Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- llmeval-env/lib/python3.10/site-packages/transformers/models/bloom/__init__.py +103 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/bloom/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/bloom/__pycache__/configuration_bloom.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/bloom/__pycache__/convert_bloom_original_checkpoint_to_pytorch.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/bloom/__pycache__/modeling_bloom.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/bloom/__pycache__/modeling_flax_bloom.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/bloom/__pycache__/tokenization_bloom_fast.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/bloom/configuration_bloom.py +236 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/bloom/convert_bloom_original_checkpoint_to_pytorch.py +255 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/bloom/modeling_bloom.py +1243 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/bloom/modeling_flax_bloom.py +734 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/bloom/tokenization_bloom_fast.py +164 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/esm/__init__.py +94 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/esm/configuration_esm.py +361 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/esm/convert_esm.py +400 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/esm/modeling_esm.py +1265 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/esm/modeling_esmfold.py +2322 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/esm/modeling_tf_esm.py +1567 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/esm/openfold_utils/feats.py +255 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/esm/tokenization_esm.py +143 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv2/__init__.py +104 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv2/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv2/__pycache__/configuration_layoutlmv2.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv2/__pycache__/feature_extraction_layoutlmv2.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv2/__pycache__/image_processing_layoutlmv2.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv2/__pycache__/modeling_layoutlmv2.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv2/__pycache__/processing_layoutlmv2.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv2/__pycache__/tokenization_layoutlmv2.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv2/__pycache__/tokenization_layoutlmv2_fast.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv2/configuration_layoutlmv2.py +222 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv2/feature_extraction_layoutlmv2.py +35 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv2/modeling_layoutlmv2.py +1407 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv2/processing_layoutlmv2.py +201 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv2/tokenization_layoutlmv2.py +1542 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv2/tokenization_layoutlmv2_fast.py +793 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv3/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv3/__pycache__/configuration_layoutlmv3.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv3/__pycache__/feature_extraction_layoutlmv3.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv3/__pycache__/image_processing_layoutlmv3.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv3/__pycache__/modeling_layoutlmv3.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv3/__pycache__/modeling_tf_layoutlmv3.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv3/__pycache__/processing_layoutlmv3.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv3/__pycache__/tokenization_layoutlmv3_fast.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv3/tokenization_layoutlmv3_fast.py +837 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/mbart50/__init__.py +58 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/mbart50/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/mbart50/__pycache__/tokenization_mbart50.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/mbart50/tokenization_mbart50.py +354 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/mbart50/tokenization_mbart50_fast.py +259 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/poolformer/__pycache__/__init__.cpython-310.pyc +0 -0
llmeval-env/lib/python3.10/site-packages/transformers/models/bloom/__init__.py
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from typing import TYPE_CHECKING
|
16 |
+
|
17 |
+
from ...utils import (
|
18 |
+
OptionalDependencyNotAvailable,
|
19 |
+
_LazyModule,
|
20 |
+
is_flax_available,
|
21 |
+
is_tokenizers_available,
|
22 |
+
is_torch_available,
|
23 |
+
)
|
24 |
+
|
25 |
+
|
26 |
+
_import_structure = {
|
27 |
+
"configuration_bloom": ["BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP", "BloomConfig", "BloomOnnxConfig"],
|
28 |
+
}
|
29 |
+
try:
|
30 |
+
if not is_tokenizers_available():
|
31 |
+
raise OptionalDependencyNotAvailable()
|
32 |
+
except OptionalDependencyNotAvailable:
|
33 |
+
pass
|
34 |
+
else:
|
35 |
+
_import_structure["tokenization_bloom_fast"] = ["BloomTokenizerFast"]
|
36 |
+
|
37 |
+
try:
|
38 |
+
if not is_torch_available():
|
39 |
+
raise OptionalDependencyNotAvailable()
|
40 |
+
except OptionalDependencyNotAvailable:
|
41 |
+
pass
|
42 |
+
else:
|
43 |
+
_import_structure["modeling_bloom"] = [
|
44 |
+
"BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST",
|
45 |
+
"BloomForCausalLM",
|
46 |
+
"BloomModel",
|
47 |
+
"BloomPreTrainedModel",
|
48 |
+
"BloomForSequenceClassification",
|
49 |
+
"BloomForTokenClassification",
|
50 |
+
"BloomForQuestionAnswering",
|
51 |
+
]
|
52 |
+
|
53 |
+
try:
|
54 |
+
if not is_flax_available():
|
55 |
+
raise OptionalDependencyNotAvailable()
|
56 |
+
except OptionalDependencyNotAvailable:
|
57 |
+
pass
|
58 |
+
else:
|
59 |
+
_import_structure["modeling_flax_bloom"] = [
|
60 |
+
"FlaxBloomForCausalLM",
|
61 |
+
"FlaxBloomModel",
|
62 |
+
"FlaxBloomPreTrainedModel",
|
63 |
+
]
|
64 |
+
|
65 |
+
|
66 |
+
if TYPE_CHECKING:
|
67 |
+
from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig
|
68 |
+
|
69 |
+
try:
|
70 |
+
if not is_tokenizers_available():
|
71 |
+
raise OptionalDependencyNotAvailable()
|
72 |
+
except OptionalDependencyNotAvailable:
|
73 |
+
pass
|
74 |
+
else:
|
75 |
+
from .tokenization_bloom_fast import BloomTokenizerFast
|
76 |
+
|
77 |
+
try:
|
78 |
+
if not is_torch_available():
|
79 |
+
raise OptionalDependencyNotAvailable()
|
80 |
+
except OptionalDependencyNotAvailable:
|
81 |
+
pass
|
82 |
+
else:
|
83 |
+
from .modeling_bloom import (
|
84 |
+
BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST,
|
85 |
+
BloomForCausalLM,
|
86 |
+
BloomForQuestionAnswering,
|
87 |
+
BloomForSequenceClassification,
|
88 |
+
BloomForTokenClassification,
|
89 |
+
BloomModel,
|
90 |
+
BloomPreTrainedModel,
|
91 |
+
)
|
92 |
+
|
93 |
+
try:
|
94 |
+
if not is_flax_available():
|
95 |
+
raise OptionalDependencyNotAvailable()
|
96 |
+
except OptionalDependencyNotAvailable:
|
97 |
+
pass
|
98 |
+
else:
|
99 |
+
from .modeling_flax_bloom import FlaxBloomForCausalLM, FlaxBloomModel, FlaxBloomPreTrainedModel
|
100 |
+
else:
|
101 |
+
import sys
|
102 |
+
|
103 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/bloom/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.57 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/bloom/__pycache__/configuration_bloom.cpython-310.pyc
ADDED
Binary file (8.79 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/bloom/__pycache__/convert_bloom_original_checkpoint_to_pytorch.cpython-310.pyc
ADDED
Binary file (6.27 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/bloom/__pycache__/modeling_bloom.cpython-310.pyc
ADDED
Binary file (35.4 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/bloom/__pycache__/modeling_flax_bloom.cpython-310.pyc
ADDED
Binary file (21.2 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/bloom/__pycache__/tokenization_bloom_fast.cpython-310.pyc
ADDED
Binary file (5.71 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/bloom/configuration_bloom.py
ADDED
@@ -0,0 +1,236 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 the Big Science Workshop and HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Bloom configuration"""
|
16 |
+
from collections import OrderedDict
|
17 |
+
from typing import TYPE_CHECKING, Any, List, Mapping, Optional
|
18 |
+
|
19 |
+
from packaging import version
|
20 |
+
|
21 |
+
|
22 |
+
if TYPE_CHECKING:
|
23 |
+
from ... import PreTrainedTokenizer, TensorType
|
24 |
+
|
25 |
+
from ...configuration_utils import PretrainedConfig
|
26 |
+
from ...onnx import OnnxConfigWithPast, PatchingSpec
|
27 |
+
from ...utils import is_torch_available, logging
|
28 |
+
|
29 |
+
|
30 |
+
logger = logging.get_logger(__name__)
|
31 |
+
|
32 |
+
|
33 |
+
from ..deprecated._archive_maps import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
34 |
+
|
35 |
+
|
36 |
+
class BloomConfig(PretrainedConfig):
|
37 |
+
"""
|
38 |
+
This is the configuration class to store the configuration of a [`BloomModel`]. It is used to instantiate a Bloom
|
39 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
40 |
+
defaults will yield a similar configuration to the Bloom architecture
|
41 |
+
[bigscience/bloom](https://huggingface.co/bigscience/bloom).
|
42 |
+
|
43 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
44 |
+
documentation from [`PretrainedConfig`] for more information.
|
45 |
+
|
46 |
+
|
47 |
+
Args:
|
48 |
+
vocab_size (`int`, *optional*, defaults to 250880):
|
49 |
+
Vocabulary size of the Bloom model. Defines the maximum number of different tokens that can be represented
|
50 |
+
by the `inputs_ids` passed when calling [`BloomModel`]. Check [this
|
51 |
+
discussion](https://huggingface.co/bigscience/bloom/discussions/120#633d28389addb8530b406c2a) on how the
|
52 |
+
`vocab_size` has been defined.
|
53 |
+
hidden_size (`int`, *optional*, defaults to 64):
|
54 |
+
Dimensionality of the embeddings and hidden states.
|
55 |
+
n_layer (`int`, *optional*, defaults to 2):
|
56 |
+
Number of hidden layers in the Transformer encoder.
|
57 |
+
n_head (`int`, *optional*, defaults to 8):
|
58 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
59 |
+
layer_norm_epsilon (`float`, *optional*, defaults to 1e-5):
|
60 |
+
The epsilon to use in the layer normalization layers.
|
61 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
62 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
63 |
+
apply_residual_connection_post_layernorm (`bool`, *optional*, defaults to `False`):
|
64 |
+
If enabled, use the layer norm of the hidden states as the residual in the transformer blocks
|
65 |
+
hidden_dropout (`float`, *optional*, defaults to 0.1):
|
66 |
+
Dropout rate of the dropout function on the bias dropout.
|
67 |
+
attention_dropout (`float`, *optional*, defaults to 0.1):
|
68 |
+
Dropout rate applied to the attention probs
|
69 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
70 |
+
Whether or not the model should return the last key/values attentions (not used by all models).
|
71 |
+
pretraining_tp (`int`, *optional*, defaults to `1`):
|
72 |
+
Experimental feature. Tensor parallelism rank used during pretraining with Megatron. Please refer to [this
|
73 |
+
document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
|
74 |
+
necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
|
75 |
+
issue](https://github.com/pytorch/pytorch/issues/76232). Note also that this is enabled only when
|
76 |
+
`slow_but_exact=True`.
|
77 |
+
slow_but_exact (`bool`, *optional*, defaults to `False`):
|
78 |
+
Experimental feature. Whether to use slow but exact implementation of the attention mechanism. While
|
79 |
+
merging the TP rank tensors, due to slicing operations the results may be slightly different between the
|
80 |
+
model trained on Megatron and our model. Please refer to [this
|
81 |
+
issue](https://github.com/pytorch/pytorch/issues/76232). A solution to obtain more accurate results is to
|
82 |
+
enable this feature. Enabling this will hurt the computational time of the inference. Will be probably
|
83 |
+
resolved in the future once the main model has been fine-tuned with TP_rank=1.
|
84 |
+
|
85 |
+
Example:
|
86 |
+
|
87 |
+
```python
|
88 |
+
>>> from transformers import BloomConfig, BloomModel
|
89 |
+
|
90 |
+
>>> # Initializing a Bloom configuration
|
91 |
+
>>> configuration = BloomConfig()
|
92 |
+
|
93 |
+
>>> # Initializing a model (with random weights) from the configuration
|
94 |
+
>>> model = BloomModel(configuration)
|
95 |
+
|
96 |
+
>>> # Accessing the model configuration
|
97 |
+
>>> configuration = model.config
|
98 |
+
```"""
|
99 |
+
|
100 |
+
model_type = "bloom"
|
101 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
102 |
+
attribute_map = {
|
103 |
+
"num_hidden_layers": "n_layer",
|
104 |
+
"num_attention_heads": "n_head",
|
105 |
+
}
|
106 |
+
|
107 |
+
def __init__(
|
108 |
+
self,
|
109 |
+
vocab_size=250880,
|
110 |
+
hidden_size=64,
|
111 |
+
n_layer=2,
|
112 |
+
n_head=8,
|
113 |
+
layer_norm_epsilon=1e-5,
|
114 |
+
initializer_range=0.02,
|
115 |
+
use_cache=True,
|
116 |
+
bos_token_id=1,
|
117 |
+
eos_token_id=2,
|
118 |
+
apply_residual_connection_post_layernorm=False,
|
119 |
+
hidden_dropout=0.0,
|
120 |
+
attention_dropout=0.0,
|
121 |
+
pretraining_tp=1, # TP rank used when training with megatron
|
122 |
+
slow_but_exact=False,
|
123 |
+
**kwargs,
|
124 |
+
):
|
125 |
+
self.vocab_size = vocab_size
|
126 |
+
# Backward compatibility with n_embed kwarg
|
127 |
+
n_embed = kwargs.pop("n_embed", None)
|
128 |
+
self.hidden_size = hidden_size if n_embed is None else n_embed
|
129 |
+
self.n_layer = n_layer
|
130 |
+
self.n_head = n_head
|
131 |
+
self.layer_norm_epsilon = layer_norm_epsilon
|
132 |
+
self.initializer_range = initializer_range
|
133 |
+
self.use_cache = use_cache
|
134 |
+
self.pretraining_tp = pretraining_tp
|
135 |
+
self.apply_residual_connection_post_layernorm = apply_residual_connection_post_layernorm
|
136 |
+
self.hidden_dropout = hidden_dropout
|
137 |
+
self.attention_dropout = attention_dropout
|
138 |
+
|
139 |
+
self.bos_token_id = bos_token_id
|
140 |
+
self.eos_token_id = eos_token_id
|
141 |
+
self.slow_but_exact = slow_but_exact
|
142 |
+
|
143 |
+
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
144 |
+
|
145 |
+
|
146 |
+
class BloomOnnxConfig(OnnxConfigWithPast):
|
147 |
+
torch_onnx_minimum_version = version.parse("1.12")
|
148 |
+
|
149 |
+
def __init__(
|
150 |
+
self,
|
151 |
+
config: PretrainedConfig,
|
152 |
+
task: str = "default",
|
153 |
+
patching_specs: List[PatchingSpec] = None,
|
154 |
+
use_past: bool = False,
|
155 |
+
):
|
156 |
+
super().__init__(config, task=task, patching_specs=patching_specs, use_past=use_past)
|
157 |
+
if not getattr(self._config, "pad_token_id", None):
|
158 |
+
# TODO: how to do that better?
|
159 |
+
self._config.pad_token_id = 0
|
160 |
+
|
161 |
+
@property
|
162 |
+
def inputs(self) -> Mapping[str, Mapping[int, str]]:
|
163 |
+
common_inputs = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}})
|
164 |
+
if self.use_past:
|
165 |
+
# BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344
|
166 |
+
self.fill_with_past_key_values_(common_inputs, direction="inputs", inverted_values_shape=True)
|
167 |
+
common_inputs["attention_mask"] = {0: "batch", 1: "past_sequence + sequence"}
|
168 |
+
else:
|
169 |
+
common_inputs["attention_mask"] = {0: "batch", 1: "sequence"}
|
170 |
+
|
171 |
+
return common_inputs
|
172 |
+
|
173 |
+
@property
|
174 |
+
def num_layers(self) -> int:
|
175 |
+
return self._config.n_layer
|
176 |
+
|
177 |
+
@property
|
178 |
+
def num_attention_heads(self) -> int:
|
179 |
+
return self._config.n_head
|
180 |
+
|
181 |
+
@property
|
182 |
+
def atol_for_validation(self) -> float:
|
183 |
+
return 1e-3
|
184 |
+
|
185 |
+
def generate_dummy_inputs(
|
186 |
+
self,
|
187 |
+
tokenizer: "PreTrainedTokenizer",
|
188 |
+
batch_size: int = -1,
|
189 |
+
seq_length: int = -1,
|
190 |
+
is_pair: bool = False,
|
191 |
+
framework: Optional["TensorType"] = None,
|
192 |
+
) -> Mapping[str, Any]:
|
193 |
+
common_inputs = super(OnnxConfigWithPast, self).generate_dummy_inputs(
|
194 |
+
tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework
|
195 |
+
)
|
196 |
+
|
197 |
+
# We need to order the input in the way they appears in the forward()
|
198 |
+
ordered_inputs = OrderedDict({"input_ids": common_inputs["input_ids"]})
|
199 |
+
|
200 |
+
# Need to add the past_keys
|
201 |
+
if self.use_past:
|
202 |
+
if not is_torch_available():
|
203 |
+
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.")
|
204 |
+
else:
|
205 |
+
import torch
|
206 |
+
|
207 |
+
batch, seqlen = common_inputs["input_ids"].shape
|
208 |
+
# Not using the same length for past_key_values
|
209 |
+
past_key_values_length = seqlen + 2
|
210 |
+
head_dim = self._config.hidden_size // self.num_attention_heads
|
211 |
+
past_key_shape = (
|
212 |
+
batch * self.num_attention_heads,
|
213 |
+
head_dim,
|
214 |
+
past_key_values_length,
|
215 |
+
)
|
216 |
+
past_value_shape = (
|
217 |
+
batch * self.num_attention_heads,
|
218 |
+
past_key_values_length,
|
219 |
+
head_dim,
|
220 |
+
)
|
221 |
+
ordered_inputs["past_key_values"] = [
|
222 |
+
(torch.zeros(past_key_shape), torch.zeros(past_value_shape)) for _ in range(self.num_layers)
|
223 |
+
]
|
224 |
+
|
225 |
+
ordered_inputs["attention_mask"] = common_inputs["attention_mask"]
|
226 |
+
if self.use_past:
|
227 |
+
mask_dtype = ordered_inputs["attention_mask"].dtype
|
228 |
+
ordered_inputs["attention_mask"] = torch.cat(
|
229 |
+
[ordered_inputs["attention_mask"], torch.ones(batch, past_key_values_length, dtype=mask_dtype)], dim=1
|
230 |
+
)
|
231 |
+
|
232 |
+
return ordered_inputs
|
233 |
+
|
234 |
+
@property
|
235 |
+
def default_onnx_opset(self) -> int:
|
236 |
+
return 13
|
llmeval-env/lib/python3.10/site-packages/transformers/models/bloom/convert_bloom_original_checkpoint_to_pytorch.py
ADDED
@@ -0,0 +1,255 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Convert BigScience BLOOM checkpoint."""
|
16 |
+
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import json
|
20 |
+
import os
|
21 |
+
import re
|
22 |
+
|
23 |
+
import torch
|
24 |
+
|
25 |
+
from transformers import BloomConfig, BloomModel
|
26 |
+
from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME
|
27 |
+
from transformers.utils import logging
|
28 |
+
|
29 |
+
|
30 |
+
logging.set_verbosity_info()
|
31 |
+
|
32 |
+
WEIGHTS_TO_AVERAGE_ENDSWITH = [
|
33 |
+
"word_embeddings_layernorm.weight",
|
34 |
+
"word_embeddings_layernorm.bias",
|
35 |
+
"input_layernorm.weight",
|
36 |
+
"input_layernorm.bias",
|
37 |
+
"post_attention_layernorm.weight",
|
38 |
+
"post_attention_layernorm.bias",
|
39 |
+
"self_attention.dense.bias",
|
40 |
+
"mlp.dense_4h_to_h.bias",
|
41 |
+
"ln_f.weight",
|
42 |
+
"ln_f.bias",
|
43 |
+
]
|
44 |
+
|
45 |
+
WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN = [
|
46 |
+
"mlp.dense_4h_to_h.weight",
|
47 |
+
"self_attention.dense.weight",
|
48 |
+
]
|
49 |
+
|
50 |
+
|
51 |
+
def layer_name_mapping(key, file):
|
52 |
+
"""Convert Megatron-DeepSpeed TP/PP weights mapping in transformers PP only"""
|
53 |
+
# Handle first and last layers
|
54 |
+
layer_rename_map = {
|
55 |
+
"word_embeddings.weight": "word_embeddings.weight",
|
56 |
+
"word_embeddings.norm.weight": "word_embeddings_layernorm.weight",
|
57 |
+
"word_embeddings.norm.bias": "word_embeddings_layernorm.bias",
|
58 |
+
"weight": "ln_f.weight",
|
59 |
+
"bias": "ln_f.bias",
|
60 |
+
}
|
61 |
+
|
62 |
+
if key in layer_rename_map:
|
63 |
+
return layer_rename_map[key]
|
64 |
+
|
65 |
+
# Handle transformer blocks
|
66 |
+
layer_number = int(re.match(r".*layer_(\d*).*", file)[1])
|
67 |
+
layer_number -= 3
|
68 |
+
return f"h.{layer_number}." + key
|
69 |
+
|
70 |
+
|
71 |
+
def get_dtype_size(dtype):
|
72 |
+
if dtype == torch.bool:
|
73 |
+
return 1 / 8
|
74 |
+
bit_search = re.search(r"[^\d](\d+)$", str(dtype))
|
75 |
+
if bit_search is None:
|
76 |
+
raise ValueError(f"`dtype` is not a valid dtype: {dtype}.")
|
77 |
+
bit_size = int(bit_search.groups()[0])
|
78 |
+
return bit_size // 8
|
79 |
+
|
80 |
+
|
81 |
+
def convert_bloom_checkpoint_to_pytorch(
|
82 |
+
bloom_checkpoint_path, bloom_config_file, pytorch_dump_folder_path, shard_model, pretraining_tp
|
83 |
+
):
|
84 |
+
# Construct model
|
85 |
+
if bloom_config_file == "":
|
86 |
+
config = BloomConfig()
|
87 |
+
else:
|
88 |
+
config = BloomConfig.from_json_file(bloom_config_file)
|
89 |
+
|
90 |
+
if shard_model:
|
91 |
+
file_names = os.listdir(bloom_checkpoint_path)
|
92 |
+
file_names = sorted(filter(lambda s: s.startswith("layer") and "model_00" in s, file_names))
|
93 |
+
|
94 |
+
index_dict = {"weight_map": {}, "metadata": {}}
|
95 |
+
total_size = 0
|
96 |
+
|
97 |
+
missing_keys = None
|
98 |
+
|
99 |
+
config = BloomConfig()
|
100 |
+
|
101 |
+
for j, file in enumerate(file_names):
|
102 |
+
print("Processing file: {}".format(file))
|
103 |
+
tensors = None
|
104 |
+
|
105 |
+
for i in range(pretraining_tp):
|
106 |
+
# load all TP files
|
107 |
+
f_name = file.replace("model_00", f"model_0{i}")
|
108 |
+
temp = torch.load(os.path.join(bloom_checkpoint_path, f_name), map_location="cpu")
|
109 |
+
|
110 |
+
# Rename keys in the transformers names
|
111 |
+
keys = list(temp.keys())
|
112 |
+
for key in keys:
|
113 |
+
temp[layer_name_mapping(key, file)] = temp.pop(key)
|
114 |
+
|
115 |
+
if tensors is None:
|
116 |
+
tensors = temp
|
117 |
+
else:
|
118 |
+
for key in tensors.keys():
|
119 |
+
if any(key.endswith(end) for end in WEIGHTS_TO_AVERAGE_ENDSWITH):
|
120 |
+
# We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425)
|
121 |
+
tensors[key] += temp[key]
|
122 |
+
else:
|
123 |
+
# Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel
|
124 |
+
cat_dim = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN) else 0
|
125 |
+
# We concatenate these weights accross TP ranks
|
126 |
+
tensors[key] = torch.cat([tensors[key], temp[key]], dim=cat_dim)
|
127 |
+
|
128 |
+
# Divide by the number of TP the weights we want to average
|
129 |
+
for key in tensors.keys():
|
130 |
+
if any(key.endswith(end) for end in WEIGHTS_TO_AVERAGE_ENDSWITH):
|
131 |
+
tensors[key] = tensors[key] / pretraining_tp
|
132 |
+
torch.save(
|
133 |
+
tensors,
|
134 |
+
os.path.join(
|
135 |
+
pytorch_dump_folder_path,
|
136 |
+
"pytorch_model_{}-of-{}.bin".format(str(j + 1).zfill(5), str(len(file_names)).zfill(5)),
|
137 |
+
),
|
138 |
+
)
|
139 |
+
|
140 |
+
for key in tensors.keys():
|
141 |
+
value = tensors[key]
|
142 |
+
total_size += value.numel() * get_dtype_size(value.dtype)
|
143 |
+
if key not in index_dict["weight_map"]:
|
144 |
+
index_dict["weight_map"][key] = "pytorch_model_{}-of-{}.bin".format(
|
145 |
+
str(j + 1).zfill(5), str(len(file_names)).zfill(5)
|
146 |
+
)
|
147 |
+
|
148 |
+
config = BloomConfig()
|
149 |
+
pytorch_config_dump_path = pytorch_dump_folder_path + "/" + CONFIG_NAME
|
150 |
+
index_dict["metadata"]["total_size"] = total_size
|
151 |
+
with open(pytorch_config_dump_path, "w", encoding="utf-8") as f:
|
152 |
+
f.write(config.to_json_string())
|
153 |
+
with open(os.path.join(pytorch_dump_folder_path, WEIGHTS_NAME + ".index.json"), "w", encoding="utf-8") as f:
|
154 |
+
json_config = json.dumps(index_dict, indent=2, sort_keys=True) + "\n"
|
155 |
+
f.write(json_config)
|
156 |
+
else:
|
157 |
+
model = BloomModel(config)
|
158 |
+
|
159 |
+
file_names = os.listdir(bloom_checkpoint_path)
|
160 |
+
file_names = sorted(filter(lambda s: s.startswith("layer") and "model_00" in s, file_names))
|
161 |
+
|
162 |
+
missing_keys = None
|
163 |
+
for i, file in enumerate(file_names):
|
164 |
+
tensors = None
|
165 |
+
for i in range(pretraining_tp):
|
166 |
+
# load all TP files
|
167 |
+
f_name = file.replace("model_00", f"model_0{i}")
|
168 |
+
temp = torch.load(os.path.join(bloom_checkpoint_path, f_name), map_location="cpu")
|
169 |
+
|
170 |
+
# Rename keys in the transformers names
|
171 |
+
keys = list(temp.keys())
|
172 |
+
for key in keys:
|
173 |
+
temp[layer_name_mapping(key, file)] = temp.pop(key)
|
174 |
+
|
175 |
+
if tensors is None:
|
176 |
+
tensors = temp
|
177 |
+
else:
|
178 |
+
for key in tensors.keys():
|
179 |
+
# We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425)
|
180 |
+
if any(key.endswith(end) for end in WEIGHTS_TO_AVERAGE_ENDSWITH):
|
181 |
+
tensors[key] += temp[key]
|
182 |
+
else:
|
183 |
+
# Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel
|
184 |
+
cat_dim = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN) else 0
|
185 |
+
# We concatenate these weights accross TP ranks
|
186 |
+
tensors[key] = torch.cat([tensors[key], temp[key]], dim=cat_dim)
|
187 |
+
|
188 |
+
# Divide by the number of TP the weights we want to average
|
189 |
+
for key in tensors.keys():
|
190 |
+
if any(key.endswith(end) for end in WEIGHTS_TO_AVERAGE_ENDSWITH):
|
191 |
+
tensors[key] = tensors[key] / pretraining_tp
|
192 |
+
|
193 |
+
other_keys = model.load_state_dict(tensors, strict=False)
|
194 |
+
assert not other_keys.unexpected_keys, f"The keys {other_keys.unexpected_keys} are unexpected"
|
195 |
+
if missing_keys is None:
|
196 |
+
missing_keys = set(other_keys.missing_keys)
|
197 |
+
else:
|
198 |
+
missing_keys = missing_keys.intersection(set(other_keys.missing_keys))
|
199 |
+
|
200 |
+
assert not missing_keys, f"The keys {missing_keys} are missing"
|
201 |
+
|
202 |
+
# Save pytorch-model
|
203 |
+
os.makedirs(pytorch_dump_folder_path, exist_ok=True)
|
204 |
+
pytorch_weights_dump_path = pytorch_dump_folder_path + "/" + WEIGHTS_NAME
|
205 |
+
pytorch_config_dump_path = pytorch_dump_folder_path + "/" + CONFIG_NAME
|
206 |
+
print(f"Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}")
|
207 |
+
if config.torch_dtype is not None:
|
208 |
+
model = model.to(config.torch_dtype)
|
209 |
+
torch.save(model.state_dict(), pytorch_weights_dump_path)
|
210 |
+
print(f"Save configuration file to {pytorch_config_dump_path}")
|
211 |
+
with open(pytorch_config_dump_path, "w", encoding="utf-8") as f:
|
212 |
+
f.write(config.to_json_string())
|
213 |
+
|
214 |
+
|
215 |
+
if __name__ == "__main__":
|
216 |
+
parser = argparse.ArgumentParser()
|
217 |
+
# Required parameters
|
218 |
+
parser.add_argument(
|
219 |
+
"--bloom_checkpoint_path",
|
220 |
+
default=None,
|
221 |
+
type=str,
|
222 |
+
required=True,
|
223 |
+
help="Path to the Megatron-LM checkpoint path.",
|
224 |
+
)
|
225 |
+
parser.add_argument(
|
226 |
+
"--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
|
227 |
+
)
|
228 |
+
parser.add_argument(
|
229 |
+
"--bloom_config_file",
|
230 |
+
default="",
|
231 |
+
type=str,
|
232 |
+
help=(
|
233 |
+
"An optional config json file corresponding to the pre-trained model. \n"
|
234 |
+
"This specifies the model architecture."
|
235 |
+
),
|
236 |
+
)
|
237 |
+
parser.add_argument(
|
238 |
+
"--shard_model",
|
239 |
+
action="store_true",
|
240 |
+
help="An optional setting to shard the output model \nThis enables sharding the converted checkpoint",
|
241 |
+
)
|
242 |
+
parser.add_argument(
|
243 |
+
"--pretraining_tp",
|
244 |
+
default=4,
|
245 |
+
type=int,
|
246 |
+
help="Pretraining TP rank that has been used when training the model in Megatron-LM \n",
|
247 |
+
)
|
248 |
+
args = parser.parse_args()
|
249 |
+
convert_bloom_checkpoint_to_pytorch(
|
250 |
+
args.bloom_checkpoint_path,
|
251 |
+
args.bloom_config_file,
|
252 |
+
args.pytorch_dump_folder_path,
|
253 |
+
args.shard_model,
|
254 |
+
args.pretraining_tp,
|
255 |
+
)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/bloom/modeling_bloom.py
ADDED
@@ -0,0 +1,1243 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 HuggingFace Inc. team and BigScience workshop.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""PyTorch BLOOM model."""
|
16 |
+
|
17 |
+
import math
|
18 |
+
import warnings
|
19 |
+
from typing import Optional, Tuple, Union
|
20 |
+
|
21 |
+
import torch
|
22 |
+
import torch.utils.checkpoint
|
23 |
+
from torch import nn
|
24 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, LayerNorm, MSELoss
|
25 |
+
from torch.nn import functional as F
|
26 |
+
|
27 |
+
from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
|
28 |
+
from ...modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
|
29 |
+
from ...modeling_outputs import (
|
30 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
31 |
+
CausalLMOutputWithCrossAttentions,
|
32 |
+
QuestionAnsweringModelOutput,
|
33 |
+
SequenceClassifierOutputWithPast,
|
34 |
+
TokenClassifierOutput,
|
35 |
+
)
|
36 |
+
from ...modeling_utils import PreTrainedModel
|
37 |
+
from ...utils import logging
|
38 |
+
from .configuration_bloom import BloomConfig
|
39 |
+
|
40 |
+
|
41 |
+
logger = logging.get_logger(__name__)
|
42 |
+
|
43 |
+
_CHECKPOINT_FOR_DOC = "bigscience/bloom-560m"
|
44 |
+
_CONFIG_FOR_DOC = "BloomConfig"
|
45 |
+
|
46 |
+
|
47 |
+
from ..deprecated._archive_maps import BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
48 |
+
|
49 |
+
|
50 |
+
def build_alibi_tensor(attention_mask: torch.Tensor, num_heads: int, dtype: torch.dtype) -> torch.Tensor:
|
51 |
+
"""
|
52 |
+
Link to paper: https://arxiv.org/abs/2108.12409 Alibi tensor is not causal as the original paper mentions, it
|
53 |
+
relies on a translation invariance of softmax for quick implementation: with l being a tensor, and a fixed value
|
54 |
+
`softmax(l+a) = softmax(l)`. Based on
|
55 |
+
https://github.com/ofirpress/attention_with_linear_biases/blob/a35aaca144e0eb6b789dfcb46784c4b8e31b7983/fairseq/models/transformer.py#L742
|
56 |
+
TODO @thomasw21 this doesn't work as nicely due to the masking strategy, and so masking varies slightly.
|
57 |
+
|
58 |
+
Args:
|
59 |
+
Returns tensor shaped (batch_size * num_heads, 1, max_seq_len)
|
60 |
+
attention_mask (`torch.Tensor`):
|
61 |
+
Token-wise attention mask, this should be of shape (batch_size, max_seq_len).
|
62 |
+
num_heads (`int`, *required*):
|
63 |
+
number of heads
|
64 |
+
dtype (`torch.dtype`, *optional*, default=`torch.bfloat16`):
|
65 |
+
dtype of the output tensor
|
66 |
+
"""
|
67 |
+
batch_size, seq_length = attention_mask.shape
|
68 |
+
closest_power_of_2 = 2 ** math.floor(math.log2(num_heads))
|
69 |
+
base = torch.tensor(
|
70 |
+
2 ** (-(2 ** -(math.log2(closest_power_of_2) - 3))), device=attention_mask.device, dtype=torch.float32
|
71 |
+
)
|
72 |
+
powers = torch.arange(1, 1 + closest_power_of_2, device=attention_mask.device, dtype=torch.int32)
|
73 |
+
slopes = torch.pow(base, powers)
|
74 |
+
|
75 |
+
if closest_power_of_2 != num_heads:
|
76 |
+
extra_base = torch.tensor(
|
77 |
+
2 ** (-(2 ** -(math.log2(2 * closest_power_of_2) - 3))), device=attention_mask.device, dtype=torch.float32
|
78 |
+
)
|
79 |
+
num_remaining_heads = min(closest_power_of_2, num_heads - closest_power_of_2)
|
80 |
+
extra_powers = torch.arange(1, 1 + 2 * num_remaining_heads, 2, device=attention_mask.device, dtype=torch.int32)
|
81 |
+
slopes = torch.cat([slopes, torch.pow(extra_base, extra_powers)], dim=0)
|
82 |
+
|
83 |
+
# Note: alibi will added to the attention bias that will be applied to the query, key product of attention
|
84 |
+
# => therefore alibi will have to be of shape (batch_size, num_heads, query_length, key_length)
|
85 |
+
# => here we set (batch_size=1, num_heads=num_heads, query_length=1, key_length=max_length)
|
86 |
+
# => the query_length dimension will then be broadcasted correctly
|
87 |
+
# This is more or less identical to T5's relative position bias:
|
88 |
+
# https://github.com/huggingface/transformers/blob/f681437203baa7671de3174b0fa583c349d9d5e1/src/transformers/models/t5/modeling_t5.py#L527
|
89 |
+
arange_tensor = ((attention_mask.cumsum(dim=-1) - 1) * attention_mask)[:, None, :]
|
90 |
+
alibi = slopes[..., None] * arange_tensor
|
91 |
+
return alibi.reshape(batch_size * num_heads, 1, seq_length).to(dtype)
|
92 |
+
|
93 |
+
|
94 |
+
def dropout_add(x: torch.Tensor, residual: torch.Tensor, prob: float, training: bool) -> torch.Tensor:
|
95 |
+
"""
|
96 |
+
Dropout add function
|
97 |
+
|
98 |
+
Args:
|
99 |
+
x (`torch.tensor`, *required*):
|
100 |
+
input tensor
|
101 |
+
residual (`torch.tensor`, *required*):
|
102 |
+
residual tensor
|
103 |
+
prob (`float`, *required*):
|
104 |
+
dropout probability
|
105 |
+
training (`bool`, *required*):
|
106 |
+
training mode
|
107 |
+
"""
|
108 |
+
out = F.dropout(x, p=prob, training=training)
|
109 |
+
out = residual + out
|
110 |
+
return out
|
111 |
+
|
112 |
+
|
113 |
+
def bloom_gelu_forward(x: torch.Tensor) -> torch.Tensor:
|
114 |
+
"""
|
115 |
+
Custom bias GELU function. Adapted from Megatron-DeepSpeed code. Here we use a simple implementation (inference) to
|
116 |
+
make the model jitable.
|
117 |
+
|
118 |
+
Args:
|
119 |
+
x (`torch.tensor`, *required*):
|
120 |
+
input hidden states
|
121 |
+
"""
|
122 |
+
return x * 0.5 * (1.0 + torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x)))
|
123 |
+
|
124 |
+
|
125 |
+
def bloom_gelu_back(g: torch.Tensor, x: torch.Tensor) -> torch.Tensor:
|
126 |
+
"""
|
127 |
+
gradient of tanh approximation of gelu gradient of actual gelu is: 0.5 * (1. + torch.erf(x * 0.70710678)) +
|
128 |
+
0.3989423 * x * torch.exp(-0.5 * x * x)
|
129 |
+
|
130 |
+
Args:
|
131 |
+
g (`torch.tensor`, *required*):
|
132 |
+
gradient output tensor
|
133 |
+
x (`torch.tensor`, *required*):
|
134 |
+
input tensor
|
135 |
+
"""
|
136 |
+
x = x[0] # x is a tuple of 1 element, needs to unpack it first
|
137 |
+
tanh_out = torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x))
|
138 |
+
# sqrt(2/pi) * 3 * 0.044715 -> 0.1070322243
|
139 |
+
ff = 0.5 * x * ((1 - tanh_out * tanh_out) * (0.79788456 + 0.1070322243 * x * x)) + 0.5 * (1 + tanh_out)
|
140 |
+
return ff * g
|
141 |
+
|
142 |
+
|
143 |
+
class GeLUFunction(torch.autograd.Function):
|
144 |
+
@staticmethod
|
145 |
+
def forward(ctx, input: torch.Tensor) -> torch.Tensor:
|
146 |
+
ctx.save_for_backward(input)
|
147 |
+
return bloom_gelu_forward(input)
|
148 |
+
|
149 |
+
@staticmethod
|
150 |
+
def backward(ctx, grad_output: torch.Tensor) -> torch.Tensor:
|
151 |
+
input = ctx.saved_tensors
|
152 |
+
tmp = bloom_gelu_back(grad_output, input)
|
153 |
+
return tmp
|
154 |
+
|
155 |
+
|
156 |
+
class BloomGelu(nn.Module):
|
157 |
+
"""
|
158 |
+
BloomBiasGelu wrapper function that make use of the simple function on inference mode to make the model
|
159 |
+
torchscriptable and use the autograd function in training mode to get the accurate results of the gradients Partly
|
160 |
+
copied from Megatron-DeepSpeed code and adapted for our needs
|
161 |
+
|
162 |
+
See here why autograd functions are not torchscriptable: https://github.com/pytorch/pytorch/issues/22329
|
163 |
+
"""
|
164 |
+
|
165 |
+
def __init__(self):
|
166 |
+
super().__init__()
|
167 |
+
|
168 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
169 |
+
if self.training:
|
170 |
+
return GeLUFunction.apply(x)
|
171 |
+
else:
|
172 |
+
return bloom_gelu_forward(x)
|
173 |
+
|
174 |
+
|
175 |
+
class BloomAttention(nn.Module):
|
176 |
+
def __init__(self, config: BloomConfig):
|
177 |
+
super().__init__()
|
178 |
+
|
179 |
+
self.pretraining_tp = config.pretraining_tp
|
180 |
+
self.slow_but_exact = config.slow_but_exact
|
181 |
+
|
182 |
+
self.hidden_size = config.hidden_size
|
183 |
+
self.num_heads = config.n_head
|
184 |
+
self.head_dim = self.hidden_size // self.num_heads
|
185 |
+
self.split_size = self.hidden_size
|
186 |
+
self.hidden_dropout = config.hidden_dropout
|
187 |
+
|
188 |
+
if self.head_dim * self.num_heads != self.hidden_size:
|
189 |
+
raise ValueError(
|
190 |
+
f"`hidden_size` must be divisible by num_heads (got `hidden_size`: {self.hidden_size} and `num_heads`:"
|
191 |
+
f" {self.num_heads})."
|
192 |
+
)
|
193 |
+
|
194 |
+
# Layer-wise attention scaling
|
195 |
+
self.inv_norm_factor = 1.0 / math.sqrt(self.head_dim)
|
196 |
+
self.beta = 1.0
|
197 |
+
|
198 |
+
self.query_key_value = nn.Linear(self.hidden_size, 3 * self.hidden_size, bias=True)
|
199 |
+
self.dense = nn.Linear(self.hidden_size, self.hidden_size)
|
200 |
+
self.attention_dropout = nn.Dropout(config.attention_dropout)
|
201 |
+
|
202 |
+
def _split_heads(self, fused_qkv: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
203 |
+
"""
|
204 |
+
Split the last dimension into (num_heads, head_dim) without making any copies, results share same memory
|
205 |
+
storage as `fused_qkv`
|
206 |
+
|
207 |
+
Args:
|
208 |
+
fused_qkv (`torch.tensor`, *required*): [batch_size, seq_length, num_heads * 3 * head_dim]
|
209 |
+
|
210 |
+
Returns:
|
211 |
+
query: [batch_size, seq_length, num_heads, head_dim] key: [batch_size, seq_length, num_heads, head_dim]
|
212 |
+
value: [batch_size, seq_length, num_heads, head_dim]
|
213 |
+
"""
|
214 |
+
batch_size, seq_length, three_times_hidden_size = fused_qkv.shape
|
215 |
+
fused_qkv = fused_qkv.view(batch_size, seq_length, self.num_heads, 3, self.head_dim)
|
216 |
+
return fused_qkv[..., 0, :], fused_qkv[..., 1, :], fused_qkv[..., 2, :]
|
217 |
+
|
218 |
+
def _merge_heads(self, x: torch.Tensor) -> torch.Tensor:
|
219 |
+
"""
|
220 |
+
Merge heads together over the last dimension
|
221 |
+
|
222 |
+
Args:
|
223 |
+
x (`torch.tensor`, *required*): [batch_size * num_heads, seq_length, head_dim]
|
224 |
+
|
225 |
+
Returns:
|
226 |
+
torch.tensor: [batch_size, seq_length, num_heads * head_dim]
|
227 |
+
"""
|
228 |
+
# What we want to achieve is:
|
229 |
+
# batch_size * num_heads, seq_length, head_dim -> batch_size, seq_length, num_heads * head_dim
|
230 |
+
batch_size_and_num_heads, seq_length, _ = x.shape
|
231 |
+
batch_size = batch_size_and_num_heads // self.num_heads
|
232 |
+
|
233 |
+
# First view to decompose the batch size
|
234 |
+
# batch_size * num_heads, seq_length, head_dim -> batch_size, num_heads, seq_length, head_dim
|
235 |
+
x = x.view(batch_size, self.num_heads, seq_length, self.head_dim)
|
236 |
+
|
237 |
+
# batch_size, num_heads, seq_length, head_dim -> batch_size, seq_length, num_heads, head_dim
|
238 |
+
x = x.permute(0, 2, 1, 3)
|
239 |
+
|
240 |
+
# batch_size, seq_length, num_heads, head_dim -> batch_size, seq_length, num_heads * head_dim
|
241 |
+
return x.reshape(batch_size, seq_length, self.num_heads * self.head_dim)
|
242 |
+
|
243 |
+
def forward(
|
244 |
+
self,
|
245 |
+
hidden_states: torch.Tensor,
|
246 |
+
residual: torch.Tensor,
|
247 |
+
alibi: torch.Tensor,
|
248 |
+
attention_mask: torch.Tensor,
|
249 |
+
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
250 |
+
head_mask: Optional[torch.Tensor] = None,
|
251 |
+
use_cache: bool = False,
|
252 |
+
output_attentions: bool = False,
|
253 |
+
):
|
254 |
+
fused_qkv = self.query_key_value(hidden_states) # [batch_size, seq_length, 3 x hidden_size]
|
255 |
+
|
256 |
+
# 3 x [batch_size, seq_length, num_heads, head_dim]
|
257 |
+
(query_layer, key_layer, value_layer) = self._split_heads(fused_qkv)
|
258 |
+
|
259 |
+
batch_size, q_length, _, _ = query_layer.shape
|
260 |
+
|
261 |
+
query_layer = query_layer.transpose(1, 2).reshape(batch_size * self.num_heads, q_length, self.head_dim)
|
262 |
+
key_layer = key_layer.permute(0, 2, 3, 1).reshape(batch_size * self.num_heads, self.head_dim, q_length)
|
263 |
+
value_layer = value_layer.transpose(1, 2).reshape(batch_size * self.num_heads, q_length, self.head_dim)
|
264 |
+
if layer_past is not None:
|
265 |
+
past_key, past_value = layer_past
|
266 |
+
# concatenate along seq_length dimension:
|
267 |
+
# - key: [batch_size * self.num_heads, head_dim, kv_length]
|
268 |
+
# - value: [batch_size * self.num_heads, kv_length, head_dim]
|
269 |
+
key_layer = torch.cat((past_key, key_layer), dim=2)
|
270 |
+
value_layer = torch.cat((past_value, value_layer), dim=1)
|
271 |
+
|
272 |
+
_, _, kv_length = key_layer.shape
|
273 |
+
|
274 |
+
if use_cache is True:
|
275 |
+
present = (key_layer, value_layer)
|
276 |
+
else:
|
277 |
+
present = None
|
278 |
+
|
279 |
+
# [batch_size * num_heads, q_length, kv_length]
|
280 |
+
# we use `torch.Tensor.baddbmm` instead of `torch.baddbmm` as the latter isn't supported by TorchScript v1.11
|
281 |
+
matmul_result = alibi.baddbmm(
|
282 |
+
batch1=query_layer,
|
283 |
+
batch2=key_layer,
|
284 |
+
beta=self.beta,
|
285 |
+
alpha=self.inv_norm_factor,
|
286 |
+
)
|
287 |
+
|
288 |
+
# change view to [batch_size, num_heads, q_length, kv_length]
|
289 |
+
attention_scores = matmul_result.view(batch_size, self.num_heads, q_length, kv_length)
|
290 |
+
|
291 |
+
# cast attention scores to fp32, compute scaled softmax and cast back to initial dtype - [batch_size, num_heads, q_length, kv_length]
|
292 |
+
input_dtype = attention_scores.dtype
|
293 |
+
# `float16` has a minimum value of -65504.0, whereas `bfloat16` and `float32` have a minimum value of `-3.4e+38`
|
294 |
+
if input_dtype == torch.float16:
|
295 |
+
attention_scores = attention_scores.to(torch.float)
|
296 |
+
attn_weights = torch.masked_fill(attention_scores, attention_mask, torch.finfo(attention_scores.dtype).min)
|
297 |
+
attention_probs = F.softmax(attn_weights, dim=-1, dtype=torch.float32).to(input_dtype)
|
298 |
+
|
299 |
+
# [batch_size, num_heads, q_length, kv_length]
|
300 |
+
attention_probs = self.attention_dropout(attention_probs)
|
301 |
+
|
302 |
+
if head_mask is not None:
|
303 |
+
attention_probs = attention_probs * head_mask
|
304 |
+
|
305 |
+
# change view [batch_size x num_heads, q_length, kv_length]
|
306 |
+
attention_probs_reshaped = attention_probs.view(batch_size * self.num_heads, q_length, kv_length)
|
307 |
+
|
308 |
+
# matmul: [batch_size * num_heads, q_length, head_dim]
|
309 |
+
context_layer = torch.bmm(attention_probs_reshaped, value_layer)
|
310 |
+
|
311 |
+
# change view [batch_size, q_length, num_heads * head_dim]
|
312 |
+
context_layer = self._merge_heads(context_layer)
|
313 |
+
|
314 |
+
# aggregate results across tp ranks. See here: https://github.com/pytorch/pytorch/issues/76232
|
315 |
+
if self.pretraining_tp > 1 and self.slow_but_exact:
|
316 |
+
slices = self.hidden_size / self.pretraining_tp
|
317 |
+
output_tensor = torch.zeros_like(context_layer)
|
318 |
+
for i in range(self.pretraining_tp):
|
319 |
+
output_tensor = output_tensor + F.linear(
|
320 |
+
context_layer[:, :, int(i * slices) : int((i + 1) * slices)],
|
321 |
+
self.dense.weight[:, int(i * slices) : int((i + 1) * slices)],
|
322 |
+
)
|
323 |
+
else:
|
324 |
+
output_tensor = self.dense(context_layer)
|
325 |
+
|
326 |
+
output_tensor = dropout_add(output_tensor, residual, self.hidden_dropout, self.training)
|
327 |
+
|
328 |
+
outputs = (output_tensor, present)
|
329 |
+
if output_attentions:
|
330 |
+
outputs += (attention_probs,)
|
331 |
+
|
332 |
+
return outputs
|
333 |
+
|
334 |
+
|
335 |
+
class BloomMLP(nn.Module):
|
336 |
+
def __init__(self, config: BloomConfig):
|
337 |
+
super().__init__()
|
338 |
+
hidden_size = config.hidden_size
|
339 |
+
|
340 |
+
self.pretraining_tp = config.pretraining_tp
|
341 |
+
self.slow_but_exact = config.slow_but_exact
|
342 |
+
self.dense_h_to_4h = nn.Linear(hidden_size, 4 * hidden_size)
|
343 |
+
self.gelu_impl = BloomGelu()
|
344 |
+
self.dense_4h_to_h = nn.Linear(4 * hidden_size, hidden_size)
|
345 |
+
self.hidden_dropout = config.hidden_dropout
|
346 |
+
|
347 |
+
def forward(self, hidden_states: torch.Tensor, residual: torch.Tensor) -> torch.Tensor:
|
348 |
+
hidden_states = self.gelu_impl(self.dense_h_to_4h(hidden_states))
|
349 |
+
|
350 |
+
if self.pretraining_tp > 1 and self.slow_but_exact:
|
351 |
+
intermediate_output = torch.zeros_like(residual)
|
352 |
+
slices = self.dense_4h_to_h.weight.shape[-1] / self.pretraining_tp
|
353 |
+
for i in range(self.pretraining_tp):
|
354 |
+
intermediate_output = intermediate_output + F.linear(
|
355 |
+
hidden_states[:, :, int(i * slices) : int((i + 1) * slices)],
|
356 |
+
self.dense_4h_to_h.weight[:, int(i * slices) : int((i + 1) * slices)],
|
357 |
+
)
|
358 |
+
else:
|
359 |
+
intermediate_output = self.dense_4h_to_h(hidden_states)
|
360 |
+
|
361 |
+
output = dropout_add(intermediate_output, residual, self.hidden_dropout, self.training)
|
362 |
+
|
363 |
+
return output
|
364 |
+
|
365 |
+
|
366 |
+
class BloomBlock(nn.Module):
|
367 |
+
def __init__(self, config: BloomConfig):
|
368 |
+
super().__init__()
|
369 |
+
hidden_size = config.hidden_size
|
370 |
+
|
371 |
+
self.input_layernorm = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
372 |
+
self.num_heads = config.n_head
|
373 |
+
self.self_attention = BloomAttention(config)
|
374 |
+
self.post_attention_layernorm = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
375 |
+
|
376 |
+
self.mlp = BloomMLP(config)
|
377 |
+
|
378 |
+
self.apply_residual_connection_post_layernorm = config.apply_residual_connection_post_layernorm
|
379 |
+
self.hidden_dropout = config.hidden_dropout
|
380 |
+
|
381 |
+
def forward(
|
382 |
+
self,
|
383 |
+
hidden_states: torch.Tensor,
|
384 |
+
alibi: torch.Tensor,
|
385 |
+
attention_mask: torch.Tensor,
|
386 |
+
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
387 |
+
head_mask: Optional[torch.Tensor] = None,
|
388 |
+
use_cache: bool = False,
|
389 |
+
output_attentions: bool = False,
|
390 |
+
):
|
391 |
+
# hidden_states: [batch_size, seq_length, hidden_size]
|
392 |
+
|
393 |
+
# Layer norm at the beginning of the transformer layer.
|
394 |
+
layernorm_output = self.input_layernorm(hidden_states)
|
395 |
+
|
396 |
+
# Layer norm post the self attention.
|
397 |
+
if self.apply_residual_connection_post_layernorm:
|
398 |
+
residual = layernorm_output
|
399 |
+
else:
|
400 |
+
residual = hidden_states
|
401 |
+
|
402 |
+
# Self attention.
|
403 |
+
attn_outputs = self.self_attention(
|
404 |
+
layernorm_output,
|
405 |
+
residual,
|
406 |
+
layer_past=layer_past,
|
407 |
+
attention_mask=attention_mask,
|
408 |
+
alibi=alibi,
|
409 |
+
head_mask=head_mask,
|
410 |
+
use_cache=use_cache,
|
411 |
+
output_attentions=output_attentions,
|
412 |
+
)
|
413 |
+
|
414 |
+
attention_output = attn_outputs[0]
|
415 |
+
|
416 |
+
outputs = attn_outputs[1:]
|
417 |
+
|
418 |
+
layernorm_output = self.post_attention_layernorm(attention_output)
|
419 |
+
|
420 |
+
# Get residual
|
421 |
+
if self.apply_residual_connection_post_layernorm:
|
422 |
+
residual = layernorm_output
|
423 |
+
else:
|
424 |
+
residual = attention_output
|
425 |
+
|
426 |
+
# MLP.
|
427 |
+
output = self.mlp(layernorm_output, residual)
|
428 |
+
|
429 |
+
if use_cache:
|
430 |
+
outputs = (output,) + outputs
|
431 |
+
else:
|
432 |
+
outputs = (output,) + outputs[1:]
|
433 |
+
|
434 |
+
return outputs # hidden_states, present, attentions
|
435 |
+
|
436 |
+
|
437 |
+
class BloomPreTrainedModel(PreTrainedModel):
|
438 |
+
config_class = BloomConfig
|
439 |
+
base_model_prefix = "transformer"
|
440 |
+
supports_gradient_checkpointing = True
|
441 |
+
_no_split_modules = ["BloomBlock"]
|
442 |
+
_skip_keys_device_placement = "past_key_values"
|
443 |
+
|
444 |
+
def __init__(self, *inputs, **kwargs):
|
445 |
+
super().__init__(*inputs, **kwargs)
|
446 |
+
|
447 |
+
def _init_weights(self, module: nn.Module):
|
448 |
+
"""Initialize the weights."""
|
449 |
+
if isinstance(module, nn.Linear):
|
450 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
451 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
452 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
453 |
+
if module.bias is not None:
|
454 |
+
module.bias.data.zero_()
|
455 |
+
elif isinstance(module, nn.Embedding):
|
456 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
457 |
+
if module.padding_idx is not None:
|
458 |
+
module.weight.data[module.padding_idx].zero_()
|
459 |
+
elif isinstance(module, LayerNorm):
|
460 |
+
module.bias.data.zero_()
|
461 |
+
module.weight.data.fill_(1.0)
|
462 |
+
|
463 |
+
@staticmethod
|
464 |
+
def _convert_to_standard_cache(
|
465 |
+
past_key_value: Tuple[Tuple[torch.Tensor, torch.Tensor]], batch_size: int
|
466 |
+
) -> Tuple[Tuple[torch.Tensor, torch.Tensor]]:
|
467 |
+
"""
|
468 |
+
Standardizes the format of the cache so as to match most implementations, i.e. to tuple(tuple([batch_size,
|
469 |
+
num_heads, ...]))
|
470 |
+
"""
|
471 |
+
batch_size_times_num_heads, head_dim, seq_length = past_key_value[0][0].shape
|
472 |
+
num_heads = batch_size_times_num_heads // batch_size
|
473 |
+
# key: [batch_size * num_heads, head_dim, seq_length] -> [batch_size, num_heads, head_dim, seq_length]
|
474 |
+
# value: [batch_size * num_heads, seq_length, head_dim] -> [batch_size, num_heads, seq_length, head_dim]
|
475 |
+
return tuple(
|
476 |
+
(
|
477 |
+
layer_past[0].view(batch_size, num_heads, head_dim, seq_length),
|
478 |
+
layer_past[1].view(batch_size, num_heads, seq_length, head_dim),
|
479 |
+
)
|
480 |
+
for layer_past in past_key_value
|
481 |
+
)
|
482 |
+
|
483 |
+
@staticmethod
|
484 |
+
def _convert_to_bloom_cache(
|
485 |
+
past_key_value: Tuple[Tuple[torch.Tensor, torch.Tensor]],
|
486 |
+
) -> Tuple[Tuple[torch.Tensor, torch.Tensor]]:
|
487 |
+
"""
|
488 |
+
Converts the cache to the format expected by Bloom, i.e. to tuple(tuple([batch_size * num_heads, ...]))
|
489 |
+
"""
|
490 |
+
batch_size, num_heads, head_dim, seq_length = past_key_value[0][0].shape
|
491 |
+
batch_size_times_num_heads = batch_size * num_heads
|
492 |
+
# key: [batch_size, num_heads, head_dim, seq_length] -> [batch_size * num_heads, head_dim, seq_length]
|
493 |
+
# value: [batch_size, num_heads, seq_length, head_dim] -> [batch_size * num_heads, seq_length, head_dim]
|
494 |
+
return tuple(
|
495 |
+
(
|
496 |
+
layer_past[0].view(batch_size_times_num_heads, head_dim, seq_length),
|
497 |
+
layer_past[1].view(batch_size_times_num_heads, seq_length, head_dim),
|
498 |
+
)
|
499 |
+
for layer_past in past_key_value
|
500 |
+
)
|
501 |
+
|
502 |
+
|
503 |
+
BLOOM_START_DOCSTRING = r"""
|
504 |
+
|
505 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
506 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings etc.)
|
507 |
+
|
508 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
509 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
510 |
+
and behavior.
|
511 |
+
|
512 |
+
Parameters:
|
513 |
+
config ([`BloomConfig`]): Model configuration class with all the parameters of the model.
|
514 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
515 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
516 |
+
"""
|
517 |
+
|
518 |
+
BLOOM_INPUTS_DOCSTRING = r"""
|
519 |
+
Args:
|
520 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`):
|
521 |
+
`input_ids_length` = `sequence_length` if `past_key_values` is `None` else `past_key_values[0][0].shape[2]`
|
522 |
+
(`sequence_length` of input past key value states). Indices of input sequence tokens in the vocabulary.
|
523 |
+
|
524 |
+
If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as
|
525 |
+
`input_ids`.
|
526 |
+
|
527 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
528 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
529 |
+
|
530 |
+
[What are input IDs?](../glossary#input-ids)
|
531 |
+
past_key_values (`Tuple[Tuple[torch.Tensor]]` of length `config.n_layers`):
|
532 |
+
Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see
|
533 |
+
`past_key_values` output below). Can be used to speed up sequential decoding. The `input_ids` which have
|
534 |
+
their past given to this model should not be passed as `input_ids` as they have already been computed.
|
535 |
+
|
536 |
+
Each element of `past_key_values` is a tuple (past_key, past_value):
|
537 |
+
- past_key: [batch_size * num_heads, head_dim, kv_length]
|
538 |
+
- past_value: [batch_size * num_heads, kv_length, head_dim]
|
539 |
+
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
540 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
541 |
+
|
542 |
+
- 1 for tokens that are **not masked**,
|
543 |
+
- 0 for tokens that are **masked**.
|
544 |
+
|
545 |
+
[What are attention masks?](../glossary#attention-mask)
|
546 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
547 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
548 |
+
|
549 |
+
- 1 indicates the head is **not masked**,
|
550 |
+
- 0 indicates the head is **masked**.
|
551 |
+
|
552 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
553 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
554 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
555 |
+
model's internal embedding lookup matrix.
|
556 |
+
|
557 |
+
If `past_key_values` is used, optionally only the last `inputs_embeds` have to be input (see
|
558 |
+
`past_key_values`).
|
559 |
+
use_cache (`bool`, *optional*):
|
560 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
561 |
+
`past_key_values`).
|
562 |
+
output_attentions (`bool`, *optional*):
|
563 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
564 |
+
tensors for more detail.
|
565 |
+
output_hidden_states (`bool`, *optional*):
|
566 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
567 |
+
more detail.
|
568 |
+
return_dict (`bool`, *optional*):
|
569 |
+
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
|
570 |
+
"""
|
571 |
+
|
572 |
+
|
573 |
+
@add_start_docstrings(
|
574 |
+
"The bare Bloom Model transformer outputting raw hidden-states without any specific head on top.",
|
575 |
+
BLOOM_START_DOCSTRING,
|
576 |
+
)
|
577 |
+
class BloomModel(BloomPreTrainedModel):
|
578 |
+
def __init__(self, config: BloomConfig):
|
579 |
+
super().__init__(config)
|
580 |
+
|
581 |
+
self.embed_dim = config.hidden_size
|
582 |
+
self.num_heads = config.n_head
|
583 |
+
|
584 |
+
# Embedding + LN Embedding
|
585 |
+
self.word_embeddings = nn.Embedding(config.vocab_size, self.embed_dim)
|
586 |
+
self.word_embeddings_layernorm = LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
|
587 |
+
|
588 |
+
# Transformer blocks
|
589 |
+
self.h = nn.ModuleList([BloomBlock(config) for _ in range(config.num_hidden_layers)])
|
590 |
+
|
591 |
+
# Final Layer Norm
|
592 |
+
self.ln_f = LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
|
593 |
+
|
594 |
+
self.gradient_checkpointing = False
|
595 |
+
|
596 |
+
# Initialize weights and apply final processing
|
597 |
+
self.post_init()
|
598 |
+
|
599 |
+
def build_alibi_tensor(self, attention_mask: torch.Tensor, num_heads: int, dtype: torch.dtype) -> torch.Tensor:
|
600 |
+
return build_alibi_tensor(attention_mask, num_heads, dtype)
|
601 |
+
|
602 |
+
def get_input_embeddings(self):
|
603 |
+
return self.word_embeddings
|
604 |
+
|
605 |
+
def set_input_embeddings(self, new_embeddings: torch.Tensor):
|
606 |
+
self.word_embeddings = new_embeddings
|
607 |
+
|
608 |
+
@add_start_docstrings_to_model_forward(BLOOM_INPUTS_DOCSTRING)
|
609 |
+
@add_code_sample_docstrings(
|
610 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
611 |
+
output_type=BaseModelOutputWithPastAndCrossAttentions,
|
612 |
+
config_class=_CONFIG_FOR_DOC,
|
613 |
+
)
|
614 |
+
def forward(
|
615 |
+
self,
|
616 |
+
input_ids: Optional[torch.LongTensor] = None,
|
617 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
618 |
+
attention_mask: Optional[torch.Tensor] = None,
|
619 |
+
head_mask: Optional[torch.LongTensor] = None,
|
620 |
+
inputs_embeds: Optional[torch.LongTensor] = None,
|
621 |
+
use_cache: Optional[bool] = None,
|
622 |
+
output_attentions: Optional[bool] = None,
|
623 |
+
output_hidden_states: Optional[bool] = None,
|
624 |
+
return_dict: Optional[bool] = None,
|
625 |
+
**deprecated_arguments,
|
626 |
+
) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]:
|
627 |
+
if deprecated_arguments.pop("position_ids", False) is not False:
|
628 |
+
# `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None`
|
629 |
+
warnings.warn(
|
630 |
+
"`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore"
|
631 |
+
" passing `position_ids`.",
|
632 |
+
FutureWarning,
|
633 |
+
)
|
634 |
+
if len(deprecated_arguments) > 0:
|
635 |
+
raise ValueError(f"Got unexpected arguments: {deprecated_arguments}")
|
636 |
+
|
637 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
638 |
+
output_hidden_states = (
|
639 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
640 |
+
)
|
641 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
642 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
643 |
+
|
644 |
+
if input_ids is not None and inputs_embeds is not None:
|
645 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
646 |
+
elif input_ids is not None:
|
647 |
+
batch_size, seq_length = input_ids.shape
|
648 |
+
elif inputs_embeds is not None:
|
649 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
650 |
+
else:
|
651 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
652 |
+
|
653 |
+
if past_key_values is None:
|
654 |
+
past_key_values = tuple([None] * len(self.h))
|
655 |
+
|
656 |
+
# Prepare head mask if needed
|
657 |
+
# 1.0 in head_mask indicate we keep the head
|
658 |
+
# attention_probs has shape batch_size x num_heads x N x N
|
659 |
+
# head_mask has shape n_layer x batch x num_heads x N x N
|
660 |
+
head_mask = self.get_head_mask(head_mask, self.config.n_layer)
|
661 |
+
|
662 |
+
if inputs_embeds is None:
|
663 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
664 |
+
|
665 |
+
hidden_states = self.word_embeddings_layernorm(inputs_embeds)
|
666 |
+
|
667 |
+
presents = () if use_cache else None
|
668 |
+
all_self_attentions = () if output_attentions else None
|
669 |
+
all_hidden_states = () if output_hidden_states else None
|
670 |
+
|
671 |
+
if self.gradient_checkpointing and self.training:
|
672 |
+
if use_cache:
|
673 |
+
logger.warning_once(
|
674 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
675 |
+
)
|
676 |
+
use_cache = False
|
677 |
+
|
678 |
+
# Compute alibi tensor: check build_alibi_tensor documentation
|
679 |
+
seq_length_with_past = seq_length
|
680 |
+
past_key_values_length = 0
|
681 |
+
if past_key_values[0] is not None:
|
682 |
+
past_key_values_length = past_key_values[0][0].shape[2]
|
683 |
+
seq_length_with_past = seq_length_with_past + past_key_values_length
|
684 |
+
if attention_mask is None:
|
685 |
+
attention_mask = torch.ones((batch_size, seq_length_with_past), device=hidden_states.device)
|
686 |
+
else:
|
687 |
+
attention_mask = attention_mask.to(hidden_states.device)
|
688 |
+
|
689 |
+
alibi = self.build_alibi_tensor(attention_mask, self.num_heads, dtype=hidden_states.dtype)
|
690 |
+
|
691 |
+
causal_mask = _prepare_4d_causal_attention_mask(
|
692 |
+
attention_mask,
|
693 |
+
input_shape=(batch_size, seq_length),
|
694 |
+
inputs_embeds=inputs_embeds,
|
695 |
+
past_key_values_length=past_key_values_length,
|
696 |
+
)
|
697 |
+
causal_mask = causal_mask.bool()
|
698 |
+
|
699 |
+
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
|
700 |
+
if output_hidden_states:
|
701 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
702 |
+
|
703 |
+
if self.gradient_checkpointing and self.training:
|
704 |
+
outputs = self._gradient_checkpointing_func(
|
705 |
+
block.__call__,
|
706 |
+
hidden_states,
|
707 |
+
alibi,
|
708 |
+
causal_mask,
|
709 |
+
layer_past,
|
710 |
+
head_mask[i],
|
711 |
+
use_cache,
|
712 |
+
output_attentions,
|
713 |
+
)
|
714 |
+
else:
|
715 |
+
outputs = block(
|
716 |
+
hidden_states,
|
717 |
+
layer_past=layer_past,
|
718 |
+
attention_mask=causal_mask,
|
719 |
+
head_mask=head_mask[i],
|
720 |
+
use_cache=use_cache,
|
721 |
+
output_attentions=output_attentions,
|
722 |
+
alibi=alibi,
|
723 |
+
)
|
724 |
+
|
725 |
+
hidden_states = outputs[0]
|
726 |
+
if use_cache is True:
|
727 |
+
presents = presents + (outputs[1],)
|
728 |
+
|
729 |
+
if output_attentions:
|
730 |
+
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
|
731 |
+
|
732 |
+
# Add last hidden state
|
733 |
+
hidden_states = self.ln_f(hidden_states)
|
734 |
+
|
735 |
+
if output_hidden_states:
|
736 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
737 |
+
|
738 |
+
if not return_dict:
|
739 |
+
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
|
740 |
+
|
741 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
742 |
+
last_hidden_state=hidden_states,
|
743 |
+
past_key_values=presents,
|
744 |
+
hidden_states=all_hidden_states,
|
745 |
+
attentions=all_self_attentions,
|
746 |
+
)
|
747 |
+
|
748 |
+
|
749 |
+
@add_start_docstrings(
|
750 |
+
"""
|
751 |
+
The Bloom Model transformer with a language modeling head on top (linear layer with weights tied to the input
|
752 |
+
embeddings).
|
753 |
+
""",
|
754 |
+
BLOOM_START_DOCSTRING,
|
755 |
+
)
|
756 |
+
class BloomForCausalLM(BloomPreTrainedModel):
|
757 |
+
_tied_weights_keys = ["lm_head.weight"]
|
758 |
+
|
759 |
+
def __init__(self, config: BloomConfig):
|
760 |
+
super().__init__(config)
|
761 |
+
self.transformer = BloomModel(config)
|
762 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
763 |
+
|
764 |
+
# Initialize weights and apply final processing
|
765 |
+
self.post_init()
|
766 |
+
|
767 |
+
def get_output_embeddings(self):
|
768 |
+
return self.lm_head
|
769 |
+
|
770 |
+
def set_output_embeddings(self, new_embeddings: torch.Tensor):
|
771 |
+
self.lm_head = new_embeddings
|
772 |
+
|
773 |
+
def prepare_inputs_for_generation(
|
774 |
+
self,
|
775 |
+
input_ids: torch.LongTensor,
|
776 |
+
past_key_values: Optional[torch.Tensor] = None,
|
777 |
+
attention_mask: Optional[torch.Tensor] = None,
|
778 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
779 |
+
**kwargs,
|
780 |
+
) -> dict:
|
781 |
+
# only last tokens for input_ids if past is not None
|
782 |
+
if past_key_values is not None:
|
783 |
+
past_length = past_key_values[0][0].shape[2]
|
784 |
+
|
785 |
+
# Some generation methods already pass only the last input ID
|
786 |
+
if input_ids.shape[1] > past_length:
|
787 |
+
remove_prefix_length = past_length
|
788 |
+
else:
|
789 |
+
# Default to old behavior: keep only final ID
|
790 |
+
remove_prefix_length = input_ids.shape[1] - 1
|
791 |
+
|
792 |
+
input_ids = input_ids[:, remove_prefix_length:]
|
793 |
+
|
794 |
+
# the cache may be in the stardard format (e.g. in contrastive search), convert to bloom's format if needed
|
795 |
+
if past_key_values[0][0].shape[0] == input_ids.shape[0]:
|
796 |
+
past_key_values = self._convert_to_bloom_cache(past_key_values)
|
797 |
+
|
798 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
799 |
+
if inputs_embeds is not None and past_key_values is None:
|
800 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
801 |
+
else:
|
802 |
+
model_inputs = {"input_ids": input_ids}
|
803 |
+
|
804 |
+
model_inputs.update(
|
805 |
+
{
|
806 |
+
"past_key_values": past_key_values,
|
807 |
+
"use_cache": kwargs.get("use_cache"),
|
808 |
+
"attention_mask": attention_mask,
|
809 |
+
}
|
810 |
+
)
|
811 |
+
return model_inputs
|
812 |
+
|
813 |
+
@add_start_docstrings_to_model_forward(BLOOM_INPUTS_DOCSTRING)
|
814 |
+
@add_code_sample_docstrings(
|
815 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
816 |
+
output_type=CausalLMOutputWithCrossAttentions,
|
817 |
+
config_class=_CONFIG_FOR_DOC,
|
818 |
+
)
|
819 |
+
def forward(
|
820 |
+
self,
|
821 |
+
input_ids: Optional[torch.LongTensor] = None,
|
822 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
823 |
+
attention_mask: Optional[torch.Tensor] = None,
|
824 |
+
head_mask: Optional[torch.Tensor] = None,
|
825 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
826 |
+
labels: Optional[torch.Tensor] = None,
|
827 |
+
use_cache: Optional[bool] = None,
|
828 |
+
output_attentions: Optional[bool] = None,
|
829 |
+
output_hidden_states: Optional[bool] = None,
|
830 |
+
return_dict: Optional[bool] = None,
|
831 |
+
**deprecated_arguments,
|
832 |
+
) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
|
833 |
+
r"""
|
834 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
835 |
+
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
836 |
+
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
|
837 |
+
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
|
838 |
+
"""
|
839 |
+
if deprecated_arguments.pop("position_ids", False) is not False:
|
840 |
+
# `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None`
|
841 |
+
warnings.warn(
|
842 |
+
"`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore"
|
843 |
+
" passing `position_ids`.",
|
844 |
+
FutureWarning,
|
845 |
+
)
|
846 |
+
if len(deprecated_arguments) > 0:
|
847 |
+
raise ValueError(f"Got unexpected arguments: {deprecated_arguments}")
|
848 |
+
|
849 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
850 |
+
|
851 |
+
transformer_outputs = self.transformer(
|
852 |
+
input_ids,
|
853 |
+
past_key_values=past_key_values,
|
854 |
+
attention_mask=attention_mask,
|
855 |
+
head_mask=head_mask,
|
856 |
+
inputs_embeds=inputs_embeds,
|
857 |
+
use_cache=use_cache,
|
858 |
+
output_attentions=output_attentions,
|
859 |
+
output_hidden_states=output_hidden_states,
|
860 |
+
return_dict=return_dict,
|
861 |
+
)
|
862 |
+
hidden_states = transformer_outputs[0]
|
863 |
+
|
864 |
+
lm_logits = self.lm_head(hidden_states)
|
865 |
+
|
866 |
+
loss = None
|
867 |
+
if labels is not None:
|
868 |
+
# move labels to correct device to enable model parallelism
|
869 |
+
labels = labels.to(lm_logits.device)
|
870 |
+
# Shift so that tokens < n predict n
|
871 |
+
shift_logits = lm_logits[..., :-1, :].contiguous()
|
872 |
+
shift_labels = labels[..., 1:].contiguous()
|
873 |
+
batch_size, seq_length, vocab_size = shift_logits.shape
|
874 |
+
# Flatten the tokens
|
875 |
+
loss_fct = CrossEntropyLoss()
|
876 |
+
loss = loss_fct(
|
877 |
+
shift_logits.view(batch_size * seq_length, vocab_size), shift_labels.view(batch_size * seq_length)
|
878 |
+
)
|
879 |
+
|
880 |
+
if not return_dict:
|
881 |
+
output = (lm_logits,) + transformer_outputs[1:]
|
882 |
+
return ((loss,) + output) if loss is not None else output
|
883 |
+
|
884 |
+
return CausalLMOutputWithCrossAttentions(
|
885 |
+
loss=loss,
|
886 |
+
logits=lm_logits,
|
887 |
+
past_key_values=transformer_outputs.past_key_values,
|
888 |
+
hidden_states=transformer_outputs.hidden_states,
|
889 |
+
attentions=transformer_outputs.attentions,
|
890 |
+
)
|
891 |
+
|
892 |
+
def _reorder_cache(
|
893 |
+
self, past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], beam_idx: torch.LongTensor
|
894 |
+
) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]:
|
895 |
+
"""
|
896 |
+
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
|
897 |
+
[`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
|
898 |
+
beam_idx at every generation step.
|
899 |
+
|
900 |
+
Output shares the same memory storage as `past`.
|
901 |
+
"""
|
902 |
+
standardized_past = self._convert_to_standard_cache(past, batch_size=len(beam_idx))
|
903 |
+
|
904 |
+
# Get a copy of `beam_idx` on all the devices where we need those indices.
|
905 |
+
device_to_beam_idx = {
|
906 |
+
past_state.device: beam_idx.to(past_state.device) for layer_past in past for past_state in layer_past
|
907 |
+
}
|
908 |
+
reordered_past = tuple(
|
909 |
+
(
|
910 |
+
layer_past[0].index_select(0, device_to_beam_idx[layer_past[0].device]),
|
911 |
+
layer_past[1].index_select(0, device_to_beam_idx[layer_past[0].device]),
|
912 |
+
)
|
913 |
+
for layer_past in standardized_past
|
914 |
+
)
|
915 |
+
return self._convert_to_bloom_cache(reordered_past)
|
916 |
+
|
917 |
+
|
918 |
+
@add_start_docstrings(
|
919 |
+
"""
|
920 |
+
The Bloom Model transformer with a sequence classification head on top (linear layer).
|
921 |
+
|
922 |
+
[`BloomForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
923 |
+
(e.g. GPT-1) do.
|
924 |
+
|
925 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
926 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
927 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
928 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
929 |
+
each row of the batch).
|
930 |
+
""",
|
931 |
+
BLOOM_START_DOCSTRING,
|
932 |
+
)
|
933 |
+
class BloomForSequenceClassification(BloomPreTrainedModel):
|
934 |
+
def __init__(self, config: BloomConfig):
|
935 |
+
super().__init__(config)
|
936 |
+
self.num_labels = config.num_labels
|
937 |
+
self.transformer = BloomModel(config)
|
938 |
+
self.score = nn.Linear(config.hidden_size, config.num_labels, bias=False)
|
939 |
+
|
940 |
+
# Initialize weights and apply final processing
|
941 |
+
self.post_init()
|
942 |
+
|
943 |
+
@add_start_docstrings_to_model_forward(BLOOM_INPUTS_DOCSTRING)
|
944 |
+
@add_code_sample_docstrings(
|
945 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
946 |
+
output_type=SequenceClassifierOutputWithPast,
|
947 |
+
config_class=_CONFIG_FOR_DOC,
|
948 |
+
)
|
949 |
+
def forward(
|
950 |
+
self,
|
951 |
+
input_ids: Optional[torch.LongTensor] = None,
|
952 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
953 |
+
attention_mask: Optional[torch.Tensor] = None,
|
954 |
+
head_mask: Optional[torch.Tensor] = None,
|
955 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
956 |
+
labels: Optional[torch.Tensor] = None,
|
957 |
+
use_cache: Optional[bool] = None,
|
958 |
+
output_attentions: Optional[bool] = None,
|
959 |
+
output_hidden_states: Optional[bool] = None,
|
960 |
+
return_dict: Optional[bool] = None,
|
961 |
+
**deprecated_arguments,
|
962 |
+
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutputWithPast]:
|
963 |
+
r"""
|
964 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
965 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
966 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
967 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
968 |
+
"""
|
969 |
+
if deprecated_arguments.pop("position_ids", False) is not False:
|
970 |
+
# `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None`
|
971 |
+
warnings.warn(
|
972 |
+
"`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore"
|
973 |
+
" passing `position_ids`.",
|
974 |
+
FutureWarning,
|
975 |
+
)
|
976 |
+
if len(deprecated_arguments) > 0:
|
977 |
+
raise ValueError(f"Got unexpected arguments: {deprecated_arguments}")
|
978 |
+
|
979 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
980 |
+
|
981 |
+
transformer_outputs = self.transformer(
|
982 |
+
input_ids,
|
983 |
+
past_key_values=past_key_values,
|
984 |
+
attention_mask=attention_mask,
|
985 |
+
head_mask=head_mask,
|
986 |
+
inputs_embeds=inputs_embeds,
|
987 |
+
use_cache=use_cache,
|
988 |
+
output_attentions=output_attentions,
|
989 |
+
output_hidden_states=output_hidden_states,
|
990 |
+
return_dict=return_dict,
|
991 |
+
)
|
992 |
+
|
993 |
+
hidden_states = transformer_outputs[0]
|
994 |
+
logits = self.score(hidden_states)
|
995 |
+
|
996 |
+
if input_ids is not None:
|
997 |
+
batch_size = input_ids.shape[0]
|
998 |
+
else:
|
999 |
+
batch_size = inputs_embeds.shape[0]
|
1000 |
+
|
1001 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
1002 |
+
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
1003 |
+
if self.config.pad_token_id is None:
|
1004 |
+
sequence_lengths = -1
|
1005 |
+
else:
|
1006 |
+
if input_ids is not None:
|
1007 |
+
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
|
1008 |
+
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
1009 |
+
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
1010 |
+
sequence_lengths = sequence_lengths.to(logits.device)
|
1011 |
+
else:
|
1012 |
+
sequence_lengths = -1
|
1013 |
+
logger.warning(
|
1014 |
+
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
|
1015 |
+
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
|
1016 |
+
)
|
1017 |
+
|
1018 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
1019 |
+
|
1020 |
+
loss = None
|
1021 |
+
if labels is not None:
|
1022 |
+
if self.config.problem_type is None:
|
1023 |
+
if self.num_labels == 1:
|
1024 |
+
self.config.problem_type = "regression"
|
1025 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1026 |
+
self.config.problem_type = "single_label_classification"
|
1027 |
+
else:
|
1028 |
+
self.config.problem_type = "multi_label_classification"
|
1029 |
+
|
1030 |
+
if self.config.problem_type == "regression":
|
1031 |
+
loss_fct = MSELoss()
|
1032 |
+
if self.num_labels == 1:
|
1033 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
1034 |
+
else:
|
1035 |
+
loss = loss_fct(pooled_logits, labels)
|
1036 |
+
elif self.config.problem_type == "single_label_classification":
|
1037 |
+
loss_fct = CrossEntropyLoss()
|
1038 |
+
loss = loss_fct(pooled_logits, labels)
|
1039 |
+
elif self.config.problem_type == "multi_label_classification":
|
1040 |
+
loss_fct = BCEWithLogitsLoss()
|
1041 |
+
loss = loss_fct(pooled_logits, labels)
|
1042 |
+
if not return_dict:
|
1043 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
1044 |
+
return ((loss,) + output) if loss is not None else output
|
1045 |
+
|
1046 |
+
return SequenceClassifierOutputWithPast(
|
1047 |
+
loss=loss,
|
1048 |
+
logits=pooled_logits,
|
1049 |
+
past_key_values=transformer_outputs.past_key_values,
|
1050 |
+
hidden_states=transformer_outputs.hidden_states,
|
1051 |
+
attentions=transformer_outputs.attentions,
|
1052 |
+
)
|
1053 |
+
|
1054 |
+
|
1055 |
+
@add_start_docstrings(
|
1056 |
+
"""
|
1057 |
+
Bloom Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
|
1058 |
+
Named-Entity-Recognition (NER) tasks.
|
1059 |
+
""",
|
1060 |
+
BLOOM_START_DOCSTRING,
|
1061 |
+
)
|
1062 |
+
class BloomForTokenClassification(BloomPreTrainedModel):
|
1063 |
+
def __init__(self, config: BloomConfig):
|
1064 |
+
super().__init__(config)
|
1065 |
+
self.num_labels = config.num_labels
|
1066 |
+
|
1067 |
+
self.transformer = BloomModel(config)
|
1068 |
+
if hasattr(config, "classifier_dropout") and config.classifier_dropout is not None:
|
1069 |
+
classifier_dropout = config.classifier_dropout
|
1070 |
+
elif hasattr(config, "hidden_dropout") and config.hidden_dropout is not None:
|
1071 |
+
classifier_dropout = config.hidden_dropout
|
1072 |
+
else:
|
1073 |
+
classifier_dropout = 0.1
|
1074 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
1075 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
1076 |
+
|
1077 |
+
# Initialize weights and apply final processing
|
1078 |
+
self.post_init()
|
1079 |
+
|
1080 |
+
@add_start_docstrings_to_model_forward(BLOOM_INPUTS_DOCSTRING)
|
1081 |
+
@add_code_sample_docstrings(
|
1082 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1083 |
+
output_type=TokenClassifierOutput,
|
1084 |
+
config_class=_CONFIG_FOR_DOC,
|
1085 |
+
)
|
1086 |
+
def forward(
|
1087 |
+
self,
|
1088 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1089 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
1090 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1091 |
+
head_mask: Optional[torch.Tensor] = None,
|
1092 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1093 |
+
labels: Optional[torch.Tensor] = None,
|
1094 |
+
use_cache: Optional[bool] = None,
|
1095 |
+
output_attentions: Optional[bool] = None,
|
1096 |
+
output_hidden_states: Optional[bool] = None,
|
1097 |
+
return_dict: Optional[bool] = None,
|
1098 |
+
**deprecated_arguments,
|
1099 |
+
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
|
1100 |
+
r"""
|
1101 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1102 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1103 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1104 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1105 |
+
"""
|
1106 |
+
if deprecated_arguments.pop("position_ids", False) is not False:
|
1107 |
+
# `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None`
|
1108 |
+
warnings.warn(
|
1109 |
+
"`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore"
|
1110 |
+
" passing `position_ids`.",
|
1111 |
+
FutureWarning,
|
1112 |
+
)
|
1113 |
+
if len(deprecated_arguments) > 0:
|
1114 |
+
raise ValueError(f"Got unexpected arguments: {deprecated_arguments}")
|
1115 |
+
|
1116 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1117 |
+
|
1118 |
+
transformer_outputs = self.transformer(
|
1119 |
+
input_ids,
|
1120 |
+
past_key_values=past_key_values,
|
1121 |
+
attention_mask=attention_mask,
|
1122 |
+
head_mask=head_mask,
|
1123 |
+
inputs_embeds=inputs_embeds,
|
1124 |
+
use_cache=use_cache,
|
1125 |
+
output_attentions=output_attentions,
|
1126 |
+
output_hidden_states=output_hidden_states,
|
1127 |
+
return_dict=return_dict,
|
1128 |
+
)
|
1129 |
+
|
1130 |
+
hidden_states = transformer_outputs[0]
|
1131 |
+
hidden_states = self.dropout(hidden_states)
|
1132 |
+
logits = self.classifier(hidden_states)
|
1133 |
+
|
1134 |
+
loss = None
|
1135 |
+
if labels is not None:
|
1136 |
+
# move labels to correct device to enable model parallelism
|
1137 |
+
labels = labels.to(logits.device)
|
1138 |
+
batch_size, seq_length = labels.shape
|
1139 |
+
loss_fct = CrossEntropyLoss()
|
1140 |
+
loss = loss_fct(
|
1141 |
+
logits.view(batch_size * seq_length, self.num_labels), labels.view(batch_size * seq_length)
|
1142 |
+
)
|
1143 |
+
|
1144 |
+
if not return_dict:
|
1145 |
+
output = (logits,) + transformer_outputs[2:]
|
1146 |
+
return ((loss,) + output) if loss is not None else output
|
1147 |
+
|
1148 |
+
return TokenClassifierOutput(
|
1149 |
+
loss=loss,
|
1150 |
+
logits=logits,
|
1151 |
+
hidden_states=transformer_outputs.hidden_states,
|
1152 |
+
attentions=transformer_outputs.attentions,
|
1153 |
+
)
|
1154 |
+
|
1155 |
+
|
1156 |
+
@add_start_docstrings(
|
1157 |
+
"""
|
1158 |
+
The BLOOM Model transformer with a span classification head on top for extractive question-answering tasks like
|
1159 |
+
SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
1160 |
+
""",
|
1161 |
+
BLOOM_START_DOCSTRING,
|
1162 |
+
)
|
1163 |
+
class BloomForQuestionAnswering(BloomPreTrainedModel):
|
1164 |
+
def __init__(self, config):
|
1165 |
+
super().__init__(config)
|
1166 |
+
self.transformer = BloomModel(config)
|
1167 |
+
self.qa_outputs = nn.Linear(config.hidden_size, 2)
|
1168 |
+
|
1169 |
+
# Initialize weights and apply final processing
|
1170 |
+
self.post_init()
|
1171 |
+
|
1172 |
+
@add_start_docstrings_to_model_forward(BLOOM_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1173 |
+
def forward(
|
1174 |
+
self,
|
1175 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1176 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1177 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1178 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1179 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1180 |
+
start_positions: Optional[torch.LongTensor] = None,
|
1181 |
+
end_positions: Optional[torch.LongTensor] = None,
|
1182 |
+
output_attentions: Optional[bool] = None,
|
1183 |
+
output_hidden_states: Optional[bool] = None,
|
1184 |
+
return_dict: Optional[bool] = None,
|
1185 |
+
) -> Union[Tuple, QuestionAnsweringModelOutput]:
|
1186 |
+
r"""
|
1187 |
+
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1188 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
1189 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1190 |
+
are not taken into account for computing the loss.
|
1191 |
+
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1192 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
1193 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1194 |
+
are not taken into account for computing the loss.
|
1195 |
+
"""
|
1196 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1197 |
+
|
1198 |
+
outputs = self.transformer(
|
1199 |
+
input_ids,
|
1200 |
+
attention_mask=attention_mask,
|
1201 |
+
position_ids=position_ids,
|
1202 |
+
head_mask=head_mask,
|
1203 |
+
inputs_embeds=inputs_embeds,
|
1204 |
+
output_attentions=output_attentions,
|
1205 |
+
output_hidden_states=output_hidden_states,
|
1206 |
+
return_dict=return_dict,
|
1207 |
+
)
|
1208 |
+
|
1209 |
+
sequence_output = outputs[0]
|
1210 |
+
|
1211 |
+
logits = self.qa_outputs(sequence_output)
|
1212 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
1213 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
1214 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
1215 |
+
|
1216 |
+
total_loss = None
|
1217 |
+
if start_positions is not None and end_positions is not None:
|
1218 |
+
# If we are on multi-GPU, split add a dimension
|
1219 |
+
if len(start_positions.size()) > 1:
|
1220 |
+
start_positions = start_positions.squeeze(-1)
|
1221 |
+
if len(end_positions.size()) > 1:
|
1222 |
+
end_positions = end_positions.squeeze(-1)
|
1223 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
1224 |
+
ignored_index = start_logits.size(1)
|
1225 |
+
start_positions = start_positions.clamp(0, ignored_index)
|
1226 |
+
end_positions = end_positions.clamp(0, ignored_index)
|
1227 |
+
|
1228 |
+
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
1229 |
+
start_loss = loss_fct(start_logits, start_positions)
|
1230 |
+
end_loss = loss_fct(end_logits, end_positions)
|
1231 |
+
total_loss = (start_loss + end_loss) / 2
|
1232 |
+
|
1233 |
+
if not return_dict:
|
1234 |
+
output = (start_logits, end_logits) + outputs[2:]
|
1235 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
1236 |
+
|
1237 |
+
return QuestionAnsweringModelOutput(
|
1238 |
+
loss=total_loss,
|
1239 |
+
start_logits=start_logits,
|
1240 |
+
end_logits=end_logits,
|
1241 |
+
hidden_states=outputs.hidden_states,
|
1242 |
+
attentions=outputs.attentions,
|
1243 |
+
)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/bloom/modeling_flax_bloom.py
ADDED
@@ -0,0 +1,734 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 HuggingFace Inc. Team and Bigscience Workshop. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Flax BLOOM model."""
|
16 |
+
|
17 |
+
import math
|
18 |
+
from functools import partial
|
19 |
+
from typing import Optional, Tuple
|
20 |
+
|
21 |
+
import flax.linen as nn
|
22 |
+
import jax
|
23 |
+
import jax.numpy as jnp
|
24 |
+
from flax.core.frozen_dict import FrozenDict, freeze, unfreeze
|
25 |
+
from flax.linen import combine_masks, dot_product_attention_weights, make_causal_mask
|
26 |
+
from flax.linen.activation import tanh
|
27 |
+
from flax.traverse_util import flatten_dict, unflatten_dict
|
28 |
+
from jax import lax
|
29 |
+
|
30 |
+
from ...modeling_flax_outputs import (
|
31 |
+
FlaxBaseModelOutput,
|
32 |
+
FlaxBaseModelOutputWithPastAndCrossAttentions,
|
33 |
+
FlaxCausalLMOutput,
|
34 |
+
)
|
35 |
+
from ...modeling_flax_utils import FlaxPreTrainedModel, append_call_sample_docstring
|
36 |
+
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging
|
37 |
+
from .configuration_bloom import BloomConfig
|
38 |
+
|
39 |
+
|
40 |
+
logger = logging.get_logger(__name__)
|
41 |
+
|
42 |
+
_CHECKPOINT_FOR_DOC = "bigscience/bloom"
|
43 |
+
_CONFIG_FOR_DOC = "BloomConfig"
|
44 |
+
|
45 |
+
|
46 |
+
BLOOM_START_DOCSTRING = r"""
|
47 |
+
|
48 |
+
This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the
|
49 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
50 |
+
etc.)
|
51 |
+
|
52 |
+
This model is also a Flax Linen
|
53 |
+
[flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a
|
54 |
+
regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior.
|
55 |
+
|
56 |
+
Finally, this model supports inherent JAX features such as:
|
57 |
+
|
58 |
+
- [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
|
59 |
+
- [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
|
60 |
+
- [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
|
61 |
+
- [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)
|
62 |
+
|
63 |
+
Parameters:
|
64 |
+
config ([`BloomConfig`]): Model configuration class with all the parameters of the model.
|
65 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
66 |
+
configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights.
|
67 |
+
dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`):
|
68 |
+
The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and
|
69 |
+
`jax.numpy.bfloat16` (on TPUs).
|
70 |
+
|
71 |
+
This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If
|
72 |
+
specified all the computation will be performed with the given `dtype`.
|
73 |
+
|
74 |
+
**Note that this only specifies the dtype of the computation and does not influence the dtype of model
|
75 |
+
parameters.**
|
76 |
+
|
77 |
+
If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and
|
78 |
+
[`~FlaxPreTrainedModel.to_bf16`].
|
79 |
+
"""
|
80 |
+
|
81 |
+
BLOOM_INPUTS_DOCSTRING = r"""
|
82 |
+
Args:
|
83 |
+
input_ids (`numpy.ndarray` of shape `(batch_size, input_ids_length)`):
|
84 |
+
`input_ids_length` = `sequence_length`. Indices of input sequence tokens in the vocabulary.
|
85 |
+
|
86 |
+
Indices can be obtained using [`BloomTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
87 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
88 |
+
|
89 |
+
[What are input IDs?](../glossary#input-ids)
|
90 |
+
attention_mask (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
|
91 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
92 |
+
|
93 |
+
- 1 for tokens that are **not masked**,
|
94 |
+
- 0 for tokens that are **masked**.
|
95 |
+
|
96 |
+
[What are attention masks?](../glossary#attention-mask)
|
97 |
+
past_key_values (`Dict[str, np.ndarray]`, *optional*, returned by `init_cache` or when passing previous `past_key_values`):
|
98 |
+
Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast
|
99 |
+
auto-regressive decoding. Pre-computed key and value hidden-states are of shape *[batch_size, max_length]*.
|
100 |
+
output_attentions (`bool`, *optional*):
|
101 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
102 |
+
tensors for more detail.
|
103 |
+
output_hidden_states (`bool`, *optional*):
|
104 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
105 |
+
more detail.
|
106 |
+
return_dict (`bool`, *optional*):
|
107 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
108 |
+
"""
|
109 |
+
|
110 |
+
|
111 |
+
def build_alibi_tensor(attention_mask: jnp.ndarray, num_heads: int, dtype: Optional[jnp.dtype] = jnp.float32):
|
112 |
+
"""
|
113 |
+
Flax implementation of the BLOOM Alibi tensor. BLOOM Alibi tensor is not causal as the original paper mentions, it
|
114 |
+
relies on a translation invariance of softmax for quick implementation: with l being a tensor, and a fixed value
|
115 |
+
`softmax(l+a) = softmax(l)`. Based on
|
116 |
+
https://github.com/ofirpress/attention_with_linear_biases/blob/a35aaca144e0eb6b789dfcb46784c4b8e31b7983/fairseq/models/transformer.py#L742
|
117 |
+
Link to paper: https://arxiv.org/abs/2108.12409
|
118 |
+
|
119 |
+
Args:
|
120 |
+
attention_mask (`jnp.ndarray`):
|
121 |
+
Token-wise attention mask, this should be of shape `(batch_size, max_seq_len)`.
|
122 |
+
num_heads (`int`):
|
123 |
+
Number of attention heads.
|
124 |
+
dtype (`jnp.dtype`, *optional*, defaults to `jnp.float32`):
|
125 |
+
The data type (dtype) of the output tensor.
|
126 |
+
|
127 |
+
Returns: Alibi tensor of shape `(batch_size * num_heads, 1, max_seq_len)`.
|
128 |
+
"""
|
129 |
+
batch_size, seq_length = attention_mask.shape
|
130 |
+
closest_power_of_2 = 2 ** math.floor(math.log2(num_heads))
|
131 |
+
base = jnp.array(2 ** (-(2 ** -(math.log2(closest_power_of_2) - 3))), dtype=jnp.float32)
|
132 |
+
powers = jnp.arange(1, 1 + closest_power_of_2, dtype=jnp.float32)
|
133 |
+
slopes = jax.lax.pow(base, powers)
|
134 |
+
|
135 |
+
if closest_power_of_2 != num_heads:
|
136 |
+
extra_base = jnp.array(2 ** (-(2 ** -(math.log2(2 * closest_power_of_2) - 3))), dtype=jnp.float32)
|
137 |
+
num_remaining_heads = min(closest_power_of_2, num_heads - closest_power_of_2)
|
138 |
+
extra_powers = jnp.arange(1, 1 + 2 * num_remaining_heads, 2, dtype=jnp.float32)
|
139 |
+
slopes = jnp.cat([slopes, jax.lax.pow(extra_base, extra_powers)], axis=0)
|
140 |
+
|
141 |
+
# Note: the Alibi tensor will added to the attention bias that will be applied to the query, key product of attention
|
142 |
+
# therefore, Alibi will have to be of shape (batch_size, num_heads, query_length, key_length)
|
143 |
+
# => here we set (batch_size=1, num_heads=num_heads, query_length=1, key_length=max_length)
|
144 |
+
# so that the query_length dimension will then be broadcast correctly.
|
145 |
+
# This is more or less identical to T5's relative position bias:
|
146 |
+
# https://github.com/huggingface/transformers/blob/f681437203baa7671de3174b0fa583c349d9d5e1/src/transformers/models/t5/modeling_t5.py#L527
|
147 |
+
arange_tensor = ((attention_mask.cumsum(axis=-1) - 1) * attention_mask)[:, None, :]
|
148 |
+
alibi = slopes[..., None] * arange_tensor
|
149 |
+
alibi = jnp.expand_dims(alibi, axis=2)
|
150 |
+
return jnp.asarray(alibi, dtype)
|
151 |
+
|
152 |
+
|
153 |
+
class FlaxBloomAttention(nn.Module):
|
154 |
+
config: BloomConfig
|
155 |
+
dtype: jnp.dtype = jnp.float32
|
156 |
+
|
157 |
+
def setup(self):
|
158 |
+
self.hidden_size = self.config.hidden_size
|
159 |
+
self.num_heads = self.config.n_head
|
160 |
+
self.head_dim = self.hidden_size // self.num_heads
|
161 |
+
self.attention_softmax_in_fp32 = self.dtype is not jnp.float32
|
162 |
+
|
163 |
+
if self.head_dim * self.num_heads != self.hidden_size:
|
164 |
+
raise ValueError(
|
165 |
+
f"`hidden_size` must be divisible by `num_heads` (got `hidden_size`: {self.hidden_size} and "
|
166 |
+
f"`num_heads`: {self.num_heads})."
|
167 |
+
)
|
168 |
+
|
169 |
+
dense = partial(
|
170 |
+
nn.Dense,
|
171 |
+
dtype=self.dtype,
|
172 |
+
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
|
173 |
+
)
|
174 |
+
|
175 |
+
self.query_key_value = dense(self.hidden_size * 3)
|
176 |
+
self.dense = dense(self.hidden_size)
|
177 |
+
self.resid_dropout = nn.Dropout(rate=self.config.hidden_dropout)
|
178 |
+
|
179 |
+
def _split_heads(self, hidden_states):
|
180 |
+
return hidden_states.reshape(hidden_states.shape[:-1] + (self.num_heads, self.head_dim * 3))
|
181 |
+
|
182 |
+
def _merge_heads(self, hidden_states):
|
183 |
+
return hidden_states.reshape(hidden_states.shape[:2] + (self.hidden_size,))
|
184 |
+
|
185 |
+
@nn.compact
|
186 |
+
# Copied from transformers.models.gptj.modeling_flax_gptj.FlaxGPTJAttention._concatenate_to_cache
|
187 |
+
def _concatenate_to_cache(self, key, value, query, attention_mask):
|
188 |
+
"""
|
189 |
+
This function takes projected key, value states from a single input token and concatenates the states to cached
|
190 |
+
states from previous steps. This function is slighly adapted from the official Flax repository:
|
191 |
+
https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252
|
192 |
+
"""
|
193 |
+
# detect if we're initializing by absence of existing cache data.
|
194 |
+
is_initialized = self.has_variable("cache", "cached_key")
|
195 |
+
cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype)
|
196 |
+
cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype)
|
197 |
+
cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32))
|
198 |
+
|
199 |
+
if is_initialized:
|
200 |
+
*batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape
|
201 |
+
# update key, value caches with our new 1d spatial slices
|
202 |
+
cur_index = cache_index.value
|
203 |
+
indices = (0,) * len(batch_dims) + (cur_index, 0, 0)
|
204 |
+
key = lax.dynamic_update_slice(cached_key.value, key, indices)
|
205 |
+
value = lax.dynamic_update_slice(cached_value.value, value, indices)
|
206 |
+
cached_key.value = key
|
207 |
+
cached_value.value = value
|
208 |
+
num_updated_cache_vectors = query.shape[1]
|
209 |
+
cache_index.value = cache_index.value + num_updated_cache_vectors
|
210 |
+
# causal mask for cached decoder self-attention: our single query position should only attend to those key
|
211 |
+
# positions that have already been generated and cached, not the remaining zero elements.
|
212 |
+
pad_mask = jnp.broadcast_to(
|
213 |
+
jnp.arange(max_length) < cur_index + num_updated_cache_vectors,
|
214 |
+
tuple(batch_dims) + (1, num_updated_cache_vectors, max_length),
|
215 |
+
)
|
216 |
+
attention_mask = combine_masks(pad_mask, attention_mask)
|
217 |
+
return key, value, attention_mask
|
218 |
+
|
219 |
+
def __call__(
|
220 |
+
self,
|
221 |
+
hidden_states,
|
222 |
+
residual,
|
223 |
+
alibi,
|
224 |
+
attention_mask=None,
|
225 |
+
deterministic: bool = True,
|
226 |
+
init_cache: bool = False,
|
227 |
+
output_attentions: bool = False,
|
228 |
+
):
|
229 |
+
batch_size, seq_length = hidden_states.shape[:2]
|
230 |
+
|
231 |
+
# proj q, k, v
|
232 |
+
fused_qkv = self.query_key_value(hidden_states)
|
233 |
+
fused_qkv = self._split_heads(fused_qkv)
|
234 |
+
query, key, value = jnp.split(fused_qkv, 3, axis=-1)
|
235 |
+
|
236 |
+
causal_attention_mask = make_causal_mask(attention_mask, dtype="bool")
|
237 |
+
|
238 |
+
# for fast decoding causal attention mask should be shifted
|
239 |
+
causal_attention_mask_shift = (
|
240 |
+
self.variables["cache"]["cache_index"] if self.has_variable("cache", "cached_key") else 0
|
241 |
+
)
|
242 |
+
|
243 |
+
# fast decoding for generate requires special attention_mask
|
244 |
+
if self.has_variable("cache", "cached_key"):
|
245 |
+
max_decoder_length = self.variables["cache"]["cached_key"].shape[1]
|
246 |
+
causal_attention_mask = jax.lax.dynamic_slice(
|
247 |
+
causal_attention_mask,
|
248 |
+
(0, 0, causal_attention_mask_shift, 0),
|
249 |
+
(1, 1, seq_length, max_decoder_length),
|
250 |
+
)
|
251 |
+
|
252 |
+
# broadcast causal attention mask & attention mask to fit for merge
|
253 |
+
causal_attention_mask = jnp.broadcast_to(
|
254 |
+
causal_attention_mask, (batch_size,) + causal_attention_mask.shape[1:]
|
255 |
+
)
|
256 |
+
attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_attention_mask.shape)
|
257 |
+
attention_mask = combine_masks(attention_mask, causal_attention_mask)
|
258 |
+
|
259 |
+
dropout_rng = None
|
260 |
+
if not deterministic and self.config.attention_dropout > 0.0:
|
261 |
+
dropout_rng = self.make_rng("dropout")
|
262 |
+
|
263 |
+
# During fast autoregressive decoding, we feed one position at a time,
|
264 |
+
# and cache the keys and values step by step.
|
265 |
+
if self.has_variable("cache", "cached_key") or init_cache:
|
266 |
+
key, value, attention_mask = self._concatenate_to_cache(key, value, query, attention_mask)
|
267 |
+
|
268 |
+
# transform boolean mask into float mask
|
269 |
+
mask_value = jnp.finfo(self.dtype).min
|
270 |
+
attention_bias = lax.select(
|
271 |
+
attention_mask > 0,
|
272 |
+
jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
|
273 |
+
jnp.full(attention_mask.shape, mask_value).astype(self.dtype),
|
274 |
+
)
|
275 |
+
|
276 |
+
attention_bias = attention_bias + alibi
|
277 |
+
|
278 |
+
# Cast in fp32 if the original dtype is different from fp32
|
279 |
+
attention_dtype = jnp.float32 if self.attention_softmax_in_fp32 else self.dtype
|
280 |
+
|
281 |
+
attn_weights = dot_product_attention_weights(
|
282 |
+
query,
|
283 |
+
key,
|
284 |
+
bias=attention_bias,
|
285 |
+
dropout_rng=dropout_rng,
|
286 |
+
dropout_rate=self.config.attention_dropout,
|
287 |
+
deterministic=deterministic,
|
288 |
+
dtype=attention_dtype,
|
289 |
+
)
|
290 |
+
|
291 |
+
# Cast back in the original dtype if the native dtype is not fp32
|
292 |
+
if self.attention_softmax_in_fp32:
|
293 |
+
attn_weights = attn_weights.astype(self.dtype)
|
294 |
+
|
295 |
+
attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value)
|
296 |
+
attn_output = self._merge_heads(attn_output)
|
297 |
+
attn_output = self.dense(attn_output)
|
298 |
+
attn_output = self.resid_dropout(attn_output, deterministic=deterministic)
|
299 |
+
|
300 |
+
attn_output = attn_output + residual
|
301 |
+
|
302 |
+
outputs = (attn_output, attn_weights) if output_attentions else (attn_output,)
|
303 |
+
return outputs
|
304 |
+
|
305 |
+
|
306 |
+
class BloomGELU(nn.Module):
|
307 |
+
def setup(self):
|
308 |
+
self.dtype = jnp.float32
|
309 |
+
|
310 |
+
def __call__(self, x):
|
311 |
+
return x * 0.5 * (1.0 + tanh(0.79788456 * x * (1 + 0.044715 * x * x)))
|
312 |
+
|
313 |
+
|
314 |
+
class FlaxBloomMLP(nn.Module):
|
315 |
+
config: BloomConfig
|
316 |
+
dtype: jnp.dtype = jnp.float32
|
317 |
+
|
318 |
+
def setup(self):
|
319 |
+
hidden_size = self.config.hidden_size
|
320 |
+
|
321 |
+
kernel_init = jax.nn.initializers.normal(self.config.initializer_range)
|
322 |
+
|
323 |
+
self.dense_h_to_4h = nn.Dense(4 * hidden_size, dtype=self.dtype, kernel_init=kernel_init)
|
324 |
+
self.dense_4h_to_h = nn.Dense(hidden_size, dtype=self.dtype, kernel_init=kernel_init)
|
325 |
+
self.hidden_dropout = nn.Dropout(self.config.hidden_dropout)
|
326 |
+
self.act = BloomGELU()
|
327 |
+
|
328 |
+
def __call__(self, hidden_states, residual, deterministic: bool = True):
|
329 |
+
hidden_states = self.dense_h_to_4h(hidden_states)
|
330 |
+
hidden_states = self.act(hidden_states)
|
331 |
+
|
332 |
+
intermediate_output = self.dense_4h_to_h(hidden_states)
|
333 |
+
|
334 |
+
intermediate_output = intermediate_output + residual
|
335 |
+
hidden_states = self.hidden_dropout(intermediate_output, deterministic=deterministic)
|
336 |
+
|
337 |
+
return hidden_states
|
338 |
+
|
339 |
+
|
340 |
+
class FlaxBloomBlock(nn.Module):
|
341 |
+
config: BloomConfig
|
342 |
+
dtype: jnp.dtype = jnp.float32
|
343 |
+
|
344 |
+
def setup(self):
|
345 |
+
self.input_layernorm = nn.LayerNorm(epsilon=self.config.layer_norm_epsilon, dtype=self.dtype)
|
346 |
+
|
347 |
+
self.self_attention = FlaxBloomAttention(self.config, dtype=self.dtype)
|
348 |
+
self.post_attention_layernorm = nn.LayerNorm(epsilon=self.config.layer_norm_epsilon, dtype=self.dtype)
|
349 |
+
|
350 |
+
self.mlp = FlaxBloomMLP(self.config, dtype=self.dtype)
|
351 |
+
|
352 |
+
self.apply_residual_connection_post_layernorm = self.config.apply_residual_connection_post_layernorm
|
353 |
+
self.hidden_dropout = self.config.hidden_dropout
|
354 |
+
|
355 |
+
def __call__(
|
356 |
+
self,
|
357 |
+
hidden_states,
|
358 |
+
alibi,
|
359 |
+
attention_mask=None,
|
360 |
+
deterministic: bool = True,
|
361 |
+
init_cache: bool = False,
|
362 |
+
output_attentions: bool = False,
|
363 |
+
):
|
364 |
+
layernorm_output = self.input_layernorm(hidden_states)
|
365 |
+
|
366 |
+
# layer norm before saving residual if config calls for it
|
367 |
+
if self.apply_residual_connection_post_layernorm:
|
368 |
+
residual = layernorm_output
|
369 |
+
else:
|
370 |
+
residual = hidden_states
|
371 |
+
|
372 |
+
# self-attention
|
373 |
+
attn_outputs = self.self_attention(
|
374 |
+
layernorm_output,
|
375 |
+
residual=residual,
|
376 |
+
alibi=alibi,
|
377 |
+
attention_mask=attention_mask,
|
378 |
+
deterministic=deterministic,
|
379 |
+
init_cache=init_cache,
|
380 |
+
output_attentions=output_attentions,
|
381 |
+
)
|
382 |
+
|
383 |
+
attention_output = attn_outputs[0]
|
384 |
+
|
385 |
+
outputs = attn_outputs[1:]
|
386 |
+
|
387 |
+
post_layernorm = self.post_attention_layernorm(attention_output)
|
388 |
+
|
389 |
+
# set residual based on config
|
390 |
+
if self.apply_residual_connection_post_layernorm:
|
391 |
+
residual = post_layernorm
|
392 |
+
else:
|
393 |
+
residual = attention_output
|
394 |
+
|
395 |
+
output = self.mlp(post_layernorm, residual, deterministic=deterministic)
|
396 |
+
|
397 |
+
outputs = (output,) + outputs
|
398 |
+
|
399 |
+
return outputs
|
400 |
+
|
401 |
+
|
402 |
+
class FlaxBloomPreTrainedModel(FlaxPreTrainedModel):
|
403 |
+
"""
|
404 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
405 |
+
models.
|
406 |
+
"""
|
407 |
+
|
408 |
+
config_class = BloomConfig
|
409 |
+
base_model_prefix = "transformer"
|
410 |
+
module_class: nn.Module = None
|
411 |
+
|
412 |
+
def __init__(
|
413 |
+
self,
|
414 |
+
config: BloomConfig,
|
415 |
+
input_shape: Tuple = (1, 1),
|
416 |
+
seed: int = 0,
|
417 |
+
dtype: jnp.dtype = jnp.float32,
|
418 |
+
_do_init: bool = True,
|
419 |
+
**kwargs,
|
420 |
+
):
|
421 |
+
module = self.module_class(config=config, dtype=dtype, **kwargs)
|
422 |
+
super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
|
423 |
+
|
424 |
+
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
|
425 |
+
# init input tensors
|
426 |
+
input_ids = jnp.zeros(input_shape, dtype="i4")
|
427 |
+
attention_mask = jnp.ones_like(input_ids)
|
428 |
+
params_rng, dropout_rng = jax.random.split(rng)
|
429 |
+
rngs = {"params": params_rng, "dropout": dropout_rng}
|
430 |
+
|
431 |
+
random_params = self.module.init(rngs, input_ids, attention_mask, return_dict=False)["params"]
|
432 |
+
|
433 |
+
if params is not None:
|
434 |
+
random_params = flatten_dict(unfreeze(random_params))
|
435 |
+
params = flatten_dict(unfreeze(params))
|
436 |
+
for missing_key in self._missing_keys:
|
437 |
+
params[missing_key] = random_params[missing_key]
|
438 |
+
self._missing_keys = set()
|
439 |
+
return freeze(unflatten_dict(params))
|
440 |
+
else:
|
441 |
+
return random_params
|
442 |
+
|
443 |
+
def init_cache(self, batch_size, max_length):
|
444 |
+
r"""
|
445 |
+
Args:
|
446 |
+
batch_size (`int`):
|
447 |
+
batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache.
|
448 |
+
max_length (`int`):
|
449 |
+
maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized
|
450 |
+
cache.
|
451 |
+
"""
|
452 |
+
# init input variables to retrieve cache
|
453 |
+
input_ids = jnp.ones((batch_size, max_length), dtype="i4")
|
454 |
+
attention_mask = jnp.ones_like(input_ids)
|
455 |
+
|
456 |
+
init_variables = self.module.init(
|
457 |
+
jax.random.PRNGKey(0), input_ids, attention_mask, return_dict=False, init_cache=True
|
458 |
+
)
|
459 |
+
return unfreeze(init_variables["cache"])
|
460 |
+
|
461 |
+
@add_start_docstrings_to_model_forward(BLOOM_INPUTS_DOCSTRING)
|
462 |
+
def __call__(
|
463 |
+
self,
|
464 |
+
input_ids,
|
465 |
+
attention_mask=None,
|
466 |
+
past_key_values: dict = None,
|
467 |
+
params: dict = None,
|
468 |
+
dropout_rng: jax.random.PRNGKey = None,
|
469 |
+
train: bool = False,
|
470 |
+
output_attentions: Optional[bool] = None,
|
471 |
+
output_hidden_states: Optional[bool] = None,
|
472 |
+
return_dict: Optional[bool] = None,
|
473 |
+
):
|
474 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
475 |
+
output_hidden_states = (
|
476 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
477 |
+
)
|
478 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
479 |
+
|
480 |
+
batch_size, sequence_length = input_ids.shape
|
481 |
+
|
482 |
+
if attention_mask is None:
|
483 |
+
attention_mask = jnp.ones((batch_size, sequence_length))
|
484 |
+
|
485 |
+
# Handle any PRNG if needed
|
486 |
+
rngs = {}
|
487 |
+
if dropout_rng is not None:
|
488 |
+
rngs["dropout"] = dropout_rng
|
489 |
+
|
490 |
+
inputs = {"params": params or self.params}
|
491 |
+
|
492 |
+
# If past_key_values are passed then cache is already initialized a private flag init_cache has to be passed
|
493 |
+
# down to ensure cache is used. It has to be made sure that cache is marked as mutable so that it can be
|
494 |
+
# changed by FlaxBloomAttention module
|
495 |
+
if past_key_values:
|
496 |
+
inputs["cache"] = past_key_values
|
497 |
+
mutable = ["cache"]
|
498 |
+
else:
|
499 |
+
mutable = False
|
500 |
+
|
501 |
+
outputs = self.module.apply(
|
502 |
+
inputs,
|
503 |
+
jnp.array(input_ids, dtype="i4"),
|
504 |
+
jnp.array(attention_mask, dtype="i4"),
|
505 |
+
not train,
|
506 |
+
False,
|
507 |
+
output_attentions,
|
508 |
+
output_hidden_states,
|
509 |
+
return_dict,
|
510 |
+
rngs=rngs,
|
511 |
+
mutable=mutable,
|
512 |
+
)
|
513 |
+
|
514 |
+
# add updated cache to model output
|
515 |
+
if past_key_values is not None and return_dict:
|
516 |
+
outputs, past_key_values = outputs
|
517 |
+
outputs["past_key_values"] = unfreeze(past_key_values["cache"])
|
518 |
+
return outputs
|
519 |
+
elif past_key_values is not None and not return_dict:
|
520 |
+
outputs, past_key_values = outputs
|
521 |
+
outputs = outputs[:1] + (unfreeze(past_key_values["cache"]),) + outputs[1:]
|
522 |
+
|
523 |
+
return outputs
|
524 |
+
|
525 |
+
|
526 |
+
class FlaxBloomBlockCollection(nn.Module):
|
527 |
+
config: BloomConfig
|
528 |
+
dtype: jnp.dtype = jnp.float32
|
529 |
+
|
530 |
+
def setup(self):
|
531 |
+
self.layers = [
|
532 |
+
FlaxBloomBlock(self.config, name=str(layer_number), dtype=self.dtype)
|
533 |
+
for layer_number in range(self.config.num_hidden_layers)
|
534 |
+
]
|
535 |
+
|
536 |
+
def __call__(
|
537 |
+
self,
|
538 |
+
hidden_states,
|
539 |
+
alibi,
|
540 |
+
attention_mask=None,
|
541 |
+
deterministic: bool = True,
|
542 |
+
init_cache: bool = False,
|
543 |
+
output_attentions: bool = False,
|
544 |
+
output_hidden_states: bool = False,
|
545 |
+
):
|
546 |
+
all_attentions = () if output_attentions else None
|
547 |
+
all_hidden_states = () if output_hidden_states else None
|
548 |
+
|
549 |
+
for layer_number in range(self.config.num_hidden_layers):
|
550 |
+
if output_hidden_states:
|
551 |
+
all_hidden_states += (hidden_states,)
|
552 |
+
|
553 |
+
layer_outputs = self.layers[layer_number](
|
554 |
+
hidden_states,
|
555 |
+
alibi=alibi,
|
556 |
+
attention_mask=attention_mask,
|
557 |
+
deterministic=deterministic,
|
558 |
+
init_cache=init_cache,
|
559 |
+
output_attentions=output_attentions,
|
560 |
+
)
|
561 |
+
hidden_states = layer_outputs[0]
|
562 |
+
|
563 |
+
if output_attentions:
|
564 |
+
all_attentions += (layer_outputs[1],)
|
565 |
+
|
566 |
+
# this contains possible `None` values - `FlaxBloomModule` will filter them out
|
567 |
+
outputs = (hidden_states, all_hidden_states, all_attentions)
|
568 |
+
|
569 |
+
return outputs
|
570 |
+
|
571 |
+
|
572 |
+
class FlaxBloomModule(nn.Module):
|
573 |
+
config: BloomConfig
|
574 |
+
dtype: jnp.dtype = jnp.float32
|
575 |
+
|
576 |
+
def setup(self):
|
577 |
+
self.embed_dim = self.config.hidden_size
|
578 |
+
|
579 |
+
# word embeddings (no positional embedding layer)
|
580 |
+
self.word_embeddings = nn.Embed(
|
581 |
+
self.config.vocab_size,
|
582 |
+
self.embed_dim,
|
583 |
+
embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
|
584 |
+
dtype=self.dtype,
|
585 |
+
)
|
586 |
+
|
587 |
+
# post-embedding layernorm
|
588 |
+
self.word_embeddings_layernorm = nn.LayerNorm(epsilon=self.config.layer_norm_epsilon, dtype=self.dtype)
|
589 |
+
|
590 |
+
# transformer layers
|
591 |
+
self.h = FlaxBloomBlockCollection(self.config, dtype=self.dtype)
|
592 |
+
|
593 |
+
# final layernorm
|
594 |
+
self.ln_f = nn.LayerNorm(epsilon=self.config.layer_norm_epsilon, dtype=self.dtype)
|
595 |
+
|
596 |
+
def __call__(
|
597 |
+
self,
|
598 |
+
input_ids=None,
|
599 |
+
attention_mask=None,
|
600 |
+
deterministic=True,
|
601 |
+
init_cache: bool = False,
|
602 |
+
output_attentions: bool = False,
|
603 |
+
output_hidden_states: bool = False,
|
604 |
+
return_dict: bool = True,
|
605 |
+
):
|
606 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
607 |
+
# do post-embedding layernorm
|
608 |
+
hidden_states = self.word_embeddings_layernorm(inputs_embeds)
|
609 |
+
|
610 |
+
# build alibi depending on `attention_mask`
|
611 |
+
alibi = build_alibi_tensor(attention_mask, self.config.n_head, dtype=hidden_states.dtype)
|
612 |
+
|
613 |
+
outputs = self.h(
|
614 |
+
hidden_states,
|
615 |
+
alibi=alibi,
|
616 |
+
attention_mask=attention_mask,
|
617 |
+
deterministic=deterministic,
|
618 |
+
init_cache=init_cache,
|
619 |
+
output_hidden_states=output_hidden_states,
|
620 |
+
output_attentions=output_attentions,
|
621 |
+
)
|
622 |
+
|
623 |
+
hidden_states = outputs[0]
|
624 |
+
hidden_states = self.ln_f(hidden_states)
|
625 |
+
|
626 |
+
if output_hidden_states:
|
627 |
+
all_hidden_states = outputs[1] + (hidden_states,)
|
628 |
+
outputs = (hidden_states, all_hidden_states) + outputs[2:]
|
629 |
+
else:
|
630 |
+
outputs = (hidden_states,) + outputs[1:]
|
631 |
+
|
632 |
+
if not return_dict:
|
633 |
+
return tuple(v for v in [outputs[0], outputs[-1]] if v is not None)
|
634 |
+
|
635 |
+
return FlaxBaseModelOutputWithPastAndCrossAttentions(
|
636 |
+
last_hidden_state=hidden_states,
|
637 |
+
hidden_states=outputs[1],
|
638 |
+
attentions=outputs[-1],
|
639 |
+
)
|
640 |
+
|
641 |
+
|
642 |
+
@add_start_docstrings(
|
643 |
+
"The bare Bloom Model transformer outputting raw hidden-states without any specific head on top.",
|
644 |
+
BLOOM_START_DOCSTRING,
|
645 |
+
)
|
646 |
+
# Copied from transformers.models.gpt_neo.modeling_flax_gpt_neo.FlaxGPTNeoModel with GPTNeo->Bloom
|
647 |
+
class FlaxBloomModel(FlaxBloomPreTrainedModel):
|
648 |
+
module_class = FlaxBloomModule
|
649 |
+
|
650 |
+
|
651 |
+
append_call_sample_docstring(FlaxBloomModel, _CHECKPOINT_FOR_DOC, FlaxBaseModelOutput, _CONFIG_FOR_DOC)
|
652 |
+
|
653 |
+
|
654 |
+
class FlaxBloomForCausalLMModule(nn.Module):
|
655 |
+
config: BloomConfig
|
656 |
+
dtype: jnp.dtype = jnp.float32
|
657 |
+
|
658 |
+
def setup(self):
|
659 |
+
self.transformer = FlaxBloomModule(self.config, dtype=self.dtype)
|
660 |
+
self.lm_head = nn.Dense(
|
661 |
+
self.config.vocab_size,
|
662 |
+
use_bias=False,
|
663 |
+
dtype=self.dtype,
|
664 |
+
kernel_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
|
665 |
+
)
|
666 |
+
|
667 |
+
def __call__(
|
668 |
+
self,
|
669 |
+
input_ids,
|
670 |
+
attention_mask,
|
671 |
+
deterministic: bool = True,
|
672 |
+
init_cache: bool = False,
|
673 |
+
output_attentions: bool = False,
|
674 |
+
output_hidden_states: bool = False,
|
675 |
+
return_dict: bool = True,
|
676 |
+
):
|
677 |
+
outputs = self.transformer(
|
678 |
+
input_ids,
|
679 |
+
attention_mask=attention_mask,
|
680 |
+
deterministic=deterministic,
|
681 |
+
init_cache=init_cache,
|
682 |
+
output_attentions=output_attentions,
|
683 |
+
output_hidden_states=output_hidden_states,
|
684 |
+
return_dict=return_dict,
|
685 |
+
)
|
686 |
+
|
687 |
+
hidden_states = outputs[0]
|
688 |
+
|
689 |
+
if self.config.tie_word_embeddings:
|
690 |
+
shared_kernel = self.transformer.variables["params"]["word_embeddings"]["embedding"].T
|
691 |
+
lm_logits = self.lm_head.apply({"params": {"kernel": shared_kernel}}, hidden_states)
|
692 |
+
else:
|
693 |
+
lm_logits = self.lm_head(hidden_states)
|
694 |
+
|
695 |
+
if not return_dict:
|
696 |
+
return (lm_logits,) + outputs[1:]
|
697 |
+
|
698 |
+
return FlaxCausalLMOutput(logits=lm_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions)
|
699 |
+
|
700 |
+
|
701 |
+
@add_start_docstrings(
|
702 |
+
"""
|
703 |
+
The Bloom Model transformer with a language modeling head on top (linear layer with weights tied to the input
|
704 |
+
embeddings).
|
705 |
+
""",
|
706 |
+
BLOOM_START_DOCSTRING,
|
707 |
+
)
|
708 |
+
class FlaxBloomForCausalLM(FlaxBloomPreTrainedModel):
|
709 |
+
module_class = FlaxBloomForCausalLMModule
|
710 |
+
|
711 |
+
def prepare_inputs_for_generation(self, input_ids, max_length, attention_mask: Optional[jax.Array] = None):
|
712 |
+
# initializing the cache
|
713 |
+
batch_size, seq_length = input_ids.shape
|
714 |
+
|
715 |
+
past_key_values = self.init_cache(batch_size, max_length)
|
716 |
+
# Note that usually one would have to put 0's in the attention_mask for
|
717 |
+
# x > input_ids.shape[-1] and x < cache_length. But since Bloom uses a causal mask,
|
718 |
+
# those positions are masked anyway. Thus, we can create a single static attention_mask here,
|
719 |
+
# which is more efficient for compilation
|
720 |
+
extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4")
|
721 |
+
if attention_mask is not None:
|
722 |
+
extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, attention_mask, (0, 0))
|
723 |
+
|
724 |
+
return {
|
725 |
+
"past_key_values": past_key_values,
|
726 |
+
"attention_mask": extended_attention_mask,
|
727 |
+
}
|
728 |
+
|
729 |
+
def update_inputs_for_generation(self, model_outputs, model_kwargs):
|
730 |
+
model_kwargs["past_key_values"] = model_outputs.past_key_values
|
731 |
+
return model_kwargs
|
732 |
+
|
733 |
+
|
734 |
+
append_call_sample_docstring(FlaxBloomForCausalLM, _CHECKPOINT_FOR_DOC, FlaxCausalLMOutput, _CONFIG_FOR_DOC)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/bloom/tokenization_bloom_fast.py
ADDED
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Tokenization classes for Bloom."""
|
16 |
+
|
17 |
+
|
18 |
+
import pickle
|
19 |
+
from typing import Optional, Tuple
|
20 |
+
|
21 |
+
from ...tokenization_utils_base import BatchEncoding
|
22 |
+
from ...tokenization_utils_fast import PreTrainedTokenizerFast
|
23 |
+
from ...utils import logging
|
24 |
+
|
25 |
+
|
26 |
+
logger = logging.get_logger(__name__)
|
27 |
+
|
28 |
+
VOCAB_FILES_NAMES = {"tokenizer_file": "tokenizer.json"}
|
29 |
+
|
30 |
+
|
31 |
+
class BloomTokenizerFast(PreTrainedTokenizerFast):
|
32 |
+
"""
|
33 |
+
Construct a "fast" Bloom tokenizer (backed by HuggingFace's *tokenizers* library). Based on byte-level
|
34 |
+
Byte-Pair-Encoding.
|
35 |
+
|
36 |
+
This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will
|
37 |
+
be encoded differently whether it is at the beginning of the sentence (without space) or not:
|
38 |
+
|
39 |
+
```python
|
40 |
+
>>> from transformers import BloomTokenizerFast
|
41 |
+
|
42 |
+
>>> tokenizer = BloomTokenizerFast.from_pretrained("bigscience/bloom")
|
43 |
+
>>> tokenizer("Hello world")["input_ids"]
|
44 |
+
[59414, 8876]
|
45 |
+
|
46 |
+
>>> tokenizer(" Hello world")["input_ids"]
|
47 |
+
[86153, 8876]
|
48 |
+
```
|
49 |
+
|
50 |
+
You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer, but since
|
51 |
+
the model was not pretrained this way, it might yield a decrease in performance.
|
52 |
+
|
53 |
+
<Tip>
|
54 |
+
|
55 |
+
When used with `is_split_into_words=True`, this tokenizer needs to be instantiated with `add_prefix_space=True`.
|
56 |
+
|
57 |
+
</Tip>
|
58 |
+
|
59 |
+
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
|
60 |
+
refer to this superclass for more information regarding those methods.
|
61 |
+
|
62 |
+
Args:
|
63 |
+
vocab_file (`str`):
|
64 |
+
Path to the vocabulary file.
|
65 |
+
merges_file (`str`):
|
66 |
+
Path to the merges file.
|
67 |
+
errors (`str`, *optional*, defaults to `"replace"`):
|
68 |
+
Paradigm to follow when decoding bytes to UTF-8. See
|
69 |
+
[bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information.
|
70 |
+
unk_token (`str`, *optional*, defaults to `<|endoftext|>`):
|
71 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
72 |
+
token instead.
|
73 |
+
bos_token (`str`, *optional*, defaults to `<|endoftext|>`):
|
74 |
+
The beginning of sequence token.
|
75 |
+
eos_token (`str`, *optional*, defaults to `<|endoftext|>`):
|
76 |
+
The end of sequence token.
|
77 |
+
add_prefix_space (`bool`, *optional*, defaults to `False`):
|
78 |
+
Whether or not to add an initial space to the input. This allows to treat the leading word just as any
|
79 |
+
other word. (Bloom tokenizer detect beginning of words by the preceding space).
|
80 |
+
trim_offsets (`bool`, *optional*, defaults to `True`):
|
81 |
+
Whether or not the post-processing step should trim offsets to avoid including whitespaces.
|
82 |
+
"""
|
83 |
+
|
84 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
85 |
+
model_input_names = ["input_ids", "attention_mask"]
|
86 |
+
slow_tokenizer_class = None
|
87 |
+
# No `max_model_input_sizes` as BLOOM uses ALiBi positional embeddings
|
88 |
+
|
89 |
+
def __init__(
|
90 |
+
self,
|
91 |
+
vocab_file=None,
|
92 |
+
merges_file=None,
|
93 |
+
tokenizer_file=None,
|
94 |
+
unk_token="<unk>",
|
95 |
+
bos_token="<s>",
|
96 |
+
eos_token="</s>",
|
97 |
+
pad_token="<pad>",
|
98 |
+
add_prefix_space=False,
|
99 |
+
clean_up_tokenization_spaces=False,
|
100 |
+
**kwargs,
|
101 |
+
):
|
102 |
+
super().__init__(
|
103 |
+
vocab_file,
|
104 |
+
merges_file,
|
105 |
+
tokenizer_file=tokenizer_file,
|
106 |
+
unk_token=unk_token,
|
107 |
+
bos_token=bos_token,
|
108 |
+
eos_token=eos_token,
|
109 |
+
pad_token=pad_token,
|
110 |
+
add_prefix_space=add_prefix_space,
|
111 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
112 |
+
**kwargs,
|
113 |
+
)
|
114 |
+
# TODO @ArthurZucker this can only work one way for now, to update later-on. Tests should also properly
|
115 |
+
# check this as they were green before.
|
116 |
+
pre_tok_state = pickle.dumps(self.backend_tokenizer.pre_tokenizer)
|
117 |
+
decoder_state = pickle.dumps(self.backend_tokenizer.decoder)
|
118 |
+
|
119 |
+
if add_prefix_space:
|
120 |
+
pre_tok_state = pre_tok_state.replace(b'"add_prefix_space":false', b'"add_prefix_space": true')
|
121 |
+
decoder_state = decoder_state.replace(b'"add_prefix_space":false', b'"add_prefix_space": true')
|
122 |
+
self.backend_tokenizer.pre_tokenizer = pickle.loads(pre_tok_state)
|
123 |
+
self.backend_tokenizer.decoder = pickle.loads(decoder_state)
|
124 |
+
|
125 |
+
self.add_prefix_space = add_prefix_space
|
126 |
+
|
127 |
+
def _batch_encode_plus(self, *args, **kwargs) -> BatchEncoding:
|
128 |
+
is_split_into_words = kwargs.get("is_split_into_words", False)
|
129 |
+
if not (self.add_prefix_space or not is_split_into_words):
|
130 |
+
raise Exception(
|
131 |
+
f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with"
|
132 |
+
" pretokenized inputs."
|
133 |
+
)
|
134 |
+
|
135 |
+
return super()._batch_encode_plus(*args, **kwargs)
|
136 |
+
|
137 |
+
def _encode_plus(self, *args, **kwargs) -> BatchEncoding:
|
138 |
+
is_split_into_words = kwargs.get("is_split_into_words", False)
|
139 |
+
|
140 |
+
if not (self.add_prefix_space or not is_split_into_words):
|
141 |
+
raise Exception(
|
142 |
+
f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with"
|
143 |
+
" pretokenized inputs."
|
144 |
+
)
|
145 |
+
|
146 |
+
return super()._encode_plus(*args, **kwargs)
|
147 |
+
|
148 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
149 |
+
files = self._tokenizer.model.save(save_directory, name=filename_prefix)
|
150 |
+
return tuple(files)
|
151 |
+
|
152 |
+
@property
|
153 |
+
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.default_chat_template
|
154 |
+
def default_chat_template(self):
|
155 |
+
"""
|
156 |
+
A simple chat template that ignores role information and just concatenates messages with EOS tokens.
|
157 |
+
"""
|
158 |
+
logger.warning_once(
|
159 |
+
"\nNo chat template is defined for this tokenizer - using the default template "
|
160 |
+
f"for the {self.__class__.__name__} class. If the default is not appropriate for "
|
161 |
+
"your model, please set `tokenizer.chat_template` to an appropriate template. "
|
162 |
+
"See https://huggingface.co/docs/transformers/main/chat_templating for more information.\n"
|
163 |
+
)
|
164 |
+
return "{% for message in messages %}" "{{ message.content }}{{ eos_token }}" "{% endfor %}"
|
llmeval-env/lib/python3.10/site-packages/transformers/models/esm/__init__.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 Facebook and The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import TYPE_CHECKING
|
15 |
+
|
16 |
+
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
|
17 |
+
|
18 |
+
|
19 |
+
_import_structure = {
|
20 |
+
"configuration_esm": ["ESM_PRETRAINED_CONFIG_ARCHIVE_MAP", "EsmConfig"],
|
21 |
+
"tokenization_esm": ["EsmTokenizer"],
|
22 |
+
}
|
23 |
+
|
24 |
+
try:
|
25 |
+
if not is_torch_available():
|
26 |
+
raise OptionalDependencyNotAvailable()
|
27 |
+
except OptionalDependencyNotAvailable:
|
28 |
+
pass
|
29 |
+
else:
|
30 |
+
_import_structure["modeling_esm"] = [
|
31 |
+
"ESM_PRETRAINED_MODEL_ARCHIVE_LIST",
|
32 |
+
"EsmForMaskedLM",
|
33 |
+
"EsmForSequenceClassification",
|
34 |
+
"EsmForTokenClassification",
|
35 |
+
"EsmModel",
|
36 |
+
"EsmPreTrainedModel",
|
37 |
+
]
|
38 |
+
_import_structure["modeling_esmfold"] = ["EsmForProteinFolding", "EsmFoldPreTrainedModel"]
|
39 |
+
|
40 |
+
try:
|
41 |
+
if not is_tf_available():
|
42 |
+
raise OptionalDependencyNotAvailable()
|
43 |
+
except OptionalDependencyNotAvailable:
|
44 |
+
pass
|
45 |
+
else:
|
46 |
+
_import_structure["modeling_tf_esm"] = [
|
47 |
+
"TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST",
|
48 |
+
"TFEsmForMaskedLM",
|
49 |
+
"TFEsmForSequenceClassification",
|
50 |
+
"TFEsmForTokenClassification",
|
51 |
+
"TFEsmModel",
|
52 |
+
"TFEsmPreTrainedModel",
|
53 |
+
]
|
54 |
+
|
55 |
+
if TYPE_CHECKING:
|
56 |
+
from .configuration_esm import ESM_PRETRAINED_CONFIG_ARCHIVE_MAP, EsmConfig
|
57 |
+
from .tokenization_esm import EsmTokenizer
|
58 |
+
|
59 |
+
try:
|
60 |
+
if not is_torch_available():
|
61 |
+
raise OptionalDependencyNotAvailable()
|
62 |
+
except OptionalDependencyNotAvailable:
|
63 |
+
pass
|
64 |
+
else:
|
65 |
+
from .modeling_esm import (
|
66 |
+
ESM_PRETRAINED_MODEL_ARCHIVE_LIST,
|
67 |
+
EsmForMaskedLM,
|
68 |
+
EsmForSequenceClassification,
|
69 |
+
EsmForTokenClassification,
|
70 |
+
EsmModel,
|
71 |
+
EsmPreTrainedModel,
|
72 |
+
)
|
73 |
+
from .modeling_esmfold import EsmFoldPreTrainedModel, EsmForProteinFolding
|
74 |
+
|
75 |
+
try:
|
76 |
+
if not is_tf_available():
|
77 |
+
raise OptionalDependencyNotAvailable()
|
78 |
+
except OptionalDependencyNotAvailable:
|
79 |
+
pass
|
80 |
+
else:
|
81 |
+
from .modeling_tf_esm import (
|
82 |
+
TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST,
|
83 |
+
TFEsmForMaskedLM,
|
84 |
+
TFEsmForSequenceClassification,
|
85 |
+
TFEsmForTokenClassification,
|
86 |
+
TFEsmModel,
|
87 |
+
TFEsmPreTrainedModel,
|
88 |
+
)
|
89 |
+
|
90 |
+
|
91 |
+
else:
|
92 |
+
import sys
|
93 |
+
|
94 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/esm/configuration_esm.py
ADDED
@@ -0,0 +1,361 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 Meta and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" ESM model configuration"""
|
16 |
+
|
17 |
+
from dataclasses import asdict, dataclass
|
18 |
+
from typing import Optional
|
19 |
+
|
20 |
+
from ...configuration_utils import PretrainedConfig
|
21 |
+
from ...utils import logging
|
22 |
+
|
23 |
+
|
24 |
+
logger = logging.get_logger(__name__)
|
25 |
+
|
26 |
+
# TODO Update this
|
27 |
+
|
28 |
+
from ..deprecated._archive_maps import ESM_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
29 |
+
|
30 |
+
|
31 |
+
class EsmConfig(PretrainedConfig):
|
32 |
+
r"""
|
33 |
+
This is the configuration class to store the configuration of a [`ESMModel`]. It is used to instantiate a ESM model
|
34 |
+
according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
35 |
+
defaults will yield a similar configuration to that of the ESM
|
36 |
+
[facebook/esm-1b](https://huggingface.co/facebook/esm-1b) architecture.
|
37 |
+
|
38 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
39 |
+
documentation from [`PretrainedConfig`] for more information.
|
40 |
+
|
41 |
+
|
42 |
+
Args:
|
43 |
+
vocab_size (`int`, *optional*):
|
44 |
+
Vocabulary size of the ESM model. Defines the number of different tokens that can be represented by the
|
45 |
+
`inputs_ids` passed when calling [`ESMModel`].
|
46 |
+
mask_token_id (`int`, *optional*):
|
47 |
+
The index of the mask token in the vocabulary. This must be included in the config because of the
|
48 |
+
"mask-dropout" scaling trick, which will scale the inputs depending on the number of masked tokens.
|
49 |
+
pad_token_id (`int`, *optional*):
|
50 |
+
The index of the padding token in the vocabulary. This must be included in the config because certain parts
|
51 |
+
of the ESM code use this instead of the attention mask.
|
52 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
53 |
+
Dimensionality of the encoder layers and the pooler layer.
|
54 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
55 |
+
Number of hidden layers in the Transformer encoder.
|
56 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
57 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
58 |
+
intermediate_size (`int`, *optional*, defaults to 3072):
|
59 |
+
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
|
60 |
+
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
|
61 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
62 |
+
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
|
63 |
+
The dropout ratio for the attention probabilities.
|
64 |
+
max_position_embeddings (`int`, *optional*, defaults to 1026):
|
65 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
66 |
+
just in case (e.g., 512 or 1024 or 2048).
|
67 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
68 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
69 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
70 |
+
The epsilon used by the layer normalization layers.
|
71 |
+
position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
|
72 |
+
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query", "rotary"`.
|
73 |
+
For positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
|
74 |
+
[Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
|
75 |
+
For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
|
76 |
+
with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
|
77 |
+
is_decoder (`bool`, *optional*, defaults to `False`):
|
78 |
+
Whether the model is used as a decoder or not. If `False`, the model is used as an encoder.
|
79 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
80 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
81 |
+
relevant if `config.is_decoder=True`.
|
82 |
+
emb_layer_norm_before (`bool`, *optional*):
|
83 |
+
Whether to apply layer normalization after embeddings but before the main stem of the network.
|
84 |
+
token_dropout (`bool`, defaults to `False`):
|
85 |
+
When this is enabled, masked tokens are treated as if they had been dropped out by input dropout.
|
86 |
+
|
87 |
+
Examples:
|
88 |
+
|
89 |
+
```python
|
90 |
+
>>> from transformers import EsmModel, EsmConfig
|
91 |
+
|
92 |
+
>>> # Initializing a ESM facebook/esm-1b style configuration >>> configuration = EsmConfig()
|
93 |
+
|
94 |
+
>>> # Initializing a model from the configuration >>> model = ESMModel(configuration)
|
95 |
+
|
96 |
+
>>> # Accessing the model configuration >>> configuration = model.config
|
97 |
+
```"""
|
98 |
+
|
99 |
+
model_type = "esm"
|
100 |
+
|
101 |
+
def __init__(
|
102 |
+
self,
|
103 |
+
vocab_size=None,
|
104 |
+
mask_token_id=None,
|
105 |
+
pad_token_id=None,
|
106 |
+
hidden_size=768,
|
107 |
+
num_hidden_layers=12,
|
108 |
+
num_attention_heads=12,
|
109 |
+
intermediate_size=3072,
|
110 |
+
hidden_dropout_prob=0.1,
|
111 |
+
attention_probs_dropout_prob=0.1,
|
112 |
+
max_position_embeddings=1026,
|
113 |
+
initializer_range=0.02,
|
114 |
+
layer_norm_eps=1e-12,
|
115 |
+
position_embedding_type="absolute",
|
116 |
+
use_cache=True,
|
117 |
+
emb_layer_norm_before=None,
|
118 |
+
token_dropout=False,
|
119 |
+
is_folding_model=False,
|
120 |
+
esmfold_config=None,
|
121 |
+
vocab_list=None,
|
122 |
+
**kwargs,
|
123 |
+
):
|
124 |
+
super().__init__(pad_token_id=pad_token_id, mask_token_id=mask_token_id, **kwargs)
|
125 |
+
|
126 |
+
self.vocab_size = vocab_size
|
127 |
+
self.hidden_size = hidden_size
|
128 |
+
self.num_hidden_layers = num_hidden_layers
|
129 |
+
self.num_attention_heads = num_attention_heads
|
130 |
+
self.intermediate_size = intermediate_size
|
131 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
132 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
133 |
+
self.max_position_embeddings = max_position_embeddings
|
134 |
+
self.initializer_range = initializer_range
|
135 |
+
self.layer_norm_eps = layer_norm_eps
|
136 |
+
self.position_embedding_type = position_embedding_type
|
137 |
+
self.use_cache = use_cache
|
138 |
+
self.emb_layer_norm_before = emb_layer_norm_before
|
139 |
+
self.token_dropout = token_dropout
|
140 |
+
self.is_folding_model = is_folding_model
|
141 |
+
if is_folding_model:
|
142 |
+
if esmfold_config is None:
|
143 |
+
logger.info("No esmfold_config supplied for folding model, using default values.")
|
144 |
+
esmfold_config = EsmFoldConfig()
|
145 |
+
elif isinstance(esmfold_config, dict):
|
146 |
+
esmfold_config = EsmFoldConfig(**esmfold_config)
|
147 |
+
self.esmfold_config = esmfold_config
|
148 |
+
if vocab_list is None:
|
149 |
+
logger.warning("No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!")
|
150 |
+
self.vocab_list = get_default_vocab_list()
|
151 |
+
else:
|
152 |
+
self.vocab_list = vocab_list
|
153 |
+
else:
|
154 |
+
self.esmfold_config = None
|
155 |
+
self.vocab_list = None
|
156 |
+
if self.esmfold_config is not None and getattr(self.esmfold_config, "use_esm_attn_map", False):
|
157 |
+
raise ValueError("The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!")
|
158 |
+
|
159 |
+
def to_dict(self):
|
160 |
+
"""
|
161 |
+
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
|
162 |
+
|
163 |
+
Returns:
|
164 |
+
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
|
165 |
+
"""
|
166 |
+
output = super().to_dict()
|
167 |
+
if isinstance(self.esmfold_config, EsmFoldConfig):
|
168 |
+
output["esmfold_config"] = self.esmfold_config.to_dict()
|
169 |
+
return output
|
170 |
+
|
171 |
+
|
172 |
+
@dataclass
|
173 |
+
class EsmFoldConfig:
|
174 |
+
esm_type: str = None
|
175 |
+
fp16_esm: bool = True
|
176 |
+
use_esm_attn_map: bool = False
|
177 |
+
esm_ablate_pairwise: bool = False
|
178 |
+
esm_ablate_sequence: bool = False
|
179 |
+
esm_input_dropout: float = 0
|
180 |
+
|
181 |
+
embed_aa: bool = True
|
182 |
+
bypass_lm: bool = False
|
183 |
+
|
184 |
+
lddt_head_hid_dim: int = 128
|
185 |
+
trunk: "TrunkConfig" = None
|
186 |
+
|
187 |
+
def __post_init__(self):
|
188 |
+
if self.trunk is None:
|
189 |
+
self.trunk = TrunkConfig()
|
190 |
+
elif isinstance(self.trunk, dict):
|
191 |
+
self.trunk = TrunkConfig(**self.trunk)
|
192 |
+
|
193 |
+
def to_dict(self):
|
194 |
+
"""
|
195 |
+
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
|
196 |
+
|
197 |
+
Returns:
|
198 |
+
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
|
199 |
+
"""
|
200 |
+
output = asdict(self)
|
201 |
+
output["trunk"] = self.trunk.to_dict()
|
202 |
+
return output
|
203 |
+
|
204 |
+
|
205 |
+
@dataclass
|
206 |
+
class TrunkConfig:
|
207 |
+
num_blocks: int = 48
|
208 |
+
sequence_state_dim: int = 1024
|
209 |
+
pairwise_state_dim: int = 128
|
210 |
+
sequence_head_width: int = 32
|
211 |
+
pairwise_head_width: int = 32
|
212 |
+
position_bins: int = 32
|
213 |
+
dropout: float = 0
|
214 |
+
layer_drop: float = 0
|
215 |
+
cpu_grad_checkpoint: bool = False
|
216 |
+
max_recycles: int = 4
|
217 |
+
chunk_size: Optional[int] = 128
|
218 |
+
structure_module: "StructureModuleConfig" = None
|
219 |
+
|
220 |
+
def __post_init__(self):
|
221 |
+
if self.structure_module is None:
|
222 |
+
self.structure_module = StructureModuleConfig()
|
223 |
+
elif isinstance(self.structure_module, dict):
|
224 |
+
self.structure_module = StructureModuleConfig(**self.structure_module)
|
225 |
+
|
226 |
+
if self.max_recycles <= 0:
|
227 |
+
raise ValueError(f"`max_recycles` should be positive, got {self.max_recycles}.")
|
228 |
+
if self.sequence_state_dim % self.sequence_state_dim != 0:
|
229 |
+
raise ValueError(
|
230 |
+
"`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got"
|
231 |
+
f" {self.sequence_state_dim} and {self.sequence_state_dim}."
|
232 |
+
)
|
233 |
+
if self.pairwise_state_dim % self.pairwise_state_dim != 0:
|
234 |
+
raise ValueError(
|
235 |
+
"`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got"
|
236 |
+
f" {self.pairwise_state_dim} and {self.pairwise_state_dim}."
|
237 |
+
)
|
238 |
+
|
239 |
+
sequence_num_heads = self.sequence_state_dim // self.sequence_head_width
|
240 |
+
pairwise_num_heads = self.pairwise_state_dim // self.pairwise_head_width
|
241 |
+
|
242 |
+
if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width:
|
243 |
+
raise ValueError(
|
244 |
+
"`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got"
|
245 |
+
f" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}."
|
246 |
+
)
|
247 |
+
if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width:
|
248 |
+
raise ValueError(
|
249 |
+
"`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got"
|
250 |
+
f" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}."
|
251 |
+
)
|
252 |
+
if self.pairwise_state_dim % 2 != 0:
|
253 |
+
raise ValueError(f"`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.")
|
254 |
+
|
255 |
+
if self.dropout >= 0.4:
|
256 |
+
raise ValueError(f"`dropout` should not be greater than 0.4, got {self.dropout}.")
|
257 |
+
|
258 |
+
def to_dict(self):
|
259 |
+
"""
|
260 |
+
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
|
261 |
+
|
262 |
+
Returns:
|
263 |
+
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
|
264 |
+
"""
|
265 |
+
output = asdict(self)
|
266 |
+
output["structure_module"] = self.structure_module.to_dict()
|
267 |
+
return output
|
268 |
+
|
269 |
+
|
270 |
+
@dataclass
|
271 |
+
class StructureModuleConfig:
|
272 |
+
"""
|
273 |
+
Args:
|
274 |
+
sequence_dim:
|
275 |
+
Single representation channel dimension
|
276 |
+
pairwise_dim:
|
277 |
+
Pair representation channel dimension
|
278 |
+
ipa_dim:
|
279 |
+
IPA hidden channel dimension
|
280 |
+
resnet_dim:
|
281 |
+
Angle resnet (Alg. 23 lines 11-14) hidden channel dimension
|
282 |
+
num_heads_ipa:
|
283 |
+
Number of IPA heads
|
284 |
+
num_qk_points:
|
285 |
+
Number of query/key points to generate during IPA
|
286 |
+
num_v_points:
|
287 |
+
Number of value points to generate during IPA
|
288 |
+
dropout_rate:
|
289 |
+
Dropout rate used throughout the layer
|
290 |
+
num_blocks:
|
291 |
+
Number of structure module blocks
|
292 |
+
num_transition_layers:
|
293 |
+
Number of layers in the single representation transition (Alg. 23 lines 8-9)
|
294 |
+
num_resnet_blocks:
|
295 |
+
Number of blocks in the angle resnet
|
296 |
+
num_angles:
|
297 |
+
Number of angles to generate in the angle resnet
|
298 |
+
trans_scale_factor:
|
299 |
+
Scale of single representation transition hidden dimension
|
300 |
+
epsilon:
|
301 |
+
Small number used in angle resnet normalization
|
302 |
+
inf:
|
303 |
+
Large number used for attention masking
|
304 |
+
"""
|
305 |
+
|
306 |
+
sequence_dim: int = 384
|
307 |
+
pairwise_dim: int = 128
|
308 |
+
ipa_dim: int = 16
|
309 |
+
resnet_dim: int = 128
|
310 |
+
num_heads_ipa: int = 12
|
311 |
+
num_qk_points: int = 4
|
312 |
+
num_v_points: int = 8
|
313 |
+
dropout_rate: float = 0.1
|
314 |
+
num_blocks: int = 8
|
315 |
+
num_transition_layers: int = 1
|
316 |
+
num_resnet_blocks: int = 2
|
317 |
+
num_angles: int = 7
|
318 |
+
trans_scale_factor: int = 10
|
319 |
+
epsilon: float = 1e-8
|
320 |
+
inf: float = 1e5
|
321 |
+
|
322 |
+
def to_dict(self):
|
323 |
+
return asdict(self)
|
324 |
+
|
325 |
+
|
326 |
+
def get_default_vocab_list():
|
327 |
+
return (
|
328 |
+
"<cls>",
|
329 |
+
"<pad>",
|
330 |
+
"<eos>",
|
331 |
+
"<unk>",
|
332 |
+
"L",
|
333 |
+
"A",
|
334 |
+
"G",
|
335 |
+
"V",
|
336 |
+
"S",
|
337 |
+
"E",
|
338 |
+
"R",
|
339 |
+
"T",
|
340 |
+
"I",
|
341 |
+
"D",
|
342 |
+
"P",
|
343 |
+
"K",
|
344 |
+
"Q",
|
345 |
+
"N",
|
346 |
+
"F",
|
347 |
+
"Y",
|
348 |
+
"M",
|
349 |
+
"H",
|
350 |
+
"W",
|
351 |
+
"C",
|
352 |
+
"X",
|
353 |
+
"B",
|
354 |
+
"U",
|
355 |
+
"Z",
|
356 |
+
"O",
|
357 |
+
".",
|
358 |
+
"-",
|
359 |
+
"<null_1>",
|
360 |
+
"<mask>",
|
361 |
+
)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/esm/convert_esm.py
ADDED
@@ -0,0 +1,400 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Convert ESM checkpoint."""
|
16 |
+
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import pathlib
|
20 |
+
from pathlib import Path
|
21 |
+
from tempfile import TemporaryDirectory
|
22 |
+
|
23 |
+
import esm as esm_module
|
24 |
+
import torch
|
25 |
+
from esm.esmfold.v1.misc import batch_encode_sequences as esmfold_encode_sequences
|
26 |
+
from esm.esmfold.v1.pretrained import esmfold_v1
|
27 |
+
|
28 |
+
from transformers.models.esm.configuration_esm import EsmConfig, EsmFoldConfig
|
29 |
+
from transformers.models.esm.modeling_esm import (
|
30 |
+
EsmForMaskedLM,
|
31 |
+
EsmForSequenceClassification,
|
32 |
+
EsmIntermediate,
|
33 |
+
EsmLayer,
|
34 |
+
EsmOutput,
|
35 |
+
EsmSelfAttention,
|
36 |
+
EsmSelfOutput,
|
37 |
+
)
|
38 |
+
from transformers.models.esm.modeling_esmfold import EsmForProteinFolding
|
39 |
+
from transformers.models.esm.tokenization_esm import EsmTokenizer
|
40 |
+
from transformers.utils import logging
|
41 |
+
|
42 |
+
|
43 |
+
logging.set_verbosity_info()
|
44 |
+
logger = logging.get_logger(__name__)
|
45 |
+
|
46 |
+
SAMPLE_DATA = [
|
47 |
+
(
|
48 |
+
"protein1",
|
49 |
+
"MNGTEGPNFYVPFSNATGVVRSPFEYPQYYLAEPWQFSMLAAYMFLLIVLGFPINFLTLYVTVQHKKLRTPLNYILLNLAVADLFMVLGGFTSTLYTSLHGYFVFGPTGCNLEGFFATLGGEIALWSLVVLAIERYVVVCKPMSNFRFGENHAIMGVAFTWVMALACAAPPLAGWSRYIPEGLQCSCGIDYYTLKPEVNNESFVIYMFVVHFTIPMIIIFFCYGQLVFTVKEAAAQQQESATTQKAEKEVTRMVIIMVIAFLICWVPYASVAFYIFTHQGSNFGPIFMTIPAFFAKSAAIYNPVIYIMMNKQFRNCMLTTICCGKNPLGDDEASATVSKTETSQVAPA",
|
50 |
+
),
|
51 |
+
("protein2", "MKTVRQERLKSIVRILERSKEPVSGAQLAEELSVSRQVIVQDIAYLRSLGYNIVATPRGYVLA"),
|
52 |
+
("protein3", "MKTVRQERLKSI<mask>RILERSKEPVSGAQLAEELS<mask>SRQVIVQDIAYLRSLGYN<mask>VATPRGYVLAGG"),
|
53 |
+
("protein4", "MKTVRQERLKSI<mask>RILERSKEPVSGAQLAEELS<mask>SRQVIVQDIAYLRSLGYN<mask>VATPRGYVLA"),
|
54 |
+
]
|
55 |
+
|
56 |
+
MODEL_MAPPING = {
|
57 |
+
"esm1b_t33_650M_UR50S": esm_module.pretrained.esm1b_t33_650M_UR50S,
|
58 |
+
"esm1v_t33_650M_UR90S_1": esm_module.pretrained.esm1v_t33_650M_UR90S_1,
|
59 |
+
"esm1v_t33_650M_UR90S_2": esm_module.pretrained.esm1v_t33_650M_UR90S_2,
|
60 |
+
"esm1v_t33_650M_UR90S_3": esm_module.pretrained.esm1v_t33_650M_UR90S_3,
|
61 |
+
"esm1v_t33_650M_UR90S_4": esm_module.pretrained.esm1v_t33_650M_UR90S_4,
|
62 |
+
"esm1v_t33_650M_UR90S_5": esm_module.pretrained.esm1v_t33_650M_UR90S_5,
|
63 |
+
"esm2_t48_15B_UR50D": esm_module.pretrained.esm2_t48_15B_UR50D,
|
64 |
+
"esm2_t36_3B_UR50D": esm_module.pretrained.esm2_t36_3B_UR50D,
|
65 |
+
"esm2_t33_650M_UR50D": esm_module.pretrained.esm2_t33_650M_UR50D,
|
66 |
+
"esm2_t30_150M_UR50D": esm_module.pretrained.esm2_t30_150M_UR50D,
|
67 |
+
"esm2_t12_35M_UR50D": esm_module.pretrained.esm2_t12_35M_UR50D,
|
68 |
+
"esm2_t6_8M_UR50D": esm_module.pretrained.esm2_t6_8M_UR50D,
|
69 |
+
"esmfold_v1": esmfold_v1,
|
70 |
+
}
|
71 |
+
|
72 |
+
restypes = list("ARNDCQEGHILKMFPSTWYV")
|
73 |
+
|
74 |
+
restypes_with_x = restypes + ["X"]
|
75 |
+
restypes_with_extras = restypes_with_x + ["<pad>", "<mask>", "<cls>", "<sep>", "<eos>"]
|
76 |
+
|
77 |
+
|
78 |
+
def get_esmfold_tokenizer():
|
79 |
+
with TemporaryDirectory() as tempdir:
|
80 |
+
vocab = "\n".join(restypes_with_extras)
|
81 |
+
vocab_file = Path(tempdir) / "vocab.txt"
|
82 |
+
vocab_file.write_text(vocab)
|
83 |
+
hf_tokenizer = EsmTokenizer(vocab_file=str(vocab_file))
|
84 |
+
hf_tokenizer.pad_token_id = 0 # Overlaps with 'A' but that seems to be what they want
|
85 |
+
return hf_tokenizer
|
86 |
+
|
87 |
+
|
88 |
+
def transfer_and_check_weights(original_module, our_module):
|
89 |
+
status = our_module.load_state_dict(original_module.state_dict())
|
90 |
+
if status.missing_keys:
|
91 |
+
raise ValueError(f"Missing keys: {status.missing_keys}")
|
92 |
+
if status.unexpected_keys:
|
93 |
+
raise ValueError(f"Unexpected keys: {status.unexpected_keys}")
|
94 |
+
|
95 |
+
|
96 |
+
def convert_esm_checkpoint_to_pytorch(
|
97 |
+
model: str, pytorch_dump_folder_path: str, classification_head: bool, push_to_repo: str, auth_token: str
|
98 |
+
):
|
99 |
+
"""
|
100 |
+
Copy/paste/tweak esm's weights to our BERT structure.
|
101 |
+
"""
|
102 |
+
if model.startswith("esmfold"):
|
103 |
+
esm = MODEL_MAPPING[model]()
|
104 |
+
else:
|
105 |
+
esm, alphabet = MODEL_MAPPING[model]()
|
106 |
+
esm.eval() # disable dropout
|
107 |
+
|
108 |
+
if model.startswith("esmfold"):
|
109 |
+
embed_dim = esm.esm.embed_dim
|
110 |
+
num_layers = esm.esm.num_layers
|
111 |
+
num_attention_heads = esm.esm.attention_heads
|
112 |
+
intermediate_size = 4 * embed_dim
|
113 |
+
token_dropout = esm.esm.token_dropout
|
114 |
+
emb_layer_norm_before = False # This code path does not exist in ESM-2
|
115 |
+
position_embedding_type = "rotary"
|
116 |
+
is_folding_model = True
|
117 |
+
esmfold_config = EsmFoldConfig()
|
118 |
+
for key, val in esm.cfg.items():
|
119 |
+
if hasattr(esmfold_config, key) and key != "trunk":
|
120 |
+
setattr(esmfold_config, key, val)
|
121 |
+
for key, val in esm.cfg.trunk.items():
|
122 |
+
if hasattr(esmfold_config.trunk, key) and key != "structure_module":
|
123 |
+
setattr(esmfold_config.trunk, key, val)
|
124 |
+
for key, val in esm.cfg.trunk.structure_module.items():
|
125 |
+
if hasattr(esmfold_config.trunk.structure_module, key):
|
126 |
+
setattr(esmfold_config.trunk.structure_module, key, val)
|
127 |
+
elif hasattr(esm, "args"):
|
128 |
+
# Indicates an ESM-1b or ESM-1v model
|
129 |
+
embed_dim = esm.args.embed_dim
|
130 |
+
num_layers = esm.args.layers
|
131 |
+
num_attention_heads = esm.args.attention_heads
|
132 |
+
intermediate_size = esm.args.ffn_embed_dim
|
133 |
+
token_dropout = esm.args.token_dropout
|
134 |
+
emb_layer_norm_before = True if esm.emb_layer_norm_before else False
|
135 |
+
position_embedding_type = "absolute"
|
136 |
+
is_folding_model = False
|
137 |
+
esmfold_config = None
|
138 |
+
else:
|
139 |
+
# Indicates an ESM-2 model
|
140 |
+
embed_dim = esm.embed_dim
|
141 |
+
num_layers = esm.num_layers
|
142 |
+
num_attention_heads = esm.attention_heads
|
143 |
+
intermediate_size = 4 * embed_dim # This is hardcoded in ESM-2
|
144 |
+
token_dropout = esm.token_dropout
|
145 |
+
emb_layer_norm_before = False # This code path does not exist in ESM-2
|
146 |
+
position_embedding_type = "rotary"
|
147 |
+
is_folding_model = False
|
148 |
+
esmfold_config = None
|
149 |
+
|
150 |
+
if is_folding_model:
|
151 |
+
alphabet = esm.esm.alphabet
|
152 |
+
vocab_list = tuple(alphabet.all_toks)
|
153 |
+
mask_token_id = alphabet.mask_idx
|
154 |
+
pad_token_id = alphabet.padding_idx
|
155 |
+
|
156 |
+
if is_folding_model:
|
157 |
+
original_esm_model = esm.esm
|
158 |
+
else:
|
159 |
+
original_esm_model = esm
|
160 |
+
|
161 |
+
config = EsmConfig(
|
162 |
+
vocab_size=original_esm_model.embed_tokens.num_embeddings,
|
163 |
+
mask_token_id=mask_token_id,
|
164 |
+
hidden_size=embed_dim,
|
165 |
+
num_hidden_layers=num_layers,
|
166 |
+
num_attention_heads=num_attention_heads,
|
167 |
+
intermediate_size=intermediate_size,
|
168 |
+
max_position_embeddings=1026,
|
169 |
+
layer_norm_eps=1e-5, # PyTorch default used in fairseq
|
170 |
+
attention_probs_dropout_prob=0.0,
|
171 |
+
hidden_dropout_prob=0.0,
|
172 |
+
pad_token_id=pad_token_id,
|
173 |
+
emb_layer_norm_before=emb_layer_norm_before,
|
174 |
+
token_dropout=token_dropout,
|
175 |
+
position_embedding_type=position_embedding_type,
|
176 |
+
is_folding_model=is_folding_model,
|
177 |
+
esmfold_config=esmfold_config,
|
178 |
+
vocab_list=vocab_list,
|
179 |
+
)
|
180 |
+
if classification_head:
|
181 |
+
config.num_labels = esm.classification_heads["mnli"].out_proj.weight.shape[0]
|
182 |
+
print("Our ESM config:", config)
|
183 |
+
|
184 |
+
if model.startswith("esmfold"):
|
185 |
+
model_class = EsmForProteinFolding
|
186 |
+
elif classification_head:
|
187 |
+
model_class = EsmForSequenceClassification
|
188 |
+
else:
|
189 |
+
model_class = EsmForMaskedLM
|
190 |
+
model = model_class(config)
|
191 |
+
model.eval()
|
192 |
+
|
193 |
+
# Now let's copy all the weights.
|
194 |
+
# Embeddings
|
195 |
+
model.esm.embeddings.word_embeddings.weight = original_esm_model.embed_tokens.weight
|
196 |
+
if position_embedding_type == "absolute":
|
197 |
+
model.esm.embeddings.position_embeddings.weight = original_esm_model.embed_positions.weight
|
198 |
+
|
199 |
+
if config.emb_layer_norm_before:
|
200 |
+
model.esm.embeddings.layer_norm.weight = original_esm_model.emb_layer_norm_before.weight
|
201 |
+
model.esm.embeddings.layer_norm.bias = original_esm_model.emb_layer_norm_before.bias
|
202 |
+
|
203 |
+
model.esm.encoder.emb_layer_norm_after.weight = original_esm_model.emb_layer_norm_after.weight
|
204 |
+
model.esm.encoder.emb_layer_norm_after.bias = original_esm_model.emb_layer_norm_after.bias
|
205 |
+
|
206 |
+
for i in range(config.num_hidden_layers):
|
207 |
+
# Encoder: start of layer
|
208 |
+
layer: EsmLayer = model.esm.encoder.layer[i]
|
209 |
+
# esm_layer: TransformerSentenceEncoderLayer = original_esm_model.layers[i]
|
210 |
+
esm_layer = original_esm_model.layers[i]
|
211 |
+
|
212 |
+
# self attention
|
213 |
+
self_attn: EsmSelfAttention = layer.attention.self
|
214 |
+
assert (
|
215 |
+
esm_layer.self_attn.k_proj.weight.data.shape
|
216 |
+
== esm_layer.self_attn.q_proj.weight.data.shape
|
217 |
+
== esm_layer.self_attn.v_proj.weight.data.shape
|
218 |
+
== torch.Size((config.hidden_size, config.hidden_size))
|
219 |
+
)
|
220 |
+
|
221 |
+
self_attn.query.weight.data = esm_layer.self_attn.q_proj.weight
|
222 |
+
self_attn.query.bias.data = esm_layer.self_attn.q_proj.bias
|
223 |
+
self_attn.key.weight.data = esm_layer.self_attn.k_proj.weight
|
224 |
+
self_attn.key.bias.data = esm_layer.self_attn.k_proj.bias
|
225 |
+
self_attn.value.weight.data = esm_layer.self_attn.v_proj.weight
|
226 |
+
self_attn.value.bias.data = esm_layer.self_attn.v_proj.bias
|
227 |
+
|
228 |
+
if getattr(esm_layer.self_attn, "rot_emb", None) is not None:
|
229 |
+
# Matt: Although inv_freq is not a trainable weight, it is computed at model init and cached.
|
230 |
+
# During the training of ESM-2 the model was converted to float16 precision, which also converts
|
231 |
+
# the inv_freq tensor, and the loss of precision remains even if the model is loaded later as float32.
|
232 |
+
# If we recompute inv_freq without this loss of precision then we will get subtly different rotary
|
233 |
+
# embeddings, which are enough to cause significant discrepancies in model outputs. To avoid this,
|
234 |
+
# we make sure the new model copies the data from the old inv_freq.
|
235 |
+
self_attn.rotary_embeddings.inv_freq.data = esm_layer.self_attn.rot_emb.inv_freq
|
236 |
+
|
237 |
+
# LayerNorm changes for pre-activation
|
238 |
+
layer.attention.LayerNorm.weight = esm_layer.self_attn_layer_norm.weight
|
239 |
+
layer.attention.LayerNorm.bias = esm_layer.self_attn_layer_norm.bias
|
240 |
+
layer.LayerNorm.weight = esm_layer.final_layer_norm.weight
|
241 |
+
layer.LayerNorm.bias = esm_layer.final_layer_norm.bias
|
242 |
+
|
243 |
+
# self-attention output
|
244 |
+
self_output: EsmSelfOutput = layer.attention.output
|
245 |
+
assert self_output.dense.weight.shape == esm_layer.self_attn.out_proj.weight.shape
|
246 |
+
self_output.dense.weight = esm_layer.self_attn.out_proj.weight
|
247 |
+
self_output.dense.bias = esm_layer.self_attn.out_proj.bias
|
248 |
+
|
249 |
+
# intermediate
|
250 |
+
intermediate: EsmIntermediate = layer.intermediate
|
251 |
+
assert intermediate.dense.weight.shape == esm_layer.fc1.weight.shape
|
252 |
+
intermediate.dense.weight = esm_layer.fc1.weight
|
253 |
+
intermediate.dense.bias = esm_layer.fc1.bias
|
254 |
+
|
255 |
+
# output
|
256 |
+
bert_output: EsmOutput = layer.output
|
257 |
+
assert bert_output.dense.weight.shape == esm_layer.fc2.weight.shape
|
258 |
+
bert_output.dense.weight = esm_layer.fc2.weight
|
259 |
+
bert_output.dense.bias = esm_layer.fc2.bias
|
260 |
+
# end of layer
|
261 |
+
|
262 |
+
if is_folding_model:
|
263 |
+
model.esm_s_combine.data = esm.esm_s_combine.data
|
264 |
+
model.af2_to_esm.data = esm.af2_to_esm.data
|
265 |
+
transfer_and_check_weights(esm.embedding, model.embedding)
|
266 |
+
transfer_and_check_weights(esm.esm_s_mlp, model.esm_s_mlp)
|
267 |
+
transfer_and_check_weights(esm.trunk, model.trunk)
|
268 |
+
transfer_and_check_weights(esm.distogram_head, model.distogram_head)
|
269 |
+
transfer_and_check_weights(esm.ptm_head, model.ptm_head)
|
270 |
+
transfer_and_check_weights(esm.lm_head, model.lm_head)
|
271 |
+
transfer_and_check_weights(esm.lddt_head, model.lddt_head)
|
272 |
+
|
273 |
+
elif classification_head:
|
274 |
+
model.classifier.dense.weight = esm.esm.classification_heads["mnli"].dense.weight
|
275 |
+
model.classifier.dense.bias = esm.classification_heads["mnli"].dense.bias
|
276 |
+
model.classifier.out_proj.weight = esm.classification_heads["mnli"].out_proj.weight
|
277 |
+
model.classifier.out_proj.bias = esm.classification_heads["mnli"].out_proj.bias
|
278 |
+
else:
|
279 |
+
# LM Head
|
280 |
+
model.lm_head.dense.weight = esm.lm_head.dense.weight
|
281 |
+
model.lm_head.dense.bias = esm.lm_head.dense.bias
|
282 |
+
model.lm_head.layer_norm.weight = esm.lm_head.layer_norm.weight
|
283 |
+
model.lm_head.layer_norm.bias = esm.lm_head.layer_norm.bias
|
284 |
+
model.lm_head.decoder.weight = esm.lm_head.weight
|
285 |
+
model.lm_head.bias = esm.lm_head.bias
|
286 |
+
|
287 |
+
# Contact prediction head
|
288 |
+
transfer_and_check_weights(esm.contact_head, model.esm.contact_head)
|
289 |
+
|
290 |
+
# Prepare data (first 2 sequences from ESMStructuralSplitDataset superfamily / 4)
|
291 |
+
if is_folding_model:
|
292 |
+
# Folding models aren't trained on masked inputs and don't like mask tokens.
|
293 |
+
sample_data = SAMPLE_DATA[:2]
|
294 |
+
else:
|
295 |
+
sample_data = SAMPLE_DATA
|
296 |
+
|
297 |
+
if is_folding_model:
|
298 |
+
hf_tokenizer = get_esmfold_tokenizer()
|
299 |
+
hf_tokens = hf_tokenizer(
|
300 |
+
[row[1] for row in sample_data], return_tensors="pt", padding=True, add_special_tokens=False
|
301 |
+
)
|
302 |
+
esmfold_aas, esmfold_mask, _, _, _ = esmfold_encode_sequences([row[1] for row in sample_data])
|
303 |
+
success = torch.all(hf_tokens["input_ids"] == esmfold_aas) and torch.all(
|
304 |
+
hf_tokens["attention_mask"] == esmfold_mask
|
305 |
+
)
|
306 |
+
else:
|
307 |
+
# Let's check that we get the same results.
|
308 |
+
batch_converter = alphabet.get_batch_converter()
|
309 |
+
batch_labels, batch_strs, batch_tokens = batch_converter(sample_data)
|
310 |
+
# Prepare tokenizer and make sure it matches
|
311 |
+
with TemporaryDirectory() as tempdir:
|
312 |
+
vocab = "\n".join(alphabet.all_toks)
|
313 |
+
vocab_file = Path(tempdir) / "vocab.txt"
|
314 |
+
vocab_file.write_text(vocab)
|
315 |
+
hf_tokenizer = EsmTokenizer(vocab_file=str(vocab_file))
|
316 |
+
|
317 |
+
hf_tokens = hf_tokenizer([row[1] for row in sample_data], return_tensors="pt", padding=True)
|
318 |
+
success = torch.all(hf_tokens["input_ids"] == batch_tokens)
|
319 |
+
|
320 |
+
print("Do both models tokenizers output the same tokens?", "🔥" if success else "💩")
|
321 |
+
if not success:
|
322 |
+
raise Exception("Tokenization does not match!")
|
323 |
+
|
324 |
+
with torch.no_grad():
|
325 |
+
if is_folding_model:
|
326 |
+
# Let's test the model in parts
|
327 |
+
# ESMFold always converts the ESM stem to float16, which requires float16 ops
|
328 |
+
# that don't exist on CPU. Therefore, to test it we need to run it on GPU. However,
|
329 |
+
# ESMFold is what we in the community call a "big boy" and so we desperately avoid putting both the
|
330 |
+
# original and the converted model on the GPU at the same time.
|
331 |
+
their_output = esm.cuda().infer([row[1] for row in sample_data])
|
332 |
+
our_output = model.cuda()(
|
333 |
+
input_ids=hf_tokens["input_ids"].cuda(), attention_mask=hf_tokens["attention_mask"].cuda()
|
334 |
+
)
|
335 |
+
else:
|
336 |
+
our_output = model(**hf_tokens, output_hidden_states=True)
|
337 |
+
our_output = our_output["logits"]
|
338 |
+
if classification_head:
|
339 |
+
their_output = esm.model.classification_heads["mnli"](esm.extract_features(batch_tokens))
|
340 |
+
else:
|
341 |
+
their_output = esm(hf_tokens["input_ids"], repr_layers=list(range(999)))
|
342 |
+
their_output = their_output["logits"]
|
343 |
+
|
344 |
+
if is_folding_model:
|
345 |
+
max_absolute_diff = torch.max(torch.abs(our_output["positions"] - their_output["positions"])).item()
|
346 |
+
success = torch.allclose(our_output["positions"], their_output["positions"], atol=1e-5)
|
347 |
+
else:
|
348 |
+
max_absolute_diff = torch.max(torch.abs(our_output - their_output)).item()
|
349 |
+
success = torch.allclose(our_output, their_output, atol=1e-5)
|
350 |
+
|
351 |
+
print(f"max_absolute_diff = {max_absolute_diff}") # ~ 1e-5
|
352 |
+
print("Do both models output the same tensors?", "🔥" if success else "💩")
|
353 |
+
|
354 |
+
if not success:
|
355 |
+
raise Exception("Something went wRoNg")
|
356 |
+
|
357 |
+
if not is_folding_model:
|
358 |
+
# Let's check contact prediction too
|
359 |
+
our_output = model.predict_contacts(hf_tokens["input_ids"], hf_tokens["attention_mask"])
|
360 |
+
their_output = esm.predict_contacts(hf_tokens["input_ids"])
|
361 |
+
max_absolute_diff = torch.max(torch.abs(our_output - their_output)).item()
|
362 |
+
success = torch.allclose(our_output, their_output, atol=1e-5)
|
363 |
+
|
364 |
+
print("Contact prediction testing:")
|
365 |
+
print(f"max_absolute_diff = {max_absolute_diff}") # ~ 1e-5
|
366 |
+
print("Do both models output the same tensors?", "🔥" if success else "💩")
|
367 |
+
|
368 |
+
if not success:
|
369 |
+
raise Exception("Something went wRoNg")
|
370 |
+
|
371 |
+
pathlib.Path(pytorch_dump_folder_path).mkdir(parents=True, exist_ok=True)
|
372 |
+
print(f"Saving model to {pytorch_dump_folder_path}")
|
373 |
+
model.save_pretrained(pytorch_dump_folder_path)
|
374 |
+
|
375 |
+
del esm # Free up some memory before continuing
|
376 |
+
|
377 |
+
print(f"Saving tokenizer to {pytorch_dump_folder_path}")
|
378 |
+
hf_tokenizer.save_pretrained(pytorch_dump_folder_path)
|
379 |
+
|
380 |
+
if push_to_repo:
|
381 |
+
model.push_to_hub(repo_id=push_to_repo, token_token=auth_token)
|
382 |
+
hf_tokenizer.push_to_hub(repo_id=push_to_repo, token_token=auth_token)
|
383 |
+
|
384 |
+
|
385 |
+
if __name__ == "__main__":
|
386 |
+
parser = argparse.ArgumentParser()
|
387 |
+
# Required parameters
|
388 |
+
parser.add_argument(
|
389 |
+
"--pytorch_dump_folder_path", type=str, required=True, help="Path to the output PyTorch model."
|
390 |
+
)
|
391 |
+
parser.add_argument(
|
392 |
+
"--classification_head", action="store_true", help="Whether to convert a final classification head."
|
393 |
+
)
|
394 |
+
parser.add_argument("--model", default=None, type=str, required=True, help="Name of model to convert.")
|
395 |
+
parser.add_argument("--push_to_repo", type=str, help="Repo to upload to (including username!).")
|
396 |
+
parser.add_argument("--auth_token", type=str, help="HuggingFace auth token.")
|
397 |
+
args = parser.parse_args()
|
398 |
+
convert_esm_checkpoint_to_pytorch(
|
399 |
+
args.model, args.pytorch_dump_folder_path, args.classification_head, args.push_to_repo, args.auth_token
|
400 |
+
)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/esm/modeling_esm.py
ADDED
@@ -0,0 +1,1265 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 Meta and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch ESM model."""
|
16 |
+
|
17 |
+
import math
|
18 |
+
from typing import List, Optional, Tuple, Union
|
19 |
+
|
20 |
+
import torch
|
21 |
+
import torch.utils.checkpoint
|
22 |
+
from torch import nn
|
23 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
24 |
+
|
25 |
+
from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
|
26 |
+
from ...modeling_outputs import (
|
27 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
28 |
+
BaseModelOutputWithPoolingAndCrossAttentions,
|
29 |
+
MaskedLMOutput,
|
30 |
+
SequenceClassifierOutput,
|
31 |
+
TokenClassifierOutput,
|
32 |
+
)
|
33 |
+
from ...modeling_utils import PreTrainedModel, find_pruneable_heads_and_indices, prune_linear_layer
|
34 |
+
from ...utils import logging
|
35 |
+
from .configuration_esm import EsmConfig
|
36 |
+
|
37 |
+
|
38 |
+
logger = logging.get_logger(__name__)
|
39 |
+
|
40 |
+
_CHECKPOINT_FOR_DOC = "facebook/esm2_t6_8M_UR50D"
|
41 |
+
_CONFIG_FOR_DOC = "EsmConfig"
|
42 |
+
|
43 |
+
|
44 |
+
from ..deprecated._archive_maps import ESM_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
45 |
+
|
46 |
+
|
47 |
+
def rotate_half(x):
|
48 |
+
x1, x2 = x.chunk(2, dim=-1)
|
49 |
+
return torch.cat((-x2, x1), dim=-1)
|
50 |
+
|
51 |
+
|
52 |
+
def apply_rotary_pos_emb(x, cos, sin):
|
53 |
+
cos = cos[:, :, : x.shape[-2], :]
|
54 |
+
sin = sin[:, :, : x.shape[-2], :]
|
55 |
+
|
56 |
+
return (x * cos) + (rotate_half(x) * sin)
|
57 |
+
|
58 |
+
|
59 |
+
def gelu(x):
|
60 |
+
"""
|
61 |
+
This is the gelu implementation from the original ESM repo. Using F.gelu yields subtly wrong results.
|
62 |
+
"""
|
63 |
+
return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))
|
64 |
+
|
65 |
+
|
66 |
+
def symmetrize(x):
|
67 |
+
"Make layer symmetric in final two dimensions, used for contact prediction."
|
68 |
+
return x + x.transpose(-1, -2)
|
69 |
+
|
70 |
+
|
71 |
+
def average_product_correct(x):
|
72 |
+
"Perform average product correct, used for contact prediction."
|
73 |
+
a1 = x.sum(-1, keepdims=True)
|
74 |
+
a2 = x.sum(-2, keepdims=True)
|
75 |
+
a12 = x.sum((-1, -2), keepdims=True)
|
76 |
+
|
77 |
+
avg = a1 * a2
|
78 |
+
avg.div_(a12) # in-place to reduce memory
|
79 |
+
normalized = x - avg
|
80 |
+
return normalized
|
81 |
+
|
82 |
+
|
83 |
+
class RotaryEmbedding(torch.nn.Module):
|
84 |
+
"""
|
85 |
+
Rotary position embeddings based on those in
|
86 |
+
[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer). Query and keys are transformed by rotation
|
87 |
+
matrices which depend on their relative positions.
|
88 |
+
"""
|
89 |
+
|
90 |
+
def __init__(self, dim: int):
|
91 |
+
super().__init__()
|
92 |
+
# Generate and save the inverse frequency buffer (non trainable)
|
93 |
+
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2, dtype=torch.int64).float() / dim))
|
94 |
+
inv_freq = inv_freq
|
95 |
+
self.register_buffer("inv_freq", inv_freq)
|
96 |
+
|
97 |
+
self._seq_len_cached = None
|
98 |
+
self._cos_cached = None
|
99 |
+
self._sin_cached = None
|
100 |
+
|
101 |
+
def _update_cos_sin_tables(self, x, seq_dimension=2):
|
102 |
+
seq_len = x.shape[seq_dimension]
|
103 |
+
|
104 |
+
# Reset the tables if the sequence length has changed,
|
105 |
+
# or if we're on a new device (possibly due to tracing for instance)
|
106 |
+
if seq_len != self._seq_len_cached or self._cos_cached.device != x.device:
|
107 |
+
self._seq_len_cached = seq_len
|
108 |
+
t = torch.arange(x.shape[seq_dimension], device=x.device).type_as(self.inv_freq)
|
109 |
+
freqs = torch.outer(t, self.inv_freq)
|
110 |
+
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
|
111 |
+
|
112 |
+
self._cos_cached = emb.cos()[None, None, :, :]
|
113 |
+
self._sin_cached = emb.sin()[None, None, :, :]
|
114 |
+
|
115 |
+
return self._cos_cached, self._sin_cached
|
116 |
+
|
117 |
+
def forward(self, q: torch.Tensor, k: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
118 |
+
self._cos_cached, self._sin_cached = self._update_cos_sin_tables(k, seq_dimension=-2)
|
119 |
+
|
120 |
+
return (
|
121 |
+
apply_rotary_pos_emb(q, self._cos_cached, self._sin_cached),
|
122 |
+
apply_rotary_pos_emb(k, self._cos_cached, self._sin_cached),
|
123 |
+
)
|
124 |
+
|
125 |
+
|
126 |
+
class EsmContactPredictionHead(nn.Module):
|
127 |
+
"""Performs symmetrization, apc, and computes a logistic regression on the output features"""
|
128 |
+
|
129 |
+
def __init__(
|
130 |
+
self,
|
131 |
+
in_features: int,
|
132 |
+
bias=True,
|
133 |
+
eos_idx: int = 2,
|
134 |
+
):
|
135 |
+
super().__init__()
|
136 |
+
self.in_features = in_features
|
137 |
+
self.eos_idx = eos_idx
|
138 |
+
self.regression = nn.Linear(in_features, 1, bias)
|
139 |
+
self.activation = nn.Sigmoid()
|
140 |
+
|
141 |
+
def forward(self, tokens, attentions):
|
142 |
+
# remove eos token attentions
|
143 |
+
eos_mask = tokens.ne(self.eos_idx).to(attentions)
|
144 |
+
eos_mask = eos_mask.unsqueeze(1) * eos_mask.unsqueeze(2)
|
145 |
+
attentions = attentions * eos_mask[:, None, None, :, :]
|
146 |
+
attentions = attentions[..., :-1, :-1]
|
147 |
+
# remove cls token attentions
|
148 |
+
attentions = attentions[..., 1:, 1:]
|
149 |
+
batch_size, layers, heads, seqlen, _ = attentions.size()
|
150 |
+
attentions = attentions.view(batch_size, layers * heads, seqlen, seqlen)
|
151 |
+
|
152 |
+
# features: batch x channels x tokens x tokens (symmetric)
|
153 |
+
attentions = attentions.to(
|
154 |
+
self.regression.weight.device
|
155 |
+
) # attentions always float32, may need to convert to float16
|
156 |
+
attentions = average_product_correct(symmetrize(attentions))
|
157 |
+
attentions = attentions.permute(0, 2, 3, 1)
|
158 |
+
return self.activation(self.regression(attentions).squeeze(3))
|
159 |
+
|
160 |
+
|
161 |
+
class EsmEmbeddings(nn.Module):
|
162 |
+
"""
|
163 |
+
Same as BertEmbeddings with a tiny tweak for positional embeddings indexing.
|
164 |
+
"""
|
165 |
+
|
166 |
+
def __init__(self, config):
|
167 |
+
super().__init__()
|
168 |
+
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
|
169 |
+
|
170 |
+
if config.emb_layer_norm_before:
|
171 |
+
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
172 |
+
else:
|
173 |
+
self.layer_norm = None
|
174 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
175 |
+
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
176 |
+
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
|
177 |
+
self.register_buffer(
|
178 |
+
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
|
179 |
+
)
|
180 |
+
|
181 |
+
self.padding_idx = config.pad_token_id
|
182 |
+
self.position_embeddings = nn.Embedding(
|
183 |
+
config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx
|
184 |
+
)
|
185 |
+
self.token_dropout = config.token_dropout
|
186 |
+
self.mask_token_id = config.mask_token_id
|
187 |
+
|
188 |
+
def forward(
|
189 |
+
self, input_ids=None, attention_mask=None, position_ids=None, inputs_embeds=None, past_key_values_length=0
|
190 |
+
):
|
191 |
+
if position_ids is None:
|
192 |
+
if input_ids is not None:
|
193 |
+
# Create the position ids from the input token ids. Any padded tokens remain padded.
|
194 |
+
position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length)
|
195 |
+
else:
|
196 |
+
position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds)
|
197 |
+
|
198 |
+
if inputs_embeds is None:
|
199 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
200 |
+
|
201 |
+
# Note that if we want to support ESM-1 (not 1b!) in future then we need to support an
|
202 |
+
# embedding_scale factor here.
|
203 |
+
embeddings = inputs_embeds
|
204 |
+
|
205 |
+
# Matt: ESM has the option to handle masking in MLM in a slightly unusual way. If the token_dropout
|
206 |
+
# flag is False then it is handled in the same was as BERT/RoBERTa. If it is set to True, however,
|
207 |
+
# masked tokens are treated as if they were selected for input dropout and zeroed out.
|
208 |
+
# This "mask-dropout" is compensated for when masked tokens are not present, by scaling embeddings by
|
209 |
+
# a factor of (fraction of unmasked tokens during training) / (fraction of unmasked tokens in sample).
|
210 |
+
# This is analogous to the way that dropout layers scale down outputs during evaluation when not
|
211 |
+
# actually dropping out values (or, equivalently, scale up their un-dropped outputs in training).
|
212 |
+
if self.token_dropout:
|
213 |
+
embeddings = embeddings.masked_fill((input_ids == self.mask_token_id).unsqueeze(-1), 0.0)
|
214 |
+
mask_ratio_train = 0.15 * 0.8 # Hardcoded as the ratio used in all ESM model training runs
|
215 |
+
src_lengths = attention_mask.sum(-1)
|
216 |
+
mask_ratio_observed = (input_ids == self.mask_token_id).sum(-1).float() / src_lengths
|
217 |
+
embeddings = (embeddings * (1 - mask_ratio_train) / (1 - mask_ratio_observed)[:, None, None]).to(
|
218 |
+
embeddings.dtype
|
219 |
+
)
|
220 |
+
|
221 |
+
if self.position_embedding_type == "absolute":
|
222 |
+
position_embeddings = self.position_embeddings(position_ids)
|
223 |
+
embeddings = embeddings + position_embeddings
|
224 |
+
|
225 |
+
if self.layer_norm is not None:
|
226 |
+
embeddings = self.layer_norm(embeddings)
|
227 |
+
if attention_mask is not None:
|
228 |
+
embeddings = (embeddings * attention_mask.unsqueeze(-1)).to(embeddings.dtype)
|
229 |
+
# Matt: I think this line was copied incorrectly from BERT, disabling it for now.
|
230 |
+
# embeddings = self.dropout(embeddings)
|
231 |
+
return embeddings
|
232 |
+
|
233 |
+
def create_position_ids_from_inputs_embeds(self, inputs_embeds):
|
234 |
+
"""
|
235 |
+
We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.
|
236 |
+
|
237 |
+
Args:
|
238 |
+
inputs_embeds: torch.Tensor
|
239 |
+
|
240 |
+
Returns: torch.Tensor
|
241 |
+
"""
|
242 |
+
input_shape = inputs_embeds.size()[:-1]
|
243 |
+
sequence_length = input_shape[1]
|
244 |
+
|
245 |
+
position_ids = torch.arange(
|
246 |
+
self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device
|
247 |
+
)
|
248 |
+
return position_ids.unsqueeze(0).expand(input_shape)
|
249 |
+
|
250 |
+
|
251 |
+
class EsmSelfAttention(nn.Module):
|
252 |
+
def __init__(self, config, position_embedding_type=None):
|
253 |
+
super().__init__()
|
254 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
|
255 |
+
raise ValueError(
|
256 |
+
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
|
257 |
+
f"heads ({config.num_attention_heads})"
|
258 |
+
)
|
259 |
+
|
260 |
+
self.num_attention_heads = config.num_attention_heads
|
261 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
262 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
263 |
+
|
264 |
+
self.query = nn.Linear(config.hidden_size, self.all_head_size)
|
265 |
+
self.key = nn.Linear(config.hidden_size, self.all_head_size)
|
266 |
+
self.value = nn.Linear(config.hidden_size, self.all_head_size)
|
267 |
+
|
268 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
269 |
+
self.position_embedding_type = position_embedding_type or getattr(
|
270 |
+
config, "position_embedding_type", "absolute"
|
271 |
+
)
|
272 |
+
self.rotary_embeddings = None
|
273 |
+
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
274 |
+
self.max_position_embeddings = config.max_position_embeddings
|
275 |
+
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
|
276 |
+
elif self.position_embedding_type == "rotary":
|
277 |
+
self.rotary_embeddings = RotaryEmbedding(dim=self.attention_head_size)
|
278 |
+
|
279 |
+
self.is_decoder = config.is_decoder
|
280 |
+
|
281 |
+
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
|
282 |
+
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
283 |
+
x = x.view(new_x_shape)
|
284 |
+
return x.permute(0, 2, 1, 3)
|
285 |
+
|
286 |
+
def forward(
|
287 |
+
self,
|
288 |
+
hidden_states: torch.Tensor,
|
289 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
290 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
291 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
292 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
293 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
294 |
+
output_attentions: Optional[bool] = False,
|
295 |
+
) -> Tuple[torch.Tensor]:
|
296 |
+
mixed_query_layer = self.query(hidden_states)
|
297 |
+
|
298 |
+
# If this is instantiated as a cross-attention module, the keys
|
299 |
+
# and values come from an encoder; the attention mask needs to be
|
300 |
+
# such that the encoder's padding tokens are not attended to.
|
301 |
+
is_cross_attention = encoder_hidden_states is not None
|
302 |
+
|
303 |
+
if is_cross_attention and past_key_value is not None:
|
304 |
+
# reuse k,v, cross_attentions
|
305 |
+
key_layer = past_key_value[0]
|
306 |
+
value_layer = past_key_value[1]
|
307 |
+
attention_mask = encoder_attention_mask
|
308 |
+
elif is_cross_attention:
|
309 |
+
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
|
310 |
+
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
|
311 |
+
attention_mask = encoder_attention_mask
|
312 |
+
elif past_key_value is not None:
|
313 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
314 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
315 |
+
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
|
316 |
+
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
|
317 |
+
else:
|
318 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
319 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
320 |
+
|
321 |
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
322 |
+
|
323 |
+
# Matt: Our BERT model (which this code was derived from) scales attention logits down by sqrt(head_dim).
|
324 |
+
# ESM scales the query down by the same factor instead. Modulo numerical stability these are equivalent,
|
325 |
+
# but not when rotary embeddings get involved. Therefore, we scale the query here to match the original
|
326 |
+
# ESM code and fix rotary embeddings.
|
327 |
+
query_layer = query_layer * self.attention_head_size**-0.5
|
328 |
+
|
329 |
+
if self.is_decoder:
|
330 |
+
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
|
331 |
+
# Further calls to cross_attention layer can then reuse all cross-attention
|
332 |
+
# key/value_states (first "if" case)
|
333 |
+
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
|
334 |
+
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
335 |
+
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
336 |
+
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
337 |
+
past_key_value = (key_layer, value_layer)
|
338 |
+
|
339 |
+
if self.position_embedding_type == "rotary":
|
340 |
+
query_layer, key_layer = self.rotary_embeddings(query_layer, key_layer)
|
341 |
+
|
342 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
343 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
344 |
+
|
345 |
+
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
346 |
+
seq_length = hidden_states.size()[1]
|
347 |
+
position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
|
348 |
+
position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
|
349 |
+
distance = position_ids_l - position_ids_r
|
350 |
+
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
|
351 |
+
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
|
352 |
+
|
353 |
+
if self.position_embedding_type == "relative_key":
|
354 |
+
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
355 |
+
attention_scores = attention_scores + relative_position_scores
|
356 |
+
elif self.position_embedding_type == "relative_key_query":
|
357 |
+
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
358 |
+
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
|
359 |
+
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
|
360 |
+
|
361 |
+
if attention_mask is not None:
|
362 |
+
# Apply the attention mask is (precomputed for all layers in EsmModel forward() function)
|
363 |
+
attention_scores = attention_scores + attention_mask
|
364 |
+
|
365 |
+
# Normalize the attention scores to probabilities.
|
366 |
+
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
|
367 |
+
|
368 |
+
# This is actually dropping out entire tokens to attend to, which might
|
369 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
370 |
+
attention_probs = self.dropout(attention_probs)
|
371 |
+
|
372 |
+
# Mask heads if we want to
|
373 |
+
if head_mask is not None:
|
374 |
+
attention_probs = attention_probs * head_mask
|
375 |
+
|
376 |
+
context_layer = torch.matmul(attention_probs.to(value_layer.dtype), value_layer)
|
377 |
+
|
378 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
379 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
380 |
+
context_layer = context_layer.view(new_context_layer_shape)
|
381 |
+
|
382 |
+
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
383 |
+
|
384 |
+
if self.is_decoder:
|
385 |
+
outputs = outputs + (past_key_value,)
|
386 |
+
return outputs
|
387 |
+
|
388 |
+
|
389 |
+
class EsmSelfOutput(nn.Module):
|
390 |
+
def __init__(self, config):
|
391 |
+
super().__init__()
|
392 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
393 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
394 |
+
|
395 |
+
def forward(self, hidden_states, input_tensor):
|
396 |
+
hidden_states = self.dense(hidden_states)
|
397 |
+
hidden_states = self.dropout(hidden_states)
|
398 |
+
hidden_states = hidden_states + input_tensor
|
399 |
+
return hidden_states
|
400 |
+
|
401 |
+
|
402 |
+
class EsmAttention(nn.Module):
|
403 |
+
def __init__(self, config):
|
404 |
+
super().__init__()
|
405 |
+
self.self = EsmSelfAttention(config)
|
406 |
+
self.output = EsmSelfOutput(config)
|
407 |
+
self.pruned_heads = set()
|
408 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
409 |
+
|
410 |
+
def prune_heads(self, heads):
|
411 |
+
if len(heads) == 0:
|
412 |
+
return
|
413 |
+
heads, index = find_pruneable_heads_and_indices(
|
414 |
+
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
|
415 |
+
)
|
416 |
+
|
417 |
+
# Prune linear layers
|
418 |
+
self.self.query = prune_linear_layer(self.self.query, index)
|
419 |
+
self.self.key = prune_linear_layer(self.self.key, index)
|
420 |
+
self.self.value = prune_linear_layer(self.self.value, index)
|
421 |
+
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
422 |
+
|
423 |
+
# Update hyper params and store pruned heads
|
424 |
+
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
|
425 |
+
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
|
426 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
427 |
+
|
428 |
+
def forward(
|
429 |
+
self,
|
430 |
+
hidden_states,
|
431 |
+
attention_mask=None,
|
432 |
+
head_mask=None,
|
433 |
+
encoder_hidden_states=None,
|
434 |
+
encoder_attention_mask=None,
|
435 |
+
past_key_value=None,
|
436 |
+
output_attentions=False,
|
437 |
+
):
|
438 |
+
hidden_states_ln = self.LayerNorm(hidden_states)
|
439 |
+
self_outputs = self.self(
|
440 |
+
hidden_states_ln,
|
441 |
+
attention_mask,
|
442 |
+
head_mask,
|
443 |
+
encoder_hidden_states,
|
444 |
+
encoder_attention_mask,
|
445 |
+
past_key_value,
|
446 |
+
output_attentions,
|
447 |
+
)
|
448 |
+
attention_output = self.output(self_outputs[0], hidden_states)
|
449 |
+
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
|
450 |
+
return outputs
|
451 |
+
|
452 |
+
|
453 |
+
class EsmIntermediate(nn.Module):
|
454 |
+
def __init__(self, config):
|
455 |
+
super().__init__()
|
456 |
+
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
457 |
+
|
458 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
459 |
+
hidden_states = self.dense(hidden_states)
|
460 |
+
hidden_states = gelu(hidden_states)
|
461 |
+
return hidden_states
|
462 |
+
|
463 |
+
|
464 |
+
class EsmOutput(nn.Module):
|
465 |
+
def __init__(self, config):
|
466 |
+
super().__init__()
|
467 |
+
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
468 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
469 |
+
|
470 |
+
def forward(self, hidden_states, input_tensor):
|
471 |
+
hidden_states = self.dense(hidden_states)
|
472 |
+
hidden_states = self.dropout(hidden_states)
|
473 |
+
hidden_states = hidden_states + input_tensor
|
474 |
+
return hidden_states
|
475 |
+
|
476 |
+
|
477 |
+
class EsmLayer(nn.Module):
|
478 |
+
def __init__(self, config):
|
479 |
+
super().__init__()
|
480 |
+
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
481 |
+
self.seq_len_dim = 1
|
482 |
+
self.attention = EsmAttention(config)
|
483 |
+
self.is_decoder = config.is_decoder
|
484 |
+
self.add_cross_attention = config.add_cross_attention
|
485 |
+
if self.add_cross_attention:
|
486 |
+
if not self.is_decoder:
|
487 |
+
raise RuntimeError(f"{self} should be used as a decoder model if cross attention is added")
|
488 |
+
self.crossattention = EsmAttention(config)
|
489 |
+
self.intermediate = EsmIntermediate(config)
|
490 |
+
self.output = EsmOutput(config)
|
491 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
492 |
+
|
493 |
+
def forward(
|
494 |
+
self,
|
495 |
+
hidden_states,
|
496 |
+
attention_mask=None,
|
497 |
+
head_mask=None,
|
498 |
+
encoder_hidden_states=None,
|
499 |
+
encoder_attention_mask=None,
|
500 |
+
past_key_value=None,
|
501 |
+
output_attentions=False,
|
502 |
+
):
|
503 |
+
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
504 |
+
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
|
505 |
+
self_attention_outputs = self.attention(
|
506 |
+
hidden_states,
|
507 |
+
attention_mask,
|
508 |
+
head_mask,
|
509 |
+
output_attentions=output_attentions,
|
510 |
+
past_key_value=self_attn_past_key_value,
|
511 |
+
)
|
512 |
+
attention_output = self_attention_outputs[0]
|
513 |
+
|
514 |
+
# if decoder, the last output is tuple of self-attn cache
|
515 |
+
if self.is_decoder:
|
516 |
+
outputs = self_attention_outputs[1:-1]
|
517 |
+
present_key_value = self_attention_outputs[-1]
|
518 |
+
else:
|
519 |
+
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
|
520 |
+
|
521 |
+
cross_attn_present_key_value = None
|
522 |
+
if self.is_decoder and encoder_hidden_states is not None:
|
523 |
+
if not hasattr(self, "crossattention"):
|
524 |
+
raise AttributeError(
|
525 |
+
f"If `encoder_hidden_states` are passed, {self} has to be instantiated"
|
526 |
+
" with cross-attention layers by setting `config.add_cross_attention=True`"
|
527 |
+
)
|
528 |
+
|
529 |
+
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
|
530 |
+
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
|
531 |
+
cross_attention_outputs = self.crossattention(
|
532 |
+
attention_output,
|
533 |
+
attention_mask,
|
534 |
+
head_mask,
|
535 |
+
encoder_hidden_states,
|
536 |
+
encoder_attention_mask,
|
537 |
+
cross_attn_past_key_value,
|
538 |
+
output_attentions,
|
539 |
+
)
|
540 |
+
attention_output = cross_attention_outputs[0]
|
541 |
+
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
|
542 |
+
|
543 |
+
# add cross-attn cache to positions 3,4 of present_key_value tuple
|
544 |
+
cross_attn_present_key_value = cross_attention_outputs[-1]
|
545 |
+
present_key_value = present_key_value + cross_attn_present_key_value
|
546 |
+
|
547 |
+
layer_output = self.feed_forward_chunk(attention_output)
|
548 |
+
|
549 |
+
outputs = (layer_output,) + outputs
|
550 |
+
|
551 |
+
# if decoder, return the attn key/values as the last output
|
552 |
+
if self.is_decoder:
|
553 |
+
outputs = outputs + (present_key_value,)
|
554 |
+
return outputs
|
555 |
+
|
556 |
+
def feed_forward_chunk(self, attention_output):
|
557 |
+
attention_output_ln = self.LayerNorm(attention_output)
|
558 |
+
intermediate_output = self.intermediate(attention_output_ln)
|
559 |
+
layer_output = self.output(intermediate_output, attention_output)
|
560 |
+
return layer_output
|
561 |
+
|
562 |
+
|
563 |
+
class EsmEncoder(nn.Module):
|
564 |
+
def __init__(self, config):
|
565 |
+
super().__init__()
|
566 |
+
self.config = config
|
567 |
+
self.layer = nn.ModuleList([EsmLayer(config) for _ in range(config.num_hidden_layers)])
|
568 |
+
self.emb_layer_norm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
569 |
+
self.gradient_checkpointing = False
|
570 |
+
|
571 |
+
def forward(
|
572 |
+
self,
|
573 |
+
hidden_states,
|
574 |
+
attention_mask=None,
|
575 |
+
head_mask=None,
|
576 |
+
encoder_hidden_states=None,
|
577 |
+
encoder_attention_mask=None,
|
578 |
+
past_key_values=None,
|
579 |
+
use_cache=None,
|
580 |
+
output_attentions=False,
|
581 |
+
output_hidden_states=False,
|
582 |
+
return_dict=True,
|
583 |
+
):
|
584 |
+
if self.gradient_checkpointing and self.training:
|
585 |
+
if use_cache:
|
586 |
+
logger.warning_once(
|
587 |
+
"`use_cache=True` is incompatible with `config.gradient_checkpointing=True`. Setting "
|
588 |
+
"`use_cache=False`..."
|
589 |
+
)
|
590 |
+
use_cache = False
|
591 |
+
all_hidden_states = () if output_hidden_states else None
|
592 |
+
all_self_attentions = () if output_attentions else None
|
593 |
+
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
|
594 |
+
|
595 |
+
next_decoder_cache = () if use_cache else None
|
596 |
+
for i, layer_module in enumerate(self.layer):
|
597 |
+
if output_hidden_states:
|
598 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
599 |
+
|
600 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
601 |
+
past_key_value = past_key_values[i] if past_key_values is not None else None
|
602 |
+
|
603 |
+
if self.gradient_checkpointing and self.training:
|
604 |
+
layer_outputs = self._gradient_checkpointing_func(
|
605 |
+
layer_module.__call__,
|
606 |
+
hidden_states,
|
607 |
+
attention_mask,
|
608 |
+
layer_head_mask,
|
609 |
+
encoder_hidden_states,
|
610 |
+
encoder_attention_mask,
|
611 |
+
past_key_value,
|
612 |
+
output_attentions,
|
613 |
+
)
|
614 |
+
else:
|
615 |
+
layer_outputs = layer_module(
|
616 |
+
hidden_states,
|
617 |
+
attention_mask,
|
618 |
+
layer_head_mask,
|
619 |
+
encoder_hidden_states,
|
620 |
+
encoder_attention_mask,
|
621 |
+
past_key_value,
|
622 |
+
output_attentions,
|
623 |
+
)
|
624 |
+
|
625 |
+
hidden_states = layer_outputs[0]
|
626 |
+
if use_cache:
|
627 |
+
next_decoder_cache = next_decoder_cache + (layer_outputs[-1],)
|
628 |
+
if output_attentions:
|
629 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
630 |
+
if self.config.add_cross_attention:
|
631 |
+
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
|
632 |
+
|
633 |
+
if self.emb_layer_norm_after:
|
634 |
+
hidden_states = self.emb_layer_norm_after(hidden_states)
|
635 |
+
|
636 |
+
if output_hidden_states:
|
637 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
638 |
+
|
639 |
+
if not return_dict:
|
640 |
+
return tuple(
|
641 |
+
v
|
642 |
+
for v in [
|
643 |
+
hidden_states,
|
644 |
+
next_decoder_cache,
|
645 |
+
all_hidden_states,
|
646 |
+
all_self_attentions,
|
647 |
+
all_cross_attentions,
|
648 |
+
]
|
649 |
+
if v is not None
|
650 |
+
)
|
651 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
652 |
+
last_hidden_state=hidden_states,
|
653 |
+
past_key_values=next_decoder_cache,
|
654 |
+
hidden_states=all_hidden_states,
|
655 |
+
attentions=all_self_attentions,
|
656 |
+
cross_attentions=all_cross_attentions,
|
657 |
+
)
|
658 |
+
|
659 |
+
|
660 |
+
# Copied from transformers.models.bert.modeling_bert.BertPooler
|
661 |
+
class EsmPooler(nn.Module):
|
662 |
+
def __init__(self, config):
|
663 |
+
super().__init__()
|
664 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
665 |
+
self.activation = nn.Tanh()
|
666 |
+
|
667 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
668 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
669 |
+
# to the first token.
|
670 |
+
first_token_tensor = hidden_states[:, 0]
|
671 |
+
pooled_output = self.dense(first_token_tensor)
|
672 |
+
pooled_output = self.activation(pooled_output)
|
673 |
+
return pooled_output
|
674 |
+
|
675 |
+
|
676 |
+
class EsmPreTrainedModel(PreTrainedModel):
|
677 |
+
"""
|
678 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
679 |
+
models.
|
680 |
+
"""
|
681 |
+
|
682 |
+
config_class = EsmConfig
|
683 |
+
base_model_prefix = "esm"
|
684 |
+
supports_gradient_checkpointing = True
|
685 |
+
_no_split_modules = ["EsmLayer", "EsmFoldTriangularSelfAttentionBlock", "EsmEmbeddings"]
|
686 |
+
|
687 |
+
# Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights
|
688 |
+
def _init_weights(self, module):
|
689 |
+
"""Initialize the weights"""
|
690 |
+
if isinstance(module, nn.Linear):
|
691 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
692 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
693 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
694 |
+
if module.bias is not None:
|
695 |
+
module.bias.data.zero_()
|
696 |
+
elif isinstance(module, nn.Embedding):
|
697 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
698 |
+
if module.padding_idx is not None:
|
699 |
+
module.weight.data[module.padding_idx].zero_()
|
700 |
+
elif isinstance(module, nn.LayerNorm):
|
701 |
+
module.bias.data.zero_()
|
702 |
+
module.weight.data.fill_(1.0)
|
703 |
+
|
704 |
+
|
705 |
+
ESM_START_DOCSTRING = r"""
|
706 |
+
|
707 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
708 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
709 |
+
etc.)
|
710 |
+
|
711 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
712 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
713 |
+
and behavior.
|
714 |
+
|
715 |
+
Parameters:
|
716 |
+
config ([`EsmConfig`]): Model configuration class with all the parameters of the
|
717 |
+
model. Initializing with a config file does not load the weights associated with the model, only the
|
718 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
719 |
+
"""
|
720 |
+
|
721 |
+
ESM_INPUTS_DOCSTRING = r"""
|
722 |
+
Args:
|
723 |
+
input_ids (`torch.LongTensor` of shape `({0})`):
|
724 |
+
Indices of input sequence tokens in the vocabulary.
|
725 |
+
|
726 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
727 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
728 |
+
|
729 |
+
[What are input IDs?](../glossary#input-ids)
|
730 |
+
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
|
731 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
732 |
+
|
733 |
+
- 1 for tokens that are **not masked**,
|
734 |
+
- 0 for tokens that are **masked**.
|
735 |
+
|
736 |
+
[What are attention masks?](../glossary#attention-mask)
|
737 |
+
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
738 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
739 |
+
config.max_position_embeddings - 1]`.
|
740 |
+
|
741 |
+
[What are position IDs?](../glossary#position-ids)
|
742 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
743 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
744 |
+
|
745 |
+
- 1 indicates the head is **not masked**,
|
746 |
+
- 0 indicates the head is **masked**.
|
747 |
+
|
748 |
+
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
|
749 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
750 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
751 |
+
model's internal embedding lookup matrix.
|
752 |
+
output_attentions (`bool`, *optional*):
|
753 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
754 |
+
tensors for more detail.
|
755 |
+
output_hidden_states (`bool`, *optional*):
|
756 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
757 |
+
more detail.
|
758 |
+
return_dict (`bool`, *optional*):
|
759 |
+
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
|
760 |
+
"""
|
761 |
+
|
762 |
+
|
763 |
+
@add_start_docstrings(
|
764 |
+
"The bare ESM Model transformer outputting raw hidden-states without any specific head on top.",
|
765 |
+
ESM_START_DOCSTRING,
|
766 |
+
)
|
767 |
+
class EsmModel(EsmPreTrainedModel):
|
768 |
+
"""
|
769 |
+
|
770 |
+
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
|
771 |
+
cross-attention is added between the self-attention layers, following the architecture described in [Attention is
|
772 |
+
all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
|
773 |
+
Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
|
774 |
+
|
775 |
+
To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set
|
776 |
+
to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and
|
777 |
+
`add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass.
|
778 |
+
"""
|
779 |
+
|
780 |
+
def __init__(self, config, add_pooling_layer=True):
|
781 |
+
super().__init__(config)
|
782 |
+
self.config = config
|
783 |
+
|
784 |
+
self.embeddings = EsmEmbeddings(config)
|
785 |
+
self.encoder = EsmEncoder(config)
|
786 |
+
|
787 |
+
self.pooler = EsmPooler(config) if add_pooling_layer else None
|
788 |
+
|
789 |
+
self.contact_head = EsmContactPredictionHead(
|
790 |
+
in_features=config.num_hidden_layers * config.num_attention_heads, bias=True
|
791 |
+
)
|
792 |
+
|
793 |
+
# Initialize weights and apply final processing
|
794 |
+
self.post_init()
|
795 |
+
|
796 |
+
def get_input_embeddings(self):
|
797 |
+
return self.embeddings.word_embeddings
|
798 |
+
|
799 |
+
def set_input_embeddings(self, value):
|
800 |
+
self.embeddings.word_embeddings = value
|
801 |
+
|
802 |
+
def _prune_heads(self, heads_to_prune):
|
803 |
+
"""
|
804 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
805 |
+
class PreTrainedModel
|
806 |
+
"""
|
807 |
+
for layer, heads in heads_to_prune.items():
|
808 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
809 |
+
|
810 |
+
@add_start_docstrings_to_model_forward(ESM_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
|
811 |
+
@add_code_sample_docstrings(
|
812 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
813 |
+
output_type=BaseModelOutputWithPoolingAndCrossAttentions,
|
814 |
+
config_class=_CONFIG_FOR_DOC,
|
815 |
+
)
|
816 |
+
def forward(
|
817 |
+
self,
|
818 |
+
input_ids: Optional[torch.Tensor] = None,
|
819 |
+
attention_mask: Optional[torch.Tensor] = None,
|
820 |
+
position_ids: Optional[torch.Tensor] = None,
|
821 |
+
head_mask: Optional[torch.Tensor] = None,
|
822 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
823 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
824 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
825 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
826 |
+
use_cache: Optional[bool] = None,
|
827 |
+
output_attentions: Optional[bool] = None,
|
828 |
+
output_hidden_states: Optional[bool] = None,
|
829 |
+
return_dict: Optional[bool] = None,
|
830 |
+
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
|
831 |
+
r"""
|
832 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
833 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
834 |
+
the model is configured as a decoder.
|
835 |
+
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
836 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
837 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
|
838 |
+
|
839 |
+
- 1 for tokens that are **not masked**,
|
840 |
+
- 0 for tokens that are **masked**.
|
841 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
842 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
843 |
+
|
844 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
845 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
846 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
847 |
+
use_cache (`bool`, *optional*):
|
848 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
849 |
+
`past_key_values`).
|
850 |
+
"""
|
851 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
852 |
+
output_hidden_states = (
|
853 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
854 |
+
)
|
855 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
856 |
+
|
857 |
+
if self.config.is_decoder:
|
858 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
859 |
+
else:
|
860 |
+
use_cache = False
|
861 |
+
|
862 |
+
if input_ids is not None and inputs_embeds is not None:
|
863 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
864 |
+
elif input_ids is not None:
|
865 |
+
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
866 |
+
input_shape = input_ids.size()
|
867 |
+
elif inputs_embeds is not None:
|
868 |
+
input_shape = inputs_embeds.size()[:-1]
|
869 |
+
else:
|
870 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
871 |
+
|
872 |
+
batch_size, seq_length = input_shape
|
873 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
874 |
+
|
875 |
+
# past_key_values_length
|
876 |
+
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
877 |
+
|
878 |
+
if attention_mask is None:
|
879 |
+
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
|
880 |
+
|
881 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
882 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
883 |
+
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
|
884 |
+
|
885 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
886 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
887 |
+
if self.config.is_decoder and encoder_hidden_states is not None:
|
888 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
889 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
890 |
+
if encoder_attention_mask is None:
|
891 |
+
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
892 |
+
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
893 |
+
else:
|
894 |
+
encoder_extended_attention_mask = None
|
895 |
+
|
896 |
+
# Prepare head mask if needed
|
897 |
+
# 1.0 in head_mask indicate we keep the head
|
898 |
+
# attention_probs has shape bsz x n_heads x N x N
|
899 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
900 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
901 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
902 |
+
|
903 |
+
embedding_output = self.embeddings(
|
904 |
+
input_ids=input_ids,
|
905 |
+
position_ids=position_ids,
|
906 |
+
attention_mask=attention_mask,
|
907 |
+
inputs_embeds=inputs_embeds,
|
908 |
+
past_key_values_length=past_key_values_length,
|
909 |
+
)
|
910 |
+
encoder_outputs = self.encoder(
|
911 |
+
embedding_output,
|
912 |
+
attention_mask=extended_attention_mask,
|
913 |
+
head_mask=head_mask,
|
914 |
+
encoder_hidden_states=encoder_hidden_states,
|
915 |
+
encoder_attention_mask=encoder_extended_attention_mask,
|
916 |
+
past_key_values=past_key_values,
|
917 |
+
use_cache=use_cache,
|
918 |
+
output_attentions=output_attentions,
|
919 |
+
output_hidden_states=output_hidden_states,
|
920 |
+
return_dict=return_dict,
|
921 |
+
)
|
922 |
+
sequence_output = encoder_outputs[0]
|
923 |
+
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
|
924 |
+
|
925 |
+
if not return_dict:
|
926 |
+
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
927 |
+
|
928 |
+
return BaseModelOutputWithPoolingAndCrossAttentions(
|
929 |
+
last_hidden_state=sequence_output,
|
930 |
+
pooler_output=pooled_output,
|
931 |
+
past_key_values=encoder_outputs.past_key_values,
|
932 |
+
hidden_states=encoder_outputs.hidden_states,
|
933 |
+
attentions=encoder_outputs.attentions,
|
934 |
+
cross_attentions=encoder_outputs.cross_attentions,
|
935 |
+
)
|
936 |
+
|
937 |
+
def predict_contacts(self, tokens, attention_mask):
|
938 |
+
attns = self(tokens, attention_mask=attention_mask, return_dict=True, output_attentions=True).attentions
|
939 |
+
attns = torch.stack(attns, dim=1) # Matches the original model layout
|
940 |
+
# In the original model, attentions for padding tokens are completely zeroed out.
|
941 |
+
# This makes no difference most of the time because the other tokens won't attend to them,
|
942 |
+
# but it does for the contact prediction task, which takes attentions as input,
|
943 |
+
# so we have to mimic that here.
|
944 |
+
attns *= attention_mask.unsqueeze(1).unsqueeze(2).unsqueeze(3)
|
945 |
+
attns *= attention_mask.unsqueeze(1).unsqueeze(2).unsqueeze(4)
|
946 |
+
return self.contact_head(tokens, attns)
|
947 |
+
|
948 |
+
|
949 |
+
@add_start_docstrings("""ESM Model with a `language modeling` head on top.""", ESM_START_DOCSTRING)
|
950 |
+
class EsmForMaskedLM(EsmPreTrainedModel):
|
951 |
+
_tied_weights_keys = ["lm_head.decoder.weight"]
|
952 |
+
|
953 |
+
def __init__(self, config):
|
954 |
+
super().__init__(config)
|
955 |
+
|
956 |
+
if config.is_decoder:
|
957 |
+
logger.warning(
|
958 |
+
"If you want to use `EsmForMaskedLM` make sure `config.is_decoder=False` for "
|
959 |
+
"bi-directional self-attention."
|
960 |
+
)
|
961 |
+
|
962 |
+
self.esm = EsmModel(config, add_pooling_layer=False)
|
963 |
+
self.lm_head = EsmLMHead(config)
|
964 |
+
|
965 |
+
self.init_weights()
|
966 |
+
|
967 |
+
def get_output_embeddings(self):
|
968 |
+
return self.lm_head.decoder
|
969 |
+
|
970 |
+
def set_output_embeddings(self, new_embeddings):
|
971 |
+
self.lm_head.decoder = new_embeddings
|
972 |
+
|
973 |
+
@add_start_docstrings_to_model_forward(ESM_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
974 |
+
@add_code_sample_docstrings(
|
975 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
976 |
+
output_type=MaskedLMOutput,
|
977 |
+
config_class=_CONFIG_FOR_DOC,
|
978 |
+
mask="<mask>",
|
979 |
+
)
|
980 |
+
def forward(
|
981 |
+
self,
|
982 |
+
input_ids: Optional[torch.LongTensor] = None,
|
983 |
+
attention_mask: Optional[torch.Tensor] = None,
|
984 |
+
position_ids: Optional[torch.LongTensor] = None,
|
985 |
+
head_mask: Optional[torch.Tensor] = None,
|
986 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
987 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
988 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
989 |
+
labels: Optional[torch.LongTensor] = None,
|
990 |
+
output_attentions: Optional[bool] = None,
|
991 |
+
output_hidden_states: Optional[bool] = None,
|
992 |
+
return_dict: Optional[bool] = None,
|
993 |
+
) -> Union[Tuple, MaskedLMOutput]:
|
994 |
+
r"""
|
995 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
996 |
+
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
|
997 |
+
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
|
998 |
+
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
|
999 |
+
kwargs (`Dict[str, any]`, optional, defaults to *{}*):
|
1000 |
+
Used to hide legacy arguments that have been deprecated.
|
1001 |
+
"""
|
1002 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1003 |
+
|
1004 |
+
outputs = self.esm(
|
1005 |
+
input_ids,
|
1006 |
+
attention_mask=attention_mask,
|
1007 |
+
position_ids=position_ids,
|
1008 |
+
head_mask=head_mask,
|
1009 |
+
inputs_embeds=inputs_embeds,
|
1010 |
+
encoder_hidden_states=encoder_hidden_states,
|
1011 |
+
encoder_attention_mask=encoder_attention_mask,
|
1012 |
+
output_attentions=output_attentions,
|
1013 |
+
output_hidden_states=output_hidden_states,
|
1014 |
+
return_dict=return_dict,
|
1015 |
+
)
|
1016 |
+
sequence_output = outputs[0]
|
1017 |
+
prediction_scores = self.lm_head(sequence_output)
|
1018 |
+
|
1019 |
+
masked_lm_loss = None
|
1020 |
+
if labels is not None:
|
1021 |
+
loss_fct = CrossEntropyLoss()
|
1022 |
+
|
1023 |
+
labels = labels.to(prediction_scores.device)
|
1024 |
+
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
1025 |
+
|
1026 |
+
if not return_dict:
|
1027 |
+
output = (prediction_scores,) + outputs[2:]
|
1028 |
+
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
1029 |
+
|
1030 |
+
return MaskedLMOutput(
|
1031 |
+
loss=masked_lm_loss,
|
1032 |
+
logits=prediction_scores,
|
1033 |
+
hidden_states=outputs.hidden_states,
|
1034 |
+
attentions=outputs.attentions,
|
1035 |
+
)
|
1036 |
+
|
1037 |
+
def predict_contacts(self, tokens, attention_mask):
|
1038 |
+
return self.esm.predict_contacts(tokens, attention_mask=attention_mask)
|
1039 |
+
|
1040 |
+
|
1041 |
+
class EsmLMHead(nn.Module):
|
1042 |
+
"""ESM Head for masked language modeling."""
|
1043 |
+
|
1044 |
+
def __init__(self, config):
|
1045 |
+
super().__init__()
|
1046 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
1047 |
+
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
1048 |
+
|
1049 |
+
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1050 |
+
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
|
1051 |
+
|
1052 |
+
def forward(self, features, **kwargs):
|
1053 |
+
x = self.dense(features)
|
1054 |
+
x = gelu(x)
|
1055 |
+
x = self.layer_norm(x)
|
1056 |
+
|
1057 |
+
# project back to size of vocabulary with bias
|
1058 |
+
x = self.decoder(x) + self.bias
|
1059 |
+
return x
|
1060 |
+
|
1061 |
+
|
1062 |
+
@add_start_docstrings(
|
1063 |
+
"""
|
1064 |
+
ESM Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled
|
1065 |
+
output) e.g. for GLUE tasks.
|
1066 |
+
""",
|
1067 |
+
ESM_START_DOCSTRING,
|
1068 |
+
)
|
1069 |
+
class EsmForSequenceClassification(EsmPreTrainedModel):
|
1070 |
+
def __init__(self, config):
|
1071 |
+
super().__init__(config)
|
1072 |
+
self.num_labels = config.num_labels
|
1073 |
+
self.config = config
|
1074 |
+
|
1075 |
+
self.esm = EsmModel(config, add_pooling_layer=False)
|
1076 |
+
self.classifier = EsmClassificationHead(config)
|
1077 |
+
|
1078 |
+
self.init_weights()
|
1079 |
+
|
1080 |
+
@add_start_docstrings_to_model_forward(ESM_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1081 |
+
@add_code_sample_docstrings(
|
1082 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1083 |
+
output_type=SequenceClassifierOutput,
|
1084 |
+
config_class=_CONFIG_FOR_DOC,
|
1085 |
+
)
|
1086 |
+
def forward(
|
1087 |
+
self,
|
1088 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1089 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1090 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1091 |
+
head_mask: Optional[torch.Tensor] = None,
|
1092 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1093 |
+
labels: Optional[torch.LongTensor] = None,
|
1094 |
+
output_attentions: Optional[bool] = None,
|
1095 |
+
output_hidden_states: Optional[bool] = None,
|
1096 |
+
return_dict: Optional[bool] = None,
|
1097 |
+
) -> Union[Tuple, SequenceClassifierOutput]:
|
1098 |
+
r"""
|
1099 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1100 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1101 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1102 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1103 |
+
"""
|
1104 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1105 |
+
|
1106 |
+
outputs = self.esm(
|
1107 |
+
input_ids,
|
1108 |
+
attention_mask=attention_mask,
|
1109 |
+
position_ids=position_ids,
|
1110 |
+
head_mask=head_mask,
|
1111 |
+
inputs_embeds=inputs_embeds,
|
1112 |
+
output_attentions=output_attentions,
|
1113 |
+
output_hidden_states=output_hidden_states,
|
1114 |
+
return_dict=return_dict,
|
1115 |
+
)
|
1116 |
+
sequence_output = outputs[0]
|
1117 |
+
logits = self.classifier(sequence_output)
|
1118 |
+
|
1119 |
+
loss = None
|
1120 |
+
if labels is not None:
|
1121 |
+
labels = labels.to(logits.device)
|
1122 |
+
|
1123 |
+
if self.config.problem_type is None:
|
1124 |
+
if self.num_labels == 1:
|
1125 |
+
self.config.problem_type = "regression"
|
1126 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1127 |
+
self.config.problem_type = "single_label_classification"
|
1128 |
+
else:
|
1129 |
+
self.config.problem_type = "multi_label_classification"
|
1130 |
+
|
1131 |
+
if self.config.problem_type == "regression":
|
1132 |
+
loss_fct = MSELoss()
|
1133 |
+
if self.num_labels == 1:
|
1134 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
1135 |
+
else:
|
1136 |
+
loss = loss_fct(logits, labels)
|
1137 |
+
elif self.config.problem_type == "single_label_classification":
|
1138 |
+
loss_fct = CrossEntropyLoss()
|
1139 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1140 |
+
elif self.config.problem_type == "multi_label_classification":
|
1141 |
+
loss_fct = BCEWithLogitsLoss()
|
1142 |
+
loss = loss_fct(logits, labels)
|
1143 |
+
|
1144 |
+
if not return_dict:
|
1145 |
+
output = (logits,) + outputs[2:]
|
1146 |
+
return ((loss,) + output) if loss is not None else output
|
1147 |
+
|
1148 |
+
return SequenceClassifierOutput(
|
1149 |
+
loss=loss,
|
1150 |
+
logits=logits,
|
1151 |
+
hidden_states=outputs.hidden_states,
|
1152 |
+
attentions=outputs.attentions,
|
1153 |
+
)
|
1154 |
+
|
1155 |
+
|
1156 |
+
@add_start_docstrings(
|
1157 |
+
"""
|
1158 |
+
ESM Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
|
1159 |
+
Named-Entity-Recognition (NER) tasks.
|
1160 |
+
""",
|
1161 |
+
ESM_START_DOCSTRING,
|
1162 |
+
)
|
1163 |
+
class EsmForTokenClassification(EsmPreTrainedModel):
|
1164 |
+
def __init__(self, config):
|
1165 |
+
super().__init__(config)
|
1166 |
+
self.num_labels = config.num_labels
|
1167 |
+
|
1168 |
+
self.esm = EsmModel(config, add_pooling_layer=False)
|
1169 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
1170 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
1171 |
+
|
1172 |
+
self.init_weights()
|
1173 |
+
|
1174 |
+
@add_start_docstrings_to_model_forward(ESM_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1175 |
+
@add_code_sample_docstrings(
|
1176 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1177 |
+
output_type=TokenClassifierOutput,
|
1178 |
+
config_class=_CONFIG_FOR_DOC,
|
1179 |
+
)
|
1180 |
+
def forward(
|
1181 |
+
self,
|
1182 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1183 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1184 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1185 |
+
head_mask: Optional[torch.Tensor] = None,
|
1186 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1187 |
+
labels: Optional[torch.LongTensor] = None,
|
1188 |
+
output_attentions: Optional[bool] = None,
|
1189 |
+
output_hidden_states: Optional[bool] = None,
|
1190 |
+
return_dict: Optional[bool] = None,
|
1191 |
+
) -> Union[Tuple, TokenClassifierOutput]:
|
1192 |
+
r"""
|
1193 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1194 |
+
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
|
1195 |
+
"""
|
1196 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1197 |
+
|
1198 |
+
outputs = self.esm(
|
1199 |
+
input_ids,
|
1200 |
+
attention_mask=attention_mask,
|
1201 |
+
position_ids=position_ids,
|
1202 |
+
head_mask=head_mask,
|
1203 |
+
inputs_embeds=inputs_embeds,
|
1204 |
+
output_attentions=output_attentions,
|
1205 |
+
output_hidden_states=output_hidden_states,
|
1206 |
+
return_dict=return_dict,
|
1207 |
+
)
|
1208 |
+
|
1209 |
+
sequence_output = outputs[0]
|
1210 |
+
|
1211 |
+
sequence_output = self.dropout(sequence_output)
|
1212 |
+
logits = self.classifier(sequence_output)
|
1213 |
+
|
1214 |
+
loss = None
|
1215 |
+
if labels is not None:
|
1216 |
+
loss_fct = CrossEntropyLoss()
|
1217 |
+
|
1218 |
+
labels = labels.to(logits.device)
|
1219 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1220 |
+
|
1221 |
+
if not return_dict:
|
1222 |
+
output = (logits,) + outputs[2:]
|
1223 |
+
return ((loss,) + output) if loss is not None else output
|
1224 |
+
|
1225 |
+
return TokenClassifierOutput(
|
1226 |
+
loss=loss,
|
1227 |
+
logits=logits,
|
1228 |
+
hidden_states=outputs.hidden_states,
|
1229 |
+
attentions=outputs.attentions,
|
1230 |
+
)
|
1231 |
+
|
1232 |
+
|
1233 |
+
class EsmClassificationHead(nn.Module):
|
1234 |
+
"""Head for sentence-level classification tasks."""
|
1235 |
+
|
1236 |
+
def __init__(self, config):
|
1237 |
+
super().__init__()
|
1238 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
1239 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
1240 |
+
self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
|
1241 |
+
|
1242 |
+
def forward(self, features, **kwargs):
|
1243 |
+
x = features[:, 0, :] # take <s> token (equiv. to [CLS])
|
1244 |
+
x = self.dropout(x)
|
1245 |
+
x = self.dense(x)
|
1246 |
+
x = torch.tanh(x)
|
1247 |
+
x = self.dropout(x)
|
1248 |
+
x = self.out_proj(x)
|
1249 |
+
return x
|
1250 |
+
|
1251 |
+
|
1252 |
+
def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0):
|
1253 |
+
"""
|
1254 |
+
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
|
1255 |
+
are ignored. This is modified from fairseq's `utils.make_positions`.
|
1256 |
+
|
1257 |
+
Args:
|
1258 |
+
x: torch.Tensor x:
|
1259 |
+
|
1260 |
+
Returns: torch.Tensor
|
1261 |
+
"""
|
1262 |
+
# The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
|
1263 |
+
mask = input_ids.ne(padding_idx).int()
|
1264 |
+
incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask
|
1265 |
+
return incremental_indices.long() + padding_idx
|
llmeval-env/lib/python3.10/site-packages/transformers/models/esm/modeling_esmfold.py
ADDED
@@ -0,0 +1,2322 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 Meta and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
import math
|
16 |
+
import sys
|
17 |
+
from dataclasses import dataclass
|
18 |
+
from functools import partial
|
19 |
+
from typing import Callable, Dict, List, Optional, Sequence, Tuple, Union
|
20 |
+
|
21 |
+
import numpy as np
|
22 |
+
import torch
|
23 |
+
import torch.nn as nn
|
24 |
+
from torch.nn import LayerNorm
|
25 |
+
|
26 |
+
from ...integrations.deepspeed import is_deepspeed_available
|
27 |
+
from ...modeling_outputs import ModelOutput
|
28 |
+
from ...utils import (
|
29 |
+
ContextManagers,
|
30 |
+
add_start_docstrings,
|
31 |
+
add_start_docstrings_to_model_forward,
|
32 |
+
is_scipy_available,
|
33 |
+
logging,
|
34 |
+
replace_return_docstrings,
|
35 |
+
)
|
36 |
+
from .configuration_esm import EsmConfig
|
37 |
+
from .modeling_esm import ESM_START_DOCSTRING, EsmModel, EsmPreTrainedModel
|
38 |
+
from .openfold_utils import (
|
39 |
+
OFProtein,
|
40 |
+
Rigid,
|
41 |
+
Rotation,
|
42 |
+
atom14_to_atom37,
|
43 |
+
chunk_layer,
|
44 |
+
compute_predicted_aligned_error,
|
45 |
+
compute_tm,
|
46 |
+
frames_and_literature_positions_to_atom14_pos,
|
47 |
+
make_atom14_masks,
|
48 |
+
residue_constants,
|
49 |
+
to_pdb,
|
50 |
+
torsion_angles_to_frames,
|
51 |
+
)
|
52 |
+
|
53 |
+
|
54 |
+
logger = logging.get_logger(__name__)
|
55 |
+
_CHECKPOINT_FOR_DOC = "facebook/esmfold_v1"
|
56 |
+
_CONFIG_FOR_DOC = "EsmConfig"
|
57 |
+
|
58 |
+
|
59 |
+
@dataclass
|
60 |
+
class EsmForProteinFoldingOutput(ModelOutput):
|
61 |
+
"""
|
62 |
+
Output type of [`EsmForProteinFoldingOutput`].
|
63 |
+
|
64 |
+
Args:
|
65 |
+
frames (`torch.FloatTensor`):
|
66 |
+
Output frames.
|
67 |
+
sidechain_frames (`torch.FloatTensor`):
|
68 |
+
Output sidechain frames.
|
69 |
+
unnormalized_angles (`torch.FloatTensor`):
|
70 |
+
Predicted unnormalized backbone and side chain torsion angles.
|
71 |
+
angles (`torch.FloatTensor`):
|
72 |
+
Predicted backbone and side chain torsion angles.
|
73 |
+
positions (`torch.FloatTensor`):
|
74 |
+
Predicted positions of the backbone and side chain atoms.
|
75 |
+
states (`torch.FloatTensor`):
|
76 |
+
Hidden states from the protein folding trunk.
|
77 |
+
s_s (`torch.FloatTensor`):
|
78 |
+
Per-residue embeddings derived by concatenating the hidden states of each layer of the ESM-2 LM stem.
|
79 |
+
s_z (`torch.FloatTensor`):
|
80 |
+
Pairwise residue embeddings.
|
81 |
+
distogram_logits (`torch.FloatTensor`):
|
82 |
+
Input logits to the distogram used to compute residue distances.
|
83 |
+
lm_logits (`torch.FloatTensor`):
|
84 |
+
Logits output by the ESM-2 protein language model stem.
|
85 |
+
aatype (`torch.FloatTensor`):
|
86 |
+
Input amino acids (AlphaFold2 indices).
|
87 |
+
atom14_atom_exists (`torch.FloatTensor`):
|
88 |
+
Whether each atom exists in the atom14 representation.
|
89 |
+
residx_atom14_to_atom37 (`torch.FloatTensor`):
|
90 |
+
Mapping between atoms in the atom14 and atom37 representations.
|
91 |
+
residx_atom37_to_atom14 (`torch.FloatTensor`):
|
92 |
+
Mapping between atoms in the atom37 and atom14 representations.
|
93 |
+
atom37_atom_exists (`torch.FloatTensor`):
|
94 |
+
Whether each atom exists in the atom37 representation.
|
95 |
+
residue_index (`torch.FloatTensor`):
|
96 |
+
The index of each residue in the protein chain. Unless internal padding tokens are used, this will just be
|
97 |
+
a sequence of integers from 0 to `sequence_length`.
|
98 |
+
lddt_head (`torch.FloatTensor`):
|
99 |
+
Raw outputs from the lddt head used to compute plddt.
|
100 |
+
plddt (`torch.FloatTensor`):
|
101 |
+
Per-residue confidence scores. Regions of low confidence may indicate areas where the model's prediction is
|
102 |
+
uncertain, or where the protein structure is disordered.
|
103 |
+
ptm_logits (`torch.FloatTensor`):
|
104 |
+
Raw logits used for computing ptm.
|
105 |
+
ptm (`torch.FloatTensor`):
|
106 |
+
TM-score output representing the model's high-level confidence in the overall structure.
|
107 |
+
aligned_confidence_probs (`torch.FloatTensor`):
|
108 |
+
Per-residue confidence scores for the aligned structure.
|
109 |
+
predicted_aligned_error (`torch.FloatTensor`):
|
110 |
+
Predicted error between the model's prediction and the ground truth.
|
111 |
+
max_predicted_aligned_error (`torch.FloatTensor`):
|
112 |
+
Per-sample maximum predicted error.
|
113 |
+
"""
|
114 |
+
|
115 |
+
frames: torch.FloatTensor = None
|
116 |
+
sidechain_frames: torch.FloatTensor = None
|
117 |
+
unnormalized_angles: torch.FloatTensor = None
|
118 |
+
angles: torch.FloatTensor = None
|
119 |
+
positions: torch.FloatTensor = None
|
120 |
+
states: torch.FloatTensor = None
|
121 |
+
s_s: torch.FloatTensor = None
|
122 |
+
s_z: torch.FloatTensor = None
|
123 |
+
distogram_logits: torch.FloatTensor = None
|
124 |
+
lm_logits: torch.FloatTensor = None
|
125 |
+
aatype: torch.FloatTensor = None
|
126 |
+
atom14_atom_exists: torch.FloatTensor = None
|
127 |
+
residx_atom14_to_atom37: torch.FloatTensor = None
|
128 |
+
residx_atom37_to_atom14: torch.FloatTensor = None
|
129 |
+
atom37_atom_exists: torch.FloatTensor = None
|
130 |
+
residue_index: torch.FloatTensor = None
|
131 |
+
lddt_head: torch.FloatTensor = None
|
132 |
+
plddt: torch.FloatTensor = None
|
133 |
+
ptm_logits: torch.FloatTensor = None
|
134 |
+
ptm: torch.FloatTensor = None
|
135 |
+
aligned_confidence_probs: torch.FloatTensor = None
|
136 |
+
predicted_aligned_error: torch.FloatTensor = None
|
137 |
+
max_predicted_aligned_error: torch.FloatTensor = None
|
138 |
+
|
139 |
+
|
140 |
+
ESMFOLD_INPUTS_DOCSTRING = r"""
|
141 |
+
Args:
|
142 |
+
input_ids (`torch.LongTensor` of shape `({0})`):
|
143 |
+
Indices of input sequence tokens in the vocabulary.
|
144 |
+
|
145 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
146 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
147 |
+
|
148 |
+
[What are input IDs?](../glossary#input-ids)
|
149 |
+
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
|
150 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
151 |
+
|
152 |
+
- 1 for tokens that are **not masked**,
|
153 |
+
- 0 for tokens that are **masked**.
|
154 |
+
|
155 |
+
[What are attention masks?](../glossary#attention-mask)
|
156 |
+
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
157 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
158 |
+
config.max_position_embeddings - 1]`.
|
159 |
+
|
160 |
+
[What are position IDs?](../glossary#position-ids)
|
161 |
+
masking_pattern (`torch.LongTensor` of shape `({0})`, *optional*):
|
162 |
+
Locations of tokens to mask during training as a form of regularization. Mask values selected in `[0, 1]`.
|
163 |
+
num_recycles (`int`, *optional*, defaults to `None`):
|
164 |
+
Number of times to recycle the input sequence. If `None`, defaults to `config.num_recycles`. "Recycling"
|
165 |
+
consists of passing the output of the folding trunk back in as input to the trunk. During training, the
|
166 |
+
number of recycles should vary with each batch, to ensure that the model learns to output valid predictions
|
167 |
+
after each recycle. During inference, num_recycles should be set to the highest value that the model was
|
168 |
+
trained with for maximum accuracy. Accordingly, when this value is set to `None`, config.max_recycles is
|
169 |
+
used.
|
170 |
+
"""
|
171 |
+
|
172 |
+
|
173 |
+
def is_fp16_enabled():
|
174 |
+
# Autocast world
|
175 |
+
fp16_enabled = torch.get_autocast_gpu_dtype() == torch.float16
|
176 |
+
fp16_enabled = fp16_enabled and torch.is_autocast_enabled()
|
177 |
+
|
178 |
+
return fp16_enabled
|
179 |
+
|
180 |
+
|
181 |
+
def is_deepspeed_initialized():
|
182 |
+
if is_deepspeed_available():
|
183 |
+
return False
|
184 |
+
else:
|
185 |
+
try:
|
186 |
+
import deepspeed
|
187 |
+
|
188 |
+
# This is not available in all DeepSpeed versions.
|
189 |
+
return deepspeed.utils.is_initialized()
|
190 |
+
except Exception:
|
191 |
+
return False
|
192 |
+
|
193 |
+
|
194 |
+
def collate_dense_tensors(samples: List[torch.Tensor], pad_v: float = 0) -> torch.Tensor:
|
195 |
+
"""
|
196 |
+
Takes a list of tensors with the following dimensions:
|
197 |
+
[(d_11, ..., d_1K),
|
198 |
+
(d_21, ..., d_2K), ..., (d_N1, ..., d_NK)]
|
199 |
+
and stack + pads them into a single tensor of:
|
200 |
+
(N, max_i=1,N { d_i1 }, ..., max_i=1,N {diK})
|
201 |
+
"""
|
202 |
+
if len(samples) == 0:
|
203 |
+
return torch.Tensor()
|
204 |
+
if len({x.dim() for x in samples}) != 1:
|
205 |
+
raise RuntimeError(f"Samples has varying dimensions: {[x.dim() for x in samples]}")
|
206 |
+
(device,) = tuple({x.device for x in samples}) # assumes all on same device
|
207 |
+
max_shape = [max(lst) for lst in zip(*[x.shape for x in samples])]
|
208 |
+
result = torch.empty(len(samples), *max_shape, dtype=samples[0].dtype, device=device)
|
209 |
+
result.fill_(pad_v)
|
210 |
+
for i in range(len(samples)):
|
211 |
+
result_i = result[i]
|
212 |
+
t = samples[i]
|
213 |
+
result_i[tuple(slice(0, k) for k in t.shape)] = t
|
214 |
+
return result
|
215 |
+
|
216 |
+
|
217 |
+
def flatten_final_dims(t: torch.Tensor, no_dims: int):
|
218 |
+
return t.reshape(t.shape[:-no_dims] + (-1,))
|
219 |
+
|
220 |
+
|
221 |
+
def permute_final_dims(tensor: torch.Tensor, inds: List[int]):
|
222 |
+
zero_index = -1 * len(inds)
|
223 |
+
first_inds = list(range(len(tensor.shape[:zero_index])))
|
224 |
+
return tensor.permute(first_inds + [zero_index + i for i in inds])
|
225 |
+
|
226 |
+
|
227 |
+
def dict_multimap(fn, dicts):
|
228 |
+
first = dicts[0]
|
229 |
+
new_dict = {}
|
230 |
+
for k, v in first.items():
|
231 |
+
all_v = [d[k] for d in dicts]
|
232 |
+
if isinstance(v, dict):
|
233 |
+
new_dict[k] = dict_multimap(fn, all_v)
|
234 |
+
else:
|
235 |
+
new_dict[k] = fn(all_v)
|
236 |
+
|
237 |
+
return new_dict
|
238 |
+
|
239 |
+
|
240 |
+
def trunc_normal_init_(weights, scale=1.0, fan="fan_in"):
|
241 |
+
shape = weights.shape
|
242 |
+
scale = scale / max(1, shape[1])
|
243 |
+
|
244 |
+
if not is_scipy_available():
|
245 |
+
logger.warning(
|
246 |
+
"This init requires scipy, but scipy was not found, default to an approximation that might not be"
|
247 |
+
" equivalent."
|
248 |
+
)
|
249 |
+
std = math.sqrt(scale)
|
250 |
+
torch.nn.init.normal_(weights, std=std).clamp(min=0.0, max=2.0 * std)
|
251 |
+
|
252 |
+
else:
|
253 |
+
from scipy.stats import truncnorm
|
254 |
+
|
255 |
+
std = math.sqrt(scale) / truncnorm.std(a=-2, b=2, loc=0, scale=1)
|
256 |
+
samples = truncnorm.rvs(a=-2, b=2, loc=0, scale=std, size=weights.numel())
|
257 |
+
samples = np.reshape(samples, shape)
|
258 |
+
weights.copy_(torch.tensor(samples, device=weights.device))
|
259 |
+
|
260 |
+
|
261 |
+
def ipa_point_weights_init_(weights):
|
262 |
+
with torch.no_grad():
|
263 |
+
softplus_inverse_1 = 0.541324854612918
|
264 |
+
weights.fill_(softplus_inverse_1)
|
265 |
+
|
266 |
+
|
267 |
+
class EsmFoldLinear(nn.Linear):
|
268 |
+
"""
|
269 |
+
A Linear layer with built-in nonstandard initializations. Called just like torch.nn.Linear.
|
270 |
+
|
271 |
+
Implements the initializers in 1.11.4, plus some additional ones found in the code.
|
272 |
+
"""
|
273 |
+
|
274 |
+
def __init__(
|
275 |
+
self,
|
276 |
+
in_dim: int,
|
277 |
+
out_dim: int,
|
278 |
+
bias: bool = True,
|
279 |
+
init: str = "default",
|
280 |
+
init_fn: Optional[Callable[[torch.Tensor, torch.Tensor], None]] = None,
|
281 |
+
):
|
282 |
+
"""
|
283 |
+
Args:
|
284 |
+
in_dim:
|
285 |
+
The final dimension of inputs to the layer
|
286 |
+
out_dim:
|
287 |
+
The final dimension of layer outputs
|
288 |
+
bias:
|
289 |
+
Whether to learn an additive bias. True by default
|
290 |
+
init:
|
291 |
+
The initializer to use. Choose from:
|
292 |
+
|
293 |
+
"default": LeCun fan-in truncated normal initialization "relu": He initialization w/ truncated normal
|
294 |
+
distribution "glorot": Fan-average Glorot uniform initialization "gating": Weights=0, Bias=1 "normal":
|
295 |
+
Normal initialization with std=1/sqrt(fan_in) "final": Weights=0, Bias=0
|
296 |
+
|
297 |
+
Overridden by init_fn if the latter is not None.
|
298 |
+
init_fn:
|
299 |
+
A custom initializer taking weight and bias as inputs. Overrides init if not None.
|
300 |
+
"""
|
301 |
+
super().__init__(in_dim, out_dim, bias=bias)
|
302 |
+
|
303 |
+
if bias:
|
304 |
+
with torch.no_grad():
|
305 |
+
self.bias.fill_(0)
|
306 |
+
self.init = init
|
307 |
+
self.init_fn = init_fn
|
308 |
+
|
309 |
+
if init not in ["default", "relu", "glorot", "gating", "normal", "final"]:
|
310 |
+
raise ValueError("Invalid init string.")
|
311 |
+
|
312 |
+
|
313 |
+
class EsmFoldLayerNorm(nn.Module):
|
314 |
+
def __init__(self, c_in, eps=1e-5):
|
315 |
+
super().__init__()
|
316 |
+
|
317 |
+
self.c_in = (c_in,)
|
318 |
+
self.eps = eps
|
319 |
+
|
320 |
+
self.weight = nn.Parameter(torch.ones(c_in))
|
321 |
+
self.bias = nn.Parameter(torch.zeros(c_in))
|
322 |
+
|
323 |
+
def forward(self, x):
|
324 |
+
d = x.dtype
|
325 |
+
if d is torch.bfloat16 and not is_deepspeed_initialized():
|
326 |
+
with torch.cuda.amp.autocast(enabled=False):
|
327 |
+
out = nn.functional.layer_norm(x, self.c_in, self.weight.to(dtype=d), self.bias.to(dtype=d), self.eps)
|
328 |
+
else:
|
329 |
+
out = nn.functional.layer_norm(x, self.c_in, self.weight, self.bias, self.eps)
|
330 |
+
|
331 |
+
return out
|
332 |
+
|
333 |
+
|
334 |
+
@torch.jit.ignore
|
335 |
+
def softmax_no_cast(t: torch.Tensor, dim: int = -1) -> torch.Tensor:
|
336 |
+
"""
|
337 |
+
Softmax, but without automatic casting to fp32 when the input is of type bfloat16
|
338 |
+
"""
|
339 |
+
d = t.dtype
|
340 |
+
if d is torch.bfloat16 and not is_deepspeed_initialized():
|
341 |
+
with torch.cuda.amp.autocast(enabled=False):
|
342 |
+
s = torch.nn.functional.softmax(t, dim=dim)
|
343 |
+
else:
|
344 |
+
s = torch.nn.functional.softmax(t, dim=dim)
|
345 |
+
|
346 |
+
return s
|
347 |
+
|
348 |
+
|
349 |
+
class EsmFoldAttention(nn.Module):
|
350 |
+
"""
|
351 |
+
Standard multi-head attention using AlphaFold's default layer initialization. Allows multiple bias vectors.
|
352 |
+
"""
|
353 |
+
|
354 |
+
def __init__(
|
355 |
+
self,
|
356 |
+
c_q: int,
|
357 |
+
c_k: int,
|
358 |
+
c_v: int,
|
359 |
+
c_hidden: int,
|
360 |
+
no_heads: int,
|
361 |
+
gating: bool = True,
|
362 |
+
):
|
363 |
+
"""
|
364 |
+
Args:
|
365 |
+
c_q:
|
366 |
+
Input dimension of query data
|
367 |
+
c_k:
|
368 |
+
Input dimension of key data
|
369 |
+
c_v:
|
370 |
+
Input dimension of value data
|
371 |
+
c_hidden:
|
372 |
+
Per-head hidden dimension
|
373 |
+
no_heads:
|
374 |
+
Number of attention heads
|
375 |
+
gating:
|
376 |
+
Whether the output should be gated using query data
|
377 |
+
"""
|
378 |
+
super().__init__()
|
379 |
+
|
380 |
+
self.c_q = c_q
|
381 |
+
self.c_k = c_k
|
382 |
+
self.c_v = c_v
|
383 |
+
self.c_hidden = c_hidden
|
384 |
+
self.no_heads = no_heads
|
385 |
+
self.gating = gating
|
386 |
+
|
387 |
+
# DISCREPANCY: c_hidden is not the per-head channel dimension, as
|
388 |
+
# stated in the supplement, but the overall channel dimension.
|
389 |
+
|
390 |
+
self.linear_q = EsmFoldLinear(self.c_q, self.c_hidden * self.no_heads, bias=False, init="glorot")
|
391 |
+
self.linear_k = EsmFoldLinear(self.c_k, self.c_hidden * self.no_heads, bias=False, init="glorot")
|
392 |
+
self.linear_v = EsmFoldLinear(self.c_v, self.c_hidden * self.no_heads, bias=False, init="glorot")
|
393 |
+
self.linear_o = EsmFoldLinear(self.c_hidden * self.no_heads, self.c_q, init="final")
|
394 |
+
|
395 |
+
self.linear_g = None
|
396 |
+
if self.gating:
|
397 |
+
self.linear_g = EsmFoldLinear(self.c_q, self.c_hidden * self.no_heads, init="gating")
|
398 |
+
|
399 |
+
self.sigmoid = nn.Sigmoid()
|
400 |
+
|
401 |
+
def _prep_qkv(self, q_x: torch.Tensor, kv_x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
402 |
+
# [*, Q/K/V, H * C_hidden]
|
403 |
+
q = self.linear_q(q_x)
|
404 |
+
k = self.linear_k(kv_x)
|
405 |
+
v = self.linear_v(kv_x)
|
406 |
+
|
407 |
+
# [*, Q/K, H, C_hidden]
|
408 |
+
q = q.view(q.shape[:-1] + (self.no_heads, -1))
|
409 |
+
k = k.view(k.shape[:-1] + (self.no_heads, -1))
|
410 |
+
v = v.view(v.shape[:-1] + (self.no_heads, -1))
|
411 |
+
|
412 |
+
# [*, H, Q/K, C_hidden]
|
413 |
+
q = q.transpose(-2, -3)
|
414 |
+
k = k.transpose(-2, -3)
|
415 |
+
v = v.transpose(-2, -3)
|
416 |
+
|
417 |
+
q /= math.sqrt(self.c_hidden)
|
418 |
+
|
419 |
+
return q, k, v
|
420 |
+
|
421 |
+
def _wrap_up(self, o: torch.Tensor, q_x: torch.Tensor) -> torch.Tensor:
|
422 |
+
if self.linear_g is not None:
|
423 |
+
g = self.sigmoid(self.linear_g(q_x))
|
424 |
+
|
425 |
+
# [*, Q, H, C_hidden]
|
426 |
+
g = g.view(g.shape[:-1] + (self.no_heads, -1))
|
427 |
+
o = o * g
|
428 |
+
|
429 |
+
# [*, Q, H * C_hidden]
|
430 |
+
o = flatten_final_dims(o, 2)
|
431 |
+
|
432 |
+
# [*, Q, C_q]
|
433 |
+
o = self.linear_o(o)
|
434 |
+
|
435 |
+
return o
|
436 |
+
|
437 |
+
def forward(
|
438 |
+
self,
|
439 |
+
q_x: torch.Tensor,
|
440 |
+
kv_x: torch.Tensor,
|
441 |
+
biases: Optional[List[torch.Tensor]] = None,
|
442 |
+
use_memory_efficient_kernel: bool = False,
|
443 |
+
use_lma: bool = False,
|
444 |
+
lma_q_chunk_size: int = 1024,
|
445 |
+
lma_kv_chunk_size: int = 4096,
|
446 |
+
use_flash: bool = False,
|
447 |
+
flash_mask: Optional[torch.Tensor] = None,
|
448 |
+
) -> torch.Tensor:
|
449 |
+
"""
|
450 |
+
Args:
|
451 |
+
q_x:
|
452 |
+
[*, Q, C_q] query data
|
453 |
+
kv_x:
|
454 |
+
[*, K, C_k] key data
|
455 |
+
biases:
|
456 |
+
List of biases that broadcast to [*, H, Q, K]
|
457 |
+
use_memory_efficient_kernel:
|
458 |
+
Whether to use a custom memory-efficient attention kernel. This should be the default choice for most.
|
459 |
+
If none of the "use_<...>" flags are True, a stock PyTorch implementation is used instead
|
460 |
+
use_lma:
|
461 |
+
Whether to use low-memory attention (Staats & Rabe 2021). If none of the "use_<...>" flags are True, a
|
462 |
+
stock PyTorch implementation is used instead
|
463 |
+
lma_q_chunk_size:
|
464 |
+
Query chunk size (for LMA)
|
465 |
+
lma_kv_chunk_size:
|
466 |
+
Key/Value chunk size (for LMA)
|
467 |
+
Returns
|
468 |
+
[*, Q, C_q] attention update
|
469 |
+
"""
|
470 |
+
if use_lma and (lma_q_chunk_size is None or lma_kv_chunk_size is None):
|
471 |
+
raise ValueError("If use_lma is specified, lma_q_chunk_size and lma_kv_chunk_size must be provided")
|
472 |
+
|
473 |
+
if use_flash and biases is not None:
|
474 |
+
raise ValueError("use_flash is incompatible with the bias option. For masking, use flash_mask instead")
|
475 |
+
|
476 |
+
attn_options = [use_memory_efficient_kernel, use_lma, use_flash]
|
477 |
+
if sum(attn_options) > 1:
|
478 |
+
raise ValueError("Choose at most one alternative attention algorithm")
|
479 |
+
|
480 |
+
if biases is None:
|
481 |
+
biases = []
|
482 |
+
|
483 |
+
# [*, H, Q/K, C_hidden]
|
484 |
+
query, key, value = self._prep_qkv(q_x, kv_x)
|
485 |
+
key = permute_final_dims(key, (1, 0))
|
486 |
+
|
487 |
+
# [*, H, Q, K]
|
488 |
+
output = torch.matmul(query, key)
|
489 |
+
for b in biases:
|
490 |
+
output += b
|
491 |
+
output = softmax_no_cast(output, -1)
|
492 |
+
|
493 |
+
# [*, H, Q, C_hidden]
|
494 |
+
output = torch.matmul(output, value)
|
495 |
+
output = output.transpose(-2, -3)
|
496 |
+
output = self._wrap_up(output, q_x)
|
497 |
+
|
498 |
+
return output
|
499 |
+
|
500 |
+
|
501 |
+
class EsmFoldTriangleAttention(nn.Module):
|
502 |
+
def __init__(self, c_in, c_hidden, no_heads, starting=True, inf=1e9):
|
503 |
+
"""
|
504 |
+
Args:
|
505 |
+
c_in:
|
506 |
+
Input channel dimension
|
507 |
+
c_hidden:
|
508 |
+
Overall hidden channel dimension (not per-head)
|
509 |
+
no_heads:
|
510 |
+
Number of attention heads
|
511 |
+
"""
|
512 |
+
super().__init__()
|
513 |
+
|
514 |
+
self.c_in = c_in
|
515 |
+
self.c_hidden = c_hidden
|
516 |
+
self.no_heads = no_heads
|
517 |
+
self.starting = starting
|
518 |
+
self.inf = inf
|
519 |
+
|
520 |
+
self.layer_norm = LayerNorm(self.c_in)
|
521 |
+
|
522 |
+
self.linear = EsmFoldLinear(c_in, self.no_heads, bias=False, init="normal")
|
523 |
+
|
524 |
+
self.mha = EsmFoldAttention(self.c_in, self.c_in, self.c_in, self.c_hidden, self.no_heads)
|
525 |
+
|
526 |
+
@torch.jit.ignore
|
527 |
+
def _chunk(
|
528 |
+
self,
|
529 |
+
x: torch.Tensor,
|
530 |
+
biases: List[torch.Tensor],
|
531 |
+
chunk_size: int,
|
532 |
+
use_memory_efficient_kernel: bool = False,
|
533 |
+
use_lma: bool = False,
|
534 |
+
inplace_safe: bool = False,
|
535 |
+
) -> torch.Tensor:
|
536 |
+
"triangle! triangle!"
|
537 |
+
mha_inputs = {
|
538 |
+
"q_x": x,
|
539 |
+
"kv_x": x,
|
540 |
+
"biases": biases,
|
541 |
+
}
|
542 |
+
|
543 |
+
return chunk_layer(
|
544 |
+
partial(self.mha, use_memory_efficient_kernel=use_memory_efficient_kernel, use_lma=use_lma),
|
545 |
+
mha_inputs,
|
546 |
+
chunk_size=chunk_size,
|
547 |
+
no_batch_dims=len(x.shape[:-2]),
|
548 |
+
_out=x if inplace_safe else None,
|
549 |
+
)
|
550 |
+
|
551 |
+
def forward(
|
552 |
+
self,
|
553 |
+
x: torch.Tensor,
|
554 |
+
mask: Optional[torch.Tensor] = None,
|
555 |
+
chunk_size: Optional[int] = None,
|
556 |
+
use_memory_efficient_kernel: bool = False,
|
557 |
+
use_lma: bool = False,
|
558 |
+
inplace_safe: bool = False,
|
559 |
+
) -> torch.Tensor:
|
560 |
+
"""
|
561 |
+
Args:
|
562 |
+
x:
|
563 |
+
[*, I, J, C_in] input tensor (e.g. the pair representation)
|
564 |
+
Returns:
|
565 |
+
[*, I, J, C_in] output tensor
|
566 |
+
"""
|
567 |
+
if mask is None:
|
568 |
+
# [*, I, J]
|
569 |
+
mask = x.new_ones(
|
570 |
+
x.shape[:-1],
|
571 |
+
)
|
572 |
+
|
573 |
+
if not self.starting:
|
574 |
+
x = x.transpose(-2, -3)
|
575 |
+
mask = mask.transpose(-1, -2)
|
576 |
+
|
577 |
+
# [*, I, J, C_in]
|
578 |
+
x = self.layer_norm(x)
|
579 |
+
|
580 |
+
# [*, I, 1, 1, J]
|
581 |
+
mask_bias = (self.inf * (mask - 1))[..., :, None, None, :]
|
582 |
+
|
583 |
+
# [*, H, I, J]
|
584 |
+
triangle_bias = permute_final_dims(self.linear(x), (2, 0, 1))
|
585 |
+
|
586 |
+
# [*, 1, H, I, J]
|
587 |
+
triangle_bias = triangle_bias.unsqueeze(-4)
|
588 |
+
|
589 |
+
biases = [mask_bias, triangle_bias]
|
590 |
+
|
591 |
+
if chunk_size is not None:
|
592 |
+
x = self._chunk(
|
593 |
+
x,
|
594 |
+
biases,
|
595 |
+
chunk_size,
|
596 |
+
use_memory_efficient_kernel=use_memory_efficient_kernel,
|
597 |
+
use_lma=use_lma,
|
598 |
+
inplace_safe=inplace_safe,
|
599 |
+
)
|
600 |
+
else:
|
601 |
+
x = self.mha(
|
602 |
+
q_x=x, kv_x=x, biases=biases, use_memory_efficient_kernel=use_memory_efficient_kernel, use_lma=use_lma
|
603 |
+
)
|
604 |
+
|
605 |
+
if not self.starting:
|
606 |
+
x = x.transpose(-2, -3)
|
607 |
+
|
608 |
+
return x
|
609 |
+
|
610 |
+
|
611 |
+
class EsmFoldTriangleMultiplicativeUpdate(nn.Module):
|
612 |
+
"""
|
613 |
+
Implements Algorithms 11 and 12.
|
614 |
+
"""
|
615 |
+
|
616 |
+
def __init__(self, config, _outgoing=True):
|
617 |
+
super().__init__()
|
618 |
+
c_hidden = config.pairwise_state_dim
|
619 |
+
self._outgoing = _outgoing
|
620 |
+
|
621 |
+
self.linear_a_p = EsmFoldLinear(c_hidden, c_hidden)
|
622 |
+
self.linear_a_g = EsmFoldLinear(c_hidden, c_hidden, init="gating")
|
623 |
+
self.linear_b_p = EsmFoldLinear(c_hidden, c_hidden)
|
624 |
+
self.linear_b_g = EsmFoldLinear(c_hidden, c_hidden, init="gating")
|
625 |
+
self.linear_g = EsmFoldLinear(c_hidden, c_hidden, init="gating")
|
626 |
+
self.linear_z = EsmFoldLinear(c_hidden, c_hidden, init="final")
|
627 |
+
|
628 |
+
self.layer_norm_in = LayerNorm(c_hidden)
|
629 |
+
self.layer_norm_out = LayerNorm(c_hidden)
|
630 |
+
|
631 |
+
self.sigmoid = nn.Sigmoid()
|
632 |
+
|
633 |
+
def _combine_projections(
|
634 |
+
self, a: torch.Tensor, b: torch.Tensor, _inplace_chunk_size: Optional[int] = None
|
635 |
+
) -> torch.Tensor:
|
636 |
+
if self._outgoing:
|
637 |
+
a = permute_final_dims(a, (2, 0, 1))
|
638 |
+
b = permute_final_dims(b, (2, 1, 0))
|
639 |
+
else:
|
640 |
+
a = permute_final_dims(a, (2, 1, 0))
|
641 |
+
b = permute_final_dims(b, (2, 0, 1))
|
642 |
+
|
643 |
+
if _inplace_chunk_size is not None:
|
644 |
+
# To be replaced by torch vmap
|
645 |
+
for i in range(0, a.shape[-3], _inplace_chunk_size):
|
646 |
+
a_chunk = a[..., i : i + _inplace_chunk_size, :, :]
|
647 |
+
b_chunk = b[..., i : i + _inplace_chunk_size, :, :]
|
648 |
+
a[..., i : i + _inplace_chunk_size, :, :] = torch.matmul(
|
649 |
+
a_chunk,
|
650 |
+
b_chunk,
|
651 |
+
)
|
652 |
+
|
653 |
+
p = a
|
654 |
+
else:
|
655 |
+
p = torch.matmul(a, b)
|
656 |
+
|
657 |
+
return permute_final_dims(p, (1, 2, 0))
|
658 |
+
|
659 |
+
def _inference_forward(
|
660 |
+
self,
|
661 |
+
z: torch.Tensor,
|
662 |
+
mask: Optional[torch.Tensor] = None,
|
663 |
+
inplace_chunk_size: Optional[int] = None,
|
664 |
+
with_add: bool = True,
|
665 |
+
):
|
666 |
+
"""
|
667 |
+
Args:
|
668 |
+
z:
|
669 |
+
A [*, N, N, C_z] pair representation
|
670 |
+
mask:
|
671 |
+
A [*, N, N] pair mask
|
672 |
+
inplace_chunk_size:
|
673 |
+
Size of chunks used in the main computation. Increase to trade memory for speed.
|
674 |
+
with_add:
|
675 |
+
If True, z is overwritten with (z + update). Otherwise, it is overwritten with (update).
|
676 |
+
Returns:
|
677 |
+
A reference to the overwritten z
|
678 |
+
|
679 |
+
More memory-efficient, inference-only version of the forward function. Uses in-place operations, fusion of the
|
680 |
+
addition that happens after this module in the Evoformer, a smidge of recomputation, and a cache of overwritten
|
681 |
+
values to lower peak memory consumption of this module from 5x the size of the input tensor z to 2.5x its size.
|
682 |
+
Useful for inference on extremely long sequences.
|
683 |
+
|
684 |
+
It works as follows. We will make reference to variables used in the default forward implementation below.
|
685 |
+
Naively, triangle multiplication attention requires the manifestation of 5 tensors the size of z: 1) z, the
|
686 |
+
"square" input tensor, 2) a, the first projection of z, 3) b, the second projection of b, 4) g, a z-sized mask,
|
687 |
+
and 5) a z-sized tensor for intermediate computations. For large N, this is prohibitively expensive; for
|
688 |
+
N=4000, for example, z is more than 8GB alone. To avoid this problem, we compute b, g, and all intermediate
|
689 |
+
tensors in small chunks, noting that the chunks required to compute a chunk of the output depend only on the
|
690 |
+
tensor a and corresponding vertical and horizontal chunks of z. This suggests an algorithm that loops over
|
691 |
+
pairs of chunks of z: hereafter "columns" and "rows" of z, even though each "column" and "row" in fact contains
|
692 |
+
inplace_chunk_size contiguous true columns and rows of z. Writing output chunks to a new tensor would bring
|
693 |
+
total memory consumption down to 3x the size of z. However, more memory can be saved by writing output chunks
|
694 |
+
directly to z in-place. WLOG, we choose to write output chunks vertically, overwriting the ith "column" of z at
|
695 |
+
the end of the ith iteration of the main loop. Despite this overwriting, the ith column is always one column
|
696 |
+
ahead of previously overwritten columns and can be recovered directly from z. After the first iteration,
|
697 |
+
however, the ith row of z is always at least partially overwritten. For this reason, we introduce the z-cache,
|
698 |
+
a tensor one-half the size of z. The z-cache initially contains the left half (2nd and 3rd quadrants) of z. For
|
699 |
+
0 < i < N/2, the missing left part of the ith row of z is recovered from this cache at the beginning of the ith
|
700 |
+
iteration. Once i exceeds n/2, the cache is "reoriented" to encompass the 3rd and 4th quadrants of z instead.
|
701 |
+
Though the 3rd quadrant of the original z is entirely overwritten at this point, it can be recovered from the
|
702 |
+
z-cache itself. Thereafter, the ith row of z can be recovered in its entirety from the reoriented z-cache.
|
703 |
+
After the final iteration, z has been completely overwritten and contains the triangular multiplicative update.
|
704 |
+
If with_add is True, it instead contains the sum of z and the triangular multiplicative update. In either case,
|
705 |
+
peak memory consumption is just 2.5x the size of z, disregarding memory used for chunks and other small
|
706 |
+
variables.
|
707 |
+
"""
|
708 |
+
if mask is None:
|
709 |
+
mask = z.new_ones(z.shape[:-1])
|
710 |
+
|
711 |
+
mask = mask.unsqueeze(-1)
|
712 |
+
|
713 |
+
def compute_projection_helper(pair, mask, a=True):
|
714 |
+
if a:
|
715 |
+
linear_g = self.linear_a_g
|
716 |
+
linear_p = self.linear_a_p
|
717 |
+
else:
|
718 |
+
linear_g = self.linear_b_g
|
719 |
+
linear_p = self.linear_b_p
|
720 |
+
|
721 |
+
pair = self.layer_norm_in(pair)
|
722 |
+
p = linear_g(pair)
|
723 |
+
p.sigmoid_()
|
724 |
+
p *= linear_p(pair)
|
725 |
+
p *= mask
|
726 |
+
p = permute_final_dims(p, (2, 0, 1))
|
727 |
+
return p
|
728 |
+
|
729 |
+
def compute_projection(pair, mask, a=True, chunked=True):
|
730 |
+
need_transpose = self._outgoing ^ a
|
731 |
+
if not chunked:
|
732 |
+
p = compute_projection_helper(pair, mask, a)
|
733 |
+
if need_transpose:
|
734 |
+
p = p.transpose(-1, -2)
|
735 |
+
else:
|
736 |
+
# This computation is chunked so as not to exceed our 2.5x
|
737 |
+
# budget with a large intermediate tensor
|
738 |
+
linear_g = self.linear_a_g if a else self.linear_b_g
|
739 |
+
c = linear_g.bias.shape[-1]
|
740 |
+
out_shape = pair.shape[:-3] + (c,) + pair.shape[-3:-1]
|
741 |
+
p = pair.new_zeros(out_shape)
|
742 |
+
for i in range(0, pair.shape[-3], inplace_chunk_size):
|
743 |
+
pair_chunk = pair[..., i : i + inplace_chunk_size, :, :]
|
744 |
+
pair_chunk = compute_projection_helper(
|
745 |
+
pair[..., i : i + inplace_chunk_size, :, :],
|
746 |
+
mask[..., i : i + inplace_chunk_size, :, :],
|
747 |
+
a,
|
748 |
+
)
|
749 |
+
if need_transpose:
|
750 |
+
pair_chunk = pair_chunk.transpose(-1, -2)
|
751 |
+
p[..., i : i + inplace_chunk_size] = pair_chunk
|
752 |
+
else:
|
753 |
+
p[..., i : i + inplace_chunk_size, :] = pair_chunk
|
754 |
+
|
755 |
+
del pair_chunk
|
756 |
+
|
757 |
+
return p
|
758 |
+
|
759 |
+
# We start by fully manifesting a. In addition to the input, this
|
760 |
+
# brings total memory consumption to 2x z (disregarding size of chunks)
|
761 |
+
# [*, N, N, c]
|
762 |
+
a = compute_projection(z, mask, True, chunked=True)
|
763 |
+
|
764 |
+
if inplace_chunk_size is not None:
|
765 |
+
n = a.shape[-1]
|
766 |
+
half_n = n // 2 + n % 2
|
767 |
+
row_dim = -3
|
768 |
+
col_dim = -2
|
769 |
+
b_chunk_dim = row_dim if self._outgoing else col_dim
|
770 |
+
|
771 |
+
def empty_slicer(t):
|
772 |
+
return [slice(None) for _ in t.shape]
|
773 |
+
|
774 |
+
def slice_tensor(t, start, end, dim):
|
775 |
+
# Slices start:end from the dim dimension of t
|
776 |
+
s = empty_slicer(t)
|
777 |
+
s[dim] = slice(start, end)
|
778 |
+
return t[s]
|
779 |
+
|
780 |
+
def flip_z_cache_(z_cache, z):
|
781 |
+
# "Reorient" the z_cache (see below), filling it with quadrants
|
782 |
+
# 3---recovered from the z_cache---and 4---recovered from z---
|
783 |
+
# of the input tensor z.
|
784 |
+
quadrant_3 = slice_tensor(z_cache, half_n, None, row_dim)
|
785 |
+
z_cache = z_cache.transpose(row_dim, col_dim)
|
786 |
+
|
787 |
+
# If n is odd, we need to shrink the z_cache by one row
|
788 |
+
z_cache = z_cache[..., : (n // 2), :, :]
|
789 |
+
|
790 |
+
# Move the 3rd quadrant of z into the
|
791 |
+
first_half_slicer = empty_slicer(z_cache)
|
792 |
+
first_half_slicer[col_dim] = slice(0, half_n)
|
793 |
+
z_cache[first_half_slicer] = quadrant_3
|
794 |
+
|
795 |
+
# Get the fourth quadrant of z
|
796 |
+
quadrant_4 = slice_tensor(z, half_n, None, row_dim)
|
797 |
+
quadrant_4 = slice_tensor(quadrant_4, half_n, None, col_dim)
|
798 |
+
|
799 |
+
# Insert said quadrant into the rotated z-cache
|
800 |
+
quadrant_3_slicer = empty_slicer(z_cache)
|
801 |
+
quadrant_3_slicer[col_dim] = slice(half_n, None)
|
802 |
+
|
803 |
+
z_cache[quadrant_3_slicer] = quadrant_4
|
804 |
+
|
805 |
+
return z_cache
|
806 |
+
|
807 |
+
# Initialize the z cache to the left half of z.
|
808 |
+
z_cache_shape = list(z.shape)
|
809 |
+
z_cache_shape[col_dim] = half_n
|
810 |
+
z_cache = z.new_zeros(z_cache_shape)
|
811 |
+
z_cache_slicer = empty_slicer(z_cache)
|
812 |
+
z_cache_slicer[col_dim] = slice(0, half_n)
|
813 |
+
z_cache.copy_(z[z_cache_slicer])
|
814 |
+
z_cache_rotated = False
|
815 |
+
|
816 |
+
# We need to reorient the z-cache at the halfway point, and we
|
817 |
+
# don't want a single chunk to straddle that point. We contract one
|
818 |
+
# of the chunks in the middle to address that problem.
|
819 |
+
i_range = list(range(0, half_n, inplace_chunk_size))
|
820 |
+
initial_offsets = [i_2 - i_1 for i_1, i_2 in zip(i_range, i_range[1:] + [half_n])]
|
821 |
+
after_half = list(range(half_n, n, inplace_chunk_size))
|
822 |
+
after_half_offsets = [inplace_chunk_size for _ in after_half]
|
823 |
+
combined_range_with_offsets = zip(i_range + after_half, initial_offsets + after_half_offsets)
|
824 |
+
for i, offset in combined_range_with_offsets:
|
825 |
+
if not z_cache_rotated and i >= half_n:
|
826 |
+
z_cache = flip_z_cache_(z_cache, z)
|
827 |
+
z_cache_rotated = True
|
828 |
+
|
829 |
+
z_chunk_b = slice_tensor(z, i, i + offset, b_chunk_dim)
|
830 |
+
mask_chunk = slice_tensor(mask, i, i + offset, b_chunk_dim)
|
831 |
+
|
832 |
+
z_chunk_b = z_chunk_b.clone()
|
833 |
+
if b_chunk_dim == col_dim:
|
834 |
+
z_chunk_b = slice_tensor(z, i, i + offset, col_dim)
|
835 |
+
else: # b_chunk_dim == row_dim
|
836 |
+
# In this case, the b-dimension (b_chunk_dim) is partially
|
837 |
+
# overwritten at the end of each iteration. We need to
|
838 |
+
# restore the missing component from the z-cache.
|
839 |
+
if not z_cache_rotated:
|
840 |
+
z_chunk_slicer = empty_slicer(z_chunk_b)
|
841 |
+
z_chunk_slicer[col_dim] = slice(0, half_n)
|
842 |
+
z_chunk_b[z_chunk_slicer] = slice_tensor(z_cache, i, i + offset, row_dim)
|
843 |
+
else:
|
844 |
+
z_cache_offset = i - half_n
|
845 |
+
z_chunk_b = slice_tensor(z_cache, z_cache_offset, z_cache_offset + offset, row_dim)
|
846 |
+
|
847 |
+
b_chunk = compute_projection(z_chunk_b, mask_chunk, a=False, chunked=False)
|
848 |
+
del z_chunk_b
|
849 |
+
|
850 |
+
x_chunk = torch.matmul(a, b_chunk)
|
851 |
+
x_chunk = permute_final_dims(x_chunk, (1, 2, 0))
|
852 |
+
x_chunk = self.layer_norm_out(x_chunk)
|
853 |
+
x_chunk = self.linear_z(x_chunk)
|
854 |
+
|
855 |
+
# The g dimension (col_dim) is parallel to and ahead of the
|
856 |
+
# overwrites in z. We can extract the g chunk normally.
|
857 |
+
z_chunk_g = slice_tensor(z, i, i + offset, col_dim)
|
858 |
+
g_chunk = self.linear_g(self.layer_norm_in(z_chunk_g))
|
859 |
+
g_chunk.sigmoid_()
|
860 |
+
del z_chunk_g
|
861 |
+
|
862 |
+
x_chunk *= g_chunk
|
863 |
+
|
864 |
+
# Write the columns into z in-place
|
865 |
+
z_slicer = empty_slicer(z)
|
866 |
+
z_slicer[col_dim] = slice(i, i + offset)
|
867 |
+
if with_add:
|
868 |
+
z[z_slicer] += x_chunk
|
869 |
+
else:
|
870 |
+
z[z_slicer] = x_chunk
|
871 |
+
else:
|
872 |
+
b = compute_projection(z, mask, False, False)
|
873 |
+
x = torch.matmul(a, b)
|
874 |
+
x = self.layer_norm_out(x)
|
875 |
+
x = self.linear_z(x)
|
876 |
+
g = self.linear_g(z)
|
877 |
+
g.sigmoid_()
|
878 |
+
x *= g
|
879 |
+
if with_add:
|
880 |
+
z += x
|
881 |
+
else:
|
882 |
+
z = x
|
883 |
+
|
884 |
+
return z
|
885 |
+
|
886 |
+
def forward(
|
887 |
+
self,
|
888 |
+
z: torch.Tensor,
|
889 |
+
mask: Optional[torch.Tensor] = None,
|
890 |
+
inplace_safe: bool = False,
|
891 |
+
_add_with_inplace: bool = False,
|
892 |
+
_inplace_chunk_size: Optional[int] = 256,
|
893 |
+
) -> torch.Tensor:
|
894 |
+
"""
|
895 |
+
Args:
|
896 |
+
x:
|
897 |
+
[*, N_res, N_res, C_z] input tensor
|
898 |
+
mask:
|
899 |
+
[*, N_res, N_res] input mask
|
900 |
+
Returns:
|
901 |
+
[*, N_res, N_res, C_z] output tensor
|
902 |
+
"""
|
903 |
+
if inplace_safe:
|
904 |
+
x = self._inference_forward(
|
905 |
+
z,
|
906 |
+
mask,
|
907 |
+
inplace_chunk_size=_inplace_chunk_size,
|
908 |
+
with_add=_add_with_inplace,
|
909 |
+
)
|
910 |
+
return x
|
911 |
+
|
912 |
+
if mask is None:
|
913 |
+
mask = z.new_ones(z.shape[:-1])
|
914 |
+
|
915 |
+
mask = mask.unsqueeze(-1)
|
916 |
+
|
917 |
+
z = self.layer_norm_in(z)
|
918 |
+
a = mask
|
919 |
+
a = a * self.sigmoid(self.linear_a_g(z))
|
920 |
+
a = a * self.linear_a_p(z)
|
921 |
+
b = mask
|
922 |
+
b = b * self.sigmoid(self.linear_b_g(z))
|
923 |
+
b = b * self.linear_b_p(z)
|
924 |
+
|
925 |
+
if is_fp16_enabled():
|
926 |
+
with torch.cuda.amp.autocast(enabled=False):
|
927 |
+
x = self._combine_projections(a.float(), b.float())
|
928 |
+
else:
|
929 |
+
x = self._combine_projections(a, b)
|
930 |
+
|
931 |
+
del a, b
|
932 |
+
x = self.layer_norm_out(x)
|
933 |
+
x = self.linear_z(x)
|
934 |
+
g = self.sigmoid(self.linear_g(z))
|
935 |
+
x = x * g
|
936 |
+
|
937 |
+
return x
|
938 |
+
|
939 |
+
|
940 |
+
class EsmFoldPreTrainedModel(EsmPreTrainedModel):
|
941 |
+
"""
|
942 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
943 |
+
models.
|
944 |
+
"""
|
945 |
+
|
946 |
+
# Subclass `EsMPreTrainedModel` to deal with special init
|
947 |
+
def _init_weights(self, module):
|
948 |
+
"""Initialize the weights"""
|
949 |
+
if isinstance(module, EsmFoldLinear):
|
950 |
+
with torch.no_grad():
|
951 |
+
if module.init_fn is not None:
|
952 |
+
module.init_fn(module.weight, module.bias)
|
953 |
+
elif module.init == "default":
|
954 |
+
trunc_normal_init_(module.weight, scale=1.0)
|
955 |
+
elif module.init == "relu":
|
956 |
+
trunc_normal_init_(module.weight, scale=2.0)
|
957 |
+
elif module.init == "glorot":
|
958 |
+
nn.init.xavier_uniform_(module.weight, gain=1)
|
959 |
+
elif module.init == "gating":
|
960 |
+
module.weight.fill_(0.0)
|
961 |
+
if module.bias:
|
962 |
+
module.bias.fill_(1.0)
|
963 |
+
elif module.init == "normal":
|
964 |
+
torch.nn.init.kaiming_normal_(module.weight, nonlinearity="linear")
|
965 |
+
elif module.init == "final":
|
966 |
+
module.weight.fill_(0.0)
|
967 |
+
elif isinstance(module, EsmFoldInvariantPointAttention):
|
968 |
+
ipa_point_weights_init_(module.head_weights)
|
969 |
+
elif isinstance(module, EsmFoldTriangularSelfAttentionBlock):
|
970 |
+
torch.nn.init.zeros_(module.tri_mul_in.linear_z.weight)
|
971 |
+
torch.nn.init.zeros_(module.tri_mul_in.linear_z.bias)
|
972 |
+
torch.nn.init.zeros_(module.tri_mul_out.linear_z.weight)
|
973 |
+
torch.nn.init.zeros_(module.tri_mul_out.linear_z.bias)
|
974 |
+
torch.nn.init.zeros_(module.tri_att_start.mha.linear_o.weight)
|
975 |
+
torch.nn.init.zeros_(module.tri_att_start.mha.linear_o.bias)
|
976 |
+
torch.nn.init.zeros_(module.tri_att_end.mha.linear_o.weight)
|
977 |
+
torch.nn.init.zeros_(module.tri_att_end.mha.linear_o.bias)
|
978 |
+
|
979 |
+
torch.nn.init.zeros_(module.sequence_to_pair.o_proj.weight)
|
980 |
+
torch.nn.init.zeros_(module.sequence_to_pair.o_proj.bias)
|
981 |
+
torch.nn.init.zeros_(module.pair_to_sequence.linear.weight)
|
982 |
+
torch.nn.init.zeros_(module.seq_attention.o_proj.weight)
|
983 |
+
torch.nn.init.zeros_(module.seq_attention.o_proj.bias)
|
984 |
+
torch.nn.init.zeros_(module.mlp_seq.mlp[-2].weight)
|
985 |
+
torch.nn.init.zeros_(module.mlp_seq.mlp[-2].bias)
|
986 |
+
torch.nn.init.zeros_(module.mlp_pair.mlp[-2].weight)
|
987 |
+
torch.nn.init.zeros_(module.mlp_pair.mlp[-2].bias)
|
988 |
+
else:
|
989 |
+
super()._init_weights(module)
|
990 |
+
|
991 |
+
|
992 |
+
class EsmFoldSelfAttention(nn.Module):
|
993 |
+
def __init__(self, embed_dim, num_heads, head_width, gated=False):
|
994 |
+
super().__init__()
|
995 |
+
assert embed_dim == num_heads * head_width
|
996 |
+
|
997 |
+
self.embed_dim = embed_dim
|
998 |
+
self.num_heads = num_heads
|
999 |
+
self.head_width = head_width
|
1000 |
+
|
1001 |
+
self.proj = nn.Linear(embed_dim, embed_dim * 3, bias=False)
|
1002 |
+
self.o_proj = nn.Linear(embed_dim, embed_dim, bias=True)
|
1003 |
+
self.gated = gated
|
1004 |
+
if gated:
|
1005 |
+
self.g_proj = nn.Linear(embed_dim, embed_dim)
|
1006 |
+
torch.nn.init.zeros_(self.g_proj.weight)
|
1007 |
+
torch.nn.init.ones_(self.g_proj.bias)
|
1008 |
+
|
1009 |
+
self.rescale_factor = self.head_width**-0.5
|
1010 |
+
|
1011 |
+
torch.nn.init.zeros_(self.o_proj.bias)
|
1012 |
+
|
1013 |
+
def forward(self, x, mask=None, bias=None, indices=None):
|
1014 |
+
"""
|
1015 |
+
Basic self attention with optional mask and external pairwise bias. To handle sequences of different lengths,
|
1016 |
+
use mask.
|
1017 |
+
|
1018 |
+
Inputs:
|
1019 |
+
x: batch of input sequneces (.. x L x C) mask: batch of boolean masks where 1=valid, 0=padding position (..
|
1020 |
+
x L_k) bias: batch of scalar pairwise attention biases (.. x Lq x Lk x num_heads)
|
1021 |
+
|
1022 |
+
Outputs:
|
1023 |
+
sequence projection (B x L x embed_dim), attention maps (B x L x L x num_heads)
|
1024 |
+
"""
|
1025 |
+
|
1026 |
+
t = self.proj(x).view(*x.shape[:2], self.num_heads, -1)
|
1027 |
+
t = t.permute(0, 2, 1, 3)
|
1028 |
+
q, k, v = t.chunk(3, dim=-1)
|
1029 |
+
|
1030 |
+
q = self.rescale_factor * q
|
1031 |
+
a = torch.einsum("...qc,...kc->...qk", q, k)
|
1032 |
+
|
1033 |
+
# Add external attention bias.
|
1034 |
+
if bias is not None:
|
1035 |
+
a = a + bias.permute(0, 3, 1, 2)
|
1036 |
+
|
1037 |
+
# Do not attend to padding tokens.
|
1038 |
+
if mask is not None:
|
1039 |
+
mask = mask[:, None, None]
|
1040 |
+
a = a.masked_fill(mask == False, -np.inf) # noqa: E712
|
1041 |
+
|
1042 |
+
a = nn.functional.softmax(a, dim=-1)
|
1043 |
+
|
1044 |
+
y = torch.einsum("...hqk,...hkc->...qhc", a, v)
|
1045 |
+
y = y.reshape(*y.shape[:2], -1)
|
1046 |
+
|
1047 |
+
if self.gated:
|
1048 |
+
y = self.g_proj(x).sigmoid() * y
|
1049 |
+
y = self.o_proj(y)
|
1050 |
+
|
1051 |
+
return y, a.permute(0, 3, 1, 2)
|
1052 |
+
|
1053 |
+
|
1054 |
+
class EsmFoldDropout(nn.Module):
|
1055 |
+
"""
|
1056 |
+
Implementation of dropout with the ability to share the dropout mask along a particular dimension.
|
1057 |
+
"""
|
1058 |
+
|
1059 |
+
def __init__(self, r: float, batch_dim: Union[int, List[int]]):
|
1060 |
+
super().__init__()
|
1061 |
+
|
1062 |
+
self.r = r
|
1063 |
+
if isinstance(batch_dim, int):
|
1064 |
+
batch_dim = [batch_dim]
|
1065 |
+
self.batch_dim = batch_dim
|
1066 |
+
self.dropout = nn.Dropout(self.r)
|
1067 |
+
|
1068 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
1069 |
+
shape = list(x.shape)
|
1070 |
+
if self.batch_dim is not None:
|
1071 |
+
for bd in self.batch_dim:
|
1072 |
+
shape[bd] = 1
|
1073 |
+
return x * self.dropout(x.new_ones(shape))
|
1074 |
+
|
1075 |
+
|
1076 |
+
class EsmFoldSequenceToPair(nn.Module):
|
1077 |
+
def __init__(self, sequence_state_dim, inner_dim, pairwise_state_dim):
|
1078 |
+
super().__init__()
|
1079 |
+
|
1080 |
+
self.layernorm = nn.LayerNorm(sequence_state_dim)
|
1081 |
+
self.proj = nn.Linear(sequence_state_dim, inner_dim * 2, bias=True)
|
1082 |
+
self.o_proj = nn.Linear(2 * inner_dim, pairwise_state_dim, bias=True)
|
1083 |
+
|
1084 |
+
torch.nn.init.zeros_(self.proj.bias)
|
1085 |
+
torch.nn.init.zeros_(self.o_proj.bias)
|
1086 |
+
|
1087 |
+
def forward(self, sequence_state):
|
1088 |
+
"""
|
1089 |
+
Inputs:
|
1090 |
+
sequence_state: B x L x sequence_state_dim
|
1091 |
+
|
1092 |
+
Output:
|
1093 |
+
pairwise_state: B x L x L x pairwise_state_dim
|
1094 |
+
|
1095 |
+
Intermediate state:
|
1096 |
+
B x L x L x 2*inner_dim
|
1097 |
+
"""
|
1098 |
+
|
1099 |
+
assert len(sequence_state.shape) == 3
|
1100 |
+
|
1101 |
+
s = self.layernorm(sequence_state)
|
1102 |
+
s = self.proj(s)
|
1103 |
+
q, k = s.chunk(2, dim=-1)
|
1104 |
+
|
1105 |
+
prod = q[:, None, :, :] * k[:, :, None, :]
|
1106 |
+
diff = q[:, None, :, :] - k[:, :, None, :]
|
1107 |
+
|
1108 |
+
x = torch.cat([prod, diff], dim=-1)
|
1109 |
+
x = self.o_proj(x)
|
1110 |
+
|
1111 |
+
return x
|
1112 |
+
|
1113 |
+
|
1114 |
+
class EsmFoldPairToSequence(nn.Module):
|
1115 |
+
def __init__(self, pairwise_state_dim, num_heads):
|
1116 |
+
super().__init__()
|
1117 |
+
|
1118 |
+
self.layernorm = nn.LayerNorm(pairwise_state_dim)
|
1119 |
+
self.linear = nn.Linear(pairwise_state_dim, num_heads, bias=False)
|
1120 |
+
|
1121 |
+
def forward(self, pairwise_state):
|
1122 |
+
"""
|
1123 |
+
Inputs:
|
1124 |
+
pairwise_state: B x L x L x pairwise_state_dim
|
1125 |
+
|
1126 |
+
Output:
|
1127 |
+
pairwise_bias: B x L x L x num_heads
|
1128 |
+
"""
|
1129 |
+
assert len(pairwise_state.shape) == 4
|
1130 |
+
z = self.layernorm(pairwise_state)
|
1131 |
+
pairwise_bias = self.linear(z)
|
1132 |
+
return pairwise_bias
|
1133 |
+
|
1134 |
+
|
1135 |
+
class EsmFoldResidueMLP(nn.Module):
|
1136 |
+
def __init__(self, embed_dim, inner_dim, dropout=0):
|
1137 |
+
super().__init__()
|
1138 |
+
|
1139 |
+
self.mlp = nn.Sequential(
|
1140 |
+
nn.LayerNorm(embed_dim),
|
1141 |
+
nn.Linear(embed_dim, inner_dim),
|
1142 |
+
nn.ReLU(),
|
1143 |
+
nn.Linear(inner_dim, embed_dim),
|
1144 |
+
nn.Dropout(dropout),
|
1145 |
+
)
|
1146 |
+
|
1147 |
+
def forward(self, x):
|
1148 |
+
return x + self.mlp(x)
|
1149 |
+
|
1150 |
+
|
1151 |
+
class EsmFoldTriangularSelfAttentionBlock(nn.Module):
|
1152 |
+
def __init__(self, config):
|
1153 |
+
super().__init__()
|
1154 |
+
self.config = config
|
1155 |
+
|
1156 |
+
sequence_state_dim = config.sequence_state_dim
|
1157 |
+
pairwise_state_dim = config.pairwise_state_dim
|
1158 |
+
sequence_num_heads = sequence_state_dim // config.sequence_head_width
|
1159 |
+
pairwise_num_heads = pairwise_state_dim // config.pairwise_head_width
|
1160 |
+
|
1161 |
+
self.layernorm_1 = nn.LayerNorm(sequence_state_dim)
|
1162 |
+
|
1163 |
+
self.sequence_to_pair = EsmFoldSequenceToPair(sequence_state_dim, pairwise_state_dim // 2, pairwise_state_dim)
|
1164 |
+
self.pair_to_sequence = EsmFoldPairToSequence(pairwise_state_dim, sequence_num_heads)
|
1165 |
+
|
1166 |
+
self.seq_attention = EsmFoldSelfAttention(
|
1167 |
+
sequence_state_dim, sequence_num_heads, config.sequence_head_width, gated=True
|
1168 |
+
)
|
1169 |
+
self.tri_mul_out = EsmFoldTriangleMultiplicativeUpdate(config, _outgoing=True)
|
1170 |
+
self.tri_mul_in = EsmFoldTriangleMultiplicativeUpdate(config, _outgoing=False)
|
1171 |
+
|
1172 |
+
self.tri_att_start = EsmFoldTriangleAttention(
|
1173 |
+
pairwise_state_dim, config.pairwise_head_width, pairwise_num_heads, inf=1e9, starting=True
|
1174 |
+
)
|
1175 |
+
self.tri_att_end = EsmFoldTriangleAttention(
|
1176 |
+
pairwise_state_dim, config.pairwise_head_width, pairwise_num_heads, inf=1e9, starting=False
|
1177 |
+
)
|
1178 |
+
|
1179 |
+
self.mlp_seq = EsmFoldResidueMLP(sequence_state_dim, 4 * sequence_state_dim, dropout=config.dropout)
|
1180 |
+
self.mlp_pair = EsmFoldResidueMLP(pairwise_state_dim, 4 * pairwise_state_dim, dropout=config.dropout)
|
1181 |
+
|
1182 |
+
self.drop = nn.Dropout(config.dropout)
|
1183 |
+
self.row_drop = EsmFoldDropout(config.dropout * 2, 2)
|
1184 |
+
self.col_drop = EsmFoldDropout(config.dropout * 2, 1)
|
1185 |
+
|
1186 |
+
def forward(self, sequence_state, pairwise_state, mask=None, chunk_size=None, **__kwargs):
|
1187 |
+
"""
|
1188 |
+
Inputs:
|
1189 |
+
sequence_state: B x L x sequence_state_dim pairwise_state: B x L x L x pairwise_state_dim mask: B x L boolean
|
1190 |
+
tensor of valid positions
|
1191 |
+
|
1192 |
+
Output:
|
1193 |
+
sequence_state: B x L x sequence_state_dim pairwise_state: B x L x L x pairwise_state_dim
|
1194 |
+
"""
|
1195 |
+
if len(sequence_state.shape) != 3:
|
1196 |
+
raise ValueError(f"`sequence_state` should be a 3d-tensor, got {len(sequence_state.shape)} dims.")
|
1197 |
+
if len(pairwise_state.shape) != 4:
|
1198 |
+
raise ValueError(f"`pairwise_state` should be a 4d-tensor, got {len(pairwise_state.shape)} dims.")
|
1199 |
+
if mask is not None and len(mask.shape) != 2:
|
1200 |
+
raise ValueError(f"`mask` should be a 2d-tensor, got {len(mask.shape)} dims.")
|
1201 |
+
|
1202 |
+
batch_dim, seq_dim, sequence_state_dim = sequence_state.shape
|
1203 |
+
pairwise_state_dim = pairwise_state.shape[3]
|
1204 |
+
|
1205 |
+
if sequence_state_dim != self.config.sequence_state_dim:
|
1206 |
+
raise ValueError(
|
1207 |
+
"`sequence_state` last dimension should be equal to `self.sequence_state_dim`. Got "
|
1208 |
+
f"{sequence_state_dim} != {self.config.sequence_state_dim}."
|
1209 |
+
)
|
1210 |
+
if pairwise_state_dim != self.config.pairwise_state_dim:
|
1211 |
+
raise ValueError(
|
1212 |
+
"`pairwise_state` last dimension should be equal to `self.pairwise_state_dim`. Got "
|
1213 |
+
f"{pairwise_state_dim} != {self.config.pairwise_state_dim}."
|
1214 |
+
)
|
1215 |
+
if batch_dim != pairwise_state.shape[0]:
|
1216 |
+
raise ValueError(
|
1217 |
+
f"`sequence_state` and `pairwise_state` have inconsistent batch size: {batch_dim} != "
|
1218 |
+
f"{pairwise_state.shape[0]}."
|
1219 |
+
)
|
1220 |
+
if seq_dim != pairwise_state.shape[1] or seq_dim != pairwise_state.shape[2]:
|
1221 |
+
raise ValueError(
|
1222 |
+
f"`sequence_state` and `pairwise_state` have inconsistent sequence length: {seq_dim} != "
|
1223 |
+
f"{pairwise_state.shape[1]} or {pairwise_state.shape[2]}."
|
1224 |
+
)
|
1225 |
+
|
1226 |
+
# Update sequence state
|
1227 |
+
bias = self.pair_to_sequence(pairwise_state)
|
1228 |
+
|
1229 |
+
# Self attention with bias + mlp.
|
1230 |
+
y = self.layernorm_1(sequence_state)
|
1231 |
+
y, _ = self.seq_attention(y, mask=mask, bias=bias)
|
1232 |
+
sequence_state = sequence_state + self.drop(y)
|
1233 |
+
sequence_state = self.mlp_seq(sequence_state)
|
1234 |
+
|
1235 |
+
# Update pairwise state
|
1236 |
+
pairwise_state = pairwise_state + self.sequence_to_pair(sequence_state)
|
1237 |
+
|
1238 |
+
# Axial attention with triangular bias.
|
1239 |
+
tri_mask = mask.unsqueeze(2) * mask.unsqueeze(1) if mask is not None else None
|
1240 |
+
pairwise_state = pairwise_state + self.row_drop(self.tri_mul_out(pairwise_state, mask=tri_mask))
|
1241 |
+
pairwise_state = pairwise_state + self.col_drop(self.tri_mul_in(pairwise_state, mask=tri_mask))
|
1242 |
+
pairwise_state = pairwise_state + self.row_drop(
|
1243 |
+
self.tri_att_start(pairwise_state, mask=tri_mask, chunk_size=chunk_size)
|
1244 |
+
)
|
1245 |
+
pairwise_state = pairwise_state + self.col_drop(
|
1246 |
+
self.tri_att_end(pairwise_state, mask=tri_mask, chunk_size=chunk_size)
|
1247 |
+
)
|
1248 |
+
|
1249 |
+
# MLP over pairs.
|
1250 |
+
pairwise_state = self.mlp_pair(pairwise_state)
|
1251 |
+
|
1252 |
+
return sequence_state, pairwise_state
|
1253 |
+
|
1254 |
+
|
1255 |
+
class EsmCategoricalMixture:
|
1256 |
+
def __init__(self, param, bins=50, start=0, end=1):
|
1257 |
+
# All tensors are of shape ..., bins.
|
1258 |
+
self.logits = param
|
1259 |
+
bins = torch.linspace(start, end, bins + 1, device=self.logits.device, dtype=self.logits.dtype)
|
1260 |
+
self.v_bins = (bins[:-1] + bins[1:]) / 2
|
1261 |
+
|
1262 |
+
def log_prob(self, true):
|
1263 |
+
# Shapes are:
|
1264 |
+
# self.probs: ... x bins
|
1265 |
+
# true : ...
|
1266 |
+
true_index = (true.unsqueeze(-1) - self.v_bins[[None] * true.ndim]).abs().argmin(-1)
|
1267 |
+
nll = self.logits.log_softmax(-1)
|
1268 |
+
return torch.take_along_dim(nll, true_index.unsqueeze(-1), dim=-1).squeeze(-1)
|
1269 |
+
|
1270 |
+
def mean(self):
|
1271 |
+
return (self.logits.softmax(-1) @ self.v_bins.unsqueeze(1)).squeeze(-1)
|
1272 |
+
|
1273 |
+
|
1274 |
+
def categorical_lddt(logits, bins=50):
|
1275 |
+
# Logits are ..., 37, bins.
|
1276 |
+
return EsmCategoricalMixture(logits, bins=bins).mean()
|
1277 |
+
|
1278 |
+
|
1279 |
+
def get_axial_mask(mask):
|
1280 |
+
"""
|
1281 |
+
Helper to convert B x L mask of valid positions to axial mask used in row column attentions.
|
1282 |
+
|
1283 |
+
Input:
|
1284 |
+
mask: B x L tensor of booleans
|
1285 |
+
|
1286 |
+
Output:
|
1287 |
+
mask: B x L x L tensor of booleans
|
1288 |
+
"""
|
1289 |
+
|
1290 |
+
if mask is None:
|
1291 |
+
return None
|
1292 |
+
|
1293 |
+
if len(mask.shape) != 2:
|
1294 |
+
raise ValueError(f"`mask` should be a 2d-tensor, got {len(mask.shape)} dims.")
|
1295 |
+
batch_dim, seq_dim = mask.shape
|
1296 |
+
m = mask.unsqueeze(1).expand(batch_dim, seq_dim, seq_dim)
|
1297 |
+
m = m.reshape(batch_dim * seq_dim, seq_dim)
|
1298 |
+
return m
|
1299 |
+
|
1300 |
+
|
1301 |
+
class EsmFoldRelativePosition(nn.Module):
|
1302 |
+
def __init__(self, config):
|
1303 |
+
super().__init__()
|
1304 |
+
self.bins = config.position_bins
|
1305 |
+
|
1306 |
+
# Note an additional offset is used so that the 0th position
|
1307 |
+
# is reserved for masked pairs.
|
1308 |
+
self.embedding = torch.nn.Embedding(2 * self.bins + 2, config.pairwise_state_dim)
|
1309 |
+
|
1310 |
+
def forward(self, residue_index, mask=None):
|
1311 |
+
"""
|
1312 |
+
Input:
|
1313 |
+
residue_index: B x L tensor of indices (dytpe=torch.long) mask: B x L tensor of booleans
|
1314 |
+
|
1315 |
+
Output:
|
1316 |
+
pairwise_state: B x L x L x pairwise_state_dim tensor of embeddings
|
1317 |
+
"""
|
1318 |
+
if residue_index.dtype != torch.long:
|
1319 |
+
raise ValueError(f"`residue_index` has dtype {residue_index.dtype}, it should be `torch.long`.")
|
1320 |
+
if mask is not None and residue_index.shape != mask.shape:
|
1321 |
+
raise ValueError(
|
1322 |
+
f"`residue_index` and `mask` have inconsistent shapes: {residue_index.shape} != {mask.shape}."
|
1323 |
+
)
|
1324 |
+
|
1325 |
+
diff = residue_index[:, None, :] - residue_index[:, :, None]
|
1326 |
+
diff = diff.clamp(-self.bins, self.bins)
|
1327 |
+
diff = diff + self.bins + 1 # Add 1 to adjust for padding index.
|
1328 |
+
|
1329 |
+
if mask is not None:
|
1330 |
+
mask = mask[:, None, :] * mask[:, :, None]
|
1331 |
+
diff[mask == False] = 0 # noqa: E712
|
1332 |
+
|
1333 |
+
output = self.embedding(diff)
|
1334 |
+
return output
|
1335 |
+
|
1336 |
+
|
1337 |
+
class EsmFoldAngleResnetBlock(nn.Module):
|
1338 |
+
def __init__(self, config):
|
1339 |
+
super().__init__()
|
1340 |
+
|
1341 |
+
self.linear_1 = EsmFoldLinear(config.resnet_dim, config.resnet_dim, init="relu")
|
1342 |
+
self.linear_2 = EsmFoldLinear(config.resnet_dim, config.resnet_dim, init="final")
|
1343 |
+
|
1344 |
+
self.relu = nn.ReLU()
|
1345 |
+
|
1346 |
+
def forward(self, a: torch.Tensor) -> torch.Tensor:
|
1347 |
+
s_initial = a
|
1348 |
+
|
1349 |
+
a = self.relu(a)
|
1350 |
+
a = self.linear_1(a)
|
1351 |
+
a = self.relu(a)
|
1352 |
+
a = self.linear_2(a)
|
1353 |
+
|
1354 |
+
return a + s_initial
|
1355 |
+
|
1356 |
+
|
1357 |
+
class EsmFoldAngleResnet(nn.Module):
|
1358 |
+
"""
|
1359 |
+
Implements Algorithm 20, lines 11-14
|
1360 |
+
"""
|
1361 |
+
|
1362 |
+
def __init__(self, config):
|
1363 |
+
super().__init__()
|
1364 |
+
self.config = config
|
1365 |
+
|
1366 |
+
self.linear_in = EsmFoldLinear(config.sequence_dim, config.resnet_dim)
|
1367 |
+
self.linear_initial = EsmFoldLinear(config.sequence_dim, config.resnet_dim)
|
1368 |
+
|
1369 |
+
self.layers = nn.ModuleList()
|
1370 |
+
for _ in range(config.num_resnet_blocks):
|
1371 |
+
layer = EsmFoldAngleResnetBlock(config)
|
1372 |
+
self.layers.append(layer)
|
1373 |
+
|
1374 |
+
self.linear_out = EsmFoldLinear(config.resnet_dim, config.num_angles * 2)
|
1375 |
+
|
1376 |
+
self.relu = nn.ReLU()
|
1377 |
+
|
1378 |
+
def forward(self, s: torch.Tensor, s_initial: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
1379 |
+
"""
|
1380 |
+
Args:
|
1381 |
+
s:
|
1382 |
+
[*, C_hidden] single embedding
|
1383 |
+
s_initial:
|
1384 |
+
[*, C_hidden] single embedding as of the start of the StructureModule
|
1385 |
+
Returns:
|
1386 |
+
[*, no_angles, 2] predicted angles
|
1387 |
+
"""
|
1388 |
+
# NOTE: The ReLU's applied to the inputs are absent from the supplement
|
1389 |
+
# pseudocode but present in the source. For maximal compatibility with
|
1390 |
+
# the pretrained weights, I'm going with the source.
|
1391 |
+
|
1392 |
+
# [*, C_hidden]
|
1393 |
+
s_initial = self.relu(s_initial)
|
1394 |
+
s_initial = self.linear_initial(s_initial)
|
1395 |
+
s = self.relu(s)
|
1396 |
+
s = self.linear_in(s)
|
1397 |
+
s = s + s_initial
|
1398 |
+
|
1399 |
+
for l in self.layers:
|
1400 |
+
s = l(s)
|
1401 |
+
|
1402 |
+
s = self.relu(s)
|
1403 |
+
|
1404 |
+
# [*, no_angles * 2]
|
1405 |
+
s = self.linear_out(s)
|
1406 |
+
|
1407 |
+
# [*, no_angles, 2]
|
1408 |
+
s = s.view(s.shape[:-1] + (-1, 2))
|
1409 |
+
|
1410 |
+
unnormalized_s = s
|
1411 |
+
norm_denom = torch.sqrt(
|
1412 |
+
torch.clamp(
|
1413 |
+
torch.sum(s**2, dim=-1, keepdim=True),
|
1414 |
+
min=self.config.epsilon,
|
1415 |
+
)
|
1416 |
+
)
|
1417 |
+
s = s / norm_denom
|
1418 |
+
|
1419 |
+
return unnormalized_s, s
|
1420 |
+
|
1421 |
+
|
1422 |
+
class EsmFoldInvariantPointAttention(nn.Module):
|
1423 |
+
"""
|
1424 |
+
Implements Algorithm 22.
|
1425 |
+
"""
|
1426 |
+
|
1427 |
+
def __init__(self, config):
|
1428 |
+
super().__init__()
|
1429 |
+
self.config = config
|
1430 |
+
|
1431 |
+
c_s = config.sequence_dim
|
1432 |
+
c_z = config.pairwise_dim
|
1433 |
+
self.hidden_dim = config.ipa_dim
|
1434 |
+
self.num_heads = config.num_heads_ipa
|
1435 |
+
self.num_qk_points = config.num_qk_points
|
1436 |
+
self.num_v_points = config.num_v_points
|
1437 |
+
|
1438 |
+
# These linear layers differ from their specifications in the
|
1439 |
+
# supplement. There, they lack bias and use Glorot initialization.
|
1440 |
+
# Here as in the official source, they have bias and use the default
|
1441 |
+
# Lecun initialization.
|
1442 |
+
hc = config.ipa_dim * config.num_heads_ipa
|
1443 |
+
self.linear_q = EsmFoldLinear(c_s, hc)
|
1444 |
+
self.linear_kv = EsmFoldLinear(c_s, 2 * hc)
|
1445 |
+
|
1446 |
+
hpq = config.num_heads_ipa * config.num_qk_points * 3
|
1447 |
+
self.linear_q_points = EsmFoldLinear(c_s, hpq)
|
1448 |
+
|
1449 |
+
hpkv = config.num_heads_ipa * (config.num_qk_points + config.num_v_points) * 3
|
1450 |
+
self.linear_kv_points = EsmFoldLinear(c_s, hpkv)
|
1451 |
+
|
1452 |
+
self.linear_b = EsmFoldLinear(c_z, config.num_heads_ipa)
|
1453 |
+
|
1454 |
+
self.head_weights = nn.Parameter(torch.zeros((config.num_heads_ipa)))
|
1455 |
+
|
1456 |
+
concat_out_dim = config.num_heads_ipa * (c_z + config.ipa_dim + config.num_v_points * 4)
|
1457 |
+
self.linear_out = EsmFoldLinear(concat_out_dim, c_s, init="final")
|
1458 |
+
|
1459 |
+
self.softmax = nn.Softmax(dim=-1)
|
1460 |
+
self.softplus = nn.Softplus()
|
1461 |
+
|
1462 |
+
def forward(
|
1463 |
+
self,
|
1464 |
+
s: torch.Tensor,
|
1465 |
+
z: Optional[torch.Tensor],
|
1466 |
+
r: Rigid,
|
1467 |
+
mask: torch.Tensor,
|
1468 |
+
_offload_inference: bool = False,
|
1469 |
+
_z_reference_list: Optional[Sequence[torch.Tensor]] = None,
|
1470 |
+
) -> torch.Tensor:
|
1471 |
+
"""
|
1472 |
+
Args:
|
1473 |
+
s:
|
1474 |
+
[*, N_res, C_s] single representation
|
1475 |
+
z:
|
1476 |
+
[*, N_res, N_res, C_z] pair representation
|
1477 |
+
r:
|
1478 |
+
[*, N_res] transformation object
|
1479 |
+
mask:
|
1480 |
+
[*, N_res] mask
|
1481 |
+
Returns:
|
1482 |
+
[*, N_res, C_s] single representation update
|
1483 |
+
"""
|
1484 |
+
z = [z]
|
1485 |
+
|
1486 |
+
#######################################
|
1487 |
+
# Generate scalar and point activations
|
1488 |
+
#######################################
|
1489 |
+
# [*, N_res, H * C_hidden]
|
1490 |
+
q = self.linear_q(s)
|
1491 |
+
kv = self.linear_kv(s)
|
1492 |
+
|
1493 |
+
# [*, N_res, H, C_hidden]
|
1494 |
+
q = q.view(q.shape[:-1] + (self.num_heads, -1))
|
1495 |
+
|
1496 |
+
# [*, N_res, H, 2 * C_hidden]
|
1497 |
+
kv = kv.view(kv.shape[:-1] + (self.num_heads, -1))
|
1498 |
+
|
1499 |
+
# [*, N_res, H, C_hidden]
|
1500 |
+
k, v = torch.split(kv, self.hidden_dim, dim=-1)
|
1501 |
+
|
1502 |
+
# [*, N_res, H * P_q * 3]
|
1503 |
+
q_pts = self.linear_q_points(s)
|
1504 |
+
|
1505 |
+
# This is kind of clunky, but it's how the original does it
|
1506 |
+
# [*, N_res, H * P_q, 3]
|
1507 |
+
q_pts = torch.split(q_pts, q_pts.shape[-1] // 3, dim=-1)
|
1508 |
+
q_pts = torch.stack(q_pts, dim=-1)
|
1509 |
+
q_pts = r[..., None].apply(q_pts)
|
1510 |
+
|
1511 |
+
# [*, N_res, H, P_q, 3]
|
1512 |
+
q_pts = q_pts.view(q_pts.shape[:-2] + (self.num_heads, self.num_qk_points, 3))
|
1513 |
+
|
1514 |
+
# [*, N_res, H * (P_q + P_v) * 3]
|
1515 |
+
kv_pts = self.linear_kv_points(s)
|
1516 |
+
|
1517 |
+
# [*, N_res, H * (P_q + P_v), 3]
|
1518 |
+
kv_pts = torch.split(kv_pts, kv_pts.shape[-1] // 3, dim=-1)
|
1519 |
+
kv_pts = torch.stack(kv_pts, dim=-1)
|
1520 |
+
kv_pts = r[..., None].apply(kv_pts)
|
1521 |
+
|
1522 |
+
# [*, N_res, H, (P_q + P_v), 3]
|
1523 |
+
kv_pts = kv_pts.view(kv_pts.shape[:-2] + (self.num_heads, -1, 3))
|
1524 |
+
|
1525 |
+
# [*, N_res, H, P_q/P_v, 3]
|
1526 |
+
k_pts, v_pts = torch.split(kv_pts, [self.num_qk_points, self.num_v_points], dim=-2)
|
1527 |
+
|
1528 |
+
##########################
|
1529 |
+
# Compute attention scores
|
1530 |
+
##########################
|
1531 |
+
# [*, N_res, N_res, H]
|
1532 |
+
b = self.linear_b(z[0])
|
1533 |
+
|
1534 |
+
if _offload_inference:
|
1535 |
+
assert sys.getrefcount(z[0]) == 2
|
1536 |
+
z[0] = z[0].cpu()
|
1537 |
+
|
1538 |
+
# [*, H, N_res, N_res]
|
1539 |
+
if is_fp16_enabled():
|
1540 |
+
with torch.cuda.amp.autocast(enabled=False):
|
1541 |
+
a = torch.matmul(
|
1542 |
+
permute_final_dims(q.float(), (1, 0, 2)), # [*, H, N_res, C_hidden]
|
1543 |
+
permute_final_dims(k.float(), (1, 2, 0)), # [*, H, C_hidden, N_res]
|
1544 |
+
)
|
1545 |
+
else:
|
1546 |
+
a = torch.matmul(
|
1547 |
+
permute_final_dims(q, (1, 0, 2)), # [*, H, N_res, C_hidden]
|
1548 |
+
permute_final_dims(k, (1, 2, 0)), # [*, H, C_hidden, N_res]
|
1549 |
+
)
|
1550 |
+
|
1551 |
+
a *= math.sqrt(1.0 / (3 * self.hidden_dim))
|
1552 |
+
a += math.sqrt(1.0 / 3) * permute_final_dims(b, (2, 0, 1))
|
1553 |
+
|
1554 |
+
# [*, N_res, N_res, H, P_q, 3]
|
1555 |
+
pt_att = q_pts.unsqueeze(-4) - k_pts.unsqueeze(-5)
|
1556 |
+
pt_att = pt_att**2
|
1557 |
+
|
1558 |
+
# [*, N_res, N_res, H, P_q]
|
1559 |
+
pt_att = sum(torch.unbind(pt_att, dim=-1))
|
1560 |
+
head_weights = self.softplus(self.head_weights).view(*((1,) * len(pt_att.shape[:-2]) + (-1, 1)))
|
1561 |
+
head_weights = head_weights * math.sqrt(1.0 / (3 * (self.num_qk_points * 9.0 / 2)))
|
1562 |
+
pt_att = pt_att * head_weights
|
1563 |
+
|
1564 |
+
# [*, N_res, N_res, H]
|
1565 |
+
pt_att = torch.sum(pt_att, dim=-1) * (-0.5)
|
1566 |
+
# [*, N_res, N_res]
|
1567 |
+
square_mask = mask.unsqueeze(-1) * mask.unsqueeze(-2)
|
1568 |
+
square_mask = self.config.inf * (square_mask - 1)
|
1569 |
+
|
1570 |
+
# [*, H, N_res, N_res]
|
1571 |
+
pt_att = permute_final_dims(pt_att, (2, 0, 1))
|
1572 |
+
|
1573 |
+
a = a + pt_att
|
1574 |
+
a = a + square_mask.unsqueeze(-3)
|
1575 |
+
a = self.softmax(a)
|
1576 |
+
|
1577 |
+
################
|
1578 |
+
# Compute output
|
1579 |
+
################
|
1580 |
+
# [*, N_res, H, C_hidden]
|
1581 |
+
o = torch.matmul(a, v.transpose(-2, -3).to(dtype=a.dtype)).transpose(-2, -3)
|
1582 |
+
|
1583 |
+
# [*, N_res, H * C_hidden]
|
1584 |
+
o = flatten_final_dims(o, 2)
|
1585 |
+
|
1586 |
+
# [*, H, 3, N_res, P_v]
|
1587 |
+
o_pt = torch.sum(
|
1588 |
+
(a[..., None, :, :, None] * permute_final_dims(v_pts, (1, 3, 0, 2))[..., None, :, :]),
|
1589 |
+
dim=-2,
|
1590 |
+
)
|
1591 |
+
|
1592 |
+
# [*, N_res, H, P_v, 3]
|
1593 |
+
o_pt = permute_final_dims(o_pt, (2, 0, 3, 1))
|
1594 |
+
o_pt = r[..., None, None].invert_apply(o_pt)
|
1595 |
+
|
1596 |
+
# [*, N_res, H * P_v]
|
1597 |
+
o_pt_norm = flatten_final_dims(torch.sqrt(torch.sum(o_pt**2, dim=-1) + self.config.epsilon), 2)
|
1598 |
+
|
1599 |
+
# [*, N_res, H * P_v, 3]
|
1600 |
+
o_pt = o_pt.reshape(*o_pt.shape[:-3], -1, 3)
|
1601 |
+
|
1602 |
+
if _offload_inference:
|
1603 |
+
z[0] = z[0].to(o_pt.device)
|
1604 |
+
|
1605 |
+
# [*, N_res, H, C_z]
|
1606 |
+
o_pair = torch.matmul(a.transpose(-2, -3), z[0].to(dtype=a.dtype))
|
1607 |
+
|
1608 |
+
# [*, N_res, H * C_z]
|
1609 |
+
o_pair = flatten_final_dims(o_pair, 2)
|
1610 |
+
|
1611 |
+
# [*, N_res, C_s]
|
1612 |
+
s = self.linear_out(
|
1613 |
+
torch.cat((o, *torch.unbind(o_pt, dim=-1), o_pt_norm, o_pair), dim=-1).to(dtype=z[0].dtype)
|
1614 |
+
)
|
1615 |
+
|
1616 |
+
return s
|
1617 |
+
|
1618 |
+
|
1619 |
+
class EsmFoldBackboneUpdate(nn.Module):
|
1620 |
+
"""
|
1621 |
+
Implements part of Algorithm 23.
|
1622 |
+
"""
|
1623 |
+
|
1624 |
+
def __init__(self, config):
|
1625 |
+
super().__init__()
|
1626 |
+
|
1627 |
+
self.linear = EsmFoldLinear(config.sequence_dim, 6, init="final")
|
1628 |
+
|
1629 |
+
def forward(self, s: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
1630 |
+
"""
|
1631 |
+
Args:
|
1632 |
+
[*, N_res, C_s] single representation
|
1633 |
+
Returns:
|
1634 |
+
[*, N_res, 6] update vector
|
1635 |
+
"""
|
1636 |
+
# [*, 6]
|
1637 |
+
update = self.linear(s)
|
1638 |
+
|
1639 |
+
return update
|
1640 |
+
|
1641 |
+
|
1642 |
+
class EsmFoldStructureModuleTransitionLayer(nn.Module):
|
1643 |
+
def __init__(self, config):
|
1644 |
+
super().__init__()
|
1645 |
+
|
1646 |
+
self.linear_1 = EsmFoldLinear(config.sequence_dim, config.sequence_dim, init="relu")
|
1647 |
+
self.linear_2 = EsmFoldLinear(config.sequence_dim, config.sequence_dim, init="relu")
|
1648 |
+
self.linear_3 = EsmFoldLinear(config.sequence_dim, config.sequence_dim, init="final")
|
1649 |
+
|
1650 |
+
self.relu = nn.ReLU()
|
1651 |
+
|
1652 |
+
def forward(self, s):
|
1653 |
+
s_initial = s
|
1654 |
+
s = self.linear_1(s)
|
1655 |
+
s = self.relu(s)
|
1656 |
+
s = self.linear_2(s)
|
1657 |
+
s = self.relu(s)
|
1658 |
+
s = self.linear_3(s)
|
1659 |
+
|
1660 |
+
s = s + s_initial
|
1661 |
+
|
1662 |
+
return s
|
1663 |
+
|
1664 |
+
|
1665 |
+
class EsmFoldStructureModuleTransition(nn.Module):
|
1666 |
+
def __init__(self, config):
|
1667 |
+
super().__init__()
|
1668 |
+
self.config = config
|
1669 |
+
|
1670 |
+
self.layers = nn.ModuleList()
|
1671 |
+
for _ in range(config.num_transition_layers):
|
1672 |
+
l = EsmFoldStructureModuleTransitionLayer(config)
|
1673 |
+
self.layers.append(l)
|
1674 |
+
|
1675 |
+
self.dropout = nn.Dropout(config.dropout_rate)
|
1676 |
+
self.layer_norm = LayerNorm(config.sequence_dim)
|
1677 |
+
|
1678 |
+
def forward(self, s):
|
1679 |
+
for l in self.layers:
|
1680 |
+
s = l(s)
|
1681 |
+
|
1682 |
+
s = self.dropout(s)
|
1683 |
+
s = self.layer_norm(s)
|
1684 |
+
|
1685 |
+
return s
|
1686 |
+
|
1687 |
+
|
1688 |
+
class EsmFoldStructureModule(nn.Module):
|
1689 |
+
def __init__(self, config):
|
1690 |
+
super().__init__()
|
1691 |
+
self.config = config
|
1692 |
+
|
1693 |
+
# Buffers to be lazily initialized later
|
1694 |
+
# self.default_frames
|
1695 |
+
# self.group_idx
|
1696 |
+
# self.atom_mask
|
1697 |
+
# self.lit_positions
|
1698 |
+
|
1699 |
+
self.layer_norm_s = LayerNorm(config.sequence_dim)
|
1700 |
+
self.layer_norm_z = LayerNorm(config.pairwise_dim)
|
1701 |
+
|
1702 |
+
self.linear_in = EsmFoldLinear(config.sequence_dim, config.sequence_dim)
|
1703 |
+
|
1704 |
+
self.ipa = EsmFoldInvariantPointAttention(config)
|
1705 |
+
|
1706 |
+
self.ipa_dropout = nn.Dropout(config.dropout_rate)
|
1707 |
+
self.layer_norm_ipa = LayerNorm(config.sequence_dim)
|
1708 |
+
|
1709 |
+
self.transition = EsmFoldStructureModuleTransition(config)
|
1710 |
+
self.bb_update = EsmFoldBackboneUpdate(config)
|
1711 |
+
self.angle_resnet = EsmFoldAngleResnet(config)
|
1712 |
+
|
1713 |
+
def forward(
|
1714 |
+
self,
|
1715 |
+
evoformer_output_dict,
|
1716 |
+
aatype,
|
1717 |
+
mask=None,
|
1718 |
+
_offload_inference=False,
|
1719 |
+
):
|
1720 |
+
"""
|
1721 |
+
Args:
|
1722 |
+
evoformer_output_dict:
|
1723 |
+
Dictionary containing:
|
1724 |
+
"single":
|
1725 |
+
[*, N_res, C_s] single representation
|
1726 |
+
"pair":
|
1727 |
+
[*, N_res, N_res, C_z] pair representation
|
1728 |
+
aatype:
|
1729 |
+
[*, N_res] amino acid indices
|
1730 |
+
mask:
|
1731 |
+
Optional [*, N_res] sequence mask
|
1732 |
+
Returns:
|
1733 |
+
A dictionary of outputs
|
1734 |
+
"""
|
1735 |
+
s = evoformer_output_dict["single"]
|
1736 |
+
|
1737 |
+
if mask is None:
|
1738 |
+
# [*, N]
|
1739 |
+
mask = s.new_ones(s.shape[:-1])
|
1740 |
+
|
1741 |
+
# [*, N, C_s]
|
1742 |
+
s = self.layer_norm_s(s)
|
1743 |
+
|
1744 |
+
# [*, N, N, C_z]
|
1745 |
+
z = self.layer_norm_z(evoformer_output_dict["pair"])
|
1746 |
+
|
1747 |
+
z_reference_list = None
|
1748 |
+
if _offload_inference:
|
1749 |
+
assert sys.getrefcount(evoformer_output_dict["pair"]) == 2
|
1750 |
+
evoformer_output_dict["pair"] = evoformer_output_dict["pair"].cpu()
|
1751 |
+
z_reference_list = [z]
|
1752 |
+
z = None
|
1753 |
+
|
1754 |
+
# [*, N, C_s]
|
1755 |
+
s_initial = s
|
1756 |
+
s = self.linear_in(s)
|
1757 |
+
|
1758 |
+
# [*, N]
|
1759 |
+
rigids = Rigid.identity(
|
1760 |
+
s.shape[:-1],
|
1761 |
+
s.dtype,
|
1762 |
+
s.device,
|
1763 |
+
self.training,
|
1764 |
+
fmt="quat",
|
1765 |
+
)
|
1766 |
+
outputs = []
|
1767 |
+
for i in range(self.config.num_blocks):
|
1768 |
+
# [*, N, C_s]
|
1769 |
+
s = s + self.ipa(
|
1770 |
+
s,
|
1771 |
+
z,
|
1772 |
+
rigids,
|
1773 |
+
mask,
|
1774 |
+
_offload_inference=_offload_inference,
|
1775 |
+
_z_reference_list=z_reference_list,
|
1776 |
+
)
|
1777 |
+
s = self.ipa_dropout(s)
|
1778 |
+
s = self.layer_norm_ipa(s)
|
1779 |
+
s = self.transition(s)
|
1780 |
+
|
1781 |
+
# [*, N]
|
1782 |
+
rigids = rigids.compose_q_update_vec(self.bb_update(s))
|
1783 |
+
|
1784 |
+
# To hew as closely as possible to AlphaFold, we convert our
|
1785 |
+
# quaternion-based transformations to rotation-matrix ones
|
1786 |
+
# here
|
1787 |
+
backb_to_global = Rigid(
|
1788 |
+
Rotation(rot_mats=rigids.get_rots().get_rot_mats(), quats=None),
|
1789 |
+
rigids.get_trans(),
|
1790 |
+
)
|
1791 |
+
|
1792 |
+
backb_to_global = backb_to_global.scale_translation(self.config.trans_scale_factor)
|
1793 |
+
|
1794 |
+
# [*, N, 7, 2]
|
1795 |
+
unnormalized_angles, angles = self.angle_resnet(s, s_initial)
|
1796 |
+
|
1797 |
+
all_frames_to_global = self.torsion_angles_to_frames(backb_to_global, angles, aatype)
|
1798 |
+
|
1799 |
+
pred_xyz = self.frames_and_literature_positions_to_atom14_pos(all_frames_to_global, aatype)
|
1800 |
+
|
1801 |
+
scaled_rigids = rigids.scale_translation(self.config.trans_scale_factor)
|
1802 |
+
|
1803 |
+
preds = {
|
1804 |
+
"frames": scaled_rigids.to_tensor_7(),
|
1805 |
+
"sidechain_frames": all_frames_to_global.to_tensor_4x4(),
|
1806 |
+
"unnormalized_angles": unnormalized_angles,
|
1807 |
+
"angles": angles,
|
1808 |
+
"positions": pred_xyz,
|
1809 |
+
"states": s,
|
1810 |
+
}
|
1811 |
+
|
1812 |
+
outputs.append(preds)
|
1813 |
+
|
1814 |
+
rigids = rigids.stop_rot_gradient()
|
1815 |
+
|
1816 |
+
del z, z_reference_list
|
1817 |
+
|
1818 |
+
if _offload_inference:
|
1819 |
+
evoformer_output_dict["pair"] = evoformer_output_dict["pair"].to(s.device)
|
1820 |
+
|
1821 |
+
outputs = dict_multimap(torch.stack, outputs)
|
1822 |
+
outputs["single"] = s
|
1823 |
+
|
1824 |
+
return outputs
|
1825 |
+
|
1826 |
+
def _init_residue_constants(self, float_dtype, device):
|
1827 |
+
if not hasattr(self, "default_frames"):
|
1828 |
+
self.register_buffer(
|
1829 |
+
"default_frames",
|
1830 |
+
torch.tensor(
|
1831 |
+
residue_constants.restype_rigid_group_default_frame,
|
1832 |
+
dtype=float_dtype,
|
1833 |
+
device=device,
|
1834 |
+
requires_grad=False,
|
1835 |
+
),
|
1836 |
+
persistent=False,
|
1837 |
+
)
|
1838 |
+
if not hasattr(self, "group_idx"):
|
1839 |
+
self.register_buffer(
|
1840 |
+
"group_idx",
|
1841 |
+
torch.tensor(
|
1842 |
+
residue_constants.restype_atom14_to_rigid_group,
|
1843 |
+
device=device,
|
1844 |
+
requires_grad=False,
|
1845 |
+
),
|
1846 |
+
persistent=False,
|
1847 |
+
)
|
1848 |
+
if not hasattr(self, "atom_mask"):
|
1849 |
+
self.register_buffer(
|
1850 |
+
"atom_mask",
|
1851 |
+
torch.tensor(
|
1852 |
+
residue_constants.restype_atom14_mask,
|
1853 |
+
dtype=float_dtype,
|
1854 |
+
device=device,
|
1855 |
+
requires_grad=False,
|
1856 |
+
),
|
1857 |
+
persistent=False,
|
1858 |
+
)
|
1859 |
+
if not hasattr(self, "lit_positions"):
|
1860 |
+
self.register_buffer(
|
1861 |
+
"lit_positions",
|
1862 |
+
torch.tensor(
|
1863 |
+
residue_constants.restype_atom14_rigid_group_positions,
|
1864 |
+
dtype=float_dtype,
|
1865 |
+
device=device,
|
1866 |
+
requires_grad=False,
|
1867 |
+
),
|
1868 |
+
persistent=False,
|
1869 |
+
)
|
1870 |
+
|
1871 |
+
def torsion_angles_to_frames(self, r, alpha, f):
|
1872 |
+
# Lazily initialize the residue constants on the correct device
|
1873 |
+
self._init_residue_constants(alpha.dtype, alpha.device)
|
1874 |
+
# Separated purely to make testing less annoying
|
1875 |
+
return torsion_angles_to_frames(r, alpha, f, self.default_frames)
|
1876 |
+
|
1877 |
+
def frames_and_literature_positions_to_atom14_pos(self, r, f): # [*, N, 8] # [*, N]
|
1878 |
+
# Lazily initialize the residue constants on the correct device
|
1879 |
+
self._init_residue_constants(r.get_rots().dtype, r.get_rots().device)
|
1880 |
+
return frames_and_literature_positions_to_atom14_pos(
|
1881 |
+
r,
|
1882 |
+
f,
|
1883 |
+
self.default_frames,
|
1884 |
+
self.group_idx,
|
1885 |
+
self.atom_mask,
|
1886 |
+
self.lit_positions,
|
1887 |
+
)
|
1888 |
+
|
1889 |
+
|
1890 |
+
class EsmFoldingTrunk(nn.Module):
|
1891 |
+
def __init__(self, config):
|
1892 |
+
super().__init__()
|
1893 |
+
self.config = config
|
1894 |
+
|
1895 |
+
c_s = config.sequence_state_dim
|
1896 |
+
c_z = config.pairwise_state_dim
|
1897 |
+
|
1898 |
+
self.pairwise_positional_embedding = EsmFoldRelativePosition(config)
|
1899 |
+
|
1900 |
+
self.blocks = nn.ModuleList([EsmFoldTriangularSelfAttentionBlock(config) for _ in range(config.num_blocks)])
|
1901 |
+
|
1902 |
+
self.recycle_bins = 15
|
1903 |
+
self.recycle_s_norm = nn.LayerNorm(c_s)
|
1904 |
+
self.recycle_z_norm = nn.LayerNorm(c_z)
|
1905 |
+
self.recycle_disto = nn.Embedding(self.recycle_bins, c_z)
|
1906 |
+
self.recycle_disto.weight[0].detach().zero_()
|
1907 |
+
|
1908 |
+
self.structure_module = EsmFoldStructureModule(config.structure_module)
|
1909 |
+
self.trunk2sm_s = nn.Linear(c_s, config.structure_module.sequence_dim)
|
1910 |
+
self.trunk2sm_z = nn.Linear(c_z, config.structure_module.pairwise_dim)
|
1911 |
+
|
1912 |
+
self.chunk_size = config.chunk_size
|
1913 |
+
|
1914 |
+
def set_chunk_size(self, chunk_size):
|
1915 |
+
# This parameter means the axial attention will be computed
|
1916 |
+
# in a chunked manner. This should make the memory used more or less O(L) instead of O(L^2).
|
1917 |
+
# It's equivalent to running a for loop over chunks of the dimension we're iterative over,
|
1918 |
+
# where the chunk_size is the size of the chunks, so 128 would mean to parse 128-length chunks.
|
1919 |
+
self.chunk_size = chunk_size
|
1920 |
+
|
1921 |
+
def forward(self, seq_feats, pair_feats, true_aa, residx, mask, no_recycles):
|
1922 |
+
"""
|
1923 |
+
Inputs:
|
1924 |
+
seq_feats: B x L x C tensor of sequence features pair_feats: B x L x L x C tensor of pair features residx: B
|
1925 |
+
x L long tensor giving the position in the sequence mask: B x L boolean tensor indicating valid residues
|
1926 |
+
|
1927 |
+
Output:
|
1928 |
+
predicted_structure: B x L x (num_atoms_per_residue * 3) tensor wrapped in a Coordinates object
|
1929 |
+
"""
|
1930 |
+
|
1931 |
+
device = seq_feats.device
|
1932 |
+
s_s_0 = seq_feats
|
1933 |
+
s_z_0 = pair_feats
|
1934 |
+
|
1935 |
+
if no_recycles is None:
|
1936 |
+
no_recycles = self.config.max_recycles
|
1937 |
+
else:
|
1938 |
+
if no_recycles < 0:
|
1939 |
+
raise ValueError("Number of recycles must not be negative.")
|
1940 |
+
no_recycles += 1 # First 'recycle' is just the standard forward pass through the model.
|
1941 |
+
|
1942 |
+
def trunk_iter(s, z, residx, mask):
|
1943 |
+
z = z + self.pairwise_positional_embedding(residx, mask=mask)
|
1944 |
+
|
1945 |
+
for block in self.blocks:
|
1946 |
+
s, z = block(s, z, mask=mask, residue_index=residx, chunk_size=self.chunk_size)
|
1947 |
+
return s, z
|
1948 |
+
|
1949 |
+
s_s = s_s_0
|
1950 |
+
s_z = s_z_0
|
1951 |
+
recycle_s = torch.zeros_like(s_s)
|
1952 |
+
recycle_z = torch.zeros_like(s_z)
|
1953 |
+
recycle_bins = torch.zeros(*s_z.shape[:-1], device=device, dtype=torch.int64)
|
1954 |
+
|
1955 |
+
for recycle_idx in range(no_recycles):
|
1956 |
+
with ContextManagers([] if recycle_idx == no_recycles - 1 else [torch.no_grad()]):
|
1957 |
+
# === Recycling ===
|
1958 |
+
recycle_s = self.recycle_s_norm(recycle_s.detach()).to(device)
|
1959 |
+
recycle_z = self.recycle_z_norm(recycle_z.detach()).to(device)
|
1960 |
+
recycle_z += self.recycle_disto(recycle_bins.detach()).to(device)
|
1961 |
+
|
1962 |
+
s_s, s_z = trunk_iter(s_s_0 + recycle_s, s_z_0 + recycle_z, residx, mask)
|
1963 |
+
|
1964 |
+
# === Structure module ===
|
1965 |
+
structure = self.structure_module(
|
1966 |
+
{"single": self.trunk2sm_s(s_s), "pair": self.trunk2sm_z(s_z)},
|
1967 |
+
true_aa,
|
1968 |
+
mask.float(),
|
1969 |
+
)
|
1970 |
+
|
1971 |
+
recycle_s = s_s
|
1972 |
+
recycle_z = s_z
|
1973 |
+
# Distogram needs the N, CA, C coordinates, and bin constants same as alphafold.
|
1974 |
+
recycle_bins = EsmFoldingTrunk.distogram(
|
1975 |
+
structure["positions"][-1][:, :, :3],
|
1976 |
+
3.375,
|
1977 |
+
21.375,
|
1978 |
+
self.recycle_bins,
|
1979 |
+
)
|
1980 |
+
|
1981 |
+
structure["s_s"] = s_s
|
1982 |
+
structure["s_z"] = s_z
|
1983 |
+
|
1984 |
+
return structure
|
1985 |
+
|
1986 |
+
@staticmethod
|
1987 |
+
def distogram(coords, min_bin, max_bin, num_bins):
|
1988 |
+
# Coords are [... L x 3 x 3], where it's [N, CA, C] x 3 coordinates.
|
1989 |
+
boundaries = torch.linspace(
|
1990 |
+
min_bin,
|
1991 |
+
max_bin,
|
1992 |
+
num_bins - 1,
|
1993 |
+
device=coords.device,
|
1994 |
+
)
|
1995 |
+
boundaries = boundaries**2
|
1996 |
+
N, CA, C = [x.squeeze(-2) for x in coords.chunk(3, dim=-2)]
|
1997 |
+
# Infer CB coordinates.
|
1998 |
+
b = CA - N
|
1999 |
+
c = C - CA
|
2000 |
+
a = b.cross(c, dim=-1)
|
2001 |
+
CB = -0.58273431 * a + 0.56802827 * b - 0.54067466 * c + CA
|
2002 |
+
dists = (CB[..., None, :, :] - CB[..., :, None, :]).pow(2).sum(dim=-1, keepdims=True)
|
2003 |
+
bins = torch.sum(dists > boundaries, dim=-1) # [..., L, L]
|
2004 |
+
return bins
|
2005 |
+
|
2006 |
+
|
2007 |
+
# TODO Add information to the docstring about any methods that convert to PDB format, or otherwise prepare
|
2008 |
+
# the outputs for downstream use.
|
2009 |
+
|
2010 |
+
|
2011 |
+
@add_start_docstrings(
|
2012 |
+
"""
|
2013 |
+
ESMForProteinFolding is the HuggingFace port of the original ESMFold model. It consists of an ESM-2 "stem" followed
|
2014 |
+
by a protein folding "head", although unlike most other output heads, this "head" is similar in size and runtime to
|
2015 |
+
the rest of the model combined! It outputs a dictionary containing predicted structural information about the input
|
2016 |
+
protein(s).
|
2017 |
+
""",
|
2018 |
+
ESM_START_DOCSTRING,
|
2019 |
+
)
|
2020 |
+
class EsmForProteinFolding(EsmPreTrainedModel):
|
2021 |
+
_no_split_modules = ["EsmFoldStructureModule", "EsmFoldTriangularSelfAttentionBlock"]
|
2022 |
+
|
2023 |
+
def __init__(self, config):
|
2024 |
+
super().__init__(config)
|
2025 |
+
|
2026 |
+
self.config = config
|
2027 |
+
|
2028 |
+
self.distogram_bins = 64
|
2029 |
+
|
2030 |
+
self.esm = EsmModel(config, add_pooling_layer=False)
|
2031 |
+
|
2032 |
+
self.esm.requires_grad_(False)
|
2033 |
+
if self.config.esmfold_config.fp16_esm:
|
2034 |
+
self.esm.half()
|
2035 |
+
|
2036 |
+
self.esm_feats = self.config.hidden_size
|
2037 |
+
self.esm_attns = self.config.num_hidden_layers * self.config.num_attention_heads
|
2038 |
+
self.esm_layers = self.config.num_hidden_layers
|
2039 |
+
self.register_buffer("af2_to_esm", self._af2_to_esm_from_vocab_list(config.vocab_list))
|
2040 |
+
self.esm_s_combine = nn.Parameter(torch.zeros(self.esm_layers + 1))
|
2041 |
+
|
2042 |
+
trunk_config = self.config.esmfold_config.trunk
|
2043 |
+
c_s = trunk_config.sequence_state_dim
|
2044 |
+
c_z = trunk_config.pairwise_state_dim
|
2045 |
+
self.esm_s_mlp = nn.Sequential(
|
2046 |
+
LayerNorm(self.esm_feats),
|
2047 |
+
nn.Linear(self.esm_feats, c_s),
|
2048 |
+
nn.ReLU(),
|
2049 |
+
nn.Linear(c_s, c_s),
|
2050 |
+
)
|
2051 |
+
|
2052 |
+
# 0 is padding, N is unknown residues, N + 1 is mask.
|
2053 |
+
self.n_tokens_embed = residue_constants.restype_num + 3
|
2054 |
+
self.pad_idx = 0
|
2055 |
+
self.unk_idx = self.n_tokens_embed - 2
|
2056 |
+
self.mask_idx = self.n_tokens_embed - 1
|
2057 |
+
self.esm_dict_cls_idx = self.config.vocab_list.index("<cls>")
|
2058 |
+
self.esm_dict_mask_idx = self.config.vocab_list.index("<mask>")
|
2059 |
+
self.esm_dict_eos_idx = self.config.vocab_list.index("<eos>")
|
2060 |
+
self.esm_dict_padding_idx = self.config.vocab_list.index("<pad>")
|
2061 |
+
if self.config.esmfold_config.embed_aa:
|
2062 |
+
self.embedding = nn.Embedding(self.n_tokens_embed, c_s, padding_idx=0)
|
2063 |
+
|
2064 |
+
self.trunk = EsmFoldingTrunk(trunk_config)
|
2065 |
+
|
2066 |
+
self.distogram_head = nn.Linear(c_z, self.distogram_bins)
|
2067 |
+
self.ptm_head = nn.Linear(c_z, self.distogram_bins)
|
2068 |
+
self.lm_head = nn.Linear(c_s, self.n_tokens_embed)
|
2069 |
+
self.lddt_bins = 50
|
2070 |
+
structure_module_config = trunk_config.structure_module
|
2071 |
+
self.lddt_head = nn.Sequential(
|
2072 |
+
nn.LayerNorm(structure_module_config.sequence_dim),
|
2073 |
+
nn.Linear(structure_module_config.sequence_dim, self.config.esmfold_config.lddt_head_hid_dim),
|
2074 |
+
nn.Linear(self.config.esmfold_config.lddt_head_hid_dim, self.config.esmfold_config.lddt_head_hid_dim),
|
2075 |
+
nn.Linear(self.config.esmfold_config.lddt_head_hid_dim, 37 * self.lddt_bins),
|
2076 |
+
)
|
2077 |
+
|
2078 |
+
@staticmethod
|
2079 |
+
def _af2_to_esm_from_vocab_list(vocab_list: List[str]) -> torch.Tensor:
|
2080 |
+
# Remember that t is shifted from residue_constants by 1 (0 is padding).
|
2081 |
+
esm_reorder = [vocab_list.index("<pad>")] + [vocab_list.index(v) for v in residue_constants.restypes_with_x]
|
2082 |
+
return torch.tensor(esm_reorder)
|
2083 |
+
|
2084 |
+
@add_start_docstrings_to_model_forward(ESMFOLD_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
2085 |
+
@replace_return_docstrings(output_type=EsmForProteinFoldingOutput, config_class=EsmConfig)
|
2086 |
+
def forward(
|
2087 |
+
self,
|
2088 |
+
input_ids: torch.Tensor,
|
2089 |
+
attention_mask: Optional[torch.Tensor] = None,
|
2090 |
+
position_ids: Optional[torch.Tensor] = None,
|
2091 |
+
masking_pattern: Optional[torch.Tensor] = None,
|
2092 |
+
num_recycles: Optional[int] = None,
|
2093 |
+
) -> EsmForProteinFoldingOutput:
|
2094 |
+
r"""
|
2095 |
+
Returns:
|
2096 |
+
|
2097 |
+
Example:
|
2098 |
+
|
2099 |
+
```python
|
2100 |
+
>>> from transformers import AutoTokenizer, EsmForProteinFolding
|
2101 |
+
|
2102 |
+
>>> model = EsmForProteinFolding.from_pretrained("facebook/esmfold_v1")
|
2103 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/esmfold_v1")
|
2104 |
+
>>> inputs = tokenizer(["MLKNVQVQLV"], return_tensors="pt", add_special_tokens=False) # A tiny random peptide
|
2105 |
+
>>> outputs = model(**inputs)
|
2106 |
+
>>> folded_positions = outputs.positions
|
2107 |
+
```
|
2108 |
+
|
2109 |
+
"""
|
2110 |
+
cfg = self.config.esmfold_config
|
2111 |
+
|
2112 |
+
aa = input_ids # B x L
|
2113 |
+
B = aa.shape[0]
|
2114 |
+
L = aa.shape[1]
|
2115 |
+
device = input_ids.device
|
2116 |
+
if attention_mask is None:
|
2117 |
+
attention_mask = torch.ones_like(aa, device=device)
|
2118 |
+
if position_ids is None:
|
2119 |
+
position_ids = torch.arange(L, device=device).expand_as(input_ids)
|
2120 |
+
|
2121 |
+
# === ESM ===
|
2122 |
+
esmaa = self.af2_idx_to_esm_idx(aa, attention_mask)
|
2123 |
+
|
2124 |
+
if masking_pattern is not None:
|
2125 |
+
masked_aa, esmaa, mlm_targets = self.bert_mask(aa, esmaa, attention_mask, masking_pattern)
|
2126 |
+
else:
|
2127 |
+
masked_aa = aa
|
2128 |
+
mlm_targets = None
|
2129 |
+
|
2130 |
+
# We get sequence and pair representations from whatever version of ESM /
|
2131 |
+
# configuration we are using. The sequence representation esm_s is always
|
2132 |
+
# present. The pair embedding esm_z may be present depending on the
|
2133 |
+
# configuration of the model. If esm_z is not used by the model then it
|
2134 |
+
# is returned as None here.
|
2135 |
+
esm_s = self.compute_language_model_representations(esmaa)
|
2136 |
+
|
2137 |
+
# Convert esm_s and esm_z, if present, to the precision used by the trunk and
|
2138 |
+
# the structure module. These tensors may be a lower precision if, for example,
|
2139 |
+
# we're running the language model in fp16 precision.
|
2140 |
+
esm_s = esm_s.to(self.esm_s_combine.dtype)
|
2141 |
+
|
2142 |
+
if cfg.esm_ablate_sequence:
|
2143 |
+
esm_s = esm_s * 0
|
2144 |
+
|
2145 |
+
esm_s = esm_s.detach()
|
2146 |
+
|
2147 |
+
# === preprocessing ===
|
2148 |
+
esm_s = (self.esm_s_combine.softmax(0).unsqueeze(0) @ esm_s).squeeze(2)
|
2149 |
+
s_s_0 = self.esm_s_mlp(esm_s)
|
2150 |
+
|
2151 |
+
s_z_0 = s_s_0.new_zeros(B, L, L, cfg.trunk.pairwise_state_dim)
|
2152 |
+
|
2153 |
+
if self.config.esmfold_config.embed_aa:
|
2154 |
+
s_s_0 += self.embedding(masked_aa)
|
2155 |
+
|
2156 |
+
structure: dict = self.trunk(s_s_0, s_z_0, aa, position_ids, attention_mask, no_recycles=num_recycles)
|
2157 |
+
# Documenting what we expect:
|
2158 |
+
structure = {
|
2159 |
+
k: v
|
2160 |
+
for k, v in structure.items()
|
2161 |
+
if k
|
2162 |
+
in [
|
2163 |
+
"s_z",
|
2164 |
+
"s_s",
|
2165 |
+
"frames",
|
2166 |
+
"sidechain_frames",
|
2167 |
+
"unnormalized_angles",
|
2168 |
+
"angles",
|
2169 |
+
"positions",
|
2170 |
+
"states",
|
2171 |
+
]
|
2172 |
+
}
|
2173 |
+
|
2174 |
+
# Add BERT mask for the loss to use, if available.
|
2175 |
+
if mlm_targets:
|
2176 |
+
structure["mlm_targets"] = mlm_targets
|
2177 |
+
|
2178 |
+
disto_logits = self.distogram_head(structure["s_z"])
|
2179 |
+
disto_logits = (disto_logits + disto_logits.transpose(1, 2)) / 2
|
2180 |
+
structure["distogram_logits"] = disto_logits
|
2181 |
+
|
2182 |
+
lm_logits = self.lm_head(structure["s_s"])
|
2183 |
+
structure["lm_logits"] = lm_logits
|
2184 |
+
|
2185 |
+
structure["aatype"] = aa
|
2186 |
+
make_atom14_masks(structure)
|
2187 |
+
# Of course, this doesn't respect the true mask because it doesn't know about it...
|
2188 |
+
# We're not going to properly mask change of index tensors:
|
2189 |
+
# "residx_atom14_to_atom37",
|
2190 |
+
# "residx_atom37_to_atom14",
|
2191 |
+
for k in [
|
2192 |
+
"atom14_atom_exists",
|
2193 |
+
"atom37_atom_exists",
|
2194 |
+
]:
|
2195 |
+
structure[k] *= attention_mask.unsqueeze(-1)
|
2196 |
+
structure["residue_index"] = position_ids
|
2197 |
+
|
2198 |
+
lddt_head = self.lddt_head(structure["states"]).reshape(structure["states"].shape[0], B, L, -1, self.lddt_bins)
|
2199 |
+
structure["lddt_head"] = lddt_head
|
2200 |
+
plddt = categorical_lddt(lddt_head[-1], bins=self.lddt_bins)
|
2201 |
+
structure["plddt"] = plddt
|
2202 |
+
|
2203 |
+
ptm_logits = self.ptm_head(structure["s_z"])
|
2204 |
+
structure["ptm_logits"] = ptm_logits
|
2205 |
+
structure["ptm"] = compute_tm(ptm_logits, max_bin=31, no_bins=self.distogram_bins)
|
2206 |
+
structure.update(compute_predicted_aligned_error(ptm_logits, max_bin=31, no_bins=self.distogram_bins))
|
2207 |
+
|
2208 |
+
return EsmForProteinFoldingOutput(**structure)
|
2209 |
+
|
2210 |
+
def af2_idx_to_esm_idx(self, aa, mask):
|
2211 |
+
# avoid indexing on different devices
|
2212 |
+
if self.af2_to_esm.device != aa.device:
|
2213 |
+
self.af2_to_esm = self.af2_to_esm.to(aa.device)
|
2214 |
+
aa = (aa + 1).masked_fill(mask != 1, 0)
|
2215 |
+
return self.af2_to_esm[aa]
|
2216 |
+
|
2217 |
+
def compute_language_model_representations(self, esmaa: torch.Tensor) -> torch.Tensor:
|
2218 |
+
device = next(self.parameters()).device
|
2219 |
+
B, L = esmaa.shape # B = batch size, L = sequence length.
|
2220 |
+
|
2221 |
+
if self.config.esmfold_config.bypass_lm:
|
2222 |
+
esm_s = torch.zeros(B, L, self.esm_s_combine.size[0], -1, self.esm_feats, device=device)
|
2223 |
+
return esm_s
|
2224 |
+
|
2225 |
+
bosi, eosi = self.esm_dict_cls_idx, self.esm_dict_eos_idx
|
2226 |
+
bos = esmaa.new_full((B, 1), bosi)
|
2227 |
+
eos = esmaa.new_full((B, 1), self.esm_dict_padding_idx)
|
2228 |
+
esmaa = torch.cat([bos, esmaa, eos], dim=1)
|
2229 |
+
# Use the first padding index as eos during inference.
|
2230 |
+
esmaa[range(B), (esmaa != 1).sum(1)] = eosi
|
2231 |
+
|
2232 |
+
# _, esm_z, esm_s = self.esm(esmaa, return_pairs=self.config.esmfold_config.use_esm_attn_map)
|
2233 |
+
# Because we do not support use_esm_attn_map in the HF port as it is not used in any public models,
|
2234 |
+
# esm_z is always None
|
2235 |
+
esm_hidden_states = self.esm(esmaa, attention_mask=esmaa != 1, output_hidden_states=True)["hidden_states"]
|
2236 |
+
esm_s = torch.stack(esm_hidden_states, dim=2)
|
2237 |
+
|
2238 |
+
esm_s = esm_s[:, 1:-1] # B, L, nLayers, C
|
2239 |
+
|
2240 |
+
return esm_s
|
2241 |
+
|
2242 |
+
def bert_mask(self, aa, esmaa, mask, pattern):
|
2243 |
+
new_aa = aa.clone()
|
2244 |
+
target = aa.clone()
|
2245 |
+
new_esmaa = esmaa.clone()
|
2246 |
+
new_aa[pattern == 1] = self.mask_idx
|
2247 |
+
target[pattern != 1] = 0
|
2248 |
+
new_esmaa[pattern == 1] = self.esm_dict_mask_idx
|
2249 |
+
return new_aa, new_esmaa, target
|
2250 |
+
|
2251 |
+
@torch.no_grad()
|
2252 |
+
def infer(
|
2253 |
+
self,
|
2254 |
+
seqs: Union[str, List[str]],
|
2255 |
+
position_ids=None,
|
2256 |
+
):
|
2257 |
+
if isinstance(seqs, str):
|
2258 |
+
lst = [seqs]
|
2259 |
+
else:
|
2260 |
+
lst = seqs
|
2261 |
+
# Returns the raw outputs of the model given an input sequence.
|
2262 |
+
device = next(self.parameters()).device
|
2263 |
+
aatype = collate_dense_tensors(
|
2264 |
+
[
|
2265 |
+
torch.from_numpy(
|
2266 |
+
residue_constants.sequence_to_onehot(
|
2267 |
+
sequence=seq,
|
2268 |
+
mapping=residue_constants.restype_order_with_x,
|
2269 |
+
map_unknown_to_x=True,
|
2270 |
+
)
|
2271 |
+
)
|
2272 |
+
.to(device)
|
2273 |
+
.argmax(dim=1)
|
2274 |
+
for seq in lst
|
2275 |
+
]
|
2276 |
+
) # B=1 x L
|
2277 |
+
mask = collate_dense_tensors([aatype.new_ones(len(seq)) for seq in lst])
|
2278 |
+
position_ids = (
|
2279 |
+
torch.arange(aatype.shape[1], device=device).expand(len(lst), -1)
|
2280 |
+
if position_ids is None
|
2281 |
+
else position_ids.to(device)
|
2282 |
+
)
|
2283 |
+
if position_ids.ndim == 1:
|
2284 |
+
position_ids = position_ids.unsqueeze(0)
|
2285 |
+
return self.forward(
|
2286 |
+
aatype,
|
2287 |
+
mask,
|
2288 |
+
position_ids=position_ids,
|
2289 |
+
)
|
2290 |
+
|
2291 |
+
@staticmethod
|
2292 |
+
def output_to_pdb(output: Dict) -> List[str]:
|
2293 |
+
"""Returns the pbd (file) string from the model given the model output."""
|
2294 |
+
output = {k: v.to("cpu").numpy() for k, v in output.items()}
|
2295 |
+
pdbs = []
|
2296 |
+
final_atom_positions = atom14_to_atom37(output["positions"][-1], output)
|
2297 |
+
final_atom_mask = output["atom37_atom_exists"]
|
2298 |
+
for i in range(output["aatype"].shape[0]):
|
2299 |
+
aa = output["aatype"][i]
|
2300 |
+
pred_pos = final_atom_positions[i]
|
2301 |
+
mask = final_atom_mask[i]
|
2302 |
+
resid = output["residue_index"][i] + 1
|
2303 |
+
pred = OFProtein(
|
2304 |
+
aatype=aa,
|
2305 |
+
atom_positions=pred_pos,
|
2306 |
+
atom_mask=mask,
|
2307 |
+
residue_index=resid,
|
2308 |
+
b_factors=output["plddt"][i],
|
2309 |
+
)
|
2310 |
+
pdbs.append(to_pdb(pred))
|
2311 |
+
return pdbs
|
2312 |
+
|
2313 |
+
def infer_pdb(self, seqs, *args, **kwargs) -> str:
|
2314 |
+
"""Returns the pdb (file) string from the model given an input sequence."""
|
2315 |
+
assert isinstance(seqs, str)
|
2316 |
+
output = self.infer(seqs, *args, **kwargs)
|
2317 |
+
return self.output_to_pdb(output)[0]
|
2318 |
+
|
2319 |
+
def infer_pdbs(self, seqs: List[str], *args, **kwargs) -> List[str]:
|
2320 |
+
"""Returns the pdb (file) string from the model given an input sequence."""
|
2321 |
+
output = self.infer(seqs, *args, **kwargs)
|
2322 |
+
return self.output_to_pdb(output)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/esm/modeling_tf_esm.py
ADDED
@@ -0,0 +1,1567 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 Meta and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch ESM model."""
|
16 |
+
|
17 |
+
|
18 |
+
from __future__ import annotations
|
19 |
+
|
20 |
+
import os
|
21 |
+
from typing import Optional, Tuple, Union
|
22 |
+
|
23 |
+
import numpy as np
|
24 |
+
import tensorflow as tf
|
25 |
+
|
26 |
+
from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
|
27 |
+
from ...modeling_tf_outputs import (
|
28 |
+
TFBaseModelOutputWithPastAndCrossAttentions,
|
29 |
+
TFBaseModelOutputWithPoolingAndCrossAttentions,
|
30 |
+
TFMaskedLMOutput,
|
31 |
+
TFSequenceClassifierOutput,
|
32 |
+
TFTokenClassifierOutput,
|
33 |
+
)
|
34 |
+
from ...modeling_tf_utils import (
|
35 |
+
TFMaskedLanguageModelingLoss,
|
36 |
+
TFModelInputType,
|
37 |
+
TFPreTrainedModel,
|
38 |
+
TFSequenceClassificationLoss,
|
39 |
+
TFTokenClassificationLoss,
|
40 |
+
get_initializer,
|
41 |
+
keras,
|
42 |
+
shape_list,
|
43 |
+
unpack_inputs,
|
44 |
+
)
|
45 |
+
from ...tf_utils import check_embeddings_within_bounds, stable_softmax
|
46 |
+
from ...utils import logging
|
47 |
+
from .configuration_esm import EsmConfig
|
48 |
+
|
49 |
+
|
50 |
+
logger = logging.get_logger(__name__)
|
51 |
+
|
52 |
+
_CHECKPOINT_FOR_DOC = "facebook/esm2_t6_8M_UR50D"
|
53 |
+
_CONFIG_FOR_DOC = "EsmConfig"
|
54 |
+
|
55 |
+
|
56 |
+
def rotate_half(x):
|
57 |
+
x1, x2 = tf.split(x, 2, axis=-1)
|
58 |
+
return tf.concat((-x2, x1), axis=-1)
|
59 |
+
|
60 |
+
|
61 |
+
def apply_rotary_pos_emb(x, cos, sin):
|
62 |
+
cos = cos[:, :, : tf.shape(x)[-2], :]
|
63 |
+
sin = sin[:, :, : tf.shape(x)[-2], :]
|
64 |
+
|
65 |
+
return (x * cos) + (rotate_half(x) * sin)
|
66 |
+
|
67 |
+
|
68 |
+
def symmetrize(x):
|
69 |
+
"Make layer symmetric in final two dimensions, used for contact prediction."
|
70 |
+
return x + tf.linalg.matrix_transpose(x) # Transposes last two dimensions only
|
71 |
+
|
72 |
+
|
73 |
+
def average_product_correct(x):
|
74 |
+
"Perform average product correct, used for contact prediction."
|
75 |
+
a1 = tf.reduce_sum(x, -1, keepdims=True)
|
76 |
+
a2 = tf.reduce_sum(x, -2, keepdims=True)
|
77 |
+
a12 = tf.reduce_sum(x, (-1, -2), keepdims=True)
|
78 |
+
|
79 |
+
avg = a1 * a2
|
80 |
+
avg = avg / a12
|
81 |
+
normalized = x - avg
|
82 |
+
return normalized
|
83 |
+
|
84 |
+
|
85 |
+
class TFRotaryEmbedding(keras.layers.Layer):
|
86 |
+
"""
|
87 |
+
Rotary position embeddings based on those in
|
88 |
+
[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer). Query and keys are transformed by rotation
|
89 |
+
matrices which depend on their relative positions.
|
90 |
+
"""
|
91 |
+
|
92 |
+
def __init__(self, dim: int, name=None):
|
93 |
+
super().__init__(name=name)
|
94 |
+
# Matt: The PyTorch version of this layer does a lot of work to cache values, but we just rely on TF compilation
|
95 |
+
# and/or XLA to sort out constants like that. It actually may not seem like this layer needs to be stateful at
|
96 |
+
# all when we benefit from TF compilation, but it does. The reason is that self.inv_freq is a buffer in the
|
97 |
+
# original implementation, but all the shared ESM checkpoints were trained with fp16 params. This means that
|
98 |
+
# the inv_freq tensor was stored as a float16, and we need to replicate those lower-precision values or our
|
99 |
+
# models give different outputs from the original.
|
100 |
+
self.dim = dim
|
101 |
+
|
102 |
+
def build(self, input_shape):
|
103 |
+
super().build(input_shape)
|
104 |
+
self.inv_freq = self.add_weight(
|
105 |
+
"inv_freq", shape=(self.dim // 2,), dtype=tf.float32, initializer=get_initializer(1.0), trainable=False
|
106 |
+
)
|
107 |
+
self.inv_freq.assign(
|
108 |
+
1.0 / (10000 ** (tf.range(start=0, limit=self.dim, delta=2, dtype=tf.float32) / self.dim))
|
109 |
+
)
|
110 |
+
|
111 |
+
def _compute_cos_sin(self, x, seq_dimension=2):
|
112 |
+
seq_len = tf.shape(x)[seq_dimension]
|
113 |
+
|
114 |
+
t = tf.range(seq_len, dtype=self.inv_freq.dtype)
|
115 |
+
freqs = tf.einsum("i, j -> ij", t, self.inv_freq) # Outer multiplication
|
116 |
+
emb = tf.concat((freqs, freqs), axis=-1)[None, None, :, :]
|
117 |
+
|
118 |
+
return tf.cos(emb), tf.sin(emb)
|
119 |
+
|
120 |
+
def call(self, q: tf.Tensor, k: tf.Tensor) -> Tuple[tf.Tensor, tf.Tensor]:
|
121 |
+
cos_emb, sin_emb = self._compute_cos_sin(k, seq_dimension=-2)
|
122 |
+
|
123 |
+
return (
|
124 |
+
apply_rotary_pos_emb(q, cos_emb, sin_emb),
|
125 |
+
apply_rotary_pos_emb(k, cos_emb, sin_emb),
|
126 |
+
)
|
127 |
+
|
128 |
+
|
129 |
+
class TFEsmContactPredictionHead(keras.layers.Layer):
|
130 |
+
"""Performs symmetrization, apc, and computes a logistic regression on the output features"""
|
131 |
+
|
132 |
+
def __init__(
|
133 |
+
self,
|
134 |
+
in_features: int,
|
135 |
+
bias=True,
|
136 |
+
eos_idx: int = 2,
|
137 |
+
name=None,
|
138 |
+
):
|
139 |
+
super().__init__(name=name)
|
140 |
+
self.eos_idx = eos_idx
|
141 |
+
self.in_features = in_features
|
142 |
+
self.regression = keras.layers.Dense(1, use_bias=bias, activation="sigmoid", name="regression")
|
143 |
+
|
144 |
+
def build(self, input_shape=None):
|
145 |
+
if self.built:
|
146 |
+
return
|
147 |
+
self.built = True
|
148 |
+
if getattr(self, "regression", None) is not None:
|
149 |
+
with tf.name_scope(self.regression.name):
|
150 |
+
self.regression.build((None, self.in_features))
|
151 |
+
|
152 |
+
def call(self, tokens, attentions):
|
153 |
+
# remove eos token attentions
|
154 |
+
eos_mask = tf.cast(tokens != self.eos_idx, attentions.dtype)
|
155 |
+
eos_mask = tf.expand_dims(eos_mask, 1) * tf.expand_dims(eos_mask, 2)
|
156 |
+
attentions = attentions * eos_mask[:, None, None, :, :]
|
157 |
+
attentions = attentions[..., :-1, :-1]
|
158 |
+
# remove cls token attentions
|
159 |
+
attentions = attentions[..., 1:, 1:]
|
160 |
+
batch_size, layers, heads, seqlen, _ = shape_list(attentions)
|
161 |
+
attentions = tf.reshape(attentions, (batch_size, layers * heads, seqlen, seqlen))
|
162 |
+
|
163 |
+
# features: batch x channels x tokens x tokens (symmetric)
|
164 |
+
attentions = average_product_correct(symmetrize(attentions))
|
165 |
+
attentions = tf.transpose(attentions, perm=(0, 2, 3, 1))
|
166 |
+
return tf.squeeze(self.regression(attentions), 3)
|
167 |
+
|
168 |
+
|
169 |
+
class TFEsmEmbeddings(keras.layers.Layer):
|
170 |
+
"""
|
171 |
+
Same as BertEmbeddings with a tiny tweak for positional embeddings indexing.
|
172 |
+
"""
|
173 |
+
|
174 |
+
def __init__(self, config, name=None):
|
175 |
+
super().__init__(name=name)
|
176 |
+
self.word_embeddings = keras.layers.Embedding(
|
177 |
+
config.vocab_size,
|
178 |
+
config.hidden_size,
|
179 |
+
embeddings_initializer=get_initializer(config.initializer_range),
|
180 |
+
name="word_embeddings",
|
181 |
+
)
|
182 |
+
self.position_embeddings = keras.layers.Embedding(
|
183 |
+
config.max_position_embeddings,
|
184 |
+
config.hidden_size,
|
185 |
+
embeddings_initializer=get_initializer(config.initializer_range),
|
186 |
+
name="position_embeddings",
|
187 |
+
)
|
188 |
+
|
189 |
+
if config.emb_layer_norm_before:
|
190 |
+
self.layer_norm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm")
|
191 |
+
else:
|
192 |
+
self.layer_norm = None
|
193 |
+
# Matt: I think this line was copied incorrectly from BERT, disabling for now
|
194 |
+
# self.dropout = Dropout(config.hidden_dropout_prob)
|
195 |
+
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
|
196 |
+
|
197 |
+
self.position_ids = tf.range(config.max_position_embeddings)[None, :]
|
198 |
+
|
199 |
+
self.padding_idx = config.pad_token_id
|
200 |
+
self.token_dropout = config.token_dropout
|
201 |
+
self.mask_token_id = config.mask_token_id
|
202 |
+
self.config = config
|
203 |
+
|
204 |
+
def call(
|
205 |
+
self, input_ids=None, attention_mask=None, position_ids=None, inputs_embeds=None, past_key_values_length=0
|
206 |
+
):
|
207 |
+
if position_ids is None:
|
208 |
+
if input_ids is not None:
|
209 |
+
# Create the position ids from the input token ids. Any padded tokens remain padded.
|
210 |
+
position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length)
|
211 |
+
else:
|
212 |
+
position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds)
|
213 |
+
|
214 |
+
if inputs_embeds is None:
|
215 |
+
check_embeddings_within_bounds(input_ids, self.config.vocab_size)
|
216 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
217 |
+
|
218 |
+
# Note that if we want to support ESM-1 (not 1b!) in future then we need to support an
|
219 |
+
# embedding_scale factor here.
|
220 |
+
embeddings = inputs_embeds
|
221 |
+
|
222 |
+
# Matt: ESM has the option to handle masking in MLM in a slightly unusual way. If the token_dropout
|
223 |
+
# flag is False then it is handled in the same was as BERT/RoBERTa. If it is set to True, however,
|
224 |
+
# masked tokens are treated as if they were selected for input dropout and zeroed out.
|
225 |
+
# This "mask-dropout" is compensated for when masked tokens are not present, by scaling embeddings by
|
226 |
+
# a factor of (fraction of unmasked tokens during training) / (fraction of unmasked tokens in sample).
|
227 |
+
# This is analogous to the way that dropout layers scale down outputs during evaluation when not
|
228 |
+
# actually dropping out values (or, equivalently, scale up their un-dropped outputs in training).
|
229 |
+
if self.token_dropout:
|
230 |
+
embeddings = tf.where((input_ids == self.mask_token_id)[:, :, None], 0.0, embeddings)
|
231 |
+
mask_ratio_train = 0.15 * 0.8 # Hardcoded as the ratio used in all ESM model training runs
|
232 |
+
src_lengths = tf.cast(tf.reduce_sum(attention_mask, axis=-1), tf.float32)
|
233 |
+
masked_tokens = input_ids == self.mask_token_id
|
234 |
+
mask_ratio_observed = tf.math.count_nonzero(masked_tokens, dtype=tf.float32, axis=-1) / src_lengths
|
235 |
+
embeddings = embeddings * (1 - mask_ratio_train) / (1 - mask_ratio_observed)[:, None, None]
|
236 |
+
|
237 |
+
if self.position_embedding_type == "absolute":
|
238 |
+
position_embeddings = self.position_embeddings(position_ids)
|
239 |
+
embeddings += position_embeddings
|
240 |
+
|
241 |
+
if self.layer_norm is not None:
|
242 |
+
embeddings = self.layer_norm(embeddings)
|
243 |
+
if attention_mask is not None:
|
244 |
+
embeddings = embeddings * tf.cast(tf.expand_dims(attention_mask, -1), embeddings.dtype)
|
245 |
+
# Matt: I think this line was copied incorrectly from BERT, disabling it for now.
|
246 |
+
# embeddings = self.dropout(embeddings)
|
247 |
+
return embeddings
|
248 |
+
|
249 |
+
def create_position_ids_from_inputs_embeds(self, inputs_embeds):
|
250 |
+
"""
|
251 |
+
We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.
|
252 |
+
|
253 |
+
Args:
|
254 |
+
inputs_embeds: tf.Tensor
|
255 |
+
|
256 |
+
Returns: tf.Tensor
|
257 |
+
"""
|
258 |
+
input_shape = shape_list(inputs_embeds)[:-1]
|
259 |
+
sequence_length = input_shape[1]
|
260 |
+
|
261 |
+
position_ids = tf.range(
|
262 |
+
start=self.padding_idx + 1, limit=sequence_length + self.padding_idx + 1, dtype=tf.int64
|
263 |
+
)
|
264 |
+
return tf.broadcast_to(tf.expand_dims(position_ids, 0), input_shape)
|
265 |
+
|
266 |
+
def build(self, input_shape=None):
|
267 |
+
if self.built:
|
268 |
+
return
|
269 |
+
self.built = True
|
270 |
+
if getattr(self, "word_embeddings", None) is not None:
|
271 |
+
with tf.name_scope(self.word_embeddings.name):
|
272 |
+
self.word_embeddings.build(None)
|
273 |
+
if getattr(self, "position_embeddings", None) is not None:
|
274 |
+
with tf.name_scope(self.position_embeddings.name):
|
275 |
+
self.position_embeddings.build(None)
|
276 |
+
if getattr(self, "layer_norm", None) is not None:
|
277 |
+
with tf.name_scope(self.layer_norm.name):
|
278 |
+
self.layer_norm.build([None, None, self.config.hidden_size])
|
279 |
+
|
280 |
+
|
281 |
+
class TFEsmSelfAttention(keras.layers.Layer):
|
282 |
+
def __init__(self, config, position_embedding_type=None, name=None):
|
283 |
+
super().__init__(name=name)
|
284 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
|
285 |
+
raise ValueError(
|
286 |
+
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
|
287 |
+
f"heads ({config.num_attention_heads})"
|
288 |
+
)
|
289 |
+
|
290 |
+
self.num_attention_heads = config.num_attention_heads
|
291 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
292 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
293 |
+
|
294 |
+
self.query = keras.layers.Dense(
|
295 |
+
self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query"
|
296 |
+
)
|
297 |
+
self.key = keras.layers.Dense(
|
298 |
+
self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key"
|
299 |
+
)
|
300 |
+
self.value = keras.layers.Dense(
|
301 |
+
self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value"
|
302 |
+
)
|
303 |
+
|
304 |
+
self.dropout = keras.layers.Dropout(config.attention_probs_dropout_prob)
|
305 |
+
self.position_embedding_type = position_embedding_type or getattr(
|
306 |
+
config, "position_embedding_type", "absolute"
|
307 |
+
)
|
308 |
+
self.rotary_embeddings = None
|
309 |
+
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
310 |
+
self.max_position_embeddings = config.max_position_embeddings
|
311 |
+
self.distance_embedding = keras.layers.Embedding(
|
312 |
+
2 * config.max_position_embeddings - 1,
|
313 |
+
self.attention_head_size,
|
314 |
+
embeddings_initializer=get_initializer(config.initializer_range),
|
315 |
+
)
|
316 |
+
elif self.position_embedding_type == "rotary":
|
317 |
+
self.rotary_embeddings = TFRotaryEmbedding(dim=self.attention_head_size, name="rotary_embeddings")
|
318 |
+
|
319 |
+
self.is_decoder = config.is_decoder
|
320 |
+
self.config = config
|
321 |
+
|
322 |
+
def transpose_for_scores(self, x: tf.Tensor) -> tf.Tensor:
|
323 |
+
new_x_shape = shape_list(x)[:-1] + [self.num_attention_heads, self.attention_head_size]
|
324 |
+
x = tf.reshape(x, new_x_shape)
|
325 |
+
return tf.transpose(x, perm=(0, 2, 1, 3))
|
326 |
+
|
327 |
+
def call(
|
328 |
+
self,
|
329 |
+
hidden_states: tf.Tensor,
|
330 |
+
attention_mask: tf.Tensor | None = None,
|
331 |
+
head_mask: tf.Tensor | None = None,
|
332 |
+
encoder_hidden_states: tf.Tensor | None = None,
|
333 |
+
encoder_attention_mask: tf.Tensor | None = None,
|
334 |
+
past_key_value: Tuple[Tuple[tf.Tensor]] | None = None,
|
335 |
+
output_attentions: Optional[bool] = False,
|
336 |
+
training: bool = False,
|
337 |
+
) -> Tuple[tf.Tensor]:
|
338 |
+
mixed_query_layer = self.query(hidden_states)
|
339 |
+
|
340 |
+
# If this is instantiated as a cross-attention module, the keys
|
341 |
+
# and values come from an encoder; the attention mask needs to be
|
342 |
+
# such that the encoder's padding tokens are not attended to.
|
343 |
+
is_cross_attention = encoder_hidden_states is not None
|
344 |
+
|
345 |
+
if is_cross_attention and past_key_value is not None:
|
346 |
+
# reuse k,v, cross_attentions
|
347 |
+
key_layer = past_key_value[0]
|
348 |
+
value_layer = past_key_value[1]
|
349 |
+
attention_mask = encoder_attention_mask
|
350 |
+
elif is_cross_attention:
|
351 |
+
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
|
352 |
+
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
|
353 |
+
attention_mask = encoder_attention_mask
|
354 |
+
elif past_key_value is not None:
|
355 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
356 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
357 |
+
key_layer = tf.concat([past_key_value[0], key_layer], axis=2)
|
358 |
+
value_layer = tf.concat([past_key_value[1], value_layer], axis=2)
|
359 |
+
else:
|
360 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
361 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
362 |
+
|
363 |
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
364 |
+
|
365 |
+
# Matt: Our BERT model (which this code was derived from) scales attention logits down by sqrt(head_dim).
|
366 |
+
# ESM scales the query down by the same factor instead. Modulo numerical stability these are equivalent,
|
367 |
+
# but not when rotary embeddings get involved. Therefore, we scale the query here to match the original
|
368 |
+
# ESM code and fix rotary embeddings.
|
369 |
+
query_layer = query_layer * self.attention_head_size**-0.5
|
370 |
+
|
371 |
+
if self.is_decoder:
|
372 |
+
# if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states.
|
373 |
+
# Further calls to cross_attention layer can then reuse all cross-attention
|
374 |
+
# key/value_states (first "if" case)
|
375 |
+
# if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of
|
376 |
+
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
377 |
+
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
378 |
+
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
379 |
+
past_key_value = (key_layer, value_layer)
|
380 |
+
|
381 |
+
if self.position_embedding_type == "rotary":
|
382 |
+
query_layer, key_layer = self.rotary_embeddings(query_layer, key_layer)
|
383 |
+
|
384 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
385 |
+
attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True)
|
386 |
+
|
387 |
+
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
388 |
+
seq_length = shape_list(hidden_states)[1]
|
389 |
+
position_ids_l = tf.expand_dims(tf.range(seq_length, dtype=tf.int64), -1)
|
390 |
+
position_ids_r = tf.expand_dims(tf.range(seq_length, dtype=tf.int64), 0)
|
391 |
+
distance = position_ids_l - position_ids_r
|
392 |
+
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
|
393 |
+
positional_embedding = tf.cast(positional_embedding, query_layer.dtype) # fp16 compatibility
|
394 |
+
|
395 |
+
if self.position_embedding_type == "relative_key":
|
396 |
+
relative_position_scores = tf.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
397 |
+
attention_scores = attention_scores + relative_position_scores
|
398 |
+
elif self.position_embedding_type == "relative_key_query":
|
399 |
+
relative_position_scores_query = tf.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
400 |
+
relative_position_scores_key = tf.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
|
401 |
+
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
|
402 |
+
|
403 |
+
if attention_mask is not None:
|
404 |
+
# Apply the attention mask is (precomputed for all layers in EsmModel forward() function)
|
405 |
+
attention_scores = attention_scores + attention_mask
|
406 |
+
|
407 |
+
# Normalize the attention scores to probabilities.
|
408 |
+
attention_probs = stable_softmax(attention_scores, axis=-1)
|
409 |
+
|
410 |
+
# This is actually dropping out entire tokens to attend to, which might
|
411 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
412 |
+
attention_probs = self.dropout(attention_probs, training=training)
|
413 |
+
|
414 |
+
# Mask heads if we want to
|
415 |
+
if head_mask is not None:
|
416 |
+
attention_probs = attention_probs * head_mask
|
417 |
+
|
418 |
+
context_layer = attention_probs @ value_layer
|
419 |
+
|
420 |
+
context_layer = tf.transpose(context_layer, perm=(0, 2, 1, 3))
|
421 |
+
new_context_layer_shape = shape_list(context_layer)[:-2] + [self.all_head_size]
|
422 |
+
context_layer = tf.reshape(context_layer, new_context_layer_shape)
|
423 |
+
|
424 |
+
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
425 |
+
|
426 |
+
if self.is_decoder:
|
427 |
+
outputs = outputs + (past_key_value,)
|
428 |
+
return outputs
|
429 |
+
|
430 |
+
def build(self, input_shape=None):
|
431 |
+
if self.built:
|
432 |
+
return
|
433 |
+
self.built = True
|
434 |
+
if getattr(self, "query", None) is not None:
|
435 |
+
with tf.name_scope(self.query.name):
|
436 |
+
self.query.build([None, None, self.config.hidden_size])
|
437 |
+
if getattr(self, "key", None) is not None:
|
438 |
+
with tf.name_scope(self.key.name):
|
439 |
+
self.key.build([None, None, self.config.hidden_size])
|
440 |
+
if getattr(self, "value", None) is not None:
|
441 |
+
with tf.name_scope(self.value.name):
|
442 |
+
self.value.build([None, None, self.config.hidden_size])
|
443 |
+
if getattr(self, "rotary_embeddings", None) is not None:
|
444 |
+
with tf.name_scope(self.rotary_embeddings.name):
|
445 |
+
self.rotary_embeddings.build(None)
|
446 |
+
|
447 |
+
|
448 |
+
class TFEsmSelfOutput(keras.layers.Layer):
|
449 |
+
def __init__(self, config, name=None):
|
450 |
+
super().__init__(name=name)
|
451 |
+
self.dense = keras.layers.Dense(
|
452 |
+
config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
|
453 |
+
)
|
454 |
+
self.dropout = keras.layers.Dropout(config.hidden_dropout_prob)
|
455 |
+
self.config = config
|
456 |
+
|
457 |
+
def call(self, hidden_states, input_tensor, training=False):
|
458 |
+
hidden_states = self.dense(hidden_states)
|
459 |
+
hidden_states = self.dropout(hidden_states, training=training)
|
460 |
+
hidden_states += input_tensor
|
461 |
+
return hidden_states
|
462 |
+
|
463 |
+
def build(self, input_shape=None):
|
464 |
+
if self.built:
|
465 |
+
return
|
466 |
+
self.built = True
|
467 |
+
if getattr(self, "dense", None) is not None:
|
468 |
+
with tf.name_scope(self.dense.name):
|
469 |
+
self.dense.build([None, None, self.config.hidden_size])
|
470 |
+
|
471 |
+
|
472 |
+
class TFEsmAttention(keras.layers.Layer):
|
473 |
+
def __init__(self, config, name=None):
|
474 |
+
super().__init__(name=name)
|
475 |
+
self.self = TFEsmSelfAttention(config, name="self")
|
476 |
+
self.output_layer = TFEsmSelfOutput(config, name="output")
|
477 |
+
self.pruned_heads = set()
|
478 |
+
self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
|
479 |
+
self.config = config
|
480 |
+
|
481 |
+
def prune_heads(self, heads):
|
482 |
+
raise NotImplementedError
|
483 |
+
|
484 |
+
def call(
|
485 |
+
self,
|
486 |
+
hidden_states,
|
487 |
+
attention_mask=None,
|
488 |
+
head_mask=None,
|
489 |
+
encoder_hidden_states=None,
|
490 |
+
encoder_attention_mask=None,
|
491 |
+
past_key_value=None,
|
492 |
+
output_attentions=False,
|
493 |
+
training=False,
|
494 |
+
):
|
495 |
+
hidden_states_ln = self.LayerNorm(hidden_states)
|
496 |
+
self_outputs = self.self(
|
497 |
+
hidden_states_ln,
|
498 |
+
attention_mask,
|
499 |
+
head_mask,
|
500 |
+
encoder_hidden_states,
|
501 |
+
encoder_attention_mask,
|
502 |
+
past_key_value,
|
503 |
+
output_attentions,
|
504 |
+
training,
|
505 |
+
)
|
506 |
+
attention_output = self.output_layer(self_outputs[0], hidden_states)
|
507 |
+
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
|
508 |
+
return outputs
|
509 |
+
|
510 |
+
def build(self, input_shape=None):
|
511 |
+
if self.built:
|
512 |
+
return
|
513 |
+
self.built = True
|
514 |
+
if getattr(self, "self", None) is not None:
|
515 |
+
with tf.name_scope(self.self.name):
|
516 |
+
self.self.build(None)
|
517 |
+
if getattr(self, "output_layer", None) is not None:
|
518 |
+
with tf.name_scope(self.output_layer.name):
|
519 |
+
self.output_layer.build(None)
|
520 |
+
if getattr(self, "LayerNorm", None) is not None:
|
521 |
+
with tf.name_scope(self.LayerNorm.name):
|
522 |
+
self.LayerNorm.build([None, None, self.config.hidden_size])
|
523 |
+
|
524 |
+
|
525 |
+
class TFEsmIntermediate(keras.layers.Layer):
|
526 |
+
def __init__(self, config: EsmConfig, **kwargs):
|
527 |
+
super().__init__(**kwargs)
|
528 |
+
|
529 |
+
self.dense = keras.layers.Dense(
|
530 |
+
units=config.intermediate_size,
|
531 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
532 |
+
name="dense",
|
533 |
+
)
|
534 |
+
self.config = config
|
535 |
+
|
536 |
+
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
|
537 |
+
hidden_states = self.dense(inputs=hidden_states)
|
538 |
+
hidden_states = tf.nn.gelu(hidden_states)
|
539 |
+
return hidden_states
|
540 |
+
|
541 |
+
def build(self, input_shape=None):
|
542 |
+
if self.built:
|
543 |
+
return
|
544 |
+
self.built = True
|
545 |
+
if getattr(self, "dense", None) is not None:
|
546 |
+
with tf.name_scope(self.dense.name):
|
547 |
+
self.dense.build([None, None, self.config.hidden_size])
|
548 |
+
|
549 |
+
|
550 |
+
class TFEsmOutput(keras.layers.Layer):
|
551 |
+
def __init__(self, config, name=None):
|
552 |
+
super().__init__(name=name)
|
553 |
+
self.dense = keras.layers.Dense(
|
554 |
+
config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
|
555 |
+
)
|
556 |
+
self.dropout = keras.layers.Dropout(config.hidden_dropout_prob)
|
557 |
+
self.config = config
|
558 |
+
|
559 |
+
def call(self, hidden_states, input_tensor, training=False):
|
560 |
+
hidden_states = self.dense(hidden_states)
|
561 |
+
hidden_states = self.dropout(hidden_states, training=training)
|
562 |
+
hidden_states += input_tensor
|
563 |
+
return hidden_states
|
564 |
+
|
565 |
+
def build(self, input_shape=None):
|
566 |
+
if self.built:
|
567 |
+
return
|
568 |
+
self.built = True
|
569 |
+
if getattr(self, "dense", None) is not None:
|
570 |
+
with tf.name_scope(self.dense.name):
|
571 |
+
self.dense.build([None, None, self.config.intermediate_size])
|
572 |
+
|
573 |
+
|
574 |
+
class TFEsmLayer(keras.layers.Layer):
|
575 |
+
def __init__(self, config, name=None):
|
576 |
+
super().__init__(name=name)
|
577 |
+
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
578 |
+
self.seq_len_dim = 1
|
579 |
+
self.attention = TFEsmAttention(config, name="attention")
|
580 |
+
self.is_decoder = config.is_decoder
|
581 |
+
self.add_cross_attention = config.add_cross_attention
|
582 |
+
if self.add_cross_attention:
|
583 |
+
if not self.is_decoder:
|
584 |
+
raise RuntimeError(f"{self} should be used as a decoder model if cross attention is added")
|
585 |
+
self.crossattention = TFEsmAttention(config)
|
586 |
+
self.intermediate = TFEsmIntermediate(config, name="intermediate")
|
587 |
+
self.output_layer = TFEsmOutput(config, name="output")
|
588 |
+
self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
|
589 |
+
self.config = config
|
590 |
+
|
591 |
+
def call(
|
592 |
+
self,
|
593 |
+
hidden_states,
|
594 |
+
attention_mask=None,
|
595 |
+
head_mask=None,
|
596 |
+
encoder_hidden_states=None,
|
597 |
+
encoder_attention_mask=None,
|
598 |
+
past_key_value=None,
|
599 |
+
output_attentions=False,
|
600 |
+
training=False,
|
601 |
+
):
|
602 |
+
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
603 |
+
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
|
604 |
+
self_attention_outputs = self.attention(
|
605 |
+
hidden_states,
|
606 |
+
attention_mask,
|
607 |
+
head_mask,
|
608 |
+
output_attentions=output_attentions,
|
609 |
+
past_key_value=self_attn_past_key_value,
|
610 |
+
training=training,
|
611 |
+
)
|
612 |
+
attention_output = self_attention_outputs[0]
|
613 |
+
|
614 |
+
# if decoder, the last output is tuple of self-attn cache
|
615 |
+
if self.is_decoder:
|
616 |
+
outputs = self_attention_outputs[1:-1]
|
617 |
+
present_key_value = self_attention_outputs[-1]
|
618 |
+
else:
|
619 |
+
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
|
620 |
+
|
621 |
+
cross_attn_present_key_value = None
|
622 |
+
if self.is_decoder and encoder_hidden_states is not None:
|
623 |
+
if not hasattr(self, "crossattention"):
|
624 |
+
raise AttributeError(
|
625 |
+
f"If `encoder_hidden_states` are passed, {self} has to be instantiated"
|
626 |
+
" with cross-attention layers by setting `config.add_cross_attention=True`"
|
627 |
+
)
|
628 |
+
|
629 |
+
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
|
630 |
+
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
|
631 |
+
cross_attention_outputs = self.crossattention(
|
632 |
+
attention_output,
|
633 |
+
attention_mask,
|
634 |
+
head_mask,
|
635 |
+
encoder_hidden_states,
|
636 |
+
encoder_attention_mask,
|
637 |
+
cross_attn_past_key_value,
|
638 |
+
output_attentions,
|
639 |
+
training=training,
|
640 |
+
)
|
641 |
+
attention_output = cross_attention_outputs[0]
|
642 |
+
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
|
643 |
+
|
644 |
+
# add cross-attn cache to positions 3,4 of present_key_value tuple
|
645 |
+
cross_attn_present_key_value = cross_attention_outputs[-1]
|
646 |
+
present_key_value = present_key_value + cross_attn_present_key_value
|
647 |
+
|
648 |
+
layernorm_output = self.LayerNorm(attention_output)
|
649 |
+
intermediate_output = self.intermediate(hidden_states=layernorm_output)
|
650 |
+
layer_output = self.output_layer(
|
651 |
+
hidden_states=intermediate_output, input_tensor=attention_output, training=training
|
652 |
+
)
|
653 |
+
outputs = (layer_output,) + outputs # add attentions if we output them
|
654 |
+
|
655 |
+
# if decoder, return the attn key/values as the last output
|
656 |
+
if self.is_decoder:
|
657 |
+
outputs = outputs + (present_key_value,)
|
658 |
+
|
659 |
+
return outputs
|
660 |
+
|
661 |
+
def build(self, input_shape=None):
|
662 |
+
if self.built:
|
663 |
+
return
|
664 |
+
self.built = True
|
665 |
+
if getattr(self, "attention", None) is not None:
|
666 |
+
with tf.name_scope(self.attention.name):
|
667 |
+
self.attention.build(None)
|
668 |
+
if getattr(self, "intermediate", None) is not None:
|
669 |
+
with tf.name_scope(self.intermediate.name):
|
670 |
+
self.intermediate.build(None)
|
671 |
+
if getattr(self, "output_layer", None) is not None:
|
672 |
+
with tf.name_scope(self.output_layer.name):
|
673 |
+
self.output_layer.build(None)
|
674 |
+
if getattr(self, "LayerNorm", None) is not None:
|
675 |
+
with tf.name_scope(self.LayerNorm.name):
|
676 |
+
self.LayerNorm.build([None, None, self.config.hidden_size])
|
677 |
+
|
678 |
+
|
679 |
+
class TFEsmEncoder(keras.layers.Layer):
|
680 |
+
def __init__(self, config, name=None):
|
681 |
+
super().__init__(name=name)
|
682 |
+
self.config = config
|
683 |
+
self.layer = [TFEsmLayer(config, name=f"layer_._{i}") for i in range(config.num_hidden_layers)]
|
684 |
+
self.emb_layer_norm_after = keras.layers.LayerNormalization(
|
685 |
+
epsilon=config.layer_norm_eps, name="emb_layer_norm_after"
|
686 |
+
)
|
687 |
+
|
688 |
+
def call(
|
689 |
+
self,
|
690 |
+
hidden_states,
|
691 |
+
attention_mask=None,
|
692 |
+
head_mask=None,
|
693 |
+
encoder_hidden_states=None,
|
694 |
+
encoder_attention_mask=None,
|
695 |
+
past_key_values=None,
|
696 |
+
use_cache=None,
|
697 |
+
output_attentions=False,
|
698 |
+
output_hidden_states=False,
|
699 |
+
return_dict=True,
|
700 |
+
training=False,
|
701 |
+
):
|
702 |
+
all_hidden_states = () if output_hidden_states else None
|
703 |
+
all_self_attentions = () if output_attentions else None
|
704 |
+
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
|
705 |
+
|
706 |
+
next_decoder_cache = () if use_cache else None
|
707 |
+
for i, layer_module in enumerate(self.layer):
|
708 |
+
if output_hidden_states:
|
709 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
710 |
+
|
711 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
712 |
+
past_key_value = past_key_values[i] if past_key_values is not None else None
|
713 |
+
|
714 |
+
layer_outputs = layer_module(
|
715 |
+
hidden_states,
|
716 |
+
attention_mask,
|
717 |
+
layer_head_mask,
|
718 |
+
encoder_hidden_states,
|
719 |
+
encoder_attention_mask,
|
720 |
+
past_key_value,
|
721 |
+
output_attentions,
|
722 |
+
training,
|
723 |
+
)
|
724 |
+
|
725 |
+
hidden_states = layer_outputs[0]
|
726 |
+
if use_cache:
|
727 |
+
next_decoder_cache += (layer_outputs[-1],)
|
728 |
+
if output_attentions:
|
729 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
730 |
+
if self.config.add_cross_attention:
|
731 |
+
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
|
732 |
+
|
733 |
+
if self.emb_layer_norm_after:
|
734 |
+
hidden_states = self.emb_layer_norm_after(hidden_states)
|
735 |
+
|
736 |
+
if output_hidden_states:
|
737 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
738 |
+
|
739 |
+
if not return_dict:
|
740 |
+
return tuple(
|
741 |
+
v
|
742 |
+
for v in [
|
743 |
+
hidden_states,
|
744 |
+
next_decoder_cache,
|
745 |
+
all_hidden_states,
|
746 |
+
all_self_attentions,
|
747 |
+
all_cross_attentions,
|
748 |
+
]
|
749 |
+
if v is not None
|
750 |
+
)
|
751 |
+
return TFBaseModelOutputWithPastAndCrossAttentions(
|
752 |
+
last_hidden_state=hidden_states,
|
753 |
+
past_key_values=next_decoder_cache,
|
754 |
+
hidden_states=all_hidden_states,
|
755 |
+
attentions=all_self_attentions,
|
756 |
+
cross_attentions=all_cross_attentions,
|
757 |
+
)
|
758 |
+
|
759 |
+
def build(self, input_shape=None):
|
760 |
+
if self.built:
|
761 |
+
return
|
762 |
+
self.built = True
|
763 |
+
if getattr(self, "emb_layer_norm_after", None) is not None:
|
764 |
+
with tf.name_scope(self.emb_layer_norm_after.name):
|
765 |
+
self.emb_layer_norm_after.build([None, None, self.config.hidden_size])
|
766 |
+
if getattr(self, "layer", None) is not None:
|
767 |
+
for layer in self.layer:
|
768 |
+
with tf.name_scope(layer.name):
|
769 |
+
layer.build(None)
|
770 |
+
|
771 |
+
|
772 |
+
# Copied from transformers.models.bert.modeling_tf_bert.TFBertPooler with Bert->Esm
|
773 |
+
class TFEsmPooler(keras.layers.Layer):
|
774 |
+
def __init__(self, config: EsmConfig, **kwargs):
|
775 |
+
super().__init__(**kwargs)
|
776 |
+
|
777 |
+
self.dense = keras.layers.Dense(
|
778 |
+
units=config.hidden_size,
|
779 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
780 |
+
activation="tanh",
|
781 |
+
name="dense",
|
782 |
+
)
|
783 |
+
self.config = config
|
784 |
+
|
785 |
+
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
|
786 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
787 |
+
# to the first token.
|
788 |
+
first_token_tensor = hidden_states[:, 0]
|
789 |
+
pooled_output = self.dense(inputs=first_token_tensor)
|
790 |
+
|
791 |
+
return pooled_output
|
792 |
+
|
793 |
+
def build(self, input_shape=None):
|
794 |
+
if self.built:
|
795 |
+
return
|
796 |
+
self.built = True
|
797 |
+
if getattr(self, "dense", None) is not None:
|
798 |
+
with tf.name_scope(self.dense.name):
|
799 |
+
self.dense.build([None, None, self.config.hidden_size])
|
800 |
+
|
801 |
+
|
802 |
+
class TFEsmPreTrainedModel(TFPreTrainedModel):
|
803 |
+
"""
|
804 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
805 |
+
models.
|
806 |
+
"""
|
807 |
+
|
808 |
+
config_class = EsmConfig
|
809 |
+
base_model_prefix = "esm"
|
810 |
+
|
811 |
+
|
812 |
+
ESM_START_DOCSTRING = r"""
|
813 |
+
|
814 |
+
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
|
815 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
816 |
+
etc.)
|
817 |
+
|
818 |
+
This model is also a Keras [Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a
|
819 |
+
regular Keras model and refer to the TF/Keras documentation for all matters related to general usage and behavior.
|
820 |
+
|
821 |
+
Parameters:
|
822 |
+
config ([`EsmConfig`]): Model configuration class with all the parameters of the
|
823 |
+
model. Initializing with a config file does not load the weights associated with the model, only the
|
824 |
+
configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.
|
825 |
+
"""
|
826 |
+
|
827 |
+
ESM_INPUTS_DOCSTRING = r"""
|
828 |
+
Args:
|
829 |
+
input_ids (`tf.Tensor` of shape `({0})`):
|
830 |
+
Indices of input sequence tokens in the vocabulary.
|
831 |
+
|
832 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
833 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
834 |
+
|
835 |
+
[What are input IDs?](../glossary#input-ids)
|
836 |
+
attention_mask (`tf.Tensor` of shape `({0})`, *optional*):
|
837 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
838 |
+
|
839 |
+
- 1 for tokens that are **not masked**,
|
840 |
+
- 0 for tokens that are **masked**.
|
841 |
+
|
842 |
+
[What are attention masks?](../glossary#attention-mask)
|
843 |
+
position_ids (`tf.Tensor` of shape `({0})`, *optional*):
|
844 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
845 |
+
config.max_position_embeddings - 1]`.
|
846 |
+
|
847 |
+
[What are position IDs?](../glossary#position-ids)
|
848 |
+
head_mask (`tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
849 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
850 |
+
|
851 |
+
- 1 indicates the head is **not masked**,
|
852 |
+
- 0 indicates the head is **masked**.
|
853 |
+
|
854 |
+
inputs_embeds (`tf.Tensor` of shape `({0}, hidden_size)`, *optional*):
|
855 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
856 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
857 |
+
model's internal embedding lookup matrix.
|
858 |
+
output_attentions (`bool`, *optional*):
|
859 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
860 |
+
tensors for more detail.
|
861 |
+
output_hidden_states (`bool`, *optional*):
|
862 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
863 |
+
more detail.
|
864 |
+
return_dict (`bool`, *optional*):
|
865 |
+
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
|
866 |
+
"""
|
867 |
+
|
868 |
+
|
869 |
+
@add_start_docstrings(
|
870 |
+
"The bare ESM Model transformer outputting raw hidden-states without any specific head on top.",
|
871 |
+
ESM_START_DOCSTRING,
|
872 |
+
)
|
873 |
+
class TFEsmMainLayer(keras.layers.Layer):
|
874 |
+
"""
|
875 |
+
|
876 |
+
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
|
877 |
+
cross-attention is added between the self-attention layers, following the architecture described in [Attention is
|
878 |
+
all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
|
879 |
+
Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
|
880 |
+
|
881 |
+
To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set
|
882 |
+
to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and
|
883 |
+
`add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass.
|
884 |
+
"""
|
885 |
+
|
886 |
+
_keys_to_ignore_on_load_missing = [r"position_ids"]
|
887 |
+
|
888 |
+
def __init__(self, config, add_pooling_layer=True, name=None, **kwargs):
|
889 |
+
super().__init__(name=name, **kwargs)
|
890 |
+
|
891 |
+
self.config = config
|
892 |
+
self.is_decoder = config.is_decoder
|
893 |
+
|
894 |
+
self.embeddings = TFEsmEmbeddings(config, name="embeddings")
|
895 |
+
self.encoder = TFEsmEncoder(config, name="encoder")
|
896 |
+
self.pooler = TFEsmPooler(config, name="pooler") if add_pooling_layer else None
|
897 |
+
|
898 |
+
self.contact_head = TFEsmContactPredictionHead(
|
899 |
+
in_features=self.config.num_hidden_layers * self.config.num_attention_heads, bias=True, name="contact_head"
|
900 |
+
)
|
901 |
+
|
902 |
+
def build(self, input_shape=None):
|
903 |
+
if self.built:
|
904 |
+
return
|
905 |
+
self.built = True
|
906 |
+
if getattr(self, "embeddings", None) is not None:
|
907 |
+
with tf.name_scope(self.embeddings.name):
|
908 |
+
self.embeddings.build(None)
|
909 |
+
if getattr(self, "encoder", None) is not None:
|
910 |
+
with tf.name_scope(self.encoder.name):
|
911 |
+
self.encoder.build(None)
|
912 |
+
if getattr(self, "pooler", None) is not None:
|
913 |
+
with tf.name_scope(self.pooler.name):
|
914 |
+
self.pooler.build(None)
|
915 |
+
if getattr(self, "contact_head", None) is not None:
|
916 |
+
with tf.name_scope(self.contact_head.name):
|
917 |
+
self.contact_head.build(None)
|
918 |
+
|
919 |
+
def get_input_embeddings(self):
|
920 |
+
return self.embeddings.word_embeddings
|
921 |
+
|
922 |
+
def set_input_embeddings(self, value: tf.Variable):
|
923 |
+
self.embeddings.word_embeddings.weight = value
|
924 |
+
self.embeddings.vocab_size = shape_list(value)[0]
|
925 |
+
|
926 |
+
def _prune_heads(self, heads_to_prune):
|
927 |
+
raise NotImplementedError
|
928 |
+
|
929 |
+
def call(
|
930 |
+
self,
|
931 |
+
input_ids: TFModelInputType | None = None,
|
932 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
933 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
934 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
935 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
936 |
+
encoder_hidden_states: np.ndarray | tf.Tensor | None = None,
|
937 |
+
encoder_attention_mask: np.ndarray | tf.Tensor | None = None,
|
938 |
+
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
|
939 |
+
use_cache: Optional[bool] = None,
|
940 |
+
output_attentions: Optional[bool] = None,
|
941 |
+
output_hidden_states: Optional[bool] = None,
|
942 |
+
return_dict: Optional[bool] = None,
|
943 |
+
training: bool = False,
|
944 |
+
) -> Union[TFBaseModelOutputWithPoolingAndCrossAttentions, Tuple[tf.Tensor]]:
|
945 |
+
if not self.config.is_decoder:
|
946 |
+
use_cache = False
|
947 |
+
|
948 |
+
if input_ids is not None and inputs_embeds is not None:
|
949 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
950 |
+
elif input_ids is not None:
|
951 |
+
input_shape = shape_list(input_ids)
|
952 |
+
elif inputs_embeds is not None:
|
953 |
+
input_shape = shape_list(inputs_embeds)[:-1]
|
954 |
+
else:
|
955 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
956 |
+
|
957 |
+
batch_size, seq_length = input_shape
|
958 |
+
|
959 |
+
if past_key_values is None:
|
960 |
+
past_key_values_length = 0
|
961 |
+
past_key_values = [None] * len(self.encoder.layer)
|
962 |
+
else:
|
963 |
+
past_key_values_length = shape_list(past_key_values[0][0])[-2]
|
964 |
+
|
965 |
+
if attention_mask is None:
|
966 |
+
attention_mask = tf.fill(dims=(batch_size, seq_length + past_key_values_length), value=1)
|
967 |
+
|
968 |
+
embedding_output = self.embeddings(
|
969 |
+
input_ids=input_ids,
|
970 |
+
attention_mask=attention_mask,
|
971 |
+
position_ids=position_ids,
|
972 |
+
inputs_embeds=inputs_embeds,
|
973 |
+
past_key_values_length=past_key_values_length,
|
974 |
+
training=training,
|
975 |
+
)
|
976 |
+
|
977 |
+
# We create a 3D attention mask from a 2D tensor mask.
|
978 |
+
# Sizes are [batch_size, 1, 1, to_seq_length]
|
979 |
+
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
|
980 |
+
# this attention mask is more simple than the triangular masking of causal attention
|
981 |
+
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
|
982 |
+
attention_mask_shape = shape_list(attention_mask)
|
983 |
+
|
984 |
+
mask_seq_length = seq_length + past_key_values_length
|
985 |
+
# Copied from `modeling_tf_t5.py`
|
986 |
+
# Provided a padding mask of dimensions [batch_size, mask_seq_length]
|
987 |
+
# - if the model is a decoder, apply a causal mask in addition to the padding mask
|
988 |
+
# - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, mask_seq_length, mask_seq_length]
|
989 |
+
if self.is_decoder:
|
990 |
+
seq_ids = tf.range(mask_seq_length)
|
991 |
+
causal_mask = tf.less_equal(
|
992 |
+
tf.tile(seq_ids[None, None, :], (batch_size, mask_seq_length, 1)),
|
993 |
+
seq_ids[None, :, None],
|
994 |
+
)
|
995 |
+
causal_mask = tf.cast(causal_mask, dtype=attention_mask.dtype)
|
996 |
+
extended_attention_mask = causal_mask * attention_mask[:, None, :]
|
997 |
+
attention_mask_shape = shape_list(extended_attention_mask)
|
998 |
+
extended_attention_mask = tf.reshape(
|
999 |
+
extended_attention_mask, (attention_mask_shape[0], 1, attention_mask_shape[1], attention_mask_shape[2])
|
1000 |
+
)
|
1001 |
+
if past_key_values[0] is not None:
|
1002 |
+
# attention_mask needs to be sliced to the shape `[batch_size, 1, from_seq_length - cached_seq_length, to_seq_length]
|
1003 |
+
extended_attention_mask = extended_attention_mask[:, :, -seq_length:, :]
|
1004 |
+
else:
|
1005 |
+
extended_attention_mask = tf.reshape(
|
1006 |
+
attention_mask, (attention_mask_shape[0], 1, 1, attention_mask_shape[1])
|
1007 |
+
)
|
1008 |
+
|
1009 |
+
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
1010 |
+
# masked positions, this operation will create a tensor which is 0.0 for
|
1011 |
+
# positions we want to attend and -10000.0 for masked positions.
|
1012 |
+
# Since we are adding it to the raw scores before the softmax, this is
|
1013 |
+
# effectively the same as removing these entirely.
|
1014 |
+
extended_attention_mask = tf.cast(extended_attention_mask, dtype=embedding_output.dtype)
|
1015 |
+
one_cst = tf.constant(1.0, dtype=embedding_output.dtype)
|
1016 |
+
ten_thousand_cst = tf.constant(-10000.0, dtype=embedding_output.dtype)
|
1017 |
+
extended_attention_mask = tf.multiply(tf.subtract(one_cst, extended_attention_mask), ten_thousand_cst)
|
1018 |
+
|
1019 |
+
# Copied from `modeling_tf_t5.py` with -1e9 -> -10000
|
1020 |
+
if self.is_decoder and encoder_attention_mask is not None:
|
1021 |
+
# If a 2D ou 3D attention mask is provided for the cross-attention
|
1022 |
+
# we need to make broadcastable to [batch_size, num_heads, mask_seq_length, mask_seq_length]
|
1023 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
1024 |
+
encoder_attention_mask = tf.cast(encoder_attention_mask, dtype=extended_attention_mask.dtype)
|
1025 |
+
num_dims_encoder_attention_mask = len(shape_list(encoder_attention_mask))
|
1026 |
+
if num_dims_encoder_attention_mask == 3:
|
1027 |
+
encoder_extended_attention_mask = encoder_attention_mask[:, None, :, :]
|
1028 |
+
if num_dims_encoder_attention_mask == 2:
|
1029 |
+
encoder_extended_attention_mask = encoder_attention_mask[:, None, None, :]
|
1030 |
+
|
1031 |
+
# T5 has a mask that can compare sequence ids, we can simulate this here with this transposition
|
1032 |
+
# Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow/transformer/transformer_layers.py#L270
|
1033 |
+
# encoder_extended_attention_mask = tf.math.equal(encoder_extended_attention_mask,
|
1034 |
+
# tf.transpose(encoder_extended_attention_mask, perm=(-1, -2)))
|
1035 |
+
|
1036 |
+
encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * -10000.0
|
1037 |
+
else:
|
1038 |
+
encoder_extended_attention_mask = None
|
1039 |
+
|
1040 |
+
# Prepare head mask if needed
|
1041 |
+
# 1.0 in head_mask indicate we keep the head
|
1042 |
+
# attention_probs has shape bsz x n_heads x N x N
|
1043 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
1044 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
1045 |
+
if head_mask is not None:
|
1046 |
+
raise NotImplementedError
|
1047 |
+
else:
|
1048 |
+
head_mask = [None] * self.config.num_hidden_layers
|
1049 |
+
|
1050 |
+
encoder_outputs = self.encoder(
|
1051 |
+
hidden_states=embedding_output,
|
1052 |
+
attention_mask=extended_attention_mask,
|
1053 |
+
head_mask=head_mask,
|
1054 |
+
encoder_hidden_states=encoder_hidden_states,
|
1055 |
+
encoder_attention_mask=encoder_extended_attention_mask,
|
1056 |
+
past_key_values=past_key_values,
|
1057 |
+
use_cache=use_cache,
|
1058 |
+
output_attentions=output_attentions,
|
1059 |
+
output_hidden_states=output_hidden_states,
|
1060 |
+
return_dict=return_dict,
|
1061 |
+
training=training,
|
1062 |
+
)
|
1063 |
+
|
1064 |
+
sequence_output = encoder_outputs[0]
|
1065 |
+
pooled_output = self.pooler(hidden_states=sequence_output) if self.pooler is not None else None
|
1066 |
+
|
1067 |
+
if not return_dict:
|
1068 |
+
return (
|
1069 |
+
sequence_output,
|
1070 |
+
pooled_output,
|
1071 |
+
) + encoder_outputs[1:]
|
1072 |
+
|
1073 |
+
return TFBaseModelOutputWithPoolingAndCrossAttentions(
|
1074 |
+
last_hidden_state=sequence_output,
|
1075 |
+
pooler_output=pooled_output,
|
1076 |
+
past_key_values=encoder_outputs.past_key_values,
|
1077 |
+
hidden_states=encoder_outputs.hidden_states,
|
1078 |
+
attentions=encoder_outputs.attentions,
|
1079 |
+
cross_attentions=encoder_outputs.cross_attentions,
|
1080 |
+
)
|
1081 |
+
|
1082 |
+
def predict_contacts(self, tokens, attention_mask):
|
1083 |
+
attns = self(tokens, attention_mask=attention_mask, return_dict=True, output_attentions=True).attentions
|
1084 |
+
attns = tf.stack(attns, axis=1) # Matches the original model layout
|
1085 |
+
# In the original model, attentions for padding tokens are completely zeroed out.
|
1086 |
+
# This makes no difference most of the time because the other tokens won't attend to them,
|
1087 |
+
# but it does for the contact prediction task, which takes attentions as input,
|
1088 |
+
# so we have to mimic that here.
|
1089 |
+
attention_mask = tf.cast(attention_mask, attns.dtype)
|
1090 |
+
attns *= attention_mask[:, None, None, None]
|
1091 |
+
attns *= attention_mask[:, None, None, :, None]
|
1092 |
+
return self.contact_head(tokens, attns)
|
1093 |
+
|
1094 |
+
|
1095 |
+
@add_start_docstrings(
|
1096 |
+
"The bare ESM Model transformer outputting raw hidden-states without any specific head on top.",
|
1097 |
+
ESM_START_DOCSTRING,
|
1098 |
+
)
|
1099 |
+
class TFEsmModel(TFEsmPreTrainedModel):
|
1100 |
+
def __init__(self, config: EsmConfig, add_pooling_layer=True, *inputs, **kwargs):
|
1101 |
+
super().__init__(config, *inputs, **kwargs)
|
1102 |
+
|
1103 |
+
self.esm = TFEsmMainLayer(config, add_pooling_layer=add_pooling_layer, name="esm")
|
1104 |
+
|
1105 |
+
@unpack_inputs
|
1106 |
+
@add_start_docstrings_to_model_forward(ESM_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1107 |
+
@add_code_sample_docstrings(
|
1108 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1109 |
+
output_type=TFBaseModelOutputWithPoolingAndCrossAttentions,
|
1110 |
+
config_class=_CONFIG_FOR_DOC,
|
1111 |
+
)
|
1112 |
+
def call(
|
1113 |
+
self,
|
1114 |
+
input_ids: TFModelInputType | None = None,
|
1115 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1116 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
1117 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
1118 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1119 |
+
encoder_hidden_states: np.ndarray | tf.Tensor | None = None,
|
1120 |
+
encoder_attention_mask: np.ndarray | tf.Tensor | None = None,
|
1121 |
+
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
|
1122 |
+
use_cache: Optional[bool] = None,
|
1123 |
+
output_attentions: Optional[bool] = None,
|
1124 |
+
output_hidden_states: Optional[bool] = None,
|
1125 |
+
return_dict: Optional[bool] = None,
|
1126 |
+
training: Optional[bool] = False,
|
1127 |
+
) -> Union[TFBaseModelOutputWithPoolingAndCrossAttentions, Tuple[tf.Tensor]]:
|
1128 |
+
r"""
|
1129 |
+
encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
1130 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
1131 |
+
the model is configured as a decoder.
|
1132 |
+
encoder_attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1133 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
1134 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
|
1135 |
+
|
1136 |
+
- 1 for tokens that are **not masked**,
|
1137 |
+
- 0 for tokens that are **masked**.
|
1138 |
+
|
1139 |
+
past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`)
|
1140 |
+
contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
1141 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
1142 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
1143 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
1144 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
1145 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
1146 |
+
`past_key_values`). Set to `False` during training, `True` during generation
|
1147 |
+
"""
|
1148 |
+
outputs = self.esm(
|
1149 |
+
input_ids=input_ids,
|
1150 |
+
attention_mask=attention_mask,
|
1151 |
+
position_ids=position_ids,
|
1152 |
+
head_mask=head_mask,
|
1153 |
+
inputs_embeds=inputs_embeds,
|
1154 |
+
encoder_hidden_states=encoder_hidden_states,
|
1155 |
+
encoder_attention_mask=encoder_attention_mask,
|
1156 |
+
past_key_values=past_key_values,
|
1157 |
+
use_cache=use_cache,
|
1158 |
+
output_attentions=output_attentions,
|
1159 |
+
output_hidden_states=output_hidden_states,
|
1160 |
+
return_dict=return_dict,
|
1161 |
+
training=training,
|
1162 |
+
)
|
1163 |
+
return outputs
|
1164 |
+
|
1165 |
+
def predict_contacts(self, tokens, attention_mask):
|
1166 |
+
return self.esm.predict_contacts(tokens, attention_mask)
|
1167 |
+
|
1168 |
+
def build(self, input_shape=None):
|
1169 |
+
if self.built:
|
1170 |
+
return
|
1171 |
+
self.built = True
|
1172 |
+
if getattr(self, "esm", None) is not None:
|
1173 |
+
with tf.name_scope(self.esm.name):
|
1174 |
+
self.esm.build(None)
|
1175 |
+
|
1176 |
+
|
1177 |
+
@add_start_docstrings("""ESM Model with a `language modeling` head on top.""", ESM_START_DOCSTRING)
|
1178 |
+
class TFEsmForMaskedLM(TFEsmPreTrainedModel, TFMaskedLanguageModelingLoss):
|
1179 |
+
_keys_to_ignore_on_load_missing = [r"position_ids"]
|
1180 |
+
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
1181 |
+
|
1182 |
+
def __init__(self, config):
|
1183 |
+
super().__init__(config)
|
1184 |
+
|
1185 |
+
if config.is_decoder:
|
1186 |
+
logger.warning(
|
1187 |
+
"If you want to use `EsmForMaskedLM` make sure `config.is_decoder=False` for "
|
1188 |
+
"bi-directional self-attention."
|
1189 |
+
)
|
1190 |
+
|
1191 |
+
self.esm = TFEsmMainLayer(config, add_pooling_layer=False, name="esm")
|
1192 |
+
self.lm_head = TFEsmLMHead(config, name="lm_head")
|
1193 |
+
if config.tie_word_embeddings:
|
1194 |
+
# Ensure word embeddings are built so that we actually have something to tie
|
1195 |
+
with tf.name_scope(os.path.join(self._name_scope(), "esm", "embeddings", "word_embeddings")):
|
1196 |
+
self.esm.embeddings.word_embeddings.build((None, None))
|
1197 |
+
self.lm_head.decoder = self.esm.embeddings.word_embeddings.weights[0]
|
1198 |
+
|
1199 |
+
def get_output_embeddings(self):
|
1200 |
+
return self.lm_head.decoder
|
1201 |
+
|
1202 |
+
def set_output_embeddings(self, new_embeddings):
|
1203 |
+
self.lm_head.decoder = new_embeddings
|
1204 |
+
|
1205 |
+
def get_lm_head(self):
|
1206 |
+
return self.lm_head
|
1207 |
+
|
1208 |
+
@unpack_inputs
|
1209 |
+
@add_start_docstrings_to_model_forward(ESM_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1210 |
+
@add_code_sample_docstrings(
|
1211 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1212 |
+
output_type=TFMaskedLMOutput,
|
1213 |
+
config_class=_CONFIG_FOR_DOC,
|
1214 |
+
mask="<mask>",
|
1215 |
+
)
|
1216 |
+
def call(
|
1217 |
+
self,
|
1218 |
+
input_ids: TFModelInputType | None = None,
|
1219 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1220 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
1221 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
1222 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1223 |
+
encoder_hidden_states: np.ndarray | tf.Tensor | None = None,
|
1224 |
+
encoder_attention_mask: np.ndarray | tf.Tensor | None = None,
|
1225 |
+
labels: np.ndarray | tf.Tensor | None = None,
|
1226 |
+
output_attentions: Optional[bool] = None,
|
1227 |
+
output_hidden_states: Optional[bool] = None,
|
1228 |
+
return_dict: Optional[bool] = None,
|
1229 |
+
training: bool = False,
|
1230 |
+
) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]:
|
1231 |
+
r"""
|
1232 |
+
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1233 |
+
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
|
1234 |
+
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
|
1235 |
+
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
|
1236 |
+
kwargs (`Dict[str, any]`, optional, defaults to *{}*):
|
1237 |
+
Used to hide legacy arguments that have been deprecated.
|
1238 |
+
"""
|
1239 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1240 |
+
|
1241 |
+
outputs = self.esm(
|
1242 |
+
input_ids,
|
1243 |
+
attention_mask=attention_mask,
|
1244 |
+
position_ids=position_ids,
|
1245 |
+
head_mask=head_mask,
|
1246 |
+
inputs_embeds=inputs_embeds,
|
1247 |
+
encoder_hidden_states=encoder_hidden_states,
|
1248 |
+
encoder_attention_mask=encoder_attention_mask,
|
1249 |
+
output_attentions=output_attentions,
|
1250 |
+
output_hidden_states=output_hidden_states,
|
1251 |
+
return_dict=return_dict,
|
1252 |
+
training=training,
|
1253 |
+
)
|
1254 |
+
sequence_output = outputs[0]
|
1255 |
+
prediction_scores = self.lm_head(sequence_output)
|
1256 |
+
|
1257 |
+
masked_lm_loss = None
|
1258 |
+
if labels is not None:
|
1259 |
+
masked_lm_loss = self.hf_compute_loss(labels=labels, logits=prediction_scores)
|
1260 |
+
|
1261 |
+
if not return_dict:
|
1262 |
+
output = (prediction_scores,) + outputs[2:]
|
1263 |
+
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
1264 |
+
|
1265 |
+
return TFMaskedLMOutput(
|
1266 |
+
loss=masked_lm_loss,
|
1267 |
+
logits=prediction_scores,
|
1268 |
+
hidden_states=outputs.hidden_states,
|
1269 |
+
attentions=outputs.attentions,
|
1270 |
+
)
|
1271 |
+
|
1272 |
+
def predict_contacts(self, tokens, attention_mask):
|
1273 |
+
return self.esm.predict_contacts(tokens, attention_mask)
|
1274 |
+
|
1275 |
+
def build(self, input_shape=None):
|
1276 |
+
if self.built:
|
1277 |
+
return
|
1278 |
+
self.built = True
|
1279 |
+
if getattr(self, "esm", None) is not None:
|
1280 |
+
with tf.name_scope(self.esm.name):
|
1281 |
+
self.esm.build(None)
|
1282 |
+
if getattr(self, "lm_head", None) is not None:
|
1283 |
+
with tf.name_scope(self.lm_head.name):
|
1284 |
+
self.lm_head.build(None)
|
1285 |
+
|
1286 |
+
|
1287 |
+
class TFEsmLMHead(keras.layers.Layer):
|
1288 |
+
"""ESM Head for masked language modeling."""
|
1289 |
+
|
1290 |
+
def __init__(self, config, name=None):
|
1291 |
+
super().__init__(name=name)
|
1292 |
+
self.dense = keras.layers.Dense(
|
1293 |
+
config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
|
1294 |
+
)
|
1295 |
+
|
1296 |
+
self.layer_norm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm")
|
1297 |
+
if config.tie_word_embeddings:
|
1298 |
+
self.decoder = None
|
1299 |
+
else:
|
1300 |
+
self.decoder = keras.layers.Dense(
|
1301 |
+
config.vocab_size,
|
1302 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
1303 |
+
name="decoder",
|
1304 |
+
use_bias=False,
|
1305 |
+
)
|
1306 |
+
self.config = config
|
1307 |
+
|
1308 |
+
def build(self, input_shape=None):
|
1309 |
+
# Separate bias to match the PT model and allow weight cross-loading to work
|
1310 |
+
# Put it in the build so it gets the right name when adding it as a weight
|
1311 |
+
if self.built:
|
1312 |
+
return
|
1313 |
+
self.built = True
|
1314 |
+
self.bias = self.add_weight("bias", shape=(self.config.vocab_size,), initializer="zeros", trainable=True)
|
1315 |
+
if getattr(self, "dense", None) is not None:
|
1316 |
+
with tf.name_scope(self.dense.name):
|
1317 |
+
self.dense.build([None, None, self.config.hidden_size])
|
1318 |
+
if getattr(self, "layer_norm", None) is not None:
|
1319 |
+
with tf.name_scope(self.layer_norm.name):
|
1320 |
+
self.layer_norm.build([None, None, self.config.hidden_size])
|
1321 |
+
if getattr(self, "decoder", None) is not None and not self.config.tie_word_embeddings:
|
1322 |
+
with tf.name_scope(self.decoder.name):
|
1323 |
+
self.decoder.build([None, None, self.config.hidden_size])
|
1324 |
+
|
1325 |
+
def get_bias(self):
|
1326 |
+
return {"bias": self.bias}
|
1327 |
+
|
1328 |
+
def call(self, features):
|
1329 |
+
x = self.dense(features)
|
1330 |
+
x = tf.nn.gelu(x)
|
1331 |
+
x = self.layer_norm(x)
|
1332 |
+
|
1333 |
+
# project back to size of vocabulary with bias
|
1334 |
+
if self.config.tie_word_embeddings:
|
1335 |
+
x = tf.matmul(x, self.decoder, transpose_b=True) + self.bias
|
1336 |
+
else:
|
1337 |
+
x = self.decoder(x) + self.bias
|
1338 |
+
return x
|
1339 |
+
|
1340 |
+
|
1341 |
+
@add_start_docstrings(
|
1342 |
+
"""
|
1343 |
+
ESM Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled
|
1344 |
+
output) e.g. for GLUE tasks.
|
1345 |
+
""",
|
1346 |
+
ESM_START_DOCSTRING,
|
1347 |
+
)
|
1348 |
+
class TFEsmForSequenceClassification(TFEsmPreTrainedModel, TFSequenceClassificationLoss):
|
1349 |
+
_keys_to_ignore_on_load_missing = [r"position_ids"]
|
1350 |
+
|
1351 |
+
def __init__(self, config):
|
1352 |
+
super().__init__(config)
|
1353 |
+
self.num_labels = config.num_labels
|
1354 |
+
self.config = config
|
1355 |
+
|
1356 |
+
self.esm = TFEsmMainLayer(config, add_pooling_layer=False, name="esm")
|
1357 |
+
self.classifier = TFEsmClassificationHead(config, name="classifier")
|
1358 |
+
|
1359 |
+
@unpack_inputs
|
1360 |
+
@add_start_docstrings_to_model_forward(ESM_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1361 |
+
@add_code_sample_docstrings(
|
1362 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1363 |
+
output_type=TFSequenceClassifierOutput,
|
1364 |
+
config_class=_CONFIG_FOR_DOC,
|
1365 |
+
)
|
1366 |
+
def call(
|
1367 |
+
self,
|
1368 |
+
input_ids: TFModelInputType | None = None,
|
1369 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1370 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
1371 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
1372 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1373 |
+
labels: np.ndarray | tf.Tensor | None = None,
|
1374 |
+
output_attentions: Optional[bool] = None,
|
1375 |
+
output_hidden_states: Optional[bool] = None,
|
1376 |
+
return_dict: Optional[bool] = None,
|
1377 |
+
training: bool = False,
|
1378 |
+
) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
|
1379 |
+
r"""
|
1380 |
+
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
|
1381 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1382 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1383 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1384 |
+
"""
|
1385 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1386 |
+
|
1387 |
+
outputs = self.esm(
|
1388 |
+
input_ids,
|
1389 |
+
attention_mask=attention_mask,
|
1390 |
+
position_ids=position_ids,
|
1391 |
+
head_mask=head_mask,
|
1392 |
+
inputs_embeds=inputs_embeds,
|
1393 |
+
output_attentions=output_attentions,
|
1394 |
+
output_hidden_states=output_hidden_states,
|
1395 |
+
return_dict=return_dict,
|
1396 |
+
training=training,
|
1397 |
+
)
|
1398 |
+
sequence_output = outputs[0]
|
1399 |
+
logits = self.classifier(sequence_output)
|
1400 |
+
|
1401 |
+
loss = None if labels is None else self.hf_compute_loss(labels, logits)
|
1402 |
+
|
1403 |
+
if not return_dict:
|
1404 |
+
output = (logits,) + outputs[2:]
|
1405 |
+
return ((loss,) + output) if loss is not None else output
|
1406 |
+
|
1407 |
+
return TFSequenceClassifierOutput(
|
1408 |
+
loss=loss,
|
1409 |
+
logits=logits,
|
1410 |
+
hidden_states=outputs.hidden_states,
|
1411 |
+
attentions=outputs.attentions,
|
1412 |
+
)
|
1413 |
+
|
1414 |
+
def build(self, input_shape=None):
|
1415 |
+
if self.built:
|
1416 |
+
return
|
1417 |
+
self.built = True
|
1418 |
+
if getattr(self, "esm", None) is not None:
|
1419 |
+
with tf.name_scope(self.esm.name):
|
1420 |
+
self.esm.build(None)
|
1421 |
+
if getattr(self, "classifier", None) is not None:
|
1422 |
+
with tf.name_scope(self.classifier.name):
|
1423 |
+
self.classifier.build(None)
|
1424 |
+
|
1425 |
+
|
1426 |
+
@add_start_docstrings(
|
1427 |
+
"""
|
1428 |
+
ESM Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
|
1429 |
+
Named-Entity-Recognition (NER) tasks.
|
1430 |
+
""",
|
1431 |
+
ESM_START_DOCSTRING,
|
1432 |
+
)
|
1433 |
+
class TFEsmForTokenClassification(TFEsmPreTrainedModel, TFTokenClassificationLoss):
|
1434 |
+
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
1435 |
+
_keys_to_ignore_on_load_missing = [r"position_ids"]
|
1436 |
+
|
1437 |
+
def __init__(self, config):
|
1438 |
+
super().__init__(config)
|
1439 |
+
self.num_labels = config.num_labels
|
1440 |
+
|
1441 |
+
self.esm = TFEsmMainLayer(config, add_pooling_layer=False, name="esm")
|
1442 |
+
self.dropout = keras.layers.Dropout(config.hidden_dropout_prob)
|
1443 |
+
self.classifier = keras.layers.Dense(config.num_labels, name="classifier")
|
1444 |
+
self.config = config
|
1445 |
+
|
1446 |
+
@unpack_inputs
|
1447 |
+
@add_start_docstrings_to_model_forward(ESM_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1448 |
+
@add_code_sample_docstrings(
|
1449 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1450 |
+
output_type=TFTokenClassifierOutput,
|
1451 |
+
config_class=_CONFIG_FOR_DOC,
|
1452 |
+
)
|
1453 |
+
def call(
|
1454 |
+
self,
|
1455 |
+
input_ids: TFModelInputType | None = None,
|
1456 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1457 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
1458 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
1459 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1460 |
+
labels: np.ndarray | tf.Tensor | None = None,
|
1461 |
+
output_attentions: Optional[bool] = None,
|
1462 |
+
output_hidden_states: Optional[bool] = None,
|
1463 |
+
return_dict: Optional[bool] = None,
|
1464 |
+
training: bool = False,
|
1465 |
+
) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]:
|
1466 |
+
r"""
|
1467 |
+
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1468 |
+
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
|
1469 |
+
"""
|
1470 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1471 |
+
|
1472 |
+
outputs = self.esm(
|
1473 |
+
input_ids,
|
1474 |
+
attention_mask=attention_mask,
|
1475 |
+
position_ids=position_ids,
|
1476 |
+
head_mask=head_mask,
|
1477 |
+
inputs_embeds=inputs_embeds,
|
1478 |
+
output_attentions=output_attentions,
|
1479 |
+
output_hidden_states=output_hidden_states,
|
1480 |
+
return_dict=return_dict,
|
1481 |
+
training=training,
|
1482 |
+
)
|
1483 |
+
|
1484 |
+
sequence_output = outputs[0]
|
1485 |
+
|
1486 |
+
sequence_output = self.dropout(sequence_output, training=training)
|
1487 |
+
logits = self.classifier(sequence_output)
|
1488 |
+
|
1489 |
+
loss = None if labels is None else self.hf_compute_loss(labels, logits)
|
1490 |
+
|
1491 |
+
if not return_dict:
|
1492 |
+
output = (logits,) + outputs[2:]
|
1493 |
+
return ((loss,) + output) if loss is not None else output
|
1494 |
+
|
1495 |
+
return TFTokenClassifierOutput(
|
1496 |
+
loss=loss,
|
1497 |
+
logits=logits,
|
1498 |
+
hidden_states=outputs.hidden_states,
|
1499 |
+
attentions=outputs.attentions,
|
1500 |
+
)
|
1501 |
+
|
1502 |
+
def build(self, input_shape=None):
|
1503 |
+
if self.built:
|
1504 |
+
return
|
1505 |
+
self.built = True
|
1506 |
+
if getattr(self, "esm", None) is not None:
|
1507 |
+
with tf.name_scope(self.esm.name):
|
1508 |
+
self.esm.build(None)
|
1509 |
+
if getattr(self, "classifier", None) is not None:
|
1510 |
+
with tf.name_scope(self.classifier.name):
|
1511 |
+
self.classifier.build([None, None, self.config.hidden_size])
|
1512 |
+
|
1513 |
+
|
1514 |
+
class TFEsmClassificationHead(keras.layers.Layer):
|
1515 |
+
"""Head for sentence-level classification tasks."""
|
1516 |
+
|
1517 |
+
def __init__(self, config, name=None):
|
1518 |
+
super().__init__(name=name)
|
1519 |
+
self.dense = keras.layers.Dense(
|
1520 |
+
config.hidden_size,
|
1521 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
1522 |
+
activation="tanh",
|
1523 |
+
name="dense",
|
1524 |
+
)
|
1525 |
+
self.dropout = keras.layers.Dropout(config.hidden_dropout_prob)
|
1526 |
+
self.out_proj = keras.layers.Dense(
|
1527 |
+
config.num_labels,
|
1528 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
1529 |
+
activation="linear",
|
1530 |
+
name="out_proj",
|
1531 |
+
)
|
1532 |
+
self.config = config
|
1533 |
+
|
1534 |
+
def call(self, features, training=False):
|
1535 |
+
x = features[:, 0, :] # take <s> token (equiv. to [CLS])
|
1536 |
+
x = self.dropout(x, training=training)
|
1537 |
+
x = self.dense(x)
|
1538 |
+
x = self.dropout(x, training=training)
|
1539 |
+
x = self.out_proj(x)
|
1540 |
+
return x
|
1541 |
+
|
1542 |
+
def build(self, input_shape=None):
|
1543 |
+
if self.built:
|
1544 |
+
return
|
1545 |
+
self.built = True
|
1546 |
+
if getattr(self, "dense", None) is not None:
|
1547 |
+
with tf.name_scope(self.dense.name):
|
1548 |
+
self.dense.build([None, None, self.config.hidden_size])
|
1549 |
+
if getattr(self, "out_proj", None) is not None:
|
1550 |
+
with tf.name_scope(self.out_proj.name):
|
1551 |
+
self.out_proj.build([None, None, self.config.hidden_size])
|
1552 |
+
|
1553 |
+
|
1554 |
+
def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0):
|
1555 |
+
"""
|
1556 |
+
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
|
1557 |
+
are ignored. This is modified from fairseq's `utils.make_positions`.
|
1558 |
+
|
1559 |
+
Args:
|
1560 |
+
x: tf.Tensor x:
|
1561 |
+
|
1562 |
+
Returns: tf.Tensor
|
1563 |
+
"""
|
1564 |
+
# The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
|
1565 |
+
mask = tf.cast(input_ids != padding_idx, tf.int64)
|
1566 |
+
incremental_indices = (tf.cumsum(mask, axis=1) + past_key_values_length) * mask
|
1567 |
+
return incremental_indices + padding_idx
|
llmeval-env/lib/python3.10/site-packages/transformers/models/esm/openfold_utils/feats.py
ADDED
@@ -0,0 +1,255 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2021 AlQuraishi Laboratory
|
2 |
+
# Copyright 2021 DeepMind Technologies Limited
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
from typing import Dict, Tuple, overload
|
17 |
+
|
18 |
+
import torch
|
19 |
+
import torch.types
|
20 |
+
from torch import nn
|
21 |
+
|
22 |
+
from . import residue_constants as rc
|
23 |
+
from .rigid_utils import Rigid, Rotation
|
24 |
+
from .tensor_utils import batched_gather
|
25 |
+
|
26 |
+
|
27 |
+
@overload
|
28 |
+
def pseudo_beta_fn(aatype: torch.Tensor, all_atom_positions: torch.Tensor, all_atom_masks: None) -> torch.Tensor:
|
29 |
+
...
|
30 |
+
|
31 |
+
|
32 |
+
@overload
|
33 |
+
def pseudo_beta_fn(
|
34 |
+
aatype: torch.Tensor, all_atom_positions: torch.Tensor, all_atom_masks: torch.Tensor
|
35 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
36 |
+
...
|
37 |
+
|
38 |
+
|
39 |
+
def pseudo_beta_fn(aatype, all_atom_positions, all_atom_masks):
|
40 |
+
is_gly = aatype == rc.restype_order["G"]
|
41 |
+
ca_idx = rc.atom_order["CA"]
|
42 |
+
cb_idx = rc.atom_order["CB"]
|
43 |
+
pseudo_beta = torch.where(
|
44 |
+
is_gly[..., None].expand(*((-1,) * len(is_gly.shape)), 3),
|
45 |
+
all_atom_positions[..., ca_idx, :],
|
46 |
+
all_atom_positions[..., cb_idx, :],
|
47 |
+
)
|
48 |
+
|
49 |
+
if all_atom_masks is not None:
|
50 |
+
pseudo_beta_mask = torch.where(
|
51 |
+
is_gly,
|
52 |
+
all_atom_masks[..., ca_idx],
|
53 |
+
all_atom_masks[..., cb_idx],
|
54 |
+
)
|
55 |
+
return pseudo_beta, pseudo_beta_mask
|
56 |
+
else:
|
57 |
+
return pseudo_beta
|
58 |
+
|
59 |
+
|
60 |
+
def atom14_to_atom37(atom14: torch.Tensor, batch: Dict[str, torch.Tensor]) -> torch.Tensor:
|
61 |
+
atom37_data = batched_gather(
|
62 |
+
atom14,
|
63 |
+
batch["residx_atom37_to_atom14"],
|
64 |
+
dim=-2,
|
65 |
+
no_batch_dims=len(atom14.shape[:-2]),
|
66 |
+
)
|
67 |
+
|
68 |
+
atom37_data = atom37_data * batch["atom37_atom_exists"][..., None]
|
69 |
+
|
70 |
+
return atom37_data
|
71 |
+
|
72 |
+
|
73 |
+
def build_template_angle_feat(template_feats: Dict[str, torch.Tensor]) -> torch.Tensor:
|
74 |
+
template_aatype = template_feats["template_aatype"]
|
75 |
+
torsion_angles_sin_cos = template_feats["template_torsion_angles_sin_cos"]
|
76 |
+
alt_torsion_angles_sin_cos = template_feats["template_alt_torsion_angles_sin_cos"]
|
77 |
+
torsion_angles_mask = template_feats["template_torsion_angles_mask"]
|
78 |
+
template_angle_feat = torch.cat(
|
79 |
+
[
|
80 |
+
nn.functional.one_hot(template_aatype, 22),
|
81 |
+
torsion_angles_sin_cos.reshape(*torsion_angles_sin_cos.shape[:-2], 14),
|
82 |
+
alt_torsion_angles_sin_cos.reshape(*alt_torsion_angles_sin_cos.shape[:-2], 14),
|
83 |
+
torsion_angles_mask,
|
84 |
+
],
|
85 |
+
dim=-1,
|
86 |
+
)
|
87 |
+
|
88 |
+
return template_angle_feat
|
89 |
+
|
90 |
+
|
91 |
+
def build_template_pair_feat(
|
92 |
+
batch: Dict[str, torch.Tensor],
|
93 |
+
min_bin: torch.types.Number,
|
94 |
+
max_bin: torch.types.Number,
|
95 |
+
no_bins: int,
|
96 |
+
use_unit_vector: bool = False,
|
97 |
+
eps: float = 1e-20,
|
98 |
+
inf: float = 1e8,
|
99 |
+
) -> torch.Tensor:
|
100 |
+
template_mask = batch["template_pseudo_beta_mask"]
|
101 |
+
template_mask_2d = template_mask[..., None] * template_mask[..., None, :]
|
102 |
+
|
103 |
+
# Compute distogram (this seems to differ slightly from Alg. 5)
|
104 |
+
tpb = batch["template_pseudo_beta"]
|
105 |
+
dgram = torch.sum((tpb[..., None, :] - tpb[..., None, :, :]) ** 2, dim=-1, keepdim=True)
|
106 |
+
lower = torch.linspace(min_bin, max_bin, no_bins, device=tpb.device) ** 2
|
107 |
+
upper = torch.cat([lower[1:], lower.new_tensor([inf])], dim=-1)
|
108 |
+
dgram = ((dgram > lower) * (dgram < upper)).type(dgram.dtype)
|
109 |
+
|
110 |
+
to_concat = [dgram, template_mask_2d[..., None]]
|
111 |
+
|
112 |
+
aatype_one_hot: torch.LongTensor = nn.functional.one_hot(
|
113 |
+
batch["template_aatype"],
|
114 |
+
rc.restype_num + 2,
|
115 |
+
)
|
116 |
+
|
117 |
+
n_res = batch["template_aatype"].shape[-1]
|
118 |
+
to_concat.append(aatype_one_hot[..., None, :, :].expand(*aatype_one_hot.shape[:-2], n_res, -1, -1))
|
119 |
+
to_concat.append(aatype_one_hot[..., None, :].expand(*aatype_one_hot.shape[:-2], -1, n_res, -1))
|
120 |
+
|
121 |
+
n, ca, c = [rc.atom_order[a] for a in ["N", "CA", "C"]]
|
122 |
+
rigids = Rigid.make_transform_from_reference(
|
123 |
+
n_xyz=batch["template_all_atom_positions"][..., n, :],
|
124 |
+
ca_xyz=batch["template_all_atom_positions"][..., ca, :],
|
125 |
+
c_xyz=batch["template_all_atom_positions"][..., c, :],
|
126 |
+
eps=eps,
|
127 |
+
)
|
128 |
+
points = rigids.get_trans()[..., None, :, :]
|
129 |
+
rigid_vec = rigids[..., None].invert_apply(points)
|
130 |
+
|
131 |
+
inv_distance_scalar = torch.rsqrt(eps + torch.sum(rigid_vec**2, dim=-1))
|
132 |
+
|
133 |
+
t_aa_masks = batch["template_all_atom_mask"]
|
134 |
+
template_mask = t_aa_masks[..., n] * t_aa_masks[..., ca] * t_aa_masks[..., c]
|
135 |
+
template_mask_2d = template_mask[..., None] * template_mask[..., None, :]
|
136 |
+
|
137 |
+
inv_distance_scalar = inv_distance_scalar * template_mask_2d
|
138 |
+
unit_vector = rigid_vec * inv_distance_scalar[..., None]
|
139 |
+
|
140 |
+
if not use_unit_vector:
|
141 |
+
unit_vector = unit_vector * 0.0
|
142 |
+
|
143 |
+
to_concat.extend(torch.unbind(unit_vector[..., None, :], dim=-1))
|
144 |
+
to_concat.append(template_mask_2d[..., None])
|
145 |
+
|
146 |
+
act = torch.cat(to_concat, dim=-1)
|
147 |
+
act = act * template_mask_2d[..., None]
|
148 |
+
|
149 |
+
return act
|
150 |
+
|
151 |
+
|
152 |
+
def build_extra_msa_feat(batch: Dict[str, torch.Tensor]) -> torch.Tensor:
|
153 |
+
msa_1hot: torch.LongTensor = nn.functional.one_hot(batch["extra_msa"], 23)
|
154 |
+
msa_feat = [
|
155 |
+
msa_1hot,
|
156 |
+
batch["extra_has_deletion"].unsqueeze(-1),
|
157 |
+
batch["extra_deletion_value"].unsqueeze(-1),
|
158 |
+
]
|
159 |
+
return torch.cat(msa_feat, dim=-1)
|
160 |
+
|
161 |
+
|
162 |
+
def torsion_angles_to_frames(
|
163 |
+
r: Rigid,
|
164 |
+
alpha: torch.Tensor,
|
165 |
+
aatype: torch.Tensor,
|
166 |
+
rrgdf: torch.Tensor,
|
167 |
+
) -> Rigid:
|
168 |
+
# [*, N, 8, 4, 4]
|
169 |
+
default_4x4 = rrgdf[aatype, ...]
|
170 |
+
|
171 |
+
# [*, N, 8] transformations, i.e.
|
172 |
+
# One [*, N, 8, 3, 3] rotation matrix and
|
173 |
+
# One [*, N, 8, 3] translation matrix
|
174 |
+
default_r = r.from_tensor_4x4(default_4x4)
|
175 |
+
|
176 |
+
bb_rot = alpha.new_zeros((*((1,) * len(alpha.shape[:-1])), 2))
|
177 |
+
bb_rot[..., 1] = 1
|
178 |
+
|
179 |
+
# [*, N, 8, 2]
|
180 |
+
alpha = torch.cat([bb_rot.expand(*alpha.shape[:-2], -1, -1), alpha], dim=-2)
|
181 |
+
|
182 |
+
# [*, N, 8, 3, 3]
|
183 |
+
# Produces rotation matrices of the form:
|
184 |
+
# [
|
185 |
+
# [1, 0 , 0 ],
|
186 |
+
# [0, a_2,-a_1],
|
187 |
+
# [0, a_1, a_2]
|
188 |
+
# ]
|
189 |
+
# This follows the original code rather than the supplement, which uses
|
190 |
+
# different indices.
|
191 |
+
|
192 |
+
all_rots = alpha.new_zeros(default_r.get_rots().get_rot_mats().shape)
|
193 |
+
all_rots[..., 0, 0] = 1
|
194 |
+
all_rots[..., 1, 1] = alpha[..., 1]
|
195 |
+
all_rots[..., 1, 2] = -alpha[..., 0]
|
196 |
+
all_rots[..., 2, 1:] = alpha
|
197 |
+
|
198 |
+
all_frames = default_r.compose(Rigid(Rotation(rot_mats=all_rots), None))
|
199 |
+
|
200 |
+
chi2_frame_to_frame = all_frames[..., 5]
|
201 |
+
chi3_frame_to_frame = all_frames[..., 6]
|
202 |
+
chi4_frame_to_frame = all_frames[..., 7]
|
203 |
+
|
204 |
+
chi1_frame_to_bb = all_frames[..., 4]
|
205 |
+
chi2_frame_to_bb = chi1_frame_to_bb.compose(chi2_frame_to_frame)
|
206 |
+
chi3_frame_to_bb = chi2_frame_to_bb.compose(chi3_frame_to_frame)
|
207 |
+
chi4_frame_to_bb = chi3_frame_to_bb.compose(chi4_frame_to_frame)
|
208 |
+
|
209 |
+
all_frames_to_bb = Rigid.cat(
|
210 |
+
[
|
211 |
+
all_frames[..., :5],
|
212 |
+
chi2_frame_to_bb.unsqueeze(-1),
|
213 |
+
chi3_frame_to_bb.unsqueeze(-1),
|
214 |
+
chi4_frame_to_bb.unsqueeze(-1),
|
215 |
+
],
|
216 |
+
dim=-1,
|
217 |
+
)
|
218 |
+
|
219 |
+
all_frames_to_global = r[..., None].compose(all_frames_to_bb)
|
220 |
+
|
221 |
+
return all_frames_to_global
|
222 |
+
|
223 |
+
|
224 |
+
def frames_and_literature_positions_to_atom14_pos(
|
225 |
+
r: Rigid,
|
226 |
+
aatype: torch.Tensor,
|
227 |
+
default_frames: torch.Tensor,
|
228 |
+
group_idx: torch.Tensor,
|
229 |
+
atom_mask: torch.Tensor,
|
230 |
+
lit_positions: torch.Tensor,
|
231 |
+
) -> torch.Tensor:
|
232 |
+
# [*, N, 14]
|
233 |
+
group_mask = group_idx[aatype, ...]
|
234 |
+
|
235 |
+
# [*, N, 14, 8]
|
236 |
+
group_mask_one_hot: torch.LongTensor = nn.functional.one_hot(
|
237 |
+
group_mask,
|
238 |
+
num_classes=default_frames.shape[-3],
|
239 |
+
)
|
240 |
+
|
241 |
+
# [*, N, 14, 8]
|
242 |
+
t_atoms_to_global = r[..., None, :] * group_mask_one_hot
|
243 |
+
|
244 |
+
# [*, N, 14]
|
245 |
+
t_atoms_to_global = t_atoms_to_global.map_tensor_fn(lambda x: torch.sum(x, dim=-1))
|
246 |
+
|
247 |
+
# [*, N, 14, 1]
|
248 |
+
atom_mask = atom_mask[aatype, ...].unsqueeze(-1)
|
249 |
+
|
250 |
+
# [*, N, 14, 3]
|
251 |
+
lit_positions = lit_positions[aatype, ...]
|
252 |
+
pred_positions = t_atoms_to_global.apply(lit_positions)
|
253 |
+
pred_positions = pred_positions * atom_mask
|
254 |
+
|
255 |
+
return pred_positions
|
llmeval-env/lib/python3.10/site-packages/transformers/models/esm/tokenization_esm.py
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 Meta and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Tokenization classes for ESM."""
|
16 |
+
import os
|
17 |
+
from typing import List, Optional
|
18 |
+
|
19 |
+
from ...tokenization_utils import PreTrainedTokenizer
|
20 |
+
from ...utils import logging
|
21 |
+
|
22 |
+
|
23 |
+
logger = logging.get_logger(__name__)
|
24 |
+
|
25 |
+
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"}
|
26 |
+
|
27 |
+
|
28 |
+
def load_vocab_file(vocab_file):
|
29 |
+
with open(vocab_file, "r") as f:
|
30 |
+
lines = f.read().splitlines()
|
31 |
+
return [l.strip() for l in lines]
|
32 |
+
|
33 |
+
|
34 |
+
class EsmTokenizer(PreTrainedTokenizer):
|
35 |
+
"""
|
36 |
+
Constructs an ESM tokenizer.
|
37 |
+
"""
|
38 |
+
|
39 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
40 |
+
model_input_names = ["input_ids", "attention_mask"]
|
41 |
+
|
42 |
+
def __init__(
|
43 |
+
self,
|
44 |
+
vocab_file,
|
45 |
+
unk_token="<unk>",
|
46 |
+
cls_token="<cls>",
|
47 |
+
pad_token="<pad>",
|
48 |
+
mask_token="<mask>",
|
49 |
+
eos_token="<eos>",
|
50 |
+
**kwargs,
|
51 |
+
):
|
52 |
+
self.all_tokens = load_vocab_file(vocab_file)
|
53 |
+
self._id_to_token = dict(enumerate(self.all_tokens))
|
54 |
+
self._token_to_id = {tok: ind for ind, tok in enumerate(self.all_tokens)}
|
55 |
+
super().__init__(
|
56 |
+
unk_token=unk_token,
|
57 |
+
cls_token=cls_token,
|
58 |
+
pad_token=pad_token,
|
59 |
+
mask_token=mask_token,
|
60 |
+
eos_token=eos_token,
|
61 |
+
**kwargs,
|
62 |
+
)
|
63 |
+
|
64 |
+
# TODO, all the tokens are added? But they are also part of the vocab... bit strange.
|
65 |
+
# none of them are special, but they all need special splitting.
|
66 |
+
|
67 |
+
self.unique_no_split_tokens = self.all_tokens
|
68 |
+
self._update_trie(self.unique_no_split_tokens)
|
69 |
+
|
70 |
+
def _convert_id_to_token(self, index: int) -> str:
|
71 |
+
return self._id_to_token.get(index, self.unk_token)
|
72 |
+
|
73 |
+
def _convert_token_to_id(self, token: str) -> int:
|
74 |
+
return self._token_to_id.get(token, self._token_to_id.get(self.unk_token))
|
75 |
+
|
76 |
+
def _tokenize(self, text, **kwargs):
|
77 |
+
return text.split()
|
78 |
+
|
79 |
+
def get_vocab(self):
|
80 |
+
base_vocab = self._token_to_id.copy()
|
81 |
+
base_vocab.update(self.added_tokens_encoder)
|
82 |
+
return base_vocab
|
83 |
+
|
84 |
+
def token_to_id(self, token: str) -> int:
|
85 |
+
return self._token_to_id.get(token, self._token_to_id.get(self.unk_token))
|
86 |
+
|
87 |
+
def id_to_token(self, index: int) -> str:
|
88 |
+
return self._id_to_token.get(index, self.unk_token)
|
89 |
+
|
90 |
+
def build_inputs_with_special_tokens(
|
91 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
92 |
+
) -> List[int]:
|
93 |
+
cls = [self.cls_token_id]
|
94 |
+
sep = [self.eos_token_id] # No sep token in ESM vocabulary
|
95 |
+
if token_ids_1 is None:
|
96 |
+
if self.eos_token_id is None:
|
97 |
+
return cls + token_ids_0
|
98 |
+
else:
|
99 |
+
return cls + token_ids_0 + sep
|
100 |
+
elif self.eos_token_id is None:
|
101 |
+
raise ValueError("Cannot tokenize multiple sequences when EOS token is not set!")
|
102 |
+
return cls + token_ids_0 + sep + token_ids_1 + sep # Multiple inputs always have an EOS token
|
103 |
+
|
104 |
+
def get_special_tokens_mask(
|
105 |
+
self, token_ids_0: List, token_ids_1: Optional[List] = None, already_has_special_tokens: bool = False
|
106 |
+
) -> List[int]:
|
107 |
+
"""
|
108 |
+
Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
|
109 |
+
special tokens using the tokenizer `prepare_for_model` or `encode_plus` methods.
|
110 |
+
|
111 |
+
Args:
|
112 |
+
token_ids_0 (`List[int]`):
|
113 |
+
List of ids of the first sequence.
|
114 |
+
token_ids_1 (`List[int]`, *optional*):
|
115 |
+
List of ids of the second sequence.
|
116 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
117 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
118 |
+
|
119 |
+
Returns:
|
120 |
+
A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
121 |
+
"""
|
122 |
+
if already_has_special_tokens:
|
123 |
+
if token_ids_1 is not None:
|
124 |
+
raise ValueError(
|
125 |
+
"You should not supply a second sequence if the provided sequence of "
|
126 |
+
"ids is already formatted with special tokens for the model."
|
127 |
+
)
|
128 |
+
|
129 |
+
return [1 if token in self.all_special_ids else 0 for token in token_ids_0]
|
130 |
+
mask = [1] + ([0] * len(token_ids_0)) + [1]
|
131 |
+
if token_ids_1 is not None:
|
132 |
+
mask += [0] * len(token_ids_1) + [1]
|
133 |
+
return mask
|
134 |
+
|
135 |
+
def save_vocabulary(self, save_directory, filename_prefix):
|
136 |
+
vocab_file = os.path.join(save_directory, (filename_prefix + "-" if filename_prefix else "") + "vocab.txt")
|
137 |
+
with open(vocab_file, "w") as f:
|
138 |
+
f.write("\n".join(self.all_tokens))
|
139 |
+
return (vocab_file,)
|
140 |
+
|
141 |
+
@property
|
142 |
+
def vocab_size(self) -> int:
|
143 |
+
return len(self.all_tokens)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv2/__init__.py
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2021 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from typing import TYPE_CHECKING
|
16 |
+
|
17 |
+
from ...utils import (
|
18 |
+
OptionalDependencyNotAvailable,
|
19 |
+
_LazyModule,
|
20 |
+
is_tokenizers_available,
|
21 |
+
is_torch_available,
|
22 |
+
is_vision_available,
|
23 |
+
)
|
24 |
+
|
25 |
+
|
26 |
+
_import_structure = {
|
27 |
+
"configuration_layoutlmv2": ["LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "LayoutLMv2Config"],
|
28 |
+
"processing_layoutlmv2": ["LayoutLMv2Processor"],
|
29 |
+
"tokenization_layoutlmv2": ["LayoutLMv2Tokenizer"],
|
30 |
+
}
|
31 |
+
|
32 |
+
try:
|
33 |
+
if not is_tokenizers_available():
|
34 |
+
raise OptionalDependencyNotAvailable()
|
35 |
+
except OptionalDependencyNotAvailable:
|
36 |
+
pass
|
37 |
+
else:
|
38 |
+
_import_structure["tokenization_layoutlmv2_fast"] = ["LayoutLMv2TokenizerFast"]
|
39 |
+
|
40 |
+
try:
|
41 |
+
if not is_vision_available():
|
42 |
+
raise OptionalDependencyNotAvailable()
|
43 |
+
except OptionalDependencyNotAvailable:
|
44 |
+
pass
|
45 |
+
else:
|
46 |
+
_import_structure["feature_extraction_layoutlmv2"] = ["LayoutLMv2FeatureExtractor"]
|
47 |
+
_import_structure["image_processing_layoutlmv2"] = ["LayoutLMv2ImageProcessor"]
|
48 |
+
|
49 |
+
try:
|
50 |
+
if not is_torch_available():
|
51 |
+
raise OptionalDependencyNotAvailable()
|
52 |
+
except OptionalDependencyNotAvailable:
|
53 |
+
pass
|
54 |
+
else:
|
55 |
+
_import_structure["modeling_layoutlmv2"] = [
|
56 |
+
"LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST",
|
57 |
+
"LayoutLMv2ForQuestionAnswering",
|
58 |
+
"LayoutLMv2ForSequenceClassification",
|
59 |
+
"LayoutLMv2ForTokenClassification",
|
60 |
+
"LayoutLMv2Layer",
|
61 |
+
"LayoutLMv2Model",
|
62 |
+
"LayoutLMv2PreTrainedModel",
|
63 |
+
]
|
64 |
+
|
65 |
+
if TYPE_CHECKING:
|
66 |
+
from .configuration_layoutlmv2 import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMv2Config
|
67 |
+
from .processing_layoutlmv2 import LayoutLMv2Processor
|
68 |
+
from .tokenization_layoutlmv2 import LayoutLMv2Tokenizer
|
69 |
+
|
70 |
+
try:
|
71 |
+
if not is_tokenizers_available():
|
72 |
+
raise OptionalDependencyNotAvailable()
|
73 |
+
except OptionalDependencyNotAvailable:
|
74 |
+
pass
|
75 |
+
else:
|
76 |
+
from .tokenization_layoutlmv2_fast import LayoutLMv2TokenizerFast
|
77 |
+
|
78 |
+
try:
|
79 |
+
if not is_vision_available():
|
80 |
+
raise OptionalDependencyNotAvailable()
|
81 |
+
except OptionalDependencyNotAvailable:
|
82 |
+
pass
|
83 |
+
else:
|
84 |
+
from .feature_extraction_layoutlmv2 import LayoutLMv2FeatureExtractor, LayoutLMv2ImageProcessor
|
85 |
+
|
86 |
+
try:
|
87 |
+
if not is_torch_available():
|
88 |
+
raise OptionalDependencyNotAvailable()
|
89 |
+
except OptionalDependencyNotAvailable:
|
90 |
+
pass
|
91 |
+
else:
|
92 |
+
from .modeling_layoutlmv2 import (
|
93 |
+
LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST,
|
94 |
+
LayoutLMv2ForQuestionAnswering,
|
95 |
+
LayoutLMv2ForSequenceClassification,
|
96 |
+
LayoutLMv2ForTokenClassification,
|
97 |
+
LayoutLMv2Layer,
|
98 |
+
LayoutLMv2Model,
|
99 |
+
LayoutLMv2PreTrainedModel,
|
100 |
+
)
|
101 |
+
else:
|
102 |
+
import sys
|
103 |
+
|
104 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv2/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.79 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv2/__pycache__/configuration_layoutlmv2.cpython-310.pyc
ADDED
Binary file (9.37 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv2/__pycache__/feature_extraction_layoutlmv2.cpython-310.pyc
ADDED
Binary file (1.06 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv2/__pycache__/image_processing_layoutlmv2.cpython-310.pyc
ADDED
Binary file (11.6 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv2/__pycache__/modeling_layoutlmv2.cpython-310.pyc
ADDED
Binary file (42.7 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv2/__pycache__/processing_layoutlmv2.cpython-310.pyc
ADDED
Binary file (7.32 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv2/__pycache__/tokenization_layoutlmv2.cpython-310.pyc
ADDED
Binary file (46.9 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv2/__pycache__/tokenization_layoutlmv2_fast.cpython-310.pyc
ADDED
Binary file (21.6 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv2/configuration_layoutlmv2.py
ADDED
@@ -0,0 +1,222 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright Microsoft Research and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" LayoutLMv2 model configuration"""
|
16 |
+
|
17 |
+
from ...configuration_utils import PretrainedConfig
|
18 |
+
from ...utils import is_detectron2_available, logging
|
19 |
+
|
20 |
+
|
21 |
+
logger = logging.get_logger(__name__)
|
22 |
+
|
23 |
+
|
24 |
+
from ..deprecated._archive_maps import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
25 |
+
|
26 |
+
|
27 |
+
# soft dependency
|
28 |
+
if is_detectron2_available():
|
29 |
+
import detectron2
|
30 |
+
|
31 |
+
|
32 |
+
class LayoutLMv2Config(PretrainedConfig):
|
33 |
+
r"""
|
34 |
+
This is the configuration class to store the configuration of a [`LayoutLMv2Model`]. It is used to instantiate an
|
35 |
+
LayoutLMv2 model according to the specified arguments, defining the model architecture. Instantiating a
|
36 |
+
configuration with the defaults will yield a similar configuration to that of the LayoutLMv2
|
37 |
+
[microsoft/layoutlmv2-base-uncased](https://huggingface.co/microsoft/layoutlmv2-base-uncased) architecture.
|
38 |
+
|
39 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
40 |
+
documentation from [`PretrainedConfig`] for more information.
|
41 |
+
|
42 |
+
Args:
|
43 |
+
vocab_size (`int`, *optional*, defaults to 30522):
|
44 |
+
Vocabulary size of the LayoutLMv2 model. Defines the number of different tokens that can be represented by
|
45 |
+
the `inputs_ids` passed when calling [`LayoutLMv2Model`] or [`TFLayoutLMv2Model`].
|
46 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
47 |
+
Dimension of the encoder layers and the pooler layer.
|
48 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
49 |
+
Number of hidden layers in the Transformer encoder.
|
50 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
51 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
52 |
+
intermediate_size (`int`, *optional*, defaults to 3072):
|
53 |
+
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
54 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
|
55 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
56 |
+
`"relu"`, `"selu"` and `"gelu_new"` are supported.
|
57 |
+
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
|
58 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
59 |
+
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
|
60 |
+
The dropout ratio for the attention probabilities.
|
61 |
+
max_position_embeddings (`int`, *optional*, defaults to 512):
|
62 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
63 |
+
just in case (e.g., 512 or 1024 or 2048).
|
64 |
+
type_vocab_size (`int`, *optional*, defaults to 2):
|
65 |
+
The vocabulary size of the `token_type_ids` passed when calling [`LayoutLMv2Model`] or
|
66 |
+
[`TFLayoutLMv2Model`].
|
67 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
68 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
69 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
70 |
+
The epsilon used by the layer normalization layers.
|
71 |
+
max_2d_position_embeddings (`int`, *optional*, defaults to 1024):
|
72 |
+
The maximum value that the 2D position embedding might ever be used with. Typically set this to something
|
73 |
+
large just in case (e.g., 1024).
|
74 |
+
max_rel_pos (`int`, *optional*, defaults to 128):
|
75 |
+
The maximum number of relative positions to be used in the self-attention mechanism.
|
76 |
+
rel_pos_bins (`int`, *optional*, defaults to 32):
|
77 |
+
The number of relative position bins to be used in the self-attention mechanism.
|
78 |
+
fast_qkv (`bool`, *optional*, defaults to `True`):
|
79 |
+
Whether or not to use a single matrix for the queries, keys, values in the self-attention layers.
|
80 |
+
max_rel_2d_pos (`int`, *optional*, defaults to 256):
|
81 |
+
The maximum number of relative 2D positions in the self-attention mechanism.
|
82 |
+
rel_2d_pos_bins (`int`, *optional*, defaults to 64):
|
83 |
+
The number of 2D relative position bins in the self-attention mechanism.
|
84 |
+
image_feature_pool_shape (`List[int]`, *optional*, defaults to [7, 7, 256]):
|
85 |
+
The shape of the average-pooled feature map.
|
86 |
+
coordinate_size (`int`, *optional*, defaults to 128):
|
87 |
+
Dimension of the coordinate embeddings.
|
88 |
+
shape_size (`int`, *optional*, defaults to 128):
|
89 |
+
Dimension of the width and height embeddings.
|
90 |
+
has_relative_attention_bias (`bool`, *optional*, defaults to `True`):
|
91 |
+
Whether or not to use a relative attention bias in the self-attention mechanism.
|
92 |
+
has_spatial_attention_bias (`bool`, *optional*, defaults to `True`):
|
93 |
+
Whether or not to use a spatial attention bias in the self-attention mechanism.
|
94 |
+
has_visual_segment_embedding (`bool`, *optional*, defaults to `False`):
|
95 |
+
Whether or not to add visual segment embeddings.
|
96 |
+
detectron2_config_args (`dict`, *optional*):
|
97 |
+
Dictionary containing the configuration arguments of the Detectron2 visual backbone. Refer to [this
|
98 |
+
file](https://github.com/microsoft/unilm/blob/master/layoutlmft/layoutlmft/models/layoutlmv2/detectron2_config.py)
|
99 |
+
for details regarding default values.
|
100 |
+
|
101 |
+
Example:
|
102 |
+
|
103 |
+
```python
|
104 |
+
>>> from transformers import LayoutLMv2Config, LayoutLMv2Model
|
105 |
+
|
106 |
+
>>> # Initializing a LayoutLMv2 microsoft/layoutlmv2-base-uncased style configuration
|
107 |
+
>>> configuration = LayoutLMv2Config()
|
108 |
+
|
109 |
+
>>> # Initializing a model (with random weights) from the microsoft/layoutlmv2-base-uncased style configuration
|
110 |
+
>>> model = LayoutLMv2Model(configuration)
|
111 |
+
|
112 |
+
>>> # Accessing the model configuration
|
113 |
+
>>> configuration = model.config
|
114 |
+
```"""
|
115 |
+
|
116 |
+
model_type = "layoutlmv2"
|
117 |
+
|
118 |
+
def __init__(
|
119 |
+
self,
|
120 |
+
vocab_size=30522,
|
121 |
+
hidden_size=768,
|
122 |
+
num_hidden_layers=12,
|
123 |
+
num_attention_heads=12,
|
124 |
+
intermediate_size=3072,
|
125 |
+
hidden_act="gelu",
|
126 |
+
hidden_dropout_prob=0.1,
|
127 |
+
attention_probs_dropout_prob=0.1,
|
128 |
+
max_position_embeddings=512,
|
129 |
+
type_vocab_size=2,
|
130 |
+
initializer_range=0.02,
|
131 |
+
layer_norm_eps=1e-12,
|
132 |
+
pad_token_id=0,
|
133 |
+
max_2d_position_embeddings=1024,
|
134 |
+
max_rel_pos=128,
|
135 |
+
rel_pos_bins=32,
|
136 |
+
fast_qkv=True,
|
137 |
+
max_rel_2d_pos=256,
|
138 |
+
rel_2d_pos_bins=64,
|
139 |
+
convert_sync_batchnorm=True,
|
140 |
+
image_feature_pool_shape=[7, 7, 256],
|
141 |
+
coordinate_size=128,
|
142 |
+
shape_size=128,
|
143 |
+
has_relative_attention_bias=True,
|
144 |
+
has_spatial_attention_bias=True,
|
145 |
+
has_visual_segment_embedding=False,
|
146 |
+
detectron2_config_args=None,
|
147 |
+
**kwargs,
|
148 |
+
):
|
149 |
+
super().__init__(
|
150 |
+
vocab_size=vocab_size,
|
151 |
+
hidden_size=hidden_size,
|
152 |
+
num_hidden_layers=num_hidden_layers,
|
153 |
+
num_attention_heads=num_attention_heads,
|
154 |
+
intermediate_size=intermediate_size,
|
155 |
+
hidden_act=hidden_act,
|
156 |
+
hidden_dropout_prob=hidden_dropout_prob,
|
157 |
+
attention_probs_dropout_prob=attention_probs_dropout_prob,
|
158 |
+
max_position_embeddings=max_position_embeddings,
|
159 |
+
type_vocab_size=type_vocab_size,
|
160 |
+
initializer_range=initializer_range,
|
161 |
+
layer_norm_eps=layer_norm_eps,
|
162 |
+
pad_token_id=pad_token_id,
|
163 |
+
**kwargs,
|
164 |
+
)
|
165 |
+
self.max_2d_position_embeddings = max_2d_position_embeddings
|
166 |
+
self.max_rel_pos = max_rel_pos
|
167 |
+
self.rel_pos_bins = rel_pos_bins
|
168 |
+
self.fast_qkv = fast_qkv
|
169 |
+
self.max_rel_2d_pos = max_rel_2d_pos
|
170 |
+
self.rel_2d_pos_bins = rel_2d_pos_bins
|
171 |
+
self.convert_sync_batchnorm = convert_sync_batchnorm
|
172 |
+
self.image_feature_pool_shape = image_feature_pool_shape
|
173 |
+
self.coordinate_size = coordinate_size
|
174 |
+
self.shape_size = shape_size
|
175 |
+
self.has_relative_attention_bias = has_relative_attention_bias
|
176 |
+
self.has_spatial_attention_bias = has_spatial_attention_bias
|
177 |
+
self.has_visual_segment_embedding = has_visual_segment_embedding
|
178 |
+
self.detectron2_config_args = (
|
179 |
+
detectron2_config_args if detectron2_config_args is not None else self.get_default_detectron2_config()
|
180 |
+
)
|
181 |
+
|
182 |
+
@classmethod
|
183 |
+
def get_default_detectron2_config(self):
|
184 |
+
return {
|
185 |
+
"MODEL.MASK_ON": True,
|
186 |
+
"MODEL.PIXEL_STD": [57.375, 57.120, 58.395],
|
187 |
+
"MODEL.BACKBONE.NAME": "build_resnet_fpn_backbone",
|
188 |
+
"MODEL.FPN.IN_FEATURES": ["res2", "res3", "res4", "res5"],
|
189 |
+
"MODEL.ANCHOR_GENERATOR.SIZES": [[32], [64], [128], [256], [512]],
|
190 |
+
"MODEL.RPN.IN_FEATURES": ["p2", "p3", "p4", "p5", "p6"],
|
191 |
+
"MODEL.RPN.PRE_NMS_TOPK_TRAIN": 2000,
|
192 |
+
"MODEL.RPN.PRE_NMS_TOPK_TEST": 1000,
|
193 |
+
"MODEL.RPN.POST_NMS_TOPK_TRAIN": 1000,
|
194 |
+
"MODEL.POST_NMS_TOPK_TEST": 1000,
|
195 |
+
"MODEL.ROI_HEADS.NAME": "StandardROIHeads",
|
196 |
+
"MODEL.ROI_HEADS.NUM_CLASSES": 5,
|
197 |
+
"MODEL.ROI_HEADS.IN_FEATURES": ["p2", "p3", "p4", "p5"],
|
198 |
+
"MODEL.ROI_BOX_HEAD.NAME": "FastRCNNConvFCHead",
|
199 |
+
"MODEL.ROI_BOX_HEAD.NUM_FC": 2,
|
200 |
+
"MODEL.ROI_BOX_HEAD.POOLER_RESOLUTION": 14,
|
201 |
+
"MODEL.ROI_MASK_HEAD.NAME": "MaskRCNNConvUpsampleHead",
|
202 |
+
"MODEL.ROI_MASK_HEAD.NUM_CONV": 4,
|
203 |
+
"MODEL.ROI_MASK_HEAD.POOLER_RESOLUTION": 7,
|
204 |
+
"MODEL.RESNETS.DEPTH": 101,
|
205 |
+
"MODEL.RESNETS.SIZES": [[32], [64], [128], [256], [512]],
|
206 |
+
"MODEL.RESNETS.ASPECT_RATIOS": [[0.5, 1.0, 2.0]],
|
207 |
+
"MODEL.RESNETS.OUT_FEATURES": ["res2", "res3", "res4", "res5"],
|
208 |
+
"MODEL.RESNETS.NUM_GROUPS": 32,
|
209 |
+
"MODEL.RESNETS.WIDTH_PER_GROUP": 8,
|
210 |
+
"MODEL.RESNETS.STRIDE_IN_1X1": False,
|
211 |
+
}
|
212 |
+
|
213 |
+
def get_detectron2_config(self):
|
214 |
+
detectron2_config = detectron2.config.get_cfg()
|
215 |
+
for k, v in self.detectron2_config_args.items():
|
216 |
+
attributes = k.split(".")
|
217 |
+
to_set = detectron2_config
|
218 |
+
for attribute in attributes[:-1]:
|
219 |
+
to_set = getattr(to_set, attribute)
|
220 |
+
setattr(to_set, attributes[-1], v)
|
221 |
+
|
222 |
+
return detectron2_config
|
llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv2/feature_extraction_layoutlmv2.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""
|
16 |
+
Feature extractor class for LayoutLMv2.
|
17 |
+
"""
|
18 |
+
|
19 |
+
import warnings
|
20 |
+
|
21 |
+
from ...utils import logging
|
22 |
+
from .image_processing_layoutlmv2 import LayoutLMv2ImageProcessor
|
23 |
+
|
24 |
+
|
25 |
+
logger = logging.get_logger(__name__)
|
26 |
+
|
27 |
+
|
28 |
+
class LayoutLMv2FeatureExtractor(LayoutLMv2ImageProcessor):
|
29 |
+
def __init__(self, *args, **kwargs) -> None:
|
30 |
+
warnings.warn(
|
31 |
+
"The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers."
|
32 |
+
" Please use LayoutLMv2ImageProcessor instead.",
|
33 |
+
FutureWarning,
|
34 |
+
)
|
35 |
+
super().__init__(*args, **kwargs)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv2/modeling_layoutlmv2.py
ADDED
@@ -0,0 +1,1407 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 Microsoft Research The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch LayoutLMv2 model."""
|
16 |
+
|
17 |
+
import math
|
18 |
+
from typing import Optional, Tuple, Union
|
19 |
+
|
20 |
+
import torch
|
21 |
+
import torch.utils.checkpoint
|
22 |
+
from torch import nn
|
23 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
24 |
+
|
25 |
+
from ...activations import ACT2FN
|
26 |
+
from ...modeling_outputs import (
|
27 |
+
BaseModelOutput,
|
28 |
+
BaseModelOutputWithPooling,
|
29 |
+
QuestionAnsweringModelOutput,
|
30 |
+
SequenceClassifierOutput,
|
31 |
+
TokenClassifierOutput,
|
32 |
+
)
|
33 |
+
from ...modeling_utils import PreTrainedModel
|
34 |
+
from ...pytorch_utils import apply_chunking_to_forward
|
35 |
+
from ...utils import (
|
36 |
+
add_start_docstrings,
|
37 |
+
add_start_docstrings_to_model_forward,
|
38 |
+
is_detectron2_available,
|
39 |
+
logging,
|
40 |
+
replace_return_docstrings,
|
41 |
+
requires_backends,
|
42 |
+
)
|
43 |
+
from .configuration_layoutlmv2 import LayoutLMv2Config
|
44 |
+
|
45 |
+
|
46 |
+
# soft dependency
|
47 |
+
if is_detectron2_available():
|
48 |
+
import detectron2
|
49 |
+
from detectron2.modeling import META_ARCH_REGISTRY
|
50 |
+
|
51 |
+
logger = logging.get_logger(__name__)
|
52 |
+
|
53 |
+
_CHECKPOINT_FOR_DOC = "microsoft/layoutlmv2-base-uncased"
|
54 |
+
_CONFIG_FOR_DOC = "LayoutLMv2Config"
|
55 |
+
|
56 |
+
|
57 |
+
from ..deprecated._archive_maps import LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
58 |
+
|
59 |
+
|
60 |
+
class LayoutLMv2Embeddings(nn.Module):
|
61 |
+
"""Construct the embeddings from word, position and token_type embeddings."""
|
62 |
+
|
63 |
+
def __init__(self, config):
|
64 |
+
super(LayoutLMv2Embeddings, self).__init__()
|
65 |
+
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
|
66 |
+
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
|
67 |
+
|
68 |
+
self.x_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.coordinate_size)
|
69 |
+
self.y_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.coordinate_size)
|
70 |
+
self.h_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.shape_size)
|
71 |
+
self.w_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.shape_size)
|
72 |
+
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
|
73 |
+
|
74 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
75 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
76 |
+
|
77 |
+
self.register_buffer(
|
78 |
+
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
|
79 |
+
)
|
80 |
+
|
81 |
+
def _calc_spatial_position_embeddings(self, bbox):
|
82 |
+
try:
|
83 |
+
left_position_embeddings = self.x_position_embeddings(bbox[:, :, 0])
|
84 |
+
upper_position_embeddings = self.y_position_embeddings(bbox[:, :, 1])
|
85 |
+
right_position_embeddings = self.x_position_embeddings(bbox[:, :, 2])
|
86 |
+
lower_position_embeddings = self.y_position_embeddings(bbox[:, :, 3])
|
87 |
+
except IndexError as e:
|
88 |
+
raise IndexError("The `bbox` coordinate values should be within 0-1000 range.") from e
|
89 |
+
|
90 |
+
h_position_embeddings = self.h_position_embeddings(bbox[:, :, 3] - bbox[:, :, 1])
|
91 |
+
w_position_embeddings = self.w_position_embeddings(bbox[:, :, 2] - bbox[:, :, 0])
|
92 |
+
|
93 |
+
spatial_position_embeddings = torch.cat(
|
94 |
+
[
|
95 |
+
left_position_embeddings,
|
96 |
+
upper_position_embeddings,
|
97 |
+
right_position_embeddings,
|
98 |
+
lower_position_embeddings,
|
99 |
+
h_position_embeddings,
|
100 |
+
w_position_embeddings,
|
101 |
+
],
|
102 |
+
dim=-1,
|
103 |
+
)
|
104 |
+
return spatial_position_embeddings
|
105 |
+
|
106 |
+
|
107 |
+
class LayoutLMv2SelfAttention(nn.Module):
|
108 |
+
def __init__(self, config):
|
109 |
+
super().__init__()
|
110 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
|
111 |
+
raise ValueError(
|
112 |
+
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
|
113 |
+
f"heads ({config.num_attention_heads})"
|
114 |
+
)
|
115 |
+
self.fast_qkv = config.fast_qkv
|
116 |
+
self.num_attention_heads = config.num_attention_heads
|
117 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
118 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
119 |
+
|
120 |
+
self.has_relative_attention_bias = config.has_relative_attention_bias
|
121 |
+
self.has_spatial_attention_bias = config.has_spatial_attention_bias
|
122 |
+
|
123 |
+
if config.fast_qkv:
|
124 |
+
self.qkv_linear = nn.Linear(config.hidden_size, 3 * self.all_head_size, bias=False)
|
125 |
+
self.q_bias = nn.Parameter(torch.zeros(1, 1, self.all_head_size))
|
126 |
+
self.v_bias = nn.Parameter(torch.zeros(1, 1, self.all_head_size))
|
127 |
+
else:
|
128 |
+
self.query = nn.Linear(config.hidden_size, self.all_head_size)
|
129 |
+
self.key = nn.Linear(config.hidden_size, self.all_head_size)
|
130 |
+
self.value = nn.Linear(config.hidden_size, self.all_head_size)
|
131 |
+
|
132 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
133 |
+
|
134 |
+
def transpose_for_scores(self, x):
|
135 |
+
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
136 |
+
x = x.view(*new_x_shape)
|
137 |
+
return x.permute(0, 2, 1, 3)
|
138 |
+
|
139 |
+
def compute_qkv(self, hidden_states):
|
140 |
+
if self.fast_qkv:
|
141 |
+
qkv = self.qkv_linear(hidden_states)
|
142 |
+
q, k, v = torch.chunk(qkv, 3, dim=-1)
|
143 |
+
if q.ndimension() == self.q_bias.ndimension():
|
144 |
+
q = q + self.q_bias
|
145 |
+
v = v + self.v_bias
|
146 |
+
else:
|
147 |
+
_sz = (1,) * (q.ndimension() - 1) + (-1,)
|
148 |
+
q = q + self.q_bias.view(*_sz)
|
149 |
+
v = v + self.v_bias.view(*_sz)
|
150 |
+
else:
|
151 |
+
q = self.query(hidden_states)
|
152 |
+
k = self.key(hidden_states)
|
153 |
+
v = self.value(hidden_states)
|
154 |
+
return q, k, v
|
155 |
+
|
156 |
+
def forward(
|
157 |
+
self,
|
158 |
+
hidden_states,
|
159 |
+
attention_mask=None,
|
160 |
+
head_mask=None,
|
161 |
+
output_attentions=False,
|
162 |
+
rel_pos=None,
|
163 |
+
rel_2d_pos=None,
|
164 |
+
):
|
165 |
+
q, k, v = self.compute_qkv(hidden_states)
|
166 |
+
|
167 |
+
# (B, L, H*D) -> (B, H, L, D)
|
168 |
+
query_layer = self.transpose_for_scores(q)
|
169 |
+
key_layer = self.transpose_for_scores(k)
|
170 |
+
value_layer = self.transpose_for_scores(v)
|
171 |
+
|
172 |
+
query_layer = query_layer / math.sqrt(self.attention_head_size)
|
173 |
+
# [BSZ, NAT, L, L]
|
174 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
175 |
+
if self.has_relative_attention_bias:
|
176 |
+
attention_scores += rel_pos
|
177 |
+
if self.has_spatial_attention_bias:
|
178 |
+
attention_scores += rel_2d_pos
|
179 |
+
attention_scores = attention_scores.float().masked_fill_(
|
180 |
+
attention_mask.to(torch.bool), torch.finfo(attention_scores.dtype).min
|
181 |
+
)
|
182 |
+
attention_probs = nn.functional.softmax(attention_scores, dim=-1, dtype=torch.float32).type_as(value_layer)
|
183 |
+
# This is actually dropping out entire tokens to attend to, which might
|
184 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
185 |
+
attention_probs = self.dropout(attention_probs)
|
186 |
+
|
187 |
+
# Mask heads if we want to
|
188 |
+
if head_mask is not None:
|
189 |
+
attention_probs = attention_probs * head_mask
|
190 |
+
|
191 |
+
context_layer = torch.matmul(attention_probs, value_layer)
|
192 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
193 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
194 |
+
context_layer = context_layer.view(*new_context_layer_shape)
|
195 |
+
|
196 |
+
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
197 |
+
return outputs
|
198 |
+
|
199 |
+
|
200 |
+
class LayoutLMv2Attention(nn.Module):
|
201 |
+
def __init__(self, config):
|
202 |
+
super().__init__()
|
203 |
+
self.self = LayoutLMv2SelfAttention(config)
|
204 |
+
self.output = LayoutLMv2SelfOutput(config)
|
205 |
+
|
206 |
+
def forward(
|
207 |
+
self,
|
208 |
+
hidden_states,
|
209 |
+
attention_mask=None,
|
210 |
+
head_mask=None,
|
211 |
+
output_attentions=False,
|
212 |
+
rel_pos=None,
|
213 |
+
rel_2d_pos=None,
|
214 |
+
):
|
215 |
+
self_outputs = self.self(
|
216 |
+
hidden_states,
|
217 |
+
attention_mask,
|
218 |
+
head_mask,
|
219 |
+
output_attentions,
|
220 |
+
rel_pos=rel_pos,
|
221 |
+
rel_2d_pos=rel_2d_pos,
|
222 |
+
)
|
223 |
+
attention_output = self.output(self_outputs[0], hidden_states)
|
224 |
+
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
|
225 |
+
return outputs
|
226 |
+
|
227 |
+
|
228 |
+
class LayoutLMv2SelfOutput(nn.Module):
|
229 |
+
def __init__(self, config):
|
230 |
+
super().__init__()
|
231 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
232 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
233 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
234 |
+
|
235 |
+
def forward(self, hidden_states, input_tensor):
|
236 |
+
hidden_states = self.dense(hidden_states)
|
237 |
+
hidden_states = self.dropout(hidden_states)
|
238 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
239 |
+
return hidden_states
|
240 |
+
|
241 |
+
|
242 |
+
# Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->LayoutLMv2
|
243 |
+
class LayoutLMv2Intermediate(nn.Module):
|
244 |
+
def __init__(self, config):
|
245 |
+
super().__init__()
|
246 |
+
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
247 |
+
if isinstance(config.hidden_act, str):
|
248 |
+
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
249 |
+
else:
|
250 |
+
self.intermediate_act_fn = config.hidden_act
|
251 |
+
|
252 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
253 |
+
hidden_states = self.dense(hidden_states)
|
254 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
255 |
+
return hidden_states
|
256 |
+
|
257 |
+
|
258 |
+
# Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->LayoutLM
|
259 |
+
class LayoutLMv2Output(nn.Module):
|
260 |
+
def __init__(self, config):
|
261 |
+
super().__init__()
|
262 |
+
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
263 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
264 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
265 |
+
|
266 |
+
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
267 |
+
hidden_states = self.dense(hidden_states)
|
268 |
+
hidden_states = self.dropout(hidden_states)
|
269 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
270 |
+
return hidden_states
|
271 |
+
|
272 |
+
|
273 |
+
class LayoutLMv2Layer(nn.Module):
|
274 |
+
def __init__(self, config):
|
275 |
+
super().__init__()
|
276 |
+
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
277 |
+
self.seq_len_dim = 1
|
278 |
+
self.attention = LayoutLMv2Attention(config)
|
279 |
+
self.intermediate = LayoutLMv2Intermediate(config)
|
280 |
+
self.output = LayoutLMv2Output(config)
|
281 |
+
|
282 |
+
def forward(
|
283 |
+
self,
|
284 |
+
hidden_states,
|
285 |
+
attention_mask=None,
|
286 |
+
head_mask=None,
|
287 |
+
output_attentions=False,
|
288 |
+
rel_pos=None,
|
289 |
+
rel_2d_pos=None,
|
290 |
+
):
|
291 |
+
self_attention_outputs = self.attention(
|
292 |
+
hidden_states,
|
293 |
+
attention_mask,
|
294 |
+
head_mask,
|
295 |
+
output_attentions=output_attentions,
|
296 |
+
rel_pos=rel_pos,
|
297 |
+
rel_2d_pos=rel_2d_pos,
|
298 |
+
)
|
299 |
+
attention_output = self_attention_outputs[0]
|
300 |
+
|
301 |
+
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
|
302 |
+
|
303 |
+
layer_output = apply_chunking_to_forward(
|
304 |
+
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
|
305 |
+
)
|
306 |
+
outputs = (layer_output,) + outputs
|
307 |
+
|
308 |
+
return outputs
|
309 |
+
|
310 |
+
def feed_forward_chunk(self, attention_output):
|
311 |
+
intermediate_output = self.intermediate(attention_output)
|
312 |
+
layer_output = self.output(intermediate_output, attention_output)
|
313 |
+
return layer_output
|
314 |
+
|
315 |
+
|
316 |
+
def relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128):
|
317 |
+
"""
|
318 |
+
Adapted from Mesh Tensorflow:
|
319 |
+
https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593
|
320 |
+
Translate relative position to a bucket number for relative attention. The relative position is defined as
|
321 |
+
memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to
|
322 |
+
position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for small
|
323 |
+
absolute relative_position and larger buckets for larger absolute relative_positions. All relative positions
|
324 |
+
>=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket. This should
|
325 |
+
allow for more graceful generalization to longer sequences than the model has been trained on.
|
326 |
+
|
327 |
+
Args:
|
328 |
+
relative_position: an int32 Tensor
|
329 |
+
bidirectional: a boolean - whether the attention is bidirectional
|
330 |
+
num_buckets: an integer
|
331 |
+
max_distance: an integer
|
332 |
+
|
333 |
+
Returns:
|
334 |
+
a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets)
|
335 |
+
"""
|
336 |
+
|
337 |
+
ret = 0
|
338 |
+
if bidirectional:
|
339 |
+
num_buckets //= 2
|
340 |
+
ret += (relative_position > 0).long() * num_buckets
|
341 |
+
n = torch.abs(relative_position)
|
342 |
+
else:
|
343 |
+
n = torch.max(-relative_position, torch.zeros_like(relative_position))
|
344 |
+
# now n is in the range [0, inf)
|
345 |
+
|
346 |
+
# half of the buckets are for exact increments in positions
|
347 |
+
max_exact = num_buckets // 2
|
348 |
+
is_small = n < max_exact
|
349 |
+
|
350 |
+
# The other half of the buckets are for logarithmically bigger bins in positions up to max_distance
|
351 |
+
val_if_large = max_exact + (
|
352 |
+
torch.log(n.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact)
|
353 |
+
).to(torch.long)
|
354 |
+
val_if_large = torch.min(val_if_large, torch.full_like(val_if_large, num_buckets - 1))
|
355 |
+
|
356 |
+
ret += torch.where(is_small, n, val_if_large)
|
357 |
+
return ret
|
358 |
+
|
359 |
+
|
360 |
+
class LayoutLMv2Encoder(nn.Module):
|
361 |
+
def __init__(self, config):
|
362 |
+
super().__init__()
|
363 |
+
self.config = config
|
364 |
+
self.layer = nn.ModuleList([LayoutLMv2Layer(config) for _ in range(config.num_hidden_layers)])
|
365 |
+
|
366 |
+
self.has_relative_attention_bias = config.has_relative_attention_bias
|
367 |
+
self.has_spatial_attention_bias = config.has_spatial_attention_bias
|
368 |
+
|
369 |
+
if self.has_relative_attention_bias:
|
370 |
+
self.rel_pos_bins = config.rel_pos_bins
|
371 |
+
self.max_rel_pos = config.max_rel_pos
|
372 |
+
self.rel_pos_bias = nn.Linear(self.rel_pos_bins, config.num_attention_heads, bias=False)
|
373 |
+
|
374 |
+
if self.has_spatial_attention_bias:
|
375 |
+
self.max_rel_2d_pos = config.max_rel_2d_pos
|
376 |
+
self.rel_2d_pos_bins = config.rel_2d_pos_bins
|
377 |
+
self.rel_pos_x_bias = nn.Linear(self.rel_2d_pos_bins, config.num_attention_heads, bias=False)
|
378 |
+
self.rel_pos_y_bias = nn.Linear(self.rel_2d_pos_bins, config.num_attention_heads, bias=False)
|
379 |
+
|
380 |
+
self.gradient_checkpointing = False
|
381 |
+
|
382 |
+
def _calculate_1d_position_embeddings(self, position_ids):
|
383 |
+
rel_pos_mat = position_ids.unsqueeze(-2) - position_ids.unsqueeze(-1)
|
384 |
+
rel_pos = relative_position_bucket(
|
385 |
+
rel_pos_mat,
|
386 |
+
num_buckets=self.rel_pos_bins,
|
387 |
+
max_distance=self.max_rel_pos,
|
388 |
+
)
|
389 |
+
rel_pos = self.rel_pos_bias.weight.t()[rel_pos].permute(0, 3, 1, 2)
|
390 |
+
rel_pos = rel_pos.contiguous()
|
391 |
+
return rel_pos
|
392 |
+
|
393 |
+
def _calculate_2d_position_embeddings(self, bbox):
|
394 |
+
position_coord_x = bbox[:, :, 0]
|
395 |
+
position_coord_y = bbox[:, :, 3]
|
396 |
+
rel_pos_x_2d_mat = position_coord_x.unsqueeze(-2) - position_coord_x.unsqueeze(-1)
|
397 |
+
rel_pos_y_2d_mat = position_coord_y.unsqueeze(-2) - position_coord_y.unsqueeze(-1)
|
398 |
+
rel_pos_x = relative_position_bucket(
|
399 |
+
rel_pos_x_2d_mat,
|
400 |
+
num_buckets=self.rel_2d_pos_bins,
|
401 |
+
max_distance=self.max_rel_2d_pos,
|
402 |
+
)
|
403 |
+
rel_pos_y = relative_position_bucket(
|
404 |
+
rel_pos_y_2d_mat,
|
405 |
+
num_buckets=self.rel_2d_pos_bins,
|
406 |
+
max_distance=self.max_rel_2d_pos,
|
407 |
+
)
|
408 |
+
rel_pos_x = self.rel_pos_x_bias.weight.t()[rel_pos_x].permute(0, 3, 1, 2)
|
409 |
+
rel_pos_y = self.rel_pos_y_bias.weight.t()[rel_pos_y].permute(0, 3, 1, 2)
|
410 |
+
rel_pos_x = rel_pos_x.contiguous()
|
411 |
+
rel_pos_y = rel_pos_y.contiguous()
|
412 |
+
rel_2d_pos = rel_pos_x + rel_pos_y
|
413 |
+
return rel_2d_pos
|
414 |
+
|
415 |
+
def forward(
|
416 |
+
self,
|
417 |
+
hidden_states,
|
418 |
+
attention_mask=None,
|
419 |
+
head_mask=None,
|
420 |
+
output_attentions=False,
|
421 |
+
output_hidden_states=False,
|
422 |
+
return_dict=True,
|
423 |
+
bbox=None,
|
424 |
+
position_ids=None,
|
425 |
+
):
|
426 |
+
all_hidden_states = () if output_hidden_states else None
|
427 |
+
all_self_attentions = () if output_attentions else None
|
428 |
+
|
429 |
+
rel_pos = self._calculate_1d_position_embeddings(position_ids) if self.has_relative_attention_bias else None
|
430 |
+
rel_2d_pos = self._calculate_2d_position_embeddings(bbox) if self.has_spatial_attention_bias else None
|
431 |
+
|
432 |
+
for i, layer_module in enumerate(self.layer):
|
433 |
+
if output_hidden_states:
|
434 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
435 |
+
|
436 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
437 |
+
|
438 |
+
if self.gradient_checkpointing and self.training:
|
439 |
+
layer_outputs = self._gradient_checkpointing_func(
|
440 |
+
layer_module.__call__,
|
441 |
+
hidden_states,
|
442 |
+
attention_mask,
|
443 |
+
layer_head_mask,
|
444 |
+
output_attentions,
|
445 |
+
rel_pos=rel_pos,
|
446 |
+
rel_2d_pos=rel_2d_pos,
|
447 |
+
)
|
448 |
+
else:
|
449 |
+
layer_outputs = layer_module(
|
450 |
+
hidden_states,
|
451 |
+
attention_mask,
|
452 |
+
layer_head_mask,
|
453 |
+
output_attentions,
|
454 |
+
rel_pos=rel_pos,
|
455 |
+
rel_2d_pos=rel_2d_pos,
|
456 |
+
)
|
457 |
+
|
458 |
+
hidden_states = layer_outputs[0]
|
459 |
+
if output_attentions:
|
460 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
461 |
+
|
462 |
+
if output_hidden_states:
|
463 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
464 |
+
|
465 |
+
if not return_dict:
|
466 |
+
return tuple(
|
467 |
+
v
|
468 |
+
for v in [
|
469 |
+
hidden_states,
|
470 |
+
all_hidden_states,
|
471 |
+
all_self_attentions,
|
472 |
+
]
|
473 |
+
if v is not None
|
474 |
+
)
|
475 |
+
return BaseModelOutput(
|
476 |
+
last_hidden_state=hidden_states,
|
477 |
+
hidden_states=all_hidden_states,
|
478 |
+
attentions=all_self_attentions,
|
479 |
+
)
|
480 |
+
|
481 |
+
|
482 |
+
class LayoutLMv2PreTrainedModel(PreTrainedModel):
|
483 |
+
"""
|
484 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
485 |
+
models.
|
486 |
+
"""
|
487 |
+
|
488 |
+
config_class = LayoutLMv2Config
|
489 |
+
base_model_prefix = "layoutlmv2"
|
490 |
+
|
491 |
+
def _init_weights(self, module):
|
492 |
+
"""Initialize the weights"""
|
493 |
+
if isinstance(module, nn.Linear):
|
494 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
495 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
496 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
497 |
+
if module.bias is not None:
|
498 |
+
module.bias.data.zero_()
|
499 |
+
elif isinstance(module, nn.Embedding):
|
500 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
501 |
+
if module.padding_idx is not None:
|
502 |
+
module.weight.data[module.padding_idx].zero_()
|
503 |
+
elif isinstance(module, nn.LayerNorm):
|
504 |
+
module.bias.data.zero_()
|
505 |
+
module.weight.data.fill_(1.0)
|
506 |
+
|
507 |
+
|
508 |
+
def my_convert_sync_batchnorm(module, process_group=None):
|
509 |
+
# same as `nn.modules.SyncBatchNorm.convert_sync_batchnorm` but allowing converting from `detectron2.layers.FrozenBatchNorm2d`
|
510 |
+
if isinstance(module, torch.nn.modules.batchnorm._BatchNorm):
|
511 |
+
return nn.modules.SyncBatchNorm.convert_sync_batchnorm(module, process_group)
|
512 |
+
module_output = module
|
513 |
+
if isinstance(module, detectron2.layers.FrozenBatchNorm2d):
|
514 |
+
module_output = torch.nn.SyncBatchNorm(
|
515 |
+
num_features=module.num_features,
|
516 |
+
eps=module.eps,
|
517 |
+
affine=True,
|
518 |
+
track_running_stats=True,
|
519 |
+
process_group=process_group,
|
520 |
+
)
|
521 |
+
module_output.weight = torch.nn.Parameter(module.weight)
|
522 |
+
module_output.bias = torch.nn.Parameter(module.bias)
|
523 |
+
module_output.running_mean = module.running_mean
|
524 |
+
module_output.running_var = module.running_var
|
525 |
+
module_output.num_batches_tracked = torch.tensor(0, dtype=torch.long, device=module.running_mean.device)
|
526 |
+
for name, child in module.named_children():
|
527 |
+
module_output.add_module(name, my_convert_sync_batchnorm(child, process_group))
|
528 |
+
del module
|
529 |
+
return module_output
|
530 |
+
|
531 |
+
|
532 |
+
class LayoutLMv2VisualBackbone(nn.Module):
|
533 |
+
def __init__(self, config):
|
534 |
+
super().__init__()
|
535 |
+
self.cfg = config.get_detectron2_config()
|
536 |
+
meta_arch = self.cfg.MODEL.META_ARCHITECTURE
|
537 |
+
model = META_ARCH_REGISTRY.get(meta_arch)(self.cfg)
|
538 |
+
assert isinstance(model.backbone, detectron2.modeling.backbone.FPN)
|
539 |
+
self.backbone = model.backbone
|
540 |
+
|
541 |
+
assert len(self.cfg.MODEL.PIXEL_MEAN) == len(self.cfg.MODEL.PIXEL_STD)
|
542 |
+
num_channels = len(self.cfg.MODEL.PIXEL_MEAN)
|
543 |
+
self.register_buffer(
|
544 |
+
"pixel_mean",
|
545 |
+
torch.Tensor(self.cfg.MODEL.PIXEL_MEAN).view(num_channels, 1, 1),
|
546 |
+
persistent=False,
|
547 |
+
)
|
548 |
+
self.register_buffer(
|
549 |
+
"pixel_std", torch.Tensor(self.cfg.MODEL.PIXEL_STD).view(num_channels, 1, 1), persistent=False
|
550 |
+
)
|
551 |
+
self.out_feature_key = "p2"
|
552 |
+
if torch.are_deterministic_algorithms_enabled():
|
553 |
+
logger.warning("using `AvgPool2d` instead of `AdaptiveAvgPool2d`")
|
554 |
+
input_shape = (224, 224)
|
555 |
+
backbone_stride = self.backbone.output_shape()[self.out_feature_key].stride
|
556 |
+
self.pool = nn.AvgPool2d(
|
557 |
+
(
|
558 |
+
math.ceil(math.ceil(input_shape[0] / backbone_stride) / config.image_feature_pool_shape[0]),
|
559 |
+
math.ceil(math.ceil(input_shape[1] / backbone_stride) / config.image_feature_pool_shape[1]),
|
560 |
+
)
|
561 |
+
)
|
562 |
+
else:
|
563 |
+
self.pool = nn.AdaptiveAvgPool2d(config.image_feature_pool_shape[:2])
|
564 |
+
if len(config.image_feature_pool_shape) == 2:
|
565 |
+
config.image_feature_pool_shape.append(self.backbone.output_shape()[self.out_feature_key].channels)
|
566 |
+
assert self.backbone.output_shape()[self.out_feature_key].channels == config.image_feature_pool_shape[2]
|
567 |
+
|
568 |
+
def forward(self, images):
|
569 |
+
images_input = ((images if torch.is_tensor(images) else images.tensor) - self.pixel_mean) / self.pixel_std
|
570 |
+
features = self.backbone(images_input)
|
571 |
+
features = features[self.out_feature_key]
|
572 |
+
features = self.pool(features).flatten(start_dim=2).transpose(1, 2).contiguous()
|
573 |
+
return features
|
574 |
+
|
575 |
+
def synchronize_batch_norm(self):
|
576 |
+
if not (
|
577 |
+
torch.distributed.is_available()
|
578 |
+
and torch.distributed.is_initialized()
|
579 |
+
and torch.distributed.get_rank() > -1
|
580 |
+
):
|
581 |
+
raise RuntimeError("Make sure torch.distributed is set up properly.")
|
582 |
+
|
583 |
+
self_rank = torch.distributed.get_rank()
|
584 |
+
node_size = torch.cuda.device_count()
|
585 |
+
world_size = torch.distributed.get_world_size()
|
586 |
+
if not (world_size % node_size == 0):
|
587 |
+
raise RuntimeError("Make sure the number of processes can be divided by the number of nodes")
|
588 |
+
|
589 |
+
node_global_ranks = [list(range(i * node_size, (i + 1) * node_size)) for i in range(world_size // node_size)]
|
590 |
+
sync_bn_groups = [
|
591 |
+
torch.distributed.new_group(ranks=node_global_ranks[i]) for i in range(world_size // node_size)
|
592 |
+
]
|
593 |
+
node_rank = self_rank // node_size
|
594 |
+
|
595 |
+
self.backbone = my_convert_sync_batchnorm(self.backbone, process_group=sync_bn_groups[node_rank])
|
596 |
+
|
597 |
+
|
598 |
+
LAYOUTLMV2_START_DOCSTRING = r"""
|
599 |
+
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
|
600 |
+
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
|
601 |
+
behavior.
|
602 |
+
|
603 |
+
Parameters:
|
604 |
+
config ([`LayoutLMv2Config`]): Model configuration class with all the parameters of the model.
|
605 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
606 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
607 |
+
"""
|
608 |
+
|
609 |
+
LAYOUTLMV2_INPUTS_DOCSTRING = r"""
|
610 |
+
Args:
|
611 |
+
input_ids (`torch.LongTensor` of shape `{0}`):
|
612 |
+
Indices of input sequence tokens in the vocabulary.
|
613 |
+
|
614 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
615 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
616 |
+
|
617 |
+
[What are input IDs?](../glossary#input-ids)
|
618 |
+
|
619 |
+
bbox (`torch.LongTensor` of shape `({0}, 4)`, *optional*):
|
620 |
+
Bounding boxes of each input sequence tokens. Selected in the range `[0,
|
621 |
+
config.max_2d_position_embeddings-1]`. Each bounding box should be a normalized version in (x0, y0, x1, y1)
|
622 |
+
format, where (x0, y0) corresponds to the position of the upper left corner in the bounding box, and (x1,
|
623 |
+
y1) represents the position of the lower right corner.
|
624 |
+
|
625 |
+
image (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `detectron.structures.ImageList` whose `tensors` is of shape `(batch_size, num_channels, height, width)`):
|
626 |
+
Batch of document images.
|
627 |
+
|
628 |
+
attention_mask (`torch.FloatTensor` of shape `{0}`, *optional*):
|
629 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
630 |
+
|
631 |
+
- 1 for tokens that are **not masked**,
|
632 |
+
- 0 for tokens that are **masked**.
|
633 |
+
|
634 |
+
[What are attention masks?](../glossary#attention-mask)
|
635 |
+
token_type_ids (`torch.LongTensor` of shape `{0}`, *optional*):
|
636 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
637 |
+
1]`:
|
638 |
+
|
639 |
+
- 0 corresponds to a *sentence A* token,
|
640 |
+
- 1 corresponds to a *sentence B* token.
|
641 |
+
|
642 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
643 |
+
position_ids (`torch.LongTensor` of shape `{0}`, *optional*):
|
644 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
645 |
+
config.max_position_embeddings - 1]`.
|
646 |
+
|
647 |
+
[What are position IDs?](../glossary#position-ids)
|
648 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
649 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
650 |
+
|
651 |
+
- 1 indicates the head is **not masked**,
|
652 |
+
- 0 indicates the head is **masked**.
|
653 |
+
|
654 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
655 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
656 |
+
is useful if you want more control over how to convert *input_ids* indices into associated vectors than the
|
657 |
+
model's internal embedding lookup matrix.
|
658 |
+
output_attentions (`bool`, *optional*):
|
659 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
660 |
+
tensors for more detail.
|
661 |
+
output_hidden_states (`bool`, *optional*):
|
662 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
663 |
+
more detail.
|
664 |
+
return_dict (`bool`, *optional*):
|
665 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
666 |
+
"""
|
667 |
+
|
668 |
+
|
669 |
+
class LayoutLMv2Pooler(nn.Module):
|
670 |
+
def __init__(self, config):
|
671 |
+
super().__init__()
|
672 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
673 |
+
self.activation = nn.Tanh()
|
674 |
+
|
675 |
+
def forward(self, hidden_states):
|
676 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
677 |
+
# to the first token.
|
678 |
+
first_token_tensor = hidden_states[:, 0]
|
679 |
+
pooled_output = self.dense(first_token_tensor)
|
680 |
+
pooled_output = self.activation(pooled_output)
|
681 |
+
return pooled_output
|
682 |
+
|
683 |
+
|
684 |
+
@add_start_docstrings(
|
685 |
+
"The bare LayoutLMv2 Model transformer outputting raw hidden-states without any specific head on top.",
|
686 |
+
LAYOUTLMV2_START_DOCSTRING,
|
687 |
+
)
|
688 |
+
class LayoutLMv2Model(LayoutLMv2PreTrainedModel):
|
689 |
+
def __init__(self, config):
|
690 |
+
requires_backends(self, "detectron2")
|
691 |
+
super().__init__(config)
|
692 |
+
self.config = config
|
693 |
+
self.has_visual_segment_embedding = config.has_visual_segment_embedding
|
694 |
+
self.embeddings = LayoutLMv2Embeddings(config)
|
695 |
+
|
696 |
+
self.visual = LayoutLMv2VisualBackbone(config)
|
697 |
+
self.visual_proj = nn.Linear(config.image_feature_pool_shape[-1], config.hidden_size)
|
698 |
+
if self.has_visual_segment_embedding:
|
699 |
+
self.visual_segment_embedding = nn.Parameter(nn.Embedding(1, config.hidden_size).weight[0])
|
700 |
+
self.visual_LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
701 |
+
self.visual_dropout = nn.Dropout(config.hidden_dropout_prob)
|
702 |
+
|
703 |
+
self.encoder = LayoutLMv2Encoder(config)
|
704 |
+
self.pooler = LayoutLMv2Pooler(config)
|
705 |
+
|
706 |
+
# Initialize weights and apply final processing
|
707 |
+
self.post_init()
|
708 |
+
|
709 |
+
def get_input_embeddings(self):
|
710 |
+
return self.embeddings.word_embeddings
|
711 |
+
|
712 |
+
def set_input_embeddings(self, value):
|
713 |
+
self.embeddings.word_embeddings = value
|
714 |
+
|
715 |
+
def _calc_text_embeddings(self, input_ids, bbox, position_ids, token_type_ids, inputs_embeds=None):
|
716 |
+
if input_ids is not None:
|
717 |
+
input_shape = input_ids.size()
|
718 |
+
else:
|
719 |
+
input_shape = inputs_embeds.size()[:-1]
|
720 |
+
|
721 |
+
seq_length = input_shape[1]
|
722 |
+
|
723 |
+
if position_ids is None:
|
724 |
+
position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device)
|
725 |
+
position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
|
726 |
+
if token_type_ids is None:
|
727 |
+
token_type_ids = torch.zeros_like(input_ids)
|
728 |
+
|
729 |
+
if inputs_embeds is None:
|
730 |
+
inputs_embeds = self.embeddings.word_embeddings(input_ids)
|
731 |
+
position_embeddings = self.embeddings.position_embeddings(position_ids)
|
732 |
+
spatial_position_embeddings = self.embeddings._calc_spatial_position_embeddings(bbox)
|
733 |
+
token_type_embeddings = self.embeddings.token_type_embeddings(token_type_ids)
|
734 |
+
|
735 |
+
embeddings = inputs_embeds + position_embeddings + spatial_position_embeddings + token_type_embeddings
|
736 |
+
embeddings = self.embeddings.LayerNorm(embeddings)
|
737 |
+
embeddings = self.embeddings.dropout(embeddings)
|
738 |
+
return embeddings
|
739 |
+
|
740 |
+
def _calc_img_embeddings(self, image, bbox, position_ids):
|
741 |
+
visual_embeddings = self.visual_proj(self.visual(image))
|
742 |
+
position_embeddings = self.embeddings.position_embeddings(position_ids)
|
743 |
+
spatial_position_embeddings = self.embeddings._calc_spatial_position_embeddings(bbox)
|
744 |
+
embeddings = visual_embeddings + position_embeddings + spatial_position_embeddings
|
745 |
+
if self.has_visual_segment_embedding:
|
746 |
+
embeddings += self.visual_segment_embedding
|
747 |
+
embeddings = self.visual_LayerNorm(embeddings)
|
748 |
+
embeddings = self.visual_dropout(embeddings)
|
749 |
+
return embeddings
|
750 |
+
|
751 |
+
def _calc_visual_bbox(self, image_feature_pool_shape, bbox, device, final_shape):
|
752 |
+
visual_bbox_x = torch.div(
|
753 |
+
torch.arange(
|
754 |
+
0,
|
755 |
+
1000 * (image_feature_pool_shape[1] + 1),
|
756 |
+
1000,
|
757 |
+
device=device,
|
758 |
+
dtype=bbox.dtype,
|
759 |
+
),
|
760 |
+
self.config.image_feature_pool_shape[1],
|
761 |
+
rounding_mode="floor",
|
762 |
+
)
|
763 |
+
visual_bbox_y = torch.div(
|
764 |
+
torch.arange(
|
765 |
+
0,
|
766 |
+
1000 * (self.config.image_feature_pool_shape[0] + 1),
|
767 |
+
1000,
|
768 |
+
device=device,
|
769 |
+
dtype=bbox.dtype,
|
770 |
+
),
|
771 |
+
self.config.image_feature_pool_shape[0],
|
772 |
+
rounding_mode="floor",
|
773 |
+
)
|
774 |
+
visual_bbox = torch.stack(
|
775 |
+
[
|
776 |
+
visual_bbox_x[:-1].repeat(image_feature_pool_shape[0], 1),
|
777 |
+
visual_bbox_y[:-1].repeat(image_feature_pool_shape[1], 1).transpose(0, 1),
|
778 |
+
visual_bbox_x[1:].repeat(image_feature_pool_shape[0], 1),
|
779 |
+
visual_bbox_y[1:].repeat(image_feature_pool_shape[1], 1).transpose(0, 1),
|
780 |
+
],
|
781 |
+
dim=-1,
|
782 |
+
).view(-1, bbox.size(-1))
|
783 |
+
|
784 |
+
visual_bbox = visual_bbox.repeat(final_shape[0], 1, 1)
|
785 |
+
|
786 |
+
return visual_bbox
|
787 |
+
|
788 |
+
def _get_input_shape(self, input_ids=None, inputs_embeds=None):
|
789 |
+
if input_ids is not None and inputs_embeds is not None:
|
790 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
791 |
+
elif input_ids is not None:
|
792 |
+
return input_ids.size()
|
793 |
+
elif inputs_embeds is not None:
|
794 |
+
return inputs_embeds.size()[:-1]
|
795 |
+
else:
|
796 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
797 |
+
|
798 |
+
@add_start_docstrings_to_model_forward(LAYOUTLMV2_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
|
799 |
+
@replace_return_docstrings(output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC)
|
800 |
+
def forward(
|
801 |
+
self,
|
802 |
+
input_ids: Optional[torch.LongTensor] = None,
|
803 |
+
bbox: Optional[torch.LongTensor] = None,
|
804 |
+
image: Optional[torch.FloatTensor] = None,
|
805 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
806 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
807 |
+
position_ids: Optional[torch.LongTensor] = None,
|
808 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
809 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
810 |
+
output_attentions: Optional[bool] = None,
|
811 |
+
output_hidden_states: Optional[bool] = None,
|
812 |
+
return_dict: Optional[bool] = None,
|
813 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
814 |
+
r"""
|
815 |
+
Return:
|
816 |
+
|
817 |
+
Examples:
|
818 |
+
|
819 |
+
```python
|
820 |
+
>>> from transformers import AutoProcessor, LayoutLMv2Model, set_seed
|
821 |
+
>>> from PIL import Image
|
822 |
+
>>> import torch
|
823 |
+
>>> from datasets import load_dataset
|
824 |
+
|
825 |
+
>>> set_seed(88)
|
826 |
+
|
827 |
+
>>> processor = AutoProcessor.from_pretrained("microsoft/layoutlmv2-base-uncased")
|
828 |
+
>>> model = LayoutLMv2Model.from_pretrained("microsoft/layoutlmv2-base-uncased")
|
829 |
+
|
830 |
+
|
831 |
+
>>> dataset = load_dataset("hf-internal-testing/fixtures_docvqa")
|
832 |
+
>>> image_path = dataset["test"][0]["file"]
|
833 |
+
>>> image = Image.open(image_path).convert("RGB")
|
834 |
+
|
835 |
+
>>> encoding = processor(image, return_tensors="pt")
|
836 |
+
|
837 |
+
>>> outputs = model(**encoding)
|
838 |
+
>>> last_hidden_states = outputs.last_hidden_state
|
839 |
+
|
840 |
+
>>> last_hidden_states.shape
|
841 |
+
torch.Size([1, 342, 768])
|
842 |
+
```
|
843 |
+
"""
|
844 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
845 |
+
output_hidden_states = (
|
846 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
847 |
+
)
|
848 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
849 |
+
|
850 |
+
input_shape = self._get_input_shape(input_ids, inputs_embeds)
|
851 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
852 |
+
|
853 |
+
visual_shape = list(input_shape)
|
854 |
+
visual_shape[1] = self.config.image_feature_pool_shape[0] * self.config.image_feature_pool_shape[1]
|
855 |
+
visual_shape = torch.Size(visual_shape)
|
856 |
+
# needs a new copy of input_shape for tracing. Otherwise wrong dimensions will occur
|
857 |
+
final_shape = list(self._get_input_shape(input_ids, inputs_embeds))
|
858 |
+
final_shape[1] += visual_shape[1]
|
859 |
+
final_shape = torch.Size(final_shape)
|
860 |
+
|
861 |
+
visual_bbox = self._calc_visual_bbox(self.config.image_feature_pool_shape, bbox, device, final_shape)
|
862 |
+
final_bbox = torch.cat([bbox, visual_bbox], dim=1)
|
863 |
+
|
864 |
+
if attention_mask is None:
|
865 |
+
attention_mask = torch.ones(input_shape, device=device)
|
866 |
+
|
867 |
+
visual_attention_mask = torch.ones(visual_shape, device=device)
|
868 |
+
final_attention_mask = torch.cat([attention_mask, visual_attention_mask], dim=1)
|
869 |
+
|
870 |
+
if token_type_ids is None:
|
871 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
|
872 |
+
|
873 |
+
if position_ids is None:
|
874 |
+
seq_length = input_shape[1]
|
875 |
+
position_ids = self.embeddings.position_ids[:, :seq_length]
|
876 |
+
position_ids = position_ids.expand(input_shape)
|
877 |
+
|
878 |
+
visual_position_ids = torch.arange(0, visual_shape[1], dtype=torch.long, device=device).repeat(
|
879 |
+
input_shape[0], 1
|
880 |
+
)
|
881 |
+
final_position_ids = torch.cat([position_ids, visual_position_ids], dim=1)
|
882 |
+
|
883 |
+
if bbox is None:
|
884 |
+
bbox = torch.zeros(tuple(list(input_shape) + [4]), dtype=torch.long, device=device)
|
885 |
+
|
886 |
+
text_layout_emb = self._calc_text_embeddings(
|
887 |
+
input_ids=input_ids,
|
888 |
+
bbox=bbox,
|
889 |
+
token_type_ids=token_type_ids,
|
890 |
+
position_ids=position_ids,
|
891 |
+
inputs_embeds=inputs_embeds,
|
892 |
+
)
|
893 |
+
|
894 |
+
visual_emb = self._calc_img_embeddings(
|
895 |
+
image=image,
|
896 |
+
bbox=visual_bbox,
|
897 |
+
position_ids=visual_position_ids,
|
898 |
+
)
|
899 |
+
final_emb = torch.cat([text_layout_emb, visual_emb], dim=1)
|
900 |
+
|
901 |
+
extended_attention_mask = final_attention_mask.unsqueeze(1).unsqueeze(2)
|
902 |
+
|
903 |
+
extended_attention_mask = extended_attention_mask.to(dtype=self.dtype)
|
904 |
+
extended_attention_mask = (1.0 - extended_attention_mask) * torch.finfo(self.dtype).min
|
905 |
+
|
906 |
+
if head_mask is not None:
|
907 |
+
if head_mask.dim() == 1:
|
908 |
+
head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
|
909 |
+
head_mask = head_mask.expand(self.config.num_hidden_layers, -1, -1, -1, -1)
|
910 |
+
elif head_mask.dim() == 2:
|
911 |
+
head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)
|
912 |
+
head_mask = head_mask.to(dtype=next(self.parameters()).dtype)
|
913 |
+
else:
|
914 |
+
head_mask = [None] * self.config.num_hidden_layers
|
915 |
+
|
916 |
+
encoder_outputs = self.encoder(
|
917 |
+
final_emb,
|
918 |
+
extended_attention_mask,
|
919 |
+
bbox=final_bbox,
|
920 |
+
position_ids=final_position_ids,
|
921 |
+
head_mask=head_mask,
|
922 |
+
output_attentions=output_attentions,
|
923 |
+
output_hidden_states=output_hidden_states,
|
924 |
+
return_dict=return_dict,
|
925 |
+
)
|
926 |
+
sequence_output = encoder_outputs[0]
|
927 |
+
pooled_output = self.pooler(sequence_output)
|
928 |
+
|
929 |
+
if not return_dict:
|
930 |
+
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
931 |
+
|
932 |
+
return BaseModelOutputWithPooling(
|
933 |
+
last_hidden_state=sequence_output,
|
934 |
+
pooler_output=pooled_output,
|
935 |
+
hidden_states=encoder_outputs.hidden_states,
|
936 |
+
attentions=encoder_outputs.attentions,
|
937 |
+
)
|
938 |
+
|
939 |
+
|
940 |
+
@add_start_docstrings(
|
941 |
+
"""
|
942 |
+
LayoutLMv2 Model with a sequence classification head on top (a linear layer on top of the concatenation of the
|
943 |
+
final hidden state of the [CLS] token, average-pooled initial visual embeddings and average-pooled final visual
|
944 |
+
embeddings, e.g. for document image classification tasks such as the
|
945 |
+
[RVL-CDIP](https://www.cs.cmu.edu/~aharley/rvl-cdip/) dataset.
|
946 |
+
""",
|
947 |
+
LAYOUTLMV2_START_DOCSTRING,
|
948 |
+
)
|
949 |
+
class LayoutLMv2ForSequenceClassification(LayoutLMv2PreTrainedModel):
|
950 |
+
def __init__(self, config):
|
951 |
+
super().__init__(config)
|
952 |
+
self.num_labels = config.num_labels
|
953 |
+
self.layoutlmv2 = LayoutLMv2Model(config)
|
954 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
955 |
+
self.classifier = nn.Linear(config.hidden_size * 3, config.num_labels)
|
956 |
+
|
957 |
+
# Initialize weights and apply final processing
|
958 |
+
self.post_init()
|
959 |
+
|
960 |
+
def get_input_embeddings(self):
|
961 |
+
return self.layoutlmv2.embeddings.word_embeddings
|
962 |
+
|
963 |
+
@add_start_docstrings_to_model_forward(LAYOUTLMV2_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
964 |
+
@replace_return_docstrings(output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC)
|
965 |
+
def forward(
|
966 |
+
self,
|
967 |
+
input_ids: Optional[torch.LongTensor] = None,
|
968 |
+
bbox: Optional[torch.LongTensor] = None,
|
969 |
+
image: Optional[torch.FloatTensor] = None,
|
970 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
971 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
972 |
+
position_ids: Optional[torch.LongTensor] = None,
|
973 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
974 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
975 |
+
labels: Optional[torch.LongTensor] = None,
|
976 |
+
output_attentions: Optional[bool] = None,
|
977 |
+
output_hidden_states: Optional[bool] = None,
|
978 |
+
return_dict: Optional[bool] = None,
|
979 |
+
) -> Union[Tuple, SequenceClassifierOutput]:
|
980 |
+
r"""
|
981 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
982 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
983 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
984 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
985 |
+
|
986 |
+
Returns:
|
987 |
+
|
988 |
+
Example:
|
989 |
+
|
990 |
+
```python
|
991 |
+
>>> from transformers import AutoProcessor, LayoutLMv2ForSequenceClassification, set_seed
|
992 |
+
>>> from PIL import Image
|
993 |
+
>>> import torch
|
994 |
+
>>> from datasets import load_dataset
|
995 |
+
|
996 |
+
>>> set_seed(88)
|
997 |
+
|
998 |
+
>>> dataset = load_dataset("rvl_cdip", split="train", streaming=True)
|
999 |
+
>>> data = next(iter(dataset))
|
1000 |
+
>>> image = data["image"].convert("RGB")
|
1001 |
+
|
1002 |
+
>>> processor = AutoProcessor.from_pretrained("microsoft/layoutlmv2-base-uncased")
|
1003 |
+
>>> model = LayoutLMv2ForSequenceClassification.from_pretrained(
|
1004 |
+
... "microsoft/layoutlmv2-base-uncased", num_labels=dataset.info.features["label"].num_classes
|
1005 |
+
... )
|
1006 |
+
|
1007 |
+
>>> encoding = processor(image, return_tensors="pt")
|
1008 |
+
>>> sequence_label = torch.tensor([data["label"]])
|
1009 |
+
|
1010 |
+
>>> outputs = model(**encoding, labels=sequence_label)
|
1011 |
+
|
1012 |
+
>>> loss, logits = outputs.loss, outputs.logits
|
1013 |
+
>>> predicted_idx = logits.argmax(dim=-1).item()
|
1014 |
+
>>> predicted_answer = dataset.info.features["label"].names[4]
|
1015 |
+
>>> predicted_idx, predicted_answer
|
1016 |
+
(4, 'advertisement')
|
1017 |
+
```
|
1018 |
+
"""
|
1019 |
+
|
1020 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1021 |
+
|
1022 |
+
if input_ids is not None and inputs_embeds is not None:
|
1023 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
1024 |
+
elif input_ids is not None:
|
1025 |
+
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
1026 |
+
input_shape = input_ids.size()
|
1027 |
+
elif inputs_embeds is not None:
|
1028 |
+
input_shape = inputs_embeds.size()[:-1]
|
1029 |
+
else:
|
1030 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
1031 |
+
|
1032 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
1033 |
+
|
1034 |
+
visual_shape = list(input_shape)
|
1035 |
+
visual_shape[1] = self.config.image_feature_pool_shape[0] * self.config.image_feature_pool_shape[1]
|
1036 |
+
visual_shape = torch.Size(visual_shape)
|
1037 |
+
final_shape = list(input_shape)
|
1038 |
+
final_shape[1] += visual_shape[1]
|
1039 |
+
final_shape = torch.Size(final_shape)
|
1040 |
+
|
1041 |
+
visual_bbox = self.layoutlmv2._calc_visual_bbox(
|
1042 |
+
self.config.image_feature_pool_shape, bbox, device, final_shape
|
1043 |
+
)
|
1044 |
+
|
1045 |
+
visual_position_ids = torch.arange(0, visual_shape[1], dtype=torch.long, device=device).repeat(
|
1046 |
+
input_shape[0], 1
|
1047 |
+
)
|
1048 |
+
|
1049 |
+
initial_image_embeddings = self.layoutlmv2._calc_img_embeddings(
|
1050 |
+
image=image,
|
1051 |
+
bbox=visual_bbox,
|
1052 |
+
position_ids=visual_position_ids,
|
1053 |
+
)
|
1054 |
+
|
1055 |
+
outputs = self.layoutlmv2(
|
1056 |
+
input_ids=input_ids,
|
1057 |
+
bbox=bbox,
|
1058 |
+
image=image,
|
1059 |
+
attention_mask=attention_mask,
|
1060 |
+
token_type_ids=token_type_ids,
|
1061 |
+
position_ids=position_ids,
|
1062 |
+
head_mask=head_mask,
|
1063 |
+
inputs_embeds=inputs_embeds,
|
1064 |
+
output_attentions=output_attentions,
|
1065 |
+
output_hidden_states=output_hidden_states,
|
1066 |
+
return_dict=return_dict,
|
1067 |
+
)
|
1068 |
+
if input_ids is not None:
|
1069 |
+
input_shape = input_ids.size()
|
1070 |
+
else:
|
1071 |
+
input_shape = inputs_embeds.size()[:-1]
|
1072 |
+
|
1073 |
+
seq_length = input_shape[1]
|
1074 |
+
sequence_output, final_image_embeddings = outputs[0][:, :seq_length], outputs[0][:, seq_length:]
|
1075 |
+
|
1076 |
+
cls_final_output = sequence_output[:, 0, :]
|
1077 |
+
|
1078 |
+
# average-pool the visual embeddings
|
1079 |
+
pooled_initial_image_embeddings = initial_image_embeddings.mean(dim=1)
|
1080 |
+
pooled_final_image_embeddings = final_image_embeddings.mean(dim=1)
|
1081 |
+
# concatenate with cls_final_output
|
1082 |
+
sequence_output = torch.cat(
|
1083 |
+
[cls_final_output, pooled_initial_image_embeddings, pooled_final_image_embeddings], dim=1
|
1084 |
+
)
|
1085 |
+
sequence_output = self.dropout(sequence_output)
|
1086 |
+
logits = self.classifier(sequence_output)
|
1087 |
+
|
1088 |
+
loss = None
|
1089 |
+
if labels is not None:
|
1090 |
+
if self.config.problem_type is None:
|
1091 |
+
if self.num_labels == 1:
|
1092 |
+
self.config.problem_type = "regression"
|
1093 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1094 |
+
self.config.problem_type = "single_label_classification"
|
1095 |
+
else:
|
1096 |
+
self.config.problem_type = "multi_label_classification"
|
1097 |
+
|
1098 |
+
if self.config.problem_type == "regression":
|
1099 |
+
loss_fct = MSELoss()
|
1100 |
+
if self.num_labels == 1:
|
1101 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
1102 |
+
else:
|
1103 |
+
loss = loss_fct(logits, labels)
|
1104 |
+
elif self.config.problem_type == "single_label_classification":
|
1105 |
+
loss_fct = CrossEntropyLoss()
|
1106 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1107 |
+
elif self.config.problem_type == "multi_label_classification":
|
1108 |
+
loss_fct = BCEWithLogitsLoss()
|
1109 |
+
loss = loss_fct(logits, labels)
|
1110 |
+
if not return_dict:
|
1111 |
+
output = (logits,) + outputs[2:]
|
1112 |
+
return ((loss,) + output) if loss is not None else output
|
1113 |
+
|
1114 |
+
return SequenceClassifierOutput(
|
1115 |
+
loss=loss,
|
1116 |
+
logits=logits,
|
1117 |
+
hidden_states=outputs.hidden_states,
|
1118 |
+
attentions=outputs.attentions,
|
1119 |
+
)
|
1120 |
+
|
1121 |
+
|
1122 |
+
@add_start_docstrings(
|
1123 |
+
"""
|
1124 |
+
LayoutLMv2 Model with a token classification head on top (a linear layer on top of the text part of the hidden
|
1125 |
+
states) e.g. for sequence labeling (information extraction) tasks such as
|
1126 |
+
[FUNSD](https://guillaumejaume.github.io/FUNSD/), [SROIE](https://rrc.cvc.uab.es/?ch=13),
|
1127 |
+
[CORD](https://github.com/clovaai/cord) and [Kleister-NDA](https://github.com/applicaai/kleister-nda).
|
1128 |
+
""",
|
1129 |
+
LAYOUTLMV2_START_DOCSTRING,
|
1130 |
+
)
|
1131 |
+
class LayoutLMv2ForTokenClassification(LayoutLMv2PreTrainedModel):
|
1132 |
+
def __init__(self, config):
|
1133 |
+
super().__init__(config)
|
1134 |
+
self.num_labels = config.num_labels
|
1135 |
+
self.layoutlmv2 = LayoutLMv2Model(config)
|
1136 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
1137 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
1138 |
+
|
1139 |
+
# Initialize weights and apply final processing
|
1140 |
+
self.post_init()
|
1141 |
+
|
1142 |
+
def get_input_embeddings(self):
|
1143 |
+
return self.layoutlmv2.embeddings.word_embeddings
|
1144 |
+
|
1145 |
+
@add_start_docstrings_to_model_forward(LAYOUTLMV2_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1146 |
+
@replace_return_docstrings(output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC)
|
1147 |
+
def forward(
|
1148 |
+
self,
|
1149 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1150 |
+
bbox: Optional[torch.LongTensor] = None,
|
1151 |
+
image: Optional[torch.FloatTensor] = None,
|
1152 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1153 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
1154 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1155 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1156 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1157 |
+
labels: Optional[torch.LongTensor] = None,
|
1158 |
+
output_attentions: Optional[bool] = None,
|
1159 |
+
output_hidden_states: Optional[bool] = None,
|
1160 |
+
return_dict: Optional[bool] = None,
|
1161 |
+
) -> Union[Tuple, TokenClassifierOutput]:
|
1162 |
+
r"""
|
1163 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1164 |
+
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
|
1165 |
+
|
1166 |
+
Returns:
|
1167 |
+
|
1168 |
+
Example:
|
1169 |
+
|
1170 |
+
```python
|
1171 |
+
>>> from transformers import AutoProcessor, LayoutLMv2ForTokenClassification, set_seed
|
1172 |
+
>>> from PIL import Image
|
1173 |
+
>>> from datasets import load_dataset
|
1174 |
+
|
1175 |
+
>>> set_seed(88)
|
1176 |
+
|
1177 |
+
>>> datasets = load_dataset("nielsr/funsd", split="test")
|
1178 |
+
>>> labels = datasets.features["ner_tags"].feature.names
|
1179 |
+
>>> id2label = {v: k for v, k in enumerate(labels)}
|
1180 |
+
|
1181 |
+
>>> processor = AutoProcessor.from_pretrained("microsoft/layoutlmv2-base-uncased", revision="no_ocr")
|
1182 |
+
>>> model = LayoutLMv2ForTokenClassification.from_pretrained(
|
1183 |
+
... "microsoft/layoutlmv2-base-uncased", num_labels=len(labels)
|
1184 |
+
... )
|
1185 |
+
|
1186 |
+
>>> data = datasets[0]
|
1187 |
+
>>> image = Image.open(data["image_path"]).convert("RGB")
|
1188 |
+
>>> words = data["words"]
|
1189 |
+
>>> boxes = data["bboxes"] # make sure to normalize your bounding boxes
|
1190 |
+
>>> word_labels = data["ner_tags"]
|
1191 |
+
>>> encoding = processor(
|
1192 |
+
... image,
|
1193 |
+
... words,
|
1194 |
+
... boxes=boxes,
|
1195 |
+
... word_labels=word_labels,
|
1196 |
+
... padding="max_length",
|
1197 |
+
... truncation=True,
|
1198 |
+
... return_tensors="pt",
|
1199 |
+
... )
|
1200 |
+
|
1201 |
+
>>> outputs = model(**encoding)
|
1202 |
+
>>> logits, loss = outputs.logits, outputs.loss
|
1203 |
+
|
1204 |
+
>>> predicted_token_class_ids = logits.argmax(-1)
|
1205 |
+
>>> predicted_tokens_classes = [id2label[t.item()] for t in predicted_token_class_ids[0]]
|
1206 |
+
>>> predicted_tokens_classes[:5]
|
1207 |
+
['B-ANSWER', 'B-HEADER', 'B-HEADER', 'B-HEADER', 'B-HEADER']
|
1208 |
+
```
|
1209 |
+
"""
|
1210 |
+
|
1211 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1212 |
+
|
1213 |
+
outputs = self.layoutlmv2(
|
1214 |
+
input_ids=input_ids,
|
1215 |
+
bbox=bbox,
|
1216 |
+
image=image,
|
1217 |
+
attention_mask=attention_mask,
|
1218 |
+
token_type_ids=token_type_ids,
|
1219 |
+
position_ids=position_ids,
|
1220 |
+
head_mask=head_mask,
|
1221 |
+
inputs_embeds=inputs_embeds,
|
1222 |
+
output_attentions=output_attentions,
|
1223 |
+
output_hidden_states=output_hidden_states,
|
1224 |
+
return_dict=return_dict,
|
1225 |
+
)
|
1226 |
+
if input_ids is not None:
|
1227 |
+
input_shape = input_ids.size()
|
1228 |
+
else:
|
1229 |
+
input_shape = inputs_embeds.size()[:-1]
|
1230 |
+
|
1231 |
+
seq_length = input_shape[1]
|
1232 |
+
# only take the text part of the output representations
|
1233 |
+
sequence_output = outputs[0][:, :seq_length]
|
1234 |
+
sequence_output = self.dropout(sequence_output)
|
1235 |
+
logits = self.classifier(sequence_output)
|
1236 |
+
|
1237 |
+
loss = None
|
1238 |
+
if labels is not None:
|
1239 |
+
loss_fct = CrossEntropyLoss()
|
1240 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1241 |
+
|
1242 |
+
if not return_dict:
|
1243 |
+
output = (logits,) + outputs[2:]
|
1244 |
+
return ((loss,) + output) if loss is not None else output
|
1245 |
+
|
1246 |
+
return TokenClassifierOutput(
|
1247 |
+
loss=loss,
|
1248 |
+
logits=logits,
|
1249 |
+
hidden_states=outputs.hidden_states,
|
1250 |
+
attentions=outputs.attentions,
|
1251 |
+
)
|
1252 |
+
|
1253 |
+
|
1254 |
+
@add_start_docstrings(
|
1255 |
+
"""
|
1256 |
+
LayoutLMv2 Model with a span classification head on top for extractive question-answering tasks such as
|
1257 |
+
[DocVQA](https://rrc.cvc.uab.es/?ch=17) (a linear layer on top of the text part of the hidden-states output to
|
1258 |
+
compute `span start logits` and `span end logits`).
|
1259 |
+
""",
|
1260 |
+
LAYOUTLMV2_START_DOCSTRING,
|
1261 |
+
)
|
1262 |
+
class LayoutLMv2ForQuestionAnswering(LayoutLMv2PreTrainedModel):
|
1263 |
+
def __init__(self, config, has_visual_segment_embedding=True):
|
1264 |
+
super().__init__(config)
|
1265 |
+
self.num_labels = config.num_labels
|
1266 |
+
config.has_visual_segment_embedding = has_visual_segment_embedding
|
1267 |
+
self.layoutlmv2 = LayoutLMv2Model(config)
|
1268 |
+
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
|
1269 |
+
|
1270 |
+
# Initialize weights and apply final processing
|
1271 |
+
self.post_init()
|
1272 |
+
|
1273 |
+
def get_input_embeddings(self):
|
1274 |
+
return self.layoutlmv2.embeddings.word_embeddings
|
1275 |
+
|
1276 |
+
@add_start_docstrings_to_model_forward(LAYOUTLMV2_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1277 |
+
@replace_return_docstrings(output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC)
|
1278 |
+
def forward(
|
1279 |
+
self,
|
1280 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1281 |
+
bbox: Optional[torch.LongTensor] = None,
|
1282 |
+
image: Optional[torch.FloatTensor] = None,
|
1283 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1284 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
1285 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1286 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1287 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1288 |
+
start_positions: Optional[torch.LongTensor] = None,
|
1289 |
+
end_positions: Optional[torch.LongTensor] = None,
|
1290 |
+
output_attentions: Optional[bool] = None,
|
1291 |
+
output_hidden_states: Optional[bool] = None,
|
1292 |
+
return_dict: Optional[bool] = None,
|
1293 |
+
) -> Union[Tuple, QuestionAnsweringModelOutput]:
|
1294 |
+
r"""
|
1295 |
+
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1296 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
1297 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1298 |
+
are not taken into account for computing the loss.
|
1299 |
+
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1300 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
1301 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1302 |
+
are not taken into account for computing the loss.
|
1303 |
+
|
1304 |
+
Returns:
|
1305 |
+
|
1306 |
+
Example:
|
1307 |
+
|
1308 |
+
In this example below, we give the LayoutLMv2 model an image (of texts) and ask it a question. It will give us
|
1309 |
+
a prediction of what it thinks the answer is (the span of the answer within the texts parsed from the image).
|
1310 |
+
|
1311 |
+
```python
|
1312 |
+
>>> from transformers import AutoProcessor, LayoutLMv2ForQuestionAnswering, set_seed
|
1313 |
+
>>> import torch
|
1314 |
+
>>> from PIL import Image
|
1315 |
+
>>> from datasets import load_dataset
|
1316 |
+
|
1317 |
+
>>> set_seed(88)
|
1318 |
+
>>> processor = AutoProcessor.from_pretrained("microsoft/layoutlmv2-base-uncased")
|
1319 |
+
>>> model = LayoutLMv2ForQuestionAnswering.from_pretrained("microsoft/layoutlmv2-base-uncased")
|
1320 |
+
|
1321 |
+
>>> dataset = load_dataset("hf-internal-testing/fixtures_docvqa")
|
1322 |
+
>>> image_path = dataset["test"][0]["file"]
|
1323 |
+
>>> image = Image.open(image_path).convert("RGB")
|
1324 |
+
>>> question = "When is coffee break?"
|
1325 |
+
>>> encoding = processor(image, question, return_tensors="pt")
|
1326 |
+
|
1327 |
+
>>> outputs = model(**encoding)
|
1328 |
+
>>> predicted_start_idx = outputs.start_logits.argmax(-1).item()
|
1329 |
+
>>> predicted_end_idx = outputs.end_logits.argmax(-1).item()
|
1330 |
+
>>> predicted_start_idx, predicted_end_idx
|
1331 |
+
(154, 287)
|
1332 |
+
|
1333 |
+
>>> predicted_answer_tokens = encoding.input_ids.squeeze()[predicted_start_idx : predicted_end_idx + 1]
|
1334 |
+
>>> predicted_answer = processor.tokenizer.decode(predicted_answer_tokens)
|
1335 |
+
>>> predicted_answer # results are not very good without further fine-tuning
|
1336 |
+
'council mem - bers conducted by trrf treasurer philip g. kuehn to get answers which the public ...
|
1337 |
+
```
|
1338 |
+
|
1339 |
+
```python
|
1340 |
+
>>> target_start_index = torch.tensor([7])
|
1341 |
+
>>> target_end_index = torch.tensor([14])
|
1342 |
+
>>> outputs = model(**encoding, start_positions=target_start_index, end_positions=target_end_index)
|
1343 |
+
>>> predicted_answer_span_start = outputs.start_logits.argmax(-1).item()
|
1344 |
+
>>> predicted_answer_span_end = outputs.end_logits.argmax(-1).item()
|
1345 |
+
>>> predicted_answer_span_start, predicted_answer_span_end
|
1346 |
+
(154, 287)
|
1347 |
+
```
|
1348 |
+
"""
|
1349 |
+
|
1350 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1351 |
+
|
1352 |
+
outputs = self.layoutlmv2(
|
1353 |
+
input_ids=input_ids,
|
1354 |
+
bbox=bbox,
|
1355 |
+
image=image,
|
1356 |
+
attention_mask=attention_mask,
|
1357 |
+
token_type_ids=token_type_ids,
|
1358 |
+
position_ids=position_ids,
|
1359 |
+
head_mask=head_mask,
|
1360 |
+
inputs_embeds=inputs_embeds,
|
1361 |
+
output_attentions=output_attentions,
|
1362 |
+
output_hidden_states=output_hidden_states,
|
1363 |
+
return_dict=return_dict,
|
1364 |
+
)
|
1365 |
+
|
1366 |
+
if input_ids is not None:
|
1367 |
+
input_shape = input_ids.size()
|
1368 |
+
else:
|
1369 |
+
input_shape = inputs_embeds.size()[:-1]
|
1370 |
+
|
1371 |
+
seq_length = input_shape[1]
|
1372 |
+
# only take the text part of the output representations
|
1373 |
+
sequence_output = outputs[0][:, :seq_length]
|
1374 |
+
|
1375 |
+
logits = self.qa_outputs(sequence_output)
|
1376 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
1377 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
1378 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
1379 |
+
|
1380 |
+
total_loss = None
|
1381 |
+
if start_positions is not None and end_positions is not None:
|
1382 |
+
# If we are on multi-GPU, split add a dimension
|
1383 |
+
if len(start_positions.size()) > 1:
|
1384 |
+
start_positions = start_positions.squeeze(-1)
|
1385 |
+
if len(end_positions.size()) > 1:
|
1386 |
+
end_positions = end_positions.squeeze(-1)
|
1387 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
1388 |
+
ignored_index = start_logits.size(1)
|
1389 |
+
start_positions = start_positions.clamp(0, ignored_index)
|
1390 |
+
end_positions = end_positions.clamp(0, ignored_index)
|
1391 |
+
|
1392 |
+
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
1393 |
+
start_loss = loss_fct(start_logits, start_positions)
|
1394 |
+
end_loss = loss_fct(end_logits, end_positions)
|
1395 |
+
total_loss = (start_loss + end_loss) / 2
|
1396 |
+
|
1397 |
+
if not return_dict:
|
1398 |
+
output = (start_logits, end_logits) + outputs[2:]
|
1399 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
1400 |
+
|
1401 |
+
return QuestionAnsweringModelOutput(
|
1402 |
+
loss=total_loss,
|
1403 |
+
start_logits=start_logits,
|
1404 |
+
end_logits=end_logits,
|
1405 |
+
hidden_states=outputs.hidden_states,
|
1406 |
+
attentions=outputs.attentions,
|
1407 |
+
)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv2/processing_layoutlmv2.py
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""
|
16 |
+
Processor class for LayoutLMv2.
|
17 |
+
"""
|
18 |
+
|
19 |
+
import warnings
|
20 |
+
from typing import List, Optional, Union
|
21 |
+
|
22 |
+
from ...processing_utils import ProcessorMixin
|
23 |
+
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
|
24 |
+
from ...utils import TensorType
|
25 |
+
|
26 |
+
|
27 |
+
class LayoutLMv2Processor(ProcessorMixin):
|
28 |
+
r"""
|
29 |
+
Constructs a LayoutLMv2 processor which combines a LayoutLMv2 image processor and a LayoutLMv2 tokenizer into a
|
30 |
+
single processor.
|
31 |
+
|
32 |
+
[`LayoutLMv2Processor`] offers all the functionalities you need to prepare data for the model.
|
33 |
+
|
34 |
+
It first uses [`LayoutLMv2ImageProcessor`] to resize document images to a fixed size, and optionally applies OCR to
|
35 |
+
get words and normalized bounding boxes. These are then provided to [`LayoutLMv2Tokenizer`] or
|
36 |
+
[`LayoutLMv2TokenizerFast`], which turns the words and bounding boxes into token-level `input_ids`,
|
37 |
+
`attention_mask`, `token_type_ids`, `bbox`. Optionally, one can provide integer `word_labels`, which are turned
|
38 |
+
into token-level `labels` for token classification tasks (such as FUNSD, CORD).
|
39 |
+
|
40 |
+
Args:
|
41 |
+
image_processor (`LayoutLMv2ImageProcessor`, *optional*):
|
42 |
+
An instance of [`LayoutLMv2ImageProcessor`]. The image processor is a required input.
|
43 |
+
tokenizer (`LayoutLMv2Tokenizer` or `LayoutLMv2TokenizerFast`, *optional*):
|
44 |
+
An instance of [`LayoutLMv2Tokenizer`] or [`LayoutLMv2TokenizerFast`]. The tokenizer is a required input.
|
45 |
+
"""
|
46 |
+
|
47 |
+
attributes = ["image_processor", "tokenizer"]
|
48 |
+
image_processor_class = "LayoutLMv2ImageProcessor"
|
49 |
+
tokenizer_class = ("LayoutLMv2Tokenizer", "LayoutLMv2TokenizerFast")
|
50 |
+
|
51 |
+
def __init__(self, image_processor=None, tokenizer=None, **kwargs):
|
52 |
+
feature_extractor = None
|
53 |
+
if "feature_extractor" in kwargs:
|
54 |
+
warnings.warn(
|
55 |
+
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
|
56 |
+
" instead.",
|
57 |
+
FutureWarning,
|
58 |
+
)
|
59 |
+
feature_extractor = kwargs.pop("feature_extractor")
|
60 |
+
|
61 |
+
image_processor = image_processor if image_processor is not None else feature_extractor
|
62 |
+
if image_processor is None:
|
63 |
+
raise ValueError("You need to specify an `image_processor`.")
|
64 |
+
if tokenizer is None:
|
65 |
+
raise ValueError("You need to specify a `tokenizer`.")
|
66 |
+
|
67 |
+
super().__init__(image_processor, tokenizer)
|
68 |
+
|
69 |
+
def __call__(
|
70 |
+
self,
|
71 |
+
images,
|
72 |
+
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
|
73 |
+
text_pair: Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None,
|
74 |
+
boxes: Union[List[List[int]], List[List[List[int]]]] = None,
|
75 |
+
word_labels: Optional[Union[List[int], List[List[int]]]] = None,
|
76 |
+
add_special_tokens: bool = True,
|
77 |
+
padding: Union[bool, str, PaddingStrategy] = False,
|
78 |
+
truncation: Union[bool, str, TruncationStrategy] = False,
|
79 |
+
max_length: Optional[int] = None,
|
80 |
+
stride: int = 0,
|
81 |
+
pad_to_multiple_of: Optional[int] = None,
|
82 |
+
return_token_type_ids: Optional[bool] = None,
|
83 |
+
return_attention_mask: Optional[bool] = None,
|
84 |
+
return_overflowing_tokens: bool = False,
|
85 |
+
return_special_tokens_mask: bool = False,
|
86 |
+
return_offsets_mapping: bool = False,
|
87 |
+
return_length: bool = False,
|
88 |
+
verbose: bool = True,
|
89 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
90 |
+
**kwargs,
|
91 |
+
) -> BatchEncoding:
|
92 |
+
"""
|
93 |
+
This method first forwards the `images` argument to [`~LayoutLMv2ImageProcessor.__call__`]. In case
|
94 |
+
[`LayoutLMv2ImageProcessor`] was initialized with `apply_ocr` set to `True`, it passes the obtained words and
|
95 |
+
bounding boxes along with the additional arguments to [`~LayoutLMv2Tokenizer.__call__`] and returns the output,
|
96 |
+
together with resized `images`. In case [`LayoutLMv2ImageProcessor`] was initialized with `apply_ocr` set to
|
97 |
+
`False`, it passes the words (`text`/``text_pair`) and `boxes` specified by the user along with the additional
|
98 |
+
arguments to [`~LayoutLMv2Tokenizer.__call__`] and returns the output, together with resized `images``.
|
99 |
+
|
100 |
+
Please refer to the docstring of the above two methods for more information.
|
101 |
+
"""
|
102 |
+
# verify input
|
103 |
+
if self.image_processor.apply_ocr and (boxes is not None):
|
104 |
+
raise ValueError(
|
105 |
+
"You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True."
|
106 |
+
)
|
107 |
+
|
108 |
+
if self.image_processor.apply_ocr and (word_labels is not None):
|
109 |
+
raise ValueError(
|
110 |
+
"You cannot provide word labels if you initialized the image processor with apply_ocr set to True."
|
111 |
+
)
|
112 |
+
|
113 |
+
if return_overflowing_tokens is True and return_offsets_mapping is False:
|
114 |
+
raise ValueError("You cannot return overflowing tokens without returning the offsets mapping.")
|
115 |
+
|
116 |
+
# first, apply the image processor
|
117 |
+
features = self.image_processor(images=images, return_tensors=return_tensors)
|
118 |
+
|
119 |
+
# second, apply the tokenizer
|
120 |
+
if text is not None and self.image_processor.apply_ocr and text_pair is None:
|
121 |
+
if isinstance(text, str):
|
122 |
+
text = [text] # add batch dimension (as the image processor always adds a batch dimension)
|
123 |
+
text_pair = features["words"]
|
124 |
+
|
125 |
+
encoded_inputs = self.tokenizer(
|
126 |
+
text=text if text is not None else features["words"],
|
127 |
+
text_pair=text_pair if text_pair is not None else None,
|
128 |
+
boxes=boxes if boxes is not None else features["boxes"],
|
129 |
+
word_labels=word_labels,
|
130 |
+
add_special_tokens=add_special_tokens,
|
131 |
+
padding=padding,
|
132 |
+
truncation=truncation,
|
133 |
+
max_length=max_length,
|
134 |
+
stride=stride,
|
135 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
136 |
+
return_token_type_ids=return_token_type_ids,
|
137 |
+
return_attention_mask=return_attention_mask,
|
138 |
+
return_overflowing_tokens=return_overflowing_tokens,
|
139 |
+
return_special_tokens_mask=return_special_tokens_mask,
|
140 |
+
return_offsets_mapping=return_offsets_mapping,
|
141 |
+
return_length=return_length,
|
142 |
+
verbose=verbose,
|
143 |
+
return_tensors=return_tensors,
|
144 |
+
**kwargs,
|
145 |
+
)
|
146 |
+
|
147 |
+
# add pixel values
|
148 |
+
images = features.pop("pixel_values")
|
149 |
+
if return_overflowing_tokens is True:
|
150 |
+
images = self.get_overflowing_images(images, encoded_inputs["overflow_to_sample_mapping"])
|
151 |
+
encoded_inputs["image"] = images
|
152 |
+
|
153 |
+
return encoded_inputs
|
154 |
+
|
155 |
+
def get_overflowing_images(self, images, overflow_to_sample_mapping):
|
156 |
+
# in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image
|
157 |
+
images_with_overflow = []
|
158 |
+
for sample_idx in overflow_to_sample_mapping:
|
159 |
+
images_with_overflow.append(images[sample_idx])
|
160 |
+
|
161 |
+
if len(images_with_overflow) != len(overflow_to_sample_mapping):
|
162 |
+
raise ValueError(
|
163 |
+
"Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got"
|
164 |
+
f" {len(images_with_overflow)} and {len(overflow_to_sample_mapping)}"
|
165 |
+
)
|
166 |
+
|
167 |
+
return images_with_overflow
|
168 |
+
|
169 |
+
def batch_decode(self, *args, **kwargs):
|
170 |
+
"""
|
171 |
+
This method forwards all its arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please
|
172 |
+
refer to the docstring of this method for more information.
|
173 |
+
"""
|
174 |
+
return self.tokenizer.batch_decode(*args, **kwargs)
|
175 |
+
|
176 |
+
def decode(self, *args, **kwargs):
|
177 |
+
"""
|
178 |
+
This method forwards all its arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer
|
179 |
+
to the docstring of this method for more information.
|
180 |
+
"""
|
181 |
+
return self.tokenizer.decode(*args, **kwargs)
|
182 |
+
|
183 |
+
@property
|
184 |
+
def model_input_names(self):
|
185 |
+
return ["input_ids", "bbox", "token_type_ids", "attention_mask", "image"]
|
186 |
+
|
187 |
+
@property
|
188 |
+
def feature_extractor_class(self):
|
189 |
+
warnings.warn(
|
190 |
+
"`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.",
|
191 |
+
FutureWarning,
|
192 |
+
)
|
193 |
+
return self.image_processor_class
|
194 |
+
|
195 |
+
@property
|
196 |
+
def feature_extractor(self):
|
197 |
+
warnings.warn(
|
198 |
+
"`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.",
|
199 |
+
FutureWarning,
|
200 |
+
)
|
201 |
+
return self.image_processor
|
llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv2/tokenization_layoutlmv2.py
ADDED
@@ -0,0 +1,1542 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright Microsoft Research and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Tokenization class for LayoutLMv2."""
|
16 |
+
|
17 |
+
import collections
|
18 |
+
import os
|
19 |
+
import sys
|
20 |
+
import unicodedata
|
21 |
+
from typing import Dict, List, Optional, Tuple, Union
|
22 |
+
|
23 |
+
from ...tokenization_utils import AddedToken, PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace
|
24 |
+
from ...tokenization_utils_base import (
|
25 |
+
BatchEncoding,
|
26 |
+
EncodedInput,
|
27 |
+
PreTokenizedInput,
|
28 |
+
TextInput,
|
29 |
+
TextInputPair,
|
30 |
+
TruncationStrategy,
|
31 |
+
)
|
32 |
+
from ...utils import PaddingStrategy, TensorType, add_end_docstrings, logging
|
33 |
+
|
34 |
+
|
35 |
+
logger = logging.get_logger(__name__)
|
36 |
+
|
37 |
+
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"}
|
38 |
+
|
39 |
+
|
40 |
+
LAYOUTLMV2_ENCODE_KWARGS_DOCSTRING = r"""
|
41 |
+
add_special_tokens (`bool`, *optional*, defaults to `True`):
|
42 |
+
Whether or not to encode the sequences with the special tokens relative to their model.
|
43 |
+
padding (`bool`, `str` or [`~file_utils.PaddingStrategy`], *optional*, defaults to `False`):
|
44 |
+
Activates and controls padding. Accepts the following values:
|
45 |
+
|
46 |
+
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
|
47 |
+
sequence if provided).
|
48 |
+
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
|
49 |
+
acceptable input length for the model if that argument is not provided.
|
50 |
+
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
|
51 |
+
lengths).
|
52 |
+
truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):
|
53 |
+
Activates and controls truncation. Accepts the following values:
|
54 |
+
|
55 |
+
- `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or
|
56 |
+
to the maximum acceptable input length for the model if that argument is not provided. This will
|
57 |
+
truncate token by token, removing a token from the longest sequence in the pair if a pair of
|
58 |
+
sequences (or a batch of pairs) is provided.
|
59 |
+
- `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the
|
60 |
+
maximum acceptable input length for the model if that argument is not provided. This will only
|
61 |
+
truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
|
62 |
+
- `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the
|
63 |
+
maximum acceptable input length for the model if that argument is not provided. This will only
|
64 |
+
truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
|
65 |
+
- `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths
|
66 |
+
greater than the model maximum admissible input size).
|
67 |
+
max_length (`int`, *optional*):
|
68 |
+
Controls the maximum length to use by one of the truncation/padding parameters.
|
69 |
+
|
70 |
+
If left unset or set to `None`, this will use the predefined model maximum length if a maximum length
|
71 |
+
is required by one of the truncation/padding parameters. If the model has no specific maximum input
|
72 |
+
length (like XLNet) truncation/padding to a maximum length will be deactivated.
|
73 |
+
stride (`int`, *optional*, defaults to 0):
|
74 |
+
If set to a number along with `max_length`, the overflowing tokens returned when
|
75 |
+
`return_overflowing_tokens=True` will contain some tokens from the end of the truncated sequence
|
76 |
+
returned to provide some overlap between truncated and overflowing sequences. The value of this
|
77 |
+
argument defines the number of overlapping tokens.
|
78 |
+
pad_to_multiple_of (`int`, *optional*):
|
79 |
+
If set will pad the sequence to a multiple of the provided value. This is especially useful to enable
|
80 |
+
the use of Tensor Cores on NVIDIA hardware with compute capability `>= 7.5` (Volta).
|
81 |
+
return_tensors (`str` or [`~file_utils.TensorType`], *optional*):
|
82 |
+
If set, will return tensors instead of list of python integers. Acceptable values are:
|
83 |
+
|
84 |
+
- `'tf'`: Return TensorFlow `tf.constant` objects.
|
85 |
+
- `'pt'`: Return PyTorch `torch.Tensor` objects.
|
86 |
+
- `'np'`: Return Numpy `np.ndarray` objects.
|
87 |
+
"""
|
88 |
+
|
89 |
+
LAYOUTLMV2_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING = r"""
|
90 |
+
return_token_type_ids (`bool`, *optional*):
|
91 |
+
Whether to return token type IDs. If left to the default, will return the token type IDs according to
|
92 |
+
the specific tokenizer's default, defined by the `return_outputs` attribute.
|
93 |
+
|
94 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
95 |
+
return_attention_mask (`bool`, *optional*):
|
96 |
+
Whether to return the attention mask. If left to the default, will return the attention mask according
|
97 |
+
to the specific tokenizer's default, defined by the `return_outputs` attribute.
|
98 |
+
|
99 |
+
[What are attention masks?](../glossary#attention-mask)
|
100 |
+
return_overflowing_tokens (`bool`, *optional*, defaults to `False`):
|
101 |
+
Whether or not to return overflowing token sequences. If a pair of sequences of input ids (or a batch
|
102 |
+
of pairs) is provided with `truncation_strategy = longest_first` or `True`, an error is raised instead
|
103 |
+
of returning overflowing tokens.
|
104 |
+
return_special_tokens_mask (`bool`, *optional*, defaults to `False`):
|
105 |
+
Whether or not to return special tokens mask information.
|
106 |
+
return_offsets_mapping (`bool`, *optional*, defaults to `False`):
|
107 |
+
Whether or not to return `(char_start, char_end)` for each token.
|
108 |
+
|
109 |
+
This is only available on fast tokenizers inheriting from [`PreTrainedTokenizerFast`], if using
|
110 |
+
Python's tokenizer, this method will raise `NotImplementedError`.
|
111 |
+
return_length (`bool`, *optional*, defaults to `False`):
|
112 |
+
Whether or not to return the lengths of the encoded inputs.
|
113 |
+
verbose (`bool`, *optional*, defaults to `True`):
|
114 |
+
Whether or not to print more information and warnings.
|
115 |
+
**kwargs: passed to the `self.tokenize()` method
|
116 |
+
|
117 |
+
Return:
|
118 |
+
[`BatchEncoding`]: A [`BatchEncoding`] with the following fields:
|
119 |
+
|
120 |
+
- **input_ids** -- List of token ids to be fed to a model.
|
121 |
+
|
122 |
+
[What are input IDs?](../glossary#input-ids)
|
123 |
+
|
124 |
+
- **bbox** -- List of bounding boxes to be fed to a model.
|
125 |
+
|
126 |
+
- **token_type_ids** -- List of token type ids to be fed to a model (when `return_token_type_ids=True` or
|
127 |
+
if *"token_type_ids"* is in `self.model_input_names`).
|
128 |
+
|
129 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
130 |
+
|
131 |
+
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
|
132 |
+
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names`).
|
133 |
+
|
134 |
+
[What are attention masks?](../glossary#attention-mask)
|
135 |
+
|
136 |
+
- **labels** -- List of labels to be fed to a model. (when `word_labels` is specified).
|
137 |
+
- **overflowing_tokens** -- List of overflowing tokens sequences (when a `max_length` is specified and
|
138 |
+
`return_overflowing_tokens=True`).
|
139 |
+
- **num_truncated_tokens** -- Number of tokens truncated (when a `max_length` is specified and
|
140 |
+
`return_overflowing_tokens=True`).
|
141 |
+
- **special_tokens_mask** -- List of 0s and 1s, with 1 specifying added special tokens and 0 specifying
|
142 |
+
regular sequence tokens (when `add_special_tokens=True` and `return_special_tokens_mask=True`).
|
143 |
+
- **length** -- The length of the inputs (when `return_length=True`).
|
144 |
+
"""
|
145 |
+
|
146 |
+
|
147 |
+
def load_vocab(vocab_file):
|
148 |
+
"""Loads a vocabulary file into a dictionary."""
|
149 |
+
vocab = collections.OrderedDict()
|
150 |
+
with open(vocab_file, "r", encoding="utf-8") as reader:
|
151 |
+
tokens = reader.readlines()
|
152 |
+
for index, token in enumerate(tokens):
|
153 |
+
token = token.rstrip("\n")
|
154 |
+
vocab[token] = index
|
155 |
+
return vocab
|
156 |
+
|
157 |
+
|
158 |
+
def whitespace_tokenize(text):
|
159 |
+
"""Runs basic whitespace cleaning and splitting on a piece of text."""
|
160 |
+
text = text.strip()
|
161 |
+
if not text:
|
162 |
+
return []
|
163 |
+
tokens = text.split()
|
164 |
+
return tokens
|
165 |
+
|
166 |
+
|
167 |
+
table = dict.fromkeys(i for i in range(sys.maxunicode) if unicodedata.category(chr(i)).startswith("P"))
|
168 |
+
|
169 |
+
|
170 |
+
def subfinder(mylist, pattern):
|
171 |
+
matches = []
|
172 |
+
indices = []
|
173 |
+
for idx, i in enumerate(range(len(mylist))):
|
174 |
+
if mylist[i] == pattern[0] and mylist[i : i + len(pattern)] == pattern:
|
175 |
+
matches.append(pattern)
|
176 |
+
indices.append(idx)
|
177 |
+
if matches:
|
178 |
+
return matches[0], indices[0]
|
179 |
+
else:
|
180 |
+
return None, 0
|
181 |
+
|
182 |
+
|
183 |
+
class LayoutLMv2Tokenizer(PreTrainedTokenizer):
|
184 |
+
r"""
|
185 |
+
Construct a LayoutLMv2 tokenizer. Based on WordPiece. [`LayoutLMv2Tokenizer`] can be used to turn words, word-level
|
186 |
+
bounding boxes and optional word labels to token-level `input_ids`, `attention_mask`, `token_type_ids`, `bbox`, and
|
187 |
+
optional `labels` (for token classification).
|
188 |
+
|
189 |
+
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
|
190 |
+
this superclass for more information regarding those methods.
|
191 |
+
|
192 |
+
[`LayoutLMv2Tokenizer`] runs end-to-end tokenization: punctuation splitting and wordpiece. It also turns the
|
193 |
+
word-level bounding boxes into token-level bounding boxes.
|
194 |
+
|
195 |
+
"""
|
196 |
+
|
197 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
198 |
+
|
199 |
+
def __init__(
|
200 |
+
self,
|
201 |
+
vocab_file,
|
202 |
+
do_lower_case=True,
|
203 |
+
do_basic_tokenize=True,
|
204 |
+
never_split=None,
|
205 |
+
unk_token="[UNK]",
|
206 |
+
sep_token="[SEP]",
|
207 |
+
pad_token="[PAD]",
|
208 |
+
cls_token="[CLS]",
|
209 |
+
mask_token="[MASK]",
|
210 |
+
cls_token_box=[0, 0, 0, 0],
|
211 |
+
sep_token_box=[1000, 1000, 1000, 1000],
|
212 |
+
pad_token_box=[0, 0, 0, 0],
|
213 |
+
pad_token_label=-100,
|
214 |
+
only_label_first_subword=True,
|
215 |
+
tokenize_chinese_chars=True,
|
216 |
+
strip_accents=None,
|
217 |
+
model_max_length: int = 512,
|
218 |
+
additional_special_tokens: Optional[List[str]] = None,
|
219 |
+
**kwargs,
|
220 |
+
):
|
221 |
+
sep_token = AddedToken(sep_token, special=True) if isinstance(sep_token, str) else sep_token
|
222 |
+
unk_token = AddedToken(unk_token, special=True) if isinstance(unk_token, str) else unk_token
|
223 |
+
pad_token = AddedToken(pad_token, special=True) if isinstance(pad_token, str) else pad_token
|
224 |
+
cls_token = AddedToken(cls_token, special=True) if isinstance(cls_token, str) else cls_token
|
225 |
+
mask_token = AddedToken(mask_token, special=True) if isinstance(mask_token, str) else mask_token
|
226 |
+
|
227 |
+
if not os.path.isfile(vocab_file):
|
228 |
+
raise ValueError(
|
229 |
+
f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained"
|
230 |
+
" model use `tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
|
231 |
+
)
|
232 |
+
self.vocab = load_vocab(vocab_file)
|
233 |
+
self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()])
|
234 |
+
self.do_basic_tokenize = do_basic_tokenize
|
235 |
+
if do_basic_tokenize:
|
236 |
+
self.basic_tokenizer = BasicTokenizer(
|
237 |
+
do_lower_case=do_lower_case,
|
238 |
+
never_split=never_split,
|
239 |
+
tokenize_chinese_chars=tokenize_chinese_chars,
|
240 |
+
strip_accents=strip_accents,
|
241 |
+
)
|
242 |
+
self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=str(unk_token))
|
243 |
+
|
244 |
+
# additional properties
|
245 |
+
self.cls_token_box = cls_token_box
|
246 |
+
self.sep_token_box = sep_token_box
|
247 |
+
self.pad_token_box = pad_token_box
|
248 |
+
self.pad_token_label = pad_token_label
|
249 |
+
self.only_label_first_subword = only_label_first_subword
|
250 |
+
super().__init__(
|
251 |
+
do_lower_case=do_lower_case,
|
252 |
+
do_basic_tokenize=do_basic_tokenize,
|
253 |
+
never_split=never_split,
|
254 |
+
unk_token=unk_token,
|
255 |
+
sep_token=sep_token,
|
256 |
+
pad_token=pad_token,
|
257 |
+
cls_token=cls_token,
|
258 |
+
mask_token=mask_token,
|
259 |
+
cls_token_box=cls_token_box,
|
260 |
+
sep_token_box=sep_token_box,
|
261 |
+
pad_token_box=pad_token_box,
|
262 |
+
pad_token_label=pad_token_label,
|
263 |
+
only_label_first_subword=only_label_first_subword,
|
264 |
+
tokenize_chinese_chars=tokenize_chinese_chars,
|
265 |
+
strip_accents=strip_accents,
|
266 |
+
model_max_length=model_max_length,
|
267 |
+
additional_special_tokens=additional_special_tokens,
|
268 |
+
**kwargs,
|
269 |
+
)
|
270 |
+
|
271 |
+
@property
|
272 |
+
def do_lower_case(self):
|
273 |
+
return self.basic_tokenizer.do_lower_case
|
274 |
+
|
275 |
+
@property
|
276 |
+
def vocab_size(self):
|
277 |
+
return len(self.vocab)
|
278 |
+
|
279 |
+
def get_vocab(self):
|
280 |
+
return dict(self.vocab, **self.added_tokens_encoder)
|
281 |
+
|
282 |
+
def _tokenize(self, text):
|
283 |
+
split_tokens = []
|
284 |
+
if self.do_basic_tokenize:
|
285 |
+
for token in self.basic_tokenizer.tokenize(text, never_split=self.all_special_tokens):
|
286 |
+
# If the token is part of the never_split set
|
287 |
+
if token in self.basic_tokenizer.never_split:
|
288 |
+
split_tokens.append(token)
|
289 |
+
else:
|
290 |
+
split_tokens += self.wordpiece_tokenizer.tokenize(token)
|
291 |
+
else:
|
292 |
+
split_tokens = self.wordpiece_tokenizer.tokenize(text)
|
293 |
+
return split_tokens
|
294 |
+
|
295 |
+
def _convert_token_to_id(self, token):
|
296 |
+
"""Converts a token (str) in an id using the vocab."""
|
297 |
+
return self.vocab.get(token, self.vocab.get(self.unk_token))
|
298 |
+
|
299 |
+
def _convert_id_to_token(self, index):
|
300 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
301 |
+
return self.ids_to_tokens.get(index, self.unk_token)
|
302 |
+
|
303 |
+
def convert_tokens_to_string(self, tokens):
|
304 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
305 |
+
out_string = " ".join(tokens).replace(" ##", "").strip()
|
306 |
+
return out_string
|
307 |
+
|
308 |
+
def build_inputs_with_special_tokens(
|
309 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
310 |
+
) -> List[int]:
|
311 |
+
"""
|
312 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
313 |
+
adding special tokens. A BERT sequence has the following format:
|
314 |
+
|
315 |
+
- single sequence: `[CLS] X [SEP]`
|
316 |
+
- pair of sequences: `[CLS] A [SEP] B [SEP]`
|
317 |
+
|
318 |
+
Args:
|
319 |
+
token_ids_0 (`List[int]`):
|
320 |
+
List of IDs to which the special tokens will be added.
|
321 |
+
token_ids_1 (`List[int]`, *optional*):
|
322 |
+
Optional second list of IDs for sequence pairs.
|
323 |
+
|
324 |
+
Returns:
|
325 |
+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
326 |
+
"""
|
327 |
+
if token_ids_1 is None:
|
328 |
+
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
|
329 |
+
cls = [self.cls_token_id]
|
330 |
+
sep = [self.sep_token_id]
|
331 |
+
return cls + token_ids_0 + sep + token_ids_1 + sep
|
332 |
+
|
333 |
+
def get_special_tokens_mask(
|
334 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
335 |
+
) -> List[int]:
|
336 |
+
"""
|
337 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
338 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
339 |
+
|
340 |
+
Args:
|
341 |
+
token_ids_0 (`List[int]`):
|
342 |
+
List of IDs.
|
343 |
+
token_ids_1 (`List[int]`, *optional*):
|
344 |
+
Optional second list of IDs for sequence pairs.
|
345 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
346 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
347 |
+
|
348 |
+
Returns:
|
349 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
350 |
+
"""
|
351 |
+
|
352 |
+
if already_has_special_tokens:
|
353 |
+
return super().get_special_tokens_mask(
|
354 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
355 |
+
)
|
356 |
+
|
357 |
+
if token_ids_1 is not None:
|
358 |
+
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
|
359 |
+
return [1] + ([0] * len(token_ids_0)) + [1]
|
360 |
+
|
361 |
+
def create_token_type_ids_from_sequences(
|
362 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
363 |
+
) -> List[int]:
|
364 |
+
"""
|
365 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A BERT sequence
|
366 |
+
pair mask has the following format: :: 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second
|
367 |
+
sequence | If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
|
368 |
+
|
369 |
+
Args:
|
370 |
+
token_ids_0 (`List[int]`):
|
371 |
+
List of IDs.
|
372 |
+
token_ids_1 (`List[int]`, *optional*):
|
373 |
+
Optional second list of IDs for sequence pairs.
|
374 |
+
|
375 |
+
Returns:
|
376 |
+
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
|
377 |
+
"""
|
378 |
+
sep = [self.sep_token_id]
|
379 |
+
cls = [self.cls_token_id]
|
380 |
+
if token_ids_1 is None:
|
381 |
+
return len(cls + token_ids_0 + sep) * [0]
|
382 |
+
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
|
383 |
+
|
384 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
385 |
+
index = 0
|
386 |
+
if os.path.isdir(save_directory):
|
387 |
+
vocab_file = os.path.join(
|
388 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
389 |
+
)
|
390 |
+
else:
|
391 |
+
vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory
|
392 |
+
with open(vocab_file, "w", encoding="utf-8") as writer:
|
393 |
+
for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]):
|
394 |
+
if index != token_index:
|
395 |
+
logger.warning(
|
396 |
+
f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."
|
397 |
+
" Please check that the vocabulary is not corrupted!"
|
398 |
+
)
|
399 |
+
index = token_index
|
400 |
+
writer.write(token + "\n")
|
401 |
+
index += 1
|
402 |
+
return (vocab_file,)
|
403 |
+
|
404 |
+
@add_end_docstrings(LAYOUTLMV2_ENCODE_KWARGS_DOCSTRING, LAYOUTLMV2_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
|
405 |
+
def __call__(
|
406 |
+
self,
|
407 |
+
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]],
|
408 |
+
text_pair: Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None,
|
409 |
+
boxes: Union[List[List[int]], List[List[List[int]]]] = None,
|
410 |
+
word_labels: Optional[Union[List[int], List[List[int]]]] = None,
|
411 |
+
add_special_tokens: bool = True,
|
412 |
+
padding: Union[bool, str, PaddingStrategy] = False,
|
413 |
+
truncation: Union[bool, str, TruncationStrategy] = None,
|
414 |
+
max_length: Optional[int] = None,
|
415 |
+
stride: int = 0,
|
416 |
+
pad_to_multiple_of: Optional[int] = None,
|
417 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
418 |
+
return_token_type_ids: Optional[bool] = None,
|
419 |
+
return_attention_mask: Optional[bool] = None,
|
420 |
+
return_overflowing_tokens: bool = False,
|
421 |
+
return_special_tokens_mask: bool = False,
|
422 |
+
return_offsets_mapping: bool = False,
|
423 |
+
return_length: bool = False,
|
424 |
+
verbose: bool = True,
|
425 |
+
**kwargs,
|
426 |
+
) -> BatchEncoding:
|
427 |
+
"""
|
428 |
+
Main method to tokenize and prepare for the model one or several sequence(s) or one or several pair(s) of
|
429 |
+
sequences with word-level normalized bounding boxes and optional labels.
|
430 |
+
|
431 |
+
Args:
|
432 |
+
text (`str`, `List[str]`, `List[List[str]]`):
|
433 |
+
The sequence or batch of sequences to be encoded. Each sequence can be a string, a list of strings
|
434 |
+
(words of a single example or questions of a batch of examples) or a list of list of strings (batch of
|
435 |
+
words).
|
436 |
+
text_pair (`List[str]`, `List[List[str]]`):
|
437 |
+
The sequence or batch of sequences to be encoded. Each sequence should be a list of strings
|
438 |
+
(pretokenized string).
|
439 |
+
boxes (`List[List[int]]`, `List[List[List[int]]]`):
|
440 |
+
Word-level bounding boxes. Each bounding box should be normalized to be on a 0-1000 scale.
|
441 |
+
word_labels (`List[int]`, `List[List[int]]`, *optional*):
|
442 |
+
Word-level integer labels (for token classification tasks such as FUNSD, CORD).
|
443 |
+
"""
|
444 |
+
|
445 |
+
# Input type checking for clearer error
|
446 |
+
def _is_valid_text_input(t):
|
447 |
+
if isinstance(t, str):
|
448 |
+
# Strings are fine
|
449 |
+
return True
|
450 |
+
elif isinstance(t, (list, tuple)):
|
451 |
+
# List are fine as long as they are...
|
452 |
+
if len(t) == 0:
|
453 |
+
# ... empty
|
454 |
+
return True
|
455 |
+
elif isinstance(t[0], str):
|
456 |
+
# ... list of strings
|
457 |
+
return True
|
458 |
+
elif isinstance(t[0], (list, tuple)):
|
459 |
+
# ... list with an empty list or with a list of strings
|
460 |
+
return len(t[0]) == 0 or isinstance(t[0][0], str)
|
461 |
+
else:
|
462 |
+
return False
|
463 |
+
else:
|
464 |
+
return False
|
465 |
+
|
466 |
+
if text_pair is not None:
|
467 |
+
# in case text + text_pair are provided, text = questions, text_pair = words
|
468 |
+
if not _is_valid_text_input(text):
|
469 |
+
raise ValueError("text input must of type `str` (single example) or `List[str]` (batch of examples). ")
|
470 |
+
if not isinstance(text_pair, (list, tuple)):
|
471 |
+
raise ValueError(
|
472 |
+
"Words must be of type `List[str]` (single pretokenized example), "
|
473 |
+
"or `List[List[str]]` (batch of pretokenized examples)."
|
474 |
+
)
|
475 |
+
else:
|
476 |
+
# in case only text is provided => must be words
|
477 |
+
if not isinstance(text, (list, tuple)):
|
478 |
+
raise ValueError(
|
479 |
+
"Words must be of type `List[str]` (single pretokenized example), "
|
480 |
+
"or `List[List[str]]` (batch of pretokenized examples)."
|
481 |
+
)
|
482 |
+
|
483 |
+
if text_pair is not None:
|
484 |
+
is_batched = isinstance(text, (list, tuple))
|
485 |
+
else:
|
486 |
+
is_batched = isinstance(text, (list, tuple)) and text and isinstance(text[0], (list, tuple))
|
487 |
+
|
488 |
+
words = text if text_pair is None else text_pair
|
489 |
+
if boxes is None:
|
490 |
+
raise ValueError("You must provide corresponding bounding boxes")
|
491 |
+
if is_batched:
|
492 |
+
if len(words) != len(boxes):
|
493 |
+
raise ValueError("You must provide words and boxes for an equal amount of examples")
|
494 |
+
for words_example, boxes_example in zip(words, boxes):
|
495 |
+
if len(words_example) != len(boxes_example):
|
496 |
+
raise ValueError("You must provide as many words as there are bounding boxes")
|
497 |
+
else:
|
498 |
+
if len(words) != len(boxes):
|
499 |
+
raise ValueError("You must provide as many words as there are bounding boxes")
|
500 |
+
|
501 |
+
if is_batched:
|
502 |
+
if text_pair is not None and len(text) != len(text_pair):
|
503 |
+
raise ValueError(
|
504 |
+
f"batch length of `text`: {len(text)} does not match batch length of `text_pair`:"
|
505 |
+
f" {len(text_pair)}."
|
506 |
+
)
|
507 |
+
batch_text_or_text_pairs = list(zip(text, text_pair)) if text_pair is not None else text
|
508 |
+
is_pair = bool(text_pair is not None)
|
509 |
+
return self.batch_encode_plus(
|
510 |
+
batch_text_or_text_pairs=batch_text_or_text_pairs,
|
511 |
+
is_pair=is_pair,
|
512 |
+
boxes=boxes,
|
513 |
+
word_labels=word_labels,
|
514 |
+
add_special_tokens=add_special_tokens,
|
515 |
+
padding=padding,
|
516 |
+
truncation=truncation,
|
517 |
+
max_length=max_length,
|
518 |
+
stride=stride,
|
519 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
520 |
+
return_tensors=return_tensors,
|
521 |
+
return_token_type_ids=return_token_type_ids,
|
522 |
+
return_attention_mask=return_attention_mask,
|
523 |
+
return_overflowing_tokens=return_overflowing_tokens,
|
524 |
+
return_special_tokens_mask=return_special_tokens_mask,
|
525 |
+
return_offsets_mapping=return_offsets_mapping,
|
526 |
+
return_length=return_length,
|
527 |
+
verbose=verbose,
|
528 |
+
**kwargs,
|
529 |
+
)
|
530 |
+
else:
|
531 |
+
return self.encode_plus(
|
532 |
+
text=text,
|
533 |
+
text_pair=text_pair,
|
534 |
+
boxes=boxes,
|
535 |
+
word_labels=word_labels,
|
536 |
+
add_special_tokens=add_special_tokens,
|
537 |
+
padding=padding,
|
538 |
+
truncation=truncation,
|
539 |
+
max_length=max_length,
|
540 |
+
stride=stride,
|
541 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
542 |
+
return_tensors=return_tensors,
|
543 |
+
return_token_type_ids=return_token_type_ids,
|
544 |
+
return_attention_mask=return_attention_mask,
|
545 |
+
return_overflowing_tokens=return_overflowing_tokens,
|
546 |
+
return_special_tokens_mask=return_special_tokens_mask,
|
547 |
+
return_offsets_mapping=return_offsets_mapping,
|
548 |
+
return_length=return_length,
|
549 |
+
verbose=verbose,
|
550 |
+
**kwargs,
|
551 |
+
)
|
552 |
+
|
553 |
+
@add_end_docstrings(LAYOUTLMV2_ENCODE_KWARGS_DOCSTRING, LAYOUTLMV2_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
|
554 |
+
def batch_encode_plus(
|
555 |
+
self,
|
556 |
+
batch_text_or_text_pairs: Union[
|
557 |
+
List[TextInput],
|
558 |
+
List[TextInputPair],
|
559 |
+
List[PreTokenizedInput],
|
560 |
+
],
|
561 |
+
is_pair: bool = None,
|
562 |
+
boxes: Optional[List[List[List[int]]]] = None,
|
563 |
+
word_labels: Optional[Union[List[int], List[List[int]]]] = None,
|
564 |
+
add_special_tokens: bool = True,
|
565 |
+
padding: Union[bool, str, PaddingStrategy] = False,
|
566 |
+
truncation: Union[bool, str, TruncationStrategy] = None,
|
567 |
+
max_length: Optional[int] = None,
|
568 |
+
stride: int = 0,
|
569 |
+
pad_to_multiple_of: Optional[int] = None,
|
570 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
571 |
+
return_token_type_ids: Optional[bool] = None,
|
572 |
+
return_attention_mask: Optional[bool] = None,
|
573 |
+
return_overflowing_tokens: bool = False,
|
574 |
+
return_special_tokens_mask: bool = False,
|
575 |
+
return_offsets_mapping: bool = False,
|
576 |
+
return_length: bool = False,
|
577 |
+
verbose: bool = True,
|
578 |
+
**kwargs,
|
579 |
+
) -> BatchEncoding:
|
580 |
+
# Backward compatibility for 'truncation_strategy', 'pad_to_max_length'
|
581 |
+
padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies(
|
582 |
+
padding=padding,
|
583 |
+
truncation=truncation,
|
584 |
+
max_length=max_length,
|
585 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
586 |
+
verbose=verbose,
|
587 |
+
**kwargs,
|
588 |
+
)
|
589 |
+
|
590 |
+
return self._batch_encode_plus(
|
591 |
+
batch_text_or_text_pairs=batch_text_or_text_pairs,
|
592 |
+
is_pair=is_pair,
|
593 |
+
boxes=boxes,
|
594 |
+
word_labels=word_labels,
|
595 |
+
add_special_tokens=add_special_tokens,
|
596 |
+
padding_strategy=padding_strategy,
|
597 |
+
truncation_strategy=truncation_strategy,
|
598 |
+
max_length=max_length,
|
599 |
+
stride=stride,
|
600 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
601 |
+
return_tensors=return_tensors,
|
602 |
+
return_token_type_ids=return_token_type_ids,
|
603 |
+
return_attention_mask=return_attention_mask,
|
604 |
+
return_overflowing_tokens=return_overflowing_tokens,
|
605 |
+
return_special_tokens_mask=return_special_tokens_mask,
|
606 |
+
return_offsets_mapping=return_offsets_mapping,
|
607 |
+
return_length=return_length,
|
608 |
+
verbose=verbose,
|
609 |
+
**kwargs,
|
610 |
+
)
|
611 |
+
|
612 |
+
def _batch_encode_plus(
|
613 |
+
self,
|
614 |
+
batch_text_or_text_pairs: Union[
|
615 |
+
List[TextInput],
|
616 |
+
List[TextInputPair],
|
617 |
+
List[PreTokenizedInput],
|
618 |
+
],
|
619 |
+
is_pair: bool = None,
|
620 |
+
boxes: Optional[List[List[List[int]]]] = None,
|
621 |
+
word_labels: Optional[List[List[int]]] = None,
|
622 |
+
add_special_tokens: bool = True,
|
623 |
+
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
|
624 |
+
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
|
625 |
+
max_length: Optional[int] = None,
|
626 |
+
stride: int = 0,
|
627 |
+
pad_to_multiple_of: Optional[int] = None,
|
628 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
629 |
+
return_token_type_ids: Optional[bool] = None,
|
630 |
+
return_attention_mask: Optional[bool] = None,
|
631 |
+
return_overflowing_tokens: bool = False,
|
632 |
+
return_special_tokens_mask: bool = False,
|
633 |
+
return_offsets_mapping: bool = False,
|
634 |
+
return_length: bool = False,
|
635 |
+
verbose: bool = True,
|
636 |
+
**kwargs,
|
637 |
+
) -> BatchEncoding:
|
638 |
+
if return_offsets_mapping:
|
639 |
+
raise NotImplementedError(
|
640 |
+
"return_offset_mapping is not available when using Python tokenizers. "
|
641 |
+
"To use this feature, change your tokenizer to one deriving from "
|
642 |
+
"transformers.PreTrainedTokenizerFast."
|
643 |
+
)
|
644 |
+
|
645 |
+
batch_outputs = self._batch_prepare_for_model(
|
646 |
+
batch_text_or_text_pairs=batch_text_or_text_pairs,
|
647 |
+
is_pair=is_pair,
|
648 |
+
boxes=boxes,
|
649 |
+
word_labels=word_labels,
|
650 |
+
add_special_tokens=add_special_tokens,
|
651 |
+
padding_strategy=padding_strategy,
|
652 |
+
truncation_strategy=truncation_strategy,
|
653 |
+
max_length=max_length,
|
654 |
+
stride=stride,
|
655 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
656 |
+
return_attention_mask=return_attention_mask,
|
657 |
+
return_token_type_ids=return_token_type_ids,
|
658 |
+
return_overflowing_tokens=return_overflowing_tokens,
|
659 |
+
return_special_tokens_mask=return_special_tokens_mask,
|
660 |
+
return_length=return_length,
|
661 |
+
return_tensors=return_tensors,
|
662 |
+
verbose=verbose,
|
663 |
+
)
|
664 |
+
|
665 |
+
return BatchEncoding(batch_outputs)
|
666 |
+
|
667 |
+
@add_end_docstrings(LAYOUTLMV2_ENCODE_KWARGS_DOCSTRING, LAYOUTLMV2_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
|
668 |
+
def _batch_prepare_for_model(
|
669 |
+
self,
|
670 |
+
batch_text_or_text_pairs,
|
671 |
+
is_pair: bool = None,
|
672 |
+
boxes: Optional[List[List[int]]] = None,
|
673 |
+
word_labels: Optional[List[List[int]]] = None,
|
674 |
+
add_special_tokens: bool = True,
|
675 |
+
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
|
676 |
+
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
|
677 |
+
max_length: Optional[int] = None,
|
678 |
+
stride: int = 0,
|
679 |
+
pad_to_multiple_of: Optional[int] = None,
|
680 |
+
return_tensors: Optional[str] = None,
|
681 |
+
return_token_type_ids: Optional[bool] = None,
|
682 |
+
return_attention_mask: Optional[bool] = None,
|
683 |
+
return_overflowing_tokens: bool = False,
|
684 |
+
return_special_tokens_mask: bool = False,
|
685 |
+
return_length: bool = False,
|
686 |
+
verbose: bool = True,
|
687 |
+
) -> BatchEncoding:
|
688 |
+
"""
|
689 |
+
Prepares a sequence of input id, or a pair of sequences of inputs ids so that it can be used by the model. It
|
690 |
+
adds special tokens, truncates sequences if overflowing while taking into account the special tokens and
|
691 |
+
manages a moving window (with user defined stride) for overflowing tokens.
|
692 |
+
|
693 |
+
Args:
|
694 |
+
batch_ids_pairs: list of tokenized input ids or input ids pairs
|
695 |
+
"""
|
696 |
+
|
697 |
+
batch_outputs = {}
|
698 |
+
for idx, example in enumerate(zip(batch_text_or_text_pairs, boxes)):
|
699 |
+
batch_text_or_text_pair, boxes_example = example
|
700 |
+
outputs = self.prepare_for_model(
|
701 |
+
batch_text_or_text_pair[0] if is_pair else batch_text_or_text_pair,
|
702 |
+
batch_text_or_text_pair[1] if is_pair else None,
|
703 |
+
boxes_example,
|
704 |
+
word_labels=word_labels[idx] if word_labels is not None else None,
|
705 |
+
add_special_tokens=add_special_tokens,
|
706 |
+
padding=PaddingStrategy.DO_NOT_PAD.value, # we pad in batch afterward
|
707 |
+
truncation=truncation_strategy.value,
|
708 |
+
max_length=max_length,
|
709 |
+
stride=stride,
|
710 |
+
pad_to_multiple_of=None, # we pad in batch afterward
|
711 |
+
return_attention_mask=False, # we pad in batch afterward
|
712 |
+
return_token_type_ids=return_token_type_ids,
|
713 |
+
return_overflowing_tokens=return_overflowing_tokens,
|
714 |
+
return_special_tokens_mask=return_special_tokens_mask,
|
715 |
+
return_length=return_length,
|
716 |
+
return_tensors=None, # We convert the whole batch to tensors at the end
|
717 |
+
prepend_batch_axis=False,
|
718 |
+
verbose=verbose,
|
719 |
+
)
|
720 |
+
|
721 |
+
for key, value in outputs.items():
|
722 |
+
if key not in batch_outputs:
|
723 |
+
batch_outputs[key] = []
|
724 |
+
batch_outputs[key].append(value)
|
725 |
+
|
726 |
+
batch_outputs = self.pad(
|
727 |
+
batch_outputs,
|
728 |
+
padding=padding_strategy.value,
|
729 |
+
max_length=max_length,
|
730 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
731 |
+
return_attention_mask=return_attention_mask,
|
732 |
+
)
|
733 |
+
|
734 |
+
batch_outputs = BatchEncoding(batch_outputs, tensor_type=return_tensors)
|
735 |
+
|
736 |
+
return batch_outputs
|
737 |
+
|
738 |
+
@add_end_docstrings(LAYOUTLMV2_ENCODE_KWARGS_DOCSTRING)
|
739 |
+
def encode(
|
740 |
+
self,
|
741 |
+
text: Union[TextInput, PreTokenizedInput],
|
742 |
+
text_pair: Optional[PreTokenizedInput] = None,
|
743 |
+
boxes: Optional[List[List[int]]] = None,
|
744 |
+
word_labels: Optional[List[int]] = None,
|
745 |
+
add_special_tokens: bool = True,
|
746 |
+
padding: Union[bool, str, PaddingStrategy] = False,
|
747 |
+
truncation: Union[bool, str, TruncationStrategy] = None,
|
748 |
+
max_length: Optional[int] = None,
|
749 |
+
stride: int = 0,
|
750 |
+
pad_to_multiple_of: Optional[int] = None,
|
751 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
752 |
+
return_token_type_ids: Optional[bool] = None,
|
753 |
+
return_attention_mask: Optional[bool] = None,
|
754 |
+
return_overflowing_tokens: bool = False,
|
755 |
+
return_special_tokens_mask: bool = False,
|
756 |
+
return_offsets_mapping: bool = False,
|
757 |
+
return_length: bool = False,
|
758 |
+
verbose: bool = True,
|
759 |
+
**kwargs,
|
760 |
+
) -> List[int]:
|
761 |
+
encoded_inputs = self.encode_plus(
|
762 |
+
text=text,
|
763 |
+
text_pair=text_pair,
|
764 |
+
boxes=boxes,
|
765 |
+
word_labels=word_labels,
|
766 |
+
add_special_tokens=add_special_tokens,
|
767 |
+
padding=padding,
|
768 |
+
truncation=truncation,
|
769 |
+
max_length=max_length,
|
770 |
+
stride=stride,
|
771 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
772 |
+
return_tensors=return_tensors,
|
773 |
+
return_token_type_ids=return_token_type_ids,
|
774 |
+
return_attention_mask=return_attention_mask,
|
775 |
+
return_overflowing_tokens=return_overflowing_tokens,
|
776 |
+
return_special_tokens_mask=return_special_tokens_mask,
|
777 |
+
return_offsets_mapping=return_offsets_mapping,
|
778 |
+
return_length=return_length,
|
779 |
+
verbose=verbose,
|
780 |
+
**kwargs,
|
781 |
+
)
|
782 |
+
|
783 |
+
return encoded_inputs["input_ids"]
|
784 |
+
|
785 |
+
@add_end_docstrings(LAYOUTLMV2_ENCODE_KWARGS_DOCSTRING, LAYOUTLMV2_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
|
786 |
+
def encode_plus(
|
787 |
+
self,
|
788 |
+
text: Union[TextInput, PreTokenizedInput],
|
789 |
+
text_pair: Optional[PreTokenizedInput] = None,
|
790 |
+
boxes: Optional[List[List[int]]] = None,
|
791 |
+
word_labels: Optional[List[int]] = None,
|
792 |
+
add_special_tokens: bool = True,
|
793 |
+
padding: Union[bool, str, PaddingStrategy] = False,
|
794 |
+
truncation: Union[bool, str, TruncationStrategy] = None,
|
795 |
+
max_length: Optional[int] = None,
|
796 |
+
stride: int = 0,
|
797 |
+
pad_to_multiple_of: Optional[int] = None,
|
798 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
799 |
+
return_token_type_ids: Optional[bool] = None,
|
800 |
+
return_attention_mask: Optional[bool] = None,
|
801 |
+
return_overflowing_tokens: bool = False,
|
802 |
+
return_special_tokens_mask: bool = False,
|
803 |
+
return_offsets_mapping: bool = False,
|
804 |
+
return_length: bool = False,
|
805 |
+
verbose: bool = True,
|
806 |
+
**kwargs,
|
807 |
+
) -> BatchEncoding:
|
808 |
+
"""
|
809 |
+
Tokenize and prepare for the model a sequence or a pair of sequences. .. warning:: This method is deprecated,
|
810 |
+
`__call__` should be used instead.
|
811 |
+
|
812 |
+
Args:
|
813 |
+
text (`str`, `List[str]`, `List[List[str]]`):
|
814 |
+
The first sequence to be encoded. This can be a string, a list of strings or a list of list of strings.
|
815 |
+
text_pair (`List[str]` or `List[int]`, *optional*):
|
816 |
+
Optional second sequence to be encoded. This can be a list of strings (words of a single example) or a
|
817 |
+
list of list of strings (words of a batch of examples).
|
818 |
+
"""
|
819 |
+
|
820 |
+
# Backward compatibility for 'truncation_strategy', 'pad_to_max_length'
|
821 |
+
padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies(
|
822 |
+
padding=padding,
|
823 |
+
truncation=truncation,
|
824 |
+
max_length=max_length,
|
825 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
826 |
+
verbose=verbose,
|
827 |
+
**kwargs,
|
828 |
+
)
|
829 |
+
|
830 |
+
return self._encode_plus(
|
831 |
+
text=text,
|
832 |
+
boxes=boxes,
|
833 |
+
text_pair=text_pair,
|
834 |
+
word_labels=word_labels,
|
835 |
+
add_special_tokens=add_special_tokens,
|
836 |
+
padding_strategy=padding_strategy,
|
837 |
+
truncation_strategy=truncation_strategy,
|
838 |
+
max_length=max_length,
|
839 |
+
stride=stride,
|
840 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
841 |
+
return_tensors=return_tensors,
|
842 |
+
return_token_type_ids=return_token_type_ids,
|
843 |
+
return_attention_mask=return_attention_mask,
|
844 |
+
return_overflowing_tokens=return_overflowing_tokens,
|
845 |
+
return_special_tokens_mask=return_special_tokens_mask,
|
846 |
+
return_offsets_mapping=return_offsets_mapping,
|
847 |
+
return_length=return_length,
|
848 |
+
verbose=verbose,
|
849 |
+
**kwargs,
|
850 |
+
)
|
851 |
+
|
852 |
+
def _encode_plus(
|
853 |
+
self,
|
854 |
+
text: Union[TextInput, PreTokenizedInput],
|
855 |
+
text_pair: Optional[PreTokenizedInput] = None,
|
856 |
+
boxes: Optional[List[List[int]]] = None,
|
857 |
+
word_labels: Optional[List[int]] = None,
|
858 |
+
add_special_tokens: bool = True,
|
859 |
+
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
|
860 |
+
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
|
861 |
+
max_length: Optional[int] = None,
|
862 |
+
stride: int = 0,
|
863 |
+
pad_to_multiple_of: Optional[int] = None,
|
864 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
865 |
+
return_token_type_ids: Optional[bool] = None,
|
866 |
+
return_attention_mask: Optional[bool] = None,
|
867 |
+
return_overflowing_tokens: bool = False,
|
868 |
+
return_special_tokens_mask: bool = False,
|
869 |
+
return_offsets_mapping: bool = False,
|
870 |
+
return_length: bool = False,
|
871 |
+
verbose: bool = True,
|
872 |
+
**kwargs,
|
873 |
+
) -> BatchEncoding:
|
874 |
+
if return_offsets_mapping:
|
875 |
+
raise NotImplementedError(
|
876 |
+
"return_offset_mapping is not available when using Python tokenizers. "
|
877 |
+
"To use this feature, change your tokenizer to one deriving from "
|
878 |
+
"transformers.PreTrainedTokenizerFast. "
|
879 |
+
"More information on available tokenizers at "
|
880 |
+
"https://github.com/huggingface/transformers/pull/2674"
|
881 |
+
)
|
882 |
+
|
883 |
+
return self.prepare_for_model(
|
884 |
+
text=text,
|
885 |
+
text_pair=text_pair,
|
886 |
+
boxes=boxes,
|
887 |
+
word_labels=word_labels,
|
888 |
+
add_special_tokens=add_special_tokens,
|
889 |
+
padding=padding_strategy.value,
|
890 |
+
truncation=truncation_strategy.value,
|
891 |
+
max_length=max_length,
|
892 |
+
stride=stride,
|
893 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
894 |
+
return_tensors=return_tensors,
|
895 |
+
prepend_batch_axis=True,
|
896 |
+
return_attention_mask=return_attention_mask,
|
897 |
+
return_token_type_ids=return_token_type_ids,
|
898 |
+
return_overflowing_tokens=return_overflowing_tokens,
|
899 |
+
return_special_tokens_mask=return_special_tokens_mask,
|
900 |
+
return_length=return_length,
|
901 |
+
verbose=verbose,
|
902 |
+
)
|
903 |
+
|
904 |
+
@add_end_docstrings(LAYOUTLMV2_ENCODE_KWARGS_DOCSTRING, LAYOUTLMV2_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
|
905 |
+
def prepare_for_model(
|
906 |
+
self,
|
907 |
+
text: Union[TextInput, PreTokenizedInput],
|
908 |
+
text_pair: Optional[PreTokenizedInput] = None,
|
909 |
+
boxes: Optional[List[List[int]]] = None,
|
910 |
+
word_labels: Optional[List[int]] = None,
|
911 |
+
add_special_tokens: bool = True,
|
912 |
+
padding: Union[bool, str, PaddingStrategy] = False,
|
913 |
+
truncation: Union[bool, str, TruncationStrategy] = None,
|
914 |
+
max_length: Optional[int] = None,
|
915 |
+
stride: int = 0,
|
916 |
+
pad_to_multiple_of: Optional[int] = None,
|
917 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
918 |
+
return_token_type_ids: Optional[bool] = None,
|
919 |
+
return_attention_mask: Optional[bool] = None,
|
920 |
+
return_overflowing_tokens: bool = False,
|
921 |
+
return_special_tokens_mask: bool = False,
|
922 |
+
return_offsets_mapping: bool = False,
|
923 |
+
return_length: bool = False,
|
924 |
+
verbose: bool = True,
|
925 |
+
prepend_batch_axis: bool = False,
|
926 |
+
**kwargs,
|
927 |
+
) -> BatchEncoding:
|
928 |
+
"""
|
929 |
+
Prepares a sequence or a pair of sequences so that it can be used by the model. It adds special tokens,
|
930 |
+
truncates sequences if overflowing while taking into account the special tokens and manages a moving window
|
931 |
+
(with user defined stride) for overflowing tokens. Please Note, for *text_pair* different than `None` and
|
932 |
+
*truncation_strategy = longest_first* or `True`, it is not possible to return overflowing tokens. Such a
|
933 |
+
combination of arguments will raise an error.
|
934 |
+
|
935 |
+
Word-level `boxes` are turned into token-level `bbox`. If provided, word-level `word_labels` are turned into
|
936 |
+
token-level `labels`. The word label is used for the first token of the word, while remaining tokens are
|
937 |
+
labeled with -100, such that they will be ignored by the loss function.
|
938 |
+
|
939 |
+
Args:
|
940 |
+
text (`str`, `List[str]`, `List[List[str]]`):
|
941 |
+
The first sequence to be encoded. This can be a string, a list of strings or a list of list of strings.
|
942 |
+
text_pair (`List[str]` or `List[int]`, *optional*):
|
943 |
+
Optional second sequence to be encoded. This can be a list of strings (words of a single example) or a
|
944 |
+
list of list of strings (words of a batch of examples).
|
945 |
+
"""
|
946 |
+
|
947 |
+
# Backward compatibility for 'truncation_strategy', 'pad_to_max_length'
|
948 |
+
padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies(
|
949 |
+
padding=padding,
|
950 |
+
truncation=truncation,
|
951 |
+
max_length=max_length,
|
952 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
953 |
+
verbose=verbose,
|
954 |
+
**kwargs,
|
955 |
+
)
|
956 |
+
|
957 |
+
tokens = []
|
958 |
+
pair_tokens = []
|
959 |
+
token_boxes = []
|
960 |
+
pair_token_boxes = []
|
961 |
+
labels = []
|
962 |
+
|
963 |
+
if text_pair is None:
|
964 |
+
if word_labels is None:
|
965 |
+
# CASE 1: document image classification (training + inference) + CASE 2: token classification (inference)
|
966 |
+
for word, box in zip(text, boxes):
|
967 |
+
if len(word) < 1: # skip empty words
|
968 |
+
continue
|
969 |
+
word_tokens = self.tokenize(word)
|
970 |
+
tokens.extend(word_tokens)
|
971 |
+
token_boxes.extend([box] * len(word_tokens))
|
972 |
+
else:
|
973 |
+
# CASE 2: token classification (training)
|
974 |
+
for word, box, label in zip(text, boxes, word_labels):
|
975 |
+
if len(word) < 1: # skip empty words
|
976 |
+
continue
|
977 |
+
word_tokens = self.tokenize(word)
|
978 |
+
tokens.extend(word_tokens)
|
979 |
+
token_boxes.extend([box] * len(word_tokens))
|
980 |
+
if self.only_label_first_subword:
|
981 |
+
# Use the real label id for the first token of the word, and padding ids for the remaining tokens
|
982 |
+
labels.extend([label] + [self.pad_token_label] * (len(word_tokens) - 1))
|
983 |
+
else:
|
984 |
+
labels.extend([label] * len(word_tokens))
|
985 |
+
else:
|
986 |
+
# CASE 3: document visual question answering (inference)
|
987 |
+
# text = question
|
988 |
+
# text_pair = words
|
989 |
+
tokens = self.tokenize(text)
|
990 |
+
token_boxes = [self.pad_token_box for _ in range(len(tokens))]
|
991 |
+
|
992 |
+
for word, box in zip(text_pair, boxes):
|
993 |
+
if len(word) < 1: # skip empty words
|
994 |
+
continue
|
995 |
+
word_tokens = self.tokenize(word)
|
996 |
+
pair_tokens.extend(word_tokens)
|
997 |
+
pair_token_boxes.extend([box] * len(word_tokens))
|
998 |
+
|
999 |
+
# Create ids + pair_ids
|
1000 |
+
ids = self.convert_tokens_to_ids(tokens)
|
1001 |
+
pair_ids = self.convert_tokens_to_ids(pair_tokens) if pair_tokens else None
|
1002 |
+
|
1003 |
+
if (
|
1004 |
+
return_overflowing_tokens
|
1005 |
+
and truncation_strategy == TruncationStrategy.LONGEST_FIRST
|
1006 |
+
and pair_ids is not None
|
1007 |
+
):
|
1008 |
+
raise ValueError(
|
1009 |
+
"Not possible to return overflowing tokens for pair of sequences with the "
|
1010 |
+
"`longest_first`. Please select another truncation strategy than `longest_first`, "
|
1011 |
+
"for instance `only_second` or `only_first`."
|
1012 |
+
)
|
1013 |
+
|
1014 |
+
# Compute the total size of the returned encodings
|
1015 |
+
pair = bool(pair_ids is not None)
|
1016 |
+
len_ids = len(ids)
|
1017 |
+
len_pair_ids = len(pair_ids) if pair else 0
|
1018 |
+
total_len = len_ids + len_pair_ids + (self.num_special_tokens_to_add(pair=pair) if add_special_tokens else 0)
|
1019 |
+
|
1020 |
+
# Truncation: Handle max sequence length
|
1021 |
+
overflowing_tokens = []
|
1022 |
+
overflowing_token_boxes = []
|
1023 |
+
overflowing_labels = []
|
1024 |
+
if truncation_strategy != TruncationStrategy.DO_NOT_TRUNCATE and max_length and total_len > max_length:
|
1025 |
+
(
|
1026 |
+
ids,
|
1027 |
+
token_boxes,
|
1028 |
+
pair_ids,
|
1029 |
+
pair_token_boxes,
|
1030 |
+
labels,
|
1031 |
+
overflowing_tokens,
|
1032 |
+
overflowing_token_boxes,
|
1033 |
+
overflowing_labels,
|
1034 |
+
) = self.truncate_sequences(
|
1035 |
+
ids,
|
1036 |
+
token_boxes,
|
1037 |
+
pair_ids=pair_ids,
|
1038 |
+
pair_token_boxes=pair_token_boxes,
|
1039 |
+
labels=labels,
|
1040 |
+
num_tokens_to_remove=total_len - max_length,
|
1041 |
+
truncation_strategy=truncation_strategy,
|
1042 |
+
stride=stride,
|
1043 |
+
)
|
1044 |
+
|
1045 |
+
if return_token_type_ids and not add_special_tokens:
|
1046 |
+
raise ValueError(
|
1047 |
+
"Asking to return token_type_ids while setting add_special_tokens to False "
|
1048 |
+
"results in an undefined behavior. Please set add_special_tokens to True or "
|
1049 |
+
"set return_token_type_ids to None."
|
1050 |
+
)
|
1051 |
+
|
1052 |
+
# Load from model defaults
|
1053 |
+
if return_token_type_ids is None:
|
1054 |
+
return_token_type_ids = "token_type_ids" in self.model_input_names
|
1055 |
+
if return_attention_mask is None:
|
1056 |
+
return_attention_mask = "attention_mask" in self.model_input_names
|
1057 |
+
|
1058 |
+
encoded_inputs = {}
|
1059 |
+
|
1060 |
+
if return_overflowing_tokens:
|
1061 |
+
encoded_inputs["overflowing_tokens"] = overflowing_tokens
|
1062 |
+
encoded_inputs["overflowing_token_boxes"] = overflowing_token_boxes
|
1063 |
+
encoded_inputs["overflowing_labels"] = overflowing_labels
|
1064 |
+
encoded_inputs["num_truncated_tokens"] = total_len - max_length
|
1065 |
+
|
1066 |
+
# Add special tokens
|
1067 |
+
if add_special_tokens:
|
1068 |
+
sequence = self.build_inputs_with_special_tokens(ids, pair_ids)
|
1069 |
+
token_type_ids = self.create_token_type_ids_from_sequences(ids, pair_ids)
|
1070 |
+
token_boxes = [self.cls_token_box] + token_boxes + [self.sep_token_box]
|
1071 |
+
if pair_token_boxes:
|
1072 |
+
pair_token_boxes = pair_token_boxes + [self.sep_token_box]
|
1073 |
+
if labels:
|
1074 |
+
labels = [self.pad_token_label] + labels + [self.pad_token_label]
|
1075 |
+
else:
|
1076 |
+
sequence = ids + pair_ids if pair else ids
|
1077 |
+
token_type_ids = [0] * len(ids) + ([0] * len(pair_ids) if pair else [])
|
1078 |
+
|
1079 |
+
# Build output dictionary
|
1080 |
+
encoded_inputs["input_ids"] = sequence
|
1081 |
+
encoded_inputs["bbox"] = token_boxes + pair_token_boxes
|
1082 |
+
if return_token_type_ids:
|
1083 |
+
encoded_inputs["token_type_ids"] = token_type_ids
|
1084 |
+
if return_special_tokens_mask:
|
1085 |
+
if add_special_tokens:
|
1086 |
+
encoded_inputs["special_tokens_mask"] = self.get_special_tokens_mask(ids, pair_ids)
|
1087 |
+
else:
|
1088 |
+
encoded_inputs["special_tokens_mask"] = [0] * len(sequence)
|
1089 |
+
|
1090 |
+
if labels:
|
1091 |
+
encoded_inputs["labels"] = labels
|
1092 |
+
|
1093 |
+
# Check lengths
|
1094 |
+
self._eventual_warn_about_too_long_sequence(encoded_inputs["input_ids"], max_length, verbose)
|
1095 |
+
|
1096 |
+
# Padding
|
1097 |
+
if padding_strategy != PaddingStrategy.DO_NOT_PAD or return_attention_mask:
|
1098 |
+
encoded_inputs = self.pad(
|
1099 |
+
encoded_inputs,
|
1100 |
+
max_length=max_length,
|
1101 |
+
padding=padding_strategy.value,
|
1102 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
1103 |
+
return_attention_mask=return_attention_mask,
|
1104 |
+
)
|
1105 |
+
|
1106 |
+
if return_length:
|
1107 |
+
encoded_inputs["length"] = len(encoded_inputs["input_ids"])
|
1108 |
+
|
1109 |
+
batch_outputs = BatchEncoding(
|
1110 |
+
encoded_inputs, tensor_type=return_tensors, prepend_batch_axis=prepend_batch_axis
|
1111 |
+
)
|
1112 |
+
|
1113 |
+
return batch_outputs
|
1114 |
+
|
1115 |
+
def truncate_sequences(
|
1116 |
+
self,
|
1117 |
+
ids: List[int],
|
1118 |
+
token_boxes: List[List[int]],
|
1119 |
+
pair_ids: Optional[List[int]] = None,
|
1120 |
+
pair_token_boxes: Optional[List[List[int]]] = None,
|
1121 |
+
labels: Optional[List[int]] = None,
|
1122 |
+
num_tokens_to_remove: int = 0,
|
1123 |
+
truncation_strategy: Union[str, TruncationStrategy] = "longest_first",
|
1124 |
+
stride: int = 0,
|
1125 |
+
) -> Tuple[List[int], List[int], List[int]]:
|
1126 |
+
"""
|
1127 |
+
Truncates a sequence pair in-place following the strategy.
|
1128 |
+
|
1129 |
+
Args:
|
1130 |
+
ids (`List[int]`):
|
1131 |
+
Tokenized input ids of the first sequence. Can be obtained from a string by chaining the `tokenize` and
|
1132 |
+
`convert_tokens_to_ids` methods.
|
1133 |
+
token_boxes (`List[List[int]]`):
|
1134 |
+
Bounding boxes of the first sequence.
|
1135 |
+
pair_ids (`List[int]`, *optional*):
|
1136 |
+
Tokenized input ids of the second sequence. Can be obtained from a string by chaining the `tokenize`
|
1137 |
+
and `convert_tokens_to_ids` methods.
|
1138 |
+
pair_token_boxes (`List[List[int]]`, *optional*):
|
1139 |
+
Bounding boxes of the second sequence.
|
1140 |
+
labels (`List[int]`, *optional*):
|
1141 |
+
Labels of the first sequence (for token classification tasks).
|
1142 |
+
num_tokens_to_remove (`int`, *optional*, defaults to 0):
|
1143 |
+
Number of tokens to remove using the truncation strategy.
|
1144 |
+
truncation_strategy (`str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):
|
1145 |
+
The strategy to follow for truncation. Can be:
|
1146 |
+
|
1147 |
+
- `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the
|
1148 |
+
maximum acceptable input length for the model if that argument is not provided. This will truncate
|
1149 |
+
token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a
|
1150 |
+
batch of pairs) is provided.
|
1151 |
+
- `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the
|
1152 |
+
maximum acceptable input length for the model if that argument is not provided. This will only
|
1153 |
+
truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
|
1154 |
+
- `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the
|
1155 |
+
maximum acceptable input length for the model if that argument is not provided. This will only
|
1156 |
+
truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
|
1157 |
+
- `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater
|
1158 |
+
than the model maximum admissible input size).
|
1159 |
+
stride (`int`, *optional*, defaults to 0):
|
1160 |
+
If set to a positive number, the overflowing tokens returned will contain some tokens from the main
|
1161 |
+
sequence returned. The value of this argument defines the number of additional tokens.
|
1162 |
+
|
1163 |
+
Returns:
|
1164 |
+
`Tuple[List[int], List[int], List[int]]`: The truncated `ids`, the truncated `pair_ids` and the list of
|
1165 |
+
overflowing tokens. Note: The *longest_first* strategy returns empty list of overflowing tokens if a pair
|
1166 |
+
of sequences (or a batch of pairs) is provided.
|
1167 |
+
"""
|
1168 |
+
if num_tokens_to_remove <= 0:
|
1169 |
+
return ids, token_boxes, pair_ids, pair_token_boxes, labels, [], [], []
|
1170 |
+
|
1171 |
+
if not isinstance(truncation_strategy, TruncationStrategy):
|
1172 |
+
truncation_strategy = TruncationStrategy(truncation_strategy)
|
1173 |
+
|
1174 |
+
overflowing_tokens = []
|
1175 |
+
overflowing_token_boxes = []
|
1176 |
+
overflowing_labels = []
|
1177 |
+
if truncation_strategy == TruncationStrategy.ONLY_FIRST or (
|
1178 |
+
truncation_strategy == TruncationStrategy.LONGEST_FIRST and pair_ids is None
|
1179 |
+
):
|
1180 |
+
if len(ids) > num_tokens_to_remove:
|
1181 |
+
window_len = min(len(ids), stride + num_tokens_to_remove)
|
1182 |
+
overflowing_tokens = ids[-window_len:]
|
1183 |
+
overflowing_token_boxes = token_boxes[-window_len:]
|
1184 |
+
overflowing_labels = labels[-window_len:]
|
1185 |
+
ids = ids[:-num_tokens_to_remove]
|
1186 |
+
token_boxes = token_boxes[:-num_tokens_to_remove]
|
1187 |
+
labels = labels[:-num_tokens_to_remove]
|
1188 |
+
else:
|
1189 |
+
error_msg = (
|
1190 |
+
f"We need to remove {num_tokens_to_remove} to truncate the input "
|
1191 |
+
f"but the first sequence has a length {len(ids)}. "
|
1192 |
+
)
|
1193 |
+
if truncation_strategy == TruncationStrategy.ONLY_FIRST:
|
1194 |
+
error_msg = (
|
1195 |
+
error_msg + "Please select another truncation strategy than "
|
1196 |
+
f"{truncation_strategy}, for instance 'longest_first' or 'only_second'."
|
1197 |
+
)
|
1198 |
+
logger.error(error_msg)
|
1199 |
+
elif truncation_strategy == TruncationStrategy.LONGEST_FIRST:
|
1200 |
+
logger.warning(
|
1201 |
+
"Be aware, overflowing tokens are not returned for the setting you have chosen,"
|
1202 |
+
f" i.e. sequence pairs with the '{TruncationStrategy.LONGEST_FIRST.value}' "
|
1203 |
+
"truncation strategy. So the returned list will always be empty even if some "
|
1204 |
+
"tokens have been removed."
|
1205 |
+
)
|
1206 |
+
for _ in range(num_tokens_to_remove):
|
1207 |
+
if pair_ids is None or len(ids) > len(pair_ids):
|
1208 |
+
ids = ids[:-1]
|
1209 |
+
token_boxes = token_boxes[:-1]
|
1210 |
+
labels = labels[:-1]
|
1211 |
+
else:
|
1212 |
+
pair_ids = pair_ids[:-1]
|
1213 |
+
pair_token_boxes = pair_token_boxes[:-1]
|
1214 |
+
elif truncation_strategy == TruncationStrategy.ONLY_SECOND and pair_ids is not None:
|
1215 |
+
if len(pair_ids) > num_tokens_to_remove:
|
1216 |
+
window_len = min(len(pair_ids), stride + num_tokens_to_remove)
|
1217 |
+
overflowing_tokens = pair_ids[-window_len:]
|
1218 |
+
overflowing_token_boxes = pair_token_boxes[-window_len:]
|
1219 |
+
pair_ids = pair_ids[:-num_tokens_to_remove]
|
1220 |
+
pair_token_boxes = pair_token_boxes[:-num_tokens_to_remove]
|
1221 |
+
else:
|
1222 |
+
logger.error(
|
1223 |
+
f"We need to remove {num_tokens_to_remove} to truncate the input "
|
1224 |
+
f"but the second sequence has a length {len(pair_ids)}. "
|
1225 |
+
f"Please select another truncation strategy than {truncation_strategy}, "
|
1226 |
+
"for instance 'longest_first' or 'only_first'."
|
1227 |
+
)
|
1228 |
+
|
1229 |
+
return (
|
1230 |
+
ids,
|
1231 |
+
token_boxes,
|
1232 |
+
pair_ids,
|
1233 |
+
pair_token_boxes,
|
1234 |
+
labels,
|
1235 |
+
overflowing_tokens,
|
1236 |
+
overflowing_token_boxes,
|
1237 |
+
overflowing_labels,
|
1238 |
+
)
|
1239 |
+
|
1240 |
+
def _pad(
|
1241 |
+
self,
|
1242 |
+
encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
|
1243 |
+
max_length: Optional[int] = None,
|
1244 |
+
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
|
1245 |
+
pad_to_multiple_of: Optional[int] = None,
|
1246 |
+
return_attention_mask: Optional[bool] = None,
|
1247 |
+
) -> dict:
|
1248 |
+
"""
|
1249 |
+
Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
|
1250 |
+
|
1251 |
+
Args:
|
1252 |
+
encoded_inputs:
|
1253 |
+
Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
|
1254 |
+
max_length: maximum length of the returned list and optionally padding length (see below).
|
1255 |
+
Will truncate by taking into account the special tokens.
|
1256 |
+
padding_strategy: PaddingStrategy to use for padding.
|
1257 |
+
|
1258 |
+
- PaddingStrategy.LONGEST Pad to the longest sequence in the batch
|
1259 |
+
- PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
|
1260 |
+
- PaddingStrategy.DO_NOT_PAD: Do not pad
|
1261 |
+
The tokenizer padding sides are defined in self.padding_side:
|
1262 |
+
|
1263 |
+
- 'left': pads on the left of the sequences
|
1264 |
+
- 'right': pads on the right of the sequences
|
1265 |
+
pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
|
1266 |
+
This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
|
1267 |
+
`>= 7.5` (Volta).
|
1268 |
+
return_attention_mask:
|
1269 |
+
(optional) Set to False to avoid returning attention mask (default: set to model specifics)
|
1270 |
+
"""
|
1271 |
+
# Load from model defaults
|
1272 |
+
if return_attention_mask is None:
|
1273 |
+
return_attention_mask = "attention_mask" in self.model_input_names
|
1274 |
+
|
1275 |
+
required_input = encoded_inputs[self.model_input_names[0]]
|
1276 |
+
|
1277 |
+
if padding_strategy == PaddingStrategy.LONGEST:
|
1278 |
+
max_length = len(required_input)
|
1279 |
+
|
1280 |
+
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
|
1281 |
+
max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
|
1282 |
+
|
1283 |
+
needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length
|
1284 |
+
|
1285 |
+
# Initialize attention mask if not present.
|
1286 |
+
if return_attention_mask and "attention_mask" not in encoded_inputs:
|
1287 |
+
encoded_inputs["attention_mask"] = [1] * len(required_input)
|
1288 |
+
|
1289 |
+
if needs_to_be_padded:
|
1290 |
+
difference = max_length - len(required_input)
|
1291 |
+
if self.padding_side == "right":
|
1292 |
+
if return_attention_mask:
|
1293 |
+
encoded_inputs["attention_mask"] = encoded_inputs["attention_mask"] + [0] * difference
|
1294 |
+
if "token_type_ids" in encoded_inputs:
|
1295 |
+
encoded_inputs["token_type_ids"] = (
|
1296 |
+
encoded_inputs["token_type_ids"] + [self.pad_token_type_id] * difference
|
1297 |
+
)
|
1298 |
+
if "bbox" in encoded_inputs:
|
1299 |
+
encoded_inputs["bbox"] = encoded_inputs["bbox"] + [self.pad_token_box] * difference
|
1300 |
+
if "labels" in encoded_inputs:
|
1301 |
+
encoded_inputs["labels"] = encoded_inputs["labels"] + [self.pad_token_label] * difference
|
1302 |
+
if "special_tokens_mask" in encoded_inputs:
|
1303 |
+
encoded_inputs["special_tokens_mask"] = encoded_inputs["special_tokens_mask"] + [1] * difference
|
1304 |
+
encoded_inputs[self.model_input_names[0]] = required_input + [self.pad_token_id] * difference
|
1305 |
+
elif self.padding_side == "left":
|
1306 |
+
if return_attention_mask:
|
1307 |
+
encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"]
|
1308 |
+
if "token_type_ids" in encoded_inputs:
|
1309 |
+
encoded_inputs["token_type_ids"] = [self.pad_token_type_id] * difference + encoded_inputs[
|
1310 |
+
"token_type_ids"
|
1311 |
+
]
|
1312 |
+
if "bbox" in encoded_inputs:
|
1313 |
+
encoded_inputs["bbox"] = [self.pad_token_box] * difference + encoded_inputs["bbox"]
|
1314 |
+
if "labels" in encoded_inputs:
|
1315 |
+
encoded_inputs["labels"] = [self.pad_token_label] * difference + encoded_inputs["labels"]
|
1316 |
+
if "special_tokens_mask" in encoded_inputs:
|
1317 |
+
encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"]
|
1318 |
+
encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
|
1319 |
+
else:
|
1320 |
+
raise ValueError("Invalid padding strategy:" + str(self.padding_side))
|
1321 |
+
|
1322 |
+
return encoded_inputs
|
1323 |
+
|
1324 |
+
|
1325 |
+
# Copied from transformers.models.bert.tokenization_bert.BasicTokenizer
|
1326 |
+
class BasicTokenizer(object):
|
1327 |
+
"""
|
1328 |
+
Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.).
|
1329 |
+
|
1330 |
+
Args:
|
1331 |
+
do_lower_case (`bool`, *optional*, defaults to `True`):
|
1332 |
+
Whether or not to lowercase the input when tokenizing.
|
1333 |
+
never_split (`Iterable`, *optional*):
|
1334 |
+
Collection of tokens which will never be split during tokenization. Only has an effect when
|
1335 |
+
`do_basic_tokenize=True`
|
1336 |
+
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
|
1337 |
+
Whether or not to tokenize Chinese characters.
|
1338 |
+
|
1339 |
+
This should likely be deactivated for Japanese (see this
|
1340 |
+
[issue](https://github.com/huggingface/transformers/issues/328)).
|
1341 |
+
strip_accents (`bool`, *optional*):
|
1342 |
+
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
|
1343 |
+
value for `lowercase` (as in the original BERT).
|
1344 |
+
do_split_on_punc (`bool`, *optional*, defaults to `True`):
|
1345 |
+
In some instances we want to skip the basic punctuation splitting so that later tokenization can capture
|
1346 |
+
the full context of the words, such as contractions.
|
1347 |
+
"""
|
1348 |
+
|
1349 |
+
def __init__(
|
1350 |
+
self,
|
1351 |
+
do_lower_case=True,
|
1352 |
+
never_split=None,
|
1353 |
+
tokenize_chinese_chars=True,
|
1354 |
+
strip_accents=None,
|
1355 |
+
do_split_on_punc=True,
|
1356 |
+
):
|
1357 |
+
if never_split is None:
|
1358 |
+
never_split = []
|
1359 |
+
self.do_lower_case = do_lower_case
|
1360 |
+
self.never_split = set(never_split)
|
1361 |
+
self.tokenize_chinese_chars = tokenize_chinese_chars
|
1362 |
+
self.strip_accents = strip_accents
|
1363 |
+
self.do_split_on_punc = do_split_on_punc
|
1364 |
+
|
1365 |
+
def tokenize(self, text, never_split=None):
|
1366 |
+
"""
|
1367 |
+
Basic Tokenization of a piece of text. For sub-word tokenization, see WordPieceTokenizer.
|
1368 |
+
|
1369 |
+
Args:
|
1370 |
+
never_split (`List[str]`, *optional*)
|
1371 |
+
Kept for backward compatibility purposes. Now implemented directly at the base class level (see
|
1372 |
+
[`PreTrainedTokenizer.tokenize`]) List of token not to split.
|
1373 |
+
"""
|
1374 |
+
# union() returns a new set by concatenating the two sets.
|
1375 |
+
never_split = self.never_split.union(set(never_split)) if never_split else self.never_split
|
1376 |
+
text = self._clean_text(text)
|
1377 |
+
|
1378 |
+
# This was added on November 1st, 2018 for the multilingual and Chinese
|
1379 |
+
# models. This is also applied to the English models now, but it doesn't
|
1380 |
+
# matter since the English models were not trained on any Chinese data
|
1381 |
+
# and generally don't have any Chinese data in them (there are Chinese
|
1382 |
+
# characters in the vocabulary because Wikipedia does have some Chinese
|
1383 |
+
# words in the English Wikipedia.).
|
1384 |
+
if self.tokenize_chinese_chars:
|
1385 |
+
text = self._tokenize_chinese_chars(text)
|
1386 |
+
# prevents treating the same character with different unicode codepoints as different characters
|
1387 |
+
unicode_normalized_text = unicodedata.normalize("NFC", text)
|
1388 |
+
orig_tokens = whitespace_tokenize(unicode_normalized_text)
|
1389 |
+
split_tokens = []
|
1390 |
+
for token in orig_tokens:
|
1391 |
+
if token not in never_split:
|
1392 |
+
if self.do_lower_case:
|
1393 |
+
token = token.lower()
|
1394 |
+
if self.strip_accents is not False:
|
1395 |
+
token = self._run_strip_accents(token)
|
1396 |
+
elif self.strip_accents:
|
1397 |
+
token = self._run_strip_accents(token)
|
1398 |
+
split_tokens.extend(self._run_split_on_punc(token, never_split))
|
1399 |
+
|
1400 |
+
output_tokens = whitespace_tokenize(" ".join(split_tokens))
|
1401 |
+
return output_tokens
|
1402 |
+
|
1403 |
+
def _run_strip_accents(self, text):
|
1404 |
+
"""Strips accents from a piece of text."""
|
1405 |
+
text = unicodedata.normalize("NFD", text)
|
1406 |
+
output = []
|
1407 |
+
for char in text:
|
1408 |
+
cat = unicodedata.category(char)
|
1409 |
+
if cat == "Mn":
|
1410 |
+
continue
|
1411 |
+
output.append(char)
|
1412 |
+
return "".join(output)
|
1413 |
+
|
1414 |
+
def _run_split_on_punc(self, text, never_split=None):
|
1415 |
+
"""Splits punctuation on a piece of text."""
|
1416 |
+
if not self.do_split_on_punc or (never_split is not None and text in never_split):
|
1417 |
+
return [text]
|
1418 |
+
chars = list(text)
|
1419 |
+
i = 0
|
1420 |
+
start_new_word = True
|
1421 |
+
output = []
|
1422 |
+
while i < len(chars):
|
1423 |
+
char = chars[i]
|
1424 |
+
if _is_punctuation(char):
|
1425 |
+
output.append([char])
|
1426 |
+
start_new_word = True
|
1427 |
+
else:
|
1428 |
+
if start_new_word:
|
1429 |
+
output.append([])
|
1430 |
+
start_new_word = False
|
1431 |
+
output[-1].append(char)
|
1432 |
+
i += 1
|
1433 |
+
|
1434 |
+
return ["".join(x) for x in output]
|
1435 |
+
|
1436 |
+
def _tokenize_chinese_chars(self, text):
|
1437 |
+
"""Adds whitespace around any CJK character."""
|
1438 |
+
output = []
|
1439 |
+
for char in text:
|
1440 |
+
cp = ord(char)
|
1441 |
+
if self._is_chinese_char(cp):
|
1442 |
+
output.append(" ")
|
1443 |
+
output.append(char)
|
1444 |
+
output.append(" ")
|
1445 |
+
else:
|
1446 |
+
output.append(char)
|
1447 |
+
return "".join(output)
|
1448 |
+
|
1449 |
+
def _is_chinese_char(self, cp):
|
1450 |
+
"""Checks whether CP is the codepoint of a CJK character."""
|
1451 |
+
# This defines a "chinese character" as anything in the CJK Unicode block:
|
1452 |
+
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
|
1453 |
+
#
|
1454 |
+
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
|
1455 |
+
# despite its name. The modern Korean Hangul alphabet is a different block,
|
1456 |
+
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
|
1457 |
+
# space-separated words, so they are not treated specially and handled
|
1458 |
+
# like the all of the other languages.
|
1459 |
+
if (
|
1460 |
+
(cp >= 0x4E00 and cp <= 0x9FFF)
|
1461 |
+
or (cp >= 0x3400 and cp <= 0x4DBF) #
|
1462 |
+
or (cp >= 0x20000 and cp <= 0x2A6DF) #
|
1463 |
+
or (cp >= 0x2A700 and cp <= 0x2B73F) #
|
1464 |
+
or (cp >= 0x2B740 and cp <= 0x2B81F) #
|
1465 |
+
or (cp >= 0x2B820 and cp <= 0x2CEAF) #
|
1466 |
+
or (cp >= 0xF900 and cp <= 0xFAFF)
|
1467 |
+
or (cp >= 0x2F800 and cp <= 0x2FA1F) #
|
1468 |
+
): #
|
1469 |
+
return True
|
1470 |
+
|
1471 |
+
return False
|
1472 |
+
|
1473 |
+
def _clean_text(self, text):
|
1474 |
+
"""Performs invalid character removal and whitespace cleanup on text."""
|
1475 |
+
output = []
|
1476 |
+
for char in text:
|
1477 |
+
cp = ord(char)
|
1478 |
+
if cp == 0 or cp == 0xFFFD or _is_control(char):
|
1479 |
+
continue
|
1480 |
+
if _is_whitespace(char):
|
1481 |
+
output.append(" ")
|
1482 |
+
else:
|
1483 |
+
output.append(char)
|
1484 |
+
return "".join(output)
|
1485 |
+
|
1486 |
+
|
1487 |
+
# Copied from transformers.models.bert.tokenization_bert.WordpieceTokenizer
|
1488 |
+
class WordpieceTokenizer(object):
|
1489 |
+
"""Runs WordPiece tokenization."""
|
1490 |
+
|
1491 |
+
def __init__(self, vocab, unk_token, max_input_chars_per_word=100):
|
1492 |
+
self.vocab = vocab
|
1493 |
+
self.unk_token = unk_token
|
1494 |
+
self.max_input_chars_per_word = max_input_chars_per_word
|
1495 |
+
|
1496 |
+
def tokenize(self, text):
|
1497 |
+
"""
|
1498 |
+
Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform
|
1499 |
+
tokenization using the given vocabulary.
|
1500 |
+
|
1501 |
+
For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`.
|
1502 |
+
|
1503 |
+
Args:
|
1504 |
+
text: A single token or whitespace separated tokens. This should have
|
1505 |
+
already been passed through *BasicTokenizer*.
|
1506 |
+
|
1507 |
+
Returns:
|
1508 |
+
A list of wordpiece tokens.
|
1509 |
+
"""
|
1510 |
+
|
1511 |
+
output_tokens = []
|
1512 |
+
for token in whitespace_tokenize(text):
|
1513 |
+
chars = list(token)
|
1514 |
+
if len(chars) > self.max_input_chars_per_word:
|
1515 |
+
output_tokens.append(self.unk_token)
|
1516 |
+
continue
|
1517 |
+
|
1518 |
+
is_bad = False
|
1519 |
+
start = 0
|
1520 |
+
sub_tokens = []
|
1521 |
+
while start < len(chars):
|
1522 |
+
end = len(chars)
|
1523 |
+
cur_substr = None
|
1524 |
+
while start < end:
|
1525 |
+
substr = "".join(chars[start:end])
|
1526 |
+
if start > 0:
|
1527 |
+
substr = "##" + substr
|
1528 |
+
if substr in self.vocab:
|
1529 |
+
cur_substr = substr
|
1530 |
+
break
|
1531 |
+
end -= 1
|
1532 |
+
if cur_substr is None:
|
1533 |
+
is_bad = True
|
1534 |
+
break
|
1535 |
+
sub_tokens.append(cur_substr)
|
1536 |
+
start = end
|
1537 |
+
|
1538 |
+
if is_bad:
|
1539 |
+
output_tokens.append(self.unk_token)
|
1540 |
+
else:
|
1541 |
+
output_tokens.extend(sub_tokens)
|
1542 |
+
return output_tokens
|
llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv2/tokenization_layoutlmv2_fast.py
ADDED
@@ -0,0 +1,793 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""
|
16 |
+
Fast tokenization class for LayoutLMv2. It overwrites 2 methods of the slow tokenizer class, namely _batch_encode_plus
|
17 |
+
and _encode_plus, in which the Rust tokenizer is used.
|
18 |
+
"""
|
19 |
+
|
20 |
+
import json
|
21 |
+
from typing import Dict, List, Optional, Tuple, Union
|
22 |
+
|
23 |
+
from tokenizers import normalizers
|
24 |
+
|
25 |
+
from ...tokenization_utils_base import (
|
26 |
+
BatchEncoding,
|
27 |
+
EncodedInput,
|
28 |
+
PaddingStrategy,
|
29 |
+
PreTokenizedInput,
|
30 |
+
TensorType,
|
31 |
+
TextInput,
|
32 |
+
TextInputPair,
|
33 |
+
TruncationStrategy,
|
34 |
+
)
|
35 |
+
from ...tokenization_utils_fast import PreTrainedTokenizerFast
|
36 |
+
from ...utils import add_end_docstrings, logging
|
37 |
+
from .tokenization_layoutlmv2 import (
|
38 |
+
LAYOUTLMV2_ENCODE_KWARGS_DOCSTRING,
|
39 |
+
LAYOUTLMV2_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING,
|
40 |
+
LayoutLMv2Tokenizer,
|
41 |
+
)
|
42 |
+
|
43 |
+
|
44 |
+
logger = logging.get_logger(__name__)
|
45 |
+
|
46 |
+
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
|
47 |
+
|
48 |
+
|
49 |
+
class LayoutLMv2TokenizerFast(PreTrainedTokenizerFast):
|
50 |
+
r"""
|
51 |
+
Construct a "fast" LayoutLMv2 tokenizer (backed by HuggingFace's *tokenizers* library). Based on WordPiece.
|
52 |
+
|
53 |
+
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
|
54 |
+
refer to this superclass for more information regarding those methods.
|
55 |
+
|
56 |
+
Args:
|
57 |
+
vocab_file (`str`):
|
58 |
+
File containing the vocabulary.
|
59 |
+
do_lower_case (`bool`, *optional*, defaults to `True`):
|
60 |
+
Whether or not to lowercase the input when tokenizing.
|
61 |
+
unk_token (`str`, *optional*, defaults to `"[UNK]"`):
|
62 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
63 |
+
token instead.
|
64 |
+
sep_token (`str`, *optional*, defaults to `"[SEP]"`):
|
65 |
+
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
|
66 |
+
sequence classification or for a text and a question for question answering. It is also used as the last
|
67 |
+
token of a sequence built with special tokens.
|
68 |
+
pad_token (`str`, *optional*, defaults to `"[PAD]"`):
|
69 |
+
The token used for padding, for example when batching sequences of different lengths.
|
70 |
+
cls_token (`str`, *optional*, defaults to `"[CLS]"`):
|
71 |
+
The classifier token which is used when doing sequence classification (classification of the whole sequence
|
72 |
+
instead of per-token classification). It is the first token of the sequence when built with special tokens.
|
73 |
+
mask_token (`str`, *optional*, defaults to `"[MASK]"`):
|
74 |
+
The token used for masking values. This is the token used when training this model with masked language
|
75 |
+
modeling. This is the token which the model will try to predict.
|
76 |
+
cls_token_box (`List[int]`, *optional*, defaults to `[0, 0, 0, 0]`):
|
77 |
+
The bounding box to use for the special [CLS] token.
|
78 |
+
sep_token_box (`List[int]`, *optional*, defaults to `[1000, 1000, 1000, 1000]`):
|
79 |
+
The bounding box to use for the special [SEP] token.
|
80 |
+
pad_token_box (`List[int]`, *optional*, defaults to `[0, 0, 0, 0]`):
|
81 |
+
The bounding box to use for the special [PAD] token.
|
82 |
+
pad_token_label (`int`, *optional*, defaults to -100):
|
83 |
+
The label to use for padding tokens. Defaults to -100, which is the `ignore_index` of PyTorch's
|
84 |
+
CrossEntropyLoss.
|
85 |
+
only_label_first_subword (`bool`, *optional*, defaults to `True`):
|
86 |
+
Whether or not to only label the first subword, in case word labels are provided.
|
87 |
+
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
|
88 |
+
Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see [this
|
89 |
+
issue](https://github.com/huggingface/transformers/issues/328)).
|
90 |
+
strip_accents (`bool`, *optional*):
|
91 |
+
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
|
92 |
+
value for `lowercase` (as in the original LayoutLMv2).
|
93 |
+
"""
|
94 |
+
|
95 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
96 |
+
slow_tokenizer_class = LayoutLMv2Tokenizer
|
97 |
+
|
98 |
+
def __init__(
|
99 |
+
self,
|
100 |
+
vocab_file=None,
|
101 |
+
tokenizer_file=None,
|
102 |
+
do_lower_case=True,
|
103 |
+
unk_token="[UNK]",
|
104 |
+
sep_token="[SEP]",
|
105 |
+
pad_token="[PAD]",
|
106 |
+
cls_token="[CLS]",
|
107 |
+
mask_token="[MASK]",
|
108 |
+
cls_token_box=[0, 0, 0, 0],
|
109 |
+
sep_token_box=[1000, 1000, 1000, 1000],
|
110 |
+
pad_token_box=[0, 0, 0, 0],
|
111 |
+
pad_token_label=-100,
|
112 |
+
only_label_first_subword=True,
|
113 |
+
tokenize_chinese_chars=True,
|
114 |
+
strip_accents=None,
|
115 |
+
**kwargs,
|
116 |
+
):
|
117 |
+
super().__init__(
|
118 |
+
vocab_file,
|
119 |
+
tokenizer_file=tokenizer_file,
|
120 |
+
do_lower_case=do_lower_case,
|
121 |
+
unk_token=unk_token,
|
122 |
+
sep_token=sep_token,
|
123 |
+
pad_token=pad_token,
|
124 |
+
cls_token=cls_token,
|
125 |
+
mask_token=mask_token,
|
126 |
+
cls_token_box=cls_token_box,
|
127 |
+
sep_token_box=sep_token_box,
|
128 |
+
pad_token_box=pad_token_box,
|
129 |
+
pad_token_label=pad_token_label,
|
130 |
+
only_label_first_subword=only_label_first_subword,
|
131 |
+
tokenize_chinese_chars=tokenize_chinese_chars,
|
132 |
+
strip_accents=strip_accents,
|
133 |
+
**kwargs,
|
134 |
+
)
|
135 |
+
|
136 |
+
pre_tok_state = json.loads(self.backend_tokenizer.normalizer.__getstate__())
|
137 |
+
if (
|
138 |
+
pre_tok_state.get("lowercase", do_lower_case) != do_lower_case
|
139 |
+
or pre_tok_state.get("strip_accents", strip_accents) != strip_accents
|
140 |
+
):
|
141 |
+
pre_tok_class = getattr(normalizers, pre_tok_state.pop("type"))
|
142 |
+
pre_tok_state["lowercase"] = do_lower_case
|
143 |
+
pre_tok_state["strip_accents"] = strip_accents
|
144 |
+
self.backend_tokenizer.normalizer = pre_tok_class(**pre_tok_state)
|
145 |
+
|
146 |
+
self.do_lower_case = do_lower_case
|
147 |
+
|
148 |
+
# additional properties
|
149 |
+
self.cls_token_box = cls_token_box
|
150 |
+
self.sep_token_box = sep_token_box
|
151 |
+
self.pad_token_box = pad_token_box
|
152 |
+
self.pad_token_label = pad_token_label
|
153 |
+
self.only_label_first_subword = only_label_first_subword
|
154 |
+
|
155 |
+
@add_end_docstrings(LAYOUTLMV2_ENCODE_KWARGS_DOCSTRING, LAYOUTLMV2_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
|
156 |
+
def __call__(
|
157 |
+
self,
|
158 |
+
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]],
|
159 |
+
text_pair: Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None,
|
160 |
+
boxes: Union[List[List[int]], List[List[List[int]]]] = None,
|
161 |
+
word_labels: Optional[Union[List[int], List[List[int]]]] = None,
|
162 |
+
add_special_tokens: bool = True,
|
163 |
+
padding: Union[bool, str, PaddingStrategy] = False,
|
164 |
+
truncation: Union[bool, str, TruncationStrategy] = None,
|
165 |
+
max_length: Optional[int] = None,
|
166 |
+
stride: int = 0,
|
167 |
+
pad_to_multiple_of: Optional[int] = None,
|
168 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
169 |
+
return_token_type_ids: Optional[bool] = None,
|
170 |
+
return_attention_mask: Optional[bool] = None,
|
171 |
+
return_overflowing_tokens: bool = False,
|
172 |
+
return_special_tokens_mask: bool = False,
|
173 |
+
return_offsets_mapping: bool = False,
|
174 |
+
return_length: bool = False,
|
175 |
+
verbose: bool = True,
|
176 |
+
**kwargs,
|
177 |
+
) -> BatchEncoding:
|
178 |
+
"""
|
179 |
+
Main method to tokenize and prepare for the model one or several sequence(s) or one or several pair(s) of
|
180 |
+
sequences with word-level normalized bounding boxes and optional labels.
|
181 |
+
|
182 |
+
Args:
|
183 |
+
text (`str`, `List[str]`, `List[List[str]]`):
|
184 |
+
The sequence or batch of sequences to be encoded. Each sequence can be a string, a list of strings
|
185 |
+
(words of a single example or questions of a batch of examples) or a list of list of strings (batch of
|
186 |
+
words).
|
187 |
+
text_pair (`List[str]`, `List[List[str]]`):
|
188 |
+
The sequence or batch of sequences to be encoded. Each sequence should be a list of strings
|
189 |
+
(pretokenized string).
|
190 |
+
boxes (`List[List[int]]`, `List[List[List[int]]]`):
|
191 |
+
Word-level bounding boxes. Each bounding box should be normalized to be on a 0-1000 scale.
|
192 |
+
word_labels (`List[int]`, `List[List[int]]`, *optional*):
|
193 |
+
Word-level integer labels (for token classification tasks such as FUNSD, CORD).
|
194 |
+
"""
|
195 |
+
|
196 |
+
# Input type checking for clearer error
|
197 |
+
def _is_valid_text_input(t):
|
198 |
+
if isinstance(t, str):
|
199 |
+
# Strings are fine
|
200 |
+
return True
|
201 |
+
elif isinstance(t, (list, tuple)):
|
202 |
+
# List are fine as long as they are...
|
203 |
+
if len(t) == 0:
|
204 |
+
# ... empty
|
205 |
+
return True
|
206 |
+
elif isinstance(t[0], str):
|
207 |
+
# ... list of strings
|
208 |
+
return True
|
209 |
+
elif isinstance(t[0], (list, tuple)):
|
210 |
+
# ... list with an empty list or with a list of strings
|
211 |
+
return len(t[0]) == 0 or isinstance(t[0][0], str)
|
212 |
+
else:
|
213 |
+
return False
|
214 |
+
else:
|
215 |
+
return False
|
216 |
+
|
217 |
+
if text_pair is not None:
|
218 |
+
# in case text + text_pair are provided, text = questions, text_pair = words
|
219 |
+
if not _is_valid_text_input(text):
|
220 |
+
raise ValueError("text input must of type `str` (single example) or `List[str]` (batch of examples). ")
|
221 |
+
if not isinstance(text_pair, (list, tuple)):
|
222 |
+
raise ValueError(
|
223 |
+
"Words must be of type `List[str]` (single pretokenized example), "
|
224 |
+
"or `List[List[str]]` (batch of pretokenized examples)."
|
225 |
+
)
|
226 |
+
else:
|
227 |
+
# in case only text is provided => must be words
|
228 |
+
if not isinstance(text, (list, tuple)):
|
229 |
+
raise ValueError(
|
230 |
+
"Words must be of type `List[str]` (single pretokenized example), "
|
231 |
+
"or `List[List[str]]` (batch of pretokenized examples)."
|
232 |
+
)
|
233 |
+
|
234 |
+
if text_pair is not None:
|
235 |
+
is_batched = isinstance(text, (list, tuple))
|
236 |
+
else:
|
237 |
+
is_batched = isinstance(text, (list, tuple)) and text and isinstance(text[0], (list, tuple))
|
238 |
+
|
239 |
+
words = text if text_pair is None else text_pair
|
240 |
+
if boxes is None:
|
241 |
+
raise ValueError("You must provide corresponding bounding boxes")
|
242 |
+
if is_batched:
|
243 |
+
if len(words) != len(boxes):
|
244 |
+
raise ValueError("You must provide words and boxes for an equal amount of examples")
|
245 |
+
for words_example, boxes_example in zip(words, boxes):
|
246 |
+
if len(words_example) != len(boxes_example):
|
247 |
+
raise ValueError("You must provide as many words as there are bounding boxes")
|
248 |
+
else:
|
249 |
+
if len(words) != len(boxes):
|
250 |
+
raise ValueError("You must provide as many words as there are bounding boxes")
|
251 |
+
|
252 |
+
if is_batched:
|
253 |
+
if text_pair is not None and len(text) != len(text_pair):
|
254 |
+
raise ValueError(
|
255 |
+
f"batch length of `text`: {len(text)} does not match batch length of `text_pair`:"
|
256 |
+
f" {len(text_pair)}."
|
257 |
+
)
|
258 |
+
batch_text_or_text_pairs = list(zip(text, text_pair)) if text_pair is not None else text
|
259 |
+
is_pair = bool(text_pair is not None)
|
260 |
+
return self.batch_encode_plus(
|
261 |
+
batch_text_or_text_pairs=batch_text_or_text_pairs,
|
262 |
+
is_pair=is_pair,
|
263 |
+
boxes=boxes,
|
264 |
+
word_labels=word_labels,
|
265 |
+
add_special_tokens=add_special_tokens,
|
266 |
+
padding=padding,
|
267 |
+
truncation=truncation,
|
268 |
+
max_length=max_length,
|
269 |
+
stride=stride,
|
270 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
271 |
+
return_tensors=return_tensors,
|
272 |
+
return_token_type_ids=return_token_type_ids,
|
273 |
+
return_attention_mask=return_attention_mask,
|
274 |
+
return_overflowing_tokens=return_overflowing_tokens,
|
275 |
+
return_special_tokens_mask=return_special_tokens_mask,
|
276 |
+
return_offsets_mapping=return_offsets_mapping,
|
277 |
+
return_length=return_length,
|
278 |
+
verbose=verbose,
|
279 |
+
**kwargs,
|
280 |
+
)
|
281 |
+
else:
|
282 |
+
return self.encode_plus(
|
283 |
+
text=text,
|
284 |
+
text_pair=text_pair,
|
285 |
+
boxes=boxes,
|
286 |
+
word_labels=word_labels,
|
287 |
+
add_special_tokens=add_special_tokens,
|
288 |
+
padding=padding,
|
289 |
+
truncation=truncation,
|
290 |
+
max_length=max_length,
|
291 |
+
stride=stride,
|
292 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
293 |
+
return_tensors=return_tensors,
|
294 |
+
return_token_type_ids=return_token_type_ids,
|
295 |
+
return_attention_mask=return_attention_mask,
|
296 |
+
return_overflowing_tokens=return_overflowing_tokens,
|
297 |
+
return_special_tokens_mask=return_special_tokens_mask,
|
298 |
+
return_offsets_mapping=return_offsets_mapping,
|
299 |
+
return_length=return_length,
|
300 |
+
verbose=verbose,
|
301 |
+
**kwargs,
|
302 |
+
)
|
303 |
+
|
304 |
+
@add_end_docstrings(LAYOUTLMV2_ENCODE_KWARGS_DOCSTRING, LAYOUTLMV2_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
|
305 |
+
def batch_encode_plus(
|
306 |
+
self,
|
307 |
+
batch_text_or_text_pairs: Union[
|
308 |
+
List[TextInput],
|
309 |
+
List[TextInputPair],
|
310 |
+
List[PreTokenizedInput],
|
311 |
+
],
|
312 |
+
is_pair: bool = None,
|
313 |
+
boxes: Optional[List[List[List[int]]]] = None,
|
314 |
+
word_labels: Optional[Union[List[int], List[List[int]]]] = None,
|
315 |
+
add_special_tokens: bool = True,
|
316 |
+
padding: Union[bool, str, PaddingStrategy] = False,
|
317 |
+
truncation: Union[bool, str, TruncationStrategy] = None,
|
318 |
+
max_length: Optional[int] = None,
|
319 |
+
stride: int = 0,
|
320 |
+
pad_to_multiple_of: Optional[int] = None,
|
321 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
322 |
+
return_token_type_ids: Optional[bool] = None,
|
323 |
+
return_attention_mask: Optional[bool] = None,
|
324 |
+
return_overflowing_tokens: bool = False,
|
325 |
+
return_special_tokens_mask: bool = False,
|
326 |
+
return_offsets_mapping: bool = False,
|
327 |
+
return_length: bool = False,
|
328 |
+
verbose: bool = True,
|
329 |
+
**kwargs,
|
330 |
+
) -> BatchEncoding:
|
331 |
+
# Backward compatibility for 'truncation_strategy', 'pad_to_max_length'
|
332 |
+
padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies(
|
333 |
+
padding=padding,
|
334 |
+
truncation=truncation,
|
335 |
+
max_length=max_length,
|
336 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
337 |
+
verbose=verbose,
|
338 |
+
**kwargs,
|
339 |
+
)
|
340 |
+
|
341 |
+
return self._batch_encode_plus(
|
342 |
+
batch_text_or_text_pairs=batch_text_or_text_pairs,
|
343 |
+
is_pair=is_pair,
|
344 |
+
boxes=boxes,
|
345 |
+
word_labels=word_labels,
|
346 |
+
add_special_tokens=add_special_tokens,
|
347 |
+
padding_strategy=padding_strategy,
|
348 |
+
truncation_strategy=truncation_strategy,
|
349 |
+
max_length=max_length,
|
350 |
+
stride=stride,
|
351 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
352 |
+
return_tensors=return_tensors,
|
353 |
+
return_token_type_ids=return_token_type_ids,
|
354 |
+
return_attention_mask=return_attention_mask,
|
355 |
+
return_overflowing_tokens=return_overflowing_tokens,
|
356 |
+
return_special_tokens_mask=return_special_tokens_mask,
|
357 |
+
return_offsets_mapping=return_offsets_mapping,
|
358 |
+
return_length=return_length,
|
359 |
+
verbose=verbose,
|
360 |
+
**kwargs,
|
361 |
+
)
|
362 |
+
|
363 |
+
def tokenize(self, text: str, pair: Optional[str] = None, add_special_tokens: bool = False, **kwargs) -> List[str]:
|
364 |
+
batched_input = [(text, pair)] if pair else [text]
|
365 |
+
encodings = self._tokenizer.encode_batch(
|
366 |
+
batched_input, add_special_tokens=add_special_tokens, is_pretokenized=False, **kwargs
|
367 |
+
)
|
368 |
+
|
369 |
+
return encodings[0].tokens
|
370 |
+
|
371 |
+
@add_end_docstrings(LAYOUTLMV2_ENCODE_KWARGS_DOCSTRING, LAYOUTLMV2_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
|
372 |
+
def encode_plus(
|
373 |
+
self,
|
374 |
+
text: Union[TextInput, PreTokenizedInput],
|
375 |
+
text_pair: Optional[PreTokenizedInput] = None,
|
376 |
+
boxes: Optional[List[List[int]]] = None,
|
377 |
+
word_labels: Optional[List[int]] = None,
|
378 |
+
add_special_tokens: bool = True,
|
379 |
+
padding: Union[bool, str, PaddingStrategy] = False,
|
380 |
+
truncation: Union[bool, str, TruncationStrategy] = None,
|
381 |
+
max_length: Optional[int] = None,
|
382 |
+
stride: int = 0,
|
383 |
+
pad_to_multiple_of: Optional[int] = None,
|
384 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
385 |
+
return_token_type_ids: Optional[bool] = None,
|
386 |
+
return_attention_mask: Optional[bool] = None,
|
387 |
+
return_overflowing_tokens: bool = False,
|
388 |
+
return_special_tokens_mask: bool = False,
|
389 |
+
return_offsets_mapping: bool = False,
|
390 |
+
return_length: bool = False,
|
391 |
+
verbose: bool = True,
|
392 |
+
**kwargs,
|
393 |
+
) -> BatchEncoding:
|
394 |
+
"""
|
395 |
+
Tokenize and prepare for the model a sequence or a pair of sequences. .. warning:: This method is deprecated,
|
396 |
+
`__call__` should be used instead.
|
397 |
+
|
398 |
+
Args:
|
399 |
+
text (`str`, `List[str]`, `List[List[str]]`):
|
400 |
+
The first sequence to be encoded. This can be a string, a list of strings or a list of list of strings.
|
401 |
+
text_pair (`List[str]` or `List[int]`, *optional*):
|
402 |
+
Optional second sequence to be encoded. This can be a list of strings (words of a single example) or a
|
403 |
+
list of list of strings (words of a batch of examples).
|
404 |
+
"""
|
405 |
+
|
406 |
+
# Backward compatibility for 'truncation_strategy', 'pad_to_max_length'
|
407 |
+
padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies(
|
408 |
+
padding=padding,
|
409 |
+
truncation=truncation,
|
410 |
+
max_length=max_length,
|
411 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
412 |
+
verbose=verbose,
|
413 |
+
**kwargs,
|
414 |
+
)
|
415 |
+
|
416 |
+
return self._encode_plus(
|
417 |
+
text=text,
|
418 |
+
boxes=boxes,
|
419 |
+
text_pair=text_pair,
|
420 |
+
word_labels=word_labels,
|
421 |
+
add_special_tokens=add_special_tokens,
|
422 |
+
padding_strategy=padding_strategy,
|
423 |
+
truncation_strategy=truncation_strategy,
|
424 |
+
max_length=max_length,
|
425 |
+
stride=stride,
|
426 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
427 |
+
return_tensors=return_tensors,
|
428 |
+
return_token_type_ids=return_token_type_ids,
|
429 |
+
return_attention_mask=return_attention_mask,
|
430 |
+
return_overflowing_tokens=return_overflowing_tokens,
|
431 |
+
return_special_tokens_mask=return_special_tokens_mask,
|
432 |
+
return_offsets_mapping=return_offsets_mapping,
|
433 |
+
return_length=return_length,
|
434 |
+
verbose=verbose,
|
435 |
+
**kwargs,
|
436 |
+
)
|
437 |
+
|
438 |
+
def _batch_encode_plus(
|
439 |
+
self,
|
440 |
+
batch_text_or_text_pairs: Union[
|
441 |
+
List[TextInput],
|
442 |
+
List[TextInputPair],
|
443 |
+
List[PreTokenizedInput],
|
444 |
+
],
|
445 |
+
is_pair: bool = None,
|
446 |
+
boxes: Optional[List[List[List[int]]]] = None,
|
447 |
+
word_labels: Optional[List[List[int]]] = None,
|
448 |
+
add_special_tokens: bool = True,
|
449 |
+
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
|
450 |
+
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
|
451 |
+
max_length: Optional[int] = None,
|
452 |
+
stride: int = 0,
|
453 |
+
pad_to_multiple_of: Optional[int] = None,
|
454 |
+
return_tensors: Optional[str] = None,
|
455 |
+
return_token_type_ids: Optional[bool] = None,
|
456 |
+
return_attention_mask: Optional[bool] = None,
|
457 |
+
return_overflowing_tokens: bool = False,
|
458 |
+
return_special_tokens_mask: bool = False,
|
459 |
+
return_offsets_mapping: bool = False,
|
460 |
+
return_length: bool = False,
|
461 |
+
verbose: bool = True,
|
462 |
+
) -> BatchEncoding:
|
463 |
+
if not isinstance(batch_text_or_text_pairs, list):
|
464 |
+
raise TypeError(f"batch_text_or_text_pairs has to be a list (got {type(batch_text_or_text_pairs)})")
|
465 |
+
|
466 |
+
# Set the truncation and padding strategy and restore the initial configuration
|
467 |
+
self.set_truncation_and_padding(
|
468 |
+
padding_strategy=padding_strategy,
|
469 |
+
truncation_strategy=truncation_strategy,
|
470 |
+
max_length=max_length,
|
471 |
+
stride=stride,
|
472 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
473 |
+
)
|
474 |
+
|
475 |
+
if is_pair:
|
476 |
+
batch_text_or_text_pairs = [(text.split(), text_pair) for text, text_pair in batch_text_or_text_pairs]
|
477 |
+
|
478 |
+
encodings = self._tokenizer.encode_batch(
|
479 |
+
batch_text_or_text_pairs,
|
480 |
+
add_special_tokens=add_special_tokens,
|
481 |
+
is_pretokenized=True, # we set this to True as LayoutLMv2 always expects pretokenized inputs
|
482 |
+
)
|
483 |
+
|
484 |
+
# Convert encoding to dict
|
485 |
+
# `Tokens` has type: Tuple[
|
486 |
+
# List[Dict[str, List[List[int]]]] or List[Dict[str, 2D-Tensor]],
|
487 |
+
# List[EncodingFast]
|
488 |
+
# ]
|
489 |
+
# with nested dimensions corresponding to batch, overflows, sequence length
|
490 |
+
tokens_and_encodings = [
|
491 |
+
self._convert_encoding(
|
492 |
+
encoding=encoding,
|
493 |
+
return_token_type_ids=return_token_type_ids,
|
494 |
+
return_attention_mask=return_attention_mask,
|
495 |
+
return_overflowing_tokens=return_overflowing_tokens,
|
496 |
+
return_special_tokens_mask=return_special_tokens_mask,
|
497 |
+
return_offsets_mapping=True
|
498 |
+
if word_labels is not None
|
499 |
+
else return_offsets_mapping, # we use offsets to create the labels
|
500 |
+
return_length=return_length,
|
501 |
+
verbose=verbose,
|
502 |
+
)
|
503 |
+
for encoding in encodings
|
504 |
+
]
|
505 |
+
|
506 |
+
# Convert the output to have dict[list] from list[dict] and remove the additional overflows dimension
|
507 |
+
# From (variable) shape (batch, overflows, sequence length) to ~ (batch * overflows, sequence length)
|
508 |
+
# (we say ~ because the number of overflow varies with the example in the batch)
|
509 |
+
#
|
510 |
+
# To match each overflowing sample with the original sample in the batch
|
511 |
+
# we add an overflow_to_sample_mapping array (see below)
|
512 |
+
sanitized_tokens = {}
|
513 |
+
for key in tokens_and_encodings[0][0].keys():
|
514 |
+
stack = [e for item, _ in tokens_and_encodings for e in item[key]]
|
515 |
+
sanitized_tokens[key] = stack
|
516 |
+
sanitized_encodings = [e for _, item in tokens_and_encodings for e in item]
|
517 |
+
|
518 |
+
# If returning overflowing tokens, we need to return a mapping
|
519 |
+
# from the batch idx to the original sample
|
520 |
+
if return_overflowing_tokens:
|
521 |
+
overflow_to_sample_mapping = []
|
522 |
+
for i, (toks, _) in enumerate(tokens_and_encodings):
|
523 |
+
overflow_to_sample_mapping += [i] * len(toks["input_ids"])
|
524 |
+
sanitized_tokens["overflow_to_sample_mapping"] = overflow_to_sample_mapping
|
525 |
+
|
526 |
+
for input_ids in sanitized_tokens["input_ids"]:
|
527 |
+
self._eventual_warn_about_too_long_sequence(input_ids, max_length, verbose)
|
528 |
+
|
529 |
+
# create the token boxes
|
530 |
+
token_boxes = []
|
531 |
+
for batch_index in range(len(sanitized_tokens["input_ids"])):
|
532 |
+
if return_overflowing_tokens:
|
533 |
+
original_index = sanitized_tokens["overflow_to_sample_mapping"][batch_index]
|
534 |
+
else:
|
535 |
+
original_index = batch_index
|
536 |
+
token_boxes_example = []
|
537 |
+
for id, sequence_id, word_id in zip(
|
538 |
+
sanitized_tokens["input_ids"][batch_index],
|
539 |
+
sanitized_encodings[batch_index].sequence_ids,
|
540 |
+
sanitized_encodings[batch_index].word_ids,
|
541 |
+
):
|
542 |
+
if word_id is not None:
|
543 |
+
if is_pair and sequence_id == 0:
|
544 |
+
token_boxes_example.append(self.pad_token_box)
|
545 |
+
else:
|
546 |
+
token_boxes_example.append(boxes[original_index][word_id])
|
547 |
+
else:
|
548 |
+
if id == self.cls_token_id:
|
549 |
+
token_boxes_example.append(self.cls_token_box)
|
550 |
+
elif id == self.sep_token_id:
|
551 |
+
token_boxes_example.append(self.sep_token_box)
|
552 |
+
elif id == self.pad_token_id:
|
553 |
+
token_boxes_example.append(self.pad_token_box)
|
554 |
+
else:
|
555 |
+
raise ValueError("Id not recognized")
|
556 |
+
token_boxes.append(token_boxes_example)
|
557 |
+
|
558 |
+
sanitized_tokens["bbox"] = token_boxes
|
559 |
+
|
560 |
+
# optionally, create the labels
|
561 |
+
if word_labels is not None:
|
562 |
+
labels = []
|
563 |
+
for batch_index in range(len(sanitized_tokens["input_ids"])):
|
564 |
+
if return_overflowing_tokens:
|
565 |
+
original_index = sanitized_tokens["overflow_to_sample_mapping"][batch_index]
|
566 |
+
else:
|
567 |
+
original_index = batch_index
|
568 |
+
labels_example = []
|
569 |
+
for id, offset, word_id in zip(
|
570 |
+
sanitized_tokens["input_ids"][batch_index],
|
571 |
+
sanitized_tokens["offset_mapping"][batch_index],
|
572 |
+
sanitized_encodings[batch_index].word_ids,
|
573 |
+
):
|
574 |
+
if word_id is not None:
|
575 |
+
if self.only_label_first_subword:
|
576 |
+
if offset[0] == 0:
|
577 |
+
# Use the real label id for the first token of the word, and padding ids for the remaining tokens
|
578 |
+
labels_example.append(word_labels[original_index][word_id])
|
579 |
+
else:
|
580 |
+
labels_example.append(self.pad_token_label)
|
581 |
+
else:
|
582 |
+
labels_example.append(word_labels[original_index][word_id])
|
583 |
+
else:
|
584 |
+
labels_example.append(self.pad_token_label)
|
585 |
+
labels.append(labels_example)
|
586 |
+
|
587 |
+
sanitized_tokens["labels"] = labels
|
588 |
+
# finally, remove offsets if the user didn't want them
|
589 |
+
if not return_offsets_mapping:
|
590 |
+
del sanitized_tokens["offset_mapping"]
|
591 |
+
|
592 |
+
return BatchEncoding(sanitized_tokens, sanitized_encodings, tensor_type=return_tensors)
|
593 |
+
|
594 |
+
def _encode_plus(
|
595 |
+
self,
|
596 |
+
text: Union[TextInput, PreTokenizedInput],
|
597 |
+
text_pair: Optional[PreTokenizedInput] = None,
|
598 |
+
boxes: Optional[List[List[int]]] = None,
|
599 |
+
word_labels: Optional[List[int]] = None,
|
600 |
+
add_special_tokens: bool = True,
|
601 |
+
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
|
602 |
+
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
|
603 |
+
max_length: Optional[int] = None,
|
604 |
+
stride: int = 0,
|
605 |
+
pad_to_multiple_of: Optional[int] = None,
|
606 |
+
return_tensors: Optional[bool] = None,
|
607 |
+
return_token_type_ids: Optional[bool] = None,
|
608 |
+
return_attention_mask: Optional[bool] = None,
|
609 |
+
return_overflowing_tokens: bool = False,
|
610 |
+
return_special_tokens_mask: bool = False,
|
611 |
+
return_offsets_mapping: bool = False,
|
612 |
+
return_length: bool = False,
|
613 |
+
verbose: bool = True,
|
614 |
+
**kwargs,
|
615 |
+
) -> BatchEncoding:
|
616 |
+
# make it a batched input
|
617 |
+
# 2 options:
|
618 |
+
# 1) only text, in case text must be a list of str
|
619 |
+
# 2) text + text_pair, in which case text = str and text_pair a list of str
|
620 |
+
batched_input = [(text, text_pair)] if text_pair else [text]
|
621 |
+
batched_boxes = [boxes]
|
622 |
+
batched_word_labels = [word_labels] if word_labels is not None else None
|
623 |
+
batched_output = self._batch_encode_plus(
|
624 |
+
batched_input,
|
625 |
+
is_pair=bool(text_pair is not None),
|
626 |
+
boxes=batched_boxes,
|
627 |
+
word_labels=batched_word_labels,
|
628 |
+
add_special_tokens=add_special_tokens,
|
629 |
+
padding_strategy=padding_strategy,
|
630 |
+
truncation_strategy=truncation_strategy,
|
631 |
+
max_length=max_length,
|
632 |
+
stride=stride,
|
633 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
634 |
+
return_tensors=return_tensors,
|
635 |
+
return_token_type_ids=return_token_type_ids,
|
636 |
+
return_attention_mask=return_attention_mask,
|
637 |
+
return_overflowing_tokens=return_overflowing_tokens,
|
638 |
+
return_special_tokens_mask=return_special_tokens_mask,
|
639 |
+
return_offsets_mapping=return_offsets_mapping,
|
640 |
+
return_length=return_length,
|
641 |
+
verbose=verbose,
|
642 |
+
**kwargs,
|
643 |
+
)
|
644 |
+
|
645 |
+
# Return tensor is None, then we can remove the leading batch axis
|
646 |
+
# Overflowing tokens are returned as a batch of output so we keep them in this case
|
647 |
+
if return_tensors is None and not return_overflowing_tokens:
|
648 |
+
batched_output = BatchEncoding(
|
649 |
+
{
|
650 |
+
key: value[0] if len(value) > 0 and isinstance(value[0], list) else value
|
651 |
+
for key, value in batched_output.items()
|
652 |
+
},
|
653 |
+
batched_output.encodings,
|
654 |
+
)
|
655 |
+
|
656 |
+
self._eventual_warn_about_too_long_sequence(batched_output["input_ids"], max_length, verbose)
|
657 |
+
|
658 |
+
return batched_output
|
659 |
+
|
660 |
+
def _pad(
|
661 |
+
self,
|
662 |
+
encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
|
663 |
+
max_length: Optional[int] = None,
|
664 |
+
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
|
665 |
+
pad_to_multiple_of: Optional[int] = None,
|
666 |
+
return_attention_mask: Optional[bool] = None,
|
667 |
+
) -> dict:
|
668 |
+
"""
|
669 |
+
Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
|
670 |
+
|
671 |
+
Args:
|
672 |
+
encoded_inputs:
|
673 |
+
Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
|
674 |
+
max_length: maximum length of the returned list and optionally padding length (see below).
|
675 |
+
Will truncate by taking into account the special tokens.
|
676 |
+
padding_strategy: PaddingStrategy to use for padding.
|
677 |
+
|
678 |
+
- PaddingStrategy.LONGEST Pad to the longest sequence in the batch
|
679 |
+
- PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
|
680 |
+
- PaddingStrategy.DO_NOT_PAD: Do not pad
|
681 |
+
The tokenizer padding sides are defined in self.padding_side:
|
682 |
+
|
683 |
+
- 'left': pads on the left of the sequences
|
684 |
+
- 'right': pads on the right of the sequences
|
685 |
+
pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
|
686 |
+
This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
|
687 |
+
`>= 7.5` (Volta).
|
688 |
+
return_attention_mask:
|
689 |
+
(optional) Set to False to avoid returning attention mask (default: set to model specifics)
|
690 |
+
"""
|
691 |
+
# Load from model defaults
|
692 |
+
if return_attention_mask is None:
|
693 |
+
return_attention_mask = "attention_mask" in self.model_input_names
|
694 |
+
|
695 |
+
required_input = encoded_inputs[self.model_input_names[0]]
|
696 |
+
|
697 |
+
if padding_strategy == PaddingStrategy.LONGEST:
|
698 |
+
max_length = len(required_input)
|
699 |
+
|
700 |
+
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
|
701 |
+
max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
|
702 |
+
|
703 |
+
needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length
|
704 |
+
|
705 |
+
# Initialize attention mask if not present.
|
706 |
+
if return_attention_mask and "attention_mask" not in encoded_inputs:
|
707 |
+
encoded_inputs["attention_mask"] = [1] * len(required_input)
|
708 |
+
|
709 |
+
if needs_to_be_padded:
|
710 |
+
difference = max_length - len(required_input)
|
711 |
+
if self.padding_side == "right":
|
712 |
+
if return_attention_mask:
|
713 |
+
encoded_inputs["attention_mask"] = encoded_inputs["attention_mask"] + [0] * difference
|
714 |
+
if "token_type_ids" in encoded_inputs:
|
715 |
+
encoded_inputs["token_type_ids"] = (
|
716 |
+
encoded_inputs["token_type_ids"] + [self.pad_token_type_id] * difference
|
717 |
+
)
|
718 |
+
if "bbox" in encoded_inputs:
|
719 |
+
encoded_inputs["bbox"] = encoded_inputs["bbox"] + [self.pad_token_box] * difference
|
720 |
+
if "labels" in encoded_inputs:
|
721 |
+
encoded_inputs["labels"] = encoded_inputs["labels"] + [self.pad_token_label] * difference
|
722 |
+
if "special_tokens_mask" in encoded_inputs:
|
723 |
+
encoded_inputs["special_tokens_mask"] = encoded_inputs["special_tokens_mask"] + [1] * difference
|
724 |
+
encoded_inputs[self.model_input_names[0]] = required_input + [self.pad_token_id] * difference
|
725 |
+
elif self.padding_side == "left":
|
726 |
+
if return_attention_mask:
|
727 |
+
encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"]
|
728 |
+
if "token_type_ids" in encoded_inputs:
|
729 |
+
encoded_inputs["token_type_ids"] = [self.pad_token_type_id] * difference + encoded_inputs[
|
730 |
+
"token_type_ids"
|
731 |
+
]
|
732 |
+
if "bbox" in encoded_inputs:
|
733 |
+
encoded_inputs["bbox"] = [self.pad_token_box] * difference + encoded_inputs["bbox"]
|
734 |
+
if "labels" in encoded_inputs:
|
735 |
+
encoded_inputs["labels"] = [self.pad_token_label] * difference + encoded_inputs["labels"]
|
736 |
+
if "special_tokens_mask" in encoded_inputs:
|
737 |
+
encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"]
|
738 |
+
encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
|
739 |
+
else:
|
740 |
+
raise ValueError("Invalid padding strategy:" + str(self.padding_side))
|
741 |
+
|
742 |
+
return encoded_inputs
|
743 |
+
|
744 |
+
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
745 |
+
"""
|
746 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
747 |
+
adding special tokens. A BERT sequence has the following format:
|
748 |
+
|
749 |
+
- single sequence: `[CLS] X [SEP]`
|
750 |
+
- pair of sequences: `[CLS] A [SEP] B [SEP]`
|
751 |
+
|
752 |
+
Args:
|
753 |
+
token_ids_0 (`List[int]`):
|
754 |
+
List of IDs to which the special tokens will be added.
|
755 |
+
token_ids_1 (`List[int]`, *optional*):
|
756 |
+
Optional second list of IDs for sequence pairs.
|
757 |
+
|
758 |
+
Returns:
|
759 |
+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
760 |
+
"""
|
761 |
+
output = [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
|
762 |
+
|
763 |
+
if token_ids_1:
|
764 |
+
output += token_ids_1 + [self.sep_token_id]
|
765 |
+
|
766 |
+
return output
|
767 |
+
|
768 |
+
def create_token_type_ids_from_sequences(
|
769 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
770 |
+
) -> List[int]:
|
771 |
+
"""
|
772 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A BERT sequence
|
773 |
+
pair mask has the following format: :: 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second
|
774 |
+
sequence | If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
|
775 |
+
|
776 |
+
Args:
|
777 |
+
token_ids_0 (`List[int]`):
|
778 |
+
List of IDs.
|
779 |
+
token_ids_1 (`List[int]`, *optional*):
|
780 |
+
Optional second list of IDs for sequence pairs.
|
781 |
+
|
782 |
+
Returns:
|
783 |
+
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
|
784 |
+
"""
|
785 |
+
sep = [self.sep_token_id]
|
786 |
+
cls = [self.cls_token_id]
|
787 |
+
if token_ids_1 is None:
|
788 |
+
return len(cls + token_ids_0 + sep) * [0]
|
789 |
+
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
|
790 |
+
|
791 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
792 |
+
files = self._tokenizer.model.save(save_directory, name=filename_prefix)
|
793 |
+
return tuple(files)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv3/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (2.24 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv3/__pycache__/configuration_layoutlmv3.cpython-310.pyc
ADDED
Binary file (11 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv3/__pycache__/feature_extraction_layoutlmv3.cpython-310.pyc
ADDED
Binary file (1.06 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv3/__pycache__/image_processing_layoutlmv3.cpython-310.pyc
ADDED
Binary file (15.7 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv3/__pycache__/modeling_layoutlmv3.cpython-310.pyc
ADDED
Binary file (42.2 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv3/__pycache__/modeling_tf_layoutlmv3.cpython-310.pyc
ADDED
Binary file (51.7 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv3/__pycache__/processing_layoutlmv3.cpython-310.pyc
ADDED
Binary file (7.24 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv3/__pycache__/tokenization_layoutlmv3_fast.cpython-310.pyc
ADDED
Binary file (22.1 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv3/tokenization_layoutlmv3_fast.py
ADDED
@@ -0,0 +1,837 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""
|
16 |
+
Fast tokenization class for LayoutLMv3. It overwrites 2 methods of the slow tokenizer class, namely _batch_encode_plus
|
17 |
+
and _encode_plus, in which the Rust tokenizer is used.
|
18 |
+
"""
|
19 |
+
|
20 |
+
import json
|
21 |
+
from typing import Dict, List, Optional, Tuple, Union
|
22 |
+
|
23 |
+
from tokenizers import pre_tokenizers, processors
|
24 |
+
|
25 |
+
from ...tokenization_utils_base import (
|
26 |
+
BatchEncoding,
|
27 |
+
EncodedInput,
|
28 |
+
PaddingStrategy,
|
29 |
+
PreTokenizedInput,
|
30 |
+
TensorType,
|
31 |
+
TextInput,
|
32 |
+
TextInputPair,
|
33 |
+
TruncationStrategy,
|
34 |
+
)
|
35 |
+
from ...tokenization_utils_fast import PreTrainedTokenizerFast
|
36 |
+
from ...utils import add_end_docstrings, logging
|
37 |
+
from .tokenization_layoutlmv3 import (
|
38 |
+
LAYOUTLMV3_ENCODE_KWARGS_DOCSTRING,
|
39 |
+
LAYOUTLMV3_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING,
|
40 |
+
LayoutLMv3Tokenizer,
|
41 |
+
)
|
42 |
+
|
43 |
+
|
44 |
+
logger = logging.get_logger(__name__)
|
45 |
+
|
46 |
+
VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
|
47 |
+
|
48 |
+
|
49 |
+
class LayoutLMv3TokenizerFast(PreTrainedTokenizerFast):
|
50 |
+
r"""
|
51 |
+
Construct a "fast" LayoutLMv3 tokenizer (backed by HuggingFace's *tokenizers* library). Based on BPE.
|
52 |
+
|
53 |
+
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
|
54 |
+
refer to this superclass for more information regarding those methods.
|
55 |
+
|
56 |
+
Args:
|
57 |
+
vocab_file (`str`):
|
58 |
+
Path to the vocabulary file.
|
59 |
+
merges_file (`str`):
|
60 |
+
Path to the merges file.
|
61 |
+
errors (`str`, *optional*, defaults to `"replace"`):
|
62 |
+
Paradigm to follow when decoding bytes to UTF-8. See
|
63 |
+
[bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information.
|
64 |
+
bos_token (`str`, *optional*, defaults to `"<s>"`):
|
65 |
+
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
|
66 |
+
|
67 |
+
<Tip>
|
68 |
+
|
69 |
+
When building a sequence using special tokens, this is not the token that is used for the beginning of
|
70 |
+
sequence. The token used is the `cls_token`.
|
71 |
+
|
72 |
+
</Tip>
|
73 |
+
|
74 |
+
eos_token (`str`, *optional*, defaults to `"</s>"`):
|
75 |
+
The end of sequence token.
|
76 |
+
|
77 |
+
<Tip>
|
78 |
+
|
79 |
+
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
|
80 |
+
The token used is the `sep_token`.
|
81 |
+
|
82 |
+
</Tip>
|
83 |
+
|
84 |
+
sep_token (`str`, *optional*, defaults to `"</s>"`):
|
85 |
+
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
|
86 |
+
sequence classification or for a text and a question for question answering. It is also used as the last
|
87 |
+
token of a sequence built with special tokens.
|
88 |
+
cls_token (`str`, *optional*, defaults to `"<s>"`):
|
89 |
+
The classifier token which is used when doing sequence classification (classification of the whole sequence
|
90 |
+
instead of per-token classification). It is the first token of the sequence when built with special tokens.
|
91 |
+
unk_token (`str`, *optional*, defaults to `"<unk>"`):
|
92 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
93 |
+
token instead.
|
94 |
+
pad_token (`str`, *optional*, defaults to `"<pad>"`):
|
95 |
+
The token used for padding, for example when batching sequences of different lengths.
|
96 |
+
mask_token (`str`, *optional*, defaults to `"<mask>"`):
|
97 |
+
The token used for masking values. This is the token used when training this model with masked language
|
98 |
+
modeling. This is the token which the model will try to predict.
|
99 |
+
add_prefix_space (`bool`, *optional*, defaults to `False`):
|
100 |
+
Whether or not to add an initial space to the input. This allows to treat the leading word just as any
|
101 |
+
other word. (RoBERTa tokenizer detect beginning of words by the preceding space).
|
102 |
+
trim_offsets (`bool`, *optional*, defaults to `True`):
|
103 |
+
Whether the post processing step should trim offsets to avoid including whitespaces.
|
104 |
+
cls_token_box (`List[int]`, *optional*, defaults to `[0, 0, 0, 0]`):
|
105 |
+
The bounding box to use for the special [CLS] token.
|
106 |
+
sep_token_box (`List[int]`, *optional*, defaults to `[0, 0, 0, 0]`):
|
107 |
+
The bounding box to use for the special [SEP] token.
|
108 |
+
pad_token_box (`List[int]`, *optional*, defaults to `[0, 0, 0, 0]`):
|
109 |
+
The bounding box to use for the special [PAD] token.
|
110 |
+
pad_token_label (`int`, *optional*, defaults to -100):
|
111 |
+
The label to use for padding tokens. Defaults to -100, which is the `ignore_index` of PyTorch's
|
112 |
+
CrossEntropyLoss.
|
113 |
+
only_label_first_subword (`bool`, *optional*, defaults to `True`):
|
114 |
+
Whether or not to only label the first subword, in case word labels are provided.
|
115 |
+
"""
|
116 |
+
|
117 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
118 |
+
model_input_names = ["input_ids", "attention_mask"]
|
119 |
+
slow_tokenizer_class = LayoutLMv3Tokenizer
|
120 |
+
|
121 |
+
def __init__(
|
122 |
+
self,
|
123 |
+
vocab_file=None,
|
124 |
+
merges_file=None,
|
125 |
+
tokenizer_file=None,
|
126 |
+
errors="replace",
|
127 |
+
bos_token="<s>",
|
128 |
+
eos_token="</s>",
|
129 |
+
sep_token="</s>",
|
130 |
+
cls_token="<s>",
|
131 |
+
unk_token="<unk>",
|
132 |
+
pad_token="<pad>",
|
133 |
+
mask_token="<mask>",
|
134 |
+
add_prefix_space=True,
|
135 |
+
trim_offsets=True,
|
136 |
+
cls_token_box=[0, 0, 0, 0],
|
137 |
+
sep_token_box=[0, 0, 0, 0],
|
138 |
+
pad_token_box=[0, 0, 0, 0],
|
139 |
+
pad_token_label=-100,
|
140 |
+
only_label_first_subword=True,
|
141 |
+
**kwargs,
|
142 |
+
):
|
143 |
+
super().__init__(
|
144 |
+
vocab_file,
|
145 |
+
merges_file,
|
146 |
+
tokenizer_file=tokenizer_file,
|
147 |
+
errors=errors,
|
148 |
+
bos_token=bos_token,
|
149 |
+
eos_token=eos_token,
|
150 |
+
sep_token=sep_token,
|
151 |
+
cls_token=cls_token,
|
152 |
+
unk_token=unk_token,
|
153 |
+
pad_token=pad_token,
|
154 |
+
mask_token=mask_token,
|
155 |
+
add_prefix_space=add_prefix_space,
|
156 |
+
trim_offsets=trim_offsets,
|
157 |
+
cls_token_box=cls_token_box,
|
158 |
+
sep_token_box=sep_token_box,
|
159 |
+
pad_token_box=pad_token_box,
|
160 |
+
pad_token_label=pad_token_label,
|
161 |
+
only_label_first_subword=only_label_first_subword,
|
162 |
+
**kwargs,
|
163 |
+
)
|
164 |
+
|
165 |
+
pre_tok_state = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__())
|
166 |
+
if pre_tok_state.get("add_prefix_space", add_prefix_space) != add_prefix_space:
|
167 |
+
pre_tok_class = getattr(pre_tokenizers, pre_tok_state.pop("type"))
|
168 |
+
pre_tok_state["add_prefix_space"] = add_prefix_space
|
169 |
+
self.backend_tokenizer.pre_tokenizer = pre_tok_class(**pre_tok_state)
|
170 |
+
|
171 |
+
self.add_prefix_space = add_prefix_space
|
172 |
+
|
173 |
+
tokenizer_component = "post_processor"
|
174 |
+
tokenizer_component_instance = getattr(self.backend_tokenizer, tokenizer_component, None)
|
175 |
+
if tokenizer_component_instance:
|
176 |
+
state = json.loads(tokenizer_component_instance.__getstate__())
|
177 |
+
|
178 |
+
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
|
179 |
+
if "sep" in state:
|
180 |
+
state["sep"] = tuple(state["sep"])
|
181 |
+
if "cls" in state:
|
182 |
+
state["cls"] = tuple(state["cls"])
|
183 |
+
|
184 |
+
changes_to_apply = False
|
185 |
+
|
186 |
+
if state.get("add_prefix_space", add_prefix_space) != add_prefix_space:
|
187 |
+
state["add_prefix_space"] = add_prefix_space
|
188 |
+
changes_to_apply = True
|
189 |
+
|
190 |
+
if state.get("trim_offsets", trim_offsets) != trim_offsets:
|
191 |
+
state["trim_offsets"] = trim_offsets
|
192 |
+
changes_to_apply = True
|
193 |
+
|
194 |
+
if changes_to_apply:
|
195 |
+
component_class = getattr(processors, state.pop("type"))
|
196 |
+
new_value = component_class(**state)
|
197 |
+
setattr(self.backend_tokenizer, tokenizer_component, new_value)
|
198 |
+
|
199 |
+
# additional properties
|
200 |
+
self.cls_token_box = cls_token_box
|
201 |
+
self.sep_token_box = sep_token_box
|
202 |
+
self.pad_token_box = pad_token_box
|
203 |
+
self.pad_token_label = pad_token_label
|
204 |
+
self.only_label_first_subword = only_label_first_subword
|
205 |
+
|
206 |
+
@add_end_docstrings(LAYOUTLMV3_ENCODE_KWARGS_DOCSTRING, LAYOUTLMV3_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
|
207 |
+
# Copied from transformers.models.layoutlmv2.tokenization_layoutlmv2_fast.LayoutLMv2TokenizerFast.__call__
|
208 |
+
def __call__(
|
209 |
+
self,
|
210 |
+
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]],
|
211 |
+
text_pair: Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None,
|
212 |
+
boxes: Union[List[List[int]], List[List[List[int]]]] = None,
|
213 |
+
word_labels: Optional[Union[List[int], List[List[int]]]] = None,
|
214 |
+
add_special_tokens: bool = True,
|
215 |
+
padding: Union[bool, str, PaddingStrategy] = False,
|
216 |
+
truncation: Union[bool, str, TruncationStrategy] = None,
|
217 |
+
max_length: Optional[int] = None,
|
218 |
+
stride: int = 0,
|
219 |
+
pad_to_multiple_of: Optional[int] = None,
|
220 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
221 |
+
return_token_type_ids: Optional[bool] = None,
|
222 |
+
return_attention_mask: Optional[bool] = None,
|
223 |
+
return_overflowing_tokens: bool = False,
|
224 |
+
return_special_tokens_mask: bool = False,
|
225 |
+
return_offsets_mapping: bool = False,
|
226 |
+
return_length: bool = False,
|
227 |
+
verbose: bool = True,
|
228 |
+
**kwargs,
|
229 |
+
) -> BatchEncoding:
|
230 |
+
"""
|
231 |
+
Main method to tokenize and prepare for the model one or several sequence(s) or one or several pair(s) of
|
232 |
+
sequences with word-level normalized bounding boxes and optional labels.
|
233 |
+
|
234 |
+
Args:
|
235 |
+
text (`str`, `List[str]`, `List[List[str]]`):
|
236 |
+
The sequence or batch of sequences to be encoded. Each sequence can be a string, a list of strings
|
237 |
+
(words of a single example or questions of a batch of examples) or a list of list of strings (batch of
|
238 |
+
words).
|
239 |
+
text_pair (`List[str]`, `List[List[str]]`):
|
240 |
+
The sequence or batch of sequences to be encoded. Each sequence should be a list of strings
|
241 |
+
(pretokenized string).
|
242 |
+
boxes (`List[List[int]]`, `List[List[List[int]]]`):
|
243 |
+
Word-level bounding boxes. Each bounding box should be normalized to be on a 0-1000 scale.
|
244 |
+
word_labels (`List[int]`, `List[List[int]]`, *optional*):
|
245 |
+
Word-level integer labels (for token classification tasks such as FUNSD, CORD).
|
246 |
+
"""
|
247 |
+
|
248 |
+
# Input type checking for clearer error
|
249 |
+
def _is_valid_text_input(t):
|
250 |
+
if isinstance(t, str):
|
251 |
+
# Strings are fine
|
252 |
+
return True
|
253 |
+
elif isinstance(t, (list, tuple)):
|
254 |
+
# List are fine as long as they are...
|
255 |
+
if len(t) == 0:
|
256 |
+
# ... empty
|
257 |
+
return True
|
258 |
+
elif isinstance(t[0], str):
|
259 |
+
# ... list of strings
|
260 |
+
return True
|
261 |
+
elif isinstance(t[0], (list, tuple)):
|
262 |
+
# ... list with an empty list or with a list of strings
|
263 |
+
return len(t[0]) == 0 or isinstance(t[0][0], str)
|
264 |
+
else:
|
265 |
+
return False
|
266 |
+
else:
|
267 |
+
return False
|
268 |
+
|
269 |
+
if text_pair is not None:
|
270 |
+
# in case text + text_pair are provided, text = questions, text_pair = words
|
271 |
+
if not _is_valid_text_input(text):
|
272 |
+
raise ValueError("text input must of type `str` (single example) or `List[str]` (batch of examples). ")
|
273 |
+
if not isinstance(text_pair, (list, tuple)):
|
274 |
+
raise ValueError(
|
275 |
+
"Words must be of type `List[str]` (single pretokenized example), "
|
276 |
+
"or `List[List[str]]` (batch of pretokenized examples)."
|
277 |
+
)
|
278 |
+
else:
|
279 |
+
# in case only text is provided => must be words
|
280 |
+
if not isinstance(text, (list, tuple)):
|
281 |
+
raise ValueError(
|
282 |
+
"Words must be of type `List[str]` (single pretokenized example), "
|
283 |
+
"or `List[List[str]]` (batch of pretokenized examples)."
|
284 |
+
)
|
285 |
+
|
286 |
+
if text_pair is not None:
|
287 |
+
is_batched = isinstance(text, (list, tuple))
|
288 |
+
else:
|
289 |
+
is_batched = isinstance(text, (list, tuple)) and text and isinstance(text[0], (list, tuple))
|
290 |
+
|
291 |
+
words = text if text_pair is None else text_pair
|
292 |
+
if boxes is None:
|
293 |
+
raise ValueError("You must provide corresponding bounding boxes")
|
294 |
+
if is_batched:
|
295 |
+
if len(words) != len(boxes):
|
296 |
+
raise ValueError("You must provide words and boxes for an equal amount of examples")
|
297 |
+
for words_example, boxes_example in zip(words, boxes):
|
298 |
+
if len(words_example) != len(boxes_example):
|
299 |
+
raise ValueError("You must provide as many words as there are bounding boxes")
|
300 |
+
else:
|
301 |
+
if len(words) != len(boxes):
|
302 |
+
raise ValueError("You must provide as many words as there are bounding boxes")
|
303 |
+
|
304 |
+
if is_batched:
|
305 |
+
if text_pair is not None and len(text) != len(text_pair):
|
306 |
+
raise ValueError(
|
307 |
+
f"batch length of `text`: {len(text)} does not match batch length of `text_pair`:"
|
308 |
+
f" {len(text_pair)}."
|
309 |
+
)
|
310 |
+
batch_text_or_text_pairs = list(zip(text, text_pair)) if text_pair is not None else text
|
311 |
+
is_pair = bool(text_pair is not None)
|
312 |
+
return self.batch_encode_plus(
|
313 |
+
batch_text_or_text_pairs=batch_text_or_text_pairs,
|
314 |
+
is_pair=is_pair,
|
315 |
+
boxes=boxes,
|
316 |
+
word_labels=word_labels,
|
317 |
+
add_special_tokens=add_special_tokens,
|
318 |
+
padding=padding,
|
319 |
+
truncation=truncation,
|
320 |
+
max_length=max_length,
|
321 |
+
stride=stride,
|
322 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
323 |
+
return_tensors=return_tensors,
|
324 |
+
return_token_type_ids=return_token_type_ids,
|
325 |
+
return_attention_mask=return_attention_mask,
|
326 |
+
return_overflowing_tokens=return_overflowing_tokens,
|
327 |
+
return_special_tokens_mask=return_special_tokens_mask,
|
328 |
+
return_offsets_mapping=return_offsets_mapping,
|
329 |
+
return_length=return_length,
|
330 |
+
verbose=verbose,
|
331 |
+
**kwargs,
|
332 |
+
)
|
333 |
+
else:
|
334 |
+
return self.encode_plus(
|
335 |
+
text=text,
|
336 |
+
text_pair=text_pair,
|
337 |
+
boxes=boxes,
|
338 |
+
word_labels=word_labels,
|
339 |
+
add_special_tokens=add_special_tokens,
|
340 |
+
padding=padding,
|
341 |
+
truncation=truncation,
|
342 |
+
max_length=max_length,
|
343 |
+
stride=stride,
|
344 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
345 |
+
return_tensors=return_tensors,
|
346 |
+
return_token_type_ids=return_token_type_ids,
|
347 |
+
return_attention_mask=return_attention_mask,
|
348 |
+
return_overflowing_tokens=return_overflowing_tokens,
|
349 |
+
return_special_tokens_mask=return_special_tokens_mask,
|
350 |
+
return_offsets_mapping=return_offsets_mapping,
|
351 |
+
return_length=return_length,
|
352 |
+
verbose=verbose,
|
353 |
+
**kwargs,
|
354 |
+
)
|
355 |
+
|
356 |
+
@add_end_docstrings(LAYOUTLMV3_ENCODE_KWARGS_DOCSTRING, LAYOUTLMV3_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
|
357 |
+
# Copied from transformers.models.layoutlmv2.tokenization_layoutlmv2_fast.LayoutLMv2TokenizerFast.batch_encode_plus
|
358 |
+
def batch_encode_plus(
|
359 |
+
self,
|
360 |
+
batch_text_or_text_pairs: Union[
|
361 |
+
List[TextInput],
|
362 |
+
List[TextInputPair],
|
363 |
+
List[PreTokenizedInput],
|
364 |
+
],
|
365 |
+
is_pair: bool = None,
|
366 |
+
boxes: Optional[List[List[List[int]]]] = None,
|
367 |
+
word_labels: Optional[Union[List[int], List[List[int]]]] = None,
|
368 |
+
add_special_tokens: bool = True,
|
369 |
+
padding: Union[bool, str, PaddingStrategy] = False,
|
370 |
+
truncation: Union[bool, str, TruncationStrategy] = None,
|
371 |
+
max_length: Optional[int] = None,
|
372 |
+
stride: int = 0,
|
373 |
+
pad_to_multiple_of: Optional[int] = None,
|
374 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
375 |
+
return_token_type_ids: Optional[bool] = None,
|
376 |
+
return_attention_mask: Optional[bool] = None,
|
377 |
+
return_overflowing_tokens: bool = False,
|
378 |
+
return_special_tokens_mask: bool = False,
|
379 |
+
return_offsets_mapping: bool = False,
|
380 |
+
return_length: bool = False,
|
381 |
+
verbose: bool = True,
|
382 |
+
**kwargs,
|
383 |
+
) -> BatchEncoding:
|
384 |
+
# Backward compatibility for 'truncation_strategy', 'pad_to_max_length'
|
385 |
+
padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies(
|
386 |
+
padding=padding,
|
387 |
+
truncation=truncation,
|
388 |
+
max_length=max_length,
|
389 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
390 |
+
verbose=verbose,
|
391 |
+
**kwargs,
|
392 |
+
)
|
393 |
+
|
394 |
+
return self._batch_encode_plus(
|
395 |
+
batch_text_or_text_pairs=batch_text_or_text_pairs,
|
396 |
+
is_pair=is_pair,
|
397 |
+
boxes=boxes,
|
398 |
+
word_labels=word_labels,
|
399 |
+
add_special_tokens=add_special_tokens,
|
400 |
+
padding_strategy=padding_strategy,
|
401 |
+
truncation_strategy=truncation_strategy,
|
402 |
+
max_length=max_length,
|
403 |
+
stride=stride,
|
404 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
405 |
+
return_tensors=return_tensors,
|
406 |
+
return_token_type_ids=return_token_type_ids,
|
407 |
+
return_attention_mask=return_attention_mask,
|
408 |
+
return_overflowing_tokens=return_overflowing_tokens,
|
409 |
+
return_special_tokens_mask=return_special_tokens_mask,
|
410 |
+
return_offsets_mapping=return_offsets_mapping,
|
411 |
+
return_length=return_length,
|
412 |
+
verbose=verbose,
|
413 |
+
**kwargs,
|
414 |
+
)
|
415 |
+
|
416 |
+
# Copied from transformers.models.layoutlmv2.tokenization_layoutlmv2_fast.LayoutLMv2TokenizerFast.tokenize
|
417 |
+
def tokenize(self, text: str, pair: Optional[str] = None, add_special_tokens: bool = False, **kwargs) -> List[str]:
|
418 |
+
batched_input = [(text, pair)] if pair else [text]
|
419 |
+
encodings = self._tokenizer.encode_batch(
|
420 |
+
batched_input, add_special_tokens=add_special_tokens, is_pretokenized=False, **kwargs
|
421 |
+
)
|
422 |
+
|
423 |
+
return encodings[0].tokens
|
424 |
+
|
425 |
+
@add_end_docstrings(LAYOUTLMV3_ENCODE_KWARGS_DOCSTRING, LAYOUTLMV3_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
|
426 |
+
# Copied from transformers.models.layoutlmv2.tokenization_layoutlmv2_fast.LayoutLMv2TokenizerFast.encode_plus
|
427 |
+
def encode_plus(
|
428 |
+
self,
|
429 |
+
text: Union[TextInput, PreTokenizedInput],
|
430 |
+
text_pair: Optional[PreTokenizedInput] = None,
|
431 |
+
boxes: Optional[List[List[int]]] = None,
|
432 |
+
word_labels: Optional[List[int]] = None,
|
433 |
+
add_special_tokens: bool = True,
|
434 |
+
padding: Union[bool, str, PaddingStrategy] = False,
|
435 |
+
truncation: Union[bool, str, TruncationStrategy] = None,
|
436 |
+
max_length: Optional[int] = None,
|
437 |
+
stride: int = 0,
|
438 |
+
pad_to_multiple_of: Optional[int] = None,
|
439 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
440 |
+
return_token_type_ids: Optional[bool] = None,
|
441 |
+
return_attention_mask: Optional[bool] = None,
|
442 |
+
return_overflowing_tokens: bool = False,
|
443 |
+
return_special_tokens_mask: bool = False,
|
444 |
+
return_offsets_mapping: bool = False,
|
445 |
+
return_length: bool = False,
|
446 |
+
verbose: bool = True,
|
447 |
+
**kwargs,
|
448 |
+
) -> BatchEncoding:
|
449 |
+
"""
|
450 |
+
Tokenize and prepare for the model a sequence or a pair of sequences. .. warning:: This method is deprecated,
|
451 |
+
`__call__` should be used instead.
|
452 |
+
|
453 |
+
Args:
|
454 |
+
text (`str`, `List[str]`, `List[List[str]]`):
|
455 |
+
The first sequence to be encoded. This can be a string, a list of strings or a list of list of strings.
|
456 |
+
text_pair (`List[str]` or `List[int]`, *optional*):
|
457 |
+
Optional second sequence to be encoded. This can be a list of strings (words of a single example) or a
|
458 |
+
list of list of strings (words of a batch of examples).
|
459 |
+
"""
|
460 |
+
|
461 |
+
# Backward compatibility for 'truncation_strategy', 'pad_to_max_length'
|
462 |
+
padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies(
|
463 |
+
padding=padding,
|
464 |
+
truncation=truncation,
|
465 |
+
max_length=max_length,
|
466 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
467 |
+
verbose=verbose,
|
468 |
+
**kwargs,
|
469 |
+
)
|
470 |
+
|
471 |
+
return self._encode_plus(
|
472 |
+
text=text,
|
473 |
+
boxes=boxes,
|
474 |
+
text_pair=text_pair,
|
475 |
+
word_labels=word_labels,
|
476 |
+
add_special_tokens=add_special_tokens,
|
477 |
+
padding_strategy=padding_strategy,
|
478 |
+
truncation_strategy=truncation_strategy,
|
479 |
+
max_length=max_length,
|
480 |
+
stride=stride,
|
481 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
482 |
+
return_tensors=return_tensors,
|
483 |
+
return_token_type_ids=return_token_type_ids,
|
484 |
+
return_attention_mask=return_attention_mask,
|
485 |
+
return_overflowing_tokens=return_overflowing_tokens,
|
486 |
+
return_special_tokens_mask=return_special_tokens_mask,
|
487 |
+
return_offsets_mapping=return_offsets_mapping,
|
488 |
+
return_length=return_length,
|
489 |
+
verbose=verbose,
|
490 |
+
**kwargs,
|
491 |
+
)
|
492 |
+
|
493 |
+
def _batch_encode_plus(
|
494 |
+
self,
|
495 |
+
batch_text_or_text_pairs: Union[
|
496 |
+
List[TextInput],
|
497 |
+
List[TextInputPair],
|
498 |
+
List[PreTokenizedInput],
|
499 |
+
],
|
500 |
+
is_pair: bool = None,
|
501 |
+
boxes: Optional[List[List[List[int]]]] = None,
|
502 |
+
word_labels: Optional[List[List[int]]] = None,
|
503 |
+
add_special_tokens: bool = True,
|
504 |
+
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
|
505 |
+
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
|
506 |
+
max_length: Optional[int] = None,
|
507 |
+
stride: int = 0,
|
508 |
+
pad_to_multiple_of: Optional[int] = None,
|
509 |
+
return_tensors: Optional[str] = None,
|
510 |
+
return_token_type_ids: Optional[bool] = None,
|
511 |
+
return_attention_mask: Optional[bool] = None,
|
512 |
+
return_overflowing_tokens: bool = False,
|
513 |
+
return_special_tokens_mask: bool = False,
|
514 |
+
return_offsets_mapping: bool = False,
|
515 |
+
return_length: bool = False,
|
516 |
+
verbose: bool = True,
|
517 |
+
) -> BatchEncoding:
|
518 |
+
if not isinstance(batch_text_or_text_pairs, list):
|
519 |
+
raise TypeError(f"batch_text_or_text_pairs has to be a list (got {type(batch_text_or_text_pairs)})")
|
520 |
+
|
521 |
+
# Set the truncation and padding strategy and restore the initial configuration
|
522 |
+
self.set_truncation_and_padding(
|
523 |
+
padding_strategy=padding_strategy,
|
524 |
+
truncation_strategy=truncation_strategy,
|
525 |
+
max_length=max_length,
|
526 |
+
stride=stride,
|
527 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
528 |
+
)
|
529 |
+
|
530 |
+
if is_pair:
|
531 |
+
batch_text_or_text_pairs = [(text.split(), text_pair) for text, text_pair in batch_text_or_text_pairs]
|
532 |
+
|
533 |
+
encodings = self._tokenizer.encode_batch(
|
534 |
+
batch_text_or_text_pairs,
|
535 |
+
add_special_tokens=add_special_tokens,
|
536 |
+
is_pretokenized=True, # we set this to True as LayoutLMv3 always expects pretokenized inputs
|
537 |
+
)
|
538 |
+
|
539 |
+
# Convert encoding to dict
|
540 |
+
# `Tokens` has type: Tuple[
|
541 |
+
# List[Dict[str, List[List[int]]]] or List[Dict[str, 2D-Tensor]],
|
542 |
+
# List[EncodingFast]
|
543 |
+
# ]
|
544 |
+
# with nested dimensions corresponding to batch, overflows, sequence length
|
545 |
+
tokens_and_encodings = [
|
546 |
+
self._convert_encoding(
|
547 |
+
encoding=encoding,
|
548 |
+
return_token_type_ids=return_token_type_ids,
|
549 |
+
return_attention_mask=return_attention_mask,
|
550 |
+
return_overflowing_tokens=return_overflowing_tokens,
|
551 |
+
return_special_tokens_mask=return_special_tokens_mask,
|
552 |
+
return_offsets_mapping=True
|
553 |
+
if word_labels is not None
|
554 |
+
else return_offsets_mapping, # we use offsets to create the labels
|
555 |
+
return_length=return_length,
|
556 |
+
verbose=verbose,
|
557 |
+
)
|
558 |
+
for encoding in encodings
|
559 |
+
]
|
560 |
+
|
561 |
+
# Convert the output to have dict[list] from list[dict] and remove the additional overflows dimension
|
562 |
+
# From (variable) shape (batch, overflows, sequence length) to ~ (batch * overflows, sequence length)
|
563 |
+
# (we say ~ because the number of overflow varies with the example in the batch)
|
564 |
+
#
|
565 |
+
# To match each overflowing sample with the original sample in the batch
|
566 |
+
# we add an overflow_to_sample_mapping array (see below)
|
567 |
+
sanitized_tokens = {}
|
568 |
+
for key in tokens_and_encodings[0][0].keys():
|
569 |
+
stack = [e for item, _ in tokens_and_encodings for e in item[key]]
|
570 |
+
sanitized_tokens[key] = stack
|
571 |
+
sanitized_encodings = [e for _, item in tokens_and_encodings for e in item]
|
572 |
+
|
573 |
+
# If returning overflowing tokens, we need to return a mapping
|
574 |
+
# from the batch idx to the original sample
|
575 |
+
if return_overflowing_tokens:
|
576 |
+
overflow_to_sample_mapping = []
|
577 |
+
for i, (toks, _) in enumerate(tokens_and_encodings):
|
578 |
+
overflow_to_sample_mapping += [i] * len(toks["input_ids"])
|
579 |
+
sanitized_tokens["overflow_to_sample_mapping"] = overflow_to_sample_mapping
|
580 |
+
|
581 |
+
for input_ids in sanitized_tokens["input_ids"]:
|
582 |
+
self._eventual_warn_about_too_long_sequence(input_ids, max_length, verbose)
|
583 |
+
|
584 |
+
# create the token boxes
|
585 |
+
token_boxes = []
|
586 |
+
for batch_index in range(len(sanitized_tokens["input_ids"])):
|
587 |
+
if return_overflowing_tokens:
|
588 |
+
original_index = sanitized_tokens["overflow_to_sample_mapping"][batch_index]
|
589 |
+
else:
|
590 |
+
original_index = batch_index
|
591 |
+
token_boxes_example = []
|
592 |
+
for id, sequence_id, word_id in zip(
|
593 |
+
sanitized_tokens["input_ids"][batch_index],
|
594 |
+
sanitized_encodings[batch_index].sequence_ids,
|
595 |
+
sanitized_encodings[batch_index].word_ids,
|
596 |
+
):
|
597 |
+
if word_id is not None:
|
598 |
+
if is_pair and sequence_id == 0:
|
599 |
+
token_boxes_example.append(self.pad_token_box)
|
600 |
+
else:
|
601 |
+
token_boxes_example.append(boxes[original_index][word_id])
|
602 |
+
else:
|
603 |
+
if id == self.cls_token_id:
|
604 |
+
token_boxes_example.append(self.cls_token_box)
|
605 |
+
elif id == self.sep_token_id:
|
606 |
+
token_boxes_example.append(self.sep_token_box)
|
607 |
+
elif id == self.pad_token_id:
|
608 |
+
token_boxes_example.append(self.pad_token_box)
|
609 |
+
else:
|
610 |
+
raise ValueError("Id not recognized")
|
611 |
+
token_boxes.append(token_boxes_example)
|
612 |
+
|
613 |
+
sanitized_tokens["bbox"] = token_boxes
|
614 |
+
|
615 |
+
# optionally, create the labels
|
616 |
+
if word_labels is not None:
|
617 |
+
labels = []
|
618 |
+
for batch_index in range(len(sanitized_tokens["input_ids"])):
|
619 |
+
if return_overflowing_tokens:
|
620 |
+
original_index = sanitized_tokens["overflow_to_sample_mapping"][batch_index]
|
621 |
+
else:
|
622 |
+
original_index = batch_index
|
623 |
+
labels_example = []
|
624 |
+
previous_token_empty = False
|
625 |
+
for id, offset, word_id in zip(
|
626 |
+
sanitized_tokens["input_ids"][batch_index],
|
627 |
+
sanitized_tokens["offset_mapping"][batch_index],
|
628 |
+
sanitized_encodings[batch_index].word_ids,
|
629 |
+
):
|
630 |
+
if word_id is not None:
|
631 |
+
if self.only_label_first_subword:
|
632 |
+
if offset[0] == 0 and not previous_token_empty:
|
633 |
+
# Use the real label id for the first token of the word, and padding ids for the remaining tokens
|
634 |
+
labels_example.append(word_labels[original_index][word_id])
|
635 |
+
else:
|
636 |
+
labels_example.append(self.pad_token_label)
|
637 |
+
if offset == (0, 0):
|
638 |
+
previous_token_empty = True
|
639 |
+
else:
|
640 |
+
previous_token_empty = False
|
641 |
+
else:
|
642 |
+
labels_example.append(word_labels[original_index][word_id])
|
643 |
+
else:
|
644 |
+
labels_example.append(self.pad_token_label)
|
645 |
+
labels.append(labels_example)
|
646 |
+
|
647 |
+
sanitized_tokens["labels"] = labels
|
648 |
+
# finally, remove offsets if the user didn't want them
|
649 |
+
if not return_offsets_mapping:
|
650 |
+
del sanitized_tokens["offset_mapping"]
|
651 |
+
|
652 |
+
return BatchEncoding(sanitized_tokens, sanitized_encodings, tensor_type=return_tensors)
|
653 |
+
|
654 |
+
# Copied from transformers.models.layoutlmv2.tokenization_layoutlmv2_fast.LayoutLMv2TokenizerFast._encode_plus
|
655 |
+
def _encode_plus(
|
656 |
+
self,
|
657 |
+
text: Union[TextInput, PreTokenizedInput],
|
658 |
+
text_pair: Optional[PreTokenizedInput] = None,
|
659 |
+
boxes: Optional[List[List[int]]] = None,
|
660 |
+
word_labels: Optional[List[int]] = None,
|
661 |
+
add_special_tokens: bool = True,
|
662 |
+
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
|
663 |
+
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
|
664 |
+
max_length: Optional[int] = None,
|
665 |
+
stride: int = 0,
|
666 |
+
pad_to_multiple_of: Optional[int] = None,
|
667 |
+
return_tensors: Optional[bool] = None,
|
668 |
+
return_token_type_ids: Optional[bool] = None,
|
669 |
+
return_attention_mask: Optional[bool] = None,
|
670 |
+
return_overflowing_tokens: bool = False,
|
671 |
+
return_special_tokens_mask: bool = False,
|
672 |
+
return_offsets_mapping: bool = False,
|
673 |
+
return_length: bool = False,
|
674 |
+
verbose: bool = True,
|
675 |
+
**kwargs,
|
676 |
+
) -> BatchEncoding:
|
677 |
+
# make it a batched input
|
678 |
+
# 2 options:
|
679 |
+
# 1) only text, in case text must be a list of str
|
680 |
+
# 2) text + text_pair, in which case text = str and text_pair a list of str
|
681 |
+
batched_input = [(text, text_pair)] if text_pair else [text]
|
682 |
+
batched_boxes = [boxes]
|
683 |
+
batched_word_labels = [word_labels] if word_labels is not None else None
|
684 |
+
batched_output = self._batch_encode_plus(
|
685 |
+
batched_input,
|
686 |
+
is_pair=bool(text_pair is not None),
|
687 |
+
boxes=batched_boxes,
|
688 |
+
word_labels=batched_word_labels,
|
689 |
+
add_special_tokens=add_special_tokens,
|
690 |
+
padding_strategy=padding_strategy,
|
691 |
+
truncation_strategy=truncation_strategy,
|
692 |
+
max_length=max_length,
|
693 |
+
stride=stride,
|
694 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
695 |
+
return_tensors=return_tensors,
|
696 |
+
return_token_type_ids=return_token_type_ids,
|
697 |
+
return_attention_mask=return_attention_mask,
|
698 |
+
return_overflowing_tokens=return_overflowing_tokens,
|
699 |
+
return_special_tokens_mask=return_special_tokens_mask,
|
700 |
+
return_offsets_mapping=return_offsets_mapping,
|
701 |
+
return_length=return_length,
|
702 |
+
verbose=verbose,
|
703 |
+
**kwargs,
|
704 |
+
)
|
705 |
+
|
706 |
+
# Return tensor is None, then we can remove the leading batch axis
|
707 |
+
# Overflowing tokens are returned as a batch of output so we keep them in this case
|
708 |
+
if return_tensors is None and not return_overflowing_tokens:
|
709 |
+
batched_output = BatchEncoding(
|
710 |
+
{
|
711 |
+
key: value[0] if len(value) > 0 and isinstance(value[0], list) else value
|
712 |
+
for key, value in batched_output.items()
|
713 |
+
},
|
714 |
+
batched_output.encodings,
|
715 |
+
)
|
716 |
+
|
717 |
+
self._eventual_warn_about_too_long_sequence(batched_output["input_ids"], max_length, verbose)
|
718 |
+
|
719 |
+
return batched_output
|
720 |
+
|
721 |
+
# Copied from transformers.models.layoutlmv2.tokenization_layoutlmv2_fast.LayoutLMv2TokenizerFast._pad
|
722 |
+
def _pad(
|
723 |
+
self,
|
724 |
+
encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
|
725 |
+
max_length: Optional[int] = None,
|
726 |
+
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
|
727 |
+
pad_to_multiple_of: Optional[int] = None,
|
728 |
+
return_attention_mask: Optional[bool] = None,
|
729 |
+
) -> dict:
|
730 |
+
"""
|
731 |
+
Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
|
732 |
+
|
733 |
+
Args:
|
734 |
+
encoded_inputs:
|
735 |
+
Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
|
736 |
+
max_length: maximum length of the returned list and optionally padding length (see below).
|
737 |
+
Will truncate by taking into account the special tokens.
|
738 |
+
padding_strategy: PaddingStrategy to use for padding.
|
739 |
+
|
740 |
+
- PaddingStrategy.LONGEST Pad to the longest sequence in the batch
|
741 |
+
- PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
|
742 |
+
- PaddingStrategy.DO_NOT_PAD: Do not pad
|
743 |
+
The tokenizer padding sides are defined in self.padding_side:
|
744 |
+
|
745 |
+
- 'left': pads on the left of the sequences
|
746 |
+
- 'right': pads on the right of the sequences
|
747 |
+
pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
|
748 |
+
This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
|
749 |
+
`>= 7.5` (Volta).
|
750 |
+
return_attention_mask:
|
751 |
+
(optional) Set to False to avoid returning attention mask (default: set to model specifics)
|
752 |
+
"""
|
753 |
+
# Load from model defaults
|
754 |
+
if return_attention_mask is None:
|
755 |
+
return_attention_mask = "attention_mask" in self.model_input_names
|
756 |
+
|
757 |
+
required_input = encoded_inputs[self.model_input_names[0]]
|
758 |
+
|
759 |
+
if padding_strategy == PaddingStrategy.LONGEST:
|
760 |
+
max_length = len(required_input)
|
761 |
+
|
762 |
+
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
|
763 |
+
max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
|
764 |
+
|
765 |
+
needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length
|
766 |
+
|
767 |
+
# Initialize attention mask if not present.
|
768 |
+
if return_attention_mask and "attention_mask" not in encoded_inputs:
|
769 |
+
encoded_inputs["attention_mask"] = [1] * len(required_input)
|
770 |
+
|
771 |
+
if needs_to_be_padded:
|
772 |
+
difference = max_length - len(required_input)
|
773 |
+
if self.padding_side == "right":
|
774 |
+
if return_attention_mask:
|
775 |
+
encoded_inputs["attention_mask"] = encoded_inputs["attention_mask"] + [0] * difference
|
776 |
+
if "token_type_ids" in encoded_inputs:
|
777 |
+
encoded_inputs["token_type_ids"] = (
|
778 |
+
encoded_inputs["token_type_ids"] + [self.pad_token_type_id] * difference
|
779 |
+
)
|
780 |
+
if "bbox" in encoded_inputs:
|
781 |
+
encoded_inputs["bbox"] = encoded_inputs["bbox"] + [self.pad_token_box] * difference
|
782 |
+
if "labels" in encoded_inputs:
|
783 |
+
encoded_inputs["labels"] = encoded_inputs["labels"] + [self.pad_token_label] * difference
|
784 |
+
if "special_tokens_mask" in encoded_inputs:
|
785 |
+
encoded_inputs["special_tokens_mask"] = encoded_inputs["special_tokens_mask"] + [1] * difference
|
786 |
+
encoded_inputs[self.model_input_names[0]] = required_input + [self.pad_token_id] * difference
|
787 |
+
elif self.padding_side == "left":
|
788 |
+
if return_attention_mask:
|
789 |
+
encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"]
|
790 |
+
if "token_type_ids" in encoded_inputs:
|
791 |
+
encoded_inputs["token_type_ids"] = [self.pad_token_type_id] * difference + encoded_inputs[
|
792 |
+
"token_type_ids"
|
793 |
+
]
|
794 |
+
if "bbox" in encoded_inputs:
|
795 |
+
encoded_inputs["bbox"] = [self.pad_token_box] * difference + encoded_inputs["bbox"]
|
796 |
+
if "labels" in encoded_inputs:
|
797 |
+
encoded_inputs["labels"] = [self.pad_token_label] * difference + encoded_inputs["labels"]
|
798 |
+
if "special_tokens_mask" in encoded_inputs:
|
799 |
+
encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"]
|
800 |
+
encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
|
801 |
+
else:
|
802 |
+
raise ValueError("Invalid padding strategy:" + str(self.padding_side))
|
803 |
+
|
804 |
+
return encoded_inputs
|
805 |
+
|
806 |
+
# Copied from transformers.models.layoutlmv2.tokenization_layoutlmv2_fast.LayoutLMv2TokenizerFast.save_vocabulary
|
807 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
808 |
+
files = self._tokenizer.model.save(save_directory, name=filename_prefix)
|
809 |
+
return tuple(files)
|
810 |
+
|
811 |
+
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
812 |
+
output = [self.bos_token_id] + token_ids_0 + [self.eos_token_id]
|
813 |
+
if token_ids_1 is None:
|
814 |
+
return output
|
815 |
+
|
816 |
+
return output + [self.eos_token_id] + token_ids_1 + [self.eos_token_id]
|
817 |
+
|
818 |
+
def create_token_type_ids_from_sequences(
|
819 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
820 |
+
) -> List[int]:
|
821 |
+
"""
|
822 |
+
Args:
|
823 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task. RoBERTa does not:
|
824 |
+
make use of token type ids, therefore a list of zeros is returned.
|
825 |
+
token_ids_0 (`List[int]`):
|
826 |
+
List of IDs.
|
827 |
+
token_ids_1 (`List[int]`, *optional*):
|
828 |
+
Optional second list of IDs for sequence pairs.
|
829 |
+
Returns:
|
830 |
+
`List[int]`: List of zeros.
|
831 |
+
"""
|
832 |
+
sep = [self.sep_token_id]
|
833 |
+
cls = [self.cls_token_id]
|
834 |
+
|
835 |
+
if token_ids_1 is None:
|
836 |
+
return len(cls + token_ids_0 + sep) * [0]
|
837 |
+
return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
|
llmeval-env/lib/python3.10/site-packages/transformers/models/mbart50/__init__.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import TYPE_CHECKING
|
15 |
+
|
16 |
+
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available
|
17 |
+
|
18 |
+
|
19 |
+
_import_structure = {}
|
20 |
+
|
21 |
+
try:
|
22 |
+
if not is_sentencepiece_available():
|
23 |
+
raise OptionalDependencyNotAvailable()
|
24 |
+
except OptionalDependencyNotAvailable:
|
25 |
+
pass
|
26 |
+
else:
|
27 |
+
_import_structure["tokenization_mbart50"] = ["MBart50Tokenizer"]
|
28 |
+
|
29 |
+
try:
|
30 |
+
if not is_tokenizers_available():
|
31 |
+
raise OptionalDependencyNotAvailable()
|
32 |
+
except OptionalDependencyNotAvailable:
|
33 |
+
pass
|
34 |
+
else:
|
35 |
+
_import_structure["tokenization_mbart50_fast"] = ["MBart50TokenizerFast"]
|
36 |
+
|
37 |
+
|
38 |
+
if TYPE_CHECKING:
|
39 |
+
try:
|
40 |
+
if not is_sentencepiece_available():
|
41 |
+
raise OptionalDependencyNotAvailable()
|
42 |
+
except OptionalDependencyNotAvailable:
|
43 |
+
pass
|
44 |
+
else:
|
45 |
+
from .tokenization_mbart50 import MBart50Tokenizer
|
46 |
+
|
47 |
+
try:
|
48 |
+
if not is_tokenizers_available():
|
49 |
+
raise OptionalDependencyNotAvailable()
|
50 |
+
except OptionalDependencyNotAvailable:
|
51 |
+
pass
|
52 |
+
else:
|
53 |
+
from .tokenization_mbart50_fast import MBart50TokenizerFast
|
54 |
+
|
55 |
+
else:
|
56 |
+
import sys
|
57 |
+
|
58 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/mbart50/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (927 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/mbart50/__pycache__/tokenization_mbart50.cpython-310.pyc
ADDED
Binary file (14.2 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/mbart50/tokenization_mbart50.py
ADDED
@@ -0,0 +1,354 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 The Facebook AI Research Team Authors and The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import os
|
17 |
+
from shutil import copyfile
|
18 |
+
from typing import Any, Dict, List, Optional, Tuple
|
19 |
+
|
20 |
+
import sentencepiece as spm
|
21 |
+
|
22 |
+
from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer
|
23 |
+
from ...utils import logging
|
24 |
+
|
25 |
+
|
26 |
+
logger = logging.get_logger(__name__)
|
27 |
+
|
28 |
+
SPIECE_UNDERLINE = "▁"
|
29 |
+
|
30 |
+
VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model"}
|
31 |
+
|
32 |
+
|
33 |
+
FAIRSEQ_LANGUAGE_CODES = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN", "af_ZA", "az_AZ", "bn_IN", "fa_IR", "he_IL", "hr_HR", "id_ID", "ka_GE", "km_KH", "mk_MK", "ml_IN", "mn_MN", "mr_IN", "pl_PL", "ps_AF", "pt_XX", "sv_SE", "sw_KE", "ta_IN", "te_IN", "th_TH", "tl_XX", "uk_UA", "ur_PK", "xh_ZA", "gl_ES", "sl_SI"] # fmt: skip
|
34 |
+
|
35 |
+
|
36 |
+
class MBart50Tokenizer(PreTrainedTokenizer):
|
37 |
+
"""
|
38 |
+
Construct a MBart50 tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece).
|
39 |
+
|
40 |
+
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
|
41 |
+
this superclass for more information regarding those methods.
|
42 |
+
|
43 |
+
Args:
|
44 |
+
vocab_file (`str`):
|
45 |
+
Path to the vocabulary file.
|
46 |
+
src_lang (`str`, *optional*):
|
47 |
+
A string representing the source language.
|
48 |
+
tgt_lang (`str`, *optional*):
|
49 |
+
A string representing the target language.
|
50 |
+
eos_token (`str`, *optional*, defaults to `"</s>"`):
|
51 |
+
The end of sequence token.
|
52 |
+
sep_token (`str`, *optional*, defaults to `"</s>"`):
|
53 |
+
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
|
54 |
+
sequence classification or for a text and a question for question answering. It is also used as the last
|
55 |
+
token of a sequence built with special tokens.
|
56 |
+
cls_token (`str`, *optional*, defaults to `"<s>"`):
|
57 |
+
The classifier token which is used when doing sequence classification (classification of the whole sequence
|
58 |
+
instead of per-token classification). It is the first token of the sequence when built with special tokens.
|
59 |
+
unk_token (`str`, *optional*, defaults to `"<unk>"`):
|
60 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
61 |
+
token instead.
|
62 |
+
pad_token (`str`, *optional*, defaults to `"<pad>"`):
|
63 |
+
The token used for padding, for example when batching sequences of different lengths.
|
64 |
+
mask_token (`str`, *optional*, defaults to `"<mask>"`):
|
65 |
+
The token used for masking values. This is the token used when training this model with masked language
|
66 |
+
modeling. This is the token which the model will try to predict.
|
67 |
+
sp_model_kwargs (`dict`, *optional*):
|
68 |
+
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
|
69 |
+
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
|
70 |
+
to set:
|
71 |
+
|
72 |
+
- `enable_sampling`: Enable subword regularization.
|
73 |
+
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
|
74 |
+
|
75 |
+
- `nbest_size = {0,1}`: No sampling is performed.
|
76 |
+
- `nbest_size > 1`: samples from the nbest_size results.
|
77 |
+
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
|
78 |
+
using forward-filtering-and-backward-sampling algorithm.
|
79 |
+
|
80 |
+
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
|
81 |
+
BPE-dropout.
|
82 |
+
|
83 |
+
Examples:
|
84 |
+
|
85 |
+
```python
|
86 |
+
>>> from transformers import MBart50Tokenizer
|
87 |
+
|
88 |
+
>>> tokenizer = MBart50Tokenizer.from_pretrained("facebook/mbart-large-50", src_lang="en_XX", tgt_lang="ro_RO")
|
89 |
+
>>> src_text = " UN Chief Says There Is No Military Solution in Syria"
|
90 |
+
>>> tgt_text = "Şeful ONU declară că nu există o soluţie militară în Siria"
|
91 |
+
>>> model_inputs = tokenizer(src_text, text_target=tgt_text, return_tensors="pt")
|
92 |
+
>>> # model(**model_inputs) should work
|
93 |
+
```"""
|
94 |
+
|
95 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
96 |
+
model_input_names = ["input_ids", "attention_mask"]
|
97 |
+
|
98 |
+
prefix_tokens: List[int] = []
|
99 |
+
suffix_tokens: List[int] = []
|
100 |
+
|
101 |
+
def __init__(
|
102 |
+
self,
|
103 |
+
vocab_file,
|
104 |
+
src_lang=None,
|
105 |
+
tgt_lang=None,
|
106 |
+
eos_token="</s>",
|
107 |
+
sep_token="</s>",
|
108 |
+
cls_token="<s>",
|
109 |
+
unk_token="<unk>",
|
110 |
+
pad_token="<pad>",
|
111 |
+
mask_token="<mask>",
|
112 |
+
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
113 |
+
**kwargs,
|
114 |
+
) -> None:
|
115 |
+
# Mask token behave like a normal word, i.e. include the space before it
|
116 |
+
mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token
|
117 |
+
|
118 |
+
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
119 |
+
|
120 |
+
kwargs["additional_special_tokens"] = kwargs.get("additional_special_tokens", []) or []
|
121 |
+
kwargs["additional_special_tokens"] += [
|
122 |
+
code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"]
|
123 |
+
]
|
124 |
+
|
125 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
126 |
+
self.sp_model.Load(str(vocab_file))
|
127 |
+
self.vocab_file = vocab_file
|
128 |
+
|
129 |
+
# Original fairseq vocab and spm vocab must be "aligned":
|
130 |
+
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
|
131 |
+
# -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
|
132 |
+
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-'
|
133 |
+
# spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
|
134 |
+
|
135 |
+
# Mimic fairseq token-to-id alignment for the first 4 token
|
136 |
+
self.fairseq_tokens_to_ids = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3}
|
137 |
+
|
138 |
+
# The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
|
139 |
+
self.fairseq_offset = 1
|
140 |
+
|
141 |
+
self.sp_model_size = len(self.sp_model)
|
142 |
+
self.lang_code_to_id = {
|
143 |
+
code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(FAIRSEQ_LANGUAGE_CODES)
|
144 |
+
}
|
145 |
+
self.id_to_lang_code = {v: k for k, v in self.lang_code_to_id.items()}
|
146 |
+
self.fairseq_tokens_to_ids["<mask>"] = len(self.sp_model) + len(self.lang_code_to_id) + self.fairseq_offset
|
147 |
+
|
148 |
+
self.fairseq_tokens_to_ids.update(self.lang_code_to_id)
|
149 |
+
self.fairseq_ids_to_tokens = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
|
150 |
+
|
151 |
+
super().__init__(
|
152 |
+
src_lang=src_lang,
|
153 |
+
tgt_lang=tgt_lang,
|
154 |
+
eos_token=eos_token,
|
155 |
+
unk_token=unk_token,
|
156 |
+
sep_token=sep_token,
|
157 |
+
cls_token=cls_token,
|
158 |
+
pad_token=pad_token,
|
159 |
+
mask_token=mask_token,
|
160 |
+
sp_model_kwargs=self.sp_model_kwargs,
|
161 |
+
**kwargs,
|
162 |
+
)
|
163 |
+
|
164 |
+
self._src_lang = src_lang if src_lang is not None else "en_XX"
|
165 |
+
self.cur_lang_code_id = self.lang_code_to_id[self._src_lang]
|
166 |
+
self.tgt_lang = tgt_lang
|
167 |
+
self.set_src_lang_special_tokens(self._src_lang)
|
168 |
+
|
169 |
+
@property
|
170 |
+
def vocab_size(self) -> int:
|
171 |
+
return len(self.sp_model) + len(self.lang_code_to_id) + self.fairseq_offset + 1 # Plus 1 for the mask token
|
172 |
+
|
173 |
+
@property
|
174 |
+
def src_lang(self) -> str:
|
175 |
+
return self._src_lang
|
176 |
+
|
177 |
+
@src_lang.setter
|
178 |
+
def src_lang(self, new_src_lang: str) -> None:
|
179 |
+
self._src_lang = new_src_lang
|
180 |
+
self.set_src_lang_special_tokens(self._src_lang)
|
181 |
+
|
182 |
+
def __getstate__(self) -> Dict:
|
183 |
+
state = self.__dict__.copy()
|
184 |
+
state["sp_model"] = None
|
185 |
+
return state
|
186 |
+
|
187 |
+
def __setstate__(self, d: Dict) -> None:
|
188 |
+
self.__dict__ = d
|
189 |
+
|
190 |
+
# for backward compatibility
|
191 |
+
if not hasattr(self, "sp_model_kwargs"):
|
192 |
+
self.sp_model_kwargs = {}
|
193 |
+
|
194 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
195 |
+
self.sp_model.Load(self.vocab_file)
|
196 |
+
|
197 |
+
def get_vocab(self) -> Dict:
|
198 |
+
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
199 |
+
vocab.update(self.added_tokens_encoder)
|
200 |
+
return vocab
|
201 |
+
|
202 |
+
def _tokenize(self, text: str) -> List[str]:
|
203 |
+
return self.sp_model.encode(text, out_type=str)
|
204 |
+
|
205 |
+
def _convert_token_to_id(self, token: str) -> int:
|
206 |
+
"""Converts a token (str) in an id using the vocab."""
|
207 |
+
if token in self.fairseq_tokens_to_ids:
|
208 |
+
return self.fairseq_tokens_to_ids[token]
|
209 |
+
spm_id = self.sp_model.PieceToId(token)
|
210 |
+
|
211 |
+
# Need to return unknown token if the SP model returned 0
|
212 |
+
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
|
213 |
+
|
214 |
+
def _convert_id_to_token(self, index: int) -> str:
|
215 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
216 |
+
if index in self.fairseq_ids_to_tokens:
|
217 |
+
return self.fairseq_ids_to_tokens[index]
|
218 |
+
return self.sp_model.IdToPiece(index - self.fairseq_offset)
|
219 |
+
|
220 |
+
# Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.convert_tokens_to_string
|
221 |
+
def convert_tokens_to_string(self, tokens):
|
222 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
223 |
+
current_sub_tokens = []
|
224 |
+
out_string = ""
|
225 |
+
prev_is_special = False
|
226 |
+
for token in tokens:
|
227 |
+
# make sure that special tokens are not decoded using sentencepiece model
|
228 |
+
if token in self.all_special_tokens:
|
229 |
+
if not prev_is_special:
|
230 |
+
out_string += " "
|
231 |
+
out_string += self.sp_model.decode(current_sub_tokens) + token
|
232 |
+
prev_is_special = True
|
233 |
+
current_sub_tokens = []
|
234 |
+
else:
|
235 |
+
current_sub_tokens.append(token)
|
236 |
+
prev_is_special = False
|
237 |
+
out_string += self.sp_model.decode(current_sub_tokens)
|
238 |
+
return out_string.strip()
|
239 |
+
|
240 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
241 |
+
if not os.path.isdir(save_directory):
|
242 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
243 |
+
return
|
244 |
+
out_vocab_file = os.path.join(
|
245 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
246 |
+
)
|
247 |
+
|
248 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
249 |
+
copyfile(self.vocab_file, out_vocab_file)
|
250 |
+
elif not os.path.isfile(self.vocab_file):
|
251 |
+
with open(out_vocab_file, "wb") as fi:
|
252 |
+
content_spiece_model = self.sp_model.serialized_model_proto()
|
253 |
+
fi.write(content_spiece_model)
|
254 |
+
|
255 |
+
return (out_vocab_file,)
|
256 |
+
|
257 |
+
def get_special_tokens_mask(
|
258 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
259 |
+
) -> List[int]:
|
260 |
+
"""
|
261 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
262 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
263 |
+
|
264 |
+
Args:
|
265 |
+
token_ids_0 (`List[int]`):
|
266 |
+
List of IDs.
|
267 |
+
token_ids_1 (`List[int]`, *optional*):
|
268 |
+
Optional second list of IDs for sequence pairs.
|
269 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
270 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
271 |
+
|
272 |
+
Returns:
|
273 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
274 |
+
"""
|
275 |
+
|
276 |
+
if already_has_special_tokens:
|
277 |
+
return super().get_special_tokens_mask(
|
278 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
279 |
+
)
|
280 |
+
|
281 |
+
prefix_ones = [1] * len(self.prefix_tokens)
|
282 |
+
suffix_ones = [1] * len(self.suffix_tokens)
|
283 |
+
if token_ids_1 is None:
|
284 |
+
return prefix_ones + ([0] * len(token_ids_0)) + suffix_ones
|
285 |
+
return prefix_ones + ([0] * len(token_ids_0)) + ([0] * len(token_ids_1)) + suffix_ones
|
286 |
+
|
287 |
+
def build_inputs_with_special_tokens(
|
288 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
289 |
+
) -> List[int]:
|
290 |
+
"""
|
291 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
292 |
+
adding special tokens. An MBART-50 sequence has the following format, where `X` represents the sequence:
|
293 |
+
|
294 |
+
- `input_ids` (for encoder) `[src_lang_code] X [eos]`
|
295 |
+
- `labels`: (for decoder) `[tgt_lang_code] X [eos]`
|
296 |
+
|
297 |
+
BOS is never used. Pairs of sequences are not the expected use case, but they will be handled without a
|
298 |
+
separator.
|
299 |
+
|
300 |
+
Args:
|
301 |
+
token_ids_0 (`List[int]`):
|
302 |
+
List of IDs to which the special tokens will be added.
|
303 |
+
token_ids_1 (`List[int]`, *optional*):
|
304 |
+
Optional second list of IDs for sequence pairs.
|
305 |
+
|
306 |
+
Returns:
|
307 |
+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
308 |
+
"""
|
309 |
+
if token_ids_1 is None:
|
310 |
+
return self.prefix_tokens + token_ids_0 + self.suffix_tokens
|
311 |
+
# We don't expect to process pairs, but leave the pair logic for API consistency
|
312 |
+
return self.prefix_tokens + token_ids_0 + token_ids_1 + self.suffix_tokens
|
313 |
+
|
314 |
+
def _build_translation_inputs(
|
315 |
+
self, raw_inputs, return_tensors: str, src_lang: Optional[str], tgt_lang: Optional[str], **extra_kwargs
|
316 |
+
):
|
317 |
+
"""Used by translation pipeline, to prepare inputs for the generate function"""
|
318 |
+
if src_lang is None or tgt_lang is None:
|
319 |
+
raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model")
|
320 |
+
self.src_lang = src_lang
|
321 |
+
inputs = self(raw_inputs, add_special_tokens=True, return_tensors=return_tensors, **extra_kwargs)
|
322 |
+
tgt_lang_id = self.convert_tokens_to_ids(tgt_lang)
|
323 |
+
inputs["forced_bos_token_id"] = tgt_lang_id
|
324 |
+
return inputs
|
325 |
+
|
326 |
+
def prepare_seq2seq_batch(
|
327 |
+
self,
|
328 |
+
src_texts: List[str],
|
329 |
+
src_lang: str = "en_XX",
|
330 |
+
tgt_texts: Optional[List[str]] = None,
|
331 |
+
tgt_lang: str = "ro_RO",
|
332 |
+
**kwargs,
|
333 |
+
) -> BatchEncoding:
|
334 |
+
self.src_lang = src_lang
|
335 |
+
self.tgt_lang = tgt_lang
|
336 |
+
return super().prepare_seq2seq_batch(src_texts, tgt_texts, **kwargs)
|
337 |
+
|
338 |
+
def _switch_to_input_mode(self):
|
339 |
+
return self.set_src_lang_special_tokens(self.src_lang)
|
340 |
+
|
341 |
+
def _switch_to_target_mode(self):
|
342 |
+
return self.set_tgt_lang_special_tokens(self.tgt_lang)
|
343 |
+
|
344 |
+
def set_src_lang_special_tokens(self, src_lang: str) -> None:
|
345 |
+
"""Reset the special tokens to the source lang setting. prefix=[src_lang_code] and suffix=[eos]."""
|
346 |
+
self.cur_lang_code_id = self.lang_code_to_id[src_lang]
|
347 |
+
self.prefix_tokens = [self.cur_lang_code_id]
|
348 |
+
self.suffix_tokens = [self.eos_token_id]
|
349 |
+
|
350 |
+
def set_tgt_lang_special_tokens(self, tgt_lang: str) -> None:
|
351 |
+
"""Reset the special tokens to the target language setting. prefix=[tgt_lang_code] and suffix=[eos]."""
|
352 |
+
self.cur_lang_code_id = self.lang_code_to_id[tgt_lang]
|
353 |
+
self.prefix_tokens = [self.cur_lang_code_id]
|
354 |
+
self.suffix_tokens = [self.eos_token_id]
|
llmeval-env/lib/python3.10/site-packages/transformers/models/mbart50/tokenization_mbart50_fast.py
ADDED
@@ -0,0 +1,259 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 The Facebook AI Research Team Authors and The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import os
|
17 |
+
from shutil import copyfile
|
18 |
+
from typing import List, Optional, Tuple
|
19 |
+
|
20 |
+
from tokenizers import processors
|
21 |
+
|
22 |
+
from ...tokenization_utils import AddedToken, BatchEncoding
|
23 |
+
from ...tokenization_utils_fast import PreTrainedTokenizerFast
|
24 |
+
from ...utils import is_sentencepiece_available, logging
|
25 |
+
|
26 |
+
|
27 |
+
if is_sentencepiece_available():
|
28 |
+
from .tokenization_mbart50 import MBart50Tokenizer
|
29 |
+
else:
|
30 |
+
MBart50Tokenizer = None
|
31 |
+
|
32 |
+
|
33 |
+
logger = logging.get_logger(__name__)
|
34 |
+
|
35 |
+
VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"}
|
36 |
+
|
37 |
+
|
38 |
+
FAIRSEQ_LANGUAGE_CODES = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN", "af_ZA", "az_AZ", "bn_IN", "fa_IR", "he_IL", "hr_HR", "id_ID", "ka_GE", "km_KH", "mk_MK", "ml_IN", "mn_MN", "mr_IN", "pl_PL", "ps_AF", "pt_XX", "sv_SE", "sw_KE", "ta_IN", "te_IN", "th_TH", "tl_XX", "uk_UA", "ur_PK", "xh_ZA", "gl_ES", "sl_SI"] # fmt: skip
|
39 |
+
|
40 |
+
|
41 |
+
class MBart50TokenizerFast(PreTrainedTokenizerFast):
|
42 |
+
"""
|
43 |
+
Construct a "fast" MBART tokenizer for mBART-50 (backed by HuggingFace's *tokenizers* library). Based on
|
44 |
+
[BPE](https://huggingface.co/docs/tokenizers/python/latest/components.html?highlight=BPE#models).
|
45 |
+
|
46 |
+
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
|
47 |
+
refer to this superclass for more information regarding those methods.
|
48 |
+
|
49 |
+
Args:
|
50 |
+
vocab_file (`str`):
|
51 |
+
Path to the vocabulary file.
|
52 |
+
src_lang (`str`, *optional*):
|
53 |
+
A string representing the source language.
|
54 |
+
tgt_lang (`str`, *optional*):
|
55 |
+
A string representing the target language.
|
56 |
+
eos_token (`str`, *optional*, defaults to `"</s>"`):
|
57 |
+
The end of sequence token.
|
58 |
+
sep_token (`str`, *optional*, defaults to `"</s>"`):
|
59 |
+
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
|
60 |
+
sequence classification or for a text and a question for question answering. It is also used as the last
|
61 |
+
token of a sequence built with special tokens.
|
62 |
+
cls_token (`str`, *optional*, defaults to `"<s>"`):
|
63 |
+
The classifier token which is used when doing sequence classification (classification of the whole sequence
|
64 |
+
instead of per-token classification). It is the first token of the sequence when built with special tokens.
|
65 |
+
unk_token (`str`, *optional*, defaults to `"<unk>"`):
|
66 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
67 |
+
token instead.
|
68 |
+
pad_token (`str`, *optional*, defaults to `"<pad>"`):
|
69 |
+
The token used for padding, for example when batching sequences of different lengths.
|
70 |
+
mask_token (`str`, *optional*, defaults to `"<mask>"`):
|
71 |
+
The token used for masking values. This is the token used when training this model with masked language
|
72 |
+
modeling. This is the token which the model will try to predict.
|
73 |
+
|
74 |
+
Examples:
|
75 |
+
|
76 |
+
```python
|
77 |
+
>>> from transformers import MBart50TokenizerFast
|
78 |
+
|
79 |
+
>>> tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50", src_lang="en_XX", tgt_lang="ro_RO")
|
80 |
+
>>> src_text = " UN Chief Says There Is No Military Solution in Syria"
|
81 |
+
>>> tgt_text = "Şeful ONU declară că nu există o soluţie militară în Siria"
|
82 |
+
>>> model_inputs = tokenizer(src_text, text_target=tgt_text, return_tensors="pt")
|
83 |
+
>>> # model(**model_inputs) should work
|
84 |
+
```"""
|
85 |
+
|
86 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
87 |
+
model_input_names = ["input_ids", "attention_mask"]
|
88 |
+
slow_tokenizer_class = MBart50Tokenizer
|
89 |
+
|
90 |
+
prefix_tokens: List[int] = []
|
91 |
+
suffix_tokens: List[int] = []
|
92 |
+
|
93 |
+
def __init__(
|
94 |
+
self,
|
95 |
+
vocab_file=None,
|
96 |
+
src_lang=None,
|
97 |
+
tgt_lang=None,
|
98 |
+
tokenizer_file=None,
|
99 |
+
eos_token="</s>",
|
100 |
+
sep_token="</s>",
|
101 |
+
cls_token="<s>",
|
102 |
+
unk_token="<unk>",
|
103 |
+
pad_token="<pad>",
|
104 |
+
mask_token="<mask>",
|
105 |
+
**kwargs,
|
106 |
+
):
|
107 |
+
# Mask token behave like a normal word, i.e. include the space before it
|
108 |
+
mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token
|
109 |
+
|
110 |
+
kwargs["additional_special_tokens"] = kwargs.get("additional_special_tokens", []) or []
|
111 |
+
kwargs["additional_special_tokens"] += [
|
112 |
+
code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"]
|
113 |
+
]
|
114 |
+
|
115 |
+
super().__init__(
|
116 |
+
vocab_file,
|
117 |
+
src_lang=src_lang,
|
118 |
+
tgt_lang=tgt_lang,
|
119 |
+
tokenizer_file=tokenizer_file,
|
120 |
+
eos_token=eos_token,
|
121 |
+
sep_token=sep_token,
|
122 |
+
cls_token=cls_token,
|
123 |
+
unk_token=unk_token,
|
124 |
+
pad_token=pad_token,
|
125 |
+
mask_token=mask_token,
|
126 |
+
**kwargs,
|
127 |
+
)
|
128 |
+
|
129 |
+
self.vocab_file = vocab_file
|
130 |
+
|
131 |
+
self.lang_code_to_id = {
|
132 |
+
lang_code: self.convert_tokens_to_ids(lang_code) for lang_code in FAIRSEQ_LANGUAGE_CODES
|
133 |
+
}
|
134 |
+
|
135 |
+
self._src_lang = src_lang if src_lang is not None else "en_XX"
|
136 |
+
self.tgt_lang = tgt_lang
|
137 |
+
self.cur_lang_code_id = self.lang_code_to_id[self._src_lang]
|
138 |
+
self.set_src_lang_special_tokens(self._src_lang)
|
139 |
+
|
140 |
+
@property
|
141 |
+
def can_save_slow_tokenizer(self) -> bool:
|
142 |
+
return os.path.isfile(self.vocab_file) if self.vocab_file else False
|
143 |
+
|
144 |
+
@property
|
145 |
+
def src_lang(self) -> str:
|
146 |
+
return self._src_lang
|
147 |
+
|
148 |
+
@src_lang.setter
|
149 |
+
def src_lang(self, new_src_lang: str) -> None:
|
150 |
+
self._src_lang = new_src_lang
|
151 |
+
self.set_src_lang_special_tokens(self._src_lang)
|
152 |
+
|
153 |
+
def build_inputs_with_special_tokens(
|
154 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
155 |
+
) -> List[int]:
|
156 |
+
"""
|
157 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
158 |
+
adding special tokens. The special tokens depend on calling set_lang.
|
159 |
+
|
160 |
+
An MBART-50 sequence has the following format, where `X` represents the sequence:
|
161 |
+
|
162 |
+
- `input_ids` (for encoder) `[src_lang_code] X [eos]`
|
163 |
+
- `labels`: (for decoder) `[tgt_lang_code] X [eos]`
|
164 |
+
|
165 |
+
BOS is never used. Pairs of sequences are not the expected use case, but they will be handled without a
|
166 |
+
separator.
|
167 |
+
|
168 |
+
Args:
|
169 |
+
token_ids_0 (`List[int]`):
|
170 |
+
List of IDs to which the special tokens will be added.
|
171 |
+
token_ids_1 (`List[int]`, *optional*):
|
172 |
+
Optional second list of IDs for sequence pairs.
|
173 |
+
|
174 |
+
Returns:
|
175 |
+
`List[int]`: list of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
176 |
+
"""
|
177 |
+
if token_ids_1 is None:
|
178 |
+
return self.prefix_tokens + token_ids_0 + self.suffix_tokens
|
179 |
+
# We don't expect to process pairs, but leave the pair logic for API consistency
|
180 |
+
return self.prefix_tokens + token_ids_0 + token_ids_1 + self.suffix_tokens
|
181 |
+
|
182 |
+
def prepare_seq2seq_batch(
|
183 |
+
self,
|
184 |
+
src_texts: List[str],
|
185 |
+
src_lang: str = "en_XX",
|
186 |
+
tgt_texts: Optional[List[str]] = None,
|
187 |
+
tgt_lang: str = "ro_RO",
|
188 |
+
**kwargs,
|
189 |
+
) -> BatchEncoding:
|
190 |
+
self.src_lang = src_lang
|
191 |
+
self.tgt_lang = tgt_lang
|
192 |
+
return super().prepare_seq2seq_batch(src_texts, tgt_texts, **kwargs)
|
193 |
+
|
194 |
+
def _switch_to_input_mode(self):
|
195 |
+
return self.set_src_lang_special_tokens(self.src_lang)
|
196 |
+
|
197 |
+
def _switch_to_target_mode(self):
|
198 |
+
return self.set_tgt_lang_special_tokens(self.tgt_lang)
|
199 |
+
|
200 |
+
def set_src_lang_special_tokens(self, src_lang: str) -> None:
|
201 |
+
"""Reset the special tokens to the source lang setting. prefix=[src_lang_code] and suffix=[eos]."""
|
202 |
+
self.cur_lang_code_id = self.convert_tokens_to_ids(src_lang)
|
203 |
+
self.prefix_tokens = [self.cur_lang_code_id]
|
204 |
+
self.suffix_tokens = [self.eos_token_id]
|
205 |
+
|
206 |
+
prefix_tokens_str = self.convert_ids_to_tokens(self.prefix_tokens)
|
207 |
+
suffix_tokens_str = self.convert_ids_to_tokens(self.suffix_tokens)
|
208 |
+
|
209 |
+
self._tokenizer.post_processor = processors.TemplateProcessing(
|
210 |
+
single=prefix_tokens_str + ["$A"] + suffix_tokens_str,
|
211 |
+
pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str,
|
212 |
+
special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str, self.prefix_tokens + self.suffix_tokens)),
|
213 |
+
)
|
214 |
+
|
215 |
+
def set_tgt_lang_special_tokens(self, tgt_lang: str) -> None:
|
216 |
+
"""Reset the special tokens to the target language setting. prefix=[src_lang_code] and suffix=[eos]."""
|
217 |
+
self.cur_lang_code_id = self.convert_tokens_to_ids(tgt_lang)
|
218 |
+
self.prefix_tokens = [self.cur_lang_code_id]
|
219 |
+
self.suffix_tokens = [self.eos_token_id]
|
220 |
+
|
221 |
+
prefix_tokens_str = self.convert_ids_to_tokens(self.prefix_tokens)
|
222 |
+
suffix_tokens_str = self.convert_ids_to_tokens(self.suffix_tokens)
|
223 |
+
|
224 |
+
self._tokenizer.post_processor = processors.TemplateProcessing(
|
225 |
+
single=prefix_tokens_str + ["$A"] + suffix_tokens_str,
|
226 |
+
pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str,
|
227 |
+
special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str, self.prefix_tokens + self.suffix_tokens)),
|
228 |
+
)
|
229 |
+
|
230 |
+
def _build_translation_inputs(
|
231 |
+
self, raw_inputs, return_tensors: str, src_lang: Optional[str], tgt_lang: Optional[str], **extra_kwargs
|
232 |
+
):
|
233 |
+
"""Used by translation pipeline, to prepare inputs for the generate function"""
|
234 |
+
if src_lang is None or tgt_lang is None:
|
235 |
+
raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model")
|
236 |
+
self.src_lang = src_lang
|
237 |
+
inputs = self(raw_inputs, add_special_tokens=True, return_tensors=return_tensors, **extra_kwargs)
|
238 |
+
tgt_lang_id = self.convert_tokens_to_ids(tgt_lang)
|
239 |
+
inputs["forced_bos_token_id"] = tgt_lang_id
|
240 |
+
return inputs
|
241 |
+
|
242 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
243 |
+
if not self.can_save_slow_tokenizer:
|
244 |
+
raise ValueError(
|
245 |
+
"Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
|
246 |
+
"tokenizer."
|
247 |
+
)
|
248 |
+
|
249 |
+
if not os.path.isdir(save_directory):
|
250 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
251 |
+
return
|
252 |
+
out_vocab_file = os.path.join(
|
253 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
254 |
+
)
|
255 |
+
|
256 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
|
257 |
+
copyfile(self.vocab_file, out_vocab_file)
|
258 |
+
|
259 |
+
return (out_vocab_file,)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/poolformer/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.28 kB). View file
|
|