applied-ai-018 commited on
Commit
a3ddd89
·
verified ·
1 Parent(s): 477f358

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. env-llmeval/lib/python3.10/site-packages/evaluate-0.4.1.dist-info/RECORD +64 -0
  2. env-llmeval/lib/python3.10/site-packages/evaluate-0.4.1.dist-info/WHEEL +5 -0
  3. env-llmeval/lib/python3.10/site-packages/evaluate-0.4.1.dist-info/top_level.txt +1 -0
  4. env-llmeval/lib/python3.10/site-packages/frozenlist/__init__.py +95 -0
  5. env-llmeval/lib/python3.10/site-packages/frozenlist/__init__.pyi +47 -0
  6. env-llmeval/lib/python3.10/site-packages/frozenlist/__pycache__/__init__.cpython-310.pyc +0 -0
  7. env-llmeval/lib/python3.10/site-packages/frozenlist/_frozenlist.cpython-310-x86_64-linux-gnu.so +0 -0
  8. env-llmeval/lib/python3.10/site-packages/frozenlist/_frozenlist.pyx +123 -0
  9. env-llmeval/lib/python3.10/site-packages/frozenlist/py.typed +1 -0
  10. env-llmeval/lib/python3.10/site-packages/python_dateutil-2.9.0.post0.dist-info/INSTALLER +1 -0
  11. env-llmeval/lib/python3.10/site-packages/torch/_C/_VariableFunctions.pyi +0 -0
  12. env-llmeval/lib/python3.10/site-packages/torch/_C/_autograd.pyi +123 -0
  13. env-llmeval/lib/python3.10/site-packages/torch/_C/_cpu.pyi +5 -0
  14. env-llmeval/lib/python3.10/site-packages/torch/_C/_distributed_autograd.pyi +26 -0
  15. env-llmeval/lib/python3.10/site-packages/torch/_C/_distributed_c10d.pyi +478 -0
  16. env-llmeval/lib/python3.10/site-packages/torch/_C/_distributed_rpc_testing.pyi +35 -0
  17. env-llmeval/lib/python3.10/site-packages/torch/_C/_functorch.pyi +71 -0
  18. env-llmeval/lib/python3.10/site-packages/torch/_C/_itt.pyi +5 -0
  19. env-llmeval/lib/python3.10/site-packages/torch/_C/_lazy.pyi +28 -0
  20. env-llmeval/lib/python3.10/site-packages/torch/_C/_lazy_ts_backend.pyi +11 -0
  21. env-llmeval/lib/python3.10/site-packages/torch/_C/_monitor.pyi +44 -0
  22. env-llmeval/lib/python3.10/site-packages/torch/_C/_profiler.pyi +238 -0
  23. env-llmeval/lib/python3.10/site-packages/torch/_refs/__init__.py +0 -0
  24. env-llmeval/lib/python3.10/site-packages/torch/_refs/__pycache__/__init__.cpython-310.pyc +0 -0
  25. env-llmeval/lib/python3.10/site-packages/torch/_refs/__pycache__/_conversions.cpython-310.pyc +0 -0
  26. env-llmeval/lib/python3.10/site-packages/torch/_refs/__pycache__/fft.cpython-310.pyc +0 -0
  27. env-llmeval/lib/python3.10/site-packages/torch/_refs/_conversions.py +118 -0
  28. env-llmeval/lib/python3.10/site-packages/torch/_refs/fft.py +590 -0
  29. env-llmeval/lib/python3.10/site-packages/torch/_refs/linalg/__init__.py +276 -0
  30. env-llmeval/lib/python3.10/site-packages/torch/_refs/linalg/__pycache__/__init__.cpython-310.pyc +0 -0
  31. env-llmeval/lib/python3.10/site-packages/torch/_refs/nn/__init__.py +3 -0
  32. env-llmeval/lib/python3.10/site-packages/torch/_refs/nn/__pycache__/__init__.cpython-310.pyc +0 -0
  33. env-llmeval/lib/python3.10/site-packages/torch/_refs/nn/functional/__init__.py +1174 -0
  34. env-llmeval/lib/python3.10/site-packages/torch/_refs/nn/functional/__pycache__/__init__.cpython-310.pyc +0 -0
  35. env-llmeval/lib/python3.10/site-packages/torch/_refs/special/__init__.py +236 -0
  36. env-llmeval/lib/python3.10/site-packages/torch/_refs/special/__pycache__/__init__.cpython-310.pyc +0 -0
  37. env-llmeval/lib/python3.10/site-packages/torch/_subclasses/__pycache__/__init__.cpython-310.pyc +0 -0
  38. env-llmeval/lib/python3.10/site-packages/torch/_subclasses/__pycache__/fake_tensor.cpython-310.pyc +0 -0
  39. env-llmeval/lib/python3.10/site-packages/torch/_subclasses/__pycache__/fake_utils.cpython-310.pyc +0 -0
  40. env-llmeval/lib/python3.10/site-packages/torch/_subclasses/__pycache__/functional_tensor.cpython-310.pyc +0 -0
  41. env-llmeval/lib/python3.10/site-packages/torch/_subclasses/__pycache__/meta_utils.cpython-310.pyc +0 -0
  42. env-llmeval/lib/python3.10/site-packages/torch/_subclasses/__pycache__/schema_check_mode.cpython-310.pyc +0 -0
  43. env-llmeval/lib/python3.10/site-packages/torch/_subclasses/fake_utils.py +188 -0
  44. env-llmeval/lib/python3.10/site-packages/torch/_subclasses/functional_tensor.py +552 -0
  45. env-llmeval/lib/python3.10/site-packages/torch/_subclasses/meta_utils.py +730 -0
  46. env-llmeval/lib/python3.10/site-packages/torch/_subclasses/schema_check_mode.py +196 -0
  47. env-llmeval/lib/python3.10/site-packages/torch/backends/__pycache__/__init__.cpython-310.pyc +0 -0
  48. env-llmeval/lib/python3.10/site-packages/torch/backends/_coreml/__init__.py +0 -0
  49. env-llmeval/lib/python3.10/site-packages/torch/backends/_coreml/__pycache__/__init__.cpython-310.pyc +0 -0
  50. env-llmeval/lib/python3.10/site-packages/torch/backends/_coreml/__pycache__/preprocess.cpython-310.pyc +0 -0
env-llmeval/lib/python3.10/site-packages/evaluate-0.4.1.dist-info/RECORD ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ../../../bin/evaluate-cli,sha256=ebVljaZgWxr1sBQVsnDdhaYD2rXNcaw-u7JiBl8yibA,255
2
+ evaluate-0.4.1.dist-info/INSTALLER,sha256=zuuue4knoyJ-UwPPXg8fezS7VCrXJQrAP7zeNuwvFQg,4
3
+ evaluate-0.4.1.dist-info/LICENSE,sha256=z8d0m5b2O9McPEK1xHG_dWgUBT6EfBDz6wA0F7xSPTA,11358
4
+ evaluate-0.4.1.dist-info/METADATA,sha256=gyoxlsBnA-d8Kb9Bj8RKeRRdIp8gH4ILqfUeBdj4va8,9412
5
+ evaluate-0.4.1.dist-info/RECORD,,
6
+ evaluate-0.4.1.dist-info/WHEEL,sha256=yQN5g4mg4AybRjkgi-9yy4iQEFibGQmlz78Pik5Or-A,92
7
+ evaluate-0.4.1.dist-info/entry_points.txt,sha256=m2P3heof0lsg47nq6tYW_yUtxTfimd3RuD26Yk8KMkM,70
8
+ evaluate-0.4.1.dist-info/top_level.txt,sha256=wBEoxird-u8p4OKDwq5z9rlfH-ybeez8rjaKNLNJ3B0,9
9
+ evaluate/__init__.py,sha256=UNd1S0HL23X2WHwt00PRuBJG3ESebsSvJQTYqunzZYk,1754
10
+ evaluate/__pycache__/__init__.cpython-310.pyc,,
11
+ evaluate/__pycache__/config.cpython-310.pyc,,
12
+ evaluate/__pycache__/hub.cpython-310.pyc,,
13
+ evaluate/__pycache__/info.cpython-310.pyc,,
14
+ evaluate/__pycache__/inspect.cpython-310.pyc,,
15
+ evaluate/__pycache__/loading.cpython-310.pyc,,
16
+ evaluate/__pycache__/module.cpython-310.pyc,,
17
+ evaluate/__pycache__/naming.cpython-310.pyc,,
18
+ evaluate/__pycache__/saving.cpython-310.pyc,,
19
+ evaluate/__pycache__/visualization.cpython-310.pyc,,
20
+ evaluate/commands/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
21
+ evaluate/commands/__pycache__/__init__.cpython-310.pyc,,
22
+ evaluate/commands/__pycache__/evaluate_cli.cpython-310.pyc,,
23
+ evaluate/commands/evaluate_cli.py,sha256=w7GWb48JPjoC0BX7Jn12qtxQUBYOlZNhdg4YegA93Fw,4491
24
+ evaluate/config.py,sha256=g4g-S6hVAw0Ys9As7gKaFP66pZeh8hoJJ5GEXaLSWV8,6648
25
+ evaluate/evaluation_suite/__init__.py,sha256=TjcFihBDf_ZQAoIjSXPEC0iFBeEC_LFqCfXKbrkyhWs,4941
26
+ evaluate/evaluation_suite/__pycache__/__init__.cpython-310.pyc,,
27
+ evaluate/evaluator/__init__.py,sha256=JoWqRP-qCgNzDre6nO8zpJ2Iyp0eUkN7eDKPOPUXz2g,5788
28
+ evaluate/evaluator/__pycache__/__init__.cpython-310.pyc,,
29
+ evaluate/evaluator/__pycache__/audio_classification.cpython-310.pyc,,
30
+ evaluate/evaluator/__pycache__/automatic_speech_recognition.cpython-310.pyc,,
31
+ evaluate/evaluator/__pycache__/base.cpython-310.pyc,,
32
+ evaluate/evaluator/__pycache__/image_classification.cpython-310.pyc,,
33
+ evaluate/evaluator/__pycache__/question_answering.cpython-310.pyc,,
34
+ evaluate/evaluator/__pycache__/text2text_generation.cpython-310.pyc,,
35
+ evaluate/evaluator/__pycache__/text_classification.cpython-310.pyc,,
36
+ evaluate/evaluator/__pycache__/text_generation.cpython-310.pyc,,
37
+ evaluate/evaluator/__pycache__/token_classification.cpython-310.pyc,,
38
+ evaluate/evaluator/__pycache__/utils.cpython-310.pyc,,
39
+ evaluate/evaluator/audio_classification.py,sha256=v5myOnm0PN8BWVnm4nWCzcyklaLtdnbOS3EJ09TPFhg,5804
40
+ evaluate/evaluator/automatic_speech_recognition.py,sha256=jOveYJXsH-t5SzGe7FzXhnHeDKFhqWZUtK3S1l9XYus,4392
41
+ evaluate/evaluator/base.py,sha256=TkkPa6jJWQfNgIK_FVEF24VUfuBn5aZ7Wo1hAfvJEhA,22881
42
+ evaluate/evaluator/image_classification.py,sha256=RJ7NUS91hjZkr5JqhqtYsr5dxBkChA3Qim6An8fHT50,4751
43
+ evaluate/evaluator/question_answering.py,sha256=ArF5BKfE9J9uC-q1GQwbvkAHw1ThgA997ERKmPS-Z4g,9566
44
+ evaluate/evaluator/text2text_generation.py,sha256=M2itKYfIz9z_9J-Y7sXyx4HKMhQbdYwbv8oThSw8Yzw,9676
45
+ evaluate/evaluator/text_classification.py,sha256=g1MUwa3TCUCUBGvZDmdeJ_l8BAOgbn0Q0y4TDvep8Uk,6676
46
+ evaluate/evaluator/text_generation.py,sha256=4ZnHweTUpvNZhaprewTPms__00I8Tnje586ZDCG_ZlU,2679
47
+ evaluate/evaluator/token_classification.py,sha256=XMzteW1coN2e3KWmpWj-OGafj22pzMa7UiHylooirHk,11546
48
+ evaluate/evaluator/utils.py,sha256=HDKdLWLHtfpP-Hhe9cf1TFVIRsmfNgLHifDcGYujKZs,2451
49
+ evaluate/hub.py,sha256=ZX6VYZU0EkjTWmABuJ6Zg6oHXIT2dHkHy0u8RgyL9UQ,4550
50
+ evaluate/info.py,sha256=l5gXfqHhj77-XvFhz57Mns-Ev-lNJsLxsyYPHPvSzj0,5490
51
+ evaluate/inspect.py,sha256=vVSCLr7HWLxIpXzwpDPuiE5XwiP5QQ82oGkdok7aO7o,4969
52
+ evaluate/loading.py,sha256=IdxAMbbjyAID8NFLDuOjU0WK5Vw_Ep4HoziYeu1ySMI,35228
53
+ evaluate/module.py,sha256=Va2FrSJnTXr6P5bspjp3SXgnvdvPm6yEcAasaTX9LJU,46290
54
+ evaluate/naming.py,sha256=Lpw8JmoJfiWs4xDUMEDzcIKO9Nw9RS2lzjeuUP-9acA,2827
55
+ evaluate/saving.py,sha256=UoixNIHmWEceJREvGZlJNViVjRkgNf3MRflwnnhnNUA,2159
56
+ evaluate/utils/__init__.py,sha256=kdFi2pVFSXm_y4EvvuQNnlPUkOPmGLNtc9YTfxAmdsI,1201
57
+ evaluate/utils/__pycache__/__init__.cpython-310.pyc,,
58
+ evaluate/utils/__pycache__/file_utils.cpython-310.pyc,,
59
+ evaluate/utils/__pycache__/gradio.cpython-310.pyc,,
60
+ evaluate/utils/__pycache__/logging.cpython-310.pyc,,
61
+ evaluate/utils/file_utils.py,sha256=uGkXJYWQBKNALhdxktpQ_844jCjKLFQg6l_3KKK2zGI,22602
62
+ evaluate/utils/gradio.py,sha256=UXGRxiPsJ41Xm5gGF7Jf_1vTOPopE_wDoBIyBS0S8d4,4434
63
+ evaluate/utils/logging.py,sha256=nRy963i3_-H0Qcer6ETgnTFiJoQhojSiapeXQ9-eUyk,6698
64
+ evaluate/visualization.py,sha256=m-mD6vxOIQ-_KXTues2tB4r7c4jdygBybHJeidP-jgw,9293
env-llmeval/lib/python3.10/site-packages/evaluate-0.4.1.dist-info/WHEEL ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ Wheel-Version: 1.0
2
+ Generator: bdist_wheel (0.41.2)
3
+ Root-Is-Purelib: true
4
+ Tag: py3-none-any
5
+
env-llmeval/lib/python3.10/site-packages/evaluate-0.4.1.dist-info/top_level.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ evaluate
env-llmeval/lib/python3.10/site-packages/frozenlist/__init__.py ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import sys
3
+ import types
4
+ from collections.abc import MutableSequence
5
+ from functools import total_ordering
6
+ from typing import Type
7
+
8
+ __version__ = "1.4.1"
9
+
10
+ __all__ = ("FrozenList", "PyFrozenList") # type: Tuple[str, ...]
11
+
12
+
13
+ NO_EXTENSIONS = bool(os.environ.get("FROZENLIST_NO_EXTENSIONS")) # type: bool
14
+
15
+
16
+ @total_ordering
17
+ class FrozenList(MutableSequence):
18
+ __slots__ = ("_frozen", "_items")
19
+
20
+ if sys.version_info >= (3, 9):
21
+ __class_getitem__ = classmethod(types.GenericAlias)
22
+ else:
23
+
24
+ @classmethod
25
+ def __class_getitem__(cls: Type["FrozenList"]) -> Type["FrozenList"]:
26
+ return cls
27
+
28
+ def __init__(self, items=None):
29
+ self._frozen = False
30
+ if items is not None:
31
+ items = list(items)
32
+ else:
33
+ items = []
34
+ self._items = items
35
+
36
+ @property
37
+ def frozen(self):
38
+ return self._frozen
39
+
40
+ def freeze(self):
41
+ self._frozen = True
42
+
43
+ def __getitem__(self, index):
44
+ return self._items[index]
45
+
46
+ def __setitem__(self, index, value):
47
+ if self._frozen:
48
+ raise RuntimeError("Cannot modify frozen list.")
49
+ self._items[index] = value
50
+
51
+ def __delitem__(self, index):
52
+ if self._frozen:
53
+ raise RuntimeError("Cannot modify frozen list.")
54
+ del self._items[index]
55
+
56
+ def __len__(self):
57
+ return self._items.__len__()
58
+
59
+ def __iter__(self):
60
+ return self._items.__iter__()
61
+
62
+ def __reversed__(self):
63
+ return self._items.__reversed__()
64
+
65
+ def __eq__(self, other):
66
+ return list(self) == other
67
+
68
+ def __le__(self, other):
69
+ return list(self) <= other
70
+
71
+ def insert(self, pos, item):
72
+ if self._frozen:
73
+ raise RuntimeError("Cannot modify frozen list.")
74
+ self._items.insert(pos, item)
75
+
76
+ def __repr__(self):
77
+ return f"<FrozenList(frozen={self._frozen}, {self._items!r})>"
78
+
79
+ def __hash__(self):
80
+ if self._frozen:
81
+ return hash(tuple(self))
82
+ else:
83
+ raise RuntimeError("Cannot hash unfrozen list.")
84
+
85
+
86
+ PyFrozenList = FrozenList
87
+
88
+
89
+ if not NO_EXTENSIONS:
90
+ try:
91
+ from ._frozenlist import FrozenList as CFrozenList # type: ignore
92
+ except ImportError: # pragma: no cover
93
+ pass
94
+ else:
95
+ FrozenList = CFrozenList # type: ignore
env-llmeval/lib/python3.10/site-packages/frozenlist/__init__.pyi ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import (
2
+ Generic,
3
+ Iterable,
4
+ Iterator,
5
+ List,
6
+ MutableSequence,
7
+ Optional,
8
+ TypeVar,
9
+ Union,
10
+ overload,
11
+ )
12
+
13
+ _T = TypeVar("_T")
14
+ _Arg = Union[List[_T], Iterable[_T]]
15
+
16
+ class FrozenList(MutableSequence[_T], Generic[_T]):
17
+ def __init__(self, items: Optional[_Arg[_T]] = None) -> None: ...
18
+ @property
19
+ def frozen(self) -> bool: ...
20
+ def freeze(self) -> None: ...
21
+ @overload
22
+ def __getitem__(self, i: int) -> _T: ...
23
+ @overload
24
+ def __getitem__(self, s: slice) -> FrozenList[_T]: ...
25
+ @overload
26
+ def __setitem__(self, i: int, o: _T) -> None: ...
27
+ @overload
28
+ def __setitem__(self, s: slice, o: Iterable[_T]) -> None: ...
29
+ @overload
30
+ def __delitem__(self, i: int) -> None: ...
31
+ @overload
32
+ def __delitem__(self, i: slice) -> None: ...
33
+ def __len__(self) -> int: ...
34
+ def __iter__(self) -> Iterator[_T]: ...
35
+ def __reversed__(self) -> Iterator[_T]: ...
36
+ def __eq__(self, other: object) -> bool: ...
37
+ def __le__(self, other: FrozenList[_T]) -> bool: ...
38
+ def __ne__(self, other: object) -> bool: ...
39
+ def __lt__(self, other: FrozenList[_T]) -> bool: ...
40
+ def __ge__(self, other: FrozenList[_T]) -> bool: ...
41
+ def __gt__(self, other: FrozenList[_T]) -> bool: ...
42
+ def insert(self, pos: int, item: _T) -> None: ...
43
+ def __repr__(self) -> str: ...
44
+ def __hash__(self) -> int: ...
45
+
46
+ # types for C accelerators are the same
47
+ CFrozenList = PyFrozenList = FrozenList
env-llmeval/lib/python3.10/site-packages/frozenlist/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (3.24 kB). View file
 
env-llmeval/lib/python3.10/site-packages/frozenlist/_frozenlist.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (766 kB). View file
 
env-llmeval/lib/python3.10/site-packages/frozenlist/_frozenlist.pyx ADDED
@@ -0,0 +1,123 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import sys
2
+ import types
3
+ from collections.abc import MutableSequence
4
+
5
+
6
+ cdef class FrozenList:
7
+
8
+ if sys.version_info >= (3, 9):
9
+ __class_getitem__ = classmethod(types.GenericAlias)
10
+ else:
11
+ @classmethod
12
+ def __class_getitem__(cls):
13
+ return cls
14
+
15
+ cdef readonly bint frozen
16
+ cdef list _items
17
+
18
+ def __init__(self, items=None):
19
+ self.frozen = False
20
+ if items is not None:
21
+ items = list(items)
22
+ else:
23
+ items = []
24
+ self._items = items
25
+
26
+ cdef object _check_frozen(self):
27
+ if self.frozen:
28
+ raise RuntimeError("Cannot modify frozen list.")
29
+
30
+ cdef inline object _fast_len(self):
31
+ return len(self._items)
32
+
33
+ def freeze(self):
34
+ self.frozen = True
35
+
36
+ def __getitem__(self, index):
37
+ return self._items[index]
38
+
39
+ def __setitem__(self, index, value):
40
+ self._check_frozen()
41
+ self._items[index] = value
42
+
43
+ def __delitem__(self, index):
44
+ self._check_frozen()
45
+ del self._items[index]
46
+
47
+ def __len__(self):
48
+ return self._fast_len()
49
+
50
+ def __iter__(self):
51
+ return self._items.__iter__()
52
+
53
+ def __reversed__(self):
54
+ return self._items.__reversed__()
55
+
56
+ def __richcmp__(self, other, op):
57
+ if op == 0: # <
58
+ return list(self) < other
59
+ if op == 1: # <=
60
+ return list(self) <= other
61
+ if op == 2: # ==
62
+ return list(self) == other
63
+ if op == 3: # !=
64
+ return list(self) != other
65
+ if op == 4: # >
66
+ return list(self) > other
67
+ if op == 5: # =>
68
+ return list(self) >= other
69
+
70
+ def insert(self, pos, item):
71
+ self._check_frozen()
72
+ self._items.insert(pos, item)
73
+
74
+ def __contains__(self, item):
75
+ return item in self._items
76
+
77
+ def __iadd__(self, items):
78
+ self._check_frozen()
79
+ self._items += list(items)
80
+ return self
81
+
82
+ def index(self, item):
83
+ return self._items.index(item)
84
+
85
+ def remove(self, item):
86
+ self._check_frozen()
87
+ self._items.remove(item)
88
+
89
+ def clear(self):
90
+ self._check_frozen()
91
+ self._items.clear()
92
+
93
+ def extend(self, items):
94
+ self._check_frozen()
95
+ self._items += list(items)
96
+
97
+ def reverse(self):
98
+ self._check_frozen()
99
+ self._items.reverse()
100
+
101
+ def pop(self, index=-1):
102
+ self._check_frozen()
103
+ return self._items.pop(index)
104
+
105
+ def append(self, item):
106
+ self._check_frozen()
107
+ return self._items.append(item)
108
+
109
+ def count(self, item):
110
+ return self._items.count(item)
111
+
112
+ def __repr__(self):
113
+ return '<FrozenList(frozen={}, {!r})>'.format(self.frozen,
114
+ self._items)
115
+
116
+ def __hash__(self):
117
+ if self.frozen:
118
+ return hash(tuple(self._items))
119
+ else:
120
+ raise RuntimeError("Cannot hash unfrozen list.")
121
+
122
+
123
+ MutableSequence.register(FrozenList)
env-llmeval/lib/python3.10/site-packages/frozenlist/py.typed ADDED
@@ -0,0 +1 @@
 
 
1
+ Marker
env-llmeval/lib/python3.10/site-packages/python_dateutil-2.9.0.post0.dist-info/INSTALLER ADDED
@@ -0,0 +1 @@
 
 
1
+ pip
env-llmeval/lib/python3.10/site-packages/torch/_C/_VariableFunctions.pyi ADDED
The diff for this file is too large to render. See raw diff
 
env-llmeval/lib/python3.10/site-packages/torch/_C/_autograd.pyi ADDED
@@ -0,0 +1,123 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from enum import Enum
2
+ from typing import Any, Callable, List, Optional, Set
3
+
4
+ import torch
5
+
6
+ from ._profiler import (
7
+ _ProfilerEvent,
8
+ ActiveProfilerType,
9
+ ProfilerActivity,
10
+ ProfilerConfig,
11
+ )
12
+
13
+ # Defined in tools/autograd/init.cpp
14
+
15
+ class DeviceType(Enum):
16
+ CPU = ...
17
+ CUDA = ...
18
+ MKLDNN = ...
19
+ OPENGL = ...
20
+ OPENCL = ...
21
+ IDEEP = ...
22
+ HIP = ...
23
+ FPGA = ...
24
+ ORT = ...
25
+ XLA = ...
26
+ MPS = ...
27
+ HPU = ...
28
+ Meta = ...
29
+ Vulkan = ...
30
+ Metal = ...
31
+ PrivateUse1 = ...
32
+
33
+ class ProfilerEvent:
34
+ def cpu_elapsed_us(self, other: ProfilerEvent) -> float: ...
35
+ def cpu_memory_usage(self) -> int: ...
36
+ def cuda_elapsed_us(self, other: ProfilerEvent) -> float: ...
37
+ def privateuse1_elapsed_us(self, other: ProfilerEvent) -> float: ...
38
+ def cuda_memory_usage(self) -> int: ...
39
+ def device(self) -> int: ...
40
+ def handle(self) -> int: ...
41
+ def has_cuda(self) -> bool: ...
42
+ def is_remote(self) -> bool: ...
43
+ def kind(self) -> int: ...
44
+ def name(self) -> str: ...
45
+ def node_id(self) -> int: ...
46
+ def sequence_nr(self) -> int: ...
47
+ def shapes(self) -> List[List[int]]: ...
48
+ def thread_id(self) -> int: ...
49
+ def flops(self) -> float: ...
50
+ def is_async(self) -> bool: ...
51
+
52
+ class _KinetoEvent:
53
+ def name(self) -> str: ...
54
+ def device_index(self) -> int: ...
55
+ def start_us(self) -> int: ...
56
+ def duration_us(self) -> int: ...
57
+ def is_async(self) -> bool: ...
58
+ def linked_correlation_id(self) -> int: ...
59
+ def shapes(self) -> List[List[int]]: ...
60
+ def dtypes(self) -> List[str]: ...
61
+ def concrete_inputs(self) -> List[Any]: ...
62
+ def device_type(self) -> DeviceType: ...
63
+ def start_thread_id(self) -> int: ...
64
+ def end_thread_id(self) -> int: ...
65
+ def correlation_id(self) -> int: ...
66
+ def fwd_thread_id(self) -> int: ...
67
+ def stack(self) -> List[str]: ...
68
+ def scope(self) -> int: ...
69
+ def sequence_nr(self) -> int: ...
70
+ def flops(self) -> int: ...
71
+ def cuda_elapsed_us(self) -> int: ...
72
+ def privateuse1_elapsed_us(self) -> int: ...
73
+
74
+ class _ProfilerResult:
75
+ def events(self) -> List[_KinetoEvent]: ...
76
+ def legacy_events(self) -> List[List[ProfilerEvent]]: ...
77
+ def save(self, path: str) -> None: ...
78
+ def experimental_event_tree(self) -> List[_ProfilerEvent]: ...
79
+ def trace_start_us(self) -> int: ...
80
+
81
+ class SavedTensor: ...
82
+
83
+ def _enable_profiler(
84
+ config: ProfilerConfig,
85
+ activities: Set[ProfilerActivity],
86
+ ) -> None: ...
87
+ def _prepare_profiler(
88
+ config: ProfilerConfig,
89
+ activities: Set[ProfilerActivity],
90
+ ) -> None: ...
91
+ def _disable_profiler() -> _ProfilerResult: ...
92
+ def _profiler_enabled() -> bool: ...
93
+ def _add_metadata_json(key: str, value: str) -> None: ...
94
+ def _kineto_step() -> None: ...
95
+ def _get_sequence_nr() -> int: ...
96
+ def kineto_available() -> bool: ...
97
+ def _record_function_with_args_enter(name: str, *args) -> torch.Tensor: ...
98
+ def _record_function_with_args_exit(handle: torch.Tensor) -> None: ...
99
+ def _supported_activities() -> Set[ProfilerActivity]: ...
100
+ def _enable_record_function(enable: bool) -> None: ...
101
+ def _set_empty_test_observer(is_global: bool, sampling_prob: float) -> None: ...
102
+ def _push_saved_tensors_default_hooks(
103
+ pack_hook: Callable[[torch.Tensor], Any],
104
+ unpack_hook: Callable[[Any], torch.Tensor],
105
+ ) -> None: ...
106
+ def _pop_saved_tensors_default_hooks() -> None: ...
107
+ def _unsafe_set_version_counter(t: torch.Tensor, prev_version: int) -> None: ...
108
+ def _enable_profiler_legacy(config: ProfilerConfig) -> None: ...
109
+ def _disable_profiler_legacy() -> List[List[ProfilerEvent]]: ...
110
+ def _profiler_type() -> ActiveProfilerType: ...
111
+ def _saved_tensors_hooks_enable() -> None: ...
112
+ def _saved_tensors_hooks_disable(message: str) -> None: ...
113
+ def _saved_tensors_hooks_get_disabled_error_message() -> Optional[str]: ...
114
+
115
+ class CreationMeta(Enum):
116
+ DEFAULT = ...
117
+ IN_CUSTOM_FUNCTION = ...
118
+ MULTI_OUTPUT_NODE = ...
119
+ NO_GRAD_MODE = ...
120
+ INFERENCE_MODE = ...
121
+
122
+ def _set_creation_meta(t: torch.Tensor, creation_meta: CreationMeta) -> None: ...
123
+ def _get_creation_meta(t: torch.Tensor) -> CreationMeta: ...
env-llmeval/lib/python3.10/site-packages/torch/_C/_cpu.pyi ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ from torch.types import _bool
2
+
3
+ # Defined in torch/csrc/cpu/Module.cpp
4
+
5
+ def _is_cpu_support_vnni() -> _bool: ...
env-llmeval/lib/python3.10/site-packages/torch/_C/_distributed_autograd.pyi ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Any, Dict, List, Set
2
+
3
+ import torch
4
+
5
+ # This module is defined in torch/csrc/distributed/autograd/init.cpp
6
+
7
+ class DistAutogradContext:
8
+ def _context_id(self) -> int: ...
9
+ def _recv_functions(self) -> Dict[int, Any]: ...
10
+ def _send_functions(self) -> Dict[int, Any]: ...
11
+ def _known_worker_ids(self) -> Set[int]: ...
12
+
13
+ def _new_context() -> DistAutogradContext: ...
14
+ def _release_context(context_id: int) -> None: ...
15
+ def _get_max_id() -> int: ...
16
+ def _is_valid_context(worker_id: int) -> bool: ...
17
+ def _retrieve_context(context_id: int) -> DistAutogradContext: ...
18
+ def _current_context() -> DistAutogradContext: ...
19
+ def _init(worker_id: int) -> None: ...
20
+ def _get_debug_info() -> Dict[str, str]: ...
21
+ def backward(
22
+ context_id: int,
23
+ roots: List[torch.Tensor],
24
+ retain_graph=False,
25
+ ) -> None: ...
26
+ def get_gradients(context_id: int) -> Dict[torch.Tensor, torch.Tensor]: ...
env-llmeval/lib/python3.10/site-packages/torch/_C/_distributed_c10d.pyi ADDED
@@ -0,0 +1,478 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # mypy: disable-error-code="type-arg"
2
+ from datetime import timedelta
3
+ from enum import Enum
4
+ from typing import Any, Dict, List, Optional, overload, Tuple, Union
5
+
6
+ from torch import Tensor
7
+ from torch._C import ScriptObject
8
+ from torch.futures import Future
9
+
10
+ # This module is defined in torch/csrc/distributed/c10d/init.cpp
11
+
12
+ _DEFAULT_FIRST_BUCKET_BYTES: int
13
+ _DEFAULT_NO_TIMEOUT: timedelta
14
+ _DEFAULT_PG_TIMEOUT: timedelta
15
+ _DEFAULT_PG_NCCL_TIMEOUT: timedelta
16
+
17
+ class BuiltinCommHookType(Enum):
18
+ ALLREDUCE = ...
19
+ FP16_COMPRESS = ...
20
+
21
+ def _register_comm_hook(reducer: Reducer, state: Any, comm_hook: Any): ...
22
+ def _register_builtin_comm_hook(
23
+ reducer: Reducer,
24
+ comm_hook_type: BuiltinCommHookType,
25
+ ): ...
26
+
27
+ class GradBucket:
28
+ def index(self) -> int: ...
29
+ def buffer(self) -> Tensor: ...
30
+ def gradients(self) -> List[Tensor]: ...
31
+ def is_last(self) -> bool: ...
32
+ def set_buffer(self, tensor: Tensor) -> None: ...
33
+ def parameters(self) -> List[Tensor]: ...
34
+
35
+ class Reducer:
36
+ def __init__(
37
+ self,
38
+ params: List[Tensor],
39
+ bucket_indices: List[List[int]],
40
+ per_bucket_size_limits: List[int],
41
+ process_group: ProcessGroup,
42
+ expect_sparse_gradients: List[bool] = ...,
43
+ bucket_bytes_cap: int = ..., # kDefaultBucketBytesCap in reducer.hpp
44
+ find_unused_parameters: bool = ...,
45
+ gradient_as_bucket_view: bool = ...,
46
+ param_to_name_mapping: Dict[int, str] = ...,
47
+ first_bucket_types_cap: int = ..., # kDefaultFirstBucketBytes in reducer.hpp
48
+ ): ...
49
+ def prepare_for_forward(self) -> None: ...
50
+ def prepare_for_backward(self, output: List[Tensor]) -> None: ...
51
+ def get_backward_stats(self) -> List[int]: ...
52
+ def _install_post_backward_futures(self, futures: List[Future]) -> None: ...
53
+ def _rebuild_buckets(self) -> bool: ...
54
+ def _get_zeros_like_grad_buckets(self) -> List[GradBucket]: ...
55
+ def _push_all_rebuilt_params(self) -> None: ...
56
+ def _set_forward_pass_work_handle(
57
+ self,
58
+ work: Work,
59
+ use_static_world_size: bool,
60
+ ): ...
61
+ def _get_local_used_map(self) -> Tensor: ...
62
+ def _set_ddp_runtime_logging_sample_rate(self, sample_rate: int) -> None: ...
63
+ def _set_static_graph(self) -> None: ...
64
+ def _run_comm_hook(self, bucket: GradBucket) -> Future: ...
65
+ def set_logger(self, logger: Logger) -> None: ...
66
+ def _remove_autograd_hooks(self) -> None: ...
67
+ def _check_reducer_finalized(self) -> None: ...
68
+ def _set_sparse_metadata(self, global_unique_ids: Dict[str, Tensor]) -> None: ...
69
+ def _reset_state(self) -> None: ...
70
+ def _update_process_group(self, new_process_group: ProcessGroup) -> None: ...
71
+
72
+ class DDPLoggingData:
73
+ strs_map: Dict[str, str]
74
+ ints_map: Dict[str, int]
75
+
76
+ class Logger:
77
+ def __init__(self, reducer: Reducer): ...
78
+ def set_construction_data_and_log(
79
+ self,
80
+ module_name: str,
81
+ device_ids: List[int],
82
+ output_device: int,
83
+ broadcast_buffers: bool,
84
+ has_sync_bn: bool,
85
+ static_graph: bool,
86
+ ): ...
87
+ def set_runtime_stats_and_log(self) -> None: ...
88
+ def set_error_and_log(self, error: str) -> None: ...
89
+ def _get_ddp_logging_data(self) -> DDPLoggingData: ...
90
+ def _set_comm_hook_name(self, comm_hook: str) -> None: ...
91
+ def _set_uneven_input_join(self) -> None: ...
92
+ def _set_static_graph(self) -> None: ...
93
+
94
+ def get_debug_level(): ...
95
+ def set_debug_level(): ...
96
+ def set_debug_level_from_env(): ...
97
+
98
+ class DebugLevel(Enum):
99
+ OFF = ...
100
+ INFO = ...
101
+ DETAIL = ...
102
+
103
+ class ReduceOp:
104
+ def __init__(self, op: RedOpType): ...
105
+
106
+ SUM: RedOpType = ...
107
+ AVG: RedOpType = ...
108
+ PRODUCT: RedOpType = ...
109
+ MIN: RedOpType = ...
110
+ MAX: RedOpType = ...
111
+ BAND: RedOpType = ...
112
+ BOR: RedOpType = ...
113
+ BXOR: RedOpType = ...
114
+ PREMUL_SUM: RedOpType = ...
115
+ UNUSED: RedOpType = ...
116
+
117
+ class RedOpType(Enum): ...
118
+
119
+ class BroadcastOptions:
120
+ rootRank: int
121
+ rootTensor: int
122
+ timeout: timedelta
123
+ asyncOp: bool
124
+
125
+ class AllreduceOptions:
126
+ reduceOp: ReduceOp
127
+ timeout: timedelta
128
+
129
+ class AllreduceCoalescedOptions(AllreduceOptions): ...
130
+
131
+ class ReduceOptions:
132
+ reduceOp: ReduceOp
133
+ rootRank: int
134
+ rootTensor: int
135
+ timeout: timedelta
136
+
137
+ class AllgatherOptions:
138
+ timeout: timedelta
139
+ asyncOp: bool
140
+
141
+ class GatherOptions:
142
+ rootRank: int
143
+ timeout: timedelta
144
+
145
+ class ScatterOptions:
146
+ rootRank: int
147
+ timeout: timedelta
148
+ asyncOp: bool
149
+
150
+ class ReduceScatterOptions:
151
+ reduceOp: ReduceOp
152
+ timeout: timedelta
153
+ asyncOp: bool
154
+
155
+ class BarrierOptions:
156
+ device_ids: List[int]
157
+ timeout: timedelta
158
+
159
+ class AllToAllOptions:
160
+ timeout: timedelta
161
+
162
+ class Store:
163
+ def set(self, key: str, value: str): ...
164
+ def get(self, key: str) -> bytes: ...
165
+ def add(self, key: str, value: int) -> int: ...
166
+ def compare_set(
167
+ self,
168
+ key: str,
169
+ expected_value: str,
170
+ desired_value: str,
171
+ ) -> bytes: ...
172
+ def delete_key(self, key: str) -> bool: ...
173
+ def num_keys(self) -> int: ...
174
+ def set_timeout(self, timeout: timedelta): ...
175
+ @overload
176
+ def wait(self, keys: List[str]): ...
177
+ @overload
178
+ def wait(self, keys: List[str], timeout: timedelta): ...
179
+
180
+ class FileStore(Store):
181
+ def __init__(self, path: str, numWorkers: int = ...): ...
182
+
183
+ class HashStore(Store):
184
+ def __init__(self): ...
185
+
186
+ class TCPStore(Store):
187
+ def __init__(
188
+ self,
189
+ host_name: str,
190
+ port: int,
191
+ world_size: Optional[int] = ...,
192
+ is_master: bool = ...,
193
+ timeout: timedelta = ...,
194
+ wait_for_workers: bool = ...,
195
+ multi_tenant: bool = ...,
196
+ master_listen_fd: Optional[int] = ...,
197
+ use_libuv: Optional[bool] = ...,
198
+ ): ...
199
+ @property
200
+ def host(self) -> str: ...
201
+ @property
202
+ def port(self) -> int: ...
203
+
204
+ class PrefixStore(Store):
205
+ def __init__(self, prefix: str, store: Store): ...
206
+ @property
207
+ def underlying_store(self) -> Store: ...
208
+
209
+ class Work:
210
+ def is_completed(self) -> bool: ...
211
+ def is_success(self) -> bool: ...
212
+ def exception(self) -> Any: ...
213
+ def wait(self, timeout: timedelta = ...) -> bool: ...
214
+ def source_rank(self) -> int: ...
215
+ def _source_rank(self) -> int: ...
216
+ def result(self) -> List[Tensor]: ...
217
+ def synchronize(self): ...
218
+ def boxed(self) -> ScriptObject: ...
219
+ @staticmethod
220
+ def unbox(obj: ScriptObject) -> Work: ...
221
+
222
+ class ProcessGroup:
223
+ class Options: ...
224
+
225
+ def __init__(self): ...
226
+ def rank(self) -> int: ...
227
+ def size(self) -> int: ...
228
+ @overload
229
+ def broadcast(
230
+ self,
231
+ tensors: List[Tensor],
232
+ opts=...,
233
+ ) -> Work: ...
234
+ @overload
235
+ def broadcast(
236
+ self,
237
+ tensor: Tensor,
238
+ root: int,
239
+ ) -> Work: ...
240
+ @overload
241
+ def allreduce(
242
+ self,
243
+ tensors: List[Tensor],
244
+ opts: AllreduceOptions = ...,
245
+ ) -> Work: ...
246
+ @overload
247
+ def allreduce(
248
+ self,
249
+ tensors: List[Tensor],
250
+ op=...,
251
+ ) -> Work: ...
252
+ @overload
253
+ def allreduce(
254
+ self,
255
+ tensor: Tensor,
256
+ op=...,
257
+ ) -> Work: ...
258
+ def allreduce_coalesced(
259
+ self,
260
+ tensors: List[Tensor],
261
+ opts=...,
262
+ ) -> Work: ...
263
+ @overload
264
+ def reduce(
265
+ self,
266
+ tensors: List[Tensor],
267
+ opts=...,
268
+ ) -> Work: ...
269
+ @overload
270
+ def reduce(
271
+ self,
272
+ tensor: Tensor,
273
+ root: int,
274
+ op=...,
275
+ ) -> Work: ...
276
+ @overload
277
+ def allgather(
278
+ self,
279
+ output_tensors: List[List[Tensor]],
280
+ input_tensors: List[Tensor],
281
+ opts=...,
282
+ ) -> Work: ...
283
+ @overload
284
+ def allgather(
285
+ self,
286
+ output_tensors: List[Tensor],
287
+ input_tensor: Tensor,
288
+ ) -> Work: ...
289
+ def _allgather_base(
290
+ self,
291
+ output: Tensor,
292
+ input: Tensor,
293
+ opts=...,
294
+ ) -> Work: ...
295
+ def allgather_coalesced(
296
+ self,
297
+ output_lists: List[List[Tensor]],
298
+ input_list: List[Tensor],
299
+ opts=...,
300
+ ) -> Work: ...
301
+ @overload
302
+ def gather(
303
+ self,
304
+ output_tensors: List[List[Tensor]],
305
+ input_tensors: List[Tensor],
306
+ opts=...,
307
+ ) -> Work: ...
308
+ @overload
309
+ def gather(
310
+ self,
311
+ output_tensors: List[Tensor],
312
+ input_tensor: Tensor,
313
+ root: int,
314
+ ) -> Work: ...
315
+ @overload
316
+ def scatter(
317
+ self,
318
+ output_tensors: List[Tensor],
319
+ input_tensors: List[List[Tensor]],
320
+ opts=...,
321
+ ) -> Work: ...
322
+ @overload
323
+ def scatter(
324
+ self,
325
+ output_tensor: Tensor,
326
+ input_tensors: List[Tensor],
327
+ root: int,
328
+ ) -> Work: ...
329
+ @overload
330
+ def reduce_scatter(
331
+ self,
332
+ output_tensors: List[Tensor],
333
+ input_tensors: List[List[Tensor]],
334
+ opts=...,
335
+ ) -> Work: ...
336
+ @overload
337
+ def reduce_scatter(
338
+ self,
339
+ output_tensors: Tensor,
340
+ input_tensor: List[Tensor],
341
+ ) -> Work: ...
342
+ def _reduce_scatter_base(
343
+ self,
344
+ outputTensor: Tensor,
345
+ inputTensor: Tensor,
346
+ ) -> Work: ...
347
+ @overload
348
+ def alltoall_base(
349
+ self,
350
+ output_tensor: Tensor,
351
+ input_tensor: Tensor,
352
+ output_split_sizes: List[int],
353
+ input_split_sizes: List[int],
354
+ opts=...,
355
+ ) -> Work: ...
356
+ @overload
357
+ def alltoall_base(
358
+ self,
359
+ output: Tensor,
360
+ input: Tensor,
361
+ output_split_sizes: List[int],
362
+ input_split_sizes: List[int],
363
+ ) -> Work: ...
364
+ @overload
365
+ def alltoall(
366
+ self,
367
+ output_tensor: List[Tensor],
368
+ input_tensor: List[Tensor],
369
+ opts=...,
370
+ ) -> Work: ...
371
+ @overload
372
+ def alltoall(
373
+ self,
374
+ output: List[Tensor],
375
+ input: List[Tensor],
376
+ ) -> Work: ...
377
+ def send(
378
+ self,
379
+ tensors: List[Tensor],
380
+ dstRank: int,
381
+ tag: int,
382
+ ) -> Work: ...
383
+ def recv(
384
+ self,
385
+ tensors: List[Tensor],
386
+ srcRank: int,
387
+ tag: int,
388
+ ) -> Work: ...
389
+ def recv_anysource(self, tensors: List[Tensor], tag: int) -> Work: ...
390
+ def barrier(self, opts=...) -> Work: ...
391
+ def boxed(self) -> ScriptObject: ...
392
+ @staticmethod
393
+ def unbox(obj: ScriptObject) -> ProcessGroup: ...
394
+
395
+ class ProcessGroupRoundRobin(ProcessGroup): ...
396
+
397
+ def _round_robin_process_groups(
398
+ process_groups: List[ProcessGroup],
399
+ ) -> ProcessGroupRoundRobin: ...
400
+
401
+ class ProcessGroupGloo(ProcessGroup):
402
+ class Device: ...
403
+ class Options: ...
404
+
405
+ def __init__(
406
+ self,
407
+ store: Store,
408
+ rank: int,
409
+ size: int,
410
+ timeout: timedelta,
411
+ ): ...
412
+ @staticmethod
413
+ def create_device(hostname="", interface="") -> Device: ...
414
+ @staticmethod
415
+ def create_default_device() -> Device: ...
416
+
417
+ class _ProcessGroupWrapper(ProcessGroup):
418
+ def __init__(self, pg: ProcessGroup, gloo_pg: ProcessGroupGloo): ...
419
+ wrapped_pg: ProcessGroup
420
+
421
+ class ProcessGroupNCCL(ProcessGroup):
422
+ class Options: ...
423
+
424
+ def __init__(
425
+ self,
426
+ store: Store,
427
+ rank: int,
428
+ size: int,
429
+ timeout: timedelta,
430
+ ): ...
431
+ def _group_start(self) -> None: ...
432
+ def _group_end(self) -> None: ...
433
+
434
+ class ProcessGroupUCC(ProcessGroup):
435
+ def __init__(
436
+ self,
437
+ store: Store,
438
+ rank: int,
439
+ size: int,
440
+ timeout: timedelta,
441
+ ): ...
442
+
443
+ class ProcessGroupMPI(ProcessGroup):
444
+ def __init__(
445
+ self,
446
+ rank: int,
447
+ size: int,
448
+ pgComm: int,
449
+ ): ...
450
+ @staticmethod
451
+ def create(ranks: List[int]) -> ProcessGroupMPI: ...
452
+
453
+ def _compute_bucket_assignment_by_size(
454
+ tensors: List[Tensor],
455
+ bucket_size_limits: List[int],
456
+ expect_sparse_gradient: List[bool] = ...,
457
+ tensor_indices: List[int] = ...,
458
+ ) -> Tuple[List[List[int]], List[int]]: ...
459
+ def _broadcast_coalesced(
460
+ process_group: ProcessGroup,
461
+ tensors: List[Tensor],
462
+ buffer_size: int,
463
+ src: int,
464
+ ): ...
465
+ def _test_python_store(store: Store): ...
466
+ def _verify_params_across_processes(
467
+ process_group: ProcessGroup,
468
+ params: List[Tensor],
469
+ logger: Optional[Logger],
470
+ ): ...
471
+ def _make_nccl_premul_sum(factor: Union[float, List[Tensor]]) -> ReduceOp: ...
472
+
473
+ class Backend:
474
+ def __init__(
475
+ self,
476
+ rank: int,
477
+ size: int,
478
+ ): ...
env-llmeval/lib/python3.10/site-packages/torch/_C/_distributed_rpc_testing.pyi ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Dict, List
2
+
3
+ import torch
4
+
5
+ from ._distributed_c10d import Store
6
+ from ._distributed_rpc import _TensorPipeRpcBackendOptionsBase, TensorPipeAgent
7
+
8
+ # This module is defined in torch/csrc/distributed/rpc/testing/init.cpp
9
+
10
+ class FaultyTensorPipeRpcBackendOptions(_TensorPipeRpcBackendOptionsBase):
11
+ def __init__(
12
+ self,
13
+ num_worker_threads: int,
14
+ rpc_timeout: float,
15
+ init_method: str,
16
+ messages_to_fail: List[str],
17
+ messages_to_delay: Dict[str, float],
18
+ num_fail_sends: int,
19
+ ): ...
20
+ num_send_recv_threads: int
21
+ messages_to_fail: List[str]
22
+ messages_to_delay: Dict[str, float]
23
+ num_fail_sends: int
24
+
25
+ class FaultyTensorPipeAgent(TensorPipeAgent):
26
+ def __init__(
27
+ self,
28
+ store: Store,
29
+ name: str,
30
+ rank: int,
31
+ world_size: int,
32
+ options: FaultyTensorPipeRpcBackendOptions,
33
+ reverse_device_maps: Dict[str, Dict[torch.device, torch.device]],
34
+ devices: List[torch.device],
35
+ ): ...
env-llmeval/lib/python3.10/site-packages/torch/_C/_functorch.pyi ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from enum import Enum
2
+ from typing import Optional, Tuple
3
+
4
+ from torch import Tensor
5
+
6
+ # Defined in torch/csrc/functorch/init.cpp
7
+
8
+ def _set_dynamic_layer_keys_included(included: bool) -> None: ...
9
+ def get_unwrapped(tensor: Tensor) -> Tensor: ...
10
+ def is_batchedtensor(tensor: Tensor) -> bool: ...
11
+ def is_functionaltensor(tensor: Tensor) -> bool: ...
12
+ def is_functorch_wrapped_tensor(tensor: Tensor) -> bool: ...
13
+ def is_gradtrackingtensor(tensor: Tensor) -> bool: ...
14
+ def maybe_get_bdim(tensor: Tensor) -> int: ...
15
+ def maybe_get_level(tensor: Tensor) -> int: ...
16
+ def unwrap_if_dead(tensor: Tensor) -> Tensor: ...
17
+ def _unwrap_for_grad(tensor: Tensor, level: int) -> Tensor: ...
18
+ def _wrap_for_grad(tensor: Tensor, level: int) -> Tensor: ...
19
+ def _unwrap_batched(tensor: Tensor, level: int) -> Tuple[Tensor, Optional[int]]: ...
20
+ def current_level() -> int: ...
21
+ def _add_batch_dim(tensor: Tensor, bdim: int, level: int) -> Tensor: ...
22
+ def set_single_level_autograd_function_allowed(allowed: bool) -> None: ...
23
+ def get_single_level_autograd_function_allowed() -> bool: ...
24
+ def _unwrap_functional_tensor(tensor: Tensor, reapply_views: bool) -> Tensor: ...
25
+ def _wrap_functional_tensor(tensor: Tensor, level: int) -> Tensor: ...
26
+
27
+ # Defined in aten/src/ATen/functorch/Interpreter.h
28
+ class TransformType(Enum):
29
+ Torch: TransformType = ...
30
+ Vmap: TransformType = ...
31
+ Grad: TransformType = ...
32
+ Jvp: TransformType = ...
33
+ Functionalize: TransformType = ...
34
+
35
+ class RandomnessType(Enum):
36
+ Error: TransformType = ...
37
+ Same: TransformType = ...
38
+ Different: TransformType = ...
39
+
40
+ class CInterpreter:
41
+ def key(self) -> TransformType: ...
42
+ def level(self) -> int: ...
43
+
44
+ class CGradInterpreterPtr:
45
+ def __init__(self, interpreter: CInterpreter): ...
46
+ def lift(self, Tensor) -> Tensor: ...
47
+ def prevGradMode(self) -> bool: ...
48
+
49
+ class CJvpInterpreterPtr:
50
+ def __init__(self, interpreter: CInterpreter): ...
51
+ def lift(self, Tensor) -> Tensor: ...
52
+ def prevFwdGradMode(self) -> bool: ...
53
+
54
+ class CFunctionalizeInterpreterPtr:
55
+ def __init__(self, interpreter: CInterpreter): ...
56
+ def key(self) -> TransformType: ...
57
+ def level(self) -> int: ...
58
+ def functionalizeAddBackViews(self) -> bool: ...
59
+
60
+ class CVmapInterpreterPtr:
61
+ def __init__(self, interpreter: CInterpreter): ...
62
+ def key(self) -> TransformType: ...
63
+ def level(self) -> int: ...
64
+ def batchSize(self) -> int: ...
65
+ def randomness(self) -> RandomnessType: ...
66
+
67
+ class DynamicLayer: ...
68
+
69
+ def peek_interpreter_stack() -> CInterpreter: ...
70
+ def pop_dynamic_layer_stack() -> DynamicLayer: ...
71
+ def push_dynamic_layer_stack(dl: DynamicLayer) -> int: ...
env-llmeval/lib/python3.10/site-packages/torch/_C/_itt.pyi ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ # Defined in torch/csrc/itt.cpp
2
+ def is_available() -> None: ...
3
+ def rangePush(message: str) -> None: ...
4
+ def rangePop() -> None: ...
5
+ def mark(message: str) -> None: ...
env-llmeval/lib/python3.10/site-packages/torch/_C/_lazy.pyi ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import List
2
+
3
+ from torch import Tensor
4
+
5
+ # defined in torch/csrc/lazy/python/init.cpp
6
+ def _mark_step(device: str, devices: List[str], wait: bool): ...
7
+ def _wait_device_ops(devices: List[str]): ...
8
+ def _reset_metrics(): ...
9
+ def _counter_names() -> List[str]: ...
10
+ def _counter_value(name: str) -> int: ...
11
+ def _metrics_report() -> str: ...
12
+ def _get_graph_hash(tensors: List[Tensor]) -> str: ...
13
+ def _sync_multi(
14
+ tensors: List[Tensor],
15
+ devices: List[str],
16
+ wait: bool = True,
17
+ sync_ltc_data: bool = True,
18
+ ): ...
19
+ def _get_tensor_id(tensor: Tensor) -> int: ...
20
+ def _get_tensors_text(tensors: List[Tensor]) -> str: ...
21
+ def _get_tensors_dot(tensors: List[Tensor]) -> str: ...
22
+ def _get_tensors_backend(tensors: List[Tensor]) -> str: ...
23
+ def _get_force_fallback() -> str: ...
24
+ def _set_force_fallback(newval: str): ...
25
+ def _clear_ir_cache(): ...
26
+ def _dump_ir_cache(filename: str): ...
27
+ def _set_reuse_ir(val: bool): ...
28
+ def _get_default_device_type(): ...
env-llmeval/lib/python3.10/site-packages/torch/_C/_lazy_ts_backend.pyi ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # defined in torch/csrc/lazy/python/init.cpp
2
+
3
+ from typing import Any, List, Tuple
4
+
5
+ from torch import Tensor
6
+
7
+ def _init(): ...
8
+ def _get_tensors_ts_device_data_node(
9
+ tensors: List[Tensor],
10
+ ) -> Tuple[List[int], List[Any]]: ...
11
+ def _run_cached_graph(hash_str: str, graph_inputs: List[Any]) -> List[Tensor]: ...
env-llmeval/lib/python3.10/site-packages/torch/_C/_monitor.pyi ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Defined in torch/csrc/monitor/python_init.cpp
2
+
3
+ import datetime
4
+ from enum import Enum
5
+ from typing import Callable, Dict, List, Union
6
+
7
+ class Aggregation(Enum):
8
+ VALUE = ...
9
+ MEAN = ...
10
+ COUNT = ...
11
+ SUM = ...
12
+ MAX = ...
13
+ MIN = ...
14
+
15
+ class Stat:
16
+ name: str
17
+ count: int
18
+ def __init__(
19
+ self,
20
+ name: str,
21
+ aggregations: List[Aggregation],
22
+ window_size: int,
23
+ max_samples: int = -1,
24
+ ) -> None: ...
25
+ def add(self, v: float) -> None: ...
26
+ def get(self) -> Dict[Aggregation, float]: ...
27
+
28
+ class Event:
29
+ name: str
30
+ timestamp: datetime.datetime
31
+ data: Dict[str, Union[int, float, bool, str]]
32
+ def __init__(
33
+ self,
34
+ name: str,
35
+ timestamp: datetime.datetime,
36
+ data: Dict[str, Union[int, float, bool, str]],
37
+ ) -> None: ...
38
+
39
+ def log_event(e: Event) -> None: ...
40
+
41
+ class EventHandlerHandle: ...
42
+
43
+ def register_event_handler(handler: Callable[[Event], None]) -> EventHandlerHandle: ...
44
+ def unregister_event_handler(handle: EventHandlerHandle) -> None: ...
env-llmeval/lib/python3.10/site-packages/torch/_C/_profiler.pyi ADDED
@@ -0,0 +1,238 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from enum import Enum
2
+ from typing import Any, Dict, List, Literal, Optional, Tuple, Union
3
+
4
+ from torch._C import device, dtype, layout
5
+ from typing_extensions import TypeAlias
6
+
7
+ # defined in torch/csrc/profiler/python/init.cpp
8
+
9
+ class RecordScope(Enum):
10
+ FUNCTION = ...
11
+ BACKWARD_FUNCTION = ...
12
+ TORCHSCRIPT_FUNCTION = ...
13
+ KERNEL_FUNCTION_DTYPE = ...
14
+ CUSTOM_CLASS = ...
15
+ BUILD_FEATURE = ...
16
+ LITE_INTERPRETER = ...
17
+ USER_SCOPE = ...
18
+ STATIC_RUNTIME_OP = ...
19
+ STATIC_RUNTIME_MODEL = ...
20
+
21
+ class ProfilerState(Enum):
22
+ Disable = ...
23
+ CPU = ...
24
+ CUDA = ...
25
+ NVTX = ...
26
+ ITT = ...
27
+ KINETO = ...
28
+ KINETO_GPU_FALLBACK = ...
29
+ KINETO_PRIVATEUSE1_FALLBACK = ...
30
+ KINETO_PRIVATEUSE1 = ...
31
+
32
+ class ActiveProfilerType(Enum):
33
+ NONE = ...
34
+ LEGACY = ...
35
+ KINETO = ...
36
+ NVTX = ...
37
+ ITT = ...
38
+
39
+ class ProfilerActivity(Enum):
40
+ CPU = ...
41
+ CUDA = ...
42
+ MTIA = ...
43
+ PrivateUse1 = ...
44
+
45
+ class _EventType(Enum):
46
+ TorchOp = ...
47
+ Backend = ...
48
+ Allocation = ...
49
+ OutOfMemory = ...
50
+ PyCall = ...
51
+ PyCCall = ...
52
+ Kineto = ...
53
+
54
+ class _ExperimentalConfig:
55
+ def __init__(
56
+ self,
57
+ profiler_metrics: List[str] = ...,
58
+ profiler_measure_per_kernel: bool = ...,
59
+ verbose: bool = ...,
60
+ performance_events: List[str] = ...,
61
+ enable_cuda_sync_events: bool = ...,
62
+ ) -> None: ...
63
+
64
+ class ProfilerConfig:
65
+ def __init__(
66
+ self,
67
+ state: ProfilerState,
68
+ report_input_shapes: bool,
69
+ profile_memory: bool,
70
+ with_stack: bool,
71
+ with_flops: bool,
72
+ with_modules: bool,
73
+ experimental_config: _ExperimentalConfig,
74
+ ) -> None: ...
75
+
76
+ class _ProfilerEvent:
77
+ start_tid: int
78
+ start_time_ns: int
79
+ children: List[_ProfilerEvent]
80
+
81
+ # TODO(robieta): remove in favor of `self.typed`
82
+ extra_fields: Union[
83
+ _ExtraFields_TorchOp,
84
+ _ExtraFields_Backend,
85
+ _ExtraFields_Allocation,
86
+ _ExtraFields_OutOfMemory,
87
+ _ExtraFields_PyCall,
88
+ _ExtraFields_PyCCall,
89
+ _ExtraFields_Kineto,
90
+ ]
91
+
92
+ @property
93
+ def typed(
94
+ self,
95
+ ) -> Union[
96
+ Tuple[Literal[_EventType.TorchOp], _ExtraFields_TorchOp],
97
+ Tuple[Literal[_EventType.Backend], _ExtraFields_Backend],
98
+ Tuple[Literal[_EventType.Allocation], _ExtraFields_Allocation],
99
+ Tuple[Literal[_EventType.OutOfMemory], _ExtraFields_OutOfMemory],
100
+ Tuple[Literal[_EventType.PyCall], _ExtraFields_PyCall],
101
+ Tuple[Literal[_EventType.PyCCall], _ExtraFields_PyCCall],
102
+ Tuple[Literal[_EventType.Kineto], _ExtraFields_Kineto],
103
+ ]: ...
104
+ @property
105
+ def name(self) -> str: ...
106
+ @property
107
+ def tag(self) -> _EventType: ...
108
+ @property
109
+ def id(self) -> int: ...
110
+ @property
111
+ def parent(self) -> Optional[_ProfilerEvent]: ...
112
+ @property
113
+ def correlation_id(self) -> int: ...
114
+ @property
115
+ def end_time_ns(self) -> int: ...
116
+ @property
117
+ def duration_time_ns(self) -> int: ...
118
+
119
+ class _TensorMetadata:
120
+ impl_ptr: Optional[int]
121
+ storage_data_ptr: Optional[int]
122
+ id: Optional[int]
123
+
124
+ @property
125
+ def allocation_id(self) -> Optional[int]: ...
126
+ @property
127
+ def layout(self) -> layout: ...
128
+ @property
129
+ def device(self) -> device: ...
130
+ @property
131
+ def dtype(self) -> dtype: ...
132
+ @property
133
+ def sizes(self) -> List[int]: ...
134
+ @property
135
+ def strides(self) -> List[int]: ...
136
+
137
+ Scalar: TypeAlias = Union[int, float, bool, complex]
138
+ Input: TypeAlias = Optional[Union[_TensorMetadata, List[_TensorMetadata], Scalar]]
139
+
140
+ class _ExtraFields_TorchOp:
141
+ name: str
142
+ sequence_number: int
143
+ allow_tf32_cublas: bool
144
+
145
+ @property
146
+ def inputs(self) -> List[Input]: ...
147
+ @property
148
+ def scope(self) -> RecordScope: ...
149
+
150
+ class _ExtraFields_Backend: ...
151
+
152
+ class _ExtraFields_Allocation:
153
+ ptr: int
154
+ id: Optional[int]
155
+ alloc_size: int
156
+ total_allocated: int
157
+ total_reserved: int
158
+
159
+ @property
160
+ def allocation_id(self) -> Optional[int]: ...
161
+ @property
162
+ def device(self) -> device: ...
163
+
164
+ class _ExtraFields_OutOfMemory: ...
165
+
166
+ class _PyFrameState:
167
+ line_number: int
168
+ function_name: str
169
+
170
+ @property
171
+ def file_name(self) -> str: ...
172
+
173
+ class _NNModuleInfo:
174
+ @property
175
+ def self_ptr(self) -> int: ...
176
+ @property
177
+ def cls_ptr(self) -> int: ...
178
+ @property
179
+ def cls_name(self) -> str: ...
180
+ @property
181
+ def parameters(
182
+ self,
183
+ ) -> List[Tuple[str, _TensorMetadata, Optional[_TensorMetadata]]]: ...
184
+
185
+ class _OptimizerInfo:
186
+ @property
187
+ def parameters(
188
+ self,
189
+ ) -> List[
190
+ Tuple[
191
+ # Parameter
192
+ _TensorMetadata,
193
+ #
194
+ # Gradient (if present during optimizer.step())
195
+ Optional[_TensorMetadata],
196
+ #
197
+ # Optimizer state for Parameter as (name, tensor) pairs
198
+ List[Tuple[str, _TensorMetadata]],
199
+ ]
200
+ ]: ...
201
+
202
+ class _ExtraFields_PyCCall:
203
+ @property
204
+ def caller(self) -> _PyFrameState: ...
205
+
206
+ class _ExtraFields_PyCall:
207
+ @property
208
+ def callsite(self) -> _PyFrameState: ...
209
+ @property
210
+ def caller(self) -> _PyFrameState: ...
211
+ @property
212
+ def module(self) -> Optional[_NNModuleInfo]: ...
213
+ @property
214
+ def optimizer(self) -> Optional[_OptimizerInfo]: ...
215
+
216
+ class _ExtraFields_Kineto: ...
217
+
218
+ def _add_execution_trace_observer(output_file_path: str) -> bool: ...
219
+ def _remove_execution_trace_observer() -> None: ...
220
+ def _enable_execution_trace_observer() -> None: ...
221
+ def _disable_execution_trace_observer() -> None: ...
222
+ def _set_record_concrete_inputs_enabled_val(val: bool) -> None: ...
223
+ def _set_fwd_bwd_enabled_val(val: bool) -> None: ...
224
+ def _set_cuda_sync_enabled_val(val: bool) -> None: ...
225
+
226
+ class CapturedTraceback: ...
227
+
228
+ def gather_traceback(python: bool, script: bool, cpp: bool) -> CapturedTraceback: ...
229
+
230
+ # The Dict has name, filename, line
231
+ def symbolize_tracebacks(
232
+ to_symbolize: List[CapturedTraceback],
233
+ ) -> List[List[Dict[str, str]]]: ...
234
+
235
+ class _RecordFunctionFast:
236
+ def __init__(self, name: str) -> None: ...
237
+ def __enter__(self) -> None: ...
238
+ def __exit__(self, exc_type: Any, exc_value: Any, traceback: Any) -> None: ...
env-llmeval/lib/python3.10/site-packages/torch/_refs/__init__.py ADDED
The diff for this file is too large to render. See raw diff
 
env-llmeval/lib/python3.10/site-packages/torch/_refs/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (138 kB). View file
 
env-llmeval/lib/python3.10/site-packages/torch/_refs/__pycache__/_conversions.cpython-310.pyc ADDED
Binary file (2.58 kB). View file
 
env-llmeval/lib/python3.10/site-packages/torch/_refs/__pycache__/fft.cpython-310.pyc ADDED
Binary file (16 kB). View file
 
env-llmeval/lib/python3.10/site-packages/torch/_refs/_conversions.py ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch._prims_common as utils
3
+
4
+ # Utilities should come BEFORE this import
5
+ from torch._decomp import register_decomposition
6
+
7
+ from torch._prims_common import TensorLikeType
8
+ from torch._prims_common.wrappers import out_wrapper
9
+ from torch._refs import _broadcast_shapes
10
+
11
+ # Data conversion references.
12
+ #
13
+ # Note: this module breaks the usual _refs to torch naming scheme where
14
+ # _refs.foo.bar is a ref for torch.foo.bar. The following definitions are not
15
+ # part of _refs/__init__.py to avoid name clashes with Python builtin types
16
+ # (like int).
17
+
18
+ __all__ = [
19
+ # dtypes
20
+ "bfloat16",
21
+ "bool",
22
+ "byte",
23
+ "cdouble",
24
+ "cfloat",
25
+ "chalf",
26
+ "char",
27
+ "double",
28
+ "float",
29
+ "half",
30
+ "int",
31
+ "long",
32
+ "short",
33
+ # misc
34
+ "complex",
35
+ "polar",
36
+ ]
37
+
38
+
39
+ def _make_conversion_method(name: str, dtype: torch.dtype):
40
+ def fn(
41
+ self: TensorLikeType, memory_format: torch.memory_format = torch.preserve_format
42
+ ) -> TensorLikeType:
43
+ return self.to(dtype, memory_format=memory_format) # type: ignore[call-overload]
44
+
45
+ fn.__name__ = name
46
+ return fn
47
+
48
+
49
+ bfloat16 = _make_conversion_method("bfloat16", torch.bfloat16)
50
+
51
+ bool = _make_conversion_method("bool", torch.bool)
52
+
53
+ byte = _make_conversion_method("byte", torch.uint8)
54
+
55
+ cdouble = _make_conversion_method("cdouble", torch.cdouble)
56
+
57
+ cfloat = _make_conversion_method("cfloat", torch.cfloat)
58
+
59
+ chalf = _make_conversion_method("chalf", torch.complex32)
60
+
61
+ char = _make_conversion_method("char", torch.int8)
62
+
63
+ double = _make_conversion_method("double", torch.double)
64
+
65
+ float = _make_conversion_method("float", torch.float)
66
+
67
+ half = _make_conversion_method("half", torch.half)
68
+
69
+ int = _make_conversion_method("int", torch.int)
70
+
71
+ long = _make_conversion_method("long", torch.long)
72
+
73
+ short = _make_conversion_method("short", torch.short)
74
+
75
+
76
+ @register_decomposition(torch._ops.ops.aten.complex)
77
+ # Note: complex has type promotion tests disabled due to different semantics.
78
+ # exact_dtype is for compat with complex_check_dtype from core.
79
+ @out_wrapper(exact_dtype=True)
80
+ def complex(real: TensorLikeType, imag: TensorLikeType) -> TensorLikeType:
81
+ allowed_dtypes = (torch.float32, torch.float64, torch.float16)
82
+ torch._check(
83
+ real.dtype in allowed_dtypes and imag.dtype in allowed_dtypes,
84
+ lambda: (
85
+ f"Expected both inputs to be Half, Float or Double tensors but got "
86
+ f"{real.dtype} and {imag.dtype}"
87
+ ),
88
+ )
89
+ torch._check(
90
+ real.dtype == imag.dtype,
91
+ lambda: (
92
+ f"Expected object of scalar type {real.dtype} but got "
93
+ f"scalar type {imag.dtype} for second argument"
94
+ ),
95
+ )
96
+ result_dtype = utils.corresponding_complex_dtype(real.dtype) # type: ignore[arg-type]
97
+ common_shape = _broadcast_shapes(real.shape, imag.shape)
98
+ result = real.new_empty(
99
+ common_shape,
100
+ dtype=result_dtype,
101
+ layout=real.layout,
102
+ device=real.device,
103
+ # pin_memory=real.is_pinned(), # NYI
104
+ )
105
+ result.real = real
106
+ result.imag = imag
107
+ return result
108
+
109
+
110
+ @register_decomposition(torch._ops.ops.aten.polar)
111
+ # Note: polar has type promotion tests disabled due to different semantics.
112
+ # exact_dtype is for compat with complex_check_dtype from core.
113
+ @out_wrapper(exact_dtype=True)
114
+ def polar(abs: TensorLikeType, angle: TensorLikeType) -> TensorLikeType:
115
+ result = torch.complex(abs, angle)
116
+ result.real = abs * torch.cos(angle)
117
+ result.imag = abs * torch.sin(angle)
118
+ return result
env-llmeval/lib/python3.10/site-packages/torch/_refs/fft.py ADDED
@@ -0,0 +1,590 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+
3
+ from typing import Iterable, List, Literal, NamedTuple, Optional, Sequence, Tuple, Union
4
+
5
+ import torch
6
+ import torch._prims as prims
7
+ import torch._prims_common as utils
8
+ from torch._decomp import register_decomposition
9
+ from torch._prims_common import DimsType, ShapeType, TensorLikeType
10
+ from torch._prims_common.wrappers import _maybe_convert_to_dtype, out_wrapper
11
+
12
+ __all__ = [
13
+ # Transforms
14
+ "fft",
15
+ "fft2",
16
+ "fftn",
17
+ "hfft",
18
+ "hfft2",
19
+ "hfftn",
20
+ "rfft",
21
+ "rfft2",
22
+ "rfftn",
23
+ "ifft",
24
+ "ifft2",
25
+ "ifftn",
26
+ "ihfft",
27
+ "ihfft2",
28
+ "ihfftn",
29
+ "irfft",
30
+ "irfft2",
31
+ "irfftn",
32
+ # Helpers
33
+ "fftshift",
34
+ "ifftshift",
35
+ ]
36
+
37
+ NormType = Union[None, Literal["forward", "backward", "ortho"]]
38
+ _NORM_VALUES = {None, "forward", "backward", "ortho"}
39
+ aten = torch._ops.ops.aten
40
+
41
+
42
+ def _apply_norm(
43
+ x: TensorLikeType, norm: NormType, signal_numel: int, forward: bool
44
+ ) -> TensorLikeType:
45
+ """Apply normalization to the un-normalized FFT result"""
46
+ torch._check(norm in _NORM_VALUES, lambda: f"Invalid normalization mode: {norm}")
47
+
48
+ if norm == "ortho":
49
+ return x * (1 / math.sqrt(signal_numel))
50
+
51
+ normalize = (not forward and (norm is None or norm == "backward")) or (
52
+ forward and norm == "forward"
53
+ )
54
+ return x * (1 / signal_numel) if normalize else x
55
+
56
+
57
+ def _promote_type_fft(
58
+ dtype: torch.dtype, require_complex: bool, device: torch.device
59
+ ) -> torch.dtype:
60
+ """Helper to promote a dtype to one supported by the FFT primitives"""
61
+ if dtype.is_complex:
62
+ return dtype
63
+
64
+ # Promote integral to default float type
65
+ if not dtype.is_floating_point:
66
+ dtype = torch.get_default_dtype()
67
+
68
+ allowed_types = [torch.float32, torch.float64]
69
+ maybe_support_half = device.type in ["cuda", "meta"] and not torch.version.hip
70
+
71
+ if maybe_support_half:
72
+ allowed_types.append(torch.float16)
73
+ torch._check(dtype in allowed_types, lambda: f"Unsupported dtype {dtype}")
74
+
75
+ if require_complex:
76
+ dtype = utils.corresponding_complex_dtype(dtype)
77
+
78
+ return dtype
79
+
80
+
81
+ def _maybe_promote_tensor_fft(
82
+ t: TensorLikeType, require_complex: bool = False
83
+ ) -> TensorLikeType:
84
+ """Helper to promote a tensor to a dtype supported by the FFT primitives"""
85
+ cur_type = t.dtype
86
+ new_type = _promote_type_fft(cur_type, require_complex, t.device)
87
+ return _maybe_convert_to_dtype(t, new_type) # type: ignore[return-value]
88
+
89
+
90
+ def _resize_fft_input(
91
+ x: TensorLikeType, dims: Tuple[int, ...], sizes: Tuple[int, ...]
92
+ ) -> TensorLikeType:
93
+ """
94
+ Fixes the shape of x such that x.size(dims[i]) == sizes[i],
95
+ either by zero-padding, or by slicing x starting from 0.
96
+ """
97
+ assert len(dims) == len(sizes)
98
+ must_copy = False
99
+ x_sizes = x.shape
100
+ pad_amount = [0] * len(x_sizes) * 2
101
+ for i in range(len(dims)):
102
+ if sizes[i] == -1:
103
+ continue
104
+
105
+ if x_sizes[dims[i]] < sizes[i]:
106
+ must_copy = True
107
+ pad_idx = len(pad_amount) - 2 * dims[i] - 1
108
+ pad_amount[pad_idx] = sizes[i] - x_sizes[dims[i]]
109
+
110
+ if x_sizes[dims[i]] > sizes[i]:
111
+ x = x.narrow(dims[i], 0, sizes[i])
112
+
113
+ return torch.constant_pad_nd(x, pad_amount) if must_copy else x
114
+
115
+
116
+ def _fft_c2r(
117
+ func_name: str,
118
+ input: TensorLikeType,
119
+ n: Optional[int],
120
+ dim: int,
121
+ norm: NormType,
122
+ forward: bool,
123
+ ) -> TensorLikeType:
124
+ """Common code for performing any complex to real FFT (irfft or hfft)"""
125
+ input = _maybe_promote_tensor_fft(input, require_complex=True)
126
+ dims = (utils.canonicalize_dim(input.ndim, dim, wrap_scalar=False),)
127
+ last_dim_size = n if n is not None else 2 * (input.shape[dim] - 1)
128
+ torch._check(
129
+ last_dim_size >= 1,
130
+ lambda: f"Invalid number of data points ({last_dim_size}) specified",
131
+ )
132
+
133
+ if n is not None:
134
+ input = _resize_fft_input(input, dims=dims, sizes=(last_dim_size // 2 + 1,))
135
+
136
+ if forward:
137
+ input = torch.conj(input)
138
+
139
+ output = prims.fft_c2r(input, dim=dims, last_dim_size=last_dim_size)
140
+ return _apply_norm(output, norm=norm, signal_numel=last_dim_size, forward=forward)
141
+
142
+
143
+ def _fft_r2c(
144
+ func_name: str,
145
+ input: TensorLikeType,
146
+ n: Optional[int],
147
+ dim: int,
148
+ norm: NormType,
149
+ forward: bool,
150
+ onesided: bool,
151
+ ) -> TensorLikeType:
152
+ """Common code for performing any real to complex FFT (rfft or ihfft)"""
153
+ torch._check(
154
+ not input.dtype.is_complex,
155
+ lambda: f"{func_name} expects a floating point input tensor, but got {input.dtype}",
156
+ )
157
+ input = _maybe_promote_tensor_fft(input)
158
+ dims = (utils.canonicalize_dim(input.ndim, dim, wrap_scalar=False),)
159
+ dim_size = n if n is not None else input.shape[dim]
160
+ torch._check(
161
+ dim_size >= 1, lambda: f"Invalid number of data points ({dim_size}) specified"
162
+ )
163
+
164
+ if n is not None:
165
+ input = _resize_fft_input(input, dims, (n,))
166
+
167
+ ret = prims.fft_r2c(input, dim=dims, onesided=onesided)
168
+ ret = _apply_norm(ret, norm, dim_size, forward)
169
+ return ret if forward else torch.conj(ret)
170
+
171
+
172
+ def _fft_c2c(
173
+ func_name: str,
174
+ input: TensorLikeType,
175
+ n: Optional[int],
176
+ dim: int,
177
+ norm: NormType,
178
+ forward: bool,
179
+ ) -> TensorLikeType:
180
+ """Common code for performing any complex to complex FFT (fft or ifft)"""
181
+ torch._check(
182
+ input.dtype.is_complex,
183
+ lambda: f"{func_name} expects a complex input tensor, but got {input.dtype}",
184
+ )
185
+ dims = (utils.canonicalize_dim(input.ndim, dim, wrap_scalar=False),)
186
+ dim_size = n if n is not None else input.shape[dim]
187
+ torch._check(
188
+ dim_size >= 1, lambda: f"Invalid number of data points ({dim_size}) specified"
189
+ )
190
+
191
+ if n is not None:
192
+ input = _resize_fft_input(input, dims, (n,))
193
+
194
+ ret = prims.fft_c2c(input, dim=dims, forward=forward)
195
+ return _apply_norm(ret, norm, dim_size, forward)
196
+
197
+
198
+ @register_decomposition(aten.fft_fft)
199
+ @out_wrapper()
200
+ def fft(
201
+ input: TensorLikeType,
202
+ n: Optional[int] = None,
203
+ dim: int = -1,
204
+ norm: NormType = None,
205
+ ) -> TensorLikeType:
206
+ if input.dtype.is_complex:
207
+ return _fft_c2c("fft", input, n, dim, norm, forward=True)
208
+ else:
209
+ return _fft_r2c("fft", input, n, dim, norm, forward=True, onesided=False)
210
+
211
+
212
+ @register_decomposition(aten.fft_ifft)
213
+ @out_wrapper()
214
+ def ifft(
215
+ input: TensorLikeType,
216
+ n: Optional[int] = None,
217
+ dim: int = -1,
218
+ norm: NormType = None,
219
+ ) -> TensorLikeType:
220
+ if input.dtype.is_complex:
221
+ return _fft_c2c("ifft", input, n, dim, norm, forward=False)
222
+ else:
223
+ return _fft_r2c("ifft", input, n, dim, norm, forward=False, onesided=False)
224
+
225
+
226
+ @register_decomposition(aten.fft_rfft)
227
+ @out_wrapper()
228
+ def rfft(
229
+ input: TensorLikeType,
230
+ n: Optional[int] = None,
231
+ dim: int = -1,
232
+ norm: NormType = None,
233
+ ) -> TensorLikeType:
234
+ return _fft_r2c("rfft", input, n, dim, norm, forward=True, onesided=True)
235
+
236
+
237
+ @register_decomposition(aten.fft_irfft)
238
+ @out_wrapper()
239
+ def irfft(
240
+ input: TensorLikeType,
241
+ n: Optional[int] = None,
242
+ dim: int = -1,
243
+ norm: NormType = None,
244
+ ) -> TensorLikeType:
245
+ return _fft_c2r("irfft", input, n, dim, norm, forward=False)
246
+
247
+
248
+ @register_decomposition(aten.fft_hfft)
249
+ @out_wrapper()
250
+ def hfft(
251
+ input: TensorLikeType,
252
+ n: Optional[int] = None,
253
+ dim: int = -1,
254
+ norm: NormType = None,
255
+ ) -> TensorLikeType:
256
+ return _fft_c2r("hfft", input, n, dim, norm, forward=True)
257
+
258
+
259
+ @register_decomposition(aten.fft_ihfft)
260
+ @out_wrapper()
261
+ def ihfft(
262
+ input: TensorLikeType,
263
+ n: Optional[int] = None,
264
+ dim: int = -1,
265
+ norm: NormType = None,
266
+ ) -> TensorLikeType:
267
+ return _fft_r2c("ihfft", input, n, dim, norm, forward=False, onesided=True)
268
+
269
+
270
+ class _ShapeAndDims(NamedTuple):
271
+ shape: Tuple[int, ...]
272
+ dims: Tuple[int, ...]
273
+
274
+
275
+ def _canonicalize_fft_shape_and_dim_args(
276
+ input: TensorLikeType, shape: Optional[ShapeType], dim: Optional[DimsType]
277
+ ) -> _ShapeAndDims:
278
+ """Convert the shape and dim arguments into a canonical form where neither are optional"""
279
+ input_dim = input.ndim
280
+ input_sizes = input.shape
281
+
282
+ if dim is not None:
283
+ if not isinstance(dim, Sequence):
284
+ dim = (dim,)
285
+ ret_dims = utils.canonicalize_dims(input_dim, dim, wrap_scalar=False)
286
+
287
+ # Check dims are unique
288
+ torch._check(
289
+ len(set(ret_dims)) == len(ret_dims), lambda: "FFT dims must be unique"
290
+ )
291
+
292
+ if shape is not None:
293
+ if not isinstance(shape, Sequence):
294
+ shape = (shape,)
295
+
296
+ # Has shape, might have dim
297
+ torch._check(
298
+ dim is None or len(dim) == len(shape),
299
+ lambda: "When given, dim and shape arguments must have the same length",
300
+ )
301
+ transform_ndim = len(shape)
302
+
303
+ torch._check(
304
+ transform_ndim <= input_dim,
305
+ lambda: f"Got shape with {transform_ndim} values but input tensor "
306
+ f"only has {input_dim} dimensions.",
307
+ )
308
+
309
+ # If shape is given, dims defaults to the last len(shape) dimensions
310
+ if dim is None:
311
+ ret_dims = tuple(range(input_dim - transform_ndim, input_dim))
312
+
313
+ # Translate any -1 values in shape to the default length
314
+ ret_shape = tuple(
315
+ s if s != -1 else input_sizes[d] for (s, d) in zip(shape, ret_dims)
316
+ )
317
+ elif dim is None:
318
+ # No shape, no dim
319
+ ret_dims = tuple(range(input_dim))
320
+ ret_shape = tuple(input_sizes)
321
+ else:
322
+ # No shape, has dim
323
+ ret_shape = tuple(input_sizes[d] for d in ret_dims)
324
+
325
+ for n in ret_shape:
326
+ torch._check(n > 0, lambda: f"Invalid number of data points ({n}) specified")
327
+
328
+ return _ShapeAndDims(shape=ret_shape, dims=ret_dims)
329
+
330
+
331
+ def _prod(xs: Iterable[int]) -> int:
332
+ """Compute product of a list"""
333
+ prod = 1
334
+ for x in xs:
335
+ prod *= x
336
+ return prod
337
+
338
+
339
+ def _fftn_c2c(
340
+ function_name: str,
341
+ input: TensorLikeType,
342
+ shape: Tuple[int, ...],
343
+ dim: Tuple[int, ...],
344
+ norm: NormType,
345
+ forward: bool,
346
+ ) -> TensorLikeType:
347
+ """Common code for n-dimensional complex to complex FFTs (fftn or ifftn)"""
348
+ torch._check(
349
+ input.dtype.is_complex,
350
+ lambda: f"{function_name} expects a complex input tensor, "
351
+ f"but got {input.dtype}",
352
+ )
353
+ x = _resize_fft_input(input, dim, shape)
354
+ output = prims.fft_c2c(x, dim=dim, forward=forward)
355
+ return _apply_norm(output, norm=norm, signal_numel=_prod(shape), forward=forward)
356
+
357
+
358
+ @register_decomposition(aten.fft_fftn)
359
+ @out_wrapper()
360
+ def fftn(
361
+ input: TensorLikeType,
362
+ s: Optional[ShapeType] = None,
363
+ dim: Optional[DimsType] = None,
364
+ norm: NormType = None,
365
+ ) -> TensorLikeType:
366
+ (shape, dim) = _canonicalize_fft_shape_and_dim_args(input, s, dim)
367
+ x = _maybe_promote_tensor_fft(input, require_complex=True)
368
+ return _fftn_c2c("fftn", x, shape, dim, norm, forward=True)
369
+
370
+
371
+ @register_decomposition(aten.fft_ifftn)
372
+ @out_wrapper()
373
+ def ifftn(
374
+ input: TensorLikeType,
375
+ s: Optional[ShapeType] = None,
376
+ dim: Optional[DimsType] = None,
377
+ norm: NormType = None,
378
+ ) -> TensorLikeType:
379
+ (shape, dim) = _canonicalize_fft_shape_and_dim_args(input, s, dim)
380
+ x = _maybe_promote_tensor_fft(input, require_complex=True)
381
+ return _fftn_c2c("ifftn", x, shape, dim, norm, forward=False)
382
+
383
+
384
+ @register_decomposition(aten.fft_rfftn)
385
+ @out_wrapper()
386
+ def rfftn(
387
+ input: TensorLikeType,
388
+ s: Optional[ShapeType] = None,
389
+ dim: Optional[DimsType] = None,
390
+ norm: NormType = None,
391
+ ) -> TensorLikeType:
392
+ torch._check(
393
+ not input.dtype.is_complex,
394
+ lambda: f"rfftn expects a real-valued input tensor, but got {input.dtype}",
395
+ )
396
+ shape, dim = _canonicalize_fft_shape_and_dim_args(input, s, dim)
397
+ input = _maybe_promote_tensor_fft(input, require_complex=False)
398
+ input = _resize_fft_input(input, dim, shape)
399
+ out = prims.fft_r2c(input, dim=dim, onesided=True)
400
+ return _apply_norm(out, norm=norm, signal_numel=_prod(shape), forward=True)
401
+
402
+
403
+ @register_decomposition(aten.fft_ihfftn)
404
+ @out_wrapper()
405
+ def ihfftn(
406
+ input: TensorLikeType,
407
+ s: Optional[ShapeType] = None,
408
+ dim: Optional[DimsType] = None,
409
+ norm: NormType = None,
410
+ ) -> TensorLikeType:
411
+ torch._check(
412
+ not input.dtype.is_complex,
413
+ lambda: f"ihfftn expects a real-valued input tensor, but got {input.dtype}",
414
+ )
415
+ shape, dim = _canonicalize_fft_shape_and_dim_args(input, s, dim)
416
+ torch._check(len(shape) > 0, lambda: "ihfftn must transform at least one axis")
417
+ input = _maybe_promote_tensor_fft(input, require_complex=False)
418
+ input = _resize_fft_input(input, dim, shape)
419
+
420
+ tmp = prims.fft_r2c(input, dim=dim[-1:], onesided=True)
421
+
422
+ if len(dim) == 1:
423
+ tmp = _apply_norm(tmp, norm=norm, signal_numel=shape[0], forward=False)
424
+ return prims.conj(tmp)
425
+
426
+ tmp = prims.conj_physical(tmp)
427
+ tmp = prims.fft_c2c(tmp, dim=dim[:-1], forward=False)
428
+ return _apply_norm(tmp, norm=norm, signal_numel=_prod(shape), forward=False)
429
+
430
+
431
+ class _CanonicalizeC2rReturn(NamedTuple):
432
+ shape: Tuple[int, ...]
433
+ dim: Tuple[int, ...]
434
+ last_dim_size: int
435
+
436
+
437
+ def _canonicalize_fft_c2r_shape_and_dim_args(
438
+ fname: str,
439
+ input: TensorLikeType,
440
+ s: Optional[ShapeType],
441
+ dim: Optional[DimsType],
442
+ ) -> _CanonicalizeC2rReturn:
443
+ """Canonicalize shape and dim arguments for n-dimensional c2r transforms,
444
+ as well as calculating the last_dim_size which is shape[dim[-1]] for the output"""
445
+ (shape, dim) = _canonicalize_fft_shape_and_dim_args(input, s, dim)
446
+ torch._check(len(shape) > 0, lambda: f"{fname} must transform at least one axis")
447
+
448
+ if s is None or s[-1] == -1:
449
+ last_dim_size = 2 * (input.shape[dim[-1]] - 1)
450
+ else:
451
+ last_dim_size = shape[-1]
452
+
453
+ torch._check(
454
+ last_dim_size >= 1,
455
+ lambda: f"Invalid number of data points ({last_dim_size}) specified",
456
+ )
457
+
458
+ shape_list = list(shape)
459
+ shape_list[-1] = last_dim_size // 2 + 1
460
+ return _CanonicalizeC2rReturn(
461
+ shape=tuple(shape_list), dim=dim, last_dim_size=last_dim_size
462
+ )
463
+
464
+
465
+ @register_decomposition(aten.fft_irfftn)
466
+ @out_wrapper()
467
+ def irfftn(
468
+ input: TensorLikeType,
469
+ s: Optional[ShapeType] = None,
470
+ dim: Optional[DimsType] = None,
471
+ norm: NormType = None,
472
+ ) -> TensorLikeType:
473
+ shape, dim, last_dim_size = _canonicalize_fft_c2r_shape_and_dim_args(
474
+ "irfftn", input, s, dim
475
+ )
476
+ input = _maybe_promote_tensor_fft(input, require_complex=True)
477
+ input = _resize_fft_input(input, dim, shape)
478
+ out = prims.fft_c2r(input, dim=dim, last_dim_size=last_dim_size)
479
+ return _apply_norm(out, norm, _prod(out.shape[d] for d in dim), forward=False)
480
+
481
+
482
+ @register_decomposition(aten.fft_hfftn)
483
+ @out_wrapper()
484
+ def hfftn(
485
+ input: TensorLikeType,
486
+ s: Optional[ShapeType] = None,
487
+ dim: Optional[DimsType] = None,
488
+ norm: NormType = None,
489
+ ) -> TensorLikeType:
490
+ shape, dim, last_dim_size = _canonicalize_fft_c2r_shape_and_dim_args(
491
+ "hfftn", input, s, dim
492
+ )
493
+ input = _maybe_promote_tensor_fft(input, require_complex=True)
494
+ input = _resize_fft_input(input, dim, shape)
495
+
496
+ tmp = prims.fft_c2c(input, dim=dim[:-1], forward=True) if len(dim) > 1 else input
497
+ tmp = _apply_norm(tmp, norm, _prod(shape[:-1]), forward=True)
498
+ tmp = prims.conj_physical(tmp)
499
+ out = prims.fft_c2r(tmp, dim=dim[-1:], last_dim_size=last_dim_size)
500
+ return _apply_norm(out, norm, last_dim_size, forward=True)
501
+
502
+
503
+ @register_decomposition(aten.fft_fft2)
504
+ @out_wrapper()
505
+ def fft2(
506
+ input: TensorLikeType,
507
+ s: Optional[ShapeType] = None,
508
+ dim: Optional[DimsType] = (-2, -1),
509
+ norm: NormType = None,
510
+ ) -> TensorLikeType:
511
+ return torch.fft.fftn(input, s=s, dim=dim, norm=norm)
512
+
513
+
514
+ @register_decomposition(aten.fft_ifft2)
515
+ @out_wrapper()
516
+ def ifft2(
517
+ input: TensorLikeType,
518
+ s: Optional[ShapeType] = None,
519
+ dim: Optional[DimsType] = (-2, -1),
520
+ norm: NormType = None,
521
+ ) -> TensorLikeType:
522
+ return torch.fft.ifftn(input, s=s, dim=dim, norm=norm)
523
+
524
+
525
+ @register_decomposition(aten.fft_rfft2)
526
+ @out_wrapper()
527
+ def rfft2(
528
+ input: TensorLikeType,
529
+ s: Optional[ShapeType] = None,
530
+ dim: Optional[DimsType] = (-2, -1),
531
+ norm: NormType = None,
532
+ ) -> TensorLikeType:
533
+ return torch.fft.rfftn(input, s=s, dim=dim, norm=norm)
534
+
535
+
536
+ @register_decomposition(aten.fft_irfft2)
537
+ @out_wrapper()
538
+ def irfft2(
539
+ input: TensorLikeType,
540
+ s: Optional[ShapeType] = None,
541
+ dim: Optional[DimsType] = (-2, -1),
542
+ norm: NormType = None,
543
+ ) -> TensorLikeType:
544
+ return torch.fft.irfftn(input, s=s, dim=dim, norm=norm)
545
+
546
+
547
+ @register_decomposition(aten.fft_hfft2)
548
+ @out_wrapper()
549
+ def hfft2(
550
+ input: TensorLikeType,
551
+ s: Optional[ShapeType] = None,
552
+ dim: Optional[DimsType] = (-2, -1),
553
+ norm: NormType = None,
554
+ ) -> TensorLikeType:
555
+ return torch.fft.hfftn(input, s=s, dim=dim, norm=norm)
556
+
557
+
558
+ @register_decomposition(aten.fft_ihfft2)
559
+ @out_wrapper()
560
+ def ihfft2(
561
+ input: TensorLikeType,
562
+ s: Optional[ShapeType] = None,
563
+ dim: Optional[DimsType] = (-2, -1),
564
+ norm: NormType = None,
565
+ ) -> TensorLikeType:
566
+ return torch.fft.ihfftn(input, s=s, dim=dim, norm=norm)
567
+
568
+
569
+ def _default_alldims(dim: Optional[DimsType], x: TensorLikeType) -> List[int]:
570
+ """Convert Optional[DimsType] to a simple list, defaulting to all dimensions"""
571
+ if dim is None:
572
+ return list(range(x.ndim))
573
+ elif not isinstance(dim, Sequence):
574
+ return [dim]
575
+ else:
576
+ return list(dim)
577
+
578
+
579
+ @register_decomposition(aten.fft_fftshift)
580
+ def fftshift(input: TensorLikeType, dim: Optional[DimsType] = None) -> TensorLikeType:
581
+ dims = _default_alldims(dim, input)
582
+ shift = [input.shape[d] // 2 for d in dims]
583
+ return torch.roll(input, shift, dims)
584
+
585
+
586
+ @register_decomposition(aten.fft_ifftshift)
587
+ def ifftshift(input: TensorLikeType, dim: Optional[DimsType] = None) -> TensorLikeType:
588
+ dims = _default_alldims(dim, input)
589
+ shift = [(input.shape[d] + 1) // 2 for d in dims]
590
+ return torch.roll(input, shift, dims)
env-llmeval/lib/python3.10/site-packages/torch/_refs/linalg/__init__.py ADDED
@@ -0,0 +1,276 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from functools import partial
2
+
3
+ from typing import List, Optional, Tuple, Union
4
+
5
+ import torch
6
+
7
+ import torch._prims as prims
8
+
9
+ import torch._prims_common as utils
10
+ import torch._refs as refs
11
+ import torch._refs.linalg as linalg
12
+ from torch import Tensor
13
+ from torch._prims_common import (
14
+ check_fp_or_complex,
15
+ check_is_matrix,
16
+ Dim,
17
+ DimsType,
18
+ ELEMENTWISE_TYPE_PROMOTION_KIND,
19
+ NumberType,
20
+ TensorLikeType,
21
+ )
22
+ from torch._prims_common.wrappers import (
23
+ _maybe_convert_to_dtype,
24
+ elementwise_type_promotion_wrapper,
25
+ out_wrapper,
26
+ )
27
+
28
+
29
+ __all__ = ["diagonal", "matrix_norm", "norm", "svd", "svdvals", "vector_norm", "vecdot"]
30
+
31
+
32
+ def _check_norm_dtype(dtype: Optional[torch.dtype], x_dtype: torch.dtype, fn_name: str):
33
+ """
34
+ Checks related to the dtype kwarg in `linalg.*norm` functions
35
+ """
36
+ if dtype is not None:
37
+ torch._check(
38
+ utils.is_float_dtype(dtype) or utils.is_complex_dtype(dtype),
39
+ lambda: f"{fn_name}: dtype should be floating point or complex. Got {dtype}",
40
+ )
41
+ torch._check(
42
+ utils.is_complex_dtype(dtype) == utils.is_complex_dtype(x_dtype),
43
+ lambda: "{fn_name}: dtype should be {d} for {d} inputs. Got {dtype}".format(
44
+ fn_name=fn_name,
45
+ d="complex" if utils.is_complex_dtype(x_dtype) else "real",
46
+ dtype=dtype,
47
+ ),
48
+ )
49
+ torch._check(
50
+ utils.get_higher_dtype(dtype, x_dtype) == dtype,
51
+ lambda: f"{fn_name}: the dtype of the input ({x_dtype}) should be convertible "
52
+ "without narrowing to the specified dtype ({dtype})",
53
+ )
54
+
55
+
56
+ # Utilities should come BEFORE this import
57
+ from torch._decomp import register_decomposition
58
+
59
+
60
+ def diagonal(
61
+ input: TensorLikeType,
62
+ *,
63
+ offset: int = 0,
64
+ dim1: int = -2,
65
+ dim2: int = -1,
66
+ ) -> TensorLikeType:
67
+ return torch.diagonal(input, offset=offset, dim1=dim1, dim2=dim2)
68
+
69
+
70
+ @register_decomposition(torch._ops.ops.aten.linalg_vector_norm)
71
+ @out_wrapper(exact_dtype=True)
72
+ def vector_norm(
73
+ x: TensorLikeType,
74
+ ord: float = 2.0,
75
+ dim: Optional[DimsType] = None,
76
+ keepdim: bool = False,
77
+ *,
78
+ dtype: Optional[torch.dtype] = None,
79
+ ) -> Tensor:
80
+ # Checks
81
+ check_fp_or_complex(x.dtype, "linalg.vector_norm")
82
+
83
+ if isinstance(dim, Dim):
84
+ dim = [dim] # type: ignore[assignment]
85
+
86
+ if x.numel() == 0 and (ord < 0.0 or ord == float("inf")):
87
+ torch._check(
88
+ dim is not None and len(dim) != 0,
89
+ lambda: f"linalg.vector_norm cannot compute the {ord} norm on an empty tensor "
90
+ "because the operation does not have an identity",
91
+ )
92
+ shape = x.shape
93
+ assert dim is not None # mypy does not seem to be able to see through check?
94
+ for d in dim:
95
+ torch._check(
96
+ shape[d] != 0,
97
+ lambda: f"linalg.vector_norm cannot compute the {ord} norm on the "
98
+ f"dimension {d} because this dimension is empty and the "
99
+ "operation does not have an identity",
100
+ )
101
+ _check_norm_dtype(dtype, x.dtype, "linalg.vector_norm")
102
+
103
+ computation_dtype, result_dtype = utils.reduction_dtypes(
104
+ x, utils.REDUCTION_OUTPUT_TYPE_KIND.COMPLEX_TO_FLOAT, dtype
105
+ )
106
+
107
+ to_result_dtype = partial(_maybe_convert_to_dtype, dtype=result_dtype)
108
+
109
+ # Implementation
110
+ if ord == 0.0:
111
+ return torch.sum(torch.ne(x, 0.0), dim=dim, keepdim=keepdim, dtype=result_dtype)
112
+ elif ord == float("inf"):
113
+ return to_result_dtype(torch.amax(torch.abs(x), dim=dim, keepdim=keepdim)) # type: ignore[return-value,arg-type]
114
+ elif ord == float("-inf"):
115
+ return to_result_dtype(torch.amin(torch.abs(x), dim=dim, keepdim=keepdim)) # type: ignore[return-value,arg-type]
116
+ else:
117
+ # From here on the computation dtype is important as the reduction is non-trivial
118
+ x = _maybe_convert_to_dtype(x, computation_dtype) # type: ignore[assignment]
119
+ reduce_sum = partial(torch.sum, dim=dim, keepdim=keepdim)
120
+
121
+ if not (ord % 2.0 == 0.0 and utils.is_float_dtype(x.dtype)):
122
+ x = torch.abs(x)
123
+ return to_result_dtype(torch.pow(reduce_sum(torch.pow(x, ord)), 1.0 / ord)) # type: ignore[return-value]
124
+
125
+
126
+ def _backshift_permutation(dim0, dim1, ndim):
127
+ # Auxiliary function for matrix_norm
128
+ # Computes the permutation that moves the two given dimensions to the back
129
+ ret = [i for i in range(ndim) if i != dim0 and i != dim1]
130
+ ret.extend((dim0, dim1))
131
+ return ret
132
+
133
+
134
+ def _inverse_permutation(perm):
135
+ # Given a permutation, returns its inverse. It's equivalent to argsort on an array
136
+ return [i for i, j in sorted(enumerate(perm), key=lambda i_j: i_j[1])]
137
+
138
+
139
+ # CompositeImplicitAutograd
140
+ @out_wrapper(exact_dtype=True)
141
+ def matrix_norm(
142
+ A: TensorLikeType,
143
+ ord: Union[float, str] = "fro",
144
+ dim: DimsType = (-2, -1),
145
+ keepdim: bool = False,
146
+ *,
147
+ dtype: Optional[torch.dtype] = None,
148
+ ) -> TensorLikeType:
149
+ # shape
150
+ check_is_matrix(A, "linalg.matrix_norm")
151
+ # dim
152
+ dim = utils.canonicalize_dims(A.ndim, dim)
153
+ if isinstance(dim, Dim):
154
+ dim = (dim,) # type: ignore[assignment]
155
+ torch._check(
156
+ len(dim) == 2, lambda: "linalg.matrix_norm: dim must be a 2-tuple. Got {dim}"
157
+ )
158
+ torch._check(
159
+ dim[0] != dim[1],
160
+ lambda: "linalg.matrix_norm: dims must be different. Got ({dim[0]}, {dim[1]})",
161
+ )
162
+ # dtype arg
163
+ _check_norm_dtype(dtype, A.dtype, "linalg.matrix_norm")
164
+
165
+ if isinstance(ord, str):
166
+ # ord
167
+ torch._check(
168
+ ord in ("fro", "nuc"),
169
+ lambda: "linalg.matrix_norm: Order {ord} not supported.",
170
+ )
171
+ # dtype
172
+ check_fp_or_complex(
173
+ A.dtype, "linalg.matrix_norm", allow_low_precision_dtypes=ord != "nuc"
174
+ )
175
+
176
+ if ord == "fro":
177
+ return vector_norm(A, 2, dim, keepdim, dtype=dtype)
178
+ else: # ord == "nuc"
179
+ if dtype is not None:
180
+ A = _maybe_convert_to_dtype(A, dtype) # type: ignore[assignment]
181
+ perm = _backshift_permutation(dim[0], dim[1], A.ndim)
182
+ result = torch.sum(svdvals(prims.transpose(A, perm)), -1, keepdim)
183
+ if keepdim:
184
+ inv_perm = _inverse_permutation(perm)
185
+ result = prims.transpose(torch.unsqueeze(result, -1), inv_perm)
186
+ return result
187
+ else:
188
+ # ord
189
+ abs_ord = abs(ord)
190
+ torch._check(
191
+ abs_ord in (2, 1, float("inf")),
192
+ lambda: "linalg.matrix_norm: Order {ord} not supported.",
193
+ )
194
+ # dtype
195
+ check_fp_or_complex(
196
+ A.dtype, "linalg.matrix_norm", allow_low_precision_dtypes=ord != 2
197
+ )
198
+
199
+ max_min = partial(torch.amax if ord > 0.0 else torch.amin, keepdim=keepdim)
200
+
201
+ if abs_ord == 2.0:
202
+ if dtype is not None:
203
+ A = _maybe_convert_to_dtype(A, dtype) # type: ignore[assignment]
204
+ perm = _backshift_permutation(dim[0], dim[1], A.ndim)
205
+ result = max_min(svdvals(prims.transpose(A, perm)), dim=-1)
206
+ if keepdim:
207
+ inv_perm = _inverse_permutation(perm)
208
+ result = prims.transpose(torch.unsqueeze(result, -1), inv_perm)
209
+ return result
210
+ else: # 1, -1, inf, -inf
211
+ dim0, dim1 = dim
212
+ if abs_ord == float("inf"):
213
+ dim0, dim1 = dim1, dim0
214
+ if not keepdim and (dim0 < dim1):
215
+ dim1 -= 1
216
+ return max_min(
217
+ vector_norm(A, 1.0, dim=dim0, keepdim=keepdim, dtype=dtype), dim1
218
+ )
219
+
220
+
221
+ # CompositeImplicitAutograd
222
+ @out_wrapper(exact_dtype=True)
223
+ def norm(
224
+ A: TensorLikeType,
225
+ ord: Optional[Union[float, str]] = None,
226
+ dim: Optional[DimsType] = None,
227
+ keepdim: bool = False,
228
+ *,
229
+ dtype: Optional[torch.dtype] = None,
230
+ ) -> TensorLikeType:
231
+ if dim is not None:
232
+ if isinstance(dim, Dim):
233
+ dim = (dim,) # type: ignore[assignment]
234
+ torch._check(
235
+ len(dim) in (1, 2),
236
+ lambda: "linalg.norm: If dim is specified, it must be of length 1 or 2. Got {dim}",
237
+ )
238
+ elif ord is not None:
239
+ torch._check(
240
+ A.ndim in (1, 2),
241
+ lambda: "linalg.norm: If dim is not specified but ord is, the input must be 1D or 2D. Got {A.ndim}D",
242
+ )
243
+
244
+ if ord is not None and (
245
+ (dim is not None and len(dim) == 2) or (dim is None and A.ndim == 2)
246
+ ):
247
+ if dim is None:
248
+ dim = (0, 1)
249
+ return matrix_norm(A, ord, dim, keepdim, dtype=dtype)
250
+ else:
251
+ if ord is None:
252
+ ord = 2.0
253
+ return vector_norm(A, ord, dim, keepdim, dtype=dtype)
254
+
255
+
256
+ # CompositeImplicitAutograd
257
+ @out_wrapper("U", "S", "Vh", exact_dtype=True)
258
+ def svd(A: TensorLikeType, full_matrices: bool = True) -> Tuple[Tensor, Tensor, Tensor]:
259
+ return prims.svd(A, full_matrices=full_matrices)
260
+
261
+
262
+ # CompositeImplicitAutograd
263
+ @out_wrapper(exact_dtype=True)
264
+ def svdvals(A: TensorLikeType) -> Tensor:
265
+ return svd(A, full_matrices=False)[1]
266
+
267
+
268
+ # CompositeImplicitAutograd
269
+ @out_wrapper()
270
+ @elementwise_type_promotion_wrapper(
271
+ type_promoting_args=("x", "y"),
272
+ type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT,
273
+ )
274
+ def vecdot(x: Tensor, y: Tensor, dim: int = -1) -> Tensor:
275
+ check_fp_or_complex(x.dtype, "linalg.vecdot")
276
+ return (x.conj() * y).sum(dim=dim)
env-llmeval/lib/python3.10/site-packages/torch/_refs/linalg/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (8.06 kB). View file
 
env-llmeval/lib/python3.10/site-packages/torch/_refs/nn/__init__.py ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ from typing import List
2
+
3
+ __all__: List[str] = []
env-llmeval/lib/python3.10/site-packages/torch/_refs/nn/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (270 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/torch/_refs/nn/functional/__init__.py ADDED
@@ -0,0 +1,1174 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ from functools import wraps
3
+ from typing import Callable, Optional, Union
4
+
5
+ import torch
6
+ import torch._prims as prims
7
+ import torch._prims_common as utils
8
+ import torch._refs as refs
9
+ from torch._decomp import register_decomposition
10
+ from torch._prims_common import (
11
+ ELEMENTWISE_TYPE_PROMOTION_KIND,
12
+ NumberType,
13
+ ShapeType,
14
+ TensorLike,
15
+ TensorLikeType,
16
+ )
17
+ from torch._prims_common.wrappers import (
18
+ elementwise_type_promotion_wrapper,
19
+ elementwise_unary_scalar_wrapper,
20
+ out_wrapper,
21
+ )
22
+ from torch._refs import _make_inplace
23
+
24
+ __all__ = [
25
+ "alpha_dropout",
26
+ "celu",
27
+ "celu_",
28
+ "dropout",
29
+ "elu",
30
+ "elu_",
31
+ "gelu",
32
+ "glu",
33
+ "group_norm",
34
+ "hardshrink",
35
+ "hardtanh",
36
+ "hinge_embedding_loss",
37
+ "huber_loss",
38
+ "l1_loss",
39
+ "layer_norm",
40
+ "leaky_relu",
41
+ "log_softmax",
42
+ "margin_ranking_loss",
43
+ "mish",
44
+ "mish_",
45
+ "mse_loss",
46
+ "nll_loss",
47
+ "pairwise_distance",
48
+ "pdist",
49
+ "poisson_nll_loss",
50
+ "prelu",
51
+ "relu",
52
+ "relu6",
53
+ "selu",
54
+ "selu_",
55
+ "smooth_l1_loss",
56
+ "softmax",
57
+ "softmin",
58
+ "softplus",
59
+ "softshrink",
60
+ "tanhshrink",
61
+ "threshold",
62
+ "threshold_",
63
+ "triplet_margin_loss",
64
+ ]
65
+
66
+ Tensor = torch.Tensor
67
+ aten = torch._ops.ops.aten
68
+ DispatchKey = torch._C.DispatchKey # type: ignore[attr-defined]
69
+
70
+
71
+ def _dropout_helper(
72
+ self: TensorLikeType,
73
+ val: float,
74
+ ) -> TensorLikeType:
75
+ """
76
+ Helper function for all dropout-type operators. During training,
77
+ some of the elements of the input tensor are randomly masked.
78
+
79
+ Returns the masked tensor of the boolean values.
80
+
81
+ """
82
+
83
+ return (
84
+ refs._uniform_helper(
85
+ self.shape, low=0.0, high=1.0, dtype=torch.float32, device=self.device
86
+ )
87
+ < val
88
+ )
89
+
90
+
91
+ @register_decomposition(aten.alpha_dropout)
92
+ def alpha_dropout(
93
+ self: TensorLikeType, p: float = 0.5, training: bool = False, inplace: bool = False
94
+ ) -> TensorLikeType:
95
+ if inplace:
96
+ raise NotImplementedError
97
+
98
+ if not training:
99
+ return self
100
+
101
+ torch._check(
102
+ p <= 1 and p >= 0,
103
+ lambda: f"dropout probability has to be between 0 and 1, but got, {p}",
104
+ )
105
+
106
+ if p == 1:
107
+ return torch.zeros_like(self)
108
+
109
+ if p == 0:
110
+ return self
111
+
112
+ dropout_mask = _dropout_helper(self, 1 - p)
113
+
114
+ # From paper: Self-Normalizing Neural Networks (https://arxiv.org/pdf/1706.02515.pdf)
115
+ # alpha = - SELU.alpha * SELU.scale, here
116
+ # SELU.alpha = 1.6732632423543772848170429916717 and
117
+ # SELU.scale = 1.0507009873554804934193349852946
118
+ alpha = -1.7580993408473766
119
+
120
+ a = 1.0 / math.sqrt((alpha * alpha * p + 1) * (1 - p))
121
+ b = torch.logical_not(dropout_mask)
122
+ b = b * (alpha * a) + alpha * a * p
123
+ dropout_mask = a * dropout_mask
124
+
125
+ return self * dropout_mask + b
126
+
127
+
128
+ def _inplace_wrapper(fn):
129
+ """
130
+ Given a nn.functional non-linearity, implements its `inplace: bool` argument
131
+ """
132
+
133
+ # nb. We use the name of the first argument used in the unary references
134
+ @wraps(fn)
135
+ def _fn(a, *args, inplace=False, **kwargs):
136
+ if inplace:
137
+ torch._check(
138
+ "out" not in kwargs,
139
+ lambda: "Cannot set inplace=True and pass out= at the same time",
140
+ )
141
+ return fn(a, *args, inplace=False, out=a, **kwargs)
142
+ else:
143
+ return fn(a, *args, inplace=False, **kwargs)
144
+
145
+ return _fn
146
+
147
+
148
+ # celu is implemented specially because it has an alpha argument
149
+ # celu is very similar to elu
150
+ @register_decomposition(aten.celu)
151
+ @_inplace_wrapper
152
+ @out_wrapper()
153
+ @elementwise_type_promotion_wrapper(
154
+ type_promoting_args=("a",),
155
+ type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT,
156
+ )
157
+ def celu(
158
+ a: TensorLikeType, alpha: Optional[NumberType] = None, inplace: bool = False
159
+ ) -> TensorLikeType:
160
+ """
161
+ Reference implementation of torch.nn.functional.celu
162
+ """
163
+
164
+ if inplace:
165
+ raise NotImplementedError
166
+
167
+ rhs: TensorLikeType
168
+ if alpha is not None:
169
+ python_type = utils.dtype_to_type(a.dtype)
170
+ if not utils.is_weakly_lesser_type(type(alpha), python_type):
171
+ msg = f"alpha argument of type {type(alpha)} cannot be safely cast to type {python_type}!"
172
+ raise ValueError(msg)
173
+ rhs = alpha * torch.expm1(torch.true_divide(a, alpha)) # type: ignore[arg-type]
174
+ else:
175
+ rhs = torch.expm1(a)
176
+
177
+ return torch.where(a > 0, a, rhs)
178
+
179
+
180
+ @_inplace_wrapper
181
+ @out_wrapper()
182
+ def dropout(
183
+ a: TensorLikeType, p: float = 0.5, training: bool = True, inplace: bool = False
184
+ ) -> TensorLikeType:
185
+ if inplace:
186
+ raise NotImplementedError
187
+
188
+ if not training:
189
+ return a
190
+
191
+ torch._check(
192
+ p <= 1 and p >= 0,
193
+ lambda: f"dropout probability has to be between 0 and 1, but got, {p}",
194
+ )
195
+
196
+ if p == 1:
197
+ return torch.zeros_like(a)
198
+
199
+ if p == 0:
200
+ return a
201
+
202
+ scale = 1 / (1 - p)
203
+ dropout_mask = _dropout_helper(a, 1 - p)
204
+
205
+ return a * dropout_mask * scale
206
+
207
+
208
+ @register_decomposition(aten.elu)
209
+ @_inplace_wrapper
210
+ @out_wrapper()
211
+ @elementwise_type_promotion_wrapper(
212
+ type_promoting_args=("a",),
213
+ type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT,
214
+ )
215
+ def elu(
216
+ a: TensorLikeType,
217
+ alpha: NumberType = 1.0,
218
+ scale: NumberType = 1.0,
219
+ input_scale: NumberType = 1.0,
220
+ inplace: bool = False,
221
+ ) -> TensorLikeType:
222
+ """
223
+ Reference implementation of torch.nn.functional.elu
224
+ """
225
+ if inplace:
226
+ raise NotImplementedError
227
+
228
+ # nb. This should be factored out into a can_cast aux function
229
+ python_type = utils.dtype_to_type(a.dtype)
230
+ torch._check(
231
+ utils.is_weakly_lesser_type(type(input_scale), python_type),
232
+ lambda: f"input_scale argument of type {type(input_scale)} cannot be safely cast to type {python_type}!",
233
+ )
234
+ torch._check(
235
+ utils.is_weakly_lesser_type(type(scale), python_type),
236
+ lambda: f"scale argument of type {type(scale)} cannot be safely cast to type {python_type}!",
237
+ )
238
+ torch._check(
239
+ utils.is_weakly_lesser_type(type(alpha), python_type),
240
+ lambda: f"alpha argument of type {type(alpha)} cannot be safely cast to type {python_type}!",
241
+ )
242
+
243
+ return torch.where(a > 0, scale * a, (alpha * scale) * torch.expm1(a * input_scale))
244
+
245
+
246
+ @register_decomposition(aten.relu)
247
+ @_inplace_wrapper
248
+ @out_wrapper()
249
+ @elementwise_type_promotion_wrapper(
250
+ type_promoting_args=("a",),
251
+ type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT,
252
+ )
253
+ def relu(a: TensorLikeType, inplace: bool = False) -> TensorLikeType:
254
+ """
255
+ Reference implementation of torch.nn.functional.relu
256
+ """
257
+
258
+ if inplace:
259
+ raise NotImplementedError
260
+
261
+ return torch.where(torch.le(a, 0), 0, a)
262
+
263
+
264
+ def group_norm(
265
+ input: Tensor,
266
+ num_groups: int,
267
+ weight: Optional[Tensor] = None,
268
+ bias: Optional[Tensor] = None,
269
+ eps: float = 1e-5,
270
+ ) -> Tensor:
271
+ """
272
+ Reference implementation of :func:`torch.nn.functional.group_norm`.
273
+ """
274
+ torch._check(
275
+ input.ndim >= 2,
276
+ lambda: f"Expected at least 2 dimensions for input tensor but received {input.ndim}",
277
+ )
278
+
279
+ batch_size = input.shape[0]
280
+ num_channels = input.shape[1]
281
+ torch._check(
282
+ num_channels % num_groups == 0,
283
+ lambda: "Expected number of channels in input to be divisible by num_groups, "
284
+ + f"but got input of shape {input.shape} and num_groups = {num_groups}",
285
+ )
286
+
287
+ # input shape is (N, C, *), so we flatten all inner dimensions except (N, C)
288
+ flattened_inner_size = 1
289
+ for dim_length in input.shape[2:]:
290
+ flattened_inner_size *= dim_length
291
+
292
+ return torch.native_group_norm(
293
+ input,
294
+ weight,
295
+ bias,
296
+ batch_size,
297
+ num_channels,
298
+ flattened_inner_size,
299
+ num_groups,
300
+ eps,
301
+ )[0]
302
+
303
+
304
+ def layer_norm(
305
+ input: Tensor,
306
+ normalized_shape: ShapeType,
307
+ weight: Optional[Tensor] = None,
308
+ bias: Optional[Tensor] = None,
309
+ eps: float = 1e-5,
310
+ ) -> Tensor:
311
+ """
312
+ Reference implementation of :func:`torch.nn.functional.layer_norm`.
313
+ """
314
+ return torch.native_layer_norm(input, normalized_shape, weight, bias, eps)[0]
315
+
316
+
317
+ @register_decomposition(aten.leaky_relu)
318
+ @_inplace_wrapper
319
+ @out_wrapper()
320
+ @elementwise_type_promotion_wrapper(
321
+ type_promoting_args=("a",),
322
+ type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT,
323
+ )
324
+ def leaky_relu(
325
+ a: TensorLikeType, negative_slope: float = 0.01, inplace: bool = False
326
+ ) -> TensorLikeType:
327
+ """
328
+ Reference implementation of torch.nn.functional.leaky_relu
329
+ """
330
+
331
+ if inplace:
332
+ raise NotImplementedError
333
+
334
+ python_type = utils.dtype_to_type(a.dtype)
335
+ if not utils.is_weakly_lesser_type(type(negative_slope), python_type):
336
+ msg = f"negative_slope argument of type {type(negative_slope)} cannot be safely cast to type {python_type}!"
337
+ raise ValueError(msg)
338
+ return torch.where(torch.gt(a, 0), a, torch.mul(a, negative_slope))
339
+
340
+
341
+ @register_decomposition(aten.mish)
342
+ @_inplace_wrapper
343
+ @out_wrapper()
344
+ @elementwise_type_promotion_wrapper(
345
+ type_promoting_args=("a",),
346
+ type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT,
347
+ )
348
+ def mish(a: TensorLikeType, inplace: bool = False) -> TensorLikeType:
349
+ """
350
+ Reference implementation of torch.nn.functional.mish
351
+ """
352
+
353
+ if inplace:
354
+ raise NotImplementedError
355
+ return a * torch.tanh(torch.nn.functional.softplus(a))
356
+
357
+
358
+ @register_decomposition(aten.selu)
359
+ @_inplace_wrapper
360
+ @out_wrapper()
361
+ @elementwise_type_promotion_wrapper(
362
+ type_promoting_args=("a",),
363
+ type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT,
364
+ )
365
+ def selu(a: TensorLikeType, inplace: bool = False) -> TensorLikeType:
366
+ """
367
+ Reference implementation of torch.nn.functional.selu
368
+ """
369
+ if inplace:
370
+ raise NotImplementedError
371
+
372
+ alpha = 1.6732632423543772848170429916717
373
+ scale = 1.0507009873554804934193349852946
374
+
375
+ rhs = alpha * torch.expm1(a)
376
+
377
+ return scale * torch.where(a > 0, a, rhs)
378
+
379
+
380
+ # Forwarding alias: the functional variant doesn't support the out kwarg
381
+ # CompositeImplicitAutograd - don't register decomp
382
+ def softmax(
383
+ a: TensorLikeType,
384
+ dim: Optional[int] = None,
385
+ _stacklevel: int = 3, # for compat when using TorchRefsMode(strict=True)
386
+ dtype: Optional[torch.dtype] = None,
387
+ ) -> TensorLikeType:
388
+ # The error is for compat with regular PyTorch, which has this behavior
389
+ # deprecated. For PrimTorch, it's fine to drop support for deprecated
390
+ # behavior because it requires explicit opt in. This error is to inform
391
+ # users how to update their calls.
392
+ torch._check(dim is not None, lambda: "implicit dim not supported, use dim=X")
393
+ return torch.softmax(a=a, dim=dim, dtype=dtype) # type: ignore[call-overload]
394
+
395
+
396
+ # CompositeImplicitAutograd - don't register decomp
397
+ def softmin(
398
+ a: TensorLikeType,
399
+ dim: Optional[int] = None,
400
+ _stacklevel: int = 3, # for compat when using TorchRefsMode(strict=True)
401
+ dtype: Optional[torch.dtype] = None,
402
+ ) -> TensorLikeType:
403
+ # The error is for compat with regular PyTorch, which has this behavior
404
+ # deprecated. For PrimTorch, it's fine to drop support for deprecated
405
+ # behavior because it requires explicit opt in. This error is to inform
406
+ # users how to update their calls.
407
+ torch._check(dim is not None, lambda: "implicit dim not supported, use dim=X")
408
+ return torch.softmax(a=-a, dim=dim, dtype=dtype) # type: ignore[call-overload]
409
+
410
+
411
+ # softplus is implemented specially because it has beta and threshold arguments
412
+ @register_decomposition(aten.softplus)
413
+ @_inplace_wrapper
414
+ @out_wrapper()
415
+ @elementwise_type_promotion_wrapper(
416
+ type_promoting_args=("a",),
417
+ type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT,
418
+ )
419
+ def softplus(
420
+ a: TensorLikeType,
421
+ beta: Optional[NumberType] = None,
422
+ threshold: NumberType = 20,
423
+ inplace: bool = False,
424
+ ) -> TensorLikeType:
425
+ """
426
+ Reference implementation of torch.nn.functional.softplus
427
+ """
428
+
429
+ if inplace:
430
+ raise NotImplementedError
431
+
432
+ rhs: TensorLikeType
433
+ if beta is not None:
434
+ python_type = utils.dtype_to_type(a.dtype)
435
+ if not utils.is_weakly_lesser_type(type(beta), python_type):
436
+ msg = f"beta argument of type {type(beta)} cannot be safely cast to type {python_type}!"
437
+ raise ValueError(msg)
438
+ scaled_input = a * beta
439
+ rhs = torch.true_divide(torch.log1p(torch.exp(scaled_input)), beta) # type: ignore[arg-type]
440
+
441
+ else:
442
+ scaled_input = a
443
+ rhs = torch.log1p(torch.exp(scaled_input))
444
+
445
+ return torch.where(scaled_input > threshold, a, rhs)
446
+
447
+
448
+ @aten.hardshrink.default.py_impl(DispatchKey.Autograd)
449
+ @register_decomposition(aten.hardshrink)
450
+ @out_wrapper()
451
+ def hardshrink(a: TensorLikeType, lambd: float = 0.5):
452
+ # Formula for reference,
453
+ # hardshrink(x) = x if x > lambd
454
+ # = x if x < -lambd
455
+ # = 0 otherwise
456
+ return torch.where(torch.abs(a) <= lambd, 0, a)
457
+
458
+
459
+ @aten.softshrink.default.py_impl(DispatchKey.Autograd)
460
+ @register_decomposition(aten.softshrink)
461
+ @out_wrapper()
462
+ def softshrink(a: TensorLikeType, lambd: float = 0.5):
463
+ # Formula for reference,
464
+ # softshrink(x) = x - lambd if x > lambd
465
+ # = x + lambd if x < -lambd
466
+ # = 0 otherwise
467
+ torch._check(
468
+ lambd >= 0,
469
+ lambda: f"lambda must be greater or equal to 0, but found to be {lambd}",
470
+ )
471
+ # We implement this in one torch.where to generate better code in the backward
472
+ # see https://github.com/pytorch/pytorch/pull/107052#discussion_r1293748211
473
+ return torch.where(torch.abs(a) > lambd, a - torch.sign(a) * lambd, 0)
474
+
475
+
476
+ # Losses
477
+ def _reduction_int_to_str(reduction: int) -> str:
478
+ from torch._decomp.decompositions import Reduction
479
+
480
+ if reduction == Reduction.NONE.value:
481
+ return "none"
482
+ elif reduction == Reduction.MEAN.value:
483
+ return "mean"
484
+ elif reduction == Reduction.SUM.value:
485
+ return "sum"
486
+ else:
487
+ raise ValueError(f"{reduction} is not a valid value for reduction")
488
+
489
+
490
+ def _apply_loss_reduction(loss: TensorLikeType, reduction: str) -> TensorLikeType:
491
+ if reduction == "sum":
492
+ return torch.sum(loss)
493
+ elif reduction == "mean":
494
+ return torch.mean(loss)
495
+ else: # reduction == "none"
496
+ return loss
497
+
498
+
499
+ def _check_reduction_value(reduction: str):
500
+ if reduction not in ("mean", "sum", "none"):
501
+ raise ValueError(f"{reduction} is not a valid value for reduction")
502
+
503
+
504
+ # This helper function maps depreciated arguments, "size_average" and "reduce"
505
+ # to their corresponding "reduction" string argument
506
+ def _get_string_reduction_arg(
507
+ *, size_average: Optional[bool], reduce: Optional[bool]
508
+ ) -> str:
509
+ if size_average is None:
510
+ size_average = True
511
+ if reduce is None:
512
+ reduce = True
513
+ if size_average and reduce:
514
+ ret = "mean"
515
+ elif reduce:
516
+ ret = "sum"
517
+ else:
518
+ ret = "none"
519
+ return ret
520
+
521
+
522
+ # CompositeImplicitAutograd - don't register decomp
523
+ @elementwise_type_promotion_wrapper(
524
+ type_promoting_args=("input", "target"),
525
+ type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.COMPLEX_TO_FLOAT,
526
+ )
527
+ def l1_loss(
528
+ input: TensorLikeType,
529
+ target: TensorLikeType,
530
+ size_average: Optional[bool] = None,
531
+ reduce: Optional[bool] = None,
532
+ reduction: str = "mean",
533
+ ) -> TensorLikeType:
534
+ """
535
+ Reference implementation of torch.nn.functional.l1_loss
536
+ """
537
+ if size_average is not None or reduce is not None:
538
+ # TODO: Raise exception instead of converting value. This is only for
539
+ # primTorch since it can drop support for deprecated arguments.
540
+ # msg = "size_average and reduce args are deprecated, please use reduction argument."
541
+ reduction = _get_string_reduction_arg(size_average=size_average, reduce=reduce)
542
+ _check_reduction_value(reduction)
543
+ loss = torch.abs(input - target)
544
+ return _apply_loss_reduction(loss, reduction)
545
+
546
+
547
+ @elementwise_type_promotion_wrapper(
548
+ type_promoting_args=("input", "target"),
549
+ type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.COMPLEX_TO_FLOAT,
550
+ )
551
+ def smooth_l1_loss(
552
+ input: TensorLikeType,
553
+ target: TensorLikeType,
554
+ size_average: Optional[bool] = None,
555
+ reduce: Optional[bool] = None,
556
+ reduction: str = "mean",
557
+ beta: float = 1.0,
558
+ ) -> TensorLikeType:
559
+ """
560
+ Reference implementation of torch.nn.functional.smooth_l1_loss
561
+ """
562
+ if size_average is not None or reduce is not None:
563
+ # TODO: Raise exception instead of converting value. This is only for
564
+ # primTorch since it can drop support for deprecated arguments.
565
+ # msg = "size_average and reduce args are deprecated, please use reduction argument."
566
+ reduction = _get_string_reduction_arg(size_average=size_average, reduce=reduce)
567
+ _check_reduction_value(reduction)
568
+
569
+ if beta == 0.0:
570
+ return torch.nn.functional.l1_loss(
571
+ input, target, size_average=size_average, reduce=reduce, reduction=reduction
572
+ )
573
+ else:
574
+ loss = torch.abs(input - target)
575
+ loss = torch.where(loss < beta, 0.5 * loss**2 / beta, loss - 0.5 * beta)
576
+ return _apply_loss_reduction(loss, reduction)
577
+
578
+
579
+ # Forwarding alias: the functional variant doesn't support the out kwarg
580
+ # CompositeImplicitAutograd - don't register decomp
581
+ def log_softmax(
582
+ a: TensorLikeType,
583
+ dim: Optional[int] = None,
584
+ _stacklevel: int = 3, # for compat when using TorchRefsMode(strict=True)
585
+ dtype: Optional[torch.dtype] = None,
586
+ ) -> TensorLikeType:
587
+ # The error is for compat with regular PyTorch, which has this behavior
588
+ # deprecated. For PrimTorch, it's fine to drop support for deprecated
589
+ # behavior because it requires explicit opt in. This error is to inform
590
+ # users how to update their calls.
591
+ torch._check(dim is not None, lambda: "implicit dim not supported, use dim=X")
592
+ return torch.log_softmax(a=a, dim=dim, dtype=dtype) # type: ignore[call-overload]
593
+
594
+
595
+ @register_decomposition(aten.margin_ranking_loss)
596
+ def margin_ranking_loss(
597
+ input1: TensorLikeType,
598
+ input2: TensorLikeType,
599
+ target: TensorLikeType,
600
+ margin: float = 0.0,
601
+ reduction: str = "mean",
602
+ ) -> TensorLikeType:
603
+ # loss_without_reduction = max(0, −target * (input1 − input2) + margin)
604
+ if input1.ndim != input2.ndim or input1.ndim != target.ndim:
605
+ raise RuntimeError(
606
+ "margin_ranking_loss : All input tensors should have same dimension but got sizes: "
607
+ f"input1: {input1.shape}, input2: {input2.shape}, target: {target.shape} "
608
+ )
609
+ _check_reduction_value(reduction)
610
+ loss = torch.clamp_min(-target * (input1 - input2) + margin, 0)
611
+ return _apply_loss_reduction(loss, reduction)
612
+
613
+
614
+ @elementwise_type_promotion_wrapper(
615
+ type_promoting_args=("input", "target"),
616
+ type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.COMPLEX_TO_FLOAT,
617
+ )
618
+ def mse_loss(
619
+ input: TensorLikeType,
620
+ target: TensorLikeType,
621
+ size_average: Optional[bool] = None,
622
+ reduce: Optional[bool] = None,
623
+ reduction: str = "mean",
624
+ ) -> TensorLikeType:
625
+ if size_average is not None or reduce is not None:
626
+ # TODO: Raise exception instead of converting value. This is only for
627
+ # primTorch since it can drop support for deprecated arguments.
628
+ # msg = "size_average and reduce args are deprecated, please use reduction argument."
629
+ reduction = _get_string_reduction_arg(size_average=size_average, reduce=reduce)
630
+ _check_reduction_value(reduction)
631
+ loss = torch.pow(input - target, 2)
632
+ return _apply_loss_reduction(loss, reduction)
633
+
634
+
635
+ @register_decomposition(aten.hinge_embedding_loss)
636
+ def hinge_embedding_loss(
637
+ input: TensorLikeType,
638
+ target: TensorLikeType,
639
+ margin: float = 1.0,
640
+ reduction: str = "mean",
641
+ ) -> TensorLikeType:
642
+ # loss_without_reduction = input if y == 1
643
+ # = max(0, margin - input) if y == -1
644
+ _check_reduction_value(reduction)
645
+ margin_clamp = torch.clamp_min(margin - input, 0)
646
+ output_margin = torch.where(target != 1, margin_clamp, 0)
647
+ output_self = torch.where(target != -1, input, 0)
648
+ loss = output_margin + output_self
649
+ return _apply_loss_reduction(loss, reduction)
650
+
651
+
652
+ def _nll_loss_nd(
653
+ input: TensorLikeType,
654
+ target: TensorLikeType,
655
+ weight: Optional[TensorLikeType],
656
+ reduction: str,
657
+ ignore_index: int,
658
+ ) -> TensorLikeType:
659
+ torch._check(
660
+ input.ndim > 0 and input.ndim <= 3,
661
+ lambda: f"Expected input dimension to be either [1, 2, 3] but received {input.ndim}.",
662
+ )
663
+
664
+ torch._check(
665
+ (input.ndim == 1) or (input.shape[0] == target.shape[0]),
666
+ lambda: f"Expected input batch size {input.shape[0]} to match target batch size {target.shape[0]}.",
667
+ )
668
+
669
+ _check_reduction_value(reduction)
670
+
671
+ flat_target = torch.flatten(target)
672
+ ignore_classes_mask = torch.eq(flat_target, ignore_index)
673
+
674
+ # TODO: Enable data-dependent checks with debug mode
675
+ # TODO: This check does not work with FakeTensor inputs; See Issue #85834
676
+ # Explicit cast for class_check to bool; See Issue #78071
677
+ """
678
+ from torch._subclasses.fake_tensor import FakeTensor
679
+ num_classes = input.shape[1] if input.ndim > 1 else input.shape[0]
680
+ valid_classes_mask = torch.logical_and(
681
+ (flat_target >= 0), (flat_target < num_classes)
682
+ )
683
+ class_check = torch.all(torch.logical_or(ignore_classes_mask, valid_classes_mask))
684
+ torch._check(
685
+ isinstance(target, FakeTensor) or bool(class_check.item()),
686
+ lambda: "A target class is out-of-bounds and not the ignore index.",
687
+ )
688
+ """
689
+
690
+ ignore_class_weight = torch.scalar_tensor(0, dtype=input.dtype, device=input.device)
691
+ class_weight = (
692
+ torch.scalar_tensor(1, dtype=input.dtype, device=input.device)
693
+ if weight is None
694
+ else weight[flat_target]
695
+ )
696
+ current_weight = torch.where(
697
+ ignore_classes_mask,
698
+ ignore_class_weight,
699
+ class_weight,
700
+ )
701
+
702
+ if input.ndim == 1:
703
+ # implicit batch size = 1
704
+ # input (1 batch size, C classes)
705
+ loss = -input[target] * current_weight
706
+ elif input.ndim == 2:
707
+ # input (N batch size, C classes)
708
+ batch_size = input.shape[0]
709
+ loss = -input[torch.arange(batch_size), target] * current_weight
710
+ else:
711
+ # 3D case (N batch size, C classe, K dimensions)
712
+ # input (N batch size, C classes, K)
713
+ batch_size = input.shape[0]
714
+ extent = input.shape[2]
715
+ numel = batch_size * extent
716
+ indices = torch.arange(numel)
717
+ bdx = indices // extent
718
+ kdx = indices % extent
719
+ loss = -input[bdx, flat_target, kdx] * current_weight
720
+ loss = torch.reshape(loss, target.shape)
721
+
722
+ if reduction == "none":
723
+ return loss
724
+ elif reduction == "sum":
725
+ return torch.sum(loss)
726
+ else:
727
+ # calculate weighted mean of the loss function
728
+ return torch.sum(loss) / torch.sum(current_weight)
729
+
730
+
731
+ @register_decomposition(aten.nll_loss)
732
+ @out_wrapper()
733
+ @elementwise_type_promotion_wrapper(
734
+ type_promoting_args=("input",),
735
+ type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT,
736
+ )
737
+ def nll_loss(
738
+ input: TensorLikeType,
739
+ target: TensorLikeType,
740
+ weight: Optional[TensorLikeType] = None,
741
+ size_average: Optional[bool] = None,
742
+ ignore_index: int = -100,
743
+ reduce: Optional[bool] = None,
744
+ reduction: str = "mean",
745
+ ) -> TensorLikeType:
746
+ """
747
+ Reference implementation of torch.nn.functional.nll_loss
748
+ """
749
+ torch._check(
750
+ input.ndim > 0,
751
+ lambda: f"Expected input tensor to have 1 or more dimensions (got {input.ndim})",
752
+ )
753
+
754
+ # TODO: raise exception instead of converting value
755
+ # msg = "size_average and reduce args are deprecated, please use reduction argument."
756
+ # Convert these options for consistency with the eager mode
757
+ if size_average is not None or reduce is not None:
758
+ reduction = _get_string_reduction_arg(size_average=size_average, reduce=reduce)
759
+
760
+ # The expected behavior when the target and input have zero elements:
761
+ # reduction = 'none' --- tensor([])
762
+ # reduction = 'sum' --- tensor(0.)
763
+ # reduction = 'mean' --- tensor(nan)
764
+ # Mean reduction on empty tensors produces NaN. See the discussion in
765
+ # https://github.com/pytorch/pytorch/pull/64572#issuecomment-926504162
766
+ if input.numel() == 0 and target.numel() == 0:
767
+ if reduction == "none":
768
+ return torch.zeros_like(target)
769
+ elif reduction == "sum":
770
+ return torch.empty_like(target)
771
+ else:
772
+ return torch.full_like(target, float("nan"))
773
+
774
+ # The _nll_loss_nd helper function handles the most common cases.
775
+ # ndim == 1 (Single Example)
776
+ # => Batch Size: 1, Input: (C), Target: ()
777
+ # ndim == 2 (k = 1)
778
+ # => Batch Size: N, Input: (N, C), Target: (N)
779
+ # ndim == 3 (k > 1)
780
+ # => Batch Size: N, Input: (N, C, K), Target: (N, K)
781
+ if input.ndim <= 3:
782
+ return _nll_loss_nd(input, target, weight, reduction, ignore_index)
783
+
784
+ # For ndim > 3, we reshape the input and target to 3-D case.
785
+ # Input (N batch-size, C classes, k-dimensions)
786
+ # Target (N batch-size, k-dimensions)
787
+ torch._check(
788
+ input.ndim > 0 and target.ndim > 0 and target.shape[1:] == input.shape[2:],
789
+ lambda: (
790
+ "Expected input and target to both have ndim > 0 and "
791
+ "target.shape[1:] == input.shape[2:], but got "
792
+ f"target.shape {target.shape} and input.shape {input.shape}"
793
+ ),
794
+ )
795
+
796
+ batch_size = input.shape[0]
797
+ num_classes = input.shape[1]
798
+ out_size = [batch_size] + list(target.shape[1:])
799
+
800
+ input = torch.reshape(input, [batch_size, num_classes, -1])
801
+ target = torch.reshape(target, [batch_size, -1])
802
+ if reduction != "none":
803
+ return _nll_loss_nd(input, target, weight, reduction, ignore_index)
804
+ else:
805
+ result = _nll_loss_nd(input, target, weight, reduction, ignore_index)
806
+ # reshape flattened inner-dim to original k-dimensions
807
+ return torch.reshape(result, out_size)
808
+
809
+
810
+ # TODO: This ref supports int reduction and out kwarg to be compatible with ATen:
811
+ # https://github.com/pytorch/pytorch/issues/83931
812
+ # TODO: Could be rewritten to support complex:
813
+ # https://github.com/pytorch/pytorch/pull/85041
814
+ @register_decomposition(aten.huber_loss)
815
+ @out_wrapper()
816
+ @elementwise_type_promotion_wrapper(
817
+ type_promoting_args=("input", "target"),
818
+ type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT,
819
+ )
820
+ def huber_loss(
821
+ input: TensorLikeType,
822
+ target: TensorLikeType,
823
+ reduction: Union[str, int] = "mean",
824
+ delta: float = 1.0,
825
+ ) -> TensorLikeType:
826
+ """
827
+ Reference implementation of torch.nn.functional.huber_loss
828
+ """
829
+ if type(reduction) is int:
830
+ reduction = _reduction_int_to_str(reduction)
831
+ _check_reduction_value(reduction) # type: ignore[arg-type]
832
+ torch._check(
833
+ delta > 0,
834
+ lambda: "huber_loss does not support non-positive values for delta.",
835
+ )
836
+ z = (input - target).abs()
837
+ loss = torch.where(z < delta, 0.5 * z * z, delta * (z - 0.5 * delta))
838
+ return _apply_loss_reduction(loss, reduction) # type: ignore[arg-type]
839
+
840
+
841
+ # tanhshrink does not use _make_elementwise_unary_reference because it does not support out
842
+ @elementwise_unary_scalar_wrapper
843
+ @elementwise_type_promotion_wrapper(
844
+ type_promoting_args=("a",),
845
+ type_promotion_kind=utils.ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
846
+ )
847
+ def tanhshrink(a: TensorLikeType) -> TensorLikeType:
848
+ """
849
+ Reference implementation of torch.nn.functional.tanhshrink
850
+ """
851
+ if not isinstance(a, TensorLike):
852
+ raise RuntimeError(
853
+ "Expected a tensor input for an elementwise unary operation!"
854
+ )
855
+ return a - torch.tanh(a)
856
+
857
+
858
+ @register_decomposition(aten.threshold)
859
+ @_inplace_wrapper
860
+ @out_wrapper()
861
+ @elementwise_type_promotion_wrapper(
862
+ type_promoting_args=("a",),
863
+ type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT,
864
+ )
865
+ def threshold(
866
+ a: TensorLikeType,
867
+ threshold: NumberType,
868
+ value: Union[bool, int, float],
869
+ inplace: bool = False,
870
+ ) -> TensorLikeType:
871
+ """
872
+ Reference implementation of torch.nn.functional.threshold
873
+ """
874
+
875
+ if inplace:
876
+ raise NotImplementedError
877
+
878
+ return torch.where(a <= threshold, value, a)
879
+
880
+
881
+ # CompositeImplicitAutograd - don't register decomp
882
+ # No elementwise type promotion - core op doesn't explicitly type promote
883
+ def triplet_margin_loss(
884
+ anchor: TensorLikeType,
885
+ positive: TensorLikeType,
886
+ negative: TensorLikeType,
887
+ margin: float = 1.0,
888
+ p: float = 2,
889
+ eps: float = 1e-6,
890
+ swap: bool = False,
891
+ size_average: Optional[bool] = None,
892
+ reduce: Optional[bool] = None,
893
+ reduction: str = "mean",
894
+ ) -> TensorLikeType:
895
+ if size_average is not None or reduce is not None:
896
+ # TODO: Raise exception instead of converting value. This is only for
897
+ # primTorch since it can drop support for deprecated arguments.
898
+ # msg = "size_average and reduce args are deprecated, please use reduction argument."
899
+ reduction = _get_string_reduction_arg(size_average=size_average, reduce=reduce)
900
+
901
+ # torch.nn.functional.triplet_margin_with_distance_loss has no ref defined
902
+ # since it's a pure Python implementation. Use this helper instead.
903
+ return _triplet_margin_with_distance_loss(
904
+ anchor=anchor,
905
+ positive=positive,
906
+ negative=negative,
907
+ distance_function=lambda x, y: torch.pairwise_distance(x, y, p, eps),
908
+ margin=margin,
909
+ swap=swap,
910
+ reduction=reduction,
911
+ )
912
+
913
+
914
+ # Pure Python impl - don't register decomp and don't add a ref. Defined as a
915
+ # helper here since triplet_margin_loss can be nicely implemented with it.
916
+ def _triplet_margin_with_distance_loss(
917
+ anchor: TensorLikeType,
918
+ positive: TensorLikeType,
919
+ negative: TensorLikeType,
920
+ *,
921
+ distance_function: Optional[
922
+ Callable[[TensorLikeType, TensorLikeType], TensorLikeType]
923
+ ] = None,
924
+ margin: float = 1.0,
925
+ swap: bool = False,
926
+ reduction: str = "mean",
927
+ ) -> TensorLikeType:
928
+ _check_reduction_value(reduction)
929
+
930
+ a_dim = anchor.ndim
931
+ p_dim = positive.ndim
932
+ n_dim = negative.ndim
933
+ torch._check(
934
+ a_dim == p_dim and p_dim == n_dim,
935
+ lambda: (
936
+ f"The anchor, positive, and negative tensors are expected to have "
937
+ f"the same number of dimensions, but got: anchor {a_dim}D, "
938
+ f"positive {p_dim}D, and negative {n_dim}D inputs"
939
+ ),
940
+ )
941
+
942
+ if distance_function is None:
943
+ distance_function = torch.pairwise_distance
944
+
945
+ dist_pos = distance_function(anchor, positive)
946
+ dist_neg = distance_function(anchor, negative)
947
+ # The distance swap is described in the paper "Learning shallow
948
+ # convolutional feature descriptors with triplet losses" by V. Balntas, E.
949
+ # Riba et al. If True, and if the positive example is closer to the
950
+ # negative example than the anchor is, swaps the positive example and the
951
+ # anchor in the loss computation.
952
+ if swap:
953
+ dist_swap = distance_function(positive, negative)
954
+ dist_neg = torch.minimum(dist_neg, dist_swap)
955
+ loss = torch.clamp_min(margin + dist_pos - dist_neg, 0)
956
+ return _apply_loss_reduction(loss, reduction)
957
+
958
+
959
+ @register_decomposition(aten.hardtanh)
960
+ @_inplace_wrapper
961
+ @out_wrapper()
962
+ @elementwise_unary_scalar_wrapper
963
+ @elementwise_type_promotion_wrapper(
964
+ type_promoting_args=("a"),
965
+ type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT,
966
+ )
967
+ def hardtanh(
968
+ a: TensorLikeType,
969
+ min_val: NumberType = -1,
970
+ max_val: NumberType = 1,
971
+ inplace: bool = False,
972
+ ) -> TensorLikeType:
973
+ """
974
+ Reference implementation of torch.nn.functional.hardtanh
975
+ """
976
+ if inplace:
977
+ raise NotImplementedError
978
+ if utils.is_boolean_dtype(a.dtype):
979
+ raise RuntimeError("Bool inputs not supported for hardtanh")
980
+
981
+ # preserve legacy behavior of boundaries not causing type promotion
982
+ if utils.is_integer_dtype(a.dtype):
983
+ min_val = int(min_val) # type: ignore[arg-type]
984
+ max_val = int(max_val) # type: ignore[arg-type]
985
+ if not (a.dtype != torch.uint8 or (min_val >= 0 and max_val >= 0)):
986
+ raise RuntimeError(
987
+ "Cannot do hardtanh on an unsigned type with negative limits"
988
+ )
989
+ return torch.clamp(a, min_val, max_val) # type: ignore[arg-type]
990
+
991
+
992
+ @register_decomposition(aten.gelu)
993
+ @out_wrapper()
994
+ @elementwise_unary_scalar_wrapper
995
+ @elementwise_type_promotion_wrapper(
996
+ type_promoting_args=("a",),
997
+ type_promotion_kind=utils.ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT,
998
+ )
999
+ def gelu(a: TensorLikeType, approximate: str = "none") -> TensorLikeType:
1000
+ """
1001
+ Reference implementation of torch.nn.functional.gelu
1002
+ """
1003
+ if not isinstance(a, TensorLike):
1004
+ raise RuntimeError(
1005
+ "Expected a tensor input for an elementwise unary operation!"
1006
+ )
1007
+ M_SQRT2 = 1.41421356237309504880
1008
+ M_SQRT1_2 = 0.70710678118654752440
1009
+ M_2_SQRTPI = 1.12837916709551257390
1010
+ if approximate == "tanh":
1011
+ kBeta = M_SQRT2 * M_2_SQRTPI * 0.5
1012
+ kKappa = 0.044715
1013
+ a_cube = a * a * a
1014
+ inner = kBeta * (a + kKappa * a_cube)
1015
+ return 0.5 * a * (1 + torch.tanh(inner))
1016
+ elif approximate == "none":
1017
+ kAlpha = M_SQRT1_2
1018
+ return a * 0.5 * (1 + torch.erf(a * kAlpha))
1019
+ else:
1020
+ raise RuntimeError("approximate argument must be either none or tanh.")
1021
+
1022
+
1023
+ # CompositeImplicitAutograd - don't register decomp
1024
+ @elementwise_type_promotion_wrapper(
1025
+ type_promoting_args=("input", "target"),
1026
+ type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
1027
+ )
1028
+ def poisson_nll_loss(
1029
+ input: TensorLikeType,
1030
+ target: TensorLikeType,
1031
+ log_input: bool = True,
1032
+ full: bool = False,
1033
+ size_average: Optional[bool] = None,
1034
+ eps: float = 1e-8,
1035
+ reduce: Optional[bool] = None,
1036
+ reduction: str = "mean",
1037
+ ) -> TensorLikeType:
1038
+ """
1039
+ Reference implementation of torch.nn.functional.poisson_nll_loss
1040
+ """
1041
+ if size_average is not None or reduce is not None:
1042
+ # TODO: Raise exception instead of converting value. This is only for
1043
+ # primTorch since it can drop support for deprecated arguments.
1044
+ # msg = "size_average and reduce args are deprecated, please use reduction argument."
1045
+ reduction = _get_string_reduction_arg(size_average=size_average, reduce=reduce)
1046
+ _check_reduction_value(reduction)
1047
+ if log_input:
1048
+ loss = torch.exp(input) - target * input
1049
+ else:
1050
+ loss = input - target * torch.log(input + eps)
1051
+
1052
+ if full:
1053
+ stirling_term = (
1054
+ target * torch.log(target) - target + 0.5 * torch.log(2 * torch.pi * target)
1055
+ )
1056
+ # avoid inplace add
1057
+ loss = loss + stirling_term.masked_fill(target <= 1, 0)
1058
+ return _apply_loss_reduction(loss, reduction)
1059
+
1060
+
1061
+ @register_decomposition(aten.prelu)
1062
+ @elementwise_type_promotion_wrapper(
1063
+ type_promoting_args=("a", "weight"),
1064
+ type_promotion_kind=utils.ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT,
1065
+ )
1066
+ def prelu(a: TensorLikeType, weight: TensorLikeType) -> TensorLikeType:
1067
+ """
1068
+ Reference implementation of torch.nn.functional.prelu
1069
+ """
1070
+ torch._check(
1071
+ isinstance(a, TensorLike),
1072
+ lambda: f"prelu: Expected `a` to be tensor, but got: {type(a)}",
1073
+ )
1074
+ torch._check(
1075
+ isinstance(weight, TensorLike),
1076
+ lambda: f"prelu: Expected `weight` to be tensor, but got: {type(weight)}",
1077
+ )
1078
+
1079
+ if weight.numel() != 1:
1080
+ torch._check(a.ndim > 0, lambda: "Not allow zero-dim input tensor.")
1081
+ channel_size = a.shape[1] if a.ndim >= 2 else 1
1082
+ torch._check(
1083
+ weight.numel() == channel_size,
1084
+ lambda: f"Mismatch of parameter numbers and input channel size. Found parameter numbers ="
1085
+ f" {weight.numel()} and channel size = {channel_size}.",
1086
+ )
1087
+
1088
+ torch._check(
1089
+ weight.ndim == 0 or weight.ndim == 1,
1090
+ lambda: f"prelu: Expected `weight` to be a scalar or 1D tensor, but got: "
1091
+ f"ndim = {weight.ndim}",
1092
+ )
1093
+ if a.ndim == 0:
1094
+ weight = weight[0] if weight.ndim == 1 else weight
1095
+ else:
1096
+ weight = prims.broadcast_in_dim(
1097
+ weight, a.shape, tuple() if weight.ndim == 0 else (0 if a.ndim == 1 else 1,)
1098
+ )
1099
+
1100
+ return torch.where(a > 0, a, a * weight)
1101
+
1102
+
1103
+ @register_decomposition(aten.relu6)
1104
+ @_inplace_wrapper
1105
+ @out_wrapper()
1106
+ def relu6(a: TensorLikeType, inplace: bool = False) -> TensorLikeType:
1107
+ """
1108
+ Reference implementation of torch.nn.functional.relu6
1109
+ """
1110
+ if inplace:
1111
+ raise NotImplementedError
1112
+
1113
+ # See https://github.com/pytorch/pytorch/pull/81142#discussion_r918220126
1114
+ # It may be better to use clamp here, but we use hardtanh to replicate
1115
+ # the behavior of the existing implementation
1116
+ return torch.nn.functional.hardtanh(a, 0, 6)
1117
+
1118
+
1119
+ @register_decomposition(aten.glu)
1120
+ @out_wrapper()
1121
+ @elementwise_type_promotion_wrapper(
1122
+ type_promoting_args=("a",),
1123
+ type_promotion_kind=utils.ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT,
1124
+ )
1125
+ def glu(a: TensorLikeType, dim: int = -1) -> TensorLikeType:
1126
+ dim = utils.canonicalize_dims(a.ndim, dim)
1127
+ torch._check(
1128
+ a.shape[dim] % 2 == 0,
1129
+ lambda: f"Halving dimension must be even, but dimension {dim} is size {a.shape[dim]}",
1130
+ )
1131
+ b, c = torch.tensor_split(a, 2, dim)
1132
+
1133
+ return b * torch.sigmoid(c)
1134
+
1135
+
1136
+ @register_decomposition(aten.pairwise_distance)
1137
+ @out_wrapper()
1138
+ def pairwise_distance(
1139
+ x1: TensorLikeType,
1140
+ x2: TensorLikeType,
1141
+ p: NumberType = 2.0,
1142
+ eps: NumberType = 1e-6,
1143
+ keepdim=False,
1144
+ ) -> TensorLikeType:
1145
+ return torch.linalg.vector_norm(x1 - x2 + eps, ord=p, dim=-1, keepdim=keepdim)
1146
+
1147
+
1148
+ @register_decomposition(aten.pdist)
1149
+ @out_wrapper()
1150
+ @elementwise_type_promotion_wrapper(
1151
+ type_promoting_args=("a",),
1152
+ type_promotion_kind=utils.ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT,
1153
+ )
1154
+ def pdist(a: TensorLikeType, p: float = 2) -> TensorLikeType:
1155
+ torch._check(a.ndim == 2, lambda: f"pdist only supports 2D tensors, got: {a.ndim}D")
1156
+ torch._check(p >= 0, lambda: "pdist only supports non-negative p values")
1157
+ # For p == 2 we can use an efficient implementation, but other values of p
1158
+ # require creating a much bigger tensor for an intermediate step
1159
+ if p == 2:
1160
+ aTa = torch.mm(a, a.T)
1161
+ aTa_diag = torch.diag(aTa)
1162
+ t = torch.sqrt(torch.clamp(aTa_diag + aTa_diag.unsqueeze(-1) - 2 * aTa, min=0))
1163
+ else:
1164
+ t = torch.linalg.vector_norm(a.unsqueeze(1) - a, ord=p, dim=2)
1165
+ i = torch.triu_indices(t.shape[0], t.shape[1], offset=1, device=a.device)
1166
+ return t.flatten().index_select(0, i[0] * t.shape[0] + i[1])
1167
+
1168
+
1169
+ # Needed as aten.{celu_,elu_...} exist (even if they don't have the in-place kwarg)
1170
+ celu_ = _make_inplace(celu)
1171
+ elu_ = _make_inplace(elu)
1172
+ mish_ = _make_inplace(mish)
1173
+ selu_ = _make_inplace(selu)
1174
+ threshold_ = _make_inplace(threshold)
env-llmeval/lib/python3.10/site-packages/torch/_refs/nn/functional/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (24.4 kB). View file
 
env-llmeval/lib/python3.10/site-packages/torch/_refs/special/__init__.py ADDED
@@ -0,0 +1,236 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ from typing import Optional, Union
3
+
4
+ import torch
5
+ import torch._prims as prims
6
+ import torch._prims_common as utils
7
+ import torch._refs as refs
8
+
9
+ from torch import Tensor
10
+ from torch._decomp import register_decomposition
11
+ from torch._prims_common import (
12
+ ELEMENTWISE_TYPE_PROMOTION_KIND,
13
+ Number,
14
+ NumberType,
15
+ TensorLike,
16
+ TensorLikeType,
17
+ )
18
+ from torch._prims_common.wrappers import elementwise_type_promotion_wrapper, out_wrapper
19
+ from torch._refs import (
20
+ _make_alias,
21
+ _make_elementwise_binary_reference,
22
+ _make_elementwise_unary_reference,
23
+ )
24
+
25
+
26
+ __all__ = [
27
+ "bessel_j0",
28
+ "bessel_j1",
29
+ "entr",
30
+ "erfcx",
31
+ "expit",
32
+ "i0e",
33
+ "i1",
34
+ "i1e",
35
+ "log_ndtr",
36
+ "logit",
37
+ "log_softmax",
38
+ "multigammaln",
39
+ "ndtr",
40
+ "ndtri",
41
+ "softmax",
42
+ "spherical_bessel_j0",
43
+ "xlog1py",
44
+ "zeta",
45
+ ]
46
+ aten = torch._ops.ops.aten
47
+
48
+
49
+ @_make_elementwise_unary_reference(
50
+ ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
51
+ )
52
+ def bessel_j0(a: TensorLikeType) -> TensorLikeType:
53
+ return prims.bessel_j0(a)
54
+
55
+
56
+ @_make_elementwise_unary_reference(
57
+ ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
58
+ )
59
+ def bessel_j1(a: TensorLikeType) -> TensorLikeType:
60
+ return prims.bessel_j1(a)
61
+
62
+
63
+ @register_decomposition(aten.special_entr)
64
+ @out_wrapper()
65
+ @elementwise_type_promotion_wrapper(
66
+ type_promoting_args=("a",),
67
+ type_promotion_kind=utils.ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
68
+ )
69
+ def entr(a: TensorLikeType) -> TensorLikeType:
70
+ return torch.where(
71
+ torch.isnan(a),
72
+ a,
73
+ torch.where(a > 0, -a * torch.log(a), torch.where(a == 0, 0, -torch.inf)),
74
+ )
75
+
76
+
77
+ @register_decomposition(aten.special_erfcx)
78
+ @out_wrapper()
79
+ @elementwise_type_promotion_wrapper(
80
+ type_promoting_args=("a",),
81
+ type_promotion_kind=utils.ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
82
+ )
83
+ def erfcx(a: TensorLikeType) -> TensorLikeType:
84
+ return prims.erfcx(a)
85
+
86
+
87
+ # alias for sigmoid
88
+ expit = _make_alias(torch.sigmoid, "expit")
89
+
90
+
91
+ @_make_elementwise_unary_reference(
92
+ ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
93
+ )
94
+ def i0e(a: TensorLikeType) -> TensorLikeType:
95
+ return prims.bessel_i0e(a)
96
+
97
+
98
+ @_make_elementwise_unary_reference(
99
+ ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
100
+ )
101
+ def i1(a: TensorLikeType) -> TensorLikeType:
102
+ return prims.bessel_i1(a)
103
+
104
+
105
+ @_make_elementwise_unary_reference(
106
+ ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
107
+ )
108
+ def i1e(a: TensorLikeType) -> TensorLikeType:
109
+ return prims.bessel_i1e(a)
110
+
111
+
112
+ @register_decomposition(aten.special_log_ndtr)
113
+ @out_wrapper()
114
+ @elementwise_type_promotion_wrapper(
115
+ type_promoting_args=("a",),
116
+ type_promotion_kind=utils.ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
117
+ )
118
+ def log_ndtr(a: TensorLikeType) -> TensorLikeType:
119
+ # Note: M_SQRT1_2 is the value of 1 / √2
120
+ M_SQRT1_2 = 0.707106781186547524400844362104849039
121
+ t = a * M_SQRT1_2
122
+ return torch.where(
123
+ a < 1.0,
124
+ torch.log(torch.special.erfcx(-t) / 2) - t * t,
125
+ torch.log1p(-torch.erfc(t) / 2),
126
+ )
127
+
128
+
129
+ @register_decomposition(aten.logit)
130
+ @out_wrapper()
131
+ @elementwise_type_promotion_wrapper(
132
+ type_promoting_args=("self",),
133
+ type_promotion_kind=utils.ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
134
+ )
135
+ def logit(self: TensorLikeType, eps: Optional[float] = None) -> TensorLikeType:
136
+ if eps is None:
137
+ eps = -1.0
138
+ lo = eps
139
+ hi = 1 - eps
140
+ self = torch.clamp(self, lo, hi)
141
+ return torch.log(torch.true_divide(self, torch.sub(1, self)))
142
+
143
+
144
+ @register_decomposition(aten.special_xlog1py)
145
+ @out_wrapper()
146
+ @elementwise_type_promotion_wrapper(
147
+ type_promoting_args=("a", "b"),
148
+ type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
149
+ )
150
+ def xlog1py(a: Union[TensorLikeType, NumberType], b: Union[TensorLikeType, NumberType]):
151
+ torch._check(
152
+ isinstance(a, TensorLike) or isinstance(b, TensorLike),
153
+ lambda: 'Expected either argument a or b to be a Tensor"',
154
+ )
155
+
156
+ # Operations like eq and log do not handle scalar values, so we convert them to scalar_tensors.
157
+ if isinstance(a, TensorLike) and isinstance(b, Number):
158
+ b = refs.scalar_tensor(b, dtype=a.dtype, device=a.device)
159
+ elif isinstance(b, TensorLike) and isinstance(a, Number):
160
+ a = refs.scalar_tensor(a, dtype=b.dtype, device=b.device)
161
+
162
+ # mypy: expected "Tensor"
163
+ assert isinstance(a, TensorLike)
164
+ assert isinstance(b, TensorLike)
165
+ rhs = torch.where(torch.eq(a, 0), 0, torch.mul(a, torch.log1p(b)))
166
+ return torch.where(torch.isnan(b), float("nan"), rhs)
167
+
168
+
169
+ @register_decomposition(aten.mvlgamma)
170
+ @out_wrapper()
171
+ @elementwise_type_promotion_wrapper(
172
+ type_promoting_args=("a",),
173
+ type_promotion_kind=utils.ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
174
+ )
175
+ def multigammaln(a: TensorLikeType, p: int) -> TensorLikeType:
176
+ c = 0.25 * p * (p - 1) * math.log(math.pi)
177
+ b = 0.5 * torch.arange(start=(1 - p), end=1, step=1, dtype=a.dtype, device=a.device)
178
+ return torch.sum(torch.lgamma(a.unsqueeze(-1) + b), dim=-1) + c
179
+
180
+
181
+ @register_decomposition(aten.special_ndtr)
182
+ @out_wrapper()
183
+ @elementwise_type_promotion_wrapper(
184
+ type_promoting_args=("a",),
185
+ type_promotion_kind=utils.ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
186
+ )
187
+ def ndtr(a: TensorLikeType) -> TensorLikeType:
188
+ # Note: M_SQRT1_2 is the value of 1 / √2
189
+ M_SQRT1_2 = 0.707106781186547524400844362104849039
190
+ a_sqrt_2 = a * M_SQRT1_2
191
+ return (1 + torch.erf(a_sqrt_2)) * 0.5
192
+
193
+
194
+ @register_decomposition(aten.special_ndtri)
195
+ @out_wrapper()
196
+ @elementwise_type_promotion_wrapper(
197
+ type_promoting_args=("a",),
198
+ type_promotion_kind=utils.ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
199
+ )
200
+ def ndtri(a: TensorLikeType) -> TensorLikeType:
201
+ return prims.ndtri(a)
202
+
203
+
204
+ # Forwarding alias: the special variant doesn't support the out kwarg
205
+ # CompositeImplicitAutograd - don't register decomp
206
+ def log_softmax(
207
+ a: TensorLikeType,
208
+ dim: int,
209
+ dtype: Optional[torch.dtype] = None,
210
+ ) -> TensorLikeType:
211
+ return torch.log_softmax(a=a, dim=dim, dtype=dtype) # type: ignore[call-overload]
212
+
213
+
214
+ # Forwarding alias: the special variant doesn't support the out kwarg
215
+ # CompositeImplicitAutograd - don't register decomp
216
+ def softmax(
217
+ a: TensorLikeType,
218
+ dim: int,
219
+ dtype: Optional[torch.dtype] = None,
220
+ ) -> TensorLikeType:
221
+ return torch.softmax(a=a, dim=dim, dtype=dtype) # type: ignore[call-overload]
222
+
223
+
224
+ @_make_elementwise_unary_reference(
225
+ ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
226
+ )
227
+ def spherical_bessel_j0(a: TensorLikeType) -> TensorLikeType:
228
+ return prims.spherical_bessel_j0(a)
229
+
230
+
231
+ # TODO: add docstring
232
+ @_make_elementwise_binary_reference(
233
+ type_promotion_kind=utils.ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
234
+ )
235
+ def zeta(a: TensorLikeType, b: TensorLikeType) -> TensorLikeType:
236
+ return prims.zeta(a, b)
env-llmeval/lib/python3.10/site-packages/torch/_refs/special/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (5.09 kB). View file
 
env-llmeval/lib/python3.10/site-packages/torch/_subclasses/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (482 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/torch/_subclasses/__pycache__/fake_tensor.cpython-310.pyc ADDED
Binary file (44.7 kB). View file
 
env-llmeval/lib/python3.10/site-packages/torch/_subclasses/__pycache__/fake_utils.cpython-310.pyc ADDED
Binary file (5.57 kB). View file
 
env-llmeval/lib/python3.10/site-packages/torch/_subclasses/__pycache__/functional_tensor.cpython-310.pyc ADDED
Binary file (16.4 kB). View file
 
env-llmeval/lib/python3.10/site-packages/torch/_subclasses/__pycache__/meta_utils.cpython-310.pyc ADDED
Binary file (13 kB). View file
 
env-llmeval/lib/python3.10/site-packages/torch/_subclasses/__pycache__/schema_check_mode.cpython-310.pyc ADDED
Binary file (6.09 kB). View file
 
env-llmeval/lib/python3.10/site-packages/torch/_subclasses/fake_utils.py ADDED
@@ -0,0 +1,188 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import functools
2
+ import warnings
3
+ from typing import Callable, Union
4
+
5
+ import torch
6
+ import torch.utils._pytree as pytree
7
+ from torch._ops import OpOverload
8
+ from torch._subclasses.fake_tensor import (
9
+ FakeTensorMode,
10
+ tree_flatten_only,
11
+ UnsupportedFakeTensorException,
12
+ )
13
+ from torch.utils._python_dispatch import TorchDispatchMode
14
+
15
+
16
+ aten = torch._ops.ops.aten
17
+
18
+
19
+ def outputs_alias_inputs(outputs, inputs):
20
+ input_storages = {
21
+ inp._typed_storage()._cdata
22
+ for inp in tree_flatten_only(torch.Tensor, inputs)
23
+ if torch._C._has_storage(inp)
24
+ }
25
+ return any(
26
+ torch._C._has_storage(out) and out._typed_storage()._cdata in input_storages
27
+ for out in tree_flatten_only(torch.Tensor, outputs)
28
+ )
29
+
30
+
31
+ def outputs_are_inputs(outputs, inputs):
32
+ input_ids = {id(inp) for inp in tree_flatten_only(torch.Tensor, inputs)}
33
+ return any(id(out) in input_ids for out in tree_flatten_only(torch.Tensor, outputs))
34
+
35
+
36
+ def output_alias_each_other(outputs):
37
+ storages = set()
38
+ for out in tree_flatten_only(torch.Tensor, outputs):
39
+ if not torch._C._has_storage(out):
40
+ continue
41
+ stor = out._typed_storage()._cdata
42
+ if stor in storages:
43
+ return True
44
+ storages.add(stor)
45
+ return False
46
+
47
+
48
+ def is_sdpa_error(func, idx, e):
49
+ if (
50
+ (
51
+ func is aten._scaled_dot_product_flash_attention.default
52
+ or func is aten._flash_attention_forward.default
53
+ )
54
+ and idx in (6, 7)
55
+ and "Devices" in repr(e)
56
+ ):
57
+ return True
58
+ if (
59
+ (
60
+ func is aten._scaled_dot_product_efficient_attention.default
61
+ or func is aten._efficient_attention_forward.default
62
+ )
63
+ and idx in (2, 3)
64
+ and "Devices" in repr(e)
65
+ ):
66
+ return True
67
+ return False
68
+
69
+
70
+ class CrossRefFakeMode(TorchDispatchMode):
71
+ def __init__(
72
+ self,
73
+ ignore_op_fn: Union[Callable[[OpOverload], bool], None] = None,
74
+ *,
75
+ check_strides=True,
76
+ check_aliasing=True,
77
+ ):
78
+ self.ignore_op_fn = (
79
+ ignore_op_fn if ignore_op_fn is not None else lambda fn: False
80
+ )
81
+ self.check_strides = check_strides
82
+ self.check_aliasing = check_aliasing
83
+
84
+ def __torch_dispatch__(self, func, types, args=(), kwargs=None):
85
+ kwargs = kwargs or {}
86
+
87
+ fake_r = None
88
+
89
+ # empty_like excluded for now due to sparse complex
90
+ # aten._to_dense.default this one is getting called with csc
91
+ if (
92
+ func
93
+ not in (
94
+ aten.lift_fresh.default,
95
+ aten.lift_fresh_copy.default,
96
+ aten.set_.source_Storage_storage_offset,
97
+ )
98
+ and not self.ignore_op_fn(func)
99
+ and torch.Tag.dynamic_output_shape not in func.tags
100
+ and torch.Tag.inplace_view not in func.tags
101
+ and torch.Tag.data_dependent_output not in func.tags
102
+ ):
103
+ # Do not import symbolic_shapes at the top of the module as it imports sympy and that's slow
104
+ from torch.fx.experimental.symbolic_shapes import ShapeEnv
105
+
106
+ try:
107
+ # TODO: enable_python_dispatcher() here
108
+ with FakeTensorMode(shape_env=ShapeEnv()) as fake_mode:
109
+ fake_args, fake_kwargs = pytree.tree_map_only(
110
+ torch.Tensor,
111
+ functools.partial(fake_mode.from_tensor, static_shapes=True),
112
+ (args, kwargs),
113
+ )
114
+ with warnings.catch_warnings():
115
+ fake_r = func(*fake_args, **fake_kwargs)
116
+ except UnsupportedFakeTensorException:
117
+ pass
118
+
119
+ context = (
120
+ f"When comparing the output of {func} on FakeTensor and concrete Tensors, "
121
+ f"found"
122
+ )
123
+ r = func(*args, **kwargs)
124
+ if fake_r is not None:
125
+ r_flat = pytree.tree_leaves(r)
126
+ f_flat = pytree.tree_leaves(fake_r)
127
+ assert len(f_flat) == len(
128
+ r_flat
129
+ ), f"{context} mismatch in number of returns {len(f_flat)} != {len(r_flat)}"
130
+
131
+ if self.check_aliasing:
132
+ r_aliasing = outputs_alias_inputs(r, (args, kwargs))
133
+ f_aliasing = outputs_alias_inputs(fake_r, (fake_args, fake_kwargs))
134
+ assert (
135
+ r_aliasing == f_aliasing
136
+ ), f"{context} mismatch in outputs_alias_inputs check {f_aliasing} != {r_aliasing}"
137
+
138
+ r_identity_eq = outputs_are_inputs(r, (args, kwargs))
139
+ f_identity_eq = outputs_are_inputs(fake_r, (fake_args, fake_kwargs))
140
+ assert (
141
+ r_identity_eq == f_identity_eq
142
+ ), f"{context} mismatch in outputs_are_inputs check {f_identity_eq} != {r_identity_eq}"
143
+
144
+ r_output_alias_each_other = output_alias_each_other(r)
145
+ f_output_alias_each_other = output_alias_each_other(fake_r)
146
+ assert r_output_alias_each_other == f_output_alias_each_other, (
147
+ f"{context} mismatch in outputs_alias_each_other check "
148
+ f"{f_output_alias_each_other} != {r_output_alias_each_other}"
149
+ )
150
+
151
+ for idx, (r_out, fake_out) in enumerate(
152
+ zip(pytree.tree_leaves(r), pytree.tree_leaves(fake_r))
153
+ ):
154
+ r_is_ten = isinstance(r_out, torch.Tensor)
155
+ assert r_is_ten == isinstance(
156
+ fake_out, torch.Tensor
157
+ ), f"{context} mismatched number of tensor outputs"
158
+ if r_is_ten:
159
+ assert r_out.requires_grad == fake_out.requires_grad, (
160
+ f"{context} mismatched requires_grad-ness of outputs. "
161
+ f"This usually means that you have added autograd support "
162
+ f"for your operator at a dispatch key other than Autograd, "
163
+ f"which will lead to problems"
164
+ )
165
+ if torch._C._has_storage(r_out):
166
+ r_offset = r_out.storage_offset()
167
+ f_offset = fake_out.storage_offset()
168
+ assert (
169
+ r_offset == f_offset
170
+ ), f"{context} mismatched storage offset"
171
+
172
+ try:
173
+ torch._prims.utils.compare_tensor_meta(
174
+ r_out,
175
+ fake_out,
176
+ check_strides=self.check_strides,
177
+ allow_rhs_unbacked=True,
178
+ )
179
+ except Exception as e:
180
+ if is_sdpa_error(func, idx, e):
181
+ continue
182
+ error_message = (
183
+ f"{context} mismatched tensor metadata: {e}"
184
+ if len(r_flat) == 1
185
+ else f"{context} mismatched tensor metadata for output[{idx}]: {e}"
186
+ )
187
+ raise RuntimeError(error_message) from e
188
+ return r
env-llmeval/lib/python3.10/site-packages/torch/_subclasses/functional_tensor.py ADDED
@@ -0,0 +1,552 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import contextlib
2
+ from abc import ABC, abstractmethod
3
+ from typing import Any, Callable, ContextManager, Tuple
4
+
5
+ import torch
6
+ import torch.utils._pytree as pytree
7
+ from torch._C import _functionalization_reapply_views_tls as _reapply_views
8
+ from torch.utils._python_dispatch import return_and_correct_aliasing, TorchDispatchMode
9
+
10
+ not_implemented_log = torch._logging.getArtifactLogger(__name__, "not_implemented")
11
+
12
+
13
+ class FunctionalTensor(torch.Tensor):
14
+ """
15
+ Functional tensors represent tensors that will remove mutations
16
+ from a program. If you perform a mutable operation on a functional tensor,
17
+ it will re-dispatch to the functional variant of that operation.
18
+
19
+ Historically, functionalization is implemented in C++ in the dispatcher.
20
+ This class is a lightweight python shim around the C++ functionalization logic.
21
+
22
+ FunctionalTensor is required to be used with a corresponding
23
+ FunctionalTensormode active, because it relies
24
+ on using the mode for dispatch (which can properly handle factory functions).
25
+ """
26
+
27
+ elem: torch.Tensor
28
+ # Indicates to our torch_dispatch dispatching infra that
29
+ # this is an "infra" mode with lower dispatching precedence.
30
+ _mode_key = torch._C._TorchDispatchModeKey.FUNCTIONAL
31
+
32
+ # Note: The reason we add these extra keys to our FunctionalTensor subclass
33
+ # is to mirror the behavior of C++ functionalization (we can choose to change this
34
+ # later, as long as it doesn't break anything).
35
+ # FunctionalTensorWrapper copies **all** dispatch keys from the inner tensor
36
+ # to the wrapper, excluding functorch and python dispatch keys.
37
+ # Here I'm trying to re-use the keyset the functorch wrapper subclasses copy,
38
+ # except that they don't include ZeroTensor so I'm manually adding it in.
39
+ _extra_dispatch_keys = torch._C._additional_keys_to_prop_for_wrapper_tensors.add(
40
+ torch._C.DispatchKey.ZeroTensor
41
+ )
42
+
43
+ # These are all aten ops that correspond to metadata queries.
44
+ # We want FunctionalTensor to be able to handle them directly.
45
+ metadata_fns = [
46
+ torch.ops.aten.is_contiguous.default, # type: ignore[has-type]
47
+ torch.ops.aten.is_contiguous.memory_format, # type: ignore[has-type]
48
+ torch.ops.aten.is_strides_like_format.default, # type: ignore[has-type]
49
+ torch.ops.aten.is_non_overlapping_and_dense.default, # type: ignore[has-type]
50
+ torch.ops.aten.size.default, # type: ignore[has-type]
51
+ torch.ops.aten.sym_size.default, # type: ignore[has-type]
52
+ torch.ops.aten.stride.default, # type: ignore[has-type]
53
+ torch.ops.aten.sym_stride.default, # type: ignore[has-type]
54
+ torch.ops.aten.storage_offset.default, # type: ignore[has-type]
55
+ torch.ops.aten.sym_storage_offset.default, # type: ignore[has-type]
56
+ torch.ops.aten.numel.default, # type: ignore[has-type]
57
+ torch.ops.aten.sym_numel.default, # type: ignore[has-type]
58
+ torch.ops.aten.dim.default, # type: ignore[has-type]
59
+ ]
60
+
61
+ def __new__(cls, elem):
62
+ assert torch._is_functional_tensor(elem)
63
+
64
+ # In general, we'd like our functional tensor subclass to only be in charge of functionalization,
65
+ # and defer to the inner subclass for all other functionality.
66
+ # Example: If our inner tensor is a ZeroTensor, we would want to defer running the ZeroTensor fallback
67
+ # until after we redispatch to our inner ZeroTensor.
68
+ # However, there are a few keys that we need to mirror between the inner and outer tensors.
69
+ # Conjugate
70
+ # Negative
71
+ # Why? These keys are used to test metadata queries, like `.is_conj()` and `.is_neg()`.
72
+ # We **need** calls to is_conj() to return the same thing on the outer and inner tensors,
73
+ # Because user code / framework code that branches like so needs to do the same thing
74
+ # when it sees the outer FunctionalTensor:
75
+ # if (x.is_conj()) {
76
+ # return at::view_as_real(x.resolve_conj());
77
+ # } else {
78
+ # return at::view_as_real(x);
79
+ # }
80
+ extra_dispatch_keys = (
81
+ FunctionalTensor._extra_dispatch_keys & torch._C._dispatch_keys(elem)
82
+ )
83
+
84
+ out = torch.Tensor._make_wrapper_subclass( # type: ignore[arg-type, attr-defined]
85
+ # TODO: right now, _make_wrapper_subclass's dynamic shape interaction is not great.
86
+ # Calling the overload that has kwargs causes us to go down the first overload path,
87
+ # which will **always** specialize sizes.
88
+ # We should probably eventually fix this so that the first overload can just handle dynamic shapes.
89
+ cls,
90
+ elem.shape, # sizes
91
+ elem.stride(), # strides
92
+ elem.storage_offset(), # storage_offset
93
+ None, # memory_format
94
+ elem.dtype, # dtype
95
+ elem.layout, # layout
96
+ elem.device, # device
97
+ False, # pin_memory
98
+ elem.requires_grad, # requires_grad
99
+ "sizes", # dispatch_sizes_strides_policy
100
+ False, # dispatch_device
101
+ False, # dispatch_layout
102
+ extra_dispatch_keys, # _extra_dispatch_keys
103
+ )
104
+ out.elem = elem
105
+ return out
106
+
107
+ # Need to disable default torch_function. Why?
108
+ # Default torch_function will always wrap outputs into a subclass if they aren't already a subclass.
109
+ # We actually.. don't want to do this sometimes, see Note [FunctionalTensorMode inputs are sometimes plain tensors]
110
+ __torch_function__ = torch._C._disabled_torch_function_impl
111
+
112
+ def __torch_dispatch__(self, func, types, args=(), kwargs=None):
113
+ unrecognized_types = [
114
+ t
115
+ for t in types
116
+ if t not in [torch.Tensor, torch._subclasses.FakeTensor, FunctionalTensor]
117
+ ]
118
+ if unrecognized_types:
119
+ not_implemented_log.debug(
120
+ "FunctionalTensor unrecognized subclass(es): %s", unrecognized_types
121
+ )
122
+ return NotImplemented
123
+
124
+ if kwargs is None:
125
+ kwargs = {}
126
+
127
+ # FunctionalTensor needs to plumb all metadata requests to the inner tensor.
128
+ # In theory we don't have to do this - but if we want to service metadata requests here,
129
+ # we need to carefully make sure all metadata is accurate (including metadata mutations)
130
+ if func in FunctionalTensor.metadata_fns:
131
+
132
+ def unwrap(x):
133
+ return x.elem
134
+
135
+ assert len(args) == 1 and isinstance(args[0], FunctionalTensor)
136
+ assert len(kwargs) == 0
137
+ # All metadata accesses should be plumbed to the inner tensor, that way we don't have to worry
138
+ # about the problem of keeping metadata in sync between the wrapper and inner tensor.
139
+ # This also alleviates us from having to manually handle metadata mutations on the wrapper.
140
+ return func(args[0].elem)
141
+ # Originally I tried to implement my subclass without giving it a torch_dispatch, but I gave up:
142
+ # - _make_wrapper_subclass requires a __torch_dispatch__
143
+ # - If we want to use _make_subclass(), we have a problem: the subclass will share a TensorImpl with the inner tensor,
144
+ # which is of type FunctionalTensorWrapper! We explicitly do not want our wrapper to be a FunctionalTensorWrapper.
145
+ # - If we use the default tensor.__new__(), we have another problem: it returns inner_tensor.alias(),
146
+ # which causes every subclass created above autograd to have autograd view metadata
147
+ # (in addition to also being a FunctionalTensorWrapper).
148
+ raise RuntimeError(
149
+ "Attempting to use FunctionalTensor on its own. Instead, please use it with a corresponding FunctionalTensorMode()"
150
+ )
151
+
152
+ def __repr__(self):
153
+ return f"FunctionalTensor({repr(self.elem)})"
154
+
155
+ @staticmethod
156
+ def to_functional(x):
157
+ # We will do the wrapping for the user.
158
+ assert not torch._is_functional_tensor(x)
159
+ # The only autograd metadata we care about on the FunctionalTensor is:
160
+ # - requires_grad (so autograd runs)
161
+ # - is_leaf (so that mutations on graph inputs that are not leaves are allowed by the autograd engine)
162
+ # this is handled by FunctionalTensor.to_functional
163
+ x_functional = torch._to_functional_tensor(x)
164
+ # Technically the FunctionalTensormode here is unnecessary,
165
+ # but it avoids spurious NotImplemented logs during `ProxyTorchDispatchMode` tracing.
166
+ # _mirror_autograd_meta_to queries tensor sizes,
167
+ # and otherwise the sym_size() call will go to the proxy mode before hitting
168
+ # FunctionalTensor.__torch_dispatch__
169
+ with FunctionalTensorMode():
170
+ torch._mirror_autograd_meta_to(x, x_functional) # type: ignore[attr-defined]
171
+ out = FunctionalTensor(x_functional)
172
+ torch._mirror_autograd_meta_to(x_functional, out) # type: ignore[attr-defined]
173
+ return out
174
+
175
+ def from_functional(self):
176
+ torch._sync(self)
177
+ return torch._from_functional_tensor(self.elem)
178
+
179
+ def replace_(self, output) -> None:
180
+ torch._functionalize_replace(self.elem, output)
181
+
182
+ def commit_update(self) -> None:
183
+ torch._functionalize_commit_update(self.elem)
184
+
185
+ def sync(self) -> None:
186
+ torch._functionalize_sync(self.elem)
187
+
188
+ def mark_mutation_hidden_from_autograd(self) -> None:
189
+ torch._functionalize_mark_mutation_hidden_from_autograd(self.elem)
190
+
191
+
192
+ class FunctionalTensorMode(TorchDispatchMode):
193
+ def __init__(self):
194
+ self.is_on_stack = False
195
+ self.enter_stack = []
196
+ # Indicates to our torch_dispatch dispatching infra that
197
+ # this is an "infra" mode with lower dispatching precedence.
198
+ self._mode_key = torch._C._TorchDispatchModeKey.FUNCTIONAL
199
+ # This will be turned off later for pre-dispatch functionalization
200
+ self.decompose_composite_implicit_ops = True
201
+
202
+ # No-op if FunctionalTensorMode is already in use
203
+ def __enter__(self):
204
+ if (
205
+ torch._C._get_dispatch_mode(torch._C._TorchDispatchModeKey.FUNCTIONAL)
206
+ is None
207
+ ):
208
+ self.enter_stack.append(True)
209
+
210
+ return super().__enter__()
211
+ else:
212
+ self.enter_stack.append(False)
213
+ return self
214
+
215
+ def __exit__(self, a, b, c):
216
+ is_on_stack = self.enter_stack.pop()
217
+ if is_on_stack:
218
+ super().__exit__(a, b, c)
219
+
220
+ def __torch_dispatch__(self, func, types, args=(), kwargs=None):
221
+ if kwargs is None:
222
+ kwargs = {}
223
+
224
+ unrecognized_types = [
225
+ t
226
+ for t in types
227
+ if not issubclass(t, torch._subclasses.FakeTensor)
228
+ and t not in [torch.Tensor, FunctionalTensor]
229
+ ]
230
+ if unrecognized_types:
231
+ not_implemented_log.debug(
232
+ "FunctionalTensor unrecognized subclass(es): %s", unrecognized_types
233
+ )
234
+ return NotImplemented
235
+
236
+ if (
237
+ func not in FunctionalTensor.metadata_fns
238
+ and self.decompose_composite_implicit_ops
239
+ # Not all funcs from __torch_dispatch__ are actual dispatcher ops,
240
+ # e.g. prim.device
241
+ and torch._C._dispatch_has_kernel(func.name())
242
+ ):
243
+ with self:
244
+ # Decomposes CompositeImplicitAutograd ops
245
+ r = func.decompose(*args, **kwargs)
246
+ if r is not NotImplemented:
247
+ return r
248
+
249
+ def assert_is_functional(x):
250
+ assert torch._is_functional_tensor(x)
251
+
252
+ def wrap(x):
253
+ # Only wrap our outputs in subclasses if the inner functionalization call
254
+ # also wrapped outputs into FunctionalTensorWrappers.
255
+ # When can this happen? e.g. `torch.div(2, 2)`
256
+ assert not isinstance(x, FunctionalTensor)
257
+ if isinstance(x, torch.Tensor) and torch._is_functional_tensor(x):
258
+ return FunctionalTensor(x)
259
+ return x
260
+
261
+ any_functional_inputs = False
262
+
263
+ def unwrap(x):
264
+ any_functional_inputs = True
265
+ return x.elem
266
+
267
+ from torch._higher_order_ops.auto_functionalize import (
268
+ can_auto_functionalize,
269
+ do_auto_functionalize,
270
+ )
271
+
272
+ if can_auto_functionalize(
273
+ func
274
+ ) and not torch._C._dispatch_has_kernel_for_dispatch_key(
275
+ func.name(), torch._C.DispatchKey.Functionalize
276
+ ):
277
+ return do_auto_functionalize(func, args, kwargs)
278
+
279
+ args_unwrapped, kwargs_unwrapped = pytree.tree_map_only(
280
+ FunctionalTensor, unwrap, (args, kwargs)
281
+ )
282
+
283
+ # Expectation: functionalization should not **already** be enabled above our mode.
284
+ # Why would that be bad? when we return a FunctionalTensor here, we don't want functionalization
285
+ # to run above this mode and further wrap that output in **another** C++ FunctionalTensorWrapper.
286
+ is_included = torch._C._dispatch_tls_is_dispatch_key_included(
287
+ torch._C.DispatchKey.Functionalize
288
+ )
289
+ is_excluded = torch._C._dispatch_tls_is_dispatch_key_excluded(
290
+ torch._C.DispatchKey.Functionalize
291
+ )
292
+ assert is_excluded or not is_included
293
+ include_to_set = (
294
+ torch._C._dispatch_tls_local_include_set()
295
+ | torch._C.DispatchKeySet(torch._C.DispatchKey.Functionalize)
296
+ )
297
+ exclude_to_set = (
298
+ torch._C._dispatch_tls_local_exclude_set().remove(
299
+ torch._C.DispatchKey.Functionalize
300
+ )
301
+ - FunctionalTensor._extra_dispatch_keys
302
+ )
303
+ # All we want to do here is re-use the existing C++ functionalization logic.
304
+ # This requires swizzling our TLS dispatch keys so that the Functionalize key is active.
305
+ with torch._C._ForceDispatchKeyGuard(include_to_set, exclude_to_set):
306
+ try:
307
+ # By default for python functionalization (for AOTAutograd), we reapply views.
308
+ old_apply_views = torch._functionalize_enable_reapply_views(True) # type: ignore[attr-defined]
309
+ outs_unwrapped = func(*args_unwrapped, **kwargs_unwrapped)
310
+ outs_wrapped = pytree.tree_map_only(torch.Tensor, wrap, outs_unwrapped)
311
+ finally:
312
+ torch._disable_functionalization()
313
+ torch._functionalize_enable_reapply_views(old_apply_views) # type: ignore[attr-defined]
314
+
315
+ is_included = torch._C._dispatch_tls_is_dispatch_key_included(
316
+ torch._C.DispatchKey.Functionalize
317
+ )
318
+ is_excluded = torch._C._dispatch_tls_is_dispatch_key_excluded(
319
+ torch._C.DispatchKey.Functionalize
320
+ )
321
+ assert is_excluded or not is_included
322
+
323
+ if (
324
+ # If no outputs are our functional subclass, then don't try to fix up aliasing
325
+ not any(
326
+ isinstance(x, FunctionalTensor)
327
+ for x in pytree.tree_leaves(outs_wrapped)
328
+ )
329
+ # Since lift_fresh lifts its argument into a functional tensor, we can skip the
330
+ # aliasing correction step. Otherwise, we would be setting the storage of a
331
+ # lifted tensor to that of an unlifted tensor.
332
+ # Ref: https://github.com/pytorch/pytorch/issues/111506
333
+ or func == torch.ops.aten.lift_fresh.default
334
+ ):
335
+ return outs_wrapped
336
+ # Wrapper tensor subclasses do not have correct aliasing info! Use this util to manually correct the output aliasing.
337
+ # inplace ops like `aten.add_()` are expected to return inputs **directly**, instead of creating fresh tensor objects.
338
+ # Use this util to figure out the right thing to return.
339
+ # If none of our inputs were wrapped, then we have no FunctionalTensor outputs that we need to fix up storages for.
340
+ return return_and_correct_aliasing(func, args, kwargs, outs_wrapped)
341
+
342
+
343
+ @contextlib.contextmanager
344
+ def maybe_disable_functional_mode():
345
+ maybe_func_mode = torch._C._unset_dispatch_mode(
346
+ torch._C._TorchDispatchModeKey.FUNCTIONAL
347
+ )
348
+ try:
349
+ yield
350
+ finally:
351
+ if maybe_func_mode is not None:
352
+ torch._C._set_dispatch_mode(maybe_func_mode)
353
+
354
+
355
+ # TODO: clean up the redundancy here,
356
+ # unify on a single context manager for all mode keys.
357
+ @contextlib.contextmanager
358
+ def unset_functional_temporarily():
359
+ old = torch._C._unset_dispatch_mode(torch._C._TorchDispatchModeKey.FUNCTIONAL)
360
+ try:
361
+ yield old
362
+ finally:
363
+ if old is not None:
364
+ torch._C._set_dispatch_mode(old)
365
+
366
+
367
+ # This is similar to torch.func.functionalize, but:
368
+ # - It uses FunctionalTensorMode, and FunctionalTensor (a python subclass).
369
+ # One important advantage to using this mode is that it will let us
370
+ # run functionalization underneath __torch_dispatch__,
371
+ # which we need in AOTAutograd.
372
+ # - Doing so means that it does not automatically compose with other
373
+ # functorch transforms, since these transforms always run above __torch_dispatch__.
374
+ # That's why this util lives here, and not in functorch.
375
+ def dispatch_functionalize(func):
376
+ # TODO: pull these from aot autograd
377
+ def to_fun(t):
378
+ if isinstance(t, torch.Tensor):
379
+ return FunctionalTensor.to_functional(t)
380
+ return t
381
+
382
+ def from_fun(t):
383
+ if not isinstance(t, FunctionalTensor):
384
+ # quick sanity assert
385
+ if isinstance(t, torch.Tensor):
386
+ assert not torch._is_functional_tensor(t)
387
+ return t
388
+ torch._sync(t)
389
+ return torch._from_functional_tensor(t.elem)
390
+
391
+ def inner(*args, **kwargs):
392
+ func_args = pytree.tree_map_only(torch.Tensor, to_fun, args)
393
+ func_kwargs = pytree.tree_map_only(torch.Tensor, to_fun, kwargs)
394
+
395
+ flattened_wrapped_args = pytree.arg_tree_leaves(*func_args)
396
+ flattened_wrapped_kwargs = pytree.arg_tree_leaves(**func_kwargs)
397
+
398
+ disable_above = torch._C._ExcludeDispatchKeyGuard(
399
+ torch._C.DispatchKeySet(torch._C.DispatchKey.Functionalize)
400
+ )
401
+ with disable_above, FunctionalTensorMode():
402
+ func_outputs = func(*func_args, **func_kwargs)
403
+ outputs = pytree.tree_map_only(FunctionalTensor, from_fun, func_outputs)
404
+
405
+ return outputs
406
+
407
+ return inner
408
+
409
+
410
+ class BaseFunctionalizeAPI(ABC):
411
+ @abstractmethod
412
+ def wrap_tensors(self, args: Tuple[Any]) -> Tuple[Any]:
413
+ pass
414
+
415
+ @abstractmethod
416
+ def unwrap_tensors(self, args: Tuple[Any]) -> Tuple[Any]:
417
+ pass
418
+
419
+ @abstractmethod
420
+ def functionalize(self, inner_f: Callable) -> Callable:
421
+ pass
422
+
423
+ @abstractmethod
424
+ def redispatch_to_next(self) -> ContextManager:
425
+ pass
426
+
427
+ @abstractmethod
428
+ def replace(self, input_tensor, output_tensor) -> None:
429
+ pass
430
+
431
+ @abstractmethod
432
+ def commit_update(self, tensor) -> None:
433
+ pass
434
+
435
+ @abstractmethod
436
+ def sync(self, tensor) -> None:
437
+ pass
438
+
439
+ @abstractmethod
440
+ def mark_mutation_hidden_from_autograd(self, tensor) -> None:
441
+ pass
442
+
443
+
444
+ class PythonFunctionalizeAPI(BaseFunctionalizeAPI):
445
+ def wrap_tensors(self, args: Tuple[Any]) -> Tuple[Any]:
446
+ return torch.utils._pytree.tree_map_only(
447
+ FunctionalTensor, FunctionalTensor.to_functional, args
448
+ )
449
+
450
+ def unwrap_tensors(self, args: Tuple[Any]) -> Tuple[Any]:
451
+ return torch.utils._pytree.tree_map_only(
452
+ FunctionalTensor, FunctionalTensor.from_functional, args
453
+ )
454
+
455
+ def functionalize(self, inner_f: Callable) -> Callable:
456
+ return dispatch_functionalize(inner_f)
457
+
458
+ def redispatch_to_next(self) -> ContextManager:
459
+ return unset_functional_temporarily()
460
+
461
+ def replace(self, input_tensor, output_tensor) -> None:
462
+ assert isinstance(input_tensor, FunctionalTensor)
463
+ assert not isinstance(output_tensor, FunctionalTensor)
464
+ input_tensor.replace_(output_tensor)
465
+
466
+ def commit_update(self, tensor) -> None:
467
+ assert isinstance(tensor, FunctionalTensor)
468
+ tensor.commit_update()
469
+
470
+ def sync(self, tensor) -> None:
471
+ assert isinstance(tensor, FunctionalTensor)
472
+ tensor.sync()
473
+
474
+ def mark_mutation_hidden_from_autograd(self, tensor) -> None:
475
+ assert isinstance(tensor, FunctionalTensor)
476
+ tensor.mark_mutation_hidden_from_autograd()
477
+
478
+
479
+ class CppFunctionalizeAPI(BaseFunctionalizeAPI):
480
+ def wrap_tensors(self, args: Tuple[Any]) -> Tuple[Any]:
481
+ from torch._functorch.eager_transforms import _wrap_all_tensors_to_functional
482
+
483
+ return _wrap_all_tensors_to_functional(args, level=0)
484
+
485
+ def unwrap_tensors(self, args: Tuple[Any]) -> Tuple[Any]:
486
+ from torch._functorch.eager_transforms import (
487
+ _unwrap_all_tensors_from_functional,
488
+ )
489
+
490
+ return _unwrap_all_tensors_from_functional(args, reapply_views=_reapply_views())
491
+
492
+ def functionalize(self, inner_f: Callable) -> Callable:
493
+ return torch.func.functionalize(inner_f)
494
+
495
+ def redispatch_to_next(self) -> ContextManager:
496
+ return torch._C._ExcludeDispatchKeyGuard(
497
+ torch._C.DispatchKeySet(torch._C.DispatchKey.Functionalize)
498
+ )
499
+
500
+ def replace(self, input_tensor, output_tensor) -> None:
501
+ torch._functionalize_replace(input_tensor, output_tensor)
502
+
503
+ def commit_update(self, tensor) -> None:
504
+ torch._functionalize_commit_update(tensor)
505
+
506
+ def sync(self, tensor) -> None:
507
+ torch._functionalize_sync(tensor)
508
+
509
+ def mark_mutation_hidden_from_autograd(self, tensor) -> None:
510
+ torch._functionalize_mark_mutation_hidden_from_autograd(tensor)
511
+
512
+
513
+ class FunctorchFunctionalizeAPI(BaseFunctionalizeAPI):
514
+ def __init__(self, interpreter):
515
+ self.interpreter = interpreter
516
+
517
+ def wrap_tensors(self, args: Tuple[Any]) -> Tuple[Any]:
518
+ from torch._functorch.eager_transforms import _wrap_all_tensors_to_functional
519
+
520
+ return _wrap_all_tensors_to_functional(args, level=self.interpreter.level())
521
+
522
+ def unwrap_tensors(self, args: Tuple[Any]) -> Tuple[Any]:
523
+ from torch._functorch.eager_transforms import (
524
+ _unwrap_all_tensors_from_functional,
525
+ )
526
+
527
+ return _unwrap_all_tensors_from_functional(
528
+ args, reapply_views=self.interpreter.functionalize_add_back_views()
529
+ )
530
+
531
+ def functionalize(self, inner_f: Callable) -> Callable:
532
+ return torch.func.functionalize(
533
+ inner_f,
534
+ remove="mutations_and_views"
535
+ if self.interpreter.functionalize_add_back_views()
536
+ else "mutations",
537
+ )
538
+
539
+ def redispatch_to_next(self) -> ContextManager:
540
+ return self.interpreter.lower()
541
+
542
+ def replace(self, input_tensor, output_tensor) -> None:
543
+ torch._functionalize_replace(input_tensor, output_tensor)
544
+
545
+ def commit_update(self, tensor) -> None:
546
+ torch._functionalize_commit_update(tensor)
547
+
548
+ def sync(self, tensor) -> None:
549
+ torch._functionalize_sync(tensor)
550
+
551
+ def mark_mutation_hidden_from_autograd(self, tensor) -> None:
552
+ torch._functionalize_mark_mutation_hidden_from_autograd(tensor)
env-llmeval/lib/python3.10/site-packages/torch/_subclasses/meta_utils.py ADDED
@@ -0,0 +1,730 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import contextlib
2
+ import warnings
3
+ import weakref
4
+ from typing import ContextManager, List, Optional, Tuple, TYPE_CHECKING
5
+
6
+ import torch
7
+ from torch._C._functorch import (
8
+ _unwrap_functional_tensor,
9
+ _wrap_functional_tensor,
10
+ current_level,
11
+ peek_interpreter_stack,
12
+ TransformType,
13
+ )
14
+ from torch._guards import Source
15
+
16
+ from torch.multiprocessing.reductions import StorageWeakRef
17
+ from torch.utils._python_dispatch import (
18
+ is_traceable_wrapper_subclass,
19
+ transform_subclass,
20
+ )
21
+ from torch.utils.weak import WeakIdRef
22
+
23
+ if TYPE_CHECKING:
24
+ # Import the following modules during type checking to enable code intelligence features,
25
+ # Do not import unconditionally, as they import sympy and importing sympy is very slow
26
+ from torch.fx.experimental.symbolic_shapes import SymbolicContext
27
+
28
+ DimList = List
29
+
30
+
31
+ def safe_is_leaf(t):
32
+ try:
33
+ return t.is_leaf
34
+ except RuntimeError:
35
+ # inference mode can trigger this
36
+ return False
37
+
38
+
39
+ def safe_grad(t):
40
+ with warnings.catch_warnings():
41
+ warnings.filterwarnings("ignore", "The .grad attribute of a Tensor")
42
+ return t.grad
43
+
44
+
45
+ def assert_eq(a, b):
46
+ assert a == b, f"{a} != {b}"
47
+
48
+
49
+ def assert_metadata_eq(assert_eq, m1, m2, *, skip_symbolic=False):
50
+ def go(m1, m2):
51
+ assert_eq(m1.dtype, m2.dtype)
52
+ if not skip_symbolic:
53
+ assert_eq(m1.shape, m2.shape)
54
+ assert_eq(m1.requires_grad, m2.requires_grad)
55
+ assert_eq(m1.is_leaf, m2.is_leaf)
56
+ assert_eq(m1.grad_fn is None, m2.grad_fn is None)
57
+ assert_eq(m1.is_sparse, m2.is_sparse)
58
+ assert_eq(m1.is_inference(), m2.is_inference())
59
+ assert_eq(m1.is_conj(), m2.is_conj())
60
+ assert_eq(m1.is_neg(), m2.is_neg())
61
+ assert_eq(safe_grad(m1) is not None, safe_grad(m2) is not None)
62
+ if safe_grad(m1) is not None:
63
+ go(safe_grad(m1), safe_grad(m2))
64
+ if m1.is_sparse:
65
+ assert_eq(m1.dense_dim(), m2.dense_dim())
66
+ assert_eq(m1.sparse_dim(), m2.sparse_dim())
67
+ assert_eq(m1.is_coalesced(), m2.is_coalesced())
68
+ else:
69
+ if not skip_symbolic:
70
+ assert_eq(m1.stride(), m2.stride())
71
+ assert_eq(m1.storage_offset(), m2.storage_offset())
72
+ assert_eq(m1._is_view(), m2._is_view())
73
+ if m1._is_view():
74
+ go(m1._base, m2._base)
75
+ # TODO: test if is resizable (no direct query for this atm)
76
+ # TODO: audit AutogradMeta to see if it matches
77
+ # TODO: test forward AD
78
+
79
+ return go(m1, m2)
80
+
81
+
82
+ # This is a class for converting multiple tensors into meta tensors which
83
+ # share the same view/storage structure. The operation model is you allocate
84
+ # one of these, and then call it repeatedly on all the tensors you want to
85
+ # convert. It's important to use the same object for tensors you want to
86
+ # share storage because this is how we correlate shared storages to the same
87
+ # meta storages. This class will hold weak references to cached tenosrs
88
+ # and tensor storages.
89
+ class MetaConverter:
90
+ def __init__(self):
91
+ self.storage_memo = {}
92
+ self.tensor_memo: weakref.WeakValueDictionary = weakref.WeakValueDictionary()
93
+ self.maybe_storages_to_delete = []
94
+ self.check_expired_frequency = 128
95
+ self.check_expired_count = 0
96
+ self.hit = 0
97
+ self.miss = 0
98
+ self.del_hook = None
99
+ self.arg_cnt = 0
100
+
101
+ def successful(self):
102
+ return self.hit > 0 and self.miss == 0
103
+
104
+ def check_for_expired_weak_storages(self):
105
+ new_li = []
106
+ stor_to_delete = []
107
+ for obj in self.maybe_storages_to_delete:
108
+ if not obj.expired():
109
+ new_li.append(obj)
110
+ else:
111
+ stor_to_delete.append(obj)
112
+ for obj in stor_to_delete:
113
+ self.storage_memo.pop(obj, None)
114
+ self.maybe_storages_to_delete = new_li
115
+
116
+ # if for some reason we have aquired many storages which have not expired
117
+ # even though a tensor with their storage has expired (aliasing or otherwise)
118
+ # check for expired storages less often so as to bound the amount of work we
119
+ # do checking for expired storages
120
+ self.check_expired_frequency = max(
121
+ self.check_expired_frequency, len(self.maybe_storages_to_delete)
122
+ )
123
+
124
+ def get_tensor_memo(self, t):
125
+ return self.tensor_memo.get(WeakIdRef(t), None)
126
+
127
+ def set_tensor_memo(self, t, v):
128
+ # hold a weak ref to self, otherwise it will be kept alive
129
+ # by the del_ten closure
130
+ self_weak_ref = weakref.ref(self)
131
+ if t.is_sparse or t.is_mkldnn:
132
+ weak_st = None
133
+ else:
134
+ weak_st = StorageWeakRef(t._typed_storage())
135
+ tensor_ref_key = WeakIdRef(t)
136
+
137
+ def del_ten():
138
+ # tensor outlives the converter
139
+ self_ref = self_weak_ref()
140
+ if self_ref is None:
141
+ return
142
+ # on shutdown, tensor_ref_key may not be in memo
143
+ self_ref.tensor_memo.pop(tensor_ref_key, None)
144
+ if weak_st and weak_st.expired():
145
+ self_ref.storage_memo.pop(weak_st, None)
146
+ elif weak_st is not None:
147
+ # [expired-storages]
148
+ # NB: even though the tensor has died,
149
+ # the deallocation of its storage can take longer,
150
+ # even when the storage has no other uses/views.
151
+ # In this case, the StorageWeakRef object will be kept alive
152
+ # longer than it needs to be, however the storage itself
153
+ # will be deallocated. We retain the possibly dead storages
154
+ # and periodically check if any of them are expired and
155
+ # can be freed.
156
+ self_ref.maybe_storages_to_delete.append(weak_st)
157
+
158
+ weakref.finalize(t, del_ten)
159
+ self.tensor_memo[tensor_ref_key] = v
160
+
161
+ # NB: doesn't actually return a storage, because meta storage is
162
+ # not supported
163
+ def meta_storage(self, s, callback):
164
+ # NB: TypedStorage is freshly allocated and cannot be used as hash
165
+ # key index.
166
+
167
+ # Use a Weak Ref to s in order to not leak memory
168
+ swr = StorageWeakRef(s)
169
+ if swr not in self.storage_memo:
170
+ self.storage_memo[swr] = callback(
171
+ lambda: torch.empty(s.size(), dtype=torch.uint8, device="meta")
172
+ ).untyped_storage()
173
+ return self.storage_memo[swr]
174
+
175
+ # This function assumes that it's possible to do the conversion
176
+ # NB: name here is used in a conventional way by Dynamo; it corresponds
177
+ # precisely to the Source.name() of the tensor we're fakeifying and
178
+ # corresponds to a valid Python expression. When we construct sub-names
179
+ # as part of this process, we will maintain this invariant! (Even though
180
+ # other users of this may not need it this property to be upheld.)
181
+ def meta_tensor(
182
+ self,
183
+ t,
184
+ shape_env=None,
185
+ callback=lambda t: t(),
186
+ source: Optional[Source] = None,
187
+ symbolic_context: Optional["SymbolicContext"] = None,
188
+ ):
189
+ from torch._subclasses.fake_tensor import FakeTensor
190
+
191
+ if source is None:
192
+ from torch._dynamo.source import ConstantSource
193
+
194
+ # TODO: make a dedicated UnknownSource for this?
195
+ source = ConstantSource(
196
+ f"__meta_utils_unknown_tensor{len(self.tensor_memo)}"
197
+ )
198
+
199
+ # This indicates you set no_dispatch() before calling into this
200
+ # function. This is an error: we may be creating fake tensors and
201
+ # will perform operations on them which need fake tensor mode to
202
+ # be active. You will segfault if you are in a no_dispatch() block.
203
+ assert not torch._C._dispatch_tls_local_exclude_set().has(
204
+ torch._C.DispatchKey.Python
205
+ )
206
+ arg_cnt = self.arg_cnt
207
+ self.arg_cnt += 1
208
+
209
+ # When we make as_strided calls, we end up generating a guard
210
+ # that the new as_strided tensor is in bounds for the old storage
211
+ # for the base (since as_strided calls can "bust" out of their
212
+ # bounding box.) This guard is unnecessary: if a user is able
213
+ # to provide us a tensor with the view base setup this way, we
214
+ # don't need to produce a guard, because the fact that they
215
+ # were able to produce the view base means its in bounds.
216
+ #
217
+ # Now, ordinarily, this guard would be harmless. However, the
218
+ # generated guard refers to variables bound on the base variable.
219
+ # At the moment, Dynamo doesn't actually guard on x._base, because
220
+ # according to Voz this results in a lot of spurious invalidations,
221
+ # and also if the user doesn't directly make use of _base, its
222
+ # pointless anyway (because programs should be parametric over
223
+ # whether or not the input tensor is a view or not--unless you're
224
+ # mutating the input, but that's a whole 'nother ballgame). So
225
+ # for expediency, we suppress these guards so we don't have to
226
+ # deal with this (yet, anyway.)
227
+ #
228
+ # NB: An old version of this code suppressed guards for ALL operations
229
+ # happening during meta conversion, not just as_strided calls.
230
+ # This is too aggressive: we do duck sizing and 0/1 simplification
231
+ # as we allocate variables, and we do need to register guards for
232
+ # these cases.
233
+ maybe_suppress = contextlib.nullcontext
234
+ if shape_env is not None:
235
+ maybe_suppress = shape_env.suppress_guards
236
+
237
+ def sym_sizes_strides_storage_offset(
238
+ t, src
239
+ ) -> Tuple[Tuple[int, ...], Tuple[int, ...], int]:
240
+ if shape_env is not None:
241
+ if isinstance(t, FakeTensor) and t.fake_mode.shape_env is shape_env:
242
+ # Don't reallocate the sizes; the shape envs are the same,
243
+ # so reuse the old sizes/strides/etc
244
+ return (t.size(), t.stride(), t.storage_offset())
245
+ else:
246
+ return shape_env.create_symbolic_sizes_strides_storage_offset(
247
+ t,
248
+ src,
249
+ # Assume that the set of dims that are dynamic are the same between
250
+ # the wrapper tensor and any inner tensors.
251
+ # We can revisit this if this assumption does not hold
252
+ # for any important subclasses later.
253
+ symbolic_context=symbolic_context,
254
+ )
255
+ else:
256
+ assert symbolic_context is None
257
+ return (t.size(), t.stride(), t.storage_offset())
258
+
259
+ # see expired-storages
260
+ self.check_expired_count += 1
261
+ if self.check_expired_count >= self.check_expired_frequency:
262
+ self.check_for_expired_weak_storages()
263
+ self.check_expired_count = 0
264
+
265
+ if self.get_tensor_memo(t) is None:
266
+ with torch.inference_mode(t.is_inference()):
267
+ if t.is_sparse:
268
+ is_leaf = safe_is_leaf(t)
269
+ r = callback(
270
+ lambda: torch.ops.aten._sparse_coo_tensor_with_dims(
271
+ t.sparse_dim(),
272
+ t.dense_dim(),
273
+ t.shape,
274
+ dtype=t.dtype,
275
+ layout=torch.sparse_coo,
276
+ device="meta",
277
+ )
278
+ )
279
+ assert safe_is_leaf(r), "the callback you passed in doesn't detach"
280
+ # Note [is_coalesced is dispatched]
281
+ # Strangely enough, is_coalesced() is a dispatched operator,
282
+ # which means that it will get caught by fake tensor mode.
283
+ # Ordinarily this would error, but there's some logic in
284
+ # fake tensor ensure this doesn't happen.
285
+ r._coalesced_(t.is_coalesced())
286
+ if t.requires_grad:
287
+ r.requires_grad = True
288
+ if t.requires_grad and not is_leaf:
289
+ with torch.enable_grad():
290
+ r = r.clone()
291
+ r._coalesced_(t.is_coalesced())
292
+ elif t.is_mkldnn:
293
+ is_leaf = safe_is_leaf(t)
294
+ sizes, strides, _storage_offset = sym_sizes_strides_storage_offset(
295
+ t, source
296
+ )
297
+ r = callback(
298
+ lambda: torch.empty_strided(
299
+ sizes, strides, dtype=t.dtype, device="meta"
300
+ )
301
+ )
302
+ assert safe_is_leaf(r), "the callback you passed in doesn't detach"
303
+ if t.requires_grad:
304
+ r.requires_grad = True
305
+ if t.requires_grad and not is_leaf:
306
+ with torch.enable_grad():
307
+ r = r.clone()
308
+ elif t._is_view():
309
+ # Construct views in two steps: recursively meta-fy their
310
+ # base, and then create view(s) off that. NB: doing it
311
+ # directly from storage is WRONG because this won't cause
312
+ # version counters to get shared.
313
+ assert t._is_view()
314
+
315
+ from torch._dynamo.source import AttrSource
316
+ from torch.fx.experimental.symbolic_shapes import (
317
+ DimDynamic,
318
+ StatelessSymbolicContext,
319
+ )
320
+
321
+ if shape_env and not t.is_nested and not t._base.is_nested:
322
+ base_symbolic_context = StatelessSymbolicContext(
323
+ dynamic_sizes=[DimDynamic.STATIC] * t._base.dim(),
324
+ constraint_sizes=[None] * t._base.dim(),
325
+ )
326
+ else:
327
+ base_symbolic_context = None
328
+ base = self.meta_tensor(
329
+ t._base,
330
+ shape_env,
331
+ callback,
332
+ source=AttrSource(source, "_base"),
333
+ symbolic_context=base_symbolic_context,
334
+ )
335
+
336
+ def is_c_of_r(complex_dtype, real_dtype):
337
+ return (
338
+ utils.is_complex_dtype(complex_dtype)
339
+ and utils.corresponding_real_dtype(complex_dtype)
340
+ == real_dtype
341
+ )
342
+
343
+ # In some situations, MetaConverter may be called in a
344
+ # context where autograd is disabled. For the _is_view
345
+ # assert to pass, we have to setup the autograd view
346
+ # metadata anyway. Do this by reenabling the
347
+ # ADInplaceOrView key. This is kind of a hack.
348
+ old_exclude = torch._C._dispatch_tls_is_dispatch_key_excluded(
349
+ torch._C.DispatchKey.ADInplaceOrView
350
+ )
351
+ torch._C._dispatch_tls_set_dispatch_key_excluded(
352
+ torch._C.DispatchKey.ADInplaceOrView, False
353
+ )
354
+ try:
355
+ if base.dtype == t.dtype:
356
+ pass
357
+ elif is_c_of_r(base.dtype, t.dtype):
358
+ base = torch.view_as_real(base)
359
+ elif is_c_of_r(t.dtype, base.dtype):
360
+ base = torch.view_as_complex(base)
361
+ else:
362
+ # This is not guaranteed to succeed. If it fails, it
363
+ # means there is another dtype-converting view function
364
+ # that hasn't been handled here
365
+ base = base.view(t.dtype)
366
+
367
+ # This is very tricky. Naively, you might expect this
368
+ # to hold:
369
+ #
370
+ # if t.requires_grad and not safe_is_leaf(t)
371
+ # assert t._base.requires_grad
372
+ #
373
+ # But it's not true! As you can see in the following
374
+ # program:
375
+ #
376
+ # x = torch.zeros(4)
377
+ # y = x.view(1, 4)
378
+ # y.requires_grad = True
379
+ # z = y.view(1, 1, 4)
380
+ # assert z._base is x
381
+ #
382
+ # So we may have to do *two* views out of the base to
383
+ # recreate this situation.
384
+ def _view_from_base(base, t):
385
+ if t.is_nested:
386
+ # Nested tensors do not support as_strided, and
387
+ # hence,always have _view_func available.
388
+ #
389
+ # The unsafe version of _view_func omits
390
+ # checking whether the base passed in has the same
391
+ # metadata as the original base the view_func
392
+ # was originally executed with. (1) It is OK here,
393
+ # because we're calling it on the meta-ified base,
394
+ # so the metadata is guaranteed to be the same.
395
+ # (2) It is necessary because we don't actually
396
+ # want to guard on the base's metadata here.
397
+ return t._view_func_unsafe(base)
398
+ else:
399
+ (
400
+ sizes,
401
+ strides,
402
+ storage_offset,
403
+ ) = sym_sizes_strides_storage_offset(t, source)
404
+ return base.as_strided(sizes, strides, storage_offset)
405
+
406
+ if safe_is_leaf(t):
407
+ # Leaf views that track view metadata are created by
408
+ # creating a view inside a no_grad block
409
+ with torch.no_grad(), maybe_suppress():
410
+ r = _view_from_base(base, t)
411
+ # As it's a leaf, we can directly assign requires_grad
412
+ r.requires_grad = t.requires_grad
413
+ else:
414
+ if t._base.requires_grad == t.requires_grad:
415
+ # Easy case, just run the view op
416
+ with torch.enable_grad(), maybe_suppress():
417
+ r = _view_from_base(base, t)
418
+
419
+ # NB: We don't actaully faithfully replicate
420
+ # autograd connectivity, but that doesn't matter
421
+ # today. See following for more info:
422
+ # https://gist.github.com/soulitzer/e03f015b314c3f5fcf80888c69390913
423
+ else:
424
+ # Obscure case. Create a leaf view and give it the
425
+ # correct requires_grad, then do the final view.
426
+ # NB: Can't have a non-leaf without requiring grad!
427
+ assert t.requires_grad
428
+ with torch.no_grad():
429
+ mid = base.view(base.shape)
430
+ mid.requires_grad = t.requires_grad
431
+ with torch.enable_grad(), maybe_suppress():
432
+ r = _view_from_base(mid, t)
433
+ # The CreationMeta influences whether or not inplace
434
+ # mutation is an error or not. So we need to make
435
+ # sure we properly propagate this as well.
436
+ torch._C._autograd._set_creation_meta(
437
+ r, torch._C._autograd._get_creation_meta(t)
438
+ )
439
+ finally:
440
+ torch._C._dispatch_tls_set_dispatch_key_excluded(
441
+ torch._C.DispatchKey.ADInplaceOrView, old_exclude
442
+ )
443
+
444
+ else:
445
+ is_leaf = safe_is_leaf(t)
446
+ if not t.is_nested:
447
+ # Nested tensor subclasses have special logic for
448
+ # creating symbolic size/strides/storage_offset
449
+ (
450
+ sizes,
451
+ strides,
452
+ storage_offset,
453
+ ) = sym_sizes_strides_storage_offset(t, source)
454
+
455
+ def empty_create(inner_t, inner_src):
456
+ (
457
+ inner_sizes,
458
+ inner_strides,
459
+ inner_storage_offset,
460
+ ) = sym_sizes_strides_storage_offset(inner_t, inner_src)
461
+ return torch.empty_strided(
462
+ inner_sizes,
463
+ inner_strides,
464
+ dtype=inner_t.dtype,
465
+ device="meta",
466
+ )
467
+
468
+ # If we have a subclass that desugars into dense tensors,
469
+ # perform our callback on each inner tensor.
470
+ if is_traceable_wrapper_subclass(t):
471
+ # Note: transform_subclass will use __tensor_unflatten__ to generate
472
+ # a fresh subclass wrapper, which is why sizes/strides are not passed in
473
+ # to the creation function here.
474
+ # We assume that if the inner tensors of the subclass are given symbolic sizes,
475
+ # their sizes will be used to construct the (symbolic) sizes of the wrapper tensor.
476
+ from torch._dynamo.source import AttrSource
477
+
478
+ if t.is_nested:
479
+ # Avoid circular import
480
+ from torch._dynamo.source import (
481
+ TensorProperty,
482
+ TensorPropertySource,
483
+ )
484
+
485
+ # For nested tensors, manually do transform_subclass
486
+ # so we can insert some special processing on ctx
487
+ attrs, ctx = t.__tensor_flatten__()
488
+ transformed_tensors_dict = {}
489
+ orig_shape_env = None
490
+ for attr in attrs:
491
+ inner_t = getattr(t, attr)
492
+ if orig_shape_env is None:
493
+ orig_shape_env = (
494
+ inner_t.fake_mode.shape_env
495
+ if isinstance(inner_t, FakeTensor)
496
+ else None
497
+ )
498
+ transformed_tensors_dict[attr] = callback(
499
+ lambda: empty_create(
500
+ inner_t, AttrSource(source, attr)
501
+ )
502
+ )
503
+ # We expect JaggedTensor to have a 'ragged_size' in
504
+ # its context
505
+ assert isinstance(ctx, dict)
506
+ assert "ragged_size" in ctx
507
+ assert isinstance(t._size[1], torch.SymInt)
508
+ if orig_shape_env is shape_env:
509
+ # It's already fake and the shape envs line up, reuse the old size
510
+ # Do not assert singleton_int; it may already
511
+ # be a variable
512
+ ctx["ragged_size"] = t._size[1]
513
+ else:
514
+ assert t._size[1].node.singleton_int() is not None
515
+ # Replace the eager ragged size with our freshly
516
+ # allocated jagged size that has a source
517
+ ctx["ragged_size"] = shape_env.create_symintnode(
518
+ shape_env.create_symbol(
519
+ t._size[1],
520
+ TensorPropertySource(
521
+ source, TensorProperty.SIZE, 1
522
+ ),
523
+ ),
524
+ hint=t._size[1],
525
+ )
526
+ r = type(t).__tensor_unflatten__(
527
+ transformed_tensors_dict, ctx
528
+ )
529
+ else:
530
+ r = transform_subclass(
531
+ t,
532
+ lambda attr, inner_t: callback(
533
+ lambda: empty_create(
534
+ inner_t,
535
+ AttrSource(source, attr),
536
+ )
537
+ ),
538
+ )
539
+ else:
540
+ r = callback(
541
+ lambda: torch.empty_strided(
542
+ sizes,
543
+ strides,
544
+ dtype=t.dtype,
545
+ device="meta",
546
+ )
547
+ )
548
+ assert safe_is_leaf(r), "the callback you passed in doesn't detach"
549
+ if t.requires_grad:
550
+ r.requires_grad = t.requires_grad
551
+ if not is_leaf:
552
+ # Fake up some autograd history.
553
+ with torch.enable_grad():
554
+ # preserve_format is the default, but we want to
555
+ # emphasize how important it is to preserve
556
+ # format here
557
+ r = r.clone(memory_format=torch.preserve_format)
558
+
559
+ # Graph-Break for wrapped tensors
560
+ if torch._C._functorch.is_functorch_wrapped_tensor(t):
561
+ return NotImplemented
562
+
563
+ s = t.untyped_storage()
564
+ swr = StorageWeakRef(s)
565
+ if swr not in self.storage_memo and (
566
+ r.is_nested
567
+ or (
568
+ r.stride() == strides
569
+ and r.storage_offset() == storage_offset
570
+ )
571
+ ):
572
+ # You're normal and happy, install the fresh storage into the memo
573
+ self.storage_memo[swr] = r.untyped_storage()
574
+ else:
575
+ # You're in crazy town; somehow you gave us a tensor
576
+ # that wasn't a view, but had nonzero storage offset,
577
+ # nontrivial strides (such that clone() couldn't
578
+ # preserve them), or already aliases with another
579
+ # tensor's storage. The most typical way to end
580
+ # up here is with set_. So use set_ to bludgeon this
581
+ # in.
582
+ r_s = self.meta_storage(s, callback=callback)
583
+ # NB: In principle, this should always work, but there
584
+ # is some subtle difference in the autograd metadata
585
+ # that means we will backprop the set_ call, even if
586
+ # r is declared as an input to grad.
587
+ # See https://github.com/pytorch/pytorch/issues/87956
588
+ # for the reproducer.
589
+ # NB: The in_kernel_invocation_manager here is necessary
590
+ # for fake tensor. If we run the set_ call with fake
591
+ # tensor on, r will improperly report that it is NOT a
592
+ # meta tensor but a cpu tensor, and then the set_ call
593
+ # will fail due to device mismatch. no_dispatch() is
594
+ # not enough, because the fake tensor will still claim
595
+ # to be a CPU tensor and you'll end up in the CPU
596
+ # kernel. Arguably this is a hack; a cleaner way to
597
+ # solve this is to have a FakeStorage concept which
598
+ # would report it's CPU device--no problem now! But
599
+ # this is difficult to do because we don't have storage
600
+ # subclasses. Relevant test is
601
+ # DynamicShapesFunctionTests::test_add_dynamic_shapes in
602
+ # test/dynamo/test_dynamic_shapes.py
603
+ maybe_fake_mgr: ContextManager[None] = contextlib.nullcontext()
604
+ from torch._subclasses.fake_tensor import (
605
+ in_kernel_invocation_manager,
606
+ maybe_get_fake_mode,
607
+ )
608
+
609
+ mb_fake_mode = maybe_get_fake_mode(r)
610
+ if mb_fake_mode is not None:
611
+ maybe_fake_mgr = in_kernel_invocation_manager(mb_fake_mode)
612
+ with maybe_fake_mgr, torch.no_grad():
613
+ r.set_(r_s, storage_offset, sizes, strides)
614
+
615
+ if safe_grad(t) is not None:
616
+ from torch._dynamo.source import AttrSource
617
+
618
+ r.grad = self.meta_tensor(
619
+ safe_grad(t),
620
+ shape_env,
621
+ callback,
622
+ source=AttrSource(source, "grad"),
623
+ symbolic_context=symbolic_context,
624
+ )
625
+ torch._C._set_conj(r, t.is_conj())
626
+ torch._C._set_neg(r, t.is_neg())
627
+ # This can be skipped if necessary for performance reasons
628
+ assert_metadata_eq(assert_eq, t, r, skip_symbolic=True)
629
+ self.set_tensor_memo(t, r)
630
+
631
+ return self.get_tensor_memo(t)
632
+
633
+ def __call__(
634
+ self,
635
+ t,
636
+ shape_env=None,
637
+ *,
638
+ callback=lambda t: t(),
639
+ source=None,
640
+ symbolic_context=None,
641
+ ):
642
+ # TODO: zero tensors? We appear to have eliminated them by
643
+ # excluding complex for now
644
+
645
+ if isinstance(t, torch.Tensor) or is_traceable_wrapper_subclass(t):
646
+ if t.device.type != "xla" and any(
647
+ [
648
+ t.is_sparse_csr,
649
+ t.layout in [torch.sparse_csc, torch.sparse_bsr, torch.sparse_bsc],
650
+ t.is_quantized,
651
+ t._is_view() and t._base is not None and t._base.is_sparse,
652
+ torch._is_functional_tensor(t),
653
+ t.device.type in ("lazy"),
654
+ # We need a way to test if a tensor is batched but there
655
+ # is no official APi to do it
656
+ # torch._C._is_batched(t),
657
+ ]
658
+ ):
659
+ # TODO: sparse should support meta
660
+ # NB technically to('meta') does work but our logging
661
+ # instrumentation will see the meta conversions and the
662
+ # tests all break so we just exclude this. In any case
663
+ # the to conversion isn't really right anyhow.
664
+
665
+ if torch._is_functional_tensor(t) and t.device.type != "lazy":
666
+ if t._is_view():
667
+ raise RuntimeError(
668
+ "Cannot safely fakify a view because this process drops the view information right now."
669
+ )
670
+
671
+ st = peek_interpreter_stack()
672
+ assert (
673
+ st is None or st.key() == TransformType.Functionalize
674
+ ), "Expect st to be either None or have Functionalize transform key."
675
+ if st is None:
676
+ # the case of AOTAutograd
677
+ torch._sync(t)
678
+ unwrap_t = torch._from_functional_tensor(t)
679
+ with torch._dispatch.python.suspend_functionalization():
680
+ fake_t = self.meta_tensor(
681
+ unwrap_t,
682
+ shape_env=shape_env,
683
+ callback=callback,
684
+ source=source,
685
+ symbolic_context=symbolic_context,
686
+ )
687
+ out = torch._to_functional_tensor(fake_t)
688
+ torch._mirror_autograd_meta_to(fake_t, out)
689
+ return out
690
+ else:
691
+ # torch.func.functionalize
692
+ reapply_views = torch._C._functionalization_reapply_views_tls()
693
+ unwrap_t = _unwrap_functional_tensor(t, reapply_views)
694
+ pop_st_ctx = (
695
+ torch._functorch.pyfunctorch.temporarily_pop_interpreter_stack()
696
+ )
697
+ with pop_st_ctx:
698
+ fake_t = self.meta_tensor(
699
+ unwrap_t,
700
+ shape_env=shape_env,
701
+ callback=callback,
702
+ source=source,
703
+ symbolic_context=symbolic_context,
704
+ )
705
+ return _wrap_functional_tensor(fake_t, current_level())
706
+ self.miss += 1
707
+ return NotImplemented
708
+ else:
709
+ self.hit += 1
710
+ r = self.meta_tensor(
711
+ t,
712
+ shape_env=shape_env,
713
+ callback=callback,
714
+ source=source,
715
+ symbolic_context=symbolic_context,
716
+ )
717
+ if type(t) is torch.nn.Parameter:
718
+ # NB: Cannot directly use Parameter constructor
719
+ # because that would force a detach, not desirable
720
+ r._is_param = True
721
+ return r
722
+ elif torch.overrides.is_tensor_like(t):
723
+ self.miss += 1
724
+ return NotImplemented
725
+ else:
726
+ # non-Tensor types don't count as hit or miss
727
+ return t
728
+
729
+
730
+ import torch._prims_common as utils
env-llmeval/lib/python3.10/site-packages/torch/_subclasses/schema_check_mode.py ADDED
@@ -0,0 +1,196 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from collections import namedtuple
2
+ from copy import deepcopy
3
+ from itertools import combinations
4
+
5
+ import torch
6
+ from torch.fx.operator_schemas import normalize_function
7
+ from torch.testing._internal.jit_utils import clone_inputs
8
+ from torch.utils import _pytree as pytree
9
+ from torch.utils._python_dispatch import TorchDispatchMode
10
+ from torch.utils._pytree import tree_map
11
+
12
+ # Named Tuples used within SchemaCheckMode
13
+ Mutation = namedtuple("Mutation", ["op_name", "arg_name"])
14
+ Aliasing = namedtuple("Aliasing", ["op_name", "arg_name", "output_number"])
15
+
16
+ # Simplified naming for C++ classes
17
+ SchemaArgument = torch._C._SchemaArgument
18
+ SchemaArgType = torch._C._SchemaArgType
19
+ SchemaInfo = torch._C._SchemaInfo
20
+
21
+ # This TorchDispatchMode Subclass is used to verify op schemas
22
+ # This TorchDispatchMode Scubclass currently:
23
+ # - Records the called ops
24
+ # - Checks for mutations on all inputs
25
+ # - Checks for aliasing on all inputs
26
+
27
+
28
+ class SchemaCheckMode(TorchDispatchMode):
29
+ def __init__(self):
30
+ # Information recorded for testing purposes. For example:
31
+ # - incorrect schemas
32
+ # - overly conservative schemas
33
+ self.ops = []
34
+ self.mutated = []
35
+ self.aliasing = []
36
+
37
+ def reset_cache(self):
38
+ self.ops.clear()
39
+ self.mutated.clear()
40
+ self.aliasing.clear()
41
+
42
+ def display_ops(self):
43
+ print(*self.ops, sep=",")
44
+
45
+ def __torch_dispatch__(self, func, types, args=(), kwargs=None):
46
+ def bitwise_equal(lhs, rhs):
47
+ if lhs.is_quantized:
48
+ # TODO: This is only OK if can't have NaN quantized; idk if
49
+ # this is actually true
50
+ return torch.equal(lhs, rhs)
51
+ else:
52
+ return torch.allclose(lhs, rhs, equal_nan=True)
53
+
54
+ def has_mutated(before, after, md):
55
+ are_tensors = type(before) == torch.Tensor and type(after) == torch.Tensor
56
+ if (
57
+ are_tensors
58
+ and before.layout != torch.sparse_csr
59
+ and after.layout != torch.sparse_csr
60
+ ):
61
+ return not (
62
+ before.size() == after.size()
63
+ and bitwise_equal(before, after)
64
+ and md[0] == after.stride()
65
+ and md[1] == after._typed_storage()._cdata
66
+ )
67
+ return False
68
+
69
+ def has_aliased(lhs, rhs):
70
+ try:
71
+ return torch._C._overlaps(lhs, rhs)
72
+ except Exception as exception:
73
+ if str(exception).startswith("Cannot inspect value of type "):
74
+ return False
75
+ else:
76
+ raise exception
77
+
78
+ def standardize_name(name):
79
+ return name if name != "self" else "input"
80
+
81
+ def unwrap(e):
82
+ if isinstance(e, torch.Tensor) and not type(e) == torch.Tensor:
83
+ try:
84
+ return e.elem
85
+ except AttributeError as t:
86
+ return e
87
+ return e
88
+
89
+ def parse_metadata(e):
90
+ if isinstance(e, torch.Tensor):
91
+ if not type(e) == torch.Tensor:
92
+ try:
93
+ current = e.elem
94
+ return (
95
+ deepcopy(current.stride()),
96
+ current._typed_storage()._cdata,
97
+ )
98
+ except AttributeError as t:
99
+ return None
100
+ # Sparse CSR tensors do not have strides or storage
101
+ elif e.layout != torch.sparse_csr:
102
+ return (deepcopy(e.stride()), e._typed_storage()._cdata)
103
+ return None
104
+
105
+ self.ops.append(func._schema.name)
106
+
107
+ # Clone and process arguments and outputs
108
+ pre_arguments = normalize_function(
109
+ func, args, kwargs, normalize_to_only_use_kwargs=True
110
+ ).kwargs
111
+
112
+ c_p_args = dict(zip(pre_arguments.keys(), clone_inputs(pre_arguments.values())))
113
+ cloned_arguments = {
114
+ name: tree_map(unwrap, c_p_args.get(name)) for name in c_p_args
115
+ }
116
+ cloned_metadata = {
117
+ name: [
118
+ parse_metadata(a) for a in pytree.tree_leaves(pre_arguments.get(name))
119
+ ]
120
+ for name in pre_arguments
121
+ }
122
+
123
+ out = func(*args, **kwargs)
124
+ arguments = {
125
+ name: tree_map(unwrap, pre_arguments.get(name)) for name in pre_arguments
126
+ }
127
+ tuple_out = out if isinstance(out, tuple) else (out,)
128
+ tuple_out = tree_map(unwrap, tuple_out)
129
+
130
+ schema_info = SchemaInfo(func._schema)
131
+ schema_info.add_argument_values(pre_arguments)
132
+
133
+ # Process arguments with outputs
134
+ for i in range(len(func._schema.arguments)):
135
+ arg = func._schema.arguments[i]
136
+ name = standardize_name(arg.name)
137
+ if arguments.get(name) is not None:
138
+ before = cloned_arguments.get(name)
139
+ md = cloned_metadata.get(name)
140
+ after = arguments.get(name)
141
+ for j in range(len(tuple_out)):
142
+ # aten::_unsafe_view is intended to have incorrect aliasing notation (hence unsafe)
143
+ unsafe_ops = ("aten::_unsafe_view", "aten::unsafe_split")
144
+ if (
145
+ has_aliased(tuple_out[j], after)
146
+ and func._schema.name not in unsafe_ops
147
+ ):
148
+ if not schema_info.may_contain_alias(
149
+ SchemaArgument(SchemaArgType.output, j),
150
+ SchemaArgument(SchemaArgType.input, i),
151
+ ):
152
+ raise RuntimeError(
153
+ f"Argument {name} is not defined to alias output but was aliasing"
154
+ )
155
+ else:
156
+ self.aliasing.append(
157
+ Aliasing(func._schema.name, name, f"output_{j}")
158
+ )
159
+ if after is tuple_out[j] and isinstance(after, torch.Tensor):
160
+ # Only mutable ops e.g. (add_, add.out) are allowed to directly return inputs.
161
+ if not schema_info.is_mutable(
162
+ SchemaArgument(SchemaArgType.input, i)
163
+ ) and func not in [
164
+ torch.ops.aten.lift.default,
165
+ torch.ops.aten.lift_fresh.default,
166
+ ]:
167
+ raise RuntimeError(
168
+ f"""\
169
+ Dispatcher operators below autograd are not allowed to directly return inputs.
170
+ However, we found that `outputs[{str(j)}] is {name}"""
171
+ )
172
+ if any(
173
+ has_mutated(a, b, c)
174
+ for a, b, c in zip(
175
+ pytree.tree_leaves(before), pytree.tree_leaves(after), md
176
+ )
177
+ ):
178
+ if not schema_info.is_mutable(
179
+ SchemaArgument(SchemaArgType.input, i)
180
+ ):
181
+ raise RuntimeError(
182
+ f"Argument {name} is not defined as mutable but was mutated"
183
+ )
184
+ else:
185
+ self.mutated.append(Mutation(func._schema.name, name))
186
+
187
+ # Aliasing between outputs
188
+ for i, j in combinations(range(len(func._schema.returns)), 2):
189
+ if has_aliased(tuple_out[i], tuple_out[j]):
190
+ if not schema_info.may_contain_alias(
191
+ SchemaArgument(SchemaArgType.output, i),
192
+ SchemaArgument(SchemaArgType.output, j),
193
+ ):
194
+ raise RuntimeError(f"Outputs {i} and {j} alias unexpectedly")
195
+
196
+ return out
env-llmeval/lib/python3.10/site-packages/torch/backends/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (2.11 kB). View file
 
env-llmeval/lib/python3.10/site-packages/torch/backends/_coreml/__init__.py ADDED
File without changes
env-llmeval/lib/python3.10/site-packages/torch/backends/_coreml/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (187 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/torch/backends/_coreml/__pycache__/preprocess.cpython-310.pyc ADDED
Binary file (3.74 kB). View file