applied-ai-018 commited on
Commit
a070569
·
verified ·
1 Parent(s): a803dcc

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. env-llmeval/lib/python3.10/site-packages/sklearn/preprocessing/__init__.py +63 -0
  2. env-llmeval/lib/python3.10/site-packages/sklearn/preprocessing/_csr_polynomial_expansion.cpython-310-x86_64-linux-gnu.so +0 -0
  3. env-llmeval/lib/python3.10/site-packages/sklearn/preprocessing/_data.py +0 -0
  4. env-llmeval/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py +472 -0
  5. env-llmeval/lib/python3.10/site-packages/sklearn/preprocessing/_encoders.py +1678 -0
  6. env-llmeval/lib/python3.10/site-packages/sklearn/preprocessing/_function_transformer.py +431 -0
  7. env-llmeval/lib/python3.10/site-packages/sklearn/preprocessing/_label.py +951 -0
  8. env-llmeval/lib/python3.10/site-packages/sklearn/preprocessing/_polynomial.py +1172 -0
  9. env-llmeval/lib/python3.10/site-packages/sklearn/preprocessing/_target_encoder.py +531 -0
  10. env-llmeval/lib/python3.10/site-packages/sklearn/preprocessing/_target_encoder_fast.cpython-310-x86_64-linux-gnu.so +0 -0
  11. env-llmeval/lib/python3.10/site-packages/sklearn/preprocessing/tests/__init__.py +0 -0
  12. env-llmeval/lib/python3.10/site-packages/sklearn/preprocessing/tests/test_data.py +2593 -0
  13. env-llmeval/lib/python3.10/site-packages/sklearn/preprocessing/tests/test_discretization.py +503 -0
  14. env-llmeval/lib/python3.10/site-packages/sklearn/preprocessing/tests/test_function_transformer.py +591 -0
  15. env-llmeval/lib/python3.10/site-packages/sklearn/preprocessing/tests/test_polynomial.py +1258 -0
  16. env-llmeval/lib/python3.10/site-packages/sklearn/preprocessing/tests/test_target_encoder.py +716 -0
  17. env-llmeval/lib/python3.10/site-packages/sklearn/utils/tests/__pycache__/__init__.cpython-310.pyc +0 -0
  18. env-llmeval/lib/python3.10/site-packages/sklearn/utils/tests/__pycache__/test_arpack.cpython-310.pyc +0 -0
  19. env-llmeval/lib/python3.10/site-packages/sklearn/utils/tests/__pycache__/test_array_api.cpython-310.pyc +0 -0
  20. env-llmeval/lib/python3.10/site-packages/sklearn/utils/tests/__pycache__/test_arrayfuncs.cpython-310.pyc +0 -0
  21. env-llmeval/lib/python3.10/site-packages/sklearn/utils/tests/__pycache__/test_bunch.cpython-310.pyc +0 -0
  22. env-llmeval/lib/python3.10/site-packages/sklearn/utils/tests/__pycache__/test_class_weight.cpython-310.pyc +0 -0
  23. env-llmeval/lib/python3.10/site-packages/sklearn/utils/tests/__pycache__/test_cython_blas.cpython-310.pyc +0 -0
  24. env-llmeval/lib/python3.10/site-packages/sklearn/utils/tests/__pycache__/test_cython_templating.cpython-310.pyc +0 -0
  25. env-llmeval/lib/python3.10/site-packages/sklearn/utils/tests/__pycache__/test_deprecation.cpython-310.pyc +0 -0
  26. env-llmeval/lib/python3.10/site-packages/sklearn/utils/tests/__pycache__/test_encode.cpython-310.pyc +0 -0
  27. env-llmeval/lib/python3.10/site-packages/sklearn/utils/tests/__pycache__/test_estimator_checks.cpython-310.pyc +0 -0
  28. env-llmeval/lib/python3.10/site-packages/sklearn/utils/tests/__pycache__/test_estimator_html_repr.cpython-310.pyc +0 -0
  29. env-llmeval/lib/python3.10/site-packages/sklearn/utils/tests/__pycache__/test_extmath.cpython-310.pyc +0 -0
  30. env-llmeval/lib/python3.10/site-packages/sklearn/utils/tests/__pycache__/test_fast_dict.cpython-310.pyc +0 -0
  31. env-llmeval/lib/python3.10/site-packages/sklearn/utils/tests/__pycache__/test_fixes.cpython-310.pyc +0 -0
  32. env-llmeval/lib/python3.10/site-packages/sklearn/utils/tests/__pycache__/test_graph.cpython-310.pyc +0 -0
  33. env-llmeval/lib/python3.10/site-packages/sklearn/utils/tests/__pycache__/test_metaestimators.cpython-310.pyc +0 -0
  34. env-llmeval/lib/python3.10/site-packages/sklearn/utils/tests/__pycache__/test_mocking.cpython-310.pyc +0 -0
  35. env-llmeval/lib/python3.10/site-packages/sklearn/utils/tests/__pycache__/test_multiclass.cpython-310.pyc +0 -0
  36. env-llmeval/lib/python3.10/site-packages/sklearn/utils/tests/__pycache__/test_murmurhash.cpython-310.pyc +0 -0
  37. env-llmeval/lib/python3.10/site-packages/sklearn/utils/tests/__pycache__/test_optimize.cpython-310.pyc +0 -0
  38. env-llmeval/lib/python3.10/site-packages/sklearn/utils/tests/__pycache__/test_parallel.cpython-310.pyc +0 -0
  39. env-llmeval/lib/python3.10/site-packages/sklearn/utils/tests/__pycache__/test_param_validation.cpython-310.pyc +0 -0
  40. env-llmeval/lib/python3.10/site-packages/sklearn/utils/tests/__pycache__/test_plotting.cpython-310.pyc +0 -0
  41. env-llmeval/lib/python3.10/site-packages/sklearn/utils/tests/__pycache__/test_pprint.cpython-310.pyc +0 -0
  42. env-llmeval/lib/python3.10/site-packages/sklearn/utils/tests/__pycache__/test_random.cpython-310.pyc +0 -0
  43. env-llmeval/lib/python3.10/site-packages/sklearn/utils/tests/__pycache__/test_response.cpython-310.pyc +0 -0
  44. env-llmeval/lib/python3.10/site-packages/sklearn/utils/tests/__pycache__/test_seq_dataset.cpython-310.pyc +0 -0
  45. env-llmeval/lib/python3.10/site-packages/sklearn/utils/tests/__pycache__/test_set_output.cpython-310.pyc +0 -0
  46. env-llmeval/lib/python3.10/site-packages/sklearn/utils/tests/__pycache__/test_shortest_path.cpython-310.pyc +0 -0
  47. env-llmeval/lib/python3.10/site-packages/sklearn/utils/tests/__pycache__/test_show_versions.cpython-310.pyc +0 -0
  48. env-llmeval/lib/python3.10/site-packages/sklearn/utils/tests/__pycache__/test_sparsefuncs.cpython-310.pyc +0 -0
  49. env-llmeval/lib/python3.10/site-packages/sklearn/utils/tests/__pycache__/test_stats.cpython-310.pyc +0 -0
  50. env-llmeval/lib/python3.10/site-packages/sklearn/utils/tests/__pycache__/test_tags.cpython-310.pyc +0 -0
env-llmeval/lib/python3.10/site-packages/sklearn/preprocessing/__init__.py ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ The :mod:`sklearn.preprocessing` module includes scaling, centering,
3
+ normalization, binarization methods.
4
+ """
5
+
6
+ from ._data import (
7
+ Binarizer,
8
+ KernelCenterer,
9
+ MaxAbsScaler,
10
+ MinMaxScaler,
11
+ Normalizer,
12
+ PowerTransformer,
13
+ QuantileTransformer,
14
+ RobustScaler,
15
+ StandardScaler,
16
+ add_dummy_feature,
17
+ binarize,
18
+ maxabs_scale,
19
+ minmax_scale,
20
+ normalize,
21
+ power_transform,
22
+ quantile_transform,
23
+ robust_scale,
24
+ scale,
25
+ )
26
+ from ._discretization import KBinsDiscretizer
27
+ from ._encoders import OneHotEncoder, OrdinalEncoder
28
+ from ._function_transformer import FunctionTransformer
29
+ from ._label import LabelBinarizer, LabelEncoder, MultiLabelBinarizer, label_binarize
30
+ from ._polynomial import PolynomialFeatures, SplineTransformer
31
+ from ._target_encoder import TargetEncoder
32
+
33
+ __all__ = [
34
+ "Binarizer",
35
+ "FunctionTransformer",
36
+ "KBinsDiscretizer",
37
+ "KernelCenterer",
38
+ "LabelBinarizer",
39
+ "LabelEncoder",
40
+ "MultiLabelBinarizer",
41
+ "MinMaxScaler",
42
+ "MaxAbsScaler",
43
+ "QuantileTransformer",
44
+ "Normalizer",
45
+ "OneHotEncoder",
46
+ "OrdinalEncoder",
47
+ "PowerTransformer",
48
+ "RobustScaler",
49
+ "SplineTransformer",
50
+ "StandardScaler",
51
+ "TargetEncoder",
52
+ "add_dummy_feature",
53
+ "PolynomialFeatures",
54
+ "binarize",
55
+ "normalize",
56
+ "scale",
57
+ "robust_scale",
58
+ "maxabs_scale",
59
+ "minmax_scale",
60
+ "label_binarize",
61
+ "quantile_transform",
62
+ "power_transform",
63
+ ]
env-llmeval/lib/python3.10/site-packages/sklearn/preprocessing/_csr_polynomial_expansion.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (492 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sklearn/preprocessing/_data.py ADDED
The diff for this file is too large to render. See raw diff
 
env-llmeval/lib/python3.10/site-packages/sklearn/preprocessing/_discretization.py ADDED
@@ -0,0 +1,472 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Author: Henry Lin <[email protected]>
2
+ # Tom Dupré la Tour
3
+
4
+ # License: BSD
5
+
6
+
7
+ import warnings
8
+ from numbers import Integral
9
+
10
+ import numpy as np
11
+
12
+ from ..base import BaseEstimator, TransformerMixin, _fit_context
13
+ from ..utils import _safe_indexing
14
+ from ..utils._param_validation import Hidden, Interval, Options, StrOptions
15
+ from ..utils.stats import _weighted_percentile
16
+ from ..utils.validation import (
17
+ _check_feature_names_in,
18
+ _check_sample_weight,
19
+ check_array,
20
+ check_is_fitted,
21
+ check_random_state,
22
+ )
23
+ from ._encoders import OneHotEncoder
24
+
25
+
26
+ class KBinsDiscretizer(TransformerMixin, BaseEstimator):
27
+ """
28
+ Bin continuous data into intervals.
29
+
30
+ Read more in the :ref:`User Guide <preprocessing_discretization>`.
31
+
32
+ .. versionadded:: 0.20
33
+
34
+ Parameters
35
+ ----------
36
+ n_bins : int or array-like of shape (n_features,), default=5
37
+ The number of bins to produce. Raises ValueError if ``n_bins < 2``.
38
+
39
+ encode : {'onehot', 'onehot-dense', 'ordinal'}, default='onehot'
40
+ Method used to encode the transformed result.
41
+
42
+ - 'onehot': Encode the transformed result with one-hot encoding
43
+ and return a sparse matrix. Ignored features are always
44
+ stacked to the right.
45
+ - 'onehot-dense': Encode the transformed result with one-hot encoding
46
+ and return a dense array. Ignored features are always
47
+ stacked to the right.
48
+ - 'ordinal': Return the bin identifier encoded as an integer value.
49
+
50
+ strategy : {'uniform', 'quantile', 'kmeans'}, default='quantile'
51
+ Strategy used to define the widths of the bins.
52
+
53
+ - 'uniform': All bins in each feature have identical widths.
54
+ - 'quantile': All bins in each feature have the same number of points.
55
+ - 'kmeans': Values in each bin have the same nearest center of a 1D
56
+ k-means cluster.
57
+
58
+ For an example of the different strategies see:
59
+ :ref:`sphx_glr_auto_examples_preprocessing_plot_discretization_strategies.py`.
60
+
61
+ dtype : {np.float32, np.float64}, default=None
62
+ The desired data-type for the output. If None, output dtype is
63
+ consistent with input dtype. Only np.float32 and np.float64 are
64
+ supported.
65
+
66
+ .. versionadded:: 0.24
67
+
68
+ subsample : int or None, default='warn'
69
+ Maximum number of samples, used to fit the model, for computational
70
+ efficiency. Defaults to 200_000 when `strategy='quantile'` and to `None`
71
+ when `strategy='uniform'` or `strategy='kmeans'`.
72
+ `subsample=None` means that all the training samples are used when
73
+ computing the quantiles that determine the binning thresholds.
74
+ Since quantile computation relies on sorting each column of `X` and
75
+ that sorting has an `n log(n)` time complexity,
76
+ it is recommended to use subsampling on datasets with a
77
+ very large number of samples.
78
+
79
+ .. versionchanged:: 1.3
80
+ The default value of `subsample` changed from `None` to `200_000` when
81
+ `strategy="quantile"`.
82
+
83
+ .. versionchanged:: 1.5
84
+ The default value of `subsample` changed from `None` to `200_000` when
85
+ `strategy="uniform"` or `strategy="kmeans"`.
86
+
87
+ random_state : int, RandomState instance or None, default=None
88
+ Determines random number generation for subsampling.
89
+ Pass an int for reproducible results across multiple function calls.
90
+ See the `subsample` parameter for more details.
91
+ See :term:`Glossary <random_state>`.
92
+
93
+ .. versionadded:: 1.1
94
+
95
+ Attributes
96
+ ----------
97
+ bin_edges_ : ndarray of ndarray of shape (n_features,)
98
+ The edges of each bin. Contain arrays of varying shapes ``(n_bins_, )``
99
+ Ignored features will have empty arrays.
100
+
101
+ n_bins_ : ndarray of shape (n_features,), dtype=np.int64
102
+ Number of bins per feature. Bins whose width are too small
103
+ (i.e., <= 1e-8) are removed with a warning.
104
+
105
+ n_features_in_ : int
106
+ Number of features seen during :term:`fit`.
107
+
108
+ .. versionadded:: 0.24
109
+
110
+ feature_names_in_ : ndarray of shape (`n_features_in_`,)
111
+ Names of features seen during :term:`fit`. Defined only when `X`
112
+ has feature names that are all strings.
113
+
114
+ .. versionadded:: 1.0
115
+
116
+ See Also
117
+ --------
118
+ Binarizer : Class used to bin values as ``0`` or
119
+ ``1`` based on a parameter ``threshold``.
120
+
121
+ Notes
122
+ -----
123
+
124
+ For a visualization of discretization on different datasets refer to
125
+ :ref:`sphx_glr_auto_examples_preprocessing_plot_discretization_classification.py`.
126
+ On the effect of discretization on linear models see:
127
+ :ref:`sphx_glr_auto_examples_preprocessing_plot_discretization.py`.
128
+
129
+ In bin edges for feature ``i``, the first and last values are used only for
130
+ ``inverse_transform``. During transform, bin edges are extended to::
131
+
132
+ np.concatenate([-np.inf, bin_edges_[i][1:-1], np.inf])
133
+
134
+ You can combine ``KBinsDiscretizer`` with
135
+ :class:`~sklearn.compose.ColumnTransformer` if you only want to preprocess
136
+ part of the features.
137
+
138
+ ``KBinsDiscretizer`` might produce constant features (e.g., when
139
+ ``encode = 'onehot'`` and certain bins do not contain any data).
140
+ These features can be removed with feature selection algorithms
141
+ (e.g., :class:`~sklearn.feature_selection.VarianceThreshold`).
142
+
143
+ Examples
144
+ --------
145
+ >>> from sklearn.preprocessing import KBinsDiscretizer
146
+ >>> X = [[-2, 1, -4, -1],
147
+ ... [-1, 2, -3, -0.5],
148
+ ... [ 0, 3, -2, 0.5],
149
+ ... [ 1, 4, -1, 2]]
150
+ >>> est = KBinsDiscretizer(
151
+ ... n_bins=3, encode='ordinal', strategy='uniform', subsample=None
152
+ ... )
153
+ >>> est.fit(X)
154
+ KBinsDiscretizer(...)
155
+ >>> Xt = est.transform(X)
156
+ >>> Xt # doctest: +SKIP
157
+ array([[ 0., 0., 0., 0.],
158
+ [ 1., 1., 1., 0.],
159
+ [ 2., 2., 2., 1.],
160
+ [ 2., 2., 2., 2.]])
161
+
162
+ Sometimes it may be useful to convert the data back into the original
163
+ feature space. The ``inverse_transform`` function converts the binned
164
+ data into the original feature space. Each value will be equal to the mean
165
+ of the two bin edges.
166
+
167
+ >>> est.bin_edges_[0]
168
+ array([-2., -1., 0., 1.])
169
+ >>> est.inverse_transform(Xt)
170
+ array([[-1.5, 1.5, -3.5, -0.5],
171
+ [-0.5, 2.5, -2.5, -0.5],
172
+ [ 0.5, 3.5, -1.5, 0.5],
173
+ [ 0.5, 3.5, -1.5, 1.5]])
174
+ """
175
+
176
+ _parameter_constraints: dict = {
177
+ "n_bins": [Interval(Integral, 2, None, closed="left"), "array-like"],
178
+ "encode": [StrOptions({"onehot", "onehot-dense", "ordinal"})],
179
+ "strategy": [StrOptions({"uniform", "quantile", "kmeans"})],
180
+ "dtype": [Options(type, {np.float64, np.float32}), None],
181
+ "subsample": [
182
+ Interval(Integral, 1, None, closed="left"),
183
+ None,
184
+ Hidden(StrOptions({"warn"})),
185
+ ],
186
+ "random_state": ["random_state"],
187
+ }
188
+
189
+ def __init__(
190
+ self,
191
+ n_bins=5,
192
+ *,
193
+ encode="onehot",
194
+ strategy="quantile",
195
+ dtype=None,
196
+ subsample="warn",
197
+ random_state=None,
198
+ ):
199
+ self.n_bins = n_bins
200
+ self.encode = encode
201
+ self.strategy = strategy
202
+ self.dtype = dtype
203
+ self.subsample = subsample
204
+ self.random_state = random_state
205
+
206
+ @_fit_context(prefer_skip_nested_validation=True)
207
+ def fit(self, X, y=None, sample_weight=None):
208
+ """
209
+ Fit the estimator.
210
+
211
+ Parameters
212
+ ----------
213
+ X : array-like of shape (n_samples, n_features)
214
+ Data to be discretized.
215
+
216
+ y : None
217
+ Ignored. This parameter exists only for compatibility with
218
+ :class:`~sklearn.pipeline.Pipeline`.
219
+
220
+ sample_weight : ndarray of shape (n_samples,)
221
+ Contains weight values to be associated with each sample.
222
+ Only possible when `strategy` is set to `"quantile"`.
223
+
224
+ .. versionadded:: 1.3
225
+
226
+ Returns
227
+ -------
228
+ self : object
229
+ Returns the instance itself.
230
+ """
231
+ X = self._validate_data(X, dtype="numeric")
232
+
233
+ if self.dtype in (np.float64, np.float32):
234
+ output_dtype = self.dtype
235
+ else: # self.dtype is None
236
+ output_dtype = X.dtype
237
+
238
+ n_samples, n_features = X.shape
239
+
240
+ if sample_weight is not None and self.strategy == "uniform":
241
+ raise ValueError(
242
+ "`sample_weight` was provided but it cannot be "
243
+ "used with strategy='uniform'. Got strategy="
244
+ f"{self.strategy!r} instead."
245
+ )
246
+
247
+ if self.strategy in ("uniform", "kmeans") and self.subsample == "warn":
248
+ warnings.warn(
249
+ (
250
+ "In version 1.5 onwards, subsample=200_000 "
251
+ "will be used by default. Set subsample explicitly to "
252
+ "silence this warning in the mean time. Set "
253
+ "subsample=None to disable subsampling explicitly."
254
+ ),
255
+ FutureWarning,
256
+ )
257
+
258
+ subsample = self.subsample
259
+ if subsample == "warn":
260
+ subsample = 200000 if self.strategy == "quantile" else None
261
+ if subsample is not None and n_samples > subsample:
262
+ rng = check_random_state(self.random_state)
263
+ subsample_idx = rng.choice(n_samples, size=subsample, replace=False)
264
+ X = _safe_indexing(X, subsample_idx)
265
+
266
+ n_features = X.shape[1]
267
+ n_bins = self._validate_n_bins(n_features)
268
+
269
+ if sample_weight is not None:
270
+ sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype)
271
+
272
+ bin_edges = np.zeros(n_features, dtype=object)
273
+ for jj in range(n_features):
274
+ column = X[:, jj]
275
+ col_min, col_max = column.min(), column.max()
276
+
277
+ if col_min == col_max:
278
+ warnings.warn(
279
+ "Feature %d is constant and will be replaced with 0." % jj
280
+ )
281
+ n_bins[jj] = 1
282
+ bin_edges[jj] = np.array([-np.inf, np.inf])
283
+ continue
284
+
285
+ if self.strategy == "uniform":
286
+ bin_edges[jj] = np.linspace(col_min, col_max, n_bins[jj] + 1)
287
+
288
+ elif self.strategy == "quantile":
289
+ quantiles = np.linspace(0, 100, n_bins[jj] + 1)
290
+ if sample_weight is None:
291
+ bin_edges[jj] = np.asarray(np.percentile(column, quantiles))
292
+ else:
293
+ bin_edges[jj] = np.asarray(
294
+ [
295
+ _weighted_percentile(column, sample_weight, q)
296
+ for q in quantiles
297
+ ],
298
+ dtype=np.float64,
299
+ )
300
+ elif self.strategy == "kmeans":
301
+ from ..cluster import KMeans # fixes import loops
302
+
303
+ # Deterministic initialization with uniform spacing
304
+ uniform_edges = np.linspace(col_min, col_max, n_bins[jj] + 1)
305
+ init = (uniform_edges[1:] + uniform_edges[:-1])[:, None] * 0.5
306
+
307
+ # 1D k-means procedure
308
+ km = KMeans(n_clusters=n_bins[jj], init=init, n_init=1)
309
+ centers = km.fit(
310
+ column[:, None], sample_weight=sample_weight
311
+ ).cluster_centers_[:, 0]
312
+ # Must sort, centers may be unsorted even with sorted init
313
+ centers.sort()
314
+ bin_edges[jj] = (centers[1:] + centers[:-1]) * 0.5
315
+ bin_edges[jj] = np.r_[col_min, bin_edges[jj], col_max]
316
+
317
+ # Remove bins whose width are too small (i.e., <= 1e-8)
318
+ if self.strategy in ("quantile", "kmeans"):
319
+ mask = np.ediff1d(bin_edges[jj], to_begin=np.inf) > 1e-8
320
+ bin_edges[jj] = bin_edges[jj][mask]
321
+ if len(bin_edges[jj]) - 1 != n_bins[jj]:
322
+ warnings.warn(
323
+ "Bins whose width are too small (i.e., <= "
324
+ "1e-8) in feature %d are removed. Consider "
325
+ "decreasing the number of bins." % jj
326
+ )
327
+ n_bins[jj] = len(bin_edges[jj]) - 1
328
+
329
+ self.bin_edges_ = bin_edges
330
+ self.n_bins_ = n_bins
331
+
332
+ if "onehot" in self.encode:
333
+ self._encoder = OneHotEncoder(
334
+ categories=[np.arange(i) for i in self.n_bins_],
335
+ sparse_output=self.encode == "onehot",
336
+ dtype=output_dtype,
337
+ )
338
+ # Fit the OneHotEncoder with toy datasets
339
+ # so that it's ready for use after the KBinsDiscretizer is fitted
340
+ self._encoder.fit(np.zeros((1, len(self.n_bins_))))
341
+
342
+ return self
343
+
344
+ def _validate_n_bins(self, n_features):
345
+ """Returns n_bins_, the number of bins per feature."""
346
+ orig_bins = self.n_bins
347
+ if isinstance(orig_bins, Integral):
348
+ return np.full(n_features, orig_bins, dtype=int)
349
+
350
+ n_bins = check_array(orig_bins, dtype=int, copy=True, ensure_2d=False)
351
+
352
+ if n_bins.ndim > 1 or n_bins.shape[0] != n_features:
353
+ raise ValueError("n_bins must be a scalar or array of shape (n_features,).")
354
+
355
+ bad_nbins_value = (n_bins < 2) | (n_bins != orig_bins)
356
+
357
+ violating_indices = np.where(bad_nbins_value)[0]
358
+ if violating_indices.shape[0] > 0:
359
+ indices = ", ".join(str(i) for i in violating_indices)
360
+ raise ValueError(
361
+ "{} received an invalid number "
362
+ "of bins at indices {}. Number of bins "
363
+ "must be at least 2, and must be an int.".format(
364
+ KBinsDiscretizer.__name__, indices
365
+ )
366
+ )
367
+ return n_bins
368
+
369
+ def transform(self, X):
370
+ """
371
+ Discretize the data.
372
+
373
+ Parameters
374
+ ----------
375
+ X : array-like of shape (n_samples, n_features)
376
+ Data to be discretized.
377
+
378
+ Returns
379
+ -------
380
+ Xt : {ndarray, sparse matrix}, dtype={np.float32, np.float64}
381
+ Data in the binned space. Will be a sparse matrix if
382
+ `self.encode='onehot'` and ndarray otherwise.
383
+ """
384
+ check_is_fitted(self)
385
+
386
+ # check input and attribute dtypes
387
+ dtype = (np.float64, np.float32) if self.dtype is None else self.dtype
388
+ Xt = self._validate_data(X, copy=True, dtype=dtype, reset=False)
389
+
390
+ bin_edges = self.bin_edges_
391
+ for jj in range(Xt.shape[1]):
392
+ Xt[:, jj] = np.searchsorted(bin_edges[jj][1:-1], Xt[:, jj], side="right")
393
+
394
+ if self.encode == "ordinal":
395
+ return Xt
396
+
397
+ dtype_init = None
398
+ if "onehot" in self.encode:
399
+ dtype_init = self._encoder.dtype
400
+ self._encoder.dtype = Xt.dtype
401
+ try:
402
+ Xt_enc = self._encoder.transform(Xt)
403
+ finally:
404
+ # revert the initial dtype to avoid modifying self.
405
+ self._encoder.dtype = dtype_init
406
+ return Xt_enc
407
+
408
+ def inverse_transform(self, Xt):
409
+ """
410
+ Transform discretized data back to original feature space.
411
+
412
+ Note that this function does not regenerate the original data
413
+ due to discretization rounding.
414
+
415
+ Parameters
416
+ ----------
417
+ Xt : array-like of shape (n_samples, n_features)
418
+ Transformed data in the binned space.
419
+
420
+ Returns
421
+ -------
422
+ Xinv : ndarray, dtype={np.float32, np.float64}
423
+ Data in the original feature space.
424
+ """
425
+ check_is_fitted(self)
426
+
427
+ if "onehot" in self.encode:
428
+ Xt = self._encoder.inverse_transform(Xt)
429
+
430
+ Xinv = check_array(Xt, copy=True, dtype=(np.float64, np.float32))
431
+ n_features = self.n_bins_.shape[0]
432
+ if Xinv.shape[1] != n_features:
433
+ raise ValueError(
434
+ "Incorrect number of features. Expecting {}, received {}.".format(
435
+ n_features, Xinv.shape[1]
436
+ )
437
+ )
438
+
439
+ for jj in range(n_features):
440
+ bin_edges = self.bin_edges_[jj]
441
+ bin_centers = (bin_edges[1:] + bin_edges[:-1]) * 0.5
442
+ Xinv[:, jj] = bin_centers[(Xinv[:, jj]).astype(np.int64)]
443
+
444
+ return Xinv
445
+
446
+ def get_feature_names_out(self, input_features=None):
447
+ """Get output feature names.
448
+
449
+ Parameters
450
+ ----------
451
+ input_features : array-like of str or None, default=None
452
+ Input features.
453
+
454
+ - If `input_features` is `None`, then `feature_names_in_` is
455
+ used as feature names in. If `feature_names_in_` is not defined,
456
+ then the following input feature names are generated:
457
+ `["x0", "x1", ..., "x(n_features_in_ - 1)"]`.
458
+ - If `input_features` is an array-like, then `input_features` must
459
+ match `feature_names_in_` if `feature_names_in_` is defined.
460
+
461
+ Returns
462
+ -------
463
+ feature_names_out : ndarray of str objects
464
+ Transformed feature names.
465
+ """
466
+ check_is_fitted(self, "n_features_in_")
467
+ input_features = _check_feature_names_in(self, input_features)
468
+ if hasattr(self, "_encoder"):
469
+ return self._encoder.get_feature_names_out(input_features)
470
+
471
+ # ordinal encoding
472
+ return input_features
env-llmeval/lib/python3.10/site-packages/sklearn/preprocessing/_encoders.py ADDED
@@ -0,0 +1,1678 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Authors: Andreas Mueller <[email protected]>
2
+ # Joris Van den Bossche <[email protected]>
3
+ # License: BSD 3 clause
4
+
5
+ import numbers
6
+ import warnings
7
+ from numbers import Integral
8
+
9
+ import numpy as np
10
+ from scipy import sparse
11
+
12
+ from ..base import BaseEstimator, OneToOneFeatureMixin, TransformerMixin, _fit_context
13
+ from ..utils import _safe_indexing, check_array, is_scalar_nan
14
+ from ..utils._encode import _check_unknown, _encode, _get_counts, _unique
15
+ from ..utils._mask import _get_mask
16
+ from ..utils._param_validation import Interval, RealNotInt, StrOptions
17
+ from ..utils._set_output import _get_output_config
18
+ from ..utils.validation import _check_feature_names_in, check_is_fitted
19
+
20
+ __all__ = ["OneHotEncoder", "OrdinalEncoder"]
21
+
22
+
23
+ class _BaseEncoder(TransformerMixin, BaseEstimator):
24
+ """
25
+ Base class for encoders that includes the code to categorize and
26
+ transform the input features.
27
+
28
+ """
29
+
30
+ def _check_X(self, X, force_all_finite=True):
31
+ """
32
+ Perform custom check_array:
33
+ - convert list of strings to object dtype
34
+ - check for missing values for object dtype data (check_array does
35
+ not do that)
36
+ - return list of features (arrays): this list of features is
37
+ constructed feature by feature to preserve the data types
38
+ of pandas DataFrame columns, as otherwise information is lost
39
+ and cannot be used, e.g. for the `categories_` attribute.
40
+
41
+ """
42
+ if not (hasattr(X, "iloc") and getattr(X, "ndim", 0) == 2):
43
+ # if not a dataframe, do normal check_array validation
44
+ X_temp = check_array(X, dtype=None, force_all_finite=force_all_finite)
45
+ if not hasattr(X, "dtype") and np.issubdtype(X_temp.dtype, np.str_):
46
+ X = check_array(X, dtype=object, force_all_finite=force_all_finite)
47
+ else:
48
+ X = X_temp
49
+ needs_validation = False
50
+ else:
51
+ # pandas dataframe, do validation later column by column, in order
52
+ # to keep the dtype information to be used in the encoder.
53
+ needs_validation = force_all_finite
54
+
55
+ n_samples, n_features = X.shape
56
+ X_columns = []
57
+
58
+ for i in range(n_features):
59
+ Xi = _safe_indexing(X, indices=i, axis=1)
60
+ Xi = check_array(
61
+ Xi, ensure_2d=False, dtype=None, force_all_finite=needs_validation
62
+ )
63
+ X_columns.append(Xi)
64
+
65
+ return X_columns, n_samples, n_features
66
+
67
+ def _fit(
68
+ self,
69
+ X,
70
+ handle_unknown="error",
71
+ force_all_finite=True,
72
+ return_counts=False,
73
+ return_and_ignore_missing_for_infrequent=False,
74
+ ):
75
+ self._check_infrequent_enabled()
76
+ self._check_n_features(X, reset=True)
77
+ self._check_feature_names(X, reset=True)
78
+ X_list, n_samples, n_features = self._check_X(
79
+ X, force_all_finite=force_all_finite
80
+ )
81
+ self.n_features_in_ = n_features
82
+
83
+ if self.categories != "auto":
84
+ if len(self.categories) != n_features:
85
+ raise ValueError(
86
+ "Shape mismatch: if categories is an array,"
87
+ " it has to be of shape (n_features,)."
88
+ )
89
+
90
+ self.categories_ = []
91
+ category_counts = []
92
+ compute_counts = return_counts or self._infrequent_enabled
93
+
94
+ for i in range(n_features):
95
+ Xi = X_list[i]
96
+
97
+ if self.categories == "auto":
98
+ result = _unique(Xi, return_counts=compute_counts)
99
+ if compute_counts:
100
+ cats, counts = result
101
+ category_counts.append(counts)
102
+ else:
103
+ cats = result
104
+ else:
105
+ if np.issubdtype(Xi.dtype, np.str_):
106
+ # Always convert string categories to objects to avoid
107
+ # unexpected string truncation for longer category labels
108
+ # passed in the constructor.
109
+ Xi_dtype = object
110
+ else:
111
+ Xi_dtype = Xi.dtype
112
+
113
+ cats = np.array(self.categories[i], dtype=Xi_dtype)
114
+ if (
115
+ cats.dtype == object
116
+ and isinstance(cats[0], bytes)
117
+ and Xi.dtype.kind != "S"
118
+ ):
119
+ msg = (
120
+ f"In column {i}, the predefined categories have type 'bytes'"
121
+ " which is incompatible with values of type"
122
+ f" '{type(Xi[0]).__name__}'."
123
+ )
124
+ raise ValueError(msg)
125
+
126
+ # `nan` must be the last stated category
127
+ for category in cats[:-1]:
128
+ if is_scalar_nan(category):
129
+ raise ValueError(
130
+ "Nan should be the last element in user"
131
+ f" provided categories, see categories {cats}"
132
+ f" in column #{i}"
133
+ )
134
+
135
+ if cats.size != len(_unique(cats)):
136
+ msg = (
137
+ f"In column {i}, the predefined categories"
138
+ " contain duplicate elements."
139
+ )
140
+ raise ValueError(msg)
141
+
142
+ if Xi.dtype.kind not in "OUS":
143
+ sorted_cats = np.sort(cats)
144
+ error_msg = (
145
+ "Unsorted categories are not supported for numerical categories"
146
+ )
147
+ # if there are nans, nan should be the last element
148
+ stop_idx = -1 if np.isnan(sorted_cats[-1]) else None
149
+ if np.any(sorted_cats[:stop_idx] != cats[:stop_idx]):
150
+ raise ValueError(error_msg)
151
+
152
+ if handle_unknown == "error":
153
+ diff = _check_unknown(Xi, cats)
154
+ if diff:
155
+ msg = (
156
+ "Found unknown categories {0} in column {1}"
157
+ " during fit".format(diff, i)
158
+ )
159
+ raise ValueError(msg)
160
+ if compute_counts:
161
+ category_counts.append(_get_counts(Xi, cats))
162
+
163
+ self.categories_.append(cats)
164
+
165
+ output = {"n_samples": n_samples}
166
+ if return_counts:
167
+ output["category_counts"] = category_counts
168
+
169
+ missing_indices = {}
170
+ if return_and_ignore_missing_for_infrequent:
171
+ for feature_idx, categories_for_idx in enumerate(self.categories_):
172
+ if is_scalar_nan(categories_for_idx[-1]):
173
+ # `nan` values can only be placed in the latest position
174
+ missing_indices[feature_idx] = categories_for_idx.size - 1
175
+ output["missing_indices"] = missing_indices
176
+
177
+ if self._infrequent_enabled:
178
+ self._fit_infrequent_category_mapping(
179
+ n_samples,
180
+ category_counts,
181
+ missing_indices,
182
+ )
183
+ return output
184
+
185
+ def _transform(
186
+ self,
187
+ X,
188
+ handle_unknown="error",
189
+ force_all_finite=True,
190
+ warn_on_unknown=False,
191
+ ignore_category_indices=None,
192
+ ):
193
+ X_list, n_samples, n_features = self._check_X(
194
+ X, force_all_finite=force_all_finite
195
+ )
196
+ self._check_feature_names(X, reset=False)
197
+ self._check_n_features(X, reset=False)
198
+
199
+ X_int = np.zeros((n_samples, n_features), dtype=int)
200
+ X_mask = np.ones((n_samples, n_features), dtype=bool)
201
+
202
+ columns_with_unknown = []
203
+ for i in range(n_features):
204
+ Xi = X_list[i]
205
+ diff, valid_mask = _check_unknown(Xi, self.categories_[i], return_mask=True)
206
+
207
+ if not np.all(valid_mask):
208
+ if handle_unknown == "error":
209
+ msg = (
210
+ "Found unknown categories {0} in column {1}"
211
+ " during transform".format(diff, i)
212
+ )
213
+ raise ValueError(msg)
214
+ else:
215
+ if warn_on_unknown:
216
+ columns_with_unknown.append(i)
217
+ # Set the problematic rows to an acceptable value and
218
+ # continue `The rows are marked `X_mask` and will be
219
+ # removed later.
220
+ X_mask[:, i] = valid_mask
221
+ # cast Xi into the largest string type necessary
222
+ # to handle different lengths of numpy strings
223
+ if (
224
+ self.categories_[i].dtype.kind in ("U", "S")
225
+ and self.categories_[i].itemsize > Xi.itemsize
226
+ ):
227
+ Xi = Xi.astype(self.categories_[i].dtype)
228
+ elif self.categories_[i].dtype.kind == "O" and Xi.dtype.kind == "U":
229
+ # categories are objects and Xi are numpy strings.
230
+ # Cast Xi to an object dtype to prevent truncation
231
+ # when setting invalid values.
232
+ Xi = Xi.astype("O")
233
+ else:
234
+ Xi = Xi.copy()
235
+
236
+ Xi[~valid_mask] = self.categories_[i][0]
237
+ # We use check_unknown=False, since _check_unknown was
238
+ # already called above.
239
+ X_int[:, i] = _encode(Xi, uniques=self.categories_[i], check_unknown=False)
240
+ if columns_with_unknown:
241
+ warnings.warn(
242
+ (
243
+ "Found unknown categories in columns "
244
+ f"{columns_with_unknown} during transform. These "
245
+ "unknown categories will be encoded as all zeros"
246
+ ),
247
+ UserWarning,
248
+ )
249
+
250
+ self._map_infrequent_categories(X_int, X_mask, ignore_category_indices)
251
+ return X_int, X_mask
252
+
253
+ @property
254
+ def infrequent_categories_(self):
255
+ """Infrequent categories for each feature."""
256
+ # raises an AttributeError if `_infrequent_indices` is not defined
257
+ infrequent_indices = self._infrequent_indices
258
+ return [
259
+ None if indices is None else category[indices]
260
+ for category, indices in zip(self.categories_, infrequent_indices)
261
+ ]
262
+
263
+ def _check_infrequent_enabled(self):
264
+ """
265
+ This functions checks whether _infrequent_enabled is True or False.
266
+ This has to be called after parameter validation in the fit function.
267
+ """
268
+ max_categories = getattr(self, "max_categories", None)
269
+ min_frequency = getattr(self, "min_frequency", None)
270
+ self._infrequent_enabled = (
271
+ max_categories is not None and max_categories >= 1
272
+ ) or min_frequency is not None
273
+
274
+ def _identify_infrequent(self, category_count, n_samples, col_idx):
275
+ """Compute the infrequent indices.
276
+
277
+ Parameters
278
+ ----------
279
+ category_count : ndarray of shape (n_cardinality,)
280
+ Category counts.
281
+
282
+ n_samples : int
283
+ Number of samples.
284
+
285
+ col_idx : int
286
+ Index of the current category. Only used for the error message.
287
+
288
+ Returns
289
+ -------
290
+ output : ndarray of shape (n_infrequent_categories,) or None
291
+ If there are infrequent categories, indices of infrequent
292
+ categories. Otherwise None.
293
+ """
294
+ if isinstance(self.min_frequency, numbers.Integral):
295
+ infrequent_mask = category_count < self.min_frequency
296
+ elif isinstance(self.min_frequency, numbers.Real):
297
+ min_frequency_abs = n_samples * self.min_frequency
298
+ infrequent_mask = category_count < min_frequency_abs
299
+ else:
300
+ infrequent_mask = np.zeros(category_count.shape[0], dtype=bool)
301
+
302
+ n_current_features = category_count.size - infrequent_mask.sum() + 1
303
+ if self.max_categories is not None and self.max_categories < n_current_features:
304
+ # max_categories includes the one infrequent category
305
+ frequent_category_count = self.max_categories - 1
306
+ if frequent_category_count == 0:
307
+ # All categories are infrequent
308
+ infrequent_mask[:] = True
309
+ else:
310
+ # stable sort to preserve original count order
311
+ smallest_levels = np.argsort(category_count, kind="mergesort")[
312
+ :-frequent_category_count
313
+ ]
314
+ infrequent_mask[smallest_levels] = True
315
+
316
+ output = np.flatnonzero(infrequent_mask)
317
+ return output if output.size > 0 else None
318
+
319
+ def _fit_infrequent_category_mapping(
320
+ self, n_samples, category_counts, missing_indices
321
+ ):
322
+ """Fit infrequent categories.
323
+
324
+ Defines the private attribute: `_default_to_infrequent_mappings`. For
325
+ feature `i`, `_default_to_infrequent_mappings[i]` defines the mapping
326
+ from the integer encoding returned by `super().transform()` into
327
+ infrequent categories. If `_default_to_infrequent_mappings[i]` is None,
328
+ there were no infrequent categories in the training set.
329
+
330
+ For example if categories 0, 2 and 4 were frequent, while categories
331
+ 1, 3, 5 were infrequent for feature 7, then these categories are mapped
332
+ to a single output:
333
+ `_default_to_infrequent_mappings[7] = array([0, 3, 1, 3, 2, 3])`
334
+
335
+ Defines private attribute: `_infrequent_indices`. `_infrequent_indices[i]`
336
+ is an array of indices such that
337
+ `categories_[i][_infrequent_indices[i]]` are all the infrequent category
338
+ labels. If the feature `i` has no infrequent categories
339
+ `_infrequent_indices[i]` is None.
340
+
341
+ .. versionadded:: 1.1
342
+
343
+ Parameters
344
+ ----------
345
+ n_samples : int
346
+ Number of samples in training set.
347
+ category_counts: list of ndarray
348
+ `category_counts[i]` is the category counts corresponding to
349
+ `self.categories_[i]`.
350
+ missing_indices : dict
351
+ Dict mapping from feature_idx to category index with a missing value.
352
+ """
353
+ # Remove missing value from counts, so it is not considered as infrequent
354
+ if missing_indices:
355
+ category_counts_ = []
356
+ for feature_idx, count in enumerate(category_counts):
357
+ if feature_idx in missing_indices:
358
+ category_counts_.append(
359
+ np.delete(count, missing_indices[feature_idx])
360
+ )
361
+ else:
362
+ category_counts_.append(count)
363
+ else:
364
+ category_counts_ = category_counts
365
+
366
+ self._infrequent_indices = [
367
+ self._identify_infrequent(category_count, n_samples, col_idx)
368
+ for col_idx, category_count in enumerate(category_counts_)
369
+ ]
370
+
371
+ # compute mapping from default mapping to infrequent mapping
372
+ self._default_to_infrequent_mappings = []
373
+
374
+ for feature_idx, infreq_idx in enumerate(self._infrequent_indices):
375
+ cats = self.categories_[feature_idx]
376
+ # no infrequent categories
377
+ if infreq_idx is None:
378
+ self._default_to_infrequent_mappings.append(None)
379
+ continue
380
+
381
+ n_cats = len(cats)
382
+ if feature_idx in missing_indices:
383
+ # Missing index was removed from this category when computing
384
+ # infrequent indices, thus we need to decrease the number of
385
+ # total categories when considering the infrequent mapping.
386
+ n_cats -= 1
387
+
388
+ # infrequent indices exist
389
+ mapping = np.empty(n_cats, dtype=np.int64)
390
+ n_infrequent_cats = infreq_idx.size
391
+
392
+ # infrequent categories are mapped to the last element.
393
+ n_frequent_cats = n_cats - n_infrequent_cats
394
+ mapping[infreq_idx] = n_frequent_cats
395
+
396
+ frequent_indices = np.setdiff1d(np.arange(n_cats), infreq_idx)
397
+ mapping[frequent_indices] = np.arange(n_frequent_cats)
398
+
399
+ self._default_to_infrequent_mappings.append(mapping)
400
+
401
+ def _map_infrequent_categories(self, X_int, X_mask, ignore_category_indices):
402
+ """Map infrequent categories to integer representing the infrequent category.
403
+
404
+ This modifies X_int in-place. Values that were invalid based on `X_mask`
405
+ are mapped to the infrequent category if there was an infrequent
406
+ category for that feature.
407
+
408
+ Parameters
409
+ ----------
410
+ X_int: ndarray of shape (n_samples, n_features)
411
+ Integer encoded categories.
412
+
413
+ X_mask: ndarray of shape (n_samples, n_features)
414
+ Bool mask for valid values in `X_int`.
415
+
416
+ ignore_category_indices : dict
417
+ Dictionary mapping from feature_idx to category index to ignore.
418
+ Ignored indexes will not be grouped and the original ordinal encoding
419
+ will remain.
420
+ """
421
+ if not self._infrequent_enabled:
422
+ return
423
+
424
+ ignore_category_indices = ignore_category_indices or {}
425
+
426
+ for col_idx in range(X_int.shape[1]):
427
+ infrequent_idx = self._infrequent_indices[col_idx]
428
+ if infrequent_idx is None:
429
+ continue
430
+
431
+ X_int[~X_mask[:, col_idx], col_idx] = infrequent_idx[0]
432
+ if self.handle_unknown == "infrequent_if_exist":
433
+ # All the unknown values are now mapped to the
434
+ # infrequent_idx[0], which makes the unknown values valid
435
+ # This is needed in `transform` when the encoding is formed
436
+ # using `X_mask`.
437
+ X_mask[:, col_idx] = True
438
+
439
+ # Remaps encoding in `X_int` where the infrequent categories are
440
+ # grouped together.
441
+ for i, mapping in enumerate(self._default_to_infrequent_mappings):
442
+ if mapping is None:
443
+ continue
444
+
445
+ if i in ignore_category_indices:
446
+ # Update rows that are **not** ignored
447
+ rows_to_update = X_int[:, i] != ignore_category_indices[i]
448
+ else:
449
+ rows_to_update = slice(None)
450
+
451
+ X_int[rows_to_update, i] = np.take(mapping, X_int[rows_to_update, i])
452
+
453
+ def _more_tags(self):
454
+ return {"X_types": ["2darray", "categorical"], "allow_nan": True}
455
+
456
+
457
+ class OneHotEncoder(_BaseEncoder):
458
+ """
459
+ Encode categorical features as a one-hot numeric array.
460
+
461
+ The input to this transformer should be an array-like of integers or
462
+ strings, denoting the values taken on by categorical (discrete) features.
463
+ The features are encoded using a one-hot (aka 'one-of-K' or 'dummy')
464
+ encoding scheme. This creates a binary column for each category and
465
+ returns a sparse matrix or dense array (depending on the ``sparse_output``
466
+ parameter).
467
+
468
+ By default, the encoder derives the categories based on the unique values
469
+ in each feature. Alternatively, you can also specify the `categories`
470
+ manually.
471
+
472
+ This encoding is needed for feeding categorical data to many scikit-learn
473
+ estimators, notably linear models and SVMs with the standard kernels.
474
+
475
+ Note: a one-hot encoding of y labels should use a LabelBinarizer
476
+ instead.
477
+
478
+ Read more in the :ref:`User Guide <preprocessing_categorical_features>`.
479
+ For a comparison of different encoders, refer to:
480
+ :ref:`sphx_glr_auto_examples_preprocessing_plot_target_encoder.py`.
481
+
482
+ Parameters
483
+ ----------
484
+ categories : 'auto' or a list of array-like, default='auto'
485
+ Categories (unique values) per feature:
486
+
487
+ - 'auto' : Determine categories automatically from the training data.
488
+ - list : ``categories[i]`` holds the categories expected in the ith
489
+ column. The passed categories should not mix strings and numeric
490
+ values within a single feature, and should be sorted in case of
491
+ numeric values.
492
+
493
+ The used categories can be found in the ``categories_`` attribute.
494
+
495
+ .. versionadded:: 0.20
496
+
497
+ drop : {'first', 'if_binary'} or an array-like of shape (n_features,), \
498
+ default=None
499
+ Specifies a methodology to use to drop one of the categories per
500
+ feature. This is useful in situations where perfectly collinear
501
+ features cause problems, such as when feeding the resulting data
502
+ into an unregularized linear regression model.
503
+
504
+ However, dropping one category breaks the symmetry of the original
505
+ representation and can therefore induce a bias in downstream models,
506
+ for instance for penalized linear classification or regression models.
507
+
508
+ - None : retain all features (the default).
509
+ - 'first' : drop the first category in each feature. If only one
510
+ category is present, the feature will be dropped entirely.
511
+ - 'if_binary' : drop the first category in each feature with two
512
+ categories. Features with 1 or more than 2 categories are
513
+ left intact.
514
+ - array : ``drop[i]`` is the category in feature ``X[:, i]`` that
515
+ should be dropped.
516
+
517
+ When `max_categories` or `min_frequency` is configured to group
518
+ infrequent categories, the dropping behavior is handled after the
519
+ grouping.
520
+
521
+ .. versionadded:: 0.21
522
+ The parameter `drop` was added in 0.21.
523
+
524
+ .. versionchanged:: 0.23
525
+ The option `drop='if_binary'` was added in 0.23.
526
+
527
+ .. versionchanged:: 1.1
528
+ Support for dropping infrequent categories.
529
+
530
+ sparse_output : bool, default=True
531
+ When ``True``, it returns a :class:`scipy.sparse.csr_matrix`,
532
+ i.e. a sparse matrix in "Compressed Sparse Row" (CSR) format.
533
+
534
+ .. versionadded:: 1.2
535
+ `sparse` was renamed to `sparse_output`
536
+
537
+ dtype : number type, default=np.float64
538
+ Desired dtype of output.
539
+
540
+ handle_unknown : {'error', 'ignore', 'infrequent_if_exist'}, \
541
+ default='error'
542
+ Specifies the way unknown categories are handled during :meth:`transform`.
543
+
544
+ - 'error' : Raise an error if an unknown category is present during transform.
545
+ - 'ignore' : When an unknown category is encountered during
546
+ transform, the resulting one-hot encoded columns for this feature
547
+ will be all zeros. In the inverse transform, an unknown category
548
+ will be denoted as None.
549
+ - 'infrequent_if_exist' : When an unknown category is encountered
550
+ during transform, the resulting one-hot encoded columns for this
551
+ feature will map to the infrequent category if it exists. The
552
+ infrequent category will be mapped to the last position in the
553
+ encoding. During inverse transform, an unknown category will be
554
+ mapped to the category denoted `'infrequent'` if it exists. If the
555
+ `'infrequent'` category does not exist, then :meth:`transform` and
556
+ :meth:`inverse_transform` will handle an unknown category as with
557
+ `handle_unknown='ignore'`. Infrequent categories exist based on
558
+ `min_frequency` and `max_categories`. Read more in the
559
+ :ref:`User Guide <encoder_infrequent_categories>`.
560
+
561
+ .. versionchanged:: 1.1
562
+ `'infrequent_if_exist'` was added to automatically handle unknown
563
+ categories and infrequent categories.
564
+
565
+ min_frequency : int or float, default=None
566
+ Specifies the minimum frequency below which a category will be
567
+ considered infrequent.
568
+
569
+ - If `int`, categories with a smaller cardinality will be considered
570
+ infrequent.
571
+
572
+ - If `float`, categories with a smaller cardinality than
573
+ `min_frequency * n_samples` will be considered infrequent.
574
+
575
+ .. versionadded:: 1.1
576
+ Read more in the :ref:`User Guide <encoder_infrequent_categories>`.
577
+
578
+ max_categories : int, default=None
579
+ Specifies an upper limit to the number of output features for each input
580
+ feature when considering infrequent categories. If there are infrequent
581
+ categories, `max_categories` includes the category representing the
582
+ infrequent categories along with the frequent categories. If `None`,
583
+ there is no limit to the number of output features.
584
+
585
+ .. versionadded:: 1.1
586
+ Read more in the :ref:`User Guide <encoder_infrequent_categories>`.
587
+
588
+ feature_name_combiner : "concat" or callable, default="concat"
589
+ Callable with signature `def callable(input_feature, category)` that returns a
590
+ string. This is used to create feature names to be returned by
591
+ :meth:`get_feature_names_out`.
592
+
593
+ `"concat"` concatenates encoded feature name and category with
594
+ `feature + "_" + str(category)`.E.g. feature X with values 1, 6, 7 create
595
+ feature names `X_1, X_6, X_7`.
596
+
597
+ .. versionadded:: 1.3
598
+
599
+ Attributes
600
+ ----------
601
+ categories_ : list of arrays
602
+ The categories of each feature determined during fitting
603
+ (in order of the features in X and corresponding with the output
604
+ of ``transform``). This includes the category specified in ``drop``
605
+ (if any).
606
+
607
+ drop_idx_ : array of shape (n_features,)
608
+ - ``drop_idx_[i]`` is the index in ``categories_[i]`` of the category
609
+ to be dropped for each feature.
610
+ - ``drop_idx_[i] = None`` if no category is to be dropped from the
611
+ feature with index ``i``, e.g. when `drop='if_binary'` and the
612
+ feature isn't binary.
613
+ - ``drop_idx_ = None`` if all the transformed features will be
614
+ retained.
615
+
616
+ If infrequent categories are enabled by setting `min_frequency` or
617
+ `max_categories` to a non-default value and `drop_idx[i]` corresponds
618
+ to a infrequent category, then the entire infrequent category is
619
+ dropped.
620
+
621
+ .. versionchanged:: 0.23
622
+ Added the possibility to contain `None` values.
623
+
624
+ infrequent_categories_ : list of ndarray
625
+ Defined only if infrequent categories are enabled by setting
626
+ `min_frequency` or `max_categories` to a non-default value.
627
+ `infrequent_categories_[i]` are the infrequent categories for feature
628
+ `i`. If the feature `i` has no infrequent categories
629
+ `infrequent_categories_[i]` is None.
630
+
631
+ .. versionadded:: 1.1
632
+
633
+ n_features_in_ : int
634
+ Number of features seen during :term:`fit`.
635
+
636
+ .. versionadded:: 1.0
637
+
638
+ feature_names_in_ : ndarray of shape (`n_features_in_`,)
639
+ Names of features seen during :term:`fit`. Defined only when `X`
640
+ has feature names that are all strings.
641
+
642
+ .. versionadded:: 1.0
643
+
644
+ feature_name_combiner : callable or None
645
+ Callable with signature `def callable(input_feature, category)` that returns a
646
+ string. This is used to create feature names to be returned by
647
+ :meth:`get_feature_names_out`.
648
+
649
+ .. versionadded:: 1.3
650
+
651
+ See Also
652
+ --------
653
+ OrdinalEncoder : Performs an ordinal (integer)
654
+ encoding of the categorical features.
655
+ TargetEncoder : Encodes categorical features using the target.
656
+ sklearn.feature_extraction.DictVectorizer : Performs a one-hot encoding of
657
+ dictionary items (also handles string-valued features).
658
+ sklearn.feature_extraction.FeatureHasher : Performs an approximate one-hot
659
+ encoding of dictionary items or strings.
660
+ LabelBinarizer : Binarizes labels in a one-vs-all
661
+ fashion.
662
+ MultiLabelBinarizer : Transforms between iterable of
663
+ iterables and a multilabel format, e.g. a (samples x classes) binary
664
+ matrix indicating the presence of a class label.
665
+
666
+ Examples
667
+ --------
668
+ Given a dataset with two features, we let the encoder find the unique
669
+ values per feature and transform the data to a binary one-hot encoding.
670
+
671
+ >>> from sklearn.preprocessing import OneHotEncoder
672
+
673
+ One can discard categories not seen during `fit`:
674
+
675
+ >>> enc = OneHotEncoder(handle_unknown='ignore')
676
+ >>> X = [['Male', 1], ['Female', 3], ['Female', 2]]
677
+ >>> enc.fit(X)
678
+ OneHotEncoder(handle_unknown='ignore')
679
+ >>> enc.categories_
680
+ [array(['Female', 'Male'], dtype=object), array([1, 2, 3], dtype=object)]
681
+ >>> enc.transform([['Female', 1], ['Male', 4]]).toarray()
682
+ array([[1., 0., 1., 0., 0.],
683
+ [0., 1., 0., 0., 0.]])
684
+ >>> enc.inverse_transform([[0, 1, 1, 0, 0], [0, 0, 0, 1, 0]])
685
+ array([['Male', 1],
686
+ [None, 2]], dtype=object)
687
+ >>> enc.get_feature_names_out(['gender', 'group'])
688
+ array(['gender_Female', 'gender_Male', 'group_1', 'group_2', 'group_3'], ...)
689
+
690
+ One can always drop the first column for each feature:
691
+
692
+ >>> drop_enc = OneHotEncoder(drop='first').fit(X)
693
+ >>> drop_enc.categories_
694
+ [array(['Female', 'Male'], dtype=object), array([1, 2, 3], dtype=object)]
695
+ >>> drop_enc.transform([['Female', 1], ['Male', 2]]).toarray()
696
+ array([[0., 0., 0.],
697
+ [1., 1., 0.]])
698
+
699
+ Or drop a column for feature only having 2 categories:
700
+
701
+ >>> drop_binary_enc = OneHotEncoder(drop='if_binary').fit(X)
702
+ >>> drop_binary_enc.transform([['Female', 1], ['Male', 2]]).toarray()
703
+ array([[0., 1., 0., 0.],
704
+ [1., 0., 1., 0.]])
705
+
706
+ One can change the way feature names are created.
707
+
708
+ >>> def custom_combiner(feature, category):
709
+ ... return str(feature) + "_" + type(category).__name__ + "_" + str(category)
710
+ >>> custom_fnames_enc = OneHotEncoder(feature_name_combiner=custom_combiner).fit(X)
711
+ >>> custom_fnames_enc.get_feature_names_out()
712
+ array(['x0_str_Female', 'x0_str_Male', 'x1_int_1', 'x1_int_2', 'x1_int_3'],
713
+ dtype=object)
714
+
715
+ Infrequent categories are enabled by setting `max_categories` or `min_frequency`.
716
+
717
+ >>> import numpy as np
718
+ >>> X = np.array([["a"] * 5 + ["b"] * 20 + ["c"] * 10 + ["d"] * 3], dtype=object).T
719
+ >>> ohe = OneHotEncoder(max_categories=3, sparse_output=False).fit(X)
720
+ >>> ohe.infrequent_categories_
721
+ [array(['a', 'd'], dtype=object)]
722
+ >>> ohe.transform([["a"], ["b"]])
723
+ array([[0., 0., 1.],
724
+ [1., 0., 0.]])
725
+ """
726
+
727
+ _parameter_constraints: dict = {
728
+ "categories": [StrOptions({"auto"}), list],
729
+ "drop": [StrOptions({"first", "if_binary"}), "array-like", None],
730
+ "dtype": "no_validation", # validation delegated to numpy
731
+ "handle_unknown": [StrOptions({"error", "ignore", "infrequent_if_exist"})],
732
+ "max_categories": [Interval(Integral, 1, None, closed="left"), None],
733
+ "min_frequency": [
734
+ Interval(Integral, 1, None, closed="left"),
735
+ Interval(RealNotInt, 0, 1, closed="neither"),
736
+ None,
737
+ ],
738
+ "sparse_output": ["boolean"],
739
+ "feature_name_combiner": [StrOptions({"concat"}), callable],
740
+ }
741
+
742
+ def __init__(
743
+ self,
744
+ *,
745
+ categories="auto",
746
+ drop=None,
747
+ sparse_output=True,
748
+ dtype=np.float64,
749
+ handle_unknown="error",
750
+ min_frequency=None,
751
+ max_categories=None,
752
+ feature_name_combiner="concat",
753
+ ):
754
+ self.categories = categories
755
+ self.sparse_output = sparse_output
756
+ self.dtype = dtype
757
+ self.handle_unknown = handle_unknown
758
+ self.drop = drop
759
+ self.min_frequency = min_frequency
760
+ self.max_categories = max_categories
761
+ self.feature_name_combiner = feature_name_combiner
762
+
763
+ def _map_drop_idx_to_infrequent(self, feature_idx, drop_idx):
764
+ """Convert `drop_idx` into the index for infrequent categories.
765
+
766
+ If there are no infrequent categories, then `drop_idx` is
767
+ returned. This method is called in `_set_drop_idx` when the `drop`
768
+ parameter is an array-like.
769
+ """
770
+ if not self._infrequent_enabled:
771
+ return drop_idx
772
+
773
+ default_to_infrequent = self._default_to_infrequent_mappings[feature_idx]
774
+ if default_to_infrequent is None:
775
+ return drop_idx
776
+
777
+ # Raise error when explicitly dropping a category that is infrequent
778
+ infrequent_indices = self._infrequent_indices[feature_idx]
779
+ if infrequent_indices is not None and drop_idx in infrequent_indices:
780
+ categories = self.categories_[feature_idx]
781
+ raise ValueError(
782
+ f"Unable to drop category {categories[drop_idx].item()!r} from"
783
+ f" feature {feature_idx} because it is infrequent"
784
+ )
785
+ return default_to_infrequent[drop_idx]
786
+
787
+ def _set_drop_idx(self):
788
+ """Compute the drop indices associated with `self.categories_`.
789
+
790
+ If `self.drop` is:
791
+ - `None`, No categories have been dropped.
792
+ - `'first'`, All zeros to drop the first category.
793
+ - `'if_binary'`, All zeros if the category is binary and `None`
794
+ otherwise.
795
+ - array-like, The indices of the categories that match the
796
+ categories in `self.drop`. If the dropped category is an infrequent
797
+ category, then the index for the infrequent category is used. This
798
+ means that the entire infrequent category is dropped.
799
+
800
+ This methods defines a public `drop_idx_` and a private
801
+ `_drop_idx_after_grouping`.
802
+
803
+ - `drop_idx_`: Public facing API that references the drop category in
804
+ `self.categories_`.
805
+ - `_drop_idx_after_grouping`: Used internally to drop categories *after* the
806
+ infrequent categories are grouped together.
807
+
808
+ If there are no infrequent categories or drop is `None`, then
809
+ `drop_idx_=_drop_idx_after_grouping`.
810
+ """
811
+ if self.drop is None:
812
+ drop_idx_after_grouping = None
813
+ elif isinstance(self.drop, str):
814
+ if self.drop == "first":
815
+ drop_idx_after_grouping = np.zeros(len(self.categories_), dtype=object)
816
+ elif self.drop == "if_binary":
817
+ n_features_out_no_drop = [len(cat) for cat in self.categories_]
818
+ if self._infrequent_enabled:
819
+ for i, infreq_idx in enumerate(self._infrequent_indices):
820
+ if infreq_idx is None:
821
+ continue
822
+ n_features_out_no_drop[i] -= infreq_idx.size - 1
823
+
824
+ drop_idx_after_grouping = np.array(
825
+ [
826
+ 0 if n_features_out == 2 else None
827
+ for n_features_out in n_features_out_no_drop
828
+ ],
829
+ dtype=object,
830
+ )
831
+
832
+ else:
833
+ drop_array = np.asarray(self.drop, dtype=object)
834
+ droplen = len(drop_array)
835
+
836
+ if droplen != len(self.categories_):
837
+ msg = (
838
+ "`drop` should have length equal to the number "
839
+ "of features ({}), got {}"
840
+ )
841
+ raise ValueError(msg.format(len(self.categories_), droplen))
842
+ missing_drops = []
843
+ drop_indices = []
844
+ for feature_idx, (drop_val, cat_list) in enumerate(
845
+ zip(drop_array, self.categories_)
846
+ ):
847
+ if not is_scalar_nan(drop_val):
848
+ drop_idx = np.where(cat_list == drop_val)[0]
849
+ if drop_idx.size: # found drop idx
850
+ drop_indices.append(
851
+ self._map_drop_idx_to_infrequent(feature_idx, drop_idx[0])
852
+ )
853
+ else:
854
+ missing_drops.append((feature_idx, drop_val))
855
+ continue
856
+
857
+ # drop_val is nan, find nan in categories manually
858
+ if is_scalar_nan(cat_list[-1]):
859
+ drop_indices.append(
860
+ self._map_drop_idx_to_infrequent(feature_idx, cat_list.size - 1)
861
+ )
862
+ else: # nan is missing
863
+ missing_drops.append((feature_idx, drop_val))
864
+
865
+ if any(missing_drops):
866
+ msg = (
867
+ "The following categories were supposed to be "
868
+ "dropped, but were not found in the training "
869
+ "data.\n{}".format(
870
+ "\n".join(
871
+ [
872
+ "Category: {}, Feature: {}".format(c, v)
873
+ for c, v in missing_drops
874
+ ]
875
+ )
876
+ )
877
+ )
878
+ raise ValueError(msg)
879
+ drop_idx_after_grouping = np.array(drop_indices, dtype=object)
880
+
881
+ # `_drop_idx_after_grouping` are the categories to drop *after* the infrequent
882
+ # categories are grouped together. If needed, we remap `drop_idx` back
883
+ # to the categories seen in `self.categories_`.
884
+ self._drop_idx_after_grouping = drop_idx_after_grouping
885
+
886
+ if not self._infrequent_enabled or drop_idx_after_grouping is None:
887
+ self.drop_idx_ = self._drop_idx_after_grouping
888
+ else:
889
+ drop_idx_ = []
890
+ for feature_idx, drop_idx in enumerate(drop_idx_after_grouping):
891
+ default_to_infrequent = self._default_to_infrequent_mappings[
892
+ feature_idx
893
+ ]
894
+ if drop_idx is None or default_to_infrequent is None:
895
+ orig_drop_idx = drop_idx
896
+ else:
897
+ orig_drop_idx = np.flatnonzero(default_to_infrequent == drop_idx)[0]
898
+
899
+ drop_idx_.append(orig_drop_idx)
900
+
901
+ self.drop_idx_ = np.asarray(drop_idx_, dtype=object)
902
+
903
+ def _compute_transformed_categories(self, i, remove_dropped=True):
904
+ """Compute the transformed categories used for column `i`.
905
+
906
+ 1. If there are infrequent categories, the category is named
907
+ 'infrequent_sklearn'.
908
+ 2. Dropped columns are removed when remove_dropped=True.
909
+ """
910
+ cats = self.categories_[i]
911
+
912
+ if self._infrequent_enabled:
913
+ infreq_map = self._default_to_infrequent_mappings[i]
914
+ if infreq_map is not None:
915
+ frequent_mask = infreq_map < infreq_map.max()
916
+ infrequent_cat = "infrequent_sklearn"
917
+ # infrequent category is always at the end
918
+ cats = np.concatenate(
919
+ (cats[frequent_mask], np.array([infrequent_cat], dtype=object))
920
+ )
921
+
922
+ if remove_dropped:
923
+ cats = self._remove_dropped_categories(cats, i)
924
+ return cats
925
+
926
+ def _remove_dropped_categories(self, categories, i):
927
+ """Remove dropped categories."""
928
+ if (
929
+ self._drop_idx_after_grouping is not None
930
+ and self._drop_idx_after_grouping[i] is not None
931
+ ):
932
+ return np.delete(categories, self._drop_idx_after_grouping[i])
933
+ return categories
934
+
935
+ def _compute_n_features_outs(self):
936
+ """Compute the n_features_out for each input feature."""
937
+ output = [len(cats) for cats in self.categories_]
938
+
939
+ if self._drop_idx_after_grouping is not None:
940
+ for i, drop_idx in enumerate(self._drop_idx_after_grouping):
941
+ if drop_idx is not None:
942
+ output[i] -= 1
943
+
944
+ if not self._infrequent_enabled:
945
+ return output
946
+
947
+ # infrequent is enabled, the number of features out are reduced
948
+ # because the infrequent categories are grouped together
949
+ for i, infreq_idx in enumerate(self._infrequent_indices):
950
+ if infreq_idx is None:
951
+ continue
952
+ output[i] -= infreq_idx.size - 1
953
+
954
+ return output
955
+
956
+ @_fit_context(prefer_skip_nested_validation=True)
957
+ def fit(self, X, y=None):
958
+ """
959
+ Fit OneHotEncoder to X.
960
+
961
+ Parameters
962
+ ----------
963
+ X : array-like of shape (n_samples, n_features)
964
+ The data to determine the categories of each feature.
965
+
966
+ y : None
967
+ Ignored. This parameter exists only for compatibility with
968
+ :class:`~sklearn.pipeline.Pipeline`.
969
+
970
+ Returns
971
+ -------
972
+ self
973
+ Fitted encoder.
974
+ """
975
+ self._fit(
976
+ X,
977
+ handle_unknown=self.handle_unknown,
978
+ force_all_finite="allow-nan",
979
+ )
980
+ self._set_drop_idx()
981
+ self._n_features_outs = self._compute_n_features_outs()
982
+ return self
983
+
984
+ def transform(self, X):
985
+ """
986
+ Transform X using one-hot encoding.
987
+
988
+ If `sparse_output=True` (default), it returns an instance of
989
+ :class:`scipy.sparse._csr.csr_matrix` (CSR format).
990
+
991
+ If there are infrequent categories for a feature, set by specifying
992
+ `max_categories` or `min_frequency`, the infrequent categories are
993
+ grouped into a single category.
994
+
995
+ Parameters
996
+ ----------
997
+ X : array-like of shape (n_samples, n_features)
998
+ The data to encode.
999
+
1000
+ Returns
1001
+ -------
1002
+ X_out : {ndarray, sparse matrix} of shape \
1003
+ (n_samples, n_encoded_features)
1004
+ Transformed input. If `sparse_output=True`, a sparse matrix will be
1005
+ returned.
1006
+ """
1007
+ check_is_fitted(self)
1008
+ transform_output = _get_output_config("transform", estimator=self)["dense"]
1009
+ if transform_output != "default" and self.sparse_output:
1010
+ capitalize_transform_output = transform_output.capitalize()
1011
+ raise ValueError(
1012
+ f"{capitalize_transform_output} output does not support sparse data."
1013
+ f" Set sparse_output=False to output {transform_output} dataframes or"
1014
+ f" disable {capitalize_transform_output} output via"
1015
+ '` ohe.set_output(transform="default").'
1016
+ )
1017
+
1018
+ # validation of X happens in _check_X called by _transform
1019
+ warn_on_unknown = self.drop is not None and self.handle_unknown in {
1020
+ "ignore",
1021
+ "infrequent_if_exist",
1022
+ }
1023
+ X_int, X_mask = self._transform(
1024
+ X,
1025
+ handle_unknown=self.handle_unknown,
1026
+ force_all_finite="allow-nan",
1027
+ warn_on_unknown=warn_on_unknown,
1028
+ )
1029
+
1030
+ n_samples, n_features = X_int.shape
1031
+
1032
+ if self._drop_idx_after_grouping is not None:
1033
+ to_drop = self._drop_idx_after_grouping.copy()
1034
+ # We remove all the dropped categories from mask, and decrement all
1035
+ # categories that occur after them to avoid an empty column.
1036
+ keep_cells = X_int != to_drop
1037
+ for i, cats in enumerate(self.categories_):
1038
+ # drop='if_binary' but feature isn't binary
1039
+ if to_drop[i] is None:
1040
+ # set to cardinality to not drop from X_int
1041
+ to_drop[i] = len(cats)
1042
+
1043
+ to_drop = to_drop.reshape(1, -1)
1044
+ X_int[X_int > to_drop] -= 1
1045
+ X_mask &= keep_cells
1046
+
1047
+ mask = X_mask.ravel()
1048
+ feature_indices = np.cumsum([0] + self._n_features_outs)
1049
+ indices = (X_int + feature_indices[:-1]).ravel()[mask]
1050
+
1051
+ indptr = np.empty(n_samples + 1, dtype=int)
1052
+ indptr[0] = 0
1053
+ np.sum(X_mask, axis=1, out=indptr[1:], dtype=indptr.dtype)
1054
+ np.cumsum(indptr[1:], out=indptr[1:])
1055
+ data = np.ones(indptr[-1])
1056
+
1057
+ out = sparse.csr_matrix(
1058
+ (data, indices, indptr),
1059
+ shape=(n_samples, feature_indices[-1]),
1060
+ dtype=self.dtype,
1061
+ )
1062
+ if not self.sparse_output:
1063
+ return out.toarray()
1064
+ else:
1065
+ return out
1066
+
1067
+ def inverse_transform(self, X):
1068
+ """
1069
+ Convert the data back to the original representation.
1070
+
1071
+ When unknown categories are encountered (all zeros in the
1072
+ one-hot encoding), ``None`` is used to represent this category. If the
1073
+ feature with the unknown category has a dropped category, the dropped
1074
+ category will be its inverse.
1075
+
1076
+ For a given input feature, if there is an infrequent category,
1077
+ 'infrequent_sklearn' will be used to represent the infrequent category.
1078
+
1079
+ Parameters
1080
+ ----------
1081
+ X : {array-like, sparse matrix} of shape \
1082
+ (n_samples, n_encoded_features)
1083
+ The transformed data.
1084
+
1085
+ Returns
1086
+ -------
1087
+ X_tr : ndarray of shape (n_samples, n_features)
1088
+ Inverse transformed array.
1089
+ """
1090
+ check_is_fitted(self)
1091
+ X = check_array(X, accept_sparse="csr")
1092
+
1093
+ n_samples, _ = X.shape
1094
+ n_features = len(self.categories_)
1095
+
1096
+ n_features_out = np.sum(self._n_features_outs)
1097
+
1098
+ # validate shape of passed X
1099
+ msg = (
1100
+ "Shape of the passed X data is not correct. Expected {0} columns, got {1}."
1101
+ )
1102
+ if X.shape[1] != n_features_out:
1103
+ raise ValueError(msg.format(n_features_out, X.shape[1]))
1104
+
1105
+ transformed_features = [
1106
+ self._compute_transformed_categories(i, remove_dropped=False)
1107
+ for i, _ in enumerate(self.categories_)
1108
+ ]
1109
+
1110
+ # create resulting array of appropriate dtype
1111
+ dt = np.result_type(*[cat.dtype for cat in transformed_features])
1112
+ X_tr = np.empty((n_samples, n_features), dtype=dt)
1113
+
1114
+ j = 0
1115
+ found_unknown = {}
1116
+
1117
+ if self._infrequent_enabled:
1118
+ infrequent_indices = self._infrequent_indices
1119
+ else:
1120
+ infrequent_indices = [None] * n_features
1121
+
1122
+ for i in range(n_features):
1123
+ cats_wo_dropped = self._remove_dropped_categories(
1124
+ transformed_features[i], i
1125
+ )
1126
+ n_categories = cats_wo_dropped.shape[0]
1127
+
1128
+ # Only happens if there was a column with a unique
1129
+ # category. In this case we just fill the column with this
1130
+ # unique category value.
1131
+ if n_categories == 0:
1132
+ X_tr[:, i] = self.categories_[i][self._drop_idx_after_grouping[i]]
1133
+ j += n_categories
1134
+ continue
1135
+ sub = X[:, j : j + n_categories]
1136
+ # for sparse X argmax returns 2D matrix, ensure 1D array
1137
+ labels = np.asarray(sub.argmax(axis=1)).flatten()
1138
+ X_tr[:, i] = cats_wo_dropped[labels]
1139
+
1140
+ if self.handle_unknown == "ignore" or (
1141
+ self.handle_unknown == "infrequent_if_exist"
1142
+ and infrequent_indices[i] is None
1143
+ ):
1144
+ unknown = np.asarray(sub.sum(axis=1) == 0).flatten()
1145
+ # ignored unknown categories: we have a row of all zero
1146
+ if unknown.any():
1147
+ # if categories were dropped then unknown categories will
1148
+ # be mapped to the dropped category
1149
+ if (
1150
+ self._drop_idx_after_grouping is None
1151
+ or self._drop_idx_after_grouping[i] is None
1152
+ ):
1153
+ found_unknown[i] = unknown
1154
+ else:
1155
+ X_tr[unknown, i] = self.categories_[i][
1156
+ self._drop_idx_after_grouping[i]
1157
+ ]
1158
+ else:
1159
+ dropped = np.asarray(sub.sum(axis=1) == 0).flatten()
1160
+ if dropped.any():
1161
+ if self._drop_idx_after_grouping is None:
1162
+ all_zero_samples = np.flatnonzero(dropped)
1163
+ raise ValueError(
1164
+ f"Samples {all_zero_samples} can not be inverted "
1165
+ "when drop=None and handle_unknown='error' "
1166
+ "because they contain all zeros"
1167
+ )
1168
+ # we can safely assume that all of the nulls in each column
1169
+ # are the dropped value
1170
+ drop_idx = self._drop_idx_after_grouping[i]
1171
+ X_tr[dropped, i] = transformed_features[i][drop_idx]
1172
+
1173
+ j += n_categories
1174
+
1175
+ # if ignored are found: potentially need to upcast result to
1176
+ # insert None values
1177
+ if found_unknown:
1178
+ if X_tr.dtype != object:
1179
+ X_tr = X_tr.astype(object)
1180
+
1181
+ for idx, mask in found_unknown.items():
1182
+ X_tr[mask, idx] = None
1183
+
1184
+ return X_tr
1185
+
1186
+ def get_feature_names_out(self, input_features=None):
1187
+ """Get output feature names for transformation.
1188
+
1189
+ Parameters
1190
+ ----------
1191
+ input_features : array-like of str or None, default=None
1192
+ Input features.
1193
+
1194
+ - If `input_features` is `None`, then `feature_names_in_` is
1195
+ used as feature names in. If `feature_names_in_` is not defined,
1196
+ then the following input feature names are generated:
1197
+ `["x0", "x1", ..., "x(n_features_in_ - 1)"]`.
1198
+ - If `input_features` is an array-like, then `input_features` must
1199
+ match `feature_names_in_` if `feature_names_in_` is defined.
1200
+
1201
+ Returns
1202
+ -------
1203
+ feature_names_out : ndarray of str objects
1204
+ Transformed feature names.
1205
+ """
1206
+ check_is_fitted(self)
1207
+ input_features = _check_feature_names_in(self, input_features)
1208
+ cats = [
1209
+ self._compute_transformed_categories(i)
1210
+ for i, _ in enumerate(self.categories_)
1211
+ ]
1212
+
1213
+ name_combiner = self._check_get_feature_name_combiner()
1214
+ feature_names = []
1215
+ for i in range(len(cats)):
1216
+ names = [name_combiner(input_features[i], t) for t in cats[i]]
1217
+ feature_names.extend(names)
1218
+
1219
+ return np.array(feature_names, dtype=object)
1220
+
1221
+ def _check_get_feature_name_combiner(self):
1222
+ if self.feature_name_combiner == "concat":
1223
+ return lambda feature, category: feature + "_" + str(category)
1224
+ else: # callable
1225
+ dry_run_combiner = self.feature_name_combiner("feature", "category")
1226
+ if not isinstance(dry_run_combiner, str):
1227
+ raise TypeError(
1228
+ "When `feature_name_combiner` is a callable, it should return a "
1229
+ f"Python string. Got {type(dry_run_combiner)} instead."
1230
+ )
1231
+ return self.feature_name_combiner
1232
+
1233
+
1234
+ class OrdinalEncoder(OneToOneFeatureMixin, _BaseEncoder):
1235
+ """
1236
+ Encode categorical features as an integer array.
1237
+
1238
+ The input to this transformer should be an array-like of integers or
1239
+ strings, denoting the values taken on by categorical (discrete) features.
1240
+ The features are converted to ordinal integers. This results in
1241
+ a single column of integers (0 to n_categories - 1) per feature.
1242
+
1243
+ Read more in the :ref:`User Guide <preprocessing_categorical_features>`.
1244
+ For a comparison of different encoders, refer to:
1245
+ :ref:`sphx_glr_auto_examples_preprocessing_plot_target_encoder.py`.
1246
+
1247
+ .. versionadded:: 0.20
1248
+
1249
+ Parameters
1250
+ ----------
1251
+ categories : 'auto' or a list of array-like, default='auto'
1252
+ Categories (unique values) per feature:
1253
+
1254
+ - 'auto' : Determine categories automatically from the training data.
1255
+ - list : ``categories[i]`` holds the categories expected in the ith
1256
+ column. The passed categories should not mix strings and numeric
1257
+ values, and should be sorted in case of numeric values.
1258
+
1259
+ The used categories can be found in the ``categories_`` attribute.
1260
+
1261
+ dtype : number type, default=np.float64
1262
+ Desired dtype of output.
1263
+
1264
+ handle_unknown : {'error', 'use_encoded_value'}, default='error'
1265
+ When set to 'error' an error will be raised in case an unknown
1266
+ categorical feature is present during transform. When set to
1267
+ 'use_encoded_value', the encoded value of unknown categories will be
1268
+ set to the value given for the parameter `unknown_value`. In
1269
+ :meth:`inverse_transform`, an unknown category will be denoted as None.
1270
+
1271
+ .. versionadded:: 0.24
1272
+
1273
+ unknown_value : int or np.nan, default=None
1274
+ When the parameter handle_unknown is set to 'use_encoded_value', this
1275
+ parameter is required and will set the encoded value of unknown
1276
+ categories. It has to be distinct from the values used to encode any of
1277
+ the categories in `fit`. If set to np.nan, the `dtype` parameter must
1278
+ be a float dtype.
1279
+
1280
+ .. versionadded:: 0.24
1281
+
1282
+ encoded_missing_value : int or np.nan, default=np.nan
1283
+ Encoded value of missing categories. If set to `np.nan`, then the `dtype`
1284
+ parameter must be a float dtype.
1285
+
1286
+ .. versionadded:: 1.1
1287
+
1288
+ min_frequency : int or float, default=None
1289
+ Specifies the minimum frequency below which a category will be
1290
+ considered infrequent.
1291
+
1292
+ - If `int`, categories with a smaller cardinality will be considered
1293
+ infrequent.
1294
+
1295
+ - If `float`, categories with a smaller cardinality than
1296
+ `min_frequency * n_samples` will be considered infrequent.
1297
+
1298
+ .. versionadded:: 1.3
1299
+ Read more in the :ref:`User Guide <encoder_infrequent_categories>`.
1300
+
1301
+ max_categories : int, default=None
1302
+ Specifies an upper limit to the number of output categories for each input
1303
+ feature when considering infrequent categories. If there are infrequent
1304
+ categories, `max_categories` includes the category representing the
1305
+ infrequent categories along with the frequent categories. If `None`,
1306
+ there is no limit to the number of output features.
1307
+
1308
+ `max_categories` do **not** take into account missing or unknown
1309
+ categories. Setting `unknown_value` or `encoded_missing_value` to an
1310
+ integer will increase the number of unique integer codes by one each.
1311
+ This can result in up to `max_categories + 2` integer codes.
1312
+
1313
+ .. versionadded:: 1.3
1314
+ Read more in the :ref:`User Guide <encoder_infrequent_categories>`.
1315
+
1316
+ Attributes
1317
+ ----------
1318
+ categories_ : list of arrays
1319
+ The categories of each feature determined during ``fit`` (in order of
1320
+ the features in X and corresponding with the output of ``transform``).
1321
+ This does not include categories that weren't seen during ``fit``.
1322
+
1323
+ n_features_in_ : int
1324
+ Number of features seen during :term:`fit`.
1325
+
1326
+ .. versionadded:: 1.0
1327
+
1328
+ feature_names_in_ : ndarray of shape (`n_features_in_`,)
1329
+ Names of features seen during :term:`fit`. Defined only when `X`
1330
+ has feature names that are all strings.
1331
+
1332
+ .. versionadded:: 1.0
1333
+
1334
+ infrequent_categories_ : list of ndarray
1335
+ Defined only if infrequent categories are enabled by setting
1336
+ `min_frequency` or `max_categories` to a non-default value.
1337
+ `infrequent_categories_[i]` are the infrequent categories for feature
1338
+ `i`. If the feature `i` has no infrequent categories
1339
+ `infrequent_categories_[i]` is None.
1340
+
1341
+ .. versionadded:: 1.3
1342
+
1343
+ See Also
1344
+ --------
1345
+ OneHotEncoder : Performs a one-hot encoding of categorical features. This encoding
1346
+ is suitable for low to medium cardinality categorical variables, both in
1347
+ supervised and unsupervised settings.
1348
+ TargetEncoder : Encodes categorical features using supervised signal
1349
+ in a classification or regression pipeline. This encoding is typically
1350
+ suitable for high cardinality categorical variables.
1351
+ LabelEncoder : Encodes target labels with values between 0 and
1352
+ ``n_classes-1``.
1353
+
1354
+ Notes
1355
+ -----
1356
+ With a high proportion of `nan` values, inferring categories becomes slow with
1357
+ Python versions before 3.10. The handling of `nan` values was improved
1358
+ from Python 3.10 onwards, (c.f.
1359
+ `bpo-43475 <https://github.com/python/cpython/issues/87641>`_).
1360
+
1361
+ Examples
1362
+ --------
1363
+ Given a dataset with two features, we let the encoder find the unique
1364
+ values per feature and transform the data to an ordinal encoding.
1365
+
1366
+ >>> from sklearn.preprocessing import OrdinalEncoder
1367
+ >>> enc = OrdinalEncoder()
1368
+ >>> X = [['Male', 1], ['Female', 3], ['Female', 2]]
1369
+ >>> enc.fit(X)
1370
+ OrdinalEncoder()
1371
+ >>> enc.categories_
1372
+ [array(['Female', 'Male'], dtype=object), array([1, 2, 3], dtype=object)]
1373
+ >>> enc.transform([['Female', 3], ['Male', 1]])
1374
+ array([[0., 2.],
1375
+ [1., 0.]])
1376
+
1377
+ >>> enc.inverse_transform([[1, 0], [0, 1]])
1378
+ array([['Male', 1],
1379
+ ['Female', 2]], dtype=object)
1380
+
1381
+ By default, :class:`OrdinalEncoder` is lenient towards missing values by
1382
+ propagating them.
1383
+
1384
+ >>> import numpy as np
1385
+ >>> X = [['Male', 1], ['Female', 3], ['Female', np.nan]]
1386
+ >>> enc.fit_transform(X)
1387
+ array([[ 1., 0.],
1388
+ [ 0., 1.],
1389
+ [ 0., nan]])
1390
+
1391
+ You can use the parameter `encoded_missing_value` to encode missing values.
1392
+
1393
+ >>> enc.set_params(encoded_missing_value=-1).fit_transform(X)
1394
+ array([[ 1., 0.],
1395
+ [ 0., 1.],
1396
+ [ 0., -1.]])
1397
+
1398
+ Infrequent categories are enabled by setting `max_categories` or `min_frequency`.
1399
+ In the following example, "a" and "d" are considered infrequent and grouped
1400
+ together into a single category, "b" and "c" are their own categories, unknown
1401
+ values are encoded as 3 and missing values are encoded as 4.
1402
+
1403
+ >>> X_train = np.array(
1404
+ ... [["a"] * 5 + ["b"] * 20 + ["c"] * 10 + ["d"] * 3 + [np.nan]],
1405
+ ... dtype=object).T
1406
+ >>> enc = OrdinalEncoder(
1407
+ ... handle_unknown="use_encoded_value", unknown_value=3,
1408
+ ... max_categories=3, encoded_missing_value=4)
1409
+ >>> _ = enc.fit(X_train)
1410
+ >>> X_test = np.array([["a"], ["b"], ["c"], ["d"], ["e"], [np.nan]], dtype=object)
1411
+ >>> enc.transform(X_test)
1412
+ array([[2.],
1413
+ [0.],
1414
+ [1.],
1415
+ [2.],
1416
+ [3.],
1417
+ [4.]])
1418
+ """
1419
+
1420
+ _parameter_constraints: dict = {
1421
+ "categories": [StrOptions({"auto"}), list],
1422
+ "dtype": "no_validation", # validation delegated to numpy
1423
+ "encoded_missing_value": [Integral, type(np.nan)],
1424
+ "handle_unknown": [StrOptions({"error", "use_encoded_value"})],
1425
+ "unknown_value": [Integral, type(np.nan), None],
1426
+ "max_categories": [Interval(Integral, 1, None, closed="left"), None],
1427
+ "min_frequency": [
1428
+ Interval(Integral, 1, None, closed="left"),
1429
+ Interval(RealNotInt, 0, 1, closed="neither"),
1430
+ None,
1431
+ ],
1432
+ }
1433
+
1434
+ def __init__(
1435
+ self,
1436
+ *,
1437
+ categories="auto",
1438
+ dtype=np.float64,
1439
+ handle_unknown="error",
1440
+ unknown_value=None,
1441
+ encoded_missing_value=np.nan,
1442
+ min_frequency=None,
1443
+ max_categories=None,
1444
+ ):
1445
+ self.categories = categories
1446
+ self.dtype = dtype
1447
+ self.handle_unknown = handle_unknown
1448
+ self.unknown_value = unknown_value
1449
+ self.encoded_missing_value = encoded_missing_value
1450
+ self.min_frequency = min_frequency
1451
+ self.max_categories = max_categories
1452
+
1453
+ @_fit_context(prefer_skip_nested_validation=True)
1454
+ def fit(self, X, y=None):
1455
+ """
1456
+ Fit the OrdinalEncoder to X.
1457
+
1458
+ Parameters
1459
+ ----------
1460
+ X : array-like of shape (n_samples, n_features)
1461
+ The data to determine the categories of each feature.
1462
+
1463
+ y : None
1464
+ Ignored. This parameter exists only for compatibility with
1465
+ :class:`~sklearn.pipeline.Pipeline`.
1466
+
1467
+ Returns
1468
+ -------
1469
+ self : object
1470
+ Fitted encoder.
1471
+ """
1472
+ if self.handle_unknown == "use_encoded_value":
1473
+ if is_scalar_nan(self.unknown_value):
1474
+ if np.dtype(self.dtype).kind != "f":
1475
+ raise ValueError(
1476
+ "When unknown_value is np.nan, the dtype "
1477
+ "parameter should be "
1478
+ f"a float dtype. Got {self.dtype}."
1479
+ )
1480
+ elif not isinstance(self.unknown_value, numbers.Integral):
1481
+ raise TypeError(
1482
+ "unknown_value should be an integer or "
1483
+ "np.nan when "
1484
+ "handle_unknown is 'use_encoded_value', "
1485
+ f"got {self.unknown_value}."
1486
+ )
1487
+ elif self.unknown_value is not None:
1488
+ raise TypeError(
1489
+ "unknown_value should only be set when "
1490
+ "handle_unknown is 'use_encoded_value', "
1491
+ f"got {self.unknown_value}."
1492
+ )
1493
+
1494
+ # `_fit` will only raise an error when `self.handle_unknown="error"`
1495
+ fit_results = self._fit(
1496
+ X,
1497
+ handle_unknown=self.handle_unknown,
1498
+ force_all_finite="allow-nan",
1499
+ return_and_ignore_missing_for_infrequent=True,
1500
+ )
1501
+ self._missing_indices = fit_results["missing_indices"]
1502
+
1503
+ cardinalities = [len(categories) for categories in self.categories_]
1504
+ if self._infrequent_enabled:
1505
+ # Cardinality decreases because the infrequent categories are grouped
1506
+ # together
1507
+ for feature_idx, infrequent in enumerate(self.infrequent_categories_):
1508
+ if infrequent is not None:
1509
+ cardinalities[feature_idx] -= len(infrequent)
1510
+
1511
+ # missing values are not considered part of the cardinality
1512
+ # when considering unknown categories or encoded_missing_value
1513
+ for cat_idx, categories_for_idx in enumerate(self.categories_):
1514
+ if is_scalar_nan(categories_for_idx[-1]):
1515
+ cardinalities[cat_idx] -= 1
1516
+
1517
+ if self.handle_unknown == "use_encoded_value":
1518
+ for cardinality in cardinalities:
1519
+ if 0 <= self.unknown_value < cardinality:
1520
+ raise ValueError(
1521
+ "The used value for unknown_value "
1522
+ f"{self.unknown_value} is one of the "
1523
+ "values already used for encoding the "
1524
+ "seen categories."
1525
+ )
1526
+
1527
+ if self._missing_indices:
1528
+ if np.dtype(self.dtype).kind != "f" and is_scalar_nan(
1529
+ self.encoded_missing_value
1530
+ ):
1531
+ raise ValueError(
1532
+ "There are missing values in features "
1533
+ f"{list(self._missing_indices)}. For OrdinalEncoder to "
1534
+ f"encode missing values with dtype: {self.dtype}, set "
1535
+ "encoded_missing_value to a non-nan value, or "
1536
+ "set dtype to a float"
1537
+ )
1538
+
1539
+ if not is_scalar_nan(self.encoded_missing_value):
1540
+ # Features are invalid when they contain a missing category
1541
+ # and encoded_missing_value was already used to encode a
1542
+ # known category
1543
+ invalid_features = [
1544
+ cat_idx
1545
+ for cat_idx, cardinality in enumerate(cardinalities)
1546
+ if cat_idx in self._missing_indices
1547
+ and 0 <= self.encoded_missing_value < cardinality
1548
+ ]
1549
+
1550
+ if invalid_features:
1551
+ # Use feature names if they are available
1552
+ if hasattr(self, "feature_names_in_"):
1553
+ invalid_features = self.feature_names_in_[invalid_features]
1554
+ raise ValueError(
1555
+ f"encoded_missing_value ({self.encoded_missing_value}) "
1556
+ "is already used to encode a known category in features: "
1557
+ f"{invalid_features}"
1558
+ )
1559
+
1560
+ return self
1561
+
1562
+ def transform(self, X):
1563
+ """
1564
+ Transform X to ordinal codes.
1565
+
1566
+ Parameters
1567
+ ----------
1568
+ X : array-like of shape (n_samples, n_features)
1569
+ The data to encode.
1570
+
1571
+ Returns
1572
+ -------
1573
+ X_out : ndarray of shape (n_samples, n_features)
1574
+ Transformed input.
1575
+ """
1576
+ check_is_fitted(self, "categories_")
1577
+ X_int, X_mask = self._transform(
1578
+ X,
1579
+ handle_unknown=self.handle_unknown,
1580
+ force_all_finite="allow-nan",
1581
+ ignore_category_indices=self._missing_indices,
1582
+ )
1583
+ X_trans = X_int.astype(self.dtype, copy=False)
1584
+
1585
+ for cat_idx, missing_idx in self._missing_indices.items():
1586
+ X_missing_mask = X_int[:, cat_idx] == missing_idx
1587
+ X_trans[X_missing_mask, cat_idx] = self.encoded_missing_value
1588
+
1589
+ # create separate category for unknown values
1590
+ if self.handle_unknown == "use_encoded_value":
1591
+ X_trans[~X_mask] = self.unknown_value
1592
+ return X_trans
1593
+
1594
+ def inverse_transform(self, X):
1595
+ """
1596
+ Convert the data back to the original representation.
1597
+
1598
+ Parameters
1599
+ ----------
1600
+ X : array-like of shape (n_samples, n_encoded_features)
1601
+ The transformed data.
1602
+
1603
+ Returns
1604
+ -------
1605
+ X_tr : ndarray of shape (n_samples, n_features)
1606
+ Inverse transformed array.
1607
+ """
1608
+ check_is_fitted(self)
1609
+ X = check_array(X, force_all_finite="allow-nan")
1610
+
1611
+ n_samples, _ = X.shape
1612
+ n_features = len(self.categories_)
1613
+
1614
+ # validate shape of passed X
1615
+ msg = (
1616
+ "Shape of the passed X data is not correct. Expected {0} columns, got {1}."
1617
+ )
1618
+ if X.shape[1] != n_features:
1619
+ raise ValueError(msg.format(n_features, X.shape[1]))
1620
+
1621
+ # create resulting array of appropriate dtype
1622
+ dt = np.result_type(*[cat.dtype for cat in self.categories_])
1623
+ X_tr = np.empty((n_samples, n_features), dtype=dt)
1624
+
1625
+ found_unknown = {}
1626
+ infrequent_masks = {}
1627
+
1628
+ infrequent_indices = getattr(self, "_infrequent_indices", None)
1629
+
1630
+ for i in range(n_features):
1631
+ labels = X[:, i]
1632
+
1633
+ # replace values of X[:, i] that were nan with actual indices
1634
+ if i in self._missing_indices:
1635
+ X_i_mask = _get_mask(labels, self.encoded_missing_value)
1636
+ labels[X_i_mask] = self._missing_indices[i]
1637
+
1638
+ rows_to_update = slice(None)
1639
+ categories = self.categories_[i]
1640
+
1641
+ if infrequent_indices is not None and infrequent_indices[i] is not None:
1642
+ # Compute mask for frequent categories
1643
+ infrequent_encoding_value = len(categories) - len(infrequent_indices[i])
1644
+ infrequent_masks[i] = labels == infrequent_encoding_value
1645
+ rows_to_update = ~infrequent_masks[i]
1646
+
1647
+ # Remap categories to be only frequent categories. The infrequent
1648
+ # categories will be mapped to "infrequent_sklearn" later
1649
+ frequent_categories_mask = np.ones_like(categories, dtype=bool)
1650
+ frequent_categories_mask[infrequent_indices[i]] = False
1651
+ categories = categories[frequent_categories_mask]
1652
+
1653
+ if self.handle_unknown == "use_encoded_value":
1654
+ unknown_labels = _get_mask(labels, self.unknown_value)
1655
+ found_unknown[i] = unknown_labels
1656
+
1657
+ known_labels = ~unknown_labels
1658
+ if isinstance(rows_to_update, np.ndarray):
1659
+ rows_to_update &= known_labels
1660
+ else:
1661
+ rows_to_update = known_labels
1662
+
1663
+ labels_int = labels[rows_to_update].astype("int64", copy=False)
1664
+ X_tr[rows_to_update, i] = categories[labels_int]
1665
+
1666
+ if found_unknown or infrequent_masks:
1667
+ X_tr = X_tr.astype(object, copy=False)
1668
+
1669
+ # insert None values for unknown values
1670
+ if found_unknown:
1671
+ for idx, mask in found_unknown.items():
1672
+ X_tr[mask, idx] = None
1673
+
1674
+ if infrequent_masks:
1675
+ for idx, mask in infrequent_masks.items():
1676
+ X_tr[mask, idx] = "infrequent_sklearn"
1677
+
1678
+ return X_tr
env-llmeval/lib/python3.10/site-packages/sklearn/preprocessing/_function_transformer.py ADDED
@@ -0,0 +1,431 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import warnings
2
+
3
+ import numpy as np
4
+
5
+ from ..base import BaseEstimator, TransformerMixin, _fit_context
6
+ from ..utils._param_validation import StrOptions
7
+ from ..utils._set_output import ADAPTERS_MANAGER, _get_output_config
8
+ from ..utils.metaestimators import available_if
9
+ from ..utils.validation import (
10
+ _allclose_dense_sparse,
11
+ _check_feature_names_in,
12
+ _get_feature_names,
13
+ _is_pandas_df,
14
+ _is_polars_df,
15
+ check_array,
16
+ )
17
+
18
+
19
+ def _get_adapter_from_container(container):
20
+ """Get the adapter that nows how to handle such container.
21
+
22
+ See :class:`sklearn.utils._set_output.ContainerAdapterProtocol` for more
23
+ details.
24
+ """
25
+ module_name = container.__class__.__module__.split(".")[0]
26
+ try:
27
+ return ADAPTERS_MANAGER.adapters[module_name]
28
+ except KeyError as exc:
29
+ available_adapters = list(ADAPTERS_MANAGER.adapters.keys())
30
+ raise ValueError(
31
+ "The container does not have a registered adapter in scikit-learn. "
32
+ f"Available adapters are: {available_adapters} while the container "
33
+ f"provided is: {container!r}."
34
+ ) from exc
35
+
36
+
37
+ def _identity(X):
38
+ """The identity function."""
39
+ return X
40
+
41
+
42
+ class FunctionTransformer(TransformerMixin, BaseEstimator):
43
+ """Constructs a transformer from an arbitrary callable.
44
+
45
+ A FunctionTransformer forwards its X (and optionally y) arguments to a
46
+ user-defined function or function object and returns the result of this
47
+ function. This is useful for stateless transformations such as taking the
48
+ log of frequencies, doing custom scaling, etc.
49
+
50
+ Note: If a lambda is used as the function, then the resulting
51
+ transformer will not be pickleable.
52
+
53
+ .. versionadded:: 0.17
54
+
55
+ Read more in the :ref:`User Guide <function_transformer>`.
56
+
57
+ Parameters
58
+ ----------
59
+ func : callable, default=None
60
+ The callable to use for the transformation. This will be passed
61
+ the same arguments as transform, with args and kwargs forwarded.
62
+ If func is None, then func will be the identity function.
63
+
64
+ inverse_func : callable, default=None
65
+ The callable to use for the inverse transformation. This will be
66
+ passed the same arguments as inverse transform, with args and
67
+ kwargs forwarded. If inverse_func is None, then inverse_func
68
+ will be the identity function.
69
+
70
+ validate : bool, default=False
71
+ Indicate that the input X array should be checked before calling
72
+ ``func``. The possibilities are:
73
+
74
+ - If False, there is no input validation.
75
+ - If True, then X will be converted to a 2-dimensional NumPy array or
76
+ sparse matrix. If the conversion is not possible an exception is
77
+ raised.
78
+
79
+ .. versionchanged:: 0.22
80
+ The default of ``validate`` changed from True to False.
81
+
82
+ accept_sparse : bool, default=False
83
+ Indicate that func accepts a sparse matrix as input. If validate is
84
+ False, this has no effect. Otherwise, if accept_sparse is false,
85
+ sparse matrix inputs will cause an exception to be raised.
86
+
87
+ check_inverse : bool, default=True
88
+ Whether to check that or ``func`` followed by ``inverse_func`` leads to
89
+ the original inputs. It can be used for a sanity check, raising a
90
+ warning when the condition is not fulfilled.
91
+
92
+ .. versionadded:: 0.20
93
+
94
+ feature_names_out : callable, 'one-to-one' or None, default=None
95
+ Determines the list of feature names that will be returned by the
96
+ `get_feature_names_out` method. If it is 'one-to-one', then the output
97
+ feature names will be equal to the input feature names. If it is a
98
+ callable, then it must take two positional arguments: this
99
+ `FunctionTransformer` (`self`) and an array-like of input feature names
100
+ (`input_features`). It must return an array-like of output feature
101
+ names. The `get_feature_names_out` method is only defined if
102
+ `feature_names_out` is not None.
103
+
104
+ See ``get_feature_names_out`` for more details.
105
+
106
+ .. versionadded:: 1.1
107
+
108
+ kw_args : dict, default=None
109
+ Dictionary of additional keyword arguments to pass to func.
110
+
111
+ .. versionadded:: 0.18
112
+
113
+ inv_kw_args : dict, default=None
114
+ Dictionary of additional keyword arguments to pass to inverse_func.
115
+
116
+ .. versionadded:: 0.18
117
+
118
+ Attributes
119
+ ----------
120
+ n_features_in_ : int
121
+ Number of features seen during :term:`fit`.
122
+
123
+ .. versionadded:: 0.24
124
+
125
+ feature_names_in_ : ndarray of shape (`n_features_in_`,)
126
+ Names of features seen during :term:`fit`. Defined only when `X` has feature
127
+ names that are all strings.
128
+
129
+ .. versionadded:: 1.0
130
+
131
+ See Also
132
+ --------
133
+ MaxAbsScaler : Scale each feature by its maximum absolute value.
134
+ StandardScaler : Standardize features by removing the mean and
135
+ scaling to unit variance.
136
+ LabelBinarizer : Binarize labels in a one-vs-all fashion.
137
+ MultiLabelBinarizer : Transform between iterable of iterables
138
+ and a multilabel format.
139
+
140
+ Notes
141
+ -----
142
+ If `func` returns an output with a `columns` attribute, then the columns is enforced
143
+ to be consistent with the output of `get_feature_names_out`.
144
+
145
+ Examples
146
+ --------
147
+ >>> import numpy as np
148
+ >>> from sklearn.preprocessing import FunctionTransformer
149
+ >>> transformer = FunctionTransformer(np.log1p)
150
+ >>> X = np.array([[0, 1], [2, 3]])
151
+ >>> transformer.transform(X)
152
+ array([[0. , 0.6931...],
153
+ [1.0986..., 1.3862...]])
154
+ """
155
+
156
+ _parameter_constraints: dict = {
157
+ "func": [callable, None],
158
+ "inverse_func": [callable, None],
159
+ "validate": ["boolean"],
160
+ "accept_sparse": ["boolean"],
161
+ "check_inverse": ["boolean"],
162
+ "feature_names_out": [callable, StrOptions({"one-to-one"}), None],
163
+ "kw_args": [dict, None],
164
+ "inv_kw_args": [dict, None],
165
+ }
166
+
167
+ def __init__(
168
+ self,
169
+ func=None,
170
+ inverse_func=None,
171
+ *,
172
+ validate=False,
173
+ accept_sparse=False,
174
+ check_inverse=True,
175
+ feature_names_out=None,
176
+ kw_args=None,
177
+ inv_kw_args=None,
178
+ ):
179
+ self.func = func
180
+ self.inverse_func = inverse_func
181
+ self.validate = validate
182
+ self.accept_sparse = accept_sparse
183
+ self.check_inverse = check_inverse
184
+ self.feature_names_out = feature_names_out
185
+ self.kw_args = kw_args
186
+ self.inv_kw_args = inv_kw_args
187
+
188
+ def _check_input(self, X, *, reset):
189
+ if self.validate:
190
+ return self._validate_data(X, accept_sparse=self.accept_sparse, reset=reset)
191
+ elif reset:
192
+ # Set feature_names_in_ and n_features_in_ even if validate=False
193
+ # We run this only when reset==True to store the attributes but not
194
+ # validate them, because validate=False
195
+ self._check_n_features(X, reset=reset)
196
+ self._check_feature_names(X, reset=reset)
197
+ return X
198
+
199
+ def _check_inverse_transform(self, X):
200
+ """Check that func and inverse_func are the inverse."""
201
+ idx_selected = slice(None, None, max(1, X.shape[0] // 100))
202
+ X_round_trip = self.inverse_transform(self.transform(X[idx_selected]))
203
+
204
+ if hasattr(X, "dtype"):
205
+ dtypes = [X.dtype]
206
+ elif hasattr(X, "dtypes"):
207
+ # Dataframes can have multiple dtypes
208
+ dtypes = X.dtypes
209
+
210
+ if not all(np.issubdtype(d, np.number) for d in dtypes):
211
+ raise ValueError(
212
+ "'check_inverse' is only supported when all the elements in `X` is"
213
+ " numerical."
214
+ )
215
+
216
+ if not _allclose_dense_sparse(X[idx_selected], X_round_trip):
217
+ warnings.warn(
218
+ (
219
+ "The provided functions are not strictly"
220
+ " inverse of each other. If you are sure you"
221
+ " want to proceed regardless, set"
222
+ " 'check_inverse=False'."
223
+ ),
224
+ UserWarning,
225
+ )
226
+
227
+ @_fit_context(prefer_skip_nested_validation=True)
228
+ def fit(self, X, y=None):
229
+ """Fit transformer by checking X.
230
+
231
+ If ``validate`` is ``True``, ``X`` will be checked.
232
+
233
+ Parameters
234
+ ----------
235
+ X : {array-like, sparse-matrix} of shape (n_samples, n_features) \
236
+ if `validate=True` else any object that `func` can handle
237
+ Input array.
238
+
239
+ y : Ignored
240
+ Not used, present here for API consistency by convention.
241
+
242
+ Returns
243
+ -------
244
+ self : object
245
+ FunctionTransformer class instance.
246
+ """
247
+ X = self._check_input(X, reset=True)
248
+ if self.check_inverse and not (self.func is None or self.inverse_func is None):
249
+ self._check_inverse_transform(X)
250
+ return self
251
+
252
+ def transform(self, X):
253
+ """Transform X using the forward function.
254
+
255
+ Parameters
256
+ ----------
257
+ X : {array-like, sparse-matrix} of shape (n_samples, n_features) \
258
+ if `validate=True` else any object that `func` can handle
259
+ Input array.
260
+
261
+ Returns
262
+ -------
263
+ X_out : array-like, shape (n_samples, n_features)
264
+ Transformed input.
265
+ """
266
+ X = self._check_input(X, reset=False)
267
+ out = self._transform(X, func=self.func, kw_args=self.kw_args)
268
+ output_config = _get_output_config("transform", self)["dense"]
269
+
270
+ if hasattr(out, "columns") and self.feature_names_out is not None:
271
+ # check the consistency between the column provided by `transform` and
272
+ # the the column names provided by `get_feature_names_out`.
273
+ feature_names_out = self.get_feature_names_out()
274
+ if list(out.columns) != list(feature_names_out):
275
+ # we can override the column names of the output if it is inconsistent
276
+ # with the column names provided by `get_feature_names_out` in the
277
+ # following cases:
278
+ # * `func` preserved the column names between the input and the output
279
+ # * the input column names are all numbers
280
+ # * the output is requested to be a DataFrame (pandas or polars)
281
+ feature_names_in = getattr(
282
+ X, "feature_names_in_", _get_feature_names(X)
283
+ )
284
+ same_feature_names_in_out = feature_names_in is not None and list(
285
+ feature_names_in
286
+ ) == list(out.columns)
287
+ not_all_str_columns = not all(
288
+ isinstance(col, str) for col in out.columns
289
+ )
290
+ if same_feature_names_in_out or not_all_str_columns:
291
+ adapter = _get_adapter_from_container(out)
292
+ out = adapter.create_container(
293
+ X_output=out,
294
+ X_original=out,
295
+ columns=feature_names_out,
296
+ inplace=False,
297
+ )
298
+ else:
299
+ raise ValueError(
300
+ "The output generated by `func` have different column names "
301
+ "than the ones provided by `get_feature_names_out`. "
302
+ f"Got output with columns names: {list(out.columns)} and "
303
+ "`get_feature_names_out` returned: "
304
+ f"{list(self.get_feature_names_out())}. "
305
+ "The column names can be overridden by setting "
306
+ "`set_output(transform='pandas')` or "
307
+ "`set_output(transform='polars')` such that the column names "
308
+ "are set to the names provided by `get_feature_names_out`."
309
+ )
310
+
311
+ if self.feature_names_out is None:
312
+ warn_msg = (
313
+ "When `set_output` is configured to be '{0}', `func` should return "
314
+ "a {0} DataFrame to follow the `set_output` API or `feature_names_out`"
315
+ " should be defined."
316
+ )
317
+ if output_config == "pandas" and not _is_pandas_df(out):
318
+ warnings.warn(warn_msg.format("pandas"))
319
+ elif output_config == "polars" and not _is_polars_df(out):
320
+ warnings.warn(warn_msg.format("polars"))
321
+
322
+ return out
323
+
324
+ def inverse_transform(self, X):
325
+ """Transform X using the inverse function.
326
+
327
+ Parameters
328
+ ----------
329
+ X : {array-like, sparse-matrix} of shape (n_samples, n_features) \
330
+ if `validate=True` else any object that `inverse_func` can handle
331
+ Input array.
332
+
333
+ Returns
334
+ -------
335
+ X_out : array-like, shape (n_samples, n_features)
336
+ Transformed input.
337
+ """
338
+ if self.validate:
339
+ X = check_array(X, accept_sparse=self.accept_sparse)
340
+ return self._transform(X, func=self.inverse_func, kw_args=self.inv_kw_args)
341
+
342
+ @available_if(lambda self: self.feature_names_out is not None)
343
+ def get_feature_names_out(self, input_features=None):
344
+ """Get output feature names for transformation.
345
+
346
+ This method is only defined if `feature_names_out` is not None.
347
+
348
+ Parameters
349
+ ----------
350
+ input_features : array-like of str or None, default=None
351
+ Input feature names.
352
+
353
+ - If `input_features` is None, then `feature_names_in_` is
354
+ used as the input feature names. If `feature_names_in_` is not
355
+ defined, then names are generated:
356
+ `[x0, x1, ..., x(n_features_in_ - 1)]`.
357
+ - If `input_features` is array-like, then `input_features` must
358
+ match `feature_names_in_` if `feature_names_in_` is defined.
359
+
360
+ Returns
361
+ -------
362
+ feature_names_out : ndarray of str objects
363
+ Transformed feature names.
364
+
365
+ - If `feature_names_out` is 'one-to-one', the input feature names
366
+ are returned (see `input_features` above). This requires
367
+ `feature_names_in_` and/or `n_features_in_` to be defined, which
368
+ is done automatically if `validate=True`. Alternatively, you can
369
+ set them in `func`.
370
+ - If `feature_names_out` is a callable, then it is called with two
371
+ arguments, `self` and `input_features`, and its return value is
372
+ returned by this method.
373
+ """
374
+ if hasattr(self, "n_features_in_") or input_features is not None:
375
+ input_features = _check_feature_names_in(self, input_features)
376
+ if self.feature_names_out == "one-to-one":
377
+ names_out = input_features
378
+ elif callable(self.feature_names_out):
379
+ names_out = self.feature_names_out(self, input_features)
380
+ else:
381
+ raise ValueError(
382
+ f"feature_names_out={self.feature_names_out!r} is invalid. "
383
+ 'It must either be "one-to-one" or a callable with two '
384
+ "arguments: the function transformer and an array-like of "
385
+ "input feature names. The callable must return an array-like "
386
+ "of output feature names."
387
+ )
388
+ return np.asarray(names_out, dtype=object)
389
+
390
+ def _transform(self, X, func=None, kw_args=None):
391
+ if func is None:
392
+ func = _identity
393
+
394
+ return func(X, **(kw_args if kw_args else {}))
395
+
396
+ def __sklearn_is_fitted__(self):
397
+ """Return True since FunctionTransfomer is stateless."""
398
+ return True
399
+
400
+ def _more_tags(self):
401
+ return {"no_validation": not self.validate, "stateless": True}
402
+
403
+ def set_output(self, *, transform=None):
404
+ """Set output container.
405
+
406
+ See :ref:`sphx_glr_auto_examples_miscellaneous_plot_set_output.py`
407
+ for an example on how to use the API.
408
+
409
+ Parameters
410
+ ----------
411
+ transform : {"default", "pandas"}, default=None
412
+ Configure output of `transform` and `fit_transform`.
413
+
414
+ - `"default"`: Default output format of a transformer
415
+ - `"pandas"`: DataFrame output
416
+ - `"polars"`: Polars output
417
+ - `None`: Transform configuration is unchanged
418
+
419
+ .. versionadded:: 1.4
420
+ `"polars"` option was added.
421
+
422
+ Returns
423
+ -------
424
+ self : estimator instance
425
+ Estimator instance.
426
+ """
427
+ if not hasattr(self, "_sklearn_output_config"):
428
+ self._sklearn_output_config = {}
429
+
430
+ self._sklearn_output_config["transform"] = transform
431
+ return self
env-llmeval/lib/python3.10/site-packages/sklearn/preprocessing/_label.py ADDED
@@ -0,0 +1,951 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Authors: Alexandre Gramfort <[email protected]>
2
+ # Mathieu Blondel <[email protected]>
3
+ # Olivier Grisel <[email protected]>
4
+ # Andreas Mueller <[email protected]>
5
+ # Joel Nothman <[email protected]>
6
+ # Hamzeh Alsalhi <[email protected]>
7
+ # License: BSD 3 clause
8
+
9
+ import array
10
+ import itertools
11
+ import warnings
12
+ from collections import defaultdict
13
+ from numbers import Integral
14
+
15
+ import numpy as np
16
+ import scipy.sparse as sp
17
+
18
+ from ..base import BaseEstimator, TransformerMixin, _fit_context
19
+ from ..utils import column_or_1d
20
+ from ..utils._encode import _encode, _unique
21
+ from ..utils._param_validation import Interval, validate_params
22
+ from ..utils.multiclass import type_of_target, unique_labels
23
+ from ..utils.sparsefuncs import min_max_axis
24
+ from ..utils.validation import _num_samples, check_array, check_is_fitted
25
+
26
+ __all__ = [
27
+ "label_binarize",
28
+ "LabelBinarizer",
29
+ "LabelEncoder",
30
+ "MultiLabelBinarizer",
31
+ ]
32
+
33
+
34
+ class LabelEncoder(TransformerMixin, BaseEstimator, auto_wrap_output_keys=None):
35
+ """Encode target labels with value between 0 and n_classes-1.
36
+
37
+ This transformer should be used to encode target values, *i.e.* `y`, and
38
+ not the input `X`.
39
+
40
+ Read more in the :ref:`User Guide <preprocessing_targets>`.
41
+
42
+ .. versionadded:: 0.12
43
+
44
+ Attributes
45
+ ----------
46
+ classes_ : ndarray of shape (n_classes,)
47
+ Holds the label for each class.
48
+
49
+ See Also
50
+ --------
51
+ OrdinalEncoder : Encode categorical features using an ordinal encoding
52
+ scheme.
53
+ OneHotEncoder : Encode categorical features as a one-hot numeric array.
54
+
55
+ Examples
56
+ --------
57
+ `LabelEncoder` can be used to normalize labels.
58
+
59
+ >>> from sklearn.preprocessing import LabelEncoder
60
+ >>> le = LabelEncoder()
61
+ >>> le.fit([1, 2, 2, 6])
62
+ LabelEncoder()
63
+ >>> le.classes_
64
+ array([1, 2, 6])
65
+ >>> le.transform([1, 1, 2, 6])
66
+ array([0, 0, 1, 2]...)
67
+ >>> le.inverse_transform([0, 0, 1, 2])
68
+ array([1, 1, 2, 6])
69
+
70
+ It can also be used to transform non-numerical labels (as long as they are
71
+ hashable and comparable) to numerical labels.
72
+
73
+ >>> le = LabelEncoder()
74
+ >>> le.fit(["paris", "paris", "tokyo", "amsterdam"])
75
+ LabelEncoder()
76
+ >>> list(le.classes_)
77
+ ['amsterdam', 'paris', 'tokyo']
78
+ >>> le.transform(["tokyo", "tokyo", "paris"])
79
+ array([2, 2, 1]...)
80
+ >>> list(le.inverse_transform([2, 2, 1]))
81
+ ['tokyo', 'tokyo', 'paris']
82
+ """
83
+
84
+ def fit(self, y):
85
+ """Fit label encoder.
86
+
87
+ Parameters
88
+ ----------
89
+ y : array-like of shape (n_samples,)
90
+ Target values.
91
+
92
+ Returns
93
+ -------
94
+ self : returns an instance of self.
95
+ Fitted label encoder.
96
+ """
97
+ y = column_or_1d(y, warn=True)
98
+ self.classes_ = _unique(y)
99
+ return self
100
+
101
+ def fit_transform(self, y):
102
+ """Fit label encoder and return encoded labels.
103
+
104
+ Parameters
105
+ ----------
106
+ y : array-like of shape (n_samples,)
107
+ Target values.
108
+
109
+ Returns
110
+ -------
111
+ y : array-like of shape (n_samples,)
112
+ Encoded labels.
113
+ """
114
+ y = column_or_1d(y, warn=True)
115
+ self.classes_, y = _unique(y, return_inverse=True)
116
+ return y
117
+
118
+ def transform(self, y):
119
+ """Transform labels to normalized encoding.
120
+
121
+ Parameters
122
+ ----------
123
+ y : array-like of shape (n_samples,)
124
+ Target values.
125
+
126
+ Returns
127
+ -------
128
+ y : array-like of shape (n_samples,)
129
+ Labels as normalized encodings.
130
+ """
131
+ check_is_fitted(self)
132
+ y = column_or_1d(y, dtype=self.classes_.dtype, warn=True)
133
+ # transform of empty array is empty array
134
+ if _num_samples(y) == 0:
135
+ return np.array([])
136
+
137
+ return _encode(y, uniques=self.classes_)
138
+
139
+ def inverse_transform(self, y):
140
+ """Transform labels back to original encoding.
141
+
142
+ Parameters
143
+ ----------
144
+ y : ndarray of shape (n_samples,)
145
+ Target values.
146
+
147
+ Returns
148
+ -------
149
+ y : ndarray of shape (n_samples,)
150
+ Original encoding.
151
+ """
152
+ check_is_fitted(self)
153
+ y = column_or_1d(y, warn=True)
154
+ # inverse transform of empty array is empty array
155
+ if _num_samples(y) == 0:
156
+ return np.array([])
157
+
158
+ diff = np.setdiff1d(y, np.arange(len(self.classes_)))
159
+ if len(diff):
160
+ raise ValueError("y contains previously unseen labels: %s" % str(diff))
161
+ y = np.asarray(y)
162
+ return self.classes_[y]
163
+
164
+ def _more_tags(self):
165
+ return {"X_types": ["1dlabels"]}
166
+
167
+
168
+ class LabelBinarizer(TransformerMixin, BaseEstimator, auto_wrap_output_keys=None):
169
+ """Binarize labels in a one-vs-all fashion.
170
+
171
+ Several regression and binary classification algorithms are
172
+ available in scikit-learn. A simple way to extend these algorithms
173
+ to the multi-class classification case is to use the so-called
174
+ one-vs-all scheme.
175
+
176
+ At learning time, this simply consists in learning one regressor
177
+ or binary classifier per class. In doing so, one needs to convert
178
+ multi-class labels to binary labels (belong or does not belong
179
+ to the class). `LabelBinarizer` makes this process easy with the
180
+ transform method.
181
+
182
+ At prediction time, one assigns the class for which the corresponding
183
+ model gave the greatest confidence. `LabelBinarizer` makes this easy
184
+ with the :meth:`inverse_transform` method.
185
+
186
+ Read more in the :ref:`User Guide <preprocessing_targets>`.
187
+
188
+ Parameters
189
+ ----------
190
+ neg_label : int, default=0
191
+ Value with which negative labels must be encoded.
192
+
193
+ pos_label : int, default=1
194
+ Value with which positive labels must be encoded.
195
+
196
+ sparse_output : bool, default=False
197
+ True if the returned array from transform is desired to be in sparse
198
+ CSR format.
199
+
200
+ Attributes
201
+ ----------
202
+ classes_ : ndarray of shape (n_classes,)
203
+ Holds the label for each class.
204
+
205
+ y_type_ : str
206
+ Represents the type of the target data as evaluated by
207
+ :func:`~sklearn.utils.multiclass.type_of_target`. Possible type are
208
+ 'continuous', 'continuous-multioutput', 'binary', 'multiclass',
209
+ 'multiclass-multioutput', 'multilabel-indicator', and 'unknown'.
210
+
211
+ sparse_input_ : bool
212
+ `True` if the input data to transform is given as a sparse matrix,
213
+ `False` otherwise.
214
+
215
+ See Also
216
+ --------
217
+ label_binarize : Function to perform the transform operation of
218
+ LabelBinarizer with fixed classes.
219
+ OneHotEncoder : Encode categorical features using a one-hot aka one-of-K
220
+ scheme.
221
+
222
+ Examples
223
+ --------
224
+ >>> from sklearn.preprocessing import LabelBinarizer
225
+ >>> lb = LabelBinarizer()
226
+ >>> lb.fit([1, 2, 6, 4, 2])
227
+ LabelBinarizer()
228
+ >>> lb.classes_
229
+ array([1, 2, 4, 6])
230
+ >>> lb.transform([1, 6])
231
+ array([[1, 0, 0, 0],
232
+ [0, 0, 0, 1]])
233
+
234
+ Binary targets transform to a column vector
235
+
236
+ >>> lb = LabelBinarizer()
237
+ >>> lb.fit_transform(['yes', 'no', 'no', 'yes'])
238
+ array([[1],
239
+ [0],
240
+ [0],
241
+ [1]])
242
+
243
+ Passing a 2D matrix for multilabel classification
244
+
245
+ >>> import numpy as np
246
+ >>> lb.fit(np.array([[0, 1, 1], [1, 0, 0]]))
247
+ LabelBinarizer()
248
+ >>> lb.classes_
249
+ array([0, 1, 2])
250
+ >>> lb.transform([0, 1, 2, 1])
251
+ array([[1, 0, 0],
252
+ [0, 1, 0],
253
+ [0, 0, 1],
254
+ [0, 1, 0]])
255
+ """
256
+
257
+ _parameter_constraints: dict = {
258
+ "neg_label": [Integral],
259
+ "pos_label": [Integral],
260
+ "sparse_output": ["boolean"],
261
+ }
262
+
263
+ def __init__(self, *, neg_label=0, pos_label=1, sparse_output=False):
264
+ self.neg_label = neg_label
265
+ self.pos_label = pos_label
266
+ self.sparse_output = sparse_output
267
+
268
+ @_fit_context(prefer_skip_nested_validation=True)
269
+ def fit(self, y):
270
+ """Fit label binarizer.
271
+
272
+ Parameters
273
+ ----------
274
+ y : ndarray of shape (n_samples,) or (n_samples, n_classes)
275
+ Target values. The 2-d matrix should only contain 0 and 1,
276
+ represents multilabel classification.
277
+
278
+ Returns
279
+ -------
280
+ self : object
281
+ Returns the instance itself.
282
+ """
283
+ if self.neg_label >= self.pos_label:
284
+ raise ValueError(
285
+ f"neg_label={self.neg_label} must be strictly less than "
286
+ f"pos_label={self.pos_label}."
287
+ )
288
+
289
+ if self.sparse_output and (self.pos_label == 0 or self.neg_label != 0):
290
+ raise ValueError(
291
+ "Sparse binarization is only supported with non "
292
+ "zero pos_label and zero neg_label, got "
293
+ f"pos_label={self.pos_label} and neg_label={self.neg_label}"
294
+ )
295
+
296
+ self.y_type_ = type_of_target(y, input_name="y")
297
+
298
+ if "multioutput" in self.y_type_:
299
+ raise ValueError(
300
+ "Multioutput target data is not supported with label binarization"
301
+ )
302
+ if _num_samples(y) == 0:
303
+ raise ValueError("y has 0 samples: %r" % y)
304
+
305
+ self.sparse_input_ = sp.issparse(y)
306
+ self.classes_ = unique_labels(y)
307
+ return self
308
+
309
+ def fit_transform(self, y):
310
+ """Fit label binarizer/transform multi-class labels to binary labels.
311
+
312
+ The output of transform is sometimes referred to as
313
+ the 1-of-K coding scheme.
314
+
315
+ Parameters
316
+ ----------
317
+ y : {ndarray, sparse matrix} of shape (n_samples,) or \
318
+ (n_samples, n_classes)
319
+ Target values. The 2-d matrix should only contain 0 and 1,
320
+ represents multilabel classification. Sparse matrix can be
321
+ CSR, CSC, COO, DOK, or LIL.
322
+
323
+ Returns
324
+ -------
325
+ Y : {ndarray, sparse matrix} of shape (n_samples, n_classes)
326
+ Shape will be (n_samples, 1) for binary problems. Sparse matrix
327
+ will be of CSR format.
328
+ """
329
+ return self.fit(y).transform(y)
330
+
331
+ def transform(self, y):
332
+ """Transform multi-class labels to binary labels.
333
+
334
+ The output of transform is sometimes referred to by some authors as
335
+ the 1-of-K coding scheme.
336
+
337
+ Parameters
338
+ ----------
339
+ y : {array, sparse matrix} of shape (n_samples,) or \
340
+ (n_samples, n_classes)
341
+ Target values. The 2-d matrix should only contain 0 and 1,
342
+ represents multilabel classification. Sparse matrix can be
343
+ CSR, CSC, COO, DOK, or LIL.
344
+
345
+ Returns
346
+ -------
347
+ Y : {ndarray, sparse matrix} of shape (n_samples, n_classes)
348
+ Shape will be (n_samples, 1) for binary problems. Sparse matrix
349
+ will be of CSR format.
350
+ """
351
+ check_is_fitted(self)
352
+
353
+ y_is_multilabel = type_of_target(y).startswith("multilabel")
354
+ if y_is_multilabel and not self.y_type_.startswith("multilabel"):
355
+ raise ValueError("The object was not fitted with multilabel input.")
356
+
357
+ return label_binarize(
358
+ y,
359
+ classes=self.classes_,
360
+ pos_label=self.pos_label,
361
+ neg_label=self.neg_label,
362
+ sparse_output=self.sparse_output,
363
+ )
364
+
365
+ def inverse_transform(self, Y, threshold=None):
366
+ """Transform binary labels back to multi-class labels.
367
+
368
+ Parameters
369
+ ----------
370
+ Y : {ndarray, sparse matrix} of shape (n_samples, n_classes)
371
+ Target values. All sparse matrices are converted to CSR before
372
+ inverse transformation.
373
+
374
+ threshold : float, default=None
375
+ Threshold used in the binary and multi-label cases.
376
+
377
+ Use 0 when ``Y`` contains the output of :term:`decision_function`
378
+ (classifier).
379
+ Use 0.5 when ``Y`` contains the output of :term:`predict_proba`.
380
+
381
+ If None, the threshold is assumed to be half way between
382
+ neg_label and pos_label.
383
+
384
+ Returns
385
+ -------
386
+ y : {ndarray, sparse matrix} of shape (n_samples,)
387
+ Target values. Sparse matrix will be of CSR format.
388
+
389
+ Notes
390
+ -----
391
+ In the case when the binary labels are fractional
392
+ (probabilistic), :meth:`inverse_transform` chooses the class with the
393
+ greatest value. Typically, this allows to use the output of a
394
+ linear model's :term:`decision_function` method directly as the input
395
+ of :meth:`inverse_transform`.
396
+ """
397
+ check_is_fitted(self)
398
+
399
+ if threshold is None:
400
+ threshold = (self.pos_label + self.neg_label) / 2.0
401
+
402
+ if self.y_type_ == "multiclass":
403
+ y_inv = _inverse_binarize_multiclass(Y, self.classes_)
404
+ else:
405
+ y_inv = _inverse_binarize_thresholding(
406
+ Y, self.y_type_, self.classes_, threshold
407
+ )
408
+
409
+ if self.sparse_input_:
410
+ y_inv = sp.csr_matrix(y_inv)
411
+ elif sp.issparse(y_inv):
412
+ y_inv = y_inv.toarray()
413
+
414
+ return y_inv
415
+
416
+ def _more_tags(self):
417
+ return {"X_types": ["1dlabels"]}
418
+
419
+
420
+ @validate_params(
421
+ {
422
+ "y": ["array-like"],
423
+ "classes": ["array-like"],
424
+ "neg_label": [Interval(Integral, None, None, closed="neither")],
425
+ "pos_label": [Interval(Integral, None, None, closed="neither")],
426
+ "sparse_output": ["boolean"],
427
+ },
428
+ prefer_skip_nested_validation=True,
429
+ )
430
+ def label_binarize(y, *, classes, neg_label=0, pos_label=1, sparse_output=False):
431
+ """Binarize labels in a one-vs-all fashion.
432
+
433
+ Several regression and binary classification algorithms are
434
+ available in scikit-learn. A simple way to extend these algorithms
435
+ to the multi-class classification case is to use the so-called
436
+ one-vs-all scheme.
437
+
438
+ This function makes it possible to compute this transformation for a
439
+ fixed set of class labels known ahead of time.
440
+
441
+ Parameters
442
+ ----------
443
+ y : array-like
444
+ Sequence of integer labels or multilabel data to encode.
445
+
446
+ classes : array-like of shape (n_classes,)
447
+ Uniquely holds the label for each class.
448
+
449
+ neg_label : int, default=0
450
+ Value with which negative labels must be encoded.
451
+
452
+ pos_label : int, default=1
453
+ Value with which positive labels must be encoded.
454
+
455
+ sparse_output : bool, default=False,
456
+ Set to true if output binary array is desired in CSR sparse format.
457
+
458
+ Returns
459
+ -------
460
+ Y : {ndarray, sparse matrix} of shape (n_samples, n_classes)
461
+ Shape will be (n_samples, 1) for binary problems. Sparse matrix will
462
+ be of CSR format.
463
+
464
+ See Also
465
+ --------
466
+ LabelBinarizer : Class used to wrap the functionality of label_binarize and
467
+ allow for fitting to classes independently of the transform operation.
468
+
469
+ Examples
470
+ --------
471
+ >>> from sklearn.preprocessing import label_binarize
472
+ >>> label_binarize([1, 6], classes=[1, 2, 4, 6])
473
+ array([[1, 0, 0, 0],
474
+ [0, 0, 0, 1]])
475
+
476
+ The class ordering is preserved:
477
+
478
+ >>> label_binarize([1, 6], classes=[1, 6, 4, 2])
479
+ array([[1, 0, 0, 0],
480
+ [0, 1, 0, 0]])
481
+
482
+ Binary targets transform to a column vector
483
+
484
+ >>> label_binarize(['yes', 'no', 'no', 'yes'], classes=['no', 'yes'])
485
+ array([[1],
486
+ [0],
487
+ [0],
488
+ [1]])
489
+ """
490
+ if not isinstance(y, list):
491
+ # XXX Workaround that will be removed when list of list format is
492
+ # dropped
493
+ y = check_array(
494
+ y, input_name="y", accept_sparse="csr", ensure_2d=False, dtype=None
495
+ )
496
+ else:
497
+ if _num_samples(y) == 0:
498
+ raise ValueError("y has 0 samples: %r" % y)
499
+ if neg_label >= pos_label:
500
+ raise ValueError(
501
+ "neg_label={0} must be strictly less than pos_label={1}.".format(
502
+ neg_label, pos_label
503
+ )
504
+ )
505
+
506
+ if sparse_output and (pos_label == 0 or neg_label != 0):
507
+ raise ValueError(
508
+ "Sparse binarization is only supported with non "
509
+ "zero pos_label and zero neg_label, got "
510
+ "pos_label={0} and neg_label={1}"
511
+ "".format(pos_label, neg_label)
512
+ )
513
+
514
+ # To account for pos_label == 0 in the dense case
515
+ pos_switch = pos_label == 0
516
+ if pos_switch:
517
+ pos_label = -neg_label
518
+
519
+ y_type = type_of_target(y)
520
+ if "multioutput" in y_type:
521
+ raise ValueError(
522
+ "Multioutput target data is not supported with label binarization"
523
+ )
524
+ if y_type == "unknown":
525
+ raise ValueError("The type of target data is not known")
526
+
527
+ n_samples = y.shape[0] if sp.issparse(y) else len(y)
528
+ n_classes = len(classes)
529
+ classes = np.asarray(classes)
530
+
531
+ if y_type == "binary":
532
+ if n_classes == 1:
533
+ if sparse_output:
534
+ return sp.csr_matrix((n_samples, 1), dtype=int)
535
+ else:
536
+ Y = np.zeros((len(y), 1), dtype=int)
537
+ Y += neg_label
538
+ return Y
539
+ elif len(classes) >= 3:
540
+ y_type = "multiclass"
541
+
542
+ sorted_class = np.sort(classes)
543
+ if y_type == "multilabel-indicator":
544
+ y_n_classes = y.shape[1] if hasattr(y, "shape") else len(y[0])
545
+ if classes.size != y_n_classes:
546
+ raise ValueError(
547
+ "classes {0} mismatch with the labels {1} found in the data".format(
548
+ classes, unique_labels(y)
549
+ )
550
+ )
551
+
552
+ if y_type in ("binary", "multiclass"):
553
+ y = column_or_1d(y)
554
+
555
+ # pick out the known labels from y
556
+ y_in_classes = np.isin(y, classes)
557
+ y_seen = y[y_in_classes]
558
+ indices = np.searchsorted(sorted_class, y_seen)
559
+ indptr = np.hstack((0, np.cumsum(y_in_classes)))
560
+
561
+ data = np.empty_like(indices)
562
+ data.fill(pos_label)
563
+ Y = sp.csr_matrix((data, indices, indptr), shape=(n_samples, n_classes))
564
+ elif y_type == "multilabel-indicator":
565
+ Y = sp.csr_matrix(y)
566
+ if pos_label != 1:
567
+ data = np.empty_like(Y.data)
568
+ data.fill(pos_label)
569
+ Y.data = data
570
+ else:
571
+ raise ValueError(
572
+ "%s target data is not supported with label binarization" % y_type
573
+ )
574
+
575
+ if not sparse_output:
576
+ Y = Y.toarray()
577
+ Y = Y.astype(int, copy=False)
578
+
579
+ if neg_label != 0:
580
+ Y[Y == 0] = neg_label
581
+
582
+ if pos_switch:
583
+ Y[Y == pos_label] = 0
584
+ else:
585
+ Y.data = Y.data.astype(int, copy=False)
586
+
587
+ # preserve label ordering
588
+ if np.any(classes != sorted_class):
589
+ indices = np.searchsorted(sorted_class, classes)
590
+ Y = Y[:, indices]
591
+
592
+ if y_type == "binary":
593
+ if sparse_output:
594
+ Y = Y.getcol(-1)
595
+ else:
596
+ Y = Y[:, -1].reshape((-1, 1))
597
+
598
+ return Y
599
+
600
+
601
+ def _inverse_binarize_multiclass(y, classes):
602
+ """Inverse label binarization transformation for multiclass.
603
+
604
+ Multiclass uses the maximal score instead of a threshold.
605
+ """
606
+ classes = np.asarray(classes)
607
+
608
+ if sp.issparse(y):
609
+ # Find the argmax for each row in y where y is a CSR matrix
610
+
611
+ y = y.tocsr()
612
+ n_samples, n_outputs = y.shape
613
+ outputs = np.arange(n_outputs)
614
+ row_max = min_max_axis(y, 1)[1]
615
+ row_nnz = np.diff(y.indptr)
616
+
617
+ y_data_repeated_max = np.repeat(row_max, row_nnz)
618
+ # picks out all indices obtaining the maximum per row
619
+ y_i_all_argmax = np.flatnonzero(y_data_repeated_max == y.data)
620
+
621
+ # For corner case where last row has a max of 0
622
+ if row_max[-1] == 0:
623
+ y_i_all_argmax = np.append(y_i_all_argmax, [len(y.data)])
624
+
625
+ # Gets the index of the first argmax in each row from y_i_all_argmax
626
+ index_first_argmax = np.searchsorted(y_i_all_argmax, y.indptr[:-1])
627
+ # first argmax of each row
628
+ y_ind_ext = np.append(y.indices, [0])
629
+ y_i_argmax = y_ind_ext[y_i_all_argmax[index_first_argmax]]
630
+ # Handle rows of all 0
631
+ y_i_argmax[np.where(row_nnz == 0)[0]] = 0
632
+
633
+ # Handles rows with max of 0 that contain negative numbers
634
+ samples = np.arange(n_samples)[(row_nnz > 0) & (row_max.ravel() == 0)]
635
+ for i in samples:
636
+ ind = y.indices[y.indptr[i] : y.indptr[i + 1]]
637
+ y_i_argmax[i] = classes[np.setdiff1d(outputs, ind)][0]
638
+
639
+ return classes[y_i_argmax]
640
+ else:
641
+ return classes.take(y.argmax(axis=1), mode="clip")
642
+
643
+
644
+ def _inverse_binarize_thresholding(y, output_type, classes, threshold):
645
+ """Inverse label binarization transformation using thresholding."""
646
+
647
+ if output_type == "binary" and y.ndim == 2 and y.shape[1] > 2:
648
+ raise ValueError("output_type='binary', but y.shape = {0}".format(y.shape))
649
+
650
+ if output_type != "binary" and y.shape[1] != len(classes):
651
+ raise ValueError(
652
+ "The number of class is not equal to the number of dimension of y."
653
+ )
654
+
655
+ classes = np.asarray(classes)
656
+
657
+ # Perform thresholding
658
+ if sp.issparse(y):
659
+ if threshold > 0:
660
+ if y.format not in ("csr", "csc"):
661
+ y = y.tocsr()
662
+ y.data = np.array(y.data > threshold, dtype=int)
663
+ y.eliminate_zeros()
664
+ else:
665
+ y = np.array(y.toarray() > threshold, dtype=int)
666
+ else:
667
+ y = np.array(y > threshold, dtype=int)
668
+
669
+ # Inverse transform data
670
+ if output_type == "binary":
671
+ if sp.issparse(y):
672
+ y = y.toarray()
673
+ if y.ndim == 2 and y.shape[1] == 2:
674
+ return classes[y[:, 1]]
675
+ else:
676
+ if len(classes) == 1:
677
+ return np.repeat(classes[0], len(y))
678
+ else:
679
+ return classes[y.ravel()]
680
+
681
+ elif output_type == "multilabel-indicator":
682
+ return y
683
+
684
+ else:
685
+ raise ValueError("{0} format is not supported".format(output_type))
686
+
687
+
688
+ class MultiLabelBinarizer(TransformerMixin, BaseEstimator, auto_wrap_output_keys=None):
689
+ """Transform between iterable of iterables and a multilabel format.
690
+
691
+ Although a list of sets or tuples is a very intuitive format for multilabel
692
+ data, it is unwieldy to process. This transformer converts between this
693
+ intuitive format and the supported multilabel format: a (samples x classes)
694
+ binary matrix indicating the presence of a class label.
695
+
696
+ Parameters
697
+ ----------
698
+ classes : array-like of shape (n_classes,), default=None
699
+ Indicates an ordering for the class labels.
700
+ All entries should be unique (cannot contain duplicate classes).
701
+
702
+ sparse_output : bool, default=False
703
+ Set to True if output binary array is desired in CSR sparse format.
704
+
705
+ Attributes
706
+ ----------
707
+ classes_ : ndarray of shape (n_classes,)
708
+ A copy of the `classes` parameter when provided.
709
+ Otherwise it corresponds to the sorted set of classes found
710
+ when fitting.
711
+
712
+ See Also
713
+ --------
714
+ OneHotEncoder : Encode categorical features using a one-hot aka one-of-K
715
+ scheme.
716
+
717
+ Examples
718
+ --------
719
+ >>> from sklearn.preprocessing import MultiLabelBinarizer
720
+ >>> mlb = MultiLabelBinarizer()
721
+ >>> mlb.fit_transform([(1, 2), (3,)])
722
+ array([[1, 1, 0],
723
+ [0, 0, 1]])
724
+ >>> mlb.classes_
725
+ array([1, 2, 3])
726
+
727
+ >>> mlb.fit_transform([{'sci-fi', 'thriller'}, {'comedy'}])
728
+ array([[0, 1, 1],
729
+ [1, 0, 0]])
730
+ >>> list(mlb.classes_)
731
+ ['comedy', 'sci-fi', 'thriller']
732
+
733
+ A common mistake is to pass in a list, which leads to the following issue:
734
+
735
+ >>> mlb = MultiLabelBinarizer()
736
+ >>> mlb.fit(['sci-fi', 'thriller', 'comedy'])
737
+ MultiLabelBinarizer()
738
+ >>> mlb.classes_
739
+ array(['-', 'c', 'd', 'e', 'f', 'h', 'i', 'l', 'm', 'o', 'r', 's', 't',
740
+ 'y'], dtype=object)
741
+
742
+ To correct this, the list of labels should be passed in as:
743
+
744
+ >>> mlb = MultiLabelBinarizer()
745
+ >>> mlb.fit([['sci-fi', 'thriller', 'comedy']])
746
+ MultiLabelBinarizer()
747
+ >>> mlb.classes_
748
+ array(['comedy', 'sci-fi', 'thriller'], dtype=object)
749
+ """
750
+
751
+ _parameter_constraints: dict = {
752
+ "classes": ["array-like", None],
753
+ "sparse_output": ["boolean"],
754
+ }
755
+
756
+ def __init__(self, *, classes=None, sparse_output=False):
757
+ self.classes = classes
758
+ self.sparse_output = sparse_output
759
+
760
+ @_fit_context(prefer_skip_nested_validation=True)
761
+ def fit(self, y):
762
+ """Fit the label sets binarizer, storing :term:`classes_`.
763
+
764
+ Parameters
765
+ ----------
766
+ y : iterable of iterables
767
+ A set of labels (any orderable and hashable object) for each
768
+ sample. If the `classes` parameter is set, `y` will not be
769
+ iterated.
770
+
771
+ Returns
772
+ -------
773
+ self : object
774
+ Fitted estimator.
775
+ """
776
+ self._cached_dict = None
777
+
778
+ if self.classes is None:
779
+ classes = sorted(set(itertools.chain.from_iterable(y)))
780
+ elif len(set(self.classes)) < len(self.classes):
781
+ raise ValueError(
782
+ "The classes argument contains duplicate "
783
+ "classes. Remove these duplicates before passing "
784
+ "them to MultiLabelBinarizer."
785
+ )
786
+ else:
787
+ classes = self.classes
788
+ dtype = int if all(isinstance(c, int) for c in classes) else object
789
+ self.classes_ = np.empty(len(classes), dtype=dtype)
790
+ self.classes_[:] = classes
791
+ return self
792
+
793
+ @_fit_context(prefer_skip_nested_validation=True)
794
+ def fit_transform(self, y):
795
+ """Fit the label sets binarizer and transform the given label sets.
796
+
797
+ Parameters
798
+ ----------
799
+ y : iterable of iterables
800
+ A set of labels (any orderable and hashable object) for each
801
+ sample. If the `classes` parameter is set, `y` will not be
802
+ iterated.
803
+
804
+ Returns
805
+ -------
806
+ y_indicator : {ndarray, sparse matrix} of shape (n_samples, n_classes)
807
+ A matrix such that `y_indicator[i, j] = 1` iff `classes_[j]`
808
+ is in `y[i]`, and 0 otherwise. Sparse matrix will be of CSR
809
+ format.
810
+ """
811
+ if self.classes is not None:
812
+ return self.fit(y).transform(y)
813
+
814
+ self._cached_dict = None
815
+
816
+ # Automatically increment on new class
817
+ class_mapping = defaultdict(int)
818
+ class_mapping.default_factory = class_mapping.__len__
819
+ yt = self._transform(y, class_mapping)
820
+
821
+ # sort classes and reorder columns
822
+ tmp = sorted(class_mapping, key=class_mapping.get)
823
+
824
+ # (make safe for tuples)
825
+ dtype = int if all(isinstance(c, int) for c in tmp) else object
826
+ class_mapping = np.empty(len(tmp), dtype=dtype)
827
+ class_mapping[:] = tmp
828
+ self.classes_, inverse = np.unique(class_mapping, return_inverse=True)
829
+ # ensure yt.indices keeps its current dtype
830
+ yt.indices = np.asarray(inverse[yt.indices], dtype=yt.indices.dtype)
831
+
832
+ if not self.sparse_output:
833
+ yt = yt.toarray()
834
+
835
+ return yt
836
+
837
+ def transform(self, y):
838
+ """Transform the given label sets.
839
+
840
+ Parameters
841
+ ----------
842
+ y : iterable of iterables
843
+ A set of labels (any orderable and hashable object) for each
844
+ sample. If the `classes` parameter is set, `y` will not be
845
+ iterated.
846
+
847
+ Returns
848
+ -------
849
+ y_indicator : array or CSR matrix, shape (n_samples, n_classes)
850
+ A matrix such that `y_indicator[i, j] = 1` iff `classes_[j]` is in
851
+ `y[i]`, and 0 otherwise.
852
+ """
853
+ check_is_fitted(self)
854
+
855
+ class_to_index = self._build_cache()
856
+ yt = self._transform(y, class_to_index)
857
+
858
+ if not self.sparse_output:
859
+ yt = yt.toarray()
860
+
861
+ return yt
862
+
863
+ def _build_cache(self):
864
+ if self._cached_dict is None:
865
+ self._cached_dict = dict(zip(self.classes_, range(len(self.classes_))))
866
+
867
+ return self._cached_dict
868
+
869
+ def _transform(self, y, class_mapping):
870
+ """Transforms the label sets with a given mapping.
871
+
872
+ Parameters
873
+ ----------
874
+ y : iterable of iterables
875
+ A set of labels (any orderable and hashable object) for each
876
+ sample. If the `classes` parameter is set, `y` will not be
877
+ iterated.
878
+
879
+ class_mapping : Mapping
880
+ Maps from label to column index in label indicator matrix.
881
+
882
+ Returns
883
+ -------
884
+ y_indicator : sparse matrix of shape (n_samples, n_classes)
885
+ Label indicator matrix. Will be of CSR format.
886
+ """
887
+ indices = array.array("i")
888
+ indptr = array.array("i", [0])
889
+ unknown = set()
890
+ for labels in y:
891
+ index = set()
892
+ for label in labels:
893
+ try:
894
+ index.add(class_mapping[label])
895
+ except KeyError:
896
+ unknown.add(label)
897
+ indices.extend(index)
898
+ indptr.append(len(indices))
899
+ if unknown:
900
+ warnings.warn(
901
+ "unknown class(es) {0} will be ignored".format(sorted(unknown, key=str))
902
+ )
903
+ data = np.ones(len(indices), dtype=int)
904
+
905
+ return sp.csr_matrix(
906
+ (data, indices, indptr), shape=(len(indptr) - 1, len(class_mapping))
907
+ )
908
+
909
+ def inverse_transform(self, yt):
910
+ """Transform the given indicator matrix into label sets.
911
+
912
+ Parameters
913
+ ----------
914
+ yt : {ndarray, sparse matrix} of shape (n_samples, n_classes)
915
+ A matrix containing only 1s ands 0s.
916
+
917
+ Returns
918
+ -------
919
+ y : list of tuples
920
+ The set of labels for each sample such that `y[i]` consists of
921
+ `classes_[j]` for each `yt[i, j] == 1`.
922
+ """
923
+ check_is_fitted(self)
924
+
925
+ if yt.shape[1] != len(self.classes_):
926
+ raise ValueError(
927
+ "Expected indicator for {0} classes, but got {1}".format(
928
+ len(self.classes_), yt.shape[1]
929
+ )
930
+ )
931
+
932
+ if sp.issparse(yt):
933
+ yt = yt.tocsr()
934
+ if len(yt.data) != 0 and len(np.setdiff1d(yt.data, [0, 1])) > 0:
935
+ raise ValueError("Expected only 0s and 1s in label indicator.")
936
+ return [
937
+ tuple(self.classes_.take(yt.indices[start:end]))
938
+ for start, end in zip(yt.indptr[:-1], yt.indptr[1:])
939
+ ]
940
+ else:
941
+ unexpected = np.setdiff1d(yt, [0, 1])
942
+ if len(unexpected) > 0:
943
+ raise ValueError(
944
+ "Expected only 0s and 1s in label indicator. Also got {0}".format(
945
+ unexpected
946
+ )
947
+ )
948
+ return [tuple(self.classes_.compress(indicators)) for indicators in yt]
949
+
950
+ def _more_tags(self):
951
+ return {"X_types": ["2dlabels"]}
env-llmeval/lib/python3.10/site-packages/sklearn/preprocessing/_polynomial.py ADDED
@@ -0,0 +1,1172 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ This file contains preprocessing tools based on polynomials.
3
+ """
4
+ import collections
5
+ from itertools import chain, combinations
6
+ from itertools import combinations_with_replacement as combinations_w_r
7
+ from numbers import Integral
8
+
9
+ import numpy as np
10
+ from scipy import sparse
11
+ from scipy.interpolate import BSpline
12
+ from scipy.special import comb
13
+
14
+ from ..base import BaseEstimator, TransformerMixin, _fit_context
15
+ from ..utils import check_array
16
+ from ..utils._param_validation import Interval, StrOptions
17
+ from ..utils.fixes import parse_version, sp_version
18
+ from ..utils.stats import _weighted_percentile
19
+ from ..utils.validation import (
20
+ FLOAT_DTYPES,
21
+ _check_feature_names_in,
22
+ _check_sample_weight,
23
+ check_is_fitted,
24
+ )
25
+ from ._csr_polynomial_expansion import (
26
+ _calc_expanded_nnz,
27
+ _calc_total_nnz,
28
+ _csr_polynomial_expansion,
29
+ )
30
+
31
+ __all__ = [
32
+ "PolynomialFeatures",
33
+ "SplineTransformer",
34
+ ]
35
+
36
+
37
+ def _create_expansion(X, interaction_only, deg, n_features, cumulative_size=0):
38
+ """Helper function for creating and appending sparse expansion matrices"""
39
+
40
+ total_nnz = _calc_total_nnz(X.indptr, interaction_only, deg)
41
+ expanded_col = _calc_expanded_nnz(n_features, interaction_only, deg)
42
+
43
+ if expanded_col == 0:
44
+ return None
45
+ # This only checks whether each block needs 64bit integers upon
46
+ # expansion. We prefer to keep int32 indexing where we can,
47
+ # since currently SciPy's CSR construction downcasts when possible,
48
+ # so we prefer to avoid an unnecessary cast. The dtype may still
49
+ # change in the concatenation process if needed.
50
+ # See: https://github.com/scipy/scipy/issues/16569
51
+ max_indices = expanded_col - 1
52
+ max_indptr = total_nnz
53
+ max_int32 = np.iinfo(np.int32).max
54
+ needs_int64 = max(max_indices, max_indptr) > max_int32
55
+ index_dtype = np.int64 if needs_int64 else np.int32
56
+
57
+ # This is a pretty specific bug that is hard to work around by a user,
58
+ # hence we do not detail the entire bug and all possible avoidance
59
+ # mechnasisms. Instead we recommend upgrading scipy or shrinking their data.
60
+ cumulative_size += expanded_col
61
+ if (
62
+ sp_version < parse_version("1.8.0")
63
+ and cumulative_size - 1 > max_int32
64
+ and not needs_int64
65
+ ):
66
+ raise ValueError(
67
+ "In scipy versions `<1.8.0`, the function `scipy.sparse.hstack`"
68
+ " sometimes produces negative columns when the output shape contains"
69
+ " `n_cols` too large to be represented by a 32bit signed"
70
+ " integer. To avoid this error, either use a version"
71
+ " of scipy `>=1.8.0` or alter the `PolynomialFeatures`"
72
+ " transformer to produce fewer than 2^31 output features."
73
+ )
74
+
75
+ # Result of the expansion, modified in place by the
76
+ # `_csr_polynomial_expansion` routine.
77
+ expanded_data = np.empty(shape=total_nnz, dtype=X.data.dtype)
78
+ expanded_indices = np.empty(shape=total_nnz, dtype=index_dtype)
79
+ expanded_indptr = np.empty(shape=X.indptr.shape[0], dtype=index_dtype)
80
+ _csr_polynomial_expansion(
81
+ X.data,
82
+ X.indices,
83
+ X.indptr,
84
+ X.shape[1],
85
+ expanded_data,
86
+ expanded_indices,
87
+ expanded_indptr,
88
+ interaction_only,
89
+ deg,
90
+ )
91
+ return sparse.csr_matrix(
92
+ (expanded_data, expanded_indices, expanded_indptr),
93
+ shape=(X.indptr.shape[0] - 1, expanded_col),
94
+ dtype=X.dtype,
95
+ )
96
+
97
+
98
+ class PolynomialFeatures(TransformerMixin, BaseEstimator):
99
+ """Generate polynomial and interaction features.
100
+
101
+ Generate a new feature matrix consisting of all polynomial combinations
102
+ of the features with degree less than or equal to the specified degree.
103
+ For example, if an input sample is two dimensional and of the form
104
+ [a, b], the degree-2 polynomial features are [1, a, b, a^2, ab, b^2].
105
+
106
+ Read more in the :ref:`User Guide <polynomial_features>`.
107
+
108
+ Parameters
109
+ ----------
110
+ degree : int or tuple (min_degree, max_degree), default=2
111
+ If a single int is given, it specifies the maximal degree of the
112
+ polynomial features. If a tuple `(min_degree, max_degree)` is passed,
113
+ then `min_degree` is the minimum and `max_degree` is the maximum
114
+ polynomial degree of the generated features. Note that `min_degree=0`
115
+ and `min_degree=1` are equivalent as outputting the degree zero term is
116
+ determined by `include_bias`.
117
+
118
+ interaction_only : bool, default=False
119
+ If `True`, only interaction features are produced: features that are
120
+ products of at most `degree` *distinct* input features, i.e. terms with
121
+ power of 2 or higher of the same input feature are excluded:
122
+
123
+ - included: `x[0]`, `x[1]`, `x[0] * x[1]`, etc.
124
+ - excluded: `x[0] ** 2`, `x[0] ** 2 * x[1]`, etc.
125
+
126
+ include_bias : bool, default=True
127
+ If `True` (default), then include a bias column, the feature in which
128
+ all polynomial powers are zero (i.e. a column of ones - acts as an
129
+ intercept term in a linear model).
130
+
131
+ order : {'C', 'F'}, default='C'
132
+ Order of output array in the dense case. `'F'` order is faster to
133
+ compute, but may slow down subsequent estimators.
134
+
135
+ .. versionadded:: 0.21
136
+
137
+ Attributes
138
+ ----------
139
+ powers_ : ndarray of shape (`n_output_features_`, `n_features_in_`)
140
+ `powers_[i, j]` is the exponent of the jth input in the ith output.
141
+
142
+ n_features_in_ : int
143
+ Number of features seen during :term:`fit`.
144
+
145
+ .. versionadded:: 0.24
146
+
147
+ feature_names_in_ : ndarray of shape (`n_features_in_`,)
148
+ Names of features seen during :term:`fit`. Defined only when `X`
149
+ has feature names that are all strings.
150
+
151
+ .. versionadded:: 1.0
152
+
153
+ n_output_features_ : int
154
+ The total number of polynomial output features. The number of output
155
+ features is computed by iterating over all suitably sized combinations
156
+ of input features.
157
+
158
+ See Also
159
+ --------
160
+ SplineTransformer : Transformer that generates univariate B-spline bases
161
+ for features.
162
+
163
+ Notes
164
+ -----
165
+ Be aware that the number of features in the output array scales
166
+ polynomially in the number of features of the input array, and
167
+ exponentially in the degree. High degrees can cause overfitting.
168
+
169
+ See :ref:`examples/linear_model/plot_polynomial_interpolation.py
170
+ <sphx_glr_auto_examples_linear_model_plot_polynomial_interpolation.py>`
171
+
172
+ Examples
173
+ --------
174
+ >>> import numpy as np
175
+ >>> from sklearn.preprocessing import PolynomialFeatures
176
+ >>> X = np.arange(6).reshape(3, 2)
177
+ >>> X
178
+ array([[0, 1],
179
+ [2, 3],
180
+ [4, 5]])
181
+ >>> poly = PolynomialFeatures(2)
182
+ >>> poly.fit_transform(X)
183
+ array([[ 1., 0., 1., 0., 0., 1.],
184
+ [ 1., 2., 3., 4., 6., 9.],
185
+ [ 1., 4., 5., 16., 20., 25.]])
186
+ >>> poly = PolynomialFeatures(interaction_only=True)
187
+ >>> poly.fit_transform(X)
188
+ array([[ 1., 0., 1., 0.],
189
+ [ 1., 2., 3., 6.],
190
+ [ 1., 4., 5., 20.]])
191
+ """
192
+
193
+ _parameter_constraints: dict = {
194
+ "degree": [Interval(Integral, 0, None, closed="left"), "array-like"],
195
+ "interaction_only": ["boolean"],
196
+ "include_bias": ["boolean"],
197
+ "order": [StrOptions({"C", "F"})],
198
+ }
199
+
200
+ def __init__(
201
+ self, degree=2, *, interaction_only=False, include_bias=True, order="C"
202
+ ):
203
+ self.degree = degree
204
+ self.interaction_only = interaction_only
205
+ self.include_bias = include_bias
206
+ self.order = order
207
+
208
+ @staticmethod
209
+ def _combinations(
210
+ n_features, min_degree, max_degree, interaction_only, include_bias
211
+ ):
212
+ comb = combinations if interaction_only else combinations_w_r
213
+ start = max(1, min_degree)
214
+ iter = chain.from_iterable(
215
+ comb(range(n_features), i) for i in range(start, max_degree + 1)
216
+ )
217
+ if include_bias:
218
+ iter = chain(comb(range(n_features), 0), iter)
219
+ return iter
220
+
221
+ @staticmethod
222
+ def _num_combinations(
223
+ n_features, min_degree, max_degree, interaction_only, include_bias
224
+ ):
225
+ """Calculate number of terms in polynomial expansion
226
+
227
+ This should be equivalent to counting the number of terms returned by
228
+ _combinations(...) but much faster.
229
+ """
230
+
231
+ if interaction_only:
232
+ combinations = sum(
233
+ [
234
+ comb(n_features, i, exact=True)
235
+ for i in range(max(1, min_degree), min(max_degree, n_features) + 1)
236
+ ]
237
+ )
238
+ else:
239
+ combinations = comb(n_features + max_degree, max_degree, exact=True) - 1
240
+ if min_degree > 0:
241
+ d = min_degree - 1
242
+ combinations -= comb(n_features + d, d, exact=True) - 1
243
+
244
+ if include_bias:
245
+ combinations += 1
246
+
247
+ return combinations
248
+
249
+ @property
250
+ def powers_(self):
251
+ """Exponent for each of the inputs in the output."""
252
+ check_is_fitted(self)
253
+
254
+ combinations = self._combinations(
255
+ n_features=self.n_features_in_,
256
+ min_degree=self._min_degree,
257
+ max_degree=self._max_degree,
258
+ interaction_only=self.interaction_only,
259
+ include_bias=self.include_bias,
260
+ )
261
+ return np.vstack(
262
+ [np.bincount(c, minlength=self.n_features_in_) for c in combinations]
263
+ )
264
+
265
+ def get_feature_names_out(self, input_features=None):
266
+ """Get output feature names for transformation.
267
+
268
+ Parameters
269
+ ----------
270
+ input_features : array-like of str or None, default=None
271
+ Input features.
272
+
273
+ - If `input_features is None`, then `feature_names_in_` is
274
+ used as feature names in. If `feature_names_in_` is not defined,
275
+ then the following input feature names are generated:
276
+ `["x0", "x1", ..., "x(n_features_in_ - 1)"]`.
277
+ - If `input_features` is an array-like, then `input_features` must
278
+ match `feature_names_in_` if `feature_names_in_` is defined.
279
+
280
+ Returns
281
+ -------
282
+ feature_names_out : ndarray of str objects
283
+ Transformed feature names.
284
+ """
285
+ powers = self.powers_
286
+ input_features = _check_feature_names_in(self, input_features)
287
+ feature_names = []
288
+ for row in powers:
289
+ inds = np.where(row)[0]
290
+ if len(inds):
291
+ name = " ".join(
292
+ (
293
+ "%s^%d" % (input_features[ind], exp)
294
+ if exp != 1
295
+ else input_features[ind]
296
+ )
297
+ for ind, exp in zip(inds, row[inds])
298
+ )
299
+ else:
300
+ name = "1"
301
+ feature_names.append(name)
302
+ return np.asarray(feature_names, dtype=object)
303
+
304
+ @_fit_context(prefer_skip_nested_validation=True)
305
+ def fit(self, X, y=None):
306
+ """
307
+ Compute number of output features.
308
+
309
+ Parameters
310
+ ----------
311
+ X : {array-like, sparse matrix} of shape (n_samples, n_features)
312
+ The data.
313
+
314
+ y : Ignored
315
+ Not used, present here for API consistency by convention.
316
+
317
+ Returns
318
+ -------
319
+ self : object
320
+ Fitted transformer.
321
+ """
322
+ _, n_features = self._validate_data(X, accept_sparse=True).shape
323
+
324
+ if isinstance(self.degree, Integral):
325
+ if self.degree == 0 and not self.include_bias:
326
+ raise ValueError(
327
+ "Setting degree to zero and include_bias to False would result in"
328
+ " an empty output array."
329
+ )
330
+
331
+ self._min_degree = 0
332
+ self._max_degree = self.degree
333
+ elif (
334
+ isinstance(self.degree, collections.abc.Iterable) and len(self.degree) == 2
335
+ ):
336
+ self._min_degree, self._max_degree = self.degree
337
+ if not (
338
+ isinstance(self._min_degree, Integral)
339
+ and isinstance(self._max_degree, Integral)
340
+ and self._min_degree >= 0
341
+ and self._min_degree <= self._max_degree
342
+ ):
343
+ raise ValueError(
344
+ "degree=(min_degree, max_degree) must "
345
+ "be non-negative integers that fulfil "
346
+ "min_degree <= max_degree, got "
347
+ f"{self.degree}."
348
+ )
349
+ elif self._max_degree == 0 and not self.include_bias:
350
+ raise ValueError(
351
+ "Setting both min_degree and max_degree to zero and include_bias to"
352
+ " False would result in an empty output array."
353
+ )
354
+ else:
355
+ raise ValueError(
356
+ "degree must be a non-negative int or tuple "
357
+ "(min_degree, max_degree), got "
358
+ f"{self.degree}."
359
+ )
360
+
361
+ self.n_output_features_ = self._num_combinations(
362
+ n_features=n_features,
363
+ min_degree=self._min_degree,
364
+ max_degree=self._max_degree,
365
+ interaction_only=self.interaction_only,
366
+ include_bias=self.include_bias,
367
+ )
368
+ if self.n_output_features_ > np.iinfo(np.intp).max:
369
+ msg = (
370
+ "The output that would result from the current configuration would"
371
+ f" have {self.n_output_features_} features which is too large to be"
372
+ f" indexed by {np.intp().dtype.name}. Please change some or all of the"
373
+ " following:\n- The number of features in the input, currently"
374
+ f" {n_features=}\n- The range of degrees to calculate, currently"
375
+ f" [{self._min_degree}, {self._max_degree}]\n- Whether to include only"
376
+ f" interaction terms, currently {self.interaction_only}\n- Whether to"
377
+ f" include a bias term, currently {self.include_bias}."
378
+ )
379
+ if (
380
+ np.intp == np.int32
381
+ and self.n_output_features_ <= np.iinfo(np.int64).max
382
+ ): # pragma: nocover
383
+ msg += (
384
+ "\nNote that the current Python runtime has a limited 32 bit "
385
+ "address space and that this configuration would have been "
386
+ "admissible if run on a 64 bit Python runtime."
387
+ )
388
+ raise ValueError(msg)
389
+ # We also record the number of output features for
390
+ # _max_degree = 0
391
+ self._n_out_full = self._num_combinations(
392
+ n_features=n_features,
393
+ min_degree=0,
394
+ max_degree=self._max_degree,
395
+ interaction_only=self.interaction_only,
396
+ include_bias=self.include_bias,
397
+ )
398
+
399
+ return self
400
+
401
+ def transform(self, X):
402
+ """Transform data to polynomial features.
403
+
404
+ Parameters
405
+ ----------
406
+ X : {array-like, sparse matrix} of shape (n_samples, n_features)
407
+ The data to transform, row by row.
408
+
409
+ Prefer CSR over CSC for sparse input (for speed), but CSC is
410
+ required if the degree is 4 or higher. If the degree is less than
411
+ 4 and the input format is CSC, it will be converted to CSR, have
412
+ its polynomial features generated, then converted back to CSC.
413
+
414
+ If the degree is 2 or 3, the method described in "Leveraging
415
+ Sparsity to Speed Up Polynomial Feature Expansions of CSR Matrices
416
+ Using K-Simplex Numbers" by Andrew Nystrom and John Hughes is
417
+ used, which is much faster than the method used on CSC input. For
418
+ this reason, a CSC input will be converted to CSR, and the output
419
+ will be converted back to CSC prior to being returned, hence the
420
+ preference of CSR.
421
+
422
+ Returns
423
+ -------
424
+ XP : {ndarray, sparse matrix} of shape (n_samples, NP)
425
+ The matrix of features, where `NP` is the number of polynomial
426
+ features generated from the combination of inputs. If a sparse
427
+ matrix is provided, it will be converted into a sparse
428
+ `csr_matrix`.
429
+ """
430
+ check_is_fitted(self)
431
+
432
+ X = self._validate_data(
433
+ X, order="F", dtype=FLOAT_DTYPES, reset=False, accept_sparse=("csr", "csc")
434
+ )
435
+
436
+ n_samples, n_features = X.shape
437
+ max_int32 = np.iinfo(np.int32).max
438
+ if sparse.issparse(X) and X.format == "csr":
439
+ if self._max_degree > 3:
440
+ return self.transform(X.tocsc()).tocsr()
441
+ to_stack = []
442
+ if self.include_bias:
443
+ to_stack.append(
444
+ sparse.csr_matrix(np.ones(shape=(n_samples, 1), dtype=X.dtype))
445
+ )
446
+ if self._min_degree <= 1 and self._max_degree > 0:
447
+ to_stack.append(X)
448
+
449
+ cumulative_size = sum(mat.shape[1] for mat in to_stack)
450
+ for deg in range(max(2, self._min_degree), self._max_degree + 1):
451
+ expanded = _create_expansion(
452
+ X=X,
453
+ interaction_only=self.interaction_only,
454
+ deg=deg,
455
+ n_features=n_features,
456
+ cumulative_size=cumulative_size,
457
+ )
458
+ if expanded is not None:
459
+ to_stack.append(expanded)
460
+ cumulative_size += expanded.shape[1]
461
+ if len(to_stack) == 0:
462
+ # edge case: deal with empty matrix
463
+ XP = sparse.csr_matrix((n_samples, 0), dtype=X.dtype)
464
+ else:
465
+ # `scipy.sparse.hstack` breaks in scipy<1.9.2
466
+ # when `n_output_features_ > max_int32`
467
+ all_int32 = all(mat.indices.dtype == np.int32 for mat in to_stack)
468
+ if (
469
+ sp_version < parse_version("1.9.2")
470
+ and self.n_output_features_ > max_int32
471
+ and all_int32
472
+ ):
473
+ raise ValueError( # pragma: no cover
474
+ "In scipy versions `<1.9.2`, the function `scipy.sparse.hstack`"
475
+ " produces negative columns when:\n1. The output shape contains"
476
+ " `n_cols` too large to be represented by a 32bit signed"
477
+ " integer.\n2. All sub-matrices to be stacked have indices of"
478
+ " dtype `np.int32`.\nTo avoid this error, either use a version"
479
+ " of scipy `>=1.9.2` or alter the `PolynomialFeatures`"
480
+ " transformer to produce fewer than 2^31 output features"
481
+ )
482
+ XP = sparse.hstack(to_stack, dtype=X.dtype, format="csr")
483
+ elif sparse.issparse(X) and X.format == "csc" and self._max_degree < 4:
484
+ return self.transform(X.tocsr()).tocsc()
485
+ elif sparse.issparse(X):
486
+ combinations = self._combinations(
487
+ n_features=n_features,
488
+ min_degree=self._min_degree,
489
+ max_degree=self._max_degree,
490
+ interaction_only=self.interaction_only,
491
+ include_bias=self.include_bias,
492
+ )
493
+ columns = []
494
+ for combi in combinations:
495
+ if combi:
496
+ out_col = 1
497
+ for col_idx in combi:
498
+ out_col = X[:, [col_idx]].multiply(out_col)
499
+ columns.append(out_col)
500
+ else:
501
+ bias = sparse.csc_matrix(np.ones((X.shape[0], 1)))
502
+ columns.append(bias)
503
+ XP = sparse.hstack(columns, dtype=X.dtype).tocsc()
504
+ else:
505
+ # Do as if _min_degree = 0 and cut down array after the
506
+ # computation, i.e. use _n_out_full instead of n_output_features_.
507
+ XP = np.empty(
508
+ shape=(n_samples, self._n_out_full), dtype=X.dtype, order=self.order
509
+ )
510
+
511
+ # What follows is a faster implementation of:
512
+ # for i, comb in enumerate(combinations):
513
+ # XP[:, i] = X[:, comb].prod(1)
514
+ # This implementation uses two optimisations.
515
+ # First one is broadcasting,
516
+ # multiply ([X1, ..., Xn], X1) -> [X1 X1, ..., Xn X1]
517
+ # multiply ([X2, ..., Xn], X2) -> [X2 X2, ..., Xn X2]
518
+ # ...
519
+ # multiply ([X[:, start:end], X[:, start]) -> ...
520
+ # Second optimisation happens for degrees >= 3.
521
+ # Xi^3 is computed reusing previous computation:
522
+ # Xi^3 = Xi^2 * Xi.
523
+
524
+ # degree 0 term
525
+ if self.include_bias:
526
+ XP[:, 0] = 1
527
+ current_col = 1
528
+ else:
529
+ current_col = 0
530
+
531
+ if self._max_degree == 0:
532
+ return XP
533
+
534
+ # degree 1 term
535
+ XP[:, current_col : current_col + n_features] = X
536
+ index = list(range(current_col, current_col + n_features))
537
+ current_col += n_features
538
+ index.append(current_col)
539
+
540
+ # loop over degree >= 2 terms
541
+ for _ in range(2, self._max_degree + 1):
542
+ new_index = []
543
+ end = index[-1]
544
+ for feature_idx in range(n_features):
545
+ start = index[feature_idx]
546
+ new_index.append(current_col)
547
+ if self.interaction_only:
548
+ start += index[feature_idx + 1] - index[feature_idx]
549
+ next_col = current_col + end - start
550
+ if next_col <= current_col:
551
+ break
552
+ # XP[:, start:end] are terms of degree d - 1
553
+ # that exclude feature #feature_idx.
554
+ np.multiply(
555
+ XP[:, start:end],
556
+ X[:, feature_idx : feature_idx + 1],
557
+ out=XP[:, current_col:next_col],
558
+ casting="no",
559
+ )
560
+ current_col = next_col
561
+
562
+ new_index.append(current_col)
563
+ index = new_index
564
+
565
+ if self._min_degree > 1:
566
+ n_XP, n_Xout = self._n_out_full, self.n_output_features_
567
+ if self.include_bias:
568
+ Xout = np.empty(
569
+ shape=(n_samples, n_Xout), dtype=XP.dtype, order=self.order
570
+ )
571
+ Xout[:, 0] = 1
572
+ Xout[:, 1:] = XP[:, n_XP - n_Xout + 1 :]
573
+ else:
574
+ Xout = XP[:, n_XP - n_Xout :].copy()
575
+ XP = Xout
576
+ return XP
577
+
578
+
579
+ class SplineTransformer(TransformerMixin, BaseEstimator):
580
+ """Generate univariate B-spline bases for features.
581
+
582
+ Generate a new feature matrix consisting of
583
+ `n_splines=n_knots + degree - 1` (`n_knots - 1` for
584
+ `extrapolation="periodic"`) spline basis functions
585
+ (B-splines) of polynomial order=`degree` for each feature.
586
+
587
+ In order to learn more about the SplineTransformer class go to:
588
+ :ref:`sphx_glr_auto_examples_applications_plot_cyclical_feature_engineering.py`
589
+
590
+ Read more in the :ref:`User Guide <spline_transformer>`.
591
+
592
+ .. versionadded:: 1.0
593
+
594
+ Parameters
595
+ ----------
596
+ n_knots : int, default=5
597
+ Number of knots of the splines if `knots` equals one of
598
+ {'uniform', 'quantile'}. Must be larger or equal 2. Ignored if `knots`
599
+ is array-like.
600
+
601
+ degree : int, default=3
602
+ The polynomial degree of the spline basis. Must be a non-negative
603
+ integer.
604
+
605
+ knots : {'uniform', 'quantile'} or array-like of shape \
606
+ (n_knots, n_features), default='uniform'
607
+ Set knot positions such that first knot <= features <= last knot.
608
+
609
+ - If 'uniform', `n_knots` number of knots are distributed uniformly
610
+ from min to max values of the features.
611
+ - If 'quantile', they are distributed uniformly along the quantiles of
612
+ the features.
613
+ - If an array-like is given, it directly specifies the sorted knot
614
+ positions including the boundary knots. Note that, internally,
615
+ `degree` number of knots are added before the first knot, the same
616
+ after the last knot.
617
+
618
+ extrapolation : {'error', 'constant', 'linear', 'continue', 'periodic'}, \
619
+ default='constant'
620
+ If 'error', values outside the min and max values of the training
621
+ features raises a `ValueError`. If 'constant', the value of the
622
+ splines at minimum and maximum value of the features is used as
623
+ constant extrapolation. If 'linear', a linear extrapolation is used.
624
+ If 'continue', the splines are extrapolated as is, i.e. option
625
+ `extrapolate=True` in :class:`scipy.interpolate.BSpline`. If
626
+ 'periodic', periodic splines with a periodicity equal to the distance
627
+ between the first and last knot are used. Periodic splines enforce
628
+ equal function values and derivatives at the first and last knot.
629
+ For example, this makes it possible to avoid introducing an arbitrary
630
+ jump between Dec 31st and Jan 1st in spline features derived from a
631
+ naturally periodic "day-of-year" input feature. In this case it is
632
+ recommended to manually set the knot values to control the period.
633
+
634
+ include_bias : bool, default=True
635
+ If False, then the last spline element inside the data range
636
+ of a feature is dropped. As B-splines sum to one over the spline basis
637
+ functions for each data point, they implicitly include a bias term,
638
+ i.e. a column of ones. It acts as an intercept term in a linear models.
639
+
640
+ order : {'C', 'F'}, default='C'
641
+ Order of output array in the dense case. `'F'` order is faster to compute, but
642
+ may slow down subsequent estimators.
643
+
644
+ sparse_output : bool, default=False
645
+ Will return sparse CSR matrix if set True else will return an array. This
646
+ option is only available with `scipy>=1.8`.
647
+
648
+ .. versionadded:: 1.2
649
+
650
+ Attributes
651
+ ----------
652
+ bsplines_ : list of shape (n_features,)
653
+ List of BSplines objects, one for each feature.
654
+
655
+ n_features_in_ : int
656
+ The total number of input features.
657
+
658
+ feature_names_in_ : ndarray of shape (`n_features_in_`,)
659
+ Names of features seen during :term:`fit`. Defined only when `X`
660
+ has feature names that are all strings.
661
+
662
+ .. versionadded:: 1.0
663
+
664
+ n_features_out_ : int
665
+ The total number of output features, which is computed as
666
+ `n_features * n_splines`, where `n_splines` is
667
+ the number of bases elements of the B-splines,
668
+ `n_knots + degree - 1` for non-periodic splines and
669
+ `n_knots - 1` for periodic ones.
670
+ If `include_bias=False`, then it is only
671
+ `n_features * (n_splines - 1)`.
672
+
673
+ See Also
674
+ --------
675
+ KBinsDiscretizer : Transformer that bins continuous data into intervals.
676
+
677
+ PolynomialFeatures : Transformer that generates polynomial and interaction
678
+ features.
679
+
680
+ Notes
681
+ -----
682
+ High degrees and a high number of knots can cause overfitting.
683
+
684
+ See :ref:`examples/linear_model/plot_polynomial_interpolation.py
685
+ <sphx_glr_auto_examples_linear_model_plot_polynomial_interpolation.py>`.
686
+
687
+ Examples
688
+ --------
689
+ >>> import numpy as np
690
+ >>> from sklearn.preprocessing import SplineTransformer
691
+ >>> X = np.arange(6).reshape(6, 1)
692
+ >>> spline = SplineTransformer(degree=2, n_knots=3)
693
+ >>> spline.fit_transform(X)
694
+ array([[0.5 , 0.5 , 0. , 0. ],
695
+ [0.18, 0.74, 0.08, 0. ],
696
+ [0.02, 0.66, 0.32, 0. ],
697
+ [0. , 0.32, 0.66, 0.02],
698
+ [0. , 0.08, 0.74, 0.18],
699
+ [0. , 0. , 0.5 , 0.5 ]])
700
+ """
701
+
702
+ _parameter_constraints: dict = {
703
+ "n_knots": [Interval(Integral, 2, None, closed="left")],
704
+ "degree": [Interval(Integral, 0, None, closed="left")],
705
+ "knots": [StrOptions({"uniform", "quantile"}), "array-like"],
706
+ "extrapolation": [
707
+ StrOptions({"error", "constant", "linear", "continue", "periodic"})
708
+ ],
709
+ "include_bias": ["boolean"],
710
+ "order": [StrOptions({"C", "F"})],
711
+ "sparse_output": ["boolean"],
712
+ }
713
+
714
+ def __init__(
715
+ self,
716
+ n_knots=5,
717
+ degree=3,
718
+ *,
719
+ knots="uniform",
720
+ extrapolation="constant",
721
+ include_bias=True,
722
+ order="C",
723
+ sparse_output=False,
724
+ ):
725
+ self.n_knots = n_knots
726
+ self.degree = degree
727
+ self.knots = knots
728
+ self.extrapolation = extrapolation
729
+ self.include_bias = include_bias
730
+ self.order = order
731
+ self.sparse_output = sparse_output
732
+
733
+ @staticmethod
734
+ def _get_base_knot_positions(X, n_knots=10, knots="uniform", sample_weight=None):
735
+ """Calculate base knot positions.
736
+
737
+ Base knots such that first knot <= feature <= last knot. For the
738
+ B-spline construction with scipy.interpolate.BSpline, 2*degree knots
739
+ beyond the base interval are added.
740
+
741
+ Returns
742
+ -------
743
+ knots : ndarray of shape (n_knots, n_features), dtype=np.float64
744
+ Knot positions (points) of base interval.
745
+ """
746
+ if knots == "quantile":
747
+ percentiles = 100 * np.linspace(
748
+ start=0, stop=1, num=n_knots, dtype=np.float64
749
+ )
750
+
751
+ if sample_weight is None:
752
+ knots = np.percentile(X, percentiles, axis=0)
753
+ else:
754
+ knots = np.array(
755
+ [
756
+ _weighted_percentile(X, sample_weight, percentile)
757
+ for percentile in percentiles
758
+ ]
759
+ )
760
+
761
+ else:
762
+ # knots == 'uniform':
763
+ # Note that the variable `knots` has already been validated and
764
+ # `else` is therefore safe.
765
+ # Disregard observations with zero weight.
766
+ mask = slice(None, None, 1) if sample_weight is None else sample_weight > 0
767
+ x_min = np.amin(X[mask], axis=0)
768
+ x_max = np.amax(X[mask], axis=0)
769
+
770
+ knots = np.linspace(
771
+ start=x_min,
772
+ stop=x_max,
773
+ num=n_knots,
774
+ endpoint=True,
775
+ dtype=np.float64,
776
+ )
777
+
778
+ return knots
779
+
780
+ def get_feature_names_out(self, input_features=None):
781
+ """Get output feature names for transformation.
782
+
783
+ Parameters
784
+ ----------
785
+ input_features : array-like of str or None, default=None
786
+ Input features.
787
+
788
+ - If `input_features` is `None`, then `feature_names_in_` is
789
+ used as feature names in. If `feature_names_in_` is not defined,
790
+ then the following input feature names are generated:
791
+ `["x0", "x1", ..., "x(n_features_in_ - 1)"]`.
792
+ - If `input_features` is an array-like, then `input_features` must
793
+ match `feature_names_in_` if `feature_names_in_` is defined.
794
+
795
+ Returns
796
+ -------
797
+ feature_names_out : ndarray of str objects
798
+ Transformed feature names.
799
+ """
800
+ check_is_fitted(self, "n_features_in_")
801
+ n_splines = self.bsplines_[0].c.shape[1]
802
+
803
+ input_features = _check_feature_names_in(self, input_features)
804
+ feature_names = []
805
+ for i in range(self.n_features_in_):
806
+ for j in range(n_splines - 1 + self.include_bias):
807
+ feature_names.append(f"{input_features[i]}_sp_{j}")
808
+ return np.asarray(feature_names, dtype=object)
809
+
810
+ @_fit_context(prefer_skip_nested_validation=True)
811
+ def fit(self, X, y=None, sample_weight=None):
812
+ """Compute knot positions of splines.
813
+
814
+ Parameters
815
+ ----------
816
+ X : array-like of shape (n_samples, n_features)
817
+ The data.
818
+
819
+ y : None
820
+ Ignored.
821
+
822
+ sample_weight : array-like of shape (n_samples,), default = None
823
+ Individual weights for each sample. Used to calculate quantiles if
824
+ `knots="quantile"`. For `knots="uniform"`, zero weighted
825
+ observations are ignored for finding the min and max of `X`.
826
+
827
+ Returns
828
+ -------
829
+ self : object
830
+ Fitted transformer.
831
+ """
832
+ X = self._validate_data(
833
+ X,
834
+ reset=True,
835
+ accept_sparse=False,
836
+ ensure_min_samples=2,
837
+ ensure_2d=True,
838
+ )
839
+ if sample_weight is not None:
840
+ sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype)
841
+
842
+ _, n_features = X.shape
843
+
844
+ if isinstance(self.knots, str):
845
+ base_knots = self._get_base_knot_positions(
846
+ X, n_knots=self.n_knots, knots=self.knots, sample_weight=sample_weight
847
+ )
848
+ else:
849
+ base_knots = check_array(self.knots, dtype=np.float64)
850
+ if base_knots.shape[0] < 2:
851
+ raise ValueError("Number of knots, knots.shape[0], must be >= 2.")
852
+ elif base_knots.shape[1] != n_features:
853
+ raise ValueError("knots.shape[1] == n_features is violated.")
854
+ elif not np.all(np.diff(base_knots, axis=0) > 0):
855
+ raise ValueError("knots must be sorted without duplicates.")
856
+
857
+ if self.sparse_output and sp_version < parse_version("1.8.0"):
858
+ raise ValueError(
859
+ "Option sparse_output=True is only available with scipy>=1.8.0, "
860
+ f"but here scipy=={sp_version} is used."
861
+ )
862
+
863
+ # number of knots for base interval
864
+ n_knots = base_knots.shape[0]
865
+
866
+ if self.extrapolation == "periodic" and n_knots <= self.degree:
867
+ raise ValueError(
868
+ "Periodic splines require degree < n_knots. Got n_knots="
869
+ f"{n_knots} and degree={self.degree}."
870
+ )
871
+
872
+ # number of splines basis functions
873
+ if self.extrapolation != "periodic":
874
+ n_splines = n_knots + self.degree - 1
875
+ else:
876
+ # periodic splines have self.degree less degrees of freedom
877
+ n_splines = n_knots - 1
878
+
879
+ degree = self.degree
880
+ n_out = n_features * n_splines
881
+ # We have to add degree number of knots below, and degree number knots
882
+ # above the base knots in order to make the spline basis complete.
883
+ if self.extrapolation == "periodic":
884
+ # For periodic splines the spacing of the first / last degree knots
885
+ # needs to be a continuation of the spacing of the last / first
886
+ # base knots.
887
+ period = base_knots[-1] - base_knots[0]
888
+ knots = np.r_[
889
+ base_knots[-(degree + 1) : -1] - period,
890
+ base_knots,
891
+ base_knots[1 : (degree + 1)] + period,
892
+ ]
893
+
894
+ else:
895
+ # Eilers & Marx in "Flexible smoothing with B-splines and
896
+ # penalties" https://doi.org/10.1214/ss/1038425655 advice
897
+ # against repeating first and last knot several times, which
898
+ # would have inferior behaviour at boundaries if combined with
899
+ # a penalty (hence P-Spline). We follow this advice even if our
900
+ # splines are unpenalized. Meaning we do not:
901
+ # knots = np.r_[
902
+ # np.tile(base_knots.min(axis=0), reps=[degree, 1]),
903
+ # base_knots,
904
+ # np.tile(base_knots.max(axis=0), reps=[degree, 1])
905
+ # ]
906
+ # Instead, we reuse the distance of the 2 fist/last knots.
907
+ dist_min = base_knots[1] - base_knots[0]
908
+ dist_max = base_knots[-1] - base_knots[-2]
909
+
910
+ knots = np.r_[
911
+ np.linspace(
912
+ base_knots[0] - degree * dist_min,
913
+ base_knots[0] - dist_min,
914
+ num=degree,
915
+ ),
916
+ base_knots,
917
+ np.linspace(
918
+ base_knots[-1] + dist_max,
919
+ base_knots[-1] + degree * dist_max,
920
+ num=degree,
921
+ ),
922
+ ]
923
+
924
+ # With a diagonal coefficient matrix, we get back the spline basis
925
+ # elements, i.e. the design matrix of the spline.
926
+ # Note, BSpline appreciates C-contiguous float64 arrays as c=coef.
927
+ coef = np.eye(n_splines, dtype=np.float64)
928
+ if self.extrapolation == "periodic":
929
+ coef = np.concatenate((coef, coef[:degree, :]))
930
+
931
+ extrapolate = self.extrapolation in ["periodic", "continue"]
932
+
933
+ bsplines = [
934
+ BSpline.construct_fast(
935
+ knots[:, i], coef, self.degree, extrapolate=extrapolate
936
+ )
937
+ for i in range(n_features)
938
+ ]
939
+ self.bsplines_ = bsplines
940
+
941
+ self.n_features_out_ = n_out - n_features * (1 - self.include_bias)
942
+ return self
943
+
944
+ def transform(self, X):
945
+ """Transform each feature data to B-splines.
946
+
947
+ Parameters
948
+ ----------
949
+ X : array-like of shape (n_samples, n_features)
950
+ The data to transform.
951
+
952
+ Returns
953
+ -------
954
+ XBS : {ndarray, sparse matrix} of shape (n_samples, n_features * n_splines)
955
+ The matrix of features, where n_splines is the number of bases
956
+ elements of the B-splines, n_knots + degree - 1.
957
+ """
958
+ check_is_fitted(self)
959
+
960
+ X = self._validate_data(X, reset=False, accept_sparse=False, ensure_2d=True)
961
+
962
+ n_samples, n_features = X.shape
963
+ n_splines = self.bsplines_[0].c.shape[1]
964
+ degree = self.degree
965
+
966
+ # TODO: Remove this condition, once scipy 1.10 is the minimum version.
967
+ # Only scipy => 1.10 supports design_matrix(.., extrapolate=..).
968
+ # The default (implicit in scipy < 1.10) is extrapolate=False.
969
+ scipy_1_10 = sp_version >= parse_version("1.10.0")
970
+ # Note: self.bsplines_[0].extrapolate is True for extrapolation in
971
+ # ["periodic", "continue"]
972
+ if scipy_1_10:
973
+ use_sparse = self.sparse_output
974
+ kwargs_extrapolate = {"extrapolate": self.bsplines_[0].extrapolate}
975
+ else:
976
+ use_sparse = self.sparse_output and not self.bsplines_[0].extrapolate
977
+ kwargs_extrapolate = dict()
978
+
979
+ # Note that scipy BSpline returns float64 arrays and converts input
980
+ # x=X[:, i] to c-contiguous float64.
981
+ n_out = self.n_features_out_ + n_features * (1 - self.include_bias)
982
+ if X.dtype in FLOAT_DTYPES:
983
+ dtype = X.dtype
984
+ else:
985
+ dtype = np.float64
986
+ if use_sparse:
987
+ output_list = []
988
+ else:
989
+ XBS = np.zeros((n_samples, n_out), dtype=dtype, order=self.order)
990
+
991
+ for i in range(n_features):
992
+ spl = self.bsplines_[i]
993
+
994
+ if self.extrapolation in ("continue", "error", "periodic"):
995
+ if self.extrapolation == "periodic":
996
+ # With periodic extrapolation we map x to the segment
997
+ # [spl.t[k], spl.t[n]].
998
+ # This is equivalent to BSpline(.., extrapolate="periodic")
999
+ # for scipy>=1.0.0.
1000
+ n = spl.t.size - spl.k - 1
1001
+ # Assign to new array to avoid inplace operation
1002
+ x = spl.t[spl.k] + (X[:, i] - spl.t[spl.k]) % (
1003
+ spl.t[n] - spl.t[spl.k]
1004
+ )
1005
+ else:
1006
+ x = X[:, i]
1007
+
1008
+ if use_sparse:
1009
+ XBS_sparse = BSpline.design_matrix(
1010
+ x, spl.t, spl.k, **kwargs_extrapolate
1011
+ )
1012
+ if self.extrapolation == "periodic":
1013
+ # See the construction of coef in fit. We need to add the last
1014
+ # degree spline basis function to the first degree ones and
1015
+ # then drop the last ones.
1016
+ # Note: See comment about SparseEfficiencyWarning below.
1017
+ XBS_sparse = XBS_sparse.tolil()
1018
+ XBS_sparse[:, :degree] += XBS_sparse[:, -degree:]
1019
+ XBS_sparse = XBS_sparse[:, :-degree]
1020
+ else:
1021
+ XBS[:, (i * n_splines) : ((i + 1) * n_splines)] = spl(x)
1022
+ else: # extrapolation in ("constant", "linear")
1023
+ xmin, xmax = spl.t[degree], spl.t[-degree - 1]
1024
+ # spline values at boundaries
1025
+ f_min, f_max = spl(xmin), spl(xmax)
1026
+ mask = (xmin <= X[:, i]) & (X[:, i] <= xmax)
1027
+ if use_sparse:
1028
+ mask_inv = ~mask
1029
+ x = X[:, i].copy()
1030
+ # Set some arbitrary values outside boundary that will be reassigned
1031
+ # later.
1032
+ x[mask_inv] = spl.t[self.degree]
1033
+ XBS_sparse = BSpline.design_matrix(x, spl.t, spl.k)
1034
+ # Note: Without converting to lil_matrix we would get:
1035
+ # scipy.sparse._base.SparseEfficiencyWarning: Changing the sparsity
1036
+ # structure of a csr_matrix is expensive. lil_matrix is more
1037
+ # efficient.
1038
+ if np.any(mask_inv):
1039
+ XBS_sparse = XBS_sparse.tolil()
1040
+ XBS_sparse[mask_inv, :] = 0
1041
+ else:
1042
+ XBS[mask, (i * n_splines) : ((i + 1) * n_splines)] = spl(X[mask, i])
1043
+
1044
+ # Note for extrapolation:
1045
+ # 'continue' is already returned as is by scipy BSplines
1046
+ if self.extrapolation == "error":
1047
+ # BSpline with extrapolate=False does not raise an error, but
1048
+ # outputs np.nan.
1049
+ if (use_sparse and np.any(np.isnan(XBS_sparse.data))) or (
1050
+ not use_sparse
1051
+ and np.any(
1052
+ np.isnan(XBS[:, (i * n_splines) : ((i + 1) * n_splines)])
1053
+ )
1054
+ ):
1055
+ raise ValueError(
1056
+ "X contains values beyond the limits of the knots."
1057
+ )
1058
+ elif self.extrapolation == "constant":
1059
+ # Set all values beyond xmin and xmax to the value of the
1060
+ # spline basis functions at those two positions.
1061
+ # Only the first degree and last degree number of splines
1062
+ # have non-zero values at the boundaries.
1063
+
1064
+ mask = X[:, i] < xmin
1065
+ if np.any(mask):
1066
+ if use_sparse:
1067
+ # Note: See comment about SparseEfficiencyWarning above.
1068
+ XBS_sparse = XBS_sparse.tolil()
1069
+ XBS_sparse[mask, :degree] = f_min[:degree]
1070
+
1071
+ else:
1072
+ XBS[mask, (i * n_splines) : (i * n_splines + degree)] = f_min[
1073
+ :degree
1074
+ ]
1075
+
1076
+ mask = X[:, i] > xmax
1077
+ if np.any(mask):
1078
+ if use_sparse:
1079
+ # Note: See comment about SparseEfficiencyWarning above.
1080
+ XBS_sparse = XBS_sparse.tolil()
1081
+ XBS_sparse[mask, -degree:] = f_max[-degree:]
1082
+ else:
1083
+ XBS[
1084
+ mask,
1085
+ ((i + 1) * n_splines - degree) : ((i + 1) * n_splines),
1086
+ ] = f_max[-degree:]
1087
+
1088
+ elif self.extrapolation == "linear":
1089
+ # Continue the degree first and degree last spline bases
1090
+ # linearly beyond the boundaries, with slope = derivative at
1091
+ # the boundary.
1092
+ # Note that all others have derivative = value = 0 at the
1093
+ # boundaries.
1094
+
1095
+ # spline derivatives = slopes at boundaries
1096
+ fp_min, fp_max = spl(xmin, nu=1), spl(xmax, nu=1)
1097
+ # Compute the linear continuation.
1098
+ if degree <= 1:
1099
+ # For degree=1, the derivative of 2nd spline is not zero at
1100
+ # boundary. For degree=0 it is the same as 'constant'.
1101
+ degree += 1
1102
+ for j in range(degree):
1103
+ mask = X[:, i] < xmin
1104
+ if np.any(mask):
1105
+ linear_extr = f_min[j] + (X[mask, i] - xmin) * fp_min[j]
1106
+ if use_sparse:
1107
+ # Note: See comment about SparseEfficiencyWarning above.
1108
+ XBS_sparse = XBS_sparse.tolil()
1109
+ XBS_sparse[mask, j] = linear_extr
1110
+ else:
1111
+ XBS[mask, i * n_splines + j] = linear_extr
1112
+
1113
+ mask = X[:, i] > xmax
1114
+ if np.any(mask):
1115
+ k = n_splines - 1 - j
1116
+ linear_extr = f_max[k] + (X[mask, i] - xmax) * fp_max[k]
1117
+ if use_sparse:
1118
+ # Note: See comment about SparseEfficiencyWarning above.
1119
+ XBS_sparse = XBS_sparse.tolil()
1120
+ XBS_sparse[mask, k : k + 1] = linear_extr[:, None]
1121
+ else:
1122
+ XBS[mask, i * n_splines + k] = linear_extr
1123
+
1124
+ if use_sparse:
1125
+ XBS_sparse = XBS_sparse.tocsr()
1126
+ output_list.append(XBS_sparse)
1127
+
1128
+ if use_sparse:
1129
+ # TODO: Remove this conditional error when the minimum supported version of
1130
+ # SciPy is 1.9.2
1131
+ # `scipy.sparse.hstack` breaks in scipy<1.9.2
1132
+ # when `n_features_out_ > max_int32`
1133
+ max_int32 = np.iinfo(np.int32).max
1134
+ all_int32 = True
1135
+ for mat in output_list:
1136
+ all_int32 &= mat.indices.dtype == np.int32
1137
+ if (
1138
+ sp_version < parse_version("1.9.2")
1139
+ and self.n_features_out_ > max_int32
1140
+ and all_int32
1141
+ ):
1142
+ raise ValueError(
1143
+ "In scipy versions `<1.9.2`, the function `scipy.sparse.hstack`"
1144
+ " produces negative columns when:\n1. The output shape contains"
1145
+ " `n_cols` too large to be represented by a 32bit signed"
1146
+ " integer.\n. All sub-matrices to be stacked have indices of"
1147
+ " dtype `np.int32`.\nTo avoid this error, either use a version"
1148
+ " of scipy `>=1.9.2` or alter the `SplineTransformer`"
1149
+ " transformer to produce fewer than 2^31 output features"
1150
+ )
1151
+ XBS = sparse.hstack(output_list, format="csr")
1152
+ elif self.sparse_output:
1153
+ # TODO: Remove ones scipy 1.10 is the minimum version. See comments above.
1154
+ XBS = sparse.csr_matrix(XBS)
1155
+
1156
+ if self.include_bias:
1157
+ return XBS
1158
+ else:
1159
+ # We throw away one spline basis per feature.
1160
+ # We chose the last one.
1161
+ indices = [j for j in range(XBS.shape[1]) if (j + 1) % n_splines != 0]
1162
+ return XBS[:, indices]
1163
+
1164
+ def _more_tags(self):
1165
+ return {
1166
+ "_xfail_checks": {
1167
+ "check_estimators_pickle": (
1168
+ "Current Scipy implementation of _bsplines does not"
1169
+ "support const memory views."
1170
+ ),
1171
+ }
1172
+ }
env-llmeval/lib/python3.10/site-packages/sklearn/preprocessing/_target_encoder.py ADDED
@@ -0,0 +1,531 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from numbers import Integral, Real
2
+
3
+ import numpy as np
4
+
5
+ from ..base import OneToOneFeatureMixin, _fit_context
6
+ from ..utils._param_validation import Interval, StrOptions
7
+ from ..utils.multiclass import type_of_target
8
+ from ..utils.validation import (
9
+ _check_feature_names_in,
10
+ _check_y,
11
+ check_consistent_length,
12
+ check_is_fitted,
13
+ )
14
+ from ._encoders import _BaseEncoder
15
+ from ._target_encoder_fast import _fit_encoding_fast, _fit_encoding_fast_auto_smooth
16
+
17
+
18
+ class TargetEncoder(OneToOneFeatureMixin, _BaseEncoder):
19
+ """Target Encoder for regression and classification targets.
20
+
21
+ Each category is encoded based on a shrunk estimate of the average target
22
+ values for observations belonging to the category. The encoding scheme mixes
23
+ the global target mean with the target mean conditioned on the value of the
24
+ category (see [MIC]_).
25
+
26
+ When the target type is "multiclass", encodings are based
27
+ on the conditional probability estimate for each class. The target is first
28
+ binarized using the "one-vs-all" scheme via
29
+ :class:`~sklearn.preprocessing.LabelBinarizer`, then the average target
30
+ value for each class and each category is used for encoding, resulting in
31
+ `n_features` * `n_classes` encoded output features.
32
+
33
+ :class:`TargetEncoder` considers missing values, such as `np.nan` or `None`,
34
+ as another category and encodes them like any other category. Categories
35
+ that are not seen during :meth:`fit` are encoded with the target mean, i.e.
36
+ `target_mean_`.
37
+
38
+ For a demo on the importance of the `TargetEncoder` internal cross-fitting,
39
+ see
40
+ :ref:`sphx_glr_auto_examples_preprocessing_plot_target_encoder_cross_val.py`.
41
+ For a comparison of different encoders, refer to
42
+ :ref:`sphx_glr_auto_examples_preprocessing_plot_target_encoder.py`. Read
43
+ more in the :ref:`User Guide <target_encoder>`.
44
+
45
+ .. note::
46
+ `fit(X, y).transform(X)` does not equal `fit_transform(X, y)` because a
47
+ :term:`cross fitting` scheme is used in `fit_transform` for encoding.
48
+ See the :ref:`User Guide <target_encoder>` for details.
49
+
50
+ .. versionadded:: 1.3
51
+
52
+ Parameters
53
+ ----------
54
+ categories : "auto" or list of shape (n_features,) of array-like, default="auto"
55
+ Categories (unique values) per feature:
56
+
57
+ - `"auto"` : Determine categories automatically from the training data.
58
+ - list : `categories[i]` holds the categories expected in the i-th column. The
59
+ passed categories should not mix strings and numeric values within a single
60
+ feature, and should be sorted in case of numeric values.
61
+
62
+ The used categories are stored in the `categories_` fitted attribute.
63
+
64
+ target_type : {"auto", "continuous", "binary", "multiclass"}, default="auto"
65
+ Type of target.
66
+
67
+ - `"auto"` : Type of target is inferred with
68
+ :func:`~sklearn.utils.multiclass.type_of_target`.
69
+ - `"continuous"` : Continuous target
70
+ - `"binary"` : Binary target
71
+ - `"multiclass"` : Multiclass target
72
+
73
+ .. note::
74
+ The type of target inferred with `"auto"` may not be the desired target
75
+ type used for modeling. For example, if the target consisted of integers
76
+ between 0 and 100, then :func:`~sklearn.utils.multiclass.type_of_target`
77
+ will infer the target as `"multiclass"`. In this case, setting
78
+ `target_type="continuous"` will specify the target as a regression
79
+ problem. The `target_type_` attribute gives the target type used by the
80
+ encoder.
81
+
82
+ .. versionchanged:: 1.4
83
+ Added the option 'multiclass'.
84
+
85
+ smooth : "auto" or float, default="auto"
86
+ The amount of mixing of the target mean conditioned on the value of the
87
+ category with the global target mean. A larger `smooth` value will put
88
+ more weight on the global target mean.
89
+ If `"auto"`, then `smooth` is set to an empirical Bayes estimate.
90
+
91
+ cv : int, default=5
92
+ Determines the number of folds in the :term:`cross fitting` strategy used in
93
+ :meth:`fit_transform`. For classification targets, `StratifiedKFold` is used
94
+ and for continuous targets, `KFold` is used.
95
+
96
+ shuffle : bool, default=True
97
+ Whether to shuffle the data in :meth:`fit_transform` before splitting into
98
+ folds. Note that the samples within each split will not be shuffled.
99
+
100
+ random_state : int, RandomState instance or None, default=None
101
+ When `shuffle` is True, `random_state` affects the ordering of the
102
+ indices, which controls the randomness of each fold. Otherwise, this
103
+ parameter has no effect.
104
+ Pass an int for reproducible output across multiple function calls.
105
+ See :term:`Glossary <random_state>`.
106
+
107
+ Attributes
108
+ ----------
109
+ encodings_ : list of shape (n_features,) or (n_features * n_classes) of \
110
+ ndarray
111
+ Encodings learnt on all of `X`.
112
+ For feature `i`, `encodings_[i]` are the encodings matching the
113
+ categories listed in `categories_[i]`. When `target_type_` is
114
+ "multiclass", the encoding for feature `i` and class `j` is stored in
115
+ `encodings_[j + (i * len(classes_))]`. E.g., for 2 features (f) and
116
+ 3 classes (c), encodings are ordered:
117
+ f0_c0, f0_c1, f0_c2, f1_c0, f1_c1, f1_c2,
118
+
119
+ categories_ : list of shape (n_features,) of ndarray
120
+ The categories of each input feature determined during fitting or
121
+ specified in `categories`
122
+ (in order of the features in `X` and corresponding with the output
123
+ of :meth:`transform`).
124
+
125
+ target_type_ : str
126
+ Type of target.
127
+
128
+ target_mean_ : float
129
+ The overall mean of the target. This value is only used in :meth:`transform`
130
+ to encode categories.
131
+
132
+ n_features_in_ : int
133
+ Number of features seen during :term:`fit`.
134
+
135
+ feature_names_in_ : ndarray of shape (`n_features_in_`,)
136
+ Names of features seen during :term:`fit`. Defined only when `X`
137
+ has feature names that are all strings.
138
+
139
+ classes_ : ndarray or None
140
+ If `target_type_` is 'binary' or 'multiclass', holds the label for each class,
141
+ otherwise `None`.
142
+
143
+ See Also
144
+ --------
145
+ OrdinalEncoder : Performs an ordinal (integer) encoding of the categorical features.
146
+ Contrary to TargetEncoder, this encoding is not supervised. Treating the
147
+ resulting encoding as a numerical features therefore lead arbitrarily
148
+ ordered values and therefore typically lead to lower predictive performance
149
+ when used as preprocessing for a classifier or regressor.
150
+ OneHotEncoder : Performs a one-hot encoding of categorical features. This
151
+ unsupervised encoding is better suited for low cardinality categorical
152
+ variables as it generate one new feature per unique category.
153
+
154
+ References
155
+ ----------
156
+ .. [MIC] :doi:`Micci-Barreca, Daniele. "A preprocessing scheme for high-cardinality
157
+ categorical attributes in classification and prediction problems"
158
+ SIGKDD Explor. Newsl. 3, 1 (July 2001), 27–32. <10.1145/507533.507538>`
159
+
160
+ Examples
161
+ --------
162
+ With `smooth="auto"`, the smoothing parameter is set to an empirical Bayes estimate:
163
+
164
+ >>> import numpy as np
165
+ >>> from sklearn.preprocessing import TargetEncoder
166
+ >>> X = np.array([["dog"] * 20 + ["cat"] * 30 + ["snake"] * 38], dtype=object).T
167
+ >>> y = [90.3] * 5 + [80.1] * 15 + [20.4] * 5 + [20.1] * 25 + [21.2] * 8 + [49] * 30
168
+ >>> enc_auto = TargetEncoder(smooth="auto")
169
+ >>> X_trans = enc_auto.fit_transform(X, y)
170
+
171
+ >>> # A high `smooth` parameter puts more weight on global mean on the categorical
172
+ >>> # encodings:
173
+ >>> enc_high_smooth = TargetEncoder(smooth=5000.0).fit(X, y)
174
+ >>> enc_high_smooth.target_mean_
175
+ 44...
176
+ >>> enc_high_smooth.encodings_
177
+ [array([44..., 44..., 44...])]
178
+
179
+ >>> # On the other hand, a low `smooth` parameter puts more weight on target
180
+ >>> # conditioned on the value of the categorical:
181
+ >>> enc_low_smooth = TargetEncoder(smooth=1.0).fit(X, y)
182
+ >>> enc_low_smooth.encodings_
183
+ [array([20..., 80..., 43...])]
184
+ """
185
+
186
+ _parameter_constraints: dict = {
187
+ "categories": [StrOptions({"auto"}), list],
188
+ "target_type": [StrOptions({"auto", "continuous", "binary", "multiclass"})],
189
+ "smooth": [StrOptions({"auto"}), Interval(Real, 0, None, closed="left")],
190
+ "cv": [Interval(Integral, 2, None, closed="left")],
191
+ "shuffle": ["boolean"],
192
+ "random_state": ["random_state"],
193
+ }
194
+
195
+ def __init__(
196
+ self,
197
+ categories="auto",
198
+ target_type="auto",
199
+ smooth="auto",
200
+ cv=5,
201
+ shuffle=True,
202
+ random_state=None,
203
+ ):
204
+ self.categories = categories
205
+ self.smooth = smooth
206
+ self.target_type = target_type
207
+ self.cv = cv
208
+ self.shuffle = shuffle
209
+ self.random_state = random_state
210
+
211
+ @_fit_context(prefer_skip_nested_validation=True)
212
+ def fit(self, X, y):
213
+ """Fit the :class:`TargetEncoder` to X and y.
214
+
215
+ Parameters
216
+ ----------
217
+ X : array-like of shape (n_samples, n_features)
218
+ The data to determine the categories of each feature.
219
+
220
+ y : array-like of shape (n_samples,)
221
+ The target data used to encode the categories.
222
+
223
+ Returns
224
+ -------
225
+ self : object
226
+ Fitted encoder.
227
+ """
228
+ self._fit_encodings_all(X, y)
229
+ return self
230
+
231
+ @_fit_context(prefer_skip_nested_validation=True)
232
+ def fit_transform(self, X, y):
233
+ """Fit :class:`TargetEncoder` and transform X with the target encoding.
234
+
235
+ .. note::
236
+ `fit(X, y).transform(X)` does not equal `fit_transform(X, y)` because a
237
+ :term:`cross fitting` scheme is used in `fit_transform` for encoding.
238
+ See the :ref:`User Guide <target_encoder>`. for details.
239
+
240
+ Parameters
241
+ ----------
242
+ X : array-like of shape (n_samples, n_features)
243
+ The data to determine the categories of each feature.
244
+
245
+ y : array-like of shape (n_samples,)
246
+ The target data used to encode the categories.
247
+
248
+ Returns
249
+ -------
250
+ X_trans : ndarray of shape (n_samples, n_features) or \
251
+ (n_samples, (n_features * n_classes))
252
+ Transformed input.
253
+ """
254
+ from ..model_selection import KFold, StratifiedKFold # avoid circular import
255
+
256
+ X_ordinal, X_known_mask, y_encoded, n_categories = self._fit_encodings_all(X, y)
257
+
258
+ # The cv splitter is voluntarily restricted to *KFold to enforce non
259
+ # overlapping validation folds, otherwise the fit_transform output will
260
+ # not be well-specified.
261
+ if self.target_type_ == "continuous":
262
+ cv = KFold(self.cv, shuffle=self.shuffle, random_state=self.random_state)
263
+ else:
264
+ cv = StratifiedKFold(
265
+ self.cv, shuffle=self.shuffle, random_state=self.random_state
266
+ )
267
+
268
+ # If 'multiclass' multiply axis=1 by num classes else keep shape the same
269
+ if self.target_type_ == "multiclass":
270
+ X_out = np.empty(
271
+ (X_ordinal.shape[0], X_ordinal.shape[1] * len(self.classes_)),
272
+ dtype=np.float64,
273
+ )
274
+ else:
275
+ X_out = np.empty_like(X_ordinal, dtype=np.float64)
276
+
277
+ for train_idx, test_idx in cv.split(X, y):
278
+ X_train, y_train = X_ordinal[train_idx, :], y_encoded[train_idx]
279
+ y_train_mean = np.mean(y_train, axis=0)
280
+
281
+ if self.target_type_ == "multiclass":
282
+ encodings = self._fit_encoding_multiclass(
283
+ X_train,
284
+ y_train,
285
+ n_categories,
286
+ y_train_mean,
287
+ )
288
+ else:
289
+ encodings = self._fit_encoding_binary_or_continuous(
290
+ X_train,
291
+ y_train,
292
+ n_categories,
293
+ y_train_mean,
294
+ )
295
+ self._transform_X_ordinal(
296
+ X_out,
297
+ X_ordinal,
298
+ ~X_known_mask,
299
+ test_idx,
300
+ encodings,
301
+ y_train_mean,
302
+ )
303
+ return X_out
304
+
305
+ def transform(self, X):
306
+ """Transform X with the target encoding.
307
+
308
+ .. note::
309
+ `fit(X, y).transform(X)` does not equal `fit_transform(X, y)` because a
310
+ :term:`cross fitting` scheme is used in `fit_transform` for encoding.
311
+ See the :ref:`User Guide <target_encoder>`. for details.
312
+
313
+ Parameters
314
+ ----------
315
+ X : array-like of shape (n_samples, n_features)
316
+ The data to determine the categories of each feature.
317
+
318
+ Returns
319
+ -------
320
+ X_trans : ndarray of shape (n_samples, n_features) or \
321
+ (n_samples, (n_features * n_classes))
322
+ Transformed input.
323
+ """
324
+ X_ordinal, X_known_mask = self._transform(
325
+ X, handle_unknown="ignore", force_all_finite="allow-nan"
326
+ )
327
+
328
+ # If 'multiclass' multiply axis=1 by num of classes else keep shape the same
329
+ if self.target_type_ == "multiclass":
330
+ X_out = np.empty(
331
+ (X_ordinal.shape[0], X_ordinal.shape[1] * len(self.classes_)),
332
+ dtype=np.float64,
333
+ )
334
+ else:
335
+ X_out = np.empty_like(X_ordinal, dtype=np.float64)
336
+
337
+ self._transform_X_ordinal(
338
+ X_out,
339
+ X_ordinal,
340
+ ~X_known_mask,
341
+ slice(None),
342
+ self.encodings_,
343
+ self.target_mean_,
344
+ )
345
+ return X_out
346
+
347
+ def _fit_encodings_all(self, X, y):
348
+ """Fit a target encoding with all the data."""
349
+ # avoid circular import
350
+ from ..preprocessing import (
351
+ LabelBinarizer,
352
+ LabelEncoder,
353
+ )
354
+
355
+ check_consistent_length(X, y)
356
+ self._fit(X, handle_unknown="ignore", force_all_finite="allow-nan")
357
+
358
+ if self.target_type == "auto":
359
+ accepted_target_types = ("binary", "multiclass", "continuous")
360
+ inferred_type_of_target = type_of_target(y, input_name="y")
361
+ if inferred_type_of_target not in accepted_target_types:
362
+ raise ValueError(
363
+ "Unknown label type: Target type was inferred to be "
364
+ f"{inferred_type_of_target!r}. Only {accepted_target_types} are "
365
+ "supported."
366
+ )
367
+ self.target_type_ = inferred_type_of_target
368
+ else:
369
+ self.target_type_ = self.target_type
370
+
371
+ self.classes_ = None
372
+ if self.target_type_ == "binary":
373
+ label_encoder = LabelEncoder()
374
+ y = label_encoder.fit_transform(y)
375
+ self.classes_ = label_encoder.classes_
376
+ elif self.target_type_ == "multiclass":
377
+ label_binarizer = LabelBinarizer()
378
+ y = label_binarizer.fit_transform(y)
379
+ self.classes_ = label_binarizer.classes_
380
+ else: # continuous
381
+ y = _check_y(y, y_numeric=True, estimator=self)
382
+
383
+ self.target_mean_ = np.mean(y, axis=0)
384
+
385
+ X_ordinal, X_known_mask = self._transform(
386
+ X, handle_unknown="ignore", force_all_finite="allow-nan"
387
+ )
388
+ n_categories = np.fromiter(
389
+ (len(category_for_feature) for category_for_feature in self.categories_),
390
+ dtype=np.int64,
391
+ count=len(self.categories_),
392
+ )
393
+ if self.target_type_ == "multiclass":
394
+ encodings = self._fit_encoding_multiclass(
395
+ X_ordinal,
396
+ y,
397
+ n_categories,
398
+ self.target_mean_,
399
+ )
400
+ else:
401
+ encodings = self._fit_encoding_binary_or_continuous(
402
+ X_ordinal,
403
+ y,
404
+ n_categories,
405
+ self.target_mean_,
406
+ )
407
+ self.encodings_ = encodings
408
+
409
+ return X_ordinal, X_known_mask, y, n_categories
410
+
411
+ def _fit_encoding_binary_or_continuous(
412
+ self, X_ordinal, y, n_categories, target_mean
413
+ ):
414
+ """Learn target encodings."""
415
+ if self.smooth == "auto":
416
+ y_variance = np.var(y)
417
+ encodings = _fit_encoding_fast_auto_smooth(
418
+ X_ordinal,
419
+ y,
420
+ n_categories,
421
+ target_mean,
422
+ y_variance,
423
+ )
424
+ else:
425
+ encodings = _fit_encoding_fast(
426
+ X_ordinal,
427
+ y,
428
+ n_categories,
429
+ self.smooth,
430
+ target_mean,
431
+ )
432
+ return encodings
433
+
434
+ def _fit_encoding_multiclass(self, X_ordinal, y, n_categories, target_mean):
435
+ """Learn multiclass encodings.
436
+
437
+ Learn encodings for each class (c) then reorder encodings such that
438
+ the same features (f) are grouped together. `reorder_index` enables
439
+ converting from:
440
+ f0_c0, f1_c0, f0_c1, f1_c1, f0_c2, f1_c2
441
+ to:
442
+ f0_c0, f0_c1, f0_c2, f1_c0, f1_c1, f1_c2
443
+ """
444
+ n_features = self.n_features_in_
445
+ n_classes = len(self.classes_)
446
+
447
+ encodings = []
448
+ for i in range(n_classes):
449
+ y_class = y[:, i]
450
+ encoding = self._fit_encoding_binary_or_continuous(
451
+ X_ordinal,
452
+ y_class,
453
+ n_categories,
454
+ target_mean[i],
455
+ )
456
+ encodings.extend(encoding)
457
+
458
+ reorder_index = (
459
+ idx
460
+ for start in range(n_features)
461
+ for idx in range(start, (n_classes * n_features), n_features)
462
+ )
463
+ return [encodings[idx] for idx in reorder_index]
464
+
465
+ def _transform_X_ordinal(
466
+ self,
467
+ X_out,
468
+ X_ordinal,
469
+ X_unknown_mask,
470
+ row_indices,
471
+ encodings,
472
+ target_mean,
473
+ ):
474
+ """Transform X_ordinal using encodings.
475
+
476
+ In the multiclass case, `X_ordinal` and `X_unknown_mask` have column
477
+ (axis=1) size `n_features`, while `encodings` has length of size
478
+ `n_features * n_classes`. `feat_idx` deals with this by repeating
479
+ feature indices by `n_classes` E.g., for 3 features, 2 classes:
480
+ 0,0,1,1,2,2
481
+
482
+ Additionally, `target_mean` is of shape (`n_classes`,) so `mean_idx`
483
+ cycles through 0 to `n_classes` - 1, `n_features` times.
484
+ """
485
+ if self.target_type_ == "multiclass":
486
+ n_classes = len(self.classes_)
487
+ for e_idx, encoding in enumerate(encodings):
488
+ # Repeat feature indices by n_classes
489
+ feat_idx = e_idx // n_classes
490
+ # Cycle through each class
491
+ mean_idx = e_idx % n_classes
492
+ X_out[row_indices, e_idx] = encoding[X_ordinal[row_indices, feat_idx]]
493
+ X_out[X_unknown_mask[:, feat_idx], e_idx] = target_mean[mean_idx]
494
+ else:
495
+ for e_idx, encoding in enumerate(encodings):
496
+ X_out[row_indices, e_idx] = encoding[X_ordinal[row_indices, e_idx]]
497
+ X_out[X_unknown_mask[:, e_idx], e_idx] = target_mean
498
+
499
+ def get_feature_names_out(self, input_features=None):
500
+ """Get output feature names for transformation.
501
+
502
+ Parameters
503
+ ----------
504
+ input_features : array-like of str or None, default=None
505
+ Not used, present here for API consistency by convention.
506
+
507
+ Returns
508
+ -------
509
+ feature_names_out : ndarray of str objects
510
+ Transformed feature names. `feature_names_in_` is used unless it is
511
+ not defined, in which case the following input feature names are
512
+ generated: `["x0", "x1", ..., "x(n_features_in_ - 1)"]`.
513
+ When `type_of_target_` is "multiclass" the names are of the format
514
+ '<feature_name>_<class_name>'.
515
+ """
516
+ check_is_fitted(self, "n_features_in_")
517
+ feature_names = _check_feature_names_in(self, input_features)
518
+ if self.target_type_ == "multiclass":
519
+ feature_names = [
520
+ f"{feature_name}_{class_name}"
521
+ for feature_name in feature_names
522
+ for class_name in self.classes_
523
+ ]
524
+ return np.asarray(feature_names, dtype=object)
525
+ else:
526
+ return feature_names
527
+
528
+ def _more_tags(self):
529
+ return {
530
+ "requires_y": True,
531
+ }
env-llmeval/lib/python3.10/site-packages/sklearn/preprocessing/_target_encoder_fast.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (570 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sklearn/preprocessing/tests/__init__.py ADDED
File without changes
env-llmeval/lib/python3.10/site-packages/sklearn/preprocessing/tests/test_data.py ADDED
@@ -0,0 +1,2593 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Authors:
2
+ #
3
+ # Giorgio Patrini
4
+ #
5
+ # License: BSD 3 clause
6
+
7
+ import re
8
+ import warnings
9
+
10
+ import numpy as np
11
+ import numpy.linalg as la
12
+ import pytest
13
+ from scipy import sparse, stats
14
+
15
+ from sklearn import datasets
16
+ from sklearn.base import clone
17
+ from sklearn.exceptions import NotFittedError
18
+ from sklearn.metrics.pairwise import linear_kernel
19
+ from sklearn.model_selection import cross_val_predict
20
+ from sklearn.pipeline import Pipeline
21
+ from sklearn.preprocessing import (
22
+ Binarizer,
23
+ KernelCenterer,
24
+ MaxAbsScaler,
25
+ MinMaxScaler,
26
+ Normalizer,
27
+ PowerTransformer,
28
+ QuantileTransformer,
29
+ RobustScaler,
30
+ StandardScaler,
31
+ add_dummy_feature,
32
+ maxabs_scale,
33
+ minmax_scale,
34
+ normalize,
35
+ power_transform,
36
+ quantile_transform,
37
+ robust_scale,
38
+ scale,
39
+ )
40
+ from sklearn.preprocessing._data import BOUNDS_THRESHOLD, _handle_zeros_in_scale
41
+ from sklearn.svm import SVR
42
+ from sklearn.utils import gen_batches, shuffle
43
+ from sklearn.utils._array_api import (
44
+ yield_namespace_device_dtype_combinations,
45
+ )
46
+ from sklearn.utils._testing import (
47
+ _convert_container,
48
+ assert_allclose,
49
+ assert_allclose_dense_sparse,
50
+ assert_almost_equal,
51
+ assert_array_almost_equal,
52
+ assert_array_equal,
53
+ assert_array_less,
54
+ skip_if_32bit,
55
+ )
56
+ from sklearn.utils.estimator_checks import (
57
+ _get_check_estimator_ids,
58
+ check_array_api_input_and_values,
59
+ )
60
+ from sklearn.utils.fixes import (
61
+ COO_CONTAINERS,
62
+ CSC_CONTAINERS,
63
+ CSR_CONTAINERS,
64
+ LIL_CONTAINERS,
65
+ )
66
+ from sklearn.utils.sparsefuncs import mean_variance_axis
67
+
68
+ iris = datasets.load_iris()
69
+
70
+ # Make some data to be used many times
71
+ rng = np.random.RandomState(0)
72
+ n_features = 30
73
+ n_samples = 1000
74
+ offsets = rng.uniform(-1, 1, size=n_features)
75
+ scales = rng.uniform(1, 10, size=n_features)
76
+ X_2d = rng.randn(n_samples, n_features) * scales + offsets
77
+ X_1row = X_2d[0, :].reshape(1, n_features)
78
+ X_1col = X_2d[:, 0].reshape(n_samples, 1)
79
+ X_list_1row = X_1row.tolist()
80
+ X_list_1col = X_1col.tolist()
81
+
82
+
83
+ def toarray(a):
84
+ if hasattr(a, "toarray"):
85
+ a = a.toarray()
86
+ return a
87
+
88
+
89
+ def _check_dim_1axis(a):
90
+ return np.asarray(a).shape[0]
91
+
92
+
93
+ def assert_correct_incr(i, batch_start, batch_stop, n, chunk_size, n_samples_seen):
94
+ if batch_stop != n:
95
+ assert (i + 1) * chunk_size == n_samples_seen
96
+ else:
97
+ assert i * chunk_size + (batch_stop - batch_start) == n_samples_seen
98
+
99
+
100
+ def test_raises_value_error_if_sample_weights_greater_than_1d():
101
+ # Sample weights must be either scalar or 1D
102
+
103
+ n_sampless = [2, 3]
104
+ n_featuress = [3, 2]
105
+
106
+ for n_samples, n_features in zip(n_sampless, n_featuress):
107
+ X = rng.randn(n_samples, n_features)
108
+ y = rng.randn(n_samples)
109
+
110
+ scaler = StandardScaler()
111
+
112
+ # make sure Error is raised the sample weights greater than 1d
113
+ sample_weight_notOK = rng.randn(n_samples, 1) ** 2
114
+ with pytest.raises(ValueError):
115
+ scaler.fit(X, y, sample_weight=sample_weight_notOK)
116
+
117
+
118
+ @pytest.mark.parametrize(
119
+ ["Xw", "X", "sample_weight"],
120
+ [
121
+ ([[1, 2, 3], [4, 5, 6]], [[1, 2, 3], [1, 2, 3], [4, 5, 6]], [2.0, 1.0]),
122
+ (
123
+ [[1, 0, 1], [0, 0, 1]],
124
+ [[1, 0, 1], [0, 0, 1], [0, 0, 1], [0, 0, 1]],
125
+ np.array([1, 3]),
126
+ ),
127
+ (
128
+ [[1, np.nan, 1], [np.nan, np.nan, 1]],
129
+ [
130
+ [1, np.nan, 1],
131
+ [np.nan, np.nan, 1],
132
+ [np.nan, np.nan, 1],
133
+ [np.nan, np.nan, 1],
134
+ ],
135
+ np.array([1, 3]),
136
+ ),
137
+ ],
138
+ )
139
+ @pytest.mark.parametrize("array_constructor", ["array", "sparse_csr", "sparse_csc"])
140
+ def test_standard_scaler_sample_weight(Xw, X, sample_weight, array_constructor):
141
+ with_mean = not array_constructor.startswith("sparse")
142
+ X = _convert_container(X, array_constructor)
143
+ Xw = _convert_container(Xw, array_constructor)
144
+
145
+ # weighted StandardScaler
146
+ yw = np.ones(Xw.shape[0])
147
+ scaler_w = StandardScaler(with_mean=with_mean)
148
+ scaler_w.fit(Xw, yw, sample_weight=sample_weight)
149
+
150
+ # unweighted, but with repeated samples
151
+ y = np.ones(X.shape[0])
152
+ scaler = StandardScaler(with_mean=with_mean)
153
+ scaler.fit(X, y)
154
+
155
+ X_test = [[1.5, 2.5, 3.5], [3.5, 4.5, 5.5]]
156
+
157
+ assert_almost_equal(scaler.mean_, scaler_w.mean_)
158
+ assert_almost_equal(scaler.var_, scaler_w.var_)
159
+ assert_almost_equal(scaler.transform(X_test), scaler_w.transform(X_test))
160
+
161
+
162
+ def test_standard_scaler_1d():
163
+ # Test scaling of dataset along single axis
164
+ for X in [X_1row, X_1col, X_list_1row, X_list_1row]:
165
+ scaler = StandardScaler()
166
+ X_scaled = scaler.fit(X).transform(X, copy=True)
167
+
168
+ if isinstance(X, list):
169
+ X = np.array(X) # cast only after scaling done
170
+
171
+ if _check_dim_1axis(X) == 1:
172
+ assert_almost_equal(scaler.mean_, X.ravel())
173
+ assert_almost_equal(scaler.scale_, np.ones(n_features))
174
+ assert_array_almost_equal(X_scaled.mean(axis=0), np.zeros_like(n_features))
175
+ assert_array_almost_equal(X_scaled.std(axis=0), np.zeros_like(n_features))
176
+ else:
177
+ assert_almost_equal(scaler.mean_, X.mean())
178
+ assert_almost_equal(scaler.scale_, X.std())
179
+ assert_array_almost_equal(X_scaled.mean(axis=0), np.zeros_like(n_features))
180
+ assert_array_almost_equal(X_scaled.mean(axis=0), 0.0)
181
+ assert_array_almost_equal(X_scaled.std(axis=0), 1.0)
182
+ assert scaler.n_samples_seen_ == X.shape[0]
183
+
184
+ # check inverse transform
185
+ X_scaled_back = scaler.inverse_transform(X_scaled)
186
+ assert_array_almost_equal(X_scaled_back, X)
187
+
188
+ # Constant feature
189
+ X = np.ones((5, 1))
190
+ scaler = StandardScaler()
191
+ X_scaled = scaler.fit(X).transform(X, copy=True)
192
+ assert_almost_equal(scaler.mean_, 1.0)
193
+ assert_almost_equal(scaler.scale_, 1.0)
194
+ assert_array_almost_equal(X_scaled.mean(axis=0), 0.0)
195
+ assert_array_almost_equal(X_scaled.std(axis=0), 0.0)
196
+ assert scaler.n_samples_seen_ == X.shape[0]
197
+
198
+
199
+ @pytest.mark.parametrize("sparse_container", [None] + CSC_CONTAINERS + CSR_CONTAINERS)
200
+ @pytest.mark.parametrize("add_sample_weight", [False, True])
201
+ def test_standard_scaler_dtype(add_sample_weight, sparse_container):
202
+ # Ensure scaling does not affect dtype
203
+ rng = np.random.RandomState(0)
204
+ n_samples = 10
205
+ n_features = 3
206
+ if add_sample_weight:
207
+ sample_weight = np.ones(n_samples)
208
+ else:
209
+ sample_weight = None
210
+ with_mean = True
211
+ if sparse_container is not None:
212
+ # scipy sparse containers do not support float16, see
213
+ # https://github.com/scipy/scipy/issues/7408 for more details.
214
+ supported_dtype = [np.float64, np.float32]
215
+ else:
216
+ supported_dtype = [np.float64, np.float32, np.float16]
217
+ for dtype in supported_dtype:
218
+ X = rng.randn(n_samples, n_features).astype(dtype)
219
+ if sparse_container is not None:
220
+ X = sparse_container(X)
221
+ with_mean = False
222
+
223
+ scaler = StandardScaler(with_mean=with_mean)
224
+ X_scaled = scaler.fit(X, sample_weight=sample_weight).transform(X)
225
+ assert X.dtype == X_scaled.dtype
226
+ assert scaler.mean_.dtype == np.float64
227
+ assert scaler.scale_.dtype == np.float64
228
+
229
+
230
+ @pytest.mark.parametrize(
231
+ "scaler",
232
+ [
233
+ StandardScaler(with_mean=False),
234
+ RobustScaler(with_centering=False),
235
+ ],
236
+ )
237
+ @pytest.mark.parametrize("sparse_container", [None] + CSC_CONTAINERS + CSR_CONTAINERS)
238
+ @pytest.mark.parametrize("add_sample_weight", [False, True])
239
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
240
+ @pytest.mark.parametrize("constant", [0, 1.0, 100.0])
241
+ def test_standard_scaler_constant_features(
242
+ scaler, add_sample_weight, sparse_container, dtype, constant
243
+ ):
244
+ if isinstance(scaler, RobustScaler) and add_sample_weight:
245
+ pytest.skip(f"{scaler.__class__.__name__} does not yet support sample_weight")
246
+
247
+ rng = np.random.RandomState(0)
248
+ n_samples = 100
249
+ n_features = 1
250
+ if add_sample_weight:
251
+ fit_params = dict(sample_weight=rng.uniform(size=n_samples) * 2)
252
+ else:
253
+ fit_params = {}
254
+ X_array = np.full(shape=(n_samples, n_features), fill_value=constant, dtype=dtype)
255
+ X = X_array if sparse_container is None else sparse_container(X_array)
256
+ X_scaled = scaler.fit(X, **fit_params).transform(X)
257
+
258
+ if isinstance(scaler, StandardScaler):
259
+ # The variance info should be close to zero for constant features.
260
+ assert_allclose(scaler.var_, np.zeros(X.shape[1]), atol=1e-7)
261
+
262
+ # Constant features should not be scaled (scale of 1.):
263
+ assert_allclose(scaler.scale_, np.ones(X.shape[1]))
264
+
265
+ assert X_scaled is not X # make sure we make a copy
266
+ assert_allclose_dense_sparse(X_scaled, X)
267
+
268
+ if isinstance(scaler, StandardScaler) and not add_sample_weight:
269
+ # Also check consistency with the standard scale function.
270
+ X_scaled_2 = scale(X, with_mean=scaler.with_mean)
271
+ assert X_scaled_2 is not X # make sure we did a copy
272
+ assert_allclose_dense_sparse(X_scaled_2, X)
273
+
274
+
275
+ @pytest.mark.parametrize("n_samples", [10, 100, 10_000])
276
+ @pytest.mark.parametrize("average", [1e-10, 1, 1e10])
277
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
278
+ @pytest.mark.parametrize("sparse_container", [None] + CSC_CONTAINERS + CSR_CONTAINERS)
279
+ def test_standard_scaler_near_constant_features(
280
+ n_samples, sparse_container, average, dtype
281
+ ):
282
+ # Check that when the variance is too small (var << mean**2) the feature
283
+ # is considered constant and not scaled.
284
+
285
+ scale_min, scale_max = -30, 19
286
+ scales = np.array([10**i for i in range(scale_min, scale_max + 1)], dtype=dtype)
287
+
288
+ n_features = scales.shape[0]
289
+ X = np.empty((n_samples, n_features), dtype=dtype)
290
+ # Make a dataset of known var = scales**2 and mean = average
291
+ X[: n_samples // 2, :] = average + scales
292
+ X[n_samples // 2 :, :] = average - scales
293
+ X_array = X if sparse_container is None else sparse_container(X)
294
+
295
+ scaler = StandardScaler(with_mean=False).fit(X_array)
296
+
297
+ # StandardScaler uses float64 accumulators even if the data has a float32
298
+ # dtype.
299
+ eps = np.finfo(np.float64).eps
300
+
301
+ # if var < bound = N.eps.var + N².eps².mean², the feature is considered
302
+ # constant and the scale_ attribute is set to 1.
303
+ bounds = n_samples * eps * scales**2 + n_samples**2 * eps**2 * average**2
304
+ within_bounds = scales**2 <= bounds
305
+
306
+ # Check that scale_min is small enough to have some scales below the
307
+ # bound and therefore detected as constant:
308
+ assert np.any(within_bounds)
309
+
310
+ # Check that such features are actually treated as constant by the scaler:
311
+ assert all(scaler.var_[within_bounds] <= bounds[within_bounds])
312
+ assert_allclose(scaler.scale_[within_bounds], 1.0)
313
+
314
+ # Depending the on the dtype of X, some features might not actually be
315
+ # representable as non constant for small scales (even if above the
316
+ # precision bound of the float64 variance estimate). Such feature should
317
+ # be correctly detected as constants with 0 variance by StandardScaler.
318
+ representable_diff = X[0, :] - X[-1, :] != 0
319
+ assert_allclose(scaler.var_[np.logical_not(representable_diff)], 0)
320
+ assert_allclose(scaler.scale_[np.logical_not(representable_diff)], 1)
321
+
322
+ # The other features are scaled and scale_ is equal to sqrt(var_) assuming
323
+ # that scales are large enough for average + scale and average - scale to
324
+ # be distinct in X (depending on X's dtype).
325
+ common_mask = np.logical_and(scales**2 > bounds, representable_diff)
326
+ assert_allclose(scaler.scale_[common_mask], np.sqrt(scaler.var_)[common_mask])
327
+
328
+
329
+ def test_scale_1d():
330
+ # 1-d inputs
331
+ X_list = [1.0, 3.0, 5.0, 0.0]
332
+ X_arr = np.array(X_list)
333
+
334
+ for X in [X_list, X_arr]:
335
+ X_scaled = scale(X)
336
+ assert_array_almost_equal(X_scaled.mean(), 0.0)
337
+ assert_array_almost_equal(X_scaled.std(), 1.0)
338
+ assert_array_equal(scale(X, with_mean=False, with_std=False), X)
339
+
340
+
341
+ @skip_if_32bit
342
+ def test_standard_scaler_numerical_stability():
343
+ # Test numerical stability of scaling
344
+ # np.log(1e-5) is taken because of its floating point representation
345
+ # was empirically found to cause numerical problems with np.mean & np.std.
346
+ x = np.full(8, np.log(1e-5), dtype=np.float64)
347
+ # This does not raise a warning as the number of samples is too low
348
+ # to trigger the problem in recent numpy
349
+ with warnings.catch_warnings():
350
+ warnings.simplefilter("error", UserWarning)
351
+ scale(x)
352
+ assert_array_almost_equal(scale(x), np.zeros(8))
353
+
354
+ # with 2 more samples, the std computation run into numerical issues:
355
+ x = np.full(10, np.log(1e-5), dtype=np.float64)
356
+ warning_message = "standard deviation of the data is probably very close to 0"
357
+ with pytest.warns(UserWarning, match=warning_message):
358
+ x_scaled = scale(x)
359
+ assert_array_almost_equal(x_scaled, np.zeros(10))
360
+
361
+ x = np.full(10, 1e-100, dtype=np.float64)
362
+ with warnings.catch_warnings():
363
+ warnings.simplefilter("error", UserWarning)
364
+ x_small_scaled = scale(x)
365
+ assert_array_almost_equal(x_small_scaled, np.zeros(10))
366
+
367
+ # Large values can cause (often recoverable) numerical stability issues:
368
+ x_big = np.full(10, 1e100, dtype=np.float64)
369
+ warning_message = "Dataset may contain too large values"
370
+ with pytest.warns(UserWarning, match=warning_message):
371
+ x_big_scaled = scale(x_big)
372
+ assert_array_almost_equal(x_big_scaled, np.zeros(10))
373
+ assert_array_almost_equal(x_big_scaled, x_small_scaled)
374
+ with pytest.warns(UserWarning, match=warning_message):
375
+ x_big_centered = scale(x_big, with_std=False)
376
+ assert_array_almost_equal(x_big_centered, np.zeros(10))
377
+ assert_array_almost_equal(x_big_centered, x_small_scaled)
378
+
379
+
380
+ def test_scaler_2d_arrays():
381
+ # Test scaling of 2d array along first axis
382
+ rng = np.random.RandomState(0)
383
+ n_features = 5
384
+ n_samples = 4
385
+ X = rng.randn(n_samples, n_features)
386
+ X[:, 0] = 0.0 # first feature is always of zero
387
+
388
+ scaler = StandardScaler()
389
+ X_scaled = scaler.fit(X).transform(X, copy=True)
390
+ assert not np.any(np.isnan(X_scaled))
391
+ assert scaler.n_samples_seen_ == n_samples
392
+
393
+ assert_array_almost_equal(X_scaled.mean(axis=0), n_features * [0.0])
394
+ assert_array_almost_equal(X_scaled.std(axis=0), [0.0, 1.0, 1.0, 1.0, 1.0])
395
+ # Check that X has been copied
396
+ assert X_scaled is not X
397
+
398
+ # check inverse transform
399
+ X_scaled_back = scaler.inverse_transform(X_scaled)
400
+ assert X_scaled_back is not X
401
+ assert X_scaled_back is not X_scaled
402
+ assert_array_almost_equal(X_scaled_back, X)
403
+
404
+ X_scaled = scale(X, axis=1, with_std=False)
405
+ assert not np.any(np.isnan(X_scaled))
406
+ assert_array_almost_equal(X_scaled.mean(axis=1), n_samples * [0.0])
407
+ X_scaled = scale(X, axis=1, with_std=True)
408
+ assert not np.any(np.isnan(X_scaled))
409
+ assert_array_almost_equal(X_scaled.mean(axis=1), n_samples * [0.0])
410
+ assert_array_almost_equal(X_scaled.std(axis=1), n_samples * [1.0])
411
+ # Check that the data hasn't been modified
412
+ assert X_scaled is not X
413
+
414
+ X_scaled = scaler.fit(X).transform(X, copy=False)
415
+ assert not np.any(np.isnan(X_scaled))
416
+ assert_array_almost_equal(X_scaled.mean(axis=0), n_features * [0.0])
417
+ assert_array_almost_equal(X_scaled.std(axis=0), [0.0, 1.0, 1.0, 1.0, 1.0])
418
+ # Check that X has not been copied
419
+ assert X_scaled is X
420
+
421
+ X = rng.randn(4, 5)
422
+ X[:, 0] = 1.0 # first feature is a constant, non zero feature
423
+ scaler = StandardScaler()
424
+ X_scaled = scaler.fit(X).transform(X, copy=True)
425
+ assert not np.any(np.isnan(X_scaled))
426
+ assert_array_almost_equal(X_scaled.mean(axis=0), n_features * [0.0])
427
+ assert_array_almost_equal(X_scaled.std(axis=0), [0.0, 1.0, 1.0, 1.0, 1.0])
428
+ # Check that X has not been copied
429
+ assert X_scaled is not X
430
+
431
+
432
+ def test_scaler_float16_overflow():
433
+ # Test if the scaler will not overflow on float16 numpy arrays
434
+ rng = np.random.RandomState(0)
435
+ # float16 has a maximum of 65500.0. On the worst case 5 * 200000 is 100000
436
+ # which is enough to overflow the data type
437
+ X = rng.uniform(5, 10, [200000, 1]).astype(np.float16)
438
+
439
+ with np.errstate(over="raise"):
440
+ scaler = StandardScaler().fit(X)
441
+ X_scaled = scaler.transform(X)
442
+
443
+ # Calculate the float64 equivalent to verify result
444
+ X_scaled_f64 = StandardScaler().fit_transform(X.astype(np.float64))
445
+
446
+ # Overflow calculations may cause -inf, inf, or nan. Since there is no nan
447
+ # input, all of the outputs should be finite. This may be redundant since a
448
+ # FloatingPointError exception will be thrown on overflow above.
449
+ assert np.all(np.isfinite(X_scaled))
450
+
451
+ # The normal distribution is very unlikely to go above 4. At 4.0-8.0 the
452
+ # float16 precision is 2^-8 which is around 0.004. Thus only 2 decimals are
453
+ # checked to account for precision differences.
454
+ assert_array_almost_equal(X_scaled, X_scaled_f64, decimal=2)
455
+
456
+
457
+ def test_handle_zeros_in_scale():
458
+ s1 = np.array([0, 1e-16, 1, 2, 3])
459
+ s2 = _handle_zeros_in_scale(s1, copy=True)
460
+
461
+ assert_allclose(s1, np.array([0, 1e-16, 1, 2, 3]))
462
+ assert_allclose(s2, np.array([1, 1, 1, 2, 3]))
463
+
464
+
465
+ def test_minmax_scaler_partial_fit():
466
+ # Test if partial_fit run over many batches of size 1 and 50
467
+ # gives the same results as fit
468
+ X = X_2d
469
+ n = X.shape[0]
470
+
471
+ for chunk_size in [1, 2, 50, n, n + 42]:
472
+ # Test mean at the end of the process
473
+ scaler_batch = MinMaxScaler().fit(X)
474
+
475
+ scaler_incr = MinMaxScaler()
476
+ for batch in gen_batches(n_samples, chunk_size):
477
+ scaler_incr = scaler_incr.partial_fit(X[batch])
478
+
479
+ assert_array_almost_equal(scaler_batch.data_min_, scaler_incr.data_min_)
480
+ assert_array_almost_equal(scaler_batch.data_max_, scaler_incr.data_max_)
481
+ assert scaler_batch.n_samples_seen_ == scaler_incr.n_samples_seen_
482
+ assert_array_almost_equal(scaler_batch.data_range_, scaler_incr.data_range_)
483
+ assert_array_almost_equal(scaler_batch.scale_, scaler_incr.scale_)
484
+ assert_array_almost_equal(scaler_batch.min_, scaler_incr.min_)
485
+
486
+ # Test std after 1 step
487
+ batch0 = slice(0, chunk_size)
488
+ scaler_batch = MinMaxScaler().fit(X[batch0])
489
+ scaler_incr = MinMaxScaler().partial_fit(X[batch0])
490
+
491
+ assert_array_almost_equal(scaler_batch.data_min_, scaler_incr.data_min_)
492
+ assert_array_almost_equal(scaler_batch.data_max_, scaler_incr.data_max_)
493
+ assert scaler_batch.n_samples_seen_ == scaler_incr.n_samples_seen_
494
+ assert_array_almost_equal(scaler_batch.data_range_, scaler_incr.data_range_)
495
+ assert_array_almost_equal(scaler_batch.scale_, scaler_incr.scale_)
496
+ assert_array_almost_equal(scaler_batch.min_, scaler_incr.min_)
497
+
498
+ # Test std until the end of partial fits, and
499
+ scaler_batch = MinMaxScaler().fit(X)
500
+ scaler_incr = MinMaxScaler() # Clean estimator
501
+ for i, batch in enumerate(gen_batches(n_samples, chunk_size)):
502
+ scaler_incr = scaler_incr.partial_fit(X[batch])
503
+ assert_correct_incr(
504
+ i,
505
+ batch_start=batch.start,
506
+ batch_stop=batch.stop,
507
+ n=n,
508
+ chunk_size=chunk_size,
509
+ n_samples_seen=scaler_incr.n_samples_seen_,
510
+ )
511
+
512
+
513
+ def test_standard_scaler_partial_fit():
514
+ # Test if partial_fit run over many batches of size 1 and 50
515
+ # gives the same results as fit
516
+ X = X_2d
517
+ n = X.shape[0]
518
+
519
+ for chunk_size in [1, 2, 50, n, n + 42]:
520
+ # Test mean at the end of the process
521
+ scaler_batch = StandardScaler(with_std=False).fit(X)
522
+
523
+ scaler_incr = StandardScaler(with_std=False)
524
+ for batch in gen_batches(n_samples, chunk_size):
525
+ scaler_incr = scaler_incr.partial_fit(X[batch])
526
+ assert_array_almost_equal(scaler_batch.mean_, scaler_incr.mean_)
527
+ assert scaler_batch.var_ == scaler_incr.var_ # Nones
528
+ assert scaler_batch.n_samples_seen_ == scaler_incr.n_samples_seen_
529
+
530
+ # Test std after 1 step
531
+ batch0 = slice(0, chunk_size)
532
+ scaler_incr = StandardScaler().partial_fit(X[batch0])
533
+ if chunk_size == 1:
534
+ assert_array_almost_equal(
535
+ np.zeros(n_features, dtype=np.float64), scaler_incr.var_
536
+ )
537
+ assert_array_almost_equal(
538
+ np.ones(n_features, dtype=np.float64), scaler_incr.scale_
539
+ )
540
+ else:
541
+ assert_array_almost_equal(np.var(X[batch0], axis=0), scaler_incr.var_)
542
+ assert_array_almost_equal(
543
+ np.std(X[batch0], axis=0), scaler_incr.scale_
544
+ ) # no constants
545
+
546
+ # Test std until the end of partial fits, and
547
+ scaler_batch = StandardScaler().fit(X)
548
+ scaler_incr = StandardScaler() # Clean estimator
549
+ for i, batch in enumerate(gen_batches(n_samples, chunk_size)):
550
+ scaler_incr = scaler_incr.partial_fit(X[batch])
551
+ assert_correct_incr(
552
+ i,
553
+ batch_start=batch.start,
554
+ batch_stop=batch.stop,
555
+ n=n,
556
+ chunk_size=chunk_size,
557
+ n_samples_seen=scaler_incr.n_samples_seen_,
558
+ )
559
+
560
+ assert_array_almost_equal(scaler_batch.var_, scaler_incr.var_)
561
+ assert scaler_batch.n_samples_seen_ == scaler_incr.n_samples_seen_
562
+
563
+
564
+ @pytest.mark.parametrize("sparse_container", CSC_CONTAINERS + CSR_CONTAINERS)
565
+ def test_standard_scaler_partial_fit_numerical_stability(sparse_container):
566
+ # Test if the incremental computation introduces significative errors
567
+ # for large datasets with values of large magniture
568
+ rng = np.random.RandomState(0)
569
+ n_features = 2
570
+ n_samples = 100
571
+ offsets = rng.uniform(-1e15, 1e15, size=n_features)
572
+ scales = rng.uniform(1e3, 1e6, size=n_features)
573
+ X = rng.randn(n_samples, n_features) * scales + offsets
574
+
575
+ scaler_batch = StandardScaler().fit(X)
576
+ scaler_incr = StandardScaler()
577
+ for chunk in X:
578
+ scaler_incr = scaler_incr.partial_fit(chunk.reshape(1, n_features))
579
+
580
+ # Regardless of abs values, they must not be more diff 6 significant digits
581
+ tol = 10 ** (-6)
582
+ assert_allclose(scaler_incr.mean_, scaler_batch.mean_, rtol=tol)
583
+ assert_allclose(scaler_incr.var_, scaler_batch.var_, rtol=tol)
584
+ assert_allclose(scaler_incr.scale_, scaler_batch.scale_, rtol=tol)
585
+ # NOTE Be aware that for much larger offsets std is very unstable (last
586
+ # assert) while mean is OK.
587
+
588
+ # Sparse input
589
+ size = (100, 3)
590
+ scale = 1e20
591
+ X = sparse_container(rng.randint(0, 2, size).astype(np.float64) * scale)
592
+
593
+ # with_mean=False is required with sparse input
594
+ scaler = StandardScaler(with_mean=False).fit(X)
595
+ scaler_incr = StandardScaler(with_mean=False)
596
+
597
+ for chunk in X:
598
+ scaler_incr = scaler_incr.partial_fit(chunk)
599
+
600
+ # Regardless of magnitude, they must not differ more than of 6 digits
601
+ tol = 10 ** (-6)
602
+ assert scaler.mean_ is not None
603
+ assert_allclose(scaler_incr.var_, scaler.var_, rtol=tol)
604
+ assert_allclose(scaler_incr.scale_, scaler.scale_, rtol=tol)
605
+
606
+
607
+ @pytest.mark.parametrize("sample_weight", [True, None])
608
+ @pytest.mark.parametrize("sparse_container", CSC_CONTAINERS + CSR_CONTAINERS)
609
+ def test_partial_fit_sparse_input(sample_weight, sparse_container):
610
+ # Check that sparsity is not destroyed
611
+ X = sparse_container(np.array([[1.0], [0.0], [0.0], [5.0]]))
612
+
613
+ if sample_weight:
614
+ sample_weight = rng.rand(X.shape[0])
615
+
616
+ null_transform = StandardScaler(with_mean=False, with_std=False, copy=True)
617
+ X_null = null_transform.partial_fit(X, sample_weight=sample_weight).transform(X)
618
+ assert_array_equal(X_null.toarray(), X.toarray())
619
+ X_orig = null_transform.inverse_transform(X_null)
620
+ assert_array_equal(X_orig.toarray(), X_null.toarray())
621
+ assert_array_equal(X_orig.toarray(), X.toarray())
622
+
623
+
624
+ @pytest.mark.parametrize("sample_weight", [True, None])
625
+ def test_standard_scaler_trasform_with_partial_fit(sample_weight):
626
+ # Check some postconditions after applying partial_fit and transform
627
+ X = X_2d[:100, :]
628
+
629
+ if sample_weight:
630
+ sample_weight = rng.rand(X.shape[0])
631
+
632
+ scaler_incr = StandardScaler()
633
+ for i, batch in enumerate(gen_batches(X.shape[0], 1)):
634
+ X_sofar = X[: (i + 1), :]
635
+ chunks_copy = X_sofar.copy()
636
+ if sample_weight is None:
637
+ scaled_batch = StandardScaler().fit_transform(X_sofar)
638
+ scaler_incr = scaler_incr.partial_fit(X[batch])
639
+ else:
640
+ scaled_batch = StandardScaler().fit_transform(
641
+ X_sofar, sample_weight=sample_weight[: i + 1]
642
+ )
643
+ scaler_incr = scaler_incr.partial_fit(
644
+ X[batch], sample_weight=sample_weight[batch]
645
+ )
646
+ scaled_incr = scaler_incr.transform(X_sofar)
647
+
648
+ assert_array_almost_equal(scaled_batch, scaled_incr)
649
+ assert_array_almost_equal(X_sofar, chunks_copy) # No change
650
+ right_input = scaler_incr.inverse_transform(scaled_incr)
651
+ assert_array_almost_equal(X_sofar, right_input)
652
+
653
+ zero = np.zeros(X.shape[1])
654
+ epsilon = np.finfo(float).eps
655
+ assert_array_less(zero, scaler_incr.var_ + epsilon) # as less or equal
656
+ assert_array_less(zero, scaler_incr.scale_ + epsilon)
657
+ if sample_weight is None:
658
+ # (i+1) because the Scaler has been already fitted
659
+ assert (i + 1) == scaler_incr.n_samples_seen_
660
+ else:
661
+ assert np.sum(sample_weight[: i + 1]) == pytest.approx(
662
+ scaler_incr.n_samples_seen_
663
+ )
664
+
665
+
666
+ def test_standard_check_array_of_inverse_transform():
667
+ # Check if StandardScaler inverse_transform is
668
+ # converting the integer array to float
669
+ x = np.array(
670
+ [
671
+ [1, 1, 1, 0, 1, 0],
672
+ [1, 1, 1, 0, 1, 0],
673
+ [0, 8, 0, 1, 0, 0],
674
+ [1, 4, 1, 1, 0, 0],
675
+ [0, 1, 0, 0, 1, 0],
676
+ [0, 4, 0, 1, 0, 1],
677
+ ],
678
+ dtype=np.int32,
679
+ )
680
+
681
+ scaler = StandardScaler()
682
+ scaler.fit(x)
683
+
684
+ # The of inverse_transform should be converted
685
+ # to a float array.
686
+ # If not X *= self.scale_ will fail.
687
+ scaler.inverse_transform(x)
688
+
689
+
690
+ @pytest.mark.parametrize(
691
+ "array_namespace, device, dtype_name", yield_namespace_device_dtype_combinations()
692
+ )
693
+ @pytest.mark.parametrize(
694
+ "check",
695
+ [check_array_api_input_and_values],
696
+ ids=_get_check_estimator_ids,
697
+ )
698
+ @pytest.mark.parametrize(
699
+ "estimator",
700
+ [
701
+ MaxAbsScaler(),
702
+ MinMaxScaler(),
703
+ KernelCenterer(),
704
+ Normalizer(norm="l1"),
705
+ Normalizer(norm="l2"),
706
+ Normalizer(norm="max"),
707
+ ],
708
+ ids=_get_check_estimator_ids,
709
+ )
710
+ def test_scaler_array_api_compliance(
711
+ estimator, check, array_namespace, device, dtype_name
712
+ ):
713
+ name = estimator.__class__.__name__
714
+ check(name, estimator, array_namespace, device=device, dtype_name=dtype_name)
715
+
716
+
717
+ def test_min_max_scaler_iris():
718
+ X = iris.data
719
+ scaler = MinMaxScaler()
720
+ # default params
721
+ X_trans = scaler.fit_transform(X)
722
+ assert_array_almost_equal(X_trans.min(axis=0), 0)
723
+ assert_array_almost_equal(X_trans.max(axis=0), 1)
724
+ X_trans_inv = scaler.inverse_transform(X_trans)
725
+ assert_array_almost_equal(X, X_trans_inv)
726
+
727
+ # not default params: min=1, max=2
728
+ scaler = MinMaxScaler(feature_range=(1, 2))
729
+ X_trans = scaler.fit_transform(X)
730
+ assert_array_almost_equal(X_trans.min(axis=0), 1)
731
+ assert_array_almost_equal(X_trans.max(axis=0), 2)
732
+ X_trans_inv = scaler.inverse_transform(X_trans)
733
+ assert_array_almost_equal(X, X_trans_inv)
734
+
735
+ # min=-.5, max=.6
736
+ scaler = MinMaxScaler(feature_range=(-0.5, 0.6))
737
+ X_trans = scaler.fit_transform(X)
738
+ assert_array_almost_equal(X_trans.min(axis=0), -0.5)
739
+ assert_array_almost_equal(X_trans.max(axis=0), 0.6)
740
+ X_trans_inv = scaler.inverse_transform(X_trans)
741
+ assert_array_almost_equal(X, X_trans_inv)
742
+
743
+ # raises on invalid range
744
+ scaler = MinMaxScaler(feature_range=(2, 1))
745
+ with pytest.raises(ValueError):
746
+ scaler.fit(X)
747
+
748
+
749
+ def test_min_max_scaler_zero_variance_features():
750
+ # Check min max scaler on toy data with zero variance features
751
+ X = [[0.0, 1.0, +0.5], [0.0, 1.0, -0.1], [0.0, 1.0, +1.1]]
752
+
753
+ X_new = [[+0.0, 2.0, 0.5], [-1.0, 1.0, 0.0], [+0.0, 1.0, 1.5]]
754
+
755
+ # default params
756
+ scaler = MinMaxScaler()
757
+ X_trans = scaler.fit_transform(X)
758
+ X_expected_0_1 = [[0.0, 0.0, 0.5], [0.0, 0.0, 0.0], [0.0, 0.0, 1.0]]
759
+ assert_array_almost_equal(X_trans, X_expected_0_1)
760
+ X_trans_inv = scaler.inverse_transform(X_trans)
761
+ assert_array_almost_equal(X, X_trans_inv)
762
+
763
+ X_trans_new = scaler.transform(X_new)
764
+ X_expected_0_1_new = [[+0.0, 1.0, 0.500], [-1.0, 0.0, 0.083], [+0.0, 0.0, 1.333]]
765
+ assert_array_almost_equal(X_trans_new, X_expected_0_1_new, decimal=2)
766
+
767
+ # not default params
768
+ scaler = MinMaxScaler(feature_range=(1, 2))
769
+ X_trans = scaler.fit_transform(X)
770
+ X_expected_1_2 = [[1.0, 1.0, 1.5], [1.0, 1.0, 1.0], [1.0, 1.0, 2.0]]
771
+ assert_array_almost_equal(X_trans, X_expected_1_2)
772
+
773
+ # function interface
774
+ X_trans = minmax_scale(X)
775
+ assert_array_almost_equal(X_trans, X_expected_0_1)
776
+ X_trans = minmax_scale(X, feature_range=(1, 2))
777
+ assert_array_almost_equal(X_trans, X_expected_1_2)
778
+
779
+
780
+ def test_minmax_scale_axis1():
781
+ X = iris.data
782
+ X_trans = minmax_scale(X, axis=1)
783
+ assert_array_almost_equal(np.min(X_trans, axis=1), 0)
784
+ assert_array_almost_equal(np.max(X_trans, axis=1), 1)
785
+
786
+
787
+ def test_min_max_scaler_1d():
788
+ # Test scaling of dataset along single axis
789
+ for X in [X_1row, X_1col, X_list_1row, X_list_1row]:
790
+ scaler = MinMaxScaler(copy=True)
791
+ X_scaled = scaler.fit(X).transform(X)
792
+
793
+ if isinstance(X, list):
794
+ X = np.array(X) # cast only after scaling done
795
+
796
+ if _check_dim_1axis(X) == 1:
797
+ assert_array_almost_equal(X_scaled.min(axis=0), np.zeros(n_features))
798
+ assert_array_almost_equal(X_scaled.max(axis=0), np.zeros(n_features))
799
+ else:
800
+ assert_array_almost_equal(X_scaled.min(axis=0), 0.0)
801
+ assert_array_almost_equal(X_scaled.max(axis=0), 1.0)
802
+ assert scaler.n_samples_seen_ == X.shape[0]
803
+
804
+ # check inverse transform
805
+ X_scaled_back = scaler.inverse_transform(X_scaled)
806
+ assert_array_almost_equal(X_scaled_back, X)
807
+
808
+ # Constant feature
809
+ X = np.ones((5, 1))
810
+ scaler = MinMaxScaler()
811
+ X_scaled = scaler.fit(X).transform(X)
812
+ assert X_scaled.min() >= 0.0
813
+ assert X_scaled.max() <= 1.0
814
+ assert scaler.n_samples_seen_ == X.shape[0]
815
+
816
+ # Function interface
817
+ X_1d = X_1row.ravel()
818
+ min_ = X_1d.min()
819
+ max_ = X_1d.max()
820
+ assert_array_almost_equal(
821
+ (X_1d - min_) / (max_ - min_), minmax_scale(X_1d, copy=True)
822
+ )
823
+
824
+
825
+ @pytest.mark.parametrize("sample_weight", [True, None])
826
+ @pytest.mark.parametrize("sparse_container", CSC_CONTAINERS + CSR_CONTAINERS)
827
+ def test_scaler_without_centering(sample_weight, sparse_container):
828
+ rng = np.random.RandomState(42)
829
+ X = rng.randn(4, 5)
830
+ X[:, 0] = 0.0 # first feature is always of zero
831
+ X_sparse = sparse_container(X)
832
+
833
+ if sample_weight:
834
+ sample_weight = rng.rand(X.shape[0])
835
+
836
+ with pytest.raises(ValueError):
837
+ StandardScaler().fit(X_sparse)
838
+
839
+ scaler = StandardScaler(with_mean=False).fit(X, sample_weight=sample_weight)
840
+ X_scaled = scaler.transform(X, copy=True)
841
+ assert not np.any(np.isnan(X_scaled))
842
+
843
+ scaler_sparse = StandardScaler(with_mean=False).fit(
844
+ X_sparse, sample_weight=sample_weight
845
+ )
846
+ X_sparse_scaled = scaler_sparse.transform(X_sparse, copy=True)
847
+ assert not np.any(np.isnan(X_sparse_scaled.data))
848
+
849
+ assert_array_almost_equal(scaler.mean_, scaler_sparse.mean_)
850
+ assert_array_almost_equal(scaler.var_, scaler_sparse.var_)
851
+ assert_array_almost_equal(scaler.scale_, scaler_sparse.scale_)
852
+ assert_array_almost_equal(scaler.n_samples_seen_, scaler_sparse.n_samples_seen_)
853
+
854
+ if sample_weight is None:
855
+ assert_array_almost_equal(
856
+ X_scaled.mean(axis=0), [0.0, -0.01, 2.24, -0.35, -0.78], 2
857
+ )
858
+ assert_array_almost_equal(X_scaled.std(axis=0), [0.0, 1.0, 1.0, 1.0, 1.0])
859
+
860
+ X_sparse_scaled_mean, X_sparse_scaled_var = mean_variance_axis(X_sparse_scaled, 0)
861
+ assert_array_almost_equal(X_sparse_scaled_mean, X_scaled.mean(axis=0))
862
+ assert_array_almost_equal(X_sparse_scaled_var, X_scaled.var(axis=0))
863
+
864
+ # Check that X has not been modified (copy)
865
+ assert X_scaled is not X
866
+ assert X_sparse_scaled is not X_sparse
867
+
868
+ X_scaled_back = scaler.inverse_transform(X_scaled)
869
+ assert X_scaled_back is not X
870
+ assert X_scaled_back is not X_scaled
871
+ assert_array_almost_equal(X_scaled_back, X)
872
+
873
+ X_sparse_scaled_back = scaler_sparse.inverse_transform(X_sparse_scaled)
874
+ assert X_sparse_scaled_back is not X_sparse
875
+ assert X_sparse_scaled_back is not X_sparse_scaled
876
+ assert_array_almost_equal(X_sparse_scaled_back.toarray(), X)
877
+
878
+ if sparse_container in CSR_CONTAINERS:
879
+ null_transform = StandardScaler(with_mean=False, with_std=False, copy=True)
880
+ X_null = null_transform.fit_transform(X_sparse)
881
+ assert_array_equal(X_null.data, X_sparse.data)
882
+ X_orig = null_transform.inverse_transform(X_null)
883
+ assert_array_equal(X_orig.data, X_sparse.data)
884
+
885
+
886
+ @pytest.mark.parametrize("with_mean", [True, False])
887
+ @pytest.mark.parametrize("with_std", [True, False])
888
+ @pytest.mark.parametrize("sparse_container", [None] + CSC_CONTAINERS + CSR_CONTAINERS)
889
+ def test_scaler_n_samples_seen_with_nan(with_mean, with_std, sparse_container):
890
+ X = np.array(
891
+ [[0, 1, 3], [np.nan, 6, 10], [5, 4, np.nan], [8, 0, np.nan]], dtype=np.float64
892
+ )
893
+ if sparse_container is not None:
894
+ X = sparse_container(X)
895
+
896
+ if sparse.issparse(X) and with_mean:
897
+ pytest.skip("'with_mean=True' cannot be used with sparse matrix.")
898
+
899
+ transformer = StandardScaler(with_mean=with_mean, with_std=with_std)
900
+ transformer.fit(X)
901
+
902
+ assert_array_equal(transformer.n_samples_seen_, np.array([3, 4, 2]))
903
+
904
+
905
+ def _check_identity_scalers_attributes(scaler_1, scaler_2):
906
+ assert scaler_1.mean_ is scaler_2.mean_ is None
907
+ assert scaler_1.var_ is scaler_2.var_ is None
908
+ assert scaler_1.scale_ is scaler_2.scale_ is None
909
+ assert scaler_1.n_samples_seen_ == scaler_2.n_samples_seen_
910
+
911
+
912
+ @pytest.mark.parametrize("sparse_container", CSC_CONTAINERS + CSR_CONTAINERS)
913
+ def test_scaler_return_identity(sparse_container):
914
+ # test that the scaler return identity when with_mean and with_std are
915
+ # False
916
+ X_dense = np.array([[0, 1, 3], [5, 6, 0], [8, 0, 10]], dtype=np.float64)
917
+ X_sparse = sparse_container(X_dense)
918
+
919
+ transformer_dense = StandardScaler(with_mean=False, with_std=False)
920
+ X_trans_dense = transformer_dense.fit_transform(X_dense)
921
+ assert_allclose(X_trans_dense, X_dense)
922
+
923
+ transformer_sparse = clone(transformer_dense)
924
+ X_trans_sparse = transformer_sparse.fit_transform(X_sparse)
925
+ assert_allclose_dense_sparse(X_trans_sparse, X_sparse)
926
+
927
+ _check_identity_scalers_attributes(transformer_dense, transformer_sparse)
928
+
929
+ transformer_dense.partial_fit(X_dense)
930
+ transformer_sparse.partial_fit(X_sparse)
931
+ _check_identity_scalers_attributes(transformer_dense, transformer_sparse)
932
+
933
+ transformer_dense.fit(X_dense)
934
+ transformer_sparse.fit(X_sparse)
935
+ _check_identity_scalers_attributes(transformer_dense, transformer_sparse)
936
+
937
+
938
+ @pytest.mark.parametrize("sparse_container", CSC_CONTAINERS + CSR_CONTAINERS)
939
+ def test_scaler_int(sparse_container):
940
+ # test that scaler converts integer input to floating
941
+ # for both sparse and dense matrices
942
+ rng = np.random.RandomState(42)
943
+ X = rng.randint(20, size=(4, 5))
944
+ X[:, 0] = 0 # first feature is always of zero
945
+ X_sparse = sparse_container(X)
946
+
947
+ with warnings.catch_warnings(record=True):
948
+ scaler = StandardScaler(with_mean=False).fit(X)
949
+ X_scaled = scaler.transform(X, copy=True)
950
+ assert not np.any(np.isnan(X_scaled))
951
+
952
+ with warnings.catch_warnings(record=True):
953
+ scaler_sparse = StandardScaler(with_mean=False).fit(X_sparse)
954
+ X_sparse_scaled = scaler_sparse.transform(X_sparse, copy=True)
955
+ assert not np.any(np.isnan(X_sparse_scaled.data))
956
+
957
+ assert_array_almost_equal(scaler.mean_, scaler_sparse.mean_)
958
+ assert_array_almost_equal(scaler.var_, scaler_sparse.var_)
959
+ assert_array_almost_equal(scaler.scale_, scaler_sparse.scale_)
960
+
961
+ assert_array_almost_equal(
962
+ X_scaled.mean(axis=0), [0.0, 1.109, 1.856, 21.0, 1.559], 2
963
+ )
964
+ assert_array_almost_equal(X_scaled.std(axis=0), [0.0, 1.0, 1.0, 1.0, 1.0])
965
+
966
+ X_sparse_scaled_mean, X_sparse_scaled_std = mean_variance_axis(
967
+ X_sparse_scaled.astype(float), 0
968
+ )
969
+ assert_array_almost_equal(X_sparse_scaled_mean, X_scaled.mean(axis=0))
970
+ assert_array_almost_equal(X_sparse_scaled_std, X_scaled.std(axis=0))
971
+
972
+ # Check that X has not been modified (copy)
973
+ assert X_scaled is not X
974
+ assert X_sparse_scaled is not X_sparse
975
+
976
+ X_scaled_back = scaler.inverse_transform(X_scaled)
977
+ assert X_scaled_back is not X
978
+ assert X_scaled_back is not X_scaled
979
+ assert_array_almost_equal(X_scaled_back, X)
980
+
981
+ X_sparse_scaled_back = scaler_sparse.inverse_transform(X_sparse_scaled)
982
+ assert X_sparse_scaled_back is not X_sparse
983
+ assert X_sparse_scaled_back is not X_sparse_scaled
984
+ assert_array_almost_equal(X_sparse_scaled_back.toarray(), X)
985
+
986
+ if sparse_container in CSR_CONTAINERS:
987
+ null_transform = StandardScaler(with_mean=False, with_std=False, copy=True)
988
+ with warnings.catch_warnings(record=True):
989
+ X_null = null_transform.fit_transform(X_sparse)
990
+ assert_array_equal(X_null.data, X_sparse.data)
991
+ X_orig = null_transform.inverse_transform(X_null)
992
+ assert_array_equal(X_orig.data, X_sparse.data)
993
+
994
+
995
+ @pytest.mark.parametrize("sparse_container", CSR_CONTAINERS + CSC_CONTAINERS)
996
+ def test_scaler_without_copy(sparse_container):
997
+ # Check that StandardScaler.fit does not change input
998
+ rng = np.random.RandomState(42)
999
+ X = rng.randn(4, 5)
1000
+ X[:, 0] = 0.0 # first feature is always of zero
1001
+ X_sparse = sparse_container(X)
1002
+
1003
+ X_copy = X.copy()
1004
+ StandardScaler(copy=False).fit(X)
1005
+ assert_array_equal(X, X_copy)
1006
+
1007
+ X_sparse_copy = X_sparse.copy()
1008
+ StandardScaler(with_mean=False, copy=False).fit(X_sparse)
1009
+ assert_array_equal(X_sparse.toarray(), X_sparse_copy.toarray())
1010
+
1011
+
1012
+ @pytest.mark.parametrize("sparse_container", CSR_CONTAINERS + CSC_CONTAINERS)
1013
+ def test_scale_sparse_with_mean_raise_exception(sparse_container):
1014
+ rng = np.random.RandomState(42)
1015
+ X = rng.randn(4, 5)
1016
+ X_sparse = sparse_container(X)
1017
+
1018
+ # check scaling and fit with direct calls on sparse data
1019
+ with pytest.raises(ValueError):
1020
+ scale(X_sparse, with_mean=True)
1021
+ with pytest.raises(ValueError):
1022
+ StandardScaler(with_mean=True).fit(X_sparse)
1023
+
1024
+ # check transform and inverse_transform after a fit on a dense array
1025
+ scaler = StandardScaler(with_mean=True).fit(X)
1026
+ with pytest.raises(ValueError):
1027
+ scaler.transform(X_sparse)
1028
+
1029
+ X_transformed_sparse = sparse_container(scaler.transform(X))
1030
+ with pytest.raises(ValueError):
1031
+ scaler.inverse_transform(X_transformed_sparse)
1032
+
1033
+
1034
+ def test_scale_input_finiteness_validation():
1035
+ # Check if non finite inputs raise ValueError
1036
+ X = [[np.inf, 5, 6, 7, 8]]
1037
+ with pytest.raises(
1038
+ ValueError, match="Input contains infinity or a value too large"
1039
+ ):
1040
+ scale(X)
1041
+
1042
+
1043
+ def test_robust_scaler_error_sparse():
1044
+ X_sparse = sparse.rand(1000, 10)
1045
+ scaler = RobustScaler(with_centering=True)
1046
+ err_msg = "Cannot center sparse matrices"
1047
+ with pytest.raises(ValueError, match=err_msg):
1048
+ scaler.fit(X_sparse)
1049
+
1050
+
1051
+ @pytest.mark.parametrize("with_centering", [True, False])
1052
+ @pytest.mark.parametrize("with_scaling", [True, False])
1053
+ @pytest.mark.parametrize("X", [np.random.randn(10, 3), sparse.rand(10, 3, density=0.5)])
1054
+ def test_robust_scaler_attributes(X, with_centering, with_scaling):
1055
+ # check consistent type of attributes
1056
+ if with_centering and sparse.issparse(X):
1057
+ pytest.skip("RobustScaler cannot center sparse matrix")
1058
+
1059
+ scaler = RobustScaler(with_centering=with_centering, with_scaling=with_scaling)
1060
+ scaler.fit(X)
1061
+
1062
+ if with_centering:
1063
+ assert isinstance(scaler.center_, np.ndarray)
1064
+ else:
1065
+ assert scaler.center_ is None
1066
+ if with_scaling:
1067
+ assert isinstance(scaler.scale_, np.ndarray)
1068
+ else:
1069
+ assert scaler.scale_ is None
1070
+
1071
+
1072
+ @pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
1073
+ def test_robust_scaler_col_zero_sparse(csr_container):
1074
+ # check that the scaler is working when there is not data materialized in a
1075
+ # column of a sparse matrix
1076
+ X = np.random.randn(10, 5)
1077
+ X[:, 0] = 0
1078
+ X = csr_container(X)
1079
+
1080
+ scaler = RobustScaler(with_centering=False)
1081
+ scaler.fit(X)
1082
+ assert scaler.scale_[0] == pytest.approx(1)
1083
+
1084
+ X_trans = scaler.transform(X)
1085
+ assert_allclose(X[:, [0]].toarray(), X_trans[:, [0]].toarray())
1086
+
1087
+
1088
+ def test_robust_scaler_2d_arrays():
1089
+ # Test robust scaling of 2d array along first axis
1090
+ rng = np.random.RandomState(0)
1091
+ X = rng.randn(4, 5)
1092
+ X[:, 0] = 0.0 # first feature is always of zero
1093
+
1094
+ scaler = RobustScaler()
1095
+ X_scaled = scaler.fit(X).transform(X)
1096
+
1097
+ assert_array_almost_equal(np.median(X_scaled, axis=0), 5 * [0.0])
1098
+ assert_array_almost_equal(X_scaled.std(axis=0)[0], 0)
1099
+
1100
+
1101
+ @pytest.mark.parametrize("density", [0, 0.05, 0.1, 0.5, 1])
1102
+ @pytest.mark.parametrize("strictly_signed", ["positive", "negative", "zeros", None])
1103
+ def test_robust_scaler_equivalence_dense_sparse(density, strictly_signed):
1104
+ # Check the equivalence of the fitting with dense and sparse matrices
1105
+ X_sparse = sparse.rand(1000, 5, density=density).tocsc()
1106
+ if strictly_signed == "positive":
1107
+ X_sparse.data = np.abs(X_sparse.data)
1108
+ elif strictly_signed == "negative":
1109
+ X_sparse.data = -np.abs(X_sparse.data)
1110
+ elif strictly_signed == "zeros":
1111
+ X_sparse.data = np.zeros(X_sparse.data.shape, dtype=np.float64)
1112
+ X_dense = X_sparse.toarray()
1113
+
1114
+ scaler_sparse = RobustScaler(with_centering=False)
1115
+ scaler_dense = RobustScaler(with_centering=False)
1116
+
1117
+ scaler_sparse.fit(X_sparse)
1118
+ scaler_dense.fit(X_dense)
1119
+
1120
+ assert_allclose(scaler_sparse.scale_, scaler_dense.scale_)
1121
+
1122
+
1123
+ @pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
1124
+ def test_robust_scaler_transform_one_row_csr(csr_container):
1125
+ # Check RobustScaler on transforming csr matrix with one row
1126
+ rng = np.random.RandomState(0)
1127
+ X = rng.randn(4, 5)
1128
+ single_row = np.array([[0.1, 1.0, 2.0, 0.0, -1.0]])
1129
+ scaler = RobustScaler(with_centering=False)
1130
+ scaler = scaler.fit(X)
1131
+ row_trans = scaler.transform(csr_container(single_row))
1132
+ row_expected = single_row / scaler.scale_
1133
+ assert_array_almost_equal(row_trans.toarray(), row_expected)
1134
+ row_scaled_back = scaler.inverse_transform(row_trans)
1135
+ assert_array_almost_equal(single_row, row_scaled_back.toarray())
1136
+
1137
+
1138
+ def test_robust_scaler_iris():
1139
+ X = iris.data
1140
+ scaler = RobustScaler()
1141
+ X_trans = scaler.fit_transform(X)
1142
+ assert_array_almost_equal(np.median(X_trans, axis=0), 0)
1143
+ X_trans_inv = scaler.inverse_transform(X_trans)
1144
+ assert_array_almost_equal(X, X_trans_inv)
1145
+ q = np.percentile(X_trans, q=(25, 75), axis=0)
1146
+ iqr = q[1] - q[0]
1147
+ assert_array_almost_equal(iqr, 1)
1148
+
1149
+
1150
+ def test_robust_scaler_iris_quantiles():
1151
+ X = iris.data
1152
+ scaler = RobustScaler(quantile_range=(10, 90))
1153
+ X_trans = scaler.fit_transform(X)
1154
+ assert_array_almost_equal(np.median(X_trans, axis=0), 0)
1155
+ X_trans_inv = scaler.inverse_transform(X_trans)
1156
+ assert_array_almost_equal(X, X_trans_inv)
1157
+ q = np.percentile(X_trans, q=(10, 90), axis=0)
1158
+ q_range = q[1] - q[0]
1159
+ assert_array_almost_equal(q_range, 1)
1160
+
1161
+
1162
+ @pytest.mark.parametrize("csc_container", CSC_CONTAINERS)
1163
+ def test_quantile_transform_iris(csc_container):
1164
+ X = iris.data
1165
+ # uniform output distribution
1166
+ transformer = QuantileTransformer(n_quantiles=30)
1167
+ X_trans = transformer.fit_transform(X)
1168
+ X_trans_inv = transformer.inverse_transform(X_trans)
1169
+ assert_array_almost_equal(X, X_trans_inv)
1170
+ # normal output distribution
1171
+ transformer = QuantileTransformer(n_quantiles=30, output_distribution="normal")
1172
+ X_trans = transformer.fit_transform(X)
1173
+ X_trans_inv = transformer.inverse_transform(X_trans)
1174
+ assert_array_almost_equal(X, X_trans_inv)
1175
+ # make sure it is possible to take the inverse of a sparse matrix
1176
+ # which contain negative value; this is the case in the iris dataset
1177
+ X_sparse = csc_container(X)
1178
+ X_sparse_tran = transformer.fit_transform(X_sparse)
1179
+ X_sparse_tran_inv = transformer.inverse_transform(X_sparse_tran)
1180
+ assert_array_almost_equal(X_sparse.toarray(), X_sparse_tran_inv.toarray())
1181
+
1182
+
1183
+ @pytest.mark.parametrize("csc_container", CSC_CONTAINERS)
1184
+ def test_quantile_transform_check_error(csc_container):
1185
+ X = np.transpose(
1186
+ [
1187
+ [0, 25, 50, 0, 0, 0, 75, 0, 0, 100],
1188
+ [2, 4, 0, 0, 6, 8, 0, 10, 0, 0],
1189
+ [0, 0, 2.6, 4.1, 0, 0, 2.3, 0, 9.5, 0.1],
1190
+ ]
1191
+ )
1192
+ X = csc_container(X)
1193
+ X_neg = np.transpose(
1194
+ [
1195
+ [0, 25, 50, 0, 0, 0, 75, 0, 0, 100],
1196
+ [-2, 4, 0, 0, 6, 8, 0, 10, 0, 0],
1197
+ [0, 0, 2.6, 4.1, 0, 0, 2.3, 0, 9.5, 0.1],
1198
+ ]
1199
+ )
1200
+ X_neg = csc_container(X_neg)
1201
+
1202
+ err_msg = (
1203
+ "The number of quantiles cannot be greater than "
1204
+ "the number of samples used. Got 1000 quantiles "
1205
+ "and 10 samples."
1206
+ )
1207
+ with pytest.raises(ValueError, match=err_msg):
1208
+ QuantileTransformer(subsample=10).fit(X)
1209
+
1210
+ transformer = QuantileTransformer(n_quantiles=10)
1211
+ err_msg = "QuantileTransformer only accepts non-negative sparse matrices."
1212
+ with pytest.raises(ValueError, match=err_msg):
1213
+ transformer.fit(X_neg)
1214
+ transformer.fit(X)
1215
+ err_msg = "QuantileTransformer only accepts non-negative sparse matrices."
1216
+ with pytest.raises(ValueError, match=err_msg):
1217
+ transformer.transform(X_neg)
1218
+
1219
+ X_bad_feat = np.transpose(
1220
+ [[0, 25, 50, 0, 0, 0, 75, 0, 0, 100], [0, 0, 2.6, 4.1, 0, 0, 2.3, 0, 9.5, 0.1]]
1221
+ )
1222
+ err_msg = (
1223
+ "X has 2 features, but QuantileTransformer is expecting 3 features as input."
1224
+ )
1225
+ with pytest.raises(ValueError, match=err_msg):
1226
+ transformer.inverse_transform(X_bad_feat)
1227
+
1228
+ transformer = QuantileTransformer(n_quantiles=10).fit(X)
1229
+ # check that an error is raised if input is scalar
1230
+ with pytest.raises(ValueError, match="Expected 2D array, got scalar array instead"):
1231
+ transformer.transform(10)
1232
+ # check that a warning is raised is n_quantiles > n_samples
1233
+ transformer = QuantileTransformer(n_quantiles=100)
1234
+ warn_msg = "n_quantiles is set to n_samples"
1235
+ with pytest.warns(UserWarning, match=warn_msg) as record:
1236
+ transformer.fit(X)
1237
+ assert len(record) == 1
1238
+ assert transformer.n_quantiles_ == X.shape[0]
1239
+
1240
+
1241
+ @pytest.mark.parametrize("csc_container", CSC_CONTAINERS)
1242
+ def test_quantile_transform_sparse_ignore_zeros(csc_container):
1243
+ X = np.array([[0, 1], [0, 0], [0, 2], [0, 2], [0, 1]])
1244
+ X_sparse = csc_container(X)
1245
+ transformer = QuantileTransformer(ignore_implicit_zeros=True, n_quantiles=5)
1246
+
1247
+ # dense case -> warning raise
1248
+ warning_message = (
1249
+ "'ignore_implicit_zeros' takes effect"
1250
+ " only with sparse matrix. This parameter has no"
1251
+ " effect."
1252
+ )
1253
+ with pytest.warns(UserWarning, match=warning_message):
1254
+ transformer.fit(X)
1255
+
1256
+ X_expected = np.array([[0, 0], [0, 0], [0, 1], [0, 1], [0, 0]])
1257
+ X_trans = transformer.fit_transform(X_sparse)
1258
+ assert_almost_equal(X_expected, X_trans.toarray())
1259
+
1260
+ # consider the case where sparse entries are missing values and user-given
1261
+ # zeros are to be considered
1262
+ X_data = np.array([0, 0, 1, 0, 2, 2, 1, 0, 1, 2, 0])
1263
+ X_col = np.array([0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1])
1264
+ X_row = np.array([0, 4, 0, 1, 2, 3, 4, 5, 6, 7, 8])
1265
+ X_sparse = csc_container((X_data, (X_row, X_col)))
1266
+ X_trans = transformer.fit_transform(X_sparse)
1267
+ X_expected = np.array(
1268
+ [
1269
+ [0.0, 0.5],
1270
+ [0.0, 0.0],
1271
+ [0.0, 1.0],
1272
+ [0.0, 1.0],
1273
+ [0.0, 0.5],
1274
+ [0.0, 0.0],
1275
+ [0.0, 0.5],
1276
+ [0.0, 1.0],
1277
+ [0.0, 0.0],
1278
+ ]
1279
+ )
1280
+ assert_almost_equal(X_expected, X_trans.toarray())
1281
+
1282
+ transformer = QuantileTransformer(ignore_implicit_zeros=True, n_quantiles=5)
1283
+ X_data = np.array([-1, -1, 1, 0, 0, 0, 1, -1, 1])
1284
+ X_col = np.array([0, 0, 1, 1, 1, 1, 1, 1, 1])
1285
+ X_row = np.array([0, 4, 0, 1, 2, 3, 4, 5, 6])
1286
+ X_sparse = csc_container((X_data, (X_row, X_col)))
1287
+ X_trans = transformer.fit_transform(X_sparse)
1288
+ X_expected = np.array(
1289
+ [[0, 1], [0, 0.375], [0, 0.375], [0, 0.375], [0, 1], [0, 0], [0, 1]]
1290
+ )
1291
+ assert_almost_equal(X_expected, X_trans.toarray())
1292
+ assert_almost_equal(
1293
+ X_sparse.toarray(), transformer.inverse_transform(X_trans).toarray()
1294
+ )
1295
+
1296
+ # check in conjunction with subsampling
1297
+ transformer = QuantileTransformer(
1298
+ ignore_implicit_zeros=True, n_quantiles=5, subsample=8, random_state=0
1299
+ )
1300
+ X_trans = transformer.fit_transform(X_sparse)
1301
+ assert_almost_equal(X_expected, X_trans.toarray())
1302
+ assert_almost_equal(
1303
+ X_sparse.toarray(), transformer.inverse_transform(X_trans).toarray()
1304
+ )
1305
+
1306
+
1307
+ def test_quantile_transform_dense_toy():
1308
+ X = np.array(
1309
+ [[0, 2, 2.6], [25, 4, 4.1], [50, 6, 2.3], [75, 8, 9.5], [100, 10, 0.1]]
1310
+ )
1311
+
1312
+ transformer = QuantileTransformer(n_quantiles=5)
1313
+ transformer.fit(X)
1314
+
1315
+ # using a uniform output, each entry of X should be map between 0 and 1
1316
+ # and equally spaced
1317
+ X_trans = transformer.fit_transform(X)
1318
+ X_expected = np.tile(np.linspace(0, 1, num=5), (3, 1)).T
1319
+ assert_almost_equal(np.sort(X_trans, axis=0), X_expected)
1320
+
1321
+ X_test = np.array(
1322
+ [
1323
+ [-1, 1, 0],
1324
+ [101, 11, 10],
1325
+ ]
1326
+ )
1327
+ X_expected = np.array(
1328
+ [
1329
+ [0, 0, 0],
1330
+ [1, 1, 1],
1331
+ ]
1332
+ )
1333
+ assert_array_almost_equal(transformer.transform(X_test), X_expected)
1334
+
1335
+ X_trans_inv = transformer.inverse_transform(X_trans)
1336
+ assert_array_almost_equal(X, X_trans_inv)
1337
+
1338
+
1339
+ def test_quantile_transform_subsampling():
1340
+ # Test that subsampling the input yield to a consistent results We check
1341
+ # that the computed quantiles are almost mapped to a [0, 1] vector where
1342
+ # values are equally spaced. The infinite norm is checked to be smaller
1343
+ # than a given threshold. This is repeated 5 times.
1344
+
1345
+ # dense support
1346
+ n_samples = 1000000
1347
+ n_quantiles = 1000
1348
+ X = np.sort(np.random.sample((n_samples, 1)), axis=0)
1349
+ ROUND = 5
1350
+ inf_norm_arr = []
1351
+ for random_state in range(ROUND):
1352
+ transformer = QuantileTransformer(
1353
+ random_state=random_state,
1354
+ n_quantiles=n_quantiles,
1355
+ subsample=n_samples // 10,
1356
+ )
1357
+ transformer.fit(X)
1358
+ diff = np.linspace(0, 1, n_quantiles) - np.ravel(transformer.quantiles_)
1359
+ inf_norm = np.max(np.abs(diff))
1360
+ assert inf_norm < 1e-2
1361
+ inf_norm_arr.append(inf_norm)
1362
+ # each random subsampling yield a unique approximation to the expected
1363
+ # linspace CDF
1364
+ assert len(np.unique(inf_norm_arr)) == len(inf_norm_arr)
1365
+
1366
+ # sparse support
1367
+
1368
+ X = sparse.rand(n_samples, 1, density=0.99, format="csc", random_state=0)
1369
+ inf_norm_arr = []
1370
+ for random_state in range(ROUND):
1371
+ transformer = QuantileTransformer(
1372
+ random_state=random_state,
1373
+ n_quantiles=n_quantiles,
1374
+ subsample=n_samples // 10,
1375
+ )
1376
+ transformer.fit(X)
1377
+ diff = np.linspace(0, 1, n_quantiles) - np.ravel(transformer.quantiles_)
1378
+ inf_norm = np.max(np.abs(diff))
1379
+ assert inf_norm < 1e-1
1380
+ inf_norm_arr.append(inf_norm)
1381
+ # each random subsampling yield a unique approximation to the expected
1382
+ # linspace CDF
1383
+ assert len(np.unique(inf_norm_arr)) == len(inf_norm_arr)
1384
+
1385
+
1386
+ @pytest.mark.parametrize("csc_container", CSC_CONTAINERS)
1387
+ def test_quantile_transform_sparse_toy(csc_container):
1388
+ X = np.array(
1389
+ [
1390
+ [0.0, 2.0, 0.0],
1391
+ [25.0, 4.0, 0.0],
1392
+ [50.0, 0.0, 2.6],
1393
+ [0.0, 0.0, 4.1],
1394
+ [0.0, 6.0, 0.0],
1395
+ [0.0, 8.0, 0.0],
1396
+ [75.0, 0.0, 2.3],
1397
+ [0.0, 10.0, 0.0],
1398
+ [0.0, 0.0, 9.5],
1399
+ [100.0, 0.0, 0.1],
1400
+ ]
1401
+ )
1402
+
1403
+ X = csc_container(X)
1404
+
1405
+ transformer = QuantileTransformer(n_quantiles=10)
1406
+ transformer.fit(X)
1407
+
1408
+ X_trans = transformer.fit_transform(X)
1409
+ assert_array_almost_equal(np.min(X_trans.toarray(), axis=0), 0.0)
1410
+ assert_array_almost_equal(np.max(X_trans.toarray(), axis=0), 1.0)
1411
+
1412
+ X_trans_inv = transformer.inverse_transform(X_trans)
1413
+ assert_array_almost_equal(X.toarray(), X_trans_inv.toarray())
1414
+
1415
+ transformer_dense = QuantileTransformer(n_quantiles=10).fit(X.toarray())
1416
+
1417
+ X_trans = transformer_dense.transform(X)
1418
+ assert_array_almost_equal(np.min(X_trans.toarray(), axis=0), 0.0)
1419
+ assert_array_almost_equal(np.max(X_trans.toarray(), axis=0), 1.0)
1420
+
1421
+ X_trans_inv = transformer_dense.inverse_transform(X_trans)
1422
+ assert_array_almost_equal(X.toarray(), X_trans_inv.toarray())
1423
+
1424
+
1425
+ def test_quantile_transform_axis1():
1426
+ X = np.array([[0, 25, 50, 75, 100], [2, 4, 6, 8, 10], [2.6, 4.1, 2.3, 9.5, 0.1]])
1427
+
1428
+ X_trans_a0 = quantile_transform(X.T, axis=0, n_quantiles=5)
1429
+ X_trans_a1 = quantile_transform(X, axis=1, n_quantiles=5)
1430
+ assert_array_almost_equal(X_trans_a0, X_trans_a1.T)
1431
+
1432
+
1433
+ @pytest.mark.parametrize("csc_container", CSC_CONTAINERS)
1434
+ def test_quantile_transform_bounds(csc_container):
1435
+ # Lower and upper bounds are manually mapped. We checked that in the case
1436
+ # of a constant feature and binary feature, the bounds are properly mapped.
1437
+ X_dense = np.array([[0, 0], [0, 0], [1, 0]])
1438
+ X_sparse = csc_container(X_dense)
1439
+
1440
+ # check sparse and dense are consistent
1441
+ X_trans = QuantileTransformer(n_quantiles=3, random_state=0).fit_transform(X_dense)
1442
+ assert_array_almost_equal(X_trans, X_dense)
1443
+ X_trans_sp = QuantileTransformer(n_quantiles=3, random_state=0).fit_transform(
1444
+ X_sparse
1445
+ )
1446
+ assert_array_almost_equal(X_trans_sp.toarray(), X_dense)
1447
+ assert_array_almost_equal(X_trans, X_trans_sp.toarray())
1448
+
1449
+ # check the consistency of the bounds by learning on 1 matrix
1450
+ # and transforming another
1451
+ X = np.array([[0, 1], [0, 0.5], [1, 0]])
1452
+ X1 = np.array([[0, 0.1], [0, 0.5], [1, 0.1]])
1453
+ transformer = QuantileTransformer(n_quantiles=3).fit(X)
1454
+ X_trans = transformer.transform(X1)
1455
+ assert_array_almost_equal(X_trans, X1)
1456
+
1457
+ # check that values outside of the range learned will be mapped properly.
1458
+ X = np.random.random((1000, 1))
1459
+ transformer = QuantileTransformer()
1460
+ transformer.fit(X)
1461
+ assert transformer.transform([[-10]]) == transformer.transform([[np.min(X)]])
1462
+ assert transformer.transform([[10]]) == transformer.transform([[np.max(X)]])
1463
+ assert transformer.inverse_transform([[-10]]) == transformer.inverse_transform(
1464
+ [[np.min(transformer.references_)]]
1465
+ )
1466
+ assert transformer.inverse_transform([[10]]) == transformer.inverse_transform(
1467
+ [[np.max(transformer.references_)]]
1468
+ )
1469
+
1470
+
1471
+ def test_quantile_transform_and_inverse():
1472
+ X_1 = iris.data
1473
+ X_2 = np.array([[0.0], [BOUNDS_THRESHOLD / 10], [1.5], [2], [3], [3], [4]])
1474
+ for X in [X_1, X_2]:
1475
+ transformer = QuantileTransformer(n_quantiles=1000, random_state=0)
1476
+ X_trans = transformer.fit_transform(X)
1477
+ X_trans_inv = transformer.inverse_transform(X_trans)
1478
+ assert_array_almost_equal(X, X_trans_inv, decimal=9)
1479
+
1480
+
1481
+ def test_quantile_transform_nan():
1482
+ X = np.array([[np.nan, 0, 0, 1], [np.nan, np.nan, 0, 0.5], [np.nan, 1, 1, 0]])
1483
+
1484
+ transformer = QuantileTransformer(n_quantiles=10, random_state=42)
1485
+ transformer.fit_transform(X)
1486
+
1487
+ # check that the quantile of the first column is all NaN
1488
+ assert np.isnan(transformer.quantiles_[:, 0]).all()
1489
+ # all other column should not contain NaN
1490
+ assert not np.isnan(transformer.quantiles_[:, 1:]).any()
1491
+
1492
+
1493
+ @pytest.mark.parametrize("array_type", ["array", "sparse"])
1494
+ def test_quantile_transformer_sorted_quantiles(array_type):
1495
+ # Non-regression test for:
1496
+ # https://github.com/scikit-learn/scikit-learn/issues/15733
1497
+ # Taken from upstream bug report:
1498
+ # https://github.com/numpy/numpy/issues/14685
1499
+ X = np.array([0, 1, 1, 2, 2, 3, 3, 4, 5, 5, 1, 1, 9, 9, 9, 8, 8, 7] * 10)
1500
+ X = 0.1 * X.reshape(-1, 1)
1501
+ X = _convert_container(X, array_type)
1502
+
1503
+ n_quantiles = 100
1504
+ qt = QuantileTransformer(n_quantiles=n_quantiles).fit(X)
1505
+
1506
+ # Check that the estimated quantile thresholds are monotically
1507
+ # increasing:
1508
+ quantiles = qt.quantiles_[:, 0]
1509
+ assert len(quantiles) == 100
1510
+ assert all(np.diff(quantiles) >= 0)
1511
+
1512
+
1513
+ def test_robust_scaler_invalid_range():
1514
+ for range_ in [
1515
+ (-1, 90),
1516
+ (-2, -3),
1517
+ (10, 101),
1518
+ (100.5, 101),
1519
+ (90, 50),
1520
+ ]:
1521
+ scaler = RobustScaler(quantile_range=range_)
1522
+
1523
+ with pytest.raises(ValueError, match=r"Invalid quantile range: \("):
1524
+ scaler.fit(iris.data)
1525
+
1526
+
1527
+ @pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
1528
+ def test_scale_function_without_centering(csr_container):
1529
+ rng = np.random.RandomState(42)
1530
+ X = rng.randn(4, 5)
1531
+ X[:, 0] = 0.0 # first feature is always of zero
1532
+ X_csr = csr_container(X)
1533
+
1534
+ X_scaled = scale(X, with_mean=False)
1535
+ assert not np.any(np.isnan(X_scaled))
1536
+
1537
+ X_csr_scaled = scale(X_csr, with_mean=False)
1538
+ assert not np.any(np.isnan(X_csr_scaled.data))
1539
+
1540
+ # test csc has same outcome
1541
+ X_csc_scaled = scale(X_csr.tocsc(), with_mean=False)
1542
+ assert_array_almost_equal(X_scaled, X_csc_scaled.toarray())
1543
+
1544
+ # raises value error on axis != 0
1545
+ with pytest.raises(ValueError):
1546
+ scale(X_csr, with_mean=False, axis=1)
1547
+
1548
+ assert_array_almost_equal(
1549
+ X_scaled.mean(axis=0), [0.0, -0.01, 2.24, -0.35, -0.78], 2
1550
+ )
1551
+ assert_array_almost_equal(X_scaled.std(axis=0), [0.0, 1.0, 1.0, 1.0, 1.0])
1552
+ # Check that X has not been copied
1553
+ assert X_scaled is not X
1554
+
1555
+ X_csr_scaled_mean, X_csr_scaled_std = mean_variance_axis(X_csr_scaled, 0)
1556
+ assert_array_almost_equal(X_csr_scaled_mean, X_scaled.mean(axis=0))
1557
+ assert_array_almost_equal(X_csr_scaled_std, X_scaled.std(axis=0))
1558
+
1559
+ # null scale
1560
+ X_csr_scaled = scale(X_csr, with_mean=False, with_std=False, copy=True)
1561
+ assert_array_almost_equal(X_csr.toarray(), X_csr_scaled.toarray())
1562
+
1563
+
1564
+ def test_robust_scale_axis1():
1565
+ X = iris.data
1566
+ X_trans = robust_scale(X, axis=1)
1567
+ assert_array_almost_equal(np.median(X_trans, axis=1), 0)
1568
+ q = np.percentile(X_trans, q=(25, 75), axis=1)
1569
+ iqr = q[1] - q[0]
1570
+ assert_array_almost_equal(iqr, 1)
1571
+
1572
+
1573
+ def test_robust_scale_1d_array():
1574
+ X = iris.data[:, 1]
1575
+ X_trans = robust_scale(X)
1576
+ assert_array_almost_equal(np.median(X_trans), 0)
1577
+ q = np.percentile(X_trans, q=(25, 75))
1578
+ iqr = q[1] - q[0]
1579
+ assert_array_almost_equal(iqr, 1)
1580
+
1581
+
1582
+ def test_robust_scaler_zero_variance_features():
1583
+ # Check RobustScaler on toy data with zero variance features
1584
+ X = [[0.0, 1.0, +0.5], [0.0, 1.0, -0.1], [0.0, 1.0, +1.1]]
1585
+
1586
+ scaler = RobustScaler()
1587
+ X_trans = scaler.fit_transform(X)
1588
+
1589
+ # NOTE: for such a small sample size, what we expect in the third column
1590
+ # depends HEAVILY on the method used to calculate quantiles. The values
1591
+ # here were calculated to fit the quantiles produces by np.percentile
1592
+ # using numpy 1.9 Calculating quantiles with
1593
+ # scipy.stats.mstats.scoreatquantile or scipy.stats.mstats.mquantiles
1594
+ # would yield very different results!
1595
+ X_expected = [[0.0, 0.0, +0.0], [0.0, 0.0, -1.0], [0.0, 0.0, +1.0]]
1596
+ assert_array_almost_equal(X_trans, X_expected)
1597
+ X_trans_inv = scaler.inverse_transform(X_trans)
1598
+ assert_array_almost_equal(X, X_trans_inv)
1599
+
1600
+ # make sure new data gets transformed correctly
1601
+ X_new = [[+0.0, 2.0, 0.5], [-1.0, 1.0, 0.0], [+0.0, 1.0, 1.5]]
1602
+ X_trans_new = scaler.transform(X_new)
1603
+ X_expected_new = [[+0.0, 1.0, +0.0], [-1.0, 0.0, -0.83333], [+0.0, 0.0, +1.66667]]
1604
+ assert_array_almost_equal(X_trans_new, X_expected_new, decimal=3)
1605
+
1606
+
1607
+ def test_robust_scaler_unit_variance():
1608
+ # Check RobustScaler with unit_variance=True on standard normal data with
1609
+ # outliers
1610
+ rng = np.random.RandomState(42)
1611
+ X = rng.randn(1000000, 1)
1612
+ X_with_outliers = np.vstack([X, np.ones((100, 1)) * 100, np.ones((100, 1)) * -100])
1613
+
1614
+ quantile_range = (1, 99)
1615
+ robust_scaler = RobustScaler(quantile_range=quantile_range, unit_variance=True).fit(
1616
+ X_with_outliers
1617
+ )
1618
+ X_trans = robust_scaler.transform(X)
1619
+
1620
+ assert robust_scaler.center_ == pytest.approx(0, abs=1e-3)
1621
+ assert robust_scaler.scale_ == pytest.approx(1, abs=1e-2)
1622
+ assert X_trans.std() == pytest.approx(1, abs=1e-2)
1623
+
1624
+
1625
+ @pytest.mark.parametrize("sparse_container", CSC_CONTAINERS + CSR_CONTAINERS)
1626
+ def test_maxabs_scaler_zero_variance_features(sparse_container):
1627
+ # Check MaxAbsScaler on toy data with zero variance features
1628
+ X = [[0.0, 1.0, +0.5], [0.0, 1.0, -0.3], [0.0, 1.0, +1.5], [0.0, 0.0, +0.0]]
1629
+
1630
+ scaler = MaxAbsScaler()
1631
+ X_trans = scaler.fit_transform(X)
1632
+ X_expected = [
1633
+ [0.0, 1.0, 1.0 / 3.0],
1634
+ [0.0, 1.0, -0.2],
1635
+ [0.0, 1.0, 1.0],
1636
+ [0.0, 0.0, 0.0],
1637
+ ]
1638
+ assert_array_almost_equal(X_trans, X_expected)
1639
+ X_trans_inv = scaler.inverse_transform(X_trans)
1640
+ assert_array_almost_equal(X, X_trans_inv)
1641
+
1642
+ # make sure new data gets transformed correctly
1643
+ X_new = [[+0.0, 2.0, 0.5], [-1.0, 1.0, 0.0], [+0.0, 1.0, 1.5]]
1644
+ X_trans_new = scaler.transform(X_new)
1645
+ X_expected_new = [[+0.0, 2.0, 1.0 / 3.0], [-1.0, 1.0, 0.0], [+0.0, 1.0, 1.0]]
1646
+
1647
+ assert_array_almost_equal(X_trans_new, X_expected_new, decimal=2)
1648
+
1649
+ # function interface
1650
+ X_trans = maxabs_scale(X)
1651
+ assert_array_almost_equal(X_trans, X_expected)
1652
+
1653
+ # sparse data
1654
+ X_sparse = sparse_container(X)
1655
+ X_trans_sparse = scaler.fit_transform(X_sparse)
1656
+ X_expected = [
1657
+ [0.0, 1.0, 1.0 / 3.0],
1658
+ [0.0, 1.0, -0.2],
1659
+ [0.0, 1.0, 1.0],
1660
+ [0.0, 0.0, 0.0],
1661
+ ]
1662
+ assert_array_almost_equal(X_trans_sparse.toarray(), X_expected)
1663
+ X_trans_sparse_inv = scaler.inverse_transform(X_trans_sparse)
1664
+ assert_array_almost_equal(X, X_trans_sparse_inv.toarray())
1665
+
1666
+
1667
+ def test_maxabs_scaler_large_negative_value():
1668
+ # Check MaxAbsScaler on toy data with a large negative value
1669
+ X = [
1670
+ [0.0, 1.0, +0.5, -1.0],
1671
+ [0.0, 1.0, -0.3, -0.5],
1672
+ [0.0, 1.0, -100.0, 0.0],
1673
+ [0.0, 0.0, +0.0, -2.0],
1674
+ ]
1675
+
1676
+ scaler = MaxAbsScaler()
1677
+ X_trans = scaler.fit_transform(X)
1678
+ X_expected = [
1679
+ [0.0, 1.0, 0.005, -0.5],
1680
+ [0.0, 1.0, -0.003, -0.25],
1681
+ [0.0, 1.0, -1.0, 0.0],
1682
+ [0.0, 0.0, 0.0, -1.0],
1683
+ ]
1684
+ assert_array_almost_equal(X_trans, X_expected)
1685
+
1686
+
1687
+ @pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
1688
+ def test_maxabs_scaler_transform_one_row_csr(csr_container):
1689
+ # Check MaxAbsScaler on transforming csr matrix with one row
1690
+ X = csr_container([[0.5, 1.0, 1.0]])
1691
+ scaler = MaxAbsScaler()
1692
+ scaler = scaler.fit(X)
1693
+ X_trans = scaler.transform(X)
1694
+ X_expected = csr_container([[1.0, 1.0, 1.0]])
1695
+ assert_array_almost_equal(X_trans.toarray(), X_expected.toarray())
1696
+ X_scaled_back = scaler.inverse_transform(X_trans)
1697
+ assert_array_almost_equal(X.toarray(), X_scaled_back.toarray())
1698
+
1699
+
1700
+ def test_maxabs_scaler_1d():
1701
+ # Test scaling of dataset along single axis
1702
+ for X in [X_1row, X_1col, X_list_1row, X_list_1row]:
1703
+ scaler = MaxAbsScaler(copy=True)
1704
+ X_scaled = scaler.fit(X).transform(X)
1705
+
1706
+ if isinstance(X, list):
1707
+ X = np.array(X) # cast only after scaling done
1708
+
1709
+ if _check_dim_1axis(X) == 1:
1710
+ assert_array_almost_equal(np.abs(X_scaled.max(axis=0)), np.ones(n_features))
1711
+ else:
1712
+ assert_array_almost_equal(np.abs(X_scaled.max(axis=0)), 1.0)
1713
+ assert scaler.n_samples_seen_ == X.shape[0]
1714
+
1715
+ # check inverse transform
1716
+ X_scaled_back = scaler.inverse_transform(X_scaled)
1717
+ assert_array_almost_equal(X_scaled_back, X)
1718
+
1719
+ # Constant feature
1720
+ X = np.ones((5, 1))
1721
+ scaler = MaxAbsScaler()
1722
+ X_scaled = scaler.fit(X).transform(X)
1723
+ assert_array_almost_equal(np.abs(X_scaled.max(axis=0)), 1.0)
1724
+ assert scaler.n_samples_seen_ == X.shape[0]
1725
+
1726
+ # function interface
1727
+ X_1d = X_1row.ravel()
1728
+ max_abs = np.abs(X_1d).max()
1729
+ assert_array_almost_equal(X_1d / max_abs, maxabs_scale(X_1d, copy=True))
1730
+
1731
+
1732
+ @pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
1733
+ def test_maxabs_scaler_partial_fit(csr_container):
1734
+ # Test if partial_fit run over many batches of size 1 and 50
1735
+ # gives the same results as fit
1736
+ X = X_2d[:100, :]
1737
+ n = X.shape[0]
1738
+
1739
+ for chunk_size in [1, 2, 50, n, n + 42]:
1740
+ # Test mean at the end of the process
1741
+ scaler_batch = MaxAbsScaler().fit(X)
1742
+
1743
+ scaler_incr = MaxAbsScaler()
1744
+ scaler_incr_csr = MaxAbsScaler()
1745
+ scaler_incr_csc = MaxAbsScaler()
1746
+ for batch in gen_batches(n, chunk_size):
1747
+ scaler_incr = scaler_incr.partial_fit(X[batch])
1748
+ X_csr = csr_container(X[batch])
1749
+ scaler_incr_csr = scaler_incr_csr.partial_fit(X_csr)
1750
+ X_csc = csr_container(X[batch])
1751
+ scaler_incr_csc = scaler_incr_csc.partial_fit(X_csc)
1752
+
1753
+ assert_array_almost_equal(scaler_batch.max_abs_, scaler_incr.max_abs_)
1754
+ assert_array_almost_equal(scaler_batch.max_abs_, scaler_incr_csr.max_abs_)
1755
+ assert_array_almost_equal(scaler_batch.max_abs_, scaler_incr_csc.max_abs_)
1756
+ assert scaler_batch.n_samples_seen_ == scaler_incr.n_samples_seen_
1757
+ assert scaler_batch.n_samples_seen_ == scaler_incr_csr.n_samples_seen_
1758
+ assert scaler_batch.n_samples_seen_ == scaler_incr_csc.n_samples_seen_
1759
+ assert_array_almost_equal(scaler_batch.scale_, scaler_incr.scale_)
1760
+ assert_array_almost_equal(scaler_batch.scale_, scaler_incr_csr.scale_)
1761
+ assert_array_almost_equal(scaler_batch.scale_, scaler_incr_csc.scale_)
1762
+ assert_array_almost_equal(scaler_batch.transform(X), scaler_incr.transform(X))
1763
+
1764
+ # Test std after 1 step
1765
+ batch0 = slice(0, chunk_size)
1766
+ scaler_batch = MaxAbsScaler().fit(X[batch0])
1767
+ scaler_incr = MaxAbsScaler().partial_fit(X[batch0])
1768
+
1769
+ assert_array_almost_equal(scaler_batch.max_abs_, scaler_incr.max_abs_)
1770
+ assert scaler_batch.n_samples_seen_ == scaler_incr.n_samples_seen_
1771
+ assert_array_almost_equal(scaler_batch.scale_, scaler_incr.scale_)
1772
+ assert_array_almost_equal(scaler_batch.transform(X), scaler_incr.transform(X))
1773
+
1774
+ # Test std until the end of partial fits, and
1775
+ scaler_batch = MaxAbsScaler().fit(X)
1776
+ scaler_incr = MaxAbsScaler() # Clean estimator
1777
+ for i, batch in enumerate(gen_batches(n, chunk_size)):
1778
+ scaler_incr = scaler_incr.partial_fit(X[batch])
1779
+ assert_correct_incr(
1780
+ i,
1781
+ batch_start=batch.start,
1782
+ batch_stop=batch.stop,
1783
+ n=n,
1784
+ chunk_size=chunk_size,
1785
+ n_samples_seen=scaler_incr.n_samples_seen_,
1786
+ )
1787
+
1788
+
1789
+ def check_normalizer(norm, X_norm):
1790
+ """
1791
+ Convenient checking function for `test_normalizer_l1_l2_max` and
1792
+ `test_normalizer_l1_l2_max_non_csr`
1793
+ """
1794
+ if norm == "l1":
1795
+ row_sums = np.abs(X_norm).sum(axis=1)
1796
+ for i in range(3):
1797
+ assert_almost_equal(row_sums[i], 1.0)
1798
+ assert_almost_equal(row_sums[3], 0.0)
1799
+ elif norm == "l2":
1800
+ for i in range(3):
1801
+ assert_almost_equal(la.norm(X_norm[i]), 1.0)
1802
+ assert_almost_equal(la.norm(X_norm[3]), 0.0)
1803
+ elif norm == "max":
1804
+ row_maxs = abs(X_norm).max(axis=1)
1805
+ for i in range(3):
1806
+ assert_almost_equal(row_maxs[i], 1.0)
1807
+ assert_almost_equal(row_maxs[3], 0.0)
1808
+
1809
+
1810
+ @pytest.mark.parametrize("norm", ["l1", "l2", "max"])
1811
+ @pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
1812
+ def test_normalizer_l1_l2_max(norm, csr_container):
1813
+ rng = np.random.RandomState(0)
1814
+ X_dense = rng.randn(4, 5)
1815
+ X_sparse_unpruned = csr_container(X_dense)
1816
+
1817
+ # set the row number 3 to zero
1818
+ X_dense[3, :] = 0.0
1819
+
1820
+ # set the row number 3 to zero without pruning (can happen in real life)
1821
+ indptr_3 = X_sparse_unpruned.indptr[3]
1822
+ indptr_4 = X_sparse_unpruned.indptr[4]
1823
+ X_sparse_unpruned.data[indptr_3:indptr_4] = 0.0
1824
+
1825
+ # build the pruned variant using the regular constructor
1826
+ X_sparse_pruned = csr_container(X_dense)
1827
+
1828
+ # check inputs that support the no-copy optim
1829
+ for X in (X_dense, X_sparse_pruned, X_sparse_unpruned):
1830
+ normalizer = Normalizer(norm=norm, copy=True)
1831
+ X_norm1 = normalizer.transform(X)
1832
+ assert X_norm1 is not X
1833
+ X_norm1 = toarray(X_norm1)
1834
+
1835
+ normalizer = Normalizer(norm=norm, copy=False)
1836
+ X_norm2 = normalizer.transform(X)
1837
+ assert X_norm2 is X
1838
+ X_norm2 = toarray(X_norm2)
1839
+
1840
+ for X_norm in (X_norm1, X_norm2):
1841
+ check_normalizer(norm, X_norm)
1842
+
1843
+
1844
+ @pytest.mark.parametrize("norm", ["l1", "l2", "max"])
1845
+ @pytest.mark.parametrize(
1846
+ "sparse_container", COO_CONTAINERS + CSC_CONTAINERS + LIL_CONTAINERS
1847
+ )
1848
+ def test_normalizer_l1_l2_max_non_csr(norm, sparse_container):
1849
+ rng = np.random.RandomState(0)
1850
+ X_dense = rng.randn(4, 5)
1851
+
1852
+ # set the row number 3 to zero
1853
+ X_dense[3, :] = 0.0
1854
+
1855
+ X = sparse_container(X_dense)
1856
+ X_norm = Normalizer(norm=norm, copy=False).transform(X)
1857
+
1858
+ assert X_norm is not X
1859
+ assert sparse.issparse(X_norm) and X_norm.format == "csr"
1860
+
1861
+ X_norm = toarray(X_norm)
1862
+ check_normalizer(norm, X_norm)
1863
+
1864
+
1865
+ @pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
1866
+ def test_normalizer_max_sign(csr_container):
1867
+ # check that we normalize by a positive number even for negative data
1868
+ rng = np.random.RandomState(0)
1869
+ X_dense = rng.randn(4, 5)
1870
+ # set the row number 3 to zero
1871
+ X_dense[3, :] = 0.0
1872
+ # check for mixed data where the value with
1873
+ # largest magnitude is negative
1874
+ X_dense[2, abs(X_dense[2, :]).argmax()] *= -1
1875
+ X_all_neg = -np.abs(X_dense)
1876
+ X_all_neg_sparse = csr_container(X_all_neg)
1877
+
1878
+ for X in (X_dense, X_all_neg, X_all_neg_sparse):
1879
+ normalizer = Normalizer(norm="max")
1880
+ X_norm = normalizer.transform(X)
1881
+ assert X_norm is not X
1882
+ X_norm = toarray(X_norm)
1883
+ assert_array_equal(np.sign(X_norm), np.sign(toarray(X)))
1884
+
1885
+
1886
+ @pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
1887
+ def test_normalize(csr_container):
1888
+ # Test normalize function
1889
+ # Only tests functionality not used by the tests for Normalizer.
1890
+ X = np.random.RandomState(37).randn(3, 2)
1891
+ assert_array_equal(normalize(X, copy=False), normalize(X.T, axis=0, copy=False).T)
1892
+
1893
+ rs = np.random.RandomState(0)
1894
+ X_dense = rs.randn(10, 5)
1895
+ X_sparse = csr_container(X_dense)
1896
+ ones = np.ones((10))
1897
+ for X in (X_dense, X_sparse):
1898
+ for dtype in (np.float32, np.float64):
1899
+ for norm in ("l1", "l2"):
1900
+ X = X.astype(dtype)
1901
+ X_norm = normalize(X, norm=norm)
1902
+ assert X_norm.dtype == dtype
1903
+
1904
+ X_norm = toarray(X_norm)
1905
+ if norm == "l1":
1906
+ row_sums = np.abs(X_norm).sum(axis=1)
1907
+ else:
1908
+ X_norm_squared = X_norm**2
1909
+ row_sums = X_norm_squared.sum(axis=1)
1910
+
1911
+ assert_array_almost_equal(row_sums, ones)
1912
+
1913
+ # Test return_norm
1914
+ X_dense = np.array([[3.0, 0, 4.0], [1.0, 0.0, 0.0], [2.0, 3.0, 0.0]])
1915
+ for norm in ("l1", "l2", "max"):
1916
+ _, norms = normalize(X_dense, norm=norm, return_norm=True)
1917
+ if norm == "l1":
1918
+ assert_array_almost_equal(norms, np.array([7.0, 1.0, 5.0]))
1919
+ elif norm == "l2":
1920
+ assert_array_almost_equal(norms, np.array([5.0, 1.0, 3.60555127]))
1921
+ else:
1922
+ assert_array_almost_equal(norms, np.array([4.0, 1.0, 3.0]))
1923
+
1924
+ X_sparse = csr_container(X_dense)
1925
+ for norm in ("l1", "l2"):
1926
+ with pytest.raises(NotImplementedError):
1927
+ normalize(X_sparse, norm=norm, return_norm=True)
1928
+ _, norms = normalize(X_sparse, norm="max", return_norm=True)
1929
+ assert_array_almost_equal(norms, np.array([4.0, 1.0, 3.0]))
1930
+
1931
+
1932
+ @pytest.mark.parametrize(
1933
+ "constructor", [np.array, list] + CSC_CONTAINERS + CSR_CONTAINERS
1934
+ )
1935
+ def test_binarizer(constructor):
1936
+ X_ = np.array([[1, 0, 5], [2, 3, -1]])
1937
+ X = constructor(X_.copy())
1938
+
1939
+ binarizer = Binarizer(threshold=2.0, copy=True)
1940
+ X_bin = toarray(binarizer.transform(X))
1941
+ assert np.sum(X_bin == 0) == 4
1942
+ assert np.sum(X_bin == 1) == 2
1943
+ X_bin = binarizer.transform(X)
1944
+ assert sparse.issparse(X) == sparse.issparse(X_bin)
1945
+
1946
+ binarizer = Binarizer(copy=True).fit(X)
1947
+ X_bin = toarray(binarizer.transform(X))
1948
+ assert X_bin is not X
1949
+ assert np.sum(X_bin == 0) == 2
1950
+ assert np.sum(X_bin == 1) == 4
1951
+
1952
+ binarizer = Binarizer(copy=True)
1953
+ X_bin = binarizer.transform(X)
1954
+ assert X_bin is not X
1955
+ X_bin = toarray(X_bin)
1956
+ assert np.sum(X_bin == 0) == 2
1957
+ assert np.sum(X_bin == 1) == 4
1958
+
1959
+ binarizer = Binarizer(copy=False)
1960
+ X_bin = binarizer.transform(X)
1961
+ if constructor is not list:
1962
+ assert X_bin is X
1963
+
1964
+ binarizer = Binarizer(copy=False)
1965
+ X_float = np.array([[1, 0, 5], [2, 3, -1]], dtype=np.float64)
1966
+ X_bin = binarizer.transform(X_float)
1967
+ if constructor is not list:
1968
+ assert X_bin is X_float
1969
+
1970
+ X_bin = toarray(X_bin)
1971
+ assert np.sum(X_bin == 0) == 2
1972
+ assert np.sum(X_bin == 1) == 4
1973
+
1974
+ binarizer = Binarizer(threshold=-0.5, copy=True)
1975
+ if constructor in (np.array, list):
1976
+ X = constructor(X_.copy())
1977
+
1978
+ X_bin = toarray(binarizer.transform(X))
1979
+ assert np.sum(X_bin == 0) == 1
1980
+ assert np.sum(X_bin == 1) == 5
1981
+ X_bin = binarizer.transform(X)
1982
+
1983
+ # Cannot use threshold < 0 for sparse
1984
+ if constructor in CSC_CONTAINERS:
1985
+ with pytest.raises(ValueError):
1986
+ binarizer.transform(constructor(X))
1987
+
1988
+
1989
+ def test_center_kernel():
1990
+ # Test that KernelCenterer is equivalent to StandardScaler
1991
+ # in feature space
1992
+ rng = np.random.RandomState(0)
1993
+ X_fit = rng.random_sample((5, 4))
1994
+ scaler = StandardScaler(with_std=False)
1995
+ scaler.fit(X_fit)
1996
+ X_fit_centered = scaler.transform(X_fit)
1997
+ K_fit = np.dot(X_fit, X_fit.T)
1998
+
1999
+ # center fit time matrix
2000
+ centerer = KernelCenterer()
2001
+ K_fit_centered = np.dot(X_fit_centered, X_fit_centered.T)
2002
+ K_fit_centered2 = centerer.fit_transform(K_fit)
2003
+ assert_array_almost_equal(K_fit_centered, K_fit_centered2)
2004
+
2005
+ # center predict time matrix
2006
+ X_pred = rng.random_sample((2, 4))
2007
+ K_pred = np.dot(X_pred, X_fit.T)
2008
+ X_pred_centered = scaler.transform(X_pred)
2009
+ K_pred_centered = np.dot(X_pred_centered, X_fit_centered.T)
2010
+ K_pred_centered2 = centerer.transform(K_pred)
2011
+ assert_array_almost_equal(K_pred_centered, K_pred_centered2)
2012
+
2013
+ # check the results coherence with the method proposed in:
2014
+ # B. Schölkopf, A. Smola, and K.R. Müller,
2015
+ # "Nonlinear component analysis as a kernel eigenvalue problem"
2016
+ # equation (B.3)
2017
+
2018
+ # K_centered3 = (I - 1_M) K (I - 1_M)
2019
+ # = K - 1_M K - K 1_M + 1_M K 1_M
2020
+ ones_M = np.ones_like(K_fit) / K_fit.shape[0]
2021
+ K_fit_centered3 = K_fit - ones_M @ K_fit - K_fit @ ones_M + ones_M @ K_fit @ ones_M
2022
+ assert_allclose(K_fit_centered, K_fit_centered3)
2023
+
2024
+ # K_test_centered3 = (K_test - 1'_M K)(I - 1_M)
2025
+ # = K_test - 1'_M K - K_test 1_M + 1'_M K 1_M
2026
+ ones_prime_M = np.ones_like(K_pred) / K_fit.shape[0]
2027
+ K_pred_centered3 = (
2028
+ K_pred - ones_prime_M @ K_fit - K_pred @ ones_M + ones_prime_M @ K_fit @ ones_M
2029
+ )
2030
+ assert_allclose(K_pred_centered, K_pred_centered3)
2031
+
2032
+
2033
+ def test_kernelcenterer_non_linear_kernel():
2034
+ """Check kernel centering for non-linear kernel."""
2035
+ rng = np.random.RandomState(0)
2036
+ X, X_test = rng.randn(100, 50), rng.randn(20, 50)
2037
+
2038
+ def phi(X):
2039
+ """Our mapping function phi."""
2040
+ return np.vstack(
2041
+ [
2042
+ np.clip(X, a_min=0, a_max=None),
2043
+ -np.clip(X, a_min=None, a_max=0),
2044
+ ]
2045
+ )
2046
+
2047
+ phi_X = phi(X)
2048
+ phi_X_test = phi(X_test)
2049
+
2050
+ # centered the projection
2051
+ scaler = StandardScaler(with_std=False)
2052
+ phi_X_center = scaler.fit_transform(phi_X)
2053
+ phi_X_test_center = scaler.transform(phi_X_test)
2054
+
2055
+ # create the different kernel
2056
+ K = phi_X @ phi_X.T
2057
+ K_test = phi_X_test @ phi_X.T
2058
+ K_center = phi_X_center @ phi_X_center.T
2059
+ K_test_center = phi_X_test_center @ phi_X_center.T
2060
+
2061
+ kernel_centerer = KernelCenterer()
2062
+ kernel_centerer.fit(K)
2063
+
2064
+ assert_allclose(kernel_centerer.transform(K), K_center)
2065
+ assert_allclose(kernel_centerer.transform(K_test), K_test_center)
2066
+
2067
+ # check the results coherence with the method proposed in:
2068
+ # B. Schölkopf, A. Smola, and K.R. Müller,
2069
+ # "Nonlinear component analysis as a kernel eigenvalue problem"
2070
+ # equation (B.3)
2071
+
2072
+ # K_centered = (I - 1_M) K (I - 1_M)
2073
+ # = K - 1_M K - K 1_M + 1_M K 1_M
2074
+ ones_M = np.ones_like(K) / K.shape[0]
2075
+ K_centered = K - ones_M @ K - K @ ones_M + ones_M @ K @ ones_M
2076
+ assert_allclose(kernel_centerer.transform(K), K_centered)
2077
+
2078
+ # K_test_centered = (K_test - 1'_M K)(I - 1_M)
2079
+ # = K_test - 1'_M K - K_test 1_M + 1'_M K 1_M
2080
+ ones_prime_M = np.ones_like(K_test) / K.shape[0]
2081
+ K_test_centered = (
2082
+ K_test - ones_prime_M @ K - K_test @ ones_M + ones_prime_M @ K @ ones_M
2083
+ )
2084
+ assert_allclose(kernel_centerer.transform(K_test), K_test_centered)
2085
+
2086
+
2087
+ def test_cv_pipeline_precomputed():
2088
+ # Cross-validate a regression on four coplanar points with the same
2089
+ # value. Use precomputed kernel to ensure Pipeline with KernelCenterer
2090
+ # is treated as a pairwise operation.
2091
+ X = np.array([[3, 0, 0], [0, 3, 0], [0, 0, 3], [1, 1, 1]])
2092
+ y_true = np.ones((4,))
2093
+ K = X.dot(X.T)
2094
+ kcent = KernelCenterer()
2095
+ pipeline = Pipeline([("kernel_centerer", kcent), ("svr", SVR())])
2096
+
2097
+ # did the pipeline set the pairwise attribute?
2098
+ assert pipeline._get_tags()["pairwise"]
2099
+
2100
+ # test cross-validation, score should be almost perfect
2101
+ # NB: this test is pretty vacuous -- it's mainly to test integration
2102
+ # of Pipeline and KernelCenterer
2103
+ y_pred = cross_val_predict(pipeline, K, y_true, cv=2)
2104
+ assert_array_almost_equal(y_true, y_pred)
2105
+
2106
+
2107
+ def test_fit_transform():
2108
+ rng = np.random.RandomState(0)
2109
+ X = rng.random_sample((5, 4))
2110
+ for obj in (StandardScaler(), Normalizer(), Binarizer()):
2111
+ X_transformed = obj.fit(X).transform(X)
2112
+ X_transformed2 = obj.fit_transform(X)
2113
+ assert_array_equal(X_transformed, X_transformed2)
2114
+
2115
+
2116
+ def test_add_dummy_feature():
2117
+ X = [[1, 0], [0, 1], [0, 1]]
2118
+ X = add_dummy_feature(X)
2119
+ assert_array_equal(X, [[1, 1, 0], [1, 0, 1], [1, 0, 1]])
2120
+
2121
+
2122
+ @pytest.mark.parametrize(
2123
+ "sparse_container", COO_CONTAINERS + CSC_CONTAINERS + CSR_CONTAINERS
2124
+ )
2125
+ def test_add_dummy_feature_sparse(sparse_container):
2126
+ X = sparse_container([[1, 0], [0, 1], [0, 1]])
2127
+ desired_format = X.format
2128
+ X = add_dummy_feature(X)
2129
+ assert sparse.issparse(X) and X.format == desired_format, X
2130
+ assert_array_equal(X.toarray(), [[1, 1, 0], [1, 0, 1], [1, 0, 1]])
2131
+
2132
+
2133
+ def test_fit_cold_start():
2134
+ X = iris.data
2135
+ X_2d = X[:, :2]
2136
+
2137
+ # Scalers that have a partial_fit method
2138
+ scalers = [
2139
+ StandardScaler(with_mean=False, with_std=False),
2140
+ MinMaxScaler(),
2141
+ MaxAbsScaler(),
2142
+ ]
2143
+
2144
+ for scaler in scalers:
2145
+ scaler.fit_transform(X)
2146
+ # with a different shape, this may break the scaler unless the internal
2147
+ # state is reset
2148
+ scaler.fit_transform(X_2d)
2149
+
2150
+
2151
+ @pytest.mark.parametrize("method", ["box-cox", "yeo-johnson"])
2152
+ def test_power_transformer_notfitted(method):
2153
+ pt = PowerTransformer(method=method)
2154
+ X = np.abs(X_1col)
2155
+ with pytest.raises(NotFittedError):
2156
+ pt.transform(X)
2157
+ with pytest.raises(NotFittedError):
2158
+ pt.inverse_transform(X)
2159
+
2160
+
2161
+ @pytest.mark.parametrize("method", ["box-cox", "yeo-johnson"])
2162
+ @pytest.mark.parametrize("standardize", [True, False])
2163
+ @pytest.mark.parametrize("X", [X_1col, X_2d])
2164
+ def test_power_transformer_inverse(method, standardize, X):
2165
+ # Make sure we get the original input when applying transform and then
2166
+ # inverse transform
2167
+ X = np.abs(X) if method == "box-cox" else X
2168
+ pt = PowerTransformer(method=method, standardize=standardize)
2169
+ X_trans = pt.fit_transform(X)
2170
+ assert_almost_equal(X, pt.inverse_transform(X_trans))
2171
+
2172
+
2173
+ def test_power_transformer_1d():
2174
+ X = np.abs(X_1col)
2175
+
2176
+ for standardize in [True, False]:
2177
+ pt = PowerTransformer(method="box-cox", standardize=standardize)
2178
+
2179
+ X_trans = pt.fit_transform(X)
2180
+ X_trans_func = power_transform(X, method="box-cox", standardize=standardize)
2181
+
2182
+ X_expected, lambda_expected = stats.boxcox(X.flatten())
2183
+
2184
+ if standardize:
2185
+ X_expected = scale(X_expected)
2186
+
2187
+ assert_almost_equal(X_expected.reshape(-1, 1), X_trans)
2188
+ assert_almost_equal(X_expected.reshape(-1, 1), X_trans_func)
2189
+
2190
+ assert_almost_equal(X, pt.inverse_transform(X_trans))
2191
+ assert_almost_equal(lambda_expected, pt.lambdas_[0])
2192
+
2193
+ assert len(pt.lambdas_) == X.shape[1]
2194
+ assert isinstance(pt.lambdas_, np.ndarray)
2195
+
2196
+
2197
+ def test_power_transformer_2d():
2198
+ X = np.abs(X_2d)
2199
+
2200
+ for standardize in [True, False]:
2201
+ pt = PowerTransformer(method="box-cox", standardize=standardize)
2202
+
2203
+ X_trans_class = pt.fit_transform(X)
2204
+ X_trans_func = power_transform(X, method="box-cox", standardize=standardize)
2205
+
2206
+ for X_trans in [X_trans_class, X_trans_func]:
2207
+ for j in range(X_trans.shape[1]):
2208
+ X_expected, lmbda = stats.boxcox(X[:, j].flatten())
2209
+
2210
+ if standardize:
2211
+ X_expected = scale(X_expected)
2212
+
2213
+ assert_almost_equal(X_trans[:, j], X_expected)
2214
+ assert_almost_equal(lmbda, pt.lambdas_[j])
2215
+
2216
+ # Test inverse transformation
2217
+ X_inv = pt.inverse_transform(X_trans)
2218
+ assert_array_almost_equal(X_inv, X)
2219
+
2220
+ assert len(pt.lambdas_) == X.shape[1]
2221
+ assert isinstance(pt.lambdas_, np.ndarray)
2222
+
2223
+
2224
+ def test_power_transformer_boxcox_strictly_positive_exception():
2225
+ # Exceptions should be raised for negative arrays and zero arrays when
2226
+ # method is boxcox
2227
+
2228
+ pt = PowerTransformer(method="box-cox")
2229
+ pt.fit(np.abs(X_2d))
2230
+ X_with_negatives = X_2d
2231
+ not_positive_message = "strictly positive"
2232
+
2233
+ with pytest.raises(ValueError, match=not_positive_message):
2234
+ pt.transform(X_with_negatives)
2235
+
2236
+ with pytest.raises(ValueError, match=not_positive_message):
2237
+ pt.fit(X_with_negatives)
2238
+
2239
+ with pytest.raises(ValueError, match=not_positive_message):
2240
+ power_transform(X_with_negatives, method="box-cox")
2241
+
2242
+ with pytest.raises(ValueError, match=not_positive_message):
2243
+ pt.transform(np.zeros(X_2d.shape))
2244
+
2245
+ with pytest.raises(ValueError, match=not_positive_message):
2246
+ pt.fit(np.zeros(X_2d.shape))
2247
+
2248
+ with pytest.raises(ValueError, match=not_positive_message):
2249
+ power_transform(np.zeros(X_2d.shape), method="box-cox")
2250
+
2251
+
2252
+ @pytest.mark.parametrize("X", [X_2d, np.abs(X_2d), -np.abs(X_2d), np.zeros(X_2d.shape)])
2253
+ def test_power_transformer_yeojohnson_any_input(X):
2254
+ # Yeo-Johnson method should support any kind of input
2255
+ power_transform(X, method="yeo-johnson")
2256
+
2257
+
2258
+ @pytest.mark.parametrize("method", ["box-cox", "yeo-johnson"])
2259
+ def test_power_transformer_shape_exception(method):
2260
+ pt = PowerTransformer(method=method)
2261
+ X = np.abs(X_2d)
2262
+ pt.fit(X)
2263
+
2264
+ # Exceptions should be raised for arrays with different num_columns
2265
+ # than during fitting
2266
+ wrong_shape_message = (
2267
+ r"X has \d+ features, but PowerTransformer is " r"expecting \d+ features"
2268
+ )
2269
+
2270
+ with pytest.raises(ValueError, match=wrong_shape_message):
2271
+ pt.transform(X[:, 0:1])
2272
+
2273
+ with pytest.raises(ValueError, match=wrong_shape_message):
2274
+ pt.inverse_transform(X[:, 0:1])
2275
+
2276
+
2277
+ def test_power_transformer_lambda_zero():
2278
+ pt = PowerTransformer(method="box-cox", standardize=False)
2279
+ X = np.abs(X_2d)[:, 0:1]
2280
+
2281
+ # Test the lambda = 0 case
2282
+ pt.lambdas_ = np.array([0])
2283
+ X_trans = pt.transform(X)
2284
+ assert_array_almost_equal(pt.inverse_transform(X_trans), X)
2285
+
2286
+
2287
+ def test_power_transformer_lambda_one():
2288
+ # Make sure lambda = 1 corresponds to the identity for yeo-johnson
2289
+ pt = PowerTransformer(method="yeo-johnson", standardize=False)
2290
+ X = np.abs(X_2d)[:, 0:1]
2291
+
2292
+ pt.lambdas_ = np.array([1])
2293
+ X_trans = pt.transform(X)
2294
+ assert_array_almost_equal(X_trans, X)
2295
+
2296
+
2297
+ @pytest.mark.parametrize(
2298
+ "method, lmbda",
2299
+ [
2300
+ ("box-cox", 0.1),
2301
+ ("box-cox", 0.5),
2302
+ ("yeo-johnson", 0.1),
2303
+ ("yeo-johnson", 0.5),
2304
+ ("yeo-johnson", 1.0),
2305
+ ],
2306
+ )
2307
+ def test_optimization_power_transformer(method, lmbda):
2308
+ # Test the optimization procedure:
2309
+ # - set a predefined value for lambda
2310
+ # - apply inverse_transform to a normal dist (we get X_inv)
2311
+ # - apply fit_transform to X_inv (we get X_inv_trans)
2312
+ # - check that X_inv_trans is roughly equal to X
2313
+
2314
+ rng = np.random.RandomState(0)
2315
+ n_samples = 20000
2316
+ X = rng.normal(loc=0, scale=1, size=(n_samples, 1))
2317
+
2318
+ pt = PowerTransformer(method=method, standardize=False)
2319
+ pt.lambdas_ = [lmbda]
2320
+ X_inv = pt.inverse_transform(X)
2321
+
2322
+ pt = PowerTransformer(method=method, standardize=False)
2323
+ X_inv_trans = pt.fit_transform(X_inv)
2324
+
2325
+ assert_almost_equal(0, np.linalg.norm(X - X_inv_trans) / n_samples, decimal=2)
2326
+ assert_almost_equal(0, X_inv_trans.mean(), decimal=1)
2327
+ assert_almost_equal(1, X_inv_trans.std(), decimal=1)
2328
+
2329
+
2330
+ def test_yeo_johnson_darwin_example():
2331
+ # test from original paper "A new family of power transformations to
2332
+ # improve normality or symmetry" by Yeo and Johnson.
2333
+ X = [6.1, -8.4, 1.0, 2.0, 0.7, 2.9, 3.5, 5.1, 1.8, 3.6, 7.0, 3.0, 9.3, 7.5, -6.0]
2334
+ X = np.array(X).reshape(-1, 1)
2335
+ lmbda = PowerTransformer(method="yeo-johnson").fit(X).lambdas_
2336
+ assert np.allclose(lmbda, 1.305, atol=1e-3)
2337
+
2338
+
2339
+ @pytest.mark.parametrize("method", ["box-cox", "yeo-johnson"])
2340
+ def test_power_transformer_nans(method):
2341
+ # Make sure lambda estimation is not influenced by NaN values
2342
+ # and that transform() supports NaN silently
2343
+
2344
+ X = np.abs(X_1col)
2345
+ pt = PowerTransformer(method=method)
2346
+ pt.fit(X)
2347
+ lmbda_no_nans = pt.lambdas_[0]
2348
+
2349
+ # concat nans at the end and check lambda stays the same
2350
+ X = np.concatenate([X, np.full_like(X, np.nan)])
2351
+ X = shuffle(X, random_state=0)
2352
+
2353
+ pt.fit(X)
2354
+ lmbda_nans = pt.lambdas_[0]
2355
+
2356
+ assert_almost_equal(lmbda_no_nans, lmbda_nans, decimal=5)
2357
+
2358
+ X_trans = pt.transform(X)
2359
+ assert_array_equal(np.isnan(X_trans), np.isnan(X))
2360
+
2361
+
2362
+ @pytest.mark.parametrize("method", ["box-cox", "yeo-johnson"])
2363
+ @pytest.mark.parametrize("standardize", [True, False])
2364
+ def test_power_transformer_fit_transform(method, standardize):
2365
+ # check that fit_transform() and fit().transform() return the same values
2366
+ X = X_1col
2367
+ if method == "box-cox":
2368
+ X = np.abs(X)
2369
+
2370
+ pt = PowerTransformer(method, standardize=standardize)
2371
+ assert_array_almost_equal(pt.fit(X).transform(X), pt.fit_transform(X))
2372
+
2373
+
2374
+ @pytest.mark.parametrize("method", ["box-cox", "yeo-johnson"])
2375
+ @pytest.mark.parametrize("standardize", [True, False])
2376
+ def test_power_transformer_copy_True(method, standardize):
2377
+ # Check that neither fit, transform, fit_transform nor inverse_transform
2378
+ # modify X inplace when copy=True
2379
+ X = X_1col
2380
+ if method == "box-cox":
2381
+ X = np.abs(X)
2382
+
2383
+ X_original = X.copy()
2384
+ assert X is not X_original # sanity checks
2385
+ assert_array_almost_equal(X, X_original)
2386
+
2387
+ pt = PowerTransformer(method, standardize=standardize, copy=True)
2388
+
2389
+ pt.fit(X)
2390
+ assert_array_almost_equal(X, X_original)
2391
+ X_trans = pt.transform(X)
2392
+ assert X_trans is not X
2393
+
2394
+ X_trans = pt.fit_transform(X)
2395
+ assert_array_almost_equal(X, X_original)
2396
+ assert X_trans is not X
2397
+
2398
+ X_inv_trans = pt.inverse_transform(X_trans)
2399
+ assert X_trans is not X_inv_trans
2400
+
2401
+
2402
+ @pytest.mark.parametrize("method", ["box-cox", "yeo-johnson"])
2403
+ @pytest.mark.parametrize("standardize", [True, False])
2404
+ def test_power_transformer_copy_False(method, standardize):
2405
+ # check that when copy=False fit doesn't change X inplace but transform,
2406
+ # fit_transform and inverse_transform do.
2407
+ X = X_1col
2408
+ if method == "box-cox":
2409
+ X = np.abs(X)
2410
+
2411
+ X_original = X.copy()
2412
+ assert X is not X_original # sanity checks
2413
+ assert_array_almost_equal(X, X_original)
2414
+
2415
+ pt = PowerTransformer(method, standardize=standardize, copy=False)
2416
+
2417
+ pt.fit(X)
2418
+ assert_array_almost_equal(X, X_original) # fit didn't change X
2419
+
2420
+ X_trans = pt.transform(X)
2421
+ assert X_trans is X
2422
+
2423
+ if method == "box-cox":
2424
+ X = np.abs(X)
2425
+ X_trans = pt.fit_transform(X)
2426
+ assert X_trans is X
2427
+
2428
+ X_inv_trans = pt.inverse_transform(X_trans)
2429
+ assert X_trans is X_inv_trans
2430
+
2431
+
2432
+ def test_power_transformer_box_cox_raise_all_nans_col():
2433
+ """Check that box-cox raises informative when a column contains all nans.
2434
+
2435
+ Non-regression test for gh-26303
2436
+ """
2437
+ X = rng.random_sample((4, 5))
2438
+ X[:, 0] = np.nan
2439
+
2440
+ err_msg = "Column must not be all nan."
2441
+
2442
+ pt = PowerTransformer(method="box-cox")
2443
+ with pytest.raises(ValueError, match=err_msg):
2444
+ pt.fit_transform(X)
2445
+
2446
+
2447
+ @pytest.mark.parametrize(
2448
+ "X_2",
2449
+ [sparse.random(10, 1, density=0.8, random_state=0)]
2450
+ + [
2451
+ csr_container(np.full((10, 1), fill_value=np.nan))
2452
+ for csr_container in CSR_CONTAINERS
2453
+ ],
2454
+ )
2455
+ def test_standard_scaler_sparse_partial_fit_finite_variance(X_2):
2456
+ # non-regression test for:
2457
+ # https://github.com/scikit-learn/scikit-learn/issues/16448
2458
+ X_1 = sparse.random(5, 1, density=0.8)
2459
+ scaler = StandardScaler(with_mean=False)
2460
+ scaler.fit(X_1).partial_fit(X_2)
2461
+ assert np.isfinite(scaler.var_[0])
2462
+
2463
+
2464
+ @pytest.mark.parametrize("feature_range", [(0, 1), (-10, 10)])
2465
+ def test_minmax_scaler_clip(feature_range):
2466
+ # test behaviour of the parameter 'clip' in MinMaxScaler
2467
+ X = iris.data
2468
+ scaler = MinMaxScaler(feature_range=feature_range, clip=True).fit(X)
2469
+ X_min, X_max = np.min(X, axis=0), np.max(X, axis=0)
2470
+ X_test = [np.r_[X_min[:2] - 10, X_max[2:] + 10]]
2471
+ X_transformed = scaler.transform(X_test)
2472
+ assert_allclose(
2473
+ X_transformed,
2474
+ [[feature_range[0], feature_range[0], feature_range[1], feature_range[1]]],
2475
+ )
2476
+
2477
+
2478
+ def test_standard_scaler_raise_error_for_1d_input():
2479
+ """Check that `inverse_transform` from `StandardScaler` raises an error
2480
+ with 1D array.
2481
+ Non-regression test for:
2482
+ https://github.com/scikit-learn/scikit-learn/issues/19518
2483
+ """
2484
+ scaler = StandardScaler().fit(X_2d)
2485
+ err_msg = "Expected 2D array, got 1D array instead"
2486
+ with pytest.raises(ValueError, match=err_msg):
2487
+ scaler.inverse_transform(X_2d[:, 0])
2488
+
2489
+
2490
+ def test_power_transformer_significantly_non_gaussian():
2491
+ """Check that significantly non-Gaussian data before transforms correctly.
2492
+
2493
+ For some explored lambdas, the transformed data may be constant and will
2494
+ be rejected. Non-regression test for
2495
+ https://github.com/scikit-learn/scikit-learn/issues/14959
2496
+ """
2497
+
2498
+ X_non_gaussian = 1e6 * np.array(
2499
+ [0.6, 2.0, 3.0, 4.0] * 4 + [11, 12, 12, 16, 17, 20, 85, 90], dtype=np.float64
2500
+ ).reshape(-1, 1)
2501
+ pt = PowerTransformer()
2502
+
2503
+ with warnings.catch_warnings():
2504
+ warnings.simplefilter("error", RuntimeWarning)
2505
+ X_trans = pt.fit_transform(X_non_gaussian)
2506
+
2507
+ assert not np.any(np.isnan(X_trans))
2508
+ assert X_trans.mean() == pytest.approx(0.0)
2509
+ assert X_trans.std() == pytest.approx(1.0)
2510
+ assert X_trans.min() > -2
2511
+ assert X_trans.max() < 2
2512
+
2513
+
2514
+ @pytest.mark.parametrize(
2515
+ "Transformer",
2516
+ [
2517
+ MinMaxScaler,
2518
+ MaxAbsScaler,
2519
+ RobustScaler,
2520
+ StandardScaler,
2521
+ QuantileTransformer,
2522
+ PowerTransformer,
2523
+ ],
2524
+ )
2525
+ def test_one_to_one_features(Transformer):
2526
+ """Check one-to-one transformers give correct feature names."""
2527
+ tr = Transformer().fit(iris.data)
2528
+ names_out = tr.get_feature_names_out(iris.feature_names)
2529
+ assert_array_equal(names_out, iris.feature_names)
2530
+
2531
+
2532
+ @pytest.mark.parametrize(
2533
+ "Transformer",
2534
+ [
2535
+ MinMaxScaler,
2536
+ MaxAbsScaler,
2537
+ RobustScaler,
2538
+ StandardScaler,
2539
+ QuantileTransformer,
2540
+ PowerTransformer,
2541
+ Normalizer,
2542
+ Binarizer,
2543
+ ],
2544
+ )
2545
+ def test_one_to_one_features_pandas(Transformer):
2546
+ """Check one-to-one transformers give correct feature names."""
2547
+ pd = pytest.importorskip("pandas")
2548
+
2549
+ df = pd.DataFrame(iris.data, columns=iris.feature_names)
2550
+ tr = Transformer().fit(df)
2551
+
2552
+ names_out_df_default = tr.get_feature_names_out()
2553
+ assert_array_equal(names_out_df_default, iris.feature_names)
2554
+
2555
+ names_out_df_valid_in = tr.get_feature_names_out(iris.feature_names)
2556
+ assert_array_equal(names_out_df_valid_in, iris.feature_names)
2557
+
2558
+ msg = re.escape("input_features is not equal to feature_names_in_")
2559
+ with pytest.raises(ValueError, match=msg):
2560
+ invalid_names = list("abcd")
2561
+ tr.get_feature_names_out(invalid_names)
2562
+
2563
+
2564
+ def test_kernel_centerer_feature_names_out():
2565
+ """Test that kernel centerer `feature_names_out`."""
2566
+
2567
+ rng = np.random.RandomState(0)
2568
+ X = rng.random_sample((6, 4))
2569
+ X_pairwise = linear_kernel(X)
2570
+ centerer = KernelCenterer().fit(X_pairwise)
2571
+
2572
+ names_out = centerer.get_feature_names_out()
2573
+ samples_out2 = X_pairwise.shape[1]
2574
+ assert_array_equal(names_out, [f"kernelcenterer{i}" for i in range(samples_out2)])
2575
+
2576
+
2577
+ @pytest.mark.parametrize("standardize", [True, False])
2578
+ def test_power_transformer_constant_feature(standardize):
2579
+ """Check that PowerTransfomer leaves constant features unchanged."""
2580
+ X = [[-2, 0, 2], [-2, 0, 2], [-2, 0, 2]]
2581
+
2582
+ pt = PowerTransformer(method="yeo-johnson", standardize=standardize).fit(X)
2583
+
2584
+ assert_allclose(pt.lambdas_, [1, 1, 1])
2585
+
2586
+ Xft = pt.fit_transform(X)
2587
+ Xt = pt.transform(X)
2588
+
2589
+ for Xt_ in [Xft, Xt]:
2590
+ if standardize:
2591
+ assert_allclose(Xt_, np.zeros_like(X))
2592
+ else:
2593
+ assert_allclose(Xt_, X)
env-llmeval/lib/python3.10/site-packages/sklearn/preprocessing/tests/test_discretization.py ADDED
@@ -0,0 +1,503 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import warnings
2
+
3
+ import numpy as np
4
+ import pytest
5
+ import scipy.sparse as sp
6
+
7
+ from sklearn import clone
8
+ from sklearn.preprocessing import KBinsDiscretizer, OneHotEncoder
9
+ from sklearn.utils._testing import (
10
+ assert_allclose,
11
+ assert_allclose_dense_sparse,
12
+ assert_array_almost_equal,
13
+ assert_array_equal,
14
+ )
15
+
16
+ X = [[-2, 1.5, -4, -1], [-1, 2.5, -3, -0.5], [0, 3.5, -2, 0.5], [1, 4.5, -1, 2]]
17
+
18
+
19
+ @pytest.mark.parametrize(
20
+ "strategy, expected, sample_weight",
21
+ [
22
+ ("uniform", [[0, 0, 0, 0], [1, 1, 1, 0], [2, 2, 2, 1], [2, 2, 2, 2]], None),
23
+ ("kmeans", [[0, 0, 0, 0], [0, 0, 0, 0], [1, 1, 1, 1], [2, 2, 2, 2]], None),
24
+ ("quantile", [[0, 0, 0, 0], [1, 1, 1, 1], [2, 2, 2, 2], [2, 2, 2, 2]], None),
25
+ (
26
+ "quantile",
27
+ [[0, 0, 0, 0], [1, 1, 1, 1], [2, 2, 2, 2], [2, 2, 2, 2]],
28
+ [1, 1, 2, 1],
29
+ ),
30
+ (
31
+ "quantile",
32
+ [[0, 0, 0, 0], [1, 1, 1, 1], [2, 2, 2, 2], [2, 2, 2, 2]],
33
+ [1, 1, 1, 1],
34
+ ),
35
+ (
36
+ "quantile",
37
+ [[0, 0, 0, 0], [0, 0, 0, 0], [1, 1, 1, 1], [1, 1, 1, 1]],
38
+ [0, 1, 1, 1],
39
+ ),
40
+ (
41
+ "kmeans",
42
+ [[0, 0, 0, 0], [1, 1, 1, 0], [1, 1, 1, 1], [2, 2, 2, 2]],
43
+ [1, 0, 3, 1],
44
+ ),
45
+ (
46
+ "kmeans",
47
+ [[0, 0, 0, 0], [0, 0, 0, 0], [1, 1, 1, 1], [2, 2, 2, 2]],
48
+ [1, 1, 1, 1],
49
+ ),
50
+ ],
51
+ )
52
+ # TODO(1.5) remove warning filter when kbd's subsample default is changed
53
+ @pytest.mark.filterwarnings("ignore:In version 1.5 onwards, subsample=200_000")
54
+ def test_fit_transform(strategy, expected, sample_weight):
55
+ est = KBinsDiscretizer(n_bins=3, encode="ordinal", strategy=strategy)
56
+ est.fit(X, sample_weight=sample_weight)
57
+ assert_array_equal(expected, est.transform(X))
58
+
59
+
60
+ def test_valid_n_bins():
61
+ KBinsDiscretizer(n_bins=2).fit_transform(X)
62
+ KBinsDiscretizer(n_bins=np.array([2])[0]).fit_transform(X)
63
+ assert KBinsDiscretizer(n_bins=2).fit(X).n_bins_.dtype == np.dtype(int)
64
+
65
+
66
+ @pytest.mark.parametrize("strategy", ["uniform"])
67
+ def test_kbinsdiscretizer_wrong_strategy_with_weights(strategy):
68
+ """Check that we raise an error when the wrong strategy is used."""
69
+ sample_weight = np.ones(shape=(len(X)))
70
+ est = KBinsDiscretizer(n_bins=3, strategy=strategy)
71
+ err_msg = (
72
+ "`sample_weight` was provided but it cannot be used with strategy='uniform'."
73
+ )
74
+ with pytest.raises(ValueError, match=err_msg):
75
+ est.fit(X, sample_weight=sample_weight)
76
+
77
+
78
+ def test_invalid_n_bins_array():
79
+ # Bad shape
80
+ n_bins = np.full((2, 4), 2.0)
81
+ est = KBinsDiscretizer(n_bins=n_bins)
82
+ err_msg = r"n_bins must be a scalar or array of shape \(n_features,\)."
83
+ with pytest.raises(ValueError, match=err_msg):
84
+ est.fit_transform(X)
85
+
86
+ # Incorrect number of features
87
+ n_bins = [1, 2, 2]
88
+ est = KBinsDiscretizer(n_bins=n_bins)
89
+ err_msg = r"n_bins must be a scalar or array of shape \(n_features,\)."
90
+ with pytest.raises(ValueError, match=err_msg):
91
+ est.fit_transform(X)
92
+
93
+ # Bad bin values
94
+ n_bins = [1, 2, 2, 1]
95
+ est = KBinsDiscretizer(n_bins=n_bins)
96
+ err_msg = (
97
+ "KBinsDiscretizer received an invalid number of bins "
98
+ "at indices 0, 3. Number of bins must be at least 2, "
99
+ "and must be an int."
100
+ )
101
+ with pytest.raises(ValueError, match=err_msg):
102
+ est.fit_transform(X)
103
+
104
+ # Float bin values
105
+ n_bins = [2.1, 2, 2.1, 2]
106
+ est = KBinsDiscretizer(n_bins=n_bins)
107
+ err_msg = (
108
+ "KBinsDiscretizer received an invalid number of bins "
109
+ "at indices 0, 2. Number of bins must be at least 2, "
110
+ "and must be an int."
111
+ )
112
+ with pytest.raises(ValueError, match=err_msg):
113
+ est.fit_transform(X)
114
+
115
+
116
+ @pytest.mark.parametrize(
117
+ "strategy, expected, sample_weight",
118
+ [
119
+ ("uniform", [[0, 0, 0, 0], [0, 1, 1, 0], [1, 2, 2, 1], [1, 2, 2, 2]], None),
120
+ ("kmeans", [[0, 0, 0, 0], [0, 0, 0, 0], [1, 1, 1, 1], [1, 2, 2, 2]], None),
121
+ ("quantile", [[0, 0, 0, 0], [0, 1, 1, 1], [1, 2, 2, 2], [1, 2, 2, 2]], None),
122
+ (
123
+ "quantile",
124
+ [[0, 0, 0, 0], [0, 1, 1, 1], [1, 2, 2, 2], [1, 2, 2, 2]],
125
+ [1, 1, 3, 1],
126
+ ),
127
+ (
128
+ "quantile",
129
+ [[0, 0, 0, 0], [0, 0, 0, 0], [1, 1, 1, 1], [1, 1, 1, 1]],
130
+ [0, 1, 3, 1],
131
+ ),
132
+ # (
133
+ # "quantile",
134
+ # [[0, 0, 0, 0], [0, 1, 1, 1], [1, 2, 2, 2], [1, 2, 2, 2]],
135
+ # [1, 1, 1, 1],
136
+ # ),
137
+ #
138
+ # TODO: This test case above aims to test if the case where an array of
139
+ # ones passed in sample_weight parameter is equal to the case when
140
+ # sample_weight is None.
141
+ # Unfortunately, the behavior of `_weighted_percentile` when
142
+ # `sample_weight = [1, 1, 1, 1]` are currently not equivalent.
143
+ # This problem has been addressed in issue :
144
+ # https://github.com/scikit-learn/scikit-learn/issues/17370
145
+ (
146
+ "kmeans",
147
+ [[0, 0, 0, 0], [0, 1, 1, 0], [1, 1, 1, 1], [1, 2, 2, 2]],
148
+ [1, 0, 3, 1],
149
+ ),
150
+ ],
151
+ )
152
+ # TODO(1.5) remove warning filter when kbd's subsample default is changed
153
+ @pytest.mark.filterwarnings("ignore:In version 1.5 onwards, subsample=200_000")
154
+ def test_fit_transform_n_bins_array(strategy, expected, sample_weight):
155
+ est = KBinsDiscretizer(
156
+ n_bins=[2, 3, 3, 3], encode="ordinal", strategy=strategy
157
+ ).fit(X, sample_weight=sample_weight)
158
+ assert_array_equal(expected, est.transform(X))
159
+
160
+ # test the shape of bin_edges_
161
+ n_features = np.array(X).shape[1]
162
+ assert est.bin_edges_.shape == (n_features,)
163
+ for bin_edges, n_bins in zip(est.bin_edges_, est.n_bins_):
164
+ assert bin_edges.shape == (n_bins + 1,)
165
+
166
+
167
+ @pytest.mark.filterwarnings("ignore: Bins whose width are too small")
168
+ def test_kbinsdiscretizer_effect_sample_weight():
169
+ """Check the impact of `sample_weight` one computed quantiles."""
170
+ X = np.array([[-2], [-1], [1], [3], [500], [1000]])
171
+ # add a large number of bins such that each sample with a non-null weight
172
+ # will be used as bin edge
173
+ est = KBinsDiscretizer(n_bins=10, encode="ordinal", strategy="quantile")
174
+ est.fit(X, sample_weight=[1, 1, 1, 1, 0, 0])
175
+ assert_allclose(est.bin_edges_[0], [-2, -1, 1, 3])
176
+ assert_allclose(est.transform(X), [[0.0], [1.0], [2.0], [2.0], [2.0], [2.0]])
177
+
178
+
179
+ # TODO(1.5) remove warning filter when kbd's subsample default is changed
180
+ @pytest.mark.filterwarnings("ignore:In version 1.5 onwards, subsample=200_000")
181
+ @pytest.mark.parametrize("strategy", ["kmeans", "quantile"])
182
+ def test_kbinsdiscretizer_no_mutating_sample_weight(strategy):
183
+ """Make sure that `sample_weight` is not changed in place."""
184
+ est = KBinsDiscretizer(n_bins=3, encode="ordinal", strategy=strategy)
185
+ sample_weight = np.array([1, 3, 1, 2], dtype=np.float64)
186
+ sample_weight_copy = np.copy(sample_weight)
187
+ est.fit(X, sample_weight=sample_weight)
188
+ assert_allclose(sample_weight, sample_weight_copy)
189
+
190
+
191
+ @pytest.mark.parametrize("strategy", ["uniform", "kmeans", "quantile"])
192
+ def test_same_min_max(strategy):
193
+ warnings.simplefilter("always")
194
+ X = np.array([[1, -2], [1, -1], [1, 0], [1, 1]])
195
+ est = KBinsDiscretizer(strategy=strategy, n_bins=3, encode="ordinal")
196
+ warning_message = "Feature 0 is constant and will be replaced with 0."
197
+ with pytest.warns(UserWarning, match=warning_message):
198
+ est.fit(X)
199
+ assert est.n_bins_[0] == 1
200
+ # replace the feature with zeros
201
+ Xt = est.transform(X)
202
+ assert_array_equal(Xt[:, 0], np.zeros(X.shape[0]))
203
+
204
+
205
+ def test_transform_1d_behavior():
206
+ X = np.arange(4)
207
+ est = KBinsDiscretizer(n_bins=2)
208
+ with pytest.raises(ValueError):
209
+ est.fit(X)
210
+
211
+ est = KBinsDiscretizer(n_bins=2)
212
+ est.fit(X.reshape(-1, 1))
213
+ with pytest.raises(ValueError):
214
+ est.transform(X)
215
+
216
+
217
+ @pytest.mark.parametrize("i", range(1, 9))
218
+ def test_numeric_stability(i):
219
+ X_init = np.array([2.0, 4.0, 6.0, 8.0, 10.0]).reshape(-1, 1)
220
+ Xt_expected = np.array([0, 0, 1, 1, 1]).reshape(-1, 1)
221
+
222
+ # Test up to discretizing nano units
223
+ X = X_init / 10**i
224
+ Xt = KBinsDiscretizer(n_bins=2, encode="ordinal").fit_transform(X)
225
+ assert_array_equal(Xt_expected, Xt)
226
+
227
+
228
+ def test_encode_options():
229
+ est = KBinsDiscretizer(n_bins=[2, 3, 3, 3], encode="ordinal").fit(X)
230
+ Xt_1 = est.transform(X)
231
+ est = KBinsDiscretizer(n_bins=[2, 3, 3, 3], encode="onehot-dense").fit(X)
232
+ Xt_2 = est.transform(X)
233
+ assert not sp.issparse(Xt_2)
234
+ assert_array_equal(
235
+ OneHotEncoder(
236
+ categories=[np.arange(i) for i in [2, 3, 3, 3]], sparse_output=False
237
+ ).fit_transform(Xt_1),
238
+ Xt_2,
239
+ )
240
+ est = KBinsDiscretizer(n_bins=[2, 3, 3, 3], encode="onehot").fit(X)
241
+ Xt_3 = est.transform(X)
242
+ assert sp.issparse(Xt_3)
243
+ assert_array_equal(
244
+ OneHotEncoder(
245
+ categories=[np.arange(i) for i in [2, 3, 3, 3]], sparse_output=True
246
+ )
247
+ .fit_transform(Xt_1)
248
+ .toarray(),
249
+ Xt_3.toarray(),
250
+ )
251
+
252
+
253
+ @pytest.mark.parametrize(
254
+ "strategy, expected_2bins, expected_3bins, expected_5bins",
255
+ [
256
+ ("uniform", [0, 0, 0, 0, 1, 1], [0, 0, 0, 0, 2, 2], [0, 0, 1, 1, 4, 4]),
257
+ ("kmeans", [0, 0, 0, 0, 1, 1], [0, 0, 1, 1, 2, 2], [0, 0, 1, 2, 3, 4]),
258
+ ("quantile", [0, 0, 0, 1, 1, 1], [0, 0, 1, 1, 2, 2], [0, 1, 2, 3, 4, 4]),
259
+ ],
260
+ )
261
+ # TODO(1.5) remove warning filter when kbd's subsample default is changed
262
+ @pytest.mark.filterwarnings("ignore:In version 1.5 onwards, subsample=200_000")
263
+ def test_nonuniform_strategies(
264
+ strategy, expected_2bins, expected_3bins, expected_5bins
265
+ ):
266
+ X = np.array([0, 0.5, 2, 3, 9, 10]).reshape(-1, 1)
267
+
268
+ # with 2 bins
269
+ est = KBinsDiscretizer(n_bins=2, strategy=strategy, encode="ordinal")
270
+ Xt = est.fit_transform(X)
271
+ assert_array_equal(expected_2bins, Xt.ravel())
272
+
273
+ # with 3 bins
274
+ est = KBinsDiscretizer(n_bins=3, strategy=strategy, encode="ordinal")
275
+ Xt = est.fit_transform(X)
276
+ assert_array_equal(expected_3bins, Xt.ravel())
277
+
278
+ # with 5 bins
279
+ est = KBinsDiscretizer(n_bins=5, strategy=strategy, encode="ordinal")
280
+ Xt = est.fit_transform(X)
281
+ assert_array_equal(expected_5bins, Xt.ravel())
282
+
283
+
284
+ @pytest.mark.parametrize(
285
+ "strategy, expected_inv",
286
+ [
287
+ (
288
+ "uniform",
289
+ [
290
+ [-1.5, 2.0, -3.5, -0.5],
291
+ [-0.5, 3.0, -2.5, -0.5],
292
+ [0.5, 4.0, -1.5, 0.5],
293
+ [0.5, 4.0, -1.5, 1.5],
294
+ ],
295
+ ),
296
+ (
297
+ "kmeans",
298
+ [
299
+ [-1.375, 2.125, -3.375, -0.5625],
300
+ [-1.375, 2.125, -3.375, -0.5625],
301
+ [-0.125, 3.375, -2.125, 0.5625],
302
+ [0.75, 4.25, -1.25, 1.625],
303
+ ],
304
+ ),
305
+ (
306
+ "quantile",
307
+ [
308
+ [-1.5, 2.0, -3.5, -0.75],
309
+ [-0.5, 3.0, -2.5, 0.0],
310
+ [0.5, 4.0, -1.5, 1.25],
311
+ [0.5, 4.0, -1.5, 1.25],
312
+ ],
313
+ ),
314
+ ],
315
+ )
316
+ # TODO(1.5) remove warning filter when kbd's subsample default is changed
317
+ @pytest.mark.filterwarnings("ignore:In version 1.5 onwards, subsample=200_000")
318
+ @pytest.mark.parametrize("encode", ["ordinal", "onehot", "onehot-dense"])
319
+ def test_inverse_transform(strategy, encode, expected_inv):
320
+ kbd = KBinsDiscretizer(n_bins=3, strategy=strategy, encode=encode)
321
+ Xt = kbd.fit_transform(X)
322
+ Xinv = kbd.inverse_transform(Xt)
323
+ assert_array_almost_equal(expected_inv, Xinv)
324
+
325
+
326
+ # TODO(1.5) remove warning filter when kbd's subsample default is changed
327
+ @pytest.mark.filterwarnings("ignore:In version 1.5 onwards, subsample=200_000")
328
+ @pytest.mark.parametrize("strategy", ["uniform", "kmeans", "quantile"])
329
+ def test_transform_outside_fit_range(strategy):
330
+ X = np.array([0, 1, 2, 3])[:, None]
331
+ kbd = KBinsDiscretizer(n_bins=4, strategy=strategy, encode="ordinal")
332
+ kbd.fit(X)
333
+
334
+ X2 = np.array([-2, 5])[:, None]
335
+ X2t = kbd.transform(X2)
336
+ assert_array_equal(X2t.max(axis=0) + 1, kbd.n_bins_)
337
+ assert_array_equal(X2t.min(axis=0), [0])
338
+
339
+
340
+ def test_overwrite():
341
+ X = np.array([0, 1, 2, 3])[:, None]
342
+ X_before = X.copy()
343
+
344
+ est = KBinsDiscretizer(n_bins=3, encode="ordinal")
345
+ Xt = est.fit_transform(X)
346
+ assert_array_equal(X, X_before)
347
+
348
+ Xt_before = Xt.copy()
349
+ Xinv = est.inverse_transform(Xt)
350
+ assert_array_equal(Xt, Xt_before)
351
+ assert_array_equal(Xinv, np.array([[0.5], [1.5], [2.5], [2.5]]))
352
+
353
+
354
+ @pytest.mark.parametrize(
355
+ "strategy, expected_bin_edges", [("quantile", [0, 1, 3]), ("kmeans", [0, 1.5, 3])]
356
+ )
357
+ def test_redundant_bins(strategy, expected_bin_edges):
358
+ X = [[0], [0], [0], [0], [3], [3]]
359
+ kbd = KBinsDiscretizer(n_bins=3, strategy=strategy, subsample=None)
360
+ warning_message = "Consider decreasing the number of bins."
361
+ with pytest.warns(UserWarning, match=warning_message):
362
+ kbd.fit(X)
363
+ assert_array_almost_equal(kbd.bin_edges_[0], expected_bin_edges)
364
+
365
+
366
+ def test_percentile_numeric_stability():
367
+ X = np.array([0.05, 0.05, 0.95]).reshape(-1, 1)
368
+ bin_edges = np.array([0.05, 0.23, 0.41, 0.59, 0.77, 0.95])
369
+ Xt = np.array([0, 0, 4]).reshape(-1, 1)
370
+ kbd = KBinsDiscretizer(n_bins=10, encode="ordinal", strategy="quantile")
371
+ warning_message = "Consider decreasing the number of bins."
372
+ with pytest.warns(UserWarning, match=warning_message):
373
+ kbd.fit(X)
374
+
375
+ assert_array_almost_equal(kbd.bin_edges_[0], bin_edges)
376
+ assert_array_almost_equal(kbd.transform(X), Xt)
377
+
378
+
379
+ @pytest.mark.parametrize("in_dtype", [np.float16, np.float32, np.float64])
380
+ @pytest.mark.parametrize("out_dtype", [None, np.float32, np.float64])
381
+ @pytest.mark.parametrize("encode", ["ordinal", "onehot", "onehot-dense"])
382
+ def test_consistent_dtype(in_dtype, out_dtype, encode):
383
+ X_input = np.array(X, dtype=in_dtype)
384
+ kbd = KBinsDiscretizer(n_bins=3, encode=encode, dtype=out_dtype)
385
+ kbd.fit(X_input)
386
+
387
+ # test output dtype
388
+ if out_dtype is not None:
389
+ expected_dtype = out_dtype
390
+ elif out_dtype is None and X_input.dtype == np.float16:
391
+ # wrong numeric input dtype are cast in np.float64
392
+ expected_dtype = np.float64
393
+ else:
394
+ expected_dtype = X_input.dtype
395
+ Xt = kbd.transform(X_input)
396
+ assert Xt.dtype == expected_dtype
397
+
398
+
399
+ @pytest.mark.parametrize("input_dtype", [np.float16, np.float32, np.float64])
400
+ @pytest.mark.parametrize("encode", ["ordinal", "onehot", "onehot-dense"])
401
+ def test_32_equal_64(input_dtype, encode):
402
+ # TODO this check is redundant with common checks and can be removed
403
+ # once #16290 is merged
404
+ X_input = np.array(X, dtype=input_dtype)
405
+
406
+ # 32 bit output
407
+ kbd_32 = KBinsDiscretizer(n_bins=3, encode=encode, dtype=np.float32)
408
+ kbd_32.fit(X_input)
409
+ Xt_32 = kbd_32.transform(X_input)
410
+
411
+ # 64 bit output
412
+ kbd_64 = KBinsDiscretizer(n_bins=3, encode=encode, dtype=np.float64)
413
+ kbd_64.fit(X_input)
414
+ Xt_64 = kbd_64.transform(X_input)
415
+
416
+ assert_allclose_dense_sparse(Xt_32, Xt_64)
417
+
418
+
419
+ def test_kbinsdiscretizer_subsample_default():
420
+ # Since the size of X is small (< 2e5), subsampling will not take place.
421
+ X = np.array([-2, 1.5, -4, -1]).reshape(-1, 1)
422
+ kbd_default = KBinsDiscretizer(n_bins=10, encode="ordinal", strategy="quantile")
423
+ kbd_default.fit(X)
424
+
425
+ kbd_without_subsampling = clone(kbd_default)
426
+ kbd_without_subsampling.set_params(subsample=None)
427
+ kbd_without_subsampling.fit(X)
428
+
429
+ for bin_kbd_default, bin_kbd_with_subsampling in zip(
430
+ kbd_default.bin_edges_[0], kbd_without_subsampling.bin_edges_[0]
431
+ ):
432
+ np.testing.assert_allclose(bin_kbd_default, bin_kbd_with_subsampling)
433
+ assert kbd_default.bin_edges_.shape == kbd_without_subsampling.bin_edges_.shape
434
+
435
+
436
+ @pytest.mark.parametrize(
437
+ "encode, expected_names",
438
+ [
439
+ (
440
+ "onehot",
441
+ [
442
+ f"feat{col_id}_{float(bin_id)}"
443
+ for col_id in range(3)
444
+ for bin_id in range(4)
445
+ ],
446
+ ),
447
+ (
448
+ "onehot-dense",
449
+ [
450
+ f"feat{col_id}_{float(bin_id)}"
451
+ for col_id in range(3)
452
+ for bin_id in range(4)
453
+ ],
454
+ ),
455
+ ("ordinal", [f"feat{col_id}" for col_id in range(3)]),
456
+ ],
457
+ )
458
+ def test_kbinsdiscrtizer_get_feature_names_out(encode, expected_names):
459
+ """Check get_feature_names_out for different settings.
460
+ Non-regression test for #22731
461
+ """
462
+ X = [[-2, 1, -4], [-1, 2, -3], [0, 3, -2], [1, 4, -1]]
463
+
464
+ kbd = KBinsDiscretizer(n_bins=4, encode=encode).fit(X)
465
+ Xt = kbd.transform(X)
466
+
467
+ input_features = [f"feat{i}" for i in range(3)]
468
+ output_names = kbd.get_feature_names_out(input_features)
469
+ assert Xt.shape[1] == output_names.shape[0]
470
+
471
+ assert_array_equal(output_names, expected_names)
472
+
473
+
474
+ @pytest.mark.parametrize("strategy", ["uniform", "kmeans", "quantile"])
475
+ def test_kbinsdiscretizer_subsample(strategy, global_random_seed):
476
+ # Check that the bin edges are almost the same when subsampling is used.
477
+ X = np.random.RandomState(global_random_seed).random_sample((100000, 1)) + 1
478
+
479
+ kbd_subsampling = KBinsDiscretizer(
480
+ strategy=strategy, subsample=50000, random_state=global_random_seed
481
+ )
482
+ kbd_subsampling.fit(X)
483
+
484
+ kbd_no_subsampling = clone(kbd_subsampling)
485
+ kbd_no_subsampling.set_params(subsample=None)
486
+ kbd_no_subsampling.fit(X)
487
+
488
+ # We use a large tolerance because we can't expect the bin edges to be exactly the
489
+ # same when subsampling is used.
490
+ assert_allclose(
491
+ kbd_subsampling.bin_edges_[0], kbd_no_subsampling.bin_edges_[0], rtol=1e-2
492
+ )
493
+
494
+
495
+ # TODO(1.5) remove this test
496
+ @pytest.mark.parametrize("strategy", ["uniform", "kmeans"])
497
+ def test_kbd_subsample_warning(strategy):
498
+ # Check the future warning for the change of default of subsample
499
+ X = np.random.RandomState(0).random_sample((100, 1))
500
+
501
+ kbd = KBinsDiscretizer(strategy=strategy, random_state=0)
502
+ with pytest.warns(FutureWarning, match="subsample=200_000 will be used by default"):
503
+ kbd.fit(X)
env-llmeval/lib/python3.10/site-packages/sklearn/preprocessing/tests/test_function_transformer.py ADDED
@@ -0,0 +1,591 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import warnings
2
+
3
+ import numpy as np
4
+ import pytest
5
+
6
+ from sklearn.pipeline import make_pipeline
7
+ from sklearn.preprocessing import FunctionTransformer, StandardScaler
8
+ from sklearn.preprocessing._function_transformer import _get_adapter_from_container
9
+ from sklearn.utils._testing import (
10
+ _convert_container,
11
+ assert_allclose_dense_sparse,
12
+ assert_array_equal,
13
+ )
14
+ from sklearn.utils.fixes import CSC_CONTAINERS, CSR_CONTAINERS
15
+
16
+
17
+ def test_get_adapter_from_container():
18
+ """Check the behavior fo `_get_adapter_from_container`."""
19
+ pd = pytest.importorskip("pandas")
20
+ X = pd.DataFrame({"a": [1, 2, 3], "b": [10, 20, 100]})
21
+ adapter = _get_adapter_from_container(X)
22
+ assert adapter.container_lib == "pandas"
23
+ err_msg = "The container does not have a registered adapter in scikit-learn."
24
+ with pytest.raises(ValueError, match=err_msg):
25
+ _get_adapter_from_container(X.to_numpy())
26
+
27
+
28
+ def _make_func(args_store, kwargs_store, func=lambda X, *a, **k: X):
29
+ def _func(X, *args, **kwargs):
30
+ args_store.append(X)
31
+ args_store.extend(args)
32
+ kwargs_store.update(kwargs)
33
+ return func(X)
34
+
35
+ return _func
36
+
37
+
38
+ def test_delegate_to_func():
39
+ # (args|kwargs)_store will hold the positional and keyword arguments
40
+ # passed to the function inside the FunctionTransformer.
41
+ args_store = []
42
+ kwargs_store = {}
43
+ X = np.arange(10).reshape((5, 2))
44
+ assert_array_equal(
45
+ FunctionTransformer(_make_func(args_store, kwargs_store)).transform(X),
46
+ X,
47
+ "transform should have returned X unchanged",
48
+ )
49
+
50
+ # The function should only have received X.
51
+ assert args_store == [
52
+ X
53
+ ], "Incorrect positional arguments passed to func: {args}".format(args=args_store)
54
+
55
+ assert (
56
+ not kwargs_store
57
+ ), "Unexpected keyword arguments passed to func: {args}".format(args=kwargs_store)
58
+
59
+ # reset the argument stores.
60
+ args_store[:] = []
61
+ kwargs_store.clear()
62
+ transformed = FunctionTransformer(
63
+ _make_func(args_store, kwargs_store),
64
+ ).transform(X)
65
+
66
+ assert_array_equal(
67
+ transformed, X, err_msg="transform should have returned X unchanged"
68
+ )
69
+
70
+ # The function should have received X
71
+ assert args_store == [
72
+ X
73
+ ], "Incorrect positional arguments passed to func: {args}".format(args=args_store)
74
+
75
+ assert (
76
+ not kwargs_store
77
+ ), "Unexpected keyword arguments passed to func: {args}".format(args=kwargs_store)
78
+
79
+
80
+ def test_np_log():
81
+ X = np.arange(10).reshape((5, 2))
82
+
83
+ # Test that the numpy.log example still works.
84
+ assert_array_equal(
85
+ FunctionTransformer(np.log1p).transform(X),
86
+ np.log1p(X),
87
+ )
88
+
89
+
90
+ def test_kw_arg():
91
+ X = np.linspace(0, 1, num=10).reshape((5, 2))
92
+
93
+ F = FunctionTransformer(np.around, kw_args=dict(decimals=3))
94
+
95
+ # Test that rounding is correct
96
+ assert_array_equal(F.transform(X), np.around(X, decimals=3))
97
+
98
+
99
+ def test_kw_arg_update():
100
+ X = np.linspace(0, 1, num=10).reshape((5, 2))
101
+
102
+ F = FunctionTransformer(np.around, kw_args=dict(decimals=3))
103
+
104
+ F.kw_args["decimals"] = 1
105
+
106
+ # Test that rounding is correct
107
+ assert_array_equal(F.transform(X), np.around(X, decimals=1))
108
+
109
+
110
+ def test_kw_arg_reset():
111
+ X = np.linspace(0, 1, num=10).reshape((5, 2))
112
+
113
+ F = FunctionTransformer(np.around, kw_args=dict(decimals=3))
114
+
115
+ F.kw_args = dict(decimals=1)
116
+
117
+ # Test that rounding is correct
118
+ assert_array_equal(F.transform(X), np.around(X, decimals=1))
119
+
120
+
121
+ def test_inverse_transform():
122
+ X = np.array([1, 4, 9, 16]).reshape((2, 2))
123
+
124
+ # Test that inverse_transform works correctly
125
+ F = FunctionTransformer(
126
+ func=np.sqrt,
127
+ inverse_func=np.around,
128
+ inv_kw_args=dict(decimals=3),
129
+ )
130
+ assert_array_equal(
131
+ F.inverse_transform(F.transform(X)),
132
+ np.around(np.sqrt(X), decimals=3),
133
+ )
134
+
135
+
136
+ @pytest.mark.parametrize("sparse_container", [None] + CSC_CONTAINERS + CSR_CONTAINERS)
137
+ def test_check_inverse(sparse_container):
138
+ X = np.array([1, 4, 9, 16], dtype=np.float64).reshape((2, 2))
139
+ if sparse_container is not None:
140
+ X = sparse_container(X)
141
+
142
+ trans = FunctionTransformer(
143
+ func=np.sqrt,
144
+ inverse_func=np.around,
145
+ accept_sparse=sparse_container is not None,
146
+ check_inverse=True,
147
+ validate=True,
148
+ )
149
+ warning_message = (
150
+ "The provided functions are not strictly"
151
+ " inverse of each other. If you are sure you"
152
+ " want to proceed regardless, set"
153
+ " 'check_inverse=False'."
154
+ )
155
+ with pytest.warns(UserWarning, match=warning_message):
156
+ trans.fit(X)
157
+
158
+ trans = FunctionTransformer(
159
+ func=np.expm1,
160
+ inverse_func=np.log1p,
161
+ accept_sparse=sparse_container is not None,
162
+ check_inverse=True,
163
+ validate=True,
164
+ )
165
+ with warnings.catch_warnings():
166
+ warnings.simplefilter("error", UserWarning)
167
+ Xt = trans.fit_transform(X)
168
+
169
+ assert_allclose_dense_sparse(X, trans.inverse_transform(Xt))
170
+
171
+
172
+ def test_check_inverse_func_or_inverse_not_provided():
173
+ # check that we don't check inverse when one of the func or inverse is not
174
+ # provided.
175
+ X = np.array([1, 4, 9, 16], dtype=np.float64).reshape((2, 2))
176
+
177
+ trans = FunctionTransformer(
178
+ func=np.expm1, inverse_func=None, check_inverse=True, validate=True
179
+ )
180
+ with warnings.catch_warnings():
181
+ warnings.simplefilter("error", UserWarning)
182
+ trans.fit(X)
183
+ trans = FunctionTransformer(
184
+ func=None, inverse_func=np.expm1, check_inverse=True, validate=True
185
+ )
186
+ with warnings.catch_warnings():
187
+ warnings.simplefilter("error", UserWarning)
188
+ trans.fit(X)
189
+
190
+
191
+ def test_function_transformer_frame():
192
+ pd = pytest.importorskip("pandas")
193
+ X_df = pd.DataFrame(np.random.randn(100, 10))
194
+ transformer = FunctionTransformer()
195
+ X_df_trans = transformer.fit_transform(X_df)
196
+ assert hasattr(X_df_trans, "loc")
197
+
198
+
199
+ @pytest.mark.parametrize("X_type", ["array", "series"])
200
+ def test_function_transformer_raise_error_with_mixed_dtype(X_type):
201
+ """Check that `FunctionTransformer.check_inverse` raises error on mixed dtype."""
202
+ mapping = {"one": 1, "two": 2, "three": 3, 5: "five", 6: "six"}
203
+ inverse_mapping = {value: key for key, value in mapping.items()}
204
+ dtype = "object"
205
+
206
+ data = ["one", "two", "three", "one", "one", 5, 6]
207
+ data = _convert_container(data, X_type, columns_name=["value"], dtype=dtype)
208
+
209
+ def func(X):
210
+ return np.array([mapping[X[i]] for i in range(X.size)], dtype=object)
211
+
212
+ def inverse_func(X):
213
+ return _convert_container(
214
+ [inverse_mapping[x] for x in X],
215
+ X_type,
216
+ columns_name=["value"],
217
+ dtype=dtype,
218
+ )
219
+
220
+ transformer = FunctionTransformer(
221
+ func=func, inverse_func=inverse_func, validate=False, check_inverse=True
222
+ )
223
+
224
+ msg = "'check_inverse' is only supported when all the elements in `X` is numerical."
225
+ with pytest.raises(ValueError, match=msg):
226
+ transformer.fit(data)
227
+
228
+
229
+ def test_function_transformer_support_all_nummerical_dataframes_check_inverse_True():
230
+ """Check support for dataframes with only numerical values."""
231
+ pd = pytest.importorskip("pandas")
232
+
233
+ df = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
234
+ transformer = FunctionTransformer(
235
+ func=lambda x: x + 2, inverse_func=lambda x: x - 2, check_inverse=True
236
+ )
237
+
238
+ # Does not raise an error
239
+ df_out = transformer.fit_transform(df)
240
+ assert_allclose_dense_sparse(df_out, df + 2)
241
+
242
+
243
+ def test_function_transformer_with_dataframe_and_check_inverse_True():
244
+ """Check error is raised when check_inverse=True.
245
+
246
+ Non-regresion test for gh-25261.
247
+ """
248
+ pd = pytest.importorskip("pandas")
249
+ transformer = FunctionTransformer(
250
+ func=lambda x: x, inverse_func=lambda x: x, check_inverse=True
251
+ )
252
+
253
+ df_mixed = pd.DataFrame({"a": [1, 2, 3], "b": ["a", "b", "c"]})
254
+ msg = "'check_inverse' is only supported when all the elements in `X` is numerical."
255
+ with pytest.raises(ValueError, match=msg):
256
+ transformer.fit(df_mixed)
257
+
258
+
259
+ @pytest.mark.parametrize(
260
+ "X, feature_names_out, input_features, expected",
261
+ [
262
+ (
263
+ # NumPy inputs, default behavior: generate names
264
+ np.random.rand(100, 3),
265
+ "one-to-one",
266
+ None,
267
+ ("x0", "x1", "x2"),
268
+ ),
269
+ (
270
+ # Pandas input, default behavior: use input feature names
271
+ {"a": np.random.rand(100), "b": np.random.rand(100)},
272
+ "one-to-one",
273
+ None,
274
+ ("a", "b"),
275
+ ),
276
+ (
277
+ # NumPy input, feature_names_out=callable
278
+ np.random.rand(100, 3),
279
+ lambda transformer, input_features: ("a", "b"),
280
+ None,
281
+ ("a", "b"),
282
+ ),
283
+ (
284
+ # Pandas input, feature_names_out=callable
285
+ {"a": np.random.rand(100), "b": np.random.rand(100)},
286
+ lambda transformer, input_features: ("c", "d", "e"),
287
+ None,
288
+ ("c", "d", "e"),
289
+ ),
290
+ (
291
+ # NumPy input, feature_names_out=callable – default input_features
292
+ np.random.rand(100, 3),
293
+ lambda transformer, input_features: tuple(input_features) + ("a",),
294
+ None,
295
+ ("x0", "x1", "x2", "a"),
296
+ ),
297
+ (
298
+ # Pandas input, feature_names_out=callable – default input_features
299
+ {"a": np.random.rand(100), "b": np.random.rand(100)},
300
+ lambda transformer, input_features: tuple(input_features) + ("c",),
301
+ None,
302
+ ("a", "b", "c"),
303
+ ),
304
+ (
305
+ # NumPy input, input_features=list of names
306
+ np.random.rand(100, 3),
307
+ "one-to-one",
308
+ ("a", "b", "c"),
309
+ ("a", "b", "c"),
310
+ ),
311
+ (
312
+ # Pandas input, input_features=list of names
313
+ {"a": np.random.rand(100), "b": np.random.rand(100)},
314
+ "one-to-one",
315
+ ("a", "b"), # must match feature_names_in_
316
+ ("a", "b"),
317
+ ),
318
+ (
319
+ # NumPy input, feature_names_out=callable, input_features=list
320
+ np.random.rand(100, 3),
321
+ lambda transformer, input_features: tuple(input_features) + ("d",),
322
+ ("a", "b", "c"),
323
+ ("a", "b", "c", "d"),
324
+ ),
325
+ (
326
+ # Pandas input, feature_names_out=callable, input_features=list
327
+ {"a": np.random.rand(100), "b": np.random.rand(100)},
328
+ lambda transformer, input_features: tuple(input_features) + ("c",),
329
+ ("a", "b"), # must match feature_names_in_
330
+ ("a", "b", "c"),
331
+ ),
332
+ ],
333
+ )
334
+ @pytest.mark.parametrize("validate", [True, False])
335
+ def test_function_transformer_get_feature_names_out(
336
+ X, feature_names_out, input_features, expected, validate
337
+ ):
338
+ if isinstance(X, dict):
339
+ pd = pytest.importorskip("pandas")
340
+ X = pd.DataFrame(X)
341
+
342
+ transformer = FunctionTransformer(
343
+ feature_names_out=feature_names_out, validate=validate
344
+ )
345
+ transformer.fit(X)
346
+ names = transformer.get_feature_names_out(input_features)
347
+ assert isinstance(names, np.ndarray)
348
+ assert names.dtype == object
349
+ assert_array_equal(names, expected)
350
+
351
+
352
+ def test_function_transformer_get_feature_names_out_without_validation():
353
+ transformer = FunctionTransformer(feature_names_out="one-to-one", validate=False)
354
+ X = np.random.rand(100, 2)
355
+ transformer.fit_transform(X)
356
+
357
+ names = transformer.get_feature_names_out(("a", "b"))
358
+ assert isinstance(names, np.ndarray)
359
+ assert names.dtype == object
360
+ assert_array_equal(names, ("a", "b"))
361
+
362
+
363
+ def test_function_transformer_feature_names_out_is_None():
364
+ transformer = FunctionTransformer()
365
+ X = np.random.rand(100, 2)
366
+ transformer.fit_transform(X)
367
+
368
+ msg = "This 'FunctionTransformer' has no attribute 'get_feature_names_out'"
369
+ with pytest.raises(AttributeError, match=msg):
370
+ transformer.get_feature_names_out()
371
+
372
+
373
+ def test_function_transformer_feature_names_out_uses_estimator():
374
+ def add_n_random_features(X, n):
375
+ return np.concatenate([X, np.random.rand(len(X), n)], axis=1)
376
+
377
+ def feature_names_out(transformer, input_features):
378
+ n = transformer.kw_args["n"]
379
+ return list(input_features) + [f"rnd{i}" for i in range(n)]
380
+
381
+ transformer = FunctionTransformer(
382
+ func=add_n_random_features,
383
+ feature_names_out=feature_names_out,
384
+ kw_args=dict(n=3),
385
+ validate=True,
386
+ )
387
+ pd = pytest.importorskip("pandas")
388
+ df = pd.DataFrame({"a": np.random.rand(100), "b": np.random.rand(100)})
389
+ transformer.fit_transform(df)
390
+ names = transformer.get_feature_names_out()
391
+
392
+ assert isinstance(names, np.ndarray)
393
+ assert names.dtype == object
394
+ assert_array_equal(names, ("a", "b", "rnd0", "rnd1", "rnd2"))
395
+
396
+
397
+ def test_function_transformer_validate_inverse():
398
+ """Test that function transformer does not reset estimator in
399
+ `inverse_transform`."""
400
+
401
+ def add_constant_feature(X):
402
+ X_one = np.ones((X.shape[0], 1))
403
+ return np.concatenate((X, X_one), axis=1)
404
+
405
+ def inverse_add_constant(X):
406
+ return X[:, :-1]
407
+
408
+ X = np.array([[1, 2], [3, 4], [3, 4]])
409
+ trans = FunctionTransformer(
410
+ func=add_constant_feature,
411
+ inverse_func=inverse_add_constant,
412
+ validate=True,
413
+ )
414
+ X_trans = trans.fit_transform(X)
415
+ assert trans.n_features_in_ == X.shape[1]
416
+
417
+ trans.inverse_transform(X_trans)
418
+ assert trans.n_features_in_ == X.shape[1]
419
+
420
+
421
+ @pytest.mark.parametrize(
422
+ "feature_names_out, expected",
423
+ [
424
+ ("one-to-one", ["pet", "color"]),
425
+ [lambda est, names: [f"{n}_out" for n in names], ["pet_out", "color_out"]],
426
+ ],
427
+ )
428
+ @pytest.mark.parametrize("in_pipeline", [True, False])
429
+ def test_get_feature_names_out_dataframe_with_string_data(
430
+ feature_names_out, expected, in_pipeline
431
+ ):
432
+ """Check that get_feature_names_out works with DataFrames with string data."""
433
+ pd = pytest.importorskip("pandas")
434
+ X = pd.DataFrame({"pet": ["dog", "cat"], "color": ["red", "green"]})
435
+
436
+ def func(X):
437
+ if feature_names_out == "one-to-one":
438
+ return X
439
+ else:
440
+ name = feature_names_out(None, X.columns)
441
+ return X.rename(columns=dict(zip(X.columns, name)))
442
+
443
+ transformer = FunctionTransformer(func=func, feature_names_out=feature_names_out)
444
+ if in_pipeline:
445
+ transformer = make_pipeline(transformer)
446
+
447
+ X_trans = transformer.fit_transform(X)
448
+ assert isinstance(X_trans, pd.DataFrame)
449
+
450
+ names = transformer.get_feature_names_out()
451
+ assert isinstance(names, np.ndarray)
452
+ assert names.dtype == object
453
+ assert_array_equal(names, expected)
454
+
455
+
456
+ def test_set_output_func():
457
+ """Check behavior of set_output with different settings."""
458
+ pd = pytest.importorskip("pandas")
459
+
460
+ X = pd.DataFrame({"a": [1, 2, 3], "b": [10, 20, 100]})
461
+
462
+ ft = FunctionTransformer(np.log, feature_names_out="one-to-one")
463
+
464
+ # no warning is raised when feature_names_out is defined
465
+ with warnings.catch_warnings():
466
+ warnings.simplefilter("error", UserWarning)
467
+ ft.set_output(transform="pandas")
468
+
469
+ X_trans = ft.fit_transform(X)
470
+ assert isinstance(X_trans, pd.DataFrame)
471
+ assert_array_equal(X_trans.columns, ["a", "b"])
472
+
473
+ ft = FunctionTransformer(lambda x: 2 * x)
474
+ ft.set_output(transform="pandas")
475
+
476
+ # no warning is raised when func returns a panda dataframe
477
+ with warnings.catch_warnings():
478
+ warnings.simplefilter("error", UserWarning)
479
+ X_trans = ft.fit_transform(X)
480
+ assert isinstance(X_trans, pd.DataFrame)
481
+ assert_array_equal(X_trans.columns, ["a", "b"])
482
+
483
+ # Warning is raised when func returns a ndarray
484
+ ft_np = FunctionTransformer(lambda x: np.asarray(x))
485
+
486
+ for transform in ("pandas", "polars"):
487
+ ft_np.set_output(transform=transform)
488
+ msg = (
489
+ f"When `set_output` is configured to be '{transform}'.*{transform} "
490
+ "DataFrame.*"
491
+ )
492
+ with pytest.warns(UserWarning, match=msg):
493
+ ft_np.fit_transform(X)
494
+
495
+ # default transform does not warn
496
+ ft_np.set_output(transform="default")
497
+ with warnings.catch_warnings():
498
+ warnings.simplefilter("error", UserWarning)
499
+ ft_np.fit_transform(X)
500
+
501
+
502
+ def test_consistence_column_name_between_steps():
503
+ """Check that we have a consistence between the feature names out of
504
+ `FunctionTransformer` and the feature names in of the next step in the pipeline.
505
+
506
+ Non-regression test for:
507
+ https://github.com/scikit-learn/scikit-learn/issues/27695
508
+ """
509
+ pd = pytest.importorskip("pandas")
510
+
511
+ def with_suffix(_, names):
512
+ return [name + "__log" for name in names]
513
+
514
+ pipeline = make_pipeline(
515
+ FunctionTransformer(np.log1p, feature_names_out=with_suffix), StandardScaler()
516
+ )
517
+
518
+ df = pd.DataFrame([[1, 2], [3, 4], [5, 6]], columns=["a", "b"])
519
+ X_trans = pipeline.fit_transform(df)
520
+ assert pipeline.get_feature_names_out().tolist() == ["a__log", "b__log"]
521
+ # StandardScaler will convert to a numpy array
522
+ assert isinstance(X_trans, np.ndarray)
523
+
524
+
525
+ @pytest.mark.parametrize("dataframe_lib", ["pandas", "polars"])
526
+ @pytest.mark.parametrize("transform_output", ["default", "pandas", "polars"])
527
+ def test_function_transformer_overwrite_column_names(dataframe_lib, transform_output):
528
+ """Check that we overwrite the column names when we should."""
529
+ lib = pytest.importorskip(dataframe_lib)
530
+ if transform_output != "numpy":
531
+ pytest.importorskip(transform_output)
532
+
533
+ df = lib.DataFrame({"a": [1, 2, 3], "b": [10, 20, 100]})
534
+
535
+ def with_suffix(_, names):
536
+ return [name + "__log" for name in names]
537
+
538
+ transformer = FunctionTransformer(feature_names_out=with_suffix).set_output(
539
+ transform=transform_output
540
+ )
541
+ X_trans = transformer.fit_transform(df)
542
+ assert_array_equal(np.asarray(X_trans), np.asarray(df))
543
+
544
+ feature_names = transformer.get_feature_names_out()
545
+ assert list(X_trans.columns) == with_suffix(None, df.columns)
546
+ assert feature_names.tolist() == with_suffix(None, df.columns)
547
+
548
+
549
+ @pytest.mark.parametrize(
550
+ "feature_names_out",
551
+ ["one-to-one", lambda _, names: [f"{name}_log" for name in names]],
552
+ )
553
+ def test_function_transformer_overwrite_column_names_numerical(feature_names_out):
554
+ """Check the same as `test_function_transformer_overwrite_column_names`
555
+ but for the specific case of pandas where column names can be numerical."""
556
+ pd = pytest.importorskip("pandas")
557
+
558
+ df = pd.DataFrame({0: [1, 2, 3], 1: [10, 20, 100]})
559
+
560
+ transformer = FunctionTransformer(feature_names_out=feature_names_out)
561
+ X_trans = transformer.fit_transform(df)
562
+ assert_array_equal(np.asarray(X_trans), np.asarray(df))
563
+
564
+ feature_names = transformer.get_feature_names_out()
565
+ assert list(X_trans.columns) == list(feature_names)
566
+
567
+
568
+ @pytest.mark.parametrize("dataframe_lib", ["pandas", "polars"])
569
+ @pytest.mark.parametrize(
570
+ "feature_names_out",
571
+ ["one-to-one", lambda _, names: [f"{name}_log" for name in names]],
572
+ )
573
+ def test_function_transformer_error_column_inconsistent(
574
+ dataframe_lib, feature_names_out
575
+ ):
576
+ """Check that we raise an error when `func` returns a dataframe with new
577
+ column names that become inconsistent with `get_feature_names_out`."""
578
+ lib = pytest.importorskip(dataframe_lib)
579
+
580
+ df = lib.DataFrame({"a": [1, 2, 3], "b": [10, 20, 100]})
581
+
582
+ def func(df):
583
+ if dataframe_lib == "pandas":
584
+ return df.rename(columns={"a": "c"})
585
+ else:
586
+ return df.rename({"a": "c"})
587
+
588
+ transformer = FunctionTransformer(func=func, feature_names_out=feature_names_out)
589
+ err_msg = "The output generated by `func` have different column names"
590
+ with pytest.raises(ValueError, match=err_msg):
591
+ transformer.fit_transform(df).columns
env-llmeval/lib/python3.10/site-packages/sklearn/preprocessing/tests/test_polynomial.py ADDED
@@ -0,0 +1,1258 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import sys
2
+
3
+ import numpy as np
4
+ import pytest
5
+ from numpy.testing import assert_allclose, assert_array_equal
6
+ from scipy import sparse
7
+ from scipy.interpolate import BSpline
8
+ from scipy.sparse import random as sparse_random
9
+
10
+ from sklearn.linear_model import LinearRegression
11
+ from sklearn.pipeline import Pipeline
12
+ from sklearn.preprocessing import (
13
+ KBinsDiscretizer,
14
+ PolynomialFeatures,
15
+ SplineTransformer,
16
+ )
17
+ from sklearn.preprocessing._csr_polynomial_expansion import (
18
+ _calc_expanded_nnz,
19
+ _calc_total_nnz,
20
+ _get_sizeof_LARGEST_INT_t,
21
+ )
22
+ from sklearn.utils._testing import assert_array_almost_equal
23
+ from sklearn.utils.fixes import (
24
+ CSC_CONTAINERS,
25
+ CSR_CONTAINERS,
26
+ parse_version,
27
+ sp_version,
28
+ )
29
+
30
+
31
+ @pytest.mark.parametrize("est", (PolynomialFeatures, SplineTransformer))
32
+ def test_polynomial_and_spline_array_order(est):
33
+ """Test that output array has the given order."""
34
+ X = np.arange(10).reshape(5, 2)
35
+
36
+ def is_c_contiguous(a):
37
+ return np.isfortran(a.T)
38
+
39
+ assert is_c_contiguous(est().fit_transform(X))
40
+ assert is_c_contiguous(est(order="C").fit_transform(X))
41
+ assert np.isfortran(est(order="F").fit_transform(X))
42
+
43
+
44
+ @pytest.mark.parametrize(
45
+ "params, err_msg",
46
+ [
47
+ ({"knots": [[1]]}, r"Number of knots, knots.shape\[0\], must be >= 2."),
48
+ ({"knots": [[1, 1], [2, 2]]}, r"knots.shape\[1\] == n_features is violated"),
49
+ ({"knots": [[1], [0]]}, "knots must be sorted without duplicates."),
50
+ ],
51
+ )
52
+ def test_spline_transformer_input_validation(params, err_msg):
53
+ """Test that we raise errors for invalid input in SplineTransformer."""
54
+ X = [[1], [2]]
55
+
56
+ with pytest.raises(ValueError, match=err_msg):
57
+ SplineTransformer(**params).fit(X)
58
+
59
+
60
+ @pytest.mark.parametrize("extrapolation", ["continue", "periodic"])
61
+ def test_spline_transformer_integer_knots(extrapolation):
62
+ """Test that SplineTransformer accepts integer value knot positions."""
63
+ X = np.arange(20).reshape(10, 2)
64
+ knots = [[0, 1], [1, 2], [5, 5], [11, 10], [12, 11]]
65
+ _ = SplineTransformer(
66
+ degree=3, knots=knots, extrapolation=extrapolation
67
+ ).fit_transform(X)
68
+
69
+
70
+ def test_spline_transformer_feature_names():
71
+ """Test that SplineTransformer generates correct features name."""
72
+ X = np.arange(20).reshape(10, 2)
73
+ splt = SplineTransformer(n_knots=3, degree=3, include_bias=True).fit(X)
74
+ feature_names = splt.get_feature_names_out()
75
+ assert_array_equal(
76
+ feature_names,
77
+ [
78
+ "x0_sp_0",
79
+ "x0_sp_1",
80
+ "x0_sp_2",
81
+ "x0_sp_3",
82
+ "x0_sp_4",
83
+ "x1_sp_0",
84
+ "x1_sp_1",
85
+ "x1_sp_2",
86
+ "x1_sp_3",
87
+ "x1_sp_4",
88
+ ],
89
+ )
90
+
91
+ splt = SplineTransformer(n_knots=3, degree=3, include_bias=False).fit(X)
92
+ feature_names = splt.get_feature_names_out(["a", "b"])
93
+ assert_array_equal(
94
+ feature_names,
95
+ [
96
+ "a_sp_0",
97
+ "a_sp_1",
98
+ "a_sp_2",
99
+ "a_sp_3",
100
+ "b_sp_0",
101
+ "b_sp_1",
102
+ "b_sp_2",
103
+ "b_sp_3",
104
+ ],
105
+ )
106
+
107
+
108
+ @pytest.mark.parametrize(
109
+ "extrapolation",
110
+ ["constant", "linear", "continue", "periodic"],
111
+ )
112
+ @pytest.mark.parametrize("degree", [2, 3])
113
+ def test_split_transform_feature_names_extrapolation_degree(extrapolation, degree):
114
+ """Test feature names are correct for different extrapolations and degree.
115
+
116
+ Non-regression test for gh-25292.
117
+ """
118
+ X = np.arange(20).reshape(10, 2)
119
+ splt = SplineTransformer(degree=degree, extrapolation=extrapolation).fit(X)
120
+ feature_names = splt.get_feature_names_out(["a", "b"])
121
+ assert len(feature_names) == splt.n_features_out_
122
+
123
+ X_trans = splt.transform(X)
124
+ assert X_trans.shape[1] == len(feature_names)
125
+
126
+
127
+ @pytest.mark.parametrize("degree", range(1, 5))
128
+ @pytest.mark.parametrize("n_knots", range(3, 5))
129
+ @pytest.mark.parametrize("knots", ["uniform", "quantile"])
130
+ @pytest.mark.parametrize("extrapolation", ["constant", "periodic"])
131
+ def test_spline_transformer_unity_decomposition(degree, n_knots, knots, extrapolation):
132
+ """Test that B-splines are indeed a decomposition of unity.
133
+
134
+ Splines basis functions must sum up to 1 per row, if we stay in between boundaries.
135
+ """
136
+ X = np.linspace(0, 1, 100)[:, None]
137
+ # make the boundaries 0 and 1 part of X_train, for sure.
138
+ X_train = np.r_[[[0]], X[::2, :], [[1]]]
139
+ X_test = X[1::2, :]
140
+
141
+ if extrapolation == "periodic":
142
+ n_knots = n_knots + degree # periodic splines require degree < n_knots
143
+
144
+ splt = SplineTransformer(
145
+ n_knots=n_knots,
146
+ degree=degree,
147
+ knots=knots,
148
+ include_bias=True,
149
+ extrapolation=extrapolation,
150
+ )
151
+ splt.fit(X_train)
152
+ for X in [X_train, X_test]:
153
+ assert_allclose(np.sum(splt.transform(X), axis=1), 1)
154
+
155
+
156
+ @pytest.mark.parametrize(["bias", "intercept"], [(True, False), (False, True)])
157
+ def test_spline_transformer_linear_regression(bias, intercept):
158
+ """Test that B-splines fit a sinusodial curve pretty well."""
159
+ X = np.linspace(0, 10, 100)[:, None]
160
+ y = np.sin(X[:, 0]) + 2 # +2 to avoid the value 0 in assert_allclose
161
+ pipe = Pipeline(
162
+ steps=[
163
+ (
164
+ "spline",
165
+ SplineTransformer(
166
+ n_knots=15,
167
+ degree=3,
168
+ include_bias=bias,
169
+ extrapolation="constant",
170
+ ),
171
+ ),
172
+ ("ols", LinearRegression(fit_intercept=intercept)),
173
+ ]
174
+ )
175
+ pipe.fit(X, y)
176
+ assert_allclose(pipe.predict(X), y, rtol=1e-3)
177
+
178
+
179
+ @pytest.mark.parametrize(
180
+ ["knots", "n_knots", "sample_weight", "expected_knots"],
181
+ [
182
+ ("uniform", 3, None, np.array([[0, 2], [3, 8], [6, 14]])),
183
+ (
184
+ "uniform",
185
+ 3,
186
+ np.array([0, 0, 1, 1, 0, 3, 1]),
187
+ np.array([[2, 2], [4, 8], [6, 14]]),
188
+ ),
189
+ ("uniform", 4, None, np.array([[0, 2], [2, 6], [4, 10], [6, 14]])),
190
+ ("quantile", 3, None, np.array([[0, 2], [3, 3], [6, 14]])),
191
+ (
192
+ "quantile",
193
+ 3,
194
+ np.array([0, 0, 1, 1, 0, 3, 1]),
195
+ np.array([[2, 2], [5, 8], [6, 14]]),
196
+ ),
197
+ ],
198
+ )
199
+ def test_spline_transformer_get_base_knot_positions(
200
+ knots, n_knots, sample_weight, expected_knots
201
+ ):
202
+ """Check the behaviour to find knot positions with and without sample_weight."""
203
+ X = np.array([[0, 2], [0, 2], [2, 2], [3, 3], [4, 6], [5, 8], [6, 14]])
204
+ base_knots = SplineTransformer._get_base_knot_positions(
205
+ X=X, knots=knots, n_knots=n_knots, sample_weight=sample_weight
206
+ )
207
+ assert_allclose(base_knots, expected_knots)
208
+
209
+
210
+ @pytest.mark.parametrize(["bias", "intercept"], [(True, False), (False, True)])
211
+ def test_spline_transformer_periodic_linear_regression(bias, intercept):
212
+ """Test that B-splines fit a periodic curve pretty well."""
213
+
214
+ # "+ 3" to avoid the value 0 in assert_allclose
215
+ def f(x):
216
+ return np.sin(2 * np.pi * x) - np.sin(8 * np.pi * x) + 3
217
+
218
+ X = np.linspace(0, 1, 101)[:, None]
219
+ pipe = Pipeline(
220
+ steps=[
221
+ (
222
+ "spline",
223
+ SplineTransformer(
224
+ n_knots=20,
225
+ degree=3,
226
+ include_bias=bias,
227
+ extrapolation="periodic",
228
+ ),
229
+ ),
230
+ ("ols", LinearRegression(fit_intercept=intercept)),
231
+ ]
232
+ )
233
+ pipe.fit(X, f(X[:, 0]))
234
+
235
+ # Generate larger array to check periodic extrapolation
236
+ X_ = np.linspace(-1, 2, 301)[:, None]
237
+ predictions = pipe.predict(X_)
238
+ assert_allclose(predictions, f(X_[:, 0]), atol=0.01, rtol=0.01)
239
+ assert_allclose(predictions[0:100], predictions[100:200], rtol=1e-3)
240
+
241
+
242
+ def test_spline_transformer_periodic_spline_backport():
243
+ """Test that the backport of extrapolate="periodic" works correctly"""
244
+ X = np.linspace(-2, 3.5, 10)[:, None]
245
+ degree = 2
246
+
247
+ # Use periodic extrapolation backport in SplineTransformer
248
+ transformer = SplineTransformer(
249
+ degree=degree, extrapolation="periodic", knots=[[-1.0], [0.0], [1.0]]
250
+ )
251
+ Xt = transformer.fit_transform(X)
252
+
253
+ # Use periodic extrapolation in BSpline
254
+ coef = np.array([[1.0, 0.0], [0.0, 1.0], [1.0, 0.0], [0.0, 1.0]])
255
+ spl = BSpline(np.arange(-3, 4), coef, degree, "periodic")
256
+ Xspl = spl(X[:, 0])
257
+ assert_allclose(Xt, Xspl)
258
+
259
+
260
+ def test_spline_transformer_periodic_splines_periodicity():
261
+ """Test if shifted knots result in the same transformation up to permutation."""
262
+ X = np.linspace(0, 10, 101)[:, None]
263
+
264
+ transformer_1 = SplineTransformer(
265
+ degree=3,
266
+ extrapolation="periodic",
267
+ knots=[[0.0], [1.0], [3.0], [4.0], [5.0], [8.0]],
268
+ )
269
+
270
+ transformer_2 = SplineTransformer(
271
+ degree=3,
272
+ extrapolation="periodic",
273
+ knots=[[1.0], [3.0], [4.0], [5.0], [8.0], [9.0]],
274
+ )
275
+
276
+ Xt_1 = transformer_1.fit_transform(X)
277
+ Xt_2 = transformer_2.fit_transform(X)
278
+
279
+ assert_allclose(Xt_1, Xt_2[:, [4, 0, 1, 2, 3]])
280
+
281
+
282
+ @pytest.mark.parametrize("degree", [3, 5])
283
+ def test_spline_transformer_periodic_splines_smoothness(degree):
284
+ """Test that spline transformation is smooth at first / last knot."""
285
+ X = np.linspace(-2, 10, 10_000)[:, None]
286
+
287
+ transformer = SplineTransformer(
288
+ degree=degree,
289
+ extrapolation="periodic",
290
+ knots=[[0.0], [1.0], [3.0], [4.0], [5.0], [8.0]],
291
+ )
292
+ Xt = transformer.fit_transform(X)
293
+
294
+ delta = (X.max() - X.min()) / len(X)
295
+ tol = 10 * delta
296
+
297
+ dXt = Xt
298
+ # We expect splines of degree `degree` to be (`degree`-1) times
299
+ # continuously differentiable. I.e. for d = 0, ..., `degree` - 1 the d-th
300
+ # derivative should be continuous. This is the case if the (d+1)-th
301
+ # numerical derivative is reasonably small (smaller than `tol` in absolute
302
+ # value). We thus compute d-th numeric derivatives for d = 1, ..., `degree`
303
+ # and compare them to `tol`.
304
+ #
305
+ # Note that the 0-th derivative is the function itself, such that we are
306
+ # also checking its continuity.
307
+ for d in range(1, degree + 1):
308
+ # Check continuity of the (d-1)-th derivative
309
+ diff = np.diff(dXt, axis=0)
310
+ assert np.abs(diff).max() < tol
311
+ # Compute d-th numeric derivative
312
+ dXt = diff / delta
313
+
314
+ # As degree `degree` splines are not `degree` times continuously
315
+ # differentiable at the knots, the `degree + 1`-th numeric derivative
316
+ # should have spikes at the knots.
317
+ diff = np.diff(dXt, axis=0)
318
+ assert np.abs(diff).max() > 1
319
+
320
+
321
+ @pytest.mark.parametrize(["bias", "intercept"], [(True, False), (False, True)])
322
+ @pytest.mark.parametrize("degree", [1, 2, 3, 4, 5])
323
+ def test_spline_transformer_extrapolation(bias, intercept, degree):
324
+ """Test that B-spline extrapolation works correctly."""
325
+ # we use a straight line for that
326
+ X = np.linspace(-1, 1, 100)[:, None]
327
+ y = X.squeeze()
328
+
329
+ # 'constant'
330
+ pipe = Pipeline(
331
+ [
332
+ [
333
+ "spline",
334
+ SplineTransformer(
335
+ n_knots=4,
336
+ degree=degree,
337
+ include_bias=bias,
338
+ extrapolation="constant",
339
+ ),
340
+ ],
341
+ ["ols", LinearRegression(fit_intercept=intercept)],
342
+ ]
343
+ )
344
+ pipe.fit(X, y)
345
+ assert_allclose(pipe.predict([[-10], [5]]), [-1, 1])
346
+
347
+ # 'linear'
348
+ pipe = Pipeline(
349
+ [
350
+ [
351
+ "spline",
352
+ SplineTransformer(
353
+ n_knots=4,
354
+ degree=degree,
355
+ include_bias=bias,
356
+ extrapolation="linear",
357
+ ),
358
+ ],
359
+ ["ols", LinearRegression(fit_intercept=intercept)],
360
+ ]
361
+ )
362
+ pipe.fit(X, y)
363
+ assert_allclose(pipe.predict([[-10], [5]]), [-10, 5])
364
+
365
+ # 'error'
366
+ splt = SplineTransformer(
367
+ n_knots=4, degree=degree, include_bias=bias, extrapolation="error"
368
+ )
369
+ splt.fit(X)
370
+ msg = "X contains values beyond the limits of the knots"
371
+ with pytest.raises(ValueError, match=msg):
372
+ splt.transform([[-10]])
373
+ with pytest.raises(ValueError, match=msg):
374
+ splt.transform([[5]])
375
+
376
+
377
+ def test_spline_transformer_kbindiscretizer():
378
+ """Test that a B-spline of degree=0 is equivalent to KBinsDiscretizer."""
379
+ rng = np.random.RandomState(97531)
380
+ X = rng.randn(200).reshape(200, 1)
381
+ n_bins = 5
382
+ n_knots = n_bins + 1
383
+
384
+ splt = SplineTransformer(
385
+ n_knots=n_knots, degree=0, knots="quantile", include_bias=True
386
+ )
387
+ splines = splt.fit_transform(X)
388
+
389
+ kbd = KBinsDiscretizer(n_bins=n_bins, encode="onehot-dense", strategy="quantile")
390
+ kbins = kbd.fit_transform(X)
391
+
392
+ # Though they should be exactly equal, we test approximately with high
393
+ # accuracy.
394
+ assert_allclose(splines, kbins, rtol=1e-13)
395
+
396
+
397
+ @pytest.mark.skipif(
398
+ sp_version < parse_version("1.8.0"),
399
+ reason="The option `sparse_output` is available as of scipy 1.8.0",
400
+ )
401
+ @pytest.mark.parametrize("degree", range(1, 3))
402
+ @pytest.mark.parametrize("knots", ["uniform", "quantile"])
403
+ @pytest.mark.parametrize(
404
+ "extrapolation", ["error", "constant", "linear", "continue", "periodic"]
405
+ )
406
+ @pytest.mark.parametrize("include_bias", [False, True])
407
+ def test_spline_transformer_sparse_output(
408
+ degree, knots, extrapolation, include_bias, global_random_seed
409
+ ):
410
+ rng = np.random.RandomState(global_random_seed)
411
+ X = rng.randn(200).reshape(40, 5)
412
+
413
+ splt_dense = SplineTransformer(
414
+ degree=degree,
415
+ knots=knots,
416
+ extrapolation=extrapolation,
417
+ include_bias=include_bias,
418
+ sparse_output=False,
419
+ )
420
+ splt_sparse = SplineTransformer(
421
+ degree=degree,
422
+ knots=knots,
423
+ extrapolation=extrapolation,
424
+ include_bias=include_bias,
425
+ sparse_output=True,
426
+ )
427
+
428
+ splt_dense.fit(X)
429
+ splt_sparse.fit(X)
430
+
431
+ X_trans_sparse = splt_sparse.transform(X)
432
+ X_trans_dense = splt_dense.transform(X)
433
+ assert sparse.issparse(X_trans_sparse) and X_trans_sparse.format == "csr"
434
+ assert_allclose(X_trans_dense, X_trans_sparse.toarray())
435
+
436
+ # extrapolation regime
437
+ X_min = np.amin(X, axis=0)
438
+ X_max = np.amax(X, axis=0)
439
+ X_extra = np.r_[
440
+ np.linspace(X_min - 5, X_min, 10), np.linspace(X_max, X_max + 5, 10)
441
+ ]
442
+ if extrapolation == "error":
443
+ msg = "X contains values beyond the limits of the knots"
444
+ with pytest.raises(ValueError, match=msg):
445
+ splt_dense.transform(X_extra)
446
+ msg = "Out of bounds"
447
+ with pytest.raises(ValueError, match=msg):
448
+ splt_sparse.transform(X_extra)
449
+ else:
450
+ assert_allclose(
451
+ splt_dense.transform(X_extra), splt_sparse.transform(X_extra).toarray()
452
+ )
453
+
454
+
455
+ @pytest.mark.skipif(
456
+ sp_version >= parse_version("1.8.0"),
457
+ reason="The option `sparse_output` is available as of scipy 1.8.0",
458
+ )
459
+ def test_spline_transformer_sparse_output_raise_error_for_old_scipy():
460
+ """Test that SplineTransformer with sparse=True raises for scipy<1.8.0."""
461
+ X = [[1], [2]]
462
+ with pytest.raises(ValueError, match="scipy>=1.8.0"):
463
+ SplineTransformer(sparse_output=True).fit(X)
464
+
465
+
466
+ @pytest.mark.parametrize("n_knots", [5, 10])
467
+ @pytest.mark.parametrize("include_bias", [True, False])
468
+ @pytest.mark.parametrize("degree", [3, 4])
469
+ @pytest.mark.parametrize(
470
+ "extrapolation", ["error", "constant", "linear", "continue", "periodic"]
471
+ )
472
+ @pytest.mark.parametrize("sparse_output", [False, True])
473
+ def test_spline_transformer_n_features_out(
474
+ n_knots, include_bias, degree, extrapolation, sparse_output
475
+ ):
476
+ """Test that transform results in n_features_out_ features."""
477
+ if sparse_output and sp_version < parse_version("1.8.0"):
478
+ pytest.skip("The option `sparse_output` is available as of scipy 1.8.0")
479
+
480
+ splt = SplineTransformer(
481
+ n_knots=n_knots,
482
+ degree=degree,
483
+ include_bias=include_bias,
484
+ extrapolation=extrapolation,
485
+ sparse_output=sparse_output,
486
+ )
487
+ X = np.linspace(0, 1, 10)[:, None]
488
+ splt.fit(X)
489
+
490
+ assert splt.transform(X).shape[1] == splt.n_features_out_
491
+
492
+
493
+ @pytest.mark.parametrize(
494
+ "params, err_msg",
495
+ [
496
+ ({"degree": (-1, 2)}, r"degree=\(min_degree, max_degree\) must"),
497
+ ({"degree": (0, 1.5)}, r"degree=\(min_degree, max_degree\) must"),
498
+ ({"degree": (3, 2)}, r"degree=\(min_degree, max_degree\) must"),
499
+ ({"degree": (1, 2, 3)}, r"int or tuple \(min_degree, max_degree\)"),
500
+ ],
501
+ )
502
+ def test_polynomial_features_input_validation(params, err_msg):
503
+ """Test that we raise errors for invalid input in PolynomialFeatures."""
504
+ X = [[1], [2]]
505
+
506
+ with pytest.raises(ValueError, match=err_msg):
507
+ PolynomialFeatures(**params).fit(X)
508
+
509
+
510
+ @pytest.fixture()
511
+ def single_feature_degree3():
512
+ X = np.arange(6)[:, np.newaxis]
513
+ P = np.hstack([np.ones_like(X), X, X**2, X**3])
514
+ return X, P
515
+
516
+
517
+ @pytest.mark.parametrize(
518
+ "degree, include_bias, interaction_only, indices",
519
+ [
520
+ (3, True, False, slice(None, None)),
521
+ (3, False, False, slice(1, None)),
522
+ (3, True, True, [0, 1]),
523
+ (3, False, True, [1]),
524
+ ((2, 3), True, False, [0, 2, 3]),
525
+ ((2, 3), False, False, [2, 3]),
526
+ ((2, 3), True, True, [0]),
527
+ ((2, 3), False, True, []),
528
+ ],
529
+ )
530
+ @pytest.mark.parametrize("X_container", [None] + CSR_CONTAINERS + CSC_CONTAINERS)
531
+ def test_polynomial_features_one_feature(
532
+ single_feature_degree3,
533
+ degree,
534
+ include_bias,
535
+ interaction_only,
536
+ indices,
537
+ X_container,
538
+ ):
539
+ """Test PolynomialFeatures on single feature up to degree 3."""
540
+ X, P = single_feature_degree3
541
+ if X_container is not None:
542
+ X = X_container(X)
543
+ tf = PolynomialFeatures(
544
+ degree=degree, include_bias=include_bias, interaction_only=interaction_only
545
+ ).fit(X)
546
+ out = tf.transform(X)
547
+ if X_container is not None:
548
+ out = out.toarray()
549
+ assert_allclose(out, P[:, indices])
550
+ if tf.n_output_features_ > 0:
551
+ assert tf.powers_.shape == (tf.n_output_features_, tf.n_features_in_)
552
+
553
+
554
+ @pytest.fixture()
555
+ def two_features_degree3():
556
+ X = np.arange(6).reshape((3, 2))
557
+ x1 = X[:, :1]
558
+ x2 = X[:, 1:]
559
+ P = np.hstack(
560
+ [
561
+ x1**0 * x2**0, # 0
562
+ x1**1 * x2**0, # 1
563
+ x1**0 * x2**1, # 2
564
+ x1**2 * x2**0, # 3
565
+ x1**1 * x2**1, # 4
566
+ x1**0 * x2**2, # 5
567
+ x1**3 * x2**0, # 6
568
+ x1**2 * x2**1, # 7
569
+ x1**1 * x2**2, # 8
570
+ x1**0 * x2**3, # 9
571
+ ]
572
+ )
573
+ return X, P
574
+
575
+
576
+ @pytest.mark.parametrize(
577
+ "degree, include_bias, interaction_only, indices",
578
+ [
579
+ (2, True, False, slice(0, 6)),
580
+ (2, False, False, slice(1, 6)),
581
+ (2, True, True, [0, 1, 2, 4]),
582
+ (2, False, True, [1, 2, 4]),
583
+ ((2, 2), True, False, [0, 3, 4, 5]),
584
+ ((2, 2), False, False, [3, 4, 5]),
585
+ ((2, 2), True, True, [0, 4]),
586
+ ((2, 2), False, True, [4]),
587
+ (3, True, False, slice(None, None)),
588
+ (3, False, False, slice(1, None)),
589
+ (3, True, True, [0, 1, 2, 4]),
590
+ (3, False, True, [1, 2, 4]),
591
+ ((2, 3), True, False, [0, 3, 4, 5, 6, 7, 8, 9]),
592
+ ((2, 3), False, False, slice(3, None)),
593
+ ((2, 3), True, True, [0, 4]),
594
+ ((2, 3), False, True, [4]),
595
+ ((3, 3), True, False, [0, 6, 7, 8, 9]),
596
+ ((3, 3), False, False, [6, 7, 8, 9]),
597
+ ((3, 3), True, True, [0]),
598
+ ((3, 3), False, True, []), # would need 3 input features
599
+ ],
600
+ )
601
+ @pytest.mark.parametrize("X_container", [None] + CSR_CONTAINERS + CSC_CONTAINERS)
602
+ def test_polynomial_features_two_features(
603
+ two_features_degree3,
604
+ degree,
605
+ include_bias,
606
+ interaction_only,
607
+ indices,
608
+ X_container,
609
+ ):
610
+ """Test PolynomialFeatures on 2 features up to degree 3."""
611
+ X, P = two_features_degree3
612
+ if X_container is not None:
613
+ X = X_container(X)
614
+ tf = PolynomialFeatures(
615
+ degree=degree, include_bias=include_bias, interaction_only=interaction_only
616
+ ).fit(X)
617
+ out = tf.transform(X)
618
+ if X_container is not None:
619
+ out = out.toarray()
620
+ assert_allclose(out, P[:, indices])
621
+ if tf.n_output_features_ > 0:
622
+ assert tf.powers_.shape == (tf.n_output_features_, tf.n_features_in_)
623
+
624
+
625
+ def test_polynomial_feature_names():
626
+ X = np.arange(30).reshape(10, 3)
627
+ poly = PolynomialFeatures(degree=2, include_bias=True).fit(X)
628
+ feature_names = poly.get_feature_names_out()
629
+ assert_array_equal(
630
+ ["1", "x0", "x1", "x2", "x0^2", "x0 x1", "x0 x2", "x1^2", "x1 x2", "x2^2"],
631
+ feature_names,
632
+ )
633
+ assert len(feature_names) == poly.transform(X).shape[1]
634
+
635
+ poly = PolynomialFeatures(degree=3, include_bias=False).fit(X)
636
+ feature_names = poly.get_feature_names_out(["a", "b", "c"])
637
+ assert_array_equal(
638
+ [
639
+ "a",
640
+ "b",
641
+ "c",
642
+ "a^2",
643
+ "a b",
644
+ "a c",
645
+ "b^2",
646
+ "b c",
647
+ "c^2",
648
+ "a^3",
649
+ "a^2 b",
650
+ "a^2 c",
651
+ "a b^2",
652
+ "a b c",
653
+ "a c^2",
654
+ "b^3",
655
+ "b^2 c",
656
+ "b c^2",
657
+ "c^3",
658
+ ],
659
+ feature_names,
660
+ )
661
+ assert len(feature_names) == poly.transform(X).shape[1]
662
+
663
+ poly = PolynomialFeatures(degree=(2, 3), include_bias=False).fit(X)
664
+ feature_names = poly.get_feature_names_out(["a", "b", "c"])
665
+ assert_array_equal(
666
+ [
667
+ "a^2",
668
+ "a b",
669
+ "a c",
670
+ "b^2",
671
+ "b c",
672
+ "c^2",
673
+ "a^3",
674
+ "a^2 b",
675
+ "a^2 c",
676
+ "a b^2",
677
+ "a b c",
678
+ "a c^2",
679
+ "b^3",
680
+ "b^2 c",
681
+ "b c^2",
682
+ "c^3",
683
+ ],
684
+ feature_names,
685
+ )
686
+ assert len(feature_names) == poly.transform(X).shape[1]
687
+
688
+ poly = PolynomialFeatures(
689
+ degree=(3, 3), include_bias=True, interaction_only=True
690
+ ).fit(X)
691
+ feature_names = poly.get_feature_names_out(["a", "b", "c"])
692
+ assert_array_equal(["1", "a b c"], feature_names)
693
+ assert len(feature_names) == poly.transform(X).shape[1]
694
+
695
+ # test some unicode
696
+ poly = PolynomialFeatures(degree=1, include_bias=True).fit(X)
697
+ feature_names = poly.get_feature_names_out(["\u0001F40D", "\u262e", "\u05d0"])
698
+ assert_array_equal(["1", "\u0001F40D", "\u262e", "\u05d0"], feature_names)
699
+
700
+
701
+ @pytest.mark.parametrize(
702
+ ["deg", "include_bias", "interaction_only", "dtype"],
703
+ [
704
+ (1, True, False, int),
705
+ (2, True, False, int),
706
+ (2, True, False, np.float32),
707
+ (2, True, False, np.float64),
708
+ (3, False, False, np.float64),
709
+ (3, False, True, np.float64),
710
+ (4, False, False, np.float64),
711
+ (4, False, True, np.float64),
712
+ ],
713
+ )
714
+ @pytest.mark.parametrize("csc_container", CSC_CONTAINERS)
715
+ def test_polynomial_features_csc_X(
716
+ deg, include_bias, interaction_only, dtype, csc_container
717
+ ):
718
+ rng = np.random.RandomState(0)
719
+ X = rng.randint(0, 2, (100, 2))
720
+ X_csc = csc_container(X)
721
+
722
+ est = PolynomialFeatures(
723
+ deg, include_bias=include_bias, interaction_only=interaction_only
724
+ )
725
+ Xt_csc = est.fit_transform(X_csc.astype(dtype))
726
+ Xt_dense = est.fit_transform(X.astype(dtype))
727
+
728
+ assert sparse.issparse(Xt_csc) and Xt_csc.format == "csc"
729
+ assert Xt_csc.dtype == Xt_dense.dtype
730
+ assert_array_almost_equal(Xt_csc.toarray(), Xt_dense)
731
+
732
+
733
+ @pytest.mark.parametrize(
734
+ ["deg", "include_bias", "interaction_only", "dtype"],
735
+ [
736
+ (1, True, False, int),
737
+ (2, True, False, int),
738
+ (2, True, False, np.float32),
739
+ (2, True, False, np.float64),
740
+ (3, False, False, np.float64),
741
+ (3, False, True, np.float64),
742
+ ],
743
+ )
744
+ @pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
745
+ def test_polynomial_features_csr_X(
746
+ deg, include_bias, interaction_only, dtype, csr_container
747
+ ):
748
+ rng = np.random.RandomState(0)
749
+ X = rng.randint(0, 2, (100, 2))
750
+ X_csr = csr_container(X)
751
+
752
+ est = PolynomialFeatures(
753
+ deg, include_bias=include_bias, interaction_only=interaction_only
754
+ )
755
+ Xt_csr = est.fit_transform(X_csr.astype(dtype))
756
+ Xt_dense = est.fit_transform(X.astype(dtype, copy=False))
757
+
758
+ assert sparse.issparse(Xt_csr) and Xt_csr.format == "csr"
759
+ assert Xt_csr.dtype == Xt_dense.dtype
760
+ assert_array_almost_equal(Xt_csr.toarray(), Xt_dense)
761
+
762
+
763
+ @pytest.mark.parametrize("n_features", [1, 4, 5])
764
+ @pytest.mark.parametrize(
765
+ "min_degree, max_degree", [(0, 1), (0, 2), (1, 3), (0, 4), (3, 4)]
766
+ )
767
+ @pytest.mark.parametrize("interaction_only", [True, False])
768
+ @pytest.mark.parametrize("include_bias", [True, False])
769
+ @pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
770
+ def test_num_combinations(
771
+ n_features, min_degree, max_degree, interaction_only, include_bias, csr_container
772
+ ):
773
+ """
774
+ Test that n_output_features_ is calculated correctly.
775
+ """
776
+ x = csr_container(([1], ([0], [n_features - 1])))
777
+ est = PolynomialFeatures(
778
+ degree=max_degree,
779
+ interaction_only=interaction_only,
780
+ include_bias=include_bias,
781
+ )
782
+ est.fit(x)
783
+ num_combos = est.n_output_features_
784
+
785
+ combos = PolynomialFeatures._combinations(
786
+ n_features=n_features,
787
+ min_degree=0,
788
+ max_degree=max_degree,
789
+ interaction_only=interaction_only,
790
+ include_bias=include_bias,
791
+ )
792
+ assert num_combos == sum([1 for _ in combos])
793
+
794
+
795
+ @pytest.mark.parametrize(
796
+ ["deg", "include_bias", "interaction_only", "dtype"],
797
+ [
798
+ (2, True, False, np.float32),
799
+ (2, True, False, np.float64),
800
+ (3, False, False, np.float64),
801
+ (3, False, True, np.float64),
802
+ ],
803
+ )
804
+ @pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
805
+ def test_polynomial_features_csr_X_floats(
806
+ deg, include_bias, interaction_only, dtype, csr_container
807
+ ):
808
+ X_csr = csr_container(sparse_random(1000, 10, 0.5, random_state=0))
809
+ X = X_csr.toarray()
810
+
811
+ est = PolynomialFeatures(
812
+ deg, include_bias=include_bias, interaction_only=interaction_only
813
+ )
814
+ Xt_csr = est.fit_transform(X_csr.astype(dtype))
815
+ Xt_dense = est.fit_transform(X.astype(dtype))
816
+
817
+ assert sparse.issparse(Xt_csr) and Xt_csr.format == "csr"
818
+ assert Xt_csr.dtype == Xt_dense.dtype
819
+ assert_array_almost_equal(Xt_csr.toarray(), Xt_dense)
820
+
821
+
822
+ @pytest.mark.parametrize(
823
+ ["zero_row_index", "deg", "interaction_only"],
824
+ [
825
+ (0, 2, True),
826
+ (1, 2, True),
827
+ (2, 2, True),
828
+ (0, 3, True),
829
+ (1, 3, True),
830
+ (2, 3, True),
831
+ (0, 2, False),
832
+ (1, 2, False),
833
+ (2, 2, False),
834
+ (0, 3, False),
835
+ (1, 3, False),
836
+ (2, 3, False),
837
+ ],
838
+ )
839
+ @pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
840
+ def test_polynomial_features_csr_X_zero_row(
841
+ zero_row_index, deg, interaction_only, csr_container
842
+ ):
843
+ X_csr = csr_container(sparse_random(3, 10, 1.0, random_state=0))
844
+ X_csr[zero_row_index, :] = 0.0
845
+ X = X_csr.toarray()
846
+
847
+ est = PolynomialFeatures(deg, include_bias=False, interaction_only=interaction_only)
848
+ Xt_csr = est.fit_transform(X_csr)
849
+ Xt_dense = est.fit_transform(X)
850
+
851
+ assert sparse.issparse(Xt_csr) and Xt_csr.format == "csr"
852
+ assert Xt_csr.dtype == Xt_dense.dtype
853
+ assert_array_almost_equal(Xt_csr.toarray(), Xt_dense)
854
+
855
+
856
+ # This degree should always be one more than the highest degree supported by
857
+ # _csr_expansion.
858
+ @pytest.mark.parametrize(
859
+ ["include_bias", "interaction_only"],
860
+ [(True, True), (True, False), (False, True), (False, False)],
861
+ )
862
+ @pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
863
+ def test_polynomial_features_csr_X_degree_4(
864
+ include_bias, interaction_only, csr_container
865
+ ):
866
+ X_csr = csr_container(sparse_random(1000, 10, 0.5, random_state=0))
867
+ X = X_csr.toarray()
868
+
869
+ est = PolynomialFeatures(
870
+ 4, include_bias=include_bias, interaction_only=interaction_only
871
+ )
872
+ Xt_csr = est.fit_transform(X_csr)
873
+ Xt_dense = est.fit_transform(X)
874
+
875
+ assert sparse.issparse(Xt_csr) and Xt_csr.format == "csr"
876
+ assert Xt_csr.dtype == Xt_dense.dtype
877
+ assert_array_almost_equal(Xt_csr.toarray(), Xt_dense)
878
+
879
+
880
+ @pytest.mark.parametrize(
881
+ ["deg", "dim", "interaction_only"],
882
+ [
883
+ (2, 1, True),
884
+ (2, 2, True),
885
+ (3, 1, True),
886
+ (3, 2, True),
887
+ (3, 3, True),
888
+ (2, 1, False),
889
+ (2, 2, False),
890
+ (3, 1, False),
891
+ (3, 2, False),
892
+ (3, 3, False),
893
+ ],
894
+ )
895
+ @pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
896
+ def test_polynomial_features_csr_X_dim_edges(deg, dim, interaction_only, csr_container):
897
+ X_csr = csr_container(sparse_random(1000, dim, 0.5, random_state=0))
898
+ X = X_csr.toarray()
899
+
900
+ est = PolynomialFeatures(deg, interaction_only=interaction_only)
901
+ Xt_csr = est.fit_transform(X_csr)
902
+ Xt_dense = est.fit_transform(X)
903
+
904
+ assert sparse.issparse(Xt_csr) and Xt_csr.format == "csr"
905
+ assert Xt_csr.dtype == Xt_dense.dtype
906
+ assert_array_almost_equal(Xt_csr.toarray(), Xt_dense)
907
+
908
+
909
+ @pytest.mark.parametrize("interaction_only", [True, False])
910
+ @pytest.mark.parametrize("include_bias", [True, False])
911
+ @pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
912
+ def test_csr_polynomial_expansion_index_overflow_non_regression(
913
+ interaction_only, include_bias, csr_container
914
+ ):
915
+ """Check the automatic index dtype promotion to `np.int64` when needed.
916
+
917
+ This ensures that sufficiently large input configurations get
918
+ properly promoted to use `np.int64` for index and indptr representation
919
+ while preserving data integrity. Non-regression test for gh-16803.
920
+
921
+ Note that this is only possible for Python runtimes with a 64 bit address
922
+ space. On 32 bit platforms, a `ValueError` is raised instead.
923
+ """
924
+
925
+ def degree_2_calc(d, i, j):
926
+ if interaction_only:
927
+ return d * i - (i**2 + 3 * i) // 2 - 1 + j
928
+ else:
929
+ return d * i - (i**2 + i) // 2 + j
930
+
931
+ n_samples = 13
932
+ n_features = 120001
933
+ data_dtype = np.float32
934
+ data = np.arange(1, 5, dtype=np.int64)
935
+ row = np.array([n_samples - 2, n_samples - 2, n_samples - 1, n_samples - 1])
936
+ # An int64 dtype is required to avoid overflow error on Windows within the
937
+ # `degree_2_calc` function.
938
+ col = np.array(
939
+ [n_features - 2, n_features - 1, n_features - 2, n_features - 1], dtype=np.int64
940
+ )
941
+ X = csr_container(
942
+ (data, (row, col)),
943
+ shape=(n_samples, n_features),
944
+ dtype=data_dtype,
945
+ )
946
+ pf = PolynomialFeatures(
947
+ interaction_only=interaction_only, include_bias=include_bias, degree=2
948
+ )
949
+
950
+ # Calculate the number of combinations a-priori, and if needed check for
951
+ # the correct ValueError and terminate the test early.
952
+ num_combinations = pf._num_combinations(
953
+ n_features=n_features,
954
+ min_degree=0,
955
+ max_degree=2,
956
+ interaction_only=pf.interaction_only,
957
+ include_bias=pf.include_bias,
958
+ )
959
+ if num_combinations > np.iinfo(np.intp).max:
960
+ msg = (
961
+ r"The output that would result from the current configuration would have"
962
+ r" \d* features which is too large to be indexed"
963
+ )
964
+ with pytest.raises(ValueError, match=msg):
965
+ pf.fit(X)
966
+ return
967
+ X_trans = pf.fit_transform(X)
968
+ row_nonzero, col_nonzero = X_trans.nonzero()
969
+ n_degree_1_features_out = n_features + include_bias
970
+ max_degree_2_idx = (
971
+ degree_2_calc(n_features, col[int(not interaction_only)], col[1])
972
+ + n_degree_1_features_out
973
+ )
974
+
975
+ # Account for bias of all samples except last one which will be handled
976
+ # separately since there are distinct data values before it
977
+ data_target = [1] * (n_samples - 2) if include_bias else []
978
+ col_nonzero_target = [0] * (n_samples - 2) if include_bias else []
979
+
980
+ for i in range(2):
981
+ x = data[2 * i]
982
+ y = data[2 * i + 1]
983
+ x_idx = col[2 * i]
984
+ y_idx = col[2 * i + 1]
985
+ if include_bias:
986
+ data_target.append(1)
987
+ col_nonzero_target.append(0)
988
+ data_target.extend([x, y])
989
+ col_nonzero_target.extend(
990
+ [x_idx + int(include_bias), y_idx + int(include_bias)]
991
+ )
992
+ if not interaction_only:
993
+ data_target.extend([x * x, x * y, y * y])
994
+ col_nonzero_target.extend(
995
+ [
996
+ degree_2_calc(n_features, x_idx, x_idx) + n_degree_1_features_out,
997
+ degree_2_calc(n_features, x_idx, y_idx) + n_degree_1_features_out,
998
+ degree_2_calc(n_features, y_idx, y_idx) + n_degree_1_features_out,
999
+ ]
1000
+ )
1001
+ else:
1002
+ data_target.extend([x * y])
1003
+ col_nonzero_target.append(
1004
+ degree_2_calc(n_features, x_idx, y_idx) + n_degree_1_features_out
1005
+ )
1006
+
1007
+ nnz_per_row = int(include_bias) + 3 + 2 * int(not interaction_only)
1008
+
1009
+ assert pf.n_output_features_ == max_degree_2_idx + 1
1010
+ assert X_trans.dtype == data_dtype
1011
+ assert X_trans.shape == (n_samples, max_degree_2_idx + 1)
1012
+ assert X_trans.indptr.dtype == X_trans.indices.dtype == np.int64
1013
+ # Ensure that dtype promotion was actually required:
1014
+ assert X_trans.indices.max() > np.iinfo(np.int32).max
1015
+
1016
+ row_nonzero_target = list(range(n_samples - 2)) if include_bias else []
1017
+ row_nonzero_target.extend(
1018
+ [n_samples - 2] * nnz_per_row + [n_samples - 1] * nnz_per_row
1019
+ )
1020
+
1021
+ assert_allclose(X_trans.data, data_target)
1022
+ assert_array_equal(row_nonzero, row_nonzero_target)
1023
+ assert_array_equal(col_nonzero, col_nonzero_target)
1024
+
1025
+
1026
+ @pytest.mark.parametrize(
1027
+ "degree, n_features",
1028
+ [
1029
+ # Needs promotion to int64 when interaction_only=False
1030
+ (2, 65535),
1031
+ (3, 2344),
1032
+ # This guarantees that the intermediate operation when calculating
1033
+ # output columns would overflow a C-long, hence checks that python-
1034
+ # longs are being used.
1035
+ (2, int(np.sqrt(np.iinfo(np.int64).max) + 1)),
1036
+ (3, 65535),
1037
+ # This case tests the second clause of the overflow check which
1038
+ # takes into account the value of `n_features` itself.
1039
+ (2, int(np.sqrt(np.iinfo(np.int64).max))),
1040
+ ],
1041
+ )
1042
+ @pytest.mark.parametrize("interaction_only", [True, False])
1043
+ @pytest.mark.parametrize("include_bias", [True, False])
1044
+ @pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
1045
+ def test_csr_polynomial_expansion_index_overflow(
1046
+ degree, n_features, interaction_only, include_bias, csr_container
1047
+ ):
1048
+ """Tests known edge-cases to the dtype promotion strategy and custom
1049
+ Cython code, including a current bug in the upstream
1050
+ `scipy.sparse.hstack`.
1051
+ """
1052
+ data = [1.0]
1053
+ row = [0]
1054
+ col = [n_features - 1]
1055
+
1056
+ # First degree index
1057
+ expected_indices = [
1058
+ n_features - 1 + int(include_bias),
1059
+ ]
1060
+ # Second degree index
1061
+ expected_indices.append(n_features * (n_features + 1) // 2 + expected_indices[0])
1062
+ # Third degree index
1063
+ expected_indices.append(
1064
+ n_features * (n_features + 1) * (n_features + 2) // 6 + expected_indices[1]
1065
+ )
1066
+
1067
+ X = csr_container((data, (row, col)))
1068
+ pf = PolynomialFeatures(
1069
+ interaction_only=interaction_only, include_bias=include_bias, degree=degree
1070
+ )
1071
+
1072
+ # Calculate the number of combinations a-priori, and if needed check for
1073
+ # the correct ValueError and terminate the test early.
1074
+ num_combinations = pf._num_combinations(
1075
+ n_features=n_features,
1076
+ min_degree=0,
1077
+ max_degree=degree,
1078
+ interaction_only=pf.interaction_only,
1079
+ include_bias=pf.include_bias,
1080
+ )
1081
+ if num_combinations > np.iinfo(np.intp).max:
1082
+ msg = (
1083
+ r"The output that would result from the current configuration would have"
1084
+ r" \d* features which is too large to be indexed"
1085
+ )
1086
+ with pytest.raises(ValueError, match=msg):
1087
+ pf.fit(X)
1088
+ return
1089
+
1090
+ # In SciPy < 1.8, a bug occurs when an intermediate matrix in
1091
+ # `to_stack` in `hstack` fits within int32 however would require int64 when
1092
+ # combined with all previous matrices in `to_stack`.
1093
+ if sp_version < parse_version("1.8.0"):
1094
+ has_bug = False
1095
+ max_int32 = np.iinfo(np.int32).max
1096
+ cumulative_size = n_features + include_bias
1097
+ for deg in range(2, degree + 1):
1098
+ max_indptr = _calc_total_nnz(X.indptr, interaction_only, deg)
1099
+ max_indices = _calc_expanded_nnz(n_features, interaction_only, deg) - 1
1100
+ cumulative_size += max_indices + 1
1101
+ needs_int64 = max(max_indices, max_indptr) > max_int32
1102
+ has_bug |= not needs_int64 and cumulative_size > max_int32
1103
+ if has_bug:
1104
+ msg = r"In scipy versions `<1.8.0`, the function `scipy.sparse.hstack`"
1105
+ with pytest.raises(ValueError, match=msg):
1106
+ X_trans = pf.fit_transform(X)
1107
+ return
1108
+
1109
+ # When `n_features>=65535`, `scipy.sparse.hstack` may not use the right
1110
+ # dtype for representing indices and indptr if `n_features` is still
1111
+ # small enough so that each block matrix's indices and indptr arrays
1112
+ # can be represented with `np.int32`. We test `n_features==65535`
1113
+ # since it is guaranteed to run into this bug.
1114
+ if (
1115
+ sp_version < parse_version("1.9.2")
1116
+ and n_features == 65535
1117
+ and degree == 2
1118
+ and not interaction_only
1119
+ ): # pragma: no cover
1120
+ msg = r"In scipy versions `<1.9.2`, the function `scipy.sparse.hstack`"
1121
+ with pytest.raises(ValueError, match=msg):
1122
+ X_trans = pf.fit_transform(X)
1123
+ return
1124
+ X_trans = pf.fit_transform(X)
1125
+
1126
+ expected_dtype = np.int64 if num_combinations > np.iinfo(np.int32).max else np.int32
1127
+ # Terms higher than first degree
1128
+ non_bias_terms = 1 + (degree - 1) * int(not interaction_only)
1129
+ expected_nnz = int(include_bias) + non_bias_terms
1130
+ assert X_trans.dtype == X.dtype
1131
+ assert X_trans.shape == (1, pf.n_output_features_)
1132
+ assert X_trans.indptr.dtype == X_trans.indices.dtype == expected_dtype
1133
+ assert X_trans.nnz == expected_nnz
1134
+
1135
+ if include_bias:
1136
+ assert X_trans[0, 0] == pytest.approx(1.0)
1137
+ for idx in range(non_bias_terms):
1138
+ assert X_trans[0, expected_indices[idx]] == pytest.approx(1.0)
1139
+
1140
+ offset = interaction_only * n_features
1141
+ if degree == 3:
1142
+ offset *= 1 + n_features
1143
+ assert pf.n_output_features_ == expected_indices[degree - 1] + 1 - offset
1144
+
1145
+
1146
+ @pytest.mark.parametrize("interaction_only", [True, False])
1147
+ @pytest.mark.parametrize("include_bias", [True, False])
1148
+ @pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
1149
+ def test_csr_polynomial_expansion_too_large_to_index(
1150
+ interaction_only, include_bias, csr_container
1151
+ ):
1152
+ n_features = np.iinfo(np.int64).max // 2
1153
+ data = [1.0]
1154
+ row = [0]
1155
+ col = [n_features - 1]
1156
+ X = csr_container((data, (row, col)))
1157
+ pf = PolynomialFeatures(
1158
+ interaction_only=interaction_only, include_bias=include_bias, degree=(2, 2)
1159
+ )
1160
+ msg = (
1161
+ r"The output that would result from the current configuration would have \d*"
1162
+ r" features which is too large to be indexed"
1163
+ )
1164
+ with pytest.raises(ValueError, match=msg):
1165
+ pf.fit(X)
1166
+ with pytest.raises(ValueError, match=msg):
1167
+ pf.fit_transform(X)
1168
+
1169
+
1170
+ @pytest.mark.parametrize("sparse_container", CSR_CONTAINERS + CSC_CONTAINERS)
1171
+ def test_polynomial_features_behaviour_on_zero_degree(sparse_container):
1172
+ """Check that PolynomialFeatures raises error when degree=0 and include_bias=False,
1173
+ and output a single constant column when include_bias=True
1174
+ """
1175
+ X = np.ones((10, 2))
1176
+ poly = PolynomialFeatures(degree=0, include_bias=False)
1177
+ err_msg = (
1178
+ "Setting degree to zero and include_bias to False would result in"
1179
+ " an empty output array."
1180
+ )
1181
+ with pytest.raises(ValueError, match=err_msg):
1182
+ poly.fit_transform(X)
1183
+
1184
+ poly = PolynomialFeatures(degree=(0, 0), include_bias=False)
1185
+ err_msg = (
1186
+ "Setting both min_degree and max_degree to zero and include_bias to"
1187
+ " False would result in an empty output array."
1188
+ )
1189
+ with pytest.raises(ValueError, match=err_msg):
1190
+ poly.fit_transform(X)
1191
+
1192
+ for _X in [X, sparse_container(X)]:
1193
+ poly = PolynomialFeatures(degree=0, include_bias=True)
1194
+ output = poly.fit_transform(_X)
1195
+ # convert to dense array if needed
1196
+ if sparse.issparse(output):
1197
+ output = output.toarray()
1198
+ assert_array_equal(output, np.ones((X.shape[0], 1)))
1199
+
1200
+
1201
+ def test_sizeof_LARGEST_INT_t():
1202
+ # On Windows, scikit-learn is typically compiled with MSVC that
1203
+ # does not support int128 arithmetic (at the time of writing):
1204
+ # https://stackoverflow.com/a/6761962/163740
1205
+ if sys.platform == "win32" or (
1206
+ sys.maxsize <= 2**32 and sys.platform != "emscripten"
1207
+ ):
1208
+ expected_size = 8
1209
+ else:
1210
+ expected_size = 16
1211
+
1212
+ assert _get_sizeof_LARGEST_INT_t() == expected_size
1213
+
1214
+
1215
+ @pytest.mark.xfail(
1216
+ sys.platform == "win32",
1217
+ reason=(
1218
+ "On Windows, scikit-learn is typically compiled with MSVC that does not support"
1219
+ " int128 arithmetic (at the time of writing)"
1220
+ ),
1221
+ run=True,
1222
+ )
1223
+ @pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
1224
+ def test_csr_polynomial_expansion_windows_fail(csr_container):
1225
+ # Minimum needed to ensure integer overflow occurs while guaranteeing an
1226
+ # int64-indexable output.
1227
+ n_features = int(np.iinfo(np.int64).max ** (1 / 3) + 3)
1228
+ data = [1.0]
1229
+ row = [0]
1230
+ col = [n_features - 1]
1231
+
1232
+ # First degree index
1233
+ expected_indices = [
1234
+ n_features - 1,
1235
+ ]
1236
+ # Second degree index
1237
+ expected_indices.append(
1238
+ int(n_features * (n_features + 1) // 2 + expected_indices[0])
1239
+ )
1240
+ # Third degree index
1241
+ expected_indices.append(
1242
+ int(n_features * (n_features + 1) * (n_features + 2) // 6 + expected_indices[1])
1243
+ )
1244
+
1245
+ X = csr_container((data, (row, col)))
1246
+ pf = PolynomialFeatures(interaction_only=False, include_bias=False, degree=3)
1247
+ if sys.maxsize <= 2**32:
1248
+ msg = (
1249
+ r"The output that would result from the current configuration would"
1250
+ r" have \d*"
1251
+ r" features which is too large to be indexed"
1252
+ )
1253
+ with pytest.raises(ValueError, match=msg):
1254
+ pf.fit_transform(X)
1255
+ else:
1256
+ X_trans = pf.fit_transform(X)
1257
+ for idx in range(3):
1258
+ assert X_trans[0, expected_indices[idx]] == pytest.approx(1.0)
env-llmeval/lib/python3.10/site-packages/sklearn/preprocessing/tests/test_target_encoder.py ADDED
@@ -0,0 +1,716 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+
3
+ import numpy as np
4
+ import pytest
5
+ from numpy.testing import assert_allclose, assert_array_equal
6
+
7
+ from sklearn.ensemble import RandomForestRegressor
8
+ from sklearn.linear_model import Ridge
9
+ from sklearn.model_selection import (
10
+ KFold,
11
+ ShuffleSplit,
12
+ StratifiedKFold,
13
+ cross_val_score,
14
+ train_test_split,
15
+ )
16
+ from sklearn.pipeline import make_pipeline
17
+ from sklearn.preprocessing import (
18
+ KBinsDiscretizer,
19
+ LabelBinarizer,
20
+ LabelEncoder,
21
+ TargetEncoder,
22
+ )
23
+
24
+
25
+ def _encode_target(X_ordinal, y_numeric, n_categories, smooth):
26
+ """Simple Python implementation of target encoding."""
27
+ cur_encodings = np.zeros(n_categories, dtype=np.float64)
28
+ y_mean = np.mean(y_numeric)
29
+
30
+ if smooth == "auto":
31
+ y_variance = np.var(y_numeric)
32
+ for c in range(n_categories):
33
+ y_subset = y_numeric[X_ordinal == c]
34
+ n_i = y_subset.shape[0]
35
+
36
+ if n_i == 0:
37
+ cur_encodings[c] = y_mean
38
+ continue
39
+
40
+ y_subset_variance = np.var(y_subset)
41
+ m = y_subset_variance / y_variance
42
+ lambda_ = n_i / (n_i + m)
43
+
44
+ cur_encodings[c] = lambda_ * np.mean(y_subset) + (1 - lambda_) * y_mean
45
+ return cur_encodings
46
+ else: # float
47
+ for c in range(n_categories):
48
+ y_subset = y_numeric[X_ordinal == c]
49
+ current_sum = np.sum(y_subset) + y_mean * smooth
50
+ current_cnt = y_subset.shape[0] + smooth
51
+ cur_encodings[c] = current_sum / current_cnt
52
+ return cur_encodings
53
+
54
+
55
+ @pytest.mark.parametrize(
56
+ "categories, unknown_value",
57
+ [
58
+ ([np.array([0, 1, 2], dtype=np.int64)], 4),
59
+ ([np.array([1.0, 3.0, np.nan], dtype=np.float64)], 6.0),
60
+ ([np.array(["cat", "dog", "snake"], dtype=object)], "bear"),
61
+ ("auto", 3),
62
+ ],
63
+ )
64
+ @pytest.mark.parametrize("smooth", [5.0, "auto"])
65
+ @pytest.mark.parametrize("target_type", ["binary", "continuous"])
66
+ def test_encoding(categories, unknown_value, global_random_seed, smooth, target_type):
67
+ """Check encoding for binary and continuous targets.
68
+
69
+ Compare the values returned by `TargetEncoder.fit_transform` against the
70
+ expected encodings for cv splits from a naive reference Python
71
+ implementation in _encode_target.
72
+ """
73
+
74
+ n_categories = 3
75
+ X_train_int_array = np.array([[0] * 20 + [1] * 30 + [2] * 40], dtype=np.int64).T
76
+ X_test_int_array = np.array([[0, 1, 2]], dtype=np.int64).T
77
+ n_samples = X_train_int_array.shape[0]
78
+
79
+ if categories == "auto":
80
+ X_train = X_train_int_array
81
+ X_test = X_test_int_array
82
+ else:
83
+ X_train = categories[0][X_train_int_array]
84
+ X_test = categories[0][X_test_int_array]
85
+
86
+ X_test = np.concatenate((X_test, [[unknown_value]]))
87
+
88
+ data_rng = np.random.RandomState(global_random_seed)
89
+ n_splits = 3
90
+ if target_type == "binary":
91
+ y_numeric = data_rng.randint(low=0, high=2, size=n_samples)
92
+ target_names = np.array(["cat", "dog"], dtype=object)
93
+ y_train = target_names[y_numeric]
94
+
95
+ else:
96
+ assert target_type == "continuous"
97
+ y_numeric = data_rng.uniform(low=-10, high=20, size=n_samples)
98
+ y_train = y_numeric
99
+
100
+ shuffled_idx = data_rng.permutation(n_samples)
101
+ X_train_int_array = X_train_int_array[shuffled_idx]
102
+ X_train = X_train[shuffled_idx]
103
+ y_train = y_train[shuffled_idx]
104
+ y_numeric = y_numeric[shuffled_idx]
105
+
106
+ # Define our CV splitting strategy
107
+ if target_type == "binary":
108
+ cv = StratifiedKFold(
109
+ n_splits=n_splits, random_state=global_random_seed, shuffle=True
110
+ )
111
+ else:
112
+ cv = KFold(n_splits=n_splits, random_state=global_random_seed, shuffle=True)
113
+
114
+ # Compute the expected values using our reference Python implementation of
115
+ # target encoding:
116
+ expected_X_fit_transform = np.empty_like(X_train_int_array, dtype=np.float64)
117
+
118
+ for train_idx, test_idx in cv.split(X_train_int_array, y_train):
119
+ X_, y_ = X_train_int_array[train_idx, 0], y_numeric[train_idx]
120
+ cur_encodings = _encode_target(X_, y_, n_categories, smooth)
121
+ expected_X_fit_transform[test_idx, 0] = cur_encodings[
122
+ X_train_int_array[test_idx, 0]
123
+ ]
124
+
125
+ # Check that we can obtain the same encodings by calling `fit_transform` on
126
+ # the estimator with the same CV parameters:
127
+ target_encoder = TargetEncoder(
128
+ smooth=smooth,
129
+ categories=categories,
130
+ cv=n_splits,
131
+ random_state=global_random_seed,
132
+ )
133
+
134
+ X_fit_transform = target_encoder.fit_transform(X_train, y_train)
135
+
136
+ assert target_encoder.target_type_ == target_type
137
+ assert_allclose(X_fit_transform, expected_X_fit_transform)
138
+ assert len(target_encoder.encodings_) == 1
139
+ if target_type == "binary":
140
+ assert_array_equal(target_encoder.classes_, target_names)
141
+ else:
142
+ assert target_encoder.classes_ is None
143
+
144
+ # compute encodings for all data to validate `transform`
145
+ y_mean = np.mean(y_numeric)
146
+ expected_encodings = _encode_target(
147
+ X_train_int_array[:, 0], y_numeric, n_categories, smooth
148
+ )
149
+ assert_allclose(target_encoder.encodings_[0], expected_encodings)
150
+ assert target_encoder.target_mean_ == pytest.approx(y_mean)
151
+
152
+ # Transform on test data, the last value is unknown so it is encoded as the target
153
+ # mean
154
+ expected_X_test_transform = np.concatenate(
155
+ (expected_encodings, np.array([y_mean]))
156
+ ).reshape(-1, 1)
157
+
158
+ X_test_transform = target_encoder.transform(X_test)
159
+ assert_allclose(X_test_transform, expected_X_test_transform)
160
+
161
+
162
+ @pytest.mark.parametrize(
163
+ "categories, unknown_values",
164
+ [
165
+ ([np.array([0, 1, 2], dtype=np.int64)], "auto"),
166
+ ([np.array(["cat", "dog", "snake"], dtype=object)], ["bear", "rabbit"]),
167
+ ],
168
+ )
169
+ @pytest.mark.parametrize(
170
+ "target_labels", [np.array([1, 2, 3]), np.array(["a", "b", "c"])]
171
+ )
172
+ @pytest.mark.parametrize("smooth", [5.0, "auto"])
173
+ def test_encoding_multiclass(
174
+ global_random_seed, categories, unknown_values, target_labels, smooth
175
+ ):
176
+ """Check encoding for multiclass targets."""
177
+ rng = np.random.RandomState(global_random_seed)
178
+
179
+ n_samples = 80
180
+ n_features = 2
181
+ feat_1_int = np.array(rng.randint(low=0, high=2, size=n_samples))
182
+ feat_2_int = np.array(rng.randint(low=0, high=3, size=n_samples))
183
+ feat_1 = categories[0][feat_1_int]
184
+ feat_2 = categories[0][feat_2_int]
185
+ X_train = np.column_stack((feat_1, feat_2))
186
+ X_train_int = np.column_stack((feat_1_int, feat_2_int))
187
+ categories_ = [[0, 1], [0, 1, 2]]
188
+
189
+ n_classes = 3
190
+ y_train_int = np.array(rng.randint(low=0, high=n_classes, size=n_samples))
191
+ y_train = target_labels[y_train_int]
192
+ y_train_enc = LabelBinarizer().fit_transform(y_train)
193
+
194
+ n_splits = 3
195
+ cv = StratifiedKFold(
196
+ n_splits=n_splits, random_state=global_random_seed, shuffle=True
197
+ )
198
+
199
+ # Manually compute encodings for cv splits to validate `fit_transform`
200
+ expected_X_fit_transform = np.empty(
201
+ (X_train_int.shape[0], X_train_int.shape[1] * n_classes),
202
+ dtype=np.float64,
203
+ )
204
+ for f_idx, cats in enumerate(categories_):
205
+ for c_idx in range(n_classes):
206
+ for train_idx, test_idx in cv.split(X_train, y_train):
207
+ y_class = y_train_enc[:, c_idx]
208
+ X_, y_ = X_train_int[train_idx, f_idx], y_class[train_idx]
209
+ current_encoding = _encode_target(X_, y_, len(cats), smooth)
210
+ # f_idx: 0, 0, 0, 1, 1, 1
211
+ # c_idx: 0, 1, 2, 0, 1, 2
212
+ # exp_idx: 0, 1, 2, 3, 4, 5
213
+ exp_idx = c_idx + (f_idx * n_classes)
214
+ expected_X_fit_transform[test_idx, exp_idx] = current_encoding[
215
+ X_train_int[test_idx, f_idx]
216
+ ]
217
+
218
+ target_encoder = TargetEncoder(
219
+ smooth=smooth,
220
+ cv=n_splits,
221
+ random_state=global_random_seed,
222
+ )
223
+ X_fit_transform = target_encoder.fit_transform(X_train, y_train)
224
+
225
+ assert target_encoder.target_type_ == "multiclass"
226
+ assert_allclose(X_fit_transform, expected_X_fit_transform)
227
+
228
+ # Manually compute encoding to validate `transform`
229
+ expected_encodings = []
230
+ for f_idx, cats in enumerate(categories_):
231
+ for c_idx in range(n_classes):
232
+ y_class = y_train_enc[:, c_idx]
233
+ current_encoding = _encode_target(
234
+ X_train_int[:, f_idx], y_class, len(cats), smooth
235
+ )
236
+ expected_encodings.append(current_encoding)
237
+
238
+ assert len(target_encoder.encodings_) == n_features * n_classes
239
+ for i in range(n_features * n_classes):
240
+ assert_allclose(target_encoder.encodings_[i], expected_encodings[i])
241
+ assert_array_equal(target_encoder.classes_, target_labels)
242
+
243
+ # Include unknown values at the end
244
+ X_test_int = np.array([[0, 1], [1, 2], [4, 5]])
245
+ if unknown_values == "auto":
246
+ X_test = X_test_int
247
+ else:
248
+ X_test = np.empty_like(X_test_int[:-1, :], dtype=object)
249
+ for column_idx in range(X_test_int.shape[1]):
250
+ X_test[:, column_idx] = categories[0][X_test_int[:-1, column_idx]]
251
+ # Add unknown values at end
252
+ X_test = np.vstack((X_test, unknown_values))
253
+
254
+ y_mean = np.mean(y_train_enc, axis=0)
255
+ expected_X_test_transform = np.empty(
256
+ (X_test_int.shape[0], X_test_int.shape[1] * n_classes),
257
+ dtype=np.float64,
258
+ )
259
+ n_rows = X_test_int.shape[0]
260
+ f_idx = [0, 0, 0, 1, 1, 1]
261
+ # Last row are unknowns, dealt with later
262
+ for row_idx in range(n_rows - 1):
263
+ for i, enc in enumerate(expected_encodings):
264
+ expected_X_test_transform[row_idx, i] = enc[X_test_int[row_idx, f_idx[i]]]
265
+
266
+ # Unknowns encoded as target mean for each class
267
+ # `y_mean` contains target mean for each class, thus cycle through mean of
268
+ # each class, `n_features` times
269
+ mean_idx = [0, 1, 2, 0, 1, 2]
270
+ for i in range(n_classes * n_features):
271
+ expected_X_test_transform[n_rows - 1, i] = y_mean[mean_idx[i]]
272
+
273
+ X_test_transform = target_encoder.transform(X_test)
274
+ assert_allclose(X_test_transform, expected_X_test_transform)
275
+
276
+
277
+ @pytest.mark.parametrize(
278
+ "X, categories",
279
+ [
280
+ (
281
+ np.array([[0] * 10 + [1] * 10 + [3]], dtype=np.int64).T, # 3 is unknown
282
+ [[0, 1, 2]],
283
+ ),
284
+ (
285
+ np.array(
286
+ [["cat"] * 10 + ["dog"] * 10 + ["snake"]], dtype=object
287
+ ).T, # snake is unknown
288
+ [["dog", "cat", "cow"]],
289
+ ),
290
+ ],
291
+ )
292
+ @pytest.mark.parametrize("smooth", [4.0, "auto"])
293
+ def test_custom_categories(X, categories, smooth):
294
+ """Custom categories with unknown categories that are not in training data."""
295
+ rng = np.random.RandomState(0)
296
+ y = rng.uniform(low=-10, high=20, size=X.shape[0])
297
+ enc = TargetEncoder(categories=categories, smooth=smooth, random_state=0).fit(X, y)
298
+
299
+ # The last element is unknown and encoded as the mean
300
+ y_mean = y.mean()
301
+ X_trans = enc.transform(X[-1:])
302
+ assert X_trans[0, 0] == pytest.approx(y_mean)
303
+
304
+ assert len(enc.encodings_) == 1
305
+ # custom category that is not in training data
306
+ assert enc.encodings_[0][-1] == pytest.approx(y_mean)
307
+
308
+
309
+ @pytest.mark.parametrize(
310
+ "y, msg",
311
+ [
312
+ ([1, 2, 0, 1], "Found input variables with inconsistent"),
313
+ (
314
+ np.array([[1, 2, 0], [1, 2, 3]]).T,
315
+ "Target type was inferred to be 'multiclass-multioutput'",
316
+ ),
317
+ ],
318
+ )
319
+ def test_errors(y, msg):
320
+ """Check invalidate input."""
321
+ X = np.array([[1, 0, 1]]).T
322
+
323
+ enc = TargetEncoder()
324
+ with pytest.raises(ValueError, match=msg):
325
+ enc.fit_transform(X, y)
326
+
327
+
328
+ def test_use_regression_target():
329
+ """Check inferred and specified `target_type` on regression target."""
330
+ X = np.array([[0, 1, 0, 1, 0, 1]]).T
331
+ y = np.array([1.0, 2.0, 3.0, 2.0, 3.0, 4.0])
332
+
333
+ enc = TargetEncoder(cv=2)
334
+ with pytest.warns(
335
+ UserWarning,
336
+ match=re.escape(
337
+ "The least populated class in y has only 1 members, which is less than"
338
+ " n_splits=2."
339
+ ),
340
+ ):
341
+ enc.fit_transform(X, y)
342
+ assert enc.target_type_ == "multiclass"
343
+
344
+ enc = TargetEncoder(cv=2, target_type="continuous")
345
+ enc.fit_transform(X, y)
346
+ assert enc.target_type_ == "continuous"
347
+
348
+
349
+ @pytest.mark.parametrize(
350
+ "y, feature_names",
351
+ [
352
+ ([1, 2] * 10, ["A", "B"]),
353
+ ([1, 2, 3] * 6 + [1, 2], ["A_1", "A_2", "A_3", "B_1", "B_2", "B_3"]),
354
+ (
355
+ ["y1", "y2", "y3"] * 6 + ["y1", "y2"],
356
+ ["A_y1", "A_y2", "A_y3", "B_y1", "B_y2", "B_y3"],
357
+ ),
358
+ ],
359
+ )
360
+ def test_feature_names_out_set_output(y, feature_names):
361
+ """Check TargetEncoder works with set_output."""
362
+ pd = pytest.importorskip("pandas")
363
+
364
+ X_df = pd.DataFrame({"A": ["a", "b"] * 10, "B": [1, 2] * 10})
365
+
366
+ enc_default = TargetEncoder(cv=2, smooth=3.0, random_state=0)
367
+ enc_default.set_output(transform="default")
368
+ enc_pandas = TargetEncoder(cv=2, smooth=3.0, random_state=0)
369
+ enc_pandas.set_output(transform="pandas")
370
+
371
+ X_default = enc_default.fit_transform(X_df, y)
372
+ X_pandas = enc_pandas.fit_transform(X_df, y)
373
+
374
+ assert_allclose(X_pandas.to_numpy(), X_default)
375
+ assert_array_equal(enc_pandas.get_feature_names_out(), feature_names)
376
+ assert_array_equal(enc_pandas.get_feature_names_out(), X_pandas.columns)
377
+
378
+
379
+ @pytest.mark.parametrize("to_pandas", [True, False])
380
+ @pytest.mark.parametrize("smooth", [1.0, "auto"])
381
+ @pytest.mark.parametrize("target_type", ["binary-ints", "binary-str", "continuous"])
382
+ def test_multiple_features_quick(to_pandas, smooth, target_type):
383
+ """Check target encoder with multiple features."""
384
+ X_ordinal = np.array(
385
+ [[1, 1], [0, 1], [1, 1], [2, 1], [1, 0], [0, 1], [1, 0], [0, 0]], dtype=np.int64
386
+ )
387
+ if target_type == "binary-str":
388
+ y_train = np.array(["a", "b", "a", "a", "b", "b", "a", "b"])
389
+ y_integer = LabelEncoder().fit_transform(y_train)
390
+ cv = StratifiedKFold(2, random_state=0, shuffle=True)
391
+ elif target_type == "binary-ints":
392
+ y_train = np.array([3, 4, 3, 3, 3, 4, 4, 4])
393
+ y_integer = LabelEncoder().fit_transform(y_train)
394
+ cv = StratifiedKFold(2, random_state=0, shuffle=True)
395
+ else:
396
+ y_train = np.array([3.0, 5.1, 2.4, 3.5, 4.1, 5.5, 10.3, 7.3], dtype=np.float32)
397
+ y_integer = y_train
398
+ cv = KFold(2, random_state=0, shuffle=True)
399
+ y_mean = np.mean(y_integer)
400
+ categories = [[0, 1, 2], [0, 1]]
401
+
402
+ X_test = np.array(
403
+ [
404
+ [0, 1],
405
+ [3, 0], # 3 is unknown
406
+ [1, 10], # 10 is unknown
407
+ ],
408
+ dtype=np.int64,
409
+ )
410
+
411
+ if to_pandas:
412
+ pd = pytest.importorskip("pandas")
413
+ # convert second feature to an object
414
+ X_train = pd.DataFrame(
415
+ {
416
+ "feat0": X_ordinal[:, 0],
417
+ "feat1": np.array(["cat", "dog"], dtype=object)[X_ordinal[:, 1]],
418
+ }
419
+ )
420
+ # "snake" is unknown
421
+ X_test = pd.DataFrame({"feat0": X_test[:, 0], "feat1": ["dog", "cat", "snake"]})
422
+ else:
423
+ X_train = X_ordinal
424
+
425
+ # manually compute encoding for fit_transform
426
+ expected_X_fit_transform = np.empty_like(X_ordinal, dtype=np.float64)
427
+ for f_idx, cats in enumerate(categories):
428
+ for train_idx, test_idx in cv.split(X_ordinal, y_integer):
429
+ X_, y_ = X_ordinal[train_idx, f_idx], y_integer[train_idx]
430
+ current_encoding = _encode_target(X_, y_, len(cats), smooth)
431
+ expected_X_fit_transform[test_idx, f_idx] = current_encoding[
432
+ X_ordinal[test_idx, f_idx]
433
+ ]
434
+
435
+ # manually compute encoding for transform
436
+ expected_encodings = []
437
+ for f_idx, cats in enumerate(categories):
438
+ current_encoding = _encode_target(
439
+ X_ordinal[:, f_idx], y_integer, len(cats), smooth
440
+ )
441
+ expected_encodings.append(current_encoding)
442
+
443
+ expected_X_test_transform = np.array(
444
+ [
445
+ [expected_encodings[0][0], expected_encodings[1][1]],
446
+ [y_mean, expected_encodings[1][0]],
447
+ [expected_encodings[0][1], y_mean],
448
+ ],
449
+ dtype=np.float64,
450
+ )
451
+
452
+ enc = TargetEncoder(smooth=smooth, cv=2, random_state=0)
453
+ X_fit_transform = enc.fit_transform(X_train, y_train)
454
+ assert_allclose(X_fit_transform, expected_X_fit_transform)
455
+
456
+ assert len(enc.encodings_) == 2
457
+ for i in range(2):
458
+ assert_allclose(enc.encodings_[i], expected_encodings[i])
459
+
460
+ X_test_transform = enc.transform(X_test)
461
+ assert_allclose(X_test_transform, expected_X_test_transform)
462
+
463
+
464
+ @pytest.mark.parametrize(
465
+ "y, y_mean",
466
+ [
467
+ (np.array([3.4] * 20), 3.4),
468
+ (np.array([0] * 20), 0),
469
+ (np.array(["a"] * 20, dtype=object), 0),
470
+ ],
471
+ ids=["continuous", "binary", "binary-string"],
472
+ )
473
+ @pytest.mark.parametrize("smooth", ["auto", 4.0, 0.0])
474
+ def test_constant_target_and_feature(y, y_mean, smooth):
475
+ """Check edge case where feature and target is constant."""
476
+ X = np.array([[1] * 20]).T
477
+ n_samples = X.shape[0]
478
+
479
+ enc = TargetEncoder(cv=2, smooth=smooth, random_state=0)
480
+ X_trans = enc.fit_transform(X, y)
481
+ assert_allclose(X_trans, np.repeat([[y_mean]], n_samples, axis=0))
482
+ assert enc.encodings_[0][0] == pytest.approx(y_mean)
483
+ assert enc.target_mean_ == pytest.approx(y_mean)
484
+
485
+ X_test = np.array([[1], [0]])
486
+ X_test_trans = enc.transform(X_test)
487
+ assert_allclose(X_test_trans, np.repeat([[y_mean]], 2, axis=0))
488
+
489
+
490
+ def test_fit_transform_not_associated_with_y_if_ordinal_categorical_is_not(
491
+ global_random_seed,
492
+ ):
493
+ cardinality = 30 # not too large, otherwise we need a very large n_samples
494
+ n_samples = 3000
495
+ rng = np.random.RandomState(global_random_seed)
496
+ y_train = rng.normal(size=n_samples)
497
+ X_train = rng.randint(0, cardinality, size=n_samples).reshape(-1, 1)
498
+
499
+ # Sort by y_train to attempt to cause a leak
500
+ y_sorted_indices = y_train.argsort()
501
+ y_train = y_train[y_sorted_indices]
502
+ X_train = X_train[y_sorted_indices]
503
+
504
+ target_encoder = TargetEncoder(shuffle=True, random_state=global_random_seed)
505
+ X_encoded_train_shuffled = target_encoder.fit_transform(X_train, y_train)
506
+
507
+ target_encoder = TargetEncoder(shuffle=False)
508
+ X_encoded_train_no_shuffled = target_encoder.fit_transform(X_train, y_train)
509
+
510
+ # Check that no information about y_train has leaked into X_train:
511
+ regressor = RandomForestRegressor(
512
+ n_estimators=10, min_samples_leaf=20, random_state=global_random_seed
513
+ )
514
+
515
+ # It's impossible to learn a good predictive model on the training set when
516
+ # using the original representation X_train or the target encoded
517
+ # representation with shuffled inner CV. For the latter, no information
518
+ # about y_train has inadvertently leaked into the prior used to generate
519
+ # `X_encoded_train_shuffled`:
520
+ cv = ShuffleSplit(n_splits=50, random_state=global_random_seed)
521
+ assert cross_val_score(regressor, X_train, y_train, cv=cv).mean() < 0.1
522
+ assert (
523
+ cross_val_score(regressor, X_encoded_train_shuffled, y_train, cv=cv).mean()
524
+ < 0.1
525
+ )
526
+
527
+ # Without the inner CV shuffling, a lot of information about y_train goes into the
528
+ # the per-fold y_train.mean() priors: shrinkage is no longer effective in this
529
+ # case and would no longer be able to prevent downstream over-fitting.
530
+ assert (
531
+ cross_val_score(regressor, X_encoded_train_no_shuffled, y_train, cv=cv).mean()
532
+ > 0.5
533
+ )
534
+
535
+
536
+ def test_smooth_zero():
537
+ """Check edge case with zero smoothing and cv does not contain category."""
538
+ X = np.array([[0, 0, 0, 0, 0, 1, 1, 1, 1, 1]]).T
539
+ y = np.array([2.1, 4.3, 1.2, 3.1, 1.0, 9.0, 10.3, 14.2, 13.3, 15.0])
540
+
541
+ enc = TargetEncoder(smooth=0.0, shuffle=False, cv=2)
542
+ X_trans = enc.fit_transform(X, y)
543
+
544
+ # With cv = 2, category 0 does not exist in the second half, thus
545
+ # it will be encoded as the mean of the second half
546
+ assert_allclose(X_trans[0], np.mean(y[5:]))
547
+
548
+ # category 1 does not exist in the first half, thus it will be encoded as
549
+ # the mean of the first half
550
+ assert_allclose(X_trans[-1], np.mean(y[:5]))
551
+
552
+
553
+ @pytest.mark.parametrize("smooth", [0.0, 1e3, "auto"])
554
+ def test_invariance_of_encoding_under_label_permutation(smooth, global_random_seed):
555
+ # Check that the encoding does not depend on the integer of the value of
556
+ # the integer labels. This is quite a trivial property but it is helpful
557
+ # to understand the following test.
558
+ rng = np.random.RandomState(global_random_seed)
559
+
560
+ # Random y and informative categorical X to make the test non-trivial when
561
+ # using smoothing.
562
+ y = rng.normal(size=1000)
563
+ n_categories = 30
564
+ X = KBinsDiscretizer(n_bins=n_categories, encode="ordinal").fit_transform(
565
+ y.reshape(-1, 1)
566
+ )
567
+
568
+ X_train, X_test, y_train, y_test = train_test_split(
569
+ X, y, random_state=global_random_seed
570
+ )
571
+
572
+ # Shuffle the labels to make sure that the encoding is invariant to the
573
+ # permutation of the labels
574
+ permutated_labels = rng.permutation(n_categories)
575
+ X_train_permuted = permutated_labels[X_train.astype(np.int32)]
576
+ X_test_permuted = permutated_labels[X_test.astype(np.int32)]
577
+
578
+ target_encoder = TargetEncoder(smooth=smooth, random_state=global_random_seed)
579
+ X_train_encoded = target_encoder.fit_transform(X_train, y_train)
580
+ X_test_encoded = target_encoder.transform(X_test)
581
+
582
+ X_train_permuted_encoded = target_encoder.fit_transform(X_train_permuted, y_train)
583
+ X_test_permuted_encoded = target_encoder.transform(X_test_permuted)
584
+
585
+ assert_allclose(X_train_encoded, X_train_permuted_encoded)
586
+ assert_allclose(X_test_encoded, X_test_permuted_encoded)
587
+
588
+
589
+ # TODO(1.5) remove warning filter when kbd's subsample default is changed
590
+ @pytest.mark.filterwarnings("ignore:In version 1.5 onwards, subsample=200_000")
591
+ @pytest.mark.parametrize("smooth", [0.0, "auto"])
592
+ def test_target_encoding_for_linear_regression(smooth, global_random_seed):
593
+ # Check some expected statistical properties when fitting a linear
594
+ # regression model on target encoded features depending on their relation
595
+ # with that target.
596
+
597
+ # In this test, we use the Ridge class with the "lsqr" solver and a little
598
+ # bit of regularization to implement a linear regression model that
599
+ # converges quickly for large `n_samples` and robustly in case of
600
+ # correlated features. Since we will fit this model on a mean centered
601
+ # target, we do not need to fit an intercept and this will help simplify
602
+ # the analysis with respect to the expected coefficients.
603
+ linear_regression = Ridge(alpha=1e-6, solver="lsqr", fit_intercept=False)
604
+
605
+ # Construct a random target variable. We need a large number of samples for
606
+ # this test to be stable across all values of the random seed.
607
+ n_samples = 50_000
608
+ rng = np.random.RandomState(global_random_seed)
609
+ y = rng.randn(n_samples)
610
+
611
+ # Generate a single informative ordinal feature with medium cardinality.
612
+ # Inject some irreducible noise to make it harder for a multivariate model
613
+ # to identify the informative feature from other pure noise features.
614
+ noise = 0.8 * rng.randn(n_samples)
615
+ n_categories = 100
616
+ X_informative = KBinsDiscretizer(
617
+ n_bins=n_categories,
618
+ encode="ordinal",
619
+ strategy="uniform",
620
+ random_state=rng,
621
+ ).fit_transform((y + noise).reshape(-1, 1))
622
+
623
+ # Let's permute the labels to hide the fact that this feature is
624
+ # informative to naive linear regression model trained on the raw ordinal
625
+ # values. As highlighted in the previous test, the target encoding should be
626
+ # invariant to such a permutation.
627
+ permutated_labels = rng.permutation(n_categories)
628
+ X_informative = permutated_labels[X_informative.astype(np.int32)]
629
+
630
+ # Generate a shuffled copy of the informative feature to destroy the
631
+ # relationship with the target.
632
+ X_shuffled = rng.permutation(X_informative)
633
+
634
+ # Also include a very high cardinality categorical feature that is by
635
+ # itself independent of the target variable: target encoding such a feature
636
+ # without internal cross-validation should cause catastrophic overfitting
637
+ # for the downstream regressor, even with shrinkage. This kind of features
638
+ # typically represents near unique identifiers of samples. In general they
639
+ # should be removed from a machine learning datasets but here we want to
640
+ # study the ability of the default behavior of TargetEncoder to mitigate
641
+ # them automatically.
642
+ X_near_unique_categories = rng.choice(
643
+ int(0.9 * n_samples), size=n_samples, replace=True
644
+ ).reshape(-1, 1)
645
+
646
+ # Assemble the dataset and do a train-test split:
647
+ X = np.concatenate(
648
+ [X_informative, X_shuffled, X_near_unique_categories],
649
+ axis=1,
650
+ )
651
+ X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
652
+
653
+ # Let's first check that a linear regression model trained on the raw
654
+ # features underfits because of the meaning-less ordinal encoding of the
655
+ # labels.
656
+ raw_model = linear_regression.fit(X_train, y_train)
657
+ assert raw_model.score(X_train, y_train) < 0.1
658
+ assert raw_model.score(X_test, y_test) < 0.1
659
+
660
+ # Now do the same with target encoding using the internal CV mechanism
661
+ # implemented when using fit_transform.
662
+ model_with_cv = make_pipeline(
663
+ TargetEncoder(smooth=smooth, random_state=rng), linear_regression
664
+ ).fit(X_train, y_train)
665
+
666
+ # This model should be able to fit the data well and also generalise to the
667
+ # test data (assuming that the binning is fine-grained enough). The R2
668
+ # scores are not perfect because of the noise injected during the
669
+ # generation of the unique informative feature.
670
+ coef = model_with_cv[-1].coef_
671
+ assert model_with_cv.score(X_train, y_train) > 0.5, coef
672
+ assert model_with_cv.score(X_test, y_test) > 0.5, coef
673
+
674
+ # The target encoder recovers the linear relationship with slope 1 between
675
+ # the target encoded unique informative predictor and the target. Since the
676
+ # target encoding of the 2 other features is not informative thanks to the
677
+ # use of internal cross-validation, the multivariate linear regressor
678
+ # assigns a coef of 1 to the first feature and 0 to the other 2.
679
+ assert coef[0] == pytest.approx(1, abs=1e-2)
680
+ assert (np.abs(coef[1:]) < 0.2).all()
681
+
682
+ # Let's now disable the internal cross-validation by calling fit and then
683
+ # transform separately on the training set:
684
+ target_encoder = TargetEncoder(smooth=smooth, random_state=rng).fit(
685
+ X_train, y_train
686
+ )
687
+ X_enc_no_cv_train = target_encoder.transform(X_train)
688
+ X_enc_no_cv_test = target_encoder.transform(X_test)
689
+ model_no_cv = linear_regression.fit(X_enc_no_cv_train, y_train)
690
+
691
+ # The linear regression model should always overfit because it assigns
692
+ # too much weight to the extremely high cardinality feature relatively to
693
+ # the informative feature. Note that this is the case even when using
694
+ # the empirical Bayes smoothing which is not enough to prevent such
695
+ # overfitting alone.
696
+ coef = model_no_cv.coef_
697
+ assert model_no_cv.score(X_enc_no_cv_train, y_train) > 0.7, coef
698
+ assert model_no_cv.score(X_enc_no_cv_test, y_test) < 0.5, coef
699
+
700
+ # The model overfits because it assigns too much weight to the high
701
+ # cardinality yet non-informative feature instead of the lower
702
+ # cardinality yet informative feature:
703
+ assert abs(coef[0]) < abs(coef[2])
704
+
705
+
706
+ def test_pandas_copy_on_write():
707
+ """
708
+ Test target-encoder cython code when y is read-only.
709
+
710
+ The numpy array underlying df["y"] is read-only when copy-on-write is enabled.
711
+ Non-regression test for gh-27879.
712
+ """
713
+ pd = pytest.importorskip("pandas", minversion="2.0")
714
+ with pd.option_context("mode.copy_on_write", True):
715
+ df = pd.DataFrame({"x": ["a", "b", "b"], "y": [4.0, 5.0, 6.0]})
716
+ TargetEncoder(target_type="continuous").fit(df[["x"]], df["y"])
env-llmeval/lib/python3.10/site-packages/sklearn/utils/tests/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (184 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/sklearn/utils/tests/__pycache__/test_arpack.cpython-310.pyc ADDED
Binary file (656 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/sklearn/utils/tests/__pycache__/test_array_api.cpython-310.pyc ADDED
Binary file (10.1 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sklearn/utils/tests/__pycache__/test_arrayfuncs.cpython-310.pyc ADDED
Binary file (1.32 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sklearn/utils/tests/__pycache__/test_bunch.cpython-310.pyc ADDED
Binary file (996 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/sklearn/utils/tests/__pycache__/test_class_weight.cpython-310.pyc ADDED
Binary file (8.05 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sklearn/utils/tests/__pycache__/test_cython_blas.cpython-310.pyc ADDED
Binary file (5.98 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sklearn/utils/tests/__pycache__/test_cython_templating.cpython-310.pyc ADDED
Binary file (1.05 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sklearn/utils/tests/__pycache__/test_deprecation.cpython-310.pyc ADDED
Binary file (3.23 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sklearn/utils/tests/__pycache__/test_encode.cpython-310.pyc ADDED
Binary file (6.39 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sklearn/utils/tests/__pycache__/test_estimator_checks.cpython-310.pyc ADDED
Binary file (43.1 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sklearn/utils/tests/__pycache__/test_estimator_html_repr.cpython-310.pyc ADDED
Binary file (15.9 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sklearn/utils/tests/__pycache__/test_extmath.cpython-310.pyc ADDED
Binary file (25 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sklearn/utils/tests/__pycache__/test_fast_dict.cpython-310.pyc ADDED
Binary file (1.58 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sklearn/utils/tests/__pycache__/test_fixes.cpython-310.pyc ADDED
Binary file (3.49 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sklearn/utils/tests/__pycache__/test_graph.cpython-310.pyc ADDED
Binary file (2.38 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sklearn/utils/tests/__pycache__/test_metaestimators.cpython-310.pyc ADDED
Binary file (2.21 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sklearn/utils/tests/__pycache__/test_mocking.cpython-310.pyc ADDED
Binary file (5.55 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sklearn/utils/tests/__pycache__/test_multiclass.cpython-310.pyc ADDED
Binary file (13.9 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sklearn/utils/tests/__pycache__/test_murmurhash.cpython-310.pyc ADDED
Binary file (2.55 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sklearn/utils/tests/__pycache__/test_optimize.cpython-310.pyc ADDED
Binary file (1.49 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sklearn/utils/tests/__pycache__/test_parallel.cpython-310.pyc ADDED
Binary file (4.26 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sklearn/utils/tests/__pycache__/test_param_validation.cpython-310.pyc ADDED
Binary file (21.7 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sklearn/utils/tests/__pycache__/test_plotting.cpython-310.pyc ADDED
Binary file (1.68 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sklearn/utils/tests/__pycache__/test_pprint.cpython-310.pyc ADDED
Binary file (23.9 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sklearn/utils/tests/__pycache__/test_random.cpython-310.pyc ADDED
Binary file (4.59 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sklearn/utils/tests/__pycache__/test_response.cpython-310.pyc ADDED
Binary file (8.63 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sklearn/utils/tests/__pycache__/test_seq_dataset.cpython-310.pyc ADDED
Binary file (5.24 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sklearn/utils/tests/__pycache__/test_set_output.cpython-310.pyc ADDED
Binary file (16 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sklearn/utils/tests/__pycache__/test_shortest_path.cpython-310.pyc ADDED
Binary file (1.58 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sklearn/utils/tests/__pycache__/test_show_versions.cpython-310.pyc ADDED
Binary file (1.32 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sklearn/utils/tests/__pycache__/test_sparsefuncs.cpython-310.pyc ADDED
Binary file (21.6 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sklearn/utils/tests/__pycache__/test_stats.cpython-310.pyc ADDED
Binary file (3.09 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sklearn/utils/tests/__pycache__/test_tags.cpython-310.pyc ADDED
Binary file (1.54 kB). View file