applied-ai-018 commited on
Commit
9cdf1af
·
verified ·
1 Parent(s): 3ad422d

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. env-llmeval/lib/python3.10/site-packages/numpy/core/__init__.py +180 -0
  2. env-llmeval/lib/python3.10/site-packages/numpy/core/__init__.pyi +2 -0
  3. env-llmeval/lib/python3.10/site-packages/numpy/core/__pycache__/__init__.cpython-310.pyc +0 -0
  4. env-llmeval/lib/python3.10/site-packages/numpy/core/__pycache__/_add_newdocs.cpython-310.pyc +0 -0
  5. env-llmeval/lib/python3.10/site-packages/numpy/core/__pycache__/_add_newdocs_scalars.cpython-310.pyc +0 -0
  6. env-llmeval/lib/python3.10/site-packages/numpy/core/__pycache__/_asarray.cpython-310.pyc +0 -0
  7. env-llmeval/lib/python3.10/site-packages/numpy/core/__pycache__/_dtype.cpython-310.pyc +0 -0
  8. env-llmeval/lib/python3.10/site-packages/numpy/core/__pycache__/_dtype_ctypes.cpython-310.pyc +0 -0
  9. env-llmeval/lib/python3.10/site-packages/numpy/core/__pycache__/_exceptions.cpython-310.pyc +0 -0
  10. env-llmeval/lib/python3.10/site-packages/numpy/core/__pycache__/_internal.cpython-310.pyc +0 -0
  11. env-llmeval/lib/python3.10/site-packages/numpy/core/__pycache__/_machar.cpython-310.pyc +0 -0
  12. env-llmeval/lib/python3.10/site-packages/numpy/core/__pycache__/_methods.cpython-310.pyc +0 -0
  13. env-llmeval/lib/python3.10/site-packages/numpy/core/__pycache__/_string_helpers.cpython-310.pyc +0 -0
  14. env-llmeval/lib/python3.10/site-packages/numpy/core/__pycache__/_type_aliases.cpython-310.pyc +0 -0
  15. env-llmeval/lib/python3.10/site-packages/numpy/core/__pycache__/_ufunc_config.cpython-310.pyc +0 -0
  16. env-llmeval/lib/python3.10/site-packages/numpy/core/__pycache__/cversions.cpython-310.pyc +0 -0
  17. env-llmeval/lib/python3.10/site-packages/numpy/core/__pycache__/defchararray.cpython-310.pyc +0 -0
  18. env-llmeval/lib/python3.10/site-packages/numpy/core/__pycache__/einsumfunc.cpython-310.pyc +0 -0
  19. env-llmeval/lib/python3.10/site-packages/numpy/core/__pycache__/fromnumeric.cpython-310.pyc +0 -0
  20. env-llmeval/lib/python3.10/site-packages/numpy/core/__pycache__/function_base.cpython-310.pyc +0 -0
  21. env-llmeval/lib/python3.10/site-packages/numpy/core/__pycache__/getlimits.cpython-310.pyc +0 -0
  22. env-llmeval/lib/python3.10/site-packages/numpy/core/__pycache__/memmap.cpython-310.pyc +0 -0
  23. env-llmeval/lib/python3.10/site-packages/numpy/core/__pycache__/multiarray.cpython-310.pyc +0 -0
  24. env-llmeval/lib/python3.10/site-packages/numpy/core/__pycache__/numerictypes.cpython-310.pyc +0 -0
  25. env-llmeval/lib/python3.10/site-packages/numpy/core/__pycache__/overrides.cpython-310.pyc +0 -0
  26. env-llmeval/lib/python3.10/site-packages/numpy/core/__pycache__/records.cpython-310.pyc +0 -0
  27. env-llmeval/lib/python3.10/site-packages/numpy/core/__pycache__/shape_base.cpython-310.pyc +0 -0
  28. env-llmeval/lib/python3.10/site-packages/numpy/core/__pycache__/umath.cpython-310.pyc +0 -0
  29. env-llmeval/lib/python3.10/site-packages/numpy/core/__pycache__/umath_tests.cpython-310.pyc +0 -0
  30. env-llmeval/lib/python3.10/site-packages/numpy/core/_asarray.pyi +42 -0
  31. env-llmeval/lib/python3.10/site-packages/numpy/core/_dtype.py +369 -0
  32. env-llmeval/lib/python3.10/site-packages/numpy/core/_dtype_ctypes.py +117 -0
  33. env-llmeval/lib/python3.10/site-packages/numpy/core/_internal.py +935 -0
  34. env-llmeval/lib/python3.10/site-packages/numpy/core/_internal.pyi +30 -0
  35. env-llmeval/lib/python3.10/site-packages/numpy/core/_methods.py +234 -0
  36. env-llmeval/lib/python3.10/site-packages/numpy/core/_multiarray_tests.cpython-310-x86_64-linux-gnu.so +0 -0
  37. env-llmeval/lib/python3.10/site-packages/numpy/core/_struct_ufunc_tests.cpython-310-x86_64-linux-gnu.so +0 -0
  38. env-llmeval/lib/python3.10/site-packages/numpy/core/_type_aliases.py +245 -0
  39. env-llmeval/lib/python3.10/site-packages/numpy/core/_type_aliases.pyi +13 -0
  40. env-llmeval/lib/python3.10/site-packages/numpy/core/_ufunc_config.py +466 -0
  41. env-llmeval/lib/python3.10/site-packages/numpy/core/_umath_tests.cpython-310-x86_64-linux-gnu.so +0 -0
  42. env-llmeval/lib/python3.10/site-packages/numpy/core/arrayprint.pyi +142 -0
  43. env-llmeval/lib/python3.10/site-packages/numpy/core/cversions.py +13 -0
  44. env-llmeval/lib/python3.10/site-packages/numpy/core/defchararray.py +2914 -0
  45. env-llmeval/lib/python3.10/site-packages/numpy/core/einsumfunc.pyi +187 -0
  46. env-llmeval/lib/python3.10/site-packages/numpy/core/fromnumeric.py +0 -0
  47. env-llmeval/lib/python3.10/site-packages/numpy/core/fromnumeric.pyi +1060 -0
  48. env-llmeval/lib/python3.10/site-packages/numpy/core/function_base.py +551 -0
  49. env-llmeval/lib/python3.10/site-packages/numpy/core/function_base.pyi +187 -0
  50. env-llmeval/lib/python3.10/site-packages/numpy/core/lib/libnpymath.a +0 -0
env-llmeval/lib/python3.10/site-packages/numpy/core/__init__.py ADDED
@@ -0,0 +1,180 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Contains the core of NumPy: ndarray, ufuncs, dtypes, etc.
3
+
4
+ Please note that this module is private. All functions and objects
5
+ are available in the main ``numpy`` namespace - use that instead.
6
+
7
+ """
8
+
9
+ import os
10
+ import warnings
11
+
12
+ from numpy.version import version as __version__
13
+
14
+
15
+ # disables OpenBLAS affinity setting of the main thread that limits
16
+ # python threads or processes to one core
17
+ env_added = []
18
+ for envkey in ['OPENBLAS_MAIN_FREE', 'GOTOBLAS_MAIN_FREE']:
19
+ if envkey not in os.environ:
20
+ os.environ[envkey] = '1'
21
+ env_added.append(envkey)
22
+
23
+ try:
24
+ from . import multiarray
25
+ except ImportError as exc:
26
+ import sys
27
+ msg = """
28
+
29
+ IMPORTANT: PLEASE READ THIS FOR ADVICE ON HOW TO SOLVE THIS ISSUE!
30
+
31
+ Importing the numpy C-extensions failed. This error can happen for
32
+ many reasons, often due to issues with your setup or how NumPy was
33
+ installed.
34
+
35
+ We have compiled some common reasons and troubleshooting tips at:
36
+
37
+ https://numpy.org/devdocs/user/troubleshooting-importerror.html
38
+
39
+ Please note and check the following:
40
+
41
+ * The Python version is: Python%d.%d from "%s"
42
+ * The NumPy version is: "%s"
43
+
44
+ and make sure that they are the versions you expect.
45
+ Please carefully study the documentation linked above for further help.
46
+
47
+ Original error was: %s
48
+ """ % (sys.version_info[0], sys.version_info[1], sys.executable,
49
+ __version__, exc)
50
+ raise ImportError(msg)
51
+ finally:
52
+ for envkey in env_added:
53
+ del os.environ[envkey]
54
+ del envkey
55
+ del env_added
56
+ del os
57
+
58
+ from . import umath
59
+
60
+ # Check that multiarray,umath are pure python modules wrapping
61
+ # _multiarray_umath and not either of the old c-extension modules
62
+ if not (hasattr(multiarray, '_multiarray_umath') and
63
+ hasattr(umath, '_multiarray_umath')):
64
+ import sys
65
+ path = sys.modules['numpy'].__path__
66
+ msg = ("Something is wrong with the numpy installation. "
67
+ "While importing we detected an older version of "
68
+ "numpy in {}. One method of fixing this is to repeatedly uninstall "
69
+ "numpy until none is found, then reinstall this version.")
70
+ raise ImportError(msg.format(path))
71
+
72
+ from . import numerictypes as nt
73
+ multiarray.set_typeDict(nt.sctypeDict)
74
+ from . import numeric
75
+ from .numeric import *
76
+ from . import fromnumeric
77
+ from .fromnumeric import *
78
+ from . import defchararray as char
79
+ from . import records
80
+ from . import records as rec
81
+ from .records import record, recarray, format_parser
82
+ # Note: module name memmap is overwritten by a class with same name
83
+ from .memmap import *
84
+ from .defchararray import chararray
85
+ from . import function_base
86
+ from .function_base import *
87
+ from . import _machar
88
+ from . import getlimits
89
+ from .getlimits import *
90
+ from . import shape_base
91
+ from .shape_base import *
92
+ from . import einsumfunc
93
+ from .einsumfunc import *
94
+ del nt
95
+
96
+ from .numeric import absolute as abs
97
+
98
+ # do this after everything else, to minimize the chance of this misleadingly
99
+ # appearing in an import-time traceback
100
+ from . import _add_newdocs
101
+ from . import _add_newdocs_scalars
102
+ # add these for module-freeze analysis (like PyInstaller)
103
+ from . import _dtype_ctypes
104
+ from . import _internal
105
+ from . import _dtype
106
+ from . import _methods
107
+
108
+ __all__ = ['char', 'rec', 'memmap']
109
+ __all__ += numeric.__all__
110
+ __all__ += ['record', 'recarray', 'format_parser']
111
+ __all__ += ['chararray']
112
+ __all__ += function_base.__all__
113
+ __all__ += getlimits.__all__
114
+ __all__ += shape_base.__all__
115
+ __all__ += einsumfunc.__all__
116
+
117
+ # We used to use `np.core._ufunc_reconstruct` to unpickle. This is unnecessary,
118
+ # but old pickles saved before 1.20 will be using it, and there is no reason
119
+ # to break loading them.
120
+ def _ufunc_reconstruct(module, name):
121
+ # The `fromlist` kwarg is required to ensure that `mod` points to the
122
+ # inner-most module rather than the parent package when module name is
123
+ # nested. This makes it possible to pickle non-toplevel ufuncs such as
124
+ # scipy.special.expit for instance.
125
+ mod = __import__(module, fromlist=[name])
126
+ return getattr(mod, name)
127
+
128
+
129
+ def _ufunc_reduce(func):
130
+ # Report the `__name__`. pickle will try to find the module. Note that
131
+ # pickle supports for this `__name__` to be a `__qualname__`. It may
132
+ # make sense to add a `__qualname__` to ufuncs, to allow this more
133
+ # explicitly (Numba has ufuncs as attributes).
134
+ # See also: https://github.com/dask/distributed/issues/3450
135
+ return func.__name__
136
+
137
+
138
+ def _DType_reconstruct(scalar_type):
139
+ # This is a work-around to pickle type(np.dtype(np.float64)), etc.
140
+ # and it should eventually be replaced with a better solution, e.g. when
141
+ # DTypes become HeapTypes.
142
+ return type(dtype(scalar_type))
143
+
144
+
145
+ def _DType_reduce(DType):
146
+ # As types/classes, most DTypes can simply be pickled by their name:
147
+ if not DType._legacy or DType.__module__ == "numpy.dtypes":
148
+ return DType.__name__
149
+
150
+ # However, user defined legacy dtypes (like rational) do not end up in
151
+ # `numpy.dtypes` as module and do not have a public class at all.
152
+ # For these, we pickle them by reconstructing them from the scalar type:
153
+ scalar_type = DType.type
154
+ return _DType_reconstruct, (scalar_type,)
155
+
156
+
157
+ def __getattr__(name):
158
+ # Deprecated 2022-11-22, NumPy 1.25.
159
+ if name == "MachAr":
160
+ warnings.warn(
161
+ "The `np.core.MachAr` is considered private API (NumPy 1.24)",
162
+ DeprecationWarning, stacklevel=2,
163
+ )
164
+ return _machar.MachAr
165
+ raise AttributeError(f"Module {__name__!r} has no attribute {name!r}")
166
+
167
+
168
+ import copyreg
169
+
170
+ copyreg.pickle(ufunc, _ufunc_reduce)
171
+ copyreg.pickle(type(dtype), _DType_reduce, _DType_reconstruct)
172
+
173
+ # Unclutter namespace (must keep _*_reconstruct for unpickling)
174
+ del copyreg
175
+ del _ufunc_reduce
176
+ del _DType_reduce
177
+
178
+ from numpy._pytesttester import PytestTester
179
+ test = PytestTester(__name__)
180
+ del PytestTester
env-llmeval/lib/python3.10/site-packages/numpy/core/__init__.pyi ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ # NOTE: The `np.core` namespace is deliberately kept empty due to it
2
+ # being private (despite the lack of leading underscore)
env-llmeval/lib/python3.10/site-packages/numpy/core/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (4.01 kB). View file
 
env-llmeval/lib/python3.10/site-packages/numpy/core/__pycache__/_add_newdocs.cpython-310.pyc ADDED
Binary file (192 kB). View file
 
env-llmeval/lib/python3.10/site-packages/numpy/core/__pycache__/_add_newdocs_scalars.cpython-310.pyc ADDED
Binary file (11 kB). View file
 
env-llmeval/lib/python3.10/site-packages/numpy/core/__pycache__/_asarray.cpython-310.pyc ADDED
Binary file (3.76 kB). View file
 
env-llmeval/lib/python3.10/site-packages/numpy/core/__pycache__/_dtype.cpython-310.pyc ADDED
Binary file (8.2 kB). View file
 
env-llmeval/lib/python3.10/site-packages/numpy/core/__pycache__/_dtype_ctypes.cpython-310.pyc ADDED
Binary file (3.06 kB). View file
 
env-llmeval/lib/python3.10/site-packages/numpy/core/__pycache__/_exceptions.cpython-310.pyc ADDED
Binary file (5.82 kB). View file
 
env-llmeval/lib/python3.10/site-packages/numpy/core/__pycache__/_internal.cpython-310.pyc ADDED
Binary file (23.2 kB). View file
 
env-llmeval/lib/python3.10/site-packages/numpy/core/__pycache__/_machar.cpython-310.pyc ADDED
Binary file (8.32 kB). View file
 
env-llmeval/lib/python3.10/site-packages/numpy/core/__pycache__/_methods.cpython-310.pyc ADDED
Binary file (5.73 kB). View file
 
env-llmeval/lib/python3.10/site-packages/numpy/core/__pycache__/_string_helpers.cpython-310.pyc ADDED
Binary file (3.03 kB). View file
 
env-llmeval/lib/python3.10/site-packages/numpy/core/__pycache__/_type_aliases.cpython-310.pyc ADDED
Binary file (5.36 kB). View file
 
env-llmeval/lib/python3.10/site-packages/numpy/core/__pycache__/_ufunc_config.cpython-310.pyc ADDED
Binary file (14.2 kB). View file
 
env-llmeval/lib/python3.10/site-packages/numpy/core/__pycache__/cversions.cpython-310.pyc ADDED
Binary file (557 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/numpy/core/__pycache__/defchararray.cpython-310.pyc ADDED
Binary file (71 kB). View file
 
env-llmeval/lib/python3.10/site-packages/numpy/core/__pycache__/einsumfunc.cpython-310.pyc ADDED
Binary file (39.6 kB). View file
 
env-llmeval/lib/python3.10/site-packages/numpy/core/__pycache__/fromnumeric.cpython-310.pyc ADDED
Binary file (126 kB). View file
 
env-llmeval/lib/python3.10/site-packages/numpy/core/__pycache__/function_base.cpython-310.pyc ADDED
Binary file (17.7 kB). View file
 
env-llmeval/lib/python3.10/site-packages/numpy/core/__pycache__/getlimits.cpython-310.pyc ADDED
Binary file (19.1 kB). View file
 
env-llmeval/lib/python3.10/site-packages/numpy/core/__pycache__/memmap.cpython-310.pyc ADDED
Binary file (10.5 kB). View file
 
env-llmeval/lib/python3.10/site-packages/numpy/core/__pycache__/multiarray.cpython-310.pyc ADDED
Binary file (54.4 kB). View file
 
env-llmeval/lib/python3.10/site-packages/numpy/core/__pycache__/numerictypes.cpython-310.pyc ADDED
Binary file (17 kB). View file
 
env-llmeval/lib/python3.10/site-packages/numpy/core/__pycache__/overrides.cpython-310.pyc ADDED
Binary file (6.2 kB). View file
 
env-llmeval/lib/python3.10/site-packages/numpy/core/__pycache__/records.cpython-310.pyc ADDED
Binary file (30.1 kB). View file
 
env-llmeval/lib/python3.10/site-packages/numpy/core/__pycache__/shape_base.cpython-310.pyc ADDED
Binary file (26.6 kB). View file
 
env-llmeval/lib/python3.10/site-packages/numpy/core/__pycache__/umath.cpython-310.pyc ADDED
Binary file (1.73 kB). View file
 
env-llmeval/lib/python3.10/site-packages/numpy/core/__pycache__/umath_tests.cpython-310.pyc ADDED
Binary file (524 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/numpy/core/_asarray.pyi ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from collections.abc import Iterable
2
+ from typing import Any, TypeVar, Union, overload, Literal
3
+
4
+ from numpy import ndarray
5
+ from numpy._typing import DTypeLike, _SupportsArrayFunc
6
+
7
+ _ArrayType = TypeVar("_ArrayType", bound=ndarray[Any, Any])
8
+
9
+ _Requirements = Literal[
10
+ "C", "C_CONTIGUOUS", "CONTIGUOUS",
11
+ "F", "F_CONTIGUOUS", "FORTRAN",
12
+ "A", "ALIGNED",
13
+ "W", "WRITEABLE",
14
+ "O", "OWNDATA"
15
+ ]
16
+ _E = Literal["E", "ENSUREARRAY"]
17
+ _RequirementsWithE = Union[_Requirements, _E]
18
+
19
+ @overload
20
+ def require(
21
+ a: _ArrayType,
22
+ dtype: None = ...,
23
+ requirements: None | _Requirements | Iterable[_Requirements] = ...,
24
+ *,
25
+ like: _SupportsArrayFunc = ...
26
+ ) -> _ArrayType: ...
27
+ @overload
28
+ def require(
29
+ a: object,
30
+ dtype: DTypeLike = ...,
31
+ requirements: _E | Iterable[_RequirementsWithE] = ...,
32
+ *,
33
+ like: _SupportsArrayFunc = ...
34
+ ) -> ndarray[Any, Any]: ...
35
+ @overload
36
+ def require(
37
+ a: object,
38
+ dtype: DTypeLike = ...,
39
+ requirements: None | _Requirements | Iterable[_Requirements] = ...,
40
+ *,
41
+ like: _SupportsArrayFunc = ...
42
+ ) -> ndarray[Any, Any]: ...
env-llmeval/lib/python3.10/site-packages/numpy/core/_dtype.py ADDED
@@ -0,0 +1,369 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ A place for code to be called from the implementation of np.dtype
3
+
4
+ String handling is much easier to do correctly in python.
5
+ """
6
+ import numpy as np
7
+
8
+
9
+ _kind_to_stem = {
10
+ 'u': 'uint',
11
+ 'i': 'int',
12
+ 'c': 'complex',
13
+ 'f': 'float',
14
+ 'b': 'bool',
15
+ 'V': 'void',
16
+ 'O': 'object',
17
+ 'M': 'datetime',
18
+ 'm': 'timedelta',
19
+ 'S': 'bytes',
20
+ 'U': 'str',
21
+ }
22
+
23
+
24
+ def _kind_name(dtype):
25
+ try:
26
+ return _kind_to_stem[dtype.kind]
27
+ except KeyError as e:
28
+ raise RuntimeError(
29
+ "internal dtype error, unknown kind {!r}"
30
+ .format(dtype.kind)
31
+ ) from None
32
+
33
+
34
+ def __str__(dtype):
35
+ if dtype.fields is not None:
36
+ return _struct_str(dtype, include_align=True)
37
+ elif dtype.subdtype:
38
+ return _subarray_str(dtype)
39
+ elif issubclass(dtype.type, np.flexible) or not dtype.isnative:
40
+ return dtype.str
41
+ else:
42
+ return dtype.name
43
+
44
+
45
+ def __repr__(dtype):
46
+ arg_str = _construction_repr(dtype, include_align=False)
47
+ if dtype.isalignedstruct:
48
+ arg_str = arg_str + ", align=True"
49
+ return "dtype({})".format(arg_str)
50
+
51
+
52
+ def _unpack_field(dtype, offset, title=None):
53
+ """
54
+ Helper function to normalize the items in dtype.fields.
55
+
56
+ Call as:
57
+
58
+ dtype, offset, title = _unpack_field(*dtype.fields[name])
59
+ """
60
+ return dtype, offset, title
61
+
62
+
63
+ def _isunsized(dtype):
64
+ # PyDataType_ISUNSIZED
65
+ return dtype.itemsize == 0
66
+
67
+
68
+ def _construction_repr(dtype, include_align=False, short=False):
69
+ """
70
+ Creates a string repr of the dtype, excluding the 'dtype()' part
71
+ surrounding the object. This object may be a string, a list, or
72
+ a dict depending on the nature of the dtype. This
73
+ is the object passed as the first parameter to the dtype
74
+ constructor, and if no additional constructor parameters are
75
+ given, will reproduce the exact memory layout.
76
+
77
+ Parameters
78
+ ----------
79
+ short : bool
80
+ If true, this creates a shorter repr using 'kind' and 'itemsize', instead
81
+ of the longer type name.
82
+
83
+ include_align : bool
84
+ If true, this includes the 'align=True' parameter
85
+ inside the struct dtype construction dict when needed. Use this flag
86
+ if you want a proper repr string without the 'dtype()' part around it.
87
+
88
+ If false, this does not preserve the
89
+ 'align=True' parameter or sticky NPY_ALIGNED_STRUCT flag for
90
+ struct arrays like the regular repr does, because the 'align'
91
+ flag is not part of first dtype constructor parameter. This
92
+ mode is intended for a full 'repr', where the 'align=True' is
93
+ provided as the second parameter.
94
+ """
95
+ if dtype.fields is not None:
96
+ return _struct_str(dtype, include_align=include_align)
97
+ elif dtype.subdtype:
98
+ return _subarray_str(dtype)
99
+ else:
100
+ return _scalar_str(dtype, short=short)
101
+
102
+
103
+ def _scalar_str(dtype, short):
104
+ byteorder = _byte_order_str(dtype)
105
+
106
+ if dtype.type == np.bool_:
107
+ if short:
108
+ return "'?'"
109
+ else:
110
+ return "'bool'"
111
+
112
+ elif dtype.type == np.object_:
113
+ # The object reference may be different sizes on different
114
+ # platforms, so it should never include the itemsize here.
115
+ return "'O'"
116
+
117
+ elif dtype.type == np.bytes_:
118
+ if _isunsized(dtype):
119
+ return "'S'"
120
+ else:
121
+ return "'S%d'" % dtype.itemsize
122
+
123
+ elif dtype.type == np.str_:
124
+ if _isunsized(dtype):
125
+ return "'%sU'" % byteorder
126
+ else:
127
+ return "'%sU%d'" % (byteorder, dtype.itemsize / 4)
128
+
129
+ # unlike the other types, subclasses of void are preserved - but
130
+ # historically the repr does not actually reveal the subclass
131
+ elif issubclass(dtype.type, np.void):
132
+ if _isunsized(dtype):
133
+ return "'V'"
134
+ else:
135
+ return "'V%d'" % dtype.itemsize
136
+
137
+ elif dtype.type == np.datetime64:
138
+ return "'%sM8%s'" % (byteorder, _datetime_metadata_str(dtype))
139
+
140
+ elif dtype.type == np.timedelta64:
141
+ return "'%sm8%s'" % (byteorder, _datetime_metadata_str(dtype))
142
+
143
+ elif np.issubdtype(dtype, np.number):
144
+ # Short repr with endianness, like '<f8'
145
+ if short or dtype.byteorder not in ('=', '|'):
146
+ return "'%s%c%d'" % (byteorder, dtype.kind, dtype.itemsize)
147
+
148
+ # Longer repr, like 'float64'
149
+ else:
150
+ return "'%s%d'" % (_kind_name(dtype), 8*dtype.itemsize)
151
+
152
+ elif dtype.isbuiltin == 2:
153
+ return dtype.type.__name__
154
+
155
+ else:
156
+ raise RuntimeError(
157
+ "Internal error: NumPy dtype unrecognized type number")
158
+
159
+
160
+ def _byte_order_str(dtype):
161
+ """ Normalize byteorder to '<' or '>' """
162
+ # hack to obtain the native and swapped byte order characters
163
+ swapped = np.dtype(int).newbyteorder('S')
164
+ native = swapped.newbyteorder('S')
165
+
166
+ byteorder = dtype.byteorder
167
+ if byteorder == '=':
168
+ return native.byteorder
169
+ if byteorder == 'S':
170
+ # TODO: this path can never be reached
171
+ return swapped.byteorder
172
+ elif byteorder == '|':
173
+ return ''
174
+ else:
175
+ return byteorder
176
+
177
+
178
+ def _datetime_metadata_str(dtype):
179
+ # TODO: this duplicates the C metastr_to_unicode functionality
180
+ unit, count = np.datetime_data(dtype)
181
+ if unit == 'generic':
182
+ return ''
183
+ elif count == 1:
184
+ return '[{}]'.format(unit)
185
+ else:
186
+ return '[{}{}]'.format(count, unit)
187
+
188
+
189
+ def _struct_dict_str(dtype, includealignedflag):
190
+ # unpack the fields dictionary into ls
191
+ names = dtype.names
192
+ fld_dtypes = []
193
+ offsets = []
194
+ titles = []
195
+ for name in names:
196
+ fld_dtype, offset, title = _unpack_field(*dtype.fields[name])
197
+ fld_dtypes.append(fld_dtype)
198
+ offsets.append(offset)
199
+ titles.append(title)
200
+
201
+ # Build up a string to make the dictionary
202
+
203
+ if np.core.arrayprint._get_legacy_print_mode() <= 121:
204
+ colon = ":"
205
+ fieldsep = ","
206
+ else:
207
+ colon = ": "
208
+ fieldsep = ", "
209
+
210
+ # First, the names
211
+ ret = "{'names'%s[" % colon
212
+ ret += fieldsep.join(repr(name) for name in names)
213
+
214
+ # Second, the formats
215
+ ret += "], 'formats'%s[" % colon
216
+ ret += fieldsep.join(
217
+ _construction_repr(fld_dtype, short=True) for fld_dtype in fld_dtypes)
218
+
219
+ # Third, the offsets
220
+ ret += "], 'offsets'%s[" % colon
221
+ ret += fieldsep.join("%d" % offset for offset in offsets)
222
+
223
+ # Fourth, the titles
224
+ if any(title is not None for title in titles):
225
+ ret += "], 'titles'%s[" % colon
226
+ ret += fieldsep.join(repr(title) for title in titles)
227
+
228
+ # Fifth, the itemsize
229
+ ret += "], 'itemsize'%s%d" % (colon, dtype.itemsize)
230
+
231
+ if (includealignedflag and dtype.isalignedstruct):
232
+ # Finally, the aligned flag
233
+ ret += ", 'aligned'%sTrue}" % colon
234
+ else:
235
+ ret += "}"
236
+
237
+ return ret
238
+
239
+
240
+ def _aligned_offset(offset, alignment):
241
+ # round up offset:
242
+ return - (-offset // alignment) * alignment
243
+
244
+
245
+ def _is_packed(dtype):
246
+ """
247
+ Checks whether the structured data type in 'dtype'
248
+ has a simple layout, where all the fields are in order,
249
+ and follow each other with no alignment padding.
250
+
251
+ When this returns true, the dtype can be reconstructed
252
+ from a list of the field names and dtypes with no additional
253
+ dtype parameters.
254
+
255
+ Duplicates the C `is_dtype_struct_simple_unaligned_layout` function.
256
+ """
257
+ align = dtype.isalignedstruct
258
+ max_alignment = 1
259
+ total_offset = 0
260
+ for name in dtype.names:
261
+ fld_dtype, fld_offset, title = _unpack_field(*dtype.fields[name])
262
+
263
+ if align:
264
+ total_offset = _aligned_offset(total_offset, fld_dtype.alignment)
265
+ max_alignment = max(max_alignment, fld_dtype.alignment)
266
+
267
+ if fld_offset != total_offset:
268
+ return False
269
+ total_offset += fld_dtype.itemsize
270
+
271
+ if align:
272
+ total_offset = _aligned_offset(total_offset, max_alignment)
273
+
274
+ if total_offset != dtype.itemsize:
275
+ return False
276
+ return True
277
+
278
+
279
+ def _struct_list_str(dtype):
280
+ items = []
281
+ for name in dtype.names:
282
+ fld_dtype, fld_offset, title = _unpack_field(*dtype.fields[name])
283
+
284
+ item = "("
285
+ if title is not None:
286
+ item += "({!r}, {!r}), ".format(title, name)
287
+ else:
288
+ item += "{!r}, ".format(name)
289
+ # Special case subarray handling here
290
+ if fld_dtype.subdtype is not None:
291
+ base, shape = fld_dtype.subdtype
292
+ item += "{}, {}".format(
293
+ _construction_repr(base, short=True),
294
+ shape
295
+ )
296
+ else:
297
+ item += _construction_repr(fld_dtype, short=True)
298
+
299
+ item += ")"
300
+ items.append(item)
301
+
302
+ return "[" + ", ".join(items) + "]"
303
+
304
+
305
+ def _struct_str(dtype, include_align):
306
+ # The list str representation can't include the 'align=' flag,
307
+ # so if it is requested and the struct has the aligned flag set,
308
+ # we must use the dict str instead.
309
+ if not (include_align and dtype.isalignedstruct) and _is_packed(dtype):
310
+ sub = _struct_list_str(dtype)
311
+
312
+ else:
313
+ sub = _struct_dict_str(dtype, include_align)
314
+
315
+ # If the data type isn't the default, void, show it
316
+ if dtype.type != np.void:
317
+ return "({t.__module__}.{t.__name__}, {f})".format(t=dtype.type, f=sub)
318
+ else:
319
+ return sub
320
+
321
+
322
+ def _subarray_str(dtype):
323
+ base, shape = dtype.subdtype
324
+ return "({}, {})".format(
325
+ _construction_repr(base, short=True),
326
+ shape
327
+ )
328
+
329
+
330
+ def _name_includes_bit_suffix(dtype):
331
+ if dtype.type == np.object_:
332
+ # pointer size varies by system, best to omit it
333
+ return False
334
+ elif dtype.type == np.bool_:
335
+ # implied
336
+ return False
337
+ elif dtype.type is None:
338
+ return True
339
+ elif np.issubdtype(dtype, np.flexible) and _isunsized(dtype):
340
+ # unspecified
341
+ return False
342
+ else:
343
+ return True
344
+
345
+
346
+ def _name_get(dtype):
347
+ # provides dtype.name.__get__, documented as returning a "bit name"
348
+
349
+ if dtype.isbuiltin == 2:
350
+ # user dtypes don't promise to do anything special
351
+ return dtype.type.__name__
352
+
353
+ if dtype.kind == '\x00':
354
+ name = type(dtype).__name__
355
+ elif issubclass(dtype.type, np.void):
356
+ # historically, void subclasses preserve their name, eg `record64`
357
+ name = dtype.type.__name__
358
+ else:
359
+ name = _kind_name(dtype)
360
+
361
+ # append bit counts
362
+ if _name_includes_bit_suffix(dtype):
363
+ name += "{}".format(dtype.itemsize * 8)
364
+
365
+ # append metadata to datetimes
366
+ if dtype.type in (np.datetime64, np.timedelta64):
367
+ name += _datetime_metadata_str(dtype)
368
+
369
+ return name
env-llmeval/lib/python3.10/site-packages/numpy/core/_dtype_ctypes.py ADDED
@@ -0,0 +1,117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Conversion from ctypes to dtype.
3
+
4
+ In an ideal world, we could achieve this through the PEP3118 buffer protocol,
5
+ something like::
6
+
7
+ def dtype_from_ctypes_type(t):
8
+ # needed to ensure that the shape of `t` is within memoryview.format
9
+ class DummyStruct(ctypes.Structure):
10
+ _fields_ = [('a', t)]
11
+
12
+ # empty to avoid memory allocation
13
+ ctype_0 = (DummyStruct * 0)()
14
+ mv = memoryview(ctype_0)
15
+
16
+ # convert the struct, and slice back out the field
17
+ return _dtype_from_pep3118(mv.format)['a']
18
+
19
+ Unfortunately, this fails because:
20
+
21
+ * ctypes cannot handle length-0 arrays with PEP3118 (bpo-32782)
22
+ * PEP3118 cannot represent unions, but both numpy and ctypes can
23
+ * ctypes cannot handle big-endian structs with PEP3118 (bpo-32780)
24
+ """
25
+
26
+ # We delay-import ctypes for distributions that do not include it.
27
+ # While this module is not used unless the user passes in ctypes
28
+ # members, it is eagerly imported from numpy/core/__init__.py.
29
+ import numpy as np
30
+
31
+
32
+ def _from_ctypes_array(t):
33
+ return np.dtype((dtype_from_ctypes_type(t._type_), (t._length_,)))
34
+
35
+
36
+ def _from_ctypes_structure(t):
37
+ for item in t._fields_:
38
+ if len(item) > 2:
39
+ raise TypeError(
40
+ "ctypes bitfields have no dtype equivalent")
41
+
42
+ if hasattr(t, "_pack_"):
43
+ import ctypes
44
+ formats = []
45
+ offsets = []
46
+ names = []
47
+ current_offset = 0
48
+ for fname, ftyp in t._fields_:
49
+ names.append(fname)
50
+ formats.append(dtype_from_ctypes_type(ftyp))
51
+ # Each type has a default offset, this is platform dependent for some types.
52
+ effective_pack = min(t._pack_, ctypes.alignment(ftyp))
53
+ current_offset = ((current_offset + effective_pack - 1) // effective_pack) * effective_pack
54
+ offsets.append(current_offset)
55
+ current_offset += ctypes.sizeof(ftyp)
56
+
57
+ return np.dtype(dict(
58
+ formats=formats,
59
+ offsets=offsets,
60
+ names=names,
61
+ itemsize=ctypes.sizeof(t)))
62
+ else:
63
+ fields = []
64
+ for fname, ftyp in t._fields_:
65
+ fields.append((fname, dtype_from_ctypes_type(ftyp)))
66
+
67
+ # by default, ctypes structs are aligned
68
+ return np.dtype(fields, align=True)
69
+
70
+
71
+ def _from_ctypes_scalar(t):
72
+ """
73
+ Return the dtype type with endianness included if it's the case
74
+ """
75
+ if getattr(t, '__ctype_be__', None) is t:
76
+ return np.dtype('>' + t._type_)
77
+ elif getattr(t, '__ctype_le__', None) is t:
78
+ return np.dtype('<' + t._type_)
79
+ else:
80
+ return np.dtype(t._type_)
81
+
82
+
83
+ def _from_ctypes_union(t):
84
+ import ctypes
85
+ formats = []
86
+ offsets = []
87
+ names = []
88
+ for fname, ftyp in t._fields_:
89
+ names.append(fname)
90
+ formats.append(dtype_from_ctypes_type(ftyp))
91
+ offsets.append(0) # Union fields are offset to 0
92
+
93
+ return np.dtype(dict(
94
+ formats=formats,
95
+ offsets=offsets,
96
+ names=names,
97
+ itemsize=ctypes.sizeof(t)))
98
+
99
+
100
+ def dtype_from_ctypes_type(t):
101
+ """
102
+ Construct a dtype object from a ctypes type
103
+ """
104
+ import _ctypes
105
+ if issubclass(t, _ctypes.Array):
106
+ return _from_ctypes_array(t)
107
+ elif issubclass(t, _ctypes._Pointer):
108
+ raise TypeError("ctypes pointers have no dtype equivalent")
109
+ elif issubclass(t, _ctypes.Structure):
110
+ return _from_ctypes_structure(t)
111
+ elif issubclass(t, _ctypes.Union):
112
+ return _from_ctypes_union(t)
113
+ elif isinstance(getattr(t, '_type_', None), str):
114
+ return _from_ctypes_scalar(t)
115
+ else:
116
+ raise NotImplementedError(
117
+ "Unknown ctypes type {}".format(t.__name__))
env-llmeval/lib/python3.10/site-packages/numpy/core/_internal.py ADDED
@@ -0,0 +1,935 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ A place for internal code
3
+
4
+ Some things are more easily handled Python.
5
+
6
+ """
7
+ import ast
8
+ import re
9
+ import sys
10
+ import warnings
11
+
12
+ from ..exceptions import DTypePromotionError
13
+ from .multiarray import dtype, array, ndarray, promote_types
14
+ try:
15
+ import ctypes
16
+ except ImportError:
17
+ ctypes = None
18
+
19
+ IS_PYPY = sys.implementation.name == 'pypy'
20
+
21
+ if sys.byteorder == 'little':
22
+ _nbo = '<'
23
+ else:
24
+ _nbo = '>'
25
+
26
+ def _makenames_list(adict, align):
27
+ allfields = []
28
+
29
+ for fname, obj in adict.items():
30
+ n = len(obj)
31
+ if not isinstance(obj, tuple) or n not in (2, 3):
32
+ raise ValueError("entry not a 2- or 3- tuple")
33
+ if n > 2 and obj[2] == fname:
34
+ continue
35
+ num = int(obj[1])
36
+ if num < 0:
37
+ raise ValueError("invalid offset.")
38
+ format = dtype(obj[0], align=align)
39
+ if n > 2:
40
+ title = obj[2]
41
+ else:
42
+ title = None
43
+ allfields.append((fname, format, num, title))
44
+ # sort by offsets
45
+ allfields.sort(key=lambda x: x[2])
46
+ names = [x[0] for x in allfields]
47
+ formats = [x[1] for x in allfields]
48
+ offsets = [x[2] for x in allfields]
49
+ titles = [x[3] for x in allfields]
50
+
51
+ return names, formats, offsets, titles
52
+
53
+ # Called in PyArray_DescrConverter function when
54
+ # a dictionary without "names" and "formats"
55
+ # fields is used as a data-type descriptor.
56
+ def _usefields(adict, align):
57
+ try:
58
+ names = adict[-1]
59
+ except KeyError:
60
+ names = None
61
+ if names is None:
62
+ names, formats, offsets, titles = _makenames_list(adict, align)
63
+ else:
64
+ formats = []
65
+ offsets = []
66
+ titles = []
67
+ for name in names:
68
+ res = adict[name]
69
+ formats.append(res[0])
70
+ offsets.append(res[1])
71
+ if len(res) > 2:
72
+ titles.append(res[2])
73
+ else:
74
+ titles.append(None)
75
+
76
+ return dtype({"names": names,
77
+ "formats": formats,
78
+ "offsets": offsets,
79
+ "titles": titles}, align)
80
+
81
+
82
+ # construct an array_protocol descriptor list
83
+ # from the fields attribute of a descriptor
84
+ # This calls itself recursively but should eventually hit
85
+ # a descriptor that has no fields and then return
86
+ # a simple typestring
87
+
88
+ def _array_descr(descriptor):
89
+ fields = descriptor.fields
90
+ if fields is None:
91
+ subdtype = descriptor.subdtype
92
+ if subdtype is None:
93
+ if descriptor.metadata is None:
94
+ return descriptor.str
95
+ else:
96
+ new = descriptor.metadata.copy()
97
+ if new:
98
+ return (descriptor.str, new)
99
+ else:
100
+ return descriptor.str
101
+ else:
102
+ return (_array_descr(subdtype[0]), subdtype[1])
103
+
104
+ names = descriptor.names
105
+ ordered_fields = [fields[x] + (x,) for x in names]
106
+ result = []
107
+ offset = 0
108
+ for field in ordered_fields:
109
+ if field[1] > offset:
110
+ num = field[1] - offset
111
+ result.append(('', f'|V{num}'))
112
+ offset += num
113
+ elif field[1] < offset:
114
+ raise ValueError(
115
+ "dtype.descr is not defined for types with overlapping or "
116
+ "out-of-order fields")
117
+ if len(field) > 3:
118
+ name = (field[2], field[3])
119
+ else:
120
+ name = field[2]
121
+ if field[0].subdtype:
122
+ tup = (name, _array_descr(field[0].subdtype[0]),
123
+ field[0].subdtype[1])
124
+ else:
125
+ tup = (name, _array_descr(field[0]))
126
+ offset += field[0].itemsize
127
+ result.append(tup)
128
+
129
+ if descriptor.itemsize > offset:
130
+ num = descriptor.itemsize - offset
131
+ result.append(('', f'|V{num}'))
132
+
133
+ return result
134
+
135
+ # Build a new array from the information in a pickle.
136
+ # Note that the name numpy.core._internal._reconstruct is embedded in
137
+ # pickles of ndarrays made with NumPy before release 1.0
138
+ # so don't remove the name here, or you'll
139
+ # break backward compatibility.
140
+ def _reconstruct(subtype, shape, dtype):
141
+ return ndarray.__new__(subtype, shape, dtype)
142
+
143
+
144
+ # format_re was originally from numarray by J. Todd Miller
145
+
146
+ format_re = re.compile(r'(?P<order1>[<>|=]?)'
147
+ r'(?P<repeats> *[(]?[ ,0-9]*[)]? *)'
148
+ r'(?P<order2>[<>|=]?)'
149
+ r'(?P<dtype>[A-Za-z0-9.?]*(?:\[[a-zA-Z0-9,.]+\])?)')
150
+ sep_re = re.compile(r'\s*,\s*')
151
+ space_re = re.compile(r'\s+$')
152
+
153
+ # astr is a string (perhaps comma separated)
154
+
155
+ _convorder = {'=': _nbo}
156
+
157
+ def _commastring(astr):
158
+ startindex = 0
159
+ result = []
160
+ while startindex < len(astr):
161
+ mo = format_re.match(astr, pos=startindex)
162
+ try:
163
+ (order1, repeats, order2, dtype) = mo.groups()
164
+ except (TypeError, AttributeError):
165
+ raise ValueError(
166
+ f'format number {len(result)+1} of "{astr}" is not recognized'
167
+ ) from None
168
+ startindex = mo.end()
169
+ # Separator or ending padding
170
+ if startindex < len(astr):
171
+ if space_re.match(astr, pos=startindex):
172
+ startindex = len(astr)
173
+ else:
174
+ mo = sep_re.match(astr, pos=startindex)
175
+ if not mo:
176
+ raise ValueError(
177
+ 'format number %d of "%s" is not recognized' %
178
+ (len(result)+1, astr))
179
+ startindex = mo.end()
180
+
181
+ if order2 == '':
182
+ order = order1
183
+ elif order1 == '':
184
+ order = order2
185
+ else:
186
+ order1 = _convorder.get(order1, order1)
187
+ order2 = _convorder.get(order2, order2)
188
+ if (order1 != order2):
189
+ raise ValueError(
190
+ 'inconsistent byte-order specification %s and %s' %
191
+ (order1, order2))
192
+ order = order1
193
+
194
+ if order in ('|', '=', _nbo):
195
+ order = ''
196
+ dtype = order + dtype
197
+ if (repeats == ''):
198
+ newitem = dtype
199
+ else:
200
+ newitem = (dtype, ast.literal_eval(repeats))
201
+ result.append(newitem)
202
+
203
+ return result
204
+
205
+ class dummy_ctype:
206
+ def __init__(self, cls):
207
+ self._cls = cls
208
+ def __mul__(self, other):
209
+ return self
210
+ def __call__(self, *other):
211
+ return self._cls(other)
212
+ def __eq__(self, other):
213
+ return self._cls == other._cls
214
+ def __ne__(self, other):
215
+ return self._cls != other._cls
216
+
217
+ def _getintp_ctype():
218
+ val = _getintp_ctype.cache
219
+ if val is not None:
220
+ return val
221
+ if ctypes is None:
222
+ import numpy as np
223
+ val = dummy_ctype(np.intp)
224
+ else:
225
+ char = dtype('p').char
226
+ if char == 'i':
227
+ val = ctypes.c_int
228
+ elif char == 'l':
229
+ val = ctypes.c_long
230
+ elif char == 'q':
231
+ val = ctypes.c_longlong
232
+ else:
233
+ val = ctypes.c_long
234
+ _getintp_ctype.cache = val
235
+ return val
236
+ _getintp_ctype.cache = None
237
+
238
+ # Used for .ctypes attribute of ndarray
239
+
240
+ class _missing_ctypes:
241
+ def cast(self, num, obj):
242
+ return num.value
243
+
244
+ class c_void_p:
245
+ def __init__(self, ptr):
246
+ self.value = ptr
247
+
248
+
249
+ class _ctypes:
250
+ def __init__(self, array, ptr=None):
251
+ self._arr = array
252
+
253
+ if ctypes:
254
+ self._ctypes = ctypes
255
+ self._data = self._ctypes.c_void_p(ptr)
256
+ else:
257
+ # fake a pointer-like object that holds onto the reference
258
+ self._ctypes = _missing_ctypes()
259
+ self._data = self._ctypes.c_void_p(ptr)
260
+ self._data._objects = array
261
+
262
+ if self._arr.ndim == 0:
263
+ self._zerod = True
264
+ else:
265
+ self._zerod = False
266
+
267
+ def data_as(self, obj):
268
+ """
269
+ Return the data pointer cast to a particular c-types object.
270
+ For example, calling ``self._as_parameter_`` is equivalent to
271
+ ``self.data_as(ctypes.c_void_p)``. Perhaps you want to use the data as a
272
+ pointer to a ctypes array of floating-point data:
273
+ ``self.data_as(ctypes.POINTER(ctypes.c_double))``.
274
+
275
+ The returned pointer will keep a reference to the array.
276
+ """
277
+ # _ctypes.cast function causes a circular reference of self._data in
278
+ # self._data._objects. Attributes of self._data cannot be released
279
+ # until gc.collect is called. Make a copy of the pointer first then let
280
+ # it hold the array reference. This is a workaround to circumvent the
281
+ # CPython bug https://bugs.python.org/issue12836
282
+ ptr = self._ctypes.cast(self._data, obj)
283
+ ptr._arr = self._arr
284
+ return ptr
285
+
286
+ def shape_as(self, obj):
287
+ """
288
+ Return the shape tuple as an array of some other c-types
289
+ type. For example: ``self.shape_as(ctypes.c_short)``.
290
+ """
291
+ if self._zerod:
292
+ return None
293
+ return (obj*self._arr.ndim)(*self._arr.shape)
294
+
295
+ def strides_as(self, obj):
296
+ """
297
+ Return the strides tuple as an array of some other
298
+ c-types type. For example: ``self.strides_as(ctypes.c_longlong)``.
299
+ """
300
+ if self._zerod:
301
+ return None
302
+ return (obj*self._arr.ndim)(*self._arr.strides)
303
+
304
+ @property
305
+ def data(self):
306
+ """
307
+ A pointer to the memory area of the array as a Python integer.
308
+ This memory area may contain data that is not aligned, or not in correct
309
+ byte-order. The memory area may not even be writeable. The array
310
+ flags and data-type of this array should be respected when passing this
311
+ attribute to arbitrary C-code to avoid trouble that can include Python
312
+ crashing. User Beware! The value of this attribute is exactly the same
313
+ as ``self._array_interface_['data'][0]``.
314
+
315
+ Note that unlike ``data_as``, a reference will not be kept to the array:
316
+ code like ``ctypes.c_void_p((a + b).ctypes.data)`` will result in a
317
+ pointer to a deallocated array, and should be spelt
318
+ ``(a + b).ctypes.data_as(ctypes.c_void_p)``
319
+ """
320
+ return self._data.value
321
+
322
+ @property
323
+ def shape(self):
324
+ """
325
+ (c_intp*self.ndim): A ctypes array of length self.ndim where
326
+ the basetype is the C-integer corresponding to ``dtype('p')`` on this
327
+ platform (see `~numpy.ctypeslib.c_intp`). This base-type could be
328
+ `ctypes.c_int`, `ctypes.c_long`, or `ctypes.c_longlong` depending on
329
+ the platform. The ctypes array contains the shape of
330
+ the underlying array.
331
+ """
332
+ return self.shape_as(_getintp_ctype())
333
+
334
+ @property
335
+ def strides(self):
336
+ """
337
+ (c_intp*self.ndim): A ctypes array of length self.ndim where
338
+ the basetype is the same as for the shape attribute. This ctypes array
339
+ contains the strides information from the underlying array. This strides
340
+ information is important for showing how many bytes must be jumped to
341
+ get to the next element in the array.
342
+ """
343
+ return self.strides_as(_getintp_ctype())
344
+
345
+ @property
346
+ def _as_parameter_(self):
347
+ """
348
+ Overrides the ctypes semi-magic method
349
+
350
+ Enables `c_func(some_array.ctypes)`
351
+ """
352
+ return self.data_as(ctypes.c_void_p)
353
+
354
+ # Numpy 1.21.0, 2021-05-18
355
+
356
+ def get_data(self):
357
+ """Deprecated getter for the `_ctypes.data` property.
358
+
359
+ .. deprecated:: 1.21
360
+ """
361
+ warnings.warn('"get_data" is deprecated. Use "data" instead',
362
+ DeprecationWarning, stacklevel=2)
363
+ return self.data
364
+
365
+ def get_shape(self):
366
+ """Deprecated getter for the `_ctypes.shape` property.
367
+
368
+ .. deprecated:: 1.21
369
+ """
370
+ warnings.warn('"get_shape" is deprecated. Use "shape" instead',
371
+ DeprecationWarning, stacklevel=2)
372
+ return self.shape
373
+
374
+ def get_strides(self):
375
+ """Deprecated getter for the `_ctypes.strides` property.
376
+
377
+ .. deprecated:: 1.21
378
+ """
379
+ warnings.warn('"get_strides" is deprecated. Use "strides" instead',
380
+ DeprecationWarning, stacklevel=2)
381
+ return self.strides
382
+
383
+ def get_as_parameter(self):
384
+ """Deprecated getter for the `_ctypes._as_parameter_` property.
385
+
386
+ .. deprecated:: 1.21
387
+ """
388
+ warnings.warn(
389
+ '"get_as_parameter" is deprecated. Use "_as_parameter_" instead',
390
+ DeprecationWarning, stacklevel=2,
391
+ )
392
+ return self._as_parameter_
393
+
394
+
395
+ def _newnames(datatype, order):
396
+ """
397
+ Given a datatype and an order object, return a new names tuple, with the
398
+ order indicated
399
+ """
400
+ oldnames = datatype.names
401
+ nameslist = list(oldnames)
402
+ if isinstance(order, str):
403
+ order = [order]
404
+ seen = set()
405
+ if isinstance(order, (list, tuple)):
406
+ for name in order:
407
+ try:
408
+ nameslist.remove(name)
409
+ except ValueError:
410
+ if name in seen:
411
+ raise ValueError(f"duplicate field name: {name}") from None
412
+ else:
413
+ raise ValueError(f"unknown field name: {name}") from None
414
+ seen.add(name)
415
+ return tuple(list(order) + nameslist)
416
+ raise ValueError(f"unsupported order value: {order}")
417
+
418
+ def _copy_fields(ary):
419
+ """Return copy of structured array with padding between fields removed.
420
+
421
+ Parameters
422
+ ----------
423
+ ary : ndarray
424
+ Structured array from which to remove padding bytes
425
+
426
+ Returns
427
+ -------
428
+ ary_copy : ndarray
429
+ Copy of ary with padding bytes removed
430
+ """
431
+ dt = ary.dtype
432
+ copy_dtype = {'names': dt.names,
433
+ 'formats': [dt.fields[name][0] for name in dt.names]}
434
+ return array(ary, dtype=copy_dtype, copy=True)
435
+
436
+ def _promote_fields(dt1, dt2):
437
+ """ Perform type promotion for two structured dtypes.
438
+
439
+ Parameters
440
+ ----------
441
+ dt1 : structured dtype
442
+ First dtype.
443
+ dt2 : structured dtype
444
+ Second dtype.
445
+
446
+ Returns
447
+ -------
448
+ out : dtype
449
+ The promoted dtype
450
+
451
+ Notes
452
+ -----
453
+ If one of the inputs is aligned, the result will be. The titles of
454
+ both descriptors must match (point to the same field).
455
+ """
456
+ # Both must be structured and have the same names in the same order
457
+ if (dt1.names is None or dt2.names is None) or dt1.names != dt2.names:
458
+ raise DTypePromotionError(
459
+ f"field names `{dt1.names}` and `{dt2.names}` mismatch.")
460
+
461
+ # if both are identical, we can (maybe!) just return the same dtype.
462
+ identical = dt1 is dt2
463
+ new_fields = []
464
+ for name in dt1.names:
465
+ field1 = dt1.fields[name]
466
+ field2 = dt2.fields[name]
467
+ new_descr = promote_types(field1[0], field2[0])
468
+ identical = identical and new_descr is field1[0]
469
+
470
+ # Check that the titles match (if given):
471
+ if field1[2:] != field2[2:]:
472
+ raise DTypePromotionError(
473
+ f"field titles of field '{name}' mismatch")
474
+ if len(field1) == 2:
475
+ new_fields.append((name, new_descr))
476
+ else:
477
+ new_fields.append(((field1[2], name), new_descr))
478
+
479
+ res = dtype(new_fields, align=dt1.isalignedstruct or dt2.isalignedstruct)
480
+
481
+ # Might as well preserve identity (and metadata) if the dtype is identical
482
+ # and the itemsize, offsets are also unmodified. This could probably be
483
+ # sped up, but also probably just be removed entirely.
484
+ if identical and res.itemsize == dt1.itemsize:
485
+ for name in dt1.names:
486
+ if dt1.fields[name][1] != res.fields[name][1]:
487
+ return res # the dtype changed.
488
+ return dt1
489
+
490
+ return res
491
+
492
+
493
+ def _getfield_is_safe(oldtype, newtype, offset):
494
+ """ Checks safety of getfield for object arrays.
495
+
496
+ As in _view_is_safe, we need to check that memory containing objects is not
497
+ reinterpreted as a non-object datatype and vice versa.
498
+
499
+ Parameters
500
+ ----------
501
+ oldtype : data-type
502
+ Data type of the original ndarray.
503
+ newtype : data-type
504
+ Data type of the field being accessed by ndarray.getfield
505
+ offset : int
506
+ Offset of the field being accessed by ndarray.getfield
507
+
508
+ Raises
509
+ ------
510
+ TypeError
511
+ If the field access is invalid
512
+
513
+ """
514
+ if newtype.hasobject or oldtype.hasobject:
515
+ if offset == 0 and newtype == oldtype:
516
+ return
517
+ if oldtype.names is not None:
518
+ for name in oldtype.names:
519
+ if (oldtype.fields[name][1] == offset and
520
+ oldtype.fields[name][0] == newtype):
521
+ return
522
+ raise TypeError("Cannot get/set field of an object array")
523
+ return
524
+
525
+ def _view_is_safe(oldtype, newtype):
526
+ """ Checks safety of a view involving object arrays, for example when
527
+ doing::
528
+
529
+ np.zeros(10, dtype=oldtype).view(newtype)
530
+
531
+ Parameters
532
+ ----------
533
+ oldtype : data-type
534
+ Data type of original ndarray
535
+ newtype : data-type
536
+ Data type of the view
537
+
538
+ Raises
539
+ ------
540
+ TypeError
541
+ If the new type is incompatible with the old type.
542
+
543
+ """
544
+
545
+ # if the types are equivalent, there is no problem.
546
+ # for example: dtype((np.record, 'i4,i4')) == dtype((np.void, 'i4,i4'))
547
+ if oldtype == newtype:
548
+ return
549
+
550
+ if newtype.hasobject or oldtype.hasobject:
551
+ raise TypeError("Cannot change data-type for object array.")
552
+ return
553
+
554
+ # Given a string containing a PEP 3118 format specifier,
555
+ # construct a NumPy dtype
556
+
557
+ _pep3118_native_map = {
558
+ '?': '?',
559
+ 'c': 'S1',
560
+ 'b': 'b',
561
+ 'B': 'B',
562
+ 'h': 'h',
563
+ 'H': 'H',
564
+ 'i': 'i',
565
+ 'I': 'I',
566
+ 'l': 'l',
567
+ 'L': 'L',
568
+ 'q': 'q',
569
+ 'Q': 'Q',
570
+ 'e': 'e',
571
+ 'f': 'f',
572
+ 'd': 'd',
573
+ 'g': 'g',
574
+ 'Zf': 'F',
575
+ 'Zd': 'D',
576
+ 'Zg': 'G',
577
+ 's': 'S',
578
+ 'w': 'U',
579
+ 'O': 'O',
580
+ 'x': 'V', # padding
581
+ }
582
+ _pep3118_native_typechars = ''.join(_pep3118_native_map.keys())
583
+
584
+ _pep3118_standard_map = {
585
+ '?': '?',
586
+ 'c': 'S1',
587
+ 'b': 'b',
588
+ 'B': 'B',
589
+ 'h': 'i2',
590
+ 'H': 'u2',
591
+ 'i': 'i4',
592
+ 'I': 'u4',
593
+ 'l': 'i4',
594
+ 'L': 'u4',
595
+ 'q': 'i8',
596
+ 'Q': 'u8',
597
+ 'e': 'f2',
598
+ 'f': 'f',
599
+ 'd': 'd',
600
+ 'Zf': 'F',
601
+ 'Zd': 'D',
602
+ 's': 'S',
603
+ 'w': 'U',
604
+ 'O': 'O',
605
+ 'x': 'V', # padding
606
+ }
607
+ _pep3118_standard_typechars = ''.join(_pep3118_standard_map.keys())
608
+
609
+ _pep3118_unsupported_map = {
610
+ 'u': 'UCS-2 strings',
611
+ '&': 'pointers',
612
+ 't': 'bitfields',
613
+ 'X': 'function pointers',
614
+ }
615
+
616
+ class _Stream:
617
+ def __init__(self, s):
618
+ self.s = s
619
+ self.byteorder = '@'
620
+
621
+ def advance(self, n):
622
+ res = self.s[:n]
623
+ self.s = self.s[n:]
624
+ return res
625
+
626
+ def consume(self, c):
627
+ if self.s[:len(c)] == c:
628
+ self.advance(len(c))
629
+ return True
630
+ return False
631
+
632
+ def consume_until(self, c):
633
+ if callable(c):
634
+ i = 0
635
+ while i < len(self.s) and not c(self.s[i]):
636
+ i = i + 1
637
+ return self.advance(i)
638
+ else:
639
+ i = self.s.index(c)
640
+ res = self.advance(i)
641
+ self.advance(len(c))
642
+ return res
643
+
644
+ @property
645
+ def next(self):
646
+ return self.s[0]
647
+
648
+ def __bool__(self):
649
+ return bool(self.s)
650
+
651
+
652
+ def _dtype_from_pep3118(spec):
653
+ stream = _Stream(spec)
654
+ dtype, align = __dtype_from_pep3118(stream, is_subdtype=False)
655
+ return dtype
656
+
657
+ def __dtype_from_pep3118(stream, is_subdtype):
658
+ field_spec = dict(
659
+ names=[],
660
+ formats=[],
661
+ offsets=[],
662
+ itemsize=0
663
+ )
664
+ offset = 0
665
+ common_alignment = 1
666
+ is_padding = False
667
+
668
+ # Parse spec
669
+ while stream:
670
+ value = None
671
+
672
+ # End of structure, bail out to upper level
673
+ if stream.consume('}'):
674
+ break
675
+
676
+ # Sub-arrays (1)
677
+ shape = None
678
+ if stream.consume('('):
679
+ shape = stream.consume_until(')')
680
+ shape = tuple(map(int, shape.split(',')))
681
+
682
+ # Byte order
683
+ if stream.next in ('@', '=', '<', '>', '^', '!'):
684
+ byteorder = stream.advance(1)
685
+ if byteorder == '!':
686
+ byteorder = '>'
687
+ stream.byteorder = byteorder
688
+
689
+ # Byte order characters also control native vs. standard type sizes
690
+ if stream.byteorder in ('@', '^'):
691
+ type_map = _pep3118_native_map
692
+ type_map_chars = _pep3118_native_typechars
693
+ else:
694
+ type_map = _pep3118_standard_map
695
+ type_map_chars = _pep3118_standard_typechars
696
+
697
+ # Item sizes
698
+ itemsize_str = stream.consume_until(lambda c: not c.isdigit())
699
+ if itemsize_str:
700
+ itemsize = int(itemsize_str)
701
+ else:
702
+ itemsize = 1
703
+
704
+ # Data types
705
+ is_padding = False
706
+
707
+ if stream.consume('T{'):
708
+ value, align = __dtype_from_pep3118(
709
+ stream, is_subdtype=True)
710
+ elif stream.next in type_map_chars:
711
+ if stream.next == 'Z':
712
+ typechar = stream.advance(2)
713
+ else:
714
+ typechar = stream.advance(1)
715
+
716
+ is_padding = (typechar == 'x')
717
+ dtypechar = type_map[typechar]
718
+ if dtypechar in 'USV':
719
+ dtypechar += '%d' % itemsize
720
+ itemsize = 1
721
+ numpy_byteorder = {'@': '=', '^': '='}.get(
722
+ stream.byteorder, stream.byteorder)
723
+ value = dtype(numpy_byteorder + dtypechar)
724
+ align = value.alignment
725
+ elif stream.next in _pep3118_unsupported_map:
726
+ desc = _pep3118_unsupported_map[stream.next]
727
+ raise NotImplementedError(
728
+ "Unrepresentable PEP 3118 data type {!r} ({})"
729
+ .format(stream.next, desc))
730
+ else:
731
+ raise ValueError("Unknown PEP 3118 data type specifier %r" % stream.s)
732
+
733
+ #
734
+ # Native alignment may require padding
735
+ #
736
+ # Here we assume that the presence of a '@' character implicitly implies
737
+ # that the start of the array is *already* aligned.
738
+ #
739
+ extra_offset = 0
740
+ if stream.byteorder == '@':
741
+ start_padding = (-offset) % align
742
+ intra_padding = (-value.itemsize) % align
743
+
744
+ offset += start_padding
745
+
746
+ if intra_padding != 0:
747
+ if itemsize > 1 or (shape is not None and _prod(shape) > 1):
748
+ # Inject internal padding to the end of the sub-item
749
+ value = _add_trailing_padding(value, intra_padding)
750
+ else:
751
+ # We can postpone the injection of internal padding,
752
+ # as the item appears at most once
753
+ extra_offset += intra_padding
754
+
755
+ # Update common alignment
756
+ common_alignment = _lcm(align, common_alignment)
757
+
758
+ # Convert itemsize to sub-array
759
+ if itemsize != 1:
760
+ value = dtype((value, (itemsize,)))
761
+
762
+ # Sub-arrays (2)
763
+ if shape is not None:
764
+ value = dtype((value, shape))
765
+
766
+ # Field name
767
+ if stream.consume(':'):
768
+ name = stream.consume_until(':')
769
+ else:
770
+ name = None
771
+
772
+ if not (is_padding and name is None):
773
+ if name is not None and name in field_spec['names']:
774
+ raise RuntimeError(f"Duplicate field name '{name}' in PEP3118 format")
775
+ field_spec['names'].append(name)
776
+ field_spec['formats'].append(value)
777
+ field_spec['offsets'].append(offset)
778
+
779
+ offset += value.itemsize
780
+ offset += extra_offset
781
+
782
+ field_spec['itemsize'] = offset
783
+
784
+ # extra final padding for aligned types
785
+ if stream.byteorder == '@':
786
+ field_spec['itemsize'] += (-offset) % common_alignment
787
+
788
+ # Check if this was a simple 1-item type, and unwrap it
789
+ if (field_spec['names'] == [None]
790
+ and field_spec['offsets'][0] == 0
791
+ and field_spec['itemsize'] == field_spec['formats'][0].itemsize
792
+ and not is_subdtype):
793
+ ret = field_spec['formats'][0]
794
+ else:
795
+ _fix_names(field_spec)
796
+ ret = dtype(field_spec)
797
+
798
+ # Finished
799
+ return ret, common_alignment
800
+
801
+ def _fix_names(field_spec):
802
+ """ Replace names which are None with the next unused f%d name """
803
+ names = field_spec['names']
804
+ for i, name in enumerate(names):
805
+ if name is not None:
806
+ continue
807
+
808
+ j = 0
809
+ while True:
810
+ name = f'f{j}'
811
+ if name not in names:
812
+ break
813
+ j = j + 1
814
+ names[i] = name
815
+
816
+ def _add_trailing_padding(value, padding):
817
+ """Inject the specified number of padding bytes at the end of a dtype"""
818
+ if value.fields is None:
819
+ field_spec = dict(
820
+ names=['f0'],
821
+ formats=[value],
822
+ offsets=[0],
823
+ itemsize=value.itemsize
824
+ )
825
+ else:
826
+ fields = value.fields
827
+ names = value.names
828
+ field_spec = dict(
829
+ names=names,
830
+ formats=[fields[name][0] for name in names],
831
+ offsets=[fields[name][1] for name in names],
832
+ itemsize=value.itemsize
833
+ )
834
+
835
+ field_spec['itemsize'] += padding
836
+ return dtype(field_spec)
837
+
838
+ def _prod(a):
839
+ p = 1
840
+ for x in a:
841
+ p *= x
842
+ return p
843
+
844
+ def _gcd(a, b):
845
+ """Calculate the greatest common divisor of a and b"""
846
+ while b:
847
+ a, b = b, a % b
848
+ return a
849
+
850
+ def _lcm(a, b):
851
+ return a // _gcd(a, b) * b
852
+
853
+ def array_ufunc_errmsg_formatter(dummy, ufunc, method, *inputs, **kwargs):
854
+ """ Format the error message for when __array_ufunc__ gives up. """
855
+ args_string = ', '.join(['{!r}'.format(arg) for arg in inputs] +
856
+ ['{}={!r}'.format(k, v)
857
+ for k, v in kwargs.items()])
858
+ args = inputs + kwargs.get('out', ())
859
+ types_string = ', '.join(repr(type(arg).__name__) for arg in args)
860
+ return ('operand type(s) all returned NotImplemented from '
861
+ '__array_ufunc__({!r}, {!r}, {}): {}'
862
+ .format(ufunc, method, args_string, types_string))
863
+
864
+
865
+ def array_function_errmsg_formatter(public_api, types):
866
+ """ Format the error message for when __array_ufunc__ gives up. """
867
+ func_name = '{}.{}'.format(public_api.__module__, public_api.__name__)
868
+ return ("no implementation found for '{}' on types that implement "
869
+ '__array_function__: {}'.format(func_name, list(types)))
870
+
871
+
872
+ def _ufunc_doc_signature_formatter(ufunc):
873
+ """
874
+ Builds a signature string which resembles PEP 457
875
+
876
+ This is used to construct the first line of the docstring
877
+ """
878
+
879
+ # input arguments are simple
880
+ if ufunc.nin == 1:
881
+ in_args = 'x'
882
+ else:
883
+ in_args = ', '.join(f'x{i+1}' for i in range(ufunc.nin))
884
+
885
+ # output arguments are both keyword or positional
886
+ if ufunc.nout == 0:
887
+ out_args = ', /, out=()'
888
+ elif ufunc.nout == 1:
889
+ out_args = ', /, out=None'
890
+ else:
891
+ out_args = '[, {positional}], / [, out={default}]'.format(
892
+ positional=', '.join(
893
+ 'out{}'.format(i+1) for i in range(ufunc.nout)),
894
+ default=repr((None,)*ufunc.nout)
895
+ )
896
+
897
+ # keyword only args depend on whether this is a gufunc
898
+ kwargs = (
899
+ ", casting='same_kind'"
900
+ ", order='K'"
901
+ ", dtype=None"
902
+ ", subok=True"
903
+ )
904
+
905
+ # NOTE: gufuncs may or may not support the `axis` parameter
906
+ if ufunc.signature is None:
907
+ kwargs = f", where=True{kwargs}[, signature, extobj]"
908
+ else:
909
+ kwargs += "[, signature, extobj, axes, axis]"
910
+
911
+ # join all the parts together
912
+ return '{name}({in_args}{out_args}, *{kwargs})'.format(
913
+ name=ufunc.__name__,
914
+ in_args=in_args,
915
+ out_args=out_args,
916
+ kwargs=kwargs
917
+ )
918
+
919
+
920
+ def npy_ctypes_check(cls):
921
+ # determine if a class comes from ctypes, in order to work around
922
+ # a bug in the buffer protocol for those objects, bpo-10746
923
+ try:
924
+ # ctypes class are new-style, so have an __mro__. This probably fails
925
+ # for ctypes classes with multiple inheritance.
926
+ if IS_PYPY:
927
+ # (..., _ctypes.basics._CData, Bufferable, object)
928
+ ctype_base = cls.__mro__[-3]
929
+ else:
930
+ # # (..., _ctypes._CData, object)
931
+ ctype_base = cls.__mro__[-2]
932
+ # right now, they're part of the _ctypes module
933
+ return '_ctypes' in ctype_base.__module__
934
+ except Exception:
935
+ return False
env-llmeval/lib/python3.10/site-packages/numpy/core/_internal.pyi ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Any, TypeVar, overload, Generic
2
+ import ctypes as ct
3
+
4
+ from numpy import ndarray
5
+ from numpy.ctypeslib import c_intp
6
+
7
+ _CastT = TypeVar("_CastT", bound=ct._CanCastTo) # Copied from `ctypes.cast`
8
+ _CT = TypeVar("_CT", bound=ct._CData)
9
+ _PT = TypeVar("_PT", bound=None | int)
10
+
11
+ # TODO: Let the likes of `shape_as` and `strides_as` return `None`
12
+ # for 0D arrays once we've got shape-support
13
+
14
+ class _ctypes(Generic[_PT]):
15
+ @overload
16
+ def __new__(cls, array: ndarray[Any, Any], ptr: None = ...) -> _ctypes[None]: ...
17
+ @overload
18
+ def __new__(cls, array: ndarray[Any, Any], ptr: _PT) -> _ctypes[_PT]: ...
19
+ @property
20
+ def data(self) -> _PT: ...
21
+ @property
22
+ def shape(self) -> ct.Array[c_intp]: ...
23
+ @property
24
+ def strides(self) -> ct.Array[c_intp]: ...
25
+ @property
26
+ def _as_parameter_(self) -> ct.c_void_p: ...
27
+
28
+ def data_as(self, obj: type[_CastT]) -> _CastT: ...
29
+ def shape_as(self, obj: type[_CT]) -> ct.Array[_CT]: ...
30
+ def strides_as(self, obj: type[_CT]) -> ct.Array[_CT]: ...
env-llmeval/lib/python3.10/site-packages/numpy/core/_methods.py ADDED
@@ -0,0 +1,234 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Array methods which are called by both the C-code for the method
3
+ and the Python code for the NumPy-namespace function
4
+
5
+ """
6
+ import warnings
7
+ from contextlib import nullcontext
8
+
9
+ from numpy.core import multiarray as mu
10
+ from numpy.core import umath as um
11
+ from numpy.core.multiarray import asanyarray
12
+ from numpy.core import numerictypes as nt
13
+ from numpy.core import _exceptions
14
+ from numpy.core._ufunc_config import _no_nep50_warning
15
+ from numpy._globals import _NoValue
16
+ from numpy.compat import pickle, os_fspath
17
+
18
+ # save those O(100) nanoseconds!
19
+ umr_maximum = um.maximum.reduce
20
+ umr_minimum = um.minimum.reduce
21
+ umr_sum = um.add.reduce
22
+ umr_prod = um.multiply.reduce
23
+ umr_any = um.logical_or.reduce
24
+ umr_all = um.logical_and.reduce
25
+
26
+ # Complex types to -> (2,)float view for fast-path computation in _var()
27
+ _complex_to_float = {
28
+ nt.dtype(nt.csingle) : nt.dtype(nt.single),
29
+ nt.dtype(nt.cdouble) : nt.dtype(nt.double),
30
+ }
31
+ # Special case for windows: ensure double takes precedence
32
+ if nt.dtype(nt.longdouble) != nt.dtype(nt.double):
33
+ _complex_to_float.update({
34
+ nt.dtype(nt.clongdouble) : nt.dtype(nt.longdouble),
35
+ })
36
+
37
+ # avoid keyword arguments to speed up parsing, saves about 15%-20% for very
38
+ # small reductions
39
+ def _amax(a, axis=None, out=None, keepdims=False,
40
+ initial=_NoValue, where=True):
41
+ return umr_maximum(a, axis, None, out, keepdims, initial, where)
42
+
43
+ def _amin(a, axis=None, out=None, keepdims=False,
44
+ initial=_NoValue, where=True):
45
+ return umr_minimum(a, axis, None, out, keepdims, initial, where)
46
+
47
+ def _sum(a, axis=None, dtype=None, out=None, keepdims=False,
48
+ initial=_NoValue, where=True):
49
+ return umr_sum(a, axis, dtype, out, keepdims, initial, where)
50
+
51
+ def _prod(a, axis=None, dtype=None, out=None, keepdims=False,
52
+ initial=_NoValue, where=True):
53
+ return umr_prod(a, axis, dtype, out, keepdims, initial, where)
54
+
55
+ def _any(a, axis=None, dtype=None, out=None, keepdims=False, *, where=True):
56
+ # Parsing keyword arguments is currently fairly slow, so avoid it for now
57
+ if where is True:
58
+ return umr_any(a, axis, dtype, out, keepdims)
59
+ return umr_any(a, axis, dtype, out, keepdims, where=where)
60
+
61
+ def _all(a, axis=None, dtype=None, out=None, keepdims=False, *, where=True):
62
+ # Parsing keyword arguments is currently fairly slow, so avoid it for now
63
+ if where is True:
64
+ return umr_all(a, axis, dtype, out, keepdims)
65
+ return umr_all(a, axis, dtype, out, keepdims, where=where)
66
+
67
+ def _count_reduce_items(arr, axis, keepdims=False, where=True):
68
+ # fast-path for the default case
69
+ if where is True:
70
+ # no boolean mask given, calculate items according to axis
71
+ if axis is None:
72
+ axis = tuple(range(arr.ndim))
73
+ elif not isinstance(axis, tuple):
74
+ axis = (axis,)
75
+ items = 1
76
+ for ax in axis:
77
+ items *= arr.shape[mu.normalize_axis_index(ax, arr.ndim)]
78
+ items = nt.intp(items)
79
+ else:
80
+ # TODO: Optimize case when `where` is broadcast along a non-reduction
81
+ # axis and full sum is more excessive than needed.
82
+
83
+ # guarded to protect circular imports
84
+ from numpy.lib.stride_tricks import broadcast_to
85
+ # count True values in (potentially broadcasted) boolean mask
86
+ items = umr_sum(broadcast_to(where, arr.shape), axis, nt.intp, None,
87
+ keepdims)
88
+ return items
89
+
90
+ def _clip(a, min=None, max=None, out=None, **kwargs):
91
+ if min is None and max is None:
92
+ raise ValueError("One of max or min must be given")
93
+
94
+ if min is None:
95
+ return um.minimum(a, max, out=out, **kwargs)
96
+ elif max is None:
97
+ return um.maximum(a, min, out=out, **kwargs)
98
+ else:
99
+ return um.clip(a, min, max, out=out, **kwargs)
100
+
101
+ def _mean(a, axis=None, dtype=None, out=None, keepdims=False, *, where=True):
102
+ arr = asanyarray(a)
103
+
104
+ is_float16_result = False
105
+
106
+ rcount = _count_reduce_items(arr, axis, keepdims=keepdims, where=where)
107
+ if rcount == 0 if where is True else umr_any(rcount == 0, axis=None):
108
+ warnings.warn("Mean of empty slice.", RuntimeWarning, stacklevel=2)
109
+
110
+ # Cast bool, unsigned int, and int to float64 by default
111
+ if dtype is None:
112
+ if issubclass(arr.dtype.type, (nt.integer, nt.bool_)):
113
+ dtype = mu.dtype('f8')
114
+ elif issubclass(arr.dtype.type, nt.float16):
115
+ dtype = mu.dtype('f4')
116
+ is_float16_result = True
117
+
118
+ ret = umr_sum(arr, axis, dtype, out, keepdims, where=where)
119
+ if isinstance(ret, mu.ndarray):
120
+ with _no_nep50_warning():
121
+ ret = um.true_divide(
122
+ ret, rcount, out=ret, casting='unsafe', subok=False)
123
+ if is_float16_result and out is None:
124
+ ret = arr.dtype.type(ret)
125
+ elif hasattr(ret, 'dtype'):
126
+ if is_float16_result:
127
+ ret = arr.dtype.type(ret / rcount)
128
+ else:
129
+ ret = ret.dtype.type(ret / rcount)
130
+ else:
131
+ ret = ret / rcount
132
+
133
+ return ret
134
+
135
+ def _var(a, axis=None, dtype=None, out=None, ddof=0, keepdims=False, *,
136
+ where=True):
137
+ arr = asanyarray(a)
138
+
139
+ rcount = _count_reduce_items(arr, axis, keepdims=keepdims, where=where)
140
+ # Make this warning show up on top.
141
+ if ddof >= rcount if where is True else umr_any(ddof >= rcount, axis=None):
142
+ warnings.warn("Degrees of freedom <= 0 for slice", RuntimeWarning,
143
+ stacklevel=2)
144
+
145
+ # Cast bool, unsigned int, and int to float64 by default
146
+ if dtype is None and issubclass(arr.dtype.type, (nt.integer, nt.bool_)):
147
+ dtype = mu.dtype('f8')
148
+
149
+ # Compute the mean.
150
+ # Note that if dtype is not of inexact type then arraymean will
151
+ # not be either.
152
+ arrmean = umr_sum(arr, axis, dtype, keepdims=True, where=where)
153
+ # The shape of rcount has to match arrmean to not change the shape of out
154
+ # in broadcasting. Otherwise, it cannot be stored back to arrmean.
155
+ if rcount.ndim == 0:
156
+ # fast-path for default case when where is True
157
+ div = rcount
158
+ else:
159
+ # matching rcount to arrmean when where is specified as array
160
+ div = rcount.reshape(arrmean.shape)
161
+ if isinstance(arrmean, mu.ndarray):
162
+ with _no_nep50_warning():
163
+ arrmean = um.true_divide(arrmean, div, out=arrmean,
164
+ casting='unsafe', subok=False)
165
+ elif hasattr(arrmean, "dtype"):
166
+ arrmean = arrmean.dtype.type(arrmean / rcount)
167
+ else:
168
+ arrmean = arrmean / rcount
169
+
170
+ # Compute sum of squared deviations from mean
171
+ # Note that x may not be inexact and that we need it to be an array,
172
+ # not a scalar.
173
+ x = asanyarray(arr - arrmean)
174
+
175
+ if issubclass(arr.dtype.type, (nt.floating, nt.integer)):
176
+ x = um.multiply(x, x, out=x)
177
+ # Fast-paths for built-in complex types
178
+ elif x.dtype in _complex_to_float:
179
+ xv = x.view(dtype=(_complex_to_float[x.dtype], (2,)))
180
+ um.multiply(xv, xv, out=xv)
181
+ x = um.add(xv[..., 0], xv[..., 1], out=x.real).real
182
+ # Most general case; includes handling object arrays containing imaginary
183
+ # numbers and complex types with non-native byteorder
184
+ else:
185
+ x = um.multiply(x, um.conjugate(x), out=x).real
186
+
187
+ ret = umr_sum(x, axis, dtype, out, keepdims=keepdims, where=where)
188
+
189
+ # Compute degrees of freedom and make sure it is not negative.
190
+ rcount = um.maximum(rcount - ddof, 0)
191
+
192
+ # divide by degrees of freedom
193
+ if isinstance(ret, mu.ndarray):
194
+ with _no_nep50_warning():
195
+ ret = um.true_divide(
196
+ ret, rcount, out=ret, casting='unsafe', subok=False)
197
+ elif hasattr(ret, 'dtype'):
198
+ ret = ret.dtype.type(ret / rcount)
199
+ else:
200
+ ret = ret / rcount
201
+
202
+ return ret
203
+
204
+ def _std(a, axis=None, dtype=None, out=None, ddof=0, keepdims=False, *,
205
+ where=True):
206
+ ret = _var(a, axis=axis, dtype=dtype, out=out, ddof=ddof,
207
+ keepdims=keepdims, where=where)
208
+
209
+ if isinstance(ret, mu.ndarray):
210
+ ret = um.sqrt(ret, out=ret)
211
+ elif hasattr(ret, 'dtype'):
212
+ ret = ret.dtype.type(um.sqrt(ret))
213
+ else:
214
+ ret = um.sqrt(ret)
215
+
216
+ return ret
217
+
218
+ def _ptp(a, axis=None, out=None, keepdims=False):
219
+ return um.subtract(
220
+ umr_maximum(a, axis, None, out, keepdims),
221
+ umr_minimum(a, axis, None, None, keepdims),
222
+ out
223
+ )
224
+
225
+ def _dump(self, file, protocol=2):
226
+ if hasattr(file, 'write'):
227
+ ctx = nullcontext(file)
228
+ else:
229
+ ctx = open(os_fspath(file), "wb")
230
+ with ctx as f:
231
+ pickle.dump(self, f, protocol=protocol)
232
+
233
+ def _dumps(self, protocol=2):
234
+ return pickle.dumps(self, protocol=protocol)
env-llmeval/lib/python3.10/site-packages/numpy/core/_multiarray_tests.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (176 kB). View file
 
env-llmeval/lib/python3.10/site-packages/numpy/core/_struct_ufunc_tests.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (17 kB). View file
 
env-llmeval/lib/python3.10/site-packages/numpy/core/_type_aliases.py ADDED
@@ -0,0 +1,245 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Due to compatibility, numpy has a very large number of different naming
3
+ conventions for the scalar types (those subclassing from `numpy.generic`).
4
+ This file produces a convoluted set of dictionaries mapping names to types,
5
+ and sometimes other mappings too.
6
+
7
+ .. data:: allTypes
8
+ A dictionary of names to types that will be exposed as attributes through
9
+ ``np.core.numerictypes.*``
10
+
11
+ .. data:: sctypeDict
12
+ Similar to `allTypes`, but maps a broader set of aliases to their types.
13
+
14
+ .. data:: sctypes
15
+ A dictionary keyed by a "type group" string, providing a list of types
16
+ under that group.
17
+
18
+ """
19
+
20
+ from numpy.compat import unicode
21
+ from numpy.core._string_helpers import english_lower
22
+ from numpy.core.multiarray import typeinfo, dtype
23
+ from numpy.core._dtype import _kind_name
24
+
25
+
26
+ sctypeDict = {} # Contains all leaf-node scalar types with aliases
27
+ allTypes = {} # Collect the types we will add to the module
28
+
29
+
30
+ # separate the actual type info from the abstract base classes
31
+ _abstract_types = {}
32
+ _concrete_typeinfo = {}
33
+ for k, v in typeinfo.items():
34
+ # make all the keys lowercase too
35
+ k = english_lower(k)
36
+ if isinstance(v, type):
37
+ _abstract_types[k] = v
38
+ else:
39
+ _concrete_typeinfo[k] = v
40
+
41
+ _concrete_types = {v.type for k, v in _concrete_typeinfo.items()}
42
+
43
+
44
+ def _bits_of(obj):
45
+ try:
46
+ info = next(v for v in _concrete_typeinfo.values() if v.type is obj)
47
+ except StopIteration:
48
+ if obj in _abstract_types.values():
49
+ msg = "Cannot count the bits of an abstract type"
50
+ raise ValueError(msg) from None
51
+
52
+ # some third-party type - make a best-guess
53
+ return dtype(obj).itemsize * 8
54
+ else:
55
+ return info.bits
56
+
57
+
58
+ def bitname(obj):
59
+ """Return a bit-width name for a given type object"""
60
+ bits = _bits_of(obj)
61
+ dt = dtype(obj)
62
+ char = dt.kind
63
+ base = _kind_name(dt)
64
+
65
+ if base == 'object':
66
+ bits = 0
67
+
68
+ if bits != 0:
69
+ char = "%s%d" % (char, bits // 8)
70
+
71
+ return base, bits, char
72
+
73
+
74
+ def _add_types():
75
+ for name, info in _concrete_typeinfo.items():
76
+ # define C-name and insert typenum and typechar references also
77
+ allTypes[name] = info.type
78
+ sctypeDict[name] = info.type
79
+ sctypeDict[info.char] = info.type
80
+ sctypeDict[info.num] = info.type
81
+
82
+ for name, cls in _abstract_types.items():
83
+ allTypes[name] = cls
84
+ _add_types()
85
+
86
+ # This is the priority order used to assign the bit-sized NPY_INTxx names, which
87
+ # must match the order in npy_common.h in order for NPY_INTxx and np.intxx to be
88
+ # consistent.
89
+ # If two C types have the same size, then the earliest one in this list is used
90
+ # as the sized name.
91
+ _int_ctypes = ['long', 'longlong', 'int', 'short', 'byte']
92
+ _uint_ctypes = list('u' + t for t in _int_ctypes)
93
+
94
+ def _add_aliases():
95
+ for name, info in _concrete_typeinfo.items():
96
+ # these are handled by _add_integer_aliases
97
+ if name in _int_ctypes or name in _uint_ctypes:
98
+ continue
99
+
100
+ # insert bit-width version for this class (if relevant)
101
+ base, bit, char = bitname(info.type)
102
+
103
+ myname = "%s%d" % (base, bit)
104
+
105
+ # ensure that (c)longdouble does not overwrite the aliases assigned to
106
+ # (c)double
107
+ if name in ('longdouble', 'clongdouble') and myname in allTypes:
108
+ continue
109
+
110
+ # Add to the main namespace if desired:
111
+ if bit != 0 and base != "bool":
112
+ allTypes[myname] = info.type
113
+
114
+ # add forward, reverse, and string mapping to numarray
115
+ sctypeDict[char] = info.type
116
+
117
+ # add mapping for both the bit name
118
+ sctypeDict[myname] = info.type
119
+
120
+
121
+ _add_aliases()
122
+
123
+ def _add_integer_aliases():
124
+ seen_bits = set()
125
+ for i_ctype, u_ctype in zip(_int_ctypes, _uint_ctypes):
126
+ i_info = _concrete_typeinfo[i_ctype]
127
+ u_info = _concrete_typeinfo[u_ctype]
128
+ bits = i_info.bits # same for both
129
+
130
+ for info, charname, intname in [
131
+ (i_info,'i%d' % (bits//8,), 'int%d' % bits),
132
+ (u_info,'u%d' % (bits//8,), 'uint%d' % bits)]:
133
+ if bits not in seen_bits:
134
+ # sometimes two different types have the same number of bits
135
+ # if so, the one iterated over first takes precedence
136
+ allTypes[intname] = info.type
137
+ sctypeDict[intname] = info.type
138
+ sctypeDict[charname] = info.type
139
+
140
+ seen_bits.add(bits)
141
+
142
+ _add_integer_aliases()
143
+
144
+ # We use these later
145
+ void = allTypes['void']
146
+
147
+ #
148
+ # Rework the Python names (so that float and complex and int are consistent
149
+ # with Python usage)
150
+ #
151
+ def _set_up_aliases():
152
+ type_pairs = [('complex_', 'cdouble'),
153
+ ('single', 'float'),
154
+ ('csingle', 'cfloat'),
155
+ ('singlecomplex', 'cfloat'),
156
+ ('float_', 'double'),
157
+ ('intc', 'int'),
158
+ ('uintc', 'uint'),
159
+ ('int_', 'long'),
160
+ ('uint', 'ulong'),
161
+ ('cfloat', 'cdouble'),
162
+ ('longfloat', 'longdouble'),
163
+ ('clongfloat', 'clongdouble'),
164
+ ('longcomplex', 'clongdouble'),
165
+ ('bool_', 'bool'),
166
+ ('bytes_', 'string'),
167
+ ('string_', 'string'),
168
+ ('str_', 'unicode'),
169
+ ('unicode_', 'unicode'),
170
+ ('object_', 'object')]
171
+ for alias, t in type_pairs:
172
+ allTypes[alias] = allTypes[t]
173
+ sctypeDict[alias] = sctypeDict[t]
174
+ # Remove aliases overriding python types and modules
175
+ to_remove = ['object', 'int', 'float',
176
+ 'complex', 'bool', 'string', 'datetime', 'timedelta',
177
+ 'bytes', 'str']
178
+
179
+ for t in to_remove:
180
+ try:
181
+ del allTypes[t]
182
+ del sctypeDict[t]
183
+ except KeyError:
184
+ pass
185
+
186
+ # Additional aliases in sctypeDict that should not be exposed as attributes
187
+ attrs_to_remove = ['ulong']
188
+
189
+ for t in attrs_to_remove:
190
+ try:
191
+ del allTypes[t]
192
+ except KeyError:
193
+ pass
194
+ _set_up_aliases()
195
+
196
+
197
+ sctypes = {'int': [],
198
+ 'uint':[],
199
+ 'float':[],
200
+ 'complex':[],
201
+ 'others':[bool, object, bytes, unicode, void]}
202
+
203
+ def _add_array_type(typename, bits):
204
+ try:
205
+ t = allTypes['%s%d' % (typename, bits)]
206
+ except KeyError:
207
+ pass
208
+ else:
209
+ sctypes[typename].append(t)
210
+
211
+ def _set_array_types():
212
+ ibytes = [1, 2, 4, 8, 16, 32, 64]
213
+ fbytes = [2, 4, 8, 10, 12, 16, 32, 64]
214
+ for bytes in ibytes:
215
+ bits = 8*bytes
216
+ _add_array_type('int', bits)
217
+ _add_array_type('uint', bits)
218
+ for bytes in fbytes:
219
+ bits = 8*bytes
220
+ _add_array_type('float', bits)
221
+ _add_array_type('complex', 2*bits)
222
+ _gi = dtype('p')
223
+ if _gi.type not in sctypes['int']:
224
+ indx = 0
225
+ sz = _gi.itemsize
226
+ _lst = sctypes['int']
227
+ while (indx < len(_lst) and sz >= _lst[indx](0).itemsize):
228
+ indx += 1
229
+ sctypes['int'].insert(indx, _gi.type)
230
+ sctypes['uint'].insert(indx, dtype('P').type)
231
+ _set_array_types()
232
+
233
+
234
+ # Add additional strings to the sctypeDict
235
+ _toadd = ['int', 'float', 'complex', 'bool', 'object',
236
+ 'str', 'bytes', ('a', 'bytes_'),
237
+ ('int0', 'intp'), ('uint0', 'uintp')]
238
+
239
+ for name in _toadd:
240
+ if isinstance(name, tuple):
241
+ sctypeDict[name[0]] = allTypes[name[1]]
242
+ else:
243
+ sctypeDict[name] = allTypes['%s_' % name]
244
+
245
+ del _toadd, name
env-llmeval/lib/python3.10/site-packages/numpy/core/_type_aliases.pyi ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Any, TypedDict
2
+
3
+ from numpy import generic, signedinteger, unsignedinteger, floating, complexfloating
4
+
5
+ class _SCTypes(TypedDict):
6
+ int: list[type[signedinteger[Any]]]
7
+ uint: list[type[unsignedinteger[Any]]]
8
+ float: list[type[floating[Any]]]
9
+ complex: list[type[complexfloating[Any, Any]]]
10
+ others: list[type]
11
+
12
+ sctypeDict: dict[int | str, type[generic]]
13
+ sctypes: _SCTypes
env-llmeval/lib/python3.10/site-packages/numpy/core/_ufunc_config.py ADDED
@@ -0,0 +1,466 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Functions for changing global ufunc configuration
3
+
4
+ This provides helpers which wrap `umath.geterrobj` and `umath.seterrobj`
5
+ """
6
+ import collections.abc
7
+ import contextlib
8
+ import contextvars
9
+
10
+ from .._utils import set_module
11
+ from .umath import (
12
+ UFUNC_BUFSIZE_DEFAULT,
13
+ ERR_IGNORE, ERR_WARN, ERR_RAISE, ERR_CALL, ERR_PRINT, ERR_LOG, ERR_DEFAULT,
14
+ SHIFT_DIVIDEBYZERO, SHIFT_OVERFLOW, SHIFT_UNDERFLOW, SHIFT_INVALID,
15
+ )
16
+ from . import umath
17
+
18
+ __all__ = [
19
+ "seterr", "geterr", "setbufsize", "getbufsize", "seterrcall", "geterrcall",
20
+ "errstate", '_no_nep50_warning'
21
+ ]
22
+
23
+ _errdict = {"ignore": ERR_IGNORE,
24
+ "warn": ERR_WARN,
25
+ "raise": ERR_RAISE,
26
+ "call": ERR_CALL,
27
+ "print": ERR_PRINT,
28
+ "log": ERR_LOG}
29
+
30
+ _errdict_rev = {value: key for key, value in _errdict.items()}
31
+
32
+
33
+ @set_module('numpy')
34
+ def seterr(all=None, divide=None, over=None, under=None, invalid=None):
35
+ """
36
+ Set how floating-point errors are handled.
37
+
38
+ Note that operations on integer scalar types (such as `int16`) are
39
+ handled like floating point, and are affected by these settings.
40
+
41
+ Parameters
42
+ ----------
43
+ all : {'ignore', 'warn', 'raise', 'call', 'print', 'log'}, optional
44
+ Set treatment for all types of floating-point errors at once:
45
+
46
+ - ignore: Take no action when the exception occurs.
47
+ - warn: Print a `RuntimeWarning` (via the Python `warnings` module).
48
+ - raise: Raise a `FloatingPointError`.
49
+ - call: Call a function specified using the `seterrcall` function.
50
+ - print: Print a warning directly to ``stdout``.
51
+ - log: Record error in a Log object specified by `seterrcall`.
52
+
53
+ The default is not to change the current behavior.
54
+ divide : {'ignore', 'warn', 'raise', 'call', 'print', 'log'}, optional
55
+ Treatment for division by zero.
56
+ over : {'ignore', 'warn', 'raise', 'call', 'print', 'log'}, optional
57
+ Treatment for floating-point overflow.
58
+ under : {'ignore', 'warn', 'raise', 'call', 'print', 'log'}, optional
59
+ Treatment for floating-point underflow.
60
+ invalid : {'ignore', 'warn', 'raise', 'call', 'print', 'log'}, optional
61
+ Treatment for invalid floating-point operation.
62
+
63
+ Returns
64
+ -------
65
+ old_settings : dict
66
+ Dictionary containing the old settings.
67
+
68
+ See also
69
+ --------
70
+ seterrcall : Set a callback function for the 'call' mode.
71
+ geterr, geterrcall, errstate
72
+
73
+ Notes
74
+ -----
75
+ The floating-point exceptions are defined in the IEEE 754 standard [1]_:
76
+
77
+ - Division by zero: infinite result obtained from finite numbers.
78
+ - Overflow: result too large to be expressed.
79
+ - Underflow: result so close to zero that some precision
80
+ was lost.
81
+ - Invalid operation: result is not an expressible number, typically
82
+ indicates that a NaN was produced.
83
+
84
+ .. [1] https://en.wikipedia.org/wiki/IEEE_754
85
+
86
+ Examples
87
+ --------
88
+ >>> old_settings = np.seterr(all='ignore') #seterr to known value
89
+ >>> np.seterr(over='raise')
90
+ {'divide': 'ignore', 'over': 'ignore', 'under': 'ignore', 'invalid': 'ignore'}
91
+ >>> np.seterr(**old_settings) # reset to default
92
+ {'divide': 'ignore', 'over': 'raise', 'under': 'ignore', 'invalid': 'ignore'}
93
+
94
+ >>> np.int16(32000) * np.int16(3)
95
+ 30464
96
+ >>> old_settings = np.seterr(all='warn', over='raise')
97
+ >>> np.int16(32000) * np.int16(3)
98
+ Traceback (most recent call last):
99
+ File "<stdin>", line 1, in <module>
100
+ FloatingPointError: overflow encountered in scalar multiply
101
+
102
+ >>> old_settings = np.seterr(all='print')
103
+ >>> np.geterr()
104
+ {'divide': 'print', 'over': 'print', 'under': 'print', 'invalid': 'print'}
105
+ >>> np.int16(32000) * np.int16(3)
106
+ 30464
107
+
108
+ """
109
+
110
+ pyvals = umath.geterrobj()
111
+ old = geterr()
112
+
113
+ if divide is None:
114
+ divide = all or old['divide']
115
+ if over is None:
116
+ over = all or old['over']
117
+ if under is None:
118
+ under = all or old['under']
119
+ if invalid is None:
120
+ invalid = all or old['invalid']
121
+
122
+ maskvalue = ((_errdict[divide] << SHIFT_DIVIDEBYZERO) +
123
+ (_errdict[over] << SHIFT_OVERFLOW) +
124
+ (_errdict[under] << SHIFT_UNDERFLOW) +
125
+ (_errdict[invalid] << SHIFT_INVALID))
126
+
127
+ pyvals[1] = maskvalue
128
+ umath.seterrobj(pyvals)
129
+ return old
130
+
131
+
132
+ @set_module('numpy')
133
+ def geterr():
134
+ """
135
+ Get the current way of handling floating-point errors.
136
+
137
+ Returns
138
+ -------
139
+ res : dict
140
+ A dictionary with keys "divide", "over", "under", and "invalid",
141
+ whose values are from the strings "ignore", "print", "log", "warn",
142
+ "raise", and "call". The keys represent possible floating-point
143
+ exceptions, and the values define how these exceptions are handled.
144
+
145
+ See Also
146
+ --------
147
+ geterrcall, seterr, seterrcall
148
+
149
+ Notes
150
+ -----
151
+ For complete documentation of the types of floating-point exceptions and
152
+ treatment options, see `seterr`.
153
+
154
+ Examples
155
+ --------
156
+ >>> np.geterr()
157
+ {'divide': 'warn', 'over': 'warn', 'under': 'ignore', 'invalid': 'warn'}
158
+ >>> np.arange(3.) / np.arange(3.)
159
+ array([nan, 1., 1.])
160
+
161
+ >>> oldsettings = np.seterr(all='warn', over='raise')
162
+ >>> np.geterr()
163
+ {'divide': 'warn', 'over': 'raise', 'under': 'warn', 'invalid': 'warn'}
164
+ >>> np.arange(3.) / np.arange(3.)
165
+ array([nan, 1., 1.])
166
+
167
+ """
168
+ maskvalue = umath.geterrobj()[1]
169
+ mask = 7
170
+ res = {}
171
+ val = (maskvalue >> SHIFT_DIVIDEBYZERO) & mask
172
+ res['divide'] = _errdict_rev[val]
173
+ val = (maskvalue >> SHIFT_OVERFLOW) & mask
174
+ res['over'] = _errdict_rev[val]
175
+ val = (maskvalue >> SHIFT_UNDERFLOW) & mask
176
+ res['under'] = _errdict_rev[val]
177
+ val = (maskvalue >> SHIFT_INVALID) & mask
178
+ res['invalid'] = _errdict_rev[val]
179
+ return res
180
+
181
+
182
+ @set_module('numpy')
183
+ def setbufsize(size):
184
+ """
185
+ Set the size of the buffer used in ufuncs.
186
+
187
+ Parameters
188
+ ----------
189
+ size : int
190
+ Size of buffer.
191
+
192
+ """
193
+ if size > 10e6:
194
+ raise ValueError("Buffer size, %s, is too big." % size)
195
+ if size < 5:
196
+ raise ValueError("Buffer size, %s, is too small." % size)
197
+ if size % 16 != 0:
198
+ raise ValueError("Buffer size, %s, is not a multiple of 16." % size)
199
+
200
+ pyvals = umath.geterrobj()
201
+ old = getbufsize()
202
+ pyvals[0] = size
203
+ umath.seterrobj(pyvals)
204
+ return old
205
+
206
+
207
+ @set_module('numpy')
208
+ def getbufsize():
209
+ """
210
+ Return the size of the buffer used in ufuncs.
211
+
212
+ Returns
213
+ -------
214
+ getbufsize : int
215
+ Size of ufunc buffer in bytes.
216
+
217
+ """
218
+ return umath.geterrobj()[0]
219
+
220
+
221
+ @set_module('numpy')
222
+ def seterrcall(func):
223
+ """
224
+ Set the floating-point error callback function or log object.
225
+
226
+ There are two ways to capture floating-point error messages. The first
227
+ is to set the error-handler to 'call', using `seterr`. Then, set
228
+ the function to call using this function.
229
+
230
+ The second is to set the error-handler to 'log', using `seterr`.
231
+ Floating-point errors then trigger a call to the 'write' method of
232
+ the provided object.
233
+
234
+ Parameters
235
+ ----------
236
+ func : callable f(err, flag) or object with write method
237
+ Function to call upon floating-point errors ('call'-mode) or
238
+ object whose 'write' method is used to log such message ('log'-mode).
239
+
240
+ The call function takes two arguments. The first is a string describing
241
+ the type of error (such as "divide by zero", "overflow", "underflow",
242
+ or "invalid value"), and the second is the status flag. The flag is a
243
+ byte, whose four least-significant bits indicate the type of error, one
244
+ of "divide", "over", "under", "invalid"::
245
+
246
+ [0 0 0 0 divide over under invalid]
247
+
248
+ In other words, ``flags = divide + 2*over + 4*under + 8*invalid``.
249
+
250
+ If an object is provided, its write method should take one argument,
251
+ a string.
252
+
253
+ Returns
254
+ -------
255
+ h : callable, log instance or None
256
+ The old error handler.
257
+
258
+ See Also
259
+ --------
260
+ seterr, geterr, geterrcall
261
+
262
+ Examples
263
+ --------
264
+ Callback upon error:
265
+
266
+ >>> def err_handler(type, flag):
267
+ ... print("Floating point error (%s), with flag %s" % (type, flag))
268
+ ...
269
+
270
+ >>> saved_handler = np.seterrcall(err_handler)
271
+ >>> save_err = np.seterr(all='call')
272
+
273
+ >>> np.array([1, 2, 3]) / 0.0
274
+ Floating point error (divide by zero), with flag 1
275
+ array([inf, inf, inf])
276
+
277
+ >>> np.seterrcall(saved_handler)
278
+ <function err_handler at 0x...>
279
+ >>> np.seterr(**save_err)
280
+ {'divide': 'call', 'over': 'call', 'under': 'call', 'invalid': 'call'}
281
+
282
+ Log error message:
283
+
284
+ >>> class Log:
285
+ ... def write(self, msg):
286
+ ... print("LOG: %s" % msg)
287
+ ...
288
+
289
+ >>> log = Log()
290
+ >>> saved_handler = np.seterrcall(log)
291
+ >>> save_err = np.seterr(all='log')
292
+
293
+ >>> np.array([1, 2, 3]) / 0.0
294
+ LOG: Warning: divide by zero encountered in divide
295
+ array([inf, inf, inf])
296
+
297
+ >>> np.seterrcall(saved_handler)
298
+ <numpy.core.numeric.Log object at 0x...>
299
+ >>> np.seterr(**save_err)
300
+ {'divide': 'log', 'over': 'log', 'under': 'log', 'invalid': 'log'}
301
+
302
+ """
303
+ if func is not None and not isinstance(func, collections.abc.Callable):
304
+ if (not hasattr(func, 'write') or
305
+ not isinstance(func.write, collections.abc.Callable)):
306
+ raise ValueError("Only callable can be used as callback")
307
+ pyvals = umath.geterrobj()
308
+ old = geterrcall()
309
+ pyvals[2] = func
310
+ umath.seterrobj(pyvals)
311
+ return old
312
+
313
+
314
+ @set_module('numpy')
315
+ def geterrcall():
316
+ """
317
+ Return the current callback function used on floating-point errors.
318
+
319
+ When the error handling for a floating-point error (one of "divide",
320
+ "over", "under", or "invalid") is set to 'call' or 'log', the function
321
+ that is called or the log instance that is written to is returned by
322
+ `geterrcall`. This function or log instance has been set with
323
+ `seterrcall`.
324
+
325
+ Returns
326
+ -------
327
+ errobj : callable, log instance or None
328
+ The current error handler. If no handler was set through `seterrcall`,
329
+ ``None`` is returned.
330
+
331
+ See Also
332
+ --------
333
+ seterrcall, seterr, geterr
334
+
335
+ Notes
336
+ -----
337
+ For complete documentation of the types of floating-point exceptions and
338
+ treatment options, see `seterr`.
339
+
340
+ Examples
341
+ --------
342
+ >>> np.geterrcall() # we did not yet set a handler, returns None
343
+
344
+ >>> oldsettings = np.seterr(all='call')
345
+ >>> def err_handler(type, flag):
346
+ ... print("Floating point error (%s), with flag %s" % (type, flag))
347
+ >>> oldhandler = np.seterrcall(err_handler)
348
+ >>> np.array([1, 2, 3]) / 0.0
349
+ Floating point error (divide by zero), with flag 1
350
+ array([inf, inf, inf])
351
+
352
+ >>> cur_handler = np.geterrcall()
353
+ >>> cur_handler is err_handler
354
+ True
355
+
356
+ """
357
+ return umath.geterrobj()[2]
358
+
359
+
360
+ class _unspecified:
361
+ pass
362
+
363
+
364
+ _Unspecified = _unspecified()
365
+
366
+
367
+ @set_module('numpy')
368
+ class errstate(contextlib.ContextDecorator):
369
+ """
370
+ errstate(**kwargs)
371
+
372
+ Context manager for floating-point error handling.
373
+
374
+ Using an instance of `errstate` as a context manager allows statements in
375
+ that context to execute with a known error handling behavior. Upon entering
376
+ the context the error handling is set with `seterr` and `seterrcall`, and
377
+ upon exiting it is reset to what it was before.
378
+
379
+ .. versionchanged:: 1.17.0
380
+ `errstate` is also usable as a function decorator, saving
381
+ a level of indentation if an entire function is wrapped.
382
+ See :py:class:`contextlib.ContextDecorator` for more information.
383
+
384
+ Parameters
385
+ ----------
386
+ kwargs : {divide, over, under, invalid}
387
+ Keyword arguments. The valid keywords are the possible floating-point
388
+ exceptions. Each keyword should have a string value that defines the
389
+ treatment for the particular error. Possible values are
390
+ {'ignore', 'warn', 'raise', 'call', 'print', 'log'}.
391
+
392
+ See Also
393
+ --------
394
+ seterr, geterr, seterrcall, geterrcall
395
+
396
+ Notes
397
+ -----
398
+ For complete documentation of the types of floating-point exceptions and
399
+ treatment options, see `seterr`.
400
+
401
+ Examples
402
+ --------
403
+ >>> olderr = np.seterr(all='ignore') # Set error handling to known state.
404
+
405
+ >>> np.arange(3) / 0.
406
+ array([nan, inf, inf])
407
+ >>> with np.errstate(divide='warn'):
408
+ ... np.arange(3) / 0.
409
+ array([nan, inf, inf])
410
+
411
+ >>> np.sqrt(-1)
412
+ nan
413
+ >>> with np.errstate(invalid='raise'):
414
+ ... np.sqrt(-1)
415
+ Traceback (most recent call last):
416
+ File "<stdin>", line 2, in <module>
417
+ FloatingPointError: invalid value encountered in sqrt
418
+
419
+ Outside the context the error handling behavior has not changed:
420
+
421
+ >>> np.geterr()
422
+ {'divide': 'ignore', 'over': 'ignore', 'under': 'ignore', 'invalid': 'ignore'}
423
+
424
+ """
425
+
426
+ def __init__(self, *, call=_Unspecified, **kwargs):
427
+ self.call = call
428
+ self.kwargs = kwargs
429
+
430
+ def __enter__(self):
431
+ self.oldstate = seterr(**self.kwargs)
432
+ if self.call is not _Unspecified:
433
+ self.oldcall = seterrcall(self.call)
434
+
435
+ def __exit__(self, *exc_info):
436
+ seterr(**self.oldstate)
437
+ if self.call is not _Unspecified:
438
+ seterrcall(self.oldcall)
439
+
440
+
441
+ def _setdef():
442
+ defval = [UFUNC_BUFSIZE_DEFAULT, ERR_DEFAULT, None]
443
+ umath.seterrobj(defval)
444
+
445
+
446
+ # set the default values
447
+ _setdef()
448
+
449
+
450
+ NO_NEP50_WARNING = contextvars.ContextVar("_no_nep50_warning", default=False)
451
+
452
+ @set_module('numpy')
453
+ @contextlib.contextmanager
454
+ def _no_nep50_warning():
455
+ """
456
+ Context manager to disable NEP 50 warnings. This context manager is
457
+ only relevant if the NEP 50 warnings are enabled globally (which is not
458
+ thread/context safe).
459
+
460
+ This warning context manager itself is fully safe, however.
461
+ """
462
+ token = NO_NEP50_WARNING.set(True)
463
+ try:
464
+ yield
465
+ finally:
466
+ NO_NEP50_WARNING.reset(token)
env-llmeval/lib/python3.10/site-packages/numpy/core/_umath_tests.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (42.3 kB). View file
 
env-llmeval/lib/python3.10/site-packages/numpy/core/arrayprint.pyi ADDED
@@ -0,0 +1,142 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from types import TracebackType
2
+ from collections.abc import Callable
3
+ from typing import Any, Literal, TypedDict, SupportsIndex
4
+
5
+ # Using a private class is by no means ideal, but it is simply a consequence
6
+ # of a `contextlib.context` returning an instance of aforementioned class
7
+ from contextlib import _GeneratorContextManager
8
+
9
+ from numpy import (
10
+ ndarray,
11
+ generic,
12
+ bool_,
13
+ integer,
14
+ timedelta64,
15
+ datetime64,
16
+ floating,
17
+ complexfloating,
18
+ void,
19
+ str_,
20
+ bytes_,
21
+ longdouble,
22
+ clongdouble,
23
+ )
24
+ from numpy._typing import ArrayLike, _CharLike_co, _FloatLike_co
25
+
26
+ _FloatMode = Literal["fixed", "unique", "maxprec", "maxprec_equal"]
27
+
28
+ class _FormatDict(TypedDict, total=False):
29
+ bool: Callable[[bool_], str]
30
+ int: Callable[[integer[Any]], str]
31
+ timedelta: Callable[[timedelta64], str]
32
+ datetime: Callable[[datetime64], str]
33
+ float: Callable[[floating[Any]], str]
34
+ longfloat: Callable[[longdouble], str]
35
+ complexfloat: Callable[[complexfloating[Any, Any]], str]
36
+ longcomplexfloat: Callable[[clongdouble], str]
37
+ void: Callable[[void], str]
38
+ numpystr: Callable[[_CharLike_co], str]
39
+ object: Callable[[object], str]
40
+ all: Callable[[object], str]
41
+ int_kind: Callable[[integer[Any]], str]
42
+ float_kind: Callable[[floating[Any]], str]
43
+ complex_kind: Callable[[complexfloating[Any, Any]], str]
44
+ str_kind: Callable[[_CharLike_co], str]
45
+
46
+ class _FormatOptions(TypedDict):
47
+ precision: int
48
+ threshold: int
49
+ edgeitems: int
50
+ linewidth: int
51
+ suppress: bool
52
+ nanstr: str
53
+ infstr: str
54
+ formatter: None | _FormatDict
55
+ sign: Literal["-", "+", " "]
56
+ floatmode: _FloatMode
57
+ legacy: Literal[False, "1.13", "1.21"]
58
+
59
+ def set_printoptions(
60
+ precision: None | SupportsIndex = ...,
61
+ threshold: None | int = ...,
62
+ edgeitems: None | int = ...,
63
+ linewidth: None | int = ...,
64
+ suppress: None | bool = ...,
65
+ nanstr: None | str = ...,
66
+ infstr: None | str = ...,
67
+ formatter: None | _FormatDict = ...,
68
+ sign: Literal[None, "-", "+", " "] = ...,
69
+ floatmode: None | _FloatMode = ...,
70
+ *,
71
+ legacy: Literal[None, False, "1.13", "1.21"] = ...
72
+ ) -> None: ...
73
+ def get_printoptions() -> _FormatOptions: ...
74
+ def array2string(
75
+ a: ndarray[Any, Any],
76
+ max_line_width: None | int = ...,
77
+ precision: None | SupportsIndex = ...,
78
+ suppress_small: None | bool = ...,
79
+ separator: str = ...,
80
+ prefix: str = ...,
81
+ # NOTE: With the `style` argument being deprecated,
82
+ # all arguments between `formatter` and `suffix` are de facto
83
+ # keyworld-only arguments
84
+ *,
85
+ formatter: None | _FormatDict = ...,
86
+ threshold: None | int = ...,
87
+ edgeitems: None | int = ...,
88
+ sign: Literal[None, "-", "+", " "] = ...,
89
+ floatmode: None | _FloatMode = ...,
90
+ suffix: str = ...,
91
+ legacy: Literal[None, False, "1.13", "1.21"] = ...,
92
+ ) -> str: ...
93
+ def format_float_scientific(
94
+ x: _FloatLike_co,
95
+ precision: None | int = ...,
96
+ unique: bool = ...,
97
+ trim: Literal["k", ".", "0", "-"] = ...,
98
+ sign: bool = ...,
99
+ pad_left: None | int = ...,
100
+ exp_digits: None | int = ...,
101
+ min_digits: None | int = ...,
102
+ ) -> str: ...
103
+ def format_float_positional(
104
+ x: _FloatLike_co,
105
+ precision: None | int = ...,
106
+ unique: bool = ...,
107
+ fractional: bool = ...,
108
+ trim: Literal["k", ".", "0", "-"] = ...,
109
+ sign: bool = ...,
110
+ pad_left: None | int = ...,
111
+ pad_right: None | int = ...,
112
+ min_digits: None | int = ...,
113
+ ) -> str: ...
114
+ def array_repr(
115
+ arr: ndarray[Any, Any],
116
+ max_line_width: None | int = ...,
117
+ precision: None | SupportsIndex = ...,
118
+ suppress_small: None | bool = ...,
119
+ ) -> str: ...
120
+ def array_str(
121
+ a: ndarray[Any, Any],
122
+ max_line_width: None | int = ...,
123
+ precision: None | SupportsIndex = ...,
124
+ suppress_small: None | bool = ...,
125
+ ) -> str: ...
126
+ def set_string_function(
127
+ f: None | Callable[[ndarray[Any, Any]], str], repr: bool = ...
128
+ ) -> None: ...
129
+ def printoptions(
130
+ precision: None | SupportsIndex = ...,
131
+ threshold: None | int = ...,
132
+ edgeitems: None | int = ...,
133
+ linewidth: None | int = ...,
134
+ suppress: None | bool = ...,
135
+ nanstr: None | str = ...,
136
+ infstr: None | str = ...,
137
+ formatter: None | _FormatDict = ...,
138
+ sign: Literal[None, "-", "+", " "] = ...,
139
+ floatmode: None | _FloatMode = ...,
140
+ *,
141
+ legacy: Literal[None, False, "1.13", "1.21"] = ...
142
+ ) -> _GeneratorContextManager[_FormatOptions]: ...
env-llmeval/lib/python3.10/site-packages/numpy/core/cversions.py ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Simple script to compute the api hash of the current API.
2
+
3
+ The API has is defined by numpy_api_order and ufunc_api_order.
4
+
5
+ """
6
+ from os.path import dirname
7
+
8
+ from code_generators.genapi import fullapi_hash
9
+ from code_generators.numpy_api import full_api
10
+
11
+ if __name__ == '__main__':
12
+ curdir = dirname(__file__)
13
+ print(fullapi_hash(full_api))
env-llmeval/lib/python3.10/site-packages/numpy/core/defchararray.py ADDED
@@ -0,0 +1,2914 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ This module contains a set of functions for vectorized string
3
+ operations and methods.
4
+
5
+ .. note::
6
+ The `chararray` class exists for backwards compatibility with
7
+ Numarray, it is not recommended for new development. Starting from numpy
8
+ 1.4, if one needs arrays of strings, it is recommended to use arrays of
9
+ `dtype` `object_`, `bytes_` or `str_`, and use the free functions
10
+ in the `numpy.char` module for fast vectorized string operations.
11
+
12
+ Some methods will only be available if the corresponding string method is
13
+ available in your version of Python.
14
+
15
+ The preferred alias for `defchararray` is `numpy.char`.
16
+
17
+ """
18
+ import functools
19
+
20
+ from .._utils import set_module
21
+ from .numerictypes import (
22
+ bytes_, str_, integer, int_, object_, bool_, character)
23
+ from .numeric import ndarray, compare_chararrays
24
+ from .numeric import array as narray
25
+ from numpy.core.multiarray import _vec_string
26
+ from numpy.core import overrides
27
+ from numpy.compat import asbytes
28
+ import numpy
29
+
30
+ __all__ = [
31
+ 'equal', 'not_equal', 'greater_equal', 'less_equal',
32
+ 'greater', 'less', 'str_len', 'add', 'multiply', 'mod', 'capitalize',
33
+ 'center', 'count', 'decode', 'encode', 'endswith', 'expandtabs',
34
+ 'find', 'index', 'isalnum', 'isalpha', 'isdigit', 'islower', 'isspace',
35
+ 'istitle', 'isupper', 'join', 'ljust', 'lower', 'lstrip', 'partition',
36
+ 'replace', 'rfind', 'rindex', 'rjust', 'rpartition', 'rsplit',
37
+ 'rstrip', 'split', 'splitlines', 'startswith', 'strip', 'swapcase',
38
+ 'title', 'translate', 'upper', 'zfill', 'isnumeric', 'isdecimal',
39
+ 'array', 'asarray'
40
+ ]
41
+
42
+
43
+ _globalvar = 0
44
+
45
+ array_function_dispatch = functools.partial(
46
+ overrides.array_function_dispatch, module='numpy.char')
47
+
48
+
49
+ def _is_unicode(arr):
50
+ """Returns True if arr is a string or a string array with a dtype that
51
+ represents a unicode string, otherwise returns False.
52
+
53
+ """
54
+ if (isinstance(arr, str) or
55
+ issubclass(numpy.asarray(arr).dtype.type, str)):
56
+ return True
57
+ return False
58
+
59
+
60
+ def _to_bytes_or_str_array(result, output_dtype_like=None):
61
+ """
62
+ Helper function to cast a result back into an array
63
+ with the appropriate dtype if an object array must be used
64
+ as an intermediary.
65
+ """
66
+ ret = numpy.asarray(result.tolist())
67
+ dtype = getattr(output_dtype_like, 'dtype', None)
68
+ if dtype is not None:
69
+ return ret.astype(type(dtype)(_get_num_chars(ret)), copy=False)
70
+ return ret
71
+
72
+
73
+ def _clean_args(*args):
74
+ """
75
+ Helper function for delegating arguments to Python string
76
+ functions.
77
+
78
+ Many of the Python string operations that have optional arguments
79
+ do not use 'None' to indicate a default value. In these cases,
80
+ we need to remove all None arguments, and those following them.
81
+ """
82
+ newargs = []
83
+ for chk in args:
84
+ if chk is None:
85
+ break
86
+ newargs.append(chk)
87
+ return newargs
88
+
89
+ def _get_num_chars(a):
90
+ """
91
+ Helper function that returns the number of characters per field in
92
+ a string or unicode array. This is to abstract out the fact that
93
+ for a unicode array this is itemsize / 4.
94
+ """
95
+ if issubclass(a.dtype.type, str_):
96
+ return a.itemsize // 4
97
+ return a.itemsize
98
+
99
+
100
+ def _binary_op_dispatcher(x1, x2):
101
+ return (x1, x2)
102
+
103
+
104
+ @array_function_dispatch(_binary_op_dispatcher)
105
+ def equal(x1, x2):
106
+ """
107
+ Return (x1 == x2) element-wise.
108
+
109
+ Unlike `numpy.equal`, this comparison is performed by first
110
+ stripping whitespace characters from the end of the string. This
111
+ behavior is provided for backward-compatibility with numarray.
112
+
113
+ Parameters
114
+ ----------
115
+ x1, x2 : array_like of str or unicode
116
+ Input arrays of the same shape.
117
+
118
+ Returns
119
+ -------
120
+ out : ndarray
121
+ Output array of bools.
122
+
123
+ See Also
124
+ --------
125
+ not_equal, greater_equal, less_equal, greater, less
126
+ """
127
+ return compare_chararrays(x1, x2, '==', True)
128
+
129
+
130
+ @array_function_dispatch(_binary_op_dispatcher)
131
+ def not_equal(x1, x2):
132
+ """
133
+ Return (x1 != x2) element-wise.
134
+
135
+ Unlike `numpy.not_equal`, this comparison is performed by first
136
+ stripping whitespace characters from the end of the string. This
137
+ behavior is provided for backward-compatibility with numarray.
138
+
139
+ Parameters
140
+ ----------
141
+ x1, x2 : array_like of str or unicode
142
+ Input arrays of the same shape.
143
+
144
+ Returns
145
+ -------
146
+ out : ndarray
147
+ Output array of bools.
148
+
149
+ See Also
150
+ --------
151
+ equal, greater_equal, less_equal, greater, less
152
+ """
153
+ return compare_chararrays(x1, x2, '!=', True)
154
+
155
+
156
+ @array_function_dispatch(_binary_op_dispatcher)
157
+ def greater_equal(x1, x2):
158
+ """
159
+ Return (x1 >= x2) element-wise.
160
+
161
+ Unlike `numpy.greater_equal`, this comparison is performed by
162
+ first stripping whitespace characters from the end of the string.
163
+ This behavior is provided for backward-compatibility with
164
+ numarray.
165
+
166
+ Parameters
167
+ ----------
168
+ x1, x2 : array_like of str or unicode
169
+ Input arrays of the same shape.
170
+
171
+ Returns
172
+ -------
173
+ out : ndarray
174
+ Output array of bools.
175
+
176
+ See Also
177
+ --------
178
+ equal, not_equal, less_equal, greater, less
179
+ """
180
+ return compare_chararrays(x1, x2, '>=', True)
181
+
182
+
183
+ @array_function_dispatch(_binary_op_dispatcher)
184
+ def less_equal(x1, x2):
185
+ """
186
+ Return (x1 <= x2) element-wise.
187
+
188
+ Unlike `numpy.less_equal`, this comparison is performed by first
189
+ stripping whitespace characters from the end of the string. This
190
+ behavior is provided for backward-compatibility with numarray.
191
+
192
+ Parameters
193
+ ----------
194
+ x1, x2 : array_like of str or unicode
195
+ Input arrays of the same shape.
196
+
197
+ Returns
198
+ -------
199
+ out : ndarray
200
+ Output array of bools.
201
+
202
+ See Also
203
+ --------
204
+ equal, not_equal, greater_equal, greater, less
205
+ """
206
+ return compare_chararrays(x1, x2, '<=', True)
207
+
208
+
209
+ @array_function_dispatch(_binary_op_dispatcher)
210
+ def greater(x1, x2):
211
+ """
212
+ Return (x1 > x2) element-wise.
213
+
214
+ Unlike `numpy.greater`, this comparison is performed by first
215
+ stripping whitespace characters from the end of the string. This
216
+ behavior is provided for backward-compatibility with numarray.
217
+
218
+ Parameters
219
+ ----------
220
+ x1, x2 : array_like of str or unicode
221
+ Input arrays of the same shape.
222
+
223
+ Returns
224
+ -------
225
+ out : ndarray
226
+ Output array of bools.
227
+
228
+ See Also
229
+ --------
230
+ equal, not_equal, greater_equal, less_equal, less
231
+ """
232
+ return compare_chararrays(x1, x2, '>', True)
233
+
234
+
235
+ @array_function_dispatch(_binary_op_dispatcher)
236
+ def less(x1, x2):
237
+ """
238
+ Return (x1 < x2) element-wise.
239
+
240
+ Unlike `numpy.greater`, this comparison is performed by first
241
+ stripping whitespace characters from the end of the string. This
242
+ behavior is provided for backward-compatibility with numarray.
243
+
244
+ Parameters
245
+ ----------
246
+ x1, x2 : array_like of str or unicode
247
+ Input arrays of the same shape.
248
+
249
+ Returns
250
+ -------
251
+ out : ndarray
252
+ Output array of bools.
253
+
254
+ See Also
255
+ --------
256
+ equal, not_equal, greater_equal, less_equal, greater
257
+ """
258
+ return compare_chararrays(x1, x2, '<', True)
259
+
260
+
261
+ def _unary_op_dispatcher(a):
262
+ return (a,)
263
+
264
+
265
+ @array_function_dispatch(_unary_op_dispatcher)
266
+ def str_len(a):
267
+ """
268
+ Return len(a) element-wise.
269
+
270
+ Parameters
271
+ ----------
272
+ a : array_like of str or unicode
273
+
274
+ Returns
275
+ -------
276
+ out : ndarray
277
+ Output array of integers
278
+
279
+ See Also
280
+ --------
281
+ len
282
+
283
+ Examples
284
+ --------
285
+ >>> a = np.array(['Grace Hopper Conference', 'Open Source Day'])
286
+ >>> np.char.str_len(a)
287
+ array([23, 15])
288
+ >>> a = np.array([u'\u0420', u'\u043e'])
289
+ >>> np.char.str_len(a)
290
+ array([1, 1])
291
+ >>> a = np.array([['hello', 'world'], [u'\u0420', u'\u043e']])
292
+ >>> np.char.str_len(a)
293
+ array([[5, 5], [1, 1]])
294
+ """
295
+ # Note: __len__, etc. currently return ints, which are not C-integers.
296
+ # Generally intp would be expected for lengths, although int is sufficient
297
+ # due to the dtype itemsize limitation.
298
+ return _vec_string(a, int_, '__len__')
299
+
300
+
301
+ @array_function_dispatch(_binary_op_dispatcher)
302
+ def add(x1, x2):
303
+ """
304
+ Return element-wise string concatenation for two arrays of str or unicode.
305
+
306
+ Arrays `x1` and `x2` must have the same shape.
307
+
308
+ Parameters
309
+ ----------
310
+ x1 : array_like of str or unicode
311
+ Input array.
312
+ x2 : array_like of str or unicode
313
+ Input array.
314
+
315
+ Returns
316
+ -------
317
+ add : ndarray
318
+ Output array of `bytes_` or `str_`, depending on input types
319
+ of the same shape as `x1` and `x2`.
320
+
321
+ """
322
+ arr1 = numpy.asarray(x1)
323
+ arr2 = numpy.asarray(x2)
324
+ out_size = _get_num_chars(arr1) + _get_num_chars(arr2)
325
+
326
+ if type(arr1.dtype) != type(arr2.dtype):
327
+ # Enforce this for now. The solution to it will be implement add
328
+ # as a ufunc. It never worked right on Python 3: bytes + unicode gave
329
+ # nonsense unicode + bytes errored, and unicode + object used the
330
+ # object dtype itemsize as num chars (worked on short strings).
331
+ # bytes + void worked but promoting void->bytes is dubious also.
332
+ raise TypeError(
333
+ "np.char.add() requires both arrays of the same dtype kind, but "
334
+ f"got dtypes: '{arr1.dtype}' and '{arr2.dtype}' (the few cases "
335
+ "where this used to work often lead to incorrect results).")
336
+
337
+ return _vec_string(arr1, type(arr1.dtype)(out_size), '__add__', (arr2,))
338
+
339
+ def _multiply_dispatcher(a, i):
340
+ return (a,)
341
+
342
+
343
+ @array_function_dispatch(_multiply_dispatcher)
344
+ def multiply(a, i):
345
+ """
346
+ Return (a * i), that is string multiple concatenation,
347
+ element-wise.
348
+
349
+ Values in `i` of less than 0 are treated as 0 (which yields an
350
+ empty string).
351
+
352
+ Parameters
353
+ ----------
354
+ a : array_like of str or unicode
355
+
356
+ i : array_like of ints
357
+
358
+ Returns
359
+ -------
360
+ out : ndarray
361
+ Output array of str or unicode, depending on input types
362
+
363
+ Examples
364
+ --------
365
+ >>> a = np.array(["a", "b", "c"])
366
+ >>> np.char.multiply(x, 3)
367
+ array(['aaa', 'bbb', 'ccc'], dtype='<U3')
368
+ >>> i = np.array([1, 2, 3])
369
+ >>> np.char.multiply(a, i)
370
+ array(['a', 'bb', 'ccc'], dtype='<U3')
371
+ >>> np.char.multiply(np.array(['a']), i)
372
+ array(['a', 'aa', 'aaa'], dtype='<U3')
373
+ >>> a = np.array(['a', 'b', 'c', 'd', 'e', 'f']).reshape((2, 3))
374
+ >>> np.char.multiply(a, 3)
375
+ array([['aaa', 'bbb', 'ccc'],
376
+ ['ddd', 'eee', 'fff']], dtype='<U3')
377
+ >>> np.char.multiply(a, i)
378
+ array([['a', 'bb', 'ccc'],
379
+ ['d', 'ee', 'fff']], dtype='<U3')
380
+ """
381
+ a_arr = numpy.asarray(a)
382
+ i_arr = numpy.asarray(i)
383
+ if not issubclass(i_arr.dtype.type, integer):
384
+ raise ValueError("Can only multiply by integers")
385
+ out_size = _get_num_chars(a_arr) * max(int(i_arr.max()), 0)
386
+ return _vec_string(
387
+ a_arr, type(a_arr.dtype)(out_size), '__mul__', (i_arr,))
388
+
389
+
390
+ def _mod_dispatcher(a, values):
391
+ return (a, values)
392
+
393
+
394
+ @array_function_dispatch(_mod_dispatcher)
395
+ def mod(a, values):
396
+ """
397
+ Return (a % i), that is pre-Python 2.6 string formatting
398
+ (interpolation), element-wise for a pair of array_likes of str
399
+ or unicode.
400
+
401
+ Parameters
402
+ ----------
403
+ a : array_like of str or unicode
404
+
405
+ values : array_like of values
406
+ These values will be element-wise interpolated into the string.
407
+
408
+ Returns
409
+ -------
410
+ out : ndarray
411
+ Output array of str or unicode, depending on input types
412
+
413
+ See Also
414
+ --------
415
+ str.__mod__
416
+
417
+ """
418
+ return _to_bytes_or_str_array(
419
+ _vec_string(a, object_, '__mod__', (values,)), a)
420
+
421
+
422
+ @array_function_dispatch(_unary_op_dispatcher)
423
+ def capitalize(a):
424
+ """
425
+ Return a copy of `a` with only the first character of each element
426
+ capitalized.
427
+
428
+ Calls `str.capitalize` element-wise.
429
+
430
+ For 8-bit strings, this method is locale-dependent.
431
+
432
+ Parameters
433
+ ----------
434
+ a : array_like of str or unicode
435
+ Input array of strings to capitalize.
436
+
437
+ Returns
438
+ -------
439
+ out : ndarray
440
+ Output array of str or unicode, depending on input
441
+ types
442
+
443
+ See Also
444
+ --------
445
+ str.capitalize
446
+
447
+ Examples
448
+ --------
449
+ >>> c = np.array(['a1b2','1b2a','b2a1','2a1b'],'S4'); c
450
+ array(['a1b2', '1b2a', 'b2a1', '2a1b'],
451
+ dtype='|S4')
452
+ >>> np.char.capitalize(c)
453
+ array(['A1b2', '1b2a', 'B2a1', '2a1b'],
454
+ dtype='|S4')
455
+
456
+ """
457
+ a_arr = numpy.asarray(a)
458
+ return _vec_string(a_arr, a_arr.dtype, 'capitalize')
459
+
460
+
461
+ def _center_dispatcher(a, width, fillchar=None):
462
+ return (a,)
463
+
464
+
465
+ @array_function_dispatch(_center_dispatcher)
466
+ def center(a, width, fillchar=' '):
467
+ """
468
+ Return a copy of `a` with its elements centered in a string of
469
+ length `width`.
470
+
471
+ Calls `str.center` element-wise.
472
+
473
+ Parameters
474
+ ----------
475
+ a : array_like of str or unicode
476
+
477
+ width : int
478
+ The length of the resulting strings
479
+ fillchar : str or unicode, optional
480
+ The padding character to use (default is space).
481
+
482
+ Returns
483
+ -------
484
+ out : ndarray
485
+ Output array of str or unicode, depending on input
486
+ types
487
+
488
+ See Also
489
+ --------
490
+ str.center
491
+
492
+ Notes
493
+ -----
494
+ This function is intended to work with arrays of strings. The
495
+ fill character is not applied to numeric types.
496
+
497
+ Examples
498
+ --------
499
+ >>> c = np.array(['a1b2','1b2a','b2a1','2a1b']); c
500
+ array(['a1b2', '1b2a', 'b2a1', '2a1b'], dtype='<U4')
501
+ >>> np.char.center(c, width=9)
502
+ array([' a1b2 ', ' 1b2a ', ' b2a1 ', ' 2a1b '], dtype='<U9')
503
+ >>> np.char.center(c, width=9, fillchar='*')
504
+ array(['***a1b2**', '***1b2a**', '***b2a1**', '***2a1b**'], dtype='<U9')
505
+ >>> np.char.center(c, width=1)
506
+ array(['a', '1', 'b', '2'], dtype='<U1')
507
+
508
+ """
509
+ a_arr = numpy.asarray(a)
510
+ width_arr = numpy.asarray(width)
511
+ size = int(numpy.max(width_arr.flat))
512
+ if numpy.issubdtype(a_arr.dtype, numpy.bytes_):
513
+ fillchar = asbytes(fillchar)
514
+ return _vec_string(
515
+ a_arr, type(a_arr.dtype)(size), 'center', (width_arr, fillchar))
516
+
517
+
518
+ def _count_dispatcher(a, sub, start=None, end=None):
519
+ return (a,)
520
+
521
+
522
+ @array_function_dispatch(_count_dispatcher)
523
+ def count(a, sub, start=0, end=None):
524
+ """
525
+ Returns an array with the number of non-overlapping occurrences of
526
+ substring `sub` in the range [`start`, `end`].
527
+
528
+ Calls `str.count` element-wise.
529
+
530
+ Parameters
531
+ ----------
532
+ a : array_like of str or unicode
533
+
534
+ sub : str or unicode
535
+ The substring to search for.
536
+
537
+ start, end : int, optional
538
+ Optional arguments `start` and `end` are interpreted as slice
539
+ notation to specify the range in which to count.
540
+
541
+ Returns
542
+ -------
543
+ out : ndarray
544
+ Output array of ints.
545
+
546
+ See Also
547
+ --------
548
+ str.count
549
+
550
+ Examples
551
+ --------
552
+ >>> c = np.array(['aAaAaA', ' aA ', 'abBABba'])
553
+ >>> c
554
+ array(['aAaAaA', ' aA ', 'abBABba'], dtype='<U7')
555
+ >>> np.char.count(c, 'A')
556
+ array([3, 1, 1])
557
+ >>> np.char.count(c, 'aA')
558
+ array([3, 1, 0])
559
+ >>> np.char.count(c, 'A', start=1, end=4)
560
+ array([2, 1, 1])
561
+ >>> np.char.count(c, 'A', start=1, end=3)
562
+ array([1, 0, 0])
563
+
564
+ """
565
+ return _vec_string(a, int_, 'count', [sub, start] + _clean_args(end))
566
+
567
+
568
+ def _code_dispatcher(a, encoding=None, errors=None):
569
+ return (a,)
570
+
571
+
572
+ @array_function_dispatch(_code_dispatcher)
573
+ def decode(a, encoding=None, errors=None):
574
+ r"""
575
+ Calls ``bytes.decode`` element-wise.
576
+
577
+ The set of available codecs comes from the Python standard library,
578
+ and may be extended at runtime. For more information, see the
579
+ :mod:`codecs` module.
580
+
581
+ Parameters
582
+ ----------
583
+ a : array_like of str or unicode
584
+
585
+ encoding : str, optional
586
+ The name of an encoding
587
+
588
+ errors : str, optional
589
+ Specifies how to handle encoding errors
590
+
591
+ Returns
592
+ -------
593
+ out : ndarray
594
+
595
+ See Also
596
+ --------
597
+ :py:meth:`bytes.decode`
598
+
599
+ Notes
600
+ -----
601
+ The type of the result will depend on the encoding specified.
602
+
603
+ Examples
604
+ --------
605
+ >>> c = np.array([b'\x81\xc1\x81\xc1\x81\xc1', b'@@\x81\xc1@@',
606
+ ... b'\x81\x82\xc2\xc1\xc2\x82\x81'])
607
+ >>> c
608
+ array([b'\x81\xc1\x81\xc1\x81\xc1', b'@@\x81\xc1@@',
609
+ ... b'\x81\x82\xc2\xc1\xc2\x82\x81'], dtype='|S7')
610
+ >>> np.char.decode(c, encoding='cp037')
611
+ array(['aAaAaA', ' aA ', 'abBABba'], dtype='<U7')
612
+
613
+ """
614
+ return _to_bytes_or_str_array(
615
+ _vec_string(a, object_, 'decode', _clean_args(encoding, errors)))
616
+
617
+
618
+ @array_function_dispatch(_code_dispatcher)
619
+ def encode(a, encoding=None, errors=None):
620
+ """
621
+ Calls `str.encode` element-wise.
622
+
623
+ The set of available codecs comes from the Python standard library,
624
+ and may be extended at runtime. For more information, see the codecs
625
+ module.
626
+
627
+ Parameters
628
+ ----------
629
+ a : array_like of str or unicode
630
+
631
+ encoding : str, optional
632
+ The name of an encoding
633
+
634
+ errors : str, optional
635
+ Specifies how to handle encoding errors
636
+
637
+ Returns
638
+ -------
639
+ out : ndarray
640
+
641
+ See Also
642
+ --------
643
+ str.encode
644
+
645
+ Notes
646
+ -----
647
+ The type of the result will depend on the encoding specified.
648
+
649
+ """
650
+ return _to_bytes_or_str_array(
651
+ _vec_string(a, object_, 'encode', _clean_args(encoding, errors)))
652
+
653
+
654
+ def _endswith_dispatcher(a, suffix, start=None, end=None):
655
+ return (a,)
656
+
657
+
658
+ @array_function_dispatch(_endswith_dispatcher)
659
+ def endswith(a, suffix, start=0, end=None):
660
+ """
661
+ Returns a boolean array which is `True` where the string element
662
+ in `a` ends with `suffix`, otherwise `False`.
663
+
664
+ Calls `str.endswith` element-wise.
665
+
666
+ Parameters
667
+ ----------
668
+ a : array_like of str or unicode
669
+
670
+ suffix : str
671
+
672
+ start, end : int, optional
673
+ With optional `start`, test beginning at that position. With
674
+ optional `end`, stop comparing at that position.
675
+
676
+ Returns
677
+ -------
678
+ out : ndarray
679
+ Outputs an array of bools.
680
+
681
+ See Also
682
+ --------
683
+ str.endswith
684
+
685
+ Examples
686
+ --------
687
+ >>> s = np.array(['foo', 'bar'])
688
+ >>> s[0] = 'foo'
689
+ >>> s[1] = 'bar'
690
+ >>> s
691
+ array(['foo', 'bar'], dtype='<U3')
692
+ >>> np.char.endswith(s, 'ar')
693
+ array([False, True])
694
+ >>> np.char.endswith(s, 'a', start=1, end=2)
695
+ array([False, True])
696
+
697
+ """
698
+ return _vec_string(
699
+ a, bool_, 'endswith', [suffix, start] + _clean_args(end))
700
+
701
+
702
+ def _expandtabs_dispatcher(a, tabsize=None):
703
+ return (a,)
704
+
705
+
706
+ @array_function_dispatch(_expandtabs_dispatcher)
707
+ def expandtabs(a, tabsize=8):
708
+ """
709
+ Return a copy of each string element where all tab characters are
710
+ replaced by one or more spaces.
711
+
712
+ Calls `str.expandtabs` element-wise.
713
+
714
+ Return a copy of each string element where all tab characters are
715
+ replaced by one or more spaces, depending on the current column
716
+ and the given `tabsize`. The column number is reset to zero after
717
+ each newline occurring in the string. This doesn't understand other
718
+ non-printing characters or escape sequences.
719
+
720
+ Parameters
721
+ ----------
722
+ a : array_like of str or unicode
723
+ Input array
724
+ tabsize : int, optional
725
+ Replace tabs with `tabsize` number of spaces. If not given defaults
726
+ to 8 spaces.
727
+
728
+ Returns
729
+ -------
730
+ out : ndarray
731
+ Output array of str or unicode, depending on input type
732
+
733
+ See Also
734
+ --------
735
+ str.expandtabs
736
+
737
+ """
738
+ return _to_bytes_or_str_array(
739
+ _vec_string(a, object_, 'expandtabs', (tabsize,)), a)
740
+
741
+
742
+ @array_function_dispatch(_count_dispatcher)
743
+ def find(a, sub, start=0, end=None):
744
+ """
745
+ For each element, return the lowest index in the string where
746
+ substring `sub` is found.
747
+
748
+ Calls `str.find` element-wise.
749
+
750
+ For each element, return the lowest index in the string where
751
+ substring `sub` is found, such that `sub` is contained in the
752
+ range [`start`, `end`].
753
+
754
+ Parameters
755
+ ----------
756
+ a : array_like of str or unicode
757
+
758
+ sub : str or unicode
759
+
760
+ start, end : int, optional
761
+ Optional arguments `start` and `end` are interpreted as in
762
+ slice notation.
763
+
764
+ Returns
765
+ -------
766
+ out : ndarray or int
767
+ Output array of ints. Returns -1 if `sub` is not found.
768
+
769
+ See Also
770
+ --------
771
+ str.find
772
+
773
+ Examples
774
+ --------
775
+ >>> a = np.array(["NumPy is a Python library"])
776
+ >>> np.char.find(a, "Python", start=0, end=None)
777
+ array([11])
778
+
779
+ """
780
+ return _vec_string(
781
+ a, int_, 'find', [sub, start] + _clean_args(end))
782
+
783
+
784
+ @array_function_dispatch(_count_dispatcher)
785
+ def index(a, sub, start=0, end=None):
786
+ """
787
+ Like `find`, but raises `ValueError` when the substring is not found.
788
+
789
+ Calls `str.index` element-wise.
790
+
791
+ Parameters
792
+ ----------
793
+ a : array_like of str or unicode
794
+
795
+ sub : str or unicode
796
+
797
+ start, end : int, optional
798
+
799
+ Returns
800
+ -------
801
+ out : ndarray
802
+ Output array of ints. Returns -1 if `sub` is not found.
803
+
804
+ See Also
805
+ --------
806
+ find, str.find
807
+
808
+ Examples
809
+ --------
810
+ >>> a = np.array(["Computer Science"])
811
+ >>> np.char.index(a, "Science", start=0, end=None)
812
+ array([9])
813
+
814
+ """
815
+ return _vec_string(
816
+ a, int_, 'index', [sub, start] + _clean_args(end))
817
+
818
+
819
+ @array_function_dispatch(_unary_op_dispatcher)
820
+ def isalnum(a):
821
+ """
822
+ Returns true for each element if all characters in the string are
823
+ alphanumeric and there is at least one character, false otherwise.
824
+
825
+ Calls `str.isalnum` element-wise.
826
+
827
+ For 8-bit strings, this method is locale-dependent.
828
+
829
+ Parameters
830
+ ----------
831
+ a : array_like of str or unicode
832
+
833
+ Returns
834
+ -------
835
+ out : ndarray
836
+ Output array of str or unicode, depending on input type
837
+
838
+ See Also
839
+ --------
840
+ str.isalnum
841
+ """
842
+ return _vec_string(a, bool_, 'isalnum')
843
+
844
+
845
+ @array_function_dispatch(_unary_op_dispatcher)
846
+ def isalpha(a):
847
+ """
848
+ Returns true for each element if all characters in the string are
849
+ alphabetic and there is at least one character, false otherwise.
850
+
851
+ Calls `str.isalpha` element-wise.
852
+
853
+ For 8-bit strings, this method is locale-dependent.
854
+
855
+ Parameters
856
+ ----------
857
+ a : array_like of str or unicode
858
+
859
+ Returns
860
+ -------
861
+ out : ndarray
862
+ Output array of bools
863
+
864
+ See Also
865
+ --------
866
+ str.isalpha
867
+ """
868
+ return _vec_string(a, bool_, 'isalpha')
869
+
870
+
871
+ @array_function_dispatch(_unary_op_dispatcher)
872
+ def isdigit(a):
873
+ """
874
+ Returns true for each element if all characters in the string are
875
+ digits and there is at least one character, false otherwise.
876
+
877
+ Calls `str.isdigit` element-wise.
878
+
879
+ For 8-bit strings, this method is locale-dependent.
880
+
881
+ Parameters
882
+ ----------
883
+ a : array_like of str or unicode
884
+
885
+ Returns
886
+ -------
887
+ out : ndarray
888
+ Output array of bools
889
+
890
+ See Also
891
+ --------
892
+ str.isdigit
893
+
894
+ Examples
895
+ --------
896
+ >>> a = np.array(['a', 'b', '0'])
897
+ >>> np.char.isdigit(a)
898
+ array([False, False, True])
899
+ >>> a = np.array([['a', 'b', '0'], ['c', '1', '2']])
900
+ >>> np.char.isdigit(a)
901
+ array([[False, False, True], [False, True, True]])
902
+ """
903
+ return _vec_string(a, bool_, 'isdigit')
904
+
905
+
906
+ @array_function_dispatch(_unary_op_dispatcher)
907
+ def islower(a):
908
+ """
909
+ Returns true for each element if all cased characters in the
910
+ string are lowercase and there is at least one cased character,
911
+ false otherwise.
912
+
913
+ Calls `str.islower` element-wise.
914
+
915
+ For 8-bit strings, this method is locale-dependent.
916
+
917
+ Parameters
918
+ ----------
919
+ a : array_like of str or unicode
920
+
921
+ Returns
922
+ -------
923
+ out : ndarray
924
+ Output array of bools
925
+
926
+ See Also
927
+ --------
928
+ str.islower
929
+ """
930
+ return _vec_string(a, bool_, 'islower')
931
+
932
+
933
+ @array_function_dispatch(_unary_op_dispatcher)
934
+ def isspace(a):
935
+ """
936
+ Returns true for each element if there are only whitespace
937
+ characters in the string and there is at least one character,
938
+ false otherwise.
939
+
940
+ Calls `str.isspace` element-wise.
941
+
942
+ For 8-bit strings, this method is locale-dependent.
943
+
944
+ Parameters
945
+ ----------
946
+ a : array_like of str or unicode
947
+
948
+ Returns
949
+ -------
950
+ out : ndarray
951
+ Output array of bools
952
+
953
+ See Also
954
+ --------
955
+ str.isspace
956
+ """
957
+ return _vec_string(a, bool_, 'isspace')
958
+
959
+
960
+ @array_function_dispatch(_unary_op_dispatcher)
961
+ def istitle(a):
962
+ """
963
+ Returns true for each element if the element is a titlecased
964
+ string and there is at least one character, false otherwise.
965
+
966
+ Call `str.istitle` element-wise.
967
+
968
+ For 8-bit strings, this method is locale-dependent.
969
+
970
+ Parameters
971
+ ----------
972
+ a : array_like of str or unicode
973
+
974
+ Returns
975
+ -------
976
+ out : ndarray
977
+ Output array of bools
978
+
979
+ See Also
980
+ --------
981
+ str.istitle
982
+ """
983
+ return _vec_string(a, bool_, 'istitle')
984
+
985
+
986
+ @array_function_dispatch(_unary_op_dispatcher)
987
+ def isupper(a):
988
+ """
989
+ Return true for each element if all cased characters in the
990
+ string are uppercase and there is at least one character, false
991
+ otherwise.
992
+
993
+ Call `str.isupper` element-wise.
994
+
995
+ For 8-bit strings, this method is locale-dependent.
996
+
997
+ Parameters
998
+ ----------
999
+ a : array_like of str or unicode
1000
+
1001
+ Returns
1002
+ -------
1003
+ out : ndarray
1004
+ Output array of bools
1005
+
1006
+ See Also
1007
+ --------
1008
+ str.isupper
1009
+
1010
+ Examples
1011
+ --------
1012
+ >>> str = "GHC"
1013
+ >>> np.char.isupper(str)
1014
+ array(True)
1015
+ >>> a = np.array(["hello", "HELLO", "Hello"])
1016
+ >>> np.char.isupper(a)
1017
+ array([False, True, False])
1018
+
1019
+ """
1020
+ return _vec_string(a, bool_, 'isupper')
1021
+
1022
+
1023
+ def _join_dispatcher(sep, seq):
1024
+ return (sep, seq)
1025
+
1026
+
1027
+ @array_function_dispatch(_join_dispatcher)
1028
+ def join(sep, seq):
1029
+ """
1030
+ Return a string which is the concatenation of the strings in the
1031
+ sequence `seq`.
1032
+
1033
+ Calls `str.join` element-wise.
1034
+
1035
+ Parameters
1036
+ ----------
1037
+ sep : array_like of str or unicode
1038
+ seq : array_like of str or unicode
1039
+
1040
+ Returns
1041
+ -------
1042
+ out : ndarray
1043
+ Output array of str or unicode, depending on input types
1044
+
1045
+ See Also
1046
+ --------
1047
+ str.join
1048
+
1049
+ Examples
1050
+ --------
1051
+ >>> np.char.join('-', 'osd')
1052
+ array('o-s-d', dtype='<U5')
1053
+
1054
+ >>> np.char.join(['-', '.'], ['ghc', 'osd'])
1055
+ array(['g-h-c', 'o.s.d'], dtype='<U5')
1056
+
1057
+ """
1058
+ return _to_bytes_or_str_array(
1059
+ _vec_string(sep, object_, 'join', (seq,)), seq)
1060
+
1061
+
1062
+
1063
+ def _just_dispatcher(a, width, fillchar=None):
1064
+ return (a,)
1065
+
1066
+
1067
+ @array_function_dispatch(_just_dispatcher)
1068
+ def ljust(a, width, fillchar=' '):
1069
+ """
1070
+ Return an array with the elements of `a` left-justified in a
1071
+ string of length `width`.
1072
+
1073
+ Calls `str.ljust` element-wise.
1074
+
1075
+ Parameters
1076
+ ----------
1077
+ a : array_like of str or unicode
1078
+
1079
+ width : int
1080
+ The length of the resulting strings
1081
+ fillchar : str or unicode, optional
1082
+ The character to use for padding
1083
+
1084
+ Returns
1085
+ -------
1086
+ out : ndarray
1087
+ Output array of str or unicode, depending on input type
1088
+
1089
+ See Also
1090
+ --------
1091
+ str.ljust
1092
+
1093
+ """
1094
+ a_arr = numpy.asarray(a)
1095
+ width_arr = numpy.asarray(width)
1096
+ size = int(numpy.max(width_arr.flat))
1097
+ if numpy.issubdtype(a_arr.dtype, numpy.bytes_):
1098
+ fillchar = asbytes(fillchar)
1099
+ return _vec_string(
1100
+ a_arr, type(a_arr.dtype)(size), 'ljust', (width_arr, fillchar))
1101
+
1102
+
1103
+ @array_function_dispatch(_unary_op_dispatcher)
1104
+ def lower(a):
1105
+ """
1106
+ Return an array with the elements converted to lowercase.
1107
+
1108
+ Call `str.lower` element-wise.
1109
+
1110
+ For 8-bit strings, this method is locale-dependent.
1111
+
1112
+ Parameters
1113
+ ----------
1114
+ a : array_like, {str, unicode}
1115
+ Input array.
1116
+
1117
+ Returns
1118
+ -------
1119
+ out : ndarray, {str, unicode}
1120
+ Output array of str or unicode, depending on input type
1121
+
1122
+ See Also
1123
+ --------
1124
+ str.lower
1125
+
1126
+ Examples
1127
+ --------
1128
+ >>> c = np.array(['A1B C', '1BCA', 'BCA1']); c
1129
+ array(['A1B C', '1BCA', 'BCA1'], dtype='<U5')
1130
+ >>> np.char.lower(c)
1131
+ array(['a1b c', '1bca', 'bca1'], dtype='<U5')
1132
+
1133
+ """
1134
+ a_arr = numpy.asarray(a)
1135
+ return _vec_string(a_arr, a_arr.dtype, 'lower')
1136
+
1137
+
1138
+ def _strip_dispatcher(a, chars=None):
1139
+ return (a,)
1140
+
1141
+
1142
+ @array_function_dispatch(_strip_dispatcher)
1143
+ def lstrip(a, chars=None):
1144
+ """
1145
+ For each element in `a`, return a copy with the leading characters
1146
+ removed.
1147
+
1148
+ Calls `str.lstrip` element-wise.
1149
+
1150
+ Parameters
1151
+ ----------
1152
+ a : array-like, {str, unicode}
1153
+ Input array.
1154
+
1155
+ chars : {str, unicode}, optional
1156
+ The `chars` argument is a string specifying the set of
1157
+ characters to be removed. If omitted or None, the `chars`
1158
+ argument defaults to removing whitespace. The `chars` argument
1159
+ is not a prefix; rather, all combinations of its values are
1160
+ stripped.
1161
+
1162
+ Returns
1163
+ -------
1164
+ out : ndarray, {str, unicode}
1165
+ Output array of str or unicode, depending on input type
1166
+
1167
+ See Also
1168
+ --------
1169
+ str.lstrip
1170
+
1171
+ Examples
1172
+ --------
1173
+ >>> c = np.array(['aAaAaA', ' aA ', 'abBABba'])
1174
+ >>> c
1175
+ array(['aAaAaA', ' aA ', 'abBABba'], dtype='<U7')
1176
+
1177
+ The 'a' variable is unstripped from c[1] because whitespace leading.
1178
+
1179
+ >>> np.char.lstrip(c, 'a')
1180
+ array(['AaAaA', ' aA ', 'bBABba'], dtype='<U7')
1181
+
1182
+
1183
+ >>> np.char.lstrip(c, 'A') # leaves c unchanged
1184
+ array(['aAaAaA', ' aA ', 'abBABba'], dtype='<U7')
1185
+ >>> (np.char.lstrip(c, ' ') == np.char.lstrip(c, '')).all()
1186
+ ... # XXX: is this a regression? This used to return True
1187
+ ... # np.char.lstrip(c,'') does not modify c at all.
1188
+ False
1189
+ >>> (np.char.lstrip(c, ' ') == np.char.lstrip(c, None)).all()
1190
+ True
1191
+
1192
+ """
1193
+ a_arr = numpy.asarray(a)
1194
+ return _vec_string(a_arr, a_arr.dtype, 'lstrip', (chars,))
1195
+
1196
+
1197
+ def _partition_dispatcher(a, sep):
1198
+ return (a,)
1199
+
1200
+
1201
+ @array_function_dispatch(_partition_dispatcher)
1202
+ def partition(a, sep):
1203
+ """
1204
+ Partition each element in `a` around `sep`.
1205
+
1206
+ Calls `str.partition` element-wise.
1207
+
1208
+ For each element in `a`, split the element as the first
1209
+ occurrence of `sep`, and return 3 strings containing the part
1210
+ before the separator, the separator itself, and the part after
1211
+ the separator. If the separator is not found, return 3 strings
1212
+ containing the string itself, followed by two empty strings.
1213
+
1214
+ Parameters
1215
+ ----------
1216
+ a : array_like, {str, unicode}
1217
+ Input array
1218
+ sep : {str, unicode}
1219
+ Separator to split each string element in `a`.
1220
+
1221
+ Returns
1222
+ -------
1223
+ out : ndarray, {str, unicode}
1224
+ Output array of str or unicode, depending on input type.
1225
+ The output array will have an extra dimension with 3
1226
+ elements per input element.
1227
+
1228
+ See Also
1229
+ --------
1230
+ str.partition
1231
+
1232
+ """
1233
+ return _to_bytes_or_str_array(
1234
+ _vec_string(a, object_, 'partition', (sep,)), a)
1235
+
1236
+
1237
+ def _replace_dispatcher(a, old, new, count=None):
1238
+ return (a,)
1239
+
1240
+
1241
+ @array_function_dispatch(_replace_dispatcher)
1242
+ def replace(a, old, new, count=None):
1243
+ """
1244
+ For each element in `a`, return a copy of the string with all
1245
+ occurrences of substring `old` replaced by `new`.
1246
+
1247
+ Calls `str.replace` element-wise.
1248
+
1249
+ Parameters
1250
+ ----------
1251
+ a : array-like of str or unicode
1252
+
1253
+ old, new : str or unicode
1254
+
1255
+ count : int, optional
1256
+ If the optional argument `count` is given, only the first
1257
+ `count` occurrences are replaced.
1258
+
1259
+ Returns
1260
+ -------
1261
+ out : ndarray
1262
+ Output array of str or unicode, depending on input type
1263
+
1264
+ See Also
1265
+ --------
1266
+ str.replace
1267
+
1268
+ Examples
1269
+ --------
1270
+ >>> a = np.array(["That is a mango", "Monkeys eat mangos"])
1271
+ >>> np.char.replace(a, 'mango', 'banana')
1272
+ array(['That is a banana', 'Monkeys eat bananas'], dtype='<U19')
1273
+
1274
+ >>> a = np.array(["The dish is fresh", "This is it"])
1275
+ >>> np.char.replace(a, 'is', 'was')
1276
+ array(['The dwash was fresh', 'Thwas was it'], dtype='<U19')
1277
+ """
1278
+ return _to_bytes_or_str_array(
1279
+ _vec_string(a, object_, 'replace', [old, new] + _clean_args(count)), a)
1280
+
1281
+
1282
+ @array_function_dispatch(_count_dispatcher)
1283
+ def rfind(a, sub, start=0, end=None):
1284
+ """
1285
+ For each element in `a`, return the highest index in the string
1286
+ where substring `sub` is found, such that `sub` is contained
1287
+ within [`start`, `end`].
1288
+
1289
+ Calls `str.rfind` element-wise.
1290
+
1291
+ Parameters
1292
+ ----------
1293
+ a : array-like of str or unicode
1294
+
1295
+ sub : str or unicode
1296
+
1297
+ start, end : int, optional
1298
+ Optional arguments `start` and `end` are interpreted as in
1299
+ slice notation.
1300
+
1301
+ Returns
1302
+ -------
1303
+ out : ndarray
1304
+ Output array of ints. Return -1 on failure.
1305
+
1306
+ See Also
1307
+ --------
1308
+ str.rfind
1309
+
1310
+ """
1311
+ return _vec_string(
1312
+ a, int_, 'rfind', [sub, start] + _clean_args(end))
1313
+
1314
+
1315
+ @array_function_dispatch(_count_dispatcher)
1316
+ def rindex(a, sub, start=0, end=None):
1317
+ """
1318
+ Like `rfind`, but raises `ValueError` when the substring `sub` is
1319
+ not found.
1320
+
1321
+ Calls `str.rindex` element-wise.
1322
+
1323
+ Parameters
1324
+ ----------
1325
+ a : array-like of str or unicode
1326
+
1327
+ sub : str or unicode
1328
+
1329
+ start, end : int, optional
1330
+
1331
+ Returns
1332
+ -------
1333
+ out : ndarray
1334
+ Output array of ints.
1335
+
1336
+ See Also
1337
+ --------
1338
+ rfind, str.rindex
1339
+
1340
+ """
1341
+ return _vec_string(
1342
+ a, int_, 'rindex', [sub, start] + _clean_args(end))
1343
+
1344
+
1345
+ @array_function_dispatch(_just_dispatcher)
1346
+ def rjust(a, width, fillchar=' '):
1347
+ """
1348
+ Return an array with the elements of `a` right-justified in a
1349
+ string of length `width`.
1350
+
1351
+ Calls `str.rjust` element-wise.
1352
+
1353
+ Parameters
1354
+ ----------
1355
+ a : array_like of str or unicode
1356
+
1357
+ width : int
1358
+ The length of the resulting strings
1359
+ fillchar : str or unicode, optional
1360
+ The character to use for padding
1361
+
1362
+ Returns
1363
+ -------
1364
+ out : ndarray
1365
+ Output array of str or unicode, depending on input type
1366
+
1367
+ See Also
1368
+ --------
1369
+ str.rjust
1370
+
1371
+ """
1372
+ a_arr = numpy.asarray(a)
1373
+ width_arr = numpy.asarray(width)
1374
+ size = int(numpy.max(width_arr.flat))
1375
+ if numpy.issubdtype(a_arr.dtype, numpy.bytes_):
1376
+ fillchar = asbytes(fillchar)
1377
+ return _vec_string(
1378
+ a_arr, type(a_arr.dtype)(size), 'rjust', (width_arr, fillchar))
1379
+
1380
+
1381
+ @array_function_dispatch(_partition_dispatcher)
1382
+ def rpartition(a, sep):
1383
+ """
1384
+ Partition (split) each element around the right-most separator.
1385
+
1386
+ Calls `str.rpartition` element-wise.
1387
+
1388
+ For each element in `a`, split the element as the last
1389
+ occurrence of `sep`, and return 3 strings containing the part
1390
+ before the separator, the separator itself, and the part after
1391
+ the separator. If the separator is not found, return 3 strings
1392
+ containing the string itself, followed by two empty strings.
1393
+
1394
+ Parameters
1395
+ ----------
1396
+ a : array_like of str or unicode
1397
+ Input array
1398
+ sep : str or unicode
1399
+ Right-most separator to split each element in array.
1400
+
1401
+ Returns
1402
+ -------
1403
+ out : ndarray
1404
+ Output array of string or unicode, depending on input
1405
+ type. The output array will have an extra dimension with
1406
+ 3 elements per input element.
1407
+
1408
+ See Also
1409
+ --------
1410
+ str.rpartition
1411
+
1412
+ """
1413
+ return _to_bytes_or_str_array(
1414
+ _vec_string(a, object_, 'rpartition', (sep,)), a)
1415
+
1416
+
1417
+ def _split_dispatcher(a, sep=None, maxsplit=None):
1418
+ return (a,)
1419
+
1420
+
1421
+ @array_function_dispatch(_split_dispatcher)
1422
+ def rsplit(a, sep=None, maxsplit=None):
1423
+ """
1424
+ For each element in `a`, return a list of the words in the
1425
+ string, using `sep` as the delimiter string.
1426
+
1427
+ Calls `str.rsplit` element-wise.
1428
+
1429
+ Except for splitting from the right, `rsplit`
1430
+ behaves like `split`.
1431
+
1432
+ Parameters
1433
+ ----------
1434
+ a : array_like of str or unicode
1435
+
1436
+ sep : str or unicode, optional
1437
+ If `sep` is not specified or None, any whitespace string
1438
+ is a separator.
1439
+ maxsplit : int, optional
1440
+ If `maxsplit` is given, at most `maxsplit` splits are done,
1441
+ the rightmost ones.
1442
+
1443
+ Returns
1444
+ -------
1445
+ out : ndarray
1446
+ Array of list objects
1447
+
1448
+ See Also
1449
+ --------
1450
+ str.rsplit, split
1451
+
1452
+ """
1453
+ # This will return an array of lists of different sizes, so we
1454
+ # leave it as an object array
1455
+ return _vec_string(
1456
+ a, object_, 'rsplit', [sep] + _clean_args(maxsplit))
1457
+
1458
+
1459
+ def _strip_dispatcher(a, chars=None):
1460
+ return (a,)
1461
+
1462
+
1463
+ @array_function_dispatch(_strip_dispatcher)
1464
+ def rstrip(a, chars=None):
1465
+ """
1466
+ For each element in `a`, return a copy with the trailing
1467
+ characters removed.
1468
+
1469
+ Calls `str.rstrip` element-wise.
1470
+
1471
+ Parameters
1472
+ ----------
1473
+ a : array-like of str or unicode
1474
+
1475
+ chars : str or unicode, optional
1476
+ The `chars` argument is a string specifying the set of
1477
+ characters to be removed. If omitted or None, the `chars`
1478
+ argument defaults to removing whitespace. The `chars` argument
1479
+ is not a suffix; rather, all combinations of its values are
1480
+ stripped.
1481
+
1482
+ Returns
1483
+ -------
1484
+ out : ndarray
1485
+ Output array of str or unicode, depending on input type
1486
+
1487
+ See Also
1488
+ --------
1489
+ str.rstrip
1490
+
1491
+ Examples
1492
+ --------
1493
+ >>> c = np.array(['aAaAaA', 'abBABba'], dtype='S7'); c
1494
+ array(['aAaAaA', 'abBABba'],
1495
+ dtype='|S7')
1496
+ >>> np.char.rstrip(c, b'a')
1497
+ array(['aAaAaA', 'abBABb'],
1498
+ dtype='|S7')
1499
+ >>> np.char.rstrip(c, b'A')
1500
+ array(['aAaAa', 'abBABba'],
1501
+ dtype='|S7')
1502
+
1503
+ """
1504
+ a_arr = numpy.asarray(a)
1505
+ return _vec_string(a_arr, a_arr.dtype, 'rstrip', (chars,))
1506
+
1507
+
1508
+ @array_function_dispatch(_split_dispatcher)
1509
+ def split(a, sep=None, maxsplit=None):
1510
+ """
1511
+ For each element in `a`, return a list of the words in the
1512
+ string, using `sep` as the delimiter string.
1513
+
1514
+ Calls `str.split` element-wise.
1515
+
1516
+ Parameters
1517
+ ----------
1518
+ a : array_like of str or unicode
1519
+
1520
+ sep : str or unicode, optional
1521
+ If `sep` is not specified or None, any whitespace string is a
1522
+ separator.
1523
+
1524
+ maxsplit : int, optional
1525
+ If `maxsplit` is given, at most `maxsplit` splits are done.
1526
+
1527
+ Returns
1528
+ -------
1529
+ out : ndarray
1530
+ Array of list objects
1531
+
1532
+ See Also
1533
+ --------
1534
+ str.split, rsplit
1535
+
1536
+ """
1537
+ # This will return an array of lists of different sizes, so we
1538
+ # leave it as an object array
1539
+ return _vec_string(
1540
+ a, object_, 'split', [sep] + _clean_args(maxsplit))
1541
+
1542
+
1543
+ def _splitlines_dispatcher(a, keepends=None):
1544
+ return (a,)
1545
+
1546
+
1547
+ @array_function_dispatch(_splitlines_dispatcher)
1548
+ def splitlines(a, keepends=None):
1549
+ """
1550
+ For each element in `a`, return a list of the lines in the
1551
+ element, breaking at line boundaries.
1552
+
1553
+ Calls `str.splitlines` element-wise.
1554
+
1555
+ Parameters
1556
+ ----------
1557
+ a : array_like of str or unicode
1558
+
1559
+ keepends : bool, optional
1560
+ Line breaks are not included in the resulting list unless
1561
+ keepends is given and true.
1562
+
1563
+ Returns
1564
+ -------
1565
+ out : ndarray
1566
+ Array of list objects
1567
+
1568
+ See Also
1569
+ --------
1570
+ str.splitlines
1571
+
1572
+ """
1573
+ return _vec_string(
1574
+ a, object_, 'splitlines', _clean_args(keepends))
1575
+
1576
+
1577
+ def _startswith_dispatcher(a, prefix, start=None, end=None):
1578
+ return (a,)
1579
+
1580
+
1581
+ @array_function_dispatch(_startswith_dispatcher)
1582
+ def startswith(a, prefix, start=0, end=None):
1583
+ """
1584
+ Returns a boolean array which is `True` where the string element
1585
+ in `a` starts with `prefix`, otherwise `False`.
1586
+
1587
+ Calls `str.startswith` element-wise.
1588
+
1589
+ Parameters
1590
+ ----------
1591
+ a : array_like of str or unicode
1592
+
1593
+ prefix : str
1594
+
1595
+ start, end : int, optional
1596
+ With optional `start`, test beginning at that position. With
1597
+ optional `end`, stop comparing at that position.
1598
+
1599
+ Returns
1600
+ -------
1601
+ out : ndarray
1602
+ Array of booleans
1603
+
1604
+ See Also
1605
+ --------
1606
+ str.startswith
1607
+
1608
+ """
1609
+ return _vec_string(
1610
+ a, bool_, 'startswith', [prefix, start] + _clean_args(end))
1611
+
1612
+
1613
+ @array_function_dispatch(_strip_dispatcher)
1614
+ def strip(a, chars=None):
1615
+ """
1616
+ For each element in `a`, return a copy with the leading and
1617
+ trailing characters removed.
1618
+
1619
+ Calls `str.strip` element-wise.
1620
+
1621
+ Parameters
1622
+ ----------
1623
+ a : array-like of str or unicode
1624
+
1625
+ chars : str or unicode, optional
1626
+ The `chars` argument is a string specifying the set of
1627
+ characters to be removed. If omitted or None, the `chars`
1628
+ argument defaults to removing whitespace. The `chars` argument
1629
+ is not a prefix or suffix; rather, all combinations of its
1630
+ values are stripped.
1631
+
1632
+ Returns
1633
+ -------
1634
+ out : ndarray
1635
+ Output array of str or unicode, depending on input type
1636
+
1637
+ See Also
1638
+ --------
1639
+ str.strip
1640
+
1641
+ Examples
1642
+ --------
1643
+ >>> c = np.array(['aAaAaA', ' aA ', 'abBABba'])
1644
+ >>> c
1645
+ array(['aAaAaA', ' aA ', 'abBABba'], dtype='<U7')
1646
+ >>> np.char.strip(c)
1647
+ array(['aAaAaA', 'aA', 'abBABba'], dtype='<U7')
1648
+ >>> np.char.strip(c, 'a') # 'a' unstripped from c[1] because whitespace leads
1649
+ array(['AaAaA', ' aA ', 'bBABb'], dtype='<U7')
1650
+ >>> np.char.strip(c, 'A') # 'A' unstripped from c[1] because (unprinted) ws trails
1651
+ array(['aAaAa', ' aA ', 'abBABba'], dtype='<U7')
1652
+
1653
+ """
1654
+ a_arr = numpy.asarray(a)
1655
+ return _vec_string(a_arr, a_arr.dtype, 'strip', _clean_args(chars))
1656
+
1657
+
1658
+ @array_function_dispatch(_unary_op_dispatcher)
1659
+ def swapcase(a):
1660
+ """
1661
+ Return element-wise a copy of the string with
1662
+ uppercase characters converted to lowercase and vice versa.
1663
+
1664
+ Calls `str.swapcase` element-wise.
1665
+
1666
+ For 8-bit strings, this method is locale-dependent.
1667
+
1668
+ Parameters
1669
+ ----------
1670
+ a : array_like, {str, unicode}
1671
+ Input array.
1672
+
1673
+ Returns
1674
+ -------
1675
+ out : ndarray, {str, unicode}
1676
+ Output array of str or unicode, depending on input type
1677
+
1678
+ See Also
1679
+ --------
1680
+ str.swapcase
1681
+
1682
+ Examples
1683
+ --------
1684
+ >>> c=np.array(['a1B c','1b Ca','b Ca1','cA1b'],'S5'); c
1685
+ array(['a1B c', '1b Ca', 'b Ca1', 'cA1b'],
1686
+ dtype='|S5')
1687
+ >>> np.char.swapcase(c)
1688
+ array(['A1b C', '1B cA', 'B cA1', 'Ca1B'],
1689
+ dtype='|S5')
1690
+
1691
+ """
1692
+ a_arr = numpy.asarray(a)
1693
+ return _vec_string(a_arr, a_arr.dtype, 'swapcase')
1694
+
1695
+
1696
+ @array_function_dispatch(_unary_op_dispatcher)
1697
+ def title(a):
1698
+ """
1699
+ Return element-wise title cased version of string or unicode.
1700
+
1701
+ Title case words start with uppercase characters, all remaining cased
1702
+ characters are lowercase.
1703
+
1704
+ Calls `str.title` element-wise.
1705
+
1706
+ For 8-bit strings, this method is locale-dependent.
1707
+
1708
+ Parameters
1709
+ ----------
1710
+ a : array_like, {str, unicode}
1711
+ Input array.
1712
+
1713
+ Returns
1714
+ -------
1715
+ out : ndarray
1716
+ Output array of str or unicode, depending on input type
1717
+
1718
+ See Also
1719
+ --------
1720
+ str.title
1721
+
1722
+ Examples
1723
+ --------
1724
+ >>> c=np.array(['a1b c','1b ca','b ca1','ca1b'],'S5'); c
1725
+ array(['a1b c', '1b ca', 'b ca1', 'ca1b'],
1726
+ dtype='|S5')
1727
+ >>> np.char.title(c)
1728
+ array(['A1B C', '1B Ca', 'B Ca1', 'Ca1B'],
1729
+ dtype='|S5')
1730
+
1731
+ """
1732
+ a_arr = numpy.asarray(a)
1733
+ return _vec_string(a_arr, a_arr.dtype, 'title')
1734
+
1735
+
1736
+ def _translate_dispatcher(a, table, deletechars=None):
1737
+ return (a,)
1738
+
1739
+
1740
+ @array_function_dispatch(_translate_dispatcher)
1741
+ def translate(a, table, deletechars=None):
1742
+ """
1743
+ For each element in `a`, return a copy of the string where all
1744
+ characters occurring in the optional argument `deletechars` are
1745
+ removed, and the remaining characters have been mapped through the
1746
+ given translation table.
1747
+
1748
+ Calls `str.translate` element-wise.
1749
+
1750
+ Parameters
1751
+ ----------
1752
+ a : array-like of str or unicode
1753
+
1754
+ table : str of length 256
1755
+
1756
+ deletechars : str
1757
+
1758
+ Returns
1759
+ -------
1760
+ out : ndarray
1761
+ Output array of str or unicode, depending on input type
1762
+
1763
+ See Also
1764
+ --------
1765
+ str.translate
1766
+
1767
+ """
1768
+ a_arr = numpy.asarray(a)
1769
+ if issubclass(a_arr.dtype.type, str_):
1770
+ return _vec_string(
1771
+ a_arr, a_arr.dtype, 'translate', (table,))
1772
+ else:
1773
+ return _vec_string(
1774
+ a_arr, a_arr.dtype, 'translate', [table] + _clean_args(deletechars))
1775
+
1776
+
1777
+ @array_function_dispatch(_unary_op_dispatcher)
1778
+ def upper(a):
1779
+ """
1780
+ Return an array with the elements converted to uppercase.
1781
+
1782
+ Calls `str.upper` element-wise.
1783
+
1784
+ For 8-bit strings, this method is locale-dependent.
1785
+
1786
+ Parameters
1787
+ ----------
1788
+ a : array_like, {str, unicode}
1789
+ Input array.
1790
+
1791
+ Returns
1792
+ -------
1793
+ out : ndarray, {str, unicode}
1794
+ Output array of str or unicode, depending on input type
1795
+
1796
+ See Also
1797
+ --------
1798
+ str.upper
1799
+
1800
+ Examples
1801
+ --------
1802
+ >>> c = np.array(['a1b c', '1bca', 'bca1']); c
1803
+ array(['a1b c', '1bca', 'bca1'], dtype='<U5')
1804
+ >>> np.char.upper(c)
1805
+ array(['A1B C', '1BCA', 'BCA1'], dtype='<U5')
1806
+
1807
+ """
1808
+ a_arr = numpy.asarray(a)
1809
+ return _vec_string(a_arr, a_arr.dtype, 'upper')
1810
+
1811
+
1812
+ def _zfill_dispatcher(a, width):
1813
+ return (a,)
1814
+
1815
+
1816
+ @array_function_dispatch(_zfill_dispatcher)
1817
+ def zfill(a, width):
1818
+ """
1819
+ Return the numeric string left-filled with zeros
1820
+
1821
+ Calls `str.zfill` element-wise.
1822
+
1823
+ Parameters
1824
+ ----------
1825
+ a : array_like, {str, unicode}
1826
+ Input array.
1827
+ width : int
1828
+ Width of string to left-fill elements in `a`.
1829
+
1830
+ Returns
1831
+ -------
1832
+ out : ndarray, {str, unicode}
1833
+ Output array of str or unicode, depending on input type
1834
+
1835
+ See Also
1836
+ --------
1837
+ str.zfill
1838
+
1839
+ """
1840
+ a_arr = numpy.asarray(a)
1841
+ width_arr = numpy.asarray(width)
1842
+ size = int(numpy.max(width_arr.flat))
1843
+ return _vec_string(
1844
+ a_arr, type(a_arr.dtype)(size), 'zfill', (width_arr,))
1845
+
1846
+
1847
+ @array_function_dispatch(_unary_op_dispatcher)
1848
+ def isnumeric(a):
1849
+ """
1850
+ For each element, return True if there are only numeric
1851
+ characters in the element.
1852
+
1853
+ Calls `str.isnumeric` element-wise.
1854
+
1855
+ Numeric characters include digit characters, and all characters
1856
+ that have the Unicode numeric value property, e.g. ``U+2155,
1857
+ VULGAR FRACTION ONE FIFTH``.
1858
+
1859
+ Parameters
1860
+ ----------
1861
+ a : array_like, unicode
1862
+ Input array.
1863
+
1864
+ Returns
1865
+ -------
1866
+ out : ndarray, bool
1867
+ Array of booleans of same shape as `a`.
1868
+
1869
+ See Also
1870
+ --------
1871
+ str.isnumeric
1872
+
1873
+ Examples
1874
+ --------
1875
+ >>> np.char.isnumeric(['123', '123abc', '9.0', '1/4', 'VIII'])
1876
+ array([ True, False, False, False, False])
1877
+
1878
+ """
1879
+ if not _is_unicode(a):
1880
+ raise TypeError("isnumeric is only available for Unicode strings and arrays")
1881
+ return _vec_string(a, bool_, 'isnumeric')
1882
+
1883
+
1884
+ @array_function_dispatch(_unary_op_dispatcher)
1885
+ def isdecimal(a):
1886
+ """
1887
+ For each element, return True if there are only decimal
1888
+ characters in the element.
1889
+
1890
+ Calls `str.isdecimal` element-wise.
1891
+
1892
+ Decimal characters include digit characters, and all characters
1893
+ that can be used to form decimal-radix numbers,
1894
+ e.g. ``U+0660, ARABIC-INDIC DIGIT ZERO``.
1895
+
1896
+ Parameters
1897
+ ----------
1898
+ a : array_like, unicode
1899
+ Input array.
1900
+
1901
+ Returns
1902
+ -------
1903
+ out : ndarray, bool
1904
+ Array of booleans identical in shape to `a`.
1905
+
1906
+ See Also
1907
+ --------
1908
+ str.isdecimal
1909
+
1910
+ Examples
1911
+ --------
1912
+ >>> np.char.isdecimal(['12345', '4.99', '123ABC', ''])
1913
+ array([ True, False, False, False])
1914
+
1915
+ """
1916
+ if not _is_unicode(a):
1917
+ raise TypeError(
1918
+ "isdecimal is only available for Unicode strings and arrays")
1919
+ return _vec_string(a, bool_, 'isdecimal')
1920
+
1921
+
1922
+ @set_module('numpy')
1923
+ class chararray(ndarray):
1924
+ """
1925
+ chararray(shape, itemsize=1, unicode=False, buffer=None, offset=0,
1926
+ strides=None, order=None)
1927
+
1928
+ Provides a convenient view on arrays of string and unicode values.
1929
+
1930
+ .. note::
1931
+ The `chararray` class exists for backwards compatibility with
1932
+ Numarray, it is not recommended for new development. Starting from numpy
1933
+ 1.4, if one needs arrays of strings, it is recommended to use arrays of
1934
+ `dtype` `object_`, `bytes_` or `str_`, and use the free functions
1935
+ in the `numpy.char` module for fast vectorized string operations.
1936
+
1937
+ Versus a regular NumPy array of type `str` or `unicode`, this
1938
+ class adds the following functionality:
1939
+
1940
+ 1) values automatically have whitespace removed from the end
1941
+ when indexed
1942
+
1943
+ 2) comparison operators automatically remove whitespace from the
1944
+ end when comparing values
1945
+
1946
+ 3) vectorized string operations are provided as methods
1947
+ (e.g. `.endswith`) and infix operators (e.g. ``"+", "*", "%"``)
1948
+
1949
+ chararrays should be created using `numpy.char.array` or
1950
+ `numpy.char.asarray`, rather than this constructor directly.
1951
+
1952
+ This constructor creates the array, using `buffer` (with `offset`
1953
+ and `strides`) if it is not ``None``. If `buffer` is ``None``, then
1954
+ constructs a new array with `strides` in "C order", unless both
1955
+ ``len(shape) >= 2`` and ``order='F'``, in which case `strides`
1956
+ is in "Fortran order".
1957
+
1958
+ Methods
1959
+ -------
1960
+ astype
1961
+ argsort
1962
+ copy
1963
+ count
1964
+ decode
1965
+ dump
1966
+ dumps
1967
+ encode
1968
+ endswith
1969
+ expandtabs
1970
+ fill
1971
+ find
1972
+ flatten
1973
+ getfield
1974
+ index
1975
+ isalnum
1976
+ isalpha
1977
+ isdecimal
1978
+ isdigit
1979
+ islower
1980
+ isnumeric
1981
+ isspace
1982
+ istitle
1983
+ isupper
1984
+ item
1985
+ join
1986
+ ljust
1987
+ lower
1988
+ lstrip
1989
+ nonzero
1990
+ put
1991
+ ravel
1992
+ repeat
1993
+ replace
1994
+ reshape
1995
+ resize
1996
+ rfind
1997
+ rindex
1998
+ rjust
1999
+ rsplit
2000
+ rstrip
2001
+ searchsorted
2002
+ setfield
2003
+ setflags
2004
+ sort
2005
+ split
2006
+ splitlines
2007
+ squeeze
2008
+ startswith
2009
+ strip
2010
+ swapaxes
2011
+ swapcase
2012
+ take
2013
+ title
2014
+ tofile
2015
+ tolist
2016
+ tostring
2017
+ translate
2018
+ transpose
2019
+ upper
2020
+ view
2021
+ zfill
2022
+
2023
+ Parameters
2024
+ ----------
2025
+ shape : tuple
2026
+ Shape of the array.
2027
+ itemsize : int, optional
2028
+ Length of each array element, in number of characters. Default is 1.
2029
+ unicode : bool, optional
2030
+ Are the array elements of type unicode (True) or string (False).
2031
+ Default is False.
2032
+ buffer : object exposing the buffer interface or str, optional
2033
+ Memory address of the start of the array data. Default is None,
2034
+ in which case a new array is created.
2035
+ offset : int, optional
2036
+ Fixed stride displacement from the beginning of an axis?
2037
+ Default is 0. Needs to be >=0.
2038
+ strides : array_like of ints, optional
2039
+ Strides for the array (see `ndarray.strides` for full description).
2040
+ Default is None.
2041
+ order : {'C', 'F'}, optional
2042
+ The order in which the array data is stored in memory: 'C' ->
2043
+ "row major" order (the default), 'F' -> "column major"
2044
+ (Fortran) order.
2045
+
2046
+ Examples
2047
+ --------
2048
+ >>> charar = np.chararray((3, 3))
2049
+ >>> charar[:] = 'a'
2050
+ >>> charar
2051
+ chararray([[b'a', b'a', b'a'],
2052
+ [b'a', b'a', b'a'],
2053
+ [b'a', b'a', b'a']], dtype='|S1')
2054
+
2055
+ >>> charar = np.chararray(charar.shape, itemsize=5)
2056
+ >>> charar[:] = 'abc'
2057
+ >>> charar
2058
+ chararray([[b'abc', b'abc', b'abc'],
2059
+ [b'abc', b'abc', b'abc'],
2060
+ [b'abc', b'abc', b'abc']], dtype='|S5')
2061
+
2062
+ """
2063
+ def __new__(subtype, shape, itemsize=1, unicode=False, buffer=None,
2064
+ offset=0, strides=None, order='C'):
2065
+ global _globalvar
2066
+
2067
+ if unicode:
2068
+ dtype = str_
2069
+ else:
2070
+ dtype = bytes_
2071
+
2072
+ # force itemsize to be a Python int, since using NumPy integer
2073
+ # types results in itemsize.itemsize being used as the size of
2074
+ # strings in the new array.
2075
+ itemsize = int(itemsize)
2076
+
2077
+ if isinstance(buffer, str):
2078
+ # unicode objects do not have the buffer interface
2079
+ filler = buffer
2080
+ buffer = None
2081
+ else:
2082
+ filler = None
2083
+
2084
+ _globalvar = 1
2085
+ if buffer is None:
2086
+ self = ndarray.__new__(subtype, shape, (dtype, itemsize),
2087
+ order=order)
2088
+ else:
2089
+ self = ndarray.__new__(subtype, shape, (dtype, itemsize),
2090
+ buffer=buffer,
2091
+ offset=offset, strides=strides,
2092
+ order=order)
2093
+ if filler is not None:
2094
+ self[...] = filler
2095
+ _globalvar = 0
2096
+ return self
2097
+
2098
+ def __array_finalize__(self, obj):
2099
+ # The b is a special case because it is used for reconstructing.
2100
+ if not _globalvar and self.dtype.char not in 'SUbc':
2101
+ raise ValueError("Can only create a chararray from string data.")
2102
+
2103
+ def __getitem__(self, obj):
2104
+ val = ndarray.__getitem__(self, obj)
2105
+
2106
+ if isinstance(val, character):
2107
+ temp = val.rstrip()
2108
+ if len(temp) == 0:
2109
+ val = ''
2110
+ else:
2111
+ val = temp
2112
+
2113
+ return val
2114
+
2115
+ # IMPLEMENTATION NOTE: Most of the methods of this class are
2116
+ # direct delegations to the free functions in this module.
2117
+ # However, those that return an array of strings should instead
2118
+ # return a chararray, so some extra wrapping is required.
2119
+
2120
+ def __eq__(self, other):
2121
+ """
2122
+ Return (self == other) element-wise.
2123
+
2124
+ See Also
2125
+ --------
2126
+ equal
2127
+ """
2128
+ return equal(self, other)
2129
+
2130
+ def __ne__(self, other):
2131
+ """
2132
+ Return (self != other) element-wise.
2133
+
2134
+ See Also
2135
+ --------
2136
+ not_equal
2137
+ """
2138
+ return not_equal(self, other)
2139
+
2140
+ def __ge__(self, other):
2141
+ """
2142
+ Return (self >= other) element-wise.
2143
+
2144
+ See Also
2145
+ --------
2146
+ greater_equal
2147
+ """
2148
+ return greater_equal(self, other)
2149
+
2150
+ def __le__(self, other):
2151
+ """
2152
+ Return (self <= other) element-wise.
2153
+
2154
+ See Also
2155
+ --------
2156
+ less_equal
2157
+ """
2158
+ return less_equal(self, other)
2159
+
2160
+ def __gt__(self, other):
2161
+ """
2162
+ Return (self > other) element-wise.
2163
+
2164
+ See Also
2165
+ --------
2166
+ greater
2167
+ """
2168
+ return greater(self, other)
2169
+
2170
+ def __lt__(self, other):
2171
+ """
2172
+ Return (self < other) element-wise.
2173
+
2174
+ See Also
2175
+ --------
2176
+ less
2177
+ """
2178
+ return less(self, other)
2179
+
2180
+ def __add__(self, other):
2181
+ """
2182
+ Return (self + other), that is string concatenation,
2183
+ element-wise for a pair of array_likes of str or unicode.
2184
+
2185
+ See Also
2186
+ --------
2187
+ add
2188
+ """
2189
+ return asarray(add(self, other))
2190
+
2191
+ def __radd__(self, other):
2192
+ """
2193
+ Return (other + self), that is string concatenation,
2194
+ element-wise for a pair of array_likes of `bytes_` or `str_`.
2195
+
2196
+ See Also
2197
+ --------
2198
+ add
2199
+ """
2200
+ return asarray(add(numpy.asarray(other), self))
2201
+
2202
+ def __mul__(self, i):
2203
+ """
2204
+ Return (self * i), that is string multiple concatenation,
2205
+ element-wise.
2206
+
2207
+ See Also
2208
+ --------
2209
+ multiply
2210
+ """
2211
+ return asarray(multiply(self, i))
2212
+
2213
+ def __rmul__(self, i):
2214
+ """
2215
+ Return (self * i), that is string multiple concatenation,
2216
+ element-wise.
2217
+
2218
+ See Also
2219
+ --------
2220
+ multiply
2221
+ """
2222
+ return asarray(multiply(self, i))
2223
+
2224
+ def __mod__(self, i):
2225
+ """
2226
+ Return (self % i), that is pre-Python 2.6 string formatting
2227
+ (interpolation), element-wise for a pair of array_likes of `bytes_`
2228
+ or `str_`.
2229
+
2230
+ See Also
2231
+ --------
2232
+ mod
2233
+ """
2234
+ return asarray(mod(self, i))
2235
+
2236
+ def __rmod__(self, other):
2237
+ return NotImplemented
2238
+
2239
+ def argsort(self, axis=-1, kind=None, order=None):
2240
+ """
2241
+ Return the indices that sort the array lexicographically.
2242
+
2243
+ For full documentation see `numpy.argsort`, for which this method is
2244
+ in fact merely a "thin wrapper."
2245
+
2246
+ Examples
2247
+ --------
2248
+ >>> c = np.array(['a1b c', '1b ca', 'b ca1', 'Ca1b'], 'S5')
2249
+ >>> c = c.view(np.chararray); c
2250
+ chararray(['a1b c', '1b ca', 'b ca1', 'Ca1b'],
2251
+ dtype='|S5')
2252
+ >>> c[c.argsort()]
2253
+ chararray(['1b ca', 'Ca1b', 'a1b c', 'b ca1'],
2254
+ dtype='|S5')
2255
+
2256
+ """
2257
+ return self.__array__().argsort(axis, kind, order)
2258
+ argsort.__doc__ = ndarray.argsort.__doc__
2259
+
2260
+ def capitalize(self):
2261
+ """
2262
+ Return a copy of `self` with only the first character of each element
2263
+ capitalized.
2264
+
2265
+ See Also
2266
+ --------
2267
+ char.capitalize
2268
+
2269
+ """
2270
+ return asarray(capitalize(self))
2271
+
2272
+ def center(self, width, fillchar=' '):
2273
+ """
2274
+ Return a copy of `self` with its elements centered in a
2275
+ string of length `width`.
2276
+
2277
+ See Also
2278
+ --------
2279
+ center
2280
+ """
2281
+ return asarray(center(self, width, fillchar))
2282
+
2283
+ def count(self, sub, start=0, end=None):
2284
+ """
2285
+ Returns an array with the number of non-overlapping occurrences of
2286
+ substring `sub` in the range [`start`, `end`].
2287
+
2288
+ See Also
2289
+ --------
2290
+ char.count
2291
+
2292
+ """
2293
+ return count(self, sub, start, end)
2294
+
2295
+ def decode(self, encoding=None, errors=None):
2296
+ """
2297
+ Calls ``bytes.decode`` element-wise.
2298
+
2299
+ See Also
2300
+ --------
2301
+ char.decode
2302
+
2303
+ """
2304
+ return decode(self, encoding, errors)
2305
+
2306
+ def encode(self, encoding=None, errors=None):
2307
+ """
2308
+ Calls `str.encode` element-wise.
2309
+
2310
+ See Also
2311
+ --------
2312
+ char.encode
2313
+
2314
+ """
2315
+ return encode(self, encoding, errors)
2316
+
2317
+ def endswith(self, suffix, start=0, end=None):
2318
+ """
2319
+ Returns a boolean array which is `True` where the string element
2320
+ in `self` ends with `suffix`, otherwise `False`.
2321
+
2322
+ See Also
2323
+ --------
2324
+ char.endswith
2325
+
2326
+ """
2327
+ return endswith(self, suffix, start, end)
2328
+
2329
+ def expandtabs(self, tabsize=8):
2330
+ """
2331
+ Return a copy of each string element where all tab characters are
2332
+ replaced by one or more spaces.
2333
+
2334
+ See Also
2335
+ --------
2336
+ char.expandtabs
2337
+
2338
+ """
2339
+ return asarray(expandtabs(self, tabsize))
2340
+
2341
+ def find(self, sub, start=0, end=None):
2342
+ """
2343
+ For each element, return the lowest index in the string where
2344
+ substring `sub` is found.
2345
+
2346
+ See Also
2347
+ --------
2348
+ char.find
2349
+
2350
+ """
2351
+ return find(self, sub, start, end)
2352
+
2353
+ def index(self, sub, start=0, end=None):
2354
+ """
2355
+ Like `find`, but raises `ValueError` when the substring is not found.
2356
+
2357
+ See Also
2358
+ --------
2359
+ char.index
2360
+
2361
+ """
2362
+ return index(self, sub, start, end)
2363
+
2364
+ def isalnum(self):
2365
+ """
2366
+ Returns true for each element if all characters in the string
2367
+ are alphanumeric and there is at least one character, false
2368
+ otherwise.
2369
+
2370
+ See Also
2371
+ --------
2372
+ char.isalnum
2373
+
2374
+ """
2375
+ return isalnum(self)
2376
+
2377
+ def isalpha(self):
2378
+ """
2379
+ Returns true for each element if all characters in the string
2380
+ are alphabetic and there is at least one character, false
2381
+ otherwise.
2382
+
2383
+ See Also
2384
+ --------
2385
+ char.isalpha
2386
+
2387
+ """
2388
+ return isalpha(self)
2389
+
2390
+ def isdigit(self):
2391
+ """
2392
+ Returns true for each element if all characters in the string are
2393
+ digits and there is at least one character, false otherwise.
2394
+
2395
+ See Also
2396
+ --------
2397
+ char.isdigit
2398
+
2399
+ """
2400
+ return isdigit(self)
2401
+
2402
+ def islower(self):
2403
+ """
2404
+ Returns true for each element if all cased characters in the
2405
+ string are lowercase and there is at least one cased character,
2406
+ false otherwise.
2407
+
2408
+ See Also
2409
+ --------
2410
+ char.islower
2411
+
2412
+ """
2413
+ return islower(self)
2414
+
2415
+ def isspace(self):
2416
+ """
2417
+ Returns true for each element if there are only whitespace
2418
+ characters in the string and there is at least one character,
2419
+ false otherwise.
2420
+
2421
+ See Also
2422
+ --------
2423
+ char.isspace
2424
+
2425
+ """
2426
+ return isspace(self)
2427
+
2428
+ def istitle(self):
2429
+ """
2430
+ Returns true for each element if the element is a titlecased
2431
+ string and there is at least one character, false otherwise.
2432
+
2433
+ See Also
2434
+ --------
2435
+ char.istitle
2436
+
2437
+ """
2438
+ return istitle(self)
2439
+
2440
+ def isupper(self):
2441
+ """
2442
+ Returns true for each element if all cased characters in the
2443
+ string are uppercase and there is at least one character, false
2444
+ otherwise.
2445
+
2446
+ See Also
2447
+ --------
2448
+ char.isupper
2449
+
2450
+ """
2451
+ return isupper(self)
2452
+
2453
+ def join(self, seq):
2454
+ """
2455
+ Return a string which is the concatenation of the strings in the
2456
+ sequence `seq`.
2457
+
2458
+ See Also
2459
+ --------
2460
+ char.join
2461
+
2462
+ """
2463
+ return join(self, seq)
2464
+
2465
+ def ljust(self, width, fillchar=' '):
2466
+ """
2467
+ Return an array with the elements of `self` left-justified in a
2468
+ string of length `width`.
2469
+
2470
+ See Also
2471
+ --------
2472
+ char.ljust
2473
+
2474
+ """
2475
+ return asarray(ljust(self, width, fillchar))
2476
+
2477
+ def lower(self):
2478
+ """
2479
+ Return an array with the elements of `self` converted to
2480
+ lowercase.
2481
+
2482
+ See Also
2483
+ --------
2484
+ char.lower
2485
+
2486
+ """
2487
+ return asarray(lower(self))
2488
+
2489
+ def lstrip(self, chars=None):
2490
+ """
2491
+ For each element in `self`, return a copy with the leading characters
2492
+ removed.
2493
+
2494
+ See Also
2495
+ --------
2496
+ char.lstrip
2497
+
2498
+ """
2499
+ return asarray(lstrip(self, chars))
2500
+
2501
+ def partition(self, sep):
2502
+ """
2503
+ Partition each element in `self` around `sep`.
2504
+
2505
+ See Also
2506
+ --------
2507
+ partition
2508
+ """
2509
+ return asarray(partition(self, sep))
2510
+
2511
+ def replace(self, old, new, count=None):
2512
+ """
2513
+ For each element in `self`, return a copy of the string with all
2514
+ occurrences of substring `old` replaced by `new`.
2515
+
2516
+ See Also
2517
+ --------
2518
+ char.replace
2519
+
2520
+ """
2521
+ return asarray(replace(self, old, new, count))
2522
+
2523
+ def rfind(self, sub, start=0, end=None):
2524
+ """
2525
+ For each element in `self`, return the highest index in the string
2526
+ where substring `sub` is found, such that `sub` is contained
2527
+ within [`start`, `end`].
2528
+
2529
+ See Also
2530
+ --------
2531
+ char.rfind
2532
+
2533
+ """
2534
+ return rfind(self, sub, start, end)
2535
+
2536
+ def rindex(self, sub, start=0, end=None):
2537
+ """
2538
+ Like `rfind`, but raises `ValueError` when the substring `sub` is
2539
+ not found.
2540
+
2541
+ See Also
2542
+ --------
2543
+ char.rindex
2544
+
2545
+ """
2546
+ return rindex(self, sub, start, end)
2547
+
2548
+ def rjust(self, width, fillchar=' '):
2549
+ """
2550
+ Return an array with the elements of `self`
2551
+ right-justified in a string of length `width`.
2552
+
2553
+ See Also
2554
+ --------
2555
+ char.rjust
2556
+
2557
+ """
2558
+ return asarray(rjust(self, width, fillchar))
2559
+
2560
+ def rpartition(self, sep):
2561
+ """
2562
+ Partition each element in `self` around `sep`.
2563
+
2564
+ See Also
2565
+ --------
2566
+ rpartition
2567
+ """
2568
+ return asarray(rpartition(self, sep))
2569
+
2570
+ def rsplit(self, sep=None, maxsplit=None):
2571
+ """
2572
+ For each element in `self`, return a list of the words in
2573
+ the string, using `sep` as the delimiter string.
2574
+
2575
+ See Also
2576
+ --------
2577
+ char.rsplit
2578
+
2579
+ """
2580
+ return rsplit(self, sep, maxsplit)
2581
+
2582
+ def rstrip(self, chars=None):
2583
+ """
2584
+ For each element in `self`, return a copy with the trailing
2585
+ characters removed.
2586
+
2587
+ See Also
2588
+ --------
2589
+ char.rstrip
2590
+
2591
+ """
2592
+ return asarray(rstrip(self, chars))
2593
+
2594
+ def split(self, sep=None, maxsplit=None):
2595
+ """
2596
+ For each element in `self`, return a list of the words in the
2597
+ string, using `sep` as the delimiter string.
2598
+
2599
+ See Also
2600
+ --------
2601
+ char.split
2602
+
2603
+ """
2604
+ return split(self, sep, maxsplit)
2605
+
2606
+ def splitlines(self, keepends=None):
2607
+ """
2608
+ For each element in `self`, return a list of the lines in the
2609
+ element, breaking at line boundaries.
2610
+
2611
+ See Also
2612
+ --------
2613
+ char.splitlines
2614
+
2615
+ """
2616
+ return splitlines(self, keepends)
2617
+
2618
+ def startswith(self, prefix, start=0, end=None):
2619
+ """
2620
+ Returns a boolean array which is `True` where the string element
2621
+ in `self` starts with `prefix`, otherwise `False`.
2622
+
2623
+ See Also
2624
+ --------
2625
+ char.startswith
2626
+
2627
+ """
2628
+ return startswith(self, prefix, start, end)
2629
+
2630
+ def strip(self, chars=None):
2631
+ """
2632
+ For each element in `self`, return a copy with the leading and
2633
+ trailing characters removed.
2634
+
2635
+ See Also
2636
+ --------
2637
+ char.strip
2638
+
2639
+ """
2640
+ return asarray(strip(self, chars))
2641
+
2642
+ def swapcase(self):
2643
+ """
2644
+ For each element in `self`, return a copy of the string with
2645
+ uppercase characters converted to lowercase and vice versa.
2646
+
2647
+ See Also
2648
+ --------
2649
+ char.swapcase
2650
+
2651
+ """
2652
+ return asarray(swapcase(self))
2653
+
2654
+ def title(self):
2655
+ """
2656
+ For each element in `self`, return a titlecased version of the
2657
+ string: words start with uppercase characters, all remaining cased
2658
+ characters are lowercase.
2659
+
2660
+ See Also
2661
+ --------
2662
+ char.title
2663
+
2664
+ """
2665
+ return asarray(title(self))
2666
+
2667
+ def translate(self, table, deletechars=None):
2668
+ """
2669
+ For each element in `self`, return a copy of the string where
2670
+ all characters occurring in the optional argument
2671
+ `deletechars` are removed, and the remaining characters have
2672
+ been mapped through the given translation table.
2673
+
2674
+ See Also
2675
+ --------
2676
+ char.translate
2677
+
2678
+ """
2679
+ return asarray(translate(self, table, deletechars))
2680
+
2681
+ def upper(self):
2682
+ """
2683
+ Return an array with the elements of `self` converted to
2684
+ uppercase.
2685
+
2686
+ See Also
2687
+ --------
2688
+ char.upper
2689
+
2690
+ """
2691
+ return asarray(upper(self))
2692
+
2693
+ def zfill(self, width):
2694
+ """
2695
+ Return the numeric string left-filled with zeros in a string of
2696
+ length `width`.
2697
+
2698
+ See Also
2699
+ --------
2700
+ char.zfill
2701
+
2702
+ """
2703
+ return asarray(zfill(self, width))
2704
+
2705
+ def isnumeric(self):
2706
+ """
2707
+ For each element in `self`, return True if there are only
2708
+ numeric characters in the element.
2709
+
2710
+ See Also
2711
+ --------
2712
+ char.isnumeric
2713
+
2714
+ """
2715
+ return isnumeric(self)
2716
+
2717
+ def isdecimal(self):
2718
+ """
2719
+ For each element in `self`, return True if there are only
2720
+ decimal characters in the element.
2721
+
2722
+ See Also
2723
+ --------
2724
+ char.isdecimal
2725
+
2726
+ """
2727
+ return isdecimal(self)
2728
+
2729
+
2730
+ @set_module("numpy.char")
2731
+ def array(obj, itemsize=None, copy=True, unicode=None, order=None):
2732
+ """
2733
+ Create a `chararray`.
2734
+
2735
+ .. note::
2736
+ This class is provided for numarray backward-compatibility.
2737
+ New code (not concerned with numarray compatibility) should use
2738
+ arrays of type `bytes_` or `str_` and use the free functions
2739
+ in :mod:`numpy.char <numpy.core.defchararray>` for fast
2740
+ vectorized string operations instead.
2741
+
2742
+ Versus a regular NumPy array of type `str` or `unicode`, this
2743
+ class adds the following functionality:
2744
+
2745
+ 1) values automatically have whitespace removed from the end
2746
+ when indexed
2747
+
2748
+ 2) comparison operators automatically remove whitespace from the
2749
+ end when comparing values
2750
+
2751
+ 3) vectorized string operations are provided as methods
2752
+ (e.g. `str.endswith`) and infix operators (e.g. ``+, *, %``)
2753
+
2754
+ Parameters
2755
+ ----------
2756
+ obj : array of str or unicode-like
2757
+
2758
+ itemsize : int, optional
2759
+ `itemsize` is the number of characters per scalar in the
2760
+ resulting array. If `itemsize` is None, and `obj` is an
2761
+ object array or a Python list, the `itemsize` will be
2762
+ automatically determined. If `itemsize` is provided and `obj`
2763
+ is of type str or unicode, then the `obj` string will be
2764
+ chunked into `itemsize` pieces.
2765
+
2766
+ copy : bool, optional
2767
+ If true (default), then the object is copied. Otherwise, a copy
2768
+ will only be made if __array__ returns a copy, if obj is a
2769
+ nested sequence, or if a copy is needed to satisfy any of the other
2770
+ requirements (`itemsize`, unicode, `order`, etc.).
2771
+
2772
+ unicode : bool, optional
2773
+ When true, the resulting `chararray` can contain Unicode
2774
+ characters, when false only 8-bit characters. If unicode is
2775
+ None and `obj` is one of the following:
2776
+
2777
+ - a `chararray`,
2778
+ - an ndarray of type `str` or `unicode`
2779
+ - a Python str or unicode object,
2780
+
2781
+ then the unicode setting of the output array will be
2782
+ automatically determined.
2783
+
2784
+ order : {'C', 'F', 'A'}, optional
2785
+ Specify the order of the array. If order is 'C' (default), then the
2786
+ array will be in C-contiguous order (last-index varies the
2787
+ fastest). If order is 'F', then the returned array
2788
+ will be in Fortran-contiguous order (first-index varies the
2789
+ fastest). If order is 'A', then the returned array may
2790
+ be in any order (either C-, Fortran-contiguous, or even
2791
+ discontiguous).
2792
+ """
2793
+ if isinstance(obj, (bytes, str)):
2794
+ if unicode is None:
2795
+ if isinstance(obj, str):
2796
+ unicode = True
2797
+ else:
2798
+ unicode = False
2799
+
2800
+ if itemsize is None:
2801
+ itemsize = len(obj)
2802
+ shape = len(obj) // itemsize
2803
+
2804
+ return chararray(shape, itemsize=itemsize, unicode=unicode,
2805
+ buffer=obj, order=order)
2806
+
2807
+ if isinstance(obj, (list, tuple)):
2808
+ obj = numpy.asarray(obj)
2809
+
2810
+ if isinstance(obj, ndarray) and issubclass(obj.dtype.type, character):
2811
+ # If we just have a vanilla chararray, create a chararray
2812
+ # view around it.
2813
+ if not isinstance(obj, chararray):
2814
+ obj = obj.view(chararray)
2815
+
2816
+ if itemsize is None:
2817
+ itemsize = obj.itemsize
2818
+ # itemsize is in 8-bit chars, so for Unicode, we need
2819
+ # to divide by the size of a single Unicode character,
2820
+ # which for NumPy is always 4
2821
+ if issubclass(obj.dtype.type, str_):
2822
+ itemsize //= 4
2823
+
2824
+ if unicode is None:
2825
+ if issubclass(obj.dtype.type, str_):
2826
+ unicode = True
2827
+ else:
2828
+ unicode = False
2829
+
2830
+ if unicode:
2831
+ dtype = str_
2832
+ else:
2833
+ dtype = bytes_
2834
+
2835
+ if order is not None:
2836
+ obj = numpy.asarray(obj, order=order)
2837
+ if (copy or
2838
+ (itemsize != obj.itemsize) or
2839
+ (not unicode and isinstance(obj, str_)) or
2840
+ (unicode and isinstance(obj, bytes_))):
2841
+ obj = obj.astype((dtype, int(itemsize)))
2842
+ return obj
2843
+
2844
+ if isinstance(obj, ndarray) and issubclass(obj.dtype.type, object):
2845
+ if itemsize is None:
2846
+ # Since no itemsize was specified, convert the input array to
2847
+ # a list so the ndarray constructor will automatically
2848
+ # determine the itemsize for us.
2849
+ obj = obj.tolist()
2850
+ # Fall through to the default case
2851
+
2852
+ if unicode:
2853
+ dtype = str_
2854
+ else:
2855
+ dtype = bytes_
2856
+
2857
+ if itemsize is None:
2858
+ val = narray(obj, dtype=dtype, order=order, subok=True)
2859
+ else:
2860
+ val = narray(obj, dtype=(dtype, itemsize), order=order, subok=True)
2861
+ return val.view(chararray)
2862
+
2863
+
2864
+ @set_module("numpy.char")
2865
+ def asarray(obj, itemsize=None, unicode=None, order=None):
2866
+ """
2867
+ Convert the input to a `chararray`, copying the data only if
2868
+ necessary.
2869
+
2870
+ Versus a regular NumPy array of type `str` or `unicode`, this
2871
+ class adds the following functionality:
2872
+
2873
+ 1) values automatically have whitespace removed from the end
2874
+ when indexed
2875
+
2876
+ 2) comparison operators automatically remove whitespace from the
2877
+ end when comparing values
2878
+
2879
+ 3) vectorized string operations are provided as methods
2880
+ (e.g. `str.endswith`) and infix operators (e.g. ``+``, ``*``,``%``)
2881
+
2882
+ Parameters
2883
+ ----------
2884
+ obj : array of str or unicode-like
2885
+
2886
+ itemsize : int, optional
2887
+ `itemsize` is the number of characters per scalar in the
2888
+ resulting array. If `itemsize` is None, and `obj` is an
2889
+ object array or a Python list, the `itemsize` will be
2890
+ automatically determined. If `itemsize` is provided and `obj`
2891
+ is of type str or unicode, then the `obj` string will be
2892
+ chunked into `itemsize` pieces.
2893
+
2894
+ unicode : bool, optional
2895
+ When true, the resulting `chararray` can contain Unicode
2896
+ characters, when false only 8-bit characters. If unicode is
2897
+ None and `obj` is one of the following:
2898
+
2899
+ - a `chararray`,
2900
+ - an ndarray of type `str` or 'unicode`
2901
+ - a Python str or unicode object,
2902
+
2903
+ then the unicode setting of the output array will be
2904
+ automatically determined.
2905
+
2906
+ order : {'C', 'F'}, optional
2907
+ Specify the order of the array. If order is 'C' (default), then the
2908
+ array will be in C-contiguous order (last-index varies the
2909
+ fastest). If order is 'F', then the returned array
2910
+ will be in Fortran-contiguous order (first-index varies the
2911
+ fastest).
2912
+ """
2913
+ return array(obj, itemsize, copy=False,
2914
+ unicode=unicode, order=order)
env-llmeval/lib/python3.10/site-packages/numpy/core/einsumfunc.pyi ADDED
@@ -0,0 +1,187 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from collections.abc import Sequence
2
+ from typing import TypeVar, Any, overload, Union, Literal
3
+
4
+ from numpy import (
5
+ ndarray,
6
+ dtype,
7
+ bool_,
8
+ number,
9
+ _OrderKACF,
10
+ )
11
+ from numpy._typing import (
12
+ _ArrayLikeBool_co,
13
+ _ArrayLikeUInt_co,
14
+ _ArrayLikeInt_co,
15
+ _ArrayLikeFloat_co,
16
+ _ArrayLikeComplex_co,
17
+ _ArrayLikeObject_co,
18
+ _DTypeLikeBool,
19
+ _DTypeLikeUInt,
20
+ _DTypeLikeInt,
21
+ _DTypeLikeFloat,
22
+ _DTypeLikeComplex,
23
+ _DTypeLikeComplex_co,
24
+ _DTypeLikeObject,
25
+ )
26
+
27
+ _ArrayType = TypeVar(
28
+ "_ArrayType",
29
+ bound=ndarray[Any, dtype[Union[bool_, number[Any]]]],
30
+ )
31
+
32
+ _OptimizeKind = None | bool | Literal["greedy", "optimal"] | Sequence[Any]
33
+ _CastingSafe = Literal["no", "equiv", "safe", "same_kind"]
34
+ _CastingUnsafe = Literal["unsafe"]
35
+
36
+ __all__: list[str]
37
+
38
+ # TODO: Properly handle the `casting`-based combinatorics
39
+ # TODO: We need to evaluate the content `__subscripts` in order
40
+ # to identify whether or an array or scalar is returned. At a cursory
41
+ # glance this seems like something that can quite easily be done with
42
+ # a mypy plugin.
43
+ # Something like `is_scalar = bool(__subscripts.partition("->")[-1])`
44
+ @overload
45
+ def einsum(
46
+ subscripts: str | _ArrayLikeInt_co,
47
+ /,
48
+ *operands: _ArrayLikeBool_co,
49
+ out: None = ...,
50
+ dtype: None | _DTypeLikeBool = ...,
51
+ order: _OrderKACF = ...,
52
+ casting: _CastingSafe = ...,
53
+ optimize: _OptimizeKind = ...,
54
+ ) -> Any: ...
55
+ @overload
56
+ def einsum(
57
+ subscripts: str | _ArrayLikeInt_co,
58
+ /,
59
+ *operands: _ArrayLikeUInt_co,
60
+ out: None = ...,
61
+ dtype: None | _DTypeLikeUInt = ...,
62
+ order: _OrderKACF = ...,
63
+ casting: _CastingSafe = ...,
64
+ optimize: _OptimizeKind = ...,
65
+ ) -> Any: ...
66
+ @overload
67
+ def einsum(
68
+ subscripts: str | _ArrayLikeInt_co,
69
+ /,
70
+ *operands: _ArrayLikeInt_co,
71
+ out: None = ...,
72
+ dtype: None | _DTypeLikeInt = ...,
73
+ order: _OrderKACF = ...,
74
+ casting: _CastingSafe = ...,
75
+ optimize: _OptimizeKind = ...,
76
+ ) -> Any: ...
77
+ @overload
78
+ def einsum(
79
+ subscripts: str | _ArrayLikeInt_co,
80
+ /,
81
+ *operands: _ArrayLikeFloat_co,
82
+ out: None = ...,
83
+ dtype: None | _DTypeLikeFloat = ...,
84
+ order: _OrderKACF = ...,
85
+ casting: _CastingSafe = ...,
86
+ optimize: _OptimizeKind = ...,
87
+ ) -> Any: ...
88
+ @overload
89
+ def einsum(
90
+ subscripts: str | _ArrayLikeInt_co,
91
+ /,
92
+ *operands: _ArrayLikeComplex_co,
93
+ out: None = ...,
94
+ dtype: None | _DTypeLikeComplex = ...,
95
+ order: _OrderKACF = ...,
96
+ casting: _CastingSafe = ...,
97
+ optimize: _OptimizeKind = ...,
98
+ ) -> Any: ...
99
+ @overload
100
+ def einsum(
101
+ subscripts: str | _ArrayLikeInt_co,
102
+ /,
103
+ *operands: Any,
104
+ casting: _CastingUnsafe,
105
+ dtype: None | _DTypeLikeComplex_co = ...,
106
+ out: None = ...,
107
+ order: _OrderKACF = ...,
108
+ optimize: _OptimizeKind = ...,
109
+ ) -> Any: ...
110
+ @overload
111
+ def einsum(
112
+ subscripts: str | _ArrayLikeInt_co,
113
+ /,
114
+ *operands: _ArrayLikeComplex_co,
115
+ out: _ArrayType,
116
+ dtype: None | _DTypeLikeComplex_co = ...,
117
+ order: _OrderKACF = ...,
118
+ casting: _CastingSafe = ...,
119
+ optimize: _OptimizeKind = ...,
120
+ ) -> _ArrayType: ...
121
+ @overload
122
+ def einsum(
123
+ subscripts: str | _ArrayLikeInt_co,
124
+ /,
125
+ *operands: Any,
126
+ out: _ArrayType,
127
+ casting: _CastingUnsafe,
128
+ dtype: None | _DTypeLikeComplex_co = ...,
129
+ order: _OrderKACF = ...,
130
+ optimize: _OptimizeKind = ...,
131
+ ) -> _ArrayType: ...
132
+
133
+ @overload
134
+ def einsum(
135
+ subscripts: str | _ArrayLikeInt_co,
136
+ /,
137
+ *operands: _ArrayLikeObject_co,
138
+ out: None = ...,
139
+ dtype: None | _DTypeLikeObject = ...,
140
+ order: _OrderKACF = ...,
141
+ casting: _CastingSafe = ...,
142
+ optimize: _OptimizeKind = ...,
143
+ ) -> Any: ...
144
+ @overload
145
+ def einsum(
146
+ subscripts: str | _ArrayLikeInt_co,
147
+ /,
148
+ *operands: Any,
149
+ casting: _CastingUnsafe,
150
+ dtype: None | _DTypeLikeObject = ...,
151
+ out: None = ...,
152
+ order: _OrderKACF = ...,
153
+ optimize: _OptimizeKind = ...,
154
+ ) -> Any: ...
155
+ @overload
156
+ def einsum(
157
+ subscripts: str | _ArrayLikeInt_co,
158
+ /,
159
+ *operands: _ArrayLikeObject_co,
160
+ out: _ArrayType,
161
+ dtype: None | _DTypeLikeObject = ...,
162
+ order: _OrderKACF = ...,
163
+ casting: _CastingSafe = ...,
164
+ optimize: _OptimizeKind = ...,
165
+ ) -> _ArrayType: ...
166
+ @overload
167
+ def einsum(
168
+ subscripts: str | _ArrayLikeInt_co,
169
+ /,
170
+ *operands: Any,
171
+ out: _ArrayType,
172
+ casting: _CastingUnsafe,
173
+ dtype: None | _DTypeLikeObject = ...,
174
+ order: _OrderKACF = ...,
175
+ optimize: _OptimizeKind = ...,
176
+ ) -> _ArrayType: ...
177
+
178
+ # NOTE: `einsum_call` is a hidden kwarg unavailable for public use.
179
+ # It is therefore excluded from the signatures below.
180
+ # NOTE: In practice the list consists of a `str` (first element)
181
+ # and a variable number of integer tuples.
182
+ def einsum_path(
183
+ subscripts: str | _ArrayLikeInt_co,
184
+ /,
185
+ *operands: _ArrayLikeComplex_co | _DTypeLikeObject,
186
+ optimize: _OptimizeKind = ...,
187
+ ) -> tuple[list[Any], str]: ...
env-llmeval/lib/python3.10/site-packages/numpy/core/fromnumeric.py ADDED
The diff for this file is too large to render. See raw diff
 
env-llmeval/lib/python3.10/site-packages/numpy/core/fromnumeric.pyi ADDED
@@ -0,0 +1,1060 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import datetime as dt
2
+ from collections.abc import Sequence
3
+ from typing import Union, Any, overload, TypeVar, Literal, SupportsIndex
4
+
5
+ from numpy import (
6
+ ndarray,
7
+ number,
8
+ uint64,
9
+ int_,
10
+ int64,
11
+ intp,
12
+ float16,
13
+ bool_,
14
+ floating,
15
+ complexfloating,
16
+ object_,
17
+ generic,
18
+ _OrderKACF,
19
+ _OrderACF,
20
+ _ModeKind,
21
+ _PartitionKind,
22
+ _SortKind,
23
+ _SortSide,
24
+ _CastingKind,
25
+ )
26
+ from numpy._typing import (
27
+ DTypeLike,
28
+ _DTypeLike,
29
+ ArrayLike,
30
+ _ArrayLike,
31
+ NDArray,
32
+ _ShapeLike,
33
+ _Shape,
34
+ _ArrayLikeBool_co,
35
+ _ArrayLikeUInt_co,
36
+ _ArrayLikeInt_co,
37
+ _ArrayLikeFloat_co,
38
+ _ArrayLikeComplex_co,
39
+ _ArrayLikeObject_co,
40
+ _IntLike_co,
41
+ _BoolLike_co,
42
+ _ComplexLike_co,
43
+ _NumberLike_co,
44
+ _ScalarLike_co,
45
+ )
46
+
47
+ _SCT = TypeVar("_SCT", bound=generic)
48
+ _SCT_uifcO = TypeVar("_SCT_uifcO", bound=number[Any] | object_)
49
+ _ArrayType = TypeVar("_ArrayType", bound=NDArray[Any])
50
+
51
+ __all__: list[str]
52
+
53
+ @overload
54
+ def take(
55
+ a: _ArrayLike[_SCT],
56
+ indices: _IntLike_co,
57
+ axis: None = ...,
58
+ out: None = ...,
59
+ mode: _ModeKind = ...,
60
+ ) -> _SCT: ...
61
+ @overload
62
+ def take(
63
+ a: ArrayLike,
64
+ indices: _IntLike_co,
65
+ axis: None | SupportsIndex = ...,
66
+ out: None = ...,
67
+ mode: _ModeKind = ...,
68
+ ) -> Any: ...
69
+ @overload
70
+ def take(
71
+ a: _ArrayLike[_SCT],
72
+ indices: _ArrayLikeInt_co,
73
+ axis: None | SupportsIndex = ...,
74
+ out: None = ...,
75
+ mode: _ModeKind = ...,
76
+ ) -> NDArray[_SCT]: ...
77
+ @overload
78
+ def take(
79
+ a: ArrayLike,
80
+ indices: _ArrayLikeInt_co,
81
+ axis: None | SupportsIndex = ...,
82
+ out: None = ...,
83
+ mode: _ModeKind = ...,
84
+ ) -> NDArray[Any]: ...
85
+ @overload
86
+ def take(
87
+ a: ArrayLike,
88
+ indices: _ArrayLikeInt_co,
89
+ axis: None | SupportsIndex = ...,
90
+ out: _ArrayType = ...,
91
+ mode: _ModeKind = ...,
92
+ ) -> _ArrayType: ...
93
+
94
+ @overload
95
+ def reshape(
96
+ a: _ArrayLike[_SCT],
97
+ newshape: _ShapeLike,
98
+ order: _OrderACF = ...,
99
+ ) -> NDArray[_SCT]: ...
100
+ @overload
101
+ def reshape(
102
+ a: ArrayLike,
103
+ newshape: _ShapeLike,
104
+ order: _OrderACF = ...,
105
+ ) -> NDArray[Any]: ...
106
+
107
+ @overload
108
+ def choose(
109
+ a: _IntLike_co,
110
+ choices: ArrayLike,
111
+ out: None = ...,
112
+ mode: _ModeKind = ...,
113
+ ) -> Any: ...
114
+ @overload
115
+ def choose(
116
+ a: _ArrayLikeInt_co,
117
+ choices: _ArrayLike[_SCT],
118
+ out: None = ...,
119
+ mode: _ModeKind = ...,
120
+ ) -> NDArray[_SCT]: ...
121
+ @overload
122
+ def choose(
123
+ a: _ArrayLikeInt_co,
124
+ choices: ArrayLike,
125
+ out: None = ...,
126
+ mode: _ModeKind = ...,
127
+ ) -> NDArray[Any]: ...
128
+ @overload
129
+ def choose(
130
+ a: _ArrayLikeInt_co,
131
+ choices: ArrayLike,
132
+ out: _ArrayType = ...,
133
+ mode: _ModeKind = ...,
134
+ ) -> _ArrayType: ...
135
+
136
+ @overload
137
+ def repeat(
138
+ a: _ArrayLike[_SCT],
139
+ repeats: _ArrayLikeInt_co,
140
+ axis: None | SupportsIndex = ...,
141
+ ) -> NDArray[_SCT]: ...
142
+ @overload
143
+ def repeat(
144
+ a: ArrayLike,
145
+ repeats: _ArrayLikeInt_co,
146
+ axis: None | SupportsIndex = ...,
147
+ ) -> NDArray[Any]: ...
148
+
149
+ def put(
150
+ a: NDArray[Any],
151
+ ind: _ArrayLikeInt_co,
152
+ v: ArrayLike,
153
+ mode: _ModeKind = ...,
154
+ ) -> None: ...
155
+
156
+ @overload
157
+ def swapaxes(
158
+ a: _ArrayLike[_SCT],
159
+ axis1: SupportsIndex,
160
+ axis2: SupportsIndex,
161
+ ) -> NDArray[_SCT]: ...
162
+ @overload
163
+ def swapaxes(
164
+ a: ArrayLike,
165
+ axis1: SupportsIndex,
166
+ axis2: SupportsIndex,
167
+ ) -> NDArray[Any]: ...
168
+
169
+ @overload
170
+ def transpose(
171
+ a: _ArrayLike[_SCT],
172
+ axes: None | _ShapeLike = ...
173
+ ) -> NDArray[_SCT]: ...
174
+ @overload
175
+ def transpose(
176
+ a: ArrayLike,
177
+ axes: None | _ShapeLike = ...
178
+ ) -> NDArray[Any]: ...
179
+
180
+ @overload
181
+ def partition(
182
+ a: _ArrayLike[_SCT],
183
+ kth: _ArrayLikeInt_co,
184
+ axis: None | SupportsIndex = ...,
185
+ kind: _PartitionKind = ...,
186
+ order: None | str | Sequence[str] = ...,
187
+ ) -> NDArray[_SCT]: ...
188
+ @overload
189
+ def partition(
190
+ a: ArrayLike,
191
+ kth: _ArrayLikeInt_co,
192
+ axis: None | SupportsIndex = ...,
193
+ kind: _PartitionKind = ...,
194
+ order: None | str | Sequence[str] = ...,
195
+ ) -> NDArray[Any]: ...
196
+
197
+ def argpartition(
198
+ a: ArrayLike,
199
+ kth: _ArrayLikeInt_co,
200
+ axis: None | SupportsIndex = ...,
201
+ kind: _PartitionKind = ...,
202
+ order: None | str | Sequence[str] = ...,
203
+ ) -> NDArray[intp]: ...
204
+
205
+ @overload
206
+ def sort(
207
+ a: _ArrayLike[_SCT],
208
+ axis: None | SupportsIndex = ...,
209
+ kind: None | _SortKind = ...,
210
+ order: None | str | Sequence[str] = ...,
211
+ ) -> NDArray[_SCT]: ...
212
+ @overload
213
+ def sort(
214
+ a: ArrayLike,
215
+ axis: None | SupportsIndex = ...,
216
+ kind: None | _SortKind = ...,
217
+ order: None | str | Sequence[str] = ...,
218
+ ) -> NDArray[Any]: ...
219
+
220
+ def argsort(
221
+ a: ArrayLike,
222
+ axis: None | SupportsIndex = ...,
223
+ kind: None | _SortKind = ...,
224
+ order: None | str | Sequence[str] = ...,
225
+ ) -> NDArray[intp]: ...
226
+
227
+ @overload
228
+ def argmax(
229
+ a: ArrayLike,
230
+ axis: None = ...,
231
+ out: None = ...,
232
+ *,
233
+ keepdims: Literal[False] = ...,
234
+ ) -> intp: ...
235
+ @overload
236
+ def argmax(
237
+ a: ArrayLike,
238
+ axis: None | SupportsIndex = ...,
239
+ out: None = ...,
240
+ *,
241
+ keepdims: bool = ...,
242
+ ) -> Any: ...
243
+ @overload
244
+ def argmax(
245
+ a: ArrayLike,
246
+ axis: None | SupportsIndex = ...,
247
+ out: _ArrayType = ...,
248
+ *,
249
+ keepdims: bool = ...,
250
+ ) -> _ArrayType: ...
251
+
252
+ @overload
253
+ def argmin(
254
+ a: ArrayLike,
255
+ axis: None = ...,
256
+ out: None = ...,
257
+ *,
258
+ keepdims: Literal[False] = ...,
259
+ ) -> intp: ...
260
+ @overload
261
+ def argmin(
262
+ a: ArrayLike,
263
+ axis: None | SupportsIndex = ...,
264
+ out: None = ...,
265
+ *,
266
+ keepdims: bool = ...,
267
+ ) -> Any: ...
268
+ @overload
269
+ def argmin(
270
+ a: ArrayLike,
271
+ axis: None | SupportsIndex = ...,
272
+ out: _ArrayType = ...,
273
+ *,
274
+ keepdims: bool = ...,
275
+ ) -> _ArrayType: ...
276
+
277
+ @overload
278
+ def searchsorted(
279
+ a: ArrayLike,
280
+ v: _ScalarLike_co,
281
+ side: _SortSide = ...,
282
+ sorter: None | _ArrayLikeInt_co = ..., # 1D int array
283
+ ) -> intp: ...
284
+ @overload
285
+ def searchsorted(
286
+ a: ArrayLike,
287
+ v: ArrayLike,
288
+ side: _SortSide = ...,
289
+ sorter: None | _ArrayLikeInt_co = ..., # 1D int array
290
+ ) -> NDArray[intp]: ...
291
+
292
+ @overload
293
+ def resize(
294
+ a: _ArrayLike[_SCT],
295
+ new_shape: _ShapeLike,
296
+ ) -> NDArray[_SCT]: ...
297
+ @overload
298
+ def resize(
299
+ a: ArrayLike,
300
+ new_shape: _ShapeLike,
301
+ ) -> NDArray[Any]: ...
302
+
303
+ @overload
304
+ def squeeze(
305
+ a: _SCT,
306
+ axis: None | _ShapeLike = ...,
307
+ ) -> _SCT: ...
308
+ @overload
309
+ def squeeze(
310
+ a: _ArrayLike[_SCT],
311
+ axis: None | _ShapeLike = ...,
312
+ ) -> NDArray[_SCT]: ...
313
+ @overload
314
+ def squeeze(
315
+ a: ArrayLike,
316
+ axis: None | _ShapeLike = ...,
317
+ ) -> NDArray[Any]: ...
318
+
319
+ @overload
320
+ def diagonal(
321
+ a: _ArrayLike[_SCT],
322
+ offset: SupportsIndex = ...,
323
+ axis1: SupportsIndex = ...,
324
+ axis2: SupportsIndex = ..., # >= 2D array
325
+ ) -> NDArray[_SCT]: ...
326
+ @overload
327
+ def diagonal(
328
+ a: ArrayLike,
329
+ offset: SupportsIndex = ...,
330
+ axis1: SupportsIndex = ...,
331
+ axis2: SupportsIndex = ..., # >= 2D array
332
+ ) -> NDArray[Any]: ...
333
+
334
+ @overload
335
+ def trace(
336
+ a: ArrayLike, # >= 2D array
337
+ offset: SupportsIndex = ...,
338
+ axis1: SupportsIndex = ...,
339
+ axis2: SupportsIndex = ...,
340
+ dtype: DTypeLike = ...,
341
+ out: None = ...,
342
+ ) -> Any: ...
343
+ @overload
344
+ def trace(
345
+ a: ArrayLike, # >= 2D array
346
+ offset: SupportsIndex = ...,
347
+ axis1: SupportsIndex = ...,
348
+ axis2: SupportsIndex = ...,
349
+ dtype: DTypeLike = ...,
350
+ out: _ArrayType = ...,
351
+ ) -> _ArrayType: ...
352
+
353
+ @overload
354
+ def ravel(a: _ArrayLike[_SCT], order: _OrderKACF = ...) -> NDArray[_SCT]: ...
355
+ @overload
356
+ def ravel(a: ArrayLike, order: _OrderKACF = ...) -> NDArray[Any]: ...
357
+
358
+ def nonzero(a: ArrayLike) -> tuple[NDArray[intp], ...]: ...
359
+
360
+ def shape(a: ArrayLike) -> _Shape: ...
361
+
362
+ @overload
363
+ def compress(
364
+ condition: _ArrayLikeBool_co, # 1D bool array
365
+ a: _ArrayLike[_SCT],
366
+ axis: None | SupportsIndex = ...,
367
+ out: None = ...,
368
+ ) -> NDArray[_SCT]: ...
369
+ @overload
370
+ def compress(
371
+ condition: _ArrayLikeBool_co, # 1D bool array
372
+ a: ArrayLike,
373
+ axis: None | SupportsIndex = ...,
374
+ out: None = ...,
375
+ ) -> NDArray[Any]: ...
376
+ @overload
377
+ def compress(
378
+ condition: _ArrayLikeBool_co, # 1D bool array
379
+ a: ArrayLike,
380
+ axis: None | SupportsIndex = ...,
381
+ out: _ArrayType = ...,
382
+ ) -> _ArrayType: ...
383
+
384
+ @overload
385
+ def clip(
386
+ a: _SCT,
387
+ a_min: None | ArrayLike,
388
+ a_max: None | ArrayLike,
389
+ out: None = ...,
390
+ *,
391
+ dtype: None = ...,
392
+ where: None | _ArrayLikeBool_co = ...,
393
+ order: _OrderKACF = ...,
394
+ subok: bool = ...,
395
+ signature: str | tuple[None | str, ...] = ...,
396
+ extobj: list[Any] = ...,
397
+ casting: _CastingKind = ...,
398
+ ) -> _SCT: ...
399
+ @overload
400
+ def clip(
401
+ a: _ScalarLike_co,
402
+ a_min: None | ArrayLike,
403
+ a_max: None | ArrayLike,
404
+ out: None = ...,
405
+ *,
406
+ dtype: None = ...,
407
+ where: None | _ArrayLikeBool_co = ...,
408
+ order: _OrderKACF = ...,
409
+ subok: bool = ...,
410
+ signature: str | tuple[None | str, ...] = ...,
411
+ extobj: list[Any] = ...,
412
+ casting: _CastingKind = ...,
413
+ ) -> Any: ...
414
+ @overload
415
+ def clip(
416
+ a: _ArrayLike[_SCT],
417
+ a_min: None | ArrayLike,
418
+ a_max: None | ArrayLike,
419
+ out: None = ...,
420
+ *,
421
+ dtype: None = ...,
422
+ where: None | _ArrayLikeBool_co = ...,
423
+ order: _OrderKACF = ...,
424
+ subok: bool = ...,
425
+ signature: str | tuple[None | str, ...] = ...,
426
+ extobj: list[Any] = ...,
427
+ casting: _CastingKind = ...,
428
+ ) -> NDArray[_SCT]: ...
429
+ @overload
430
+ def clip(
431
+ a: ArrayLike,
432
+ a_min: None | ArrayLike,
433
+ a_max: None | ArrayLike,
434
+ out: None = ...,
435
+ *,
436
+ dtype: None = ...,
437
+ where: None | _ArrayLikeBool_co = ...,
438
+ order: _OrderKACF = ...,
439
+ subok: bool = ...,
440
+ signature: str | tuple[None | str, ...] = ...,
441
+ extobj: list[Any] = ...,
442
+ casting: _CastingKind = ...,
443
+ ) -> NDArray[Any]: ...
444
+ @overload
445
+ def clip(
446
+ a: ArrayLike,
447
+ a_min: None | ArrayLike,
448
+ a_max: None | ArrayLike,
449
+ out: _ArrayType = ...,
450
+ *,
451
+ dtype: DTypeLike,
452
+ where: None | _ArrayLikeBool_co = ...,
453
+ order: _OrderKACF = ...,
454
+ subok: bool = ...,
455
+ signature: str | tuple[None | str, ...] = ...,
456
+ extobj: list[Any] = ...,
457
+ casting: _CastingKind = ...,
458
+ ) -> Any: ...
459
+ @overload
460
+ def clip(
461
+ a: ArrayLike,
462
+ a_min: None | ArrayLike,
463
+ a_max: None | ArrayLike,
464
+ out: _ArrayType,
465
+ *,
466
+ dtype: DTypeLike = ...,
467
+ where: None | _ArrayLikeBool_co = ...,
468
+ order: _OrderKACF = ...,
469
+ subok: bool = ...,
470
+ signature: str | tuple[None | str, ...] = ...,
471
+ extobj: list[Any] = ...,
472
+ casting: _CastingKind = ...,
473
+ ) -> _ArrayType: ...
474
+
475
+ @overload
476
+ def sum(
477
+ a: _ArrayLike[_SCT],
478
+ axis: None = ...,
479
+ dtype: None = ...,
480
+ out: None = ...,
481
+ keepdims: bool = ...,
482
+ initial: _NumberLike_co = ...,
483
+ where: _ArrayLikeBool_co = ...,
484
+ ) -> _SCT: ...
485
+ @overload
486
+ def sum(
487
+ a: ArrayLike,
488
+ axis: None | _ShapeLike = ...,
489
+ dtype: DTypeLike = ...,
490
+ out: None = ...,
491
+ keepdims: bool = ...,
492
+ initial: _NumberLike_co = ...,
493
+ where: _ArrayLikeBool_co = ...,
494
+ ) -> Any: ...
495
+ @overload
496
+ def sum(
497
+ a: ArrayLike,
498
+ axis: None | _ShapeLike = ...,
499
+ dtype: DTypeLike = ...,
500
+ out: _ArrayType = ...,
501
+ keepdims: bool = ...,
502
+ initial: _NumberLike_co = ...,
503
+ where: _ArrayLikeBool_co = ...,
504
+ ) -> _ArrayType: ...
505
+
506
+ @overload
507
+ def all(
508
+ a: ArrayLike,
509
+ axis: None = ...,
510
+ out: None = ...,
511
+ keepdims: Literal[False] = ...,
512
+ *,
513
+ where: _ArrayLikeBool_co = ...,
514
+ ) -> bool_: ...
515
+ @overload
516
+ def all(
517
+ a: ArrayLike,
518
+ axis: None | _ShapeLike = ...,
519
+ out: None = ...,
520
+ keepdims: bool = ...,
521
+ *,
522
+ where: _ArrayLikeBool_co = ...,
523
+ ) -> Any: ...
524
+ @overload
525
+ def all(
526
+ a: ArrayLike,
527
+ axis: None | _ShapeLike = ...,
528
+ out: _ArrayType = ...,
529
+ keepdims: bool = ...,
530
+ *,
531
+ where: _ArrayLikeBool_co = ...,
532
+ ) -> _ArrayType: ...
533
+
534
+ @overload
535
+ def any(
536
+ a: ArrayLike,
537
+ axis: None = ...,
538
+ out: None = ...,
539
+ keepdims: Literal[False] = ...,
540
+ *,
541
+ where: _ArrayLikeBool_co = ...,
542
+ ) -> bool_: ...
543
+ @overload
544
+ def any(
545
+ a: ArrayLike,
546
+ axis: None | _ShapeLike = ...,
547
+ out: None = ...,
548
+ keepdims: bool = ...,
549
+ *,
550
+ where: _ArrayLikeBool_co = ...,
551
+ ) -> Any: ...
552
+ @overload
553
+ def any(
554
+ a: ArrayLike,
555
+ axis: None | _ShapeLike = ...,
556
+ out: _ArrayType = ...,
557
+ keepdims: bool = ...,
558
+ *,
559
+ where: _ArrayLikeBool_co = ...,
560
+ ) -> _ArrayType: ...
561
+
562
+ @overload
563
+ def cumsum(
564
+ a: _ArrayLike[_SCT],
565
+ axis: None | SupportsIndex = ...,
566
+ dtype: None = ...,
567
+ out: None = ...,
568
+ ) -> NDArray[_SCT]: ...
569
+ @overload
570
+ def cumsum(
571
+ a: ArrayLike,
572
+ axis: None | SupportsIndex = ...,
573
+ dtype: None = ...,
574
+ out: None = ...,
575
+ ) -> NDArray[Any]: ...
576
+ @overload
577
+ def cumsum(
578
+ a: ArrayLike,
579
+ axis: None | SupportsIndex = ...,
580
+ dtype: _DTypeLike[_SCT] = ...,
581
+ out: None = ...,
582
+ ) -> NDArray[_SCT]: ...
583
+ @overload
584
+ def cumsum(
585
+ a: ArrayLike,
586
+ axis: None | SupportsIndex = ...,
587
+ dtype: DTypeLike = ...,
588
+ out: None = ...,
589
+ ) -> NDArray[Any]: ...
590
+ @overload
591
+ def cumsum(
592
+ a: ArrayLike,
593
+ axis: None | SupportsIndex = ...,
594
+ dtype: DTypeLike = ...,
595
+ out: _ArrayType = ...,
596
+ ) -> _ArrayType: ...
597
+
598
+ @overload
599
+ def ptp(
600
+ a: _ArrayLike[_SCT],
601
+ axis: None = ...,
602
+ out: None = ...,
603
+ keepdims: Literal[False] = ...,
604
+ ) -> _SCT: ...
605
+ @overload
606
+ def ptp(
607
+ a: ArrayLike,
608
+ axis: None | _ShapeLike = ...,
609
+ out: None = ...,
610
+ keepdims: bool = ...,
611
+ ) -> Any: ...
612
+ @overload
613
+ def ptp(
614
+ a: ArrayLike,
615
+ axis: None | _ShapeLike = ...,
616
+ out: _ArrayType = ...,
617
+ keepdims: bool = ...,
618
+ ) -> _ArrayType: ...
619
+
620
+ @overload
621
+ def amax(
622
+ a: _ArrayLike[_SCT],
623
+ axis: None = ...,
624
+ out: None = ...,
625
+ keepdims: Literal[False] = ...,
626
+ initial: _NumberLike_co = ...,
627
+ where: _ArrayLikeBool_co = ...,
628
+ ) -> _SCT: ...
629
+ @overload
630
+ def amax(
631
+ a: ArrayLike,
632
+ axis: None | _ShapeLike = ...,
633
+ out: None = ...,
634
+ keepdims: bool = ...,
635
+ initial: _NumberLike_co = ...,
636
+ where: _ArrayLikeBool_co = ...,
637
+ ) -> Any: ...
638
+ @overload
639
+ def amax(
640
+ a: ArrayLike,
641
+ axis: None | _ShapeLike = ...,
642
+ out: _ArrayType = ...,
643
+ keepdims: bool = ...,
644
+ initial: _NumberLike_co = ...,
645
+ where: _ArrayLikeBool_co = ...,
646
+ ) -> _ArrayType: ...
647
+
648
+ @overload
649
+ def amin(
650
+ a: _ArrayLike[_SCT],
651
+ axis: None = ...,
652
+ out: None = ...,
653
+ keepdims: Literal[False] = ...,
654
+ initial: _NumberLike_co = ...,
655
+ where: _ArrayLikeBool_co = ...,
656
+ ) -> _SCT: ...
657
+ @overload
658
+ def amin(
659
+ a: ArrayLike,
660
+ axis: None | _ShapeLike = ...,
661
+ out: None = ...,
662
+ keepdims: bool = ...,
663
+ initial: _NumberLike_co = ...,
664
+ where: _ArrayLikeBool_co = ...,
665
+ ) -> Any: ...
666
+ @overload
667
+ def amin(
668
+ a: ArrayLike,
669
+ axis: None | _ShapeLike = ...,
670
+ out: _ArrayType = ...,
671
+ keepdims: bool = ...,
672
+ initial: _NumberLike_co = ...,
673
+ where: _ArrayLikeBool_co = ...,
674
+ ) -> _ArrayType: ...
675
+
676
+ # TODO: `np.prod()``: For object arrays `initial` does not necessarily
677
+ # have to be a numerical scalar.
678
+ # The only requirement is that it is compatible
679
+ # with the `.__mul__()` method(s) of the passed array's elements.
680
+
681
+ # Note that the same situation holds for all wrappers around
682
+ # `np.ufunc.reduce`, e.g. `np.sum()` (`.__add__()`).
683
+ @overload
684
+ def prod(
685
+ a: _ArrayLikeBool_co,
686
+ axis: None = ...,
687
+ dtype: None = ...,
688
+ out: None = ...,
689
+ keepdims: Literal[False] = ...,
690
+ initial: _NumberLike_co = ...,
691
+ where: _ArrayLikeBool_co = ...,
692
+ ) -> int_: ...
693
+ @overload
694
+ def prod(
695
+ a: _ArrayLikeUInt_co,
696
+ axis: None = ...,
697
+ dtype: None = ...,
698
+ out: None = ...,
699
+ keepdims: Literal[False] = ...,
700
+ initial: _NumberLike_co = ...,
701
+ where: _ArrayLikeBool_co = ...,
702
+ ) -> uint64: ...
703
+ @overload
704
+ def prod(
705
+ a: _ArrayLikeInt_co,
706
+ axis: None = ...,
707
+ dtype: None = ...,
708
+ out: None = ...,
709
+ keepdims: Literal[False] = ...,
710
+ initial: _NumberLike_co = ...,
711
+ where: _ArrayLikeBool_co = ...,
712
+ ) -> int64: ...
713
+ @overload
714
+ def prod(
715
+ a: _ArrayLikeFloat_co,
716
+ axis: None = ...,
717
+ dtype: None = ...,
718
+ out: None = ...,
719
+ keepdims: Literal[False] = ...,
720
+ initial: _NumberLike_co = ...,
721
+ where: _ArrayLikeBool_co = ...,
722
+ ) -> floating[Any]: ...
723
+ @overload
724
+ def prod(
725
+ a: _ArrayLikeComplex_co,
726
+ axis: None = ...,
727
+ dtype: None = ...,
728
+ out: None = ...,
729
+ keepdims: Literal[False] = ...,
730
+ initial: _NumberLike_co = ...,
731
+ where: _ArrayLikeBool_co = ...,
732
+ ) -> complexfloating[Any, Any]: ...
733
+ @overload
734
+ def prod(
735
+ a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
736
+ axis: None | _ShapeLike = ...,
737
+ dtype: None = ...,
738
+ out: None = ...,
739
+ keepdims: bool = ...,
740
+ initial: _NumberLike_co = ...,
741
+ where: _ArrayLikeBool_co = ...,
742
+ ) -> Any: ...
743
+ @overload
744
+ def prod(
745
+ a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
746
+ axis: None = ...,
747
+ dtype: _DTypeLike[_SCT] = ...,
748
+ out: None = ...,
749
+ keepdims: Literal[False] = ...,
750
+ initial: _NumberLike_co = ...,
751
+ where: _ArrayLikeBool_co = ...,
752
+ ) -> _SCT: ...
753
+ @overload
754
+ def prod(
755
+ a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
756
+ axis: None | _ShapeLike = ...,
757
+ dtype: None | DTypeLike = ...,
758
+ out: None = ...,
759
+ keepdims: bool = ...,
760
+ initial: _NumberLike_co = ...,
761
+ where: _ArrayLikeBool_co = ...,
762
+ ) -> Any: ...
763
+ @overload
764
+ def prod(
765
+ a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
766
+ axis: None | _ShapeLike = ...,
767
+ dtype: None | DTypeLike = ...,
768
+ out: _ArrayType = ...,
769
+ keepdims: bool = ...,
770
+ initial: _NumberLike_co = ...,
771
+ where: _ArrayLikeBool_co = ...,
772
+ ) -> _ArrayType: ...
773
+
774
+ @overload
775
+ def cumprod(
776
+ a: _ArrayLikeBool_co,
777
+ axis: None | SupportsIndex = ...,
778
+ dtype: None = ...,
779
+ out: None = ...,
780
+ ) -> NDArray[int_]: ...
781
+ @overload
782
+ def cumprod(
783
+ a: _ArrayLikeUInt_co,
784
+ axis: None | SupportsIndex = ...,
785
+ dtype: None = ...,
786
+ out: None = ...,
787
+ ) -> NDArray[uint64]: ...
788
+ @overload
789
+ def cumprod(
790
+ a: _ArrayLikeInt_co,
791
+ axis: None | SupportsIndex = ...,
792
+ dtype: None = ...,
793
+ out: None = ...,
794
+ ) -> NDArray[int64]: ...
795
+ @overload
796
+ def cumprod(
797
+ a: _ArrayLikeFloat_co,
798
+ axis: None | SupportsIndex = ...,
799
+ dtype: None = ...,
800
+ out: None = ...,
801
+ ) -> NDArray[floating[Any]]: ...
802
+ @overload
803
+ def cumprod(
804
+ a: _ArrayLikeComplex_co,
805
+ axis: None | SupportsIndex = ...,
806
+ dtype: None = ...,
807
+ out: None = ...,
808
+ ) -> NDArray[complexfloating[Any, Any]]: ...
809
+ @overload
810
+ def cumprod(
811
+ a: _ArrayLikeObject_co,
812
+ axis: None | SupportsIndex = ...,
813
+ dtype: None = ...,
814
+ out: None = ...,
815
+ ) -> NDArray[object_]: ...
816
+ @overload
817
+ def cumprod(
818
+ a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
819
+ axis: None | SupportsIndex = ...,
820
+ dtype: _DTypeLike[_SCT] = ...,
821
+ out: None = ...,
822
+ ) -> NDArray[_SCT]: ...
823
+ @overload
824
+ def cumprod(
825
+ a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
826
+ axis: None | SupportsIndex = ...,
827
+ dtype: DTypeLike = ...,
828
+ out: None = ...,
829
+ ) -> NDArray[Any]: ...
830
+ @overload
831
+ def cumprod(
832
+ a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
833
+ axis: None | SupportsIndex = ...,
834
+ dtype: DTypeLike = ...,
835
+ out: _ArrayType = ...,
836
+ ) -> _ArrayType: ...
837
+
838
+ def ndim(a: ArrayLike) -> int: ...
839
+
840
+ def size(a: ArrayLike, axis: None | int = ...) -> int: ...
841
+
842
+ @overload
843
+ def around(
844
+ a: _BoolLike_co,
845
+ decimals: SupportsIndex = ...,
846
+ out: None = ...,
847
+ ) -> float16: ...
848
+ @overload
849
+ def around(
850
+ a: _SCT_uifcO,
851
+ decimals: SupportsIndex = ...,
852
+ out: None = ...,
853
+ ) -> _SCT_uifcO: ...
854
+ @overload
855
+ def around(
856
+ a: _ComplexLike_co | object_,
857
+ decimals: SupportsIndex = ...,
858
+ out: None = ...,
859
+ ) -> Any: ...
860
+ @overload
861
+ def around(
862
+ a: _ArrayLikeBool_co,
863
+ decimals: SupportsIndex = ...,
864
+ out: None = ...,
865
+ ) -> NDArray[float16]: ...
866
+ @overload
867
+ def around(
868
+ a: _ArrayLike[_SCT_uifcO],
869
+ decimals: SupportsIndex = ...,
870
+ out: None = ...,
871
+ ) -> NDArray[_SCT_uifcO]: ...
872
+ @overload
873
+ def around(
874
+ a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
875
+ decimals: SupportsIndex = ...,
876
+ out: None = ...,
877
+ ) -> NDArray[Any]: ...
878
+ @overload
879
+ def around(
880
+ a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
881
+ decimals: SupportsIndex = ...,
882
+ out: _ArrayType = ...,
883
+ ) -> _ArrayType: ...
884
+
885
+ @overload
886
+ def mean(
887
+ a: _ArrayLikeFloat_co,
888
+ axis: None = ...,
889
+ dtype: None = ...,
890
+ out: None = ...,
891
+ keepdims: Literal[False] = ...,
892
+ *,
893
+ where: _ArrayLikeBool_co = ...,
894
+ ) -> floating[Any]: ...
895
+ @overload
896
+ def mean(
897
+ a: _ArrayLikeComplex_co,
898
+ axis: None = ...,
899
+ dtype: None = ...,
900
+ out: None = ...,
901
+ keepdims: Literal[False] = ...,
902
+ *,
903
+ where: _ArrayLikeBool_co = ...,
904
+ ) -> complexfloating[Any, Any]: ...
905
+ @overload
906
+ def mean(
907
+ a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
908
+ axis: None | _ShapeLike = ...,
909
+ dtype: None = ...,
910
+ out: None = ...,
911
+ keepdims: bool = ...,
912
+ *,
913
+ where: _ArrayLikeBool_co = ...,
914
+ ) -> Any: ...
915
+ @overload
916
+ def mean(
917
+ a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
918
+ axis: None = ...,
919
+ dtype: _DTypeLike[_SCT] = ...,
920
+ out: None = ...,
921
+ keepdims: Literal[False] = ...,
922
+ *,
923
+ where: _ArrayLikeBool_co = ...,
924
+ ) -> _SCT: ...
925
+ @overload
926
+ def mean(
927
+ a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
928
+ axis: None | _ShapeLike = ...,
929
+ dtype: DTypeLike = ...,
930
+ out: None = ...,
931
+ keepdims: bool = ...,
932
+ *,
933
+ where: _ArrayLikeBool_co = ...,
934
+ ) -> Any: ...
935
+ @overload
936
+ def mean(
937
+ a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
938
+ axis: None | _ShapeLike = ...,
939
+ dtype: DTypeLike = ...,
940
+ out: _ArrayType = ...,
941
+ keepdims: bool = ...,
942
+ *,
943
+ where: _ArrayLikeBool_co = ...,
944
+ ) -> _ArrayType: ...
945
+
946
+ @overload
947
+ def std(
948
+ a: _ArrayLikeComplex_co,
949
+ axis: None = ...,
950
+ dtype: None = ...,
951
+ out: None = ...,
952
+ ddof: float = ...,
953
+ keepdims: Literal[False] = ...,
954
+ *,
955
+ where: _ArrayLikeBool_co = ...,
956
+ ) -> floating[Any]: ...
957
+ @overload
958
+ def std(
959
+ a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
960
+ axis: None | _ShapeLike = ...,
961
+ dtype: None = ...,
962
+ out: None = ...,
963
+ ddof: float = ...,
964
+ keepdims: bool = ...,
965
+ *,
966
+ where: _ArrayLikeBool_co = ...,
967
+ ) -> Any: ...
968
+ @overload
969
+ def std(
970
+ a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
971
+ axis: None = ...,
972
+ dtype: _DTypeLike[_SCT] = ...,
973
+ out: None = ...,
974
+ ddof: float = ...,
975
+ keepdims: Literal[False] = ...,
976
+ *,
977
+ where: _ArrayLikeBool_co = ...,
978
+ ) -> _SCT: ...
979
+ @overload
980
+ def std(
981
+ a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
982
+ axis: None | _ShapeLike = ...,
983
+ dtype: DTypeLike = ...,
984
+ out: None = ...,
985
+ ddof: float = ...,
986
+ keepdims: bool = ...,
987
+ *,
988
+ where: _ArrayLikeBool_co = ...,
989
+ ) -> Any: ...
990
+ @overload
991
+ def std(
992
+ a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
993
+ axis: None | _ShapeLike = ...,
994
+ dtype: DTypeLike = ...,
995
+ out: _ArrayType = ...,
996
+ ddof: float = ...,
997
+ keepdims: bool = ...,
998
+ *,
999
+ where: _ArrayLikeBool_co = ...,
1000
+ ) -> _ArrayType: ...
1001
+
1002
+ @overload
1003
+ def var(
1004
+ a: _ArrayLikeComplex_co,
1005
+ axis: None = ...,
1006
+ dtype: None = ...,
1007
+ out: None = ...,
1008
+ ddof: float = ...,
1009
+ keepdims: Literal[False] = ...,
1010
+ *,
1011
+ where: _ArrayLikeBool_co = ...,
1012
+ ) -> floating[Any]: ...
1013
+ @overload
1014
+ def var(
1015
+ a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
1016
+ axis: None | _ShapeLike = ...,
1017
+ dtype: None = ...,
1018
+ out: None = ...,
1019
+ ddof: float = ...,
1020
+ keepdims: bool = ...,
1021
+ *,
1022
+ where: _ArrayLikeBool_co = ...,
1023
+ ) -> Any: ...
1024
+ @overload
1025
+ def var(
1026
+ a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
1027
+ axis: None = ...,
1028
+ dtype: _DTypeLike[_SCT] = ...,
1029
+ out: None = ...,
1030
+ ddof: float = ...,
1031
+ keepdims: Literal[False] = ...,
1032
+ *,
1033
+ where: _ArrayLikeBool_co = ...,
1034
+ ) -> _SCT: ...
1035
+ @overload
1036
+ def var(
1037
+ a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
1038
+ axis: None | _ShapeLike = ...,
1039
+ dtype: DTypeLike = ...,
1040
+ out: None = ...,
1041
+ ddof: float = ...,
1042
+ keepdims: bool = ...,
1043
+ *,
1044
+ where: _ArrayLikeBool_co = ...,
1045
+ ) -> Any: ...
1046
+ @overload
1047
+ def var(
1048
+ a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
1049
+ axis: None | _ShapeLike = ...,
1050
+ dtype: DTypeLike = ...,
1051
+ out: _ArrayType = ...,
1052
+ ddof: float = ...,
1053
+ keepdims: bool = ...,
1054
+ *,
1055
+ where: _ArrayLikeBool_co = ...,
1056
+ ) -> _ArrayType: ...
1057
+
1058
+ max = amax
1059
+ min = amin
1060
+ round = around
env-llmeval/lib/python3.10/site-packages/numpy/core/function_base.py ADDED
@@ -0,0 +1,551 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import functools
2
+ import warnings
3
+ import operator
4
+ import types
5
+
6
+ import numpy as np
7
+ from . import numeric as _nx
8
+ from .numeric import result_type, NaN, asanyarray, ndim
9
+ from numpy.core.multiarray import add_docstring
10
+ from numpy.core import overrides
11
+
12
+ __all__ = ['logspace', 'linspace', 'geomspace']
13
+
14
+
15
+ array_function_dispatch = functools.partial(
16
+ overrides.array_function_dispatch, module='numpy')
17
+
18
+
19
+ def _linspace_dispatcher(start, stop, num=None, endpoint=None, retstep=None,
20
+ dtype=None, axis=None):
21
+ return (start, stop)
22
+
23
+
24
+ @array_function_dispatch(_linspace_dispatcher)
25
+ def linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None,
26
+ axis=0):
27
+ """
28
+ Return evenly spaced numbers over a specified interval.
29
+
30
+ Returns `num` evenly spaced samples, calculated over the
31
+ interval [`start`, `stop`].
32
+
33
+ The endpoint of the interval can optionally be excluded.
34
+
35
+ .. versionchanged:: 1.16.0
36
+ Non-scalar `start` and `stop` are now supported.
37
+
38
+ .. versionchanged:: 1.20.0
39
+ Values are rounded towards ``-inf`` instead of ``0`` when an
40
+ integer ``dtype`` is specified. The old behavior can
41
+ still be obtained with ``np.linspace(start, stop, num).astype(int)``
42
+
43
+ Parameters
44
+ ----------
45
+ start : array_like
46
+ The starting value of the sequence.
47
+ stop : array_like
48
+ The end value of the sequence, unless `endpoint` is set to False.
49
+ In that case, the sequence consists of all but the last of ``num + 1``
50
+ evenly spaced samples, so that `stop` is excluded. Note that the step
51
+ size changes when `endpoint` is False.
52
+ num : int, optional
53
+ Number of samples to generate. Default is 50. Must be non-negative.
54
+ endpoint : bool, optional
55
+ If True, `stop` is the last sample. Otherwise, it is not included.
56
+ Default is True.
57
+ retstep : bool, optional
58
+ If True, return (`samples`, `step`), where `step` is the spacing
59
+ between samples.
60
+ dtype : dtype, optional
61
+ The type of the output array. If `dtype` is not given, the data type
62
+ is inferred from `start` and `stop`. The inferred dtype will never be
63
+ an integer; `float` is chosen even if the arguments would produce an
64
+ array of integers.
65
+
66
+ .. versionadded:: 1.9.0
67
+
68
+ axis : int, optional
69
+ The axis in the result to store the samples. Relevant only if start
70
+ or stop are array-like. By default (0), the samples will be along a
71
+ new axis inserted at the beginning. Use -1 to get an axis at the end.
72
+
73
+ .. versionadded:: 1.16.0
74
+
75
+ Returns
76
+ -------
77
+ samples : ndarray
78
+ There are `num` equally spaced samples in the closed interval
79
+ ``[start, stop]`` or the half-open interval ``[start, stop)``
80
+ (depending on whether `endpoint` is True or False).
81
+ step : float, optional
82
+ Only returned if `retstep` is True
83
+
84
+ Size of spacing between samples.
85
+
86
+
87
+ See Also
88
+ --------
89
+ arange : Similar to `linspace`, but uses a step size (instead of the
90
+ number of samples).
91
+ geomspace : Similar to `linspace`, but with numbers spaced evenly on a log
92
+ scale (a geometric progression).
93
+ logspace : Similar to `geomspace`, but with the end points specified as
94
+ logarithms.
95
+ :ref:`how-to-partition`
96
+
97
+ Examples
98
+ --------
99
+ >>> np.linspace(2.0, 3.0, num=5)
100
+ array([2. , 2.25, 2.5 , 2.75, 3. ])
101
+ >>> np.linspace(2.0, 3.0, num=5, endpoint=False)
102
+ array([2. , 2.2, 2.4, 2.6, 2.8])
103
+ >>> np.linspace(2.0, 3.0, num=5, retstep=True)
104
+ (array([2. , 2.25, 2.5 , 2.75, 3. ]), 0.25)
105
+
106
+ Graphical illustration:
107
+
108
+ >>> import matplotlib.pyplot as plt
109
+ >>> N = 8
110
+ >>> y = np.zeros(N)
111
+ >>> x1 = np.linspace(0, 10, N, endpoint=True)
112
+ >>> x2 = np.linspace(0, 10, N, endpoint=False)
113
+ >>> plt.plot(x1, y, 'o')
114
+ [<matplotlib.lines.Line2D object at 0x...>]
115
+ >>> plt.plot(x2, y + 0.5, 'o')
116
+ [<matplotlib.lines.Line2D object at 0x...>]
117
+ >>> plt.ylim([-0.5, 1])
118
+ (-0.5, 1)
119
+ >>> plt.show()
120
+
121
+ """
122
+ num = operator.index(num)
123
+ if num < 0:
124
+ raise ValueError("Number of samples, %s, must be non-negative." % num)
125
+ div = (num - 1) if endpoint else num
126
+
127
+ # Convert float/complex array scalars to float, gh-3504
128
+ # and make sure one can use variables that have an __array_interface__, gh-6634
129
+ start = asanyarray(start) * 1.0
130
+ stop = asanyarray(stop) * 1.0
131
+
132
+ dt = result_type(start, stop, float(num))
133
+ if dtype is None:
134
+ dtype = dt
135
+ integer_dtype = False
136
+ else:
137
+ integer_dtype = _nx.issubdtype(dtype, _nx.integer)
138
+
139
+ delta = stop - start
140
+ y = _nx.arange(0, num, dtype=dt).reshape((-1,) + (1,) * ndim(delta))
141
+ # In-place multiplication y *= delta/div is faster, but prevents the multiplicant
142
+ # from overriding what class is produced, and thus prevents, e.g. use of Quantities,
143
+ # see gh-7142. Hence, we multiply in place only for standard scalar types.
144
+ if div > 0:
145
+ _mult_inplace = _nx.isscalar(delta)
146
+ step = delta / div
147
+ any_step_zero = (
148
+ step == 0 if _mult_inplace else _nx.asanyarray(step == 0).any())
149
+ if any_step_zero:
150
+ # Special handling for denormal numbers, gh-5437
151
+ y /= div
152
+ if _mult_inplace:
153
+ y *= delta
154
+ else:
155
+ y = y * delta
156
+ else:
157
+ if _mult_inplace:
158
+ y *= step
159
+ else:
160
+ y = y * step
161
+ else:
162
+ # sequences with 0 items or 1 item with endpoint=True (i.e. div <= 0)
163
+ # have an undefined step
164
+ step = NaN
165
+ # Multiply with delta to allow possible override of output class.
166
+ y = y * delta
167
+
168
+ y += start
169
+
170
+ if endpoint and num > 1:
171
+ y[-1, ...] = stop
172
+
173
+ if axis != 0:
174
+ y = _nx.moveaxis(y, 0, axis)
175
+
176
+ if integer_dtype:
177
+ _nx.floor(y, out=y)
178
+
179
+ if retstep:
180
+ return y.astype(dtype, copy=False), step
181
+ else:
182
+ return y.astype(dtype, copy=False)
183
+
184
+
185
+ def _logspace_dispatcher(start, stop, num=None, endpoint=None, base=None,
186
+ dtype=None, axis=None):
187
+ return (start, stop, base)
188
+
189
+
190
+ @array_function_dispatch(_logspace_dispatcher)
191
+ def logspace(start, stop, num=50, endpoint=True, base=10.0, dtype=None,
192
+ axis=0):
193
+ """
194
+ Return numbers spaced evenly on a log scale.
195
+
196
+ In linear space, the sequence starts at ``base ** start``
197
+ (`base` to the power of `start`) and ends with ``base ** stop``
198
+ (see `endpoint` below).
199
+
200
+ .. versionchanged:: 1.16.0
201
+ Non-scalar `start` and `stop` are now supported.
202
+
203
+ .. versionchanged:: 1.25.0
204
+ Non-scalar 'base` is now supported
205
+
206
+ Parameters
207
+ ----------
208
+ start : array_like
209
+ ``base ** start`` is the starting value of the sequence.
210
+ stop : array_like
211
+ ``base ** stop`` is the final value of the sequence, unless `endpoint`
212
+ is False. In that case, ``num + 1`` values are spaced over the
213
+ interval in log-space, of which all but the last (a sequence of
214
+ length `num`) are returned.
215
+ num : integer, optional
216
+ Number of samples to generate. Default is 50.
217
+ endpoint : boolean, optional
218
+ If true, `stop` is the last sample. Otherwise, it is not included.
219
+ Default is True.
220
+ base : array_like, optional
221
+ The base of the log space. The step size between the elements in
222
+ ``ln(samples) / ln(base)`` (or ``log_base(samples)``) is uniform.
223
+ Default is 10.0.
224
+ dtype : dtype
225
+ The type of the output array. If `dtype` is not given, the data type
226
+ is inferred from `start` and `stop`. The inferred type will never be
227
+ an integer; `float` is chosen even if the arguments would produce an
228
+ array of integers.
229
+ axis : int, optional
230
+ The axis in the result to store the samples. Relevant only if start,
231
+ stop, or base are array-like. By default (0), the samples will be
232
+ along a new axis inserted at the beginning. Use -1 to get an axis at
233
+ the end.
234
+
235
+ .. versionadded:: 1.16.0
236
+
237
+
238
+ Returns
239
+ -------
240
+ samples : ndarray
241
+ `num` samples, equally spaced on a log scale.
242
+
243
+ See Also
244
+ --------
245
+ arange : Similar to linspace, with the step size specified instead of the
246
+ number of samples. Note that, when used with a float endpoint, the
247
+ endpoint may or may not be included.
248
+ linspace : Similar to logspace, but with the samples uniformly distributed
249
+ in linear space, instead of log space.
250
+ geomspace : Similar to logspace, but with endpoints specified directly.
251
+ :ref:`how-to-partition`
252
+
253
+ Notes
254
+ -----
255
+ If base is a scalar, logspace is equivalent to the code
256
+
257
+ >>> y = np.linspace(start, stop, num=num, endpoint=endpoint)
258
+ ... # doctest: +SKIP
259
+ >>> power(base, y).astype(dtype)
260
+ ... # doctest: +SKIP
261
+
262
+ Examples
263
+ --------
264
+ >>> np.logspace(2.0, 3.0, num=4)
265
+ array([ 100. , 215.443469 , 464.15888336, 1000. ])
266
+ >>> np.logspace(2.0, 3.0, num=4, endpoint=False)
267
+ array([100. , 177.827941 , 316.22776602, 562.34132519])
268
+ >>> np.logspace(2.0, 3.0, num=4, base=2.0)
269
+ array([4. , 5.0396842 , 6.34960421, 8. ])
270
+ >>> np.logspace(2.0, 3.0, num=4, base=[2.0, 3.0], axis=-1)
271
+ array([[ 4. , 5.0396842 , 6.34960421, 8. ],
272
+ [ 9. , 12.98024613, 18.72075441, 27. ]])
273
+
274
+ Graphical illustration:
275
+
276
+ >>> import matplotlib.pyplot as plt
277
+ >>> N = 10
278
+ >>> x1 = np.logspace(0.1, 1, N, endpoint=True)
279
+ >>> x2 = np.logspace(0.1, 1, N, endpoint=False)
280
+ >>> y = np.zeros(N)
281
+ >>> plt.plot(x1, y, 'o')
282
+ [<matplotlib.lines.Line2D object at 0x...>]
283
+ >>> plt.plot(x2, y + 0.5, 'o')
284
+ [<matplotlib.lines.Line2D object at 0x...>]
285
+ >>> plt.ylim([-0.5, 1])
286
+ (-0.5, 1)
287
+ >>> plt.show()
288
+
289
+ """
290
+ ndmax = np.broadcast(start, stop, base).ndim
291
+ start, stop, base = (
292
+ np.array(a, copy=False, subok=True, ndmin=ndmax)
293
+ for a in (start, stop, base)
294
+ )
295
+ y = linspace(start, stop, num=num, endpoint=endpoint, axis=axis)
296
+ base = np.expand_dims(base, axis=axis)
297
+ if dtype is None:
298
+ return _nx.power(base, y)
299
+ return _nx.power(base, y).astype(dtype, copy=False)
300
+
301
+
302
+ def _geomspace_dispatcher(start, stop, num=None, endpoint=None, dtype=None,
303
+ axis=None):
304
+ return (start, stop)
305
+
306
+
307
+ @array_function_dispatch(_geomspace_dispatcher)
308
+ def geomspace(start, stop, num=50, endpoint=True, dtype=None, axis=0):
309
+ """
310
+ Return numbers spaced evenly on a log scale (a geometric progression).
311
+
312
+ This is similar to `logspace`, but with endpoints specified directly.
313
+ Each output sample is a constant multiple of the previous.
314
+
315
+ .. versionchanged:: 1.16.0
316
+ Non-scalar `start` and `stop` are now supported.
317
+
318
+ Parameters
319
+ ----------
320
+ start : array_like
321
+ The starting value of the sequence.
322
+ stop : array_like
323
+ The final value of the sequence, unless `endpoint` is False.
324
+ In that case, ``num + 1`` values are spaced over the
325
+ interval in log-space, of which all but the last (a sequence of
326
+ length `num`) are returned.
327
+ num : integer, optional
328
+ Number of samples to generate. Default is 50.
329
+ endpoint : boolean, optional
330
+ If true, `stop` is the last sample. Otherwise, it is not included.
331
+ Default is True.
332
+ dtype : dtype
333
+ The type of the output array. If `dtype` is not given, the data type
334
+ is inferred from `start` and `stop`. The inferred dtype will never be
335
+ an integer; `float` is chosen even if the arguments would produce an
336
+ array of integers.
337
+ axis : int, optional
338
+ The axis in the result to store the samples. Relevant only if start
339
+ or stop are array-like. By default (0), the samples will be along a
340
+ new axis inserted at the beginning. Use -1 to get an axis at the end.
341
+
342
+ .. versionadded:: 1.16.0
343
+
344
+ Returns
345
+ -------
346
+ samples : ndarray
347
+ `num` samples, equally spaced on a log scale.
348
+
349
+ See Also
350
+ --------
351
+ logspace : Similar to geomspace, but with endpoints specified using log
352
+ and base.
353
+ linspace : Similar to geomspace, but with arithmetic instead of geometric
354
+ progression.
355
+ arange : Similar to linspace, with the step size specified instead of the
356
+ number of samples.
357
+ :ref:`how-to-partition`
358
+
359
+ Notes
360
+ -----
361
+ If the inputs or dtype are complex, the output will follow a logarithmic
362
+ spiral in the complex plane. (There are an infinite number of spirals
363
+ passing through two points; the output will follow the shortest such path.)
364
+
365
+ Examples
366
+ --------
367
+ >>> np.geomspace(1, 1000, num=4)
368
+ array([ 1., 10., 100., 1000.])
369
+ >>> np.geomspace(1, 1000, num=3, endpoint=False)
370
+ array([ 1., 10., 100.])
371
+ >>> np.geomspace(1, 1000, num=4, endpoint=False)
372
+ array([ 1. , 5.62341325, 31.6227766 , 177.827941 ])
373
+ >>> np.geomspace(1, 256, num=9)
374
+ array([ 1., 2., 4., 8., 16., 32., 64., 128., 256.])
375
+
376
+ Note that the above may not produce exact integers:
377
+
378
+ >>> np.geomspace(1, 256, num=9, dtype=int)
379
+ array([ 1, 2, 4, 7, 16, 32, 63, 127, 256])
380
+ >>> np.around(np.geomspace(1, 256, num=9)).astype(int)
381
+ array([ 1, 2, 4, 8, 16, 32, 64, 128, 256])
382
+
383
+ Negative, decreasing, and complex inputs are allowed:
384
+
385
+ >>> np.geomspace(1000, 1, num=4)
386
+ array([1000., 100., 10., 1.])
387
+ >>> np.geomspace(-1000, -1, num=4)
388
+ array([-1000., -100., -10., -1.])
389
+ >>> np.geomspace(1j, 1000j, num=4) # Straight line
390
+ array([0. +1.j, 0. +10.j, 0. +100.j, 0.+1000.j])
391
+ >>> np.geomspace(-1+0j, 1+0j, num=5) # Circle
392
+ array([-1.00000000e+00+1.22464680e-16j, -7.07106781e-01+7.07106781e-01j,
393
+ 6.12323400e-17+1.00000000e+00j, 7.07106781e-01+7.07106781e-01j,
394
+ 1.00000000e+00+0.00000000e+00j])
395
+
396
+ Graphical illustration of `endpoint` parameter:
397
+
398
+ >>> import matplotlib.pyplot as plt
399
+ >>> N = 10
400
+ >>> y = np.zeros(N)
401
+ >>> plt.semilogx(np.geomspace(1, 1000, N, endpoint=True), y + 1, 'o')
402
+ [<matplotlib.lines.Line2D object at 0x...>]
403
+ >>> plt.semilogx(np.geomspace(1, 1000, N, endpoint=False), y + 2, 'o')
404
+ [<matplotlib.lines.Line2D object at 0x...>]
405
+ >>> plt.axis([0.5, 2000, 0, 3])
406
+ [0.5, 2000, 0, 3]
407
+ >>> plt.grid(True, color='0.7', linestyle='-', which='both', axis='both')
408
+ >>> plt.show()
409
+
410
+ """
411
+ start = asanyarray(start)
412
+ stop = asanyarray(stop)
413
+ if _nx.any(start == 0) or _nx.any(stop == 0):
414
+ raise ValueError('Geometric sequence cannot include zero')
415
+
416
+ dt = result_type(start, stop, float(num), _nx.zeros((), dtype))
417
+ if dtype is None:
418
+ dtype = dt
419
+ else:
420
+ # complex to dtype('complex128'), for instance
421
+ dtype = _nx.dtype(dtype)
422
+
423
+ # Promote both arguments to the same dtype in case, for instance, one is
424
+ # complex and another is negative and log would produce NaN otherwise.
425
+ # Copy since we may change things in-place further down.
426
+ start = start.astype(dt, copy=True)
427
+ stop = stop.astype(dt, copy=True)
428
+
429
+ out_sign = _nx.ones(_nx.broadcast(start, stop).shape, dt)
430
+ # Avoid negligible real or imaginary parts in output by rotating to
431
+ # positive real, calculating, then undoing rotation
432
+ if _nx.issubdtype(dt, _nx.complexfloating):
433
+ all_imag = (start.real == 0.) & (stop.real == 0.)
434
+ if _nx.any(all_imag):
435
+ start[all_imag] = start[all_imag].imag
436
+ stop[all_imag] = stop[all_imag].imag
437
+ out_sign[all_imag] = 1j
438
+
439
+ both_negative = (_nx.sign(start) == -1) & (_nx.sign(stop) == -1)
440
+ if _nx.any(both_negative):
441
+ _nx.negative(start, out=start, where=both_negative)
442
+ _nx.negative(stop, out=stop, where=both_negative)
443
+ _nx.negative(out_sign, out=out_sign, where=both_negative)
444
+
445
+ log_start = _nx.log10(start)
446
+ log_stop = _nx.log10(stop)
447
+ result = logspace(log_start, log_stop, num=num,
448
+ endpoint=endpoint, base=10.0, dtype=dtype)
449
+
450
+ # Make sure the endpoints match the start and stop arguments. This is
451
+ # necessary because np.exp(np.log(x)) is not necessarily equal to x.
452
+ if num > 0:
453
+ result[0] = start
454
+ if num > 1 and endpoint:
455
+ result[-1] = stop
456
+
457
+ result = out_sign * result
458
+
459
+ if axis != 0:
460
+ result = _nx.moveaxis(result, 0, axis)
461
+
462
+ return result.astype(dtype, copy=False)
463
+
464
+
465
+ def _needs_add_docstring(obj):
466
+ """
467
+ Returns true if the only way to set the docstring of `obj` from python is
468
+ via add_docstring.
469
+
470
+ This function errs on the side of being overly conservative.
471
+ """
472
+ Py_TPFLAGS_HEAPTYPE = 1 << 9
473
+
474
+ if isinstance(obj, (types.FunctionType, types.MethodType, property)):
475
+ return False
476
+
477
+ if isinstance(obj, type) and obj.__flags__ & Py_TPFLAGS_HEAPTYPE:
478
+ return False
479
+
480
+ return True
481
+
482
+
483
+ def _add_docstring(obj, doc, warn_on_python):
484
+ if warn_on_python and not _needs_add_docstring(obj):
485
+ warnings.warn(
486
+ "add_newdoc was used on a pure-python object {}. "
487
+ "Prefer to attach it directly to the source."
488
+ .format(obj),
489
+ UserWarning,
490
+ stacklevel=3)
491
+ try:
492
+ add_docstring(obj, doc)
493
+ except Exception:
494
+ pass
495
+
496
+
497
+ def add_newdoc(place, obj, doc, warn_on_python=True):
498
+ """
499
+ Add documentation to an existing object, typically one defined in C
500
+
501
+ The purpose is to allow easier editing of the docstrings without requiring
502
+ a re-compile. This exists primarily for internal use within numpy itself.
503
+
504
+ Parameters
505
+ ----------
506
+ place : str
507
+ The absolute name of the module to import from
508
+ obj : str
509
+ The name of the object to add documentation to, typically a class or
510
+ function name
511
+ doc : {str, Tuple[str, str], List[Tuple[str, str]]}
512
+ If a string, the documentation to apply to `obj`
513
+
514
+ If a tuple, then the first element is interpreted as an attribute of
515
+ `obj` and the second as the docstring to apply - ``(method, docstring)``
516
+
517
+ If a list, then each element of the list should be a tuple of length
518
+ two - ``[(method1, docstring1), (method2, docstring2), ...]``
519
+ warn_on_python : bool
520
+ If True, the default, emit `UserWarning` if this is used to attach
521
+ documentation to a pure-python object.
522
+
523
+ Notes
524
+ -----
525
+ This routine never raises an error if the docstring can't be written, but
526
+ will raise an error if the object being documented does not exist.
527
+
528
+ This routine cannot modify read-only docstrings, as appear
529
+ in new-style classes or built-in functions. Because this
530
+ routine never raises an error the caller must check manually
531
+ that the docstrings were changed.
532
+
533
+ Since this function grabs the ``char *`` from a c-level str object and puts
534
+ it into the ``tp_doc`` slot of the type of `obj`, it violates a number of
535
+ C-API best-practices, by:
536
+
537
+ - modifying a `PyTypeObject` after calling `PyType_Ready`
538
+ - calling `Py_INCREF` on the str and losing the reference, so the str
539
+ will never be released
540
+
541
+ If possible it should be avoided.
542
+ """
543
+ new = getattr(__import__(place, globals(), {}, [obj]), obj)
544
+ if isinstance(doc, str):
545
+ _add_docstring(new, doc.strip(), warn_on_python)
546
+ elif isinstance(doc, tuple):
547
+ attr, docstring = doc
548
+ _add_docstring(getattr(new, attr), docstring.strip(), warn_on_python)
549
+ elif isinstance(doc, list):
550
+ for attr, docstring in doc:
551
+ _add_docstring(getattr(new, attr), docstring.strip(), warn_on_python)
env-llmeval/lib/python3.10/site-packages/numpy/core/function_base.pyi ADDED
@@ -0,0 +1,187 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import (
2
+ Literal as L,
3
+ overload,
4
+ Any,
5
+ SupportsIndex,
6
+ TypeVar,
7
+ )
8
+
9
+ from numpy import floating, complexfloating, generic
10
+ from numpy._typing import (
11
+ NDArray,
12
+ DTypeLike,
13
+ _DTypeLike,
14
+ _ArrayLikeFloat_co,
15
+ _ArrayLikeComplex_co,
16
+ )
17
+
18
+ _SCT = TypeVar("_SCT", bound=generic)
19
+
20
+ __all__: list[str]
21
+
22
+ @overload
23
+ def linspace(
24
+ start: _ArrayLikeFloat_co,
25
+ stop: _ArrayLikeFloat_co,
26
+ num: SupportsIndex = ...,
27
+ endpoint: bool = ...,
28
+ retstep: L[False] = ...,
29
+ dtype: None = ...,
30
+ axis: SupportsIndex = ...,
31
+ ) -> NDArray[floating[Any]]: ...
32
+ @overload
33
+ def linspace(
34
+ start: _ArrayLikeComplex_co,
35
+ stop: _ArrayLikeComplex_co,
36
+ num: SupportsIndex = ...,
37
+ endpoint: bool = ...,
38
+ retstep: L[False] = ...,
39
+ dtype: None = ...,
40
+ axis: SupportsIndex = ...,
41
+ ) -> NDArray[complexfloating[Any, Any]]: ...
42
+ @overload
43
+ def linspace(
44
+ start: _ArrayLikeComplex_co,
45
+ stop: _ArrayLikeComplex_co,
46
+ num: SupportsIndex = ...,
47
+ endpoint: bool = ...,
48
+ retstep: L[False] = ...,
49
+ dtype: _DTypeLike[_SCT] = ...,
50
+ axis: SupportsIndex = ...,
51
+ ) -> NDArray[_SCT]: ...
52
+ @overload
53
+ def linspace(
54
+ start: _ArrayLikeComplex_co,
55
+ stop: _ArrayLikeComplex_co,
56
+ num: SupportsIndex = ...,
57
+ endpoint: bool = ...,
58
+ retstep: L[False] = ...,
59
+ dtype: DTypeLike = ...,
60
+ axis: SupportsIndex = ...,
61
+ ) -> NDArray[Any]: ...
62
+ @overload
63
+ def linspace(
64
+ start: _ArrayLikeFloat_co,
65
+ stop: _ArrayLikeFloat_co,
66
+ num: SupportsIndex = ...,
67
+ endpoint: bool = ...,
68
+ retstep: L[True] = ...,
69
+ dtype: None = ...,
70
+ axis: SupportsIndex = ...,
71
+ ) -> tuple[NDArray[floating[Any]], floating[Any]]: ...
72
+ @overload
73
+ def linspace(
74
+ start: _ArrayLikeComplex_co,
75
+ stop: _ArrayLikeComplex_co,
76
+ num: SupportsIndex = ...,
77
+ endpoint: bool = ...,
78
+ retstep: L[True] = ...,
79
+ dtype: None = ...,
80
+ axis: SupportsIndex = ...,
81
+ ) -> tuple[NDArray[complexfloating[Any, Any]], complexfloating[Any, Any]]: ...
82
+ @overload
83
+ def linspace(
84
+ start: _ArrayLikeComplex_co,
85
+ stop: _ArrayLikeComplex_co,
86
+ num: SupportsIndex = ...,
87
+ endpoint: bool = ...,
88
+ retstep: L[True] = ...,
89
+ dtype: _DTypeLike[_SCT] = ...,
90
+ axis: SupportsIndex = ...,
91
+ ) -> tuple[NDArray[_SCT], _SCT]: ...
92
+ @overload
93
+ def linspace(
94
+ start: _ArrayLikeComplex_co,
95
+ stop: _ArrayLikeComplex_co,
96
+ num: SupportsIndex = ...,
97
+ endpoint: bool = ...,
98
+ retstep: L[True] = ...,
99
+ dtype: DTypeLike = ...,
100
+ axis: SupportsIndex = ...,
101
+ ) -> tuple[NDArray[Any], Any]: ...
102
+
103
+ @overload
104
+ def logspace(
105
+ start: _ArrayLikeFloat_co,
106
+ stop: _ArrayLikeFloat_co,
107
+ num: SupportsIndex = ...,
108
+ endpoint: bool = ...,
109
+ base: _ArrayLikeFloat_co = ...,
110
+ dtype: None = ...,
111
+ axis: SupportsIndex = ...,
112
+ ) -> NDArray[floating[Any]]: ...
113
+ @overload
114
+ def logspace(
115
+ start: _ArrayLikeComplex_co,
116
+ stop: _ArrayLikeComplex_co,
117
+ num: SupportsIndex = ...,
118
+ endpoint: bool = ...,
119
+ base: _ArrayLikeComplex_co = ...,
120
+ dtype: None = ...,
121
+ axis: SupportsIndex = ...,
122
+ ) -> NDArray[complexfloating[Any, Any]]: ...
123
+ @overload
124
+ def logspace(
125
+ start: _ArrayLikeComplex_co,
126
+ stop: _ArrayLikeComplex_co,
127
+ num: SupportsIndex = ...,
128
+ endpoint: bool = ...,
129
+ base: _ArrayLikeComplex_co = ...,
130
+ dtype: _DTypeLike[_SCT] = ...,
131
+ axis: SupportsIndex = ...,
132
+ ) -> NDArray[_SCT]: ...
133
+ @overload
134
+ def logspace(
135
+ start: _ArrayLikeComplex_co,
136
+ stop: _ArrayLikeComplex_co,
137
+ num: SupportsIndex = ...,
138
+ endpoint: bool = ...,
139
+ base: _ArrayLikeComplex_co = ...,
140
+ dtype: DTypeLike = ...,
141
+ axis: SupportsIndex = ...,
142
+ ) -> NDArray[Any]: ...
143
+
144
+ @overload
145
+ def geomspace(
146
+ start: _ArrayLikeFloat_co,
147
+ stop: _ArrayLikeFloat_co,
148
+ num: SupportsIndex = ...,
149
+ endpoint: bool = ...,
150
+ dtype: None = ...,
151
+ axis: SupportsIndex = ...,
152
+ ) -> NDArray[floating[Any]]: ...
153
+ @overload
154
+ def geomspace(
155
+ start: _ArrayLikeComplex_co,
156
+ stop: _ArrayLikeComplex_co,
157
+ num: SupportsIndex = ...,
158
+ endpoint: bool = ...,
159
+ dtype: None = ...,
160
+ axis: SupportsIndex = ...,
161
+ ) -> NDArray[complexfloating[Any, Any]]: ...
162
+ @overload
163
+ def geomspace(
164
+ start: _ArrayLikeComplex_co,
165
+ stop: _ArrayLikeComplex_co,
166
+ num: SupportsIndex = ...,
167
+ endpoint: bool = ...,
168
+ dtype: _DTypeLike[_SCT] = ...,
169
+ axis: SupportsIndex = ...,
170
+ ) -> NDArray[_SCT]: ...
171
+ @overload
172
+ def geomspace(
173
+ start: _ArrayLikeComplex_co,
174
+ stop: _ArrayLikeComplex_co,
175
+ num: SupportsIndex = ...,
176
+ endpoint: bool = ...,
177
+ dtype: DTypeLike = ...,
178
+ axis: SupportsIndex = ...,
179
+ ) -> NDArray[Any]: ...
180
+
181
+ # Re-exported to `np.lib.function_base`
182
+ def add_newdoc(
183
+ place: str,
184
+ obj: str,
185
+ doc: str | tuple[str, str] | list[tuple[str, str]],
186
+ warn_on_python: bool = ...,
187
+ ) -> None: ...
env-llmeval/lib/python3.10/site-packages/numpy/core/lib/libnpymath.a ADDED
Binary file (94 kB). View file