Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/__pycache__/conftest.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/__pycache__/test_arrow.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/__pycache__/test_categorical.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/__pycache__/test_common.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/__pycache__/test_datetime.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/__pycache__/test_extension.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/__pycache__/test_interval.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/__pycache__/test_masked.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/__pycache__/test_numpy.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/__pycache__/test_period.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/__pycache__/test_sparse.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/__pycache__/test_string.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/base/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/base/__pycache__/accumulate.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/base/__pycache__/base.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/base/__pycache__/casting.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/base/__pycache__/constructors.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/base/__pycache__/dim2.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/base/__pycache__/dtype.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/base/__pycache__/getitem.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/base/__pycache__/groupby.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/base/__pycache__/index.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/base/__pycache__/interface.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/base/__pycache__/io.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/base/__pycache__/methods.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/base/__pycache__/missing.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/base/__pycache__/ops.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/base/__pycache__/printing.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/base/__pycache__/reduce.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/base/__pycache__/reshaping.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/base/__pycache__/setitem.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/base/casting.py +87 -0
- llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/base/dim2.py +345 -0
- llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/base/getitem.py +469 -0
- llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/date/__init__.py +6 -0
- llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/date/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/date/__pycache__/array.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/date/array.py +188 -0
- llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/decimal/__init__.py +8 -0
- llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/decimal/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/decimal/__pycache__/array.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/decimal/__pycache__/test_decimal.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/decimal/array.py +311 -0
- llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/decimal/test_decimal.py +567 -0
- llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/json/__init__.py +7 -0
- llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/json/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/json/__pycache__/array.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/json/__pycache__/test_json.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/json/array.py +256 -0
llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (195 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/__pycache__/conftest.cpython-310.pyc
ADDED
Binary file (6.1 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/__pycache__/test_arrow.cpython-310.pyc
ADDED
Binary file (90.3 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/__pycache__/test_categorical.cpython-310.pyc
ADDED
Binary file (7.31 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/__pycache__/test_common.cpython-310.pyc
ADDED
Binary file (3.79 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/__pycache__/test_datetime.cpython-310.pyc
ADDED
Binary file (5.47 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/__pycache__/test_extension.cpython-310.pyc
ADDED
Binary file (1.26 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/__pycache__/test_interval.cpython-310.pyc
ADDED
Binary file (3.87 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/__pycache__/test_masked.cpython-310.pyc
ADDED
Binary file (10.9 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/__pycache__/test_numpy.cpython-310.pyc
ADDED
Binary file (15.1 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/__pycache__/test_period.cpython-310.pyc
ADDED
Binary file (4.66 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/__pycache__/test_sparse.cpython-310.pyc
ADDED
Binary file (17.1 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/__pycache__/test_string.cpython-310.pyc
ADDED
Binary file (7.91 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/base/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (3.81 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/base/__pycache__/accumulate.cpython-310.pyc
ADDED
Binary file (1.65 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/base/__pycache__/base.cpython-310.pyc
ADDED
Binary file (358 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/base/__pycache__/casting.cpython-310.pyc
ADDED
Binary file (3.69 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/base/__pycache__/constructors.cpython-310.pyc
ADDED
Binary file (5.76 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/base/__pycache__/dim2.cpython-310.pyc
ADDED
Binary file (9.39 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/base/__pycache__/dtype.cpython-310.pyc
ADDED
Binary file (5.34 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/base/__pycache__/getitem.cpython-310.pyc
ADDED
Binary file (14.6 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/base/__pycache__/groupby.cpython-310.pyc
ADDED
Binary file (5.56 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/base/__pycache__/index.cpython-310.pyc
ADDED
Binary file (999 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/base/__pycache__/interface.cpython-310.pyc
ADDED
Binary file (4.35 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/base/__pycache__/io.cpython-310.pyc
ADDED
Binary file (1.39 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/base/__pycache__/methods.cpython-310.pyc
ADDED
Binary file (23.6 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/base/__pycache__/missing.cpython-310.pyc
ADDED
Binary file (6.14 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/base/__pycache__/ops.cpython-310.pyc
ADDED
Binary file (8.95 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/base/__pycache__/printing.cpython-310.pyc
ADDED
Binary file (1.86 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/base/__pycache__/reduce.cpython-310.pyc
ADDED
Binary file (4.38 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/base/__pycache__/reshaping.cpython-310.pyc
ADDED
Binary file (11.6 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/base/__pycache__/setitem.cpython-310.pyc
ADDED
Binary file (15.9 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/base/casting.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pytest
|
3 |
+
|
4 |
+
import pandas.util._test_decorators as td
|
5 |
+
|
6 |
+
import pandas as pd
|
7 |
+
import pandas._testing as tm
|
8 |
+
from pandas.core.internals.blocks import NumpyBlock
|
9 |
+
|
10 |
+
|
11 |
+
class BaseCastingTests:
|
12 |
+
"""Casting to and from ExtensionDtypes"""
|
13 |
+
|
14 |
+
def test_astype_object_series(self, all_data):
|
15 |
+
ser = pd.Series(all_data, name="A")
|
16 |
+
result = ser.astype(object)
|
17 |
+
assert result.dtype == np.dtype(object)
|
18 |
+
if hasattr(result._mgr, "blocks"):
|
19 |
+
blk = result._mgr.blocks[0]
|
20 |
+
assert isinstance(blk, NumpyBlock)
|
21 |
+
assert blk.is_object
|
22 |
+
assert isinstance(result._mgr.array, np.ndarray)
|
23 |
+
assert result._mgr.array.dtype == np.dtype(object)
|
24 |
+
|
25 |
+
def test_astype_object_frame(self, all_data):
|
26 |
+
df = pd.DataFrame({"A": all_data})
|
27 |
+
|
28 |
+
result = df.astype(object)
|
29 |
+
if hasattr(result._mgr, "blocks"):
|
30 |
+
blk = result._mgr.blocks[0]
|
31 |
+
assert isinstance(blk, NumpyBlock), type(blk)
|
32 |
+
assert blk.is_object
|
33 |
+
assert isinstance(result._mgr.arrays[0], np.ndarray)
|
34 |
+
assert result._mgr.arrays[0].dtype == np.dtype(object)
|
35 |
+
|
36 |
+
# check that we can compare the dtypes
|
37 |
+
comp = result.dtypes == df.dtypes
|
38 |
+
assert not comp.any()
|
39 |
+
|
40 |
+
def test_tolist(self, data):
|
41 |
+
result = pd.Series(data).tolist()
|
42 |
+
expected = list(data)
|
43 |
+
assert result == expected
|
44 |
+
|
45 |
+
def test_astype_str(self, data):
|
46 |
+
result = pd.Series(data[:5]).astype(str)
|
47 |
+
expected = pd.Series([str(x) for x in data[:5]], dtype=str)
|
48 |
+
tm.assert_series_equal(result, expected)
|
49 |
+
|
50 |
+
@pytest.mark.parametrize(
|
51 |
+
"nullable_string_dtype",
|
52 |
+
[
|
53 |
+
"string[python]",
|
54 |
+
pytest.param("string[pyarrow]", marks=td.skip_if_no("pyarrow")),
|
55 |
+
],
|
56 |
+
)
|
57 |
+
def test_astype_string(self, data, nullable_string_dtype):
|
58 |
+
# GH-33465, GH#45326 as of 2.0 we decode bytes instead of calling str(obj)
|
59 |
+
result = pd.Series(data[:5]).astype(nullable_string_dtype)
|
60 |
+
expected = pd.Series(
|
61 |
+
[str(x) if not isinstance(x, bytes) else x.decode() for x in data[:5]],
|
62 |
+
dtype=nullable_string_dtype,
|
63 |
+
)
|
64 |
+
tm.assert_series_equal(result, expected)
|
65 |
+
|
66 |
+
def test_to_numpy(self, data):
|
67 |
+
expected = np.asarray(data)
|
68 |
+
|
69 |
+
result = data.to_numpy()
|
70 |
+
tm.assert_equal(result, expected)
|
71 |
+
|
72 |
+
result = pd.Series(data).to_numpy()
|
73 |
+
tm.assert_equal(result, expected)
|
74 |
+
|
75 |
+
def test_astype_empty_dataframe(self, dtype):
|
76 |
+
# https://github.com/pandas-dev/pandas/issues/33113
|
77 |
+
df = pd.DataFrame()
|
78 |
+
result = df.astype(dtype)
|
79 |
+
tm.assert_frame_equal(result, df)
|
80 |
+
|
81 |
+
@pytest.mark.parametrize("copy", [True, False])
|
82 |
+
def test_astype_own_type(self, data, copy):
|
83 |
+
# ensure that astype returns the original object for equal dtype and copy=False
|
84 |
+
# https://github.com/pandas-dev/pandas/issues/28488
|
85 |
+
result = data.astype(data.dtype, copy=copy)
|
86 |
+
assert (result is data) is (not copy)
|
87 |
+
tm.assert_extension_array_equal(result, data)
|
llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/base/dim2.py
ADDED
@@ -0,0 +1,345 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Tests for 2D compatibility.
|
3 |
+
"""
|
4 |
+
import numpy as np
|
5 |
+
import pytest
|
6 |
+
|
7 |
+
from pandas._libs.missing import is_matching_na
|
8 |
+
|
9 |
+
from pandas.core.dtypes.common import (
|
10 |
+
is_bool_dtype,
|
11 |
+
is_integer_dtype,
|
12 |
+
)
|
13 |
+
|
14 |
+
import pandas as pd
|
15 |
+
import pandas._testing as tm
|
16 |
+
from pandas.core.arrays.integer import NUMPY_INT_TO_DTYPE
|
17 |
+
|
18 |
+
|
19 |
+
class Dim2CompatTests:
|
20 |
+
# Note: these are ONLY for ExtensionArray subclasses that support 2D arrays.
|
21 |
+
# i.e. not for pyarrow-backed EAs.
|
22 |
+
|
23 |
+
@pytest.fixture(autouse=True)
|
24 |
+
def skip_if_doesnt_support_2d(self, dtype, request):
|
25 |
+
if not dtype._supports_2d:
|
26 |
+
node = request.node
|
27 |
+
# In cases where we are mixed in to ExtensionTests, we only want to
|
28 |
+
# skip tests that are defined in Dim2CompatTests
|
29 |
+
test_func = node._obj
|
30 |
+
if test_func.__qualname__.startswith("Dim2CompatTests"):
|
31 |
+
# TODO: is there a less hacky way of checking this?
|
32 |
+
pytest.skip(f"{dtype} does not support 2D.")
|
33 |
+
|
34 |
+
def test_transpose(self, data):
|
35 |
+
arr2d = data.repeat(2).reshape(-1, 2)
|
36 |
+
shape = arr2d.shape
|
37 |
+
assert shape[0] != shape[-1] # otherwise the rest of the test is useless
|
38 |
+
|
39 |
+
assert arr2d.T.shape == shape[::-1]
|
40 |
+
|
41 |
+
def test_frame_from_2d_array(self, data):
|
42 |
+
arr2d = data.repeat(2).reshape(-1, 2)
|
43 |
+
|
44 |
+
df = pd.DataFrame(arr2d)
|
45 |
+
expected = pd.DataFrame({0: arr2d[:, 0], 1: arr2d[:, 1]})
|
46 |
+
tm.assert_frame_equal(df, expected)
|
47 |
+
|
48 |
+
def test_swapaxes(self, data):
|
49 |
+
arr2d = data.repeat(2).reshape(-1, 2)
|
50 |
+
|
51 |
+
result = arr2d.swapaxes(0, 1)
|
52 |
+
expected = arr2d.T
|
53 |
+
tm.assert_extension_array_equal(result, expected)
|
54 |
+
|
55 |
+
def test_delete_2d(self, data):
|
56 |
+
arr2d = data.repeat(3).reshape(-1, 3)
|
57 |
+
|
58 |
+
# axis = 0
|
59 |
+
result = arr2d.delete(1, axis=0)
|
60 |
+
expected = data.delete(1).repeat(3).reshape(-1, 3)
|
61 |
+
tm.assert_extension_array_equal(result, expected)
|
62 |
+
|
63 |
+
# axis = 1
|
64 |
+
result = arr2d.delete(1, axis=1)
|
65 |
+
expected = data.repeat(2).reshape(-1, 2)
|
66 |
+
tm.assert_extension_array_equal(result, expected)
|
67 |
+
|
68 |
+
def test_take_2d(self, data):
|
69 |
+
arr2d = data.reshape(-1, 1)
|
70 |
+
|
71 |
+
result = arr2d.take([0, 0, -1], axis=0)
|
72 |
+
|
73 |
+
expected = data.take([0, 0, -1]).reshape(-1, 1)
|
74 |
+
tm.assert_extension_array_equal(result, expected)
|
75 |
+
|
76 |
+
def test_repr_2d(self, data):
|
77 |
+
# this could fail in a corner case where an element contained the name
|
78 |
+
res = repr(data.reshape(1, -1))
|
79 |
+
assert res.count(f"<{type(data).__name__}") == 1
|
80 |
+
|
81 |
+
res = repr(data.reshape(-1, 1))
|
82 |
+
assert res.count(f"<{type(data).__name__}") == 1
|
83 |
+
|
84 |
+
def test_reshape(self, data):
|
85 |
+
arr2d = data.reshape(-1, 1)
|
86 |
+
assert arr2d.shape == (data.size, 1)
|
87 |
+
assert len(arr2d) == len(data)
|
88 |
+
|
89 |
+
arr2d = data.reshape((-1, 1))
|
90 |
+
assert arr2d.shape == (data.size, 1)
|
91 |
+
assert len(arr2d) == len(data)
|
92 |
+
|
93 |
+
with pytest.raises(ValueError):
|
94 |
+
data.reshape((data.size, 2))
|
95 |
+
with pytest.raises(ValueError):
|
96 |
+
data.reshape(data.size, 2)
|
97 |
+
|
98 |
+
def test_getitem_2d(self, data):
|
99 |
+
arr2d = data.reshape(1, -1)
|
100 |
+
|
101 |
+
result = arr2d[0]
|
102 |
+
tm.assert_extension_array_equal(result, data)
|
103 |
+
|
104 |
+
with pytest.raises(IndexError):
|
105 |
+
arr2d[1]
|
106 |
+
|
107 |
+
with pytest.raises(IndexError):
|
108 |
+
arr2d[-2]
|
109 |
+
|
110 |
+
result = arr2d[:]
|
111 |
+
tm.assert_extension_array_equal(result, arr2d)
|
112 |
+
|
113 |
+
result = arr2d[:, :]
|
114 |
+
tm.assert_extension_array_equal(result, arr2d)
|
115 |
+
|
116 |
+
result = arr2d[:, 0]
|
117 |
+
expected = data[[0]]
|
118 |
+
tm.assert_extension_array_equal(result, expected)
|
119 |
+
|
120 |
+
# dimension-expanding getitem on 1D
|
121 |
+
result = data[:, np.newaxis]
|
122 |
+
tm.assert_extension_array_equal(result, arr2d.T)
|
123 |
+
|
124 |
+
def test_iter_2d(self, data):
|
125 |
+
arr2d = data.reshape(1, -1)
|
126 |
+
|
127 |
+
objs = list(iter(arr2d))
|
128 |
+
assert len(objs) == arr2d.shape[0]
|
129 |
+
|
130 |
+
for obj in objs:
|
131 |
+
assert isinstance(obj, type(data))
|
132 |
+
assert obj.dtype == data.dtype
|
133 |
+
assert obj.ndim == 1
|
134 |
+
assert len(obj) == arr2d.shape[1]
|
135 |
+
|
136 |
+
def test_tolist_2d(self, data):
|
137 |
+
arr2d = data.reshape(1, -1)
|
138 |
+
|
139 |
+
result = arr2d.tolist()
|
140 |
+
expected = [data.tolist()]
|
141 |
+
|
142 |
+
assert isinstance(result, list)
|
143 |
+
assert all(isinstance(x, list) for x in result)
|
144 |
+
|
145 |
+
assert result == expected
|
146 |
+
|
147 |
+
def test_concat_2d(self, data):
|
148 |
+
left = type(data)._concat_same_type([data, data]).reshape(-1, 2)
|
149 |
+
right = left.copy()
|
150 |
+
|
151 |
+
# axis=0
|
152 |
+
result = left._concat_same_type([left, right], axis=0)
|
153 |
+
expected = data._concat_same_type([data] * 4).reshape(-1, 2)
|
154 |
+
tm.assert_extension_array_equal(result, expected)
|
155 |
+
|
156 |
+
# axis=1
|
157 |
+
result = left._concat_same_type([left, right], axis=1)
|
158 |
+
assert result.shape == (len(data), 4)
|
159 |
+
tm.assert_extension_array_equal(result[:, :2], left)
|
160 |
+
tm.assert_extension_array_equal(result[:, 2:], right)
|
161 |
+
|
162 |
+
# axis > 1 -> invalid
|
163 |
+
msg = "axis 2 is out of bounds for array of dimension 2"
|
164 |
+
with pytest.raises(ValueError, match=msg):
|
165 |
+
left._concat_same_type([left, right], axis=2)
|
166 |
+
|
167 |
+
@pytest.mark.parametrize("method", ["backfill", "pad"])
|
168 |
+
def test_fillna_2d_method(self, data_missing, method):
|
169 |
+
# pad_or_backfill is always along axis=0
|
170 |
+
arr = data_missing.repeat(2).reshape(2, 2)
|
171 |
+
assert arr[0].isna().all()
|
172 |
+
assert not arr[1].isna().any()
|
173 |
+
|
174 |
+
result = arr._pad_or_backfill(method=method, limit=None)
|
175 |
+
|
176 |
+
expected = data_missing._pad_or_backfill(method=method).repeat(2).reshape(2, 2)
|
177 |
+
tm.assert_extension_array_equal(result, expected)
|
178 |
+
|
179 |
+
# Reverse so that backfill is not a no-op.
|
180 |
+
arr2 = arr[::-1]
|
181 |
+
assert not arr2[0].isna().any()
|
182 |
+
assert arr2[1].isna().all()
|
183 |
+
|
184 |
+
result2 = arr2._pad_or_backfill(method=method, limit=None)
|
185 |
+
|
186 |
+
expected2 = (
|
187 |
+
data_missing[::-1]._pad_or_backfill(method=method).repeat(2).reshape(2, 2)
|
188 |
+
)
|
189 |
+
tm.assert_extension_array_equal(result2, expected2)
|
190 |
+
|
191 |
+
@pytest.mark.parametrize("method", ["mean", "median", "var", "std", "sum", "prod"])
|
192 |
+
def test_reductions_2d_axis_none(self, data, method):
|
193 |
+
arr2d = data.reshape(1, -1)
|
194 |
+
|
195 |
+
err_expected = None
|
196 |
+
err_result = None
|
197 |
+
try:
|
198 |
+
expected = getattr(data, method)()
|
199 |
+
except Exception as err:
|
200 |
+
# if the 1D reduction is invalid, the 2D reduction should be as well
|
201 |
+
err_expected = err
|
202 |
+
try:
|
203 |
+
result = getattr(arr2d, method)(axis=None)
|
204 |
+
except Exception as err2:
|
205 |
+
err_result = err2
|
206 |
+
|
207 |
+
else:
|
208 |
+
result = getattr(arr2d, method)(axis=None)
|
209 |
+
|
210 |
+
if err_result is not None or err_expected is not None:
|
211 |
+
assert type(err_result) == type(err_expected)
|
212 |
+
return
|
213 |
+
|
214 |
+
assert is_matching_na(result, expected) or result == expected
|
215 |
+
|
216 |
+
@pytest.mark.parametrize("method", ["mean", "median", "var", "std", "sum", "prod"])
|
217 |
+
@pytest.mark.parametrize("min_count", [0, 1])
|
218 |
+
def test_reductions_2d_axis0(self, data, method, min_count):
|
219 |
+
if min_count == 1 and method not in ["sum", "prod"]:
|
220 |
+
pytest.skip(f"min_count not relevant for {method}")
|
221 |
+
|
222 |
+
arr2d = data.reshape(1, -1)
|
223 |
+
|
224 |
+
kwargs = {}
|
225 |
+
if method in ["std", "var"]:
|
226 |
+
# pass ddof=0 so we get all-zero std instead of all-NA std
|
227 |
+
kwargs["ddof"] = 0
|
228 |
+
elif method in ["prod", "sum"]:
|
229 |
+
kwargs["min_count"] = min_count
|
230 |
+
|
231 |
+
try:
|
232 |
+
result = getattr(arr2d, method)(axis=0, **kwargs)
|
233 |
+
except Exception as err:
|
234 |
+
try:
|
235 |
+
getattr(data, method)()
|
236 |
+
except Exception as err2:
|
237 |
+
assert type(err) == type(err2)
|
238 |
+
return
|
239 |
+
else:
|
240 |
+
raise AssertionError("Both reductions should raise or neither")
|
241 |
+
|
242 |
+
def get_reduction_result_dtype(dtype):
|
243 |
+
# windows and 32bit builds will in some cases have int32/uint32
|
244 |
+
# where other builds will have int64/uint64.
|
245 |
+
if dtype.itemsize == 8:
|
246 |
+
return dtype
|
247 |
+
elif dtype.kind in "ib":
|
248 |
+
return NUMPY_INT_TO_DTYPE[np.dtype(int)]
|
249 |
+
else:
|
250 |
+
# i.e. dtype.kind == "u"
|
251 |
+
return NUMPY_INT_TO_DTYPE[np.dtype("uint")]
|
252 |
+
|
253 |
+
if method in ["sum", "prod"]:
|
254 |
+
# std and var are not dtype-preserving
|
255 |
+
expected = data
|
256 |
+
if data.dtype.kind in "iub":
|
257 |
+
dtype = get_reduction_result_dtype(data.dtype)
|
258 |
+
expected = data.astype(dtype)
|
259 |
+
assert dtype == expected.dtype
|
260 |
+
|
261 |
+
if min_count == 0:
|
262 |
+
fill_value = 1 if method == "prod" else 0
|
263 |
+
expected = expected.fillna(fill_value)
|
264 |
+
|
265 |
+
tm.assert_extension_array_equal(result, expected)
|
266 |
+
elif method == "median":
|
267 |
+
# std and var are not dtype-preserving
|
268 |
+
expected = data
|
269 |
+
tm.assert_extension_array_equal(result, expected)
|
270 |
+
elif method in ["mean", "std", "var"]:
|
271 |
+
if is_integer_dtype(data) or is_bool_dtype(data):
|
272 |
+
data = data.astype("Float64")
|
273 |
+
if method == "mean":
|
274 |
+
tm.assert_extension_array_equal(result, data)
|
275 |
+
else:
|
276 |
+
tm.assert_extension_array_equal(result, data - data)
|
277 |
+
|
278 |
+
@pytest.mark.parametrize("method", ["mean", "median", "var", "std", "sum", "prod"])
|
279 |
+
def test_reductions_2d_axis1(self, data, method):
|
280 |
+
arr2d = data.reshape(1, -1)
|
281 |
+
|
282 |
+
try:
|
283 |
+
result = getattr(arr2d, method)(axis=1)
|
284 |
+
except Exception as err:
|
285 |
+
try:
|
286 |
+
getattr(data, method)()
|
287 |
+
except Exception as err2:
|
288 |
+
assert type(err) == type(err2)
|
289 |
+
return
|
290 |
+
else:
|
291 |
+
raise AssertionError("Both reductions should raise or neither")
|
292 |
+
|
293 |
+
# not necessarily type/dtype-preserving, so weaker assertions
|
294 |
+
assert result.shape == (1,)
|
295 |
+
expected_scalar = getattr(data, method)()
|
296 |
+
res = result[0]
|
297 |
+
assert is_matching_na(res, expected_scalar) or res == expected_scalar
|
298 |
+
|
299 |
+
|
300 |
+
class NDArrayBacked2DTests(Dim2CompatTests):
|
301 |
+
# More specific tests for NDArrayBackedExtensionArray subclasses
|
302 |
+
|
303 |
+
def test_copy_order(self, data):
|
304 |
+
# We should be matching numpy semantics for the "order" keyword in 'copy'
|
305 |
+
arr2d = data.repeat(2).reshape(-1, 2)
|
306 |
+
assert arr2d._ndarray.flags["C_CONTIGUOUS"]
|
307 |
+
|
308 |
+
res = arr2d.copy()
|
309 |
+
assert res._ndarray.flags["C_CONTIGUOUS"]
|
310 |
+
|
311 |
+
res = arr2d[::2, ::2].copy()
|
312 |
+
assert res._ndarray.flags["C_CONTIGUOUS"]
|
313 |
+
|
314 |
+
res = arr2d.copy("F")
|
315 |
+
assert not res._ndarray.flags["C_CONTIGUOUS"]
|
316 |
+
assert res._ndarray.flags["F_CONTIGUOUS"]
|
317 |
+
|
318 |
+
res = arr2d.copy("K")
|
319 |
+
assert res._ndarray.flags["C_CONTIGUOUS"]
|
320 |
+
|
321 |
+
res = arr2d.T.copy("K")
|
322 |
+
assert not res._ndarray.flags["C_CONTIGUOUS"]
|
323 |
+
assert res._ndarray.flags["F_CONTIGUOUS"]
|
324 |
+
|
325 |
+
# order not accepted by numpy
|
326 |
+
msg = r"order must be one of 'C', 'F', 'A', or 'K' \(got 'Q'\)"
|
327 |
+
with pytest.raises(ValueError, match=msg):
|
328 |
+
arr2d.copy("Q")
|
329 |
+
|
330 |
+
# neither contiguity
|
331 |
+
arr_nc = arr2d[::2]
|
332 |
+
assert not arr_nc._ndarray.flags["C_CONTIGUOUS"]
|
333 |
+
assert not arr_nc._ndarray.flags["F_CONTIGUOUS"]
|
334 |
+
|
335 |
+
assert arr_nc.copy()._ndarray.flags["C_CONTIGUOUS"]
|
336 |
+
assert not arr_nc.copy()._ndarray.flags["F_CONTIGUOUS"]
|
337 |
+
|
338 |
+
assert arr_nc.copy("C")._ndarray.flags["C_CONTIGUOUS"]
|
339 |
+
assert not arr_nc.copy("C")._ndarray.flags["F_CONTIGUOUS"]
|
340 |
+
|
341 |
+
assert not arr_nc.copy("F")._ndarray.flags["C_CONTIGUOUS"]
|
342 |
+
assert arr_nc.copy("F")._ndarray.flags["F_CONTIGUOUS"]
|
343 |
+
|
344 |
+
assert arr_nc.copy("K")._ndarray.flags["C_CONTIGUOUS"]
|
345 |
+
assert not arr_nc.copy("K")._ndarray.flags["F_CONTIGUOUS"]
|
llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/base/getitem.py
ADDED
@@ -0,0 +1,469 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pytest
|
3 |
+
|
4 |
+
import pandas as pd
|
5 |
+
import pandas._testing as tm
|
6 |
+
|
7 |
+
|
8 |
+
class BaseGetitemTests:
|
9 |
+
"""Tests for ExtensionArray.__getitem__."""
|
10 |
+
|
11 |
+
def test_iloc_series(self, data):
|
12 |
+
ser = pd.Series(data)
|
13 |
+
result = ser.iloc[:4]
|
14 |
+
expected = pd.Series(data[:4])
|
15 |
+
tm.assert_series_equal(result, expected)
|
16 |
+
|
17 |
+
result = ser.iloc[[0, 1, 2, 3]]
|
18 |
+
tm.assert_series_equal(result, expected)
|
19 |
+
|
20 |
+
def test_iloc_frame(self, data):
|
21 |
+
df = pd.DataFrame({"A": data, "B": np.arange(len(data), dtype="int64")})
|
22 |
+
expected = pd.DataFrame({"A": data[:4]})
|
23 |
+
|
24 |
+
# slice -> frame
|
25 |
+
result = df.iloc[:4, [0]]
|
26 |
+
tm.assert_frame_equal(result, expected)
|
27 |
+
|
28 |
+
# sequence -> frame
|
29 |
+
result = df.iloc[[0, 1, 2, 3], [0]]
|
30 |
+
tm.assert_frame_equal(result, expected)
|
31 |
+
|
32 |
+
expected = pd.Series(data[:4], name="A")
|
33 |
+
|
34 |
+
# slice -> series
|
35 |
+
result = df.iloc[:4, 0]
|
36 |
+
tm.assert_series_equal(result, expected)
|
37 |
+
|
38 |
+
# sequence -> series
|
39 |
+
result = df.iloc[:4, 0]
|
40 |
+
tm.assert_series_equal(result, expected)
|
41 |
+
|
42 |
+
# GH#32959 slice columns with step
|
43 |
+
result = df.iloc[:, ::2]
|
44 |
+
tm.assert_frame_equal(result, df[["A"]])
|
45 |
+
result = df[["B", "A"]].iloc[:, ::2]
|
46 |
+
tm.assert_frame_equal(result, df[["B"]])
|
47 |
+
|
48 |
+
def test_iloc_frame_single_block(self, data):
|
49 |
+
# GH#32959 null slice along index, slice along columns with single-block
|
50 |
+
df = pd.DataFrame({"A": data})
|
51 |
+
|
52 |
+
result = df.iloc[:, :]
|
53 |
+
tm.assert_frame_equal(result, df)
|
54 |
+
|
55 |
+
result = df.iloc[:, :1]
|
56 |
+
tm.assert_frame_equal(result, df)
|
57 |
+
|
58 |
+
result = df.iloc[:, :2]
|
59 |
+
tm.assert_frame_equal(result, df)
|
60 |
+
|
61 |
+
result = df.iloc[:, ::2]
|
62 |
+
tm.assert_frame_equal(result, df)
|
63 |
+
|
64 |
+
result = df.iloc[:, 1:2]
|
65 |
+
tm.assert_frame_equal(result, df.iloc[:, :0])
|
66 |
+
|
67 |
+
result = df.iloc[:, -1:]
|
68 |
+
tm.assert_frame_equal(result, df)
|
69 |
+
|
70 |
+
def test_loc_series(self, data):
|
71 |
+
ser = pd.Series(data)
|
72 |
+
result = ser.loc[:3]
|
73 |
+
expected = pd.Series(data[:4])
|
74 |
+
tm.assert_series_equal(result, expected)
|
75 |
+
|
76 |
+
result = ser.loc[[0, 1, 2, 3]]
|
77 |
+
tm.assert_series_equal(result, expected)
|
78 |
+
|
79 |
+
def test_loc_frame(self, data):
|
80 |
+
df = pd.DataFrame({"A": data, "B": np.arange(len(data), dtype="int64")})
|
81 |
+
expected = pd.DataFrame({"A": data[:4]})
|
82 |
+
|
83 |
+
# slice -> frame
|
84 |
+
result = df.loc[:3, ["A"]]
|
85 |
+
tm.assert_frame_equal(result, expected)
|
86 |
+
|
87 |
+
# sequence -> frame
|
88 |
+
result = df.loc[[0, 1, 2, 3], ["A"]]
|
89 |
+
tm.assert_frame_equal(result, expected)
|
90 |
+
|
91 |
+
expected = pd.Series(data[:4], name="A")
|
92 |
+
|
93 |
+
# slice -> series
|
94 |
+
result = df.loc[:3, "A"]
|
95 |
+
tm.assert_series_equal(result, expected)
|
96 |
+
|
97 |
+
# sequence -> series
|
98 |
+
result = df.loc[:3, "A"]
|
99 |
+
tm.assert_series_equal(result, expected)
|
100 |
+
|
101 |
+
def test_loc_iloc_frame_single_dtype(self, data):
|
102 |
+
# GH#27110 bug in ExtensionBlock.iget caused df.iloc[n] to incorrectly
|
103 |
+
# return a scalar
|
104 |
+
df = pd.DataFrame({"A": data})
|
105 |
+
expected = pd.Series([data[2]], index=["A"], name=2, dtype=data.dtype)
|
106 |
+
|
107 |
+
result = df.loc[2]
|
108 |
+
tm.assert_series_equal(result, expected)
|
109 |
+
|
110 |
+
expected = pd.Series(
|
111 |
+
[data[-1]], index=["A"], name=len(data) - 1, dtype=data.dtype
|
112 |
+
)
|
113 |
+
result = df.iloc[-1]
|
114 |
+
tm.assert_series_equal(result, expected)
|
115 |
+
|
116 |
+
def test_getitem_scalar(self, data):
|
117 |
+
result = data[0]
|
118 |
+
assert isinstance(result, data.dtype.type)
|
119 |
+
|
120 |
+
result = pd.Series(data)[0]
|
121 |
+
assert isinstance(result, data.dtype.type)
|
122 |
+
|
123 |
+
def test_getitem_invalid(self, data):
|
124 |
+
# TODO: box over scalar, [scalar], (scalar,)?
|
125 |
+
|
126 |
+
msg = (
|
127 |
+
r"only integers, slices \(`:`\), ellipsis \(`...`\), numpy.newaxis "
|
128 |
+
r"\(`None`\) and integer or boolean arrays are valid indices"
|
129 |
+
)
|
130 |
+
with pytest.raises(IndexError, match=msg):
|
131 |
+
data["foo"]
|
132 |
+
with pytest.raises(IndexError, match=msg):
|
133 |
+
data[2.5]
|
134 |
+
|
135 |
+
ub = len(data)
|
136 |
+
msg = "|".join(
|
137 |
+
[
|
138 |
+
"list index out of range", # json
|
139 |
+
"index out of bounds", # pyarrow
|
140 |
+
"Out of bounds access", # Sparse
|
141 |
+
f"loc must be an integer between -{ub} and {ub}", # Sparse
|
142 |
+
f"index {ub+1} is out of bounds for axis 0 with size {ub}",
|
143 |
+
f"index -{ub+1} is out of bounds for axis 0 with size {ub}",
|
144 |
+
]
|
145 |
+
)
|
146 |
+
with pytest.raises(IndexError, match=msg):
|
147 |
+
data[ub + 1]
|
148 |
+
with pytest.raises(IndexError, match=msg):
|
149 |
+
data[-ub - 1]
|
150 |
+
|
151 |
+
def test_getitem_scalar_na(self, data_missing, na_cmp, na_value):
|
152 |
+
result = data_missing[0]
|
153 |
+
assert na_cmp(result, na_value)
|
154 |
+
|
155 |
+
def test_getitem_empty(self, data):
|
156 |
+
# Indexing with empty list
|
157 |
+
result = data[[]]
|
158 |
+
assert len(result) == 0
|
159 |
+
assert isinstance(result, type(data))
|
160 |
+
|
161 |
+
expected = data[np.array([], dtype="int64")]
|
162 |
+
tm.assert_extension_array_equal(result, expected)
|
163 |
+
|
164 |
+
def test_getitem_mask(self, data):
|
165 |
+
# Empty mask, raw array
|
166 |
+
mask = np.zeros(len(data), dtype=bool)
|
167 |
+
result = data[mask]
|
168 |
+
assert len(result) == 0
|
169 |
+
assert isinstance(result, type(data))
|
170 |
+
|
171 |
+
# Empty mask, in series
|
172 |
+
mask = np.zeros(len(data), dtype=bool)
|
173 |
+
result = pd.Series(data)[mask]
|
174 |
+
assert len(result) == 0
|
175 |
+
assert result.dtype == data.dtype
|
176 |
+
|
177 |
+
# non-empty mask, raw array
|
178 |
+
mask[0] = True
|
179 |
+
result = data[mask]
|
180 |
+
assert len(result) == 1
|
181 |
+
assert isinstance(result, type(data))
|
182 |
+
|
183 |
+
# non-empty mask, in series
|
184 |
+
result = pd.Series(data)[mask]
|
185 |
+
assert len(result) == 1
|
186 |
+
assert result.dtype == data.dtype
|
187 |
+
|
188 |
+
def test_getitem_mask_raises(self, data):
|
189 |
+
mask = np.array([True, False])
|
190 |
+
msg = f"Boolean index has wrong length: 2 instead of {len(data)}"
|
191 |
+
with pytest.raises(IndexError, match=msg):
|
192 |
+
data[mask]
|
193 |
+
|
194 |
+
mask = pd.array(mask, dtype="boolean")
|
195 |
+
with pytest.raises(IndexError, match=msg):
|
196 |
+
data[mask]
|
197 |
+
|
198 |
+
def test_getitem_boolean_array_mask(self, data):
|
199 |
+
mask = pd.array(np.zeros(data.shape, dtype="bool"), dtype="boolean")
|
200 |
+
result = data[mask]
|
201 |
+
assert len(result) == 0
|
202 |
+
assert isinstance(result, type(data))
|
203 |
+
|
204 |
+
result = pd.Series(data)[mask]
|
205 |
+
assert len(result) == 0
|
206 |
+
assert result.dtype == data.dtype
|
207 |
+
|
208 |
+
mask[:5] = True
|
209 |
+
expected = data.take([0, 1, 2, 3, 4])
|
210 |
+
result = data[mask]
|
211 |
+
tm.assert_extension_array_equal(result, expected)
|
212 |
+
|
213 |
+
expected = pd.Series(expected)
|
214 |
+
result = pd.Series(data)[mask]
|
215 |
+
tm.assert_series_equal(result, expected)
|
216 |
+
|
217 |
+
def test_getitem_boolean_na_treated_as_false(self, data):
|
218 |
+
# https://github.com/pandas-dev/pandas/issues/31503
|
219 |
+
mask = pd.array(np.zeros(data.shape, dtype="bool"), dtype="boolean")
|
220 |
+
mask[:2] = pd.NA
|
221 |
+
mask[2:4] = True
|
222 |
+
|
223 |
+
result = data[mask]
|
224 |
+
expected = data[mask.fillna(False)]
|
225 |
+
|
226 |
+
tm.assert_extension_array_equal(result, expected)
|
227 |
+
|
228 |
+
s = pd.Series(data)
|
229 |
+
|
230 |
+
result = s[mask]
|
231 |
+
expected = s[mask.fillna(False)]
|
232 |
+
|
233 |
+
tm.assert_series_equal(result, expected)
|
234 |
+
|
235 |
+
@pytest.mark.parametrize(
|
236 |
+
"idx",
|
237 |
+
[[0, 1, 2], pd.array([0, 1, 2], dtype="Int64"), np.array([0, 1, 2])],
|
238 |
+
ids=["list", "integer-array", "numpy-array"],
|
239 |
+
)
|
240 |
+
def test_getitem_integer_array(self, data, idx):
|
241 |
+
result = data[idx]
|
242 |
+
assert len(result) == 3
|
243 |
+
assert isinstance(result, type(data))
|
244 |
+
expected = data.take([0, 1, 2])
|
245 |
+
tm.assert_extension_array_equal(result, expected)
|
246 |
+
|
247 |
+
expected = pd.Series(expected)
|
248 |
+
result = pd.Series(data)[idx]
|
249 |
+
tm.assert_series_equal(result, expected)
|
250 |
+
|
251 |
+
@pytest.mark.parametrize(
|
252 |
+
"idx",
|
253 |
+
[[0, 1, 2, pd.NA], pd.array([0, 1, 2, pd.NA], dtype="Int64")],
|
254 |
+
ids=["list", "integer-array"],
|
255 |
+
)
|
256 |
+
def test_getitem_integer_with_missing_raises(self, data, idx):
|
257 |
+
msg = "Cannot index with an integer indexer containing NA values"
|
258 |
+
with pytest.raises(ValueError, match=msg):
|
259 |
+
data[idx]
|
260 |
+
|
261 |
+
@pytest.mark.xfail(
|
262 |
+
reason="Tries label-based and raises KeyError; "
|
263 |
+
"in some cases raises when calling np.asarray"
|
264 |
+
)
|
265 |
+
@pytest.mark.parametrize(
|
266 |
+
"idx",
|
267 |
+
[[0, 1, 2, pd.NA], pd.array([0, 1, 2, pd.NA], dtype="Int64")],
|
268 |
+
ids=["list", "integer-array"],
|
269 |
+
)
|
270 |
+
def test_getitem_series_integer_with_missing_raises(self, data, idx):
|
271 |
+
msg = "Cannot index with an integer indexer containing NA values"
|
272 |
+
# TODO: this raises KeyError about labels not found (it tries label-based)
|
273 |
+
|
274 |
+
ser = pd.Series(data, index=[chr(100 + i) for i in range(len(data))])
|
275 |
+
with pytest.raises(ValueError, match=msg):
|
276 |
+
ser[idx]
|
277 |
+
|
278 |
+
def test_getitem_slice(self, data):
|
279 |
+
# getitem[slice] should return an array
|
280 |
+
result = data[slice(0)] # empty
|
281 |
+
assert isinstance(result, type(data))
|
282 |
+
|
283 |
+
result = data[slice(1)] # scalar
|
284 |
+
assert isinstance(result, type(data))
|
285 |
+
|
286 |
+
def test_getitem_ellipsis_and_slice(self, data):
|
287 |
+
# GH#40353 this is called from slice_block_rows
|
288 |
+
result = data[..., :]
|
289 |
+
tm.assert_extension_array_equal(result, data)
|
290 |
+
|
291 |
+
result = data[:, ...]
|
292 |
+
tm.assert_extension_array_equal(result, data)
|
293 |
+
|
294 |
+
result = data[..., :3]
|
295 |
+
tm.assert_extension_array_equal(result, data[:3])
|
296 |
+
|
297 |
+
result = data[:3, ...]
|
298 |
+
tm.assert_extension_array_equal(result, data[:3])
|
299 |
+
|
300 |
+
result = data[..., ::2]
|
301 |
+
tm.assert_extension_array_equal(result, data[::2])
|
302 |
+
|
303 |
+
result = data[::2, ...]
|
304 |
+
tm.assert_extension_array_equal(result, data[::2])
|
305 |
+
|
306 |
+
def test_get(self, data):
|
307 |
+
# GH 20882
|
308 |
+
s = pd.Series(data, index=[2 * i for i in range(len(data))])
|
309 |
+
assert s.get(4) == s.iloc[2]
|
310 |
+
|
311 |
+
result = s.get([4, 6])
|
312 |
+
expected = s.iloc[[2, 3]]
|
313 |
+
tm.assert_series_equal(result, expected)
|
314 |
+
|
315 |
+
result = s.get(slice(2))
|
316 |
+
expected = s.iloc[[0, 1]]
|
317 |
+
tm.assert_series_equal(result, expected)
|
318 |
+
|
319 |
+
assert s.get(-1) is None
|
320 |
+
assert s.get(s.index.max() + 1) is None
|
321 |
+
|
322 |
+
s = pd.Series(data[:6], index=list("abcdef"))
|
323 |
+
assert s.get("c") == s.iloc[2]
|
324 |
+
|
325 |
+
result = s.get(slice("b", "d"))
|
326 |
+
expected = s.iloc[[1, 2, 3]]
|
327 |
+
tm.assert_series_equal(result, expected)
|
328 |
+
|
329 |
+
result = s.get("Z")
|
330 |
+
assert result is None
|
331 |
+
|
332 |
+
msg = "Series.__getitem__ treating keys as positions is deprecated"
|
333 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
334 |
+
assert s.get(4) == s.iloc[4]
|
335 |
+
assert s.get(-1) == s.iloc[-1]
|
336 |
+
assert s.get(len(s)) is None
|
337 |
+
|
338 |
+
# GH 21257
|
339 |
+
s = pd.Series(data)
|
340 |
+
with tm.assert_produces_warning(None):
|
341 |
+
# GH#45324 make sure we aren't giving a spurious FutureWarning
|
342 |
+
s2 = s[::2]
|
343 |
+
assert s2.get(1) is None
|
344 |
+
|
345 |
+
def test_take_sequence(self, data):
|
346 |
+
result = pd.Series(data)[[0, 1, 3]]
|
347 |
+
assert result.iloc[0] == data[0]
|
348 |
+
assert result.iloc[1] == data[1]
|
349 |
+
assert result.iloc[2] == data[3]
|
350 |
+
|
351 |
+
def test_take(self, data, na_value, na_cmp):
|
352 |
+
result = data.take([0, -1])
|
353 |
+
assert result.dtype == data.dtype
|
354 |
+
assert result[0] == data[0]
|
355 |
+
assert result[1] == data[-1]
|
356 |
+
|
357 |
+
result = data.take([0, -1], allow_fill=True, fill_value=na_value)
|
358 |
+
assert result[0] == data[0]
|
359 |
+
assert na_cmp(result[1], na_value)
|
360 |
+
|
361 |
+
with pytest.raises(IndexError, match="out of bounds"):
|
362 |
+
data.take([len(data) + 1])
|
363 |
+
|
364 |
+
def test_take_empty(self, data, na_value, na_cmp):
|
365 |
+
empty = data[:0]
|
366 |
+
|
367 |
+
result = empty.take([-1], allow_fill=True)
|
368 |
+
assert na_cmp(result[0], na_value)
|
369 |
+
|
370 |
+
msg = "cannot do a non-empty take from an empty axes|out of bounds"
|
371 |
+
|
372 |
+
with pytest.raises(IndexError, match=msg):
|
373 |
+
empty.take([-1])
|
374 |
+
|
375 |
+
with pytest.raises(IndexError, match="cannot do a non-empty take"):
|
376 |
+
empty.take([0, 1])
|
377 |
+
|
378 |
+
def test_take_negative(self, data):
|
379 |
+
# https://github.com/pandas-dev/pandas/issues/20640
|
380 |
+
n = len(data)
|
381 |
+
result = data.take([0, -n, n - 1, -1])
|
382 |
+
expected = data.take([0, 0, n - 1, n - 1])
|
383 |
+
tm.assert_extension_array_equal(result, expected)
|
384 |
+
|
385 |
+
def test_take_non_na_fill_value(self, data_missing):
|
386 |
+
fill_value = data_missing[1] # valid
|
387 |
+
na = data_missing[0]
|
388 |
+
|
389 |
+
arr = data_missing._from_sequence(
|
390 |
+
[na, fill_value, na], dtype=data_missing.dtype
|
391 |
+
)
|
392 |
+
result = arr.take([-1, 1], fill_value=fill_value, allow_fill=True)
|
393 |
+
expected = arr.take([1, 1])
|
394 |
+
tm.assert_extension_array_equal(result, expected)
|
395 |
+
|
396 |
+
def test_take_pandas_style_negative_raises(self, data, na_value):
|
397 |
+
with pytest.raises(ValueError, match=""):
|
398 |
+
data.take([0, -2], fill_value=na_value, allow_fill=True)
|
399 |
+
|
400 |
+
@pytest.mark.parametrize("allow_fill", [True, False])
|
401 |
+
def test_take_out_of_bounds_raises(self, data, allow_fill):
|
402 |
+
arr = data[:3]
|
403 |
+
|
404 |
+
with pytest.raises(IndexError, match="out of bounds|out-of-bounds"):
|
405 |
+
arr.take(np.asarray([0, 3]), allow_fill=allow_fill)
|
406 |
+
|
407 |
+
def test_take_series(self, data):
|
408 |
+
s = pd.Series(data)
|
409 |
+
result = s.take([0, -1])
|
410 |
+
expected = pd.Series(
|
411 |
+
data._from_sequence([data[0], data[len(data) - 1]], dtype=s.dtype),
|
412 |
+
index=[0, len(data) - 1],
|
413 |
+
)
|
414 |
+
tm.assert_series_equal(result, expected)
|
415 |
+
|
416 |
+
def test_reindex(self, data, na_value):
|
417 |
+
s = pd.Series(data)
|
418 |
+
result = s.reindex([0, 1, 3])
|
419 |
+
expected = pd.Series(data.take([0, 1, 3]), index=[0, 1, 3])
|
420 |
+
tm.assert_series_equal(result, expected)
|
421 |
+
|
422 |
+
n = len(data)
|
423 |
+
result = s.reindex([-1, 0, n])
|
424 |
+
expected = pd.Series(
|
425 |
+
data._from_sequence([na_value, data[0], na_value], dtype=s.dtype),
|
426 |
+
index=[-1, 0, n],
|
427 |
+
)
|
428 |
+
tm.assert_series_equal(result, expected)
|
429 |
+
|
430 |
+
result = s.reindex([n, n + 1])
|
431 |
+
expected = pd.Series(
|
432 |
+
data._from_sequence([na_value, na_value], dtype=s.dtype), index=[n, n + 1]
|
433 |
+
)
|
434 |
+
tm.assert_series_equal(result, expected)
|
435 |
+
|
436 |
+
def test_reindex_non_na_fill_value(self, data_missing):
|
437 |
+
valid = data_missing[1]
|
438 |
+
na = data_missing[0]
|
439 |
+
|
440 |
+
arr = data_missing._from_sequence([na, valid], dtype=data_missing.dtype)
|
441 |
+
ser = pd.Series(arr)
|
442 |
+
result = ser.reindex([0, 1, 2], fill_value=valid)
|
443 |
+
expected = pd.Series(
|
444 |
+
data_missing._from_sequence([na, valid, valid], dtype=data_missing.dtype)
|
445 |
+
)
|
446 |
+
|
447 |
+
tm.assert_series_equal(result, expected)
|
448 |
+
|
449 |
+
def test_loc_len1(self, data):
|
450 |
+
# see GH-27785 take_nd with indexer of len 1 resulting in wrong ndim
|
451 |
+
df = pd.DataFrame({"A": data})
|
452 |
+
res = df.loc[[0], "A"]
|
453 |
+
assert res.ndim == 1
|
454 |
+
assert res._mgr.arrays[0].ndim == 1
|
455 |
+
if hasattr(res._mgr, "blocks"):
|
456 |
+
assert res._mgr._block.ndim == 1
|
457 |
+
|
458 |
+
def test_item(self, data):
|
459 |
+
# https://github.com/pandas-dev/pandas/pull/30175
|
460 |
+
s = pd.Series(data)
|
461 |
+
result = s[:1].item()
|
462 |
+
assert result == data[0]
|
463 |
+
|
464 |
+
msg = "can only convert an array of size 1 to a Python scalar"
|
465 |
+
with pytest.raises(ValueError, match=msg):
|
466 |
+
s[:0].item()
|
467 |
+
|
468 |
+
with pytest.raises(ValueError, match=msg):
|
469 |
+
s.item()
|
llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/date/__init__.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pandas.tests.extension.date.array import (
|
2 |
+
DateArray,
|
3 |
+
DateDtype,
|
4 |
+
)
|
5 |
+
|
6 |
+
__all__ = ["DateArray", "DateDtype"]
|
llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/date/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (316 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/date/__pycache__/array.cpython-310.pyc
ADDED
Binary file (6.22 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/date/array.py
ADDED
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
import datetime as dt
|
4 |
+
from typing import (
|
5 |
+
TYPE_CHECKING,
|
6 |
+
Any,
|
7 |
+
cast,
|
8 |
+
)
|
9 |
+
|
10 |
+
import numpy as np
|
11 |
+
|
12 |
+
from pandas.core.dtypes.dtypes import register_extension_dtype
|
13 |
+
|
14 |
+
from pandas.api.extensions import (
|
15 |
+
ExtensionArray,
|
16 |
+
ExtensionDtype,
|
17 |
+
)
|
18 |
+
from pandas.api.types import pandas_dtype
|
19 |
+
|
20 |
+
if TYPE_CHECKING:
|
21 |
+
from collections.abc import Sequence
|
22 |
+
|
23 |
+
from pandas._typing import (
|
24 |
+
Dtype,
|
25 |
+
PositionalIndexer,
|
26 |
+
)
|
27 |
+
|
28 |
+
|
29 |
+
@register_extension_dtype
|
30 |
+
class DateDtype(ExtensionDtype):
|
31 |
+
@property
|
32 |
+
def type(self):
|
33 |
+
return dt.date
|
34 |
+
|
35 |
+
@property
|
36 |
+
def name(self):
|
37 |
+
return "DateDtype"
|
38 |
+
|
39 |
+
@classmethod
|
40 |
+
def construct_from_string(cls, string: str):
|
41 |
+
if not isinstance(string, str):
|
42 |
+
raise TypeError(
|
43 |
+
f"'construct_from_string' expects a string, got {type(string)}"
|
44 |
+
)
|
45 |
+
|
46 |
+
if string == cls.__name__:
|
47 |
+
return cls()
|
48 |
+
else:
|
49 |
+
raise TypeError(f"Cannot construct a '{cls.__name__}' from '{string}'")
|
50 |
+
|
51 |
+
@classmethod
|
52 |
+
def construct_array_type(cls):
|
53 |
+
return DateArray
|
54 |
+
|
55 |
+
@property
|
56 |
+
def na_value(self):
|
57 |
+
return dt.date.min
|
58 |
+
|
59 |
+
def __repr__(self) -> str:
|
60 |
+
return self.name
|
61 |
+
|
62 |
+
|
63 |
+
class DateArray(ExtensionArray):
|
64 |
+
def __init__(
|
65 |
+
self,
|
66 |
+
dates: (
|
67 |
+
dt.date
|
68 |
+
| Sequence[dt.date]
|
69 |
+
| tuple[np.ndarray, np.ndarray, np.ndarray]
|
70 |
+
| np.ndarray
|
71 |
+
),
|
72 |
+
) -> None:
|
73 |
+
if isinstance(dates, dt.date):
|
74 |
+
self._year = np.array([dates.year])
|
75 |
+
self._month = np.array([dates.month])
|
76 |
+
self._day = np.array([dates.year])
|
77 |
+
return
|
78 |
+
|
79 |
+
ldates = len(dates)
|
80 |
+
if isinstance(dates, list):
|
81 |
+
# pre-allocate the arrays since we know the size before hand
|
82 |
+
self._year = np.zeros(ldates, dtype=np.uint16) # 65535 (0, 9999)
|
83 |
+
self._month = np.zeros(ldates, dtype=np.uint8) # 255 (1, 31)
|
84 |
+
self._day = np.zeros(ldates, dtype=np.uint8) # 255 (1, 12)
|
85 |
+
# populate them
|
86 |
+
for i, (y, m, d) in enumerate(
|
87 |
+
(date.year, date.month, date.day) for date in dates
|
88 |
+
):
|
89 |
+
self._year[i] = y
|
90 |
+
self._month[i] = m
|
91 |
+
self._day[i] = d
|
92 |
+
|
93 |
+
elif isinstance(dates, tuple):
|
94 |
+
# only support triples
|
95 |
+
if ldates != 3:
|
96 |
+
raise ValueError("only triples are valid")
|
97 |
+
# check if all elements have the same type
|
98 |
+
if any(not isinstance(x, np.ndarray) for x in dates):
|
99 |
+
raise TypeError("invalid type")
|
100 |
+
ly, lm, ld = (len(cast(np.ndarray, d)) for d in dates)
|
101 |
+
if not ly == lm == ld:
|
102 |
+
raise ValueError(
|
103 |
+
f"tuple members must have the same length: {(ly, lm, ld)}"
|
104 |
+
)
|
105 |
+
self._year = dates[0].astype(np.uint16)
|
106 |
+
self._month = dates[1].astype(np.uint8)
|
107 |
+
self._day = dates[2].astype(np.uint8)
|
108 |
+
|
109 |
+
elif isinstance(dates, np.ndarray) and dates.dtype == "U10":
|
110 |
+
self._year = np.zeros(ldates, dtype=np.uint16) # 65535 (0, 9999)
|
111 |
+
self._month = np.zeros(ldates, dtype=np.uint8) # 255 (1, 31)
|
112 |
+
self._day = np.zeros(ldates, dtype=np.uint8) # 255 (1, 12)
|
113 |
+
|
114 |
+
# error: "object_" object is not iterable
|
115 |
+
obj = np.char.split(dates, sep="-")
|
116 |
+
for (i,), (y, m, d) in np.ndenumerate(obj): # type: ignore[misc]
|
117 |
+
self._year[i] = int(y)
|
118 |
+
self._month[i] = int(m)
|
119 |
+
self._day[i] = int(d)
|
120 |
+
|
121 |
+
else:
|
122 |
+
raise TypeError(f"{type(dates)} is not supported")
|
123 |
+
|
124 |
+
@property
|
125 |
+
def dtype(self) -> ExtensionDtype:
|
126 |
+
return DateDtype()
|
127 |
+
|
128 |
+
def astype(self, dtype, copy=True):
|
129 |
+
dtype = pandas_dtype(dtype)
|
130 |
+
|
131 |
+
if isinstance(dtype, DateDtype):
|
132 |
+
data = self.copy() if copy else self
|
133 |
+
else:
|
134 |
+
data = self.to_numpy(dtype=dtype, copy=copy, na_value=dt.date.min)
|
135 |
+
|
136 |
+
return data
|
137 |
+
|
138 |
+
@property
|
139 |
+
def nbytes(self) -> int:
|
140 |
+
return self._year.nbytes + self._month.nbytes + self._day.nbytes
|
141 |
+
|
142 |
+
def __len__(self) -> int:
|
143 |
+
return len(self._year) # all 3 arrays are enforced to have the same length
|
144 |
+
|
145 |
+
def __getitem__(self, item: PositionalIndexer):
|
146 |
+
if isinstance(item, int):
|
147 |
+
return dt.date(self._year[item], self._month[item], self._day[item])
|
148 |
+
else:
|
149 |
+
raise NotImplementedError("only ints are supported as indexes")
|
150 |
+
|
151 |
+
def __setitem__(self, key: int | slice | np.ndarray, value: Any) -> None:
|
152 |
+
if not isinstance(key, int):
|
153 |
+
raise NotImplementedError("only ints are supported as indexes")
|
154 |
+
|
155 |
+
if not isinstance(value, dt.date):
|
156 |
+
raise TypeError("you can only set datetime.date types")
|
157 |
+
|
158 |
+
self._year[key] = value.year
|
159 |
+
self._month[key] = value.month
|
160 |
+
self._day[key] = value.day
|
161 |
+
|
162 |
+
def __repr__(self) -> str:
|
163 |
+
return f"DateArray{list(zip(self._year, self._month, self._day))}"
|
164 |
+
|
165 |
+
def copy(self) -> DateArray:
|
166 |
+
return DateArray((self._year.copy(), self._month.copy(), self._day.copy()))
|
167 |
+
|
168 |
+
def isna(self) -> np.ndarray:
|
169 |
+
return np.logical_and(
|
170 |
+
np.logical_and(
|
171 |
+
self._year == dt.date.min.year, self._month == dt.date.min.month
|
172 |
+
),
|
173 |
+
self._day == dt.date.min.day,
|
174 |
+
)
|
175 |
+
|
176 |
+
@classmethod
|
177 |
+
def _from_sequence(cls, scalars, *, dtype: Dtype | None = None, copy=False):
|
178 |
+
if isinstance(scalars, dt.date):
|
179 |
+
raise TypeError
|
180 |
+
elif isinstance(scalars, DateArray):
|
181 |
+
if dtype is not None:
|
182 |
+
return scalars.astype(dtype, copy=copy)
|
183 |
+
if copy:
|
184 |
+
return scalars.copy()
|
185 |
+
return scalars[:]
|
186 |
+
elif isinstance(scalars, np.ndarray):
|
187 |
+
scalars = scalars.astype("U10") # 10 chars for yyyy-mm-dd
|
188 |
+
return DateArray(scalars)
|
llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/decimal/__init__.py
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pandas.tests.extension.decimal.array import (
|
2 |
+
DecimalArray,
|
3 |
+
DecimalDtype,
|
4 |
+
make_data,
|
5 |
+
to_decimal,
|
6 |
+
)
|
7 |
+
|
8 |
+
__all__ = ["DecimalArray", "DecimalDtype", "to_decimal", "make_data"]
|
llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/decimal/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (381 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/decimal/__pycache__/array.cpython-310.pyc
ADDED
Binary file (10.9 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/decimal/__pycache__/test_decimal.cpython-310.pyc
ADDED
Binary file (18.7 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/decimal/array.py
ADDED
@@ -0,0 +1,311 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
import decimal
|
4 |
+
import numbers
|
5 |
+
import sys
|
6 |
+
from typing import TYPE_CHECKING
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
|
10 |
+
from pandas.core.dtypes.base import ExtensionDtype
|
11 |
+
from pandas.core.dtypes.common import (
|
12 |
+
is_dtype_equal,
|
13 |
+
is_float,
|
14 |
+
is_integer,
|
15 |
+
pandas_dtype,
|
16 |
+
)
|
17 |
+
|
18 |
+
import pandas as pd
|
19 |
+
from pandas.api.extensions import (
|
20 |
+
no_default,
|
21 |
+
register_extension_dtype,
|
22 |
+
)
|
23 |
+
from pandas.api.types import (
|
24 |
+
is_list_like,
|
25 |
+
is_scalar,
|
26 |
+
)
|
27 |
+
from pandas.core import arraylike
|
28 |
+
from pandas.core.algorithms import value_counts_internal as value_counts
|
29 |
+
from pandas.core.arraylike import OpsMixin
|
30 |
+
from pandas.core.arrays import (
|
31 |
+
ExtensionArray,
|
32 |
+
ExtensionScalarOpsMixin,
|
33 |
+
)
|
34 |
+
from pandas.core.indexers import check_array_indexer
|
35 |
+
|
36 |
+
if TYPE_CHECKING:
|
37 |
+
from pandas._typing import type_t
|
38 |
+
|
39 |
+
|
40 |
+
@register_extension_dtype
|
41 |
+
class DecimalDtype(ExtensionDtype):
|
42 |
+
type = decimal.Decimal
|
43 |
+
name = "decimal"
|
44 |
+
na_value = decimal.Decimal("NaN")
|
45 |
+
_metadata = ("context",)
|
46 |
+
|
47 |
+
def __init__(self, context=None) -> None:
|
48 |
+
self.context = context or decimal.getcontext()
|
49 |
+
|
50 |
+
def __repr__(self) -> str:
|
51 |
+
return f"DecimalDtype(context={self.context})"
|
52 |
+
|
53 |
+
@classmethod
|
54 |
+
def construct_array_type(cls) -> type_t[DecimalArray]:
|
55 |
+
"""
|
56 |
+
Return the array type associated with this dtype.
|
57 |
+
|
58 |
+
Returns
|
59 |
+
-------
|
60 |
+
type
|
61 |
+
"""
|
62 |
+
return DecimalArray
|
63 |
+
|
64 |
+
@property
|
65 |
+
def _is_numeric(self) -> bool:
|
66 |
+
return True
|
67 |
+
|
68 |
+
|
69 |
+
class DecimalArray(OpsMixin, ExtensionScalarOpsMixin, ExtensionArray):
|
70 |
+
__array_priority__ = 1000
|
71 |
+
|
72 |
+
def __init__(self, values, dtype=None, copy=False, context=None) -> None:
|
73 |
+
for i, val in enumerate(values):
|
74 |
+
if is_float(val) or is_integer(val):
|
75 |
+
if np.isnan(val):
|
76 |
+
values[i] = DecimalDtype.na_value
|
77 |
+
else:
|
78 |
+
# error: Argument 1 has incompatible type "float | int |
|
79 |
+
# integer[Any]"; expected "Decimal | float | str | tuple[int,
|
80 |
+
# Sequence[int], int]"
|
81 |
+
values[i] = DecimalDtype.type(val) # type: ignore[arg-type]
|
82 |
+
elif not isinstance(val, decimal.Decimal):
|
83 |
+
raise TypeError("All values must be of type " + str(decimal.Decimal))
|
84 |
+
values = np.asarray(values, dtype=object)
|
85 |
+
|
86 |
+
self._data = values
|
87 |
+
# Some aliases for common attribute names to ensure pandas supports
|
88 |
+
# these
|
89 |
+
self._items = self.data = self._data
|
90 |
+
# those aliases are currently not working due to assumptions
|
91 |
+
# in internal code (GH-20735)
|
92 |
+
# self._values = self.values = self.data
|
93 |
+
self._dtype = DecimalDtype(context)
|
94 |
+
|
95 |
+
@property
|
96 |
+
def dtype(self):
|
97 |
+
return self._dtype
|
98 |
+
|
99 |
+
@classmethod
|
100 |
+
def _from_sequence(cls, scalars, *, dtype=None, copy=False):
|
101 |
+
return cls(scalars)
|
102 |
+
|
103 |
+
@classmethod
|
104 |
+
def _from_sequence_of_strings(cls, strings, dtype=None, copy=False):
|
105 |
+
return cls._from_sequence(
|
106 |
+
[decimal.Decimal(x) for x in strings], dtype=dtype, copy=copy
|
107 |
+
)
|
108 |
+
|
109 |
+
@classmethod
|
110 |
+
def _from_factorized(cls, values, original):
|
111 |
+
return cls(values)
|
112 |
+
|
113 |
+
_HANDLED_TYPES = (decimal.Decimal, numbers.Number, np.ndarray)
|
114 |
+
|
115 |
+
def to_numpy(
|
116 |
+
self,
|
117 |
+
dtype=None,
|
118 |
+
copy: bool = False,
|
119 |
+
na_value: object = no_default,
|
120 |
+
decimals=None,
|
121 |
+
) -> np.ndarray:
|
122 |
+
result = np.asarray(self, dtype=dtype)
|
123 |
+
if decimals is not None:
|
124 |
+
result = np.asarray([round(x, decimals) for x in result])
|
125 |
+
return result
|
126 |
+
|
127 |
+
def __array_ufunc__(self, ufunc: np.ufunc, method: str, *inputs, **kwargs):
|
128 |
+
#
|
129 |
+
if not all(
|
130 |
+
isinstance(t, self._HANDLED_TYPES + (DecimalArray,)) for t in inputs
|
131 |
+
):
|
132 |
+
return NotImplemented
|
133 |
+
|
134 |
+
result = arraylike.maybe_dispatch_ufunc_to_dunder_op(
|
135 |
+
self, ufunc, method, *inputs, **kwargs
|
136 |
+
)
|
137 |
+
if result is not NotImplemented:
|
138 |
+
# e.g. test_array_ufunc_series_scalar_other
|
139 |
+
return result
|
140 |
+
|
141 |
+
if "out" in kwargs:
|
142 |
+
return arraylike.dispatch_ufunc_with_out(
|
143 |
+
self, ufunc, method, *inputs, **kwargs
|
144 |
+
)
|
145 |
+
|
146 |
+
inputs = tuple(x._data if isinstance(x, DecimalArray) else x for x in inputs)
|
147 |
+
result = getattr(ufunc, method)(*inputs, **kwargs)
|
148 |
+
|
149 |
+
if method == "reduce":
|
150 |
+
result = arraylike.dispatch_reduction_ufunc(
|
151 |
+
self, ufunc, method, *inputs, **kwargs
|
152 |
+
)
|
153 |
+
if result is not NotImplemented:
|
154 |
+
return result
|
155 |
+
|
156 |
+
def reconstruct(x):
|
157 |
+
if isinstance(x, (decimal.Decimal, numbers.Number)):
|
158 |
+
return x
|
159 |
+
else:
|
160 |
+
return type(self)._from_sequence(x, dtype=self.dtype)
|
161 |
+
|
162 |
+
if ufunc.nout > 1:
|
163 |
+
return tuple(reconstruct(x) for x in result)
|
164 |
+
else:
|
165 |
+
return reconstruct(result)
|
166 |
+
|
167 |
+
def __getitem__(self, item):
|
168 |
+
if isinstance(item, numbers.Integral):
|
169 |
+
return self._data[item]
|
170 |
+
else:
|
171 |
+
# array, slice.
|
172 |
+
item = pd.api.indexers.check_array_indexer(self, item)
|
173 |
+
return type(self)(self._data[item])
|
174 |
+
|
175 |
+
def take(self, indexer, allow_fill=False, fill_value=None):
|
176 |
+
from pandas.api.extensions import take
|
177 |
+
|
178 |
+
data = self._data
|
179 |
+
if allow_fill and fill_value is None:
|
180 |
+
fill_value = self.dtype.na_value
|
181 |
+
|
182 |
+
result = take(data, indexer, fill_value=fill_value, allow_fill=allow_fill)
|
183 |
+
return self._from_sequence(result, dtype=self.dtype)
|
184 |
+
|
185 |
+
def copy(self):
|
186 |
+
return type(self)(self._data.copy(), dtype=self.dtype)
|
187 |
+
|
188 |
+
def astype(self, dtype, copy=True):
|
189 |
+
if is_dtype_equal(dtype, self._dtype):
|
190 |
+
if not copy:
|
191 |
+
return self
|
192 |
+
dtype = pandas_dtype(dtype)
|
193 |
+
if isinstance(dtype, type(self.dtype)):
|
194 |
+
return type(self)(self._data, copy=copy, context=dtype.context)
|
195 |
+
|
196 |
+
return super().astype(dtype, copy=copy)
|
197 |
+
|
198 |
+
def __setitem__(self, key, value) -> None:
|
199 |
+
if is_list_like(value):
|
200 |
+
if is_scalar(key):
|
201 |
+
raise ValueError("setting an array element with a sequence.")
|
202 |
+
value = [decimal.Decimal(v) for v in value]
|
203 |
+
else:
|
204 |
+
value = decimal.Decimal(value)
|
205 |
+
|
206 |
+
key = check_array_indexer(self, key)
|
207 |
+
self._data[key] = value
|
208 |
+
|
209 |
+
def __len__(self) -> int:
|
210 |
+
return len(self._data)
|
211 |
+
|
212 |
+
def __contains__(self, item) -> bool | np.bool_:
|
213 |
+
if not isinstance(item, decimal.Decimal):
|
214 |
+
return False
|
215 |
+
elif item.is_nan():
|
216 |
+
return self.isna().any()
|
217 |
+
else:
|
218 |
+
return super().__contains__(item)
|
219 |
+
|
220 |
+
@property
|
221 |
+
def nbytes(self) -> int:
|
222 |
+
n = len(self)
|
223 |
+
if n:
|
224 |
+
return n * sys.getsizeof(self[0])
|
225 |
+
return 0
|
226 |
+
|
227 |
+
def isna(self):
|
228 |
+
return np.array([x.is_nan() for x in self._data], dtype=bool)
|
229 |
+
|
230 |
+
@property
|
231 |
+
def _na_value(self):
|
232 |
+
return decimal.Decimal("NaN")
|
233 |
+
|
234 |
+
def _formatter(self, boxed=False):
|
235 |
+
if boxed:
|
236 |
+
return "Decimal: {}".format
|
237 |
+
return repr
|
238 |
+
|
239 |
+
@classmethod
|
240 |
+
def _concat_same_type(cls, to_concat):
|
241 |
+
return cls(np.concatenate([x._data for x in to_concat]))
|
242 |
+
|
243 |
+
def _reduce(
|
244 |
+
self, name: str, *, skipna: bool = True, keepdims: bool = False, **kwargs
|
245 |
+
):
|
246 |
+
if skipna and self.isna().any():
|
247 |
+
# If we don't have any NAs, we can ignore skipna
|
248 |
+
other = self[~self.isna()]
|
249 |
+
result = other._reduce(name, **kwargs)
|
250 |
+
elif name == "sum" and len(self) == 0:
|
251 |
+
# GH#29630 avoid returning int 0 or np.bool_(False) on old numpy
|
252 |
+
result = decimal.Decimal(0)
|
253 |
+
else:
|
254 |
+
try:
|
255 |
+
op = getattr(self.data, name)
|
256 |
+
except AttributeError as err:
|
257 |
+
raise NotImplementedError(
|
258 |
+
f"decimal does not support the {name} operation"
|
259 |
+
) from err
|
260 |
+
result = op(axis=0)
|
261 |
+
|
262 |
+
if keepdims:
|
263 |
+
return type(self)([result])
|
264 |
+
else:
|
265 |
+
return result
|
266 |
+
|
267 |
+
def _cmp_method(self, other, op):
|
268 |
+
# For use with OpsMixin
|
269 |
+
def convert_values(param):
|
270 |
+
if isinstance(param, ExtensionArray) or is_list_like(param):
|
271 |
+
ovalues = param
|
272 |
+
else:
|
273 |
+
# Assume it's an object
|
274 |
+
ovalues = [param] * len(self)
|
275 |
+
return ovalues
|
276 |
+
|
277 |
+
lvalues = self
|
278 |
+
rvalues = convert_values(other)
|
279 |
+
|
280 |
+
# If the operator is not defined for the underlying objects,
|
281 |
+
# a TypeError should be raised
|
282 |
+
res = [op(a, b) for (a, b) in zip(lvalues, rvalues)]
|
283 |
+
|
284 |
+
return np.asarray(res, dtype=bool)
|
285 |
+
|
286 |
+
def value_counts(self, dropna: bool = True):
|
287 |
+
return value_counts(self.to_numpy(), dropna=dropna)
|
288 |
+
|
289 |
+
# We override fillna here to simulate a 3rd party EA that has done so. This
|
290 |
+
# lets us test the deprecation telling authors to implement _pad_or_backfill
|
291 |
+
# Simulate a 3rd-party EA that has not yet updated to include a "copy"
|
292 |
+
# keyword in its fillna method.
|
293 |
+
# error: Signature of "fillna" incompatible with supertype "ExtensionArray"
|
294 |
+
def fillna( # type: ignore[override]
|
295 |
+
self,
|
296 |
+
value=None,
|
297 |
+
method=None,
|
298 |
+
limit: int | None = None,
|
299 |
+
):
|
300 |
+
return super().fillna(value=value, method=method, limit=limit, copy=True)
|
301 |
+
|
302 |
+
|
303 |
+
def to_decimal(values, context=None):
|
304 |
+
return DecimalArray([decimal.Decimal(x) for x in values], context=context)
|
305 |
+
|
306 |
+
|
307 |
+
def make_data():
|
308 |
+
return [decimal.Decimal(val) for val in np.random.default_rng(2).random(100)]
|
309 |
+
|
310 |
+
|
311 |
+
DecimalArray._add_arithmetic_ops()
|
llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/decimal/test_decimal.py
ADDED
@@ -0,0 +1,567 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
import decimal
|
4 |
+
import operator
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import pytest
|
8 |
+
|
9 |
+
import pandas as pd
|
10 |
+
import pandas._testing as tm
|
11 |
+
from pandas.tests.extension import base
|
12 |
+
from pandas.tests.extension.decimal.array import (
|
13 |
+
DecimalArray,
|
14 |
+
DecimalDtype,
|
15 |
+
make_data,
|
16 |
+
to_decimal,
|
17 |
+
)
|
18 |
+
|
19 |
+
|
20 |
+
@pytest.fixture
|
21 |
+
def dtype():
|
22 |
+
return DecimalDtype()
|
23 |
+
|
24 |
+
|
25 |
+
@pytest.fixture
|
26 |
+
def data():
|
27 |
+
return DecimalArray(make_data())
|
28 |
+
|
29 |
+
|
30 |
+
@pytest.fixture
|
31 |
+
def data_for_twos():
|
32 |
+
return DecimalArray([decimal.Decimal(2) for _ in range(100)])
|
33 |
+
|
34 |
+
|
35 |
+
@pytest.fixture
|
36 |
+
def data_missing():
|
37 |
+
return DecimalArray([decimal.Decimal("NaN"), decimal.Decimal(1)])
|
38 |
+
|
39 |
+
|
40 |
+
@pytest.fixture
|
41 |
+
def data_for_sorting():
|
42 |
+
return DecimalArray(
|
43 |
+
[decimal.Decimal("1"), decimal.Decimal("2"), decimal.Decimal("0")]
|
44 |
+
)
|
45 |
+
|
46 |
+
|
47 |
+
@pytest.fixture
|
48 |
+
def data_missing_for_sorting():
|
49 |
+
return DecimalArray(
|
50 |
+
[decimal.Decimal("1"), decimal.Decimal("NaN"), decimal.Decimal("0")]
|
51 |
+
)
|
52 |
+
|
53 |
+
|
54 |
+
@pytest.fixture
|
55 |
+
def na_cmp():
|
56 |
+
return lambda x, y: x.is_nan() and y.is_nan()
|
57 |
+
|
58 |
+
|
59 |
+
@pytest.fixture
|
60 |
+
def data_for_grouping():
|
61 |
+
b = decimal.Decimal("1.0")
|
62 |
+
a = decimal.Decimal("0.0")
|
63 |
+
c = decimal.Decimal("2.0")
|
64 |
+
na = decimal.Decimal("NaN")
|
65 |
+
return DecimalArray([b, b, na, na, a, a, b, c])
|
66 |
+
|
67 |
+
|
68 |
+
class TestDecimalArray(base.ExtensionTests):
|
69 |
+
def _get_expected_exception(
|
70 |
+
self, op_name: str, obj, other
|
71 |
+
) -> type[Exception] | None:
|
72 |
+
return None
|
73 |
+
|
74 |
+
def _supports_reduction(self, ser: pd.Series, op_name: str) -> bool:
|
75 |
+
return True
|
76 |
+
|
77 |
+
def check_reduce(self, ser: pd.Series, op_name: str, skipna: bool):
|
78 |
+
if op_name == "count":
|
79 |
+
return super().check_reduce(ser, op_name, skipna)
|
80 |
+
else:
|
81 |
+
result = getattr(ser, op_name)(skipna=skipna)
|
82 |
+
expected = getattr(np.asarray(ser), op_name)()
|
83 |
+
tm.assert_almost_equal(result, expected)
|
84 |
+
|
85 |
+
def test_reduce_series_numeric(self, data, all_numeric_reductions, skipna, request):
|
86 |
+
if all_numeric_reductions in ["kurt", "skew", "sem", "median"]:
|
87 |
+
mark = pytest.mark.xfail(raises=NotImplementedError)
|
88 |
+
request.applymarker(mark)
|
89 |
+
super().test_reduce_series_numeric(data, all_numeric_reductions, skipna)
|
90 |
+
|
91 |
+
def test_reduce_frame(self, data, all_numeric_reductions, skipna, request):
|
92 |
+
op_name = all_numeric_reductions
|
93 |
+
if op_name in ["skew", "median"]:
|
94 |
+
mark = pytest.mark.xfail(raises=NotImplementedError)
|
95 |
+
request.applymarker(mark)
|
96 |
+
|
97 |
+
return super().test_reduce_frame(data, all_numeric_reductions, skipna)
|
98 |
+
|
99 |
+
def test_compare_scalar(self, data, comparison_op):
|
100 |
+
ser = pd.Series(data)
|
101 |
+
self._compare_other(ser, data, comparison_op, 0.5)
|
102 |
+
|
103 |
+
def test_compare_array(self, data, comparison_op):
|
104 |
+
ser = pd.Series(data)
|
105 |
+
|
106 |
+
alter = np.random.default_rng(2).choice([-1, 0, 1], len(data))
|
107 |
+
# Randomly double, halve or keep same value
|
108 |
+
other = pd.Series(data) * [decimal.Decimal(pow(2.0, i)) for i in alter]
|
109 |
+
self._compare_other(ser, data, comparison_op, other)
|
110 |
+
|
111 |
+
def test_arith_series_with_array(self, data, all_arithmetic_operators):
|
112 |
+
op_name = all_arithmetic_operators
|
113 |
+
ser = pd.Series(data)
|
114 |
+
|
115 |
+
context = decimal.getcontext()
|
116 |
+
divbyzerotrap = context.traps[decimal.DivisionByZero]
|
117 |
+
invalidoptrap = context.traps[decimal.InvalidOperation]
|
118 |
+
context.traps[decimal.DivisionByZero] = 0
|
119 |
+
context.traps[decimal.InvalidOperation] = 0
|
120 |
+
|
121 |
+
# Decimal supports ops with int, but not float
|
122 |
+
other = pd.Series([int(d * 100) for d in data])
|
123 |
+
self.check_opname(ser, op_name, other)
|
124 |
+
|
125 |
+
if "mod" not in op_name:
|
126 |
+
self.check_opname(ser, op_name, ser * 2)
|
127 |
+
|
128 |
+
self.check_opname(ser, op_name, 0)
|
129 |
+
self.check_opname(ser, op_name, 5)
|
130 |
+
context.traps[decimal.DivisionByZero] = divbyzerotrap
|
131 |
+
context.traps[decimal.InvalidOperation] = invalidoptrap
|
132 |
+
|
133 |
+
def test_fillna_frame(self, data_missing):
|
134 |
+
msg = "ExtensionArray.fillna added a 'copy' keyword"
|
135 |
+
with tm.assert_produces_warning(
|
136 |
+
DeprecationWarning, match=msg, check_stacklevel=False
|
137 |
+
):
|
138 |
+
super().test_fillna_frame(data_missing)
|
139 |
+
|
140 |
+
def test_fillna_limit_pad(self, data_missing):
|
141 |
+
msg = "ExtensionArray.fillna 'method' keyword is deprecated"
|
142 |
+
with tm.assert_produces_warning(
|
143 |
+
DeprecationWarning,
|
144 |
+
match=msg,
|
145 |
+
check_stacklevel=False,
|
146 |
+
raise_on_extra_warnings=False,
|
147 |
+
):
|
148 |
+
super().test_fillna_limit_pad(data_missing)
|
149 |
+
|
150 |
+
msg = "The 'method' keyword in DecimalArray.fillna is deprecated"
|
151 |
+
with tm.assert_produces_warning(
|
152 |
+
FutureWarning,
|
153 |
+
match=msg,
|
154 |
+
check_stacklevel=False,
|
155 |
+
raise_on_extra_warnings=False,
|
156 |
+
):
|
157 |
+
super().test_fillna_limit_pad(data_missing)
|
158 |
+
|
159 |
+
@pytest.mark.parametrize(
|
160 |
+
"limit_area, input_ilocs, expected_ilocs",
|
161 |
+
[
|
162 |
+
("outside", [1, 0, 0, 0, 1], [1, 0, 0, 0, 1]),
|
163 |
+
("outside", [1, 0, 1, 0, 1], [1, 0, 1, 0, 1]),
|
164 |
+
("outside", [0, 1, 1, 1, 0], [0, 1, 1, 1, 1]),
|
165 |
+
("outside", [0, 1, 0, 1, 0], [0, 1, 0, 1, 1]),
|
166 |
+
("inside", [1, 0, 0, 0, 1], [1, 1, 1, 1, 1]),
|
167 |
+
("inside", [1, 0, 1, 0, 1], [1, 1, 1, 1, 1]),
|
168 |
+
("inside", [0, 1, 1, 1, 0], [0, 1, 1, 1, 0]),
|
169 |
+
("inside", [0, 1, 0, 1, 0], [0, 1, 1, 1, 0]),
|
170 |
+
],
|
171 |
+
)
|
172 |
+
def test_ffill_limit_area(
|
173 |
+
self, data_missing, limit_area, input_ilocs, expected_ilocs
|
174 |
+
):
|
175 |
+
# GH#56616
|
176 |
+
msg = "ExtensionArray.fillna 'method' keyword is deprecated"
|
177 |
+
with tm.assert_produces_warning(
|
178 |
+
DeprecationWarning,
|
179 |
+
match=msg,
|
180 |
+
check_stacklevel=False,
|
181 |
+
raise_on_extra_warnings=False,
|
182 |
+
):
|
183 |
+
msg = "DecimalArray does not implement limit_area"
|
184 |
+
with pytest.raises(NotImplementedError, match=msg):
|
185 |
+
super().test_ffill_limit_area(
|
186 |
+
data_missing, limit_area, input_ilocs, expected_ilocs
|
187 |
+
)
|
188 |
+
|
189 |
+
def test_fillna_limit_backfill(self, data_missing):
|
190 |
+
msg = "Series.fillna with 'method' is deprecated"
|
191 |
+
with tm.assert_produces_warning(
|
192 |
+
FutureWarning,
|
193 |
+
match=msg,
|
194 |
+
check_stacklevel=False,
|
195 |
+
raise_on_extra_warnings=False,
|
196 |
+
):
|
197 |
+
super().test_fillna_limit_backfill(data_missing)
|
198 |
+
|
199 |
+
msg = "ExtensionArray.fillna 'method' keyword is deprecated"
|
200 |
+
with tm.assert_produces_warning(
|
201 |
+
DeprecationWarning,
|
202 |
+
match=msg,
|
203 |
+
check_stacklevel=False,
|
204 |
+
raise_on_extra_warnings=False,
|
205 |
+
):
|
206 |
+
super().test_fillna_limit_backfill(data_missing)
|
207 |
+
|
208 |
+
msg = "The 'method' keyword in DecimalArray.fillna is deprecated"
|
209 |
+
with tm.assert_produces_warning(
|
210 |
+
FutureWarning,
|
211 |
+
match=msg,
|
212 |
+
check_stacklevel=False,
|
213 |
+
raise_on_extra_warnings=False,
|
214 |
+
):
|
215 |
+
super().test_fillna_limit_backfill(data_missing)
|
216 |
+
|
217 |
+
def test_fillna_no_op_returns_copy(self, data):
|
218 |
+
msg = "|".join(
|
219 |
+
[
|
220 |
+
"ExtensionArray.fillna 'method' keyword is deprecated",
|
221 |
+
"The 'method' keyword in DecimalArray.fillna is deprecated",
|
222 |
+
]
|
223 |
+
)
|
224 |
+
with tm.assert_produces_warning(
|
225 |
+
(FutureWarning, DeprecationWarning), match=msg, check_stacklevel=False
|
226 |
+
):
|
227 |
+
super().test_fillna_no_op_returns_copy(data)
|
228 |
+
|
229 |
+
def test_fillna_series(self, data_missing):
|
230 |
+
msg = "ExtensionArray.fillna added a 'copy' keyword"
|
231 |
+
with tm.assert_produces_warning(
|
232 |
+
DeprecationWarning, match=msg, check_stacklevel=False
|
233 |
+
):
|
234 |
+
super().test_fillna_series(data_missing)
|
235 |
+
|
236 |
+
def test_fillna_series_method(self, data_missing, fillna_method):
|
237 |
+
msg = "|".join(
|
238 |
+
[
|
239 |
+
"ExtensionArray.fillna 'method' keyword is deprecated",
|
240 |
+
"The 'method' keyword in DecimalArray.fillna is deprecated",
|
241 |
+
]
|
242 |
+
)
|
243 |
+
with tm.assert_produces_warning(
|
244 |
+
(FutureWarning, DeprecationWarning), match=msg, check_stacklevel=False
|
245 |
+
):
|
246 |
+
super().test_fillna_series_method(data_missing, fillna_method)
|
247 |
+
|
248 |
+
def test_fillna_copy_frame(self, data_missing, using_copy_on_write):
|
249 |
+
warn = DeprecationWarning if not using_copy_on_write else None
|
250 |
+
msg = "ExtensionArray.fillna added a 'copy' keyword"
|
251 |
+
with tm.assert_produces_warning(warn, match=msg, check_stacklevel=False):
|
252 |
+
super().test_fillna_copy_frame(data_missing)
|
253 |
+
|
254 |
+
def test_fillna_copy_series(self, data_missing, using_copy_on_write):
|
255 |
+
warn = DeprecationWarning if not using_copy_on_write else None
|
256 |
+
msg = "ExtensionArray.fillna added a 'copy' keyword"
|
257 |
+
with tm.assert_produces_warning(warn, match=msg, check_stacklevel=False):
|
258 |
+
super().test_fillna_copy_series(data_missing)
|
259 |
+
|
260 |
+
@pytest.mark.parametrize("dropna", [True, False])
|
261 |
+
def test_value_counts(self, all_data, dropna, request):
|
262 |
+
all_data = all_data[:10]
|
263 |
+
if dropna:
|
264 |
+
other = np.array(all_data[~all_data.isna()])
|
265 |
+
else:
|
266 |
+
other = all_data
|
267 |
+
|
268 |
+
vcs = pd.Series(all_data).value_counts(dropna=dropna)
|
269 |
+
vcs_ex = pd.Series(other).value_counts(dropna=dropna)
|
270 |
+
|
271 |
+
with decimal.localcontext() as ctx:
|
272 |
+
# avoid raising when comparing Decimal("NAN") < Decimal(2)
|
273 |
+
ctx.traps[decimal.InvalidOperation] = False
|
274 |
+
|
275 |
+
result = vcs.sort_index()
|
276 |
+
expected = vcs_ex.sort_index()
|
277 |
+
|
278 |
+
tm.assert_series_equal(result, expected)
|
279 |
+
|
280 |
+
def test_series_repr(self, data):
|
281 |
+
# Overriding this base test to explicitly test that
|
282 |
+
# the custom _formatter is used
|
283 |
+
ser = pd.Series(data)
|
284 |
+
assert data.dtype.name in repr(ser)
|
285 |
+
assert "Decimal: " in repr(ser)
|
286 |
+
|
287 |
+
@pytest.mark.xfail(reason="Inconsistent array-vs-scalar behavior")
|
288 |
+
@pytest.mark.parametrize("ufunc", [np.positive, np.negative, np.abs])
|
289 |
+
def test_unary_ufunc_dunder_equivalence(self, data, ufunc):
|
290 |
+
super().test_unary_ufunc_dunder_equivalence(data, ufunc)
|
291 |
+
|
292 |
+
|
293 |
+
def test_take_na_value_other_decimal():
|
294 |
+
arr = DecimalArray([decimal.Decimal("1.0"), decimal.Decimal("2.0")])
|
295 |
+
result = arr.take([0, -1], allow_fill=True, fill_value=decimal.Decimal("-1.0"))
|
296 |
+
expected = DecimalArray([decimal.Decimal("1.0"), decimal.Decimal("-1.0")])
|
297 |
+
tm.assert_extension_array_equal(result, expected)
|
298 |
+
|
299 |
+
|
300 |
+
def test_series_constructor_coerce_data_to_extension_dtype():
|
301 |
+
dtype = DecimalDtype()
|
302 |
+
ser = pd.Series([0, 1, 2], dtype=dtype)
|
303 |
+
|
304 |
+
arr = DecimalArray(
|
305 |
+
[decimal.Decimal(0), decimal.Decimal(1), decimal.Decimal(2)],
|
306 |
+
dtype=dtype,
|
307 |
+
)
|
308 |
+
exp = pd.Series(arr)
|
309 |
+
tm.assert_series_equal(ser, exp)
|
310 |
+
|
311 |
+
|
312 |
+
def test_series_constructor_with_dtype():
|
313 |
+
arr = DecimalArray([decimal.Decimal("10.0")])
|
314 |
+
result = pd.Series(arr, dtype=DecimalDtype())
|
315 |
+
expected = pd.Series(arr)
|
316 |
+
tm.assert_series_equal(result, expected)
|
317 |
+
|
318 |
+
result = pd.Series(arr, dtype="int64")
|
319 |
+
expected = pd.Series([10])
|
320 |
+
tm.assert_series_equal(result, expected)
|
321 |
+
|
322 |
+
|
323 |
+
def test_dataframe_constructor_with_dtype():
|
324 |
+
arr = DecimalArray([decimal.Decimal("10.0")])
|
325 |
+
|
326 |
+
result = pd.DataFrame({"A": arr}, dtype=DecimalDtype())
|
327 |
+
expected = pd.DataFrame({"A": arr})
|
328 |
+
tm.assert_frame_equal(result, expected)
|
329 |
+
|
330 |
+
arr = DecimalArray([decimal.Decimal("10.0")])
|
331 |
+
result = pd.DataFrame({"A": arr}, dtype="int64")
|
332 |
+
expected = pd.DataFrame({"A": [10]})
|
333 |
+
tm.assert_frame_equal(result, expected)
|
334 |
+
|
335 |
+
|
336 |
+
@pytest.mark.parametrize("frame", [True, False])
|
337 |
+
def test_astype_dispatches(frame):
|
338 |
+
# This is a dtype-specific test that ensures Series[decimal].astype
|
339 |
+
# gets all the way through to ExtensionArray.astype
|
340 |
+
# Designing a reliable smoke test that works for arbitrary data types
|
341 |
+
# is difficult.
|
342 |
+
data = pd.Series(DecimalArray([decimal.Decimal(2)]), name="a")
|
343 |
+
ctx = decimal.Context()
|
344 |
+
ctx.prec = 5
|
345 |
+
|
346 |
+
if frame:
|
347 |
+
data = data.to_frame()
|
348 |
+
|
349 |
+
result = data.astype(DecimalDtype(ctx))
|
350 |
+
|
351 |
+
if frame:
|
352 |
+
result = result["a"]
|
353 |
+
|
354 |
+
assert result.dtype.context.prec == ctx.prec
|
355 |
+
|
356 |
+
|
357 |
+
class DecimalArrayWithoutFromSequence(DecimalArray):
|
358 |
+
"""Helper class for testing error handling in _from_sequence."""
|
359 |
+
|
360 |
+
@classmethod
|
361 |
+
def _from_sequence(cls, scalars, *, dtype=None, copy=False):
|
362 |
+
raise KeyError("For the test")
|
363 |
+
|
364 |
+
|
365 |
+
class DecimalArrayWithoutCoercion(DecimalArrayWithoutFromSequence):
|
366 |
+
@classmethod
|
367 |
+
def _create_arithmetic_method(cls, op):
|
368 |
+
return cls._create_method(op, coerce_to_dtype=False)
|
369 |
+
|
370 |
+
|
371 |
+
DecimalArrayWithoutCoercion._add_arithmetic_ops()
|
372 |
+
|
373 |
+
|
374 |
+
def test_combine_from_sequence_raises(monkeypatch):
|
375 |
+
# https://github.com/pandas-dev/pandas/issues/22850
|
376 |
+
cls = DecimalArrayWithoutFromSequence
|
377 |
+
|
378 |
+
@classmethod
|
379 |
+
def construct_array_type(cls):
|
380 |
+
return DecimalArrayWithoutFromSequence
|
381 |
+
|
382 |
+
monkeypatch.setattr(DecimalDtype, "construct_array_type", construct_array_type)
|
383 |
+
|
384 |
+
arr = cls([decimal.Decimal("1.0"), decimal.Decimal("2.0")])
|
385 |
+
ser = pd.Series(arr)
|
386 |
+
result = ser.combine(ser, operator.add)
|
387 |
+
|
388 |
+
# note: object dtype
|
389 |
+
expected = pd.Series(
|
390 |
+
[decimal.Decimal("2.0"), decimal.Decimal("4.0")], dtype="object"
|
391 |
+
)
|
392 |
+
tm.assert_series_equal(result, expected)
|
393 |
+
|
394 |
+
|
395 |
+
@pytest.mark.parametrize(
|
396 |
+
"class_", [DecimalArrayWithoutFromSequence, DecimalArrayWithoutCoercion]
|
397 |
+
)
|
398 |
+
def test_scalar_ops_from_sequence_raises(class_):
|
399 |
+
# op(EA, EA) should return an EA, or an ndarray if it's not possible
|
400 |
+
# to return an EA with the return values.
|
401 |
+
arr = class_([decimal.Decimal("1.0"), decimal.Decimal("2.0")])
|
402 |
+
result = arr + arr
|
403 |
+
expected = np.array(
|
404 |
+
[decimal.Decimal("2.0"), decimal.Decimal("4.0")], dtype="object"
|
405 |
+
)
|
406 |
+
tm.assert_numpy_array_equal(result, expected)
|
407 |
+
|
408 |
+
|
409 |
+
@pytest.mark.parametrize(
|
410 |
+
"reverse, expected_div, expected_mod",
|
411 |
+
[(False, [0, 1, 1, 2], [1, 0, 1, 0]), (True, [2, 1, 0, 0], [0, 0, 2, 2])],
|
412 |
+
)
|
413 |
+
def test_divmod_array(reverse, expected_div, expected_mod):
|
414 |
+
# https://github.com/pandas-dev/pandas/issues/22930
|
415 |
+
arr = to_decimal([1, 2, 3, 4])
|
416 |
+
if reverse:
|
417 |
+
div, mod = divmod(2, arr)
|
418 |
+
else:
|
419 |
+
div, mod = divmod(arr, 2)
|
420 |
+
expected_div = to_decimal(expected_div)
|
421 |
+
expected_mod = to_decimal(expected_mod)
|
422 |
+
|
423 |
+
tm.assert_extension_array_equal(div, expected_div)
|
424 |
+
tm.assert_extension_array_equal(mod, expected_mod)
|
425 |
+
|
426 |
+
|
427 |
+
def test_ufunc_fallback(data):
|
428 |
+
a = data[:5]
|
429 |
+
s = pd.Series(a, index=range(3, 8))
|
430 |
+
result = np.abs(s)
|
431 |
+
expected = pd.Series(np.abs(a), index=range(3, 8))
|
432 |
+
tm.assert_series_equal(result, expected)
|
433 |
+
|
434 |
+
|
435 |
+
def test_array_ufunc():
|
436 |
+
a = to_decimal([1, 2, 3])
|
437 |
+
result = np.exp(a)
|
438 |
+
expected = to_decimal(np.exp(a._data))
|
439 |
+
tm.assert_extension_array_equal(result, expected)
|
440 |
+
|
441 |
+
|
442 |
+
def test_array_ufunc_series():
|
443 |
+
a = to_decimal([1, 2, 3])
|
444 |
+
s = pd.Series(a)
|
445 |
+
result = np.exp(s)
|
446 |
+
expected = pd.Series(to_decimal(np.exp(a._data)))
|
447 |
+
tm.assert_series_equal(result, expected)
|
448 |
+
|
449 |
+
|
450 |
+
def test_array_ufunc_series_scalar_other():
|
451 |
+
# check _HANDLED_TYPES
|
452 |
+
a = to_decimal([1, 2, 3])
|
453 |
+
s = pd.Series(a)
|
454 |
+
result = np.add(s, decimal.Decimal(1))
|
455 |
+
expected = pd.Series(np.add(a, decimal.Decimal(1)))
|
456 |
+
tm.assert_series_equal(result, expected)
|
457 |
+
|
458 |
+
|
459 |
+
def test_array_ufunc_series_defer():
|
460 |
+
a = to_decimal([1, 2, 3])
|
461 |
+
s = pd.Series(a)
|
462 |
+
|
463 |
+
expected = pd.Series(to_decimal([2, 4, 6]))
|
464 |
+
r1 = np.add(s, a)
|
465 |
+
r2 = np.add(a, s)
|
466 |
+
|
467 |
+
tm.assert_series_equal(r1, expected)
|
468 |
+
tm.assert_series_equal(r2, expected)
|
469 |
+
|
470 |
+
|
471 |
+
def test_groupby_agg():
|
472 |
+
# Ensure that the result of agg is inferred to be decimal dtype
|
473 |
+
# https://github.com/pandas-dev/pandas/issues/29141
|
474 |
+
|
475 |
+
data = make_data()[:5]
|
476 |
+
df = pd.DataFrame(
|
477 |
+
{"id1": [0, 0, 0, 1, 1], "id2": [0, 1, 0, 1, 1], "decimals": DecimalArray(data)}
|
478 |
+
)
|
479 |
+
|
480 |
+
# single key, selected column
|
481 |
+
expected = pd.Series(to_decimal([data[0], data[3]]))
|
482 |
+
result = df.groupby("id1")["decimals"].agg(lambda x: x.iloc[0])
|
483 |
+
tm.assert_series_equal(result, expected, check_names=False)
|
484 |
+
result = df["decimals"].groupby(df["id1"]).agg(lambda x: x.iloc[0])
|
485 |
+
tm.assert_series_equal(result, expected, check_names=False)
|
486 |
+
|
487 |
+
# multiple keys, selected column
|
488 |
+
expected = pd.Series(
|
489 |
+
to_decimal([data[0], data[1], data[3]]),
|
490 |
+
index=pd.MultiIndex.from_tuples([(0, 0), (0, 1), (1, 1)]),
|
491 |
+
)
|
492 |
+
result = df.groupby(["id1", "id2"])["decimals"].agg(lambda x: x.iloc[0])
|
493 |
+
tm.assert_series_equal(result, expected, check_names=False)
|
494 |
+
result = df["decimals"].groupby([df["id1"], df["id2"]]).agg(lambda x: x.iloc[0])
|
495 |
+
tm.assert_series_equal(result, expected, check_names=False)
|
496 |
+
|
497 |
+
# multiple columns
|
498 |
+
expected = pd.DataFrame({"id2": [0, 1], "decimals": to_decimal([data[0], data[3]])})
|
499 |
+
result = df.groupby("id1").agg(lambda x: x.iloc[0])
|
500 |
+
tm.assert_frame_equal(result, expected, check_names=False)
|
501 |
+
|
502 |
+
|
503 |
+
def test_groupby_agg_ea_method(monkeypatch):
|
504 |
+
# Ensure that the result of agg is inferred to be decimal dtype
|
505 |
+
# https://github.com/pandas-dev/pandas/issues/29141
|
506 |
+
|
507 |
+
def DecimalArray__my_sum(self):
|
508 |
+
return np.sum(np.array(self))
|
509 |
+
|
510 |
+
monkeypatch.setattr(DecimalArray, "my_sum", DecimalArray__my_sum, raising=False)
|
511 |
+
|
512 |
+
data = make_data()[:5]
|
513 |
+
df = pd.DataFrame({"id": [0, 0, 0, 1, 1], "decimals": DecimalArray(data)})
|
514 |
+
expected = pd.Series(to_decimal([data[0] + data[1] + data[2], data[3] + data[4]]))
|
515 |
+
|
516 |
+
result = df.groupby("id")["decimals"].agg(lambda x: x.values.my_sum())
|
517 |
+
tm.assert_series_equal(result, expected, check_names=False)
|
518 |
+
s = pd.Series(DecimalArray(data))
|
519 |
+
grouper = np.array([0, 0, 0, 1, 1], dtype=np.int64)
|
520 |
+
result = s.groupby(grouper).agg(lambda x: x.values.my_sum())
|
521 |
+
tm.assert_series_equal(result, expected, check_names=False)
|
522 |
+
|
523 |
+
|
524 |
+
def test_indexing_no_materialize(monkeypatch):
|
525 |
+
# See https://github.com/pandas-dev/pandas/issues/29708
|
526 |
+
# Ensure that indexing operations do not materialize (convert to a numpy
|
527 |
+
# array) the ExtensionArray unnecessary
|
528 |
+
|
529 |
+
def DecimalArray__array__(self, dtype=None):
|
530 |
+
raise Exception("tried to convert a DecimalArray to a numpy array")
|
531 |
+
|
532 |
+
monkeypatch.setattr(DecimalArray, "__array__", DecimalArray__array__, raising=False)
|
533 |
+
|
534 |
+
data = make_data()
|
535 |
+
s = pd.Series(DecimalArray(data))
|
536 |
+
df = pd.DataFrame({"a": s, "b": range(len(s))})
|
537 |
+
|
538 |
+
# ensure the following operations do not raise an error
|
539 |
+
s[s > 0.5]
|
540 |
+
df[s > 0.5]
|
541 |
+
s.at[0]
|
542 |
+
df.at[0, "a"]
|
543 |
+
|
544 |
+
|
545 |
+
def test_to_numpy_keyword():
|
546 |
+
# test the extra keyword
|
547 |
+
values = [decimal.Decimal("1.1111"), decimal.Decimal("2.2222")]
|
548 |
+
expected = np.array(
|
549 |
+
[decimal.Decimal("1.11"), decimal.Decimal("2.22")], dtype="object"
|
550 |
+
)
|
551 |
+
a = pd.array(values, dtype="decimal")
|
552 |
+
result = a.to_numpy(decimals=2)
|
553 |
+
tm.assert_numpy_array_equal(result, expected)
|
554 |
+
|
555 |
+
result = pd.Series(a).to_numpy(decimals=2)
|
556 |
+
tm.assert_numpy_array_equal(result, expected)
|
557 |
+
|
558 |
+
|
559 |
+
def test_array_copy_on_write(using_copy_on_write):
|
560 |
+
df = pd.DataFrame({"a": [decimal.Decimal(2), decimal.Decimal(3)]}, dtype="object")
|
561 |
+
df2 = df.astype(DecimalDtype())
|
562 |
+
df.iloc[0, 0] = 0
|
563 |
+
if using_copy_on_write:
|
564 |
+
expected = pd.DataFrame(
|
565 |
+
{"a": [decimal.Decimal(2), decimal.Decimal(3)]}, dtype=DecimalDtype()
|
566 |
+
)
|
567 |
+
tm.assert_equal(df2.values, expected.values)
|
llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/json/__init__.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pandas.tests.extension.json.array import (
|
2 |
+
JSONArray,
|
3 |
+
JSONDtype,
|
4 |
+
make_data,
|
5 |
+
)
|
6 |
+
|
7 |
+
__all__ = ["JSONArray", "JSONDtype", "make_data"]
|
llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/json/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (326 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/json/__pycache__/array.cpython-310.pyc
ADDED
Binary file (9.15 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/json/__pycache__/test_json.cpython-310.pyc
ADDED
Binary file (17.1 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/json/array.py
ADDED
@@ -0,0 +1,256 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Test extension array for storing nested data in a pandas container.
|
3 |
+
|
4 |
+
The JSONArray stores lists of dictionaries. The storage mechanism is a list,
|
5 |
+
not an ndarray.
|
6 |
+
|
7 |
+
Note
|
8 |
+
----
|
9 |
+
We currently store lists of UserDicts. Pandas has a few places
|
10 |
+
internally that specifically check for dicts, and does non-scalar things
|
11 |
+
in that case. We *want* the dictionaries to be treated as scalars, so we
|
12 |
+
hack around pandas by using UserDicts.
|
13 |
+
"""
|
14 |
+
from __future__ import annotations
|
15 |
+
|
16 |
+
from collections import (
|
17 |
+
UserDict,
|
18 |
+
abc,
|
19 |
+
)
|
20 |
+
import itertools
|
21 |
+
import numbers
|
22 |
+
import string
|
23 |
+
import sys
|
24 |
+
from typing import (
|
25 |
+
TYPE_CHECKING,
|
26 |
+
Any,
|
27 |
+
)
|
28 |
+
|
29 |
+
import numpy as np
|
30 |
+
|
31 |
+
from pandas.core.dtypes.cast import construct_1d_object_array_from_listlike
|
32 |
+
from pandas.core.dtypes.common import (
|
33 |
+
is_bool_dtype,
|
34 |
+
is_list_like,
|
35 |
+
pandas_dtype,
|
36 |
+
)
|
37 |
+
|
38 |
+
import pandas as pd
|
39 |
+
from pandas.api.extensions import (
|
40 |
+
ExtensionArray,
|
41 |
+
ExtensionDtype,
|
42 |
+
)
|
43 |
+
from pandas.core.indexers import unpack_tuple_and_ellipses
|
44 |
+
|
45 |
+
if TYPE_CHECKING:
|
46 |
+
from collections.abc import Mapping
|
47 |
+
|
48 |
+
from pandas._typing import type_t
|
49 |
+
|
50 |
+
|
51 |
+
class JSONDtype(ExtensionDtype):
|
52 |
+
type = abc.Mapping
|
53 |
+
name = "json"
|
54 |
+
na_value: Mapping[str, Any] = UserDict()
|
55 |
+
|
56 |
+
@classmethod
|
57 |
+
def construct_array_type(cls) -> type_t[JSONArray]:
|
58 |
+
"""
|
59 |
+
Return the array type associated with this dtype.
|
60 |
+
|
61 |
+
Returns
|
62 |
+
-------
|
63 |
+
type
|
64 |
+
"""
|
65 |
+
return JSONArray
|
66 |
+
|
67 |
+
|
68 |
+
class JSONArray(ExtensionArray):
|
69 |
+
dtype = JSONDtype()
|
70 |
+
__array_priority__ = 1000
|
71 |
+
|
72 |
+
def __init__(self, values, dtype=None, copy=False) -> None:
|
73 |
+
for val in values:
|
74 |
+
if not isinstance(val, self.dtype.type):
|
75 |
+
raise TypeError("All values must be of type " + str(self.dtype.type))
|
76 |
+
self.data = values
|
77 |
+
|
78 |
+
# Some aliases for common attribute names to ensure pandas supports
|
79 |
+
# these
|
80 |
+
self._items = self._data = self.data
|
81 |
+
# those aliases are currently not working due to assumptions
|
82 |
+
# in internal code (GH-20735)
|
83 |
+
# self._values = self.values = self.data
|
84 |
+
|
85 |
+
@classmethod
|
86 |
+
def _from_sequence(cls, scalars, *, dtype=None, copy=False):
|
87 |
+
return cls(scalars)
|
88 |
+
|
89 |
+
@classmethod
|
90 |
+
def _from_factorized(cls, values, original):
|
91 |
+
return cls([UserDict(x) for x in values if x != ()])
|
92 |
+
|
93 |
+
def __getitem__(self, item):
|
94 |
+
if isinstance(item, tuple):
|
95 |
+
item = unpack_tuple_and_ellipses(item)
|
96 |
+
|
97 |
+
if isinstance(item, numbers.Integral):
|
98 |
+
return self.data[item]
|
99 |
+
elif isinstance(item, slice) and item == slice(None):
|
100 |
+
# Make sure we get a view
|
101 |
+
return type(self)(self.data)
|
102 |
+
elif isinstance(item, slice):
|
103 |
+
# slice
|
104 |
+
return type(self)(self.data[item])
|
105 |
+
elif not is_list_like(item):
|
106 |
+
# e.g. "foo" or 2.5
|
107 |
+
# exception message copied from numpy
|
108 |
+
raise IndexError(
|
109 |
+
r"only integers, slices (`:`), ellipsis (`...`), numpy.newaxis "
|
110 |
+
r"(`None`) and integer or boolean arrays are valid indices"
|
111 |
+
)
|
112 |
+
else:
|
113 |
+
item = pd.api.indexers.check_array_indexer(self, item)
|
114 |
+
if is_bool_dtype(item.dtype):
|
115 |
+
return type(self)._from_sequence(
|
116 |
+
[x for x, m in zip(self, item) if m], dtype=self.dtype
|
117 |
+
)
|
118 |
+
# integer
|
119 |
+
return type(self)([self.data[i] for i in item])
|
120 |
+
|
121 |
+
def __setitem__(self, key, value) -> None:
|
122 |
+
if isinstance(key, numbers.Integral):
|
123 |
+
self.data[key] = value
|
124 |
+
else:
|
125 |
+
if not isinstance(value, (type(self), abc.Sequence)):
|
126 |
+
# broadcast value
|
127 |
+
value = itertools.cycle([value])
|
128 |
+
|
129 |
+
if isinstance(key, np.ndarray) and key.dtype == "bool":
|
130 |
+
# masking
|
131 |
+
for i, (k, v) in enumerate(zip(key, value)):
|
132 |
+
if k:
|
133 |
+
assert isinstance(v, self.dtype.type)
|
134 |
+
self.data[i] = v
|
135 |
+
else:
|
136 |
+
for k, v in zip(key, value):
|
137 |
+
assert isinstance(v, self.dtype.type)
|
138 |
+
self.data[k] = v
|
139 |
+
|
140 |
+
def __len__(self) -> int:
|
141 |
+
return len(self.data)
|
142 |
+
|
143 |
+
def __eq__(self, other):
|
144 |
+
return NotImplemented
|
145 |
+
|
146 |
+
def __ne__(self, other):
|
147 |
+
return NotImplemented
|
148 |
+
|
149 |
+
def __array__(self, dtype=None, copy=None):
|
150 |
+
if dtype is None:
|
151 |
+
dtype = object
|
152 |
+
if dtype == object:
|
153 |
+
# on py38 builds it looks like numpy is inferring to a non-1D array
|
154 |
+
return construct_1d_object_array_from_listlike(list(self))
|
155 |
+
return np.asarray(self.data, dtype=dtype)
|
156 |
+
|
157 |
+
@property
|
158 |
+
def nbytes(self) -> int:
|
159 |
+
return sys.getsizeof(self.data)
|
160 |
+
|
161 |
+
def isna(self):
|
162 |
+
return np.array([x == self.dtype.na_value for x in self.data], dtype=bool)
|
163 |
+
|
164 |
+
def take(self, indexer, allow_fill=False, fill_value=None):
|
165 |
+
# re-implement here, since NumPy has trouble setting
|
166 |
+
# sized objects like UserDicts into scalar slots of
|
167 |
+
# an ndarary.
|
168 |
+
indexer = np.asarray(indexer)
|
169 |
+
msg = (
|
170 |
+
"Index is out of bounds or cannot do a "
|
171 |
+
"non-empty take from an empty array."
|
172 |
+
)
|
173 |
+
|
174 |
+
if allow_fill:
|
175 |
+
if fill_value is None:
|
176 |
+
fill_value = self.dtype.na_value
|
177 |
+
# bounds check
|
178 |
+
if (indexer < -1).any():
|
179 |
+
raise ValueError
|
180 |
+
try:
|
181 |
+
output = [
|
182 |
+
self.data[loc] if loc != -1 else fill_value for loc in indexer
|
183 |
+
]
|
184 |
+
except IndexError as err:
|
185 |
+
raise IndexError(msg) from err
|
186 |
+
else:
|
187 |
+
try:
|
188 |
+
output = [self.data[loc] for loc in indexer]
|
189 |
+
except IndexError as err:
|
190 |
+
raise IndexError(msg) from err
|
191 |
+
|
192 |
+
return type(self)._from_sequence(output, dtype=self.dtype)
|
193 |
+
|
194 |
+
def copy(self):
|
195 |
+
return type(self)(self.data[:])
|
196 |
+
|
197 |
+
def astype(self, dtype, copy=True):
|
198 |
+
# NumPy has issues when all the dicts are the same length.
|
199 |
+
# np.array([UserDict(...), UserDict(...)]) fails,
|
200 |
+
# but np.array([{...}, {...}]) works, so cast.
|
201 |
+
from pandas.core.arrays.string_ import StringDtype
|
202 |
+
|
203 |
+
dtype = pandas_dtype(dtype)
|
204 |
+
# needed to add this check for the Series constructor
|
205 |
+
if isinstance(dtype, type(self.dtype)) and dtype == self.dtype:
|
206 |
+
if copy:
|
207 |
+
return self.copy()
|
208 |
+
return self
|
209 |
+
elif isinstance(dtype, StringDtype):
|
210 |
+
value = self.astype(str) # numpy doesn't like nested dicts
|
211 |
+
arr_cls = dtype.construct_array_type()
|
212 |
+
return arr_cls._from_sequence(value, dtype=dtype, copy=False)
|
213 |
+
elif not copy:
|
214 |
+
return np.asarray([dict(x) for x in self], dtype=dtype)
|
215 |
+
else:
|
216 |
+
return np.array([dict(x) for x in self], dtype=dtype, copy=copy)
|
217 |
+
|
218 |
+
def unique(self):
|
219 |
+
# Parent method doesn't work since np.array will try to infer
|
220 |
+
# a 2-dim object.
|
221 |
+
return type(self)([dict(x) for x in {tuple(d.items()) for d in self.data}])
|
222 |
+
|
223 |
+
@classmethod
|
224 |
+
def _concat_same_type(cls, to_concat):
|
225 |
+
data = list(itertools.chain.from_iterable(x.data for x in to_concat))
|
226 |
+
return cls(data)
|
227 |
+
|
228 |
+
def _values_for_factorize(self):
|
229 |
+
frozen = self._values_for_argsort()
|
230 |
+
if len(frozen) == 0:
|
231 |
+
# factorize_array expects 1-d array, this is a len-0 2-d array.
|
232 |
+
frozen = frozen.ravel()
|
233 |
+
return frozen, ()
|
234 |
+
|
235 |
+
def _values_for_argsort(self):
|
236 |
+
# Bypass NumPy's shape inference to get a (N,) array of tuples.
|
237 |
+
frozen = [tuple(x.items()) for x in self]
|
238 |
+
return construct_1d_object_array_from_listlike(frozen)
|
239 |
+
|
240 |
+
def _pad_or_backfill(self, *, method, limit=None, copy=True):
|
241 |
+
# GH#56616 - test EA method without limit_area argument
|
242 |
+
return super()._pad_or_backfill(method=method, limit=limit, copy=copy)
|
243 |
+
|
244 |
+
|
245 |
+
def make_data():
|
246 |
+
# TODO: Use a regular dict. See _NDFrameIndexer._setitem_with_indexer
|
247 |
+
rng = np.random.default_rng(2)
|
248 |
+
return [
|
249 |
+
UserDict(
|
250 |
+
[
|
251 |
+
(rng.choice(list(string.ascii_letters)), rng.integers(0, 100))
|
252 |
+
for _ in range(rng.integers(0, 10))
|
253 |
+
]
|
254 |
+
)
|
255 |
+
for _ in range(100)
|
256 |
+
]
|