applied-ai-018 commited on
Commit
8cd197d
·
verified ·
1 Parent(s): 3fc5739

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. llmeval-env/lib/python3.10/site-packages/transformers/__pycache__/cache_utils.cpython-310.pyc +0 -0
  2. llmeval-env/lib/python3.10/site-packages/transformers/__pycache__/feature_extraction_utils.cpython-310.pyc +0 -0
  3. llmeval-env/lib/python3.10/site-packages/transformers/__pycache__/image_processing_utils.cpython-310.pyc +0 -0
  4. llmeval-env/lib/python3.10/site-packages/transformers/__pycache__/image_utils.cpython-310.pyc +0 -0
  5. llmeval-env/lib/python3.10/site-packages/transformers/__pycache__/optimization.cpython-310.pyc +0 -0
  6. llmeval-env/lib/python3.10/site-packages/transformers/__pycache__/safetensors_conversion.cpython-310.pyc +0 -0
  7. llmeval-env/lib/python3.10/site-packages/transformers/__pycache__/tokenization_utils_fast.cpython-310.pyc +0 -0
  8. llmeval-env/lib/python3.10/site-packages/transformers/__pycache__/trainer_pt_utils.cpython-310.pyc +0 -0
  9. llmeval-env/lib/python3.10/site-packages/transformers/data/__init__.py +44 -0
  10. llmeval-env/lib/python3.10/site-packages/transformers/data/data_collator.py +1568 -0
  11. llmeval-env/lib/python3.10/site-packages/transformers/data/datasets/__pycache__/squad.cpython-310.pyc +0 -0
  12. llmeval-env/lib/python3.10/site-packages/transformers/data/datasets/glue.py +161 -0
  13. llmeval-env/lib/python3.10/site-packages/transformers/data/datasets/language_modeling.py +530 -0
  14. llmeval-env/lib/python3.10/site-packages/transformers/data/datasets/squad.py +229 -0
  15. llmeval-env/lib/python3.10/site-packages/transformers/kernels/deformable_detr/ms_deform_attn.h +61 -0
  16. llmeval-env/lib/python3.10/site-packages/transformers/kernels/deformable_detr/vision.cpp +16 -0
  17. llmeval-env/lib/python3.10/site-packages/transformers/kernels/rwkv/wkv_cuda_bf16.cu +186 -0
  18. llmeval-env/lib/python3.10/site-packages/transformers/kernels/rwkv/wkv_op.cpp +66 -0
  19. llmeval-env/lib/python3.10/site-packages/transformers/kernels/yoso/common.h +10 -0
  20. llmeval-env/lib/python3.10/site-packages/transformers/kernels/yoso/common_cuda.h +9 -0
  21. llmeval-env/lib/python3.10/site-packages/transformers/kernels/yoso/common_cuda_device.h +79 -0
  22. llmeval-env/lib/python3.10/site-packages/transformers/kernels/yoso/fast_lsh_cumulation.cu +588 -0
  23. llmeval-env/lib/python3.10/site-packages/transformers/kernels/yoso/fast_lsh_cumulation.h +71 -0
  24. llmeval-env/lib/python3.10/site-packages/transformers/kernels/yoso/fast_lsh_cumulation_cuda.cu +825 -0
  25. llmeval-env/lib/python3.10/site-packages/transformers/kernels/yoso/fast_lsh_cumulation_cuda.h +157 -0
  26. llmeval-env/lib/python3.10/site-packages/transformers/kernels/yoso/fast_lsh_cumulation_torch.cpp +128 -0
  27. llmeval-env/lib/python3.10/site-packages/transformers/models/git/__init__.py +60 -0
  28. llmeval-env/lib/python3.10/site-packages/transformers/models/git/__pycache__/__init__.cpython-310.pyc +0 -0
  29. llmeval-env/lib/python3.10/site-packages/transformers/models/git/__pycache__/configuration_git.cpython-310.pyc +0 -0
  30. llmeval-env/lib/python3.10/site-packages/transformers/models/git/__pycache__/convert_git_to_pytorch.cpython-310.pyc +0 -0
  31. llmeval-env/lib/python3.10/site-packages/transformers/models/git/__pycache__/modeling_git.cpython-310.pyc +0 -0
  32. llmeval-env/lib/python3.10/site-packages/transformers/models/git/__pycache__/processing_git.cpython-310.pyc +0 -0
  33. llmeval-env/lib/python3.10/site-packages/transformers/models/git/configuration_git.py +240 -0
  34. llmeval-env/lib/python3.10/site-packages/transformers/models/git/convert_git_to_pytorch.py +428 -0
  35. llmeval-env/lib/python3.10/site-packages/transformers/models/git/modeling_git.py +1543 -0
  36. llmeval-env/lib/python3.10/site-packages/transformers/models/git/processing_git.py +113 -0
  37. llmeval-env/lib/python3.10/site-packages/transformers/quantizers/__init__.py +15 -0
  38. llmeval-env/lib/python3.10/site-packages/transformers/quantizers/__pycache__/__init__.cpython-310.pyc +0 -0
  39. llmeval-env/lib/python3.10/site-packages/transformers/quantizers/__pycache__/auto.cpython-310.pyc +0 -0
  40. llmeval-env/lib/python3.10/site-packages/transformers/quantizers/__pycache__/base.cpython-310.pyc +0 -0
  41. llmeval-env/lib/python3.10/site-packages/transformers/quantizers/__pycache__/quantizer_aqlm.cpython-310.pyc +0 -0
  42. llmeval-env/lib/python3.10/site-packages/transformers/quantizers/__pycache__/quantizer_awq.cpython-310.pyc +0 -0
  43. llmeval-env/lib/python3.10/site-packages/transformers/quantizers/__pycache__/quantizer_bnb_4bit.cpython-310.pyc +0 -0
  44. llmeval-env/lib/python3.10/site-packages/transformers/quantizers/__pycache__/quantizer_bnb_8bit.cpython-310.pyc +0 -0
  45. llmeval-env/lib/python3.10/site-packages/transformers/quantizers/__pycache__/quantizer_gptq.cpython-310.pyc +0 -0
  46. llmeval-env/lib/python3.10/site-packages/transformers/quantizers/__pycache__/quantizer_quanto.cpython-310.pyc +0 -0
  47. llmeval-env/lib/python3.10/site-packages/transformers/quantizers/__pycache__/quantizers_utils.cpython-310.pyc +0 -0
  48. llmeval-env/lib/python3.10/site-packages/transformers/quantizers/auto.py +161 -0
  49. llmeval-env/lib/python3.10/site-packages/transformers/quantizers/base.py +213 -0
  50. llmeval-env/lib/python3.10/site-packages/transformers/quantizers/quantizer_aqlm.py +98 -0
llmeval-env/lib/python3.10/site-packages/transformers/__pycache__/cache_utils.cpython-310.pyc ADDED
Binary file (15.9 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/__pycache__/feature_extraction_utils.cpython-310.pyc ADDED
Binary file (23.3 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/__pycache__/image_processing_utils.cpython-310.pyc ADDED
Binary file (29.1 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/__pycache__/image_utils.cpython-310.pyc ADDED
Binary file (23.7 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/__pycache__/optimization.cpython-310.pyc ADDED
Binary file (28.1 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/__pycache__/safetensors_conversion.cpython-310.pyc ADDED
Binary file (3.58 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/__pycache__/tokenization_utils_fast.cpython-310.pyc ADDED
Binary file (25.9 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/__pycache__/trainer_pt_utils.cpython-310.pyc ADDED
Binary file (54.3 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/data/__init__.py ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2020 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from .data_collator import (
16
+ DataCollatorForLanguageModeling,
17
+ DataCollatorForPermutationLanguageModeling,
18
+ DataCollatorForSeq2Seq,
19
+ DataCollatorForSOP,
20
+ DataCollatorForTokenClassification,
21
+ DataCollatorForWholeWordMask,
22
+ DataCollatorWithPadding,
23
+ DefaultDataCollator,
24
+ default_data_collator,
25
+ )
26
+ from .metrics import glue_compute_metrics, xnli_compute_metrics
27
+ from .processors import (
28
+ DataProcessor,
29
+ InputExample,
30
+ InputFeatures,
31
+ SingleSentenceClassificationProcessor,
32
+ SquadExample,
33
+ SquadFeatures,
34
+ SquadV1Processor,
35
+ SquadV2Processor,
36
+ glue_convert_examples_to_features,
37
+ glue_output_modes,
38
+ glue_processors,
39
+ glue_tasks_num_labels,
40
+ squad_convert_examples_to_features,
41
+ xnli_output_modes,
42
+ xnli_processors,
43
+ xnli_tasks_num_labels,
44
+ )
llmeval-env/lib/python3.10/site-packages/transformers/data/data_collator.py ADDED
@@ -0,0 +1,1568 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2020 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import random
16
+ import warnings
17
+ from collections.abc import Mapping
18
+ from dataclasses import dataclass
19
+ from random import randint
20
+ from typing import Any, Callable, Dict, List, NewType, Optional, Tuple, Union
21
+
22
+ import numpy as np
23
+
24
+ from ..models.bert import BertTokenizer, BertTokenizerFast
25
+ from ..tokenization_utils_base import PreTrainedTokenizerBase
26
+ from ..utils import PaddingStrategy
27
+
28
+
29
+ InputDataClass = NewType("InputDataClass", Any)
30
+
31
+ """
32
+ A DataCollator is a function that takes a list of samples from a Dataset and collate them into a batch, as a dictionary
33
+ of PyTorch/TensorFlow tensors or NumPy arrays.
34
+ """
35
+ DataCollator = NewType("DataCollator", Callable[[List[InputDataClass]], Dict[str, Any]])
36
+
37
+
38
+ class DataCollatorMixin:
39
+ def __call__(self, features, return_tensors=None):
40
+ if return_tensors is None:
41
+ return_tensors = self.return_tensors
42
+ if return_tensors == "tf":
43
+ return self.tf_call(features)
44
+ elif return_tensors == "pt":
45
+ return self.torch_call(features)
46
+ elif return_tensors == "np":
47
+ return self.numpy_call(features)
48
+ else:
49
+ raise ValueError(f"Framework '{return_tensors}' not recognized!")
50
+
51
+
52
+ def pad_without_fast_tokenizer_warning(tokenizer, *pad_args, **pad_kwargs):
53
+ """
54
+ Pads without triggering the warning about how using the pad function is sub-optimal when using a fast tokenizer.
55
+ """
56
+
57
+ # To avoid errors when using Feature extractors
58
+ if not hasattr(tokenizer, "deprecation_warnings"):
59
+ return tokenizer.pad(*pad_args, **pad_kwargs)
60
+
61
+ # Save the state of the warning, then disable it
62
+ warning_state = tokenizer.deprecation_warnings.get("Asking-to-pad-a-fast-tokenizer", False)
63
+ tokenizer.deprecation_warnings["Asking-to-pad-a-fast-tokenizer"] = True
64
+
65
+ try:
66
+ padded = tokenizer.pad(*pad_args, **pad_kwargs)
67
+ finally:
68
+ # Restore the state of the warning.
69
+ tokenizer.deprecation_warnings["Asking-to-pad-a-fast-tokenizer"] = warning_state
70
+
71
+ return padded
72
+
73
+
74
+ def default_data_collator(features: List[InputDataClass], return_tensors="pt") -> Dict[str, Any]:
75
+ """
76
+ Very simple data collator that simply collates batches of dict-like objects and performs special handling for
77
+ potential keys named:
78
+
79
+ - `label`: handles a single value (int or float) per object
80
+ - `label_ids`: handles a list of values per object
81
+
82
+ Does not do any additional preprocessing: property names of the input object will be used as corresponding inputs
83
+ to the model. See glue and ner for example of how it's useful.
84
+ """
85
+
86
+ # In this function we'll make the assumption that all `features` in the batch
87
+ # have the same attributes.
88
+ # So we will look at the first element as a proxy for what attributes exist
89
+ # on the whole batch.
90
+
91
+ if return_tensors == "pt":
92
+ return torch_default_data_collator(features)
93
+ elif return_tensors == "tf":
94
+ return tf_default_data_collator(features)
95
+ elif return_tensors == "np":
96
+ return numpy_default_data_collator(features)
97
+
98
+
99
+ @dataclass
100
+ class DefaultDataCollator(DataCollatorMixin):
101
+ """
102
+ Very simple data collator that simply collates batches of dict-like objects and performs special handling for
103
+ potential keys named:
104
+
105
+ - `label`: handles a single value (int or float) per object
106
+ - `label_ids`: handles a list of values per object
107
+
108
+ Does not do any additional preprocessing: property names of the input object will be used as corresponding inputs
109
+ to the model. See glue and ner for example of how it's useful.
110
+
111
+ This is an object (like other data collators) rather than a pure function like default_data_collator. This can be
112
+ helpful if you need to set a return_tensors value at initialization.
113
+
114
+ Args:
115
+ return_tensors (`str`, *optional*, defaults to `"pt"`):
116
+ The type of Tensor to return. Allowable values are "np", "pt" and "tf".
117
+ """
118
+
119
+ return_tensors: str = "pt"
120
+
121
+ def __call__(self, features: List[Dict[str, Any]], return_tensors=None) -> Dict[str, Any]:
122
+ if return_tensors is None:
123
+ return_tensors = self.return_tensors
124
+ return default_data_collator(features, return_tensors)
125
+
126
+
127
+ def torch_default_data_collator(features: List[InputDataClass]) -> Dict[str, Any]:
128
+ import torch
129
+
130
+ if not isinstance(features[0], Mapping):
131
+ features = [vars(f) for f in features]
132
+ first = features[0]
133
+ batch = {}
134
+
135
+ # Special handling for labels.
136
+ # Ensure that tensor is created with the correct type
137
+ # (it should be automatically the case, but let's make sure of it.)
138
+ if "label" in first and first["label"] is not None:
139
+ label = first["label"].item() if isinstance(first["label"], torch.Tensor) else first["label"]
140
+ dtype = torch.long if isinstance(label, int) else torch.float
141
+ batch["labels"] = torch.tensor([f["label"] for f in features], dtype=dtype)
142
+ elif "label_ids" in first and first["label_ids"] is not None:
143
+ if isinstance(first["label_ids"], torch.Tensor):
144
+ batch["labels"] = torch.stack([f["label_ids"] for f in features])
145
+ else:
146
+ dtype = torch.long if isinstance(first["label_ids"][0], int) else torch.float
147
+ batch["labels"] = torch.tensor([f["label_ids"] for f in features], dtype=dtype)
148
+
149
+ # Handling of all other possible keys.
150
+ # Again, we will use the first element to figure out which key/values are not None for this model.
151
+ for k, v in first.items():
152
+ if k not in ("label", "label_ids") and v is not None and not isinstance(v, str):
153
+ if isinstance(v, torch.Tensor):
154
+ batch[k] = torch.stack([f[k] for f in features])
155
+ elif isinstance(v, np.ndarray):
156
+ batch[k] = torch.tensor(np.stack([f[k] for f in features]))
157
+ else:
158
+ batch[k] = torch.tensor([f[k] for f in features])
159
+
160
+ return batch
161
+
162
+
163
+ def tf_default_data_collator(features: List[InputDataClass]) -> Dict[str, Any]:
164
+ import tensorflow as tf
165
+
166
+ if not isinstance(features[0], Mapping):
167
+ features = [vars(f) for f in features]
168
+ first = features[0]
169
+ batch = {}
170
+
171
+ # Special handling for labels.
172
+ # Ensure that tensor is created with the correct type
173
+ # (it should be automatically the case, but let's make sure of it.)
174
+ if "label" in first and first["label"] is not None:
175
+ label_col_name = "label"
176
+ elif "label_ids" in first and first["label_ids"] is not None:
177
+ label_col_name = "label_ids"
178
+ elif "labels" in first and first["labels"] is not None:
179
+ label_col_name = "labels"
180
+ else:
181
+ label_col_name = None
182
+ if label_col_name is not None:
183
+ if isinstance(first[label_col_name], tf.Tensor):
184
+ dtype = tf.int64 if first[label_col_name].dtype.is_integer else tf.float32
185
+ elif isinstance(first[label_col_name], np.ndarray) or isinstance(first[label_col_name], np.generic):
186
+ dtype = tf.int64 if np.issubdtype(first[label_col_name].dtype, np.integer) else tf.float32
187
+ elif isinstance(first[label_col_name], (tuple, list)):
188
+ dtype = tf.int64 if isinstance(first[label_col_name][0], int) else tf.float32
189
+ else:
190
+ dtype = tf.int64 if isinstance(first[label_col_name], int) else tf.float32
191
+ batch["labels"] = tf.convert_to_tensor([f[label_col_name] for f in features], dtype=dtype)
192
+ # Handling of all other possible keys.
193
+ # Again, we will use the first element to figure out which key/values are not None for this model.
194
+ for k, v in first.items():
195
+ if k not in ("label", "label_ids", "labels") and v is not None and not isinstance(v, str):
196
+ if isinstance(v, (tf.Tensor, np.ndarray)):
197
+ batch[k] = tf.stack([f[k] for f in features])
198
+ else:
199
+ batch[k] = tf.convert_to_tensor([f[k] for f in features])
200
+
201
+ return batch
202
+
203
+
204
+ def numpy_default_data_collator(features: List[InputDataClass]) -> Dict[str, Any]:
205
+ if not isinstance(features[0], Mapping):
206
+ features = [vars(f) for f in features]
207
+ first = features[0]
208
+ batch = {}
209
+
210
+ # Special handling for labels.
211
+ # Ensure that tensor is created with the correct type
212
+ # (it should be automatically the case, but let's make sure of it.)
213
+ if "label" in first and first["label"] is not None:
214
+ label = first["label"].item() if isinstance(first["label"], np.ndarray) else first["label"]
215
+ dtype = np.int64 if isinstance(label, int) else np.float32
216
+ batch["labels"] = np.array([f["label"] for f in features], dtype=dtype)
217
+ elif "label_ids" in first and first["label_ids"] is not None:
218
+ if isinstance(first["label_ids"], np.ndarray):
219
+ batch["labels"] = np.stack([f["label_ids"] for f in features])
220
+ else:
221
+ dtype = np.int64 if isinstance(first["label_ids"][0], int) else np.float32
222
+ batch["labels"] = np.array([f["label_ids"] for f in features], dtype=dtype)
223
+
224
+ # Handling of all other possible keys.
225
+ # Again, we will use the first element to figure out which key/values are not None for this model.
226
+ for k, v in first.items():
227
+ if k not in ("label", "label_ids") and v is not None and not isinstance(v, str):
228
+ if isinstance(v, np.ndarray):
229
+ batch[k] = np.stack([f[k] for f in features])
230
+ else:
231
+ batch[k] = np.array([f[k] for f in features])
232
+
233
+ return batch
234
+
235
+
236
+ @dataclass
237
+ class DataCollatorWithPadding:
238
+ """
239
+ Data collator that will dynamically pad the inputs received.
240
+
241
+ Args:
242
+ tokenizer ([`PreTrainedTokenizer`] or [`PreTrainedTokenizerFast`]):
243
+ The tokenizer used for encoding the data.
244
+ padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`):
245
+ Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
246
+ among:
247
+
248
+ - `True` or `'longest'` (default): Pad to the longest sequence in the batch (or no padding if only a single
249
+ sequence is provided).
250
+ - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
251
+ acceptable input length for the model if that argument is not provided.
252
+ - `False` or `'do_not_pad'`: No padding (i.e., can output a batch with sequences of different lengths).
253
+ max_length (`int`, *optional*):
254
+ Maximum length of the returned list and optionally padding length (see above).
255
+ pad_to_multiple_of (`int`, *optional*):
256
+ If set will pad the sequence to a multiple of the provided value.
257
+
258
+ This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
259
+ 7.5 (Volta).
260
+ return_tensors (`str`, *optional*, defaults to `"pt"`):
261
+ The type of Tensor to return. Allowable values are "np", "pt" and "tf".
262
+ """
263
+
264
+ tokenizer: PreTrainedTokenizerBase
265
+ padding: Union[bool, str, PaddingStrategy] = True
266
+ max_length: Optional[int] = None
267
+ pad_to_multiple_of: Optional[int] = None
268
+ return_tensors: str = "pt"
269
+
270
+ def __call__(self, features: List[Dict[str, Any]]) -> Dict[str, Any]:
271
+ batch = pad_without_fast_tokenizer_warning(
272
+ self.tokenizer,
273
+ features,
274
+ padding=self.padding,
275
+ max_length=self.max_length,
276
+ pad_to_multiple_of=self.pad_to_multiple_of,
277
+ return_tensors=self.return_tensors,
278
+ )
279
+ if "label" in batch:
280
+ batch["labels"] = batch["label"]
281
+ del batch["label"]
282
+ if "label_ids" in batch:
283
+ batch["labels"] = batch["label_ids"]
284
+ del batch["label_ids"]
285
+ return batch
286
+
287
+
288
+ @dataclass
289
+ class DataCollatorForTokenClassification(DataCollatorMixin):
290
+ """
291
+ Data collator that will dynamically pad the inputs received, as well as the labels.
292
+
293
+ Args:
294
+ tokenizer ([`PreTrainedTokenizer`] or [`PreTrainedTokenizerFast`]):
295
+ The tokenizer used for encoding the data.
296
+ padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`):
297
+ Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
298
+ among:
299
+
300
+ - `True` or `'longest'` (default): Pad to the longest sequence in the batch (or no padding if only a single
301
+ sequence is provided).
302
+ - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
303
+ acceptable input length for the model if that argument is not provided.
304
+ - `False` or `'do_not_pad'`: No padding (i.e., can output a batch with sequences of different lengths).
305
+ max_length (`int`, *optional*):
306
+ Maximum length of the returned list and optionally padding length (see above).
307
+ pad_to_multiple_of (`int`, *optional*):
308
+ If set will pad the sequence to a multiple of the provided value.
309
+
310
+ This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
311
+ 7.5 (Volta).
312
+ label_pad_token_id (`int`, *optional*, defaults to -100):
313
+ The id to use when padding the labels (-100 will be automatically ignore by PyTorch loss functions).
314
+ return_tensors (`str`, *optional*, defaults to `"pt"`):
315
+ The type of Tensor to return. Allowable values are "np", "pt" and "tf".
316
+ """
317
+
318
+ tokenizer: PreTrainedTokenizerBase
319
+ padding: Union[bool, str, PaddingStrategy] = True
320
+ max_length: Optional[int] = None
321
+ pad_to_multiple_of: Optional[int] = None
322
+ label_pad_token_id: int = -100
323
+ return_tensors: str = "pt"
324
+
325
+ def torch_call(self, features):
326
+ import torch
327
+
328
+ label_name = "label" if "label" in features[0].keys() else "labels"
329
+ labels = [feature[label_name] for feature in features] if label_name in features[0].keys() else None
330
+
331
+ no_labels_features = [{k: v for k, v in feature.items() if k != label_name} for feature in features]
332
+
333
+ batch = pad_without_fast_tokenizer_warning(
334
+ self.tokenizer,
335
+ no_labels_features,
336
+ padding=self.padding,
337
+ max_length=self.max_length,
338
+ pad_to_multiple_of=self.pad_to_multiple_of,
339
+ return_tensors="pt",
340
+ )
341
+
342
+ if labels is None:
343
+ return batch
344
+
345
+ sequence_length = batch["input_ids"].shape[1]
346
+ padding_side = self.tokenizer.padding_side
347
+
348
+ def to_list(tensor_or_iterable):
349
+ if isinstance(tensor_or_iterable, torch.Tensor):
350
+ return tensor_or_iterable.tolist()
351
+ return list(tensor_or_iterable)
352
+
353
+ if padding_side == "right":
354
+ batch[label_name] = [
355
+ to_list(label) + [self.label_pad_token_id] * (sequence_length - len(label)) for label in labels
356
+ ]
357
+ else:
358
+ batch[label_name] = [
359
+ [self.label_pad_token_id] * (sequence_length - len(label)) + to_list(label) for label in labels
360
+ ]
361
+
362
+ batch[label_name] = torch.tensor(batch[label_name], dtype=torch.int64)
363
+ return batch
364
+
365
+ def tf_call(self, features):
366
+ import tensorflow as tf
367
+
368
+ label_name = "label" if "label" in features[0].keys() else "labels"
369
+ labels = [feature[label_name] for feature in features] if label_name in features[0].keys() else None
370
+ batch = pad_without_fast_tokenizer_warning(
371
+ self.tokenizer,
372
+ features,
373
+ padding=self.padding,
374
+ max_length=self.max_length,
375
+ pad_to_multiple_of=self.pad_to_multiple_of,
376
+ # Conversion to tensors will fail if we have labels as they are not of the same length yet.
377
+ return_tensors="tf" if labels is None else None,
378
+ )
379
+
380
+ if labels is None:
381
+ return batch
382
+
383
+ sequence_length = tf.convert_to_tensor(batch["input_ids"]).shape[1]
384
+ padding_side = self.tokenizer.padding_side
385
+ if padding_side == "right":
386
+ batch["labels"] = [
387
+ list(label) + [self.label_pad_token_id] * (sequence_length - len(label)) for label in labels
388
+ ]
389
+ else:
390
+ batch["labels"] = [
391
+ [self.label_pad_token_id] * (sequence_length - len(label)) + list(label) for label in labels
392
+ ]
393
+
394
+ batch = {k: tf.convert_to_tensor(v, dtype=tf.int64) for k, v in batch.items()}
395
+ return batch
396
+
397
+ def numpy_call(self, features):
398
+ label_name = "label" if "label" in features[0].keys() else "labels"
399
+ labels = [feature[label_name] for feature in features] if label_name in features[0].keys() else None
400
+ batch = pad_without_fast_tokenizer_warning(
401
+ self.tokenizer,
402
+ features,
403
+ padding=self.padding,
404
+ max_length=self.max_length,
405
+ pad_to_multiple_of=self.pad_to_multiple_of,
406
+ # Conversion to tensors will fail if we have labels as they are not of the same length yet.
407
+ return_tensors="np" if labels is None else None,
408
+ )
409
+
410
+ if labels is None:
411
+ return batch
412
+
413
+ sequence_length = np.array(batch["input_ids"]).shape[1]
414
+ padding_side = self.tokenizer.padding_side
415
+ if padding_side == "right":
416
+ batch["labels"] = [
417
+ list(label) + [self.label_pad_token_id] * (sequence_length - len(label)) for label in labels
418
+ ]
419
+ else:
420
+ batch["labels"] = [
421
+ [self.label_pad_token_id] * (sequence_length - len(label)) + list(label) for label in labels
422
+ ]
423
+
424
+ batch = {k: np.array(v, dtype=np.int64) for k, v in batch.items()}
425
+ return batch
426
+
427
+
428
+ def _torch_collate_batch(examples, tokenizer, pad_to_multiple_of: Optional[int] = None):
429
+ """Collate `examples` into a batch, using the information in `tokenizer` for padding if necessary."""
430
+ import torch
431
+
432
+ # Tensorize if necessary.
433
+ if isinstance(examples[0], (list, tuple, np.ndarray)):
434
+ examples = [torch.tensor(e, dtype=torch.long) for e in examples]
435
+
436
+ length_of_first = examples[0].size(0)
437
+
438
+ # Check if padding is necessary.
439
+
440
+ are_tensors_same_length = all(x.size(0) == length_of_first for x in examples)
441
+ if are_tensors_same_length and (pad_to_multiple_of is None or length_of_first % pad_to_multiple_of == 0):
442
+ return torch.stack(examples, dim=0)
443
+
444
+ # If yes, check if we have a `pad_token`.
445
+ if tokenizer._pad_token is None:
446
+ raise ValueError(
447
+ "You are attempting to pad samples but the tokenizer you are using"
448
+ f" ({tokenizer.__class__.__name__}) does not have a pad token."
449
+ )
450
+
451
+ # Creating the full tensor and filling it with our data.
452
+ max_length = max(x.size(0) for x in examples)
453
+ if pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
454
+ max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
455
+ result = examples[0].new_full([len(examples), max_length], tokenizer.pad_token_id)
456
+ for i, example in enumerate(examples):
457
+ if tokenizer.padding_side == "right":
458
+ result[i, : example.shape[0]] = example
459
+ else:
460
+ result[i, -example.shape[0] :] = example
461
+ return result
462
+
463
+
464
+ def _tf_collate_batch(examples, tokenizer, pad_to_multiple_of: Optional[int] = None):
465
+ import tensorflow as tf
466
+
467
+ """Collate `examples` into a batch, using the information in `tokenizer` for padding if necessary."""
468
+ # Tensorize if necessary.
469
+ if isinstance(examples[0], (list, tuple)):
470
+ examples = [tf.convert_to_tensor(e, dtype=tf.int64) for e in examples]
471
+
472
+ # Check if padding is necessary.
473
+ length_of_first = len(examples[0])
474
+ are_tensors_same_length = all(len(x) == length_of_first for x in examples)
475
+ if are_tensors_same_length and (pad_to_multiple_of is None or length_of_first % pad_to_multiple_of == 0):
476
+ return tf.stack(examples, axis=0)
477
+
478
+ # If yes, check if we have a `pad_token`.
479
+ if tokenizer._pad_token is None:
480
+ raise ValueError(
481
+ "You are attempting to pad samples but the tokenizer you are using"
482
+ f" ({tokenizer.__class__.__name__}) does not have a pad token."
483
+ )
484
+
485
+ # Creating the full tensor and filling it with our data.
486
+ max_length = max(len(x) for x in examples)
487
+ if pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
488
+ max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
489
+ # result = examples[0].new_full([len(examples), max_length], tokenizer.pad_token_id)
490
+ result = []
491
+ rank = tf.rank(examples[0])
492
+ paddings = np.zeros((rank, 2), dtype=np.int32)
493
+ for example in examples:
494
+ if tokenizer.padding_side == "right":
495
+ paddings[0, 1] = max_length - len(example)
496
+ else:
497
+ paddings[0, 0] = max_length - len(example)
498
+ result.append(tf.pad(example, paddings, constant_values=tokenizer.pad_token_id))
499
+ return tf.stack(result, axis=0)
500
+
501
+
502
+ def _numpy_collate_batch(examples, tokenizer, pad_to_multiple_of: Optional[int] = None):
503
+ """Collate `examples` into a batch, using the information in `tokenizer` for padding if necessary."""
504
+ # Tensorize if necessary.
505
+ if isinstance(examples[0], (list, tuple)):
506
+ examples = [np.array(e, dtype=np.int64) for e in examples]
507
+
508
+ # Check if padding is necessary.
509
+ length_of_first = len(examples[0])
510
+ are_tensors_same_length = all(len(x) == length_of_first for x in examples)
511
+ if are_tensors_same_length and (pad_to_multiple_of is None or length_of_first % pad_to_multiple_of == 0):
512
+ return np.stack(examples, axis=0)
513
+
514
+ # If yes, check if we have a `pad_token`.
515
+ if tokenizer._pad_token is None:
516
+ raise ValueError(
517
+ "You are attempting to pad samples but the tokenizer you are using"
518
+ f" ({tokenizer.__class__.__name__}) does not have a pad token."
519
+ )
520
+
521
+ # Creating the full tensor and filling it with our data.
522
+ max_length = max(len(x) for x in examples)
523
+ if pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
524
+ max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
525
+ result = np.full(shape=(len(examples), max_length), fill_value=tokenizer.pad_token_id, dtype=examples[0].dtype)
526
+ for i, example in enumerate(examples):
527
+ if tokenizer.padding_side == "right":
528
+ result[i, : example.shape[0]] = example
529
+ else:
530
+ result[i, -example.shape[0] :] = example
531
+ return result
532
+
533
+
534
+ def tolist(x):
535
+ if isinstance(x, list):
536
+ return x
537
+ elif hasattr(x, "numpy"): # Checks for TF tensors without needing the import
538
+ x = x.numpy()
539
+ return x.tolist()
540
+
541
+
542
+ @dataclass
543
+ class DataCollatorForSeq2Seq:
544
+ """
545
+ Data collator that will dynamically pad the inputs received, as well as the labels.
546
+
547
+ Args:
548
+ tokenizer ([`PreTrainedTokenizer`] or [`PreTrainedTokenizerFast`]):
549
+ The tokenizer used for encoding the data.
550
+ model ([`PreTrainedModel`], *optional*):
551
+ The model that is being trained. If set and has the *prepare_decoder_input_ids_from_labels*, use it to
552
+ prepare the *decoder_input_ids*
553
+
554
+ This is useful when using *label_smoothing* to avoid calculating loss twice.
555
+ padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`):
556
+ Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
557
+ among:
558
+
559
+ - `True` or `'longest'` (default): Pad to the longest sequence in the batch (or no padding if only a single
560
+ sequence is provided).
561
+ - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
562
+ acceptable input length for the model if that argument is not provided.
563
+ - `False` or `'do_not_pad'`: No padding (i.e., can output a batch with sequences of different lengths).
564
+ max_length (`int`, *optional*):
565
+ Maximum length of the returned list and optionally padding length (see above).
566
+ pad_to_multiple_of (`int`, *optional*):
567
+ If set will pad the sequence to a multiple of the provided value.
568
+
569
+ This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
570
+ 7.5 (Volta).
571
+ label_pad_token_id (`int`, *optional*, defaults to -100):
572
+ The id to use when padding the labels (-100 will be automatically ignored by PyTorch loss functions).
573
+ return_tensors (`str`, *optional*, defaults to `"pt"`):
574
+ The type of Tensor to return. Allowable values are "np", "pt" and "tf".
575
+ """
576
+
577
+ tokenizer: PreTrainedTokenizerBase
578
+ model: Optional[Any] = None
579
+ padding: Union[bool, str, PaddingStrategy] = True
580
+ max_length: Optional[int] = None
581
+ pad_to_multiple_of: Optional[int] = None
582
+ label_pad_token_id: int = -100
583
+ return_tensors: str = "pt"
584
+
585
+ def __call__(self, features, return_tensors=None):
586
+ if return_tensors is None:
587
+ return_tensors = self.return_tensors
588
+ labels = [feature["labels"] for feature in features] if "labels" in features[0].keys() else None
589
+ # We have to pad the labels before calling `tokenizer.pad` as this method won't pad them and needs them of the
590
+ # same length to return tensors.
591
+ if labels is not None:
592
+ max_label_length = max(len(l) for l in labels)
593
+ if self.pad_to_multiple_of is not None:
594
+ max_label_length = (
595
+ (max_label_length + self.pad_to_multiple_of - 1)
596
+ // self.pad_to_multiple_of
597
+ * self.pad_to_multiple_of
598
+ )
599
+
600
+ padding_side = self.tokenizer.padding_side
601
+ for feature in features:
602
+ remainder = [self.label_pad_token_id] * (max_label_length - len(feature["labels"]))
603
+ if isinstance(feature["labels"], list):
604
+ feature["labels"] = (
605
+ feature["labels"] + remainder if padding_side == "right" else remainder + feature["labels"]
606
+ )
607
+ elif padding_side == "right":
608
+ feature["labels"] = np.concatenate([feature["labels"], remainder]).astype(np.int64)
609
+ else:
610
+ feature["labels"] = np.concatenate([remainder, feature["labels"]]).astype(np.int64)
611
+
612
+ features = pad_without_fast_tokenizer_warning(
613
+ self.tokenizer,
614
+ features,
615
+ padding=self.padding,
616
+ max_length=self.max_length,
617
+ pad_to_multiple_of=self.pad_to_multiple_of,
618
+ return_tensors=return_tensors,
619
+ )
620
+
621
+ # prepare decoder_input_ids
622
+ if (
623
+ labels is not None
624
+ and self.model is not None
625
+ and hasattr(self.model, "prepare_decoder_input_ids_from_labels")
626
+ ):
627
+ decoder_input_ids = self.model.prepare_decoder_input_ids_from_labels(labels=features["labels"])
628
+ features["decoder_input_ids"] = decoder_input_ids
629
+
630
+ return features
631
+
632
+
633
+ @dataclass
634
+ class DataCollatorForLanguageModeling(DataCollatorMixin):
635
+ """
636
+ Data collator used for language modeling. Inputs are dynamically padded to the maximum length of a batch if they
637
+ are not all of the same length.
638
+
639
+ Args:
640
+ tokenizer ([`PreTrainedTokenizer`] or [`PreTrainedTokenizerFast`]):
641
+ The tokenizer used for encoding the data.
642
+ mlm (`bool`, *optional*, defaults to `True`):
643
+ Whether or not to use masked language modeling. If set to `False`, the labels are the same as the inputs
644
+ with the padding tokens ignored (by setting them to -100). Otherwise, the labels are -100 for non-masked
645
+ tokens and the value to predict for the masked token.
646
+ mlm_probability (`float`, *optional*, defaults to 0.15):
647
+ The probability with which to (randomly) mask tokens in the input, when `mlm` is set to `True`.
648
+ pad_to_multiple_of (`int`, *optional*):
649
+ If set will pad the sequence to a multiple of the provided value.
650
+ return_tensors (`str`):
651
+ The type of Tensor to return. Allowable values are "np", "pt" and "tf".
652
+
653
+ <Tip>
654
+
655
+ For best performance, this data collator should be used with a dataset having items that are dictionaries or
656
+ BatchEncoding, with the `"special_tokens_mask"` key, as returned by a [`PreTrainedTokenizer`] or a
657
+ [`PreTrainedTokenizerFast`] with the argument `return_special_tokens_mask=True`.
658
+
659
+ </Tip>"""
660
+
661
+ tokenizer: PreTrainedTokenizerBase
662
+ mlm: bool = True
663
+ mlm_probability: float = 0.15
664
+ pad_to_multiple_of: Optional[int] = None
665
+ tf_experimental_compile: bool = False
666
+ return_tensors: str = "pt"
667
+
668
+ def __post_init__(self):
669
+ if self.mlm and self.tokenizer.mask_token is None:
670
+ raise ValueError(
671
+ "This tokenizer does not have a mask token which is necessary for masked language modeling. "
672
+ "You should pass `mlm=False` to train on causal language modeling instead."
673
+ )
674
+ if self.tf_experimental_compile:
675
+ import tensorflow as tf
676
+
677
+ self.tf_mask_tokens = tf.function(self.tf_mask_tokens, jit_compile=True)
678
+
679
+ @staticmethod
680
+ def tf_bernoulli(shape, probability):
681
+ import tensorflow as tf
682
+
683
+ prob_matrix = tf.fill(shape, probability)
684
+ return tf.cast(prob_matrix - tf.random.uniform(shape, 0, 1) >= 0, tf.bool)
685
+
686
+ def tf_mask_tokens(
687
+ self, inputs: Any, vocab_size, mask_token_id, special_tokens_mask: Optional[Any] = None
688
+ ) -> Tuple[Any, Any]:
689
+ """
690
+ Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original.
691
+ """
692
+ import tensorflow as tf
693
+
694
+ mask_token_id = tf.cast(mask_token_id, inputs.dtype)
695
+
696
+ input_shape = tf.shape(inputs)
697
+ # 1 for a special token, 0 for a normal token in the special tokens mask
698
+ # We sample a few tokens in each sequence for MLM training (with probability `self.mlm_probability`)
699
+ masked_indices = self.tf_bernoulli(input_shape, self.mlm_probability) & ~special_tokens_mask
700
+ # Replace unmasked indices with -100 in the labels since we only compute loss on masked tokens
701
+ labels = tf.where(masked_indices, inputs, -100)
702
+
703
+ # 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK])
704
+ indices_replaced = self.tf_bernoulli(input_shape, 0.8) & masked_indices
705
+
706
+ inputs = tf.where(indices_replaced, mask_token_id, inputs)
707
+
708
+ # 10% of the time, we replace masked input tokens with random word
709
+ indices_random = self.tf_bernoulli(input_shape, 0.1) & masked_indices & ~indices_replaced
710
+ random_words = tf.random.uniform(input_shape, maxval=vocab_size, dtype=inputs.dtype)
711
+
712
+ inputs = tf.where(indices_random, random_words, inputs)
713
+
714
+ # The rest of the time (10% of the time) we keep the masked input tokens unchanged
715
+ return inputs, labels
716
+
717
+ def tf_call(self, examples: List[Union[List[int], Any, Dict[str, Any]]]) -> Dict[str, Any]:
718
+ import tensorflow as tf
719
+
720
+ # Handle dict or lists with proper padding and conversion to tensor.
721
+ if isinstance(examples[0], Mapping):
722
+ batch = pad_without_fast_tokenizer_warning(
723
+ self.tokenizer, examples, return_tensors="tf", pad_to_multiple_of=self.pad_to_multiple_of
724
+ )
725
+ else:
726
+ batch = {
727
+ "input_ids": _tf_collate_batch(examples, self.tokenizer, pad_to_multiple_of=self.pad_to_multiple_of)
728
+ }
729
+
730
+ # If special token mask has been preprocessed, pop it from the dict.
731
+ special_tokens_mask = batch.pop("special_tokens_mask", None)
732
+ if self.mlm:
733
+ if special_tokens_mask is None:
734
+ special_tokens_mask = [
735
+ self.tokenizer.get_special_tokens_mask(val, already_has_special_tokens=True)
736
+ for val in batch["input_ids"].numpy().tolist()
737
+ ]
738
+ # Cannot directly create as bool
739
+ special_tokens_mask = tf.cast(tf.convert_to_tensor(special_tokens_mask, dtype=tf.int64), tf.bool)
740
+ else:
741
+ special_tokens_mask = tf.cast(special_tokens_mask, tf.bool)
742
+ batch["input_ids"], batch["labels"] = self.tf_mask_tokens(
743
+ tf.cast(batch["input_ids"], tf.int64),
744
+ special_tokens_mask=special_tokens_mask,
745
+ mask_token_id=self.tokenizer.mask_token_id,
746
+ vocab_size=len(self.tokenizer),
747
+ )
748
+ else:
749
+ labels = batch["input_ids"]
750
+ if self.tokenizer.pad_token_id is not None:
751
+ # Replace self.tokenizer.pad_token_id with -100
752
+ labels = tf.where(labels == self.tokenizer.pad_token_id, -100, labels)
753
+ else:
754
+ labels = tf.identity(labels) # Makes a copy, just in case
755
+ batch["labels"] = labels
756
+ return batch
757
+
758
+ def torch_call(self, examples: List[Union[List[int], Any, Dict[str, Any]]]) -> Dict[str, Any]:
759
+ # Handle dict or lists with proper padding and conversion to tensor.
760
+ if isinstance(examples[0], Mapping):
761
+ batch = pad_without_fast_tokenizer_warning(
762
+ self.tokenizer, examples, return_tensors="pt", pad_to_multiple_of=self.pad_to_multiple_of
763
+ )
764
+ else:
765
+ batch = {
766
+ "input_ids": _torch_collate_batch(examples, self.tokenizer, pad_to_multiple_of=self.pad_to_multiple_of)
767
+ }
768
+
769
+ # If special token mask has been preprocessed, pop it from the dict.
770
+ special_tokens_mask = batch.pop("special_tokens_mask", None)
771
+ if self.mlm:
772
+ batch["input_ids"], batch["labels"] = self.torch_mask_tokens(
773
+ batch["input_ids"], special_tokens_mask=special_tokens_mask
774
+ )
775
+ else:
776
+ labels = batch["input_ids"].clone()
777
+ if self.tokenizer.pad_token_id is not None:
778
+ labels[labels == self.tokenizer.pad_token_id] = -100
779
+ batch["labels"] = labels
780
+ return batch
781
+
782
+ def torch_mask_tokens(self, inputs: Any, special_tokens_mask: Optional[Any] = None) -> Tuple[Any, Any]:
783
+ """
784
+ Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original.
785
+ """
786
+ import torch
787
+
788
+ labels = inputs.clone()
789
+ # We sample a few tokens in each sequence for MLM training (with probability `self.mlm_probability`)
790
+ probability_matrix = torch.full(labels.shape, self.mlm_probability)
791
+ if special_tokens_mask is None:
792
+ special_tokens_mask = [
793
+ self.tokenizer.get_special_tokens_mask(val, already_has_special_tokens=True) for val in labels.tolist()
794
+ ]
795
+ special_tokens_mask = torch.tensor(special_tokens_mask, dtype=torch.bool)
796
+ else:
797
+ special_tokens_mask = special_tokens_mask.bool()
798
+
799
+ probability_matrix.masked_fill_(special_tokens_mask, value=0.0)
800
+ masked_indices = torch.bernoulli(probability_matrix).bool()
801
+ labels[~masked_indices] = -100 # We only compute loss on masked tokens
802
+
803
+ # 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK])
804
+ indices_replaced = torch.bernoulli(torch.full(labels.shape, 0.8)).bool() & masked_indices
805
+ inputs[indices_replaced] = self.tokenizer.convert_tokens_to_ids(self.tokenizer.mask_token)
806
+
807
+ # 10% of the time, we replace masked input tokens with random word
808
+ indices_random = torch.bernoulli(torch.full(labels.shape, 0.5)).bool() & masked_indices & ~indices_replaced
809
+ random_words = torch.randint(len(self.tokenizer), labels.shape, dtype=torch.long)
810
+ inputs[indices_random] = random_words[indices_random]
811
+
812
+ # The rest of the time (10% of the time) we keep the masked input tokens unchanged
813
+ return inputs, labels
814
+
815
+ def numpy_call(self, examples: List[Union[List[int], Any, Dict[str, Any]]]) -> Dict[str, Any]:
816
+ # Handle dict or lists with proper padding and conversion to tensor.
817
+ if isinstance(examples[0], Mapping):
818
+ batch = pad_without_fast_tokenizer_warning(
819
+ self.tokenizer, examples, return_tensors="np", pad_to_multiple_of=self.pad_to_multiple_of
820
+ )
821
+ else:
822
+ batch = {
823
+ "input_ids": _numpy_collate_batch(examples, self.tokenizer, pad_to_multiple_of=self.pad_to_multiple_of)
824
+ }
825
+
826
+ # If special token mask has been preprocessed, pop it from the dict.
827
+ special_tokens_mask = batch.pop("special_tokens_mask", None)
828
+ if self.mlm:
829
+ batch["input_ids"], batch["labels"] = self.numpy_mask_tokens(
830
+ batch["input_ids"], special_tokens_mask=special_tokens_mask
831
+ )
832
+ else:
833
+ labels = np.copy(batch["input_ids"])
834
+ if self.tokenizer.pad_token_id is not None:
835
+ labels[labels == self.tokenizer.pad_token_id] = -100
836
+ batch["labels"] = labels
837
+ return batch
838
+
839
+ def numpy_mask_tokens(self, inputs: Any, special_tokens_mask: Optional[Any] = None) -> Tuple[Any, Any]:
840
+ """
841
+ Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original.
842
+ """
843
+ labels = np.copy(inputs)
844
+ # We sample a few tokens in each sequence for MLM training (with probability `self.mlm_probability`)
845
+ probability_matrix = np.full(labels.shape, self.mlm_probability)
846
+ if special_tokens_mask is None:
847
+ special_tokens_mask = [
848
+ self.tokenizer.get_special_tokens_mask(val, already_has_special_tokens=True) for val in labels.tolist()
849
+ ]
850
+ special_tokens_mask = np.array(special_tokens_mask, dtype=bool)
851
+ else:
852
+ special_tokens_mask = special_tokens_mask.astype(bool)
853
+
854
+ probability_matrix[special_tokens_mask] = 0
855
+ # Numpy doesn't have bernoulli, so we use a binomial with 1 trial
856
+ masked_indices = np.random.binomial(1, probability_matrix, size=probability_matrix.shape).astype(bool)
857
+ labels[~masked_indices] = -100 # We only compute loss on masked tokens
858
+
859
+ # 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK])
860
+ indices_replaced = np.random.binomial(1, 0.8, size=labels.shape).astype(bool) & masked_indices
861
+ inputs[indices_replaced] = self.tokenizer.mask_token_id
862
+
863
+ # 10% of the time, we replace masked input tokens with random word
864
+ # indices_random = torch.bernoulli(torch.full(labels.shape, 0.5)).bool() & masked_indices & ~indices_replaced
865
+ indices_random = (
866
+ np.random.binomial(1, 0.5, size=labels.shape).astype(bool) & masked_indices & ~indices_replaced
867
+ )
868
+ random_words = np.random.randint(
869
+ low=0, high=len(self.tokenizer), size=np.count_nonzero(indices_random), dtype=np.int64
870
+ )
871
+ inputs[indices_random] = random_words
872
+
873
+ # The rest of the time (10% of the time) we keep the masked input tokens unchanged
874
+ return inputs, labels
875
+
876
+
877
+ @dataclass
878
+ class DataCollatorForWholeWordMask(DataCollatorForLanguageModeling):
879
+ """
880
+ Data collator used for language modeling that masks entire words.
881
+
882
+ - collates batches of tensors, honoring their tokenizer's pad_token
883
+ - preprocesses batches for masked language modeling
884
+
885
+ <Tip>
886
+
887
+ This collator relies on details of the implementation of subword tokenization by [`BertTokenizer`], specifically
888
+ that subword tokens are prefixed with *##*. For tokenizers that do not adhere to this scheme, this collator will
889
+ produce an output that is roughly equivalent to [`.DataCollatorForLanguageModeling`].
890
+
891
+ </Tip>"""
892
+
893
+ def torch_call(self, examples: List[Union[List[int], Any, Dict[str, Any]]]) -> Dict[str, Any]:
894
+ if isinstance(examples[0], Mapping):
895
+ input_ids = [e["input_ids"] for e in examples]
896
+ else:
897
+ input_ids = examples
898
+ examples = [{"input_ids": e} for e in examples]
899
+
900
+ batch_input = _torch_collate_batch(input_ids, self.tokenizer, pad_to_multiple_of=self.pad_to_multiple_of)
901
+
902
+ mask_labels = []
903
+ for e in examples:
904
+ ref_tokens = []
905
+ for id in tolist(e["input_ids"]):
906
+ token = self.tokenizer._convert_id_to_token(id)
907
+ ref_tokens.append(token)
908
+
909
+ # For Chinese tokens, we need extra inf to mark sub-word, e.g [喜,欢]-> [喜,##欢]
910
+ if "chinese_ref" in e:
911
+ ref_pos = tolist(e["chinese_ref"])
912
+ len_seq = len(e["input_ids"])
913
+ for i in range(len_seq):
914
+ if i in ref_pos:
915
+ ref_tokens[i] = "##" + ref_tokens[i]
916
+ mask_labels.append(self._whole_word_mask(ref_tokens))
917
+ batch_mask = _torch_collate_batch(mask_labels, self.tokenizer, pad_to_multiple_of=self.pad_to_multiple_of)
918
+ inputs, labels = self.torch_mask_tokens(batch_input, batch_mask)
919
+ return {"input_ids": inputs, "labels": labels}
920
+
921
+ def tf_call(self, examples: List[Union[List[int], Any, Dict[str, Any]]]) -> Dict[str, Any]:
922
+ import tensorflow as tf
923
+
924
+ if isinstance(examples[0], Mapping):
925
+ input_ids = [e["input_ids"] for e in examples]
926
+ else:
927
+ input_ids = examples
928
+ examples = [{"input_ids": e} for e in examples]
929
+
930
+ batch_input = _tf_collate_batch(input_ids, self.tokenizer, pad_to_multiple_of=self.pad_to_multiple_of)
931
+
932
+ mask_labels = []
933
+ for e in examples:
934
+ ref_tokens = []
935
+ for id in tolist(e["input_ids"]):
936
+ token = self.tokenizer._convert_id_to_token(id)
937
+ ref_tokens.append(token)
938
+
939
+ # For Chinese tokens, we need extra inf to mark sub-word, e.g [喜,欢]-> [喜,##欢]
940
+ if "chinese_ref" in e:
941
+ ref_pos = tolist(e["chinese_ref"])
942
+ len_seq = len(e["input_ids"])
943
+ for i in range(len_seq):
944
+ if i in ref_pos:
945
+ ref_tokens[i] = "##" + ref_tokens[i]
946
+ mask_labels.append(self._whole_word_mask(ref_tokens))
947
+ batch_mask = _tf_collate_batch(mask_labels, self.tokenizer, pad_to_multiple_of=self.pad_to_multiple_of)
948
+ inputs, labels = self.tf_mask_tokens(tf.cast(batch_input, tf.int64), batch_mask)
949
+ return {"input_ids": inputs, "labels": labels}
950
+
951
+ def numpy_call(self, examples: List[Union[List[int], Any, Dict[str, Any]]]) -> Dict[str, Any]:
952
+ if isinstance(examples[0], Mapping):
953
+ input_ids = [e["input_ids"] for e in examples]
954
+ else:
955
+ input_ids = examples
956
+ examples = [{"input_ids": e} for e in examples]
957
+
958
+ batch_input = _numpy_collate_batch(input_ids, self.tokenizer, pad_to_multiple_of=self.pad_to_multiple_of)
959
+
960
+ mask_labels = []
961
+ for e in examples:
962
+ ref_tokens = []
963
+ for id in tolist(e["input_ids"]):
964
+ token = self.tokenizer._convert_id_to_token(id)
965
+ ref_tokens.append(token)
966
+
967
+ # For Chinese tokens, we need extra inf to mark sub-word, e.g [喜,欢]-> [喜,##欢]
968
+ if "chinese_ref" in e:
969
+ ref_pos = tolist(e["chinese_ref"])
970
+ len_seq = len(e["input_ids"])
971
+ for i in range(len_seq):
972
+ if i in ref_pos:
973
+ ref_tokens[i] = "##" + ref_tokens[i]
974
+ mask_labels.append(self._whole_word_mask(ref_tokens))
975
+ batch_mask = _numpy_collate_batch(mask_labels, self.tokenizer, pad_to_multiple_of=self.pad_to_multiple_of)
976
+ inputs, labels = self.numpy_mask_tokens(batch_input, batch_mask)
977
+ return {"input_ids": inputs, "labels": labels}
978
+
979
+ def _whole_word_mask(self, input_tokens: List[str], max_predictions=512):
980
+ """
981
+ Get 0/1 labels for masked tokens with whole word mask proxy
982
+ """
983
+ if not isinstance(self.tokenizer, (BertTokenizer, BertTokenizerFast)):
984
+ warnings.warn(
985
+ "DataCollatorForWholeWordMask is only suitable for BertTokenizer-like tokenizers. "
986
+ "Please refer to the documentation for more information."
987
+ )
988
+
989
+ cand_indexes = []
990
+ for i, token in enumerate(input_tokens):
991
+ if token == "[CLS]" or token == "[SEP]":
992
+ continue
993
+
994
+ if len(cand_indexes) >= 1 and token.startswith("##"):
995
+ cand_indexes[-1].append(i)
996
+ else:
997
+ cand_indexes.append([i])
998
+
999
+ random.shuffle(cand_indexes)
1000
+ num_to_predict = min(max_predictions, max(1, int(round(len(input_tokens) * self.mlm_probability))))
1001
+ masked_lms = []
1002
+ covered_indexes = set()
1003
+ for index_set in cand_indexes:
1004
+ if len(masked_lms) >= num_to_predict:
1005
+ break
1006
+ # If adding a whole-word mask would exceed the maximum number of
1007
+ # predictions, then just skip this candidate.
1008
+ if len(masked_lms) + len(index_set) > num_to_predict:
1009
+ continue
1010
+ is_any_index_covered = False
1011
+ for index in index_set:
1012
+ if index in covered_indexes:
1013
+ is_any_index_covered = True
1014
+ break
1015
+ if is_any_index_covered:
1016
+ continue
1017
+ for index in index_set:
1018
+ covered_indexes.add(index)
1019
+ masked_lms.append(index)
1020
+
1021
+ if len(covered_indexes) != len(masked_lms):
1022
+ raise ValueError("Length of covered_indexes is not equal to length of masked_lms.")
1023
+ mask_labels = [1 if i in covered_indexes else 0 for i in range(len(input_tokens))]
1024
+ return mask_labels
1025
+
1026
+ def torch_mask_tokens(self, inputs: Any, mask_labels: Any) -> Tuple[Any, Any]:
1027
+ """
1028
+ Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original. Set
1029
+ 'mask_labels' means we use whole word mask (wwm), we directly mask idxs according to it's ref.
1030
+ """
1031
+ import torch
1032
+
1033
+ if self.tokenizer.mask_token is None:
1034
+ raise ValueError(
1035
+ "This tokenizer does not have a mask token which is necessary for masked language modeling. Remove the"
1036
+ " --mlm flag if you want to use this tokenizer."
1037
+ )
1038
+ labels = inputs.clone()
1039
+ # We sample a few tokens in each sequence for masked-LM training (with probability args.mlm_probability defaults to 0.15 in Bert/RoBERTa)
1040
+
1041
+ probability_matrix = mask_labels
1042
+
1043
+ special_tokens_mask = [
1044
+ self.tokenizer.get_special_tokens_mask(val, already_has_special_tokens=True) for val in labels.tolist()
1045
+ ]
1046
+ probability_matrix.masked_fill_(torch.tensor(special_tokens_mask, dtype=torch.bool), value=0.0)
1047
+ if self.tokenizer._pad_token is not None:
1048
+ padding_mask = labels.eq(self.tokenizer.pad_token_id)
1049
+ probability_matrix.masked_fill_(padding_mask, value=0.0)
1050
+
1051
+ masked_indices = probability_matrix.bool()
1052
+ labels[~masked_indices] = -100 # We only compute loss on masked tokens
1053
+
1054
+ # 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK])
1055
+ indices_replaced = torch.bernoulli(torch.full(labels.shape, 0.8)).bool() & masked_indices
1056
+ inputs[indices_replaced] = self.tokenizer.convert_tokens_to_ids(self.tokenizer.mask_token)
1057
+
1058
+ # 10% of the time, we replace masked input tokens with random word
1059
+ indices_random = torch.bernoulli(torch.full(labels.shape, 0.5)).bool() & masked_indices & ~indices_replaced
1060
+ random_words = torch.randint(len(self.tokenizer), labels.shape, dtype=torch.long)
1061
+ inputs[indices_random] = random_words[indices_random]
1062
+
1063
+ # The rest of the time (10% of the time) we keep the masked input tokens unchanged
1064
+ return inputs, labels
1065
+
1066
+ def tf_mask_tokens(self, inputs: Any, mask_labels: Any) -> Tuple[Any, Any]:
1067
+ """
1068
+ Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original. Set
1069
+ 'mask_labels' means we use whole word mask (wwm), we directly mask idxs according to it's ref.
1070
+ """
1071
+ import tensorflow as tf
1072
+
1073
+ input_shape = tf.shape(inputs)
1074
+ if self.tokenizer.mask_token is None:
1075
+ raise ValueError(
1076
+ "This tokenizer does not have a mask token which is necessary for masked language modeling. Remove the"
1077
+ " --mlm flag if you want to use this tokenizer."
1078
+ )
1079
+ labels = tf.identity(inputs)
1080
+ # We sample a few tokens in each sequence for masked-LM training (with probability args.mlm_probability defaults to 0.15 in Bert/RoBERTa)
1081
+
1082
+ masked_indices = tf.cast(mask_labels, tf.bool)
1083
+
1084
+ special_tokens_mask = [
1085
+ self.tokenizer.get_special_tokens_mask(val, already_has_special_tokens=True) for val in labels
1086
+ ]
1087
+ masked_indices = masked_indices & ~tf.cast(special_tokens_mask, dtype=tf.bool)
1088
+ if self.tokenizer._pad_token is not None:
1089
+ padding_mask = inputs == self.tokenizer.pad_token_id
1090
+ masked_indices = masked_indices & ~padding_mask
1091
+
1092
+ # Replace unmasked indices with -100 in the labels since we only compute loss on masked tokens
1093
+ labels = tf.where(masked_indices, inputs, -100)
1094
+
1095
+ # 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK])
1096
+ indices_replaced = self.tf_bernoulli(input_shape, 0.8) & masked_indices
1097
+
1098
+ inputs = tf.where(indices_replaced, self.tokenizer.mask_token_id, inputs)
1099
+
1100
+ # 10% of the time, we replace masked input tokens with random word
1101
+ indices_random = self.tf_bernoulli(input_shape, 0.5) & masked_indices & ~indices_replaced
1102
+ random_words = tf.random.uniform(input_shape, maxval=len(self.tokenizer), dtype=tf.int64)
1103
+ inputs = tf.where(indices_random, random_words, inputs)
1104
+
1105
+ # The rest of the time (10% of the time) we keep the masked input tokens unchanged
1106
+ return inputs, labels
1107
+
1108
+ def numpy_mask_tokens(self, inputs: Any, mask_labels: Any) -> Tuple[Any, Any]:
1109
+ """
1110
+ Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original. Set
1111
+ 'mask_labels' means we use whole word mask (wwm), we directly mask idxs according to it's ref.
1112
+ """
1113
+ if self.tokenizer.mask_token is None:
1114
+ raise ValueError(
1115
+ "This tokenizer does not have a mask token which is necessary for masked language modeling. Remove the"
1116
+ " --mlm flag if you want to use this tokenizer."
1117
+ )
1118
+ labels = np.copy(inputs)
1119
+ # We sample a few tokens in each sequence for masked-LM training (with probability args.mlm_probability defaults to 0.15 in Bert/RoBERTa)
1120
+
1121
+ masked_indices = mask_labels.astype(bool)
1122
+
1123
+ special_tokens_mask = [
1124
+ self.tokenizer.get_special_tokens_mask(val, already_has_special_tokens=True) for val in labels.tolist()
1125
+ ]
1126
+ masked_indices[np.array(special_tokens_mask, dtype=bool)] = 0
1127
+ if self.tokenizer._pad_token is not None:
1128
+ padding_mask = labels == self.tokenizer.pad_token_id
1129
+ masked_indices[padding_mask] = 0
1130
+
1131
+ labels[~masked_indices] = -100 # We only compute loss on masked tokens
1132
+
1133
+ # 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK])
1134
+ indices_replaced = np.random.binomial(1, 0.8, size=labels.shape).astype(bool) & masked_indices
1135
+ inputs[indices_replaced] = self.tokenizer.convert_tokens_to_ids(self.tokenizer.mask_token)
1136
+
1137
+ # 10% of the time, we replace masked input tokens with random word
1138
+ # indices_random = torch.bernoulli(torch.full(labels.shape, 0.5)).bool() & masked_indices & ~indices_replaced
1139
+ indices_random = (
1140
+ np.random.binomial(1, 0.5, size=labels.shape).astype(bool) & masked_indices & ~indices_replaced
1141
+ )
1142
+ random_words = np.random.randint(low=0, high=len(self.tokenizer), size=labels.shape, dtype=np.int64)
1143
+ inputs[indices_random] = random_words[indices_random]
1144
+
1145
+ # The rest of the time (10% of the time) we keep the masked input tokens unchanged
1146
+ return inputs, labels
1147
+
1148
+
1149
+ @dataclass
1150
+ class DataCollatorForSOP(DataCollatorForLanguageModeling):
1151
+ """
1152
+ Data collator used for sentence order prediction task.
1153
+
1154
+ - collates batches of tensors, honoring their tokenizer's pad_token
1155
+ - preprocesses batches for both masked language modeling and sentence order prediction
1156
+ """
1157
+
1158
+ def __init__(self, *args, **kwargs):
1159
+ warnings.warn(
1160
+ "DataCollatorForSOP is deprecated and will be removed in a future version, you can now use "
1161
+ "DataCollatorForLanguageModeling instead.",
1162
+ FutureWarning,
1163
+ )
1164
+
1165
+ def __call__(self, examples: List[Dict[str, Any]]) -> Dict[str, Any]:
1166
+ import torch
1167
+ from torch.nn.utils.rnn import pad_sequence
1168
+
1169
+ input_ids = [example["input_ids"] for example in examples]
1170
+ input_ids = _torch_collate_batch(input_ids, self.tokenizer)
1171
+ input_ids, labels, attention_mask = self.mask_tokens(input_ids)
1172
+
1173
+ token_type_ids = [example["token_type_ids"] for example in examples]
1174
+ # size of segment_ids varied because randomness, padding zero to the end as the original implementation
1175
+ token_type_ids = pad_sequence(token_type_ids, batch_first=True, padding_value=self.tokenizer.pad_token_id)
1176
+
1177
+ sop_label_list = [example["sentence_order_label"] for example in examples]
1178
+ sentence_order_label = torch.stack(sop_label_list)
1179
+
1180
+ return {
1181
+ "input_ids": input_ids,
1182
+ "labels": labels,
1183
+ "attention_mask": attention_mask,
1184
+ "token_type_ids": token_type_ids,
1185
+ "sentence_order_label": sentence_order_label,
1186
+ }
1187
+
1188
+ def mask_tokens(self, inputs: Any) -> Tuple[Any, Any, Any]:
1189
+ """
1190
+ Prepare masked tokens inputs/labels/attention_mask for masked language modeling: 80% MASK, 10% random, 10%
1191
+ original. N-gram not applied yet.
1192
+ """
1193
+ import torch
1194
+
1195
+ if self.tokenizer.mask_token is None:
1196
+ raise ValueError(
1197
+ "This tokenizer does not have a mask token which is necessary for masked language modeling. Remove the"
1198
+ " --mlm flag if you want to use this tokenizer."
1199
+ )
1200
+
1201
+ labels = inputs.clone()
1202
+ # We sample a few tokens in each sequence for masked-LM training (with probability args.mlm_probability defaults to 0.15 in Bert/RoBERTa)
1203
+ probability_matrix = torch.full(labels.shape, self.mlm_probability)
1204
+ special_tokens_mask = [
1205
+ self.tokenizer.get_special_tokens_mask(val, already_has_special_tokens=True) for val in labels.tolist()
1206
+ ]
1207
+ probability_matrix.masked_fill_(torch.tensor(special_tokens_mask, dtype=torch.bool), value=0.0)
1208
+ if self.tokenizer._pad_token is not None:
1209
+ padding_mask = labels.eq(self.tokenizer.pad_token_id)
1210
+ probability_matrix.masked_fill_(padding_mask, value=0.0)
1211
+ masked_indices = torch.bernoulli(probability_matrix).bool()
1212
+ # probability be `1` (masked), however in albert model attention mask `0` means masked, revert the value
1213
+ attention_mask = (~masked_indices).float()
1214
+ if self.tokenizer._pad_token is not None:
1215
+ attention_padding_mask = labels.eq(self.tokenizer.pad_token_id)
1216
+ attention_mask.masked_fill_(attention_padding_mask, value=1.0)
1217
+ labels[~masked_indices] = -100 # We only compute loss on masked tokens, -100 is default for CE compute
1218
+
1219
+ # 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK])
1220
+ indices_replaced = torch.bernoulli(torch.full(labels.shape, 0.8)).bool() & masked_indices
1221
+ inputs[indices_replaced] = self.tokenizer.convert_tokens_to_ids(self.tokenizer.mask_token)
1222
+
1223
+ # 10% of the time, we replace masked input tokens with random word
1224
+ indices_random = torch.bernoulli(torch.full(labels.shape, 0.5)).bool() & masked_indices & ~indices_replaced
1225
+ random_words = torch.randint(len(self.tokenizer), labels.shape, dtype=torch.long)
1226
+ inputs[indices_random] = random_words[indices_random]
1227
+
1228
+ # The rest of the time (10% of the time) we keep the masked input tokens unchanged
1229
+ return inputs, labels, attention_mask
1230
+
1231
+
1232
+ @dataclass
1233
+ class DataCollatorForPermutationLanguageModeling(DataCollatorMixin):
1234
+ """
1235
+ Data collator used for permutation language modeling.
1236
+
1237
+ - collates batches of tensors, honoring their tokenizer's pad_token
1238
+ - preprocesses batches for permutation language modeling with procedures specific to XLNet
1239
+ """
1240
+
1241
+ tokenizer: PreTrainedTokenizerBase
1242
+ plm_probability: float = 1 / 6
1243
+ max_span_length: int = 5 # maximum length of a span of masked tokens
1244
+ return_tensors: str = "pt"
1245
+
1246
+ def torch_call(self, examples: List[Union[List[int], Any, Dict[str, Any]]]) -> Dict[str, Any]:
1247
+ if isinstance(examples[0], Mapping):
1248
+ examples = [e["input_ids"] for e in examples]
1249
+ batch = _torch_collate_batch(examples, self.tokenizer)
1250
+ inputs, perm_mask, target_mapping, labels = self.torch_mask_tokens(batch)
1251
+ return {"input_ids": inputs, "perm_mask": perm_mask, "target_mapping": target_mapping, "labels": labels}
1252
+
1253
+ def tf_call(self, examples: List[Union[List[int], Any, Dict[str, Any]]]) -> Dict[str, Any]:
1254
+ if isinstance(examples[0], Mapping):
1255
+ examples = [e["input_ids"] for e in examples]
1256
+ batch = _tf_collate_batch(examples, self.tokenizer)
1257
+ inputs, perm_mask, target_mapping, labels = self.tf_mask_tokens(batch)
1258
+ return {"input_ids": inputs, "perm_mask": perm_mask, "target_mapping": target_mapping, "labels": labels}
1259
+
1260
+ def numpy_call(self, examples: List[Union[List[int], Any, Dict[str, Any]]]) -> Dict[str, Any]:
1261
+ if isinstance(examples[0], Mapping):
1262
+ examples = [e["input_ids"] for e in examples]
1263
+ batch = _numpy_collate_batch(examples, self.tokenizer)
1264
+ inputs, perm_mask, target_mapping, labels = self.numpy_mask_tokens(batch)
1265
+ return {"input_ids": inputs, "perm_mask": perm_mask, "target_mapping": target_mapping, "labels": labels}
1266
+
1267
+ def torch_mask_tokens(self, inputs: Any) -> Tuple[Any, Any, Any, Any]:
1268
+ """
1269
+ The masked tokens to be predicted for a particular sequence are determined by the following algorithm:
1270
+
1271
+ 0. Start from the beginning of the sequence by setting `cur_len = 0` (number of tokens processed so far).
1272
+ 1. Sample a `span_length` from the interval `[1, max_span_length]` (length of span of tokens to be masked)
1273
+ 2. Reserve a context of length `context_length = span_length / plm_probability` to surround span to be
1274
+ masked
1275
+ 3. Sample a starting point `start_index` from the interval `[cur_len, cur_len + context_length -
1276
+ span_length]` and mask tokens `start_index:start_index + span_length`
1277
+ 4. Set `cur_len = cur_len + context_length`. If `cur_len < max_len` (i.e. there are tokens remaining in the
1278
+ sequence to be processed), repeat from Step 1.
1279
+ """
1280
+ import torch
1281
+
1282
+ if self.tokenizer.mask_token is None:
1283
+ raise ValueError(
1284
+ "This tokenizer does not have a mask token which is necessary for permutation language modeling."
1285
+ " Please add a mask token if you want to use this tokenizer."
1286
+ )
1287
+
1288
+ if inputs.size(1) % 2 != 0:
1289
+ raise ValueError(
1290
+ "This collator requires that sequence lengths be even to create a leakage-free perm_mask. Please see"
1291
+ " relevant comments in source code for details."
1292
+ )
1293
+
1294
+ labels = inputs.clone()
1295
+ # Creating the mask and target_mapping tensors
1296
+ masked_indices = torch.full(labels.shape, 0, dtype=torch.bool)
1297
+ target_mapping = torch.zeros((labels.size(0), labels.size(1), labels.size(1)), dtype=torch.float32)
1298
+
1299
+ for i in range(labels.size(0)):
1300
+ # Start from the beginning of the sequence by setting `cur_len = 0` (number of tokens processed so far).
1301
+ cur_len = 0
1302
+ max_len = labels.size(1)
1303
+
1304
+ while cur_len < max_len:
1305
+ # Sample a `span_length` from the interval `[1, max_span_length]` (length of span of tokens to be masked)
1306
+ span_length = torch.randint(1, self.max_span_length + 1, (1,)).item()
1307
+ # Reserve a context of length `context_length = span_length / plm_probability` to surround the span to be masked
1308
+ context_length = int(span_length / self.plm_probability)
1309
+ # Sample a starting point `start_index` from the interval `[cur_len, cur_len + context_length - span_length]` and mask tokens `start_index:start_index + span_length`
1310
+ start_index = cur_len + torch.randint(context_length - span_length + 1, (1,)).item()
1311
+ masked_indices[i, start_index : start_index + span_length] = 1
1312
+ # Set `cur_len = cur_len + context_length`
1313
+ cur_len += context_length
1314
+
1315
+ # Since we're replacing non-masked tokens with -100 in the labels tensor instead of skipping them altogether,
1316
+ # the i-th predict corresponds to the i-th token.
1317
+ target_mapping[i] = torch.eye(labels.size(1))
1318
+
1319
+ special_tokens_mask = torch.tensor(
1320
+ [self.tokenizer.get_special_tokens_mask(val, already_has_special_tokens=True) for val in labels.tolist()],
1321
+ dtype=torch.bool,
1322
+ )
1323
+ masked_indices.masked_fill_(special_tokens_mask, value=0.0)
1324
+ if self.tokenizer._pad_token is not None:
1325
+ padding_mask = labels.eq(self.tokenizer.pad_token_id)
1326
+ masked_indices.masked_fill_(padding_mask, value=0.0)
1327
+
1328
+ # Mask indicating non-functional tokens, where functional tokens are [SEP], [CLS], padding, etc.
1329
+ non_func_mask = ~(padding_mask | special_tokens_mask)
1330
+
1331
+ inputs[masked_indices] = self.tokenizer.mask_token_id
1332
+ labels[~masked_indices] = -100 # We only compute loss on masked tokens
1333
+
1334
+ perm_mask = torch.zeros((labels.size(0), labels.size(1), labels.size(1)), dtype=torch.float32)
1335
+
1336
+ for i in range(labels.size(0)):
1337
+ # Generate permutation indices i.e. sample a random factorisation order for the sequence. This will
1338
+ # determine which tokens a given token can attend to (encoded in `perm_mask`).
1339
+ # Note: Length of token sequence being permuted has to be less than or equal to reused sequence length
1340
+ # (see documentation for `mems`), otherwise information may leak through due to reuse. In this implementation,
1341
+ # we assume that reused length is half of sequence length and permutation length is equal to reused length.
1342
+ # This requires that the sequence length be even.
1343
+
1344
+ # Create a linear factorisation order
1345
+ perm_index = torch.arange(labels.size(1))
1346
+ # Split this into two halves, assuming that half the sequence is reused each time
1347
+ perm_index = perm_index.reshape((-1, labels.size(1) // 2)).transpose(0, 1)
1348
+ # Permute the two halves such that they do not cross over
1349
+ perm_index = perm_index[torch.randperm(labels.size(1) // 2)]
1350
+ # Flatten this out into the desired permuted factorisation order
1351
+ perm_index = torch.flatten(perm_index.transpose(0, 1))
1352
+ # Set the permutation indices of non-masked (non-functional) tokens to the
1353
+ # smallest index (-1) so that:
1354
+ # (1) They can be seen by all other positions
1355
+ # (2) They cannot see masked positions, so there won't be information leak
1356
+ perm_index.masked_fill_(~masked_indices[i] & non_func_mask[i], -1)
1357
+ # The logic for whether the i-th token can attend on the j-th token based on the factorisation order:
1358
+ # 0 (can attend): If perm_index[i] > perm_index[j] or j is neither masked nor a functional token
1359
+ # 1 (cannot attend): If perm_index[i] <= perm_index[j] and j is either masked or a functional token
1360
+ perm_mask[i] = (
1361
+ perm_index.reshape((labels.size(1), 1)) <= perm_index.reshape((1, labels.size(1)))
1362
+ ) & masked_indices[i]
1363
+
1364
+ return inputs.long(), perm_mask, target_mapping, labels.long()
1365
+
1366
+ def tf_mask_tokens(self, inputs: Any) -> Tuple[Any, Any, Any, Any]:
1367
+ """
1368
+ The masked tokens to be predicted for a particular sequence are determined by the following algorithm:
1369
+
1370
+ 0. Start from the beginning of the sequence by setting `cur_len = 0` (number of tokens processed so far).
1371
+ 1. Sample a `span_length` from the interval `[1, max_span_length]` (length of span of tokens to be masked)
1372
+ 2. Reserve a context of length `context_length = span_length / plm_probability` to surround span to be
1373
+ masked
1374
+ 3. Sample a starting point `start_index` from the interval `[cur_len, cur_len + context_length -
1375
+ span_length]` and mask tokens `start_index:start_index + span_length`
1376
+ 4. Set `cur_len = cur_len + context_length`. If `cur_len < max_len` (i.e. there are tokens remaining in the
1377
+ sequence to be processed), repeat from Step 1.
1378
+ """
1379
+ import tensorflow as tf
1380
+
1381
+ if self.tokenizer.mask_token is None:
1382
+ raise ValueError(
1383
+ "This tokenizer does not have a mask token which is necessary for permutation language modeling."
1384
+ " Please add a mask token if you want to use this tokenizer."
1385
+ )
1386
+
1387
+ if tf.shape(inputs)[1] % 2 != 0:
1388
+ raise ValueError(
1389
+ "This collator requires that sequence lengths be even to create a leakage-free perm_mask. Please see"
1390
+ " relevant comments in source code for details."
1391
+ )
1392
+
1393
+ labels = tf.identity(inputs)
1394
+ # Creating the mask and target_mapping tensors
1395
+ masked_indices = np.full(labels.shape.as_list(), 0, dtype=bool)
1396
+ labels_shape = tf.shape(labels)
1397
+ target_mapping = np.zeros((labels_shape[0], labels_shape[1], labels_shape[1]), dtype=np.float32)
1398
+
1399
+ for i in range(len(labels)):
1400
+ # Start from the beginning of the sequence by setting `cur_len = 0` (number of tokens processed so far).
1401
+ cur_len = 0
1402
+ max_len = tf.shape(labels)[1]
1403
+
1404
+ while cur_len < max_len:
1405
+ # Sample a `span_length` from the interval `[1, max_span_length]` (length of span of tokens to be masked)
1406
+ span_length = randint(1, self.max_span_length + 1)
1407
+ # Reserve a context of length `context_length = span_length / plm_probability` to surround the span to be masked
1408
+ context_length = int(span_length / self.plm_probability)
1409
+ # Sample a starting point `start_index` from the interval `[cur_len, cur_len + context_length - span_length]` and mask tokens `start_index:start_index + span_length`
1410
+ start_index = cur_len + randint(0, context_length - span_length + 1)
1411
+ masked_indices[i, start_index : start_index + span_length] = 1
1412
+ # Set `cur_len = cur_len + context_length`
1413
+ cur_len += context_length
1414
+
1415
+ # Since we're replacing non-masked tokens with -100 in the labels tensor instead of skipping them altogether,
1416
+ # the i-th predict corresponds to the i-th token.
1417
+ target_mapping[i] = np.eye(labels_shape[1])
1418
+ masked_indices = tf.cast(tf.convert_to_tensor(masked_indices), dtype=tf.bool)
1419
+ target_mapping = tf.convert_to_tensor(target_mapping)
1420
+ special_tokens_mask = tf.convert_to_tensor(
1421
+ [
1422
+ self.tokenizer.get_special_tokens_mask(val, already_has_special_tokens=True)
1423
+ for val in labels.numpy().tolist()
1424
+ ],
1425
+ )
1426
+ special_tokens_mask = tf.cast(special_tokens_mask, dtype=tf.bool)
1427
+ masked_indices = masked_indices & ~special_tokens_mask
1428
+ if self.tokenizer._pad_token is not None:
1429
+ padding_mask = labels == self.tokenizer.pad_token_id
1430
+ masked_indices = masked_indices & ~padding_mask
1431
+
1432
+ # Mask indicating non-functional tokens, where functional tokens are [SEP], [CLS], padding, etc.
1433
+ non_func_mask = ~(padding_mask | special_tokens_mask)
1434
+
1435
+ inputs = tf.where(masked_indices, self.tokenizer.mask_token_id, inputs)
1436
+ labels = tf.where(masked_indices, labels, -100) # We only compute loss on masked tokens
1437
+
1438
+ perm_mask = []
1439
+
1440
+ for i in range(len(labels)):
1441
+ # Generate permutation indices i.e. sample a random factorisation order for the sequence. This will
1442
+ # determine which tokens a given token can attend to (encoded in `perm_mask`).
1443
+ # Note: Length of token sequence being permuted has to be less than or equal to reused sequence length
1444
+ # (see documentation for `mems`), otherwise information may leak through due to reuse. In this implementation,
1445
+ # we assume that reused length is half of sequence length and permutation length is equal to reused length.
1446
+ # This requires that the sequence length be even.
1447
+
1448
+ # Create a linear factorisation order
1449
+ # tf.range is the equivalent of torch.arange
1450
+ perm_index = tf.range(labels_shape[1])
1451
+ # Split this into two halves, assuming that half the sequence is reused each time
1452
+ perm_index = tf.transpose(tf.reshape(perm_index, (-1, labels_shape[1] // 2)))
1453
+ # Permute the two halves such that they do not cross over
1454
+ perm_index = tf.random.shuffle(perm_index) # Shuffles along the first dimension
1455
+ # Flatten this out into the desired permuted factorisation order
1456
+ perm_index = tf.reshape(tf.transpose(perm_index), (-1,))
1457
+ # Set the permutation indices of non-masked (non-functional) tokens to the
1458
+ # smallest index (-1) so that:
1459
+ # (1) They can be seen by all other positions
1460
+ # (2) They cannot see masked positions, so there won't be information leak
1461
+ perm_index = tf.where(~masked_indices[i] & non_func_mask[i], -1, perm_index)
1462
+ # The logic for whether the i-th token can attend on the j-th token based on the factorisation order:
1463
+ # 0 (can attend): If perm_index[i] > perm_index[j] or j is neither masked nor a functional token
1464
+ # 1 (cannot attend): If perm_index[i] <= perm_index[j] and j is either masked or a functional token
1465
+ perm_mask.append(
1466
+ (tf.reshape(perm_index, (labels_shape[1], 1)) <= tf.reshape(perm_index, (1, labels_shape[1])))
1467
+ & masked_indices[i]
1468
+ )
1469
+ perm_mask = tf.stack(perm_mask, axis=0)
1470
+
1471
+ return tf.cast(inputs, tf.int64), tf.cast(perm_mask, tf.float32), target_mapping, tf.cast(labels, tf.int64)
1472
+
1473
+ def numpy_mask_tokens(self, inputs: Any) -> Tuple[Any, Any, Any, Any]:
1474
+ """
1475
+ The masked tokens to be predicted for a particular sequence are determined by the following algorithm:
1476
+
1477
+ 0. Start from the beginning of the sequence by setting `cur_len = 0` (number of tokens processed so far).
1478
+ 1. Sample a `span_length` from the interval `[1, max_span_length]` (length of span of tokens to be masked)
1479
+ 2. Reserve a context of length `context_length = span_length / plm_probability` to surround span to be
1480
+ masked
1481
+ 3. Sample a starting point `start_index` from the interval `[cur_len, cur_len + context_length -
1482
+ span_length]` and mask tokens `start_index:start_index + span_length`
1483
+ 4. Set `cur_len = cur_len + context_length`. If `cur_len < max_len` (i.e. there are tokens remaining in the
1484
+ sequence to be processed), repeat from Step 1.
1485
+ """
1486
+ if self.tokenizer.mask_token is None:
1487
+ raise ValueError(
1488
+ "This tokenizer does not have a mask token which is necessary for permutation language modeling."
1489
+ " Please add a mask token if you want to use this tokenizer."
1490
+ )
1491
+
1492
+ if inputs.shape[1] % 2 != 0:
1493
+ raise ValueError(
1494
+ "This collator requires that sequence lengths be even to create a leakage-free perm_mask. Please see"
1495
+ " relevant comments in source code for details."
1496
+ )
1497
+
1498
+ labels = np.copy(inputs)
1499
+ # Creating the mask and target_mapping tensors
1500
+ masked_indices = np.full(labels.shape, 0, dtype=bool)
1501
+ target_mapping = np.zeros((labels.shape[0], labels.shape[1], labels.shape[1]), dtype=np.float32)
1502
+
1503
+ for i in range(labels.shape[0]):
1504
+ # Start from the beginning of the sequence by setting `cur_len = 0` (number of tokens processed so far).
1505
+ cur_len = 0
1506
+ max_len = labels.shape[1]
1507
+
1508
+ while cur_len < max_len:
1509
+ # Sample a `span_length` from the interval `[1, max_span_length]` (length of span of tokens to be masked)
1510
+ span_length = randint(1, self.max_span_length + 1)
1511
+ # Reserve a context of length `context_length = span_length / plm_probability` to surround the span to be masked
1512
+ context_length = int(span_length / self.plm_probability)
1513
+ # Sample a starting point `start_index` from the interval `[cur_len, cur_len + context_length - span_length]` and mask tokens `start_index:start_index + span_length`
1514
+ start_index = cur_len + randint(0, context_length - span_length + 1)
1515
+ masked_indices[i, start_index : start_index + span_length] = 1
1516
+ # Set `cur_len = cur_len + context_length`
1517
+ cur_len += context_length
1518
+
1519
+ # Since we're replacing non-masked tokens with -100 in the labels tensor instead of skipping them altogether,
1520
+ # the i-th predict corresponds to the i-th token.
1521
+ target_mapping[i] = np.eye(labels.shape[1])
1522
+
1523
+ special_tokens_mask = np.array(
1524
+ [self.tokenizer.get_special_tokens_mask(val, already_has_special_tokens=True) for val in labels.tolist()],
1525
+ dtype=bool,
1526
+ )
1527
+ masked_indices[special_tokens_mask] = 0
1528
+ if self.tokenizer._pad_token is not None:
1529
+ padding_mask = labels == self.tokenizer.pad_token_id
1530
+ masked_indices[padding_mask] = 0.0
1531
+
1532
+ # Mask indicating non-functional tokens, where functional tokens are [SEP], [CLS], padding, etc.
1533
+ non_func_mask = ~(padding_mask | special_tokens_mask)
1534
+
1535
+ inputs[masked_indices] = self.tokenizer.mask_token_id
1536
+ labels[~masked_indices] = -100 # We only compute loss on masked tokens
1537
+
1538
+ perm_mask = np.zeros((labels.shape[0], labels.shape[1], labels.shape[1]), dtype=np.float32)
1539
+
1540
+ for i in range(labels.shape[0]):
1541
+ # Generate permutation indices i.e. sample a random factorisation order for the sequence. This will
1542
+ # determine which tokens a given token can attend to (encoded in `perm_mask`).
1543
+ # Note: Length of token sequence being permuted has to be less than or equal to reused sequence length
1544
+ # (see documentation for `mems`), otherwise information may leak through due to reuse. In this implementation,
1545
+ # we assume that reused length is half of sequence length and permutation length is equal to reused length.
1546
+ # This requires that the sequence length be even.
1547
+
1548
+ # Create a linear factorisation order
1549
+ perm_index = np.arange(labels.shape[1])
1550
+ # Split this into two halves, assuming that half the sequence is reused each time
1551
+ perm_index = perm_index.reshape((-1, labels.shape[1] // 2)).T
1552
+ # Permute the two halves such that they do not cross over
1553
+ np.random.shuffle(perm_index)
1554
+ # Flatten this out into the desired permuted factorisation order
1555
+ perm_index = perm_index.T.flatten()
1556
+ # Set the permutation indices of non-masked (non-functional) tokens to the
1557
+ # smallest index (-1) so that:
1558
+ # (1) They can be seen by all other positions
1559
+ # (2) They cannot see masked positions, so there won't be information leak
1560
+ perm_index[~masked_indices[i] & non_func_mask[i]] = -1
1561
+ # The logic for whether the i-th token can attend on the j-th token based on the factorisation order:
1562
+ # 0 (can attend): If perm_index[i] > perm_index[j] or j is neither masked nor a functional token
1563
+ # 1 (cannot attend): If perm_index[i] <= perm_index[j] and j is either masked or a functional token
1564
+ perm_mask[i] = (
1565
+ perm_index.reshape((labels.shape[1], 1)) <= perm_index.reshape((1, labels.shape[1]))
1566
+ ) & masked_indices[i]
1567
+
1568
+ return inputs.astype(np.int64), perm_mask, target_mapping, labels.astype(np.int64)
llmeval-env/lib/python3.10/site-packages/transformers/data/datasets/__pycache__/squad.cpython-310.pyc ADDED
Binary file (6.37 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/data/datasets/glue.py ADDED
@@ -0,0 +1,161 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2020 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import os
16
+ import time
17
+ import warnings
18
+ from dataclasses import dataclass, field
19
+ from enum import Enum
20
+ from typing import List, Optional, Union
21
+
22
+ import torch
23
+ from filelock import FileLock
24
+ from torch.utils.data import Dataset
25
+
26
+ from ...tokenization_utils_base import PreTrainedTokenizerBase
27
+ from ...utils import logging
28
+ from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors
29
+ from ..processors.utils import InputFeatures
30
+
31
+
32
+ logger = logging.get_logger(__name__)
33
+
34
+
35
+ @dataclass
36
+ class GlueDataTrainingArguments:
37
+ """
38
+ Arguments pertaining to what data we are going to input our model for training and eval.
39
+
40
+ Using `HfArgumentParser` we can turn this class into argparse arguments to be able to specify them on the command
41
+ line.
42
+ """
43
+
44
+ task_name: str = field(metadata={"help": "The name of the task to train on: " + ", ".join(glue_processors.keys())})
45
+ data_dir: str = field(
46
+ metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."}
47
+ )
48
+ max_seq_length: int = field(
49
+ default=128,
50
+ metadata={
51
+ "help": (
52
+ "The maximum total input sequence length after tokenization. Sequences longer "
53
+ "than this will be truncated, sequences shorter will be padded."
54
+ )
55
+ },
56
+ )
57
+ overwrite_cache: bool = field(
58
+ default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
59
+ )
60
+
61
+ def __post_init__(self):
62
+ self.task_name = self.task_name.lower()
63
+
64
+
65
+ class Split(Enum):
66
+ train = "train"
67
+ dev = "dev"
68
+ test = "test"
69
+
70
+
71
+ class GlueDataset(Dataset):
72
+ """
73
+ This will be superseded by a framework-agnostic approach soon.
74
+ """
75
+
76
+ args: GlueDataTrainingArguments
77
+ output_mode: str
78
+ features: List[InputFeatures]
79
+
80
+ def __init__(
81
+ self,
82
+ args: GlueDataTrainingArguments,
83
+ tokenizer: PreTrainedTokenizerBase,
84
+ limit_length: Optional[int] = None,
85
+ mode: Union[str, Split] = Split.train,
86
+ cache_dir: Optional[str] = None,
87
+ ):
88
+ warnings.warn(
89
+ "This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets "
90
+ "library. You can have a look at this example script for pointers: "
91
+ "https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py",
92
+ FutureWarning,
93
+ )
94
+ self.args = args
95
+ self.processor = glue_processors[args.task_name]()
96
+ self.output_mode = glue_output_modes[args.task_name]
97
+ if isinstance(mode, str):
98
+ try:
99
+ mode = Split[mode]
100
+ except KeyError:
101
+ raise KeyError("mode is not a valid split name")
102
+ # Load data features from cache or dataset file
103
+ cached_features_file = os.path.join(
104
+ cache_dir if cache_dir is not None else args.data_dir,
105
+ f"cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}",
106
+ )
107
+ label_list = self.processor.get_labels()
108
+ if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in (
109
+ "RobertaTokenizer",
110
+ "RobertaTokenizerFast",
111
+ "XLMRobertaTokenizer",
112
+ "BartTokenizer",
113
+ "BartTokenizerFast",
114
+ ):
115
+ # HACK(label indices are swapped in RoBERTa pretrained model)
116
+ label_list[1], label_list[2] = label_list[2], label_list[1]
117
+ self.label_list = label_list
118
+
119
+ # Make sure only the first process in distributed training processes the dataset,
120
+ # and the others will use the cache.
121
+ lock_path = cached_features_file + ".lock"
122
+ with FileLock(lock_path):
123
+ if os.path.exists(cached_features_file) and not args.overwrite_cache:
124
+ start = time.time()
125
+ self.features = torch.load(cached_features_file)
126
+ logger.info(
127
+ f"Loading features from cached file {cached_features_file} [took %.3f s]", time.time() - start
128
+ )
129
+ else:
130
+ logger.info(f"Creating features from dataset file at {args.data_dir}")
131
+
132
+ if mode == Split.dev:
133
+ examples = self.processor.get_dev_examples(args.data_dir)
134
+ elif mode == Split.test:
135
+ examples = self.processor.get_test_examples(args.data_dir)
136
+ else:
137
+ examples = self.processor.get_train_examples(args.data_dir)
138
+ if limit_length is not None:
139
+ examples = examples[:limit_length]
140
+ self.features = glue_convert_examples_to_features(
141
+ examples,
142
+ tokenizer,
143
+ max_length=args.max_seq_length,
144
+ label_list=label_list,
145
+ output_mode=self.output_mode,
146
+ )
147
+ start = time.time()
148
+ torch.save(self.features, cached_features_file)
149
+ # ^ This seems to take a lot of time so I want to investigate why and how we can improve.
150
+ logger.info(
151
+ f"Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]"
152
+ )
153
+
154
+ def __len__(self):
155
+ return len(self.features)
156
+
157
+ def __getitem__(self, i) -> InputFeatures:
158
+ return self.features[i]
159
+
160
+ def get_labels(self):
161
+ return self.label_list
llmeval-env/lib/python3.10/site-packages/transformers/data/datasets/language_modeling.py ADDED
@@ -0,0 +1,530 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2020 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import json
16
+ import os
17
+ import pickle
18
+ import random
19
+ import time
20
+ import warnings
21
+ from typing import Dict, List, Optional
22
+
23
+ import torch
24
+ from filelock import FileLock
25
+ from torch.utils.data import Dataset
26
+
27
+ from ...tokenization_utils import PreTrainedTokenizer
28
+ from ...utils import logging
29
+
30
+
31
+ logger = logging.get_logger(__name__)
32
+
33
+
34
+ DEPRECATION_WARNING = (
35
+ "This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets "
36
+ "library. You can have a look at this example script for pointers: {0}"
37
+ )
38
+
39
+
40
+ class TextDataset(Dataset):
41
+ """
42
+ This will be superseded by a framework-agnostic approach soon.
43
+ """
44
+
45
+ def __init__(
46
+ self,
47
+ tokenizer: PreTrainedTokenizer,
48
+ file_path: str,
49
+ block_size: int,
50
+ overwrite_cache=False,
51
+ cache_dir: Optional[str] = None,
52
+ ):
53
+ warnings.warn(
54
+ DEPRECATION_WARNING.format(
55
+ "https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_mlm.py"
56
+ ),
57
+ FutureWarning,
58
+ )
59
+ if os.path.isfile(file_path) is False:
60
+ raise ValueError(f"Input file path {file_path} not found")
61
+
62
+ block_size = block_size - tokenizer.num_special_tokens_to_add(pair=False)
63
+
64
+ directory, filename = os.path.split(file_path)
65
+ cached_features_file = os.path.join(
66
+ cache_dir if cache_dir is not None else directory,
67
+ f"cached_lm_{tokenizer.__class__.__name__}_{block_size}_{filename}",
68
+ )
69
+
70
+ # Make sure only the first process in distributed training processes the dataset,
71
+ # and the others will use the cache.
72
+ lock_path = cached_features_file + ".lock"
73
+ with FileLock(lock_path):
74
+ if os.path.exists(cached_features_file) and not overwrite_cache:
75
+ start = time.time()
76
+ with open(cached_features_file, "rb") as handle:
77
+ self.examples = pickle.load(handle)
78
+ logger.info(
79
+ f"Loading features from cached file {cached_features_file} [took %.3f s]", time.time() - start
80
+ )
81
+
82
+ else:
83
+ logger.info(f"Creating features from dataset file at {directory}")
84
+
85
+ self.examples = []
86
+ with open(file_path, encoding="utf-8") as f:
87
+ text = f.read()
88
+
89
+ tokenized_text = tokenizer.convert_tokens_to_ids(tokenizer.tokenize(text))
90
+
91
+ for i in range(0, len(tokenized_text) - block_size + 1, block_size): # Truncate in block of block_size
92
+ self.examples.append(
93
+ tokenizer.build_inputs_with_special_tokens(tokenized_text[i : i + block_size])
94
+ )
95
+ # Note that we are losing the last truncated example here for the sake of simplicity (no padding)
96
+ # If your dataset is small, first you should look for a bigger one :-) and second you
97
+ # can change this behavior by adding (model specific) padding.
98
+
99
+ start = time.time()
100
+ with open(cached_features_file, "wb") as handle:
101
+ pickle.dump(self.examples, handle, protocol=pickle.HIGHEST_PROTOCOL)
102
+ logger.info(
103
+ f"Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]"
104
+ )
105
+
106
+ def __len__(self):
107
+ return len(self.examples)
108
+
109
+ def __getitem__(self, i) -> torch.Tensor:
110
+ return torch.tensor(self.examples[i], dtype=torch.long)
111
+
112
+
113
+ class LineByLineTextDataset(Dataset):
114
+ """
115
+ This will be superseded by a framework-agnostic approach soon.
116
+ """
117
+
118
+ def __init__(self, tokenizer: PreTrainedTokenizer, file_path: str, block_size: int):
119
+ warnings.warn(
120
+ DEPRECATION_WARNING.format(
121
+ "https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_mlm.py"
122
+ ),
123
+ FutureWarning,
124
+ )
125
+ if os.path.isfile(file_path) is False:
126
+ raise ValueError(f"Input file path {file_path} not found")
127
+ # Here, we do not cache the features, operating under the assumption
128
+ # that we will soon use fast multithreaded tokenizers from the
129
+ # `tokenizers` repo everywhere =)
130
+ logger.info(f"Creating features from dataset file at {file_path}")
131
+
132
+ with open(file_path, encoding="utf-8") as f:
133
+ lines = [line for line in f.read().splitlines() if (len(line) > 0 and not line.isspace())]
134
+
135
+ batch_encoding = tokenizer(lines, add_special_tokens=True, truncation=True, max_length=block_size)
136
+ self.examples = batch_encoding["input_ids"]
137
+ self.examples = [{"input_ids": torch.tensor(e, dtype=torch.long)} for e in self.examples]
138
+
139
+ def __len__(self):
140
+ return len(self.examples)
141
+
142
+ def __getitem__(self, i) -> Dict[str, torch.tensor]:
143
+ return self.examples[i]
144
+
145
+
146
+ class LineByLineWithRefDataset(Dataset):
147
+ """
148
+ This will be superseded by a framework-agnostic approach soon.
149
+ """
150
+
151
+ def __init__(self, tokenizer: PreTrainedTokenizer, file_path: str, block_size: int, ref_path: str):
152
+ warnings.warn(
153
+ DEPRECATION_WARNING.format(
154
+ "https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_mlm_wwm.py"
155
+ ),
156
+ FutureWarning,
157
+ )
158
+ if os.path.isfile(file_path) is False:
159
+ raise ValueError(f"Input file path {file_path} not found")
160
+ if os.path.isfile(ref_path) is False:
161
+ raise ValueError(f"Ref file path {file_path} not found")
162
+ # Here, we do not cache the features, operating under the assumption
163
+ # that we will soon use fast multithreaded tokenizers from the
164
+ # `tokenizers` repo everywhere =)
165
+ logger.info(f"Creating features from dataset file at {file_path}")
166
+ logger.info(f"Use ref segment results at {ref_path}")
167
+ with open(file_path, encoding="utf-8") as f:
168
+ data = f.readlines() # use this method to avoid delimiter '\u2029' to split a line
169
+ data = [line.strip() for line in data if len(line) > 0 and not line.isspace()]
170
+ # Get ref inf from file
171
+ with open(ref_path, encoding="utf-8") as f:
172
+ ref = [json.loads(line) for line in f.read().splitlines() if (len(line) > 0 and not line.isspace())]
173
+ if len(data) != len(ref):
174
+ raise ValueError(
175
+ f"Length of Input file should be equal to Ref file. But the length of {file_path} is {len(data)} "
176
+ f"while length of {ref_path} is {len(ref)}"
177
+ )
178
+
179
+ batch_encoding = tokenizer(data, add_special_tokens=True, truncation=True, max_length=block_size)
180
+ self.examples = batch_encoding["input_ids"]
181
+ self.examples = [{"input_ids": torch.tensor(e, dtype=torch.long)} for e in self.examples]
182
+
183
+ n = len(self.examples)
184
+ for i in range(n):
185
+ self.examples[i]["chinese_ref"] = torch.tensor(ref[i], dtype=torch.long)
186
+
187
+ def __len__(self):
188
+ return len(self.examples)
189
+
190
+ def __getitem__(self, i) -> Dict[str, torch.tensor]:
191
+ return self.examples[i]
192
+
193
+
194
+ class LineByLineWithSOPTextDataset(Dataset):
195
+ """
196
+ Dataset for sentence order prediction task, prepare sentence pairs for SOP task
197
+ """
198
+
199
+ def __init__(self, tokenizer: PreTrainedTokenizer, file_dir: str, block_size: int):
200
+ warnings.warn(
201
+ DEPRECATION_WARNING.format(
202
+ "https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_mlm.py"
203
+ ),
204
+ FutureWarning,
205
+ )
206
+ if os.path.isdir(file_dir) is False:
207
+ raise ValueError(f"{file_dir} is not a directory")
208
+ logger.info(f"Creating features from dataset file folder at {file_dir}")
209
+ self.examples = []
210
+ # TODO: randomness could apply a random seed, ex. rng = random.Random(random_seed)
211
+ # file path looks like ./dataset/wiki_1, ./dataset/wiki_2
212
+ for file_name in os.listdir(file_dir):
213
+ file_path = os.path.join(file_dir, file_name)
214
+ if os.path.isfile(file_path) is False:
215
+ raise ValueError(f"{file_path} is not a file")
216
+ article_open = False
217
+ with open(file_path, encoding="utf-8") as f:
218
+ original_lines = f.readlines()
219
+ article_lines = []
220
+ for line in original_lines:
221
+ if "<doc id=" in line:
222
+ article_open = True
223
+ elif "</doc>" in line:
224
+ article_open = False
225
+ document = [
226
+ tokenizer.convert_tokens_to_ids(tokenizer.tokenize(line))
227
+ for line in article_lines[1:]
228
+ if (len(line) > 0 and not line.isspace())
229
+ ]
230
+
231
+ examples = self.create_examples_from_document(document, block_size, tokenizer)
232
+ self.examples.extend(examples)
233
+ article_lines = []
234
+ else:
235
+ if article_open:
236
+ article_lines.append(line)
237
+
238
+ logger.info("Dataset parse finished.")
239
+
240
+ def create_examples_from_document(self, document, block_size, tokenizer, short_seq_prob=0.1):
241
+ """Creates examples for a single document."""
242
+
243
+ # Account for special tokens
244
+ max_num_tokens = block_size - tokenizer.num_special_tokens_to_add(pair=True)
245
+
246
+ # We *usually* want to fill up the entire sequence since we are padding
247
+ # to `block_size` anyways, so short sequences are generally wasted
248
+ # computation. However, we *sometimes*
249
+ # (i.e., short_seq_prob == 0.1 == 10% of the time) want to use shorter
250
+ # sequences to minimize the mismatch between pretraining and fine-tuning.
251
+ # The `target_seq_length` is just a rough target however, whereas
252
+ # `block_size` is a hard limit.
253
+ target_seq_length = max_num_tokens
254
+ if random.random() < short_seq_prob:
255
+ target_seq_length = random.randint(2, max_num_tokens)
256
+
257
+ # We DON'T just concatenate all of the tokens from a document into a long
258
+ # sequence and choose an arbitrary split point because this would make the
259
+ # next sentence prediction task too easy. Instead, we split the input into
260
+ # segments "A" and "B" based on the actual "sentences" provided by the user
261
+ # input.
262
+ examples = []
263
+ current_chunk = [] # a buffer stored current working segments
264
+ current_length = 0
265
+ i = 0
266
+ while i < len(document):
267
+ segment = document[i] # get a segment
268
+ if not segment:
269
+ i += 1
270
+ continue
271
+ current_chunk.append(segment) # add a segment to current chunk
272
+ current_length += len(segment) # overall token length
273
+ # if current length goes to the target length or reaches the end of file, start building token a and b
274
+ if i == len(document) - 1 or current_length >= target_seq_length:
275
+ if current_chunk:
276
+ # `a_end` is how many segments from `current_chunk` go into the `A` (first) sentence.
277
+ a_end = 1
278
+ # if current chunk has more than 2 sentences, pick part of it `A` (first) sentence
279
+ if len(current_chunk) >= 2:
280
+ a_end = random.randint(1, len(current_chunk) - 1)
281
+ # token a
282
+ tokens_a = []
283
+ for j in range(a_end):
284
+ tokens_a.extend(current_chunk[j])
285
+
286
+ # token b
287
+ tokens_b = []
288
+ for j in range(a_end, len(current_chunk)):
289
+ tokens_b.extend(current_chunk[j])
290
+
291
+ if len(tokens_a) == 0 or len(tokens_b) == 0:
292
+ continue
293
+
294
+ # switch tokens_a and tokens_b randomly
295
+ if random.random() < 0.5:
296
+ is_next = False
297
+ tokens_a, tokens_b = tokens_b, tokens_a
298
+ else:
299
+ is_next = True
300
+
301
+ def truncate_seq_pair(tokens_a, tokens_b, max_num_tokens):
302
+ """Truncates a pair of sequences to a maximum sequence length."""
303
+ while True:
304
+ total_length = len(tokens_a) + len(tokens_b)
305
+ if total_length <= max_num_tokens:
306
+ break
307
+ trunc_tokens = tokens_a if len(tokens_a) > len(tokens_b) else tokens_b
308
+ if not (len(trunc_tokens) >= 1):
309
+ raise ValueError("Sequence length to be truncated must be no less than one")
310
+ # We want to sometimes truncate from the front and sometimes from the
311
+ # back to add more randomness and avoid biases.
312
+ if random.random() < 0.5:
313
+ del trunc_tokens[0]
314
+ else:
315
+ trunc_tokens.pop()
316
+
317
+ truncate_seq_pair(tokens_a, tokens_b, max_num_tokens)
318
+ if not (len(tokens_a) >= 1):
319
+ raise ValueError(f"Length of sequence a is {len(tokens_a)} which must be no less than 1")
320
+ if not (len(tokens_b) >= 1):
321
+ raise ValueError(f"Length of sequence b is {len(tokens_b)} which must be no less than 1")
322
+
323
+ # add special tokens
324
+ input_ids = tokenizer.build_inputs_with_special_tokens(tokens_a, tokens_b)
325
+ # add token type ids, 0 for sentence a, 1 for sentence b
326
+ token_type_ids = tokenizer.create_token_type_ids_from_sequences(tokens_a, tokens_b)
327
+
328
+ example = {
329
+ "input_ids": torch.tensor(input_ids, dtype=torch.long),
330
+ "token_type_ids": torch.tensor(token_type_ids, dtype=torch.long),
331
+ "sentence_order_label": torch.tensor(0 if is_next else 1, dtype=torch.long),
332
+ }
333
+ examples.append(example)
334
+ current_chunk = [] # clear current chunk
335
+ current_length = 0 # reset current text length
336
+ i += 1 # go to next line
337
+ return examples
338
+
339
+ def __len__(self):
340
+ return len(self.examples)
341
+
342
+ def __getitem__(self, i) -> Dict[str, torch.tensor]:
343
+ return self.examples[i]
344
+
345
+
346
+ class TextDatasetForNextSentencePrediction(Dataset):
347
+ """
348
+ This will be superseded by a framework-agnostic approach soon.
349
+ """
350
+
351
+ def __init__(
352
+ self,
353
+ tokenizer: PreTrainedTokenizer,
354
+ file_path: str,
355
+ block_size: int,
356
+ overwrite_cache=False,
357
+ short_seq_probability=0.1,
358
+ nsp_probability=0.5,
359
+ ):
360
+ warnings.warn(
361
+ DEPRECATION_WARNING.format(
362
+ "https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_mlm.py"
363
+ ),
364
+ FutureWarning,
365
+ )
366
+ if not os.path.isfile(file_path):
367
+ raise ValueError(f"Input file path {file_path} not found")
368
+
369
+ self.short_seq_probability = short_seq_probability
370
+ self.nsp_probability = nsp_probability
371
+
372
+ directory, filename = os.path.split(file_path)
373
+ cached_features_file = os.path.join(
374
+ directory,
375
+ f"cached_nsp_{tokenizer.__class__.__name__}_{block_size}_{filename}",
376
+ )
377
+
378
+ self.tokenizer = tokenizer
379
+
380
+ # Make sure only the first process in distributed training processes the dataset,
381
+ # and the others will use the cache.
382
+ lock_path = cached_features_file + ".lock"
383
+
384
+ # Input file format:
385
+ # (1) One sentence per line. These should ideally be actual sentences, not
386
+ # entire paragraphs or arbitrary spans of text. (Because we use the
387
+ # sentence boundaries for the "next sentence prediction" task).
388
+ # (2) Blank lines between documents. Document boundaries are needed so
389
+ # that the "next sentence prediction" task doesn't span between documents.
390
+ #
391
+ # Example:
392
+ # I am very happy.
393
+ # Here is the second sentence.
394
+ #
395
+ # A new document.
396
+
397
+ with FileLock(lock_path):
398
+ if os.path.exists(cached_features_file) and not overwrite_cache:
399
+ start = time.time()
400
+ with open(cached_features_file, "rb") as handle:
401
+ self.examples = pickle.load(handle)
402
+ logger.info(
403
+ f"Loading features from cached file {cached_features_file} [took %.3f s]", time.time() - start
404
+ )
405
+ else:
406
+ logger.info(f"Creating features from dataset file at {directory}")
407
+
408
+ self.documents = [[]]
409
+ with open(file_path, encoding="utf-8") as f:
410
+ while True:
411
+ line = f.readline()
412
+ if not line:
413
+ break
414
+ line = line.strip()
415
+
416
+ # Empty lines are used as document delimiters
417
+ if not line and len(self.documents[-1]) != 0:
418
+ self.documents.append([])
419
+ tokens = tokenizer.tokenize(line)
420
+ tokens = tokenizer.convert_tokens_to_ids(tokens)
421
+ if tokens:
422
+ self.documents[-1].append(tokens)
423
+
424
+ logger.info(f"Creating examples from {len(self.documents)} documents.")
425
+ self.examples = []
426
+ for doc_index, document in enumerate(self.documents):
427
+ self.create_examples_from_document(document, doc_index, block_size)
428
+
429
+ start = time.time()
430
+ with open(cached_features_file, "wb") as handle:
431
+ pickle.dump(self.examples, handle, protocol=pickle.HIGHEST_PROTOCOL)
432
+ logger.info(
433
+ f"Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]"
434
+ )
435
+
436
+ def create_examples_from_document(self, document: List[List[int]], doc_index: int, block_size: int):
437
+ """Creates examples for a single document."""
438
+
439
+ max_num_tokens = block_size - self.tokenizer.num_special_tokens_to_add(pair=True)
440
+
441
+ # We *usually* want to fill up the entire sequence since we are padding
442
+ # to `block_size` anyways, so short sequences are generally wasted
443
+ # computation. However, we *sometimes*
444
+ # (i.e., short_seq_prob == 0.1 == 10% of the time) want to use shorter
445
+ # sequences to minimize the mismatch between pretraining and fine-tuning.
446
+ # The `target_seq_length` is just a rough target however, whereas
447
+ # `block_size` is a hard limit.
448
+ target_seq_length = max_num_tokens
449
+ if random.random() < self.short_seq_probability:
450
+ target_seq_length = random.randint(2, max_num_tokens)
451
+
452
+ current_chunk = [] # a buffer stored current working segments
453
+ current_length = 0
454
+ i = 0
455
+
456
+ while i < len(document):
457
+ segment = document[i]
458
+ current_chunk.append(segment)
459
+ current_length += len(segment)
460
+ if i == len(document) - 1 or current_length >= target_seq_length:
461
+ if current_chunk:
462
+ # `a_end` is how many segments from `current_chunk` go into the `A`
463
+ # (first) sentence.
464
+ a_end = 1
465
+ if len(current_chunk) >= 2:
466
+ a_end = random.randint(1, len(current_chunk) - 1)
467
+
468
+ tokens_a = []
469
+ for j in range(a_end):
470
+ tokens_a.extend(current_chunk[j])
471
+
472
+ tokens_b = []
473
+
474
+ if len(current_chunk) == 1 or random.random() < self.nsp_probability:
475
+ is_random_next = True
476
+ target_b_length = target_seq_length - len(tokens_a)
477
+
478
+ # This should rarely go for more than one iteration for large
479
+ # corpora. However, just to be careful, we try to make sure that
480
+ # the random document is not the same as the document
481
+ # we're processing.
482
+ for _ in range(10):
483
+ random_document_index = random.randint(0, len(self.documents) - 1)
484
+ if random_document_index != doc_index:
485
+ break
486
+
487
+ random_document = self.documents[random_document_index]
488
+ random_start = random.randint(0, len(random_document) - 1)
489
+ for j in range(random_start, len(random_document)):
490
+ tokens_b.extend(random_document[j])
491
+ if len(tokens_b) >= target_b_length:
492
+ break
493
+ # We didn't actually use these segments so we "put them back" so
494
+ # they don't go to waste.
495
+ num_unused_segments = len(current_chunk) - a_end
496
+ i -= num_unused_segments
497
+ # Actual next
498
+ else:
499
+ is_random_next = False
500
+ for j in range(a_end, len(current_chunk)):
501
+ tokens_b.extend(current_chunk[j])
502
+
503
+ if not (len(tokens_a) >= 1):
504
+ raise ValueError(f"Length of sequence a is {len(tokens_a)} which must be no less than 1")
505
+ if not (len(tokens_b) >= 1):
506
+ raise ValueError(f"Length of sequence b is {len(tokens_b)} which must be no less than 1")
507
+
508
+ # add special tokens
509
+ input_ids = self.tokenizer.build_inputs_with_special_tokens(tokens_a, tokens_b)
510
+ # add token type ids, 0 for sentence a, 1 for sentence b
511
+ token_type_ids = self.tokenizer.create_token_type_ids_from_sequences(tokens_a, tokens_b)
512
+
513
+ example = {
514
+ "input_ids": torch.tensor(input_ids, dtype=torch.long),
515
+ "token_type_ids": torch.tensor(token_type_ids, dtype=torch.long),
516
+ "next_sentence_label": torch.tensor(1 if is_random_next else 0, dtype=torch.long),
517
+ }
518
+
519
+ self.examples.append(example)
520
+
521
+ current_chunk = []
522
+ current_length = 0
523
+
524
+ i += 1
525
+
526
+ def __len__(self):
527
+ return len(self.examples)
528
+
529
+ def __getitem__(self, i):
530
+ return self.examples[i]
llmeval-env/lib/python3.10/site-packages/transformers/data/datasets/squad.py ADDED
@@ -0,0 +1,229 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2020 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import os
16
+ import time
17
+ from dataclasses import dataclass, field
18
+ from enum import Enum
19
+ from typing import Dict, List, Optional, Union
20
+
21
+ import torch
22
+ from filelock import FileLock
23
+ from torch.utils.data import Dataset
24
+
25
+ from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING
26
+ from ...tokenization_utils import PreTrainedTokenizer
27
+ from ...utils import logging
28
+ from ..processors.squad import SquadFeatures, SquadV1Processor, SquadV2Processor, squad_convert_examples_to_features
29
+
30
+
31
+ logger = logging.get_logger(__name__)
32
+
33
+ MODEL_CONFIG_CLASSES = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys())
34
+ MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
35
+
36
+
37
+ @dataclass
38
+ class SquadDataTrainingArguments:
39
+ """
40
+ Arguments pertaining to what data we are going to input our model for training and eval.
41
+ """
42
+
43
+ model_type: str = field(
44
+ default=None, metadata={"help": "Model type selected in the list: " + ", ".join(MODEL_TYPES)}
45
+ )
46
+ data_dir: str = field(
47
+ default=None, metadata={"help": "The input data dir. Should contain the .json files for the SQuAD task."}
48
+ )
49
+ max_seq_length: int = field(
50
+ default=128,
51
+ metadata={
52
+ "help": (
53
+ "The maximum total input sequence length after tokenization. Sequences longer "
54
+ "than this will be truncated, sequences shorter will be padded."
55
+ )
56
+ },
57
+ )
58
+ doc_stride: int = field(
59
+ default=128,
60
+ metadata={"help": "When splitting up a long document into chunks, how much stride to take between chunks."},
61
+ )
62
+ max_query_length: int = field(
63
+ default=64,
64
+ metadata={
65
+ "help": (
66
+ "The maximum number of tokens for the question. Questions longer than this will "
67
+ "be truncated to this length."
68
+ )
69
+ },
70
+ )
71
+ max_answer_length: int = field(
72
+ default=30,
73
+ metadata={
74
+ "help": (
75
+ "The maximum length of an answer that can be generated. This is needed because the start "
76
+ "and end predictions are not conditioned on one another."
77
+ )
78
+ },
79
+ )
80
+ overwrite_cache: bool = field(
81
+ default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
82
+ )
83
+ version_2_with_negative: bool = field(
84
+ default=False, metadata={"help": "If true, the SQuAD examples contain some that do not have an answer."}
85
+ )
86
+ null_score_diff_threshold: float = field(
87
+ default=0.0, metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."}
88
+ )
89
+ n_best_size: int = field(
90
+ default=20, metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."}
91
+ )
92
+ lang_id: int = field(
93
+ default=0,
94
+ metadata={
95
+ "help": (
96
+ "language id of input for language-specific xlm models (see"
97
+ " tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)"
98
+ )
99
+ },
100
+ )
101
+ threads: int = field(default=1, metadata={"help": "multiple threads for converting example to features"})
102
+
103
+
104
+ class Split(Enum):
105
+ train = "train"
106
+ dev = "dev"
107
+
108
+
109
+ class SquadDataset(Dataset):
110
+ """
111
+ This will be superseded by a framework-agnostic approach soon.
112
+ """
113
+
114
+ args: SquadDataTrainingArguments
115
+ features: List[SquadFeatures]
116
+ mode: Split
117
+ is_language_sensitive: bool
118
+
119
+ def __init__(
120
+ self,
121
+ args: SquadDataTrainingArguments,
122
+ tokenizer: PreTrainedTokenizer,
123
+ limit_length: Optional[int] = None,
124
+ mode: Union[str, Split] = Split.train,
125
+ is_language_sensitive: Optional[bool] = False,
126
+ cache_dir: Optional[str] = None,
127
+ dataset_format: Optional[str] = "pt",
128
+ ):
129
+ self.args = args
130
+ self.is_language_sensitive = is_language_sensitive
131
+ self.processor = SquadV2Processor() if args.version_2_with_negative else SquadV1Processor()
132
+ if isinstance(mode, str):
133
+ try:
134
+ mode = Split[mode]
135
+ except KeyError:
136
+ raise KeyError("mode is not a valid split name")
137
+ self.mode = mode
138
+ # Load data features from cache or dataset file
139
+ version_tag = "v2" if args.version_2_with_negative else "v1"
140
+ cached_features_file = os.path.join(
141
+ cache_dir if cache_dir is not None else args.data_dir,
142
+ f"cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}",
143
+ )
144
+
145
+ # Make sure only the first process in distributed training processes the dataset,
146
+ # and the others will use the cache.
147
+ lock_path = cached_features_file + ".lock"
148
+ with FileLock(lock_path):
149
+ if os.path.exists(cached_features_file) and not args.overwrite_cache:
150
+ start = time.time()
151
+ self.old_features = torch.load(cached_features_file)
152
+
153
+ # Legacy cache files have only features, while new cache files
154
+ # will have dataset and examples also.
155
+ self.features = self.old_features["features"]
156
+ self.dataset = self.old_features.get("dataset", None)
157
+ self.examples = self.old_features.get("examples", None)
158
+ logger.info(
159
+ f"Loading features from cached file {cached_features_file} [took %.3f s]", time.time() - start
160
+ )
161
+
162
+ if self.dataset is None or self.examples is None:
163
+ logger.warning(
164
+ f"Deleting cached file {cached_features_file} will allow dataset and examples to be cached in"
165
+ " future run"
166
+ )
167
+ else:
168
+ if mode == Split.dev:
169
+ self.examples = self.processor.get_dev_examples(args.data_dir)
170
+ else:
171
+ self.examples = self.processor.get_train_examples(args.data_dir)
172
+
173
+ self.features, self.dataset = squad_convert_examples_to_features(
174
+ examples=self.examples,
175
+ tokenizer=tokenizer,
176
+ max_seq_length=args.max_seq_length,
177
+ doc_stride=args.doc_stride,
178
+ max_query_length=args.max_query_length,
179
+ is_training=mode == Split.train,
180
+ threads=args.threads,
181
+ return_dataset=dataset_format,
182
+ )
183
+
184
+ start = time.time()
185
+ torch.save(
186
+ {"features": self.features, "dataset": self.dataset, "examples": self.examples},
187
+ cached_features_file,
188
+ )
189
+ # ^ This seems to take a lot of time so I want to investigate why and how we can improve.
190
+ logger.info(
191
+ f"Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]"
192
+ )
193
+
194
+ def __len__(self):
195
+ return len(self.features)
196
+
197
+ def __getitem__(self, i) -> Dict[str, torch.Tensor]:
198
+ # Convert to Tensors and build dataset
199
+ feature = self.features[i]
200
+
201
+ input_ids = torch.tensor(feature.input_ids, dtype=torch.long)
202
+ attention_mask = torch.tensor(feature.attention_mask, dtype=torch.long)
203
+ token_type_ids = torch.tensor(feature.token_type_ids, dtype=torch.long)
204
+ cls_index = torch.tensor(feature.cls_index, dtype=torch.long)
205
+ p_mask = torch.tensor(feature.p_mask, dtype=torch.float)
206
+ is_impossible = torch.tensor(feature.is_impossible, dtype=torch.float)
207
+
208
+ inputs = {
209
+ "input_ids": input_ids,
210
+ "attention_mask": attention_mask,
211
+ "token_type_ids": token_type_ids,
212
+ }
213
+
214
+ if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]:
215
+ del inputs["token_type_ids"]
216
+
217
+ if self.args.model_type in ["xlnet", "xlm"]:
218
+ inputs.update({"cls_index": cls_index, "p_mask": p_mask})
219
+ if self.args.version_2_with_negative:
220
+ inputs.update({"is_impossible": is_impossible})
221
+ if self.is_language_sensitive:
222
+ inputs.update({"langs": (torch.ones(input_ids.shape, dtype=torch.int64) * self.args.lang_id)})
223
+
224
+ if self.mode == Split.train:
225
+ start_positions = torch.tensor(feature.start_position, dtype=torch.long)
226
+ end_positions = torch.tensor(feature.end_position, dtype=torch.long)
227
+ inputs.update({"start_positions": start_positions, "end_positions": end_positions})
228
+
229
+ return inputs
llmeval-env/lib/python3.10/site-packages/transformers/kernels/deformable_detr/ms_deform_attn.h ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ /*!
2
+ **************************************************************************************************
3
+ * Deformable DETR
4
+ * Copyright (c) 2020 SenseTime. All Rights Reserved.
5
+ * Licensed under the Apache License, Version 2.0 [see LICENSE for details]
6
+ **************************************************************************************************
7
+ * Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0
8
+ **************************************************************************************************
9
+ */
10
+
11
+ #pragma once
12
+
13
+ #include "cpu/ms_deform_attn_cpu.h"
14
+
15
+ #ifdef WITH_CUDA
16
+ #include "cuda/ms_deform_attn_cuda.h"
17
+ #endif
18
+
19
+
20
+ at::Tensor
21
+ ms_deform_attn_forward(
22
+ const at::Tensor &value,
23
+ const at::Tensor &spatial_shapes,
24
+ const at::Tensor &level_start_index,
25
+ const at::Tensor &sampling_loc,
26
+ const at::Tensor &attn_weight,
27
+ const int im2col_step)
28
+ {
29
+ if (value.type().is_cuda())
30
+ {
31
+ #ifdef WITH_CUDA
32
+ return ms_deform_attn_cuda_forward(
33
+ value, spatial_shapes, level_start_index, sampling_loc, attn_weight, im2col_step);
34
+ #else
35
+ AT_ERROR("Not compiled with GPU support");
36
+ #endif
37
+ }
38
+ AT_ERROR("Not implemented on the CPU");
39
+ }
40
+
41
+ std::vector<at::Tensor>
42
+ ms_deform_attn_backward(
43
+ const at::Tensor &value,
44
+ const at::Tensor &spatial_shapes,
45
+ const at::Tensor &level_start_index,
46
+ const at::Tensor &sampling_loc,
47
+ const at::Tensor &attn_weight,
48
+ const at::Tensor &grad_output,
49
+ const int im2col_step)
50
+ {
51
+ if (value.type().is_cuda())
52
+ {
53
+ #ifdef WITH_CUDA
54
+ return ms_deform_attn_cuda_backward(
55
+ value, spatial_shapes, level_start_index, sampling_loc, attn_weight, grad_output, im2col_step);
56
+ #else
57
+ AT_ERROR("Not compiled with GPU support");
58
+ #endif
59
+ }
60
+ AT_ERROR("Not implemented on the CPU");
61
+ }
llmeval-env/lib/python3.10/site-packages/transformers/kernels/deformable_detr/vision.cpp ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ /*!
2
+ **************************************************************************************************
3
+ * Deformable DETR
4
+ * Copyright (c) 2020 SenseTime. All Rights Reserved.
5
+ * Licensed under the Apache License, Version 2.0 [see LICENSE for details]
6
+ **************************************************************************************************
7
+ * Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0
8
+ **************************************************************************************************
9
+ */
10
+
11
+ #include "ms_deform_attn.h"
12
+
13
+ PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
14
+ m.def("ms_deform_attn_forward", &ms_deform_attn_forward, "ms_deform_attn_forward");
15
+ m.def("ms_deform_attn_backward", &ms_deform_attn_backward, "ms_deform_attn_backward");
16
+ }
llmeval-env/lib/python3.10/site-packages/transformers/kernels/rwkv/wkv_cuda_bf16.cu ADDED
@@ -0,0 +1,186 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #include <stdio.h>
2
+ #include <assert.h>
3
+ #include "ATen/ATen.h"
4
+ #define MIN_VALUE (-1e38)
5
+ typedef at::BFloat16 bf16;
6
+
7
+ __global__ void kernel_forward_bf16(
8
+ const int B, const int T, const int C, const float *__restrict__ const _w, const bf16 *__restrict__ const _u,
9
+ const bf16 *__restrict__ const _k, const bf16 *__restrict__ const _v, bf16 *__restrict__ const _y
10
+ ) {
11
+ const int idx = blockIdx.x * blockDim.x + threadIdx.x;
12
+ const int _b = idx / C;
13
+ const int _c = idx % C;
14
+ const int _offset = _b * T * C + _c;
15
+
16
+ float u = float(_u[_c]);
17
+ float w = _w[_c];
18
+ const bf16 *__restrict__ const k = _k + _offset;
19
+ const bf16 *__restrict__ const v = _v + _offset;
20
+ bf16 *__restrict__ const y = _y + _offset;
21
+
22
+ // aa and bb are running sums divided by exp(pp) (to avoid overflow)
23
+ float aa = 0, bb = 0, pp = MIN_VALUE;
24
+ for (int i = 0; i < T; i++) {
25
+ const int ii = i * C;
26
+ const float kk = float(k[ii]);
27
+ const float vv = float(v[ii]);
28
+
29
+ float ww = u + kk;
30
+ float p = max(pp, ww);
31
+ float e1 = exp(pp - p);
32
+ float e2 = exp(ww - p);
33
+ y[ii] = bf16((e1 * aa + e2 * vv) / (e1 * bb + e2));
34
+
35
+ ww = w + pp;
36
+ p = max(ww, kk);
37
+ e1 = exp(ww - p);
38
+ e2 = exp(kk - p);
39
+ aa = e1 * aa + e2 * vv;
40
+ bb = e1 * bb + e2;
41
+ pp = p;
42
+ }
43
+ }
44
+
45
+ __global__ void kernel_forward_with_state_bf16(
46
+ const int B, const int T, const int C, const float *__restrict__ const _w, const bf16 *__restrict__ const _u,
47
+ const bf16 *__restrict__ const _k, const bf16 *__restrict__ const _v, bf16 *__restrict__ const _y,
48
+ float *__restrict__ const _s
49
+ ) {
50
+ const int idx = blockIdx.x * blockDim.x + threadIdx.x;
51
+ const int _b = idx / C;
52
+ const int _c = idx % C;
53
+ const int _offset_s = _b * C * 3 + _c * 3;
54
+ const int _offset = _b * T * C + _c;
55
+
56
+ float u = float(_u[_c]);
57
+ float w = _w[_c];
58
+ const bf16 *__restrict__ const k = _k + _offset;
59
+ const bf16 *__restrict__ const v = _v + _offset;
60
+ bf16 *__restrict__ const y = _y + _offset;
61
+ float *__restrict__ const s = _s + _offset_s;
62
+
63
+ // aa and bb are running sums divided by exp(pp) (to avoid overflow)
64
+ float aa = s[0], bb = s[1], pp = s[2];
65
+ for (int i = 0; i < T; i++) {
66
+ const int ii = i * C;
67
+ const float kk = float(k[ii]);
68
+ const float vv = float(v[ii]);
69
+
70
+ float ww = u + kk;
71
+ float p = max(pp, ww);
72
+ float e1 = exp(pp - p);
73
+ float e2 = exp(ww - p);
74
+ y[ii] = bf16(e1 * aa + e2 * vv) / (e1 * bb + e2);
75
+
76
+ ww = w + pp;
77
+ p = max(ww, kk);
78
+ e1 = exp(ww - p);
79
+ e2 = exp(kk - p);
80
+ aa = e1 * aa + e2 * vv;
81
+ bb = e1 * bb + e2;
82
+ pp = p;
83
+ }
84
+ s[0] = aa;
85
+ s[1] = bb;
86
+ s[2] = pp;
87
+ }
88
+
89
+ __global__ void kernel_backward_bf16(
90
+ const int B, const int T, const int C, const float *__restrict__ const _w, const bf16 *__restrict__ const _u,
91
+ const bf16 *__restrict__ const _k, const bf16 *__restrict__ const _v, const bf16 *__restrict__ const _y,
92
+ const bf16 *__restrict__ const _gy, bf16 *__restrict__ const _gw, bf16 *__restrict__ const _gu,
93
+ bf16 *__restrict__ const _gk, bf16 *__restrict__ const _gv
94
+ ) {
95
+ const int idx = blockIdx.x * blockDim.x + threadIdx.x;
96
+ const int _b = idx / C;
97
+ const int _c = idx % C;
98
+ const int _offset = _b * T * C + _c;
99
+
100
+ float u = float(_u[_c]);
101
+ float w = _w[_c];
102
+ const bf16 *__restrict__ const k = _k + _offset;
103
+ const bf16 *__restrict__ const v = _v + _offset;
104
+ const bf16 *__restrict__ const y = _y + _offset;
105
+ const bf16 *__restrict__ const gy = _gy + _offset;
106
+ bf16 *__restrict__ const gk = _gk + _offset;
107
+ bf16 *__restrict__ const gv = _gv + _offset;
108
+
109
+ float q[Tmax], r[Tmax];
110
+
111
+ float gw = 0, gu = 0, aa = 0, bb = 0, ga = 0, gb = 0, pp = MIN_VALUE;
112
+ for (int i = 0; i < T; i++) {
113
+ const int ii = i * C;
114
+ const float kk = float(k[ii]);
115
+ const float vv = float(v[ii]);
116
+ const float yy = float(y[ii]);
117
+
118
+ float ww = u + kk;
119
+ float p = max(pp, ww);
120
+ float e1 = exp(pp - p);
121
+ float e2 = exp(ww - p);
122
+ const float qq = float(gy[ii]) / (e1 * bb + e2);
123
+ gw += (ga - gb * yy) * e1 * qq;
124
+ gu += (vv - yy) * e2 * qq;
125
+ q[i] = qq;
126
+ r[i] = ww - p;
127
+
128
+ ww = w + pp;
129
+ p = max(ww, kk);
130
+ e1 = exp(ww - p);
131
+ e2 = exp(kk - p);
132
+ ga = e1 * (aa + ga);
133
+ gb = e1 * (bb + gb);
134
+ aa = e1 * aa + e2 * vv;
135
+ bb = e1 * bb + e2;
136
+ pp = p;
137
+ }
138
+ const int _offsetBC = _b * C + _c;
139
+ _gw[_offsetBC] = bf16(gw * _w[_c]); // multiply by w because of w -> -exp(w) in python forward()
140
+ _gu[_offsetBC] = bf16(gu);
141
+
142
+ aa = 0, bb = 0, pp = MIN_VALUE;
143
+ for (int i = T - 1; i >= 0; i--) {
144
+ const int ii = i * C;
145
+ const float kk = float(k[ii]);
146
+ const float vv = float(v[ii]);
147
+ const float yy = float(y[ii]);
148
+ const float qq = q[i];
149
+ const float rr = r[i];
150
+
151
+ float e1 = qq * exp(rr);
152
+ float e2 = exp(kk + pp);
153
+ gk[ii] = bf16(e1 * (vv - yy) + e2 * (aa * vv + bb));
154
+ gv[ii] = bf16(e1 + e2 * aa);
155
+
156
+ const float ww = w + pp;
157
+ const float www = rr - u - kk;
158
+ const float p = max(ww, www);
159
+ e1 = exp(ww - p);
160
+ e2 = qq * exp(www - p);
161
+ aa = e1 * aa + e2;
162
+ bb = e1 * bb - e2 * yy;
163
+ pp = p;
164
+ }
165
+ }
166
+
167
+ void cuda_forward_bf16(int B, int T, int C, float *w, bf16 *u, bf16 *k, bf16 *v, bf16 *y) {
168
+ dim3 threadsPerBlock( min(C, 32) ); // requires --maxrregcount 60 for optimal performance
169
+ assert(B * C % threadsPerBlock.x == 0);
170
+ dim3 numBlocks(B * C / threadsPerBlock.x);
171
+ kernel_forward_bf16<<<numBlocks, threadsPerBlock>>>(B, T, C, w, u, k, v, y);
172
+ }
173
+
174
+ void cuda_forward_with_state_bf16(int B, int T, int C, float *w, bf16 *u, bf16 *k, bf16 *v, bf16 *y, float *s) {
175
+ dim3 threadsPerBlock( min(C, 32) ); // requires --maxrregcount 60 for optimal performance
176
+ assert(B * C % threadsPerBlock.x == 0);
177
+ dim3 numBlocks(B * C / threadsPerBlock.x);
178
+ kernel_forward_with_state_bf16<<<numBlocks, threadsPerBlock>>>(B, T, C, w, u, k, v, y, s);
179
+ }
180
+
181
+ void cuda_backward_bf16(int B, int T, int C, float *w, bf16 *u, bf16 *k, bf16 *v, bf16 *y, bf16 *gy, bf16 *gw, bf16 *gu, bf16 *gk, bf16 *gv) {
182
+ dim3 threadsPerBlock( min(C, 32) ); // requires --maxrregcount 60 for optimal performance
183
+ assert(B * C % threadsPerBlock.x == 0);
184
+ dim3 numBlocks(B * C / threadsPerBlock.x);
185
+ kernel_backward_bf16<<<numBlocks, threadsPerBlock>>>(B, T, C, w, u, k, v, y, gy, gw, gu, gk, gv);
186
+ }
llmeval-env/lib/python3.10/site-packages/transformers/kernels/rwkv/wkv_op.cpp ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #include <torch/extension.h>
2
+ #include "ATen/ATen.h"
3
+ typedef at::BFloat16 bf16;
4
+
5
+ void cuda_forward(int B, int T, int C, float *w, float *u, float *k, float *v, float *y);
6
+ void cuda_forward_bf16(int B, int T, int C, float *w, bf16 *u, bf16 *k, bf16 *v, bf16 *y);
7
+ void cuda_forward_with_state(int B, int T, int C, float *w, float *u, float *k, float *v, float *y, float *s);
8
+ void cuda_forward_with_state_bf16(int B, int T, int C, float *w, bf16 *u, bf16 *k, bf16 *v, bf16 *y, float *s);
9
+ void cuda_backward(int B, int T, int C, float *w, float *u, float *k, float *v, float *y, float *gy, float *gw, float *gu, float *gk, float *gv);
10
+ void cuda_backward_bf16(int B, int T, int C, float *w, bf16 *u, bf16 *k, bf16 *v, bf16 *y, bf16 *gy, bf16 *gw, bf16 *gu, bf16 *gk, bf16 *gv);
11
+
12
+ void forward(torch::Tensor &w, torch::Tensor &u, torch::Tensor &k, torch::Tensor &v, torch::Tensor &y) {
13
+ const int B = k.size(0);
14
+ const int T = k.size(1);
15
+ const int C = k.size(2);
16
+ cuda_forward(B, T, C, w.data_ptr<float>(), u.data_ptr<float>(), k.data_ptr<float>(), v.data_ptr<float>(), y.data_ptr<float>());
17
+ }
18
+ void forward_bf16(torch::Tensor &w, torch::Tensor &u, torch::Tensor &k, torch::Tensor &v, torch::Tensor &y) {
19
+ const int B = k.size(0);
20
+ const int T = k.size(1);
21
+ const int C = k.size(2);
22
+ cuda_forward_bf16(B, T, C, w.data_ptr<float>(), u.data_ptr<bf16>(), k.data_ptr<bf16>(), v.data_ptr<bf16>(), y.data_ptr<bf16>());
23
+ }
24
+ void forward_with_state(torch::Tensor &w, torch::Tensor &u, torch::Tensor &k, torch::Tensor &v, torch::Tensor &y, torch::Tensor &s) {
25
+ const int B = k.size(0);
26
+ const int T = k.size(1);
27
+ const int C = k.size(2);
28
+ cuda_forward_with_state(B, T, C, w.data_ptr<float>(), u.data_ptr<float>(), k.data_ptr<float>(), v.data_ptr<float>(), y.data_ptr<float>(), s.data_ptr<float>());
29
+ }
30
+ void forward_with_state_bf16(torch::Tensor &w, torch::Tensor &u, torch::Tensor &k, torch::Tensor &v, torch::Tensor &y, torch::Tensor &s) {
31
+ const int B = k.size(0);
32
+ const int T = k.size(1);
33
+ const int C = k.size(2);
34
+ cuda_forward_with_state_bf16(B, T, C, w.data_ptr<float>(), u.data_ptr<bf16>(), k.data_ptr<bf16>(), v.data_ptr<bf16>(), y.data_ptr<bf16>(), s.data_ptr<float>());
35
+ }
36
+ void backward(torch::Tensor &w, torch::Tensor &u, torch::Tensor &k, torch::Tensor &v, torch::Tensor &y, torch::Tensor &gy, torch::Tensor &gw, torch::Tensor &gu, torch::Tensor &gk, torch::Tensor &gv) {
37
+ const int B = k.size(0);
38
+ const int T = k.size(1);
39
+ const int C = k.size(2);
40
+ cuda_backward(B, T, C, w.data_ptr<float>(), u.data_ptr<float>(), k.data_ptr<float>(), v.data_ptr<float>(), y.data_ptr<float>(), gy.data_ptr<float>(), gw.data_ptr<float>(), gu.data_ptr<float>(), gk.data_ptr<float>(), gv.data_ptr<float>());
41
+ }
42
+ void backward_bf16(torch::Tensor &w, torch::Tensor &u, torch::Tensor &k, torch::Tensor &v, torch::Tensor &y, torch::Tensor &gy, torch::Tensor &gw, torch::Tensor &gu, torch::Tensor &gk, torch::Tensor &gv) {
43
+ const int B = k.size(0);
44
+ const int T = k.size(1);
45
+ const int C = k.size(2);
46
+ cuda_backward_bf16(B, T, C, w.data_ptr<float>(), u.data_ptr<bf16>(), k.data_ptr<bf16>(), v.data_ptr<bf16>(), y.data_ptr<bf16>(),
47
+ gy.data_ptr<bf16>(), gw.data_ptr<bf16>(), gu.data_ptr<bf16>(), gk.data_ptr<bf16>(), gv.data_ptr<bf16>());
48
+ }
49
+
50
+ PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
51
+ m.def("forward", &forward, "wkv forward");
52
+ m.def("forward_bf16", &forward_bf16, "wkv forward bf16");
53
+ m.def("forward_with_state", &forward_with_state, "wkv forward with state");
54
+ m.def("forward_with_state_bf16", &forward_with_state_bf16, "wkv forward with state bf16");
55
+ m.def("backward", &backward, "wkv backward");
56
+ m.def("backward_bf16", &backward_bf16, "wkv backward bf16");
57
+ }
58
+
59
+ TORCH_LIBRARY(wkv, m) {
60
+ m.def("forward", forward);
61
+ m.def("forward_bf16", forward_bf16);
62
+ m.def("forward_with_state", forward_with_state);
63
+ m.def("forward_with_state_bf16", forward_with_state_bf16);
64
+ m.def("backward", backward);
65
+ m.def("backward_bf16", backward_bf16);
66
+ }
llmeval-env/lib/python3.10/site-packages/transformers/kernels/yoso/common.h ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ #define min(a, b) ((a)<(b)?(a):(b))
3
+ #define max(a, b) ((a)>(b)?(a):(b))
4
+ #define ceil_divide(a, b) ((a)/(b)+((a)%(b)!=0))
5
+ #define select(cond, a, b) ((cond)?(a):(b))
6
+ #define PI 3.141592
7
+ #define EPSILON 1e-8
8
+ #define MAX_VAL 1e12
9
+ #define MIN_VAL -1e12
10
+ #define EMPTY_VALUE -1
llmeval-env/lib/python3.10/site-packages/transformers/kernels/yoso/common_cuda.h ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+
2
+ #define MAX_THREADS_PER_BLOCK 1024
3
+ #define OPTIMAL_THREADS_PER_BLOCK 256
4
+ #define WARP_SIZE 32
5
+ #define MAX_NUM_BLOCK_X 2147483647
6
+ #define MAX_NUM_BLOCK_Y 65535
7
+ #define MAX_NUM_BLOCK_Z 65535
8
+ #define MAX_SHARED_MEM_PER_BLOCK 48000
9
+ #define FULL_MASK 0xffffffff
llmeval-env/lib/python3.10/site-packages/transformers/kernels/yoso/common_cuda_device.h ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ #include "common.h"
3
+
4
+ template<typename T>
5
+ __device__ int set_insert(T *set, int set_size, T value) {
6
+ int slot = value % set_size;
7
+ int start_slot = slot;
8
+ while (true) {
9
+ T prev = atomicCAS(&set[slot], EMPTY_VALUE, value);
10
+ if (prev == EMPTY_VALUE || prev == value) {
11
+ return slot;
12
+ }
13
+ slot = (slot + 1) % set_size;
14
+ if (slot == start_slot) {
15
+ return -1;
16
+ }
17
+ }
18
+ return -1;
19
+ }
20
+
21
+ template<typename T>
22
+ __device__ int set_lookup(T *set, int set_size, T value) {
23
+ int slot = value % set_size;
24
+ int start_slot = slot;
25
+ while (true) {
26
+ if (set[slot] == value) {
27
+ return slot;
28
+ }
29
+ slot = (slot + 1) % set_size;
30
+ if (slot == start_slot) {
31
+ return -1;
32
+ }
33
+ }
34
+ return -1;
35
+ }
36
+
37
+ template<typename T>
38
+ __device__ void init_buffer(T init_value, T *buffer, int buffer_size, int num_threads, int thread_id) {
39
+ __syncthreads();
40
+ for (int i = 0; i < buffer_size; i = i + num_threads) {
41
+ int offset_idx = i + thread_id;
42
+ if (offset_idx < buffer_size) {
43
+ buffer[offset_idx] = init_value;
44
+ }
45
+ }
46
+ __syncthreads();
47
+ }
48
+
49
+ template<typename T>
50
+ __device__ void copy_data(T *src_pt, T *dist_pt, int data_length, int num_threads, int thread_id) {
51
+ __syncthreads();
52
+ for (int i = 0; i < data_length; i = i + num_threads) {
53
+ int offset_idx = i + thread_id;
54
+ if (offset_idx < data_length) {
55
+ dist_pt[offset_idx] = src_pt[offset_idx];
56
+ }
57
+ }
58
+ __syncthreads();
59
+ }
60
+
61
+ template<typename T>
62
+ __device__ void init_buffer_nonblocking(T init_value, T *buffer, int buffer_size, int num_threads, int thread_id) {
63
+ for (int i = 0; i < buffer_size; i = i + num_threads) {
64
+ int offset_idx = i + thread_id;
65
+ if (offset_idx < buffer_size) {
66
+ buffer[offset_idx] = init_value;
67
+ }
68
+ }
69
+ }
70
+
71
+ template<typename T>
72
+ __device__ void copy_data_nonblocking(T *src_pt, T *dist_pt, int data_length, int num_threads, int thread_id) {
73
+ for (int i = 0; i < data_length; i = i + num_threads) {
74
+ int offset_idx = i + thread_id;
75
+ if (offset_idx < data_length) {
76
+ dist_pt[offset_idx] = src_pt[offset_idx];
77
+ }
78
+ }
79
+ }
llmeval-env/lib/python3.10/site-packages/transformers/kernels/yoso/fast_lsh_cumulation.cu ADDED
@@ -0,0 +1,588 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // File from https://github.com/mlpen/YOSO/blob/main/encoders/backbones/efficient_attentions/yoso/yoso_v1/cuda/fast_lsh_cumulation.cu
2
+
3
+ #include <torch/extension.h>
4
+ #include <ATen/ATen.h>
5
+ #include "fast_lsh_cumulation.h"
6
+ #include "fast_lsh_cumulation_cuda.h"
7
+ #include "common_cuda.h"
8
+ #include "common.h"
9
+ #include <vector>
10
+ //////////////////////////////////////////////////////////////////////////////////////////////////
11
+ //////////////////////////////////////////////////////////////////////////////////////////////////
12
+
13
+ std::vector<at::Tensor> fast_hash_ver1_kernel(
14
+ at::Tensor query_mask,
15
+ at::Tensor query_vector,
16
+ at::Tensor key_mask,
17
+ at::Tensor key_vector,
18
+ int num_hash_f,
19
+ int hash_code_len,
20
+ bool use_cuda
21
+ ) {
22
+
23
+ int batch_size = query_vector.size(0);
24
+ int num_query = query_vector.size(1);
25
+ int num_key = key_vector.size(1);
26
+ int vector_dim = query_vector.size(2);
27
+
28
+ int num_hash_per_part = vector_dim / hash_code_len;
29
+ int num_part = max(1, ceil_divide(num_hash_f, num_hash_per_part));
30
+
31
+ at::Tensor Dmat = 2 * at::randint(0, 2, {batch_size, 3, num_part, vector_dim}, query_mask.options()) - 1;
32
+ at::Tensor query_hash_code = at::zeros({batch_size, num_query, num_hash_f}, query_mask.options());
33
+ at::Tensor key_hash_code = at::zeros({batch_size, num_key, num_hash_f}, key_mask.options());
34
+
35
+ int *query_mask_ptr = query_mask.data_ptr<int>();
36
+ float *query_vector_ptr = query_vector.data_ptr<float>();
37
+ int *key_mask_ptr = key_mask.data_ptr<int>();
38
+ float *key_vector_ptr = key_vector.data_ptr<float>();
39
+
40
+ int *Dmat_ptr = Dmat.data_ptr<int>();
41
+
42
+ int *query_hash_code_ptr = query_hash_code.data_ptr<int>();
43
+ int *key_hash_code_ptr = key_hash_code.data_ptr<int>();
44
+
45
+ if (use_cuda) {
46
+ {
47
+ dim3 threads(vector_dim);
48
+ dim3 blocks(num_part, num_query, batch_size);
49
+ int shared_mem = vector_dim * sizeof(float);
50
+ fast_hash_ver1_cuda_kernel<<<blocks, threads, shared_mem>>>(
51
+ query_mask_ptr,
52
+ query_vector_ptr,
53
+ Dmat_ptr,
54
+ query_hash_code_ptr,
55
+ batch_size,
56
+ num_query,
57
+ vector_dim,
58
+ num_part,
59
+ num_hash_f,
60
+ hash_code_len
61
+ );
62
+ }
63
+ {
64
+ dim3 threads(vector_dim);
65
+ dim3 blocks(num_part, num_key, batch_size);
66
+ int shared_mem = vector_dim * sizeof(float);
67
+ fast_hash_ver1_cuda_kernel<<<blocks, threads, shared_mem>>>(
68
+ key_mask_ptr,
69
+ key_vector_ptr,
70
+ Dmat_ptr,
71
+ key_hash_code_ptr,
72
+ batch_size,
73
+ num_key,
74
+ vector_dim,
75
+ num_part,
76
+ num_hash_f,
77
+ hash_code_len
78
+ );
79
+ }
80
+ }
81
+
82
+ return {query_hash_code, key_hash_code};
83
+
84
+ }
85
+
86
+ at::Tensor lsh_cumulation_ver1_kernel(
87
+ at::Tensor query_mask,
88
+ at::Tensor query_hash_code,
89
+ at::Tensor key_mask,
90
+ at::Tensor key_hash_code,
91
+ at::Tensor value,
92
+ int hashtable_capacity,
93
+ bool use_cuda
94
+ ) {
95
+
96
+ int batch_size = query_hash_code.size(0);
97
+ int num_hash_f = query_hash_code.size(2);
98
+
99
+ int num_query = query_hash_code.size(1);
100
+ int num_key = key_hash_code.size(1);
101
+ int value_dim = value.size(2);
102
+
103
+ at::Tensor hashtable_value = at::empty({batch_size, num_hash_f, hashtable_capacity, WARP_SIZE}, value.options());
104
+ at::Tensor cumulation_value = at::zeros({batch_size, num_query, value_dim}, value.options());
105
+
106
+ if (use_cuda) {
107
+ int threads_x = WARP_SIZE;
108
+ int threads_y = OPTIMAL_THREADS_PER_BLOCK / WARP_SIZE;
109
+ int block_x_step1 = num_key / threads_y;
110
+ int block_x_step2 = num_query / threads_y;
111
+ int block_y = batch_size;
112
+
113
+ dim3 threads(threads_x, threads_y);
114
+ dim3 blocks_step1(block_x_step1, block_y);
115
+ dim3 blocks_step2(block_x_step2, block_y);
116
+
117
+ int *query_mask_ptr = query_mask.data_ptr<int>();
118
+ int *query_hash_code_ptr = query_hash_code.data_ptr<int>();
119
+ int *key_mask_ptr = key_mask.data_ptr<int>();
120
+ int *key_hash_code_ptr = key_hash_code.data_ptr<int>();
121
+ float *value_ptr = value.data_ptr<float>();
122
+ float *hashtable_value_ptr = hashtable_value.data_ptr<float>();
123
+ float *cumulation_value_ptr = cumulation_value.data_ptr<float>();
124
+
125
+ for (int value_offset = 0; value_offset < value_dim; value_offset = value_offset + WARP_SIZE) {
126
+
127
+ cudaMemset(hashtable_value_ptr, 0, (batch_size * num_hash_f * hashtable_capacity * WARP_SIZE) * sizeof(float));
128
+
129
+ lsh_cumulation_ver1_step1_cuda_kernel<<<blocks_step1, threads>>>(
130
+ key_mask_ptr,
131
+ key_hash_code_ptr,
132
+ value_ptr,
133
+ hashtable_value_ptr,
134
+ batch_size,
135
+ num_hash_f,
136
+ hashtable_capacity,
137
+ num_key,
138
+ value_dim,
139
+ value_offset
140
+ );
141
+
142
+ lsh_cumulation_ver1_step2_cuda_kernel<<<blocks_step2, threads>>>(
143
+ query_mask_ptr,
144
+ query_hash_code_ptr,
145
+ hashtable_value_ptr,
146
+ cumulation_value_ptr,
147
+ batch_size,
148
+ num_hash_f,
149
+ hashtable_capacity,
150
+ num_query,
151
+ value_dim,
152
+ value_offset
153
+ );
154
+ }
155
+
156
+ }
157
+
158
+ return cumulation_value;
159
+
160
+ }
161
+
162
+ at::Tensor lsh_weighted_cumulation_ver1_kernel(
163
+ at::Tensor query_mask,
164
+ at::Tensor query_hash_code,
165
+ at::Tensor query_weight,
166
+ at::Tensor key_mask,
167
+ at::Tensor key_hash_code,
168
+ at::Tensor key_weight,
169
+ at::Tensor value,
170
+ int hashtable_capacity,
171
+ bool use_cuda
172
+ ) {
173
+
174
+ int batch_size = query_hash_code.size(0);
175
+ int num_hash_f = query_hash_code.size(2);
176
+
177
+ int num_query = query_hash_code.size(1);
178
+ int num_key = key_hash_code.size(1);
179
+ int value_dim = value.size(2);
180
+ int weight_dim = query_weight.size(2);
181
+
182
+ at::Tensor hashtable_value = at::zeros({batch_size, num_hash_f, hashtable_capacity, WARP_SIZE}, value.options());
183
+ at::Tensor cumulation_value = at::zeros({batch_size, num_query, value_dim}, value.options());
184
+
185
+ if (use_cuda) {
186
+ int threads_x = WARP_SIZE;
187
+ int threads_y = OPTIMAL_THREADS_PER_BLOCK / WARP_SIZE;
188
+ int block_x_step1 = num_key / threads_y;
189
+ int block_x_step2 = num_query / threads_y;
190
+ int block_y = batch_size;
191
+
192
+ dim3 threads(threads_x, threads_y);
193
+ dim3 blocks_step1(block_x_step1, block_y);
194
+ dim3 blocks_step2(block_x_step2, block_y);
195
+
196
+ int *query_mask_ptr = query_mask.data_ptr<int>();
197
+ int *query_hash_code_ptr = query_hash_code.data_ptr<int>();
198
+ float *query_weight_ptr = query_weight.data_ptr<float>();
199
+ int *key_mask_ptr = key_mask.data_ptr<int>();
200
+ int *key_hash_code_ptr = key_hash_code.data_ptr<int>();
201
+ float *key_weight_ptr = key_weight.data_ptr<float>();
202
+ float *value_ptr = value.data_ptr<float>();
203
+ float *hashtable_value_ptr = hashtable_value.data_ptr<float>();
204
+ float *cumulation_value_ptr = cumulation_value.data_ptr<float>();
205
+
206
+ for (int value_offset = 0; value_offset < value_dim; value_offset = value_offset + WARP_SIZE) {
207
+ for (int weight_idx = 0; weight_idx < weight_dim; weight_idx++) {
208
+
209
+ cudaMemset(hashtable_value_ptr, 0, (batch_size * num_hash_f * hashtable_capacity * WARP_SIZE) * sizeof(float));
210
+
211
+ lsh_weighted_cumulation_ver1_step1_cuda_kernel<<<blocks_step1, threads>>>(
212
+ key_mask_ptr,
213
+ key_hash_code_ptr,
214
+ key_weight_ptr,
215
+ value_ptr,
216
+ hashtable_value_ptr,
217
+ batch_size,
218
+ num_hash_f,
219
+ hashtable_capacity,
220
+ num_key,
221
+ value_dim,
222
+ weight_dim,
223
+ value_offset,
224
+ weight_idx
225
+ );
226
+
227
+ lsh_weighted_cumulation_ver1_step2_cuda_kernel<<<blocks_step2, threads>>>(
228
+ query_mask_ptr,
229
+ query_hash_code_ptr,
230
+ query_weight_ptr,
231
+ hashtable_value_ptr,
232
+ cumulation_value_ptr,
233
+ batch_size,
234
+ num_hash_f,
235
+ hashtable_capacity,
236
+ num_query,
237
+ value_dim,
238
+ weight_dim,
239
+ value_offset,
240
+ weight_idx
241
+ );
242
+ }
243
+ }
244
+
245
+ }
246
+
247
+ return cumulation_value;
248
+
249
+ }
250
+
251
+ at::Tensor lsh_weighted_cumulation_ver2_kernel(
252
+ at::Tensor query_mask,
253
+ at::Tensor query_hash_code,
254
+ at::Tensor query_weight,
255
+ at::Tensor key_mask,
256
+ at::Tensor key_hash_code,
257
+ at::Tensor key_weight,
258
+ at::Tensor value,
259
+ int hashtable_capacity,
260
+ bool use_cuda
261
+ ) {
262
+
263
+ int batch_size = query_hash_code.size(0);
264
+ int num_hash_f = query_hash_code.size(2);
265
+
266
+ int num_query = query_hash_code.size(1);
267
+ int num_key = key_hash_code.size(1);
268
+ int value_dim = value.size(2);
269
+ int weight_dim = query_weight.size(2);
270
+
271
+ at::Tensor count_sort_table = at::zeros({batch_size, num_hash_f, hashtable_capacity}, query_hash_code.options());
272
+ at::Tensor key_sorted_idxes = at::zeros({batch_size, num_hash_f, num_key}, query_hash_code.options());
273
+ at::Tensor query_info = at::zeros({batch_size, num_query, 2, num_hash_f}, query_hash_code.options());
274
+ at::Tensor cumulation_value = at::zeros({batch_size, num_query, value_dim}, value.options());
275
+
276
+ if (use_cuda) {
277
+
278
+ int *query_mask_ptr = query_mask.data_ptr<int>();
279
+ int *query_hash_code_ptr = query_hash_code.data_ptr<int>();
280
+ float *query_weight_ptr = query_weight.data_ptr<float>();
281
+ int *key_mask_ptr = key_mask.data_ptr<int>();
282
+ int *key_hash_code_ptr = key_hash_code.data_ptr<int>();
283
+ float *key_weight_ptr = key_weight.data_ptr<float>();
284
+ float *value_ptr = value.data_ptr<float>();
285
+
286
+ int *count_sort_table_ptr = count_sort_table.data_ptr<int>();
287
+ int *key_sorted_idxes_ptr = key_sorted_idxes.data_ptr<int>();
288
+ int *query_info_ptr = query_info.data_ptr<int>();
289
+
290
+ float *cumulation_value_ptr = cumulation_value.data_ptr<float>();
291
+
292
+ {
293
+ dim3 threads_step13(num_hash_f, max(1, OPTIMAL_THREADS_PER_BLOCK / num_hash_f));
294
+ dim3 blocks_step13(num_key / max(1, OPTIMAL_THREADS_PER_BLOCK / num_hash_f), batch_size);
295
+ dim3 threads_step2(min(hashtable_capacity, OPTIMAL_THREADS_PER_BLOCK));
296
+ dim3 blocks_step2(num_hash_f, batch_size);
297
+ int shared_mem = hashtable_capacity * sizeof(float);
298
+ count_sort_step1_cuda_kernel<<<blocks_step13, threads_step13>>>(
299
+ key_mask_ptr,
300
+ key_hash_code_ptr,
301
+ count_sort_table_ptr,
302
+ batch_size,
303
+ num_hash_f,
304
+ hashtable_capacity,
305
+ num_key
306
+ );
307
+ count_sort_step2_cuda_kernel<<<blocks_step2, threads_step2, shared_mem>>>(
308
+ count_sort_table_ptr,
309
+ batch_size,
310
+ num_hash_f,
311
+ hashtable_capacity
312
+ );
313
+ count_sort_step3_cuda_kernel<<<blocks_step13, threads_step13>>>(
314
+ key_mask_ptr,
315
+ key_hash_code_ptr,
316
+ count_sort_table_ptr,
317
+ key_sorted_idxes_ptr,
318
+ batch_size,
319
+ num_hash_f,
320
+ hashtable_capacity,
321
+ num_key
322
+ );
323
+ }
324
+ {
325
+ dim3 threads(num_hash_f, max(1, OPTIMAL_THREADS_PER_BLOCK / num_hash_f));
326
+ dim3 blocks(num_query / max(1, OPTIMAL_THREADS_PER_BLOCK / num_hash_f), batch_size);
327
+ extract_query_info_cuda_kernel<<<blocks, threads>>>(
328
+ query_mask_ptr,
329
+ query_hash_code_ptr,
330
+ count_sort_table_ptr,
331
+ query_info_ptr,
332
+ batch_size,
333
+ num_hash_f,
334
+ hashtable_capacity,
335
+ num_query
336
+ );
337
+ }
338
+ {
339
+ dim3 threads(WARP_SIZE, OPTIMAL_THREADS_PER_BLOCK / WARP_SIZE);
340
+ dim3 blocks(num_query, num_hash_f, batch_size);
341
+ int shared_mem = (weight_dim + WARP_SIZE) * sizeof(float);
342
+ lsh_weighted_cumulation_ver2_step2_cuda_kernel<<<blocks, threads, shared_mem>>>(
343
+ query_mask_ptr,
344
+ query_info_ptr,
345
+ key_sorted_idxes_ptr,
346
+ query_weight_ptr,
347
+ key_weight_ptr,
348
+ value_ptr,
349
+ cumulation_value_ptr,
350
+ batch_size,
351
+ num_hash_f,
352
+ num_query,
353
+ num_key,
354
+ value_dim,
355
+ weight_dim
356
+ );
357
+ }
358
+ }
359
+
360
+ return cumulation_value;
361
+
362
+ }
363
+
364
+ at::Tensor lsh_weighted_cumulation_ver3_kernel(
365
+ at::Tensor query_mask,
366
+ at::Tensor query_hash_code,
367
+ at::Tensor query_weight,
368
+ at::Tensor key_mask,
369
+ at::Tensor key_hash_code,
370
+ at::Tensor key_weight,
371
+ at::Tensor value,
372
+ int hashtable_capacity,
373
+ bool use_cuda
374
+ ) {
375
+
376
+ int batch_size = query_hash_code.size(0);
377
+ int num_hash_f = query_hash_code.size(2);
378
+
379
+ int num_query = query_hash_code.size(1);
380
+ int num_key = key_hash_code.size(1);
381
+ int value_dim = value.size(2);
382
+ int weight_dim = query_weight.size(2);
383
+
384
+ at::Tensor count_sort_table = at::zeros({batch_size, num_hash_f, hashtable_capacity}, query_hash_code.options());
385
+ at::Tensor query_sorted_idxes = at::zeros({batch_size, num_hash_f, num_query}, query_hash_code.options());
386
+ at::Tensor key_info = at::zeros({batch_size, num_key, 2, num_hash_f}, query_hash_code.options());
387
+ at::Tensor cumulation_value = at::zeros({batch_size, num_query, value_dim}, value.options());
388
+
389
+ if (use_cuda) {
390
+
391
+ int *query_mask_ptr = query_mask.data_ptr<int>();
392
+ int *query_hash_code_ptr = query_hash_code.data_ptr<int>();
393
+ float *query_weight_ptr = query_weight.data_ptr<float>();
394
+ int *key_mask_ptr = key_mask.data_ptr<int>();
395
+ int *key_hash_code_ptr = key_hash_code.data_ptr<int>();
396
+ float *key_weight_ptr = key_weight.data_ptr<float>();
397
+ float *value_ptr = value.data_ptr<float>();
398
+
399
+ int *count_sort_table_ptr = count_sort_table.data_ptr<int>();
400
+ int *query_sorted_idxes_ptr = query_sorted_idxes.data_ptr<int>();
401
+ int *key_info_ptr = key_info.data_ptr<int>();
402
+
403
+ float *cumulation_value_ptr = cumulation_value.data_ptr<float>();
404
+
405
+ {
406
+ dim3 threads_step13(num_hash_f, max(1, OPTIMAL_THREADS_PER_BLOCK / num_hash_f));
407
+ dim3 blocks_step13(num_query / max(1, OPTIMAL_THREADS_PER_BLOCK / num_hash_f), batch_size);
408
+ dim3 threads_step2(min(hashtable_capacity, OPTIMAL_THREADS_PER_BLOCK));
409
+ dim3 blocks_step2(num_hash_f, batch_size);
410
+ int shared_mem = hashtable_capacity * sizeof(float);
411
+ count_sort_step1_cuda_kernel<<<blocks_step13, threads_step13>>>(
412
+ query_mask_ptr,
413
+ query_hash_code_ptr,
414
+ count_sort_table_ptr,
415
+ batch_size,
416
+ num_hash_f,
417
+ hashtable_capacity,
418
+ num_query
419
+ );
420
+ count_sort_step2_cuda_kernel<<<blocks_step2, threads_step2, shared_mem>>>(
421
+ count_sort_table_ptr,
422
+ batch_size,
423
+ num_hash_f,
424
+ hashtable_capacity
425
+ );
426
+ count_sort_step3_cuda_kernel<<<blocks_step13, threads_step13>>>(
427
+ query_mask_ptr,
428
+ query_hash_code_ptr,
429
+ count_sort_table_ptr,
430
+ query_sorted_idxes_ptr,
431
+ batch_size,
432
+ num_hash_f,
433
+ hashtable_capacity,
434
+ num_query
435
+ );
436
+ }
437
+ {
438
+ dim3 threads(num_hash_f, max(1, OPTIMAL_THREADS_PER_BLOCK / num_hash_f));
439
+ dim3 blocks(num_key / max(1, OPTIMAL_THREADS_PER_BLOCK / num_hash_f), batch_size);
440
+ extract_query_info_cuda_kernel<<<blocks, threads>>>(
441
+ key_mask_ptr,
442
+ key_hash_code_ptr,
443
+ count_sort_table_ptr,
444
+ key_info_ptr,
445
+ batch_size,
446
+ num_hash_f,
447
+ hashtable_capacity,
448
+ num_key
449
+ );
450
+ }
451
+ {
452
+ dim3 threads(WARP_SIZE, OPTIMAL_THREADS_PER_BLOCK / WARP_SIZE);
453
+ dim3 blocks(num_key, num_hash_f, batch_size);
454
+ int shared_mem = (weight_dim + value_dim + WARP_SIZE) * sizeof(float);
455
+ lsh_weighted_cumulation_ver3_step2_cuda_kernel<<<blocks, threads, shared_mem>>>(
456
+ query_sorted_idxes_ptr,
457
+ key_mask_ptr,
458
+ key_info_ptr,
459
+ query_weight_ptr,
460
+ key_weight_ptr,
461
+ value_ptr,
462
+ cumulation_value_ptr,
463
+ batch_size,
464
+ num_hash_f,
465
+ num_query,
466
+ num_key,
467
+ value_dim,
468
+ weight_dim
469
+ );
470
+ }
471
+ }
472
+
473
+ return cumulation_value;
474
+
475
+ }
476
+
477
+ at::Tensor lsh_weighted_cumulation_ver4_kernel(
478
+ at::Tensor query_mask,
479
+ at::Tensor query_hash_code,
480
+ at::Tensor query_weight,
481
+ at::Tensor key_mask,
482
+ at::Tensor key_hash_code,
483
+ at::Tensor key_weight,
484
+ at::Tensor value,
485
+ int hashtable_capacity,
486
+ bool use_cuda
487
+ ) {
488
+
489
+ int batch_size = query_hash_code.size(0);
490
+ int num_hash_f = query_hash_code.size(2);
491
+
492
+ int num_query = query_hash_code.size(1);
493
+ int num_key = key_hash_code.size(1);
494
+ int value_dim = value.size(2);
495
+ int weight_dim = query_weight.size(2);
496
+
497
+ at::Tensor count_sort_table = at::zeros({batch_size, num_hash_f, hashtable_capacity}, query_hash_code.options());
498
+ at::Tensor query_sorted_idxes = at::zeros({batch_size, num_hash_f, num_query}, query_hash_code.options());
499
+ at::Tensor key_info = at::zeros({batch_size, num_key, 2, num_hash_f}, query_hash_code.options());
500
+ at::Tensor cumulation_value = at::zeros({batch_size, num_query, value_dim}, value.options());
501
+
502
+ if (use_cuda) {
503
+
504
+ int *query_mask_ptr = query_mask.data_ptr<int>();
505
+ int *query_hash_code_ptr = query_hash_code.data_ptr<int>();
506
+ float *query_weight_ptr = query_weight.data_ptr<float>();
507
+ int *key_mask_ptr = key_mask.data_ptr<int>();
508
+ int *key_hash_code_ptr = key_hash_code.data_ptr<int>();
509
+ float *key_weight_ptr = key_weight.data_ptr<float>();
510
+ float *value_ptr = value.data_ptr<float>();
511
+
512
+ int *count_sort_table_ptr = count_sort_table.data_ptr<int>();
513
+ int *query_sorted_idxes_ptr = query_sorted_idxes.data_ptr<int>();
514
+ int *key_info_ptr = key_info.data_ptr<int>();
515
+
516
+ float *cumulation_value_ptr = cumulation_value.data_ptr<float>();
517
+
518
+ {
519
+ dim3 threads_step13(num_hash_f, max(1, OPTIMAL_THREADS_PER_BLOCK / num_hash_f));
520
+ dim3 blocks_step13(num_query / max(1, OPTIMAL_THREADS_PER_BLOCK / num_hash_f), batch_size);
521
+ dim3 threads_step2(min(hashtable_capacity, OPTIMAL_THREADS_PER_BLOCK));
522
+ dim3 blocks_step2(num_hash_f, batch_size);
523
+ int shared_mem = hashtable_capacity * sizeof(float);
524
+ count_sort_step1_cuda_kernel<<<blocks_step13, threads_step13>>>(
525
+ query_mask_ptr,
526
+ query_hash_code_ptr,
527
+ count_sort_table_ptr,
528
+ batch_size,
529
+ num_hash_f,
530
+ hashtable_capacity,
531
+ num_query
532
+ );
533
+ count_sort_step2_cuda_kernel<<<blocks_step2, threads_step2, shared_mem>>>(
534
+ count_sort_table_ptr,
535
+ batch_size,
536
+ num_hash_f,
537
+ hashtable_capacity
538
+ );
539
+ count_sort_step3_cuda_kernel<<<blocks_step13, threads_step13>>>(
540
+ query_mask_ptr,
541
+ query_hash_code_ptr,
542
+ count_sort_table_ptr,
543
+ query_sorted_idxes_ptr,
544
+ batch_size,
545
+ num_hash_f,
546
+ hashtable_capacity,
547
+ num_query
548
+ );
549
+ }
550
+ {
551
+ dim3 threads(num_hash_f, max(1, OPTIMAL_THREADS_PER_BLOCK / num_hash_f));
552
+ dim3 blocks(num_key / max(1, OPTIMAL_THREADS_PER_BLOCK / num_hash_f), batch_size);
553
+ extract_query_info_cuda_kernel<<<blocks, threads>>>(
554
+ key_mask_ptr,
555
+ key_hash_code_ptr,
556
+ count_sort_table_ptr,
557
+ key_info_ptr,
558
+ batch_size,
559
+ num_hash_f,
560
+ hashtable_capacity,
561
+ num_key
562
+ );
563
+ }
564
+ {
565
+ dim3 threads(WARP_SIZE, OPTIMAL_THREADS_PER_BLOCK / WARP_SIZE);
566
+ dim3 blocks(num_key, batch_size);
567
+ int shared_mem = (weight_dim + value_dim + 2 * num_hash_f) * sizeof(float);
568
+ lsh_weighted_cumulation_ver4_step2_cuda_kernel<<<blocks, threads, shared_mem>>>(
569
+ query_sorted_idxes_ptr,
570
+ key_mask_ptr,
571
+ key_info_ptr,
572
+ query_weight_ptr,
573
+ key_weight_ptr,
574
+ value_ptr,
575
+ cumulation_value_ptr,
576
+ batch_size,
577
+ num_hash_f,
578
+ num_query,
579
+ num_key,
580
+ value_dim,
581
+ weight_dim
582
+ );
583
+ }
584
+ }
585
+
586
+ return cumulation_value;
587
+
588
+ }
llmeval-env/lib/python3.10/site-packages/transformers/kernels/yoso/fast_lsh_cumulation.h ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #include <torch/extension.h>
2
+ #include <ATen/ATen.h>
3
+ #include <vector>
4
+
5
+ std::vector<at::Tensor> fast_hash_ver1_kernel(
6
+ at::Tensor query_mask,
7
+ at::Tensor query_vector,
8
+ at::Tensor key_mask,
9
+ at::Tensor key_vector,
10
+ int num_hash_f,
11
+ int hash_code_len,
12
+ bool use_cuda
13
+ );
14
+
15
+ at::Tensor lsh_cumulation_ver1_kernel(
16
+ at::Tensor query_mask,
17
+ at::Tensor query_hash_code,
18
+ at::Tensor key_mask,
19
+ at::Tensor key_hash_code,
20
+ at::Tensor value,
21
+ int hashtable_capacity,
22
+ bool use_cuda
23
+ );
24
+
25
+ at::Tensor lsh_weighted_cumulation_ver1_kernel(
26
+ at::Tensor query_mask,
27
+ at::Tensor query_hash_code,
28
+ at::Tensor query_weight,
29
+ at::Tensor key_mask,
30
+ at::Tensor key_hash_code,
31
+ at::Tensor key_weight,
32
+ at::Tensor value,
33
+ int hashtable_capacity,
34
+ bool use_cuda
35
+ );
36
+
37
+ at::Tensor lsh_weighted_cumulation_ver2_kernel(
38
+ at::Tensor query_mask,
39
+ at::Tensor query_hash_code,
40
+ at::Tensor query_weight,
41
+ at::Tensor key_mask,
42
+ at::Tensor key_hash_code,
43
+ at::Tensor key_weight,
44
+ at::Tensor value,
45
+ int hashtable_capacity,
46
+ bool use_cuda
47
+ );
48
+
49
+ at::Tensor lsh_weighted_cumulation_ver3_kernel(
50
+ at::Tensor query_mask,
51
+ at::Tensor query_hash_code,
52
+ at::Tensor query_weight,
53
+ at::Tensor key_mask,
54
+ at::Tensor key_hash_code,
55
+ at::Tensor key_weight,
56
+ at::Tensor value,
57
+ int hashtable_capacity,
58
+ bool use_cuda
59
+ );
60
+
61
+ at::Tensor lsh_weighted_cumulation_ver4_kernel(
62
+ at::Tensor query_mask,
63
+ at::Tensor query_hash_code,
64
+ at::Tensor query_weight,
65
+ at::Tensor key_mask,
66
+ at::Tensor key_hash_code,
67
+ at::Tensor key_weight,
68
+ at::Tensor value,
69
+ int hashtable_capacity,
70
+ bool use_cuda
71
+ );
llmeval-env/lib/python3.10/site-packages/transformers/kernels/yoso/fast_lsh_cumulation_cuda.cu ADDED
@@ -0,0 +1,825 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // File from https://github.com/mlpen/YOSO/blob/main/encoders/backbones/efficient_attentions/yoso/yoso_v1/cuda/fast_lsh_cumulation_cuda.cu
2
+
3
+ #include "fast_lsh_cumulation_cuda.h"
4
+ #include "common_cuda_device.h"
5
+ #include "common_cuda.h"
6
+ #include "common.h"
7
+ #include <stdio.h>
8
+ //////////////////////////////////////////////////////////////////////////////////////////////////
9
+ //////////////////////////////////////////////////////////////////////////////////////////////////
10
+
11
+ inline __device__ void fast_hadamard_transform(float *vector_buffer, int vector_dim, int dim_idx) {
12
+ int stride = vector_dim / 2;
13
+ while (stride > (WARP_SIZE / 2)) {
14
+ __syncthreads();
15
+ int sign = 1 - ((dim_idx / stride) % 2) * 2;
16
+ float val1 = vector_buffer[dim_idx];
17
+ float val2 = vector_buffer[dim_idx + sign * stride];
18
+ __syncthreads();
19
+ vector_buffer[dim_idx] = float(sign) * val1 + val2;
20
+ stride = stride / 2;
21
+ }
22
+
23
+ float val = vector_buffer[dim_idx];
24
+ #pragma unroll
25
+ for (stride = (WARP_SIZE / 2); stride > 0; stride = stride / 2) {
26
+ int sign = 1 - ((dim_idx / stride) % 2) * 2;
27
+ val = float(sign) * val + __shfl_xor_sync(FULL_MASK, val, stride);
28
+ }
29
+ vector_buffer[dim_idx] = val;
30
+ }
31
+
32
+ __global__ void fast_hash_ver1_cuda_kernel(
33
+ int *mask, // [batch_size, num_vector]
34
+ float *vector, // [batch_size, num_vector, vector_dim]
35
+ int *Dmat, // [batch_size, 3, num_part, vector_dim]
36
+ int *hash_code, // [batch_size, num_vector, num_hash_f]
37
+ int batch_size,
38
+ int num_vector,
39
+ int vector_dim,
40
+ int num_part,
41
+ int num_hash_f,
42
+ int hash_code_len
43
+ ) {
44
+
45
+ int batch_idx = blockIdx.z;
46
+ int vector_idx = blockIdx.y;
47
+ int part_idx = blockIdx.x;
48
+
49
+ int dim_idx = threadIdx.x;
50
+
51
+ int batch_idx__vector_idx = batch_idx * num_vector + vector_idx;
52
+ if (mask[batch_idx__vector_idx] == 0) {
53
+ return;
54
+ }
55
+
56
+ extern __shared__ float buffer[];
57
+ float *vector_buffer = buffer;
58
+
59
+ vector_buffer[dim_idx] = vector[batch_idx__vector_idx * vector_dim + dim_idx];
60
+
61
+ vector_buffer[dim_idx] = vector_buffer[dim_idx] * (float)Dmat[((batch_idx * 3 + 0) * num_part + part_idx) * vector_dim + dim_idx];
62
+ fast_hadamard_transform(vector_buffer, vector_dim, dim_idx);
63
+ vector_buffer[dim_idx] = vector_buffer[dim_idx] * (float)Dmat[((batch_idx * 3 + 1) * num_part + part_idx) * vector_dim + dim_idx];
64
+ fast_hadamard_transform(vector_buffer, vector_dim, dim_idx);
65
+ vector_buffer[dim_idx] = vector_buffer[dim_idx] * (float)Dmat[((batch_idx * 3 + 2) * num_part + part_idx) * vector_dim + dim_idx];
66
+ fast_hadamard_transform(vector_buffer, vector_dim, dim_idx);
67
+
68
+ int num_hash_per_part = vector_dim / hash_code_len;
69
+ if (hash_code_len == 8 || hash_code_len == 16) {
70
+ int code = select(vector_buffer[dim_idx] > 0, 1 << (dim_idx % hash_code_len), 0);
71
+ for (int offset = 1; offset < hash_code_len; offset = offset * 2) {
72
+ code += __shfl_xor_sync(FULL_MASK, code, offset);
73
+ }
74
+ if (dim_idx % hash_code_len == 0) {
75
+ int hash_f_idx = part_idx * num_hash_per_part + dim_idx / hash_code_len;
76
+ if (hash_f_idx < num_hash_f) {
77
+ hash_code[batch_idx__vector_idx * num_hash_f + hash_f_idx] = code;
78
+ }
79
+ }
80
+ } else {
81
+ vector_buffer[dim_idx] = select(vector_buffer[dim_idx] > 0, 1 << (dim_idx % hash_code_len), 0);
82
+ __syncthreads();
83
+ if (dim_idx < num_hash_per_part) {
84
+ int code = 0;
85
+ for (int i = 0; i < hash_code_len; i++) {
86
+ code += vector_buffer[dim_idx * hash_code_len + i];
87
+ }
88
+ int hash_f_idx = part_idx * num_hash_per_part + dim_idx;
89
+ if (hash_f_idx < num_hash_f) {
90
+ hash_code[batch_idx__vector_idx * num_hash_f + hash_f_idx] = code;
91
+ }
92
+ }
93
+ }
94
+ }
95
+
96
+ __global__ void lsh_cumulation_ver1_step1_cuda_kernel(
97
+ int *key_mask, // [batch_size, num_key]
98
+ int *key_hash_code, // [batch_size, num_key, num_hash_f]
99
+ float *value, // [batch_size, num_key, value_dim]
100
+ float *hashtable_value, // [batch_size, num_hash_f, hashtable_capacity, WARP_SIZE]
101
+ int batch_size,
102
+ int num_hash_f,
103
+ int hashtable_capacity,
104
+ int num_key,
105
+ int value_dim,
106
+ int offset_warp
107
+ ) {
108
+
109
+ int warp_thread_idx = threadIdx.x;
110
+
111
+ int batch_idx = blockIdx.y;
112
+ int key_idx = blockIdx.x * blockDim.y + threadIdx.y;
113
+
114
+ int batch_idx__key_idx = batch_idx * num_key + key_idx;
115
+ if (key_mask[batch_idx__key_idx] == 0) {
116
+ return;
117
+ }
118
+
119
+ if (num_hash_f > WARP_SIZE) {
120
+ float warp_value = value[batch_idx__key_idx * value_dim + offset_warp + warp_thread_idx];
121
+ for (int hash_f_start = 0; hash_f_start < num_hash_f; hash_f_start = hash_f_start + WARP_SIZE) {
122
+ int warp_hashcode = key_hash_code[batch_idx__key_idx * num_hash_f + hash_f_start + warp_thread_idx];
123
+ #pragma unroll
124
+ for (int hash_f_offset = 0; hash_f_offset < WARP_SIZE; hash_f_offset++) {
125
+ int current_hashcode = warp_hashcode;
126
+ current_hashcode = __shfl_sync(FULL_MASK, current_hashcode, hash_f_offset);
127
+ int hashtable_idx = (batch_idx * num_hash_f + (hash_f_start + hash_f_offset)) * hashtable_capacity + current_hashcode;
128
+ atomicAdd(&hashtable_value[hashtable_idx * WARP_SIZE + warp_thread_idx], warp_value);
129
+ }
130
+ }
131
+ } else {
132
+ float warp_value = value[batch_idx__key_idx * value_dim + offset_warp + warp_thread_idx];
133
+ int warp_hashcode = 0;
134
+ if (warp_thread_idx < num_hash_f) {
135
+ warp_hashcode = key_hash_code[batch_idx__key_idx * num_hash_f + warp_thread_idx];
136
+ }
137
+ for (int hash_f_idx = 0; hash_f_idx < num_hash_f; hash_f_idx++) {
138
+ int current_hashcode = warp_hashcode;
139
+ current_hashcode = __shfl_sync(FULL_MASK, current_hashcode, hash_f_idx);
140
+ int hashtable_idx = (batch_idx * num_hash_f + hash_f_idx) * hashtable_capacity + current_hashcode;
141
+ atomicAdd(&hashtable_value[hashtable_idx * WARP_SIZE + warp_thread_idx], warp_value);
142
+ }
143
+ }
144
+
145
+ }
146
+
147
+ __global__ void lsh_cumulation_ver1_step2_cuda_kernel(
148
+ int *query_mask, // [batch_size, num_query]
149
+ int *query_hash_code, // [batch_size, num_query, num_hash_f]
150
+ float *hashtable_value, // [batch_size, num_hash_f, hashtable_capacity, WARP_SIZE]
151
+ float *cumulation_value, // [batch_size, num_query, value_dim]
152
+ int batch_size,
153
+ int num_hash_f,
154
+ int hashtable_capacity,
155
+ int num_query,
156
+ int value_dim,
157
+ int offset_warp
158
+ ) {
159
+
160
+ int warp_thread_idx = threadIdx.x;
161
+
162
+ int batch_idx = blockIdx.y;
163
+ int query_idx = blockIdx.x * blockDim.y + threadIdx.y;
164
+
165
+ int batch_idx__query_idx = batch_idx * num_query + query_idx;
166
+ if (query_mask[batch_idx__query_idx] == 0) {
167
+ return;
168
+ }
169
+
170
+ if (num_hash_f > WARP_SIZE) {
171
+ float warp_value = 0;
172
+ for (int hash_f_start = 0; hash_f_start < num_hash_f; hash_f_start = hash_f_start + WARP_SIZE) {
173
+ int warp_hashcode = query_hash_code[batch_idx__query_idx * num_hash_f + hash_f_start + warp_thread_idx];
174
+ #pragma unroll
175
+ for (int hash_f_offset = 0; hash_f_offset < WARP_SIZE; hash_f_offset++) {
176
+ int current_hashcode = warp_hashcode;
177
+ current_hashcode = __shfl_sync(FULL_MASK, current_hashcode, hash_f_offset);
178
+ int hashtable_idx = (batch_idx * num_hash_f + (hash_f_start + hash_f_offset)) * hashtable_capacity + current_hashcode;
179
+ warp_value = warp_value + hashtable_value[hashtable_idx * WARP_SIZE + warp_thread_idx];
180
+ }
181
+ }
182
+ cumulation_value[batch_idx__query_idx * value_dim + offset_warp + warp_thread_idx] = warp_value / float(num_hash_f);
183
+ } else {
184
+ float warp_value = 0;
185
+ int warp_hashcode = 0;
186
+ if (warp_thread_idx < num_hash_f) {
187
+ warp_hashcode = query_hash_code[batch_idx__query_idx * num_hash_f + warp_thread_idx];
188
+ }
189
+ for (int hash_f_idx = 0; hash_f_idx < num_hash_f; hash_f_idx++) {
190
+ int current_hashcode = warp_hashcode;
191
+ current_hashcode = __shfl_sync(FULL_MASK, current_hashcode, hash_f_idx);
192
+ int hashtable_idx = (batch_idx * num_hash_f + hash_f_idx) * hashtable_capacity + current_hashcode;
193
+ warp_value = warp_value + hashtable_value[hashtable_idx * WARP_SIZE + warp_thread_idx];
194
+ }
195
+ cumulation_value[batch_idx__query_idx * value_dim + offset_warp + warp_thread_idx] = warp_value / float(num_hash_f);
196
+ }
197
+
198
+ }
199
+
200
+ __global__ void lsh_weighted_cumulation_ver1_step1_cuda_kernel(
201
+ int *key_mask, // [batch_size, num_key]
202
+ int *key_hash_code, // [batch_size, num_key, num_hash_f]
203
+ float *key_weight, // [batch_size, num_key, weight_dim]
204
+ float *value, // [batch_size, num_key, value_dim]
205
+ float *hashtable_value, // [batch_size, num_hash_f, hashtable_capacity, WARP_SIZE]
206
+ int batch_size,
207
+ int num_hash_f,
208
+ int hashtable_capacity,
209
+ int num_key,
210
+ int value_dim,
211
+ int weight_dim,
212
+ int offset_warp,
213
+ int weight_idx
214
+ ) {
215
+
216
+ int warp_thread_idx = threadIdx.x;
217
+
218
+ int batch_idx = blockIdx.y;
219
+ int key_idx = blockIdx.x * blockDim.y + threadIdx.y;
220
+
221
+ int batch_idx__key_idx = batch_idx * num_key + key_idx;
222
+ if (key_mask[batch_idx__key_idx] == 0) {
223
+ return;
224
+ }
225
+
226
+ if (num_hash_f > WARP_SIZE) {
227
+ float warp_value = key_weight[batch_idx__key_idx * weight_dim + weight_idx] * value[batch_idx__key_idx * value_dim + offset_warp + warp_thread_idx];
228
+ for (int hash_f_start = 0; hash_f_start < num_hash_f; hash_f_start = hash_f_start + WARP_SIZE) {
229
+ int warp_hashcode = key_hash_code[batch_idx__key_idx * num_hash_f + hash_f_start + warp_thread_idx];
230
+ #pragma unroll
231
+ for (int hash_f_offset = 0; hash_f_offset < WARP_SIZE; hash_f_offset++) {
232
+ int current_hashcode = warp_hashcode;
233
+ current_hashcode = __shfl_sync(FULL_MASK, current_hashcode, hash_f_offset);
234
+ int hashtable_idx = (batch_idx * num_hash_f + (hash_f_start + hash_f_offset)) * hashtable_capacity + current_hashcode;
235
+ atomicAdd(&hashtable_value[hashtable_idx * WARP_SIZE + warp_thread_idx], warp_value);
236
+ }
237
+ }
238
+ } else {
239
+ float warp_value = key_weight[batch_idx__key_idx * weight_dim + weight_idx] * value[batch_idx__key_idx * value_dim + offset_warp + warp_thread_idx];
240
+ int warp_hashcode = 0;
241
+ if (warp_thread_idx < num_hash_f) {
242
+ warp_hashcode = key_hash_code[batch_idx__key_idx * num_hash_f + warp_thread_idx];
243
+ }
244
+ for (int hash_f_idx = 0; hash_f_idx < num_hash_f; hash_f_idx++) {
245
+ int current_hashcode = warp_hashcode;
246
+ current_hashcode = __shfl_sync(FULL_MASK, current_hashcode, hash_f_idx);
247
+ int hashtable_idx = (batch_idx * num_hash_f + hash_f_idx) * hashtable_capacity + current_hashcode;
248
+ atomicAdd(&hashtable_value[hashtable_idx * WARP_SIZE + warp_thread_idx], warp_value);
249
+ }
250
+ }
251
+
252
+ }
253
+
254
+ __global__ void lsh_weighted_cumulation_ver1_step2_cuda_kernel(
255
+ int *query_mask, // [batch_size, num_query]
256
+ int *query_hash_code, // [batch_size, num_query, num_hash_f]
257
+ float *query_weight, // [batch_size, num_query, weight_dim]
258
+ float *hashtable_value, // [batch_size, num_hash_f, hashtable_capacity, WARP_SIZE]
259
+ float *cumulation_value, // [batch_size, num_query, value_dim]
260
+ int batch_size,
261
+ int num_hash_f,
262
+ int hashtable_capacity,
263
+ int num_query,
264
+ int value_dim,
265
+ int weight_dim,
266
+ int offset_warp,
267
+ int weight_idx
268
+ ) {
269
+
270
+ int warp_thread_idx = threadIdx.x;
271
+
272
+ int batch_idx = blockIdx.y;
273
+ int query_idx = blockIdx.x * blockDim.y + threadIdx.y;
274
+
275
+ int batch_idx__query_idx = batch_idx * num_query + query_idx;
276
+ if (query_mask[batch_idx__query_idx] == 0) {
277
+ return;
278
+ }
279
+
280
+ if (num_hash_f > WARP_SIZE) {
281
+ float warp_value = 0;
282
+ for (int hash_f_start = 0; hash_f_start < num_hash_f; hash_f_start = hash_f_start + WARP_SIZE) {
283
+ int warp_hashcode = query_hash_code[batch_idx__query_idx * num_hash_f + hash_f_start + warp_thread_idx];
284
+ #pragma unroll
285
+ for (int hash_f_offset = 0; hash_f_offset < WARP_SIZE; hash_f_offset++) {
286
+ int current_hashcode = warp_hashcode;
287
+ current_hashcode = __shfl_sync(FULL_MASK, current_hashcode, hash_f_offset);
288
+ int hashtable_idx = (batch_idx * num_hash_f + (hash_f_start + hash_f_offset)) * hashtable_capacity + current_hashcode;
289
+ warp_value = warp_value + hashtable_value[hashtable_idx * WARP_SIZE + warp_thread_idx];
290
+ }
291
+ }
292
+ float warp_weight = query_weight[batch_idx__query_idx * weight_dim + weight_idx];
293
+ cumulation_value[batch_idx__query_idx * value_dim + offset_warp + warp_thread_idx] += warp_weight * warp_value / float(num_hash_f);
294
+ } else {
295
+ float warp_value = 0;
296
+ int warp_hashcode = 0;
297
+ if (warp_thread_idx < num_hash_f) {
298
+ warp_hashcode = query_hash_code[batch_idx__query_idx * num_hash_f + warp_thread_idx];
299
+ }
300
+ for (int hash_f_idx = 0; hash_f_idx < num_hash_f; hash_f_idx++) {
301
+ int current_hashcode = warp_hashcode;
302
+ current_hashcode = __shfl_sync(FULL_MASK, current_hashcode, hash_f_idx);
303
+ int hashtable_idx = (batch_idx * num_hash_f + hash_f_idx) * hashtable_capacity + current_hashcode;
304
+ warp_value = warp_value + hashtable_value[hashtable_idx * WARP_SIZE + warp_thread_idx];
305
+ }
306
+ float warp_weight = query_weight[batch_idx__query_idx * weight_dim + weight_idx];
307
+ cumulation_value[batch_idx__query_idx * value_dim + offset_warp + warp_thread_idx] += warp_weight * warp_value / float(num_hash_f);
308
+ }
309
+
310
+ }
311
+
312
+ __global__ void count_sort_step1_cuda_kernel(
313
+ int *key_mask, // [batch_size, num_key]
314
+ int *key_hash_code, // [batch_size, num_key, num_hash_f]
315
+ int *count_sort_table, // [batch_size, num_hash_f, hashtable_capacity]
316
+ int batch_size,
317
+ int num_hash_f,
318
+ int hashtable_capacity,
319
+ int num_key
320
+ ) {
321
+
322
+ int batch_idx = blockIdx.y;
323
+ int key_idx = blockIdx.x * blockDim.y + threadIdx.y;
324
+ int hash_f_idx = threadIdx.x;
325
+
326
+ int batch_idx__key_idx = batch_idx * num_key + key_idx;
327
+ if (key_mask[batch_idx__key_idx] == 0) {
328
+ return;
329
+ }
330
+
331
+ int hash_code = key_hash_code[batch_idx__key_idx * num_hash_f + hash_f_idx];
332
+ atomicAdd(&count_sort_table[(batch_idx * num_hash_f + hash_f_idx) * hashtable_capacity + hash_code], 1);
333
+
334
+ }
335
+
336
+ __global__ void count_sort_step2_cuda_kernel(
337
+ int *count_sort_table, // [batch_size, num_hash_f, hashtable_capacity]
338
+ int batch_size,
339
+ int num_hash_f,
340
+ int hashtable_capacity
341
+ ) {
342
+
343
+ int batch_idx = blockIdx.y;
344
+ int hash_f_idx = blockIdx.x;
345
+
346
+ int num_threads = blockDim.x;
347
+ int thread_id = threadIdx.x;
348
+
349
+ int batch_idx__hash_f_idx = batch_idx * num_hash_f + hash_f_idx;
350
+
351
+ extern __shared__ float buffer[];
352
+ int *table_buffer = (int*)buffer;
353
+
354
+ if (thread_id == 0) {
355
+ table_buffer[0] = 0;
356
+ }
357
+ copy_data<int>(&count_sort_table[batch_idx__hash_f_idx * hashtable_capacity], &table_buffer[1], hashtable_capacity - 1, num_threads, thread_id);
358
+
359
+ for (int table_idx_start = 0; table_idx_start < hashtable_capacity; table_idx_start = table_idx_start + num_threads) {
360
+ int thread_value = table_buffer[table_idx_start + thread_id];
361
+ int next_thread_value = 0;
362
+ for (int offset = 1; offset < WARP_SIZE; offset = offset << 1) {
363
+ next_thread_value = __shfl_up_sync(FULL_MASK, thread_value, offset);
364
+ if (thread_id % WARP_SIZE >= offset) {
365
+ thread_value = thread_value + next_thread_value;
366
+ }
367
+ }
368
+ table_buffer[table_idx_start + thread_id] = thread_value;
369
+ }
370
+ __syncthreads();
371
+
372
+ if (hashtable_capacity > WARP_SIZE) {
373
+ if (thread_id < WARP_SIZE) {
374
+ for (int table_idx_start = WARP_SIZE; table_idx_start < hashtable_capacity; table_idx_start = table_idx_start + WARP_SIZE) {
375
+ table_buffer[table_idx_start + thread_id] += table_buffer[table_idx_start - 1];
376
+ }
377
+ }
378
+ }
379
+
380
+ copy_data<int>(table_buffer, &count_sort_table[batch_idx__hash_f_idx * hashtable_capacity], hashtable_capacity, num_threads, thread_id);
381
+
382
+ }
383
+
384
+
385
+ __global__ void count_sort_step3_cuda_kernel(
386
+ int *key_mask, // [batch_size, num_key]
387
+ int *key_hash_code, // [batch_size, num_key, num_hash_f]
388
+ int *count_sort_table, // [batch_size, num_hash_f, hashtable_capacity]
389
+ int *key_sorted_idxes, // [batch_size, num_hash_f, num_key]
390
+ int batch_size,
391
+ int num_hash_f,
392
+ int hashtable_capacity,
393
+ int num_key
394
+ ) {
395
+
396
+ int batch_idx = blockIdx.y;
397
+ int key_idx = blockIdx.x * blockDim.y + threadIdx.y;
398
+ int hash_f_idx = threadIdx.x;
399
+
400
+ int batch_idx__key_idx = batch_idx * num_key + key_idx;
401
+ if (key_mask[batch_idx__key_idx] == 0) {
402
+ return;
403
+ }
404
+
405
+ int batch_idx__hash_f_idx = batch_idx * num_hash_f + hash_f_idx;
406
+
407
+ int hash_code = key_hash_code[batch_idx__key_idx * num_hash_f + hash_f_idx];
408
+ int sort_idx = atomicAdd(&count_sort_table[batch_idx__hash_f_idx * hashtable_capacity + hash_code], 1);
409
+ key_sorted_idxes[batch_idx__hash_f_idx * num_key + sort_idx] = key_idx;
410
+
411
+ }
412
+
413
+ __global__ void extract_query_info_cuda_kernel(
414
+ int *query_mask, // [batch_size, num_query]
415
+ int *query_hash_code, // [batch_size, num_query, num_hash_f]
416
+ int *count_sort_table, // [batch_size, num_hash_f, hashtable_capacity]
417
+ int *query_info, // [batch_size, num_query, 2, num_hash_f]
418
+ int batch_size,
419
+ int num_hash_f,
420
+ int hashtable_capacity,
421
+ int num_query
422
+ ) {
423
+
424
+ int batch_idx = blockIdx.y;
425
+ int query_idx = blockIdx.x * blockDim.y + threadIdx.y;
426
+ int hash_f_idx = threadIdx.x;
427
+
428
+ int batch_idx__query_idx = batch_idx * num_query + query_idx;
429
+ if (query_mask[batch_idx__query_idx] == 0) {
430
+ return;
431
+ }
432
+
433
+ int hash_code = query_hash_code[batch_idx__query_idx * num_hash_f + hash_f_idx];
434
+ int batch_idx__hash_f_idx__hash_code = (batch_idx * num_hash_f + hash_f_idx) * hashtable_capacity + hash_code;
435
+
436
+ int key_offset = select(hash_code == 0, 0, count_sort_table[batch_idx__hash_f_idx__hash_code - 1]);
437
+ int key_count = count_sort_table[batch_idx__hash_f_idx__hash_code] - key_offset;
438
+
439
+ query_info[batch_idx__query_idx * 2 * num_hash_f + hash_f_idx] = key_offset;
440
+ query_info[(batch_idx__query_idx * 2 + 1) * num_hash_f + hash_f_idx] = key_count;
441
+
442
+ }
443
+
444
+ __global__ void lsh_weighted_cumulation_ver2_step2_cuda_kernel(
445
+ int *query_mask, // [batch_size, num_query]
446
+ int *query_info, // [batch_size, num_query, 2, num_hash_f]
447
+ int *key_sorted_idxes, // [batch_size, num_hash_f, num_key]
448
+ float *query_weight, // [batch_size, num_query, weight_dim]
449
+ float *key_weight, // [batch_size, num_key, weight_dim]
450
+ float *value, // [batch_size, num_key, value_dim]
451
+ float *cumulation_value, // [batch_size, num_query, value_dim]
452
+ int batch_size,
453
+ int num_hash_f,
454
+ int num_query,
455
+ int num_key,
456
+ int value_dim,
457
+ int weight_dim
458
+ ) {
459
+
460
+ int batch_idx = blockIdx.z;
461
+ int hash_f_idx = blockIdx.y;
462
+ int query_idx = blockIdx.x;
463
+
464
+ int num_threads = blockDim.y * blockDim.x;
465
+ int thread_id = threadIdx.y * blockDim.x + threadIdx.x;
466
+
467
+ int num_warps = blockDim.y;
468
+ int warp_idx = threadIdx.y;
469
+ int warp_thread_idx = threadIdx.x;
470
+
471
+ int batch_idx__query_idx = batch_idx * num_query + query_idx;
472
+ if (query_mask[batch_idx__query_idx] == 0) {
473
+ return;
474
+ }
475
+
476
+ int key_offset = query_info[batch_idx__query_idx * 2 * num_hash_f + hash_f_idx];
477
+ int key_count = query_info[(batch_idx__query_idx * 2 + 1) * num_hash_f + hash_f_idx];
478
+
479
+ if (key_count == 0) {
480
+ return;
481
+ }
482
+
483
+ extern __shared__ float buffer[];
484
+
485
+ if (key_count == 1) {
486
+ if (warp_idx == 0) {
487
+ int key_idx = key_sorted_idxes[(batch_idx * num_hash_f + hash_f_idx) * num_key + key_offset];
488
+ int batch_idx__key_idx = batch_idx * num_key + key_idx;
489
+ float weight = 0;
490
+ for (int weight_offset = 0; weight_offset < weight_dim; weight_offset = weight_offset + WARP_SIZE) {
491
+ int weight_dim_idx = weight_offset + warp_thread_idx;
492
+ float val = query_weight[batch_idx__query_idx * weight_dim + weight_dim_idx] * key_weight[batch_idx__key_idx * weight_dim + weight_dim_idx];
493
+ #pragma unroll
494
+ for (int offset = 1; offset < WARP_SIZE; offset = offset << 1) {
495
+ val += __shfl_xor_sync(FULL_MASK, val, offset);
496
+ }
497
+ weight = weight + val;
498
+ }
499
+ weight = weight / float(num_hash_f);
500
+ for (int value_offset = 0; value_offset < value_dim; value_offset = value_offset + WARP_SIZE) {
501
+ int value_dim_idx = value_offset + warp_thread_idx;
502
+ float val = value[batch_idx__key_idx * value_dim + value_dim_idx];
503
+ atomicAdd(&cumulation_value[batch_idx__query_idx * value_dim + value_dim_idx], weight * val);
504
+ }
505
+ }
506
+ } else {
507
+ float *weight_buffer = buffer;
508
+ int *key_idxes_buffer = (int*)&buffer[weight_dim];
509
+
510
+ copy_data_nonblocking<float>(&query_weight[batch_idx__query_idx * weight_dim], weight_buffer, weight_dim, num_threads, thread_id);
511
+
512
+ while (key_count > 0) {
513
+ int work_size = min(WARP_SIZE, key_count);
514
+ copy_data_nonblocking<int>(&key_sorted_idxes[(batch_idx * num_hash_f + hash_f_idx) * num_key + key_offset], key_idxes_buffer, work_size, num_threads, thread_id);
515
+ __syncthreads();
516
+ for (int work_offset = 0; work_offset < WARP_SIZE; work_offset = work_offset + num_warps) {
517
+ int work_idx = work_offset + warp_idx;
518
+ if (work_idx < key_count) {
519
+ int key_idx = key_idxes_buffer[work_idx];
520
+ int batch_idx__key_idx = batch_idx * num_key + key_idx;
521
+ float weight = 0;
522
+ for (int weight_offset = 0; weight_offset < weight_dim; weight_offset = weight_offset + WARP_SIZE) {
523
+ int weight_dim_idx = weight_offset + warp_thread_idx;
524
+ float val = weight_buffer[weight_dim_idx] * key_weight[batch_idx__key_idx * weight_dim + weight_dim_idx];
525
+ #pragma unroll
526
+ for (int offset = 1; offset < WARP_SIZE; offset = offset << 1) {
527
+ val += __shfl_xor_sync(FULL_MASK, val, offset);
528
+ }
529
+ weight = weight + val;
530
+ }
531
+ weight = weight / float(num_hash_f);
532
+ for (int value_offset = 0; value_offset < value_dim; value_offset = value_offset + WARP_SIZE) {
533
+ int value_dim_idx = value_offset + warp_thread_idx;
534
+ float val = value[batch_idx__key_idx * value_dim + value_dim_idx];
535
+ atomicAdd(&cumulation_value[batch_idx__query_idx * value_dim + value_dim_idx], weight * val);
536
+ }
537
+ }
538
+ }
539
+ key_count = key_count - work_size;
540
+ key_offset = key_offset + work_size;
541
+ }
542
+ }
543
+
544
+ }
545
+
546
+ __global__ void lsh_weighted_cumulation_ver3_step2_cuda_kernel(
547
+ int *query_sorted_idxes, // [batch_size, num_hash_f, num_query]
548
+ int *key_mask, // [batch_size, num_key]
549
+ int *key_info, // [batch_size, num_key, 2, num_hash_f]
550
+ float *query_weight, // [batch_size, num_query, weight_dim]
551
+ float *key_weight, // [batch_size, num_key, weight_dim]
552
+ float *value, // [batch_size, num_key, value_dim]
553
+ float *cumulation_value, // [batch_size, num_query, value_dim]
554
+ int batch_size,
555
+ int num_hash_f,
556
+ int num_query,
557
+ int num_key,
558
+ int value_dim,
559
+ int weight_dim
560
+ ) {
561
+
562
+ int batch_idx = blockIdx.z;
563
+ int hash_f_idx = blockIdx.y;
564
+ int key_idx = blockIdx.x;
565
+
566
+ int num_threads = blockDim.y * blockDim.x;
567
+ int thread_id = threadIdx.y * blockDim.x + threadIdx.x;
568
+
569
+ int num_warps = blockDim.y;
570
+ int warp_idx = threadIdx.y;
571
+ int warp_thread_idx = threadIdx.x;
572
+
573
+ int batch_idx__key_idx = batch_idx * num_key + key_idx;
574
+ if (key_mask[batch_idx__key_idx] == 0) {
575
+ return;
576
+ }
577
+
578
+ int query_offset = key_info[batch_idx__key_idx * 2 * num_hash_f + hash_f_idx];
579
+ int query_count = key_info[(batch_idx__key_idx * 2 + 1) * num_hash_f + hash_f_idx];
580
+
581
+ if (query_count == 0) {
582
+ return;
583
+ }
584
+
585
+ extern __shared__ float buffer[];
586
+
587
+ if (query_count == 1) {
588
+ if (warp_idx == 0) {
589
+ int query_idx = query_sorted_idxes[(batch_idx * num_hash_f + hash_f_idx) * num_query + query_offset];
590
+ int batch_idx__query_idx = batch_idx * num_query + query_idx;
591
+ float weight = 0;
592
+ for (int weight_offset = 0; weight_offset < weight_dim; weight_offset = weight_offset + WARP_SIZE) {
593
+ int weight_dim_idx = weight_offset + warp_thread_idx;
594
+ float val = key_weight[batch_idx__key_idx * weight_dim + weight_dim_idx] * query_weight[batch_idx__query_idx * weight_dim + weight_dim_idx];
595
+ #pragma unroll
596
+ for (int offset = 1; offset < WARP_SIZE; offset = offset << 1) {
597
+ val += __shfl_xor_sync(FULL_MASK, val, offset);
598
+ }
599
+ weight = weight + val;
600
+ }
601
+ weight = weight / float(num_hash_f);
602
+ for (int value_offset = 0; value_offset < value_dim; value_offset = value_offset + WARP_SIZE) {
603
+ int value_dim_idx = value_offset + warp_thread_idx;
604
+ float val = value[batch_idx__key_idx * value_dim + value_dim_idx];
605
+ atomicAdd(&cumulation_value[batch_idx__query_idx * value_dim + value_dim_idx], weight * val);
606
+ }
607
+ }
608
+ } else {
609
+ float *weight_buffer = buffer;
610
+ float *value_buffer = &buffer[weight_dim];
611
+ int *query_idxes_buffer = (int*)&buffer[weight_dim + value_dim];
612
+
613
+ copy_data_nonblocking<float>(&key_weight[batch_idx__key_idx * weight_dim], weight_buffer, weight_dim, num_threads, thread_id);
614
+ copy_data_nonblocking<float>(&value[batch_idx__key_idx * value_dim], value_buffer, value_dim, num_threads, thread_id);
615
+
616
+ while (query_count > 0) {
617
+ int work_size = min(WARP_SIZE, query_count);
618
+ copy_data_nonblocking<int>(&query_sorted_idxes[(batch_idx * num_hash_f + hash_f_idx) * num_query + query_offset], query_idxes_buffer, work_size, num_threads, thread_id);
619
+ __syncthreads();
620
+ for (int work_offset = 0; work_offset < WARP_SIZE; work_offset = work_offset + num_warps) {
621
+ int work_idx = work_offset + warp_idx;
622
+ if (work_idx < query_count) {
623
+ int query_idx = query_idxes_buffer[work_idx];
624
+ int batch_idx__query_idx = batch_idx * num_query + query_idx;
625
+ float weight = 0;
626
+ for (int weight_offset = 0; weight_offset < weight_dim; weight_offset = weight_offset + WARP_SIZE) {
627
+ int weight_dim_idx = weight_offset + warp_thread_idx;
628
+ float val = weight_buffer[weight_dim_idx] * query_weight[batch_idx__query_idx * weight_dim + weight_dim_idx];
629
+ #pragma unroll
630
+ for (int offset = 1; offset < WARP_SIZE; offset = offset << 1) {
631
+ val += __shfl_xor_sync(FULL_MASK, val, offset);
632
+ }
633
+ weight = weight + val;
634
+ }
635
+ weight = weight / float(num_hash_f);
636
+ for (int value_offset = 0; value_offset < value_dim; value_offset = value_offset + WARP_SIZE) {
637
+ int value_dim_idx = value_offset + warp_thread_idx;
638
+ float val = value_buffer[value_dim_idx];
639
+ atomicAdd(&cumulation_value[batch_idx__query_idx * value_dim + value_dim_idx], weight * val);
640
+ }
641
+ }
642
+ }
643
+ query_count = query_count - work_size;
644
+ query_offset = query_offset + work_size;
645
+ }
646
+ }
647
+
648
+ }
649
+
650
+ __global__ void lsh_weighted_cumulation_ver4_step2_cuda_kernel(
651
+ int *query_sorted_idxes, // [batch_size, num_hash_f, num_query]
652
+ int *key_mask, // [batch_size, num_key]
653
+ int *key_info, // [batch_size, num_key, 2, num_hash_f]
654
+ float *query_weight, // [batch_size, num_query, weight_dim]
655
+ float *key_weight, // [batch_size, num_key, weight_dim]
656
+ float *value, // [batch_size, num_key, value_dim]
657
+ float *cumulation_value, // [batch_size, num_query, value_dim]
658
+ int batch_size,
659
+ int num_hash_f,
660
+ int num_query,
661
+ int num_key,
662
+ int value_dim,
663
+ int weight_dim
664
+ ) {
665
+
666
+ int batch_idx = blockIdx.y;
667
+ int key_idx = blockIdx.x;
668
+
669
+ int num_threads = blockDim.y * blockDim.x;
670
+ int thread_id = threadIdx.y * blockDim.x + threadIdx.x;
671
+
672
+ int num_warps = blockDim.y;
673
+ int warp_idx = threadIdx.y;
674
+ int warp_thread_idx = threadIdx.x;
675
+
676
+ int batch_idx__key_idx = batch_idx * num_key + key_idx;
677
+ if (key_mask[batch_idx__key_idx] == 0) {
678
+ return;
679
+ }
680
+
681
+ extern __shared__ float buffer[];
682
+ float *weight_buffer = buffer;
683
+ float *value_buffer = &buffer[weight_dim];
684
+ int *key_info_buffer = (int*)&buffer[weight_dim + value_dim];
685
+
686
+ copy_data_nonblocking<float>(&key_weight[batch_idx__key_idx * weight_dim], weight_buffer, weight_dim, num_threads, thread_id);
687
+ copy_data_nonblocking<float>(&value[batch_idx__key_idx * value_dim], value_buffer, value_dim, num_threads, thread_id);
688
+ copy_data_nonblocking<int>(&key_info[batch_idx__key_idx * 2 * num_hash_f], key_info_buffer, 2 * num_hash_f, num_threads, thread_id);
689
+
690
+ int *query_offset_buffer = key_info_buffer;
691
+ int *query_count_buffer = &key_info_buffer[num_hash_f];
692
+
693
+ const int hashtable_size = 1024 + OPTIMAL_THREADS_PER_BLOCK;
694
+ __shared__ int hashtable_query[hashtable_size];
695
+ __shared__ int hashtable_count[hashtable_size];
696
+ __shared__ int inserted_query[hashtable_size];
697
+ __shared__ int query_counter[1];
698
+
699
+ int hash_f_idx_base = 0;
700
+
701
+ while (true) {
702
+
703
+ init_buffer_nonblocking<int>(EMPTY_VALUE, hashtable_query, hashtable_size, num_threads, thread_id);
704
+ init_buffer_nonblocking<int>(0, hashtable_count, hashtable_size, num_threads, thread_id);
705
+ init_buffer_nonblocking<int>(EMPTY_VALUE, inserted_query, hashtable_size, num_threads, thread_id);
706
+ init_buffer_nonblocking<int>(0, query_counter, 1, num_threads, thread_id);
707
+ __syncthreads();
708
+
709
+ while (hash_f_idx_base < num_hash_f) {
710
+
711
+ int hash_f_idx = hash_f_idx_base + warp_idx;
712
+ int batch_idx__hash_f_idx = batch_idx * num_hash_f + hash_f_idx;
713
+
714
+ int stop_flag = 0;
715
+
716
+ int query_offset = query_offset_buffer[hash_f_idx];
717
+ int query_count = query_count_buffer[hash_f_idx];
718
+
719
+ while (query_count > 0) {
720
+
721
+ int work_size = min(query_count, WARP_SIZE);
722
+
723
+ // try inserting query to set and check whether the query is new
724
+ int found_new_query = 0;
725
+ int query_idx = -1;
726
+ if (warp_thread_idx < work_size) {
727
+ query_idx = query_sorted_idxes[batch_idx__hash_f_idx * num_query + query_offset + warp_thread_idx];
728
+ int slot = set_insert<int>(hashtable_query, hashtable_size, query_idx);
729
+ if (slot >= 0) {
730
+ found_new_query = atomicAdd(&hashtable_count[slot], 1) == 0;
731
+ }
732
+ }
733
+
734
+ // compute cumulative offset
735
+ int position_offset = found_new_query;
736
+ int next_position_offset = 0;
737
+ #pragma unroll
738
+ for (int offset = 1; offset < WARP_SIZE; offset = offset << 1) {
739
+ next_position_offset = __shfl_up_sync(FULL_MASK, position_offset, offset);
740
+ if (thread_id % WARP_SIZE >= offset) {
741
+ position_offset = position_offset + next_position_offset;
742
+ }
743
+ }
744
+
745
+ // get the inserted query list end index
746
+ int inserted_query_base = 0;
747
+ if (thread_id % WARP_SIZE == WARP_SIZE - 1) {
748
+ inserted_query_base = atomicAdd(query_counter, position_offset);
749
+ }
750
+ inserted_query_base = __shfl_sync(FULL_MASK, inserted_query_base, WARP_SIZE - 1);
751
+
752
+ // insert new queries to list
753
+ int insert_idx = inserted_query_base + position_offset - 1;
754
+ if (found_new_query) {
755
+ inserted_query[insert_idx] = query_idx;
756
+ }
757
+
758
+ // remove inserted queries from list
759
+ query_offset_buffer[hash_f_idx] += work_size;
760
+ query_count_buffer[hash_f_idx] -= work_size;
761
+ query_offset += work_size;
762
+ query_count -= work_size;
763
+
764
+ // if list is almost full, stop inserting
765
+ if (inserted_query_base + OPTIMAL_THREADS_PER_BLOCK > hashtable_size) {
766
+ stop_flag = 1;
767
+ break;
768
+ }
769
+
770
+ }
771
+
772
+ if (stop_flag) {
773
+ break;
774
+ }
775
+
776
+ hash_f_idx_base = hash_f_idx_base + num_warps;
777
+
778
+ }
779
+
780
+ __syncthreads();
781
+
782
+ int num_distint_query = query_counter[0];
783
+
784
+ if (num_distint_query > 0) {
785
+ for (int idx_base = 0; idx_base < num_distint_query; idx_base = idx_base + num_warps) {
786
+ int idx = idx_base + warp_idx;
787
+ if (idx < num_distint_query) {
788
+ int query_idx = inserted_query[idx];
789
+ int batch_idx__query_idx = batch_idx * num_query + query_idx;
790
+
791
+ int slot = set_lookup<int>(hashtable_query, hashtable_size, query_idx);
792
+ int duplicate_count = hashtable_count[slot];
793
+
794
+ float weight = 0;
795
+ for (int weight_idx_base = 0; weight_idx_base < weight_dim; weight_idx_base = weight_idx_base + WARP_SIZE) {
796
+ int weight_dim_idx = weight_idx_base + warp_thread_idx;
797
+ float val = weight_buffer[weight_dim_idx] * query_weight[batch_idx__query_idx * weight_dim + weight_dim_idx];
798
+ #pragma unroll
799
+ for (int offset = 1; offset < WARP_SIZE; offset = offset << 1) {
800
+ val += __shfl_xor_sync(FULL_MASK, val, offset);
801
+ }
802
+ weight = weight + val;
803
+ }
804
+
805
+ weight = (float)duplicate_count * weight / float(num_hash_f);
806
+
807
+ for (int value_idx_base = 0; value_idx_base < value_dim; value_idx_base = value_idx_base + WARP_SIZE) {
808
+ int value_dim_idx = value_idx_base + warp_thread_idx;
809
+ float val = value_buffer[value_dim_idx];
810
+ atomicAdd(&cumulation_value[batch_idx__query_idx * value_dim + value_dim_idx], weight * val);
811
+ }
812
+ }
813
+ }
814
+ } else {
815
+
816
+ // all computation is completed if num_distint_query == 0
817
+ break;
818
+
819
+ }
820
+
821
+ __syncthreads();
822
+
823
+ }
824
+
825
+ }
llmeval-env/lib/python3.10/site-packages/transformers/kernels/yoso/fast_lsh_cumulation_cuda.h ADDED
@@ -0,0 +1,157 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ __global__ void fast_hash_ver1_cuda_kernel(
2
+ int *mask, // [batch_size, num_vector]
3
+ float *vector, // [batch_size, num_vector, vector_dim]
4
+ int *Dmat, // [3, num_part, vector_dim]
5
+ int *hash_code, // [batch_size, num_vector, num_hash_f]
6
+ int batch_size,
7
+ int num_vector,
8
+ int vector_dim,
9
+ int num_part,
10
+ int num_hash_f,
11
+ int hash_code_len
12
+ );
13
+
14
+ __global__ void lsh_cumulation_ver1_step1_cuda_kernel(
15
+ int *key_mask, // [batch_size, num_key]
16
+ int *key_hash_code, // [batch_size, num_key, num_hash_f]
17
+ float *value, // [batch_size, num_key, value_dim]
18
+ float *hashtable_value, // [batch_size, num_hash_f, hashtable_capacity, value_dim]
19
+ int batch_size,
20
+ int num_hash_f,
21
+ int hashtable_capacity,
22
+ int num_key,
23
+ int value_dim,
24
+ int offset_warp
25
+ );
26
+
27
+ __global__ void lsh_cumulation_ver1_step2_cuda_kernel(
28
+ int *query_mask, // [batch_size, num_query]
29
+ int *query_hash_code, // [batch_size, num_query, num_hash_f]
30
+ float *hashtable_value, // [batch_size, num_hash_f, hashtable_capacity, value_dim]
31
+ float *cumulation_value, // [batch_size, num_query, value_dim]
32
+ int batch_size,
33
+ int num_hash_f,
34
+ int hashtable_capacity,
35
+ int num_query,
36
+ int value_dim,
37
+ int offset_warp
38
+ );
39
+
40
+ __global__ void lsh_weighted_cumulation_ver1_step1_cuda_kernel(
41
+ int *key_mask, // [batch_size, num_key]
42
+ int *key_hash_code, // [batch_size, num_key, num_hash_f]
43
+ float *key_weight, // [batch_size, num_key, weight_dim]
44
+ float *value, // [batch_size, num_key, value_dim]
45
+ float *hashtable_value, // [batch_size, num_hash_f, hashtable_capacity, WARP_SIZE]
46
+ int batch_size,
47
+ int num_hash_f,
48
+ int hashtable_capacity,
49
+ int num_key,
50
+ int value_dim,
51
+ int weight_dim,
52
+ int offset_warp,
53
+ int weight_idx
54
+ );
55
+
56
+ __global__ void lsh_weighted_cumulation_ver1_step2_cuda_kernel(
57
+ int *query_mask, // [batch_size, num_query]
58
+ int *query_hash_code, // [batch_size, num_query, num_hash_f]
59
+ float *query_weight, // [batch_size, num_query, weight_dim]
60
+ float *hashtable_value, // [batch_size, num_hash_f, hashtable_capacity, WARP_SIZE]
61
+ float *cumulation_value, // [batch_size, num_query, value_dim]
62
+ int batch_size,
63
+ int num_hash_f,
64
+ int hashtable_capacity,
65
+ int num_query,
66
+ int value_dim,
67
+ int weight_dim,
68
+ int offset_warp,
69
+ int weight_idx
70
+ );
71
+
72
+ __global__ void count_sort_step1_cuda_kernel(
73
+ int *key_mask, // [batch_size, num_key]
74
+ int *key_hash_code, // [batch_size, num_key, num_hash_f]
75
+ int *count_sort_table, // [batch_size, num_hash_f, hashtable_capacity]
76
+ int batch_size,
77
+ int num_hash_f,
78
+ int hashtable_capacity,
79
+ int num_key
80
+ );
81
+
82
+ __global__ void count_sort_step2_cuda_kernel(
83
+ int *count_sort_table, // [batch_size, num_hash_f, hashtable_capacity]
84
+ int batch_size,
85
+ int num_hash_f,
86
+ int hashtable_capacity
87
+ );
88
+
89
+ __global__ void count_sort_step3_cuda_kernel(
90
+ int *key_mask, // [batch_size, num_key]
91
+ int *key_hash_code, // [batch_size, num_key, num_hash_f]
92
+ int *count_sort_table, // [batch_size, num_hash_f, hashtable_capacity]
93
+ int *key_sorted_idxes, // [batch_size, num_hash_f, num_key]
94
+ int batch_size,
95
+ int num_hash_f,
96
+ int hashtable_capacity,
97
+ int num_key
98
+ );
99
+
100
+ __global__ void extract_query_info_cuda_kernel(
101
+ int *query_mask, // [batch_size, num_query]
102
+ int *query_hash_code, // [batch_size, num_query, num_hash_f]
103
+ int *count_sort_table, // [batch_size, num_hash_f, hashtable_capacity]
104
+ int *query_info, // [batch_size, num_query, 2, num_hash_f]
105
+ int batch_size,
106
+ int num_hash_f,
107
+ int hashtable_capacity,
108
+ int num_query
109
+ );
110
+
111
+ __global__ void lsh_weighted_cumulation_ver2_step2_cuda_kernel(
112
+ int *query_mask, // [batch_size, num_query]
113
+ int *query_info, // [batch_size, num_query, 2, num_hash_f]
114
+ int *key_sorted_idxes, // [batch_size, num_hash_f, num_key]
115
+ float *query_weight, // [batch_size, num_query, weight_dim]
116
+ float *key_weight, // [batch_size, num_key, weight_dim]
117
+ float *value, // [batch_size, num_key, value_dim]
118
+ float *cumulation_value, // [batch_size, num_query, value_dim]
119
+ int batch_size,
120
+ int num_hash_f,
121
+ int num_query,
122
+ int num_key,
123
+ int value_dim,
124
+ int weight_dim
125
+ );
126
+
127
+ __global__ void lsh_weighted_cumulation_ver3_step2_cuda_kernel(
128
+ int *query_sorted_idxes, // [batch_size, num_hash_f, num_query]
129
+ int *key_mask, // [batch_size, num_key]
130
+ int *key_info, // [batch_size, num_key, 2, num_hash_f]
131
+ float *query_weight, // [batch_size, num_query, weight_dim]
132
+ float *key_weight, // [batch_size, num_key, weight_dim]
133
+ float *value, // [batch_size, num_key, value_dim]
134
+ float *cumulation_value, // [batch_size, num_query, value_dim]
135
+ int batch_size,
136
+ int num_hash_f,
137
+ int num_query,
138
+ int num_key,
139
+ int value_dim,
140
+ int weight_dim
141
+ );
142
+
143
+ __global__ void lsh_weighted_cumulation_ver4_step2_cuda_kernel(
144
+ int *query_sorted_idxes, // [batch_size, num_hash_f, num_query]
145
+ int *key_mask, // [batch_size, num_key]
146
+ int *key_info, // [batch_size, num_key, 2, num_hash_f]
147
+ float *query_weight, // [batch_size, num_query, weight_dim]
148
+ float *key_weight, // [batch_size, num_key, weight_dim]
149
+ float *value, // [batch_size, num_key, value_dim]
150
+ float *cumulation_value, // [batch_size, num_query, value_dim]
151
+ int batch_size,
152
+ int num_hash_f,
153
+ int num_query,
154
+ int num_key,
155
+ int value_dim,
156
+ int weight_dim
157
+ );
llmeval-env/lib/python3.10/site-packages/transformers/kernels/yoso/fast_lsh_cumulation_torch.cpp ADDED
@@ -0,0 +1,128 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #include <torch/extension.h>
2
+ #include <ATen/ATen.h>
3
+ #include "fast_lsh_cumulation.h"
4
+ #include "common_cuda.h"
5
+ #include <vector>
6
+
7
+ std::vector<at::Tensor> fast_hash(
8
+ at::Tensor query_mask,
9
+ at::Tensor query_vector,
10
+ at::Tensor key_mask,
11
+ at::Tensor key_vector,
12
+ int num_hash_f,
13
+ int hash_code_len,
14
+ bool use_cuda,
15
+ int version
16
+ ) {
17
+ return fast_hash_ver1_kernel(
18
+ query_mask,
19
+ query_vector,
20
+ key_mask,
21
+ key_vector,
22
+ num_hash_f,
23
+ hash_code_len,
24
+ use_cuda
25
+ );
26
+ }
27
+
28
+ at::Tensor lsh_cumulation(
29
+ at::Tensor query_mask, // [batch_size, num_query]
30
+ at::Tensor query_hash_code, // [batch_size, num_query, num_hash_f]
31
+ at::Tensor key_mask, // [batch_size, num_key]
32
+ at::Tensor key_hash_code, // [batch_size, num_key, num_hash_f]
33
+ at::Tensor value, // [batch_size, num_key, value_dim]
34
+ int hashtable_capacity,
35
+ bool use_cuda,
36
+ int version
37
+ ) {
38
+ return lsh_cumulation_ver1_kernel(
39
+ query_mask,
40
+ query_hash_code,
41
+ key_mask,
42
+ key_hash_code,
43
+ value,
44
+ hashtable_capacity,
45
+ use_cuda
46
+ );
47
+ }
48
+
49
+ at::Tensor lsh_weighted_cumulation(
50
+ at::Tensor query_mask, // [batch_size, num_query]
51
+ at::Tensor query_hash_code, // [batch_size, num_query, num_hash_f]
52
+ at::Tensor query_weight, // [batch_size, num_query, weight_dim]
53
+ at::Tensor key_mask, // [batch_size, num_key]
54
+ at::Tensor key_hash_code, // [batch_size, num_key, num_hash_f]
55
+ at::Tensor key_weight, // [batch_size, num_key, weight_dim]
56
+ at::Tensor value, // [batch_size, num_key, value_dim]
57
+ int hashtable_capacity,
58
+ bool use_cuda,
59
+ int version
60
+ ) {
61
+ if (version == 1) {
62
+ return lsh_weighted_cumulation_ver1_kernel(
63
+ query_mask,
64
+ query_hash_code,
65
+ query_weight,
66
+ key_mask,
67
+ key_hash_code,
68
+ key_weight,
69
+ value,
70
+ hashtable_capacity,
71
+ use_cuda
72
+ );
73
+ } else if (version == 2) {
74
+ return lsh_weighted_cumulation_ver2_kernel(
75
+ query_mask,
76
+ query_hash_code,
77
+ query_weight,
78
+ key_mask,
79
+ key_hash_code,
80
+ key_weight,
81
+ value,
82
+ hashtable_capacity,
83
+ use_cuda
84
+ );
85
+ } else if (version == 3) {
86
+ return lsh_weighted_cumulation_ver3_kernel(
87
+ query_mask,
88
+ query_hash_code,
89
+ query_weight,
90
+ key_mask,
91
+ key_hash_code,
92
+ key_weight,
93
+ value,
94
+ hashtable_capacity,
95
+ use_cuda
96
+ );
97
+ } else if (version == 4) {
98
+ return lsh_weighted_cumulation_ver4_kernel(
99
+ query_mask,
100
+ query_hash_code,
101
+ query_weight,
102
+ key_mask,
103
+ key_hash_code,
104
+ key_weight,
105
+ value,
106
+ hashtable_capacity,
107
+ use_cuda
108
+ );
109
+ } else {
110
+ return lsh_weighted_cumulation_ver3_kernel(
111
+ query_mask,
112
+ query_hash_code,
113
+ query_weight,
114
+ key_mask,
115
+ key_hash_code,
116
+ key_weight,
117
+ value,
118
+ hashtable_capacity,
119
+ use_cuda
120
+ );
121
+ }
122
+ }
123
+
124
+ PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
125
+ m.def("fast_hash", &fast_hash, "Fast Hash (CUDA)");
126
+ m.def("lsh_cumulation", &lsh_cumulation, "LSH Cumulation (CUDA)");
127
+ m.def("lsh_weighted_cumulation", &lsh_weighted_cumulation, "LSH Weighted Cumulation (CUDA)");
128
+ }
llmeval-env/lib/python3.10/site-packages/transformers/models/git/__init__.py ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2022 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from typing import TYPE_CHECKING
16
+
17
+ from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
18
+
19
+
20
+ _import_structure = {
21
+ "configuration_git": ["GIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "GitConfig", "GitVisionConfig"],
22
+ "processing_git": ["GitProcessor"],
23
+ }
24
+
25
+ try:
26
+ if not is_torch_available():
27
+ raise OptionalDependencyNotAvailable()
28
+ except OptionalDependencyNotAvailable:
29
+ pass
30
+ else:
31
+ _import_structure["modeling_git"] = [
32
+ "GIT_PRETRAINED_MODEL_ARCHIVE_LIST",
33
+ "GitForCausalLM",
34
+ "GitModel",
35
+ "GitPreTrainedModel",
36
+ "GitVisionModel",
37
+ ]
38
+
39
+ if TYPE_CHECKING:
40
+ from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig
41
+ from .processing_git import GitProcessor
42
+
43
+ try:
44
+ if not is_torch_available():
45
+ raise OptionalDependencyNotAvailable()
46
+ except OptionalDependencyNotAvailable:
47
+ pass
48
+ else:
49
+ from .modeling_git import (
50
+ GIT_PRETRAINED_MODEL_ARCHIVE_LIST,
51
+ GitForCausalLM,
52
+ GitModel,
53
+ GitPreTrainedModel,
54
+ GitVisionModel,
55
+ )
56
+
57
+ else:
58
+ import sys
59
+
60
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
llmeval-env/lib/python3.10/site-packages/transformers/models/git/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (998 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/git/__pycache__/configuration_git.cpython-310.pyc ADDED
Binary file (9.9 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/git/__pycache__/convert_git_to_pytorch.cpython-310.pyc ADDED
Binary file (14.9 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/git/__pycache__/modeling_git.cpython-310.pyc ADDED
Binary file (48.6 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/git/__pycache__/processing_git.cpython-310.pyc ADDED
Binary file (5.05 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/git/configuration_git.py ADDED
@@ -0,0 +1,240 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ import os
17
+ from typing import Union
18
+
19
+ from ...configuration_utils import PretrainedConfig
20
+ from ...utils import logging
21
+
22
+
23
+ logger = logging.get_logger(__name__)
24
+
25
+
26
+ from ..deprecated._archive_maps import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
27
+
28
+
29
+ class GitVisionConfig(PretrainedConfig):
30
+ r"""
31
+ This is the configuration class to store the configuration of a [`GitVisionModel`]. It is used to instantiate a GIT
32
+ vision encoder according to the specified arguments, defining the model architecture. Instantiating a configuration
33
+ with the defaults will yield a similar configuration to that of the vision encoder of the GIT
34
+ [microsoft/git-base](https://huggingface.co/microsoft/git-base) architecture.
35
+
36
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
37
+ documentation from [`PretrainedConfig`] for more information.
38
+
39
+ Args:
40
+ hidden_size (`int`, *optional*, defaults to 768):
41
+ Dimensionality of the encoder layers and the pooler layer.
42
+ intermediate_size (`int`, *optional*, defaults to 3072):
43
+ Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
44
+ num_hidden_layers (`int`, *optional*, defaults to 12):
45
+ Number of hidden layers in the Transformer encoder.
46
+ num_attention_heads (`int`, *optional*, defaults to 12):
47
+ Number of attention heads for each attention layer in the Transformer encoder.
48
+ image_size (`int`, *optional*, defaults to 224):
49
+ The size (resolution) of each image.
50
+ patch_size (`int`, *optional*, defaults to 16):
51
+ The size (resolution) of each patch.
52
+ hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
53
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
54
+ `"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported.
55
+ layer_norm_eps (`float`, *optional*, defaults to 1e-5):
56
+ The epsilon used by the layer normalization layers.
57
+ attention_dropout (`float`, *optional*, defaults to 0.0):
58
+ The dropout ratio for the attention probabilities.
59
+ initializer_range (`float`, *optional*, defaults to 0.02):
60
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
61
+
62
+ Example:
63
+
64
+ ```python
65
+ >>> from transformers import GitVisionConfig, GitVisionModel
66
+
67
+ >>> # Initializing a GitVisionConfig with microsoft/git-base style configuration
68
+ >>> configuration = GitVisionConfig()
69
+
70
+ >>> # Initializing a GitVisionModel (with random weights) from the microsoft/git-base style configuration
71
+ >>> model = GitVisionModel(configuration)
72
+
73
+ >>> # Accessing the model configuration
74
+ >>> configuration = model.config
75
+ ```"""
76
+
77
+ model_type = "git_vision_model"
78
+
79
+ def __init__(
80
+ self,
81
+ hidden_size=768,
82
+ intermediate_size=3072,
83
+ num_hidden_layers=12,
84
+ num_attention_heads=12,
85
+ num_channels=3,
86
+ image_size=224,
87
+ patch_size=16,
88
+ hidden_act="quick_gelu",
89
+ layer_norm_eps=1e-5,
90
+ attention_dropout=0.0,
91
+ initializer_range=0.02,
92
+ **kwargs,
93
+ ):
94
+ super().__init__(**kwargs)
95
+
96
+ self.hidden_size = hidden_size
97
+ self.intermediate_size = intermediate_size
98
+ self.num_hidden_layers = num_hidden_layers
99
+ self.num_attention_heads = num_attention_heads
100
+ self.num_channels = num_channels
101
+ self.patch_size = patch_size
102
+ self.image_size = image_size
103
+ self.initializer_range = initializer_range
104
+ self.attention_dropout = attention_dropout
105
+ self.layer_norm_eps = layer_norm_eps
106
+ self.hidden_act = hidden_act
107
+
108
+ @classmethod
109
+ def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
110
+ cls._set_token_in_kwargs(kwargs)
111
+
112
+ config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
113
+
114
+ # get the vision config dict if we are loading from GITConfig
115
+ if config_dict.get("model_type") == "git":
116
+ config_dict = config_dict["vision_config"]
117
+
118
+ if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
119
+ logger.warning(
120
+ f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
121
+ f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
122
+ )
123
+
124
+ return cls.from_dict(config_dict, **kwargs)
125
+
126
+
127
+ class GitConfig(PretrainedConfig):
128
+ r"""
129
+ This is the configuration class to store the configuration of a [`GitModel`]. It is used to instantiate a GIT model
130
+ according to the specified arguments, defining the model architecture. Instantiating a configuration with the
131
+ defaults will yield a similar configuration to that of the GIT
132
+ [microsoft/git-base](https://huggingface.co/microsoft/git-base) architecture.
133
+
134
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
135
+ documentation from [`PretrainedConfig`] for more information.
136
+
137
+ Args:
138
+ vision_config (`dict`, *optional*):
139
+ Dictionary of configuration options used to initialize [`GitVisionConfig`].
140
+ vocab_size (`int`, *optional*, defaults to 30522):
141
+ Vocabulary size of the GIT model. Defines the number of different tokens that can be represented by the
142
+ `inputs_ids` passed when calling [`GitModel`].
143
+ hidden_size (`int`, *optional*, defaults to 768):
144
+ Dimensionality of the encoder layers and the pooler layer.
145
+ num_hidden_layers (`int`, *optional*, defaults to 6):
146
+ Number of hidden layers in the Transformer encoder.
147
+ num_attention_heads (`int`, *optional*, defaults to 12):
148
+ Number of attention heads for each attention layer in the Transformer encoder.
149
+ intermediate_size (`int`, *optional*, defaults to 3072):
150
+ Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
151
+ hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
152
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
153
+ `"relu"`, `"silu"` and `"gelu_new"` are supported.
154
+ hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
155
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
156
+ attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
157
+ The dropout ratio for the attention probabilities.
158
+ max_position_embeddings (`int`, *optional*, defaults to 1024):
159
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
160
+ just in case (e.g., 512 or 1024 or 2048).
161
+ initializer_range (`float`, *optional*, defaults to 0.02):
162
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
163
+ layer_norm_eps (`float`, *optional*, defaults to 1e-12):
164
+ The epsilon used by the layer normalization layers.
165
+ position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
166
+ Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
167
+ positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
168
+ [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
169
+ For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
170
+ with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
171
+ use_cache (`bool`, *optional*, defaults to `True`):
172
+ Whether or not the model should return the last key/values attentions (not used by all models).
173
+ num_image_with_embedding (`int`, *optional*):
174
+ The number of temporal embeddings to add, in case the model is used for video captioning/VQA.
175
+
176
+ Examples:
177
+
178
+ ```python
179
+ >>> from transformers import GitConfig, GitModel
180
+
181
+ >>> # Initializing a GIT microsoft/git-base style configuration
182
+ >>> configuration = GitConfig()
183
+
184
+ >>> # Initializing a model (with random weights) from the microsoft/git-base style configuration
185
+ >>> model = GitModel(configuration)
186
+
187
+ >>> # Accessing the model configuration
188
+ >>> configuration = model.config
189
+ ```"""
190
+
191
+ model_type = "git"
192
+
193
+ def __init__(
194
+ self,
195
+ vision_config=None,
196
+ vocab_size=30522,
197
+ hidden_size=768,
198
+ num_hidden_layers=6,
199
+ num_attention_heads=12,
200
+ intermediate_size=3072,
201
+ hidden_act="gelu",
202
+ hidden_dropout_prob=0.1,
203
+ attention_probs_dropout_prob=0.1,
204
+ max_position_embeddings=1024,
205
+ initializer_range=0.02,
206
+ layer_norm_eps=1e-12,
207
+ pad_token_id=0,
208
+ position_embedding_type="absolute",
209
+ use_cache=True,
210
+ tie_word_embeddings=False,
211
+ bos_token_id=101,
212
+ eos_token_id=102,
213
+ num_image_with_embedding=None,
214
+ **kwargs,
215
+ ):
216
+ super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, pad_token_id=pad_token_id, **kwargs)
217
+
218
+ if vision_config is None:
219
+ vision_config = {}
220
+ logger.info("vision_config is None. initializing the GitVisionConfig with default values.")
221
+
222
+ self.vision_config = GitVisionConfig(**vision_config)
223
+ self.vocab_size = vocab_size
224
+ self.hidden_size = hidden_size
225
+ self.num_hidden_layers = num_hidden_layers
226
+ self.num_attention_heads = num_attention_heads
227
+ self.hidden_act = hidden_act
228
+ self.intermediate_size = intermediate_size
229
+ self.hidden_dropout_prob = hidden_dropout_prob
230
+ self.attention_probs_dropout_prob = attention_probs_dropout_prob
231
+ self.max_position_embeddings = max_position_embeddings
232
+ self.initializer_range = initializer_range
233
+ self.layer_norm_eps = layer_norm_eps
234
+ self.position_embedding_type = position_embedding_type
235
+ self.use_cache = use_cache
236
+ self.tie_word_embeddings = tie_word_embeddings
237
+ self.num_image_with_embedding = num_image_with_embedding
238
+
239
+ self.bos_token_id = bos_token_id
240
+ self.eos_token_id = eos_token_id
llmeval-env/lib/python3.10/site-packages/transformers/models/git/convert_git_to_pytorch.py ADDED
@@ -0,0 +1,428 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 The HuggingFace Inc. team.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Convert GIT checkpoints from the original repository.
16
+
17
+ URL: https://github.com/microsoft/GenerativeImage2Text/tree/main"""
18
+
19
+
20
+ import argparse
21
+ from pathlib import Path
22
+
23
+ import numpy as np
24
+ import requests
25
+ import torch
26
+ from huggingface_hub import hf_hub_download
27
+ from PIL import Image
28
+ from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor
29
+
30
+ from transformers import (
31
+ AutoTokenizer,
32
+ CLIPImageProcessor,
33
+ GitConfig,
34
+ GitForCausalLM,
35
+ GitProcessor,
36
+ GitVisionConfig,
37
+ VideoMAEImageProcessor,
38
+ )
39
+ from transformers.utils import logging
40
+
41
+
42
+ logging.set_verbosity_info()
43
+ logger = logging.get_logger(__name__)
44
+
45
+
46
+ def get_git_config(model_name):
47
+ if "base" in model_name and "vqa" in model_name:
48
+ image_size = 480
49
+ elif "large" in model_name and "vqa" in model_name:
50
+ image_size = 420
51
+ else:
52
+ image_size = 224
53
+
54
+ vision_config = GitVisionConfig(image_size=image_size)
55
+
56
+ if "large" in model_name:
57
+ vision_config.patch_size = 14
58
+ vision_config.hidden_size = 1024
59
+ vision_config.intermediate_size = 4096
60
+ vision_config.num_hidden_layers = 24
61
+ vision_config.num_attention_heads = 16
62
+
63
+ is_video = "vatex" in model_name or "msrvtt" in model_name
64
+ num_image_with_embedding = 6 if is_video else None
65
+ config = GitConfig(vision_config=vision_config.to_dict(), num_image_with_embedding=num_image_with_embedding)
66
+
67
+ return config, image_size, is_video
68
+
69
+
70
+ # here we list all keys to be renamed (original name on the left, our name on the right)
71
+ def create_rename_keys(config, prefix=""):
72
+ rename_keys = []
73
+
74
+ # image encoder
75
+ # ftm: off
76
+ rename_keys.append(
77
+ (f"{prefix}image_encoder.class_embedding", "git.image_encoder.vision_model.embeddings.class_embedding")
78
+ )
79
+ rename_keys.append(
80
+ (
81
+ f"{prefix}image_encoder.positional_embedding",
82
+ "git.image_encoder.vision_model.embeddings.position_embedding.weight",
83
+ )
84
+ )
85
+ rename_keys.append(
86
+ (f"{prefix}image_encoder.conv1.weight", "git.image_encoder.vision_model.embeddings.patch_embedding.weight")
87
+ )
88
+ rename_keys.append((f"{prefix}image_encoder.ln_pre.weight", "git.image_encoder.vision_model.pre_layrnorm.weight"))
89
+ rename_keys.append((f"{prefix}image_encoder.ln_pre.bias", "git.image_encoder.vision_model.pre_layrnorm.bias"))
90
+ rename_keys.append(
91
+ (f"{prefix}image_encoder.ln_post.weight", "git.image_encoder.vision_model.post_layernorm.weight")
92
+ )
93
+ rename_keys.append((f"{prefix}image_encoder.ln_post.bias", "git.image_encoder.vision_model.post_layernorm.bias"))
94
+ # fmt: on
95
+ rename_keys.append((f"{prefix}image_encoder.proj", "git.image_encoder.visual_projection.weight"))
96
+
97
+ # fmt: off
98
+ for i in range(config.vision_config.num_hidden_layers):
99
+ # image encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
100
+ rename_keys.append((f"{prefix}image_encoder.transformer.resblocks.{i}.attn.out_proj.weight", f"git.image_encoder.vision_model.encoder.layers.{i}.self_attn.out_proj.weight"))
101
+ rename_keys.append((f"{prefix}image_encoder.transformer.resblocks.{i}.attn.out_proj.bias", f"git.image_encoder.vision_model.encoder.layers.{i}.self_attn.out_proj.bias"))
102
+ rename_keys.append((f"{prefix}image_encoder.transformer.resblocks.{i}.ln_1.weight", f"git.image_encoder.vision_model.encoder.layers.{i}.layer_norm1.weight"))
103
+ rename_keys.append((f"{prefix}image_encoder.transformer.resblocks.{i}.ln_1.bias", f"git.image_encoder.vision_model.encoder.layers.{i}.layer_norm1.bias"))
104
+ rename_keys.append((f"{prefix}image_encoder.transformer.resblocks.{i}.mlp.c_fc.weight", f"git.image_encoder.vision_model.encoder.layers.{i}.mlp.fc1.weight"))
105
+ rename_keys.append((f"{prefix}image_encoder.transformer.resblocks.{i}.mlp.c_fc.bias", f"git.image_encoder.vision_model.encoder.layers.{i}.mlp.fc1.bias"))
106
+ rename_keys.append((f"{prefix}image_encoder.transformer.resblocks.{i}.mlp.c_proj.weight", f"git.image_encoder.vision_model.encoder.layers.{i}.mlp.fc2.weight"))
107
+ rename_keys.append((f"{prefix}image_encoder.transformer.resblocks.{i}.mlp.c_proj.bias", f"git.image_encoder.vision_model.encoder.layers.{i}.mlp.fc2.bias"))
108
+ rename_keys.append((f"{prefix}image_encoder.transformer.resblocks.{i}.ln_2.weight", f"git.image_encoder.vision_model.encoder.layers.{i}.layer_norm2.weight"))
109
+ rename_keys.append((f"{prefix}image_encoder.transformer.resblocks.{i}.ln_2.bias", f"git.image_encoder.vision_model.encoder.layers.{i}.layer_norm2.bias"))
110
+ # fmt: on
111
+
112
+ # text decoder
113
+ # fmt: off
114
+ rename_keys.append((f"{prefix}textual.embedding.words.weight", "git.embeddings.word_embeddings.weight"))
115
+ rename_keys.append((f"{prefix}textual.embedding.positions.weight", "git.embeddings.position_embeddings.weight"))
116
+ rename_keys.append((f"{prefix}textual.visual_projection.0.weight", "git.visual_projection.visual_projection.0.weight"))
117
+ rename_keys.append((f"{prefix}textual.visual_projection.0.bias", "git.visual_projection.visual_projection.0.bias"))
118
+ rename_keys.append((f"{prefix}textual.visual_projection.1.weight", "git.visual_projection.visual_projection.1.weight"))
119
+ rename_keys.append((f"{prefix}textual.visual_projection.1.bias", "git.visual_projection.visual_projection.1.bias"))
120
+
121
+ rename_keys.append((f"{prefix}textual.embedding.layer_norm.weight", "git.embeddings.LayerNorm.weight"))
122
+ rename_keys.append((f"{prefix}textual.embedding.layer_norm.bias", "git.embeddings.LayerNorm.bias"))
123
+ rename_keys.append((f"{prefix}textual.output.weight", "output.weight"))
124
+ rename_keys.append((f"{prefix}textual.output.bias", "output.bias"))
125
+ for i in range(config.num_hidden_layers):
126
+ rename_keys.append((f"{prefix}textual.transformer.encoder.layer.{i}.attention.self.query.weight", f"git.encoder.layer.{i}.attention.self.query.weight"))
127
+ rename_keys.append((f"{prefix}textual.transformer.encoder.layer.{i}.attention.self.query.bias", f"git.encoder.layer.{i}.attention.self.query.bias"))
128
+ rename_keys.append((f"{prefix}textual.transformer.encoder.layer.{i}.attention.self.key.weight", f"git.encoder.layer.{i}.attention.self.key.weight"))
129
+ rename_keys.append((f"{prefix}textual.transformer.encoder.layer.{i}.attention.self.key.bias", f"git.encoder.layer.{i}.attention.self.key.bias"))
130
+ rename_keys.append((f"{prefix}textual.transformer.encoder.layer.{i}.attention.self.value.weight", f"git.encoder.layer.{i}.attention.self.value.weight"))
131
+ rename_keys.append((f"{prefix}textual.transformer.encoder.layer.{i}.attention.self.value.bias", f"git.encoder.layer.{i}.attention.self.value.bias"))
132
+ rename_keys.append((f"{prefix}textual.transformer.encoder.layer.{i}.attention.output.dense.weight", f"git.encoder.layer.{i}.attention.output.dense.weight"))
133
+ rename_keys.append((f"{prefix}textual.transformer.encoder.layer.{i}.attention.output.dense.bias", f"git.encoder.layer.{i}.attention.output.dense.bias"))
134
+ rename_keys.append((f"{prefix}textual.transformer.encoder.layer.{i}.attention.output.LayerNorm.weight", f"git.encoder.layer.{i}.attention.output.LayerNorm.weight"))
135
+ rename_keys.append((f"{prefix}textual.transformer.encoder.layer.{i}.attention.output.LayerNorm.bias", f"git.encoder.layer.{i}.attention.output.LayerNorm.bias"))
136
+ rename_keys.append((f"{prefix}textual.transformer.encoder.layer.{i}.intermediate.dense.weight", f"git.encoder.layer.{i}.intermediate.dense.weight"))
137
+ rename_keys.append((f"{prefix}textual.transformer.encoder.layer.{i}.intermediate.dense.bias", f"git.encoder.layer.{i}.intermediate.dense.bias"))
138
+ rename_keys.append((f"{prefix}textual.transformer.encoder.layer.{i}.output.dense.weight", f"git.encoder.layer.{i}.output.dense.weight"))
139
+ rename_keys.append((f"{prefix}textual.transformer.encoder.layer.{i}.output.dense.bias", f"git.encoder.layer.{i}.output.dense.bias"))
140
+ rename_keys.append((f"{prefix}textual.transformer.encoder.layer.{i}.output.LayerNorm.weight", f"git.encoder.layer.{i}.output.LayerNorm.weight"))
141
+ rename_keys.append((f"{prefix}textual.transformer.encoder.layer.{i}.output.LayerNorm.bias", f"git.encoder.layer.{i}.output.LayerNorm.bias"))
142
+ # fmt: on
143
+
144
+ if config.num_image_with_embedding is not None:
145
+ rename_keys.append(("img_temperal_embedding.0", "git.img_temperal_embedding.0"))
146
+ rename_keys.append(("img_temperal_embedding.1", "git.img_temperal_embedding.1"))
147
+ rename_keys.append(("img_temperal_embedding.2", "git.img_temperal_embedding.2"))
148
+ rename_keys.append(("img_temperal_embedding.3", "git.img_temperal_embedding.3"))
149
+ rename_keys.append(("img_temperal_embedding.4", "git.img_temperal_embedding.4"))
150
+ rename_keys.append(("img_temperal_embedding.5", "git.img_temperal_embedding.5"))
151
+
152
+ return rename_keys
153
+
154
+
155
+ def rename_key(dct, old, new):
156
+ val = dct.pop(old)
157
+ dct[new] = val.T if "image_encoder.visual_projection" in new else val
158
+
159
+
160
+ # we split up the matrix of each CLIP encoder layer into queries, keys and values
161
+ def read_in_q_k_v(state_dict, config, prefix=""):
162
+ dim = config.vision_config.hidden_size
163
+ for i in range(config.vision_config.num_hidden_layers):
164
+ # read in weights + bias of input projection layer (in the original implementation, this is a single matrix + bias)
165
+ in_proj_weight = state_dict.pop(f"{prefix}image_encoder.transformer.resblocks.{i}.attn.in_proj_weight")
166
+ in_proj_bias = state_dict.pop(f"{prefix}image_encoder.transformer.resblocks.{i}.attn.in_proj_bias")
167
+ # next, add query, keys and values (in that order) to the state dict
168
+ state_dict[f"git.image_encoder.vision_model.encoder.layers.{i}.self_attn.q_proj.weight"] = in_proj_weight[
169
+ :dim, :
170
+ ]
171
+ state_dict[f"git.image_encoder.vision_model.encoder.layers.{i}.self_attn.q_proj.bias"] = in_proj_bias[:dim]
172
+ state_dict[f"git.image_encoder.vision_model.encoder.layers.{i}.self_attn.k_proj.weight"] = in_proj_weight[
173
+ dim : dim * 2, :
174
+ ]
175
+ state_dict[f"git.image_encoder.vision_model.encoder.layers.{i}.self_attn.k_proj.bias"] = in_proj_bias[
176
+ dim : dim * 2
177
+ ]
178
+ state_dict[f"git.image_encoder.vision_model.encoder.layers.{i}.self_attn.v_proj.weight"] = in_proj_weight[
179
+ -dim:, :
180
+ ]
181
+ state_dict[f"git.image_encoder.vision_model.encoder.layers.{i}.self_attn.v_proj.bias"] = in_proj_bias[-dim:]
182
+
183
+
184
+ # We will verify our results on an image
185
+ def prepare_img(model_name):
186
+ if "textvqa" in model_name:
187
+ filepath = hf_hub_download(repo_id="nielsr/textvqa-sample", filename="bus.png", repo_type="dataset")
188
+ image = Image.open(filepath).convert("RGB")
189
+ else:
190
+ url = "http://images.cocodataset.org/val2017/000000039769.jpg"
191
+ image = Image.open(requests.get(url, stream=True).raw)
192
+
193
+ return image
194
+
195
+
196
+ def prepare_video():
197
+ from decord import VideoReader, cpu
198
+
199
+ # set seed for reproducability
200
+ np.random.seed(0)
201
+
202
+ def sample_frame_indices(clip_len, frame_sample_rate, seg_len):
203
+ """
204
+ Sample a given number of frame indices from the video.
205
+
206
+ Args:
207
+ clip_len (`int`): Total number of frames to sample.
208
+ frame_sample_rate (`int`): Sample every n-th frame.
209
+ seg_len (`int`): Maximum allowed index of sample's last frame.
210
+
211
+ Returns:
212
+ indices (`List[int]`): List of sampled frame indices
213
+ """
214
+ converted_len = int(clip_len * frame_sample_rate)
215
+ end_idx = np.random.randint(converted_len, seg_len)
216
+ start_idx = end_idx - converted_len
217
+ indices = np.linspace(start_idx, end_idx, num=clip_len)
218
+ indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64)
219
+ return indices
220
+
221
+ # video clip consists of 300 frames (10 seconds at 30 FPS)
222
+ file_path = hf_hub_download(repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset")
223
+ videoreader = VideoReader(file_path, num_threads=1, ctx=cpu(0))
224
+
225
+ # sample 6 frames
226
+ videoreader.seek(0)
227
+ indices = sample_frame_indices(clip_len=6, frame_sample_rate=4, seg_len=len(videoreader))
228
+ video = videoreader.get_batch(indices).asnumpy()
229
+
230
+ return video
231
+
232
+
233
+ @torch.no_grad()
234
+ def convert_git_checkpoint(model_name, pytorch_dump_folder_path, push_to_hub=False):
235
+ """
236
+ Copy/paste/tweak model's weights to our GIT structure.
237
+ """
238
+
239
+ model_name_to_url = {
240
+ "git-base": "https://publicgit.blob.core.windows.net/data/output/GIT_BASE/snapshot/model.pt",
241
+ "git-base-coco": "https://publicgit.blob.core.windows.net/data/output/GIT_BASE_COCO/snapshot/model.pt",
242
+ "git-base-textcaps": "https://publicgit.blob.core.windows.net/data/output/GIT_BASE_TEXTCAPS/snapshot/model.pt",
243
+ "git-base-vqav2": "https://publicgit.blob.core.windows.net/data/output/GIT_BASE_VQAv2/snapshot/model.pt",
244
+ "git-base-textvqa": "https://publicgit.blob.core.windows.net/data/output/GIT_BASE_TEXTVQA/snapshot/model.pt", # todo
245
+ "git-base-vatex": "https://publicgit.blob.core.windows.net/data/output/GIT_BASE_VATEX/snapshot/model.pt",
246
+ "git-base-msrvtt-qa": (
247
+ "https://publicgit.blob.core.windows.net/data/output/GIT_BASE_MSRVTT_QA/snapshot/model.pt"
248
+ ),
249
+ "git-large": "https://publicgit.blob.core.windows.net/data/output/GIT_LARGE/snapshot/model.pt",
250
+ "git-large-coco": "https://publicgit.blob.core.windows.net/data/output/GIT_LARGE_COCO/snapshot/model.pt",
251
+ "git-large-textcaps": (
252
+ "https://publicgit.blob.core.windows.net/data/output/GIT_LARGE_TEXTCAPS/snapshot/model.pt"
253
+ ),
254
+ "git-large-vqav2": "https://publicgit.blob.core.windows.net/data/output/GIT_LARGE_VQAv2/snapshot/model.pt",
255
+ "git-large-textvqa": "https://publicgit.blob.core.windows.net/data/output/GIT_LARGE_TEXTVQA/snapshot/model.pt",
256
+ "git-large-vatex": "https://publicgit.blob.core.windows.net/data/output/GIT_LARGE_VATEX/snapshot/model.pt",
257
+ "git-large-msrvtt-qa": (
258
+ "https://publicgit.blob.core.windows.net/data/output/GIT_LARGE_MSRVTT_QA/snapshot/model.pt"
259
+ ),
260
+ "git-large-r": "https://publicgit.blob.core.windows.net/data/output/GIT_LARGE_R/snapshot/model.pt",
261
+ "git-large-r-coco": "https://publicgit.blob.core.windows.net/data/output/GIT_LARGE_R_COCO/snapshot/model.pt",
262
+ "git-large-r-textcaps": (
263
+ "https://publicgit.blob.core.windows.net/data/output/GIT_LARGE_R_TEXTCAPS/snapshot/model.pt"
264
+ ),
265
+ }
266
+
267
+ model_name_to_path = {
268
+ "git-large": "/Users/nielsrogge/Documents/GIT/git_large_model.pt",
269
+ "git-large-coco": "/Users/nielsrogge/Documents/GIT/git_large_coco_model.pt",
270
+ "git-large-textcaps": "/Users/nielsrogge/Documents/GIT/git_large_textcaps_model.pt",
271
+ "git-large-vqav2": "/Users/nielsrogge/Documents/GIT/git_large_vqav2_model.pt",
272
+ "git-large-textvqa": "/Users/nielsrogge/Documents/GIT/git_large_textvqa_model.pt",
273
+ }
274
+
275
+ # define GIT configuration based on model name
276
+ config, image_size, is_video = get_git_config(model_name)
277
+ if "large" in model_name and not is_video and "large-r" not in model_name:
278
+ # large checkpoints take way too long to download
279
+ checkpoint_path = model_name_to_path[model_name]
280
+ state_dict = torch.load(checkpoint_path, map_location="cpu")["model"]
281
+ else:
282
+ checkpoint_url = model_name_to_url[model_name]
283
+ state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu", file_name=model_name)[
284
+ "model"
285
+ ]
286
+ # rename keys
287
+ prefix = "module." if model_name == "git-base" else ""
288
+ rename_keys = create_rename_keys(config, prefix=prefix)
289
+ for src, dest in rename_keys:
290
+ rename_key(state_dict, src, dest)
291
+ read_in_q_k_v(state_dict, config, prefix=prefix)
292
+
293
+ # load HuggingFace model
294
+ model = GitForCausalLM(config)
295
+ missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)
296
+ model.eval()
297
+
298
+ print("Missing keys:", missing_keys)
299
+ print("Unexpected keys:", unexpected_keys)
300
+
301
+ assert missing_keys == ["git.embeddings.position_ids", "git.image_encoder.vision_model.embeddings.position_ids"]
302
+ assert unexpected_keys == ["git.image_encoder.visual_projection.weight"]
303
+
304
+ # verify results
305
+ image_processor = (
306
+ VideoMAEImageProcessor(
307
+ size={"shortest_edge": image_size}, crop_size={"height": image_size, "width": image_size}
308
+ )
309
+ if is_video
310
+ else CLIPImageProcessor(
311
+ size={"shortest_edge": image_size}, crop_size={"height": image_size, "width": image_size}
312
+ )
313
+ )
314
+ tokenizer = AutoTokenizer.from_pretrained(
315
+ "google-bert/bert-base-uncased", model_input_names=["input_ids", "attention_mask"]
316
+ )
317
+ processor = GitProcessor(tokenizer=tokenizer, image_processor=image_processor)
318
+
319
+ if is_video:
320
+ video = prepare_video()
321
+ pixel_values = processor(images=list(video), return_tensors="pt").pixel_values
322
+ else:
323
+ image = prepare_img(model_name)
324
+ image_transforms = Compose(
325
+ [
326
+ Resize(image_size, interpolation=Image.BICUBIC),
327
+ CenterCrop(image_size),
328
+ ToTensor(),
329
+ Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
330
+ ]
331
+ )
332
+ original_pixel_values = image_transforms(image).unsqueeze(0)
333
+ pixel_values = processor(images=image, return_tensors="pt").pixel_values
334
+
335
+ assert torch.allclose(pixel_values, original_pixel_values)
336
+
337
+ input_ids = torch.tensor([[101]])
338
+ outputs = model(input_ids, pixel_values=pixel_values)
339
+ logits = outputs.logits
340
+ print("Logits:", logits[0, -1, :3])
341
+
342
+ if model_name == "git-base":
343
+ expected_slice_logits = torch.tensor([-1.2832, -1.2835, -1.2840])
344
+ elif model_name == "git-base-coco":
345
+ expected_slice_logits = torch.tensor([-0.9925, -0.9930, -0.9935])
346
+ elif model_name == "git-base-textcaps":
347
+ expected_slice_logits = torch.tensor([-1.2980, -1.2983, -1.2985])
348
+ elif model_name == "git-base-vqav2":
349
+ expected_slice_logits = torch.tensor([-0.8570, -0.8568, -0.8561])
350
+ elif model_name == "git-base-textvqa":
351
+ expected_slice_logits = torch.tensor([-1.4085, -1.4083, -1.4082])
352
+ elif model_name == "git-base-vatex":
353
+ expected_slice_logits = torch.tensor([-1.3451, -1.3447, -1.3447])
354
+ elif model_name == "git-base-msrvtt-qa":
355
+ expected_slice_logits = torch.tensor([-0.8554, -0.8550, -0.8540])
356
+ elif model_name == "git-large":
357
+ expected_slice_logits = torch.tensor([-1.1708, -1.1707, -1.1705])
358
+ elif model_name == "git-large-coco":
359
+ expected_slice_logits = torch.tensor([-1.0425, -1.0423, -1.0422])
360
+ elif model_name == "git-large-textcaps":
361
+ expected_slice_logits = torch.tensor([-1.2705, -1.2708, -1.2706])
362
+ elif model_name == "git-large-vqav2":
363
+ expected_slice_logits = torch.tensor([-0.7042, -0.7043, -0.7043])
364
+ elif model_name == "git-large-textvqa":
365
+ expected_slice_logits = torch.tensor([-0.8590, -0.8592, -0.8590])
366
+ elif model_name == "git-large-vatex":
367
+ expected_slice_logits = torch.tensor([-1.0113, -1.0114, -1.0113])
368
+ elif model_name == "git-large-msrvtt-qa":
369
+ expected_slice_logits = torch.tensor([0.0130, 0.0134, 0.0131])
370
+ elif model_name == "git-large-r":
371
+ expected_slice_logits = torch.tensor([-1.1283, -1.1285, -1.1286])
372
+ elif model_name == "git-large-r-coco":
373
+ expected_slice_logits = torch.tensor([-0.9641, -0.9641, -0.9641])
374
+ elif model_name == "git-large-r-textcaps":
375
+ expected_slice_logits = torch.tensor([-1.1121, -1.1120, -1.1124])
376
+
377
+ assert torch.allclose(logits[0, -1, :3], expected_slice_logits, atol=1e-4)
378
+ print("Looks ok!")
379
+
380
+ prompt = ""
381
+ if "textvqa" in model_name:
382
+ prompt = "what does the front of the bus say at the top?"
383
+ elif "msrvtt-qa" in model_name:
384
+ prompt = "what does the woman eat?"
385
+ elif "vqa" in model_name:
386
+ prompt = "what are the cats doing?"
387
+ input_ids = tokenizer(prompt, add_special_tokens=False).input_ids
388
+ input_ids = [processor.tokenizer.cls_token_id] + input_ids
389
+ input_ids = torch.tensor(input_ids).unsqueeze(0)
390
+ print("Generating caption...")
391
+ generated_ids = model.generate(pixel_values=pixel_values, input_ids=input_ids, max_length=50)
392
+ print("Generated caption:", processor.batch_decode(generated_ids, skip_special_tokens=True))
393
+
394
+ if pytorch_dump_folder_path is not None:
395
+ Path(pytorch_dump_folder_path).mkdir(exist_ok=True)
396
+ print(f"Saving model and processor of {model_name} to {pytorch_dump_folder_path}")
397
+ model.save_pretrained(pytorch_dump_folder_path)
398
+ processor.save_pretrained(pytorch_dump_folder_path)
399
+
400
+ if push_to_hub:
401
+ print(f"Pushing model and processor of {model_name} to the hub...")
402
+ model.push_to_hub(f"microsoft/{model_name}")
403
+ processor.push_to_hub(f"microsoft/{model_name}")
404
+
405
+
406
+ if __name__ == "__main__":
407
+ parser = argparse.ArgumentParser()
408
+ # Required parameters
409
+ parser.add_argument(
410
+ "--model_name",
411
+ default="git-base",
412
+ type=str,
413
+ help="Name of the model you'd like to convert.",
414
+ )
415
+ parser.add_argument(
416
+ "--pytorch_dump_folder_path",
417
+ default=None,
418
+ type=str,
419
+ help="Path to the output PyTorch model directory.",
420
+ )
421
+ parser.add_argument(
422
+ "--push_to_hub",
423
+ action="store_true",
424
+ help="Whether to push the model to the hub.",
425
+ )
426
+
427
+ args = parser.parse_args()
428
+ convert_git_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
llmeval-env/lib/python3.10/site-packages/transformers/models/git/modeling_git.py ADDED
@@ -0,0 +1,1543 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 Microsoft Research and The HuggingFace Inc. team.
3
+ # All rights reserved.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """PyTorch GIT model."""
17
+
18
+
19
+ import math
20
+ from dataclasses import dataclass
21
+ from typing import List, Optional, Tuple, Union
22
+
23
+ import torch
24
+ import torch.utils.checkpoint
25
+ from torch import nn
26
+ from torch.nn import CrossEntropyLoss
27
+
28
+ from ...activations import ACT2FN
29
+ from ...file_utils import ModelOutput
30
+ from ...modeling_attn_mask_utils import _prepare_4d_attention_mask
31
+ from ...modeling_outputs import (
32
+ BaseModelOutput,
33
+ BaseModelOutputWithPast,
34
+ BaseModelOutputWithPooling,
35
+ CausalLMOutputWithPast,
36
+ )
37
+ from ...modeling_utils import PreTrainedModel
38
+ from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
39
+ from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
40
+ from .configuration_git import GitConfig, GitVisionConfig
41
+
42
+
43
+ logger = logging.get_logger(__name__)
44
+
45
+ _CHECKPOINT_FOR_DOC = "microsoft/git-base"
46
+ _CONFIG_FOR_DOC = "GitConfig"
47
+
48
+
49
+ from ..deprecated._archive_maps import GIT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
50
+
51
+
52
+ @dataclass
53
+ # Copied from transformers.models.clip.modeling_clip.CLIPVisionModelOutput with CLIP->Git
54
+ class GitVisionModelOutput(ModelOutput):
55
+ """
56
+ Base class for vision model's outputs that also contains image embeddings of the pooling of the last hidden states.
57
+
58
+ Args:
59
+ image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
60
+ The image embeddings obtained by applying the projection layer to the pooler_output.
61
+ last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
62
+ Sequence of hidden-states at the output of the last layer of the model.
63
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
64
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
65
+ one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
66
+
67
+ Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
68
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
69
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
70
+ sequence_length)`.
71
+
72
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
73
+ heads.
74
+ """
75
+
76
+ image_embeds: Optional[torch.FloatTensor] = None
77
+ last_hidden_state: torch.FloatTensor = None
78
+ hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
79
+ attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
80
+
81
+
82
+ class GitEmbeddings(nn.Module):
83
+ """Construct the embeddings from word and position embeddings."""
84
+
85
+ def __init__(self, config):
86
+ super().__init__()
87
+ self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
88
+ self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
89
+
90
+ # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
91
+ # any TensorFlow checkpoint file
92
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
93
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
94
+ # position_ids (1, len position emb) is contiguous in memory and exported when serialized
95
+ self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
96
+ self.register_buffer(
97
+ "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
98
+ )
99
+
100
+ def forward(
101
+ self,
102
+ input_ids: Optional[torch.LongTensor] = None,
103
+ position_ids: Optional[torch.LongTensor] = None,
104
+ inputs_embeds: Optional[torch.FloatTensor] = None,
105
+ past_key_values_length: int = 0,
106
+ ) -> torch.Tensor:
107
+ if input_ids is not None:
108
+ input_shape = input_ids.size()
109
+ else:
110
+ input_shape = inputs_embeds.size()[:-1]
111
+
112
+ seq_length = input_shape[1]
113
+
114
+ if position_ids is None:
115
+ position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
116
+
117
+ if inputs_embeds is None:
118
+ embeddings = self.word_embeddings(input_ids)
119
+ else:
120
+ embeddings = inputs_embeds
121
+
122
+ if self.position_embedding_type == "absolute":
123
+ position_embeddings = self.position_embeddings(position_ids)
124
+ embeddings += position_embeddings
125
+ embeddings = self.LayerNorm(embeddings)
126
+ embeddings = self.dropout(embeddings)
127
+ return embeddings
128
+
129
+
130
+ class GitSelfAttention(nn.Module):
131
+ def __init__(self, config, position_embedding_type=None):
132
+ super().__init__()
133
+ if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
134
+ raise ValueError(
135
+ f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
136
+ f"heads ({config.num_attention_heads})"
137
+ )
138
+
139
+ self.num_attention_heads = config.num_attention_heads
140
+ self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
141
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
142
+ self.image_patch_tokens = int((config.vision_config.image_size / config.vision_config.patch_size) ** 2 + 1)
143
+ if config.num_image_with_embedding is not None:
144
+ self.image_patch_tokens *= config.num_image_with_embedding
145
+
146
+ self.query = nn.Linear(config.hidden_size, self.all_head_size)
147
+ self.key = nn.Linear(config.hidden_size, self.all_head_size)
148
+ self.value = nn.Linear(config.hidden_size, self.all_head_size)
149
+
150
+ self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
151
+ self.position_embedding_type = position_embedding_type or getattr(
152
+ config, "position_embedding_type", "absolute"
153
+ )
154
+ if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
155
+ self.max_position_embeddings = config.max_position_embeddings
156
+ self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
157
+
158
+ def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
159
+ new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
160
+ x = x.view(new_x_shape)
161
+ return x.permute(0, 2, 1, 3)
162
+
163
+ def forward(
164
+ self,
165
+ hidden_states: torch.Tensor,
166
+ attention_mask: Optional[torch.FloatTensor] = None,
167
+ head_mask: Optional[torch.FloatTensor] = None,
168
+ past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
169
+ output_attentions: Optional[bool] = False,
170
+ pixel_values_present: Optional[bool] = False,
171
+ ) -> Tuple[torch.Tensor]:
172
+ mixed_query_layer = self.query(hidden_states)
173
+
174
+ cutoff = self.image_patch_tokens if pixel_values_present else 0
175
+ if past_key_value is not None:
176
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
177
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
178
+ key_layer = torch.cat([key_layer[:, :, :cutoff, :], past_key_value[0], key_layer[:, :, -1:, :]], dim=2)
179
+ value_layer = torch.cat(
180
+ [value_layer[:, :, :cutoff, :], past_key_value[1], value_layer[:, :, -1:, :]], dim=2
181
+ )
182
+ else:
183
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
184
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
185
+
186
+ query_layer = self.transpose_for_scores(mixed_query_layer)
187
+
188
+ use_cache = past_key_value is not None
189
+ # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
190
+ # Further calls to cross_attention layer can then reuse all cross-attention
191
+ # key/value_states (first "if" case)
192
+ # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
193
+ # all previous decoder key/value_states. Further calls to uni-directional self-attention
194
+ # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
195
+ # if encoder bi-directional self-attention `past_key_value` is always `None`
196
+ # NOTE: like in other caches, we store the text component. In GIT it means we discard the image component.
197
+ past_key_value = (
198
+ key_layer[:, :, cutoff:, :],
199
+ value_layer[:, :, cutoff:, :],
200
+ )
201
+
202
+ # Take the dot product between "query" and "key" to get the raw attention scores.
203
+ attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
204
+
205
+ if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
206
+ query_length, key_length = query_layer.shape[2], key_layer.shape[2]
207
+ if use_cache:
208
+ position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view(
209
+ -1, 1
210
+ )
211
+ else:
212
+ position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
213
+ position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
214
+ distance = position_ids_l - position_ids_r
215
+
216
+ positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
217
+ positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
218
+
219
+ if self.position_embedding_type == "relative_key":
220
+ relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
221
+ attention_scores = attention_scores + relative_position_scores
222
+ elif self.position_embedding_type == "relative_key_query":
223
+ relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
224
+ relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
225
+ attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
226
+
227
+ attention_scores = attention_scores / math.sqrt(self.attention_head_size)
228
+ if attention_mask is not None:
229
+ # Apply the attention mask is (precomputed for all layers in GitModel forward() function)
230
+ attention_scores = attention_scores + attention_mask
231
+
232
+ # Normalize the attention scores to probabilities.
233
+ attention_probs = nn.functional.softmax(attention_scores, dim=-1)
234
+
235
+ # This is actually dropping out entire tokens to attend to, which might
236
+ # seem a bit unusual, but is taken from the original Transformer paper.
237
+ attention_probs = self.dropout(attention_probs)
238
+
239
+ # Mask heads if we want to
240
+ if head_mask is not None:
241
+ attention_probs = attention_probs * head_mask
242
+
243
+ context_layer = torch.matmul(attention_probs, value_layer)
244
+
245
+ context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
246
+ new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
247
+ context_layer = context_layer.view(new_context_layer_shape)
248
+
249
+ outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
250
+
251
+ outputs = outputs + (past_key_value,)
252
+ return outputs
253
+
254
+
255
+ # Copied from transformers.models.bert.modeling_bert.BertSelfOutput
256
+ class GitSelfOutput(nn.Module):
257
+ def __init__(self, config):
258
+ super().__init__()
259
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
260
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
261
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
262
+
263
+ def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
264
+ hidden_states = self.dense(hidden_states)
265
+ hidden_states = self.dropout(hidden_states)
266
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
267
+ return hidden_states
268
+
269
+
270
+ class GitAttention(nn.Module):
271
+ # Copied from transformers.models.bert.modeling_bert.BertAttention.__init__ with Bert->Git
272
+ def __init__(self, config, position_embedding_type=None):
273
+ super().__init__()
274
+ self.self = GitSelfAttention(config, position_embedding_type=position_embedding_type)
275
+ self.output = GitSelfOutput(config)
276
+ self.pruned_heads = set()
277
+
278
+ # Copied from transformers.models.bert.modeling_bert.BertAttention.prune_heads
279
+ def prune_heads(self, heads):
280
+ if len(heads) == 0:
281
+ return
282
+ heads, index = find_pruneable_heads_and_indices(
283
+ heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
284
+ )
285
+
286
+ # Prune linear layers
287
+ self.self.query = prune_linear_layer(self.self.query, index)
288
+ self.self.key = prune_linear_layer(self.self.key, index)
289
+ self.self.value = prune_linear_layer(self.self.value, index)
290
+ self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
291
+
292
+ # Update hyper params and store pruned heads
293
+ self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
294
+ self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
295
+ self.pruned_heads = self.pruned_heads.union(heads)
296
+
297
+ def forward(
298
+ self,
299
+ hidden_states: torch.Tensor,
300
+ attention_mask: Optional[torch.FloatTensor] = None,
301
+ head_mask: Optional[torch.FloatTensor] = None,
302
+ past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
303
+ output_attentions: Optional[bool] = False,
304
+ pixel_values_present: Optional[bool] = False,
305
+ ) -> Tuple[torch.Tensor]:
306
+ self_outputs = self.self(
307
+ hidden_states,
308
+ attention_mask,
309
+ head_mask,
310
+ past_key_value,
311
+ output_attentions,
312
+ pixel_values_present,
313
+ )
314
+ attention_output = self.output(self_outputs[0], hidden_states)
315
+ outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
316
+ return outputs
317
+
318
+
319
+ # Copied from transformers.models.bert.modeling_bert.BertIntermediate
320
+ class GitIntermediate(nn.Module):
321
+ def __init__(self, config):
322
+ super().__init__()
323
+ self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
324
+ if isinstance(config.hidden_act, str):
325
+ self.intermediate_act_fn = ACT2FN[config.hidden_act]
326
+ else:
327
+ self.intermediate_act_fn = config.hidden_act
328
+
329
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
330
+ hidden_states = self.dense(hidden_states)
331
+ hidden_states = self.intermediate_act_fn(hidden_states)
332
+ return hidden_states
333
+
334
+
335
+ # Copied from transformers.models.bert.modeling_bert.BertOutput
336
+ class GitOutput(nn.Module):
337
+ def __init__(self, config):
338
+ super().__init__()
339
+ self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
340
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
341
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
342
+
343
+ def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
344
+ hidden_states = self.dense(hidden_states)
345
+ hidden_states = self.dropout(hidden_states)
346
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
347
+ return hidden_states
348
+
349
+
350
+ class GitLayer(nn.Module):
351
+ def __init__(self, config):
352
+ super().__init__()
353
+ self.chunk_size_feed_forward = config.chunk_size_feed_forward
354
+ self.seq_len_dim = 1
355
+ self.attention = GitAttention(config)
356
+ self.intermediate = GitIntermediate(config)
357
+ self.output = GitOutput(config)
358
+
359
+ def forward(
360
+ self,
361
+ hidden_states: torch.Tensor,
362
+ attention_mask: Optional[torch.FloatTensor] = None,
363
+ head_mask: Optional[torch.FloatTensor] = None,
364
+ past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
365
+ output_attentions: Optional[bool] = False,
366
+ pixel_values_present: Optional[bool] = False,
367
+ ) -> Tuple[torch.Tensor]:
368
+ # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
369
+ self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
370
+ self_attention_outputs = self.attention(
371
+ hidden_states,
372
+ attention_mask,
373
+ head_mask,
374
+ output_attentions=output_attentions,
375
+ past_key_value=self_attn_past_key_value,
376
+ pixel_values_present=pixel_values_present,
377
+ )
378
+ attention_output = self_attention_outputs[0]
379
+
380
+ # if decoder, the last output is tuple of self-attn cache
381
+ outputs = self_attention_outputs[1:-1]
382
+ present_key_value = self_attention_outputs[-1]
383
+
384
+ layer_output = apply_chunking_to_forward(
385
+ self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
386
+ )
387
+ outputs = (layer_output,) + outputs
388
+
389
+ # if decoder, return the attn key/values as the last output
390
+ outputs = outputs + (present_key_value,)
391
+
392
+ return outputs
393
+
394
+ def feed_forward_chunk(self, attention_output):
395
+ intermediate_output = self.intermediate(attention_output)
396
+ layer_output = self.output(intermediate_output, attention_output)
397
+ return layer_output
398
+
399
+
400
+ class GitEncoder(nn.Module):
401
+ # Copied from transformers.models.bert.modeling_bert.BertEncoder.__init__ with Bert->Git
402
+ def __init__(self, config):
403
+ super().__init__()
404
+ self.config = config
405
+ self.layer = nn.ModuleList([GitLayer(config) for _ in range(config.num_hidden_layers)])
406
+ self.gradient_checkpointing = False
407
+
408
+ def forward(
409
+ self,
410
+ hidden_states: torch.Tensor,
411
+ attention_mask: Optional[torch.FloatTensor] = None,
412
+ head_mask: Optional[torch.FloatTensor] = None,
413
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
414
+ use_cache: Optional[bool] = None,
415
+ output_attentions: Optional[bool] = False,
416
+ output_hidden_states: Optional[bool] = False,
417
+ pixel_values_present: Optional[bool] = False,
418
+ return_dict: Optional[bool] = True,
419
+ ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPast]:
420
+ if self.gradient_checkpointing and self.training:
421
+ if use_cache:
422
+ logger.warning_once(
423
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
424
+ )
425
+ use_cache = False
426
+
427
+ all_hidden_states = () if output_hidden_states else None
428
+ all_self_attentions = () if output_attentions else None
429
+
430
+ next_decoder_cache = () if use_cache else None
431
+ for i, layer_module in enumerate(self.layer):
432
+ if output_hidden_states:
433
+ all_hidden_states = all_hidden_states + (hidden_states,)
434
+
435
+ layer_head_mask = head_mask[i] if head_mask is not None else None
436
+ past_key_value = past_key_values[i] if past_key_values is not None else None
437
+
438
+ if self.gradient_checkpointing and self.training:
439
+ layer_outputs = self._gradient_checkpointing_func(
440
+ layer_module.__call__,
441
+ hidden_states,
442
+ attention_mask,
443
+ layer_head_mask,
444
+ past_key_value,
445
+ output_attentions,
446
+ )
447
+ else:
448
+ layer_outputs = layer_module(
449
+ hidden_states,
450
+ attention_mask,
451
+ layer_head_mask,
452
+ past_key_value,
453
+ output_attentions,
454
+ pixel_values_present,
455
+ )
456
+
457
+ hidden_states = layer_outputs[0]
458
+ if use_cache:
459
+ next_decoder_cache += (layer_outputs[-1],)
460
+ if output_attentions:
461
+ all_self_attentions = all_self_attentions + (layer_outputs[1],)
462
+
463
+ if output_hidden_states:
464
+ all_hidden_states = all_hidden_states + (hidden_states,)
465
+
466
+ if not return_dict:
467
+ return tuple(
468
+ v
469
+ for v in [
470
+ hidden_states,
471
+ next_decoder_cache,
472
+ all_hidden_states,
473
+ all_self_attentions,
474
+ ]
475
+ if v is not None
476
+ )
477
+ return BaseModelOutputWithPast(
478
+ last_hidden_state=hidden_states,
479
+ past_key_values=next_decoder_cache,
480
+ hidden_states=all_hidden_states,
481
+ attentions=all_self_attentions,
482
+ )
483
+
484
+
485
+ class GitPreTrainedModel(PreTrainedModel):
486
+ """
487
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
488
+ models.
489
+ """
490
+
491
+ config_class = GitConfig
492
+ base_model_prefix = "git"
493
+ supports_gradient_checkpointing = True
494
+
495
+ def _init_weights(self, module):
496
+ """Initialize the weights"""
497
+ if isinstance(module, GitVisionEmbeddings):
498
+ nn.init.normal_(module.class_embedding, mean=0.0, std=self.config.initializer_range)
499
+ nn.init.normal_(module.patch_embedding.weight, std=self.config.initializer_range)
500
+ nn.init.normal_(module.position_embedding.weight, std=self.config.initializer_range)
501
+ if isinstance(module, nn.Linear):
502
+ # Slightly different from the TF version which uses truncated_normal for initialization
503
+ # cf https://github.com/pytorch/pytorch/pull/5617
504
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
505
+ if module.bias is not None:
506
+ module.bias.data.zero_()
507
+ elif isinstance(module, nn.Embedding):
508
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
509
+ if module.padding_idx is not None:
510
+ module.weight.data[module.padding_idx].zero_()
511
+ elif isinstance(module, nn.LayerNorm):
512
+ module.bias.data.zero_()
513
+ module.weight.data.fill_(1.0)
514
+
515
+
516
+ GIT_START_DOCSTRING = r"""
517
+
518
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
519
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
520
+ etc.)
521
+
522
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
523
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
524
+ and behavior.
525
+
526
+ Parameters:
527
+ config ([`GitConfig`]): Model configuration class with all the parameters of the model.
528
+ Initializing with a config file does not load the weights associated with the model, only the
529
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
530
+ """
531
+
532
+ GIT_INPUTS_DOCSTRING = r"""
533
+ Args:
534
+ input_ids (`torch.LongTensor` of shape `({0})`):
535
+ Indices of input sequence tokens in the vocabulary.
536
+
537
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
538
+ [`PreTrainedTokenizer.__call__`] for details.
539
+
540
+ [What are input IDs?](../glossary#input-ids)
541
+ attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
542
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
543
+
544
+ - 1 for tokens that are **not masked**,
545
+ - 0 for tokens that are **masked**.
546
+
547
+ [What are attention masks?](../glossary#attention-mask)
548
+
549
+ position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
550
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
551
+ config.max_position_embeddings - 1]`.
552
+
553
+ [What are position IDs?](../glossary#position-ids)
554
+
555
+ pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
556
+ Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
557
+ [`CLIPImageProcessor.__call__`] for details.
558
+
559
+ head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
560
+ Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
561
+
562
+ - 1 indicates the head is **not masked**,
563
+ - 0 indicates the head is **masked**.
564
+
565
+ inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
566
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
567
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
568
+ model's internal embedding lookup matrix.
569
+ output_attentions (`bool`, *optional*):
570
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
571
+ tensors for more detail.
572
+ output_hidden_states (`bool`, *optional*):
573
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
574
+ more detail.
575
+ return_dict (`bool`, *optional*):
576
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
577
+ """
578
+
579
+
580
+ # Copied from transformers.models.clip.modeling_clip.CLIPVisionEmbeddings with CLIP->Git
581
+ class GitVisionEmbeddings(nn.Module):
582
+ def __init__(self, config: GitVisionConfig):
583
+ super().__init__()
584
+ self.config = config
585
+ self.embed_dim = config.hidden_size
586
+ self.image_size = config.image_size
587
+ self.patch_size = config.patch_size
588
+
589
+ self.class_embedding = nn.Parameter(torch.randn(self.embed_dim))
590
+
591
+ self.patch_embedding = nn.Conv2d(
592
+ in_channels=config.num_channels,
593
+ out_channels=self.embed_dim,
594
+ kernel_size=self.patch_size,
595
+ stride=self.patch_size,
596
+ bias=False,
597
+ )
598
+
599
+ self.num_patches = (self.image_size // self.patch_size) ** 2
600
+ self.num_positions = self.num_patches + 1
601
+ self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
602
+ self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent=False)
603
+
604
+ def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
605
+ batch_size = pixel_values.shape[0]
606
+ target_dtype = self.patch_embedding.weight.dtype
607
+ patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) # shape = [*, width, grid, grid]
608
+ patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
609
+
610
+ class_embeds = self.class_embedding.expand(batch_size, 1, -1)
611
+ embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
612
+ embeddings = embeddings + self.position_embedding(self.position_ids)
613
+ return embeddings
614
+
615
+
616
+ # Copied from transformers.models.clip.modeling_clip.CLIPMLP
617
+ class GitVisionMLP(nn.Module):
618
+ def __init__(self, config):
619
+ super().__init__()
620
+ self.config = config
621
+ self.activation_fn = ACT2FN[config.hidden_act]
622
+ self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
623
+ self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
624
+
625
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
626
+ hidden_states = self.fc1(hidden_states)
627
+ hidden_states = self.activation_fn(hidden_states)
628
+ hidden_states = self.fc2(hidden_states)
629
+ return hidden_states
630
+
631
+
632
+ # Copied from transformers.models.clip.modeling_clip.CLIPAttention
633
+ class GitVisionAttention(nn.Module):
634
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
635
+
636
+ def __init__(self, config):
637
+ super().__init__()
638
+ self.config = config
639
+ self.embed_dim = config.hidden_size
640
+ self.num_heads = config.num_attention_heads
641
+ self.head_dim = self.embed_dim // self.num_heads
642
+ if self.head_dim * self.num_heads != self.embed_dim:
643
+ raise ValueError(
644
+ f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
645
+ f" {self.num_heads})."
646
+ )
647
+ self.scale = self.head_dim**-0.5
648
+ self.dropout = config.attention_dropout
649
+
650
+ self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
651
+ self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
652
+ self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
653
+ self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
654
+
655
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
656
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
657
+
658
+ def forward(
659
+ self,
660
+ hidden_states: torch.Tensor,
661
+ attention_mask: Optional[torch.Tensor] = None,
662
+ causal_attention_mask: Optional[torch.Tensor] = None,
663
+ output_attentions: Optional[bool] = False,
664
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
665
+ """Input shape: Batch x Time x Channel"""
666
+
667
+ bsz, tgt_len, embed_dim = hidden_states.size()
668
+
669
+ # get query proj
670
+ query_states = self.q_proj(hidden_states) * self.scale
671
+ key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
672
+ value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
673
+
674
+ proj_shape = (bsz * self.num_heads, -1, self.head_dim)
675
+ query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
676
+ key_states = key_states.view(*proj_shape)
677
+ value_states = value_states.view(*proj_shape)
678
+
679
+ src_len = key_states.size(1)
680
+ attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
681
+
682
+ if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
683
+ raise ValueError(
684
+ f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
685
+ f" {attn_weights.size()}"
686
+ )
687
+
688
+ # apply the causal_attention_mask first
689
+ if causal_attention_mask is not None:
690
+ if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len):
691
+ raise ValueError(
692
+ f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is"
693
+ f" {causal_attention_mask.size()}"
694
+ )
695
+ attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + causal_attention_mask
696
+ attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
697
+
698
+ if attention_mask is not None:
699
+ if attention_mask.size() != (bsz, 1, tgt_len, src_len):
700
+ raise ValueError(
701
+ f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
702
+ )
703
+ attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
704
+ attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
705
+
706
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1)
707
+
708
+ if output_attentions:
709
+ # this operation is a bit akward, but it's required to
710
+ # make sure that attn_weights keeps its gradient.
711
+ # In order to do so, attn_weights have to reshaped
712
+ # twice and have to be reused in the following
713
+ attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
714
+ attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
715
+ else:
716
+ attn_weights_reshaped = None
717
+
718
+ attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
719
+
720
+ attn_output = torch.bmm(attn_probs, value_states)
721
+
722
+ if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
723
+ raise ValueError(
724
+ f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
725
+ f" {attn_output.size()}"
726
+ )
727
+
728
+ attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
729
+ attn_output = attn_output.transpose(1, 2)
730
+ attn_output = attn_output.reshape(bsz, tgt_len, embed_dim)
731
+
732
+ attn_output = self.out_proj(attn_output)
733
+
734
+ return attn_output, attn_weights_reshaped
735
+
736
+
737
+ # Copied from transformers.models.clip.modeling_clip.CLIPEncoderLayer with CLIP->GitVision
738
+ class GitVisionEncoderLayer(nn.Module):
739
+ def __init__(self, config: GitVisionConfig):
740
+ super().__init__()
741
+ self.embed_dim = config.hidden_size
742
+ self.self_attn = GitVisionAttention(config)
743
+ self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
744
+ self.mlp = GitVisionMLP(config)
745
+ self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
746
+
747
+ def forward(
748
+ self,
749
+ hidden_states: torch.Tensor,
750
+ attention_mask: torch.Tensor,
751
+ causal_attention_mask: torch.Tensor,
752
+ output_attentions: Optional[bool] = False,
753
+ ) -> Tuple[torch.FloatTensor]:
754
+ """
755
+ Args:
756
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
757
+ attention_mask (`torch.FloatTensor`): attention mask of size
758
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
759
+ `(config.encoder_attention_heads,)`.
760
+ output_attentions (`bool`, *optional*):
761
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
762
+ returned tensors for more detail.
763
+ """
764
+ residual = hidden_states
765
+
766
+ hidden_states = self.layer_norm1(hidden_states)
767
+ hidden_states, attn_weights = self.self_attn(
768
+ hidden_states=hidden_states,
769
+ attention_mask=attention_mask,
770
+ causal_attention_mask=causal_attention_mask,
771
+ output_attentions=output_attentions,
772
+ )
773
+ hidden_states = residual + hidden_states
774
+
775
+ residual = hidden_states
776
+ hidden_states = self.layer_norm2(hidden_states)
777
+ hidden_states = self.mlp(hidden_states)
778
+ hidden_states = residual + hidden_states
779
+
780
+ outputs = (hidden_states,)
781
+
782
+ if output_attentions:
783
+ outputs += (attn_weights,)
784
+
785
+ return outputs
786
+
787
+
788
+ # Copied from transformers.models.clip.modeling_clip.CLIPEncoder with CLIP->GitVision, CLIPConfig
789
+ class GitVisionEncoder(nn.Module):
790
+ """
791
+ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
792
+ [`GitVisionEncoderLayer`].
793
+
794
+ Args:
795
+ config: GitVisionConfig
796
+ """
797
+
798
+ def __init__(self, config: GitVisionConfig):
799
+ super().__init__()
800
+ self.config = config
801
+ self.layers = nn.ModuleList([GitVisionEncoderLayer(config) for _ in range(config.num_hidden_layers)])
802
+ self.gradient_checkpointing = False
803
+
804
+ def forward(
805
+ self,
806
+ inputs_embeds,
807
+ attention_mask: Optional[torch.Tensor] = None,
808
+ causal_attention_mask: Optional[torch.Tensor] = None,
809
+ output_attentions: Optional[bool] = None,
810
+ output_hidden_states: Optional[bool] = None,
811
+ return_dict: Optional[bool] = None,
812
+ ) -> Union[Tuple, BaseModelOutput]:
813
+ r"""
814
+ Args:
815
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
816
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
817
+ This is useful if you want more control over how to convert `input_ids` indices into associated vectors
818
+ than the model's internal embedding lookup matrix.
819
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
820
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
821
+
822
+ - 1 for tokens that are **not masked**,
823
+ - 0 for tokens that are **masked**.
824
+
825
+ [What are attention masks?](../glossary#attention-mask)
826
+ causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
827
+ Causal mask for the text model. Mask values selected in `[0, 1]`:
828
+
829
+ - 1 for tokens that are **not masked**,
830
+ - 0 for tokens that are **masked**.
831
+
832
+ [What are attention masks?](../glossary#attention-mask)
833
+ output_attentions (`bool`, *optional*):
834
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
835
+ returned tensors for more detail.
836
+ output_hidden_states (`bool`, *optional*):
837
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
838
+ for more detail.
839
+ return_dict (`bool`, *optional*):
840
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
841
+ """
842
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
843
+ output_hidden_states = (
844
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
845
+ )
846
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
847
+
848
+ encoder_states = () if output_hidden_states else None
849
+ all_attentions = () if output_attentions else None
850
+
851
+ hidden_states = inputs_embeds
852
+ for idx, encoder_layer in enumerate(self.layers):
853
+ if output_hidden_states:
854
+ encoder_states = encoder_states + (hidden_states,)
855
+ if self.gradient_checkpointing and self.training:
856
+ layer_outputs = self._gradient_checkpointing_func(
857
+ encoder_layer.__call__,
858
+ hidden_states,
859
+ attention_mask,
860
+ causal_attention_mask,
861
+ output_attentions,
862
+ )
863
+ else:
864
+ layer_outputs = encoder_layer(
865
+ hidden_states,
866
+ attention_mask,
867
+ causal_attention_mask,
868
+ output_attentions=output_attentions,
869
+ )
870
+
871
+ hidden_states = layer_outputs[0]
872
+
873
+ if output_attentions:
874
+ all_attentions = all_attentions + (layer_outputs[1],)
875
+
876
+ if output_hidden_states:
877
+ encoder_states = encoder_states + (hidden_states,)
878
+
879
+ if not return_dict:
880
+ return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
881
+ return BaseModelOutput(
882
+ last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
883
+ )
884
+
885
+
886
+ GIT_VISION_INPUTS_DOCSTRING = r"""
887
+ Args:
888
+ pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
889
+ Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
890
+ [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details.
891
+ output_attentions (`bool`, *optional*):
892
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
893
+ tensors for more detail.
894
+ output_hidden_states (`bool`, *optional*):
895
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
896
+ more detail.
897
+ return_dict (`bool`, *optional*):
898
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
899
+ """
900
+
901
+
902
+ class GitVisionTransformer(nn.Module):
903
+ # Copied from transformers.models.clip.modeling_clip.CLIPVisionTransformer.__init__ with CLIPEncoder->GitVisionEncoder, CLIP->Git
904
+ def __init__(self, config: GitVisionConfig):
905
+ super().__init__()
906
+ self.config = config
907
+ embed_dim = config.hidden_size
908
+
909
+ self.embeddings = GitVisionEmbeddings(config)
910
+ self.pre_layrnorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
911
+ self.encoder = GitVisionEncoder(config)
912
+ self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
913
+
914
+ @add_start_docstrings_to_model_forward(GIT_VISION_INPUTS_DOCSTRING)
915
+ @replace_return_docstrings(output_type=BaseModelOutput, config_class=GitVisionConfig)
916
+ def forward(
917
+ self,
918
+ pixel_values: Optional[torch.FloatTensor] = None,
919
+ output_attentions: Optional[bool] = None,
920
+ output_hidden_states: Optional[bool] = None,
921
+ return_dict: Optional[bool] = None,
922
+ ) -> Union[Tuple, BaseModelOutput]:
923
+ r"""
924
+ Returns:
925
+
926
+ """
927
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
928
+ output_hidden_states = (
929
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
930
+ )
931
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
932
+
933
+ if pixel_values is None:
934
+ raise ValueError("You have to specify pixel_values")
935
+
936
+ hidden_states = self.embeddings(pixel_values)
937
+ hidden_states = self.pre_layrnorm(hidden_states)
938
+
939
+ encoder_outputs = self.encoder(
940
+ inputs_embeds=hidden_states,
941
+ output_attentions=output_attentions,
942
+ output_hidden_states=output_hidden_states,
943
+ return_dict=return_dict,
944
+ )
945
+
946
+ last_hidden_state = encoder_outputs[0]
947
+
948
+ last_hidden_state = self.post_layernorm(last_hidden_state)
949
+
950
+ if not return_dict:
951
+ return (last_hidden_state,) + encoder_outputs[1:]
952
+
953
+ return BaseModelOutput(
954
+ last_hidden_state=last_hidden_state,
955
+ hidden_states=encoder_outputs.hidden_states,
956
+ attentions=encoder_outputs.attentions,
957
+ )
958
+
959
+
960
+ @add_start_docstrings(
961
+ """The vision model from CLIP, used in GIT, without any head or projection on top.""",
962
+ GIT_START_DOCSTRING,
963
+ )
964
+ class GitVisionModel(GitPreTrainedModel):
965
+ config_class = GitVisionConfig
966
+ main_input_name = "pixel_values"
967
+
968
+ # Copied from transformers.models.clip.modeling_clip.CLIPVisionModel.__init__ with CLIP->Git
969
+ def __init__(self, config: GitVisionConfig):
970
+ super().__init__(config)
971
+ self.vision_model = GitVisionTransformer(config)
972
+ # Initialize weights and apply final processing
973
+ self.post_init()
974
+
975
+ def get_input_embeddings(self) -> nn.Module:
976
+ return self.vision_model.embeddings.patch_embedding
977
+
978
+ @add_start_docstrings_to_model_forward(GIT_VISION_INPUTS_DOCSTRING)
979
+ @replace_return_docstrings(output_type=BaseModelOutput, config_class=GitVisionConfig)
980
+ def forward(
981
+ self,
982
+ pixel_values: Optional[torch.FloatTensor] = None,
983
+ output_attentions: Optional[bool] = None,
984
+ output_hidden_states: Optional[bool] = None,
985
+ return_dict: Optional[bool] = None,
986
+ ) -> Union[Tuple, BaseModelOutput]:
987
+ r"""
988
+ Returns:
989
+
990
+ Examples:
991
+
992
+ ```python
993
+ >>> from PIL import Image
994
+ >>> import requests
995
+ >>> from transformers import AutoProcessor, GitVisionModel
996
+
997
+ >>> processor = AutoProcessor.from_pretrained("microsoft/git-base")
998
+ >>> model = GitVisionModel.from_pretrained("microsoft/git-base")
999
+
1000
+ >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
1001
+ >>> image = Image.open(requests.get(url, stream=True).raw)
1002
+
1003
+ >>> inputs = processor(images=image, return_tensors="pt")
1004
+
1005
+ >>> outputs = model(**inputs)
1006
+ >>> last_hidden_state = outputs.last_hidden_state
1007
+ ```"""
1008
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1009
+
1010
+ return self.vision_model(
1011
+ pixel_values=pixel_values,
1012
+ output_attentions=output_attentions,
1013
+ output_hidden_states=output_hidden_states,
1014
+ return_dict=return_dict,
1015
+ )
1016
+
1017
+
1018
+ class GitProjection(nn.Module):
1019
+ def __init__(self, config: GitConfig):
1020
+ super().__init__()
1021
+ self.config = config
1022
+ self.visual_projection = nn.Sequential(
1023
+ nn.Linear(config.vision_config.hidden_size, config.hidden_size),
1024
+ nn.LayerNorm(config.hidden_size, eps=config.vision_config.layer_norm_eps),
1025
+ )
1026
+
1027
+ def forward(self, embeddings: torch.Tensor) -> torch.Tensor:
1028
+ return self.visual_projection(embeddings)
1029
+
1030
+
1031
+ @add_start_docstrings(
1032
+ "The bare GIT Model transformer consisting of a CLIP image encoder and text decoder outputting raw hidden-states"
1033
+ " without any specific head on top.",
1034
+ GIT_START_DOCSTRING,
1035
+ )
1036
+ class GitModel(GitPreTrainedModel):
1037
+ def __init__(self, config):
1038
+ super().__init__(config)
1039
+ self.config = config
1040
+
1041
+ self.embeddings = GitEmbeddings(config)
1042
+ self.image_encoder = GitVisionModel(config.vision_config)
1043
+ self.encoder = GitEncoder(config)
1044
+
1045
+ self.visual_projection = GitProjection(config)
1046
+
1047
+ if config.num_image_with_embedding is not None:
1048
+ self.img_temperal_embedding = nn.ParameterList(
1049
+ nn.Parameter(torch.zeros(1, 1, config.vision_config.hidden_size))
1050
+ for _ in range(config.num_image_with_embedding)
1051
+ )
1052
+
1053
+ # Initialize weights and apply final processing
1054
+ self.post_init()
1055
+
1056
+ def get_input_embeddings(self):
1057
+ return self.embeddings.word_embeddings
1058
+
1059
+ def set_input_embeddings(self, value):
1060
+ self.embeddings.word_embeddings = value
1061
+
1062
+ def _prune_heads(self, heads_to_prune):
1063
+ """
1064
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
1065
+ class PreTrainedModel
1066
+ """
1067
+ for layer, heads in heads_to_prune.items():
1068
+ self.encoder.layer[layer].attention.prune_heads(heads)
1069
+
1070
+ def _generate_future_mask(self, size: int, dtype: torch.dtype, device: torch.device) -> torch.Tensor:
1071
+ # Default mask is for forward direction. Flip for backward direction.
1072
+ mask = torch.triu(torch.ones(size, size, device=device, dtype=dtype), diagonal=1)
1073
+ mask = mask.masked_fill(mask == 1, float("-inf"))
1074
+ return mask
1075
+
1076
+ def create_attention_mask(self, tgt, memory, tgt_mask, past_key_values_length, memory_key_padding_mask=None):
1077
+ num_tgt = tgt.shape[1]
1078
+ num_memory = memory.shape[1]
1079
+ device = tgt.device
1080
+ dtype = tgt.dtype
1081
+ top_left = torch.zeros((num_memory, num_memory), device=device, dtype=dtype)
1082
+ top_right = torch.full(
1083
+ (num_memory, num_tgt + past_key_values_length),
1084
+ float("-inf"),
1085
+ device=tgt.device,
1086
+ dtype=dtype,
1087
+ )
1088
+ bottom_left = torch.zeros(
1089
+ (num_tgt, num_memory),
1090
+ dtype=dtype,
1091
+ device=tgt_mask.device,
1092
+ )
1093
+
1094
+ if past_key_values_length > 0:
1095
+ tgt_mask = torch.zeros(
1096
+ (tgt_mask.shape[0], tgt_mask.shape[0] + past_key_values_length),
1097
+ dtype=dtype,
1098
+ device=tgt_mask.device,
1099
+ )
1100
+
1101
+ left = torch.cat((top_left, bottom_left), dim=0)
1102
+ right = torch.cat((top_right, tgt_mask.to(dtype)), dim=0)
1103
+
1104
+ full_attention_mask = torch.cat((left, right), dim=1)[None, :]
1105
+
1106
+ if memory_key_padding_mask is None:
1107
+ memory_key_padding_mask = torch.full((memory.shape[0], memory.shape[1]), fill_value=False, device=device)
1108
+ # if it is False, it means valid. That is, it is not a padding
1109
+ if memory_key_padding_mask.dtype != torch.bool:
1110
+ raise ValueError("Memory key padding mask must be a boolean tensor.")
1111
+ zero_negative_infinity = torch.zeros_like(memory_key_padding_mask, dtype=tgt.dtype)
1112
+ zero_negative_infinity[memory_key_padding_mask] = float("-inf")
1113
+ full_attention_mask = full_attention_mask.expand(
1114
+ (memory_key_padding_mask.shape[0], num_memory + num_tgt, num_memory + past_key_values_length + num_tgt)
1115
+ )
1116
+ full_attention_mask = full_attention_mask.clone()
1117
+ origin_left = full_attention_mask[:, :, :num_memory]
1118
+ update = zero_negative_infinity[:, None, :]
1119
+ full_attention_mask[:, :, :num_memory] = origin_left + update
1120
+
1121
+ # add axis for multi-head
1122
+ full_attention_mask = full_attention_mask[:, None, :, :]
1123
+
1124
+ return full_attention_mask
1125
+
1126
+ @add_start_docstrings_to_model_forward(GIT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
1127
+ @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC)
1128
+ def forward(
1129
+ self,
1130
+ input_ids: Optional[torch.Tensor] = None,
1131
+ attention_mask: Optional[torch.Tensor] = None,
1132
+ position_ids: Optional[torch.Tensor] = None,
1133
+ pixel_values: Optional[torch.Tensor] = None,
1134
+ head_mask: Optional[torch.Tensor] = None,
1135
+ inputs_embeds: Optional[torch.Tensor] = None,
1136
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1137
+ use_cache: Optional[bool] = None,
1138
+ output_attentions: Optional[bool] = None,
1139
+ output_hidden_states: Optional[bool] = None,
1140
+ return_dict: Optional[bool] = None,
1141
+ ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPooling]:
1142
+ r"""
1143
+ past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
1144
+ Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
1145
+
1146
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
1147
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
1148
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
1149
+ use_cache (`bool`, *optional*):
1150
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
1151
+ `past_key_values`).
1152
+
1153
+ Returns:
1154
+
1155
+ Examples:
1156
+
1157
+ ```python
1158
+ >>> from transformers import AutoProcessor, AutoModel
1159
+ >>> import requests
1160
+ >>> from PIL import Image
1161
+
1162
+ >>> processor = AutoProcessor.from_pretrained("microsoft/git-base")
1163
+ >>> model = AutoModel.from_pretrained("microsoft/git-base")
1164
+
1165
+ >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
1166
+ >>> image = Image.open(requests.get(url, stream=True).raw)
1167
+
1168
+ >>> text = "this is an image of two cats"
1169
+
1170
+ >>> inputs = processor(text, images=image, return_tensors="pt")
1171
+
1172
+ >>> outputs = model(**inputs)
1173
+ >>> last_hidden_state = outputs.last_hidden_state
1174
+ ```"""
1175
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1176
+ output_hidden_states = (
1177
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1178
+ )
1179
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
1180
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1181
+
1182
+ if input_ids is not None and inputs_embeds is not None:
1183
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
1184
+ elif input_ids is not None:
1185
+ self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
1186
+ input_shape = input_ids.size()
1187
+ elif inputs_embeds is not None:
1188
+ input_shape = inputs_embeds.size()[:-1]
1189
+ else:
1190
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
1191
+
1192
+ seq_length = input_shape[1]
1193
+
1194
+ # past_key_values_length
1195
+ past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
1196
+
1197
+ # Prepare head mask if needed
1198
+ # 1.0 in head_mask indicate we keep the head
1199
+ # attention_probs has shape bsz x n_heads x N x N
1200
+ # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
1201
+ # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
1202
+ head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
1203
+
1204
+ projected_visual_features = None
1205
+ if pixel_values is not None:
1206
+ if pixel_values.ndim == 4:
1207
+ # here we assume pixel_values is of shape (batch_size, num_channels, height, width)
1208
+ visual_features = self.image_encoder(pixel_values).last_hidden_state
1209
+
1210
+ elif pixel_values.ndim == 5:
1211
+ # here we assume pixel_values is of shape (batch_size, num_frames, num_channels, height, width)
1212
+ visual_features = []
1213
+ for frame_idx in range(pixel_values.shape[1]):
1214
+ visual_features_frame = self.image_encoder(pixel_values[:, frame_idx, :, :]).last_hidden_state
1215
+ visual_features_frame += self.img_temperal_embedding[frame_idx]
1216
+ visual_features.append(visual_features_frame)
1217
+
1218
+ # finally, concatenate all features along sequence dimension
1219
+ visual_features = torch.cat(visual_features, dim=1)
1220
+
1221
+ else:
1222
+ raise ValueError("pixel_values must be of rank 4 or 5")
1223
+
1224
+ projected_visual_features = self.visual_projection(visual_features)
1225
+
1226
+ embedding_output = self.embeddings(
1227
+ input_ids=input_ids,
1228
+ position_ids=position_ids,
1229
+ inputs_embeds=inputs_embeds,
1230
+ past_key_values_length=past_key_values_length,
1231
+ )
1232
+
1233
+ if projected_visual_features is None:
1234
+ projected_visual_features = torch.zeros(
1235
+ (embedding_output.shape[0], 0, embedding_output.shape[2]),
1236
+ dtype=embedding_output.dtype,
1237
+ device=embedding_output.device,
1238
+ )
1239
+
1240
+ # Repeat visual features to match embedding batch size.
1241
+ projected_visual_features = projected_visual_features.repeat(
1242
+ embedding_output.size(0) // projected_visual_features.size(0), 1, 1
1243
+ )
1244
+
1245
+ # concatenate patch token and text token embeddings
1246
+ hidden_states = torch.cat((projected_visual_features, embedding_output), dim=1)
1247
+
1248
+ # By default, an additive causal mask is created
1249
+ # for masking the future (one direction).
1250
+ tgt_mask = self._generate_future_mask(seq_length, embedding_output.dtype, embedding_output.device)
1251
+
1252
+ # Create an attention mask of shape (batch_size, 1, tgt_seq_len, src_seq_len)
1253
+ combined_attention_mask = self.create_attention_mask(
1254
+ tgt=embedding_output,
1255
+ memory=projected_visual_features,
1256
+ tgt_mask=tgt_mask,
1257
+ past_key_values_length=past_key_values_length,
1258
+ )
1259
+
1260
+ if attention_mask is not None:
1261
+ # if the user provides an attention mask, we add it to the default one
1262
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
1263
+ expanded_attn_mask = _prepare_4d_attention_mask(
1264
+ attention_mask, embedding_output.dtype, tgt_len=input_shape[-1]
1265
+ ).to(embedding_output.device)
1266
+ if past_key_values_length > 0:
1267
+ expanded_attn_mask = expanded_attn_mask[:, :, -past_key_values_length:, :]
1268
+ else:
1269
+ combined_attention_mask[:, :, -input_shape[1] :, -input_shape[1] :] += expanded_attn_mask
1270
+
1271
+ encoder_outputs = self.encoder(
1272
+ hidden_states,
1273
+ attention_mask=combined_attention_mask,
1274
+ head_mask=head_mask,
1275
+ past_key_values=past_key_values,
1276
+ use_cache=use_cache,
1277
+ output_attentions=output_attentions,
1278
+ output_hidden_states=output_hidden_states,
1279
+ return_dict=return_dict,
1280
+ pixel_values_present=pixel_values is not None,
1281
+ )
1282
+ sequence_output = encoder_outputs[0]
1283
+
1284
+ if not return_dict:
1285
+ return (sequence_output,) + encoder_outputs[1:]
1286
+
1287
+ return BaseModelOutputWithPast(
1288
+ last_hidden_state=sequence_output,
1289
+ past_key_values=encoder_outputs.past_key_values,
1290
+ hidden_states=encoder_outputs.hidden_states,
1291
+ attentions=encoder_outputs.attentions,
1292
+ )
1293
+
1294
+
1295
+ @add_start_docstrings(
1296
+ """GIT Model with a `language modeling` head on top for autoregressive language modeling.""", GIT_START_DOCSTRING
1297
+ )
1298
+ class GitForCausalLM(GitPreTrainedModel):
1299
+ _tied_weights_keys = ["output.weight"]
1300
+
1301
+ def __init__(self, config):
1302
+ super().__init__(config)
1303
+
1304
+ self.git = GitModel(config)
1305
+ self.output = nn.Linear(config.hidden_size, config.vocab_size)
1306
+
1307
+ # Initialize weights and apply final processing
1308
+ self.post_init()
1309
+
1310
+ def get_output_embeddings(self):
1311
+ return self.output
1312
+
1313
+ def set_output_embeddings(self, new_embeddings):
1314
+ self.output = new_embeddings
1315
+
1316
+ @add_start_docstrings_to_model_forward(GIT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
1317
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
1318
+ def forward(
1319
+ self,
1320
+ input_ids: Optional[torch.Tensor] = None,
1321
+ attention_mask: Optional[torch.Tensor] = None,
1322
+ position_ids: Optional[torch.Tensor] = None,
1323
+ pixel_values: Optional[torch.Tensor] = None,
1324
+ head_mask: Optional[torch.Tensor] = None,
1325
+ inputs_embeds: Optional[torch.Tensor] = None,
1326
+ labels: Optional[torch.Tensor] = None,
1327
+ past_key_values: Optional[List[torch.Tensor]] = None,
1328
+ use_cache: Optional[bool] = None,
1329
+ output_attentions: Optional[bool] = None,
1330
+ output_hidden_states: Optional[bool] = None,
1331
+ return_dict: Optional[bool] = None,
1332
+ ) -> Union[Tuple[torch.Tensor], CausalLMOutputWithPast]:
1333
+ r"""
1334
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1335
+ Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
1336
+ `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
1337
+ ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]`
1338
+ past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
1339
+ Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
1340
+
1341
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
1342
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
1343
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
1344
+ use_cache (`bool`, *optional*):
1345
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
1346
+ `past_key_values`).
1347
+
1348
+ Returns:
1349
+
1350
+ Examples:
1351
+
1352
+ Image captioning example:
1353
+
1354
+ ```python
1355
+ >>> from transformers import AutoProcessor, AutoModelForCausalLM
1356
+ >>> import requests
1357
+ >>> from PIL import Image
1358
+
1359
+ >>> processor = AutoProcessor.from_pretrained("microsoft/git-base-coco")
1360
+ >>> model = AutoModelForCausalLM.from_pretrained("microsoft/git-base-coco")
1361
+
1362
+ >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
1363
+ >>> image = Image.open(requests.get(url, stream=True).raw)
1364
+
1365
+ >>> pixel_values = processor(images=image, return_tensors="pt").pixel_values
1366
+
1367
+ >>> generated_ids = model.generate(pixel_values=pixel_values, max_length=50)
1368
+ >>> generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
1369
+ >>> print(generated_caption)
1370
+ two cats sleeping on a pink blanket next to remotes.
1371
+ ```
1372
+
1373
+ Visual question answering (VQA) example:
1374
+
1375
+ ```python
1376
+ >>> from transformers import AutoProcessor, AutoModelForCausalLM
1377
+ >>> from huggingface_hub import hf_hub_download
1378
+ >>> from PIL import Image
1379
+
1380
+ >>> processor = AutoProcessor.from_pretrained("microsoft/git-base-textvqa")
1381
+ >>> model = AutoModelForCausalLM.from_pretrained("microsoft/git-base-textvqa")
1382
+
1383
+ >>> file_path = hf_hub_download(repo_id="nielsr/textvqa-sample", filename="bus.png", repo_type="dataset")
1384
+ >>> image = Image.open(file_path).convert("RGB")
1385
+
1386
+ >>> pixel_values = processor(images=image, return_tensors="pt").pixel_values
1387
+
1388
+ >>> question = "what does the front of the bus say at the top?"
1389
+
1390
+ >>> input_ids = processor(text=question, add_special_tokens=False).input_ids
1391
+ >>> input_ids = [processor.tokenizer.cls_token_id] + input_ids
1392
+ >>> input_ids = torch.tensor(input_ids).unsqueeze(0)
1393
+
1394
+ >>> generated_ids = model.generate(pixel_values=pixel_values, input_ids=input_ids, max_length=50)
1395
+ >>> print(processor.batch_decode(generated_ids, skip_special_tokens=True))
1396
+ ['what does the front of the bus say at the top? special']
1397
+ ```
1398
+
1399
+ Video captioning example:
1400
+
1401
+ ```python
1402
+ >>> import av
1403
+ >>> import numpy as np
1404
+ >>> from PIL import Image
1405
+ >>> from huggingface_hub import hf_hub_download
1406
+ >>> from transformers import AutoProcessor, AutoModelForCausalLM
1407
+
1408
+ >>> processor = AutoProcessor.from_pretrained("microsoft/git-base-vatex")
1409
+ >>> model = AutoModelForCausalLM.from_pretrained("microsoft/git-base-vatex")
1410
+
1411
+ >>> # set seed for reproducability
1412
+ >>> np.random.seed(45)
1413
+
1414
+
1415
+ >>> def read_video_pyav(container, indices):
1416
+ ... '''
1417
+ ... Decode the video with PyAV decoder.
1418
+ ... Args:
1419
+ ... container (`av.container.input.InputContainer`): PyAV container.
1420
+ ... indices (`List[int]`): List of frame indices to decode.
1421
+ ... Returns:
1422
+ ... result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3).
1423
+ ... '''
1424
+ ... frames = []
1425
+ ... container.seek(0)
1426
+ ... start_index = indices[0]
1427
+ ... end_index = indices[-1]
1428
+ ... for i, frame in enumerate(container.decode(video=0)):
1429
+ ... if i > end_index:
1430
+ ... break
1431
+ ... if i >= start_index and i in indices:
1432
+ ... frames.append(frame)
1433
+ ... return np.stack([x.to_ndarray(format="rgb24") for x in frames])
1434
+
1435
+
1436
+ >>> def sample_frame_indices(clip_len, frame_sample_rate, seg_len):
1437
+ ... '''
1438
+ ... Sample a given number of frame indices from the video.
1439
+ ... Args:
1440
+ ... clip_len (`int`): Total number of frames to sample.
1441
+ ... frame_sample_rate (`int`): Sample every n-th frame.
1442
+ ... seg_len (`int`): Maximum allowed index of sample's last frame.
1443
+ ... Returns:
1444
+ ... indices (`List[int]`): List of sampled frame indices
1445
+ ... '''
1446
+ ... converted_len = int(clip_len * frame_sample_rate)
1447
+ ... end_idx = np.random.randint(converted_len, seg_len)
1448
+ ... start_idx = end_idx - converted_len
1449
+ ... indices = np.linspace(start_idx, end_idx, num=clip_len)
1450
+ ... indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64)
1451
+ ... return indices
1452
+
1453
+
1454
+ >>> # load video
1455
+ >>> file_path = hf_hub_download(
1456
+ ... repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset"
1457
+ ... )
1458
+ >>> container = av.open(file_path)
1459
+
1460
+ >>> # sample frames
1461
+ >>> num_frames = model.config.num_image_with_embedding
1462
+ >>> indices = sample_frame_indices(
1463
+ ... clip_len=num_frames, frame_sample_rate=4, seg_len=container.streams.video[0].frames
1464
+ ... )
1465
+ >>> frames = read_video_pyav(container, indices)
1466
+
1467
+ >>> pixel_values = processor(images=list(frames), return_tensors="pt").pixel_values
1468
+
1469
+ >>> generated_ids = model.generate(pixel_values=pixel_values, max_length=50)
1470
+
1471
+ >>> print("Generated caption:", processor.batch_decode(generated_ids, skip_special_tokens=True))
1472
+ Generated caption: ['a woman is sitting at a table and she is talking about the food she is holding.']
1473
+ ```
1474
+ """
1475
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1476
+ if labels is not None:
1477
+ use_cache = False
1478
+
1479
+ outputs = self.git(
1480
+ input_ids,
1481
+ attention_mask=attention_mask,
1482
+ position_ids=position_ids,
1483
+ pixel_values=pixel_values,
1484
+ head_mask=head_mask,
1485
+ inputs_embeds=inputs_embeds,
1486
+ past_key_values=past_key_values,
1487
+ use_cache=use_cache,
1488
+ output_attentions=output_attentions,
1489
+ output_hidden_states=output_hidden_states,
1490
+ return_dict=return_dict,
1491
+ )
1492
+
1493
+ sequence_output = outputs[0]
1494
+ logits = self.output(sequence_output)
1495
+
1496
+ loss = None
1497
+ if labels is not None:
1498
+ # we are doing next-token prediction; shift prediction scores and input ids by one
1499
+ num_image_tokens = self.git.encoder.layer[0].attention.self.image_patch_tokens
1500
+ shifted_logits = logits[:, num_image_tokens:-1, :].contiguous()
1501
+ labels = labels[:, 1:].contiguous()
1502
+ loss_fct = CrossEntropyLoss()
1503
+ loss = loss_fct(shifted_logits.view(-1, self.config.vocab_size), labels.view(-1))
1504
+
1505
+ if not return_dict:
1506
+ output = (logits,) + outputs[1:]
1507
+ return ((loss,) + output) if loss is not None else output
1508
+
1509
+ return CausalLMOutputWithPast(
1510
+ loss=loss,
1511
+ logits=logits,
1512
+ past_key_values=outputs.past_key_values,
1513
+ hidden_states=outputs.hidden_states,
1514
+ attentions=outputs.attentions,
1515
+ )
1516
+
1517
+ def prepare_inputs_for_generation(
1518
+ self, input_ids, past_key_values=None, attention_mask=None, use_cache=None, **kwargs
1519
+ ):
1520
+ # cut decoder_input_ids if past_key_values is used
1521
+ if past_key_values is not None:
1522
+ input_ids = input_ids[:, -1:]
1523
+
1524
+ # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
1525
+ input_shape = input_ids.shape
1526
+ if attention_mask is None:
1527
+ attention_mask = input_ids.new_ones(input_shape)
1528
+
1529
+ return {
1530
+ "input_ids": input_ids,
1531
+ "attention_mask": attention_mask,
1532
+ "pixel_values": kwargs.get("pixel_values", None),
1533
+ "past_key_values": past_key_values,
1534
+ "use_cache": use_cache,
1535
+ }
1536
+
1537
+ def _reorder_cache(self, past_key_values, beam_idx):
1538
+ reordered_past = ()
1539
+ for layer_past in past_key_values:
1540
+ reordered_past += (
1541
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
1542
+ )
1543
+ return reordered_past
llmeval-env/lib/python3.10/site-packages/transformers/models/git/processing_git.py ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 The HuggingFace Inc. team.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """
16
+ Image/Text processor class for GIT
17
+ """
18
+
19
+ from ...processing_utils import ProcessorMixin
20
+ from ...tokenization_utils_base import BatchEncoding
21
+
22
+
23
+ class GitProcessor(ProcessorMixin):
24
+ r"""
25
+ Constructs a GIT processor which wraps a CLIP image processor and a BERT tokenizer into a single processor.
26
+
27
+ [`GitProcessor`] offers all the functionalities of [`CLIPImageProcessor`] and [`BertTokenizerFast`]. See the
28
+ [`~GitProcessor.__call__`] and [`~GitProcessor.decode`] for more information.
29
+
30
+ Args:
31
+ image_processor ([`AutoImageProcessor`]):
32
+ The image processor is a required input.
33
+ tokenizer ([`AutoTokenizer`]):
34
+ The tokenizer is a required input.
35
+ """
36
+
37
+ attributes = ["image_processor", "tokenizer"]
38
+ image_processor_class = "AutoImageProcessor"
39
+ tokenizer_class = "AutoTokenizer"
40
+
41
+ def __init__(self, image_processor, tokenizer):
42
+ super().__init__(image_processor, tokenizer)
43
+ self.current_processor = self.image_processor
44
+
45
+ def __call__(self, text=None, images=None, return_tensors=None, **kwargs):
46
+ """
47
+ Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
48
+ and `kwargs` arguments to BertTokenizerFast's [`~BertTokenizerFast.__call__`] if `text` is not `None` to encode
49
+ the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
50
+ CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
51
+ of the above two methods for more information.
52
+
53
+ Args:
54
+ text (`str`, `List[str]`, `List[List[str]]`):
55
+ The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
56
+ (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
57
+ `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
58
+ images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
59
+ The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
60
+ tensor. Both channels-first and channels-last formats are supported.
61
+
62
+ return_tensors (`str` or [`~utils.TensorType`], *optional*):
63
+ If set, will return tensors of a particular framework. Acceptable values are:
64
+
65
+ - `'tf'`: Return TensorFlow `tf.constant` objects.
66
+ - `'pt'`: Return PyTorch `torch.Tensor` objects.
67
+ - `'np'`: Return NumPy `np.ndarray` objects.
68
+ - `'jax'`: Return JAX `jnp.ndarray` objects.
69
+
70
+ Returns:
71
+ [`BatchEncoding`]: A [`BatchEncoding`] with the following fields:
72
+
73
+ - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
74
+ - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
75
+ `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
76
+ `None`).
77
+ - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
78
+ """
79
+
80
+ if text is None and images is None:
81
+ raise ValueError("You have to specify either text or images. Both cannot be none.")
82
+
83
+ if text is not None:
84
+ encoding = self.tokenizer(text, return_tensors=return_tensors, **kwargs)
85
+
86
+ if images is not None:
87
+ image_features = self.image_processor(images, return_tensors=return_tensors, **kwargs)
88
+
89
+ if text is not None and images is not None:
90
+ encoding["pixel_values"] = image_features.pixel_values
91
+ return encoding
92
+ elif text is not None:
93
+ return encoding
94
+ else:
95
+ return BatchEncoding(data=dict(**image_features), tensor_type=return_tensors)
96
+
97
+ def batch_decode(self, *args, **kwargs):
98
+ """
99
+ This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
100
+ refer to the docstring of this method for more information.
101
+ """
102
+ return self.tokenizer.batch_decode(*args, **kwargs)
103
+
104
+ def decode(self, *args, **kwargs):
105
+ """
106
+ This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
107
+ the docstring of this method for more information.
108
+ """
109
+ return self.tokenizer.decode(*args, **kwargs)
110
+
111
+ @property
112
+ def model_input_names(self):
113
+ return ["input_ids", "attention_mask", "pixel_values"]
llmeval-env/lib/python3.10/site-packages/transformers/quantizers/__init__.py ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024 The HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ from .auto import AutoHfQuantizer, AutoQuantizationConfig
15
+ from .base import HfQuantizer
llmeval-env/lib/python3.10/site-packages/transformers/quantizers/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (313 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/quantizers/__pycache__/auto.cpython-310.pyc ADDED
Binary file (4.58 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/quantizers/__pycache__/base.cpython-310.pyc ADDED
Binary file (9.79 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/quantizers/__pycache__/quantizer_aqlm.cpython-310.pyc ADDED
Binary file (3.47 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/quantizers/__pycache__/quantizer_awq.cpython-310.pyc ADDED
Binary file (4.25 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/quantizers/__pycache__/quantizer_bnb_4bit.cpython-310.pyc ADDED
Binary file (10.5 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/quantizers/__pycache__/quantizer_bnb_8bit.cpython-310.pyc ADDED
Binary file (10.2 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/quantizers/__pycache__/quantizer_gptq.cpython-310.pyc ADDED
Binary file (3.68 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/quantizers/__pycache__/quantizer_quanto.cpython-310.pyc ADDED
Binary file (6.97 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/quantizers/__pycache__/quantizers_utils.cpython-310.pyc ADDED
Binary file (607 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/quantizers/auto.py ADDED
@@ -0,0 +1,161 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024 The HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ import warnings
15
+ from typing import Dict, Optional, Union
16
+
17
+ from ..models.auto.configuration_auto import AutoConfig
18
+ from ..utils.quantization_config import (
19
+ AqlmConfig,
20
+ AwqConfig,
21
+ BitsAndBytesConfig,
22
+ GPTQConfig,
23
+ QuantizationConfigMixin,
24
+ QuantizationMethod,
25
+ QuantoConfig,
26
+ )
27
+ from .quantizer_aqlm import AqlmHfQuantizer
28
+ from .quantizer_awq import AwqQuantizer
29
+ from .quantizer_bnb_4bit import Bnb4BitHfQuantizer
30
+ from .quantizer_bnb_8bit import Bnb8BitHfQuantizer
31
+ from .quantizer_gptq import GptqHfQuantizer
32
+ from .quantizer_quanto import QuantoHfQuantizer
33
+
34
+
35
+ AUTO_QUANTIZER_MAPPING = {
36
+ "awq": AwqQuantizer,
37
+ "bitsandbytes_4bit": Bnb4BitHfQuantizer,
38
+ "bitsandbytes_8bit": Bnb8BitHfQuantizer,
39
+ "gptq": GptqHfQuantizer,
40
+ "aqlm": AqlmHfQuantizer,
41
+ "quanto": QuantoHfQuantizer,
42
+ }
43
+
44
+ AUTO_QUANTIZATION_CONFIG_MAPPING = {
45
+ "awq": AwqConfig,
46
+ "bitsandbytes_4bit": BitsAndBytesConfig,
47
+ "bitsandbytes_8bit": BitsAndBytesConfig,
48
+ "gptq": GPTQConfig,
49
+ "aqlm": AqlmConfig,
50
+ "quanto": QuantoConfig,
51
+ }
52
+
53
+
54
+ class AutoQuantizationConfig:
55
+ """
56
+ The Auto-HF quantization config class that takes care of automatically dispatching to the correct
57
+ quantization config given a quantization config stored in a dictionary.
58
+ """
59
+
60
+ @classmethod
61
+ def from_dict(cls, quantization_config_dict: Dict):
62
+ quant_method = quantization_config_dict.get("quant_method", None)
63
+ # We need a special care for bnb models to make sure everything is BC ..
64
+ if quantization_config_dict.get("load_in_8bit", False) or quantization_config_dict.get("load_in_4bit", False):
65
+ suffix = "_4bit" if quantization_config_dict.get("load_in_4bit", False) else "_8bit"
66
+ quant_method = QuantizationMethod.BITS_AND_BYTES + suffix
67
+ elif quant_method is None:
68
+ raise ValueError(
69
+ "The model's quantization config from the arguments has no `quant_method` attribute. Make sure that the model has been correctly quantized"
70
+ )
71
+
72
+ if quant_method not in AUTO_QUANTIZATION_CONFIG_MAPPING.keys():
73
+ raise ValueError(
74
+ f"Unknown quantization type, got {quant_method} - supported types are:"
75
+ f" {list(AUTO_QUANTIZER_MAPPING.keys())}"
76
+ )
77
+
78
+ target_cls = AUTO_QUANTIZATION_CONFIG_MAPPING[quant_method]
79
+ return target_cls.from_dict(quantization_config_dict)
80
+
81
+ @classmethod
82
+ def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
83
+ model_config = AutoConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)
84
+ if getattr(model_config, "quantization_config", None) is None:
85
+ raise ValueError(
86
+ f"Did not found a `quantization_config` in {pretrained_model_name_or_path}. Make sure that the model is correctly quantized."
87
+ )
88
+ quantization_config_dict = model_config.quantization_config
89
+ quantization_config = cls.from_dict(quantization_config_dict)
90
+ # Update with potential kwargs that are passed through from_pretrained.
91
+ quantization_config.update(kwargs)
92
+ return quantization_config
93
+
94
+
95
+ class AutoHfQuantizer:
96
+ """
97
+ The Auto-HF quantizer class that takes care of automatically instantiating to the correct
98
+ `HfQuantizer` given the `QuantizationConfig`.
99
+ """
100
+
101
+ @classmethod
102
+ def from_config(cls, quantization_config: Union[QuantizationConfigMixin, Dict], **kwargs):
103
+ # Convert it to a QuantizationConfig if the q_config is a dict
104
+ if isinstance(quantization_config, dict):
105
+ quantization_config = AutoQuantizationConfig.from_dict(quantization_config)
106
+
107
+ quant_method = quantization_config.quant_method
108
+
109
+ # Again, we need a special care for bnb as we have a single quantization config
110
+ # class for both 4-bit and 8-bit quantization
111
+ if quant_method == QuantizationMethod.BITS_AND_BYTES:
112
+ if quantization_config.load_in_8bit:
113
+ quant_method += "_8bit"
114
+ else:
115
+ quant_method += "_4bit"
116
+
117
+ if quant_method not in AUTO_QUANTIZER_MAPPING.keys():
118
+ raise ValueError(
119
+ f"Unknown quantization type, got {quant_method} - supported types are:"
120
+ f" {list(AUTO_QUANTIZER_MAPPING.keys())}"
121
+ )
122
+
123
+ target_cls = AUTO_QUANTIZER_MAPPING[quant_method]
124
+ return target_cls(quantization_config, **kwargs)
125
+
126
+ @classmethod
127
+ def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
128
+ quantization_config = AutoQuantizationConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)
129
+ return cls.from_config(quantization_config)
130
+
131
+ @classmethod
132
+ def merge_quantization_configs(
133
+ cls,
134
+ quantization_config: Union[dict, QuantizationConfigMixin],
135
+ quantization_config_from_args: Optional[QuantizationConfigMixin],
136
+ ):
137
+ """
138
+ handles situations where both quantization_config from args and quantization_config from model config are present.
139
+ """
140
+ if quantization_config_from_args is not None:
141
+ warning_msg = (
142
+ "You passed `quantization_config` or equivalent parameters to `from_pretrained` but the model you're loading"
143
+ " already has a `quantization_config` attribute. The `quantization_config` from the model will be used."
144
+ )
145
+ else:
146
+ warning_msg = ""
147
+
148
+ if isinstance(quantization_config, dict):
149
+ quantization_config = AutoQuantizationConfig.from_dict(quantization_config)
150
+
151
+ if isinstance(quantization_config, (GPTQConfig, AwqConfig)) and quantization_config_from_args is not None:
152
+ # special case for GPTQ / AWQ config collision
153
+ loading_attr_dict = quantization_config_from_args.get_loading_attributes()
154
+ for attr, val in loading_attr_dict.items():
155
+ setattr(quantization_config, attr, val)
156
+ warning_msg += f"However, loading attributes (e.g. {list(loading_attr_dict.keys())}) will be overwritten with the one you passed to `from_pretrained`. The rest will be ignored."
157
+
158
+ if warning_msg != "":
159
+ warnings.warn(warning_msg)
160
+
161
+ return quantization_config
llmeval-env/lib/python3.10/site-packages/transformers/quantizers/base.py ADDED
@@ -0,0 +1,213 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024 The HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ from abc import ABC, abstractmethod
15
+ from typing import TYPE_CHECKING, Any, Dict, List, Optional, Union
16
+
17
+ from ..utils import is_torch_available
18
+ from ..utils.quantization_config import QuantizationConfigMixin
19
+
20
+
21
+ if TYPE_CHECKING:
22
+ from ..modeling_utils import PreTrainedModel
23
+
24
+ if is_torch_available():
25
+ import torch
26
+
27
+
28
+ class HfQuantizer(ABC):
29
+ """
30
+ Abstract class of the HuggingFace quantizer. Supports for now quantizing HF transformers models for inference and/or quantization.
31
+ This class is used only for transformers.PreTrainedModel.from_pretrained and cannot be easily used outside the scope of that method
32
+ yet.
33
+
34
+ Attributes
35
+ quantization_config (`transformers.utils.quantization_config.QuantizationConfigMixin`):
36
+ The quantization config that defines the quantization parameters of your model that you want to quantize.
37
+ modules_to_not_convert (`List[str]`, *optional*):
38
+ The list of module names to not convert when quantizing the model.
39
+ required_packages (`List[str]`, *optional*):
40
+ The list of required pip packages to install prior to using the quantizer
41
+ requires_calibration (`bool`):
42
+ Whether the quantization method requires to calibrate the model before using it.
43
+ requires_parameters_quantization (`bool`):
44
+ Whether the quantization method requires to create a new Parameter. For example, for bitsandbytes, it is
45
+ required to create a new xxxParameter in order to properly quantize the model.
46
+ """
47
+
48
+ requires_calibration = False
49
+ required_packages = None
50
+ requires_parameters_quantization = False
51
+
52
+ def __init__(self, quantization_config: QuantizationConfigMixin, **kwargs):
53
+ self.quantization_config = quantization_config
54
+
55
+ # -- Handle extra kwargs below --
56
+ self.modules_to_not_convert = kwargs.pop("modules_to_not_convert", [])
57
+ self.pre_quantized = kwargs.pop("pre_quantized", True)
58
+
59
+ if not self.pre_quantized and self.requires_calibration:
60
+ raise ValueError(
61
+ f"The quantization method {quantization_config.quant_method} does require the model to be pre-quantized."
62
+ f" You explicitly passed `pre_quantized=False` meaning your model weights are not quantized. Make sure to "
63
+ f"pass `pre_quantized=True` while knowing what you are doing."
64
+ )
65
+
66
+ def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype":
67
+ """
68
+ Some quantization methods require to explicitly set the dtype of the model to a
69
+ target dtype. You need to override this method in case you want to make sure that behavior is
70
+ preserved
71
+
72
+ Args:
73
+ torch_dtype (`torch.dtype`):
74
+ The input dtype that is passed in `from_pretrained`
75
+ """
76
+ return torch_dtype
77
+
78
+ def update_device_map(self, device_map: Optional[Dict[str, Any]]) -> Optional[Dict[str, Any]]:
79
+ """
80
+ Override this method if you want to pass a override the existing device map with a new
81
+ one. E.g. for bitsandbytes, since `accelerate` is a hard requirement, if no device_map is
82
+ passed, the device_map is set to `"auto"``
83
+
84
+ Args:
85
+ device_map (`Union[dict, str]`, *optional*):
86
+ The device_map that is passed through the `from_pretrained` method.
87
+ """
88
+ return device_map
89
+
90
+ def adjust_target_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype":
91
+ """
92
+ Override this method if you want to adjust the `target_dtype` variable used in `from_pretrained`
93
+ to compute the device_map in case the device_map is a `str`. E.g. for bitsandbytes we force-set `target_dtype`
94
+ to `torch.int8` and for 4-bit we pass a custom enum `accelerate.CustomDtype.int4`.
95
+
96
+ Args:
97
+ torch_dtype (`torch.dtype`, *optional*):
98
+ The torch_dtype that is used to compute the device_map.
99
+ """
100
+ return torch_dtype
101
+
102
+ def update_missing_keys(self, model, missing_keys: List[str], prefix: str) -> List[str]:
103
+ """
104
+ Override this method if you want to adjust the `missing_keys`.
105
+
106
+ Args:
107
+ missing_keys (`List[str]`, *optional*):
108
+ The list of missing keys in the checkpoint compared to the state dict of the model
109
+ """
110
+ return missing_keys
111
+
112
+ def get_special_dtypes_update(self, model, torch_dtype: "torch.dtype") -> Dict[str, "torch.dtype"]:
113
+ """
114
+ returns dtypes for modules that are not quantized - used for the computation of the device_map in case
115
+ one passes a str as a device_map. The method will use the `modules_to_not_convert` that is modified
116
+ in `_process_model_before_weight_loading`.
117
+
118
+ Args:
119
+ model (`~transformers.PreTrainedModel`):
120
+ The model to quantize
121
+ torch_dtype (`torch.dtype`):
122
+ The dtype passed in `from_pretrained` method.
123
+ """
124
+
125
+ return {
126
+ name: torch_dtype
127
+ for name, _ in model.named_parameters()
128
+ if any(m in name for m in self.modules_to_not_convert)
129
+ }
130
+
131
+ def adjust_max_memory(self, max_memory: Dict[str, Union[int, str]]) -> Dict[str, Union[int, str]]:
132
+ """adjust max_memory argument for infer_auto_device_map() if extra memory is needed for quantization"""
133
+ return max_memory
134
+
135
+ def check_quantized_param(
136
+ self,
137
+ model: "PreTrainedModel",
138
+ param_value: "torch.Tensor",
139
+ param_name: str,
140
+ state_dict: Dict[str, Any],
141
+ **kwargs,
142
+ ) -> bool:
143
+ """
144
+ checks if a loaded state_dict component is part of quantized param + some validation; only defined if
145
+ requires_parameters_quantization == True for quantization methods that require to create a new parameters
146
+ for quantization.
147
+ """
148
+ return False
149
+
150
+ def create_quantized_param(self, *args, **kwargs) -> "torch.nn.Parameter":
151
+ """
152
+ takes needed components from state_dict and creates quantized param; only applicable if
153
+ requires_parameters_quantization == True
154
+ """
155
+ if not self.requires_parameters_quantization:
156
+ raise AttributeError(
157
+ f"`.create_quantized_param()` method is not supported by quantizer class {self.__class__.__name__}."
158
+ )
159
+
160
+ def validate_environment(self, *args, **kwargs):
161
+ """
162
+ This method is used to potentially check for potential conflicts with arguments that are
163
+ passed in `from_pretrained`. You need to define it for all future quantizers that are integrated with transformers.
164
+ If no explicit check are needed, simply return nothing.
165
+ """
166
+ return
167
+
168
+ def preprocess_model(self, model: "PreTrainedModel", **kwargs):
169
+ """
170
+ Setting model attributes and/or converting model before weights loading. At this point
171
+ the model should be initialized on the meta device so you can freely manipulate the skeleton
172
+ of the model in order to replace modules in-place. Make sure to override the abstract method `_process_model_before_weight_loading`.
173
+
174
+ Args:
175
+ model (`~transformers.PreTrainedModel`):
176
+ The model to quantize
177
+ kwargs (`dict`, *optional*):
178
+ The keyword arguments that are passed along `_process_model_before_weight_loading`.
179
+ """
180
+ model.is_quantized = True
181
+ model.quantization_method = self.quantization_config.quant_method
182
+ return self._process_model_before_weight_loading(model, **kwargs)
183
+
184
+ def postprocess_model(self, model: "PreTrainedModel", **kwargs):
185
+ """
186
+ Post-process the model post weights loading.
187
+ Make sure to override the abstract method `_process_model_after_weight_loading`.
188
+
189
+ Args:
190
+ model (`~transformers.PreTrainedModel`):
191
+ The model to quantize
192
+ kwargs (`dict`, *optional*):
193
+ The keyword arguments that are passed along `_process_model_after_weight_loading`.
194
+ """
195
+ return self._process_model_after_weight_loading(model, **kwargs)
196
+
197
+ @abstractmethod
198
+ def _process_model_before_weight_loading(self, model, **kwargs):
199
+ ...
200
+
201
+ @abstractmethod
202
+ def _process_model_after_weight_loading(self, model, **kwargs):
203
+ ...
204
+
205
+ @property
206
+ @abstractmethod
207
+ def is_serializable(self):
208
+ ...
209
+
210
+ @property
211
+ @abstractmethod
212
+ def is_trainable(self):
213
+ ...
llmeval-env/lib/python3.10/site-packages/transformers/quantizers/quantizer_aqlm.py ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024 The HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ import importlib
15
+ from typing import TYPE_CHECKING, Optional
16
+
17
+ from packaging import version
18
+
19
+ from .base import HfQuantizer
20
+
21
+
22
+ if TYPE_CHECKING:
23
+ from ..modeling_utils import PreTrainedModel
24
+
25
+ from ..integrations import replace_with_aqlm_linear
26
+ from ..utils import is_accelerate_available, is_aqlm_available, is_torch_available, logging
27
+ from ..utils.quantization_config import QuantizationConfigMixin
28
+
29
+
30
+ if is_torch_available():
31
+ import torch
32
+
33
+ logger = logging.get_logger(__name__)
34
+
35
+
36
+ class AqlmHfQuantizer(HfQuantizer):
37
+ """
38
+ Quantizer of the AQLM method. Enables the loading of prequantized models.
39
+ """
40
+
41
+ requires_calibration = True
42
+ required_packages = ["aqlm"]
43
+ optimum_quantizer = None
44
+
45
+ def __init__(self, quantization_config: QuantizationConfigMixin, **kwargs):
46
+ super().__init__(quantization_config, **kwargs)
47
+ self.quantization_config = quantization_config
48
+
49
+ def validate_environment(self, *args, **kwargs):
50
+ if not is_accelerate_available():
51
+ raise ImportError("Using `aqlm` quantization requires Accelerate: `pip install accelerate`")
52
+
53
+ if not is_aqlm_available():
54
+ raise ImportError("Using `aqlm` quantization requires AQLM: `pip install aqlm[gpu,cpu]`")
55
+
56
+ def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype":
57
+ if torch_dtype is None:
58
+ if torch.cuda.is_available():
59
+ torch_dtype = torch.float16
60
+ logger.info(
61
+ "CUDA available. Assuming AQLM inference on GPU and loading the model in `torch.float16`. To overwrite it, set `torch_dtype` manually."
62
+ )
63
+ else:
64
+ torch_dtype = torch.float32
65
+ logger.info(
66
+ "CUDA is unavailable. Assuming AQLM inference on CPU and loading the model in `torch.float32`. To overwrite it, set `torch_dtype` manually."
67
+ )
68
+ return torch_dtype
69
+
70
+ def _process_model_before_weight_loading(
71
+ self,
72
+ model: "PreTrainedModel",
73
+ **kwargs,
74
+ ):
75
+ replace_with_aqlm_linear(
76
+ model,
77
+ quantization_config=self.quantization_config,
78
+ linear_weights_not_to_quantize=self.quantization_config.linear_weights_not_to_quantize,
79
+ )
80
+ model.config.quantization_config = self.quantization_config
81
+
82
+ def _process_model_after_weight_loading(self, model: "PreTrainedModel", **kwargs):
83
+ return model
84
+
85
+ @property
86
+ def is_trainable(self, model: Optional["PreTrainedModel"] = None):
87
+ aqlm_supports_training = version.parse(importlib.metadata.version("aqlm")) >= version.parse("1.0.2")
88
+ if aqlm_supports_training:
89
+ return True
90
+ else:
91
+ logger.warning(
92
+ f"Currently installed `aqlm` version ({importlib.metadata.version('aqlm')}) doesn't support training. If you wish to train a quantized model, please update `aqlm` with `pip install aqlm>=1.0.2`"
93
+ )
94
+ return False
95
+
96
+ @property
97
+ def is_serializable(self):
98
+ return True