 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
545 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
546 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
547 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
548 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
549 |
+
use_cache: Optional[bool] = None,
|
550 |
+
output_attentions: Optional[bool] = False,
|
551 |
+
output_hidden_states: Optional[bool] = False,
|
552 |
+
return_dict: Optional[bool] = True,
|
553 |
+
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
|
554 |
+
all_hidden_states = () if output_hidden_states else None
|
555 |
+
all_self_attentions = () if output_attentions else None
|
556 |
+
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
|
557 |
+
|
558 |
+
if self.gradient_checkpointing and self.training:
|
559 |
+
if use_cache:
|
560 |
+
logger.warning_once(
|
561 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
562 |
+
)
|
563 |
+
use_cache = False
|
564 |
+
|
565 |
+
next_decoder_cache = () if use_cache else None
|
566 |
+
for i, layer_module in enumerate(self.layer):
|
567 |
+
if output_hidden_states:
|
568 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
569 |
+
|
570 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
571 |
+
past_key_value = past_key_values[i] if past_key_values is not None else None
|
572 |
+
|
573 |
+
if self.gradient_checkpointing and self.training:
|
574 |
+
layer_outputs = self._gradient_checkpointing_func(
|
575 |
+
layer_module.__call__,
|
576 |
+
hidden_states,
|
577 |
+
attention_mask,
|
578 |
+
layer_head_mask,
|
579 |
+
encoder_hidden_states,
|
580 |
+
encoder_attention_mask,
|
581 |
+
past_key_value,
|
582 |
+
output_attentions,
|
583 |
+
)
|
584 |
+
else:
|
585 |
+
layer_outputs = layer_module(
|
586 |
+
hidden_states,
|
587 |
+
attention_mask,
|
588 |
+
layer_head_mask,
|
589 |
+
encoder_hidden_states,
|
590 |
+
encoder_attention_mask,
|
591 |
+
past_key_value,
|
592 |
+
output_attentions,
|
593 |
+
)
|
594 |
+
|
595 |
+
hidden_states = layer_outputs[0]
|
596 |
+
if use_cache:
|
597 |
+
next_decoder_cache += (layer_outputs[-1],)
|
598 |
+
if output_attentions:
|
599 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
600 |
+
if self.config.add_cross_attention:
|
601 |
+
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
|
602 |
+
|
603 |
+
if output_hidden_states:
|
604 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
605 |
+
|
606 |
+
if not return_dict:
|
607 |
+
return tuple(
|
608 |
+
v
|
609 |
+
for v in [
|
610 |
+
hidden_states,
|
611 |
+
next_decoder_cache,
|
612 |
+
all_hidden_states,
|
613 |
+
all_self_attentions,
|
614 |
+
all_cross_attentions,
|
615 |
+
]
|
616 |
+
if v is not None
|
617 |
+
)
|
618 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
619 |
+
last_hidden_state=hidden_states,
|
620 |
+
past_key_values=next_decoder_cache,
|
621 |
+
hidden_states=all_hidden_states,
|
622 |
+
attentions=all_self_attentions,
|
623 |
+
cross_attentions=all_cross_attentions,
|
624 |
+
)
|
625 |
+
|
626 |
+
|
627 |
+
class ElectraDiscriminatorPredictions(nn.Module):
|
628 |
+
"""Prediction module for the discriminator, made up of two dense layers."""
|
629 |
+
|
630 |
+
def __init__(self, config):
|
631 |
+
super().__init__()
|
632 |
+
|
633 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
634 |
+
self.activation = get_activation(config.hidden_act)
|
635 |
+
self.dense_prediction = nn.Linear(config.hidden_size, 1)
|
636 |
+
self.config = config
|
637 |
+
|
638 |
+
def forward(self, discriminator_hidden_states):
|
639 |
+
hidden_states = self.dense(discriminator_hidden_states)
|
640 |
+
hidden_states = self.activation(hidden_states)
|
641 |
+
logits = self.dense_prediction(hidden_states).squeeze(-1)
|
642 |
+
|
643 |
+
return logits
|
644 |
+
|
645 |
+
|
646 |
+
class ElectraGeneratorPredictions(nn.Module):
|
647 |
+
"""Prediction module for the generator, made up of two dense layers."""
|
648 |
+
|
649 |
+
def __init__(self, config):
|
650 |
+
super().__init__()
|
651 |
+
|
652 |
+
self.activation = get_activation("gelu")
|
653 |
+
self.LayerNorm = nn.LayerNorm(config.embedding_size, eps=config.layer_norm_eps)
|
654 |
+
self.dense = nn.Linear(config.hidden_size, config.embedding_size)
|
655 |
+
|
656 |
+
def forward(self, generator_hidden_states):
|
657 |
+
hidden_states = self.dense(generator_hidden_states)
|
658 |
+
hidden_states = self.activation(hidden_states)
|
659 |
+
hidden_states = self.LayerNorm(hidden_states)
|
660 |
+
|
661 |
+
return hidden_states
|
662 |
+
|
663 |
+
|
664 |
+
class ElectraPreTrainedModel(PreTrainedModel):
|
665 |
+
"""
|
666 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
667 |
+
models.
|
668 |
+
"""
|
669 |
+
|
670 |
+
config_class = ElectraConfig
|
671 |
+
load_tf_weights = load_tf_weights_in_electra
|
672 |
+
base_model_prefix = "electra"
|
673 |
+
supports_gradient_checkpointing = True
|
674 |
+
|
675 |
+
# Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights
|
676 |
+
def _init_weights(self, module):
|
677 |
+
"""Initialize the weights"""
|
678 |
+
if isinstance(module, nn.Linear):
|
679 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
680 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
681 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
682 |
+
if module.bias is not None:
|
683 |
+
module.bias.data.zero_()
|
684 |
+
elif isinstance(module, nn.Embedding):
|
685 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
686 |
+
if module.padding_idx is not None:
|
687 |
+
module.weight.data[module.padding_idx].zero_()
|
688 |
+
elif isinstance(module, nn.LayerNorm):
|
689 |
+
module.bias.data.zero_()
|
690 |
+
module.weight.data.fill_(1.0)
|
691 |
+
|
692 |
+
|
693 |
+
@dataclass
|
694 |
+
class ElectraForPreTrainingOutput(ModelOutput):
|
695 |
+
"""
|
696 |
+
Output type of [`ElectraForPreTraining`].
|
697 |
+
|
698 |
+
Args:
|
699 |
+
loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
|
700 |
+
Total loss of the ELECTRA objective.
|
701 |
+
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
|
702 |
+
Prediction scores of the head (scores for each token before SoftMax).
|
703 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
704 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
|
705 |
+
shape `(batch_size, sequence_length, hidden_size)`.
|
706 |
+
|
707 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
708 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
709 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
710 |
+
sequence_length)`.
|
711 |
+
|
712 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
713 |
+
heads.
|
714 |
+
"""
|
715 |
+
|
716 |
+
loss: Optional[torch.FloatTensor] = None
|
717 |
+
logits: torch.FloatTensor = None
|
718 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
719 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
720 |
+
|
721 |
+
|
722 |
+
ELECTRA_START_DOCSTRING = r"""
|
723 |
+
|
724 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
725 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
726 |
+
etc.)
|
727 |
+
|
728 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
729 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
730 |
+
and behavior.
|
731 |
+
|
732 |
+
Parameters:
|
733 |
+
config ([`ElectraConfig`]): Model configuration class with all the parameters of the model.
|
734 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
735 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
736 |
+
"""
|
737 |
+
|
738 |
+
ELECTRA_INPUTS_DOCSTRING = r"""
|
739 |
+
Args:
|
740 |
+
input_ids (`torch.LongTensor` of shape `({0})`):
|
741 |
+
Indices of input sequence tokens in the vocabulary.
|
742 |
+
|
743 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
744 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
745 |
+
|
746 |
+
[What are input IDs?](../glossary#input-ids)
|
747 |
+
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
|
748 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
749 |
+
|
750 |
+
- 1 for tokens that are **not masked**,
|
751 |
+
- 0 for tokens that are **masked**.
|
752 |
+
|
753 |
+
[What are attention masks?](../glossary#attention-mask)
|
754 |
+
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
755 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
756 |
+
1]`:
|
757 |
+
|
758 |
+
- 0 corresponds to a *sentence A* token,
|
759 |
+
- 1 corresponds to a *sentence B* token.
|
760 |
+
|
761 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
762 |
+
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
763 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
764 |
+
config.max_position_embeddings - 1]`.
|
765 |
+
|
766 |
+
[What are position IDs?](../glossary#position-ids)
|
767 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
768 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
769 |
+
|
770 |
+
- 1 indicates the head is **not masked**,
|
771 |
+
- 0 indicates the head is **masked**.
|
772 |
+
|
773 |
+
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
|
774 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
775 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
776 |
+
model's internal embedding lookup matrix.
|
777 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
|
778 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
779 |
+
the model is configured as a decoder.
|
780 |
+
encoder_attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
|
781 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
782 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
|
783 |
+
|
784 |
+
- 1 indicates the head is **not masked**,
|
785 |
+
- 0 indicates the head is **masked**.
|
786 |
+
|
787 |
+
output_attentions (`bool`, *optional*):
|
788 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
789 |
+
tensors for more detail.
|
790 |
+
output_hidden_states (`bool`, *optional*):
|
791 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
792 |
+
more detail.
|
793 |
+
return_dict (`bool`, *optional*):
|
794 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
795 |
+
"""
|
796 |
+
|
797 |
+
|
798 |
+
@add_start_docstrings(
|
799 |
+
"The bare Electra Model transformer outputting raw hidden-states without any specific head on top. Identical to "
|
800 |
+
"the BERT model except that it uses an additional linear layer between the embedding layer and the encoder if the "
|
801 |
+
"hidden size and embedding size are different. "
|
802 |
+
""
|
803 |
+
"Both the generator and discriminator checkpoints may be loaded into this model.",
|
804 |
+
ELECTRA_START_DOCSTRING,
|
805 |
+
)
|
806 |
+
class ElectraModel(ElectraPreTrainedModel):
|
807 |
+
def __init__(self, config):
|
808 |
+
super().__init__(config)
|
809 |
+
self.embeddings = ElectraEmbeddings(config)
|
810 |
+
|
811 |
+
if config.embedding_size != config.hidden_size:
|
812 |
+
self.embeddings_project = nn.Linear(config.embedding_size, config.hidden_size)
|
813 |
+
|
814 |
+
self.encoder = ElectraEncoder(config)
|
815 |
+
self.config = config
|
816 |
+
# Initialize weights and apply final processing
|
817 |
+
self.post_init()
|
818 |
+
|
819 |
+
def get_input_embeddings(self):
|
820 |
+
return self.embeddings.word_embeddings
|
821 |
+
|
822 |
+
def set_input_embeddings(self, value):
|
823 |
+
self.embeddings.word_embeddings = value
|
824 |
+
|
825 |
+
def _prune_heads(self, heads_to_prune):
|
826 |
+
"""
|
827 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
828 |
+
class PreTrainedModel
|
829 |
+
"""
|
830 |
+
for layer, heads in heads_to_prune.items():
|
831 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
832 |
+
|
833 |
+
@add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
834 |
+
@add_code_sample_docstrings(
|
835 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
836 |
+
output_type=BaseModelOutputWithCrossAttentions,
|
837 |
+
config_class=_CONFIG_FOR_DOC,
|
838 |
+
)
|
839 |
+
def forward(
|
840 |
+
self,
|
841 |
+
input_ids: Optional[torch.Tensor] = None,
|
842 |
+
attention_mask: Optional[torch.Tensor] = None,
|
843 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
844 |
+
position_ids: Optional[torch.Tensor] = None,
|
845 |
+
head_mask: Optional[torch.Tensor] = None,
|
846 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
847 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
848 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
849 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
850 |
+
use_cache: Optional[bool] = None,
|
851 |
+
output_attentions: Optional[bool] = None,
|
852 |
+
output_hidden_states: Optional[bool] = None,
|
853 |
+
return_dict: Optional[bool] = None,
|
854 |
+
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithCrossAttentions]:
|
855 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
856 |
+
output_hidden_states = (
|
857 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
858 |
+
)
|
859 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
860 |
+
|
861 |
+
if input_ids is not None and inputs_embeds is not None:
|
862 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
863 |
+
elif input_ids is not None:
|
864 |
+
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
865 |
+
input_shape = input_ids.size()
|
866 |
+
elif inputs_embeds is not None:
|
867 |
+
input_shape = inputs_embeds.size()[:-1]
|
868 |
+
else:
|
869 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
870 |
+
|
871 |
+
batch_size, seq_length = input_shape
|
872 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
873 |
+
|
874 |
+
# past_key_values_length
|
875 |
+
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
876 |
+
|
877 |
+
if attention_mask is None:
|
878 |
+
attention_mask = torch.ones(input_shape, device=device)
|
879 |
+
if token_type_ids is None:
|
880 |
+
if hasattr(self.embeddings, "token_type_ids"):
|
881 |
+
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
|
882 |
+
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
|
883 |
+
token_type_ids = buffered_token_type_ids_expanded
|
884 |
+
else:
|
885 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
|
886 |
+
|
887 |
+
extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape)
|
888 |
+
|
889 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
890 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
891 |
+
if self.config.is_decoder and encoder_hidden_states is not None:
|
892 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
893 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
894 |
+
if encoder_attention_mask is None:
|
895 |
+
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
896 |
+
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
897 |
+
else:
|
898 |
+
encoder_extended_attention_mask = None
|
899 |
+
|
900 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
901 |
+
|
902 |
+
hidden_states = self.embeddings(
|
903 |
+
input_ids=input_ids,
|
904 |
+
position_ids=position_ids,
|
905 |
+
token_type_ids=token_type_ids,
|
906 |
+
inputs_embeds=inputs_embeds,
|
907 |
+
past_key_values_length=past_key_values_length,
|
908 |
+
)
|
909 |
+
|
910 |
+
if hasattr(self, "embeddings_project"):
|
911 |
+
hidden_states = self.embeddings_project(hidden_states)
|
912 |
+
|
913 |
+
hidden_states = self.encoder(
|
914 |
+
hidden_states,
|
915 |
+
attention_mask=extended_attention_mask,
|
916 |
+
head_mask=head_mask,
|
917 |
+
encoder_hidden_states=encoder_hidden_states,
|
918 |
+
encoder_attention_mask=encoder_extended_attention_mask,
|
919 |
+
past_key_values=past_key_values,
|
920 |
+
use_cache=use_cache,
|
921 |
+
output_attentions=output_attentions,
|
922 |
+
output_hidden_states=output_hidden_states,
|
923 |
+
return_dict=return_dict,
|
924 |
+
)
|
925 |
+
|
926 |
+
return hidden_states
|
927 |
+
|
928 |
+
|
929 |
+
class ElectraClassificationHead(nn.Module):
|
930 |
+
"""Head for sentence-level classification tasks."""
|
931 |
+
|
932 |
+
def __init__(self, config):
|
933 |
+
super().__init__()
|
934 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
935 |
+
classifier_dropout = (
|
936 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
937 |
+
)
|
938 |
+
self.activation = get_activation("gelu")
|
939 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
940 |
+
self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
|
941 |
+
|
942 |
+
def forward(self, features, **kwargs):
|
943 |
+
x = features[:, 0, :] # take <s> token (equiv. to [CLS])
|
944 |
+
x = self.dropout(x)
|
945 |
+
x = self.dense(x)
|
946 |
+
x = self.activation(x) # although BERT uses tanh here, it seems Electra authors used gelu here
|
947 |
+
x = self.dropout(x)
|
948 |
+
x = self.out_proj(x)
|
949 |
+
return x
|
950 |
+
|
951 |
+
|
952 |
+
@add_start_docstrings(
|
953 |
+
"""
|
954 |
+
ELECTRA Model transformer with a sequence classification/regression head on top (a linear layer on top of the
|
955 |
+
pooled output) e.g. for GLUE tasks.
|
956 |
+
""",
|
957 |
+
ELECTRA_START_DOCSTRING,
|
958 |
+
)
|
959 |
+
class ElectraForSequenceClassification(ElectraPreTrainedModel):
|
960 |
+
def __init__(self, config):
|
961 |
+
super().__init__(config)
|
962 |
+
self.num_labels = config.num_labels
|
963 |
+
self.config = config
|
964 |
+
self.electra = ElectraModel(config)
|
965 |
+
self.classifier = ElectraClassificationHead(config)
|
966 |
+
|
967 |
+
# Initialize weights and apply final processing
|
968 |
+
self.post_init()
|
969 |
+
|
970 |
+
@add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
971 |
+
@add_code_sample_docstrings(
|
972 |
+
checkpoint="bhadresh-savani/electra-base-emotion",
|
973 |
+
output_type=SequenceClassifierOutput,
|
974 |
+
config_class=_CONFIG_FOR_DOC,
|
975 |
+
expected_output="'joy'",
|
976 |
+
expected_loss=0.06,
|
977 |
+
)
|
978 |
+
def forward(
|
979 |
+
self,
|
980 |
+
input_ids: Optional[torch.Tensor] = None,
|
981 |
+
attention_mask: Optional[torch.Tensor] = None,
|
982 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
983 |
+
position_ids: Optional[torch.Tensor] = None,
|
984 |
+
head_mask: Optional[torch.Tensor] = None,
|
985 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
986 |
+
labels: Optional[torch.Tensor] = None,
|
987 |
+
output_attentions: Optional[bool] = None,
|
988 |
+
output_hidden_states: Optional[bool] = None,
|
989 |
+
return_dict: Optional[bool] = None,
|
990 |
+
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
|
991 |
+
r"""
|
992 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
993 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
994 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
995 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
996 |
+
"""
|
997 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
998 |
+
|
999 |
+
discriminator_hidden_states = self.electra(
|
1000 |
+
input_ids,
|
1001 |
+
attention_mask=attention_mask,
|
1002 |
+
token_type_ids=token_type_ids,
|
1003 |
+
position_ids=position_ids,
|
1004 |
+
head_mask=head_mask,
|
1005 |
+
inputs_embeds=inputs_embeds,
|
1006 |
+
output_attentions=output_attentions,
|
1007 |
+
output_hidden_states=output_hidden_states,
|
1008 |
+
return_dict=return_dict,
|
1009 |
+
)
|
1010 |
+
|
1011 |
+
sequence_output = discriminator_hidden_states[0]
|
1012 |
+
logits = self.classifier(sequence_output)
|
1013 |
+
|
1014 |
+
loss = None
|
1015 |
+
if labels is not None:
|
1016 |
+
if self.config.problem_type is None:
|
1017 |
+
if self.num_labels == 1:
|
1018 |
+
self.config.problem_type = "regression"
|
1019 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1020 |
+
self.config.problem_type = "single_label_classification"
|
1021 |
+
else:
|
1022 |
+
self.config.problem_type = "multi_label_classification"
|
1023 |
+
|
1024 |
+
if self.config.problem_type == "regression":
|
1025 |
+
loss_fct = MSELoss()
|
1026 |
+
if self.num_labels == 1:
|
1027 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
1028 |
+
else:
|
1029 |
+
loss = loss_fct(logits, labels)
|
1030 |
+
elif self.config.problem_type == "single_label_classification":
|
1031 |
+
loss_fct = CrossEntropyLoss()
|
1032 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1033 |
+
elif self.config.problem_type == "multi_label_classification":
|
1034 |
+
loss_fct = BCEWithLogitsLoss()
|
1035 |
+
loss = loss_fct(logits, labels)
|
1036 |
+
|
1037 |
+
if not return_dict:
|
1038 |
+
output = (logits,) + discriminator_hidden_states[1:]
|
1039 |
+
return ((loss,) + output) if loss is not None else output
|
1040 |
+
|
1041 |
+
return SequenceClassifierOutput(
|
1042 |
+
loss=loss,
|
1043 |
+
logits=logits,
|
1044 |
+
hidden_states=discriminator_hidden_states.hidden_states,
|
1045 |
+
attentions=discriminator_hidden_states.attentions,
|
1046 |
+
)
|
1047 |
+
|
1048 |
+
|
1049 |
+
@add_start_docstrings(
|
1050 |
+
"""
|
1051 |
+
Electra model with a binary classification head on top as used during pretraining for identifying generated tokens.
|
1052 |
+
|
1053 |
+
It is recommended to load the discriminator checkpoint into that model.
|
1054 |
+
""",
|
1055 |
+
ELECTRA_START_DOCSTRING,
|
1056 |
+
)
|
1057 |
+
class ElectraForPreTraining(ElectraPreTrainedModel):
|
1058 |
+
def __init__(self, config):
|
1059 |
+
super().__init__(config)
|
1060 |
+
|
1061 |
+
self.electra = ElectraModel(config)
|
1062 |
+
self.discriminator_predictions = ElectraDiscriminatorPredictions(config)
|
1063 |
+
# Initialize weights and apply final processing
|
1064 |
+
self.post_init()
|
1065 |
+
|
1066 |
+
@add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1067 |
+
@replace_return_docstrings(output_type=ElectraForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
|
1068 |
+
def forward(
|
1069 |
+
self,
|
1070 |
+
input_ids: Optional[torch.Tensor] = None,
|
1071 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1072 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1073 |
+
position_ids: Optional[torch.Tensor] = None,
|
1074 |
+
head_mask: Optional[torch.Tensor] = None,
|
1075 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1076 |
+
labels: Optional[torch.Tensor] = None,
|
1077 |
+
output_attentions: Optional[bool] = None,
|
1078 |
+
output_hidden_states: Optional[bool] = None,
|
1079 |
+
return_dict: Optional[bool] = None,
|
1080 |
+
) -> Union[Tuple[torch.Tensor], ElectraForPreTrainingOutput]:
|
1081 |
+
r"""
|
1082 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1083 |
+
Labels for computing the ELECTRA loss. Input should be a sequence of tokens (see `input_ids` docstring)
|
1084 |
+
Indices should be in `[0, 1]`:
|
1085 |
+
|
1086 |
+
- 0 indicates the token is an original token,
|
1087 |
+
- 1 indicates the token was replaced.
|
1088 |
+
|
1089 |
+
Returns:
|
1090 |
+
|
1091 |
+
Examples:
|
1092 |
+
|
1093 |
+
```python
|
1094 |
+
>>> from transformers import ElectraForPreTraining, AutoTokenizer
|
1095 |
+
>>> import torch
|
1096 |
+
|
1097 |
+
>>> discriminator = ElectraForPreTraining.from_pretrained("google/electra-base-discriminator")
|
1098 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("google/electra-base-discriminator")
|
1099 |
+
|
1100 |
+
>>> sentence = "The quick brown fox jumps over the lazy dog"
|
1101 |
+
>>> fake_sentence = "The quick brown fox fake over the lazy dog"
|
1102 |
+
|
1103 |
+
>>> fake_tokens = tokenizer.tokenize(fake_sentence, add_special_tokens=True)
|
1104 |
+
>>> fake_inputs = tokenizer.encode(fake_sentence, return_tensors="pt")
|
1105 |
+
>>> discriminator_outputs = discriminator(fake_inputs)
|
1106 |
+
>>> predictions = torch.round((torch.sign(discriminator_outputs[0]) + 1) / 2)
|
1107 |
+
|
1108 |
+
>>> fake_tokens
|
1109 |
+
['[CLS]', 'the', 'quick', 'brown', 'fox', 'fake', 'over', 'the', 'lazy', 'dog', '[SEP]']
|
1110 |
+
|
1111 |
+
>>> predictions.squeeze().tolist()
|
1112 |
+
[0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0]
|
1113 |
+
```"""
|
1114 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1115 |
+
|
1116 |
+
discriminator_hidden_states = self.electra(
|
1117 |
+
input_ids,
|
1118 |
+
attention_mask=attention_mask,
|
1119 |
+
token_type_ids=token_type_ids,
|
1120 |
+
position_ids=position_ids,
|
1121 |
+
head_mask=head_mask,
|
1122 |
+
inputs_embeds=inputs_embeds,
|
1123 |
+
output_attentions=output_attentions,
|
1124 |
+
output_hidden_states=output_hidden_states,
|
1125 |
+
return_dict=return_dict,
|
1126 |
+
)
|
1127 |
+
discriminator_sequence_output = discriminator_hidden_states[0]
|
1128 |
+
|
1129 |
+
logits = self.discriminator_predictions(discriminator_sequence_output)
|
1130 |
+
|
1131 |
+
loss = None
|
1132 |
+
if labels is not None:
|
1133 |
+
loss_fct = nn.BCEWithLogitsLoss()
|
1134 |
+
if attention_mask is not None:
|
1135 |
+
active_loss = attention_mask.view(-1, discriminator_sequence_output.shape[1]) == 1
|
1136 |
+
active_logits = logits.view(-1, discriminator_sequence_output.shape[1])[active_loss]
|
1137 |
+
active_labels = labels[active_loss]
|
1138 |
+
loss = loss_fct(active_logits, active_labels.float())
|
1139 |
+
else:
|
1140 |
+
loss = loss_fct(logits.view(-1, discriminator_sequence_output.shape[1]), labels.float())
|
1141 |
+
|
1142 |
+
if not return_dict:
|
1143 |
+
output = (logits,) + discriminator_hidden_states[1:]
|
1144 |
+
return ((loss,) + output) if loss is not None else output
|
1145 |
+
|
1146 |
+
return ElectraForPreTrainingOutput(
|
1147 |
+
loss=loss,
|
1148 |
+
logits=logits,
|
1149 |
+
hidden_states=discriminator_hidden_states.hidden_states,
|
1150 |
+
attentions=discriminator_hidden_states.attentions,
|
1151 |
+
)
|
1152 |
+
|
1153 |
+
|
1154 |
+
@add_start_docstrings(
|
1155 |
+
"""
|
1156 |
+
Electra model with a language modeling head on top.
|
1157 |
+
|
1158 |
+
Even though both the discriminator and generator may be loaded into this model, the generator is the only model of
|
1159 |
+
the two to have been trained for the masked language modeling task.
|
1160 |
+
""",
|
1161 |
+
ELECTRA_START_DOCSTRING,
|
1162 |
+
)
|
1163 |
+
class ElectraForMaskedLM(ElectraPreTrainedModel):
|
1164 |
+
_tied_weights_keys = ["generator_lm_head.weight"]
|
1165 |
+
|
1166 |
+
def __init__(self, config):
|
1167 |
+
super().__init__(config)
|
1168 |
+
|
1169 |
+
self.electra = ElectraModel(config)
|
1170 |
+
self.generator_predictions = ElectraGeneratorPredictions(config)
|
1171 |
+
|
1172 |
+
self.generator_lm_head = nn.Linear(config.embedding_size, config.vocab_size)
|
1173 |
+
# Initialize weights and apply final processing
|
1174 |
+
self.post_init()
|
1175 |
+
|
1176 |
+
def get_output_embeddings(self):
|
1177 |
+
return self.generator_lm_head
|
1178 |
+
|
1179 |
+
def set_output_embeddings(self, word_embeddings):
|
1180 |
+
self.generator_lm_head = word_embeddings
|
1181 |
+
|
1182 |
+
@add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1183 |
+
@add_code_sample_docstrings(
|
1184 |
+
checkpoint="google/electra-small-generator",
|
1185 |
+
output_type=MaskedLMOutput,
|
1186 |
+
config_class=_CONFIG_FOR_DOC,
|
1187 |
+
mask="[MASK]",
|
1188 |
+
expected_output="'paris'",
|
1189 |
+
expected_loss=1.22,
|
1190 |
+
)
|
1191 |
+
def forward(
|
1192 |
+
self,
|
1193 |
+
input_ids: Optional[torch.Tensor] = None,
|
1194 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1195 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1196 |
+
position_ids: Optional[torch.Tensor] = None,
|
1197 |
+
head_mask: Optional[torch.Tensor] = None,
|
1198 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1199 |
+
labels: Optional[torch.Tensor] = None,
|
1200 |
+
output_attentions: Optional[bool] = None,
|
1201 |
+
output_hidden_states: Optional[bool] = None,
|
1202 |
+
return_dict: Optional[bool] = None,
|
1203 |
+
) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
|
1204 |
+
r"""
|
1205 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1206 |
+
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
|
1207 |
+
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
|
1208 |
+
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
|
1209 |
+
"""
|
1210 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1211 |
+
|
1212 |
+
generator_hidden_states = self.electra(
|
1213 |
+
input_ids,
|
1214 |
+
attention_mask=attention_mask,
|
1215 |
+
token_type_ids=token_type_ids,
|
1216 |
+
position_ids=position_ids,
|
1217 |
+
head_mask=head_mask,
|
1218 |
+
inputs_embeds=inputs_embeds,
|
1219 |
+
output_attentions=output_attentions,
|
1220 |
+
output_hidden_states=output_hidden_states,
|
1221 |
+
return_dict=return_dict,
|
1222 |
+
)
|
1223 |
+
generator_sequence_output = generator_hidden_states[0]
|
1224 |
+
|
1225 |
+
prediction_scores = self.generator_predictions(generator_sequence_output)
|
1226 |
+
prediction_scores = self.generator_lm_head(prediction_scores)
|
1227 |
+
|
1228 |
+
loss = None
|
1229 |
+
# Masked language modeling softmax layer
|
1230 |
+
if labels is not None:
|
1231 |
+
loss_fct = nn.CrossEntropyLoss() # -100 index = padding token
|
1232 |
+
loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
1233 |
+
|
1234 |
+
if not return_dict:
|
1235 |
+
output = (prediction_scores,) + generator_hidden_states[1:]
|
1236 |
+
return ((loss,) + output) if loss is not None else output
|
1237 |
+
|
1238 |
+
return MaskedLMOutput(
|
1239 |
+
loss=loss,
|
1240 |
+
logits=prediction_scores,
|
1241 |
+
hidden_states=generator_hidden_states.hidden_states,
|
1242 |
+
attentions=generator_hidden_states.attentions,
|
1243 |
+
)
|
1244 |
+
|
1245 |
+
|
1246 |
+
@add_start_docstrings(
|
1247 |
+
"""
|
1248 |
+
Electra model with a token classification head on top.
|
1249 |
+
|
1250 |
+
Both the discriminator and generator may be loaded into this model.
|
1251 |
+
""",
|
1252 |
+
ELECTRA_START_DOCSTRING,
|
1253 |
+
)
|
1254 |
+
class ElectraForTokenClassification(ElectraPreTrainedModel):
|
1255 |
+
def __init__(self, config):
|
1256 |
+
super().__init__(config)
|
1257 |
+
self.num_labels = config.num_labels
|
1258 |
+
|
1259 |
+
self.electra = ElectraModel(config)
|
1260 |
+
classifier_dropout = (
|
1261 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
1262 |
+
)
|
1263 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
1264 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
1265 |
+
# Initialize weights and apply final processing
|
1266 |
+
self.post_init()
|
1267 |
+
|
1268 |
+
@add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1269 |
+
@add_code_sample_docstrings(
|
1270 |
+
checkpoint="bhadresh-savani/electra-base-discriminator-finetuned-conll03-english",
|
1271 |
+
output_type=TokenClassifierOutput,
|
1272 |
+
config_class=_CONFIG_FOR_DOC,
|
1273 |
+
expected_output="['B-LOC', 'B-ORG', 'O', 'O', 'O', 'O', 'O', 'B-LOC', 'O', 'B-LOC', 'I-LOC']",
|
1274 |
+
expected_loss=0.11,
|
1275 |
+
)
|
1276 |
+
def forward(
|
1277 |
+
self,
|
1278 |
+
input_ids: Optional[torch.Tensor] = None,
|
1279 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1280 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1281 |
+
position_ids: Optional[torch.Tensor] = None,
|
1282 |
+
head_mask: Optional[torch.Tensor] = None,
|
1283 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1284 |
+
labels: Optional[torch.Tensor] = None,
|
1285 |
+
output_attentions: Optional[bool] = None,
|
1286 |
+
output_hidden_states: Optional[bool] = None,
|
1287 |
+
return_dict: Optional[bool] = None,
|
1288 |
+
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
|
1289 |
+
r"""
|
1290 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1291 |
+
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
|
1292 |
+
"""
|
1293 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1294 |
+
|
1295 |
+
discriminator_hidden_states = self.electra(
|
1296 |
+
input_ids,
|
1297 |
+
attention_mask=attention_mask,
|
1298 |
+
token_type_ids=token_type_ids,
|
1299 |
+
position_ids=position_ids,
|
1300 |
+
head_mask=head_mask,
|
1301 |
+
inputs_embeds=inputs_embeds,
|
1302 |
+
output_attentions=output_attentions,
|
1303 |
+
output_hidden_states=output_hidden_states,
|
1304 |
+
return_dict=return_dict,
|
1305 |
+
)
|
1306 |
+
discriminator_sequence_output = discriminator_hidden_states[0]
|
1307 |
+
|
1308 |
+
discriminator_sequence_output = self.dropout(discriminator_sequence_output)
|
1309 |
+
logits = self.classifier(discriminator_sequence_output)
|
1310 |
+
|
1311 |
+
loss = None
|
1312 |
+
if labels is not None:
|
1313 |
+
loss_fct = CrossEntropyLoss()
|
1314 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1315 |
+
|
1316 |
+
if not return_dict:
|
1317 |
+
output = (logits,) + discriminator_hidden_states[1:]
|
1318 |
+
return ((loss,) + output) if loss is not None else output
|
1319 |
+
|
1320 |
+
return TokenClassifierOutput(
|
1321 |
+
loss=loss,
|
1322 |
+
logits=logits,
|
1323 |
+
hidden_states=discriminator_hidden_states.hidden_states,
|
1324 |
+
attentions=discriminator_hidden_states.attentions,
|
1325 |
+
)
|
1326 |
+
|
1327 |
+
|
1328 |
+
@add_start_docstrings(
|
1329 |
+
"""
|
1330 |
+
ELECTRA Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
|
1331 |
+
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
1332 |
+
""",
|
1333 |
+
ELECTRA_START_DOCSTRING,
|
1334 |
+
)
|
1335 |
+
class ElectraForQuestionAnswering(ElectraPreTrainedModel):
|
1336 |
+
config_class = ElectraConfig
|
1337 |
+
base_model_prefix = "electra"
|
1338 |
+
|
1339 |
+
def __init__(self, config):
|
1340 |
+
super().__init__(config)
|
1341 |
+
self.num_labels = config.num_labels
|
1342 |
+
|
1343 |
+
self.electra = ElectraModel(config)
|
1344 |
+
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
|
1345 |
+
|
1346 |
+
# Initialize weights and apply final processing
|
1347 |
+
self.post_init()
|
1348 |
+
|
1349 |
+
@add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1350 |
+
@add_code_sample_docstrings(
|
1351 |
+
checkpoint="bhadresh-savani/electra-base-squad2",
|
1352 |
+
output_type=QuestionAnsweringModelOutput,
|
1353 |
+
config_class=_CONFIG_FOR_DOC,
|
1354 |
+
qa_target_start_index=11,
|
1355 |
+
qa_target_end_index=12,
|
1356 |
+
expected_output="'a nice puppet'",
|
1357 |
+
expected_loss=2.64,
|
1358 |
+
)
|
1359 |
+
def forward(
|
1360 |
+
self,
|
1361 |
+
input_ids: Optional[torch.Tensor] = None,
|
1362 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1363 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1364 |
+
position_ids: Optional[torch.Tensor] = None,
|
1365 |
+
head_mask: Optional[torch.Tensor] = None,
|
1366 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1367 |
+
start_positions: Optional[torch.Tensor] = None,
|
1368 |
+
end_positions: Optional[torch.Tensor] = None,
|
1369 |
+
output_attentions: Optional[bool] = None,
|
1370 |
+
output_hidden_states: Optional[bool] = None,
|
1371 |
+
return_dict: Optional[bool] = None,
|
1372 |
+
) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]:
|
1373 |
+
r"""
|
1374 |
+
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1375 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
1376 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1377 |
+
are not taken into account for computing the loss.
|
1378 |
+
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1379 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
1380 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1381 |
+
are not taken into account for computing the loss.
|
1382 |
+
"""
|
1383 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1384 |
+
|
1385 |
+
discriminator_hidden_states = self.electra(
|
1386 |
+
input_ids,
|
1387 |
+
attention_mask=attention_mask,
|
1388 |
+
token_type_ids=token_type_ids,
|
1389 |
+
position_ids=position_ids,
|
1390 |
+
head_mask=head_mask,
|
1391 |
+
inputs_embeds=inputs_embeds,
|
1392 |
+
output_attentions=output_attentions,
|
1393 |
+
output_hidden_states=output_hidden_states,
|
1394 |
+
)
|
1395 |
+
|
1396 |
+
sequence_output = discriminator_hidden_states[0]
|
1397 |
+
|
1398 |
+
logits = self.qa_outputs(sequence_output)
|
1399 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
1400 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
1401 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
1402 |
+
|
1403 |
+
total_loss = None
|
1404 |
+
if start_positions is not None and end_positions is not None:
|
1405 |
+
# If we are on multi-GPU, split add a dimension
|
1406 |
+
if len(start_positions.size()) > 1:
|
1407 |
+
start_positions = start_positions.squeeze(-1)
|
1408 |
+
if len(end_positions.size()) > 1:
|
1409 |
+
end_positions = end_positions.squeeze(-1)
|
1410 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
1411 |
+
ignored_index = start_logits.size(1)
|
1412 |
+
start_positions = start_positions.clamp(0, ignored_index)
|
1413 |
+
end_positions = end_positions.clamp(0, ignored_index)
|
1414 |
+
|
1415 |
+
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
1416 |
+
start_loss = loss_fct(start_logits, start_positions)
|
1417 |
+
end_loss = loss_fct(end_logits, end_positions)
|
1418 |
+
total_loss = (start_loss + end_loss) / 2
|
1419 |
+
|
1420 |
+
if not return_dict:
|
1421 |
+
output = (
|
1422 |
+
start_logits,
|
1423 |
+
end_logits,
|
1424 |
+
) + discriminator_hidden_states[1:]
|
1425 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
1426 |
+
|
1427 |
+
return QuestionAnsweringModelOutput(
|
1428 |
+
loss=total_loss,
|
1429 |
+
start_logits=start_logits,
|
1430 |
+
end_logits=end_logits,
|
1431 |
+
hidden_states=discriminator_hidden_states.hidden_states,
|
1432 |
+
attentions=discriminator_hidden_states.attentions,
|
1433 |
+
)
|
1434 |
+
|
1435 |
+
|
1436 |
+
@add_start_docstrings(
|
1437 |
+
"""
|
1438 |
+
ELECTRA Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
|
1439 |
+
softmax) e.g. for RocStories/SWAG tasks.
|
1440 |
+
""",
|
1441 |
+
ELECTRA_START_DOCSTRING,
|
1442 |
+
)
|
1443 |
+
class ElectraForMultipleChoice(ElectraPreTrainedModel):
|
1444 |
+
def __init__(self, config):
|
1445 |
+
super().__init__(config)
|
1446 |
+
|
1447 |
+
self.electra = ElectraModel(config)
|
1448 |
+
self.sequence_summary = SequenceSummary(config)
|
1449 |
+
self.classifier = nn.Linear(config.hidden_size, 1)
|
1450 |
+
|
1451 |
+
# Initialize weights and apply final processing
|
1452 |
+
self.post_init()
|
1453 |
+
|
1454 |
+
@add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
|
1455 |
+
@add_code_sample_docstrings(
|
1456 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1457 |
+
output_type=MultipleChoiceModelOutput,
|
1458 |
+
config_class=_CONFIG_FOR_DOC,
|
1459 |
+
)
|
1460 |
+
def forward(
|
1461 |
+
self,
|
1462 |
+
input_ids: Optional[torch.Tensor] = None,
|
1463 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1464 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1465 |
+
position_ids: Optional[torch.Tensor] = None,
|
1466 |
+
head_mask: Optional[torch.Tensor] = None,
|
1467 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1468 |
+
labels: Optional[torch.Tensor] = None,
|
1469 |
+
output_attentions: Optional[bool] = None,
|
1470 |
+
output_hidden_states: Optional[bool] = None,
|
1471 |
+
return_dict: Optional[bool] = None,
|
1472 |
+
) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]:
|
1473 |
+
r"""
|
1474 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1475 |
+
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
|
1476 |
+
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
|
1477 |
+
`input_ids` above)
|
1478 |
+
"""
|
1479 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1480 |
+
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
|
1481 |
+
|
1482 |
+
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
|
1483 |
+
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
|
1484 |
+
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
|
1485 |
+
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
|
1486 |
+
inputs_embeds = (
|
1487 |
+
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
|
1488 |
+
if inputs_embeds is not None
|
1489 |
+
else None
|
1490 |
+
)
|
1491 |
+
|
1492 |
+
discriminator_hidden_states = self.electra(
|
1493 |
+
input_ids,
|
1494 |
+
attention_mask=attention_mask,
|
1495 |
+
token_type_ids=token_type_ids,
|
1496 |
+
position_ids=position_ids,
|
1497 |
+
head_mask=head_mask,
|
1498 |
+
inputs_embeds=inputs_embeds,
|
1499 |
+
output_attentions=output_attentions,
|
1500 |
+
output_hidden_states=output_hidden_states,
|
1501 |
+
return_dict=return_dict,
|
1502 |
+
)
|
1503 |
+
|
1504 |
+
sequence_output = discriminator_hidden_states[0]
|
1505 |
+
|
1506 |
+
pooled_output = self.sequence_summary(sequence_output)
|
1507 |
+
logits = self.classifier(pooled_output)
|
1508 |
+
reshaped_logits = logits.view(-1, num_choices)
|
1509 |
+
|
1510 |
+
loss = None
|
1511 |
+
if labels is not None:
|
1512 |
+
loss_fct = CrossEntropyLoss()
|
1513 |
+
loss = loss_fct(reshaped_logits, labels)
|
1514 |
+
|
1515 |
+
if not return_dict:
|
1516 |
+
output = (reshaped_logits,) + discriminator_hidden_states[1:]
|
1517 |
+
return ((loss,) + output) if loss is not None else output
|
1518 |
+
|
1519 |
+
return MultipleChoiceModelOutput(
|
1520 |
+
loss=loss,
|
1521 |
+
logits=reshaped_logits,
|
1522 |
+
hidden_states=discriminator_hidden_states.hidden_states,
|
1523 |
+
attentions=discriminator_hidden_states.attentions,
|
1524 |
+
)
|
1525 |
+
|
1526 |
+
|
1527 |
+
@add_start_docstrings(
|
1528 |
+
"""ELECTRA Model with a `language modeling` head on top for CLM fine-tuning.""", ELECTRA_START_DOCSTRING
|
1529 |
+
)
|
1530 |
+
class ElectraForCausalLM(ElectraPreTrainedModel):
|
1531 |
+
_tied_weights_keys = ["generator_lm_head.weight"]
|
1532 |
+
|
1533 |
+
def __init__(self, config):
|
1534 |
+
super().__init__(config)
|
1535 |
+
|
1536 |
+
if not config.is_decoder:
|
1537 |
+
logger.warning("If you want to use `ElectraForCausalLM` as a standalone, add `is_decoder=True.`")
|
1538 |
+
|
1539 |
+
self.electra = ElectraModel(config)
|
1540 |
+
self.generator_predictions = ElectraGeneratorPredictions(config)
|
1541 |
+
self.generator_lm_head = nn.Linear(config.embedding_size, config.vocab_size)
|
1542 |
+
|
1543 |
+
self.init_weights()
|
1544 |
+
|
1545 |
+
def get_output_embeddings(self):
|
1546 |
+
return self.generator_lm_head
|
1547 |
+
|
1548 |
+
def set_output_embeddings(self, new_embeddings):
|
1549 |
+
self.generator_lm_head = new_embeddings
|
1550 |
+
|
1551 |
+
@add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1552 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC)
|
1553 |
+
def forward(
|
1554 |
+
self,
|
1555 |
+
input_ids: Optional[torch.Tensor] = None,
|
1556 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1557 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1558 |
+
position_ids: Optional[torch.Tensor] = None,
|
1559 |
+
head_mask: Optional[torch.Tensor] = None,
|
1560 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1561 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
1562 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
1563 |
+
labels: Optional[torch.Tensor] = None,
|
1564 |
+
past_key_values: Optional[List[torch.Tensor]] = None,
|
1565 |
+
use_cache: Optional[bool] = None,
|
1566 |
+
output_attentions: Optional[bool] = None,
|
1567 |
+
output_hidden_states: Optional[bool] = None,
|
1568 |
+
return_dict: Optional[bool] = None,
|
1569 |
+
) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
|
1570 |
+
r"""
|
1571 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
1572 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
1573 |
+
the model is configured as a decoder.
|
1574 |
+
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1575 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
1576 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
|
1577 |
+
|
1578 |
+
- 1 for tokens that are **not masked**,
|
1579 |
+
- 0 for tokens that are **masked**.
|
1580 |
+
|
1581 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1582 |
+
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
|
1583 |
+
`[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
|
1584 |
+
ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
|
1585 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
1586 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
1587 |
+
|
1588 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
1589 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
1590 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
1591 |
+
use_cache (`bool`, *optional*):
|
1592 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
1593 |
+
`past_key_values`).
|
1594 |
+
|
1595 |
+
Returns:
|
1596 |
+
|
1597 |
+
Example:
|
1598 |
+
|
1599 |
+
```python
|
1600 |
+
>>> from transformers import AutoTokenizer, ElectraForCausalLM, ElectraConfig
|
1601 |
+
>>> import torch
|
1602 |
+
|
1603 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("google/electra-base-generator")
|
1604 |
+
>>> config = ElectraConfig.from_pretrained("google/electra-base-generator")
|
1605 |
+
>>> config.is_decoder = True
|
1606 |
+
>>> model = ElectraForCausalLM.from_pretrained("google/electra-base-generator", config=config)
|
1607 |
+
|
1608 |
+
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
|
1609 |
+
>>> outputs = model(**inputs)
|
1610 |
+
|
1611 |
+
>>> prediction_logits = outputs.logits
|
1612 |
+
```"""
|
1613 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1614 |
+
if labels is not None:
|
1615 |
+
use_cache = False
|
1616 |
+
|
1617 |
+
outputs = self.electra(
|
1618 |
+
input_ids,
|
1619 |
+
attention_mask=attention_mask,
|
1620 |
+
token_type_ids=token_type_ids,
|
1621 |
+
position_ids=position_ids,
|
1622 |
+
head_mask=head_mask,
|
1623 |
+
inputs_embeds=inputs_embeds,
|
1624 |
+
encoder_hidden_states=encoder_hidden_states,
|
1625 |
+
encoder_attention_mask=encoder_attention_mask,
|
1626 |
+
past_key_values=past_key_values,
|
1627 |
+
use_cache=use_cache,
|
1628 |
+
output_attentions=output_attentions,
|
1629 |
+
output_hidden_states=output_hidden_states,
|
1630 |
+
return_dict=return_dict,
|
1631 |
+
)
|
1632 |
+
|
1633 |
+
sequence_output = outputs[0]
|
1634 |
+
prediction_scores = self.generator_lm_head(self.generator_predictions(sequence_output))
|
1635 |
+
|
1636 |
+
lm_loss = None
|
1637 |
+
if labels is not None:
|
1638 |
+
# we are doing next-token prediction; shift prediction scores and input ids by one
|
1639 |
+
shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous()
|
1640 |
+
labels = labels[:, 1:].contiguous()
|
1641 |
+
loss_fct = CrossEntropyLoss()
|
1642 |
+
lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
1643 |
+
|
1644 |
+
if not return_dict:
|
1645 |
+
output = (prediction_scores,) + outputs[1:]
|
1646 |
+
return ((lm_loss,) + output) if lm_loss is not None else output
|
1647 |
+
|
1648 |
+
return CausalLMOutputWithCrossAttentions(
|
1649 |
+
loss=lm_loss,
|
1650 |
+
logits=prediction_scores,
|
1651 |
+
past_key_values=outputs.past_key_values,
|
1652 |
+
hidden_states=outputs.hidden_states,
|
1653 |
+
attentions=outputs.attentions,
|
1654 |
+
cross_attentions=outputs.cross_attentions,
|
1655 |
+
)
|
1656 |
+
|
1657 |
+
# Copied from transformers.models.roberta.modeling_roberta.RobertaForCausalLM.prepare_inputs_for_generation
|
1658 |
+
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, attention_mask=None, **model_kwargs):
|
1659 |
+
input_shape = input_ids.shape
|
1660 |
+
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
|
1661 |
+
if attention_mask is None:
|
1662 |
+
attention_mask = input_ids.new_ones(input_shape)
|
1663 |
+
|
1664 |
+
# cut decoder_input_ids if past_key_values is used
|
1665 |
+
if past_key_values is not None:
|
1666 |
+
past_length = past_key_values[0][0].shape[2]
|
1667 |
+
|
1668 |
+
# Some generation methods already pass only the last input ID
|
1669 |
+
if input_ids.shape[1] > past_length:
|
1670 |
+
remove_prefix_length = past_length
|
1671 |
+
else:
|
1672 |
+
# Default to old behavior: keep only final ID
|
1673 |
+
remove_prefix_length = input_ids.shape[1] - 1
|
1674 |
+
|
1675 |
+
input_ids = input_ids[:, remove_prefix_length:]
|
1676 |
+
|
1677 |
+
return {"input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past_key_values}
|
1678 |
+
|
1679 |
+
# Copied from transformers.models.roberta.modeling_roberta.RobertaForCausalLM._reorder_cache
|
1680 |
+
def _reorder_cache(self, past_key_values, beam_idx):
|
1681 |
+
reordered_past = ()
|
1682 |
+
for layer_past in past_key_values:
|
1683 |
+
reordered_past += (
|
1684 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
1685 |
+
)
|
1686 |
+
return reordered_past
|
env-llmeval/lib/python3.10/site-packages/transformers/models/electra/modeling_flax_electra.py
ADDED
@@ -0,0 +1,1601 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 The Google Flax Team Authors and The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
from typing import Callable, Optional, Tuple
|
17 |
+
|
18 |
+
import flax
|
19 |
+
import flax.linen as nn
|
20 |
+
import jax
|
21 |
+
import jax.numpy as jnp
|
22 |
+
import numpy as np
|
23 |
+
from flax.core.frozen_dict import FrozenDict, freeze, unfreeze
|
24 |
+
from flax.linen import combine_masks, make_causal_mask
|
25 |
+
from flax.linen import partitioning as nn_partitioning
|
26 |
+
from flax.linen.attention import dot_product_attention_weights
|
27 |
+
from flax.traverse_util import flatten_dict, unflatten_dict
|
28 |
+
from jax import lax
|
29 |
+
|
30 |
+
from ...modeling_flax_outputs import (
|
31 |
+
FlaxBaseModelOutput,
|
32 |
+
FlaxBaseModelOutputWithPastAndCrossAttentions,
|
33 |
+
FlaxCausalLMOutputWithCrossAttentions,
|
34 |
+
FlaxMaskedLMOutput,
|
35 |
+
FlaxMultipleChoiceModelOutput,
|
36 |
+
FlaxQuestionAnsweringModelOutput,
|
37 |
+
FlaxSequenceClassifierOutput,
|
38 |
+
FlaxTokenClassifierOutput,
|
39 |
+
)
|
40 |
+
from ...modeling_flax_utils import (
|
41 |
+
ACT2FN,
|
42 |
+
FlaxPreTrainedModel,
|
43 |
+
append_call_sample_docstring,
|
44 |
+
append_replace_return_docstrings,
|
45 |
+
overwrite_call_docstring,
|
46 |
+
)
|
47 |
+
from ...utils import ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging
|
48 |
+
from .configuration_electra import ElectraConfig
|
49 |
+
|
50 |
+
|
51 |
+
logger = logging.get_logger(__name__)
|
52 |
+
|
53 |
+
_CHECKPOINT_FOR_DOC = "google/electra-small-discriminator"
|
54 |
+
_CONFIG_FOR_DOC = "ElectraConfig"
|
55 |
+
|
56 |
+
remat = nn_partitioning.remat
|
57 |
+
|
58 |
+
|
59 |
+
@flax.struct.dataclass
|
60 |
+
class FlaxElectraForPreTrainingOutput(ModelOutput):
|
61 |
+
"""
|
62 |
+
Output type of [`ElectraForPreTraining`].
|
63 |
+
|
64 |
+
Args:
|
65 |
+
logits (`jnp.ndarray` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
66 |
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
67 |
+
hidden_states (`tuple(jnp.ndarray)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
68 |
+
Tuple of `jnp.ndarray` (one for the output of the embeddings + one for the output of each layer) of shape
|
69 |
+
`(batch_size, sequence_length, hidden_size)`.
|
70 |
+
|
71 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
72 |
+
attentions (`tuple(jnp.ndarray)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
73 |
+
Tuple of `jnp.ndarray` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
74 |
+
sequence_length)`.
|
75 |
+
|
76 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
77 |
+
heads.
|
78 |
+
"""
|
79 |
+
|
80 |
+
logits: jnp.ndarray = None
|
81 |
+
hidden_states: Optional[Tuple[jnp.ndarray]] = None
|
82 |
+
attentions: Optional[Tuple[jnp.ndarray]] = None
|
83 |
+
|
84 |
+
|
85 |
+
ELECTRA_START_DOCSTRING = r"""
|
86 |
+
|
87 |
+
This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the
|
88 |
+
library implements for all its model (such as downloading, saving and converting weights from PyTorch models)
|
89 |
+
|
90 |
+
This model is also a Flax Linen
|
91 |
+
[flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a
|
92 |
+
regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior.
|
93 |
+
|
94 |
+
Finally, this model supports inherent JAX features such as:
|
95 |
+
|
96 |
+
- [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
|
97 |
+
- [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
|
98 |
+
- [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
|
99 |
+
- [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)
|
100 |
+
|
101 |
+
Parameters:
|
102 |
+
config ([`ElectraConfig`]): Model configuration class with all the parameters of the model.
|
103 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
104 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
105 |
+
"""
|
106 |
+
|
107 |
+
ELECTRA_INPUTS_DOCSTRING = r"""
|
108 |
+
Args:
|
109 |
+
input_ids (`numpy.ndarray` of shape `({0})`):
|
110 |
+
Indices of input sequence tokens in the vocabulary.
|
111 |
+
|
112 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
113 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
114 |
+
|
115 |
+
[What are input IDs?](../glossary#input-ids)
|
116 |
+
attention_mask (`numpy.ndarray` of shape `({0})`, *optional*):
|
117 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
118 |
+
|
119 |
+
- 1 for tokens that are **not masked**,
|
120 |
+
- 0 for tokens that are **masked**.
|
121 |
+
|
122 |
+
[What are attention masks?](../glossary#attention-mask)
|
123 |
+
token_type_ids (`numpy.ndarray` of shape `({0})`, *optional*):
|
124 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
125 |
+
1]`:
|
126 |
+
|
127 |
+
- 0 corresponds to a *sentence A* token,
|
128 |
+
- 1 corresponds to a *sentence B* token.
|
129 |
+
|
130 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
131 |
+
position_ids (`numpy.ndarray` of shape `({0})`, *optional*):
|
132 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
133 |
+
config.max_position_embeddings - 1]`.
|
134 |
+
head_mask (`numpy.ndarray` of shape `({0})`, `optional):
|
135 |
+
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
|
136 |
+
|
137 |
+
- 1 indicates the head is **not masked**,
|
138 |
+
- 0 indicates the head is **masked**.
|
139 |
+
|
140 |
+
return_dict (`bool`, *optional*):
|
141 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
142 |
+
|
143 |
+
"""
|
144 |
+
|
145 |
+
|
146 |
+
class FlaxElectraEmbeddings(nn.Module):
|
147 |
+
"""Construct the embeddings from word, position and token_type embeddings."""
|
148 |
+
|
149 |
+
config: ElectraConfig
|
150 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
151 |
+
|
152 |
+
def setup(self):
|
153 |
+
self.word_embeddings = nn.Embed(
|
154 |
+
self.config.vocab_size,
|
155 |
+
self.config.embedding_size,
|
156 |
+
embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
|
157 |
+
)
|
158 |
+
self.position_embeddings = nn.Embed(
|
159 |
+
self.config.max_position_embeddings,
|
160 |
+
self.config.embedding_size,
|
161 |
+
embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
|
162 |
+
)
|
163 |
+
self.token_type_embeddings = nn.Embed(
|
164 |
+
self.config.type_vocab_size,
|
165 |
+
self.config.embedding_size,
|
166 |
+
embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
|
167 |
+
)
|
168 |
+
self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
|
169 |
+
self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
|
170 |
+
|
171 |
+
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertEmbeddings.__call__
|
172 |
+
def __call__(self, input_ids, token_type_ids, position_ids, attention_mask, deterministic: bool = True):
|
173 |
+
# Embed
|
174 |
+
inputs_embeds = self.word_embeddings(input_ids.astype("i4"))
|
175 |
+
position_embeds = self.position_embeddings(position_ids.astype("i4"))
|
176 |
+
token_type_embeddings = self.token_type_embeddings(token_type_ids.astype("i4"))
|
177 |
+
|
178 |
+
# Sum all embeddings
|
179 |
+
hidden_states = inputs_embeds + token_type_embeddings + position_embeds
|
180 |
+
|
181 |
+
# Layer Norm
|
182 |
+
hidden_states = self.LayerNorm(hidden_states)
|
183 |
+
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
|
184 |
+
return hidden_states
|
185 |
+
|
186 |
+
|
187 |
+
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertSelfAttention with Bert->Electra
|
188 |
+
class FlaxElectraSelfAttention(nn.Module):
|
189 |
+
config: ElectraConfig
|
190 |
+
causal: bool = False
|
191 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
192 |
+
|
193 |
+
def setup(self):
|
194 |
+
self.head_dim = self.config.hidden_size // self.config.num_attention_heads
|
195 |
+
if self.config.hidden_size % self.config.num_attention_heads != 0:
|
196 |
+
raise ValueError(
|
197 |
+
"`config.hidden_size`: {self.config.hidden_size} has to be a multiple of `config.num_attention_heads` "
|
198 |
+
" : {self.config.num_attention_heads}"
|
199 |
+
)
|
200 |
+
|
201 |
+
self.query = nn.Dense(
|
202 |
+
self.config.hidden_size,
|
203 |
+
dtype=self.dtype,
|
204 |
+
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
|
205 |
+
)
|
206 |
+
self.key = nn.Dense(
|
207 |
+
self.config.hidden_size,
|
208 |
+
dtype=self.dtype,
|
209 |
+
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
|
210 |
+
)
|
211 |
+
self.value = nn.Dense(
|
212 |
+
self.config.hidden_size,
|
213 |
+
dtype=self.dtype,
|
214 |
+
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
|
215 |
+
)
|
216 |
+
|
217 |
+
if self.causal:
|
218 |
+
self.causal_mask = make_causal_mask(
|
219 |
+
jnp.ones((1, self.config.max_position_embeddings), dtype="bool"), dtype="bool"
|
220 |
+
)
|
221 |
+
|
222 |
+
def _split_heads(self, hidden_states):
|
223 |
+
return hidden_states.reshape(hidden_states.shape[:2] + (self.config.num_attention_heads, self.head_dim))
|
224 |
+
|
225 |
+
def _merge_heads(self, hidden_states):
|
226 |
+
return hidden_states.reshape(hidden_states.shape[:2] + (self.config.hidden_size,))
|
227 |
+
|
228 |
+
@nn.compact
|
229 |
+
# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartAttention._concatenate_to_cache
|
230 |
+
def _concatenate_to_cache(self, key, value, query, attention_mask):
|
231 |
+
"""
|
232 |
+
This function takes projected key, value states from a single input token and concatenates the states to cached
|
233 |
+
states from previous steps. This function is slighly adapted from the official Flax repository:
|
234 |
+
https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252
|
235 |
+
"""
|
236 |
+
# detect if we're initializing by absence of existing cache data.
|
237 |
+
is_initialized = self.has_variable("cache", "cached_key")
|
238 |
+
cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype)
|
239 |
+
cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype)
|
240 |
+
cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32))
|
241 |
+
|
242 |
+
if is_initialized:
|
243 |
+
*batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape
|
244 |
+
# update key, value caches with our new 1d spatial slices
|
245 |
+
cur_index = cache_index.value
|
246 |
+
indices = (0,) * len(batch_dims) + (cur_index, 0, 0)
|
247 |
+
key = lax.dynamic_update_slice(cached_key.value, key, indices)
|
248 |
+
value = lax.dynamic_update_slice(cached_value.value, value, indices)
|
249 |
+
cached_key.value = key
|
250 |
+
cached_value.value = value
|
251 |
+
num_updated_cache_vectors = query.shape[1]
|
252 |
+
cache_index.value = cache_index.value + num_updated_cache_vectors
|
253 |
+
# causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements.
|
254 |
+
pad_mask = jnp.broadcast_to(
|
255 |
+
jnp.arange(max_length) < cur_index + num_updated_cache_vectors,
|
256 |
+
tuple(batch_dims) + (1, num_updated_cache_vectors, max_length),
|
257 |
+
)
|
258 |
+
attention_mask = combine_masks(pad_mask, attention_mask)
|
259 |
+
return key, value, attention_mask
|
260 |
+
|
261 |
+
def __call__(
|
262 |
+
self,
|
263 |
+
hidden_states,
|
264 |
+
attention_mask,
|
265 |
+
layer_head_mask,
|
266 |
+
key_value_states: Optional[jnp.ndarray] = None,
|
267 |
+
init_cache: bool = False,
|
268 |
+
deterministic=True,
|
269 |
+
output_attentions: bool = False,
|
270 |
+
):
|
271 |
+
# if key_value_states are provided this layer is used as a cross-attention layer
|
272 |
+
# for the decoder
|
273 |
+
is_cross_attention = key_value_states is not None
|
274 |
+
batch_size = hidden_states.shape[0]
|
275 |
+
|
276 |
+
# get query proj
|
277 |
+
query_states = self.query(hidden_states)
|
278 |
+
# get key, value proj
|
279 |
+
if is_cross_attention:
|
280 |
+
# cross_attentions
|
281 |
+
key_states = self.key(key_value_states)
|
282 |
+
value_states = self.value(key_value_states)
|
283 |
+
else:
|
284 |
+
# self_attention
|
285 |
+
key_states = self.key(hidden_states)
|
286 |
+
value_states = self.value(hidden_states)
|
287 |
+
|
288 |
+
query_states = self._split_heads(query_states)
|
289 |
+
key_states = self._split_heads(key_states)
|
290 |
+
value_states = self._split_heads(value_states)
|
291 |
+
|
292 |
+
# handle cache prepare causal attention mask
|
293 |
+
if self.causal:
|
294 |
+
query_length, key_length = query_states.shape[1], key_states.shape[1]
|
295 |
+
if self.has_variable("cache", "cached_key"):
|
296 |
+
mask_shift = self.variables["cache"]["cache_index"]
|
297 |
+
max_decoder_length = self.variables["cache"]["cached_key"].shape[1]
|
298 |
+
causal_mask = lax.dynamic_slice(
|
299 |
+
self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length)
|
300 |
+
)
|
301 |
+
else:
|
302 |
+
causal_mask = self.causal_mask[:, :, :query_length, :key_length]
|
303 |
+
causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:])
|
304 |
+
|
305 |
+
# combine masks if needed
|
306 |
+
if attention_mask is not None and self.causal:
|
307 |
+
attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape)
|
308 |
+
attention_mask = combine_masks(attention_mask, causal_mask)
|
309 |
+
elif self.causal:
|
310 |
+
attention_mask = causal_mask
|
311 |
+
elif attention_mask is not None:
|
312 |
+
attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2))
|
313 |
+
|
314 |
+
# During fast autoregressive decoding, we feed one position at a time,
|
315 |
+
# and cache the keys and values step by step.
|
316 |
+
if self.causal and (self.has_variable("cache", "cached_key") or init_cache):
|
317 |
+
key_states, value_states, attention_mask = self._concatenate_to_cache(
|
318 |
+
key_states, value_states, query_states, attention_mask
|
319 |
+
)
|
320 |
+
|
321 |
+
# Convert the boolean attention mask to an attention bias.
|
322 |
+
if attention_mask is not None:
|
323 |
+
# attention mask in the form of attention bias
|
324 |
+
attention_bias = lax.select(
|
325 |
+
attention_mask > 0,
|
326 |
+
jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
|
327 |
+
jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype),
|
328 |
+
)
|
329 |
+
else:
|
330 |
+
attention_bias = None
|
331 |
+
|
332 |
+
dropout_rng = None
|
333 |
+
if not deterministic and self.config.attention_probs_dropout_prob > 0.0:
|
334 |
+
dropout_rng = self.make_rng("dropout")
|
335 |
+
|
336 |
+
attn_weights = dot_product_attention_weights(
|
337 |
+
query_states,
|
338 |
+
key_states,
|
339 |
+
bias=attention_bias,
|
340 |
+
dropout_rng=dropout_rng,
|
341 |
+
dropout_rate=self.config.attention_probs_dropout_prob,
|
342 |
+
broadcast_dropout=True,
|
343 |
+
deterministic=deterministic,
|
344 |
+
dtype=self.dtype,
|
345 |
+
precision=None,
|
346 |
+
)
|
347 |
+
|
348 |
+
# Mask heads if we want to
|
349 |
+
if layer_head_mask is not None:
|
350 |
+
attn_weights = jnp.einsum("...hqk,h->...hqk", attn_weights, layer_head_mask)
|
351 |
+
|
352 |
+
attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states)
|
353 |
+
attn_output = attn_output.reshape(attn_output.shape[:2] + (-1,))
|
354 |
+
|
355 |
+
outputs = (attn_output, attn_weights) if output_attentions else (attn_output,)
|
356 |
+
return outputs
|
357 |
+
|
358 |
+
|
359 |
+
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertSelfOutput with Bert->Electra
|
360 |
+
class FlaxElectraSelfOutput(nn.Module):
|
361 |
+
config: ElectraConfig
|
362 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
363 |
+
|
364 |
+
def setup(self):
|
365 |
+
self.dense = nn.Dense(
|
366 |
+
self.config.hidden_size,
|
367 |
+
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
|
368 |
+
dtype=self.dtype,
|
369 |
+
)
|
370 |
+
self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
|
371 |
+
self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
|
372 |
+
|
373 |
+
def __call__(self, hidden_states, input_tensor, deterministic: bool = True):
|
374 |
+
hidden_states = self.dense(hidden_states)
|
375 |
+
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
|
376 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
377 |
+
return hidden_states
|
378 |
+
|
379 |
+
|
380 |
+
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertAttention with Bert->Electra
|
381 |
+
class FlaxElectraAttention(nn.Module):
|
382 |
+
config: ElectraConfig
|
383 |
+
causal: bool = False
|
384 |
+
dtype: jnp.dtype = jnp.float32
|
385 |
+
|
386 |
+
def setup(self):
|
387 |
+
self.self = FlaxElectraSelfAttention(self.config, causal=self.causal, dtype=self.dtype)
|
388 |
+
self.output = FlaxElectraSelfOutput(self.config, dtype=self.dtype)
|
389 |
+
|
390 |
+
def __call__(
|
391 |
+
self,
|
392 |
+
hidden_states,
|
393 |
+
attention_mask,
|
394 |
+
layer_head_mask,
|
395 |
+
key_value_states=None,
|
396 |
+
init_cache=False,
|
397 |
+
deterministic=True,
|
398 |
+
output_attentions: bool = False,
|
399 |
+
):
|
400 |
+
# Attention mask comes in as attention_mask.shape == (*batch_sizes, kv_length)
|
401 |
+
# FLAX expects: attention_mask.shape == (*batch_sizes, 1, 1, kv_length) such that it is broadcastable
|
402 |
+
# with attn_weights.shape == (*batch_sizes, num_heads, q_length, kv_length)
|
403 |
+
attn_outputs = self.self(
|
404 |
+
hidden_states,
|
405 |
+
attention_mask,
|
406 |
+
layer_head_mask=layer_head_mask,
|
407 |
+
key_value_states=key_value_states,
|
408 |
+
init_cache=init_cache,
|
409 |
+
deterministic=deterministic,
|
410 |
+
output_attentions=output_attentions,
|
411 |
+
)
|
412 |
+
attn_output = attn_outputs[0]
|
413 |
+
hidden_states = self.output(attn_output, hidden_states, deterministic=deterministic)
|
414 |
+
|
415 |
+
outputs = (hidden_states,)
|
416 |
+
|
417 |
+
if output_attentions:
|
418 |
+
outputs += (attn_outputs[1],)
|
419 |
+
|
420 |
+
return outputs
|
421 |
+
|
422 |
+
|
423 |
+
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertIntermediate with Bert->Electra
|
424 |
+
class FlaxElectraIntermediate(nn.Module):
|
425 |
+
config: ElectraConfig
|
426 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
427 |
+
|
428 |
+
def setup(self):
|
429 |
+
self.dense = nn.Dense(
|
430 |
+
self.config.intermediate_size,
|
431 |
+
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
|
432 |
+
dtype=self.dtype,
|
433 |
+
)
|
434 |
+
self.activation = ACT2FN[self.config.hidden_act]
|
435 |
+
|
436 |
+
def __call__(self, hidden_states):
|
437 |
+
hidden_states = self.dense(hidden_states)
|
438 |
+
hidden_states = self.activation(hidden_states)
|
439 |
+
return hidden_states
|
440 |
+
|
441 |
+
|
442 |
+
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertOutput with Bert->Electra
|
443 |
+
class FlaxElectraOutput(nn.Module):
|
444 |
+
config: ElectraConfig
|
445 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
446 |
+
|
447 |
+
def setup(self):
|
448 |
+
self.dense = nn.Dense(
|
449 |
+
self.config.hidden_size,
|
450 |
+
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
|
451 |
+
dtype=self.dtype,
|
452 |
+
)
|
453 |
+
self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
|
454 |
+
self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
|
455 |
+
|
456 |
+
def __call__(self, hidden_states, attention_output, deterministic: bool = True):
|
457 |
+
hidden_states = self.dense(hidden_states)
|
458 |
+
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
|
459 |
+
hidden_states = self.LayerNorm(hidden_states + attention_output)
|
460 |
+
return hidden_states
|
461 |
+
|
462 |
+
|
463 |
+
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertLayer with Bert->Electra
|
464 |
+
class FlaxElectraLayer(nn.Module):
|
465 |
+
config: ElectraConfig
|
466 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
467 |
+
|
468 |
+
def setup(self):
|
469 |
+
self.attention = FlaxElectraAttention(self.config, causal=self.config.is_decoder, dtype=self.dtype)
|
470 |
+
self.intermediate = FlaxElectraIntermediate(self.config, dtype=self.dtype)
|
471 |
+
self.output = FlaxElectraOutput(self.config, dtype=self.dtype)
|
472 |
+
if self.config.add_cross_attention:
|
473 |
+
self.crossattention = FlaxElectraAttention(self.config, causal=False, dtype=self.dtype)
|
474 |
+
|
475 |
+
def __call__(
|
476 |
+
self,
|
477 |
+
hidden_states,
|
478 |
+
attention_mask,
|
479 |
+
layer_head_mask,
|
480 |
+
encoder_hidden_states: Optional[jnp.ndarray] = None,
|
481 |
+
encoder_attention_mask: Optional[jnp.ndarray] = None,
|
482 |
+
init_cache: bool = False,
|
483 |
+
deterministic: bool = True,
|
484 |
+
output_attentions: bool = False,
|
485 |
+
):
|
486 |
+
# Self Attention
|
487 |
+
attention_outputs = self.attention(
|
488 |
+
hidden_states,
|
489 |
+
attention_mask,
|
490 |
+
layer_head_mask=layer_head_mask,
|
491 |
+
init_cache=init_cache,
|
492 |
+
deterministic=deterministic,
|
493 |
+
output_attentions=output_attentions,
|
494 |
+
)
|
495 |
+
attention_output = attention_outputs[0]
|
496 |
+
|
497 |
+
# Cross-Attention Block
|
498 |
+
if encoder_hidden_states is not None:
|
499 |
+
cross_attention_outputs = self.crossattention(
|
500 |
+
attention_output,
|
501 |
+
attention_mask=encoder_attention_mask,
|
502 |
+
layer_head_mask=layer_head_mask,
|
503 |
+
key_value_states=encoder_hidden_states,
|
504 |
+
deterministic=deterministic,
|
505 |
+
output_attentions=output_attentions,
|
506 |
+
)
|
507 |
+
attention_output = cross_attention_outputs[0]
|
508 |
+
|
509 |
+
hidden_states = self.intermediate(attention_output)
|
510 |
+
hidden_states = self.output(hidden_states, attention_output, deterministic=deterministic)
|
511 |
+
|
512 |
+
outputs = (hidden_states,)
|
513 |
+
|
514 |
+
if output_attentions:
|
515 |
+
outputs += (attention_outputs[1],)
|
516 |
+
if encoder_hidden_states is not None:
|
517 |
+
outputs += (cross_attention_outputs[1],)
|
518 |
+
return outputs
|
519 |
+
|
520 |
+
|
521 |
+
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertLayerCollection with Bert->Electra
|
522 |
+
class FlaxElectraLayerCollection(nn.Module):
|
523 |
+
config: ElectraConfig
|
524 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
525 |
+
gradient_checkpointing: bool = False
|
526 |
+
|
527 |
+
def setup(self):
|
528 |
+
if self.gradient_checkpointing:
|
529 |
+
FlaxElectraCheckpointLayer = remat(FlaxElectraLayer, static_argnums=(5, 6, 7))
|
530 |
+
self.layers = [
|
531 |
+
FlaxElectraCheckpointLayer(self.config, name=str(i), dtype=self.dtype)
|
532 |
+
for i in range(self.config.num_hidden_layers)
|
533 |
+
]
|
534 |
+
else:
|
535 |
+
self.layers = [
|
536 |
+
FlaxElectraLayer(self.config, name=str(i), dtype=self.dtype)
|
537 |
+
for i in range(self.config.num_hidden_layers)
|
538 |
+
]
|
539 |
+
|
540 |
+
def __call__(
|
541 |
+
self,
|
542 |
+
hidden_states,
|
543 |
+
attention_mask,
|
544 |
+
head_mask,
|
545 |
+
encoder_hidden_states: Optional[jnp.ndarray] = None,
|
546 |
+
encoder_attention_mask: Optional[jnp.ndarray] = None,
|
547 |
+
init_cache: bool = False,
|
548 |
+
deterministic: bool = True,
|
549 |
+
output_attentions: bool = False,
|
550 |
+
output_hidden_states: bool = False,
|
551 |
+
return_dict: bool = True,
|
552 |
+
):
|
553 |
+
all_attentions = () if output_attentions else None
|
554 |
+
all_hidden_states = () if output_hidden_states else None
|
555 |
+
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
|
556 |
+
|
557 |
+
# Check if head_mask has a correct number of layers specified if desired
|
558 |
+
if head_mask is not None:
|
559 |
+
if head_mask.shape[0] != (len(self.layers)):
|
560 |
+
raise ValueError(
|
561 |
+
f"The head_mask should be specified for {len(self.layers)} layers, but it is for "
|
562 |
+
f" {head_mask.shape[0]}."
|
563 |
+
)
|
564 |
+
|
565 |
+
for i, layer in enumerate(self.layers):
|
566 |
+
if output_hidden_states:
|
567 |
+
all_hidden_states += (hidden_states,)
|
568 |
+
|
569 |
+
layer_outputs = layer(
|
570 |
+
hidden_states,
|
571 |
+
attention_mask,
|
572 |
+
head_mask[i] if head_mask is not None else None,
|
573 |
+
encoder_hidden_states,
|
574 |
+
encoder_attention_mask,
|
575 |
+
init_cache,
|
576 |
+
deterministic,
|
577 |
+
output_attentions,
|
578 |
+
)
|
579 |
+
|
580 |
+
hidden_states = layer_outputs[0]
|
581 |
+
|
582 |
+
if output_attentions:
|
583 |
+
all_attentions += (layer_outputs[1],)
|
584 |
+
|
585 |
+
if encoder_hidden_states is not None:
|
586 |
+
all_cross_attentions += (layer_outputs[2],)
|
587 |
+
|
588 |
+
if output_hidden_states:
|
589 |
+
all_hidden_states += (hidden_states,)
|
590 |
+
|
591 |
+
outputs = (hidden_states, all_hidden_states, all_attentions, all_cross_attentions)
|
592 |
+
|
593 |
+
if not return_dict:
|
594 |
+
return tuple(v for v in outputs if v is not None)
|
595 |
+
|
596 |
+
return FlaxBaseModelOutputWithPastAndCrossAttentions(
|
597 |
+
last_hidden_state=hidden_states,
|
598 |
+
hidden_states=all_hidden_states,
|
599 |
+
attentions=all_attentions,
|
600 |
+
cross_attentions=all_cross_attentions,
|
601 |
+
)
|
602 |
+
|
603 |
+
|
604 |
+
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertEncoder with Bert->Electra
|
605 |
+
class FlaxElectraEncoder(nn.Module):
|
606 |
+
config: ElectraConfig
|
607 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
608 |
+
gradient_checkpointing: bool = False
|
609 |
+
|
610 |
+
def setup(self):
|
611 |
+
self.layer = FlaxElectraLayerCollection(
|
612 |
+
self.config,
|
613 |
+
dtype=self.dtype,
|
614 |
+
gradient_checkpointing=self.gradient_checkpointing,
|
615 |
+
)
|
616 |
+
|
617 |
+
def __call__(
|
618 |
+
self,
|
619 |
+
hidden_states,
|
620 |
+
attention_mask,
|
621 |
+
head_mask,
|
622 |
+
encoder_hidden_states: Optional[jnp.ndarray] = None,
|
623 |
+
encoder_attention_mask: Optional[jnp.ndarray] = None,
|
624 |
+
init_cache: bool = False,
|
625 |
+
deterministic: bool = True,
|
626 |
+
output_attentions: bool = False,
|
627 |
+
output_hidden_states: bool = False,
|
628 |
+
return_dict: bool = True,
|
629 |
+
):
|
630 |
+
return self.layer(
|
631 |
+
hidden_states,
|
632 |
+
attention_mask,
|
633 |
+
head_mask=head_mask,
|
634 |
+
encoder_hidden_states=encoder_hidden_states,
|
635 |
+
encoder_attention_mask=encoder_attention_mask,
|
636 |
+
init_cache=init_cache,
|
637 |
+
deterministic=deterministic,
|
638 |
+
output_attentions=output_attentions,
|
639 |
+
output_hidden_states=output_hidden_states,
|
640 |
+
return_dict=return_dict,
|
641 |
+
)
|
642 |
+
|
643 |
+
|
644 |
+
class FlaxElectraGeneratorPredictions(nn.Module):
|
645 |
+
config: ElectraConfig
|
646 |
+
dtype: jnp.dtype = jnp.float32
|
647 |
+
|
648 |
+
def setup(self):
|
649 |
+
self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
|
650 |
+
self.dense = nn.Dense(self.config.embedding_size, dtype=self.dtype)
|
651 |
+
|
652 |
+
def __call__(self, hidden_states):
|
653 |
+
hidden_states = self.dense(hidden_states)
|
654 |
+
hidden_states = ACT2FN[self.config.hidden_act](hidden_states)
|
655 |
+
hidden_states = self.LayerNorm(hidden_states)
|
656 |
+
return hidden_states
|
657 |
+
|
658 |
+
|
659 |
+
class FlaxElectraDiscriminatorPredictions(nn.Module):
|
660 |
+
"""Prediction module for the discriminator, made up of two dense layers."""
|
661 |
+
|
662 |
+
config: ElectraConfig
|
663 |
+
dtype: jnp.dtype = jnp.float32
|
664 |
+
|
665 |
+
def setup(self):
|
666 |
+
self.dense = nn.Dense(self.config.hidden_size, dtype=self.dtype)
|
667 |
+
self.dense_prediction = nn.Dense(1, dtype=self.dtype)
|
668 |
+
|
669 |
+
def __call__(self, hidden_states):
|
670 |
+
hidden_states = self.dense(hidden_states)
|
671 |
+
hidden_states = ACT2FN[self.config.hidden_act](hidden_states)
|
672 |
+
hidden_states = self.dense_prediction(hidden_states).squeeze(-1)
|
673 |
+
return hidden_states
|
674 |
+
|
675 |
+
|
676 |
+
class FlaxElectraPreTrainedModel(FlaxPreTrainedModel):
|
677 |
+
"""
|
678 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
679 |
+
models.
|
680 |
+
"""
|
681 |
+
|
682 |
+
config_class = ElectraConfig
|
683 |
+
base_model_prefix = "electra"
|
684 |
+
module_class: nn.Module = None
|
685 |
+
|
686 |
+
def __init__(
|
687 |
+
self,
|
688 |
+
config: ElectraConfig,
|
689 |
+
input_shape: Tuple = (1, 1),
|
690 |
+
seed: int = 0,
|
691 |
+
dtype: jnp.dtype = jnp.float32,
|
692 |
+
_do_init: bool = True,
|
693 |
+
gradient_checkpointing: bool = False,
|
694 |
+
**kwargs,
|
695 |
+
):
|
696 |
+
module = self.module_class(config=config, dtype=dtype, gradient_checkpointing=gradient_checkpointing, **kwargs)
|
697 |
+
super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
|
698 |
+
|
699 |
+
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertPreTrainedModel.enable_gradient_checkpointing
|
700 |
+
def enable_gradient_checkpointing(self):
|
701 |
+
self._module = self.module_class(
|
702 |
+
config=self.config,
|
703 |
+
dtype=self.dtype,
|
704 |
+
gradient_checkpointing=True,
|
705 |
+
)
|
706 |
+
|
707 |
+
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertPreTrainedModel.init_weights
|
708 |
+
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
|
709 |
+
# init input tensors
|
710 |
+
input_ids = jnp.zeros(input_shape, dtype="i4")
|
711 |
+
token_type_ids = jnp.zeros_like(input_ids)
|
712 |
+
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_shape)
|
713 |
+
attention_mask = jnp.ones_like(input_ids)
|
714 |
+
head_mask = jnp.ones((self.config.num_hidden_layers, self.config.num_attention_heads))
|
715 |
+
|
716 |
+
params_rng, dropout_rng = jax.random.split(rng)
|
717 |
+
rngs = {"params": params_rng, "dropout": dropout_rng}
|
718 |
+
|
719 |
+
if self.config.add_cross_attention:
|
720 |
+
encoder_hidden_states = jnp.zeros(input_shape + (self.config.hidden_size,))
|
721 |
+
encoder_attention_mask = attention_mask
|
722 |
+
module_init_outputs = self.module.init(
|
723 |
+
rngs,
|
724 |
+
input_ids,
|
725 |
+
attention_mask,
|
726 |
+
token_type_ids,
|
727 |
+
position_ids,
|
728 |
+
head_mask,
|
729 |
+
encoder_hidden_states,
|
730 |
+
encoder_attention_mask,
|
731 |
+
return_dict=False,
|
732 |
+
)
|
733 |
+
else:
|
734 |
+
module_init_outputs = self.module.init(
|
735 |
+
rngs, input_ids, attention_mask, token_type_ids, position_ids, head_mask, return_dict=False
|
736 |
+
)
|
737 |
+
|
738 |
+
random_params = module_init_outputs["params"]
|
739 |
+
|
740 |
+
if params is not None:
|
741 |
+
random_params = flatten_dict(unfreeze(random_params))
|
742 |
+
params = flatten_dict(unfreeze(params))
|
743 |
+
for missing_key in self._missing_keys:
|
744 |
+
params[missing_key] = random_params[missing_key]
|
745 |
+
self._missing_keys = set()
|
746 |
+
return freeze(unflatten_dict(params))
|
747 |
+
else:
|
748 |
+
return random_params
|
749 |
+
|
750 |
+
# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartDecoderPreTrainedModel.init_cache
|
751 |
+
def init_cache(self, batch_size, max_length):
|
752 |
+
r"""
|
753 |
+
Args:
|
754 |
+
batch_size (`int`):
|
755 |
+
batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache.
|
756 |
+
max_length (`int`):
|
757 |
+
maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized
|
758 |
+
cache.
|
759 |
+
"""
|
760 |
+
# init input variables to retrieve cache
|
761 |
+
input_ids = jnp.ones((batch_size, max_length), dtype="i4")
|
762 |
+
attention_mask = jnp.ones_like(input_ids, dtype="i4")
|
763 |
+
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)
|
764 |
+
|
765 |
+
init_variables = self.module.init(
|
766 |
+
jax.random.PRNGKey(0), input_ids, attention_mask, position_ids, return_dict=False, init_cache=True
|
767 |
+
)
|
768 |
+
return unfreeze(init_variables["cache"])
|
769 |
+
|
770 |
+
@add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
771 |
+
def __call__(
|
772 |
+
self,
|
773 |
+
input_ids,
|
774 |
+
attention_mask=None,
|
775 |
+
token_type_ids=None,
|
776 |
+
position_ids=None,
|
777 |
+
head_mask=None,
|
778 |
+
encoder_hidden_states=None,
|
779 |
+
encoder_attention_mask=None,
|
780 |
+
params: dict = None,
|
781 |
+
dropout_rng: jax.random.PRNGKey = None,
|
782 |
+
train: bool = False,
|
783 |
+
output_attentions: Optional[bool] = None,
|
784 |
+
output_hidden_states: Optional[bool] = None,
|
785 |
+
return_dict: Optional[bool] = None,
|
786 |
+
past_key_values: dict = None,
|
787 |
+
):
|
788 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
789 |
+
output_hidden_states = (
|
790 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
791 |
+
)
|
792 |
+
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
793 |
+
|
794 |
+
# init input tensors if not passed
|
795 |
+
if token_type_ids is None:
|
796 |
+
token_type_ids = jnp.ones_like(input_ids)
|
797 |
+
|
798 |
+
if position_ids is None:
|
799 |
+
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)
|
800 |
+
|
801 |
+
if attention_mask is None:
|
802 |
+
attention_mask = jnp.ones_like(input_ids)
|
803 |
+
|
804 |
+
if head_mask is None:
|
805 |
+
head_mask = jnp.ones((self.config.num_hidden_layers, self.config.num_attention_heads))
|
806 |
+
|
807 |
+
# Handle any PRNG if needed
|
808 |
+
rngs = {}
|
809 |
+
if dropout_rng is not None:
|
810 |
+
rngs["dropout"] = dropout_rng
|
811 |
+
|
812 |
+
inputs = {"params": params or self.params}
|
813 |
+
|
814 |
+
if self.config.add_cross_attention:
|
815 |
+
# if past_key_values are passed then cache is already initialized a private flag init_cache has to be passed
|
816 |
+
# down to ensure cache is used. It has to be made sure that cache is marked as mutable so that it can be
|
817 |
+
# changed by FlaxElectraAttention module
|
818 |
+
if past_key_values:
|
819 |
+
inputs["cache"] = past_key_values
|
820 |
+
mutable = ["cache"]
|
821 |
+
else:
|
822 |
+
mutable = False
|
823 |
+
|
824 |
+
outputs = self.module.apply(
|
825 |
+
inputs,
|
826 |
+
jnp.array(input_ids, dtype="i4"),
|
827 |
+
jnp.array(attention_mask, dtype="i4"),
|
828 |
+
token_type_ids=jnp.array(token_type_ids, dtype="i4"),
|
829 |
+
position_ids=jnp.array(position_ids, dtype="i4"),
|
830 |
+
head_mask=jnp.array(head_mask, dtype="i4"),
|
831 |
+
encoder_hidden_states=encoder_hidden_states,
|
832 |
+
encoder_attention_mask=encoder_attention_mask,
|
833 |
+
deterministic=not train,
|
834 |
+
output_attentions=output_attentions,
|
835 |
+
output_hidden_states=output_hidden_states,
|
836 |
+
return_dict=return_dict,
|
837 |
+
rngs=rngs,
|
838 |
+
mutable=mutable,
|
839 |
+
)
|
840 |
+
|
841 |
+
# add updated cache to model output
|
842 |
+
if past_key_values is not None and return_dict:
|
843 |
+
outputs, past_key_values = outputs
|
844 |
+
outputs["past_key_values"] = unfreeze(past_key_values["cache"])
|
845 |
+
return outputs
|
846 |
+
elif past_key_values is not None and not return_dict:
|
847 |
+
outputs, past_key_values = outputs
|
848 |
+
outputs = outputs[:1] + (unfreeze(past_key_values["cache"]),) + outputs[1:]
|
849 |
+
|
850 |
+
else:
|
851 |
+
outputs = self.module.apply(
|
852 |
+
inputs,
|
853 |
+
jnp.array(input_ids, dtype="i4"),
|
854 |
+
jnp.array(attention_mask, dtype="i4"),
|
855 |
+
token_type_ids=jnp.array(token_type_ids, dtype="i4"),
|
856 |
+
position_ids=jnp.array(position_ids, dtype="i4"),
|
857 |
+
head_mask=jnp.array(head_mask, dtype="i4"),
|
858 |
+
deterministic=not train,
|
859 |
+
output_attentions=output_attentions,
|
860 |
+
output_hidden_states=output_hidden_states,
|
861 |
+
return_dict=return_dict,
|
862 |
+
rngs=rngs,
|
863 |
+
)
|
864 |
+
|
865 |
+
return outputs
|
866 |
+
|
867 |
+
|
868 |
+
class FlaxElectraModule(nn.Module):
|
869 |
+
config: ElectraConfig
|
870 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
871 |
+
gradient_checkpointing: bool = False
|
872 |
+
|
873 |
+
def setup(self):
|
874 |
+
self.embeddings = FlaxElectraEmbeddings(self.config, dtype=self.dtype)
|
875 |
+
if self.config.embedding_size != self.config.hidden_size:
|
876 |
+
self.embeddings_project = nn.Dense(self.config.hidden_size, dtype=self.dtype)
|
877 |
+
self.encoder = FlaxElectraEncoder(
|
878 |
+
self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing
|
879 |
+
)
|
880 |
+
|
881 |
+
def __call__(
|
882 |
+
self,
|
883 |
+
input_ids,
|
884 |
+
attention_mask,
|
885 |
+
token_type_ids,
|
886 |
+
position_ids,
|
887 |
+
head_mask: Optional[np.ndarray] = None,
|
888 |
+
encoder_hidden_states: Optional[jnp.ndarray] = None,
|
889 |
+
encoder_attention_mask: Optional[jnp.ndarray] = None,
|
890 |
+
init_cache: bool = False,
|
891 |
+
deterministic: bool = True,
|
892 |
+
output_attentions: bool = False,
|
893 |
+
output_hidden_states: bool = False,
|
894 |
+
return_dict: bool = True,
|
895 |
+
):
|
896 |
+
embeddings = self.embeddings(
|
897 |
+
input_ids, token_type_ids, position_ids, attention_mask, deterministic=deterministic
|
898 |
+
)
|
899 |
+
if hasattr(self, "embeddings_project"):
|
900 |
+
embeddings = self.embeddings_project(embeddings)
|
901 |
+
|
902 |
+
return self.encoder(
|
903 |
+
embeddings,
|
904 |
+
attention_mask,
|
905 |
+
head_mask=head_mask,
|
906 |
+
deterministic=deterministic,
|
907 |
+
encoder_hidden_states=encoder_hidden_states,
|
908 |
+
encoder_attention_mask=encoder_attention_mask,
|
909 |
+
init_cache=init_cache,
|
910 |
+
output_attentions=output_attentions,
|
911 |
+
output_hidden_states=output_hidden_states,
|
912 |
+
return_dict=return_dict,
|
913 |
+
)
|
914 |
+
|
915 |
+
|
916 |
+
@add_start_docstrings(
|
917 |
+
"The bare Electra Model transformer outputting raw hidden-states without any specific head on top.",
|
918 |
+
ELECTRA_START_DOCSTRING,
|
919 |
+
)
|
920 |
+
class FlaxElectraModel(FlaxElectraPreTrainedModel):
|
921 |
+
module_class = FlaxElectraModule
|
922 |
+
|
923 |
+
|
924 |
+
append_call_sample_docstring(FlaxElectraModel, _CHECKPOINT_FOR_DOC, FlaxBaseModelOutput, _CONFIG_FOR_DOC)
|
925 |
+
|
926 |
+
|
927 |
+
class FlaxElectraTiedDense(nn.Module):
|
928 |
+
embedding_size: int
|
929 |
+
dtype: jnp.dtype = jnp.float32
|
930 |
+
precision = None
|
931 |
+
bias_init: Callable[..., np.ndarray] = jax.nn.initializers.zeros
|
932 |
+
|
933 |
+
def setup(self):
|
934 |
+
self.bias = self.param("bias", self.bias_init, (self.embedding_size,))
|
935 |
+
|
936 |
+
def __call__(self, x, kernel):
|
937 |
+
x = jnp.asarray(x, self.dtype)
|
938 |
+
kernel = jnp.asarray(kernel, self.dtype)
|
939 |
+
y = lax.dot_general(
|
940 |
+
x,
|
941 |
+
kernel,
|
942 |
+
(((x.ndim - 1,), (0,)), ((), ())),
|
943 |
+
precision=self.precision,
|
944 |
+
)
|
945 |
+
bias = jnp.asarray(self.bias, self.dtype)
|
946 |
+
return y + bias
|
947 |
+
|
948 |
+
|
949 |
+
class FlaxElectraForMaskedLMModule(nn.Module):
|
950 |
+
config: ElectraConfig
|
951 |
+
dtype: jnp.dtype = jnp.float32
|
952 |
+
gradient_checkpointing: bool = False
|
953 |
+
|
954 |
+
def setup(self):
|
955 |
+
self.electra = FlaxElectraModule(
|
956 |
+
config=self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing
|
957 |
+
)
|
958 |
+
self.generator_predictions = FlaxElectraGeneratorPredictions(config=self.config, dtype=self.dtype)
|
959 |
+
if self.config.tie_word_embeddings:
|
960 |
+
self.generator_lm_head = FlaxElectraTiedDense(self.config.vocab_size, dtype=self.dtype)
|
961 |
+
else:
|
962 |
+
self.generator_lm_head = nn.Dense(self.config.vocab_size, dtype=self.dtype)
|
963 |
+
|
964 |
+
def __call__(
|
965 |
+
self,
|
966 |
+
input_ids,
|
967 |
+
attention_mask=None,
|
968 |
+
token_type_ids=None,
|
969 |
+
position_ids=None,
|
970 |
+
head_mask=None,
|
971 |
+
deterministic: bool = True,
|
972 |
+
output_attentions: bool = False,
|
973 |
+
output_hidden_states: bool = False,
|
974 |
+
return_dict: bool = True,
|
975 |
+
):
|
976 |
+
outputs = self.electra(
|
977 |
+
input_ids,
|
978 |
+
attention_mask,
|
979 |
+
token_type_ids,
|
980 |
+
position_ids,
|
981 |
+
head_mask,
|
982 |
+
deterministic=deterministic,
|
983 |
+
output_attentions=output_attentions,
|
984 |
+
output_hidden_states=output_hidden_states,
|
985 |
+
return_dict=return_dict,
|
986 |
+
)
|
987 |
+
hidden_states = outputs[0]
|
988 |
+
prediction_scores = self.generator_predictions(hidden_states)
|
989 |
+
|
990 |
+
if self.config.tie_word_embeddings:
|
991 |
+
shared_embedding = self.electra.variables["params"]["embeddings"]["word_embeddings"]["embedding"]
|
992 |
+
prediction_scores = self.generator_lm_head(prediction_scores, shared_embedding.T)
|
993 |
+
else:
|
994 |
+
prediction_scores = self.generator_lm_head(prediction_scores)
|
995 |
+
|
996 |
+
if not return_dict:
|
997 |
+
return (prediction_scores,) + outputs[1:]
|
998 |
+
|
999 |
+
return FlaxMaskedLMOutput(
|
1000 |
+
logits=prediction_scores,
|
1001 |
+
hidden_states=outputs.hidden_states,
|
1002 |
+
attentions=outputs.attentions,
|
1003 |
+
)
|
1004 |
+
|
1005 |
+
|
1006 |
+
@add_start_docstrings("""Electra Model with a `language modeling` head on top.""", ELECTRA_START_DOCSTRING)
|
1007 |
+
class FlaxElectraForMaskedLM(FlaxElectraPreTrainedModel):
|
1008 |
+
module_class = FlaxElectraForMaskedLMModule
|
1009 |
+
|
1010 |
+
|
1011 |
+
append_call_sample_docstring(FlaxElectraForMaskedLM, _CHECKPOINT_FOR_DOC, FlaxMaskedLMOutput, _CONFIG_FOR_DOC)
|
1012 |
+
|
1013 |
+
|
1014 |
+
class FlaxElectraForPreTrainingModule(nn.Module):
|
1015 |
+
config: ElectraConfig
|
1016 |
+
dtype: jnp.dtype = jnp.float32
|
1017 |
+
gradient_checkpointing: bool = False
|
1018 |
+
|
1019 |
+
def setup(self):
|
1020 |
+
self.electra = FlaxElectraModule(
|
1021 |
+
config=self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing
|
1022 |
+
)
|
1023 |
+
self.discriminator_predictions = FlaxElectraDiscriminatorPredictions(config=self.config, dtype=self.dtype)
|
1024 |
+
|
1025 |
+
def __call__(
|
1026 |
+
self,
|
1027 |
+
input_ids,
|
1028 |
+
attention_mask=None,
|
1029 |
+
token_type_ids=None,
|
1030 |
+
position_ids=None,
|
1031 |
+
head_mask=None,
|
1032 |
+
deterministic: bool = True,
|
1033 |
+
output_attentions: bool = False,
|
1034 |
+
output_hidden_states: bool = False,
|
1035 |
+
return_dict: bool = True,
|
1036 |
+
):
|
1037 |
+
# Model
|
1038 |
+
outputs = self.electra(
|
1039 |
+
input_ids,
|
1040 |
+
attention_mask,
|
1041 |
+
token_type_ids,
|
1042 |
+
position_ids,
|
1043 |
+
head_mask,
|
1044 |
+
deterministic=deterministic,
|
1045 |
+
output_attentions=output_attentions,
|
1046 |
+
output_hidden_states=output_hidden_states,
|
1047 |
+
return_dict=return_dict,
|
1048 |
+
)
|
1049 |
+
hidden_states = outputs[0]
|
1050 |
+
|
1051 |
+
logits = self.discriminator_predictions(hidden_states)
|
1052 |
+
|
1053 |
+
if not return_dict:
|
1054 |
+
return (logits,) + outputs[1:]
|
1055 |
+
|
1056 |
+
return FlaxElectraForPreTrainingOutput(
|
1057 |
+
logits=logits,
|
1058 |
+
hidden_states=outputs.hidden_states,
|
1059 |
+
attentions=outputs.attentions,
|
1060 |
+
)
|
1061 |
+
|
1062 |
+
|
1063 |
+
@add_start_docstrings(
|
1064 |
+
"""
|
1065 |
+
Electra model with a binary classification head on top as used during pretraining for identifying generated tokens.
|
1066 |
+
|
1067 |
+
It is recommended to load the discriminator checkpoint into that model.
|
1068 |
+
""",
|
1069 |
+
ELECTRA_START_DOCSTRING,
|
1070 |
+
)
|
1071 |
+
class FlaxElectraForPreTraining(FlaxElectraPreTrainedModel):
|
1072 |
+
module_class = FlaxElectraForPreTrainingModule
|
1073 |
+
|
1074 |
+
|
1075 |
+
FLAX_ELECTRA_FOR_PRETRAINING_DOCSTRING = """
|
1076 |
+
Returns:
|
1077 |
+
|
1078 |
+
Example:
|
1079 |
+
|
1080 |
+
```python
|
1081 |
+
>>> from transformers import AutoTokenizer, FlaxElectraForPreTraining
|
1082 |
+
|
1083 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("google/electra-small-discriminator")
|
1084 |
+
>>> model = FlaxElectraForPreTraining.from_pretrained("google/electra-small-discriminator")
|
1085 |
+
|
1086 |
+
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="np")
|
1087 |
+
>>> outputs = model(**inputs)
|
1088 |
+
|
1089 |
+
>>> prediction_logits = outputs.logits
|
1090 |
+
```
|
1091 |
+
"""
|
1092 |
+
|
1093 |
+
overwrite_call_docstring(
|
1094 |
+
FlaxElectraForPreTraining,
|
1095 |
+
ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length") + FLAX_ELECTRA_FOR_PRETRAINING_DOCSTRING,
|
1096 |
+
)
|
1097 |
+
append_replace_return_docstrings(
|
1098 |
+
FlaxElectraForPreTraining, output_type=FlaxElectraForPreTrainingOutput, config_class=_CONFIG_FOR_DOC
|
1099 |
+
)
|
1100 |
+
|
1101 |
+
|
1102 |
+
class FlaxElectraForTokenClassificationModule(nn.Module):
|
1103 |
+
config: ElectraConfig
|
1104 |
+
dtype: jnp.dtype = jnp.float32
|
1105 |
+
gradient_checkpointing: bool = False
|
1106 |
+
|
1107 |
+
def setup(self):
|
1108 |
+
self.electra = FlaxElectraModule(
|
1109 |
+
config=self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing
|
1110 |
+
)
|
1111 |
+
classifier_dropout = (
|
1112 |
+
self.config.classifier_dropout
|
1113 |
+
if self.config.classifier_dropout is not None
|
1114 |
+
else self.config.hidden_dropout_prob
|
1115 |
+
)
|
1116 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
1117 |
+
self.classifier = nn.Dense(self.config.num_labels, dtype=self.dtype)
|
1118 |
+
|
1119 |
+
def __call__(
|
1120 |
+
self,
|
1121 |
+
input_ids,
|
1122 |
+
attention_mask=None,
|
1123 |
+
token_type_ids=None,
|
1124 |
+
position_ids=None,
|
1125 |
+
head_mask=None,
|
1126 |
+
deterministic: bool = True,
|
1127 |
+
output_attentions: bool = False,
|
1128 |
+
output_hidden_states: bool = False,
|
1129 |
+
return_dict: bool = True,
|
1130 |
+
):
|
1131 |
+
# Model
|
1132 |
+
outputs = self.electra(
|
1133 |
+
input_ids,
|
1134 |
+
attention_mask,
|
1135 |
+
token_type_ids,
|
1136 |
+
position_ids,
|
1137 |
+
head_mask,
|
1138 |
+
deterministic=deterministic,
|
1139 |
+
output_attentions=output_attentions,
|
1140 |
+
output_hidden_states=output_hidden_states,
|
1141 |
+
return_dict=return_dict,
|
1142 |
+
)
|
1143 |
+
hidden_states = outputs[0]
|
1144 |
+
|
1145 |
+
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
|
1146 |
+
logits = self.classifier(hidden_states)
|
1147 |
+
|
1148 |
+
if not return_dict:
|
1149 |
+
return (logits,) + outputs[1:]
|
1150 |
+
|
1151 |
+
return FlaxTokenClassifierOutput(
|
1152 |
+
logits=logits,
|
1153 |
+
hidden_states=outputs.hidden_states,
|
1154 |
+
attentions=outputs.attentions,
|
1155 |
+
)
|
1156 |
+
|
1157 |
+
|
1158 |
+
@add_start_docstrings(
|
1159 |
+
"""
|
1160 |
+
Electra model with a token classification head on top.
|
1161 |
+
|
1162 |
+
Both the discriminator and generator may be loaded into this model.
|
1163 |
+
""",
|
1164 |
+
ELECTRA_START_DOCSTRING,
|
1165 |
+
)
|
1166 |
+
class FlaxElectraForTokenClassification(FlaxElectraPreTrainedModel):
|
1167 |
+
module_class = FlaxElectraForTokenClassificationModule
|
1168 |
+
|
1169 |
+
|
1170 |
+
append_call_sample_docstring(
|
1171 |
+
FlaxElectraForTokenClassification,
|
1172 |
+
_CHECKPOINT_FOR_DOC,
|
1173 |
+
FlaxTokenClassifierOutput,
|
1174 |
+
_CONFIG_FOR_DOC,
|
1175 |
+
)
|
1176 |
+
|
1177 |
+
|
1178 |
+
def identity(x, **kwargs):
|
1179 |
+
return x
|
1180 |
+
|
1181 |
+
|
1182 |
+
class FlaxElectraSequenceSummary(nn.Module):
|
1183 |
+
r"""
|
1184 |
+
Compute a single vector summary of a sequence hidden states.
|
1185 |
+
|
1186 |
+
Args:
|
1187 |
+
config ([`PretrainedConfig`]):
|
1188 |
+
The config used by the model. Relevant arguments in the config class of the model are (refer to the actual
|
1189 |
+
config class of your model for the default values it uses):
|
1190 |
+
|
1191 |
+
- **summary_use_proj** (`bool`) -- Add a projection after the vector extraction.
|
1192 |
+
- **summary_proj_to_labels** (`bool`) -- If `True`, the projection outputs to `config.num_labels` classes
|
1193 |
+
(otherwise to `config.hidden_size`).
|
1194 |
+
- **summary_activation** (`Optional[str]`) -- Set to `"tanh"` to add a tanh activation to the output,
|
1195 |
+
another string or `None` will add no activation.
|
1196 |
+
- **summary_first_dropout** (`float`) -- Optional dropout probability before the projection and activation.
|
1197 |
+
- **summary_last_dropout** (`float`)-- Optional dropout probability after the projection and activation.
|
1198 |
+
"""
|
1199 |
+
|
1200 |
+
config: ElectraConfig
|
1201 |
+
dtype: jnp.dtype = jnp.float32
|
1202 |
+
|
1203 |
+
def setup(self):
|
1204 |
+
self.summary = identity
|
1205 |
+
if hasattr(self.config, "summary_use_proj") and self.config.summary_use_proj:
|
1206 |
+
if (
|
1207 |
+
hasattr(self.config, "summary_proj_to_labels")
|
1208 |
+
and self.config.summary_proj_to_labels
|
1209 |
+
and self.config.num_labels > 0
|
1210 |
+
):
|
1211 |
+
num_classes = self.config.num_labels
|
1212 |
+
else:
|
1213 |
+
num_classes = self.config.hidden_size
|
1214 |
+
self.summary = nn.Dense(num_classes, dtype=self.dtype)
|
1215 |
+
|
1216 |
+
activation_string = getattr(self.config, "summary_activation", None)
|
1217 |
+
self.activation = ACT2FN[activation_string] if activation_string else lambda x: x # noqa F407
|
1218 |
+
|
1219 |
+
self.first_dropout = identity
|
1220 |
+
if hasattr(self.config, "summary_first_dropout") and self.config.summary_first_dropout > 0:
|
1221 |
+
self.first_dropout = nn.Dropout(self.config.summary_first_dropout)
|
1222 |
+
|
1223 |
+
self.last_dropout = identity
|
1224 |
+
if hasattr(self.config, "summary_last_dropout") and self.config.summary_last_dropout > 0:
|
1225 |
+
self.last_dropout = nn.Dropout(self.config.summary_last_dropout)
|
1226 |
+
|
1227 |
+
def __call__(self, hidden_states, cls_index=None, deterministic: bool = True):
|
1228 |
+
"""
|
1229 |
+
Compute a single vector summary of a sequence hidden states.
|
1230 |
+
|
1231 |
+
Args:
|
1232 |
+
hidden_states (`jnp.ndarray` of shape `[batch_size, seq_len, hidden_size]`):
|
1233 |
+
The hidden states of the last layer.
|
1234 |
+
cls_index (`jnp.ndarray` of shape `[batch_size]` or `[batch_size, ...]` where ... are optional leading dimensions of `hidden_states`, *optional*):
|
1235 |
+
Used if `summary_type == "cls_index"` and takes the last token of the sequence as classification token.
|
1236 |
+
|
1237 |
+
Returns:
|
1238 |
+
`jnp.ndarray`: The summary of the sequence hidden states.
|
1239 |
+
"""
|
1240 |
+
# NOTE: this doest "first" type summary always
|
1241 |
+
output = hidden_states[:, 0]
|
1242 |
+
output = self.first_dropout(output, deterministic=deterministic)
|
1243 |
+
output = self.summary(output)
|
1244 |
+
output = self.activation(output)
|
1245 |
+
output = self.last_dropout(output, deterministic=deterministic)
|
1246 |
+
return output
|
1247 |
+
|
1248 |
+
|
1249 |
+
class FlaxElectraForMultipleChoiceModule(nn.Module):
|
1250 |
+
config: ElectraConfig
|
1251 |
+
dtype: jnp.dtype = jnp.float32
|
1252 |
+
gradient_checkpointing: bool = False
|
1253 |
+
|
1254 |
+
def setup(self):
|
1255 |
+
self.electra = FlaxElectraModule(
|
1256 |
+
config=self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing
|
1257 |
+
)
|
1258 |
+
self.sequence_summary = FlaxElectraSequenceSummary(config=self.config, dtype=self.dtype)
|
1259 |
+
self.classifier = nn.Dense(1, dtype=self.dtype)
|
1260 |
+
|
1261 |
+
def __call__(
|
1262 |
+
self,
|
1263 |
+
input_ids,
|
1264 |
+
attention_mask=None,
|
1265 |
+
token_type_ids=None,
|
1266 |
+
position_ids=None,
|
1267 |
+
head_mask=None,
|
1268 |
+
deterministic: bool = True,
|
1269 |
+
output_attentions: bool = False,
|
1270 |
+
output_hidden_states: bool = False,
|
1271 |
+
return_dict: bool = True,
|
1272 |
+
):
|
1273 |
+
num_choices = input_ids.shape[1]
|
1274 |
+
input_ids = input_ids.reshape(-1, input_ids.shape[-1]) if input_ids is not None else None
|
1275 |
+
attention_mask = attention_mask.reshape(-1, attention_mask.shape[-1]) if attention_mask is not None else None
|
1276 |
+
token_type_ids = token_type_ids.reshape(-1, token_type_ids.shape[-1]) if token_type_ids is not None else None
|
1277 |
+
position_ids = position_ids.reshape(-1, position_ids.shape[-1]) if position_ids is not None else None
|
1278 |
+
|
1279 |
+
# Model
|
1280 |
+
outputs = self.electra(
|
1281 |
+
input_ids,
|
1282 |
+
attention_mask,
|
1283 |
+
token_type_ids,
|
1284 |
+
position_ids,
|
1285 |
+
head_mask,
|
1286 |
+
deterministic=deterministic,
|
1287 |
+
output_attentions=output_attentions,
|
1288 |
+
output_hidden_states=output_hidden_states,
|
1289 |
+
return_dict=return_dict,
|
1290 |
+
)
|
1291 |
+
hidden_states = outputs[0]
|
1292 |
+
pooled_output = self.sequence_summary(hidden_states, deterministic=deterministic)
|
1293 |
+
logits = self.classifier(pooled_output)
|
1294 |
+
|
1295 |
+
reshaped_logits = logits.reshape(-1, num_choices)
|
1296 |
+
|
1297 |
+
if not return_dict:
|
1298 |
+
return (reshaped_logits,) + outputs[1:]
|
1299 |
+
|
1300 |
+
return FlaxMultipleChoiceModelOutput(
|
1301 |
+
logits=reshaped_logits,
|
1302 |
+
hidden_states=outputs.hidden_states,
|
1303 |
+
attentions=outputs.attentions,
|
1304 |
+
)
|
1305 |
+
|
1306 |
+
|
1307 |
+
@add_start_docstrings(
|
1308 |
+
"""
|
1309 |
+
ELECTRA Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
|
1310 |
+
softmax) e.g. for RocStories/SWAG tasks.
|
1311 |
+
""",
|
1312 |
+
ELECTRA_START_DOCSTRING,
|
1313 |
+
)
|
1314 |
+
class FlaxElectraForMultipleChoice(FlaxElectraPreTrainedModel):
|
1315 |
+
module_class = FlaxElectraForMultipleChoiceModule
|
1316 |
+
|
1317 |
+
|
1318 |
+
# adapt docstring slightly for FlaxElectraForMultipleChoice
|
1319 |
+
overwrite_call_docstring(
|
1320 |
+
FlaxElectraForMultipleChoice, ELECTRA_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")
|
1321 |
+
)
|
1322 |
+
append_call_sample_docstring(
|
1323 |
+
FlaxElectraForMultipleChoice,
|
1324 |
+
_CHECKPOINT_FOR_DOC,
|
1325 |
+
FlaxMultipleChoiceModelOutput,
|
1326 |
+
_CONFIG_FOR_DOC,
|
1327 |
+
)
|
1328 |
+
|
1329 |
+
|
1330 |
+
class FlaxElectraForQuestionAnsweringModule(nn.Module):
|
1331 |
+
config: ElectraConfig
|
1332 |
+
dtype: jnp.dtype = jnp.float32
|
1333 |
+
gradient_checkpointing: bool = False
|
1334 |
+
|
1335 |
+
def setup(self):
|
1336 |
+
self.electra = FlaxElectraModule(
|
1337 |
+
config=self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing
|
1338 |
+
)
|
1339 |
+
self.qa_outputs = nn.Dense(self.config.num_labels, dtype=self.dtype)
|
1340 |
+
|
1341 |
+
def __call__(
|
1342 |
+
self,
|
1343 |
+
input_ids,
|
1344 |
+
attention_mask=None,
|
1345 |
+
token_type_ids=None,
|
1346 |
+
position_ids=None,
|
1347 |
+
head_mask=None,
|
1348 |
+
deterministic: bool = True,
|
1349 |
+
output_attentions: bool = False,
|
1350 |
+
output_hidden_states: bool = False,
|
1351 |
+
return_dict: bool = True,
|
1352 |
+
):
|
1353 |
+
# Model
|
1354 |
+
outputs = self.electra(
|
1355 |
+
input_ids,
|
1356 |
+
attention_mask,
|
1357 |
+
token_type_ids,
|
1358 |
+
position_ids,
|
1359 |
+
head_mask,
|
1360 |
+
deterministic=deterministic,
|
1361 |
+
output_attentions=output_attentions,
|
1362 |
+
output_hidden_states=output_hidden_states,
|
1363 |
+
return_dict=return_dict,
|
1364 |
+
)
|
1365 |
+
hidden_states = outputs[0]
|
1366 |
+
logits = self.qa_outputs(hidden_states)
|
1367 |
+
start_logits, end_logits = logits.split(self.config.num_labels, axis=-1)
|
1368 |
+
start_logits = start_logits.squeeze(-1)
|
1369 |
+
end_logits = end_logits.squeeze(-1)
|
1370 |
+
|
1371 |
+
if not return_dict:
|
1372 |
+
return (start_logits, end_logits) + outputs[1:]
|
1373 |
+
|
1374 |
+
return FlaxQuestionAnsweringModelOutput(
|
1375 |
+
start_logits=start_logits,
|
1376 |
+
end_logits=end_logits,
|
1377 |
+
hidden_states=outputs.hidden_states,
|
1378 |
+
attentions=outputs.attentions,
|
1379 |
+
)
|
1380 |
+
|
1381 |
+
|
1382 |
+
@add_start_docstrings(
|
1383 |
+
"""
|
1384 |
+
ELECTRA Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
|
1385 |
+
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
1386 |
+
""",
|
1387 |
+
ELECTRA_START_DOCSTRING,
|
1388 |
+
)
|
1389 |
+
class FlaxElectraForQuestionAnswering(FlaxElectraPreTrainedModel):
|
1390 |
+
module_class = FlaxElectraForQuestionAnsweringModule
|
1391 |
+
|
1392 |
+
|
1393 |
+
append_call_sample_docstring(
|
1394 |
+
FlaxElectraForQuestionAnswering,
|
1395 |
+
_CHECKPOINT_FOR_DOC,
|
1396 |
+
FlaxQuestionAnsweringModelOutput,
|
1397 |
+
_CONFIG_FOR_DOC,
|
1398 |
+
)
|
1399 |
+
|
1400 |
+
|
1401 |
+
class FlaxElectraClassificationHead(nn.Module):
|
1402 |
+
"""Head for sentence-level classification tasks."""
|
1403 |
+
|
1404 |
+
config: ElectraConfig
|
1405 |
+
dtype: jnp.dtype = jnp.float32
|
1406 |
+
|
1407 |
+
def setup(self):
|
1408 |
+
self.dense = nn.Dense(self.config.hidden_size, dtype=self.dtype)
|
1409 |
+
classifier_dropout = (
|
1410 |
+
self.config.classifier_dropout
|
1411 |
+
if self.config.classifier_dropout is not None
|
1412 |
+
else self.config.hidden_dropout_prob
|
1413 |
+
)
|
1414 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
1415 |
+
self.out_proj = nn.Dense(self.config.num_labels, dtype=self.dtype)
|
1416 |
+
|
1417 |
+
def __call__(self, hidden_states, deterministic: bool = True):
|
1418 |
+
x = hidden_states[:, 0, :] # take <s> token (equiv. to [CLS])
|
1419 |
+
x = self.dropout(x, deterministic=deterministic)
|
1420 |
+
x = self.dense(x)
|
1421 |
+
x = ACT2FN["gelu"](x) # although BERT uses tanh here, it seems Electra authors used gelu
|
1422 |
+
x = self.dropout(x, deterministic=deterministic)
|
1423 |
+
x = self.out_proj(x)
|
1424 |
+
return x
|
1425 |
+
|
1426 |
+
|
1427 |
+
class FlaxElectraForSequenceClassificationModule(nn.Module):
|
1428 |
+
config: ElectraConfig
|
1429 |
+
dtype: jnp.dtype = jnp.float32
|
1430 |
+
gradient_checkpointing: bool = False
|
1431 |
+
|
1432 |
+
def setup(self):
|
1433 |
+
self.electra = FlaxElectraModule(
|
1434 |
+
config=self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing
|
1435 |
+
)
|
1436 |
+
self.classifier = FlaxElectraClassificationHead(config=self.config, dtype=self.dtype)
|
1437 |
+
|
1438 |
+
def __call__(
|
1439 |
+
self,
|
1440 |
+
input_ids,
|
1441 |
+
attention_mask=None,
|
1442 |
+
token_type_ids=None,
|
1443 |
+
position_ids=None,
|
1444 |
+
head_mask=None,
|
1445 |
+
deterministic: bool = True,
|
1446 |
+
output_attentions: bool = False,
|
1447 |
+
output_hidden_states: bool = False,
|
1448 |
+
return_dict: bool = True,
|
1449 |
+
):
|
1450 |
+
# Model
|
1451 |
+
outputs = self.electra(
|
1452 |
+
input_ids,
|
1453 |
+
attention_mask,
|
1454 |
+
token_type_ids,
|
1455 |
+
position_ids,
|
1456 |
+
head_mask,
|
1457 |
+
deterministic=deterministic,
|
1458 |
+
output_attentions=output_attentions,
|
1459 |
+
output_hidden_states=output_hidden_states,
|
1460 |
+
return_dict=return_dict,
|
1461 |
+
)
|
1462 |
+
hidden_states = outputs[0]
|
1463 |
+
logits = self.classifier(hidden_states, deterministic=deterministic)
|
1464 |
+
|
1465 |
+
if not return_dict:
|
1466 |
+
return (logits,) + outputs[1:]
|
1467 |
+
|
1468 |
+
return FlaxSequenceClassifierOutput(
|
1469 |
+
logits=logits,
|
1470 |
+
hidden_states=outputs.hidden_states,
|
1471 |
+
attentions=outputs.attentions,
|
1472 |
+
)
|
1473 |
+
|
1474 |
+
|
1475 |
+
@add_start_docstrings(
|
1476 |
+
"""
|
1477 |
+
Electra Model transformer with a sequence classification/regression head on top (a linear layer on top of the
|
1478 |
+
pooled output) e.g. for GLUE tasks.
|
1479 |
+
""",
|
1480 |
+
ELECTRA_START_DOCSTRING,
|
1481 |
+
)
|
1482 |
+
class FlaxElectraForSequenceClassification(FlaxElectraPreTrainedModel):
|
1483 |
+
module_class = FlaxElectraForSequenceClassificationModule
|
1484 |
+
|
1485 |
+
|
1486 |
+
append_call_sample_docstring(
|
1487 |
+
FlaxElectraForSequenceClassification,
|
1488 |
+
_CHECKPOINT_FOR_DOC,
|
1489 |
+
FlaxSequenceClassifierOutput,
|
1490 |
+
_CONFIG_FOR_DOC,
|
1491 |
+
)
|
1492 |
+
|
1493 |
+
|
1494 |
+
class FlaxElectraForCausalLMModule(nn.Module):
|
1495 |
+
config: ElectraConfig
|
1496 |
+
dtype: jnp.dtype = jnp.float32
|
1497 |
+
gradient_checkpointing: bool = False
|
1498 |
+
|
1499 |
+
def setup(self):
|
1500 |
+
self.electra = FlaxElectraModule(
|
1501 |
+
config=self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing
|
1502 |
+
)
|
1503 |
+
self.generator_predictions = FlaxElectraGeneratorPredictions(config=self.config, dtype=self.dtype)
|
1504 |
+
if self.config.tie_word_embeddings:
|
1505 |
+
self.generator_lm_head = FlaxElectraTiedDense(self.config.vocab_size, dtype=self.dtype)
|
1506 |
+
else:
|
1507 |
+
self.generator_lm_head = nn.Dense(self.config.vocab_size, dtype=self.dtype)
|
1508 |
+
|
1509 |
+
def __call__(
|
1510 |
+
self,
|
1511 |
+
input_ids,
|
1512 |
+
attention_mask: Optional[jnp.ndarray] = None,
|
1513 |
+
token_type_ids: Optional[jnp.ndarray] = None,
|
1514 |
+
position_ids: Optional[jnp.ndarray] = None,
|
1515 |
+
head_mask: Optional[jnp.ndarray] = None,
|
1516 |
+
encoder_hidden_states: Optional[jnp.ndarray] = None,
|
1517 |
+
encoder_attention_mask: Optional[jnp.ndarray] = None,
|
1518 |
+
init_cache: bool = False,
|
1519 |
+
deterministic: bool = True,
|
1520 |
+
output_attentions: bool = False,
|
1521 |
+
output_hidden_states: bool = False,
|
1522 |
+
return_dict: bool = True,
|
1523 |
+
):
|
1524 |
+
outputs = self.electra(
|
1525 |
+
input_ids,
|
1526 |
+
attention_mask,
|
1527 |
+
token_type_ids,
|
1528 |
+
position_ids,
|
1529 |
+
head_mask,
|
1530 |
+
encoder_hidden_states=encoder_hidden_states,
|
1531 |
+
encoder_attention_mask=encoder_attention_mask,
|
1532 |
+
init_cache=init_cache,
|
1533 |
+
deterministic=deterministic,
|
1534 |
+
output_attentions=output_attentions,
|
1535 |
+
output_hidden_states=output_hidden_states,
|
1536 |
+
return_dict=return_dict,
|
1537 |
+
)
|
1538 |
+
hidden_states = outputs[0]
|
1539 |
+
prediction_scores = self.generator_predictions(hidden_states)
|
1540 |
+
|
1541 |
+
if self.config.tie_word_embeddings:
|
1542 |
+
shared_embedding = self.electra.variables["params"]["embeddings"]["word_embeddings"]["embedding"]
|
1543 |
+
prediction_scores = self.generator_lm_head(prediction_scores, shared_embedding.T)
|
1544 |
+
else:
|
1545 |
+
prediction_scores = self.generator_lm_head(prediction_scores)
|
1546 |
+
|
1547 |
+
if not return_dict:
|
1548 |
+
return (prediction_scores,) + outputs[1:]
|
1549 |
+
|
1550 |
+
return FlaxCausalLMOutputWithCrossAttentions(
|
1551 |
+
logits=prediction_scores,
|
1552 |
+
hidden_states=outputs.hidden_states,
|
1553 |
+
attentions=outputs.attentions,
|
1554 |
+
cross_attentions=outputs.cross_attentions,
|
1555 |
+
)
|
1556 |
+
|
1557 |
+
|
1558 |
+
@add_start_docstrings(
|
1559 |
+
"""
|
1560 |
+
Electra Model with a language modeling head on top (a linear layer on top of the hidden-states output) e.g for
|
1561 |
+
autoregressive tasks.
|
1562 |
+
""",
|
1563 |
+
ELECTRA_START_DOCSTRING,
|
1564 |
+
)
|
1565 |
+
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertForCausalLM with Bert->Electra
|
1566 |
+
class FlaxElectraForCausalLM(FlaxElectraPreTrainedModel):
|
1567 |
+
module_class = FlaxElectraForCausalLMModule
|
1568 |
+
|
1569 |
+
def prepare_inputs_for_generation(self, input_ids, max_length, attention_mask: Optional[jax.Array] = None):
|
1570 |
+
# initializing the cache
|
1571 |
+
batch_size, seq_length = input_ids.shape
|
1572 |
+
|
1573 |
+
past_key_values = self.init_cache(batch_size, max_length)
|
1574 |
+
# Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length.
|
1575 |
+
# But since the decoder uses a causal mask, those positions are masked anyway.
|
1576 |
+
# Thus, we can create a single static attention_mask here, which is more efficient for compilation
|
1577 |
+
extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4")
|
1578 |
+
if attention_mask is not None:
|
1579 |
+
position_ids = attention_mask.cumsum(axis=-1) - 1
|
1580 |
+
extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, attention_mask, (0, 0))
|
1581 |
+
else:
|
1582 |
+
position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length))
|
1583 |
+
|
1584 |
+
return {
|
1585 |
+
"past_key_values": past_key_values,
|
1586 |
+
"attention_mask": extended_attention_mask,
|
1587 |
+
"position_ids": position_ids,
|
1588 |
+
}
|
1589 |
+
|
1590 |
+
def update_inputs_for_generation(self, model_outputs, model_kwargs):
|
1591 |
+
model_kwargs["past_key_values"] = model_outputs.past_key_values
|
1592 |
+
model_kwargs["position_ids"] = model_kwargs["position_ids"][:, -1:] + 1
|
1593 |
+
return model_kwargs
|
1594 |
+
|
1595 |
+
|
1596 |
+
append_call_sample_docstring(
|
1597 |
+
FlaxElectraForCausalLM,
|
1598 |
+
_CHECKPOINT_FOR_DOC,
|
1599 |
+
FlaxCausalLMOutputWithCrossAttentions,
|
1600 |
+
_CONFIG_FOR_DOC,
|
1601 |
+
)
|
env-llmeval/lib/python3.10/site-packages/transformers/models/electra/modeling_tf_electra.py
ADDED
@@ -0,0 +1,1775 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2019 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" TF Electra model."""
|
16 |
+
|
17 |
+
|
18 |
+
from __future__ import annotations
|
19 |
+
|
20 |
+
import math
|
21 |
+
import warnings
|
22 |
+
from dataclasses import dataclass
|
23 |
+
from typing import Optional, Tuple, Union
|
24 |
+
|
25 |
+
import numpy as np
|
26 |
+
import tensorflow as tf
|
27 |
+
|
28 |
+
from ...activations_tf import get_tf_activation
|
29 |
+
from ...modeling_tf_outputs import (
|
30 |
+
TFBaseModelOutputWithPastAndCrossAttentions,
|
31 |
+
TFMaskedLMOutput,
|
32 |
+
TFMultipleChoiceModelOutput,
|
33 |
+
TFQuestionAnsweringModelOutput,
|
34 |
+
TFSequenceClassifierOutput,
|
35 |
+
TFTokenClassifierOutput,
|
36 |
+
)
|
37 |
+
from ...modeling_tf_utils import (
|
38 |
+
TFMaskedLanguageModelingLoss,
|
39 |
+
TFModelInputType,
|
40 |
+
TFMultipleChoiceLoss,
|
41 |
+
TFPreTrainedModel,
|
42 |
+
TFQuestionAnsweringLoss,
|
43 |
+
TFSequenceClassificationLoss,
|
44 |
+
TFSequenceSummary,
|
45 |
+
TFTokenClassificationLoss,
|
46 |
+
get_initializer,
|
47 |
+
keras,
|
48 |
+
keras_serializable,
|
49 |
+
unpack_inputs,
|
50 |
+
)
|
51 |
+
from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax
|
52 |
+
from ...utils import (
|
53 |
+
ModelOutput,
|
54 |
+
add_code_sample_docstrings,
|
55 |
+
add_start_docstrings,
|
56 |
+
add_start_docstrings_to_model_forward,
|
57 |
+
logging,
|
58 |
+
replace_return_docstrings,
|
59 |
+
)
|
60 |
+
from .configuration_electra import ElectraConfig
|
61 |
+
|
62 |
+
|
63 |
+
logger = logging.get_logger(__name__)
|
64 |
+
|
65 |
+
_CHECKPOINT_FOR_DOC = "google/electra-small-discriminator"
|
66 |
+
_CONFIG_FOR_DOC = "ElectraConfig"
|
67 |
+
|
68 |
+
TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
69 |
+
"google/electra-small-generator",
|
70 |
+
"google/electra-base-generator",
|
71 |
+
"google/electra-large-generator",
|
72 |
+
"google/electra-small-discriminator",
|
73 |
+
"google/electra-base-discriminator",
|
74 |
+
"google/electra-large-discriminator",
|
75 |
+
# See all ELECTRA models at https://huggingface.co/models?filter=electra
|
76 |
+
]
|
77 |
+
|
78 |
+
|
79 |
+
# Copied from transformers.models.bert.modeling_tf_bert.TFBertSelfAttention with Bert->Electra
|
80 |
+
class TFElectraSelfAttention(keras.layers.Layer):
|
81 |
+
def __init__(self, config: ElectraConfig, **kwargs):
|
82 |
+
super().__init__(**kwargs)
|
83 |
+
|
84 |
+
if config.hidden_size % config.num_attention_heads != 0:
|
85 |
+
raise ValueError(
|
86 |
+
f"The hidden size ({config.hidden_size}) is not a multiple of the number "
|
87 |
+
f"of attention heads ({config.num_attention_heads})"
|
88 |
+
)
|
89 |
+
|
90 |
+
self.num_attention_heads = config.num_attention_heads
|
91 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
92 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
93 |
+
self.sqrt_att_head_size = math.sqrt(self.attention_head_size)
|
94 |
+
|
95 |
+
self.query = keras.layers.Dense(
|
96 |
+
units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query"
|
97 |
+
)
|
98 |
+
self.key = keras.layers.Dense(
|
99 |
+
units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key"
|
100 |
+
)
|
101 |
+
self.value = keras.layers.Dense(
|
102 |
+
units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value"
|
103 |
+
)
|
104 |
+
self.dropout = keras.layers.Dropout(rate=config.attention_probs_dropout_prob)
|
105 |
+
|
106 |
+
self.is_decoder = config.is_decoder
|
107 |
+
self.config = config
|
108 |
+
|
109 |
+
def transpose_for_scores(self, tensor: tf.Tensor, batch_size: int) -> tf.Tensor:
|
110 |
+
# Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size]
|
111 |
+
tensor = tf.reshape(tensor=tensor, shape=(batch_size, -1, self.num_attention_heads, self.attention_head_size))
|
112 |
+
|
113 |
+
# Transpose the tensor from [batch_size, seq_length, num_attention_heads, attention_head_size] to [batch_size, num_attention_heads, seq_length, attention_head_size]
|
114 |
+
return tf.transpose(tensor, perm=[0, 2, 1, 3])
|
115 |
+
|
116 |
+
def call(
|
117 |
+
self,
|
118 |
+
hidden_states: tf.Tensor,
|
119 |
+
attention_mask: tf.Tensor,
|
120 |
+
head_mask: tf.Tensor,
|
121 |
+
encoder_hidden_states: tf.Tensor,
|
122 |
+
encoder_attention_mask: tf.Tensor,
|
123 |
+
past_key_value: Tuple[tf.Tensor],
|
124 |
+
output_attentions: bool,
|
125 |
+
training: bool = False,
|
126 |
+
) -> Tuple[tf.Tensor]:
|
127 |
+
batch_size = shape_list(hidden_states)[0]
|
128 |
+
mixed_query_layer = self.query(inputs=hidden_states)
|
129 |
+
|
130 |
+
# If this is instantiated as a cross-attention module, the keys
|
131 |
+
# and values come from an encoder; the attention mask needs to be
|
132 |
+
# such that the encoder's padding tokens are not attended to.
|
133 |
+
is_cross_attention = encoder_hidden_states is not None
|
134 |
+
|
135 |
+
if is_cross_attention and past_key_value is not None:
|
136 |
+
# reuse k,v, cross_attentions
|
137 |
+
key_layer = past_key_value[0]
|
138 |
+
value_layer = past_key_value[1]
|
139 |
+
attention_mask = encoder_attention_mask
|
140 |
+
elif is_cross_attention:
|
141 |
+
key_layer = self.transpose_for_scores(self.key(inputs=encoder_hidden_states), batch_size)
|
142 |
+
value_layer = self.transpose_for_scores(self.value(inputs=encoder_hidden_states), batch_size)
|
143 |
+
attention_mask = encoder_attention_mask
|
144 |
+
elif past_key_value is not None:
|
145 |
+
key_layer = self.transpose_for_scores(self.key(inputs=hidden_states), batch_size)
|
146 |
+
value_layer = self.transpose_for_scores(self.value(inputs=hidden_states), batch_size)
|
147 |
+
key_layer = tf.concat([past_key_value[0], key_layer], axis=2)
|
148 |
+
value_layer = tf.concat([past_key_value[1], value_layer], axis=2)
|
149 |
+
else:
|
150 |
+
key_layer = self.transpose_for_scores(self.key(inputs=hidden_states), batch_size)
|
151 |
+
value_layer = self.transpose_for_scores(self.value(inputs=hidden_states), batch_size)
|
152 |
+
|
153 |
+
query_layer = self.transpose_for_scores(mixed_query_layer, batch_size)
|
154 |
+
|
155 |
+
if self.is_decoder:
|
156 |
+
# if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states.
|
157 |
+
# Further calls to cross_attention layer can then reuse all cross-attention
|
158 |
+
# key/value_states (first "if" case)
|
159 |
+
# if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of
|
160 |
+
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
161 |
+
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
162 |
+
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
163 |
+
past_key_value = (key_layer, value_layer)
|
164 |
+
|
165 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
166 |
+
# (batch size, num_heads, seq_len_q, seq_len_k)
|
167 |
+
attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True)
|
168 |
+
dk = tf.cast(self.sqrt_att_head_size, dtype=attention_scores.dtype)
|
169 |
+
attention_scores = tf.divide(attention_scores, dk)
|
170 |
+
|
171 |
+
if attention_mask is not None:
|
172 |
+
# Apply the attention mask is (precomputed for all layers in TFElectraModel call() function)
|
173 |
+
attention_scores = tf.add(attention_scores, attention_mask)
|
174 |
+
|
175 |
+
# Normalize the attention scores to probabilities.
|
176 |
+
attention_probs = stable_softmax(logits=attention_scores, axis=-1)
|
177 |
+
|
178 |
+
# This is actually dropping out entire tokens to attend to, which might
|
179 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
180 |
+
attention_probs = self.dropout(inputs=attention_probs, training=training)
|
181 |
+
|
182 |
+
# Mask heads if we want to
|
183 |
+
if head_mask is not None:
|
184 |
+
attention_probs = tf.multiply(attention_probs, head_mask)
|
185 |
+
|
186 |
+
attention_output = tf.matmul(attention_probs, value_layer)
|
187 |
+
attention_output = tf.transpose(attention_output, perm=[0, 2, 1, 3])
|
188 |
+
|
189 |
+
# (batch_size, seq_len_q, all_head_size)
|
190 |
+
attention_output = tf.reshape(tensor=attention_output, shape=(batch_size, -1, self.all_head_size))
|
191 |
+
outputs = (attention_output, attention_probs) if output_attentions else (attention_output,)
|
192 |
+
|
193 |
+
if self.is_decoder:
|
194 |
+
outputs = outputs + (past_key_value,)
|
195 |
+
return outputs
|
196 |
+
|
197 |
+
def build(self, input_shape=None):
|
198 |
+
if self.built:
|
199 |
+
return
|
200 |
+
self.built = True
|
201 |
+
if getattr(self, "query", None) is not None:
|
202 |
+
with tf.name_scope(self.query.name):
|
203 |
+
self.query.build([None, None, self.config.hidden_size])
|
204 |
+
if getattr(self, "key", None) is not None:
|
205 |
+
with tf.name_scope(self.key.name):
|
206 |
+
self.key.build([None, None, self.config.hidden_size])
|
207 |
+
if getattr(self, "value", None) is not None:
|
208 |
+
with tf.name_scope(self.value.name):
|
209 |
+
self.value.build([None, None, self.config.hidden_size])
|
210 |
+
|
211 |
+
|
212 |
+
# Copied from transformers.models.bert.modeling_tf_bert.TFBertSelfOutput with Bert->Electra
|
213 |
+
class TFElectraSelfOutput(keras.layers.Layer):
|
214 |
+
def __init__(self, config: ElectraConfig, **kwargs):
|
215 |
+
super().__init__(**kwargs)
|
216 |
+
|
217 |
+
self.dense = keras.layers.Dense(
|
218 |
+
units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
|
219 |
+
)
|
220 |
+
self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
|
221 |
+
self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
|
222 |
+
self.config = config
|
223 |
+
|
224 |
+
def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor:
|
225 |
+
hidden_states = self.dense(inputs=hidden_states)
|
226 |
+
hidden_states = self.dropout(inputs=hidden_states, training=training)
|
227 |
+
hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor)
|
228 |
+
|
229 |
+
return hidden_states
|
230 |
+
|
231 |
+
def build(self, input_shape=None):
|
232 |
+
if self.built:
|
233 |
+
return
|
234 |
+
self.built = True
|
235 |
+
if getattr(self, "dense", None) is not None:
|
236 |
+
with tf.name_scope(self.dense.name):
|
237 |
+
self.dense.build([None, None, self.config.hidden_size])
|
238 |
+
if getattr(self, "LayerNorm", None) is not None:
|
239 |
+
with tf.name_scope(self.LayerNorm.name):
|
240 |
+
self.LayerNorm.build([None, None, self.config.hidden_size])
|
241 |
+
|
242 |
+
|
243 |
+
# Copied from transformers.models.bert.modeling_tf_bert.TFBertAttention with Bert->Electra
|
244 |
+
class TFElectraAttention(keras.layers.Layer):
|
245 |
+
def __init__(self, config: ElectraConfig, **kwargs):
|
246 |
+
super().__init__(**kwargs)
|
247 |
+
|
248 |
+
self.self_attention = TFElectraSelfAttention(config, name="self")
|
249 |
+
self.dense_output = TFElectraSelfOutput(config, name="output")
|
250 |
+
|
251 |
+
def prune_heads(self, heads):
|
252 |
+
raise NotImplementedError
|
253 |
+
|
254 |
+
def call(
|
255 |
+
self,
|
256 |
+
input_tensor: tf.Tensor,
|
257 |
+
attention_mask: tf.Tensor,
|
258 |
+
head_mask: tf.Tensor,
|
259 |
+
encoder_hidden_states: tf.Tensor,
|
260 |
+
encoder_attention_mask: tf.Tensor,
|
261 |
+
past_key_value: Tuple[tf.Tensor],
|
262 |
+
output_attentions: bool,
|
263 |
+
training: bool = False,
|
264 |
+
) -> Tuple[tf.Tensor]:
|
265 |
+
self_outputs = self.self_attention(
|
266 |
+
hidden_states=input_tensor,
|
267 |
+
attention_mask=attention_mask,
|
268 |
+
head_mask=head_mask,
|
269 |
+
encoder_hidden_states=encoder_hidden_states,
|
270 |
+
encoder_attention_mask=encoder_attention_mask,
|
271 |
+
past_key_value=past_key_value,
|
272 |
+
output_attentions=output_attentions,
|
273 |
+
training=training,
|
274 |
+
)
|
275 |
+
attention_output = self.dense_output(
|
276 |
+
hidden_states=self_outputs[0], input_tensor=input_tensor, training=training
|
277 |
+
)
|
278 |
+
# add attentions (possibly with past_key_value) if we output them
|
279 |
+
outputs = (attention_output,) + self_outputs[1:]
|
280 |
+
|
281 |
+
return outputs
|
282 |
+
|
283 |
+
def build(self, input_shape=None):
|
284 |
+
if self.built:
|
285 |
+
return
|
286 |
+
self.built = True
|
287 |
+
if getattr(self, "self_attention", None) is not None:
|
288 |
+
with tf.name_scope(self.self_attention.name):
|
289 |
+
self.self_attention.build(None)
|
290 |
+
if getattr(self, "dense_output", None) is not None:
|
291 |
+
with tf.name_scope(self.dense_output.name):
|
292 |
+
self.dense_output.build(None)
|
293 |
+
|
294 |
+
|
295 |
+
# Copied from transformers.models.bert.modeling_tf_bert.TFBertIntermediate with Bert->Electra
|
296 |
+
class TFElectraIntermediate(keras.layers.Layer):
|
297 |
+
def __init__(self, config: ElectraConfig, **kwargs):
|
298 |
+
super().__init__(**kwargs)
|
299 |
+
|
300 |
+
self.dense = keras.layers.Dense(
|
301 |
+
units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
|
302 |
+
)
|
303 |
+
|
304 |
+
if isinstance(config.hidden_act, str):
|
305 |
+
self.intermediate_act_fn = get_tf_activation(config.hidden_act)
|
306 |
+
else:
|
307 |
+
self.intermediate_act_fn = config.hidden_act
|
308 |
+
self.config = config
|
309 |
+
|
310 |
+
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
|
311 |
+
hidden_states = self.dense(inputs=hidden_states)
|
312 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
313 |
+
|
314 |
+
return hidden_states
|
315 |
+
|
316 |
+
def build(self, input_shape=None):
|
317 |
+
if self.built:
|
318 |
+
return
|
319 |
+
self.built = True
|
320 |
+
if getattr(self, "dense", None) is not None:
|
321 |
+
with tf.name_scope(self.dense.name):
|
322 |
+
self.dense.build([None, None, self.config.hidden_size])
|
323 |
+
|
324 |
+
|
325 |
+
# Copied from transformers.models.bert.modeling_tf_bert.TFBertOutput with Bert->Electra
|
326 |
+
class TFElectraOutput(keras.layers.Layer):
|
327 |
+
def __init__(self, config: ElectraConfig, **kwargs):
|
328 |
+
super().__init__(**kwargs)
|
329 |
+
|
330 |
+
self.dense = keras.layers.Dense(
|
331 |
+
units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
|
332 |
+
)
|
333 |
+
self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
|
334 |
+
self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
|
335 |
+
self.config = config
|
336 |
+
|
337 |
+
def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor:
|
338 |
+
hidden_states = self.dense(inputs=hidden_states)
|
339 |
+
hidden_states = self.dropout(inputs=hidden_states, training=training)
|
340 |
+
hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor)
|
341 |
+
|
342 |
+
return hidden_states
|
343 |
+
|
344 |
+
def build(self, input_shape=None):
|
345 |
+
if self.built:
|
346 |
+
return
|
347 |
+
self.built = True
|
348 |
+
if getattr(self, "dense", None) is not None:
|
349 |
+
with tf.name_scope(self.dense.name):
|
350 |
+
self.dense.build([None, None, self.config.intermediate_size])
|
351 |
+
if getattr(self, "LayerNorm", None) is not None:
|
352 |
+
with tf.name_scope(self.LayerNorm.name):
|
353 |
+
self.LayerNorm.build([None, None, self.config.hidden_size])
|
354 |
+
|
355 |
+
|
356 |
+
# Copied from transformers.models.bert.modeling_tf_bert.TFBertLayer with Bert->Electra
|
357 |
+
class TFElectraLayer(keras.layers.Layer):
|
358 |
+
def __init__(self, config: ElectraConfig, **kwargs):
|
359 |
+
super().__init__(**kwargs)
|
360 |
+
|
361 |
+
self.attention = TFElectraAttention(config, name="attention")
|
362 |
+
self.is_decoder = config.is_decoder
|
363 |
+
self.add_cross_attention = config.add_cross_attention
|
364 |
+
if self.add_cross_attention:
|
365 |
+
if not self.is_decoder:
|
366 |
+
raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
|
367 |
+
self.crossattention = TFElectraAttention(config, name="crossattention")
|
368 |
+
self.intermediate = TFElectraIntermediate(config, name="intermediate")
|
369 |
+
self.bert_output = TFElectraOutput(config, name="output")
|
370 |
+
|
371 |
+
def call(
|
372 |
+
self,
|
373 |
+
hidden_states: tf.Tensor,
|
374 |
+
attention_mask: tf.Tensor,
|
375 |
+
head_mask: tf.Tensor,
|
376 |
+
encoder_hidden_states: tf.Tensor | None,
|
377 |
+
encoder_attention_mask: tf.Tensor | None,
|
378 |
+
past_key_value: Tuple[tf.Tensor] | None,
|
379 |
+
output_attentions: bool,
|
380 |
+
training: bool = False,
|
381 |
+
) -> Tuple[tf.Tensor]:
|
382 |
+
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
383 |
+
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
|
384 |
+
self_attention_outputs = self.attention(
|
385 |
+
input_tensor=hidden_states,
|
386 |
+
attention_mask=attention_mask,
|
387 |
+
head_mask=head_mask,
|
388 |
+
encoder_hidden_states=None,
|
389 |
+
encoder_attention_mask=None,
|
390 |
+
past_key_value=self_attn_past_key_value,
|
391 |
+
output_attentions=output_attentions,
|
392 |
+
training=training,
|
393 |
+
)
|
394 |
+
attention_output = self_attention_outputs[0]
|
395 |
+
|
396 |
+
# if decoder, the last output is tuple of self-attn cache
|
397 |
+
if self.is_decoder:
|
398 |
+
outputs = self_attention_outputs[1:-1]
|
399 |
+
present_key_value = self_attention_outputs[-1]
|
400 |
+
else:
|
401 |
+
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
|
402 |
+
|
403 |
+
cross_attn_present_key_value = None
|
404 |
+
if self.is_decoder and encoder_hidden_states is not None:
|
405 |
+
if not hasattr(self, "crossattention"):
|
406 |
+
raise ValueError(
|
407 |
+
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
|
408 |
+
" by setting `config.add_cross_attention=True`"
|
409 |
+
)
|
410 |
+
|
411 |
+
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
|
412 |
+
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
|
413 |
+
cross_attention_outputs = self.crossattention(
|
414 |
+
input_tensor=attention_output,
|
415 |
+
attention_mask=attention_mask,
|
416 |
+
head_mask=head_mask,
|
417 |
+
encoder_hidden_states=encoder_hidden_states,
|
418 |
+
encoder_attention_mask=encoder_attention_mask,
|
419 |
+
past_key_value=cross_attn_past_key_value,
|
420 |
+
output_attentions=output_attentions,
|
421 |
+
training=training,
|
422 |
+
)
|
423 |
+
attention_output = cross_attention_outputs[0]
|
424 |
+
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
|
425 |
+
|
426 |
+
# add cross-attn cache to positions 3,4 of present_key_value tuple
|
427 |
+
cross_attn_present_key_value = cross_attention_outputs[-1]
|
428 |
+
present_key_value = present_key_value + cross_attn_present_key_value
|
429 |
+
|
430 |
+
intermediate_output = self.intermediate(hidden_states=attention_output)
|
431 |
+
layer_output = self.bert_output(
|
432 |
+
hidden_states=intermediate_output, input_tensor=attention_output, training=training
|
433 |
+
)
|
434 |
+
outputs = (layer_output,) + outputs # add attentions if we output them
|
435 |
+
|
436 |
+
# if decoder, return the attn key/values as the last output
|
437 |
+
if self.is_decoder:
|
438 |
+
outputs = outputs + (present_key_value,)
|
439 |
+
|
440 |
+
return outputs
|
441 |
+
|
442 |
+
def build(self, input_shape=None):
|
443 |
+
if self.built:
|
444 |
+
return
|
445 |
+
self.built = True
|
446 |
+
if getattr(self, "attention", None) is not None:
|
447 |
+
with tf.name_scope(self.attention.name):
|
448 |
+
self.attention.build(None)
|
449 |
+
if getattr(self, "intermediate", None) is not None:
|
450 |
+
with tf.name_scope(self.intermediate.name):
|
451 |
+
self.intermediate.build(None)
|
452 |
+
if getattr(self, "bert_output", None) is not None:
|
453 |
+
with tf.name_scope(self.bert_output.name):
|
454 |
+
self.bert_output.build(None)
|
455 |
+
if getattr(self, "crossattention", None) is not None:
|
456 |
+
with tf.name_scope(self.crossattention.name):
|
457 |
+
self.crossattention.build(None)
|
458 |
+
|
459 |
+
|
460 |
+
# Copied from transformers.models.bert.modeling_tf_bert.TFBertEncoder with Bert->Electra
|
461 |
+
class TFElectraEncoder(keras.layers.Layer):
|
462 |
+
def __init__(self, config: ElectraConfig, **kwargs):
|
463 |
+
super().__init__(**kwargs)
|
464 |
+
self.config = config
|
465 |
+
self.layer = [TFElectraLayer(config, name=f"layer_._{i}") for i in range(config.num_hidden_layers)]
|
466 |
+
|
467 |
+
def call(
|
468 |
+
self,
|
469 |
+
hidden_states: tf.Tensor,
|
470 |
+
attention_mask: tf.Tensor,
|
471 |
+
head_mask: tf.Tensor,
|
472 |
+
encoder_hidden_states: tf.Tensor | None,
|
473 |
+
encoder_attention_mask: tf.Tensor | None,
|
474 |
+
past_key_values: Tuple[Tuple[tf.Tensor]] | None,
|
475 |
+
use_cache: Optional[bool],
|
476 |
+
output_attentions: bool,
|
477 |
+
output_hidden_states: bool,
|
478 |
+
return_dict: bool,
|
479 |
+
training: bool = False,
|
480 |
+
) -> Union[TFBaseModelOutputWithPastAndCrossAttentions, Tuple[tf.Tensor]]:
|
481 |
+
all_hidden_states = () if output_hidden_states else None
|
482 |
+
all_attentions = () if output_attentions else None
|
483 |
+
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
|
484 |
+
|
485 |
+
next_decoder_cache = () if use_cache else None
|
486 |
+
for i, layer_module in enumerate(self.layer):
|
487 |
+
if output_hidden_states:
|
488 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
489 |
+
|
490 |
+
past_key_value = past_key_values[i] if past_key_values is not None else None
|
491 |
+
|
492 |
+
layer_outputs = layer_module(
|
493 |
+
hidden_states=hidden_states,
|
494 |
+
attention_mask=attention_mask,
|
495 |
+
head_mask=head_mask[i],
|
496 |
+
encoder_hidden_states=encoder_hidden_states,
|
497 |
+
encoder_attention_mask=encoder_attention_mask,
|
498 |
+
past_key_value=past_key_value,
|
499 |
+
output_attentions=output_attentions,
|
500 |
+
training=training,
|
501 |
+
)
|
502 |
+
hidden_states = layer_outputs[0]
|
503 |
+
|
504 |
+
if use_cache:
|
505 |
+
next_decoder_cache += (layer_outputs[-1],)
|
506 |
+
|
507 |
+
if output_attentions:
|
508 |
+
all_attentions = all_attentions + (layer_outputs[1],)
|
509 |
+
if self.config.add_cross_attention and encoder_hidden_states is not None:
|
510 |
+
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
|
511 |
+
|
512 |
+
# Add last layer
|
513 |
+
if output_hidden_states:
|
514 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
515 |
+
|
516 |
+
if not return_dict:
|
517 |
+
return tuple(
|
518 |
+
v for v in [hidden_states, all_hidden_states, all_attentions, all_cross_attentions] if v is not None
|
519 |
+
)
|
520 |
+
|
521 |
+
return TFBaseModelOutputWithPastAndCrossAttentions(
|
522 |
+
last_hidden_state=hidden_states,
|
523 |
+
past_key_values=next_decoder_cache,
|
524 |
+
hidden_states=all_hidden_states,
|
525 |
+
attentions=all_attentions,
|
526 |
+
cross_attentions=all_cross_attentions,
|
527 |
+
)
|
528 |
+
|
529 |
+
def build(self, input_shape=None):
|
530 |
+
if self.built:
|
531 |
+
return
|
532 |
+
self.built = True
|
533 |
+
if getattr(self, "layer", None) is not None:
|
534 |
+
for layer in self.layer:
|
535 |
+
with tf.name_scope(layer.name):
|
536 |
+
layer.build(None)
|
537 |
+
|
538 |
+
|
539 |
+
# Copied from transformers.models.bert.modeling_tf_bert.TFBertPooler with Bert->Electra
|
540 |
+
class TFElectraPooler(keras.layers.Layer):
|
541 |
+
def __init__(self, config: ElectraConfig, **kwargs):
|
542 |
+
super().__init__(**kwargs)
|
543 |
+
|
544 |
+
self.dense = keras.layers.Dense(
|
545 |
+
units=config.hidden_size,
|
546 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
547 |
+
activation="tanh",
|
548 |
+
name="dense",
|
549 |
+
)
|
550 |
+
self.config = config
|
551 |
+
|
552 |
+
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
|
553 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
554 |
+
# to the first token.
|
555 |
+
first_token_tensor = hidden_states[:, 0]
|
556 |
+
pooled_output = self.dense(inputs=first_token_tensor)
|
557 |
+
|
558 |
+
return pooled_output
|
559 |
+
|
560 |
+
def build(self, input_shape=None):
|
561 |
+
if self.built:
|
562 |
+
return
|
563 |
+
self.built = True
|
564 |
+
if getattr(self, "dense", None) is not None:
|
565 |
+
with tf.name_scope(self.dense.name):
|
566 |
+
self.dense.build([None, None, self.config.hidden_size])
|
567 |
+
|
568 |
+
|
569 |
+
# Copied from transformers.models.albert.modeling_tf_albert.TFAlbertEmbeddings with Albert->Electra
|
570 |
+
class TFElectraEmbeddings(keras.layers.Layer):
|
571 |
+
"""Construct the embeddings from word, position and token_type embeddings."""
|
572 |
+
|
573 |
+
def __init__(self, config: ElectraConfig, **kwargs):
|
574 |
+
super().__init__(**kwargs)
|
575 |
+
|
576 |
+
self.config = config
|
577 |
+
self.embedding_size = config.embedding_size
|
578 |
+
self.max_position_embeddings = config.max_position_embeddings
|
579 |
+
self.initializer_range = config.initializer_range
|
580 |
+
self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
|
581 |
+
self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
|
582 |
+
|
583 |
+
def build(self, input_shape=None):
|
584 |
+
with tf.name_scope("word_embeddings"):
|
585 |
+
self.weight = self.add_weight(
|
586 |
+
name="weight",
|
587 |
+
shape=[self.config.vocab_size, self.embedding_size],
|
588 |
+
initializer=get_initializer(self.initializer_range),
|
589 |
+
)
|
590 |
+
|
591 |
+
with tf.name_scope("token_type_embeddings"):
|
592 |
+
self.token_type_embeddings = self.add_weight(
|
593 |
+
name="embeddings",
|
594 |
+
shape=[self.config.type_vocab_size, self.embedding_size],
|
595 |
+
initializer=get_initializer(self.initializer_range),
|
596 |
+
)
|
597 |
+
|
598 |
+
with tf.name_scope("position_embeddings"):
|
599 |
+
self.position_embeddings = self.add_weight(
|
600 |
+
name="embeddings",
|
601 |
+
shape=[self.max_position_embeddings, self.embedding_size],
|
602 |
+
initializer=get_initializer(self.initializer_range),
|
603 |
+
)
|
604 |
+
|
605 |
+
if self.built:
|
606 |
+
return
|
607 |
+
self.built = True
|
608 |
+
if getattr(self, "LayerNorm", None) is not None:
|
609 |
+
with tf.name_scope(self.LayerNorm.name):
|
610 |
+
self.LayerNorm.build([None, None, self.config.embedding_size])
|
611 |
+
|
612 |
+
# Copied from transformers.models.bert.modeling_tf_bert.TFBertEmbeddings.call
|
613 |
+
def call(
|
614 |
+
self,
|
615 |
+
input_ids: tf.Tensor = None,
|
616 |
+
position_ids: tf.Tensor = None,
|
617 |
+
token_type_ids: tf.Tensor = None,
|
618 |
+
inputs_embeds: tf.Tensor = None,
|
619 |
+
past_key_values_length=0,
|
620 |
+
training: bool = False,
|
621 |
+
) -> tf.Tensor:
|
622 |
+
"""
|
623 |
+
Applies embedding based on inputs tensor.
|
624 |
+
|
625 |
+
Returns:
|
626 |
+
final_embeddings (`tf.Tensor`): output embedding tensor.
|
627 |
+
"""
|
628 |
+
if input_ids is None and inputs_embeds is None:
|
629 |
+
raise ValueError("Need to provide either `input_ids` or `input_embeds`.")
|
630 |
+
|
631 |
+
if input_ids is not None:
|
632 |
+
check_embeddings_within_bounds(input_ids, self.config.vocab_size)
|
633 |
+
inputs_embeds = tf.gather(params=self.weight, indices=input_ids)
|
634 |
+
|
635 |
+
input_shape = shape_list(inputs_embeds)[:-1]
|
636 |
+
|
637 |
+
if token_type_ids is None:
|
638 |
+
token_type_ids = tf.fill(dims=input_shape, value=0)
|
639 |
+
|
640 |
+
if position_ids is None:
|
641 |
+
position_ids = tf.expand_dims(
|
642 |
+
tf.range(start=past_key_values_length, limit=input_shape[1] + past_key_values_length), axis=0
|
643 |
+
)
|
644 |
+
|
645 |
+
position_embeds = tf.gather(params=self.position_embeddings, indices=position_ids)
|
646 |
+
token_type_embeds = tf.gather(params=self.token_type_embeddings, indices=token_type_ids)
|
647 |
+
final_embeddings = inputs_embeds + position_embeds + token_type_embeds
|
648 |
+
final_embeddings = self.LayerNorm(inputs=final_embeddings)
|
649 |
+
final_embeddings = self.dropout(inputs=final_embeddings, training=training)
|
650 |
+
|
651 |
+
return final_embeddings
|
652 |
+
|
653 |
+
|
654 |
+
class TFElectraDiscriminatorPredictions(keras.layers.Layer):
|
655 |
+
def __init__(self, config, **kwargs):
|
656 |
+
super().__init__(**kwargs)
|
657 |
+
|
658 |
+
self.dense = keras.layers.Dense(config.hidden_size, name="dense")
|
659 |
+
self.dense_prediction = keras.layers.Dense(1, name="dense_prediction")
|
660 |
+
self.config = config
|
661 |
+
|
662 |
+
def call(self, discriminator_hidden_states, training=False):
|
663 |
+
hidden_states = self.dense(discriminator_hidden_states)
|
664 |
+
hidden_states = get_tf_activation(self.config.hidden_act)(hidden_states)
|
665 |
+
logits = tf.squeeze(self.dense_prediction(hidden_states), -1)
|
666 |
+
|
667 |
+
return logits
|
668 |
+
|
669 |
+
def build(self, input_shape=None):
|
670 |
+
if self.built:
|
671 |
+
return
|
672 |
+
self.built = True
|
673 |
+
if getattr(self, "dense", None) is not None:
|
674 |
+
with tf.name_scope(self.dense.name):
|
675 |
+
self.dense.build([None, None, self.config.hidden_size])
|
676 |
+
if getattr(self, "dense_prediction", None) is not None:
|
677 |
+
with tf.name_scope(self.dense_prediction.name):
|
678 |
+
self.dense_prediction.build([None, None, self.config.hidden_size])
|
679 |
+
|
680 |
+
|
681 |
+
class TFElectraGeneratorPredictions(keras.layers.Layer):
|
682 |
+
def __init__(self, config, **kwargs):
|
683 |
+
super().__init__(**kwargs)
|
684 |
+
|
685 |
+
self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
|
686 |
+
self.dense = keras.layers.Dense(config.embedding_size, name="dense")
|
687 |
+
self.config = config
|
688 |
+
|
689 |
+
def call(self, generator_hidden_states, training=False):
|
690 |
+
hidden_states = self.dense(generator_hidden_states)
|
691 |
+
hidden_states = get_tf_activation("gelu")(hidden_states)
|
692 |
+
hidden_states = self.LayerNorm(hidden_states)
|
693 |
+
|
694 |
+
return hidden_states
|
695 |
+
|
696 |
+
def build(self, input_shape=None):
|
697 |
+
if self.built:
|
698 |
+
return
|
699 |
+
self.built = True
|
700 |
+
if getattr(self, "LayerNorm", None) is not None:
|
701 |
+
with tf.name_scope(self.LayerNorm.name):
|
702 |
+
self.LayerNorm.build([None, None, self.config.embedding_size])
|
703 |
+
if getattr(self, "dense", None) is not None:
|
704 |
+
with tf.name_scope(self.dense.name):
|
705 |
+
self.dense.build([None, None, self.config.hidden_size])
|
706 |
+
|
707 |
+
|
708 |
+
class TFElectraPreTrainedModel(TFPreTrainedModel):
|
709 |
+
"""
|
710 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
711 |
+
models.
|
712 |
+
"""
|
713 |
+
|
714 |
+
config_class = ElectraConfig
|
715 |
+
base_model_prefix = "electra"
|
716 |
+
# When the model is loaded from a PT model
|
717 |
+
_keys_to_ignore_on_load_unexpected = [r"generator_lm_head.weight"]
|
718 |
+
_keys_to_ignore_on_load_missing = [r"dropout"]
|
719 |
+
|
720 |
+
|
721 |
+
@keras_serializable
|
722 |
+
class TFElectraMainLayer(keras.layers.Layer):
|
723 |
+
config_class = ElectraConfig
|
724 |
+
|
725 |
+
def __init__(self, config, **kwargs):
|
726 |
+
super().__init__(**kwargs)
|
727 |
+
|
728 |
+
self.config = config
|
729 |
+
self.is_decoder = config.is_decoder
|
730 |
+
|
731 |
+
self.embeddings = TFElectraEmbeddings(config, name="embeddings")
|
732 |
+
|
733 |
+
if config.embedding_size != config.hidden_size:
|
734 |
+
self.embeddings_project = keras.layers.Dense(config.hidden_size, name="embeddings_project")
|
735 |
+
|
736 |
+
self.encoder = TFElectraEncoder(config, name="encoder")
|
737 |
+
|
738 |
+
def get_input_embeddings(self):
|
739 |
+
return self.embeddings
|
740 |
+
|
741 |
+
def set_input_embeddings(self, value):
|
742 |
+
self.embeddings.weight = value
|
743 |
+
self.embeddings.vocab_size = shape_list(value)[0]
|
744 |
+
|
745 |
+
def _prune_heads(self, heads_to_prune):
|
746 |
+
"""
|
747 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
748 |
+
class PreTrainedModel
|
749 |
+
"""
|
750 |
+
raise NotImplementedError
|
751 |
+
|
752 |
+
def get_extended_attention_mask(self, attention_mask, input_shape, dtype, past_key_values_length=0):
|
753 |
+
batch_size, seq_length = input_shape
|
754 |
+
|
755 |
+
if attention_mask is None:
|
756 |
+
attention_mask = tf.fill(dims=(batch_size, seq_length + past_key_values_length), value=1)
|
757 |
+
|
758 |
+
# We create a 3D attention mask from a 2D tensor mask.
|
759 |
+
# Sizes are [batch_size, 1, 1, to_seq_length]
|
760 |
+
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
|
761 |
+
# this attention mask is more simple than the triangular masking of causal attention
|
762 |
+
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
|
763 |
+
attention_mask_shape = shape_list(attention_mask)
|
764 |
+
|
765 |
+
mask_seq_length = seq_length + past_key_values_length
|
766 |
+
# Copied from `modeling_tf_t5.py`
|
767 |
+
# Provided a padding mask of dimensions [batch_size, mask_seq_length]
|
768 |
+
# - if the model is a decoder, apply a causal mask in addition to the padding mask
|
769 |
+
# - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, mask_seq_length, mask_seq_length]
|
770 |
+
if self.is_decoder:
|
771 |
+
seq_ids = tf.range(mask_seq_length)
|
772 |
+
causal_mask = tf.less_equal(
|
773 |
+
tf.tile(seq_ids[None, None, :], (batch_size, mask_seq_length, 1)),
|
774 |
+
seq_ids[None, :, None],
|
775 |
+
)
|
776 |
+
causal_mask = tf.cast(causal_mask, dtype=attention_mask.dtype)
|
777 |
+
extended_attention_mask = causal_mask * attention_mask[:, None, :]
|
778 |
+
attention_mask_shape = shape_list(extended_attention_mask)
|
779 |
+
extended_attention_mask = tf.reshape(
|
780 |
+
extended_attention_mask, (attention_mask_shape[0], 1, attention_mask_shape[1], attention_mask_shape[2])
|
781 |
+
)
|
782 |
+
if past_key_values_length > 0:
|
783 |
+
extended_attention_mask = extended_attention_mask[:, :, -seq_length:, :]
|
784 |
+
else:
|
785 |
+
extended_attention_mask = tf.reshape(
|
786 |
+
attention_mask, (attention_mask_shape[0], 1, 1, attention_mask_shape[1])
|
787 |
+
)
|
788 |
+
|
789 |
+
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
790 |
+
# masked positions, this operation will create a tensor which is 0.0 for
|
791 |
+
# positions we want to attend and -10000.0 for masked positions.
|
792 |
+
# Since we are adding it to the raw scores before the softmax, this is
|
793 |
+
# effectively the same as removing these entirely.
|
794 |
+
extended_attention_mask = tf.cast(extended_attention_mask, dtype=dtype)
|
795 |
+
one_cst = tf.constant(1.0, dtype=dtype)
|
796 |
+
ten_thousand_cst = tf.constant(-10000.0, dtype=dtype)
|
797 |
+
extended_attention_mask = tf.multiply(tf.subtract(one_cst, extended_attention_mask), ten_thousand_cst)
|
798 |
+
|
799 |
+
return extended_attention_mask
|
800 |
+
|
801 |
+
def get_head_mask(self, head_mask):
|
802 |
+
if head_mask is not None:
|
803 |
+
raise NotImplementedError
|
804 |
+
else:
|
805 |
+
head_mask = [None] * self.config.num_hidden_layers
|
806 |
+
|
807 |
+
return head_mask
|
808 |
+
|
809 |
+
@unpack_inputs
|
810 |
+
def call(
|
811 |
+
self,
|
812 |
+
input_ids: TFModelInputType | None = None,
|
813 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
814 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
815 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
816 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
817 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
818 |
+
encoder_hidden_states: np.ndarray | tf.Tensor | None = None,
|
819 |
+
encoder_attention_mask: np.ndarray | tf.Tensor | None = None,
|
820 |
+
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
|
821 |
+
use_cache: Optional[bool] = None,
|
822 |
+
output_attentions: Optional[bool] = None,
|
823 |
+
output_hidden_states: Optional[bool] = None,
|
824 |
+
return_dict: Optional[bool] = None,
|
825 |
+
training: Optional[bool] = False,
|
826 |
+
) -> Union[TFBaseModelOutputWithPastAndCrossAttentions, Tuple[tf.Tensor]]:
|
827 |
+
if not self.config.is_decoder:
|
828 |
+
use_cache = False
|
829 |
+
|
830 |
+
if input_ids is not None and inputs_embeds is not None:
|
831 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
832 |
+
elif input_ids is not None:
|
833 |
+
input_shape = shape_list(input_ids)
|
834 |
+
elif inputs_embeds is not None:
|
835 |
+
input_shape = shape_list(inputs_embeds)[:-1]
|
836 |
+
else:
|
837 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
838 |
+
|
839 |
+
batch_size, seq_length = input_shape
|
840 |
+
|
841 |
+
if past_key_values is None:
|
842 |
+
past_key_values_length = 0
|
843 |
+
past_key_values = [None] * len(self.encoder.layer)
|
844 |
+
else:
|
845 |
+
past_key_values_length = shape_list(past_key_values[0][0])[-2]
|
846 |
+
|
847 |
+
if attention_mask is None:
|
848 |
+
attention_mask = tf.fill(dims=(batch_size, seq_length + past_key_values_length), value=1)
|
849 |
+
|
850 |
+
if token_type_ids is None:
|
851 |
+
token_type_ids = tf.fill(dims=input_shape, value=0)
|
852 |
+
|
853 |
+
hidden_states = self.embeddings(
|
854 |
+
input_ids=input_ids,
|
855 |
+
position_ids=position_ids,
|
856 |
+
token_type_ids=token_type_ids,
|
857 |
+
inputs_embeds=inputs_embeds,
|
858 |
+
past_key_values_length=past_key_values_length,
|
859 |
+
training=training,
|
860 |
+
)
|
861 |
+
extended_attention_mask = self.get_extended_attention_mask(
|
862 |
+
attention_mask, input_shape, hidden_states.dtype, past_key_values_length
|
863 |
+
)
|
864 |
+
|
865 |
+
# Copied from `modeling_tf_t5.py` with -1e9 -> -10000
|
866 |
+
if self.is_decoder and encoder_attention_mask is not None:
|
867 |
+
# If a 2D ou 3D attention mask is provided for the cross-attention
|
868 |
+
# we need to make broadcastable to [batch_size, num_heads, mask_seq_length, mask_seq_length]
|
869 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
870 |
+
encoder_attention_mask = tf.cast(encoder_attention_mask, dtype=extended_attention_mask.dtype)
|
871 |
+
num_dims_encoder_attention_mask = len(shape_list(encoder_attention_mask))
|
872 |
+
if num_dims_encoder_attention_mask == 3:
|
873 |
+
encoder_extended_attention_mask = encoder_attention_mask[:, None, :, :]
|
874 |
+
if num_dims_encoder_attention_mask == 2:
|
875 |
+
encoder_extended_attention_mask = encoder_attention_mask[:, None, None, :]
|
876 |
+
|
877 |
+
# T5 has a mask that can compare sequence ids, we can simulate this here with this transposition
|
878 |
+
# Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow/transformer/transformer_layers.py#L270
|
879 |
+
# encoder_extended_attention_mask = tf.math.equal(encoder_extended_attention_mask,
|
880 |
+
# tf.transpose(encoder_extended_attention_mask, perm=(-1, -2)))
|
881 |
+
|
882 |
+
encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * -10000.0
|
883 |
+
else:
|
884 |
+
encoder_extended_attention_mask = None
|
885 |
+
|
886 |
+
head_mask = self.get_head_mask(head_mask)
|
887 |
+
|
888 |
+
if hasattr(self, "embeddings_project"):
|
889 |
+
hidden_states = self.embeddings_project(hidden_states, training=training)
|
890 |
+
|
891 |
+
hidden_states = self.encoder(
|
892 |
+
hidden_states=hidden_states,
|
893 |
+
attention_mask=extended_attention_mask,
|
894 |
+
head_mask=head_mask,
|
895 |
+
encoder_hidden_states=encoder_hidden_states,
|
896 |
+
encoder_attention_mask=encoder_extended_attention_mask,
|
897 |
+
past_key_values=past_key_values,
|
898 |
+
use_cache=use_cache,
|
899 |
+
output_attentions=output_attentions,
|
900 |
+
output_hidden_states=output_hidden_states,
|
901 |
+
return_dict=return_dict,
|
902 |
+
training=training,
|
903 |
+
)
|
904 |
+
|
905 |
+
return hidden_states
|
906 |
+
|
907 |
+
def build(self, input_shape=None):
|
908 |
+
if self.built:
|
909 |
+
return
|
910 |
+
self.built = True
|
911 |
+
if getattr(self, "embeddings", None) is not None:
|
912 |
+
with tf.name_scope(self.embeddings.name):
|
913 |
+
self.embeddings.build(None)
|
914 |
+
if getattr(self, "encoder", None) is not None:
|
915 |
+
with tf.name_scope(self.encoder.name):
|
916 |
+
self.encoder.build(None)
|
917 |
+
if getattr(self, "embeddings_project", None) is not None:
|
918 |
+
with tf.name_scope(self.embeddings_project.name):
|
919 |
+
self.embeddings_project.build([None, None, self.config.embedding_size])
|
920 |
+
|
921 |
+
|
922 |
+
@dataclass
|
923 |
+
class TFElectraForPreTrainingOutput(ModelOutput):
|
924 |
+
"""
|
925 |
+
Output type of [`TFElectraForPreTraining`].
|
926 |
+
|
927 |
+
Args:
|
928 |
+
loss (*optional*, returned when `labels` is provided, `tf.Tensor` of shape `(1,)`):
|
929 |
+
Total loss of the ELECTRA objective.
|
930 |
+
logits (`tf.Tensor` of shape `(batch_size, sequence_length)`):
|
931 |
+
Prediction scores of the head (scores for each token before SoftMax).
|
932 |
+
hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
933 |
+
Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
|
934 |
+
`(batch_size, sequence_length, hidden_size)`.
|
935 |
+
|
936 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
937 |
+
attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
938 |
+
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
939 |
+
sequence_length)`.
|
940 |
+
|
941 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
942 |
+
heads.
|
943 |
+
"""
|
944 |
+
|
945 |
+
logits: tf.Tensor = None
|
946 |
+
hidden_states: Tuple[tf.Tensor] | None = None
|
947 |
+
attentions: Tuple[tf.Tensor] | None = None
|
948 |
+
|
949 |
+
|
950 |
+
ELECTRA_START_DOCSTRING = r"""
|
951 |
+
|
952 |
+
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
|
953 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
954 |
+
etc.)
|
955 |
+
|
956 |
+
This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
|
957 |
+
as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
|
958 |
+
behavior.
|
959 |
+
|
960 |
+
<Tip>
|
961 |
+
|
962 |
+
TensorFlow models and layers in `transformers` accept two formats as input:
|
963 |
+
|
964 |
+
- having all inputs as keyword arguments (like PyTorch models), or
|
965 |
+
- having all inputs as a list, tuple or dict in the first positional argument.
|
966 |
+
|
967 |
+
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
|
968 |
+
and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
|
969 |
+
pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
|
970 |
+
format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
|
971 |
+
the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
|
972 |
+
positional argument:
|
973 |
+
|
974 |
+
- a single Tensor with `input_ids` only and nothing else: `model(input_ids)`
|
975 |
+
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
|
976 |
+
`model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
|
977 |
+
- a dictionary with one or several input Tensors associated to the input names given in the docstring:
|
978 |
+
`model({"input_ids": input_ids, "token_type_ids": token_type_ids})`
|
979 |
+
|
980 |
+
Note that when creating models and layers with
|
981 |
+
[subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
|
982 |
+
about any of this, as you can just pass inputs like you would to any other Python function!
|
983 |
+
|
984 |
+
</Tip>
|
985 |
+
|
986 |
+
Parameters:
|
987 |
+
config ([`ElectraConfig`]): Model configuration class with all the parameters of the model.
|
988 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
989 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
990 |
+
"""
|
991 |
+
|
992 |
+
ELECTRA_INPUTS_DOCSTRING = r"""
|
993 |
+
Args:
|
994 |
+
input_ids (`Numpy array` or `tf.Tensor` of shape `({0})`):
|
995 |
+
Indices of input sequence tokens in the vocabulary.
|
996 |
+
|
997 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and
|
998 |
+
[`PreTrainedTokenizer.encode`] for details.
|
999 |
+
|
1000 |
+
[What are input IDs?](../glossary#input-ids)
|
1001 |
+
attention_mask (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*):
|
1002 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
1003 |
+
|
1004 |
+
- 1 for tokens that are **not masked**,
|
1005 |
+
- 0 for tokens that are **masked**.
|
1006 |
+
|
1007 |
+
[What are attention masks?](../glossary#attention-mask)
|
1008 |
+
position_ids (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*):
|
1009 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
1010 |
+
config.max_position_embeddings - 1]`.
|
1011 |
+
|
1012 |
+
[What are position IDs?](../glossary#position-ids)
|
1013 |
+
head_mask (`Numpy array` or `tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
1014 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
1015 |
+
|
1016 |
+
- 1 indicates the head is **not masked**,
|
1017 |
+
- 0 indicates the head is **masked**.
|
1018 |
+
|
1019 |
+
inputs_embeds (`tf.Tensor` of shape `({0}, hidden_size)`, *optional*):
|
1020 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
1021 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
1022 |
+
model's internal embedding lookup matrix.
|
1023 |
+
output_attentions (`bool`, *optional*):
|
1024 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
1025 |
+
tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
|
1026 |
+
config will be used instead.
|
1027 |
+
output_hidden_states (`bool`, *optional*):
|
1028 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
1029 |
+
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
|
1030 |
+
used instead.
|
1031 |
+
return_dict (`bool`, *optional*):
|
1032 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
|
1033 |
+
eager mode, in graph mode the value will always be set to True.
|
1034 |
+
training (`bool`, *optional*, defaults to `False`):
|
1035 |
+
Whether or not to use the model in training mode (some modules like dropout modules have different
|
1036 |
+
behaviors between training and evaluation).
|
1037 |
+
"""
|
1038 |
+
|
1039 |
+
|
1040 |
+
@add_start_docstrings(
|
1041 |
+
"The bare Electra Model transformer outputting raw hidden-states without any specific head on top. Identical to "
|
1042 |
+
"the BERT model except that it uses an additional linear layer between the embedding layer and the encoder if the "
|
1043 |
+
"hidden size and embedding size are different. "
|
1044 |
+
""
|
1045 |
+
"Both the generator and discriminator checkpoints may be loaded into this model.",
|
1046 |
+
ELECTRA_START_DOCSTRING,
|
1047 |
+
)
|
1048 |
+
class TFElectraModel(TFElectraPreTrainedModel):
|
1049 |
+
def __init__(self, config, *inputs, **kwargs):
|
1050 |
+
super().__init__(config, *inputs, **kwargs)
|
1051 |
+
|
1052 |
+
self.electra = TFElectraMainLayer(config, name="electra")
|
1053 |
+
|
1054 |
+
@unpack_inputs
|
1055 |
+
@add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1056 |
+
@add_code_sample_docstrings(
|
1057 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1058 |
+
output_type=TFBaseModelOutputWithPastAndCrossAttentions,
|
1059 |
+
config_class=_CONFIG_FOR_DOC,
|
1060 |
+
)
|
1061 |
+
def call(
|
1062 |
+
self,
|
1063 |
+
input_ids: TFModelInputType | None = None,
|
1064 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1065 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
1066 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
1067 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
1068 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1069 |
+
encoder_hidden_states: np.ndarray | tf.Tensor | None = None,
|
1070 |
+
encoder_attention_mask: np.ndarray | tf.Tensor | None = None,
|
1071 |
+
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
|
1072 |
+
use_cache: Optional[bool] = None,
|
1073 |
+
output_attentions: Optional[bool] = None,
|
1074 |
+
output_hidden_states: Optional[bool] = None,
|
1075 |
+
return_dict: Optional[bool] = None,
|
1076 |
+
training: Optional[bool] = False,
|
1077 |
+
) -> Union[TFBaseModelOutputWithPastAndCrossAttentions, Tuple[tf.Tensor]]:
|
1078 |
+
r"""
|
1079 |
+
encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
1080 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
1081 |
+
the model is configured as a decoder.
|
1082 |
+
encoder_attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1083 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
1084 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
|
1085 |
+
|
1086 |
+
- 1 for tokens that are **not masked**,
|
1087 |
+
- 0 for tokens that are **masked**.
|
1088 |
+
|
1089 |
+
past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`)
|
1090 |
+
contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
1091 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
1092 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
1093 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
1094 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
1095 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
1096 |
+
`past_key_values`). Set to `False` during training, `True` during generation
|
1097 |
+
"""
|
1098 |
+
outputs = self.electra(
|
1099 |
+
input_ids=input_ids,
|
1100 |
+
attention_mask=attention_mask,
|
1101 |
+
token_type_ids=token_type_ids,
|
1102 |
+
position_ids=position_ids,
|
1103 |
+
head_mask=head_mask,
|
1104 |
+
encoder_hidden_states=encoder_hidden_states,
|
1105 |
+
encoder_attention_mask=encoder_attention_mask,
|
1106 |
+
past_key_values=past_key_values,
|
1107 |
+
use_cache=use_cache,
|
1108 |
+
inputs_embeds=inputs_embeds,
|
1109 |
+
output_attentions=output_attentions,
|
1110 |
+
output_hidden_states=output_hidden_states,
|
1111 |
+
return_dict=return_dict,
|
1112 |
+
training=training,
|
1113 |
+
)
|
1114 |
+
|
1115 |
+
return outputs
|
1116 |
+
|
1117 |
+
def build(self, input_shape=None):
|
1118 |
+
if self.built:
|
1119 |
+
return
|
1120 |
+
self.built = True
|
1121 |
+
if getattr(self, "electra", None) is not None:
|
1122 |
+
with tf.name_scope(self.electra.name):
|
1123 |
+
self.electra.build(None)
|
1124 |
+
|
1125 |
+
|
1126 |
+
@add_start_docstrings(
|
1127 |
+
"""
|
1128 |
+
Electra model with a binary classification head on top as used during pretraining for identifying generated tokens.
|
1129 |
+
|
1130 |
+
Even though both the discriminator and generator may be loaded into this model, the discriminator is the only model
|
1131 |
+
of the two to have the correct classification head to be used for this model.
|
1132 |
+
""",
|
1133 |
+
ELECTRA_START_DOCSTRING,
|
1134 |
+
)
|
1135 |
+
class TFElectraForPreTraining(TFElectraPreTrainedModel):
|
1136 |
+
def __init__(self, config, **kwargs):
|
1137 |
+
super().__init__(config, **kwargs)
|
1138 |
+
|
1139 |
+
self.electra = TFElectraMainLayer(config, name="electra")
|
1140 |
+
self.discriminator_predictions = TFElectraDiscriminatorPredictions(config, name="discriminator_predictions")
|
1141 |
+
|
1142 |
+
@unpack_inputs
|
1143 |
+
@add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1144 |
+
@replace_return_docstrings(output_type=TFElectraForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
|
1145 |
+
def call(
|
1146 |
+
self,
|
1147 |
+
input_ids: TFModelInputType | None = None,
|
1148 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1149 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
1150 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
1151 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
1152 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1153 |
+
output_attentions: Optional[bool] = None,
|
1154 |
+
output_hidden_states: Optional[bool] = None,
|
1155 |
+
return_dict: Optional[bool] = None,
|
1156 |
+
training: Optional[bool] = False,
|
1157 |
+
) -> Union[TFElectraForPreTrainingOutput, Tuple[tf.Tensor]]:
|
1158 |
+
r"""
|
1159 |
+
Returns:
|
1160 |
+
|
1161 |
+
Examples:
|
1162 |
+
|
1163 |
+
```python
|
1164 |
+
>>> import tensorflow as tf
|
1165 |
+
>>> from transformers import AutoTokenizer, TFElectraForPreTraining
|
1166 |
+
|
1167 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("google/electra-small-discriminator")
|
1168 |
+
>>> model = TFElectraForPreTraining.from_pretrained("google/electra-small-discriminator")
|
1169 |
+
>>> input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :] # Batch size 1
|
1170 |
+
>>> outputs = model(input_ids)
|
1171 |
+
>>> scores = outputs[0]
|
1172 |
+
```"""
|
1173 |
+
discriminator_hidden_states = self.electra(
|
1174 |
+
input_ids=input_ids,
|
1175 |
+
attention_mask=attention_mask,
|
1176 |
+
token_type_ids=token_type_ids,
|
1177 |
+
position_ids=position_ids,
|
1178 |
+
head_mask=head_mask,
|
1179 |
+
inputs_embeds=inputs_embeds,
|
1180 |
+
output_attentions=output_attentions,
|
1181 |
+
output_hidden_states=output_hidden_states,
|
1182 |
+
return_dict=return_dict,
|
1183 |
+
training=training,
|
1184 |
+
)
|
1185 |
+
discriminator_sequence_output = discriminator_hidden_states[0]
|
1186 |
+
logits = self.discriminator_predictions(discriminator_sequence_output)
|
1187 |
+
|
1188 |
+
if not return_dict:
|
1189 |
+
return (logits,) + discriminator_hidden_states[1:]
|
1190 |
+
|
1191 |
+
return TFElectraForPreTrainingOutput(
|
1192 |
+
logits=logits,
|
1193 |
+
hidden_states=discriminator_hidden_states.hidden_states,
|
1194 |
+
attentions=discriminator_hidden_states.attentions,
|
1195 |
+
)
|
1196 |
+
|
1197 |
+
def build(self, input_shape=None):
|
1198 |
+
if self.built:
|
1199 |
+
return
|
1200 |
+
self.built = True
|
1201 |
+
if getattr(self, "electra", None) is not None:
|
1202 |
+
with tf.name_scope(self.electra.name):
|
1203 |
+
self.electra.build(None)
|
1204 |
+
if getattr(self, "discriminator_predictions", None) is not None:
|
1205 |
+
with tf.name_scope(self.discriminator_predictions.name):
|
1206 |
+
self.discriminator_predictions.build(None)
|
1207 |
+
|
1208 |
+
|
1209 |
+
class TFElectraMaskedLMHead(keras.layers.Layer):
|
1210 |
+
def __init__(self, config, input_embeddings, **kwargs):
|
1211 |
+
super().__init__(**kwargs)
|
1212 |
+
|
1213 |
+
self.config = config
|
1214 |
+
self.embedding_size = config.embedding_size
|
1215 |
+
self.input_embeddings = input_embeddings
|
1216 |
+
|
1217 |
+
def build(self, input_shape):
|
1218 |
+
self.bias = self.add_weight(shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="bias")
|
1219 |
+
|
1220 |
+
super().build(input_shape)
|
1221 |
+
|
1222 |
+
def get_output_embeddings(self):
|
1223 |
+
return self.input_embeddings
|
1224 |
+
|
1225 |
+
def set_output_embeddings(self, value):
|
1226 |
+
self.input_embeddings.weight = value
|
1227 |
+
self.input_embeddings.vocab_size = shape_list(value)[0]
|
1228 |
+
|
1229 |
+
def get_bias(self):
|
1230 |
+
return {"bias": self.bias}
|
1231 |
+
|
1232 |
+
def set_bias(self, value):
|
1233 |
+
self.bias = value["bias"]
|
1234 |
+
self.config.vocab_size = shape_list(value["bias"])[0]
|
1235 |
+
|
1236 |
+
def call(self, hidden_states):
|
1237 |
+
seq_length = shape_list(tensor=hidden_states)[1]
|
1238 |
+
hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, self.embedding_size])
|
1239 |
+
hidden_states = tf.matmul(a=hidden_states, b=self.input_embeddings.weight, transpose_b=True)
|
1240 |
+
hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, seq_length, self.config.vocab_size])
|
1241 |
+
hidden_states = tf.nn.bias_add(value=hidden_states, bias=self.bias)
|
1242 |
+
|
1243 |
+
return hidden_states
|
1244 |
+
|
1245 |
+
|
1246 |
+
@add_start_docstrings(
|
1247 |
+
"""
|
1248 |
+
Electra model with a language modeling head on top.
|
1249 |
+
|
1250 |
+
Even though both the discriminator and generator may be loaded into this model, the generator is the only model of
|
1251 |
+
the two to have been trained for the masked language modeling task.
|
1252 |
+
""",
|
1253 |
+
ELECTRA_START_DOCSTRING,
|
1254 |
+
)
|
1255 |
+
class TFElectraForMaskedLM(TFElectraPreTrainedModel, TFMaskedLanguageModelingLoss):
|
1256 |
+
def __init__(self, config, **kwargs):
|
1257 |
+
super().__init__(config, **kwargs)
|
1258 |
+
|
1259 |
+
self.config = config
|
1260 |
+
self.electra = TFElectraMainLayer(config, name="electra")
|
1261 |
+
self.generator_predictions = TFElectraGeneratorPredictions(config, name="generator_predictions")
|
1262 |
+
|
1263 |
+
if isinstance(config.hidden_act, str):
|
1264 |
+
self.activation = get_tf_activation(config.hidden_act)
|
1265 |
+
else:
|
1266 |
+
self.activation = config.hidden_act
|
1267 |
+
|
1268 |
+
self.generator_lm_head = TFElectraMaskedLMHead(config, self.electra.embeddings, name="generator_lm_head")
|
1269 |
+
|
1270 |
+
def get_lm_head(self):
|
1271 |
+
return self.generator_lm_head
|
1272 |
+
|
1273 |
+
def get_prefix_bias_name(self):
|
1274 |
+
warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning)
|
1275 |
+
return self.name + "/" + self.generator_lm_head.name
|
1276 |
+
|
1277 |
+
@unpack_inputs
|
1278 |
+
@add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1279 |
+
@add_code_sample_docstrings(
|
1280 |
+
checkpoint="google/electra-small-generator",
|
1281 |
+
output_type=TFMaskedLMOutput,
|
1282 |
+
config_class=_CONFIG_FOR_DOC,
|
1283 |
+
mask="[MASK]",
|
1284 |
+
expected_output="'paris'",
|
1285 |
+
expected_loss=1.22,
|
1286 |
+
)
|
1287 |
+
def call(
|
1288 |
+
self,
|
1289 |
+
input_ids: TFModelInputType | None = None,
|
1290 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1291 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
1292 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
1293 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
1294 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1295 |
+
output_attentions: Optional[bool] = None,
|
1296 |
+
output_hidden_states: Optional[bool] = None,
|
1297 |
+
return_dict: Optional[bool] = None,
|
1298 |
+
labels: np.ndarray | tf.Tensor | None = None,
|
1299 |
+
training: Optional[bool] = False,
|
1300 |
+
) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]:
|
1301 |
+
r"""
|
1302 |
+
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1303 |
+
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
|
1304 |
+
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
|
1305 |
+
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
|
1306 |
+
"""
|
1307 |
+
generator_hidden_states = self.electra(
|
1308 |
+
input_ids=input_ids,
|
1309 |
+
attention_mask=attention_mask,
|
1310 |
+
token_type_ids=token_type_ids,
|
1311 |
+
position_ids=position_ids,
|
1312 |
+
head_mask=head_mask,
|
1313 |
+
inputs_embeds=inputs_embeds,
|
1314 |
+
output_attentions=output_attentions,
|
1315 |
+
output_hidden_states=output_hidden_states,
|
1316 |
+
return_dict=return_dict,
|
1317 |
+
training=training,
|
1318 |
+
)
|
1319 |
+
generator_sequence_output = generator_hidden_states[0]
|
1320 |
+
prediction_scores = self.generator_predictions(generator_sequence_output, training=training)
|
1321 |
+
prediction_scores = self.generator_lm_head(prediction_scores, training=training)
|
1322 |
+
loss = None if labels is None else self.hf_compute_loss(labels, prediction_scores)
|
1323 |
+
|
1324 |
+
if not return_dict:
|
1325 |
+
output = (prediction_scores,) + generator_hidden_states[1:]
|
1326 |
+
|
1327 |
+
return ((loss,) + output) if loss is not None else output
|
1328 |
+
|
1329 |
+
return TFMaskedLMOutput(
|
1330 |
+
loss=loss,
|
1331 |
+
logits=prediction_scores,
|
1332 |
+
hidden_states=generator_hidden_states.hidden_states,
|
1333 |
+
attentions=generator_hidden_states.attentions,
|
1334 |
+
)
|
1335 |
+
|
1336 |
+
def build(self, input_shape=None):
|
1337 |
+
if self.built:
|
1338 |
+
return
|
1339 |
+
self.built = True
|
1340 |
+
if getattr(self, "electra", None) is not None:
|
1341 |
+
with tf.name_scope(self.electra.name):
|
1342 |
+
self.electra.build(None)
|
1343 |
+
if getattr(self, "generator_predictions", None) is not None:
|
1344 |
+
with tf.name_scope(self.generator_predictions.name):
|
1345 |
+
self.generator_predictions.build(None)
|
1346 |
+
if getattr(self, "generator_lm_head", None) is not None:
|
1347 |
+
with tf.name_scope(self.generator_lm_head.name):
|
1348 |
+
self.generator_lm_head.build(None)
|
1349 |
+
|
1350 |
+
|
1351 |
+
class TFElectraClassificationHead(keras.layers.Layer):
|
1352 |
+
"""Head for sentence-level classification tasks."""
|
1353 |
+
|
1354 |
+
def __init__(self, config, **kwargs):
|
1355 |
+
super().__init__(**kwargs)
|
1356 |
+
|
1357 |
+
self.dense = keras.layers.Dense(
|
1358 |
+
config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
|
1359 |
+
)
|
1360 |
+
classifier_dropout = (
|
1361 |
+
config.classifhidden_dropout_probier_dropout
|
1362 |
+
if config.classifier_dropout is not None
|
1363 |
+
else config.hidden_dropout_prob
|
1364 |
+
)
|
1365 |
+
self.dropout = keras.layers.Dropout(classifier_dropout)
|
1366 |
+
self.out_proj = keras.layers.Dense(
|
1367 |
+
config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="out_proj"
|
1368 |
+
)
|
1369 |
+
self.config = config
|
1370 |
+
|
1371 |
+
def call(self, inputs, **kwargs):
|
1372 |
+
x = inputs[:, 0, :] # take <s> token (equiv. to [CLS])
|
1373 |
+
x = self.dropout(x)
|
1374 |
+
x = self.dense(x)
|
1375 |
+
x = get_tf_activation("gelu")(x) # although BERT uses tanh here, it seems Electra authors used gelu here
|
1376 |
+
x = self.dropout(x)
|
1377 |
+
x = self.out_proj(x)
|
1378 |
+
|
1379 |
+
return x
|
1380 |
+
|
1381 |
+
def build(self, input_shape=None):
|
1382 |
+
if self.built:
|
1383 |
+
return
|
1384 |
+
self.built = True
|
1385 |
+
if getattr(self, "dense", None) is not None:
|
1386 |
+
with tf.name_scope(self.dense.name):
|
1387 |
+
self.dense.build([None, None, self.config.hidden_size])
|
1388 |
+
if getattr(self, "out_proj", None) is not None:
|
1389 |
+
with tf.name_scope(self.out_proj.name):
|
1390 |
+
self.out_proj.build([None, None, self.config.hidden_size])
|
1391 |
+
|
1392 |
+
|
1393 |
+
@add_start_docstrings(
|
1394 |
+
"""
|
1395 |
+
ELECTRA Model transformer with a sequence classification/regression head on top (a linear layer on top of the
|
1396 |
+
pooled output) e.g. for GLUE tasks.
|
1397 |
+
""",
|
1398 |
+
ELECTRA_START_DOCSTRING,
|
1399 |
+
)
|
1400 |
+
class TFElectraForSequenceClassification(TFElectraPreTrainedModel, TFSequenceClassificationLoss):
|
1401 |
+
def __init__(self, config, *inputs, **kwargs):
|
1402 |
+
super().__init__(config, *inputs, **kwargs)
|
1403 |
+
self.num_labels = config.num_labels
|
1404 |
+
self.electra = TFElectraMainLayer(config, name="electra")
|
1405 |
+
self.classifier = TFElectraClassificationHead(config, name="classifier")
|
1406 |
+
|
1407 |
+
@unpack_inputs
|
1408 |
+
@add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1409 |
+
@add_code_sample_docstrings(
|
1410 |
+
checkpoint="bhadresh-savani/electra-base-emotion",
|
1411 |
+
output_type=TFSequenceClassifierOutput,
|
1412 |
+
config_class=_CONFIG_FOR_DOC,
|
1413 |
+
expected_output="'joy'",
|
1414 |
+
expected_loss=0.06,
|
1415 |
+
)
|
1416 |
+
def call(
|
1417 |
+
self,
|
1418 |
+
input_ids: TFModelInputType | None = None,
|
1419 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1420 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
1421 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
1422 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
1423 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1424 |
+
output_attentions: Optional[bool] = None,
|
1425 |
+
output_hidden_states: Optional[bool] = None,
|
1426 |
+
return_dict: Optional[bool] = None,
|
1427 |
+
labels: np.ndarray | tf.Tensor | None = None,
|
1428 |
+
training: Optional[bool] = False,
|
1429 |
+
) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
|
1430 |
+
r"""
|
1431 |
+
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
|
1432 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1433 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1434 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1435 |
+
"""
|
1436 |
+
outputs = self.electra(
|
1437 |
+
input_ids=input_ids,
|
1438 |
+
attention_mask=attention_mask,
|
1439 |
+
token_type_ids=token_type_ids,
|
1440 |
+
position_ids=position_ids,
|
1441 |
+
head_mask=head_mask,
|
1442 |
+
inputs_embeds=inputs_embeds,
|
1443 |
+
output_attentions=output_attentions,
|
1444 |
+
output_hidden_states=output_hidden_states,
|
1445 |
+
return_dict=return_dict,
|
1446 |
+
training=training,
|
1447 |
+
)
|
1448 |
+
logits = self.classifier(outputs[0])
|
1449 |
+
loss = None if labels is None else self.hf_compute_loss(labels, logits)
|
1450 |
+
|
1451 |
+
if not return_dict:
|
1452 |
+
output = (logits,) + outputs[1:]
|
1453 |
+
|
1454 |
+
return ((loss,) + output) if loss is not None else output
|
1455 |
+
|
1456 |
+
return TFSequenceClassifierOutput(
|
1457 |
+
loss=loss,
|
1458 |
+
logits=logits,
|
1459 |
+
hidden_states=outputs.hidden_states,
|
1460 |
+
attentions=outputs.attentions,
|
1461 |
+
)
|
1462 |
+
|
1463 |
+
def build(self, input_shape=None):
|
1464 |
+
if self.built:
|
1465 |
+
return
|
1466 |
+
self.built = True
|
1467 |
+
if getattr(self, "electra", None) is not None:
|
1468 |
+
with tf.name_scope(self.electra.name):
|
1469 |
+
self.electra.build(None)
|
1470 |
+
if getattr(self, "classifier", None) is not None:
|
1471 |
+
with tf.name_scope(self.classifier.name):
|
1472 |
+
self.classifier.build(None)
|
1473 |
+
|
1474 |
+
|
1475 |
+
@add_start_docstrings(
|
1476 |
+
"""
|
1477 |
+
ELECTRA Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
|
1478 |
+
softmax) e.g. for RocStories/SWAG tasks.
|
1479 |
+
""",
|
1480 |
+
ELECTRA_START_DOCSTRING,
|
1481 |
+
)
|
1482 |
+
class TFElectraForMultipleChoice(TFElectraPreTrainedModel, TFMultipleChoiceLoss):
|
1483 |
+
def __init__(self, config, *inputs, **kwargs):
|
1484 |
+
super().__init__(config, *inputs, **kwargs)
|
1485 |
+
|
1486 |
+
self.electra = TFElectraMainLayer(config, name="electra")
|
1487 |
+
self.sequence_summary = TFSequenceSummary(
|
1488 |
+
config, initializer_range=config.initializer_range, name="sequence_summary"
|
1489 |
+
)
|
1490 |
+
self.classifier = keras.layers.Dense(
|
1491 |
+
1, kernel_initializer=get_initializer(config.initializer_range), name="classifier"
|
1492 |
+
)
|
1493 |
+
self.config = config
|
1494 |
+
|
1495 |
+
@unpack_inputs
|
1496 |
+
@add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
|
1497 |
+
@add_code_sample_docstrings(
|
1498 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1499 |
+
output_type=TFMultipleChoiceModelOutput,
|
1500 |
+
config_class=_CONFIG_FOR_DOC,
|
1501 |
+
)
|
1502 |
+
def call(
|
1503 |
+
self,
|
1504 |
+
input_ids: TFModelInputType | None = None,
|
1505 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1506 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
1507 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
1508 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
1509 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1510 |
+
output_attentions: Optional[bool] = None,
|
1511 |
+
output_hidden_states: Optional[bool] = None,
|
1512 |
+
return_dict: Optional[bool] = None,
|
1513 |
+
labels: np.ndarray | tf.Tensor | None = None,
|
1514 |
+
training: Optional[bool] = False,
|
1515 |
+
) -> Union[TFMultipleChoiceModelOutput, Tuple[tf.Tensor]]:
|
1516 |
+
r"""
|
1517 |
+
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
|
1518 |
+
Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]`
|
1519 |
+
where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above)
|
1520 |
+
"""
|
1521 |
+
|
1522 |
+
if input_ids is not None:
|
1523 |
+
num_choices = shape_list(input_ids)[1]
|
1524 |
+
seq_length = shape_list(input_ids)[2]
|
1525 |
+
else:
|
1526 |
+
num_choices = shape_list(inputs_embeds)[1]
|
1527 |
+
seq_length = shape_list(inputs_embeds)[2]
|
1528 |
+
|
1529 |
+
flat_input_ids = tf.reshape(input_ids, (-1, seq_length)) if input_ids is not None else None
|
1530 |
+
flat_attention_mask = tf.reshape(attention_mask, (-1, seq_length)) if attention_mask is not None else None
|
1531 |
+
flat_token_type_ids = tf.reshape(token_type_ids, (-1, seq_length)) if token_type_ids is not None else None
|
1532 |
+
flat_position_ids = tf.reshape(position_ids, (-1, seq_length)) if position_ids is not None else None
|
1533 |
+
flat_inputs_embeds = (
|
1534 |
+
tf.reshape(inputs_embeds, (-1, seq_length, shape_list(inputs_embeds)[3]))
|
1535 |
+
if inputs_embeds is not None
|
1536 |
+
else None
|
1537 |
+
)
|
1538 |
+
outputs = self.electra(
|
1539 |
+
input_ids=flat_input_ids,
|
1540 |
+
attention_mask=flat_attention_mask,
|
1541 |
+
token_type_ids=flat_token_type_ids,
|
1542 |
+
position_ids=flat_position_ids,
|
1543 |
+
head_mask=head_mask,
|
1544 |
+
inputs_embeds=flat_inputs_embeds,
|
1545 |
+
output_attentions=output_attentions,
|
1546 |
+
output_hidden_states=output_hidden_states,
|
1547 |
+
return_dict=return_dict,
|
1548 |
+
training=training,
|
1549 |
+
)
|
1550 |
+
logits = self.sequence_summary(outputs[0])
|
1551 |
+
logits = self.classifier(logits)
|
1552 |
+
reshaped_logits = tf.reshape(logits, (-1, num_choices))
|
1553 |
+
loss = None if labels is None else self.hf_compute_loss(labels, reshaped_logits)
|
1554 |
+
|
1555 |
+
if not return_dict:
|
1556 |
+
output = (reshaped_logits,) + outputs[1:]
|
1557 |
+
|
1558 |
+
return ((loss,) + output) if loss is not None else output
|
1559 |
+
|
1560 |
+
return TFMultipleChoiceModelOutput(
|
1561 |
+
loss=loss,
|
1562 |
+
logits=reshaped_logits,
|
1563 |
+
hidden_states=outputs.hidden_states,
|
1564 |
+
attentions=outputs.attentions,
|
1565 |
+
)
|
1566 |
+
|
1567 |
+
def build(self, input_shape=None):
|
1568 |
+
if self.built:
|
1569 |
+
return
|
1570 |
+
self.built = True
|
1571 |
+
if getattr(self, "electra", None) is not None:
|
1572 |
+
with tf.name_scope(self.electra.name):
|
1573 |
+
self.electra.build(None)
|
1574 |
+
if getattr(self, "sequence_summary", None) is not None:
|
1575 |
+
with tf.name_scope(self.sequence_summary.name):
|
1576 |
+
self.sequence_summary.build(None)
|
1577 |
+
if getattr(self, "classifier", None) is not None:
|
1578 |
+
with tf.name_scope(self.classifier.name):
|
1579 |
+
self.classifier.build([None, None, self.config.hidden_size])
|
1580 |
+
|
1581 |
+
|
1582 |
+
@add_start_docstrings(
|
1583 |
+
"""
|
1584 |
+
Electra model with a token classification head on top.
|
1585 |
+
|
1586 |
+
Both the discriminator and generator may be loaded into this model.
|
1587 |
+
""",
|
1588 |
+
ELECTRA_START_DOCSTRING,
|
1589 |
+
)
|
1590 |
+
class TFElectraForTokenClassification(TFElectraPreTrainedModel, TFTokenClassificationLoss):
|
1591 |
+
def __init__(self, config, **kwargs):
|
1592 |
+
super().__init__(config, **kwargs)
|
1593 |
+
|
1594 |
+
self.electra = TFElectraMainLayer(config, name="electra")
|
1595 |
+
classifier_dropout = (
|
1596 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
1597 |
+
)
|
1598 |
+
self.dropout = keras.layers.Dropout(classifier_dropout)
|
1599 |
+
self.classifier = keras.layers.Dense(
|
1600 |
+
config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier"
|
1601 |
+
)
|
1602 |
+
self.config = config
|
1603 |
+
|
1604 |
+
@unpack_inputs
|
1605 |
+
@add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1606 |
+
@add_code_sample_docstrings(
|
1607 |
+
checkpoint="bhadresh-savani/electra-base-discriminator-finetuned-conll03-english",
|
1608 |
+
output_type=TFTokenClassifierOutput,
|
1609 |
+
config_class=_CONFIG_FOR_DOC,
|
1610 |
+
expected_output="['B-LOC', 'B-ORG', 'O', 'O', 'O', 'O', 'O', 'B-LOC', 'O', 'B-LOC', 'I-LOC']",
|
1611 |
+
expected_loss=0.11,
|
1612 |
+
)
|
1613 |
+
def call(
|
1614 |
+
self,
|
1615 |
+
input_ids: TFModelInputType | None = None,
|
1616 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1617 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
1618 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
1619 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
1620 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1621 |
+
output_attentions: Optional[bool] = None,
|
1622 |
+
output_hidden_states: Optional[bool] = None,
|
1623 |
+
return_dict: Optional[bool] = None,
|
1624 |
+
labels: np.ndarray | tf.Tensor | None = None,
|
1625 |
+
training: Optional[bool] = False,
|
1626 |
+
) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]:
|
1627 |
+
r"""
|
1628 |
+
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1629 |
+
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
|
1630 |
+
"""
|
1631 |
+
discriminator_hidden_states = self.electra(
|
1632 |
+
input_ids=input_ids,
|
1633 |
+
attention_mask=attention_mask,
|
1634 |
+
token_type_ids=token_type_ids,
|
1635 |
+
position_ids=position_ids,
|
1636 |
+
head_mask=head_mask,
|
1637 |
+
inputs_embeds=inputs_embeds,
|
1638 |
+
output_attentions=output_attentions,
|
1639 |
+
output_hidden_states=output_hidden_states,
|
1640 |
+
return_dict=return_dict,
|
1641 |
+
training=training,
|
1642 |
+
)
|
1643 |
+
discriminator_sequence_output = discriminator_hidden_states[0]
|
1644 |
+
discriminator_sequence_output = self.dropout(discriminator_sequence_output)
|
1645 |
+
logits = self.classifier(discriminator_sequence_output)
|
1646 |
+
loss = None if labels is None else self.hf_compute_loss(labels, logits)
|
1647 |
+
|
1648 |
+
if not return_dict:
|
1649 |
+
output = (logits,) + discriminator_hidden_states[1:]
|
1650 |
+
|
1651 |
+
return ((loss,) + output) if loss is not None else output
|
1652 |
+
|
1653 |
+
return TFTokenClassifierOutput(
|
1654 |
+
loss=loss,
|
1655 |
+
logits=logits,
|
1656 |
+
hidden_states=discriminator_hidden_states.hidden_states,
|
1657 |
+
attentions=discriminator_hidden_states.attentions,
|
1658 |
+
)
|
1659 |
+
|
1660 |
+
def build(self, input_shape=None):
|
1661 |
+
if self.built:
|
1662 |
+
return
|
1663 |
+
self.built = True
|
1664 |
+
if getattr(self, "electra", None) is not None:
|
1665 |
+
with tf.name_scope(self.electra.name):
|
1666 |
+
self.electra.build(None)
|
1667 |
+
if getattr(self, "classifier", None) is not None:
|
1668 |
+
with tf.name_scope(self.classifier.name):
|
1669 |
+
self.classifier.build([None, None, self.config.hidden_size])
|
1670 |
+
|
1671 |
+
|
1672 |
+
@add_start_docstrings(
|
1673 |
+
"""
|
1674 |
+
Electra Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
|
1675 |
+
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
1676 |
+
""",
|
1677 |
+
ELECTRA_START_DOCSTRING,
|
1678 |
+
)
|
1679 |
+
class TFElectraForQuestionAnswering(TFElectraPreTrainedModel, TFQuestionAnsweringLoss):
|
1680 |
+
def __init__(self, config, *inputs, **kwargs):
|
1681 |
+
super().__init__(config, *inputs, **kwargs)
|
1682 |
+
|
1683 |
+
self.num_labels = config.num_labels
|
1684 |
+
self.electra = TFElectraMainLayer(config, name="electra")
|
1685 |
+
self.qa_outputs = keras.layers.Dense(
|
1686 |
+
config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs"
|
1687 |
+
)
|
1688 |
+
self.config = config
|
1689 |
+
|
1690 |
+
@unpack_inputs
|
1691 |
+
@add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1692 |
+
@add_code_sample_docstrings(
|
1693 |
+
checkpoint="bhadresh-savani/electra-base-squad2",
|
1694 |
+
output_type=TFQuestionAnsweringModelOutput,
|
1695 |
+
config_class=_CONFIG_FOR_DOC,
|
1696 |
+
qa_target_start_index=11,
|
1697 |
+
qa_target_end_index=12,
|
1698 |
+
expected_output="'a nice puppet'",
|
1699 |
+
expected_loss=2.64,
|
1700 |
+
)
|
1701 |
+
def call(
|
1702 |
+
self,
|
1703 |
+
input_ids: TFModelInputType | None = None,
|
1704 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1705 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
1706 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
1707 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
1708 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1709 |
+
output_attentions: Optional[bool] = None,
|
1710 |
+
output_hidden_states: Optional[bool] = None,
|
1711 |
+
return_dict: Optional[bool] = None,
|
1712 |
+
start_positions: np.ndarray | tf.Tensor | None = None,
|
1713 |
+
end_positions: np.ndarray | tf.Tensor | None = None,
|
1714 |
+
training: Optional[bool] = False,
|
1715 |
+
) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]:
|
1716 |
+
r"""
|
1717 |
+
start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):
|
1718 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
1719 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1720 |
+
are not taken into account for computing the loss.
|
1721 |
+
end_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):
|
1722 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
1723 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1724 |
+
are not taken into account for computing the loss.
|
1725 |
+
"""
|
1726 |
+
discriminator_hidden_states = self.electra(
|
1727 |
+
input_ids=input_ids,
|
1728 |
+
attention_mask=attention_mask,
|
1729 |
+
token_type_ids=token_type_ids,
|
1730 |
+
position_ids=position_ids,
|
1731 |
+
head_mask=head_mask,
|
1732 |
+
inputs_embeds=inputs_embeds,
|
1733 |
+
output_attentions=output_attentions,
|
1734 |
+
output_hidden_states=output_hidden_states,
|
1735 |
+
return_dict=return_dict,
|
1736 |
+
training=training,
|
1737 |
+
)
|
1738 |
+
discriminator_sequence_output = discriminator_hidden_states[0]
|
1739 |
+
logits = self.qa_outputs(discriminator_sequence_output)
|
1740 |
+
start_logits, end_logits = tf.split(logits, 2, axis=-1)
|
1741 |
+
start_logits = tf.squeeze(start_logits, axis=-1)
|
1742 |
+
end_logits = tf.squeeze(end_logits, axis=-1)
|
1743 |
+
loss = None
|
1744 |
+
|
1745 |
+
if start_positions is not None and end_positions is not None:
|
1746 |
+
labels = {"start_position": start_positions}
|
1747 |
+
labels["end_position"] = end_positions
|
1748 |
+
loss = self.hf_compute_loss(labels, (start_logits, end_logits))
|
1749 |
+
|
1750 |
+
if not return_dict:
|
1751 |
+
output = (
|
1752 |
+
start_logits,
|
1753 |
+
end_logits,
|
1754 |
+
) + discriminator_hidden_states[1:]
|
1755 |
+
|
1756 |
+
return ((loss,) + output) if loss is not None else output
|
1757 |
+
|
1758 |
+
return TFQuestionAnsweringModelOutput(
|
1759 |
+
loss=loss,
|
1760 |
+
start_logits=start_logits,
|
1761 |
+
end_logits=end_logits,
|
1762 |
+
hidden_states=discriminator_hidden_states.hidden_states,
|
1763 |
+
attentions=discriminator_hidden_states.attentions,
|
1764 |
+
)
|
1765 |
+
|
1766 |
+
def build(self, input_shape=None):
|
1767 |
+
if self.built:
|
1768 |
+
return
|
1769 |
+
self.built = True
|
1770 |
+
if getattr(self, "electra", None) is not None:
|
1771 |
+
with tf.name_scope(self.electra.name):
|
1772 |
+
self.electra.build(None)
|
1773 |
+
if getattr(self, "qa_outputs", None) is not None:
|
1774 |
+
with tf.name_scope(self.qa_outputs.name):
|
1775 |
+
self.qa_outputs.build([None, None, self.config.hidden_size])
|
env-llmeval/lib/python3.10/site-packages/transformers/models/electra/tokenization_electra.py
ADDED
@@ -0,0 +1,546 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The Google AI Team, Stanford University and The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import collections
|
17 |
+
import os
|
18 |
+
import unicodedata
|
19 |
+
from typing import List, Optional, Tuple
|
20 |
+
|
21 |
+
from ...tokenization_utils import PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace
|
22 |
+
from ...utils import logging
|
23 |
+
|
24 |
+
|
25 |
+
logger = logging.get_logger(__name__)
|
26 |
+
|
27 |
+
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"}
|
28 |
+
|
29 |
+
PRETRAINED_VOCAB_FILES_MAP = {
|
30 |
+
"vocab_file": {
|
31 |
+
"google/electra-small-generator": (
|
32 |
+
"https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt"
|
33 |
+
),
|
34 |
+
"google/electra-base-generator": "https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt",
|
35 |
+
"google/electra-large-generator": (
|
36 |
+
"https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt"
|
37 |
+
),
|
38 |
+
"google/electra-small-discriminator": (
|
39 |
+
"https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt"
|
40 |
+
),
|
41 |
+
"google/electra-base-discriminator": (
|
42 |
+
"https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt"
|
43 |
+
),
|
44 |
+
"google/electra-large-discriminator": (
|
45 |
+
"https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt"
|
46 |
+
),
|
47 |
+
}
|
48 |
+
}
|
49 |
+
|
50 |
+
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
|
51 |
+
"google/electra-small-generator": 512,
|
52 |
+
"google/electra-base-generator": 512,
|
53 |
+
"google/electra-large-generator": 512,
|
54 |
+
"google/electra-small-discriminator": 512,
|
55 |
+
"google/electra-base-discriminator": 512,
|
56 |
+
"google/electra-large-discriminator": 512,
|
57 |
+
}
|
58 |
+
|
59 |
+
|
60 |
+
PRETRAINED_INIT_CONFIGURATION = {
|
61 |
+
"google/electra-small-generator": {"do_lower_case": True},
|
62 |
+
"google/electra-base-generator": {"do_lower_case": True},
|
63 |
+
"google/electra-large-generator": {"do_lower_case": True},
|
64 |
+
"google/electra-small-discriminator": {"do_lower_case": True},
|
65 |
+
"google/electra-base-discriminator": {"do_lower_case": True},
|
66 |
+
"google/electra-large-discriminator": {"do_lower_case": True},
|
67 |
+
}
|
68 |
+
|
69 |
+
|
70 |
+
# Copied from transformers.models.bert.tokenization_bert.load_vocab
|
71 |
+
def load_vocab(vocab_file):
|
72 |
+
"""Loads a vocabulary file into a dictionary."""
|
73 |
+
vocab = collections.OrderedDict()
|
74 |
+
with open(vocab_file, "r", encoding="utf-8") as reader:
|
75 |
+
tokens = reader.readlines()
|
76 |
+
for index, token in enumerate(tokens):
|
77 |
+
token = token.rstrip("\n")
|
78 |
+
vocab[token] = index
|
79 |
+
return vocab
|
80 |
+
|
81 |
+
|
82 |
+
# Copied from transformers.models.bert.tokenization_bert.whitespace_tokenize
|
83 |
+
def whitespace_tokenize(text):
|
84 |
+
"""Runs basic whitespace cleaning and splitting on a piece of text."""
|
85 |
+
text = text.strip()
|
86 |
+
if not text:
|
87 |
+
return []
|
88 |
+
tokens = text.split()
|
89 |
+
return tokens
|
90 |
+
|
91 |
+
|
92 |
+
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer with Bert->Electra,BERT->Electra
|
93 |
+
class ElectraTokenizer(PreTrainedTokenizer):
|
94 |
+
r"""
|
95 |
+
Construct a Electra tokenizer. Based on WordPiece.
|
96 |
+
|
97 |
+
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
|
98 |
+
this superclass for more information regarding those methods.
|
99 |
+
|
100 |
+
Args:
|
101 |
+
vocab_file (`str`):
|
102 |
+
File containing the vocabulary.
|
103 |
+
do_lower_case (`bool`, *optional*, defaults to `True`):
|
104 |
+
Whether or not to lowercase the input when tokenizing.
|
105 |
+
do_basic_tokenize (`bool`, *optional*, defaults to `True`):
|
106 |
+
Whether or not to do basic tokenization before WordPiece.
|
107 |
+
never_split (`Iterable`, *optional*):
|
108 |
+
Collection of tokens which will never be split during tokenization. Only has an effect when
|
109 |
+
`do_basic_tokenize=True`
|
110 |
+
unk_token (`str`, *optional*, defaults to `"[UNK]"`):
|
111 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
112 |
+
token instead.
|
113 |
+
sep_token (`str`, *optional*, defaults to `"[SEP]"`):
|
114 |
+
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
|
115 |
+
sequence classification or for a text and a question for question answering. It is also used as the last
|
116 |
+
token of a sequence built with special tokens.
|
117 |
+
pad_token (`str`, *optional*, defaults to `"[PAD]"`):
|
118 |
+
The token used for padding, for example when batching sequences of different lengths.
|
119 |
+
cls_token (`str`, *optional*, defaults to `"[CLS]"`):
|
120 |
+
The classifier token which is used when doing sequence classification (classification of the whole sequence
|
121 |
+
instead of per-token classification). It is the first token of the sequence when built with special tokens.
|
122 |
+
mask_token (`str`, *optional*, defaults to `"[MASK]"`):
|
123 |
+
The token used for masking values. This is the token used when training this model with masked language
|
124 |
+
modeling. This is the token which the model will try to predict.
|
125 |
+
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
|
126 |
+
Whether or not to tokenize Chinese characters.
|
127 |
+
|
128 |
+
This should likely be deactivated for Japanese (see this
|
129 |
+
[issue](https://github.com/huggingface/transformers/issues/328)).
|
130 |
+
strip_accents (`bool`, *optional*):
|
131 |
+
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
|
132 |
+
value for `lowercase` (as in the original Electra).
|
133 |
+
"""
|
134 |
+
|
135 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
136 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
137 |
+
pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION
|
138 |
+
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
139 |
+
|
140 |
+
def __init__(
|
141 |
+
self,
|
142 |
+
vocab_file,
|
143 |
+
do_lower_case=True,
|
144 |
+
do_basic_tokenize=True,
|
145 |
+
never_split=None,
|
146 |
+
unk_token="[UNK]",
|
147 |
+
sep_token="[SEP]",
|
148 |
+
pad_token="[PAD]",
|
149 |
+
cls_token="[CLS]",
|
150 |
+
mask_token="[MASK]",
|
151 |
+
tokenize_chinese_chars=True,
|
152 |
+
strip_accents=None,
|
153 |
+
**kwargs,
|
154 |
+
):
|
155 |
+
if not os.path.isfile(vocab_file):
|
156 |
+
raise ValueError(
|
157 |
+
f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained"
|
158 |
+
" model use `tokenizer = ElectraTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
|
159 |
+
)
|
160 |
+
self.vocab = load_vocab(vocab_file)
|
161 |
+
self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()])
|
162 |
+
self.do_basic_tokenize = do_basic_tokenize
|
163 |
+
if do_basic_tokenize:
|
164 |
+
self.basic_tokenizer = BasicTokenizer(
|
165 |
+
do_lower_case=do_lower_case,
|
166 |
+
never_split=never_split,
|
167 |
+
tokenize_chinese_chars=tokenize_chinese_chars,
|
168 |
+
strip_accents=strip_accents,
|
169 |
+
)
|
170 |
+
|
171 |
+
self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=str(unk_token))
|
172 |
+
|
173 |
+
super().__init__(
|
174 |
+
do_lower_case=do_lower_case,
|
175 |
+
do_basic_tokenize=do_basic_tokenize,
|
176 |
+
never_split=never_split,
|
177 |
+
unk_token=unk_token,
|
178 |
+
sep_token=sep_token,
|
179 |
+
pad_token=pad_token,
|
180 |
+
cls_token=cls_token,
|
181 |
+
mask_token=mask_token,
|
182 |
+
tokenize_chinese_chars=tokenize_chinese_chars,
|
183 |
+
strip_accents=strip_accents,
|
184 |
+
**kwargs,
|
185 |
+
)
|
186 |
+
|
187 |
+
@property
|
188 |
+
def do_lower_case(self):
|
189 |
+
return self.basic_tokenizer.do_lower_case
|
190 |
+
|
191 |
+
@property
|
192 |
+
def vocab_size(self):
|
193 |
+
return len(self.vocab)
|
194 |
+
|
195 |
+
def get_vocab(self):
|
196 |
+
return dict(self.vocab, **self.added_tokens_encoder)
|
197 |
+
|
198 |
+
def _tokenize(self, text, split_special_tokens=False):
|
199 |
+
split_tokens = []
|
200 |
+
if self.do_basic_tokenize:
|
201 |
+
for token in self.basic_tokenizer.tokenize(
|
202 |
+
text, never_split=self.all_special_tokens if not split_special_tokens else None
|
203 |
+
):
|
204 |
+
# If the token is part of the never_split set
|
205 |
+
if token in self.basic_tokenizer.never_split:
|
206 |
+
split_tokens.append(token)
|
207 |
+
else:
|
208 |
+
split_tokens += self.wordpiece_tokenizer.tokenize(token)
|
209 |
+
else:
|
210 |
+
split_tokens = self.wordpiece_tokenizer.tokenize(text)
|
211 |
+
return split_tokens
|
212 |
+
|
213 |
+
def _convert_token_to_id(self, token):
|
214 |
+
"""Converts a token (str) in an id using the vocab."""
|
215 |
+
return self.vocab.get(token, self.vocab.get(self.unk_token))
|
216 |
+
|
217 |
+
def _convert_id_to_token(self, index):
|
218 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
219 |
+
return self.ids_to_tokens.get(index, self.unk_token)
|
220 |
+
|
221 |
+
def convert_tokens_to_string(self, tokens):
|
222 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
223 |
+
out_string = " ".join(tokens).replace(" ##", "").strip()
|
224 |
+
return out_string
|
225 |
+
|
226 |
+
def build_inputs_with_special_tokens(
|
227 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
228 |
+
) -> List[int]:
|
229 |
+
"""
|
230 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
231 |
+
adding special tokens. A Electra sequence has the following format:
|
232 |
+
|
233 |
+
- single sequence: `[CLS] X [SEP]`
|
234 |
+
- pair of sequences: `[CLS] A [SEP] B [SEP]`
|
235 |
+
|
236 |
+
Args:
|
237 |
+
token_ids_0 (`List[int]`):
|
238 |
+
List of IDs to which the special tokens will be added.
|
239 |
+
token_ids_1 (`List[int]`, *optional*):
|
240 |
+
Optional second list of IDs for sequence pairs.
|
241 |
+
|
242 |
+
Returns:
|
243 |
+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
244 |
+
"""
|
245 |
+
if token_ids_1 is None:
|
246 |
+
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
|
247 |
+
cls = [self.cls_token_id]
|
248 |
+
sep = [self.sep_token_id]
|
249 |
+
return cls + token_ids_0 + sep + token_ids_1 + sep
|
250 |
+
|
251 |
+
def get_special_tokens_mask(
|
252 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
253 |
+
) -> List[int]:
|
254 |
+
"""
|
255 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
256 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
257 |
+
|
258 |
+
Args:
|
259 |
+
token_ids_0 (`List[int]`):
|
260 |
+
List of IDs.
|
261 |
+
token_ids_1 (`List[int]`, *optional*):
|
262 |
+
Optional second list of IDs for sequence pairs.
|
263 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
264 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
265 |
+
|
266 |
+
Returns:
|
267 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
268 |
+
"""
|
269 |
+
|
270 |
+
if already_has_special_tokens:
|
271 |
+
return super().get_special_tokens_mask(
|
272 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
273 |
+
)
|
274 |
+
|
275 |
+
if token_ids_1 is not None:
|
276 |
+
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
|
277 |
+
return [1] + ([0] * len(token_ids_0)) + [1]
|
278 |
+
|
279 |
+
def create_token_type_ids_from_sequences(
|
280 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
281 |
+
) -> List[int]:
|
282 |
+
"""
|
283 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A Electra sequence
|
284 |
+
pair mask has the following format:
|
285 |
+
|
286 |
+
```
|
287 |
+
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
|
288 |
+
| first sequence | second sequence |
|
289 |
+
```
|
290 |
+
|
291 |
+
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
|
292 |
+
|
293 |
+
Args:
|
294 |
+
token_ids_0 (`List[int]`):
|
295 |
+
List of IDs.
|
296 |
+
token_ids_1 (`List[int]`, *optional*):
|
297 |
+
Optional second list of IDs for sequence pairs.
|
298 |
+
|
299 |
+
Returns:
|
300 |
+
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
|
301 |
+
"""
|
302 |
+
sep = [self.sep_token_id]
|
303 |
+
cls = [self.cls_token_id]
|
304 |
+
if token_ids_1 is None:
|
305 |
+
return len(cls + token_ids_0 + sep) * [0]
|
306 |
+
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
|
307 |
+
|
308 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
309 |
+
index = 0
|
310 |
+
if os.path.isdir(save_directory):
|
311 |
+
vocab_file = os.path.join(
|
312 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
313 |
+
)
|
314 |
+
else:
|
315 |
+
vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory
|
316 |
+
with open(vocab_file, "w", encoding="utf-8") as writer:
|
317 |
+
for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]):
|
318 |
+
if index != token_index:
|
319 |
+
logger.warning(
|
320 |
+
f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."
|
321 |
+
" Please check that the vocabulary is not corrupted!"
|
322 |
+
)
|
323 |
+
index = token_index
|
324 |
+
writer.write(token + "\n")
|
325 |
+
index += 1
|
326 |
+
return (vocab_file,)
|
327 |
+
|
328 |
+
|
329 |
+
# Copied from transformers.models.bert.tokenization_bert.BasicTokenizer
|
330 |
+
class BasicTokenizer(object):
|
331 |
+
"""
|
332 |
+
Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.).
|
333 |
+
|
334 |
+
Args:
|
335 |
+
do_lower_case (`bool`, *optional*, defaults to `True`):
|
336 |
+
Whether or not to lowercase the input when tokenizing.
|
337 |
+
never_split (`Iterable`, *optional*):
|
338 |
+
Collection of tokens which will never be split during tokenization. Only has an effect when
|
339 |
+
`do_basic_tokenize=True`
|
340 |
+
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
|
341 |
+
Whether or not to tokenize Chinese characters.
|
342 |
+
|
343 |
+
This should likely be deactivated for Japanese (see this
|
344 |
+
[issue](https://github.com/huggingface/transformers/issues/328)).
|
345 |
+
strip_accents (`bool`, *optional*):
|
346 |
+
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
|
347 |
+
value for `lowercase` (as in the original BERT).
|
348 |
+
do_split_on_punc (`bool`, *optional*, defaults to `True`):
|
349 |
+
In some instances we want to skip the basic punctuation splitting so that later tokenization can capture
|
350 |
+
the full context of the words, such as contractions.
|
351 |
+
"""
|
352 |
+
|
353 |
+
def __init__(
|
354 |
+
self,
|
355 |
+
do_lower_case=True,
|
356 |
+
never_split=None,
|
357 |
+
tokenize_chinese_chars=True,
|
358 |
+
strip_accents=None,
|
359 |
+
do_split_on_punc=True,
|
360 |
+
):
|
361 |
+
if never_split is None:
|
362 |
+
never_split = []
|
363 |
+
self.do_lower_case = do_lower_case
|
364 |
+
self.never_split = set(never_split)
|
365 |
+
self.tokenize_chinese_chars = tokenize_chinese_chars
|
366 |
+
self.strip_accents = strip_accents
|
367 |
+
self.do_split_on_punc = do_split_on_punc
|
368 |
+
|
369 |
+
def tokenize(self, text, never_split=None):
|
370 |
+
"""
|
371 |
+
Basic Tokenization of a piece of text. For sub-word tokenization, see WordPieceTokenizer.
|
372 |
+
|
373 |
+
Args:
|
374 |
+
never_split (`List[str]`, *optional*)
|
375 |
+
Kept for backward compatibility purposes. Now implemented directly at the base class level (see
|
376 |
+
[`PreTrainedTokenizer.tokenize`]) List of token not to split.
|
377 |
+
"""
|
378 |
+
# union() returns a new set by concatenating the two sets.
|
379 |
+
never_split = self.never_split.union(set(never_split)) if never_split else self.never_split
|
380 |
+
text = self._clean_text(text)
|
381 |
+
|
382 |
+
# This was added on November 1st, 2018 for the multilingual and Chinese
|
383 |
+
# models. This is also applied to the English models now, but it doesn't
|
384 |
+
# matter since the English models were not trained on any Chinese data
|
385 |
+
# and generally don't have any Chinese data in them (there are Chinese
|
386 |
+
# characters in the vocabulary because Wikipedia does have some Chinese
|
387 |
+
# words in the English Wikipedia.).
|
388 |
+
if self.tokenize_chinese_chars:
|
389 |
+
text = self._tokenize_chinese_chars(text)
|
390 |
+
# prevents treating the same character with different unicode codepoints as different characters
|
391 |
+
unicode_normalized_text = unicodedata.normalize("NFC", text)
|
392 |
+
orig_tokens = whitespace_tokenize(unicode_normalized_text)
|
393 |
+
split_tokens = []
|
394 |
+
for token in orig_tokens:
|
395 |
+
if token not in never_split:
|
396 |
+
if self.do_lower_case:
|
397 |
+
token = token.lower()
|
398 |
+
if self.strip_accents is not False:
|
399 |
+
token = self._run_strip_accents(token)
|
400 |
+
elif self.strip_accents:
|
401 |
+
token = self._run_strip_accents(token)
|
402 |
+
split_tokens.extend(self._run_split_on_punc(token, never_split))
|
403 |
+
|
404 |
+
output_tokens = whitespace_tokenize(" ".join(split_tokens))
|
405 |
+
return output_tokens
|
406 |
+
|
407 |
+
def _run_strip_accents(self, text):
|
408 |
+
"""Strips accents from a piece of text."""
|
409 |
+
text = unicodedata.normalize("NFD", text)
|
410 |
+
output = []
|
411 |
+
for char in text:
|
412 |
+
cat = unicodedata.category(char)
|
413 |
+
if cat == "Mn":
|
414 |
+
continue
|
415 |
+
output.append(char)
|
416 |
+
return "".join(output)
|
417 |
+
|
418 |
+
def _run_split_on_punc(self, text, never_split=None):
|
419 |
+
"""Splits punctuation on a piece of text."""
|
420 |
+
if not self.do_split_on_punc or (never_split is not None and text in never_split):
|
421 |
+
return [text]
|
422 |
+
chars = list(text)
|
423 |
+
i = 0
|
424 |
+
start_new_word = True
|
425 |
+
output = []
|
426 |
+
while i < len(chars):
|
427 |
+
char = chars[i]
|
428 |
+
if _is_punctuation(char):
|
429 |
+
output.append([char])
|
430 |
+
start_new_word = True
|
431 |
+
else:
|
432 |
+
if start_new_word:
|
433 |
+
output.append([])
|
434 |
+
start_new_word = False
|
435 |
+
output[-1].append(char)
|
436 |
+
i += 1
|
437 |
+
|
438 |
+
return ["".join(x) for x in output]
|
439 |
+
|
440 |
+
def _tokenize_chinese_chars(self, text):
|
441 |
+
"""Adds whitespace around any CJK character."""
|
442 |
+
output = []
|
443 |
+
for char in text:
|
444 |
+
cp = ord(char)
|
445 |
+
if self._is_chinese_char(cp):
|
446 |
+
output.append(" ")
|
447 |
+
output.append(char)
|
448 |
+
output.append(" ")
|
449 |
+
else:
|
450 |
+
output.append(char)
|
451 |
+
return "".join(output)
|
452 |
+
|
453 |
+
def _is_chinese_char(self, cp):
|
454 |
+
"""Checks whether CP is the codepoint of a CJK character."""
|
455 |
+
# This defines a "chinese character" as anything in the CJK Unicode block:
|
456 |
+
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
|
457 |
+
#
|
458 |
+
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
|
459 |
+
# despite its name. The modern Korean Hangul alphabet is a different block,
|
460 |
+
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
|
461 |
+
# space-separated words, so they are not treated specially and handled
|
462 |
+
# like the all of the other languages.
|
463 |
+
if (
|
464 |
+
(cp >= 0x4E00 and cp <= 0x9FFF)
|
465 |
+
or (cp >= 0x3400 and cp <= 0x4DBF) #
|
466 |
+
or (cp >= 0x20000 and cp <= 0x2A6DF) #
|
467 |
+
or (cp >= 0x2A700 and cp <= 0x2B73F) #
|
468 |
+
or (cp >= 0x2B740 and cp <= 0x2B81F) #
|
469 |
+
or (cp >= 0x2B820 and cp <= 0x2CEAF) #
|
470 |
+
or (cp >= 0xF900 and cp <= 0xFAFF)
|
471 |
+
or (cp >= 0x2F800 and cp <= 0x2FA1F) #
|
472 |
+
): #
|
473 |
+
return True
|
474 |
+
|
475 |
+
return False
|
476 |
+
|
477 |
+
def _clean_text(self, text):
|
478 |
+
"""Performs invalid character removal and whitespace cleanup on text."""
|
479 |
+
output = []
|
480 |
+
for char in text:
|
481 |
+
cp = ord(char)
|
482 |
+
if cp == 0 or cp == 0xFFFD or _is_control(char):
|
483 |
+
continue
|
484 |
+
if _is_whitespace(char):
|
485 |
+
output.append(" ")
|
486 |
+
else:
|
487 |
+
output.append(char)
|
488 |
+
return "".join(output)
|
489 |
+
|
490 |
+
|
491 |
+
# Copied from transformers.models.bert.tokenization_bert.WordpieceTokenizer
|
492 |
+
class WordpieceTokenizer(object):
|
493 |
+
"""Runs WordPiece tokenization."""
|
494 |
+
|
495 |
+
def __init__(self, vocab, unk_token, max_input_chars_per_word=100):
|
496 |
+
self.vocab = vocab
|
497 |
+
self.unk_token = unk_token
|
498 |
+
self.max_input_chars_per_word = max_input_chars_per_word
|
499 |
+
|
500 |
+
def tokenize(self, text):
|
501 |
+
"""
|
502 |
+
Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform
|
503 |
+
tokenization using the given vocabulary.
|
504 |
+
|
505 |
+
For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`.
|
506 |
+
|
507 |
+
Args:
|
508 |
+
text: A single token or whitespace separated tokens. This should have
|
509 |
+
already been passed through *BasicTokenizer*.
|
510 |
+
|
511 |
+
Returns:
|
512 |
+
A list of wordpiece tokens.
|
513 |
+
"""
|
514 |
+
|
515 |
+
output_tokens = []
|
516 |
+
for token in whitespace_tokenize(text):
|
517 |
+
chars = list(token)
|
518 |
+
if len(chars) > self.max_input_chars_per_word:
|
519 |
+
output_tokens.append(self.unk_token)
|
520 |
+
continue
|
521 |
+
|
522 |
+
is_bad = False
|
523 |
+
start = 0
|
524 |
+
sub_tokens = []
|
525 |
+
while start < len(chars):
|
526 |
+
end = len(chars)
|
527 |
+
cur_substr = None
|
528 |
+
while start < end:
|
529 |
+
substr = "".join(chars[start:end])
|
530 |
+
if start > 0:
|
531 |
+
substr = "##" + substr
|
532 |
+
if substr in self.vocab:
|
533 |
+
cur_substr = substr
|
534 |
+
break
|
535 |
+
end -= 1
|
536 |
+
if cur_substr is None:
|
537 |
+
is_bad = True
|
538 |
+
break
|
539 |
+
sub_tokens.append(cur_substr)
|
540 |
+
start = end
|
541 |
+
|
542 |
+
if is_bad:
|
543 |
+
output_tokens.append(self.unk_token)
|
544 |
+
else:
|
545 |
+
output_tokens.extend(sub_tokens)
|
546 |
+
return output_tokens
|
env-llmeval/lib/python3.10/site-packages/transformers/models/electra/tokenization_electra_fast.py
ADDED
@@ -0,0 +1,231 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The Google AI Team, Stanford University and The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import json
|
17 |
+
from typing import List, Optional, Tuple
|
18 |
+
|
19 |
+
from tokenizers import normalizers
|
20 |
+
|
21 |
+
from ...tokenization_utils_fast import PreTrainedTokenizerFast
|
22 |
+
from .tokenization_electra import ElectraTokenizer
|
23 |
+
|
24 |
+
|
25 |
+
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
|
26 |
+
|
27 |
+
PRETRAINED_VOCAB_FILES_MAP = {
|
28 |
+
"vocab_file": {
|
29 |
+
"google/electra-small-generator": (
|
30 |
+
"https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt"
|
31 |
+
),
|
32 |
+
"google/electra-base-generator": "https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt",
|
33 |
+
"google/electra-large-generator": (
|
34 |
+
"https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt"
|
35 |
+
),
|
36 |
+
"google/electra-small-discriminator": (
|
37 |
+
"https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt"
|
38 |
+
),
|
39 |
+
"google/electra-base-discriminator": (
|
40 |
+
"https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt"
|
41 |
+
),
|
42 |
+
"google/electra-large-discriminator": (
|
43 |
+
"https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt"
|
44 |
+
),
|
45 |
+
},
|
46 |
+
"tokenizer_file": {
|
47 |
+
"google/electra-small-generator": (
|
48 |
+
"https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json"
|
49 |
+
),
|
50 |
+
"google/electra-base-generator": (
|
51 |
+
"https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json"
|
52 |
+
),
|
53 |
+
"google/electra-large-generator": (
|
54 |
+
"https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json"
|
55 |
+
),
|
56 |
+
"google/electra-small-discriminator": (
|
57 |
+
"https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json"
|
58 |
+
),
|
59 |
+
"google/electra-base-discriminator": (
|
60 |
+
"https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json"
|
61 |
+
),
|
62 |
+
"google/electra-large-discriminator": (
|
63 |
+
"https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json"
|
64 |
+
),
|
65 |
+
},
|
66 |
+
}
|
67 |
+
|
68 |
+
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
|
69 |
+
"google/electra-small-generator": 512,
|
70 |
+
"google/electra-base-generator": 512,
|
71 |
+
"google/electra-large-generator": 512,
|
72 |
+
"google/electra-small-discriminator": 512,
|
73 |
+
"google/electra-base-discriminator": 512,
|
74 |
+
"google/electra-large-discriminator": 512,
|
75 |
+
}
|
76 |
+
|
77 |
+
PRETRAINED_INIT_CONFIGURATION = {
|
78 |
+
"google/electra-small-generator": {"do_lower_case": True},
|
79 |
+
"google/electra-base-generator": {"do_lower_case": True},
|
80 |
+
"google/electra-large-generator": {"do_lower_case": True},
|
81 |
+
"google/electra-small-discriminator": {"do_lower_case": True},
|
82 |
+
"google/electra-base-discriminator": {"do_lower_case": True},
|
83 |
+
"google/electra-large-discriminator": {"do_lower_case": True},
|
84 |
+
}
|
85 |
+
|
86 |
+
|
87 |
+
# Copied from transformers.models.bert.tokenization_bert_fast.BertTokenizerFast with Bert->Electra , BERT->ELECTRA
|
88 |
+
class ElectraTokenizerFast(PreTrainedTokenizerFast):
|
89 |
+
r"""
|
90 |
+
Construct a "fast" ELECTRA tokenizer (backed by HuggingFace's *tokenizers* library). Based on WordPiece.
|
91 |
+
|
92 |
+
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
|
93 |
+
refer to this superclass for more information regarding those methods.
|
94 |
+
|
95 |
+
Args:
|
96 |
+
vocab_file (`str`):
|
97 |
+
File containing the vocabulary.
|
98 |
+
do_lower_case (`bool`, *optional*, defaults to `True`):
|
99 |
+
Whether or not to lowercase the input when tokenizing.
|
100 |
+
unk_token (`str`, *optional*, defaults to `"[UNK]"`):
|
101 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
102 |
+
token instead.
|
103 |
+
sep_token (`str`, *optional*, defaults to `"[SEP]"`):
|
104 |
+
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
|
105 |
+
sequence classification or for a text and a question for question answering. It is also used as the last
|
106 |
+
token of a sequence built with special tokens.
|
107 |
+
pad_token (`str`, *optional*, defaults to `"[PAD]"`):
|
108 |
+
The token used for padding, for example when batching sequences of different lengths.
|
109 |
+
cls_token (`str`, *optional*, defaults to `"[CLS]"`):
|
110 |
+
The classifier token which is used when doing sequence classification (classification of the whole sequence
|
111 |
+
instead of per-token classification). It is the first token of the sequence when built with special tokens.
|
112 |
+
mask_token (`str`, *optional*, defaults to `"[MASK]"`):
|
113 |
+
The token used for masking values. This is the token used when training this model with masked language
|
114 |
+
modeling. This is the token which the model will try to predict.
|
115 |
+
clean_text (`bool`, *optional*, defaults to `True`):
|
116 |
+
Whether or not to clean the text before tokenization by removing any control characters and replacing all
|
117 |
+
whitespaces by the classic one.
|
118 |
+
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
|
119 |
+
Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see [this
|
120 |
+
issue](https://github.com/huggingface/transformers/issues/328)).
|
121 |
+
strip_accents (`bool`, *optional*):
|
122 |
+
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
|
123 |
+
value for `lowercase` (as in the original ELECTRA).
|
124 |
+
wordpieces_prefix (`str`, *optional*, defaults to `"##"`):
|
125 |
+
The prefix for subwords.
|
126 |
+
"""
|
127 |
+
|
128 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
129 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
130 |
+
pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION
|
131 |
+
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
132 |
+
slow_tokenizer_class = ElectraTokenizer
|
133 |
+
|
134 |
+
def __init__(
|
135 |
+
self,
|
136 |
+
vocab_file=None,
|
137 |
+
tokenizer_file=None,
|
138 |
+
do_lower_case=True,
|
139 |
+
unk_token="[UNK]",
|
140 |
+
sep_token="[SEP]",
|
141 |
+
pad_token="[PAD]",
|
142 |
+
cls_token="[CLS]",
|
143 |
+
mask_token="[MASK]",
|
144 |
+
tokenize_chinese_chars=True,
|
145 |
+
strip_accents=None,
|
146 |
+
**kwargs,
|
147 |
+
):
|
148 |
+
super().__init__(
|
149 |
+
vocab_file,
|
150 |
+
tokenizer_file=tokenizer_file,
|
151 |
+
do_lower_case=do_lower_case,
|
152 |
+
unk_token=unk_token,
|
153 |
+
sep_token=sep_token,
|
154 |
+
pad_token=pad_token,
|
155 |
+
cls_token=cls_token,
|
156 |
+
mask_token=mask_token,
|
157 |
+
tokenize_chinese_chars=tokenize_chinese_chars,
|
158 |
+
strip_accents=strip_accents,
|
159 |
+
**kwargs,
|
160 |
+
)
|
161 |
+
|
162 |
+
normalizer_state = json.loads(self.backend_tokenizer.normalizer.__getstate__())
|
163 |
+
if (
|
164 |
+
normalizer_state.get("lowercase", do_lower_case) != do_lower_case
|
165 |
+
or normalizer_state.get("strip_accents", strip_accents) != strip_accents
|
166 |
+
or normalizer_state.get("handle_chinese_chars", tokenize_chinese_chars) != tokenize_chinese_chars
|
167 |
+
):
|
168 |
+
normalizer_class = getattr(normalizers, normalizer_state.pop("type"))
|
169 |
+
normalizer_state["lowercase"] = do_lower_case
|
170 |
+
normalizer_state["strip_accents"] = strip_accents
|
171 |
+
normalizer_state["handle_chinese_chars"] = tokenize_chinese_chars
|
172 |
+
self.backend_tokenizer.normalizer = normalizer_class(**normalizer_state)
|
173 |
+
|
174 |
+
self.do_lower_case = do_lower_case
|
175 |
+
|
176 |
+
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
177 |
+
"""
|
178 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
179 |
+
adding special tokens. A ELECTRA sequence has the following format:
|
180 |
+
|
181 |
+
- single sequence: `[CLS] X [SEP]`
|
182 |
+
- pair of sequences: `[CLS] A [SEP] B [SEP]`
|
183 |
+
|
184 |
+
Args:
|
185 |
+
token_ids_0 (`List[int]`):
|
186 |
+
List of IDs to which the special tokens will be added.
|
187 |
+
token_ids_1 (`List[int]`, *optional*):
|
188 |
+
Optional second list of IDs for sequence pairs.
|
189 |
+
|
190 |
+
Returns:
|
191 |
+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
192 |
+
"""
|
193 |
+
output = [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
|
194 |
+
|
195 |
+
if token_ids_1 is not None:
|
196 |
+
output += token_ids_1 + [self.sep_token_id]
|
197 |
+
|
198 |
+
return output
|
199 |
+
|
200 |
+
def create_token_type_ids_from_sequences(
|
201 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
202 |
+
) -> List[int]:
|
203 |
+
"""
|
204 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A ELECTRA sequence
|
205 |
+
pair mask has the following format:
|
206 |
+
|
207 |
+
```
|
208 |
+
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
|
209 |
+
| first sequence | second sequence |
|
210 |
+
```
|
211 |
+
|
212 |
+
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
|
213 |
+
|
214 |
+
Args:
|
215 |
+
token_ids_0 (`List[int]`):
|
216 |
+
List of IDs.
|
217 |
+
token_ids_1 (`List[int]`, *optional*):
|
218 |
+
Optional second list of IDs for sequence pairs.
|
219 |
+
|
220 |
+
Returns:
|
221 |
+
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
|
222 |
+
"""
|
223 |
+
sep = [self.sep_token_id]
|
224 |
+
cls = [self.cls_token_id]
|
225 |
+
if token_ids_1 is None:
|
226 |
+
return len(cls + token_ids_0 + sep) * [0]
|
227 |
+
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
|
228 |
+
|
229 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
230 |
+
files = self._tokenizer.model.save(save_directory, name=filename_prefix)
|
231 |
+
return tuple(files)
|
env-llmeval/lib/python3.10/site-packages/transformers/models/mluke/__init__.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2021 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from typing import TYPE_CHECKING
|
16 |
+
|
17 |
+
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available
|
18 |
+
|
19 |
+
|
20 |
+
_import_structure = {}
|
21 |
+
|
22 |
+
|
23 |
+
try:
|
24 |
+
if not is_sentencepiece_available():
|
25 |
+
raise OptionalDependencyNotAvailable()
|
26 |
+
except OptionalDependencyNotAvailable:
|
27 |
+
pass
|
28 |
+
else:
|
29 |
+
_import_structure["tokenization_mluke"] = ["MLukeTokenizer"]
|
30 |
+
|
31 |
+
if TYPE_CHECKING:
|
32 |
+
try:
|
33 |
+
if not is_sentencepiece_available():
|
34 |
+
raise OptionalDependencyNotAvailable()
|
35 |
+
except OptionalDependencyNotAvailable:
|
36 |
+
pass
|
37 |
+
else:
|
38 |
+
from .tokenization_mluke import MLukeTokenizer
|
39 |
+
|
40 |
+
|
41 |
+
else:
|
42 |
+
import sys
|
43 |
+
|
44 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
env-llmeval/lib/python3.10/site-packages/transformers/models/mluke/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (687 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/mluke/__pycache__/convert_mluke_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc
ADDED
Binary file (6.71 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/mluke/__pycache__/tokenization_mluke.cpython-310.pyc
ADDED
Binary file (50 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/mluke/convert_mluke_original_pytorch_checkpoint_to_pytorch.py
ADDED
@@ -0,0 +1,229 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Convert mLUKE checkpoint."""
|
16 |
+
|
17 |
+
import argparse
|
18 |
+
import json
|
19 |
+
import os
|
20 |
+
from collections import OrderedDict
|
21 |
+
|
22 |
+
import torch
|
23 |
+
|
24 |
+
from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer
|
25 |
+
from transformers.tokenization_utils_base import AddedToken
|
26 |
+
|
27 |
+
|
28 |
+
@torch.no_grad()
|
29 |
+
def convert_luke_checkpoint(checkpoint_path, metadata_path, entity_vocab_path, pytorch_dump_folder_path, model_size):
|
30 |
+
# Load configuration defined in the metadata file
|
31 |
+
with open(metadata_path) as metadata_file:
|
32 |
+
metadata = json.load(metadata_file)
|
33 |
+
config = LukeConfig(use_entity_aware_attention=True, **metadata["model_config"])
|
34 |
+
|
35 |
+
# Load in the weights from the checkpoint_path
|
36 |
+
state_dict = torch.load(checkpoint_path, map_location="cpu")["module"]
|
37 |
+
|
38 |
+
# Load the entity vocab file
|
39 |
+
entity_vocab = load_original_entity_vocab(entity_vocab_path)
|
40 |
+
# add an entry for [MASK2]
|
41 |
+
entity_vocab["[MASK2]"] = max(entity_vocab.values()) + 1
|
42 |
+
config.entity_vocab_size += 1
|
43 |
+
|
44 |
+
tokenizer = XLMRobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"])
|
45 |
+
|
46 |
+
# Add special tokens to the token vocabulary for downstream tasks
|
47 |
+
entity_token_1 = AddedToken("<ent>", lstrip=False, rstrip=False)
|
48 |
+
entity_token_2 = AddedToken("<ent2>", lstrip=False, rstrip=False)
|
49 |
+
tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_1, entity_token_2]})
|
50 |
+
config.vocab_size += 2
|
51 |
+
|
52 |
+
print(f"Saving tokenizer to {pytorch_dump_folder_path}")
|
53 |
+
tokenizer.save_pretrained(pytorch_dump_folder_path)
|
54 |
+
with open(os.path.join(pytorch_dump_folder_path, "tokenizer_config.json"), "r") as f:
|
55 |
+
tokenizer_config = json.load(f)
|
56 |
+
tokenizer_config["tokenizer_class"] = "MLukeTokenizer"
|
57 |
+
with open(os.path.join(pytorch_dump_folder_path, "tokenizer_config.json"), "w") as f:
|
58 |
+
json.dump(tokenizer_config, f)
|
59 |
+
|
60 |
+
with open(os.path.join(pytorch_dump_folder_path, MLukeTokenizer.vocab_files_names["entity_vocab_file"]), "w") as f:
|
61 |
+
json.dump(entity_vocab, f)
|
62 |
+
|
63 |
+
tokenizer = MLukeTokenizer.from_pretrained(pytorch_dump_folder_path)
|
64 |
+
|
65 |
+
# Initialize the embeddings of the special tokens
|
66 |
+
ent_init_index = tokenizer.convert_tokens_to_ids(["@"])[0]
|
67 |
+
ent2_init_index = tokenizer.convert_tokens_to_ids(["#"])[0]
|
68 |
+
|
69 |
+
word_emb = state_dict["embeddings.word_embeddings.weight"]
|
70 |
+
ent_emb = word_emb[ent_init_index].unsqueeze(0)
|
71 |
+
ent2_emb = word_emb[ent2_init_index].unsqueeze(0)
|
72 |
+
state_dict["embeddings.word_embeddings.weight"] = torch.cat([word_emb, ent_emb, ent2_emb])
|
73 |
+
# add special tokens for 'entity_predictions.bias'
|
74 |
+
for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]:
|
75 |
+
decoder_bias = state_dict[bias_name]
|
76 |
+
ent_decoder_bias = decoder_bias[ent_init_index].unsqueeze(0)
|
77 |
+
ent2_decoder_bias = decoder_bias[ent2_init_index].unsqueeze(0)
|
78 |
+
state_dict[bias_name] = torch.cat([decoder_bias, ent_decoder_bias, ent2_decoder_bias])
|
79 |
+
|
80 |
+
# Initialize the query layers of the entity-aware self-attention mechanism
|
81 |
+
for layer_index in range(config.num_hidden_layers):
|
82 |
+
for matrix_name in ["query.weight", "query.bias"]:
|
83 |
+
prefix = f"encoder.layer.{layer_index}.attention.self."
|
84 |
+
state_dict[prefix + "w2e_" + matrix_name] = state_dict[prefix + matrix_name]
|
85 |
+
state_dict[prefix + "e2w_" + matrix_name] = state_dict[prefix + matrix_name]
|
86 |
+
state_dict[prefix + "e2e_" + matrix_name] = state_dict[prefix + matrix_name]
|
87 |
+
|
88 |
+
# Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks
|
89 |
+
entity_emb = state_dict["entity_embeddings.entity_embeddings.weight"]
|
90 |
+
entity_mask_emb = entity_emb[entity_vocab["[MASK]"]].unsqueeze(0)
|
91 |
+
state_dict["entity_embeddings.entity_embeddings.weight"] = torch.cat([entity_emb, entity_mask_emb])
|
92 |
+
# add [MASK2] for 'entity_predictions.bias'
|
93 |
+
entity_prediction_bias = state_dict["entity_predictions.bias"]
|
94 |
+
entity_mask_bias = entity_prediction_bias[entity_vocab["[MASK]"]].unsqueeze(0)
|
95 |
+
state_dict["entity_predictions.bias"] = torch.cat([entity_prediction_bias, entity_mask_bias])
|
96 |
+
|
97 |
+
model = LukeForMaskedLM(config=config).eval()
|
98 |
+
|
99 |
+
state_dict.pop("entity_predictions.decoder.weight")
|
100 |
+
state_dict.pop("lm_head.decoder.weight")
|
101 |
+
state_dict.pop("lm_head.decoder.bias")
|
102 |
+
state_dict_for_hugging_face = OrderedDict()
|
103 |
+
for key, value in state_dict.items():
|
104 |
+
if not (key.startswith("lm_head") or key.startswith("entity_predictions")):
|
105 |
+
state_dict_for_hugging_face[f"luke.{key}"] = state_dict[key]
|
106 |
+
else:
|
107 |
+
state_dict_for_hugging_face[key] = state_dict[key]
|
108 |
+
|
109 |
+
missing_keys, unexpected_keys = model.load_state_dict(state_dict_for_hugging_face, strict=False)
|
110 |
+
|
111 |
+
if set(unexpected_keys) != {"luke.embeddings.position_ids"}:
|
112 |
+
raise ValueError(f"Unexpected unexpected_keys: {unexpected_keys}")
|
113 |
+
if set(missing_keys) != {
|
114 |
+
"lm_head.decoder.weight",
|
115 |
+
"lm_head.decoder.bias",
|
116 |
+
"entity_predictions.decoder.weight",
|
117 |
+
}:
|
118 |
+
raise ValueError(f"Unexpected missing_keys: {missing_keys}")
|
119 |
+
|
120 |
+
model.tie_weights()
|
121 |
+
assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all()
|
122 |
+
assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all()
|
123 |
+
|
124 |
+
# Check outputs
|
125 |
+
tokenizer = MLukeTokenizer.from_pretrained(pytorch_dump_folder_path, task="entity_classification")
|
126 |
+
|
127 |
+
text = "ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan)."
|
128 |
+
span = (0, 9)
|
129 |
+
encoding = tokenizer(text, entity_spans=[span], return_tensors="pt")
|
130 |
+
|
131 |
+
outputs = model(**encoding)
|
132 |
+
|
133 |
+
# Verify word hidden states
|
134 |
+
if model_size == "large":
|
135 |
+
raise NotImplementedError
|
136 |
+
else: # base
|
137 |
+
expected_shape = torch.Size((1, 33, 768))
|
138 |
+
expected_slice = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]])
|
139 |
+
|
140 |
+
if not (outputs.last_hidden_state.shape == expected_shape):
|
141 |
+
raise ValueError(
|
142 |
+
f"Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}"
|
143 |
+
)
|
144 |
+
if not torch.allclose(outputs.last_hidden_state[0, :3, :3], expected_slice, atol=1e-4):
|
145 |
+
raise ValueError
|
146 |
+
|
147 |
+
# Verify entity hidden states
|
148 |
+
if model_size == "large":
|
149 |
+
raise NotImplementedError
|
150 |
+
else: # base
|
151 |
+
expected_shape = torch.Size((1, 1, 768))
|
152 |
+
expected_slice = torch.tensor([[-0.1482, 0.0609, 0.0322]])
|
153 |
+
|
154 |
+
if not (outputs.entity_last_hidden_state.shape == expected_shape):
|
155 |
+
raise ValueError(
|
156 |
+
f"Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is"
|
157 |
+
f" {expected_shape}"
|
158 |
+
)
|
159 |
+
if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3], expected_slice, atol=1e-4):
|
160 |
+
raise ValueError
|
161 |
+
|
162 |
+
# Verify masked word/entity prediction
|
163 |
+
tokenizer = MLukeTokenizer.from_pretrained(pytorch_dump_folder_path)
|
164 |
+
text = "Tokyo is the capital of <mask>."
|
165 |
+
span = (24, 30)
|
166 |
+
encoding = tokenizer(text, entity_spans=[span], return_tensors="pt")
|
167 |
+
|
168 |
+
outputs = model(**encoding)
|
169 |
+
|
170 |
+
input_ids = encoding["input_ids"][0].tolist()
|
171 |
+
mask_position_id = input_ids.index(tokenizer.convert_tokens_to_ids("<mask>"))
|
172 |
+
predicted_id = outputs.logits[0][mask_position_id].argmax(dim=-1)
|
173 |
+
assert "Japan" == tokenizer.decode(predicted_id)
|
174 |
+
|
175 |
+
predicted_entity_id = outputs.entity_logits[0][0].argmax().item()
|
176 |
+
multilingual_predicted_entities = [
|
177 |
+
entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id
|
178 |
+
]
|
179 |
+
assert [e for e in multilingual_predicted_entities if e.startswith("en:")][0] == "en:Japan"
|
180 |
+
|
181 |
+
# Finally, save our PyTorch model and tokenizer
|
182 |
+
print("Saving PyTorch model to {}".format(pytorch_dump_folder_path))
|
183 |
+
model.save_pretrained(pytorch_dump_folder_path)
|
184 |
+
|
185 |
+
|
186 |
+
def load_original_entity_vocab(entity_vocab_path):
|
187 |
+
SPECIAL_TOKENS = ["[MASK]", "[PAD]", "[UNK]"]
|
188 |
+
|
189 |
+
data = [json.loads(line) for line in open(entity_vocab_path)]
|
190 |
+
|
191 |
+
new_mapping = {}
|
192 |
+
for entry in data:
|
193 |
+
entity_id = entry["id"]
|
194 |
+
for entity_name, language in entry["entities"]:
|
195 |
+
if entity_name in SPECIAL_TOKENS:
|
196 |
+
new_mapping[entity_name] = entity_id
|
197 |
+
break
|
198 |
+
new_entity_name = f"{language}:{entity_name}"
|
199 |
+
new_mapping[new_entity_name] = entity_id
|
200 |
+
return new_mapping
|
201 |
+
|
202 |
+
|
203 |
+
if __name__ == "__main__":
|
204 |
+
parser = argparse.ArgumentParser()
|
205 |
+
# Required parameters
|
206 |
+
parser.add_argument("--checkpoint_path", type=str, help="Path to a pytorch_model.bin file.")
|
207 |
+
parser.add_argument(
|
208 |
+
"--metadata_path", default=None, type=str, help="Path to a metadata.json file, defining the configuration."
|
209 |
+
)
|
210 |
+
parser.add_argument(
|
211 |
+
"--entity_vocab_path",
|
212 |
+
default=None,
|
213 |
+
type=str,
|
214 |
+
help="Path to an entity_vocab.tsv file, containing the entity vocabulary.",
|
215 |
+
)
|
216 |
+
parser.add_argument(
|
217 |
+
"--pytorch_dump_folder_path", default=None, type=str, help="Path to where to dump the output PyTorch model."
|
218 |
+
)
|
219 |
+
parser.add_argument(
|
220 |
+
"--model_size", default="base", type=str, choices=["base", "large"], help="Size of the model to be converted."
|
221 |
+
)
|
222 |
+
args = parser.parse_args()
|
223 |
+
convert_luke_checkpoint(
|
224 |
+
args.checkpoint_path,
|
225 |
+
args.metadata_path,
|
226 |
+
args.entity_vocab_path,
|
227 |
+
args.pytorch_dump_folder_path,
|
228 |
+
args.model_size,
|
229 |
+
)
|
env-llmeval/lib/python3.10/site-packages/transformers/models/mluke/tokenization_mluke.py
ADDED
@@ -0,0 +1,1631 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 Studio Ousia and the HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License
|
15 |
+
""" Tokenization classes for mLUKE."""
|
16 |
+
|
17 |
+
|
18 |
+
import itertools
|
19 |
+
import json
|
20 |
+
import os
|
21 |
+
from collections.abc import Mapping
|
22 |
+
from shutil import copyfile
|
23 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
24 |
+
|
25 |
+
import numpy as np
|
26 |
+
import sentencepiece as spm
|
27 |
+
|
28 |
+
from ...tokenization_utils import PreTrainedTokenizer
|
29 |
+
from ...tokenization_utils_base import (
|
30 |
+
ENCODE_KWARGS_DOCSTRING,
|
31 |
+
AddedToken,
|
32 |
+
BatchEncoding,
|
33 |
+
EncodedInput,
|
34 |
+
PaddingStrategy,
|
35 |
+
TensorType,
|
36 |
+
TextInput,
|
37 |
+
TextInputPair,
|
38 |
+
TruncationStrategy,
|
39 |
+
to_py_obj,
|
40 |
+
)
|
41 |
+
from ...utils import add_end_docstrings, is_tf_tensor, is_torch_tensor, logging
|
42 |
+
|
43 |
+
|
44 |
+
logger = logging.get_logger(__name__)
|
45 |
+
|
46 |
+
EntitySpan = Tuple[int, int]
|
47 |
+
EntitySpanInput = List[EntitySpan]
|
48 |
+
Entity = str
|
49 |
+
EntityInput = List[Entity]
|
50 |
+
|
51 |
+
SPIECE_UNDERLINE = "▁"
|
52 |
+
|
53 |
+
VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model", "entity_vocab_file": "entity_vocab.json"}
|
54 |
+
|
55 |
+
PRETRAINED_VOCAB_FILES_MAP = {
|
56 |
+
"vocab_file": {
|
57 |
+
"studio-ousia/mluke-base": "https://huggingface.co/studio-ousia/mluke-base/resolve/main/vocab.json",
|
58 |
+
},
|
59 |
+
"merges_file": {
|
60 |
+
"studio-ousia/mluke-base": "https://huggingface.co/studio-ousia/mluke-base/resolve/main/merges.txt",
|
61 |
+
},
|
62 |
+
"entity_vocab_file": {
|
63 |
+
"studio-ousia/mluke-base": "https://huggingface.co/studio-ousia/mluke-base/resolve/main/entity_vocab.json",
|
64 |
+
},
|
65 |
+
}
|
66 |
+
|
67 |
+
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
|
68 |
+
"studio-ousia/mluke-base": 512,
|
69 |
+
}
|
70 |
+
|
71 |
+
ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING = r"""
|
72 |
+
return_token_type_ids (`bool`, *optional*):
|
73 |
+
Whether to return token type IDs. If left to the default, will return the token type IDs according to
|
74 |
+
the specific tokenizer's default, defined by the `return_outputs` attribute.
|
75 |
+
|
76 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
77 |
+
return_attention_mask (`bool`, *optional*):
|
78 |
+
Whether to return the attention mask. If left to the default, will return the attention mask according
|
79 |
+
to the specific tokenizer's default, defined by the `return_outputs` attribute.
|
80 |
+
|
81 |
+
[What are attention masks?](../glossary#attention-mask)
|
82 |
+
return_overflowing_tokens (`bool`, *optional*, defaults to `False`):
|
83 |
+
Whether or not to return overflowing token sequences. If a pair of sequences of input ids (or a batch
|
84 |
+
of pairs) is provided with `truncation_strategy = longest_first` or `True`, an error is raised instead
|
85 |
+
of returning overflowing tokens.
|
86 |
+
return_special_tokens_mask (`bool`, *optional*, defaults to `False`):
|
87 |
+
Whether or not to return special tokens mask information.
|
88 |
+
return_offsets_mapping (`bool`, *optional*, defaults to `False`):
|
89 |
+
Whether or not to return `(char_start, char_end)` for each token.
|
90 |
+
|
91 |
+
This is only available on fast tokenizers inheriting from [`PreTrainedTokenizerFast`], if using
|
92 |
+
Python's tokenizer, this method will raise `NotImplementedError`.
|
93 |
+
return_length (`bool`, *optional*, defaults to `False`):
|
94 |
+
Whether or not to return the lengths of the encoded inputs.
|
95 |
+
verbose (`bool`, *optional*, defaults to `True`):
|
96 |
+
Whether or not to print more information and warnings.
|
97 |
+
**kwargs: passed to the `self.tokenize()` method
|
98 |
+
|
99 |
+
Return:
|
100 |
+
[`BatchEncoding`]: A [`BatchEncoding`] with the following fields:
|
101 |
+
|
102 |
+
- **input_ids** -- List of token ids to be fed to a model.
|
103 |
+
|
104 |
+
[What are input IDs?](../glossary#input-ids)
|
105 |
+
|
106 |
+
- **token_type_ids** -- List of token type ids to be fed to a model (when `return_token_type_ids=True` or
|
107 |
+
if *"token_type_ids"* is in `self.model_input_names`).
|
108 |
+
|
109 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
110 |
+
|
111 |
+
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
|
112 |
+
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names`).
|
113 |
+
|
114 |
+
[What are attention masks?](../glossary#attention-mask)
|
115 |
+
|
116 |
+
- **entity_ids** -- List of entity ids to be fed to a model.
|
117 |
+
|
118 |
+
[What are input IDs?](../glossary#input-ids)
|
119 |
+
|
120 |
+
- **entity_position_ids** -- List of entity positions in the input sequence to be fed to a model.
|
121 |
+
|
122 |
+
- **entity_token_type_ids** -- List of entity token type ids to be fed to a model (when
|
123 |
+
`return_token_type_ids=True` or if *"entity_token_type_ids"* is in `self.model_input_names`).
|
124 |
+
|
125 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
126 |
+
|
127 |
+
- **entity_attention_mask** -- List of indices specifying which entities should be attended to by the model
|
128 |
+
(when `return_attention_mask=True` or if *"entity_attention_mask"* is in `self.model_input_names`).
|
129 |
+
|
130 |
+
[What are attention masks?](../glossary#attention-mask)
|
131 |
+
|
132 |
+
- **entity_start_positions** -- List of the start positions of entities in the word token sequence (when
|
133 |
+
`task="entity_span_classification"`).
|
134 |
+
- **entity_end_positions** -- List of the end positions of entities in the word token sequence (when
|
135 |
+
`task="entity_span_classification"`).
|
136 |
+
- **overflowing_tokens** -- List of overflowing tokens sequences (when a `max_length` is specified and
|
137 |
+
`return_overflowing_tokens=True`).
|
138 |
+
- **num_truncated_tokens** -- Number of tokens truncated (when a `max_length` is specified and
|
139 |
+
`return_overflowing_tokens=True`).
|
140 |
+
- **special_tokens_mask** -- List of 0s and 1s, with 1 specifying added special tokens and 0 specifying
|
141 |
+
regular sequence tokens (when `add_special_tokens=True` and `return_special_tokens_mask=True`).
|
142 |
+
- **length** -- The length of the inputs (when `return_length=True`)
|
143 |
+
|
144 |
+
"""
|
145 |
+
|
146 |
+
|
147 |
+
class MLukeTokenizer(PreTrainedTokenizer):
|
148 |
+
"""
|
149 |
+
Adapted from [`XLMRobertaTokenizer`] and [`LukeTokenizer`]. Based on
|
150 |
+
[SentencePiece](https://github.com/google/sentencepiece).
|
151 |
+
|
152 |
+
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
|
153 |
+
this superclass for more information regarding those methods.
|
154 |
+
|
155 |
+
Args:
|
156 |
+
vocab_file (`str`):
|
157 |
+
Path to the vocabulary file.
|
158 |
+
entity_vocab_file (`str`):
|
159 |
+
Path to the entity vocabulary file.
|
160 |
+
bos_token (`str`, *optional*, defaults to `"<s>"`):
|
161 |
+
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
|
162 |
+
|
163 |
+
<Tip>
|
164 |
+
|
165 |
+
When building a sequence using special tokens, this is not the token that is used for the beginning of
|
166 |
+
sequence. The token used is the `cls_token`.
|
167 |
+
|
168 |
+
</Tip>
|
169 |
+
|
170 |
+
eos_token (`str`, *optional*, defaults to `"</s>"`):
|
171 |
+
The end of sequence token.
|
172 |
+
|
173 |
+
<Tip>
|
174 |
+
|
175 |
+
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
|
176 |
+
The token used is the `sep_token`.
|
177 |
+
|
178 |
+
</Tip>
|
179 |
+
|
180 |
+
sep_token (`str`, *optional*, defaults to `"</s>"`):
|
181 |
+
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
|
182 |
+
sequence classification or for a text and a question for question answering. It is also used as the last
|
183 |
+
token of a sequence built with special tokens.
|
184 |
+
cls_token (`str`, *optional*, defaults to `"<s>"`):
|
185 |
+
The classifier token which is used when doing sequence classification (classification of the whole sequence
|
186 |
+
instead of per-token classification). It is the first token of the sequence when built with special tokens.
|
187 |
+
unk_token (`str`, *optional*, defaults to `"<unk>"`):
|
188 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
189 |
+
token instead.
|
190 |
+
pad_token (`str`, *optional*, defaults to `"<pad>"`):
|
191 |
+
The token used for padding, for example when batching sequences of different lengths.
|
192 |
+
mask_token (`str`, *optional*, defaults to `"<mask>"`):
|
193 |
+
The token used for masking values. This is the token used when training this model with masked language
|
194 |
+
modeling. This is the token which the model will try to predict.
|
195 |
+
task (`str`, *optional*):
|
196 |
+
Task for which you want to prepare sequences. One of `"entity_classification"`,
|
197 |
+
`"entity_pair_classification"`, or `"entity_span_classification"`. If you specify this argument, the entity
|
198 |
+
sequence is automatically created based on the given entity span(s).
|
199 |
+
max_entity_length (`int`, *optional*, defaults to 32):
|
200 |
+
The maximum length of `entity_ids`.
|
201 |
+
max_mention_length (`int`, *optional*, defaults to 30):
|
202 |
+
The maximum number of tokens inside an entity span.
|
203 |
+
entity_token_1 (`str`, *optional*, defaults to `<ent>`):
|
204 |
+
The special token used to represent an entity span in a word token sequence. This token is only used when
|
205 |
+
`task` is set to `"entity_classification"` or `"entity_pair_classification"`.
|
206 |
+
entity_token_2 (`str`, *optional*, defaults to `<ent2>`):
|
207 |
+
The special token used to represent an entity span in a word token sequence. This token is only used when
|
208 |
+
`task` is set to `"entity_pair_classification"`.
|
209 |
+
additional_special_tokens (`List[str]`, *optional*, defaults to `["<s>NOTUSED", "</s>NOTUSED"]`):
|
210 |
+
Additional special tokens used by the tokenizer.
|
211 |
+
sp_model_kwargs (`dict`, *optional*):
|
212 |
+
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
|
213 |
+
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
|
214 |
+
to set:
|
215 |
+
|
216 |
+
- `enable_sampling`: Enable subword regularization.
|
217 |
+
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
|
218 |
+
|
219 |
+
- `nbest_size = {0,1}`: No sampling is performed.
|
220 |
+
- `nbest_size > 1`: samples from the nbest_size results.
|
221 |
+
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
|
222 |
+
using forward-filtering-and-backward-sampling algorithm.
|
223 |
+
|
224 |
+
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
|
225 |
+
BPE-dropout.
|
226 |
+
|
227 |
+
Attributes:
|
228 |
+
sp_model (`SentencePieceProcessor`):
|
229 |
+
The *SentencePiece* processor that is used for every conversion (string, tokens and IDs).
|
230 |
+
"""
|
231 |
+
|
232 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
233 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
234 |
+
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
235 |
+
model_input_names = ["input_ids", "attention_mask"]
|
236 |
+
|
237 |
+
def __init__(
|
238 |
+
self,
|
239 |
+
vocab_file,
|
240 |
+
entity_vocab_file,
|
241 |
+
bos_token="<s>",
|
242 |
+
eos_token="</s>",
|
243 |
+
sep_token="</s>",
|
244 |
+
cls_token="<s>",
|
245 |
+
unk_token="<unk>",
|
246 |
+
pad_token="<pad>",
|
247 |
+
mask_token="<mask>",
|
248 |
+
task=None,
|
249 |
+
max_entity_length=32,
|
250 |
+
max_mention_length=30,
|
251 |
+
entity_token_1="<ent>",
|
252 |
+
entity_token_2="<ent2>",
|
253 |
+
entity_unk_token="[UNK]",
|
254 |
+
entity_pad_token="[PAD]",
|
255 |
+
entity_mask_token="[MASK]",
|
256 |
+
entity_mask2_token="[MASK2]",
|
257 |
+
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
258 |
+
**kwargs,
|
259 |
+
) -> None:
|
260 |
+
# Mask token behave like a normal word, i.e. include the space before it
|
261 |
+
mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token
|
262 |
+
|
263 |
+
# we add 2 special tokens for downstream tasks
|
264 |
+
# for more information about lstrip and rstrip, see https://github.com/huggingface/transformers/pull/2778
|
265 |
+
entity_token_1 = (
|
266 |
+
AddedToken(entity_token_1, lstrip=False, rstrip=False)
|
267 |
+
if isinstance(entity_token_1, str)
|
268 |
+
else entity_token_1
|
269 |
+
)
|
270 |
+
entity_token_2 = (
|
271 |
+
AddedToken(entity_token_2, lstrip=False, rstrip=False)
|
272 |
+
if isinstance(entity_token_2, str)
|
273 |
+
else entity_token_2
|
274 |
+
)
|
275 |
+
additional_special_tokens = kwargs.pop("additional_special_tokens", [])
|
276 |
+
additional_special_tokens += [entity_token_1, entity_token_2]
|
277 |
+
|
278 |
+
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
279 |
+
|
280 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
281 |
+
self.sp_model.Load(str(vocab_file))
|
282 |
+
self.vocab_file = vocab_file
|
283 |
+
|
284 |
+
# Original fairseq vocab and spm vocab must be "aligned":
|
285 |
+
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
|
286 |
+
# -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
|
287 |
+
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-'
|
288 |
+
# spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
|
289 |
+
|
290 |
+
# Mimic fairseq token-to-id alignment for the first 4 token
|
291 |
+
self.fairseq_tokens_to_ids = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3}
|
292 |
+
|
293 |
+
# The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
|
294 |
+
self.fairseq_offset = 1
|
295 |
+
|
296 |
+
self.fairseq_tokens_to_ids["<mask>"] = len(self.sp_model) + self.fairseq_offset
|
297 |
+
self.fairseq_ids_to_tokens = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
|
298 |
+
|
299 |
+
with open(entity_vocab_file, encoding="utf-8") as entity_vocab_handle:
|
300 |
+
self.entity_vocab = json.load(entity_vocab_handle)
|
301 |
+
for entity_special_token in [entity_unk_token, entity_pad_token, entity_mask_token, entity_mask2_token]:
|
302 |
+
if entity_special_token not in self.entity_vocab:
|
303 |
+
raise ValueError(
|
304 |
+
f"Specified entity special token ``{entity_special_token}`` is not found in entity_vocab. "
|
305 |
+
f"Probably an incorrect entity vocab file is loaded: {entity_vocab_file}."
|
306 |
+
)
|
307 |
+
self.entity_unk_token_id = self.entity_vocab[entity_unk_token]
|
308 |
+
self.entity_pad_token_id = self.entity_vocab[entity_pad_token]
|
309 |
+
self.entity_mask_token_id = self.entity_vocab[entity_mask_token]
|
310 |
+
self.entity_mask2_token_id = self.entity_vocab[entity_mask2_token]
|
311 |
+
|
312 |
+
self.task = task
|
313 |
+
if task is None or task == "entity_span_classification":
|
314 |
+
self.max_entity_length = max_entity_length
|
315 |
+
elif task == "entity_classification":
|
316 |
+
self.max_entity_length = 1
|
317 |
+
elif task == "entity_pair_classification":
|
318 |
+
self.max_entity_length = 2
|
319 |
+
else:
|
320 |
+
raise ValueError(
|
321 |
+
f"Task {task} not supported. Select task from ['entity_classification', 'entity_pair_classification',"
|
322 |
+
" 'entity_span_classification'] only."
|
323 |
+
)
|
324 |
+
|
325 |
+
self.max_mention_length = max_mention_length
|
326 |
+
|
327 |
+
super().__init__(
|
328 |
+
bos_token=bos_token,
|
329 |
+
eos_token=eos_token,
|
330 |
+
unk_token=unk_token,
|
331 |
+
sep_token=sep_token,
|
332 |
+
cls_token=cls_token,
|
333 |
+
pad_token=pad_token,
|
334 |
+
mask_token=mask_token,
|
335 |
+
sp_model_kwargs=self.sp_model_kwargs,
|
336 |
+
task=task,
|
337 |
+
max_entity_length=max_entity_length,
|
338 |
+
max_mention_length=max_mention_length,
|
339 |
+
entity_token_1=entity_token_1,
|
340 |
+
entity_token_2=entity_token_2,
|
341 |
+
entity_unk_token=entity_unk_token,
|
342 |
+
entity_pad_token=entity_pad_token,
|
343 |
+
entity_mask_token=entity_mask_token,
|
344 |
+
entity_mask2_token=entity_mask2_token,
|
345 |
+
additional_special_tokens=additional_special_tokens,
|
346 |
+
**kwargs,
|
347 |
+
)
|
348 |
+
|
349 |
+
@property
|
350 |
+
# Copied from transformers.models.xlm_roberta.tokenization_xlm_roberta.XLMRobertaTokenizer.vocab_size
|
351 |
+
def vocab_size(self):
|
352 |
+
return len(self.sp_model) + self.fairseq_offset + 1 # Add the <mask> token
|
353 |
+
|
354 |
+
# Copied from transformers.models.xlm_roberta.tokenization_xlm_roberta.XLMRobertaTokenizer.get_vocab
|
355 |
+
def get_vocab(self):
|
356 |
+
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
357 |
+
vocab.update(self.added_tokens_encoder)
|
358 |
+
return vocab
|
359 |
+
|
360 |
+
# Copied from transformers.models.xlm_roberta.tokenization_xlm_roberta.XLMRobertaTokenizer._tokenize
|
361 |
+
def _tokenize(self, text: str) -> List[str]:
|
362 |
+
# TODO check if the t5/llama PR also applies here
|
363 |
+
return self.sp_model.encode(text, out_type=str)
|
364 |
+
|
365 |
+
# Copied from transformers.models.xlm_roberta.tokenization_xlm_roberta.XLMRobertaTokenizer._convert_token_to_id
|
366 |
+
def _convert_token_to_id(self, token):
|
367 |
+
"""Converts a token (str) in an id using the vocab."""
|
368 |
+
if token in self.fairseq_tokens_to_ids:
|
369 |
+
return self.fairseq_tokens_to_ids[token]
|
370 |
+
spm_id = self.sp_model.PieceToId(token)
|
371 |
+
|
372 |
+
# Need to return unknown token if the SP model returned 0
|
373 |
+
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
|
374 |
+
|
375 |
+
def _convert_id_to_token(self, index):
|
376 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
377 |
+
if index in self.fairseq_ids_to_tokens:
|
378 |
+
return self.fairseq_ids_to_tokens[index]
|
379 |
+
return self.sp_model.IdToPiece(index - self.fairseq_offset)
|
380 |
+
|
381 |
+
def convert_tokens_to_string(self, tokens):
|
382 |
+
"""Converts a sequence of tokens (strings for sub-words) in a single string."""
|
383 |
+
out_string = "".join(tokens).replace(SPIECE_UNDERLINE, " ").strip()
|
384 |
+
return out_string
|
385 |
+
|
386 |
+
def __getstate__(self):
|
387 |
+
state = self.__dict__.copy()
|
388 |
+
state["sp_model"] = None
|
389 |
+
state["sp_model_proto"] = self.sp_model.serialized_model_proto()
|
390 |
+
return state
|
391 |
+
|
392 |
+
def __setstate__(self, d):
|
393 |
+
self.__dict__ = d
|
394 |
+
|
395 |
+
# for backward compatibility
|
396 |
+
if not hasattr(self, "sp_model_kwargs"):
|
397 |
+
self.sp_model_kwargs = {}
|
398 |
+
|
399 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
400 |
+
self.sp_model.LoadFromSerializedProto(self.sp_model_proto)
|
401 |
+
|
402 |
+
@add_end_docstrings(ENCODE_KWARGS_DOCSTRING, ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
|
403 |
+
# Copied from transformers.models.luke.tokenization_luke.LukeTokenizer.__call__
|
404 |
+
def __call__(
|
405 |
+
self,
|
406 |
+
text: Union[TextInput, List[TextInput]],
|
407 |
+
text_pair: Optional[Union[TextInput, List[TextInput]]] = None,
|
408 |
+
entity_spans: Optional[Union[EntitySpanInput, List[EntitySpanInput]]] = None,
|
409 |
+
entity_spans_pair: Optional[Union[EntitySpanInput, List[EntitySpanInput]]] = None,
|
410 |
+
entities: Optional[Union[EntityInput, List[EntityInput]]] = None,
|
411 |
+
entities_pair: Optional[Union[EntityInput, List[EntityInput]]] = None,
|
412 |
+
add_special_tokens: bool = True,
|
413 |
+
padding: Union[bool, str, PaddingStrategy] = False,
|
414 |
+
truncation: Union[bool, str, TruncationStrategy] = None,
|
415 |
+
max_length: Optional[int] = None,
|
416 |
+
max_entity_length: Optional[int] = None,
|
417 |
+
stride: int = 0,
|
418 |
+
is_split_into_words: Optional[bool] = False,
|
419 |
+
pad_to_multiple_of: Optional[int] = None,
|
420 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
421 |
+
return_token_type_ids: Optional[bool] = None,
|
422 |
+
return_attention_mask: Optional[bool] = None,
|
423 |
+
return_overflowing_tokens: bool = False,
|
424 |
+
return_special_tokens_mask: bool = False,
|
425 |
+
return_offsets_mapping: bool = False,
|
426 |
+
return_length: bool = False,
|
427 |
+
verbose: bool = True,
|
428 |
+
**kwargs,
|
429 |
+
) -> BatchEncoding:
|
430 |
+
"""
|
431 |
+
Main method to tokenize and prepare for the model one or several sequence(s) or one or several pair(s) of
|
432 |
+
sequences, depending on the task you want to prepare them for.
|
433 |
+
|
434 |
+
Args:
|
435 |
+
text (`str`, `List[str]`, `List[List[str]]`):
|
436 |
+
The sequence or batch of sequences to be encoded. Each sequence must be a string. Note that this
|
437 |
+
tokenizer does not support tokenization based on pretokenized strings.
|
438 |
+
text_pair (`str`, `List[str]`, `List[List[str]]`):
|
439 |
+
The sequence or batch of sequences to be encoded. Each sequence must be a string. Note that this
|
440 |
+
tokenizer does not support tokenization based on pretokenized strings.
|
441 |
+
entity_spans (`List[Tuple[int, int]]`, `List[List[Tuple[int, int]]]`, *optional*):
|
442 |
+
The sequence or batch of sequences of entity spans to be encoded. Each sequence consists of tuples each
|
443 |
+
with two integers denoting character-based start and end positions of entities. If you specify
|
444 |
+
`"entity_classification"` or `"entity_pair_classification"` as the `task` argument in the constructor,
|
445 |
+
the length of each sequence must be 1 or 2, respectively. If you specify `entities`, the length of each
|
446 |
+
sequence must be equal to the length of each sequence of `entities`.
|
447 |
+
entity_spans_pair (`List[Tuple[int, int]]`, `List[List[Tuple[int, int]]]`, *optional*):
|
448 |
+
The sequence or batch of sequences of entity spans to be encoded. Each sequence consists of tuples each
|
449 |
+
with two integers denoting character-based start and end positions of entities. If you specify the
|
450 |
+
`task` argument in the constructor, this argument is ignored. If you specify `entities_pair`, the
|
451 |
+
length of each sequence must be equal to the length of each sequence of `entities_pair`.
|
452 |
+
entities (`List[str]`, `List[List[str]]`, *optional*):
|
453 |
+
The sequence or batch of sequences of entities to be encoded. Each sequence consists of strings
|
454 |
+
representing entities, i.e., special entities (e.g., [MASK]) or entity titles of Wikipedia (e.g., Los
|
455 |
+
Angeles). This argument is ignored if you specify the `task` argument in the constructor. The length of
|
456 |
+
each sequence must be equal to the length of each sequence of `entity_spans`. If you specify
|
457 |
+
`entity_spans` without specifying this argument, the entity sequence or the batch of entity sequences
|
458 |
+
is automatically constructed by filling it with the [MASK] entity.
|
459 |
+
entities_pair (`List[str]`, `List[List[str]]`, *optional*):
|
460 |
+
The sequence or batch of sequences of entities to be encoded. Each sequence consists of strings
|
461 |
+
representing entities, i.e., special entities (e.g., [MASK]) or entity titles of Wikipedia (e.g., Los
|
462 |
+
Angeles). This argument is ignored if you specify the `task` argument in the constructor. The length of
|
463 |
+
each sequence must be equal to the length of each sequence of `entity_spans_pair`. If you specify
|
464 |
+
`entity_spans_pair` without specifying this argument, the entity sequence or the batch of entity
|
465 |
+
sequences is automatically constructed by filling it with the [MASK] entity.
|
466 |
+
max_entity_length (`int`, *optional*):
|
467 |
+
The maximum length of `entity_ids`.
|
468 |
+
"""
|
469 |
+
# Input type checking for clearer error
|
470 |
+
is_valid_single_text = isinstance(text, str)
|
471 |
+
is_valid_batch_text = isinstance(text, (list, tuple)) and (len(text) == 0 or (isinstance(text[0], str)))
|
472 |
+
if not (is_valid_single_text or is_valid_batch_text):
|
473 |
+
raise ValueError("text input must be of type `str` (single example) or `List[str]` (batch).")
|
474 |
+
|
475 |
+
is_valid_single_text_pair = isinstance(text_pair, str)
|
476 |
+
is_valid_batch_text_pair = isinstance(text_pair, (list, tuple)) and (
|
477 |
+
len(text_pair) == 0 or isinstance(text_pair[0], str)
|
478 |
+
)
|
479 |
+
if not (text_pair is None or is_valid_single_text_pair or is_valid_batch_text_pair):
|
480 |
+
raise ValueError("text_pair input must be of type `str` (single example) or `List[str]` (batch).")
|
481 |
+
|
482 |
+
is_batched = bool(isinstance(text, (list, tuple)))
|
483 |
+
|
484 |
+
if is_batched:
|
485 |
+
batch_text_or_text_pairs = list(zip(text, text_pair)) if text_pair is not None else text
|
486 |
+
if entities is None:
|
487 |
+
batch_entities_or_entities_pairs = None
|
488 |
+
else:
|
489 |
+
batch_entities_or_entities_pairs = (
|
490 |
+
list(zip(entities, entities_pair)) if entities_pair is not None else entities
|
491 |
+
)
|
492 |
+
|
493 |
+
if entity_spans is None:
|
494 |
+
batch_entity_spans_or_entity_spans_pairs = None
|
495 |
+
else:
|
496 |
+
batch_entity_spans_or_entity_spans_pairs = (
|
497 |
+
list(zip(entity_spans, entity_spans_pair)) if entity_spans_pair is not None else entity_spans
|
498 |
+
)
|
499 |
+
|
500 |
+
return self.batch_encode_plus(
|
501 |
+
batch_text_or_text_pairs=batch_text_or_text_pairs,
|
502 |
+
batch_entity_spans_or_entity_spans_pairs=batch_entity_spans_or_entity_spans_pairs,
|
503 |
+
batch_entities_or_entities_pairs=batch_entities_or_entities_pairs,
|
504 |
+
add_special_tokens=add_special_tokens,
|
505 |
+
padding=padding,
|
506 |
+
truncation=truncation,
|
507 |
+
max_length=max_length,
|
508 |
+
max_entity_length=max_entity_length,
|
509 |
+
stride=stride,
|
510 |
+
is_split_into_words=is_split_into_words,
|
511 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
512 |
+
return_tensors=return_tensors,
|
513 |
+
return_token_type_ids=return_token_type_ids,
|
514 |
+
return_attention_mask=return_attention_mask,
|
515 |
+
return_overflowing_tokens=return_overflowing_tokens,
|
516 |
+
return_special_tokens_mask=return_special_tokens_mask,
|
517 |
+
return_offsets_mapping=return_offsets_mapping,
|
518 |
+
return_length=return_length,
|
519 |
+
verbose=verbose,
|
520 |
+
**kwargs,
|
521 |
+
)
|
522 |
+
else:
|
523 |
+
return self.encode_plus(
|
524 |
+
text=text,
|
525 |
+
text_pair=text_pair,
|
526 |
+
entity_spans=entity_spans,
|
527 |
+
entity_spans_pair=entity_spans_pair,
|
528 |
+
entities=entities,
|
529 |
+
entities_pair=entities_pair,
|
530 |
+
add_special_tokens=add_special_tokens,
|
531 |
+
padding=padding,
|
532 |
+
truncation=truncation,
|
533 |
+
max_length=max_length,
|
534 |
+
max_entity_length=max_entity_length,
|
535 |
+
stride=stride,
|
536 |
+
is_split_into_words=is_split_into_words,
|
537 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
538 |
+
return_tensors=return_tensors,
|
539 |
+
return_token_type_ids=return_token_type_ids,
|
540 |
+
return_attention_mask=return_attention_mask,
|
541 |
+
return_overflowing_tokens=return_overflowing_tokens,
|
542 |
+
return_special_tokens_mask=return_special_tokens_mask,
|
543 |
+
return_offsets_mapping=return_offsets_mapping,
|
544 |
+
return_length=return_length,
|
545 |
+
verbose=verbose,
|
546 |
+
**kwargs,
|
547 |
+
)
|
548 |
+
|
549 |
+
# Copied from transformers.models.luke.tokenization_luke.LukeTokenizer._encode_plus
|
550 |
+
def _encode_plus(
|
551 |
+
self,
|
552 |
+
text: Union[TextInput],
|
553 |
+
text_pair: Optional[Union[TextInput]] = None,
|
554 |
+
entity_spans: Optional[EntitySpanInput] = None,
|
555 |
+
entity_spans_pair: Optional[EntitySpanInput] = None,
|
556 |
+
entities: Optional[EntityInput] = None,
|
557 |
+
entities_pair: Optional[EntityInput] = None,
|
558 |
+
add_special_tokens: bool = True,
|
559 |
+
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
|
560 |
+
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
|
561 |
+
max_length: Optional[int] = None,
|
562 |
+
max_entity_length: Optional[int] = None,
|
563 |
+
stride: int = 0,
|
564 |
+
is_split_into_words: Optional[bool] = False,
|
565 |
+
pad_to_multiple_of: Optional[int] = None,
|
566 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
567 |
+
return_token_type_ids: Optional[bool] = None,
|
568 |
+
return_attention_mask: Optional[bool] = None,
|
569 |
+
return_overflowing_tokens: bool = False,
|
570 |
+
return_special_tokens_mask: bool = False,
|
571 |
+
return_offsets_mapping: bool = False,
|
572 |
+
return_length: bool = False,
|
573 |
+
verbose: bool = True,
|
574 |
+
**kwargs,
|
575 |
+
) -> BatchEncoding:
|
576 |
+
if return_offsets_mapping:
|
577 |
+
raise NotImplementedError(
|
578 |
+
"return_offset_mapping is not available when using Python tokenizers. "
|
579 |
+
"To use this feature, change your tokenizer to one deriving from "
|
580 |
+
"transformers.PreTrainedTokenizerFast. "
|
581 |
+
"More information on available tokenizers at "
|
582 |
+
"https://github.com/huggingface/transformers/pull/2674"
|
583 |
+
)
|
584 |
+
|
585 |
+
if is_split_into_words:
|
586 |
+
raise NotImplementedError("is_split_into_words is not supported in this tokenizer.")
|
587 |
+
|
588 |
+
(
|
589 |
+
first_ids,
|
590 |
+
second_ids,
|
591 |
+
first_entity_ids,
|
592 |
+
second_entity_ids,
|
593 |
+
first_entity_token_spans,
|
594 |
+
second_entity_token_spans,
|
595 |
+
) = self._create_input_sequence(
|
596 |
+
text=text,
|
597 |
+
text_pair=text_pair,
|
598 |
+
entities=entities,
|
599 |
+
entities_pair=entities_pair,
|
600 |
+
entity_spans=entity_spans,
|
601 |
+
entity_spans_pair=entity_spans_pair,
|
602 |
+
**kwargs,
|
603 |
+
)
|
604 |
+
|
605 |
+
# prepare_for_model will create the attention_mask and token_type_ids
|
606 |
+
return self.prepare_for_model(
|
607 |
+
first_ids,
|
608 |
+
pair_ids=second_ids,
|
609 |
+
entity_ids=first_entity_ids,
|
610 |
+
pair_entity_ids=second_entity_ids,
|
611 |
+
entity_token_spans=first_entity_token_spans,
|
612 |
+
pair_entity_token_spans=second_entity_token_spans,
|
613 |
+
add_special_tokens=add_special_tokens,
|
614 |
+
padding=padding_strategy.value,
|
615 |
+
truncation=truncation_strategy.value,
|
616 |
+
max_length=max_length,
|
617 |
+
max_entity_length=max_entity_length,
|
618 |
+
stride=stride,
|
619 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
620 |
+
return_tensors=return_tensors,
|
621 |
+
prepend_batch_axis=True,
|
622 |
+
return_attention_mask=return_attention_mask,
|
623 |
+
return_token_type_ids=return_token_type_ids,
|
624 |
+
return_overflowing_tokens=return_overflowing_tokens,
|
625 |
+
return_special_tokens_mask=return_special_tokens_mask,
|
626 |
+
return_length=return_length,
|
627 |
+
verbose=verbose,
|
628 |
+
)
|
629 |
+
|
630 |
+
# Copied from transformers.models.luke.tokenization_luke.LukeTokenizer._batch_encode_plus
|
631 |
+
def _batch_encode_plus(
|
632 |
+
self,
|
633 |
+
batch_text_or_text_pairs: Union[List[TextInput], List[TextInputPair]],
|
634 |
+
batch_entity_spans_or_entity_spans_pairs: Optional[
|
635 |
+
Union[List[EntitySpanInput], List[Tuple[EntitySpanInput, EntitySpanInput]]]
|
636 |
+
] = None,
|
637 |
+
batch_entities_or_entities_pairs: Optional[
|
638 |
+
Union[List[EntityInput], List[Tuple[EntityInput, EntityInput]]]
|
639 |
+
] = None,
|
640 |
+
add_special_tokens: bool = True,
|
641 |
+
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
|
642 |
+
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
|
643 |
+
max_length: Optional[int] = None,
|
644 |
+
max_entity_length: Optional[int] = None,
|
645 |
+
stride: int = 0,
|
646 |
+
is_split_into_words: Optional[bool] = False,
|
647 |
+
pad_to_multiple_of: Optional[int] = None,
|
648 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
649 |
+
return_token_type_ids: Optional[bool] = None,
|
650 |
+
return_attention_mask: Optional[bool] = None,
|
651 |
+
return_overflowing_tokens: bool = False,
|
652 |
+
return_special_tokens_mask: bool = False,
|
653 |
+
return_offsets_mapping: bool = False,
|
654 |
+
return_length: bool = False,
|
655 |
+
verbose: bool = True,
|
656 |
+
**kwargs,
|
657 |
+
) -> BatchEncoding:
|
658 |
+
if return_offsets_mapping:
|
659 |
+
raise NotImplementedError(
|
660 |
+
"return_offset_mapping is not available when using Python tokenizers. "
|
661 |
+
"To use this feature, change your tokenizer to one deriving from "
|
662 |
+
"transformers.PreTrainedTokenizerFast."
|
663 |
+
)
|
664 |
+
|
665 |
+
if is_split_into_words:
|
666 |
+
raise NotImplementedError("is_split_into_words is not supported in this tokenizer.")
|
667 |
+
|
668 |
+
# input_ids is a list of tuples (one for each example in the batch)
|
669 |
+
input_ids = []
|
670 |
+
entity_ids = []
|
671 |
+
entity_token_spans = []
|
672 |
+
for index, text_or_text_pair in enumerate(batch_text_or_text_pairs):
|
673 |
+
if not isinstance(text_or_text_pair, (list, tuple)):
|
674 |
+
text, text_pair = text_or_text_pair, None
|
675 |
+
else:
|
676 |
+
text, text_pair = text_or_text_pair
|
677 |
+
|
678 |
+
entities, entities_pair = None, None
|
679 |
+
if batch_entities_or_entities_pairs is not None:
|
680 |
+
entities_or_entities_pairs = batch_entities_or_entities_pairs[index]
|
681 |
+
if entities_or_entities_pairs:
|
682 |
+
if isinstance(entities_or_entities_pairs[0], str):
|
683 |
+
entities, entities_pair = entities_or_entities_pairs, None
|
684 |
+
else:
|
685 |
+
entities, entities_pair = entities_or_entities_pairs
|
686 |
+
|
687 |
+
entity_spans, entity_spans_pair = None, None
|
688 |
+
if batch_entity_spans_or_entity_spans_pairs is not None:
|
689 |
+
entity_spans_or_entity_spans_pairs = batch_entity_spans_or_entity_spans_pairs[index]
|
690 |
+
if len(entity_spans_or_entity_spans_pairs) > 0 and isinstance(
|
691 |
+
entity_spans_or_entity_spans_pairs[0], list
|
692 |
+
):
|
693 |
+
entity_spans, entity_spans_pair = entity_spans_or_entity_spans_pairs
|
694 |
+
else:
|
695 |
+
entity_spans, entity_spans_pair = entity_spans_or_entity_spans_pairs, None
|
696 |
+
|
697 |
+
(
|
698 |
+
first_ids,
|
699 |
+
second_ids,
|
700 |
+
first_entity_ids,
|
701 |
+
second_entity_ids,
|
702 |
+
first_entity_token_spans,
|
703 |
+
second_entity_token_spans,
|
704 |
+
) = self._create_input_sequence(
|
705 |
+
text=text,
|
706 |
+
text_pair=text_pair,
|
707 |
+
entities=entities,
|
708 |
+
entities_pair=entities_pair,
|
709 |
+
entity_spans=entity_spans,
|
710 |
+
entity_spans_pair=entity_spans_pair,
|
711 |
+
**kwargs,
|
712 |
+
)
|
713 |
+
input_ids.append((first_ids, second_ids))
|
714 |
+
entity_ids.append((first_entity_ids, second_entity_ids))
|
715 |
+
entity_token_spans.append((first_entity_token_spans, second_entity_token_spans))
|
716 |
+
|
717 |
+
batch_outputs = self._batch_prepare_for_model(
|
718 |
+
input_ids,
|
719 |
+
batch_entity_ids_pairs=entity_ids,
|
720 |
+
batch_entity_token_spans_pairs=entity_token_spans,
|
721 |
+
add_special_tokens=add_special_tokens,
|
722 |
+
padding_strategy=padding_strategy,
|
723 |
+
truncation_strategy=truncation_strategy,
|
724 |
+
max_length=max_length,
|
725 |
+
max_entity_length=max_entity_length,
|
726 |
+
stride=stride,
|
727 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
728 |
+
return_attention_mask=return_attention_mask,
|
729 |
+
return_token_type_ids=return_token_type_ids,
|
730 |
+
return_overflowing_tokens=return_overflowing_tokens,
|
731 |
+
return_special_tokens_mask=return_special_tokens_mask,
|
732 |
+
return_length=return_length,
|
733 |
+
return_tensors=return_tensors,
|
734 |
+
verbose=verbose,
|
735 |
+
)
|
736 |
+
|
737 |
+
return BatchEncoding(batch_outputs)
|
738 |
+
|
739 |
+
# Copied from transformers.models.luke.tokenization_luke.LukeTokenizer._check_entity_input_format
|
740 |
+
def _check_entity_input_format(self, entities: Optional[EntityInput], entity_spans: Optional[EntitySpanInput]):
|
741 |
+
if not isinstance(entity_spans, list):
|
742 |
+
raise ValueError("entity_spans should be given as a list")
|
743 |
+
elif len(entity_spans) > 0 and not isinstance(entity_spans[0], tuple):
|
744 |
+
raise ValueError(
|
745 |
+
"entity_spans should be given as a list of tuples containing the start and end character indices"
|
746 |
+
)
|
747 |
+
|
748 |
+
if entities is not None:
|
749 |
+
if not isinstance(entities, list):
|
750 |
+
raise ValueError("If you specify entities, they should be given as a list")
|
751 |
+
|
752 |
+
if len(entities) > 0 and not isinstance(entities[0], str):
|
753 |
+
raise ValueError("If you specify entities, they should be given as a list of entity names")
|
754 |
+
|
755 |
+
if len(entities) != len(entity_spans):
|
756 |
+
raise ValueError("If you specify entities, entities and entity_spans must be the same length")
|
757 |
+
|
758 |
+
# Copied from transformers.models.luke.tokenization_luke.LukeTokenizer._create_input_sequence
|
759 |
+
def _create_input_sequence(
|
760 |
+
self,
|
761 |
+
text: Union[TextInput],
|
762 |
+
text_pair: Optional[Union[TextInput]] = None,
|
763 |
+
entities: Optional[EntityInput] = None,
|
764 |
+
entities_pair: Optional[EntityInput] = None,
|
765 |
+
entity_spans: Optional[EntitySpanInput] = None,
|
766 |
+
entity_spans_pair: Optional[EntitySpanInput] = None,
|
767 |
+
**kwargs,
|
768 |
+
) -> Tuple[list, list, list, list, list, list]:
|
769 |
+
def get_input_ids(text):
|
770 |
+
tokens = self.tokenize(text, **kwargs)
|
771 |
+
return self.convert_tokens_to_ids(tokens)
|
772 |
+
|
773 |
+
def get_input_ids_and_entity_token_spans(text, entity_spans):
|
774 |
+
if entity_spans is None:
|
775 |
+
return get_input_ids(text), None
|
776 |
+
|
777 |
+
cur = 0
|
778 |
+
input_ids = []
|
779 |
+
entity_token_spans = [None] * len(entity_spans)
|
780 |
+
|
781 |
+
split_char_positions = sorted(frozenset(itertools.chain(*entity_spans)))
|
782 |
+
char_pos2token_pos = {}
|
783 |
+
|
784 |
+
for split_char_position in split_char_positions:
|
785 |
+
orig_split_char_position = split_char_position
|
786 |
+
if (
|
787 |
+
split_char_position > 0 and text[split_char_position - 1] == " "
|
788 |
+
): # whitespace should be prepended to the following token
|
789 |
+
split_char_position -= 1
|
790 |
+
if cur != split_char_position:
|
791 |
+
input_ids += get_input_ids(text[cur:split_char_position])
|
792 |
+
cur = split_char_position
|
793 |
+
char_pos2token_pos[orig_split_char_position] = len(input_ids)
|
794 |
+
|
795 |
+
input_ids += get_input_ids(text[cur:])
|
796 |
+
|
797 |
+
entity_token_spans = [
|
798 |
+
(char_pos2token_pos[char_start], char_pos2token_pos[char_end]) for char_start, char_end in entity_spans
|
799 |
+
]
|
800 |
+
|
801 |
+
return input_ids, entity_token_spans
|
802 |
+
|
803 |
+
first_ids, second_ids = None, None
|
804 |
+
first_entity_ids, second_entity_ids = None, None
|
805 |
+
first_entity_token_spans, second_entity_token_spans = None, None
|
806 |
+
|
807 |
+
if self.task is None:
|
808 |
+
if entity_spans is None:
|
809 |
+
first_ids = get_input_ids(text)
|
810 |
+
else:
|
811 |
+
self._check_entity_input_format(entities, entity_spans)
|
812 |
+
|
813 |
+
first_ids, first_entity_token_spans = get_input_ids_and_entity_token_spans(text, entity_spans)
|
814 |
+
if entities is None:
|
815 |
+
first_entity_ids = [self.entity_mask_token_id] * len(entity_spans)
|
816 |
+
else:
|
817 |
+
first_entity_ids = [self.entity_vocab.get(entity, self.entity_unk_token_id) for entity in entities]
|
818 |
+
|
819 |
+
if text_pair is not None:
|
820 |
+
if entity_spans_pair is None:
|
821 |
+
second_ids = get_input_ids(text_pair)
|
822 |
+
else:
|
823 |
+
self._check_entity_input_format(entities_pair, entity_spans_pair)
|
824 |
+
|
825 |
+
second_ids, second_entity_token_spans = get_input_ids_and_entity_token_spans(
|
826 |
+
text_pair, entity_spans_pair
|
827 |
+
)
|
828 |
+
if entities_pair is None:
|
829 |
+
second_entity_ids = [self.entity_mask_token_id] * len(entity_spans_pair)
|
830 |
+
else:
|
831 |
+
second_entity_ids = [
|
832 |
+
self.entity_vocab.get(entity, self.entity_unk_token_id) for entity in entities_pair
|
833 |
+
]
|
834 |
+
|
835 |
+
elif self.task == "entity_classification":
|
836 |
+
if not (isinstance(entity_spans, list) and len(entity_spans) == 1 and isinstance(entity_spans[0], tuple)):
|
837 |
+
raise ValueError(
|
838 |
+
"Entity spans should be a list containing a single tuple "
|
839 |
+
"containing the start and end character indices of an entity"
|
840 |
+
)
|
841 |
+
first_entity_ids = [self.entity_mask_token_id]
|
842 |
+
first_ids, first_entity_token_spans = get_input_ids_and_entity_token_spans(text, entity_spans)
|
843 |
+
|
844 |
+
# add special tokens to input ids
|
845 |
+
entity_token_start, entity_token_end = first_entity_token_spans[0]
|
846 |
+
first_ids = (
|
847 |
+
first_ids[:entity_token_end] + [self.additional_special_tokens_ids[0]] + first_ids[entity_token_end:]
|
848 |
+
)
|
849 |
+
first_ids = (
|
850 |
+
first_ids[:entity_token_start]
|
851 |
+
+ [self.additional_special_tokens_ids[0]]
|
852 |
+
+ first_ids[entity_token_start:]
|
853 |
+
)
|
854 |
+
first_entity_token_spans = [(entity_token_start, entity_token_end + 2)]
|
855 |
+
|
856 |
+
elif self.task == "entity_pair_classification":
|
857 |
+
if not (
|
858 |
+
isinstance(entity_spans, list)
|
859 |
+
and len(entity_spans) == 2
|
860 |
+
and isinstance(entity_spans[0], tuple)
|
861 |
+
and isinstance(entity_spans[1], tuple)
|
862 |
+
):
|
863 |
+
raise ValueError(
|
864 |
+
"Entity spans should be provided as a list of two tuples, "
|
865 |
+
"each tuple containing the start and end character indices of an entity"
|
866 |
+
)
|
867 |
+
|
868 |
+
head_span, tail_span = entity_spans
|
869 |
+
first_entity_ids = [self.entity_mask_token_id, self.entity_mask2_token_id]
|
870 |
+
first_ids, first_entity_token_spans = get_input_ids_and_entity_token_spans(text, entity_spans)
|
871 |
+
|
872 |
+
head_token_span, tail_token_span = first_entity_token_spans
|
873 |
+
token_span_with_special_token_ids = [
|
874 |
+
(head_token_span, self.additional_special_tokens_ids[0]),
|
875 |
+
(tail_token_span, self.additional_special_tokens_ids[1]),
|
876 |
+
]
|
877 |
+
if head_token_span[0] < tail_token_span[0]:
|
878 |
+
first_entity_token_spans[0] = (head_token_span[0], head_token_span[1] + 2)
|
879 |
+
first_entity_token_spans[1] = (tail_token_span[0] + 2, tail_token_span[1] + 4)
|
880 |
+
token_span_with_special_token_ids = reversed(token_span_with_special_token_ids)
|
881 |
+
else:
|
882 |
+
first_entity_token_spans[0] = (head_token_span[0] + 2, head_token_span[1] + 4)
|
883 |
+
first_entity_token_spans[1] = (tail_token_span[0], tail_token_span[1] + 2)
|
884 |
+
|
885 |
+
for (entity_token_start, entity_token_end), special_token_id in token_span_with_special_token_ids:
|
886 |
+
first_ids = first_ids[:entity_token_end] + [special_token_id] + first_ids[entity_token_end:]
|
887 |
+
first_ids = first_ids[:entity_token_start] + [special_token_id] + first_ids[entity_token_start:]
|
888 |
+
|
889 |
+
elif self.task == "entity_span_classification":
|
890 |
+
if not (isinstance(entity_spans, list) and len(entity_spans) > 0 and isinstance(entity_spans[0], tuple)):
|
891 |
+
raise ValueError(
|
892 |
+
"Entity spans should be provided as a list of tuples, "
|
893 |
+
"each tuple containing the start and end character indices of an entity"
|
894 |
+
)
|
895 |
+
|
896 |
+
first_ids, first_entity_token_spans = get_input_ids_and_entity_token_spans(text, entity_spans)
|
897 |
+
first_entity_ids = [self.entity_mask_token_id] * len(entity_spans)
|
898 |
+
|
899 |
+
else:
|
900 |
+
raise ValueError(f"Task {self.task} not supported")
|
901 |
+
|
902 |
+
return (
|
903 |
+
first_ids,
|
904 |
+
second_ids,
|
905 |
+
first_entity_ids,
|
906 |
+
second_entity_ids,
|
907 |
+
first_entity_token_spans,
|
908 |
+
second_entity_token_spans,
|
909 |
+
)
|
910 |
+
|
911 |
+
@add_end_docstrings(ENCODE_KWARGS_DOCSTRING, ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
|
912 |
+
# Copied from transformers.models.luke.tokenization_luke.LukeTokenizer._batch_prepare_for_model
|
913 |
+
def _batch_prepare_for_model(
|
914 |
+
self,
|
915 |
+
batch_ids_pairs: List[Tuple[List[int], None]],
|
916 |
+
batch_entity_ids_pairs: List[Tuple[Optional[List[int]], Optional[List[int]]]],
|
917 |
+
batch_entity_token_spans_pairs: List[Tuple[Optional[List[Tuple[int, int]]], Optional[List[Tuple[int, int]]]]],
|
918 |
+
add_special_tokens: bool = True,
|
919 |
+
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
|
920 |
+
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
|
921 |
+
max_length: Optional[int] = None,
|
922 |
+
max_entity_length: Optional[int] = None,
|
923 |
+
stride: int = 0,
|
924 |
+
pad_to_multiple_of: Optional[int] = None,
|
925 |
+
return_tensors: Optional[str] = None,
|
926 |
+
return_token_type_ids: Optional[bool] = None,
|
927 |
+
return_attention_mask: Optional[bool] = None,
|
928 |
+
return_overflowing_tokens: bool = False,
|
929 |
+
return_special_tokens_mask: bool = False,
|
930 |
+
return_length: bool = False,
|
931 |
+
verbose: bool = True,
|
932 |
+
) -> BatchEncoding:
|
933 |
+
"""
|
934 |
+
Prepares a sequence of input id, or a pair of sequences of inputs ids so that it can be used by the model. It
|
935 |
+
adds special tokens, truncates sequences if overflowing while taking into account the special tokens and
|
936 |
+
manages a moving window (with user defined stride) for overflowing tokens
|
937 |
+
|
938 |
+
|
939 |
+
Args:
|
940 |
+
batch_ids_pairs: list of tokenized input ids or input ids pairs
|
941 |
+
batch_entity_ids_pairs: list of entity ids or entity ids pairs
|
942 |
+
batch_entity_token_spans_pairs: list of entity spans or entity spans pairs
|
943 |
+
max_entity_length: The maximum length of the entity sequence.
|
944 |
+
"""
|
945 |
+
|
946 |
+
batch_outputs = {}
|
947 |
+
for input_ids, entity_ids, entity_token_span_pairs in zip(
|
948 |
+
batch_ids_pairs, batch_entity_ids_pairs, batch_entity_token_spans_pairs
|
949 |
+
):
|
950 |
+
first_ids, second_ids = input_ids
|
951 |
+
first_entity_ids, second_entity_ids = entity_ids
|
952 |
+
first_entity_token_spans, second_entity_token_spans = entity_token_span_pairs
|
953 |
+
outputs = self.prepare_for_model(
|
954 |
+
first_ids,
|
955 |
+
second_ids,
|
956 |
+
entity_ids=first_entity_ids,
|
957 |
+
pair_entity_ids=second_entity_ids,
|
958 |
+
entity_token_spans=first_entity_token_spans,
|
959 |
+
pair_entity_token_spans=second_entity_token_spans,
|
960 |
+
add_special_tokens=add_special_tokens,
|
961 |
+
padding=PaddingStrategy.DO_NOT_PAD.value, # we pad in batch afterward
|
962 |
+
truncation=truncation_strategy.value,
|
963 |
+
max_length=max_length,
|
964 |
+
max_entity_length=max_entity_length,
|
965 |
+
stride=stride,
|
966 |
+
pad_to_multiple_of=None, # we pad in batch afterward
|
967 |
+
return_attention_mask=False, # we pad in batch afterward
|
968 |
+
return_token_type_ids=return_token_type_ids,
|
969 |
+
return_overflowing_tokens=return_overflowing_tokens,
|
970 |
+
return_special_tokens_mask=return_special_tokens_mask,
|
971 |
+
return_length=return_length,
|
972 |
+
return_tensors=None, # We convert the whole batch to tensors at the end
|
973 |
+
prepend_batch_axis=False,
|
974 |
+
verbose=verbose,
|
975 |
+
)
|
976 |
+
|
977 |
+
for key, value in outputs.items():
|
978 |
+
if key not in batch_outputs:
|
979 |
+
batch_outputs[key] = []
|
980 |
+
batch_outputs[key].append(value)
|
981 |
+
|
982 |
+
batch_outputs = self.pad(
|
983 |
+
batch_outputs,
|
984 |
+
padding=padding_strategy.value,
|
985 |
+
max_length=max_length,
|
986 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
987 |
+
return_attention_mask=return_attention_mask,
|
988 |
+
)
|
989 |
+
|
990 |
+
batch_outputs = BatchEncoding(batch_outputs, tensor_type=return_tensors)
|
991 |
+
|
992 |
+
return batch_outputs
|
993 |
+
|
994 |
+
@add_end_docstrings(ENCODE_KWARGS_DOCSTRING, ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
|
995 |
+
# Copied from transformers.models.luke.tokenization_luke.LukeTokenizer.prepare_for_model
|
996 |
+
def prepare_for_model(
|
997 |
+
self,
|
998 |
+
ids: List[int],
|
999 |
+
pair_ids: Optional[List[int]] = None,
|
1000 |
+
entity_ids: Optional[List[int]] = None,
|
1001 |
+
pair_entity_ids: Optional[List[int]] = None,
|
1002 |
+
entity_token_spans: Optional[List[Tuple[int, int]]] = None,
|
1003 |
+
pair_entity_token_spans: Optional[List[Tuple[int, int]]] = None,
|
1004 |
+
add_special_tokens: bool = True,
|
1005 |
+
padding: Union[bool, str, PaddingStrategy] = False,
|
1006 |
+
truncation: Union[bool, str, TruncationStrategy] = None,
|
1007 |
+
max_length: Optional[int] = None,
|
1008 |
+
max_entity_length: Optional[int] = None,
|
1009 |
+
stride: int = 0,
|
1010 |
+
pad_to_multiple_of: Optional[int] = None,
|
1011 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
1012 |
+
return_token_type_ids: Optional[bool] = None,
|
1013 |
+
return_attention_mask: Optional[bool] = None,
|
1014 |
+
return_overflowing_tokens: bool = False,
|
1015 |
+
return_special_tokens_mask: bool = False,
|
1016 |
+
return_offsets_mapping: bool = False,
|
1017 |
+
return_length: bool = False,
|
1018 |
+
verbose: bool = True,
|
1019 |
+
prepend_batch_axis: bool = False,
|
1020 |
+
**kwargs,
|
1021 |
+
) -> BatchEncoding:
|
1022 |
+
"""
|
1023 |
+
Prepares a sequence of input id, entity id and entity span, or a pair of sequences of inputs ids, entity ids,
|
1024 |
+
entity spans so that it can be used by the model. It adds special tokens, truncates sequences if overflowing
|
1025 |
+
while taking into account the special tokens and manages a moving window (with user defined stride) for
|
1026 |
+
overflowing tokens. Please Note, for *pair_ids* different than `None` and *truncation_strategy = longest_first*
|
1027 |
+
or `True`, it is not possible to return overflowing tokens. Such a combination of arguments will raise an
|
1028 |
+
error.
|
1029 |
+
|
1030 |
+
Args:
|
1031 |
+
ids (`List[int]`):
|
1032 |
+
Tokenized input ids of the first sequence.
|
1033 |
+
pair_ids (`List[int]`, *optional*):
|
1034 |
+
Tokenized input ids of the second sequence.
|
1035 |
+
entity_ids (`List[int]`, *optional*):
|
1036 |
+
Entity ids of the first sequence.
|
1037 |
+
pair_entity_ids (`List[int]`, *optional*):
|
1038 |
+
Entity ids of the second sequence.
|
1039 |
+
entity_token_spans (`List[Tuple[int, int]]`, *optional*):
|
1040 |
+
Entity spans of the first sequence.
|
1041 |
+
pair_entity_token_spans (`List[Tuple[int, int]]`, *optional*):
|
1042 |
+
Entity spans of the second sequence.
|
1043 |
+
max_entity_length (`int`, *optional*):
|
1044 |
+
The maximum length of the entity sequence.
|
1045 |
+
"""
|
1046 |
+
|
1047 |
+
# Backward compatibility for 'truncation_strategy', 'pad_to_max_length'
|
1048 |
+
padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies(
|
1049 |
+
padding=padding,
|
1050 |
+
truncation=truncation,
|
1051 |
+
max_length=max_length,
|
1052 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
1053 |
+
verbose=verbose,
|
1054 |
+
**kwargs,
|
1055 |
+
)
|
1056 |
+
|
1057 |
+
# Compute lengths
|
1058 |
+
pair = bool(pair_ids is not None)
|
1059 |
+
len_ids = len(ids)
|
1060 |
+
len_pair_ids = len(pair_ids) if pair else 0
|
1061 |
+
|
1062 |
+
if return_token_type_ids and not add_special_tokens:
|
1063 |
+
raise ValueError(
|
1064 |
+
"Asking to return token_type_ids while setting add_special_tokens to False "
|
1065 |
+
"results in an undefined behavior. Please set add_special_tokens to True or "
|
1066 |
+
"set return_token_type_ids to None."
|
1067 |
+
)
|
1068 |
+
if (
|
1069 |
+
return_overflowing_tokens
|
1070 |
+
and truncation_strategy == TruncationStrategy.LONGEST_FIRST
|
1071 |
+
and pair_ids is not None
|
1072 |
+
):
|
1073 |
+
raise ValueError(
|
1074 |
+
"Not possible to return overflowing tokens for pair of sequences with the "
|
1075 |
+
"`longest_first`. Please select another truncation strategy than `longest_first`, "
|
1076 |
+
"for instance `only_second` or `only_first`."
|
1077 |
+
)
|
1078 |
+
|
1079 |
+
# Load from model defaults
|
1080 |
+
if return_token_type_ids is None:
|
1081 |
+
return_token_type_ids = "token_type_ids" in self.model_input_names
|
1082 |
+
if return_attention_mask is None:
|
1083 |
+
return_attention_mask = "attention_mask" in self.model_input_names
|
1084 |
+
|
1085 |
+
encoded_inputs = {}
|
1086 |
+
|
1087 |
+
# Compute the total size of the returned word encodings
|
1088 |
+
total_len = len_ids + len_pair_ids + (self.num_special_tokens_to_add(pair=pair) if add_special_tokens else 0)
|
1089 |
+
|
1090 |
+
# Truncation: Handle max sequence length and max_entity_length
|
1091 |
+
overflowing_tokens = []
|
1092 |
+
if truncation_strategy != TruncationStrategy.DO_NOT_TRUNCATE and max_length and total_len > max_length:
|
1093 |
+
# truncate words up to max_length
|
1094 |
+
ids, pair_ids, overflowing_tokens = self.truncate_sequences(
|
1095 |
+
ids,
|
1096 |
+
pair_ids=pair_ids,
|
1097 |
+
num_tokens_to_remove=total_len - max_length,
|
1098 |
+
truncation_strategy=truncation_strategy,
|
1099 |
+
stride=stride,
|
1100 |
+
)
|
1101 |
+
|
1102 |
+
if return_overflowing_tokens:
|
1103 |
+
encoded_inputs["overflowing_tokens"] = overflowing_tokens
|
1104 |
+
encoded_inputs["num_truncated_tokens"] = total_len - max_length
|
1105 |
+
|
1106 |
+
# Add special tokens
|
1107 |
+
if add_special_tokens:
|
1108 |
+
sequence = self.build_inputs_with_special_tokens(ids, pair_ids)
|
1109 |
+
token_type_ids = self.create_token_type_ids_from_sequences(ids, pair_ids)
|
1110 |
+
entity_token_offset = 1 # 1 * <s> token
|
1111 |
+
pair_entity_token_offset = len(ids) + 3 # 1 * <s> token & 2 * <sep> tokens
|
1112 |
+
else:
|
1113 |
+
sequence = ids + pair_ids if pair else ids
|
1114 |
+
token_type_ids = [0] * len(ids) + ([0] * len(pair_ids) if pair else [])
|
1115 |
+
entity_token_offset = 0
|
1116 |
+
pair_entity_token_offset = len(ids)
|
1117 |
+
|
1118 |
+
# Build output dictionary
|
1119 |
+
encoded_inputs["input_ids"] = sequence
|
1120 |
+
if return_token_type_ids:
|
1121 |
+
encoded_inputs["token_type_ids"] = token_type_ids
|
1122 |
+
if return_special_tokens_mask:
|
1123 |
+
if add_special_tokens:
|
1124 |
+
encoded_inputs["special_tokens_mask"] = self.get_special_tokens_mask(ids, pair_ids)
|
1125 |
+
else:
|
1126 |
+
encoded_inputs["special_tokens_mask"] = [0] * len(sequence)
|
1127 |
+
|
1128 |
+
# Set max entity length
|
1129 |
+
if not max_entity_length:
|
1130 |
+
max_entity_length = self.max_entity_length
|
1131 |
+
|
1132 |
+
if entity_ids is not None:
|
1133 |
+
total_entity_len = 0
|
1134 |
+
num_invalid_entities = 0
|
1135 |
+
valid_entity_ids = [ent_id for ent_id, span in zip(entity_ids, entity_token_spans) if span[1] <= len(ids)]
|
1136 |
+
valid_entity_token_spans = [span for span in entity_token_spans if span[1] <= len(ids)]
|
1137 |
+
|
1138 |
+
total_entity_len += len(valid_entity_ids)
|
1139 |
+
num_invalid_entities += len(entity_ids) - len(valid_entity_ids)
|
1140 |
+
|
1141 |
+
valid_pair_entity_ids, valid_pair_entity_token_spans = None, None
|
1142 |
+
if pair_entity_ids is not None:
|
1143 |
+
valid_pair_entity_ids = [
|
1144 |
+
ent_id
|
1145 |
+
for ent_id, span in zip(pair_entity_ids, pair_entity_token_spans)
|
1146 |
+
if span[1] <= len(pair_ids)
|
1147 |
+
]
|
1148 |
+
valid_pair_entity_token_spans = [span for span in pair_entity_token_spans if span[1] <= len(pair_ids)]
|
1149 |
+
total_entity_len += len(valid_pair_entity_ids)
|
1150 |
+
num_invalid_entities += len(pair_entity_ids) - len(valid_pair_entity_ids)
|
1151 |
+
|
1152 |
+
if num_invalid_entities != 0:
|
1153 |
+
logger.warning(
|
1154 |
+
f"{num_invalid_entities} entities are ignored because their entity spans are invalid due to the"
|
1155 |
+
" truncation of input tokens"
|
1156 |
+
)
|
1157 |
+
|
1158 |
+
if truncation_strategy != TruncationStrategy.DO_NOT_TRUNCATE and total_entity_len > max_entity_length:
|
1159 |
+
# truncate entities up to max_entity_length
|
1160 |
+
valid_entity_ids, valid_pair_entity_ids, overflowing_entities = self.truncate_sequences(
|
1161 |
+
valid_entity_ids,
|
1162 |
+
pair_ids=valid_pair_entity_ids,
|
1163 |
+
num_tokens_to_remove=total_entity_len - max_entity_length,
|
1164 |
+
truncation_strategy=truncation_strategy,
|
1165 |
+
stride=stride,
|
1166 |
+
)
|
1167 |
+
valid_entity_token_spans = valid_entity_token_spans[: len(valid_entity_ids)]
|
1168 |
+
if valid_pair_entity_token_spans is not None:
|
1169 |
+
valid_pair_entity_token_spans = valid_pair_entity_token_spans[: len(valid_pair_entity_ids)]
|
1170 |
+
|
1171 |
+
if return_overflowing_tokens:
|
1172 |
+
encoded_inputs["overflowing_entities"] = overflowing_entities
|
1173 |
+
encoded_inputs["num_truncated_entities"] = total_entity_len - max_entity_length
|
1174 |
+
|
1175 |
+
final_entity_ids = valid_entity_ids + valid_pair_entity_ids if valid_pair_entity_ids else valid_entity_ids
|
1176 |
+
encoded_inputs["entity_ids"] = list(final_entity_ids)
|
1177 |
+
entity_position_ids = []
|
1178 |
+
entity_start_positions = []
|
1179 |
+
entity_end_positions = []
|
1180 |
+
for token_spans, offset in (
|
1181 |
+
(valid_entity_token_spans, entity_token_offset),
|
1182 |
+
(valid_pair_entity_token_spans, pair_entity_token_offset),
|
1183 |
+
):
|
1184 |
+
if token_spans is not None:
|
1185 |
+
for start, end in token_spans:
|
1186 |
+
start += offset
|
1187 |
+
end += offset
|
1188 |
+
position_ids = list(range(start, end))[: self.max_mention_length]
|
1189 |
+
position_ids += [-1] * (self.max_mention_length - end + start)
|
1190 |
+
entity_position_ids.append(position_ids)
|
1191 |
+
entity_start_positions.append(start)
|
1192 |
+
entity_end_positions.append(end - 1)
|
1193 |
+
|
1194 |
+
encoded_inputs["entity_position_ids"] = entity_position_ids
|
1195 |
+
if self.task == "entity_span_classification":
|
1196 |
+
encoded_inputs["entity_start_positions"] = entity_start_positions
|
1197 |
+
encoded_inputs["entity_end_positions"] = entity_end_positions
|
1198 |
+
|
1199 |
+
if return_token_type_ids:
|
1200 |
+
encoded_inputs["entity_token_type_ids"] = [0] * len(encoded_inputs["entity_ids"])
|
1201 |
+
|
1202 |
+
# Check lengths
|
1203 |
+
self._eventual_warn_about_too_long_sequence(encoded_inputs["input_ids"], max_length, verbose)
|
1204 |
+
|
1205 |
+
# Padding
|
1206 |
+
if padding_strategy != PaddingStrategy.DO_NOT_PAD or return_attention_mask:
|
1207 |
+
encoded_inputs = self.pad(
|
1208 |
+
encoded_inputs,
|
1209 |
+
max_length=max_length,
|
1210 |
+
max_entity_length=max_entity_length,
|
1211 |
+
padding=padding_strategy.value,
|
1212 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
1213 |
+
return_attention_mask=return_attention_mask,
|
1214 |
+
)
|
1215 |
+
|
1216 |
+
if return_length:
|
1217 |
+
encoded_inputs["length"] = len(encoded_inputs["input_ids"])
|
1218 |
+
|
1219 |
+
batch_outputs = BatchEncoding(
|
1220 |
+
encoded_inputs, tensor_type=return_tensors, prepend_batch_axis=prepend_batch_axis
|
1221 |
+
)
|
1222 |
+
|
1223 |
+
return batch_outputs
|
1224 |
+
|
1225 |
+
# Copied from transformers.models.luke.tokenization_luke.LukeTokenizer.pad
|
1226 |
+
def pad(
|
1227 |
+
self,
|
1228 |
+
encoded_inputs: Union[
|
1229 |
+
BatchEncoding,
|
1230 |
+
List[BatchEncoding],
|
1231 |
+
Dict[str, EncodedInput],
|
1232 |
+
Dict[str, List[EncodedInput]],
|
1233 |
+
List[Dict[str, EncodedInput]],
|
1234 |
+
],
|
1235 |
+
padding: Union[bool, str, PaddingStrategy] = True,
|
1236 |
+
max_length: Optional[int] = None,
|
1237 |
+
max_entity_length: Optional[int] = None,
|
1238 |
+
pad_to_multiple_of: Optional[int] = None,
|
1239 |
+
return_attention_mask: Optional[bool] = None,
|
1240 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
1241 |
+
verbose: bool = True,
|
1242 |
+
) -> BatchEncoding:
|
1243 |
+
"""
|
1244 |
+
Pad a single encoded input or a batch of encoded inputs up to predefined length or to the max sequence length
|
1245 |
+
in the batch. Padding side (left/right) padding token ids are defined at the tokenizer level (with
|
1246 |
+
`self.padding_side`, `self.pad_token_id` and `self.pad_token_type_id`) .. note:: If the `encoded_inputs` passed
|
1247 |
+
are dictionary of numpy arrays, PyTorch tensors or TensorFlow tensors, the result will use the same type unless
|
1248 |
+
you provide a different tensor type with `return_tensors`. In the case of PyTorch tensors, you will lose the
|
1249 |
+
specific device of your tensors however.
|
1250 |
+
|
1251 |
+
Args:
|
1252 |
+
encoded_inputs ([`BatchEncoding`], list of [`BatchEncoding`], `Dict[str, List[int]]`, `Dict[str, List[List[int]]` or `List[Dict[str, List[int]]]`):
|
1253 |
+
Tokenized inputs. Can represent one input ([`BatchEncoding`] or `Dict[str, List[int]]`) or a batch of
|
1254 |
+
tokenized inputs (list of [`BatchEncoding`], *Dict[str, List[List[int]]]* or *List[Dict[str,
|
1255 |
+
List[int]]]*) so you can use this method during preprocessing as well as in a PyTorch Dataloader
|
1256 |
+
collate function. Instead of `List[int]` you can have tensors (numpy arrays, PyTorch tensors or
|
1257 |
+
TensorFlow tensors), see the note above for the return type.
|
1258 |
+
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`):
|
1259 |
+
Select a strategy to pad the returned sequences (according to the model's padding side and padding
|
1260 |
+
index) among:
|
1261 |
+
|
1262 |
+
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
|
1263 |
+
sequence if provided).
|
1264 |
+
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
|
1265 |
+
acceptable input length for the model if that argument is not provided.
|
1266 |
+
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
|
1267 |
+
lengths).
|
1268 |
+
max_length (`int`, *optional*):
|
1269 |
+
Maximum length of the returned list and optionally padding length (see above).
|
1270 |
+
max_entity_length (`int`, *optional*):
|
1271 |
+
The maximum length of the entity sequence.
|
1272 |
+
pad_to_multiple_of (`int`, *optional*):
|
1273 |
+
If set will pad the sequence to a multiple of the provided value. This is especially useful to enable
|
1274 |
+
the use of Tensor Cores on NVIDIA hardware with compute capability `>= 7.5` (Volta).
|
1275 |
+
return_attention_mask (`bool`, *optional*):
|
1276 |
+
Whether to return the attention mask. If left to the default, will return the attention mask according
|
1277 |
+
to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are attention
|
1278 |
+
masks?](../glossary#attention-mask)
|
1279 |
+
return_tensors (`str` or [`~utils.TensorType`], *optional*):
|
1280 |
+
If set, will return tensors instead of list of python integers. Acceptable values are:
|
1281 |
+
|
1282 |
+
- `'tf'`: Return TensorFlow `tf.constant` objects.
|
1283 |
+
- `'pt'`: Return PyTorch `torch.Tensor` objects.
|
1284 |
+
- `'np'`: Return Numpy `np.ndarray` objects.
|
1285 |
+
verbose (`bool`, *optional*, defaults to `True`):
|
1286 |
+
Whether or not to print more information and warnings.
|
1287 |
+
"""
|
1288 |
+
# If we have a list of dicts, let's convert it in a dict of lists
|
1289 |
+
# We do this to allow using this method as a collate_fn function in PyTorch Dataloader
|
1290 |
+
if isinstance(encoded_inputs, (list, tuple)) and isinstance(encoded_inputs[0], Mapping):
|
1291 |
+
encoded_inputs = {key: [example[key] for example in encoded_inputs] for key in encoded_inputs[0].keys()}
|
1292 |
+
|
1293 |
+
# The model's main input name, usually `input_ids`, has be passed for padding
|
1294 |
+
if self.model_input_names[0] not in encoded_inputs:
|
1295 |
+
raise ValueError(
|
1296 |
+
"You should supply an encoding or a list of encodings to this method "
|
1297 |
+
f"that includes {self.model_input_names[0]}, but you provided {list(encoded_inputs.keys())}"
|
1298 |
+
)
|
1299 |
+
|
1300 |
+
required_input = encoded_inputs[self.model_input_names[0]]
|
1301 |
+
|
1302 |
+
if not required_input:
|
1303 |
+
if return_attention_mask:
|
1304 |
+
encoded_inputs["attention_mask"] = []
|
1305 |
+
return encoded_inputs
|
1306 |
+
|
1307 |
+
# If we have PyTorch/TF/NumPy tensors/arrays as inputs, we cast them as python objects
|
1308 |
+
# and rebuild them afterwards if no return_tensors is specified
|
1309 |
+
# Note that we lose the specific device the tensor may be on for PyTorch
|
1310 |
+
|
1311 |
+
first_element = required_input[0]
|
1312 |
+
if isinstance(first_element, (list, tuple)):
|
1313 |
+
# first_element might be an empty list/tuple in some edge cases so we grab the first non empty element.
|
1314 |
+
index = 0
|
1315 |
+
while len(required_input[index]) == 0:
|
1316 |
+
index += 1
|
1317 |
+
if index < len(required_input):
|
1318 |
+
first_element = required_input[index][0]
|
1319 |
+
# At this state, if `first_element` is still a list/tuple, it's an empty one so there is nothing to do.
|
1320 |
+
if not isinstance(first_element, (int, list, tuple)):
|
1321 |
+
if is_tf_tensor(first_element):
|
1322 |
+
return_tensors = "tf" if return_tensors is None else return_tensors
|
1323 |
+
elif is_torch_tensor(first_element):
|
1324 |
+
return_tensors = "pt" if return_tensors is None else return_tensors
|
1325 |
+
elif isinstance(first_element, np.ndarray):
|
1326 |
+
return_tensors = "np" if return_tensors is None else return_tensors
|
1327 |
+
else:
|
1328 |
+
raise ValueError(
|
1329 |
+
f"type of {first_element} unknown: {type(first_element)}. "
|
1330 |
+
"Should be one of a python, numpy, pytorch or tensorflow object."
|
1331 |
+
)
|
1332 |
+
|
1333 |
+
for key, value in encoded_inputs.items():
|
1334 |
+
encoded_inputs[key] = to_py_obj(value)
|
1335 |
+
|
1336 |
+
# Convert padding_strategy in PaddingStrategy
|
1337 |
+
padding_strategy, _, max_length, _ = self._get_padding_truncation_strategies(
|
1338 |
+
padding=padding, max_length=max_length, verbose=verbose
|
1339 |
+
)
|
1340 |
+
|
1341 |
+
if max_entity_length is None:
|
1342 |
+
max_entity_length = self.max_entity_length
|
1343 |
+
|
1344 |
+
required_input = encoded_inputs[self.model_input_names[0]]
|
1345 |
+
if required_input and not isinstance(required_input[0], (list, tuple)):
|
1346 |
+
encoded_inputs = self._pad(
|
1347 |
+
encoded_inputs,
|
1348 |
+
max_length=max_length,
|
1349 |
+
max_entity_length=max_entity_length,
|
1350 |
+
padding_strategy=padding_strategy,
|
1351 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
1352 |
+
return_attention_mask=return_attention_mask,
|
1353 |
+
)
|
1354 |
+
return BatchEncoding(encoded_inputs, tensor_type=return_tensors)
|
1355 |
+
|
1356 |
+
batch_size = len(required_input)
|
1357 |
+
if any(len(v) != batch_size for v in encoded_inputs.values()):
|
1358 |
+
raise ValueError("Some items in the output dictionary have a different batch size than others.")
|
1359 |
+
|
1360 |
+
if padding_strategy == PaddingStrategy.LONGEST:
|
1361 |
+
max_length = max(len(inputs) for inputs in required_input)
|
1362 |
+
max_entity_length = (
|
1363 |
+
max(len(inputs) for inputs in encoded_inputs["entity_ids"]) if "entity_ids" in encoded_inputs else 0
|
1364 |
+
)
|
1365 |
+
padding_strategy = PaddingStrategy.MAX_LENGTH
|
1366 |
+
|
1367 |
+
batch_outputs = {}
|
1368 |
+
for i in range(batch_size):
|
1369 |
+
inputs = {k: v[i] for k, v in encoded_inputs.items()}
|
1370 |
+
outputs = self._pad(
|
1371 |
+
inputs,
|
1372 |
+
max_length=max_length,
|
1373 |
+
max_entity_length=max_entity_length,
|
1374 |
+
padding_strategy=padding_strategy,
|
1375 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
1376 |
+
return_attention_mask=return_attention_mask,
|
1377 |
+
)
|
1378 |
+
|
1379 |
+
for key, value in outputs.items():
|
1380 |
+
if key not in batch_outputs:
|
1381 |
+
batch_outputs[key] = []
|
1382 |
+
batch_outputs[key].append(value)
|
1383 |
+
|
1384 |
+
return BatchEncoding(batch_outputs, tensor_type=return_tensors)
|
1385 |
+
|
1386 |
+
# Copied from transformers.models.luke.tokenization_luke.LukeTokenizer._pad
|
1387 |
+
def _pad(
|
1388 |
+
self,
|
1389 |
+
encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
|
1390 |
+
max_length: Optional[int] = None,
|
1391 |
+
max_entity_length: Optional[int] = None,
|
1392 |
+
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
|
1393 |
+
pad_to_multiple_of: Optional[int] = None,
|
1394 |
+
return_attention_mask: Optional[bool] = None,
|
1395 |
+
) -> dict:
|
1396 |
+
"""
|
1397 |
+
Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
|
1398 |
+
|
1399 |
+
|
1400 |
+
Args:
|
1401 |
+
encoded_inputs:
|
1402 |
+
Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
|
1403 |
+
max_length: maximum length of the returned list and optionally padding length (see below).
|
1404 |
+
Will truncate by taking into account the special tokens.
|
1405 |
+
max_entity_length: The maximum length of the entity sequence.
|
1406 |
+
padding_strategy: PaddingStrategy to use for padding.
|
1407 |
+
|
1408 |
+
|
1409 |
+
- PaddingStrategy.LONGEST Pad to the longest sequence in the batch
|
1410 |
+
- PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
|
1411 |
+
- PaddingStrategy.DO_NOT_PAD: Do not pad
|
1412 |
+
The tokenizer padding sides are defined in self.padding_side:
|
1413 |
+
|
1414 |
+
|
1415 |
+
- 'left': pads on the left of the sequences
|
1416 |
+
- 'right': pads on the right of the sequences
|
1417 |
+
pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
|
1418 |
+
This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
|
1419 |
+
`>= 7.5` (Volta).
|
1420 |
+
return_attention_mask:
|
1421 |
+
(optional) Set to False to avoid returning attention mask (default: set to model specifics)
|
1422 |
+
"""
|
1423 |
+
entities_provided = bool("entity_ids" in encoded_inputs)
|
1424 |
+
|
1425 |
+
# Load from model defaults
|
1426 |
+
if return_attention_mask is None:
|
1427 |
+
return_attention_mask = "attention_mask" in self.model_input_names
|
1428 |
+
|
1429 |
+
if padding_strategy == PaddingStrategy.LONGEST:
|
1430 |
+
max_length = len(encoded_inputs["input_ids"])
|
1431 |
+
if entities_provided:
|
1432 |
+
max_entity_length = len(encoded_inputs["entity_ids"])
|
1433 |
+
|
1434 |
+
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
|
1435 |
+
max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
|
1436 |
+
|
1437 |
+
if (
|
1438 |
+
entities_provided
|
1439 |
+
and max_entity_length is not None
|
1440 |
+
and pad_to_multiple_of is not None
|
1441 |
+
and (max_entity_length % pad_to_multiple_of != 0)
|
1442 |
+
):
|
1443 |
+
max_entity_length = ((max_entity_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
|
1444 |
+
|
1445 |
+
needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and (
|
1446 |
+
len(encoded_inputs["input_ids"]) != max_length
|
1447 |
+
or (entities_provided and len(encoded_inputs["entity_ids"]) != max_entity_length)
|
1448 |
+
)
|
1449 |
+
|
1450 |
+
# Initialize attention mask if not present.
|
1451 |
+
if return_attention_mask and "attention_mask" not in encoded_inputs:
|
1452 |
+
encoded_inputs["attention_mask"] = [1] * len(encoded_inputs["input_ids"])
|
1453 |
+
if entities_provided and return_attention_mask and "entity_attention_mask" not in encoded_inputs:
|
1454 |
+
encoded_inputs["entity_attention_mask"] = [1] * len(encoded_inputs["entity_ids"])
|
1455 |
+
|
1456 |
+
if needs_to_be_padded:
|
1457 |
+
difference = max_length - len(encoded_inputs["input_ids"])
|
1458 |
+
if entities_provided:
|
1459 |
+
entity_difference = max_entity_length - len(encoded_inputs["entity_ids"])
|
1460 |
+
if self.padding_side == "right":
|
1461 |
+
if return_attention_mask:
|
1462 |
+
encoded_inputs["attention_mask"] = encoded_inputs["attention_mask"] + [0] * difference
|
1463 |
+
if entities_provided:
|
1464 |
+
encoded_inputs["entity_attention_mask"] = (
|
1465 |
+
encoded_inputs["entity_attention_mask"] + [0] * entity_difference
|
1466 |
+
)
|
1467 |
+
if "token_type_ids" in encoded_inputs:
|
1468 |
+
encoded_inputs["token_type_ids"] = encoded_inputs["token_type_ids"] + [0] * difference
|
1469 |
+
if entities_provided:
|
1470 |
+
encoded_inputs["entity_token_type_ids"] = (
|
1471 |
+
encoded_inputs["entity_token_type_ids"] + [0] * entity_difference
|
1472 |
+
)
|
1473 |
+
if "special_tokens_mask" in encoded_inputs:
|
1474 |
+
encoded_inputs["special_tokens_mask"] = encoded_inputs["special_tokens_mask"] + [1] * difference
|
1475 |
+
encoded_inputs["input_ids"] = encoded_inputs["input_ids"] + [self.pad_token_id] * difference
|
1476 |
+
if entities_provided:
|
1477 |
+
encoded_inputs["entity_ids"] = (
|
1478 |
+
encoded_inputs["entity_ids"] + [self.entity_pad_token_id] * entity_difference
|
1479 |
+
)
|
1480 |
+
encoded_inputs["entity_position_ids"] = (
|
1481 |
+
encoded_inputs["entity_position_ids"] + [[-1] * self.max_mention_length] * entity_difference
|
1482 |
+
)
|
1483 |
+
if self.task == "entity_span_classification":
|
1484 |
+
encoded_inputs["entity_start_positions"] = (
|
1485 |
+
encoded_inputs["entity_start_positions"] + [0] * entity_difference
|
1486 |
+
)
|
1487 |
+
encoded_inputs["entity_end_positions"] = (
|
1488 |
+
encoded_inputs["entity_end_positions"] + [0] * entity_difference
|
1489 |
+
)
|
1490 |
+
|
1491 |
+
elif self.padding_side == "left":
|
1492 |
+
if return_attention_mask:
|
1493 |
+
encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"]
|
1494 |
+
if entities_provided:
|
1495 |
+
encoded_inputs["entity_attention_mask"] = [0] * entity_difference + encoded_inputs[
|
1496 |
+
"entity_attention_mask"
|
1497 |
+
]
|
1498 |
+
if "token_type_ids" in encoded_inputs:
|
1499 |
+
encoded_inputs["token_type_ids"] = [0] * difference + encoded_inputs["token_type_ids"]
|
1500 |
+
if entities_provided:
|
1501 |
+
encoded_inputs["entity_token_type_ids"] = [0] * entity_difference + encoded_inputs[
|
1502 |
+
"entity_token_type_ids"
|
1503 |
+
]
|
1504 |
+
if "special_tokens_mask" in encoded_inputs:
|
1505 |
+
encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"]
|
1506 |
+
encoded_inputs["input_ids"] = [self.pad_token_id] * difference + encoded_inputs["input_ids"]
|
1507 |
+
if entities_provided:
|
1508 |
+
encoded_inputs["entity_ids"] = [self.entity_pad_token_id] * entity_difference + encoded_inputs[
|
1509 |
+
"entity_ids"
|
1510 |
+
]
|
1511 |
+
encoded_inputs["entity_position_ids"] = [
|
1512 |
+
[-1] * self.max_mention_length
|
1513 |
+
] * entity_difference + encoded_inputs["entity_position_ids"]
|
1514 |
+
if self.task == "entity_span_classification":
|
1515 |
+
encoded_inputs["entity_start_positions"] = [0] * entity_difference + encoded_inputs[
|
1516 |
+
"entity_start_positions"
|
1517 |
+
]
|
1518 |
+
encoded_inputs["entity_end_positions"] = [0] * entity_difference + encoded_inputs[
|
1519 |
+
"entity_end_positions"
|
1520 |
+
]
|
1521 |
+
else:
|
1522 |
+
raise ValueError("Invalid padding strategy:" + str(self.padding_side))
|
1523 |
+
|
1524 |
+
return encoded_inputs
|
1525 |
+
|
1526 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str, str]:
|
1527 |
+
if not os.path.isdir(save_directory):
|
1528 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
1529 |
+
return
|
1530 |
+
|
1531 |
+
out_vocab_file = os.path.join(
|
1532 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
1533 |
+
)
|
1534 |
+
|
1535 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
1536 |
+
copyfile(self.vocab_file, out_vocab_file)
|
1537 |
+
elif not os.path.isfile(self.vocab_file):
|
1538 |
+
with open(out_vocab_file, "wb") as fi:
|
1539 |
+
content_spiece_model = self.sp_model.serialized_model_proto()
|
1540 |
+
fi.write(content_spiece_model)
|
1541 |
+
|
1542 |
+
entity_vocab_file = os.path.join(
|
1543 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["entity_vocab_file"]
|
1544 |
+
)
|
1545 |
+
|
1546 |
+
with open(entity_vocab_file, "w", encoding="utf-8") as f:
|
1547 |
+
f.write(json.dumps(self.entity_vocab, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
|
1548 |
+
|
1549 |
+
return out_vocab_file, entity_vocab_file
|
1550 |
+
|
1551 |
+
# Copied from transformers.models.xlm_roberta.tokenization_xlm_roberta.XLMRobertaTokenizer.build_inputs_with_special_tokens
|
1552 |
+
def build_inputs_with_special_tokens(
|
1553 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
1554 |
+
) -> List[int]:
|
1555 |
+
"""
|
1556 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
1557 |
+
adding special tokens. An XLM-RoBERTa sequence has the following format:
|
1558 |
+
|
1559 |
+
- single sequence: `<s> X </s>`
|
1560 |
+
- pair of sequences: `<s> A </s></s> B </s>`
|
1561 |
+
|
1562 |
+
Args:
|
1563 |
+
token_ids_0 (`List[int]`):
|
1564 |
+
List of IDs to which the special tokens will be added.
|
1565 |
+
token_ids_1 (`List[int]`, *optional*):
|
1566 |
+
Optional second list of IDs for sequence pairs.
|
1567 |
+
|
1568 |
+
Returns:
|
1569 |
+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
1570 |
+
"""
|
1571 |
+
|
1572 |
+
if token_ids_1 is None:
|
1573 |
+
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
|
1574 |
+
cls = [self.cls_token_id]
|
1575 |
+
sep = [self.sep_token_id]
|
1576 |
+
return cls + token_ids_0 + sep + sep + token_ids_1 + sep
|
1577 |
+
|
1578 |
+
# Copied from transformers.models.xlm_roberta.tokenization_xlm_roberta.XLMRobertaTokenizer.get_special_tokens_mask
|
1579 |
+
def get_special_tokens_mask(
|
1580 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
1581 |
+
) -> List[int]:
|
1582 |
+
"""
|
1583 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
1584 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
1585 |
+
|
1586 |
+
Args:
|
1587 |
+
token_ids_0 (`List[int]`):
|
1588 |
+
List of IDs.
|
1589 |
+
token_ids_1 (`List[int]`, *optional*):
|
1590 |
+
Optional second list of IDs for sequence pairs.
|
1591 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
1592 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
1593 |
+
|
1594 |
+
Returns:
|
1595 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
1596 |
+
"""
|
1597 |
+
|
1598 |
+
if already_has_special_tokens:
|
1599 |
+
return super().get_special_tokens_mask(
|
1600 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
1601 |
+
)
|
1602 |
+
|
1603 |
+
if token_ids_1 is None:
|
1604 |
+
return [1] + ([0] * len(token_ids_0)) + [1]
|
1605 |
+
return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
|
1606 |
+
|
1607 |
+
# Copied from transformers.models.xlm_roberta.tokenization_xlm_roberta.XLMRobertaTokenizer.create_token_type_ids_from_sequences
|
1608 |
+
def create_token_type_ids_from_sequences(
|
1609 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
1610 |
+
) -> List[int]:
|
1611 |
+
"""
|
1612 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task. XLM-RoBERTa does
|
1613 |
+
not make use of token type ids, therefore a list of zeros is returned.
|
1614 |
+
|
1615 |
+
Args:
|
1616 |
+
token_ids_0 (`List[int]`):
|
1617 |
+
List of IDs.
|
1618 |
+
token_ids_1 (`List[int]`, *optional*):
|
1619 |
+
Optional second list of IDs for sequence pairs.
|
1620 |
+
|
1621 |
+
Returns:
|
1622 |
+
`List[int]`: List of zeros.
|
1623 |
+
|
1624 |
+
"""
|
1625 |
+
|
1626 |
+
sep = [self.sep_token_id]
|
1627 |
+
cls = [self.cls_token_id]
|
1628 |
+
|
1629 |
+
if token_ids_1 is None:
|
1630 |
+
return len(cls + token_ids_0 + sep) * [0]
|
1631 |
+
return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
|
env-llmeval/lib/python3.10/site-packages/transformers/models/mpnet/__init__.py
ADDED
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from typing import TYPE_CHECKING
|
16 |
+
|
17 |
+
from ...utils import (
|
18 |
+
OptionalDependencyNotAvailable,
|
19 |
+
_LazyModule,
|
20 |
+
is_flax_available,
|
21 |
+
is_tf_available,
|
22 |
+
is_tokenizers_available,
|
23 |
+
is_torch_available,
|
24 |
+
)
|
25 |
+
|
26 |
+
|
27 |
+
_import_structure = {
|
28 |
+
"configuration_mpnet": ["MPNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "MPNetConfig"],
|
29 |
+
"tokenization_mpnet": ["MPNetTokenizer"],
|
30 |
+
}
|
31 |
+
|
32 |
+
try:
|
33 |
+
if not is_tokenizers_available():
|
34 |
+
raise OptionalDependencyNotAvailable()
|
35 |
+
except OptionalDependencyNotAvailable:
|
36 |
+
pass
|
37 |
+
else:
|
38 |
+
_import_structure["tokenization_mpnet_fast"] = ["MPNetTokenizerFast"]
|
39 |
+
|
40 |
+
try:
|
41 |
+
if not is_torch_available():
|
42 |
+
raise OptionalDependencyNotAvailable()
|
43 |
+
except OptionalDependencyNotAvailable:
|
44 |
+
pass
|
45 |
+
else:
|
46 |
+
_import_structure["modeling_mpnet"] = [
|
47 |
+
"MPNET_PRETRAINED_MODEL_ARCHIVE_LIST",
|
48 |
+
"MPNetForMaskedLM",
|
49 |
+
"MPNetForMultipleChoice",
|
50 |
+
"MPNetForQuestionAnswering",
|
51 |
+
"MPNetForSequenceClassification",
|
52 |
+
"MPNetForTokenClassification",
|
53 |
+
"MPNetLayer",
|
54 |
+
"MPNetModel",
|
55 |
+
"MPNetPreTrainedModel",
|
56 |
+
]
|
57 |
+
|
58 |
+
try:
|
59 |
+
if not is_tf_available():
|
60 |
+
raise OptionalDependencyNotAvailable()
|
61 |
+
except OptionalDependencyNotAvailable:
|
62 |
+
pass
|
63 |
+
else:
|
64 |
+
_import_structure["modeling_tf_mpnet"] = [
|
65 |
+
"TF_MPNET_PRETRAINED_MODEL_ARCHIVE_LIST",
|
66 |
+
"TFMPNetEmbeddings",
|
67 |
+
"TFMPNetForMaskedLM",
|
68 |
+
"TFMPNetForMultipleChoice",
|
69 |
+
"TFMPNetForQuestionAnswering",
|
70 |
+
"TFMPNetForSequenceClassification",
|
71 |
+
"TFMPNetForTokenClassification",
|
72 |
+
"TFMPNetMainLayer",
|
73 |
+
"TFMPNetModel",
|
74 |
+
"TFMPNetPreTrainedModel",
|
75 |
+
]
|
76 |
+
|
77 |
+
|
78 |
+
if TYPE_CHECKING:
|
79 |
+
from .configuration_mpnet import MPNET_PRETRAINED_CONFIG_ARCHIVE_MAP, MPNetConfig
|
80 |
+
from .tokenization_mpnet import MPNetTokenizer
|
81 |
+
|
82 |
+
try:
|
83 |
+
if not is_tokenizers_available():
|
84 |
+
raise OptionalDependencyNotAvailable()
|
85 |
+
except OptionalDependencyNotAvailable:
|
86 |
+
pass
|
87 |
+
else:
|
88 |
+
from .tokenization_mpnet_fast import MPNetTokenizerFast
|
89 |
+
|
90 |
+
try:
|
91 |
+
if not is_torch_available():
|
92 |
+
raise OptionalDependencyNotAvailable()
|
93 |
+
except OptionalDependencyNotAvailable:
|
94 |
+
pass
|
95 |
+
else:
|
96 |
+
from .modeling_mpnet import (
|
97 |
+
MPNET_PRETRAINED_MODEL_ARCHIVE_LIST,
|
98 |
+
MPNetForMaskedLM,
|
99 |
+
MPNetForMultipleChoice,
|
100 |
+
MPNetForQuestionAnswering,
|
101 |
+
MPNetForSequenceClassification,
|
102 |
+
MPNetForTokenClassification,
|
103 |
+
MPNetLayer,
|
104 |
+
MPNetModel,
|
105 |
+
MPNetPreTrainedModel,
|
106 |
+
)
|
107 |
+
|
108 |
+
try:
|
109 |
+
if not is_tf_available():
|
110 |
+
raise OptionalDependencyNotAvailable()
|
111 |
+
except OptionalDependencyNotAvailable:
|
112 |
+
pass
|
113 |
+
else:
|
114 |
+
from .modeling_tf_mpnet import (
|
115 |
+
TF_MPNET_PRETRAINED_MODEL_ARCHIVE_LIST,
|
116 |
+
TFMPNetEmbeddings,
|
117 |
+
TFMPNetForMaskedLM,
|
118 |
+
TFMPNetForMultipleChoice,
|
119 |
+
TFMPNetForQuestionAnswering,
|
120 |
+
TFMPNetForSequenceClassification,
|
121 |
+
TFMPNetForTokenClassification,
|
122 |
+
TFMPNetMainLayer,
|
123 |
+
TFMPNetModel,
|
124 |
+
TFMPNetPreTrainedModel,
|
125 |
+
)
|
126 |
+
|
127 |
+
else:
|
128 |
+
import sys
|
129 |
+
|
130 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
env-llmeval/lib/python3.10/site-packages/transformers/models/mpnet/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.91 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/mpnet/__pycache__/configuration_mpnet.cpython-310.pyc
ADDED
Binary file (4.7 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/mpnet/__pycache__/modeling_mpnet.cpython-310.pyc
ADDED
Binary file (30.1 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/mpnet/__pycache__/modeling_tf_mpnet.cpython-310.pyc
ADDED
Binary file (39.9 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/mpnet/__pycache__/tokenization_mpnet.cpython-310.pyc
ADDED
Binary file (18.1 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/mpnet/__pycache__/tokenization_mpnet_fast.cpython-310.pyc
ADDED
Binary file (8.01 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/mpnet/configuration_mpnet.py
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The HuggingFace Inc. team, Microsoft Corporation.
|
3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
""" MPNet model configuration"""
|
17 |
+
|
18 |
+
from ...configuration_utils import PretrainedConfig
|
19 |
+
from ...utils import logging
|
20 |
+
|
21 |
+
|
22 |
+
logger = logging.get_logger(__name__)
|
23 |
+
|
24 |
+
MPNET_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
25 |
+
"microsoft/mpnet-base": "https://huggingface.co/microsoft/mpnet-base/resolve/main/config.json",
|
26 |
+
}
|
27 |
+
|
28 |
+
|
29 |
+
class MPNetConfig(PretrainedConfig):
|
30 |
+
r"""
|
31 |
+
This is the configuration class to store the configuration of a [`MPNetModel`] or a [`TFMPNetModel`]. It is used to
|
32 |
+
instantiate a MPNet model according to the specified arguments, defining the model architecture. Instantiating a
|
33 |
+
configuration with the defaults will yield a similar configuration to that of the MPNet
|
34 |
+
[microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) architecture.
|
35 |
+
|
36 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
37 |
+
documentation from [`PretrainedConfig`] for more information.
|
38 |
+
|
39 |
+
Args:
|
40 |
+
vocab_size (`int`, *optional*, defaults to 30527):
|
41 |
+
Vocabulary size of the MPNet model. Defines the number of different tokens that can be represented by the
|
42 |
+
`inputs_ids` passed when calling [`MPNetModel`] or [`TFMPNetModel`].
|
43 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
44 |
+
Dimensionality of the encoder layers and the pooler layer.
|
45 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
46 |
+
Number of hidden layers in the Transformer encoder.
|
47 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
48 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
49 |
+
intermediate_size (`int`, *optional*, defaults to 3072):
|
50 |
+
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
|
51 |
+
hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
|
52 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
53 |
+
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
54 |
+
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
|
55 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
56 |
+
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
|
57 |
+
The dropout ratio for the attention probabilities.
|
58 |
+
max_position_embeddings (`int`, *optional*, defaults to 512):
|
59 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
60 |
+
just in case (e.g., 512 or 1024 or 2048).
|
61 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
62 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
63 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
64 |
+
The epsilon used by the layer normalization layers.
|
65 |
+
relative_attention_num_buckets (`int`, *optional*, defaults to 32):
|
66 |
+
The number of buckets to use for each attention layer.
|
67 |
+
|
68 |
+
Examples:
|
69 |
+
|
70 |
+
```python
|
71 |
+
>>> from transformers import MPNetModel, MPNetConfig
|
72 |
+
|
73 |
+
>>> # Initializing a MPNet mpnet-base style configuration
|
74 |
+
>>> configuration = MPNetConfig()
|
75 |
+
|
76 |
+
>>> # Initializing a model from the mpnet-base style configuration
|
77 |
+
>>> model = MPNetModel(configuration)
|
78 |
+
|
79 |
+
>>> # Accessing the model configuration
|
80 |
+
>>> configuration = model.config
|
81 |
+
```"""
|
82 |
+
|
83 |
+
model_type = "mpnet"
|
84 |
+
|
85 |
+
def __init__(
|
86 |
+
self,
|
87 |
+
vocab_size=30527,
|
88 |
+
hidden_size=768,
|
89 |
+
num_hidden_layers=12,
|
90 |
+
num_attention_heads=12,
|
91 |
+
intermediate_size=3072,
|
92 |
+
hidden_act="gelu",
|
93 |
+
hidden_dropout_prob=0.1,
|
94 |
+
attention_probs_dropout_prob=0.1,
|
95 |
+
max_position_embeddings=512,
|
96 |
+
initializer_range=0.02,
|
97 |
+
layer_norm_eps=1e-12,
|
98 |
+
relative_attention_num_buckets=32,
|
99 |
+
pad_token_id=1,
|
100 |
+
bos_token_id=0,
|
101 |
+
eos_token_id=2,
|
102 |
+
**kwargs,
|
103 |
+
):
|
104 |
+
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
105 |
+
|
106 |
+
self.vocab_size = vocab_size
|
107 |
+
self.hidden_size = hidden_size
|
108 |
+
self.num_hidden_layers = num_hidden_layers
|
109 |
+
self.num_attention_heads = num_attention_heads
|
110 |
+
self.hidden_act = hidden_act
|
111 |
+
self.intermediate_size = intermediate_size
|
112 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
113 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
114 |
+
self.max_position_embeddings = max_position_embeddings
|
115 |
+
self.initializer_range = initializer_range
|
116 |
+
self.layer_norm_eps = layer_norm_eps
|
117 |
+
self.relative_attention_num_buckets = relative_attention_num_buckets
|
env-llmeval/lib/python3.10/site-packages/transformers/models/mpnet/modeling_mpnet.py
ADDED
@@ -0,0 +1,1055 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The HuggingFace Inc. team, Microsoft Corporation.
|
3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
"""PyTorch MPNet model."""
|
17 |
+
|
18 |
+
|
19 |
+
import math
|
20 |
+
from typing import Optional, Tuple, Union
|
21 |
+
|
22 |
+
import torch
|
23 |
+
from torch import nn
|
24 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
25 |
+
|
26 |
+
from ...activations import ACT2FN, gelu
|
27 |
+
from ...modeling_outputs import (
|
28 |
+
BaseModelOutput,
|
29 |
+
BaseModelOutputWithPooling,
|
30 |
+
MaskedLMOutput,
|
31 |
+
MultipleChoiceModelOutput,
|
32 |
+
QuestionAnsweringModelOutput,
|
33 |
+
SequenceClassifierOutput,
|
34 |
+
TokenClassifierOutput,
|
35 |
+
)
|
36 |
+
from ...modeling_utils import PreTrainedModel
|
37 |
+
from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer
|
38 |
+
from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
|
39 |
+
from .configuration_mpnet import MPNetConfig
|
40 |
+
|
41 |
+
|
42 |
+
logger = logging.get_logger(__name__)
|
43 |
+
|
44 |
+
_CHECKPOINT_FOR_DOC = "microsoft/mpnet-base"
|
45 |
+
_CONFIG_FOR_DOC = "MPNetConfig"
|
46 |
+
|
47 |
+
|
48 |
+
MPNET_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
49 |
+
"microsoft/mpnet-base",
|
50 |
+
]
|
51 |
+
|
52 |
+
|
53 |
+
class MPNetPreTrainedModel(PreTrainedModel):
|
54 |
+
config_class = MPNetConfig
|
55 |
+
pretrained_model_archive_map = MPNET_PRETRAINED_MODEL_ARCHIVE_LIST
|
56 |
+
base_model_prefix = "mpnet"
|
57 |
+
|
58 |
+
def _init_weights(self, module):
|
59 |
+
"""Initialize the weights"""
|
60 |
+
if isinstance(module, nn.Linear):
|
61 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
62 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
63 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
64 |
+
if module.bias is not None:
|
65 |
+
module.bias.data.zero_()
|
66 |
+
elif isinstance(module, nn.Embedding):
|
67 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
68 |
+
if module.padding_idx is not None:
|
69 |
+
module.weight.data[module.padding_idx].zero_()
|
70 |
+
elif isinstance(module, nn.LayerNorm):
|
71 |
+
module.bias.data.zero_()
|
72 |
+
module.weight.data.fill_(1.0)
|
73 |
+
|
74 |
+
|
75 |
+
class MPNetEmbeddings(nn.Module):
|
76 |
+
def __init__(self, config):
|
77 |
+
super().__init__()
|
78 |
+
self.padding_idx = 1
|
79 |
+
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=self.padding_idx)
|
80 |
+
self.position_embeddings = nn.Embedding(
|
81 |
+
config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx
|
82 |
+
)
|
83 |
+
|
84 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
85 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
86 |
+
self.register_buffer(
|
87 |
+
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
|
88 |
+
)
|
89 |
+
|
90 |
+
def forward(self, input_ids=None, position_ids=None, inputs_embeds=None, **kwargs):
|
91 |
+
if position_ids is None:
|
92 |
+
if input_ids is not None:
|
93 |
+
position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx)
|
94 |
+
else:
|
95 |
+
position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds)
|
96 |
+
|
97 |
+
if input_ids is not None:
|
98 |
+
input_shape = input_ids.size()
|
99 |
+
else:
|
100 |
+
input_shape = inputs_embeds.size()[:-1]
|
101 |
+
|
102 |
+
seq_length = input_shape[1]
|
103 |
+
|
104 |
+
if position_ids is None:
|
105 |
+
position_ids = self.position_ids[:, :seq_length]
|
106 |
+
|
107 |
+
if inputs_embeds is None:
|
108 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
109 |
+
position_embeddings = self.position_embeddings(position_ids)
|
110 |
+
|
111 |
+
embeddings = inputs_embeds + position_embeddings
|
112 |
+
embeddings = self.LayerNorm(embeddings)
|
113 |
+
embeddings = self.dropout(embeddings)
|
114 |
+
return embeddings
|
115 |
+
|
116 |
+
def create_position_ids_from_inputs_embeds(self, inputs_embeds):
|
117 |
+
"""
|
118 |
+
We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.
|
119 |
+
|
120 |
+
Args:
|
121 |
+
inputs_embeds: torch.Tensor
|
122 |
+
|
123 |
+
Returns: torch.Tensor
|
124 |
+
"""
|
125 |
+
input_shape = inputs_embeds.size()[:-1]
|
126 |
+
sequence_length = input_shape[1]
|
127 |
+
|
128 |
+
position_ids = torch.arange(
|
129 |
+
self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device
|
130 |
+
)
|
131 |
+
return position_ids.unsqueeze(0).expand(input_shape)
|
132 |
+
|
133 |
+
|
134 |
+
class MPNetSelfAttention(nn.Module):
|
135 |
+
def __init__(self, config):
|
136 |
+
super().__init__()
|
137 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
|
138 |
+
raise ValueError(
|
139 |
+
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
|
140 |
+
f"heads ({config.num_attention_heads})"
|
141 |
+
)
|
142 |
+
|
143 |
+
self.num_attention_heads = config.num_attention_heads
|
144 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
145 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
146 |
+
|
147 |
+
self.q = nn.Linear(config.hidden_size, self.all_head_size)
|
148 |
+
self.k = nn.Linear(config.hidden_size, self.all_head_size)
|
149 |
+
self.v = nn.Linear(config.hidden_size, self.all_head_size)
|
150 |
+
self.o = nn.Linear(config.hidden_size, config.hidden_size)
|
151 |
+
|
152 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
153 |
+
|
154 |
+
def transpose_for_scores(self, x):
|
155 |
+
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
156 |
+
x = x.view(*new_x_shape)
|
157 |
+
return x.permute(0, 2, 1, 3)
|
158 |
+
|
159 |
+
def forward(
|
160 |
+
self,
|
161 |
+
hidden_states,
|
162 |
+
attention_mask=None,
|
163 |
+
head_mask=None,
|
164 |
+
position_bias=None,
|
165 |
+
output_attentions=False,
|
166 |
+
**kwargs,
|
167 |
+
):
|
168 |
+
q = self.q(hidden_states)
|
169 |
+
k = self.k(hidden_states)
|
170 |
+
v = self.v(hidden_states)
|
171 |
+
|
172 |
+
q = self.transpose_for_scores(q)
|
173 |
+
k = self.transpose_for_scores(k)
|
174 |
+
v = self.transpose_for_scores(v)
|
175 |
+
|
176 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
177 |
+
attention_scores = torch.matmul(q, k.transpose(-1, -2))
|
178 |
+
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
179 |
+
|
180 |
+
# Apply relative position embedding (precomputed in MPNetEncoder) if provided.
|
181 |
+
if position_bias is not None:
|
182 |
+
attention_scores += position_bias
|
183 |
+
|
184 |
+
if attention_mask is not None:
|
185 |
+
attention_scores = attention_scores + attention_mask
|
186 |
+
|
187 |
+
# Normalize the attention scores to probabilities.
|
188 |
+
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
|
189 |
+
|
190 |
+
attention_probs = self.dropout(attention_probs)
|
191 |
+
|
192 |
+
if head_mask is not None:
|
193 |
+
attention_probs = attention_probs * head_mask
|
194 |
+
|
195 |
+
c = torch.matmul(attention_probs, v)
|
196 |
+
|
197 |
+
c = c.permute(0, 2, 1, 3).contiguous()
|
198 |
+
new_c_shape = c.size()[:-2] + (self.all_head_size,)
|
199 |
+
c = c.view(*new_c_shape)
|
200 |
+
|
201 |
+
o = self.o(c)
|
202 |
+
|
203 |
+
outputs = (o, attention_probs) if output_attentions else (o,)
|
204 |
+
return outputs
|
205 |
+
|
206 |
+
|
207 |
+
class MPNetAttention(nn.Module):
|
208 |
+
def __init__(self, config):
|
209 |
+
super().__init__()
|
210 |
+
self.attn = MPNetSelfAttention(config)
|
211 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
212 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
213 |
+
|
214 |
+
self.pruned_heads = set()
|
215 |
+
|
216 |
+
def prune_heads(self, heads):
|
217 |
+
if len(heads) == 0:
|
218 |
+
return
|
219 |
+
heads, index = find_pruneable_heads_and_indices(
|
220 |
+
heads, self.attn.num_attention_heads, self.attn.attention_head_size, self.pruned_heads
|
221 |
+
)
|
222 |
+
|
223 |
+
self.attn.q = prune_linear_layer(self.attn.q, index)
|
224 |
+
self.attn.k = prune_linear_layer(self.attn.k, index)
|
225 |
+
self.attn.v = prune_linear_layer(self.attn.v, index)
|
226 |
+
self.attn.o = prune_linear_layer(self.attn.o, index, dim=1)
|
227 |
+
|
228 |
+
self.attn.num_attention_heads = self.attn.num_attention_heads - len(heads)
|
229 |
+
self.attn.all_head_size = self.attn.attention_head_size * self.attn.num_attention_heads
|
230 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
231 |
+
|
232 |
+
def forward(
|
233 |
+
self,
|
234 |
+
hidden_states,
|
235 |
+
attention_mask=None,
|
236 |
+
head_mask=None,
|
237 |
+
position_bias=None,
|
238 |
+
output_attentions=False,
|
239 |
+
**kwargs,
|
240 |
+
):
|
241 |
+
self_outputs = self.attn(
|
242 |
+
hidden_states,
|
243 |
+
attention_mask,
|
244 |
+
head_mask,
|
245 |
+
position_bias,
|
246 |
+
output_attentions=output_attentions,
|
247 |
+
)
|
248 |
+
attention_output = self.LayerNorm(self.dropout(self_outputs[0]) + hidden_states)
|
249 |
+
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
|
250 |
+
return outputs
|
251 |
+
|
252 |
+
|
253 |
+
# Copied from transformers.models.bert.modeling_bert.BertIntermediate
|
254 |
+
class MPNetIntermediate(nn.Module):
|
255 |
+
def __init__(self, config):
|
256 |
+
super().__init__()
|
257 |
+
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
258 |
+
if isinstance(config.hidden_act, str):
|
259 |
+
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
260 |
+
else:
|
261 |
+
self.intermediate_act_fn = config.hidden_act
|
262 |
+
|
263 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
264 |
+
hidden_states = self.dense(hidden_states)
|
265 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
266 |
+
return hidden_states
|
267 |
+
|
268 |
+
|
269 |
+
# Copied from transformers.models.bert.modeling_bert.BertOutput
|
270 |
+
class MPNetOutput(nn.Module):
|
271 |
+
def __init__(self, config):
|
272 |
+
super().__init__()
|
273 |
+
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
274 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
275 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
276 |
+
|
277 |
+
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
278 |
+
hidden_states = self.dense(hidden_states)
|
279 |
+
hidden_states = self.dropout(hidden_states)
|
280 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
281 |
+
return hidden_states
|
282 |
+
|
283 |
+
|
284 |
+
class MPNetLayer(nn.Module):
|
285 |
+
def __init__(self, config):
|
286 |
+
super().__init__()
|
287 |
+
self.attention = MPNetAttention(config)
|
288 |
+
self.intermediate = MPNetIntermediate(config)
|
289 |
+
self.output = MPNetOutput(config)
|
290 |
+
|
291 |
+
def forward(
|
292 |
+
self,
|
293 |
+
hidden_states,
|
294 |
+
attention_mask=None,
|
295 |
+
head_mask=None,
|
296 |
+
position_bias=None,
|
297 |
+
output_attentions=False,
|
298 |
+
**kwargs,
|
299 |
+
):
|
300 |
+
self_attention_outputs = self.attention(
|
301 |
+
hidden_states,
|
302 |
+
attention_mask,
|
303 |
+
head_mask,
|
304 |
+
position_bias=position_bias,
|
305 |
+
output_attentions=output_attentions,
|
306 |
+
)
|
307 |
+
attention_output = self_attention_outputs[0]
|
308 |
+
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
|
309 |
+
|
310 |
+
intermediate_output = self.intermediate(attention_output)
|
311 |
+
layer_output = self.output(intermediate_output, attention_output)
|
312 |
+
outputs = (layer_output,) + outputs
|
313 |
+
return outputs
|
314 |
+
|
315 |
+
|
316 |
+
class MPNetEncoder(nn.Module):
|
317 |
+
def __init__(self, config):
|
318 |
+
super().__init__()
|
319 |
+
self.config = config
|
320 |
+
self.n_heads = config.num_attention_heads
|
321 |
+
self.layer = nn.ModuleList([MPNetLayer(config) for _ in range(config.num_hidden_layers)])
|
322 |
+
self.relative_attention_bias = nn.Embedding(config.relative_attention_num_buckets, self.n_heads)
|
323 |
+
|
324 |
+
def forward(
|
325 |
+
self,
|
326 |
+
hidden_states: torch.Tensor,
|
327 |
+
attention_mask: Optional[torch.Tensor] = None,
|
328 |
+
head_mask: Optional[torch.Tensor] = None,
|
329 |
+
output_attentions: bool = False,
|
330 |
+
output_hidden_states: bool = False,
|
331 |
+
return_dict: bool = False,
|
332 |
+
**kwargs,
|
333 |
+
):
|
334 |
+
position_bias = self.compute_position_bias(hidden_states)
|
335 |
+
all_hidden_states = () if output_hidden_states else None
|
336 |
+
all_attentions = () if output_attentions else None
|
337 |
+
for i, layer_module in enumerate(self.layer):
|
338 |
+
if output_hidden_states:
|
339 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
340 |
+
|
341 |
+
layer_outputs = layer_module(
|
342 |
+
hidden_states,
|
343 |
+
attention_mask,
|
344 |
+
head_mask[i],
|
345 |
+
position_bias,
|
346 |
+
output_attentions=output_attentions,
|
347 |
+
**kwargs,
|
348 |
+
)
|
349 |
+
hidden_states = layer_outputs[0]
|
350 |
+
|
351 |
+
if output_attentions:
|
352 |
+
all_attentions = all_attentions + (layer_outputs[1],)
|
353 |
+
|
354 |
+
# Add last layer
|
355 |
+
if output_hidden_states:
|
356 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
357 |
+
|
358 |
+
if not return_dict:
|
359 |
+
return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None)
|
360 |
+
return BaseModelOutput(
|
361 |
+
last_hidden_state=hidden_states,
|
362 |
+
hidden_states=all_hidden_states,
|
363 |
+
attentions=all_attentions,
|
364 |
+
)
|
365 |
+
|
366 |
+
def compute_position_bias(self, x, position_ids=None, num_buckets=32):
|
367 |
+
bsz, qlen, klen = x.size(0), x.size(1), x.size(1)
|
368 |
+
if position_ids is not None:
|
369 |
+
context_position = position_ids[:, :, None]
|
370 |
+
memory_position = position_ids[:, None, :]
|
371 |
+
else:
|
372 |
+
context_position = torch.arange(qlen, dtype=torch.long)[:, None]
|
373 |
+
memory_position = torch.arange(klen, dtype=torch.long)[None, :]
|
374 |
+
|
375 |
+
relative_position = memory_position - context_position
|
376 |
+
|
377 |
+
rp_bucket = self.relative_position_bucket(relative_position, num_buckets=num_buckets)
|
378 |
+
rp_bucket = rp_bucket.to(x.device)
|
379 |
+
values = self.relative_attention_bias(rp_bucket)
|
380 |
+
values = values.permute([2, 0, 1]).unsqueeze(0)
|
381 |
+
values = values.expand((bsz, -1, qlen, klen)).contiguous()
|
382 |
+
return values
|
383 |
+
|
384 |
+
@staticmethod
|
385 |
+
def relative_position_bucket(relative_position, num_buckets=32, max_distance=128):
|
386 |
+
ret = 0
|
387 |
+
n = -relative_position
|
388 |
+
|
389 |
+
num_buckets //= 2
|
390 |
+
ret += (n < 0).to(torch.long) * num_buckets
|
391 |
+
n = torch.abs(n)
|
392 |
+
|
393 |
+
max_exact = num_buckets // 2
|
394 |
+
is_small = n < max_exact
|
395 |
+
|
396 |
+
val_if_large = max_exact + (
|
397 |
+
torch.log(n.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact)
|
398 |
+
).to(torch.long)
|
399 |
+
|
400 |
+
val_if_large = torch.min(val_if_large, torch.full_like(val_if_large, num_buckets - 1))
|
401 |
+
ret += torch.where(is_small, n, val_if_large)
|
402 |
+
return ret
|
403 |
+
|
404 |
+
|
405 |
+
# Copied from transformers.models.bert.modeling_bert.BertPooler
|
406 |
+
class MPNetPooler(nn.Module):
|
407 |
+
def __init__(self, config):
|
408 |
+
super().__init__()
|
409 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
410 |
+
self.activation = nn.Tanh()
|
411 |
+
|
412 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
413 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
414 |
+
# to the first token.
|
415 |
+
first_token_tensor = hidden_states[:, 0]
|
416 |
+
pooled_output = self.dense(first_token_tensor)
|
417 |
+
pooled_output = self.activation(pooled_output)
|
418 |
+
return pooled_output
|
419 |
+
|
420 |
+
|
421 |
+
MPNET_START_DOCSTRING = r"""
|
422 |
+
|
423 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
424 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
425 |
+
etc.)
|
426 |
+
|
427 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
428 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
429 |
+
and behavior.
|
430 |
+
|
431 |
+
Parameters:
|
432 |
+
config ([`MPNetConfig`]): Model configuration class with all the parameters of the model.
|
433 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
434 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
435 |
+
"""
|
436 |
+
|
437 |
+
MPNET_INPUTS_DOCSTRING = r"""
|
438 |
+
Args:
|
439 |
+
input_ids (`torch.LongTensor` of shape `({0})`):
|
440 |
+
Indices of input sequence tokens in the vocabulary.
|
441 |
+
|
442 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
443 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
444 |
+
|
445 |
+
[What are input IDs?](../glossary#input-ids)
|
446 |
+
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
447 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
448 |
+
|
449 |
+
- 1 for tokens that are **not masked**,
|
450 |
+
- 0 for tokens that are **masked**.
|
451 |
+
|
452 |
+
[What are attention masks?](../glossary#attention-mask)
|
453 |
+
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
454 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
455 |
+
config.max_position_embeddings - 1]`.
|
456 |
+
|
457 |
+
[What are position IDs?](../glossary#position-ids)
|
458 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
459 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
460 |
+
|
461 |
+
- 1 indicates the head is **not masked**,
|
462 |
+
- 0 indicates the head is **masked**.
|
463 |
+
|
464 |
+
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
|
465 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
466 |
+
is useful if you want more control over how to convert *input_ids* indices into associated vectors than the
|
467 |
+
model's internal embedding lookup matrix.
|
468 |
+
output_attentions (`bool`, *optional*):
|
469 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
470 |
+
tensors for more detail.
|
471 |
+
output_hidden_states (`bool`, *optional*):
|
472 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
473 |
+
more detail.
|
474 |
+
return_dict (`bool`, *optional*):
|
475 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
476 |
+
"""
|
477 |
+
|
478 |
+
|
479 |
+
@add_start_docstrings(
|
480 |
+
"The bare MPNet Model transformer outputting raw hidden-states without any specific head on top.",
|
481 |
+
MPNET_START_DOCSTRING,
|
482 |
+
)
|
483 |
+
class MPNetModel(MPNetPreTrainedModel):
|
484 |
+
def __init__(self, config, add_pooling_layer=True):
|
485 |
+
super().__init__(config)
|
486 |
+
self.config = config
|
487 |
+
|
488 |
+
self.embeddings = MPNetEmbeddings(config)
|
489 |
+
self.encoder = MPNetEncoder(config)
|
490 |
+
self.pooler = MPNetPooler(config) if add_pooling_layer else None
|
491 |
+
|
492 |
+
# Initialize weights and apply final processing
|
493 |
+
self.post_init()
|
494 |
+
|
495 |
+
def get_input_embeddings(self):
|
496 |
+
return self.embeddings.word_embeddings
|
497 |
+
|
498 |
+
def set_input_embeddings(self, value):
|
499 |
+
self.embeddings.word_embeddings = value
|
500 |
+
|
501 |
+
def _prune_heads(self, heads_to_prune):
|
502 |
+
"""
|
503 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
504 |
+
class PreTrainedModel
|
505 |
+
"""
|
506 |
+
for layer, heads in heads_to_prune.items():
|
507 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
508 |
+
|
509 |
+
@add_start_docstrings_to_model_forward(MPNET_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
510 |
+
@add_code_sample_docstrings(
|
511 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
512 |
+
output_type=BaseModelOutputWithPooling,
|
513 |
+
config_class=_CONFIG_FOR_DOC,
|
514 |
+
)
|
515 |
+
def forward(
|
516 |
+
self,
|
517 |
+
input_ids: Optional[torch.LongTensor] = None,
|
518 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
519 |
+
position_ids: Optional[torch.LongTensor] = None,
|
520 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
521 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
522 |
+
output_attentions: Optional[bool] = None,
|
523 |
+
output_hidden_states: Optional[bool] = None,
|
524 |
+
return_dict: Optional[bool] = None,
|
525 |
+
**kwargs,
|
526 |
+
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPooling]:
|
527 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
528 |
+
output_hidden_states = (
|
529 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
530 |
+
)
|
531 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
532 |
+
|
533 |
+
if input_ids is not None and inputs_embeds is not None:
|
534 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
535 |
+
elif input_ids is not None:
|
536 |
+
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
537 |
+
input_shape = input_ids.size()
|
538 |
+
elif inputs_embeds is not None:
|
539 |
+
input_shape = inputs_embeds.size()[:-1]
|
540 |
+
else:
|
541 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
542 |
+
|
543 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
544 |
+
|
545 |
+
if attention_mask is None:
|
546 |
+
attention_mask = torch.ones(input_shape, device=device)
|
547 |
+
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
|
548 |
+
|
549 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
550 |
+
embedding_output = self.embeddings(input_ids=input_ids, position_ids=position_ids, inputs_embeds=inputs_embeds)
|
551 |
+
encoder_outputs = self.encoder(
|
552 |
+
embedding_output,
|
553 |
+
attention_mask=extended_attention_mask,
|
554 |
+
head_mask=head_mask,
|
555 |
+
output_attentions=output_attentions,
|
556 |
+
output_hidden_states=output_hidden_states,
|
557 |
+
return_dict=return_dict,
|
558 |
+
)
|
559 |
+
sequence_output = encoder_outputs[0]
|
560 |
+
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
|
561 |
+
|
562 |
+
if not return_dict:
|
563 |
+
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
564 |
+
|
565 |
+
return BaseModelOutputWithPooling(
|
566 |
+
last_hidden_state=sequence_output,
|
567 |
+
pooler_output=pooled_output,
|
568 |
+
hidden_states=encoder_outputs.hidden_states,
|
569 |
+
attentions=encoder_outputs.attentions,
|
570 |
+
)
|
571 |
+
|
572 |
+
|
573 |
+
class MPNetForMaskedLM(MPNetPreTrainedModel):
|
574 |
+
_tied_weights_keys = ["lm_head.decoder"]
|
575 |
+
|
576 |
+
def __init__(self, config):
|
577 |
+
super().__init__(config)
|
578 |
+
|
579 |
+
self.mpnet = MPNetModel(config, add_pooling_layer=False)
|
580 |
+
self.lm_head = MPNetLMHead(config)
|
581 |
+
|
582 |
+
# Initialize weights and apply final processing
|
583 |
+
self.post_init()
|
584 |
+
|
585 |
+
def get_output_embeddings(self):
|
586 |
+
return self.lm_head.decoder
|
587 |
+
|
588 |
+
def set_output_embeddings(self, new_embeddings):
|
589 |
+
self.lm_head.decoder = new_embeddings
|
590 |
+
|
591 |
+
@add_start_docstrings_to_model_forward(MPNET_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
592 |
+
@add_code_sample_docstrings(
|
593 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
594 |
+
output_type=MaskedLMOutput,
|
595 |
+
config_class=_CONFIG_FOR_DOC,
|
596 |
+
)
|
597 |
+
def forward(
|
598 |
+
self,
|
599 |
+
input_ids: Optional[torch.LongTensor] = None,
|
600 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
601 |
+
position_ids: Optional[torch.LongTensor] = None,
|
602 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
603 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
604 |
+
labels: Optional[torch.LongTensor] = None,
|
605 |
+
output_attentions: Optional[bool] = None,
|
606 |
+
output_hidden_states: Optional[bool] = None,
|
607 |
+
return_dict: Optional[bool] = None,
|
608 |
+
) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
|
609 |
+
r"""
|
610 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
611 |
+
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
|
612 |
+
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
|
613 |
+
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
|
614 |
+
"""
|
615 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
616 |
+
|
617 |
+
outputs = self.mpnet(
|
618 |
+
input_ids,
|
619 |
+
attention_mask=attention_mask,
|
620 |
+
position_ids=position_ids,
|
621 |
+
head_mask=head_mask,
|
622 |
+
inputs_embeds=inputs_embeds,
|
623 |
+
output_attentions=output_attentions,
|
624 |
+
output_hidden_states=output_hidden_states,
|
625 |
+
return_dict=return_dict,
|
626 |
+
)
|
627 |
+
|
628 |
+
sequence_output = outputs[0]
|
629 |
+
prediction_scores = self.lm_head(sequence_output)
|
630 |
+
|
631 |
+
masked_lm_loss = None
|
632 |
+
if labels is not None:
|
633 |
+
loss_fct = CrossEntropyLoss()
|
634 |
+
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
635 |
+
|
636 |
+
if not return_dict:
|
637 |
+
output = (prediction_scores,) + outputs[2:]
|
638 |
+
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
639 |
+
|
640 |
+
return MaskedLMOutput(
|
641 |
+
loss=masked_lm_loss,
|
642 |
+
logits=prediction_scores,
|
643 |
+
hidden_states=outputs.hidden_states,
|
644 |
+
attentions=outputs.attentions,
|
645 |
+
)
|
646 |
+
|
647 |
+
|
648 |
+
class MPNetLMHead(nn.Module):
|
649 |
+
"""MPNet Head for masked and permuted language modeling."""
|
650 |
+
|
651 |
+
def __init__(self, config):
|
652 |
+
super().__init__()
|
653 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
654 |
+
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
655 |
+
|
656 |
+
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
657 |
+
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
|
658 |
+
|
659 |
+
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
|
660 |
+
self.decoder.bias = self.bias
|
661 |
+
|
662 |
+
def forward(self, features, **kwargs):
|
663 |
+
x = self.dense(features)
|
664 |
+
x = gelu(x)
|
665 |
+
x = self.layer_norm(x)
|
666 |
+
|
667 |
+
# project back to size of vocabulary with bias
|
668 |
+
x = self.decoder(x)
|
669 |
+
|
670 |
+
return x
|
671 |
+
|
672 |
+
|
673 |
+
@add_start_docstrings(
|
674 |
+
"""
|
675 |
+
MPNet Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled
|
676 |
+
output) e.g. for GLUE tasks.
|
677 |
+
""",
|
678 |
+
MPNET_START_DOCSTRING,
|
679 |
+
)
|
680 |
+
class MPNetForSequenceClassification(MPNetPreTrainedModel):
|
681 |
+
def __init__(self, config):
|
682 |
+
super().__init__(config)
|
683 |
+
|
684 |
+
self.num_labels = config.num_labels
|
685 |
+
self.mpnet = MPNetModel(config, add_pooling_layer=False)
|
686 |
+
self.classifier = MPNetClassificationHead(config)
|
687 |
+
|
688 |
+
# Initialize weights and apply final processing
|
689 |
+
self.post_init()
|
690 |
+
|
691 |
+
@add_start_docstrings_to_model_forward(MPNET_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
692 |
+
@add_code_sample_docstrings(
|
693 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
694 |
+
output_type=SequenceClassifierOutput,
|
695 |
+
config_class=_CONFIG_FOR_DOC,
|
696 |
+
)
|
697 |
+
def forward(
|
698 |
+
self,
|
699 |
+
input_ids: Optional[torch.LongTensor] = None,
|
700 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
701 |
+
position_ids: Optional[torch.LongTensor] = None,
|
702 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
703 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
704 |
+
labels: Optional[torch.LongTensor] = None,
|
705 |
+
output_attentions: Optional[bool] = None,
|
706 |
+
output_hidden_states: Optional[bool] = None,
|
707 |
+
return_dict: Optional[bool] = None,
|
708 |
+
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
|
709 |
+
r"""
|
710 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
711 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
712 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
713 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
714 |
+
"""
|
715 |
+
|
716 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
717 |
+
|
718 |
+
outputs = self.mpnet(
|
719 |
+
input_ids,
|
720 |
+
attention_mask=attention_mask,
|
721 |
+
position_ids=position_ids,
|
722 |
+
head_mask=head_mask,
|
723 |
+
inputs_embeds=inputs_embeds,
|
724 |
+
output_attentions=output_attentions,
|
725 |
+
output_hidden_states=output_hidden_states,
|
726 |
+
return_dict=return_dict,
|
727 |
+
)
|
728 |
+
sequence_output = outputs[0]
|
729 |
+
logits = self.classifier(sequence_output)
|
730 |
+
|
731 |
+
loss = None
|
732 |
+
if labels is not None:
|
733 |
+
if self.config.problem_type is None:
|
734 |
+
if self.num_labels == 1:
|
735 |
+
self.config.problem_type = "regression"
|
736 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
737 |
+
self.config.problem_type = "single_label_classification"
|
738 |
+
else:
|
739 |
+
self.config.problem_type = "multi_label_classification"
|
740 |
+
|
741 |
+
if self.config.problem_type == "regression":
|
742 |
+
loss_fct = MSELoss()
|
743 |
+
if self.num_labels == 1:
|
744 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
745 |
+
else:
|
746 |
+
loss = loss_fct(logits, labels)
|
747 |
+
elif self.config.problem_type == "single_label_classification":
|
748 |
+
loss_fct = CrossEntropyLoss()
|
749 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
750 |
+
elif self.config.problem_type == "multi_label_classification":
|
751 |
+
loss_fct = BCEWithLogitsLoss()
|
752 |
+
loss = loss_fct(logits, labels)
|
753 |
+
if not return_dict:
|
754 |
+
output = (logits,) + outputs[2:]
|
755 |
+
return ((loss,) + output) if loss is not None else output
|
756 |
+
|
757 |
+
return SequenceClassifierOutput(
|
758 |
+
loss=loss,
|
759 |
+
logits=logits,
|
760 |
+
hidden_states=outputs.hidden_states,
|
761 |
+
attentions=outputs.attentions,
|
762 |
+
)
|
763 |
+
|
764 |
+
|
765 |
+
@add_start_docstrings(
|
766 |
+
"""
|
767 |
+
MPNet Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
|
768 |
+
softmax) e.g. for RocStories/SWAG tasks.
|
769 |
+
""",
|
770 |
+
MPNET_START_DOCSTRING,
|
771 |
+
)
|
772 |
+
class MPNetForMultipleChoice(MPNetPreTrainedModel):
|
773 |
+
def __init__(self, config):
|
774 |
+
super().__init__(config)
|
775 |
+
|
776 |
+
self.mpnet = MPNetModel(config)
|
777 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
778 |
+
self.classifier = nn.Linear(config.hidden_size, 1)
|
779 |
+
|
780 |
+
# Initialize weights and apply final processing
|
781 |
+
self.post_init()
|
782 |
+
|
783 |
+
@add_start_docstrings_to_model_forward(MPNET_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
|
784 |
+
@add_code_sample_docstrings(
|
785 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
786 |
+
output_type=MultipleChoiceModelOutput,
|
787 |
+
config_class=_CONFIG_FOR_DOC,
|
788 |
+
)
|
789 |
+
def forward(
|
790 |
+
self,
|
791 |
+
input_ids: Optional[torch.LongTensor] = None,
|
792 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
793 |
+
position_ids: Optional[torch.LongTensor] = None,
|
794 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
795 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
796 |
+
labels: Optional[torch.LongTensor] = None,
|
797 |
+
output_attentions: Optional[bool] = None,
|
798 |
+
output_hidden_states: Optional[bool] = None,
|
799 |
+
return_dict: Optional[bool] = None,
|
800 |
+
) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]:
|
801 |
+
r"""
|
802 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
803 |
+
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
|
804 |
+
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
|
805 |
+
`input_ids` above)
|
806 |
+
"""
|
807 |
+
|
808 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
809 |
+
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
|
810 |
+
|
811 |
+
flat_input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
|
812 |
+
flat_position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
|
813 |
+
flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
|
814 |
+
flat_inputs_embeds = (
|
815 |
+
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
|
816 |
+
if inputs_embeds is not None
|
817 |
+
else None
|
818 |
+
)
|
819 |
+
|
820 |
+
outputs = self.mpnet(
|
821 |
+
flat_input_ids,
|
822 |
+
position_ids=flat_position_ids,
|
823 |
+
attention_mask=flat_attention_mask,
|
824 |
+
head_mask=head_mask,
|
825 |
+
inputs_embeds=flat_inputs_embeds,
|
826 |
+
output_attentions=output_attentions,
|
827 |
+
output_hidden_states=output_hidden_states,
|
828 |
+
return_dict=return_dict,
|
829 |
+
)
|
830 |
+
pooled_output = outputs[1]
|
831 |
+
|
832 |
+
pooled_output = self.dropout(pooled_output)
|
833 |
+
logits = self.classifier(pooled_output)
|
834 |
+
reshaped_logits = logits.view(-1, num_choices)
|
835 |
+
|
836 |
+
loss = None
|
837 |
+
if labels is not None:
|
838 |
+
loss_fct = CrossEntropyLoss()
|
839 |
+
loss = loss_fct(reshaped_logits, labels)
|
840 |
+
|
841 |
+
if not return_dict:
|
842 |
+
output = (reshaped_logits,) + outputs[2:]
|
843 |
+
return ((loss,) + output) if loss is not None else output
|
844 |
+
|
845 |
+
return MultipleChoiceModelOutput(
|
846 |
+
loss=loss,
|
847 |
+
logits=reshaped_logits,
|
848 |
+
hidden_states=outputs.hidden_states,
|
849 |
+
attentions=outputs.attentions,
|
850 |
+
)
|
851 |
+
|
852 |
+
|
853 |
+
@add_start_docstrings(
|
854 |
+
"""
|
855 |
+
MPNet Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
|
856 |
+
Named-Entity-Recognition (NER) tasks.
|
857 |
+
""",
|
858 |
+
MPNET_START_DOCSTRING,
|
859 |
+
)
|
860 |
+
class MPNetForTokenClassification(MPNetPreTrainedModel):
|
861 |
+
def __init__(self, config):
|
862 |
+
super().__init__(config)
|
863 |
+
self.num_labels = config.num_labels
|
864 |
+
|
865 |
+
self.mpnet = MPNetModel(config, add_pooling_layer=False)
|
866 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
867 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
868 |
+
|
869 |
+
# Initialize weights and apply final processing
|
870 |
+
self.post_init()
|
871 |
+
|
872 |
+
@add_start_docstrings_to_model_forward(MPNET_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
873 |
+
@add_code_sample_docstrings(
|
874 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
875 |
+
output_type=TokenClassifierOutput,
|
876 |
+
config_class=_CONFIG_FOR_DOC,
|
877 |
+
)
|
878 |
+
def forward(
|
879 |
+
self,
|
880 |
+
input_ids: Optional[torch.LongTensor] = None,
|
881 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
882 |
+
position_ids: Optional[torch.LongTensor] = None,
|
883 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
884 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
885 |
+
labels: Optional[torch.LongTensor] = None,
|
886 |
+
output_attentions: Optional[bool] = None,
|
887 |
+
output_hidden_states: Optional[bool] = None,
|
888 |
+
return_dict: Optional[bool] = None,
|
889 |
+
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
|
890 |
+
r"""
|
891 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
892 |
+
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
|
893 |
+
"""
|
894 |
+
|
895 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
896 |
+
|
897 |
+
outputs = self.mpnet(
|
898 |
+
input_ids,
|
899 |
+
attention_mask=attention_mask,
|
900 |
+
position_ids=position_ids,
|
901 |
+
head_mask=head_mask,
|
902 |
+
inputs_embeds=inputs_embeds,
|
903 |
+
output_attentions=output_attentions,
|
904 |
+
output_hidden_states=output_hidden_states,
|
905 |
+
return_dict=return_dict,
|
906 |
+
)
|
907 |
+
|
908 |
+
sequence_output = outputs[0]
|
909 |
+
|
910 |
+
sequence_output = self.dropout(sequence_output)
|
911 |
+
logits = self.classifier(sequence_output)
|
912 |
+
|
913 |
+
loss = None
|
914 |
+
if labels is not None:
|
915 |
+
loss_fct = CrossEntropyLoss()
|
916 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
917 |
+
|
918 |
+
if not return_dict:
|
919 |
+
output = (logits,) + outputs[2:]
|
920 |
+
return ((loss,) + output) if loss is not None else output
|
921 |
+
|
922 |
+
return TokenClassifierOutput(
|
923 |
+
loss=loss,
|
924 |
+
logits=logits,
|
925 |
+
hidden_states=outputs.hidden_states,
|
926 |
+
attentions=outputs.attentions,
|
927 |
+
)
|
928 |
+
|
929 |
+
|
930 |
+
class MPNetClassificationHead(nn.Module):
|
931 |
+
"""Head for sentence-level classification tasks."""
|
932 |
+
|
933 |
+
def __init__(self, config):
|
934 |
+
super().__init__()
|
935 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
936 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
937 |
+
self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
|
938 |
+
|
939 |
+
def forward(self, features, **kwargs):
|
940 |
+
x = features[:, 0, :] # take <s> token (equiv. to BERT's [CLS] token)
|
941 |
+
x = self.dropout(x)
|
942 |
+
x = self.dense(x)
|
943 |
+
x = torch.tanh(x)
|
944 |
+
x = self.dropout(x)
|
945 |
+
x = self.out_proj(x)
|
946 |
+
return x
|
947 |
+
|
948 |
+
|
949 |
+
@add_start_docstrings(
|
950 |
+
"""
|
951 |
+
MPNet Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
|
952 |
+
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
953 |
+
""",
|
954 |
+
MPNET_START_DOCSTRING,
|
955 |
+
)
|
956 |
+
class MPNetForQuestionAnswering(MPNetPreTrainedModel):
|
957 |
+
def __init__(self, config):
|
958 |
+
super().__init__(config)
|
959 |
+
|
960 |
+
self.num_labels = config.num_labels
|
961 |
+
self.mpnet = MPNetModel(config, add_pooling_layer=False)
|
962 |
+
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
|
963 |
+
|
964 |
+
# Initialize weights and apply final processing
|
965 |
+
self.post_init()
|
966 |
+
|
967 |
+
@add_start_docstrings_to_model_forward(MPNET_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
968 |
+
@add_code_sample_docstrings(
|
969 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
970 |
+
output_type=QuestionAnsweringModelOutput,
|
971 |
+
config_class=_CONFIG_FOR_DOC,
|
972 |
+
)
|
973 |
+
def forward(
|
974 |
+
self,
|
975 |
+
input_ids: Optional[torch.LongTensor] = None,
|
976 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
977 |
+
position_ids: Optional[torch.LongTensor] = None,
|
978 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
979 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
980 |
+
start_positions: Optional[torch.LongTensor] = None,
|
981 |
+
end_positions: Optional[torch.LongTensor] = None,
|
982 |
+
output_attentions: Optional[bool] = None,
|
983 |
+
output_hidden_states: Optional[bool] = None,
|
984 |
+
return_dict: Optional[bool] = None,
|
985 |
+
) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]:
|
986 |
+
r"""
|
987 |
+
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
988 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
989 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
990 |
+
are not taken into account for computing the loss.
|
991 |
+
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
992 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
993 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
994 |
+
are not taken into account for computing the loss.
|
995 |
+
"""
|
996 |
+
|
997 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
998 |
+
|
999 |
+
outputs = self.mpnet(
|
1000 |
+
input_ids,
|
1001 |
+
attention_mask=attention_mask,
|
1002 |
+
position_ids=position_ids,
|
1003 |
+
head_mask=head_mask,
|
1004 |
+
inputs_embeds=inputs_embeds,
|
1005 |
+
output_attentions=output_attentions,
|
1006 |
+
output_hidden_states=output_hidden_states,
|
1007 |
+
return_dict=return_dict,
|
1008 |
+
)
|
1009 |
+
|
1010 |
+
sequence_output = outputs[0]
|
1011 |
+
|
1012 |
+
logits = self.qa_outputs(sequence_output)
|
1013 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
1014 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
1015 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
1016 |
+
|
1017 |
+
total_loss = None
|
1018 |
+
if start_positions is not None and end_positions is not None:
|
1019 |
+
# If we are on multi-GPU, split add a dimension
|
1020 |
+
if len(start_positions.size()) > 1:
|
1021 |
+
start_positions = start_positions.squeeze(-1)
|
1022 |
+
if len(end_positions.size()) > 1:
|
1023 |
+
end_positions = end_positions.squeeze(-1)
|
1024 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
1025 |
+
ignored_index = start_logits.size(1)
|
1026 |
+
start_positions = start_positions.clamp(0, ignored_index)
|
1027 |
+
end_positions = end_positions.clamp(0, ignored_index)
|
1028 |
+
|
1029 |
+
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
1030 |
+
start_loss = loss_fct(start_logits, start_positions)
|
1031 |
+
end_loss = loss_fct(end_logits, end_positions)
|
1032 |
+
total_loss = (start_loss + end_loss) / 2
|
1033 |
+
|
1034 |
+
if not return_dict:
|
1035 |
+
output = (start_logits, end_logits) + outputs[2:]
|
1036 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
1037 |
+
|
1038 |
+
return QuestionAnsweringModelOutput(
|
1039 |
+
loss=total_loss,
|
1040 |
+
start_logits=start_logits,
|
1041 |
+
end_logits=end_logits,
|
1042 |
+
hidden_states=outputs.hidden_states,
|
1043 |
+
attentions=outputs.attentions,
|
1044 |
+
)
|
1045 |
+
|
1046 |
+
|
1047 |
+
def create_position_ids_from_input_ids(input_ids, padding_idx):
|
1048 |
+
"""
|
1049 |
+
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
|
1050 |
+
are ignored. This is modified from fairseq's `utils.make_positions`. :param torch.Tensor x: :return torch.Tensor:
|
1051 |
+
"""
|
1052 |
+
# The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
|
1053 |
+
mask = input_ids.ne(padding_idx).int()
|
1054 |
+
incremental_indices = torch.cumsum(mask, dim=1).type_as(mask) * mask
|
1055 |
+
return incremental_indices.long() + padding_idx
|
env-llmeval/lib/python3.10/site-packages/transformers/models/mpnet/modeling_tf_mpnet.py
ADDED
@@ -0,0 +1,1346 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The HuggingFace Inc. team, Microsoft Corporation.
|
3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
""" TF 2.0 MPNet model."""
|
17 |
+
|
18 |
+
|
19 |
+
from __future__ import annotations
|
20 |
+
|
21 |
+
import math
|
22 |
+
import warnings
|
23 |
+
from typing import Optional, Tuple, Union
|
24 |
+
|
25 |
+
import numpy as np
|
26 |
+
import tensorflow as tf
|
27 |
+
|
28 |
+
from ...activations_tf import get_tf_activation
|
29 |
+
from ...modeling_tf_outputs import (
|
30 |
+
TFBaseModelOutput,
|
31 |
+
TFBaseModelOutputWithPooling,
|
32 |
+
TFMaskedLMOutput,
|
33 |
+
TFMultipleChoiceModelOutput,
|
34 |
+
TFQuestionAnsweringModelOutput,
|
35 |
+
TFSequenceClassifierOutput,
|
36 |
+
TFTokenClassifierOutput,
|
37 |
+
)
|
38 |
+
from ...modeling_tf_utils import (
|
39 |
+
TFMaskedLanguageModelingLoss,
|
40 |
+
TFModelInputType,
|
41 |
+
TFMultipleChoiceLoss,
|
42 |
+
TFPreTrainedModel,
|
43 |
+
TFQuestionAnsweringLoss,
|
44 |
+
TFSequenceClassificationLoss,
|
45 |
+
TFTokenClassificationLoss,
|
46 |
+
get_initializer,
|
47 |
+
keras,
|
48 |
+
keras_serializable,
|
49 |
+
unpack_inputs,
|
50 |
+
)
|
51 |
+
from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax
|
52 |
+
from ...utils import (
|
53 |
+
add_code_sample_docstrings,
|
54 |
+
add_start_docstrings,
|
55 |
+
add_start_docstrings_to_model_forward,
|
56 |
+
logging,
|
57 |
+
)
|
58 |
+
from .configuration_mpnet import MPNetConfig
|
59 |
+
|
60 |
+
|
61 |
+
logger = logging.get_logger(__name__)
|
62 |
+
|
63 |
+
_CHECKPOINT_FOR_DOC = "microsoft/mpnet-base"
|
64 |
+
_CONFIG_FOR_DOC = "MPNetConfig"
|
65 |
+
|
66 |
+
TF_MPNET_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
67 |
+
"microsoft/mpnet-base",
|
68 |
+
]
|
69 |
+
|
70 |
+
|
71 |
+
class TFMPNetPreTrainedModel(TFPreTrainedModel):
|
72 |
+
"""
|
73 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
74 |
+
models.
|
75 |
+
"""
|
76 |
+
|
77 |
+
config_class = MPNetConfig
|
78 |
+
base_model_prefix = "mpnet"
|
79 |
+
|
80 |
+
|
81 |
+
class TFMPNetEmbeddings(keras.layers.Layer):
|
82 |
+
"""Construct the embeddings from word, position embeddings."""
|
83 |
+
|
84 |
+
def __init__(self, config, **kwargs):
|
85 |
+
super().__init__(**kwargs)
|
86 |
+
|
87 |
+
self.padding_idx = 1
|
88 |
+
self.config = config
|
89 |
+
self.hidden_size = config.hidden_size
|
90 |
+
self.max_position_embeddings = config.max_position_embeddings
|
91 |
+
self.initializer_range = config.initializer_range
|
92 |
+
self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
|
93 |
+
self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
|
94 |
+
|
95 |
+
def build(self, input_shape=None):
|
96 |
+
with tf.name_scope("word_embeddings"):
|
97 |
+
self.weight = self.add_weight(
|
98 |
+
name="weight",
|
99 |
+
shape=[self.config.vocab_size, self.hidden_size],
|
100 |
+
initializer=get_initializer(initializer_range=self.initializer_range),
|
101 |
+
)
|
102 |
+
|
103 |
+
with tf.name_scope("position_embeddings"):
|
104 |
+
self.position_embeddings = self.add_weight(
|
105 |
+
name="embeddings",
|
106 |
+
shape=[self.max_position_embeddings, self.hidden_size],
|
107 |
+
initializer=get_initializer(initializer_range=self.initializer_range),
|
108 |
+
)
|
109 |
+
|
110 |
+
if self.built:
|
111 |
+
return
|
112 |
+
self.built = True
|
113 |
+
if getattr(self, "LayerNorm", None) is not None:
|
114 |
+
with tf.name_scope(self.LayerNorm.name):
|
115 |
+
self.LayerNorm.build([None, None, self.config.hidden_size])
|
116 |
+
|
117 |
+
def create_position_ids_from_input_ids(self, input_ids):
|
118 |
+
"""
|
119 |
+
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding
|
120 |
+
symbols are ignored. This is modified from fairseq's `utils.make_positions`.
|
121 |
+
|
122 |
+
Args:
|
123 |
+
input_ids: tf.Tensor
|
124 |
+
Returns: tf.Tensor
|
125 |
+
"""
|
126 |
+
mask = tf.cast(tf.math.not_equal(input_ids, self.padding_idx), dtype=input_ids.dtype)
|
127 |
+
incremental_indices = tf.math.cumsum(mask, axis=1) * mask
|
128 |
+
|
129 |
+
return incremental_indices + self.padding_idx
|
130 |
+
|
131 |
+
def call(self, input_ids=None, position_ids=None, inputs_embeds=None, training=False):
|
132 |
+
"""
|
133 |
+
Applies embedding based on inputs tensor.
|
134 |
+
|
135 |
+
Returns:
|
136 |
+
final_embeddings (`tf.Tensor`): output embedding tensor.
|
137 |
+
"""
|
138 |
+
assert not (input_ids is None and inputs_embeds is None)
|
139 |
+
|
140 |
+
if input_ids is not None:
|
141 |
+
check_embeddings_within_bounds(input_ids, self.config.vocab_size)
|
142 |
+
inputs_embeds = tf.gather(params=self.weight, indices=input_ids)
|
143 |
+
|
144 |
+
input_shape = shape_list(inputs_embeds)[:-1]
|
145 |
+
|
146 |
+
if position_ids is None:
|
147 |
+
if input_ids is not None:
|
148 |
+
# Create the position ids from the input token ids. Any padded tokens remain padded.
|
149 |
+
position_ids = self.create_position_ids_from_input_ids(input_ids=input_ids)
|
150 |
+
else:
|
151 |
+
position_ids = tf.expand_dims(
|
152 |
+
tf.range(start=self.padding_idx + 1, limit=input_shape[-1] + self.padding_idx + 1), axis=0
|
153 |
+
)
|
154 |
+
|
155 |
+
position_embeds = tf.gather(params=self.position_embeddings, indices=position_ids)
|
156 |
+
final_embeddings = inputs_embeds + position_embeds
|
157 |
+
final_embeddings = self.LayerNorm(inputs=final_embeddings)
|
158 |
+
final_embeddings = self.dropout(inputs=final_embeddings, training=training)
|
159 |
+
|
160 |
+
return final_embeddings
|
161 |
+
|
162 |
+
|
163 |
+
# Copied from transformers.models.bert.modeling_tf_bert.TFBertPooler with Bert->MPNet
|
164 |
+
class TFMPNetPooler(keras.layers.Layer):
|
165 |
+
def __init__(self, config: MPNetConfig, **kwargs):
|
166 |
+
super().__init__(**kwargs)
|
167 |
+
|
168 |
+
self.dense = keras.layers.Dense(
|
169 |
+
units=config.hidden_size,
|
170 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
171 |
+
activation="tanh",
|
172 |
+
name="dense",
|
173 |
+
)
|
174 |
+
self.config = config
|
175 |
+
|
176 |
+
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
|
177 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
178 |
+
# to the first token.
|
179 |
+
first_token_tensor = hidden_states[:, 0]
|
180 |
+
pooled_output = self.dense(inputs=first_token_tensor)
|
181 |
+
|
182 |
+
return pooled_output
|
183 |
+
|
184 |
+
def build(self, input_shape=None):
|
185 |
+
if self.built:
|
186 |
+
return
|
187 |
+
self.built = True
|
188 |
+
if getattr(self, "dense", None) is not None:
|
189 |
+
with tf.name_scope(self.dense.name):
|
190 |
+
self.dense.build([None, None, self.config.hidden_size])
|
191 |
+
|
192 |
+
|
193 |
+
class TFMPNetSelfAttention(keras.layers.Layer):
|
194 |
+
def __init__(self, config, **kwargs):
|
195 |
+
super().__init__(**kwargs)
|
196 |
+
|
197 |
+
if config.hidden_size % config.num_attention_heads != 0:
|
198 |
+
raise ValueError(
|
199 |
+
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
|
200 |
+
f"heads ({config.num_attention_heads}"
|
201 |
+
)
|
202 |
+
|
203 |
+
self.num_attention_heads = config.num_attention_heads
|
204 |
+
assert config.hidden_size % config.num_attention_heads == 0
|
205 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
206 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
207 |
+
|
208 |
+
self.q = keras.layers.Dense(
|
209 |
+
self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="q"
|
210 |
+
)
|
211 |
+
self.k = keras.layers.Dense(
|
212 |
+
self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="k"
|
213 |
+
)
|
214 |
+
self.v = keras.layers.Dense(
|
215 |
+
self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="v"
|
216 |
+
)
|
217 |
+
self.o = keras.layers.Dense(
|
218 |
+
config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="o"
|
219 |
+
)
|
220 |
+
self.dropout = keras.layers.Dropout(config.attention_probs_dropout_prob)
|
221 |
+
self.config = config
|
222 |
+
|
223 |
+
def transpose_for_scores(self, x, batch_size):
|
224 |
+
# Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size]
|
225 |
+
x = tf.reshape(x, (batch_size, -1, self.num_attention_heads, self.attention_head_size))
|
226 |
+
|
227 |
+
return tf.transpose(x, perm=[0, 2, 1, 3])
|
228 |
+
|
229 |
+
def call(self, hidden_states, attention_mask, head_mask, output_attentions, position_bias=None, training=False):
|
230 |
+
batch_size = shape_list(hidden_states)[0]
|
231 |
+
|
232 |
+
q = self.q(hidden_states)
|
233 |
+
k = self.k(hidden_states)
|
234 |
+
v = self.v(hidden_states)
|
235 |
+
|
236 |
+
q = self.transpose_for_scores(q, batch_size)
|
237 |
+
k = self.transpose_for_scores(k, batch_size)
|
238 |
+
v = self.transpose_for_scores(v, batch_size)
|
239 |
+
|
240 |
+
attention_scores = tf.matmul(q, k, transpose_b=True)
|
241 |
+
dk = tf.cast(shape_list(k)[-1], attention_scores.dtype)
|
242 |
+
attention_scores = attention_scores / tf.math.sqrt(dk)
|
243 |
+
|
244 |
+
# Apply relative position embedding (precomputed in MPNetEncoder) if provided.
|
245 |
+
if position_bias is not None:
|
246 |
+
attention_scores += position_bias
|
247 |
+
|
248 |
+
if attention_mask is not None:
|
249 |
+
attention_scores = attention_scores + attention_mask
|
250 |
+
|
251 |
+
attention_probs = stable_softmax(attention_scores, axis=-1)
|
252 |
+
|
253 |
+
attention_probs = self.dropout(attention_probs, training=training)
|
254 |
+
|
255 |
+
if head_mask is not None:
|
256 |
+
attention_probs = attention_probs * head_mask
|
257 |
+
|
258 |
+
c = tf.matmul(attention_probs, v)
|
259 |
+
c = tf.transpose(c, perm=[0, 2, 1, 3])
|
260 |
+
c = tf.reshape(c, (batch_size, -1, self.all_head_size))
|
261 |
+
o = self.o(c)
|
262 |
+
|
263 |
+
outputs = (o, attention_probs) if output_attentions else (o,)
|
264 |
+
return outputs
|
265 |
+
|
266 |
+
def build(self, input_shape=None):
|
267 |
+
if self.built:
|
268 |
+
return
|
269 |
+
self.built = True
|
270 |
+
if getattr(self, "q", None) is not None:
|
271 |
+
with tf.name_scope(self.q.name):
|
272 |
+
self.q.build([None, None, self.config.hidden_size])
|
273 |
+
if getattr(self, "k", None) is not None:
|
274 |
+
with tf.name_scope(self.k.name):
|
275 |
+
self.k.build([None, None, self.config.hidden_size])
|
276 |
+
if getattr(self, "v", None) is not None:
|
277 |
+
with tf.name_scope(self.v.name):
|
278 |
+
self.v.build([None, None, self.config.hidden_size])
|
279 |
+
if getattr(self, "o", None) is not None:
|
280 |
+
with tf.name_scope(self.o.name):
|
281 |
+
self.o.build([None, None, self.config.hidden_size])
|
282 |
+
|
283 |
+
|
284 |
+
class TFMPNetAttention(keras.layers.Layer):
|
285 |
+
def __init__(self, config, **kwargs):
|
286 |
+
super().__init__(**kwargs)
|
287 |
+
|
288 |
+
self.attn = TFMPNetSelfAttention(config, name="attn")
|
289 |
+
self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
|
290 |
+
self.dropout = keras.layers.Dropout(config.hidden_dropout_prob)
|
291 |
+
self.config = config
|
292 |
+
|
293 |
+
def prune_heads(self, heads):
|
294 |
+
raise NotImplementedError
|
295 |
+
|
296 |
+
def call(self, input_tensor, attention_mask, head_mask, output_attentions, position_bias=None, training=False):
|
297 |
+
self_outputs = self.attn(
|
298 |
+
input_tensor, attention_mask, head_mask, output_attentions, position_bias=position_bias, training=training
|
299 |
+
)
|
300 |
+
attention_output = self.LayerNorm(self.dropout(self_outputs[0]) + input_tensor)
|
301 |
+
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
|
302 |
+
return outputs
|
303 |
+
|
304 |
+
def build(self, input_shape=None):
|
305 |
+
if self.built:
|
306 |
+
return
|
307 |
+
self.built = True
|
308 |
+
if getattr(self, "attn", None) is not None:
|
309 |
+
with tf.name_scope(self.attn.name):
|
310 |
+
self.attn.build(None)
|
311 |
+
if getattr(self, "LayerNorm", None) is not None:
|
312 |
+
with tf.name_scope(self.LayerNorm.name):
|
313 |
+
self.LayerNorm.build([None, None, self.config.hidden_size])
|
314 |
+
|
315 |
+
|
316 |
+
# Copied from transformers.models.bert.modeling_tf_bert.TFBertIntermediate with Bert->MPNet
|
317 |
+
class TFMPNetIntermediate(keras.layers.Layer):
|
318 |
+
def __init__(self, config: MPNetConfig, **kwargs):
|
319 |
+
super().__init__(**kwargs)
|
320 |
+
|
321 |
+
self.dense = keras.layers.Dense(
|
322 |
+
units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
|
323 |
+
)
|
324 |
+
|
325 |
+
if isinstance(config.hidden_act, str):
|
326 |
+
self.intermediate_act_fn = get_tf_activation(config.hidden_act)
|
327 |
+
else:
|
328 |
+
self.intermediate_act_fn = config.hidden_act
|
329 |
+
self.config = config
|
330 |
+
|
331 |
+
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
|
332 |
+
hidden_states = self.dense(inputs=hidden_states)
|
333 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
334 |
+
|
335 |
+
return hidden_states
|
336 |
+
|
337 |
+
def build(self, input_shape=None):
|
338 |
+
if self.built:
|
339 |
+
return
|
340 |
+
self.built = True
|
341 |
+
if getattr(self, "dense", None) is not None:
|
342 |
+
with tf.name_scope(self.dense.name):
|
343 |
+
self.dense.build([None, None, self.config.hidden_size])
|
344 |
+
|
345 |
+
|
346 |
+
# Copied from transformers.models.bert.modeling_tf_bert.TFBertOutput with Bert->MPNet
|
347 |
+
class TFMPNetOutput(keras.layers.Layer):
|
348 |
+
def __init__(self, config: MPNetConfig, **kwargs):
|
349 |
+
super().__init__(**kwargs)
|
350 |
+
|
351 |
+
self.dense = keras.layers.Dense(
|
352 |
+
units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
|
353 |
+
)
|
354 |
+
self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
|
355 |
+
self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
|
356 |
+
self.config = config
|
357 |
+
|
358 |
+
def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor:
|
359 |
+
hidden_states = self.dense(inputs=hidden_states)
|
360 |
+
hidden_states = self.dropout(inputs=hidden_states, training=training)
|
361 |
+
hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor)
|
362 |
+
|
363 |
+
return hidden_states
|
364 |
+
|
365 |
+
def build(self, input_shape=None):
|
366 |
+
if self.built:
|
367 |
+
return
|
368 |
+
self.built = True
|
369 |
+
if getattr(self, "dense", None) is not None:
|
370 |
+
with tf.name_scope(self.dense.name):
|
371 |
+
self.dense.build([None, None, self.config.intermediate_size])
|
372 |
+
if getattr(self, "LayerNorm", None) is not None:
|
373 |
+
with tf.name_scope(self.LayerNorm.name):
|
374 |
+
self.LayerNorm.build([None, None, self.config.hidden_size])
|
375 |
+
|
376 |
+
|
377 |
+
class TFMPNetLayer(keras.layers.Layer):
|
378 |
+
def __init__(self, config, **kwargs):
|
379 |
+
super().__init__(**kwargs)
|
380 |
+
|
381 |
+
self.attention = TFMPNetAttention(config, name="attention")
|
382 |
+
self.intermediate = TFMPNetIntermediate(config, name="intermediate")
|
383 |
+
self.out = TFMPNetOutput(config, name="output")
|
384 |
+
|
385 |
+
def call(self, hidden_states, attention_mask, head_mask, output_attentions, position_bias=None, training=False):
|
386 |
+
self_attention_outputs = self.attention(
|
387 |
+
hidden_states, attention_mask, head_mask, output_attentions, position_bias=position_bias, training=training
|
388 |
+
)
|
389 |
+
attention_output = self_attention_outputs[0]
|
390 |
+
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
|
391 |
+
|
392 |
+
intermediate_output = self.intermediate(attention_output)
|
393 |
+
layer_output = self.out(intermediate_output, attention_output, training=training)
|
394 |
+
outputs = (layer_output,) + outputs # add attentions if we output them
|
395 |
+
|
396 |
+
return outputs
|
397 |
+
|
398 |
+
def build(self, input_shape=None):
|
399 |
+
if self.built:
|
400 |
+
return
|
401 |
+
self.built = True
|
402 |
+
if getattr(self, "attention", None) is not None:
|
403 |
+
with tf.name_scope(self.attention.name):
|
404 |
+
self.attention.build(None)
|
405 |
+
if getattr(self, "intermediate", None) is not None:
|
406 |
+
with tf.name_scope(self.intermediate.name):
|
407 |
+
self.intermediate.build(None)
|
408 |
+
if getattr(self, "out", None) is not None:
|
409 |
+
with tf.name_scope(self.out.name):
|
410 |
+
self.out.build(None)
|
411 |
+
|
412 |
+
|
413 |
+
class TFMPNetEncoder(keras.layers.Layer):
|
414 |
+
def __init__(self, config, **kwargs):
|
415 |
+
super().__init__(**kwargs)
|
416 |
+
|
417 |
+
self.config = config
|
418 |
+
self.n_heads = config.num_attention_heads
|
419 |
+
self.output_attentions = config.output_attentions
|
420 |
+
self.output_hidden_states = config.output_hidden_states
|
421 |
+
self.relative_attention_num_buckets = config.relative_attention_num_buckets
|
422 |
+
self.initializer_range = config.initializer_range
|
423 |
+
|
424 |
+
self.layer = [TFMPNetLayer(config, name=f"layer_._{i}") for i in range(config.num_hidden_layers)]
|
425 |
+
self.relative_attention_num_buckets = config.relative_attention_num_buckets
|
426 |
+
|
427 |
+
def build(self, input_shape=None):
|
428 |
+
if self.built:
|
429 |
+
return
|
430 |
+
self.built = True
|
431 |
+
with tf.name_scope("relative_attention_bias"):
|
432 |
+
self.relative_attention_bias = self.add_weight(
|
433 |
+
name="embeddings",
|
434 |
+
shape=[self.relative_attention_num_buckets, self.n_heads],
|
435 |
+
initializer=get_initializer(self.initializer_range),
|
436 |
+
)
|
437 |
+
if getattr(self, "layer", None) is not None:
|
438 |
+
for layer in self.layer:
|
439 |
+
with tf.name_scope(layer.name):
|
440 |
+
layer.build(None)
|
441 |
+
|
442 |
+
def call(
|
443 |
+
self,
|
444 |
+
hidden_states,
|
445 |
+
attention_mask,
|
446 |
+
head_mask,
|
447 |
+
output_attentions,
|
448 |
+
output_hidden_states,
|
449 |
+
return_dict,
|
450 |
+
training=False,
|
451 |
+
):
|
452 |
+
position_bias = self.compute_position_bias(hidden_states)
|
453 |
+
all_hidden_states = () if output_hidden_states else None
|
454 |
+
all_attentions = () if output_attentions else None
|
455 |
+
|
456 |
+
for i, layer_module in enumerate(self.layer):
|
457 |
+
if output_hidden_states:
|
458 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
459 |
+
|
460 |
+
layer_outputs = layer_module(
|
461 |
+
hidden_states,
|
462 |
+
attention_mask,
|
463 |
+
head_mask[i],
|
464 |
+
output_attentions,
|
465 |
+
position_bias=position_bias,
|
466 |
+
training=training,
|
467 |
+
)
|
468 |
+
hidden_states = layer_outputs[0]
|
469 |
+
|
470 |
+
if output_attentions:
|
471 |
+
all_attentions = all_attentions + (layer_outputs[1],)
|
472 |
+
|
473 |
+
# Add last layer
|
474 |
+
if output_hidden_states:
|
475 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
476 |
+
|
477 |
+
if not return_dict:
|
478 |
+
return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None)
|
479 |
+
|
480 |
+
return TFBaseModelOutput(
|
481 |
+
last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
|
482 |
+
)
|
483 |
+
|
484 |
+
@staticmethod
|
485 |
+
def _relative_position_bucket(relative_position, num_buckets=32, max_distance=128):
|
486 |
+
ret = 0
|
487 |
+
n = -relative_position
|
488 |
+
|
489 |
+
num_buckets //= 2
|
490 |
+
ret += tf.cast(tf.math.less(n, 0), dtype=relative_position.dtype) * num_buckets
|
491 |
+
n = tf.math.abs(n)
|
492 |
+
|
493 |
+
# now n is in the range [0, inf)
|
494 |
+
max_exact = num_buckets // 2
|
495 |
+
is_small = tf.math.less(n, max_exact)
|
496 |
+
|
497 |
+
val_if_large = max_exact + tf.cast(
|
498 |
+
tf.math.log(n / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact),
|
499 |
+
dtype=relative_position.dtype,
|
500 |
+
)
|
501 |
+
|
502 |
+
val_if_large = tf.math.minimum(val_if_large, num_buckets - 1)
|
503 |
+
ret += tf.where(is_small, n, val_if_large)
|
504 |
+
return ret
|
505 |
+
|
506 |
+
def compute_position_bias(self, x, position_ids=None):
|
507 |
+
"""Compute binned relative position bias"""
|
508 |
+
input_shape = shape_list(x)
|
509 |
+
qlen, klen = input_shape[1], input_shape[1]
|
510 |
+
|
511 |
+
if position_ids is not None:
|
512 |
+
context_position = position_ids[:, :, None]
|
513 |
+
memory_position = position_ids[:, None, :]
|
514 |
+
else:
|
515 |
+
context_position = tf.range(qlen)[:, None]
|
516 |
+
memory_position = tf.range(klen)[None, :]
|
517 |
+
|
518 |
+
relative_position = memory_position - context_position # shape (qlen, klen)
|
519 |
+
|
520 |
+
rp_bucket = self._relative_position_bucket(
|
521 |
+
relative_position,
|
522 |
+
num_buckets=self.relative_attention_num_buckets,
|
523 |
+
)
|
524 |
+
values = tf.gather(self.relative_attention_bias, rp_bucket) # shape (qlen, klen, num_heads)
|
525 |
+
values = tf.expand_dims(tf.transpose(values, [2, 0, 1]), axis=0) # shape (1, num_heads, qlen, klen)
|
526 |
+
return values
|
527 |
+
|
528 |
+
|
529 |
+
@keras_serializable
|
530 |
+
class TFMPNetMainLayer(keras.layers.Layer):
|
531 |
+
config_class = MPNetConfig
|
532 |
+
|
533 |
+
def __init__(self, config, **kwargs):
|
534 |
+
super().__init__(**kwargs)
|
535 |
+
|
536 |
+
self.config = config
|
537 |
+
self.num_hidden_layers = config.num_hidden_layers
|
538 |
+
self.initializer_range = config.initializer_range
|
539 |
+
self.output_attentions = config.output_attentions
|
540 |
+
self.output_hidden_states = config.output_hidden_states
|
541 |
+
self.return_dict = config.use_return_dict
|
542 |
+
self.encoder = TFMPNetEncoder(config, name="encoder")
|
543 |
+
self.pooler = TFMPNetPooler(config, name="pooler")
|
544 |
+
# The embeddings must be the last declaration in order to follow the weights order
|
545 |
+
self.embeddings = TFMPNetEmbeddings(config, name="embeddings")
|
546 |
+
|
547 |
+
# Copied from transformers.models.bert.modeling_tf_bert.TFBertMainLayer.get_input_embeddings
|
548 |
+
def get_input_embeddings(self) -> keras.layers.Layer:
|
549 |
+
return self.embeddings
|
550 |
+
|
551 |
+
# Copied from transformers.models.bert.modeling_tf_bert.TFBertMainLayer.set_input_embeddings
|
552 |
+
def set_input_embeddings(self, value: tf.Variable):
|
553 |
+
self.embeddings.weight = value
|
554 |
+
self.embeddings.vocab_size = shape_list(value)[0]
|
555 |
+
|
556 |
+
# Copied from transformers.models.bert.modeling_tf_bert.TFBertMainLayer._prune_heads
|
557 |
+
def _prune_heads(self, heads_to_prune):
|
558 |
+
"""
|
559 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
560 |
+
class PreTrainedModel
|
561 |
+
"""
|
562 |
+
raise NotImplementedError
|
563 |
+
|
564 |
+
@unpack_inputs
|
565 |
+
def call(
|
566 |
+
self,
|
567 |
+
input_ids=None,
|
568 |
+
attention_mask=None,
|
569 |
+
position_ids=None,
|
570 |
+
head_mask=None,
|
571 |
+
inputs_embeds=None,
|
572 |
+
output_attentions=None,
|
573 |
+
output_hidden_states=None,
|
574 |
+
return_dict=None,
|
575 |
+
training=False,
|
576 |
+
):
|
577 |
+
if input_ids is not None and inputs_embeds is not None:
|
578 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
579 |
+
elif input_ids is not None:
|
580 |
+
input_shape = shape_list(input_ids)
|
581 |
+
elif inputs_embeds is not None:
|
582 |
+
input_shape = shape_list(inputs_embeds)[:-1]
|
583 |
+
else:
|
584 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
585 |
+
|
586 |
+
if attention_mask is None:
|
587 |
+
attention_mask = tf.fill(input_shape, 1)
|
588 |
+
|
589 |
+
embedding_output = self.embeddings(
|
590 |
+
input_ids,
|
591 |
+
position_ids,
|
592 |
+
inputs_embeds,
|
593 |
+
training=training,
|
594 |
+
)
|
595 |
+
|
596 |
+
# We create a 3D attention mask from a 2D tensor mask.
|
597 |
+
# Sizes are [batch_size, 1, 1, to_seq_length]
|
598 |
+
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
|
599 |
+
# this attention mask is more simple than the triangular masking of causal attention
|
600 |
+
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
|
601 |
+
extended_attention_mask = tf.reshape(attention_mask, (input_shape[0], 1, 1, input_shape[1]))
|
602 |
+
|
603 |
+
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
604 |
+
# masked positions, this operation will create a tensor which is 0.0 for
|
605 |
+
# positions we want to attend and -10000.0 for masked positions.
|
606 |
+
# Since we are adding it to the raw scores before the softmax, this is
|
607 |
+
# effectively the same as removing these entirely.
|
608 |
+
extended_attention_mask = tf.cast(extended_attention_mask, embedding_output.dtype)
|
609 |
+
one_cst = tf.constant(1.0, dtype=embedding_output.dtype)
|
610 |
+
ten_thousand_cst = tf.constant(-10000.0, dtype=embedding_output.dtype)
|
611 |
+
extended_attention_mask = tf.multiply(tf.subtract(one_cst, extended_attention_mask), ten_thousand_cst)
|
612 |
+
|
613 |
+
# Prepare head mask if needed
|
614 |
+
# 1.0 in head_mask indicate we keep the head
|
615 |
+
# attention_probs has shape bsz x n_heads x N x N
|
616 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
617 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
618 |
+
if head_mask is not None:
|
619 |
+
raise NotImplementedError
|
620 |
+
else:
|
621 |
+
head_mask = [None] * self.num_hidden_layers
|
622 |
+
|
623 |
+
encoder_outputs = self.encoder(
|
624 |
+
embedding_output,
|
625 |
+
extended_attention_mask,
|
626 |
+
head_mask,
|
627 |
+
output_attentions,
|
628 |
+
output_hidden_states,
|
629 |
+
return_dict,
|
630 |
+
training=training,
|
631 |
+
)
|
632 |
+
|
633 |
+
sequence_output = encoder_outputs[0]
|
634 |
+
pooled_output = self.pooler(sequence_output)
|
635 |
+
|
636 |
+
if not return_dict:
|
637 |
+
return (
|
638 |
+
sequence_output,
|
639 |
+
pooled_output,
|
640 |
+
) + encoder_outputs[1:]
|
641 |
+
|
642 |
+
return TFBaseModelOutputWithPooling(
|
643 |
+
last_hidden_state=sequence_output,
|
644 |
+
pooler_output=pooled_output,
|
645 |
+
hidden_states=encoder_outputs.hidden_states,
|
646 |
+
attentions=encoder_outputs.attentions,
|
647 |
+
)
|
648 |
+
|
649 |
+
def build(self, input_shape=None):
|
650 |
+
if self.built:
|
651 |
+
return
|
652 |
+
self.built = True
|
653 |
+
if getattr(self, "encoder", None) is not None:
|
654 |
+
with tf.name_scope(self.encoder.name):
|
655 |
+
self.encoder.build(None)
|
656 |
+
if getattr(self, "pooler", None) is not None:
|
657 |
+
with tf.name_scope(self.pooler.name):
|
658 |
+
self.pooler.build(None)
|
659 |
+
if getattr(self, "embeddings", None) is not None:
|
660 |
+
with tf.name_scope(self.embeddings.name):
|
661 |
+
self.embeddings.build(None)
|
662 |
+
|
663 |
+
|
664 |
+
MPNET_START_DOCSTRING = r"""
|
665 |
+
|
666 |
+
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
|
667 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
668 |
+
etc.)
|
669 |
+
|
670 |
+
This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
|
671 |
+
as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
|
672 |
+
behavior.
|
673 |
+
|
674 |
+
<Tip>
|
675 |
+
|
676 |
+
TensorFlow models and layers in `transformers` accept two formats as input:
|
677 |
+
|
678 |
+
- having all inputs as keyword arguments (like PyTorch models), or
|
679 |
+
- having all inputs as a list, tuple or dict in the first positional argument.
|
680 |
+
|
681 |
+
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
|
682 |
+
and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
|
683 |
+
pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
|
684 |
+
format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
|
685 |
+
the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
|
686 |
+
positional argument:
|
687 |
+
|
688 |
+
- a single Tensor with `input_ids` only and nothing else: `model(input_ids)`
|
689 |
+
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
|
690 |
+
`model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
|
691 |
+
- a dictionary with one or several input Tensors associated to the input names given in the docstring:
|
692 |
+
`model({"input_ids": input_ids, "token_type_ids": token_type_ids})`
|
693 |
+
|
694 |
+
Note that when creating models and layers with
|
695 |
+
[subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
|
696 |
+
about any of this, as you can just pass inputs like you would to any other Python function!
|
697 |
+
|
698 |
+
</Tip>
|
699 |
+
|
700 |
+
Args:
|
701 |
+
config ([`MPNetConfig`]): Model configuration class with all the parameters of the model.
|
702 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
703 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
704 |
+
"""
|
705 |
+
|
706 |
+
MPNET_INPUTS_DOCSTRING = r"""
|
707 |
+
Args:
|
708 |
+
input_ids (`Numpy array` or `tf.Tensor` of shape `({0})`):
|
709 |
+
Indices of input sequence tokens in the vocabulary.
|
710 |
+
|
711 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and
|
712 |
+
[`PreTrainedTokenizer.encode`] for details.
|
713 |
+
|
714 |
+
[What are input IDs?](../glossary#input-ids)
|
715 |
+
attention_mask (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*):
|
716 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
717 |
+
|
718 |
+
- 1 for tokens that are **not masked**,
|
719 |
+
- 0 for tokens that are **masked**.
|
720 |
+
|
721 |
+
[What are attention masks?](../glossary#attention-mask)
|
722 |
+
position_ids (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*):
|
723 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
724 |
+
config.max_position_embeddings - 1]`.
|
725 |
+
|
726 |
+
[What are position IDs?](../glossary#position-ids)
|
727 |
+
head_mask (`Numpy array` or `tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
728 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
729 |
+
|
730 |
+
- 1 indicates the head is **not masked**,
|
731 |
+
- 0 indicates the head is **masked**.
|
732 |
+
|
733 |
+
inputs_embeds (`tf.Tensor` of shape `({0}, hidden_size)`, *optional*):
|
734 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
735 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
736 |
+
model's internal embedding lookup matrix.
|
737 |
+
output_attentions (`bool`, *optional*):
|
738 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
739 |
+
tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
|
740 |
+
config will be used instead.
|
741 |
+
output_hidden_states (`bool`, *optional*):
|
742 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
743 |
+
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
|
744 |
+
used instead.
|
745 |
+
return_dict (`bool`, *optional*):
|
746 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
|
747 |
+
eager mode, in graph mode the value will always be set to True.
|
748 |
+
training (`bool`, *optional*, defaults to `False`):
|
749 |
+
Whether or not to use the model in training mode (some modules like dropout modules have different
|
750 |
+
behaviors between training and evaluation).
|
751 |
+
"""
|
752 |
+
|
753 |
+
|
754 |
+
@add_start_docstrings(
|
755 |
+
"The bare MPNet Model transformer outputting raw hidden-states without any specific head on top.",
|
756 |
+
MPNET_START_DOCSTRING,
|
757 |
+
)
|
758 |
+
class TFMPNetModel(TFMPNetPreTrainedModel):
|
759 |
+
def __init__(self, config, *inputs, **kwargs):
|
760 |
+
super().__init__(config, *inputs, **kwargs)
|
761 |
+
self.mpnet = TFMPNetMainLayer(config, name="mpnet")
|
762 |
+
|
763 |
+
@unpack_inputs
|
764 |
+
@add_start_docstrings_to_model_forward(MPNET_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
765 |
+
@add_code_sample_docstrings(
|
766 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
767 |
+
output_type=TFBaseModelOutput,
|
768 |
+
config_class=_CONFIG_FOR_DOC,
|
769 |
+
)
|
770 |
+
def call(
|
771 |
+
self,
|
772 |
+
input_ids: TFModelInputType | None = None,
|
773 |
+
attention_mask: Optional[Union[np.array, tf.Tensor]] = None,
|
774 |
+
position_ids: Optional[Union[np.array, tf.Tensor]] = None,
|
775 |
+
head_mask: Optional[Union[np.array, tf.Tensor]] = None,
|
776 |
+
inputs_embeds: tf.Tensor | None = None,
|
777 |
+
output_attentions: Optional[bool] = None,
|
778 |
+
output_hidden_states: Optional[bool] = None,
|
779 |
+
return_dict: Optional[bool] = None,
|
780 |
+
training: bool = False,
|
781 |
+
) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]:
|
782 |
+
outputs = self.mpnet(
|
783 |
+
input_ids=input_ids,
|
784 |
+
attention_mask=attention_mask,
|
785 |
+
position_ids=position_ids,
|
786 |
+
head_mask=head_mask,
|
787 |
+
inputs_embeds=inputs_embeds,
|
788 |
+
output_attentions=output_attentions,
|
789 |
+
output_hidden_states=output_hidden_states,
|
790 |
+
return_dict=return_dict,
|
791 |
+
training=training,
|
792 |
+
)
|
793 |
+
return outputs
|
794 |
+
|
795 |
+
def build(self, input_shape=None):
|
796 |
+
if self.built:
|
797 |
+
return
|
798 |
+
self.built = True
|
799 |
+
if getattr(self, "mpnet", None) is not None:
|
800 |
+
with tf.name_scope(self.mpnet.name):
|
801 |
+
self.mpnet.build(None)
|
802 |
+
|
803 |
+
|
804 |
+
class TFMPNetLMHead(keras.layers.Layer):
|
805 |
+
"""MPNet head for masked and permuted language modeling"""
|
806 |
+
|
807 |
+
def __init__(self, config, input_embeddings, **kwargs):
|
808 |
+
super().__init__(**kwargs)
|
809 |
+
|
810 |
+
self.config = config
|
811 |
+
self.hidden_size = config.hidden_size
|
812 |
+
self.dense = keras.layers.Dense(
|
813 |
+
config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
|
814 |
+
)
|
815 |
+
self.layer_norm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm")
|
816 |
+
self.act = get_tf_activation("gelu")
|
817 |
+
|
818 |
+
# The output weights are the same as the input embeddings, but there is
|
819 |
+
# an output-only bias for each token.
|
820 |
+
self.decoder = input_embeddings
|
821 |
+
|
822 |
+
def build(self, input_shape=None):
|
823 |
+
self.bias = self.add_weight(shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="bias")
|
824 |
+
|
825 |
+
if self.built:
|
826 |
+
return
|
827 |
+
self.built = True
|
828 |
+
if getattr(self, "dense", None) is not None:
|
829 |
+
with tf.name_scope(self.dense.name):
|
830 |
+
self.dense.build([None, None, self.config.hidden_size])
|
831 |
+
if getattr(self, "layer_norm", None) is not None:
|
832 |
+
with tf.name_scope(self.layer_norm.name):
|
833 |
+
self.layer_norm.build([None, None, self.config.hidden_size])
|
834 |
+
|
835 |
+
def get_output_embeddings(self):
|
836 |
+
return self.decoder
|
837 |
+
|
838 |
+
def set_output_embeddings(self, value):
|
839 |
+
self.decoder.weight = value
|
840 |
+
self.decoder.vocab_size = shape_list(value)[0]
|
841 |
+
|
842 |
+
def get_bias(self):
|
843 |
+
return {"bias": self.bias}
|
844 |
+
|
845 |
+
def set_bias(self, value):
|
846 |
+
self.bias = value["bias"]
|
847 |
+
self.config.vocab_size = shape_list(value["bias"])[0]
|
848 |
+
|
849 |
+
def call(self, hidden_states):
|
850 |
+
hidden_states = self.dense(hidden_states)
|
851 |
+
hidden_states = self.act(hidden_states)
|
852 |
+
hidden_states = self.layer_norm(hidden_states)
|
853 |
+
|
854 |
+
# project back to size of vocabulary with bias
|
855 |
+
seq_length = shape_list(tensor=hidden_states)[1]
|
856 |
+
hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, self.hidden_size])
|
857 |
+
hidden_states = tf.matmul(a=hidden_states, b=self.decoder.weight, transpose_b=True)
|
858 |
+
hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, seq_length, self.config.vocab_size])
|
859 |
+
hidden_states = tf.nn.bias_add(value=hidden_states, bias=self.bias)
|
860 |
+
|
861 |
+
return hidden_states
|
862 |
+
|
863 |
+
|
864 |
+
@add_start_docstrings("""MPNet Model with a `language modeling` head on top.""", MPNET_START_DOCSTRING)
|
865 |
+
class TFMPNetForMaskedLM(TFMPNetPreTrainedModel, TFMaskedLanguageModelingLoss):
|
866 |
+
_keys_to_ignore_on_load_missing = [r"pooler"]
|
867 |
+
|
868 |
+
def __init__(self, config, *inputs, **kwargs):
|
869 |
+
super().__init__(config, *inputs, **kwargs)
|
870 |
+
|
871 |
+
self.mpnet = TFMPNetMainLayer(config, name="mpnet")
|
872 |
+
self.lm_head = TFMPNetLMHead(config, self.mpnet.embeddings, name="lm_head")
|
873 |
+
|
874 |
+
def get_lm_head(self):
|
875 |
+
return self.lm_head
|
876 |
+
|
877 |
+
def get_prefix_bias_name(self):
|
878 |
+
warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning)
|
879 |
+
return self.name + "/" + self.lm_head.name
|
880 |
+
|
881 |
+
@unpack_inputs
|
882 |
+
@add_start_docstrings_to_model_forward(MPNET_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
883 |
+
@add_code_sample_docstrings(
|
884 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
885 |
+
output_type=TFMaskedLMOutput,
|
886 |
+
config_class=_CONFIG_FOR_DOC,
|
887 |
+
)
|
888 |
+
def call(
|
889 |
+
self,
|
890 |
+
input_ids: TFModelInputType | None = None,
|
891 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
892 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
893 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
894 |
+
inputs_embeds: tf.Tensor | None = None,
|
895 |
+
output_attentions: Optional[bool] = None,
|
896 |
+
output_hidden_states: Optional[bool] = None,
|
897 |
+
return_dict: Optional[bool] = None,
|
898 |
+
labels: tf.Tensor | None = None,
|
899 |
+
training: bool = False,
|
900 |
+
) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]:
|
901 |
+
r"""
|
902 |
+
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
903 |
+
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
|
904 |
+
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
|
905 |
+
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
|
906 |
+
"""
|
907 |
+
outputs = self.mpnet(
|
908 |
+
input_ids,
|
909 |
+
attention_mask=attention_mask,
|
910 |
+
position_ids=position_ids,
|
911 |
+
head_mask=head_mask,
|
912 |
+
inputs_embeds=inputs_embeds,
|
913 |
+
output_attentions=output_attentions,
|
914 |
+
output_hidden_states=output_hidden_states,
|
915 |
+
return_dict=return_dict,
|
916 |
+
training=training,
|
917 |
+
)
|
918 |
+
sequence_output = outputs[0]
|
919 |
+
prediction_scores = self.lm_head(sequence_output)
|
920 |
+
|
921 |
+
loss = None if labels is None else self.hf_compute_loss(labels, prediction_scores)
|
922 |
+
|
923 |
+
if not return_dict:
|
924 |
+
output = (prediction_scores,) + outputs[2:]
|
925 |
+
return ((loss,) + output) if loss is not None else output
|
926 |
+
|
927 |
+
return TFMaskedLMOutput(
|
928 |
+
loss=loss,
|
929 |
+
logits=prediction_scores,
|
930 |
+
hidden_states=outputs.hidden_states,
|
931 |
+
attentions=outputs.attentions,
|
932 |
+
)
|
933 |
+
|
934 |
+
def build(self, input_shape=None):
|
935 |
+
if self.built:
|
936 |
+
return
|
937 |
+
self.built = True
|
938 |
+
if getattr(self, "mpnet", None) is not None:
|
939 |
+
with tf.name_scope(self.mpnet.name):
|
940 |
+
self.mpnet.build(None)
|
941 |
+
if getattr(self, "lm_head", None) is not None:
|
942 |
+
with tf.name_scope(self.lm_head.name):
|
943 |
+
self.lm_head.build(None)
|
944 |
+
|
945 |
+
|
946 |
+
class TFMPNetClassificationHead(keras.layers.Layer):
|
947 |
+
"""Head for sentence-level classification tasks."""
|
948 |
+
|
949 |
+
def __init__(self, config, **kwargs):
|
950 |
+
super().__init__(**kwargs)
|
951 |
+
self.dense = keras.layers.Dense(
|
952 |
+
config.hidden_size,
|
953 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
954 |
+
activation="tanh",
|
955 |
+
name="dense",
|
956 |
+
)
|
957 |
+
self.dropout = keras.layers.Dropout(config.hidden_dropout_prob)
|
958 |
+
self.out_proj = keras.layers.Dense(
|
959 |
+
config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="out_proj"
|
960 |
+
)
|
961 |
+
self.config = config
|
962 |
+
|
963 |
+
def call(self, features, training=False):
|
964 |
+
x = features[:, 0, :] # take <s> token (equiv. to [CLS])
|
965 |
+
x = self.dropout(x, training=training)
|
966 |
+
x = self.dense(x)
|
967 |
+
x = self.dropout(x, training=training)
|
968 |
+
x = self.out_proj(x)
|
969 |
+
return x
|
970 |
+
|
971 |
+
def build(self, input_shape=None):
|
972 |
+
if self.built:
|
973 |
+
return
|
974 |
+
self.built = True
|
975 |
+
if getattr(self, "dense", None) is not None:
|
976 |
+
with tf.name_scope(self.dense.name):
|
977 |
+
self.dense.build([None, None, self.config.hidden_size])
|
978 |
+
if getattr(self, "out_proj", None) is not None:
|
979 |
+
with tf.name_scope(self.out_proj.name):
|
980 |
+
self.out_proj.build([None, None, self.config.hidden_size])
|
981 |
+
|
982 |
+
|
983 |
+
@add_start_docstrings(
|
984 |
+
"""
|
985 |
+
MPNet Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled
|
986 |
+
output) e.g. for GLUE tasks.
|
987 |
+
""",
|
988 |
+
MPNET_START_DOCSTRING,
|
989 |
+
)
|
990 |
+
class TFMPNetForSequenceClassification(TFMPNetPreTrainedModel, TFSequenceClassificationLoss):
|
991 |
+
_keys_to_ignore_on_load_missing = [r"pooler"]
|
992 |
+
|
993 |
+
def __init__(self, config, *inputs, **kwargs):
|
994 |
+
super().__init__(config, *inputs, **kwargs)
|
995 |
+
self.num_labels = config.num_labels
|
996 |
+
|
997 |
+
self.mpnet = TFMPNetMainLayer(config, name="mpnet")
|
998 |
+
self.classifier = TFMPNetClassificationHead(config, name="classifier")
|
999 |
+
|
1000 |
+
@unpack_inputs
|
1001 |
+
@add_start_docstrings_to_model_forward(MPNET_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1002 |
+
@add_code_sample_docstrings(
|
1003 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1004 |
+
output_type=TFSequenceClassifierOutput,
|
1005 |
+
config_class=_CONFIG_FOR_DOC,
|
1006 |
+
)
|
1007 |
+
def call(
|
1008 |
+
self,
|
1009 |
+
input_ids: TFModelInputType | None = None,
|
1010 |
+
attention_mask: Optional[Union[np.array, tf.Tensor]] = None,
|
1011 |
+
position_ids: Optional[Union[np.array, tf.Tensor]] = None,
|
1012 |
+
head_mask: Optional[Union[np.array, tf.Tensor]] = None,
|
1013 |
+
inputs_embeds: tf.Tensor | None = None,
|
1014 |
+
output_attentions: Optional[bool] = None,
|
1015 |
+
output_hidden_states: Optional[bool] = None,
|
1016 |
+
return_dict: Optional[bool] = None,
|
1017 |
+
labels: tf.Tensor | None = None,
|
1018 |
+
training: bool = False,
|
1019 |
+
) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
|
1020 |
+
r"""
|
1021 |
+
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
|
1022 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1023 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1024 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1025 |
+
"""
|
1026 |
+
outputs = self.mpnet(
|
1027 |
+
input_ids,
|
1028 |
+
attention_mask=attention_mask,
|
1029 |
+
position_ids=position_ids,
|
1030 |
+
head_mask=head_mask,
|
1031 |
+
inputs_embeds=inputs_embeds,
|
1032 |
+
output_attentions=output_attentions,
|
1033 |
+
output_hidden_states=output_hidden_states,
|
1034 |
+
return_dict=return_dict,
|
1035 |
+
training=training,
|
1036 |
+
)
|
1037 |
+
|
1038 |
+
sequence_output = outputs[0]
|
1039 |
+
logits = self.classifier(sequence_output, training=training)
|
1040 |
+
|
1041 |
+
loss = None if labels is None else self.hf_compute_loss(labels, logits)
|
1042 |
+
|
1043 |
+
if not return_dict:
|
1044 |
+
output = (logits,) + outputs[2:]
|
1045 |
+
return ((loss,) + output) if loss is not None else output
|
1046 |
+
|
1047 |
+
return TFSequenceClassifierOutput(
|
1048 |
+
loss=loss,
|
1049 |
+
logits=logits,
|
1050 |
+
hidden_states=outputs.hidden_states,
|
1051 |
+
attentions=outputs.attentions,
|
1052 |
+
)
|
1053 |
+
|
1054 |
+
def build(self, input_shape=None):
|
1055 |
+
if self.built:
|
1056 |
+
return
|
1057 |
+
self.built = True
|
1058 |
+
if getattr(self, "mpnet", None) is not None:
|
1059 |
+
with tf.name_scope(self.mpnet.name):
|
1060 |
+
self.mpnet.build(None)
|
1061 |
+
if getattr(self, "classifier", None) is not None:
|
1062 |
+
with tf.name_scope(self.classifier.name):
|
1063 |
+
self.classifier.build(None)
|
1064 |
+
|
1065 |
+
|
1066 |
+
@add_start_docstrings(
|
1067 |
+
"""
|
1068 |
+
MPNet Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
|
1069 |
+
softmax) e.g. for RocStories/SWAG tasks.
|
1070 |
+
""",
|
1071 |
+
MPNET_START_DOCSTRING,
|
1072 |
+
)
|
1073 |
+
class TFMPNetForMultipleChoice(TFMPNetPreTrainedModel, TFMultipleChoiceLoss):
|
1074 |
+
def __init__(self, config, *inputs, **kwargs):
|
1075 |
+
super().__init__(config, *inputs, **kwargs)
|
1076 |
+
|
1077 |
+
self.mpnet = TFMPNetMainLayer(config, name="mpnet")
|
1078 |
+
self.dropout = keras.layers.Dropout(config.hidden_dropout_prob)
|
1079 |
+
self.classifier = keras.layers.Dense(
|
1080 |
+
1, kernel_initializer=get_initializer(config.initializer_range), name="classifier"
|
1081 |
+
)
|
1082 |
+
self.config = config
|
1083 |
+
|
1084 |
+
@unpack_inputs
|
1085 |
+
@add_start_docstrings_to_model_forward(MPNET_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
|
1086 |
+
@add_code_sample_docstrings(
|
1087 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1088 |
+
output_type=TFMultipleChoiceModelOutput,
|
1089 |
+
config_class=_CONFIG_FOR_DOC,
|
1090 |
+
)
|
1091 |
+
def call(
|
1092 |
+
self,
|
1093 |
+
input_ids: TFModelInputType | None = None,
|
1094 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1095 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
1096 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
1097 |
+
inputs_embeds: tf.Tensor | None = None,
|
1098 |
+
output_attentions: Optional[bool] = None,
|
1099 |
+
output_hidden_states: Optional[bool] = None,
|
1100 |
+
return_dict: Optional[bool] = None,
|
1101 |
+
labels: tf.Tensor | None = None,
|
1102 |
+
training: bool = False,
|
1103 |
+
) -> Union[TFMultipleChoiceModelOutput, Tuple[tf.Tensor]]:
|
1104 |
+
r"""
|
1105 |
+
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
|
1106 |
+
Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]`
|
1107 |
+
where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above)
|
1108 |
+
"""
|
1109 |
+
if input_ids is not None:
|
1110 |
+
num_choices = shape_list(input_ids)[1]
|
1111 |
+
seq_length = shape_list(input_ids)[2]
|
1112 |
+
else:
|
1113 |
+
num_choices = shape_list(inputs_embeds)[1]
|
1114 |
+
seq_length = shape_list(inputs_embeds)[2]
|
1115 |
+
|
1116 |
+
flat_input_ids = tf.reshape(input_ids, (-1, seq_length)) if input_ids is not None else None
|
1117 |
+
flat_attention_mask = tf.reshape(attention_mask, (-1, seq_length)) if attention_mask is not None else None
|
1118 |
+
flat_position_ids = tf.reshape(position_ids, (-1, seq_length)) if position_ids is not None else None
|
1119 |
+
flat_inputs_embeds = (
|
1120 |
+
tf.reshape(inputs_embeds, (-1, seq_length, shape_list(inputs_embeds)[3]))
|
1121 |
+
if inputs_embeds is not None
|
1122 |
+
else None
|
1123 |
+
)
|
1124 |
+
outputs = self.mpnet(
|
1125 |
+
flat_input_ids,
|
1126 |
+
flat_attention_mask,
|
1127 |
+
flat_position_ids,
|
1128 |
+
head_mask,
|
1129 |
+
flat_inputs_embeds,
|
1130 |
+
output_attentions,
|
1131 |
+
output_hidden_states,
|
1132 |
+
return_dict=return_dict,
|
1133 |
+
training=training,
|
1134 |
+
)
|
1135 |
+
pooled_output = outputs[1]
|
1136 |
+
pooled_output = self.dropout(pooled_output, training=training)
|
1137 |
+
logits = self.classifier(pooled_output)
|
1138 |
+
reshaped_logits = tf.reshape(logits, (-1, num_choices))
|
1139 |
+
loss = None if labels is None else self.hf_compute_loss(labels, reshaped_logits)
|
1140 |
+
|
1141 |
+
if not return_dict:
|
1142 |
+
output = (reshaped_logits,) + outputs[2:]
|
1143 |
+
return ((loss,) + output) if loss is not None else output
|
1144 |
+
|
1145 |
+
return TFMultipleChoiceModelOutput(
|
1146 |
+
loss=loss,
|
1147 |
+
logits=reshaped_logits,
|
1148 |
+
hidden_states=outputs.hidden_states,
|
1149 |
+
attentions=outputs.attentions,
|
1150 |
+
)
|
1151 |
+
|
1152 |
+
def build(self, input_shape=None):
|
1153 |
+
if self.built:
|
1154 |
+
return
|
1155 |
+
self.built = True
|
1156 |
+
if getattr(self, "mpnet", None) is not None:
|
1157 |
+
with tf.name_scope(self.mpnet.name):
|
1158 |
+
self.mpnet.build(None)
|
1159 |
+
if getattr(self, "classifier", None) is not None:
|
1160 |
+
with tf.name_scope(self.classifier.name):
|
1161 |
+
self.classifier.build([None, None, self.config.hidden_size])
|
1162 |
+
|
1163 |
+
|
1164 |
+
@add_start_docstrings(
|
1165 |
+
"""
|
1166 |
+
MPNet Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
|
1167 |
+
Named-Entity-Recognition (NER) tasks.
|
1168 |
+
""",
|
1169 |
+
MPNET_START_DOCSTRING,
|
1170 |
+
)
|
1171 |
+
class TFMPNetForTokenClassification(TFMPNetPreTrainedModel, TFTokenClassificationLoss):
|
1172 |
+
_keys_to_ignore_on_load_missing = [r"pooler"]
|
1173 |
+
|
1174 |
+
def __init__(self, config, *inputs, **kwargs):
|
1175 |
+
super().__init__(config, *inputs, **kwargs)
|
1176 |
+
|
1177 |
+
self.num_labels = config.num_labels
|
1178 |
+
self.mpnet = TFMPNetMainLayer(config, name="mpnet")
|
1179 |
+
self.dropout = keras.layers.Dropout(config.hidden_dropout_prob)
|
1180 |
+
self.classifier = keras.layers.Dense(
|
1181 |
+
config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier"
|
1182 |
+
)
|
1183 |
+
self.config = config
|
1184 |
+
|
1185 |
+
@unpack_inputs
|
1186 |
+
@add_start_docstrings_to_model_forward(MPNET_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1187 |
+
@add_code_sample_docstrings(
|
1188 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1189 |
+
output_type=TFTokenClassifierOutput,
|
1190 |
+
config_class=_CONFIG_FOR_DOC,
|
1191 |
+
)
|
1192 |
+
def call(
|
1193 |
+
self,
|
1194 |
+
input_ids: TFModelInputType | None = None,
|
1195 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1196 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
1197 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
1198 |
+
inputs_embeds: tf.Tensor | None = None,
|
1199 |
+
output_attentions: Optional[bool] = None,
|
1200 |
+
output_hidden_states: Optional[bool] = None,
|
1201 |
+
return_dict: Optional[bool] = None,
|
1202 |
+
labels: tf.Tensor | None = None,
|
1203 |
+
training: bool = False,
|
1204 |
+
) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]:
|
1205 |
+
r"""
|
1206 |
+
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1207 |
+
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
|
1208 |
+
"""
|
1209 |
+
outputs = self.mpnet(
|
1210 |
+
input_ids=input_ids,
|
1211 |
+
attention_mask=attention_mask,
|
1212 |
+
position_ids=position_ids,
|
1213 |
+
head_mask=head_mask,
|
1214 |
+
inputs_embeds=inputs_embeds,
|
1215 |
+
output_attentions=output_attentions,
|
1216 |
+
output_hidden_states=output_hidden_states,
|
1217 |
+
return_dict=return_dict,
|
1218 |
+
training=training,
|
1219 |
+
)
|
1220 |
+
sequence_output = outputs[0]
|
1221 |
+
|
1222 |
+
sequence_output = self.dropout(sequence_output, training=training)
|
1223 |
+
logits = self.classifier(sequence_output)
|
1224 |
+
|
1225 |
+
loss = None if labels is None else self.hf_compute_loss(labels, logits)
|
1226 |
+
|
1227 |
+
if not return_dict:
|
1228 |
+
output = (logits,) + outputs[1:]
|
1229 |
+
return ((loss,) + output) if loss is not None else output
|
1230 |
+
|
1231 |
+
return TFTokenClassifierOutput(
|
1232 |
+
loss=loss,
|
1233 |
+
logits=logits,
|
1234 |
+
hidden_states=outputs.hidden_states,
|
1235 |
+
attentions=outputs.attentions,
|
1236 |
+
)
|
1237 |
+
|
1238 |
+
def build(self, input_shape=None):
|
1239 |
+
if self.built:
|
1240 |
+
return
|
1241 |
+
self.built = True
|
1242 |
+
if getattr(self, "mpnet", None) is not None:
|
1243 |
+
with tf.name_scope(self.mpnet.name):
|
1244 |
+
self.mpnet.build(None)
|
1245 |
+
if getattr(self, "classifier", None) is not None:
|
1246 |
+
with tf.name_scope(self.classifier.name):
|
1247 |
+
self.classifier.build([None, None, self.config.hidden_size])
|
1248 |
+
|
1249 |
+
|
1250 |
+
@add_start_docstrings(
|
1251 |
+
"""
|
1252 |
+
MPNet Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
|
1253 |
+
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
1254 |
+
""",
|
1255 |
+
MPNET_START_DOCSTRING,
|
1256 |
+
)
|
1257 |
+
class TFMPNetForQuestionAnswering(TFMPNetPreTrainedModel, TFQuestionAnsweringLoss):
|
1258 |
+
_keys_to_ignore_on_load_missing = [r"pooler"]
|
1259 |
+
|
1260 |
+
def __init__(self, config, *inputs, **kwargs):
|
1261 |
+
super().__init__(config, *inputs, **kwargs)
|
1262 |
+
self.num_labels = config.num_labels
|
1263 |
+
|
1264 |
+
self.mpnet = TFMPNetMainLayer(config, name="mpnet")
|
1265 |
+
self.qa_outputs = keras.layers.Dense(
|
1266 |
+
config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs"
|
1267 |
+
)
|
1268 |
+
self.config = config
|
1269 |
+
|
1270 |
+
@unpack_inputs
|
1271 |
+
@add_start_docstrings_to_model_forward(MPNET_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1272 |
+
@add_code_sample_docstrings(
|
1273 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1274 |
+
output_type=TFQuestionAnsweringModelOutput,
|
1275 |
+
config_class=_CONFIG_FOR_DOC,
|
1276 |
+
)
|
1277 |
+
def call(
|
1278 |
+
self,
|
1279 |
+
input_ids: TFModelInputType | None = None,
|
1280 |
+
attention_mask: Optional[Union[np.array, tf.Tensor]] = None,
|
1281 |
+
position_ids: Optional[Union[np.array, tf.Tensor]] = None,
|
1282 |
+
head_mask: Optional[Union[np.array, tf.Tensor]] = None,
|
1283 |
+
inputs_embeds: tf.Tensor | None = None,
|
1284 |
+
output_attentions: Optional[bool] = None,
|
1285 |
+
output_hidden_states: Optional[bool] = None,
|
1286 |
+
return_dict: Optional[bool] = None,
|
1287 |
+
start_positions: tf.Tensor | None = None,
|
1288 |
+
end_positions: tf.Tensor | None = None,
|
1289 |
+
training: bool = False,
|
1290 |
+
**kwargs,
|
1291 |
+
) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]:
|
1292 |
+
r"""
|
1293 |
+
start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):
|
1294 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
1295 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1296 |
+
are not taken into account for computing the loss.
|
1297 |
+
end_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):
|
1298 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
1299 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1300 |
+
are not taken into account for computing the loss.
|
1301 |
+
"""
|
1302 |
+
outputs = self.mpnet(
|
1303 |
+
input_ids,
|
1304 |
+
attention_mask=attention_mask,
|
1305 |
+
position_ids=position_ids,
|
1306 |
+
head_mask=head_mask,
|
1307 |
+
inputs_embeds=inputs_embeds,
|
1308 |
+
output_attentions=output_attentions,
|
1309 |
+
output_hidden_states=output_hidden_states,
|
1310 |
+
return_dict=return_dict,
|
1311 |
+
training=training,
|
1312 |
+
)
|
1313 |
+
sequence_output = outputs[0]
|
1314 |
+
|
1315 |
+
logits = self.qa_outputs(sequence_output)
|
1316 |
+
start_logits, end_logits = tf.split(logits, 2, axis=-1)
|
1317 |
+
start_logits = tf.squeeze(start_logits, axis=-1)
|
1318 |
+
end_logits = tf.squeeze(end_logits, axis=-1)
|
1319 |
+
loss = None
|
1320 |
+
|
1321 |
+
if start_positions is not None and end_positions is not None:
|
1322 |
+
labels = {"start_position": start_positions, "end_position": end_positions}
|
1323 |
+
loss = self.hf_compute_loss(labels, (start_logits, end_logits))
|
1324 |
+
|
1325 |
+
if not return_dict:
|
1326 |
+
output = (start_logits, end_logits) + outputs[2:]
|
1327 |
+
return ((loss,) + output) if loss is not None else output
|
1328 |
+
|
1329 |
+
return TFQuestionAnsweringModelOutput(
|
1330 |
+
loss=loss,
|
1331 |
+
start_logits=start_logits,
|
1332 |
+
end_logits=end_logits,
|
1333 |
+
hidden_states=outputs.hidden_states,
|
1334 |
+
attentions=outputs.attentions,
|
1335 |
+
)
|
1336 |
+
|
1337 |
+
def build(self, input_shape=None):
|
1338 |
+
if self.built:
|
1339 |
+
return
|
1340 |
+
self.built = True
|
1341 |
+
if getattr(self, "mpnet", None) is not None:
|
1342 |
+
with tf.name_scope(self.mpnet.name):
|
1343 |
+
self.mpnet.build(None)
|
1344 |
+
if getattr(self, "qa_outputs", None) is not None:
|
1345 |
+
with tf.name_scope(self.qa_outputs.name):
|
1346 |
+
self.qa_outputs.build([None, None, self.config.hidden_size])
|
env-llmeval/lib/python3.10/site-packages/transformers/models/mpnet/tokenization_mpnet.py
ADDED
@@ -0,0 +1,546 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The HuggingFace Inc. team, Microsoft Corporation.
|
3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
"""Tokenization classes for MPNet."""
|
17 |
+
|
18 |
+
import collections
|
19 |
+
import os
|
20 |
+
import unicodedata
|
21 |
+
from typing import List, Optional, Tuple
|
22 |
+
|
23 |
+
from ...tokenization_utils import AddedToken, PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace
|
24 |
+
from ...utils import logging
|
25 |
+
|
26 |
+
|
27 |
+
logger = logging.get_logger(__name__)
|
28 |
+
|
29 |
+
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"}
|
30 |
+
|
31 |
+
PRETRAINED_VOCAB_FILES_MAP = {
|
32 |
+
"vocab_file": {
|
33 |
+
"microsoft/mpnet-base": "https://huggingface.co/microsoft/mpnet-base/resolve/main/vocab.txt",
|
34 |
+
}
|
35 |
+
}
|
36 |
+
|
37 |
+
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
|
38 |
+
"microsoft/mpnet-base": 512,
|
39 |
+
}
|
40 |
+
|
41 |
+
PRETRAINED_INIT_CONFIGURATION = {
|
42 |
+
"microsoft/mpnet-base": {"do_lower_case": True},
|
43 |
+
}
|
44 |
+
|
45 |
+
|
46 |
+
def load_vocab(vocab_file):
|
47 |
+
"""Loads a vocabulary file into a dictionary."""
|
48 |
+
vocab = collections.OrderedDict()
|
49 |
+
with open(vocab_file, "r", encoding="utf-8") as reader:
|
50 |
+
tokens = reader.readlines()
|
51 |
+
for index, token in enumerate(tokens):
|
52 |
+
token = token.rstrip("\n")
|
53 |
+
vocab[token] = index
|
54 |
+
return vocab
|
55 |
+
|
56 |
+
|
57 |
+
def whitespace_tokenize(text):
|
58 |
+
"""Runs basic whitespace cleaning and splitting on a piece of text."""
|
59 |
+
text = text.strip()
|
60 |
+
if not text:
|
61 |
+
return []
|
62 |
+
tokens = text.split()
|
63 |
+
return tokens
|
64 |
+
|
65 |
+
|
66 |
+
class MPNetTokenizer(PreTrainedTokenizer):
|
67 |
+
"""
|
68 |
+
|
69 |
+
This tokenizer inherits from [`BertTokenizer`] which contains most of the methods. Users should refer to the
|
70 |
+
superclass for more information regarding methods.
|
71 |
+
|
72 |
+
Args:
|
73 |
+
vocab_file (`str`):
|
74 |
+
Path to the vocabulary file.
|
75 |
+
do_lower_case (`bool`, *optional*, defaults to `True`):
|
76 |
+
Whether or not to lowercase the input when tokenizing.
|
77 |
+
do_basic_tokenize (`bool`, *optional*, defaults to `True`):
|
78 |
+
Whether or not to do basic tokenization before WordPiece.
|
79 |
+
never_split (`Iterable`, *optional*):
|
80 |
+
Collection of tokens which will never be split during tokenization. Only has an effect when
|
81 |
+
`do_basic_tokenize=True`
|
82 |
+
bos_token (`str`, *optional*, defaults to `"<s>"`):
|
83 |
+
The beginning of sequence token that was used during pre-training. Can be used a sequence classifier token.
|
84 |
+
|
85 |
+
<Tip>
|
86 |
+
|
87 |
+
When building a sequence using special tokens, this is not the token that is used for the beginning of
|
88 |
+
sequence. The token used is the `cls_token`.
|
89 |
+
|
90 |
+
</Tip>
|
91 |
+
|
92 |
+
eos_token (`str`, *optional*, defaults to `"</s>"`):
|
93 |
+
The end of sequence token.
|
94 |
+
|
95 |
+
<Tip>
|
96 |
+
|
97 |
+
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
|
98 |
+
The token used is the `sep_token`.
|
99 |
+
|
100 |
+
</Tip>
|
101 |
+
|
102 |
+
sep_token (`str`, *optional*, defaults to `"</s>"`):
|
103 |
+
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
|
104 |
+
sequence classification or for a text and a question for question answering. It is also used as the last
|
105 |
+
token of a sequence built with special tokens.
|
106 |
+
cls_token (`str`, *optional*, defaults to `"<s>"`):
|
107 |
+
The classifier token which is used when doing sequence classification (classification of the whole sequence
|
108 |
+
instead of per-token classification). It is the first token of the sequence when built with special tokens.
|
109 |
+
unk_token (`str`, *optional*, defaults to `"[UNK]"`):
|
110 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
111 |
+
token instead.
|
112 |
+
pad_token (`str`, *optional*, defaults to `"<pad>"`):
|
113 |
+
The token used for padding, for example when batching sequences of different lengths.
|
114 |
+
mask_token (`str`, *optional*, defaults to `"<mask>"`):
|
115 |
+
The token used for masking values. This is the token used when training this model with masked language
|
116 |
+
modeling. This is the token which the model will try to predict.
|
117 |
+
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
|
118 |
+
Whether or not to tokenize Chinese characters.
|
119 |
+
|
120 |
+
This should likely be deactivated for Japanese (see this
|
121 |
+
[issue](https://github.com/huggingface/transformers/issues/328)).
|
122 |
+
strip_accents (`bool`, *optional*):
|
123 |
+
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
|
124 |
+
value for `lowercase` (as in the original BERT).
|
125 |
+
"""
|
126 |
+
|
127 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
128 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
129 |
+
pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION
|
130 |
+
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
131 |
+
model_input_names = ["input_ids", "attention_mask"]
|
132 |
+
|
133 |
+
def __init__(
|
134 |
+
self,
|
135 |
+
vocab_file,
|
136 |
+
do_lower_case=True,
|
137 |
+
do_basic_tokenize=True,
|
138 |
+
never_split=None,
|
139 |
+
bos_token="<s>",
|
140 |
+
eos_token="</s>",
|
141 |
+
sep_token="</s>",
|
142 |
+
cls_token="<s>",
|
143 |
+
unk_token="[UNK]",
|
144 |
+
pad_token="<pad>",
|
145 |
+
mask_token="<mask>",
|
146 |
+
tokenize_chinese_chars=True,
|
147 |
+
strip_accents=None,
|
148 |
+
**kwargs,
|
149 |
+
):
|
150 |
+
bos_token = AddedToken(bos_token, special=True) if isinstance(bos_token, str) else bos_token
|
151 |
+
eos_token = AddedToken(eos_token, special=True) if isinstance(eos_token, str) else eos_token
|
152 |
+
sep_token = AddedToken(sep_token, special=True) if isinstance(sep_token, str) else sep_token
|
153 |
+
cls_token = AddedToken(cls_token, special=True) if isinstance(cls_token, str) else cls_token
|
154 |
+
unk_token = AddedToken(unk_token, special=True) if isinstance(unk_token, str) else unk_token
|
155 |
+
pad_token = AddedToken(pad_token, special=True) if isinstance(pad_token, str) else pad_token
|
156 |
+
|
157 |
+
# Mask token behave like a normal word, i.e. include the space before it
|
158 |
+
mask_token = AddedToken(mask_token, lstrip=True, special=True) if isinstance(mask_token, str) else mask_token
|
159 |
+
|
160 |
+
if not os.path.isfile(vocab_file):
|
161 |
+
raise ValueError(
|
162 |
+
f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained"
|
163 |
+
" model use `tokenizer = AutoTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
|
164 |
+
)
|
165 |
+
self.vocab = load_vocab(vocab_file)
|
166 |
+
self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()])
|
167 |
+
self.do_basic_tokenize = do_basic_tokenize
|
168 |
+
if do_basic_tokenize:
|
169 |
+
self.basic_tokenizer = BasicTokenizer(
|
170 |
+
do_lower_case=do_lower_case,
|
171 |
+
never_split=never_split,
|
172 |
+
tokenize_chinese_chars=tokenize_chinese_chars,
|
173 |
+
strip_accents=strip_accents,
|
174 |
+
)
|
175 |
+
self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=str(unk_token))
|
176 |
+
|
177 |
+
super().__init__(
|
178 |
+
do_lower_case=do_lower_case,
|
179 |
+
do_basic_tokenize=do_basic_tokenize,
|
180 |
+
never_split=never_split,
|
181 |
+
bos_token=bos_token,
|
182 |
+
eos_token=eos_token,
|
183 |
+
unk_token=unk_token,
|
184 |
+
sep_token=sep_token,
|
185 |
+
cls_token=cls_token,
|
186 |
+
pad_token=pad_token,
|
187 |
+
mask_token=mask_token,
|
188 |
+
tokenize_chinese_chars=tokenize_chinese_chars,
|
189 |
+
strip_accents=strip_accents,
|
190 |
+
**kwargs,
|
191 |
+
)
|
192 |
+
|
193 |
+
@property
|
194 |
+
def do_lower_case(self):
|
195 |
+
return self.basic_tokenizer.do_lower_case
|
196 |
+
|
197 |
+
@property
|
198 |
+
def vocab_size(self):
|
199 |
+
return len(self.vocab)
|
200 |
+
|
201 |
+
def get_vocab(self):
|
202 |
+
# "<mask>" is part of the vocab, but was wrongfully added at a wrong index in the fast saved version
|
203 |
+
vocab = self.added_tokens_encoder.copy()
|
204 |
+
vocab.update(self.vocab)
|
205 |
+
return vocab
|
206 |
+
|
207 |
+
def _tokenize(self, text):
|
208 |
+
split_tokens = []
|
209 |
+
if self.do_basic_tokenize:
|
210 |
+
for token in self.basic_tokenizer.tokenize(text, never_split=self.all_special_tokens):
|
211 |
+
# If the token is part of the never_split set
|
212 |
+
if token in self.basic_tokenizer.never_split:
|
213 |
+
split_tokens.append(token)
|
214 |
+
else:
|
215 |
+
split_tokens += self.wordpiece_tokenizer.tokenize(token)
|
216 |
+
else:
|
217 |
+
split_tokens = self.wordpiece_tokenizer.tokenize(text)
|
218 |
+
return split_tokens
|
219 |
+
|
220 |
+
def _convert_token_to_id(self, token):
|
221 |
+
"""Converts a token (str) in an id using the vocab."""
|
222 |
+
return self.vocab.get(token, self.vocab.get(self.unk_token))
|
223 |
+
|
224 |
+
def _convert_id_to_token(self, index):
|
225 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
226 |
+
return self.ids_to_tokens.get(index, self.unk_token)
|
227 |
+
|
228 |
+
def convert_tokens_to_string(self, tokens):
|
229 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
230 |
+
out_string = " ".join(tokens).replace(" ##", "").strip()
|
231 |
+
return out_string
|
232 |
+
|
233 |
+
def build_inputs_with_special_tokens(
|
234 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
235 |
+
) -> List[int]:
|
236 |
+
"""
|
237 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
238 |
+
adding special tokens. A MPNet sequence has the following format:
|
239 |
+
|
240 |
+
- single sequence: `<s> X </s>`
|
241 |
+
- pair of sequences: `<s> A </s></s> B </s>`
|
242 |
+
|
243 |
+
Args:
|
244 |
+
token_ids_0 (`List[int]`):
|
245 |
+
List of IDs to which the special tokens will be added
|
246 |
+
token_ids_1 (`List[int]`, *optional*):
|
247 |
+
Optional second list of IDs for sequence pairs.
|
248 |
+
|
249 |
+
Returns:
|
250 |
+
`List[int]`: list of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
251 |
+
"""
|
252 |
+
if token_ids_1 is None:
|
253 |
+
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
|
254 |
+
cls = [self.cls_token_id]
|
255 |
+
sep = [self.sep_token_id]
|
256 |
+
return cls + token_ids_0 + sep + sep + token_ids_1 + sep
|
257 |
+
|
258 |
+
def get_special_tokens_mask(
|
259 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
260 |
+
) -> List[int]:
|
261 |
+
"""
|
262 |
+
Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
|
263 |
+
special tokens using the tokenizer `prepare_for_model` methods.
|
264 |
+
|
265 |
+
Args:
|
266 |
+
token_ids_0 (`List[int]`):
|
267 |
+
List of ids.
|
268 |
+
token_ids_1 (`List[int]`, *optional*):
|
269 |
+
Optional second list of IDs for sequence pairs.
|
270 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
271 |
+
Set to True if the token list is already formatted with special tokens for the model
|
272 |
+
|
273 |
+
Returns:
|
274 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
275 |
+
"""
|
276 |
+
if already_has_special_tokens:
|
277 |
+
return super().get_special_tokens_mask(
|
278 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
279 |
+
)
|
280 |
+
|
281 |
+
if token_ids_1 is None:
|
282 |
+
return [1] + ([0] * len(token_ids_0)) + [1]
|
283 |
+
return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
|
284 |
+
|
285 |
+
def create_token_type_ids_from_sequences(
|
286 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
287 |
+
) -> List[int]:
|
288 |
+
"""
|
289 |
+
Creates a mask from the two sequences passed to be used in a sequence-pair classification task. MPNet does not
|
290 |
+
make use of token type ids, therefore a list of zeros is returned.
|
291 |
+
|
292 |
+
Args:
|
293 |
+
token_ids_0 (`List[int]`):
|
294 |
+
List of ids.
|
295 |
+
token_ids_1 (`List[int]`, *optional*):
|
296 |
+
Optional second list of IDs for sequence pairs.
|
297 |
+
|
298 |
+
Returns:
|
299 |
+
`List[int]`: List of zeros.
|
300 |
+
"""
|
301 |
+
sep = [self.sep_token_id]
|
302 |
+
cls = [self.cls_token_id]
|
303 |
+
|
304 |
+
if token_ids_1 is None:
|
305 |
+
return len(cls + token_ids_0 + sep) * [0]
|
306 |
+
return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
|
307 |
+
|
308 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
309 |
+
index = 0
|
310 |
+
if os.path.isdir(save_directory):
|
311 |
+
vocab_file = os.path.join(
|
312 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
313 |
+
)
|
314 |
+
else:
|
315 |
+
vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory
|
316 |
+
with open(vocab_file, "w", encoding="utf-8") as writer:
|
317 |
+
for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]):
|
318 |
+
if index != token_index:
|
319 |
+
logger.warning(
|
320 |
+
f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."
|
321 |
+
" Please check that the vocabulary is not corrupted!"
|
322 |
+
)
|
323 |
+
index = token_index
|
324 |
+
writer.write(token + "\n")
|
325 |
+
index += 1
|
326 |
+
return (vocab_file,)
|
327 |
+
|
328 |
+
|
329 |
+
# Copied from transformers.models.bert.tokenization_bert.BasicTokenizer
|
330 |
+
class BasicTokenizer(object):
|
331 |
+
"""
|
332 |
+
Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.).
|
333 |
+
|
334 |
+
Args:
|
335 |
+
do_lower_case (`bool`, *optional*, defaults to `True`):
|
336 |
+
Whether or not to lowercase the input when tokenizing.
|
337 |
+
never_split (`Iterable`, *optional*):
|
338 |
+
Collection of tokens which will never be split during tokenization. Only has an effect when
|
339 |
+
`do_basic_tokenize=True`
|
340 |
+
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
|
341 |
+
Whether or not to tokenize Chinese characters.
|
342 |
+
|
343 |
+
This should likely be deactivated for Japanese (see this
|
344 |
+
[issue](https://github.com/huggingface/transformers/issues/328)).
|
345 |
+
strip_accents (`bool`, *optional*):
|
346 |
+
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
|
347 |
+
value for `lowercase` (as in the original BERT).
|
348 |
+
do_split_on_punc (`bool`, *optional*, defaults to `True`):
|
349 |
+
In some instances we want to skip the basic punctuation splitting so that later tokenization can capture
|
350 |
+
the full context of the words, such as contractions.
|
351 |
+
"""
|
352 |
+
|
353 |
+
def __init__(
|
354 |
+
self,
|
355 |
+
do_lower_case=True,
|
356 |
+
never_split=None,
|
357 |
+
tokenize_chinese_chars=True,
|
358 |
+
strip_accents=None,
|
359 |
+
do_split_on_punc=True,
|
360 |
+
):
|
361 |
+
if never_split is None:
|
362 |
+
never_split = []
|
363 |
+
self.do_lower_case = do_lower_case
|
364 |
+
self.never_split = set(never_split)
|
365 |
+
self.tokenize_chinese_chars = tokenize_chinese_chars
|
366 |
+
self.strip_accents = strip_accents
|
367 |
+
self.do_split_on_punc = do_split_on_punc
|
368 |
+
|
369 |
+
def tokenize(self, text, never_split=None):
|
370 |
+
"""
|
371 |
+
Basic Tokenization of a piece of text. For sub-word tokenization, see WordPieceTokenizer.
|
372 |
+
|
373 |
+
Args:
|
374 |
+
never_split (`List[str]`, *optional*)
|
375 |
+
Kept for backward compatibility purposes. Now implemented directly at the base class level (see
|
376 |
+
[`PreTrainedTokenizer.tokenize`]) List of token not to split.
|
377 |
+
"""
|
378 |
+
# union() returns a new set by concatenating the two sets.
|
379 |
+
never_split = self.never_split.union(set(never_split)) if never_split else self.never_split
|
380 |
+
text = self._clean_text(text)
|
381 |
+
|
382 |
+
# This was added on November 1st, 2018 for the multilingual and Chinese
|
383 |
+
# models. This is also applied to the English models now, but it doesn't
|
384 |
+
# matter since the English models were not trained on any Chinese data
|
385 |
+
# and generally don't have any Chinese data in them (there are Chinese
|
386 |
+
# characters in the vocabulary because Wikipedia does have some Chinese
|
387 |
+
# words in the English Wikipedia.).
|
388 |
+
if self.tokenize_chinese_chars:
|
389 |
+
text = self._tokenize_chinese_chars(text)
|
390 |
+
# prevents treating the same character with different unicode codepoints as different characters
|
391 |
+
unicode_normalized_text = unicodedata.normalize("NFC", text)
|
392 |
+
orig_tokens = whitespace_tokenize(unicode_normalized_text)
|
393 |
+
split_tokens = []
|
394 |
+
for token in orig_tokens:
|
395 |
+
if token not in never_split:
|
396 |
+
if self.do_lower_case:
|
397 |
+
token = token.lower()
|
398 |
+
if self.strip_accents is not False:
|
399 |
+
token = self._run_strip_accents(token)
|
400 |
+
elif self.strip_accents:
|
401 |
+
token = self._run_strip_accents(token)
|
402 |
+
split_tokens.extend(self._run_split_on_punc(token, never_split))
|
403 |
+
|
404 |
+
output_tokens = whitespace_tokenize(" ".join(split_tokens))
|
405 |
+
return output_tokens
|
406 |
+
|
407 |
+
def _run_strip_accents(self, text):
|
408 |
+
"""Strips accents from a piece of text."""
|
409 |
+
text = unicodedata.normalize("NFD", text)
|
410 |
+
output = []
|
411 |
+
for char in text:
|
412 |
+
cat = unicodedata.category(char)
|
413 |
+
if cat == "Mn":
|
414 |
+
continue
|
415 |
+
output.append(char)
|
416 |
+
return "".join(output)
|
417 |
+
|
418 |
+
def _run_split_on_punc(self, text, never_split=None):
|
419 |
+
"""Splits punctuation on a piece of text."""
|
420 |
+
if not self.do_split_on_punc or (never_split is not None and text in never_split):
|
421 |
+
return [text]
|
422 |
+
chars = list(text)
|
423 |
+
i = 0
|
424 |
+
start_new_word = True
|
425 |
+
output = []
|
426 |
+
while i < len(chars):
|
427 |
+
char = chars[i]
|
428 |
+
if _is_punctuation(char):
|
429 |
+
output.append([char])
|
430 |
+
start_new_word = True
|
431 |
+
else:
|
432 |
+
if start_new_word:
|
433 |
+
output.append([])
|
434 |
+
start_new_word = False
|
435 |
+
output[-1].append(char)
|
436 |
+
i += 1
|
437 |
+
|
438 |
+
return ["".join(x) for x in output]
|
439 |
+
|
440 |
+
def _tokenize_chinese_chars(self, text):
|
441 |
+
"""Adds whitespace around any CJK character."""
|
442 |
+
output = []
|
443 |
+
for char in text:
|
444 |
+
cp = ord(char)
|
445 |
+
if self._is_chinese_char(cp):
|
446 |
+
output.append(" ")
|
447 |
+
output.append(char)
|
448 |
+
output.append(" ")
|
449 |
+
else:
|
450 |
+
output.append(char)
|
451 |
+
return "".join(output)
|
452 |
+
|
453 |
+
def _is_chinese_char(self, cp):
|
454 |
+
"""Checks whether CP is the codepoint of a CJK character."""
|
455 |
+
# This defines a "chinese character" as anything in the CJK Unicode block:
|
456 |
+
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
|
457 |
+
#
|
458 |
+
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
|
459 |
+
# despite its name. The modern Korean Hangul alphabet is a different block,
|
460 |
+
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
|
461 |
+
# space-separated words, so they are not treated specially and handled
|
462 |
+
# like the all of the other languages.
|
463 |
+
if (
|
464 |
+
(cp >= 0x4E00 and cp <= 0x9FFF)
|
465 |
+
or (cp >= 0x3400 and cp <= 0x4DBF) #
|
466 |
+
or (cp >= 0x20000 and cp <= 0x2A6DF) #
|
467 |
+
or (cp >= 0x2A700 and cp <= 0x2B73F) #
|
468 |
+
or (cp >= 0x2B740 and cp <= 0x2B81F) #
|
469 |
+
or (cp >= 0x2B820 and cp <= 0x2CEAF) #
|
470 |
+
or (cp >= 0xF900 and cp <= 0xFAFF)
|
471 |
+
or (cp >= 0x2F800 and cp <= 0x2FA1F) #
|
472 |
+
): #
|
473 |
+
return True
|
474 |
+
|
475 |
+
return False
|
476 |
+
|
477 |
+
def _clean_text(self, text):
|
478 |
+
"""Performs invalid character removal and whitespace cleanup on text."""
|
479 |
+
output = []
|
480 |
+
for char in text:
|
481 |
+
cp = ord(char)
|
482 |
+
if cp == 0 or cp == 0xFFFD or _is_control(char):
|
483 |
+
continue
|
484 |
+
if _is_whitespace(char):
|
485 |
+
output.append(" ")
|
486 |
+
else:
|
487 |
+
output.append(char)
|
488 |
+
return "".join(output)
|
489 |
+
|
490 |
+
|
491 |
+
# Copied from transformers.models.bert.tokenization_bert.WordpieceTokenizer
|
492 |
+
class WordpieceTokenizer(object):
|
493 |
+
"""Runs WordPiece tokenization."""
|
494 |
+
|
495 |
+
def __init__(self, vocab, unk_token, max_input_chars_per_word=100):
|
496 |
+
self.vocab = vocab
|
497 |
+
self.unk_token = unk_token
|
498 |
+
self.max_input_chars_per_word = max_input_chars_per_word
|
499 |
+
|
500 |
+
def tokenize(self, text):
|
501 |
+
"""
|
502 |
+
Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform
|
503 |
+
tokenization using the given vocabulary.
|
504 |
+
|
505 |
+
For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`.
|
506 |
+
|
507 |
+
Args:
|
508 |
+
text: A single token or whitespace separated tokens. This should have
|
509 |
+
already been passed through *BasicTokenizer*.
|
510 |
+
|
511 |
+
Returns:
|
512 |
+
A list of wordpiece tokens.
|
513 |
+
"""
|
514 |
+
|
515 |
+
output_tokens = []
|
516 |
+
for token in whitespace_tokenize(text):
|
517 |
+
chars = list(token)
|
518 |
+
if len(chars) > self.max_input_chars_per_word:
|
519 |
+
output_tokens.append(self.unk_token)
|
520 |
+
continue
|
521 |
+
|
522 |
+
is_bad = False
|
523 |
+
start = 0
|
524 |
+
sub_tokens = []
|
525 |
+
while start < len(chars):
|
526 |
+
end = len(chars)
|
527 |
+
cur_substr = None
|
528 |
+
while start < end:
|
529 |
+
substr = "".join(chars[start:end])
|
530 |
+
if start > 0:
|
531 |
+
substr = "##" + substr
|
532 |
+
if substr in self.vocab:
|
533 |
+
cur_substr = substr
|
534 |
+
break
|
535 |
+
end -= 1
|
536 |
+
if cur_substr is None:
|
537 |
+
is_bad = True
|
538 |
+
break
|
539 |
+
sub_tokens.append(cur_substr)
|
540 |
+
start = end
|
541 |
+
|
542 |
+
if is_bad:
|
543 |
+
output_tokens.append(self.unk_token)
|
544 |
+
else:
|
545 |
+
output_tokens.extend(sub_tokens)
|
546 |
+
return output_tokens
|
env-llmeval/lib/python3.10/site-packages/transformers/models/mpnet/tokenization_mpnet_fast.py
ADDED
@@ -0,0 +1,226 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The HuggingFace Inc. team, Microsoft Corporation.
|
3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
"""Fast Tokenization classes for MPNet."""
|
17 |
+
|
18 |
+
import json
|
19 |
+
from typing import List, Optional, Tuple
|
20 |
+
|
21 |
+
from tokenizers import normalizers
|
22 |
+
|
23 |
+
from ...tokenization_utils import AddedToken
|
24 |
+
from ...tokenization_utils_fast import PreTrainedTokenizerFast
|
25 |
+
from ...utils import logging
|
26 |
+
from .tokenization_mpnet import MPNetTokenizer
|
27 |
+
|
28 |
+
|
29 |
+
logger = logging.get_logger(__name__)
|
30 |
+
|
31 |
+
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
|
32 |
+
|
33 |
+
PRETRAINED_VOCAB_FILES_MAP = {
|
34 |
+
"vocab_file": {
|
35 |
+
"microsoft/mpnet-base": "https://huggingface.co/microsoft/mpnet-base/resolve/main/vocab.txt",
|
36 |
+
},
|
37 |
+
"tokenizer_file": {
|
38 |
+
"microsoft/mpnet-base": "https://huggingface.co/microsoft/mpnet-base/resolve/main/tokenizer.json",
|
39 |
+
},
|
40 |
+
}
|
41 |
+
|
42 |
+
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
|
43 |
+
"microsoft/mpnet-base": 512,
|
44 |
+
}
|
45 |
+
|
46 |
+
PRETRAINED_INIT_CONFIGURATION = {
|
47 |
+
"microsoft/mpnet-base": {"do_lower_case": True},
|
48 |
+
}
|
49 |
+
|
50 |
+
|
51 |
+
class MPNetTokenizerFast(PreTrainedTokenizerFast):
|
52 |
+
r"""
|
53 |
+
Construct a "fast" MPNet tokenizer (backed by HuggingFace's *tokenizers* library). Based on WordPiece.
|
54 |
+
|
55 |
+
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
|
56 |
+
refer to this superclass for more information regarding those methods.
|
57 |
+
|
58 |
+
Args:
|
59 |
+
vocab_file (`str`):
|
60 |
+
File containing the vocabulary.
|
61 |
+
do_lower_case (`bool`, *optional*, defaults to `True`):
|
62 |
+
Whether or not to lowercase the input when tokenizing.
|
63 |
+
bos_token (`str`, *optional*, defaults to `"<s>"`):
|
64 |
+
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
|
65 |
+
|
66 |
+
<Tip>
|
67 |
+
|
68 |
+
When building a sequence using special tokens, this is not the token that is used for the beginning of
|
69 |
+
sequence. The token used is the `cls_token`.
|
70 |
+
|
71 |
+
</Tip>
|
72 |
+
|
73 |
+
eos_token (`str`, *optional*, defaults to `"</s>"`):
|
74 |
+
The end of sequence token.
|
75 |
+
|
76 |
+
<Tip>
|
77 |
+
|
78 |
+
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
|
79 |
+
The token used is the `sep_token`.
|
80 |
+
|
81 |
+
</Tip>
|
82 |
+
|
83 |
+
sep_token (`str`, *optional*, defaults to `"</s>"`):
|
84 |
+
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
|
85 |
+
sequence classification or for a text and a question for question answering. It is also used as the last
|
86 |
+
token of a sequence built with special tokens.
|
87 |
+
cls_token (`str`, *optional*, defaults to `"<s>"`):
|
88 |
+
The classifier token which is used when doing sequence classification (classification of the whole sequence
|
89 |
+
instead of per-token classification). It is the first token of the sequence when built with special tokens.
|
90 |
+
unk_token (`str`, *optional*, defaults to `"[UNK]"`):
|
91 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
92 |
+
token instead.
|
93 |
+
pad_token (`str`, *optional*, defaults to `"<pad>"`):
|
94 |
+
The token used for padding, for example when batching sequences of different lengths.
|
95 |
+
mask_token (`str`, *optional*, defaults to `"<mask>"`):
|
96 |
+
The token used for masking values. This is the token used when training this model with masked language
|
97 |
+
modeling. This is the token which the model will try to predict.
|
98 |
+
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
|
99 |
+
Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see [this
|
100 |
+
issue](https://github.com/huggingface/transformers/issues/328)).
|
101 |
+
strip_accents (`bool`, *optional*):
|
102 |
+
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
|
103 |
+
value for `lowercase` (as in the original BERT).
|
104 |
+
"""
|
105 |
+
|
106 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
107 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
108 |
+
pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION
|
109 |
+
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
110 |
+
slow_tokenizer_class = MPNetTokenizer
|
111 |
+
model_input_names = ["input_ids", "attention_mask"]
|
112 |
+
|
113 |
+
def __init__(
|
114 |
+
self,
|
115 |
+
vocab_file=None,
|
116 |
+
tokenizer_file=None,
|
117 |
+
do_lower_case=True,
|
118 |
+
bos_token="<s>",
|
119 |
+
eos_token="</s>",
|
120 |
+
sep_token="</s>",
|
121 |
+
cls_token="<s>",
|
122 |
+
unk_token="[UNK]",
|
123 |
+
pad_token="<pad>",
|
124 |
+
mask_token="<mask>",
|
125 |
+
tokenize_chinese_chars=True,
|
126 |
+
strip_accents=None,
|
127 |
+
**kwargs,
|
128 |
+
):
|
129 |
+
bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token
|
130 |
+
eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
|
131 |
+
sep_token = AddedToken(sep_token, lstrip=False, rstrip=False) if isinstance(sep_token, str) else sep_token
|
132 |
+
cls_token = AddedToken(cls_token, lstrip=False, rstrip=False) if isinstance(cls_token, str) else cls_token
|
133 |
+
unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token
|
134 |
+
pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
|
135 |
+
|
136 |
+
# Mask token behave like a normal word, i.e. include the space before it
|
137 |
+
mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token
|
138 |
+
|
139 |
+
super().__init__(
|
140 |
+
vocab_file,
|
141 |
+
tokenizer_file=tokenizer_file,
|
142 |
+
do_lower_case=do_lower_case,
|
143 |
+
bos_token=bos_token,
|
144 |
+
eos_token=eos_token,
|
145 |
+
sep_token=sep_token,
|
146 |
+
cls_token=cls_token,
|
147 |
+
unk_token=unk_token,
|
148 |
+
pad_token=pad_token,
|
149 |
+
mask_token=mask_token,
|
150 |
+
tokenize_chinese_chars=tokenize_chinese_chars,
|
151 |
+
strip_accents=strip_accents,
|
152 |
+
**kwargs,
|
153 |
+
)
|
154 |
+
|
155 |
+
pre_tok_state = json.loads(self.backend_tokenizer.normalizer.__getstate__())
|
156 |
+
if (
|
157 |
+
pre_tok_state.get("lowercase", do_lower_case) != do_lower_case
|
158 |
+
or pre_tok_state.get("strip_accents", strip_accents) != strip_accents
|
159 |
+
):
|
160 |
+
pre_tok_class = getattr(normalizers, pre_tok_state.pop("type"))
|
161 |
+
pre_tok_state["lowercase"] = do_lower_case
|
162 |
+
pre_tok_state["strip_accents"] = strip_accents
|
163 |
+
self.backend_tokenizer.normalizer = pre_tok_class(**pre_tok_state)
|
164 |
+
|
165 |
+
self.do_lower_case = do_lower_case
|
166 |
+
|
167 |
+
@property
|
168 |
+
def mask_token(self) -> str:
|
169 |
+
"""
|
170 |
+
`str`: Mask token, to use when training a model with masked-language modeling. Log an error if used while not
|
171 |
+
having been set.
|
172 |
+
|
173 |
+
MPNet tokenizer has a special mask token to be usable in the fill-mask pipeline. The mask token will greedily
|
174 |
+
comprise the space before the *<mask>*.
|
175 |
+
"""
|
176 |
+
if self._mask_token is None:
|
177 |
+
if self.verbose:
|
178 |
+
logger.error("Using mask_token, but it is not set yet.")
|
179 |
+
return None
|
180 |
+
return str(self._mask_token)
|
181 |
+
|
182 |
+
@mask_token.setter
|
183 |
+
def mask_token(self, value):
|
184 |
+
"""
|
185 |
+
Overriding the default behavior of the mask token to have it eat the space before it.
|
186 |
+
|
187 |
+
This is needed to preserve backward compatibility with all the previously used models based on MPNet.
|
188 |
+
"""
|
189 |
+
# Mask token behave like a normal word, i.e. include the space before it
|
190 |
+
# So we set lstrip to True
|
191 |
+
value = AddedToken(value, lstrip=True, rstrip=False) if isinstance(value, str) else value
|
192 |
+
self._mask_token = value
|
193 |
+
|
194 |
+
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
195 |
+
output = [self.bos_token_id] + token_ids_0 + [self.eos_token_id]
|
196 |
+
if token_ids_1 is None:
|
197 |
+
return output
|
198 |
+
|
199 |
+
return output + [self.eos_token_id] + token_ids_1 + [self.eos_token_id]
|
200 |
+
|
201 |
+
def create_token_type_ids_from_sequences(
|
202 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
203 |
+
) -> List[int]:
|
204 |
+
"""
|
205 |
+
Creates a mask from the two sequences passed to be used in a sequence-pair classification task. MPNet does not
|
206 |
+
make use of token type ids, therefore a list of zeros is returned
|
207 |
+
|
208 |
+
Args:
|
209 |
+
token_ids_0 (`List[int]`):
|
210 |
+
List of ids.
|
211 |
+
token_ids_1 (`List[int]`, *optional*):
|
212 |
+
Optional second list of IDs for sequence pairs
|
213 |
+
|
214 |
+
Returns:
|
215 |
+
`List[int]`: List of zeros.
|
216 |
+
"""
|
217 |
+
sep = [self.sep_token_id]
|
218 |
+
cls = [self.cls_token_id]
|
219 |
+
|
220 |
+
if token_ids_1 is None:
|
221 |
+
return len(cls + token_ids_0 + sep) * [0]
|
222 |
+
return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
|
223 |
+
|
224 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
225 |
+
files = self._tokenizer.model.save(save_directory, name=filename_prefix)
|
226 |
+
return tuple(files)
|
env-llmeval/lib/python3.10/site-packages/transformers/models/timm_backbone/__init__.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# flake8: noqa
|
2 |
+
# There's no way to ignore "F401 '...' imported but unused" warnings in this
|
3 |
+
# module, but to preserve other warnings. So, don't check this module at all.
|
4 |
+
|
5 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
6 |
+
#
|
7 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
8 |
+
# you may not use this file except in compliance with the License.
|
9 |
+
# You may obtain a copy of the License at
|
10 |
+
#
|
11 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
12 |
+
#
|
13 |
+
# Unless required by applicable law or agreed to in writing, software
|
14 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
15 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
16 |
+
# See the License for the specific language governing permissions and
|
17 |
+
# limitations under the License.
|
18 |
+
from typing import TYPE_CHECKING
|
19 |
+
|
20 |
+
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
|
21 |
+
|
22 |
+
|
23 |
+
_import_structure = {"configuration_timm_backbone": ["TimmBackboneConfig"]}
|
24 |
+
|
25 |
+
|
26 |
+
try:
|
27 |
+
if not is_torch_available():
|
28 |
+
raise OptionalDependencyNotAvailable()
|
29 |
+
except OptionalDependencyNotAvailable:
|
30 |
+
pass
|
31 |
+
else:
|
32 |
+
_import_structure["modeling_timm_backbone"] = ["TimmBackbone"]
|
33 |
+
|
34 |
+
|
35 |
+
if TYPE_CHECKING:
|
36 |
+
from .configuration_timm_backbone import TimmBackboneConfig
|
37 |
+
|
38 |
+
try:
|
39 |
+
if not is_torch_available():
|
40 |
+
raise OptionalDependencyNotAvailable()
|
41 |
+
except OptionalDependencyNotAvailable:
|
42 |
+
pass
|
43 |
+
else:
|
44 |
+
from .modeling_timm_backbone import TimmBackbone
|
45 |
+
|
46 |
+
else:
|
47 |
+
import sys
|
48 |
+
|
49 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
env-llmeval/lib/python3.10/site-packages/transformers/models/timm_backbone/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (775 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/timm_backbone/__pycache__/configuration_timm_backbone.cpython-310.pyc
ADDED
Binary file (2.74 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/timm_backbone/__pycache__/modeling_timm_backbone.cpython-310.pyc
ADDED
Binary file (4.66 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/timm_backbone/configuration_timm_backbone.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
""" Configuration for Backbone models"""
|
17 |
+
|
18 |
+
from ...configuration_utils import PretrainedConfig
|
19 |
+
from ...utils import logging
|
20 |
+
|
21 |
+
|
22 |
+
logger = logging.get_logger(__name__)
|
23 |
+
|
24 |
+
|
25 |
+
class TimmBackboneConfig(PretrainedConfig):
|
26 |
+
r"""
|
27 |
+
This is the configuration class to store the configuration for a timm backbone [`TimmBackbone`].
|
28 |
+
|
29 |
+
It is used to instantiate a timm backbone model according to the specified arguments, defining the model.
|
30 |
+
|
31 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
32 |
+
documentation from [`PretrainedConfig`] for more information.
|
33 |
+
|
34 |
+
Args:
|
35 |
+
backbone (`str`, *optional*):
|
36 |
+
The timm checkpoint to load.
|
37 |
+
num_channels (`int`, *optional*, defaults to 3):
|
38 |
+
The number of input channels.
|
39 |
+
features_only (`bool`, *optional*, defaults to `True`):
|
40 |
+
Whether to output only the features or also the logits.
|
41 |
+
use_pretrained_backbone (`bool`, *optional*, defaults to `True`):
|
42 |
+
Whether to use a pretrained backbone.
|
43 |
+
out_indices (`List[int]`, *optional*):
|
44 |
+
If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how
|
45 |
+
many stages the model has). Will default to the last stage if unset.
|
46 |
+
freeze_batch_norm_2d (`bool`, *optional*, defaults to `False`):
|
47 |
+
Converts all `BatchNorm2d` and `SyncBatchNorm` layers of provided module into `FrozenBatchNorm2d`.
|
48 |
+
|
49 |
+
Example:
|
50 |
+
```python
|
51 |
+
>>> from transformers import TimmBackboneConfig, TimmBackbone
|
52 |
+
|
53 |
+
>>> # Initializing a timm backbone
|
54 |
+
>>> configuration = TimmBackboneConfig("resnet50")
|
55 |
+
|
56 |
+
>>> # Initializing a model from the configuration
|
57 |
+
>>> model = TimmBackbone(configuration)
|
58 |
+
|
59 |
+
>>> # Accessing the model configuration
|
60 |
+
>>> configuration = model.config
|
61 |
+
```
|
62 |
+
"""
|
63 |
+
|
64 |
+
model_type = "timm_backbone"
|
65 |
+
|
66 |
+
def __init__(
|
67 |
+
self,
|
68 |
+
backbone=None,
|
69 |
+
num_channels=3,
|
70 |
+
features_only=True,
|
71 |
+
use_pretrained_backbone=True,
|
72 |
+
out_indices=None,
|
73 |
+
freeze_batch_norm_2d=False,
|
74 |
+
**kwargs,
|
75 |
+
):
|
76 |
+
super().__init__(**kwargs)
|
77 |
+
self.backbone = backbone
|
78 |
+
self.num_channels = num_channels
|
79 |
+
self.features_only = features_only
|
80 |
+
self.use_pretrained_backbone = use_pretrained_backbone
|
81 |
+
self.use_timm_backbone = True
|
82 |
+
self.out_indices = out_indices if out_indices is not None else (-1,)
|
83 |
+
self.freeze_batch_norm_2d = freeze_batch_norm_2d
|
env-llmeval/lib/python3.10/site-packages/transformers/models/timm_backbone/modeling_timm_backbone.py
ADDED
@@ -0,0 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
from typing import Optional, Tuple, Union
|
17 |
+
|
18 |
+
import torch
|
19 |
+
|
20 |
+
from ...modeling_outputs import BackboneOutput
|
21 |
+
from ...modeling_utils import PreTrainedModel
|
22 |
+
from ...utils import is_timm_available, is_torch_available, requires_backends
|
23 |
+
from ...utils.backbone_utils import BackboneMixin
|
24 |
+
from .configuration_timm_backbone import TimmBackboneConfig
|
25 |
+
|
26 |
+
|
27 |
+
if is_timm_available():
|
28 |
+
import timm
|
29 |
+
|
30 |
+
|
31 |
+
if is_torch_available():
|
32 |
+
from torch import Tensor
|
33 |
+
|
34 |
+
|
35 |
+
class TimmBackbone(PreTrainedModel, BackboneMixin):
|
36 |
+
"""
|
37 |
+
Wrapper class for timm models to be used as backbones. This enables using the timm models interchangeably with the
|
38 |
+
other models in the library keeping the same API.
|
39 |
+
"""
|
40 |
+
|
41 |
+
main_input_name = "pixel_values"
|
42 |
+
supports_gradient_checkpointing = False
|
43 |
+
config_class = TimmBackboneConfig
|
44 |
+
|
45 |
+
def __init__(self, config, **kwargs):
|
46 |
+
requires_backends(self, "timm")
|
47 |
+
super().__init__(config)
|
48 |
+
self.config = config
|
49 |
+
|
50 |
+
if config.backbone is None:
|
51 |
+
raise ValueError("backbone is not set in the config. Please set it to a timm model name.")
|
52 |
+
|
53 |
+
if config.backbone not in timm.list_models():
|
54 |
+
raise ValueError(f"backbone {config.backbone} is not supported by timm.")
|
55 |
+
|
56 |
+
if hasattr(config, "out_features") and config.out_features is not None:
|
57 |
+
raise ValueError("out_features is not supported by TimmBackbone. Please use out_indices instead.")
|
58 |
+
|
59 |
+
pretrained = getattr(config, "use_pretrained_backbone", None)
|
60 |
+
if pretrained is None:
|
61 |
+
raise ValueError("use_pretrained_backbone is not set in the config. Please set it to True or False.")
|
62 |
+
|
63 |
+
# We just take the final layer by default. This matches the default for the transformers models.
|
64 |
+
out_indices = config.out_indices if getattr(config, "out_indices", None) is not None else (-1,)
|
65 |
+
|
66 |
+
self._backbone = timm.create_model(
|
67 |
+
config.backbone,
|
68 |
+
pretrained=pretrained,
|
69 |
+
# This is currently not possible for transformer architectures.
|
70 |
+
features_only=config.features_only,
|
71 |
+
in_chans=config.num_channels,
|
72 |
+
out_indices=out_indices,
|
73 |
+
**kwargs,
|
74 |
+
)
|
75 |
+
|
76 |
+
# Converts all `BatchNorm2d` and `SyncBatchNorm` or `BatchNormAct2d` and `SyncBatchNormAct2d` layers of provided module into `FrozenBatchNorm2d` or `FrozenBatchNormAct2d` respectively
|
77 |
+
if getattr(config, "freeze_batch_norm_2d", False):
|
78 |
+
self.freeze_batch_norm_2d()
|
79 |
+
|
80 |
+
# These are used to control the output of the model when called. If output_hidden_states is True, then
|
81 |
+
# return_layers is modified to include all layers.
|
82 |
+
self._return_layers = self._backbone.return_layers
|
83 |
+
self._all_layers = {layer["module"]: str(i) for i, layer in enumerate(self._backbone.feature_info.info)}
|
84 |
+
super()._init_backbone(config)
|
85 |
+
|
86 |
+
@classmethod
|
87 |
+
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
|
88 |
+
requires_backends(cls, ["vision", "timm"])
|
89 |
+
from ...models.timm_backbone import TimmBackboneConfig
|
90 |
+
|
91 |
+
config = kwargs.pop("config", TimmBackboneConfig())
|
92 |
+
|
93 |
+
use_timm = kwargs.pop("use_timm_backbone", True)
|
94 |
+
if not use_timm:
|
95 |
+
raise ValueError("use_timm_backbone must be True for timm backbones")
|
96 |
+
|
97 |
+
num_channels = kwargs.pop("num_channels", config.num_channels)
|
98 |
+
features_only = kwargs.pop("features_only", config.features_only)
|
99 |
+
use_pretrained_backbone = kwargs.pop("use_pretrained_backbone", config.use_pretrained_backbone)
|
100 |
+
out_indices = kwargs.pop("out_indices", config.out_indices)
|
101 |
+
config = TimmBackboneConfig(
|
102 |
+
backbone=pretrained_model_name_or_path,
|
103 |
+
num_channels=num_channels,
|
104 |
+
features_only=features_only,
|
105 |
+
use_pretrained_backbone=use_pretrained_backbone,
|
106 |
+
out_indices=out_indices,
|
107 |
+
)
|
108 |
+
return super()._from_config(config, **kwargs)
|
109 |
+
|
110 |
+
def freeze_batch_norm_2d(self):
|
111 |
+
timm.layers.freeze_batch_norm_2d(self._backbone)
|
112 |
+
|
113 |
+
def unfreeze_batch_norm_2d(self):
|
114 |
+
timm.layers.unfreeze_batch_norm_2d(self._backbone)
|
115 |
+
|
116 |
+
def _init_weights(self, module):
|
117 |
+
"""
|
118 |
+
Empty init weights function to ensure compatibility of the class in the library.
|
119 |
+
"""
|
120 |
+
pass
|
121 |
+
|
122 |
+
def forward(
|
123 |
+
self,
|
124 |
+
pixel_values: torch.FloatTensor,
|
125 |
+
output_attentions: Optional[bool] = None,
|
126 |
+
output_hidden_states: Optional[bool] = None,
|
127 |
+
return_dict: Optional[bool] = None,
|
128 |
+
**kwargs,
|
129 |
+
) -> Union[BackboneOutput, Tuple[Tensor, ...]]:
|
130 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
131 |
+
output_hidden_states = (
|
132 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
133 |
+
)
|
134 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
135 |
+
|
136 |
+
if output_attentions:
|
137 |
+
raise ValueError("Cannot output attentions for timm backbones at the moment")
|
138 |
+
|
139 |
+
if output_hidden_states:
|
140 |
+
# We modify the return layers to include all the stages of the backbone
|
141 |
+
self._backbone.return_layers = self._all_layers
|
142 |
+
hidden_states = self._backbone(pixel_values, **kwargs)
|
143 |
+
self._backbone.return_layers = self._return_layers
|
144 |
+
feature_maps = tuple(hidden_states[i] for i in self.out_indices)
|
145 |
+
else:
|
146 |
+
feature_maps = self._backbone(pixel_values, **kwargs)
|
147 |
+
hidden_states = None
|
148 |
+
|
149 |
+
feature_maps = tuple(feature_maps)
|
150 |
+
hidden_states = tuple(hidden_states) if hidden_states is not None else None
|
151 |
+
|
152 |
+
if not return_dict:
|
153 |
+
output = (feature_maps,)
|
154 |
+
if output_hidden_states:
|
155 |
+
output = output + (hidden_states,)
|
156 |
+
return output
|
157 |
+
|
158 |
+
return BackboneOutput(feature_maps=feature_maps, hidden_states=hidden_states, attentions=None)
|
env-llmeval/lib/python3.10/site-packages/transformers/models/videomae/__init__.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import TYPE_CHECKING
|
15 |
+
|
16 |
+
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
|
17 |
+
|
18 |
+
|
19 |
+
_import_structure = {
|
20 |
+
"configuration_videomae": ["VIDEOMAE_PRETRAINED_CONFIG_ARCHIVE_MAP", "VideoMAEConfig"],
|
21 |
+
}
|
22 |
+
|
23 |
+
try:
|
24 |
+
if not is_torch_available():
|
25 |
+
raise OptionalDependencyNotAvailable()
|
26 |
+
except OptionalDependencyNotAvailable:
|
27 |
+
pass
|
28 |
+
else:
|
29 |
+
_import_structure["modeling_videomae"] = [
|
30 |
+
"VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST",
|
31 |
+
"VideoMAEForPreTraining",
|
32 |
+
"VideoMAEModel",
|
33 |
+
"VideoMAEPreTrainedModel",
|
34 |
+
"VideoMAEForVideoClassification",
|
35 |
+
]
|
36 |
+
|
37 |
+
try:
|
38 |
+
if not is_vision_available():
|
39 |
+
raise OptionalDependencyNotAvailable()
|
40 |
+
except OptionalDependencyNotAvailable:
|
41 |
+
pass
|
42 |
+
else:
|
43 |
+
_import_structure["feature_extraction_videomae"] = ["VideoMAEFeatureExtractor"]
|
44 |
+
_import_structure["image_processing_videomae"] = ["VideoMAEImageProcessor"]
|
45 |
+
|
46 |
+
if TYPE_CHECKING:
|
47 |
+
from .configuration_videomae import VIDEOMAE_PRETRAINED_CONFIG_ARCHIVE_MAP, VideoMAEConfig
|
48 |
+
|
49 |
+
try:
|
50 |
+
if not is_torch_available():
|
51 |
+
raise OptionalDependencyNotAvailable()
|
52 |
+
except OptionalDependencyNotAvailable:
|
53 |
+
pass
|
54 |
+
else:
|
55 |
+
from .modeling_videomae import (
|
56 |
+
VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST,
|
57 |
+
VideoMAEForPreTraining,
|
58 |
+
VideoMAEForVideoClassification,
|
59 |
+
VideoMAEModel,
|
60 |
+
VideoMAEPreTrainedModel,
|
61 |
+
)
|
62 |
+
|
63 |
+
try:
|
64 |
+
if not is_vision_available():
|
65 |
+
raise OptionalDependencyNotAvailable()
|
66 |
+
except OptionalDependencyNotAvailable:
|
67 |
+
pass
|
68 |
+
else:
|
69 |
+
from .feature_extraction_videomae import VideoMAEFeatureExtractor
|
70 |
+
from .image_processing_videomae import VideoMAEImageProcessor
|
71 |
+
|
72 |
+
else:
|
73 |
+
import sys
|
74 |
+
|
75 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|