applied-ai-018 commited on
Commit
985634b
·
verified ·
1 Parent(s): ec0dc24

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. llmeval-env/lib/python3.10/site-packages/pandas/tests/construction/__init__.py +0 -0
  2. llmeval-env/lib/python3.10/site-packages/pandas/tests/construction/__pycache__/__init__.cpython-310.pyc +0 -0
  3. llmeval-env/lib/python3.10/site-packages/pandas/tests/construction/__pycache__/test_extract_array.cpython-310.pyc +0 -0
  4. llmeval-env/lib/python3.10/site-packages/pandas/tests/construction/test_extract_array.py +18 -0
  5. llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/list/__pycache__/__init__.cpython-310.pyc +0 -0
  6. llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/list/__pycache__/array.cpython-310.pyc +0 -0
  7. llmeval-env/lib/python3.10/site-packages/pandas/tests/io/__init__.py +0 -0
  8. llmeval-env/lib/python3.10/site-packages/pandas/tests/io/conftest.py +242 -0
  9. llmeval-env/lib/python3.10/site-packages/pandas/tests/io/formats/__init__.py +0 -0
  10. llmeval-env/lib/python3.10/site-packages/pandas/tests/io/formats/test_css.py +289 -0
  11. llmeval-env/lib/python3.10/site-packages/pandas/tests/io/formats/test_to_csv.py +758 -0
  12. llmeval-env/lib/python3.10/site-packages/pandas/tests/io/formats/test_to_excel.py +429 -0
  13. llmeval-env/lib/python3.10/site-packages/pandas/tests/io/generate_legacy_storage_files.py +342 -0
  14. llmeval-env/lib/python3.10/site-packages/pandas/tests/io/test_clipboard.py +423 -0
  15. llmeval-env/lib/python3.10/site-packages/pandas/tests/io/test_common.py +650 -0
  16. llmeval-env/lib/python3.10/site-packages/pandas/tests/io/test_compression.py +378 -0
  17. llmeval-env/lib/python3.10/site-packages/pandas/tests/io/test_feather.py +252 -0
  18. llmeval-env/lib/python3.10/site-packages/pandas/tests/io/test_fsspec.py +345 -0
  19. llmeval-env/lib/python3.10/site-packages/pandas/tests/io/test_gbq.py +14 -0
  20. llmeval-env/lib/python3.10/site-packages/pandas/tests/io/test_gcs.py +219 -0
  21. llmeval-env/lib/python3.10/site-packages/pandas/tests/io/test_html.py +1657 -0
  22. llmeval-env/lib/python3.10/site-packages/pandas/tests/io/test_http_headers.py +172 -0
  23. llmeval-env/lib/python3.10/site-packages/pandas/tests/io/test_orc.py +436 -0
  24. llmeval-env/lib/python3.10/site-packages/pandas/tests/io/test_parquet.py +1424 -0
  25. llmeval-env/lib/python3.10/site-packages/pandas/tests/io/test_pickle.py +652 -0
  26. llmeval-env/lib/python3.10/site-packages/pandas/tests/io/test_s3.py +43 -0
  27. llmeval-env/lib/python3.10/site-packages/pandas/tests/io/test_spss.py +164 -0
  28. llmeval-env/lib/python3.10/site-packages/pandas/tests/io/test_sql.py +0 -0
  29. llmeval-env/lib/python3.10/site-packages/pandas/tests/io/test_stata.py +2381 -0
  30. llmeval-env/lib/python3.10/site-packages/pandas/tests/plotting/__init__.py +0 -0
  31. llmeval-env/lib/python3.10/site-packages/pandas/tests/plotting/__pycache__/__init__.cpython-310.pyc +0 -0
  32. llmeval-env/lib/python3.10/site-packages/pandas/tests/plotting/__pycache__/common.cpython-310.pyc +0 -0
  33. llmeval-env/lib/python3.10/site-packages/pandas/tests/plotting/__pycache__/conftest.cpython-310.pyc +0 -0
  34. llmeval-env/lib/python3.10/site-packages/pandas/tests/plotting/__pycache__/test_backend.cpython-310.pyc +0 -0
  35. llmeval-env/lib/python3.10/site-packages/pandas/tests/plotting/__pycache__/test_boxplot_method.cpython-310.pyc +0 -0
  36. llmeval-env/lib/python3.10/site-packages/pandas/tests/plotting/__pycache__/test_common.cpython-310.pyc +0 -0
  37. llmeval-env/lib/python3.10/site-packages/pandas/tests/plotting/__pycache__/test_converter.cpython-310.pyc +0 -0
  38. llmeval-env/lib/python3.10/site-packages/pandas/tests/plotting/__pycache__/test_datetimelike.cpython-310.pyc +0 -0
  39. llmeval-env/lib/python3.10/site-packages/pandas/tests/plotting/__pycache__/test_groupby.cpython-310.pyc +0 -0
  40. llmeval-env/lib/python3.10/site-packages/pandas/tests/plotting/__pycache__/test_hist_method.cpython-310.pyc +0 -0
  41. llmeval-env/lib/python3.10/site-packages/pandas/tests/plotting/__pycache__/test_misc.cpython-310.pyc +0 -0
  42. llmeval-env/lib/python3.10/site-packages/pandas/tests/plotting/__pycache__/test_series.cpython-310.pyc +0 -0
  43. llmeval-env/lib/python3.10/site-packages/pandas/tests/plotting/__pycache__/test_style.cpython-310.pyc +0 -0
  44. llmeval-env/lib/python3.10/site-packages/pandas/tests/plotting/common.py +563 -0
  45. llmeval-env/lib/python3.10/site-packages/pandas/tests/plotting/conftest.py +56 -0
  46. llmeval-env/lib/python3.10/site-packages/pandas/tests/plotting/frame/__init__.py +0 -0
  47. llmeval-env/lib/python3.10/site-packages/pandas/tests/plotting/frame/__pycache__/__init__.cpython-310.pyc +0 -0
  48. llmeval-env/lib/python3.10/site-packages/pandas/tests/plotting/frame/__pycache__/test_frame.cpython-310.pyc +0 -0
  49. llmeval-env/lib/python3.10/site-packages/pandas/tests/plotting/frame/__pycache__/test_frame_color.cpython-310.pyc +0 -0
  50. llmeval-env/lib/python3.10/site-packages/pandas/tests/plotting/frame/__pycache__/test_frame_groupby.cpython-310.pyc +0 -0
llmeval-env/lib/python3.10/site-packages/pandas/tests/construction/__init__.py ADDED
File without changes
llmeval-env/lib/python3.10/site-packages/pandas/tests/construction/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (198 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/construction/__pycache__/test_extract_array.cpython-310.pyc ADDED
Binary file (744 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/construction/test_extract_array.py ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from pandas import Index
2
+ import pandas._testing as tm
3
+ from pandas.core.construction import extract_array
4
+
5
+
6
+ def test_extract_array_rangeindex():
7
+ ri = Index(range(5))
8
+
9
+ expected = ri._values
10
+ res = extract_array(ri, extract_numpy=True, extract_range=True)
11
+ tm.assert_numpy_array_equal(res, expected)
12
+ res = extract_array(ri, extract_numpy=False, extract_range=True)
13
+ tm.assert_numpy_array_equal(res, expected)
14
+
15
+ res = extract_array(ri, extract_numpy=True, extract_range=False)
16
+ tm.assert_index_equal(res, ri)
17
+ res = extract_array(ri, extract_numpy=False, extract_range=False)
18
+ tm.assert_index_equal(res, ri)
llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/list/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (326 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/list/__pycache__/array.cpython-310.pyc ADDED
Binary file (5.13 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/io/__init__.py ADDED
File without changes
llmeval-env/lib/python3.10/site-packages/pandas/tests/io/conftest.py ADDED
@@ -0,0 +1,242 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import shlex
2
+ import subprocess
3
+ import time
4
+ import uuid
5
+
6
+ import pytest
7
+
8
+ from pandas.compat import (
9
+ is_ci_environment,
10
+ is_platform_arm,
11
+ is_platform_mac,
12
+ is_platform_windows,
13
+ )
14
+ import pandas.util._test_decorators as td
15
+
16
+ import pandas.io.common as icom
17
+ from pandas.io.parsers import read_csv
18
+
19
+
20
+ @pytest.fixture
21
+ def compression_to_extension():
22
+ return {value: key for key, value in icom.extension_to_compression.items()}
23
+
24
+
25
+ @pytest.fixture
26
+ def tips_file(datapath):
27
+ """Path to the tips dataset"""
28
+ return datapath("io", "data", "csv", "tips.csv")
29
+
30
+
31
+ @pytest.fixture
32
+ def jsonl_file(datapath):
33
+ """Path to a JSONL dataset"""
34
+ return datapath("io", "parser", "data", "items.jsonl")
35
+
36
+
37
+ @pytest.fixture
38
+ def salaries_table(datapath):
39
+ """DataFrame with the salaries dataset"""
40
+ return read_csv(datapath("io", "parser", "data", "salaries.csv"), sep="\t")
41
+
42
+
43
+ @pytest.fixture
44
+ def feather_file(datapath):
45
+ return datapath("io", "data", "feather", "feather-0_3_1.feather")
46
+
47
+
48
+ @pytest.fixture
49
+ def xml_file(datapath):
50
+ return datapath("io", "data", "xml", "books.xml")
51
+
52
+
53
+ @pytest.fixture
54
+ def s3_base(worker_id, monkeypatch):
55
+ """
56
+ Fixture for mocking S3 interaction.
57
+
58
+ Sets up moto server in separate process locally
59
+ Return url for motoserver/moto CI service
60
+ """
61
+ pytest.importorskip("s3fs")
62
+ pytest.importorskip("boto3")
63
+
64
+ # temporary workaround as moto fails for botocore >= 1.11 otherwise,
65
+ # see https://github.com/spulec/moto/issues/1924 & 1952
66
+ monkeypatch.setenv("AWS_ACCESS_KEY_ID", "foobar_key")
67
+ monkeypatch.setenv("AWS_SECRET_ACCESS_KEY", "foobar_secret")
68
+ if is_ci_environment():
69
+ if is_platform_arm() or is_platform_mac() or is_platform_windows():
70
+ # NOT RUN on Windows/macOS/ARM, only Ubuntu
71
+ # - subprocess in CI can cause timeouts
72
+ # - GitHub Actions do not support
73
+ # container services for the above OSs
74
+ # - CircleCI will probably hit the Docker rate pull limit
75
+ pytest.skip(
76
+ "S3 tests do not have a corresponding service in "
77
+ "Windows, macOS or ARM platforms"
78
+ )
79
+ else:
80
+ # set in .github/workflows/unit-tests.yml
81
+ yield "http://localhost:5000"
82
+ else:
83
+ requests = pytest.importorskip("requests")
84
+ pytest.importorskip("moto")
85
+ pytest.importorskip("flask") # server mode needs flask too
86
+
87
+ # Launching moto in server mode, i.e., as a separate process
88
+ # with an S3 endpoint on localhost
89
+
90
+ worker_id = "5" if worker_id == "master" else worker_id.lstrip("gw")
91
+ endpoint_port = f"555{worker_id}"
92
+ endpoint_uri = f"http://127.0.0.1:{endpoint_port}/"
93
+
94
+ # pipe to null to avoid logging in terminal
95
+ with subprocess.Popen(
96
+ shlex.split(f"moto_server s3 -p {endpoint_port}"),
97
+ stdout=subprocess.DEVNULL,
98
+ stderr=subprocess.DEVNULL,
99
+ ) as proc:
100
+ timeout = 5
101
+ while timeout > 0:
102
+ try:
103
+ # OK to go once server is accepting connections
104
+ r = requests.get(endpoint_uri)
105
+ if r.ok:
106
+ break
107
+ except Exception:
108
+ pass
109
+ timeout -= 0.1
110
+ time.sleep(0.1)
111
+ yield endpoint_uri
112
+
113
+ proc.terminate()
114
+
115
+
116
+ @pytest.fixture
117
+ def s3so(s3_base):
118
+ return {"client_kwargs": {"endpoint_url": s3_base}}
119
+
120
+
121
+ @pytest.fixture
122
+ def s3_resource(s3_base):
123
+ import boto3
124
+
125
+ s3 = boto3.resource("s3", endpoint_url=s3_base)
126
+ return s3
127
+
128
+
129
+ @pytest.fixture
130
+ def s3_public_bucket(s3_resource):
131
+ bucket = s3_resource.Bucket(f"pandas-test-{uuid.uuid4()}")
132
+ bucket.create()
133
+ yield bucket
134
+ bucket.objects.delete()
135
+ bucket.delete()
136
+
137
+
138
+ @pytest.fixture
139
+ def s3_public_bucket_with_data(
140
+ s3_public_bucket, tips_file, jsonl_file, feather_file, xml_file
141
+ ):
142
+ """
143
+ The following datasets
144
+ are loaded.
145
+
146
+ - tips.csv
147
+ - tips.csv.gz
148
+ - tips.csv.bz2
149
+ - items.jsonl
150
+ """
151
+ test_s3_files = [
152
+ ("tips#1.csv", tips_file),
153
+ ("tips.csv", tips_file),
154
+ ("tips.csv.gz", tips_file + ".gz"),
155
+ ("tips.csv.bz2", tips_file + ".bz2"),
156
+ ("items.jsonl", jsonl_file),
157
+ ("simple_dataset.feather", feather_file),
158
+ ("books.xml", xml_file),
159
+ ]
160
+ for s3_key, file_name in test_s3_files:
161
+ with open(file_name, "rb") as f:
162
+ s3_public_bucket.put_object(Key=s3_key, Body=f)
163
+ return s3_public_bucket
164
+
165
+
166
+ @pytest.fixture
167
+ def s3_private_bucket(s3_resource):
168
+ bucket = s3_resource.Bucket(f"cant_get_it-{uuid.uuid4()}")
169
+ bucket.create(ACL="private")
170
+ yield bucket
171
+ bucket.objects.delete()
172
+ bucket.delete()
173
+
174
+
175
+ @pytest.fixture
176
+ def s3_private_bucket_with_data(
177
+ s3_private_bucket, tips_file, jsonl_file, feather_file, xml_file
178
+ ):
179
+ """
180
+ The following datasets
181
+ are loaded.
182
+
183
+ - tips.csv
184
+ - tips.csv.gz
185
+ - tips.csv.bz2
186
+ - items.jsonl
187
+ """
188
+ test_s3_files = [
189
+ ("tips#1.csv", tips_file),
190
+ ("tips.csv", tips_file),
191
+ ("tips.csv.gz", tips_file + ".gz"),
192
+ ("tips.csv.bz2", tips_file + ".bz2"),
193
+ ("items.jsonl", jsonl_file),
194
+ ("simple_dataset.feather", feather_file),
195
+ ("books.xml", xml_file),
196
+ ]
197
+ for s3_key, file_name in test_s3_files:
198
+ with open(file_name, "rb") as f:
199
+ s3_private_bucket.put_object(Key=s3_key, Body=f)
200
+ return s3_private_bucket
201
+
202
+
203
+ _compression_formats_params = [
204
+ (".no_compress", None),
205
+ ("", None),
206
+ (".gz", "gzip"),
207
+ (".GZ", "gzip"),
208
+ (".bz2", "bz2"),
209
+ (".BZ2", "bz2"),
210
+ (".zip", "zip"),
211
+ (".ZIP", "zip"),
212
+ (".xz", "xz"),
213
+ (".XZ", "xz"),
214
+ pytest.param((".zst", "zstd"), marks=td.skip_if_no("zstandard")),
215
+ pytest.param((".ZST", "zstd"), marks=td.skip_if_no("zstandard")),
216
+ ]
217
+
218
+
219
+ @pytest.fixture(params=_compression_formats_params[1:])
220
+ def compression_format(request):
221
+ return request.param
222
+
223
+
224
+ @pytest.fixture(params=_compression_formats_params)
225
+ def compression_ext(request):
226
+ return request.param[0]
227
+
228
+
229
+ @pytest.fixture(
230
+ params=[
231
+ "python",
232
+ pytest.param("pyarrow", marks=td.skip_if_no("pyarrow")),
233
+ ]
234
+ )
235
+ def string_storage(request):
236
+ """
237
+ Parametrized fixture for pd.options.mode.string_storage.
238
+
239
+ * 'python'
240
+ * 'pyarrow'
241
+ """
242
+ return request.param
llmeval-env/lib/python3.10/site-packages/pandas/tests/io/formats/__init__.py ADDED
File without changes
llmeval-env/lib/python3.10/site-packages/pandas/tests/io/formats/test_css.py ADDED
@@ -0,0 +1,289 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pytest
2
+
3
+ from pandas.errors import CSSWarning
4
+
5
+ import pandas._testing as tm
6
+
7
+ from pandas.io.formats.css import CSSResolver
8
+
9
+
10
+ def assert_resolves(css, props, inherited=None):
11
+ resolve = CSSResolver()
12
+ actual = resolve(css, inherited=inherited)
13
+ assert props == actual
14
+
15
+
16
+ def assert_same_resolution(css1, css2, inherited=None):
17
+ resolve = CSSResolver()
18
+ resolved1 = resolve(css1, inherited=inherited)
19
+ resolved2 = resolve(css2, inherited=inherited)
20
+ assert resolved1 == resolved2
21
+
22
+
23
+ @pytest.mark.parametrize(
24
+ "name,norm,abnorm",
25
+ [
26
+ (
27
+ "whitespace",
28
+ "hello: world; foo: bar",
29
+ " \t hello \t :\n world \n ; \n foo: \tbar\n\n",
30
+ ),
31
+ ("case", "hello: world; foo: bar", "Hello: WORLD; foO: bar"),
32
+ ("empty-decl", "hello: world; foo: bar", "; hello: world;; foo: bar;\n; ;"),
33
+ ("empty-list", "", ";"),
34
+ ],
35
+ )
36
+ def test_css_parse_normalisation(name, norm, abnorm):
37
+ assert_same_resolution(norm, abnorm)
38
+
39
+
40
+ @pytest.mark.parametrize(
41
+ "invalid_css,remainder",
42
+ [
43
+ # No colon
44
+ ("hello-world", ""),
45
+ ("border-style: solid; hello-world", "border-style: solid"),
46
+ (
47
+ "border-style: solid; hello-world; font-weight: bold",
48
+ "border-style: solid; font-weight: bold",
49
+ ),
50
+ # Unclosed string fail
51
+ # Invalid size
52
+ ("font-size: blah", "font-size: 1em"),
53
+ ("font-size: 1a2b", "font-size: 1em"),
54
+ ("font-size: 1e5pt", "font-size: 1em"),
55
+ ("font-size: 1+6pt", "font-size: 1em"),
56
+ ("font-size: 1unknownunit", "font-size: 1em"),
57
+ ("font-size: 10", "font-size: 1em"),
58
+ ("font-size: 10 pt", "font-size: 1em"),
59
+ # Too many args
60
+ ("border-top: 1pt solid red green", "border-top: 1pt solid green"),
61
+ ],
62
+ )
63
+ def test_css_parse_invalid(invalid_css, remainder):
64
+ with tm.assert_produces_warning(CSSWarning):
65
+ assert_same_resolution(invalid_css, remainder)
66
+
67
+
68
+ @pytest.mark.parametrize(
69
+ "shorthand,expansions",
70
+ [
71
+ ("margin", ["margin-top", "margin-right", "margin-bottom", "margin-left"]),
72
+ ("padding", ["padding-top", "padding-right", "padding-bottom", "padding-left"]),
73
+ (
74
+ "border-width",
75
+ [
76
+ "border-top-width",
77
+ "border-right-width",
78
+ "border-bottom-width",
79
+ "border-left-width",
80
+ ],
81
+ ),
82
+ (
83
+ "border-color",
84
+ [
85
+ "border-top-color",
86
+ "border-right-color",
87
+ "border-bottom-color",
88
+ "border-left-color",
89
+ ],
90
+ ),
91
+ (
92
+ "border-style",
93
+ [
94
+ "border-top-style",
95
+ "border-right-style",
96
+ "border-bottom-style",
97
+ "border-left-style",
98
+ ],
99
+ ),
100
+ ],
101
+ )
102
+ def test_css_side_shorthands(shorthand, expansions):
103
+ top, right, bottom, left = expansions
104
+
105
+ assert_resolves(
106
+ f"{shorthand}: 1pt", {top: "1pt", right: "1pt", bottom: "1pt", left: "1pt"}
107
+ )
108
+
109
+ assert_resolves(
110
+ f"{shorthand}: 1pt 4pt", {top: "1pt", right: "4pt", bottom: "1pt", left: "4pt"}
111
+ )
112
+
113
+ assert_resolves(
114
+ f"{shorthand}: 1pt 4pt 2pt",
115
+ {top: "1pt", right: "4pt", bottom: "2pt", left: "4pt"},
116
+ )
117
+
118
+ assert_resolves(
119
+ f"{shorthand}: 1pt 4pt 2pt 0pt",
120
+ {top: "1pt", right: "4pt", bottom: "2pt", left: "0pt"},
121
+ )
122
+
123
+ with tm.assert_produces_warning(CSSWarning):
124
+ assert_resolves(f"{shorthand}: 1pt 1pt 1pt 1pt 1pt", {})
125
+
126
+
127
+ @pytest.mark.parametrize(
128
+ "shorthand,sides",
129
+ [
130
+ ("border-top", ["top"]),
131
+ ("border-right", ["right"]),
132
+ ("border-bottom", ["bottom"]),
133
+ ("border-left", ["left"]),
134
+ ("border", ["top", "right", "bottom", "left"]),
135
+ ],
136
+ )
137
+ def test_css_border_shorthand_sides(shorthand, sides):
138
+ def create_border_dict(sides, color=None, style=None, width=None):
139
+ resolved = {}
140
+ for side in sides:
141
+ if color:
142
+ resolved[f"border-{side}-color"] = color
143
+ if style:
144
+ resolved[f"border-{side}-style"] = style
145
+ if width:
146
+ resolved[f"border-{side}-width"] = width
147
+ return resolved
148
+
149
+ assert_resolves(
150
+ f"{shorthand}: 1pt red solid", create_border_dict(sides, "red", "solid", "1pt")
151
+ )
152
+
153
+
154
+ @pytest.mark.parametrize(
155
+ "prop, expected",
156
+ [
157
+ ("1pt red solid", ("red", "solid", "1pt")),
158
+ ("red 1pt solid", ("red", "solid", "1pt")),
159
+ ("red solid 1pt", ("red", "solid", "1pt")),
160
+ ("solid 1pt red", ("red", "solid", "1pt")),
161
+ ("red solid", ("red", "solid", "1.500000pt")),
162
+ # Note: color=black is not CSS conforming
163
+ # (See https://drafts.csswg.org/css-backgrounds/#border-shorthands)
164
+ ("1pt solid", ("black", "solid", "1pt")),
165
+ ("1pt red", ("red", "none", "1pt")),
166
+ ("red", ("red", "none", "1.500000pt")),
167
+ ("1pt", ("black", "none", "1pt")),
168
+ ("solid", ("black", "solid", "1.500000pt")),
169
+ # Sizes
170
+ ("1em", ("black", "none", "12pt")),
171
+ ],
172
+ )
173
+ def test_css_border_shorthands(prop, expected):
174
+ color, style, width = expected
175
+
176
+ assert_resolves(
177
+ f"border-left: {prop}",
178
+ {
179
+ "border-left-color": color,
180
+ "border-left-style": style,
181
+ "border-left-width": width,
182
+ },
183
+ )
184
+
185
+
186
+ @pytest.mark.parametrize(
187
+ "style,inherited,equiv",
188
+ [
189
+ ("margin: 1px; margin: 2px", "", "margin: 2px"),
190
+ ("margin: 1px", "margin: 2px", "margin: 1px"),
191
+ ("margin: 1px; margin: inherit", "margin: 2px", "margin: 2px"),
192
+ (
193
+ "margin: 1px; margin-top: 2px",
194
+ "",
195
+ "margin-left: 1px; margin-right: 1px; "
196
+ "margin-bottom: 1px; margin-top: 2px",
197
+ ),
198
+ ("margin-top: 2px", "margin: 1px", "margin: 1px; margin-top: 2px"),
199
+ ("margin: 1px", "margin-top: 2px", "margin: 1px"),
200
+ (
201
+ "margin: 1px; margin-top: inherit",
202
+ "margin: 2px",
203
+ "margin: 1px; margin-top: 2px",
204
+ ),
205
+ ],
206
+ )
207
+ def test_css_precedence(style, inherited, equiv):
208
+ resolve = CSSResolver()
209
+ inherited_props = resolve(inherited)
210
+ style_props = resolve(style, inherited=inherited_props)
211
+ equiv_props = resolve(equiv)
212
+ assert style_props == equiv_props
213
+
214
+
215
+ @pytest.mark.parametrize(
216
+ "style,equiv",
217
+ [
218
+ (
219
+ "margin: 1px; margin-top: inherit",
220
+ "margin-bottom: 1px; margin-right: 1px; margin-left: 1px",
221
+ ),
222
+ ("margin-top: inherit", ""),
223
+ ("margin-top: initial", ""),
224
+ ],
225
+ )
226
+ def test_css_none_absent(style, equiv):
227
+ assert_same_resolution(style, equiv)
228
+
229
+
230
+ @pytest.mark.parametrize(
231
+ "size,resolved",
232
+ [
233
+ ("xx-small", "6pt"),
234
+ ("x-small", f"{7.5:f}pt"),
235
+ ("small", f"{9.6:f}pt"),
236
+ ("medium", "12pt"),
237
+ ("large", f"{13.5:f}pt"),
238
+ ("x-large", "18pt"),
239
+ ("xx-large", "24pt"),
240
+ ("8px", "6pt"),
241
+ ("1.25pc", "15pt"),
242
+ (".25in", "18pt"),
243
+ ("02.54cm", "72pt"),
244
+ ("25.4mm", "72pt"),
245
+ ("101.6q", "72pt"),
246
+ ("101.6q", "72pt"),
247
+ ],
248
+ )
249
+ @pytest.mark.parametrize("relative_to", [None, "16pt"]) # invariant to inherited size
250
+ def test_css_absolute_font_size(size, relative_to, resolved):
251
+ if relative_to is None:
252
+ inherited = None
253
+ else:
254
+ inherited = {"font-size": relative_to}
255
+ assert_resolves(f"font-size: {size}", {"font-size": resolved}, inherited=inherited)
256
+
257
+
258
+ @pytest.mark.parametrize(
259
+ "size,relative_to,resolved",
260
+ [
261
+ ("1em", None, "12pt"),
262
+ ("1.0em", None, "12pt"),
263
+ ("1.25em", None, "15pt"),
264
+ ("1em", "16pt", "16pt"),
265
+ ("1.0em", "16pt", "16pt"),
266
+ ("1.25em", "16pt", "20pt"),
267
+ ("1rem", "16pt", "12pt"),
268
+ ("1.0rem", "16pt", "12pt"),
269
+ ("1.25rem", "16pt", "15pt"),
270
+ ("100%", None, "12pt"),
271
+ ("125%", None, "15pt"),
272
+ ("100%", "16pt", "16pt"),
273
+ ("125%", "16pt", "20pt"),
274
+ ("2ex", None, "12pt"),
275
+ ("2.0ex", None, "12pt"),
276
+ ("2.50ex", None, "15pt"),
277
+ ("inherit", "16pt", "16pt"),
278
+ ("smaller", None, "10pt"),
279
+ ("smaller", "18pt", "15pt"),
280
+ ("larger", None, f"{14.4:f}pt"),
281
+ ("larger", "15pt", "18pt"),
282
+ ],
283
+ )
284
+ def test_css_relative_font_size(size, relative_to, resolved):
285
+ if relative_to is None:
286
+ inherited = None
287
+ else:
288
+ inherited = {"font-size": relative_to}
289
+ assert_resolves(f"font-size: {size}", {"font-size": resolved}, inherited=inherited)
llmeval-env/lib/python3.10/site-packages/pandas/tests/io/formats/test_to_csv.py ADDED
@@ -0,0 +1,758 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import io
2
+ import os
3
+ import sys
4
+ from zipfile import ZipFile
5
+
6
+ from _csv import Error
7
+ import numpy as np
8
+ import pytest
9
+
10
+ import pandas as pd
11
+ from pandas import (
12
+ DataFrame,
13
+ Index,
14
+ compat,
15
+ )
16
+ import pandas._testing as tm
17
+
18
+
19
+ class TestToCSV:
20
+ def test_to_csv_with_single_column(self):
21
+ # see gh-18676, https://bugs.python.org/issue32255
22
+ #
23
+ # Python's CSV library adds an extraneous '""'
24
+ # before the newline when the NaN-value is in
25
+ # the first row. Otherwise, only the newline
26
+ # character is added. This behavior is inconsistent
27
+ # and was patched in https://bugs.python.org/pull_request4672.
28
+ df1 = DataFrame([None, 1])
29
+ expected1 = """\
30
+ ""
31
+ 1.0
32
+ """
33
+ with tm.ensure_clean("test.csv") as path:
34
+ df1.to_csv(path, header=None, index=None)
35
+ with open(path, encoding="utf-8") as f:
36
+ assert f.read() == expected1
37
+
38
+ df2 = DataFrame([1, None])
39
+ expected2 = """\
40
+ 1.0
41
+ ""
42
+ """
43
+ with tm.ensure_clean("test.csv") as path:
44
+ df2.to_csv(path, header=None, index=None)
45
+ with open(path, encoding="utf-8") as f:
46
+ assert f.read() == expected2
47
+
48
+ def test_to_csv_default_encoding(self):
49
+ # GH17097
50
+ df = DataFrame({"col": ["AAAAA", "ÄÄÄÄÄ", "ßßßßß", "聞聞聞聞聞"]})
51
+
52
+ with tm.ensure_clean("test.csv") as path:
53
+ # the default to_csv encoding is uft-8.
54
+ df.to_csv(path)
55
+ tm.assert_frame_equal(pd.read_csv(path, index_col=0), df)
56
+
57
+ def test_to_csv_quotechar(self):
58
+ df = DataFrame({"col": [1, 2]})
59
+ expected = """\
60
+ "","col"
61
+ "0","1"
62
+ "1","2"
63
+ """
64
+
65
+ with tm.ensure_clean("test.csv") as path:
66
+ df.to_csv(path, quoting=1) # 1=QUOTE_ALL
67
+ with open(path, encoding="utf-8") as f:
68
+ assert f.read() == expected
69
+
70
+ expected = """\
71
+ $$,$col$
72
+ $0$,$1$
73
+ $1$,$2$
74
+ """
75
+
76
+ with tm.ensure_clean("test.csv") as path:
77
+ df.to_csv(path, quoting=1, quotechar="$")
78
+ with open(path, encoding="utf-8") as f:
79
+ assert f.read() == expected
80
+
81
+ with tm.ensure_clean("test.csv") as path:
82
+ with pytest.raises(TypeError, match="quotechar"):
83
+ df.to_csv(path, quoting=1, quotechar=None)
84
+
85
+ def test_to_csv_doublequote(self):
86
+ df = DataFrame({"col": ['a"a', '"bb"']})
87
+ expected = '''\
88
+ "","col"
89
+ "0","a""a"
90
+ "1","""bb"""
91
+ '''
92
+
93
+ with tm.ensure_clean("test.csv") as path:
94
+ df.to_csv(path, quoting=1, doublequote=True) # QUOTE_ALL
95
+ with open(path, encoding="utf-8") as f:
96
+ assert f.read() == expected
97
+
98
+ with tm.ensure_clean("test.csv") as path:
99
+ with pytest.raises(Error, match="escapechar"):
100
+ df.to_csv(path, doublequote=False) # no escapechar set
101
+
102
+ def test_to_csv_escapechar(self):
103
+ df = DataFrame({"col": ['a"a', '"bb"']})
104
+ expected = """\
105
+ "","col"
106
+ "0","a\\"a"
107
+ "1","\\"bb\\""
108
+ """
109
+
110
+ with tm.ensure_clean("test.csv") as path: # QUOTE_ALL
111
+ df.to_csv(path, quoting=1, doublequote=False, escapechar="\\")
112
+ with open(path, encoding="utf-8") as f:
113
+ assert f.read() == expected
114
+
115
+ df = DataFrame({"col": ["a,a", ",bb,"]})
116
+ expected = """\
117
+ ,col
118
+ 0,a\\,a
119
+ 1,\\,bb\\,
120
+ """
121
+
122
+ with tm.ensure_clean("test.csv") as path:
123
+ df.to_csv(path, quoting=3, escapechar="\\") # QUOTE_NONE
124
+ with open(path, encoding="utf-8") as f:
125
+ assert f.read() == expected
126
+
127
+ def test_csv_to_string(self):
128
+ df = DataFrame({"col": [1, 2]})
129
+ expected_rows = [",col", "0,1", "1,2"]
130
+ expected = tm.convert_rows_list_to_csv_str(expected_rows)
131
+ assert df.to_csv() == expected
132
+
133
+ def test_to_csv_decimal(self):
134
+ # see gh-781
135
+ df = DataFrame({"col1": [1], "col2": ["a"], "col3": [10.1]})
136
+
137
+ expected_rows = [",col1,col2,col3", "0,1,a,10.1"]
138
+ expected_default = tm.convert_rows_list_to_csv_str(expected_rows)
139
+ assert df.to_csv() == expected_default
140
+
141
+ expected_rows = [";col1;col2;col3", "0;1;a;10,1"]
142
+ expected_european_excel = tm.convert_rows_list_to_csv_str(expected_rows)
143
+ assert df.to_csv(decimal=",", sep=";") == expected_european_excel
144
+
145
+ expected_rows = [",col1,col2,col3", "0,1,a,10.10"]
146
+ expected_float_format_default = tm.convert_rows_list_to_csv_str(expected_rows)
147
+ assert df.to_csv(float_format="%.2f") == expected_float_format_default
148
+
149
+ expected_rows = [";col1;col2;col3", "0;1;a;10,10"]
150
+ expected_float_format = tm.convert_rows_list_to_csv_str(expected_rows)
151
+ assert (
152
+ df.to_csv(decimal=",", sep=";", float_format="%.2f")
153
+ == expected_float_format
154
+ )
155
+
156
+ # see gh-11553: testing if decimal is taken into account for '0.0'
157
+ df = DataFrame({"a": [0, 1.1], "b": [2.2, 3.3], "c": 1})
158
+
159
+ expected_rows = ["a,b,c", "0^0,2^2,1", "1^1,3^3,1"]
160
+ expected = tm.convert_rows_list_to_csv_str(expected_rows)
161
+ assert df.to_csv(index=False, decimal="^") == expected
162
+
163
+ # same but for an index
164
+ assert df.set_index("a").to_csv(decimal="^") == expected
165
+
166
+ # same for a multi-index
167
+ assert df.set_index(["a", "b"]).to_csv(decimal="^") == expected
168
+
169
+ def test_to_csv_float_format(self):
170
+ # testing if float_format is taken into account for the index
171
+ # GH 11553
172
+ df = DataFrame({"a": [0, 1], "b": [2.2, 3.3], "c": 1})
173
+
174
+ expected_rows = ["a,b,c", "0,2.20,1", "1,3.30,1"]
175
+ expected = tm.convert_rows_list_to_csv_str(expected_rows)
176
+ assert df.set_index("a").to_csv(float_format="%.2f") == expected
177
+
178
+ # same for a multi-index
179
+ assert df.set_index(["a", "b"]).to_csv(float_format="%.2f") == expected
180
+
181
+ def test_to_csv_na_rep(self):
182
+ # see gh-11553
183
+ #
184
+ # Testing if NaN values are correctly represented in the index.
185
+ df = DataFrame({"a": [0, np.nan], "b": [0, 1], "c": [2, 3]})
186
+ expected_rows = ["a,b,c", "0.0,0,2", "_,1,3"]
187
+ expected = tm.convert_rows_list_to_csv_str(expected_rows)
188
+
189
+ assert df.set_index("a").to_csv(na_rep="_") == expected
190
+ assert df.set_index(["a", "b"]).to_csv(na_rep="_") == expected
191
+
192
+ # now with an index containing only NaNs
193
+ df = DataFrame({"a": np.nan, "b": [0, 1], "c": [2, 3]})
194
+ expected_rows = ["a,b,c", "_,0,2", "_,1,3"]
195
+ expected = tm.convert_rows_list_to_csv_str(expected_rows)
196
+
197
+ assert df.set_index("a").to_csv(na_rep="_") == expected
198
+ assert df.set_index(["a", "b"]).to_csv(na_rep="_") == expected
199
+
200
+ # check if na_rep parameter does not break anything when no NaN
201
+ df = DataFrame({"a": 0, "b": [0, 1], "c": [2, 3]})
202
+ expected_rows = ["a,b,c", "0,0,2", "0,1,3"]
203
+ expected = tm.convert_rows_list_to_csv_str(expected_rows)
204
+
205
+ assert df.set_index("a").to_csv(na_rep="_") == expected
206
+ assert df.set_index(["a", "b"]).to_csv(na_rep="_") == expected
207
+
208
+ csv = pd.Series(["a", pd.NA, "c"]).to_csv(na_rep="ZZZZZ")
209
+ expected = tm.convert_rows_list_to_csv_str([",0", "0,a", "1,ZZZZZ", "2,c"])
210
+ assert expected == csv
211
+
212
+ def test_to_csv_na_rep_nullable_string(self, nullable_string_dtype):
213
+ # GH 29975
214
+ # Make sure full na_rep shows up when a dtype is provided
215
+ expected = tm.convert_rows_list_to_csv_str([",0", "0,a", "1,ZZZZZ", "2,c"])
216
+ csv = pd.Series(["a", pd.NA, "c"], dtype=nullable_string_dtype).to_csv(
217
+ na_rep="ZZZZZ"
218
+ )
219
+ assert expected == csv
220
+
221
+ def test_to_csv_date_format(self):
222
+ # GH 10209
223
+ df_sec = DataFrame({"A": pd.date_range("20130101", periods=5, freq="s")})
224
+ df_day = DataFrame({"A": pd.date_range("20130101", periods=5, freq="d")})
225
+
226
+ expected_rows = [
227
+ ",A",
228
+ "0,2013-01-01 00:00:00",
229
+ "1,2013-01-01 00:00:01",
230
+ "2,2013-01-01 00:00:02",
231
+ "3,2013-01-01 00:00:03",
232
+ "4,2013-01-01 00:00:04",
233
+ ]
234
+ expected_default_sec = tm.convert_rows_list_to_csv_str(expected_rows)
235
+ assert df_sec.to_csv() == expected_default_sec
236
+
237
+ expected_rows = [
238
+ ",A",
239
+ "0,2013-01-01 00:00:00",
240
+ "1,2013-01-02 00:00:00",
241
+ "2,2013-01-03 00:00:00",
242
+ "3,2013-01-04 00:00:00",
243
+ "4,2013-01-05 00:00:00",
244
+ ]
245
+ expected_ymdhms_day = tm.convert_rows_list_to_csv_str(expected_rows)
246
+ assert df_day.to_csv(date_format="%Y-%m-%d %H:%M:%S") == expected_ymdhms_day
247
+
248
+ expected_rows = [
249
+ ",A",
250
+ "0,2013-01-01",
251
+ "1,2013-01-01",
252
+ "2,2013-01-01",
253
+ "3,2013-01-01",
254
+ "4,2013-01-01",
255
+ ]
256
+ expected_ymd_sec = tm.convert_rows_list_to_csv_str(expected_rows)
257
+ assert df_sec.to_csv(date_format="%Y-%m-%d") == expected_ymd_sec
258
+
259
+ expected_rows = [
260
+ ",A",
261
+ "0,2013-01-01",
262
+ "1,2013-01-02",
263
+ "2,2013-01-03",
264
+ "3,2013-01-04",
265
+ "4,2013-01-05",
266
+ ]
267
+ expected_default_day = tm.convert_rows_list_to_csv_str(expected_rows)
268
+ assert df_day.to_csv() == expected_default_day
269
+ assert df_day.to_csv(date_format="%Y-%m-%d") == expected_default_day
270
+
271
+ # see gh-7791
272
+ #
273
+ # Testing if date_format parameter is taken into account
274
+ # for multi-indexed DataFrames.
275
+ df_sec["B"] = 0
276
+ df_sec["C"] = 1
277
+
278
+ expected_rows = ["A,B,C", "2013-01-01,0,1.0"]
279
+ expected_ymd_sec = tm.convert_rows_list_to_csv_str(expected_rows)
280
+
281
+ df_sec_grouped = df_sec.groupby([pd.Grouper(key="A", freq="1h"), "B"])
282
+ assert df_sec_grouped.mean().to_csv(date_format="%Y-%m-%d") == expected_ymd_sec
283
+
284
+ def test_to_csv_different_datetime_formats(self):
285
+ # GH#21734
286
+ df = DataFrame(
287
+ {
288
+ "date": pd.to_datetime("1970-01-01"),
289
+ "datetime": pd.date_range("1970-01-01", periods=2, freq="h"),
290
+ }
291
+ )
292
+ expected_rows = [
293
+ "date,datetime",
294
+ "1970-01-01,1970-01-01 00:00:00",
295
+ "1970-01-01,1970-01-01 01:00:00",
296
+ ]
297
+ expected = tm.convert_rows_list_to_csv_str(expected_rows)
298
+ assert df.to_csv(index=False) == expected
299
+
300
+ def test_to_csv_date_format_in_categorical(self):
301
+ # GH#40754
302
+ ser = pd.Series(pd.to_datetime(["2021-03-27", pd.NaT], format="%Y-%m-%d"))
303
+ ser = ser.astype("category")
304
+ expected = tm.convert_rows_list_to_csv_str(["0", "2021-03-27", '""'])
305
+ assert ser.to_csv(index=False) == expected
306
+
307
+ ser = pd.Series(
308
+ pd.date_range(
309
+ start="2021-03-27", freq="D", periods=1, tz="Europe/Berlin"
310
+ ).append(pd.DatetimeIndex([pd.NaT]))
311
+ )
312
+ ser = ser.astype("category")
313
+ assert ser.to_csv(index=False, date_format="%Y-%m-%d") == expected
314
+
315
+ def test_to_csv_float_ea_float_format(self):
316
+ # GH#45991
317
+ df = DataFrame({"a": [1.1, 2.02, pd.NA, 6.000006], "b": "c"})
318
+ df["a"] = df["a"].astype("Float64")
319
+ result = df.to_csv(index=False, float_format="%.5f")
320
+ expected = tm.convert_rows_list_to_csv_str(
321
+ ["a,b", "1.10000,c", "2.02000,c", ",c", "6.00001,c"]
322
+ )
323
+ assert result == expected
324
+
325
+ def test_to_csv_float_ea_no_float_format(self):
326
+ # GH#45991
327
+ df = DataFrame({"a": [1.1, 2.02, pd.NA, 6.000006], "b": "c"})
328
+ df["a"] = df["a"].astype("Float64")
329
+ result = df.to_csv(index=False)
330
+ expected = tm.convert_rows_list_to_csv_str(
331
+ ["a,b", "1.1,c", "2.02,c", ",c", "6.000006,c"]
332
+ )
333
+ assert result == expected
334
+
335
+ def test_to_csv_multi_index(self):
336
+ # see gh-6618
337
+ df = DataFrame([1], columns=pd.MultiIndex.from_arrays([[1], [2]]))
338
+
339
+ exp_rows = [",1", ",2", "0,1"]
340
+ exp = tm.convert_rows_list_to_csv_str(exp_rows)
341
+ assert df.to_csv() == exp
342
+
343
+ exp_rows = ["1", "2", "1"]
344
+ exp = tm.convert_rows_list_to_csv_str(exp_rows)
345
+ assert df.to_csv(index=False) == exp
346
+
347
+ df = DataFrame(
348
+ [1],
349
+ columns=pd.MultiIndex.from_arrays([[1], [2]]),
350
+ index=pd.MultiIndex.from_arrays([[1], [2]]),
351
+ )
352
+
353
+ exp_rows = [",,1", ",,2", "1,2,1"]
354
+ exp = tm.convert_rows_list_to_csv_str(exp_rows)
355
+ assert df.to_csv() == exp
356
+
357
+ exp_rows = ["1", "2", "1"]
358
+ exp = tm.convert_rows_list_to_csv_str(exp_rows)
359
+ assert df.to_csv(index=False) == exp
360
+
361
+ df = DataFrame([1], columns=pd.MultiIndex.from_arrays([["foo"], ["bar"]]))
362
+
363
+ exp_rows = [",foo", ",bar", "0,1"]
364
+ exp = tm.convert_rows_list_to_csv_str(exp_rows)
365
+ assert df.to_csv() == exp
366
+
367
+ exp_rows = ["foo", "bar", "1"]
368
+ exp = tm.convert_rows_list_to_csv_str(exp_rows)
369
+ assert df.to_csv(index=False) == exp
370
+
371
+ @pytest.mark.parametrize(
372
+ "ind,expected",
373
+ [
374
+ (
375
+ pd.MultiIndex(levels=[[1.0]], codes=[[0]], names=["x"]),
376
+ "x,data\n1.0,1\n",
377
+ ),
378
+ (
379
+ pd.MultiIndex(
380
+ levels=[[1.0], [2.0]], codes=[[0], [0]], names=["x", "y"]
381
+ ),
382
+ "x,y,data\n1.0,2.0,1\n",
383
+ ),
384
+ ],
385
+ )
386
+ def test_to_csv_single_level_multi_index(self, ind, expected, frame_or_series):
387
+ # see gh-19589
388
+ obj = frame_or_series(pd.Series([1], ind, name="data"))
389
+
390
+ result = obj.to_csv(lineterminator="\n", header=True)
391
+ assert result == expected
392
+
393
+ def test_to_csv_string_array_ascii(self):
394
+ # GH 10813
395
+ str_array = [{"names": ["foo", "bar"]}, {"names": ["baz", "qux"]}]
396
+ df = DataFrame(str_array)
397
+ expected_ascii = """\
398
+ ,names
399
+ 0,"['foo', 'bar']"
400
+ 1,"['baz', 'qux']"
401
+ """
402
+ with tm.ensure_clean("str_test.csv") as path:
403
+ df.to_csv(path, encoding="ascii")
404
+ with open(path, encoding="utf-8") as f:
405
+ assert f.read() == expected_ascii
406
+
407
+ def test_to_csv_string_array_utf8(self):
408
+ # GH 10813
409
+ str_array = [{"names": ["foo", "bar"]}, {"names": ["baz", "qux"]}]
410
+ df = DataFrame(str_array)
411
+ expected_utf8 = """\
412
+ ,names
413
+ 0,"['foo', 'bar']"
414
+ 1,"['baz', 'qux']"
415
+ """
416
+ with tm.ensure_clean("unicode_test.csv") as path:
417
+ df.to_csv(path, encoding="utf-8")
418
+ with open(path, encoding="utf-8") as f:
419
+ assert f.read() == expected_utf8
420
+
421
+ def test_to_csv_string_with_lf(self):
422
+ # GH 20353
423
+ data = {"int": [1, 2, 3], "str_lf": ["abc", "d\nef", "g\nh\n\ni"]}
424
+ df = DataFrame(data)
425
+ with tm.ensure_clean("lf_test.csv") as path:
426
+ # case 1: The default line terminator(=os.linesep)(PR 21406)
427
+ os_linesep = os.linesep.encode("utf-8")
428
+ expected_noarg = (
429
+ b"int,str_lf"
430
+ + os_linesep
431
+ + b"1,abc"
432
+ + os_linesep
433
+ + b'2,"d\nef"'
434
+ + os_linesep
435
+ + b'3,"g\nh\n\ni"'
436
+ + os_linesep
437
+ )
438
+ df.to_csv(path, index=False)
439
+ with open(path, "rb") as f:
440
+ assert f.read() == expected_noarg
441
+ with tm.ensure_clean("lf_test.csv") as path:
442
+ # case 2: LF as line terminator
443
+ expected_lf = b'int,str_lf\n1,abc\n2,"d\nef"\n3,"g\nh\n\ni"\n'
444
+ df.to_csv(path, lineterminator="\n", index=False)
445
+ with open(path, "rb") as f:
446
+ assert f.read() == expected_lf
447
+ with tm.ensure_clean("lf_test.csv") as path:
448
+ # case 3: CRLF as line terminator
449
+ # 'lineterminator' should not change inner element
450
+ expected_crlf = b'int,str_lf\r\n1,abc\r\n2,"d\nef"\r\n3,"g\nh\n\ni"\r\n'
451
+ df.to_csv(path, lineterminator="\r\n", index=False)
452
+ with open(path, "rb") as f:
453
+ assert f.read() == expected_crlf
454
+
455
+ def test_to_csv_string_with_crlf(self):
456
+ # GH 20353
457
+ data = {"int": [1, 2, 3], "str_crlf": ["abc", "d\r\nef", "g\r\nh\r\n\r\ni"]}
458
+ df = DataFrame(data)
459
+ with tm.ensure_clean("crlf_test.csv") as path:
460
+ # case 1: The default line terminator(=os.linesep)(PR 21406)
461
+ os_linesep = os.linesep.encode("utf-8")
462
+ expected_noarg = (
463
+ b"int,str_crlf"
464
+ + os_linesep
465
+ + b"1,abc"
466
+ + os_linesep
467
+ + b'2,"d\r\nef"'
468
+ + os_linesep
469
+ + b'3,"g\r\nh\r\n\r\ni"'
470
+ + os_linesep
471
+ )
472
+ df.to_csv(path, index=False)
473
+ with open(path, "rb") as f:
474
+ assert f.read() == expected_noarg
475
+ with tm.ensure_clean("crlf_test.csv") as path:
476
+ # case 2: LF as line terminator
477
+ expected_lf = b'int,str_crlf\n1,abc\n2,"d\r\nef"\n3,"g\r\nh\r\n\r\ni"\n'
478
+ df.to_csv(path, lineterminator="\n", index=False)
479
+ with open(path, "rb") as f:
480
+ assert f.read() == expected_lf
481
+ with tm.ensure_clean("crlf_test.csv") as path:
482
+ # case 3: CRLF as line terminator
483
+ # 'lineterminator' should not change inner element
484
+ expected_crlf = (
485
+ b"int,str_crlf\r\n"
486
+ b"1,abc\r\n"
487
+ b'2,"d\r\nef"\r\n'
488
+ b'3,"g\r\nh\r\n\r\ni"\r\n'
489
+ )
490
+ df.to_csv(path, lineterminator="\r\n", index=False)
491
+ with open(path, "rb") as f:
492
+ assert f.read() == expected_crlf
493
+
494
+ def test_to_csv_stdout_file(self, capsys):
495
+ # GH 21561
496
+ df = DataFrame([["foo", "bar"], ["baz", "qux"]], columns=["name_1", "name_2"])
497
+ expected_rows = [",name_1,name_2", "0,foo,bar", "1,baz,qux"]
498
+ expected_ascii = tm.convert_rows_list_to_csv_str(expected_rows)
499
+
500
+ df.to_csv(sys.stdout, encoding="ascii")
501
+ captured = capsys.readouterr()
502
+
503
+ assert captured.out == expected_ascii
504
+ assert not sys.stdout.closed
505
+
506
+ @pytest.mark.xfail(
507
+ compat.is_platform_windows(),
508
+ reason=(
509
+ "Especially in Windows, file stream should not be passed"
510
+ "to csv writer without newline='' option."
511
+ "(https://docs.python.org/3/library/csv.html#csv.writer)"
512
+ ),
513
+ )
514
+ def test_to_csv_write_to_open_file(self):
515
+ # GH 21696
516
+ df = DataFrame({"a": ["x", "y", "z"]})
517
+ expected = """\
518
+ manual header
519
+ x
520
+ y
521
+ z
522
+ """
523
+ with tm.ensure_clean("test.txt") as path:
524
+ with open(path, "w", encoding="utf-8") as f:
525
+ f.write("manual header\n")
526
+ df.to_csv(f, header=None, index=None)
527
+ with open(path, encoding="utf-8") as f:
528
+ assert f.read() == expected
529
+
530
+ def test_to_csv_write_to_open_file_with_newline_py3(self):
531
+ # see gh-21696
532
+ # see gh-20353
533
+ df = DataFrame({"a": ["x", "y", "z"]})
534
+ expected_rows = ["x", "y", "z"]
535
+ expected = "manual header\n" + tm.convert_rows_list_to_csv_str(expected_rows)
536
+ with tm.ensure_clean("test.txt") as path:
537
+ with open(path, "w", newline="", encoding="utf-8") as f:
538
+ f.write("manual header\n")
539
+ df.to_csv(f, header=None, index=None)
540
+
541
+ with open(path, "rb") as f:
542
+ assert f.read() == bytes(expected, "utf-8")
543
+
544
+ @pytest.mark.parametrize("to_infer", [True, False])
545
+ @pytest.mark.parametrize("read_infer", [True, False])
546
+ def test_to_csv_compression(
547
+ self, compression_only, read_infer, to_infer, compression_to_extension
548
+ ):
549
+ # see gh-15008
550
+ compression = compression_only
551
+
552
+ # We'll complete file extension subsequently.
553
+ filename = "test."
554
+ filename += compression_to_extension[compression]
555
+
556
+ df = DataFrame({"A": [1]})
557
+
558
+ to_compression = "infer" if to_infer else compression
559
+ read_compression = "infer" if read_infer else compression
560
+
561
+ with tm.ensure_clean(filename) as path:
562
+ df.to_csv(path, compression=to_compression)
563
+ result = pd.read_csv(path, index_col=0, compression=read_compression)
564
+ tm.assert_frame_equal(result, df)
565
+
566
+ def test_to_csv_compression_dict(self, compression_only):
567
+ # GH 26023
568
+ method = compression_only
569
+ df = DataFrame({"ABC": [1]})
570
+ filename = "to_csv_compress_as_dict."
571
+ extension = {
572
+ "gzip": "gz",
573
+ "zstd": "zst",
574
+ }.get(method, method)
575
+ filename += extension
576
+ with tm.ensure_clean(filename) as path:
577
+ df.to_csv(path, compression={"method": method})
578
+ read_df = pd.read_csv(path, index_col=0)
579
+ tm.assert_frame_equal(read_df, df)
580
+
581
+ def test_to_csv_compression_dict_no_method_raises(self):
582
+ # GH 26023
583
+ df = DataFrame({"ABC": [1]})
584
+ compression = {"some_option": True}
585
+ msg = "must have key 'method'"
586
+
587
+ with tm.ensure_clean("out.zip") as path:
588
+ with pytest.raises(ValueError, match=msg):
589
+ df.to_csv(path, compression=compression)
590
+
591
+ @pytest.mark.parametrize("compression", ["zip", "infer"])
592
+ @pytest.mark.parametrize("archive_name", ["test_to_csv.csv", "test_to_csv.zip"])
593
+ def test_to_csv_zip_arguments(self, compression, archive_name):
594
+ # GH 26023
595
+ df = DataFrame({"ABC": [1]})
596
+ with tm.ensure_clean("to_csv_archive_name.zip") as path:
597
+ df.to_csv(
598
+ path, compression={"method": compression, "archive_name": archive_name}
599
+ )
600
+ with ZipFile(path) as zp:
601
+ assert len(zp.filelist) == 1
602
+ archived_file = zp.filelist[0].filename
603
+ assert archived_file == archive_name
604
+
605
+ @pytest.mark.parametrize(
606
+ "filename,expected_arcname",
607
+ [
608
+ ("archive.csv", "archive.csv"),
609
+ ("archive.tsv", "archive.tsv"),
610
+ ("archive.csv.zip", "archive.csv"),
611
+ ("archive.tsv.zip", "archive.tsv"),
612
+ ("archive.zip", "archive"),
613
+ ],
614
+ )
615
+ def test_to_csv_zip_infer_name(self, tmp_path, filename, expected_arcname):
616
+ # GH 39465
617
+ df = DataFrame({"ABC": [1]})
618
+ path = tmp_path / filename
619
+ df.to_csv(path, compression="zip")
620
+ with ZipFile(path) as zp:
621
+ assert len(zp.filelist) == 1
622
+ archived_file = zp.filelist[0].filename
623
+ assert archived_file == expected_arcname
624
+
625
+ @pytest.mark.parametrize("df_new_type", ["Int64"])
626
+ def test_to_csv_na_rep_long_string(self, df_new_type):
627
+ # see gh-25099
628
+ df = DataFrame({"c": [float("nan")] * 3})
629
+ df = df.astype(df_new_type)
630
+ expected_rows = ["c", "mynull", "mynull", "mynull"]
631
+ expected = tm.convert_rows_list_to_csv_str(expected_rows)
632
+
633
+ result = df.to_csv(index=False, na_rep="mynull", encoding="ascii")
634
+
635
+ assert expected == result
636
+
637
+ def test_to_csv_timedelta_precision(self):
638
+ # GH 6783
639
+ s = pd.Series([1, 1]).astype("timedelta64[ns]")
640
+ buf = io.StringIO()
641
+ s.to_csv(buf)
642
+ result = buf.getvalue()
643
+ expected_rows = [
644
+ ",0",
645
+ "0,0 days 00:00:00.000000001",
646
+ "1,0 days 00:00:00.000000001",
647
+ ]
648
+ expected = tm.convert_rows_list_to_csv_str(expected_rows)
649
+ assert result == expected
650
+
651
+ def test_na_rep_truncated(self):
652
+ # https://github.com/pandas-dev/pandas/issues/31447
653
+ result = pd.Series(range(8, 12)).to_csv(na_rep="-")
654
+ expected = tm.convert_rows_list_to_csv_str([",0", "0,8", "1,9", "2,10", "3,11"])
655
+ assert result == expected
656
+
657
+ result = pd.Series([True, False]).to_csv(na_rep="nan")
658
+ expected = tm.convert_rows_list_to_csv_str([",0", "0,True", "1,False"])
659
+ assert result == expected
660
+
661
+ result = pd.Series([1.1, 2.2]).to_csv(na_rep=".")
662
+ expected = tm.convert_rows_list_to_csv_str([",0", "0,1.1", "1,2.2"])
663
+ assert result == expected
664
+
665
+ @pytest.mark.parametrize("errors", ["surrogatepass", "ignore", "replace"])
666
+ def test_to_csv_errors(self, errors):
667
+ # GH 22610
668
+ data = ["\ud800foo"]
669
+ ser = pd.Series(data, index=Index(data, dtype=object), dtype=object)
670
+ with tm.ensure_clean("test.csv") as path:
671
+ ser.to_csv(path, errors=errors)
672
+ # No use in reading back the data as it is not the same anymore
673
+ # due to the error handling
674
+
675
+ @pytest.mark.parametrize("mode", ["wb", "w"])
676
+ def test_to_csv_binary_handle(self, mode):
677
+ """
678
+ Binary file objects should work (if 'mode' contains a 'b') or even without
679
+ it in most cases.
680
+
681
+ GH 35058 and GH 19827
682
+ """
683
+ df = DataFrame(
684
+ 1.1 * np.arange(120).reshape((30, 4)),
685
+ columns=Index(list("ABCD")),
686
+ index=Index([f"i-{i}" for i in range(30)]),
687
+ )
688
+ with tm.ensure_clean() as path:
689
+ with open(path, mode="w+b") as handle:
690
+ df.to_csv(handle, mode=mode)
691
+ tm.assert_frame_equal(df, pd.read_csv(path, index_col=0))
692
+
693
+ @pytest.mark.parametrize("mode", ["wb", "w"])
694
+ def test_to_csv_encoding_binary_handle(self, mode):
695
+ """
696
+ Binary file objects should honor a specified encoding.
697
+
698
+ GH 23854 and GH 13068 with binary handles
699
+ """
700
+ # example from GH 23854
701
+ content = "a, b, 🐟".encode("utf-8-sig")
702
+ buffer = io.BytesIO(content)
703
+ df = pd.read_csv(buffer, encoding="utf-8-sig")
704
+
705
+ buffer = io.BytesIO()
706
+ df.to_csv(buffer, mode=mode, encoding="utf-8-sig", index=False)
707
+ buffer.seek(0) # tests whether file handle wasn't closed
708
+ assert buffer.getvalue().startswith(content)
709
+
710
+ # example from GH 13068
711
+ with tm.ensure_clean() as path:
712
+ with open(path, "w+b") as handle:
713
+ DataFrame().to_csv(handle, mode=mode, encoding="utf-8-sig")
714
+
715
+ handle.seek(0)
716
+ assert handle.read().startswith(b'\xef\xbb\xbf""')
717
+
718
+
719
+ def test_to_csv_iterative_compression_name(compression):
720
+ # GH 38714
721
+ df = DataFrame(
722
+ 1.1 * np.arange(120).reshape((30, 4)),
723
+ columns=Index(list("ABCD")),
724
+ index=Index([f"i-{i}" for i in range(30)]),
725
+ )
726
+ with tm.ensure_clean() as path:
727
+ df.to_csv(path, compression=compression, chunksize=1)
728
+ tm.assert_frame_equal(
729
+ pd.read_csv(path, compression=compression, index_col=0), df
730
+ )
731
+
732
+
733
+ def test_to_csv_iterative_compression_buffer(compression):
734
+ # GH 38714
735
+ df = DataFrame(
736
+ 1.1 * np.arange(120).reshape((30, 4)),
737
+ columns=Index(list("ABCD")),
738
+ index=Index([f"i-{i}" for i in range(30)]),
739
+ )
740
+ with io.BytesIO() as buffer:
741
+ df.to_csv(buffer, compression=compression, chunksize=1)
742
+ buffer.seek(0)
743
+ tm.assert_frame_equal(
744
+ pd.read_csv(buffer, compression=compression, index_col=0), df
745
+ )
746
+ assert not buffer.closed
747
+
748
+
749
+ def test_to_csv_pos_args_deprecation():
750
+ # GH-54229
751
+ df = DataFrame({"a": [1, 2, 3]})
752
+ msg = (
753
+ r"Starting with pandas version 3.0 all arguments of to_csv except for the "
754
+ r"argument 'path_or_buf' will be keyword-only."
755
+ )
756
+ with tm.assert_produces_warning(FutureWarning, match=msg):
757
+ buffer = io.BytesIO()
758
+ df.to_csv(buffer, ";")
llmeval-env/lib/python3.10/site-packages/pandas/tests/io/formats/test_to_excel.py ADDED
@@ -0,0 +1,429 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Tests formatting as writer-agnostic ExcelCells
2
+
3
+ ExcelFormatter is tested implicitly in pandas/tests/io/excel
4
+ """
5
+ import string
6
+
7
+ import pytest
8
+
9
+ from pandas.errors import CSSWarning
10
+
11
+ import pandas._testing as tm
12
+
13
+ from pandas.io.formats.excel import (
14
+ CssExcelCell,
15
+ CSSToExcelConverter,
16
+ )
17
+
18
+
19
+ @pytest.mark.parametrize(
20
+ "css,expected",
21
+ [
22
+ # FONT
23
+ # - name
24
+ ("font-family: foo,bar", {"font": {"name": "foo"}}),
25
+ ('font-family: "foo bar",baz', {"font": {"name": "foo bar"}}),
26
+ ("font-family: foo,\nbar", {"font": {"name": "foo"}}),
27
+ ("font-family: foo, bar, baz", {"font": {"name": "foo"}}),
28
+ ("font-family: bar, foo", {"font": {"name": "bar"}}),
29
+ ("font-family: 'foo bar', baz", {"font": {"name": "foo bar"}}),
30
+ ("font-family: 'foo \\'bar', baz", {"font": {"name": "foo 'bar"}}),
31
+ ('font-family: "foo \\"bar", baz', {"font": {"name": 'foo "bar'}}),
32
+ ('font-family: "foo ,bar", baz', {"font": {"name": "foo ,bar"}}),
33
+ # - family
34
+ ("font-family: serif", {"font": {"name": "serif", "family": 1}}),
35
+ ("font-family: Serif", {"font": {"name": "serif", "family": 1}}),
36
+ ("font-family: roman, serif", {"font": {"name": "roman", "family": 1}}),
37
+ ("font-family: roman, sans-serif", {"font": {"name": "roman", "family": 2}}),
38
+ ("font-family: roman, sans serif", {"font": {"name": "roman"}}),
39
+ ("font-family: roman, sansserif", {"font": {"name": "roman"}}),
40
+ ("font-family: roman, cursive", {"font": {"name": "roman", "family": 4}}),
41
+ ("font-family: roman, fantasy", {"font": {"name": "roman", "family": 5}}),
42
+ # - size
43
+ ("font-size: 1em", {"font": {"size": 12}}),
44
+ ("font-size: xx-small", {"font": {"size": 6}}),
45
+ ("font-size: x-small", {"font": {"size": 7.5}}),
46
+ ("font-size: small", {"font": {"size": 9.6}}),
47
+ ("font-size: medium", {"font": {"size": 12}}),
48
+ ("font-size: large", {"font": {"size": 13.5}}),
49
+ ("font-size: x-large", {"font": {"size": 18}}),
50
+ ("font-size: xx-large", {"font": {"size": 24}}),
51
+ ("font-size: 50%", {"font": {"size": 6}}),
52
+ # - bold
53
+ ("font-weight: 100", {"font": {"bold": False}}),
54
+ ("font-weight: 200", {"font": {"bold": False}}),
55
+ ("font-weight: 300", {"font": {"bold": False}}),
56
+ ("font-weight: 400", {"font": {"bold": False}}),
57
+ ("font-weight: normal", {"font": {"bold": False}}),
58
+ ("font-weight: lighter", {"font": {"bold": False}}),
59
+ ("font-weight: bold", {"font": {"bold": True}}),
60
+ ("font-weight: bolder", {"font": {"bold": True}}),
61
+ ("font-weight: 700", {"font": {"bold": True}}),
62
+ ("font-weight: 800", {"font": {"bold": True}}),
63
+ ("font-weight: 900", {"font": {"bold": True}}),
64
+ # - italic
65
+ ("font-style: italic", {"font": {"italic": True}}),
66
+ ("font-style: oblique", {"font": {"italic": True}}),
67
+ # - underline
68
+ ("text-decoration: underline", {"font": {"underline": "single"}}),
69
+ ("text-decoration: overline", {}),
70
+ ("text-decoration: none", {}),
71
+ # - strike
72
+ ("text-decoration: line-through", {"font": {"strike": True}}),
73
+ (
74
+ "text-decoration: underline line-through",
75
+ {"font": {"strike": True, "underline": "single"}},
76
+ ),
77
+ (
78
+ "text-decoration: underline; text-decoration: line-through",
79
+ {"font": {"strike": True}},
80
+ ),
81
+ # - color
82
+ ("color: red", {"font": {"color": "FF0000"}}),
83
+ ("color: #ff0000", {"font": {"color": "FF0000"}}),
84
+ ("color: #f0a", {"font": {"color": "FF00AA"}}),
85
+ # - shadow
86
+ ("text-shadow: none", {"font": {"shadow": False}}),
87
+ ("text-shadow: 0px -0em 0px #CCC", {"font": {"shadow": False}}),
88
+ ("text-shadow: 0px -0em 0px #999", {"font": {"shadow": False}}),
89
+ ("text-shadow: 0px -0em 0px", {"font": {"shadow": False}}),
90
+ ("text-shadow: 2px -0em 0px #CCC", {"font": {"shadow": True}}),
91
+ ("text-shadow: 0px -2em 0px #CCC", {"font": {"shadow": True}}),
92
+ ("text-shadow: 0px -0em 2px #CCC", {"font": {"shadow": True}}),
93
+ ("text-shadow: 0px -0em 2px", {"font": {"shadow": True}}),
94
+ ("text-shadow: 0px -2em", {"font": {"shadow": True}}),
95
+ # FILL
96
+ # - color, fillType
97
+ (
98
+ "background-color: red",
99
+ {"fill": {"fgColor": "FF0000", "patternType": "solid"}},
100
+ ),
101
+ (
102
+ "background-color: #ff0000",
103
+ {"fill": {"fgColor": "FF0000", "patternType": "solid"}},
104
+ ),
105
+ (
106
+ "background-color: #f0a",
107
+ {"fill": {"fgColor": "FF00AA", "patternType": "solid"}},
108
+ ),
109
+ # BORDER
110
+ # - style
111
+ (
112
+ "border-style: solid",
113
+ {
114
+ "border": {
115
+ "top": {"style": "medium"},
116
+ "bottom": {"style": "medium"},
117
+ "left": {"style": "medium"},
118
+ "right": {"style": "medium"},
119
+ }
120
+ },
121
+ ),
122
+ (
123
+ "border-style: solid; border-width: thin",
124
+ {
125
+ "border": {
126
+ "top": {"style": "thin"},
127
+ "bottom": {"style": "thin"},
128
+ "left": {"style": "thin"},
129
+ "right": {"style": "thin"},
130
+ }
131
+ },
132
+ ),
133
+ (
134
+ "border-top-style: solid; border-top-width: thin",
135
+ {"border": {"top": {"style": "thin"}}},
136
+ ),
137
+ (
138
+ "border-top-style: solid; border-top-width: 1pt",
139
+ {"border": {"top": {"style": "thin"}}},
140
+ ),
141
+ ("border-top-style: solid", {"border": {"top": {"style": "medium"}}}),
142
+ (
143
+ "border-top-style: solid; border-top-width: medium",
144
+ {"border": {"top": {"style": "medium"}}},
145
+ ),
146
+ (
147
+ "border-top-style: solid; border-top-width: 2pt",
148
+ {"border": {"top": {"style": "medium"}}},
149
+ ),
150
+ (
151
+ "border-top-style: solid; border-top-width: thick",
152
+ {"border": {"top": {"style": "thick"}}},
153
+ ),
154
+ (
155
+ "border-top-style: solid; border-top-width: 4pt",
156
+ {"border": {"top": {"style": "thick"}}},
157
+ ),
158
+ (
159
+ "border-top-style: dotted",
160
+ {"border": {"top": {"style": "mediumDashDotDot"}}},
161
+ ),
162
+ (
163
+ "border-top-style: dotted; border-top-width: thin",
164
+ {"border": {"top": {"style": "dotted"}}},
165
+ ),
166
+ ("border-top-style: dashed", {"border": {"top": {"style": "mediumDashed"}}}),
167
+ (
168
+ "border-top-style: dashed; border-top-width: thin",
169
+ {"border": {"top": {"style": "dashed"}}},
170
+ ),
171
+ ("border-top-style: double", {"border": {"top": {"style": "double"}}}),
172
+ # - color
173
+ (
174
+ "border-style: solid; border-color: #0000ff",
175
+ {
176
+ "border": {
177
+ "top": {"style": "medium", "color": "0000FF"},
178
+ "right": {"style": "medium", "color": "0000FF"},
179
+ "bottom": {"style": "medium", "color": "0000FF"},
180
+ "left": {"style": "medium", "color": "0000FF"},
181
+ }
182
+ },
183
+ ),
184
+ (
185
+ "border-top-style: double; border-top-color: blue",
186
+ {"border": {"top": {"style": "double", "color": "0000FF"}}},
187
+ ),
188
+ (
189
+ "border-top-style: solid; border-top-color: #06c",
190
+ {"border": {"top": {"style": "medium", "color": "0066CC"}}},
191
+ ),
192
+ (
193
+ "border-top-color: blue",
194
+ {"border": {"top": {"color": "0000FF", "style": "none"}}},
195
+ ),
196
+ # ALIGNMENT
197
+ # - horizontal
198
+ ("text-align: center", {"alignment": {"horizontal": "center"}}),
199
+ ("text-align: left", {"alignment": {"horizontal": "left"}}),
200
+ ("text-align: right", {"alignment": {"horizontal": "right"}}),
201
+ ("text-align: justify", {"alignment": {"horizontal": "justify"}}),
202
+ # - vertical
203
+ ("vertical-align: top", {"alignment": {"vertical": "top"}}),
204
+ ("vertical-align: text-top", {"alignment": {"vertical": "top"}}),
205
+ ("vertical-align: middle", {"alignment": {"vertical": "center"}}),
206
+ ("vertical-align: bottom", {"alignment": {"vertical": "bottom"}}),
207
+ ("vertical-align: text-bottom", {"alignment": {"vertical": "bottom"}}),
208
+ # - wrap_text
209
+ ("white-space: nowrap", {"alignment": {"wrap_text": False}}),
210
+ ("white-space: pre", {"alignment": {"wrap_text": False}}),
211
+ ("white-space: pre-line", {"alignment": {"wrap_text": False}}),
212
+ ("white-space: normal", {"alignment": {"wrap_text": True}}),
213
+ # NUMBER FORMAT
214
+ ("number-format: 0%", {"number_format": {"format_code": "0%"}}),
215
+ (
216
+ "number-format: 0§[Red](0)§-§@;",
217
+ {"number_format": {"format_code": "0;[red](0);-;@"}}, # GH 46152
218
+ ),
219
+ ],
220
+ )
221
+ def test_css_to_excel(css, expected):
222
+ convert = CSSToExcelConverter()
223
+ assert expected == convert(css)
224
+
225
+
226
+ def test_css_to_excel_multiple():
227
+ convert = CSSToExcelConverter()
228
+ actual = convert(
229
+ """
230
+ font-weight: bold;
231
+ text-decoration: underline;
232
+ color: red;
233
+ border-width: thin;
234
+ text-align: center;
235
+ vertical-align: top;
236
+ unused: something;
237
+ """
238
+ )
239
+ assert {
240
+ "font": {"bold": True, "underline": "single", "color": "FF0000"},
241
+ "border": {
242
+ "top": {"style": "thin"},
243
+ "right": {"style": "thin"},
244
+ "bottom": {"style": "thin"},
245
+ "left": {"style": "thin"},
246
+ },
247
+ "alignment": {"horizontal": "center", "vertical": "top"},
248
+ } == actual
249
+
250
+
251
+ @pytest.mark.parametrize(
252
+ "css,inherited,expected",
253
+ [
254
+ ("font-weight: bold", "", {"font": {"bold": True}}),
255
+ ("", "font-weight: bold", {"font": {"bold": True}}),
256
+ (
257
+ "font-weight: bold",
258
+ "font-style: italic",
259
+ {"font": {"bold": True, "italic": True}},
260
+ ),
261
+ ("font-style: normal", "font-style: italic", {"font": {"italic": False}}),
262
+ ("font-style: inherit", "", {}),
263
+ (
264
+ "font-style: normal; font-style: inherit",
265
+ "font-style: italic",
266
+ {"font": {"italic": True}},
267
+ ),
268
+ ],
269
+ )
270
+ def test_css_to_excel_inherited(css, inherited, expected):
271
+ convert = CSSToExcelConverter(inherited)
272
+ assert expected == convert(css)
273
+
274
+
275
+ @pytest.mark.parametrize(
276
+ "input_color,output_color",
277
+ (
278
+ list(CSSToExcelConverter.NAMED_COLORS.items())
279
+ + [("#" + rgb, rgb) for rgb in CSSToExcelConverter.NAMED_COLORS.values()]
280
+ + [("#F0F", "FF00FF"), ("#ABC", "AABBCC")]
281
+ ),
282
+ )
283
+ def test_css_to_excel_good_colors(input_color, output_color):
284
+ # see gh-18392
285
+ css = (
286
+ f"border-top-color: {input_color}; "
287
+ f"border-right-color: {input_color}; "
288
+ f"border-bottom-color: {input_color}; "
289
+ f"border-left-color: {input_color}; "
290
+ f"background-color: {input_color}; "
291
+ f"color: {input_color}"
292
+ )
293
+
294
+ expected = {}
295
+
296
+ expected["fill"] = {"patternType": "solid", "fgColor": output_color}
297
+
298
+ expected["font"] = {"color": output_color}
299
+
300
+ expected["border"] = {
301
+ k: {"color": output_color, "style": "none"}
302
+ for k in ("top", "right", "bottom", "left")
303
+ }
304
+
305
+ with tm.assert_produces_warning(None):
306
+ convert = CSSToExcelConverter()
307
+ assert expected == convert(css)
308
+
309
+
310
+ @pytest.mark.parametrize("input_color", [None, "not-a-color"])
311
+ def test_css_to_excel_bad_colors(input_color):
312
+ # see gh-18392
313
+ css = (
314
+ f"border-top-color: {input_color}; "
315
+ f"border-right-color: {input_color}; "
316
+ f"border-bottom-color: {input_color}; "
317
+ f"border-left-color: {input_color}; "
318
+ f"background-color: {input_color}; "
319
+ f"color: {input_color}"
320
+ )
321
+
322
+ expected = {}
323
+
324
+ if input_color is not None:
325
+ expected["fill"] = {"patternType": "solid"}
326
+
327
+ with tm.assert_produces_warning(CSSWarning):
328
+ convert = CSSToExcelConverter()
329
+ assert expected == convert(css)
330
+
331
+
332
+ def tests_css_named_colors_valid():
333
+ upper_hexs = set(map(str.upper, string.hexdigits))
334
+ for color in CSSToExcelConverter.NAMED_COLORS.values():
335
+ assert len(color) == 6 and all(c in upper_hexs for c in color)
336
+
337
+
338
+ def test_css_named_colors_from_mpl_present():
339
+ mpl_colors = pytest.importorskip("matplotlib.colors")
340
+
341
+ pd_colors = CSSToExcelConverter.NAMED_COLORS
342
+ for name, color in mpl_colors.CSS4_COLORS.items():
343
+ assert name in pd_colors and pd_colors[name] == color[1:]
344
+
345
+
346
+ @pytest.mark.parametrize(
347
+ "styles,expected",
348
+ [
349
+ ([("color", "green"), ("color", "red")], "color: red;"),
350
+ ([("font-weight", "bold"), ("font-weight", "normal")], "font-weight: normal;"),
351
+ ([("text-align", "center"), ("TEXT-ALIGN", "right")], "text-align: right;"),
352
+ ],
353
+ )
354
+ def test_css_excel_cell_precedence(styles, expected):
355
+ """It applies favors latter declarations over former declarations"""
356
+ # See GH 47371
357
+ converter = CSSToExcelConverter()
358
+ converter._call_cached.cache_clear()
359
+ css_styles = {(0, 0): styles}
360
+ cell = CssExcelCell(
361
+ row=0,
362
+ col=0,
363
+ val="",
364
+ style=None,
365
+ css_styles=css_styles,
366
+ css_row=0,
367
+ css_col=0,
368
+ css_converter=converter,
369
+ )
370
+ converter._call_cached.cache_clear()
371
+
372
+ assert cell.style == converter(expected)
373
+
374
+
375
+ @pytest.mark.parametrize(
376
+ "styles,cache_hits,cache_misses",
377
+ [
378
+ ([[("color", "green"), ("color", "red"), ("color", "green")]], 0, 1),
379
+ (
380
+ [
381
+ [("font-weight", "bold")],
382
+ [("font-weight", "normal"), ("font-weight", "bold")],
383
+ ],
384
+ 1,
385
+ 1,
386
+ ),
387
+ ([[("text-align", "center")], [("TEXT-ALIGN", "center")]], 1, 1),
388
+ (
389
+ [
390
+ [("font-weight", "bold"), ("text-align", "center")],
391
+ [("font-weight", "bold"), ("text-align", "left")],
392
+ ],
393
+ 0,
394
+ 2,
395
+ ),
396
+ (
397
+ [
398
+ [("font-weight", "bold"), ("text-align", "center")],
399
+ [("font-weight", "bold"), ("text-align", "left")],
400
+ [("font-weight", "bold"), ("text-align", "center")],
401
+ ],
402
+ 1,
403
+ 2,
404
+ ),
405
+ ],
406
+ )
407
+ def test_css_excel_cell_cache(styles, cache_hits, cache_misses):
408
+ """It caches unique cell styles"""
409
+ # See GH 47371
410
+ converter = CSSToExcelConverter()
411
+ converter._call_cached.cache_clear()
412
+
413
+ css_styles = {(0, i): _style for i, _style in enumerate(styles)}
414
+ for css_row, css_col in css_styles:
415
+ CssExcelCell(
416
+ row=0,
417
+ col=0,
418
+ val="",
419
+ style=None,
420
+ css_styles=css_styles,
421
+ css_row=css_row,
422
+ css_col=css_col,
423
+ css_converter=converter,
424
+ )
425
+ cache_info = converter._call_cached.cache_info()
426
+ converter._call_cached.cache_clear()
427
+
428
+ assert cache_info.hits == cache_hits
429
+ assert cache_info.misses == cache_misses
llmeval-env/lib/python3.10/site-packages/pandas/tests/io/generate_legacy_storage_files.py ADDED
@@ -0,0 +1,342 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ self-contained to write legacy storage pickle files
3
+
4
+ To use this script. Create an environment where you want
5
+ generate pickles, say its for 0.20.3, with your pandas clone
6
+ in ~/pandas
7
+
8
+ . activate pandas_0.20.3
9
+ cd ~/pandas/pandas
10
+
11
+ $ python -m tests.io.generate_legacy_storage_files \
12
+ tests/io/data/legacy_pickle/0.20.3/ pickle
13
+
14
+ This script generates a storage file for the current arch, system,
15
+ and python version
16
+ pandas version: 0.20.3
17
+ output dir : pandas/pandas/tests/io/data/legacy_pickle/0.20.3/
18
+ storage format: pickle
19
+ created pickle file: 0.20.3_x86_64_darwin_3.5.2.pickle
20
+
21
+ The idea here is you are using the *current* version of the
22
+ generate_legacy_storage_files with an *older* version of pandas to
23
+ generate a pickle file. We will then check this file into a current
24
+ branch, and test using test_pickle.py. This will load the *older*
25
+ pickles and test versus the current data that is generated
26
+ (with main). These are then compared.
27
+
28
+ If we have cases where we changed the signature (e.g. we renamed
29
+ offset -> freq in Timestamp). Then we have to conditionally execute
30
+ in the generate_legacy_storage_files.py to make it
31
+ run under the older AND the newer version.
32
+
33
+ """
34
+
35
+ from datetime import timedelta
36
+ import os
37
+ import pickle
38
+ import platform as pl
39
+ import sys
40
+
41
+ # Remove script directory from path, otherwise Python will try to
42
+ # import the JSON test directory as the json module
43
+ sys.path.pop(0)
44
+
45
+ import numpy as np
46
+
47
+ import pandas
48
+ from pandas import (
49
+ Categorical,
50
+ DataFrame,
51
+ Index,
52
+ MultiIndex,
53
+ NaT,
54
+ Period,
55
+ RangeIndex,
56
+ Series,
57
+ Timestamp,
58
+ bdate_range,
59
+ date_range,
60
+ interval_range,
61
+ period_range,
62
+ timedelta_range,
63
+ )
64
+ from pandas.arrays import SparseArray
65
+
66
+ from pandas.tseries.offsets import (
67
+ FY5253,
68
+ BusinessDay,
69
+ BusinessHour,
70
+ CustomBusinessDay,
71
+ DateOffset,
72
+ Day,
73
+ Easter,
74
+ Hour,
75
+ LastWeekOfMonth,
76
+ Minute,
77
+ MonthBegin,
78
+ MonthEnd,
79
+ QuarterBegin,
80
+ QuarterEnd,
81
+ SemiMonthBegin,
82
+ SemiMonthEnd,
83
+ Week,
84
+ WeekOfMonth,
85
+ YearBegin,
86
+ YearEnd,
87
+ )
88
+
89
+
90
+ def _create_sp_series():
91
+ nan = np.nan
92
+
93
+ # nan-based
94
+ arr = np.arange(15, dtype=np.float64)
95
+ arr[7:12] = nan
96
+ arr[-1:] = nan
97
+
98
+ bseries = Series(SparseArray(arr, kind="block"))
99
+ bseries.name = "bseries"
100
+ return bseries
101
+
102
+
103
+ def _create_sp_tsseries():
104
+ nan = np.nan
105
+
106
+ # nan-based
107
+ arr = np.arange(15, dtype=np.float64)
108
+ arr[7:12] = nan
109
+ arr[-1:] = nan
110
+
111
+ date_index = bdate_range("1/1/2011", periods=len(arr))
112
+ bseries = Series(SparseArray(arr, kind="block"), index=date_index)
113
+ bseries.name = "btsseries"
114
+ return bseries
115
+
116
+
117
+ def _create_sp_frame():
118
+ nan = np.nan
119
+
120
+ data = {
121
+ "A": [nan, nan, nan, 0, 1, 2, 3, 4, 5, 6],
122
+ "B": [0, 1, 2, nan, nan, nan, 3, 4, 5, 6],
123
+ "C": np.arange(10).astype(np.int64),
124
+ "D": [0, 1, 2, 3, 4, 5, nan, nan, nan, nan],
125
+ }
126
+
127
+ dates = bdate_range("1/1/2011", periods=10)
128
+ return DataFrame(data, index=dates).apply(SparseArray)
129
+
130
+
131
+ def create_pickle_data():
132
+ """create the pickle data"""
133
+ data = {
134
+ "A": [0.0, 1.0, 2.0, 3.0, np.nan],
135
+ "B": [0, 1, 0, 1, 0],
136
+ "C": ["foo1", "foo2", "foo3", "foo4", "foo5"],
137
+ "D": date_range("1/1/2009", periods=5),
138
+ "E": [0.0, 1, Timestamp("20100101"), "foo", 2.0],
139
+ }
140
+
141
+ scalars = {"timestamp": Timestamp("20130101"), "period": Period("2012", "M")}
142
+
143
+ index = {
144
+ "int": Index(np.arange(10)),
145
+ "date": date_range("20130101", periods=10),
146
+ "period": period_range("2013-01-01", freq="M", periods=10),
147
+ "float": Index(np.arange(10, dtype=np.float64)),
148
+ "uint": Index(np.arange(10, dtype=np.uint64)),
149
+ "timedelta": timedelta_range("00:00:00", freq="30min", periods=10),
150
+ }
151
+
152
+ index["range"] = RangeIndex(10)
153
+
154
+ index["interval"] = interval_range(0, periods=10)
155
+
156
+ mi = {
157
+ "reg2": MultiIndex.from_tuples(
158
+ tuple(
159
+ zip(
160
+ *[
161
+ ["bar", "bar", "baz", "baz", "foo", "foo", "qux", "qux"],
162
+ ["one", "two", "one", "two", "one", "two", "one", "two"],
163
+ ]
164
+ )
165
+ ),
166
+ names=["first", "second"],
167
+ )
168
+ }
169
+
170
+ series = {
171
+ "float": Series(data["A"]),
172
+ "int": Series(data["B"]),
173
+ "mixed": Series(data["E"]),
174
+ "ts": Series(
175
+ np.arange(10).astype(np.int64), index=date_range("20130101", periods=10)
176
+ ),
177
+ "mi": Series(
178
+ np.arange(5).astype(np.float64),
179
+ index=MultiIndex.from_tuples(
180
+ tuple(zip(*[[1, 1, 2, 2, 2], [3, 4, 3, 4, 5]])), names=["one", "two"]
181
+ ),
182
+ ),
183
+ "dup": Series(np.arange(5).astype(np.float64), index=["A", "B", "C", "D", "A"]),
184
+ "cat": Series(Categorical(["foo", "bar", "baz"])),
185
+ "dt": Series(date_range("20130101", periods=5)),
186
+ "dt_tz": Series(date_range("20130101", periods=5, tz="US/Eastern")),
187
+ "period": Series([Period("2000Q1")] * 5),
188
+ }
189
+
190
+ mixed_dup_df = DataFrame(data)
191
+ mixed_dup_df.columns = list("ABCDA")
192
+ frame = {
193
+ "float": DataFrame({"A": series["float"], "B": series["float"] + 1}),
194
+ "int": DataFrame({"A": series["int"], "B": series["int"] + 1}),
195
+ "mixed": DataFrame({k: data[k] for k in ["A", "B", "C", "D"]}),
196
+ "mi": DataFrame(
197
+ {"A": np.arange(5).astype(np.float64), "B": np.arange(5).astype(np.int64)},
198
+ index=MultiIndex.from_tuples(
199
+ tuple(
200
+ zip(
201
+ *[
202
+ ["bar", "bar", "baz", "baz", "baz"],
203
+ ["one", "two", "one", "two", "three"],
204
+ ]
205
+ )
206
+ ),
207
+ names=["first", "second"],
208
+ ),
209
+ ),
210
+ "dup": DataFrame(
211
+ np.arange(15).reshape(5, 3).astype(np.float64), columns=["A", "B", "A"]
212
+ ),
213
+ "cat_onecol": DataFrame({"A": Categorical(["foo", "bar"])}),
214
+ "cat_and_float": DataFrame(
215
+ {
216
+ "A": Categorical(["foo", "bar", "baz"]),
217
+ "B": np.arange(3).astype(np.int64),
218
+ }
219
+ ),
220
+ "mixed_dup": mixed_dup_df,
221
+ "dt_mixed_tzs": DataFrame(
222
+ {
223
+ "A": Timestamp("20130102", tz="US/Eastern"),
224
+ "B": Timestamp("20130603", tz="CET"),
225
+ },
226
+ index=range(5),
227
+ ),
228
+ "dt_mixed2_tzs": DataFrame(
229
+ {
230
+ "A": Timestamp("20130102", tz="US/Eastern"),
231
+ "B": Timestamp("20130603", tz="CET"),
232
+ "C": Timestamp("20130603", tz="UTC"),
233
+ },
234
+ index=range(5),
235
+ ),
236
+ }
237
+
238
+ cat = {
239
+ "int8": Categorical(list("abcdefg")),
240
+ "int16": Categorical(np.arange(1000)),
241
+ "int32": Categorical(np.arange(10000)),
242
+ }
243
+
244
+ timestamp = {
245
+ "normal": Timestamp("2011-01-01"),
246
+ "nat": NaT,
247
+ "tz": Timestamp("2011-01-01", tz="US/Eastern"),
248
+ }
249
+
250
+ off = {
251
+ "DateOffset": DateOffset(years=1),
252
+ "DateOffset_h_ns": DateOffset(hour=6, nanoseconds=5824),
253
+ "BusinessDay": BusinessDay(offset=timedelta(seconds=9)),
254
+ "BusinessHour": BusinessHour(normalize=True, n=6, end="15:14"),
255
+ "CustomBusinessDay": CustomBusinessDay(weekmask="Mon Fri"),
256
+ "SemiMonthBegin": SemiMonthBegin(day_of_month=9),
257
+ "SemiMonthEnd": SemiMonthEnd(day_of_month=24),
258
+ "MonthBegin": MonthBegin(1),
259
+ "MonthEnd": MonthEnd(1),
260
+ "QuarterBegin": QuarterBegin(1),
261
+ "QuarterEnd": QuarterEnd(1),
262
+ "Day": Day(1),
263
+ "YearBegin": YearBegin(1),
264
+ "YearEnd": YearEnd(1),
265
+ "Week": Week(1),
266
+ "Week_Tues": Week(2, normalize=False, weekday=1),
267
+ "WeekOfMonth": WeekOfMonth(week=3, weekday=4),
268
+ "LastWeekOfMonth": LastWeekOfMonth(n=1, weekday=3),
269
+ "FY5253": FY5253(n=2, weekday=6, startingMonth=7, variation="last"),
270
+ "Easter": Easter(),
271
+ "Hour": Hour(1),
272
+ "Minute": Minute(1),
273
+ }
274
+
275
+ return {
276
+ "series": series,
277
+ "frame": frame,
278
+ "index": index,
279
+ "scalars": scalars,
280
+ "mi": mi,
281
+ "sp_series": {"float": _create_sp_series(), "ts": _create_sp_tsseries()},
282
+ "sp_frame": {"float": _create_sp_frame()},
283
+ "cat": cat,
284
+ "timestamp": timestamp,
285
+ "offsets": off,
286
+ }
287
+
288
+
289
+ def platform_name():
290
+ return "_".join(
291
+ [
292
+ str(pandas.__version__),
293
+ str(pl.machine()),
294
+ str(pl.system().lower()),
295
+ str(pl.python_version()),
296
+ ]
297
+ )
298
+
299
+
300
+ def write_legacy_pickles(output_dir):
301
+ version = pandas.__version__
302
+
303
+ print(
304
+ "This script generates a storage file for the current arch, system, "
305
+ "and python version"
306
+ )
307
+ print(f" pandas version: {version}")
308
+ print(f" output dir : {output_dir}")
309
+ print(" storage format: pickle")
310
+
311
+ pth = f"{platform_name()}.pickle"
312
+
313
+ with open(os.path.join(output_dir, pth), "wb") as fh:
314
+ pickle.dump(create_pickle_data(), fh, pickle.DEFAULT_PROTOCOL)
315
+
316
+ print(f"created pickle file: {pth}")
317
+
318
+
319
+ def write_legacy_file():
320
+ # force our cwd to be the first searched
321
+ sys.path.insert(0, "")
322
+
323
+ if not 3 <= len(sys.argv) <= 4:
324
+ sys.exit(
325
+ "Specify output directory and storage type: generate_legacy_"
326
+ "storage_files.py <output_dir> <storage_type> "
327
+ )
328
+
329
+ output_dir = str(sys.argv[1])
330
+ storage_type = str(sys.argv[2])
331
+
332
+ if not os.path.exists(output_dir):
333
+ os.mkdir(output_dir)
334
+
335
+ if storage_type == "pickle":
336
+ write_legacy_pickles(output_dir=output_dir)
337
+ else:
338
+ sys.exit("storage_type must be one of {'pickle'}")
339
+
340
+
341
+ if __name__ == "__main__":
342
+ write_legacy_file()
llmeval-env/lib/python3.10/site-packages/pandas/tests/io/test_clipboard.py ADDED
@@ -0,0 +1,423 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from textwrap import dedent
2
+
3
+ import numpy as np
4
+ import pytest
5
+
6
+ from pandas.errors import (
7
+ PyperclipException,
8
+ PyperclipWindowsException,
9
+ )
10
+
11
+ import pandas as pd
12
+ from pandas import (
13
+ NA,
14
+ DataFrame,
15
+ Series,
16
+ get_option,
17
+ read_clipboard,
18
+ )
19
+ import pandas._testing as tm
20
+ from pandas.core.arrays import (
21
+ ArrowStringArray,
22
+ StringArray,
23
+ )
24
+
25
+ from pandas.io.clipboard import (
26
+ CheckedCall,
27
+ _stringifyText,
28
+ init_qt_clipboard,
29
+ )
30
+
31
+
32
+ def build_kwargs(sep, excel):
33
+ kwargs = {}
34
+ if excel != "default":
35
+ kwargs["excel"] = excel
36
+ if sep != "default":
37
+ kwargs["sep"] = sep
38
+ return kwargs
39
+
40
+
41
+ @pytest.fixture(
42
+ params=[
43
+ "delims",
44
+ "utf8",
45
+ "utf16",
46
+ "string",
47
+ "long",
48
+ "nonascii",
49
+ "colwidth",
50
+ "mixed",
51
+ "float",
52
+ "int",
53
+ ]
54
+ )
55
+ def df(request):
56
+ data_type = request.param
57
+
58
+ if data_type == "delims":
59
+ return DataFrame({"a": ['"a,\t"b|c', "d\tef`"], "b": ["hi'j", "k''lm"]})
60
+ elif data_type == "utf8":
61
+ return DataFrame({"a": ["µasd", "Ωœ∑`"], "b": ["øπ∆˚¬", "œ∑`®"]})
62
+ elif data_type == "utf16":
63
+ return DataFrame(
64
+ {"a": ["\U0001f44d\U0001f44d", "\U0001f44d\U0001f44d"], "b": ["abc", "def"]}
65
+ )
66
+ elif data_type == "string":
67
+ return DataFrame(
68
+ np.array([f"i-{i}" for i in range(15)]).reshape(5, 3), columns=list("abc")
69
+ )
70
+ elif data_type == "long":
71
+ max_rows = get_option("display.max_rows")
72
+ return DataFrame(
73
+ np.random.default_rng(2).integers(0, 10, size=(max_rows + 1, 3)),
74
+ columns=list("abc"),
75
+ )
76
+ elif data_type == "nonascii":
77
+ return DataFrame({"en": "in English".split(), "es": "en español".split()})
78
+ elif data_type == "colwidth":
79
+ _cw = get_option("display.max_colwidth") + 1
80
+ return DataFrame(
81
+ np.array(["x" * _cw for _ in range(15)]).reshape(5, 3), columns=list("abc")
82
+ )
83
+ elif data_type == "mixed":
84
+ return DataFrame(
85
+ {
86
+ "a": np.arange(1.0, 6.0) + 0.01,
87
+ "b": np.arange(1, 6).astype(np.int64),
88
+ "c": list("abcde"),
89
+ }
90
+ )
91
+ elif data_type == "float":
92
+ return DataFrame(np.random.default_rng(2).random((5, 3)), columns=list("abc"))
93
+ elif data_type == "int":
94
+ return DataFrame(
95
+ np.random.default_rng(2).integers(0, 10, (5, 3)), columns=list("abc")
96
+ )
97
+ else:
98
+ raise ValueError
99
+
100
+
101
+ @pytest.fixture
102
+ def mock_ctypes(monkeypatch):
103
+ """
104
+ Mocks WinError to help with testing the clipboard.
105
+ """
106
+
107
+ def _mock_win_error():
108
+ return "Window Error"
109
+
110
+ # Set raising to False because WinError won't exist on non-windows platforms
111
+ with monkeypatch.context() as m:
112
+ m.setattr("ctypes.WinError", _mock_win_error, raising=False)
113
+ yield
114
+
115
+
116
+ @pytest.mark.usefixtures("mock_ctypes")
117
+ def test_checked_call_with_bad_call(monkeypatch):
118
+ """
119
+ Give CheckCall a function that returns a falsey value and
120
+ mock get_errno so it returns false so an exception is raised.
121
+ """
122
+
123
+ def _return_false():
124
+ return False
125
+
126
+ monkeypatch.setattr("pandas.io.clipboard.get_errno", lambda: True)
127
+ msg = f"Error calling {_return_false.__name__} \\(Window Error\\)"
128
+
129
+ with pytest.raises(PyperclipWindowsException, match=msg):
130
+ CheckedCall(_return_false)()
131
+
132
+
133
+ @pytest.mark.usefixtures("mock_ctypes")
134
+ def test_checked_call_with_valid_call(monkeypatch):
135
+ """
136
+ Give CheckCall a function that returns a truthy value and
137
+ mock get_errno so it returns true so an exception is not raised.
138
+ The function should return the results from _return_true.
139
+ """
140
+
141
+ def _return_true():
142
+ return True
143
+
144
+ monkeypatch.setattr("pandas.io.clipboard.get_errno", lambda: False)
145
+
146
+ # Give CheckedCall a callable that returns a truthy value s
147
+ checked_call = CheckedCall(_return_true)
148
+ assert checked_call() is True
149
+
150
+
151
+ @pytest.mark.parametrize(
152
+ "text",
153
+ [
154
+ "String_test",
155
+ True,
156
+ 1,
157
+ 1.0,
158
+ 1j,
159
+ ],
160
+ )
161
+ def test_stringify_text(text):
162
+ valid_types = (str, int, float, bool)
163
+
164
+ if isinstance(text, valid_types):
165
+ result = _stringifyText(text)
166
+ assert result == str(text)
167
+ else:
168
+ msg = (
169
+ "only str, int, float, and bool values "
170
+ f"can be copied to the clipboard, not {type(text).__name__}"
171
+ )
172
+ with pytest.raises(PyperclipException, match=msg):
173
+ _stringifyText(text)
174
+
175
+
176
+ @pytest.fixture
177
+ def set_pyqt_clipboard(monkeypatch):
178
+ qt_cut, qt_paste = init_qt_clipboard()
179
+ with monkeypatch.context() as m:
180
+ m.setattr(pd.io.clipboard, "clipboard_set", qt_cut)
181
+ m.setattr(pd.io.clipboard, "clipboard_get", qt_paste)
182
+ yield
183
+
184
+
185
+ @pytest.fixture
186
+ def clipboard(qapp):
187
+ clip = qapp.clipboard()
188
+ yield clip
189
+ clip.clear()
190
+
191
+
192
+ @pytest.mark.single_cpu
193
+ @pytest.mark.clipboard
194
+ @pytest.mark.usefixtures("set_pyqt_clipboard")
195
+ @pytest.mark.usefixtures("clipboard")
196
+ class TestClipboard:
197
+ # Test that default arguments copy as tab delimited
198
+ # Test that explicit delimiters are respected
199
+ @pytest.mark.parametrize("sep", [None, "\t", ",", "|"])
200
+ @pytest.mark.parametrize("encoding", [None, "UTF-8", "utf-8", "utf8"])
201
+ def test_round_trip_frame_sep(self, df, sep, encoding):
202
+ df.to_clipboard(excel=None, sep=sep, encoding=encoding)
203
+ result = read_clipboard(sep=sep or "\t", index_col=0, encoding=encoding)
204
+ tm.assert_frame_equal(df, result)
205
+
206
+ # Test white space separator
207
+ def test_round_trip_frame_string(self, df):
208
+ df.to_clipboard(excel=False, sep=None)
209
+ result = read_clipboard()
210
+ assert df.to_string() == result.to_string()
211
+ assert df.shape == result.shape
212
+
213
+ # Two character separator is not supported in to_clipboard
214
+ # Test that multi-character separators are not silently passed
215
+ def test_excel_sep_warning(self, df):
216
+ with tm.assert_produces_warning(
217
+ UserWarning,
218
+ match="to_clipboard in excel mode requires a single character separator.",
219
+ check_stacklevel=False,
220
+ ):
221
+ df.to_clipboard(excel=True, sep=r"\t")
222
+
223
+ # Separator is ignored when excel=False and should produce a warning
224
+ def test_copy_delim_warning(self, df):
225
+ with tm.assert_produces_warning():
226
+ df.to_clipboard(excel=False, sep="\t")
227
+
228
+ # Tests that the default behavior of to_clipboard is tab
229
+ # delimited and excel="True"
230
+ @pytest.mark.parametrize("sep", ["\t", None, "default"])
231
+ @pytest.mark.parametrize("excel", [True, None, "default"])
232
+ def test_clipboard_copy_tabs_default(self, sep, excel, df, clipboard):
233
+ kwargs = build_kwargs(sep, excel)
234
+ df.to_clipboard(**kwargs)
235
+ assert clipboard.text() == df.to_csv(sep="\t")
236
+
237
+ # Tests reading of white space separated tables
238
+ @pytest.mark.parametrize("sep", [None, "default"])
239
+ def test_clipboard_copy_strings(self, sep, df):
240
+ kwargs = build_kwargs(sep, False)
241
+ df.to_clipboard(**kwargs)
242
+ result = read_clipboard(sep=r"\s+")
243
+ assert result.to_string() == df.to_string()
244
+ assert df.shape == result.shape
245
+
246
+ def test_read_clipboard_infer_excel(self, clipboard):
247
+ # gh-19010: avoid warnings
248
+ clip_kwargs = {"engine": "python"}
249
+
250
+ text = dedent(
251
+ """
252
+ John James\tCharlie Mingus
253
+ 1\t2
254
+ 4\tHarry Carney
255
+ """.strip()
256
+ )
257
+ clipboard.setText(text)
258
+ df = read_clipboard(**clip_kwargs)
259
+
260
+ # excel data is parsed correctly
261
+ assert df.iloc[1, 1] == "Harry Carney"
262
+
263
+ # having diff tab counts doesn't trigger it
264
+ text = dedent(
265
+ """
266
+ a\t b
267
+ 1 2
268
+ 3 4
269
+ """.strip()
270
+ )
271
+ clipboard.setText(text)
272
+ res = read_clipboard(**clip_kwargs)
273
+
274
+ text = dedent(
275
+ """
276
+ a b
277
+ 1 2
278
+ 3 4
279
+ """.strip()
280
+ )
281
+ clipboard.setText(text)
282
+ exp = read_clipboard(**clip_kwargs)
283
+
284
+ tm.assert_frame_equal(res, exp)
285
+
286
+ def test_infer_excel_with_nulls(self, clipboard):
287
+ # GH41108
288
+ text = "col1\tcol2\n1\tred\n\tblue\n2\tgreen"
289
+
290
+ clipboard.setText(text)
291
+ df = read_clipboard()
292
+ df_expected = DataFrame(
293
+ data={"col1": [1, None, 2], "col2": ["red", "blue", "green"]}
294
+ )
295
+
296
+ # excel data is parsed correctly
297
+ tm.assert_frame_equal(df, df_expected)
298
+
299
+ @pytest.mark.parametrize(
300
+ "multiindex",
301
+ [
302
+ ( # Can't use `dedent` here as it will remove the leading `\t`
303
+ "\n".join(
304
+ [
305
+ "\t\t\tcol1\tcol2",
306
+ "A\t0\tTrue\t1\tred",
307
+ "A\t1\tTrue\t\tblue",
308
+ "B\t0\tFalse\t2\tgreen",
309
+ ]
310
+ ),
311
+ [["A", "A", "B"], [0, 1, 0], [True, True, False]],
312
+ ),
313
+ (
314
+ "\n".join(
315
+ ["\t\tcol1\tcol2", "A\t0\t1\tred", "A\t1\t\tblue", "B\t0\t2\tgreen"]
316
+ ),
317
+ [["A", "A", "B"], [0, 1, 0]],
318
+ ),
319
+ ],
320
+ )
321
+ def test_infer_excel_with_multiindex(self, clipboard, multiindex):
322
+ # GH41108
323
+
324
+ clipboard.setText(multiindex[0])
325
+ df = read_clipboard()
326
+ df_expected = DataFrame(
327
+ data={"col1": [1, None, 2], "col2": ["red", "blue", "green"]},
328
+ index=multiindex[1],
329
+ )
330
+
331
+ # excel data is parsed correctly
332
+ tm.assert_frame_equal(df, df_expected)
333
+
334
+ def test_invalid_encoding(self, df):
335
+ msg = "clipboard only supports utf-8 encoding"
336
+ # test case for testing invalid encoding
337
+ with pytest.raises(ValueError, match=msg):
338
+ df.to_clipboard(encoding="ascii")
339
+ with pytest.raises(NotImplementedError, match=msg):
340
+ read_clipboard(encoding="ascii")
341
+
342
+ @pytest.mark.parametrize("data", ["\U0001f44d...", "Ωœ∑`...", "abcd..."])
343
+ def test_raw_roundtrip(self, data):
344
+ # PR #25040 wide unicode wasn't copied correctly on PY3 on windows
345
+ df = DataFrame({"data": [data]})
346
+ df.to_clipboard()
347
+ result = read_clipboard()
348
+ tm.assert_frame_equal(df, result)
349
+
350
+ @pytest.mark.parametrize("engine", ["c", "python"])
351
+ def test_read_clipboard_dtype_backend(
352
+ self, clipboard, string_storage, dtype_backend, engine
353
+ ):
354
+ # GH#50502
355
+ if string_storage == "pyarrow" or dtype_backend == "pyarrow":
356
+ pa = pytest.importorskip("pyarrow")
357
+
358
+ if string_storage == "python":
359
+ string_array = StringArray(np.array(["x", "y"], dtype=np.object_))
360
+ string_array_na = StringArray(np.array(["x", NA], dtype=np.object_))
361
+
362
+ elif dtype_backend == "pyarrow" and engine != "c":
363
+ pa = pytest.importorskip("pyarrow")
364
+ from pandas.arrays import ArrowExtensionArray
365
+
366
+ string_array = ArrowExtensionArray(pa.array(["x", "y"]))
367
+ string_array_na = ArrowExtensionArray(pa.array(["x", None]))
368
+
369
+ else:
370
+ string_array = ArrowStringArray(pa.array(["x", "y"]))
371
+ string_array_na = ArrowStringArray(pa.array(["x", None]))
372
+
373
+ text = """a,b,c,d,e,f,g,h,i
374
+ x,1,4.0,x,2,4.0,,True,False
375
+ y,2,5.0,,,,,False,"""
376
+ clipboard.setText(text)
377
+
378
+ with pd.option_context("mode.string_storage", string_storage):
379
+ result = read_clipboard(sep=",", dtype_backend=dtype_backend, engine=engine)
380
+
381
+ expected = DataFrame(
382
+ {
383
+ "a": string_array,
384
+ "b": Series([1, 2], dtype="Int64"),
385
+ "c": Series([4.0, 5.0], dtype="Float64"),
386
+ "d": string_array_na,
387
+ "e": Series([2, NA], dtype="Int64"),
388
+ "f": Series([4.0, NA], dtype="Float64"),
389
+ "g": Series([NA, NA], dtype="Int64"),
390
+ "h": Series([True, False], dtype="boolean"),
391
+ "i": Series([False, NA], dtype="boolean"),
392
+ }
393
+ )
394
+ if dtype_backend == "pyarrow":
395
+ from pandas.arrays import ArrowExtensionArray
396
+
397
+ expected = DataFrame(
398
+ {
399
+ col: ArrowExtensionArray(pa.array(expected[col], from_pandas=True))
400
+ for col in expected.columns
401
+ }
402
+ )
403
+ expected["g"] = ArrowExtensionArray(pa.array([None, None]))
404
+
405
+ tm.assert_frame_equal(result, expected)
406
+
407
+ def test_invalid_dtype_backend(self):
408
+ msg = (
409
+ "dtype_backend numpy is invalid, only 'numpy_nullable' and "
410
+ "'pyarrow' are allowed."
411
+ )
412
+ with pytest.raises(ValueError, match=msg):
413
+ read_clipboard(dtype_backend="numpy")
414
+
415
+ def test_to_clipboard_pos_args_deprecation(self):
416
+ # GH-54229
417
+ df = DataFrame({"a": [1, 2, 3]})
418
+ msg = (
419
+ r"Starting with pandas version 3.0 all arguments of to_clipboard "
420
+ r"will be keyword-only."
421
+ )
422
+ with tm.assert_produces_warning(FutureWarning, match=msg):
423
+ df.to_clipboard(True, None)
llmeval-env/lib/python3.10/site-packages/pandas/tests/io/test_common.py ADDED
@@ -0,0 +1,650 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Tests for the pandas.io.common functionalities
3
+ """
4
+ import codecs
5
+ import errno
6
+ from functools import partial
7
+ from io import (
8
+ BytesIO,
9
+ StringIO,
10
+ UnsupportedOperation,
11
+ )
12
+ import mmap
13
+ import os
14
+ from pathlib import Path
15
+ import pickle
16
+ import tempfile
17
+
18
+ import numpy as np
19
+ import pytest
20
+
21
+ from pandas.compat import is_platform_windows
22
+ import pandas.util._test_decorators as td
23
+
24
+ import pandas as pd
25
+ import pandas._testing as tm
26
+
27
+ import pandas.io.common as icom
28
+
29
+ pytestmark = pytest.mark.filterwarnings(
30
+ "ignore:Passing a BlockManager to DataFrame:DeprecationWarning"
31
+ )
32
+
33
+
34
+ class CustomFSPath:
35
+ """For testing fspath on unknown objects"""
36
+
37
+ def __init__(self, path) -> None:
38
+ self.path = path
39
+
40
+ def __fspath__(self):
41
+ return self.path
42
+
43
+
44
+ # Functions that consume a string path and return a string or path-like object
45
+ path_types = [str, CustomFSPath, Path]
46
+
47
+ try:
48
+ from py.path import local as LocalPath
49
+
50
+ path_types.append(LocalPath)
51
+ except ImportError:
52
+ pass
53
+
54
+ HERE = os.path.abspath(os.path.dirname(__file__))
55
+
56
+
57
+ # https://github.com/cython/cython/issues/1720
58
+ class TestCommonIOCapabilities:
59
+ data1 = """index,A,B,C,D
60
+ foo,2,3,4,5
61
+ bar,7,8,9,10
62
+ baz,12,13,14,15
63
+ qux,12,13,14,15
64
+ foo2,12,13,14,15
65
+ bar2,12,13,14,15
66
+ """
67
+
68
+ def test_expand_user(self):
69
+ filename = "~/sometest"
70
+ expanded_name = icom._expand_user(filename)
71
+
72
+ assert expanded_name != filename
73
+ assert os.path.isabs(expanded_name)
74
+ assert os.path.expanduser(filename) == expanded_name
75
+
76
+ def test_expand_user_normal_path(self):
77
+ filename = "/somefolder/sometest"
78
+ expanded_name = icom._expand_user(filename)
79
+
80
+ assert expanded_name == filename
81
+ assert os.path.expanduser(filename) == expanded_name
82
+
83
+ def test_stringify_path_pathlib(self):
84
+ rel_path = icom.stringify_path(Path("."))
85
+ assert rel_path == "."
86
+ redundant_path = icom.stringify_path(Path("foo//bar"))
87
+ assert redundant_path == os.path.join("foo", "bar")
88
+
89
+ @td.skip_if_no("py.path")
90
+ def test_stringify_path_localpath(self):
91
+ path = os.path.join("foo", "bar")
92
+ abs_path = os.path.abspath(path)
93
+ lpath = LocalPath(path)
94
+ assert icom.stringify_path(lpath) == abs_path
95
+
96
+ def test_stringify_path_fspath(self):
97
+ p = CustomFSPath("foo/bar.csv")
98
+ result = icom.stringify_path(p)
99
+ assert result == "foo/bar.csv"
100
+
101
+ def test_stringify_file_and_path_like(self):
102
+ # GH 38125: do not stringify file objects that are also path-like
103
+ fsspec = pytest.importorskip("fsspec")
104
+ with tm.ensure_clean() as path:
105
+ with fsspec.open(f"file://{path}", mode="wb") as fsspec_obj:
106
+ assert fsspec_obj == icom.stringify_path(fsspec_obj)
107
+
108
+ @pytest.mark.parametrize("path_type", path_types)
109
+ def test_infer_compression_from_path(self, compression_format, path_type):
110
+ extension, expected = compression_format
111
+ path = path_type("foo/bar.csv" + extension)
112
+ compression = icom.infer_compression(path, compression="infer")
113
+ assert compression == expected
114
+
115
+ @pytest.mark.parametrize("path_type", [str, CustomFSPath, Path])
116
+ def test_get_handle_with_path(self, path_type):
117
+ # ignore LocalPath: it creates strange paths: /absolute/~/sometest
118
+ with tempfile.TemporaryDirectory(dir=Path.home()) as tmp:
119
+ filename = path_type("~/" + Path(tmp).name + "/sometest")
120
+ with icom.get_handle(filename, "w") as handles:
121
+ assert Path(handles.handle.name).is_absolute()
122
+ assert os.path.expanduser(filename) == handles.handle.name
123
+
124
+ def test_get_handle_with_buffer(self):
125
+ with StringIO() as input_buffer:
126
+ with icom.get_handle(input_buffer, "r") as handles:
127
+ assert handles.handle == input_buffer
128
+ assert not input_buffer.closed
129
+ assert input_buffer.closed
130
+
131
+ # Test that BytesIOWrapper(get_handle) returns correct amount of bytes every time
132
+ def test_bytesiowrapper_returns_correct_bytes(self):
133
+ # Test latin1, ucs-2, and ucs-4 chars
134
+ data = """a,b,c
135
+ 1,2,3
136
+ ©,®,®
137
+ Look,a snake,🐍"""
138
+ with icom.get_handle(StringIO(data), "rb", is_text=False) as handles:
139
+ result = b""
140
+ chunksize = 5
141
+ while True:
142
+ chunk = handles.handle.read(chunksize)
143
+ # Make sure each chunk is correct amount of bytes
144
+ assert len(chunk) <= chunksize
145
+ if len(chunk) < chunksize:
146
+ # Can be less amount of bytes, but only at EOF
147
+ # which happens when read returns empty
148
+ assert len(handles.handle.read()) == 0
149
+ result += chunk
150
+ break
151
+ result += chunk
152
+ assert result == data.encode("utf-8")
153
+
154
+ # Test that pyarrow can handle a file opened with get_handle
155
+ def test_get_handle_pyarrow_compat(self):
156
+ pa_csv = pytest.importorskip("pyarrow.csv")
157
+
158
+ # Test latin1, ucs-2, and ucs-4 chars
159
+ data = """a,b,c
160
+ 1,2,3
161
+ ©,®,®
162
+ Look,a snake,🐍"""
163
+ expected = pd.DataFrame(
164
+ {"a": ["1", "©", "Look"], "b": ["2", "®", "a snake"], "c": ["3", "®", "🐍"]}
165
+ )
166
+ s = StringIO(data)
167
+ with icom.get_handle(s, "rb", is_text=False) as handles:
168
+ df = pa_csv.read_csv(handles.handle).to_pandas()
169
+ tm.assert_frame_equal(df, expected)
170
+ assert not s.closed
171
+
172
+ def test_iterator(self):
173
+ with pd.read_csv(StringIO(self.data1), chunksize=1) as reader:
174
+ result = pd.concat(reader, ignore_index=True)
175
+ expected = pd.read_csv(StringIO(self.data1))
176
+ tm.assert_frame_equal(result, expected)
177
+
178
+ # GH12153
179
+ with pd.read_csv(StringIO(self.data1), chunksize=1) as it:
180
+ first = next(it)
181
+ tm.assert_frame_equal(first, expected.iloc[[0]])
182
+ tm.assert_frame_equal(pd.concat(it), expected.iloc[1:])
183
+
184
+ @pytest.mark.parametrize(
185
+ "reader, module, error_class, fn_ext",
186
+ [
187
+ (pd.read_csv, "os", FileNotFoundError, "csv"),
188
+ (pd.read_fwf, "os", FileNotFoundError, "txt"),
189
+ (pd.read_excel, "xlrd", FileNotFoundError, "xlsx"),
190
+ (pd.read_feather, "pyarrow", OSError, "feather"),
191
+ (pd.read_hdf, "tables", FileNotFoundError, "h5"),
192
+ (pd.read_stata, "os", FileNotFoundError, "dta"),
193
+ (pd.read_sas, "os", FileNotFoundError, "sas7bdat"),
194
+ (pd.read_json, "os", FileNotFoundError, "json"),
195
+ (pd.read_pickle, "os", FileNotFoundError, "pickle"),
196
+ ],
197
+ )
198
+ def test_read_non_existent(self, reader, module, error_class, fn_ext):
199
+ pytest.importorskip(module)
200
+
201
+ path = os.path.join(HERE, "data", "does_not_exist." + fn_ext)
202
+ msg1 = rf"File (b')?.+does_not_exist\.{fn_ext}'? does not exist"
203
+ msg2 = rf"\[Errno 2\] No such file or directory: '.+does_not_exist\.{fn_ext}'"
204
+ msg3 = "Expected object or value"
205
+ msg4 = "path_or_buf needs to be a string file path or file-like"
206
+ msg5 = (
207
+ rf"\[Errno 2\] File .+does_not_exist\.{fn_ext} does not exist: "
208
+ rf"'.+does_not_exist\.{fn_ext}'"
209
+ )
210
+ msg6 = rf"\[Errno 2\] 没有那个文件或目录: '.+does_not_exist\.{fn_ext}'"
211
+ msg7 = (
212
+ rf"\[Errno 2\] File o directory non esistente: '.+does_not_exist\.{fn_ext}'"
213
+ )
214
+ msg8 = rf"Failed to open local file.+does_not_exist\.{fn_ext}"
215
+
216
+ with pytest.raises(
217
+ error_class,
218
+ match=rf"({msg1}|{msg2}|{msg3}|{msg4}|{msg5}|{msg6}|{msg7}|{msg8})",
219
+ ):
220
+ reader(path)
221
+
222
+ @pytest.mark.parametrize(
223
+ "method, module, error_class, fn_ext",
224
+ [
225
+ (pd.DataFrame.to_csv, "os", OSError, "csv"),
226
+ (pd.DataFrame.to_html, "os", OSError, "html"),
227
+ (pd.DataFrame.to_excel, "xlrd", OSError, "xlsx"),
228
+ (pd.DataFrame.to_feather, "pyarrow", OSError, "feather"),
229
+ (pd.DataFrame.to_parquet, "pyarrow", OSError, "parquet"),
230
+ (pd.DataFrame.to_stata, "os", OSError, "dta"),
231
+ (pd.DataFrame.to_json, "os", OSError, "json"),
232
+ (pd.DataFrame.to_pickle, "os", OSError, "pickle"),
233
+ ],
234
+ )
235
+ # NOTE: Missing parent directory for pd.DataFrame.to_hdf is handled by PyTables
236
+ def test_write_missing_parent_directory(self, method, module, error_class, fn_ext):
237
+ pytest.importorskip(module)
238
+
239
+ dummy_frame = pd.DataFrame({"a": [1, 2, 3], "b": [2, 3, 4], "c": [3, 4, 5]})
240
+
241
+ path = os.path.join(HERE, "data", "missing_folder", "does_not_exist." + fn_ext)
242
+
243
+ with pytest.raises(
244
+ error_class,
245
+ match=r"Cannot save file into a non-existent directory: .*missing_folder",
246
+ ):
247
+ method(dummy_frame, path)
248
+
249
+ @pytest.mark.parametrize(
250
+ "reader, module, error_class, fn_ext",
251
+ [
252
+ (pd.read_csv, "os", FileNotFoundError, "csv"),
253
+ (pd.read_table, "os", FileNotFoundError, "csv"),
254
+ (pd.read_fwf, "os", FileNotFoundError, "txt"),
255
+ (pd.read_excel, "xlrd", FileNotFoundError, "xlsx"),
256
+ (pd.read_feather, "pyarrow", OSError, "feather"),
257
+ (pd.read_hdf, "tables", FileNotFoundError, "h5"),
258
+ (pd.read_stata, "os", FileNotFoundError, "dta"),
259
+ (pd.read_sas, "os", FileNotFoundError, "sas7bdat"),
260
+ (pd.read_json, "os", FileNotFoundError, "json"),
261
+ (pd.read_pickle, "os", FileNotFoundError, "pickle"),
262
+ ],
263
+ )
264
+ def test_read_expands_user_home_dir(
265
+ self, reader, module, error_class, fn_ext, monkeypatch
266
+ ):
267
+ pytest.importorskip(module)
268
+
269
+ path = os.path.join("~", "does_not_exist." + fn_ext)
270
+ monkeypatch.setattr(icom, "_expand_user", lambda x: os.path.join("foo", x))
271
+
272
+ msg1 = rf"File (b')?.+does_not_exist\.{fn_ext}'? does not exist"
273
+ msg2 = rf"\[Errno 2\] No such file or directory: '.+does_not_exist\.{fn_ext}'"
274
+ msg3 = "Unexpected character found when decoding 'false'"
275
+ msg4 = "path_or_buf needs to be a string file path or file-like"
276
+ msg5 = (
277
+ rf"\[Errno 2\] File .+does_not_exist\.{fn_ext} does not exist: "
278
+ rf"'.+does_not_exist\.{fn_ext}'"
279
+ )
280
+ msg6 = rf"\[Errno 2\] 没有那个文件或目录: '.+does_not_exist\.{fn_ext}'"
281
+ msg7 = (
282
+ rf"\[Errno 2\] File o directory non esistente: '.+does_not_exist\.{fn_ext}'"
283
+ )
284
+ msg8 = rf"Failed to open local file.+does_not_exist\.{fn_ext}"
285
+
286
+ with pytest.raises(
287
+ error_class,
288
+ match=rf"({msg1}|{msg2}|{msg3}|{msg4}|{msg5}|{msg6}|{msg7}|{msg8})",
289
+ ):
290
+ reader(path)
291
+
292
+ @pytest.mark.parametrize(
293
+ "reader, module, path",
294
+ [
295
+ (pd.read_csv, "os", ("io", "data", "csv", "iris.csv")),
296
+ (pd.read_table, "os", ("io", "data", "csv", "iris.csv")),
297
+ (
298
+ pd.read_fwf,
299
+ "os",
300
+ ("io", "data", "fixed_width", "fixed_width_format.txt"),
301
+ ),
302
+ (pd.read_excel, "xlrd", ("io", "data", "excel", "test1.xlsx")),
303
+ (
304
+ pd.read_feather,
305
+ "pyarrow",
306
+ ("io", "data", "feather", "feather-0_3_1.feather"),
307
+ ),
308
+ (
309
+ pd.read_hdf,
310
+ "tables",
311
+ ("io", "data", "legacy_hdf", "datetimetz_object.h5"),
312
+ ),
313
+ (pd.read_stata, "os", ("io", "data", "stata", "stata10_115.dta")),
314
+ (pd.read_sas, "os", ("io", "sas", "data", "test1.sas7bdat")),
315
+ (pd.read_json, "os", ("io", "json", "data", "tsframe_v012.json")),
316
+ (
317
+ pd.read_pickle,
318
+ "os",
319
+ ("io", "data", "pickle", "categorical.0.25.0.pickle"),
320
+ ),
321
+ ],
322
+ )
323
+ def test_read_fspath_all(self, reader, module, path, datapath):
324
+ pytest.importorskip(module)
325
+ path = datapath(*path)
326
+
327
+ mypath = CustomFSPath(path)
328
+ result = reader(mypath)
329
+ expected = reader(path)
330
+
331
+ if path.endswith(".pickle"):
332
+ # categorical
333
+ tm.assert_categorical_equal(result, expected)
334
+ else:
335
+ tm.assert_frame_equal(result, expected)
336
+
337
+ @pytest.mark.parametrize(
338
+ "writer_name, writer_kwargs, module",
339
+ [
340
+ ("to_csv", {}, "os"),
341
+ ("to_excel", {"engine": "openpyxl"}, "openpyxl"),
342
+ ("to_feather", {}, "pyarrow"),
343
+ ("to_html", {}, "os"),
344
+ ("to_json", {}, "os"),
345
+ ("to_latex", {}, "os"),
346
+ ("to_pickle", {}, "os"),
347
+ ("to_stata", {"time_stamp": pd.to_datetime("2019-01-01 00:00")}, "os"),
348
+ ],
349
+ )
350
+ def test_write_fspath_all(self, writer_name, writer_kwargs, module):
351
+ if writer_name in ["to_latex"]: # uses Styler implementation
352
+ pytest.importorskip("jinja2")
353
+ p1 = tm.ensure_clean("string")
354
+ p2 = tm.ensure_clean("fspath")
355
+ df = pd.DataFrame({"A": [1, 2]})
356
+
357
+ with p1 as string, p2 as fspath:
358
+ pytest.importorskip(module)
359
+ mypath = CustomFSPath(fspath)
360
+ writer = getattr(df, writer_name)
361
+
362
+ writer(string, **writer_kwargs)
363
+ writer(mypath, **writer_kwargs)
364
+ with open(string, "rb") as f_str, open(fspath, "rb") as f_path:
365
+ if writer_name == "to_excel":
366
+ # binary representation of excel contains time creation
367
+ # data that causes flaky CI failures
368
+ result = pd.read_excel(f_str, **writer_kwargs)
369
+ expected = pd.read_excel(f_path, **writer_kwargs)
370
+ tm.assert_frame_equal(result, expected)
371
+ else:
372
+ result = f_str.read()
373
+ expected = f_path.read()
374
+ assert result == expected
375
+
376
+ def test_write_fspath_hdf5(self):
377
+ # Same test as write_fspath_all, except HDF5 files aren't
378
+ # necessarily byte-for-byte identical for a given dataframe, so we'll
379
+ # have to read and compare equality
380
+ pytest.importorskip("tables")
381
+
382
+ df = pd.DataFrame({"A": [1, 2]})
383
+ p1 = tm.ensure_clean("string")
384
+ p2 = tm.ensure_clean("fspath")
385
+
386
+ with p1 as string, p2 as fspath:
387
+ mypath = CustomFSPath(fspath)
388
+ df.to_hdf(mypath, key="bar")
389
+ df.to_hdf(string, key="bar")
390
+
391
+ result = pd.read_hdf(fspath, key="bar")
392
+ expected = pd.read_hdf(string, key="bar")
393
+
394
+ tm.assert_frame_equal(result, expected)
395
+
396
+
397
+ @pytest.fixture
398
+ def mmap_file(datapath):
399
+ return datapath("io", "data", "csv", "test_mmap.csv")
400
+
401
+
402
+ class TestMMapWrapper:
403
+ def test_constructor_bad_file(self, mmap_file):
404
+ non_file = StringIO("I am not a file")
405
+ non_file.fileno = lambda: -1
406
+
407
+ # the error raised is different on Windows
408
+ if is_platform_windows():
409
+ msg = "The parameter is incorrect"
410
+ err = OSError
411
+ else:
412
+ msg = "[Errno 22]"
413
+ err = mmap.error
414
+
415
+ with pytest.raises(err, match=msg):
416
+ icom._maybe_memory_map(non_file, True)
417
+
418
+ with open(mmap_file, encoding="utf-8") as target:
419
+ pass
420
+
421
+ msg = "I/O operation on closed file"
422
+ with pytest.raises(ValueError, match=msg):
423
+ icom._maybe_memory_map(target, True)
424
+
425
+ def test_next(self, mmap_file):
426
+ with open(mmap_file, encoding="utf-8") as target:
427
+ lines = target.readlines()
428
+
429
+ with icom.get_handle(
430
+ target, "r", is_text=True, memory_map=True
431
+ ) as wrappers:
432
+ wrapper = wrappers.handle
433
+ assert isinstance(wrapper.buffer.buffer, mmap.mmap)
434
+
435
+ for line in lines:
436
+ next_line = next(wrapper)
437
+ assert next_line.strip() == line.strip()
438
+
439
+ with pytest.raises(StopIteration, match=r"^$"):
440
+ next(wrapper)
441
+
442
+ def test_unknown_engine(self):
443
+ with tm.ensure_clean() as path:
444
+ df = pd.DataFrame(
445
+ 1.1 * np.arange(120).reshape((30, 4)),
446
+ columns=pd.Index(list("ABCD"), dtype=object),
447
+ index=pd.Index([f"i-{i}" for i in range(30)], dtype=object),
448
+ )
449
+ df.to_csv(path)
450
+ with pytest.raises(ValueError, match="Unknown engine"):
451
+ pd.read_csv(path, engine="pyt")
452
+
453
+ def test_binary_mode(self):
454
+ """
455
+ 'encoding' shouldn't be passed to 'open' in binary mode.
456
+
457
+ GH 35058
458
+ """
459
+ with tm.ensure_clean() as path:
460
+ df = pd.DataFrame(
461
+ 1.1 * np.arange(120).reshape((30, 4)),
462
+ columns=pd.Index(list("ABCD"), dtype=object),
463
+ index=pd.Index([f"i-{i}" for i in range(30)], dtype=object),
464
+ )
465
+ df.to_csv(path, mode="w+b")
466
+ tm.assert_frame_equal(df, pd.read_csv(path, index_col=0))
467
+
468
+ @pytest.mark.parametrize("encoding", ["utf-16", "utf-32"])
469
+ @pytest.mark.parametrize("compression_", ["bz2", "xz"])
470
+ def test_warning_missing_utf_bom(self, encoding, compression_):
471
+ """
472
+ bz2 and xz do not write the byte order mark (BOM) for utf-16/32.
473
+
474
+ https://stackoverflow.com/questions/55171439
475
+
476
+ GH 35681
477
+ """
478
+ df = pd.DataFrame(
479
+ 1.1 * np.arange(120).reshape((30, 4)),
480
+ columns=pd.Index(list("ABCD"), dtype=object),
481
+ index=pd.Index([f"i-{i}" for i in range(30)], dtype=object),
482
+ )
483
+ with tm.ensure_clean() as path:
484
+ with tm.assert_produces_warning(UnicodeWarning):
485
+ df.to_csv(path, compression=compression_, encoding=encoding)
486
+
487
+ # reading should fail (otherwise we wouldn't need the warning)
488
+ msg = r"UTF-\d+ stream does not start with BOM"
489
+ with pytest.raises(UnicodeError, match=msg):
490
+ pd.read_csv(path, compression=compression_, encoding=encoding)
491
+
492
+
493
+ def test_is_fsspec_url():
494
+ assert icom.is_fsspec_url("gcs://pandas/somethingelse.com")
495
+ assert icom.is_fsspec_url("gs://pandas/somethingelse.com")
496
+ # the following is the only remote URL that is handled without fsspec
497
+ assert not icom.is_fsspec_url("http://pandas/somethingelse.com")
498
+ assert not icom.is_fsspec_url("random:pandas/somethingelse.com")
499
+ assert not icom.is_fsspec_url("/local/path")
500
+ assert not icom.is_fsspec_url("relative/local/path")
501
+ # fsspec URL in string should not be recognized
502
+ assert not icom.is_fsspec_url("this is not fsspec://url")
503
+ assert not icom.is_fsspec_url("{'url': 'gs://pandas/somethingelse.com'}")
504
+ # accept everything that conforms to RFC 3986 schema
505
+ assert icom.is_fsspec_url("RFC-3986+compliant.spec://something")
506
+
507
+
508
+ @pytest.mark.parametrize("encoding", [None, "utf-8"])
509
+ @pytest.mark.parametrize("format", ["csv", "json"])
510
+ def test_codecs_encoding(encoding, format):
511
+ # GH39247
512
+ expected = pd.DataFrame(
513
+ 1.1 * np.arange(120).reshape((30, 4)),
514
+ columns=pd.Index(list("ABCD"), dtype=object),
515
+ index=pd.Index([f"i-{i}" for i in range(30)], dtype=object),
516
+ )
517
+ with tm.ensure_clean() as path:
518
+ with codecs.open(path, mode="w", encoding=encoding) as handle:
519
+ getattr(expected, f"to_{format}")(handle)
520
+ with codecs.open(path, mode="r", encoding=encoding) as handle:
521
+ if format == "csv":
522
+ df = pd.read_csv(handle, index_col=0)
523
+ else:
524
+ df = pd.read_json(handle)
525
+ tm.assert_frame_equal(expected, df)
526
+
527
+
528
+ def test_codecs_get_writer_reader():
529
+ # GH39247
530
+ expected = pd.DataFrame(
531
+ 1.1 * np.arange(120).reshape((30, 4)),
532
+ columns=pd.Index(list("ABCD"), dtype=object),
533
+ index=pd.Index([f"i-{i}" for i in range(30)], dtype=object),
534
+ )
535
+ with tm.ensure_clean() as path:
536
+ with open(path, "wb") as handle:
537
+ with codecs.getwriter("utf-8")(handle) as encoded:
538
+ expected.to_csv(encoded)
539
+ with open(path, "rb") as handle:
540
+ with codecs.getreader("utf-8")(handle) as encoded:
541
+ df = pd.read_csv(encoded, index_col=0)
542
+ tm.assert_frame_equal(expected, df)
543
+
544
+
545
+ @pytest.mark.parametrize(
546
+ "io_class,mode,msg",
547
+ [
548
+ (BytesIO, "t", "a bytes-like object is required, not 'str'"),
549
+ (StringIO, "b", "string argument expected, got 'bytes'"),
550
+ ],
551
+ )
552
+ def test_explicit_encoding(io_class, mode, msg):
553
+ # GH39247; this test makes sure that if a user provides mode="*t" or "*b",
554
+ # it is used. In the case of this test it leads to an error as intentionally the
555
+ # wrong mode is requested
556
+ expected = pd.DataFrame(
557
+ 1.1 * np.arange(120).reshape((30, 4)),
558
+ columns=pd.Index(list("ABCD"), dtype=object),
559
+ index=pd.Index([f"i-{i}" for i in range(30)], dtype=object),
560
+ )
561
+ with io_class() as buffer:
562
+ with pytest.raises(TypeError, match=msg):
563
+ expected.to_csv(buffer, mode=f"w{mode}")
564
+
565
+
566
+ @pytest.mark.parametrize("encoding_errors", [None, "strict", "replace"])
567
+ @pytest.mark.parametrize("format", ["csv", "json"])
568
+ def test_encoding_errors(encoding_errors, format):
569
+ # GH39450
570
+ msg = "'utf-8' codec can't decode byte"
571
+ bad_encoding = b"\xe4"
572
+
573
+ if format == "csv":
574
+ content = b"," + bad_encoding + b"\n" + bad_encoding * 2 + b"," + bad_encoding
575
+ reader = partial(pd.read_csv, index_col=0)
576
+ else:
577
+ content = (
578
+ b'{"'
579
+ + bad_encoding * 2
580
+ + b'": {"'
581
+ + bad_encoding
582
+ + b'":"'
583
+ + bad_encoding
584
+ + b'"}}'
585
+ )
586
+ reader = partial(pd.read_json, orient="index")
587
+ with tm.ensure_clean() as path:
588
+ file = Path(path)
589
+ file.write_bytes(content)
590
+
591
+ if encoding_errors != "replace":
592
+ with pytest.raises(UnicodeDecodeError, match=msg):
593
+ reader(path, encoding_errors=encoding_errors)
594
+ else:
595
+ df = reader(path, encoding_errors=encoding_errors)
596
+ decoded = bad_encoding.decode(errors=encoding_errors)
597
+ expected = pd.DataFrame({decoded: [decoded]}, index=[decoded * 2])
598
+ tm.assert_frame_equal(df, expected)
599
+
600
+
601
+ def test_bad_encdoing_errors():
602
+ # GH 39777
603
+ with tm.ensure_clean() as path:
604
+ with pytest.raises(LookupError, match="unknown error handler name"):
605
+ icom.get_handle(path, "w", errors="bad")
606
+
607
+
608
+ def test_errno_attribute():
609
+ # GH 13872
610
+ with pytest.raises(FileNotFoundError, match="\\[Errno 2\\]") as err:
611
+ pd.read_csv("doesnt_exist")
612
+ assert err.errno == errno.ENOENT
613
+
614
+
615
+ def test_fail_mmap():
616
+ with pytest.raises(UnsupportedOperation, match="fileno"):
617
+ with BytesIO() as buffer:
618
+ icom.get_handle(buffer, "rb", memory_map=True)
619
+
620
+
621
+ def test_close_on_error():
622
+ # GH 47136
623
+ class TestError:
624
+ def close(self):
625
+ raise OSError("test")
626
+
627
+ with pytest.raises(OSError, match="test"):
628
+ with BytesIO() as buffer:
629
+ with icom.get_handle(buffer, "rb") as handles:
630
+ handles.created_handles.append(TestError())
631
+
632
+
633
+ @pytest.mark.parametrize(
634
+ "reader",
635
+ [
636
+ pd.read_csv,
637
+ pd.read_fwf,
638
+ pd.read_excel,
639
+ pd.read_feather,
640
+ pd.read_hdf,
641
+ pd.read_stata,
642
+ pd.read_sas,
643
+ pd.read_json,
644
+ pd.read_pickle,
645
+ ],
646
+ )
647
+ def test_pickle_reader(reader):
648
+ # GH 22265
649
+ with BytesIO() as buffer:
650
+ pickle.dump(reader, buffer)
llmeval-env/lib/python3.10/site-packages/pandas/tests/io/test_compression.py ADDED
@@ -0,0 +1,378 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gzip
2
+ import io
3
+ import os
4
+ from pathlib import Path
5
+ import subprocess
6
+ import sys
7
+ import tarfile
8
+ import textwrap
9
+ import time
10
+ import zipfile
11
+
12
+ import numpy as np
13
+ import pytest
14
+
15
+ from pandas.compat import is_platform_windows
16
+
17
+ import pandas as pd
18
+ import pandas._testing as tm
19
+
20
+ import pandas.io.common as icom
21
+
22
+
23
+ @pytest.mark.parametrize(
24
+ "obj",
25
+ [
26
+ pd.DataFrame(
27
+ 100 * [[0.123456, 0.234567, 0.567567], [12.32112, 123123.2, 321321.2]],
28
+ columns=["X", "Y", "Z"],
29
+ ),
30
+ pd.Series(100 * [0.123456, 0.234567, 0.567567], name="X"),
31
+ ],
32
+ )
33
+ @pytest.mark.parametrize("method", ["to_pickle", "to_json", "to_csv"])
34
+ def test_compression_size(obj, method, compression_only):
35
+ if compression_only == "tar":
36
+ compression_only = {"method": "tar", "mode": "w:gz"}
37
+
38
+ with tm.ensure_clean() as path:
39
+ getattr(obj, method)(path, compression=compression_only)
40
+ compressed_size = os.path.getsize(path)
41
+ getattr(obj, method)(path, compression=None)
42
+ uncompressed_size = os.path.getsize(path)
43
+ assert uncompressed_size > compressed_size
44
+
45
+
46
+ @pytest.mark.parametrize(
47
+ "obj",
48
+ [
49
+ pd.DataFrame(
50
+ 100 * [[0.123456, 0.234567, 0.567567], [12.32112, 123123.2, 321321.2]],
51
+ columns=["X", "Y", "Z"],
52
+ ),
53
+ pd.Series(100 * [0.123456, 0.234567, 0.567567], name="X"),
54
+ ],
55
+ )
56
+ @pytest.mark.parametrize("method", ["to_csv", "to_json"])
57
+ def test_compression_size_fh(obj, method, compression_only):
58
+ with tm.ensure_clean() as path:
59
+ with icom.get_handle(
60
+ path,
61
+ "w:gz" if compression_only == "tar" else "w",
62
+ compression=compression_only,
63
+ ) as handles:
64
+ getattr(obj, method)(handles.handle)
65
+ assert not handles.handle.closed
66
+ compressed_size = os.path.getsize(path)
67
+ with tm.ensure_clean() as path:
68
+ with icom.get_handle(path, "w", compression=None) as handles:
69
+ getattr(obj, method)(handles.handle)
70
+ assert not handles.handle.closed
71
+ uncompressed_size = os.path.getsize(path)
72
+ assert uncompressed_size > compressed_size
73
+
74
+
75
+ @pytest.mark.parametrize(
76
+ "write_method, write_kwargs, read_method",
77
+ [
78
+ ("to_csv", {"index": False}, pd.read_csv),
79
+ ("to_json", {}, pd.read_json),
80
+ ("to_pickle", {}, pd.read_pickle),
81
+ ],
82
+ )
83
+ def test_dataframe_compression_defaults_to_infer(
84
+ write_method, write_kwargs, read_method, compression_only, compression_to_extension
85
+ ):
86
+ # GH22004
87
+ input = pd.DataFrame([[1.0, 0, -4], [3.4, 5, 2]], columns=["X", "Y", "Z"])
88
+ extension = compression_to_extension[compression_only]
89
+ with tm.ensure_clean("compressed" + extension) as path:
90
+ getattr(input, write_method)(path, **write_kwargs)
91
+ output = read_method(path, compression=compression_only)
92
+ tm.assert_frame_equal(output, input)
93
+
94
+
95
+ @pytest.mark.parametrize(
96
+ "write_method,write_kwargs,read_method,read_kwargs",
97
+ [
98
+ ("to_csv", {"index": False, "header": True}, pd.read_csv, {"squeeze": True}),
99
+ ("to_json", {}, pd.read_json, {"typ": "series"}),
100
+ ("to_pickle", {}, pd.read_pickle, {}),
101
+ ],
102
+ )
103
+ def test_series_compression_defaults_to_infer(
104
+ write_method,
105
+ write_kwargs,
106
+ read_method,
107
+ read_kwargs,
108
+ compression_only,
109
+ compression_to_extension,
110
+ ):
111
+ # GH22004
112
+ input = pd.Series([0, 5, -2, 10], name="X")
113
+ extension = compression_to_extension[compression_only]
114
+ with tm.ensure_clean("compressed" + extension) as path:
115
+ getattr(input, write_method)(path, **write_kwargs)
116
+ if "squeeze" in read_kwargs:
117
+ kwargs = read_kwargs.copy()
118
+ del kwargs["squeeze"]
119
+ output = read_method(path, compression=compression_only, **kwargs).squeeze(
120
+ "columns"
121
+ )
122
+ else:
123
+ output = read_method(path, compression=compression_only, **read_kwargs)
124
+ tm.assert_series_equal(output, input, check_names=False)
125
+
126
+
127
+ def test_compression_warning(compression_only):
128
+ # Assert that passing a file object to to_csv while explicitly specifying a
129
+ # compression protocol triggers a RuntimeWarning, as per GH21227.
130
+ df = pd.DataFrame(
131
+ 100 * [[0.123456, 0.234567, 0.567567], [12.32112, 123123.2, 321321.2]],
132
+ columns=["X", "Y", "Z"],
133
+ )
134
+ with tm.ensure_clean() as path:
135
+ with icom.get_handle(path, "w", compression=compression_only) as handles:
136
+ with tm.assert_produces_warning(RuntimeWarning):
137
+ df.to_csv(handles.handle, compression=compression_only)
138
+
139
+
140
+ def test_compression_binary(compression_only):
141
+ """
142
+ Binary file handles support compression.
143
+
144
+ GH22555
145
+ """
146
+ df = pd.DataFrame(
147
+ 1.1 * np.arange(120).reshape((30, 4)),
148
+ columns=pd.Index(list("ABCD"), dtype=object),
149
+ index=pd.Index([f"i-{i}" for i in range(30)], dtype=object),
150
+ )
151
+
152
+ # with a file
153
+ with tm.ensure_clean() as path:
154
+ with open(path, mode="wb") as file:
155
+ df.to_csv(file, mode="wb", compression=compression_only)
156
+ file.seek(0) # file shouldn't be closed
157
+ tm.assert_frame_equal(
158
+ df, pd.read_csv(path, index_col=0, compression=compression_only)
159
+ )
160
+
161
+ # with BytesIO
162
+ file = io.BytesIO()
163
+ df.to_csv(file, mode="wb", compression=compression_only)
164
+ file.seek(0) # file shouldn't be closed
165
+ tm.assert_frame_equal(
166
+ df, pd.read_csv(file, index_col=0, compression=compression_only)
167
+ )
168
+
169
+
170
+ def test_gzip_reproducibility_file_name():
171
+ """
172
+ Gzip should create reproducible archives with mtime.
173
+
174
+ Note: Archives created with different filenames will still be different!
175
+
176
+ GH 28103
177
+ """
178
+ df = pd.DataFrame(
179
+ 1.1 * np.arange(120).reshape((30, 4)),
180
+ columns=pd.Index(list("ABCD"), dtype=object),
181
+ index=pd.Index([f"i-{i}" for i in range(30)], dtype=object),
182
+ )
183
+ compression_options = {"method": "gzip", "mtime": 1}
184
+
185
+ # test for filename
186
+ with tm.ensure_clean() as path:
187
+ path = Path(path)
188
+ df.to_csv(path, compression=compression_options)
189
+ time.sleep(0.1)
190
+ output = path.read_bytes()
191
+ df.to_csv(path, compression=compression_options)
192
+ assert output == path.read_bytes()
193
+
194
+
195
+ def test_gzip_reproducibility_file_object():
196
+ """
197
+ Gzip should create reproducible archives with mtime.
198
+
199
+ GH 28103
200
+ """
201
+ df = pd.DataFrame(
202
+ 1.1 * np.arange(120).reshape((30, 4)),
203
+ columns=pd.Index(list("ABCD"), dtype=object),
204
+ index=pd.Index([f"i-{i}" for i in range(30)], dtype=object),
205
+ )
206
+ compression_options = {"method": "gzip", "mtime": 1}
207
+
208
+ # test for file object
209
+ buffer = io.BytesIO()
210
+ df.to_csv(buffer, compression=compression_options, mode="wb")
211
+ output = buffer.getvalue()
212
+ time.sleep(0.1)
213
+ buffer = io.BytesIO()
214
+ df.to_csv(buffer, compression=compression_options, mode="wb")
215
+ assert output == buffer.getvalue()
216
+
217
+
218
+ @pytest.mark.single_cpu
219
+ def test_with_missing_lzma():
220
+ """Tests if import pandas works when lzma is not present."""
221
+ # https://github.com/pandas-dev/pandas/issues/27575
222
+ code = textwrap.dedent(
223
+ """\
224
+ import sys
225
+ sys.modules['lzma'] = None
226
+ import pandas
227
+ """
228
+ )
229
+ subprocess.check_output([sys.executable, "-c", code], stderr=subprocess.PIPE)
230
+
231
+
232
+ @pytest.mark.single_cpu
233
+ def test_with_missing_lzma_runtime():
234
+ """Tests if RuntimeError is hit when calling lzma without
235
+ having the module available.
236
+ """
237
+ code = textwrap.dedent(
238
+ """
239
+ import sys
240
+ import pytest
241
+ sys.modules['lzma'] = None
242
+ import pandas as pd
243
+ df = pd.DataFrame()
244
+ with pytest.raises(RuntimeError, match='lzma module'):
245
+ df.to_csv('foo.csv', compression='xz')
246
+ """
247
+ )
248
+ subprocess.check_output([sys.executable, "-c", code], stderr=subprocess.PIPE)
249
+
250
+
251
+ @pytest.mark.parametrize(
252
+ "obj",
253
+ [
254
+ pd.DataFrame(
255
+ 100 * [[0.123456, 0.234567, 0.567567], [12.32112, 123123.2, 321321.2]],
256
+ columns=["X", "Y", "Z"],
257
+ ),
258
+ pd.Series(100 * [0.123456, 0.234567, 0.567567], name="X"),
259
+ ],
260
+ )
261
+ @pytest.mark.parametrize("method", ["to_pickle", "to_json", "to_csv"])
262
+ def test_gzip_compression_level(obj, method):
263
+ # GH33196
264
+ with tm.ensure_clean() as path:
265
+ getattr(obj, method)(path, compression="gzip")
266
+ compressed_size_default = os.path.getsize(path)
267
+ getattr(obj, method)(path, compression={"method": "gzip", "compresslevel": 1})
268
+ compressed_size_fast = os.path.getsize(path)
269
+ assert compressed_size_default < compressed_size_fast
270
+
271
+
272
+ @pytest.mark.parametrize(
273
+ "obj",
274
+ [
275
+ pd.DataFrame(
276
+ 100 * [[0.123456, 0.234567, 0.567567], [12.32112, 123123.2, 321321.2]],
277
+ columns=["X", "Y", "Z"],
278
+ ),
279
+ pd.Series(100 * [0.123456, 0.234567, 0.567567], name="X"),
280
+ ],
281
+ )
282
+ @pytest.mark.parametrize("method", ["to_pickle", "to_json", "to_csv"])
283
+ def test_xz_compression_level_read(obj, method):
284
+ with tm.ensure_clean() as path:
285
+ getattr(obj, method)(path, compression="xz")
286
+ compressed_size_default = os.path.getsize(path)
287
+ getattr(obj, method)(path, compression={"method": "xz", "preset": 1})
288
+ compressed_size_fast = os.path.getsize(path)
289
+ assert compressed_size_default < compressed_size_fast
290
+ if method == "to_csv":
291
+ pd.read_csv(path, compression="xz")
292
+
293
+
294
+ @pytest.mark.parametrize(
295
+ "obj",
296
+ [
297
+ pd.DataFrame(
298
+ 100 * [[0.123456, 0.234567, 0.567567], [12.32112, 123123.2, 321321.2]],
299
+ columns=["X", "Y", "Z"],
300
+ ),
301
+ pd.Series(100 * [0.123456, 0.234567, 0.567567], name="X"),
302
+ ],
303
+ )
304
+ @pytest.mark.parametrize("method", ["to_pickle", "to_json", "to_csv"])
305
+ def test_bzip_compression_level(obj, method):
306
+ """GH33196 bzip needs file size > 100k to show a size difference between
307
+ compression levels, so here we just check if the call works when
308
+ compression is passed as a dict.
309
+ """
310
+ with tm.ensure_clean() as path:
311
+ getattr(obj, method)(path, compression={"method": "bz2", "compresslevel": 1})
312
+
313
+
314
+ @pytest.mark.parametrize(
315
+ "suffix,archive",
316
+ [
317
+ (".zip", zipfile.ZipFile),
318
+ (".tar", tarfile.TarFile),
319
+ ],
320
+ )
321
+ def test_empty_archive_zip(suffix, archive):
322
+ with tm.ensure_clean(filename=suffix) as path:
323
+ with archive(path, "w"):
324
+ pass
325
+ with pytest.raises(ValueError, match="Zero files found"):
326
+ pd.read_csv(path)
327
+
328
+
329
+ def test_ambiguous_archive_zip():
330
+ with tm.ensure_clean(filename=".zip") as path:
331
+ with zipfile.ZipFile(path, "w") as file:
332
+ file.writestr("a.csv", "foo,bar")
333
+ file.writestr("b.csv", "foo,bar")
334
+ with pytest.raises(ValueError, match="Multiple files found in ZIP file"):
335
+ pd.read_csv(path)
336
+
337
+
338
+ def test_ambiguous_archive_tar(tmp_path):
339
+ csvAPath = tmp_path / "a.csv"
340
+ with open(csvAPath, "w", encoding="utf-8") as a:
341
+ a.write("foo,bar\n")
342
+ csvBPath = tmp_path / "b.csv"
343
+ with open(csvBPath, "w", encoding="utf-8") as b:
344
+ b.write("foo,bar\n")
345
+
346
+ tarpath = tmp_path / "archive.tar"
347
+ with tarfile.TarFile(tarpath, "w") as tar:
348
+ tar.add(csvAPath, "a.csv")
349
+ tar.add(csvBPath, "b.csv")
350
+
351
+ with pytest.raises(ValueError, match="Multiple files found in TAR archive"):
352
+ pd.read_csv(tarpath)
353
+
354
+
355
+ def test_tar_gz_to_different_filename():
356
+ with tm.ensure_clean(filename=".foo") as file:
357
+ pd.DataFrame(
358
+ [["1", "2"]],
359
+ columns=["foo", "bar"],
360
+ ).to_csv(file, compression={"method": "tar", "mode": "w:gz"}, index=False)
361
+ with gzip.open(file) as uncompressed:
362
+ with tarfile.TarFile(fileobj=uncompressed) as archive:
363
+ members = archive.getmembers()
364
+ assert len(members) == 1
365
+ content = archive.extractfile(members[0]).read().decode("utf8")
366
+
367
+ if is_platform_windows():
368
+ expected = "foo,bar\r\n1,2\r\n"
369
+ else:
370
+ expected = "foo,bar\n1,2\n"
371
+
372
+ assert content == expected
373
+
374
+
375
+ def test_tar_no_error_on_close():
376
+ with io.BytesIO() as buffer:
377
+ with icom._BytesTarFile(fileobj=buffer, mode="w"):
378
+ pass
llmeval-env/lib/python3.10/site-packages/pandas/tests/io/test_feather.py ADDED
@@ -0,0 +1,252 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ test feather-format compat """
2
+ import numpy as np
3
+ import pytest
4
+
5
+ import pandas as pd
6
+ import pandas._testing as tm
7
+ from pandas.core.arrays import (
8
+ ArrowStringArray,
9
+ StringArray,
10
+ )
11
+
12
+ from pandas.io.feather_format import read_feather, to_feather # isort:skip
13
+
14
+ pytestmark = pytest.mark.filterwarnings(
15
+ "ignore:Passing a BlockManager to DataFrame:DeprecationWarning"
16
+ )
17
+
18
+ pa = pytest.importorskip("pyarrow")
19
+
20
+
21
+ @pytest.mark.single_cpu
22
+ class TestFeather:
23
+ def check_error_on_write(self, df, exc, err_msg):
24
+ # check that we are raising the exception
25
+ # on writing
26
+
27
+ with pytest.raises(exc, match=err_msg):
28
+ with tm.ensure_clean() as path:
29
+ to_feather(df, path)
30
+
31
+ def check_external_error_on_write(self, df):
32
+ # check that we are raising the exception
33
+ # on writing
34
+
35
+ with tm.external_error_raised(Exception):
36
+ with tm.ensure_clean() as path:
37
+ to_feather(df, path)
38
+
39
+ def check_round_trip(self, df, expected=None, write_kwargs={}, **read_kwargs):
40
+ if expected is None:
41
+ expected = df.copy()
42
+
43
+ with tm.ensure_clean() as path:
44
+ to_feather(df, path, **write_kwargs)
45
+
46
+ result = read_feather(path, **read_kwargs)
47
+
48
+ tm.assert_frame_equal(result, expected)
49
+
50
+ def test_error(self):
51
+ msg = "feather only support IO with DataFrames"
52
+ for obj in [
53
+ pd.Series([1, 2, 3]),
54
+ 1,
55
+ "foo",
56
+ pd.Timestamp("20130101"),
57
+ np.array([1, 2, 3]),
58
+ ]:
59
+ self.check_error_on_write(obj, ValueError, msg)
60
+
61
+ def test_basic(self):
62
+ df = pd.DataFrame(
63
+ {
64
+ "string": list("abc"),
65
+ "int": list(range(1, 4)),
66
+ "uint": np.arange(3, 6).astype("u1"),
67
+ "float": np.arange(4.0, 7.0, dtype="float64"),
68
+ "float_with_null": [1.0, np.nan, 3],
69
+ "bool": [True, False, True],
70
+ "bool_with_null": [True, np.nan, False],
71
+ "cat": pd.Categorical(list("abc")),
72
+ "dt": pd.DatetimeIndex(
73
+ list(pd.date_range("20130101", periods=3)), freq=None
74
+ ),
75
+ "dttz": pd.DatetimeIndex(
76
+ list(pd.date_range("20130101", periods=3, tz="US/Eastern")),
77
+ freq=None,
78
+ ),
79
+ "dt_with_null": [
80
+ pd.Timestamp("20130101"),
81
+ pd.NaT,
82
+ pd.Timestamp("20130103"),
83
+ ],
84
+ "dtns": pd.DatetimeIndex(
85
+ list(pd.date_range("20130101", periods=3, freq="ns")), freq=None
86
+ ),
87
+ }
88
+ )
89
+ df["periods"] = pd.period_range("2013", freq="M", periods=3)
90
+ df["timedeltas"] = pd.timedelta_range("1 day", periods=3)
91
+ df["intervals"] = pd.interval_range(0, 3, 3)
92
+
93
+ assert df.dttz.dtype.tz.zone == "US/Eastern"
94
+
95
+ expected = df.copy()
96
+ expected.loc[1, "bool_with_null"] = None
97
+ self.check_round_trip(df, expected=expected)
98
+
99
+ def test_duplicate_columns(self):
100
+ # https://github.com/wesm/feather/issues/53
101
+ # not currently able to handle duplicate columns
102
+ df = pd.DataFrame(np.arange(12).reshape(4, 3), columns=list("aaa")).copy()
103
+ self.check_external_error_on_write(df)
104
+
105
+ def test_read_columns(self):
106
+ # GH 24025
107
+ df = pd.DataFrame(
108
+ {
109
+ "col1": list("abc"),
110
+ "col2": list(range(1, 4)),
111
+ "col3": list("xyz"),
112
+ "col4": list(range(4, 7)),
113
+ }
114
+ )
115
+ columns = ["col1", "col3"]
116
+ self.check_round_trip(df, expected=df[columns], columns=columns)
117
+
118
+ def test_read_columns_different_order(self):
119
+ # GH 33878
120
+ df = pd.DataFrame({"A": [1, 2], "B": ["x", "y"], "C": [True, False]})
121
+ expected = df[["B", "A"]]
122
+ self.check_round_trip(df, expected, columns=["B", "A"])
123
+
124
+ def test_unsupported_other(self):
125
+ # mixed python objects
126
+ df = pd.DataFrame({"a": ["a", 1, 2.0]})
127
+ self.check_external_error_on_write(df)
128
+
129
+ def test_rw_use_threads(self):
130
+ df = pd.DataFrame({"A": np.arange(100000)})
131
+ self.check_round_trip(df, use_threads=True)
132
+ self.check_round_trip(df, use_threads=False)
133
+
134
+ def test_path_pathlib(self):
135
+ df = pd.DataFrame(
136
+ 1.1 * np.arange(120).reshape((30, 4)),
137
+ columns=pd.Index(list("ABCD"), dtype=object),
138
+ index=pd.Index([f"i-{i}" for i in range(30)], dtype=object),
139
+ ).reset_index()
140
+ result = tm.round_trip_pathlib(df.to_feather, read_feather)
141
+ tm.assert_frame_equal(df, result)
142
+
143
+ def test_path_localpath(self):
144
+ df = pd.DataFrame(
145
+ 1.1 * np.arange(120).reshape((30, 4)),
146
+ columns=pd.Index(list("ABCD"), dtype=object),
147
+ index=pd.Index([f"i-{i}" for i in range(30)], dtype=object),
148
+ ).reset_index()
149
+ result = tm.round_trip_localpath(df.to_feather, read_feather)
150
+ tm.assert_frame_equal(df, result)
151
+
152
+ def test_passthrough_keywords(self):
153
+ df = pd.DataFrame(
154
+ 1.1 * np.arange(120).reshape((30, 4)),
155
+ columns=pd.Index(list("ABCD"), dtype=object),
156
+ index=pd.Index([f"i-{i}" for i in range(30)], dtype=object),
157
+ ).reset_index()
158
+ self.check_round_trip(df, write_kwargs={"version": 1})
159
+
160
+ @pytest.mark.network
161
+ @pytest.mark.single_cpu
162
+ def test_http_path(self, feather_file, httpserver):
163
+ # GH 29055
164
+ expected = read_feather(feather_file)
165
+ with open(feather_file, "rb") as f:
166
+ httpserver.serve_content(content=f.read())
167
+ res = read_feather(httpserver.url)
168
+ tm.assert_frame_equal(expected, res)
169
+
170
+ def test_read_feather_dtype_backend(self, string_storage, dtype_backend):
171
+ # GH#50765
172
+ df = pd.DataFrame(
173
+ {
174
+ "a": pd.Series([1, np.nan, 3], dtype="Int64"),
175
+ "b": pd.Series([1, 2, 3], dtype="Int64"),
176
+ "c": pd.Series([1.5, np.nan, 2.5], dtype="Float64"),
177
+ "d": pd.Series([1.5, 2.0, 2.5], dtype="Float64"),
178
+ "e": [True, False, None],
179
+ "f": [True, False, True],
180
+ "g": ["a", "b", "c"],
181
+ "h": ["a", "b", None],
182
+ }
183
+ )
184
+
185
+ if string_storage == "python":
186
+ string_array = StringArray(np.array(["a", "b", "c"], dtype=np.object_))
187
+ string_array_na = StringArray(np.array(["a", "b", pd.NA], dtype=np.object_))
188
+
189
+ elif dtype_backend == "pyarrow":
190
+ from pandas.arrays import ArrowExtensionArray
191
+
192
+ string_array = ArrowExtensionArray(pa.array(["a", "b", "c"]))
193
+ string_array_na = ArrowExtensionArray(pa.array(["a", "b", None]))
194
+
195
+ else:
196
+ string_array = ArrowStringArray(pa.array(["a", "b", "c"]))
197
+ string_array_na = ArrowStringArray(pa.array(["a", "b", None]))
198
+
199
+ with tm.ensure_clean() as path:
200
+ to_feather(df, path)
201
+ with pd.option_context("mode.string_storage", string_storage):
202
+ result = read_feather(path, dtype_backend=dtype_backend)
203
+
204
+ expected = pd.DataFrame(
205
+ {
206
+ "a": pd.Series([1, np.nan, 3], dtype="Int64"),
207
+ "b": pd.Series([1, 2, 3], dtype="Int64"),
208
+ "c": pd.Series([1.5, np.nan, 2.5], dtype="Float64"),
209
+ "d": pd.Series([1.5, 2.0, 2.5], dtype="Float64"),
210
+ "e": pd.Series([True, False, pd.NA], dtype="boolean"),
211
+ "f": pd.Series([True, False, True], dtype="boolean"),
212
+ "g": string_array,
213
+ "h": string_array_na,
214
+ }
215
+ )
216
+
217
+ if dtype_backend == "pyarrow":
218
+ from pandas.arrays import ArrowExtensionArray
219
+
220
+ expected = pd.DataFrame(
221
+ {
222
+ col: ArrowExtensionArray(pa.array(expected[col], from_pandas=True))
223
+ for col in expected.columns
224
+ }
225
+ )
226
+
227
+ tm.assert_frame_equal(result, expected)
228
+
229
+ def test_int_columns_and_index(self):
230
+ df = pd.DataFrame({"a": [1, 2, 3]}, index=pd.Index([3, 4, 5], name="test"))
231
+ self.check_round_trip(df)
232
+
233
+ def test_invalid_dtype_backend(self):
234
+ msg = (
235
+ "dtype_backend numpy is invalid, only 'numpy_nullable' and "
236
+ "'pyarrow' are allowed."
237
+ )
238
+ df = pd.DataFrame({"int": list(range(1, 4))})
239
+ with tm.ensure_clean("tmp.feather") as path:
240
+ df.to_feather(path)
241
+ with pytest.raises(ValueError, match=msg):
242
+ read_feather(path, dtype_backend="numpy")
243
+
244
+ def test_string_inference(self, tmp_path):
245
+ # GH#54431
246
+ path = tmp_path / "test_string_inference.p"
247
+ df = pd.DataFrame(data={"a": ["x", "y"]})
248
+ df.to_feather(path)
249
+ with pd.option_context("future.infer_string", True):
250
+ result = read_feather(path)
251
+ expected = pd.DataFrame(data={"a": ["x", "y"]}, dtype="string[pyarrow_numpy]")
252
+ tm.assert_frame_equal(result, expected)
llmeval-env/lib/python3.10/site-packages/pandas/tests/io/test_fsspec.py ADDED
@@ -0,0 +1,345 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import io
2
+
3
+ import numpy as np
4
+ import pytest
5
+
6
+ from pandas import (
7
+ DataFrame,
8
+ date_range,
9
+ read_csv,
10
+ read_excel,
11
+ read_feather,
12
+ read_json,
13
+ read_parquet,
14
+ read_pickle,
15
+ read_stata,
16
+ read_table,
17
+ )
18
+ import pandas._testing as tm
19
+ from pandas.util import _test_decorators as td
20
+
21
+ pytestmark = pytest.mark.filterwarnings(
22
+ "ignore:Passing a BlockManager to DataFrame:DeprecationWarning"
23
+ )
24
+
25
+
26
+ @pytest.fixture
27
+ def fsspectest():
28
+ pytest.importorskip("fsspec")
29
+ from fsspec import register_implementation
30
+ from fsspec.implementations.memory import MemoryFileSystem
31
+ from fsspec.registry import _registry as registry
32
+
33
+ class TestMemoryFS(MemoryFileSystem):
34
+ protocol = "testmem"
35
+ test = [None]
36
+
37
+ def __init__(self, **kwargs) -> None:
38
+ self.test[0] = kwargs.pop("test", None)
39
+ super().__init__(**kwargs)
40
+
41
+ register_implementation("testmem", TestMemoryFS, clobber=True)
42
+ yield TestMemoryFS()
43
+ registry.pop("testmem", None)
44
+ TestMemoryFS.test[0] = None
45
+ TestMemoryFS.store.clear()
46
+
47
+
48
+ @pytest.fixture
49
+ def df1():
50
+ return DataFrame(
51
+ {
52
+ "int": [1, 3],
53
+ "float": [2.0, np.nan],
54
+ "str": ["t", "s"],
55
+ "dt": date_range("2018-06-18", periods=2),
56
+ }
57
+ )
58
+
59
+
60
+ @pytest.fixture
61
+ def cleared_fs():
62
+ fsspec = pytest.importorskip("fsspec")
63
+
64
+ memfs = fsspec.filesystem("memory")
65
+ yield memfs
66
+ memfs.store.clear()
67
+
68
+
69
+ def test_read_csv(cleared_fs, df1):
70
+ text = str(df1.to_csv(index=False)).encode()
71
+ with cleared_fs.open("test/test.csv", "wb") as w:
72
+ w.write(text)
73
+ df2 = read_csv("memory://test/test.csv", parse_dates=["dt"])
74
+
75
+ tm.assert_frame_equal(df1, df2)
76
+
77
+
78
+ def test_reasonable_error(monkeypatch, cleared_fs):
79
+ from fsspec.registry import known_implementations
80
+
81
+ with pytest.raises(ValueError, match="nosuchprotocol"):
82
+ read_csv("nosuchprotocol://test/test.csv")
83
+ err_msg = "test error message"
84
+ monkeypatch.setitem(
85
+ known_implementations,
86
+ "couldexist",
87
+ {"class": "unimportable.CouldExist", "err": err_msg},
88
+ )
89
+ with pytest.raises(ImportError, match=err_msg):
90
+ read_csv("couldexist://test/test.csv")
91
+
92
+
93
+ def test_to_csv(cleared_fs, df1):
94
+ df1.to_csv("memory://test/test.csv", index=True)
95
+
96
+ df2 = read_csv("memory://test/test.csv", parse_dates=["dt"], index_col=0)
97
+
98
+ tm.assert_frame_equal(df1, df2)
99
+
100
+
101
+ def test_to_excel(cleared_fs, df1):
102
+ pytest.importorskip("openpyxl")
103
+ ext = "xlsx"
104
+ path = f"memory://test/test.{ext}"
105
+ df1.to_excel(path, index=True)
106
+
107
+ df2 = read_excel(path, parse_dates=["dt"], index_col=0)
108
+
109
+ tm.assert_frame_equal(df1, df2)
110
+
111
+
112
+ @pytest.mark.parametrize("binary_mode", [False, True])
113
+ def test_to_csv_fsspec_object(cleared_fs, binary_mode, df1):
114
+ fsspec = pytest.importorskip("fsspec")
115
+
116
+ path = "memory://test/test.csv"
117
+ mode = "wb" if binary_mode else "w"
118
+ with fsspec.open(path, mode=mode).open() as fsspec_object:
119
+ df1.to_csv(fsspec_object, index=True)
120
+ assert not fsspec_object.closed
121
+
122
+ mode = mode.replace("w", "r")
123
+ with fsspec.open(path, mode=mode) as fsspec_object:
124
+ df2 = read_csv(
125
+ fsspec_object,
126
+ parse_dates=["dt"],
127
+ index_col=0,
128
+ )
129
+ assert not fsspec_object.closed
130
+
131
+ tm.assert_frame_equal(df1, df2)
132
+
133
+
134
+ def test_csv_options(fsspectest):
135
+ df = DataFrame({"a": [0]})
136
+ df.to_csv(
137
+ "testmem://test/test.csv", storage_options={"test": "csv_write"}, index=False
138
+ )
139
+ assert fsspectest.test[0] == "csv_write"
140
+ read_csv("testmem://test/test.csv", storage_options={"test": "csv_read"})
141
+ assert fsspectest.test[0] == "csv_read"
142
+
143
+
144
+ def test_read_table_options(fsspectest):
145
+ # GH #39167
146
+ df = DataFrame({"a": [0]})
147
+ df.to_csv(
148
+ "testmem://test/test.csv", storage_options={"test": "csv_write"}, index=False
149
+ )
150
+ assert fsspectest.test[0] == "csv_write"
151
+ read_table("testmem://test/test.csv", storage_options={"test": "csv_read"})
152
+ assert fsspectest.test[0] == "csv_read"
153
+
154
+
155
+ def test_excel_options(fsspectest):
156
+ pytest.importorskip("openpyxl")
157
+ extension = "xlsx"
158
+
159
+ df = DataFrame({"a": [0]})
160
+
161
+ path = f"testmem://test/test.{extension}"
162
+
163
+ df.to_excel(path, storage_options={"test": "write"}, index=False)
164
+ assert fsspectest.test[0] == "write"
165
+ read_excel(path, storage_options={"test": "read"})
166
+ assert fsspectest.test[0] == "read"
167
+
168
+
169
+ def test_to_parquet_new_file(cleared_fs, df1):
170
+ """Regression test for writing to a not-yet-existent GCS Parquet file."""
171
+ pytest.importorskip("fastparquet")
172
+
173
+ df1.to_parquet(
174
+ "memory://test/test.csv", index=True, engine="fastparquet", compression=None
175
+ )
176
+
177
+
178
+ def test_arrowparquet_options(fsspectest):
179
+ """Regression test for writing to a not-yet-existent GCS Parquet file."""
180
+ pytest.importorskip("pyarrow")
181
+ df = DataFrame({"a": [0]})
182
+ df.to_parquet(
183
+ "testmem://test/test.csv",
184
+ engine="pyarrow",
185
+ compression=None,
186
+ storage_options={"test": "parquet_write"},
187
+ )
188
+ assert fsspectest.test[0] == "parquet_write"
189
+ read_parquet(
190
+ "testmem://test/test.csv",
191
+ engine="pyarrow",
192
+ storage_options={"test": "parquet_read"},
193
+ )
194
+ assert fsspectest.test[0] == "parquet_read"
195
+
196
+
197
+ @td.skip_array_manager_not_yet_implemented # TODO(ArrayManager) fastparquet
198
+ def test_fastparquet_options(fsspectest):
199
+ """Regression test for writing to a not-yet-existent GCS Parquet file."""
200
+ pytest.importorskip("fastparquet")
201
+
202
+ df = DataFrame({"a": [0]})
203
+ df.to_parquet(
204
+ "testmem://test/test.csv",
205
+ engine="fastparquet",
206
+ compression=None,
207
+ storage_options={"test": "parquet_write"},
208
+ )
209
+ assert fsspectest.test[0] == "parquet_write"
210
+ read_parquet(
211
+ "testmem://test/test.csv",
212
+ engine="fastparquet",
213
+ storage_options={"test": "parquet_read"},
214
+ )
215
+ assert fsspectest.test[0] == "parquet_read"
216
+
217
+
218
+ @pytest.mark.single_cpu
219
+ def test_from_s3_csv(s3_public_bucket_with_data, tips_file, s3so):
220
+ pytest.importorskip("s3fs")
221
+ tm.assert_equal(
222
+ read_csv(
223
+ f"s3://{s3_public_bucket_with_data.name}/tips.csv", storage_options=s3so
224
+ ),
225
+ read_csv(tips_file),
226
+ )
227
+ # the following are decompressed by pandas, not fsspec
228
+ tm.assert_equal(
229
+ read_csv(
230
+ f"s3://{s3_public_bucket_with_data.name}/tips.csv.gz", storage_options=s3so
231
+ ),
232
+ read_csv(tips_file),
233
+ )
234
+ tm.assert_equal(
235
+ read_csv(
236
+ f"s3://{s3_public_bucket_with_data.name}/tips.csv.bz2", storage_options=s3so
237
+ ),
238
+ read_csv(tips_file),
239
+ )
240
+
241
+
242
+ @pytest.mark.single_cpu
243
+ @pytest.mark.parametrize("protocol", ["s3", "s3a", "s3n"])
244
+ def test_s3_protocols(s3_public_bucket_with_data, tips_file, protocol, s3so):
245
+ pytest.importorskip("s3fs")
246
+ tm.assert_equal(
247
+ read_csv(
248
+ f"{protocol}://{s3_public_bucket_with_data.name}/tips.csv",
249
+ storage_options=s3so,
250
+ ),
251
+ read_csv(tips_file),
252
+ )
253
+
254
+
255
+ @pytest.mark.single_cpu
256
+ @td.skip_array_manager_not_yet_implemented # TODO(ArrayManager) fastparquet
257
+ def test_s3_parquet(s3_public_bucket, s3so, df1):
258
+ pytest.importorskip("fastparquet")
259
+ pytest.importorskip("s3fs")
260
+
261
+ fn = f"s3://{s3_public_bucket.name}/test.parquet"
262
+ df1.to_parquet(
263
+ fn, index=False, engine="fastparquet", compression=None, storage_options=s3so
264
+ )
265
+ df2 = read_parquet(fn, engine="fastparquet", storage_options=s3so)
266
+ tm.assert_equal(df1, df2)
267
+
268
+
269
+ @td.skip_if_installed("fsspec")
270
+ def test_not_present_exception():
271
+ msg = "Missing optional dependency 'fsspec'|fsspec library is required"
272
+ with pytest.raises(ImportError, match=msg):
273
+ read_csv("memory://test/test.csv")
274
+
275
+
276
+ def test_feather_options(fsspectest):
277
+ pytest.importorskip("pyarrow")
278
+ df = DataFrame({"a": [0]})
279
+ df.to_feather("testmem://mockfile", storage_options={"test": "feather_write"})
280
+ assert fsspectest.test[0] == "feather_write"
281
+ out = read_feather("testmem://mockfile", storage_options={"test": "feather_read"})
282
+ assert fsspectest.test[0] == "feather_read"
283
+ tm.assert_frame_equal(df, out)
284
+
285
+
286
+ def test_pickle_options(fsspectest):
287
+ df = DataFrame({"a": [0]})
288
+ df.to_pickle("testmem://mockfile", storage_options={"test": "pickle_write"})
289
+ assert fsspectest.test[0] == "pickle_write"
290
+ out = read_pickle("testmem://mockfile", storage_options={"test": "pickle_read"})
291
+ assert fsspectest.test[0] == "pickle_read"
292
+ tm.assert_frame_equal(df, out)
293
+
294
+
295
+ def test_json_options(fsspectest, compression):
296
+ df = DataFrame({"a": [0]})
297
+ df.to_json(
298
+ "testmem://mockfile",
299
+ compression=compression,
300
+ storage_options={"test": "json_write"},
301
+ )
302
+ assert fsspectest.test[0] == "json_write"
303
+ out = read_json(
304
+ "testmem://mockfile",
305
+ compression=compression,
306
+ storage_options={"test": "json_read"},
307
+ )
308
+ assert fsspectest.test[0] == "json_read"
309
+ tm.assert_frame_equal(df, out)
310
+
311
+
312
+ def test_stata_options(fsspectest):
313
+ df = DataFrame({"a": [0]})
314
+ df.to_stata(
315
+ "testmem://mockfile", storage_options={"test": "stata_write"}, write_index=False
316
+ )
317
+ assert fsspectest.test[0] == "stata_write"
318
+ out = read_stata("testmem://mockfile", storage_options={"test": "stata_read"})
319
+ assert fsspectest.test[0] == "stata_read"
320
+ tm.assert_frame_equal(df, out.astype("int64"))
321
+
322
+
323
+ def test_markdown_options(fsspectest):
324
+ pytest.importorskip("tabulate")
325
+ df = DataFrame({"a": [0]})
326
+ df.to_markdown("testmem://mockfile", storage_options={"test": "md_write"})
327
+ assert fsspectest.test[0] == "md_write"
328
+ assert fsspectest.cat("testmem://mockfile")
329
+
330
+
331
+ def test_non_fsspec_options():
332
+ pytest.importorskip("pyarrow")
333
+ with pytest.raises(ValueError, match="storage_options"):
334
+ read_csv("localfile", storage_options={"a": True})
335
+ with pytest.raises(ValueError, match="storage_options"):
336
+ # separate test for parquet, which has a different code path
337
+ read_parquet("localfile", storage_options={"a": True})
338
+ by = io.BytesIO()
339
+
340
+ with pytest.raises(ValueError, match="storage_options"):
341
+ read_csv(by, storage_options={"a": True})
342
+
343
+ df = DataFrame({"a": [0]})
344
+ with pytest.raises(ValueError, match="storage_options"):
345
+ df.to_parquet("nonfsspecpath", storage_options={"a": True})
llmeval-env/lib/python3.10/site-packages/pandas/tests/io/test_gbq.py ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ import pandas._testing as tm
3
+
4
+
5
+ def test_read_gbq_deprecated():
6
+ with tm.assert_produces_warning(FutureWarning):
7
+ with tm.external_error_raised(Exception):
8
+ pd.read_gbq("fake")
9
+
10
+
11
+ def test_to_gbq_deprecated():
12
+ with tm.assert_produces_warning(FutureWarning):
13
+ with tm.external_error_raised(Exception):
14
+ pd.DataFrame(range(1)).to_gbq("fake")
llmeval-env/lib/python3.10/site-packages/pandas/tests/io/test_gcs.py ADDED
@@ -0,0 +1,219 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from io import BytesIO
2
+ import os
3
+ import pathlib
4
+ import tarfile
5
+ import zipfile
6
+
7
+ import numpy as np
8
+ import pytest
9
+
10
+ from pandas import (
11
+ DataFrame,
12
+ Index,
13
+ date_range,
14
+ read_csv,
15
+ read_excel,
16
+ read_json,
17
+ read_parquet,
18
+ )
19
+ import pandas._testing as tm
20
+ from pandas.util import _test_decorators as td
21
+
22
+ pytestmark = pytest.mark.filterwarnings(
23
+ "ignore:Passing a BlockManager to DataFrame:DeprecationWarning"
24
+ )
25
+
26
+
27
+ @pytest.fixture
28
+ def gcs_buffer():
29
+ """Emulate GCS using a binary buffer."""
30
+ pytest.importorskip("gcsfs")
31
+ fsspec = pytest.importorskip("fsspec")
32
+
33
+ gcs_buffer = BytesIO()
34
+ gcs_buffer.close = lambda: True
35
+
36
+ class MockGCSFileSystem(fsspec.AbstractFileSystem):
37
+ @staticmethod
38
+ def open(*args, **kwargs):
39
+ gcs_buffer.seek(0)
40
+ return gcs_buffer
41
+
42
+ def ls(self, path, **kwargs):
43
+ # needed for pyarrow
44
+ return [{"name": path, "type": "file"}]
45
+
46
+ # Overwrites the default implementation from gcsfs to our mock class
47
+ fsspec.register_implementation("gs", MockGCSFileSystem, clobber=True)
48
+
49
+ return gcs_buffer
50
+
51
+
52
+ # Patches pyarrow; other processes should not pick up change
53
+ @pytest.mark.single_cpu
54
+ @pytest.mark.parametrize("format", ["csv", "json", "parquet", "excel", "markdown"])
55
+ def test_to_read_gcs(gcs_buffer, format, monkeypatch, capsys):
56
+ """
57
+ Test that many to/read functions support GCS.
58
+
59
+ GH 33987
60
+ """
61
+
62
+ df1 = DataFrame(
63
+ {
64
+ "int": [1, 3],
65
+ "float": [2.0, np.nan],
66
+ "str": ["t", "s"],
67
+ "dt": date_range("2018-06-18", periods=2),
68
+ }
69
+ )
70
+
71
+ path = f"gs://test/test.{format}"
72
+
73
+ if format == "csv":
74
+ df1.to_csv(path, index=True)
75
+ df2 = read_csv(path, parse_dates=["dt"], index_col=0)
76
+ elif format == "excel":
77
+ path = "gs://test/test.xlsx"
78
+ df1.to_excel(path)
79
+ df2 = read_excel(path, parse_dates=["dt"], index_col=0)
80
+ elif format == "json":
81
+ df1.to_json(path)
82
+ df2 = read_json(path, convert_dates=["dt"])
83
+ elif format == "parquet":
84
+ pytest.importorskip("pyarrow")
85
+ pa_fs = pytest.importorskip("pyarrow.fs")
86
+
87
+ class MockFileSystem(pa_fs.FileSystem):
88
+ @staticmethod
89
+ def from_uri(path):
90
+ print("Using pyarrow filesystem")
91
+ to_local = pathlib.Path(path.replace("gs://", "")).absolute().as_uri()
92
+ return pa_fs.LocalFileSystem(to_local)
93
+
94
+ with monkeypatch.context() as m:
95
+ m.setattr(pa_fs, "FileSystem", MockFileSystem)
96
+ df1.to_parquet(path)
97
+ df2 = read_parquet(path)
98
+ captured = capsys.readouterr()
99
+ assert captured.out == "Using pyarrow filesystem\nUsing pyarrow filesystem\n"
100
+ elif format == "markdown":
101
+ pytest.importorskip("tabulate")
102
+ df1.to_markdown(path)
103
+ df2 = df1
104
+
105
+ tm.assert_frame_equal(df1, df2)
106
+
107
+
108
+ def assert_equal_zip_safe(result: bytes, expected: bytes, compression: str):
109
+ """
110
+ For zip compression, only compare the CRC-32 checksum of the file contents
111
+ to avoid checking the time-dependent last-modified timestamp which
112
+ in some CI builds is off-by-one
113
+
114
+ See https://en.wikipedia.org/wiki/ZIP_(file_format)#File_headers
115
+ """
116
+ if compression == "zip":
117
+ # Only compare the CRC checksum of the file contents
118
+ with zipfile.ZipFile(BytesIO(result)) as exp, zipfile.ZipFile(
119
+ BytesIO(expected)
120
+ ) as res:
121
+ for res_info, exp_info in zip(res.infolist(), exp.infolist()):
122
+ assert res_info.CRC == exp_info.CRC
123
+ elif compression == "tar":
124
+ with tarfile.open(fileobj=BytesIO(result)) as tar_exp, tarfile.open(
125
+ fileobj=BytesIO(expected)
126
+ ) as tar_res:
127
+ for tar_res_info, tar_exp_info in zip(
128
+ tar_res.getmembers(), tar_exp.getmembers()
129
+ ):
130
+ actual_file = tar_res.extractfile(tar_res_info)
131
+ expected_file = tar_exp.extractfile(tar_exp_info)
132
+ assert (actual_file is None) == (expected_file is None)
133
+ if actual_file is not None and expected_file is not None:
134
+ assert actual_file.read() == expected_file.read()
135
+ else:
136
+ assert result == expected
137
+
138
+
139
+ @pytest.mark.parametrize("encoding", ["utf-8", "cp1251"])
140
+ def test_to_csv_compression_encoding_gcs(
141
+ gcs_buffer, compression_only, encoding, compression_to_extension
142
+ ):
143
+ """
144
+ Compression and encoding should with GCS.
145
+
146
+ GH 35677 (to_csv, compression), GH 26124 (to_csv, encoding), and
147
+ GH 32392 (read_csv, encoding)
148
+ """
149
+ df = DataFrame(
150
+ 1.1 * np.arange(120).reshape((30, 4)),
151
+ columns=Index(list("ABCD"), dtype=object),
152
+ index=Index([f"i-{i}" for i in range(30)], dtype=object),
153
+ )
154
+
155
+ # reference of compressed and encoded file
156
+ compression = {"method": compression_only}
157
+ if compression_only == "gzip":
158
+ compression["mtime"] = 1 # be reproducible
159
+ buffer = BytesIO()
160
+ df.to_csv(buffer, compression=compression, encoding=encoding, mode="wb")
161
+
162
+ # write compressed file with explicit compression
163
+ path_gcs = "gs://test/test.csv"
164
+ df.to_csv(path_gcs, compression=compression, encoding=encoding)
165
+ res = gcs_buffer.getvalue()
166
+ expected = buffer.getvalue()
167
+ assert_equal_zip_safe(res, expected, compression_only)
168
+
169
+ read_df = read_csv(
170
+ path_gcs, index_col=0, compression=compression_only, encoding=encoding
171
+ )
172
+ tm.assert_frame_equal(df, read_df)
173
+
174
+ # write compressed file with implicit compression
175
+ file_ext = compression_to_extension[compression_only]
176
+ compression["method"] = "infer"
177
+ path_gcs += f".{file_ext}"
178
+ df.to_csv(path_gcs, compression=compression, encoding=encoding)
179
+
180
+ res = gcs_buffer.getvalue()
181
+ expected = buffer.getvalue()
182
+ assert_equal_zip_safe(res, expected, compression_only)
183
+
184
+ read_df = read_csv(path_gcs, index_col=0, compression="infer", encoding=encoding)
185
+ tm.assert_frame_equal(df, read_df)
186
+
187
+
188
+ def test_to_parquet_gcs_new_file(monkeypatch, tmpdir):
189
+ """Regression test for writing to a not-yet-existent GCS Parquet file."""
190
+ pytest.importorskip("fastparquet")
191
+ pytest.importorskip("gcsfs")
192
+
193
+ from fsspec import AbstractFileSystem
194
+
195
+ df1 = DataFrame(
196
+ {
197
+ "int": [1, 3],
198
+ "float": [2.0, np.nan],
199
+ "str": ["t", "s"],
200
+ "dt": date_range("2018-06-18", periods=2),
201
+ }
202
+ )
203
+
204
+ class MockGCSFileSystem(AbstractFileSystem):
205
+ def open(self, path, mode="r", *args):
206
+ if "w" not in mode:
207
+ raise FileNotFoundError
208
+ return open(os.path.join(tmpdir, "test.parquet"), mode, encoding="utf-8")
209
+
210
+ monkeypatch.setattr("gcsfs.GCSFileSystem", MockGCSFileSystem)
211
+ df1.to_parquet(
212
+ "gs://test/test.csv", index=True, engine="fastparquet", compression=None
213
+ )
214
+
215
+
216
+ @td.skip_if_installed("gcsfs")
217
+ def test_gcs_not_present_exception():
218
+ with tm.external_error_raised(ImportError):
219
+ read_csv("gs://test/test.csv")
llmeval-env/lib/python3.10/site-packages/pandas/tests/io/test_html.py ADDED
@@ -0,0 +1,1657 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from collections.abc import Iterator
2
+ from functools import partial
3
+ from io import (
4
+ BytesIO,
5
+ StringIO,
6
+ )
7
+ import os
8
+ from pathlib import Path
9
+ import re
10
+ import threading
11
+ from urllib.error import URLError
12
+
13
+ import numpy as np
14
+ import pytest
15
+
16
+ from pandas.compat import is_platform_windows
17
+ import pandas.util._test_decorators as td
18
+
19
+ import pandas as pd
20
+ from pandas import (
21
+ NA,
22
+ DataFrame,
23
+ MultiIndex,
24
+ Series,
25
+ Timestamp,
26
+ date_range,
27
+ read_csv,
28
+ read_html,
29
+ to_datetime,
30
+ )
31
+ import pandas._testing as tm
32
+ from pandas.core.arrays import (
33
+ ArrowStringArray,
34
+ StringArray,
35
+ )
36
+
37
+ from pandas.io.common import file_path_to_url
38
+
39
+
40
+ @pytest.fixture(
41
+ params=[
42
+ "chinese_utf-16.html",
43
+ "chinese_utf-32.html",
44
+ "chinese_utf-8.html",
45
+ "letz_latin1.html",
46
+ ]
47
+ )
48
+ def html_encoding_file(request, datapath):
49
+ """Parametrized fixture for HTML encoding test filenames."""
50
+ return datapath("io", "data", "html_encoding", request.param)
51
+
52
+
53
+ def assert_framelist_equal(list1, list2, *args, **kwargs):
54
+ assert len(list1) == len(list2), (
55
+ "lists are not of equal size "
56
+ f"len(list1) == {len(list1)}, "
57
+ f"len(list2) == {len(list2)}"
58
+ )
59
+ msg = "not all list elements are DataFrames"
60
+ both_frames = all(
61
+ map(
62
+ lambda x, y: isinstance(x, DataFrame) and isinstance(y, DataFrame),
63
+ list1,
64
+ list2,
65
+ )
66
+ )
67
+ assert both_frames, msg
68
+ for frame_i, frame_j in zip(list1, list2):
69
+ tm.assert_frame_equal(frame_i, frame_j, *args, **kwargs)
70
+ assert not frame_i.empty, "frames are both empty"
71
+
72
+
73
+ def test_bs4_version_fails(monkeypatch, datapath):
74
+ bs4 = pytest.importorskip("bs4")
75
+ pytest.importorskip("html5lib")
76
+
77
+ monkeypatch.setattr(bs4, "__version__", "4.2")
78
+ with pytest.raises(ImportError, match="Pandas requires version"):
79
+ read_html(datapath("io", "data", "html", "spam.html"), flavor="bs4")
80
+
81
+
82
+ def test_invalid_flavor():
83
+ url = "google.com"
84
+ flavor = "invalid flavor"
85
+ msg = r"\{" + flavor + r"\} is not a valid set of flavors"
86
+
87
+ with pytest.raises(ValueError, match=msg):
88
+ read_html(StringIO(url), match="google", flavor=flavor)
89
+
90
+
91
+ def test_same_ordering(datapath):
92
+ pytest.importorskip("bs4")
93
+ pytest.importorskip("lxml")
94
+ pytest.importorskip("html5lib")
95
+
96
+ filename = datapath("io", "data", "html", "valid_markup.html")
97
+ dfs_lxml = read_html(filename, index_col=0, flavor=["lxml"])
98
+ dfs_bs4 = read_html(filename, index_col=0, flavor=["bs4"])
99
+ assert_framelist_equal(dfs_lxml, dfs_bs4)
100
+
101
+
102
+ @pytest.fixture(
103
+ params=[
104
+ pytest.param("bs4", marks=[td.skip_if_no("bs4"), td.skip_if_no("html5lib")]),
105
+ pytest.param("lxml", marks=td.skip_if_no("lxml")),
106
+ ],
107
+ )
108
+ def flavor_read_html(request):
109
+ return partial(read_html, flavor=request.param)
110
+
111
+
112
+ class TestReadHtml:
113
+ def test_literal_html_deprecation(self, flavor_read_html):
114
+ # GH 53785
115
+ msg = (
116
+ "Passing literal html to 'read_html' is deprecated and "
117
+ "will be removed in a future version. To read from a "
118
+ "literal string, wrap it in a 'StringIO' object."
119
+ )
120
+
121
+ with tm.assert_produces_warning(FutureWarning, match=msg):
122
+ flavor_read_html(
123
+ """<table>
124
+ <thead>
125
+ <tr>
126
+ <th>A</th>
127
+ <th>B</th>
128
+ </tr>
129
+ </thead>
130
+ <tbody>
131
+ <tr>
132
+ <td>1</td>
133
+ <td>2</td>
134
+ </tr>
135
+ </tbody>
136
+ <tbody>
137
+ <tr>
138
+ <td>3</td>
139
+ <td>4</td>
140
+ </tr>
141
+ </tbody>
142
+ </table>"""
143
+ )
144
+
145
+ @pytest.fixture
146
+ def spam_data(self, datapath):
147
+ return datapath("io", "data", "html", "spam.html")
148
+
149
+ @pytest.fixture
150
+ def banklist_data(self, datapath):
151
+ return datapath("io", "data", "html", "banklist.html")
152
+
153
+ def test_to_html_compat(self, flavor_read_html):
154
+ df = (
155
+ DataFrame(
156
+ np.random.default_rng(2).random((4, 3)),
157
+ columns=pd.Index(list("abc"), dtype=object),
158
+ )
159
+ # pylint: disable-next=consider-using-f-string
160
+ .map("{:.3f}".format).astype(float)
161
+ )
162
+ out = df.to_html()
163
+ res = flavor_read_html(
164
+ StringIO(out), attrs={"class": "dataframe"}, index_col=0
165
+ )[0]
166
+ tm.assert_frame_equal(res, df)
167
+
168
+ def test_dtype_backend(self, string_storage, dtype_backend, flavor_read_html):
169
+ # GH#50286
170
+ df = DataFrame(
171
+ {
172
+ "a": Series([1, np.nan, 3], dtype="Int64"),
173
+ "b": Series([1, 2, 3], dtype="Int64"),
174
+ "c": Series([1.5, np.nan, 2.5], dtype="Float64"),
175
+ "d": Series([1.5, 2.0, 2.5], dtype="Float64"),
176
+ "e": [True, False, None],
177
+ "f": [True, False, True],
178
+ "g": ["a", "b", "c"],
179
+ "h": ["a", "b", None],
180
+ }
181
+ )
182
+
183
+ if string_storage == "python":
184
+ string_array = StringArray(np.array(["a", "b", "c"], dtype=np.object_))
185
+ string_array_na = StringArray(np.array(["a", "b", NA], dtype=np.object_))
186
+ elif dtype_backend == "pyarrow":
187
+ pa = pytest.importorskip("pyarrow")
188
+ from pandas.arrays import ArrowExtensionArray
189
+
190
+ string_array = ArrowExtensionArray(pa.array(["a", "b", "c"]))
191
+ string_array_na = ArrowExtensionArray(pa.array(["a", "b", None]))
192
+ else:
193
+ pa = pytest.importorskip("pyarrow")
194
+ string_array = ArrowStringArray(pa.array(["a", "b", "c"]))
195
+ string_array_na = ArrowStringArray(pa.array(["a", "b", None]))
196
+
197
+ out = df.to_html(index=False)
198
+ with pd.option_context("mode.string_storage", string_storage):
199
+ result = flavor_read_html(StringIO(out), dtype_backend=dtype_backend)[0]
200
+
201
+ expected = DataFrame(
202
+ {
203
+ "a": Series([1, np.nan, 3], dtype="Int64"),
204
+ "b": Series([1, 2, 3], dtype="Int64"),
205
+ "c": Series([1.5, np.nan, 2.5], dtype="Float64"),
206
+ "d": Series([1.5, 2.0, 2.5], dtype="Float64"),
207
+ "e": Series([True, False, NA], dtype="boolean"),
208
+ "f": Series([True, False, True], dtype="boolean"),
209
+ "g": string_array,
210
+ "h": string_array_na,
211
+ }
212
+ )
213
+
214
+ if dtype_backend == "pyarrow":
215
+ import pyarrow as pa
216
+
217
+ from pandas.arrays import ArrowExtensionArray
218
+
219
+ expected = DataFrame(
220
+ {
221
+ col: ArrowExtensionArray(pa.array(expected[col], from_pandas=True))
222
+ for col in expected.columns
223
+ }
224
+ )
225
+
226
+ tm.assert_frame_equal(result, expected)
227
+
228
+ @pytest.mark.network
229
+ @pytest.mark.single_cpu
230
+ def test_banklist_url(self, httpserver, banklist_data, flavor_read_html):
231
+ with open(banklist_data, encoding="utf-8") as f:
232
+ httpserver.serve_content(content=f.read())
233
+ df1 = flavor_read_html(
234
+ # lxml cannot find attrs leave out for now
235
+ httpserver.url,
236
+ match="First Federal Bank of Florida", # attrs={"class": "dataTable"}
237
+ )
238
+ # lxml cannot find attrs leave out for now
239
+ df2 = flavor_read_html(
240
+ httpserver.url,
241
+ match="Metcalf Bank",
242
+ ) # attrs={"class": "dataTable"})
243
+
244
+ assert_framelist_equal(df1, df2)
245
+
246
+ @pytest.mark.network
247
+ @pytest.mark.single_cpu
248
+ def test_spam_url(self, httpserver, spam_data, flavor_read_html):
249
+ with open(spam_data, encoding="utf-8") as f:
250
+ httpserver.serve_content(content=f.read())
251
+ df1 = flavor_read_html(httpserver.url, match=".*Water.*")
252
+ df2 = flavor_read_html(httpserver.url, match="Unit")
253
+
254
+ assert_framelist_equal(df1, df2)
255
+
256
+ @pytest.mark.slow
257
+ def test_banklist(self, banklist_data, flavor_read_html):
258
+ df1 = flavor_read_html(
259
+ banklist_data, match=".*Florida.*", attrs={"id": "table"}
260
+ )
261
+ df2 = flavor_read_html(
262
+ banklist_data, match="Metcalf Bank", attrs={"id": "table"}
263
+ )
264
+
265
+ assert_framelist_equal(df1, df2)
266
+
267
+ def test_spam(self, spam_data, flavor_read_html):
268
+ df1 = flavor_read_html(spam_data, match=".*Water.*")
269
+ df2 = flavor_read_html(spam_data, match="Unit")
270
+ assert_framelist_equal(df1, df2)
271
+
272
+ assert df1[0].iloc[0, 0] == "Proximates"
273
+ assert df1[0].columns[0] == "Nutrient"
274
+
275
+ def test_spam_no_match(self, spam_data, flavor_read_html):
276
+ dfs = flavor_read_html(spam_data)
277
+ for df in dfs:
278
+ assert isinstance(df, DataFrame)
279
+
280
+ def test_banklist_no_match(self, banklist_data, flavor_read_html):
281
+ dfs = flavor_read_html(banklist_data, attrs={"id": "table"})
282
+ for df in dfs:
283
+ assert isinstance(df, DataFrame)
284
+
285
+ def test_spam_header(self, spam_data, flavor_read_html):
286
+ df = flavor_read_html(spam_data, match=".*Water.*", header=2)[0]
287
+ assert df.columns[0] == "Proximates"
288
+ assert not df.empty
289
+
290
+ def test_skiprows_int(self, spam_data, flavor_read_html):
291
+ df1 = flavor_read_html(spam_data, match=".*Water.*", skiprows=1)
292
+ df2 = flavor_read_html(spam_data, match="Unit", skiprows=1)
293
+
294
+ assert_framelist_equal(df1, df2)
295
+
296
+ def test_skiprows_range(self, spam_data, flavor_read_html):
297
+ df1 = flavor_read_html(spam_data, match=".*Water.*", skiprows=range(2))
298
+ df2 = flavor_read_html(spam_data, match="Unit", skiprows=range(2))
299
+
300
+ assert_framelist_equal(df1, df2)
301
+
302
+ def test_skiprows_list(self, spam_data, flavor_read_html):
303
+ df1 = flavor_read_html(spam_data, match=".*Water.*", skiprows=[1, 2])
304
+ df2 = flavor_read_html(spam_data, match="Unit", skiprows=[2, 1])
305
+
306
+ assert_framelist_equal(df1, df2)
307
+
308
+ def test_skiprows_set(self, spam_data, flavor_read_html):
309
+ df1 = flavor_read_html(spam_data, match=".*Water.*", skiprows={1, 2})
310
+ df2 = flavor_read_html(spam_data, match="Unit", skiprows={2, 1})
311
+
312
+ assert_framelist_equal(df1, df2)
313
+
314
+ def test_skiprows_slice(self, spam_data, flavor_read_html):
315
+ df1 = flavor_read_html(spam_data, match=".*Water.*", skiprows=1)
316
+ df2 = flavor_read_html(spam_data, match="Unit", skiprows=1)
317
+
318
+ assert_framelist_equal(df1, df2)
319
+
320
+ def test_skiprows_slice_short(self, spam_data, flavor_read_html):
321
+ df1 = flavor_read_html(spam_data, match=".*Water.*", skiprows=slice(2))
322
+ df2 = flavor_read_html(spam_data, match="Unit", skiprows=slice(2))
323
+
324
+ assert_framelist_equal(df1, df2)
325
+
326
+ def test_skiprows_slice_long(self, spam_data, flavor_read_html):
327
+ df1 = flavor_read_html(spam_data, match=".*Water.*", skiprows=slice(2, 5))
328
+ df2 = flavor_read_html(spam_data, match="Unit", skiprows=slice(4, 1, -1))
329
+
330
+ assert_framelist_equal(df1, df2)
331
+
332
+ def test_skiprows_ndarray(self, spam_data, flavor_read_html):
333
+ df1 = flavor_read_html(spam_data, match=".*Water.*", skiprows=np.arange(2))
334
+ df2 = flavor_read_html(spam_data, match="Unit", skiprows=np.arange(2))
335
+
336
+ assert_framelist_equal(df1, df2)
337
+
338
+ def test_skiprows_invalid(self, spam_data, flavor_read_html):
339
+ with pytest.raises(TypeError, match=("is not a valid type for skipping rows")):
340
+ flavor_read_html(spam_data, match=".*Water.*", skiprows="asdf")
341
+
342
+ def test_index(self, spam_data, flavor_read_html):
343
+ df1 = flavor_read_html(spam_data, match=".*Water.*", index_col=0)
344
+ df2 = flavor_read_html(spam_data, match="Unit", index_col=0)
345
+ assert_framelist_equal(df1, df2)
346
+
347
+ def test_header_and_index_no_types(self, spam_data, flavor_read_html):
348
+ df1 = flavor_read_html(spam_data, match=".*Water.*", header=1, index_col=0)
349
+ df2 = flavor_read_html(spam_data, match="Unit", header=1, index_col=0)
350
+ assert_framelist_equal(df1, df2)
351
+
352
+ def test_header_and_index_with_types(self, spam_data, flavor_read_html):
353
+ df1 = flavor_read_html(spam_data, match=".*Water.*", header=1, index_col=0)
354
+ df2 = flavor_read_html(spam_data, match="Unit", header=1, index_col=0)
355
+ assert_framelist_equal(df1, df2)
356
+
357
+ def test_infer_types(self, spam_data, flavor_read_html):
358
+ # 10892 infer_types removed
359
+ df1 = flavor_read_html(spam_data, match=".*Water.*", index_col=0)
360
+ df2 = flavor_read_html(spam_data, match="Unit", index_col=0)
361
+ assert_framelist_equal(df1, df2)
362
+
363
+ def test_string_io(self, spam_data, flavor_read_html):
364
+ with open(spam_data, encoding="UTF-8") as f:
365
+ data1 = StringIO(f.read())
366
+
367
+ with open(spam_data, encoding="UTF-8") as f:
368
+ data2 = StringIO(f.read())
369
+
370
+ df1 = flavor_read_html(data1, match=".*Water.*")
371
+ df2 = flavor_read_html(data2, match="Unit")
372
+ assert_framelist_equal(df1, df2)
373
+
374
+ def test_string(self, spam_data, flavor_read_html):
375
+ with open(spam_data, encoding="UTF-8") as f:
376
+ data = f.read()
377
+
378
+ df1 = flavor_read_html(StringIO(data), match=".*Water.*")
379
+ df2 = flavor_read_html(StringIO(data), match="Unit")
380
+
381
+ assert_framelist_equal(df1, df2)
382
+
383
+ def test_file_like(self, spam_data, flavor_read_html):
384
+ with open(spam_data, encoding="UTF-8") as f:
385
+ df1 = flavor_read_html(f, match=".*Water.*")
386
+
387
+ with open(spam_data, encoding="UTF-8") as f:
388
+ df2 = flavor_read_html(f, match="Unit")
389
+
390
+ assert_framelist_equal(df1, df2)
391
+
392
+ @pytest.mark.network
393
+ @pytest.mark.single_cpu
394
+ def test_bad_url_protocol(self, httpserver, flavor_read_html):
395
+ httpserver.serve_content("urlopen error unknown url type: git", code=404)
396
+ with pytest.raises(URLError, match="urlopen error unknown url type: git"):
397
+ flavor_read_html("git://github.com", match=".*Water.*")
398
+
399
+ @pytest.mark.slow
400
+ @pytest.mark.network
401
+ @pytest.mark.single_cpu
402
+ def test_invalid_url(self, httpserver, flavor_read_html):
403
+ httpserver.serve_content("Name or service not known", code=404)
404
+ with pytest.raises((URLError, ValueError), match="HTTP Error 404: NOT FOUND"):
405
+ flavor_read_html(httpserver.url, match=".*Water.*")
406
+
407
+ @pytest.mark.slow
408
+ def test_file_url(self, banklist_data, flavor_read_html):
409
+ url = banklist_data
410
+ dfs = flavor_read_html(
411
+ file_path_to_url(os.path.abspath(url)), match="First", attrs={"id": "table"}
412
+ )
413
+ assert isinstance(dfs, list)
414
+ for df in dfs:
415
+ assert isinstance(df, DataFrame)
416
+
417
+ @pytest.mark.slow
418
+ def test_invalid_table_attrs(self, banklist_data, flavor_read_html):
419
+ url = banklist_data
420
+ with pytest.raises(ValueError, match="No tables found"):
421
+ flavor_read_html(
422
+ url, match="First Federal Bank of Florida", attrs={"id": "tasdfable"}
423
+ )
424
+
425
+ @pytest.mark.slow
426
+ def test_multiindex_header(self, banklist_data, flavor_read_html):
427
+ df = flavor_read_html(
428
+ banklist_data, match="Metcalf", attrs={"id": "table"}, header=[0, 1]
429
+ )[0]
430
+ assert isinstance(df.columns, MultiIndex)
431
+
432
+ @pytest.mark.slow
433
+ def test_multiindex_index(self, banklist_data, flavor_read_html):
434
+ df = flavor_read_html(
435
+ banklist_data, match="Metcalf", attrs={"id": "table"}, index_col=[0, 1]
436
+ )[0]
437
+ assert isinstance(df.index, MultiIndex)
438
+
439
+ @pytest.mark.slow
440
+ def test_multiindex_header_index(self, banklist_data, flavor_read_html):
441
+ df = flavor_read_html(
442
+ banklist_data,
443
+ match="Metcalf",
444
+ attrs={"id": "table"},
445
+ header=[0, 1],
446
+ index_col=[0, 1],
447
+ )[0]
448
+ assert isinstance(df.columns, MultiIndex)
449
+ assert isinstance(df.index, MultiIndex)
450
+
451
+ @pytest.mark.slow
452
+ def test_multiindex_header_skiprows_tuples(self, banklist_data, flavor_read_html):
453
+ df = flavor_read_html(
454
+ banklist_data,
455
+ match="Metcalf",
456
+ attrs={"id": "table"},
457
+ header=[0, 1],
458
+ skiprows=1,
459
+ )[0]
460
+ assert isinstance(df.columns, MultiIndex)
461
+
462
+ @pytest.mark.slow
463
+ def test_multiindex_header_skiprows(self, banklist_data, flavor_read_html):
464
+ df = flavor_read_html(
465
+ banklist_data,
466
+ match="Metcalf",
467
+ attrs={"id": "table"},
468
+ header=[0, 1],
469
+ skiprows=1,
470
+ )[0]
471
+ assert isinstance(df.columns, MultiIndex)
472
+
473
+ @pytest.mark.slow
474
+ def test_multiindex_header_index_skiprows(self, banklist_data, flavor_read_html):
475
+ df = flavor_read_html(
476
+ banklist_data,
477
+ match="Metcalf",
478
+ attrs={"id": "table"},
479
+ header=[0, 1],
480
+ index_col=[0, 1],
481
+ skiprows=1,
482
+ )[0]
483
+ assert isinstance(df.index, MultiIndex)
484
+ assert isinstance(df.columns, MultiIndex)
485
+
486
+ @pytest.mark.slow
487
+ def test_regex_idempotency(self, banklist_data, flavor_read_html):
488
+ url = banklist_data
489
+ dfs = flavor_read_html(
490
+ file_path_to_url(os.path.abspath(url)),
491
+ match=re.compile(re.compile("Florida")),
492
+ attrs={"id": "table"},
493
+ )
494
+ assert isinstance(dfs, list)
495
+ for df in dfs:
496
+ assert isinstance(df, DataFrame)
497
+
498
+ def test_negative_skiprows(self, spam_data, flavor_read_html):
499
+ msg = r"\(you passed a negative value\)"
500
+ with pytest.raises(ValueError, match=msg):
501
+ flavor_read_html(spam_data, match="Water", skiprows=-1)
502
+
503
+ @pytest.fixture
504
+ def python_docs(self):
505
+ return """
506
+ <table class="contentstable" align="center"><tr>
507
+ <td width="50%">
508
+ <p class="biglink"><a class="biglink" href="whatsnew/2.7.html">What's new in Python 2.7?</a><br/>
509
+ <span class="linkdescr">or <a href="whatsnew/index.html">all "What's new" documents</a> since 2.0</span></p>
510
+ <p class="biglink"><a class="biglink" href="tutorial/index.html">Tutorial</a><br/>
511
+ <span class="linkdescr">start here</span></p>
512
+ <p class="biglink"><a class="biglink" href="library/index.html">Library Reference</a><br/>
513
+ <span class="linkdescr">keep this under your pillow</span></p>
514
+ <p class="biglink"><a class="biglink" href="reference/index.html">Language Reference</a><br/>
515
+ <span class="linkdescr">describes syntax and language elements</span></p>
516
+ <p class="biglink"><a class="biglink" href="using/index.html">Python Setup and Usage</a><br/>
517
+ <span class="linkdescr">how to use Python on different platforms</span></p>
518
+ <p class="biglink"><a class="biglink" href="howto/index.html">Python HOWTOs</a><br/>
519
+ <span class="linkdescr">in-depth documents on specific topics</span></p>
520
+ </td><td width="50%">
521
+ <p class="biglink"><a class="biglink" href="installing/index.html">Installing Python Modules</a><br/>
522
+ <span class="linkdescr">installing from the Python Package Index &amp; other sources</span></p>
523
+ <p class="biglink"><a class="biglink" href="distributing/index.html">Distributing Python Modules</a><br/>
524
+ <span class="linkdescr">publishing modules for installation by others</span></p>
525
+ <p class="biglink"><a class="biglink" href="extending/index.html">Extending and Embedding</a><br/>
526
+ <span class="linkdescr">tutorial for C/C++ programmers</span></p>
527
+ <p class="biglink"><a class="biglink" href="c-api/index.html">Python/C API</a><br/>
528
+ <span class="linkdescr">reference for C/C++ programmers</span></p>
529
+ <p class="biglink"><a class="biglink" href="faq/index.html">FAQs</a><br/>
530
+ <span class="linkdescr">frequently asked questions (with answers!)</span></p>
531
+ </td></tr>
532
+ </table>
533
+
534
+ <p><strong>Indices and tables:</strong></p>
535
+ <table class="contentstable" align="center"><tr>
536
+ <td width="50%">
537
+ <p class="biglink"><a class="biglink" href="py-modindex.html">Python Global Module Index</a><br/>
538
+ <span class="linkdescr">quick access to all modules</span></p>
539
+ <p class="biglink"><a class="biglink" href="genindex.html">General Index</a><br/>
540
+ <span class="linkdescr">all functions, classes, terms</span></p>
541
+ <p class="biglink"><a class="biglink" href="glossary.html">Glossary</a><br/>
542
+ <span class="linkdescr">the most important terms explained</span></p>
543
+ </td><td width="50%">
544
+ <p class="biglink"><a class="biglink" href="search.html">Search page</a><br/>
545
+ <span class="linkdescr">search this documentation</span></p>
546
+ <p class="biglink"><a class="biglink" href="contents.html">Complete Table of Contents</a><br/>
547
+ <span class="linkdescr">lists all sections and subsections</span></p>
548
+ </td></tr>
549
+ </table>
550
+ """ # noqa: E501
551
+
552
+ @pytest.mark.network
553
+ @pytest.mark.single_cpu
554
+ def test_multiple_matches(self, python_docs, httpserver, flavor_read_html):
555
+ httpserver.serve_content(content=python_docs)
556
+ dfs = flavor_read_html(httpserver.url, match="Python")
557
+ assert len(dfs) > 1
558
+
559
+ @pytest.mark.network
560
+ @pytest.mark.single_cpu
561
+ def test_python_docs_table(self, python_docs, httpserver, flavor_read_html):
562
+ httpserver.serve_content(content=python_docs)
563
+ dfs = flavor_read_html(httpserver.url, match="Python")
564
+ zz = [df.iloc[0, 0][0:4] for df in dfs]
565
+ assert sorted(zz) == ["Pyth", "What"]
566
+
567
+ def test_empty_tables(self, flavor_read_html):
568
+ """
569
+ Make sure that read_html ignores empty tables.
570
+ """
571
+ html = """
572
+ <table>
573
+ <thead>
574
+ <tr>
575
+ <th>A</th>
576
+ <th>B</th>
577
+ </tr>
578
+ </thead>
579
+ <tbody>
580
+ <tr>
581
+ <td>1</td>
582
+ <td>2</td>
583
+ </tr>
584
+ </tbody>
585
+ </table>
586
+ <table>
587
+ <tbody>
588
+ </tbody>
589
+ </table>
590
+ """
591
+ result = flavor_read_html(StringIO(html))
592
+ assert len(result) == 1
593
+
594
+ def test_multiple_tbody(self, flavor_read_html):
595
+ # GH-20690
596
+ # Read all tbody tags within a single table.
597
+ result = flavor_read_html(
598
+ StringIO(
599
+ """<table>
600
+ <thead>
601
+ <tr>
602
+ <th>A</th>
603
+ <th>B</th>
604
+ </tr>
605
+ </thead>
606
+ <tbody>
607
+ <tr>
608
+ <td>1</td>
609
+ <td>2</td>
610
+ </tr>
611
+ </tbody>
612
+ <tbody>
613
+ <tr>
614
+ <td>3</td>
615
+ <td>4</td>
616
+ </tr>
617
+ </tbody>
618
+ </table>"""
619
+ )
620
+ )[0]
621
+
622
+ expected = DataFrame(data=[[1, 2], [3, 4]], columns=["A", "B"])
623
+
624
+ tm.assert_frame_equal(result, expected)
625
+
626
+ def test_header_and_one_column(self, flavor_read_html):
627
+ """
628
+ Don't fail with bs4 when there is a header and only one column
629
+ as described in issue #9178
630
+ """
631
+ result = flavor_read_html(
632
+ StringIO(
633
+ """<table>
634
+ <thead>
635
+ <tr>
636
+ <th>Header</th>
637
+ </tr>
638
+ </thead>
639
+ <tbody>
640
+ <tr>
641
+ <td>first</td>
642
+ </tr>
643
+ </tbody>
644
+ </table>"""
645
+ )
646
+ )[0]
647
+
648
+ expected = DataFrame(data={"Header": "first"}, index=[0])
649
+
650
+ tm.assert_frame_equal(result, expected)
651
+
652
+ def test_thead_without_tr(self, flavor_read_html):
653
+ """
654
+ Ensure parser adds <tr> within <thead> on malformed HTML.
655
+ """
656
+ result = flavor_read_html(
657
+ StringIO(
658
+ """<table>
659
+ <thead>
660
+ <tr>
661
+ <th>Country</th>
662
+ <th>Municipality</th>
663
+ <th>Year</th>
664
+ </tr>
665
+ </thead>
666
+ <tbody>
667
+ <tr>
668
+ <td>Ukraine</td>
669
+ <th>Odessa</th>
670
+ <td>1944</td>
671
+ </tr>
672
+ </tbody>
673
+ </table>"""
674
+ )
675
+ )[0]
676
+
677
+ expected = DataFrame(
678
+ data=[["Ukraine", "Odessa", 1944]],
679
+ columns=["Country", "Municipality", "Year"],
680
+ )
681
+
682
+ tm.assert_frame_equal(result, expected)
683
+
684
+ def test_tfoot_read(self, flavor_read_html):
685
+ """
686
+ Make sure that read_html reads tfoot, containing td or th.
687
+ Ignores empty tfoot
688
+ """
689
+ data_template = """<table>
690
+ <thead>
691
+ <tr>
692
+ <th>A</th>
693
+ <th>B</th>
694
+ </tr>
695
+ </thead>
696
+ <tbody>
697
+ <tr>
698
+ <td>bodyA</td>
699
+ <td>bodyB</td>
700
+ </tr>
701
+ </tbody>
702
+ <tfoot>
703
+ {footer}
704
+ </tfoot>
705
+ </table>"""
706
+
707
+ expected1 = DataFrame(data=[["bodyA", "bodyB"]], columns=["A", "B"])
708
+
709
+ expected2 = DataFrame(
710
+ data=[["bodyA", "bodyB"], ["footA", "footB"]], columns=["A", "B"]
711
+ )
712
+
713
+ data1 = data_template.format(footer="")
714
+ data2 = data_template.format(footer="<tr><td>footA</td><th>footB</th></tr>")
715
+
716
+ result1 = flavor_read_html(StringIO(data1))[0]
717
+ result2 = flavor_read_html(StringIO(data2))[0]
718
+
719
+ tm.assert_frame_equal(result1, expected1)
720
+ tm.assert_frame_equal(result2, expected2)
721
+
722
+ def test_parse_header_of_non_string_column(self, flavor_read_html):
723
+ # GH5048: if header is specified explicitly, an int column should be
724
+ # parsed as int while its header is parsed as str
725
+ result = flavor_read_html(
726
+ StringIO(
727
+ """
728
+ <table>
729
+ <tr>
730
+ <td>S</td>
731
+ <td>I</td>
732
+ </tr>
733
+ <tr>
734
+ <td>text</td>
735
+ <td>1944</td>
736
+ </tr>
737
+ </table>
738
+ """
739
+ ),
740
+ header=0,
741
+ )[0]
742
+
743
+ expected = DataFrame([["text", 1944]], columns=("S", "I"))
744
+
745
+ tm.assert_frame_equal(result, expected)
746
+
747
+ @pytest.mark.slow
748
+ def test_banklist_header(self, banklist_data, datapath, flavor_read_html):
749
+ from pandas.io.html import _remove_whitespace
750
+
751
+ def try_remove_ws(x):
752
+ try:
753
+ return _remove_whitespace(x)
754
+ except AttributeError:
755
+ return x
756
+
757
+ df = flavor_read_html(banklist_data, match="Metcalf", attrs={"id": "table"})[0]
758
+ ground_truth = read_csv(
759
+ datapath("io", "data", "csv", "banklist.csv"),
760
+ converters={"Updated Date": Timestamp, "Closing Date": Timestamp},
761
+ )
762
+ assert df.shape == ground_truth.shape
763
+ old = [
764
+ "First Vietnamese American Bank In Vietnamese",
765
+ "Westernbank Puerto Rico En Espanol",
766
+ "R-G Premier Bank of Puerto Rico En Espanol",
767
+ "Eurobank En Espanol",
768
+ "Sanderson State Bank En Espanol",
769
+ "Washington Mutual Bank (Including its subsidiary Washington "
770
+ "Mutual Bank FSB)",
771
+ "Silver State Bank En Espanol",
772
+ "AmTrade International Bank En Espanol",
773
+ "Hamilton Bank, NA En Espanol",
774
+ "The Citizens Savings Bank Pioneer Community Bank, Inc.",
775
+ ]
776
+ new = [
777
+ "First Vietnamese American Bank",
778
+ "Westernbank Puerto Rico",
779
+ "R-G Premier Bank of Puerto Rico",
780
+ "Eurobank",
781
+ "Sanderson State Bank",
782
+ "Washington Mutual Bank",
783
+ "Silver State Bank",
784
+ "AmTrade International Bank",
785
+ "Hamilton Bank, NA",
786
+ "The Citizens Savings Bank",
787
+ ]
788
+ dfnew = df.map(try_remove_ws).replace(old, new)
789
+ gtnew = ground_truth.map(try_remove_ws)
790
+ converted = dfnew
791
+ date_cols = ["Closing Date", "Updated Date"]
792
+ converted[date_cols] = converted[date_cols].apply(to_datetime)
793
+ tm.assert_frame_equal(converted, gtnew)
794
+
795
+ @pytest.mark.slow
796
+ def test_gold_canyon(self, banklist_data, flavor_read_html):
797
+ gc = "Gold Canyon"
798
+ with open(banklist_data, encoding="utf-8") as f:
799
+ raw_text = f.read()
800
+
801
+ assert gc in raw_text
802
+ df = flavor_read_html(
803
+ banklist_data, match="Gold Canyon", attrs={"id": "table"}
804
+ )[0]
805
+ assert gc in df.to_string()
806
+
807
+ def test_different_number_of_cols(self, flavor_read_html):
808
+ expected = flavor_read_html(
809
+ StringIO(
810
+ """<table>
811
+ <thead>
812
+ <tr style="text-align: right;">
813
+ <th></th>
814
+ <th>C_l0_g0</th>
815
+ <th>C_l0_g1</th>
816
+ <th>C_l0_g2</th>
817
+ <th>C_l0_g3</th>
818
+ <th>C_l0_g4</th>
819
+ </tr>
820
+ </thead>
821
+ <tbody>
822
+ <tr>
823
+ <th>R_l0_g0</th>
824
+ <td> 0.763</td>
825
+ <td> 0.233</td>
826
+ <td> nan</td>
827
+ <td> nan</td>
828
+ <td> nan</td>
829
+ </tr>
830
+ <tr>
831
+ <th>R_l0_g1</th>
832
+ <td> 0.244</td>
833
+ <td> 0.285</td>
834
+ <td> 0.392</td>
835
+ <td> 0.137</td>
836
+ <td> 0.222</td>
837
+ </tr>
838
+ </tbody>
839
+ </table>"""
840
+ ),
841
+ index_col=0,
842
+ )[0]
843
+
844
+ result = flavor_read_html(
845
+ StringIO(
846
+ """<table>
847
+ <thead>
848
+ <tr style="text-align: right;">
849
+ <th></th>
850
+ <th>C_l0_g0</th>
851
+ <th>C_l0_g1</th>
852
+ <th>C_l0_g2</th>
853
+ <th>C_l0_g3</th>
854
+ <th>C_l0_g4</th>
855
+ </tr>
856
+ </thead>
857
+ <tbody>
858
+ <tr>
859
+ <th>R_l0_g0</th>
860
+ <td> 0.763</td>
861
+ <td> 0.233</td>
862
+ </tr>
863
+ <tr>
864
+ <th>R_l0_g1</th>
865
+ <td> 0.244</td>
866
+ <td> 0.285</td>
867
+ <td> 0.392</td>
868
+ <td> 0.137</td>
869
+ <td> 0.222</td>
870
+ </tr>
871
+ </tbody>
872
+ </table>"""
873
+ ),
874
+ index_col=0,
875
+ )[0]
876
+
877
+ tm.assert_frame_equal(result, expected)
878
+
879
+ def test_colspan_rowspan_1(self, flavor_read_html):
880
+ # GH17054
881
+ result = flavor_read_html(
882
+ StringIO(
883
+ """
884
+ <table>
885
+ <tr>
886
+ <th>A</th>
887
+ <th colspan="1">B</th>
888
+ <th rowspan="1">C</th>
889
+ </tr>
890
+ <tr>
891
+ <td>a</td>
892
+ <td>b</td>
893
+ <td>c</td>
894
+ </tr>
895
+ </table>
896
+ """
897
+ )
898
+ )[0]
899
+
900
+ expected = DataFrame([["a", "b", "c"]], columns=["A", "B", "C"])
901
+
902
+ tm.assert_frame_equal(result, expected)
903
+
904
+ def test_colspan_rowspan_copy_values(self, flavor_read_html):
905
+ # GH17054
906
+
907
+ # In ASCII, with lowercase letters being copies:
908
+ #
909
+ # X x Y Z W
910
+ # A B b z C
911
+
912
+ result = flavor_read_html(
913
+ StringIO(
914
+ """
915
+ <table>
916
+ <tr>
917
+ <td colspan="2">X</td>
918
+ <td>Y</td>
919
+ <td rowspan="2">Z</td>
920
+ <td>W</td>
921
+ </tr>
922
+ <tr>
923
+ <td>A</td>
924
+ <td colspan="2">B</td>
925
+ <td>C</td>
926
+ </tr>
927
+ </table>
928
+ """
929
+ ),
930
+ header=0,
931
+ )[0]
932
+
933
+ expected = DataFrame(
934
+ data=[["A", "B", "B", "Z", "C"]], columns=["X", "X.1", "Y", "Z", "W"]
935
+ )
936
+
937
+ tm.assert_frame_equal(result, expected)
938
+
939
+ def test_colspan_rowspan_both_not_1(self, flavor_read_html):
940
+ # GH17054
941
+
942
+ # In ASCII, with lowercase letters being copies:
943
+ #
944
+ # A B b b C
945
+ # a b b b D
946
+
947
+ result = flavor_read_html(
948
+ StringIO(
949
+ """
950
+ <table>
951
+ <tr>
952
+ <td rowspan="2">A</td>
953
+ <td rowspan="2" colspan="3">B</td>
954
+ <td>C</td>
955
+ </tr>
956
+ <tr>
957
+ <td>D</td>
958
+ </tr>
959
+ </table>
960
+ """
961
+ ),
962
+ header=0,
963
+ )[0]
964
+
965
+ expected = DataFrame(
966
+ data=[["A", "B", "B", "B", "D"]], columns=["A", "B", "B.1", "B.2", "C"]
967
+ )
968
+
969
+ tm.assert_frame_equal(result, expected)
970
+
971
+ def test_rowspan_at_end_of_row(self, flavor_read_html):
972
+ # GH17054
973
+
974
+ # In ASCII, with lowercase letters being copies:
975
+ #
976
+ # A B
977
+ # C b
978
+
979
+ result = flavor_read_html(
980
+ StringIO(
981
+ """
982
+ <table>
983
+ <tr>
984
+ <td>A</td>
985
+ <td rowspan="2">B</td>
986
+ </tr>
987
+ <tr>
988
+ <td>C</td>
989
+ </tr>
990
+ </table>
991
+ """
992
+ ),
993
+ header=0,
994
+ )[0]
995
+
996
+ expected = DataFrame(data=[["C", "B"]], columns=["A", "B"])
997
+
998
+ tm.assert_frame_equal(result, expected)
999
+
1000
+ def test_rowspan_only_rows(self, flavor_read_html):
1001
+ # GH17054
1002
+
1003
+ result = flavor_read_html(
1004
+ StringIO(
1005
+ """
1006
+ <table>
1007
+ <tr>
1008
+ <td rowspan="3">A</td>
1009
+ <td rowspan="3">B</td>
1010
+ </tr>
1011
+ </table>
1012
+ """
1013
+ ),
1014
+ header=0,
1015
+ )[0]
1016
+
1017
+ expected = DataFrame(data=[["A", "B"], ["A", "B"]], columns=["A", "B"])
1018
+
1019
+ tm.assert_frame_equal(result, expected)
1020
+
1021
+ def test_header_inferred_from_rows_with_only_th(self, flavor_read_html):
1022
+ # GH17054
1023
+ result = flavor_read_html(
1024
+ StringIO(
1025
+ """
1026
+ <table>
1027
+ <tr>
1028
+ <th>A</th>
1029
+ <th>B</th>
1030
+ </tr>
1031
+ <tr>
1032
+ <th>a</th>
1033
+ <th>b</th>
1034
+ </tr>
1035
+ <tr>
1036
+ <td>1</td>
1037
+ <td>2</td>
1038
+ </tr>
1039
+ </table>
1040
+ """
1041
+ )
1042
+ )[0]
1043
+
1044
+ columns = MultiIndex(levels=[["A", "B"], ["a", "b"]], codes=[[0, 1], [0, 1]])
1045
+ expected = DataFrame(data=[[1, 2]], columns=columns)
1046
+
1047
+ tm.assert_frame_equal(result, expected)
1048
+
1049
+ def test_parse_dates_list(self, flavor_read_html):
1050
+ df = DataFrame({"date": date_range("1/1/2001", periods=10)})
1051
+ expected = df.to_html()
1052
+ res = flavor_read_html(StringIO(expected), parse_dates=[1], index_col=0)
1053
+ tm.assert_frame_equal(df, res[0])
1054
+ res = flavor_read_html(StringIO(expected), parse_dates=["date"], index_col=0)
1055
+ tm.assert_frame_equal(df, res[0])
1056
+
1057
+ def test_parse_dates_combine(self, flavor_read_html):
1058
+ raw_dates = Series(date_range("1/1/2001", periods=10))
1059
+ df = DataFrame(
1060
+ {
1061
+ "date": raw_dates.map(lambda x: str(x.date())),
1062
+ "time": raw_dates.map(lambda x: str(x.time())),
1063
+ }
1064
+ )
1065
+ res = flavor_read_html(
1066
+ StringIO(df.to_html()), parse_dates={"datetime": [1, 2]}, index_col=1
1067
+ )
1068
+ newdf = DataFrame({"datetime": raw_dates})
1069
+ tm.assert_frame_equal(newdf, res[0])
1070
+
1071
+ def test_wikipedia_states_table(self, datapath, flavor_read_html):
1072
+ data = datapath("io", "data", "html", "wikipedia_states.html")
1073
+ assert os.path.isfile(data), f"{repr(data)} is not a file"
1074
+ assert os.path.getsize(data), f"{repr(data)} is an empty file"
1075
+ result = flavor_read_html(data, match="Arizona", header=1)[0]
1076
+ assert result.shape == (60, 12)
1077
+ assert "Unnamed" in result.columns[-1]
1078
+ assert result["sq mi"].dtype == np.dtype("float64")
1079
+ assert np.allclose(result.loc[0, "sq mi"], 665384.04)
1080
+
1081
+ def test_wikipedia_states_multiindex(self, datapath, flavor_read_html):
1082
+ data = datapath("io", "data", "html", "wikipedia_states.html")
1083
+ result = flavor_read_html(data, match="Arizona", index_col=0)[0]
1084
+ assert result.shape == (60, 11)
1085
+ assert "Unnamed" in result.columns[-1][1]
1086
+ assert result.columns.nlevels == 2
1087
+ assert np.allclose(result.loc["Alaska", ("Total area[2]", "sq mi")], 665384.04)
1088
+
1089
+ def test_parser_error_on_empty_header_row(self, flavor_read_html):
1090
+ result = flavor_read_html(
1091
+ StringIO(
1092
+ """
1093
+ <table>
1094
+ <thead>
1095
+ <tr><th></th><th></tr>
1096
+ <tr><th>A</th><th>B</th></tr>
1097
+ </thead>
1098
+ <tbody>
1099
+ <tr><td>a</td><td>b</td></tr>
1100
+ </tbody>
1101
+ </table>
1102
+ """
1103
+ ),
1104
+ header=[0, 1],
1105
+ )
1106
+ expected = DataFrame(
1107
+ [["a", "b"]],
1108
+ columns=MultiIndex.from_tuples(
1109
+ [("Unnamed: 0_level_0", "A"), ("Unnamed: 1_level_0", "B")]
1110
+ ),
1111
+ )
1112
+ tm.assert_frame_equal(result[0], expected)
1113
+
1114
+ def test_decimal_rows(self, flavor_read_html):
1115
+ # GH 12907
1116
+ result = flavor_read_html(
1117
+ StringIO(
1118
+ """<html>
1119
+ <body>
1120
+ <table>
1121
+ <thead>
1122
+ <tr>
1123
+ <th>Header</th>
1124
+ </tr>
1125
+ </thead>
1126
+ <tbody>
1127
+ <tr>
1128
+ <td>1100#101</td>
1129
+ </tr>
1130
+ </tbody>
1131
+ </table>
1132
+ </body>
1133
+ </html>"""
1134
+ ),
1135
+ decimal="#",
1136
+ )[0]
1137
+
1138
+ expected = DataFrame(data={"Header": 1100.101}, index=[0])
1139
+
1140
+ assert result["Header"].dtype == np.dtype("float64")
1141
+ tm.assert_frame_equal(result, expected)
1142
+
1143
+ @pytest.mark.parametrize("arg", [True, False])
1144
+ def test_bool_header_arg(self, spam_data, arg, flavor_read_html):
1145
+ # GH 6114
1146
+ msg = re.escape(
1147
+ "Passing a bool to header is invalid. Use header=None for no header or "
1148
+ "header=int or list-like of ints to specify the row(s) making up the "
1149
+ "column names"
1150
+ )
1151
+ with pytest.raises(TypeError, match=msg):
1152
+ flavor_read_html(spam_data, header=arg)
1153
+
1154
+ def test_converters(self, flavor_read_html):
1155
+ # GH 13461
1156
+ result = flavor_read_html(
1157
+ StringIO(
1158
+ """<table>
1159
+ <thead>
1160
+ <tr>
1161
+ <th>a</th>
1162
+ </tr>
1163
+ </thead>
1164
+ <tbody>
1165
+ <tr>
1166
+ <td> 0.763</td>
1167
+ </tr>
1168
+ <tr>
1169
+ <td> 0.244</td>
1170
+ </tr>
1171
+ </tbody>
1172
+ </table>"""
1173
+ ),
1174
+ converters={"a": str},
1175
+ )[0]
1176
+
1177
+ expected = DataFrame({"a": ["0.763", "0.244"]})
1178
+
1179
+ tm.assert_frame_equal(result, expected)
1180
+
1181
+ def test_na_values(self, flavor_read_html):
1182
+ # GH 13461
1183
+ result = flavor_read_html(
1184
+ StringIO(
1185
+ """<table>
1186
+ <thead>
1187
+ <tr>
1188
+ <th>a</th>
1189
+ </tr>
1190
+ </thead>
1191
+ <tbody>
1192
+ <tr>
1193
+ <td> 0.763</td>
1194
+ </tr>
1195
+ <tr>
1196
+ <td> 0.244</td>
1197
+ </tr>
1198
+ </tbody>
1199
+ </table>"""
1200
+ ),
1201
+ na_values=[0.244],
1202
+ )[0]
1203
+
1204
+ expected = DataFrame({"a": [0.763, np.nan]})
1205
+
1206
+ tm.assert_frame_equal(result, expected)
1207
+
1208
+ def test_keep_default_na(self, flavor_read_html):
1209
+ html_data = """<table>
1210
+ <thead>
1211
+ <tr>
1212
+ <th>a</th>
1213
+ </tr>
1214
+ </thead>
1215
+ <tbody>
1216
+ <tr>
1217
+ <td> N/A</td>
1218
+ </tr>
1219
+ <tr>
1220
+ <td> NA</td>
1221
+ </tr>
1222
+ </tbody>
1223
+ </table>"""
1224
+
1225
+ expected_df = DataFrame({"a": ["N/A", "NA"]})
1226
+ html_df = flavor_read_html(StringIO(html_data), keep_default_na=False)[0]
1227
+ tm.assert_frame_equal(expected_df, html_df)
1228
+
1229
+ expected_df = DataFrame({"a": [np.nan, np.nan]})
1230
+ html_df = flavor_read_html(StringIO(html_data), keep_default_na=True)[0]
1231
+ tm.assert_frame_equal(expected_df, html_df)
1232
+
1233
+ def test_preserve_empty_rows(self, flavor_read_html):
1234
+ result = flavor_read_html(
1235
+ StringIO(
1236
+ """
1237
+ <table>
1238
+ <tr>
1239
+ <th>A</th>
1240
+ <th>B</th>
1241
+ </tr>
1242
+ <tr>
1243
+ <td>a</td>
1244
+ <td>b</td>
1245
+ </tr>
1246
+ <tr>
1247
+ <td></td>
1248
+ <td></td>
1249
+ </tr>
1250
+ </table>
1251
+ """
1252
+ )
1253
+ )[0]
1254
+
1255
+ expected = DataFrame(data=[["a", "b"], [np.nan, np.nan]], columns=["A", "B"])
1256
+
1257
+ tm.assert_frame_equal(result, expected)
1258
+
1259
+ def test_ignore_empty_rows_when_inferring_header(self, flavor_read_html):
1260
+ result = flavor_read_html(
1261
+ StringIO(
1262
+ """
1263
+ <table>
1264
+ <thead>
1265
+ <tr><th></th><th></tr>
1266
+ <tr><th>A</th><th>B</th></tr>
1267
+ <tr><th>a</th><th>b</th></tr>
1268
+ </thead>
1269
+ <tbody>
1270
+ <tr><td>1</td><td>2</td></tr>
1271
+ </tbody>
1272
+ </table>
1273
+ """
1274
+ )
1275
+ )[0]
1276
+
1277
+ columns = MultiIndex(levels=[["A", "B"], ["a", "b"]], codes=[[0, 1], [0, 1]])
1278
+ expected = DataFrame(data=[[1, 2]], columns=columns)
1279
+
1280
+ tm.assert_frame_equal(result, expected)
1281
+
1282
+ def test_multiple_header_rows(self, flavor_read_html):
1283
+ # Issue #13434
1284
+ expected_df = DataFrame(
1285
+ data=[("Hillary", 68, "D"), ("Bernie", 74, "D"), ("Donald", 69, "R")]
1286
+ )
1287
+ expected_df.columns = [
1288
+ ["Unnamed: 0_level_0", "Age", "Party"],
1289
+ ["Name", "Unnamed: 1_level_1", "Unnamed: 2_level_1"],
1290
+ ]
1291
+ html = expected_df.to_html(index=False)
1292
+ html_df = flavor_read_html(StringIO(html))[0]
1293
+ tm.assert_frame_equal(expected_df, html_df)
1294
+
1295
+ def test_works_on_valid_markup(self, datapath, flavor_read_html):
1296
+ filename = datapath("io", "data", "html", "valid_markup.html")
1297
+ dfs = flavor_read_html(filename, index_col=0)
1298
+ assert isinstance(dfs, list)
1299
+ assert isinstance(dfs[0], DataFrame)
1300
+
1301
+ @pytest.mark.slow
1302
+ def test_fallback_success(self, datapath, flavor_read_html):
1303
+ banklist_data = datapath("io", "data", "html", "banklist.html")
1304
+
1305
+ flavor_read_html(banklist_data, match=".*Water.*", flavor=["lxml", "html5lib"])
1306
+
1307
+ def test_to_html_timestamp(self):
1308
+ rng = date_range("2000-01-01", periods=10)
1309
+ df = DataFrame(np.random.default_rng(2).standard_normal((10, 4)), index=rng)
1310
+
1311
+ result = df.to_html()
1312
+ assert "2000-01-01" in result
1313
+
1314
+ def test_to_html_borderless(self):
1315
+ df = DataFrame([{"A": 1, "B": 2}])
1316
+ out_border_default = df.to_html()
1317
+ out_border_true = df.to_html(border=True)
1318
+ out_border_explicit_default = df.to_html(border=1)
1319
+ out_border_nondefault = df.to_html(border=2)
1320
+ out_border_zero = df.to_html(border=0)
1321
+
1322
+ out_border_false = df.to_html(border=False)
1323
+
1324
+ assert ' border="1"' in out_border_default
1325
+ assert out_border_true == out_border_default
1326
+ assert out_border_default == out_border_explicit_default
1327
+ assert out_border_default != out_border_nondefault
1328
+ assert ' border="2"' in out_border_nondefault
1329
+ assert ' border="0"' not in out_border_zero
1330
+ assert " border" not in out_border_false
1331
+ assert out_border_zero == out_border_false
1332
+
1333
+ @pytest.mark.parametrize(
1334
+ "displayed_only,exp0,exp1",
1335
+ [
1336
+ (True, DataFrame(["foo"]), None),
1337
+ (False, DataFrame(["foo bar baz qux"]), DataFrame(["foo"])),
1338
+ ],
1339
+ )
1340
+ def test_displayed_only(self, displayed_only, exp0, exp1, flavor_read_html):
1341
+ # GH 20027
1342
+ data = """<html>
1343
+ <body>
1344
+ <table>
1345
+ <tr>
1346
+ <td>
1347
+ foo
1348
+ <span style="display:none;text-align:center">bar</span>
1349
+ <span style="display:none">baz</span>
1350
+ <span style="display: none">qux</span>
1351
+ </td>
1352
+ </tr>
1353
+ </table>
1354
+ <table style="display: none">
1355
+ <tr>
1356
+ <td>foo</td>
1357
+ </tr>
1358
+ </table>
1359
+ </body>
1360
+ </html>"""
1361
+
1362
+ dfs = flavor_read_html(StringIO(data), displayed_only=displayed_only)
1363
+ tm.assert_frame_equal(dfs[0], exp0)
1364
+
1365
+ if exp1 is not None:
1366
+ tm.assert_frame_equal(dfs[1], exp1)
1367
+ else:
1368
+ assert len(dfs) == 1 # Should not parse hidden table
1369
+
1370
+ @pytest.mark.parametrize("displayed_only", [True, False])
1371
+ def test_displayed_only_with_many_elements(self, displayed_only, flavor_read_html):
1372
+ html_table = """
1373
+ <table>
1374
+ <tr>
1375
+ <th>A</th>
1376
+ <th>B</th>
1377
+ </tr>
1378
+ <tr>
1379
+ <td>1</td>
1380
+ <td>2</td>
1381
+ </tr>
1382
+ <tr>
1383
+ <td><span style="display:none"></span>4</td>
1384
+ <td>5</td>
1385
+ </tr>
1386
+ </table>
1387
+ """
1388
+ result = flavor_read_html(StringIO(html_table), displayed_only=displayed_only)[
1389
+ 0
1390
+ ]
1391
+ expected = DataFrame({"A": [1, 4], "B": [2, 5]})
1392
+ tm.assert_frame_equal(result, expected)
1393
+
1394
+ @pytest.mark.filterwarnings(
1395
+ "ignore:You provided Unicode markup but also provided a value for "
1396
+ "from_encoding.*:UserWarning"
1397
+ )
1398
+ def test_encode(self, html_encoding_file, flavor_read_html):
1399
+ base_path = os.path.basename(html_encoding_file)
1400
+ root = os.path.splitext(base_path)[0]
1401
+ _, encoding = root.split("_")
1402
+
1403
+ try:
1404
+ with open(html_encoding_file, "rb") as fobj:
1405
+ from_string = flavor_read_html(
1406
+ fobj.read(), encoding=encoding, index_col=0
1407
+ ).pop()
1408
+
1409
+ with open(html_encoding_file, "rb") as fobj:
1410
+ from_file_like = flavor_read_html(
1411
+ BytesIO(fobj.read()), encoding=encoding, index_col=0
1412
+ ).pop()
1413
+
1414
+ from_filename = flavor_read_html(
1415
+ html_encoding_file, encoding=encoding, index_col=0
1416
+ ).pop()
1417
+ tm.assert_frame_equal(from_string, from_file_like)
1418
+ tm.assert_frame_equal(from_string, from_filename)
1419
+ except Exception:
1420
+ # seems utf-16/32 fail on windows
1421
+ if is_platform_windows():
1422
+ if "16" in encoding or "32" in encoding:
1423
+ pytest.skip()
1424
+ raise
1425
+
1426
+ def test_parse_failure_unseekable(self, flavor_read_html):
1427
+ # Issue #17975
1428
+
1429
+ if flavor_read_html.keywords.get("flavor") == "lxml":
1430
+ pytest.skip("Not applicable for lxml")
1431
+
1432
+ class UnseekableStringIO(StringIO):
1433
+ def seekable(self):
1434
+ return False
1435
+
1436
+ bad = UnseekableStringIO(
1437
+ """
1438
+ <table><tr><td>spam<foobr />eggs</td></tr></table>"""
1439
+ )
1440
+
1441
+ assert flavor_read_html(bad)
1442
+
1443
+ with pytest.raises(ValueError, match="passed a non-rewindable file object"):
1444
+ flavor_read_html(bad)
1445
+
1446
+ def test_parse_failure_rewinds(self, flavor_read_html):
1447
+ # Issue #17975
1448
+
1449
+ class MockFile:
1450
+ def __init__(self, data) -> None:
1451
+ self.data = data
1452
+ self.at_end = False
1453
+
1454
+ def read(self, size=None):
1455
+ data = "" if self.at_end else self.data
1456
+ self.at_end = True
1457
+ return data
1458
+
1459
+ def seek(self, offset):
1460
+ self.at_end = False
1461
+
1462
+ def seekable(self):
1463
+ return True
1464
+
1465
+ # GH 49036 pylint checks for presence of __next__ for iterators
1466
+ def __next__(self):
1467
+ ...
1468
+
1469
+ def __iter__(self) -> Iterator:
1470
+ # `is_file_like` depends on the presence of
1471
+ # the __iter__ attribute.
1472
+ return self
1473
+
1474
+ good = MockFile("<table><tr><td>spam<br />eggs</td></tr></table>")
1475
+ bad = MockFile("<table><tr><td>spam<foobr />eggs</td></tr></table>")
1476
+
1477
+ assert flavor_read_html(good)
1478
+ assert flavor_read_html(bad)
1479
+
1480
+ @pytest.mark.slow
1481
+ @pytest.mark.single_cpu
1482
+ def test_importcheck_thread_safety(self, datapath, flavor_read_html):
1483
+ # see gh-16928
1484
+
1485
+ class ErrorThread(threading.Thread):
1486
+ def run(self):
1487
+ try:
1488
+ super().run()
1489
+ except Exception as err:
1490
+ self.err = err
1491
+ else:
1492
+ self.err = None
1493
+
1494
+ filename = datapath("io", "data", "html", "valid_markup.html")
1495
+ helper_thread1 = ErrorThread(target=flavor_read_html, args=(filename,))
1496
+ helper_thread2 = ErrorThread(target=flavor_read_html, args=(filename,))
1497
+
1498
+ helper_thread1.start()
1499
+ helper_thread2.start()
1500
+
1501
+ while helper_thread1.is_alive() or helper_thread2.is_alive():
1502
+ pass
1503
+ assert None is helper_thread1.err is helper_thread2.err
1504
+
1505
+ def test_parse_path_object(self, datapath, flavor_read_html):
1506
+ # GH 37705
1507
+ file_path_string = datapath("io", "data", "html", "spam.html")
1508
+ file_path = Path(file_path_string)
1509
+ df1 = flavor_read_html(file_path_string)[0]
1510
+ df2 = flavor_read_html(file_path)[0]
1511
+ tm.assert_frame_equal(df1, df2)
1512
+
1513
+ def test_parse_br_as_space(self, flavor_read_html):
1514
+ # GH 29528: pd.read_html() convert <br> to space
1515
+ result = flavor_read_html(
1516
+ StringIO(
1517
+ """
1518
+ <table>
1519
+ <tr>
1520
+ <th>A</th>
1521
+ </tr>
1522
+ <tr>
1523
+ <td>word1<br>word2</td>
1524
+ </tr>
1525
+ </table>
1526
+ """
1527
+ )
1528
+ )[0]
1529
+
1530
+ expected = DataFrame(data=[["word1 word2"]], columns=["A"])
1531
+
1532
+ tm.assert_frame_equal(result, expected)
1533
+
1534
+ @pytest.mark.parametrize("arg", ["all", "body", "header", "footer"])
1535
+ def test_extract_links(self, arg, flavor_read_html):
1536
+ gh_13141_data = """
1537
+ <table>
1538
+ <tr>
1539
+ <th>HTTP</th>
1540
+ <th>FTP</th>
1541
+ <th><a href="https://en.wiktionary.org/wiki/linkless">Linkless</a></th>
1542
+ </tr>
1543
+ <tr>
1544
+ <td><a href="https://en.wikipedia.org/">Wikipedia</a></td>
1545
+ <td>SURROUNDING <a href="ftp://ftp.us.debian.org/">Debian</a> TEXT</td>
1546
+ <td>Linkless</td>
1547
+ </tr>
1548
+ <tfoot>
1549
+ <tr>
1550
+ <td><a href="https://en.wikipedia.org/wiki/Page_footer">Footer</a></td>
1551
+ <td>
1552
+ Multiple <a href="1">links:</a> <a href="2">Only first captured.</a>
1553
+ </td>
1554
+ </tr>
1555
+ </tfoot>
1556
+ </table>
1557
+ """
1558
+
1559
+ gh_13141_expected = {
1560
+ "head_ignore": ["HTTP", "FTP", "Linkless"],
1561
+ "head_extract": [
1562
+ ("HTTP", None),
1563
+ ("FTP", None),
1564
+ ("Linkless", "https://en.wiktionary.org/wiki/linkless"),
1565
+ ],
1566
+ "body_ignore": ["Wikipedia", "SURROUNDING Debian TEXT", "Linkless"],
1567
+ "body_extract": [
1568
+ ("Wikipedia", "https://en.wikipedia.org/"),
1569
+ ("SURROUNDING Debian TEXT", "ftp://ftp.us.debian.org/"),
1570
+ ("Linkless", None),
1571
+ ],
1572
+ "footer_ignore": [
1573
+ "Footer",
1574
+ "Multiple links: Only first captured.",
1575
+ None,
1576
+ ],
1577
+ "footer_extract": [
1578
+ ("Footer", "https://en.wikipedia.org/wiki/Page_footer"),
1579
+ ("Multiple links: Only first captured.", "1"),
1580
+ None,
1581
+ ],
1582
+ }
1583
+
1584
+ data_exp = gh_13141_expected["body_ignore"]
1585
+ foot_exp = gh_13141_expected["footer_ignore"]
1586
+ head_exp = gh_13141_expected["head_ignore"]
1587
+ if arg == "all":
1588
+ data_exp = gh_13141_expected["body_extract"]
1589
+ foot_exp = gh_13141_expected["footer_extract"]
1590
+ head_exp = gh_13141_expected["head_extract"]
1591
+ elif arg == "body":
1592
+ data_exp = gh_13141_expected["body_extract"]
1593
+ elif arg == "footer":
1594
+ foot_exp = gh_13141_expected["footer_extract"]
1595
+ elif arg == "header":
1596
+ head_exp = gh_13141_expected["head_extract"]
1597
+
1598
+ result = flavor_read_html(StringIO(gh_13141_data), extract_links=arg)[0]
1599
+ expected = DataFrame([data_exp, foot_exp], columns=head_exp)
1600
+ expected = expected.fillna(np.nan)
1601
+ tm.assert_frame_equal(result, expected)
1602
+
1603
+ def test_extract_links_bad(self, spam_data):
1604
+ msg = (
1605
+ "`extract_links` must be one of "
1606
+ '{None, "header", "footer", "body", "all"}, got "incorrect"'
1607
+ )
1608
+ with pytest.raises(ValueError, match=msg):
1609
+ read_html(spam_data, extract_links="incorrect")
1610
+
1611
+ def test_extract_links_all_no_header(self, flavor_read_html):
1612
+ # GH 48316
1613
+ data = """
1614
+ <table>
1615
+ <tr>
1616
+ <td>
1617
+ <a href='https://google.com'>Google.com</a>
1618
+ </td>
1619
+ </tr>
1620
+ </table>
1621
+ """
1622
+ result = flavor_read_html(StringIO(data), extract_links="all")[0]
1623
+ expected = DataFrame([[("Google.com", "https://google.com")]])
1624
+ tm.assert_frame_equal(result, expected)
1625
+
1626
+ def test_invalid_dtype_backend(self):
1627
+ msg = (
1628
+ "dtype_backend numpy is invalid, only 'numpy_nullable' and "
1629
+ "'pyarrow' are allowed."
1630
+ )
1631
+ with pytest.raises(ValueError, match=msg):
1632
+ read_html("test", dtype_backend="numpy")
1633
+
1634
+ def test_style_tag(self, flavor_read_html):
1635
+ # GH 48316
1636
+ data = """
1637
+ <table>
1638
+ <tr>
1639
+ <th>
1640
+ <style>.style</style>
1641
+ A
1642
+ </th>
1643
+ <th>B</th>
1644
+ </tr>
1645
+ <tr>
1646
+ <td>A1</td>
1647
+ <td>B1</td>
1648
+ </tr>
1649
+ <tr>
1650
+ <td>A2</td>
1651
+ <td>B2</td>
1652
+ </tr>
1653
+ </table>
1654
+ """
1655
+ result = flavor_read_html(StringIO(data))[0]
1656
+ expected = DataFrame(data=[["A1", "B1"], ["A2", "B2"]], columns=["A", "B"])
1657
+ tm.assert_frame_equal(result, expected)
llmeval-env/lib/python3.10/site-packages/pandas/tests/io/test_http_headers.py ADDED
@@ -0,0 +1,172 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Tests for the pandas custom headers in http(s) requests
3
+ """
4
+ from functools import partial
5
+ import gzip
6
+ from io import BytesIO
7
+
8
+ import pytest
9
+
10
+ import pandas.util._test_decorators as td
11
+
12
+ import pandas as pd
13
+ import pandas._testing as tm
14
+
15
+ pytestmark = [
16
+ pytest.mark.single_cpu,
17
+ pytest.mark.network,
18
+ pytest.mark.filterwarnings(
19
+ "ignore:Passing a BlockManager to DataFrame:DeprecationWarning"
20
+ ),
21
+ ]
22
+
23
+
24
+ def gzip_bytes(response_bytes):
25
+ with BytesIO() as bio:
26
+ with gzip.GzipFile(fileobj=bio, mode="w") as zipper:
27
+ zipper.write(response_bytes)
28
+ return bio.getvalue()
29
+
30
+
31
+ def csv_responder(df):
32
+ return df.to_csv(index=False).encode("utf-8")
33
+
34
+
35
+ def gz_csv_responder(df):
36
+ return gzip_bytes(csv_responder(df))
37
+
38
+
39
+ def json_responder(df):
40
+ return df.to_json().encode("utf-8")
41
+
42
+
43
+ def gz_json_responder(df):
44
+ return gzip_bytes(json_responder(df))
45
+
46
+
47
+ def html_responder(df):
48
+ return df.to_html(index=False).encode("utf-8")
49
+
50
+
51
+ def parquetpyarrow_reponder(df):
52
+ return df.to_parquet(index=False, engine="pyarrow")
53
+
54
+
55
+ def parquetfastparquet_responder(df):
56
+ # the fastparquet engine doesn't like to write to a buffer
57
+ # it can do it via the open_with function being set appropriately
58
+ # however it automatically calls the close method and wipes the buffer
59
+ # so just overwrite that attribute on this instance to not do that
60
+
61
+ # protected by an importorskip in the respective test
62
+ import fsspec
63
+
64
+ df.to_parquet(
65
+ "memory://fastparquet_user_agent.parquet",
66
+ index=False,
67
+ engine="fastparquet",
68
+ compression=None,
69
+ )
70
+ with fsspec.open("memory://fastparquet_user_agent.parquet", "rb") as f:
71
+ return f.read()
72
+
73
+
74
+ def pickle_respnder(df):
75
+ with BytesIO() as bio:
76
+ df.to_pickle(bio)
77
+ return bio.getvalue()
78
+
79
+
80
+ def stata_responder(df):
81
+ with BytesIO() as bio:
82
+ df.to_stata(bio, write_index=False)
83
+ return bio.getvalue()
84
+
85
+
86
+ @pytest.mark.parametrize(
87
+ "responder, read_method",
88
+ [
89
+ (csv_responder, pd.read_csv),
90
+ (json_responder, pd.read_json),
91
+ (
92
+ html_responder,
93
+ lambda *args, **kwargs: pd.read_html(*args, **kwargs)[0],
94
+ ),
95
+ pytest.param(
96
+ parquetpyarrow_reponder,
97
+ partial(pd.read_parquet, engine="pyarrow"),
98
+ marks=td.skip_if_no("pyarrow"),
99
+ ),
100
+ pytest.param(
101
+ parquetfastparquet_responder,
102
+ partial(pd.read_parquet, engine="fastparquet"),
103
+ # TODO(ArrayManager) fastparquet
104
+ marks=[
105
+ td.skip_if_no("fastparquet"),
106
+ td.skip_if_no("fsspec"),
107
+ td.skip_array_manager_not_yet_implemented,
108
+ ],
109
+ ),
110
+ (pickle_respnder, pd.read_pickle),
111
+ (stata_responder, pd.read_stata),
112
+ (gz_csv_responder, pd.read_csv),
113
+ (gz_json_responder, pd.read_json),
114
+ ],
115
+ )
116
+ @pytest.mark.parametrize(
117
+ "storage_options",
118
+ [
119
+ None,
120
+ {"User-Agent": "foo"},
121
+ {"User-Agent": "foo", "Auth": "bar"},
122
+ ],
123
+ )
124
+ def test_request_headers(responder, read_method, httpserver, storage_options):
125
+ expected = pd.DataFrame({"a": ["b"]})
126
+ default_headers = ["Accept-Encoding", "Host", "Connection", "User-Agent"]
127
+ if "gz" in responder.__name__:
128
+ extra = {"Content-Encoding": "gzip"}
129
+ if storage_options is None:
130
+ storage_options = extra
131
+ else:
132
+ storage_options |= extra
133
+ else:
134
+ extra = None
135
+ expected_headers = set(default_headers).union(
136
+ storage_options.keys() if storage_options else []
137
+ )
138
+ httpserver.serve_content(content=responder(expected), headers=extra)
139
+ result = read_method(httpserver.url, storage_options=storage_options)
140
+ tm.assert_frame_equal(result, expected)
141
+
142
+ request_headers = dict(httpserver.requests[0].headers)
143
+ for header in expected_headers:
144
+ exp = request_headers.pop(header)
145
+ if storage_options and header in storage_options:
146
+ assert exp == storage_options[header]
147
+ # No extra headers added
148
+ assert not request_headers
149
+
150
+
151
+ @pytest.mark.parametrize(
152
+ "engine",
153
+ [
154
+ "pyarrow",
155
+ "fastparquet",
156
+ ],
157
+ )
158
+ def test_to_parquet_to_disk_with_storage_options(engine):
159
+ headers = {
160
+ "User-Agent": "custom",
161
+ "Auth": "other_custom",
162
+ }
163
+
164
+ pytest.importorskip(engine)
165
+
166
+ true_df = pd.DataFrame({"column_name": ["column_value"]})
167
+ msg = (
168
+ "storage_options passed with file object or non-fsspec file path|"
169
+ "storage_options passed with buffer, or non-supported URL"
170
+ )
171
+ with pytest.raises(ValueError, match=msg):
172
+ true_df.to_parquet("/tmp/junk.parquet", storage_options=headers, engine=engine)
llmeval-env/lib/python3.10/site-packages/pandas/tests/io/test_orc.py ADDED
@@ -0,0 +1,436 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ test orc compat """
2
+ import datetime
3
+ from decimal import Decimal
4
+ from io import BytesIO
5
+ import os
6
+ import pathlib
7
+
8
+ import numpy as np
9
+ import pytest
10
+
11
+ import pandas as pd
12
+ from pandas import read_orc
13
+ import pandas._testing as tm
14
+ from pandas.core.arrays import StringArray
15
+
16
+ pytest.importorskip("pyarrow.orc")
17
+
18
+ import pyarrow as pa
19
+
20
+ pytestmark = pytest.mark.filterwarnings(
21
+ "ignore:Passing a BlockManager to DataFrame:DeprecationWarning"
22
+ )
23
+
24
+
25
+ @pytest.fixture
26
+ def dirpath(datapath):
27
+ return datapath("io", "data", "orc")
28
+
29
+
30
+ @pytest.fixture(
31
+ params=[
32
+ np.array([1, 20], dtype="uint64"),
33
+ pd.Series(["a", "b", "a"], dtype="category"),
34
+ [pd.Interval(left=0, right=2), pd.Interval(left=0, right=5)],
35
+ [pd.Period("2022-01-03", freq="D"), pd.Period("2022-01-04", freq="D")],
36
+ ]
37
+ )
38
+ def orc_writer_dtypes_not_supported(request):
39
+ # Examples of dataframes with dtypes for which conversion to ORC
40
+ # hasn't been implemented yet, that is, Category, unsigned integers,
41
+ # interval, period and sparse.
42
+ return pd.DataFrame({"unimpl": request.param})
43
+
44
+
45
+ def test_orc_reader_empty(dirpath):
46
+ columns = [
47
+ "boolean1",
48
+ "byte1",
49
+ "short1",
50
+ "int1",
51
+ "long1",
52
+ "float1",
53
+ "double1",
54
+ "bytes1",
55
+ "string1",
56
+ ]
57
+ dtypes = [
58
+ "bool",
59
+ "int8",
60
+ "int16",
61
+ "int32",
62
+ "int64",
63
+ "float32",
64
+ "float64",
65
+ "object",
66
+ "object",
67
+ ]
68
+ expected = pd.DataFrame(index=pd.RangeIndex(0))
69
+ for colname, dtype in zip(columns, dtypes):
70
+ expected[colname] = pd.Series(dtype=dtype)
71
+
72
+ inputfile = os.path.join(dirpath, "TestOrcFile.emptyFile.orc")
73
+ got = read_orc(inputfile, columns=columns)
74
+
75
+ tm.assert_equal(expected, got)
76
+
77
+
78
+ def test_orc_reader_basic(dirpath):
79
+ data = {
80
+ "boolean1": np.array([False, True], dtype="bool"),
81
+ "byte1": np.array([1, 100], dtype="int8"),
82
+ "short1": np.array([1024, 2048], dtype="int16"),
83
+ "int1": np.array([65536, 65536], dtype="int32"),
84
+ "long1": np.array([9223372036854775807, 9223372036854775807], dtype="int64"),
85
+ "float1": np.array([1.0, 2.0], dtype="float32"),
86
+ "double1": np.array([-15.0, -5.0], dtype="float64"),
87
+ "bytes1": np.array([b"\x00\x01\x02\x03\x04", b""], dtype="object"),
88
+ "string1": np.array(["hi", "bye"], dtype="object"),
89
+ }
90
+ expected = pd.DataFrame.from_dict(data)
91
+
92
+ inputfile = os.path.join(dirpath, "TestOrcFile.test1.orc")
93
+ got = read_orc(inputfile, columns=data.keys())
94
+
95
+ tm.assert_equal(expected, got)
96
+
97
+
98
+ def test_orc_reader_decimal(dirpath):
99
+ # Only testing the first 10 rows of data
100
+ data = {
101
+ "_col0": np.array(
102
+ [
103
+ Decimal("-1000.50000"),
104
+ Decimal("-999.60000"),
105
+ Decimal("-998.70000"),
106
+ Decimal("-997.80000"),
107
+ Decimal("-996.90000"),
108
+ Decimal("-995.10000"),
109
+ Decimal("-994.11000"),
110
+ Decimal("-993.12000"),
111
+ Decimal("-992.13000"),
112
+ Decimal("-991.14000"),
113
+ ],
114
+ dtype="object",
115
+ )
116
+ }
117
+ expected = pd.DataFrame.from_dict(data)
118
+
119
+ inputfile = os.path.join(dirpath, "TestOrcFile.decimal.orc")
120
+ got = read_orc(inputfile).iloc[:10]
121
+
122
+ tm.assert_equal(expected, got)
123
+
124
+
125
+ def test_orc_reader_date_low(dirpath):
126
+ data = {
127
+ "time": np.array(
128
+ [
129
+ "1900-05-05 12:34:56.100000",
130
+ "1900-05-05 12:34:56.100100",
131
+ "1900-05-05 12:34:56.100200",
132
+ "1900-05-05 12:34:56.100300",
133
+ "1900-05-05 12:34:56.100400",
134
+ "1900-05-05 12:34:56.100500",
135
+ "1900-05-05 12:34:56.100600",
136
+ "1900-05-05 12:34:56.100700",
137
+ "1900-05-05 12:34:56.100800",
138
+ "1900-05-05 12:34:56.100900",
139
+ ],
140
+ dtype="datetime64[ns]",
141
+ ),
142
+ "date": np.array(
143
+ [
144
+ datetime.date(1900, 12, 25),
145
+ datetime.date(1900, 12, 25),
146
+ datetime.date(1900, 12, 25),
147
+ datetime.date(1900, 12, 25),
148
+ datetime.date(1900, 12, 25),
149
+ datetime.date(1900, 12, 25),
150
+ datetime.date(1900, 12, 25),
151
+ datetime.date(1900, 12, 25),
152
+ datetime.date(1900, 12, 25),
153
+ datetime.date(1900, 12, 25),
154
+ ],
155
+ dtype="object",
156
+ ),
157
+ }
158
+ expected = pd.DataFrame.from_dict(data)
159
+
160
+ inputfile = os.path.join(dirpath, "TestOrcFile.testDate1900.orc")
161
+ got = read_orc(inputfile).iloc[:10]
162
+
163
+ tm.assert_equal(expected, got)
164
+
165
+
166
+ def test_orc_reader_date_high(dirpath):
167
+ data = {
168
+ "time": np.array(
169
+ [
170
+ "2038-05-05 12:34:56.100000",
171
+ "2038-05-05 12:34:56.100100",
172
+ "2038-05-05 12:34:56.100200",
173
+ "2038-05-05 12:34:56.100300",
174
+ "2038-05-05 12:34:56.100400",
175
+ "2038-05-05 12:34:56.100500",
176
+ "2038-05-05 12:34:56.100600",
177
+ "2038-05-05 12:34:56.100700",
178
+ "2038-05-05 12:34:56.100800",
179
+ "2038-05-05 12:34:56.100900",
180
+ ],
181
+ dtype="datetime64[ns]",
182
+ ),
183
+ "date": np.array(
184
+ [
185
+ datetime.date(2038, 12, 25),
186
+ datetime.date(2038, 12, 25),
187
+ datetime.date(2038, 12, 25),
188
+ datetime.date(2038, 12, 25),
189
+ datetime.date(2038, 12, 25),
190
+ datetime.date(2038, 12, 25),
191
+ datetime.date(2038, 12, 25),
192
+ datetime.date(2038, 12, 25),
193
+ datetime.date(2038, 12, 25),
194
+ datetime.date(2038, 12, 25),
195
+ ],
196
+ dtype="object",
197
+ ),
198
+ }
199
+ expected = pd.DataFrame.from_dict(data)
200
+
201
+ inputfile = os.path.join(dirpath, "TestOrcFile.testDate2038.orc")
202
+ got = read_orc(inputfile).iloc[:10]
203
+
204
+ tm.assert_equal(expected, got)
205
+
206
+
207
+ def test_orc_reader_snappy_compressed(dirpath):
208
+ data = {
209
+ "int1": np.array(
210
+ [
211
+ -1160101563,
212
+ 1181413113,
213
+ 2065821249,
214
+ -267157795,
215
+ 172111193,
216
+ 1752363137,
217
+ 1406072123,
218
+ 1911809390,
219
+ -1308542224,
220
+ -467100286,
221
+ ],
222
+ dtype="int32",
223
+ ),
224
+ "string1": np.array(
225
+ [
226
+ "f50dcb8",
227
+ "382fdaaa",
228
+ "90758c6",
229
+ "9e8caf3f",
230
+ "ee97332b",
231
+ "d634da1",
232
+ "2bea4396",
233
+ "d67d89e8",
234
+ "ad71007e",
235
+ "e8c82066",
236
+ ],
237
+ dtype="object",
238
+ ),
239
+ }
240
+ expected = pd.DataFrame.from_dict(data)
241
+
242
+ inputfile = os.path.join(dirpath, "TestOrcFile.testSnappy.orc")
243
+ got = read_orc(inputfile).iloc[:10]
244
+
245
+ tm.assert_equal(expected, got)
246
+
247
+
248
+ def test_orc_roundtrip_file(dirpath):
249
+ # GH44554
250
+ # PyArrow gained ORC write support with the current argument order
251
+ pytest.importorskip("pyarrow")
252
+
253
+ data = {
254
+ "boolean1": np.array([False, True], dtype="bool"),
255
+ "byte1": np.array([1, 100], dtype="int8"),
256
+ "short1": np.array([1024, 2048], dtype="int16"),
257
+ "int1": np.array([65536, 65536], dtype="int32"),
258
+ "long1": np.array([9223372036854775807, 9223372036854775807], dtype="int64"),
259
+ "float1": np.array([1.0, 2.0], dtype="float32"),
260
+ "double1": np.array([-15.0, -5.0], dtype="float64"),
261
+ "bytes1": np.array([b"\x00\x01\x02\x03\x04", b""], dtype="object"),
262
+ "string1": np.array(["hi", "bye"], dtype="object"),
263
+ }
264
+ expected = pd.DataFrame.from_dict(data)
265
+
266
+ with tm.ensure_clean() as path:
267
+ expected.to_orc(path)
268
+ got = read_orc(path)
269
+
270
+ tm.assert_equal(expected, got)
271
+
272
+
273
+ def test_orc_roundtrip_bytesio():
274
+ # GH44554
275
+ # PyArrow gained ORC write support with the current argument order
276
+ pytest.importorskip("pyarrow")
277
+
278
+ data = {
279
+ "boolean1": np.array([False, True], dtype="bool"),
280
+ "byte1": np.array([1, 100], dtype="int8"),
281
+ "short1": np.array([1024, 2048], dtype="int16"),
282
+ "int1": np.array([65536, 65536], dtype="int32"),
283
+ "long1": np.array([9223372036854775807, 9223372036854775807], dtype="int64"),
284
+ "float1": np.array([1.0, 2.0], dtype="float32"),
285
+ "double1": np.array([-15.0, -5.0], dtype="float64"),
286
+ "bytes1": np.array([b"\x00\x01\x02\x03\x04", b""], dtype="object"),
287
+ "string1": np.array(["hi", "bye"], dtype="object"),
288
+ }
289
+ expected = pd.DataFrame.from_dict(data)
290
+
291
+ bytes = expected.to_orc()
292
+ got = read_orc(BytesIO(bytes))
293
+
294
+ tm.assert_equal(expected, got)
295
+
296
+
297
+ def test_orc_writer_dtypes_not_supported(orc_writer_dtypes_not_supported):
298
+ # GH44554
299
+ # PyArrow gained ORC write support with the current argument order
300
+ pytest.importorskip("pyarrow")
301
+
302
+ msg = "The dtype of one or more columns is not supported yet."
303
+ with pytest.raises(NotImplementedError, match=msg):
304
+ orc_writer_dtypes_not_supported.to_orc()
305
+
306
+
307
+ def test_orc_dtype_backend_pyarrow():
308
+ pytest.importorskip("pyarrow")
309
+ df = pd.DataFrame(
310
+ {
311
+ "string": list("abc"),
312
+ "string_with_nan": ["a", np.nan, "c"],
313
+ "string_with_none": ["a", None, "c"],
314
+ "bytes": [b"foo", b"bar", None],
315
+ "int": list(range(1, 4)),
316
+ "float": np.arange(4.0, 7.0, dtype="float64"),
317
+ "float_with_nan": [2.0, np.nan, 3.0],
318
+ "bool": [True, False, True],
319
+ "bool_with_na": [True, False, None],
320
+ "datetime": pd.date_range("20130101", periods=3),
321
+ "datetime_with_nat": [
322
+ pd.Timestamp("20130101"),
323
+ pd.NaT,
324
+ pd.Timestamp("20130103"),
325
+ ],
326
+ }
327
+ )
328
+
329
+ bytes_data = df.copy().to_orc()
330
+ result = read_orc(BytesIO(bytes_data), dtype_backend="pyarrow")
331
+
332
+ expected = pd.DataFrame(
333
+ {
334
+ col: pd.arrays.ArrowExtensionArray(pa.array(df[col], from_pandas=True))
335
+ for col in df.columns
336
+ }
337
+ )
338
+
339
+ tm.assert_frame_equal(result, expected)
340
+
341
+
342
+ def test_orc_dtype_backend_numpy_nullable():
343
+ # GH#50503
344
+ pytest.importorskip("pyarrow")
345
+ df = pd.DataFrame(
346
+ {
347
+ "string": list("abc"),
348
+ "string_with_nan": ["a", np.nan, "c"],
349
+ "string_with_none": ["a", None, "c"],
350
+ "int": list(range(1, 4)),
351
+ "int_with_nan": pd.Series([1, pd.NA, 3], dtype="Int64"),
352
+ "na_only": pd.Series([pd.NA, pd.NA, pd.NA], dtype="Int64"),
353
+ "float": np.arange(4.0, 7.0, dtype="float64"),
354
+ "float_with_nan": [2.0, np.nan, 3.0],
355
+ "bool": [True, False, True],
356
+ "bool_with_na": [True, False, None],
357
+ }
358
+ )
359
+
360
+ bytes_data = df.copy().to_orc()
361
+ result = read_orc(BytesIO(bytes_data), dtype_backend="numpy_nullable")
362
+
363
+ expected = pd.DataFrame(
364
+ {
365
+ "string": StringArray(np.array(["a", "b", "c"], dtype=np.object_)),
366
+ "string_with_nan": StringArray(
367
+ np.array(["a", pd.NA, "c"], dtype=np.object_)
368
+ ),
369
+ "string_with_none": StringArray(
370
+ np.array(["a", pd.NA, "c"], dtype=np.object_)
371
+ ),
372
+ "int": pd.Series([1, 2, 3], dtype="Int64"),
373
+ "int_with_nan": pd.Series([1, pd.NA, 3], dtype="Int64"),
374
+ "na_only": pd.Series([pd.NA, pd.NA, pd.NA], dtype="Int64"),
375
+ "float": pd.Series([4.0, 5.0, 6.0], dtype="Float64"),
376
+ "float_with_nan": pd.Series([2.0, pd.NA, 3.0], dtype="Float64"),
377
+ "bool": pd.Series([True, False, True], dtype="boolean"),
378
+ "bool_with_na": pd.Series([True, False, pd.NA], dtype="boolean"),
379
+ }
380
+ )
381
+
382
+ tm.assert_frame_equal(result, expected)
383
+
384
+
385
+ def test_orc_uri_path():
386
+ expected = pd.DataFrame({"int": list(range(1, 4))})
387
+ with tm.ensure_clean("tmp.orc") as path:
388
+ expected.to_orc(path)
389
+ uri = pathlib.Path(path).as_uri()
390
+ result = read_orc(uri)
391
+ tm.assert_frame_equal(result, expected)
392
+
393
+
394
+ @pytest.mark.parametrize(
395
+ "index",
396
+ [
397
+ pd.RangeIndex(start=2, stop=5, step=1),
398
+ pd.RangeIndex(start=0, stop=3, step=1, name="non-default"),
399
+ pd.Index([1, 2, 3]),
400
+ ],
401
+ )
402
+ def test_to_orc_non_default_index(index):
403
+ df = pd.DataFrame({"a": [1, 2, 3]}, index=index)
404
+ msg = (
405
+ "orc does not support serializing a non-default index|"
406
+ "orc does not serialize index meta-data"
407
+ )
408
+ with pytest.raises(ValueError, match=msg):
409
+ df.to_orc()
410
+
411
+
412
+ def test_invalid_dtype_backend():
413
+ msg = (
414
+ "dtype_backend numpy is invalid, only 'numpy_nullable' and "
415
+ "'pyarrow' are allowed."
416
+ )
417
+ df = pd.DataFrame({"int": list(range(1, 4))})
418
+ with tm.ensure_clean("tmp.orc") as path:
419
+ df.to_orc(path)
420
+ with pytest.raises(ValueError, match=msg):
421
+ read_orc(path, dtype_backend="numpy")
422
+
423
+
424
+ def test_string_inference(tmp_path):
425
+ # GH#54431
426
+ path = tmp_path / "test_string_inference.p"
427
+ df = pd.DataFrame(data={"a": ["x", "y"]})
428
+ df.to_orc(path)
429
+ with pd.option_context("future.infer_string", True):
430
+ result = read_orc(path)
431
+ expected = pd.DataFrame(
432
+ data={"a": ["x", "y"]},
433
+ dtype="string[pyarrow_numpy]",
434
+ columns=pd.Index(["a"], dtype="string[pyarrow_numpy]"),
435
+ )
436
+ tm.assert_frame_equal(result, expected)
llmeval-env/lib/python3.10/site-packages/pandas/tests/io/test_parquet.py ADDED
@@ -0,0 +1,1424 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ test parquet compat """
2
+ import datetime
3
+ from decimal import Decimal
4
+ from io import BytesIO
5
+ import os
6
+ import pathlib
7
+
8
+ import numpy as np
9
+ import pytest
10
+
11
+ from pandas._config import using_copy_on_write
12
+ from pandas._config.config import _get_option
13
+
14
+ from pandas.compat import is_platform_windows
15
+ from pandas.compat.pyarrow import (
16
+ pa_version_under11p0,
17
+ pa_version_under13p0,
18
+ pa_version_under15p0,
19
+ )
20
+
21
+ import pandas as pd
22
+ import pandas._testing as tm
23
+ from pandas.util.version import Version
24
+
25
+ from pandas.io.parquet import (
26
+ FastParquetImpl,
27
+ PyArrowImpl,
28
+ get_engine,
29
+ read_parquet,
30
+ to_parquet,
31
+ )
32
+
33
+ try:
34
+ import pyarrow
35
+
36
+ _HAVE_PYARROW = True
37
+ except ImportError:
38
+ _HAVE_PYARROW = False
39
+
40
+ try:
41
+ import fastparquet
42
+
43
+ _HAVE_FASTPARQUET = True
44
+ except ImportError:
45
+ _HAVE_FASTPARQUET = False
46
+
47
+
48
+ # TODO(ArrayManager) fastparquet relies on BlockManager internals
49
+
50
+ pytestmark = [
51
+ pytest.mark.filterwarnings("ignore:DataFrame._data is deprecated:FutureWarning"),
52
+ pytest.mark.filterwarnings(
53
+ "ignore:Passing a BlockManager to DataFrame:DeprecationWarning"
54
+ ),
55
+ ]
56
+
57
+
58
+ # setup engines & skips
59
+ @pytest.fixture(
60
+ params=[
61
+ pytest.param(
62
+ "fastparquet",
63
+ marks=pytest.mark.skipif(
64
+ not _HAVE_FASTPARQUET
65
+ or _get_option("mode.data_manager", silent=True) == "array",
66
+ reason="fastparquet is not installed or ArrayManager is used",
67
+ ),
68
+ ),
69
+ pytest.param(
70
+ "pyarrow",
71
+ marks=pytest.mark.skipif(
72
+ not _HAVE_PYARROW, reason="pyarrow is not installed"
73
+ ),
74
+ ),
75
+ ]
76
+ )
77
+ def engine(request):
78
+ return request.param
79
+
80
+
81
+ @pytest.fixture
82
+ def pa():
83
+ if not _HAVE_PYARROW:
84
+ pytest.skip("pyarrow is not installed")
85
+ return "pyarrow"
86
+
87
+
88
+ @pytest.fixture
89
+ def fp():
90
+ if not _HAVE_FASTPARQUET:
91
+ pytest.skip("fastparquet is not installed")
92
+ elif _get_option("mode.data_manager", silent=True) == "array":
93
+ pytest.skip("ArrayManager is not supported with fastparquet")
94
+ return "fastparquet"
95
+
96
+
97
+ @pytest.fixture
98
+ def df_compat():
99
+ return pd.DataFrame({"A": [1, 2, 3], "B": "foo"})
100
+
101
+
102
+ @pytest.fixture
103
+ def df_cross_compat():
104
+ df = pd.DataFrame(
105
+ {
106
+ "a": list("abc"),
107
+ "b": list(range(1, 4)),
108
+ # 'c': np.arange(3, 6).astype('u1'),
109
+ "d": np.arange(4.0, 7.0, dtype="float64"),
110
+ "e": [True, False, True],
111
+ "f": pd.date_range("20130101", periods=3),
112
+ # 'g': pd.date_range('20130101', periods=3,
113
+ # tz='US/Eastern'),
114
+ # 'h': pd.date_range('20130101', periods=3, freq='ns')
115
+ }
116
+ )
117
+ return df
118
+
119
+
120
+ @pytest.fixture
121
+ def df_full():
122
+ return pd.DataFrame(
123
+ {
124
+ "string": list("abc"),
125
+ "string_with_nan": ["a", np.nan, "c"],
126
+ "string_with_none": ["a", None, "c"],
127
+ "bytes": [b"foo", b"bar", b"baz"],
128
+ "unicode": ["foo", "bar", "baz"],
129
+ "int": list(range(1, 4)),
130
+ "uint": np.arange(3, 6).astype("u1"),
131
+ "float": np.arange(4.0, 7.0, dtype="float64"),
132
+ "float_with_nan": [2.0, np.nan, 3.0],
133
+ "bool": [True, False, True],
134
+ "datetime": pd.date_range("20130101", periods=3),
135
+ "datetime_with_nat": [
136
+ pd.Timestamp("20130101"),
137
+ pd.NaT,
138
+ pd.Timestamp("20130103"),
139
+ ],
140
+ }
141
+ )
142
+
143
+
144
+ @pytest.fixture(
145
+ params=[
146
+ datetime.datetime.now(datetime.timezone.utc),
147
+ datetime.datetime.now(datetime.timezone.min),
148
+ datetime.datetime.now(datetime.timezone.max),
149
+ datetime.datetime.strptime("2019-01-04T16:41:24+0200", "%Y-%m-%dT%H:%M:%S%z"),
150
+ datetime.datetime.strptime("2019-01-04T16:41:24+0215", "%Y-%m-%dT%H:%M:%S%z"),
151
+ datetime.datetime.strptime("2019-01-04T16:41:24-0200", "%Y-%m-%dT%H:%M:%S%z"),
152
+ datetime.datetime.strptime("2019-01-04T16:41:24-0215", "%Y-%m-%dT%H:%M:%S%z"),
153
+ ]
154
+ )
155
+ def timezone_aware_date_list(request):
156
+ return request.param
157
+
158
+
159
+ def check_round_trip(
160
+ df,
161
+ engine=None,
162
+ path=None,
163
+ write_kwargs=None,
164
+ read_kwargs=None,
165
+ expected=None,
166
+ check_names=True,
167
+ check_like=False,
168
+ check_dtype=True,
169
+ repeat=2,
170
+ ):
171
+ """Verify parquet serializer and deserializer produce the same results.
172
+
173
+ Performs a pandas to disk and disk to pandas round trip,
174
+ then compares the 2 resulting DataFrames to verify equality.
175
+
176
+ Parameters
177
+ ----------
178
+ df: Dataframe
179
+ engine: str, optional
180
+ 'pyarrow' or 'fastparquet'
181
+ path: str, optional
182
+ write_kwargs: dict of str:str, optional
183
+ read_kwargs: dict of str:str, optional
184
+ expected: DataFrame, optional
185
+ Expected deserialization result, otherwise will be equal to `df`
186
+ check_names: list of str, optional
187
+ Closed set of column names to be compared
188
+ check_like: bool, optional
189
+ If True, ignore the order of index & columns.
190
+ repeat: int, optional
191
+ How many times to repeat the test
192
+ """
193
+ write_kwargs = write_kwargs or {"compression": None}
194
+ read_kwargs = read_kwargs or {}
195
+
196
+ if expected is None:
197
+ expected = df
198
+
199
+ if engine:
200
+ write_kwargs["engine"] = engine
201
+ read_kwargs["engine"] = engine
202
+
203
+ def compare(repeat):
204
+ for _ in range(repeat):
205
+ df.to_parquet(path, **write_kwargs)
206
+ actual = read_parquet(path, **read_kwargs)
207
+
208
+ if "string_with_nan" in expected:
209
+ expected.loc[1, "string_with_nan"] = None
210
+ tm.assert_frame_equal(
211
+ expected,
212
+ actual,
213
+ check_names=check_names,
214
+ check_like=check_like,
215
+ check_dtype=check_dtype,
216
+ )
217
+
218
+ if path is None:
219
+ with tm.ensure_clean() as path:
220
+ compare(repeat)
221
+ else:
222
+ compare(repeat)
223
+
224
+
225
+ def check_partition_names(path, expected):
226
+ """Check partitions of a parquet file are as expected.
227
+
228
+ Parameters
229
+ ----------
230
+ path: str
231
+ Path of the dataset.
232
+ expected: iterable of str
233
+ Expected partition names.
234
+ """
235
+ import pyarrow.dataset as ds
236
+
237
+ dataset = ds.dataset(path, partitioning="hive")
238
+ assert dataset.partitioning.schema.names == expected
239
+
240
+
241
+ def test_invalid_engine(df_compat):
242
+ msg = "engine must be one of 'pyarrow', 'fastparquet'"
243
+ with pytest.raises(ValueError, match=msg):
244
+ check_round_trip(df_compat, "foo", "bar")
245
+
246
+
247
+ def test_options_py(df_compat, pa):
248
+ # use the set option
249
+
250
+ with pd.option_context("io.parquet.engine", "pyarrow"):
251
+ check_round_trip(df_compat)
252
+
253
+
254
+ def test_options_fp(df_compat, fp):
255
+ # use the set option
256
+
257
+ with pd.option_context("io.parquet.engine", "fastparquet"):
258
+ check_round_trip(df_compat)
259
+
260
+
261
+ def test_options_auto(df_compat, fp, pa):
262
+ # use the set option
263
+
264
+ with pd.option_context("io.parquet.engine", "auto"):
265
+ check_round_trip(df_compat)
266
+
267
+
268
+ def test_options_get_engine(fp, pa):
269
+ assert isinstance(get_engine("pyarrow"), PyArrowImpl)
270
+ assert isinstance(get_engine("fastparquet"), FastParquetImpl)
271
+
272
+ with pd.option_context("io.parquet.engine", "pyarrow"):
273
+ assert isinstance(get_engine("auto"), PyArrowImpl)
274
+ assert isinstance(get_engine("pyarrow"), PyArrowImpl)
275
+ assert isinstance(get_engine("fastparquet"), FastParquetImpl)
276
+
277
+ with pd.option_context("io.parquet.engine", "fastparquet"):
278
+ assert isinstance(get_engine("auto"), FastParquetImpl)
279
+ assert isinstance(get_engine("pyarrow"), PyArrowImpl)
280
+ assert isinstance(get_engine("fastparquet"), FastParquetImpl)
281
+
282
+ with pd.option_context("io.parquet.engine", "auto"):
283
+ assert isinstance(get_engine("auto"), PyArrowImpl)
284
+ assert isinstance(get_engine("pyarrow"), PyArrowImpl)
285
+ assert isinstance(get_engine("fastparquet"), FastParquetImpl)
286
+
287
+
288
+ def test_get_engine_auto_error_message():
289
+ # Expect different error messages from get_engine(engine="auto")
290
+ # if engines aren't installed vs. are installed but bad version
291
+ from pandas.compat._optional import VERSIONS
292
+
293
+ # Do we have engines installed, but a bad version of them?
294
+ pa_min_ver = VERSIONS.get("pyarrow")
295
+ fp_min_ver = VERSIONS.get("fastparquet")
296
+ have_pa_bad_version = (
297
+ False
298
+ if not _HAVE_PYARROW
299
+ else Version(pyarrow.__version__) < Version(pa_min_ver)
300
+ )
301
+ have_fp_bad_version = (
302
+ False
303
+ if not _HAVE_FASTPARQUET
304
+ else Version(fastparquet.__version__) < Version(fp_min_ver)
305
+ )
306
+ # Do we have usable engines installed?
307
+ have_usable_pa = _HAVE_PYARROW and not have_pa_bad_version
308
+ have_usable_fp = _HAVE_FASTPARQUET and not have_fp_bad_version
309
+
310
+ if not have_usable_pa and not have_usable_fp:
311
+ # No usable engines found.
312
+ if have_pa_bad_version:
313
+ match = f"Pandas requires version .{pa_min_ver}. or newer of .pyarrow."
314
+ with pytest.raises(ImportError, match=match):
315
+ get_engine("auto")
316
+ else:
317
+ match = "Missing optional dependency .pyarrow."
318
+ with pytest.raises(ImportError, match=match):
319
+ get_engine("auto")
320
+
321
+ if have_fp_bad_version:
322
+ match = f"Pandas requires version .{fp_min_ver}. or newer of .fastparquet."
323
+ with pytest.raises(ImportError, match=match):
324
+ get_engine("auto")
325
+ else:
326
+ match = "Missing optional dependency .fastparquet."
327
+ with pytest.raises(ImportError, match=match):
328
+ get_engine("auto")
329
+
330
+
331
+ def test_cross_engine_pa_fp(df_cross_compat, pa, fp):
332
+ # cross-compat with differing reading/writing engines
333
+
334
+ df = df_cross_compat
335
+ with tm.ensure_clean() as path:
336
+ df.to_parquet(path, engine=pa, compression=None)
337
+
338
+ result = read_parquet(path, engine=fp)
339
+ tm.assert_frame_equal(result, df)
340
+
341
+ result = read_parquet(path, engine=fp, columns=["a", "d"])
342
+ tm.assert_frame_equal(result, df[["a", "d"]])
343
+
344
+
345
+ def test_cross_engine_fp_pa(df_cross_compat, pa, fp):
346
+ # cross-compat with differing reading/writing engines
347
+ df = df_cross_compat
348
+ with tm.ensure_clean() as path:
349
+ df.to_parquet(path, engine=fp, compression=None)
350
+
351
+ result = read_parquet(path, engine=pa)
352
+ tm.assert_frame_equal(result, df)
353
+
354
+ result = read_parquet(path, engine=pa, columns=["a", "d"])
355
+ tm.assert_frame_equal(result, df[["a", "d"]])
356
+
357
+
358
+ def test_parquet_pos_args_deprecation(engine):
359
+ # GH-54229
360
+ df = pd.DataFrame({"a": [1, 2, 3]})
361
+ msg = (
362
+ r"Starting with pandas version 3.0 all arguments of to_parquet except for the "
363
+ r"argument 'path' will be keyword-only."
364
+ )
365
+ with tm.ensure_clean() as path:
366
+ with tm.assert_produces_warning(
367
+ FutureWarning,
368
+ match=msg,
369
+ check_stacklevel=False,
370
+ raise_on_extra_warnings=False,
371
+ ):
372
+ df.to_parquet(path, engine)
373
+
374
+
375
+ class Base:
376
+ def check_error_on_write(self, df, engine, exc, err_msg):
377
+ # check that we are raising the exception on writing
378
+ with tm.ensure_clean() as path:
379
+ with pytest.raises(exc, match=err_msg):
380
+ to_parquet(df, path, engine, compression=None)
381
+
382
+ def check_external_error_on_write(self, df, engine, exc):
383
+ # check that an external library is raising the exception on writing
384
+ with tm.ensure_clean() as path:
385
+ with tm.external_error_raised(exc):
386
+ to_parquet(df, path, engine, compression=None)
387
+
388
+ @pytest.mark.network
389
+ @pytest.mark.single_cpu
390
+ def test_parquet_read_from_url(self, httpserver, datapath, df_compat, engine):
391
+ if engine != "auto":
392
+ pytest.importorskip(engine)
393
+ with open(datapath("io", "data", "parquet", "simple.parquet"), mode="rb") as f:
394
+ httpserver.serve_content(content=f.read())
395
+ df = read_parquet(httpserver.url)
396
+ tm.assert_frame_equal(df, df_compat)
397
+
398
+
399
+ class TestBasic(Base):
400
+ def test_error(self, engine):
401
+ for obj in [
402
+ pd.Series([1, 2, 3]),
403
+ 1,
404
+ "foo",
405
+ pd.Timestamp("20130101"),
406
+ np.array([1, 2, 3]),
407
+ ]:
408
+ msg = "to_parquet only supports IO with DataFrames"
409
+ self.check_error_on_write(obj, engine, ValueError, msg)
410
+
411
+ def test_columns_dtypes(self, engine):
412
+ df = pd.DataFrame({"string": list("abc"), "int": list(range(1, 4))})
413
+
414
+ # unicode
415
+ df.columns = ["foo", "bar"]
416
+ check_round_trip(df, engine)
417
+
418
+ @pytest.mark.parametrize("compression", [None, "gzip", "snappy", "brotli"])
419
+ def test_compression(self, engine, compression):
420
+ df = pd.DataFrame({"A": [1, 2, 3]})
421
+ check_round_trip(df, engine, write_kwargs={"compression": compression})
422
+
423
+ def test_read_columns(self, engine):
424
+ # GH18154
425
+ df = pd.DataFrame({"string": list("abc"), "int": list(range(1, 4))})
426
+
427
+ expected = pd.DataFrame({"string": list("abc")})
428
+ check_round_trip(
429
+ df, engine, expected=expected, read_kwargs={"columns": ["string"]}
430
+ )
431
+
432
+ def test_read_filters(self, engine, tmp_path):
433
+ df = pd.DataFrame(
434
+ {
435
+ "int": list(range(4)),
436
+ "part": list("aabb"),
437
+ }
438
+ )
439
+
440
+ expected = pd.DataFrame({"int": [0, 1]})
441
+ check_round_trip(
442
+ df,
443
+ engine,
444
+ path=tmp_path,
445
+ expected=expected,
446
+ write_kwargs={"partition_cols": ["part"]},
447
+ read_kwargs={"filters": [("part", "==", "a")], "columns": ["int"]},
448
+ repeat=1,
449
+ )
450
+
451
+ def test_write_index(self, engine, using_copy_on_write, request):
452
+ check_names = engine != "fastparquet"
453
+ if using_copy_on_write and engine == "fastparquet":
454
+ request.applymarker(
455
+ pytest.mark.xfail(reason="fastparquet write into index")
456
+ )
457
+
458
+ df = pd.DataFrame({"A": [1, 2, 3]})
459
+ check_round_trip(df, engine)
460
+
461
+ indexes = [
462
+ [2, 3, 4],
463
+ pd.date_range("20130101", periods=3),
464
+ list("abc"),
465
+ [1, 3, 4],
466
+ ]
467
+ # non-default index
468
+ for index in indexes:
469
+ df.index = index
470
+ if isinstance(index, pd.DatetimeIndex):
471
+ df.index = df.index._with_freq(None) # freq doesn't round-trip
472
+ check_round_trip(df, engine, check_names=check_names)
473
+
474
+ # index with meta-data
475
+ df.index = [0, 1, 2]
476
+ df.index.name = "foo"
477
+ check_round_trip(df, engine)
478
+
479
+ def test_write_multiindex(self, pa):
480
+ # Not supported in fastparquet as of 0.1.3 or older pyarrow version
481
+ engine = pa
482
+
483
+ df = pd.DataFrame({"A": [1, 2, 3]})
484
+ index = pd.MultiIndex.from_tuples([("a", 1), ("a", 2), ("b", 1)])
485
+ df.index = index
486
+ check_round_trip(df, engine)
487
+
488
+ def test_multiindex_with_columns(self, pa):
489
+ engine = pa
490
+ dates = pd.date_range("01-Jan-2018", "01-Dec-2018", freq="MS")
491
+ df = pd.DataFrame(
492
+ np.random.default_rng(2).standard_normal((2 * len(dates), 3)),
493
+ columns=list("ABC"),
494
+ )
495
+ index1 = pd.MultiIndex.from_product(
496
+ [["Level1", "Level2"], dates], names=["level", "date"]
497
+ )
498
+ index2 = index1.copy(names=None)
499
+ for index in [index1, index2]:
500
+ df.index = index
501
+
502
+ check_round_trip(df, engine)
503
+ check_round_trip(
504
+ df, engine, read_kwargs={"columns": ["A", "B"]}, expected=df[["A", "B"]]
505
+ )
506
+
507
+ def test_write_ignoring_index(self, engine):
508
+ # ENH 20768
509
+ # Ensure index=False omits the index from the written Parquet file.
510
+ df = pd.DataFrame({"a": [1, 2, 3], "b": ["q", "r", "s"]})
511
+
512
+ write_kwargs = {"compression": None, "index": False}
513
+
514
+ # Because we're dropping the index, we expect the loaded dataframe to
515
+ # have the default integer index.
516
+ expected = df.reset_index(drop=True)
517
+
518
+ check_round_trip(df, engine, write_kwargs=write_kwargs, expected=expected)
519
+
520
+ # Ignore custom index
521
+ df = pd.DataFrame(
522
+ {"a": [1, 2, 3], "b": ["q", "r", "s"]}, index=["zyx", "wvu", "tsr"]
523
+ )
524
+
525
+ check_round_trip(df, engine, write_kwargs=write_kwargs, expected=expected)
526
+
527
+ # Ignore multi-indexes as well.
528
+ arrays = [
529
+ ["bar", "bar", "baz", "baz", "foo", "foo", "qux", "qux"],
530
+ ["one", "two", "one", "two", "one", "two", "one", "two"],
531
+ ]
532
+ df = pd.DataFrame(
533
+ {"one": list(range(8)), "two": [-i for i in range(8)]}, index=arrays
534
+ )
535
+
536
+ expected = df.reset_index(drop=True)
537
+ check_round_trip(df, engine, write_kwargs=write_kwargs, expected=expected)
538
+
539
+ def test_write_column_multiindex(self, engine):
540
+ # Not able to write column multi-indexes with non-string column names.
541
+ mi_columns = pd.MultiIndex.from_tuples([("a", 1), ("a", 2), ("b", 1)])
542
+ df = pd.DataFrame(
543
+ np.random.default_rng(2).standard_normal((4, 3)), columns=mi_columns
544
+ )
545
+
546
+ if engine == "fastparquet":
547
+ self.check_error_on_write(
548
+ df, engine, TypeError, "Column name must be a string"
549
+ )
550
+ elif engine == "pyarrow":
551
+ check_round_trip(df, engine)
552
+
553
+ def test_write_column_multiindex_nonstring(self, engine):
554
+ # GH #34777
555
+
556
+ # Not able to write column multi-indexes with non-string column names
557
+ arrays = [
558
+ ["bar", "bar", "baz", "baz", "foo", "foo", "qux", "qux"],
559
+ [1, 2, 1, 2, 1, 2, 1, 2],
560
+ ]
561
+ df = pd.DataFrame(
562
+ np.random.default_rng(2).standard_normal((8, 8)), columns=arrays
563
+ )
564
+ df.columns.names = ["Level1", "Level2"]
565
+ if engine == "fastparquet":
566
+ self.check_error_on_write(df, engine, ValueError, "Column name")
567
+ elif engine == "pyarrow":
568
+ check_round_trip(df, engine)
569
+
570
+ def test_write_column_multiindex_string(self, pa):
571
+ # GH #34777
572
+ # Not supported in fastparquet as of 0.1.3
573
+ engine = pa
574
+
575
+ # Write column multi-indexes with string column names
576
+ arrays = [
577
+ ["bar", "bar", "baz", "baz", "foo", "foo", "qux", "qux"],
578
+ ["one", "two", "one", "two", "one", "two", "one", "two"],
579
+ ]
580
+ df = pd.DataFrame(
581
+ np.random.default_rng(2).standard_normal((8, 8)), columns=arrays
582
+ )
583
+ df.columns.names = ["ColLevel1", "ColLevel2"]
584
+
585
+ check_round_trip(df, engine)
586
+
587
+ def test_write_column_index_string(self, pa):
588
+ # GH #34777
589
+ # Not supported in fastparquet as of 0.1.3
590
+ engine = pa
591
+
592
+ # Write column indexes with string column names
593
+ arrays = ["bar", "baz", "foo", "qux"]
594
+ df = pd.DataFrame(
595
+ np.random.default_rng(2).standard_normal((8, 4)), columns=arrays
596
+ )
597
+ df.columns.name = "StringCol"
598
+
599
+ check_round_trip(df, engine)
600
+
601
+ def test_write_column_index_nonstring(self, engine):
602
+ # GH #34777
603
+
604
+ # Write column indexes with string column names
605
+ arrays = [1, 2, 3, 4]
606
+ df = pd.DataFrame(
607
+ np.random.default_rng(2).standard_normal((8, 4)), columns=arrays
608
+ )
609
+ df.columns.name = "NonStringCol"
610
+ if engine == "fastparquet":
611
+ self.check_error_on_write(
612
+ df, engine, TypeError, "Column name must be a string"
613
+ )
614
+ else:
615
+ check_round_trip(df, engine)
616
+
617
+ def test_dtype_backend(self, engine, request):
618
+ pq = pytest.importorskip("pyarrow.parquet")
619
+
620
+ if engine == "fastparquet":
621
+ # We are manually disabling fastparquet's
622
+ # nullable dtype support pending discussion
623
+ mark = pytest.mark.xfail(
624
+ reason="Fastparquet nullable dtype support is disabled"
625
+ )
626
+ request.applymarker(mark)
627
+
628
+ table = pyarrow.table(
629
+ {
630
+ "a": pyarrow.array([1, 2, 3, None], "int64"),
631
+ "b": pyarrow.array([1, 2, 3, None], "uint8"),
632
+ "c": pyarrow.array(["a", "b", "c", None]),
633
+ "d": pyarrow.array([True, False, True, None]),
634
+ # Test that nullable dtypes used even in absence of nulls
635
+ "e": pyarrow.array([1, 2, 3, 4], "int64"),
636
+ # GH 45694
637
+ "f": pyarrow.array([1.0, 2.0, 3.0, None], "float32"),
638
+ "g": pyarrow.array([1.0, 2.0, 3.0, None], "float64"),
639
+ }
640
+ )
641
+ with tm.ensure_clean() as path:
642
+ # write manually with pyarrow to write integers
643
+ pq.write_table(table, path)
644
+ result1 = read_parquet(path, engine=engine)
645
+ result2 = read_parquet(path, engine=engine, dtype_backend="numpy_nullable")
646
+
647
+ assert result1["a"].dtype == np.dtype("float64")
648
+ expected = pd.DataFrame(
649
+ {
650
+ "a": pd.array([1, 2, 3, None], dtype="Int64"),
651
+ "b": pd.array([1, 2, 3, None], dtype="UInt8"),
652
+ "c": pd.array(["a", "b", "c", None], dtype="string"),
653
+ "d": pd.array([True, False, True, None], dtype="boolean"),
654
+ "e": pd.array([1, 2, 3, 4], dtype="Int64"),
655
+ "f": pd.array([1.0, 2.0, 3.0, None], dtype="Float32"),
656
+ "g": pd.array([1.0, 2.0, 3.0, None], dtype="Float64"),
657
+ }
658
+ )
659
+ if engine == "fastparquet":
660
+ # Fastparquet doesn't support string columns yet
661
+ # Only int and boolean
662
+ result2 = result2.drop("c", axis=1)
663
+ expected = expected.drop("c", axis=1)
664
+ tm.assert_frame_equal(result2, expected)
665
+
666
+ @pytest.mark.parametrize(
667
+ "dtype",
668
+ [
669
+ "Int64",
670
+ "UInt8",
671
+ "boolean",
672
+ "object",
673
+ "datetime64[ns, UTC]",
674
+ "float",
675
+ "period[D]",
676
+ "Float64",
677
+ "string",
678
+ ],
679
+ )
680
+ def test_read_empty_array(self, pa, dtype):
681
+ # GH #41241
682
+ df = pd.DataFrame(
683
+ {
684
+ "value": pd.array([], dtype=dtype),
685
+ }
686
+ )
687
+ # GH 45694
688
+ expected = None
689
+ if dtype == "float":
690
+ expected = pd.DataFrame(
691
+ {
692
+ "value": pd.array([], dtype="Float64"),
693
+ }
694
+ )
695
+ check_round_trip(
696
+ df, pa, read_kwargs={"dtype_backend": "numpy_nullable"}, expected=expected
697
+ )
698
+
699
+
700
+ class TestParquetPyArrow(Base):
701
+ def test_basic(self, pa, df_full):
702
+ df = df_full
703
+
704
+ # additional supported types for pyarrow
705
+ dti = pd.date_range("20130101", periods=3, tz="Europe/Brussels")
706
+ dti = dti._with_freq(None) # freq doesn't round-trip
707
+ df["datetime_tz"] = dti
708
+ df["bool_with_none"] = [True, None, True]
709
+
710
+ check_round_trip(df, pa)
711
+
712
+ def test_basic_subset_columns(self, pa, df_full):
713
+ # GH18628
714
+
715
+ df = df_full
716
+ # additional supported types for pyarrow
717
+ df["datetime_tz"] = pd.date_range("20130101", periods=3, tz="Europe/Brussels")
718
+
719
+ check_round_trip(
720
+ df,
721
+ pa,
722
+ expected=df[["string", "int"]],
723
+ read_kwargs={"columns": ["string", "int"]},
724
+ )
725
+
726
+ def test_to_bytes_without_path_or_buf_provided(self, pa, df_full):
727
+ # GH 37105
728
+ buf_bytes = df_full.to_parquet(engine=pa)
729
+ assert isinstance(buf_bytes, bytes)
730
+
731
+ buf_stream = BytesIO(buf_bytes)
732
+ res = read_parquet(buf_stream)
733
+
734
+ expected = df_full.copy()
735
+ expected.loc[1, "string_with_nan"] = None
736
+ tm.assert_frame_equal(res, expected)
737
+
738
+ def test_duplicate_columns(self, pa):
739
+ # not currently able to handle duplicate columns
740
+ df = pd.DataFrame(np.arange(12).reshape(4, 3), columns=list("aaa")).copy()
741
+ self.check_error_on_write(df, pa, ValueError, "Duplicate column names found")
742
+
743
+ def test_timedelta(self, pa):
744
+ df = pd.DataFrame({"a": pd.timedelta_range("1 day", periods=3)})
745
+ check_round_trip(df, pa)
746
+
747
+ def test_unsupported(self, pa):
748
+ # mixed python objects
749
+ df = pd.DataFrame({"a": ["a", 1, 2.0]})
750
+ # pyarrow 0.11 raises ArrowTypeError
751
+ # older pyarrows raise ArrowInvalid
752
+ self.check_external_error_on_write(df, pa, pyarrow.ArrowException)
753
+
754
+ def test_unsupported_float16(self, pa):
755
+ # #44847, #44914
756
+ # Not able to write float 16 column using pyarrow.
757
+ data = np.arange(2, 10, dtype=np.float16)
758
+ df = pd.DataFrame(data=data, columns=["fp16"])
759
+ if pa_version_under15p0:
760
+ self.check_external_error_on_write(df, pa, pyarrow.ArrowException)
761
+ else:
762
+ check_round_trip(df, pa)
763
+
764
+ @pytest.mark.xfail(
765
+ is_platform_windows(),
766
+ reason=(
767
+ "PyArrow does not cleanup of partial files dumps when unsupported "
768
+ "dtypes are passed to_parquet function in windows"
769
+ ),
770
+ )
771
+ @pytest.mark.skipif(not pa_version_under15p0, reason="float16 works on 15")
772
+ @pytest.mark.parametrize("path_type", [str, pathlib.Path])
773
+ def test_unsupported_float16_cleanup(self, pa, path_type):
774
+ # #44847, #44914
775
+ # Not able to write float 16 column using pyarrow.
776
+ # Tests cleanup by pyarrow in case of an error
777
+ data = np.arange(2, 10, dtype=np.float16)
778
+ df = pd.DataFrame(data=data, columns=["fp16"])
779
+
780
+ with tm.ensure_clean() as path_str:
781
+ path = path_type(path_str)
782
+ with tm.external_error_raised(pyarrow.ArrowException):
783
+ df.to_parquet(path=path, engine=pa)
784
+ assert not os.path.isfile(path)
785
+
786
+ def test_categorical(self, pa):
787
+ # supported in >= 0.7.0
788
+ df = pd.DataFrame()
789
+ df["a"] = pd.Categorical(list("abcdef"))
790
+
791
+ # test for null, out-of-order values, and unobserved category
792
+ df["b"] = pd.Categorical(
793
+ ["bar", "foo", "foo", "bar", None, "bar"],
794
+ dtype=pd.CategoricalDtype(["foo", "bar", "baz"]),
795
+ )
796
+
797
+ # test for ordered flag
798
+ df["c"] = pd.Categorical(
799
+ ["a", "b", "c", "a", "c", "b"], categories=["b", "c", "d"], ordered=True
800
+ )
801
+
802
+ check_round_trip(df, pa)
803
+
804
+ @pytest.mark.single_cpu
805
+ def test_s3_roundtrip_explicit_fs(self, df_compat, s3_public_bucket, pa, s3so):
806
+ s3fs = pytest.importorskip("s3fs")
807
+ s3 = s3fs.S3FileSystem(**s3so)
808
+ kw = {"filesystem": s3}
809
+ check_round_trip(
810
+ df_compat,
811
+ pa,
812
+ path=f"{s3_public_bucket.name}/pyarrow.parquet",
813
+ read_kwargs=kw,
814
+ write_kwargs=kw,
815
+ )
816
+
817
+ @pytest.mark.single_cpu
818
+ def test_s3_roundtrip(self, df_compat, s3_public_bucket, pa, s3so):
819
+ # GH #19134
820
+ s3so = {"storage_options": s3so}
821
+ check_round_trip(
822
+ df_compat,
823
+ pa,
824
+ path=f"s3://{s3_public_bucket.name}/pyarrow.parquet",
825
+ read_kwargs=s3so,
826
+ write_kwargs=s3so,
827
+ )
828
+
829
+ @pytest.mark.single_cpu
830
+ @pytest.mark.parametrize(
831
+ "partition_col",
832
+ [
833
+ ["A"],
834
+ [],
835
+ ],
836
+ )
837
+ def test_s3_roundtrip_for_dir(
838
+ self, df_compat, s3_public_bucket, pa, partition_col, s3so
839
+ ):
840
+ pytest.importorskip("s3fs")
841
+ # GH #26388
842
+ expected_df = df_compat.copy()
843
+
844
+ # GH #35791
845
+ if partition_col:
846
+ expected_df = expected_df.astype(dict.fromkeys(partition_col, np.int32))
847
+ partition_col_type = "category"
848
+
849
+ expected_df[partition_col] = expected_df[partition_col].astype(
850
+ partition_col_type
851
+ )
852
+
853
+ check_round_trip(
854
+ df_compat,
855
+ pa,
856
+ expected=expected_df,
857
+ path=f"s3://{s3_public_bucket.name}/parquet_dir",
858
+ read_kwargs={"storage_options": s3so},
859
+ write_kwargs={
860
+ "partition_cols": partition_col,
861
+ "compression": None,
862
+ "storage_options": s3so,
863
+ },
864
+ check_like=True,
865
+ repeat=1,
866
+ )
867
+
868
+ def test_read_file_like_obj_support(self, df_compat):
869
+ pytest.importorskip("pyarrow")
870
+ buffer = BytesIO()
871
+ df_compat.to_parquet(buffer)
872
+ df_from_buf = read_parquet(buffer)
873
+ tm.assert_frame_equal(df_compat, df_from_buf)
874
+
875
+ def test_expand_user(self, df_compat, monkeypatch):
876
+ pytest.importorskip("pyarrow")
877
+ monkeypatch.setenv("HOME", "TestingUser")
878
+ monkeypatch.setenv("USERPROFILE", "TestingUser")
879
+ with pytest.raises(OSError, match=r".*TestingUser.*"):
880
+ read_parquet("~/file.parquet")
881
+ with pytest.raises(OSError, match=r".*TestingUser.*"):
882
+ df_compat.to_parquet("~/file.parquet")
883
+
884
+ def test_partition_cols_supported(self, tmp_path, pa, df_full):
885
+ # GH #23283
886
+ partition_cols = ["bool", "int"]
887
+ df = df_full
888
+ df.to_parquet(tmp_path, partition_cols=partition_cols, compression=None)
889
+ check_partition_names(tmp_path, partition_cols)
890
+ assert read_parquet(tmp_path).shape == df.shape
891
+
892
+ def test_partition_cols_string(self, tmp_path, pa, df_full):
893
+ # GH #27117
894
+ partition_cols = "bool"
895
+ partition_cols_list = [partition_cols]
896
+ df = df_full
897
+ df.to_parquet(tmp_path, partition_cols=partition_cols, compression=None)
898
+ check_partition_names(tmp_path, partition_cols_list)
899
+ assert read_parquet(tmp_path).shape == df.shape
900
+
901
+ @pytest.mark.parametrize(
902
+ "path_type", [str, lambda x: x], ids=["string", "pathlib.Path"]
903
+ )
904
+ def test_partition_cols_pathlib(self, tmp_path, pa, df_compat, path_type):
905
+ # GH 35902
906
+
907
+ partition_cols = "B"
908
+ partition_cols_list = [partition_cols]
909
+ df = df_compat
910
+
911
+ path = path_type(tmp_path)
912
+ df.to_parquet(path, partition_cols=partition_cols_list)
913
+ assert read_parquet(path).shape == df.shape
914
+
915
+ def test_empty_dataframe(self, pa):
916
+ # GH #27339
917
+ df = pd.DataFrame(index=[], columns=[])
918
+ check_round_trip(df, pa)
919
+
920
+ def test_write_with_schema(self, pa):
921
+ import pyarrow
922
+
923
+ df = pd.DataFrame({"x": [0, 1]})
924
+ schema = pyarrow.schema([pyarrow.field("x", type=pyarrow.bool_())])
925
+ out_df = df.astype(bool)
926
+ check_round_trip(df, pa, write_kwargs={"schema": schema}, expected=out_df)
927
+
928
+ def test_additional_extension_arrays(self, pa):
929
+ # test additional ExtensionArrays that are supported through the
930
+ # __arrow_array__ protocol
931
+ pytest.importorskip("pyarrow")
932
+ df = pd.DataFrame(
933
+ {
934
+ "a": pd.Series([1, 2, 3], dtype="Int64"),
935
+ "b": pd.Series([1, 2, 3], dtype="UInt32"),
936
+ "c": pd.Series(["a", None, "c"], dtype="string"),
937
+ }
938
+ )
939
+ check_round_trip(df, pa)
940
+
941
+ df = pd.DataFrame({"a": pd.Series([1, 2, 3, None], dtype="Int64")})
942
+ check_round_trip(df, pa)
943
+
944
+ def test_pyarrow_backed_string_array(self, pa, string_storage):
945
+ # test ArrowStringArray supported through the __arrow_array__ protocol
946
+ pytest.importorskip("pyarrow")
947
+ df = pd.DataFrame({"a": pd.Series(["a", None, "c"], dtype="string[pyarrow]")})
948
+ with pd.option_context("string_storage", string_storage):
949
+ check_round_trip(df, pa, expected=df.astype(f"string[{string_storage}]"))
950
+
951
+ def test_additional_extension_types(self, pa):
952
+ # test additional ExtensionArrays that are supported through the
953
+ # __arrow_array__ protocol + by defining a custom ExtensionType
954
+ pytest.importorskip("pyarrow")
955
+ df = pd.DataFrame(
956
+ {
957
+ "c": pd.IntervalIndex.from_tuples([(0, 1), (1, 2), (3, 4)]),
958
+ "d": pd.period_range("2012-01-01", periods=3, freq="D"),
959
+ # GH-45881 issue with interval with datetime64[ns] subtype
960
+ "e": pd.IntervalIndex.from_breaks(
961
+ pd.date_range("2012-01-01", periods=4, freq="D")
962
+ ),
963
+ }
964
+ )
965
+ check_round_trip(df, pa)
966
+
967
+ def test_timestamp_nanoseconds(self, pa):
968
+ # with version 2.6, pyarrow defaults to writing the nanoseconds, so
969
+ # this should work without error
970
+ # Note in previous pyarrows(<7.0.0), only the pseudo-version 2.0 was available
971
+ ver = "2.6"
972
+ df = pd.DataFrame({"a": pd.date_range("2017-01-01", freq="1ns", periods=10)})
973
+ check_round_trip(df, pa, write_kwargs={"version": ver})
974
+
975
+ def test_timezone_aware_index(self, request, pa, timezone_aware_date_list):
976
+ if timezone_aware_date_list.tzinfo != datetime.timezone.utc:
977
+ request.applymarker(
978
+ pytest.mark.xfail(
979
+ reason="temporary skip this test until it is properly resolved: "
980
+ "https://github.com/pandas-dev/pandas/issues/37286"
981
+ )
982
+ )
983
+ idx = 5 * [timezone_aware_date_list]
984
+ df = pd.DataFrame(index=idx, data={"index_as_col": idx})
985
+
986
+ # see gh-36004
987
+ # compare time(zone) values only, skip their class:
988
+ # pyarrow always creates fixed offset timezones using pytz.FixedOffset()
989
+ # even if it was datetime.timezone() originally
990
+ #
991
+ # technically they are the same:
992
+ # they both implement datetime.tzinfo
993
+ # they both wrap datetime.timedelta()
994
+ # this use-case sets the resolution to 1 minute
995
+ check_round_trip(df, pa, check_dtype=False)
996
+
997
+ def test_filter_row_groups(self, pa):
998
+ # https://github.com/pandas-dev/pandas/issues/26551
999
+ pytest.importorskip("pyarrow")
1000
+ df = pd.DataFrame({"a": list(range(3))})
1001
+ with tm.ensure_clean() as path:
1002
+ df.to_parquet(path, engine=pa)
1003
+ result = read_parquet(path, pa, filters=[("a", "==", 0)])
1004
+ assert len(result) == 1
1005
+
1006
+ def test_read_parquet_manager(self, pa, using_array_manager):
1007
+ # ensure that read_parquet honors the pandas.options.mode.data_manager option
1008
+ df = pd.DataFrame(
1009
+ np.random.default_rng(2).standard_normal((10, 3)), columns=["A", "B", "C"]
1010
+ )
1011
+
1012
+ with tm.ensure_clean() as path:
1013
+ df.to_parquet(path, engine=pa)
1014
+ result = read_parquet(path, pa)
1015
+ if using_array_manager:
1016
+ assert isinstance(result._mgr, pd.core.internals.ArrayManager)
1017
+ else:
1018
+ assert isinstance(result._mgr, pd.core.internals.BlockManager)
1019
+
1020
+ def test_read_dtype_backend_pyarrow_config(self, pa, df_full):
1021
+ import pyarrow
1022
+
1023
+ df = df_full
1024
+
1025
+ # additional supported types for pyarrow
1026
+ dti = pd.date_range("20130101", periods=3, tz="Europe/Brussels")
1027
+ dti = dti._with_freq(None) # freq doesn't round-trip
1028
+ df["datetime_tz"] = dti
1029
+ df["bool_with_none"] = [True, None, True]
1030
+
1031
+ pa_table = pyarrow.Table.from_pandas(df)
1032
+ expected = pa_table.to_pandas(types_mapper=pd.ArrowDtype)
1033
+ if pa_version_under13p0:
1034
+ # pyarrow infers datetimes as us instead of ns
1035
+ expected["datetime"] = expected["datetime"].astype("timestamp[us][pyarrow]")
1036
+ expected["datetime_with_nat"] = expected["datetime_with_nat"].astype(
1037
+ "timestamp[us][pyarrow]"
1038
+ )
1039
+ expected["datetime_tz"] = expected["datetime_tz"].astype(
1040
+ pd.ArrowDtype(pyarrow.timestamp(unit="us", tz="Europe/Brussels"))
1041
+ )
1042
+
1043
+ check_round_trip(
1044
+ df,
1045
+ engine=pa,
1046
+ read_kwargs={"dtype_backend": "pyarrow"},
1047
+ expected=expected,
1048
+ )
1049
+
1050
+ def test_read_dtype_backend_pyarrow_config_index(self, pa):
1051
+ df = pd.DataFrame(
1052
+ {"a": [1, 2]}, index=pd.Index([3, 4], name="test"), dtype="int64[pyarrow]"
1053
+ )
1054
+ expected = df.copy()
1055
+ import pyarrow
1056
+
1057
+ if Version(pyarrow.__version__) > Version("11.0.0"):
1058
+ expected.index = expected.index.astype("int64[pyarrow]")
1059
+ check_round_trip(
1060
+ df,
1061
+ engine=pa,
1062
+ read_kwargs={"dtype_backend": "pyarrow"},
1063
+ expected=expected,
1064
+ )
1065
+
1066
+ def test_columns_dtypes_not_invalid(self, pa):
1067
+ df = pd.DataFrame({"string": list("abc"), "int": list(range(1, 4))})
1068
+
1069
+ # numeric
1070
+ df.columns = [0, 1]
1071
+ check_round_trip(df, pa)
1072
+
1073
+ # bytes
1074
+ df.columns = [b"foo", b"bar"]
1075
+ with pytest.raises(NotImplementedError, match="|S3"):
1076
+ # Bytes fails on read_parquet
1077
+ check_round_trip(df, pa)
1078
+
1079
+ # python object
1080
+ df.columns = [
1081
+ datetime.datetime(2011, 1, 1, 0, 0),
1082
+ datetime.datetime(2011, 1, 1, 1, 1),
1083
+ ]
1084
+ check_round_trip(df, pa)
1085
+
1086
+ def test_empty_columns(self, pa):
1087
+ # GH 52034
1088
+ df = pd.DataFrame(index=pd.Index(["a", "b", "c"], name="custom name"))
1089
+ check_round_trip(df, pa)
1090
+
1091
+ def test_df_attrs_persistence(self, tmp_path, pa):
1092
+ path = tmp_path / "test_df_metadata.p"
1093
+ df = pd.DataFrame(data={1: [1]})
1094
+ df.attrs = {"test_attribute": 1}
1095
+ df.to_parquet(path, engine=pa)
1096
+ new_df = read_parquet(path, engine=pa)
1097
+ assert new_df.attrs == df.attrs
1098
+
1099
+ def test_string_inference(self, tmp_path, pa):
1100
+ # GH#54431
1101
+ path = tmp_path / "test_string_inference.p"
1102
+ df = pd.DataFrame(data={"a": ["x", "y"]}, index=["a", "b"])
1103
+ df.to_parquet(path, engine="pyarrow")
1104
+ with pd.option_context("future.infer_string", True):
1105
+ result = read_parquet(path, engine="pyarrow")
1106
+ expected = pd.DataFrame(
1107
+ data={"a": ["x", "y"]},
1108
+ dtype="string[pyarrow_numpy]",
1109
+ index=pd.Index(["a", "b"], dtype="string[pyarrow_numpy]"),
1110
+ )
1111
+ tm.assert_frame_equal(result, expected)
1112
+
1113
+ @pytest.mark.skipif(pa_version_under11p0, reason="not supported before 11.0")
1114
+ def test_roundtrip_decimal(self, tmp_path, pa):
1115
+ # GH#54768
1116
+ import pyarrow as pa
1117
+
1118
+ path = tmp_path / "decimal.p"
1119
+ df = pd.DataFrame({"a": [Decimal("123.00")]}, dtype="string[pyarrow]")
1120
+ df.to_parquet(path, schema=pa.schema([("a", pa.decimal128(5))]))
1121
+ result = read_parquet(path)
1122
+ expected = pd.DataFrame({"a": ["123"]}, dtype="string[python]")
1123
+ tm.assert_frame_equal(result, expected)
1124
+
1125
+ def test_infer_string_large_string_type(self, tmp_path, pa):
1126
+ # GH#54798
1127
+ import pyarrow as pa
1128
+ import pyarrow.parquet as pq
1129
+
1130
+ path = tmp_path / "large_string.p"
1131
+
1132
+ table = pa.table({"a": pa.array([None, "b", "c"], pa.large_string())})
1133
+ pq.write_table(table, path)
1134
+
1135
+ with pd.option_context("future.infer_string", True):
1136
+ result = read_parquet(path)
1137
+ expected = pd.DataFrame(
1138
+ data={"a": [None, "b", "c"]},
1139
+ dtype="string[pyarrow_numpy]",
1140
+ columns=pd.Index(["a"], dtype="string[pyarrow_numpy]"),
1141
+ )
1142
+ tm.assert_frame_equal(result, expected)
1143
+
1144
+ # NOTE: this test is not run by default, because it requires a lot of memory (>5GB)
1145
+ # @pytest.mark.slow
1146
+ # def test_string_column_above_2GB(self, tmp_path, pa):
1147
+ # # https://github.com/pandas-dev/pandas/issues/55606
1148
+ # # above 2GB of string data
1149
+ # v1 = b"x" * 100000000
1150
+ # v2 = b"x" * 147483646
1151
+ # df = pd.DataFrame({"strings": [v1] * 20 + [v2] + ["x"] * 20}, dtype="string")
1152
+ # df.to_parquet(tmp_path / "test.parquet")
1153
+ # result = read_parquet(tmp_path / "test.parquet")
1154
+ # assert result["strings"].dtype == "string"
1155
+
1156
+
1157
+ class TestParquetFastParquet(Base):
1158
+ def test_basic(self, fp, df_full):
1159
+ df = df_full
1160
+
1161
+ dti = pd.date_range("20130101", periods=3, tz="US/Eastern")
1162
+ dti = dti._with_freq(None) # freq doesn't round-trip
1163
+ df["datetime_tz"] = dti
1164
+ df["timedelta"] = pd.timedelta_range("1 day", periods=3)
1165
+ check_round_trip(df, fp)
1166
+
1167
+ def test_columns_dtypes_invalid(self, fp):
1168
+ df = pd.DataFrame({"string": list("abc"), "int": list(range(1, 4))})
1169
+
1170
+ err = TypeError
1171
+ msg = "Column name must be a string"
1172
+
1173
+ # numeric
1174
+ df.columns = [0, 1]
1175
+ self.check_error_on_write(df, fp, err, msg)
1176
+
1177
+ # bytes
1178
+ df.columns = [b"foo", b"bar"]
1179
+ self.check_error_on_write(df, fp, err, msg)
1180
+
1181
+ # python object
1182
+ df.columns = [
1183
+ datetime.datetime(2011, 1, 1, 0, 0),
1184
+ datetime.datetime(2011, 1, 1, 1, 1),
1185
+ ]
1186
+ self.check_error_on_write(df, fp, err, msg)
1187
+
1188
+ def test_duplicate_columns(self, fp):
1189
+ # not currently able to handle duplicate columns
1190
+ df = pd.DataFrame(np.arange(12).reshape(4, 3), columns=list("aaa")).copy()
1191
+ msg = "Cannot create parquet dataset with duplicate column names"
1192
+ self.check_error_on_write(df, fp, ValueError, msg)
1193
+
1194
+ def test_bool_with_none(self, fp):
1195
+ df = pd.DataFrame({"a": [True, None, False]})
1196
+ expected = pd.DataFrame({"a": [1.0, np.nan, 0.0]}, dtype="float16")
1197
+ # Fastparquet bug in 0.7.1 makes it so that this dtype becomes
1198
+ # float64
1199
+ check_round_trip(df, fp, expected=expected, check_dtype=False)
1200
+
1201
+ def test_unsupported(self, fp):
1202
+ # period
1203
+ df = pd.DataFrame({"a": pd.period_range("2013", freq="M", periods=3)})
1204
+ # error from fastparquet -> don't check exact error message
1205
+ self.check_error_on_write(df, fp, ValueError, None)
1206
+
1207
+ # mixed
1208
+ df = pd.DataFrame({"a": ["a", 1, 2.0]})
1209
+ msg = "Can't infer object conversion type"
1210
+ self.check_error_on_write(df, fp, ValueError, msg)
1211
+
1212
+ def test_categorical(self, fp):
1213
+ df = pd.DataFrame({"a": pd.Categorical(list("abc"))})
1214
+ check_round_trip(df, fp)
1215
+
1216
+ def test_filter_row_groups(self, fp):
1217
+ d = {"a": list(range(3))}
1218
+ df = pd.DataFrame(d)
1219
+ with tm.ensure_clean() as path:
1220
+ df.to_parquet(path, engine=fp, compression=None, row_group_offsets=1)
1221
+ result = read_parquet(path, fp, filters=[("a", "==", 0)])
1222
+ assert len(result) == 1
1223
+
1224
+ @pytest.mark.single_cpu
1225
+ def test_s3_roundtrip(self, df_compat, s3_public_bucket, fp, s3so):
1226
+ # GH #19134
1227
+ check_round_trip(
1228
+ df_compat,
1229
+ fp,
1230
+ path=f"s3://{s3_public_bucket.name}/fastparquet.parquet",
1231
+ read_kwargs={"storage_options": s3so},
1232
+ write_kwargs={"compression": None, "storage_options": s3so},
1233
+ )
1234
+
1235
+ def test_partition_cols_supported(self, tmp_path, fp, df_full):
1236
+ # GH #23283
1237
+ partition_cols = ["bool", "int"]
1238
+ df = df_full
1239
+ df.to_parquet(
1240
+ tmp_path,
1241
+ engine="fastparquet",
1242
+ partition_cols=partition_cols,
1243
+ compression=None,
1244
+ )
1245
+ assert os.path.exists(tmp_path)
1246
+ import fastparquet
1247
+
1248
+ actual_partition_cols = fastparquet.ParquetFile(str(tmp_path), False).cats
1249
+ assert len(actual_partition_cols) == 2
1250
+
1251
+ def test_partition_cols_string(self, tmp_path, fp, df_full):
1252
+ # GH #27117
1253
+ partition_cols = "bool"
1254
+ df = df_full
1255
+ df.to_parquet(
1256
+ tmp_path,
1257
+ engine="fastparquet",
1258
+ partition_cols=partition_cols,
1259
+ compression=None,
1260
+ )
1261
+ assert os.path.exists(tmp_path)
1262
+ import fastparquet
1263
+
1264
+ actual_partition_cols = fastparquet.ParquetFile(str(tmp_path), False).cats
1265
+ assert len(actual_partition_cols) == 1
1266
+
1267
+ def test_partition_on_supported(self, tmp_path, fp, df_full):
1268
+ # GH #23283
1269
+ partition_cols = ["bool", "int"]
1270
+ df = df_full
1271
+ df.to_parquet(
1272
+ tmp_path,
1273
+ engine="fastparquet",
1274
+ compression=None,
1275
+ partition_on=partition_cols,
1276
+ )
1277
+ assert os.path.exists(tmp_path)
1278
+ import fastparquet
1279
+
1280
+ actual_partition_cols = fastparquet.ParquetFile(str(tmp_path), False).cats
1281
+ assert len(actual_partition_cols) == 2
1282
+
1283
+ def test_error_on_using_partition_cols_and_partition_on(
1284
+ self, tmp_path, fp, df_full
1285
+ ):
1286
+ # GH #23283
1287
+ partition_cols = ["bool", "int"]
1288
+ df = df_full
1289
+ msg = (
1290
+ "Cannot use both partition_on and partition_cols. Use partition_cols for "
1291
+ "partitioning data"
1292
+ )
1293
+ with pytest.raises(ValueError, match=msg):
1294
+ df.to_parquet(
1295
+ tmp_path,
1296
+ engine="fastparquet",
1297
+ compression=None,
1298
+ partition_on=partition_cols,
1299
+ partition_cols=partition_cols,
1300
+ )
1301
+
1302
+ @pytest.mark.skipif(using_copy_on_write(), reason="fastparquet writes into Index")
1303
+ def test_empty_dataframe(self, fp):
1304
+ # GH #27339
1305
+ df = pd.DataFrame()
1306
+ expected = df.copy()
1307
+ check_round_trip(df, fp, expected=expected)
1308
+
1309
+ @pytest.mark.skipif(using_copy_on_write(), reason="fastparquet writes into Index")
1310
+ def test_timezone_aware_index(self, fp, timezone_aware_date_list):
1311
+ idx = 5 * [timezone_aware_date_list]
1312
+
1313
+ df = pd.DataFrame(index=idx, data={"index_as_col": idx})
1314
+
1315
+ expected = df.copy()
1316
+ expected.index.name = "index"
1317
+ check_round_trip(df, fp, expected=expected)
1318
+
1319
+ def test_use_nullable_dtypes_not_supported(self, fp):
1320
+ df = pd.DataFrame({"a": [1, 2]})
1321
+
1322
+ with tm.ensure_clean() as path:
1323
+ df.to_parquet(path)
1324
+ with pytest.raises(ValueError, match="not supported for the fastparquet"):
1325
+ with tm.assert_produces_warning(FutureWarning):
1326
+ read_parquet(path, engine="fastparquet", use_nullable_dtypes=True)
1327
+ with pytest.raises(ValueError, match="not supported for the fastparquet"):
1328
+ read_parquet(path, engine="fastparquet", dtype_backend="pyarrow")
1329
+
1330
+ def test_close_file_handle_on_read_error(self):
1331
+ with tm.ensure_clean("test.parquet") as path:
1332
+ pathlib.Path(path).write_bytes(b"breakit")
1333
+ with pytest.raises(Exception, match=""): # Not important which exception
1334
+ read_parquet(path, engine="fastparquet")
1335
+ # The next line raises an error on Windows if the file is still open
1336
+ pathlib.Path(path).unlink(missing_ok=False)
1337
+
1338
+ def test_bytes_file_name(self, engine):
1339
+ # GH#48944
1340
+ df = pd.DataFrame(data={"A": [0, 1], "B": [1, 0]})
1341
+ with tm.ensure_clean("test.parquet") as path:
1342
+ with open(path.encode(), "wb") as f:
1343
+ df.to_parquet(f)
1344
+
1345
+ result = read_parquet(path, engine=engine)
1346
+ tm.assert_frame_equal(result, df)
1347
+
1348
+ def test_filesystem_notimplemented(self):
1349
+ pytest.importorskip("fastparquet")
1350
+ df = pd.DataFrame(data={"A": [0, 1], "B": [1, 0]})
1351
+ with tm.ensure_clean() as path:
1352
+ with pytest.raises(
1353
+ NotImplementedError, match="filesystem is not implemented"
1354
+ ):
1355
+ df.to_parquet(path, engine="fastparquet", filesystem="foo")
1356
+
1357
+ with tm.ensure_clean() as path:
1358
+ pathlib.Path(path).write_bytes(b"foo")
1359
+ with pytest.raises(
1360
+ NotImplementedError, match="filesystem is not implemented"
1361
+ ):
1362
+ read_parquet(path, engine="fastparquet", filesystem="foo")
1363
+
1364
+ def test_invalid_filesystem(self):
1365
+ pytest.importorskip("pyarrow")
1366
+ df = pd.DataFrame(data={"A": [0, 1], "B": [1, 0]})
1367
+ with tm.ensure_clean() as path:
1368
+ with pytest.raises(
1369
+ ValueError, match="filesystem must be a pyarrow or fsspec FileSystem"
1370
+ ):
1371
+ df.to_parquet(path, engine="pyarrow", filesystem="foo")
1372
+
1373
+ with tm.ensure_clean() as path:
1374
+ pathlib.Path(path).write_bytes(b"foo")
1375
+ with pytest.raises(
1376
+ ValueError, match="filesystem must be a pyarrow or fsspec FileSystem"
1377
+ ):
1378
+ read_parquet(path, engine="pyarrow", filesystem="foo")
1379
+
1380
+ def test_unsupported_pa_filesystem_storage_options(self):
1381
+ pa_fs = pytest.importorskip("pyarrow.fs")
1382
+ df = pd.DataFrame(data={"A": [0, 1], "B": [1, 0]})
1383
+ with tm.ensure_clean() as path:
1384
+ with pytest.raises(
1385
+ NotImplementedError,
1386
+ match="storage_options not supported with a pyarrow FileSystem.",
1387
+ ):
1388
+ df.to_parquet(
1389
+ path,
1390
+ engine="pyarrow",
1391
+ filesystem=pa_fs.LocalFileSystem(),
1392
+ storage_options={"foo": "bar"},
1393
+ )
1394
+
1395
+ with tm.ensure_clean() as path:
1396
+ pathlib.Path(path).write_bytes(b"foo")
1397
+ with pytest.raises(
1398
+ NotImplementedError,
1399
+ match="storage_options not supported with a pyarrow FileSystem.",
1400
+ ):
1401
+ read_parquet(
1402
+ path,
1403
+ engine="pyarrow",
1404
+ filesystem=pa_fs.LocalFileSystem(),
1405
+ storage_options={"foo": "bar"},
1406
+ )
1407
+
1408
+ def test_invalid_dtype_backend(self, engine):
1409
+ msg = (
1410
+ "dtype_backend numpy is invalid, only 'numpy_nullable' and "
1411
+ "'pyarrow' are allowed."
1412
+ )
1413
+ df = pd.DataFrame({"int": list(range(1, 4))})
1414
+ with tm.ensure_clean("tmp.parquet") as path:
1415
+ df.to_parquet(path)
1416
+ with pytest.raises(ValueError, match=msg):
1417
+ read_parquet(path, dtype_backend="numpy")
1418
+
1419
+ @pytest.mark.skipif(using_copy_on_write(), reason="fastparquet writes into Index")
1420
+ def test_empty_columns(self, fp):
1421
+ # GH 52034
1422
+ df = pd.DataFrame(index=pd.Index(["a", "b", "c"], name="custom name"))
1423
+ expected = pd.DataFrame(index=pd.Index(["a", "b", "c"], name="custom name"))
1424
+ check_round_trip(df, fp, expected=expected)
llmeval-env/lib/python3.10/site-packages/pandas/tests/io/test_pickle.py ADDED
@@ -0,0 +1,652 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ manage legacy pickle tests
3
+
4
+ How to add pickle tests:
5
+
6
+ 1. Install pandas version intended to output the pickle.
7
+
8
+ 2. Execute "generate_legacy_storage_files.py" to create the pickle.
9
+ $ python generate_legacy_storage_files.py <output_dir> pickle
10
+
11
+ 3. Move the created pickle to "data/legacy_pickle/<version>" directory.
12
+ """
13
+ from __future__ import annotations
14
+
15
+ from array import array
16
+ import bz2
17
+ import datetime
18
+ import functools
19
+ from functools import partial
20
+ import gzip
21
+ import io
22
+ import os
23
+ from pathlib import Path
24
+ import pickle
25
+ import shutil
26
+ import tarfile
27
+ from typing import Any
28
+ import uuid
29
+ import zipfile
30
+
31
+ import numpy as np
32
+ import pytest
33
+
34
+ from pandas.compat import (
35
+ get_lzma_file,
36
+ is_platform_little_endian,
37
+ )
38
+ from pandas.compat._optional import import_optional_dependency
39
+ from pandas.compat.compressors import flatten_buffer
40
+ import pandas.util._test_decorators as td
41
+
42
+ import pandas as pd
43
+ from pandas import (
44
+ DataFrame,
45
+ Index,
46
+ Series,
47
+ period_range,
48
+ )
49
+ import pandas._testing as tm
50
+ from pandas.tests.io.generate_legacy_storage_files import create_pickle_data
51
+
52
+ import pandas.io.common as icom
53
+ from pandas.tseries.offsets import (
54
+ Day,
55
+ MonthEnd,
56
+ )
57
+
58
+
59
+ # ---------------------
60
+ # comparison functions
61
+ # ---------------------
62
+ def compare_element(result, expected, typ):
63
+ if isinstance(expected, Index):
64
+ tm.assert_index_equal(expected, result)
65
+ return
66
+
67
+ if typ.startswith("sp_"):
68
+ tm.assert_equal(result, expected)
69
+ elif typ == "timestamp":
70
+ if expected is pd.NaT:
71
+ assert result is pd.NaT
72
+ else:
73
+ assert result == expected
74
+ else:
75
+ comparator = getattr(tm, f"assert_{typ}_equal", tm.assert_almost_equal)
76
+ comparator(result, expected)
77
+
78
+
79
+ # ---------------------
80
+ # tests
81
+ # ---------------------
82
+
83
+
84
+ @pytest.mark.parametrize(
85
+ "data",
86
+ [
87
+ b"123",
88
+ b"123456",
89
+ bytearray(b"123"),
90
+ memoryview(b"123"),
91
+ pickle.PickleBuffer(b"123"),
92
+ array("I", [1, 2, 3]),
93
+ memoryview(b"123456").cast("B", (3, 2)),
94
+ memoryview(b"123456").cast("B", (3, 2))[::2],
95
+ np.arange(12).reshape((3, 4), order="C"),
96
+ np.arange(12).reshape((3, 4), order="F"),
97
+ np.arange(12).reshape((3, 4), order="C")[:, ::2],
98
+ ],
99
+ )
100
+ def test_flatten_buffer(data):
101
+ result = flatten_buffer(data)
102
+ expected = memoryview(data).tobytes("A")
103
+ assert result == expected
104
+ if isinstance(data, (bytes, bytearray)):
105
+ assert result is data
106
+ elif isinstance(result, memoryview):
107
+ assert result.ndim == 1
108
+ assert result.format == "B"
109
+ assert result.contiguous
110
+ assert result.shape == (result.nbytes,)
111
+
112
+
113
+ def test_pickles(datapath):
114
+ if not is_platform_little_endian():
115
+ pytest.skip("known failure on non-little endian")
116
+
117
+ # For loop for compat with --strict-data-files
118
+ for legacy_pickle in Path(__file__).parent.glob("data/legacy_pickle/*/*.p*kl*"):
119
+ legacy_pickle = datapath(legacy_pickle)
120
+
121
+ data = pd.read_pickle(legacy_pickle)
122
+
123
+ for typ, dv in data.items():
124
+ for dt, result in dv.items():
125
+ expected = data[typ][dt]
126
+
127
+ if typ == "series" and dt == "ts":
128
+ # GH 7748
129
+ tm.assert_series_equal(result, expected)
130
+ assert result.index.freq == expected.index.freq
131
+ assert not result.index.freq.normalize
132
+ tm.assert_series_equal(result > 0, expected > 0)
133
+
134
+ # GH 9291
135
+ freq = result.index.freq
136
+ assert freq + Day(1) == Day(2)
137
+
138
+ res = freq + pd.Timedelta(hours=1)
139
+ assert isinstance(res, pd.Timedelta)
140
+ assert res == pd.Timedelta(days=1, hours=1)
141
+
142
+ res = freq + pd.Timedelta(nanoseconds=1)
143
+ assert isinstance(res, pd.Timedelta)
144
+ assert res == pd.Timedelta(days=1, nanoseconds=1)
145
+ elif typ == "index" and dt == "period":
146
+ tm.assert_index_equal(result, expected)
147
+ assert isinstance(result.freq, MonthEnd)
148
+ assert result.freq == MonthEnd()
149
+ assert result.freqstr == "M"
150
+ tm.assert_index_equal(result.shift(2), expected.shift(2))
151
+ elif typ == "series" and dt in ("dt_tz", "cat"):
152
+ tm.assert_series_equal(result, expected)
153
+ elif typ == "frame" and dt in (
154
+ "dt_mixed_tzs",
155
+ "cat_onecol",
156
+ "cat_and_float",
157
+ ):
158
+ tm.assert_frame_equal(result, expected)
159
+ else:
160
+ compare_element(result, expected, typ)
161
+
162
+
163
+ def python_pickler(obj, path):
164
+ with open(path, "wb") as fh:
165
+ pickle.dump(obj, fh, protocol=-1)
166
+
167
+
168
+ def python_unpickler(path):
169
+ with open(path, "rb") as fh:
170
+ fh.seek(0)
171
+ return pickle.load(fh)
172
+
173
+
174
+ def flatten(data: dict) -> list[tuple[str, Any]]:
175
+ """Flatten create_pickle_data"""
176
+ return [
177
+ (typ, example)
178
+ for typ, examples in data.items()
179
+ for example in examples.values()
180
+ ]
181
+
182
+
183
+ @pytest.mark.parametrize(
184
+ "pickle_writer",
185
+ [
186
+ pytest.param(python_pickler, id="python"),
187
+ pytest.param(pd.to_pickle, id="pandas_proto_default"),
188
+ pytest.param(
189
+ functools.partial(pd.to_pickle, protocol=pickle.HIGHEST_PROTOCOL),
190
+ id="pandas_proto_highest",
191
+ ),
192
+ pytest.param(functools.partial(pd.to_pickle, protocol=4), id="pandas_proto_4"),
193
+ pytest.param(
194
+ functools.partial(pd.to_pickle, protocol=5),
195
+ id="pandas_proto_5",
196
+ ),
197
+ ],
198
+ )
199
+ @pytest.mark.parametrize("writer", [pd.to_pickle, python_pickler])
200
+ @pytest.mark.parametrize("typ, expected", flatten(create_pickle_data()))
201
+ def test_round_trip_current(typ, expected, pickle_writer, writer):
202
+ with tm.ensure_clean() as path:
203
+ # test writing with each pickler
204
+ pickle_writer(expected, path)
205
+
206
+ # test reading with each unpickler
207
+ result = pd.read_pickle(path)
208
+ compare_element(result, expected, typ)
209
+
210
+ result = python_unpickler(path)
211
+ compare_element(result, expected, typ)
212
+
213
+ # and the same for file objects (GH 35679)
214
+ with open(path, mode="wb") as handle:
215
+ writer(expected, path)
216
+ handle.seek(0) # shouldn't close file handle
217
+ with open(path, mode="rb") as handle:
218
+ result = pd.read_pickle(handle)
219
+ handle.seek(0) # shouldn't close file handle
220
+ compare_element(result, expected, typ)
221
+
222
+
223
+ def test_pickle_path_pathlib():
224
+ df = DataFrame(
225
+ 1.1 * np.arange(120).reshape((30, 4)),
226
+ columns=Index(list("ABCD"), dtype=object),
227
+ index=Index([f"i-{i}" for i in range(30)], dtype=object),
228
+ )
229
+ result = tm.round_trip_pathlib(df.to_pickle, pd.read_pickle)
230
+ tm.assert_frame_equal(df, result)
231
+
232
+
233
+ def test_pickle_path_localpath():
234
+ df = DataFrame(
235
+ 1.1 * np.arange(120).reshape((30, 4)),
236
+ columns=Index(list("ABCD"), dtype=object),
237
+ index=Index([f"i-{i}" for i in range(30)], dtype=object),
238
+ )
239
+ result = tm.round_trip_localpath(df.to_pickle, pd.read_pickle)
240
+ tm.assert_frame_equal(df, result)
241
+
242
+
243
+ # ---------------------
244
+ # test pickle compression
245
+ # ---------------------
246
+
247
+
248
+ @pytest.fixture
249
+ def get_random_path():
250
+ return f"__{uuid.uuid4()}__.pickle"
251
+
252
+
253
+ class TestCompression:
254
+ _extension_to_compression = icom.extension_to_compression
255
+
256
+ def compress_file(self, src_path, dest_path, compression):
257
+ if compression is None:
258
+ shutil.copyfile(src_path, dest_path)
259
+ return
260
+
261
+ if compression == "gzip":
262
+ f = gzip.open(dest_path, "w")
263
+ elif compression == "bz2":
264
+ f = bz2.BZ2File(dest_path, "w")
265
+ elif compression == "zip":
266
+ with zipfile.ZipFile(dest_path, "w", compression=zipfile.ZIP_DEFLATED) as f:
267
+ f.write(src_path, os.path.basename(src_path))
268
+ elif compression == "tar":
269
+ with open(src_path, "rb") as fh:
270
+ with tarfile.open(dest_path, mode="w") as tar:
271
+ tarinfo = tar.gettarinfo(src_path, os.path.basename(src_path))
272
+ tar.addfile(tarinfo, fh)
273
+ elif compression == "xz":
274
+ f = get_lzma_file()(dest_path, "w")
275
+ elif compression == "zstd":
276
+ f = import_optional_dependency("zstandard").open(dest_path, "wb")
277
+ else:
278
+ msg = f"Unrecognized compression type: {compression}"
279
+ raise ValueError(msg)
280
+
281
+ if compression not in ["zip", "tar"]:
282
+ with open(src_path, "rb") as fh:
283
+ with f:
284
+ f.write(fh.read())
285
+
286
+ def test_write_explicit(self, compression, get_random_path):
287
+ base = get_random_path
288
+ path1 = base + ".compressed"
289
+ path2 = base + ".raw"
290
+
291
+ with tm.ensure_clean(path1) as p1, tm.ensure_clean(path2) as p2:
292
+ df = DataFrame(
293
+ 1.1 * np.arange(120).reshape((30, 4)),
294
+ columns=Index(list("ABCD"), dtype=object),
295
+ index=Index([f"i-{i}" for i in range(30)], dtype=object),
296
+ )
297
+
298
+ # write to compressed file
299
+ df.to_pickle(p1, compression=compression)
300
+
301
+ # decompress
302
+ with tm.decompress_file(p1, compression=compression) as f:
303
+ with open(p2, "wb") as fh:
304
+ fh.write(f.read())
305
+
306
+ # read decompressed file
307
+ df2 = pd.read_pickle(p2, compression=None)
308
+
309
+ tm.assert_frame_equal(df, df2)
310
+
311
+ @pytest.mark.parametrize("compression", ["", "None", "bad", "7z"])
312
+ def test_write_explicit_bad(self, compression, get_random_path):
313
+ with pytest.raises(ValueError, match="Unrecognized compression type"):
314
+ with tm.ensure_clean(get_random_path) as path:
315
+ df = DataFrame(
316
+ 1.1 * np.arange(120).reshape((30, 4)),
317
+ columns=Index(list("ABCD"), dtype=object),
318
+ index=Index([f"i-{i}" for i in range(30)], dtype=object),
319
+ )
320
+ df.to_pickle(path, compression=compression)
321
+
322
+ def test_write_infer(self, compression_ext, get_random_path):
323
+ base = get_random_path
324
+ path1 = base + compression_ext
325
+ path2 = base + ".raw"
326
+ compression = self._extension_to_compression.get(compression_ext.lower())
327
+
328
+ with tm.ensure_clean(path1) as p1, tm.ensure_clean(path2) as p2:
329
+ df = DataFrame(
330
+ 1.1 * np.arange(120).reshape((30, 4)),
331
+ columns=Index(list("ABCD"), dtype=object),
332
+ index=Index([f"i-{i}" for i in range(30)], dtype=object),
333
+ )
334
+
335
+ # write to compressed file by inferred compression method
336
+ df.to_pickle(p1)
337
+
338
+ # decompress
339
+ with tm.decompress_file(p1, compression=compression) as f:
340
+ with open(p2, "wb") as fh:
341
+ fh.write(f.read())
342
+
343
+ # read decompressed file
344
+ df2 = pd.read_pickle(p2, compression=None)
345
+
346
+ tm.assert_frame_equal(df, df2)
347
+
348
+ def test_read_explicit(self, compression, get_random_path):
349
+ base = get_random_path
350
+ path1 = base + ".raw"
351
+ path2 = base + ".compressed"
352
+
353
+ with tm.ensure_clean(path1) as p1, tm.ensure_clean(path2) as p2:
354
+ df = DataFrame(
355
+ 1.1 * np.arange(120).reshape((30, 4)),
356
+ columns=Index(list("ABCD"), dtype=object),
357
+ index=Index([f"i-{i}" for i in range(30)], dtype=object),
358
+ )
359
+
360
+ # write to uncompressed file
361
+ df.to_pickle(p1, compression=None)
362
+
363
+ # compress
364
+ self.compress_file(p1, p2, compression=compression)
365
+
366
+ # read compressed file
367
+ df2 = pd.read_pickle(p2, compression=compression)
368
+ tm.assert_frame_equal(df, df2)
369
+
370
+ def test_read_infer(self, compression_ext, get_random_path):
371
+ base = get_random_path
372
+ path1 = base + ".raw"
373
+ path2 = base + compression_ext
374
+ compression = self._extension_to_compression.get(compression_ext.lower())
375
+
376
+ with tm.ensure_clean(path1) as p1, tm.ensure_clean(path2) as p2:
377
+ df = DataFrame(
378
+ 1.1 * np.arange(120).reshape((30, 4)),
379
+ columns=Index(list("ABCD"), dtype=object),
380
+ index=Index([f"i-{i}" for i in range(30)], dtype=object),
381
+ )
382
+
383
+ # write to uncompressed file
384
+ df.to_pickle(p1, compression=None)
385
+
386
+ # compress
387
+ self.compress_file(p1, p2, compression=compression)
388
+
389
+ # read compressed file by inferred compression method
390
+ df2 = pd.read_pickle(p2)
391
+ tm.assert_frame_equal(df, df2)
392
+
393
+
394
+ # ---------------------
395
+ # test pickle compression
396
+ # ---------------------
397
+
398
+
399
+ class TestProtocol:
400
+ @pytest.mark.parametrize("protocol", [-1, 0, 1, 2])
401
+ def test_read(self, protocol, get_random_path):
402
+ with tm.ensure_clean(get_random_path) as path:
403
+ df = DataFrame(
404
+ 1.1 * np.arange(120).reshape((30, 4)),
405
+ columns=Index(list("ABCD"), dtype=object),
406
+ index=Index([f"i-{i}" for i in range(30)], dtype=object),
407
+ )
408
+ df.to_pickle(path, protocol=protocol)
409
+ df2 = pd.read_pickle(path)
410
+ tm.assert_frame_equal(df, df2)
411
+
412
+
413
+ @pytest.mark.parametrize(
414
+ ["pickle_file", "excols"],
415
+ [
416
+ ("test_py27.pkl", Index(["a", "b", "c"])),
417
+ (
418
+ "test_mi_py27.pkl",
419
+ pd.MultiIndex.from_arrays([["a", "b", "c"], ["A", "B", "C"]]),
420
+ ),
421
+ ],
422
+ )
423
+ def test_unicode_decode_error(datapath, pickle_file, excols):
424
+ # pickle file written with py27, should be readable without raising
425
+ # UnicodeDecodeError, see GH#28645 and GH#31988
426
+ path = datapath("io", "data", "pickle", pickle_file)
427
+ df = pd.read_pickle(path)
428
+
429
+ # just test the columns are correct since the values are random
430
+ tm.assert_index_equal(df.columns, excols)
431
+
432
+
433
+ # ---------------------
434
+ # tests for buffer I/O
435
+ # ---------------------
436
+
437
+
438
+ def test_pickle_buffer_roundtrip():
439
+ with tm.ensure_clean() as path:
440
+ df = DataFrame(
441
+ 1.1 * np.arange(120).reshape((30, 4)),
442
+ columns=Index(list("ABCD"), dtype=object),
443
+ index=Index([f"i-{i}" for i in range(30)], dtype=object),
444
+ )
445
+ with open(path, "wb") as fh:
446
+ df.to_pickle(fh)
447
+ with open(path, "rb") as fh:
448
+ result = pd.read_pickle(fh)
449
+ tm.assert_frame_equal(df, result)
450
+
451
+
452
+ # ---------------------
453
+ # tests for URL I/O
454
+ # ---------------------
455
+
456
+
457
+ @pytest.mark.parametrize(
458
+ "mockurl", ["http://url.com", "ftp://test.com", "http://gzip.com"]
459
+ )
460
+ def test_pickle_generalurl_read(monkeypatch, mockurl):
461
+ def python_pickler(obj, path):
462
+ with open(path, "wb") as fh:
463
+ pickle.dump(obj, fh, protocol=-1)
464
+
465
+ class MockReadResponse:
466
+ def __init__(self, path) -> None:
467
+ self.file = open(path, "rb")
468
+ if "gzip" in path:
469
+ self.headers = {"Content-Encoding": "gzip"}
470
+ else:
471
+ self.headers = {"Content-Encoding": ""}
472
+
473
+ def __enter__(self):
474
+ return self
475
+
476
+ def __exit__(self, *args):
477
+ self.close()
478
+
479
+ def read(self):
480
+ return self.file.read()
481
+
482
+ def close(self):
483
+ return self.file.close()
484
+
485
+ with tm.ensure_clean() as path:
486
+
487
+ def mock_urlopen_read(*args, **kwargs):
488
+ return MockReadResponse(path)
489
+
490
+ df = DataFrame(
491
+ 1.1 * np.arange(120).reshape((30, 4)),
492
+ columns=Index(list("ABCD"), dtype=object),
493
+ index=Index([f"i-{i}" for i in range(30)], dtype=object),
494
+ )
495
+ python_pickler(df, path)
496
+ monkeypatch.setattr("urllib.request.urlopen", mock_urlopen_read)
497
+ result = pd.read_pickle(mockurl)
498
+ tm.assert_frame_equal(df, result)
499
+
500
+
501
+ def test_pickle_fsspec_roundtrip():
502
+ pytest.importorskip("fsspec")
503
+ with tm.ensure_clean():
504
+ mockurl = "memory://mockfile"
505
+ df = DataFrame(
506
+ 1.1 * np.arange(120).reshape((30, 4)),
507
+ columns=Index(list("ABCD"), dtype=object),
508
+ index=Index([f"i-{i}" for i in range(30)], dtype=object),
509
+ )
510
+ df.to_pickle(mockurl)
511
+ result = pd.read_pickle(mockurl)
512
+ tm.assert_frame_equal(df, result)
513
+
514
+
515
+ class MyTz(datetime.tzinfo):
516
+ def __init__(self) -> None:
517
+ pass
518
+
519
+
520
+ def test_read_pickle_with_subclass():
521
+ # GH 12163
522
+ expected = Series(dtype=object), MyTz()
523
+ result = tm.round_trip_pickle(expected)
524
+
525
+ tm.assert_series_equal(result[0], expected[0])
526
+ assert isinstance(result[1], MyTz)
527
+
528
+
529
+ def test_pickle_binary_object_compression(compression):
530
+ """
531
+ Read/write from binary file-objects w/wo compression.
532
+
533
+ GH 26237, GH 29054, and GH 29570
534
+ """
535
+ df = DataFrame(
536
+ 1.1 * np.arange(120).reshape((30, 4)),
537
+ columns=Index(list("ABCD"), dtype=object),
538
+ index=Index([f"i-{i}" for i in range(30)], dtype=object),
539
+ )
540
+
541
+ # reference for compression
542
+ with tm.ensure_clean() as path:
543
+ df.to_pickle(path, compression=compression)
544
+ reference = Path(path).read_bytes()
545
+
546
+ # write
547
+ buffer = io.BytesIO()
548
+ df.to_pickle(buffer, compression=compression)
549
+ buffer.seek(0)
550
+
551
+ # gzip and zip safe the filename: cannot compare the compressed content
552
+ assert buffer.getvalue() == reference or compression in ("gzip", "zip", "tar")
553
+
554
+ # read
555
+ read_df = pd.read_pickle(buffer, compression=compression)
556
+ buffer.seek(0)
557
+ tm.assert_frame_equal(df, read_df)
558
+
559
+
560
+ def test_pickle_dataframe_with_multilevel_index(
561
+ multiindex_year_month_day_dataframe_random_data,
562
+ multiindex_dataframe_random_data,
563
+ ):
564
+ ymd = multiindex_year_month_day_dataframe_random_data
565
+ frame = multiindex_dataframe_random_data
566
+
567
+ def _test_roundtrip(frame):
568
+ unpickled = tm.round_trip_pickle(frame)
569
+ tm.assert_frame_equal(frame, unpickled)
570
+
571
+ _test_roundtrip(frame)
572
+ _test_roundtrip(frame.T)
573
+ _test_roundtrip(ymd)
574
+ _test_roundtrip(ymd.T)
575
+
576
+
577
+ def test_pickle_timeseries_periodindex():
578
+ # GH#2891
579
+ prng = period_range("1/1/2011", "1/1/2012", freq="M")
580
+ ts = Series(np.random.default_rng(2).standard_normal(len(prng)), prng)
581
+ new_ts = tm.round_trip_pickle(ts)
582
+ assert new_ts.index.freqstr == "M"
583
+
584
+
585
+ @pytest.mark.parametrize(
586
+ "name", [777, 777.0, "name", datetime.datetime(2001, 11, 11), (1, 2)]
587
+ )
588
+ def test_pickle_preserve_name(name):
589
+ unpickled = tm.round_trip_pickle(Series(np.arange(10, dtype=np.float64), name=name))
590
+ assert unpickled.name == name
591
+
592
+
593
+ def test_pickle_datetimes(datetime_series):
594
+ unp_ts = tm.round_trip_pickle(datetime_series)
595
+ tm.assert_series_equal(unp_ts, datetime_series)
596
+
597
+
598
+ def test_pickle_strings(string_series):
599
+ unp_series = tm.round_trip_pickle(string_series)
600
+ tm.assert_series_equal(unp_series, string_series)
601
+
602
+
603
+ @td.skip_array_manager_invalid_test
604
+ def test_pickle_preserves_block_ndim():
605
+ # GH#37631
606
+ ser = Series(list("abc")).astype("category").iloc[[0]]
607
+ res = tm.round_trip_pickle(ser)
608
+
609
+ assert res._mgr.blocks[0].ndim == 1
610
+ assert res._mgr.blocks[0].shape == (1,)
611
+
612
+ # GH#37631 OP issue was about indexing, underlying problem was pickle
613
+ tm.assert_series_equal(res[[True]], ser)
614
+
615
+
616
+ @pytest.mark.parametrize("protocol", [pickle.DEFAULT_PROTOCOL, pickle.HIGHEST_PROTOCOL])
617
+ def test_pickle_big_dataframe_compression(protocol, compression):
618
+ # GH#39002
619
+ df = DataFrame(range(100000))
620
+ result = tm.round_trip_pathlib(
621
+ partial(df.to_pickle, protocol=protocol, compression=compression),
622
+ partial(pd.read_pickle, compression=compression),
623
+ )
624
+ tm.assert_frame_equal(df, result)
625
+
626
+
627
+ def test_pickle_frame_v124_unpickle_130(datapath):
628
+ # GH#42345 DataFrame created in 1.2.x, unpickle in 1.3.x
629
+ path = datapath(
630
+ Path(__file__).parent,
631
+ "data",
632
+ "legacy_pickle",
633
+ "1.2.4",
634
+ "empty_frame_v1_2_4-GH#42345.pkl",
635
+ )
636
+ with open(path, "rb") as fd:
637
+ df = pickle.load(fd)
638
+
639
+ expected = DataFrame(index=[], columns=[])
640
+ tm.assert_frame_equal(df, expected)
641
+
642
+
643
+ def test_pickle_pos_args_deprecation():
644
+ # GH-54229
645
+ df = DataFrame({"a": [1, 2, 3]})
646
+ msg = (
647
+ r"Starting with pandas version 3.0 all arguments of to_pickle except for the "
648
+ r"argument 'path' will be keyword-only."
649
+ )
650
+ with tm.assert_produces_warning(FutureWarning, match=msg):
651
+ buffer = io.BytesIO()
652
+ df.to_pickle(buffer, "infer")
llmeval-env/lib/python3.10/site-packages/pandas/tests/io/test_s3.py ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from io import BytesIO
2
+
3
+ import pytest
4
+
5
+ from pandas import read_csv
6
+
7
+
8
+ def test_streaming_s3_objects():
9
+ # GH17135
10
+ # botocore gained iteration support in 1.10.47, can now be used in read_*
11
+ pytest.importorskip("botocore", minversion="1.10.47")
12
+ from botocore.response import StreamingBody
13
+
14
+ data = [b"foo,bar,baz\n1,2,3\n4,5,6\n", b"just,the,header\n"]
15
+ for el in data:
16
+ body = StreamingBody(BytesIO(el), content_length=len(el))
17
+ read_csv(body)
18
+
19
+
20
+ @pytest.mark.single_cpu
21
+ def test_read_without_creds_from_pub_bucket(s3_public_bucket_with_data, s3so):
22
+ # GH 34626
23
+ pytest.importorskip("s3fs")
24
+ result = read_csv(
25
+ f"s3://{s3_public_bucket_with_data.name}/tips.csv",
26
+ nrows=3,
27
+ storage_options=s3so,
28
+ )
29
+ assert len(result) == 3
30
+
31
+
32
+ @pytest.mark.single_cpu
33
+ def test_read_with_creds_from_pub_bucket(s3_public_bucket_with_data, s3so):
34
+ # Ensure we can read from a public bucket with credentials
35
+ # GH 34626
36
+ pytest.importorskip("s3fs")
37
+ df = read_csv(
38
+ f"s3://{s3_public_bucket_with_data.name}/tips.csv",
39
+ nrows=5,
40
+ header=None,
41
+ storage_options=s3so,
42
+ )
43
+ assert len(df) == 5
llmeval-env/lib/python3.10/site-packages/pandas/tests/io/test_spss.py ADDED
@@ -0,0 +1,164 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import datetime
2
+ from pathlib import Path
3
+
4
+ import numpy as np
5
+ import pytest
6
+
7
+ import pandas as pd
8
+ import pandas._testing as tm
9
+ from pandas.util.version import Version
10
+
11
+ pyreadstat = pytest.importorskip("pyreadstat")
12
+
13
+
14
+ # TODO(CoW) - detection of chained assignment in cython
15
+ # https://github.com/pandas-dev/pandas/issues/51315
16
+ @pytest.mark.filterwarnings("ignore::pandas.errors.ChainedAssignmentError")
17
+ @pytest.mark.filterwarnings("ignore:ChainedAssignmentError:FutureWarning")
18
+ @pytest.mark.parametrize("path_klass", [lambda p: p, Path])
19
+ def test_spss_labelled_num(path_klass, datapath):
20
+ # test file from the Haven project (https://haven.tidyverse.org/)
21
+ # Licence at LICENSES/HAVEN_LICENSE, LICENSES/HAVEN_MIT
22
+ fname = path_klass(datapath("io", "data", "spss", "labelled-num.sav"))
23
+
24
+ df = pd.read_spss(fname, convert_categoricals=True)
25
+ expected = pd.DataFrame({"VAR00002": "This is one"}, index=[0])
26
+ expected["VAR00002"] = pd.Categorical(expected["VAR00002"])
27
+ tm.assert_frame_equal(df, expected)
28
+
29
+ df = pd.read_spss(fname, convert_categoricals=False)
30
+ expected = pd.DataFrame({"VAR00002": 1.0}, index=[0])
31
+ tm.assert_frame_equal(df, expected)
32
+
33
+
34
+ @pytest.mark.filterwarnings("ignore::pandas.errors.ChainedAssignmentError")
35
+ @pytest.mark.filterwarnings("ignore:ChainedAssignmentError:FutureWarning")
36
+ def test_spss_labelled_num_na(datapath):
37
+ # test file from the Haven project (https://haven.tidyverse.org/)
38
+ # Licence at LICENSES/HAVEN_LICENSE, LICENSES/HAVEN_MIT
39
+ fname = datapath("io", "data", "spss", "labelled-num-na.sav")
40
+
41
+ df = pd.read_spss(fname, convert_categoricals=True)
42
+ expected = pd.DataFrame({"VAR00002": ["This is one", None]})
43
+ expected["VAR00002"] = pd.Categorical(expected["VAR00002"])
44
+ tm.assert_frame_equal(df, expected)
45
+
46
+ df = pd.read_spss(fname, convert_categoricals=False)
47
+ expected = pd.DataFrame({"VAR00002": [1.0, np.nan]})
48
+ tm.assert_frame_equal(df, expected)
49
+
50
+
51
+ @pytest.mark.filterwarnings("ignore::pandas.errors.ChainedAssignmentError")
52
+ @pytest.mark.filterwarnings("ignore:ChainedAssignmentError:FutureWarning")
53
+ def test_spss_labelled_str(datapath):
54
+ # test file from the Haven project (https://haven.tidyverse.org/)
55
+ # Licence at LICENSES/HAVEN_LICENSE, LICENSES/HAVEN_MIT
56
+ fname = datapath("io", "data", "spss", "labelled-str.sav")
57
+
58
+ df = pd.read_spss(fname, convert_categoricals=True)
59
+ expected = pd.DataFrame({"gender": ["Male", "Female"]})
60
+ expected["gender"] = pd.Categorical(expected["gender"])
61
+ tm.assert_frame_equal(df, expected)
62
+
63
+ df = pd.read_spss(fname, convert_categoricals=False)
64
+ expected = pd.DataFrame({"gender": ["M", "F"]})
65
+ tm.assert_frame_equal(df, expected)
66
+
67
+
68
+ @pytest.mark.filterwarnings("ignore::pandas.errors.ChainedAssignmentError")
69
+ @pytest.mark.filterwarnings("ignore:ChainedAssignmentError:FutureWarning")
70
+ def test_spss_umlauts(datapath):
71
+ # test file from the Haven project (https://haven.tidyverse.org/)
72
+ # Licence at LICENSES/HAVEN_LICENSE, LICENSES/HAVEN_MIT
73
+ fname = datapath("io", "data", "spss", "umlauts.sav")
74
+
75
+ df = pd.read_spss(fname, convert_categoricals=True)
76
+ expected = pd.DataFrame(
77
+ {"var1": ["the ä umlaut", "the ü umlaut", "the ä umlaut", "the ö umlaut"]}
78
+ )
79
+ expected["var1"] = pd.Categorical(expected["var1"])
80
+ tm.assert_frame_equal(df, expected)
81
+
82
+ df = pd.read_spss(fname, convert_categoricals=False)
83
+ expected = pd.DataFrame({"var1": [1.0, 2.0, 1.0, 3.0]})
84
+ tm.assert_frame_equal(df, expected)
85
+
86
+
87
+ def test_spss_usecols(datapath):
88
+ # usecols must be list-like
89
+ fname = datapath("io", "data", "spss", "labelled-num.sav")
90
+
91
+ with pytest.raises(TypeError, match="usecols must be list-like."):
92
+ pd.read_spss(fname, usecols="VAR00002")
93
+
94
+
95
+ def test_spss_umlauts_dtype_backend(datapath, dtype_backend):
96
+ # test file from the Haven project (https://haven.tidyverse.org/)
97
+ # Licence at LICENSES/HAVEN_LICENSE, LICENSES/HAVEN_MIT
98
+ fname = datapath("io", "data", "spss", "umlauts.sav")
99
+
100
+ df = pd.read_spss(fname, convert_categoricals=False, dtype_backend=dtype_backend)
101
+ expected = pd.DataFrame({"var1": [1.0, 2.0, 1.0, 3.0]}, dtype="Int64")
102
+
103
+ if dtype_backend == "pyarrow":
104
+ pa = pytest.importorskip("pyarrow")
105
+
106
+ from pandas.arrays import ArrowExtensionArray
107
+
108
+ expected = pd.DataFrame(
109
+ {
110
+ col: ArrowExtensionArray(pa.array(expected[col], from_pandas=True))
111
+ for col in expected.columns
112
+ }
113
+ )
114
+
115
+ tm.assert_frame_equal(df, expected)
116
+
117
+
118
+ def test_invalid_dtype_backend():
119
+ msg = (
120
+ "dtype_backend numpy is invalid, only 'numpy_nullable' and "
121
+ "'pyarrow' are allowed."
122
+ )
123
+ with pytest.raises(ValueError, match=msg):
124
+ pd.read_spss("test", dtype_backend="numpy")
125
+
126
+
127
+ @pytest.mark.filterwarnings("ignore::pandas.errors.ChainedAssignmentError")
128
+ @pytest.mark.filterwarnings("ignore:ChainedAssignmentError:FutureWarning")
129
+ def test_spss_metadata(datapath):
130
+ # GH 54264
131
+ fname = datapath("io", "data", "spss", "labelled-num.sav")
132
+
133
+ df = pd.read_spss(fname)
134
+ metadata = {
135
+ "column_names": ["VAR00002"],
136
+ "column_labels": [None],
137
+ "column_names_to_labels": {"VAR00002": None},
138
+ "file_encoding": "UTF-8",
139
+ "number_columns": 1,
140
+ "number_rows": 1,
141
+ "variable_value_labels": {"VAR00002": {1.0: "This is one"}},
142
+ "value_labels": {"labels0": {1.0: "This is one"}},
143
+ "variable_to_label": {"VAR00002": "labels0"},
144
+ "notes": [],
145
+ "original_variable_types": {"VAR00002": "F8.0"},
146
+ "readstat_variable_types": {"VAR00002": "double"},
147
+ "table_name": None,
148
+ "missing_ranges": {},
149
+ "missing_user_values": {},
150
+ "variable_storage_width": {"VAR00002": 8},
151
+ "variable_display_width": {"VAR00002": 8},
152
+ "variable_alignment": {"VAR00002": "unknown"},
153
+ "variable_measure": {"VAR00002": "unknown"},
154
+ "file_label": None,
155
+ "file_format": "sav/zsav",
156
+ }
157
+ if Version(pyreadstat.__version__) >= Version("1.2.4"):
158
+ metadata.update(
159
+ {
160
+ "creation_time": datetime.datetime(2015, 2, 6, 14, 33, 36),
161
+ "modification_time": datetime.datetime(2015, 2, 6, 14, 33, 36),
162
+ }
163
+ )
164
+ assert df.attrs == metadata
llmeval-env/lib/python3.10/site-packages/pandas/tests/io/test_sql.py ADDED
The diff for this file is too large to render. See raw diff
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/io/test_stata.py ADDED
@@ -0,0 +1,2381 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import bz2
2
+ import datetime as dt
3
+ from datetime import datetime
4
+ import gzip
5
+ import io
6
+ import os
7
+ import struct
8
+ import tarfile
9
+ import zipfile
10
+
11
+ import numpy as np
12
+ import pytest
13
+
14
+ import pandas.util._test_decorators as td
15
+
16
+ import pandas as pd
17
+ from pandas import CategoricalDtype
18
+ import pandas._testing as tm
19
+ from pandas.core.frame import (
20
+ DataFrame,
21
+ Series,
22
+ )
23
+
24
+ from pandas.io.parsers import read_csv
25
+ from pandas.io.stata import (
26
+ CategoricalConversionWarning,
27
+ InvalidColumnName,
28
+ PossiblePrecisionLoss,
29
+ StataMissingValue,
30
+ StataReader,
31
+ StataWriter,
32
+ StataWriterUTF8,
33
+ ValueLabelTypeMismatch,
34
+ read_stata,
35
+ )
36
+
37
+
38
+ @pytest.fixture
39
+ def mixed_frame():
40
+ return DataFrame(
41
+ {
42
+ "a": [1, 2, 3, 4],
43
+ "b": [1.0, 3.0, 27.0, 81.0],
44
+ "c": ["Atlanta", "Birmingham", "Cincinnati", "Detroit"],
45
+ }
46
+ )
47
+
48
+
49
+ @pytest.fixture
50
+ def parsed_114(datapath):
51
+ dta14_114 = datapath("io", "data", "stata", "stata5_114.dta")
52
+ parsed_114 = read_stata(dta14_114, convert_dates=True)
53
+ parsed_114.index.name = "index"
54
+ return parsed_114
55
+
56
+
57
+ class TestStata:
58
+ def read_dta(self, file):
59
+ # Legacy default reader configuration
60
+ return read_stata(file, convert_dates=True)
61
+
62
+ def read_csv(self, file):
63
+ return read_csv(file, parse_dates=True)
64
+
65
+ @pytest.mark.parametrize("version", [114, 117, 118, 119, None])
66
+ def test_read_empty_dta(self, version):
67
+ empty_ds = DataFrame(columns=["unit"])
68
+ # GH 7369, make sure can read a 0-obs dta file
69
+ with tm.ensure_clean() as path:
70
+ empty_ds.to_stata(path, write_index=False, version=version)
71
+ empty_ds2 = read_stata(path)
72
+ tm.assert_frame_equal(empty_ds, empty_ds2)
73
+
74
+ @pytest.mark.parametrize("version", [114, 117, 118, 119, None])
75
+ def test_read_empty_dta_with_dtypes(self, version):
76
+ # GH 46240
77
+ # Fixing above bug revealed that types are not correctly preserved when
78
+ # writing empty DataFrames
79
+ empty_df_typed = DataFrame(
80
+ {
81
+ "i8": np.array([0], dtype=np.int8),
82
+ "i16": np.array([0], dtype=np.int16),
83
+ "i32": np.array([0], dtype=np.int32),
84
+ "i64": np.array([0], dtype=np.int64),
85
+ "u8": np.array([0], dtype=np.uint8),
86
+ "u16": np.array([0], dtype=np.uint16),
87
+ "u32": np.array([0], dtype=np.uint32),
88
+ "u64": np.array([0], dtype=np.uint64),
89
+ "f32": np.array([0], dtype=np.float32),
90
+ "f64": np.array([0], dtype=np.float64),
91
+ }
92
+ )
93
+ expected = empty_df_typed.copy()
94
+ # No uint# support. Downcast since values in range for int#
95
+ expected["u8"] = expected["u8"].astype(np.int8)
96
+ expected["u16"] = expected["u16"].astype(np.int16)
97
+ expected["u32"] = expected["u32"].astype(np.int32)
98
+ # No int64 supported at all. Downcast since values in range for int32
99
+ expected["u64"] = expected["u64"].astype(np.int32)
100
+ expected["i64"] = expected["i64"].astype(np.int32)
101
+
102
+ # GH 7369, make sure can read a 0-obs dta file
103
+ with tm.ensure_clean() as path:
104
+ empty_df_typed.to_stata(path, write_index=False, version=version)
105
+ empty_reread = read_stata(path)
106
+ tm.assert_frame_equal(expected, empty_reread)
107
+ tm.assert_series_equal(expected.dtypes, empty_reread.dtypes)
108
+
109
+ @pytest.mark.parametrize("version", [114, 117, 118, 119, None])
110
+ def test_read_index_col_none(self, version):
111
+ df = DataFrame({"a": range(5), "b": ["b1", "b2", "b3", "b4", "b5"]})
112
+ # GH 7369, make sure can read a 0-obs dta file
113
+ with tm.ensure_clean() as path:
114
+ df.to_stata(path, write_index=False, version=version)
115
+ read_df = read_stata(path)
116
+
117
+ assert isinstance(read_df.index, pd.RangeIndex)
118
+ expected = df.copy()
119
+ expected["a"] = expected["a"].astype(np.int32)
120
+ tm.assert_frame_equal(read_df, expected, check_index_type=True)
121
+
122
+ @pytest.mark.parametrize("file", ["stata1_114", "stata1_117"])
123
+ def test_read_dta1(self, file, datapath):
124
+ file = datapath("io", "data", "stata", f"{file}.dta")
125
+ parsed = self.read_dta(file)
126
+
127
+ # Pandas uses np.nan as missing value.
128
+ # Thus, all columns will be of type float, regardless of their name.
129
+ expected = DataFrame(
130
+ [(np.nan, np.nan, np.nan, np.nan, np.nan)],
131
+ columns=["float_miss", "double_miss", "byte_miss", "int_miss", "long_miss"],
132
+ )
133
+
134
+ # this is an oddity as really the nan should be float64, but
135
+ # the casting doesn't fail so need to match stata here
136
+ expected["float_miss"] = expected["float_miss"].astype(np.float32)
137
+
138
+ tm.assert_frame_equal(parsed, expected)
139
+
140
+ def test_read_dta2(self, datapath):
141
+ expected = DataFrame.from_records(
142
+ [
143
+ (
144
+ datetime(2006, 11, 19, 23, 13, 20),
145
+ 1479596223000,
146
+ datetime(2010, 1, 20),
147
+ datetime(2010, 1, 8),
148
+ datetime(2010, 1, 1),
149
+ datetime(1974, 7, 1),
150
+ datetime(2010, 1, 1),
151
+ datetime(2010, 1, 1),
152
+ ),
153
+ (
154
+ datetime(1959, 12, 31, 20, 3, 20),
155
+ -1479590,
156
+ datetime(1953, 10, 2),
157
+ datetime(1948, 6, 10),
158
+ datetime(1955, 1, 1),
159
+ datetime(1955, 7, 1),
160
+ datetime(1955, 1, 1),
161
+ datetime(2, 1, 1),
162
+ ),
163
+ (pd.NaT, pd.NaT, pd.NaT, pd.NaT, pd.NaT, pd.NaT, pd.NaT, pd.NaT),
164
+ ],
165
+ columns=[
166
+ "datetime_c",
167
+ "datetime_big_c",
168
+ "date",
169
+ "weekly_date",
170
+ "monthly_date",
171
+ "quarterly_date",
172
+ "half_yearly_date",
173
+ "yearly_date",
174
+ ],
175
+ )
176
+ expected["yearly_date"] = expected["yearly_date"].astype("O")
177
+
178
+ path1 = datapath("io", "data", "stata", "stata2_114.dta")
179
+ path2 = datapath("io", "data", "stata", "stata2_115.dta")
180
+ path3 = datapath("io", "data", "stata", "stata2_117.dta")
181
+
182
+ with tm.assert_produces_warning(UserWarning):
183
+ parsed_114 = self.read_dta(path1)
184
+ with tm.assert_produces_warning(UserWarning):
185
+ parsed_115 = self.read_dta(path2)
186
+ with tm.assert_produces_warning(UserWarning):
187
+ parsed_117 = self.read_dta(path3)
188
+ # FIXME: don't leave commented-out
189
+ # 113 is buggy due to limits of date format support in Stata
190
+ # parsed_113 = self.read_dta(
191
+ # datapath("io", "data", "stata", "stata2_113.dta")
192
+ # )
193
+
194
+ # FIXME: don't leave commented-out
195
+ # buggy test because of the NaT comparison on certain platforms
196
+ # Format 113 test fails since it does not support tc and tC formats
197
+ # tm.assert_frame_equal(parsed_113, expected)
198
+ tm.assert_frame_equal(parsed_114, expected, check_datetimelike_compat=True)
199
+ tm.assert_frame_equal(parsed_115, expected, check_datetimelike_compat=True)
200
+ tm.assert_frame_equal(parsed_117, expected, check_datetimelike_compat=True)
201
+
202
+ @pytest.mark.parametrize(
203
+ "file", ["stata3_113", "stata3_114", "stata3_115", "stata3_117"]
204
+ )
205
+ def test_read_dta3(self, file, datapath):
206
+ file = datapath("io", "data", "stata", f"{file}.dta")
207
+ parsed = self.read_dta(file)
208
+
209
+ # match stata here
210
+ expected = self.read_csv(datapath("io", "data", "stata", "stata3.csv"))
211
+ expected = expected.astype(np.float32)
212
+ expected["year"] = expected["year"].astype(np.int16)
213
+ expected["quarter"] = expected["quarter"].astype(np.int8)
214
+
215
+ tm.assert_frame_equal(parsed, expected)
216
+
217
+ @pytest.mark.parametrize(
218
+ "file", ["stata4_113", "stata4_114", "stata4_115", "stata4_117"]
219
+ )
220
+ def test_read_dta4(self, file, datapath):
221
+ file = datapath("io", "data", "stata", f"{file}.dta")
222
+ parsed = self.read_dta(file)
223
+
224
+ expected = DataFrame.from_records(
225
+ [
226
+ ["one", "ten", "one", "one", "one"],
227
+ ["two", "nine", "two", "two", "two"],
228
+ ["three", "eight", "three", "three", "three"],
229
+ ["four", "seven", 4, "four", "four"],
230
+ ["five", "six", 5, np.nan, "five"],
231
+ ["six", "five", 6, np.nan, "six"],
232
+ ["seven", "four", 7, np.nan, "seven"],
233
+ ["eight", "three", 8, np.nan, "eight"],
234
+ ["nine", "two", 9, np.nan, "nine"],
235
+ ["ten", "one", "ten", np.nan, "ten"],
236
+ ],
237
+ columns=[
238
+ "fully_labeled",
239
+ "fully_labeled2",
240
+ "incompletely_labeled",
241
+ "labeled_with_missings",
242
+ "float_labelled",
243
+ ],
244
+ )
245
+
246
+ # these are all categoricals
247
+ for col in expected:
248
+ orig = expected[col].copy()
249
+
250
+ categories = np.asarray(expected["fully_labeled"][orig.notna()])
251
+ if col == "incompletely_labeled":
252
+ categories = orig
253
+
254
+ cat = orig.astype("category")._values
255
+ cat = cat.set_categories(categories, ordered=True)
256
+ cat.categories.rename(None, inplace=True)
257
+
258
+ expected[col] = cat
259
+
260
+ # stata doesn't save .category metadata
261
+ tm.assert_frame_equal(parsed, expected)
262
+
263
+ # File containing strls
264
+ def test_read_dta12(self, datapath):
265
+ parsed_117 = self.read_dta(datapath("io", "data", "stata", "stata12_117.dta"))
266
+ expected = DataFrame.from_records(
267
+ [
268
+ [1, "abc", "abcdefghi"],
269
+ [3, "cba", "qwertywertyqwerty"],
270
+ [93, "", "strl"],
271
+ ],
272
+ columns=["x", "y", "z"],
273
+ )
274
+
275
+ tm.assert_frame_equal(parsed_117, expected, check_dtype=False)
276
+
277
+ def test_read_dta18(self, datapath):
278
+ parsed_118 = self.read_dta(datapath("io", "data", "stata", "stata14_118.dta"))
279
+ parsed_118["Bytes"] = parsed_118["Bytes"].astype("O")
280
+ expected = DataFrame.from_records(
281
+ [
282
+ ["Cat", "Bogota", "Bogotá", 1, 1.0, "option b Ünicode", 1.0],
283
+ ["Dog", "Boston", "Uzunköprü", np.nan, np.nan, np.nan, np.nan],
284
+ ["Plane", "Rome", "Tromsø", 0, 0.0, "option a", 0.0],
285
+ ["Potato", "Tokyo", "Elâzığ", -4, 4.0, 4, 4], # noqa: RUF001
286
+ ["", "", "", 0, 0.3332999, "option a", 1 / 3.0],
287
+ ],
288
+ columns=[
289
+ "Things",
290
+ "Cities",
291
+ "Unicode_Cities_Strl",
292
+ "Ints",
293
+ "Floats",
294
+ "Bytes",
295
+ "Longs",
296
+ ],
297
+ )
298
+ expected["Floats"] = expected["Floats"].astype(np.float32)
299
+ for col in parsed_118.columns:
300
+ tm.assert_almost_equal(parsed_118[col], expected[col])
301
+
302
+ with StataReader(datapath("io", "data", "stata", "stata14_118.dta")) as rdr:
303
+ vl = rdr.variable_labels()
304
+ vl_expected = {
305
+ "Unicode_Cities_Strl": "Here are some strls with Ünicode chars",
306
+ "Longs": "long data",
307
+ "Things": "Here are some things",
308
+ "Bytes": "byte data",
309
+ "Ints": "int data",
310
+ "Cities": "Here are some cities",
311
+ "Floats": "float data",
312
+ }
313
+ tm.assert_dict_equal(vl, vl_expected)
314
+
315
+ assert rdr.data_label == "This is a Ünicode data label"
316
+
317
+ def test_read_write_dta5(self):
318
+ original = DataFrame(
319
+ [(np.nan, np.nan, np.nan, np.nan, np.nan)],
320
+ columns=["float_miss", "double_miss", "byte_miss", "int_miss", "long_miss"],
321
+ )
322
+ original.index.name = "index"
323
+
324
+ with tm.ensure_clean() as path:
325
+ original.to_stata(path, convert_dates=None)
326
+ written_and_read_again = self.read_dta(path)
327
+
328
+ expected = original.copy()
329
+ expected.index = expected.index.astype(np.int32)
330
+ tm.assert_frame_equal(written_and_read_again.set_index("index"), expected)
331
+
332
+ def test_write_dta6(self, datapath):
333
+ original = self.read_csv(datapath("io", "data", "stata", "stata3.csv"))
334
+ original.index.name = "index"
335
+ original.index = original.index.astype(np.int32)
336
+ original["year"] = original["year"].astype(np.int32)
337
+ original["quarter"] = original["quarter"].astype(np.int32)
338
+
339
+ with tm.ensure_clean() as path:
340
+ original.to_stata(path, convert_dates=None)
341
+ written_and_read_again = self.read_dta(path)
342
+ tm.assert_frame_equal(
343
+ written_and_read_again.set_index("index"),
344
+ original,
345
+ check_index_type=False,
346
+ )
347
+
348
+ @pytest.mark.parametrize("version", [114, 117, 118, 119, None])
349
+ def test_read_write_dta10(self, version):
350
+ original = DataFrame(
351
+ data=[["string", "object", 1, 1.1, np.datetime64("2003-12-25")]],
352
+ columns=["string", "object", "integer", "floating", "datetime"],
353
+ )
354
+ original["object"] = Series(original["object"], dtype=object)
355
+ original.index.name = "index"
356
+ original.index = original.index.astype(np.int32)
357
+ original["integer"] = original["integer"].astype(np.int32)
358
+
359
+ with tm.ensure_clean() as path:
360
+ original.to_stata(path, convert_dates={"datetime": "tc"}, version=version)
361
+ written_and_read_again = self.read_dta(path)
362
+ # original.index is np.int32, read index is np.int64
363
+ tm.assert_frame_equal(
364
+ written_and_read_again.set_index("index"),
365
+ original,
366
+ check_index_type=False,
367
+ )
368
+
369
+ def test_stata_doc_examples(self):
370
+ with tm.ensure_clean() as path:
371
+ df = DataFrame(
372
+ np.random.default_rng(2).standard_normal((10, 2)), columns=list("AB")
373
+ )
374
+ df.to_stata(path)
375
+
376
+ def test_write_preserves_original(self):
377
+ # 9795
378
+
379
+ df = DataFrame(
380
+ np.random.default_rng(2).standard_normal((5, 4)), columns=list("abcd")
381
+ )
382
+ df.loc[2, "a":"c"] = np.nan
383
+ df_copy = df.copy()
384
+ with tm.ensure_clean() as path:
385
+ df.to_stata(path, write_index=False)
386
+ tm.assert_frame_equal(df, df_copy)
387
+
388
+ @pytest.mark.parametrize("version", [114, 117, 118, 119, None])
389
+ def test_encoding(self, version, datapath):
390
+ # GH 4626, proper encoding handling
391
+ raw = read_stata(datapath("io", "data", "stata", "stata1_encoding.dta"))
392
+ encoded = read_stata(datapath("io", "data", "stata", "stata1_encoding.dta"))
393
+ result = encoded.kreis1849[0]
394
+
395
+ expected = raw.kreis1849[0]
396
+ assert result == expected
397
+ assert isinstance(result, str)
398
+
399
+ with tm.ensure_clean() as path:
400
+ encoded.to_stata(path, write_index=False, version=version)
401
+ reread_encoded = read_stata(path)
402
+ tm.assert_frame_equal(encoded, reread_encoded)
403
+
404
+ def test_read_write_dta11(self):
405
+ original = DataFrame(
406
+ [(1, 2, 3, 4)],
407
+ columns=[
408
+ "good",
409
+ "b\u00E4d",
410
+ "8number",
411
+ "astringwithmorethan32characters______",
412
+ ],
413
+ )
414
+ formatted = DataFrame(
415
+ [(1, 2, 3, 4)],
416
+ columns=["good", "b_d", "_8number", "astringwithmorethan32characters_"],
417
+ )
418
+ formatted.index.name = "index"
419
+ formatted = formatted.astype(np.int32)
420
+
421
+ with tm.ensure_clean() as path:
422
+ with tm.assert_produces_warning(InvalidColumnName):
423
+ original.to_stata(path, convert_dates=None)
424
+
425
+ written_and_read_again = self.read_dta(path)
426
+
427
+ expected = formatted.copy()
428
+ expected.index = expected.index.astype(np.int32)
429
+ tm.assert_frame_equal(written_and_read_again.set_index("index"), expected)
430
+
431
+ @pytest.mark.parametrize("version", [114, 117, 118, 119, None])
432
+ def test_read_write_dta12(self, version):
433
+ original = DataFrame(
434
+ [(1, 2, 3, 4, 5, 6)],
435
+ columns=[
436
+ "astringwithmorethan32characters_1",
437
+ "astringwithmorethan32characters_2",
438
+ "+",
439
+ "-",
440
+ "short",
441
+ "delete",
442
+ ],
443
+ )
444
+ formatted = DataFrame(
445
+ [(1, 2, 3, 4, 5, 6)],
446
+ columns=[
447
+ "astringwithmorethan32characters_",
448
+ "_0astringwithmorethan32character",
449
+ "_",
450
+ "_1_",
451
+ "_short",
452
+ "_delete",
453
+ ],
454
+ )
455
+ formatted.index.name = "index"
456
+ formatted = formatted.astype(np.int32)
457
+
458
+ with tm.ensure_clean() as path:
459
+ with tm.assert_produces_warning(InvalidColumnName):
460
+ original.to_stata(path, convert_dates=None, version=version)
461
+ # should get a warning for that format.
462
+
463
+ written_and_read_again = self.read_dta(path)
464
+
465
+ expected = formatted.copy()
466
+ expected.index = expected.index.astype(np.int32)
467
+ tm.assert_frame_equal(written_and_read_again.set_index("index"), expected)
468
+
469
+ def test_read_write_dta13(self):
470
+ s1 = Series(2**9, dtype=np.int16)
471
+ s2 = Series(2**17, dtype=np.int32)
472
+ s3 = Series(2**33, dtype=np.int64)
473
+ original = DataFrame({"int16": s1, "int32": s2, "int64": s3})
474
+ original.index.name = "index"
475
+
476
+ formatted = original
477
+ formatted["int64"] = formatted["int64"].astype(np.float64)
478
+
479
+ with tm.ensure_clean() as path:
480
+ original.to_stata(path)
481
+ written_and_read_again = self.read_dta(path)
482
+
483
+ expected = formatted.copy()
484
+ expected.index = expected.index.astype(np.int32)
485
+ tm.assert_frame_equal(written_and_read_again.set_index("index"), expected)
486
+
487
+ @pytest.mark.parametrize("version", [114, 117, 118, 119, None])
488
+ @pytest.mark.parametrize(
489
+ "file", ["stata5_113", "stata5_114", "stata5_115", "stata5_117"]
490
+ )
491
+ def test_read_write_reread_dta14(self, file, parsed_114, version, datapath):
492
+ file = datapath("io", "data", "stata", f"{file}.dta")
493
+ parsed = self.read_dta(file)
494
+ parsed.index.name = "index"
495
+
496
+ tm.assert_frame_equal(parsed_114, parsed)
497
+
498
+ with tm.ensure_clean() as path:
499
+ parsed_114.to_stata(path, convert_dates={"date_td": "td"}, version=version)
500
+ written_and_read_again = self.read_dta(path)
501
+
502
+ expected = parsed_114.copy()
503
+ expected.index = expected.index.astype(np.int32)
504
+ tm.assert_frame_equal(written_and_read_again.set_index("index"), expected)
505
+
506
+ @pytest.mark.parametrize(
507
+ "file", ["stata6_113", "stata6_114", "stata6_115", "stata6_117"]
508
+ )
509
+ def test_read_write_reread_dta15(self, file, datapath):
510
+ expected = self.read_csv(datapath("io", "data", "stata", "stata6.csv"))
511
+ expected["byte_"] = expected["byte_"].astype(np.int8)
512
+ expected["int_"] = expected["int_"].astype(np.int16)
513
+ expected["long_"] = expected["long_"].astype(np.int32)
514
+ expected["float_"] = expected["float_"].astype(np.float32)
515
+ expected["double_"] = expected["double_"].astype(np.float64)
516
+ expected["date_td"] = expected["date_td"].apply(
517
+ datetime.strptime, args=("%Y-%m-%d",)
518
+ )
519
+
520
+ file = datapath("io", "data", "stata", f"{file}.dta")
521
+ parsed = self.read_dta(file)
522
+
523
+ tm.assert_frame_equal(expected, parsed)
524
+
525
+ @pytest.mark.parametrize("version", [114, 117, 118, 119, None])
526
+ def test_timestamp_and_label(self, version):
527
+ original = DataFrame([(1,)], columns=["variable"])
528
+ time_stamp = datetime(2000, 2, 29, 14, 21)
529
+ data_label = "This is a data file."
530
+ with tm.ensure_clean() as path:
531
+ original.to_stata(
532
+ path, time_stamp=time_stamp, data_label=data_label, version=version
533
+ )
534
+
535
+ with StataReader(path) as reader:
536
+ assert reader.time_stamp == "29 Feb 2000 14:21"
537
+ assert reader.data_label == data_label
538
+
539
+ @pytest.mark.parametrize("version", [114, 117, 118, 119, None])
540
+ def test_invalid_timestamp(self, version):
541
+ original = DataFrame([(1,)], columns=["variable"])
542
+ time_stamp = "01 Jan 2000, 00:00:00"
543
+ with tm.ensure_clean() as path:
544
+ msg = "time_stamp should be datetime type"
545
+ with pytest.raises(ValueError, match=msg):
546
+ original.to_stata(path, time_stamp=time_stamp, version=version)
547
+ assert not os.path.isfile(path)
548
+
549
+ def test_numeric_column_names(self):
550
+ original = DataFrame(np.reshape(np.arange(25.0), (5, 5)))
551
+ original.index.name = "index"
552
+ with tm.ensure_clean() as path:
553
+ # should get a warning for that format.
554
+ with tm.assert_produces_warning(InvalidColumnName):
555
+ original.to_stata(path)
556
+
557
+ written_and_read_again = self.read_dta(path)
558
+
559
+ written_and_read_again = written_and_read_again.set_index("index")
560
+ columns = list(written_and_read_again.columns)
561
+ convert_col_name = lambda x: int(x[1])
562
+ written_and_read_again.columns = map(convert_col_name, columns)
563
+
564
+ expected = original.copy()
565
+ expected.index = expected.index.astype(np.int32)
566
+ tm.assert_frame_equal(expected, written_and_read_again)
567
+
568
+ @pytest.mark.parametrize("version", [114, 117, 118, 119, None])
569
+ def test_nan_to_missing_value(self, version):
570
+ s1 = Series(np.arange(4.0), dtype=np.float32)
571
+ s2 = Series(np.arange(4.0), dtype=np.float64)
572
+ s1[::2] = np.nan
573
+ s2[1::2] = np.nan
574
+ original = DataFrame({"s1": s1, "s2": s2})
575
+ original.index.name = "index"
576
+
577
+ with tm.ensure_clean() as path:
578
+ original.to_stata(path, version=version)
579
+ written_and_read_again = self.read_dta(path)
580
+
581
+ written_and_read_again = written_and_read_again.set_index("index")
582
+ expected = original.copy()
583
+ expected.index = expected.index.astype(np.int32)
584
+ tm.assert_frame_equal(written_and_read_again, expected)
585
+
586
+ def test_no_index(self):
587
+ columns = ["x", "y"]
588
+ original = DataFrame(np.reshape(np.arange(10.0), (5, 2)), columns=columns)
589
+ original.index.name = "index_not_written"
590
+ with tm.ensure_clean() as path:
591
+ original.to_stata(path, write_index=False)
592
+ written_and_read_again = self.read_dta(path)
593
+ with pytest.raises(KeyError, match=original.index.name):
594
+ written_and_read_again["index_not_written"]
595
+
596
+ def test_string_no_dates(self):
597
+ s1 = Series(["a", "A longer string"])
598
+ s2 = Series([1.0, 2.0], dtype=np.float64)
599
+ original = DataFrame({"s1": s1, "s2": s2})
600
+ original.index.name = "index"
601
+ with tm.ensure_clean() as path:
602
+ original.to_stata(path)
603
+ written_and_read_again = self.read_dta(path)
604
+
605
+ expected = original.copy()
606
+ expected.index = expected.index.astype(np.int32)
607
+ tm.assert_frame_equal(written_and_read_again.set_index("index"), expected)
608
+
609
+ def test_large_value_conversion(self):
610
+ s0 = Series([1, 99], dtype=np.int8)
611
+ s1 = Series([1, 127], dtype=np.int8)
612
+ s2 = Series([1, 2**15 - 1], dtype=np.int16)
613
+ s3 = Series([1, 2**63 - 1], dtype=np.int64)
614
+ original = DataFrame({"s0": s0, "s1": s1, "s2": s2, "s3": s3})
615
+ original.index.name = "index"
616
+ with tm.ensure_clean() as path:
617
+ with tm.assert_produces_warning(PossiblePrecisionLoss):
618
+ original.to_stata(path)
619
+
620
+ written_and_read_again = self.read_dta(path)
621
+
622
+ modified = original.copy()
623
+ modified["s1"] = Series(modified["s1"], dtype=np.int16)
624
+ modified["s2"] = Series(modified["s2"], dtype=np.int32)
625
+ modified["s3"] = Series(modified["s3"], dtype=np.float64)
626
+ modified.index = original.index.astype(np.int32)
627
+ tm.assert_frame_equal(written_and_read_again.set_index("index"), modified)
628
+
629
+ def test_dates_invalid_column(self):
630
+ original = DataFrame([datetime(2006, 11, 19, 23, 13, 20)])
631
+ original.index.name = "index"
632
+ with tm.ensure_clean() as path:
633
+ with tm.assert_produces_warning(InvalidColumnName):
634
+ original.to_stata(path, convert_dates={0: "tc"})
635
+
636
+ written_and_read_again = self.read_dta(path)
637
+
638
+ modified = original.copy()
639
+ modified.columns = ["_0"]
640
+ modified.index = original.index.astype(np.int32)
641
+ tm.assert_frame_equal(written_and_read_again.set_index("index"), modified)
642
+
643
+ def test_105(self, datapath):
644
+ # Data obtained from:
645
+ # http://go.worldbank.org/ZXY29PVJ21
646
+ dpath = datapath("io", "data", "stata", "S4_EDUC1.dta")
647
+ df = read_stata(dpath)
648
+ df0 = [[1, 1, 3, -2], [2, 1, 2, -2], [4, 1, 1, -2]]
649
+ df0 = DataFrame(df0)
650
+ df0.columns = ["clustnum", "pri_schl", "psch_num", "psch_dis"]
651
+ df0["clustnum"] = df0["clustnum"].astype(np.int16)
652
+ df0["pri_schl"] = df0["pri_schl"].astype(np.int8)
653
+ df0["psch_num"] = df0["psch_num"].astype(np.int8)
654
+ df0["psch_dis"] = df0["psch_dis"].astype(np.float32)
655
+ tm.assert_frame_equal(df.head(3), df0)
656
+
657
+ def test_value_labels_old_format(self, datapath):
658
+ # GH 19417
659
+ #
660
+ # Test that value_labels() returns an empty dict if the file format
661
+ # predates supporting value labels.
662
+ dpath = datapath("io", "data", "stata", "S4_EDUC1.dta")
663
+ with StataReader(dpath) as reader:
664
+ assert reader.value_labels() == {}
665
+
666
+ def test_date_export_formats(self):
667
+ columns = ["tc", "td", "tw", "tm", "tq", "th", "ty"]
668
+ conversions = {c: c for c in columns}
669
+ data = [datetime(2006, 11, 20, 23, 13, 20)] * len(columns)
670
+ original = DataFrame([data], columns=columns)
671
+ original.index.name = "index"
672
+ expected_values = [
673
+ datetime(2006, 11, 20, 23, 13, 20), # Time
674
+ datetime(2006, 11, 20), # Day
675
+ datetime(2006, 11, 19), # Week
676
+ datetime(2006, 11, 1), # Month
677
+ datetime(2006, 10, 1), # Quarter year
678
+ datetime(2006, 7, 1), # Half year
679
+ datetime(2006, 1, 1),
680
+ ] # Year
681
+
682
+ expected = DataFrame(
683
+ [expected_values],
684
+ index=pd.Index([0], dtype=np.int32, name="index"),
685
+ columns=columns,
686
+ )
687
+
688
+ with tm.ensure_clean() as path:
689
+ original.to_stata(path, convert_dates=conversions)
690
+ written_and_read_again = self.read_dta(path)
691
+
692
+ tm.assert_frame_equal(written_and_read_again.set_index("index"), expected)
693
+
694
+ def test_write_missing_strings(self):
695
+ original = DataFrame([["1"], [None]], columns=["foo"])
696
+
697
+ expected = DataFrame(
698
+ [["1"], [""]],
699
+ index=pd.Index([0, 1], dtype=np.int32, name="index"),
700
+ columns=["foo"],
701
+ )
702
+
703
+ with tm.ensure_clean() as path:
704
+ original.to_stata(path)
705
+ written_and_read_again = self.read_dta(path)
706
+
707
+ tm.assert_frame_equal(written_and_read_again.set_index("index"), expected)
708
+
709
+ @pytest.mark.parametrize("version", [114, 117, 118, 119, None])
710
+ @pytest.mark.parametrize("byteorder", [">", "<"])
711
+ def test_bool_uint(self, byteorder, version):
712
+ s0 = Series([0, 1, True], dtype=np.bool_)
713
+ s1 = Series([0, 1, 100], dtype=np.uint8)
714
+ s2 = Series([0, 1, 255], dtype=np.uint8)
715
+ s3 = Series([0, 1, 2**15 - 100], dtype=np.uint16)
716
+ s4 = Series([0, 1, 2**16 - 1], dtype=np.uint16)
717
+ s5 = Series([0, 1, 2**31 - 100], dtype=np.uint32)
718
+ s6 = Series([0, 1, 2**32 - 1], dtype=np.uint32)
719
+
720
+ original = DataFrame(
721
+ {"s0": s0, "s1": s1, "s2": s2, "s3": s3, "s4": s4, "s5": s5, "s6": s6}
722
+ )
723
+ original.index.name = "index"
724
+ expected = original.copy()
725
+ expected.index = original.index.astype(np.int32)
726
+ expected_types = (
727
+ np.int8,
728
+ np.int8,
729
+ np.int16,
730
+ np.int16,
731
+ np.int32,
732
+ np.int32,
733
+ np.float64,
734
+ )
735
+ for c, t in zip(expected.columns, expected_types):
736
+ expected[c] = expected[c].astype(t)
737
+
738
+ with tm.ensure_clean() as path:
739
+ original.to_stata(path, byteorder=byteorder, version=version)
740
+ written_and_read_again = self.read_dta(path)
741
+
742
+ written_and_read_again = written_and_read_again.set_index("index")
743
+ tm.assert_frame_equal(written_and_read_again, expected)
744
+
745
+ def test_variable_labels(self, datapath):
746
+ with StataReader(datapath("io", "data", "stata", "stata7_115.dta")) as rdr:
747
+ sr_115 = rdr.variable_labels()
748
+ with StataReader(datapath("io", "data", "stata", "stata7_117.dta")) as rdr:
749
+ sr_117 = rdr.variable_labels()
750
+ keys = ("var1", "var2", "var3")
751
+ labels = ("label1", "label2", "label3")
752
+ for k, v in sr_115.items():
753
+ assert k in sr_117
754
+ assert v == sr_117[k]
755
+ assert k in keys
756
+ assert v in labels
757
+
758
+ def test_minimal_size_col(self):
759
+ str_lens = (1, 100, 244)
760
+ s = {}
761
+ for str_len in str_lens:
762
+ s["s" + str(str_len)] = Series(
763
+ ["a" * str_len, "b" * str_len, "c" * str_len]
764
+ )
765
+ original = DataFrame(s)
766
+ with tm.ensure_clean() as path:
767
+ original.to_stata(path, write_index=False)
768
+
769
+ with StataReader(path) as sr:
770
+ sr._ensure_open() # The `_*list` variables are initialized here
771
+ for variable, fmt, typ in zip(sr._varlist, sr._fmtlist, sr._typlist):
772
+ assert int(variable[1:]) == int(fmt[1:-1])
773
+ assert int(variable[1:]) == typ
774
+
775
+ def test_excessively_long_string(self):
776
+ str_lens = (1, 244, 500)
777
+ s = {}
778
+ for str_len in str_lens:
779
+ s["s" + str(str_len)] = Series(
780
+ ["a" * str_len, "b" * str_len, "c" * str_len]
781
+ )
782
+ original = DataFrame(s)
783
+ msg = (
784
+ r"Fixed width strings in Stata \.dta files are limited to 244 "
785
+ r"\(or fewer\)\ncharacters\. Column 's500' does not satisfy "
786
+ r"this restriction\. Use the\n'version=117' parameter to write "
787
+ r"the newer \(Stata 13 and later\) format\."
788
+ )
789
+ with pytest.raises(ValueError, match=msg):
790
+ with tm.ensure_clean() as path:
791
+ original.to_stata(path)
792
+
793
+ def test_missing_value_generator(self):
794
+ types = ("b", "h", "l")
795
+ df = DataFrame([[0.0]], columns=["float_"])
796
+ with tm.ensure_clean() as path:
797
+ df.to_stata(path)
798
+ with StataReader(path) as rdr:
799
+ valid_range = rdr.VALID_RANGE
800
+ expected_values = ["." + chr(97 + i) for i in range(26)]
801
+ expected_values.insert(0, ".")
802
+ for t in types:
803
+ offset = valid_range[t][1]
804
+ for i in range(27):
805
+ val = StataMissingValue(offset + 1 + i)
806
+ assert val.string == expected_values[i]
807
+
808
+ # Test extremes for floats
809
+ val = StataMissingValue(struct.unpack("<f", b"\x00\x00\x00\x7f")[0])
810
+ assert val.string == "."
811
+ val = StataMissingValue(struct.unpack("<f", b"\x00\xd0\x00\x7f")[0])
812
+ assert val.string == ".z"
813
+
814
+ # Test extremes for floats
815
+ val = StataMissingValue(
816
+ struct.unpack("<d", b"\x00\x00\x00\x00\x00\x00\xe0\x7f")[0]
817
+ )
818
+ assert val.string == "."
819
+ val = StataMissingValue(
820
+ struct.unpack("<d", b"\x00\x00\x00\x00\x00\x1a\xe0\x7f")[0]
821
+ )
822
+ assert val.string == ".z"
823
+
824
+ @pytest.mark.parametrize("file", ["stata8_113", "stata8_115", "stata8_117"])
825
+ def test_missing_value_conversion(self, file, datapath):
826
+ columns = ["int8_", "int16_", "int32_", "float32_", "float64_"]
827
+ smv = StataMissingValue(101)
828
+ keys = sorted(smv.MISSING_VALUES.keys())
829
+ data = []
830
+ for i in range(27):
831
+ row = [StataMissingValue(keys[i + (j * 27)]) for j in range(5)]
832
+ data.append(row)
833
+ expected = DataFrame(data, columns=columns)
834
+
835
+ parsed = read_stata(
836
+ datapath("io", "data", "stata", f"{file}.dta"), convert_missing=True
837
+ )
838
+ tm.assert_frame_equal(parsed, expected)
839
+
840
+ def test_big_dates(self, datapath):
841
+ yr = [1960, 2000, 9999, 100, 2262, 1677]
842
+ mo = [1, 1, 12, 1, 4, 9]
843
+ dd = [1, 1, 31, 1, 22, 23]
844
+ hr = [0, 0, 23, 0, 0, 0]
845
+ mm = [0, 0, 59, 0, 0, 0]
846
+ ss = [0, 0, 59, 0, 0, 0]
847
+ expected = []
848
+ for year, month, day, hour, minute, second in zip(yr, mo, dd, hr, mm, ss):
849
+ row = []
850
+ for j in range(7):
851
+ if j == 0:
852
+ row.append(datetime(year, month, day, hour, minute, second))
853
+ elif j == 6:
854
+ row.append(datetime(year, 1, 1))
855
+ else:
856
+ row.append(datetime(year, month, day))
857
+ expected.append(row)
858
+ expected.append([pd.NaT] * 7)
859
+ columns = [
860
+ "date_tc",
861
+ "date_td",
862
+ "date_tw",
863
+ "date_tm",
864
+ "date_tq",
865
+ "date_th",
866
+ "date_ty",
867
+ ]
868
+
869
+ # Fixes for weekly, quarterly,half,year
870
+ expected[2][2] = datetime(9999, 12, 24)
871
+ expected[2][3] = datetime(9999, 12, 1)
872
+ expected[2][4] = datetime(9999, 10, 1)
873
+ expected[2][5] = datetime(9999, 7, 1)
874
+ expected[4][2] = datetime(2262, 4, 16)
875
+ expected[4][3] = expected[4][4] = datetime(2262, 4, 1)
876
+ expected[4][5] = expected[4][6] = datetime(2262, 1, 1)
877
+ expected[5][2] = expected[5][3] = expected[5][4] = datetime(1677, 10, 1)
878
+ expected[5][5] = expected[5][6] = datetime(1678, 1, 1)
879
+
880
+ expected = DataFrame(expected, columns=columns, dtype=object)
881
+ parsed_115 = read_stata(datapath("io", "data", "stata", "stata9_115.dta"))
882
+ parsed_117 = read_stata(datapath("io", "data", "stata", "stata9_117.dta"))
883
+ tm.assert_frame_equal(expected, parsed_115, check_datetimelike_compat=True)
884
+ tm.assert_frame_equal(expected, parsed_117, check_datetimelike_compat=True)
885
+
886
+ date_conversion = {c: c[-2:] for c in columns}
887
+ # {c : c[-2:] for c in columns}
888
+ with tm.ensure_clean() as path:
889
+ expected.index.name = "index"
890
+ expected.to_stata(path, convert_dates=date_conversion)
891
+ written_and_read_again = self.read_dta(path)
892
+
893
+ tm.assert_frame_equal(
894
+ written_and_read_again.set_index("index"),
895
+ expected.set_index(expected.index.astype(np.int32)),
896
+ check_datetimelike_compat=True,
897
+ )
898
+
899
+ def test_dtype_conversion(self, datapath):
900
+ expected = self.read_csv(datapath("io", "data", "stata", "stata6.csv"))
901
+ expected["byte_"] = expected["byte_"].astype(np.int8)
902
+ expected["int_"] = expected["int_"].astype(np.int16)
903
+ expected["long_"] = expected["long_"].astype(np.int32)
904
+ expected["float_"] = expected["float_"].astype(np.float32)
905
+ expected["double_"] = expected["double_"].astype(np.float64)
906
+ expected["date_td"] = expected["date_td"].apply(
907
+ datetime.strptime, args=("%Y-%m-%d",)
908
+ )
909
+
910
+ no_conversion = read_stata(
911
+ datapath("io", "data", "stata", "stata6_117.dta"), convert_dates=True
912
+ )
913
+ tm.assert_frame_equal(expected, no_conversion)
914
+
915
+ conversion = read_stata(
916
+ datapath("io", "data", "stata", "stata6_117.dta"),
917
+ convert_dates=True,
918
+ preserve_dtypes=False,
919
+ )
920
+
921
+ # read_csv types are the same
922
+ expected = self.read_csv(datapath("io", "data", "stata", "stata6.csv"))
923
+ expected["date_td"] = expected["date_td"].apply(
924
+ datetime.strptime, args=("%Y-%m-%d",)
925
+ )
926
+
927
+ tm.assert_frame_equal(expected, conversion)
928
+
929
+ def test_drop_column(self, datapath):
930
+ expected = self.read_csv(datapath("io", "data", "stata", "stata6.csv"))
931
+ expected["byte_"] = expected["byte_"].astype(np.int8)
932
+ expected["int_"] = expected["int_"].astype(np.int16)
933
+ expected["long_"] = expected["long_"].astype(np.int32)
934
+ expected["float_"] = expected["float_"].astype(np.float32)
935
+ expected["double_"] = expected["double_"].astype(np.float64)
936
+ expected["date_td"] = expected["date_td"].apply(
937
+ datetime.strptime, args=("%Y-%m-%d",)
938
+ )
939
+
940
+ columns = ["byte_", "int_", "long_"]
941
+ expected = expected[columns]
942
+ dropped = read_stata(
943
+ datapath("io", "data", "stata", "stata6_117.dta"),
944
+ convert_dates=True,
945
+ columns=columns,
946
+ )
947
+
948
+ tm.assert_frame_equal(expected, dropped)
949
+
950
+ # See PR 10757
951
+ columns = ["int_", "long_", "byte_"]
952
+ expected = expected[columns]
953
+ reordered = read_stata(
954
+ datapath("io", "data", "stata", "stata6_117.dta"),
955
+ convert_dates=True,
956
+ columns=columns,
957
+ )
958
+ tm.assert_frame_equal(expected, reordered)
959
+
960
+ msg = "columns contains duplicate entries"
961
+ with pytest.raises(ValueError, match=msg):
962
+ columns = ["byte_", "byte_"]
963
+ read_stata(
964
+ datapath("io", "data", "stata", "stata6_117.dta"),
965
+ convert_dates=True,
966
+ columns=columns,
967
+ )
968
+
969
+ msg = "The following columns were not found in the Stata data set: not_found"
970
+ with pytest.raises(ValueError, match=msg):
971
+ columns = ["byte_", "int_", "long_", "not_found"]
972
+ read_stata(
973
+ datapath("io", "data", "stata", "stata6_117.dta"),
974
+ convert_dates=True,
975
+ columns=columns,
976
+ )
977
+
978
+ @pytest.mark.parametrize("version", [114, 117, 118, 119, None])
979
+ @pytest.mark.filterwarnings(
980
+ "ignore:\\nStata value:pandas.io.stata.ValueLabelTypeMismatch"
981
+ )
982
+ def test_categorical_writing(self, version):
983
+ original = DataFrame.from_records(
984
+ [
985
+ ["one", "ten", "one", "one", "one", 1],
986
+ ["two", "nine", "two", "two", "two", 2],
987
+ ["three", "eight", "three", "three", "three", 3],
988
+ ["four", "seven", 4, "four", "four", 4],
989
+ ["five", "six", 5, np.nan, "five", 5],
990
+ ["six", "five", 6, np.nan, "six", 6],
991
+ ["seven", "four", 7, np.nan, "seven", 7],
992
+ ["eight", "three", 8, np.nan, "eight", 8],
993
+ ["nine", "two", 9, np.nan, "nine", 9],
994
+ ["ten", "one", "ten", np.nan, "ten", 10],
995
+ ],
996
+ columns=[
997
+ "fully_labeled",
998
+ "fully_labeled2",
999
+ "incompletely_labeled",
1000
+ "labeled_with_missings",
1001
+ "float_labelled",
1002
+ "unlabeled",
1003
+ ],
1004
+ )
1005
+ expected = original.copy()
1006
+
1007
+ # these are all categoricals
1008
+ original = pd.concat(
1009
+ [original[col].astype("category") for col in original], axis=1
1010
+ )
1011
+ expected.index = expected.index.set_names("index").astype(np.int32)
1012
+
1013
+ expected["incompletely_labeled"] = expected["incompletely_labeled"].apply(str)
1014
+ expected["unlabeled"] = expected["unlabeled"].apply(str)
1015
+ for col in expected:
1016
+ orig = expected[col].copy()
1017
+
1018
+ cat = orig.astype("category")._values
1019
+ cat = cat.as_ordered()
1020
+ if col == "unlabeled":
1021
+ cat = cat.set_categories(orig, ordered=True)
1022
+
1023
+ cat.categories.rename(None, inplace=True)
1024
+
1025
+ expected[col] = cat
1026
+
1027
+ with tm.ensure_clean() as path:
1028
+ original.to_stata(path, version=version)
1029
+ written_and_read_again = self.read_dta(path)
1030
+
1031
+ res = written_and_read_again.set_index("index")
1032
+ tm.assert_frame_equal(res, expected)
1033
+
1034
+ def test_categorical_warnings_and_errors(self):
1035
+ # Warning for non-string labels
1036
+ # Error for labels too long
1037
+ original = DataFrame.from_records(
1038
+ [["a" * 10000], ["b" * 10000], ["c" * 10000], ["d" * 10000]],
1039
+ columns=["Too_long"],
1040
+ )
1041
+
1042
+ original = pd.concat(
1043
+ [original[col].astype("category") for col in original], axis=1
1044
+ )
1045
+ with tm.ensure_clean() as path:
1046
+ msg = (
1047
+ "Stata value labels for a single variable must have "
1048
+ r"a combined length less than 32,000 characters\."
1049
+ )
1050
+ with pytest.raises(ValueError, match=msg):
1051
+ original.to_stata(path)
1052
+
1053
+ original = DataFrame.from_records(
1054
+ [["a"], ["b"], ["c"], ["d"], [1]], columns=["Too_long"]
1055
+ )
1056
+ original = pd.concat(
1057
+ [original[col].astype("category") for col in original], axis=1
1058
+ )
1059
+
1060
+ with tm.assert_produces_warning(ValueLabelTypeMismatch):
1061
+ original.to_stata(path)
1062
+ # should get a warning for mixed content
1063
+
1064
+ @pytest.mark.parametrize("version", [114, 117, 118, 119, None])
1065
+ def test_categorical_with_stata_missing_values(self, version):
1066
+ values = [["a" + str(i)] for i in range(120)]
1067
+ values.append([np.nan])
1068
+ original = DataFrame.from_records(values, columns=["many_labels"])
1069
+ original = pd.concat(
1070
+ [original[col].astype("category") for col in original], axis=1
1071
+ )
1072
+ original.index.name = "index"
1073
+ with tm.ensure_clean() as path:
1074
+ original.to_stata(path, version=version)
1075
+ written_and_read_again = self.read_dta(path)
1076
+
1077
+ res = written_and_read_again.set_index("index")
1078
+
1079
+ expected = original.copy()
1080
+ for col in expected:
1081
+ cat = expected[col]._values
1082
+ new_cats = cat.remove_unused_categories().categories
1083
+ cat = cat.set_categories(new_cats, ordered=True)
1084
+ expected[col] = cat
1085
+ expected.index = expected.index.astype(np.int32)
1086
+ tm.assert_frame_equal(res, expected)
1087
+
1088
+ @pytest.mark.parametrize("file", ["stata10_115", "stata10_117"])
1089
+ def test_categorical_order(self, file, datapath):
1090
+ # Directly construct using expected codes
1091
+ # Format is is_cat, col_name, labels (in order), underlying data
1092
+ expected = [
1093
+ (True, "ordered", ["a", "b", "c", "d", "e"], np.arange(5)),
1094
+ (True, "reverse", ["a", "b", "c", "d", "e"], np.arange(5)[::-1]),
1095
+ (True, "noorder", ["a", "b", "c", "d", "e"], np.array([2, 1, 4, 0, 3])),
1096
+ (True, "floating", ["a", "b", "c", "d", "e"], np.arange(0, 5)),
1097
+ (True, "float_missing", ["a", "d", "e"], np.array([0, 1, 2, -1, -1])),
1098
+ (False, "nolabel", [1.0, 2.0, 3.0, 4.0, 5.0], np.arange(5)),
1099
+ (True, "int32_mixed", ["d", 2, "e", "b", "a"], np.arange(5)),
1100
+ ]
1101
+ cols = []
1102
+ for is_cat, col, labels, codes in expected:
1103
+ if is_cat:
1104
+ cols.append(
1105
+ (col, pd.Categorical.from_codes(codes, labels, ordered=True))
1106
+ )
1107
+ else:
1108
+ cols.append((col, Series(labels, dtype=np.float32)))
1109
+ expected = DataFrame.from_dict(dict(cols))
1110
+
1111
+ # Read with and with out categoricals, ensure order is identical
1112
+ file = datapath("io", "data", "stata", f"{file}.dta")
1113
+ parsed = read_stata(file)
1114
+ tm.assert_frame_equal(expected, parsed)
1115
+
1116
+ # Check identity of codes
1117
+ for col in expected:
1118
+ if isinstance(expected[col].dtype, CategoricalDtype):
1119
+ tm.assert_series_equal(expected[col].cat.codes, parsed[col].cat.codes)
1120
+ tm.assert_index_equal(
1121
+ expected[col].cat.categories, parsed[col].cat.categories
1122
+ )
1123
+
1124
+ @pytest.mark.parametrize("file", ["stata11_115", "stata11_117"])
1125
+ def test_categorical_sorting(self, file, datapath):
1126
+ parsed = read_stata(datapath("io", "data", "stata", f"{file}.dta"))
1127
+
1128
+ # Sort based on codes, not strings
1129
+ parsed = parsed.sort_values("srh", na_position="first")
1130
+
1131
+ # Don't sort index
1132
+ parsed.index = pd.RangeIndex(len(parsed))
1133
+ codes = [-1, -1, 0, 1, 1, 1, 2, 2, 3, 4]
1134
+ categories = ["Poor", "Fair", "Good", "Very good", "Excellent"]
1135
+ cat = pd.Categorical.from_codes(
1136
+ codes=codes, categories=categories, ordered=True
1137
+ )
1138
+ expected = Series(cat, name="srh")
1139
+ tm.assert_series_equal(expected, parsed["srh"])
1140
+
1141
+ @pytest.mark.parametrize("file", ["stata10_115", "stata10_117"])
1142
+ def test_categorical_ordering(self, file, datapath):
1143
+ file = datapath("io", "data", "stata", f"{file}.dta")
1144
+ parsed = read_stata(file)
1145
+
1146
+ parsed_unordered = read_stata(file, order_categoricals=False)
1147
+ for col in parsed:
1148
+ if not isinstance(parsed[col].dtype, CategoricalDtype):
1149
+ continue
1150
+ assert parsed[col].cat.ordered
1151
+ assert not parsed_unordered[col].cat.ordered
1152
+
1153
+ @pytest.mark.filterwarnings("ignore::UserWarning")
1154
+ @pytest.mark.parametrize(
1155
+ "file",
1156
+ [
1157
+ "stata1_117",
1158
+ "stata2_117",
1159
+ "stata3_117",
1160
+ "stata4_117",
1161
+ "stata5_117",
1162
+ "stata6_117",
1163
+ "stata7_117",
1164
+ "stata8_117",
1165
+ "stata9_117",
1166
+ "stata10_117",
1167
+ "stata11_117",
1168
+ ],
1169
+ )
1170
+ @pytest.mark.parametrize("chunksize", [1, 2])
1171
+ @pytest.mark.parametrize("convert_categoricals", [False, True])
1172
+ @pytest.mark.parametrize("convert_dates", [False, True])
1173
+ def test_read_chunks_117(
1174
+ self, file, chunksize, convert_categoricals, convert_dates, datapath
1175
+ ):
1176
+ fname = datapath("io", "data", "stata", f"{file}.dta")
1177
+
1178
+ parsed = read_stata(
1179
+ fname,
1180
+ convert_categoricals=convert_categoricals,
1181
+ convert_dates=convert_dates,
1182
+ )
1183
+ with read_stata(
1184
+ fname,
1185
+ iterator=True,
1186
+ convert_categoricals=convert_categoricals,
1187
+ convert_dates=convert_dates,
1188
+ ) as itr:
1189
+ pos = 0
1190
+ for j in range(5):
1191
+ try:
1192
+ chunk = itr.read(chunksize)
1193
+ except StopIteration:
1194
+ break
1195
+ from_frame = parsed.iloc[pos : pos + chunksize, :].copy()
1196
+ from_frame = self._convert_categorical(from_frame)
1197
+ tm.assert_frame_equal(
1198
+ from_frame, chunk, check_dtype=False, check_datetimelike_compat=True
1199
+ )
1200
+ pos += chunksize
1201
+
1202
+ @staticmethod
1203
+ def _convert_categorical(from_frame: DataFrame) -> DataFrame:
1204
+ """
1205
+ Emulate the categorical casting behavior we expect from roundtripping.
1206
+ """
1207
+ for col in from_frame:
1208
+ ser = from_frame[col]
1209
+ if isinstance(ser.dtype, CategoricalDtype):
1210
+ cat = ser._values.remove_unused_categories()
1211
+ if cat.categories.dtype == object:
1212
+ categories = pd.Index._with_infer(cat.categories._values)
1213
+ cat = cat.set_categories(categories)
1214
+ from_frame[col] = cat
1215
+ return from_frame
1216
+
1217
+ def test_iterator(self, datapath):
1218
+ fname = datapath("io", "data", "stata", "stata3_117.dta")
1219
+
1220
+ parsed = read_stata(fname)
1221
+
1222
+ with read_stata(fname, iterator=True) as itr:
1223
+ chunk = itr.read(5)
1224
+ tm.assert_frame_equal(parsed.iloc[0:5, :], chunk)
1225
+
1226
+ with read_stata(fname, chunksize=5) as itr:
1227
+ chunk = list(itr)
1228
+ tm.assert_frame_equal(parsed.iloc[0:5, :], chunk[0])
1229
+
1230
+ with read_stata(fname, iterator=True) as itr:
1231
+ chunk = itr.get_chunk(5)
1232
+ tm.assert_frame_equal(parsed.iloc[0:5, :], chunk)
1233
+
1234
+ with read_stata(fname, chunksize=5) as itr:
1235
+ chunk = itr.get_chunk()
1236
+ tm.assert_frame_equal(parsed.iloc[0:5, :], chunk)
1237
+
1238
+ # GH12153
1239
+ with read_stata(fname, chunksize=4) as itr:
1240
+ from_chunks = pd.concat(itr)
1241
+ tm.assert_frame_equal(parsed, from_chunks)
1242
+
1243
+ @pytest.mark.filterwarnings("ignore::UserWarning")
1244
+ @pytest.mark.parametrize(
1245
+ "file",
1246
+ [
1247
+ "stata2_115",
1248
+ "stata3_115",
1249
+ "stata4_115",
1250
+ "stata5_115",
1251
+ "stata6_115",
1252
+ "stata7_115",
1253
+ "stata8_115",
1254
+ "stata9_115",
1255
+ "stata10_115",
1256
+ "stata11_115",
1257
+ ],
1258
+ )
1259
+ @pytest.mark.parametrize("chunksize", [1, 2])
1260
+ @pytest.mark.parametrize("convert_categoricals", [False, True])
1261
+ @pytest.mark.parametrize("convert_dates", [False, True])
1262
+ def test_read_chunks_115(
1263
+ self, file, chunksize, convert_categoricals, convert_dates, datapath
1264
+ ):
1265
+ fname = datapath("io", "data", "stata", f"{file}.dta")
1266
+
1267
+ # Read the whole file
1268
+ parsed = read_stata(
1269
+ fname,
1270
+ convert_categoricals=convert_categoricals,
1271
+ convert_dates=convert_dates,
1272
+ )
1273
+
1274
+ # Compare to what we get when reading by chunk
1275
+ with read_stata(
1276
+ fname,
1277
+ iterator=True,
1278
+ convert_dates=convert_dates,
1279
+ convert_categoricals=convert_categoricals,
1280
+ ) as itr:
1281
+ pos = 0
1282
+ for j in range(5):
1283
+ try:
1284
+ chunk = itr.read(chunksize)
1285
+ except StopIteration:
1286
+ break
1287
+ from_frame = parsed.iloc[pos : pos + chunksize, :].copy()
1288
+ from_frame = self._convert_categorical(from_frame)
1289
+ tm.assert_frame_equal(
1290
+ from_frame, chunk, check_dtype=False, check_datetimelike_compat=True
1291
+ )
1292
+ pos += chunksize
1293
+
1294
+ def test_read_chunks_columns(self, datapath):
1295
+ fname = datapath("io", "data", "stata", "stata3_117.dta")
1296
+ columns = ["quarter", "cpi", "m1"]
1297
+ chunksize = 2
1298
+
1299
+ parsed = read_stata(fname, columns=columns)
1300
+ with read_stata(fname, iterator=True) as itr:
1301
+ pos = 0
1302
+ for j in range(5):
1303
+ chunk = itr.read(chunksize, columns=columns)
1304
+ if chunk is None:
1305
+ break
1306
+ from_frame = parsed.iloc[pos : pos + chunksize, :]
1307
+ tm.assert_frame_equal(from_frame, chunk, check_dtype=False)
1308
+ pos += chunksize
1309
+
1310
+ @pytest.mark.parametrize("version", [114, 117, 118, 119, None])
1311
+ def test_write_variable_labels(self, version, mixed_frame):
1312
+ # GH 13631, add support for writing variable labels
1313
+ mixed_frame.index.name = "index"
1314
+ variable_labels = {"a": "City Rank", "b": "City Exponent", "c": "City"}
1315
+ with tm.ensure_clean() as path:
1316
+ mixed_frame.to_stata(path, variable_labels=variable_labels, version=version)
1317
+ with StataReader(path) as sr:
1318
+ read_labels = sr.variable_labels()
1319
+ expected_labels = {
1320
+ "index": "",
1321
+ "a": "City Rank",
1322
+ "b": "City Exponent",
1323
+ "c": "City",
1324
+ }
1325
+ assert read_labels == expected_labels
1326
+
1327
+ variable_labels["index"] = "The Index"
1328
+ with tm.ensure_clean() as path:
1329
+ mixed_frame.to_stata(path, variable_labels=variable_labels, version=version)
1330
+ with StataReader(path) as sr:
1331
+ read_labels = sr.variable_labels()
1332
+ assert read_labels == variable_labels
1333
+
1334
+ @pytest.mark.parametrize("version", [114, 117, 118, 119, None])
1335
+ def test_invalid_variable_labels(self, version, mixed_frame):
1336
+ mixed_frame.index.name = "index"
1337
+ variable_labels = {"a": "very long" * 10, "b": "City Exponent", "c": "City"}
1338
+ with tm.ensure_clean() as path:
1339
+ msg = "Variable labels must be 80 characters or fewer"
1340
+ with pytest.raises(ValueError, match=msg):
1341
+ mixed_frame.to_stata(
1342
+ path, variable_labels=variable_labels, version=version
1343
+ )
1344
+
1345
+ @pytest.mark.parametrize("version", [114, 117])
1346
+ def test_invalid_variable_label_encoding(self, version, mixed_frame):
1347
+ mixed_frame.index.name = "index"
1348
+ variable_labels = {"a": "very long" * 10, "b": "City Exponent", "c": "City"}
1349
+ variable_labels["a"] = "invalid character Œ"
1350
+ with tm.ensure_clean() as path:
1351
+ with pytest.raises(
1352
+ ValueError, match="Variable labels must contain only characters"
1353
+ ):
1354
+ mixed_frame.to_stata(
1355
+ path, variable_labels=variable_labels, version=version
1356
+ )
1357
+
1358
+ def test_write_variable_label_errors(self, mixed_frame):
1359
+ values = ["\u03A1", "\u0391", "\u039D", "\u0394", "\u0391", "\u03A3"]
1360
+
1361
+ variable_labels_utf8 = {
1362
+ "a": "City Rank",
1363
+ "b": "City Exponent",
1364
+ "c": "".join(values),
1365
+ }
1366
+
1367
+ msg = (
1368
+ "Variable labels must contain only characters that can be "
1369
+ "encoded in Latin-1"
1370
+ )
1371
+ with pytest.raises(ValueError, match=msg):
1372
+ with tm.ensure_clean() as path:
1373
+ mixed_frame.to_stata(path, variable_labels=variable_labels_utf8)
1374
+
1375
+ variable_labels_long = {
1376
+ "a": "City Rank",
1377
+ "b": "City Exponent",
1378
+ "c": "A very, very, very long variable label "
1379
+ "that is too long for Stata which means "
1380
+ "that it has more than 80 characters",
1381
+ }
1382
+
1383
+ msg = "Variable labels must be 80 characters or fewer"
1384
+ with pytest.raises(ValueError, match=msg):
1385
+ with tm.ensure_clean() as path:
1386
+ mixed_frame.to_stata(path, variable_labels=variable_labels_long)
1387
+
1388
+ def test_default_date_conversion(self):
1389
+ # GH 12259
1390
+ dates = [
1391
+ dt.datetime(1999, 12, 31, 12, 12, 12, 12000),
1392
+ dt.datetime(2012, 12, 21, 12, 21, 12, 21000),
1393
+ dt.datetime(1776, 7, 4, 7, 4, 7, 4000),
1394
+ ]
1395
+ original = DataFrame(
1396
+ {
1397
+ "nums": [1.0, 2.0, 3.0],
1398
+ "strs": ["apple", "banana", "cherry"],
1399
+ "dates": dates,
1400
+ }
1401
+ )
1402
+
1403
+ with tm.ensure_clean() as path:
1404
+ original.to_stata(path, write_index=False)
1405
+ reread = read_stata(path, convert_dates=True)
1406
+ tm.assert_frame_equal(original, reread)
1407
+
1408
+ original.to_stata(path, write_index=False, convert_dates={"dates": "tc"})
1409
+ direct = read_stata(path, convert_dates=True)
1410
+ tm.assert_frame_equal(reread, direct)
1411
+
1412
+ dates_idx = original.columns.tolist().index("dates")
1413
+ original.to_stata(path, write_index=False, convert_dates={dates_idx: "tc"})
1414
+ direct = read_stata(path, convert_dates=True)
1415
+ tm.assert_frame_equal(reread, direct)
1416
+
1417
+ def test_unsupported_type(self):
1418
+ original = DataFrame({"a": [1 + 2j, 2 + 4j]})
1419
+
1420
+ msg = "Data type complex128 not supported"
1421
+ with pytest.raises(NotImplementedError, match=msg):
1422
+ with tm.ensure_clean() as path:
1423
+ original.to_stata(path)
1424
+
1425
+ def test_unsupported_datetype(self):
1426
+ dates = [
1427
+ dt.datetime(1999, 12, 31, 12, 12, 12, 12000),
1428
+ dt.datetime(2012, 12, 21, 12, 21, 12, 21000),
1429
+ dt.datetime(1776, 7, 4, 7, 4, 7, 4000),
1430
+ ]
1431
+ original = DataFrame(
1432
+ {
1433
+ "nums": [1.0, 2.0, 3.0],
1434
+ "strs": ["apple", "banana", "cherry"],
1435
+ "dates": dates,
1436
+ }
1437
+ )
1438
+
1439
+ msg = "Format %tC not implemented"
1440
+ with pytest.raises(NotImplementedError, match=msg):
1441
+ with tm.ensure_clean() as path:
1442
+ original.to_stata(path, convert_dates={"dates": "tC"})
1443
+
1444
+ dates = pd.date_range("1-1-1990", periods=3, tz="Asia/Hong_Kong")
1445
+ original = DataFrame(
1446
+ {
1447
+ "nums": [1.0, 2.0, 3.0],
1448
+ "strs": ["apple", "banana", "cherry"],
1449
+ "dates": dates,
1450
+ }
1451
+ )
1452
+ with pytest.raises(NotImplementedError, match="Data type datetime64"):
1453
+ with tm.ensure_clean() as path:
1454
+ original.to_stata(path)
1455
+
1456
+ def test_repeated_column_labels(self, datapath):
1457
+ # GH 13923, 25772
1458
+ msg = """
1459
+ Value labels for column ethnicsn are not unique. These cannot be converted to
1460
+ pandas categoricals.
1461
+
1462
+ Either read the file with `convert_categoricals` set to False or use the
1463
+ low level interface in `StataReader` to separately read the values and the
1464
+ value_labels.
1465
+
1466
+ The repeated labels are:\n-+\nwolof
1467
+ """
1468
+ with pytest.raises(ValueError, match=msg):
1469
+ read_stata(
1470
+ datapath("io", "data", "stata", "stata15.dta"),
1471
+ convert_categoricals=True,
1472
+ )
1473
+
1474
+ def test_stata_111(self, datapath):
1475
+ # 111 is an old version but still used by current versions of
1476
+ # SAS when exporting to Stata format. We do not know of any
1477
+ # on-line documentation for this version.
1478
+ df = read_stata(datapath("io", "data", "stata", "stata7_111.dta"))
1479
+ original = DataFrame(
1480
+ {
1481
+ "y": [1, 1, 1, 1, 1, 0, 0, np.nan, 0, 0],
1482
+ "x": [1, 2, 1, 3, np.nan, 4, 3, 5, 1, 6],
1483
+ "w": [2, np.nan, 5, 2, 4, 4, 3, 1, 2, 3],
1484
+ "z": ["a", "b", "c", "d", "e", "", "g", "h", "i", "j"],
1485
+ }
1486
+ )
1487
+ original = original[["y", "x", "w", "z"]]
1488
+ tm.assert_frame_equal(original, df)
1489
+
1490
+ def test_out_of_range_double(self):
1491
+ # GH 14618
1492
+ df = DataFrame(
1493
+ {
1494
+ "ColumnOk": [0.0, np.finfo(np.double).eps, 4.49423283715579e307],
1495
+ "ColumnTooBig": [0.0, np.finfo(np.double).eps, np.finfo(np.double).max],
1496
+ }
1497
+ )
1498
+ msg = (
1499
+ r"Column ColumnTooBig has a maximum value \(.+\) outside the range "
1500
+ r"supported by Stata \(.+\)"
1501
+ )
1502
+ with pytest.raises(ValueError, match=msg):
1503
+ with tm.ensure_clean() as path:
1504
+ df.to_stata(path)
1505
+
1506
+ def test_out_of_range_float(self):
1507
+ original = DataFrame(
1508
+ {
1509
+ "ColumnOk": [
1510
+ 0.0,
1511
+ np.finfo(np.float32).eps,
1512
+ np.finfo(np.float32).max / 10.0,
1513
+ ],
1514
+ "ColumnTooBig": [
1515
+ 0.0,
1516
+ np.finfo(np.float32).eps,
1517
+ np.finfo(np.float32).max,
1518
+ ],
1519
+ }
1520
+ )
1521
+ original.index.name = "index"
1522
+ for col in original:
1523
+ original[col] = original[col].astype(np.float32)
1524
+
1525
+ with tm.ensure_clean() as path:
1526
+ original.to_stata(path)
1527
+ reread = read_stata(path)
1528
+
1529
+ original["ColumnTooBig"] = original["ColumnTooBig"].astype(np.float64)
1530
+ expected = original.copy()
1531
+ expected.index = expected.index.astype(np.int32)
1532
+ tm.assert_frame_equal(reread.set_index("index"), expected)
1533
+
1534
+ @pytest.mark.parametrize("infval", [np.inf, -np.inf])
1535
+ def test_inf(self, infval):
1536
+ # GH 45350
1537
+ df = DataFrame({"WithoutInf": [0.0, 1.0], "WithInf": [2.0, infval]})
1538
+ msg = (
1539
+ "Column WithInf contains infinity or -infinity"
1540
+ "which is outside the range supported by Stata."
1541
+ )
1542
+ with pytest.raises(ValueError, match=msg):
1543
+ with tm.ensure_clean() as path:
1544
+ df.to_stata(path)
1545
+
1546
+ def test_path_pathlib(self):
1547
+ df = DataFrame(
1548
+ 1.1 * np.arange(120).reshape((30, 4)),
1549
+ columns=pd.Index(list("ABCD"), dtype=object),
1550
+ index=pd.Index([f"i-{i}" for i in range(30)], dtype=object),
1551
+ )
1552
+ df.index.name = "index"
1553
+ reader = lambda x: read_stata(x).set_index("index")
1554
+ result = tm.round_trip_pathlib(df.to_stata, reader)
1555
+ tm.assert_frame_equal(df, result)
1556
+
1557
+ def test_pickle_path_localpath(self):
1558
+ df = DataFrame(
1559
+ 1.1 * np.arange(120).reshape((30, 4)),
1560
+ columns=pd.Index(list("ABCD"), dtype=object),
1561
+ index=pd.Index([f"i-{i}" for i in range(30)], dtype=object),
1562
+ )
1563
+ df.index.name = "index"
1564
+ reader = lambda x: read_stata(x).set_index("index")
1565
+ result = tm.round_trip_localpath(df.to_stata, reader)
1566
+ tm.assert_frame_equal(df, result)
1567
+
1568
+ @pytest.mark.parametrize("write_index", [True, False])
1569
+ def test_value_labels_iterator(self, write_index):
1570
+ # GH 16923
1571
+ d = {"A": ["B", "E", "C", "A", "E"]}
1572
+ df = DataFrame(data=d)
1573
+ df["A"] = df["A"].astype("category")
1574
+ with tm.ensure_clean() as path:
1575
+ df.to_stata(path, write_index=write_index)
1576
+
1577
+ with read_stata(path, iterator=True) as dta_iter:
1578
+ value_labels = dta_iter.value_labels()
1579
+ assert value_labels == {"A": {0: "A", 1: "B", 2: "C", 3: "E"}}
1580
+
1581
+ def test_set_index(self):
1582
+ # GH 17328
1583
+ df = DataFrame(
1584
+ 1.1 * np.arange(120).reshape((30, 4)),
1585
+ columns=pd.Index(list("ABCD"), dtype=object),
1586
+ index=pd.Index([f"i-{i}" for i in range(30)], dtype=object),
1587
+ )
1588
+ df.index.name = "index"
1589
+ with tm.ensure_clean() as path:
1590
+ df.to_stata(path)
1591
+ reread = read_stata(path, index_col="index")
1592
+ tm.assert_frame_equal(df, reread)
1593
+
1594
+ @pytest.mark.parametrize(
1595
+ "column", ["ms", "day", "week", "month", "qtr", "half", "yr"]
1596
+ )
1597
+ def test_date_parsing_ignores_format_details(self, column, datapath):
1598
+ # GH 17797
1599
+ #
1600
+ # Test that display formats are ignored when determining if a numeric
1601
+ # column is a date value.
1602
+ #
1603
+ # All date types are stored as numbers and format associated with the
1604
+ # column denotes both the type of the date and the display format.
1605
+ #
1606
+ # STATA supports 9 date types which each have distinct units. We test 7
1607
+ # of the 9 types, ignoring %tC and %tb. %tC is a variant of %tc that
1608
+ # accounts for leap seconds and %tb relies on STATAs business calendar.
1609
+ df = read_stata(datapath("io", "data", "stata", "stata13_dates.dta"))
1610
+ unformatted = df.loc[0, column]
1611
+ formatted = df.loc[0, column + "_fmt"]
1612
+ assert unformatted == formatted
1613
+
1614
+ def test_writer_117(self):
1615
+ original = DataFrame(
1616
+ data=[
1617
+ [
1618
+ "string",
1619
+ "object",
1620
+ 1,
1621
+ 1,
1622
+ 1,
1623
+ 1.1,
1624
+ 1.1,
1625
+ np.datetime64("2003-12-25"),
1626
+ "a",
1627
+ "a" * 2045,
1628
+ "a" * 5000,
1629
+ "a",
1630
+ ],
1631
+ [
1632
+ "string-1",
1633
+ "object-1",
1634
+ 1,
1635
+ 1,
1636
+ 1,
1637
+ 1.1,
1638
+ 1.1,
1639
+ np.datetime64("2003-12-26"),
1640
+ "b",
1641
+ "b" * 2045,
1642
+ "",
1643
+ "",
1644
+ ],
1645
+ ],
1646
+ columns=[
1647
+ "string",
1648
+ "object",
1649
+ "int8",
1650
+ "int16",
1651
+ "int32",
1652
+ "float32",
1653
+ "float64",
1654
+ "datetime",
1655
+ "s1",
1656
+ "s2045",
1657
+ "srtl",
1658
+ "forced_strl",
1659
+ ],
1660
+ )
1661
+ original["object"] = Series(original["object"], dtype=object)
1662
+ original["int8"] = Series(original["int8"], dtype=np.int8)
1663
+ original["int16"] = Series(original["int16"], dtype=np.int16)
1664
+ original["int32"] = original["int32"].astype(np.int32)
1665
+ original["float32"] = Series(original["float32"], dtype=np.float32)
1666
+ original.index.name = "index"
1667
+ original.index = original.index.astype(np.int32)
1668
+ copy = original.copy()
1669
+ with tm.ensure_clean() as path:
1670
+ original.to_stata(
1671
+ path,
1672
+ convert_dates={"datetime": "tc"},
1673
+ convert_strl=["forced_strl"],
1674
+ version=117,
1675
+ )
1676
+ written_and_read_again = self.read_dta(path)
1677
+ # original.index is np.int32, read index is np.int64
1678
+ tm.assert_frame_equal(
1679
+ written_and_read_again.set_index("index"),
1680
+ original,
1681
+ check_index_type=False,
1682
+ )
1683
+ tm.assert_frame_equal(original, copy)
1684
+
1685
+ def test_convert_strl_name_swap(self):
1686
+ original = DataFrame(
1687
+ [["a" * 3000, "A", "apple"], ["b" * 1000, "B", "banana"]],
1688
+ columns=["long1" * 10, "long", 1],
1689
+ )
1690
+ original.index.name = "index"
1691
+
1692
+ with tm.assert_produces_warning(InvalidColumnName):
1693
+ with tm.ensure_clean() as path:
1694
+ original.to_stata(path, convert_strl=["long", 1], version=117)
1695
+ reread = self.read_dta(path)
1696
+ reread = reread.set_index("index")
1697
+ reread.columns = original.columns
1698
+ tm.assert_frame_equal(reread, original, check_index_type=False)
1699
+
1700
+ def test_invalid_date_conversion(self):
1701
+ # GH 12259
1702
+ dates = [
1703
+ dt.datetime(1999, 12, 31, 12, 12, 12, 12000),
1704
+ dt.datetime(2012, 12, 21, 12, 21, 12, 21000),
1705
+ dt.datetime(1776, 7, 4, 7, 4, 7, 4000),
1706
+ ]
1707
+ original = DataFrame(
1708
+ {
1709
+ "nums": [1.0, 2.0, 3.0],
1710
+ "strs": ["apple", "banana", "cherry"],
1711
+ "dates": dates,
1712
+ }
1713
+ )
1714
+
1715
+ with tm.ensure_clean() as path:
1716
+ msg = "convert_dates key must be a column or an integer"
1717
+ with pytest.raises(ValueError, match=msg):
1718
+ original.to_stata(path, convert_dates={"wrong_name": "tc"})
1719
+
1720
+ @pytest.mark.parametrize("version", [114, 117, 118, 119, None])
1721
+ def test_nonfile_writing(self, version):
1722
+ # GH 21041
1723
+ bio = io.BytesIO()
1724
+ df = DataFrame(
1725
+ 1.1 * np.arange(120).reshape((30, 4)),
1726
+ columns=pd.Index(list("ABCD"), dtype=object),
1727
+ index=pd.Index([f"i-{i}" for i in range(30)], dtype=object),
1728
+ )
1729
+ df.index.name = "index"
1730
+ with tm.ensure_clean() as path:
1731
+ df.to_stata(bio, version=version)
1732
+ bio.seek(0)
1733
+ with open(path, "wb") as dta:
1734
+ dta.write(bio.read())
1735
+ reread = read_stata(path, index_col="index")
1736
+ tm.assert_frame_equal(df, reread)
1737
+
1738
+ def test_gzip_writing(self):
1739
+ # writing version 117 requires seek and cannot be used with gzip
1740
+ df = DataFrame(
1741
+ 1.1 * np.arange(120).reshape((30, 4)),
1742
+ columns=pd.Index(list("ABCD"), dtype=object),
1743
+ index=pd.Index([f"i-{i}" for i in range(30)], dtype=object),
1744
+ )
1745
+ df.index.name = "index"
1746
+ with tm.ensure_clean() as path:
1747
+ with gzip.GzipFile(path, "wb") as gz:
1748
+ df.to_stata(gz, version=114)
1749
+ with gzip.GzipFile(path, "rb") as gz:
1750
+ reread = read_stata(gz, index_col="index")
1751
+ tm.assert_frame_equal(df, reread)
1752
+
1753
+ def test_unicode_dta_118(self, datapath):
1754
+ unicode_df = self.read_dta(datapath("io", "data", "stata", "stata16_118.dta"))
1755
+
1756
+ columns = ["utf8", "latin1", "ascii", "utf8_strl", "ascii_strl"]
1757
+ values = [
1758
+ ["ραηδας", "PÄNDÄS", "p", "ραηδας", "p"],
1759
+ ["ƤĀńĐąŜ", "Ö", "a", "ƤĀńĐąŜ", "a"],
1760
+ ["ᴘᴀᴎᴅᴀS", "Ü", "n", "ᴘᴀᴎᴅᴀS", "n"],
1761
+ [" ", " ", "d", " ", "d"],
1762
+ [" ", "", "a", " ", "a"],
1763
+ ["", "", "s", "", "s"],
1764
+ ["", "", " ", "", " "],
1765
+ ]
1766
+ expected = DataFrame(values, columns=columns)
1767
+
1768
+ tm.assert_frame_equal(unicode_df, expected)
1769
+
1770
+ def test_mixed_string_strl(self):
1771
+ # GH 23633
1772
+ output = [{"mixed": "string" * 500, "number": 0}, {"mixed": None, "number": 1}]
1773
+ output = DataFrame(output)
1774
+ output.number = output.number.astype("int32")
1775
+
1776
+ with tm.ensure_clean() as path:
1777
+ output.to_stata(path, write_index=False, version=117)
1778
+ reread = read_stata(path)
1779
+ expected = output.fillna("")
1780
+ tm.assert_frame_equal(reread, expected)
1781
+
1782
+ # Check strl supports all None (null)
1783
+ output["mixed"] = None
1784
+ output.to_stata(
1785
+ path, write_index=False, convert_strl=["mixed"], version=117
1786
+ )
1787
+ reread = read_stata(path)
1788
+ expected = output.fillna("")
1789
+ tm.assert_frame_equal(reread, expected)
1790
+
1791
+ @pytest.mark.parametrize("version", [114, 117, 118, 119, None])
1792
+ def test_all_none_exception(self, version):
1793
+ output = [{"none": "none", "number": 0}, {"none": None, "number": 1}]
1794
+ output = DataFrame(output)
1795
+ output["none"] = None
1796
+ with tm.ensure_clean() as path:
1797
+ with pytest.raises(ValueError, match="Column `none` cannot be exported"):
1798
+ output.to_stata(path, version=version)
1799
+
1800
+ @pytest.mark.parametrize("version", [114, 117, 118, 119, None])
1801
+ def test_invalid_file_not_written(self, version):
1802
+ content = "Here is one __�__ Another one __·__ Another one __½__"
1803
+ df = DataFrame([content], columns=["invalid"])
1804
+ with tm.ensure_clean() as path:
1805
+ msg1 = (
1806
+ r"'latin-1' codec can't encode character '\\ufffd' "
1807
+ r"in position 14: ordinal not in range\(256\)"
1808
+ )
1809
+ msg2 = (
1810
+ "'ascii' codec can't decode byte 0xef in position 14: "
1811
+ r"ordinal not in range\(128\)"
1812
+ )
1813
+ with pytest.raises(UnicodeEncodeError, match=f"{msg1}|{msg2}"):
1814
+ df.to_stata(path)
1815
+
1816
+ def test_strl_latin1(self):
1817
+ # GH 23573, correct GSO data to reflect correct size
1818
+ output = DataFrame(
1819
+ [["pandas"] * 2, ["þâÑÐŧ"] * 2], columns=["var_str", "var_strl"]
1820
+ )
1821
+
1822
+ with tm.ensure_clean() as path:
1823
+ output.to_stata(path, version=117, convert_strl=["var_strl"])
1824
+ with open(path, "rb") as reread:
1825
+ content = reread.read()
1826
+ expected = "þâÑÐŧ"
1827
+ assert expected.encode("latin-1") in content
1828
+ assert expected.encode("utf-8") in content
1829
+ gsos = content.split(b"strls")[1][1:-2]
1830
+ for gso in gsos.split(b"GSO")[1:]:
1831
+ val = gso.split(b"\x00")[-2]
1832
+ size = gso[gso.find(b"\x82") + 1]
1833
+ assert len(val) == size - 1
1834
+
1835
+ def test_encoding_latin1_118(self, datapath):
1836
+ # GH 25960
1837
+ msg = """
1838
+ One or more strings in the dta file could not be decoded using utf-8, and
1839
+ so the fallback encoding of latin-1 is being used. This can happen when a file
1840
+ has been incorrectly encoded by Stata or some other software. You should verify
1841
+ the string values returned are correct."""
1842
+ # Move path outside of read_stata, or else assert_produces_warning
1843
+ # will block pytests skip mechanism from triggering (failing the test)
1844
+ # if the path is not present
1845
+ path = datapath("io", "data", "stata", "stata1_encoding_118.dta")
1846
+ with tm.assert_produces_warning(UnicodeWarning, filter_level="once") as w:
1847
+ encoded = read_stata(path)
1848
+ # with filter_level="always", produces 151 warnings which can be slow
1849
+ assert len(w) == 1
1850
+ assert w[0].message.args[0] == msg
1851
+
1852
+ expected = DataFrame([["Düsseldorf"]] * 151, columns=["kreis1849"])
1853
+ tm.assert_frame_equal(encoded, expected)
1854
+
1855
+ @pytest.mark.slow
1856
+ def test_stata_119(self, datapath):
1857
+ # Gzipped since contains 32,999 variables and uncompressed is 20MiB
1858
+ # Just validate that the reader reports correct number of variables
1859
+ # to avoid high peak memory
1860
+ with gzip.open(
1861
+ datapath("io", "data", "stata", "stata1_119.dta.gz"), "rb"
1862
+ ) as gz:
1863
+ with StataReader(gz) as reader:
1864
+ reader._ensure_open()
1865
+ assert reader._nvar == 32999
1866
+
1867
+ @pytest.mark.parametrize("version", [118, 119, None])
1868
+ def test_utf8_writer(self, version):
1869
+ cat = pd.Categorical(["a", "β", "ĉ"], ordered=True)
1870
+ data = DataFrame(
1871
+ [
1872
+ [1.0, 1, "ᴬ", "ᴀ relatively long ŝtring"],
1873
+ [2.0, 2, "ᴮ", ""],
1874
+ [3.0, 3, "ᴰ", None],
1875
+ ],
1876
+ columns=["Å", "β", "ĉ", "strls"],
1877
+ )
1878
+ data["ᴐᴬᵀ"] = cat
1879
+ variable_labels = {
1880
+ "Å": "apple",
1881
+ "β": "ᵈᵉᵊ",
1882
+ "ĉ": "ᴎტჄႲႳႴႶႺ",
1883
+ "strls": "Long Strings",
1884
+ "ᴐᴬᵀ": "",
1885
+ }
1886
+ data_label = "ᴅaᵀa-label"
1887
+ value_labels = {"β": {1: "label", 2: "æøå", 3: "ŋot valid latin-1"}}
1888
+ data["β"] = data["β"].astype(np.int32)
1889
+ with tm.ensure_clean() as path:
1890
+ writer = StataWriterUTF8(
1891
+ path,
1892
+ data,
1893
+ data_label=data_label,
1894
+ convert_strl=["strls"],
1895
+ variable_labels=variable_labels,
1896
+ write_index=False,
1897
+ version=version,
1898
+ value_labels=value_labels,
1899
+ )
1900
+ writer.write_file()
1901
+ reread_encoded = read_stata(path)
1902
+ # Missing is intentionally converted to empty strl
1903
+ data["strls"] = data["strls"].fillna("")
1904
+ # Variable with value labels is reread as categorical
1905
+ data["β"] = (
1906
+ data["β"].replace(value_labels["β"]).astype("category").cat.as_ordered()
1907
+ )
1908
+ tm.assert_frame_equal(data, reread_encoded)
1909
+ with StataReader(path) as reader:
1910
+ assert reader.data_label == data_label
1911
+ assert reader.variable_labels() == variable_labels
1912
+
1913
+ data.to_stata(path, version=version, write_index=False)
1914
+ reread_to_stata = read_stata(path)
1915
+ tm.assert_frame_equal(data, reread_to_stata)
1916
+
1917
+ def test_writer_118_exceptions(self):
1918
+ df = DataFrame(np.zeros((1, 33000), dtype=np.int8))
1919
+ with tm.ensure_clean() as path:
1920
+ with pytest.raises(ValueError, match="version must be either 118 or 119."):
1921
+ StataWriterUTF8(path, df, version=117)
1922
+ with tm.ensure_clean() as path:
1923
+ with pytest.raises(ValueError, match="You must use version 119"):
1924
+ StataWriterUTF8(path, df, version=118)
1925
+
1926
+ @pytest.mark.parametrize(
1927
+ "dtype_backend",
1928
+ ["numpy_nullable", pytest.param("pyarrow", marks=td.skip_if_no("pyarrow"))],
1929
+ )
1930
+ def test_read_write_ea_dtypes(self, dtype_backend):
1931
+ df = DataFrame(
1932
+ {
1933
+ "a": [1, 2, None],
1934
+ "b": ["a", "b", "c"],
1935
+ "c": [True, False, None],
1936
+ "d": [1.5, 2.5, 3.5],
1937
+ "e": pd.date_range("2020-12-31", periods=3, freq="D"),
1938
+ },
1939
+ index=pd.Index([0, 1, 2], name="index"),
1940
+ )
1941
+ df = df.convert_dtypes(dtype_backend=dtype_backend)
1942
+ df.to_stata("test_stata.dta", version=118)
1943
+
1944
+ with tm.ensure_clean() as path:
1945
+ df.to_stata(path)
1946
+ written_and_read_again = self.read_dta(path)
1947
+
1948
+ expected = DataFrame(
1949
+ {
1950
+ "a": [1, 2, np.nan],
1951
+ "b": ["a", "b", "c"],
1952
+ "c": [1.0, 0, np.nan],
1953
+ "d": [1.5, 2.5, 3.5],
1954
+ "e": pd.date_range("2020-12-31", periods=3, freq="D"),
1955
+ },
1956
+ index=pd.Index([0, 1, 2], name="index", dtype=np.int32),
1957
+ )
1958
+
1959
+ tm.assert_frame_equal(written_and_read_again.set_index("index"), expected)
1960
+
1961
+
1962
+ @pytest.mark.parametrize("version", [105, 108, 111, 113, 114])
1963
+ def test_backward_compat(version, datapath):
1964
+ data_base = datapath("io", "data", "stata")
1965
+ ref = os.path.join(data_base, "stata-compat-118.dta")
1966
+ old = os.path.join(data_base, f"stata-compat-{version}.dta")
1967
+ expected = read_stata(ref)
1968
+ old_dta = read_stata(old)
1969
+ tm.assert_frame_equal(old_dta, expected, check_dtype=False)
1970
+
1971
+
1972
+ def test_direct_read(datapath, monkeypatch):
1973
+ file_path = datapath("io", "data", "stata", "stata-compat-118.dta")
1974
+
1975
+ # Test that opening a file path doesn't buffer the file.
1976
+ with StataReader(file_path) as reader:
1977
+ # Must not have been buffered to memory
1978
+ assert not reader.read().empty
1979
+ assert not isinstance(reader._path_or_buf, io.BytesIO)
1980
+
1981
+ # Test that we use a given fp exactly, if possible.
1982
+ with open(file_path, "rb") as fp:
1983
+ with StataReader(fp) as reader:
1984
+ assert not reader.read().empty
1985
+ assert reader._path_or_buf is fp
1986
+
1987
+ # Test that we use a given BytesIO exactly, if possible.
1988
+ with open(file_path, "rb") as fp:
1989
+ with io.BytesIO(fp.read()) as bio:
1990
+ with StataReader(bio) as reader:
1991
+ assert not reader.read().empty
1992
+ assert reader._path_or_buf is bio
1993
+
1994
+
1995
+ def test_statareader_warns_when_used_without_context(datapath):
1996
+ file_path = datapath("io", "data", "stata", "stata-compat-118.dta")
1997
+ with tm.assert_produces_warning(
1998
+ ResourceWarning,
1999
+ match="without using a context manager",
2000
+ ):
2001
+ sr = StataReader(file_path)
2002
+ sr.read()
2003
+ with tm.assert_produces_warning(
2004
+ FutureWarning,
2005
+ match="is not part of the public API",
2006
+ ):
2007
+ sr.close()
2008
+
2009
+
2010
+ @pytest.mark.parametrize("version", [114, 117, 118, 119, None])
2011
+ @pytest.mark.parametrize("use_dict", [True, False])
2012
+ @pytest.mark.parametrize("infer", [True, False])
2013
+ def test_compression(compression, version, use_dict, infer, compression_to_extension):
2014
+ file_name = "dta_inferred_compression.dta"
2015
+ if compression:
2016
+ if use_dict:
2017
+ file_ext = compression
2018
+ else:
2019
+ file_ext = compression_to_extension[compression]
2020
+ file_name += f".{file_ext}"
2021
+ compression_arg = compression
2022
+ if infer:
2023
+ compression_arg = "infer"
2024
+ if use_dict:
2025
+ compression_arg = {"method": compression}
2026
+
2027
+ df = DataFrame(
2028
+ np.random.default_rng(2).standard_normal((10, 2)), columns=list("AB")
2029
+ )
2030
+ df.index.name = "index"
2031
+ with tm.ensure_clean(file_name) as path:
2032
+ df.to_stata(path, version=version, compression=compression_arg)
2033
+ if compression == "gzip":
2034
+ with gzip.open(path, "rb") as comp:
2035
+ fp = io.BytesIO(comp.read())
2036
+ elif compression == "zip":
2037
+ with zipfile.ZipFile(path, "r") as comp:
2038
+ fp = io.BytesIO(comp.read(comp.filelist[0]))
2039
+ elif compression == "tar":
2040
+ with tarfile.open(path) as tar:
2041
+ fp = io.BytesIO(tar.extractfile(tar.getnames()[0]).read())
2042
+ elif compression == "bz2":
2043
+ with bz2.open(path, "rb") as comp:
2044
+ fp = io.BytesIO(comp.read())
2045
+ elif compression == "zstd":
2046
+ zstd = pytest.importorskip("zstandard")
2047
+ with zstd.open(path, "rb") as comp:
2048
+ fp = io.BytesIO(comp.read())
2049
+ elif compression == "xz":
2050
+ lzma = pytest.importorskip("lzma")
2051
+ with lzma.open(path, "rb") as comp:
2052
+ fp = io.BytesIO(comp.read())
2053
+ elif compression is None:
2054
+ fp = path
2055
+ reread = read_stata(fp, index_col="index")
2056
+
2057
+ expected = df.copy()
2058
+ expected.index = expected.index.astype(np.int32)
2059
+ tm.assert_frame_equal(reread, expected)
2060
+
2061
+
2062
+ @pytest.mark.parametrize("method", ["zip", "infer"])
2063
+ @pytest.mark.parametrize("file_ext", [None, "dta", "zip"])
2064
+ def test_compression_dict(method, file_ext):
2065
+ file_name = f"test.{file_ext}"
2066
+ archive_name = "test.dta"
2067
+ df = DataFrame(
2068
+ np.random.default_rng(2).standard_normal((10, 2)), columns=list("AB")
2069
+ )
2070
+ df.index.name = "index"
2071
+ with tm.ensure_clean(file_name) as path:
2072
+ compression = {"method": method, "archive_name": archive_name}
2073
+ df.to_stata(path, compression=compression)
2074
+ if method == "zip" or file_ext == "zip":
2075
+ with zipfile.ZipFile(path, "r") as zp:
2076
+ assert len(zp.filelist) == 1
2077
+ assert zp.filelist[0].filename == archive_name
2078
+ fp = io.BytesIO(zp.read(zp.filelist[0]))
2079
+ else:
2080
+ fp = path
2081
+ reread = read_stata(fp, index_col="index")
2082
+
2083
+ expected = df.copy()
2084
+ expected.index = expected.index.astype(np.int32)
2085
+ tm.assert_frame_equal(reread, expected)
2086
+
2087
+
2088
+ @pytest.mark.parametrize("version", [114, 117, 118, 119, None])
2089
+ def test_chunked_categorical(version):
2090
+ df = DataFrame({"cats": Series(["a", "b", "a", "b", "c"], dtype="category")})
2091
+ df.index.name = "index"
2092
+
2093
+ expected = df.copy()
2094
+ expected.index = expected.index.astype(np.int32)
2095
+
2096
+ with tm.ensure_clean() as path:
2097
+ df.to_stata(path, version=version)
2098
+ with StataReader(path, chunksize=2, order_categoricals=False) as reader:
2099
+ for i, block in enumerate(reader):
2100
+ block = block.set_index("index")
2101
+ assert "cats" in block
2102
+ tm.assert_series_equal(
2103
+ block.cats, expected.cats.iloc[2 * i : 2 * (i + 1)]
2104
+ )
2105
+
2106
+
2107
+ def test_chunked_categorical_partial(datapath):
2108
+ dta_file = datapath("io", "data", "stata", "stata-dta-partially-labeled.dta")
2109
+ values = ["a", "b", "a", "b", 3.0]
2110
+ with StataReader(dta_file, chunksize=2) as reader:
2111
+ with tm.assert_produces_warning(CategoricalConversionWarning):
2112
+ for i, block in enumerate(reader):
2113
+ assert list(block.cats) == values[2 * i : 2 * (i + 1)]
2114
+ if i < 2:
2115
+ idx = pd.Index(["a", "b"])
2116
+ else:
2117
+ idx = pd.Index([3.0], dtype="float64")
2118
+ tm.assert_index_equal(block.cats.cat.categories, idx)
2119
+ with tm.assert_produces_warning(CategoricalConversionWarning):
2120
+ with StataReader(dta_file, chunksize=5) as reader:
2121
+ large_chunk = reader.__next__()
2122
+ direct = read_stata(dta_file)
2123
+ tm.assert_frame_equal(direct, large_chunk)
2124
+
2125
+
2126
+ @pytest.mark.parametrize("chunksize", (-1, 0, "apple"))
2127
+ def test_iterator_errors(datapath, chunksize):
2128
+ dta_file = datapath("io", "data", "stata", "stata-dta-partially-labeled.dta")
2129
+ with pytest.raises(ValueError, match="chunksize must be a positive"):
2130
+ with StataReader(dta_file, chunksize=chunksize):
2131
+ pass
2132
+
2133
+
2134
+ def test_iterator_value_labels():
2135
+ # GH 31544
2136
+ values = ["c_label", "b_label"] + ["a_label"] * 500
2137
+ df = DataFrame({f"col{k}": pd.Categorical(values, ordered=True) for k in range(2)})
2138
+ with tm.ensure_clean() as path:
2139
+ df.to_stata(path, write_index=False)
2140
+ expected = pd.Index(["a_label", "b_label", "c_label"], dtype="object")
2141
+ with read_stata(path, chunksize=100) as reader:
2142
+ for j, chunk in enumerate(reader):
2143
+ for i in range(2):
2144
+ tm.assert_index_equal(chunk.dtypes.iloc[i].categories, expected)
2145
+ tm.assert_frame_equal(chunk, df.iloc[j * 100 : (j + 1) * 100])
2146
+
2147
+
2148
+ def test_precision_loss():
2149
+ df = DataFrame(
2150
+ [[sum(2**i for i in range(60)), sum(2**i for i in range(52))]],
2151
+ columns=["big", "little"],
2152
+ )
2153
+ with tm.ensure_clean() as path:
2154
+ with tm.assert_produces_warning(
2155
+ PossiblePrecisionLoss, match="Column converted from int64 to float64"
2156
+ ):
2157
+ df.to_stata(path, write_index=False)
2158
+ reread = read_stata(path)
2159
+ expected_dt = Series([np.float64, np.float64], index=["big", "little"])
2160
+ tm.assert_series_equal(reread.dtypes, expected_dt)
2161
+ assert reread.loc[0, "little"] == df.loc[0, "little"]
2162
+ assert reread.loc[0, "big"] == float(df.loc[0, "big"])
2163
+
2164
+
2165
+ def test_compression_roundtrip(compression):
2166
+ df = DataFrame(
2167
+ [[0.123456, 0.234567, 0.567567], [12.32112, 123123.2, 321321.2]],
2168
+ index=["A", "B"],
2169
+ columns=["X", "Y", "Z"],
2170
+ )
2171
+ df.index.name = "index"
2172
+
2173
+ with tm.ensure_clean() as path:
2174
+ df.to_stata(path, compression=compression)
2175
+ reread = read_stata(path, compression=compression, index_col="index")
2176
+ tm.assert_frame_equal(df, reread)
2177
+
2178
+ # explicitly ensure file was compressed.
2179
+ with tm.decompress_file(path, compression) as fh:
2180
+ contents = io.BytesIO(fh.read())
2181
+ reread = read_stata(contents, index_col="index")
2182
+ tm.assert_frame_equal(df, reread)
2183
+
2184
+
2185
+ @pytest.mark.parametrize("to_infer", [True, False])
2186
+ @pytest.mark.parametrize("read_infer", [True, False])
2187
+ def test_stata_compression(
2188
+ compression_only, read_infer, to_infer, compression_to_extension
2189
+ ):
2190
+ compression = compression_only
2191
+
2192
+ ext = compression_to_extension[compression]
2193
+ filename = f"test.{ext}"
2194
+
2195
+ df = DataFrame(
2196
+ [[0.123456, 0.234567, 0.567567], [12.32112, 123123.2, 321321.2]],
2197
+ index=["A", "B"],
2198
+ columns=["X", "Y", "Z"],
2199
+ )
2200
+ df.index.name = "index"
2201
+
2202
+ to_compression = "infer" if to_infer else compression
2203
+ read_compression = "infer" if read_infer else compression
2204
+
2205
+ with tm.ensure_clean(filename) as path:
2206
+ df.to_stata(path, compression=to_compression)
2207
+ result = read_stata(path, compression=read_compression, index_col="index")
2208
+ tm.assert_frame_equal(result, df)
2209
+
2210
+
2211
+ def test_non_categorical_value_labels():
2212
+ data = DataFrame(
2213
+ {
2214
+ "fully_labelled": [1, 2, 3, 3, 1],
2215
+ "partially_labelled": [1.0, 2.0, np.nan, 9.0, np.nan],
2216
+ "Y": [7, 7, 9, 8, 10],
2217
+ "Z": pd.Categorical(["j", "k", "l", "k", "j"]),
2218
+ }
2219
+ )
2220
+
2221
+ with tm.ensure_clean() as path:
2222
+ value_labels = {
2223
+ "fully_labelled": {1: "one", 2: "two", 3: "three"},
2224
+ "partially_labelled": {1.0: "one", 2.0: "two"},
2225
+ }
2226
+ expected = {**value_labels, "Z": {0: "j", 1: "k", 2: "l"}}
2227
+
2228
+ writer = StataWriter(path, data, value_labels=value_labels)
2229
+ writer.write_file()
2230
+
2231
+ with StataReader(path) as reader:
2232
+ reader_value_labels = reader.value_labels()
2233
+ assert reader_value_labels == expected
2234
+
2235
+ msg = "Can't create value labels for notY, it wasn't found in the dataset."
2236
+ with pytest.raises(KeyError, match=msg):
2237
+ value_labels = {"notY": {7: "label1", 8: "label2"}}
2238
+ StataWriter(path, data, value_labels=value_labels)
2239
+
2240
+ msg = (
2241
+ "Can't create value labels for Z, value labels "
2242
+ "can only be applied to numeric columns."
2243
+ )
2244
+ with pytest.raises(ValueError, match=msg):
2245
+ value_labels = {"Z": {1: "a", 2: "k", 3: "j", 4: "i"}}
2246
+ StataWriter(path, data, value_labels=value_labels)
2247
+
2248
+
2249
+ def test_non_categorical_value_label_name_conversion():
2250
+ # Check conversion of invalid variable names
2251
+ data = DataFrame(
2252
+ {
2253
+ "invalid~!": [1, 1, 2, 3, 5, 8], # Only alphanumeric and _
2254
+ "6_invalid": [1, 1, 2, 3, 5, 8], # Must start with letter or _
2255
+ "invalid_name_longer_than_32_characters": [8, 8, 9, 9, 8, 8], # Too long
2256
+ "aggregate": [2, 5, 5, 6, 6, 9], # Reserved words
2257
+ (1, 2): [1, 2, 3, 4, 5, 6], # Hashable non-string
2258
+ }
2259
+ )
2260
+
2261
+ value_labels = {
2262
+ "invalid~!": {1: "label1", 2: "label2"},
2263
+ "6_invalid": {1: "label1", 2: "label2"},
2264
+ "invalid_name_longer_than_32_characters": {8: "eight", 9: "nine"},
2265
+ "aggregate": {5: "five"},
2266
+ (1, 2): {3: "three"},
2267
+ }
2268
+
2269
+ expected = {
2270
+ "invalid__": {1: "label1", 2: "label2"},
2271
+ "_6_invalid": {1: "label1", 2: "label2"},
2272
+ "invalid_name_longer_than_32_char": {8: "eight", 9: "nine"},
2273
+ "_aggregate": {5: "five"},
2274
+ "_1__2_": {3: "three"},
2275
+ }
2276
+
2277
+ with tm.ensure_clean() as path:
2278
+ with tm.assert_produces_warning(InvalidColumnName):
2279
+ data.to_stata(path, value_labels=value_labels)
2280
+
2281
+ with StataReader(path) as reader:
2282
+ reader_value_labels = reader.value_labels()
2283
+ assert reader_value_labels == expected
2284
+
2285
+
2286
+ def test_non_categorical_value_label_convert_categoricals_error():
2287
+ # Mapping more than one value to the same label is valid for Stata
2288
+ # labels, but can't be read with convert_categoricals=True
2289
+ value_labels = {
2290
+ "repeated_labels": {10: "Ten", 20: "More than ten", 40: "More than ten"}
2291
+ }
2292
+
2293
+ data = DataFrame(
2294
+ {
2295
+ "repeated_labels": [10, 10, 20, 20, 40, 40],
2296
+ }
2297
+ )
2298
+
2299
+ with tm.ensure_clean() as path:
2300
+ data.to_stata(path, value_labels=value_labels)
2301
+
2302
+ with StataReader(path, convert_categoricals=False) as reader:
2303
+ reader_value_labels = reader.value_labels()
2304
+ assert reader_value_labels == value_labels
2305
+
2306
+ col = "repeated_labels"
2307
+ repeats = "-" * 80 + "\n" + "\n".join(["More than ten"])
2308
+
2309
+ msg = f"""
2310
+ Value labels for column {col} are not unique. These cannot be converted to
2311
+ pandas categoricals.
2312
+
2313
+ Either read the file with `convert_categoricals` set to False or use the
2314
+ low level interface in `StataReader` to separately read the values and the
2315
+ value_labels.
2316
+
2317
+ The repeated labels are:
2318
+ {repeats}
2319
+ """
2320
+ with pytest.raises(ValueError, match=msg):
2321
+ read_stata(path, convert_categoricals=True)
2322
+
2323
+
2324
+ @pytest.mark.parametrize("version", [114, 117, 118, 119, None])
2325
+ @pytest.mark.parametrize(
2326
+ "dtype",
2327
+ [
2328
+ pd.BooleanDtype,
2329
+ pd.Int8Dtype,
2330
+ pd.Int16Dtype,
2331
+ pd.Int32Dtype,
2332
+ pd.Int64Dtype,
2333
+ pd.UInt8Dtype,
2334
+ pd.UInt16Dtype,
2335
+ pd.UInt32Dtype,
2336
+ pd.UInt64Dtype,
2337
+ ],
2338
+ )
2339
+ def test_nullable_support(dtype, version):
2340
+ df = DataFrame(
2341
+ {
2342
+ "a": Series([1.0, 2.0, 3.0]),
2343
+ "b": Series([1, pd.NA, pd.NA], dtype=dtype.name),
2344
+ "c": Series(["a", "b", None]),
2345
+ }
2346
+ )
2347
+ dtype_name = df.b.dtype.numpy_dtype.name
2348
+ # Only use supported names: no uint, bool or int64
2349
+ dtype_name = dtype_name.replace("u", "")
2350
+ if dtype_name == "int64":
2351
+ dtype_name = "int32"
2352
+ elif dtype_name == "bool":
2353
+ dtype_name = "int8"
2354
+ value = StataMissingValue.BASE_MISSING_VALUES[dtype_name]
2355
+ smv = StataMissingValue(value)
2356
+ expected_b = Series([1, smv, smv], dtype=object, name="b")
2357
+ expected_c = Series(["a", "b", ""], name="c")
2358
+ with tm.ensure_clean() as path:
2359
+ df.to_stata(path, write_index=False, version=version)
2360
+ reread = read_stata(path, convert_missing=True)
2361
+ tm.assert_series_equal(df.a, reread.a)
2362
+ tm.assert_series_equal(reread.b, expected_b)
2363
+ tm.assert_series_equal(reread.c, expected_c)
2364
+
2365
+
2366
+ def test_empty_frame():
2367
+ # GH 46240
2368
+ # create an empty DataFrame with int64 and float64 dtypes
2369
+ df = DataFrame(data={"a": range(3), "b": [1.0, 2.0, 3.0]}).head(0)
2370
+ with tm.ensure_clean() as path:
2371
+ df.to_stata(path, write_index=False, version=117)
2372
+ # Read entire dataframe
2373
+ df2 = read_stata(path)
2374
+ assert "b" in df2
2375
+ # Dtypes don't match since no support for int32
2376
+ dtypes = Series({"a": np.dtype("int32"), "b": np.dtype("float64")})
2377
+ tm.assert_series_equal(df2.dtypes, dtypes)
2378
+ # read one column of empty .dta file
2379
+ df3 = read_stata(path, columns=["a"])
2380
+ assert "b" not in df3
2381
+ tm.assert_series_equal(df3.dtypes, dtypes.loc[["a"]])
llmeval-env/lib/python3.10/site-packages/pandas/tests/plotting/__init__.py ADDED
File without changes
llmeval-env/lib/python3.10/site-packages/pandas/tests/plotting/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (194 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/plotting/__pycache__/common.cpython-310.pyc ADDED
Binary file (14.9 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/plotting/__pycache__/conftest.cpython-310.pyc ADDED
Binary file (1.33 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/plotting/__pycache__/test_backend.cpython-310.pyc ADDED
Binary file (3.52 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/plotting/__pycache__/test_boxplot_method.cpython-310.pyc ADDED
Binary file (27.1 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/plotting/__pycache__/test_common.cpython-310.pyc ADDED
Binary file (2.37 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/plotting/__pycache__/test_converter.cpython-310.pyc ADDED
Binary file (13.3 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/plotting/__pycache__/test_datetimelike.cpython-310.pyc ADDED
Binary file (58.7 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/plotting/__pycache__/test_groupby.cpython-310.pyc ADDED
Binary file (6.95 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/plotting/__pycache__/test_hist_method.cpython-310.pyc ADDED
Binary file (32.8 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/plotting/__pycache__/test_misc.cpython-310.pyc ADDED
Binary file (23.8 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/plotting/__pycache__/test_series.cpython-310.pyc ADDED
Binary file (36.9 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/plotting/__pycache__/test_style.cpython-310.pyc ADDED
Binary file (4.66 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/plotting/common.py ADDED
@@ -0,0 +1,563 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Module consolidating common testing functions for checking plotting.
3
+ """
4
+
5
+ from __future__ import annotations
6
+
7
+ from typing import TYPE_CHECKING
8
+
9
+ import numpy as np
10
+
11
+ from pandas.core.dtypes.api import is_list_like
12
+
13
+ import pandas as pd
14
+ from pandas import Series
15
+ import pandas._testing as tm
16
+
17
+ if TYPE_CHECKING:
18
+ from collections.abc import Sequence
19
+
20
+ from matplotlib.axes import Axes
21
+
22
+
23
+ def _check_legend_labels(axes, labels=None, visible=True):
24
+ """
25
+ Check each axes has expected legend labels
26
+
27
+ Parameters
28
+ ----------
29
+ axes : matplotlib Axes object, or its list-like
30
+ labels : list-like
31
+ expected legend labels
32
+ visible : bool
33
+ expected legend visibility. labels are checked only when visible is
34
+ True
35
+ """
36
+ if visible and (labels is None):
37
+ raise ValueError("labels must be specified when visible is True")
38
+ axes = _flatten_visible(axes)
39
+ for ax in axes:
40
+ if visible:
41
+ assert ax.get_legend() is not None
42
+ _check_text_labels(ax.get_legend().get_texts(), labels)
43
+ else:
44
+ assert ax.get_legend() is None
45
+
46
+
47
+ def _check_legend_marker(ax, expected_markers=None, visible=True):
48
+ """
49
+ Check ax has expected legend markers
50
+
51
+ Parameters
52
+ ----------
53
+ ax : matplotlib Axes object
54
+ expected_markers : list-like
55
+ expected legend markers
56
+ visible : bool
57
+ expected legend visibility. labels are checked only when visible is
58
+ True
59
+ """
60
+ if visible and (expected_markers is None):
61
+ raise ValueError("Markers must be specified when visible is True")
62
+ if visible:
63
+ handles, _ = ax.get_legend_handles_labels()
64
+ markers = [handle.get_marker() for handle in handles]
65
+ assert markers == expected_markers
66
+ else:
67
+ assert ax.get_legend() is None
68
+
69
+
70
+ def _check_data(xp, rs):
71
+ """
72
+ Check each axes has identical lines
73
+
74
+ Parameters
75
+ ----------
76
+ xp : matplotlib Axes object
77
+ rs : matplotlib Axes object
78
+ """
79
+ import matplotlib.pyplot as plt
80
+
81
+ xp_lines = xp.get_lines()
82
+ rs_lines = rs.get_lines()
83
+
84
+ assert len(xp_lines) == len(rs_lines)
85
+ for xpl, rsl in zip(xp_lines, rs_lines):
86
+ xpdata = xpl.get_xydata()
87
+ rsdata = rsl.get_xydata()
88
+ tm.assert_almost_equal(xpdata, rsdata)
89
+
90
+ plt.close("all")
91
+
92
+
93
+ def _check_visible(collections, visible=True):
94
+ """
95
+ Check each artist is visible or not
96
+
97
+ Parameters
98
+ ----------
99
+ collections : matplotlib Artist or its list-like
100
+ target Artist or its list or collection
101
+ visible : bool
102
+ expected visibility
103
+ """
104
+ from matplotlib.collections import Collection
105
+
106
+ if not isinstance(collections, Collection) and not is_list_like(collections):
107
+ collections = [collections]
108
+
109
+ for patch in collections:
110
+ assert patch.get_visible() == visible
111
+
112
+
113
+ def _check_patches_all_filled(axes: Axes | Sequence[Axes], filled: bool = True) -> None:
114
+ """
115
+ Check for each artist whether it is filled or not
116
+
117
+ Parameters
118
+ ----------
119
+ axes : matplotlib Axes object, or its list-like
120
+ filled : bool
121
+ expected filling
122
+ """
123
+
124
+ axes = _flatten_visible(axes)
125
+ for ax in axes:
126
+ for patch in ax.patches:
127
+ assert patch.fill == filled
128
+
129
+
130
+ def _get_colors_mapped(series, colors):
131
+ unique = series.unique()
132
+ # unique and colors length can be differed
133
+ # depending on slice value
134
+ mapped = dict(zip(unique, colors))
135
+ return [mapped[v] for v in series.values]
136
+
137
+
138
+ def _check_colors(collections, linecolors=None, facecolors=None, mapping=None):
139
+ """
140
+ Check each artist has expected line colors and face colors
141
+
142
+ Parameters
143
+ ----------
144
+ collections : list-like
145
+ list or collection of target artist
146
+ linecolors : list-like which has the same length as collections
147
+ list of expected line colors
148
+ facecolors : list-like which has the same length as collections
149
+ list of expected face colors
150
+ mapping : Series
151
+ Series used for color grouping key
152
+ used for andrew_curves, parallel_coordinates, radviz test
153
+ """
154
+ from matplotlib import colors
155
+ from matplotlib.collections import (
156
+ Collection,
157
+ LineCollection,
158
+ PolyCollection,
159
+ )
160
+ from matplotlib.lines import Line2D
161
+
162
+ conv = colors.ColorConverter
163
+ if linecolors is not None:
164
+ if mapping is not None:
165
+ linecolors = _get_colors_mapped(mapping, linecolors)
166
+ linecolors = linecolors[: len(collections)]
167
+
168
+ assert len(collections) == len(linecolors)
169
+ for patch, color in zip(collections, linecolors):
170
+ if isinstance(patch, Line2D):
171
+ result = patch.get_color()
172
+ # Line2D may contains string color expression
173
+ result = conv.to_rgba(result)
174
+ elif isinstance(patch, (PolyCollection, LineCollection)):
175
+ result = tuple(patch.get_edgecolor()[0])
176
+ else:
177
+ result = patch.get_edgecolor()
178
+
179
+ expected = conv.to_rgba(color)
180
+ assert result == expected
181
+
182
+ if facecolors is not None:
183
+ if mapping is not None:
184
+ facecolors = _get_colors_mapped(mapping, facecolors)
185
+ facecolors = facecolors[: len(collections)]
186
+
187
+ assert len(collections) == len(facecolors)
188
+ for patch, color in zip(collections, facecolors):
189
+ if isinstance(patch, Collection):
190
+ # returned as list of np.array
191
+ result = patch.get_facecolor()[0]
192
+ else:
193
+ result = patch.get_facecolor()
194
+
195
+ if isinstance(result, np.ndarray):
196
+ result = tuple(result)
197
+
198
+ expected = conv.to_rgba(color)
199
+ assert result == expected
200
+
201
+
202
+ def _check_text_labels(texts, expected):
203
+ """
204
+ Check each text has expected labels
205
+
206
+ Parameters
207
+ ----------
208
+ texts : matplotlib Text object, or its list-like
209
+ target text, or its list
210
+ expected : str or list-like which has the same length as texts
211
+ expected text label, or its list
212
+ """
213
+ if not is_list_like(texts):
214
+ assert texts.get_text() == expected
215
+ else:
216
+ labels = [t.get_text() for t in texts]
217
+ assert len(labels) == len(expected)
218
+ for label, e in zip(labels, expected):
219
+ assert label == e
220
+
221
+
222
+ def _check_ticks_props(axes, xlabelsize=None, xrot=None, ylabelsize=None, yrot=None):
223
+ """
224
+ Check each axes has expected tick properties
225
+
226
+ Parameters
227
+ ----------
228
+ axes : matplotlib Axes object, or its list-like
229
+ xlabelsize : number
230
+ expected xticks font size
231
+ xrot : number
232
+ expected xticks rotation
233
+ ylabelsize : number
234
+ expected yticks font size
235
+ yrot : number
236
+ expected yticks rotation
237
+ """
238
+ from matplotlib.ticker import NullFormatter
239
+
240
+ axes = _flatten_visible(axes)
241
+ for ax in axes:
242
+ if xlabelsize is not None or xrot is not None:
243
+ if isinstance(ax.xaxis.get_minor_formatter(), NullFormatter):
244
+ # If minor ticks has NullFormatter, rot / fontsize are not
245
+ # retained
246
+ labels = ax.get_xticklabels()
247
+ else:
248
+ labels = ax.get_xticklabels() + ax.get_xticklabels(minor=True)
249
+
250
+ for label in labels:
251
+ if xlabelsize is not None:
252
+ tm.assert_almost_equal(label.get_fontsize(), xlabelsize)
253
+ if xrot is not None:
254
+ tm.assert_almost_equal(label.get_rotation(), xrot)
255
+
256
+ if ylabelsize is not None or yrot is not None:
257
+ if isinstance(ax.yaxis.get_minor_formatter(), NullFormatter):
258
+ labels = ax.get_yticklabels()
259
+ else:
260
+ labels = ax.get_yticklabels() + ax.get_yticklabels(minor=True)
261
+
262
+ for label in labels:
263
+ if ylabelsize is not None:
264
+ tm.assert_almost_equal(label.get_fontsize(), ylabelsize)
265
+ if yrot is not None:
266
+ tm.assert_almost_equal(label.get_rotation(), yrot)
267
+
268
+
269
+ def _check_ax_scales(axes, xaxis="linear", yaxis="linear"):
270
+ """
271
+ Check each axes has expected scales
272
+
273
+ Parameters
274
+ ----------
275
+ axes : matplotlib Axes object, or its list-like
276
+ xaxis : {'linear', 'log'}
277
+ expected xaxis scale
278
+ yaxis : {'linear', 'log'}
279
+ expected yaxis scale
280
+ """
281
+ axes = _flatten_visible(axes)
282
+ for ax in axes:
283
+ assert ax.xaxis.get_scale() == xaxis
284
+ assert ax.yaxis.get_scale() == yaxis
285
+
286
+
287
+ def _check_axes_shape(axes, axes_num=None, layout=None, figsize=None):
288
+ """
289
+ Check expected number of axes is drawn in expected layout
290
+
291
+ Parameters
292
+ ----------
293
+ axes : matplotlib Axes object, or its list-like
294
+ axes_num : number
295
+ expected number of axes. Unnecessary axes should be set to
296
+ invisible.
297
+ layout : tuple
298
+ expected layout, (expected number of rows , columns)
299
+ figsize : tuple
300
+ expected figsize. default is matplotlib default
301
+ """
302
+ from pandas.plotting._matplotlib.tools import flatten_axes
303
+
304
+ if figsize is None:
305
+ figsize = (6.4, 4.8)
306
+ visible_axes = _flatten_visible(axes)
307
+
308
+ if axes_num is not None:
309
+ assert len(visible_axes) == axes_num
310
+ for ax in visible_axes:
311
+ # check something drawn on visible axes
312
+ assert len(ax.get_children()) > 0
313
+
314
+ if layout is not None:
315
+ x_set = set()
316
+ y_set = set()
317
+ for ax in flatten_axes(axes):
318
+ # check axes coordinates to estimate layout
319
+ points = ax.get_position().get_points()
320
+ x_set.add(points[0][0])
321
+ y_set.add(points[0][1])
322
+ result = (len(y_set), len(x_set))
323
+ assert result == layout
324
+
325
+ tm.assert_numpy_array_equal(
326
+ visible_axes[0].figure.get_size_inches(),
327
+ np.array(figsize, dtype=np.float64),
328
+ )
329
+
330
+
331
+ def _flatten_visible(axes: Axes | Sequence[Axes]) -> Sequence[Axes]:
332
+ """
333
+ Flatten axes, and filter only visible
334
+
335
+ Parameters
336
+ ----------
337
+ axes : matplotlib Axes object, or its list-like
338
+
339
+ """
340
+ from pandas.plotting._matplotlib.tools import flatten_axes
341
+
342
+ axes_ndarray = flatten_axes(axes)
343
+ axes = [ax for ax in axes_ndarray if ax.get_visible()]
344
+ return axes
345
+
346
+
347
+ def _check_has_errorbars(axes, xerr=0, yerr=0):
348
+ """
349
+ Check axes has expected number of errorbars
350
+
351
+ Parameters
352
+ ----------
353
+ axes : matplotlib Axes object, or its list-like
354
+ xerr : number
355
+ expected number of x errorbar
356
+ yerr : number
357
+ expected number of y errorbar
358
+ """
359
+ axes = _flatten_visible(axes)
360
+ for ax in axes:
361
+ containers = ax.containers
362
+ xerr_count = 0
363
+ yerr_count = 0
364
+ for c in containers:
365
+ has_xerr = getattr(c, "has_xerr", False)
366
+ has_yerr = getattr(c, "has_yerr", False)
367
+ if has_xerr:
368
+ xerr_count += 1
369
+ if has_yerr:
370
+ yerr_count += 1
371
+ assert xerr == xerr_count
372
+ assert yerr == yerr_count
373
+
374
+
375
+ def _check_box_return_type(
376
+ returned, return_type, expected_keys=None, check_ax_title=True
377
+ ):
378
+ """
379
+ Check box returned type is correct
380
+
381
+ Parameters
382
+ ----------
383
+ returned : object to be tested, returned from boxplot
384
+ return_type : str
385
+ return_type passed to boxplot
386
+ expected_keys : list-like, optional
387
+ group labels in subplot case. If not passed,
388
+ the function checks assuming boxplot uses single ax
389
+ check_ax_title : bool
390
+ Whether to check the ax.title is the same as expected_key
391
+ Intended to be checked by calling from ``boxplot``.
392
+ Normal ``plot`` doesn't attach ``ax.title``, it must be disabled.
393
+ """
394
+ from matplotlib.axes import Axes
395
+
396
+ types = {"dict": dict, "axes": Axes, "both": tuple}
397
+ if expected_keys is None:
398
+ # should be fixed when the returning default is changed
399
+ if return_type is None:
400
+ return_type = "dict"
401
+
402
+ assert isinstance(returned, types[return_type])
403
+ if return_type == "both":
404
+ assert isinstance(returned.ax, Axes)
405
+ assert isinstance(returned.lines, dict)
406
+ else:
407
+ # should be fixed when the returning default is changed
408
+ if return_type is None:
409
+ for r in _flatten_visible(returned):
410
+ assert isinstance(r, Axes)
411
+ return
412
+
413
+ assert isinstance(returned, Series)
414
+
415
+ assert sorted(returned.keys()) == sorted(expected_keys)
416
+ for key, value in returned.items():
417
+ assert isinstance(value, types[return_type])
418
+ # check returned dict has correct mapping
419
+ if return_type == "axes":
420
+ if check_ax_title:
421
+ assert value.get_title() == key
422
+ elif return_type == "both":
423
+ if check_ax_title:
424
+ assert value.ax.get_title() == key
425
+ assert isinstance(value.ax, Axes)
426
+ assert isinstance(value.lines, dict)
427
+ elif return_type == "dict":
428
+ line = value["medians"][0]
429
+ axes = line.axes
430
+ if check_ax_title:
431
+ assert axes.get_title() == key
432
+ else:
433
+ raise AssertionError
434
+
435
+
436
+ def _check_grid_settings(obj, kinds, kws={}):
437
+ # Make sure plot defaults to rcParams['axes.grid'] setting, GH 9792
438
+
439
+ import matplotlib as mpl
440
+
441
+ def is_grid_on():
442
+ xticks = mpl.pyplot.gca().xaxis.get_major_ticks()
443
+ yticks = mpl.pyplot.gca().yaxis.get_major_ticks()
444
+ xoff = all(not g.gridline.get_visible() for g in xticks)
445
+ yoff = all(not g.gridline.get_visible() for g in yticks)
446
+
447
+ return not (xoff and yoff)
448
+
449
+ spndx = 1
450
+ for kind in kinds:
451
+ mpl.pyplot.subplot(1, 4 * len(kinds), spndx)
452
+ spndx += 1
453
+ mpl.rc("axes", grid=False)
454
+ obj.plot(kind=kind, **kws)
455
+ assert not is_grid_on()
456
+ mpl.pyplot.clf()
457
+
458
+ mpl.pyplot.subplot(1, 4 * len(kinds), spndx)
459
+ spndx += 1
460
+ mpl.rc("axes", grid=True)
461
+ obj.plot(kind=kind, grid=False, **kws)
462
+ assert not is_grid_on()
463
+ mpl.pyplot.clf()
464
+
465
+ if kind not in ["pie", "hexbin", "scatter"]:
466
+ mpl.pyplot.subplot(1, 4 * len(kinds), spndx)
467
+ spndx += 1
468
+ mpl.rc("axes", grid=True)
469
+ obj.plot(kind=kind, **kws)
470
+ assert is_grid_on()
471
+ mpl.pyplot.clf()
472
+
473
+ mpl.pyplot.subplot(1, 4 * len(kinds), spndx)
474
+ spndx += 1
475
+ mpl.rc("axes", grid=False)
476
+ obj.plot(kind=kind, grid=True, **kws)
477
+ assert is_grid_on()
478
+ mpl.pyplot.clf()
479
+
480
+
481
+ def _unpack_cycler(rcParams, field="color"):
482
+ """
483
+ Auxiliary function for correctly unpacking cycler after MPL >= 1.5
484
+ """
485
+ return [v[field] for v in rcParams["axes.prop_cycle"]]
486
+
487
+
488
+ def get_x_axis(ax):
489
+ return ax._shared_axes["x"]
490
+
491
+
492
+ def get_y_axis(ax):
493
+ return ax._shared_axes["y"]
494
+
495
+
496
+ def _check_plot_works(f, default_axes=False, **kwargs):
497
+ """
498
+ Create plot and ensure that plot return object is valid.
499
+
500
+ Parameters
501
+ ----------
502
+ f : func
503
+ Plotting function.
504
+ default_axes : bool, optional
505
+ If False (default):
506
+ - If `ax` not in `kwargs`, then create subplot(211) and plot there
507
+ - Create new subplot(212) and plot there as well
508
+ - Mind special corner case for bootstrap_plot (see `_gen_two_subplots`)
509
+ If True:
510
+ - Simply run plotting function with kwargs provided
511
+ - All required axes instances will be created automatically
512
+ - It is recommended to use it when the plotting function
513
+ creates multiple axes itself. It helps avoid warnings like
514
+ 'UserWarning: To output multiple subplots,
515
+ the figure containing the passed axes is being cleared'
516
+ **kwargs
517
+ Keyword arguments passed to the plotting function.
518
+
519
+ Returns
520
+ -------
521
+ Plot object returned by the last plotting.
522
+ """
523
+ import matplotlib.pyplot as plt
524
+
525
+ if default_axes:
526
+ gen_plots = _gen_default_plot
527
+ else:
528
+ gen_plots = _gen_two_subplots
529
+
530
+ ret = None
531
+ try:
532
+ fig = kwargs.get("figure", plt.gcf())
533
+ plt.clf()
534
+
535
+ for ret in gen_plots(f, fig, **kwargs):
536
+ tm.assert_is_valid_plot_return_object(ret)
537
+
538
+ finally:
539
+ plt.close(fig)
540
+
541
+ return ret
542
+
543
+
544
+ def _gen_default_plot(f, fig, **kwargs):
545
+ """
546
+ Create plot in a default way.
547
+ """
548
+ yield f(**kwargs)
549
+
550
+
551
+ def _gen_two_subplots(f, fig, **kwargs):
552
+ """
553
+ Create plot on two subplots forcefully created.
554
+ """
555
+ if "ax" not in kwargs:
556
+ fig.add_subplot(211)
557
+ yield f(**kwargs)
558
+
559
+ if f is pd.plotting.bootstrap_plot:
560
+ assert "ax" not in kwargs
561
+ else:
562
+ kwargs["ax"] = fig.add_subplot(212)
563
+ yield f(**kwargs)
llmeval-env/lib/python3.10/site-packages/pandas/tests/plotting/conftest.py ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gc
2
+
3
+ import numpy as np
4
+ import pytest
5
+
6
+ from pandas import (
7
+ DataFrame,
8
+ to_datetime,
9
+ )
10
+
11
+
12
+ @pytest.fixture(autouse=True)
13
+ def mpl_cleanup():
14
+ # matplotlib/testing/decorators.py#L24
15
+ # 1) Resets units registry
16
+ # 2) Resets rc_context
17
+ # 3) Closes all figures
18
+ mpl = pytest.importorskip("matplotlib")
19
+ mpl_units = pytest.importorskip("matplotlib.units")
20
+ plt = pytest.importorskip("matplotlib.pyplot")
21
+ orig_units_registry = mpl_units.registry.copy()
22
+ with mpl.rc_context():
23
+ mpl.use("template")
24
+ yield
25
+ mpl_units.registry.clear()
26
+ mpl_units.registry.update(orig_units_registry)
27
+ plt.close("all")
28
+ # https://matplotlib.org/stable/users/prev_whats_new/whats_new_3.6.0.html#garbage-collection-is-no-longer-run-on-figure-close # noqa: E501
29
+ gc.collect(1)
30
+
31
+
32
+ @pytest.fixture
33
+ def hist_df():
34
+ n = 50
35
+ rng = np.random.default_rng(10)
36
+ gender = rng.choice(["Male", "Female"], size=n)
37
+ classroom = rng.choice(["A", "B", "C"], size=n)
38
+
39
+ hist_df = DataFrame(
40
+ {
41
+ "gender": gender,
42
+ "classroom": classroom,
43
+ "height": rng.normal(66, 4, size=n),
44
+ "weight": rng.normal(161, 32, size=n),
45
+ "category": rng.integers(4, size=n),
46
+ "datetime": to_datetime(
47
+ rng.integers(
48
+ 812419200000000000,
49
+ 819331200000000000,
50
+ size=n,
51
+ dtype=np.int64,
52
+ )
53
+ ),
54
+ }
55
+ )
56
+ return hist_df
llmeval-env/lib/python3.10/site-packages/pandas/tests/plotting/frame/__init__.py ADDED
File without changes
llmeval-env/lib/python3.10/site-packages/pandas/tests/plotting/frame/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (200 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/plotting/frame/__pycache__/test_frame.cpython-310.pyc ADDED
Binary file (89.5 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/plotting/frame/__pycache__/test_frame_color.cpython-310.pyc ADDED
Binary file (31.9 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/plotting/frame/__pycache__/test_frame_groupby.cpython-310.pyc ADDED
Binary file (1.97 kB). View file