Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- llmeval-env/lib/python3.10/site-packages/sympy/categories/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/categories/tests/__pycache__/test_baseclasses.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/categories/tests/__pycache__/test_drawing.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/categories/tests/test_drawing.py +919 -0
- llmeval-env/lib/python3.10/site-packages/sympy/plotting/__init__.py +22 -0
- llmeval-env/lib/python3.10/site-packages/sympy/plotting/__pycache__/experimental_lambdify.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/plotting/__pycache__/plot_implicit.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/plotting/experimental_lambdify.py +643 -0
- llmeval-env/lib/python3.10/site-packages/sympy/plotting/intervalmath/__init__.py +12 -0
- llmeval-env/lib/python3.10/site-packages/sympy/plotting/intervalmath/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/plotting/intervalmath/__pycache__/interval_membership.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/plotting/intervalmath/__pycache__/lib_interval.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/plotting/intervalmath/interval_membership.py +78 -0
- llmeval-env/lib/python3.10/site-packages/sympy/plotting/intervalmath/lib_interval.py +452 -0
- llmeval-env/lib/python3.10/site-packages/sympy/plotting/plot.py +2637 -0
- llmeval-env/lib/python3.10/site-packages/sympy/plotting/plot_implicit.py +432 -0
- llmeval-env/lib/python3.10/site-packages/sympy/plotting/pygletplot/__init__.py +138 -0
- llmeval-env/lib/python3.10/site-packages/sympy/plotting/pygletplot/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/plotting/pygletplot/__pycache__/color_scheme.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/plotting/pygletplot/__pycache__/managed_window.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/plotting/pygletplot/__pycache__/plot.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/plotting/pygletplot/__pycache__/plot_axes.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/plotting/pygletplot/__pycache__/plot_camera.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/plotting/pygletplot/__pycache__/plot_controller.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/plotting/pygletplot/__pycache__/plot_curve.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/plotting/pygletplot/__pycache__/plot_interval.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/plotting/pygletplot/__pycache__/plot_mode.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/plotting/pygletplot/__pycache__/plot_mode_base.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/plotting/pygletplot/__pycache__/plot_modes.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/plotting/pygletplot/__pycache__/plot_object.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/plotting/pygletplot/__pycache__/plot_rotation.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/plotting/pygletplot/__pycache__/plot_surface.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/plotting/pygletplot/__pycache__/plot_window.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/plotting/pygletplot/__pycache__/util.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/plotting/pygletplot/color_scheme.py +336 -0
- llmeval-env/lib/python3.10/site-packages/sympy/plotting/pygletplot/managed_window.py +106 -0
- llmeval-env/lib/python3.10/site-packages/sympy/plotting/pygletplot/plot.py +464 -0
- llmeval-env/lib/python3.10/site-packages/sympy/plotting/pygletplot/plot_axes.py +251 -0
- llmeval-env/lib/python3.10/site-packages/sympy/plotting/pygletplot/plot_camera.py +128 -0
- llmeval-env/lib/python3.10/site-packages/sympy/plotting/pygletplot/plot_controller.py +218 -0
- llmeval-env/lib/python3.10/site-packages/sympy/plotting/pygletplot/plot_curve.py +82 -0
- llmeval-env/lib/python3.10/site-packages/sympy/plotting/pygletplot/plot_interval.py +181 -0
- llmeval-env/lib/python3.10/site-packages/sympy/plotting/pygletplot/plot_mode.py +400 -0
- llmeval-env/lib/python3.10/site-packages/sympy/plotting/pygletplot/plot_mode_base.py +378 -0
- llmeval-env/lib/python3.10/site-packages/sympy/plotting/pygletplot/plot_modes.py +209 -0
- llmeval-env/lib/python3.10/site-packages/sympy/plotting/pygletplot/plot_object.py +17 -0
- llmeval-env/lib/python3.10/site-packages/sympy/plotting/pygletplot/plot_rotation.py +68 -0
- llmeval-env/lib/python3.10/site-packages/sympy/plotting/pygletplot/plot_surface.py +102 -0
- llmeval-env/lib/python3.10/site-packages/sympy/plotting/pygletplot/plot_window.py +144 -0
- llmeval-env/lib/python3.10/site-packages/sympy/plotting/pygletplot/tests/__init__.py +0 -0
llmeval-env/lib/python3.10/site-packages/sympy/categories/tests/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (195 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/categories/tests/__pycache__/test_baseclasses.cpython-310.pyc
ADDED
Binary file (5 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/categories/tests/__pycache__/test_drawing.cpython-310.pyc
ADDED
Binary file (17.5 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/categories/tests/test_drawing.py
ADDED
@@ -0,0 +1,919 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.categories.diagram_drawing import _GrowableGrid, ArrowStringDescription
|
2 |
+
from sympy.categories import (DiagramGrid, Object, NamedMorphism,
|
3 |
+
Diagram, XypicDiagramDrawer, xypic_draw_diagram)
|
4 |
+
from sympy.sets.sets import FiniteSet
|
5 |
+
|
6 |
+
|
7 |
+
def test_GrowableGrid():
|
8 |
+
grid = _GrowableGrid(1, 2)
|
9 |
+
|
10 |
+
# Check dimensions.
|
11 |
+
assert grid.width == 1
|
12 |
+
assert grid.height == 2
|
13 |
+
|
14 |
+
# Check initialization of elements.
|
15 |
+
assert grid[0, 0] is None
|
16 |
+
assert grid[1, 0] is None
|
17 |
+
|
18 |
+
# Check assignment to elements.
|
19 |
+
grid[0, 0] = 1
|
20 |
+
grid[1, 0] = "two"
|
21 |
+
|
22 |
+
assert grid[0, 0] == 1
|
23 |
+
assert grid[1, 0] == "two"
|
24 |
+
|
25 |
+
# Check appending a row.
|
26 |
+
grid.append_row()
|
27 |
+
|
28 |
+
assert grid.width == 1
|
29 |
+
assert grid.height == 3
|
30 |
+
|
31 |
+
assert grid[0, 0] == 1
|
32 |
+
assert grid[1, 0] == "two"
|
33 |
+
assert grid[2, 0] is None
|
34 |
+
|
35 |
+
# Check appending a column.
|
36 |
+
grid.append_column()
|
37 |
+
assert grid.width == 2
|
38 |
+
assert grid.height == 3
|
39 |
+
|
40 |
+
assert grid[0, 0] == 1
|
41 |
+
assert grid[1, 0] == "two"
|
42 |
+
assert grid[2, 0] is None
|
43 |
+
|
44 |
+
assert grid[0, 1] is None
|
45 |
+
assert grid[1, 1] is None
|
46 |
+
assert grid[2, 1] is None
|
47 |
+
|
48 |
+
grid = _GrowableGrid(1, 2)
|
49 |
+
grid[0, 0] = 1
|
50 |
+
grid[1, 0] = "two"
|
51 |
+
|
52 |
+
# Check prepending a row.
|
53 |
+
grid.prepend_row()
|
54 |
+
assert grid.width == 1
|
55 |
+
assert grid.height == 3
|
56 |
+
|
57 |
+
assert grid[0, 0] is None
|
58 |
+
assert grid[1, 0] == 1
|
59 |
+
assert grid[2, 0] == "two"
|
60 |
+
|
61 |
+
# Check prepending a column.
|
62 |
+
grid.prepend_column()
|
63 |
+
assert grid.width == 2
|
64 |
+
assert grid.height == 3
|
65 |
+
|
66 |
+
assert grid[0, 0] is None
|
67 |
+
assert grid[1, 0] is None
|
68 |
+
assert grid[2, 0] is None
|
69 |
+
|
70 |
+
assert grid[0, 1] is None
|
71 |
+
assert grid[1, 1] == 1
|
72 |
+
assert grid[2, 1] == "two"
|
73 |
+
|
74 |
+
|
75 |
+
def test_DiagramGrid():
|
76 |
+
# Set up some objects and morphisms.
|
77 |
+
A = Object("A")
|
78 |
+
B = Object("B")
|
79 |
+
C = Object("C")
|
80 |
+
D = Object("D")
|
81 |
+
E = Object("E")
|
82 |
+
|
83 |
+
f = NamedMorphism(A, B, "f")
|
84 |
+
g = NamedMorphism(B, C, "g")
|
85 |
+
h = NamedMorphism(D, A, "h")
|
86 |
+
k = NamedMorphism(D, B, "k")
|
87 |
+
|
88 |
+
# A one-morphism diagram.
|
89 |
+
d = Diagram([f])
|
90 |
+
grid = DiagramGrid(d)
|
91 |
+
|
92 |
+
assert grid.width == 2
|
93 |
+
assert grid.height == 1
|
94 |
+
assert grid[0, 0] == A
|
95 |
+
assert grid[0, 1] == B
|
96 |
+
assert grid.morphisms == {f: FiniteSet()}
|
97 |
+
|
98 |
+
# A triangle.
|
99 |
+
d = Diagram([f, g], {g * f: "unique"})
|
100 |
+
grid = DiagramGrid(d)
|
101 |
+
|
102 |
+
assert grid.width == 2
|
103 |
+
assert grid.height == 2
|
104 |
+
assert grid[0, 0] == A
|
105 |
+
assert grid[0, 1] == B
|
106 |
+
assert grid[1, 0] == C
|
107 |
+
assert grid[1, 1] is None
|
108 |
+
assert grid.morphisms == {f: FiniteSet(), g: FiniteSet(),
|
109 |
+
g * f: FiniteSet("unique")}
|
110 |
+
|
111 |
+
# A triangle with a "loop" morphism.
|
112 |
+
l_A = NamedMorphism(A, A, "l_A")
|
113 |
+
d = Diagram([f, g, l_A])
|
114 |
+
grid = DiagramGrid(d)
|
115 |
+
|
116 |
+
assert grid.width == 2
|
117 |
+
assert grid.height == 2
|
118 |
+
assert grid[0, 0] == A
|
119 |
+
assert grid[0, 1] == B
|
120 |
+
assert grid[1, 0] is None
|
121 |
+
assert grid[1, 1] == C
|
122 |
+
assert grid.morphisms == {f: FiniteSet(), g: FiniteSet(), l_A: FiniteSet()}
|
123 |
+
|
124 |
+
# A simple diagram.
|
125 |
+
d = Diagram([f, g, h, k])
|
126 |
+
grid = DiagramGrid(d)
|
127 |
+
|
128 |
+
assert grid.width == 3
|
129 |
+
assert grid.height == 2
|
130 |
+
assert grid[0, 0] == A
|
131 |
+
assert grid[0, 1] == B
|
132 |
+
assert grid[0, 2] == D
|
133 |
+
assert grid[1, 0] is None
|
134 |
+
assert grid[1, 1] == C
|
135 |
+
assert grid[1, 2] is None
|
136 |
+
assert grid.morphisms == {f: FiniteSet(), g: FiniteSet(), h: FiniteSet(),
|
137 |
+
k: FiniteSet()}
|
138 |
+
|
139 |
+
assert str(grid) == '[[Object("A"), Object("B"), Object("D")], ' \
|
140 |
+
'[None, Object("C"), None]]'
|
141 |
+
|
142 |
+
# A chain of morphisms.
|
143 |
+
f = NamedMorphism(A, B, "f")
|
144 |
+
g = NamedMorphism(B, C, "g")
|
145 |
+
h = NamedMorphism(C, D, "h")
|
146 |
+
k = NamedMorphism(D, E, "k")
|
147 |
+
d = Diagram([f, g, h, k])
|
148 |
+
grid = DiagramGrid(d)
|
149 |
+
|
150 |
+
assert grid.width == 3
|
151 |
+
assert grid.height == 3
|
152 |
+
assert grid[0, 0] == A
|
153 |
+
assert grid[0, 1] == B
|
154 |
+
assert grid[0, 2] is None
|
155 |
+
assert grid[1, 0] is None
|
156 |
+
assert grid[1, 1] == C
|
157 |
+
assert grid[1, 2] == D
|
158 |
+
assert grid[2, 0] is None
|
159 |
+
assert grid[2, 1] is None
|
160 |
+
assert grid[2, 2] == E
|
161 |
+
assert grid.morphisms == {f: FiniteSet(), g: FiniteSet(), h: FiniteSet(),
|
162 |
+
k: FiniteSet()}
|
163 |
+
|
164 |
+
# A square.
|
165 |
+
f = NamedMorphism(A, B, "f")
|
166 |
+
g = NamedMorphism(B, D, "g")
|
167 |
+
h = NamedMorphism(A, C, "h")
|
168 |
+
k = NamedMorphism(C, D, "k")
|
169 |
+
d = Diagram([f, g, h, k])
|
170 |
+
grid = DiagramGrid(d)
|
171 |
+
|
172 |
+
assert grid.width == 2
|
173 |
+
assert grid.height == 2
|
174 |
+
assert grid[0, 0] == A
|
175 |
+
assert grid[0, 1] == B
|
176 |
+
assert grid[1, 0] == C
|
177 |
+
assert grid[1, 1] == D
|
178 |
+
assert grid.morphisms == {f: FiniteSet(), g: FiniteSet(), h: FiniteSet(),
|
179 |
+
k: FiniteSet()}
|
180 |
+
|
181 |
+
# A strange diagram which resulted from a typo when creating a
|
182 |
+
# test for five lemma, but which allowed to stop one extra problem
|
183 |
+
# in the algorithm.
|
184 |
+
A = Object("A")
|
185 |
+
B = Object("B")
|
186 |
+
C = Object("C")
|
187 |
+
D = Object("D")
|
188 |
+
E = Object("E")
|
189 |
+
A_ = Object("A'")
|
190 |
+
B_ = Object("B'")
|
191 |
+
C_ = Object("C'")
|
192 |
+
D_ = Object("D'")
|
193 |
+
E_ = Object("E'")
|
194 |
+
|
195 |
+
f = NamedMorphism(A, B, "f")
|
196 |
+
g = NamedMorphism(B, C, "g")
|
197 |
+
h = NamedMorphism(C, D, "h")
|
198 |
+
i = NamedMorphism(D, E, "i")
|
199 |
+
|
200 |
+
# These 4 morphisms should be between primed objects.
|
201 |
+
j = NamedMorphism(A, B, "j")
|
202 |
+
k = NamedMorphism(B, C, "k")
|
203 |
+
l = NamedMorphism(C, D, "l")
|
204 |
+
m = NamedMorphism(D, E, "m")
|
205 |
+
|
206 |
+
o = NamedMorphism(A, A_, "o")
|
207 |
+
p = NamedMorphism(B, B_, "p")
|
208 |
+
q = NamedMorphism(C, C_, "q")
|
209 |
+
r = NamedMorphism(D, D_, "r")
|
210 |
+
s = NamedMorphism(E, E_, "s")
|
211 |
+
|
212 |
+
d = Diagram([f, g, h, i, j, k, l, m, o, p, q, r, s])
|
213 |
+
grid = DiagramGrid(d)
|
214 |
+
|
215 |
+
assert grid.width == 3
|
216 |
+
assert grid.height == 4
|
217 |
+
assert grid[0, 0] is None
|
218 |
+
assert grid[0, 1] == A
|
219 |
+
assert grid[0, 2] == A_
|
220 |
+
assert grid[1, 0] == C
|
221 |
+
assert grid[1, 1] == B
|
222 |
+
assert grid[1, 2] == B_
|
223 |
+
assert grid[2, 0] == C_
|
224 |
+
assert grid[2, 1] == D
|
225 |
+
assert grid[2, 2] == D_
|
226 |
+
assert grid[3, 0] is None
|
227 |
+
assert grid[3, 1] == E
|
228 |
+
assert grid[3, 2] == E_
|
229 |
+
|
230 |
+
morphisms = {}
|
231 |
+
for m in [f, g, h, i, j, k, l, m, o, p, q, r, s]:
|
232 |
+
morphisms[m] = FiniteSet()
|
233 |
+
assert grid.morphisms == morphisms
|
234 |
+
|
235 |
+
# A cube.
|
236 |
+
A1 = Object("A1")
|
237 |
+
A2 = Object("A2")
|
238 |
+
A3 = Object("A3")
|
239 |
+
A4 = Object("A4")
|
240 |
+
A5 = Object("A5")
|
241 |
+
A6 = Object("A6")
|
242 |
+
A7 = Object("A7")
|
243 |
+
A8 = Object("A8")
|
244 |
+
|
245 |
+
# The top face of the cube.
|
246 |
+
f1 = NamedMorphism(A1, A2, "f1")
|
247 |
+
f2 = NamedMorphism(A1, A3, "f2")
|
248 |
+
f3 = NamedMorphism(A2, A4, "f3")
|
249 |
+
f4 = NamedMorphism(A3, A4, "f3")
|
250 |
+
|
251 |
+
# The bottom face of the cube.
|
252 |
+
f5 = NamedMorphism(A5, A6, "f5")
|
253 |
+
f6 = NamedMorphism(A5, A7, "f6")
|
254 |
+
f7 = NamedMorphism(A6, A8, "f7")
|
255 |
+
f8 = NamedMorphism(A7, A8, "f8")
|
256 |
+
|
257 |
+
# The remaining morphisms.
|
258 |
+
f9 = NamedMorphism(A1, A5, "f9")
|
259 |
+
f10 = NamedMorphism(A2, A6, "f10")
|
260 |
+
f11 = NamedMorphism(A3, A7, "f11")
|
261 |
+
f12 = NamedMorphism(A4, A8, "f11")
|
262 |
+
|
263 |
+
d = Diagram([f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11, f12])
|
264 |
+
grid = DiagramGrid(d)
|
265 |
+
|
266 |
+
assert grid.width == 4
|
267 |
+
assert grid.height == 3
|
268 |
+
assert grid[0, 0] is None
|
269 |
+
assert grid[0, 1] == A5
|
270 |
+
assert grid[0, 2] == A6
|
271 |
+
assert grid[0, 3] is None
|
272 |
+
assert grid[1, 0] is None
|
273 |
+
assert grid[1, 1] == A1
|
274 |
+
assert grid[1, 2] == A2
|
275 |
+
assert grid[1, 3] is None
|
276 |
+
assert grid[2, 0] == A7
|
277 |
+
assert grid[2, 1] == A3
|
278 |
+
assert grid[2, 2] == A4
|
279 |
+
assert grid[2, 3] == A8
|
280 |
+
|
281 |
+
morphisms = {}
|
282 |
+
for m in [f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11, f12]:
|
283 |
+
morphisms[m] = FiniteSet()
|
284 |
+
assert grid.morphisms == morphisms
|
285 |
+
|
286 |
+
# A line diagram.
|
287 |
+
A = Object("A")
|
288 |
+
B = Object("B")
|
289 |
+
C = Object("C")
|
290 |
+
D = Object("D")
|
291 |
+
E = Object("E")
|
292 |
+
|
293 |
+
f = NamedMorphism(A, B, "f")
|
294 |
+
g = NamedMorphism(B, C, "g")
|
295 |
+
h = NamedMorphism(C, D, "h")
|
296 |
+
i = NamedMorphism(D, E, "i")
|
297 |
+
d = Diagram([f, g, h, i])
|
298 |
+
grid = DiagramGrid(d, layout="sequential")
|
299 |
+
|
300 |
+
assert grid.width == 5
|
301 |
+
assert grid.height == 1
|
302 |
+
assert grid[0, 0] == A
|
303 |
+
assert grid[0, 1] == B
|
304 |
+
assert grid[0, 2] == C
|
305 |
+
assert grid[0, 3] == D
|
306 |
+
assert grid[0, 4] == E
|
307 |
+
assert grid.morphisms == {f: FiniteSet(), g: FiniteSet(), h: FiniteSet(),
|
308 |
+
i: FiniteSet()}
|
309 |
+
|
310 |
+
# Test the transposed version.
|
311 |
+
grid = DiagramGrid(d, layout="sequential", transpose=True)
|
312 |
+
|
313 |
+
assert grid.width == 1
|
314 |
+
assert grid.height == 5
|
315 |
+
assert grid[0, 0] == A
|
316 |
+
assert grid[1, 0] == B
|
317 |
+
assert grid[2, 0] == C
|
318 |
+
assert grid[3, 0] == D
|
319 |
+
assert grid[4, 0] == E
|
320 |
+
assert grid.morphisms == {f: FiniteSet(), g: FiniteSet(), h: FiniteSet(),
|
321 |
+
i: FiniteSet()}
|
322 |
+
|
323 |
+
# A pullback.
|
324 |
+
m1 = NamedMorphism(A, B, "m1")
|
325 |
+
m2 = NamedMorphism(A, C, "m2")
|
326 |
+
s1 = NamedMorphism(B, D, "s1")
|
327 |
+
s2 = NamedMorphism(C, D, "s2")
|
328 |
+
f1 = NamedMorphism(E, B, "f1")
|
329 |
+
f2 = NamedMorphism(E, C, "f2")
|
330 |
+
g = NamedMorphism(E, A, "g")
|
331 |
+
|
332 |
+
d = Diagram([m1, m2, s1, s2, f1, f2], {g: "unique"})
|
333 |
+
grid = DiagramGrid(d)
|
334 |
+
|
335 |
+
assert grid.width == 3
|
336 |
+
assert grid.height == 2
|
337 |
+
assert grid[0, 0] == A
|
338 |
+
assert grid[0, 1] == B
|
339 |
+
assert grid[0, 2] == E
|
340 |
+
assert grid[1, 0] == C
|
341 |
+
assert grid[1, 1] == D
|
342 |
+
assert grid[1, 2] is None
|
343 |
+
|
344 |
+
morphisms = {g: FiniteSet("unique")}
|
345 |
+
for m in [m1, m2, s1, s2, f1, f2]:
|
346 |
+
morphisms[m] = FiniteSet()
|
347 |
+
assert grid.morphisms == morphisms
|
348 |
+
|
349 |
+
# Test the pullback with sequential layout, just for stress
|
350 |
+
# testing.
|
351 |
+
grid = DiagramGrid(d, layout="sequential")
|
352 |
+
|
353 |
+
assert grid.width == 5
|
354 |
+
assert grid.height == 1
|
355 |
+
assert grid[0, 0] == D
|
356 |
+
assert grid[0, 1] == B
|
357 |
+
assert grid[0, 2] == A
|
358 |
+
assert grid[0, 3] == C
|
359 |
+
assert grid[0, 4] == E
|
360 |
+
assert grid.morphisms == morphisms
|
361 |
+
|
362 |
+
# Test a pullback with object grouping.
|
363 |
+
grid = DiagramGrid(d, groups=FiniteSet(E, FiniteSet(A, B, C, D)))
|
364 |
+
|
365 |
+
assert grid.width == 3
|
366 |
+
assert grid.height == 2
|
367 |
+
assert grid[0, 0] == E
|
368 |
+
assert grid[0, 1] == A
|
369 |
+
assert grid[0, 2] == B
|
370 |
+
assert grid[1, 0] is None
|
371 |
+
assert grid[1, 1] == C
|
372 |
+
assert grid[1, 2] == D
|
373 |
+
assert grid.morphisms == morphisms
|
374 |
+
|
375 |
+
# Five lemma, actually.
|
376 |
+
A = Object("A")
|
377 |
+
B = Object("B")
|
378 |
+
C = Object("C")
|
379 |
+
D = Object("D")
|
380 |
+
E = Object("E")
|
381 |
+
A_ = Object("A'")
|
382 |
+
B_ = Object("B'")
|
383 |
+
C_ = Object("C'")
|
384 |
+
D_ = Object("D'")
|
385 |
+
E_ = Object("E'")
|
386 |
+
|
387 |
+
f = NamedMorphism(A, B, "f")
|
388 |
+
g = NamedMorphism(B, C, "g")
|
389 |
+
h = NamedMorphism(C, D, "h")
|
390 |
+
i = NamedMorphism(D, E, "i")
|
391 |
+
|
392 |
+
j = NamedMorphism(A_, B_, "j")
|
393 |
+
k = NamedMorphism(B_, C_, "k")
|
394 |
+
l = NamedMorphism(C_, D_, "l")
|
395 |
+
m = NamedMorphism(D_, E_, "m")
|
396 |
+
|
397 |
+
o = NamedMorphism(A, A_, "o")
|
398 |
+
p = NamedMorphism(B, B_, "p")
|
399 |
+
q = NamedMorphism(C, C_, "q")
|
400 |
+
r = NamedMorphism(D, D_, "r")
|
401 |
+
s = NamedMorphism(E, E_, "s")
|
402 |
+
|
403 |
+
d = Diagram([f, g, h, i, j, k, l, m, o, p, q, r, s])
|
404 |
+
grid = DiagramGrid(d)
|
405 |
+
|
406 |
+
assert grid.width == 5
|
407 |
+
assert grid.height == 3
|
408 |
+
assert grid[0, 0] is None
|
409 |
+
assert grid[0, 1] == A
|
410 |
+
assert grid[0, 2] == A_
|
411 |
+
assert grid[0, 3] is None
|
412 |
+
assert grid[0, 4] is None
|
413 |
+
assert grid[1, 0] == C
|
414 |
+
assert grid[1, 1] == B
|
415 |
+
assert grid[1, 2] == B_
|
416 |
+
assert grid[1, 3] == C_
|
417 |
+
assert grid[1, 4] is None
|
418 |
+
assert grid[2, 0] == D
|
419 |
+
assert grid[2, 1] == E
|
420 |
+
assert grid[2, 2] is None
|
421 |
+
assert grid[2, 3] == D_
|
422 |
+
assert grid[2, 4] == E_
|
423 |
+
|
424 |
+
morphisms = {}
|
425 |
+
for m in [f, g, h, i, j, k, l, m, o, p, q, r, s]:
|
426 |
+
morphisms[m] = FiniteSet()
|
427 |
+
assert grid.morphisms == morphisms
|
428 |
+
|
429 |
+
# Test the five lemma with object grouping.
|
430 |
+
grid = DiagramGrid(d, FiniteSet(
|
431 |
+
FiniteSet(A, B, C, D, E), FiniteSet(A_, B_, C_, D_, E_)))
|
432 |
+
|
433 |
+
assert grid.width == 6
|
434 |
+
assert grid.height == 3
|
435 |
+
assert grid[0, 0] == A
|
436 |
+
assert grid[0, 1] == B
|
437 |
+
assert grid[0, 2] is None
|
438 |
+
assert grid[0, 3] == A_
|
439 |
+
assert grid[0, 4] == B_
|
440 |
+
assert grid[0, 5] is None
|
441 |
+
assert grid[1, 0] is None
|
442 |
+
assert grid[1, 1] == C
|
443 |
+
assert grid[1, 2] == D
|
444 |
+
assert grid[1, 3] is None
|
445 |
+
assert grid[1, 4] == C_
|
446 |
+
assert grid[1, 5] == D_
|
447 |
+
assert grid[2, 0] is None
|
448 |
+
assert grid[2, 1] is None
|
449 |
+
assert grid[2, 2] == E
|
450 |
+
assert grid[2, 3] is None
|
451 |
+
assert grid[2, 4] is None
|
452 |
+
assert grid[2, 5] == E_
|
453 |
+
assert grid.morphisms == morphisms
|
454 |
+
|
455 |
+
# Test the five lemma with object grouping, but mixing containers
|
456 |
+
# to represent groups.
|
457 |
+
grid = DiagramGrid(d, [(A, B, C, D, E), {A_, B_, C_, D_, E_}])
|
458 |
+
|
459 |
+
assert grid.width == 6
|
460 |
+
assert grid.height == 3
|
461 |
+
assert grid[0, 0] == A
|
462 |
+
assert grid[0, 1] == B
|
463 |
+
assert grid[0, 2] is None
|
464 |
+
assert grid[0, 3] == A_
|
465 |
+
assert grid[0, 4] == B_
|
466 |
+
assert grid[0, 5] is None
|
467 |
+
assert grid[1, 0] is None
|
468 |
+
assert grid[1, 1] == C
|
469 |
+
assert grid[1, 2] == D
|
470 |
+
assert grid[1, 3] is None
|
471 |
+
assert grid[1, 4] == C_
|
472 |
+
assert grid[1, 5] == D_
|
473 |
+
assert grid[2, 0] is None
|
474 |
+
assert grid[2, 1] is None
|
475 |
+
assert grid[2, 2] == E
|
476 |
+
assert grid[2, 3] is None
|
477 |
+
assert grid[2, 4] is None
|
478 |
+
assert grid[2, 5] == E_
|
479 |
+
assert grid.morphisms == morphisms
|
480 |
+
|
481 |
+
# Test the five lemma with object grouping and hints.
|
482 |
+
grid = DiagramGrid(d, {
|
483 |
+
FiniteSet(A, B, C, D, E): {"layout": "sequential",
|
484 |
+
"transpose": True},
|
485 |
+
FiniteSet(A_, B_, C_, D_, E_): {"layout": "sequential",
|
486 |
+
"transpose": True}},
|
487 |
+
transpose=True)
|
488 |
+
|
489 |
+
assert grid.width == 5
|
490 |
+
assert grid.height == 2
|
491 |
+
assert grid[0, 0] == A
|
492 |
+
assert grid[0, 1] == B
|
493 |
+
assert grid[0, 2] == C
|
494 |
+
assert grid[0, 3] == D
|
495 |
+
assert grid[0, 4] == E
|
496 |
+
assert grid[1, 0] == A_
|
497 |
+
assert grid[1, 1] == B_
|
498 |
+
assert grid[1, 2] == C_
|
499 |
+
assert grid[1, 3] == D_
|
500 |
+
assert grid[1, 4] == E_
|
501 |
+
assert grid.morphisms == morphisms
|
502 |
+
|
503 |
+
# A two-triangle disconnected diagram.
|
504 |
+
f = NamedMorphism(A, B, "f")
|
505 |
+
g = NamedMorphism(B, C, "g")
|
506 |
+
f_ = NamedMorphism(A_, B_, "f")
|
507 |
+
g_ = NamedMorphism(B_, C_, "g")
|
508 |
+
d = Diagram([f, g, f_, g_], {g * f: "unique", g_ * f_: "unique"})
|
509 |
+
grid = DiagramGrid(d)
|
510 |
+
|
511 |
+
assert grid.width == 4
|
512 |
+
assert grid.height == 2
|
513 |
+
assert grid[0, 0] == A
|
514 |
+
assert grid[0, 1] == B
|
515 |
+
assert grid[0, 2] == A_
|
516 |
+
assert grid[0, 3] == B_
|
517 |
+
assert grid[1, 0] == C
|
518 |
+
assert grid[1, 1] is None
|
519 |
+
assert grid[1, 2] == C_
|
520 |
+
assert grid[1, 3] is None
|
521 |
+
assert grid.morphisms == {f: FiniteSet(), g: FiniteSet(), f_: FiniteSet(),
|
522 |
+
g_: FiniteSet(), g * f: FiniteSet("unique"),
|
523 |
+
g_ * f_: FiniteSet("unique")}
|
524 |
+
|
525 |
+
# A two-morphism disconnected diagram.
|
526 |
+
f = NamedMorphism(A, B, "f")
|
527 |
+
g = NamedMorphism(C, D, "g")
|
528 |
+
d = Diagram([f, g])
|
529 |
+
grid = DiagramGrid(d)
|
530 |
+
|
531 |
+
assert grid.width == 4
|
532 |
+
assert grid.height == 1
|
533 |
+
assert grid[0, 0] == A
|
534 |
+
assert grid[0, 1] == B
|
535 |
+
assert grid[0, 2] == C
|
536 |
+
assert grid[0, 3] == D
|
537 |
+
assert grid.morphisms == {f: FiniteSet(), g: FiniteSet()}
|
538 |
+
|
539 |
+
# Test a one-object diagram.
|
540 |
+
f = NamedMorphism(A, A, "f")
|
541 |
+
d = Diagram([f])
|
542 |
+
grid = DiagramGrid(d)
|
543 |
+
|
544 |
+
assert grid.width == 1
|
545 |
+
assert grid.height == 1
|
546 |
+
assert grid[0, 0] == A
|
547 |
+
|
548 |
+
# Test a two-object disconnected diagram.
|
549 |
+
g = NamedMorphism(B, B, "g")
|
550 |
+
d = Diagram([f, g])
|
551 |
+
grid = DiagramGrid(d)
|
552 |
+
|
553 |
+
assert grid.width == 2
|
554 |
+
assert grid.height == 1
|
555 |
+
assert grid[0, 0] == A
|
556 |
+
assert grid[0, 1] == B
|
557 |
+
|
558 |
+
|
559 |
+
def test_DiagramGrid_pseudopod():
|
560 |
+
# Test a diagram in which even growing a pseudopod does not
|
561 |
+
# eventually help.
|
562 |
+
A = Object("A")
|
563 |
+
B = Object("B")
|
564 |
+
C = Object("C")
|
565 |
+
D = Object("D")
|
566 |
+
E = Object("E")
|
567 |
+
F = Object("F")
|
568 |
+
A_ = Object("A'")
|
569 |
+
B_ = Object("B'")
|
570 |
+
C_ = Object("C'")
|
571 |
+
D_ = Object("D'")
|
572 |
+
E_ = Object("E'")
|
573 |
+
|
574 |
+
f1 = NamedMorphism(A, B, "f1")
|
575 |
+
f2 = NamedMorphism(A, C, "f2")
|
576 |
+
f3 = NamedMorphism(A, D, "f3")
|
577 |
+
f4 = NamedMorphism(A, E, "f4")
|
578 |
+
f5 = NamedMorphism(A, A_, "f5")
|
579 |
+
f6 = NamedMorphism(A, B_, "f6")
|
580 |
+
f7 = NamedMorphism(A, C_, "f7")
|
581 |
+
f8 = NamedMorphism(A, D_, "f8")
|
582 |
+
f9 = NamedMorphism(A, E_, "f9")
|
583 |
+
f10 = NamedMorphism(A, F, "f10")
|
584 |
+
d = Diagram([f1, f2, f3, f4, f5, f6, f7, f8, f9, f10])
|
585 |
+
grid = DiagramGrid(d)
|
586 |
+
|
587 |
+
assert grid.width == 5
|
588 |
+
assert grid.height == 3
|
589 |
+
assert grid[0, 0] == E
|
590 |
+
assert grid[0, 1] == C
|
591 |
+
assert grid[0, 2] == C_
|
592 |
+
assert grid[0, 3] == E_
|
593 |
+
assert grid[0, 4] == F
|
594 |
+
assert grid[1, 0] == D
|
595 |
+
assert grid[1, 1] == A
|
596 |
+
assert grid[1, 2] == A_
|
597 |
+
assert grid[1, 3] is None
|
598 |
+
assert grid[1, 4] is None
|
599 |
+
assert grid[2, 0] == D_
|
600 |
+
assert grid[2, 1] == B
|
601 |
+
assert grid[2, 2] == B_
|
602 |
+
assert grid[2, 3] is None
|
603 |
+
assert grid[2, 4] is None
|
604 |
+
|
605 |
+
morphisms = {}
|
606 |
+
for f in [f1, f2, f3, f4, f5, f6, f7, f8, f9, f10]:
|
607 |
+
morphisms[f] = FiniteSet()
|
608 |
+
assert grid.morphisms == morphisms
|
609 |
+
|
610 |
+
|
611 |
+
def test_ArrowStringDescription():
|
612 |
+
astr = ArrowStringDescription("cm", "", None, "", "", "d", "r", "_", "f")
|
613 |
+
assert str(astr) == "\\ar[dr]_{f}"
|
614 |
+
|
615 |
+
astr = ArrowStringDescription("cm", "", 12, "", "", "d", "r", "_", "f")
|
616 |
+
assert str(astr) == "\\ar[dr]_{f}"
|
617 |
+
|
618 |
+
astr = ArrowStringDescription("cm", "^", 12, "", "", "d", "r", "_", "f")
|
619 |
+
assert str(astr) == "\\ar@/^12cm/[dr]_{f}"
|
620 |
+
|
621 |
+
astr = ArrowStringDescription("cm", "", 12, "r", "", "d", "r", "_", "f")
|
622 |
+
assert str(astr) == "\\ar[dr]_{f}"
|
623 |
+
|
624 |
+
astr = ArrowStringDescription("cm", "", 12, "r", "u", "d", "r", "_", "f")
|
625 |
+
assert str(astr) == "\\ar@(r,u)[dr]_{f}"
|
626 |
+
|
627 |
+
astr = ArrowStringDescription("cm", "", 12, "r", "u", "d", "r", "_", "f")
|
628 |
+
assert str(astr) == "\\ar@(r,u)[dr]_{f}"
|
629 |
+
|
630 |
+
astr = ArrowStringDescription("cm", "", 12, "r", "u", "d", "r", "_", "f")
|
631 |
+
astr.arrow_style = "{-->}"
|
632 |
+
assert str(astr) == "\\ar@(r,u)@{-->}[dr]_{f}"
|
633 |
+
|
634 |
+
astr = ArrowStringDescription("cm", "_", 12, "", "", "d", "r", "_", "f")
|
635 |
+
astr.arrow_style = "{-->}"
|
636 |
+
assert str(astr) == "\\ar@/_12cm/@{-->}[dr]_{f}"
|
637 |
+
|
638 |
+
|
639 |
+
def test_XypicDiagramDrawer_line():
|
640 |
+
# A linear diagram.
|
641 |
+
A = Object("A")
|
642 |
+
B = Object("B")
|
643 |
+
C = Object("C")
|
644 |
+
D = Object("D")
|
645 |
+
E = Object("E")
|
646 |
+
|
647 |
+
f = NamedMorphism(A, B, "f")
|
648 |
+
g = NamedMorphism(B, C, "g")
|
649 |
+
h = NamedMorphism(C, D, "h")
|
650 |
+
i = NamedMorphism(D, E, "i")
|
651 |
+
d = Diagram([f, g, h, i])
|
652 |
+
grid = DiagramGrid(d, layout="sequential")
|
653 |
+
drawer = XypicDiagramDrawer()
|
654 |
+
assert drawer.draw(d, grid) == "\\xymatrix{\n" \
|
655 |
+
"A \\ar[r]^{f} & B \\ar[r]^{g} & C \\ar[r]^{h} & D \\ar[r]^{i} & E \n" \
|
656 |
+
"}\n"
|
657 |
+
|
658 |
+
# The same diagram, transposed.
|
659 |
+
grid = DiagramGrid(d, layout="sequential", transpose=True)
|
660 |
+
drawer = XypicDiagramDrawer()
|
661 |
+
assert drawer.draw(d, grid) == "\\xymatrix{\n" \
|
662 |
+
"A \\ar[d]^{f} \\\\\n" \
|
663 |
+
"B \\ar[d]^{g} \\\\\n" \
|
664 |
+
"C \\ar[d]^{h} \\\\\n" \
|
665 |
+
"D \\ar[d]^{i} \\\\\n" \
|
666 |
+
"E \n" \
|
667 |
+
"}\n"
|
668 |
+
|
669 |
+
|
670 |
+
def test_XypicDiagramDrawer_triangle():
|
671 |
+
# A triangle diagram.
|
672 |
+
A = Object("A")
|
673 |
+
B = Object("B")
|
674 |
+
C = Object("C")
|
675 |
+
f = NamedMorphism(A, B, "f")
|
676 |
+
g = NamedMorphism(B, C, "g")
|
677 |
+
|
678 |
+
d = Diagram([f, g], {g * f: "unique"})
|
679 |
+
grid = DiagramGrid(d)
|
680 |
+
drawer = XypicDiagramDrawer()
|
681 |
+
assert drawer.draw(d, grid) == "\\xymatrix{\n" \
|
682 |
+
"A \\ar[d]_{g\\circ f} \\ar[r]^{f} & B \\ar[ld]^{g} \\\\\n" \
|
683 |
+
"C & \n" \
|
684 |
+
"}\n"
|
685 |
+
|
686 |
+
# The same diagram, transposed.
|
687 |
+
grid = DiagramGrid(d, transpose=True)
|
688 |
+
drawer = XypicDiagramDrawer()
|
689 |
+
assert drawer.draw(d, grid) == "\\xymatrix{\n" \
|
690 |
+
"A \\ar[r]^{g\\circ f} \\ar[d]_{f} & C \\\\\n" \
|
691 |
+
"B \\ar[ru]_{g} & \n" \
|
692 |
+
"}\n"
|
693 |
+
|
694 |
+
# The same diagram, with a masked morphism.
|
695 |
+
assert drawer.draw(d, grid, masked=[g]) == "\\xymatrix{\n" \
|
696 |
+
"A \\ar[r]^{g\\circ f} \\ar[d]_{f} & C \\\\\n" \
|
697 |
+
"B & \n" \
|
698 |
+
"}\n"
|
699 |
+
|
700 |
+
# The same diagram with a formatter for "unique".
|
701 |
+
def formatter(astr):
|
702 |
+
astr.label = "\\exists !" + astr.label
|
703 |
+
astr.arrow_style = "{-->}"
|
704 |
+
|
705 |
+
drawer.arrow_formatters["unique"] = formatter
|
706 |
+
assert drawer.draw(d, grid) == "\\xymatrix{\n" \
|
707 |
+
"A \\ar@{-->}[r]^{\\exists !g\\circ f} \\ar[d]_{f} & C \\\\\n" \
|
708 |
+
"B \\ar[ru]_{g} & \n" \
|
709 |
+
"}\n"
|
710 |
+
|
711 |
+
# The same diagram with a default formatter.
|
712 |
+
def default_formatter(astr):
|
713 |
+
astr.label_displacement = "(0.45)"
|
714 |
+
|
715 |
+
drawer.default_arrow_formatter = default_formatter
|
716 |
+
assert drawer.draw(d, grid) == "\\xymatrix{\n" \
|
717 |
+
"A \\ar@{-->}[r]^(0.45){\\exists !g\\circ f} \\ar[d]_(0.45){f} & C \\\\\n" \
|
718 |
+
"B \\ar[ru]_(0.45){g} & \n" \
|
719 |
+
"}\n"
|
720 |
+
|
721 |
+
# A triangle diagram with a lot of morphisms between the same
|
722 |
+
# objects.
|
723 |
+
f1 = NamedMorphism(B, A, "f1")
|
724 |
+
f2 = NamedMorphism(A, B, "f2")
|
725 |
+
g1 = NamedMorphism(C, B, "g1")
|
726 |
+
g2 = NamedMorphism(B, C, "g2")
|
727 |
+
d = Diagram([f, f1, f2, g, g1, g2], {f1 * g1: "unique", g2 * f2: "unique"})
|
728 |
+
|
729 |
+
grid = DiagramGrid(d, transpose=True)
|
730 |
+
drawer = XypicDiagramDrawer()
|
731 |
+
assert drawer.draw(d, grid, masked=[f1*g1*g2*f2, g2*f2*f1*g1]) == \
|
732 |
+
"\\xymatrix{\n" \
|
733 |
+
"A \\ar[r]^{g_{2}\\circ f_{2}} \\ar[d]_{f} \\ar@/^3mm/[d]^{f_{2}} " \
|
734 |
+
"& C \\ar@/^3mm/[l]^{f_{1}\\circ g_{1}} \\ar@/^3mm/[ld]^{g_{1}} \\\\\n" \
|
735 |
+
"B \\ar@/^3mm/[u]^{f_{1}} \\ar[ru]_{g} \\ar@/^3mm/[ru]^{g_{2}} & \n" \
|
736 |
+
"}\n"
|
737 |
+
|
738 |
+
|
739 |
+
def test_XypicDiagramDrawer_cube():
|
740 |
+
# A cube diagram.
|
741 |
+
A1 = Object("A1")
|
742 |
+
A2 = Object("A2")
|
743 |
+
A3 = Object("A3")
|
744 |
+
A4 = Object("A4")
|
745 |
+
A5 = Object("A5")
|
746 |
+
A6 = Object("A6")
|
747 |
+
A7 = Object("A7")
|
748 |
+
A8 = Object("A8")
|
749 |
+
|
750 |
+
# The top face of the cube.
|
751 |
+
f1 = NamedMorphism(A1, A2, "f1")
|
752 |
+
f2 = NamedMorphism(A1, A3, "f2")
|
753 |
+
f3 = NamedMorphism(A2, A4, "f3")
|
754 |
+
f4 = NamedMorphism(A3, A4, "f3")
|
755 |
+
|
756 |
+
# The bottom face of the cube.
|
757 |
+
f5 = NamedMorphism(A5, A6, "f5")
|
758 |
+
f6 = NamedMorphism(A5, A7, "f6")
|
759 |
+
f7 = NamedMorphism(A6, A8, "f7")
|
760 |
+
f8 = NamedMorphism(A7, A8, "f8")
|
761 |
+
|
762 |
+
# The remaining morphisms.
|
763 |
+
f9 = NamedMorphism(A1, A5, "f9")
|
764 |
+
f10 = NamedMorphism(A2, A6, "f10")
|
765 |
+
f11 = NamedMorphism(A3, A7, "f11")
|
766 |
+
f12 = NamedMorphism(A4, A8, "f11")
|
767 |
+
|
768 |
+
d = Diagram([f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11, f12])
|
769 |
+
grid = DiagramGrid(d)
|
770 |
+
drawer = XypicDiagramDrawer()
|
771 |
+
assert drawer.draw(d, grid) == "\\xymatrix{\n" \
|
772 |
+
"& A_{5} \\ar[r]^{f_{5}} \\ar[ldd]_{f_{6}} & A_{6} \\ar[rdd]^{f_{7}} " \
|
773 |
+
"& \\\\\n" \
|
774 |
+
"& A_{1} \\ar[r]^{f_{1}} \\ar[d]^{f_{2}} \\ar[u]^{f_{9}} & A_{2} " \
|
775 |
+
"\\ar[d]^{f_{3}} \\ar[u]_{f_{10}} & \\\\\n" \
|
776 |
+
"A_{7} \\ar@/_3mm/[rrr]_{f_{8}} & A_{3} \\ar[r]^{f_{3}} \\ar[l]_{f_{11}} " \
|
777 |
+
"& A_{4} \\ar[r]^{f_{11}} & A_{8} \n" \
|
778 |
+
"}\n"
|
779 |
+
|
780 |
+
# The same diagram, transposed.
|
781 |
+
grid = DiagramGrid(d, transpose=True)
|
782 |
+
drawer = XypicDiagramDrawer()
|
783 |
+
assert drawer.draw(d, grid) == "\\xymatrix{\n" \
|
784 |
+
"& & A_{7} \\ar@/^3mm/[ddd]^{f_{8}} \\\\\n" \
|
785 |
+
"A_{5} \\ar[d]_{f_{5}} \\ar[rru]^{f_{6}} & A_{1} \\ar[d]^{f_{1}} " \
|
786 |
+
"\\ar[r]^{f_{2}} \\ar[l]^{f_{9}} & A_{3} \\ar[d]_{f_{3}} " \
|
787 |
+
"\\ar[u]^{f_{11}} \\\\\n" \
|
788 |
+
"A_{6} \\ar[rrd]_{f_{7}} & A_{2} \\ar[r]^{f_{3}} \\ar[l]^{f_{10}} " \
|
789 |
+
"& A_{4} \\ar[d]_{f_{11}} \\\\\n" \
|
790 |
+
"& & A_{8} \n" \
|
791 |
+
"}\n"
|
792 |
+
|
793 |
+
|
794 |
+
def test_XypicDiagramDrawer_curved_and_loops():
|
795 |
+
# A simple diagram, with a curved arrow.
|
796 |
+
A = Object("A")
|
797 |
+
B = Object("B")
|
798 |
+
C = Object("C")
|
799 |
+
D = Object("D")
|
800 |
+
|
801 |
+
f = NamedMorphism(A, B, "f")
|
802 |
+
g = NamedMorphism(B, C, "g")
|
803 |
+
h = NamedMorphism(D, A, "h")
|
804 |
+
k = NamedMorphism(D, B, "k")
|
805 |
+
d = Diagram([f, g, h, k])
|
806 |
+
grid = DiagramGrid(d)
|
807 |
+
drawer = XypicDiagramDrawer()
|
808 |
+
assert drawer.draw(d, grid) == "\\xymatrix{\n" \
|
809 |
+
"A \\ar[r]_{f} & B \\ar[d]^{g} & D \\ar[l]^{k} \\ar@/_3mm/[ll]_{h} \\\\\n" \
|
810 |
+
"& C & \n" \
|
811 |
+
"}\n"
|
812 |
+
|
813 |
+
# The same diagram, transposed.
|
814 |
+
grid = DiagramGrid(d, transpose=True)
|
815 |
+
drawer = XypicDiagramDrawer()
|
816 |
+
assert drawer.draw(d, grid) == "\\xymatrix{\n" \
|
817 |
+
"A \\ar[d]^{f} & \\\\\n" \
|
818 |
+
"B \\ar[r]^{g} & C \\\\\n" \
|
819 |
+
"D \\ar[u]_{k} \\ar@/^3mm/[uu]^{h} & \n" \
|
820 |
+
"}\n"
|
821 |
+
|
822 |
+
# The same diagram, larger and rotated.
|
823 |
+
assert drawer.draw(d, grid, diagram_format="@+1cm@dr") == \
|
824 |
+
"\\xymatrix@+1cm@dr{\n" \
|
825 |
+
"A \\ar[d]^{f} & \\\\\n" \
|
826 |
+
"B \\ar[r]^{g} & C \\\\\n" \
|
827 |
+
"D \\ar[u]_{k} \\ar@/^3mm/[uu]^{h} & \n" \
|
828 |
+
"}\n"
|
829 |
+
|
830 |
+
# A simple diagram with three curved arrows.
|
831 |
+
h1 = NamedMorphism(D, A, "h1")
|
832 |
+
h2 = NamedMorphism(A, D, "h2")
|
833 |
+
k = NamedMorphism(D, B, "k")
|
834 |
+
d = Diagram([f, g, h, k, h1, h2])
|
835 |
+
grid = DiagramGrid(d)
|
836 |
+
drawer = XypicDiagramDrawer()
|
837 |
+
assert drawer.draw(d, grid) == "\\xymatrix{\n" \
|
838 |
+
"A \\ar[r]_{f} \\ar@/^3mm/[rr]^{h_{2}} & B \\ar[d]^{g} & D \\ar[l]^{k} " \
|
839 |
+
"\\ar@/_7mm/[ll]_{h} \\ar@/_11mm/[ll]_{h_{1}} \\\\\n" \
|
840 |
+
"& C & \n" \
|
841 |
+
"}\n"
|
842 |
+
|
843 |
+
# The same diagram, transposed.
|
844 |
+
grid = DiagramGrid(d, transpose=True)
|
845 |
+
drawer = XypicDiagramDrawer()
|
846 |
+
assert drawer.draw(d, grid) == "\\xymatrix{\n" \
|
847 |
+
"A \\ar[d]^{f} \\ar@/_3mm/[dd]_{h_{2}} & \\\\\n" \
|
848 |
+
"B \\ar[r]^{g} & C \\\\\n" \
|
849 |
+
"D \\ar[u]_{k} \\ar@/^7mm/[uu]^{h} \\ar@/^11mm/[uu]^{h_{1}} & \n" \
|
850 |
+
"}\n"
|
851 |
+
|
852 |
+
# The same diagram, with "loop" morphisms.
|
853 |
+
l_A = NamedMorphism(A, A, "l_A")
|
854 |
+
l_D = NamedMorphism(D, D, "l_D")
|
855 |
+
l_C = NamedMorphism(C, C, "l_C")
|
856 |
+
d = Diagram([f, g, h, k, h1, h2, l_A, l_D, l_C])
|
857 |
+
grid = DiagramGrid(d)
|
858 |
+
drawer = XypicDiagramDrawer()
|
859 |
+
assert drawer.draw(d, grid) == "\\xymatrix{\n" \
|
860 |
+
"A \\ar[r]_{f} \\ar@/^3mm/[rr]^{h_{2}} \\ar@(u,l)[]^{l_{A}} " \
|
861 |
+
"& B \\ar[d]^{g} & D \\ar[l]^{k} \\ar@/_7mm/[ll]_{h} " \
|
862 |
+
"\\ar@/_11mm/[ll]_{h_{1}} \\ar@(r,u)[]^{l_{D}} \\\\\n" \
|
863 |
+
"& C \\ar@(l,d)[]^{l_{C}} & \n" \
|
864 |
+
"}\n"
|
865 |
+
|
866 |
+
# The same diagram with "loop" morphisms, transposed.
|
867 |
+
grid = DiagramGrid(d, transpose=True)
|
868 |
+
drawer = XypicDiagramDrawer()
|
869 |
+
assert drawer.draw(d, grid) == "\\xymatrix{\n" \
|
870 |
+
"A \\ar[d]^{f} \\ar@/_3mm/[dd]_{h_{2}} \\ar@(r,u)[]^{l_{A}} & \\\\\n" \
|
871 |
+
"B \\ar[r]^{g} & C \\ar@(r,u)[]^{l_{C}} \\\\\n" \
|
872 |
+
"D \\ar[u]_{k} \\ar@/^7mm/[uu]^{h} \\ar@/^11mm/[uu]^{h_{1}} " \
|
873 |
+
"\\ar@(l,d)[]^{l_{D}} & \n" \
|
874 |
+
"}\n"
|
875 |
+
|
876 |
+
# The same diagram with two "loop" morphisms per object.
|
877 |
+
l_A_ = NamedMorphism(A, A, "n_A")
|
878 |
+
l_D_ = NamedMorphism(D, D, "n_D")
|
879 |
+
l_C_ = NamedMorphism(C, C, "n_C")
|
880 |
+
d = Diagram([f, g, h, k, h1, h2, l_A, l_D, l_C, l_A_, l_D_, l_C_])
|
881 |
+
grid = DiagramGrid(d)
|
882 |
+
drawer = XypicDiagramDrawer()
|
883 |
+
assert drawer.draw(d, grid) == "\\xymatrix{\n" \
|
884 |
+
"A \\ar[r]_{f} \\ar@/^3mm/[rr]^{h_{2}} \\ar@(u,l)[]^{l_{A}} " \
|
885 |
+
"\\ar@/^3mm/@(l,d)[]^{n_{A}} & B \\ar[d]^{g} & D \\ar[l]^{k} " \
|
886 |
+
"\\ar@/_7mm/[ll]_{h} \\ar@/_11mm/[ll]_{h_{1}} \\ar@(r,u)[]^{l_{D}} " \
|
887 |
+
"\\ar@/^3mm/@(d,r)[]^{n_{D}} \\\\\n" \
|
888 |
+
"& C \\ar@(l,d)[]^{l_{C}} \\ar@/^3mm/@(d,r)[]^{n_{C}} & \n" \
|
889 |
+
"}\n"
|
890 |
+
|
891 |
+
# The same diagram with two "loop" morphisms per object, transposed.
|
892 |
+
grid = DiagramGrid(d, transpose=True)
|
893 |
+
drawer = XypicDiagramDrawer()
|
894 |
+
assert drawer.draw(d, grid) == "\\xymatrix{\n" \
|
895 |
+
"A \\ar[d]^{f} \\ar@/_3mm/[dd]_{h_{2}} \\ar@(r,u)[]^{l_{A}} " \
|
896 |
+
"\\ar@/^3mm/@(u,l)[]^{n_{A}} & \\\\\n" \
|
897 |
+
"B \\ar[r]^{g} & C \\ar@(r,u)[]^{l_{C}} \\ar@/^3mm/@(d,r)[]^{n_{C}} \\\\\n" \
|
898 |
+
"D \\ar[u]_{k} \\ar@/^7mm/[uu]^{h} \\ar@/^11mm/[uu]^{h_{1}} " \
|
899 |
+
"\\ar@(l,d)[]^{l_{D}} \\ar@/^3mm/@(d,r)[]^{n_{D}} & \n" \
|
900 |
+
"}\n"
|
901 |
+
|
902 |
+
|
903 |
+
def test_xypic_draw_diagram():
|
904 |
+
# A linear diagram.
|
905 |
+
A = Object("A")
|
906 |
+
B = Object("B")
|
907 |
+
C = Object("C")
|
908 |
+
D = Object("D")
|
909 |
+
E = Object("E")
|
910 |
+
|
911 |
+
f = NamedMorphism(A, B, "f")
|
912 |
+
g = NamedMorphism(B, C, "g")
|
913 |
+
h = NamedMorphism(C, D, "h")
|
914 |
+
i = NamedMorphism(D, E, "i")
|
915 |
+
d = Diagram([f, g, h, i])
|
916 |
+
|
917 |
+
grid = DiagramGrid(d, layout="sequential")
|
918 |
+
drawer = XypicDiagramDrawer()
|
919 |
+
assert drawer.draw(d, grid) == xypic_draw_diagram(d, layout="sequential")
|
llmeval-env/lib/python3.10/site-packages/sympy/plotting/__init__.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .plot import plot_backends
|
2 |
+
from .plot_implicit import plot_implicit
|
3 |
+
from .textplot import textplot
|
4 |
+
from .pygletplot import PygletPlot
|
5 |
+
from .plot import PlotGrid
|
6 |
+
from .plot import (plot, plot_parametric, plot3d, plot3d_parametric_surface,
|
7 |
+
plot3d_parametric_line, plot_contour)
|
8 |
+
|
9 |
+
__all__ = [
|
10 |
+
'plot_backends',
|
11 |
+
|
12 |
+
'plot_implicit',
|
13 |
+
|
14 |
+
'textplot',
|
15 |
+
|
16 |
+
'PygletPlot',
|
17 |
+
|
18 |
+
'PlotGrid',
|
19 |
+
|
20 |
+
'plot', 'plot_parametric', 'plot3d', 'plot3d_parametric_surface',
|
21 |
+
'plot3d_parametric_line', 'plot_contour'
|
22 |
+
]
|
llmeval-env/lib/python3.10/site-packages/sympy/plotting/__pycache__/experimental_lambdify.cpython-310.pyc
ADDED
Binary file (14.3 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/plotting/__pycache__/plot_implicit.cpython-310.pyc
ADDED
Binary file (12.9 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/plotting/experimental_lambdify.py
ADDED
@@ -0,0 +1,643 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" rewrite of lambdify - This stuff is not stable at all.
|
2 |
+
|
3 |
+
It is for internal use in the new plotting module.
|
4 |
+
It may (will! see the Q'n'A in the source) be rewritten.
|
5 |
+
|
6 |
+
It's completely self contained. Especially it does not use lambdarepr.
|
7 |
+
|
8 |
+
It does not aim to replace the current lambdify. Most importantly it will never
|
9 |
+
ever support anything else than SymPy expressions (no Matrices, dictionaries
|
10 |
+
and so on).
|
11 |
+
"""
|
12 |
+
|
13 |
+
|
14 |
+
import re
|
15 |
+
from sympy.core.numbers import (I, NumberSymbol, oo, zoo)
|
16 |
+
from sympy.core.symbol import Symbol
|
17 |
+
from sympy.utilities.iterables import numbered_symbols
|
18 |
+
|
19 |
+
# We parse the expression string into a tree that identifies functions. Then
|
20 |
+
# we translate the names of the functions and we translate also some strings
|
21 |
+
# that are not names of functions (all this according to translation
|
22 |
+
# dictionaries).
|
23 |
+
# If the translation goes to another module (like numpy) the
|
24 |
+
# module is imported and 'func' is translated to 'module.func'.
|
25 |
+
# If a function can not be translated, the inner nodes of that part of the
|
26 |
+
# tree are not translated. So if we have Integral(sqrt(x)), sqrt is not
|
27 |
+
# translated to np.sqrt and the Integral does not crash.
|
28 |
+
# A namespace for all this is generated by crawling the (func, args) tree of
|
29 |
+
# the expression. The creation of this namespace involves many ugly
|
30 |
+
# workarounds.
|
31 |
+
# The namespace consists of all the names needed for the SymPy expression and
|
32 |
+
# all the name of modules used for translation. Those modules are imported only
|
33 |
+
# as a name (import numpy as np) in order to keep the namespace small and
|
34 |
+
# manageable.
|
35 |
+
|
36 |
+
# Please, if there is a bug, do not try to fix it here! Rewrite this by using
|
37 |
+
# the method proposed in the last Q'n'A below. That way the new function will
|
38 |
+
# work just as well, be just as simple, but it wont need any new workarounds.
|
39 |
+
# If you insist on fixing it here, look at the workarounds in the function
|
40 |
+
# sympy_expression_namespace and in lambdify.
|
41 |
+
|
42 |
+
# Q: Why are you not using Python abstract syntax tree?
|
43 |
+
# A: Because it is more complicated and not much more powerful in this case.
|
44 |
+
|
45 |
+
# Q: What if I have Symbol('sin') or g=Function('f')?
|
46 |
+
# A: You will break the algorithm. We should use srepr to defend against this?
|
47 |
+
# The problem with Symbol('sin') is that it will be printed as 'sin'. The
|
48 |
+
# parser will distinguish it from the function 'sin' because functions are
|
49 |
+
# detected thanks to the opening parenthesis, but the lambda expression won't
|
50 |
+
# understand the difference if we have also the sin function.
|
51 |
+
# The solution (complicated) is to use srepr and maybe ast.
|
52 |
+
# The problem with the g=Function('f') is that it will be printed as 'f' but in
|
53 |
+
# the global namespace we have only 'g'. But as the same printer is used in the
|
54 |
+
# constructor of the namespace there will be no problem.
|
55 |
+
|
56 |
+
# Q: What if some of the printers are not printing as expected?
|
57 |
+
# A: The algorithm wont work. You must use srepr for those cases. But even
|
58 |
+
# srepr may not print well. All problems with printers should be considered
|
59 |
+
# bugs.
|
60 |
+
|
61 |
+
# Q: What about _imp_ functions?
|
62 |
+
# A: Those are taken care for by evalf. A special case treatment will work
|
63 |
+
# faster but it's not worth the code complexity.
|
64 |
+
|
65 |
+
# Q: Will ast fix all possible problems?
|
66 |
+
# A: No. You will always have to use some printer. Even srepr may not work in
|
67 |
+
# some cases. But if the printer does not work, that should be considered a
|
68 |
+
# bug.
|
69 |
+
|
70 |
+
# Q: Is there same way to fix all possible problems?
|
71 |
+
# A: Probably by constructing our strings ourself by traversing the (func,
|
72 |
+
# args) tree and creating the namespace at the same time. That actually sounds
|
73 |
+
# good.
|
74 |
+
|
75 |
+
from sympy.external import import_module
|
76 |
+
import warnings
|
77 |
+
|
78 |
+
#TODO debugging output
|
79 |
+
|
80 |
+
|
81 |
+
class vectorized_lambdify:
|
82 |
+
""" Return a sufficiently smart, vectorized and lambdified function.
|
83 |
+
|
84 |
+
Returns only reals.
|
85 |
+
|
86 |
+
Explanation
|
87 |
+
===========
|
88 |
+
|
89 |
+
This function uses experimental_lambdify to created a lambdified
|
90 |
+
expression ready to be used with numpy. Many of the functions in SymPy
|
91 |
+
are not implemented in numpy so in some cases we resort to Python cmath or
|
92 |
+
even to evalf.
|
93 |
+
|
94 |
+
The following translations are tried:
|
95 |
+
only numpy complex
|
96 |
+
- on errors raised by SymPy trying to work with ndarray:
|
97 |
+
only Python cmath and then vectorize complex128
|
98 |
+
|
99 |
+
When using Python cmath there is no need for evalf or float/complex
|
100 |
+
because Python cmath calls those.
|
101 |
+
|
102 |
+
This function never tries to mix numpy directly with evalf because numpy
|
103 |
+
does not understand SymPy Float. If this is needed one can use the
|
104 |
+
float_wrap_evalf/complex_wrap_evalf options of experimental_lambdify or
|
105 |
+
better one can be explicit about the dtypes that numpy works with.
|
106 |
+
Check numpy bug http://projects.scipy.org/numpy/ticket/1013 to know what
|
107 |
+
types of errors to expect.
|
108 |
+
"""
|
109 |
+
def __init__(self, args, expr):
|
110 |
+
self.args = args
|
111 |
+
self.expr = expr
|
112 |
+
self.np = import_module('numpy')
|
113 |
+
|
114 |
+
self.lambda_func_1 = experimental_lambdify(
|
115 |
+
args, expr, use_np=True)
|
116 |
+
self.vector_func_1 = self.lambda_func_1
|
117 |
+
|
118 |
+
self.lambda_func_2 = experimental_lambdify(
|
119 |
+
args, expr, use_python_cmath=True)
|
120 |
+
self.vector_func_2 = self.np.vectorize(
|
121 |
+
self.lambda_func_2, otypes=[complex])
|
122 |
+
|
123 |
+
self.vector_func = self.vector_func_1
|
124 |
+
self.failure = False
|
125 |
+
|
126 |
+
def __call__(self, *args):
|
127 |
+
np = self.np
|
128 |
+
|
129 |
+
try:
|
130 |
+
temp_args = (np.array(a, dtype=complex) for a in args)
|
131 |
+
results = self.vector_func(*temp_args)
|
132 |
+
results = np.ma.masked_where(
|
133 |
+
np.abs(results.imag) > 1e-7 * np.abs(results),
|
134 |
+
results.real, copy=False)
|
135 |
+
return results
|
136 |
+
except ValueError:
|
137 |
+
if self.failure:
|
138 |
+
raise
|
139 |
+
|
140 |
+
self.failure = True
|
141 |
+
self.vector_func = self.vector_func_2
|
142 |
+
warnings.warn(
|
143 |
+
'The evaluation of the expression is problematic. '
|
144 |
+
'We are trying a failback method that may still work. '
|
145 |
+
'Please report this as a bug.')
|
146 |
+
return self.__call__(*args)
|
147 |
+
|
148 |
+
|
149 |
+
class lambdify:
|
150 |
+
"""Returns the lambdified function.
|
151 |
+
|
152 |
+
Explanation
|
153 |
+
===========
|
154 |
+
|
155 |
+
This function uses experimental_lambdify to create a lambdified
|
156 |
+
expression. It uses cmath to lambdify the expression. If the function
|
157 |
+
is not implemented in Python cmath, Python cmath calls evalf on those
|
158 |
+
functions.
|
159 |
+
"""
|
160 |
+
|
161 |
+
def __init__(self, args, expr):
|
162 |
+
self.args = args
|
163 |
+
self.expr = expr
|
164 |
+
self.lambda_func_1 = experimental_lambdify(
|
165 |
+
args, expr, use_python_cmath=True, use_evalf=True)
|
166 |
+
self.lambda_func_2 = experimental_lambdify(
|
167 |
+
args, expr, use_python_math=True, use_evalf=True)
|
168 |
+
self.lambda_func_3 = experimental_lambdify(
|
169 |
+
args, expr, use_evalf=True, complex_wrap_evalf=True)
|
170 |
+
self.lambda_func = self.lambda_func_1
|
171 |
+
self.failure = False
|
172 |
+
|
173 |
+
def __call__(self, args):
|
174 |
+
try:
|
175 |
+
#The result can be sympy.Float. Hence wrap it with complex type.
|
176 |
+
result = complex(self.lambda_func(args))
|
177 |
+
if abs(result.imag) > 1e-7 * abs(result):
|
178 |
+
return None
|
179 |
+
return result.real
|
180 |
+
except (ZeroDivisionError, OverflowError):
|
181 |
+
return None
|
182 |
+
except TypeError as e:
|
183 |
+
if self.failure:
|
184 |
+
raise e
|
185 |
+
|
186 |
+
if self.lambda_func == self.lambda_func_1:
|
187 |
+
self.lambda_func = self.lambda_func_2
|
188 |
+
return self.__call__(args)
|
189 |
+
|
190 |
+
self.failure = True
|
191 |
+
self.lambda_func = self.lambda_func_3
|
192 |
+
warnings.warn(
|
193 |
+
'The evaluation of the expression is problematic. '
|
194 |
+
'We are trying a failback method that may still work. '
|
195 |
+
'Please report this as a bug.', stacklevel=2)
|
196 |
+
return self.__call__(args)
|
197 |
+
|
198 |
+
|
199 |
+
def experimental_lambdify(*args, **kwargs):
|
200 |
+
l = Lambdifier(*args, **kwargs)
|
201 |
+
return l
|
202 |
+
|
203 |
+
|
204 |
+
class Lambdifier:
|
205 |
+
def __init__(self, args, expr, print_lambda=False, use_evalf=False,
|
206 |
+
float_wrap_evalf=False, complex_wrap_evalf=False,
|
207 |
+
use_np=False, use_python_math=False, use_python_cmath=False,
|
208 |
+
use_interval=False):
|
209 |
+
|
210 |
+
self.print_lambda = print_lambda
|
211 |
+
self.use_evalf = use_evalf
|
212 |
+
self.float_wrap_evalf = float_wrap_evalf
|
213 |
+
self.complex_wrap_evalf = complex_wrap_evalf
|
214 |
+
self.use_np = use_np
|
215 |
+
self.use_python_math = use_python_math
|
216 |
+
self.use_python_cmath = use_python_cmath
|
217 |
+
self.use_interval = use_interval
|
218 |
+
|
219 |
+
# Constructing the argument string
|
220 |
+
# - check
|
221 |
+
if not all(isinstance(a, Symbol) for a in args):
|
222 |
+
raise ValueError('The arguments must be Symbols.')
|
223 |
+
# - use numbered symbols
|
224 |
+
syms = numbered_symbols(exclude=expr.free_symbols)
|
225 |
+
newargs = [next(syms) for _ in args]
|
226 |
+
expr = expr.xreplace(dict(zip(args, newargs)))
|
227 |
+
argstr = ', '.join([str(a) for a in newargs])
|
228 |
+
del syms, newargs, args
|
229 |
+
|
230 |
+
# Constructing the translation dictionaries and making the translation
|
231 |
+
self.dict_str = self.get_dict_str()
|
232 |
+
self.dict_fun = self.get_dict_fun()
|
233 |
+
exprstr = str(expr)
|
234 |
+
newexpr = self.tree2str_translate(self.str2tree(exprstr))
|
235 |
+
|
236 |
+
# Constructing the namespaces
|
237 |
+
namespace = {}
|
238 |
+
namespace.update(self.sympy_atoms_namespace(expr))
|
239 |
+
namespace.update(self.sympy_expression_namespace(expr))
|
240 |
+
# XXX Workaround
|
241 |
+
# Ugly workaround because Pow(a,Half) prints as sqrt(a)
|
242 |
+
# and sympy_expression_namespace can not catch it.
|
243 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
244 |
+
namespace.update({'sqrt': sqrt})
|
245 |
+
namespace.update({'Eq': lambda x, y: x == y})
|
246 |
+
namespace.update({'Ne': lambda x, y: x != y})
|
247 |
+
# End workaround.
|
248 |
+
if use_python_math:
|
249 |
+
namespace.update({'math': __import__('math')})
|
250 |
+
if use_python_cmath:
|
251 |
+
namespace.update({'cmath': __import__('cmath')})
|
252 |
+
if use_np:
|
253 |
+
try:
|
254 |
+
namespace.update({'np': __import__('numpy')})
|
255 |
+
except ImportError:
|
256 |
+
raise ImportError(
|
257 |
+
'experimental_lambdify failed to import numpy.')
|
258 |
+
if use_interval:
|
259 |
+
namespace.update({'imath': __import__(
|
260 |
+
'sympy.plotting.intervalmath', fromlist=['intervalmath'])})
|
261 |
+
namespace.update({'math': __import__('math')})
|
262 |
+
|
263 |
+
# Construct the lambda
|
264 |
+
if self.print_lambda:
|
265 |
+
print(newexpr)
|
266 |
+
eval_str = 'lambda %s : ( %s )' % (argstr, newexpr)
|
267 |
+
self.eval_str = eval_str
|
268 |
+
exec("MYNEWLAMBDA = %s" % eval_str, namespace)
|
269 |
+
self.lambda_func = namespace['MYNEWLAMBDA']
|
270 |
+
|
271 |
+
def __call__(self, *args, **kwargs):
|
272 |
+
return self.lambda_func(*args, **kwargs)
|
273 |
+
|
274 |
+
|
275 |
+
##############################################################################
|
276 |
+
# Dicts for translating from SymPy to other modules
|
277 |
+
##############################################################################
|
278 |
+
###
|
279 |
+
# builtins
|
280 |
+
###
|
281 |
+
# Functions with different names in builtins
|
282 |
+
builtin_functions_different = {
|
283 |
+
'Min': 'min',
|
284 |
+
'Max': 'max',
|
285 |
+
'Abs': 'abs',
|
286 |
+
}
|
287 |
+
|
288 |
+
# Strings that should be translated
|
289 |
+
builtin_not_functions = {
|
290 |
+
'I': '1j',
|
291 |
+
# 'oo': '1e400',
|
292 |
+
}
|
293 |
+
|
294 |
+
###
|
295 |
+
# numpy
|
296 |
+
###
|
297 |
+
|
298 |
+
# Functions that are the same in numpy
|
299 |
+
numpy_functions_same = [
|
300 |
+
'sin', 'cos', 'tan', 'sinh', 'cosh', 'tanh', 'exp', 'log',
|
301 |
+
'sqrt', 'floor', 'conjugate',
|
302 |
+
]
|
303 |
+
|
304 |
+
# Functions with different names in numpy
|
305 |
+
numpy_functions_different = {
|
306 |
+
"acos": "arccos",
|
307 |
+
"acosh": "arccosh",
|
308 |
+
"arg": "angle",
|
309 |
+
"asin": "arcsin",
|
310 |
+
"asinh": "arcsinh",
|
311 |
+
"atan": "arctan",
|
312 |
+
"atan2": "arctan2",
|
313 |
+
"atanh": "arctanh",
|
314 |
+
"ceiling": "ceil",
|
315 |
+
"im": "imag",
|
316 |
+
"ln": "log",
|
317 |
+
"Max": "amax",
|
318 |
+
"Min": "amin",
|
319 |
+
"re": "real",
|
320 |
+
"Abs": "abs",
|
321 |
+
}
|
322 |
+
|
323 |
+
# Strings that should be translated
|
324 |
+
numpy_not_functions = {
|
325 |
+
'pi': 'np.pi',
|
326 |
+
'oo': 'np.inf',
|
327 |
+
'E': 'np.e',
|
328 |
+
}
|
329 |
+
|
330 |
+
###
|
331 |
+
# Python math
|
332 |
+
###
|
333 |
+
|
334 |
+
# Functions that are the same in math
|
335 |
+
math_functions_same = [
|
336 |
+
'sin', 'cos', 'tan', 'asin', 'acos', 'atan', 'atan2',
|
337 |
+
'sinh', 'cosh', 'tanh', 'asinh', 'acosh', 'atanh',
|
338 |
+
'exp', 'log', 'erf', 'sqrt', 'floor', 'factorial', 'gamma',
|
339 |
+
]
|
340 |
+
|
341 |
+
# Functions with different names in math
|
342 |
+
math_functions_different = {
|
343 |
+
'ceiling': 'ceil',
|
344 |
+
'ln': 'log',
|
345 |
+
'loggamma': 'lgamma'
|
346 |
+
}
|
347 |
+
|
348 |
+
# Strings that should be translated
|
349 |
+
math_not_functions = {
|
350 |
+
'pi': 'math.pi',
|
351 |
+
'E': 'math.e',
|
352 |
+
}
|
353 |
+
|
354 |
+
###
|
355 |
+
# Python cmath
|
356 |
+
###
|
357 |
+
|
358 |
+
# Functions that are the same in cmath
|
359 |
+
cmath_functions_same = [
|
360 |
+
'sin', 'cos', 'tan', 'asin', 'acos', 'atan',
|
361 |
+
'sinh', 'cosh', 'tanh', 'asinh', 'acosh', 'atanh',
|
362 |
+
'exp', 'log', 'sqrt',
|
363 |
+
]
|
364 |
+
|
365 |
+
# Functions with different names in cmath
|
366 |
+
cmath_functions_different = {
|
367 |
+
'ln': 'log',
|
368 |
+
'arg': 'phase',
|
369 |
+
}
|
370 |
+
|
371 |
+
# Strings that should be translated
|
372 |
+
cmath_not_functions = {
|
373 |
+
'pi': 'cmath.pi',
|
374 |
+
'E': 'cmath.e',
|
375 |
+
}
|
376 |
+
|
377 |
+
###
|
378 |
+
# intervalmath
|
379 |
+
###
|
380 |
+
|
381 |
+
interval_not_functions = {
|
382 |
+
'pi': 'math.pi',
|
383 |
+
'E': 'math.e'
|
384 |
+
}
|
385 |
+
|
386 |
+
interval_functions_same = [
|
387 |
+
'sin', 'cos', 'exp', 'tan', 'atan', 'log',
|
388 |
+
'sqrt', 'cosh', 'sinh', 'tanh', 'floor',
|
389 |
+
'acos', 'asin', 'acosh', 'asinh', 'atanh',
|
390 |
+
'Abs', 'And', 'Or'
|
391 |
+
]
|
392 |
+
|
393 |
+
interval_functions_different = {
|
394 |
+
'Min': 'imin',
|
395 |
+
'Max': 'imax',
|
396 |
+
'ceiling': 'ceil',
|
397 |
+
|
398 |
+
}
|
399 |
+
|
400 |
+
###
|
401 |
+
# mpmath, etc
|
402 |
+
###
|
403 |
+
#TODO
|
404 |
+
|
405 |
+
###
|
406 |
+
# Create the final ordered tuples of dictionaries
|
407 |
+
###
|
408 |
+
|
409 |
+
# For strings
|
410 |
+
def get_dict_str(self):
|
411 |
+
dict_str = dict(self.builtin_not_functions)
|
412 |
+
if self.use_np:
|
413 |
+
dict_str.update(self.numpy_not_functions)
|
414 |
+
if self.use_python_math:
|
415 |
+
dict_str.update(self.math_not_functions)
|
416 |
+
if self.use_python_cmath:
|
417 |
+
dict_str.update(self.cmath_not_functions)
|
418 |
+
if self.use_interval:
|
419 |
+
dict_str.update(self.interval_not_functions)
|
420 |
+
return dict_str
|
421 |
+
|
422 |
+
# For functions
|
423 |
+
def get_dict_fun(self):
|
424 |
+
dict_fun = dict(self.builtin_functions_different)
|
425 |
+
if self.use_np:
|
426 |
+
for s in self.numpy_functions_same:
|
427 |
+
dict_fun[s] = 'np.' + s
|
428 |
+
for k, v in self.numpy_functions_different.items():
|
429 |
+
dict_fun[k] = 'np.' + v
|
430 |
+
if self.use_python_math:
|
431 |
+
for s in self.math_functions_same:
|
432 |
+
dict_fun[s] = 'math.' + s
|
433 |
+
for k, v in self.math_functions_different.items():
|
434 |
+
dict_fun[k] = 'math.' + v
|
435 |
+
if self.use_python_cmath:
|
436 |
+
for s in self.cmath_functions_same:
|
437 |
+
dict_fun[s] = 'cmath.' + s
|
438 |
+
for k, v in self.cmath_functions_different.items():
|
439 |
+
dict_fun[k] = 'cmath.' + v
|
440 |
+
if self.use_interval:
|
441 |
+
for s in self.interval_functions_same:
|
442 |
+
dict_fun[s] = 'imath.' + s
|
443 |
+
for k, v in self.interval_functions_different.items():
|
444 |
+
dict_fun[k] = 'imath.' + v
|
445 |
+
return dict_fun
|
446 |
+
|
447 |
+
##############################################################################
|
448 |
+
# The translator functions, tree parsers, etc.
|
449 |
+
##############################################################################
|
450 |
+
|
451 |
+
def str2tree(self, exprstr):
|
452 |
+
"""Converts an expression string to a tree.
|
453 |
+
|
454 |
+
Explanation
|
455 |
+
===========
|
456 |
+
|
457 |
+
Functions are represented by ('func_name(', tree_of_arguments).
|
458 |
+
Other expressions are (head_string, mid_tree, tail_str).
|
459 |
+
Expressions that do not contain functions are directly returned.
|
460 |
+
|
461 |
+
Examples
|
462 |
+
========
|
463 |
+
|
464 |
+
>>> from sympy.abc import x, y, z
|
465 |
+
>>> from sympy import Integral, sin
|
466 |
+
>>> from sympy.plotting.experimental_lambdify import Lambdifier
|
467 |
+
>>> str2tree = Lambdifier([x], x).str2tree
|
468 |
+
|
469 |
+
>>> str2tree(str(Integral(x, (x, 1, y))))
|
470 |
+
('', ('Integral(', 'x, (x, 1, y)'), ')')
|
471 |
+
>>> str2tree(str(x+y))
|
472 |
+
'x + y'
|
473 |
+
>>> str2tree(str(x+y*sin(z)+1))
|
474 |
+
('x + y*', ('sin(', 'z'), ') + 1')
|
475 |
+
>>> str2tree('sin(y*(y + 1.1) + (sin(y)))')
|
476 |
+
('', ('sin(', ('y*(y + 1.1) + (', ('sin(', 'y'), '))')), ')')
|
477 |
+
"""
|
478 |
+
#matches the first 'function_name('
|
479 |
+
first_par = re.search(r'(\w+\()', exprstr)
|
480 |
+
if first_par is None:
|
481 |
+
return exprstr
|
482 |
+
else:
|
483 |
+
start = first_par.start()
|
484 |
+
end = first_par.end()
|
485 |
+
head = exprstr[:start]
|
486 |
+
func = exprstr[start:end]
|
487 |
+
tail = exprstr[end:]
|
488 |
+
count = 0
|
489 |
+
for i, c in enumerate(tail):
|
490 |
+
if c == '(':
|
491 |
+
count += 1
|
492 |
+
elif c == ')':
|
493 |
+
count -= 1
|
494 |
+
if count == -1:
|
495 |
+
break
|
496 |
+
func_tail = self.str2tree(tail[:i])
|
497 |
+
tail = self.str2tree(tail[i:])
|
498 |
+
return (head, (func, func_tail), tail)
|
499 |
+
|
500 |
+
@classmethod
|
501 |
+
def tree2str(cls, tree):
|
502 |
+
"""Converts a tree to string without translations.
|
503 |
+
|
504 |
+
Examples
|
505 |
+
========
|
506 |
+
|
507 |
+
>>> from sympy.abc import x, y, z
|
508 |
+
>>> from sympy import sin
|
509 |
+
>>> from sympy.plotting.experimental_lambdify import Lambdifier
|
510 |
+
>>> str2tree = Lambdifier([x], x).str2tree
|
511 |
+
>>> tree2str = Lambdifier([x], x).tree2str
|
512 |
+
|
513 |
+
>>> tree2str(str2tree(str(x+y*sin(z)+1)))
|
514 |
+
'x + y*sin(z) + 1'
|
515 |
+
"""
|
516 |
+
if isinstance(tree, str):
|
517 |
+
return tree
|
518 |
+
else:
|
519 |
+
return ''.join(map(cls.tree2str, tree))
|
520 |
+
|
521 |
+
def tree2str_translate(self, tree):
|
522 |
+
"""Converts a tree to string with translations.
|
523 |
+
|
524 |
+
Explanation
|
525 |
+
===========
|
526 |
+
|
527 |
+
Function names are translated by translate_func.
|
528 |
+
Other strings are translated by translate_str.
|
529 |
+
"""
|
530 |
+
if isinstance(tree, str):
|
531 |
+
return self.translate_str(tree)
|
532 |
+
elif isinstance(tree, tuple) and len(tree) == 2:
|
533 |
+
return self.translate_func(tree[0][:-1], tree[1])
|
534 |
+
else:
|
535 |
+
return ''.join([self.tree2str_translate(t) for t in tree])
|
536 |
+
|
537 |
+
def translate_str(self, estr):
|
538 |
+
"""Translate substrings of estr using in order the dictionaries in
|
539 |
+
dict_tuple_str."""
|
540 |
+
for pattern, repl in self.dict_str.items():
|
541 |
+
estr = re.sub(pattern, repl, estr)
|
542 |
+
return estr
|
543 |
+
|
544 |
+
def translate_func(self, func_name, argtree):
|
545 |
+
"""Translate function names and the tree of arguments.
|
546 |
+
|
547 |
+
Explanation
|
548 |
+
===========
|
549 |
+
|
550 |
+
If the function name is not in the dictionaries of dict_tuple_fun then the
|
551 |
+
function is surrounded by a float((...).evalf()).
|
552 |
+
|
553 |
+
The use of float is necessary as np.<function>(sympy.Float(..)) raises an
|
554 |
+
error."""
|
555 |
+
if func_name in self.dict_fun:
|
556 |
+
new_name = self.dict_fun[func_name]
|
557 |
+
argstr = self.tree2str_translate(argtree)
|
558 |
+
return new_name + '(' + argstr
|
559 |
+
elif func_name in ['Eq', 'Ne']:
|
560 |
+
op = {'Eq': '==', 'Ne': '!='}
|
561 |
+
return "(lambda x, y: x {} y)({}".format(op[func_name], self.tree2str_translate(argtree))
|
562 |
+
else:
|
563 |
+
template = '(%s(%s)).evalf(' if self.use_evalf else '%s(%s'
|
564 |
+
if self.float_wrap_evalf:
|
565 |
+
template = 'float(%s)' % template
|
566 |
+
elif self.complex_wrap_evalf:
|
567 |
+
template = 'complex(%s)' % template
|
568 |
+
|
569 |
+
# Wrapping should only happen on the outermost expression, which
|
570 |
+
# is the only thing we know will be a number.
|
571 |
+
float_wrap_evalf = self.float_wrap_evalf
|
572 |
+
complex_wrap_evalf = self.complex_wrap_evalf
|
573 |
+
self.float_wrap_evalf = False
|
574 |
+
self.complex_wrap_evalf = False
|
575 |
+
ret = template % (func_name, self.tree2str_translate(argtree))
|
576 |
+
self.float_wrap_evalf = float_wrap_evalf
|
577 |
+
self.complex_wrap_evalf = complex_wrap_evalf
|
578 |
+
return ret
|
579 |
+
|
580 |
+
##############################################################################
|
581 |
+
# The namespace constructors
|
582 |
+
##############################################################################
|
583 |
+
|
584 |
+
@classmethod
|
585 |
+
def sympy_expression_namespace(cls, expr):
|
586 |
+
"""Traverses the (func, args) tree of an expression and creates a SymPy
|
587 |
+
namespace. All other modules are imported only as a module name. That way
|
588 |
+
the namespace is not polluted and rests quite small. It probably causes much
|
589 |
+
more variable lookups and so it takes more time, but there are no tests on
|
590 |
+
that for the moment."""
|
591 |
+
if expr is None:
|
592 |
+
return {}
|
593 |
+
else:
|
594 |
+
funcname = str(expr.func)
|
595 |
+
# XXX Workaround
|
596 |
+
# Here we add an ugly workaround because str(func(x))
|
597 |
+
# is not always the same as str(func). Eg
|
598 |
+
# >>> str(Integral(x))
|
599 |
+
# "Integral(x)"
|
600 |
+
# >>> str(Integral)
|
601 |
+
# "<class 'sympy.integrals.integrals.Integral'>"
|
602 |
+
# >>> str(sqrt(x))
|
603 |
+
# "sqrt(x)"
|
604 |
+
# >>> str(sqrt)
|
605 |
+
# "<function sqrt at 0x3d92de8>"
|
606 |
+
# >>> str(sin(x))
|
607 |
+
# "sin(x)"
|
608 |
+
# >>> str(sin)
|
609 |
+
# "sin"
|
610 |
+
# Either one of those can be used but not all at the same time.
|
611 |
+
# The code considers the sin example as the right one.
|
612 |
+
regexlist = [
|
613 |
+
r'<class \'sympy[\w.]*?.([\w]*)\'>$',
|
614 |
+
# the example Integral
|
615 |
+
r'<function ([\w]*) at 0x[\w]*>$', # the example sqrt
|
616 |
+
]
|
617 |
+
for r in regexlist:
|
618 |
+
m = re.match(r, funcname)
|
619 |
+
if m is not None:
|
620 |
+
funcname = m.groups()[0]
|
621 |
+
# End of the workaround
|
622 |
+
# XXX debug: print funcname
|
623 |
+
args_dict = {}
|
624 |
+
for a in expr.args:
|
625 |
+
if (isinstance(a, Symbol) or
|
626 |
+
isinstance(a, NumberSymbol) or
|
627 |
+
a in [I, zoo, oo]):
|
628 |
+
continue
|
629 |
+
else:
|
630 |
+
args_dict.update(cls.sympy_expression_namespace(a))
|
631 |
+
args_dict.update({funcname: expr.func})
|
632 |
+
return args_dict
|
633 |
+
|
634 |
+
@staticmethod
|
635 |
+
def sympy_atoms_namespace(expr):
|
636 |
+
"""For no real reason this function is separated from
|
637 |
+
sympy_expression_namespace. It can be moved to it."""
|
638 |
+
atoms = expr.atoms(Symbol, NumberSymbol, I, zoo, oo)
|
639 |
+
d = {}
|
640 |
+
for a in atoms:
|
641 |
+
# XXX debug: print 'atom:' + str(a)
|
642 |
+
d[str(a)] = a
|
643 |
+
return d
|
llmeval-env/lib/python3.10/site-packages/sympy/plotting/intervalmath/__init__.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .interval_arithmetic import interval
|
2 |
+
from .lib_interval import (Abs, exp, log, log10, sin, cos, tan, sqrt,
|
3 |
+
imin, imax, sinh, cosh, tanh, acosh, asinh, atanh,
|
4 |
+
asin, acos, atan, ceil, floor, And, Or)
|
5 |
+
|
6 |
+
__all__ = [
|
7 |
+
'interval',
|
8 |
+
|
9 |
+
'Abs', 'exp', 'log', 'log10', 'sin', 'cos', 'tan', 'sqrt', 'imin', 'imax',
|
10 |
+
'sinh', 'cosh', 'tanh', 'acosh', 'asinh', 'atanh', 'asin', 'acos', 'atan',
|
11 |
+
'ceil', 'floor', 'And', 'Or',
|
12 |
+
]
|
llmeval-env/lib/python3.10/site-packages/sympy/plotting/intervalmath/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (760 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/plotting/intervalmath/__pycache__/interval_membership.cpython-310.pyc
ADDED
Binary file (3.07 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/plotting/intervalmath/__pycache__/lib_interval.cpython-310.pyc
ADDED
Binary file (9.61 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/plotting/intervalmath/interval_membership.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.logic import fuzzy_and, fuzzy_or, fuzzy_not, fuzzy_xor
|
2 |
+
|
3 |
+
|
4 |
+
class intervalMembership:
|
5 |
+
"""Represents a boolean expression returned by the comparison of
|
6 |
+
the interval object.
|
7 |
+
|
8 |
+
Parameters
|
9 |
+
==========
|
10 |
+
|
11 |
+
(a, b) : (bool, bool)
|
12 |
+
The first value determines the comparison as follows:
|
13 |
+
- True: If the comparison is True throughout the intervals.
|
14 |
+
- False: If the comparison is False throughout the intervals.
|
15 |
+
- None: If the comparison is True for some part of the intervals.
|
16 |
+
|
17 |
+
The second value is determined as follows:
|
18 |
+
- True: If both the intervals in comparison are valid.
|
19 |
+
- False: If at least one of the intervals is False, else
|
20 |
+
- None
|
21 |
+
"""
|
22 |
+
def __init__(self, a, b):
|
23 |
+
self._wrapped = (a, b)
|
24 |
+
|
25 |
+
def __getitem__(self, i):
|
26 |
+
try:
|
27 |
+
return self._wrapped[i]
|
28 |
+
except IndexError:
|
29 |
+
raise IndexError(
|
30 |
+
"{} must be a valid indexing for the 2-tuple."
|
31 |
+
.format(i))
|
32 |
+
|
33 |
+
def __len__(self):
|
34 |
+
return 2
|
35 |
+
|
36 |
+
def __iter__(self):
|
37 |
+
return iter(self._wrapped)
|
38 |
+
|
39 |
+
def __str__(self):
|
40 |
+
return "intervalMembership({}, {})".format(*self)
|
41 |
+
__repr__ = __str__
|
42 |
+
|
43 |
+
def __and__(self, other):
|
44 |
+
if not isinstance(other, intervalMembership):
|
45 |
+
raise ValueError(
|
46 |
+
"The comparison is not supported for {}.".format(other))
|
47 |
+
|
48 |
+
a1, b1 = self
|
49 |
+
a2, b2 = other
|
50 |
+
return intervalMembership(fuzzy_and([a1, a2]), fuzzy_and([b1, b2]))
|
51 |
+
|
52 |
+
def __or__(self, other):
|
53 |
+
if not isinstance(other, intervalMembership):
|
54 |
+
raise ValueError(
|
55 |
+
"The comparison is not supported for {}.".format(other))
|
56 |
+
|
57 |
+
a1, b1 = self
|
58 |
+
a2, b2 = other
|
59 |
+
return intervalMembership(fuzzy_or([a1, a2]), fuzzy_and([b1, b2]))
|
60 |
+
|
61 |
+
def __invert__(self):
|
62 |
+
a, b = self
|
63 |
+
return intervalMembership(fuzzy_not(a), b)
|
64 |
+
|
65 |
+
def __xor__(self, other):
|
66 |
+
if not isinstance(other, intervalMembership):
|
67 |
+
raise ValueError(
|
68 |
+
"The comparison is not supported for {}.".format(other))
|
69 |
+
|
70 |
+
a1, b1 = self
|
71 |
+
a2, b2 = other
|
72 |
+
return intervalMembership(fuzzy_xor([a1, a2]), fuzzy_and([b1, b2]))
|
73 |
+
|
74 |
+
def __eq__(self, other):
|
75 |
+
return self._wrapped == other
|
76 |
+
|
77 |
+
def __ne__(self, other):
|
78 |
+
return self._wrapped != other
|
llmeval-env/lib/python3.10/site-packages/sympy/plotting/intervalmath/lib_interval.py
ADDED
@@ -0,0 +1,452 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" The module contains implemented functions for interval arithmetic."""
|
2 |
+
from functools import reduce
|
3 |
+
|
4 |
+
from sympy.plotting.intervalmath import interval
|
5 |
+
from sympy.external import import_module
|
6 |
+
|
7 |
+
|
8 |
+
def Abs(x):
|
9 |
+
if isinstance(x, (int, float)):
|
10 |
+
return interval(abs(x))
|
11 |
+
elif isinstance(x, interval):
|
12 |
+
if x.start < 0 and x.end > 0:
|
13 |
+
return interval(0, max(abs(x.start), abs(x.end)), is_valid=x.is_valid)
|
14 |
+
else:
|
15 |
+
return interval(abs(x.start), abs(x.end))
|
16 |
+
else:
|
17 |
+
raise NotImplementedError
|
18 |
+
|
19 |
+
#Monotonic
|
20 |
+
|
21 |
+
|
22 |
+
def exp(x):
|
23 |
+
"""evaluates the exponential of an interval"""
|
24 |
+
np = import_module('numpy')
|
25 |
+
if isinstance(x, (int, float)):
|
26 |
+
return interval(np.exp(x), np.exp(x))
|
27 |
+
elif isinstance(x, interval):
|
28 |
+
return interval(np.exp(x.start), np.exp(x.end), is_valid=x.is_valid)
|
29 |
+
else:
|
30 |
+
raise NotImplementedError
|
31 |
+
|
32 |
+
|
33 |
+
#Monotonic
|
34 |
+
def log(x):
|
35 |
+
"""evaluates the natural logarithm of an interval"""
|
36 |
+
np = import_module('numpy')
|
37 |
+
if isinstance(x, (int, float)):
|
38 |
+
if x <= 0:
|
39 |
+
return interval(-np.inf, np.inf, is_valid=False)
|
40 |
+
else:
|
41 |
+
return interval(np.log(x))
|
42 |
+
elif isinstance(x, interval):
|
43 |
+
if not x.is_valid:
|
44 |
+
return interval(-np.inf, np.inf, is_valid=x.is_valid)
|
45 |
+
elif x.end <= 0:
|
46 |
+
return interval(-np.inf, np.inf, is_valid=False)
|
47 |
+
elif x.start <= 0:
|
48 |
+
return interval(-np.inf, np.inf, is_valid=None)
|
49 |
+
|
50 |
+
return interval(np.log(x.start), np.log(x.end))
|
51 |
+
else:
|
52 |
+
raise NotImplementedError
|
53 |
+
|
54 |
+
|
55 |
+
#Monotonic
|
56 |
+
def log10(x):
|
57 |
+
"""evaluates the logarithm to the base 10 of an interval"""
|
58 |
+
np = import_module('numpy')
|
59 |
+
if isinstance(x, (int, float)):
|
60 |
+
if x <= 0:
|
61 |
+
return interval(-np.inf, np.inf, is_valid=False)
|
62 |
+
else:
|
63 |
+
return interval(np.log10(x))
|
64 |
+
elif isinstance(x, interval):
|
65 |
+
if not x.is_valid:
|
66 |
+
return interval(-np.inf, np.inf, is_valid=x.is_valid)
|
67 |
+
elif x.end <= 0:
|
68 |
+
return interval(-np.inf, np.inf, is_valid=False)
|
69 |
+
elif x.start <= 0:
|
70 |
+
return interval(-np.inf, np.inf, is_valid=None)
|
71 |
+
return interval(np.log10(x.start), np.log10(x.end))
|
72 |
+
else:
|
73 |
+
raise NotImplementedError
|
74 |
+
|
75 |
+
|
76 |
+
#Monotonic
|
77 |
+
def atan(x):
|
78 |
+
"""evaluates the tan inverse of an interval"""
|
79 |
+
np = import_module('numpy')
|
80 |
+
if isinstance(x, (int, float)):
|
81 |
+
return interval(np.arctan(x))
|
82 |
+
elif isinstance(x, interval):
|
83 |
+
start = np.arctan(x.start)
|
84 |
+
end = np.arctan(x.end)
|
85 |
+
return interval(start, end, is_valid=x.is_valid)
|
86 |
+
else:
|
87 |
+
raise NotImplementedError
|
88 |
+
|
89 |
+
|
90 |
+
#periodic
|
91 |
+
def sin(x):
|
92 |
+
"""evaluates the sine of an interval"""
|
93 |
+
np = import_module('numpy')
|
94 |
+
if isinstance(x, (int, float)):
|
95 |
+
return interval(np.sin(x))
|
96 |
+
elif isinstance(x, interval):
|
97 |
+
if not x.is_valid:
|
98 |
+
return interval(-1, 1, is_valid=x.is_valid)
|
99 |
+
na, __ = divmod(x.start, np.pi / 2.0)
|
100 |
+
nb, __ = divmod(x.end, np.pi / 2.0)
|
101 |
+
start = min(np.sin(x.start), np.sin(x.end))
|
102 |
+
end = max(np.sin(x.start), np.sin(x.end))
|
103 |
+
if nb - na > 4:
|
104 |
+
return interval(-1, 1, is_valid=x.is_valid)
|
105 |
+
elif na == nb:
|
106 |
+
return interval(start, end, is_valid=x.is_valid)
|
107 |
+
else:
|
108 |
+
if (na - 1) // 4 != (nb - 1) // 4:
|
109 |
+
#sin has max
|
110 |
+
end = 1
|
111 |
+
if (na - 3) // 4 != (nb - 3) // 4:
|
112 |
+
#sin has min
|
113 |
+
start = -1
|
114 |
+
return interval(start, end)
|
115 |
+
else:
|
116 |
+
raise NotImplementedError
|
117 |
+
|
118 |
+
|
119 |
+
#periodic
|
120 |
+
def cos(x):
|
121 |
+
"""Evaluates the cos of an interval"""
|
122 |
+
np = import_module('numpy')
|
123 |
+
if isinstance(x, (int, float)):
|
124 |
+
return interval(np.sin(x))
|
125 |
+
elif isinstance(x, interval):
|
126 |
+
if not (np.isfinite(x.start) and np.isfinite(x.end)):
|
127 |
+
return interval(-1, 1, is_valid=x.is_valid)
|
128 |
+
na, __ = divmod(x.start, np.pi / 2.0)
|
129 |
+
nb, __ = divmod(x.end, np.pi / 2.0)
|
130 |
+
start = min(np.cos(x.start), np.cos(x.end))
|
131 |
+
end = max(np.cos(x.start), np.cos(x.end))
|
132 |
+
if nb - na > 4:
|
133 |
+
#differ more than 2*pi
|
134 |
+
return interval(-1, 1, is_valid=x.is_valid)
|
135 |
+
elif na == nb:
|
136 |
+
#in the same quadarant
|
137 |
+
return interval(start, end, is_valid=x.is_valid)
|
138 |
+
else:
|
139 |
+
if (na) // 4 != (nb) // 4:
|
140 |
+
#cos has max
|
141 |
+
end = 1
|
142 |
+
if (na - 2) // 4 != (nb - 2) // 4:
|
143 |
+
#cos has min
|
144 |
+
start = -1
|
145 |
+
return interval(start, end, is_valid=x.is_valid)
|
146 |
+
else:
|
147 |
+
raise NotImplementedError
|
148 |
+
|
149 |
+
|
150 |
+
def tan(x):
|
151 |
+
"""Evaluates the tan of an interval"""
|
152 |
+
return sin(x) / cos(x)
|
153 |
+
|
154 |
+
|
155 |
+
#Monotonic
|
156 |
+
def sqrt(x):
|
157 |
+
"""Evaluates the square root of an interval"""
|
158 |
+
np = import_module('numpy')
|
159 |
+
if isinstance(x, (int, float)):
|
160 |
+
if x > 0:
|
161 |
+
return interval(np.sqrt(x))
|
162 |
+
else:
|
163 |
+
return interval(-np.inf, np.inf, is_valid=False)
|
164 |
+
elif isinstance(x, interval):
|
165 |
+
#Outside the domain
|
166 |
+
if x.end < 0:
|
167 |
+
return interval(-np.inf, np.inf, is_valid=False)
|
168 |
+
#Partially outside the domain
|
169 |
+
elif x.start < 0:
|
170 |
+
return interval(-np.inf, np.inf, is_valid=None)
|
171 |
+
else:
|
172 |
+
return interval(np.sqrt(x.start), np.sqrt(x.end),
|
173 |
+
is_valid=x.is_valid)
|
174 |
+
else:
|
175 |
+
raise NotImplementedError
|
176 |
+
|
177 |
+
|
178 |
+
def imin(*args):
|
179 |
+
"""Evaluates the minimum of a list of intervals"""
|
180 |
+
np = import_module('numpy')
|
181 |
+
if not all(isinstance(arg, (int, float, interval)) for arg in args):
|
182 |
+
return NotImplementedError
|
183 |
+
else:
|
184 |
+
new_args = [a for a in args if isinstance(a, (int, float))
|
185 |
+
or a.is_valid]
|
186 |
+
if len(new_args) == 0:
|
187 |
+
if all(a.is_valid is False for a in args):
|
188 |
+
return interval(-np.inf, np.inf, is_valid=False)
|
189 |
+
else:
|
190 |
+
return interval(-np.inf, np.inf, is_valid=None)
|
191 |
+
start_array = [a if isinstance(a, (int, float)) else a.start
|
192 |
+
for a in new_args]
|
193 |
+
|
194 |
+
end_array = [a if isinstance(a, (int, float)) else a.end
|
195 |
+
for a in new_args]
|
196 |
+
return interval(min(start_array), min(end_array))
|
197 |
+
|
198 |
+
|
199 |
+
def imax(*args):
|
200 |
+
"""Evaluates the maximum of a list of intervals"""
|
201 |
+
np = import_module('numpy')
|
202 |
+
if not all(isinstance(arg, (int, float, interval)) for arg in args):
|
203 |
+
return NotImplementedError
|
204 |
+
else:
|
205 |
+
new_args = [a for a in args if isinstance(a, (int, float))
|
206 |
+
or a.is_valid]
|
207 |
+
if len(new_args) == 0:
|
208 |
+
if all(a.is_valid is False for a in args):
|
209 |
+
return interval(-np.inf, np.inf, is_valid=False)
|
210 |
+
else:
|
211 |
+
return interval(-np.inf, np.inf, is_valid=None)
|
212 |
+
start_array = [a if isinstance(a, (int, float)) else a.start
|
213 |
+
for a in new_args]
|
214 |
+
|
215 |
+
end_array = [a if isinstance(a, (int, float)) else a.end
|
216 |
+
for a in new_args]
|
217 |
+
|
218 |
+
return interval(max(start_array), max(end_array))
|
219 |
+
|
220 |
+
|
221 |
+
#Monotonic
|
222 |
+
def sinh(x):
|
223 |
+
"""Evaluates the hyperbolic sine of an interval"""
|
224 |
+
np = import_module('numpy')
|
225 |
+
if isinstance(x, (int, float)):
|
226 |
+
return interval(np.sinh(x), np.sinh(x))
|
227 |
+
elif isinstance(x, interval):
|
228 |
+
return interval(np.sinh(x.start), np.sinh(x.end), is_valid=x.is_valid)
|
229 |
+
else:
|
230 |
+
raise NotImplementedError
|
231 |
+
|
232 |
+
|
233 |
+
def cosh(x):
|
234 |
+
"""Evaluates the hyperbolic cos of an interval"""
|
235 |
+
np = import_module('numpy')
|
236 |
+
if isinstance(x, (int, float)):
|
237 |
+
return interval(np.cosh(x), np.cosh(x))
|
238 |
+
elif isinstance(x, interval):
|
239 |
+
#both signs
|
240 |
+
if x.start < 0 and x.end > 0:
|
241 |
+
end = max(np.cosh(x.start), np.cosh(x.end))
|
242 |
+
return interval(1, end, is_valid=x.is_valid)
|
243 |
+
else:
|
244 |
+
#Monotonic
|
245 |
+
start = np.cosh(x.start)
|
246 |
+
end = np.cosh(x.end)
|
247 |
+
return interval(start, end, is_valid=x.is_valid)
|
248 |
+
else:
|
249 |
+
raise NotImplementedError
|
250 |
+
|
251 |
+
|
252 |
+
#Monotonic
|
253 |
+
def tanh(x):
|
254 |
+
"""Evaluates the hyperbolic tan of an interval"""
|
255 |
+
np = import_module('numpy')
|
256 |
+
if isinstance(x, (int, float)):
|
257 |
+
return interval(np.tanh(x), np.tanh(x))
|
258 |
+
elif isinstance(x, interval):
|
259 |
+
return interval(np.tanh(x.start), np.tanh(x.end), is_valid=x.is_valid)
|
260 |
+
else:
|
261 |
+
raise NotImplementedError
|
262 |
+
|
263 |
+
|
264 |
+
def asin(x):
|
265 |
+
"""Evaluates the inverse sine of an interval"""
|
266 |
+
np = import_module('numpy')
|
267 |
+
if isinstance(x, (int, float)):
|
268 |
+
#Outside the domain
|
269 |
+
if abs(x) > 1:
|
270 |
+
return interval(-np.inf, np.inf, is_valid=False)
|
271 |
+
else:
|
272 |
+
return interval(np.arcsin(x), np.arcsin(x))
|
273 |
+
elif isinstance(x, interval):
|
274 |
+
#Outside the domain
|
275 |
+
if x.is_valid is False or x.start > 1 or x.end < -1:
|
276 |
+
return interval(-np.inf, np.inf, is_valid=False)
|
277 |
+
#Partially outside the domain
|
278 |
+
elif x.start < -1 or x.end > 1:
|
279 |
+
return interval(-np.inf, np.inf, is_valid=None)
|
280 |
+
else:
|
281 |
+
start = np.arcsin(x.start)
|
282 |
+
end = np.arcsin(x.end)
|
283 |
+
return interval(start, end, is_valid=x.is_valid)
|
284 |
+
|
285 |
+
|
286 |
+
def acos(x):
|
287 |
+
"""Evaluates the inverse cos of an interval"""
|
288 |
+
np = import_module('numpy')
|
289 |
+
if isinstance(x, (int, float)):
|
290 |
+
if abs(x) > 1:
|
291 |
+
#Outside the domain
|
292 |
+
return interval(-np.inf, np.inf, is_valid=False)
|
293 |
+
else:
|
294 |
+
return interval(np.arccos(x), np.arccos(x))
|
295 |
+
elif isinstance(x, interval):
|
296 |
+
#Outside the domain
|
297 |
+
if x.is_valid is False or x.start > 1 or x.end < -1:
|
298 |
+
return interval(-np.inf, np.inf, is_valid=False)
|
299 |
+
#Partially outside the domain
|
300 |
+
elif x.start < -1 or x.end > 1:
|
301 |
+
return interval(-np.inf, np.inf, is_valid=None)
|
302 |
+
else:
|
303 |
+
start = np.arccos(x.start)
|
304 |
+
end = np.arccos(x.end)
|
305 |
+
return interval(start, end, is_valid=x.is_valid)
|
306 |
+
|
307 |
+
|
308 |
+
def ceil(x):
|
309 |
+
"""Evaluates the ceiling of an interval"""
|
310 |
+
np = import_module('numpy')
|
311 |
+
if isinstance(x, (int, float)):
|
312 |
+
return interval(np.ceil(x))
|
313 |
+
elif isinstance(x, interval):
|
314 |
+
if x.is_valid is False:
|
315 |
+
return interval(-np.inf, np.inf, is_valid=False)
|
316 |
+
else:
|
317 |
+
start = np.ceil(x.start)
|
318 |
+
end = np.ceil(x.end)
|
319 |
+
#Continuous over the interval
|
320 |
+
if start == end:
|
321 |
+
return interval(start, end, is_valid=x.is_valid)
|
322 |
+
else:
|
323 |
+
#Not continuous over the interval
|
324 |
+
return interval(start, end, is_valid=None)
|
325 |
+
else:
|
326 |
+
return NotImplementedError
|
327 |
+
|
328 |
+
|
329 |
+
def floor(x):
|
330 |
+
"""Evaluates the floor of an interval"""
|
331 |
+
np = import_module('numpy')
|
332 |
+
if isinstance(x, (int, float)):
|
333 |
+
return interval(np.floor(x))
|
334 |
+
elif isinstance(x, interval):
|
335 |
+
if x.is_valid is False:
|
336 |
+
return interval(-np.inf, np.inf, is_valid=False)
|
337 |
+
else:
|
338 |
+
start = np.floor(x.start)
|
339 |
+
end = np.floor(x.end)
|
340 |
+
#continuous over the argument
|
341 |
+
if start == end:
|
342 |
+
return interval(start, end, is_valid=x.is_valid)
|
343 |
+
else:
|
344 |
+
#not continuous over the interval
|
345 |
+
return interval(start, end, is_valid=None)
|
346 |
+
else:
|
347 |
+
return NotImplementedError
|
348 |
+
|
349 |
+
|
350 |
+
def acosh(x):
|
351 |
+
"""Evaluates the inverse hyperbolic cosine of an interval"""
|
352 |
+
np = import_module('numpy')
|
353 |
+
if isinstance(x, (int, float)):
|
354 |
+
#Outside the domain
|
355 |
+
if x < 1:
|
356 |
+
return interval(-np.inf, np.inf, is_valid=False)
|
357 |
+
else:
|
358 |
+
return interval(np.arccosh(x))
|
359 |
+
elif isinstance(x, interval):
|
360 |
+
#Outside the domain
|
361 |
+
if x.end < 1:
|
362 |
+
return interval(-np.inf, np.inf, is_valid=False)
|
363 |
+
#Partly outside the domain
|
364 |
+
elif x.start < 1:
|
365 |
+
return interval(-np.inf, np.inf, is_valid=None)
|
366 |
+
else:
|
367 |
+
start = np.arccosh(x.start)
|
368 |
+
end = np.arccosh(x.end)
|
369 |
+
return interval(start, end, is_valid=x.is_valid)
|
370 |
+
else:
|
371 |
+
return NotImplementedError
|
372 |
+
|
373 |
+
|
374 |
+
#Monotonic
|
375 |
+
def asinh(x):
|
376 |
+
"""Evaluates the inverse hyperbolic sine of an interval"""
|
377 |
+
np = import_module('numpy')
|
378 |
+
if isinstance(x, (int, float)):
|
379 |
+
return interval(np.arcsinh(x))
|
380 |
+
elif isinstance(x, interval):
|
381 |
+
start = np.arcsinh(x.start)
|
382 |
+
end = np.arcsinh(x.end)
|
383 |
+
return interval(start, end, is_valid=x.is_valid)
|
384 |
+
else:
|
385 |
+
return NotImplementedError
|
386 |
+
|
387 |
+
|
388 |
+
def atanh(x):
|
389 |
+
"""Evaluates the inverse hyperbolic tangent of an interval"""
|
390 |
+
np = import_module('numpy')
|
391 |
+
if isinstance(x, (int, float)):
|
392 |
+
#Outside the domain
|
393 |
+
if abs(x) >= 1:
|
394 |
+
return interval(-np.inf, np.inf, is_valid=False)
|
395 |
+
else:
|
396 |
+
return interval(np.arctanh(x))
|
397 |
+
elif isinstance(x, interval):
|
398 |
+
#outside the domain
|
399 |
+
if x.is_valid is False or x.start >= 1 or x.end <= -1:
|
400 |
+
return interval(-np.inf, np.inf, is_valid=False)
|
401 |
+
#partly outside the domain
|
402 |
+
elif x.start <= -1 or x.end >= 1:
|
403 |
+
return interval(-np.inf, np.inf, is_valid=None)
|
404 |
+
else:
|
405 |
+
start = np.arctanh(x.start)
|
406 |
+
end = np.arctanh(x.end)
|
407 |
+
return interval(start, end, is_valid=x.is_valid)
|
408 |
+
else:
|
409 |
+
return NotImplementedError
|
410 |
+
|
411 |
+
|
412 |
+
#Three valued logic for interval plotting.
|
413 |
+
|
414 |
+
def And(*args):
|
415 |
+
"""Defines the three valued ``And`` behaviour for a 2-tuple of
|
416 |
+
three valued logic values"""
|
417 |
+
def reduce_and(cmp_intervala, cmp_intervalb):
|
418 |
+
if cmp_intervala[0] is False or cmp_intervalb[0] is False:
|
419 |
+
first = False
|
420 |
+
elif cmp_intervala[0] is None or cmp_intervalb[0] is None:
|
421 |
+
first = None
|
422 |
+
else:
|
423 |
+
first = True
|
424 |
+
if cmp_intervala[1] is False or cmp_intervalb[1] is False:
|
425 |
+
second = False
|
426 |
+
elif cmp_intervala[1] is None or cmp_intervalb[1] is None:
|
427 |
+
second = None
|
428 |
+
else:
|
429 |
+
second = True
|
430 |
+
return (first, second)
|
431 |
+
return reduce(reduce_and, args)
|
432 |
+
|
433 |
+
|
434 |
+
def Or(*args):
|
435 |
+
"""Defines the three valued ``Or`` behaviour for a 2-tuple of
|
436 |
+
three valued logic values"""
|
437 |
+
def reduce_or(cmp_intervala, cmp_intervalb):
|
438 |
+
if cmp_intervala[0] is True or cmp_intervalb[0] is True:
|
439 |
+
first = True
|
440 |
+
elif cmp_intervala[0] is None or cmp_intervalb[0] is None:
|
441 |
+
first = None
|
442 |
+
else:
|
443 |
+
first = False
|
444 |
+
|
445 |
+
if cmp_intervala[1] is True or cmp_intervalb[1] is True:
|
446 |
+
second = True
|
447 |
+
elif cmp_intervala[1] is None or cmp_intervalb[1] is None:
|
448 |
+
second = None
|
449 |
+
else:
|
450 |
+
second = False
|
451 |
+
return (first, second)
|
452 |
+
return reduce(reduce_or, args)
|
llmeval-env/lib/python3.10/site-packages/sympy/plotting/plot.py
ADDED
@@ -0,0 +1,2637 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Plotting module for SymPy.
|
2 |
+
|
3 |
+
A plot is represented by the ``Plot`` class that contains a reference to the
|
4 |
+
backend and a list of the data series to be plotted. The data series are
|
5 |
+
instances of classes meant to simplify getting points and meshes from SymPy
|
6 |
+
expressions. ``plot_backends`` is a dictionary with all the backends.
|
7 |
+
|
8 |
+
This module gives only the essential. For all the fancy stuff use directly
|
9 |
+
the backend. You can get the backend wrapper for every plot from the
|
10 |
+
``_backend`` attribute. Moreover the data series classes have various useful
|
11 |
+
methods like ``get_points``, ``get_meshes``, etc, that may
|
12 |
+
be useful if you wish to use another plotting library.
|
13 |
+
|
14 |
+
Especially if you need publication ready graphs and this module is not enough
|
15 |
+
for you - just get the ``_backend`` attribute and add whatever you want
|
16 |
+
directly to it. In the case of matplotlib (the common way to graph data in
|
17 |
+
python) just copy ``_backend.fig`` which is the figure and ``_backend.ax``
|
18 |
+
which is the axis and work on them as you would on any other matplotlib object.
|
19 |
+
|
20 |
+
Simplicity of code takes much greater importance than performance. Do not use it
|
21 |
+
if you care at all about performance. A new backend instance is initialized
|
22 |
+
every time you call ``show()`` and the old one is left to the garbage collector.
|
23 |
+
"""
|
24 |
+
|
25 |
+
|
26 |
+
from collections.abc import Callable
|
27 |
+
|
28 |
+
|
29 |
+
from sympy.core.basic import Basic
|
30 |
+
from sympy.core.containers import Tuple
|
31 |
+
from sympy.core.expr import Expr
|
32 |
+
from sympy.core.function import arity, Function
|
33 |
+
from sympy.core.symbol import (Dummy, Symbol)
|
34 |
+
from sympy.core.sympify import sympify
|
35 |
+
from sympy.external import import_module
|
36 |
+
from sympy.printing.latex import latex
|
37 |
+
from sympy.utilities.exceptions import sympy_deprecation_warning
|
38 |
+
from sympy.utilities.iterables import is_sequence
|
39 |
+
from .experimental_lambdify import (vectorized_lambdify, lambdify)
|
40 |
+
|
41 |
+
# N.B.
|
42 |
+
# When changing the minimum module version for matplotlib, please change
|
43 |
+
# the same in the `SymPyDocTestFinder`` in `sympy/testing/runtests.py`
|
44 |
+
|
45 |
+
# Backend specific imports - textplot
|
46 |
+
from sympy.plotting.textplot import textplot
|
47 |
+
|
48 |
+
# Global variable
|
49 |
+
# Set to False when running tests / doctests so that the plots don't show.
|
50 |
+
_show = True
|
51 |
+
|
52 |
+
|
53 |
+
def unset_show():
|
54 |
+
"""
|
55 |
+
Disable show(). For use in the tests.
|
56 |
+
"""
|
57 |
+
global _show
|
58 |
+
_show = False
|
59 |
+
|
60 |
+
def _str_or_latex(label):
|
61 |
+
if isinstance(label, Basic):
|
62 |
+
return latex(label, mode='inline')
|
63 |
+
return str(label)
|
64 |
+
|
65 |
+
##############################################################################
|
66 |
+
# The public interface
|
67 |
+
##############################################################################
|
68 |
+
|
69 |
+
|
70 |
+
class Plot:
|
71 |
+
"""The central class of the plotting module.
|
72 |
+
|
73 |
+
Explanation
|
74 |
+
===========
|
75 |
+
|
76 |
+
For interactive work the function :func:`plot()` is better suited.
|
77 |
+
|
78 |
+
This class permits the plotting of SymPy expressions using numerous
|
79 |
+
backends (:external:mod:`matplotlib`, textplot, the old pyglet module for SymPy, Google
|
80 |
+
charts api, etc).
|
81 |
+
|
82 |
+
The figure can contain an arbitrary number of plots of SymPy expressions,
|
83 |
+
lists of coordinates of points, etc. Plot has a private attribute _series that
|
84 |
+
contains all data series to be plotted (expressions for lines or surfaces,
|
85 |
+
lists of points, etc (all subclasses of BaseSeries)). Those data series are
|
86 |
+
instances of classes not imported by ``from sympy import *``.
|
87 |
+
|
88 |
+
The customization of the figure is on two levels. Global options that
|
89 |
+
concern the figure as a whole (e.g. title, xlabel, scale, etc) and
|
90 |
+
per-data series options (e.g. name) and aesthetics (e.g. color, point shape,
|
91 |
+
line type, etc.).
|
92 |
+
|
93 |
+
The difference between options and aesthetics is that an aesthetic can be
|
94 |
+
a function of the coordinates (or parameters in a parametric plot). The
|
95 |
+
supported values for an aesthetic are:
|
96 |
+
|
97 |
+
- None (the backend uses default values)
|
98 |
+
- a constant
|
99 |
+
- a function of one variable (the first coordinate or parameter)
|
100 |
+
- a function of two variables (the first and second coordinate or parameters)
|
101 |
+
- a function of three variables (only in nonparametric 3D plots)
|
102 |
+
|
103 |
+
Their implementation depends on the backend so they may not work in some
|
104 |
+
backends.
|
105 |
+
|
106 |
+
If the plot is parametric and the arity of the aesthetic function permits
|
107 |
+
it the aesthetic is calculated over parameters and not over coordinates.
|
108 |
+
If the arity does not permit calculation over parameters the calculation is
|
109 |
+
done over coordinates.
|
110 |
+
|
111 |
+
Only cartesian coordinates are supported for the moment, but you can use
|
112 |
+
the parametric plots to plot in polar, spherical and cylindrical
|
113 |
+
coordinates.
|
114 |
+
|
115 |
+
The arguments for the constructor Plot must be subclasses of BaseSeries.
|
116 |
+
|
117 |
+
Any global option can be specified as a keyword argument.
|
118 |
+
|
119 |
+
The global options for a figure are:
|
120 |
+
|
121 |
+
- title : str
|
122 |
+
- xlabel : str or Symbol
|
123 |
+
- ylabel : str or Symbol
|
124 |
+
- zlabel : str or Symbol
|
125 |
+
- legend : bool
|
126 |
+
- xscale : {'linear', 'log'}
|
127 |
+
- yscale : {'linear', 'log'}
|
128 |
+
- axis : bool
|
129 |
+
- axis_center : tuple of two floats or {'center', 'auto'}
|
130 |
+
- xlim : tuple of two floats
|
131 |
+
- ylim : tuple of two floats
|
132 |
+
- aspect_ratio : tuple of two floats or {'auto'}
|
133 |
+
- autoscale : bool
|
134 |
+
- margin : float in [0, 1]
|
135 |
+
- backend : {'default', 'matplotlib', 'text'} or a subclass of BaseBackend
|
136 |
+
- size : optional tuple of two floats, (width, height); default: None
|
137 |
+
|
138 |
+
The per data series options and aesthetics are:
|
139 |
+
There are none in the base series. See below for options for subclasses.
|
140 |
+
|
141 |
+
Some data series support additional aesthetics or options:
|
142 |
+
|
143 |
+
:class:`~.LineOver1DRangeSeries`, :class:`~.Parametric2DLineSeries`, and
|
144 |
+
:class:`~.Parametric3DLineSeries` support the following:
|
145 |
+
|
146 |
+
Aesthetics:
|
147 |
+
|
148 |
+
- line_color : string, or float, or function, optional
|
149 |
+
Specifies the color for the plot, which depends on the backend being
|
150 |
+
used.
|
151 |
+
|
152 |
+
For example, if ``MatplotlibBackend`` is being used, then
|
153 |
+
Matplotlib string colors are acceptable (``"red"``, ``"r"``,
|
154 |
+
``"cyan"``, ``"c"``, ...).
|
155 |
+
Alternatively, we can use a float number, 0 < color < 1, wrapped in a
|
156 |
+
string (for example, ``line_color="0.5"``) to specify grayscale colors.
|
157 |
+
Alternatively, We can specify a function returning a single
|
158 |
+
float value: this will be used to apply a color-loop (for example,
|
159 |
+
``line_color=lambda x: math.cos(x)``).
|
160 |
+
|
161 |
+
Note that by setting line_color, it would be applied simultaneously
|
162 |
+
to all the series.
|
163 |
+
|
164 |
+
Options:
|
165 |
+
|
166 |
+
- label : str
|
167 |
+
- steps : bool
|
168 |
+
- integers_only : bool
|
169 |
+
|
170 |
+
:class:`~.SurfaceOver2DRangeSeries` and :class:`~.ParametricSurfaceSeries`
|
171 |
+
support the following:
|
172 |
+
|
173 |
+
Aesthetics:
|
174 |
+
|
175 |
+
- surface_color : function which returns a float.
|
176 |
+
"""
|
177 |
+
|
178 |
+
def __init__(self, *args,
|
179 |
+
title=None, xlabel=None, ylabel=None, zlabel=None, aspect_ratio='auto',
|
180 |
+
xlim=None, ylim=None, axis_center='auto', axis=True,
|
181 |
+
xscale='linear', yscale='linear', legend=False, autoscale=True,
|
182 |
+
margin=0, annotations=None, markers=None, rectangles=None,
|
183 |
+
fill=None, backend='default', size=None, **kwargs):
|
184 |
+
super().__init__()
|
185 |
+
|
186 |
+
# Options for the graph as a whole.
|
187 |
+
# The possible values for each option are described in the docstring of
|
188 |
+
# Plot. They are based purely on convention, no checking is done.
|
189 |
+
self.title = title
|
190 |
+
self.xlabel = xlabel
|
191 |
+
self.ylabel = ylabel
|
192 |
+
self.zlabel = zlabel
|
193 |
+
self.aspect_ratio = aspect_ratio
|
194 |
+
self.axis_center = axis_center
|
195 |
+
self.axis = axis
|
196 |
+
self.xscale = xscale
|
197 |
+
self.yscale = yscale
|
198 |
+
self.legend = legend
|
199 |
+
self.autoscale = autoscale
|
200 |
+
self.margin = margin
|
201 |
+
self.annotations = annotations
|
202 |
+
self.markers = markers
|
203 |
+
self.rectangles = rectangles
|
204 |
+
self.fill = fill
|
205 |
+
|
206 |
+
# Contains the data objects to be plotted. The backend should be smart
|
207 |
+
# enough to iterate over this list.
|
208 |
+
self._series = []
|
209 |
+
self._series.extend(args)
|
210 |
+
|
211 |
+
# The backend type. On every show() a new backend instance is created
|
212 |
+
# in self._backend which is tightly coupled to the Plot instance
|
213 |
+
# (thanks to the parent attribute of the backend).
|
214 |
+
if isinstance(backend, str):
|
215 |
+
self.backend = plot_backends[backend]
|
216 |
+
elif (type(backend) == type) and issubclass(backend, BaseBackend):
|
217 |
+
self.backend = backend
|
218 |
+
else:
|
219 |
+
raise TypeError(
|
220 |
+
"backend must be either a string or a subclass of BaseBackend")
|
221 |
+
|
222 |
+
is_real = \
|
223 |
+
lambda lim: all(getattr(i, 'is_real', True) for i in lim)
|
224 |
+
is_finite = \
|
225 |
+
lambda lim: all(getattr(i, 'is_finite', True) for i in lim)
|
226 |
+
|
227 |
+
# reduce code repetition
|
228 |
+
def check_and_set(t_name, t):
|
229 |
+
if t:
|
230 |
+
if not is_real(t):
|
231 |
+
raise ValueError(
|
232 |
+
"All numbers from {}={} must be real".format(t_name, t))
|
233 |
+
if not is_finite(t):
|
234 |
+
raise ValueError(
|
235 |
+
"All numbers from {}={} must be finite".format(t_name, t))
|
236 |
+
setattr(self, t_name, (float(t[0]), float(t[1])))
|
237 |
+
|
238 |
+
self.xlim = None
|
239 |
+
check_and_set("xlim", xlim)
|
240 |
+
self.ylim = None
|
241 |
+
check_and_set("ylim", ylim)
|
242 |
+
self.size = None
|
243 |
+
check_and_set("size", size)
|
244 |
+
|
245 |
+
|
246 |
+
def show(self):
|
247 |
+
# TODO move this to the backend (also for save)
|
248 |
+
if hasattr(self, '_backend'):
|
249 |
+
self._backend.close()
|
250 |
+
self._backend = self.backend(self)
|
251 |
+
self._backend.show()
|
252 |
+
|
253 |
+
def save(self, path):
|
254 |
+
if hasattr(self, '_backend'):
|
255 |
+
self._backend.close()
|
256 |
+
self._backend = self.backend(self)
|
257 |
+
self._backend.save(path)
|
258 |
+
|
259 |
+
def __str__(self):
|
260 |
+
series_strs = [('[%d]: ' % i) + str(s)
|
261 |
+
for i, s in enumerate(self._series)]
|
262 |
+
return 'Plot object containing:\n' + '\n'.join(series_strs)
|
263 |
+
|
264 |
+
def __getitem__(self, index):
|
265 |
+
return self._series[index]
|
266 |
+
|
267 |
+
def __setitem__(self, index, *args):
|
268 |
+
if len(args) == 1 and isinstance(args[0], BaseSeries):
|
269 |
+
self._series[index] = args
|
270 |
+
|
271 |
+
def __delitem__(self, index):
|
272 |
+
del self._series[index]
|
273 |
+
|
274 |
+
def append(self, arg):
|
275 |
+
"""Adds an element from a plot's series to an existing plot.
|
276 |
+
|
277 |
+
Examples
|
278 |
+
========
|
279 |
+
|
280 |
+
Consider two ``Plot`` objects, ``p1`` and ``p2``. To add the
|
281 |
+
second plot's first series object to the first, use the
|
282 |
+
``append`` method, like so:
|
283 |
+
|
284 |
+
.. plot::
|
285 |
+
:format: doctest
|
286 |
+
:include-source: True
|
287 |
+
|
288 |
+
>>> from sympy import symbols
|
289 |
+
>>> from sympy.plotting import plot
|
290 |
+
>>> x = symbols('x')
|
291 |
+
>>> p1 = plot(x*x, show=False)
|
292 |
+
>>> p2 = plot(x, show=False)
|
293 |
+
>>> p1.append(p2[0])
|
294 |
+
>>> p1
|
295 |
+
Plot object containing:
|
296 |
+
[0]: cartesian line: x**2 for x over (-10.0, 10.0)
|
297 |
+
[1]: cartesian line: x for x over (-10.0, 10.0)
|
298 |
+
>>> p1.show()
|
299 |
+
|
300 |
+
See Also
|
301 |
+
========
|
302 |
+
|
303 |
+
extend
|
304 |
+
|
305 |
+
"""
|
306 |
+
if isinstance(arg, BaseSeries):
|
307 |
+
self._series.append(arg)
|
308 |
+
else:
|
309 |
+
raise TypeError('Must specify element of plot to append.')
|
310 |
+
|
311 |
+
def extend(self, arg):
|
312 |
+
"""Adds all series from another plot.
|
313 |
+
|
314 |
+
Examples
|
315 |
+
========
|
316 |
+
|
317 |
+
Consider two ``Plot`` objects, ``p1`` and ``p2``. To add the
|
318 |
+
second plot to the first, use the ``extend`` method, like so:
|
319 |
+
|
320 |
+
.. plot::
|
321 |
+
:format: doctest
|
322 |
+
:include-source: True
|
323 |
+
|
324 |
+
>>> from sympy import symbols
|
325 |
+
>>> from sympy.plotting import plot
|
326 |
+
>>> x = symbols('x')
|
327 |
+
>>> p1 = plot(x**2, show=False)
|
328 |
+
>>> p2 = plot(x, -x, show=False)
|
329 |
+
>>> p1.extend(p2)
|
330 |
+
>>> p1
|
331 |
+
Plot object containing:
|
332 |
+
[0]: cartesian line: x**2 for x over (-10.0, 10.0)
|
333 |
+
[1]: cartesian line: x for x over (-10.0, 10.0)
|
334 |
+
[2]: cartesian line: -x for x over (-10.0, 10.0)
|
335 |
+
>>> p1.show()
|
336 |
+
|
337 |
+
"""
|
338 |
+
if isinstance(arg, Plot):
|
339 |
+
self._series.extend(arg._series)
|
340 |
+
elif is_sequence(arg):
|
341 |
+
self._series.extend(arg)
|
342 |
+
else:
|
343 |
+
raise TypeError('Expecting Plot or sequence of BaseSeries')
|
344 |
+
|
345 |
+
|
346 |
+
class PlotGrid:
|
347 |
+
"""This class helps to plot subplots from already created SymPy plots
|
348 |
+
in a single figure.
|
349 |
+
|
350 |
+
Examples
|
351 |
+
========
|
352 |
+
|
353 |
+
.. plot::
|
354 |
+
:context: close-figs
|
355 |
+
:format: doctest
|
356 |
+
:include-source: True
|
357 |
+
|
358 |
+
>>> from sympy import symbols
|
359 |
+
>>> from sympy.plotting import plot, plot3d, PlotGrid
|
360 |
+
>>> x, y = symbols('x, y')
|
361 |
+
>>> p1 = plot(x, x**2, x**3, (x, -5, 5))
|
362 |
+
>>> p2 = plot((x**2, (x, -6, 6)), (x, (x, -5, 5)))
|
363 |
+
>>> p3 = plot(x**3, (x, -5, 5))
|
364 |
+
>>> p4 = plot3d(x*y, (x, -5, 5), (y, -5, 5))
|
365 |
+
|
366 |
+
Plotting vertically in a single line:
|
367 |
+
|
368 |
+
.. plot::
|
369 |
+
:context: close-figs
|
370 |
+
:format: doctest
|
371 |
+
:include-source: True
|
372 |
+
|
373 |
+
>>> PlotGrid(2, 1, p1, p2)
|
374 |
+
PlotGrid object containing:
|
375 |
+
Plot[0]:Plot object containing:
|
376 |
+
[0]: cartesian line: x for x over (-5.0, 5.0)
|
377 |
+
[1]: cartesian line: x**2 for x over (-5.0, 5.0)
|
378 |
+
[2]: cartesian line: x**3 for x over (-5.0, 5.0)
|
379 |
+
Plot[1]:Plot object containing:
|
380 |
+
[0]: cartesian line: x**2 for x over (-6.0, 6.0)
|
381 |
+
[1]: cartesian line: x for x over (-5.0, 5.0)
|
382 |
+
|
383 |
+
Plotting horizontally in a single line:
|
384 |
+
|
385 |
+
.. plot::
|
386 |
+
:context: close-figs
|
387 |
+
:format: doctest
|
388 |
+
:include-source: True
|
389 |
+
|
390 |
+
>>> PlotGrid(1, 3, p2, p3, p4)
|
391 |
+
PlotGrid object containing:
|
392 |
+
Plot[0]:Plot object containing:
|
393 |
+
[0]: cartesian line: x**2 for x over (-6.0, 6.0)
|
394 |
+
[1]: cartesian line: x for x over (-5.0, 5.0)
|
395 |
+
Plot[1]:Plot object containing:
|
396 |
+
[0]: cartesian line: x**3 for x over (-5.0, 5.0)
|
397 |
+
Plot[2]:Plot object containing:
|
398 |
+
[0]: cartesian surface: x*y for x over (-5.0, 5.0) and y over (-5.0, 5.0)
|
399 |
+
|
400 |
+
Plotting in a grid form:
|
401 |
+
|
402 |
+
.. plot::
|
403 |
+
:context: close-figs
|
404 |
+
:format: doctest
|
405 |
+
:include-source: True
|
406 |
+
|
407 |
+
>>> PlotGrid(2, 2, p1, p2, p3, p4)
|
408 |
+
PlotGrid object containing:
|
409 |
+
Plot[0]:Plot object containing:
|
410 |
+
[0]: cartesian line: x for x over (-5.0, 5.0)
|
411 |
+
[1]: cartesian line: x**2 for x over (-5.0, 5.0)
|
412 |
+
[2]: cartesian line: x**3 for x over (-5.0, 5.0)
|
413 |
+
Plot[1]:Plot object containing:
|
414 |
+
[0]: cartesian line: x**2 for x over (-6.0, 6.0)
|
415 |
+
[1]: cartesian line: x for x over (-5.0, 5.0)
|
416 |
+
Plot[2]:Plot object containing:
|
417 |
+
[0]: cartesian line: x**3 for x over (-5.0, 5.0)
|
418 |
+
Plot[3]:Plot object containing:
|
419 |
+
[0]: cartesian surface: x*y for x over (-5.0, 5.0) and y over (-5.0, 5.0)
|
420 |
+
|
421 |
+
"""
|
422 |
+
def __init__(self, nrows, ncolumns, *args, show=True, size=None, **kwargs):
|
423 |
+
"""
|
424 |
+
Parameters
|
425 |
+
==========
|
426 |
+
|
427 |
+
nrows :
|
428 |
+
The number of rows that should be in the grid of the
|
429 |
+
required subplot.
|
430 |
+
ncolumns :
|
431 |
+
The number of columns that should be in the grid
|
432 |
+
of the required subplot.
|
433 |
+
|
434 |
+
nrows and ncolumns together define the required grid.
|
435 |
+
|
436 |
+
Arguments
|
437 |
+
=========
|
438 |
+
|
439 |
+
A list of predefined plot objects entered in a row-wise sequence
|
440 |
+
i.e. plot objects which are to be in the top row of the required
|
441 |
+
grid are written first, then the second row objects and so on
|
442 |
+
|
443 |
+
Keyword arguments
|
444 |
+
=================
|
445 |
+
|
446 |
+
show : Boolean
|
447 |
+
The default value is set to ``True``. Set show to ``False`` and
|
448 |
+
the function will not display the subplot. The returned instance
|
449 |
+
of the ``PlotGrid`` class can then be used to save or display the
|
450 |
+
plot by calling the ``save()`` and ``show()`` methods
|
451 |
+
respectively.
|
452 |
+
size : (float, float), optional
|
453 |
+
A tuple in the form (width, height) in inches to specify the size of
|
454 |
+
the overall figure. The default value is set to ``None``, meaning
|
455 |
+
the size will be set by the default backend.
|
456 |
+
"""
|
457 |
+
self.nrows = nrows
|
458 |
+
self.ncolumns = ncolumns
|
459 |
+
self._series = []
|
460 |
+
self.args = args
|
461 |
+
for arg in args:
|
462 |
+
self._series.append(arg._series)
|
463 |
+
self.backend = DefaultBackend
|
464 |
+
self.size = size
|
465 |
+
if show:
|
466 |
+
self.show()
|
467 |
+
|
468 |
+
def show(self):
|
469 |
+
if hasattr(self, '_backend'):
|
470 |
+
self._backend.close()
|
471 |
+
self._backend = self.backend(self)
|
472 |
+
self._backend.show()
|
473 |
+
|
474 |
+
def save(self, path):
|
475 |
+
if hasattr(self, '_backend'):
|
476 |
+
self._backend.close()
|
477 |
+
self._backend = self.backend(self)
|
478 |
+
self._backend.save(path)
|
479 |
+
|
480 |
+
def __str__(self):
|
481 |
+
plot_strs = [('Plot[%d]:' % i) + str(plot)
|
482 |
+
for i, plot in enumerate(self.args)]
|
483 |
+
|
484 |
+
return 'PlotGrid object containing:\n' + '\n'.join(plot_strs)
|
485 |
+
|
486 |
+
|
487 |
+
##############################################################################
|
488 |
+
# Data Series
|
489 |
+
##############################################################################
|
490 |
+
#TODO more general way to calculate aesthetics (see get_color_array)
|
491 |
+
|
492 |
+
### The base class for all series
|
493 |
+
class BaseSeries:
|
494 |
+
"""Base class for the data objects containing stuff to be plotted.
|
495 |
+
|
496 |
+
Explanation
|
497 |
+
===========
|
498 |
+
|
499 |
+
The backend should check if it supports the data series that is given.
|
500 |
+
(e.g. TextBackend supports only LineOver1DRangeSeries).
|
501 |
+
It is the backend responsibility to know how to use the class of
|
502 |
+
data series that is given.
|
503 |
+
|
504 |
+
Some data series classes are grouped (using a class attribute like is_2Dline)
|
505 |
+
according to the api they present (based only on convention). The backend is
|
506 |
+
not obliged to use that api (e.g. LineOver1DRangeSeries belongs to the
|
507 |
+
is_2Dline group and presents the get_points method, but the
|
508 |
+
TextBackend does not use the get_points method).
|
509 |
+
"""
|
510 |
+
|
511 |
+
# Some flags follow. The rationale for using flags instead of checking base
|
512 |
+
# classes is that setting multiple flags is simpler than multiple
|
513 |
+
# inheritance.
|
514 |
+
|
515 |
+
is_2Dline = False
|
516 |
+
# Some of the backends expect:
|
517 |
+
# - get_points returning 1D np.arrays list_x, list_y
|
518 |
+
# - get_color_array returning 1D np.array (done in Line2DBaseSeries)
|
519 |
+
# with the colors calculated at the points from get_points
|
520 |
+
|
521 |
+
is_3Dline = False
|
522 |
+
# Some of the backends expect:
|
523 |
+
# - get_points returning 1D np.arrays list_x, list_y, list_y
|
524 |
+
# - get_color_array returning 1D np.array (done in Line2DBaseSeries)
|
525 |
+
# with the colors calculated at the points from get_points
|
526 |
+
|
527 |
+
is_3Dsurface = False
|
528 |
+
# Some of the backends expect:
|
529 |
+
# - get_meshes returning mesh_x, mesh_y, mesh_z (2D np.arrays)
|
530 |
+
# - get_points an alias for get_meshes
|
531 |
+
|
532 |
+
is_contour = False
|
533 |
+
# Some of the backends expect:
|
534 |
+
# - get_meshes returning mesh_x, mesh_y, mesh_z (2D np.arrays)
|
535 |
+
# - get_points an alias for get_meshes
|
536 |
+
|
537 |
+
is_implicit = False
|
538 |
+
# Some of the backends expect:
|
539 |
+
# - get_meshes returning mesh_x (1D array), mesh_y(1D array,
|
540 |
+
# mesh_z (2D np.arrays)
|
541 |
+
# - get_points an alias for get_meshes
|
542 |
+
# Different from is_contour as the colormap in backend will be
|
543 |
+
# different
|
544 |
+
|
545 |
+
is_parametric = False
|
546 |
+
# The calculation of aesthetics expects:
|
547 |
+
# - get_parameter_points returning one or two np.arrays (1D or 2D)
|
548 |
+
# used for calculation aesthetics
|
549 |
+
|
550 |
+
def __init__(self):
|
551 |
+
super().__init__()
|
552 |
+
|
553 |
+
@property
|
554 |
+
def is_3D(self):
|
555 |
+
flags3D = [
|
556 |
+
self.is_3Dline,
|
557 |
+
self.is_3Dsurface
|
558 |
+
]
|
559 |
+
return any(flags3D)
|
560 |
+
|
561 |
+
@property
|
562 |
+
def is_line(self):
|
563 |
+
flagslines = [
|
564 |
+
self.is_2Dline,
|
565 |
+
self.is_3Dline
|
566 |
+
]
|
567 |
+
return any(flagslines)
|
568 |
+
|
569 |
+
|
570 |
+
### 2D lines
|
571 |
+
class Line2DBaseSeries(BaseSeries):
|
572 |
+
"""A base class for 2D lines.
|
573 |
+
|
574 |
+
- adding the label, steps and only_integers options
|
575 |
+
- making is_2Dline true
|
576 |
+
- defining get_segments and get_color_array
|
577 |
+
"""
|
578 |
+
|
579 |
+
is_2Dline = True
|
580 |
+
|
581 |
+
_dim = 2
|
582 |
+
|
583 |
+
def __init__(self):
|
584 |
+
super().__init__()
|
585 |
+
self.label = None
|
586 |
+
self.steps = False
|
587 |
+
self.only_integers = False
|
588 |
+
self.line_color = None
|
589 |
+
|
590 |
+
def get_data(self):
|
591 |
+
""" Return lists of coordinates for plotting the line.
|
592 |
+
|
593 |
+
Returns
|
594 |
+
=======
|
595 |
+
x : list
|
596 |
+
List of x-coordinates
|
597 |
+
|
598 |
+
y : list
|
599 |
+
List of y-coordinates
|
600 |
+
|
601 |
+
z : list
|
602 |
+
List of z-coordinates in case of Parametric3DLineSeries
|
603 |
+
"""
|
604 |
+
np = import_module('numpy')
|
605 |
+
points = self.get_points()
|
606 |
+
if self.steps is True:
|
607 |
+
if len(points) == 2:
|
608 |
+
x = np.array((points[0], points[0])).T.flatten()[1:]
|
609 |
+
y = np.array((points[1], points[1])).T.flatten()[:-1]
|
610 |
+
points = (x, y)
|
611 |
+
else:
|
612 |
+
x = np.repeat(points[0], 3)[2:]
|
613 |
+
y = np.repeat(points[1], 3)[:-2]
|
614 |
+
z = np.repeat(points[2], 3)[1:-1]
|
615 |
+
points = (x, y, z)
|
616 |
+
return points
|
617 |
+
|
618 |
+
def get_segments(self):
|
619 |
+
sympy_deprecation_warning(
|
620 |
+
"""
|
621 |
+
The Line2DBaseSeries.get_segments() method is deprecated.
|
622 |
+
|
623 |
+
Instead, use the MatplotlibBackend.get_segments() method, or use
|
624 |
+
The get_points() or get_data() methods.
|
625 |
+
""",
|
626 |
+
deprecated_since_version="1.9",
|
627 |
+
active_deprecations_target="deprecated-get-segments")
|
628 |
+
|
629 |
+
np = import_module('numpy')
|
630 |
+
points = type(self).get_data(self)
|
631 |
+
points = np.ma.array(points).T.reshape(-1, 1, self._dim)
|
632 |
+
return np.ma.concatenate([points[:-1], points[1:]], axis=1)
|
633 |
+
|
634 |
+
def get_color_array(self):
|
635 |
+
np = import_module('numpy')
|
636 |
+
c = self.line_color
|
637 |
+
if hasattr(c, '__call__'):
|
638 |
+
f = np.vectorize(c)
|
639 |
+
nargs = arity(c)
|
640 |
+
if nargs == 1 and self.is_parametric:
|
641 |
+
x = self.get_parameter_points()
|
642 |
+
return f(centers_of_segments(x))
|
643 |
+
else:
|
644 |
+
variables = list(map(centers_of_segments, self.get_points()))
|
645 |
+
if nargs == 1:
|
646 |
+
return f(variables[0])
|
647 |
+
elif nargs == 2:
|
648 |
+
return f(*variables[:2])
|
649 |
+
else: # only if the line is 3D (otherwise raises an error)
|
650 |
+
return f(*variables)
|
651 |
+
else:
|
652 |
+
return c*np.ones(self.nb_of_points)
|
653 |
+
|
654 |
+
|
655 |
+
class List2DSeries(Line2DBaseSeries):
|
656 |
+
"""Representation for a line consisting of list of points."""
|
657 |
+
|
658 |
+
def __init__(self, list_x, list_y):
|
659 |
+
np = import_module('numpy')
|
660 |
+
super().__init__()
|
661 |
+
self.list_x = np.array(list_x)
|
662 |
+
self.list_y = np.array(list_y)
|
663 |
+
self.label = 'list'
|
664 |
+
|
665 |
+
def __str__(self):
|
666 |
+
return 'list plot'
|
667 |
+
|
668 |
+
def get_points(self):
|
669 |
+
return (self.list_x, self.list_y)
|
670 |
+
|
671 |
+
|
672 |
+
class LineOver1DRangeSeries(Line2DBaseSeries):
|
673 |
+
"""Representation for a line consisting of a SymPy expression over a range."""
|
674 |
+
|
675 |
+
def __init__(self, expr, var_start_end, **kwargs):
|
676 |
+
super().__init__()
|
677 |
+
self.expr = sympify(expr)
|
678 |
+
self.label = kwargs.get('label', None) or self.expr
|
679 |
+
self.var = sympify(var_start_end[0])
|
680 |
+
self.start = float(var_start_end[1])
|
681 |
+
self.end = float(var_start_end[2])
|
682 |
+
self.nb_of_points = kwargs.get('nb_of_points', 300)
|
683 |
+
self.adaptive = kwargs.get('adaptive', True)
|
684 |
+
self.depth = kwargs.get('depth', 12)
|
685 |
+
self.line_color = kwargs.get('line_color', None)
|
686 |
+
self.xscale = kwargs.get('xscale', 'linear')
|
687 |
+
|
688 |
+
def __str__(self):
|
689 |
+
return 'cartesian line: %s for %s over %s' % (
|
690 |
+
str(self.expr), str(self.var), str((self.start, self.end)))
|
691 |
+
|
692 |
+
def get_points(self):
|
693 |
+
""" Return lists of coordinates for plotting. Depending on the
|
694 |
+
``adaptive`` option, this function will either use an adaptive algorithm
|
695 |
+
or it will uniformly sample the expression over the provided range.
|
696 |
+
|
697 |
+
Returns
|
698 |
+
=======
|
699 |
+
x : list
|
700 |
+
List of x-coordinates
|
701 |
+
|
702 |
+
y : list
|
703 |
+
List of y-coordinates
|
704 |
+
|
705 |
+
|
706 |
+
Explanation
|
707 |
+
===========
|
708 |
+
|
709 |
+
The adaptive sampling is done by recursively checking if three
|
710 |
+
points are almost collinear. If they are not collinear, then more
|
711 |
+
points are added between those points.
|
712 |
+
|
713 |
+
References
|
714 |
+
==========
|
715 |
+
|
716 |
+
.. [1] Adaptive polygonal approximation of parametric curves,
|
717 |
+
Luiz Henrique de Figueiredo.
|
718 |
+
|
719 |
+
"""
|
720 |
+
if self.only_integers or not self.adaptive:
|
721 |
+
return self._uniform_sampling()
|
722 |
+
else:
|
723 |
+
f = lambdify([self.var], self.expr)
|
724 |
+
x_coords = []
|
725 |
+
y_coords = []
|
726 |
+
np = import_module('numpy')
|
727 |
+
def sample(p, q, depth):
|
728 |
+
""" Samples recursively if three points are almost collinear.
|
729 |
+
For depth < 6, points are added irrespective of whether they
|
730 |
+
satisfy the collinearity condition or not. The maximum depth
|
731 |
+
allowed is 12.
|
732 |
+
"""
|
733 |
+
# Randomly sample to avoid aliasing.
|
734 |
+
random = 0.45 + np.random.rand() * 0.1
|
735 |
+
if self.xscale == 'log':
|
736 |
+
xnew = 10**(np.log10(p[0]) + random * (np.log10(q[0]) -
|
737 |
+
np.log10(p[0])))
|
738 |
+
else:
|
739 |
+
xnew = p[0] + random * (q[0] - p[0])
|
740 |
+
ynew = f(xnew)
|
741 |
+
new_point = np.array([xnew, ynew])
|
742 |
+
|
743 |
+
# Maximum depth
|
744 |
+
if depth > self.depth:
|
745 |
+
x_coords.append(q[0])
|
746 |
+
y_coords.append(q[1])
|
747 |
+
|
748 |
+
# Sample irrespective of whether the line is flat till the
|
749 |
+
# depth of 6. We are not using linspace to avoid aliasing.
|
750 |
+
elif depth < 6:
|
751 |
+
sample(p, new_point, depth + 1)
|
752 |
+
sample(new_point, q, depth + 1)
|
753 |
+
|
754 |
+
# Sample ten points if complex values are encountered
|
755 |
+
# at both ends. If there is a real value in between, then
|
756 |
+
# sample those points further.
|
757 |
+
elif p[1] is None and q[1] is None:
|
758 |
+
if self.xscale == 'log':
|
759 |
+
xarray = np.logspace(p[0], q[0], 10)
|
760 |
+
else:
|
761 |
+
xarray = np.linspace(p[0], q[0], 10)
|
762 |
+
yarray = list(map(f, xarray))
|
763 |
+
if not all(y is None for y in yarray):
|
764 |
+
for i in range(len(yarray) - 1):
|
765 |
+
if not (yarray[i] is None and yarray[i + 1] is None):
|
766 |
+
sample([xarray[i], yarray[i]],
|
767 |
+
[xarray[i + 1], yarray[i + 1]], depth + 1)
|
768 |
+
|
769 |
+
# Sample further if one of the end points in None (i.e. a
|
770 |
+
# complex value) or the three points are not almost collinear.
|
771 |
+
elif (p[1] is None or q[1] is None or new_point[1] is None
|
772 |
+
or not flat(p, new_point, q)):
|
773 |
+
sample(p, new_point, depth + 1)
|
774 |
+
sample(new_point, q, depth + 1)
|
775 |
+
else:
|
776 |
+
x_coords.append(q[0])
|
777 |
+
y_coords.append(q[1])
|
778 |
+
|
779 |
+
f_start = f(self.start)
|
780 |
+
f_end = f(self.end)
|
781 |
+
x_coords.append(self.start)
|
782 |
+
y_coords.append(f_start)
|
783 |
+
sample(np.array([self.start, f_start]),
|
784 |
+
np.array([self.end, f_end]), 0)
|
785 |
+
|
786 |
+
return (x_coords, y_coords)
|
787 |
+
|
788 |
+
def _uniform_sampling(self):
|
789 |
+
np = import_module('numpy')
|
790 |
+
if self.only_integers is True:
|
791 |
+
if self.xscale == 'log':
|
792 |
+
list_x = np.logspace(int(self.start), int(self.end),
|
793 |
+
num=int(self.end) - int(self.start) + 1)
|
794 |
+
else:
|
795 |
+
list_x = np.linspace(int(self.start), int(self.end),
|
796 |
+
num=int(self.end) - int(self.start) + 1)
|
797 |
+
else:
|
798 |
+
if self.xscale == 'log':
|
799 |
+
list_x = np.logspace(self.start, self.end, num=self.nb_of_points)
|
800 |
+
else:
|
801 |
+
list_x = np.linspace(self.start, self.end, num=self.nb_of_points)
|
802 |
+
f = vectorized_lambdify([self.var], self.expr)
|
803 |
+
list_y = f(list_x)
|
804 |
+
return (list_x, list_y)
|
805 |
+
|
806 |
+
|
807 |
+
class Parametric2DLineSeries(Line2DBaseSeries):
|
808 |
+
"""Representation for a line consisting of two parametric SymPy expressions
|
809 |
+
over a range."""
|
810 |
+
|
811 |
+
is_parametric = True
|
812 |
+
|
813 |
+
def __init__(self, expr_x, expr_y, var_start_end, **kwargs):
|
814 |
+
super().__init__()
|
815 |
+
self.expr_x = sympify(expr_x)
|
816 |
+
self.expr_y = sympify(expr_y)
|
817 |
+
self.label = kwargs.get('label', None) or \
|
818 |
+
Tuple(self.expr_x, self.expr_y)
|
819 |
+
self.var = sympify(var_start_end[0])
|
820 |
+
self.start = float(var_start_end[1])
|
821 |
+
self.end = float(var_start_end[2])
|
822 |
+
self.nb_of_points = kwargs.get('nb_of_points', 300)
|
823 |
+
self.adaptive = kwargs.get('adaptive', True)
|
824 |
+
self.depth = kwargs.get('depth', 12)
|
825 |
+
self.line_color = kwargs.get('line_color', None)
|
826 |
+
|
827 |
+
def __str__(self):
|
828 |
+
return 'parametric cartesian line: (%s, %s) for %s over %s' % (
|
829 |
+
str(self.expr_x), str(self.expr_y), str(self.var),
|
830 |
+
str((self.start, self.end)))
|
831 |
+
|
832 |
+
def get_parameter_points(self):
|
833 |
+
np = import_module('numpy')
|
834 |
+
return np.linspace(self.start, self.end, num=self.nb_of_points)
|
835 |
+
|
836 |
+
def _uniform_sampling(self):
|
837 |
+
param = self.get_parameter_points()
|
838 |
+
fx = vectorized_lambdify([self.var], self.expr_x)
|
839 |
+
fy = vectorized_lambdify([self.var], self.expr_y)
|
840 |
+
list_x = fx(param)
|
841 |
+
list_y = fy(param)
|
842 |
+
return (list_x, list_y)
|
843 |
+
|
844 |
+
def get_points(self):
|
845 |
+
""" Return lists of coordinates for plotting. Depending on the
|
846 |
+
``adaptive`` option, this function will either use an adaptive algorithm
|
847 |
+
or it will uniformly sample the expression over the provided range.
|
848 |
+
|
849 |
+
Returns
|
850 |
+
=======
|
851 |
+
x : list
|
852 |
+
List of x-coordinates
|
853 |
+
|
854 |
+
y : list
|
855 |
+
List of y-coordinates
|
856 |
+
|
857 |
+
|
858 |
+
Explanation
|
859 |
+
===========
|
860 |
+
|
861 |
+
The adaptive sampling is done by recursively checking if three
|
862 |
+
points are almost collinear. If they are not collinear, then more
|
863 |
+
points are added between those points.
|
864 |
+
|
865 |
+
References
|
866 |
+
==========
|
867 |
+
|
868 |
+
.. [1] Adaptive polygonal approximation of parametric curves,
|
869 |
+
Luiz Henrique de Figueiredo.
|
870 |
+
|
871 |
+
"""
|
872 |
+
if not self.adaptive:
|
873 |
+
return self._uniform_sampling()
|
874 |
+
|
875 |
+
f_x = lambdify([self.var], self.expr_x)
|
876 |
+
f_y = lambdify([self.var], self.expr_y)
|
877 |
+
x_coords = []
|
878 |
+
y_coords = []
|
879 |
+
|
880 |
+
def sample(param_p, param_q, p, q, depth):
|
881 |
+
""" Samples recursively if three points are almost collinear.
|
882 |
+
For depth < 6, points are added irrespective of whether they
|
883 |
+
satisfy the collinearity condition or not. The maximum depth
|
884 |
+
allowed is 12.
|
885 |
+
"""
|
886 |
+
# Randomly sample to avoid aliasing.
|
887 |
+
np = import_module('numpy')
|
888 |
+
random = 0.45 + np.random.rand() * 0.1
|
889 |
+
param_new = param_p + random * (param_q - param_p)
|
890 |
+
xnew = f_x(param_new)
|
891 |
+
ynew = f_y(param_new)
|
892 |
+
new_point = np.array([xnew, ynew])
|
893 |
+
|
894 |
+
# Maximum depth
|
895 |
+
if depth > self.depth:
|
896 |
+
x_coords.append(q[0])
|
897 |
+
y_coords.append(q[1])
|
898 |
+
|
899 |
+
# Sample irrespective of whether the line is flat till the
|
900 |
+
# depth of 6. We are not using linspace to avoid aliasing.
|
901 |
+
elif depth < 6:
|
902 |
+
sample(param_p, param_new, p, new_point, depth + 1)
|
903 |
+
sample(param_new, param_q, new_point, q, depth + 1)
|
904 |
+
|
905 |
+
# Sample ten points if complex values are encountered
|
906 |
+
# at both ends. If there is a real value in between, then
|
907 |
+
# sample those points further.
|
908 |
+
elif ((p[0] is None and q[1] is None) or
|
909 |
+
(p[1] is None and q[1] is None)):
|
910 |
+
param_array = np.linspace(param_p, param_q, 10)
|
911 |
+
x_array = list(map(f_x, param_array))
|
912 |
+
y_array = list(map(f_y, param_array))
|
913 |
+
if not all(x is None and y is None
|
914 |
+
for x, y in zip(x_array, y_array)):
|
915 |
+
for i in range(len(y_array) - 1):
|
916 |
+
if ((x_array[i] is not None and y_array[i] is not None) or
|
917 |
+
(x_array[i + 1] is not None and y_array[i + 1] is not None)):
|
918 |
+
point_a = [x_array[i], y_array[i]]
|
919 |
+
point_b = [x_array[i + 1], y_array[i + 1]]
|
920 |
+
sample(param_array[i], param_array[i], point_a,
|
921 |
+
point_b, depth + 1)
|
922 |
+
|
923 |
+
# Sample further if one of the end points in None (i.e. a complex
|
924 |
+
# value) or the three points are not almost collinear.
|
925 |
+
elif (p[0] is None or p[1] is None
|
926 |
+
or q[1] is None or q[0] is None
|
927 |
+
or not flat(p, new_point, q)):
|
928 |
+
sample(param_p, param_new, p, new_point, depth + 1)
|
929 |
+
sample(param_new, param_q, new_point, q, depth + 1)
|
930 |
+
else:
|
931 |
+
x_coords.append(q[0])
|
932 |
+
y_coords.append(q[1])
|
933 |
+
|
934 |
+
f_start_x = f_x(self.start)
|
935 |
+
f_start_y = f_y(self.start)
|
936 |
+
start = [f_start_x, f_start_y]
|
937 |
+
f_end_x = f_x(self.end)
|
938 |
+
f_end_y = f_y(self.end)
|
939 |
+
end = [f_end_x, f_end_y]
|
940 |
+
x_coords.append(f_start_x)
|
941 |
+
y_coords.append(f_start_y)
|
942 |
+
sample(self.start, self.end, start, end, 0)
|
943 |
+
|
944 |
+
return x_coords, y_coords
|
945 |
+
|
946 |
+
|
947 |
+
### 3D lines
|
948 |
+
class Line3DBaseSeries(Line2DBaseSeries):
|
949 |
+
"""A base class for 3D lines.
|
950 |
+
|
951 |
+
Most of the stuff is derived from Line2DBaseSeries."""
|
952 |
+
|
953 |
+
is_2Dline = False
|
954 |
+
is_3Dline = True
|
955 |
+
_dim = 3
|
956 |
+
|
957 |
+
def __init__(self):
|
958 |
+
super().__init__()
|
959 |
+
|
960 |
+
|
961 |
+
class Parametric3DLineSeries(Line3DBaseSeries):
|
962 |
+
"""Representation for a 3D line consisting of three parametric SymPy
|
963 |
+
expressions and a range."""
|
964 |
+
|
965 |
+
is_parametric = True
|
966 |
+
|
967 |
+
def __init__(self, expr_x, expr_y, expr_z, var_start_end, **kwargs):
|
968 |
+
super().__init__()
|
969 |
+
self.expr_x = sympify(expr_x)
|
970 |
+
self.expr_y = sympify(expr_y)
|
971 |
+
self.expr_z = sympify(expr_z)
|
972 |
+
self.label = kwargs.get('label', None) or \
|
973 |
+
Tuple(self.expr_x, self.expr_y)
|
974 |
+
self.var = sympify(var_start_end[0])
|
975 |
+
self.start = float(var_start_end[1])
|
976 |
+
self.end = float(var_start_end[2])
|
977 |
+
self.nb_of_points = kwargs.get('nb_of_points', 300)
|
978 |
+
self.line_color = kwargs.get('line_color', None)
|
979 |
+
self._xlim = None
|
980 |
+
self._ylim = None
|
981 |
+
self._zlim = None
|
982 |
+
|
983 |
+
def __str__(self):
|
984 |
+
return '3D parametric cartesian line: (%s, %s, %s) for %s over %s' % (
|
985 |
+
str(self.expr_x), str(self.expr_y), str(self.expr_z),
|
986 |
+
str(self.var), str((self.start, self.end)))
|
987 |
+
|
988 |
+
def get_parameter_points(self):
|
989 |
+
np = import_module('numpy')
|
990 |
+
return np.linspace(self.start, self.end, num=self.nb_of_points)
|
991 |
+
|
992 |
+
def get_points(self):
|
993 |
+
np = import_module('numpy')
|
994 |
+
param = self.get_parameter_points()
|
995 |
+
fx = vectorized_lambdify([self.var], self.expr_x)
|
996 |
+
fy = vectorized_lambdify([self.var], self.expr_y)
|
997 |
+
fz = vectorized_lambdify([self.var], self.expr_z)
|
998 |
+
|
999 |
+
list_x = fx(param)
|
1000 |
+
list_y = fy(param)
|
1001 |
+
list_z = fz(param)
|
1002 |
+
|
1003 |
+
list_x = np.array(list_x, dtype=np.float64)
|
1004 |
+
list_y = np.array(list_y, dtype=np.float64)
|
1005 |
+
list_z = np.array(list_z, dtype=np.float64)
|
1006 |
+
|
1007 |
+
list_x = np.ma.masked_invalid(list_x)
|
1008 |
+
list_y = np.ma.masked_invalid(list_y)
|
1009 |
+
list_z = np.ma.masked_invalid(list_z)
|
1010 |
+
|
1011 |
+
self._xlim = (np.amin(list_x), np.amax(list_x))
|
1012 |
+
self._ylim = (np.amin(list_y), np.amax(list_y))
|
1013 |
+
self._zlim = (np.amin(list_z), np.amax(list_z))
|
1014 |
+
return list_x, list_y, list_z
|
1015 |
+
|
1016 |
+
|
1017 |
+
### Surfaces
|
1018 |
+
class SurfaceBaseSeries(BaseSeries):
|
1019 |
+
"""A base class for 3D surfaces."""
|
1020 |
+
|
1021 |
+
is_3Dsurface = True
|
1022 |
+
|
1023 |
+
def __init__(self):
|
1024 |
+
super().__init__()
|
1025 |
+
self.surface_color = None
|
1026 |
+
|
1027 |
+
def get_color_array(self):
|
1028 |
+
np = import_module('numpy')
|
1029 |
+
c = self.surface_color
|
1030 |
+
if isinstance(c, Callable):
|
1031 |
+
f = np.vectorize(c)
|
1032 |
+
nargs = arity(c)
|
1033 |
+
if self.is_parametric:
|
1034 |
+
variables = list(map(centers_of_faces, self.get_parameter_meshes()))
|
1035 |
+
if nargs == 1:
|
1036 |
+
return f(variables[0])
|
1037 |
+
elif nargs == 2:
|
1038 |
+
return f(*variables)
|
1039 |
+
variables = list(map(centers_of_faces, self.get_meshes()))
|
1040 |
+
if nargs == 1:
|
1041 |
+
return f(variables[0])
|
1042 |
+
elif nargs == 2:
|
1043 |
+
return f(*variables[:2])
|
1044 |
+
else:
|
1045 |
+
return f(*variables)
|
1046 |
+
else:
|
1047 |
+
if isinstance(self, SurfaceOver2DRangeSeries):
|
1048 |
+
return c*np.ones(min(self.nb_of_points_x, self.nb_of_points_y))
|
1049 |
+
else:
|
1050 |
+
return c*np.ones(min(self.nb_of_points_u, self.nb_of_points_v))
|
1051 |
+
|
1052 |
+
|
1053 |
+
class SurfaceOver2DRangeSeries(SurfaceBaseSeries):
|
1054 |
+
"""Representation for a 3D surface consisting of a SymPy expression and 2D
|
1055 |
+
range."""
|
1056 |
+
def __init__(self, expr, var_start_end_x, var_start_end_y, **kwargs):
|
1057 |
+
super().__init__()
|
1058 |
+
self.expr = sympify(expr)
|
1059 |
+
self.var_x = sympify(var_start_end_x[0])
|
1060 |
+
self.start_x = float(var_start_end_x[1])
|
1061 |
+
self.end_x = float(var_start_end_x[2])
|
1062 |
+
self.var_y = sympify(var_start_end_y[0])
|
1063 |
+
self.start_y = float(var_start_end_y[1])
|
1064 |
+
self.end_y = float(var_start_end_y[2])
|
1065 |
+
self.nb_of_points_x = kwargs.get('nb_of_points_x', 50)
|
1066 |
+
self.nb_of_points_y = kwargs.get('nb_of_points_y', 50)
|
1067 |
+
self.surface_color = kwargs.get('surface_color', None)
|
1068 |
+
|
1069 |
+
self._xlim = (self.start_x, self.end_x)
|
1070 |
+
self._ylim = (self.start_y, self.end_y)
|
1071 |
+
|
1072 |
+
def __str__(self):
|
1073 |
+
return ('cartesian surface: %s for'
|
1074 |
+
' %s over %s and %s over %s') % (
|
1075 |
+
str(self.expr),
|
1076 |
+
str(self.var_x),
|
1077 |
+
str((self.start_x, self.end_x)),
|
1078 |
+
str(self.var_y),
|
1079 |
+
str((self.start_y, self.end_y)))
|
1080 |
+
|
1081 |
+
def get_meshes(self):
|
1082 |
+
np = import_module('numpy')
|
1083 |
+
mesh_x, mesh_y = np.meshgrid(np.linspace(self.start_x, self.end_x,
|
1084 |
+
num=self.nb_of_points_x),
|
1085 |
+
np.linspace(self.start_y, self.end_y,
|
1086 |
+
num=self.nb_of_points_y))
|
1087 |
+
f = vectorized_lambdify((self.var_x, self.var_y), self.expr)
|
1088 |
+
mesh_z = f(mesh_x, mesh_y)
|
1089 |
+
mesh_z = np.array(mesh_z, dtype=np.float64)
|
1090 |
+
mesh_z = np.ma.masked_invalid(mesh_z)
|
1091 |
+
self._zlim = (np.amin(mesh_z), np.amax(mesh_z))
|
1092 |
+
return mesh_x, mesh_y, mesh_z
|
1093 |
+
|
1094 |
+
|
1095 |
+
class ParametricSurfaceSeries(SurfaceBaseSeries):
|
1096 |
+
"""Representation for a 3D surface consisting of three parametric SymPy
|
1097 |
+
expressions and a range."""
|
1098 |
+
|
1099 |
+
is_parametric = True
|
1100 |
+
|
1101 |
+
def __init__(
|
1102 |
+
self, expr_x, expr_y, expr_z, var_start_end_u, var_start_end_v,
|
1103 |
+
**kwargs):
|
1104 |
+
super().__init__()
|
1105 |
+
self.expr_x = sympify(expr_x)
|
1106 |
+
self.expr_y = sympify(expr_y)
|
1107 |
+
self.expr_z = sympify(expr_z)
|
1108 |
+
self.var_u = sympify(var_start_end_u[0])
|
1109 |
+
self.start_u = float(var_start_end_u[1])
|
1110 |
+
self.end_u = float(var_start_end_u[2])
|
1111 |
+
self.var_v = sympify(var_start_end_v[0])
|
1112 |
+
self.start_v = float(var_start_end_v[1])
|
1113 |
+
self.end_v = float(var_start_end_v[2])
|
1114 |
+
self.nb_of_points_u = kwargs.get('nb_of_points_u', 50)
|
1115 |
+
self.nb_of_points_v = kwargs.get('nb_of_points_v', 50)
|
1116 |
+
self.surface_color = kwargs.get('surface_color', None)
|
1117 |
+
|
1118 |
+
def __str__(self):
|
1119 |
+
return ('parametric cartesian surface: (%s, %s, %s) for'
|
1120 |
+
' %s over %s and %s over %s') % (
|
1121 |
+
str(self.expr_x),
|
1122 |
+
str(self.expr_y),
|
1123 |
+
str(self.expr_z),
|
1124 |
+
str(self.var_u),
|
1125 |
+
str((self.start_u, self.end_u)),
|
1126 |
+
str(self.var_v),
|
1127 |
+
str((self.start_v, self.end_v)))
|
1128 |
+
|
1129 |
+
def get_parameter_meshes(self):
|
1130 |
+
np = import_module('numpy')
|
1131 |
+
return np.meshgrid(np.linspace(self.start_u, self.end_u,
|
1132 |
+
num=self.nb_of_points_u),
|
1133 |
+
np.linspace(self.start_v, self.end_v,
|
1134 |
+
num=self.nb_of_points_v))
|
1135 |
+
|
1136 |
+
def get_meshes(self):
|
1137 |
+
np = import_module('numpy')
|
1138 |
+
|
1139 |
+
mesh_u, mesh_v = self.get_parameter_meshes()
|
1140 |
+
fx = vectorized_lambdify((self.var_u, self.var_v), self.expr_x)
|
1141 |
+
fy = vectorized_lambdify((self.var_u, self.var_v), self.expr_y)
|
1142 |
+
fz = vectorized_lambdify((self.var_u, self.var_v), self.expr_z)
|
1143 |
+
|
1144 |
+
mesh_x = fx(mesh_u, mesh_v)
|
1145 |
+
mesh_y = fy(mesh_u, mesh_v)
|
1146 |
+
mesh_z = fz(mesh_u, mesh_v)
|
1147 |
+
|
1148 |
+
mesh_x = np.array(mesh_x, dtype=np.float64)
|
1149 |
+
mesh_y = np.array(mesh_y, dtype=np.float64)
|
1150 |
+
mesh_z = np.array(mesh_z, dtype=np.float64)
|
1151 |
+
|
1152 |
+
mesh_x = np.ma.masked_invalid(mesh_x)
|
1153 |
+
mesh_y = np.ma.masked_invalid(mesh_y)
|
1154 |
+
mesh_z = np.ma.masked_invalid(mesh_z)
|
1155 |
+
|
1156 |
+
self._xlim = (np.amin(mesh_x), np.amax(mesh_x))
|
1157 |
+
self._ylim = (np.amin(mesh_y), np.amax(mesh_y))
|
1158 |
+
self._zlim = (np.amin(mesh_z), np.amax(mesh_z))
|
1159 |
+
|
1160 |
+
return mesh_x, mesh_y, mesh_z
|
1161 |
+
|
1162 |
+
|
1163 |
+
### Contours
|
1164 |
+
class ContourSeries(BaseSeries):
|
1165 |
+
"""Representation for a contour plot."""
|
1166 |
+
# The code is mostly repetition of SurfaceOver2DRange.
|
1167 |
+
# Presently used in contour_plot function
|
1168 |
+
|
1169 |
+
is_contour = True
|
1170 |
+
|
1171 |
+
def __init__(self, expr, var_start_end_x, var_start_end_y):
|
1172 |
+
super().__init__()
|
1173 |
+
self.nb_of_points_x = 50
|
1174 |
+
self.nb_of_points_y = 50
|
1175 |
+
self.expr = sympify(expr)
|
1176 |
+
self.var_x = sympify(var_start_end_x[0])
|
1177 |
+
self.start_x = float(var_start_end_x[1])
|
1178 |
+
self.end_x = float(var_start_end_x[2])
|
1179 |
+
self.var_y = sympify(var_start_end_y[0])
|
1180 |
+
self.start_y = float(var_start_end_y[1])
|
1181 |
+
self.end_y = float(var_start_end_y[2])
|
1182 |
+
|
1183 |
+
self.get_points = self.get_meshes
|
1184 |
+
|
1185 |
+
self._xlim = (self.start_x, self.end_x)
|
1186 |
+
self._ylim = (self.start_y, self.end_y)
|
1187 |
+
|
1188 |
+
def __str__(self):
|
1189 |
+
return ('contour: %s for '
|
1190 |
+
'%s over %s and %s over %s') % (
|
1191 |
+
str(self.expr),
|
1192 |
+
str(self.var_x),
|
1193 |
+
str((self.start_x, self.end_x)),
|
1194 |
+
str(self.var_y),
|
1195 |
+
str((self.start_y, self.end_y)))
|
1196 |
+
|
1197 |
+
def get_meshes(self):
|
1198 |
+
np = import_module('numpy')
|
1199 |
+
mesh_x, mesh_y = np.meshgrid(np.linspace(self.start_x, self.end_x,
|
1200 |
+
num=self.nb_of_points_x),
|
1201 |
+
np.linspace(self.start_y, self.end_y,
|
1202 |
+
num=self.nb_of_points_y))
|
1203 |
+
f = vectorized_lambdify((self.var_x, self.var_y), self.expr)
|
1204 |
+
return (mesh_x, mesh_y, f(mesh_x, mesh_y))
|
1205 |
+
|
1206 |
+
|
1207 |
+
##############################################################################
|
1208 |
+
# Backends
|
1209 |
+
##############################################################################
|
1210 |
+
|
1211 |
+
class BaseBackend:
|
1212 |
+
"""Base class for all backends. A backend represents the plotting library,
|
1213 |
+
which implements the necessary functionalities in order to use SymPy
|
1214 |
+
plotting functions.
|
1215 |
+
|
1216 |
+
How the plotting module works:
|
1217 |
+
|
1218 |
+
1. Whenever a plotting function is called, the provided expressions are
|
1219 |
+
processed and a list of instances of the :class:`BaseSeries` class is
|
1220 |
+
created, containing the necessary information to plot the expressions
|
1221 |
+
(e.g. the expression, ranges, series name, ...). Eventually, these
|
1222 |
+
objects will generate the numerical data to be plotted.
|
1223 |
+
2. A :class:`~.Plot` object is instantiated, which stores the list of
|
1224 |
+
series and the main attributes of the plot (e.g. axis labels, title, ...).
|
1225 |
+
3. When the ``show`` command is executed, a new backend is instantiated,
|
1226 |
+
which loops through each series object to generate and plot the
|
1227 |
+
numerical data. The backend is also going to set the axis labels, title,
|
1228 |
+
..., according to the values stored in the Plot instance.
|
1229 |
+
|
1230 |
+
The backend should check if it supports the data series that it is given
|
1231 |
+
(e.g. :class:`TextBackend` supports only :class:`LineOver1DRangeSeries`).
|
1232 |
+
|
1233 |
+
It is the backend responsibility to know how to use the class of data series
|
1234 |
+
that it's given. Note that the current implementation of the ``*Series``
|
1235 |
+
classes is "matplotlib-centric": the numerical data returned by the
|
1236 |
+
``get_points`` and ``get_meshes`` methods is meant to be used directly by
|
1237 |
+
Matplotlib. Therefore, the new backend will have to pre-process the
|
1238 |
+
numerical data to make it compatible with the chosen plotting library.
|
1239 |
+
Keep in mind that future SymPy versions may improve the ``*Series`` classes
|
1240 |
+
in order to return numerical data "non-matplotlib-centric", hence if you code
|
1241 |
+
a new backend you have the responsibility to check if its working on each
|
1242 |
+
SymPy release.
|
1243 |
+
|
1244 |
+
Please explore the :class:`MatplotlibBackend` source code to understand how a
|
1245 |
+
backend should be coded.
|
1246 |
+
|
1247 |
+
Methods
|
1248 |
+
=======
|
1249 |
+
|
1250 |
+
In order to be used by SymPy plotting functions, a backend must implement
|
1251 |
+
the following methods:
|
1252 |
+
|
1253 |
+
* show(self): used to loop over the data series, generate the numerical
|
1254 |
+
data, plot it and set the axis labels, title, ...
|
1255 |
+
* save(self, path): used to save the current plot to the specified file
|
1256 |
+
path.
|
1257 |
+
* close(self): used to close the current plot backend (note: some plotting
|
1258 |
+
library does not support this functionality. In that case, just raise a
|
1259 |
+
warning).
|
1260 |
+
|
1261 |
+
See also
|
1262 |
+
========
|
1263 |
+
|
1264 |
+
MatplotlibBackend
|
1265 |
+
"""
|
1266 |
+
def __init__(self, parent):
|
1267 |
+
super().__init__()
|
1268 |
+
self.parent = parent
|
1269 |
+
|
1270 |
+
def show(self):
|
1271 |
+
raise NotImplementedError
|
1272 |
+
|
1273 |
+
def save(self, path):
|
1274 |
+
raise NotImplementedError
|
1275 |
+
|
1276 |
+
def close(self):
|
1277 |
+
raise NotImplementedError
|
1278 |
+
|
1279 |
+
|
1280 |
+
# Don't have to check for the success of importing matplotlib in each case;
|
1281 |
+
# we will only be using this backend if we can successfully import matploblib
|
1282 |
+
class MatplotlibBackend(BaseBackend):
|
1283 |
+
""" This class implements the functionalities to use Matplotlib with SymPy
|
1284 |
+
plotting functions.
|
1285 |
+
"""
|
1286 |
+
def __init__(self, parent):
|
1287 |
+
super().__init__(parent)
|
1288 |
+
self.matplotlib = import_module('matplotlib',
|
1289 |
+
import_kwargs={'fromlist': ['pyplot', 'cm', 'collections']},
|
1290 |
+
min_module_version='1.1.0', catch=(RuntimeError,))
|
1291 |
+
self.plt = self.matplotlib.pyplot
|
1292 |
+
self.cm = self.matplotlib.cm
|
1293 |
+
self.LineCollection = self.matplotlib.collections.LineCollection
|
1294 |
+
aspect = getattr(self.parent, 'aspect_ratio', 'auto')
|
1295 |
+
if aspect != 'auto':
|
1296 |
+
aspect = float(aspect[1]) / aspect[0]
|
1297 |
+
|
1298 |
+
if isinstance(self.parent, Plot):
|
1299 |
+
nrows, ncolumns = 1, 1
|
1300 |
+
series_list = [self.parent._series]
|
1301 |
+
elif isinstance(self.parent, PlotGrid):
|
1302 |
+
nrows, ncolumns = self.parent.nrows, self.parent.ncolumns
|
1303 |
+
series_list = self.parent._series
|
1304 |
+
|
1305 |
+
self.ax = []
|
1306 |
+
self.fig = self.plt.figure(figsize=parent.size)
|
1307 |
+
|
1308 |
+
for i, series in enumerate(series_list):
|
1309 |
+
are_3D = [s.is_3D for s in series]
|
1310 |
+
|
1311 |
+
if any(are_3D) and not all(are_3D):
|
1312 |
+
raise ValueError('The matplotlib backend cannot mix 2D and 3D.')
|
1313 |
+
elif all(are_3D):
|
1314 |
+
# mpl_toolkits.mplot3d is necessary for
|
1315 |
+
# projection='3d'
|
1316 |
+
mpl_toolkits = import_module('mpl_toolkits', # noqa
|
1317 |
+
import_kwargs={'fromlist': ['mplot3d']})
|
1318 |
+
self.ax.append(self.fig.add_subplot(nrows, ncolumns, i + 1, projection='3d', aspect=aspect))
|
1319 |
+
|
1320 |
+
elif not any(are_3D):
|
1321 |
+
self.ax.append(self.fig.add_subplot(nrows, ncolumns, i + 1, aspect=aspect))
|
1322 |
+
self.ax[i].spines['left'].set_position('zero')
|
1323 |
+
self.ax[i].spines['right'].set_color('none')
|
1324 |
+
self.ax[i].spines['bottom'].set_position('zero')
|
1325 |
+
self.ax[i].spines['top'].set_color('none')
|
1326 |
+
self.ax[i].xaxis.set_ticks_position('bottom')
|
1327 |
+
self.ax[i].yaxis.set_ticks_position('left')
|
1328 |
+
|
1329 |
+
@staticmethod
|
1330 |
+
def get_segments(x, y, z=None):
|
1331 |
+
""" Convert two list of coordinates to a list of segments to be used
|
1332 |
+
with Matplotlib's :external:class:`~matplotlib.collections.LineCollection`.
|
1333 |
+
|
1334 |
+
Parameters
|
1335 |
+
==========
|
1336 |
+
x : list
|
1337 |
+
List of x-coordinates
|
1338 |
+
|
1339 |
+
y : list
|
1340 |
+
List of y-coordinates
|
1341 |
+
|
1342 |
+
z : list
|
1343 |
+
List of z-coordinates for a 3D line.
|
1344 |
+
"""
|
1345 |
+
np = import_module('numpy')
|
1346 |
+
if z is not None:
|
1347 |
+
dim = 3
|
1348 |
+
points = (x, y, z)
|
1349 |
+
else:
|
1350 |
+
dim = 2
|
1351 |
+
points = (x, y)
|
1352 |
+
points = np.ma.array(points).T.reshape(-1, 1, dim)
|
1353 |
+
return np.ma.concatenate([points[:-1], points[1:]], axis=1)
|
1354 |
+
|
1355 |
+
def _process_series(self, series, ax, parent):
|
1356 |
+
np = import_module('numpy')
|
1357 |
+
mpl_toolkits = import_module(
|
1358 |
+
'mpl_toolkits', import_kwargs={'fromlist': ['mplot3d']})
|
1359 |
+
|
1360 |
+
# XXX Workaround for matplotlib issue
|
1361 |
+
# https://github.com/matplotlib/matplotlib/issues/17130
|
1362 |
+
xlims, ylims, zlims = [], [], []
|
1363 |
+
|
1364 |
+
for s in series:
|
1365 |
+
# Create the collections
|
1366 |
+
if s.is_2Dline:
|
1367 |
+
x, y = s.get_data()
|
1368 |
+
if (isinstance(s.line_color, (int, float)) or
|
1369 |
+
callable(s.line_color)):
|
1370 |
+
segments = self.get_segments(x, y)
|
1371 |
+
collection = self.LineCollection(segments)
|
1372 |
+
collection.set_array(s.get_color_array())
|
1373 |
+
ax.add_collection(collection)
|
1374 |
+
else:
|
1375 |
+
lbl = _str_or_latex(s.label)
|
1376 |
+
line, = ax.plot(x, y, label=lbl, color=s.line_color)
|
1377 |
+
elif s.is_contour:
|
1378 |
+
ax.contour(*s.get_meshes())
|
1379 |
+
elif s.is_3Dline:
|
1380 |
+
x, y, z = s.get_data()
|
1381 |
+
if (isinstance(s.line_color, (int, float)) or
|
1382 |
+
callable(s.line_color)):
|
1383 |
+
art3d = mpl_toolkits.mplot3d.art3d
|
1384 |
+
segments = self.get_segments(x, y, z)
|
1385 |
+
collection = art3d.Line3DCollection(segments)
|
1386 |
+
collection.set_array(s.get_color_array())
|
1387 |
+
ax.add_collection(collection)
|
1388 |
+
else:
|
1389 |
+
lbl = _str_or_latex(s.label)
|
1390 |
+
ax.plot(x, y, z, label=lbl, color=s.line_color)
|
1391 |
+
|
1392 |
+
xlims.append(s._xlim)
|
1393 |
+
ylims.append(s._ylim)
|
1394 |
+
zlims.append(s._zlim)
|
1395 |
+
elif s.is_3Dsurface:
|
1396 |
+
x, y, z = s.get_meshes()
|
1397 |
+
collection = ax.plot_surface(x, y, z,
|
1398 |
+
cmap=getattr(self.cm, 'viridis', self.cm.jet),
|
1399 |
+
rstride=1, cstride=1, linewidth=0.1)
|
1400 |
+
if isinstance(s.surface_color, (float, int, Callable)):
|
1401 |
+
color_array = s.get_color_array()
|
1402 |
+
color_array = color_array.reshape(color_array.size)
|
1403 |
+
collection.set_array(color_array)
|
1404 |
+
else:
|
1405 |
+
collection.set_color(s.surface_color)
|
1406 |
+
|
1407 |
+
xlims.append(s._xlim)
|
1408 |
+
ylims.append(s._ylim)
|
1409 |
+
zlims.append(s._zlim)
|
1410 |
+
elif s.is_implicit:
|
1411 |
+
points = s.get_raster()
|
1412 |
+
if len(points) == 2:
|
1413 |
+
# interval math plotting
|
1414 |
+
x, y = _matplotlib_list(points[0])
|
1415 |
+
ax.fill(x, y, facecolor=s.line_color, edgecolor='None')
|
1416 |
+
else:
|
1417 |
+
# use contourf or contour depending on whether it is
|
1418 |
+
# an inequality or equality.
|
1419 |
+
# XXX: ``contour`` plots multiple lines. Should be fixed.
|
1420 |
+
ListedColormap = self.matplotlib.colors.ListedColormap
|
1421 |
+
colormap = ListedColormap(["white", s.line_color])
|
1422 |
+
xarray, yarray, zarray, plot_type = points
|
1423 |
+
if plot_type == 'contour':
|
1424 |
+
ax.contour(xarray, yarray, zarray, cmap=colormap)
|
1425 |
+
else:
|
1426 |
+
ax.contourf(xarray, yarray, zarray, cmap=colormap)
|
1427 |
+
else:
|
1428 |
+
raise NotImplementedError(
|
1429 |
+
'{} is not supported in the SymPy plotting module '
|
1430 |
+
'with matplotlib backend. Please report this issue.'
|
1431 |
+
.format(ax))
|
1432 |
+
|
1433 |
+
Axes3D = mpl_toolkits.mplot3d.Axes3D
|
1434 |
+
if not isinstance(ax, Axes3D):
|
1435 |
+
ax.autoscale_view(
|
1436 |
+
scalex=ax.get_autoscalex_on(),
|
1437 |
+
scaley=ax.get_autoscaley_on())
|
1438 |
+
else:
|
1439 |
+
# XXX Workaround for matplotlib issue
|
1440 |
+
# https://github.com/matplotlib/matplotlib/issues/17130
|
1441 |
+
if xlims:
|
1442 |
+
xlims = np.array(xlims)
|
1443 |
+
xlim = (np.amin(xlims[:, 0]), np.amax(xlims[:, 1]))
|
1444 |
+
ax.set_xlim(xlim)
|
1445 |
+
else:
|
1446 |
+
ax.set_xlim([0, 1])
|
1447 |
+
|
1448 |
+
if ylims:
|
1449 |
+
ylims = np.array(ylims)
|
1450 |
+
ylim = (np.amin(ylims[:, 0]), np.amax(ylims[:, 1]))
|
1451 |
+
ax.set_ylim(ylim)
|
1452 |
+
else:
|
1453 |
+
ax.set_ylim([0, 1])
|
1454 |
+
|
1455 |
+
if zlims:
|
1456 |
+
zlims = np.array(zlims)
|
1457 |
+
zlim = (np.amin(zlims[:, 0]), np.amax(zlims[:, 1]))
|
1458 |
+
ax.set_zlim(zlim)
|
1459 |
+
else:
|
1460 |
+
ax.set_zlim([0, 1])
|
1461 |
+
|
1462 |
+
# Set global options.
|
1463 |
+
# TODO The 3D stuff
|
1464 |
+
# XXX The order of those is important.
|
1465 |
+
if parent.xscale and not isinstance(ax, Axes3D):
|
1466 |
+
ax.set_xscale(parent.xscale)
|
1467 |
+
if parent.yscale and not isinstance(ax, Axes3D):
|
1468 |
+
ax.set_yscale(parent.yscale)
|
1469 |
+
if not isinstance(ax, Axes3D) or self.matplotlib.__version__ >= '1.2.0': # XXX in the distant future remove this check
|
1470 |
+
ax.set_autoscale_on(parent.autoscale)
|
1471 |
+
if parent.axis_center:
|
1472 |
+
val = parent.axis_center
|
1473 |
+
if isinstance(ax, Axes3D):
|
1474 |
+
pass
|
1475 |
+
elif val == 'center':
|
1476 |
+
ax.spines['left'].set_position('center')
|
1477 |
+
ax.spines['bottom'].set_position('center')
|
1478 |
+
elif val == 'auto':
|
1479 |
+
xl, xh = ax.get_xlim()
|
1480 |
+
yl, yh = ax.get_ylim()
|
1481 |
+
pos_left = ('data', 0) if xl*xh <= 0 else 'center'
|
1482 |
+
pos_bottom = ('data', 0) if yl*yh <= 0 else 'center'
|
1483 |
+
ax.spines['left'].set_position(pos_left)
|
1484 |
+
ax.spines['bottom'].set_position(pos_bottom)
|
1485 |
+
else:
|
1486 |
+
ax.spines['left'].set_position(('data', val[0]))
|
1487 |
+
ax.spines['bottom'].set_position(('data', val[1]))
|
1488 |
+
if not parent.axis:
|
1489 |
+
ax.set_axis_off()
|
1490 |
+
if parent.legend:
|
1491 |
+
if ax.legend():
|
1492 |
+
ax.legend_.set_visible(parent.legend)
|
1493 |
+
if parent.margin:
|
1494 |
+
ax.set_xmargin(parent.margin)
|
1495 |
+
ax.set_ymargin(parent.margin)
|
1496 |
+
if parent.title:
|
1497 |
+
ax.set_title(parent.title)
|
1498 |
+
if parent.xlabel:
|
1499 |
+
xlbl = _str_or_latex(parent.xlabel)
|
1500 |
+
ax.set_xlabel(xlbl, position=(1, 0))
|
1501 |
+
if parent.ylabel:
|
1502 |
+
ylbl = _str_or_latex(parent.ylabel)
|
1503 |
+
ax.set_ylabel(ylbl, position=(0, 1))
|
1504 |
+
if isinstance(ax, Axes3D) and parent.zlabel:
|
1505 |
+
zlbl = _str_or_latex(parent.zlabel)
|
1506 |
+
ax.set_zlabel(zlbl, position=(0, 1))
|
1507 |
+
if parent.annotations:
|
1508 |
+
for a in parent.annotations:
|
1509 |
+
ax.annotate(**a)
|
1510 |
+
if parent.markers:
|
1511 |
+
for marker in parent.markers:
|
1512 |
+
# make a copy of the marker dictionary
|
1513 |
+
# so that it doesn't get altered
|
1514 |
+
m = marker.copy()
|
1515 |
+
args = m.pop('args')
|
1516 |
+
ax.plot(*args, **m)
|
1517 |
+
if parent.rectangles:
|
1518 |
+
for r in parent.rectangles:
|
1519 |
+
rect = self.matplotlib.patches.Rectangle(**r)
|
1520 |
+
ax.add_patch(rect)
|
1521 |
+
if parent.fill:
|
1522 |
+
ax.fill_between(**parent.fill)
|
1523 |
+
|
1524 |
+
# xlim and ylim should always be set at last so that plot limits
|
1525 |
+
# doesn't get altered during the process.
|
1526 |
+
if parent.xlim:
|
1527 |
+
ax.set_xlim(parent.xlim)
|
1528 |
+
if parent.ylim:
|
1529 |
+
ax.set_ylim(parent.ylim)
|
1530 |
+
|
1531 |
+
|
1532 |
+
def process_series(self):
|
1533 |
+
"""
|
1534 |
+
Iterates over every ``Plot`` object and further calls
|
1535 |
+
_process_series()
|
1536 |
+
"""
|
1537 |
+
parent = self.parent
|
1538 |
+
if isinstance(parent, Plot):
|
1539 |
+
series_list = [parent._series]
|
1540 |
+
else:
|
1541 |
+
series_list = parent._series
|
1542 |
+
|
1543 |
+
for i, (series, ax) in enumerate(zip(series_list, self.ax)):
|
1544 |
+
if isinstance(self.parent, PlotGrid):
|
1545 |
+
parent = self.parent.args[i]
|
1546 |
+
self._process_series(series, ax, parent)
|
1547 |
+
|
1548 |
+
def show(self):
|
1549 |
+
self.process_series()
|
1550 |
+
#TODO after fixing https://github.com/ipython/ipython/issues/1255
|
1551 |
+
# you can uncomment the next line and remove the pyplot.show() call
|
1552 |
+
#self.fig.show()
|
1553 |
+
if _show:
|
1554 |
+
self.fig.tight_layout()
|
1555 |
+
self.plt.show()
|
1556 |
+
else:
|
1557 |
+
self.close()
|
1558 |
+
|
1559 |
+
def save(self, path):
|
1560 |
+
self.process_series()
|
1561 |
+
self.fig.savefig(path)
|
1562 |
+
|
1563 |
+
def close(self):
|
1564 |
+
self.plt.close(self.fig)
|
1565 |
+
|
1566 |
+
|
1567 |
+
class TextBackend(BaseBackend):
|
1568 |
+
def __init__(self, parent):
|
1569 |
+
super().__init__(parent)
|
1570 |
+
|
1571 |
+
def show(self):
|
1572 |
+
if not _show:
|
1573 |
+
return
|
1574 |
+
if len(self.parent._series) != 1:
|
1575 |
+
raise ValueError(
|
1576 |
+
'The TextBackend supports only one graph per Plot.')
|
1577 |
+
elif not isinstance(self.parent._series[0], LineOver1DRangeSeries):
|
1578 |
+
raise ValueError(
|
1579 |
+
'The TextBackend supports only expressions over a 1D range')
|
1580 |
+
else:
|
1581 |
+
ser = self.parent._series[0]
|
1582 |
+
textplot(ser.expr, ser.start, ser.end)
|
1583 |
+
|
1584 |
+
def close(self):
|
1585 |
+
pass
|
1586 |
+
|
1587 |
+
|
1588 |
+
class DefaultBackend(BaseBackend):
|
1589 |
+
def __new__(cls, parent):
|
1590 |
+
matplotlib = import_module('matplotlib', min_module_version='1.1.0', catch=(RuntimeError,))
|
1591 |
+
if matplotlib:
|
1592 |
+
return MatplotlibBackend(parent)
|
1593 |
+
else:
|
1594 |
+
return TextBackend(parent)
|
1595 |
+
|
1596 |
+
|
1597 |
+
plot_backends = {
|
1598 |
+
'matplotlib': MatplotlibBackend,
|
1599 |
+
'text': TextBackend,
|
1600 |
+
'default': DefaultBackend
|
1601 |
+
}
|
1602 |
+
|
1603 |
+
|
1604 |
+
##############################################################################
|
1605 |
+
# Finding the centers of line segments or mesh faces
|
1606 |
+
##############################################################################
|
1607 |
+
|
1608 |
+
def centers_of_segments(array):
|
1609 |
+
np = import_module('numpy')
|
1610 |
+
return np.mean(np.vstack((array[:-1], array[1:])), 0)
|
1611 |
+
|
1612 |
+
|
1613 |
+
def centers_of_faces(array):
|
1614 |
+
np = import_module('numpy')
|
1615 |
+
return np.mean(np.dstack((array[:-1, :-1],
|
1616 |
+
array[1:, :-1],
|
1617 |
+
array[:-1, 1:],
|
1618 |
+
array[:-1, :-1],
|
1619 |
+
)), 2)
|
1620 |
+
|
1621 |
+
|
1622 |
+
def flat(x, y, z, eps=1e-3):
|
1623 |
+
"""Checks whether three points are almost collinear"""
|
1624 |
+
np = import_module('numpy')
|
1625 |
+
# Workaround plotting piecewise (#8577):
|
1626 |
+
# workaround for `lambdify` in `.experimental_lambdify` fails
|
1627 |
+
# to return numerical values in some cases. Lower-level fix
|
1628 |
+
# in `lambdify` is possible.
|
1629 |
+
vector_a = (x - y).astype(np.float64)
|
1630 |
+
vector_b = (z - y).astype(np.float64)
|
1631 |
+
dot_product = np.dot(vector_a, vector_b)
|
1632 |
+
vector_a_norm = np.linalg.norm(vector_a)
|
1633 |
+
vector_b_norm = np.linalg.norm(vector_b)
|
1634 |
+
cos_theta = dot_product / (vector_a_norm * vector_b_norm)
|
1635 |
+
return abs(cos_theta + 1) < eps
|
1636 |
+
|
1637 |
+
|
1638 |
+
def _matplotlib_list(interval_list):
|
1639 |
+
"""
|
1640 |
+
Returns lists for matplotlib ``fill`` command from a list of bounding
|
1641 |
+
rectangular intervals
|
1642 |
+
"""
|
1643 |
+
xlist = []
|
1644 |
+
ylist = []
|
1645 |
+
if len(interval_list):
|
1646 |
+
for intervals in interval_list:
|
1647 |
+
intervalx = intervals[0]
|
1648 |
+
intervaly = intervals[1]
|
1649 |
+
xlist.extend([intervalx.start, intervalx.start,
|
1650 |
+
intervalx.end, intervalx.end, None])
|
1651 |
+
ylist.extend([intervaly.start, intervaly.end,
|
1652 |
+
intervaly.end, intervaly.start, None])
|
1653 |
+
else:
|
1654 |
+
#XXX Ugly hack. Matplotlib does not accept empty lists for ``fill``
|
1655 |
+
xlist.extend((None, None, None, None))
|
1656 |
+
ylist.extend((None, None, None, None))
|
1657 |
+
return xlist, ylist
|
1658 |
+
|
1659 |
+
|
1660 |
+
####New API for plotting module ####
|
1661 |
+
|
1662 |
+
# TODO: Add color arrays for plots.
|
1663 |
+
# TODO: Add more plotting options for 3d plots.
|
1664 |
+
# TODO: Adaptive sampling for 3D plots.
|
1665 |
+
|
1666 |
+
def plot(*args, show=True, **kwargs):
|
1667 |
+
"""Plots a function of a single variable as a curve.
|
1668 |
+
|
1669 |
+
Parameters
|
1670 |
+
==========
|
1671 |
+
|
1672 |
+
args :
|
1673 |
+
The first argument is the expression representing the function
|
1674 |
+
of single variable to be plotted.
|
1675 |
+
|
1676 |
+
The last argument is a 3-tuple denoting the range of the free
|
1677 |
+
variable. e.g. ``(x, 0, 5)``
|
1678 |
+
|
1679 |
+
Typical usage examples are in the following:
|
1680 |
+
|
1681 |
+
- Plotting a single expression with a single range.
|
1682 |
+
``plot(expr, range, **kwargs)``
|
1683 |
+
- Plotting a single expression with the default range (-10, 10).
|
1684 |
+
``plot(expr, **kwargs)``
|
1685 |
+
- Plotting multiple expressions with a single range.
|
1686 |
+
``plot(expr1, expr2, ..., range, **kwargs)``
|
1687 |
+
- Plotting multiple expressions with multiple ranges.
|
1688 |
+
``plot((expr1, range1), (expr2, range2), ..., **kwargs)``
|
1689 |
+
|
1690 |
+
It is best practice to specify range explicitly because default
|
1691 |
+
range may change in the future if a more advanced default range
|
1692 |
+
detection algorithm is implemented.
|
1693 |
+
|
1694 |
+
show : bool, optional
|
1695 |
+
The default value is set to ``True``. Set show to ``False`` and
|
1696 |
+
the function will not display the plot. The returned instance of
|
1697 |
+
the ``Plot`` class can then be used to save or display the plot
|
1698 |
+
by calling the ``save()`` and ``show()`` methods respectively.
|
1699 |
+
|
1700 |
+
line_color : string, or float, or function, optional
|
1701 |
+
Specifies the color for the plot.
|
1702 |
+
See ``Plot`` to see how to set color for the plots.
|
1703 |
+
Note that by setting ``line_color``, it would be applied simultaneously
|
1704 |
+
to all the series.
|
1705 |
+
|
1706 |
+
title : str, optional
|
1707 |
+
Title of the plot. It is set to the latex representation of
|
1708 |
+
the expression, if the plot has only one expression.
|
1709 |
+
|
1710 |
+
label : str, optional
|
1711 |
+
The label of the expression in the plot. It will be used when
|
1712 |
+
called with ``legend``. Default is the name of the expression.
|
1713 |
+
e.g. ``sin(x)``
|
1714 |
+
|
1715 |
+
xlabel : str or expression, optional
|
1716 |
+
Label for the x-axis.
|
1717 |
+
|
1718 |
+
ylabel : str or expression, optional
|
1719 |
+
Label for the y-axis.
|
1720 |
+
|
1721 |
+
xscale : 'linear' or 'log', optional
|
1722 |
+
Sets the scaling of the x-axis.
|
1723 |
+
|
1724 |
+
yscale : 'linear' or 'log', optional
|
1725 |
+
Sets the scaling of the y-axis.
|
1726 |
+
|
1727 |
+
axis_center : (float, float), optional
|
1728 |
+
Tuple of two floats denoting the coordinates of the center or
|
1729 |
+
{'center', 'auto'}
|
1730 |
+
|
1731 |
+
xlim : (float, float), optional
|
1732 |
+
Denotes the x-axis limits, ``(min, max)```.
|
1733 |
+
|
1734 |
+
ylim : (float, float), optional
|
1735 |
+
Denotes the y-axis limits, ``(min, max)```.
|
1736 |
+
|
1737 |
+
annotations : list, optional
|
1738 |
+
A list of dictionaries specifying the type of annotation
|
1739 |
+
required. The keys in the dictionary should be equivalent
|
1740 |
+
to the arguments of the :external:mod:`matplotlib`'s
|
1741 |
+
:external:meth:`~matplotlib.axes.Axes.annotate` method.
|
1742 |
+
|
1743 |
+
markers : list, optional
|
1744 |
+
A list of dictionaries specifying the type the markers required.
|
1745 |
+
The keys in the dictionary should be equivalent to the arguments
|
1746 |
+
of the :external:mod:`matplotlib`'s :external:func:`~matplotlib.pyplot.plot()` function
|
1747 |
+
along with the marker related keyworded arguments.
|
1748 |
+
|
1749 |
+
rectangles : list, optional
|
1750 |
+
A list of dictionaries specifying the dimensions of the
|
1751 |
+
rectangles to be plotted. The keys in the dictionary should be
|
1752 |
+
equivalent to the arguments of the :external:mod:`matplotlib`'s
|
1753 |
+
:external:class:`~matplotlib.patches.Rectangle` class.
|
1754 |
+
|
1755 |
+
fill : dict, optional
|
1756 |
+
A dictionary specifying the type of color filling required in
|
1757 |
+
the plot. The keys in the dictionary should be equivalent to the
|
1758 |
+
arguments of the :external:mod:`matplotlib`'s
|
1759 |
+
:external:meth:`~matplotlib.axes.Axes.fill_between` method.
|
1760 |
+
|
1761 |
+
adaptive : bool, optional
|
1762 |
+
The default value is set to ``True``. Set adaptive to ``False``
|
1763 |
+
and specify ``nb_of_points`` if uniform sampling is required.
|
1764 |
+
|
1765 |
+
The plotting uses an adaptive algorithm which samples
|
1766 |
+
recursively to accurately plot. The adaptive algorithm uses a
|
1767 |
+
random point near the midpoint of two points that has to be
|
1768 |
+
further sampled. Hence the same plots can appear slightly
|
1769 |
+
different.
|
1770 |
+
|
1771 |
+
depth : int, optional
|
1772 |
+
Recursion depth of the adaptive algorithm. A depth of value
|
1773 |
+
`n` samples a maximum of `2^{n}` points.
|
1774 |
+
|
1775 |
+
If the ``adaptive`` flag is set to ``False``, this will be
|
1776 |
+
ignored.
|
1777 |
+
|
1778 |
+
nb_of_points : int, optional
|
1779 |
+
Used when the ``adaptive`` is set to ``False``. The function
|
1780 |
+
is uniformly sampled at ``nb_of_points`` number of points.
|
1781 |
+
|
1782 |
+
If the ``adaptive`` flag is set to ``True``, this will be
|
1783 |
+
ignored.
|
1784 |
+
|
1785 |
+
size : (float, float), optional
|
1786 |
+
A tuple in the form (width, height) in inches to specify the size of
|
1787 |
+
the overall figure. The default value is set to ``None``, meaning
|
1788 |
+
the size will be set by the default backend.
|
1789 |
+
|
1790 |
+
Examples
|
1791 |
+
========
|
1792 |
+
|
1793 |
+
.. plot::
|
1794 |
+
:context: close-figs
|
1795 |
+
:format: doctest
|
1796 |
+
:include-source: True
|
1797 |
+
|
1798 |
+
>>> from sympy import symbols
|
1799 |
+
>>> from sympy.plotting import plot
|
1800 |
+
>>> x = symbols('x')
|
1801 |
+
|
1802 |
+
Single Plot
|
1803 |
+
|
1804 |
+
.. plot::
|
1805 |
+
:context: close-figs
|
1806 |
+
:format: doctest
|
1807 |
+
:include-source: True
|
1808 |
+
|
1809 |
+
>>> plot(x**2, (x, -5, 5))
|
1810 |
+
Plot object containing:
|
1811 |
+
[0]: cartesian line: x**2 for x over (-5.0, 5.0)
|
1812 |
+
|
1813 |
+
Multiple plots with single range.
|
1814 |
+
|
1815 |
+
.. plot::
|
1816 |
+
:context: close-figs
|
1817 |
+
:format: doctest
|
1818 |
+
:include-source: True
|
1819 |
+
|
1820 |
+
>>> plot(x, x**2, x**3, (x, -5, 5))
|
1821 |
+
Plot object containing:
|
1822 |
+
[0]: cartesian line: x for x over (-5.0, 5.0)
|
1823 |
+
[1]: cartesian line: x**2 for x over (-5.0, 5.0)
|
1824 |
+
[2]: cartesian line: x**3 for x over (-5.0, 5.0)
|
1825 |
+
|
1826 |
+
Multiple plots with different ranges.
|
1827 |
+
|
1828 |
+
.. plot::
|
1829 |
+
:context: close-figs
|
1830 |
+
:format: doctest
|
1831 |
+
:include-source: True
|
1832 |
+
|
1833 |
+
>>> plot((x**2, (x, -6, 6)), (x, (x, -5, 5)))
|
1834 |
+
Plot object containing:
|
1835 |
+
[0]: cartesian line: x**2 for x over (-6.0, 6.0)
|
1836 |
+
[1]: cartesian line: x for x over (-5.0, 5.0)
|
1837 |
+
|
1838 |
+
No adaptive sampling.
|
1839 |
+
|
1840 |
+
.. plot::
|
1841 |
+
:context: close-figs
|
1842 |
+
:format: doctest
|
1843 |
+
:include-source: True
|
1844 |
+
|
1845 |
+
>>> plot(x**2, adaptive=False, nb_of_points=400)
|
1846 |
+
Plot object containing:
|
1847 |
+
[0]: cartesian line: x**2 for x over (-10.0, 10.0)
|
1848 |
+
|
1849 |
+
See Also
|
1850 |
+
========
|
1851 |
+
|
1852 |
+
Plot, LineOver1DRangeSeries
|
1853 |
+
|
1854 |
+
"""
|
1855 |
+
args = list(map(sympify, args))
|
1856 |
+
free = set()
|
1857 |
+
for a in args:
|
1858 |
+
if isinstance(a, Expr):
|
1859 |
+
free |= a.free_symbols
|
1860 |
+
if len(free) > 1:
|
1861 |
+
raise ValueError(
|
1862 |
+
'The same variable should be used in all '
|
1863 |
+
'univariate expressions being plotted.')
|
1864 |
+
x = free.pop() if free else Symbol('x')
|
1865 |
+
kwargs.setdefault('xlabel', x)
|
1866 |
+
kwargs.setdefault('ylabel', Function('f')(x))
|
1867 |
+
series = []
|
1868 |
+
plot_expr = check_arguments(args, 1, 1)
|
1869 |
+
series = [LineOver1DRangeSeries(*arg, **kwargs) for arg in plot_expr]
|
1870 |
+
|
1871 |
+
plots = Plot(*series, **kwargs)
|
1872 |
+
if show:
|
1873 |
+
plots.show()
|
1874 |
+
return plots
|
1875 |
+
|
1876 |
+
|
1877 |
+
def plot_parametric(*args, show=True, **kwargs):
|
1878 |
+
"""
|
1879 |
+
Plots a 2D parametric curve.
|
1880 |
+
|
1881 |
+
Parameters
|
1882 |
+
==========
|
1883 |
+
|
1884 |
+
args
|
1885 |
+
Common specifications are:
|
1886 |
+
|
1887 |
+
- Plotting a single parametric curve with a range
|
1888 |
+
``plot_parametric((expr_x, expr_y), range)``
|
1889 |
+
- Plotting multiple parametric curves with the same range
|
1890 |
+
``plot_parametric((expr_x, expr_y), ..., range)``
|
1891 |
+
- Plotting multiple parametric curves with different ranges
|
1892 |
+
``plot_parametric((expr_x, expr_y, range), ...)``
|
1893 |
+
|
1894 |
+
``expr_x`` is the expression representing $x$ component of the
|
1895 |
+
parametric function.
|
1896 |
+
|
1897 |
+
``expr_y`` is the expression representing $y$ component of the
|
1898 |
+
parametric function.
|
1899 |
+
|
1900 |
+
``range`` is a 3-tuple denoting the parameter symbol, start and
|
1901 |
+
stop. For example, ``(u, 0, 5)``.
|
1902 |
+
|
1903 |
+
If the range is not specified, then a default range of (-10, 10)
|
1904 |
+
is used.
|
1905 |
+
|
1906 |
+
However, if the arguments are specified as
|
1907 |
+
``(expr_x, expr_y, range), ...``, you must specify the ranges
|
1908 |
+
for each expressions manually.
|
1909 |
+
|
1910 |
+
Default range may change in the future if a more advanced
|
1911 |
+
algorithm is implemented.
|
1912 |
+
|
1913 |
+
adaptive : bool, optional
|
1914 |
+
Specifies whether to use the adaptive sampling or not.
|
1915 |
+
|
1916 |
+
The default value is set to ``True``. Set adaptive to ``False``
|
1917 |
+
and specify ``nb_of_points`` if uniform sampling is required.
|
1918 |
+
|
1919 |
+
depth : int, optional
|
1920 |
+
The recursion depth of the adaptive algorithm. A depth of
|
1921 |
+
value $n$ samples a maximum of $2^n$ points.
|
1922 |
+
|
1923 |
+
nb_of_points : int, optional
|
1924 |
+
Used when the ``adaptive`` flag is set to ``False``.
|
1925 |
+
|
1926 |
+
Specifies the number of the points used for the uniform
|
1927 |
+
sampling.
|
1928 |
+
|
1929 |
+
line_color : string, or float, or function, optional
|
1930 |
+
Specifies the color for the plot.
|
1931 |
+
See ``Plot`` to see how to set color for the plots.
|
1932 |
+
Note that by setting ``line_color``, it would be applied simultaneously
|
1933 |
+
to all the series.
|
1934 |
+
|
1935 |
+
label : str, optional
|
1936 |
+
The label of the expression in the plot. It will be used when
|
1937 |
+
called with ``legend``. Default is the name of the expression.
|
1938 |
+
e.g. ``sin(x)``
|
1939 |
+
|
1940 |
+
xlabel : str, optional
|
1941 |
+
Label for the x-axis.
|
1942 |
+
|
1943 |
+
ylabel : str, optional
|
1944 |
+
Label for the y-axis.
|
1945 |
+
|
1946 |
+
xscale : 'linear' or 'log', optional
|
1947 |
+
Sets the scaling of the x-axis.
|
1948 |
+
|
1949 |
+
yscale : 'linear' or 'log', optional
|
1950 |
+
Sets the scaling of the y-axis.
|
1951 |
+
|
1952 |
+
axis_center : (float, float), optional
|
1953 |
+
Tuple of two floats denoting the coordinates of the center or
|
1954 |
+
{'center', 'auto'}
|
1955 |
+
|
1956 |
+
xlim : (float, float), optional
|
1957 |
+
Denotes the x-axis limits, ``(min, max)```.
|
1958 |
+
|
1959 |
+
ylim : (float, float), optional
|
1960 |
+
Denotes the y-axis limits, ``(min, max)```.
|
1961 |
+
|
1962 |
+
size : (float, float), optional
|
1963 |
+
A tuple in the form (width, height) in inches to specify the size of
|
1964 |
+
the overall figure. The default value is set to ``None``, meaning
|
1965 |
+
the size will be set by the default backend.
|
1966 |
+
|
1967 |
+
Examples
|
1968 |
+
========
|
1969 |
+
|
1970 |
+
.. plot::
|
1971 |
+
:context: reset
|
1972 |
+
:format: doctest
|
1973 |
+
:include-source: True
|
1974 |
+
|
1975 |
+
>>> from sympy import plot_parametric, symbols, cos, sin
|
1976 |
+
>>> u = symbols('u')
|
1977 |
+
|
1978 |
+
A parametric plot with a single expression:
|
1979 |
+
|
1980 |
+
.. plot::
|
1981 |
+
:context: close-figs
|
1982 |
+
:format: doctest
|
1983 |
+
:include-source: True
|
1984 |
+
|
1985 |
+
>>> plot_parametric((cos(u), sin(u)), (u, -5, 5))
|
1986 |
+
Plot object containing:
|
1987 |
+
[0]: parametric cartesian line: (cos(u), sin(u)) for u over (-5.0, 5.0)
|
1988 |
+
|
1989 |
+
A parametric plot with multiple expressions with the same range:
|
1990 |
+
|
1991 |
+
.. plot::
|
1992 |
+
:context: close-figs
|
1993 |
+
:format: doctest
|
1994 |
+
:include-source: True
|
1995 |
+
|
1996 |
+
>>> plot_parametric((cos(u), sin(u)), (u, cos(u)), (u, -10, 10))
|
1997 |
+
Plot object containing:
|
1998 |
+
[0]: parametric cartesian line: (cos(u), sin(u)) for u over (-10.0, 10.0)
|
1999 |
+
[1]: parametric cartesian line: (u, cos(u)) for u over (-10.0, 10.0)
|
2000 |
+
|
2001 |
+
A parametric plot with multiple expressions with different ranges
|
2002 |
+
for each curve:
|
2003 |
+
|
2004 |
+
.. plot::
|
2005 |
+
:context: close-figs
|
2006 |
+
:format: doctest
|
2007 |
+
:include-source: True
|
2008 |
+
|
2009 |
+
>>> plot_parametric((cos(u), sin(u), (u, -5, 5)),
|
2010 |
+
... (cos(u), u, (u, -5, 5)))
|
2011 |
+
Plot object containing:
|
2012 |
+
[0]: parametric cartesian line: (cos(u), sin(u)) for u over (-5.0, 5.0)
|
2013 |
+
[1]: parametric cartesian line: (cos(u), u) for u over (-5.0, 5.0)
|
2014 |
+
|
2015 |
+
Notes
|
2016 |
+
=====
|
2017 |
+
|
2018 |
+
The plotting uses an adaptive algorithm which samples recursively to
|
2019 |
+
accurately plot the curve. The adaptive algorithm uses a random point
|
2020 |
+
near the midpoint of two points that has to be further sampled.
|
2021 |
+
Hence, repeating the same plot command can give slightly different
|
2022 |
+
results because of the random sampling.
|
2023 |
+
|
2024 |
+
If there are multiple plots, then the same optional arguments are
|
2025 |
+
applied to all the plots drawn in the same canvas. If you want to
|
2026 |
+
set these options separately, you can index the returned ``Plot``
|
2027 |
+
object and set it.
|
2028 |
+
|
2029 |
+
For example, when you specify ``line_color`` once, it would be
|
2030 |
+
applied simultaneously to both series.
|
2031 |
+
|
2032 |
+
.. plot::
|
2033 |
+
:context: close-figs
|
2034 |
+
:format: doctest
|
2035 |
+
:include-source: True
|
2036 |
+
|
2037 |
+
>>> from sympy import pi
|
2038 |
+
>>> expr1 = (u, cos(2*pi*u)/2 + 1/2)
|
2039 |
+
>>> expr2 = (u, sin(2*pi*u)/2 + 1/2)
|
2040 |
+
>>> p = plot_parametric(expr1, expr2, (u, 0, 1), line_color='blue')
|
2041 |
+
|
2042 |
+
If you want to specify the line color for the specific series, you
|
2043 |
+
should index each item and apply the property manually.
|
2044 |
+
|
2045 |
+
.. plot::
|
2046 |
+
:context: close-figs
|
2047 |
+
:format: doctest
|
2048 |
+
:include-source: True
|
2049 |
+
|
2050 |
+
>>> p[0].line_color = 'red'
|
2051 |
+
>>> p.show()
|
2052 |
+
|
2053 |
+
See Also
|
2054 |
+
========
|
2055 |
+
|
2056 |
+
Plot, Parametric2DLineSeries
|
2057 |
+
"""
|
2058 |
+
args = list(map(sympify, args))
|
2059 |
+
series = []
|
2060 |
+
plot_expr = check_arguments(args, 2, 1)
|
2061 |
+
series = [Parametric2DLineSeries(*arg, **kwargs) for arg in plot_expr]
|
2062 |
+
plots = Plot(*series, **kwargs)
|
2063 |
+
if show:
|
2064 |
+
plots.show()
|
2065 |
+
return plots
|
2066 |
+
|
2067 |
+
|
2068 |
+
def plot3d_parametric_line(*args, show=True, **kwargs):
|
2069 |
+
"""
|
2070 |
+
Plots a 3D parametric line plot.
|
2071 |
+
|
2072 |
+
Usage
|
2073 |
+
=====
|
2074 |
+
|
2075 |
+
Single plot:
|
2076 |
+
|
2077 |
+
``plot3d_parametric_line(expr_x, expr_y, expr_z, range, **kwargs)``
|
2078 |
+
|
2079 |
+
If the range is not specified, then a default range of (-10, 10) is used.
|
2080 |
+
|
2081 |
+
Multiple plots.
|
2082 |
+
|
2083 |
+
``plot3d_parametric_line((expr_x, expr_y, expr_z, range), ..., **kwargs)``
|
2084 |
+
|
2085 |
+
Ranges have to be specified for every expression.
|
2086 |
+
|
2087 |
+
Default range may change in the future if a more advanced default range
|
2088 |
+
detection algorithm is implemented.
|
2089 |
+
|
2090 |
+
Arguments
|
2091 |
+
=========
|
2092 |
+
|
2093 |
+
expr_x : Expression representing the function along x.
|
2094 |
+
|
2095 |
+
expr_y : Expression representing the function along y.
|
2096 |
+
|
2097 |
+
expr_z : Expression representing the function along z.
|
2098 |
+
|
2099 |
+
range : (:class:`~.Symbol`, float, float)
|
2100 |
+
A 3-tuple denoting the range of the parameter variable, e.g., (u, 0, 5).
|
2101 |
+
|
2102 |
+
Keyword Arguments
|
2103 |
+
=================
|
2104 |
+
|
2105 |
+
Arguments for ``Parametric3DLineSeries`` class.
|
2106 |
+
|
2107 |
+
nb_of_points : The range is uniformly sampled at ``nb_of_points``
|
2108 |
+
number of points.
|
2109 |
+
|
2110 |
+
Aesthetics:
|
2111 |
+
|
2112 |
+
line_color : string, or float, or function, optional
|
2113 |
+
Specifies the color for the plot.
|
2114 |
+
See ``Plot`` to see how to set color for the plots.
|
2115 |
+
Note that by setting ``line_color``, it would be applied simultaneously
|
2116 |
+
to all the series.
|
2117 |
+
|
2118 |
+
label : str
|
2119 |
+
The label to the plot. It will be used when called with ``legend=True``
|
2120 |
+
to denote the function with the given label in the plot.
|
2121 |
+
|
2122 |
+
If there are multiple plots, then the same series arguments are applied to
|
2123 |
+
all the plots. If you want to set these options separately, you can index
|
2124 |
+
the returned ``Plot`` object and set it.
|
2125 |
+
|
2126 |
+
Arguments for ``Plot`` class.
|
2127 |
+
|
2128 |
+
title : str
|
2129 |
+
Title of the plot.
|
2130 |
+
|
2131 |
+
size : (float, float), optional
|
2132 |
+
A tuple in the form (width, height) in inches to specify the size of
|
2133 |
+
the overall figure. The default value is set to ``None``, meaning
|
2134 |
+
the size will be set by the default backend.
|
2135 |
+
|
2136 |
+
Examples
|
2137 |
+
========
|
2138 |
+
|
2139 |
+
.. plot::
|
2140 |
+
:context: reset
|
2141 |
+
:format: doctest
|
2142 |
+
:include-source: True
|
2143 |
+
|
2144 |
+
>>> from sympy import symbols, cos, sin
|
2145 |
+
>>> from sympy.plotting import plot3d_parametric_line
|
2146 |
+
>>> u = symbols('u')
|
2147 |
+
|
2148 |
+
Single plot.
|
2149 |
+
|
2150 |
+
.. plot::
|
2151 |
+
:context: close-figs
|
2152 |
+
:format: doctest
|
2153 |
+
:include-source: True
|
2154 |
+
|
2155 |
+
>>> plot3d_parametric_line(cos(u), sin(u), u, (u, -5, 5))
|
2156 |
+
Plot object containing:
|
2157 |
+
[0]: 3D parametric cartesian line: (cos(u), sin(u), u) for u over (-5.0, 5.0)
|
2158 |
+
|
2159 |
+
|
2160 |
+
Multiple plots.
|
2161 |
+
|
2162 |
+
.. plot::
|
2163 |
+
:context: close-figs
|
2164 |
+
:format: doctest
|
2165 |
+
:include-source: True
|
2166 |
+
|
2167 |
+
>>> plot3d_parametric_line((cos(u), sin(u), u, (u, -5, 5)),
|
2168 |
+
... (sin(u), u**2, u, (u, -5, 5)))
|
2169 |
+
Plot object containing:
|
2170 |
+
[0]: 3D parametric cartesian line: (cos(u), sin(u), u) for u over (-5.0, 5.0)
|
2171 |
+
[1]: 3D parametric cartesian line: (sin(u), u**2, u) for u over (-5.0, 5.0)
|
2172 |
+
|
2173 |
+
|
2174 |
+
See Also
|
2175 |
+
========
|
2176 |
+
|
2177 |
+
Plot, Parametric3DLineSeries
|
2178 |
+
|
2179 |
+
"""
|
2180 |
+
args = list(map(sympify, args))
|
2181 |
+
series = []
|
2182 |
+
plot_expr = check_arguments(args, 3, 1)
|
2183 |
+
series = [Parametric3DLineSeries(*arg, **kwargs) for arg in plot_expr]
|
2184 |
+
kwargs.setdefault("xlabel", "x")
|
2185 |
+
kwargs.setdefault("ylabel", "y")
|
2186 |
+
kwargs.setdefault("zlabel", "z")
|
2187 |
+
plots = Plot(*series, **kwargs)
|
2188 |
+
if show:
|
2189 |
+
plots.show()
|
2190 |
+
return plots
|
2191 |
+
|
2192 |
+
|
2193 |
+
def plot3d(*args, show=True, **kwargs):
|
2194 |
+
"""
|
2195 |
+
Plots a 3D surface plot.
|
2196 |
+
|
2197 |
+
Usage
|
2198 |
+
=====
|
2199 |
+
|
2200 |
+
Single plot
|
2201 |
+
|
2202 |
+
``plot3d(expr, range_x, range_y, **kwargs)``
|
2203 |
+
|
2204 |
+
If the ranges are not specified, then a default range of (-10, 10) is used.
|
2205 |
+
|
2206 |
+
Multiple plot with the same range.
|
2207 |
+
|
2208 |
+
``plot3d(expr1, expr2, range_x, range_y, **kwargs)``
|
2209 |
+
|
2210 |
+
If the ranges are not specified, then a default range of (-10, 10) is used.
|
2211 |
+
|
2212 |
+
Multiple plots with different ranges.
|
2213 |
+
|
2214 |
+
``plot3d((expr1, range_x, range_y), (expr2, range_x, range_y), ..., **kwargs)``
|
2215 |
+
|
2216 |
+
Ranges have to be specified for every expression.
|
2217 |
+
|
2218 |
+
Default range may change in the future if a more advanced default range
|
2219 |
+
detection algorithm is implemented.
|
2220 |
+
|
2221 |
+
Arguments
|
2222 |
+
=========
|
2223 |
+
|
2224 |
+
expr : Expression representing the function along x.
|
2225 |
+
|
2226 |
+
range_x : (:class:`~.Symbol`, float, float)
|
2227 |
+
A 3-tuple denoting the range of the x variable, e.g. (x, 0, 5).
|
2228 |
+
|
2229 |
+
range_y : (:class:`~.Symbol`, float, float)
|
2230 |
+
A 3-tuple denoting the range of the y variable, e.g. (y, 0, 5).
|
2231 |
+
|
2232 |
+
Keyword Arguments
|
2233 |
+
=================
|
2234 |
+
|
2235 |
+
Arguments for ``SurfaceOver2DRangeSeries`` class:
|
2236 |
+
|
2237 |
+
nb_of_points_x : int
|
2238 |
+
The x range is sampled uniformly at ``nb_of_points_x`` of points.
|
2239 |
+
|
2240 |
+
nb_of_points_y : int
|
2241 |
+
The y range is sampled uniformly at ``nb_of_points_y`` of points.
|
2242 |
+
|
2243 |
+
Aesthetics:
|
2244 |
+
|
2245 |
+
surface_color : Function which returns a float
|
2246 |
+
Specifies the color for the surface of the plot.
|
2247 |
+
See :class:`~.Plot` for more details.
|
2248 |
+
|
2249 |
+
If there are multiple plots, then the same series arguments are applied to
|
2250 |
+
all the plots. If you want to set these options separately, you can index
|
2251 |
+
the returned ``Plot`` object and set it.
|
2252 |
+
|
2253 |
+
Arguments for ``Plot`` class:
|
2254 |
+
|
2255 |
+
title : str
|
2256 |
+
Title of the plot.
|
2257 |
+
|
2258 |
+
size : (float, float), optional
|
2259 |
+
A tuple in the form (width, height) in inches to specify the size of the
|
2260 |
+
overall figure. The default value is set to ``None``, meaning the size will
|
2261 |
+
be set by the default backend.
|
2262 |
+
|
2263 |
+
Examples
|
2264 |
+
========
|
2265 |
+
|
2266 |
+
.. plot::
|
2267 |
+
:context: reset
|
2268 |
+
:format: doctest
|
2269 |
+
:include-source: True
|
2270 |
+
|
2271 |
+
>>> from sympy import symbols
|
2272 |
+
>>> from sympy.plotting import plot3d
|
2273 |
+
>>> x, y = symbols('x y')
|
2274 |
+
|
2275 |
+
Single plot
|
2276 |
+
|
2277 |
+
.. plot::
|
2278 |
+
:context: close-figs
|
2279 |
+
:format: doctest
|
2280 |
+
:include-source: True
|
2281 |
+
|
2282 |
+
>>> plot3d(x*y, (x, -5, 5), (y, -5, 5))
|
2283 |
+
Plot object containing:
|
2284 |
+
[0]: cartesian surface: x*y for x over (-5.0, 5.0) and y over (-5.0, 5.0)
|
2285 |
+
|
2286 |
+
|
2287 |
+
Multiple plots with same range
|
2288 |
+
|
2289 |
+
.. plot::
|
2290 |
+
:context: close-figs
|
2291 |
+
:format: doctest
|
2292 |
+
:include-source: True
|
2293 |
+
|
2294 |
+
>>> plot3d(x*y, -x*y, (x, -5, 5), (y, -5, 5))
|
2295 |
+
Plot object containing:
|
2296 |
+
[0]: cartesian surface: x*y for x over (-5.0, 5.0) and y over (-5.0, 5.0)
|
2297 |
+
[1]: cartesian surface: -x*y for x over (-5.0, 5.0) and y over (-5.0, 5.0)
|
2298 |
+
|
2299 |
+
|
2300 |
+
Multiple plots with different ranges.
|
2301 |
+
|
2302 |
+
.. plot::
|
2303 |
+
:context: close-figs
|
2304 |
+
:format: doctest
|
2305 |
+
:include-source: True
|
2306 |
+
|
2307 |
+
>>> plot3d((x**2 + y**2, (x, -5, 5), (y, -5, 5)),
|
2308 |
+
... (x*y, (x, -3, 3), (y, -3, 3)))
|
2309 |
+
Plot object containing:
|
2310 |
+
[0]: cartesian surface: x**2 + y**2 for x over (-5.0, 5.0) and y over (-5.0, 5.0)
|
2311 |
+
[1]: cartesian surface: x*y for x over (-3.0, 3.0) and y over (-3.0, 3.0)
|
2312 |
+
|
2313 |
+
|
2314 |
+
See Also
|
2315 |
+
========
|
2316 |
+
|
2317 |
+
Plot, SurfaceOver2DRangeSeries
|
2318 |
+
|
2319 |
+
"""
|
2320 |
+
|
2321 |
+
args = list(map(sympify, args))
|
2322 |
+
series = []
|
2323 |
+
plot_expr = check_arguments(args, 1, 2)
|
2324 |
+
series = [SurfaceOver2DRangeSeries(*arg, **kwargs) for arg in plot_expr]
|
2325 |
+
kwargs.setdefault("xlabel", series[0].var_x)
|
2326 |
+
kwargs.setdefault("ylabel", series[0].var_y)
|
2327 |
+
kwargs.setdefault("zlabel", Function('f')(series[0].var_x, series[0].var_y))
|
2328 |
+
plots = Plot(*series, **kwargs)
|
2329 |
+
if show:
|
2330 |
+
plots.show()
|
2331 |
+
return plots
|
2332 |
+
|
2333 |
+
|
2334 |
+
def plot3d_parametric_surface(*args, show=True, **kwargs):
|
2335 |
+
"""
|
2336 |
+
Plots a 3D parametric surface plot.
|
2337 |
+
|
2338 |
+
Explanation
|
2339 |
+
===========
|
2340 |
+
|
2341 |
+
Single plot.
|
2342 |
+
|
2343 |
+
``plot3d_parametric_surface(expr_x, expr_y, expr_z, range_u, range_v, **kwargs)``
|
2344 |
+
|
2345 |
+
If the ranges is not specified, then a default range of (-10, 10) is used.
|
2346 |
+
|
2347 |
+
Multiple plots.
|
2348 |
+
|
2349 |
+
``plot3d_parametric_surface((expr_x, expr_y, expr_z, range_u, range_v), ..., **kwargs)``
|
2350 |
+
|
2351 |
+
Ranges have to be specified for every expression.
|
2352 |
+
|
2353 |
+
Default range may change in the future if a more advanced default range
|
2354 |
+
detection algorithm is implemented.
|
2355 |
+
|
2356 |
+
Arguments
|
2357 |
+
=========
|
2358 |
+
|
2359 |
+
expr_x : Expression representing the function along ``x``.
|
2360 |
+
|
2361 |
+
expr_y : Expression representing the function along ``y``.
|
2362 |
+
|
2363 |
+
expr_z : Expression representing the function along ``z``.
|
2364 |
+
|
2365 |
+
range_u : (:class:`~.Symbol`, float, float)
|
2366 |
+
A 3-tuple denoting the range of the u variable, e.g. (u, 0, 5).
|
2367 |
+
|
2368 |
+
range_v : (:class:`~.Symbol`, float, float)
|
2369 |
+
A 3-tuple denoting the range of the v variable, e.g. (v, 0, 5).
|
2370 |
+
|
2371 |
+
Keyword Arguments
|
2372 |
+
=================
|
2373 |
+
|
2374 |
+
Arguments for ``ParametricSurfaceSeries`` class:
|
2375 |
+
|
2376 |
+
nb_of_points_u : int
|
2377 |
+
The ``u`` range is sampled uniformly at ``nb_of_points_v`` of points
|
2378 |
+
|
2379 |
+
nb_of_points_y : int
|
2380 |
+
The ``v`` range is sampled uniformly at ``nb_of_points_y`` of points
|
2381 |
+
|
2382 |
+
Aesthetics:
|
2383 |
+
|
2384 |
+
surface_color : Function which returns a float
|
2385 |
+
Specifies the color for the surface of the plot. See
|
2386 |
+
:class:`~Plot` for more details.
|
2387 |
+
|
2388 |
+
If there are multiple plots, then the same series arguments are applied for
|
2389 |
+
all the plots. If you want to set these options separately, you can index
|
2390 |
+
the returned ``Plot`` object and set it.
|
2391 |
+
|
2392 |
+
|
2393 |
+
Arguments for ``Plot`` class:
|
2394 |
+
|
2395 |
+
title : str
|
2396 |
+
Title of the plot.
|
2397 |
+
|
2398 |
+
size : (float, float), optional
|
2399 |
+
A tuple in the form (width, height) in inches to specify the size of the
|
2400 |
+
overall figure. The default value is set to ``None``, meaning the size will
|
2401 |
+
be set by the default backend.
|
2402 |
+
|
2403 |
+
Examples
|
2404 |
+
========
|
2405 |
+
|
2406 |
+
.. plot::
|
2407 |
+
:context: reset
|
2408 |
+
:format: doctest
|
2409 |
+
:include-source: True
|
2410 |
+
|
2411 |
+
>>> from sympy import symbols, cos, sin
|
2412 |
+
>>> from sympy.plotting import plot3d_parametric_surface
|
2413 |
+
>>> u, v = symbols('u v')
|
2414 |
+
|
2415 |
+
Single plot.
|
2416 |
+
|
2417 |
+
.. plot::
|
2418 |
+
:context: close-figs
|
2419 |
+
:format: doctest
|
2420 |
+
:include-source: True
|
2421 |
+
|
2422 |
+
>>> plot3d_parametric_surface(cos(u + v), sin(u - v), u - v,
|
2423 |
+
... (u, -5, 5), (v, -5, 5))
|
2424 |
+
Plot object containing:
|
2425 |
+
[0]: parametric cartesian surface: (cos(u + v), sin(u - v), u - v) for u over (-5.0, 5.0) and v over (-5.0, 5.0)
|
2426 |
+
|
2427 |
+
|
2428 |
+
See Also
|
2429 |
+
========
|
2430 |
+
|
2431 |
+
Plot, ParametricSurfaceSeries
|
2432 |
+
|
2433 |
+
"""
|
2434 |
+
|
2435 |
+
args = list(map(sympify, args))
|
2436 |
+
series = []
|
2437 |
+
plot_expr = check_arguments(args, 3, 2)
|
2438 |
+
series = [ParametricSurfaceSeries(*arg, **kwargs) for arg in plot_expr]
|
2439 |
+
kwargs.setdefault("xlabel", "x")
|
2440 |
+
kwargs.setdefault("ylabel", "y")
|
2441 |
+
kwargs.setdefault("zlabel", "z")
|
2442 |
+
plots = Plot(*series, **kwargs)
|
2443 |
+
if show:
|
2444 |
+
plots.show()
|
2445 |
+
return plots
|
2446 |
+
|
2447 |
+
def plot_contour(*args, show=True, **kwargs):
|
2448 |
+
"""
|
2449 |
+
Draws contour plot of a function
|
2450 |
+
|
2451 |
+
Usage
|
2452 |
+
=====
|
2453 |
+
|
2454 |
+
Single plot
|
2455 |
+
|
2456 |
+
``plot_contour(expr, range_x, range_y, **kwargs)``
|
2457 |
+
|
2458 |
+
If the ranges are not specified, then a default range of (-10, 10) is used.
|
2459 |
+
|
2460 |
+
Multiple plot with the same range.
|
2461 |
+
|
2462 |
+
``plot_contour(expr1, expr2, range_x, range_y, **kwargs)``
|
2463 |
+
|
2464 |
+
If the ranges are not specified, then a default range of (-10, 10) is used.
|
2465 |
+
|
2466 |
+
Multiple plots with different ranges.
|
2467 |
+
|
2468 |
+
``plot_contour((expr1, range_x, range_y), (expr2, range_x, range_y), ..., **kwargs)``
|
2469 |
+
|
2470 |
+
Ranges have to be specified for every expression.
|
2471 |
+
|
2472 |
+
Default range may change in the future if a more advanced default range
|
2473 |
+
detection algorithm is implemented.
|
2474 |
+
|
2475 |
+
Arguments
|
2476 |
+
=========
|
2477 |
+
|
2478 |
+
expr : Expression representing the function along x.
|
2479 |
+
|
2480 |
+
range_x : (:class:`Symbol`, float, float)
|
2481 |
+
A 3-tuple denoting the range of the x variable, e.g. (x, 0, 5).
|
2482 |
+
|
2483 |
+
range_y : (:class:`Symbol`, float, float)
|
2484 |
+
A 3-tuple denoting the range of the y variable, e.g. (y, 0, 5).
|
2485 |
+
|
2486 |
+
Keyword Arguments
|
2487 |
+
=================
|
2488 |
+
|
2489 |
+
Arguments for ``ContourSeries`` class:
|
2490 |
+
|
2491 |
+
nb_of_points_x : int
|
2492 |
+
The x range is sampled uniformly at ``nb_of_points_x`` of points.
|
2493 |
+
|
2494 |
+
nb_of_points_y : int
|
2495 |
+
The y range is sampled uniformly at ``nb_of_points_y`` of points.
|
2496 |
+
|
2497 |
+
Aesthetics:
|
2498 |
+
|
2499 |
+
surface_color : Function which returns a float
|
2500 |
+
Specifies the color for the surface of the plot. See
|
2501 |
+
:class:`sympy.plotting.Plot` for more details.
|
2502 |
+
|
2503 |
+
If there are multiple plots, then the same series arguments are applied to
|
2504 |
+
all the plots. If you want to set these options separately, you can index
|
2505 |
+
the returned ``Plot`` object and set it.
|
2506 |
+
|
2507 |
+
Arguments for ``Plot`` class:
|
2508 |
+
|
2509 |
+
title : str
|
2510 |
+
Title of the plot.
|
2511 |
+
|
2512 |
+
size : (float, float), optional
|
2513 |
+
A tuple in the form (width, height) in inches to specify the size of
|
2514 |
+
the overall figure. The default value is set to ``None``, meaning
|
2515 |
+
the size will be set by the default backend.
|
2516 |
+
|
2517 |
+
See Also
|
2518 |
+
========
|
2519 |
+
|
2520 |
+
Plot, ContourSeries
|
2521 |
+
|
2522 |
+
"""
|
2523 |
+
|
2524 |
+
args = list(map(sympify, args))
|
2525 |
+
plot_expr = check_arguments(args, 1, 2)
|
2526 |
+
series = [ContourSeries(*arg) for arg in plot_expr]
|
2527 |
+
plot_contours = Plot(*series, **kwargs)
|
2528 |
+
if len(plot_expr[0].free_symbols) > 2:
|
2529 |
+
raise ValueError('Contour Plot cannot Plot for more than two variables.')
|
2530 |
+
if show:
|
2531 |
+
plot_contours.show()
|
2532 |
+
return plot_contours
|
2533 |
+
|
2534 |
+
def check_arguments(args, expr_len, nb_of_free_symbols):
|
2535 |
+
"""
|
2536 |
+
Checks the arguments and converts into tuples of the
|
2537 |
+
form (exprs, ranges).
|
2538 |
+
|
2539 |
+
Examples
|
2540 |
+
========
|
2541 |
+
|
2542 |
+
.. plot::
|
2543 |
+
:context: reset
|
2544 |
+
:format: doctest
|
2545 |
+
:include-source: True
|
2546 |
+
|
2547 |
+
>>> from sympy import cos, sin, symbols
|
2548 |
+
>>> from sympy.plotting.plot import check_arguments
|
2549 |
+
>>> x = symbols('x')
|
2550 |
+
>>> check_arguments([cos(x), sin(x)], 2, 1)
|
2551 |
+
[(cos(x), sin(x), (x, -10, 10))]
|
2552 |
+
|
2553 |
+
>>> check_arguments([x, x**2], 1, 1)
|
2554 |
+
[(x, (x, -10, 10)), (x**2, (x, -10, 10))]
|
2555 |
+
"""
|
2556 |
+
if not args:
|
2557 |
+
return []
|
2558 |
+
if expr_len > 1 and isinstance(args[0], Expr):
|
2559 |
+
# Multiple expressions same range.
|
2560 |
+
# The arguments are tuples when the expression length is
|
2561 |
+
# greater than 1.
|
2562 |
+
if len(args) < expr_len:
|
2563 |
+
raise ValueError("len(args) should not be less than expr_len")
|
2564 |
+
for i in range(len(args)):
|
2565 |
+
if isinstance(args[i], Tuple):
|
2566 |
+
break
|
2567 |
+
else:
|
2568 |
+
i = len(args) + 1
|
2569 |
+
|
2570 |
+
exprs = Tuple(*args[:i])
|
2571 |
+
free_symbols = list(set().union(*[e.free_symbols for e in exprs]))
|
2572 |
+
if len(args) == expr_len + nb_of_free_symbols:
|
2573 |
+
#Ranges given
|
2574 |
+
plots = [exprs + Tuple(*args[expr_len:])]
|
2575 |
+
else:
|
2576 |
+
default_range = Tuple(-10, 10)
|
2577 |
+
ranges = []
|
2578 |
+
for symbol in free_symbols:
|
2579 |
+
ranges.append(Tuple(symbol) + default_range)
|
2580 |
+
|
2581 |
+
for i in range(len(free_symbols) - nb_of_free_symbols):
|
2582 |
+
ranges.append(Tuple(Dummy()) + default_range)
|
2583 |
+
plots = [exprs + Tuple(*ranges)]
|
2584 |
+
return plots
|
2585 |
+
|
2586 |
+
if isinstance(args[0], Expr) or (isinstance(args[0], Tuple) and
|
2587 |
+
len(args[0]) == expr_len and
|
2588 |
+
expr_len != 3):
|
2589 |
+
# Cannot handle expressions with number of expression = 3. It is
|
2590 |
+
# not possible to differentiate between expressions and ranges.
|
2591 |
+
#Series of plots with same range
|
2592 |
+
for i in range(len(args)):
|
2593 |
+
if isinstance(args[i], Tuple) and len(args[i]) != expr_len:
|
2594 |
+
break
|
2595 |
+
if not isinstance(args[i], Tuple):
|
2596 |
+
args[i] = Tuple(args[i])
|
2597 |
+
else:
|
2598 |
+
i = len(args) + 1
|
2599 |
+
|
2600 |
+
exprs = args[:i]
|
2601 |
+
assert all(isinstance(e, Expr) for expr in exprs for e in expr)
|
2602 |
+
free_symbols = list(set().union(*[e.free_symbols for expr in exprs
|
2603 |
+
for e in expr]))
|
2604 |
+
|
2605 |
+
if len(free_symbols) > nb_of_free_symbols:
|
2606 |
+
raise ValueError("The number of free_symbols in the expression "
|
2607 |
+
"is greater than %d" % nb_of_free_symbols)
|
2608 |
+
if len(args) == i + nb_of_free_symbols and isinstance(args[i], Tuple):
|
2609 |
+
ranges = Tuple(*list(args[
|
2610 |
+
i:i + nb_of_free_symbols]))
|
2611 |
+
plots = [expr + ranges for expr in exprs]
|
2612 |
+
return plots
|
2613 |
+
else:
|
2614 |
+
# Use default ranges.
|
2615 |
+
default_range = Tuple(-10, 10)
|
2616 |
+
ranges = []
|
2617 |
+
for symbol in free_symbols:
|
2618 |
+
ranges.append(Tuple(symbol) + default_range)
|
2619 |
+
|
2620 |
+
for i in range(nb_of_free_symbols - len(free_symbols)):
|
2621 |
+
ranges.append(Tuple(Dummy()) + default_range)
|
2622 |
+
ranges = Tuple(*ranges)
|
2623 |
+
plots = [expr + ranges for expr in exprs]
|
2624 |
+
return plots
|
2625 |
+
|
2626 |
+
elif isinstance(args[0], Tuple) and len(args[0]) == expr_len + nb_of_free_symbols:
|
2627 |
+
# Multiple plots with different ranges.
|
2628 |
+
for arg in args:
|
2629 |
+
for i in range(expr_len):
|
2630 |
+
if not isinstance(arg[i], Expr):
|
2631 |
+
raise ValueError("Expected an expression, given %s" %
|
2632 |
+
str(arg[i]))
|
2633 |
+
for i in range(nb_of_free_symbols):
|
2634 |
+
if not len(arg[i + expr_len]) == 3:
|
2635 |
+
raise ValueError("The ranges should be a tuple of "
|
2636 |
+
"length 3, got %s" % str(arg[i + expr_len]))
|
2637 |
+
return args
|
llmeval-env/lib/python3.10/site-packages/sympy/plotting/plot_implicit.py
ADDED
@@ -0,0 +1,432 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Implicit plotting module for SymPy.
|
2 |
+
|
3 |
+
Explanation
|
4 |
+
===========
|
5 |
+
|
6 |
+
The module implements a data series called ImplicitSeries which is used by
|
7 |
+
``Plot`` class to plot implicit plots for different backends. The module,
|
8 |
+
by default, implements plotting using interval arithmetic. It switches to a
|
9 |
+
fall back algorithm if the expression cannot be plotted using interval arithmetic.
|
10 |
+
It is also possible to specify to use the fall back algorithm for all plots.
|
11 |
+
|
12 |
+
Boolean combinations of expressions cannot be plotted by the fall back
|
13 |
+
algorithm.
|
14 |
+
|
15 |
+
See Also
|
16 |
+
========
|
17 |
+
|
18 |
+
sympy.plotting.plot
|
19 |
+
|
20 |
+
References
|
21 |
+
==========
|
22 |
+
|
23 |
+
.. [1] Jeffrey Allen Tupper. Reliable Two-Dimensional Graphing Methods for
|
24 |
+
Mathematical Formulae with Two Free Variables.
|
25 |
+
|
26 |
+
.. [2] Jeffrey Allen Tupper. Graphing Equations with Generalized Interval
|
27 |
+
Arithmetic. Master's thesis. University of Toronto, 1996
|
28 |
+
|
29 |
+
"""
|
30 |
+
|
31 |
+
|
32 |
+
from .plot import BaseSeries, Plot
|
33 |
+
from .experimental_lambdify import experimental_lambdify, vectorized_lambdify
|
34 |
+
from .intervalmath import interval
|
35 |
+
from sympy.core.relational import (Equality, GreaterThan, LessThan,
|
36 |
+
Relational, StrictLessThan, StrictGreaterThan)
|
37 |
+
from sympy.core.containers import Tuple
|
38 |
+
from sympy.core.relational import Eq
|
39 |
+
from sympy.core.symbol import (Dummy, Symbol)
|
40 |
+
from sympy.core.sympify import sympify
|
41 |
+
from sympy.external import import_module
|
42 |
+
from sympy.logic.boolalg import BooleanFunction
|
43 |
+
from sympy.polys.polyutils import _sort_gens
|
44 |
+
from sympy.utilities.decorator import doctest_depends_on
|
45 |
+
from sympy.utilities.iterables import flatten
|
46 |
+
import warnings
|
47 |
+
|
48 |
+
|
49 |
+
class ImplicitSeries(BaseSeries):
|
50 |
+
""" Representation for Implicit plot """
|
51 |
+
is_implicit = True
|
52 |
+
|
53 |
+
def __init__(self, expr, var_start_end_x, var_start_end_y,
|
54 |
+
has_equality, use_interval_math, depth, nb_of_points,
|
55 |
+
line_color):
|
56 |
+
super().__init__()
|
57 |
+
self.expr = sympify(expr)
|
58 |
+
self.label = self.expr
|
59 |
+
self.var_x = sympify(var_start_end_x[0])
|
60 |
+
self.start_x = float(var_start_end_x[1])
|
61 |
+
self.end_x = float(var_start_end_x[2])
|
62 |
+
self.var_y = sympify(var_start_end_y[0])
|
63 |
+
self.start_y = float(var_start_end_y[1])
|
64 |
+
self.end_y = float(var_start_end_y[2])
|
65 |
+
self.get_points = self.get_raster
|
66 |
+
self.has_equality = has_equality # If the expression has equality, i.e.
|
67 |
+
#Eq, Greaterthan, LessThan.
|
68 |
+
self.nb_of_points = nb_of_points
|
69 |
+
self.use_interval_math = use_interval_math
|
70 |
+
self.depth = 4 + depth
|
71 |
+
self.line_color = line_color
|
72 |
+
|
73 |
+
def __str__(self):
|
74 |
+
return ('Implicit equation: %s for '
|
75 |
+
'%s over %s and %s over %s') % (
|
76 |
+
str(self.expr),
|
77 |
+
str(self.var_x),
|
78 |
+
str((self.start_x, self.end_x)),
|
79 |
+
str(self.var_y),
|
80 |
+
str((self.start_y, self.end_y)))
|
81 |
+
|
82 |
+
def get_raster(self):
|
83 |
+
func = experimental_lambdify((self.var_x, self.var_y), self.expr,
|
84 |
+
use_interval=True)
|
85 |
+
xinterval = interval(self.start_x, self.end_x)
|
86 |
+
yinterval = interval(self.start_y, self.end_y)
|
87 |
+
try:
|
88 |
+
func(xinterval, yinterval)
|
89 |
+
except AttributeError:
|
90 |
+
# XXX: AttributeError("'list' object has no attribute 'is_real'")
|
91 |
+
# That needs fixing somehow - we shouldn't be catching
|
92 |
+
# AttributeError here.
|
93 |
+
if self.use_interval_math:
|
94 |
+
warnings.warn("Adaptive meshing could not be applied to the"
|
95 |
+
" expression. Using uniform meshing.", stacklevel=7)
|
96 |
+
self.use_interval_math = False
|
97 |
+
|
98 |
+
if self.use_interval_math:
|
99 |
+
return self._get_raster_interval(func)
|
100 |
+
else:
|
101 |
+
return self._get_meshes_grid()
|
102 |
+
|
103 |
+
def _get_raster_interval(self, func):
|
104 |
+
""" Uses interval math to adaptively mesh and obtain the plot"""
|
105 |
+
k = self.depth
|
106 |
+
interval_list = []
|
107 |
+
#Create initial 32 divisions
|
108 |
+
np = import_module('numpy')
|
109 |
+
xsample = np.linspace(self.start_x, self.end_x, 33)
|
110 |
+
ysample = np.linspace(self.start_y, self.end_y, 33)
|
111 |
+
|
112 |
+
#Add a small jitter so that there are no false positives for equality.
|
113 |
+
# Ex: y==x becomes True for x interval(1, 2) and y interval(1, 2)
|
114 |
+
#which will draw a rectangle.
|
115 |
+
jitterx = (np.random.rand(
|
116 |
+
len(xsample)) * 2 - 1) * (self.end_x - self.start_x) / 2**20
|
117 |
+
jittery = (np.random.rand(
|
118 |
+
len(ysample)) * 2 - 1) * (self.end_y - self.start_y) / 2**20
|
119 |
+
xsample += jitterx
|
120 |
+
ysample += jittery
|
121 |
+
|
122 |
+
xinter = [interval(x1, x2) for x1, x2 in zip(xsample[:-1],
|
123 |
+
xsample[1:])]
|
124 |
+
yinter = [interval(y1, y2) for y1, y2 in zip(ysample[:-1],
|
125 |
+
ysample[1:])]
|
126 |
+
interval_list = [[x, y] for x in xinter for y in yinter]
|
127 |
+
plot_list = []
|
128 |
+
|
129 |
+
#recursive call refinepixels which subdivides the intervals which are
|
130 |
+
#neither True nor False according to the expression.
|
131 |
+
def refine_pixels(interval_list):
|
132 |
+
""" Evaluates the intervals and subdivides the interval if the
|
133 |
+
expression is partially satisfied."""
|
134 |
+
temp_interval_list = []
|
135 |
+
plot_list = []
|
136 |
+
for intervals in interval_list:
|
137 |
+
|
138 |
+
#Convert the array indices to x and y values
|
139 |
+
intervalx = intervals[0]
|
140 |
+
intervaly = intervals[1]
|
141 |
+
func_eval = func(intervalx, intervaly)
|
142 |
+
#The expression is valid in the interval. Change the contour
|
143 |
+
#array values to 1.
|
144 |
+
if func_eval[1] is False or func_eval[0] is False:
|
145 |
+
pass
|
146 |
+
elif func_eval == (True, True):
|
147 |
+
plot_list.append([intervalx, intervaly])
|
148 |
+
elif func_eval[1] is None or func_eval[0] is None:
|
149 |
+
#Subdivide
|
150 |
+
avgx = intervalx.mid
|
151 |
+
avgy = intervaly.mid
|
152 |
+
a = interval(intervalx.start, avgx)
|
153 |
+
b = interval(avgx, intervalx.end)
|
154 |
+
c = interval(intervaly.start, avgy)
|
155 |
+
d = interval(avgy, intervaly.end)
|
156 |
+
temp_interval_list.append([a, c])
|
157 |
+
temp_interval_list.append([a, d])
|
158 |
+
temp_interval_list.append([b, c])
|
159 |
+
temp_interval_list.append([b, d])
|
160 |
+
return temp_interval_list, plot_list
|
161 |
+
|
162 |
+
while k >= 0 and len(interval_list):
|
163 |
+
interval_list, plot_list_temp = refine_pixels(interval_list)
|
164 |
+
plot_list.extend(plot_list_temp)
|
165 |
+
k = k - 1
|
166 |
+
#Check whether the expression represents an equality
|
167 |
+
#If it represents an equality, then none of the intervals
|
168 |
+
#would have satisfied the expression due to floating point
|
169 |
+
#differences. Add all the undecided values to the plot.
|
170 |
+
if self.has_equality:
|
171 |
+
for intervals in interval_list:
|
172 |
+
intervalx = intervals[0]
|
173 |
+
intervaly = intervals[1]
|
174 |
+
func_eval = func(intervalx, intervaly)
|
175 |
+
if func_eval[1] and func_eval[0] is not False:
|
176 |
+
plot_list.append([intervalx, intervaly])
|
177 |
+
return plot_list, 'fill'
|
178 |
+
|
179 |
+
def _get_meshes_grid(self):
|
180 |
+
"""Generates the mesh for generating a contour.
|
181 |
+
|
182 |
+
In the case of equality, ``contour`` function of matplotlib can
|
183 |
+
be used. In other cases, matplotlib's ``contourf`` is used.
|
184 |
+
"""
|
185 |
+
equal = False
|
186 |
+
if isinstance(self.expr, Equality):
|
187 |
+
expr = self.expr.lhs - self.expr.rhs
|
188 |
+
equal = True
|
189 |
+
|
190 |
+
elif isinstance(self.expr, (GreaterThan, StrictGreaterThan)):
|
191 |
+
expr = self.expr.lhs - self.expr.rhs
|
192 |
+
|
193 |
+
elif isinstance(self.expr, (LessThan, StrictLessThan)):
|
194 |
+
expr = self.expr.rhs - self.expr.lhs
|
195 |
+
else:
|
196 |
+
raise NotImplementedError("The expression is not supported for "
|
197 |
+
"plotting in uniform meshed plot.")
|
198 |
+
np = import_module('numpy')
|
199 |
+
xarray = np.linspace(self.start_x, self.end_x, self.nb_of_points)
|
200 |
+
yarray = np.linspace(self.start_y, self.end_y, self.nb_of_points)
|
201 |
+
x_grid, y_grid = np.meshgrid(xarray, yarray)
|
202 |
+
|
203 |
+
func = vectorized_lambdify((self.var_x, self.var_y), expr)
|
204 |
+
z_grid = func(x_grid, y_grid)
|
205 |
+
z_grid[np.ma.where(z_grid < 0)] = -1
|
206 |
+
z_grid[np.ma.where(z_grid > 0)] = 1
|
207 |
+
if equal:
|
208 |
+
return xarray, yarray, z_grid, 'contour'
|
209 |
+
else:
|
210 |
+
return xarray, yarray, z_grid, 'contourf'
|
211 |
+
|
212 |
+
|
213 |
+
@doctest_depends_on(modules=('matplotlib',))
|
214 |
+
def plot_implicit(expr, x_var=None, y_var=None, adaptive=True, depth=0,
|
215 |
+
points=300, line_color="blue", show=True, **kwargs):
|
216 |
+
"""A plot function to plot implicit equations / inequalities.
|
217 |
+
|
218 |
+
Arguments
|
219 |
+
=========
|
220 |
+
|
221 |
+
- expr : The equation / inequality that is to be plotted.
|
222 |
+
- x_var (optional) : symbol to plot on x-axis or tuple giving symbol
|
223 |
+
and range as ``(symbol, xmin, xmax)``
|
224 |
+
- y_var (optional) : symbol to plot on y-axis or tuple giving symbol
|
225 |
+
and range as ``(symbol, ymin, ymax)``
|
226 |
+
|
227 |
+
If neither ``x_var`` nor ``y_var`` are given then the free symbols in the
|
228 |
+
expression will be assigned in the order they are sorted.
|
229 |
+
|
230 |
+
The following keyword arguments can also be used:
|
231 |
+
|
232 |
+
- ``adaptive`` Boolean. The default value is set to True. It has to be
|
233 |
+
set to False if you want to use a mesh grid.
|
234 |
+
|
235 |
+
- ``depth`` integer. The depth of recursion for adaptive mesh grid.
|
236 |
+
Default value is 0. Takes value in the range (0, 4).
|
237 |
+
|
238 |
+
- ``points`` integer. The number of points if adaptive mesh grid is not
|
239 |
+
used. Default value is 300.
|
240 |
+
|
241 |
+
- ``show`` Boolean. Default value is True. If set to False, the plot will
|
242 |
+
not be shown. See ``Plot`` for further information.
|
243 |
+
|
244 |
+
- ``title`` string. The title for the plot.
|
245 |
+
|
246 |
+
- ``xlabel`` string. The label for the x-axis
|
247 |
+
|
248 |
+
- ``ylabel`` string. The label for the y-axis
|
249 |
+
|
250 |
+
Aesthetics options:
|
251 |
+
|
252 |
+
- ``line_color``: float or string. Specifies the color for the plot.
|
253 |
+
See ``Plot`` to see how to set color for the plots.
|
254 |
+
Default value is "Blue"
|
255 |
+
|
256 |
+
plot_implicit, by default, uses interval arithmetic to plot functions. If
|
257 |
+
the expression cannot be plotted using interval arithmetic, it defaults to
|
258 |
+
a generating a contour using a mesh grid of fixed number of points. By
|
259 |
+
setting adaptive to False, you can force plot_implicit to use the mesh
|
260 |
+
grid. The mesh grid method can be effective when adaptive plotting using
|
261 |
+
interval arithmetic, fails to plot with small line width.
|
262 |
+
|
263 |
+
Examples
|
264 |
+
========
|
265 |
+
|
266 |
+
Plot expressions:
|
267 |
+
|
268 |
+
.. plot::
|
269 |
+
:context: reset
|
270 |
+
:format: doctest
|
271 |
+
:include-source: True
|
272 |
+
|
273 |
+
>>> from sympy import plot_implicit, symbols, Eq, And
|
274 |
+
>>> x, y = symbols('x y')
|
275 |
+
|
276 |
+
Without any ranges for the symbols in the expression:
|
277 |
+
|
278 |
+
.. plot::
|
279 |
+
:context: close-figs
|
280 |
+
:format: doctest
|
281 |
+
:include-source: True
|
282 |
+
|
283 |
+
>>> p1 = plot_implicit(Eq(x**2 + y**2, 5))
|
284 |
+
|
285 |
+
With the range for the symbols:
|
286 |
+
|
287 |
+
.. plot::
|
288 |
+
:context: close-figs
|
289 |
+
:format: doctest
|
290 |
+
:include-source: True
|
291 |
+
|
292 |
+
>>> p2 = plot_implicit(
|
293 |
+
... Eq(x**2 + y**2, 3), (x, -3, 3), (y, -3, 3))
|
294 |
+
|
295 |
+
With depth of recursion as argument:
|
296 |
+
|
297 |
+
.. plot::
|
298 |
+
:context: close-figs
|
299 |
+
:format: doctest
|
300 |
+
:include-source: True
|
301 |
+
|
302 |
+
>>> p3 = plot_implicit(
|
303 |
+
... Eq(x**2 + y**2, 5), (x, -4, 4), (y, -4, 4), depth = 2)
|
304 |
+
|
305 |
+
Using mesh grid and not using adaptive meshing:
|
306 |
+
|
307 |
+
.. plot::
|
308 |
+
:context: close-figs
|
309 |
+
:format: doctest
|
310 |
+
:include-source: True
|
311 |
+
|
312 |
+
>>> p4 = plot_implicit(
|
313 |
+
... Eq(x**2 + y**2, 5), (x, -5, 5), (y, -2, 2),
|
314 |
+
... adaptive=False)
|
315 |
+
|
316 |
+
Using mesh grid without using adaptive meshing with number of points
|
317 |
+
specified:
|
318 |
+
|
319 |
+
.. plot::
|
320 |
+
:context: close-figs
|
321 |
+
:format: doctest
|
322 |
+
:include-source: True
|
323 |
+
|
324 |
+
>>> p5 = plot_implicit(
|
325 |
+
... Eq(x**2 + y**2, 5), (x, -5, 5), (y, -2, 2),
|
326 |
+
... adaptive=False, points=400)
|
327 |
+
|
328 |
+
Plotting regions:
|
329 |
+
|
330 |
+
.. plot::
|
331 |
+
:context: close-figs
|
332 |
+
:format: doctest
|
333 |
+
:include-source: True
|
334 |
+
|
335 |
+
>>> p6 = plot_implicit(y > x**2)
|
336 |
+
|
337 |
+
Plotting Using boolean conjunctions:
|
338 |
+
|
339 |
+
.. plot::
|
340 |
+
:context: close-figs
|
341 |
+
:format: doctest
|
342 |
+
:include-source: True
|
343 |
+
|
344 |
+
>>> p7 = plot_implicit(And(y > x, y > -x))
|
345 |
+
|
346 |
+
When plotting an expression with a single variable (y - 1, for example),
|
347 |
+
specify the x or the y variable explicitly:
|
348 |
+
|
349 |
+
.. plot::
|
350 |
+
:context: close-figs
|
351 |
+
:format: doctest
|
352 |
+
:include-source: True
|
353 |
+
|
354 |
+
>>> p8 = plot_implicit(y - 1, y_var=y)
|
355 |
+
>>> p9 = plot_implicit(x - 1, x_var=x)
|
356 |
+
"""
|
357 |
+
has_equality = False # Represents whether the expression contains an Equality,
|
358 |
+
#GreaterThan or LessThan
|
359 |
+
|
360 |
+
def arg_expand(bool_expr):
|
361 |
+
"""
|
362 |
+
Recursively expands the arguments of an Boolean Function
|
363 |
+
"""
|
364 |
+
for arg in bool_expr.args:
|
365 |
+
if isinstance(arg, BooleanFunction):
|
366 |
+
arg_expand(arg)
|
367 |
+
elif isinstance(arg, Relational):
|
368 |
+
arg_list.append(arg)
|
369 |
+
|
370 |
+
arg_list = []
|
371 |
+
if isinstance(expr, BooleanFunction):
|
372 |
+
arg_expand(expr)
|
373 |
+
|
374 |
+
#Check whether there is an equality in the expression provided.
|
375 |
+
if any(isinstance(e, (Equality, GreaterThan, LessThan))
|
376 |
+
for e in arg_list):
|
377 |
+
has_equality = True
|
378 |
+
|
379 |
+
elif not isinstance(expr, Relational):
|
380 |
+
expr = Eq(expr, 0)
|
381 |
+
has_equality = True
|
382 |
+
elif isinstance(expr, (Equality, GreaterThan, LessThan)):
|
383 |
+
has_equality = True
|
384 |
+
|
385 |
+
xyvar = [i for i in (x_var, y_var) if i is not None]
|
386 |
+
free_symbols = expr.free_symbols
|
387 |
+
range_symbols = Tuple(*flatten(xyvar)).free_symbols
|
388 |
+
undeclared = free_symbols - range_symbols
|
389 |
+
if len(free_symbols & range_symbols) > 2:
|
390 |
+
raise NotImplementedError("Implicit plotting is not implemented for "
|
391 |
+
"more than 2 variables")
|
392 |
+
|
393 |
+
#Create default ranges if the range is not provided.
|
394 |
+
default_range = Tuple(-5, 5)
|
395 |
+
def _range_tuple(s):
|
396 |
+
if isinstance(s, Symbol):
|
397 |
+
return Tuple(s) + default_range
|
398 |
+
if len(s) == 3:
|
399 |
+
return Tuple(*s)
|
400 |
+
raise ValueError('symbol or `(symbol, min, max)` expected but got %s' % s)
|
401 |
+
|
402 |
+
if len(xyvar) == 0:
|
403 |
+
xyvar = list(_sort_gens(free_symbols))
|
404 |
+
var_start_end_x = _range_tuple(xyvar[0])
|
405 |
+
x = var_start_end_x[0]
|
406 |
+
if len(xyvar) != 2:
|
407 |
+
if x in undeclared or not undeclared:
|
408 |
+
xyvar.append(Dummy('f(%s)' % x.name))
|
409 |
+
else:
|
410 |
+
xyvar.append(undeclared.pop())
|
411 |
+
var_start_end_y = _range_tuple(xyvar[1])
|
412 |
+
|
413 |
+
#Check whether the depth is greater than 4 or less than 0.
|
414 |
+
if depth > 4:
|
415 |
+
depth = 4
|
416 |
+
elif depth < 0:
|
417 |
+
depth = 0
|
418 |
+
|
419 |
+
series_argument = ImplicitSeries(expr, var_start_end_x, var_start_end_y,
|
420 |
+
has_equality, adaptive, depth,
|
421 |
+
points, line_color)
|
422 |
+
|
423 |
+
#set the x and y limits
|
424 |
+
kwargs['xlim'] = tuple(float(x) for x in var_start_end_x[1:])
|
425 |
+
kwargs['ylim'] = tuple(float(y) for y in var_start_end_y[1:])
|
426 |
+
# set the x and y labels
|
427 |
+
kwargs.setdefault('xlabel', var_start_end_x[0])
|
428 |
+
kwargs.setdefault('ylabel', var_start_end_y[0])
|
429 |
+
p = Plot(series_argument, **kwargs)
|
430 |
+
if show:
|
431 |
+
p.show()
|
432 |
+
return p
|
llmeval-env/lib/python3.10/site-packages/sympy/plotting/pygletplot/__init__.py
ADDED
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Plotting module that can plot 2D and 3D functions
|
2 |
+
"""
|
3 |
+
|
4 |
+
from sympy.utilities.decorator import doctest_depends_on
|
5 |
+
|
6 |
+
@doctest_depends_on(modules=('pyglet',))
|
7 |
+
def PygletPlot(*args, **kwargs):
|
8 |
+
"""
|
9 |
+
|
10 |
+
Plot Examples
|
11 |
+
=============
|
12 |
+
|
13 |
+
See examples/advanced/pyglet_plotting.py for many more examples.
|
14 |
+
|
15 |
+
>>> from sympy.plotting.pygletplot import PygletPlot as Plot
|
16 |
+
>>> from sympy.abc import x, y, z
|
17 |
+
|
18 |
+
>>> Plot(x*y**3-y*x**3)
|
19 |
+
[0]: -x**3*y + x*y**3, 'mode=cartesian'
|
20 |
+
|
21 |
+
>>> p = Plot()
|
22 |
+
>>> p[1] = x*y
|
23 |
+
>>> p[1].color = z, (0.4,0.4,0.9), (0.9,0.4,0.4)
|
24 |
+
|
25 |
+
>>> p = Plot()
|
26 |
+
>>> p[1] = x**2+y**2
|
27 |
+
>>> p[2] = -x**2-y**2
|
28 |
+
|
29 |
+
|
30 |
+
Variable Intervals
|
31 |
+
==================
|
32 |
+
|
33 |
+
The basic format is [var, min, max, steps], but the
|
34 |
+
syntax is flexible and arguments left out are taken
|
35 |
+
from the defaults for the current coordinate mode:
|
36 |
+
|
37 |
+
>>> Plot(x**2) # implies [x,-5,5,100]
|
38 |
+
[0]: x**2, 'mode=cartesian'
|
39 |
+
|
40 |
+
>>> Plot(x**2, [], []) # [x,-1,1,40], [y,-1,1,40]
|
41 |
+
[0]: x**2, 'mode=cartesian'
|
42 |
+
>>> Plot(x**2-y**2, [100], [100]) # [x,-1,1,100], [y,-1,1,100]
|
43 |
+
[0]: x**2 - y**2, 'mode=cartesian'
|
44 |
+
>>> Plot(x**2, [x,-13,13,100])
|
45 |
+
[0]: x**2, 'mode=cartesian'
|
46 |
+
>>> Plot(x**2, [-13,13]) # [x,-13,13,100]
|
47 |
+
[0]: x**2, 'mode=cartesian'
|
48 |
+
>>> Plot(x**2, [x,-13,13]) # [x,-13,13,100]
|
49 |
+
[0]: x**2, 'mode=cartesian'
|
50 |
+
>>> Plot(1*x, [], [x], mode='cylindrical')
|
51 |
+
... # [unbound_theta,0,2*Pi,40], [x,-1,1,20]
|
52 |
+
[0]: x, 'mode=cartesian'
|
53 |
+
|
54 |
+
|
55 |
+
Coordinate Modes
|
56 |
+
================
|
57 |
+
|
58 |
+
Plot supports several curvilinear coordinate modes, and
|
59 |
+
they independent for each plotted function. You can specify
|
60 |
+
a coordinate mode explicitly with the 'mode' named argument,
|
61 |
+
but it can be automatically determined for Cartesian or
|
62 |
+
parametric plots, and therefore must only be specified for
|
63 |
+
polar, cylindrical, and spherical modes.
|
64 |
+
|
65 |
+
Specifically, Plot(function arguments) and Plot[n] =
|
66 |
+
(function arguments) will interpret your arguments as a
|
67 |
+
Cartesian plot if you provide one function and a parametric
|
68 |
+
plot if you provide two or three functions. Similarly, the
|
69 |
+
arguments will be interpreted as a curve if one variable is
|
70 |
+
used, and a surface if two are used.
|
71 |
+
|
72 |
+
Supported mode names by number of variables:
|
73 |
+
|
74 |
+
1: parametric, cartesian, polar
|
75 |
+
2: parametric, cartesian, cylindrical = polar, spherical
|
76 |
+
|
77 |
+
>>> Plot(1, mode='spherical')
|
78 |
+
|
79 |
+
|
80 |
+
Calculator-like Interface
|
81 |
+
=========================
|
82 |
+
|
83 |
+
>>> p = Plot(visible=False)
|
84 |
+
>>> f = x**2
|
85 |
+
>>> p[1] = f
|
86 |
+
>>> p[2] = f.diff(x)
|
87 |
+
>>> p[3] = f.diff(x).diff(x)
|
88 |
+
>>> p
|
89 |
+
[1]: x**2, 'mode=cartesian'
|
90 |
+
[2]: 2*x, 'mode=cartesian'
|
91 |
+
[3]: 2, 'mode=cartesian'
|
92 |
+
>>> p.show()
|
93 |
+
>>> p.clear()
|
94 |
+
>>> p
|
95 |
+
<blank plot>
|
96 |
+
>>> p[1] = x**2+y**2
|
97 |
+
>>> p[1].style = 'solid'
|
98 |
+
>>> p[2] = -x**2-y**2
|
99 |
+
>>> p[2].style = 'wireframe'
|
100 |
+
>>> p[1].color = z, (0.4,0.4,0.9), (0.9,0.4,0.4)
|
101 |
+
>>> p[1].style = 'both'
|
102 |
+
>>> p[2].style = 'both'
|
103 |
+
>>> p.close()
|
104 |
+
|
105 |
+
|
106 |
+
Plot Window Keyboard Controls
|
107 |
+
=============================
|
108 |
+
|
109 |
+
Screen Rotation:
|
110 |
+
X,Y axis Arrow Keys, A,S,D,W, Numpad 4,6,8,2
|
111 |
+
Z axis Q,E, Numpad 7,9
|
112 |
+
|
113 |
+
Model Rotation:
|
114 |
+
Z axis Z,C, Numpad 1,3
|
115 |
+
|
116 |
+
Zoom: R,F, PgUp,PgDn, Numpad +,-
|
117 |
+
|
118 |
+
Reset Camera: X, Numpad 5
|
119 |
+
|
120 |
+
Camera Presets:
|
121 |
+
XY F1
|
122 |
+
XZ F2
|
123 |
+
YZ F3
|
124 |
+
Perspective F4
|
125 |
+
|
126 |
+
Sensitivity Modifier: SHIFT
|
127 |
+
|
128 |
+
Axes Toggle:
|
129 |
+
Visible F5
|
130 |
+
Colors F6
|
131 |
+
|
132 |
+
Close Window: ESCAPE
|
133 |
+
|
134 |
+
=============================
|
135 |
+
"""
|
136 |
+
|
137 |
+
from sympy.plotting.pygletplot.plot import PygletPlot
|
138 |
+
return PygletPlot(*args, **kwargs)
|
llmeval-env/lib/python3.10/site-packages/sympy/plotting/pygletplot/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (4 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/plotting/pygletplot/__pycache__/color_scheme.cpython-310.pyc
ADDED
Binary file (9.99 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/plotting/pygletplot/__pycache__/managed_window.cpython-310.pyc
ADDED
Binary file (3.31 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/plotting/pygletplot/__pycache__/plot.cpython-310.pyc
ADDED
Binary file (13.7 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/plotting/pygletplot/__pycache__/plot_axes.cpython-310.pyc
ADDED
Binary file (8.52 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/plotting/pygletplot/__pycache__/plot_camera.cpython-310.pyc
ADDED
Binary file (4.32 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/plotting/pygletplot/__pycache__/plot_controller.cpython-310.pyc
ADDED
Binary file (5.02 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/plotting/pygletplot/__pycache__/plot_curve.cpython-310.pyc
ADDED
Binary file (2.93 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/plotting/pygletplot/__pycache__/plot_interval.cpython-310.pyc
ADDED
Binary file (5.85 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/plotting/pygletplot/__pycache__/plot_mode.cpython-310.pyc
ADDED
Binary file (9.37 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/plotting/pygletplot/__pycache__/plot_mode_base.cpython-310.pyc
ADDED
Binary file (10.1 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/plotting/pygletplot/__pycache__/plot_modes.cpython-310.pyc
ADDED
Binary file (7.34 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/plotting/pygletplot/__pycache__/plot_object.cpython-310.pyc
ADDED
Binary file (806 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/plotting/pygletplot/__pycache__/plot_rotation.cpython-310.pyc
ADDED
Binary file (2.02 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/plotting/pygletplot/__pycache__/plot_surface.cpython-310.pyc
ADDED
Binary file (3.34 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/plotting/pygletplot/__pycache__/plot_window.cpython-310.pyc
ADDED
Binary file (3.89 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/plotting/pygletplot/__pycache__/util.cpython-310.pyc
ADDED
Binary file (6.25 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/plotting/pygletplot/color_scheme.py
ADDED
@@ -0,0 +1,336 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.basic import Basic
|
2 |
+
from sympy.core.symbol import (Symbol, symbols)
|
3 |
+
from sympy.utilities.lambdify import lambdify
|
4 |
+
from .util import interpolate, rinterpolate, create_bounds, update_bounds
|
5 |
+
from sympy.utilities.iterables import sift
|
6 |
+
|
7 |
+
|
8 |
+
class ColorGradient:
|
9 |
+
colors = [0.4, 0.4, 0.4], [0.9, 0.9, 0.9]
|
10 |
+
intervals = 0.0, 1.0
|
11 |
+
|
12 |
+
def __init__(self, *args):
|
13 |
+
if len(args) == 2:
|
14 |
+
self.colors = list(args)
|
15 |
+
self.intervals = [0.0, 1.0]
|
16 |
+
elif len(args) > 0:
|
17 |
+
if len(args) % 2 != 0:
|
18 |
+
raise ValueError("len(args) should be even")
|
19 |
+
self.colors = [args[i] for i in range(1, len(args), 2)]
|
20 |
+
self.intervals = [args[i] for i in range(0, len(args), 2)]
|
21 |
+
assert len(self.colors) == len(self.intervals)
|
22 |
+
|
23 |
+
def copy(self):
|
24 |
+
c = ColorGradient()
|
25 |
+
c.colors = [e[::] for e in self.colors]
|
26 |
+
c.intervals = self.intervals[::]
|
27 |
+
return c
|
28 |
+
|
29 |
+
def _find_interval(self, v):
|
30 |
+
m = len(self.intervals)
|
31 |
+
i = 0
|
32 |
+
while i < m - 1 and self.intervals[i] <= v:
|
33 |
+
i += 1
|
34 |
+
return i
|
35 |
+
|
36 |
+
def _interpolate_axis(self, axis, v):
|
37 |
+
i = self._find_interval(v)
|
38 |
+
v = rinterpolate(self.intervals[i - 1], self.intervals[i], v)
|
39 |
+
return interpolate(self.colors[i - 1][axis], self.colors[i][axis], v)
|
40 |
+
|
41 |
+
def __call__(self, r, g, b):
|
42 |
+
c = self._interpolate_axis
|
43 |
+
return c(0, r), c(1, g), c(2, b)
|
44 |
+
|
45 |
+
default_color_schemes = {} # defined at the bottom of this file
|
46 |
+
|
47 |
+
|
48 |
+
class ColorScheme:
|
49 |
+
|
50 |
+
def __init__(self, *args, **kwargs):
|
51 |
+
self.args = args
|
52 |
+
self.f, self.gradient = None, ColorGradient()
|
53 |
+
|
54 |
+
if len(args) == 1 and not isinstance(args[0], Basic) and callable(args[0]):
|
55 |
+
self.f = args[0]
|
56 |
+
elif len(args) == 1 and isinstance(args[0], str):
|
57 |
+
if args[0] in default_color_schemes:
|
58 |
+
cs = default_color_schemes[args[0]]
|
59 |
+
self.f, self.gradient = cs.f, cs.gradient.copy()
|
60 |
+
else:
|
61 |
+
self.f = lambdify('x,y,z,u,v', args[0])
|
62 |
+
else:
|
63 |
+
self.f, self.gradient = self._interpret_args(args)
|
64 |
+
self._test_color_function()
|
65 |
+
if not isinstance(self.gradient, ColorGradient):
|
66 |
+
raise ValueError("Color gradient not properly initialized. "
|
67 |
+
"(Not a ColorGradient instance.)")
|
68 |
+
|
69 |
+
def _interpret_args(self, args):
|
70 |
+
f, gradient = None, self.gradient
|
71 |
+
atoms, lists = self._sort_args(args)
|
72 |
+
s = self._pop_symbol_list(lists)
|
73 |
+
s = self._fill_in_vars(s)
|
74 |
+
|
75 |
+
# prepare the error message for lambdification failure
|
76 |
+
f_str = ', '.join(str(fa) for fa in atoms)
|
77 |
+
s_str = (str(sa) for sa in s)
|
78 |
+
s_str = ', '.join(sa for sa in s_str if sa.find('unbound') < 0)
|
79 |
+
f_error = ValueError("Could not interpret arguments "
|
80 |
+
"%s as functions of %s." % (f_str, s_str))
|
81 |
+
|
82 |
+
# try to lambdify args
|
83 |
+
if len(atoms) == 1:
|
84 |
+
fv = atoms[0]
|
85 |
+
try:
|
86 |
+
f = lambdify(s, [fv, fv, fv])
|
87 |
+
except TypeError:
|
88 |
+
raise f_error
|
89 |
+
|
90 |
+
elif len(atoms) == 3:
|
91 |
+
fr, fg, fb = atoms
|
92 |
+
try:
|
93 |
+
f = lambdify(s, [fr, fg, fb])
|
94 |
+
except TypeError:
|
95 |
+
raise f_error
|
96 |
+
|
97 |
+
else:
|
98 |
+
raise ValueError("A ColorScheme must provide 1 or 3 "
|
99 |
+
"functions in x, y, z, u, and/or v.")
|
100 |
+
|
101 |
+
# try to intrepret any given color information
|
102 |
+
if len(lists) == 0:
|
103 |
+
gargs = []
|
104 |
+
|
105 |
+
elif len(lists) == 1:
|
106 |
+
gargs = lists[0]
|
107 |
+
|
108 |
+
elif len(lists) == 2:
|
109 |
+
try:
|
110 |
+
(r1, g1, b1), (r2, g2, b2) = lists
|
111 |
+
except TypeError:
|
112 |
+
raise ValueError("If two color arguments are given, "
|
113 |
+
"they must be given in the format "
|
114 |
+
"(r1, g1, b1), (r2, g2, b2).")
|
115 |
+
gargs = lists
|
116 |
+
|
117 |
+
elif len(lists) == 3:
|
118 |
+
try:
|
119 |
+
(r1, r2), (g1, g2), (b1, b2) = lists
|
120 |
+
except Exception:
|
121 |
+
raise ValueError("If three color arguments are given, "
|
122 |
+
"they must be given in the format "
|
123 |
+
"(r1, r2), (g1, g2), (b1, b2). To create "
|
124 |
+
"a multi-step gradient, use the syntax "
|
125 |
+
"[0, colorStart, step1, color1, ..., 1, "
|
126 |
+
"colorEnd].")
|
127 |
+
gargs = [[r1, g1, b1], [r2, g2, b2]]
|
128 |
+
|
129 |
+
else:
|
130 |
+
raise ValueError("Don't know what to do with collection "
|
131 |
+
"arguments %s." % (', '.join(str(l) for l in lists)))
|
132 |
+
|
133 |
+
if gargs:
|
134 |
+
try:
|
135 |
+
gradient = ColorGradient(*gargs)
|
136 |
+
except Exception as ex:
|
137 |
+
raise ValueError(("Could not initialize a gradient "
|
138 |
+
"with arguments %s. Inner "
|
139 |
+
"exception: %s") % (gargs, str(ex)))
|
140 |
+
|
141 |
+
return f, gradient
|
142 |
+
|
143 |
+
def _pop_symbol_list(self, lists):
|
144 |
+
symbol_lists = []
|
145 |
+
for l in lists:
|
146 |
+
mark = True
|
147 |
+
for s in l:
|
148 |
+
if s is not None and not isinstance(s, Symbol):
|
149 |
+
mark = False
|
150 |
+
break
|
151 |
+
if mark:
|
152 |
+
lists.remove(l)
|
153 |
+
symbol_lists.append(l)
|
154 |
+
if len(symbol_lists) == 1:
|
155 |
+
return symbol_lists[0]
|
156 |
+
elif len(symbol_lists) == 0:
|
157 |
+
return []
|
158 |
+
else:
|
159 |
+
raise ValueError("Only one list of Symbols "
|
160 |
+
"can be given for a color scheme.")
|
161 |
+
|
162 |
+
def _fill_in_vars(self, args):
|
163 |
+
defaults = symbols('x,y,z,u,v')
|
164 |
+
v_error = ValueError("Could not find what to plot.")
|
165 |
+
if len(args) == 0:
|
166 |
+
return defaults
|
167 |
+
if not isinstance(args, (tuple, list)):
|
168 |
+
raise v_error
|
169 |
+
if len(args) == 0:
|
170 |
+
return defaults
|
171 |
+
for s in args:
|
172 |
+
if s is not None and not isinstance(s, Symbol):
|
173 |
+
raise v_error
|
174 |
+
# when vars are given explicitly, any vars
|
175 |
+
# not given are marked 'unbound' as to not
|
176 |
+
# be accidentally used in an expression
|
177 |
+
vars = [Symbol('unbound%i' % (i)) for i in range(1, 6)]
|
178 |
+
# interpret as t
|
179 |
+
if len(args) == 1:
|
180 |
+
vars[3] = args[0]
|
181 |
+
# interpret as u,v
|
182 |
+
elif len(args) == 2:
|
183 |
+
if args[0] is not None:
|
184 |
+
vars[3] = args[0]
|
185 |
+
if args[1] is not None:
|
186 |
+
vars[4] = args[1]
|
187 |
+
# interpret as x,y,z
|
188 |
+
elif len(args) >= 3:
|
189 |
+
# allow some of x,y,z to be
|
190 |
+
# left unbound if not given
|
191 |
+
if args[0] is not None:
|
192 |
+
vars[0] = args[0]
|
193 |
+
if args[1] is not None:
|
194 |
+
vars[1] = args[1]
|
195 |
+
if args[2] is not None:
|
196 |
+
vars[2] = args[2]
|
197 |
+
# interpret the rest as t
|
198 |
+
if len(args) >= 4:
|
199 |
+
vars[3] = args[3]
|
200 |
+
# ...or u,v
|
201 |
+
if len(args) >= 5:
|
202 |
+
vars[4] = args[4]
|
203 |
+
return vars
|
204 |
+
|
205 |
+
def _sort_args(self, args):
|
206 |
+
lists, atoms = sift(args,
|
207 |
+
lambda a: isinstance(a, (tuple, list)), binary=True)
|
208 |
+
return atoms, lists
|
209 |
+
|
210 |
+
def _test_color_function(self):
|
211 |
+
if not callable(self.f):
|
212 |
+
raise ValueError("Color function is not callable.")
|
213 |
+
try:
|
214 |
+
result = self.f(0, 0, 0, 0, 0)
|
215 |
+
if len(result) != 3:
|
216 |
+
raise ValueError("length should be equal to 3")
|
217 |
+
except TypeError:
|
218 |
+
raise ValueError("Color function needs to accept x,y,z,u,v, "
|
219 |
+
"as arguments even if it doesn't use all of them.")
|
220 |
+
except AssertionError:
|
221 |
+
raise ValueError("Color function needs to return 3-tuple r,g,b.")
|
222 |
+
except Exception:
|
223 |
+
pass # color function probably not valid at 0,0,0,0,0
|
224 |
+
|
225 |
+
def __call__(self, x, y, z, u, v):
|
226 |
+
try:
|
227 |
+
return self.f(x, y, z, u, v)
|
228 |
+
except Exception:
|
229 |
+
return None
|
230 |
+
|
231 |
+
def apply_to_curve(self, verts, u_set, set_len=None, inc_pos=None):
|
232 |
+
"""
|
233 |
+
Apply this color scheme to a
|
234 |
+
set of vertices over a single
|
235 |
+
independent variable u.
|
236 |
+
"""
|
237 |
+
bounds = create_bounds()
|
238 |
+
cverts = []
|
239 |
+
if callable(set_len):
|
240 |
+
set_len(len(u_set)*2)
|
241 |
+
# calculate f() = r,g,b for each vert
|
242 |
+
# and find the min and max for r,g,b
|
243 |
+
for _u in range(len(u_set)):
|
244 |
+
if verts[_u] is None:
|
245 |
+
cverts.append(None)
|
246 |
+
else:
|
247 |
+
x, y, z = verts[_u]
|
248 |
+
u, v = u_set[_u], None
|
249 |
+
c = self(x, y, z, u, v)
|
250 |
+
if c is not None:
|
251 |
+
c = list(c)
|
252 |
+
update_bounds(bounds, c)
|
253 |
+
cverts.append(c)
|
254 |
+
if callable(inc_pos):
|
255 |
+
inc_pos()
|
256 |
+
# scale and apply gradient
|
257 |
+
for _u in range(len(u_set)):
|
258 |
+
if cverts[_u] is not None:
|
259 |
+
for _c in range(3):
|
260 |
+
# scale from [f_min, f_max] to [0,1]
|
261 |
+
cverts[_u][_c] = rinterpolate(bounds[_c][0], bounds[_c][1],
|
262 |
+
cverts[_u][_c])
|
263 |
+
# apply gradient
|
264 |
+
cverts[_u] = self.gradient(*cverts[_u])
|
265 |
+
if callable(inc_pos):
|
266 |
+
inc_pos()
|
267 |
+
return cverts
|
268 |
+
|
269 |
+
def apply_to_surface(self, verts, u_set, v_set, set_len=None, inc_pos=None):
|
270 |
+
"""
|
271 |
+
Apply this color scheme to a
|
272 |
+
set of vertices over two
|
273 |
+
independent variables u and v.
|
274 |
+
"""
|
275 |
+
bounds = create_bounds()
|
276 |
+
cverts = []
|
277 |
+
if callable(set_len):
|
278 |
+
set_len(len(u_set)*len(v_set)*2)
|
279 |
+
# calculate f() = r,g,b for each vert
|
280 |
+
# and find the min and max for r,g,b
|
281 |
+
for _u in range(len(u_set)):
|
282 |
+
column = []
|
283 |
+
for _v in range(len(v_set)):
|
284 |
+
if verts[_u][_v] is None:
|
285 |
+
column.append(None)
|
286 |
+
else:
|
287 |
+
x, y, z = verts[_u][_v]
|
288 |
+
u, v = u_set[_u], v_set[_v]
|
289 |
+
c = self(x, y, z, u, v)
|
290 |
+
if c is not None:
|
291 |
+
c = list(c)
|
292 |
+
update_bounds(bounds, c)
|
293 |
+
column.append(c)
|
294 |
+
if callable(inc_pos):
|
295 |
+
inc_pos()
|
296 |
+
cverts.append(column)
|
297 |
+
# scale and apply gradient
|
298 |
+
for _u in range(len(u_set)):
|
299 |
+
for _v in range(len(v_set)):
|
300 |
+
if cverts[_u][_v] is not None:
|
301 |
+
# scale from [f_min, f_max] to [0,1]
|
302 |
+
for _c in range(3):
|
303 |
+
cverts[_u][_v][_c] = rinterpolate(bounds[_c][0],
|
304 |
+
bounds[_c][1], cverts[_u][_v][_c])
|
305 |
+
# apply gradient
|
306 |
+
cverts[_u][_v] = self.gradient(*cverts[_u][_v])
|
307 |
+
if callable(inc_pos):
|
308 |
+
inc_pos()
|
309 |
+
return cverts
|
310 |
+
|
311 |
+
def str_base(self):
|
312 |
+
return ", ".join(str(a) for a in self.args)
|
313 |
+
|
314 |
+
def __repr__(self):
|
315 |
+
return "%s" % (self.str_base())
|
316 |
+
|
317 |
+
|
318 |
+
x, y, z, t, u, v = symbols('x,y,z,t,u,v')
|
319 |
+
|
320 |
+
default_color_schemes['rainbow'] = ColorScheme(z, y, x)
|
321 |
+
default_color_schemes['zfade'] = ColorScheme(z, (0.4, 0.4, 0.97),
|
322 |
+
(0.97, 0.4, 0.4), (None, None, z))
|
323 |
+
default_color_schemes['zfade3'] = ColorScheme(z, (None, None, z),
|
324 |
+
[0.00, (0.2, 0.2, 1.0),
|
325 |
+
0.35, (0.2, 0.8, 0.4),
|
326 |
+
0.50, (0.3, 0.9, 0.3),
|
327 |
+
0.65, (0.4, 0.8, 0.2),
|
328 |
+
1.00, (1.0, 0.2, 0.2)])
|
329 |
+
|
330 |
+
default_color_schemes['zfade4'] = ColorScheme(z, (None, None, z),
|
331 |
+
[0.0, (0.3, 0.3, 1.0),
|
332 |
+
0.30, (0.3, 1.0, 0.3),
|
333 |
+
0.55, (0.95, 1.0, 0.2),
|
334 |
+
0.65, (1.0, 0.95, 0.2),
|
335 |
+
0.85, (1.0, 0.7, 0.2),
|
336 |
+
1.0, (1.0, 0.3, 0.2)])
|
llmeval-env/lib/python3.10/site-packages/sympy/plotting/pygletplot/managed_window.py
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pyglet.window import Window
|
2 |
+
from pyglet.clock import Clock
|
3 |
+
|
4 |
+
from threading import Thread, Lock
|
5 |
+
|
6 |
+
gl_lock = Lock()
|
7 |
+
|
8 |
+
|
9 |
+
class ManagedWindow(Window):
|
10 |
+
"""
|
11 |
+
A pyglet window with an event loop which executes automatically
|
12 |
+
in a separate thread. Behavior is added by creating a subclass
|
13 |
+
which overrides setup, update, and/or draw.
|
14 |
+
"""
|
15 |
+
fps_limit = 30
|
16 |
+
default_win_args = {"width": 600,
|
17 |
+
"height": 500,
|
18 |
+
"vsync": False,
|
19 |
+
"resizable": True}
|
20 |
+
|
21 |
+
def __init__(self, **win_args):
|
22 |
+
"""
|
23 |
+
It is best not to override this function in the child
|
24 |
+
class, unless you need to take additional arguments.
|
25 |
+
Do any OpenGL initialization calls in setup().
|
26 |
+
"""
|
27 |
+
|
28 |
+
# check if this is run from the doctester
|
29 |
+
if win_args.get('runfromdoctester', False):
|
30 |
+
return
|
31 |
+
|
32 |
+
self.win_args = dict(self.default_win_args, **win_args)
|
33 |
+
self.Thread = Thread(target=self.__event_loop__)
|
34 |
+
self.Thread.start()
|
35 |
+
|
36 |
+
def __event_loop__(self, **win_args):
|
37 |
+
"""
|
38 |
+
The event loop thread function. Do not override or call
|
39 |
+
directly (it is called by __init__).
|
40 |
+
"""
|
41 |
+
gl_lock.acquire()
|
42 |
+
try:
|
43 |
+
try:
|
44 |
+
super().__init__(**self.win_args)
|
45 |
+
self.switch_to()
|
46 |
+
self.setup()
|
47 |
+
except Exception as e:
|
48 |
+
print("Window initialization failed: %s" % (str(e)))
|
49 |
+
self.has_exit = True
|
50 |
+
finally:
|
51 |
+
gl_lock.release()
|
52 |
+
|
53 |
+
clock = Clock()
|
54 |
+
clock.fps_limit = self.fps_limit
|
55 |
+
while not self.has_exit:
|
56 |
+
dt = clock.tick()
|
57 |
+
gl_lock.acquire()
|
58 |
+
try:
|
59 |
+
try:
|
60 |
+
self.switch_to()
|
61 |
+
self.dispatch_events()
|
62 |
+
self.clear()
|
63 |
+
self.update(dt)
|
64 |
+
self.draw()
|
65 |
+
self.flip()
|
66 |
+
except Exception as e:
|
67 |
+
print("Uncaught exception in event loop: %s" % str(e))
|
68 |
+
self.has_exit = True
|
69 |
+
finally:
|
70 |
+
gl_lock.release()
|
71 |
+
super().close()
|
72 |
+
|
73 |
+
def close(self):
|
74 |
+
"""
|
75 |
+
Closes the window.
|
76 |
+
"""
|
77 |
+
self.has_exit = True
|
78 |
+
|
79 |
+
def setup(self):
|
80 |
+
"""
|
81 |
+
Called once before the event loop begins.
|
82 |
+
Override this method in a child class. This
|
83 |
+
is the best place to put things like OpenGL
|
84 |
+
initialization calls.
|
85 |
+
"""
|
86 |
+
pass
|
87 |
+
|
88 |
+
def update(self, dt):
|
89 |
+
"""
|
90 |
+
Called before draw during each iteration of
|
91 |
+
the event loop. dt is the elapsed time in
|
92 |
+
seconds since the last update. OpenGL rendering
|
93 |
+
calls are best put in draw() rather than here.
|
94 |
+
"""
|
95 |
+
pass
|
96 |
+
|
97 |
+
def draw(self):
|
98 |
+
"""
|
99 |
+
Called after update during each iteration of
|
100 |
+
the event loop. Put OpenGL rendering calls
|
101 |
+
here.
|
102 |
+
"""
|
103 |
+
pass
|
104 |
+
|
105 |
+
if __name__ == '__main__':
|
106 |
+
ManagedWindow()
|
llmeval-env/lib/python3.10/site-packages/sympy/plotting/pygletplot/plot.py
ADDED
@@ -0,0 +1,464 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from threading import RLock
|
2 |
+
|
3 |
+
# it is sufficient to import "pyglet" here once
|
4 |
+
try:
|
5 |
+
import pyglet.gl as pgl
|
6 |
+
except ImportError:
|
7 |
+
raise ImportError("pyglet is required for plotting.\n "
|
8 |
+
"visit https://pyglet.org/")
|
9 |
+
|
10 |
+
from sympy.core.numbers import Integer
|
11 |
+
from sympy.external.gmpy import SYMPY_INTS
|
12 |
+
from sympy.geometry.entity import GeometryEntity
|
13 |
+
from sympy.plotting.pygletplot.plot_axes import PlotAxes
|
14 |
+
from sympy.plotting.pygletplot.plot_mode import PlotMode
|
15 |
+
from sympy.plotting.pygletplot.plot_object import PlotObject
|
16 |
+
from sympy.plotting.pygletplot.plot_window import PlotWindow
|
17 |
+
from sympy.plotting.pygletplot.util import parse_option_string
|
18 |
+
from sympy.utilities.decorator import doctest_depends_on
|
19 |
+
from sympy.utilities.iterables import is_sequence
|
20 |
+
|
21 |
+
from time import sleep
|
22 |
+
from os import getcwd, listdir
|
23 |
+
|
24 |
+
import ctypes
|
25 |
+
|
26 |
+
@doctest_depends_on(modules=('pyglet',))
|
27 |
+
class PygletPlot:
|
28 |
+
"""
|
29 |
+
Plot Examples
|
30 |
+
=============
|
31 |
+
|
32 |
+
See examples/advanced/pyglet_plotting.py for many more examples.
|
33 |
+
|
34 |
+
>>> from sympy.plotting.pygletplot import PygletPlot as Plot
|
35 |
+
>>> from sympy.abc import x, y, z
|
36 |
+
|
37 |
+
>>> Plot(x*y**3-y*x**3)
|
38 |
+
[0]: -x**3*y + x*y**3, 'mode=cartesian'
|
39 |
+
|
40 |
+
>>> p = Plot()
|
41 |
+
>>> p[1] = x*y
|
42 |
+
>>> p[1].color = z, (0.4,0.4,0.9), (0.9,0.4,0.4)
|
43 |
+
|
44 |
+
>>> p = Plot()
|
45 |
+
>>> p[1] = x**2+y**2
|
46 |
+
>>> p[2] = -x**2-y**2
|
47 |
+
|
48 |
+
|
49 |
+
Variable Intervals
|
50 |
+
==================
|
51 |
+
|
52 |
+
The basic format is [var, min, max, steps], but the
|
53 |
+
syntax is flexible and arguments left out are taken
|
54 |
+
from the defaults for the current coordinate mode:
|
55 |
+
|
56 |
+
>>> Plot(x**2) # implies [x,-5,5,100]
|
57 |
+
[0]: x**2, 'mode=cartesian'
|
58 |
+
>>> Plot(x**2, [], []) # [x,-1,1,40], [y,-1,1,40]
|
59 |
+
[0]: x**2, 'mode=cartesian'
|
60 |
+
>>> Plot(x**2-y**2, [100], [100]) # [x,-1,1,100], [y,-1,1,100]
|
61 |
+
[0]: x**2 - y**2, 'mode=cartesian'
|
62 |
+
>>> Plot(x**2, [x,-13,13,100])
|
63 |
+
[0]: x**2, 'mode=cartesian'
|
64 |
+
>>> Plot(x**2, [-13,13]) # [x,-13,13,100]
|
65 |
+
[0]: x**2, 'mode=cartesian'
|
66 |
+
>>> Plot(x**2, [x,-13,13]) # [x,-13,13,10]
|
67 |
+
[0]: x**2, 'mode=cartesian'
|
68 |
+
>>> Plot(1*x, [], [x], mode='cylindrical')
|
69 |
+
... # [unbound_theta,0,2*Pi,40], [x,-1,1,20]
|
70 |
+
[0]: x, 'mode=cartesian'
|
71 |
+
|
72 |
+
|
73 |
+
Coordinate Modes
|
74 |
+
================
|
75 |
+
|
76 |
+
Plot supports several curvilinear coordinate modes, and
|
77 |
+
they independent for each plotted function. You can specify
|
78 |
+
a coordinate mode explicitly with the 'mode' named argument,
|
79 |
+
but it can be automatically determined for Cartesian or
|
80 |
+
parametric plots, and therefore must only be specified for
|
81 |
+
polar, cylindrical, and spherical modes.
|
82 |
+
|
83 |
+
Specifically, Plot(function arguments) and Plot[n] =
|
84 |
+
(function arguments) will interpret your arguments as a
|
85 |
+
Cartesian plot if you provide one function and a parametric
|
86 |
+
plot if you provide two or three functions. Similarly, the
|
87 |
+
arguments will be interpreted as a curve if one variable is
|
88 |
+
used, and a surface if two are used.
|
89 |
+
|
90 |
+
Supported mode names by number of variables:
|
91 |
+
|
92 |
+
1: parametric, cartesian, polar
|
93 |
+
2: parametric, cartesian, cylindrical = polar, spherical
|
94 |
+
|
95 |
+
>>> Plot(1, mode='spherical')
|
96 |
+
|
97 |
+
|
98 |
+
Calculator-like Interface
|
99 |
+
=========================
|
100 |
+
|
101 |
+
>>> p = Plot(visible=False)
|
102 |
+
>>> f = x**2
|
103 |
+
>>> p[1] = f
|
104 |
+
>>> p[2] = f.diff(x)
|
105 |
+
>>> p[3] = f.diff(x).diff(x)
|
106 |
+
>>> p
|
107 |
+
[1]: x**2, 'mode=cartesian'
|
108 |
+
[2]: 2*x, 'mode=cartesian'
|
109 |
+
[3]: 2, 'mode=cartesian'
|
110 |
+
>>> p.show()
|
111 |
+
>>> p.clear()
|
112 |
+
>>> p
|
113 |
+
<blank plot>
|
114 |
+
>>> p[1] = x**2+y**2
|
115 |
+
>>> p[1].style = 'solid'
|
116 |
+
>>> p[2] = -x**2-y**2
|
117 |
+
>>> p[2].style = 'wireframe'
|
118 |
+
>>> p[1].color = z, (0.4,0.4,0.9), (0.9,0.4,0.4)
|
119 |
+
>>> p[1].style = 'both'
|
120 |
+
>>> p[2].style = 'both'
|
121 |
+
>>> p.close()
|
122 |
+
|
123 |
+
|
124 |
+
Plot Window Keyboard Controls
|
125 |
+
=============================
|
126 |
+
|
127 |
+
Screen Rotation:
|
128 |
+
X,Y axis Arrow Keys, A,S,D,W, Numpad 4,6,8,2
|
129 |
+
Z axis Q,E, Numpad 7,9
|
130 |
+
|
131 |
+
Model Rotation:
|
132 |
+
Z axis Z,C, Numpad 1,3
|
133 |
+
|
134 |
+
Zoom: R,F, PgUp,PgDn, Numpad +,-
|
135 |
+
|
136 |
+
Reset Camera: X, Numpad 5
|
137 |
+
|
138 |
+
Camera Presets:
|
139 |
+
XY F1
|
140 |
+
XZ F2
|
141 |
+
YZ F3
|
142 |
+
Perspective F4
|
143 |
+
|
144 |
+
Sensitivity Modifier: SHIFT
|
145 |
+
|
146 |
+
Axes Toggle:
|
147 |
+
Visible F5
|
148 |
+
Colors F6
|
149 |
+
|
150 |
+
Close Window: ESCAPE
|
151 |
+
|
152 |
+
=============================
|
153 |
+
|
154 |
+
"""
|
155 |
+
|
156 |
+
@doctest_depends_on(modules=('pyglet',))
|
157 |
+
def __init__(self, *fargs, **win_args):
|
158 |
+
"""
|
159 |
+
Positional Arguments
|
160 |
+
====================
|
161 |
+
|
162 |
+
Any given positional arguments are used to
|
163 |
+
initialize a plot function at index 1. In
|
164 |
+
other words...
|
165 |
+
|
166 |
+
>>> from sympy.plotting.pygletplot import PygletPlot as Plot
|
167 |
+
>>> from sympy.abc import x
|
168 |
+
>>> p = Plot(x**2, visible=False)
|
169 |
+
|
170 |
+
...is equivalent to...
|
171 |
+
|
172 |
+
>>> p = Plot(visible=False)
|
173 |
+
>>> p[1] = x**2
|
174 |
+
|
175 |
+
Note that in earlier versions of the plotting
|
176 |
+
module, you were able to specify multiple
|
177 |
+
functions in the initializer. This functionality
|
178 |
+
has been dropped in favor of better automatic
|
179 |
+
plot plot_mode detection.
|
180 |
+
|
181 |
+
|
182 |
+
Named Arguments
|
183 |
+
===============
|
184 |
+
|
185 |
+
axes
|
186 |
+
An option string of the form
|
187 |
+
"key1=value1; key2 = value2" which
|
188 |
+
can use the following options:
|
189 |
+
|
190 |
+
style = ordinate
|
191 |
+
none OR frame OR box OR ordinate
|
192 |
+
|
193 |
+
stride = 0.25
|
194 |
+
val OR (val_x, val_y, val_z)
|
195 |
+
|
196 |
+
overlay = True (draw on top of plot)
|
197 |
+
True OR False
|
198 |
+
|
199 |
+
colored = False (False uses Black,
|
200 |
+
True uses colors
|
201 |
+
R,G,B = X,Y,Z)
|
202 |
+
True OR False
|
203 |
+
|
204 |
+
label_axes = False (display axis names
|
205 |
+
at endpoints)
|
206 |
+
True OR False
|
207 |
+
|
208 |
+
visible = True (show immediately
|
209 |
+
True OR False
|
210 |
+
|
211 |
+
|
212 |
+
The following named arguments are passed as
|
213 |
+
arguments to window initialization:
|
214 |
+
|
215 |
+
antialiasing = True
|
216 |
+
True OR False
|
217 |
+
|
218 |
+
ortho = False
|
219 |
+
True OR False
|
220 |
+
|
221 |
+
invert_mouse_zoom = False
|
222 |
+
True OR False
|
223 |
+
|
224 |
+
"""
|
225 |
+
# Register the plot modes
|
226 |
+
from . import plot_modes # noqa
|
227 |
+
|
228 |
+
self._win_args = win_args
|
229 |
+
self._window = None
|
230 |
+
|
231 |
+
self._render_lock = RLock()
|
232 |
+
|
233 |
+
self._functions = {}
|
234 |
+
self._pobjects = []
|
235 |
+
self._screenshot = ScreenShot(self)
|
236 |
+
|
237 |
+
axe_options = parse_option_string(win_args.pop('axes', ''))
|
238 |
+
self.axes = PlotAxes(**axe_options)
|
239 |
+
self._pobjects.append(self.axes)
|
240 |
+
|
241 |
+
self[0] = fargs
|
242 |
+
if win_args.get('visible', True):
|
243 |
+
self.show()
|
244 |
+
|
245 |
+
## Window Interfaces
|
246 |
+
|
247 |
+
def show(self):
|
248 |
+
"""
|
249 |
+
Creates and displays a plot window, or activates it
|
250 |
+
(gives it focus) if it has already been created.
|
251 |
+
"""
|
252 |
+
if self._window and not self._window.has_exit:
|
253 |
+
self._window.activate()
|
254 |
+
else:
|
255 |
+
self._win_args['visible'] = True
|
256 |
+
self.axes.reset_resources()
|
257 |
+
|
258 |
+
#if hasattr(self, '_doctest_depends_on'):
|
259 |
+
# self._win_args['runfromdoctester'] = True
|
260 |
+
|
261 |
+
self._window = PlotWindow(self, **self._win_args)
|
262 |
+
|
263 |
+
def close(self):
|
264 |
+
"""
|
265 |
+
Closes the plot window.
|
266 |
+
"""
|
267 |
+
if self._window:
|
268 |
+
self._window.close()
|
269 |
+
|
270 |
+
def saveimage(self, outfile=None, format='', size=(600, 500)):
|
271 |
+
"""
|
272 |
+
Saves a screen capture of the plot window to an
|
273 |
+
image file.
|
274 |
+
|
275 |
+
If outfile is given, it can either be a path
|
276 |
+
or a file object. Otherwise a png image will
|
277 |
+
be saved to the current working directory.
|
278 |
+
If the format is omitted, it is determined from
|
279 |
+
the filename extension.
|
280 |
+
"""
|
281 |
+
self._screenshot.save(outfile, format, size)
|
282 |
+
|
283 |
+
## Function List Interfaces
|
284 |
+
|
285 |
+
def clear(self):
|
286 |
+
"""
|
287 |
+
Clears the function list of this plot.
|
288 |
+
"""
|
289 |
+
self._render_lock.acquire()
|
290 |
+
self._functions = {}
|
291 |
+
self.adjust_all_bounds()
|
292 |
+
self._render_lock.release()
|
293 |
+
|
294 |
+
def __getitem__(self, i):
|
295 |
+
"""
|
296 |
+
Returns the function at position i in the
|
297 |
+
function list.
|
298 |
+
"""
|
299 |
+
return self._functions[i]
|
300 |
+
|
301 |
+
def __setitem__(self, i, args):
|
302 |
+
"""
|
303 |
+
Parses and adds a PlotMode to the function
|
304 |
+
list.
|
305 |
+
"""
|
306 |
+
if not (isinstance(i, (SYMPY_INTS, Integer)) and i >= 0):
|
307 |
+
raise ValueError("Function index must "
|
308 |
+
"be an integer >= 0.")
|
309 |
+
|
310 |
+
if isinstance(args, PlotObject):
|
311 |
+
f = args
|
312 |
+
else:
|
313 |
+
if (not is_sequence(args)) or isinstance(args, GeometryEntity):
|
314 |
+
args = [args]
|
315 |
+
if len(args) == 0:
|
316 |
+
return # no arguments given
|
317 |
+
kwargs = {"bounds_callback": self.adjust_all_bounds}
|
318 |
+
f = PlotMode(*args, **kwargs)
|
319 |
+
|
320 |
+
if f:
|
321 |
+
self._render_lock.acquire()
|
322 |
+
self._functions[i] = f
|
323 |
+
self._render_lock.release()
|
324 |
+
else:
|
325 |
+
raise ValueError("Failed to parse '%s'."
|
326 |
+
% ', '.join(str(a) for a in args))
|
327 |
+
|
328 |
+
def __delitem__(self, i):
|
329 |
+
"""
|
330 |
+
Removes the function in the function list at
|
331 |
+
position i.
|
332 |
+
"""
|
333 |
+
self._render_lock.acquire()
|
334 |
+
del self._functions[i]
|
335 |
+
self.adjust_all_bounds()
|
336 |
+
self._render_lock.release()
|
337 |
+
|
338 |
+
def firstavailableindex(self):
|
339 |
+
"""
|
340 |
+
Returns the first unused index in the function list.
|
341 |
+
"""
|
342 |
+
i = 0
|
343 |
+
self._render_lock.acquire()
|
344 |
+
while i in self._functions:
|
345 |
+
i += 1
|
346 |
+
self._render_lock.release()
|
347 |
+
return i
|
348 |
+
|
349 |
+
def append(self, *args):
|
350 |
+
"""
|
351 |
+
Parses and adds a PlotMode to the function
|
352 |
+
list at the first available index.
|
353 |
+
"""
|
354 |
+
self.__setitem__(self.firstavailableindex(), args)
|
355 |
+
|
356 |
+
def __len__(self):
|
357 |
+
"""
|
358 |
+
Returns the number of functions in the function list.
|
359 |
+
"""
|
360 |
+
return len(self._functions)
|
361 |
+
|
362 |
+
def __iter__(self):
|
363 |
+
"""
|
364 |
+
Allows iteration of the function list.
|
365 |
+
"""
|
366 |
+
return self._functions.itervalues()
|
367 |
+
|
368 |
+
def __repr__(self):
|
369 |
+
return str(self)
|
370 |
+
|
371 |
+
def __str__(self):
|
372 |
+
"""
|
373 |
+
Returns a string containing a new-line separated
|
374 |
+
list of the functions in the function list.
|
375 |
+
"""
|
376 |
+
s = ""
|
377 |
+
if len(self._functions) == 0:
|
378 |
+
s += "<blank plot>"
|
379 |
+
else:
|
380 |
+
self._render_lock.acquire()
|
381 |
+
s += "\n".join(["%s[%i]: %s" % ("", i, str(self._functions[i]))
|
382 |
+
for i in self._functions])
|
383 |
+
self._render_lock.release()
|
384 |
+
return s
|
385 |
+
|
386 |
+
def adjust_all_bounds(self):
|
387 |
+
self._render_lock.acquire()
|
388 |
+
self.axes.reset_bounding_box()
|
389 |
+
for f in self._functions:
|
390 |
+
self.axes.adjust_bounds(self._functions[f].bounds)
|
391 |
+
self._render_lock.release()
|
392 |
+
|
393 |
+
def wait_for_calculations(self):
|
394 |
+
sleep(0)
|
395 |
+
self._render_lock.acquire()
|
396 |
+
for f in self._functions:
|
397 |
+
a = self._functions[f]._get_calculating_verts
|
398 |
+
b = self._functions[f]._get_calculating_cverts
|
399 |
+
while a() or b():
|
400 |
+
sleep(0)
|
401 |
+
self._render_lock.release()
|
402 |
+
|
403 |
+
class ScreenShot:
|
404 |
+
def __init__(self, plot):
|
405 |
+
self._plot = plot
|
406 |
+
self.screenshot_requested = False
|
407 |
+
self.outfile = None
|
408 |
+
self.format = ''
|
409 |
+
self.invisibleMode = False
|
410 |
+
self.flag = 0
|
411 |
+
|
412 |
+
def __bool__(self):
|
413 |
+
return self.screenshot_requested
|
414 |
+
|
415 |
+
def _execute_saving(self):
|
416 |
+
if self.flag < 3:
|
417 |
+
self.flag += 1
|
418 |
+
return
|
419 |
+
|
420 |
+
size_x, size_y = self._plot._window.get_size()
|
421 |
+
size = size_x*size_y*4*ctypes.sizeof(ctypes.c_ubyte)
|
422 |
+
image = ctypes.create_string_buffer(size)
|
423 |
+
pgl.glReadPixels(0, 0, size_x, size_y, pgl.GL_RGBA, pgl.GL_UNSIGNED_BYTE, image)
|
424 |
+
from PIL import Image
|
425 |
+
im = Image.frombuffer('RGBA', (size_x, size_y),
|
426 |
+
image.raw, 'raw', 'RGBA', 0, 1)
|
427 |
+
im.transpose(Image.FLIP_TOP_BOTTOM).save(self.outfile, self.format)
|
428 |
+
|
429 |
+
self.flag = 0
|
430 |
+
self.screenshot_requested = False
|
431 |
+
if self.invisibleMode:
|
432 |
+
self._plot._window.close()
|
433 |
+
|
434 |
+
def save(self, outfile=None, format='', size=(600, 500)):
|
435 |
+
self.outfile = outfile
|
436 |
+
self.format = format
|
437 |
+
self.size = size
|
438 |
+
self.screenshot_requested = True
|
439 |
+
|
440 |
+
if not self._plot._window or self._plot._window.has_exit:
|
441 |
+
self._plot._win_args['visible'] = False
|
442 |
+
|
443 |
+
self._plot._win_args['width'] = size[0]
|
444 |
+
self._plot._win_args['height'] = size[1]
|
445 |
+
|
446 |
+
self._plot.axes.reset_resources()
|
447 |
+
self._plot._window = PlotWindow(self._plot, **self._plot._win_args)
|
448 |
+
self.invisibleMode = True
|
449 |
+
|
450 |
+
if self.outfile is None:
|
451 |
+
self.outfile = self._create_unique_path()
|
452 |
+
print(self.outfile)
|
453 |
+
|
454 |
+
def _create_unique_path(self):
|
455 |
+
cwd = getcwd()
|
456 |
+
l = listdir(cwd)
|
457 |
+
path = ''
|
458 |
+
i = 0
|
459 |
+
while True:
|
460 |
+
if not 'plot_%s.png' % i in l:
|
461 |
+
path = cwd + '/plot_%s.png' % i
|
462 |
+
break
|
463 |
+
i += 1
|
464 |
+
return path
|
llmeval-env/lib/python3.10/site-packages/sympy/plotting/pygletplot/plot_axes.py
ADDED
@@ -0,0 +1,251 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pyglet.gl as pgl
|
2 |
+
from pyglet import font
|
3 |
+
|
4 |
+
from sympy.core import S
|
5 |
+
from sympy.plotting.pygletplot.plot_object import PlotObject
|
6 |
+
from sympy.plotting.pygletplot.util import billboard_matrix, dot_product, \
|
7 |
+
get_direction_vectors, strided_range, vec_mag, vec_sub
|
8 |
+
from sympy.utilities.iterables import is_sequence
|
9 |
+
|
10 |
+
|
11 |
+
class PlotAxes(PlotObject):
|
12 |
+
|
13 |
+
def __init__(self, *args,
|
14 |
+
style='', none=None, frame=None, box=None, ordinate=None,
|
15 |
+
stride=0.25,
|
16 |
+
visible='', overlay='', colored='', label_axes='', label_ticks='',
|
17 |
+
tick_length=0.1,
|
18 |
+
font_face='Arial', font_size=28,
|
19 |
+
**kwargs):
|
20 |
+
# initialize style parameter
|
21 |
+
style = style.lower()
|
22 |
+
|
23 |
+
# allow alias kwargs to override style kwarg
|
24 |
+
if none is not None:
|
25 |
+
style = 'none'
|
26 |
+
if frame is not None:
|
27 |
+
style = 'frame'
|
28 |
+
if box is not None:
|
29 |
+
style = 'box'
|
30 |
+
if ordinate is not None:
|
31 |
+
style = 'ordinate'
|
32 |
+
|
33 |
+
if style in ['', 'ordinate']:
|
34 |
+
self._render_object = PlotAxesOrdinate(self)
|
35 |
+
elif style in ['frame', 'box']:
|
36 |
+
self._render_object = PlotAxesFrame(self)
|
37 |
+
elif style in ['none']:
|
38 |
+
self._render_object = None
|
39 |
+
else:
|
40 |
+
raise ValueError(("Unrecognized axes style %s.") % (style))
|
41 |
+
|
42 |
+
# initialize stride parameter
|
43 |
+
try:
|
44 |
+
stride = eval(stride)
|
45 |
+
except TypeError:
|
46 |
+
pass
|
47 |
+
if is_sequence(stride):
|
48 |
+
if len(stride) != 3:
|
49 |
+
raise ValueError("length should be equal to 3")
|
50 |
+
self._stride = stride
|
51 |
+
else:
|
52 |
+
self._stride = [stride, stride, stride]
|
53 |
+
self._tick_length = float(tick_length)
|
54 |
+
|
55 |
+
# setup bounding box and ticks
|
56 |
+
self._origin = [0, 0, 0]
|
57 |
+
self.reset_bounding_box()
|
58 |
+
|
59 |
+
def flexible_boolean(input, default):
|
60 |
+
if input in [True, False]:
|
61 |
+
return input
|
62 |
+
if input in ('f', 'F', 'false', 'False'):
|
63 |
+
return False
|
64 |
+
if input in ('t', 'T', 'true', 'True'):
|
65 |
+
return True
|
66 |
+
return default
|
67 |
+
|
68 |
+
# initialize remaining parameters
|
69 |
+
self.visible = flexible_boolean(kwargs, True)
|
70 |
+
self._overlay = flexible_boolean(overlay, True)
|
71 |
+
self._colored = flexible_boolean(colored, False)
|
72 |
+
self._label_axes = flexible_boolean(label_axes, False)
|
73 |
+
self._label_ticks = flexible_boolean(label_ticks, True)
|
74 |
+
|
75 |
+
# setup label font
|
76 |
+
self.font_face = font_face
|
77 |
+
self.font_size = font_size
|
78 |
+
|
79 |
+
# this is also used to reinit the
|
80 |
+
# font on window close/reopen
|
81 |
+
self.reset_resources()
|
82 |
+
|
83 |
+
def reset_resources(self):
|
84 |
+
self.label_font = None
|
85 |
+
|
86 |
+
def reset_bounding_box(self):
|
87 |
+
self._bounding_box = [[None, None], [None, None], [None, None]]
|
88 |
+
self._axis_ticks = [[], [], []]
|
89 |
+
|
90 |
+
def draw(self):
|
91 |
+
if self._render_object:
|
92 |
+
pgl.glPushAttrib(pgl.GL_ENABLE_BIT | pgl.GL_POLYGON_BIT | pgl.GL_DEPTH_BUFFER_BIT)
|
93 |
+
if self._overlay:
|
94 |
+
pgl.glDisable(pgl.GL_DEPTH_TEST)
|
95 |
+
self._render_object.draw()
|
96 |
+
pgl.glPopAttrib()
|
97 |
+
|
98 |
+
def adjust_bounds(self, child_bounds):
|
99 |
+
b = self._bounding_box
|
100 |
+
c = child_bounds
|
101 |
+
for i in range(3):
|
102 |
+
if abs(c[i][0]) is S.Infinity or abs(c[i][1]) is S.Infinity:
|
103 |
+
continue
|
104 |
+
b[i][0] = c[i][0] if b[i][0] is None else min([b[i][0], c[i][0]])
|
105 |
+
b[i][1] = c[i][1] if b[i][1] is None else max([b[i][1], c[i][1]])
|
106 |
+
self._bounding_box = b
|
107 |
+
self._recalculate_axis_ticks(i)
|
108 |
+
|
109 |
+
def _recalculate_axis_ticks(self, axis):
|
110 |
+
b = self._bounding_box
|
111 |
+
if b[axis][0] is None or b[axis][1] is None:
|
112 |
+
self._axis_ticks[axis] = []
|
113 |
+
else:
|
114 |
+
self._axis_ticks[axis] = strided_range(b[axis][0], b[axis][1],
|
115 |
+
self._stride[axis])
|
116 |
+
|
117 |
+
def toggle_visible(self):
|
118 |
+
self.visible = not self.visible
|
119 |
+
|
120 |
+
def toggle_colors(self):
|
121 |
+
self._colored = not self._colored
|
122 |
+
|
123 |
+
|
124 |
+
class PlotAxesBase(PlotObject):
|
125 |
+
|
126 |
+
def __init__(self, parent_axes):
|
127 |
+
self._p = parent_axes
|
128 |
+
|
129 |
+
def draw(self):
|
130 |
+
color = [([0.2, 0.1, 0.3], [0.2, 0.1, 0.3], [0.2, 0.1, 0.3]),
|
131 |
+
([0.9, 0.3, 0.5], [0.5, 1.0, 0.5], [0.3, 0.3, 0.9])][self._p._colored]
|
132 |
+
self.draw_background(color)
|
133 |
+
self.draw_axis(2, color[2])
|
134 |
+
self.draw_axis(1, color[1])
|
135 |
+
self.draw_axis(0, color[0])
|
136 |
+
|
137 |
+
def draw_background(self, color):
|
138 |
+
pass # optional
|
139 |
+
|
140 |
+
def draw_axis(self, axis, color):
|
141 |
+
raise NotImplementedError()
|
142 |
+
|
143 |
+
def draw_text(self, text, position, color, scale=1.0):
|
144 |
+
if len(color) == 3:
|
145 |
+
color = (color[0], color[1], color[2], 1.0)
|
146 |
+
|
147 |
+
if self._p.label_font is None:
|
148 |
+
self._p.label_font = font.load(self._p.font_face,
|
149 |
+
self._p.font_size,
|
150 |
+
bold=True, italic=False)
|
151 |
+
|
152 |
+
label = font.Text(self._p.label_font, text,
|
153 |
+
color=color,
|
154 |
+
valign=font.Text.BASELINE,
|
155 |
+
halign=font.Text.CENTER)
|
156 |
+
|
157 |
+
pgl.glPushMatrix()
|
158 |
+
pgl.glTranslatef(*position)
|
159 |
+
billboard_matrix()
|
160 |
+
scale_factor = 0.005 * scale
|
161 |
+
pgl.glScalef(scale_factor, scale_factor, scale_factor)
|
162 |
+
pgl.glColor4f(0, 0, 0, 0)
|
163 |
+
label.draw()
|
164 |
+
pgl.glPopMatrix()
|
165 |
+
|
166 |
+
def draw_line(self, v, color):
|
167 |
+
o = self._p._origin
|
168 |
+
pgl.glBegin(pgl.GL_LINES)
|
169 |
+
pgl.glColor3f(*color)
|
170 |
+
pgl.glVertex3f(v[0][0] + o[0], v[0][1] + o[1], v[0][2] + o[2])
|
171 |
+
pgl.glVertex3f(v[1][0] + o[0], v[1][1] + o[1], v[1][2] + o[2])
|
172 |
+
pgl.glEnd()
|
173 |
+
|
174 |
+
|
175 |
+
class PlotAxesOrdinate(PlotAxesBase):
|
176 |
+
|
177 |
+
def __init__(self, parent_axes):
|
178 |
+
super().__init__(parent_axes)
|
179 |
+
|
180 |
+
def draw_axis(self, axis, color):
|
181 |
+
ticks = self._p._axis_ticks[axis]
|
182 |
+
radius = self._p._tick_length / 2.0
|
183 |
+
if len(ticks) < 2:
|
184 |
+
return
|
185 |
+
|
186 |
+
# calculate the vector for this axis
|
187 |
+
axis_lines = [[0, 0, 0], [0, 0, 0]]
|
188 |
+
axis_lines[0][axis], axis_lines[1][axis] = ticks[0], ticks[-1]
|
189 |
+
axis_vector = vec_sub(axis_lines[1], axis_lines[0])
|
190 |
+
|
191 |
+
# calculate angle to the z direction vector
|
192 |
+
pos_z = get_direction_vectors()[2]
|
193 |
+
d = abs(dot_product(axis_vector, pos_z))
|
194 |
+
d = d / vec_mag(axis_vector)
|
195 |
+
|
196 |
+
# don't draw labels if we're looking down the axis
|
197 |
+
labels_visible = abs(d - 1.0) > 0.02
|
198 |
+
|
199 |
+
# draw the ticks and labels
|
200 |
+
for tick in ticks:
|
201 |
+
self.draw_tick_line(axis, color, radius, tick, labels_visible)
|
202 |
+
|
203 |
+
# draw the axis line and labels
|
204 |
+
self.draw_axis_line(axis, color, ticks[0], ticks[-1], labels_visible)
|
205 |
+
|
206 |
+
def draw_axis_line(self, axis, color, a_min, a_max, labels_visible):
|
207 |
+
axis_line = [[0, 0, 0], [0, 0, 0]]
|
208 |
+
axis_line[0][axis], axis_line[1][axis] = a_min, a_max
|
209 |
+
self.draw_line(axis_line, color)
|
210 |
+
if labels_visible:
|
211 |
+
self.draw_axis_line_labels(axis, color, axis_line)
|
212 |
+
|
213 |
+
def draw_axis_line_labels(self, axis, color, axis_line):
|
214 |
+
if not self._p._label_axes:
|
215 |
+
return
|
216 |
+
axis_labels = [axis_line[0][::], axis_line[1][::]]
|
217 |
+
axis_labels[0][axis] -= 0.3
|
218 |
+
axis_labels[1][axis] += 0.3
|
219 |
+
a_str = ['X', 'Y', 'Z'][axis]
|
220 |
+
self.draw_text("-" + a_str, axis_labels[0], color)
|
221 |
+
self.draw_text("+" + a_str, axis_labels[1], color)
|
222 |
+
|
223 |
+
def draw_tick_line(self, axis, color, radius, tick, labels_visible):
|
224 |
+
tick_axis = {0: 1, 1: 0, 2: 1}[axis]
|
225 |
+
tick_line = [[0, 0, 0], [0, 0, 0]]
|
226 |
+
tick_line[0][axis] = tick_line[1][axis] = tick
|
227 |
+
tick_line[0][tick_axis], tick_line[1][tick_axis] = -radius, radius
|
228 |
+
self.draw_line(tick_line, color)
|
229 |
+
if labels_visible:
|
230 |
+
self.draw_tick_line_label(axis, color, radius, tick)
|
231 |
+
|
232 |
+
def draw_tick_line_label(self, axis, color, radius, tick):
|
233 |
+
if not self._p._label_axes:
|
234 |
+
return
|
235 |
+
tick_label_vector = [0, 0, 0]
|
236 |
+
tick_label_vector[axis] = tick
|
237 |
+
tick_label_vector[{0: 1, 1: 0, 2: 1}[axis]] = [-1, 1, 1][
|
238 |
+
axis] * radius * 3.5
|
239 |
+
self.draw_text(str(tick), tick_label_vector, color, scale=0.5)
|
240 |
+
|
241 |
+
|
242 |
+
class PlotAxesFrame(PlotAxesBase):
|
243 |
+
|
244 |
+
def __init__(self, parent_axes):
|
245 |
+
super().__init__(parent_axes)
|
246 |
+
|
247 |
+
def draw_background(self, color):
|
248 |
+
pass
|
249 |
+
|
250 |
+
def draw_axis(self, axis, color):
|
251 |
+
raise NotImplementedError()
|
llmeval-env/lib/python3.10/site-packages/sympy/plotting/pygletplot/plot_camera.py
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pyglet.gl as pgl
|
2 |
+
from sympy.plotting.pygletplot.plot_rotation import get_spherical_rotatation
|
3 |
+
from sympy.plotting.pygletplot.util import get_model_matrix, model_to_screen, \
|
4 |
+
screen_to_model, vec_subs
|
5 |
+
|
6 |
+
|
7 |
+
class PlotCamera:
|
8 |
+
|
9 |
+
min_dist = 0.05
|
10 |
+
max_dist = 500.0
|
11 |
+
|
12 |
+
min_ortho_dist = 100.0
|
13 |
+
max_ortho_dist = 10000.0
|
14 |
+
|
15 |
+
_default_dist = 6.0
|
16 |
+
_default_ortho_dist = 600.0
|
17 |
+
|
18 |
+
rot_presets = {
|
19 |
+
'xy': (0, 0, 0),
|
20 |
+
'xz': (-90, 0, 0),
|
21 |
+
'yz': (0, 90, 0),
|
22 |
+
'perspective': (-45, 0, -45)
|
23 |
+
}
|
24 |
+
|
25 |
+
def __init__(self, window, ortho=False):
|
26 |
+
self.window = window
|
27 |
+
self.axes = self.window.plot.axes
|
28 |
+
self.ortho = ortho
|
29 |
+
self.reset()
|
30 |
+
|
31 |
+
def init_rot_matrix(self):
|
32 |
+
pgl.glPushMatrix()
|
33 |
+
pgl.glLoadIdentity()
|
34 |
+
self._rot = get_model_matrix()
|
35 |
+
pgl.glPopMatrix()
|
36 |
+
|
37 |
+
def set_rot_preset(self, preset_name):
|
38 |
+
self.init_rot_matrix()
|
39 |
+
try:
|
40 |
+
r = self.rot_presets[preset_name]
|
41 |
+
except AttributeError:
|
42 |
+
raise ValueError(
|
43 |
+
"%s is not a valid rotation preset." % preset_name)
|
44 |
+
try:
|
45 |
+
self.euler_rotate(r[0], 1, 0, 0)
|
46 |
+
self.euler_rotate(r[1], 0, 1, 0)
|
47 |
+
self.euler_rotate(r[2], 0, 0, 1)
|
48 |
+
except AttributeError:
|
49 |
+
pass
|
50 |
+
|
51 |
+
def reset(self):
|
52 |
+
self._dist = 0.0
|
53 |
+
self._x, self._y = 0.0, 0.0
|
54 |
+
self._rot = None
|
55 |
+
if self.ortho:
|
56 |
+
self._dist = self._default_ortho_dist
|
57 |
+
else:
|
58 |
+
self._dist = self._default_dist
|
59 |
+
self.init_rot_matrix()
|
60 |
+
|
61 |
+
def mult_rot_matrix(self, rot):
|
62 |
+
pgl.glPushMatrix()
|
63 |
+
pgl.glLoadMatrixf(rot)
|
64 |
+
pgl.glMultMatrixf(self._rot)
|
65 |
+
self._rot = get_model_matrix()
|
66 |
+
pgl.glPopMatrix()
|
67 |
+
|
68 |
+
def setup_projection(self):
|
69 |
+
pgl.glMatrixMode(pgl.GL_PROJECTION)
|
70 |
+
pgl.glLoadIdentity()
|
71 |
+
if self.ortho:
|
72 |
+
# yep, this is pseudo ortho (don't tell anyone)
|
73 |
+
pgl.gluPerspective(
|
74 |
+
0.3, float(self.window.width)/float(self.window.height),
|
75 |
+
self.min_ortho_dist - 0.01, self.max_ortho_dist + 0.01)
|
76 |
+
else:
|
77 |
+
pgl.gluPerspective(
|
78 |
+
30.0, float(self.window.width)/float(self.window.height),
|
79 |
+
self.min_dist - 0.01, self.max_dist + 0.01)
|
80 |
+
pgl.glMatrixMode(pgl.GL_MODELVIEW)
|
81 |
+
|
82 |
+
def _get_scale(self):
|
83 |
+
return 1.0, 1.0, 1.0
|
84 |
+
|
85 |
+
def apply_transformation(self):
|
86 |
+
pgl.glLoadIdentity()
|
87 |
+
pgl.glTranslatef(self._x, self._y, -self._dist)
|
88 |
+
if self._rot is not None:
|
89 |
+
pgl.glMultMatrixf(self._rot)
|
90 |
+
pgl.glScalef(*self._get_scale())
|
91 |
+
|
92 |
+
def spherical_rotate(self, p1, p2, sensitivity=1.0):
|
93 |
+
mat = get_spherical_rotatation(p1, p2, self.window.width,
|
94 |
+
self.window.height, sensitivity)
|
95 |
+
if mat is not None:
|
96 |
+
self.mult_rot_matrix(mat)
|
97 |
+
|
98 |
+
def euler_rotate(self, angle, x, y, z):
|
99 |
+
pgl.glPushMatrix()
|
100 |
+
pgl.glLoadMatrixf(self._rot)
|
101 |
+
pgl.glRotatef(angle, x, y, z)
|
102 |
+
self._rot = get_model_matrix()
|
103 |
+
pgl.glPopMatrix()
|
104 |
+
|
105 |
+
def zoom_relative(self, clicks, sensitivity):
|
106 |
+
|
107 |
+
if self.ortho:
|
108 |
+
dist_d = clicks * sensitivity * 50.0
|
109 |
+
min_dist = self.min_ortho_dist
|
110 |
+
max_dist = self.max_ortho_dist
|
111 |
+
else:
|
112 |
+
dist_d = clicks * sensitivity
|
113 |
+
min_dist = self.min_dist
|
114 |
+
max_dist = self.max_dist
|
115 |
+
|
116 |
+
new_dist = (self._dist - dist_d)
|
117 |
+
if (clicks < 0 and new_dist < max_dist) or new_dist > min_dist:
|
118 |
+
self._dist = new_dist
|
119 |
+
|
120 |
+
def mouse_translate(self, x, y, dx, dy):
|
121 |
+
pgl.glPushMatrix()
|
122 |
+
pgl.glLoadIdentity()
|
123 |
+
pgl.glTranslatef(0, 0, -self._dist)
|
124 |
+
z = model_to_screen(0, 0, 0)[2]
|
125 |
+
d = vec_subs(screen_to_model(x, y, z), screen_to_model(x - dx, y - dy, z))
|
126 |
+
pgl.glPopMatrix()
|
127 |
+
self._x += d[0]
|
128 |
+
self._y += d[1]
|
llmeval-env/lib/python3.10/site-packages/sympy/plotting/pygletplot/plot_controller.py
ADDED
@@ -0,0 +1,218 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pyglet.window import key
|
2 |
+
from pyglet.window.mouse import LEFT, RIGHT, MIDDLE
|
3 |
+
from sympy.plotting.pygletplot.util import get_direction_vectors, get_basis_vectors
|
4 |
+
|
5 |
+
|
6 |
+
class PlotController:
|
7 |
+
|
8 |
+
normal_mouse_sensitivity = 4.0
|
9 |
+
modified_mouse_sensitivity = 1.0
|
10 |
+
|
11 |
+
normal_key_sensitivity = 160.0
|
12 |
+
modified_key_sensitivity = 40.0
|
13 |
+
|
14 |
+
keymap = {
|
15 |
+
key.LEFT: 'left',
|
16 |
+
key.A: 'left',
|
17 |
+
key.NUM_4: 'left',
|
18 |
+
|
19 |
+
key.RIGHT: 'right',
|
20 |
+
key.D: 'right',
|
21 |
+
key.NUM_6: 'right',
|
22 |
+
|
23 |
+
key.UP: 'up',
|
24 |
+
key.W: 'up',
|
25 |
+
key.NUM_8: 'up',
|
26 |
+
|
27 |
+
key.DOWN: 'down',
|
28 |
+
key.S: 'down',
|
29 |
+
key.NUM_2: 'down',
|
30 |
+
|
31 |
+
key.Z: 'rotate_z_neg',
|
32 |
+
key.NUM_1: 'rotate_z_neg',
|
33 |
+
|
34 |
+
key.C: 'rotate_z_pos',
|
35 |
+
key.NUM_3: 'rotate_z_pos',
|
36 |
+
|
37 |
+
key.Q: 'spin_left',
|
38 |
+
key.NUM_7: 'spin_left',
|
39 |
+
key.E: 'spin_right',
|
40 |
+
key.NUM_9: 'spin_right',
|
41 |
+
|
42 |
+
key.X: 'reset_camera',
|
43 |
+
key.NUM_5: 'reset_camera',
|
44 |
+
|
45 |
+
key.NUM_ADD: 'zoom_in',
|
46 |
+
key.PAGEUP: 'zoom_in',
|
47 |
+
key.R: 'zoom_in',
|
48 |
+
|
49 |
+
key.NUM_SUBTRACT: 'zoom_out',
|
50 |
+
key.PAGEDOWN: 'zoom_out',
|
51 |
+
key.F: 'zoom_out',
|
52 |
+
|
53 |
+
key.RSHIFT: 'modify_sensitivity',
|
54 |
+
key.LSHIFT: 'modify_sensitivity',
|
55 |
+
|
56 |
+
key.F1: 'rot_preset_xy',
|
57 |
+
key.F2: 'rot_preset_xz',
|
58 |
+
key.F3: 'rot_preset_yz',
|
59 |
+
key.F4: 'rot_preset_perspective',
|
60 |
+
|
61 |
+
key.F5: 'toggle_axes',
|
62 |
+
key.F6: 'toggle_axe_colors',
|
63 |
+
|
64 |
+
key.F8: 'save_image'
|
65 |
+
}
|
66 |
+
|
67 |
+
def __init__(self, window, *, invert_mouse_zoom=False, **kwargs):
|
68 |
+
self.invert_mouse_zoom = invert_mouse_zoom
|
69 |
+
self.window = window
|
70 |
+
self.camera = window.camera
|
71 |
+
self.action = {
|
72 |
+
# Rotation around the view Y (up) vector
|
73 |
+
'left': False,
|
74 |
+
'right': False,
|
75 |
+
# Rotation around the view X vector
|
76 |
+
'up': False,
|
77 |
+
'down': False,
|
78 |
+
# Rotation around the view Z vector
|
79 |
+
'spin_left': False,
|
80 |
+
'spin_right': False,
|
81 |
+
# Rotation around the model Z vector
|
82 |
+
'rotate_z_neg': False,
|
83 |
+
'rotate_z_pos': False,
|
84 |
+
# Reset to the default rotation
|
85 |
+
'reset_camera': False,
|
86 |
+
# Performs camera z-translation
|
87 |
+
'zoom_in': False,
|
88 |
+
'zoom_out': False,
|
89 |
+
# Use alternative sensitivity (speed)
|
90 |
+
'modify_sensitivity': False,
|
91 |
+
# Rotation presets
|
92 |
+
'rot_preset_xy': False,
|
93 |
+
'rot_preset_xz': False,
|
94 |
+
'rot_preset_yz': False,
|
95 |
+
'rot_preset_perspective': False,
|
96 |
+
# axes
|
97 |
+
'toggle_axes': False,
|
98 |
+
'toggle_axe_colors': False,
|
99 |
+
# screenshot
|
100 |
+
'save_image': False
|
101 |
+
}
|
102 |
+
|
103 |
+
def update(self, dt):
|
104 |
+
z = 0
|
105 |
+
if self.action['zoom_out']:
|
106 |
+
z -= 1
|
107 |
+
if self.action['zoom_in']:
|
108 |
+
z += 1
|
109 |
+
if z != 0:
|
110 |
+
self.camera.zoom_relative(z/10.0, self.get_key_sensitivity()/10.0)
|
111 |
+
|
112 |
+
dx, dy, dz = 0, 0, 0
|
113 |
+
if self.action['left']:
|
114 |
+
dx -= 1
|
115 |
+
if self.action['right']:
|
116 |
+
dx += 1
|
117 |
+
if self.action['up']:
|
118 |
+
dy -= 1
|
119 |
+
if self.action['down']:
|
120 |
+
dy += 1
|
121 |
+
if self.action['spin_left']:
|
122 |
+
dz += 1
|
123 |
+
if self.action['spin_right']:
|
124 |
+
dz -= 1
|
125 |
+
|
126 |
+
if not self.is_2D():
|
127 |
+
if dx != 0:
|
128 |
+
self.camera.euler_rotate(dx*dt*self.get_key_sensitivity(),
|
129 |
+
*(get_direction_vectors()[1]))
|
130 |
+
if dy != 0:
|
131 |
+
self.camera.euler_rotate(dy*dt*self.get_key_sensitivity(),
|
132 |
+
*(get_direction_vectors()[0]))
|
133 |
+
if dz != 0:
|
134 |
+
self.camera.euler_rotate(dz*dt*self.get_key_sensitivity(),
|
135 |
+
*(get_direction_vectors()[2]))
|
136 |
+
else:
|
137 |
+
self.camera.mouse_translate(0, 0, dx*dt*self.get_key_sensitivity(),
|
138 |
+
-dy*dt*self.get_key_sensitivity())
|
139 |
+
|
140 |
+
rz = 0
|
141 |
+
if self.action['rotate_z_neg'] and not self.is_2D():
|
142 |
+
rz -= 1
|
143 |
+
if self.action['rotate_z_pos'] and not self.is_2D():
|
144 |
+
rz += 1
|
145 |
+
|
146 |
+
if rz != 0:
|
147 |
+
self.camera.euler_rotate(rz*dt*self.get_key_sensitivity(),
|
148 |
+
*(get_basis_vectors()[2]))
|
149 |
+
|
150 |
+
if self.action['reset_camera']:
|
151 |
+
self.camera.reset()
|
152 |
+
|
153 |
+
if self.action['rot_preset_xy']:
|
154 |
+
self.camera.set_rot_preset('xy')
|
155 |
+
if self.action['rot_preset_xz']:
|
156 |
+
self.camera.set_rot_preset('xz')
|
157 |
+
if self.action['rot_preset_yz']:
|
158 |
+
self.camera.set_rot_preset('yz')
|
159 |
+
if self.action['rot_preset_perspective']:
|
160 |
+
self.camera.set_rot_preset('perspective')
|
161 |
+
|
162 |
+
if self.action['toggle_axes']:
|
163 |
+
self.action['toggle_axes'] = False
|
164 |
+
self.camera.axes.toggle_visible()
|
165 |
+
|
166 |
+
if self.action['toggle_axe_colors']:
|
167 |
+
self.action['toggle_axe_colors'] = False
|
168 |
+
self.camera.axes.toggle_colors()
|
169 |
+
|
170 |
+
if self.action['save_image']:
|
171 |
+
self.action['save_image'] = False
|
172 |
+
self.window.plot.saveimage()
|
173 |
+
|
174 |
+
return True
|
175 |
+
|
176 |
+
def get_mouse_sensitivity(self):
|
177 |
+
if self.action['modify_sensitivity']:
|
178 |
+
return self.modified_mouse_sensitivity
|
179 |
+
else:
|
180 |
+
return self.normal_mouse_sensitivity
|
181 |
+
|
182 |
+
def get_key_sensitivity(self):
|
183 |
+
if self.action['modify_sensitivity']:
|
184 |
+
return self.modified_key_sensitivity
|
185 |
+
else:
|
186 |
+
return self.normal_key_sensitivity
|
187 |
+
|
188 |
+
def on_key_press(self, symbol, modifiers):
|
189 |
+
if symbol in self.keymap:
|
190 |
+
self.action[self.keymap[symbol]] = True
|
191 |
+
|
192 |
+
def on_key_release(self, symbol, modifiers):
|
193 |
+
if symbol in self.keymap:
|
194 |
+
self.action[self.keymap[symbol]] = False
|
195 |
+
|
196 |
+
def on_mouse_drag(self, x, y, dx, dy, buttons, modifiers):
|
197 |
+
if buttons & LEFT:
|
198 |
+
if self.is_2D():
|
199 |
+
self.camera.mouse_translate(x, y, dx, dy)
|
200 |
+
else:
|
201 |
+
self.camera.spherical_rotate((x - dx, y - dy), (x, y),
|
202 |
+
self.get_mouse_sensitivity())
|
203 |
+
if buttons & MIDDLE:
|
204 |
+
self.camera.zoom_relative([1, -1][self.invert_mouse_zoom]*dy,
|
205 |
+
self.get_mouse_sensitivity()/20.0)
|
206 |
+
if buttons & RIGHT:
|
207 |
+
self.camera.mouse_translate(x, y, dx, dy)
|
208 |
+
|
209 |
+
def on_mouse_scroll(self, x, y, dx, dy):
|
210 |
+
self.camera.zoom_relative([1, -1][self.invert_mouse_zoom]*dy,
|
211 |
+
self.get_mouse_sensitivity())
|
212 |
+
|
213 |
+
def is_2D(self):
|
214 |
+
functions = self.window.plot._functions
|
215 |
+
for i in functions:
|
216 |
+
if len(functions[i].i_vars) > 1 or len(functions[i].d_vars) > 2:
|
217 |
+
return False
|
218 |
+
return True
|
llmeval-env/lib/python3.10/site-packages/sympy/plotting/pygletplot/plot_curve.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pyglet.gl as pgl
|
2 |
+
from sympy.core import S
|
3 |
+
from sympy.plotting.pygletplot.plot_mode_base import PlotModeBase
|
4 |
+
|
5 |
+
|
6 |
+
class PlotCurve(PlotModeBase):
|
7 |
+
|
8 |
+
style_override = 'wireframe'
|
9 |
+
|
10 |
+
def _on_calculate_verts(self):
|
11 |
+
self.t_interval = self.intervals[0]
|
12 |
+
self.t_set = list(self.t_interval.frange())
|
13 |
+
self.bounds = [[S.Infinity, S.NegativeInfinity, 0],
|
14 |
+
[S.Infinity, S.NegativeInfinity, 0],
|
15 |
+
[S.Infinity, S.NegativeInfinity, 0]]
|
16 |
+
evaluate = self._get_evaluator()
|
17 |
+
|
18 |
+
self._calculating_verts_pos = 0.0
|
19 |
+
self._calculating_verts_len = float(self.t_interval.v_len)
|
20 |
+
|
21 |
+
self.verts = []
|
22 |
+
b = self.bounds
|
23 |
+
for t in self.t_set:
|
24 |
+
try:
|
25 |
+
_e = evaluate(t) # calculate vertex
|
26 |
+
except (NameError, ZeroDivisionError):
|
27 |
+
_e = None
|
28 |
+
if _e is not None: # update bounding box
|
29 |
+
for axis in range(3):
|
30 |
+
b[axis][0] = min([b[axis][0], _e[axis]])
|
31 |
+
b[axis][1] = max([b[axis][1], _e[axis]])
|
32 |
+
self.verts.append(_e)
|
33 |
+
self._calculating_verts_pos += 1.0
|
34 |
+
|
35 |
+
for axis in range(3):
|
36 |
+
b[axis][2] = b[axis][1] - b[axis][0]
|
37 |
+
if b[axis][2] == 0.0:
|
38 |
+
b[axis][2] = 1.0
|
39 |
+
|
40 |
+
self.push_wireframe(self.draw_verts(False))
|
41 |
+
|
42 |
+
def _on_calculate_cverts(self):
|
43 |
+
if not self.verts or not self.color:
|
44 |
+
return
|
45 |
+
|
46 |
+
def set_work_len(n):
|
47 |
+
self._calculating_cverts_len = float(n)
|
48 |
+
|
49 |
+
def inc_work_pos():
|
50 |
+
self._calculating_cverts_pos += 1.0
|
51 |
+
set_work_len(1)
|
52 |
+
self._calculating_cverts_pos = 0
|
53 |
+
self.cverts = self.color.apply_to_curve(self.verts,
|
54 |
+
self.t_set,
|
55 |
+
set_len=set_work_len,
|
56 |
+
inc_pos=inc_work_pos)
|
57 |
+
self.push_wireframe(self.draw_verts(True))
|
58 |
+
|
59 |
+
def calculate_one_cvert(self, t):
|
60 |
+
vert = self.verts[t]
|
61 |
+
return self.color(vert[0], vert[1], vert[2],
|
62 |
+
self.t_set[t], None)
|
63 |
+
|
64 |
+
def draw_verts(self, use_cverts):
|
65 |
+
def f():
|
66 |
+
pgl.glBegin(pgl.GL_LINE_STRIP)
|
67 |
+
for t in range(len(self.t_set)):
|
68 |
+
p = self.verts[t]
|
69 |
+
if p is None:
|
70 |
+
pgl.glEnd()
|
71 |
+
pgl.glBegin(pgl.GL_LINE_STRIP)
|
72 |
+
continue
|
73 |
+
if use_cverts:
|
74 |
+
c = self.cverts[t]
|
75 |
+
if c is None:
|
76 |
+
c = (0, 0, 0)
|
77 |
+
pgl.glColor3f(*c)
|
78 |
+
else:
|
79 |
+
pgl.glColor3f(*self.default_wireframe_color)
|
80 |
+
pgl.glVertex3f(*p)
|
81 |
+
pgl.glEnd()
|
82 |
+
return f
|
llmeval-env/lib/python3.10/site-packages/sympy/plotting/pygletplot/plot_interval.py
ADDED
@@ -0,0 +1,181 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.singleton import S
|
2 |
+
from sympy.core.symbol import Symbol
|
3 |
+
from sympy.core.sympify import sympify
|
4 |
+
from sympy.core.numbers import Integer
|
5 |
+
|
6 |
+
|
7 |
+
class PlotInterval:
|
8 |
+
"""
|
9 |
+
"""
|
10 |
+
_v, _v_min, _v_max, _v_steps = None, None, None, None
|
11 |
+
|
12 |
+
def require_all_args(f):
|
13 |
+
def check(self, *args, **kwargs):
|
14 |
+
for g in [self._v, self._v_min, self._v_max, self._v_steps]:
|
15 |
+
if g is None:
|
16 |
+
raise ValueError("PlotInterval is incomplete.")
|
17 |
+
return f(self, *args, **kwargs)
|
18 |
+
return check
|
19 |
+
|
20 |
+
def __init__(self, *args):
|
21 |
+
if len(args) == 1:
|
22 |
+
if isinstance(args[0], PlotInterval):
|
23 |
+
self.fill_from(args[0])
|
24 |
+
return
|
25 |
+
elif isinstance(args[0], str):
|
26 |
+
try:
|
27 |
+
args = eval(args[0])
|
28 |
+
except TypeError:
|
29 |
+
s_eval_error = "Could not interpret string %s."
|
30 |
+
raise ValueError(s_eval_error % (args[0]))
|
31 |
+
elif isinstance(args[0], (tuple, list)):
|
32 |
+
args = args[0]
|
33 |
+
else:
|
34 |
+
raise ValueError("Not an interval.")
|
35 |
+
if not isinstance(args, (tuple, list)) or len(args) > 4:
|
36 |
+
f_error = "PlotInterval must be a tuple or list of length 4 or less."
|
37 |
+
raise ValueError(f_error)
|
38 |
+
|
39 |
+
args = list(args)
|
40 |
+
if len(args) > 0 and (args[0] is None or isinstance(args[0], Symbol)):
|
41 |
+
self.v = args.pop(0)
|
42 |
+
if len(args) in [2, 3]:
|
43 |
+
self.v_min = args.pop(0)
|
44 |
+
self.v_max = args.pop(0)
|
45 |
+
if len(args) == 1:
|
46 |
+
self.v_steps = args.pop(0)
|
47 |
+
elif len(args) == 1:
|
48 |
+
self.v_steps = args.pop(0)
|
49 |
+
|
50 |
+
def get_v(self):
|
51 |
+
return self._v
|
52 |
+
|
53 |
+
def set_v(self, v):
|
54 |
+
if v is None:
|
55 |
+
self._v = None
|
56 |
+
return
|
57 |
+
if not isinstance(v, Symbol):
|
58 |
+
raise ValueError("v must be a SymPy Symbol.")
|
59 |
+
self._v = v
|
60 |
+
|
61 |
+
def get_v_min(self):
|
62 |
+
return self._v_min
|
63 |
+
|
64 |
+
def set_v_min(self, v_min):
|
65 |
+
if v_min is None:
|
66 |
+
self._v_min = None
|
67 |
+
return
|
68 |
+
try:
|
69 |
+
self._v_min = sympify(v_min)
|
70 |
+
float(self._v_min.evalf())
|
71 |
+
except TypeError:
|
72 |
+
raise ValueError("v_min could not be interpreted as a number.")
|
73 |
+
|
74 |
+
def get_v_max(self):
|
75 |
+
return self._v_max
|
76 |
+
|
77 |
+
def set_v_max(self, v_max):
|
78 |
+
if v_max is None:
|
79 |
+
self._v_max = None
|
80 |
+
return
|
81 |
+
try:
|
82 |
+
self._v_max = sympify(v_max)
|
83 |
+
float(self._v_max.evalf())
|
84 |
+
except TypeError:
|
85 |
+
raise ValueError("v_max could not be interpreted as a number.")
|
86 |
+
|
87 |
+
def get_v_steps(self):
|
88 |
+
return self._v_steps
|
89 |
+
|
90 |
+
def set_v_steps(self, v_steps):
|
91 |
+
if v_steps is None:
|
92 |
+
self._v_steps = None
|
93 |
+
return
|
94 |
+
if isinstance(v_steps, int):
|
95 |
+
v_steps = Integer(v_steps)
|
96 |
+
elif not isinstance(v_steps, Integer):
|
97 |
+
raise ValueError("v_steps must be an int or SymPy Integer.")
|
98 |
+
if v_steps <= S.Zero:
|
99 |
+
raise ValueError("v_steps must be positive.")
|
100 |
+
self._v_steps = v_steps
|
101 |
+
|
102 |
+
@require_all_args
|
103 |
+
def get_v_len(self):
|
104 |
+
return self.v_steps + 1
|
105 |
+
|
106 |
+
v = property(get_v, set_v)
|
107 |
+
v_min = property(get_v_min, set_v_min)
|
108 |
+
v_max = property(get_v_max, set_v_max)
|
109 |
+
v_steps = property(get_v_steps, set_v_steps)
|
110 |
+
v_len = property(get_v_len)
|
111 |
+
|
112 |
+
def fill_from(self, b):
|
113 |
+
if b.v is not None:
|
114 |
+
self.v = b.v
|
115 |
+
if b.v_min is not None:
|
116 |
+
self.v_min = b.v_min
|
117 |
+
if b.v_max is not None:
|
118 |
+
self.v_max = b.v_max
|
119 |
+
if b.v_steps is not None:
|
120 |
+
self.v_steps = b.v_steps
|
121 |
+
|
122 |
+
@staticmethod
|
123 |
+
def try_parse(*args):
|
124 |
+
"""
|
125 |
+
Returns a PlotInterval if args can be interpreted
|
126 |
+
as such, otherwise None.
|
127 |
+
"""
|
128 |
+
if len(args) == 1 and isinstance(args[0], PlotInterval):
|
129 |
+
return args[0]
|
130 |
+
try:
|
131 |
+
return PlotInterval(*args)
|
132 |
+
except ValueError:
|
133 |
+
return None
|
134 |
+
|
135 |
+
def _str_base(self):
|
136 |
+
return ",".join([str(self.v), str(self.v_min),
|
137 |
+
str(self.v_max), str(self.v_steps)])
|
138 |
+
|
139 |
+
def __repr__(self):
|
140 |
+
"""
|
141 |
+
A string representing the interval in class constructor form.
|
142 |
+
"""
|
143 |
+
return "PlotInterval(%s)" % (self._str_base())
|
144 |
+
|
145 |
+
def __str__(self):
|
146 |
+
"""
|
147 |
+
A string representing the interval in list form.
|
148 |
+
"""
|
149 |
+
return "[%s]" % (self._str_base())
|
150 |
+
|
151 |
+
@require_all_args
|
152 |
+
def assert_complete(self):
|
153 |
+
pass
|
154 |
+
|
155 |
+
@require_all_args
|
156 |
+
def vrange(self):
|
157 |
+
"""
|
158 |
+
Yields v_steps+1 SymPy numbers ranging from
|
159 |
+
v_min to v_max.
|
160 |
+
"""
|
161 |
+
d = (self.v_max - self.v_min) / self.v_steps
|
162 |
+
for i in range(self.v_steps + 1):
|
163 |
+
a = self.v_min + (d * Integer(i))
|
164 |
+
yield a
|
165 |
+
|
166 |
+
@require_all_args
|
167 |
+
def vrange2(self):
|
168 |
+
"""
|
169 |
+
Yields v_steps pairs of SymPy numbers ranging from
|
170 |
+
(v_min, v_min + step) to (v_max - step, v_max).
|
171 |
+
"""
|
172 |
+
d = (self.v_max - self.v_min) / self.v_steps
|
173 |
+
a = self.v_min + (d * S.Zero)
|
174 |
+
for i in range(self.v_steps):
|
175 |
+
b = self.v_min + (d * Integer(i + 1))
|
176 |
+
yield a, b
|
177 |
+
a = b
|
178 |
+
|
179 |
+
def frange(self):
|
180 |
+
for i in self.vrange():
|
181 |
+
yield float(i.evalf())
|
llmeval-env/lib/python3.10/site-packages/sympy/plotting/pygletplot/plot_mode.py
ADDED
@@ -0,0 +1,400 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .plot_interval import PlotInterval
|
2 |
+
from .plot_object import PlotObject
|
3 |
+
from .util import parse_option_string
|
4 |
+
from sympy.core.symbol import Symbol
|
5 |
+
from sympy.core.sympify import sympify
|
6 |
+
from sympy.geometry.entity import GeometryEntity
|
7 |
+
from sympy.utilities.iterables import is_sequence
|
8 |
+
|
9 |
+
|
10 |
+
class PlotMode(PlotObject):
|
11 |
+
"""
|
12 |
+
Grandparent class for plotting
|
13 |
+
modes. Serves as interface for
|
14 |
+
registration, lookup, and init
|
15 |
+
of modes.
|
16 |
+
|
17 |
+
To create a new plot mode,
|
18 |
+
inherit from PlotModeBase
|
19 |
+
or one of its children, such
|
20 |
+
as PlotSurface or PlotCurve.
|
21 |
+
"""
|
22 |
+
|
23 |
+
## Class-level attributes
|
24 |
+
## used to register and lookup
|
25 |
+
## plot modes. See PlotModeBase
|
26 |
+
## for descriptions and usage.
|
27 |
+
|
28 |
+
i_vars, d_vars = '', ''
|
29 |
+
intervals = []
|
30 |
+
aliases = []
|
31 |
+
is_default = False
|
32 |
+
|
33 |
+
## Draw is the only method here which
|
34 |
+
## is meant to be overridden in child
|
35 |
+
## classes, and PlotModeBase provides
|
36 |
+
## a base implementation.
|
37 |
+
def draw(self):
|
38 |
+
raise NotImplementedError()
|
39 |
+
|
40 |
+
## Everything else in this file has to
|
41 |
+
## do with registration and retrieval
|
42 |
+
## of plot modes. This is where I've
|
43 |
+
## hidden much of the ugliness of automatic
|
44 |
+
## plot mode divination...
|
45 |
+
|
46 |
+
## Plot mode registry data structures
|
47 |
+
_mode_alias_list = []
|
48 |
+
_mode_map = {
|
49 |
+
1: {1: {}, 2: {}},
|
50 |
+
2: {1: {}, 2: {}},
|
51 |
+
3: {1: {}, 2: {}},
|
52 |
+
} # [d][i][alias_str]: class
|
53 |
+
_mode_default_map = {
|
54 |
+
1: {},
|
55 |
+
2: {},
|
56 |
+
3: {},
|
57 |
+
} # [d][i]: class
|
58 |
+
_i_var_max, _d_var_max = 2, 3
|
59 |
+
|
60 |
+
def __new__(cls, *args, **kwargs):
|
61 |
+
"""
|
62 |
+
This is the function which interprets
|
63 |
+
arguments given to Plot.__init__ and
|
64 |
+
Plot.__setattr__. Returns an initialized
|
65 |
+
instance of the appropriate child class.
|
66 |
+
"""
|
67 |
+
|
68 |
+
newargs, newkwargs = PlotMode._extract_options(args, kwargs)
|
69 |
+
mode_arg = newkwargs.get('mode', '')
|
70 |
+
|
71 |
+
# Interpret the arguments
|
72 |
+
d_vars, intervals = PlotMode._interpret_args(newargs)
|
73 |
+
i_vars = PlotMode._find_i_vars(d_vars, intervals)
|
74 |
+
i, d = max([len(i_vars), len(intervals)]), len(d_vars)
|
75 |
+
|
76 |
+
# Find the appropriate mode
|
77 |
+
subcls = PlotMode._get_mode(mode_arg, i, d)
|
78 |
+
|
79 |
+
# Create the object
|
80 |
+
o = object.__new__(subcls)
|
81 |
+
|
82 |
+
# Do some setup for the mode instance
|
83 |
+
o.d_vars = d_vars
|
84 |
+
o._fill_i_vars(i_vars)
|
85 |
+
o._fill_intervals(intervals)
|
86 |
+
o.options = newkwargs
|
87 |
+
|
88 |
+
return o
|
89 |
+
|
90 |
+
@staticmethod
|
91 |
+
def _get_mode(mode_arg, i_var_count, d_var_count):
|
92 |
+
"""
|
93 |
+
Tries to return an appropriate mode class.
|
94 |
+
Intended to be called only by __new__.
|
95 |
+
|
96 |
+
mode_arg
|
97 |
+
Can be a string or a class. If it is a
|
98 |
+
PlotMode subclass, it is simply returned.
|
99 |
+
If it is a string, it can an alias for
|
100 |
+
a mode or an empty string. In the latter
|
101 |
+
case, we try to find a default mode for
|
102 |
+
the i_var_count and d_var_count.
|
103 |
+
|
104 |
+
i_var_count
|
105 |
+
The number of independent variables
|
106 |
+
needed to evaluate the d_vars.
|
107 |
+
|
108 |
+
d_var_count
|
109 |
+
The number of dependent variables;
|
110 |
+
usually the number of functions to
|
111 |
+
be evaluated in plotting.
|
112 |
+
|
113 |
+
For example, a Cartesian function y = f(x) has
|
114 |
+
one i_var (x) and one d_var (y). A parametric
|
115 |
+
form x,y,z = f(u,v), f(u,v), f(u,v) has two
|
116 |
+
two i_vars (u,v) and three d_vars (x,y,z).
|
117 |
+
"""
|
118 |
+
# if the mode_arg is simply a PlotMode class,
|
119 |
+
# check that the mode supports the numbers
|
120 |
+
# of independent and dependent vars, then
|
121 |
+
# return it
|
122 |
+
try:
|
123 |
+
m = None
|
124 |
+
if issubclass(mode_arg, PlotMode):
|
125 |
+
m = mode_arg
|
126 |
+
except TypeError:
|
127 |
+
pass
|
128 |
+
if m:
|
129 |
+
if not m._was_initialized:
|
130 |
+
raise ValueError(("To use unregistered plot mode %s "
|
131 |
+
"you must first call %s._init_mode().")
|
132 |
+
% (m.__name__, m.__name__))
|
133 |
+
if d_var_count != m.d_var_count:
|
134 |
+
raise ValueError(("%s can only plot functions "
|
135 |
+
"with %i dependent variables.")
|
136 |
+
% (m.__name__,
|
137 |
+
m.d_var_count))
|
138 |
+
if i_var_count > m.i_var_count:
|
139 |
+
raise ValueError(("%s cannot plot functions "
|
140 |
+
"with more than %i independent "
|
141 |
+
"variables.")
|
142 |
+
% (m.__name__,
|
143 |
+
m.i_var_count))
|
144 |
+
return m
|
145 |
+
# If it is a string, there are two possibilities.
|
146 |
+
if isinstance(mode_arg, str):
|
147 |
+
i, d = i_var_count, d_var_count
|
148 |
+
if i > PlotMode._i_var_max:
|
149 |
+
raise ValueError(var_count_error(True, True))
|
150 |
+
if d > PlotMode._d_var_max:
|
151 |
+
raise ValueError(var_count_error(False, True))
|
152 |
+
# If the string is '', try to find a suitable
|
153 |
+
# default mode
|
154 |
+
if not mode_arg:
|
155 |
+
return PlotMode._get_default_mode(i, d)
|
156 |
+
# Otherwise, interpret the string as a mode
|
157 |
+
# alias (e.g. 'cartesian', 'parametric', etc)
|
158 |
+
else:
|
159 |
+
return PlotMode._get_aliased_mode(mode_arg, i, d)
|
160 |
+
else:
|
161 |
+
raise ValueError("PlotMode argument must be "
|
162 |
+
"a class or a string")
|
163 |
+
|
164 |
+
@staticmethod
|
165 |
+
def _get_default_mode(i, d, i_vars=-1):
|
166 |
+
if i_vars == -1:
|
167 |
+
i_vars = i
|
168 |
+
try:
|
169 |
+
return PlotMode._mode_default_map[d][i]
|
170 |
+
except KeyError:
|
171 |
+
# Keep looking for modes in higher i var counts
|
172 |
+
# which support the given d var count until we
|
173 |
+
# reach the max i_var count.
|
174 |
+
if i < PlotMode._i_var_max:
|
175 |
+
return PlotMode._get_default_mode(i + 1, d, i_vars)
|
176 |
+
else:
|
177 |
+
raise ValueError(("Couldn't find a default mode "
|
178 |
+
"for %i independent and %i "
|
179 |
+
"dependent variables.") % (i_vars, d))
|
180 |
+
|
181 |
+
@staticmethod
|
182 |
+
def _get_aliased_mode(alias, i, d, i_vars=-1):
|
183 |
+
if i_vars == -1:
|
184 |
+
i_vars = i
|
185 |
+
if alias not in PlotMode._mode_alias_list:
|
186 |
+
raise ValueError(("Couldn't find a mode called"
|
187 |
+
" %s. Known modes: %s.")
|
188 |
+
% (alias, ", ".join(PlotMode._mode_alias_list)))
|
189 |
+
try:
|
190 |
+
return PlotMode._mode_map[d][i][alias]
|
191 |
+
except TypeError:
|
192 |
+
# Keep looking for modes in higher i var counts
|
193 |
+
# which support the given d var count and alias
|
194 |
+
# until we reach the max i_var count.
|
195 |
+
if i < PlotMode._i_var_max:
|
196 |
+
return PlotMode._get_aliased_mode(alias, i + 1, d, i_vars)
|
197 |
+
else:
|
198 |
+
raise ValueError(("Couldn't find a %s mode "
|
199 |
+
"for %i independent and %i "
|
200 |
+
"dependent variables.")
|
201 |
+
% (alias, i_vars, d))
|
202 |
+
|
203 |
+
@classmethod
|
204 |
+
def _register(cls):
|
205 |
+
"""
|
206 |
+
Called once for each user-usable plot mode.
|
207 |
+
For Cartesian2D, it is invoked after the
|
208 |
+
class definition: Cartesian2D._register()
|
209 |
+
"""
|
210 |
+
name = cls.__name__
|
211 |
+
cls._init_mode()
|
212 |
+
|
213 |
+
try:
|
214 |
+
i, d = cls.i_var_count, cls.d_var_count
|
215 |
+
# Add the mode to _mode_map under all
|
216 |
+
# given aliases
|
217 |
+
for a in cls.aliases:
|
218 |
+
if a not in PlotMode._mode_alias_list:
|
219 |
+
# Also track valid aliases, so
|
220 |
+
# we can quickly know when given
|
221 |
+
# an invalid one in _get_mode.
|
222 |
+
PlotMode._mode_alias_list.append(a)
|
223 |
+
PlotMode._mode_map[d][i][a] = cls
|
224 |
+
if cls.is_default:
|
225 |
+
# If this mode was marked as the
|
226 |
+
# default for this d,i combination,
|
227 |
+
# also set that.
|
228 |
+
PlotMode._mode_default_map[d][i] = cls
|
229 |
+
|
230 |
+
except Exception as e:
|
231 |
+
raise RuntimeError(("Failed to register "
|
232 |
+
"plot mode %s. Reason: %s")
|
233 |
+
% (name, (str(e))))
|
234 |
+
|
235 |
+
@classmethod
|
236 |
+
def _init_mode(cls):
|
237 |
+
"""
|
238 |
+
Initializes the plot mode based on
|
239 |
+
the 'mode-specific parameters' above.
|
240 |
+
Only intended to be called by
|
241 |
+
PlotMode._register(). To use a mode without
|
242 |
+
registering it, you can directly call
|
243 |
+
ModeSubclass._init_mode().
|
244 |
+
"""
|
245 |
+
def symbols_list(symbol_str):
|
246 |
+
return [Symbol(s) for s in symbol_str]
|
247 |
+
|
248 |
+
# Convert the vars strs into
|
249 |
+
# lists of symbols.
|
250 |
+
cls.i_vars = symbols_list(cls.i_vars)
|
251 |
+
cls.d_vars = symbols_list(cls.d_vars)
|
252 |
+
|
253 |
+
# Var count is used often, calculate
|
254 |
+
# it once here
|
255 |
+
cls.i_var_count = len(cls.i_vars)
|
256 |
+
cls.d_var_count = len(cls.d_vars)
|
257 |
+
|
258 |
+
if cls.i_var_count > PlotMode._i_var_max:
|
259 |
+
raise ValueError(var_count_error(True, False))
|
260 |
+
if cls.d_var_count > PlotMode._d_var_max:
|
261 |
+
raise ValueError(var_count_error(False, False))
|
262 |
+
|
263 |
+
# Try to use first alias as primary_alias
|
264 |
+
if len(cls.aliases) > 0:
|
265 |
+
cls.primary_alias = cls.aliases[0]
|
266 |
+
else:
|
267 |
+
cls.primary_alias = cls.__name__
|
268 |
+
|
269 |
+
di = cls.intervals
|
270 |
+
if len(di) != cls.i_var_count:
|
271 |
+
raise ValueError("Plot mode must provide a "
|
272 |
+
"default interval for each i_var.")
|
273 |
+
for i in range(cls.i_var_count):
|
274 |
+
# default intervals must be given [min,max,steps]
|
275 |
+
# (no var, but they must be in the same order as i_vars)
|
276 |
+
if len(di[i]) != 3:
|
277 |
+
raise ValueError("length should be equal to 3")
|
278 |
+
|
279 |
+
# Initialize an incomplete interval,
|
280 |
+
# to later be filled with a var when
|
281 |
+
# the mode is instantiated.
|
282 |
+
di[i] = PlotInterval(None, *di[i])
|
283 |
+
|
284 |
+
# To prevent people from using modes
|
285 |
+
# without these required fields set up.
|
286 |
+
cls._was_initialized = True
|
287 |
+
|
288 |
+
_was_initialized = False
|
289 |
+
|
290 |
+
## Initializer Helper Methods
|
291 |
+
|
292 |
+
@staticmethod
|
293 |
+
def _find_i_vars(functions, intervals):
|
294 |
+
i_vars = []
|
295 |
+
|
296 |
+
# First, collect i_vars in the
|
297 |
+
# order they are given in any
|
298 |
+
# intervals.
|
299 |
+
for i in intervals:
|
300 |
+
if i.v is None:
|
301 |
+
continue
|
302 |
+
elif i.v in i_vars:
|
303 |
+
raise ValueError(("Multiple intervals given "
|
304 |
+
"for %s.") % (str(i.v)))
|
305 |
+
i_vars.append(i.v)
|
306 |
+
|
307 |
+
# Then, find any remaining
|
308 |
+
# i_vars in given functions
|
309 |
+
# (aka d_vars)
|
310 |
+
for f in functions:
|
311 |
+
for a in f.free_symbols:
|
312 |
+
if a not in i_vars:
|
313 |
+
i_vars.append(a)
|
314 |
+
|
315 |
+
return i_vars
|
316 |
+
|
317 |
+
def _fill_i_vars(self, i_vars):
|
318 |
+
# copy default i_vars
|
319 |
+
self.i_vars = [Symbol(str(i)) for i in self.i_vars]
|
320 |
+
# replace with given i_vars
|
321 |
+
for i in range(len(i_vars)):
|
322 |
+
self.i_vars[i] = i_vars[i]
|
323 |
+
|
324 |
+
def _fill_intervals(self, intervals):
|
325 |
+
# copy default intervals
|
326 |
+
self.intervals = [PlotInterval(i) for i in self.intervals]
|
327 |
+
# track i_vars used so far
|
328 |
+
v_used = []
|
329 |
+
# fill copy of default
|
330 |
+
# intervals with given info
|
331 |
+
for i in range(len(intervals)):
|
332 |
+
self.intervals[i].fill_from(intervals[i])
|
333 |
+
if self.intervals[i].v is not None:
|
334 |
+
v_used.append(self.intervals[i].v)
|
335 |
+
# Find any orphan intervals and
|
336 |
+
# assign them i_vars
|
337 |
+
for i in range(len(self.intervals)):
|
338 |
+
if self.intervals[i].v is None:
|
339 |
+
u = [v for v in self.i_vars if v not in v_used]
|
340 |
+
if len(u) == 0:
|
341 |
+
raise ValueError("length should not be equal to 0")
|
342 |
+
self.intervals[i].v = u[0]
|
343 |
+
v_used.append(u[0])
|
344 |
+
|
345 |
+
@staticmethod
|
346 |
+
def _interpret_args(args):
|
347 |
+
interval_wrong_order = "PlotInterval %s was given before any function(s)."
|
348 |
+
interpret_error = "Could not interpret %s as a function or interval."
|
349 |
+
|
350 |
+
functions, intervals = [], []
|
351 |
+
if isinstance(args[0], GeometryEntity):
|
352 |
+
for coords in list(args[0].arbitrary_point()):
|
353 |
+
functions.append(coords)
|
354 |
+
intervals.append(PlotInterval.try_parse(args[0].plot_interval()))
|
355 |
+
else:
|
356 |
+
for a in args:
|
357 |
+
i = PlotInterval.try_parse(a)
|
358 |
+
if i is not None:
|
359 |
+
if len(functions) == 0:
|
360 |
+
raise ValueError(interval_wrong_order % (str(i)))
|
361 |
+
else:
|
362 |
+
intervals.append(i)
|
363 |
+
else:
|
364 |
+
if is_sequence(a, include=str):
|
365 |
+
raise ValueError(interpret_error % (str(a)))
|
366 |
+
try:
|
367 |
+
f = sympify(a)
|
368 |
+
functions.append(f)
|
369 |
+
except TypeError:
|
370 |
+
raise ValueError(interpret_error % str(a))
|
371 |
+
|
372 |
+
return functions, intervals
|
373 |
+
|
374 |
+
@staticmethod
|
375 |
+
def _extract_options(args, kwargs):
|
376 |
+
newkwargs, newargs = {}, []
|
377 |
+
for a in args:
|
378 |
+
if isinstance(a, str):
|
379 |
+
newkwargs = dict(newkwargs, **parse_option_string(a))
|
380 |
+
else:
|
381 |
+
newargs.append(a)
|
382 |
+
newkwargs = dict(newkwargs, **kwargs)
|
383 |
+
return newargs, newkwargs
|
384 |
+
|
385 |
+
|
386 |
+
def var_count_error(is_independent, is_plotting):
|
387 |
+
"""
|
388 |
+
Used to format an error message which differs
|
389 |
+
slightly in 4 places.
|
390 |
+
"""
|
391 |
+
if is_plotting:
|
392 |
+
v = "Plotting"
|
393 |
+
else:
|
394 |
+
v = "Registering plot modes"
|
395 |
+
if is_independent:
|
396 |
+
n, s = PlotMode._i_var_max, "independent"
|
397 |
+
else:
|
398 |
+
n, s = PlotMode._d_var_max, "dependent"
|
399 |
+
return ("%s with more than %i %s variables "
|
400 |
+
"is not supported.") % (v, n, s)
|
llmeval-env/lib/python3.10/site-packages/sympy/plotting/pygletplot/plot_mode_base.py
ADDED
@@ -0,0 +1,378 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pyglet.gl as pgl
|
2 |
+
from sympy.core import S
|
3 |
+
from sympy.plotting.pygletplot.color_scheme import ColorScheme
|
4 |
+
from sympy.plotting.pygletplot.plot_mode import PlotMode
|
5 |
+
from sympy.utilities.iterables import is_sequence
|
6 |
+
from time import sleep
|
7 |
+
from threading import Thread, Event, RLock
|
8 |
+
import warnings
|
9 |
+
|
10 |
+
|
11 |
+
class PlotModeBase(PlotMode):
|
12 |
+
"""
|
13 |
+
Intended parent class for plotting
|
14 |
+
modes. Provides base functionality
|
15 |
+
in conjunction with its parent,
|
16 |
+
PlotMode.
|
17 |
+
"""
|
18 |
+
|
19 |
+
##
|
20 |
+
## Class-Level Attributes
|
21 |
+
##
|
22 |
+
|
23 |
+
"""
|
24 |
+
The following attributes are meant
|
25 |
+
to be set at the class level, and serve
|
26 |
+
as parameters to the plot mode registry
|
27 |
+
(in PlotMode). See plot_modes.py for
|
28 |
+
concrete examples.
|
29 |
+
"""
|
30 |
+
|
31 |
+
"""
|
32 |
+
i_vars
|
33 |
+
'x' for Cartesian2D
|
34 |
+
'xy' for Cartesian3D
|
35 |
+
etc.
|
36 |
+
|
37 |
+
d_vars
|
38 |
+
'y' for Cartesian2D
|
39 |
+
'r' for Polar
|
40 |
+
etc.
|
41 |
+
"""
|
42 |
+
i_vars, d_vars = '', ''
|
43 |
+
|
44 |
+
"""
|
45 |
+
intervals
|
46 |
+
Default intervals for each i_var, and in the
|
47 |
+
same order. Specified [min, max, steps].
|
48 |
+
No variable can be given (it is bound later).
|
49 |
+
"""
|
50 |
+
intervals = []
|
51 |
+
|
52 |
+
"""
|
53 |
+
aliases
|
54 |
+
A list of strings which can be used to
|
55 |
+
access this mode.
|
56 |
+
'cartesian' for Cartesian2D and Cartesian3D
|
57 |
+
'polar' for Polar
|
58 |
+
'cylindrical', 'polar' for Cylindrical
|
59 |
+
|
60 |
+
Note that _init_mode chooses the first alias
|
61 |
+
in the list as the mode's primary_alias, which
|
62 |
+
will be displayed to the end user in certain
|
63 |
+
contexts.
|
64 |
+
"""
|
65 |
+
aliases = []
|
66 |
+
|
67 |
+
"""
|
68 |
+
is_default
|
69 |
+
Whether to set this mode as the default
|
70 |
+
for arguments passed to PlotMode() containing
|
71 |
+
the same number of d_vars as this mode and
|
72 |
+
at most the same number of i_vars.
|
73 |
+
"""
|
74 |
+
is_default = False
|
75 |
+
|
76 |
+
"""
|
77 |
+
All of the above attributes are defined in PlotMode.
|
78 |
+
The following ones are specific to PlotModeBase.
|
79 |
+
"""
|
80 |
+
|
81 |
+
"""
|
82 |
+
A list of the render styles. Do not modify.
|
83 |
+
"""
|
84 |
+
styles = {'wireframe': 1, 'solid': 2, 'both': 3}
|
85 |
+
|
86 |
+
"""
|
87 |
+
style_override
|
88 |
+
Always use this style if not blank.
|
89 |
+
"""
|
90 |
+
style_override = ''
|
91 |
+
|
92 |
+
"""
|
93 |
+
default_wireframe_color
|
94 |
+
default_solid_color
|
95 |
+
Can be used when color is None or being calculated.
|
96 |
+
Used by PlotCurve and PlotSurface, but not anywhere
|
97 |
+
in PlotModeBase.
|
98 |
+
"""
|
99 |
+
|
100 |
+
default_wireframe_color = (0.85, 0.85, 0.85)
|
101 |
+
default_solid_color = (0.6, 0.6, 0.9)
|
102 |
+
default_rot_preset = 'xy'
|
103 |
+
|
104 |
+
##
|
105 |
+
## Instance-Level Attributes
|
106 |
+
##
|
107 |
+
|
108 |
+
## 'Abstract' member functions
|
109 |
+
def _get_evaluator(self):
|
110 |
+
if self.use_lambda_eval:
|
111 |
+
try:
|
112 |
+
e = self._get_lambda_evaluator()
|
113 |
+
return e
|
114 |
+
except Exception:
|
115 |
+
warnings.warn("\nWarning: creating lambda evaluator failed. "
|
116 |
+
"Falling back on SymPy subs evaluator.")
|
117 |
+
return self._get_sympy_evaluator()
|
118 |
+
|
119 |
+
def _get_sympy_evaluator(self):
|
120 |
+
raise NotImplementedError()
|
121 |
+
|
122 |
+
def _get_lambda_evaluator(self):
|
123 |
+
raise NotImplementedError()
|
124 |
+
|
125 |
+
def _on_calculate_verts(self):
|
126 |
+
raise NotImplementedError()
|
127 |
+
|
128 |
+
def _on_calculate_cverts(self):
|
129 |
+
raise NotImplementedError()
|
130 |
+
|
131 |
+
## Base member functions
|
132 |
+
def __init__(self, *args, bounds_callback=None, **kwargs):
|
133 |
+
self.verts = []
|
134 |
+
self.cverts = []
|
135 |
+
self.bounds = [[S.Infinity, S.NegativeInfinity, 0],
|
136 |
+
[S.Infinity, S.NegativeInfinity, 0],
|
137 |
+
[S.Infinity, S.NegativeInfinity, 0]]
|
138 |
+
self.cbounds = [[S.Infinity, S.NegativeInfinity, 0],
|
139 |
+
[S.Infinity, S.NegativeInfinity, 0],
|
140 |
+
[S.Infinity, S.NegativeInfinity, 0]]
|
141 |
+
|
142 |
+
self._draw_lock = RLock()
|
143 |
+
|
144 |
+
self._calculating_verts = Event()
|
145 |
+
self._calculating_cverts = Event()
|
146 |
+
self._calculating_verts_pos = 0.0
|
147 |
+
self._calculating_verts_len = 0.0
|
148 |
+
self._calculating_cverts_pos = 0.0
|
149 |
+
self._calculating_cverts_len = 0.0
|
150 |
+
|
151 |
+
self._max_render_stack_size = 3
|
152 |
+
self._draw_wireframe = [-1]
|
153 |
+
self._draw_solid = [-1]
|
154 |
+
|
155 |
+
self._style = None
|
156 |
+
self._color = None
|
157 |
+
|
158 |
+
self.predraw = []
|
159 |
+
self.postdraw = []
|
160 |
+
|
161 |
+
self.use_lambda_eval = self.options.pop('use_sympy_eval', None) is None
|
162 |
+
self.style = self.options.pop('style', '')
|
163 |
+
self.color = self.options.pop('color', 'rainbow')
|
164 |
+
self.bounds_callback = bounds_callback
|
165 |
+
|
166 |
+
self._on_calculate()
|
167 |
+
|
168 |
+
def synchronized(f):
|
169 |
+
def w(self, *args, **kwargs):
|
170 |
+
self._draw_lock.acquire()
|
171 |
+
try:
|
172 |
+
r = f(self, *args, **kwargs)
|
173 |
+
return r
|
174 |
+
finally:
|
175 |
+
self._draw_lock.release()
|
176 |
+
return w
|
177 |
+
|
178 |
+
@synchronized
|
179 |
+
def push_wireframe(self, function):
|
180 |
+
"""
|
181 |
+
Push a function which performs gl commands
|
182 |
+
used to build a display list. (The list is
|
183 |
+
built outside of the function)
|
184 |
+
"""
|
185 |
+
assert callable(function)
|
186 |
+
self._draw_wireframe.append(function)
|
187 |
+
if len(self._draw_wireframe) > self._max_render_stack_size:
|
188 |
+
del self._draw_wireframe[1] # leave marker element
|
189 |
+
|
190 |
+
@synchronized
|
191 |
+
def push_solid(self, function):
|
192 |
+
"""
|
193 |
+
Push a function which performs gl commands
|
194 |
+
used to build a display list. (The list is
|
195 |
+
built outside of the function)
|
196 |
+
"""
|
197 |
+
assert callable(function)
|
198 |
+
self._draw_solid.append(function)
|
199 |
+
if len(self._draw_solid) > self._max_render_stack_size:
|
200 |
+
del self._draw_solid[1] # leave marker element
|
201 |
+
|
202 |
+
def _create_display_list(self, function):
|
203 |
+
dl = pgl.glGenLists(1)
|
204 |
+
pgl.glNewList(dl, pgl.GL_COMPILE)
|
205 |
+
function()
|
206 |
+
pgl.glEndList()
|
207 |
+
return dl
|
208 |
+
|
209 |
+
def _render_stack_top(self, render_stack):
|
210 |
+
top = render_stack[-1]
|
211 |
+
if top == -1:
|
212 |
+
return -1 # nothing to display
|
213 |
+
elif callable(top):
|
214 |
+
dl = self._create_display_list(top)
|
215 |
+
render_stack[-1] = (dl, top)
|
216 |
+
return dl # display newly added list
|
217 |
+
elif len(top) == 2:
|
218 |
+
if pgl.GL_TRUE == pgl.glIsList(top[0]):
|
219 |
+
return top[0] # display stored list
|
220 |
+
dl = self._create_display_list(top[1])
|
221 |
+
render_stack[-1] = (dl, top[1])
|
222 |
+
return dl # display regenerated list
|
223 |
+
|
224 |
+
def _draw_solid_display_list(self, dl):
|
225 |
+
pgl.glPushAttrib(pgl.GL_ENABLE_BIT | pgl.GL_POLYGON_BIT)
|
226 |
+
pgl.glPolygonMode(pgl.GL_FRONT_AND_BACK, pgl.GL_FILL)
|
227 |
+
pgl.glCallList(dl)
|
228 |
+
pgl.glPopAttrib()
|
229 |
+
|
230 |
+
def _draw_wireframe_display_list(self, dl):
|
231 |
+
pgl.glPushAttrib(pgl.GL_ENABLE_BIT | pgl.GL_POLYGON_BIT)
|
232 |
+
pgl.glPolygonMode(pgl.GL_FRONT_AND_BACK, pgl.GL_LINE)
|
233 |
+
pgl.glEnable(pgl.GL_POLYGON_OFFSET_LINE)
|
234 |
+
pgl.glPolygonOffset(-0.005, -50.0)
|
235 |
+
pgl.glCallList(dl)
|
236 |
+
pgl.glPopAttrib()
|
237 |
+
|
238 |
+
@synchronized
|
239 |
+
def draw(self):
|
240 |
+
for f in self.predraw:
|
241 |
+
if callable(f):
|
242 |
+
f()
|
243 |
+
if self.style_override:
|
244 |
+
style = self.styles[self.style_override]
|
245 |
+
else:
|
246 |
+
style = self.styles[self._style]
|
247 |
+
# Draw solid component if style includes solid
|
248 |
+
if style & 2:
|
249 |
+
dl = self._render_stack_top(self._draw_solid)
|
250 |
+
if dl > 0 and pgl.GL_TRUE == pgl.glIsList(dl):
|
251 |
+
self._draw_solid_display_list(dl)
|
252 |
+
# Draw wireframe component if style includes wireframe
|
253 |
+
if style & 1:
|
254 |
+
dl = self._render_stack_top(self._draw_wireframe)
|
255 |
+
if dl > 0 and pgl.GL_TRUE == pgl.glIsList(dl):
|
256 |
+
self._draw_wireframe_display_list(dl)
|
257 |
+
for f in self.postdraw:
|
258 |
+
if callable(f):
|
259 |
+
f()
|
260 |
+
|
261 |
+
def _on_change_color(self, color):
|
262 |
+
Thread(target=self._calculate_cverts).start()
|
263 |
+
|
264 |
+
def _on_calculate(self):
|
265 |
+
Thread(target=self._calculate_all).start()
|
266 |
+
|
267 |
+
def _calculate_all(self):
|
268 |
+
self._calculate_verts()
|
269 |
+
self._calculate_cverts()
|
270 |
+
|
271 |
+
def _calculate_verts(self):
|
272 |
+
if self._calculating_verts.is_set():
|
273 |
+
return
|
274 |
+
self._calculating_verts.set()
|
275 |
+
try:
|
276 |
+
self._on_calculate_verts()
|
277 |
+
finally:
|
278 |
+
self._calculating_verts.clear()
|
279 |
+
if callable(self.bounds_callback):
|
280 |
+
self.bounds_callback()
|
281 |
+
|
282 |
+
def _calculate_cverts(self):
|
283 |
+
if self._calculating_verts.is_set():
|
284 |
+
return
|
285 |
+
while self._calculating_cverts.is_set():
|
286 |
+
sleep(0) # wait for previous calculation
|
287 |
+
self._calculating_cverts.set()
|
288 |
+
try:
|
289 |
+
self._on_calculate_cverts()
|
290 |
+
finally:
|
291 |
+
self._calculating_cverts.clear()
|
292 |
+
|
293 |
+
def _get_calculating_verts(self):
|
294 |
+
return self._calculating_verts.is_set()
|
295 |
+
|
296 |
+
def _get_calculating_verts_pos(self):
|
297 |
+
return self._calculating_verts_pos
|
298 |
+
|
299 |
+
def _get_calculating_verts_len(self):
|
300 |
+
return self._calculating_verts_len
|
301 |
+
|
302 |
+
def _get_calculating_cverts(self):
|
303 |
+
return self._calculating_cverts.is_set()
|
304 |
+
|
305 |
+
def _get_calculating_cverts_pos(self):
|
306 |
+
return self._calculating_cverts_pos
|
307 |
+
|
308 |
+
def _get_calculating_cverts_len(self):
|
309 |
+
return self._calculating_cverts_len
|
310 |
+
|
311 |
+
## Property handlers
|
312 |
+
def _get_style(self):
|
313 |
+
return self._style
|
314 |
+
|
315 |
+
@synchronized
|
316 |
+
def _set_style(self, v):
|
317 |
+
if v is None:
|
318 |
+
return
|
319 |
+
if v == '':
|
320 |
+
step_max = 0
|
321 |
+
for i in self.intervals:
|
322 |
+
if i.v_steps is None:
|
323 |
+
continue
|
324 |
+
step_max = max([step_max, int(i.v_steps)])
|
325 |
+
v = ['both', 'solid'][step_max > 40]
|
326 |
+
if v not in self.styles:
|
327 |
+
raise ValueError("v should be there in self.styles")
|
328 |
+
if v == self._style:
|
329 |
+
return
|
330 |
+
self._style = v
|
331 |
+
|
332 |
+
def _get_color(self):
|
333 |
+
return self._color
|
334 |
+
|
335 |
+
@synchronized
|
336 |
+
def _set_color(self, v):
|
337 |
+
try:
|
338 |
+
if v is not None:
|
339 |
+
if is_sequence(v):
|
340 |
+
v = ColorScheme(*v)
|
341 |
+
else:
|
342 |
+
v = ColorScheme(v)
|
343 |
+
if repr(v) == repr(self._color):
|
344 |
+
return
|
345 |
+
self._on_change_color(v)
|
346 |
+
self._color = v
|
347 |
+
except Exception as e:
|
348 |
+
raise RuntimeError("Color change failed. "
|
349 |
+
"Reason: %s" % (str(e)))
|
350 |
+
|
351 |
+
style = property(_get_style, _set_style)
|
352 |
+
color = property(_get_color, _set_color)
|
353 |
+
|
354 |
+
calculating_verts = property(_get_calculating_verts)
|
355 |
+
calculating_verts_pos = property(_get_calculating_verts_pos)
|
356 |
+
calculating_verts_len = property(_get_calculating_verts_len)
|
357 |
+
|
358 |
+
calculating_cverts = property(_get_calculating_cverts)
|
359 |
+
calculating_cverts_pos = property(_get_calculating_cverts_pos)
|
360 |
+
calculating_cverts_len = property(_get_calculating_cverts_len)
|
361 |
+
|
362 |
+
## String representations
|
363 |
+
|
364 |
+
def __str__(self):
|
365 |
+
f = ", ".join(str(d) for d in self.d_vars)
|
366 |
+
o = "'mode=%s'" % (self.primary_alias)
|
367 |
+
return ", ".join([f, o])
|
368 |
+
|
369 |
+
def __repr__(self):
|
370 |
+
f = ", ".join(str(d) for d in self.d_vars)
|
371 |
+
i = ", ".join(str(i) for i in self.intervals)
|
372 |
+
d = [('mode', self.primary_alias),
|
373 |
+
('color', str(self.color)),
|
374 |
+
('style', str(self.style))]
|
375 |
+
|
376 |
+
o = "'%s'" % ("; ".join("%s=%s" % (k, v)
|
377 |
+
for k, v in d if v != 'None'))
|
378 |
+
return ", ".join([f, i, o])
|
llmeval-env/lib/python3.10/site-packages/sympy/plotting/pygletplot/plot_modes.py
ADDED
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.utilities.lambdify import lambdify
|
2 |
+
from sympy.core.numbers import pi
|
3 |
+
from sympy.functions import sin, cos
|
4 |
+
from sympy.plotting.pygletplot.plot_curve import PlotCurve
|
5 |
+
from sympy.plotting.pygletplot.plot_surface import PlotSurface
|
6 |
+
|
7 |
+
from math import sin as p_sin
|
8 |
+
from math import cos as p_cos
|
9 |
+
|
10 |
+
|
11 |
+
def float_vec3(f):
|
12 |
+
def inner(*args):
|
13 |
+
v = f(*args)
|
14 |
+
return float(v[0]), float(v[1]), float(v[2])
|
15 |
+
return inner
|
16 |
+
|
17 |
+
|
18 |
+
class Cartesian2D(PlotCurve):
|
19 |
+
i_vars, d_vars = 'x', 'y'
|
20 |
+
intervals = [[-5, 5, 100]]
|
21 |
+
aliases = ['cartesian']
|
22 |
+
is_default = True
|
23 |
+
|
24 |
+
def _get_sympy_evaluator(self):
|
25 |
+
fy = self.d_vars[0]
|
26 |
+
x = self.t_interval.v
|
27 |
+
|
28 |
+
@float_vec3
|
29 |
+
def e(_x):
|
30 |
+
return (_x, fy.subs(x, _x), 0.0)
|
31 |
+
return e
|
32 |
+
|
33 |
+
def _get_lambda_evaluator(self):
|
34 |
+
fy = self.d_vars[0]
|
35 |
+
x = self.t_interval.v
|
36 |
+
return lambdify([x], [x, fy, 0.0])
|
37 |
+
|
38 |
+
|
39 |
+
class Cartesian3D(PlotSurface):
|
40 |
+
i_vars, d_vars = 'xy', 'z'
|
41 |
+
intervals = [[-1, 1, 40], [-1, 1, 40]]
|
42 |
+
aliases = ['cartesian', 'monge']
|
43 |
+
is_default = True
|
44 |
+
|
45 |
+
def _get_sympy_evaluator(self):
|
46 |
+
fz = self.d_vars[0]
|
47 |
+
x = self.u_interval.v
|
48 |
+
y = self.v_interval.v
|
49 |
+
|
50 |
+
@float_vec3
|
51 |
+
def e(_x, _y):
|
52 |
+
return (_x, _y, fz.subs(x, _x).subs(y, _y))
|
53 |
+
return e
|
54 |
+
|
55 |
+
def _get_lambda_evaluator(self):
|
56 |
+
fz = self.d_vars[0]
|
57 |
+
x = self.u_interval.v
|
58 |
+
y = self.v_interval.v
|
59 |
+
return lambdify([x, y], [x, y, fz])
|
60 |
+
|
61 |
+
|
62 |
+
class ParametricCurve2D(PlotCurve):
|
63 |
+
i_vars, d_vars = 't', 'xy'
|
64 |
+
intervals = [[0, 2*pi, 100]]
|
65 |
+
aliases = ['parametric']
|
66 |
+
is_default = True
|
67 |
+
|
68 |
+
def _get_sympy_evaluator(self):
|
69 |
+
fx, fy = self.d_vars
|
70 |
+
t = self.t_interval.v
|
71 |
+
|
72 |
+
@float_vec3
|
73 |
+
def e(_t):
|
74 |
+
return (fx.subs(t, _t), fy.subs(t, _t), 0.0)
|
75 |
+
return e
|
76 |
+
|
77 |
+
def _get_lambda_evaluator(self):
|
78 |
+
fx, fy = self.d_vars
|
79 |
+
t = self.t_interval.v
|
80 |
+
return lambdify([t], [fx, fy, 0.0])
|
81 |
+
|
82 |
+
|
83 |
+
class ParametricCurve3D(PlotCurve):
|
84 |
+
i_vars, d_vars = 't', 'xyz'
|
85 |
+
intervals = [[0, 2*pi, 100]]
|
86 |
+
aliases = ['parametric']
|
87 |
+
is_default = True
|
88 |
+
|
89 |
+
def _get_sympy_evaluator(self):
|
90 |
+
fx, fy, fz = self.d_vars
|
91 |
+
t = self.t_interval.v
|
92 |
+
|
93 |
+
@float_vec3
|
94 |
+
def e(_t):
|
95 |
+
return (fx.subs(t, _t), fy.subs(t, _t), fz.subs(t, _t))
|
96 |
+
return e
|
97 |
+
|
98 |
+
def _get_lambda_evaluator(self):
|
99 |
+
fx, fy, fz = self.d_vars
|
100 |
+
t = self.t_interval.v
|
101 |
+
return lambdify([t], [fx, fy, fz])
|
102 |
+
|
103 |
+
|
104 |
+
class ParametricSurface(PlotSurface):
|
105 |
+
i_vars, d_vars = 'uv', 'xyz'
|
106 |
+
intervals = [[-1, 1, 40], [-1, 1, 40]]
|
107 |
+
aliases = ['parametric']
|
108 |
+
is_default = True
|
109 |
+
|
110 |
+
def _get_sympy_evaluator(self):
|
111 |
+
fx, fy, fz = self.d_vars
|
112 |
+
u = self.u_interval.v
|
113 |
+
v = self.v_interval.v
|
114 |
+
|
115 |
+
@float_vec3
|
116 |
+
def e(_u, _v):
|
117 |
+
return (fx.subs(u, _u).subs(v, _v),
|
118 |
+
fy.subs(u, _u).subs(v, _v),
|
119 |
+
fz.subs(u, _u).subs(v, _v))
|
120 |
+
return e
|
121 |
+
|
122 |
+
def _get_lambda_evaluator(self):
|
123 |
+
fx, fy, fz = self.d_vars
|
124 |
+
u = self.u_interval.v
|
125 |
+
v = self.v_interval.v
|
126 |
+
return lambdify([u, v], [fx, fy, fz])
|
127 |
+
|
128 |
+
|
129 |
+
class Polar(PlotCurve):
|
130 |
+
i_vars, d_vars = 't', 'r'
|
131 |
+
intervals = [[0, 2*pi, 100]]
|
132 |
+
aliases = ['polar']
|
133 |
+
is_default = False
|
134 |
+
|
135 |
+
def _get_sympy_evaluator(self):
|
136 |
+
fr = self.d_vars[0]
|
137 |
+
t = self.t_interval.v
|
138 |
+
|
139 |
+
def e(_t):
|
140 |
+
_r = float(fr.subs(t, _t))
|
141 |
+
return (_r*p_cos(_t), _r*p_sin(_t), 0.0)
|
142 |
+
return e
|
143 |
+
|
144 |
+
def _get_lambda_evaluator(self):
|
145 |
+
fr = self.d_vars[0]
|
146 |
+
t = self.t_interval.v
|
147 |
+
fx, fy = fr*cos(t), fr*sin(t)
|
148 |
+
return lambdify([t], [fx, fy, 0.0])
|
149 |
+
|
150 |
+
|
151 |
+
class Cylindrical(PlotSurface):
|
152 |
+
i_vars, d_vars = 'th', 'r'
|
153 |
+
intervals = [[0, 2*pi, 40], [-1, 1, 20]]
|
154 |
+
aliases = ['cylindrical', 'polar']
|
155 |
+
is_default = False
|
156 |
+
|
157 |
+
def _get_sympy_evaluator(self):
|
158 |
+
fr = self.d_vars[0]
|
159 |
+
t = self.u_interval.v
|
160 |
+
h = self.v_interval.v
|
161 |
+
|
162 |
+
def e(_t, _h):
|
163 |
+
_r = float(fr.subs(t, _t).subs(h, _h))
|
164 |
+
return (_r*p_cos(_t), _r*p_sin(_t), _h)
|
165 |
+
return e
|
166 |
+
|
167 |
+
def _get_lambda_evaluator(self):
|
168 |
+
fr = self.d_vars[0]
|
169 |
+
t = self.u_interval.v
|
170 |
+
h = self.v_interval.v
|
171 |
+
fx, fy = fr*cos(t), fr*sin(t)
|
172 |
+
return lambdify([t, h], [fx, fy, h])
|
173 |
+
|
174 |
+
|
175 |
+
class Spherical(PlotSurface):
|
176 |
+
i_vars, d_vars = 'tp', 'r'
|
177 |
+
intervals = [[0, 2*pi, 40], [0, pi, 20]]
|
178 |
+
aliases = ['spherical']
|
179 |
+
is_default = False
|
180 |
+
|
181 |
+
def _get_sympy_evaluator(self):
|
182 |
+
fr = self.d_vars[0]
|
183 |
+
t = self.u_interval.v
|
184 |
+
p = self.v_interval.v
|
185 |
+
|
186 |
+
def e(_t, _p):
|
187 |
+
_r = float(fr.subs(t, _t).subs(p, _p))
|
188 |
+
return (_r*p_cos(_t)*p_sin(_p),
|
189 |
+
_r*p_sin(_t)*p_sin(_p),
|
190 |
+
_r*p_cos(_p))
|
191 |
+
return e
|
192 |
+
|
193 |
+
def _get_lambda_evaluator(self):
|
194 |
+
fr = self.d_vars[0]
|
195 |
+
t = self.u_interval.v
|
196 |
+
p = self.v_interval.v
|
197 |
+
fx = fr * cos(t) * sin(p)
|
198 |
+
fy = fr * sin(t) * sin(p)
|
199 |
+
fz = fr * cos(p)
|
200 |
+
return lambdify([t, p], [fx, fy, fz])
|
201 |
+
|
202 |
+
Cartesian2D._register()
|
203 |
+
Cartesian3D._register()
|
204 |
+
ParametricCurve2D._register()
|
205 |
+
ParametricCurve3D._register()
|
206 |
+
ParametricSurface._register()
|
207 |
+
Polar._register()
|
208 |
+
Cylindrical._register()
|
209 |
+
Spherical._register()
|
llmeval-env/lib/python3.10/site-packages/sympy/plotting/pygletplot/plot_object.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
class PlotObject:
|
2 |
+
"""
|
3 |
+
Base class for objects which can be displayed in
|
4 |
+
a Plot.
|
5 |
+
"""
|
6 |
+
visible = True
|
7 |
+
|
8 |
+
def _draw(self):
|
9 |
+
if self.visible:
|
10 |
+
self.draw()
|
11 |
+
|
12 |
+
def draw(self):
|
13 |
+
"""
|
14 |
+
OpenGL rendering code for the plot object.
|
15 |
+
Override in base class.
|
16 |
+
"""
|
17 |
+
pass
|
llmeval-env/lib/python3.10/site-packages/sympy/plotting/pygletplot/plot_rotation.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
try:
|
2 |
+
from ctypes import c_float
|
3 |
+
except ImportError:
|
4 |
+
pass
|
5 |
+
|
6 |
+
import pyglet.gl as pgl
|
7 |
+
from math import sqrt as _sqrt, acos as _acos
|
8 |
+
|
9 |
+
|
10 |
+
def cross(a, b):
|
11 |
+
return (a[1] * b[2] - a[2] * b[1],
|
12 |
+
a[2] * b[0] - a[0] * b[2],
|
13 |
+
a[0] * b[1] - a[1] * b[0])
|
14 |
+
|
15 |
+
|
16 |
+
def dot(a, b):
|
17 |
+
return a[0] * b[0] + a[1] * b[1] + a[2] * b[2]
|
18 |
+
|
19 |
+
|
20 |
+
def mag(a):
|
21 |
+
return _sqrt(a[0]**2 + a[1]**2 + a[2]**2)
|
22 |
+
|
23 |
+
|
24 |
+
def norm(a):
|
25 |
+
m = mag(a)
|
26 |
+
return (a[0] / m, a[1] / m, a[2] / m)
|
27 |
+
|
28 |
+
|
29 |
+
def get_sphere_mapping(x, y, width, height):
|
30 |
+
x = min([max([x, 0]), width])
|
31 |
+
y = min([max([y, 0]), height])
|
32 |
+
|
33 |
+
sr = _sqrt((width/2)**2 + (height/2)**2)
|
34 |
+
sx = ((x - width / 2) / sr)
|
35 |
+
sy = ((y - height / 2) / sr)
|
36 |
+
|
37 |
+
sz = 1.0 - sx**2 - sy**2
|
38 |
+
|
39 |
+
if sz > 0.0:
|
40 |
+
sz = _sqrt(sz)
|
41 |
+
return (sx, sy, sz)
|
42 |
+
else:
|
43 |
+
sz = 0
|
44 |
+
return norm((sx, sy, sz))
|
45 |
+
|
46 |
+
rad2deg = 180.0 / 3.141592
|
47 |
+
|
48 |
+
|
49 |
+
def get_spherical_rotatation(p1, p2, width, height, theta_multiplier):
|
50 |
+
v1 = get_sphere_mapping(p1[0], p1[1], width, height)
|
51 |
+
v2 = get_sphere_mapping(p2[0], p2[1], width, height)
|
52 |
+
|
53 |
+
d = min(max([dot(v1, v2), -1]), 1)
|
54 |
+
|
55 |
+
if abs(d - 1.0) < 0.000001:
|
56 |
+
return None
|
57 |
+
|
58 |
+
raxis = norm( cross(v1, v2) )
|
59 |
+
rtheta = theta_multiplier * rad2deg * _acos(d)
|
60 |
+
|
61 |
+
pgl.glPushMatrix()
|
62 |
+
pgl.glLoadIdentity()
|
63 |
+
pgl.glRotatef(rtheta, *raxis)
|
64 |
+
mat = (c_float*16)()
|
65 |
+
pgl.glGetFloatv(pgl.GL_MODELVIEW_MATRIX, mat)
|
66 |
+
pgl.glPopMatrix()
|
67 |
+
|
68 |
+
return mat
|
llmeval-env/lib/python3.10/site-packages/sympy/plotting/pygletplot/plot_surface.py
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pyglet.gl as pgl
|
2 |
+
|
3 |
+
from sympy.core import S
|
4 |
+
from sympy.plotting.pygletplot.plot_mode_base import PlotModeBase
|
5 |
+
|
6 |
+
|
7 |
+
class PlotSurface(PlotModeBase):
|
8 |
+
|
9 |
+
default_rot_preset = 'perspective'
|
10 |
+
|
11 |
+
def _on_calculate_verts(self):
|
12 |
+
self.u_interval = self.intervals[0]
|
13 |
+
self.u_set = list(self.u_interval.frange())
|
14 |
+
self.v_interval = self.intervals[1]
|
15 |
+
self.v_set = list(self.v_interval.frange())
|
16 |
+
self.bounds = [[S.Infinity, S.NegativeInfinity, 0],
|
17 |
+
[S.Infinity, S.NegativeInfinity, 0],
|
18 |
+
[S.Infinity, S.NegativeInfinity, 0]]
|
19 |
+
evaluate = self._get_evaluator()
|
20 |
+
|
21 |
+
self._calculating_verts_pos = 0.0
|
22 |
+
self._calculating_verts_len = float(
|
23 |
+
self.u_interval.v_len*self.v_interval.v_len)
|
24 |
+
|
25 |
+
verts = []
|
26 |
+
b = self.bounds
|
27 |
+
for u in self.u_set:
|
28 |
+
column = []
|
29 |
+
for v in self.v_set:
|
30 |
+
try:
|
31 |
+
_e = evaluate(u, v) # calculate vertex
|
32 |
+
except ZeroDivisionError:
|
33 |
+
_e = None
|
34 |
+
if _e is not None: # update bounding box
|
35 |
+
for axis in range(3):
|
36 |
+
b[axis][0] = min([b[axis][0], _e[axis]])
|
37 |
+
b[axis][1] = max([b[axis][1], _e[axis]])
|
38 |
+
column.append(_e)
|
39 |
+
self._calculating_verts_pos += 1.0
|
40 |
+
|
41 |
+
verts.append(column)
|
42 |
+
for axis in range(3):
|
43 |
+
b[axis][2] = b[axis][1] - b[axis][0]
|
44 |
+
if b[axis][2] == 0.0:
|
45 |
+
b[axis][2] = 1.0
|
46 |
+
|
47 |
+
self.verts = verts
|
48 |
+
self.push_wireframe(self.draw_verts(False, False))
|
49 |
+
self.push_solid(self.draw_verts(False, True))
|
50 |
+
|
51 |
+
def _on_calculate_cverts(self):
|
52 |
+
if not self.verts or not self.color:
|
53 |
+
return
|
54 |
+
|
55 |
+
def set_work_len(n):
|
56 |
+
self._calculating_cverts_len = float(n)
|
57 |
+
|
58 |
+
def inc_work_pos():
|
59 |
+
self._calculating_cverts_pos += 1.0
|
60 |
+
set_work_len(1)
|
61 |
+
self._calculating_cverts_pos = 0
|
62 |
+
self.cverts = self.color.apply_to_surface(self.verts,
|
63 |
+
self.u_set,
|
64 |
+
self.v_set,
|
65 |
+
set_len=set_work_len,
|
66 |
+
inc_pos=inc_work_pos)
|
67 |
+
self.push_solid(self.draw_verts(True, True))
|
68 |
+
|
69 |
+
def calculate_one_cvert(self, u, v):
|
70 |
+
vert = self.verts[u][v]
|
71 |
+
return self.color(vert[0], vert[1], vert[2],
|
72 |
+
self.u_set[u], self.v_set[v])
|
73 |
+
|
74 |
+
def draw_verts(self, use_cverts, use_solid_color):
|
75 |
+
def f():
|
76 |
+
for u in range(1, len(self.u_set)):
|
77 |
+
pgl.glBegin(pgl.GL_QUAD_STRIP)
|
78 |
+
for v in range(len(self.v_set)):
|
79 |
+
pa = self.verts[u - 1][v]
|
80 |
+
pb = self.verts[u][v]
|
81 |
+
if pa is None or pb is None:
|
82 |
+
pgl.glEnd()
|
83 |
+
pgl.glBegin(pgl.GL_QUAD_STRIP)
|
84 |
+
continue
|
85 |
+
if use_cverts:
|
86 |
+
ca = self.cverts[u - 1][v]
|
87 |
+
cb = self.cverts[u][v]
|
88 |
+
if ca is None:
|
89 |
+
ca = (0, 0, 0)
|
90 |
+
if cb is None:
|
91 |
+
cb = (0, 0, 0)
|
92 |
+
else:
|
93 |
+
if use_solid_color:
|
94 |
+
ca = cb = self.default_solid_color
|
95 |
+
else:
|
96 |
+
ca = cb = self.default_wireframe_color
|
97 |
+
pgl.glColor3f(*ca)
|
98 |
+
pgl.glVertex3f(*pa)
|
99 |
+
pgl.glColor3f(*cb)
|
100 |
+
pgl.glVertex3f(*pb)
|
101 |
+
pgl.glEnd()
|
102 |
+
return f
|
llmeval-env/lib/python3.10/site-packages/sympy/plotting/pygletplot/plot_window.py
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from time import perf_counter
|
2 |
+
|
3 |
+
|
4 |
+
import pyglet.gl as pgl
|
5 |
+
|
6 |
+
from sympy.plotting.pygletplot.managed_window import ManagedWindow
|
7 |
+
from sympy.plotting.pygletplot.plot_camera import PlotCamera
|
8 |
+
from sympy.plotting.pygletplot.plot_controller import PlotController
|
9 |
+
|
10 |
+
|
11 |
+
class PlotWindow(ManagedWindow):
|
12 |
+
|
13 |
+
def __init__(self, plot, antialiasing=True, ortho=False,
|
14 |
+
invert_mouse_zoom=False, linewidth=1.5, caption="SymPy Plot",
|
15 |
+
**kwargs):
|
16 |
+
"""
|
17 |
+
Named Arguments
|
18 |
+
===============
|
19 |
+
|
20 |
+
antialiasing = True
|
21 |
+
True OR False
|
22 |
+
ortho = False
|
23 |
+
True OR False
|
24 |
+
invert_mouse_zoom = False
|
25 |
+
True OR False
|
26 |
+
"""
|
27 |
+
self.plot = plot
|
28 |
+
|
29 |
+
self.camera = None
|
30 |
+
self._calculating = False
|
31 |
+
|
32 |
+
self.antialiasing = antialiasing
|
33 |
+
self.ortho = ortho
|
34 |
+
self.invert_mouse_zoom = invert_mouse_zoom
|
35 |
+
self.linewidth = linewidth
|
36 |
+
self.title = caption
|
37 |
+
self.last_caption_update = 0
|
38 |
+
self.caption_update_interval = 0.2
|
39 |
+
self.drawing_first_object = True
|
40 |
+
|
41 |
+
super().__init__(**kwargs)
|
42 |
+
|
43 |
+
def setup(self):
|
44 |
+
self.camera = PlotCamera(self, ortho=self.ortho)
|
45 |
+
self.controller = PlotController(self,
|
46 |
+
invert_mouse_zoom=self.invert_mouse_zoom)
|
47 |
+
self.push_handlers(self.controller)
|
48 |
+
|
49 |
+
pgl.glClearColor(1.0, 1.0, 1.0, 0.0)
|
50 |
+
pgl.glClearDepth(1.0)
|
51 |
+
|
52 |
+
pgl.glDepthFunc(pgl.GL_LESS)
|
53 |
+
pgl.glEnable(pgl.GL_DEPTH_TEST)
|
54 |
+
|
55 |
+
pgl.glEnable(pgl.GL_LINE_SMOOTH)
|
56 |
+
pgl.glShadeModel(pgl.GL_SMOOTH)
|
57 |
+
pgl.glLineWidth(self.linewidth)
|
58 |
+
|
59 |
+
pgl.glEnable(pgl.GL_BLEND)
|
60 |
+
pgl.glBlendFunc(pgl.GL_SRC_ALPHA, pgl.GL_ONE_MINUS_SRC_ALPHA)
|
61 |
+
|
62 |
+
if self.antialiasing:
|
63 |
+
pgl.glHint(pgl.GL_LINE_SMOOTH_HINT, pgl.GL_NICEST)
|
64 |
+
pgl.glHint(pgl.GL_POLYGON_SMOOTH_HINT, pgl.GL_NICEST)
|
65 |
+
|
66 |
+
self.camera.setup_projection()
|
67 |
+
|
68 |
+
def on_resize(self, w, h):
|
69 |
+
super().on_resize(w, h)
|
70 |
+
if self.camera is not None:
|
71 |
+
self.camera.setup_projection()
|
72 |
+
|
73 |
+
def update(self, dt):
|
74 |
+
self.controller.update(dt)
|
75 |
+
|
76 |
+
def draw(self):
|
77 |
+
self.plot._render_lock.acquire()
|
78 |
+
self.camera.apply_transformation()
|
79 |
+
|
80 |
+
calc_verts_pos, calc_verts_len = 0, 0
|
81 |
+
calc_cverts_pos, calc_cverts_len = 0, 0
|
82 |
+
|
83 |
+
should_update_caption = (perf_counter() - self.last_caption_update >
|
84 |
+
self.caption_update_interval)
|
85 |
+
|
86 |
+
if len(self.plot._functions.values()) == 0:
|
87 |
+
self.drawing_first_object = True
|
88 |
+
|
89 |
+
iterfunctions = iter(self.plot._functions.values())
|
90 |
+
|
91 |
+
for r in iterfunctions:
|
92 |
+
if self.drawing_first_object:
|
93 |
+
self.camera.set_rot_preset(r.default_rot_preset)
|
94 |
+
self.drawing_first_object = False
|
95 |
+
|
96 |
+
pgl.glPushMatrix()
|
97 |
+
r._draw()
|
98 |
+
pgl.glPopMatrix()
|
99 |
+
|
100 |
+
# might as well do this while we are
|
101 |
+
# iterating and have the lock rather
|
102 |
+
# than locking and iterating twice
|
103 |
+
# per frame:
|
104 |
+
|
105 |
+
if should_update_caption:
|
106 |
+
try:
|
107 |
+
if r.calculating_verts:
|
108 |
+
calc_verts_pos += r.calculating_verts_pos
|
109 |
+
calc_verts_len += r.calculating_verts_len
|
110 |
+
if r.calculating_cverts:
|
111 |
+
calc_cverts_pos += r.calculating_cverts_pos
|
112 |
+
calc_cverts_len += r.calculating_cverts_len
|
113 |
+
except ValueError:
|
114 |
+
pass
|
115 |
+
|
116 |
+
for r in self.plot._pobjects:
|
117 |
+
pgl.glPushMatrix()
|
118 |
+
r._draw()
|
119 |
+
pgl.glPopMatrix()
|
120 |
+
|
121 |
+
if should_update_caption:
|
122 |
+
self.update_caption(calc_verts_pos, calc_verts_len,
|
123 |
+
calc_cverts_pos, calc_cverts_len)
|
124 |
+
self.last_caption_update = perf_counter()
|
125 |
+
|
126 |
+
if self.plot._screenshot:
|
127 |
+
self.plot._screenshot._execute_saving()
|
128 |
+
|
129 |
+
self.plot._render_lock.release()
|
130 |
+
|
131 |
+
def update_caption(self, calc_verts_pos, calc_verts_len,
|
132 |
+
calc_cverts_pos, calc_cverts_len):
|
133 |
+
caption = self.title
|
134 |
+
if calc_verts_len or calc_cverts_len:
|
135 |
+
caption += " (calculating"
|
136 |
+
if calc_verts_len > 0:
|
137 |
+
p = (calc_verts_pos / calc_verts_len) * 100
|
138 |
+
caption += " vertices %i%%" % (p)
|
139 |
+
if calc_cverts_len > 0:
|
140 |
+
p = (calc_cverts_pos / calc_cverts_len) * 100
|
141 |
+
caption += " colors %i%%" % (p)
|
142 |
+
caption += ")"
|
143 |
+
if self.caption != caption:
|
144 |
+
self.set_caption(caption)
|
llmeval-env/lib/python3.10/site-packages/sympy/plotting/pygletplot/tests/__init__.py
ADDED
File without changes
|