applied-ai-018 commited on
Commit
477f358
·
verified ·
1 Parent(s): 4d27d2b

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. env-llmeval/lib/python3.10/site-packages/certifi/cacert.pem +0 -0
  2. env-llmeval/lib/python3.10/site-packages/certifi/core.py +114 -0
  3. env-llmeval/lib/python3.10/site-packages/certifi/py.typed +0 -0
  4. env-llmeval/lib/python3.10/site-packages/pip-22.0.2.dist-info/LICENSE.txt +20 -0
  5. env-llmeval/lib/python3.10/site-packages/pip-22.0.2.dist-info/WHEEL +5 -0
  6. env-llmeval/lib/python3.10/site-packages/scipy-1.13.0.dist-info/INSTALLER +1 -0
  7. env-llmeval/lib/python3.10/site-packages/scipy-1.13.0.dist-info/LICENSE.txt +933 -0
  8. env-llmeval/lib/python3.10/site-packages/scipy-1.13.0.dist-info/METADATA +1074 -0
  9. env-llmeval/lib/python3.10/site-packages/scipy-1.13.0.dist-info/RECORD +0 -0
  10. env-llmeval/lib/python3.10/site-packages/scipy-1.13.0.dist-info/WHEEL +6 -0
  11. env-llmeval/lib/python3.10/site-packages/torch/_C.cpython-310-x86_64-linux-gnu.so +0 -0
  12. env-llmeval/lib/python3.10/site-packages/torch/_VF.py +30 -0
  13. env-llmeval/lib/python3.10/site-packages/torch/_VF.pyi +0 -0
  14. env-llmeval/lib/python3.10/site-packages/torch/__config__.py +22 -0
  15. env-llmeval/lib/python3.10/site-packages/torch/__future__.py +21 -0
  16. env-llmeval/lib/python3.10/site-packages/torch/__init__.py +1995 -0
  17. env-llmeval/lib/python3.10/site-packages/torch/_appdirs.py +666 -0
  18. env-llmeval/lib/python3.10/site-packages/torch/_awaits/__init__.py +54 -0
  19. env-llmeval/lib/python3.10/site-packages/torch/_awaits/__pycache__/__init__.cpython-310.pyc +0 -0
  20. env-llmeval/lib/python3.10/site-packages/torch/_classes.py +55 -0
  21. env-llmeval/lib/python3.10/site-packages/torch/_compile.py +30 -0
  22. env-llmeval/lib/python3.10/site-packages/torch/_custom_ops.py +322 -0
  23. env-llmeval/lib/python3.10/site-packages/torch/_deploy.py +105 -0
  24. env-llmeval/lib/python3.10/site-packages/torch/_guards.py +833 -0
  25. env-llmeval/lib/python3.10/site-packages/torch/_jit_internal.py +1510 -0
  26. env-llmeval/lib/python3.10/site-packages/torch/_linalg_utils.py +164 -0
  27. env-llmeval/lib/python3.10/site-packages/torch/_lobpcg.py +1167 -0
  28. env-llmeval/lib/python3.10/site-packages/torch/_lowrank.py +298 -0
  29. env-llmeval/lib/python3.10/site-packages/torch/_meta_registrations.py +0 -0
  30. env-llmeval/lib/python3.10/site-packages/torch/_ops.py +938 -0
  31. env-llmeval/lib/python3.10/site-packages/torch/_sources.py +137 -0
  32. env-llmeval/lib/python3.10/site-packages/torch/_storage_docs.py +43 -0
  33. env-llmeval/lib/python3.10/site-packages/torch/_streambase.py +45 -0
  34. env-llmeval/lib/python3.10/site-packages/torch/_tensor.py +1518 -0
  35. env-llmeval/lib/python3.10/site-packages/torch/_tensor_docs.py +0 -0
  36. env-llmeval/lib/python3.10/site-packages/torch/_tensor_str.py +677 -0
  37. env-llmeval/lib/python3.10/site-packages/torch/_torch_docs.py +0 -0
  38. env-llmeval/lib/python3.10/site-packages/torch/_utils.py +918 -0
  39. env-llmeval/lib/python3.10/site-packages/torch/_vmap_internals.py +237 -0
  40. env-llmeval/lib/python3.10/site-packages/torch/_weights_only_unpickler.py +304 -0
  41. env-llmeval/lib/python3.10/site-packages/torch/backends/__init__.py +68 -0
  42. env-llmeval/lib/python3.10/site-packages/torch/backends/mkldnn/__init__.py +91 -0
  43. env-llmeval/lib/python3.10/site-packages/torch/backends/mkldnn/__pycache__/__init__.cpython-310.pyc +0 -0
  44. env-llmeval/lib/python3.10/site-packages/torch/backends/mps/__init__.py +47 -0
  45. env-llmeval/lib/python3.10/site-packages/torch/backends/mps/__pycache__/__init__.cpython-310.pyc +0 -0
  46. env-llmeval/lib/python3.10/site-packages/torch/backends/openmp/__init__.py +6 -0
  47. env-llmeval/lib/python3.10/site-packages/torch/backends/openmp/__pycache__/__init__.cpython-310.pyc +0 -0
  48. env-llmeval/lib/python3.10/site-packages/torch/backends/opt_einsum/__init__.py +110 -0
  49. env-llmeval/lib/python3.10/site-packages/torch/backends/opt_einsum/__pycache__/__init__.cpython-310.pyc +0 -0
  50. env-llmeval/lib/python3.10/site-packages/torch/backends/xnnpack/__init__.py +28 -0
env-llmeval/lib/python3.10/site-packages/certifi/cacert.pem ADDED
The diff for this file is too large to render. See raw diff
 
env-llmeval/lib/python3.10/site-packages/certifi/core.py ADDED
@@ -0,0 +1,114 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ certifi.py
3
+ ~~~~~~~~~~
4
+
5
+ This module returns the installation location of cacert.pem or its contents.
6
+ """
7
+ import sys
8
+ import atexit
9
+
10
+ def exit_cacert_ctx() -> None:
11
+ _CACERT_CTX.__exit__(None, None, None) # type: ignore[union-attr]
12
+
13
+
14
+ if sys.version_info >= (3, 11):
15
+
16
+ from importlib.resources import as_file, files
17
+
18
+ _CACERT_CTX = None
19
+ _CACERT_PATH = None
20
+
21
+ def where() -> str:
22
+ # This is slightly terrible, but we want to delay extracting the file
23
+ # in cases where we're inside of a zipimport situation until someone
24
+ # actually calls where(), but we don't want to re-extract the file
25
+ # on every call of where(), so we'll do it once then store it in a
26
+ # global variable.
27
+ global _CACERT_CTX
28
+ global _CACERT_PATH
29
+ if _CACERT_PATH is None:
30
+ # This is slightly janky, the importlib.resources API wants you to
31
+ # manage the cleanup of this file, so it doesn't actually return a
32
+ # path, it returns a context manager that will give you the path
33
+ # when you enter it and will do any cleanup when you leave it. In
34
+ # the common case of not needing a temporary file, it will just
35
+ # return the file system location and the __exit__() is a no-op.
36
+ #
37
+ # We also have to hold onto the actual context manager, because
38
+ # it will do the cleanup whenever it gets garbage collected, so
39
+ # we will also store that at the global level as well.
40
+ _CACERT_CTX = as_file(files("certifi").joinpath("cacert.pem"))
41
+ _CACERT_PATH = str(_CACERT_CTX.__enter__())
42
+ atexit.register(exit_cacert_ctx)
43
+
44
+ return _CACERT_PATH
45
+
46
+ def contents() -> str:
47
+ return files("certifi").joinpath("cacert.pem").read_text(encoding="ascii")
48
+
49
+ elif sys.version_info >= (3, 7):
50
+
51
+ from importlib.resources import path as get_path, read_text
52
+
53
+ _CACERT_CTX = None
54
+ _CACERT_PATH = None
55
+
56
+ def where() -> str:
57
+ # This is slightly terrible, but we want to delay extracting the
58
+ # file in cases where we're inside of a zipimport situation until
59
+ # someone actually calls where(), but we don't want to re-extract
60
+ # the file on every call of where(), so we'll do it once then store
61
+ # it in a global variable.
62
+ global _CACERT_CTX
63
+ global _CACERT_PATH
64
+ if _CACERT_PATH is None:
65
+ # This is slightly janky, the importlib.resources API wants you
66
+ # to manage the cleanup of this file, so it doesn't actually
67
+ # return a path, it returns a context manager that will give
68
+ # you the path when you enter it and will do any cleanup when
69
+ # you leave it. In the common case of not needing a temporary
70
+ # file, it will just return the file system location and the
71
+ # __exit__() is a no-op.
72
+ #
73
+ # We also have to hold onto the actual context manager, because
74
+ # it will do the cleanup whenever it gets garbage collected, so
75
+ # we will also store that at the global level as well.
76
+ _CACERT_CTX = get_path("certifi", "cacert.pem")
77
+ _CACERT_PATH = str(_CACERT_CTX.__enter__())
78
+ atexit.register(exit_cacert_ctx)
79
+
80
+ return _CACERT_PATH
81
+
82
+ def contents() -> str:
83
+ return read_text("certifi", "cacert.pem", encoding="ascii")
84
+
85
+ else:
86
+ import os
87
+ import types
88
+ from typing import Union
89
+
90
+ Package = Union[types.ModuleType, str]
91
+ Resource = Union[str, "os.PathLike"]
92
+
93
+ # This fallback will work for Python versions prior to 3.7 that lack the
94
+ # importlib.resources module but relies on the existing `where` function
95
+ # so won't address issues with environments like PyOxidizer that don't set
96
+ # __file__ on modules.
97
+ def read_text(
98
+ package: Package,
99
+ resource: Resource,
100
+ encoding: str = 'utf-8',
101
+ errors: str = 'strict'
102
+ ) -> str:
103
+ with open(where(), encoding=encoding) as data:
104
+ return data.read()
105
+
106
+ # If we don't have importlib.resources, then we will just do the old logic
107
+ # of assuming we're on the filesystem and munge the path directly.
108
+ def where() -> str:
109
+ f = os.path.dirname(__file__)
110
+
111
+ return os.path.join(f, "cacert.pem")
112
+
113
+ def contents() -> str:
114
+ return read_text("certifi", "cacert.pem", encoding="ascii")
env-llmeval/lib/python3.10/site-packages/certifi/py.typed ADDED
File without changes
env-llmeval/lib/python3.10/site-packages/pip-22.0.2.dist-info/LICENSE.txt ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Copyright (c) 2008-present The pip developers (see AUTHORS.txt file)
2
+
3
+ Permission is hereby granted, free of charge, to any person obtaining
4
+ a copy of this software and associated documentation files (the
5
+ "Software"), to deal in the Software without restriction, including
6
+ without limitation the rights to use, copy, modify, merge, publish,
7
+ distribute, sublicense, and/or sell copies of the Software, and to
8
+ permit persons to whom the Software is furnished to do so, subject to
9
+ the following conditions:
10
+
11
+ The above copyright notice and this permission notice shall be
12
+ included in all copies or substantial portions of the Software.
13
+
14
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
15
+ EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
16
+ MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
17
+ NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
18
+ LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
19
+ OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
20
+ WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
env-llmeval/lib/python3.10/site-packages/pip-22.0.2.dist-info/WHEEL ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ Wheel-Version: 1.0
2
+ Generator: bdist_wheel (0.37.1)
3
+ Root-Is-Purelib: true
4
+ Tag: py3-none-any
5
+
env-llmeval/lib/python3.10/site-packages/scipy-1.13.0.dist-info/INSTALLER ADDED
@@ -0,0 +1 @@
 
 
1
+ pip
env-llmeval/lib/python3.10/site-packages/scipy-1.13.0.dist-info/LICENSE.txt ADDED
@@ -0,0 +1,933 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Copyright (c) 2001-2002 Enthought, Inc. 2003-2024, SciPy Developers.
2
+ All rights reserved.
3
+
4
+ Redistribution and use in source and binary forms, with or without
5
+ modification, are permitted provided that the following conditions
6
+ are met:
7
+
8
+ 1. Redistributions of source code must retain the above copyright
9
+ notice, this list of conditions and the following disclaimer.
10
+
11
+ 2. Redistributions in binary form must reproduce the above
12
+ copyright notice, this list of conditions and the following
13
+ disclaimer in the documentation and/or other materials provided
14
+ with the distribution.
15
+
16
+ 3. Neither the name of the copyright holder nor the names of its
17
+ contributors may be used to endorse or promote products derived
18
+ from this software without specific prior written permission.
19
+
20
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
24
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
25
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
26
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
30
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31
+
32
+ ----
33
+
34
+ This binary distribution of SciPy also bundles the following software:
35
+
36
+
37
+ Name: OpenBLAS
38
+ Files: scipy.libs/libopenblas*.so
39
+ Description: bundled as a dynamically linked library
40
+ Availability: https://github.com/OpenMathLib/OpenBLAS/
41
+ License: BSD-3-Clause-Attribution
42
+ Copyright (c) 2011-2014, The OpenBLAS Project
43
+ All rights reserved.
44
+
45
+ Redistribution and use in source and binary forms, with or without
46
+ modification, are permitted provided that the following conditions are
47
+ met:
48
+
49
+ 1. Redistributions of source code must retain the above copyright
50
+ notice, this list of conditions and the following disclaimer.
51
+
52
+ 2. Redistributions in binary form must reproduce the above copyright
53
+ notice, this list of conditions and the following disclaimer in
54
+ the documentation and/or other materials provided with the
55
+ distribution.
56
+ 3. Neither the name of the OpenBLAS project nor the names of
57
+ its contributors may be used to endorse or promote products
58
+ derived from this software without specific prior written
59
+ permission.
60
+
61
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
62
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
63
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
64
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
65
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
66
+ DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
67
+ SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
68
+ CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
69
+ OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
70
+ USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
71
+
72
+
73
+ Name: LAPACK
74
+ Files: scipy.libs/libopenblas*.so
75
+ Description: bundled in OpenBLAS
76
+ Availability: https://github.com/OpenMathLib/OpenBLAS/
77
+ License: BSD-3-Clause-Attribution
78
+ Copyright (c) 1992-2013 The University of Tennessee and The University
79
+ of Tennessee Research Foundation. All rights
80
+ reserved.
81
+ Copyright (c) 2000-2013 The University of California Berkeley. All
82
+ rights reserved.
83
+ Copyright (c) 2006-2013 The University of Colorado Denver. All rights
84
+ reserved.
85
+
86
+ $COPYRIGHT$
87
+
88
+ Additional copyrights may follow
89
+
90
+ $HEADER$
91
+
92
+ Redistribution and use in source and binary forms, with or without
93
+ modification, are permitted provided that the following conditions are
94
+ met:
95
+
96
+ - Redistributions of source code must retain the above copyright
97
+ notice, this list of conditions and the following disclaimer.
98
+
99
+ - Redistributions in binary form must reproduce the above copyright
100
+ notice, this list of conditions and the following disclaimer listed
101
+ in this license in the documentation and/or other materials
102
+ provided with the distribution.
103
+
104
+ - Neither the name of the copyright holders nor the names of its
105
+ contributors may be used to endorse or promote products derived from
106
+ this software without specific prior written permission.
107
+
108
+ The copyright holders provide no reassurances that the source code
109
+ provided does not infringe any patent, copyright, or any other
110
+ intellectual property rights of third parties. The copyright holders
111
+ disclaim any liability to any recipient for claims brought against
112
+ recipient by any third party for infringement of that parties
113
+ intellectual property rights.
114
+
115
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
116
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
117
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
118
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
119
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
120
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
121
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
122
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
123
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
124
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
125
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
126
+
127
+
128
+ Name: GCC runtime library
129
+ Files: scipy.libs/libgfortran*.so
130
+ Description: dynamically linked to files compiled with gcc
131
+ Availability: https://gcc.gnu.org/git/?p=gcc.git;a=tree;f=libgfortran
132
+ License: GPL-3.0-with-GCC-exception
133
+ Copyright (C) 2002-2017 Free Software Foundation, Inc.
134
+
135
+ Libgfortran is free software; you can redistribute it and/or modify
136
+ it under the terms of the GNU General Public License as published by
137
+ the Free Software Foundation; either version 3, or (at your option)
138
+ any later version.
139
+
140
+ Libgfortran is distributed in the hope that it will be useful,
141
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
142
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
143
+ GNU General Public License for more details.
144
+
145
+ Under Section 7 of GPL version 3, you are granted additional
146
+ permissions described in the GCC Runtime Library Exception, version
147
+ 3.1, as published by the Free Software Foundation.
148
+
149
+ You should have received a copy of the GNU General Public License and
150
+ a copy of the GCC Runtime Library Exception along with this program;
151
+ see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
152
+ <http://www.gnu.org/licenses/>.
153
+
154
+ ----
155
+
156
+ Full text of license texts referred to above follows (that they are
157
+ listed below does not necessarily imply the conditions apply to the
158
+ present binary release):
159
+
160
+ ----
161
+
162
+ GCC RUNTIME LIBRARY EXCEPTION
163
+
164
+ Version 3.1, 31 March 2009
165
+
166
+ Copyright (C) 2009 Free Software Foundation, Inc. <http://fsf.org/>
167
+
168
+ Everyone is permitted to copy and distribute verbatim copies of this
169
+ license document, but changing it is not allowed.
170
+
171
+ This GCC Runtime Library Exception ("Exception") is an additional
172
+ permission under section 7 of the GNU General Public License, version
173
+ 3 ("GPLv3"). It applies to a given file (the "Runtime Library") that
174
+ bears a notice placed by the copyright holder of the file stating that
175
+ the file is governed by GPLv3 along with this Exception.
176
+
177
+ When you use GCC to compile a program, GCC may combine portions of
178
+ certain GCC header files and runtime libraries with the compiled
179
+ program. The purpose of this Exception is to allow compilation of
180
+ non-GPL (including proprietary) programs to use, in this way, the
181
+ header files and runtime libraries covered by this Exception.
182
+
183
+ 0. Definitions.
184
+
185
+ A file is an "Independent Module" if it either requires the Runtime
186
+ Library for execution after a Compilation Process, or makes use of an
187
+ interface provided by the Runtime Library, but is not otherwise based
188
+ on the Runtime Library.
189
+
190
+ "GCC" means a version of the GNU Compiler Collection, with or without
191
+ modifications, governed by version 3 (or a specified later version) of
192
+ the GNU General Public License (GPL) with the option of using any
193
+ subsequent versions published by the FSF.
194
+
195
+ "GPL-compatible Software" is software whose conditions of propagation,
196
+ modification and use would permit combination with GCC in accord with
197
+ the license of GCC.
198
+
199
+ "Target Code" refers to output from any compiler for a real or virtual
200
+ target processor architecture, in executable form or suitable for
201
+ input to an assembler, loader, linker and/or execution
202
+ phase. Notwithstanding that, Target Code does not include data in any
203
+ format that is used as a compiler intermediate representation, or used
204
+ for producing a compiler intermediate representation.
205
+
206
+ The "Compilation Process" transforms code entirely represented in
207
+ non-intermediate languages designed for human-written code, and/or in
208
+ Java Virtual Machine byte code, into Target Code. Thus, for example,
209
+ use of source code generators and preprocessors need not be considered
210
+ part of the Compilation Process, since the Compilation Process can be
211
+ understood as starting with the output of the generators or
212
+ preprocessors.
213
+
214
+ A Compilation Process is "Eligible" if it is done using GCC, alone or
215
+ with other GPL-compatible software, or if it is done without using any
216
+ work based on GCC. For example, using non-GPL-compatible Software to
217
+ optimize any GCC intermediate representations would not qualify as an
218
+ Eligible Compilation Process.
219
+
220
+ 1. Grant of Additional Permission.
221
+
222
+ You have permission to propagate a work of Target Code formed by
223
+ combining the Runtime Library with Independent Modules, even if such
224
+ propagation would otherwise violate the terms of GPLv3, provided that
225
+ all Target Code was generated by Eligible Compilation Processes. You
226
+ may then convey such a combination under terms of your choice,
227
+ consistent with the licensing of the Independent Modules.
228
+
229
+ 2. No Weakening of GCC Copyleft.
230
+
231
+ The availability of this Exception does not imply any general
232
+ presumption that third-party software is unaffected by the copyleft
233
+ requirements of the license of GCC.
234
+
235
+ ----
236
+
237
+ GNU GENERAL PUBLIC LICENSE
238
+ Version 3, 29 June 2007
239
+
240
+ Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
241
+ Everyone is permitted to copy and distribute verbatim copies
242
+ of this license document, but changing it is not allowed.
243
+
244
+ Preamble
245
+
246
+ The GNU General Public License is a free, copyleft license for
247
+ software and other kinds of works.
248
+
249
+ The licenses for most software and other practical works are designed
250
+ to take away your freedom to share and change the works. By contrast,
251
+ the GNU General Public License is intended to guarantee your freedom to
252
+ share and change all versions of a program--to make sure it remains free
253
+ software for all its users. We, the Free Software Foundation, use the
254
+ GNU General Public License for most of our software; it applies also to
255
+ any other work released this way by its authors. You can apply it to
256
+ your programs, too.
257
+
258
+ When we speak of free software, we are referring to freedom, not
259
+ price. Our General Public Licenses are designed to make sure that you
260
+ have the freedom to distribute copies of free software (and charge for
261
+ them if you wish), that you receive source code or can get it if you
262
+ want it, that you can change the software or use pieces of it in new
263
+ free programs, and that you know you can do these things.
264
+
265
+ To protect your rights, we need to prevent others from denying you
266
+ these rights or asking you to surrender the rights. Therefore, you have
267
+ certain responsibilities if you distribute copies of the software, or if
268
+ you modify it: responsibilities to respect the freedom of others.
269
+
270
+ For example, if you distribute copies of such a program, whether
271
+ gratis or for a fee, you must pass on to the recipients the same
272
+ freedoms that you received. You must make sure that they, too, receive
273
+ or can get the source code. And you must show them these terms so they
274
+ know their rights.
275
+
276
+ Developers that use the GNU GPL protect your rights with two steps:
277
+ (1) assert copyright on the software, and (2) offer you this License
278
+ giving you legal permission to copy, distribute and/or modify it.
279
+
280
+ For the developers' and authors' protection, the GPL clearly explains
281
+ that there is no warranty for this free software. For both users' and
282
+ authors' sake, the GPL requires that modified versions be marked as
283
+ changed, so that their problems will not be attributed erroneously to
284
+ authors of previous versions.
285
+
286
+ Some devices are designed to deny users access to install or run
287
+ modified versions of the software inside them, although the manufacturer
288
+ can do so. This is fundamentally incompatible with the aim of
289
+ protecting users' freedom to change the software. The systematic
290
+ pattern of such abuse occurs in the area of products for individuals to
291
+ use, which is precisely where it is most unacceptable. Therefore, we
292
+ have designed this version of the GPL to prohibit the practice for those
293
+ products. If such problems arise substantially in other domains, we
294
+ stand ready to extend this provision to those domains in future versions
295
+ of the GPL, as needed to protect the freedom of users.
296
+
297
+ Finally, every program is threatened constantly by software patents.
298
+ States should not allow patents to restrict development and use of
299
+ software on general-purpose computers, but in those that do, we wish to
300
+ avoid the special danger that patents applied to a free program could
301
+ make it effectively proprietary. To prevent this, the GPL assures that
302
+ patents cannot be used to render the program non-free.
303
+
304
+ The precise terms and conditions for copying, distribution and
305
+ modification follow.
306
+
307
+ TERMS AND CONDITIONS
308
+
309
+ 0. Definitions.
310
+
311
+ "This License" refers to version 3 of the GNU General Public License.
312
+
313
+ "Copyright" also means copyright-like laws that apply to other kinds of
314
+ works, such as semiconductor masks.
315
+
316
+ "The Program" refers to any copyrightable work licensed under this
317
+ License. Each licensee is addressed as "you". "Licensees" and
318
+ "recipients" may be individuals or organizations.
319
+
320
+ To "modify" a work means to copy from or adapt all or part of the work
321
+ in a fashion requiring copyright permission, other than the making of an
322
+ exact copy. The resulting work is called a "modified version" of the
323
+ earlier work or a work "based on" the earlier work.
324
+
325
+ A "covered work" means either the unmodified Program or a work based
326
+ on the Program.
327
+
328
+ To "propagate" a work means to do anything with it that, without
329
+ permission, would make you directly or secondarily liable for
330
+ infringement under applicable copyright law, except executing it on a
331
+ computer or modifying a private copy. Propagation includes copying,
332
+ distribution (with or without modification), making available to the
333
+ public, and in some countries other activities as well.
334
+
335
+ To "convey" a work means any kind of propagation that enables other
336
+ parties to make or receive copies. Mere interaction with a user through
337
+ a computer network, with no transfer of a copy, is not conveying.
338
+
339
+ An interactive user interface displays "Appropriate Legal Notices"
340
+ to the extent that it includes a convenient and prominently visible
341
+ feature that (1) displays an appropriate copyright notice, and (2)
342
+ tells the user that there is no warranty for the work (except to the
343
+ extent that warranties are provided), that licensees may convey the
344
+ work under this License, and how to view a copy of this License. If
345
+ the interface presents a list of user commands or options, such as a
346
+ menu, a prominent item in the list meets this criterion.
347
+
348
+ 1. Source Code.
349
+
350
+ The "source code" for a work means the preferred form of the work
351
+ for making modifications to it. "Object code" means any non-source
352
+ form of a work.
353
+
354
+ A "Standard Interface" means an interface that either is an official
355
+ standard defined by a recognized standards body, or, in the case of
356
+ interfaces specified for a particular programming language, one that
357
+ is widely used among developers working in that language.
358
+
359
+ The "System Libraries" of an executable work include anything, other
360
+ than the work as a whole, that (a) is included in the normal form of
361
+ packaging a Major Component, but which is not part of that Major
362
+ Component, and (b) serves only to enable use of the work with that
363
+ Major Component, or to implement a Standard Interface for which an
364
+ implementation is available to the public in source code form. A
365
+ "Major Component", in this context, means a major essential component
366
+ (kernel, window system, and so on) of the specific operating system
367
+ (if any) on which the executable work runs, or a compiler used to
368
+ produce the work, or an object code interpreter used to run it.
369
+
370
+ The "Corresponding Source" for a work in object code form means all
371
+ the source code needed to generate, install, and (for an executable
372
+ work) run the object code and to modify the work, including scripts to
373
+ control those activities. However, it does not include the work's
374
+ System Libraries, or general-purpose tools or generally available free
375
+ programs which are used unmodified in performing those activities but
376
+ which are not part of the work. For example, Corresponding Source
377
+ includes interface definition files associated with source files for
378
+ the work, and the source code for shared libraries and dynamically
379
+ linked subprograms that the work is specifically designed to require,
380
+ such as by intimate data communication or control flow between those
381
+ subprograms and other parts of the work.
382
+
383
+ The Corresponding Source need not include anything that users
384
+ can regenerate automatically from other parts of the Corresponding
385
+ Source.
386
+
387
+ The Corresponding Source for a work in source code form is that
388
+ same work.
389
+
390
+ 2. Basic Permissions.
391
+
392
+ All rights granted under this License are granted for the term of
393
+ copyright on the Program, and are irrevocable provided the stated
394
+ conditions are met. This License explicitly affirms your unlimited
395
+ permission to run the unmodified Program. The output from running a
396
+ covered work is covered by this License only if the output, given its
397
+ content, constitutes a covered work. This License acknowledges your
398
+ rights of fair use or other equivalent, as provided by copyright law.
399
+
400
+ You may make, run and propagate covered works that you do not
401
+ convey, without conditions so long as your license otherwise remains
402
+ in force. You may convey covered works to others for the sole purpose
403
+ of having them make modifications exclusively for you, or provide you
404
+ with facilities for running those works, provided that you comply with
405
+ the terms of this License in conveying all material for which you do
406
+ not control copyright. Those thus making or running the covered works
407
+ for you must do so exclusively on your behalf, under your direction
408
+ and control, on terms that prohibit them from making any copies of
409
+ your copyrighted material outside their relationship with you.
410
+
411
+ Conveying under any other circumstances is permitted solely under
412
+ the conditions stated below. Sublicensing is not allowed; section 10
413
+ makes it unnecessary.
414
+
415
+ 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
416
+
417
+ No covered work shall be deemed part of an effective technological
418
+ measure under any applicable law fulfilling obligations under article
419
+ 11 of the WIPO copyright treaty adopted on 20 December 1996, or
420
+ similar laws prohibiting or restricting circumvention of such
421
+ measures.
422
+
423
+ When you convey a covered work, you waive any legal power to forbid
424
+ circumvention of technological measures to the extent such circumvention
425
+ is effected by exercising rights under this License with respect to
426
+ the covered work, and you disclaim any intention to limit operation or
427
+ modification of the work as a means of enforcing, against the work's
428
+ users, your or third parties' legal rights to forbid circumvention of
429
+ technological measures.
430
+
431
+ 4. Conveying Verbatim Copies.
432
+
433
+ You may convey verbatim copies of the Program's source code as you
434
+ receive it, in any medium, provided that you conspicuously and
435
+ appropriately publish on each copy an appropriate copyright notice;
436
+ keep intact all notices stating that this License and any
437
+ non-permissive terms added in accord with section 7 apply to the code;
438
+ keep intact all notices of the absence of any warranty; and give all
439
+ recipients a copy of this License along with the Program.
440
+
441
+ You may charge any price or no price for each copy that you convey,
442
+ and you may offer support or warranty protection for a fee.
443
+
444
+ 5. Conveying Modified Source Versions.
445
+
446
+ You may convey a work based on the Program, or the modifications to
447
+ produce it from the Program, in the form of source code under the
448
+ terms of section 4, provided that you also meet all of these conditions:
449
+
450
+ a) The work must carry prominent notices stating that you modified
451
+ it, and giving a relevant date.
452
+
453
+ b) The work must carry prominent notices stating that it is
454
+ released under this License and any conditions added under section
455
+ 7. This requirement modifies the requirement in section 4 to
456
+ "keep intact all notices".
457
+
458
+ c) You must license the entire work, as a whole, under this
459
+ License to anyone who comes into possession of a copy. This
460
+ License will therefore apply, along with any applicable section 7
461
+ additional terms, to the whole of the work, and all its parts,
462
+ regardless of how they are packaged. This License gives no
463
+ permission to license the work in any other way, but it does not
464
+ invalidate such permission if you have separately received it.
465
+
466
+ d) If the work has interactive user interfaces, each must display
467
+ Appropriate Legal Notices; however, if the Program has interactive
468
+ interfaces that do not display Appropriate Legal Notices, your
469
+ work need not make them do so.
470
+
471
+ A compilation of a covered work with other separate and independent
472
+ works, which are not by their nature extensions of the covered work,
473
+ and which are not combined with it such as to form a larger program,
474
+ in or on a volume of a storage or distribution medium, is called an
475
+ "aggregate" if the compilation and its resulting copyright are not
476
+ used to limit the access or legal rights of the compilation's users
477
+ beyond what the individual works permit. Inclusion of a covered work
478
+ in an aggregate does not cause this License to apply to the other
479
+ parts of the aggregate.
480
+
481
+ 6. Conveying Non-Source Forms.
482
+
483
+ You may convey a covered work in object code form under the terms
484
+ of sections 4 and 5, provided that you also convey the
485
+ machine-readable Corresponding Source under the terms of this License,
486
+ in one of these ways:
487
+
488
+ a) Convey the object code in, or embodied in, a physical product
489
+ (including a physical distribution medium), accompanied by the
490
+ Corresponding Source fixed on a durable physical medium
491
+ customarily used for software interchange.
492
+
493
+ b) Convey the object code in, or embodied in, a physical product
494
+ (including a physical distribution medium), accompanied by a
495
+ written offer, valid for at least three years and valid for as
496
+ long as you offer spare parts or customer support for that product
497
+ model, to give anyone who possesses the object code either (1) a
498
+ copy of the Corresponding Source for all the software in the
499
+ product that is covered by this License, on a durable physical
500
+ medium customarily used for software interchange, for a price no
501
+ more than your reasonable cost of physically performing this
502
+ conveying of source, or (2) access to copy the
503
+ Corresponding Source from a network server at no charge.
504
+
505
+ c) Convey individual copies of the object code with a copy of the
506
+ written offer to provide the Corresponding Source. This
507
+ alternative is allowed only occasionally and noncommercially, and
508
+ only if you received the object code with such an offer, in accord
509
+ with subsection 6b.
510
+
511
+ d) Convey the object code by offering access from a designated
512
+ place (gratis or for a charge), and offer equivalent access to the
513
+ Corresponding Source in the same way through the same place at no
514
+ further charge. You need not require recipients to copy the
515
+ Corresponding Source along with the object code. If the place to
516
+ copy the object code is a network server, the Corresponding Source
517
+ may be on a different server (operated by you or a third party)
518
+ that supports equivalent copying facilities, provided you maintain
519
+ clear directions next to the object code saying where to find the
520
+ Corresponding Source. Regardless of what server hosts the
521
+ Corresponding Source, you remain obligated to ensure that it is
522
+ available for as long as needed to satisfy these requirements.
523
+
524
+ e) Convey the object code using peer-to-peer transmission, provided
525
+ you inform other peers where the object code and Corresponding
526
+ Source of the work are being offered to the general public at no
527
+ charge under subsection 6d.
528
+
529
+ A separable portion of the object code, whose source code is excluded
530
+ from the Corresponding Source as a System Library, need not be
531
+ included in conveying the object code work.
532
+
533
+ A "User Product" is either (1) a "consumer product", which means any
534
+ tangible personal property which is normally used for personal, family,
535
+ or household purposes, or (2) anything designed or sold for incorporation
536
+ into a dwelling. In determining whether a product is a consumer product,
537
+ doubtful cases shall be resolved in favor of coverage. For a particular
538
+ product received by a particular user, "normally used" refers to a
539
+ typical or common use of that class of product, regardless of the status
540
+ of the particular user or of the way in which the particular user
541
+ actually uses, or expects or is expected to use, the product. A product
542
+ is a consumer product regardless of whether the product has substantial
543
+ commercial, industrial or non-consumer uses, unless such uses represent
544
+ the only significant mode of use of the product.
545
+
546
+ "Installation Information" for a User Product means any methods,
547
+ procedures, authorization keys, or other information required to install
548
+ and execute modified versions of a covered work in that User Product from
549
+ a modified version of its Corresponding Source. The information must
550
+ suffice to ensure that the continued functioning of the modified object
551
+ code is in no case prevented or interfered with solely because
552
+ modification has been made.
553
+
554
+ If you convey an object code work under this section in, or with, or
555
+ specifically for use in, a User Product, and the conveying occurs as
556
+ part of a transaction in which the right of possession and use of the
557
+ User Product is transferred to the recipient in perpetuity or for a
558
+ fixed term (regardless of how the transaction is characterized), the
559
+ Corresponding Source conveyed under this section must be accompanied
560
+ by the Installation Information. But this requirement does not apply
561
+ if neither you nor any third party retains the ability to install
562
+ modified object code on the User Product (for example, the work has
563
+ been installed in ROM).
564
+
565
+ The requirement to provide Installation Information does not include a
566
+ requirement to continue to provide support service, warranty, or updates
567
+ for a work that has been modified or installed by the recipient, or for
568
+ the User Product in which it has been modified or installed. Access to a
569
+ network may be denied when the modification itself materially and
570
+ adversely affects the operation of the network or violates the rules and
571
+ protocols for communication across the network.
572
+
573
+ Corresponding Source conveyed, and Installation Information provided,
574
+ in accord with this section must be in a format that is publicly
575
+ documented (and with an implementation available to the public in
576
+ source code form), and must require no special password or key for
577
+ unpacking, reading or copying.
578
+
579
+ 7. Additional Terms.
580
+
581
+ "Additional permissions" are terms that supplement the terms of this
582
+ License by making exceptions from one or more of its conditions.
583
+ Additional permissions that are applicable to the entire Program shall
584
+ be treated as though they were included in this License, to the extent
585
+ that they are valid under applicable law. If additional permissions
586
+ apply only to part of the Program, that part may be used separately
587
+ under those permissions, but the entire Program remains governed by
588
+ this License without regard to the additional permissions.
589
+
590
+ When you convey a copy of a covered work, you may at your option
591
+ remove any additional permissions from that copy, or from any part of
592
+ it. (Additional permissions may be written to require their own
593
+ removal in certain cases when you modify the work.) You may place
594
+ additional permissions on material, added by you to a covered work,
595
+ for which you have or can give appropriate copyright permission.
596
+
597
+ Notwithstanding any other provision of this License, for material you
598
+ add to a covered work, you may (if authorized by the copyright holders of
599
+ that material) supplement the terms of this License with terms:
600
+
601
+ a) Disclaiming warranty or limiting liability differently from the
602
+ terms of sections 15 and 16 of this License; or
603
+
604
+ b) Requiring preservation of specified reasonable legal notices or
605
+ author attributions in that material or in the Appropriate Legal
606
+ Notices displayed by works containing it; or
607
+
608
+ c) Prohibiting misrepresentation of the origin of that material, or
609
+ requiring that modified versions of such material be marked in
610
+ reasonable ways as different from the original version; or
611
+
612
+ d) Limiting the use for publicity purposes of names of licensors or
613
+ authors of the material; or
614
+
615
+ e) Declining to grant rights under trademark law for use of some
616
+ trade names, trademarks, or service marks; or
617
+
618
+ f) Requiring indemnification of licensors and authors of that
619
+ material by anyone who conveys the material (or modified versions of
620
+ it) with contractual assumptions of liability to the recipient, for
621
+ any liability that these contractual assumptions directly impose on
622
+ those licensors and authors.
623
+
624
+ All other non-permissive additional terms are considered "further
625
+ restrictions" within the meaning of section 10. If the Program as you
626
+ received it, or any part of it, contains a notice stating that it is
627
+ governed by this License along with a term that is a further
628
+ restriction, you may remove that term. If a license document contains
629
+ a further restriction but permits relicensing or conveying under this
630
+ License, you may add to a covered work material governed by the terms
631
+ of that license document, provided that the further restriction does
632
+ not survive such relicensing or conveying.
633
+
634
+ If you add terms to a covered work in accord with this section, you
635
+ must place, in the relevant source files, a statement of the
636
+ additional terms that apply to those files, or a notice indicating
637
+ where to find the applicable terms.
638
+
639
+ Additional terms, permissive or non-permissive, may be stated in the
640
+ form of a separately written license, or stated as exceptions;
641
+ the above requirements apply either way.
642
+
643
+ 8. Termination.
644
+
645
+ You may not propagate or modify a covered work except as expressly
646
+ provided under this License. Any attempt otherwise to propagate or
647
+ modify it is void, and will automatically terminate your rights under
648
+ this License (including any patent licenses granted under the third
649
+ paragraph of section 11).
650
+
651
+ However, if you cease all violation of this License, then your
652
+ license from a particular copyright holder is reinstated (a)
653
+ provisionally, unless and until the copyright holder explicitly and
654
+ finally terminates your license, and (b) permanently, if the copyright
655
+ holder fails to notify you of the violation by some reasonable means
656
+ prior to 60 days after the cessation.
657
+
658
+ Moreover, your license from a particular copyright holder is
659
+ reinstated permanently if the copyright holder notifies you of the
660
+ violation by some reasonable means, this is the first time you have
661
+ received notice of violation of this License (for any work) from that
662
+ copyright holder, and you cure the violation prior to 30 days after
663
+ your receipt of the notice.
664
+
665
+ Termination of your rights under this section does not terminate the
666
+ licenses of parties who have received copies or rights from you under
667
+ this License. If your rights have been terminated and not permanently
668
+ reinstated, you do not qualify to receive new licenses for the same
669
+ material under section 10.
670
+
671
+ 9. Acceptance Not Required for Having Copies.
672
+
673
+ You are not required to accept this License in order to receive or
674
+ run a copy of the Program. Ancillary propagation of a covered work
675
+ occurring solely as a consequence of using peer-to-peer transmission
676
+ to receive a copy likewise does not require acceptance. However,
677
+ nothing other than this License grants you permission to propagate or
678
+ modify any covered work. These actions infringe copyright if you do
679
+ not accept this License. Therefore, by modifying or propagating a
680
+ covered work, you indicate your acceptance of this License to do so.
681
+
682
+ 10. Automatic Licensing of Downstream Recipients.
683
+
684
+ Each time you convey a covered work, the recipient automatically
685
+ receives a license from the original licensors, to run, modify and
686
+ propagate that work, subject to this License. You are not responsible
687
+ for enforcing compliance by third parties with this License.
688
+
689
+ An "entity transaction" is a transaction transferring control of an
690
+ organization, or substantially all assets of one, or subdividing an
691
+ organization, or merging organizations. If propagation of a covered
692
+ work results from an entity transaction, each party to that
693
+ transaction who receives a copy of the work also receives whatever
694
+ licenses to the work the party's predecessor in interest had or could
695
+ give under the previous paragraph, plus a right to possession of the
696
+ Corresponding Source of the work from the predecessor in interest, if
697
+ the predecessor has it or can get it with reasonable efforts.
698
+
699
+ You may not impose any further restrictions on the exercise of the
700
+ rights granted or affirmed under this License. For example, you may
701
+ not impose a license fee, royalty, or other charge for exercise of
702
+ rights granted under this License, and you may not initiate litigation
703
+ (including a cross-claim or counterclaim in a lawsuit) alleging that
704
+ any patent claim is infringed by making, using, selling, offering for
705
+ sale, or importing the Program or any portion of it.
706
+
707
+ 11. Patents.
708
+
709
+ A "contributor" is a copyright holder who authorizes use under this
710
+ License of the Program or a work on which the Program is based. The
711
+ work thus licensed is called the contributor's "contributor version".
712
+
713
+ A contributor's "essential patent claims" are all patent claims
714
+ owned or controlled by the contributor, whether already acquired or
715
+ hereafter acquired, that would be infringed by some manner, permitted
716
+ by this License, of making, using, or selling its contributor version,
717
+ but do not include claims that would be infringed only as a
718
+ consequence of further modification of the contributor version. For
719
+ purposes of this definition, "control" includes the right to grant
720
+ patent sublicenses in a manner consistent with the requirements of
721
+ this License.
722
+
723
+ Each contributor grants you a non-exclusive, worldwide, royalty-free
724
+ patent license under the contributor's essential patent claims, to
725
+ make, use, sell, offer for sale, import and otherwise run, modify and
726
+ propagate the contents of its contributor version.
727
+
728
+ In the following three paragraphs, a "patent license" is any express
729
+ agreement or commitment, however denominated, not to enforce a patent
730
+ (such as an express permission to practice a patent or covenant not to
731
+ sue for patent infringement). To "grant" such a patent license to a
732
+ party means to make such an agreement or commitment not to enforce a
733
+ patent against the party.
734
+
735
+ If you convey a covered work, knowingly relying on a patent license,
736
+ and the Corresponding Source of the work is not available for anyone
737
+ to copy, free of charge and under the terms of this License, through a
738
+ publicly available network server or other readily accessible means,
739
+ then you must either (1) cause the Corresponding Source to be so
740
+ available, or (2) arrange to deprive yourself of the benefit of the
741
+ patent license for this particular work, or (3) arrange, in a manner
742
+ consistent with the requirements of this License, to extend the patent
743
+ license to downstream recipients. "Knowingly relying" means you have
744
+ actual knowledge that, but for the patent license, your conveying the
745
+ covered work in a country, or your recipient's use of the covered work
746
+ in a country, would infringe one or more identifiable patents in that
747
+ country that you have reason to believe are valid.
748
+
749
+ If, pursuant to or in connection with a single transaction or
750
+ arrangement, you convey, or propagate by procuring conveyance of, a
751
+ covered work, and grant a patent license to some of the parties
752
+ receiving the covered work authorizing them to use, propagate, modify
753
+ or convey a specific copy of the covered work, then the patent license
754
+ you grant is automatically extended to all recipients of the covered
755
+ work and works based on it.
756
+
757
+ A patent license is "discriminatory" if it does not include within
758
+ the scope of its coverage, prohibits the exercise of, or is
759
+ conditioned on the non-exercise of one or more of the rights that are
760
+ specifically granted under this License. You may not convey a covered
761
+ work if you are a party to an arrangement with a third party that is
762
+ in the business of distributing software, under which you make payment
763
+ to the third party based on the extent of your activity of conveying
764
+ the work, and under which the third party grants, to any of the
765
+ parties who would receive the covered work from you, a discriminatory
766
+ patent license (a) in connection with copies of the covered work
767
+ conveyed by you (or copies made from those copies), or (b) primarily
768
+ for and in connection with specific products or compilations that
769
+ contain the covered work, unless you entered into that arrangement,
770
+ or that patent license was granted, prior to 28 March 2007.
771
+
772
+ Nothing in this License shall be construed as excluding or limiting
773
+ any implied license or other defenses to infringement that may
774
+ otherwise be available to you under applicable patent law.
775
+
776
+ 12. No Surrender of Others' Freedom.
777
+
778
+ If conditions are imposed on you (whether by court order, agreement or
779
+ otherwise) that contradict the conditions of this License, they do not
780
+ excuse you from the conditions of this License. If you cannot convey a
781
+ covered work so as to satisfy simultaneously your obligations under this
782
+ License and any other pertinent obligations, then as a consequence you may
783
+ not convey it at all. For example, if you agree to terms that obligate you
784
+ to collect a royalty for further conveying from those to whom you convey
785
+ the Program, the only way you could satisfy both those terms and this
786
+ License would be to refrain entirely from conveying the Program.
787
+
788
+ 13. Use with the GNU Affero General Public License.
789
+
790
+ Notwithstanding any other provision of this License, you have
791
+ permission to link or combine any covered work with a work licensed
792
+ under version 3 of the GNU Affero General Public License into a single
793
+ combined work, and to convey the resulting work. The terms of this
794
+ License will continue to apply to the part which is the covered work,
795
+ but the special requirements of the GNU Affero General Public License,
796
+ section 13, concerning interaction through a network will apply to the
797
+ combination as such.
798
+
799
+ 14. Revised Versions of this License.
800
+
801
+ The Free Software Foundation may publish revised and/or new versions of
802
+ the GNU General Public License from time to time. Such new versions will
803
+ be similar in spirit to the present version, but may differ in detail to
804
+ address new problems or concerns.
805
+
806
+ Each version is given a distinguishing version number. If the
807
+ Program specifies that a certain numbered version of the GNU General
808
+ Public License "or any later version" applies to it, you have the
809
+ option of following the terms and conditions either of that numbered
810
+ version or of any later version published by the Free Software
811
+ Foundation. If the Program does not specify a version number of the
812
+ GNU General Public License, you may choose any version ever published
813
+ by the Free Software Foundation.
814
+
815
+ If the Program specifies that a proxy can decide which future
816
+ versions of the GNU General Public License can be used, that proxy's
817
+ public statement of acceptance of a version permanently authorizes you
818
+ to choose that version for the Program.
819
+
820
+ Later license versions may give you additional or different
821
+ permissions. However, no additional obligations are imposed on any
822
+ author or copyright holder as a result of your choosing to follow a
823
+ later version.
824
+
825
+ 15. Disclaimer of Warranty.
826
+
827
+ THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
828
+ APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
829
+ HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
830
+ OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
831
+ THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
832
+ PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
833
+ IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
834
+ ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
835
+
836
+ 16. Limitation of Liability.
837
+
838
+ IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
839
+ WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
840
+ THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
841
+ GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
842
+ USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
843
+ DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
844
+ PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
845
+ EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
846
+ SUCH DAMAGES.
847
+
848
+ 17. Interpretation of Sections 15 and 16.
849
+
850
+ If the disclaimer of warranty and limitation of liability provided
851
+ above cannot be given local legal effect according to their terms,
852
+ reviewing courts shall apply local law that most closely approximates
853
+ an absolute waiver of all civil liability in connection with the
854
+ Program, unless a warranty or assumption of liability accompanies a
855
+ copy of the Program in return for a fee.
856
+
857
+ END OF TERMS AND CONDITIONS
858
+
859
+ How to Apply These Terms to Your New Programs
860
+
861
+ If you develop a new program, and you want it to be of the greatest
862
+ possible use to the public, the best way to achieve this is to make it
863
+ free software which everyone can redistribute and change under these terms.
864
+
865
+ To do so, attach the following notices to the program. It is safest
866
+ to attach them to the start of each source file to most effectively
867
+ state the exclusion of warranty; and each file should have at least
868
+ the "copyright" line and a pointer to where the full notice is found.
869
+
870
+ <one line to give the program's name and a brief idea of what it does.>
871
+ Copyright (C) <year> <name of author>
872
+
873
+ This program is free software: you can redistribute it and/or modify
874
+ it under the terms of the GNU General Public License as published by
875
+ the Free Software Foundation, either version 3 of the License, or
876
+ (at your option) any later version.
877
+
878
+ This program is distributed in the hope that it will be useful,
879
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
880
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
881
+ GNU General Public License for more details.
882
+
883
+ You should have received a copy of the GNU General Public License
884
+ along with this program. If not, see <http://www.gnu.org/licenses/>.
885
+
886
+ Also add information on how to contact you by electronic and paper mail.
887
+
888
+ If the program does terminal interaction, make it output a short
889
+ notice like this when it starts in an interactive mode:
890
+
891
+ <program> Copyright (C) <year> <name of author>
892
+ This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
893
+ This is free software, and you are welcome to redistribute it
894
+ under certain conditions; type `show c' for details.
895
+
896
+ The hypothetical commands `show w' and `show c' should show the appropriate
897
+ parts of the General Public License. Of course, your program's commands
898
+ might be different; for a GUI interface, you would use an "about box".
899
+
900
+ You should also get your employer (if you work as a programmer) or school,
901
+ if any, to sign a "copyright disclaimer" for the program, if necessary.
902
+ For more information on this, and how to apply and follow the GNU GPL, see
903
+ <http://www.gnu.org/licenses/>.
904
+
905
+ The GNU General Public License does not permit incorporating your program
906
+ into proprietary programs. If your program is a subroutine library, you
907
+ may consider it more useful to permit linking proprietary applications with
908
+ the library. If this is what you want to do, use the GNU Lesser General
909
+ Public License instead of this License. But first, please read
910
+ <http://www.gnu.org/philosophy/why-not-lgpl.html>.
911
+
912
+
913
+ Name: libquadmath
914
+ Files: scipy.libs/libquadmath*.so
915
+ Description: dynamically linked to files compiled with gcc
916
+ Availability: https://gcc.gnu.org/git/?p=gcc.git;a=tree;f=libquadmath
917
+ License: LGPL-2.1-or-later
918
+
919
+ GCC Quad-Precision Math Library
920
+ Copyright (C) 2010-2019 Free Software Foundation, Inc.
921
+ Written by Francois-Xavier Coudert <[email protected]>
922
+
923
+ This file is part of the libquadmath library.
924
+ Libquadmath is free software; you can redistribute it and/or
925
+ modify it under the terms of the GNU Library General Public
926
+ License as published by the Free Software Foundation; either
927
+ version 2.1 of the License, or (at your option) any later version.
928
+
929
+ Libquadmath is distributed in the hope that it will be useful,
930
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
931
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
932
+ Lesser General Public License for more details.
933
+ https://www.gnu.org/licenses/old-licenses/lgpl-2.1.html
env-llmeval/lib/python3.10/site-packages/scipy-1.13.0.dist-info/METADATA ADDED
@@ -0,0 +1,1074 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Metadata-Version: 2.1
2
+ Name: scipy
3
+ Version: 1.13.0
4
+ Summary: Fundamental algorithms for scientific computing in Python
5
+ Home-page: https://scipy.org/
6
+ Maintainer-Email: SciPy Developers <[email protected]>
7
+ License: Copyright (c) 2001-2002 Enthought, Inc. 2003-2024, SciPy Developers.
8
+ All rights reserved.
9
+
10
+ Redistribution and use in source and binary forms, with or without
11
+ modification, are permitted provided that the following conditions
12
+ are met:
13
+
14
+ 1. Redistributions of source code must retain the above copyright
15
+ notice, this list of conditions and the following disclaimer.
16
+
17
+ 2. Redistributions in binary form must reproduce the above
18
+ copyright notice, this list of conditions and the following
19
+ disclaimer in the documentation and/or other materials provided
20
+ with the distribution.
21
+
22
+ 3. Neither the name of the copyright holder nor the names of its
23
+ contributors may be used to endorse or promote products derived
24
+ from this software without specific prior written permission.
25
+
26
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
27
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
28
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
29
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
30
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
31
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
32
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
33
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
34
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
35
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
36
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
37
+
38
+ ----
39
+
40
+ This binary distribution of SciPy also bundles the following software:
41
+
42
+
43
+ Name: OpenBLAS
44
+ Files: scipy.libs/libopenblas*.so
45
+ Description: bundled as a dynamically linked library
46
+ Availability: https://github.com/OpenMathLib/OpenBLAS/
47
+ License: BSD-3-Clause-Attribution
48
+ Copyright (c) 2011-2014, The OpenBLAS Project
49
+ All rights reserved.
50
+
51
+ Redistribution and use in source and binary forms, with or without
52
+ modification, are permitted provided that the following conditions are
53
+ met:
54
+
55
+ 1. Redistributions of source code must retain the above copyright
56
+ notice, this list of conditions and the following disclaimer.
57
+
58
+ 2. Redistributions in binary form must reproduce the above copyright
59
+ notice, this list of conditions and the following disclaimer in
60
+ the documentation and/or other materials provided with the
61
+ distribution.
62
+ 3. Neither the name of the OpenBLAS project nor the names of
63
+ its contributors may be used to endorse or promote products
64
+ derived from this software without specific prior written
65
+ permission.
66
+
67
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
68
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
69
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
70
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
71
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
72
+ DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
73
+ SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
74
+ CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
75
+ OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
76
+ USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
77
+
78
+
79
+ Name: LAPACK
80
+ Files: scipy.libs/libopenblas*.so
81
+ Description: bundled in OpenBLAS
82
+ Availability: https://github.com/OpenMathLib/OpenBLAS/
83
+ License: BSD-3-Clause-Attribution
84
+ Copyright (c) 1992-2013 The University of Tennessee and The University
85
+ of Tennessee Research Foundation. All rights
86
+ reserved.
87
+ Copyright (c) 2000-2013 The University of California Berkeley. All
88
+ rights reserved.
89
+ Copyright (c) 2006-2013 The University of Colorado Denver. All rights
90
+ reserved.
91
+
92
+ $COPYRIGHT$
93
+
94
+ Additional copyrights may follow
95
+
96
+ $HEADER$
97
+
98
+ Redistribution and use in source and binary forms, with or without
99
+ modification, are permitted provided that the following conditions are
100
+ met:
101
+
102
+ - Redistributions of source code must retain the above copyright
103
+ notice, this list of conditions and the following disclaimer.
104
+
105
+ - Redistributions in binary form must reproduce the above copyright
106
+ notice, this list of conditions and the following disclaimer listed
107
+ in this license in the documentation and/or other materials
108
+ provided with the distribution.
109
+
110
+ - Neither the name of the copyright holders nor the names of its
111
+ contributors may be used to endorse or promote products derived from
112
+ this software without specific prior written permission.
113
+
114
+ The copyright holders provide no reassurances that the source code
115
+ provided does not infringe any patent, copyright, or any other
116
+ intellectual property rights of third parties. The copyright holders
117
+ disclaim any liability to any recipient for claims brought against
118
+ recipient by any third party for infringement of that parties
119
+ intellectual property rights.
120
+
121
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
122
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
123
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
124
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
125
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
126
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
127
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
128
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
129
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
130
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
131
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
132
+
133
+
134
+ Name: GCC runtime library
135
+ Files: scipy.libs/libgfortran*.so
136
+ Description: dynamically linked to files compiled with gcc
137
+ Availability: https://gcc.gnu.org/git/?p=gcc.git;a=tree;f=libgfortran
138
+ License: GPL-3.0-with-GCC-exception
139
+ Copyright (C) 2002-2017 Free Software Foundation, Inc.
140
+
141
+ Libgfortran is free software; you can redistribute it and/or modify
142
+ it under the terms of the GNU General Public License as published by
143
+ the Free Software Foundation; either version 3, or (at your option)
144
+ any later version.
145
+
146
+ Libgfortran is distributed in the hope that it will be useful,
147
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
148
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
149
+ GNU General Public License for more details.
150
+
151
+ Under Section 7 of GPL version 3, you are granted additional
152
+ permissions described in the GCC Runtime Library Exception, version
153
+ 3.1, as published by the Free Software Foundation.
154
+
155
+ You should have received a copy of the GNU General Public License and
156
+ a copy of the GCC Runtime Library Exception along with this program;
157
+ see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
158
+ <http://www.gnu.org/licenses/>.
159
+
160
+ ----
161
+
162
+ Full text of license texts referred to above follows (that they are
163
+ listed below does not necessarily imply the conditions apply to the
164
+ present binary release):
165
+
166
+ ----
167
+
168
+ GCC RUNTIME LIBRARY EXCEPTION
169
+
170
+ Version 3.1, 31 March 2009
171
+
172
+ Copyright (C) 2009 Free Software Foundation, Inc. <http://fsf.org/>
173
+
174
+ Everyone is permitted to copy and distribute verbatim copies of this
175
+ license document, but changing it is not allowed.
176
+
177
+ This GCC Runtime Library Exception ("Exception") is an additional
178
+ permission under section 7 of the GNU General Public License, version
179
+ 3 ("GPLv3"). It applies to a given file (the "Runtime Library") that
180
+ bears a notice placed by the copyright holder of the file stating that
181
+ the file is governed by GPLv3 along with this Exception.
182
+
183
+ When you use GCC to compile a program, GCC may combine portions of
184
+ certain GCC header files and runtime libraries with the compiled
185
+ program. The purpose of this Exception is to allow compilation of
186
+ non-GPL (including proprietary) programs to use, in this way, the
187
+ header files and runtime libraries covered by this Exception.
188
+
189
+ 0. Definitions.
190
+
191
+ A file is an "Independent Module" if it either requires the Runtime
192
+ Library for execution after a Compilation Process, or makes use of an
193
+ interface provided by the Runtime Library, but is not otherwise based
194
+ on the Runtime Library.
195
+
196
+ "GCC" means a version of the GNU Compiler Collection, with or without
197
+ modifications, governed by version 3 (or a specified later version) of
198
+ the GNU General Public License (GPL) with the option of using any
199
+ subsequent versions published by the FSF.
200
+
201
+ "GPL-compatible Software" is software whose conditions of propagation,
202
+ modification and use would permit combination with GCC in accord with
203
+ the license of GCC.
204
+
205
+ "Target Code" refers to output from any compiler for a real or virtual
206
+ target processor architecture, in executable form or suitable for
207
+ input to an assembler, loader, linker and/or execution
208
+ phase. Notwithstanding that, Target Code does not include data in any
209
+ format that is used as a compiler intermediate representation, or used
210
+ for producing a compiler intermediate representation.
211
+
212
+ The "Compilation Process" transforms code entirely represented in
213
+ non-intermediate languages designed for human-written code, and/or in
214
+ Java Virtual Machine byte code, into Target Code. Thus, for example,
215
+ use of source code generators and preprocessors need not be considered
216
+ part of the Compilation Process, since the Compilation Process can be
217
+ understood as starting with the output of the generators or
218
+ preprocessors.
219
+
220
+ A Compilation Process is "Eligible" if it is done using GCC, alone or
221
+ with other GPL-compatible software, or if it is done without using any
222
+ work based on GCC. For example, using non-GPL-compatible Software to
223
+ optimize any GCC intermediate representations would not qualify as an
224
+ Eligible Compilation Process.
225
+
226
+ 1. Grant of Additional Permission.
227
+
228
+ You have permission to propagate a work of Target Code formed by
229
+ combining the Runtime Library with Independent Modules, even if such
230
+ propagation would otherwise violate the terms of GPLv3, provided that
231
+ all Target Code was generated by Eligible Compilation Processes. You
232
+ may then convey such a combination under terms of your choice,
233
+ consistent with the licensing of the Independent Modules.
234
+
235
+ 2. No Weakening of GCC Copyleft.
236
+
237
+ The availability of this Exception does not imply any general
238
+ presumption that third-party software is unaffected by the copyleft
239
+ requirements of the license of GCC.
240
+
241
+ ----
242
+
243
+ GNU GENERAL PUBLIC LICENSE
244
+ Version 3, 29 June 2007
245
+
246
+ Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
247
+ Everyone is permitted to copy and distribute verbatim copies
248
+ of this license document, but changing it is not allowed.
249
+
250
+ Preamble
251
+
252
+ The GNU General Public License is a free, copyleft license for
253
+ software and other kinds of works.
254
+
255
+ The licenses for most software and other practical works are designed
256
+ to take away your freedom to share and change the works. By contrast,
257
+ the GNU General Public License is intended to guarantee your freedom to
258
+ share and change all versions of a program--to make sure it remains free
259
+ software for all its users. We, the Free Software Foundation, use the
260
+ GNU General Public License for most of our software; it applies also to
261
+ any other work released this way by its authors. You can apply it to
262
+ your programs, too.
263
+
264
+ When we speak of free software, we are referring to freedom, not
265
+ price. Our General Public Licenses are designed to make sure that you
266
+ have the freedom to distribute copies of free software (and charge for
267
+ them if you wish), that you receive source code or can get it if you
268
+ want it, that you can change the software or use pieces of it in new
269
+ free programs, and that you know you can do these things.
270
+
271
+ To protect your rights, we need to prevent others from denying you
272
+ these rights or asking you to surrender the rights. Therefore, you have
273
+ certain responsibilities if you distribute copies of the software, or if
274
+ you modify it: responsibilities to respect the freedom of others.
275
+
276
+ For example, if you distribute copies of such a program, whether
277
+ gratis or for a fee, you must pass on to the recipients the same
278
+ freedoms that you received. You must make sure that they, too, receive
279
+ or can get the source code. And you must show them these terms so they
280
+ know their rights.
281
+
282
+ Developers that use the GNU GPL protect your rights with two steps:
283
+ (1) assert copyright on the software, and (2) offer you this License
284
+ giving you legal permission to copy, distribute and/or modify it.
285
+
286
+ For the developers' and authors' protection, the GPL clearly explains
287
+ that there is no warranty for this free software. For both users' and
288
+ authors' sake, the GPL requires that modified versions be marked as
289
+ changed, so that their problems will not be attributed erroneously to
290
+ authors of previous versions.
291
+
292
+ Some devices are designed to deny users access to install or run
293
+ modified versions of the software inside them, although the manufacturer
294
+ can do so. This is fundamentally incompatible with the aim of
295
+ protecting users' freedom to change the software. The systematic
296
+ pattern of such abuse occurs in the area of products for individuals to
297
+ use, which is precisely where it is most unacceptable. Therefore, we
298
+ have designed this version of the GPL to prohibit the practice for those
299
+ products. If such problems arise substantially in other domains, we
300
+ stand ready to extend this provision to those domains in future versions
301
+ of the GPL, as needed to protect the freedom of users.
302
+
303
+ Finally, every program is threatened constantly by software patents.
304
+ States should not allow patents to restrict development and use of
305
+ software on general-purpose computers, but in those that do, we wish to
306
+ avoid the special danger that patents applied to a free program could
307
+ make it effectively proprietary. To prevent this, the GPL assures that
308
+ patents cannot be used to render the program non-free.
309
+
310
+ The precise terms and conditions for copying, distribution and
311
+ modification follow.
312
+
313
+ TERMS AND CONDITIONS
314
+
315
+ 0. Definitions.
316
+
317
+ "This License" refers to version 3 of the GNU General Public License.
318
+
319
+ "Copyright" also means copyright-like laws that apply to other kinds of
320
+ works, such as semiconductor masks.
321
+
322
+ "The Program" refers to any copyrightable work licensed under this
323
+ License. Each licensee is addressed as "you". "Licensees" and
324
+ "recipients" may be individuals or organizations.
325
+
326
+ To "modify" a work means to copy from or adapt all or part of the work
327
+ in a fashion requiring copyright permission, other than the making of an
328
+ exact copy. The resulting work is called a "modified version" of the
329
+ earlier work or a work "based on" the earlier work.
330
+
331
+ A "covered work" means either the unmodified Program or a work based
332
+ on the Program.
333
+
334
+ To "propagate" a work means to do anything with it that, without
335
+ permission, would make you directly or secondarily liable for
336
+ infringement under applicable copyright law, except executing it on a
337
+ computer or modifying a private copy. Propagation includes copying,
338
+ distribution (with or without modification), making available to the
339
+ public, and in some countries other activities as well.
340
+
341
+ To "convey" a work means any kind of propagation that enables other
342
+ parties to make or receive copies. Mere interaction with a user through
343
+ a computer network, with no transfer of a copy, is not conveying.
344
+
345
+ An interactive user interface displays "Appropriate Legal Notices"
346
+ to the extent that it includes a convenient and prominently visible
347
+ feature that (1) displays an appropriate copyright notice, and (2)
348
+ tells the user that there is no warranty for the work (except to the
349
+ extent that warranties are provided), that licensees may convey the
350
+ work under this License, and how to view a copy of this License. If
351
+ the interface presents a list of user commands or options, such as a
352
+ menu, a prominent item in the list meets this criterion.
353
+
354
+ 1. Source Code.
355
+
356
+ The "source code" for a work means the preferred form of the work
357
+ for making modifications to it. "Object code" means any non-source
358
+ form of a work.
359
+
360
+ A "Standard Interface" means an interface that either is an official
361
+ standard defined by a recognized standards body, or, in the case of
362
+ interfaces specified for a particular programming language, one that
363
+ is widely used among developers working in that language.
364
+
365
+ The "System Libraries" of an executable work include anything, other
366
+ than the work as a whole, that (a) is included in the normal form of
367
+ packaging a Major Component, but which is not part of that Major
368
+ Component, and (b) serves only to enable use of the work with that
369
+ Major Component, or to implement a Standard Interface for which an
370
+ implementation is available to the public in source code form. A
371
+ "Major Component", in this context, means a major essential component
372
+ (kernel, window system, and so on) of the specific operating system
373
+ (if any) on which the executable work runs, or a compiler used to
374
+ produce the work, or an object code interpreter used to run it.
375
+
376
+ The "Corresponding Source" for a work in object code form means all
377
+ the source code needed to generate, install, and (for an executable
378
+ work) run the object code and to modify the work, including scripts to
379
+ control those activities. However, it does not include the work's
380
+ System Libraries, or general-purpose tools or generally available free
381
+ programs which are used unmodified in performing those activities but
382
+ which are not part of the work. For example, Corresponding Source
383
+ includes interface definition files associated with source files for
384
+ the work, and the source code for shared libraries and dynamically
385
+ linked subprograms that the work is specifically designed to require,
386
+ such as by intimate data communication or control flow between those
387
+ subprograms and other parts of the work.
388
+
389
+ The Corresponding Source need not include anything that users
390
+ can regenerate automatically from other parts of the Corresponding
391
+ Source.
392
+
393
+ The Corresponding Source for a work in source code form is that
394
+ same work.
395
+
396
+ 2. Basic Permissions.
397
+
398
+ All rights granted under this License are granted for the term of
399
+ copyright on the Program, and are irrevocable provided the stated
400
+ conditions are met. This License explicitly affirms your unlimited
401
+ permission to run the unmodified Program. The output from running a
402
+ covered work is covered by this License only if the output, given its
403
+ content, constitutes a covered work. This License acknowledges your
404
+ rights of fair use or other equivalent, as provided by copyright law.
405
+
406
+ You may make, run and propagate covered works that you do not
407
+ convey, without conditions so long as your license otherwise remains
408
+ in force. You may convey covered works to others for the sole purpose
409
+ of having them make modifications exclusively for you, or provide you
410
+ with facilities for running those works, provided that you comply with
411
+ the terms of this License in conveying all material for which you do
412
+ not control copyright. Those thus making or running the covered works
413
+ for you must do so exclusively on your behalf, under your direction
414
+ and control, on terms that prohibit them from making any copies of
415
+ your copyrighted material outside their relationship with you.
416
+
417
+ Conveying under any other circumstances is permitted solely under
418
+ the conditions stated below. Sublicensing is not allowed; section 10
419
+ makes it unnecessary.
420
+
421
+ 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
422
+
423
+ No covered work shall be deemed part of an effective technological
424
+ measure under any applicable law fulfilling obligations under article
425
+ 11 of the WIPO copyright treaty adopted on 20 December 1996, or
426
+ similar laws prohibiting or restricting circumvention of such
427
+ measures.
428
+
429
+ When you convey a covered work, you waive any legal power to forbid
430
+ circumvention of technological measures to the extent such circumvention
431
+ is effected by exercising rights under this License with respect to
432
+ the covered work, and you disclaim any intention to limit operation or
433
+ modification of the work as a means of enforcing, against the work's
434
+ users, your or third parties' legal rights to forbid circumvention of
435
+ technological measures.
436
+
437
+ 4. Conveying Verbatim Copies.
438
+
439
+ You may convey verbatim copies of the Program's source code as you
440
+ receive it, in any medium, provided that you conspicuously and
441
+ appropriately publish on each copy an appropriate copyright notice;
442
+ keep intact all notices stating that this License and any
443
+ non-permissive terms added in accord with section 7 apply to the code;
444
+ keep intact all notices of the absence of any warranty; and give all
445
+ recipients a copy of this License along with the Program.
446
+
447
+ You may charge any price or no price for each copy that you convey,
448
+ and you may offer support or warranty protection for a fee.
449
+
450
+ 5. Conveying Modified Source Versions.
451
+
452
+ You may convey a work based on the Program, or the modifications to
453
+ produce it from the Program, in the form of source code under the
454
+ terms of section 4, provided that you also meet all of these conditions:
455
+
456
+ a) The work must carry prominent notices stating that you modified
457
+ it, and giving a relevant date.
458
+
459
+ b) The work must carry prominent notices stating that it is
460
+ released under this License and any conditions added under section
461
+ 7. This requirement modifies the requirement in section 4 to
462
+ "keep intact all notices".
463
+
464
+ c) You must license the entire work, as a whole, under this
465
+ License to anyone who comes into possession of a copy. This
466
+ License will therefore apply, along with any applicable section 7
467
+ additional terms, to the whole of the work, and all its parts,
468
+ regardless of how they are packaged. This License gives no
469
+ permission to license the work in any other way, but it does not
470
+ invalidate such permission if you have separately received it.
471
+
472
+ d) If the work has interactive user interfaces, each must display
473
+ Appropriate Legal Notices; however, if the Program has interactive
474
+ interfaces that do not display Appropriate Legal Notices, your
475
+ work need not make them do so.
476
+
477
+ A compilation of a covered work with other separate and independent
478
+ works, which are not by their nature extensions of the covered work,
479
+ and which are not combined with it such as to form a larger program,
480
+ in or on a volume of a storage or distribution medium, is called an
481
+ "aggregate" if the compilation and its resulting copyright are not
482
+ used to limit the access or legal rights of the compilation's users
483
+ beyond what the individual works permit. Inclusion of a covered work
484
+ in an aggregate does not cause this License to apply to the other
485
+ parts of the aggregate.
486
+
487
+ 6. Conveying Non-Source Forms.
488
+
489
+ You may convey a covered work in object code form under the terms
490
+ of sections 4 and 5, provided that you also convey the
491
+ machine-readable Corresponding Source under the terms of this License,
492
+ in one of these ways:
493
+
494
+ a) Convey the object code in, or embodied in, a physical product
495
+ (including a physical distribution medium), accompanied by the
496
+ Corresponding Source fixed on a durable physical medium
497
+ customarily used for software interchange.
498
+
499
+ b) Convey the object code in, or embodied in, a physical product
500
+ (including a physical distribution medium), accompanied by a
501
+ written offer, valid for at least three years and valid for as
502
+ long as you offer spare parts or customer support for that product
503
+ model, to give anyone who possesses the object code either (1) a
504
+ copy of the Corresponding Source for all the software in the
505
+ product that is covered by this License, on a durable physical
506
+ medium customarily used for software interchange, for a price no
507
+ more than your reasonable cost of physically performing this
508
+ conveying of source, or (2) access to copy the
509
+ Corresponding Source from a network server at no charge.
510
+
511
+ c) Convey individual copies of the object code with a copy of the
512
+ written offer to provide the Corresponding Source. This
513
+ alternative is allowed only occasionally and noncommercially, and
514
+ only if you received the object code with such an offer, in accord
515
+ with subsection 6b.
516
+
517
+ d) Convey the object code by offering access from a designated
518
+ place (gratis or for a charge), and offer equivalent access to the
519
+ Corresponding Source in the same way through the same place at no
520
+ further charge. You need not require recipients to copy the
521
+ Corresponding Source along with the object code. If the place to
522
+ copy the object code is a network server, the Corresponding Source
523
+ may be on a different server (operated by you or a third party)
524
+ that supports equivalent copying facilities, provided you maintain
525
+ clear directions next to the object code saying where to find the
526
+ Corresponding Source. Regardless of what server hosts the
527
+ Corresponding Source, you remain obligated to ensure that it is
528
+ available for as long as needed to satisfy these requirements.
529
+
530
+ e) Convey the object code using peer-to-peer transmission, provided
531
+ you inform other peers where the object code and Corresponding
532
+ Source of the work are being offered to the general public at no
533
+ charge under subsection 6d.
534
+
535
+ A separable portion of the object code, whose source code is excluded
536
+ from the Corresponding Source as a System Library, need not be
537
+ included in conveying the object code work.
538
+
539
+ A "User Product" is either (1) a "consumer product", which means any
540
+ tangible personal property which is normally used for personal, family,
541
+ or household purposes, or (2) anything designed or sold for incorporation
542
+ into a dwelling. In determining whether a product is a consumer product,
543
+ doubtful cases shall be resolved in favor of coverage. For a particular
544
+ product received by a particular user, "normally used" refers to a
545
+ typical or common use of that class of product, regardless of the status
546
+ of the particular user or of the way in which the particular user
547
+ actually uses, or expects or is expected to use, the product. A product
548
+ is a consumer product regardless of whether the product has substantial
549
+ commercial, industrial or non-consumer uses, unless such uses represent
550
+ the only significant mode of use of the product.
551
+
552
+ "Installation Information" for a User Product means any methods,
553
+ procedures, authorization keys, or other information required to install
554
+ and execute modified versions of a covered work in that User Product from
555
+ a modified version of its Corresponding Source. The information must
556
+ suffice to ensure that the continued functioning of the modified object
557
+ code is in no case prevented or interfered with solely because
558
+ modification has been made.
559
+
560
+ If you convey an object code work under this section in, or with, or
561
+ specifically for use in, a User Product, and the conveying occurs as
562
+ part of a transaction in which the right of possession and use of the
563
+ User Product is transferred to the recipient in perpetuity or for a
564
+ fixed term (regardless of how the transaction is characterized), the
565
+ Corresponding Source conveyed under this section must be accompanied
566
+ by the Installation Information. But this requirement does not apply
567
+ if neither you nor any third party retains the ability to install
568
+ modified object code on the User Product (for example, the work has
569
+ been installed in ROM).
570
+
571
+ The requirement to provide Installation Information does not include a
572
+ requirement to continue to provide support service, warranty, or updates
573
+ for a work that has been modified or installed by the recipient, or for
574
+ the User Product in which it has been modified or installed. Access to a
575
+ network may be denied when the modification itself materially and
576
+ adversely affects the operation of the network or violates the rules and
577
+ protocols for communication across the network.
578
+
579
+ Corresponding Source conveyed, and Installation Information provided,
580
+ in accord with this section must be in a format that is publicly
581
+ documented (and with an implementation available to the public in
582
+ source code form), and must require no special password or key for
583
+ unpacking, reading or copying.
584
+
585
+ 7. Additional Terms.
586
+
587
+ "Additional permissions" are terms that supplement the terms of this
588
+ License by making exceptions from one or more of its conditions.
589
+ Additional permissions that are applicable to the entire Program shall
590
+ be treated as though they were included in this License, to the extent
591
+ that they are valid under applicable law. If additional permissions
592
+ apply only to part of the Program, that part may be used separately
593
+ under those permissions, but the entire Program remains governed by
594
+ this License without regard to the additional permissions.
595
+
596
+ When you convey a copy of a covered work, you may at your option
597
+ remove any additional permissions from that copy, or from any part of
598
+ it. (Additional permissions may be written to require their own
599
+ removal in certain cases when you modify the work.) You may place
600
+ additional permissions on material, added by you to a covered work,
601
+ for which you have or can give appropriate copyright permission.
602
+
603
+ Notwithstanding any other provision of this License, for material you
604
+ add to a covered work, you may (if authorized by the copyright holders of
605
+ that material) supplement the terms of this License with terms:
606
+
607
+ a) Disclaiming warranty or limiting liability differently from the
608
+ terms of sections 15 and 16 of this License; or
609
+
610
+ b) Requiring preservation of specified reasonable legal notices or
611
+ author attributions in that material or in the Appropriate Legal
612
+ Notices displayed by works containing it; or
613
+
614
+ c) Prohibiting misrepresentation of the origin of that material, or
615
+ requiring that modified versions of such material be marked in
616
+ reasonable ways as different from the original version; or
617
+
618
+ d) Limiting the use for publicity purposes of names of licensors or
619
+ authors of the material; or
620
+
621
+ e) Declining to grant rights under trademark law for use of some
622
+ trade names, trademarks, or service marks; or
623
+
624
+ f) Requiring indemnification of licensors and authors of that
625
+ material by anyone who conveys the material (or modified versions of
626
+ it) with contractual assumptions of liability to the recipient, for
627
+ any liability that these contractual assumptions directly impose on
628
+ those licensors and authors.
629
+
630
+ All other non-permissive additional terms are considered "further
631
+ restrictions" within the meaning of section 10. If the Program as you
632
+ received it, or any part of it, contains a notice stating that it is
633
+ governed by this License along with a term that is a further
634
+ restriction, you may remove that term. If a license document contains
635
+ a further restriction but permits relicensing or conveying under this
636
+ License, you may add to a covered work material governed by the terms
637
+ of that license document, provided that the further restriction does
638
+ not survive such relicensing or conveying.
639
+
640
+ If you add terms to a covered work in accord with this section, you
641
+ must place, in the relevant source files, a statement of the
642
+ additional terms that apply to those files, or a notice indicating
643
+ where to find the applicable terms.
644
+
645
+ Additional terms, permissive or non-permissive, may be stated in the
646
+ form of a separately written license, or stated as exceptions;
647
+ the above requirements apply either way.
648
+
649
+ 8. Termination.
650
+
651
+ You may not propagate or modify a covered work except as expressly
652
+ provided under this License. Any attempt otherwise to propagate or
653
+ modify it is void, and will automatically terminate your rights under
654
+ this License (including any patent licenses granted under the third
655
+ paragraph of section 11).
656
+
657
+ However, if you cease all violation of this License, then your
658
+ license from a particular copyright holder is reinstated (a)
659
+ provisionally, unless and until the copyright holder explicitly and
660
+ finally terminates your license, and (b) permanently, if the copyright
661
+ holder fails to notify you of the violation by some reasonable means
662
+ prior to 60 days after the cessation.
663
+
664
+ Moreover, your license from a particular copyright holder is
665
+ reinstated permanently if the copyright holder notifies you of the
666
+ violation by some reasonable means, this is the first time you have
667
+ received notice of violation of this License (for any work) from that
668
+ copyright holder, and you cure the violation prior to 30 days after
669
+ your receipt of the notice.
670
+
671
+ Termination of your rights under this section does not terminate the
672
+ licenses of parties who have received copies or rights from you under
673
+ this License. If your rights have been terminated and not permanently
674
+ reinstated, you do not qualify to receive new licenses for the same
675
+ material under section 10.
676
+
677
+ 9. Acceptance Not Required for Having Copies.
678
+
679
+ You are not required to accept this License in order to receive or
680
+ run a copy of the Program. Ancillary propagation of a covered work
681
+ occurring solely as a consequence of using peer-to-peer transmission
682
+ to receive a copy likewise does not require acceptance. However,
683
+ nothing other than this License grants you permission to propagate or
684
+ modify any covered work. These actions infringe copyright if you do
685
+ not accept this License. Therefore, by modifying or propagating a
686
+ covered work, you indicate your acceptance of this License to do so.
687
+
688
+ 10. Automatic Licensing of Downstream Recipients.
689
+
690
+ Each time you convey a covered work, the recipient automatically
691
+ receives a license from the original licensors, to run, modify and
692
+ propagate that work, subject to this License. You are not responsible
693
+ for enforcing compliance by third parties with this License.
694
+
695
+ An "entity transaction" is a transaction transferring control of an
696
+ organization, or substantially all assets of one, or subdividing an
697
+ organization, or merging organizations. If propagation of a covered
698
+ work results from an entity transaction, each party to that
699
+ transaction who receives a copy of the work also receives whatever
700
+ licenses to the work the party's predecessor in interest had or could
701
+ give under the previous paragraph, plus a right to possession of the
702
+ Corresponding Source of the work from the predecessor in interest, if
703
+ the predecessor has it or can get it with reasonable efforts.
704
+
705
+ You may not impose any further restrictions on the exercise of the
706
+ rights granted or affirmed under this License. For example, you may
707
+ not impose a license fee, royalty, or other charge for exercise of
708
+ rights granted under this License, and you may not initiate litigation
709
+ (including a cross-claim or counterclaim in a lawsuit) alleging that
710
+ any patent claim is infringed by making, using, selling, offering for
711
+ sale, or importing the Program or any portion of it.
712
+
713
+ 11. Patents.
714
+
715
+ A "contributor" is a copyright holder who authorizes use under this
716
+ License of the Program or a work on which the Program is based. The
717
+ work thus licensed is called the contributor's "contributor version".
718
+
719
+ A contributor's "essential patent claims" are all patent claims
720
+ owned or controlled by the contributor, whether already acquired or
721
+ hereafter acquired, that would be infringed by some manner, permitted
722
+ by this License, of making, using, or selling its contributor version,
723
+ but do not include claims that would be infringed only as a
724
+ consequence of further modification of the contributor version. For
725
+ purposes of this definition, "control" includes the right to grant
726
+ patent sublicenses in a manner consistent with the requirements of
727
+ this License.
728
+
729
+ Each contributor grants you a non-exclusive, worldwide, royalty-free
730
+ patent license under the contributor's essential patent claims, to
731
+ make, use, sell, offer for sale, import and otherwise run, modify and
732
+ propagate the contents of its contributor version.
733
+
734
+ In the following three paragraphs, a "patent license" is any express
735
+ agreement or commitment, however denominated, not to enforce a patent
736
+ (such as an express permission to practice a patent or covenant not to
737
+ sue for patent infringement). To "grant" such a patent license to a
738
+ party means to make such an agreement or commitment not to enforce a
739
+ patent against the party.
740
+
741
+ If you convey a covered work, knowingly relying on a patent license,
742
+ and the Corresponding Source of the work is not available for anyone
743
+ to copy, free of charge and under the terms of this License, through a
744
+ publicly available network server or other readily accessible means,
745
+ then you must either (1) cause the Corresponding Source to be so
746
+ available, or (2) arrange to deprive yourself of the benefit of the
747
+ patent license for this particular work, or (3) arrange, in a manner
748
+ consistent with the requirements of this License, to extend the patent
749
+ license to downstream recipients. "Knowingly relying" means you have
750
+ actual knowledge that, but for the patent license, your conveying the
751
+ covered work in a country, or your recipient's use of the covered work
752
+ in a country, would infringe one or more identifiable patents in that
753
+ country that you have reason to believe are valid.
754
+
755
+ If, pursuant to or in connection with a single transaction or
756
+ arrangement, you convey, or propagate by procuring conveyance of, a
757
+ covered work, and grant a patent license to some of the parties
758
+ receiving the covered work authorizing them to use, propagate, modify
759
+ or convey a specific copy of the covered work, then the patent license
760
+ you grant is automatically extended to all recipients of the covered
761
+ work and works based on it.
762
+
763
+ A patent license is "discriminatory" if it does not include within
764
+ the scope of its coverage, prohibits the exercise of, or is
765
+ conditioned on the non-exercise of one or more of the rights that are
766
+ specifically granted under this License. You may not convey a covered
767
+ work if you are a party to an arrangement with a third party that is
768
+ in the business of distributing software, under which you make payment
769
+ to the third party based on the extent of your activity of conveying
770
+ the work, and under which the third party grants, to any of the
771
+ parties who would receive the covered work from you, a discriminatory
772
+ patent license (a) in connection with copies of the covered work
773
+ conveyed by you (or copies made from those copies), or (b) primarily
774
+ for and in connection with specific products or compilations that
775
+ contain the covered work, unless you entered into that arrangement,
776
+ or that patent license was granted, prior to 28 March 2007.
777
+
778
+ Nothing in this License shall be construed as excluding or limiting
779
+ any implied license or other defenses to infringement that may
780
+ otherwise be available to you under applicable patent law.
781
+
782
+ 12. No Surrender of Others' Freedom.
783
+
784
+ If conditions are imposed on you (whether by court order, agreement or
785
+ otherwise) that contradict the conditions of this License, they do not
786
+ excuse you from the conditions of this License. If you cannot convey a
787
+ covered work so as to satisfy simultaneously your obligations under this
788
+ License and any other pertinent obligations, then as a consequence you may
789
+ not convey it at all. For example, if you agree to terms that obligate you
790
+ to collect a royalty for further conveying from those to whom you convey
791
+ the Program, the only way you could satisfy both those terms and this
792
+ License would be to refrain entirely from conveying the Program.
793
+
794
+ 13. Use with the GNU Affero General Public License.
795
+
796
+ Notwithstanding any other provision of this License, you have
797
+ permission to link or combine any covered work with a work licensed
798
+ under version 3 of the GNU Affero General Public License into a single
799
+ combined work, and to convey the resulting work. The terms of this
800
+ License will continue to apply to the part which is the covered work,
801
+ but the special requirements of the GNU Affero General Public License,
802
+ section 13, concerning interaction through a network will apply to the
803
+ combination as such.
804
+
805
+ 14. Revised Versions of this License.
806
+
807
+ The Free Software Foundation may publish revised and/or new versions of
808
+ the GNU General Public License from time to time. Such new versions will
809
+ be similar in spirit to the present version, but may differ in detail to
810
+ address new problems or concerns.
811
+
812
+ Each version is given a distinguishing version number. If the
813
+ Program specifies that a certain numbered version of the GNU General
814
+ Public License "or any later version" applies to it, you have the
815
+ option of following the terms and conditions either of that numbered
816
+ version or of any later version published by the Free Software
817
+ Foundation. If the Program does not specify a version number of the
818
+ GNU General Public License, you may choose any version ever published
819
+ by the Free Software Foundation.
820
+
821
+ If the Program specifies that a proxy can decide which future
822
+ versions of the GNU General Public License can be used, that proxy's
823
+ public statement of acceptance of a version permanently authorizes you
824
+ to choose that version for the Program.
825
+
826
+ Later license versions may give you additional or different
827
+ permissions. However, no additional obligations are imposed on any
828
+ author or copyright holder as a result of your choosing to follow a
829
+ later version.
830
+
831
+ 15. Disclaimer of Warranty.
832
+
833
+ THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
834
+ APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
835
+ HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
836
+ OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
837
+ THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
838
+ PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
839
+ IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
840
+ ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
841
+
842
+ 16. Limitation of Liability.
843
+
844
+ IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
845
+ WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
846
+ THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
847
+ GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
848
+ USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
849
+ DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
850
+ PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
851
+ EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
852
+ SUCH DAMAGES.
853
+
854
+ 17. Interpretation of Sections 15 and 16.
855
+
856
+ If the disclaimer of warranty and limitation of liability provided
857
+ above cannot be given local legal effect according to their terms,
858
+ reviewing courts shall apply local law that most closely approximates
859
+ an absolute waiver of all civil liability in connection with the
860
+ Program, unless a warranty or assumption of liability accompanies a
861
+ copy of the Program in return for a fee.
862
+
863
+ END OF TERMS AND CONDITIONS
864
+
865
+ How to Apply These Terms to Your New Programs
866
+
867
+ If you develop a new program, and you want it to be of the greatest
868
+ possible use to the public, the best way to achieve this is to make it
869
+ free software which everyone can redistribute and change under these terms.
870
+
871
+ To do so, attach the following notices to the program. It is safest
872
+ to attach them to the start of each source file to most effectively
873
+ state the exclusion of warranty; and each file should have at least
874
+ the "copyright" line and a pointer to where the full notice is found.
875
+
876
+ <one line to give the program's name and a brief idea of what it does.>
877
+ Copyright (C) <year> <name of author>
878
+
879
+ This program is free software: you can redistribute it and/or modify
880
+ it under the terms of the GNU General Public License as published by
881
+ the Free Software Foundation, either version 3 of the License, or
882
+ (at your option) any later version.
883
+
884
+ This program is distributed in the hope that it will be useful,
885
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
886
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
887
+ GNU General Public License for more details.
888
+
889
+ You should have received a copy of the GNU General Public License
890
+ along with this program. If not, see <http://www.gnu.org/licenses/>.
891
+
892
+ Also add information on how to contact you by electronic and paper mail.
893
+
894
+ If the program does terminal interaction, make it output a short
895
+ notice like this when it starts in an interactive mode:
896
+
897
+ <program> Copyright (C) <year> <name of author>
898
+ This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
899
+ This is free software, and you are welcome to redistribute it
900
+ under certain conditions; type `show c' for details.
901
+
902
+ The hypothetical commands `show w' and `show c' should show the appropriate
903
+ parts of the General Public License. Of course, your program's commands
904
+ might be different; for a GUI interface, you would use an "about box".
905
+
906
+ You should also get your employer (if you work as a programmer) or school,
907
+ if any, to sign a "copyright disclaimer" for the program, if necessary.
908
+ For more information on this, and how to apply and follow the GNU GPL, see
909
+ <http://www.gnu.org/licenses/>.
910
+
911
+ The GNU General Public License does not permit incorporating your program
912
+ into proprietary programs. If your program is a subroutine library, you
913
+ may consider it more useful to permit linking proprietary applications with
914
+ the library. If this is what you want to do, use the GNU Lesser General
915
+ Public License instead of this License. But first, please read
916
+ <http://www.gnu.org/philosophy/why-not-lgpl.html>.
917
+
918
+
919
+ Name: libquadmath
920
+ Files: scipy.libs/libquadmath*.so
921
+ Description: dynamically linked to files compiled with gcc
922
+ Availability: https://gcc.gnu.org/git/?p=gcc.git;a=tree;f=libquadmath
923
+ License: LGPL-2.1-or-later
924
+
925
+ GCC Quad-Precision Math Library
926
+ Copyright (C) 2010-2019 Free Software Foundation, Inc.
927
+ Written by Francois-Xavier Coudert <[email protected]>
928
+
929
+ This file is part of the libquadmath library.
930
+ Libquadmath is free software; you can redistribute it and/or
931
+ modify it under the terms of the GNU Library General Public
932
+ License as published by the Free Software Foundation; either
933
+ version 2.1 of the License, or (at your option) any later version.
934
+
935
+ Libquadmath is distributed in the hope that it will be useful,
936
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
937
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
938
+ Lesser General Public License for more details.
939
+ https://www.gnu.org/licenses/old-licenses/lgpl-2.1.html
940
+ Classifier: Development Status :: 5 - Production/Stable
941
+ Classifier: Intended Audience :: Science/Research
942
+ Classifier: Intended Audience :: Developers
943
+ Classifier: License :: OSI Approved :: BSD License
944
+ Classifier: Programming Language :: C
945
+ Classifier: Programming Language :: Python
946
+ Classifier: Programming Language :: Python :: 3
947
+ Classifier: Programming Language :: Python :: 3.9
948
+ Classifier: Programming Language :: Python :: 3.10
949
+ Classifier: Programming Language :: Python :: 3.11
950
+ Classifier: Programming Language :: Python :: 3.12
951
+ Classifier: Topic :: Software Development :: Libraries
952
+ Classifier: Topic :: Scientific/Engineering
953
+ Classifier: Operating System :: Microsoft :: Windows
954
+ Classifier: Operating System :: POSIX :: Linux
955
+ Classifier: Operating System :: POSIX
956
+ Classifier: Operating System :: Unix
957
+ Classifier: Operating System :: MacOS
958
+ Project-URL: Homepage, https://scipy.org/
959
+ Project-URL: Documentation, https://docs.scipy.org/doc/scipy/
960
+ Project-URL: Source, https://github.com/scipy/scipy
961
+ Project-URL: Download, https://github.com/scipy/scipy/releases
962
+ Project-URL: Tracker, https://github.com/scipy/scipy/issues
963
+ Requires-Python: >=3.9
964
+ Requires-Dist: numpy<2.3,>=1.22.4
965
+ Requires-Dist: pytest; extra == "test"
966
+ Requires-Dist: pytest-cov; extra == "test"
967
+ Requires-Dist: pytest-timeout; extra == "test"
968
+ Requires-Dist: pytest-xdist; extra == "test"
969
+ Requires-Dist: asv; extra == "test"
970
+ Requires-Dist: mpmath; extra == "test"
971
+ Requires-Dist: gmpy2; extra == "test"
972
+ Requires-Dist: threadpoolctl; extra == "test"
973
+ Requires-Dist: scikit-umfpack; extra == "test"
974
+ Requires-Dist: pooch; extra == "test"
975
+ Requires-Dist: hypothesis>=6.30; extra == "test"
976
+ Requires-Dist: array-api-strict; extra == "test"
977
+ Requires-Dist: sphinx>=5.0.0; extra == "doc"
978
+ Requires-Dist: pydata-sphinx-theme>=0.15.2; extra == "doc"
979
+ Requires-Dist: sphinx-design>=0.4.0; extra == "doc"
980
+ Requires-Dist: matplotlib>=3.5; extra == "doc"
981
+ Requires-Dist: numpydoc; extra == "doc"
982
+ Requires-Dist: jupytext; extra == "doc"
983
+ Requires-Dist: myst-nb; extra == "doc"
984
+ Requires-Dist: pooch; extra == "doc"
985
+ Requires-Dist: jupyterlite-sphinx>=0.12.0; extra == "doc"
986
+ Requires-Dist: jupyterlite-pyodide-kernel; extra == "doc"
987
+ Requires-Dist: mypy; extra == "dev"
988
+ Requires-Dist: typing_extensions; extra == "dev"
989
+ Requires-Dist: types-psutil; extra == "dev"
990
+ Requires-Dist: pycodestyle; extra == "dev"
991
+ Requires-Dist: ruff; extra == "dev"
992
+ Requires-Dist: cython-lint>=0.12.2; extra == "dev"
993
+ Requires-Dist: rich-click; extra == "dev"
994
+ Requires-Dist: doit>=0.36.0; extra == "dev"
995
+ Requires-Dist: pydevtool; extra == "dev"
996
+ Provides-Extra: test
997
+ Provides-Extra: doc
998
+ Provides-Extra: dev
999
+ Description-Content-Type: text/x-rst
1000
+
1001
+ .. image:: https://raw.githubusercontent.com/scipy/scipy/main/doc/source/_static/logo.svg
1002
+ :target: https://scipy.org
1003
+ :width: 110
1004
+ :height: 110
1005
+ :align: left
1006
+
1007
+ .. image:: https://img.shields.io/badge/powered%20by-NumFOCUS-orange.svg?style=flat&colorA=E1523D&colorB=007D8A
1008
+ :target: https://numfocus.org
1009
+
1010
+ .. image:: https://img.shields.io/pypi/dm/scipy.svg?label=Pypi%20downloads
1011
+ :target: https://pypi.org/project/scipy/
1012
+
1013
+ .. image:: https://img.shields.io/conda/dn/conda-forge/scipy.svg?label=Conda%20downloads
1014
+ :target: https://anaconda.org/conda-forge/scipy
1015
+
1016
+ .. image:: https://img.shields.io/badge/stackoverflow-Ask%20questions-blue.svg
1017
+ :target: https://stackoverflow.com/questions/tagged/scipy
1018
+
1019
+ .. image:: https://img.shields.io/badge/DOI-10.1038%2Fs41592--019--0686--2-blue
1020
+ :target: https://www.nature.com/articles/s41592-019-0686-2
1021
+
1022
+ SciPy (pronounced "Sigh Pie") is an open-source software for mathematics,
1023
+ science, and engineering. It includes modules for statistics, optimization,
1024
+ integration, linear algebra, Fourier transforms, signal and image processing,
1025
+ ODE solvers, and more.
1026
+
1027
+ - **Website:** https://scipy.org
1028
+ - **Documentation:** https://docs.scipy.org/doc/scipy/
1029
+ - **Development version of the documentation:** https://scipy.github.io/devdocs
1030
+ - **Mailing list:** https://mail.python.org/mailman3/lists/scipy-dev.python.org/
1031
+ - **Source code:** https://github.com/scipy/scipy
1032
+ - **Contributing:** https://scipy.github.io/devdocs/dev/index.html
1033
+ - **Bug reports:** https://github.com/scipy/scipy/issues
1034
+ - **Code of Conduct:** https://docs.scipy.org/doc/scipy/dev/conduct/code_of_conduct.html
1035
+ - **Report a security vulnerability:** https://tidelift.com/docs/security
1036
+ - **Citing in your work:** https://www.scipy.org/citing-scipy/
1037
+
1038
+ SciPy is built to work with
1039
+ NumPy arrays, and provides many user-friendly and efficient numerical routines,
1040
+ such as routines for numerical integration and optimization. Together, they
1041
+ run on all popular operating systems, are quick to install, and are free of
1042
+ charge. NumPy and SciPy are easy to use, but powerful enough to be depended
1043
+ upon by some of the world's leading scientists and engineers. If you need to
1044
+ manipulate numbers on a computer and display or publish the results, give
1045
+ SciPy a try!
1046
+
1047
+ For the installation instructions, see `our install
1048
+ guide <https://scipy.org/install/>`__.
1049
+
1050
+
1051
+ Call for Contributions
1052
+ ----------------------
1053
+
1054
+ We appreciate and welcome contributions. Small improvements or fixes are always appreciated; issues labeled as "good
1055
+ first issue" may be a good starting point. Have a look at `our contributing
1056
+ guide <https://scipy.github.io/devdocs/dev/index.html>`__.
1057
+
1058
+ Writing code isn’t the only way to contribute to SciPy. You can also:
1059
+
1060
+ - review pull requests
1061
+ - triage issues
1062
+ - develop tutorials, presentations, and other educational materials
1063
+ - maintain and improve `our website <https://github.com/scipy/scipy.org>`__
1064
+ - develop graphic design for our brand assets and promotional materials
1065
+ - help with outreach and onboard new contributors
1066
+ - write grant proposals and help with other fundraising efforts
1067
+
1068
+ If you’re unsure where to start or how your skills fit in, reach out! You can
1069
+ ask on the mailing list or here, on GitHub, by leaving a
1070
+ comment on a relevant issue that is already open.
1071
+
1072
+ If you are new to contributing to open source, `this
1073
+ guide <https://opensource.guide/how-to-contribute/>`__ helps explain why, what,
1074
+ and how to get involved.
env-llmeval/lib/python3.10/site-packages/scipy-1.13.0.dist-info/RECORD ADDED
The diff for this file is too large to render. See raw diff
 
env-llmeval/lib/python3.10/site-packages/scipy-1.13.0.dist-info/WHEEL ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ Wheel-Version: 1.0
2
+ Generator: meson
3
+ Root-Is-Purelib: false
4
+ Tag: cp310-cp310-manylinux_2_17_x86_64
5
+ Tag: cp310-cp310-manylinux2014_x86_64
6
+
env-llmeval/lib/python3.10/site-packages/torch/_C.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (37.9 kB). View file
 
env-llmeval/lib/python3.10/site-packages/torch/_VF.py ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ This makes the functions in torch._C._VariableFunctions available as
3
+ torch._VF.<funcname>
4
+ without mypy being able to find them.
5
+
6
+ A subset of those functions are mapped to ATen functions in
7
+ torch/jit/_builtins.py
8
+
9
+ See https://github.com/pytorch/pytorch/issues/21478 for the reason for
10
+ introducing torch._VF
11
+
12
+ """
13
+ import sys
14
+ import types
15
+
16
+ import torch
17
+
18
+
19
+ class VFModule(types.ModuleType):
20
+ vf: types.ModuleType
21
+
22
+ def __init__(self, name):
23
+ super().__init__(name)
24
+ self.vf = torch._C._VariableFunctions
25
+
26
+ def __getattr__(self, attr):
27
+ return getattr(self.vf, attr)
28
+
29
+
30
+ sys.modules[__name__] = VFModule(__name__)
env-llmeval/lib/python3.10/site-packages/torch/_VF.pyi ADDED
The diff for this file is too large to render. See raw diff
 
env-llmeval/lib/python3.10/site-packages/torch/__config__.py ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+
3
+
4
+ def show():
5
+ """
6
+ Return a human-readable string with descriptions of the
7
+ configuration of PyTorch.
8
+ """
9
+ return torch._C._show_config()
10
+
11
+
12
+ # TODO: In principle, we could provide more structured version/config
13
+ # information here. For now only CXX_FLAGS is exposed, as Timer
14
+ # uses them.
15
+ def _cxx_flags():
16
+ """Returns the CXX_FLAGS used when building PyTorch."""
17
+ return torch._C._cxx_flags()
18
+
19
+
20
+ def parallel_info():
21
+ r"""Returns detailed string with parallelization settings"""
22
+ return torch._C._parallel_info()
env-llmeval/lib/python3.10/site-packages/torch/__future__.py ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ This global flag controls whether to assign new tensors to the parameters
3
+ instead of changing the existing parameters in-place when converting an `nn.Module`
4
+ using the following methods:
5
+ 1. `module.cuda()` / `.cpu()` (for moving `module` between devices)
6
+ 2. `module.float()` / `.double()` / `.half()` (for converting `module` to a different dtype)
7
+ 3. `module.to()` / `.type()` (for changing `module`'s device or dtype)
8
+ 4. `module._apply(fn)` (for generic functions applied to `module`)
9
+
10
+ Default: False
11
+ """
12
+ _overwrite_module_params_on_conversion = False
13
+
14
+
15
+ def set_overwrite_module_params_on_conversion(value):
16
+ global _overwrite_module_params_on_conversion
17
+ _overwrite_module_params_on_conversion = value
18
+
19
+
20
+ def get_overwrite_module_params_on_conversion():
21
+ return _overwrite_module_params_on_conversion
env-llmeval/lib/python3.10/site-packages/torch/__init__.py ADDED
@@ -0,0 +1,1995 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ r"""
3
+ The torch package contains data structures for multi-dimensional
4
+ tensors and defines mathematical operations over these tensors.
5
+ Additionally, it provides many utilities for efficient serialization of
6
+ Tensors and arbitrary types, and other useful utilities.
7
+
8
+ It has a CUDA counterpart, that enables you to run your tensor computations
9
+ on an NVIDIA GPU with compute capability >= 3.0.
10
+ """
11
+
12
+ import math
13
+ import os
14
+ import sys
15
+ import platform
16
+ import textwrap
17
+ import ctypes
18
+ import inspect
19
+
20
+ # multipy/deploy is setting this import before importing torch, this is the most
21
+ # reliable way we have to detect if we're running within deploy.
22
+ # https://github.com/pytorch/multipy/blob/d60f34ad38c371e441fe7ffdb77a3c3dda5a5d19/multipy/runtime/interpreter/interpreter_impl.cpp#L134-L137
23
+ def _running_with_deploy():
24
+ return sys.modules.get("torch._meta_registrations", None) is object
25
+
26
+ from ._utils import _import_dotted_name, classproperty
27
+ from ._utils import _functionalize_sync as _sync
28
+ from ._utils_internal import get_file_path, prepare_multiprocessing_environment, \
29
+ USE_RTLD_GLOBAL_WITH_LIBTORCH, USE_GLOBAL_DEPS
30
+
31
+ # TODO(torch_deploy) figure out how to freeze version.py in fbcode build
32
+ if _running_with_deploy():
33
+ __version__ = "torch-deploy-1.8"
34
+ else:
35
+ from .torch_version import __version__ as __version__
36
+
37
+ from typing import Any, Callable, Dict, Optional, Set, Tuple, Type, TYPE_CHECKING, Union, List
38
+ import builtins
39
+
40
+ __all__ = [
41
+ 'typename', 'is_tensor', 'is_storage',
42
+ 'set_default_tensor_type', 'set_default_device',
43
+ 'set_rng_state', 'get_rng_state', 'manual_seed', 'initial_seed', 'seed',
44
+ 'save', 'load', 'set_printoptions', 'chunk', 'split', 'stack', 'matmul',
45
+ 'no_grad', 'enable_grad', 'rand', 'randn', 'inference_mode',
46
+ 'DoubleStorage', 'FloatStorage', 'LongStorage', 'IntStorage',
47
+ 'ShortStorage', 'CharStorage', 'ByteStorage', 'BoolStorage',
48
+ 'TypedStorage', 'UntypedStorage',
49
+ 'DoubleTensor', 'FloatTensor', 'LongTensor', 'IntTensor',
50
+ 'ShortTensor', 'CharTensor', 'ByteTensor', 'BoolTensor', 'Tensor',
51
+ 'lobpcg', 'use_deterministic_algorithms',
52
+ 'are_deterministic_algorithms_enabled',
53
+ 'is_deterministic_algorithms_warn_only_enabled',
54
+ 'set_deterministic_debug_mode', 'get_deterministic_debug_mode',
55
+ 'set_float32_matmul_precision', 'get_float32_matmul_precision',
56
+ 'set_warn_always', 'is_warn_always_enabled', 'SymInt', 'SymFloat',
57
+ 'SymBool', 'sym_not', 'unravel_index',
58
+ 'sym_int', 'sym_float', 'sym_max', 'sym_min', 'sym_ite', 'compile', 'vmap',
59
+ 'sym_sqrt',
60
+ 'export', 'autocast', 'cond',
61
+ ]
62
+
63
+ ################################################################################
64
+ # Load the extension module
65
+ ################################################################################
66
+
67
+ if sys.platform == 'win32':
68
+ pfiles_path = os.getenv('ProgramFiles', 'C:\\Program Files')
69
+ py_dll_path = os.path.join(sys.exec_prefix, 'Library', 'bin')
70
+ th_dll_path = os.path.join(os.path.dirname(__file__), 'lib')
71
+
72
+ # When users create a virtualenv that inherits the base environment,
73
+ # we will need to add the corresponding library directory into
74
+ # DLL search directories. Otherwise, it will rely on `PATH` which
75
+ # is dependent on user settings.
76
+ if sys.exec_prefix != sys.base_exec_prefix:
77
+ base_py_dll_path = os.path.join(sys.base_exec_prefix, 'Library', 'bin')
78
+ else:
79
+ base_py_dll_path = ''
80
+
81
+ dll_paths = list(filter(os.path.exists, [th_dll_path, py_dll_path, base_py_dll_path]))
82
+
83
+ if all(not os.path.exists(os.path.join(p, 'nvToolsExt64_1.dll')) for p in dll_paths):
84
+ nvtoolsext_dll_path = os.path.join(
85
+ os.getenv('NVTOOLSEXT_PATH', os.path.join(pfiles_path, 'NVIDIA Corporation', 'NvToolsExt')), 'bin', 'x64')
86
+ else:
87
+ nvtoolsext_dll_path = ''
88
+
89
+ from .version import cuda as cuda_version
90
+ import glob
91
+ if cuda_version and all(not glob.glob(os.path.join(p, 'cudart64*.dll')) for p in dll_paths):
92
+ cuda_version_1 = cuda_version.replace('.', '_')
93
+ cuda_path_var = 'CUDA_PATH_V' + cuda_version_1
94
+ default_path = os.path.join(pfiles_path, 'NVIDIA GPU Computing Toolkit', 'CUDA', 'v' + cuda_version)
95
+ cuda_path = os.path.join(os.getenv(cuda_path_var, default_path), 'bin')
96
+ else:
97
+ cuda_path = ''
98
+
99
+ dll_paths.extend(filter(os.path.exists, [nvtoolsext_dll_path, cuda_path]))
100
+
101
+ kernel32 = ctypes.WinDLL('kernel32.dll', use_last_error=True)
102
+ with_load_library_flags = hasattr(kernel32, 'AddDllDirectory')
103
+ prev_error_mode = kernel32.SetErrorMode(0x0001)
104
+
105
+ kernel32.LoadLibraryW.restype = ctypes.c_void_p
106
+ if with_load_library_flags:
107
+ kernel32.LoadLibraryExW.restype = ctypes.c_void_p
108
+
109
+ for dll_path in dll_paths:
110
+ os.add_dll_directory(dll_path)
111
+
112
+ try:
113
+ ctypes.CDLL('vcruntime140.dll')
114
+ ctypes.CDLL('msvcp140.dll')
115
+ ctypes.CDLL('vcruntime140_1.dll')
116
+ except OSError:
117
+ print('''Microsoft Visual C++ Redistributable is not installed, this may lead to the DLL load failure.
118
+ It can be downloaded at https://aka.ms/vs/16/release/vc_redist.x64.exe''')
119
+
120
+ dlls = glob.glob(os.path.join(th_dll_path, '*.dll'))
121
+ path_patched = False
122
+ for dll in dlls:
123
+ is_loaded = False
124
+ if with_load_library_flags:
125
+ res = kernel32.LoadLibraryExW(dll, None, 0x00001100)
126
+ last_error = ctypes.get_last_error()
127
+ if res is None and last_error != 126:
128
+ err = ctypes.WinError(last_error)
129
+ err.strerror += f' Error loading "{dll}" or one of its dependencies.'
130
+ raise err
131
+ elif res is not None:
132
+ is_loaded = True
133
+ if not is_loaded:
134
+ if not path_patched:
135
+ os.environ['PATH'] = ';'.join(dll_paths + [os.environ['PATH']])
136
+ path_patched = True
137
+ res = kernel32.LoadLibraryW(dll)
138
+ if res is None:
139
+ err = ctypes.WinError(ctypes.get_last_error())
140
+ err.strerror += f' Error loading "{dll}" or one of its dependencies.'
141
+ raise err
142
+
143
+ kernel32.SetErrorMode(prev_error_mode)
144
+
145
+
146
+ def _preload_cuda_deps(lib_folder, lib_name):
147
+ """Preloads cuda deps if they could not be found otherwise."""
148
+ # Should only be called on Linux if default path resolution have failed
149
+ assert platform.system() == 'Linux', 'Should only be called on Linux'
150
+ import glob
151
+ lib_path = None
152
+ for path in sys.path:
153
+ nvidia_path = os.path.join(path, 'nvidia')
154
+ if not os.path.exists(nvidia_path):
155
+ continue
156
+ candidate_lib_paths = glob.glob(os.path.join(nvidia_path, lib_folder, 'lib', lib_name))
157
+ if candidate_lib_paths and not lib_path:
158
+ lib_path = candidate_lib_paths[0]
159
+ if lib_path:
160
+ break
161
+ if not lib_path:
162
+ raise ValueError(f"{lib_name} not found in the system path {sys.path}")
163
+ ctypes.CDLL(lib_path)
164
+
165
+
166
+ # See Note [Global dependencies]
167
+ def _load_global_deps() -> None:
168
+ if _running_with_deploy() or platform.system() == 'Windows':
169
+ return
170
+
171
+ lib_name = 'libtorch_global_deps' + ('.dylib' if platform.system() == 'Darwin' else '.so')
172
+ here = os.path.abspath(__file__)
173
+ lib_path = os.path.join(os.path.dirname(here), 'lib', lib_name)
174
+
175
+ try:
176
+ ctypes.CDLL(lib_path, mode=ctypes.RTLD_GLOBAL)
177
+ except OSError as err:
178
+ # Can only happen for wheel with cuda libs as PYPI deps
179
+ # As PyTorch is not purelib, but nvidia-*-cu12 is
180
+ cuda_libs: Dict[str, str] = {
181
+ 'cublas': 'libcublas.so.*[0-9]',
182
+ 'cudnn': 'libcudnn.so.*[0-9]',
183
+ 'cuda_nvrtc': 'libnvrtc.so.*[0-9]',
184
+ 'cuda_runtime': 'libcudart.so.*[0-9]',
185
+ 'cuda_cupti': 'libcupti.so.*[0-9]',
186
+ 'cufft': 'libcufft.so.*[0-9]',
187
+ 'curand': 'libcurand.so.*[0-9]',
188
+ 'cusolver': 'libcusolver.so.*[0-9]',
189
+ 'cusparse': 'libcusparse.so.*[0-9]',
190
+ 'nccl': 'libnccl.so.*[0-9]',
191
+ 'nvtx': 'libnvToolsExt.so.*[0-9]',
192
+ }
193
+ is_cuda_lib_err = [lib for lib in cuda_libs.values() if(lib.split('.')[0] in err.args[0])]
194
+ if not is_cuda_lib_err:
195
+ raise err
196
+ for lib_folder, lib_name in cuda_libs.items():
197
+ _preload_cuda_deps(lib_folder, lib_name)
198
+ ctypes.CDLL(lib_path, mode=ctypes.RTLD_GLOBAL)
199
+
200
+
201
+ if (USE_RTLD_GLOBAL_WITH_LIBTORCH or os.getenv('TORCH_USE_RTLD_GLOBAL')) and \
202
+ (_running_with_deploy() or platform.system() != 'Windows'):
203
+ # Do it the hard way. You might want to load libtorch with RTLD_GLOBAL in a
204
+ # few circumstances:
205
+ #
206
+ # 1. You're in a build environment (e.g., fbcode) where
207
+ # libtorch_global_deps is not available, but you still need
208
+ # to get mkl to link in with RTLD_GLOBAL or it will just
209
+ # not work.
210
+ #
211
+ # 2. You're trying to run PyTorch under UBSAN and you need
212
+ # to ensure that only one copy of libtorch is loaded, so
213
+ # vptr checks work properly
214
+ #
215
+ # If you're using this setting, you must verify that all the libraries
216
+ # you load consistently use the same libstdc++, or you may have
217
+ # mysterious segfaults.
218
+ #
219
+ old_flags = sys.getdlopenflags()
220
+ sys.setdlopenflags(os.RTLD_GLOBAL | os.RTLD_LAZY)
221
+ from torch._C import * # noqa: F403
222
+ sys.setdlopenflags(old_flags)
223
+ del old_flags
224
+
225
+ else:
226
+ # Easy way. You want this most of the time, because it will prevent
227
+ # C++ symbols from libtorch clobbering C++ symbols from other
228
+ # libraries, leading to mysterious segfaults.
229
+ #
230
+ # If building in an environment where libtorch_global_deps isn't available
231
+ # like parts of fbsource, but where RTLD_GLOBAL causes segfaults, you will
232
+ # want USE_RTLD_GLOBAL_WITH_LIBTORCH = False and USE_GLOBAL_DEPS = False
233
+ #
234
+ # See Note [Global dependencies]
235
+ if USE_GLOBAL_DEPS:
236
+ _load_global_deps()
237
+ from torch._C import * # noqa: F403
238
+
239
+ # Appease the type checker; ordinarily this binding is inserted by the
240
+ # torch._C module initialization code in C
241
+ if TYPE_CHECKING:
242
+ from . import _C as _C
243
+
244
+ class SymInt:
245
+ """
246
+ Like an int (including magic methods), but redirects all operations on the
247
+ wrapped node. This is used in particular to symbolically record operations
248
+ in the symbolic shape workflow.
249
+ """
250
+
251
+ def __init__(self, node):
252
+ # This field MUST be named node; C++ binding code assumes that this
253
+ # class has a field named node that stores SymNode
254
+ self.node = node
255
+
256
+ def __bool__(self):
257
+ return builtins.bool(self != 0)
258
+
259
+ def __int__(self):
260
+ return self.node.int_()
261
+
262
+ def __index__(self):
263
+ return self.node.int_()
264
+
265
+ # Magic methods installed by torch.fx.experimental.sym_node
266
+
267
+ def __eq__(self, other: object) -> builtins.bool:
268
+ raise AssertionError("type stub not overridden")
269
+
270
+ def __lt__(self, other) -> builtins.bool:
271
+ raise AssertionError("type stub not overridden")
272
+
273
+ def __gt__(self, other) -> builtins.bool:
274
+ raise AssertionError("type stub not overridden")
275
+
276
+ def __le__(self, other) -> builtins.bool:
277
+ raise AssertionError("type stub not overridden")
278
+
279
+ def __ge__(self, other) -> builtins.bool:
280
+ raise AssertionError("type stub not overridden")
281
+
282
+ def __sym_max__(self, other):
283
+ raise AssertionError("type stub not overridden")
284
+
285
+ def __sym_min__(self, other):
286
+ raise AssertionError("type stub not overridden")
287
+
288
+ def __sym_float__(self):
289
+ raise AssertionError("type stub not overridden")
290
+
291
+ def __neg__(self):
292
+ raise AssertionError("type stub not overridden")
293
+
294
+ def __repr__(self):
295
+ return str(self.node)
296
+
297
+ def __hash__(self) -> builtins.int:
298
+ ret = self.node.singleton_int()
299
+ if ret is not None:
300
+ return hash(ret)
301
+ else:
302
+ # We could support constant SymInts as well, but not doing it for now
303
+ raise TypeError("unhashable type: non-singleton SymInt")
304
+
305
+ class SymFloat:
306
+ """
307
+ Like an float (including magic methods), but redirects all operations on the
308
+ wrapped node. This is used in particular to symbolically record operations
309
+ in the symbolic shape workflow.
310
+ """
311
+
312
+ def __init__(self, node):
313
+ # This field MUST be named node; C++ binding code assumes that this
314
+ # class has a field named node that stores SymNode
315
+ self.node = node
316
+
317
+ def __bool__(self):
318
+ return self.node.bool_()
319
+
320
+ # Magic methods installed by torch.fx.experimental.sym_node
321
+
322
+ def __eq__(self, other: object) -> builtins.bool:
323
+ raise AssertionError("type stub not overridden")
324
+
325
+ def __lt__(self, other) -> builtins.bool:
326
+ raise AssertionError("type stub not overridden")
327
+
328
+ def __gt__(self, other) -> builtins.bool:
329
+ raise AssertionError("type stub not overridden")
330
+
331
+ def __le__(self, other) -> builtins.bool:
332
+ raise AssertionError("type stub not overridden")
333
+
334
+ def __ge__(self, other) -> builtins.bool:
335
+ raise AssertionError("type stub not overridden")
336
+
337
+ def __sym_max__(self, other):
338
+ raise AssertionError("type stub not overridden")
339
+
340
+ def __sym_min__(self, other):
341
+ raise AssertionError("type stub not overridden")
342
+
343
+ def __sym_int__(self):
344
+ raise AssertionError("type stub not overridden")
345
+
346
+ def __repr__(self):
347
+ return self.node.str()
348
+
349
+ class SymBool:
350
+ """
351
+ Like an bool (including magic methods), but redirects all operations on the
352
+ wrapped node. This is used in particular to symbolically record operations
353
+ in the symbolic shape workflow.
354
+
355
+ Unlike regular bools, regular boolean operators will force extra guards instead
356
+ of symbolically evaluate. Use the bitwise operators instead to handle this.
357
+ """
358
+
359
+ def __init__(self, node):
360
+ # This field MUST be named node; C++ binding code assumes that this
361
+ # class has a field named node that stores SymNode
362
+ self.node = node
363
+
364
+ def __bool__(self):
365
+ return self.node.bool_()
366
+
367
+ def __int__(self):
368
+ return builtins.int(self.node.bool_())
369
+
370
+ # Magic methods installed by torch.fx.experimental.sym_node
371
+ def __and__(self, other) -> "SymBool":
372
+ raise AssertionError("type stub not overridden")
373
+
374
+ def __or__(self, other) -> "SymBool":
375
+ raise AssertionError("type stub not overridden")
376
+
377
+ # We very carefully define __sym_not__, and not a number of other
378
+ # plausible alternatives:
379
+ #
380
+ # - We do not override __not__ because this is not a real magic
381
+ # method; you cannot override the meaning of the not builtin in
382
+ # Python. We use the name 'sym_not' to clarify that in user code you
383
+ # cannot use the builtin not or operator.not_ or operator.__not__ and
384
+ # hit this magic method; you must use our custom sym_not operator.
385
+ #
386
+ # - We do not override the __invert__ method because SymBool is
387
+ # meant to be usable in situations where bool is expected. However,
388
+ # bitwise negation ~a does the wrong thing with booleans (because
389
+ # bool is a subclass of int, so ~1 = -2 which is not falseish.)
390
+ # This would be a giant footgun, so we get around it by defining
391
+ # our own operator. Note that bitwise and/or do the right thing,
392
+ # so we reuse the conventional operators there for readability.
393
+ #
394
+ def __sym_not__(self) -> "SymBool":
395
+ raise AssertionError("type stub not overridden")
396
+
397
+ def __sym_ite__(self, then_val, else_val):
398
+ raise AssertionError("type stub not overridden")
399
+
400
+ def __eq__(self, other) -> builtins.bool:
401
+ raise AssertionError("type stub not overridden")
402
+
403
+ def __repr__(self):
404
+ return str(self.node)
405
+
406
+ def __hash__(self):
407
+ if self.node.is_constant():
408
+ return hash(self.node.bool_())
409
+ else:
410
+ raise TypeError("unhashable type: SymBool")
411
+
412
+ def sym_not(a):
413
+ r""" SymInt-aware utility for logical negation.
414
+
415
+ Args:
416
+ a (SymBool or bool): Object to negate
417
+ """
418
+ import sympy
419
+ from .overrides import has_torch_function_unary, handle_torch_function
420
+
421
+ if has_torch_function_unary(a):
422
+ return handle_torch_function(sym_not, (a,), a)
423
+ if hasattr(a, '__sym_not__'):
424
+ return a.__sym_not__()
425
+ if isinstance(a, sympy.Basic):
426
+ return ~a # type: ignore[operator]
427
+ return not a
428
+
429
+ def sym_float(a):
430
+ r""" SymInt-aware utility for float casting.
431
+
432
+ Args:
433
+ a (SymInt, SymFloat, or object): Object to cast
434
+ """
435
+ from .overrides import has_torch_function_unary, handle_torch_function
436
+
437
+ if has_torch_function_unary(a):
438
+ return handle_torch_function(sym_float, (a,), a)
439
+ if isinstance(a, SymFloat):
440
+ return a
441
+ elif hasattr(a, '__sym_float__'):
442
+ return a.__sym_float__()
443
+ return py_float(a) # type: ignore[operator]
444
+
445
+
446
+ def sym_int(a):
447
+ r""" SymInt-aware utility for int casting.
448
+
449
+ Args:
450
+ a (SymInt, SymFloat, or object): Object to cast
451
+ """
452
+ from .overrides import has_torch_function_unary, handle_torch_function
453
+
454
+ if has_torch_function_unary(a):
455
+ return handle_torch_function(sym_int, (a,), a)
456
+ if isinstance(a, SymInt):
457
+ return a
458
+ elif isinstance(a, SymFloat):
459
+ return math.floor(a) if a >= 0 else math.ceil(a) # type: ignore[arg-type, call-overload]
460
+ return py_int(a) # type: ignore[operator]
461
+
462
+ def sym_max(a, b):
463
+ """ SymInt-aware utility for max()."""
464
+ from .overrides import has_torch_function, handle_torch_function
465
+
466
+ if has_torch_function((a, b)):
467
+ return handle_torch_function(sym_max, (a, b), a, b)
468
+ if isinstance(a, (SymInt, SymFloat)):
469
+ return a.__sym_max__(b)
470
+ elif isinstance(b, (SymInt, SymFloat)):
471
+ # NB: If you actually care about preserving output type exactly
472
+ # if you do something like max(0, 0.0), it is NOT sound to treat
473
+ # min/max as commutative
474
+ return b.__sym_max__(a)
475
+ return builtins.max(a, b) # type: ignore[operator]
476
+
477
+ def sym_min(a, b):
478
+ """ SymInt-aware utility for max()."""
479
+ from .overrides import has_torch_function, handle_torch_function
480
+
481
+ if has_torch_function((a, b)):
482
+ return handle_torch_function(sym_min, (a, b), a, b)
483
+ if isinstance(a, (SymInt, SymFloat)):
484
+ return a.__sym_min__(b)
485
+ elif isinstance(b, (SymInt, SymFloat)):
486
+ return b.__sym_min__(a)
487
+ return builtins.min(a, b) # type: ignore[operator]
488
+
489
+ # Drop in replacement for math.sqrt
490
+ def sym_sqrt(a):
491
+ from .overrides import has_torch_function_unary, handle_torch_function
492
+
493
+ if has_torch_function_unary(a):
494
+ return handle_torch_function(sym_sqrt, (a,), a)
495
+ if hasattr(a, "__sym_sqrt__"):
496
+ return a.__sym_sqrt__()
497
+ return math.sqrt(a)
498
+
499
+ def sym_ite(b, t, f):
500
+ from .overrides import has_torch_function, handle_torch_function
501
+
502
+ if has_torch_function((b, t, f)):
503
+ return handle_torch_function(sym_ite, (b, t, f), b, t, f)
504
+ assert isinstance(b, (SymBool, builtins.bool)) and type(t) == type(f)
505
+ if isinstance(b, SymBool):
506
+ return b.__sym_ite__(t, f)
507
+ return t if b else f
508
+
509
+ # Check to see if we can load C extensions, and if not provide some guidance
510
+ # on what the problem might be.
511
+ try:
512
+ # _initExtension is chosen (arbitrarily) as a sentinel.
513
+ from torch._C import _initExtension
514
+ except ImportError:
515
+ import torch._C as _C_for_compiled_check
516
+
517
+ # The __file__ check only works for Python 3.7 and above.
518
+ if _C_for_compiled_check.__file__ is None:
519
+ raise ImportError(textwrap.dedent('''
520
+ Failed to load PyTorch C extensions:
521
+ It appears that PyTorch has loaded the `torch/_C` folder
522
+ of the PyTorch repository rather than the C extensions which
523
+ are expected in the `torch._C` namespace. This can occur when
524
+ using the `install` workflow. e.g.
525
+ $ python setup.py install && python -c "import torch"
526
+
527
+ This error can generally be solved using the `develop` workflow
528
+ $ python setup.py develop && python -c "import torch" # This should succeed
529
+ or by running Python from a different directory.
530
+ ''').strip()) from None
531
+ raise # If __file__ is not None the cause is unknown, so just re-raise.
532
+
533
+ for name in dir(_C):
534
+ if name[0] != '_' and not name.endswith('Base'):
535
+ __all__.append(name)
536
+ obj = getattr(_C, name)
537
+ if (isinstance(obj, Callable) or inspect.isclass(obj)): # type: ignore[arg-type]
538
+ if (obj.__module__ != 'torch'):
539
+ # TODO: fix their module from C++ side
540
+ if name not in ['DisableTorchFunctionSubclass', 'DisableTorchFunction', 'Generator']:
541
+ obj.__module__ = 'torch'
542
+ elif name == 'TensorBase':
543
+ # issue 109438 / pr 109940. Prevent TensorBase from being copied into torch.
544
+ delattr(sys.modules[__name__], name)
545
+
546
+ if not TYPE_CHECKING:
547
+ # issue 38137 and python issue 43367. Submodules of a C extension are
548
+ # non-standard, and attributes of those submodules cannot be pickled since
549
+ # pickle expect to be able to import them as "from _C.sub import attr"
550
+ # which fails with "_C is not a package
551
+ for attr in dir(_C):
552
+ candidate = getattr(_C, attr)
553
+ if type(candidate) is type(_C):
554
+ # submodule
555
+ if f'torch._C.{attr}' not in sys.modules:
556
+ sys.modules[f'torch._C.{attr}'] = candidate
557
+
558
+
559
+ ################################################################################
560
+ # Define basic utilities
561
+ ################################################################################
562
+
563
+
564
+ def typename(o):
565
+ if isinstance(o, torch.Tensor):
566
+ return o.type()
567
+
568
+ module = ''
569
+ class_name = ''
570
+ if hasattr(o, '__module__') and o.__module__ != 'builtins' \
571
+ and o.__module__ != '__builtin__' and o.__module__ is not None:
572
+ module = o.__module__ + '.'
573
+
574
+ if hasattr(o, '__qualname__'):
575
+ class_name = o.__qualname__
576
+ elif hasattr(o, '__name__'):
577
+ class_name = o.__name__
578
+ else:
579
+ class_name = o.__class__.__name__
580
+
581
+ return module + class_name
582
+
583
+
584
+ def is_tensor(obj):
585
+ r"""Returns True if `obj` is a PyTorch tensor.
586
+
587
+ Note that this function is simply doing ``isinstance(obj, Tensor)``.
588
+ Using that ``isinstance`` check is better for typechecking with mypy,
589
+ and more explicit - so it's recommended to use that instead of
590
+ ``is_tensor``.
591
+
592
+ Args:
593
+ obj (Object): Object to test
594
+ Example::
595
+
596
+ >>> x = torch.tensor([1, 2, 3])
597
+ >>> torch.is_tensor(x)
598
+ True
599
+
600
+ """
601
+ return isinstance(obj, torch.Tensor)
602
+
603
+
604
+ def is_storage(obj):
605
+ r"""Returns True if `obj` is a PyTorch storage object.
606
+
607
+ Args:
608
+ obj (Object): Object to test
609
+ """
610
+ return type(obj) in _storage_classes
611
+
612
+
613
+ _GLOBAL_DEVICE_CONTEXT = None
614
+
615
+ def set_default_device(device):
616
+ """Sets the default ``torch.Tensor`` to be allocated on ``device``. This
617
+ does not affect factory function calls which are called with an explicit
618
+ ``device`` argument. Factory calls will be performed as if they
619
+ were passed ``device`` as an argument.
620
+
621
+ To only temporarily change the default device instead of setting it
622
+ globally, use ``with torch.device(device):`` instead.
623
+
624
+ The default device is initially ``cpu``. If you set the default tensor
625
+ device to another device (e.g., ``cuda``) without a device index, tensors
626
+ will be allocated on whatever the current device for the device type,
627
+ even after :func:`torch.cuda.set_device` is called.
628
+
629
+ .. warning::
630
+
631
+ This function imposes a slight performance cost on every Python
632
+ call to the torch API (not just factory functions). If this
633
+ is causing problems for you, please comment on
634
+ https://github.com/pytorch/pytorch/issues/92701
635
+
636
+ .. note::
637
+
638
+ This doesn't affect functions that create tensors that share the same memory as the input, like:
639
+ :func:`torch.from_numpy` and :func:`torch.frombuffer`
640
+
641
+ Args:
642
+ device (device or string): the device to set as default
643
+
644
+ Example::
645
+
646
+ >>> # xdoctest: +SKIP("requires cuda, changes global state")
647
+ >>> torch.tensor([1.2, 3]).device
648
+ device(type='cpu')
649
+ >>> torch.set_default_device('cuda') # current device is 0
650
+ >>> torch.tensor([1.2, 3]).device
651
+ device(type='cuda', index=0)
652
+ >>> torch.set_default_device('cuda:1')
653
+ >>> torch.tensor([1.2, 3]).device
654
+ device(type='cuda', index=1)
655
+
656
+ """
657
+ global _GLOBAL_DEVICE_CONTEXT
658
+ if _GLOBAL_DEVICE_CONTEXT is not None:
659
+ _GLOBAL_DEVICE_CONTEXT.__exit__(None, None, None)
660
+ if device is None:
661
+ _GLOBAL_DEVICE_CONTEXT = None
662
+ return
663
+ from torch.utils._device import DeviceContext
664
+ _GLOBAL_DEVICE_CONTEXT = DeviceContext(device)
665
+ _GLOBAL_DEVICE_CONTEXT.__enter__()
666
+
667
+
668
+ def set_default_tensor_type(t):
669
+ r"""
670
+ .. warning::
671
+
672
+ This function is deprecated as of PyTorch 2.1, please use :func:`torch.set_default_dtype()` and
673
+ :func:`torch.set_default_device()` as alternatives.
674
+
675
+ Sets the default ``torch.Tensor`` type to floating point tensor type
676
+ ``t``. This type will also be used as default floating point type for
677
+ type inference in :func:`torch.tensor`.
678
+
679
+ The default floating point tensor type is initially ``torch.FloatTensor``.
680
+
681
+ Args:
682
+ t (type or string): the floating point tensor type or its name
683
+
684
+ Example::
685
+
686
+ >>> # xdoctest: +SKIP("Other tests may have changed the default type. Can we reset it?")
687
+ >>> torch.tensor([1.2, 3]).dtype # initial default for floating point is torch.float32
688
+ torch.float32
689
+ >>> torch.set_default_tensor_type(torch.DoubleTensor)
690
+ >>> torch.tensor([1.2, 3]).dtype # a new floating point tensor
691
+ torch.float64
692
+
693
+ """
694
+ if isinstance(t, str):
695
+ t = _import_dotted_name(t)
696
+ _C._set_default_tensor_type(t)
697
+
698
+
699
+ def set_default_dtype(d):
700
+ r"""
701
+
702
+ Sets the default floating point dtype to :attr:`d`. Supports torch.float32
703
+ and torch.float64 as inputs. Other dtypes may be accepted without complaint
704
+ but are not supported and are unlikely to work as expected.
705
+
706
+ When PyTorch is initialized its default floating point dtype is torch.float32,
707
+ and the intent of set_default_dtype(torch.float64) is to facilitate NumPy-like
708
+ type inference. The default floating point dtype is used to:
709
+
710
+ 1. Implicitly determine the default complex dtype. When the default floating point
711
+ type is float32 the default complex dtype is complex64, and when the default
712
+ floating point type is float64 the default complex type is complex128.
713
+ 2. Infer the dtype for tensors constructed using Python floats or complex Python
714
+ numbers. See examples below.
715
+ 3. Determine the result of type promotion between bool and integer tensors and
716
+ Python floats and complex Python numbers.
717
+
718
+ Args:
719
+ d (:class:`torch.dtype`): the floating point dtype to make the default.
720
+ Either torch.float32 or torch.float64.
721
+
722
+ Example:
723
+ >>> # xdoctest: +SKIP("Other tests may have changed the default type. Can we reset it?")
724
+ >>> # initial default for floating point is torch.float32
725
+ >>> # Python floats are interpreted as float32
726
+ >>> torch.tensor([1.2, 3]).dtype
727
+ torch.float32
728
+ >>> # initial default for floating point is torch.complex64
729
+ >>> # Complex Python numbers are interpreted as complex64
730
+ >>> torch.tensor([1.2, 3j]).dtype
731
+ torch.complex64
732
+
733
+ >>> torch.set_default_dtype(torch.float64)
734
+
735
+ >>> # Python floats are now interpreted as float64
736
+ >>> torch.tensor([1.2, 3]).dtype # a new floating point tensor
737
+ torch.float64
738
+ >>> # Complex Python numbers are now interpreted as complex128
739
+ >>> torch.tensor([1.2, 3j]).dtype # a new complex tensor
740
+ torch.complex128
741
+
742
+ """
743
+ _C._set_default_dtype(d)
744
+
745
+ def use_deterministic_algorithms(mode: builtins.bool, *, warn_only: builtins.bool = False) -> None:
746
+ r""" Sets whether PyTorch operations must use "deterministic"
747
+ algorithms. That is, algorithms which, given the same input, and when
748
+ run on the same software and hardware, always produce the same output.
749
+ When enabled, operations will use deterministic algorithms when available,
750
+ and if only nondeterministic algorithms are available they will throw a
751
+ :class:`RuntimeError` when called.
752
+
753
+ .. note:: This setting alone is not always enough to make an application
754
+ reproducible. Refer to :ref:`reproducibility` for more information.
755
+
756
+ .. note:: :func:`torch.set_deterministic_debug_mode` offers an alternative
757
+ interface for this feature.
758
+
759
+ The following normally-nondeterministic operations will act
760
+ deterministically when ``mode=True``:
761
+
762
+ * :class:`torch.nn.Conv1d` when called on CUDA tensor
763
+ * :class:`torch.nn.Conv2d` when called on CUDA tensor
764
+ * :class:`torch.nn.Conv3d` when called on CUDA tensor
765
+ * :class:`torch.nn.ConvTranspose1d` when called on CUDA tensor
766
+ * :class:`torch.nn.ConvTranspose2d` when called on CUDA tensor
767
+ * :class:`torch.nn.ConvTranspose3d` when called on CUDA tensor
768
+ * :class:`torch.nn.ReplicationPad2d` when attempting to differentiate a CUDA tensor
769
+ * :func:`torch.bmm` when called on sparse-dense CUDA tensors
770
+ * :func:`torch.Tensor.__getitem__` when attempting to differentiate a CPU tensor
771
+ and the index is a list of tensors
772
+ * :func:`torch.Tensor.index_put` with ``accumulate=False``
773
+ * :func:`torch.Tensor.index_put` with ``accumulate=True`` when called on a CPU
774
+ tensor
775
+ * :func:`torch.Tensor.put_` with ``accumulate=True`` when called on a CPU
776
+ tensor
777
+ * :func:`torch.Tensor.scatter_add_` when called on a CUDA tensor
778
+ * :func:`torch.gather` when called on a CUDA tensor that requires grad
779
+ * :func:`torch.index_add` when called on CUDA tensor
780
+ * :func:`torch.index_select` when attempting to differentiate a CUDA tensor
781
+ * :func:`torch.repeat_interleave` when attempting to differentiate a CUDA tensor
782
+ * :func:`torch.Tensor.index_copy` when called on a CPU or CUDA tensor
783
+ * :func:`torch.Tensor.scatter` when `src` type is Tensor and called on CUDA tensor
784
+ * :func:`torch.Tensor.scatter_reduce` when ``reduce='sum'`` or ``reduce='mean'`` and called on CUDA tensor
785
+
786
+ The following normally-nondeterministic operations will throw a
787
+ :class:`RuntimeError` when ``mode=True``:
788
+
789
+ * :class:`torch.nn.AvgPool3d` when attempting to differentiate a CUDA tensor
790
+ * :class:`torch.nn.AdaptiveAvgPool2d` when attempting to differentiate a CUDA tensor
791
+ * :class:`torch.nn.AdaptiveAvgPool3d` when attempting to differentiate a CUDA tensor
792
+ * :class:`torch.nn.MaxPool3d` when attempting to differentiate a CUDA tensor
793
+ * :class:`torch.nn.AdaptiveMaxPool2d` when attempting to differentiate a CUDA tensor
794
+ * :class:`torch.nn.FractionalMaxPool2d` when attempting to differentiate a CUDA tensor
795
+ * :class:`torch.nn.FractionalMaxPool3d` when attempting to differentiate a CUDA tensor
796
+ * :class:`torch.nn.MaxUnpool1d`
797
+ * :class:`torch.nn.MaxUnpool2d`
798
+ * :class:`torch.nn.MaxUnpool3d`
799
+ * :func:`torch.nn.functional.interpolate` when attempting to differentiate a CUDA tensor
800
+ and one of the following modes is used:
801
+
802
+ - ``linear``
803
+ - ``bilinear``
804
+ - ``bicubic``
805
+ - ``trilinear``
806
+
807
+ * :class:`torch.nn.ReflectionPad1d` when attempting to differentiate a CUDA tensor
808
+ * :class:`torch.nn.ReflectionPad2d` when attempting to differentiate a CUDA tensor
809
+ * :class:`torch.nn.ReflectionPad3d` when attempting to differentiate a CUDA tensor
810
+ * :class:`torch.nn.ReplicationPad1d` when attempting to differentiate a CUDA tensor
811
+ * :class:`torch.nn.ReplicationPad3d` when attempting to differentiate a CUDA tensor
812
+ * :class:`torch.nn.NLLLoss` when called on a CUDA tensor
813
+ * :class:`torch.nn.CTCLoss` when attempting to differentiate a CUDA tensor
814
+ * :class:`torch.nn.EmbeddingBag` when attempting to differentiate a CUDA tensor when
815
+ ``mode='max'``
816
+ * :func:`torch.Tensor.put_` when ``accumulate=False``
817
+ * :func:`torch.Tensor.put_` when ``accumulate=True`` and called on a CUDA tensor
818
+ * :func:`torch.histc` when called on a CUDA tensor
819
+ * :func:`torch.bincount` when called on a CUDA tensor and ``weights``
820
+ tensor is given
821
+ * :func:`torch.kthvalue` with called on a CUDA tensor
822
+ * :func:`torch.median` with indices output when called on a CUDA tensor
823
+ * :func:`torch.nn.functional.grid_sample` when attempting to differentiate a CUDA tensor
824
+ * :func:`torch.cumsum` when called on a CUDA tensor when dtype is floating point or complex
825
+ * :func:`torch.Tensor.scatter_reduce` when ``reduce='prod'`` and called on CUDA tensor
826
+ * :func:`torch.Tensor.resize_` when called with a quantized tensor
827
+
828
+ In addition, several operations fill uninitialized memory when this setting
829
+ is turned on and when
830
+ :attr:`torch.utils.deterministic.fill_uninitialized_memory` is turned on.
831
+ See the documentation for that attribute for more information.
832
+
833
+ A handful of CUDA operations are nondeterministic if the CUDA version is
834
+ 10.2 or greater, unless the environment variable ``CUBLAS_WORKSPACE_CONFIG=:4096:8``
835
+ or ``CUBLAS_WORKSPACE_CONFIG=:16:8`` is set. See the CUDA documentation for more
836
+ details: `<https://docs.nvidia.com/cuda/cublas/index.html#cublasApi_reproducibility>`_
837
+ If one of these environment variable configurations is not set, a :class:`RuntimeError`
838
+ will be raised from these operations when called with CUDA tensors:
839
+
840
+ * :func:`torch.mm`
841
+ * :func:`torch.mv`
842
+ * :func:`torch.bmm`
843
+
844
+ Note that deterministic operations tend to have worse performance than
845
+ nondeterministic operations.
846
+
847
+ .. note::
848
+
849
+ This flag does not detect or prevent nondeterministic behavior caused
850
+ by calling an inplace operation on a tensor with an internal memory
851
+ overlap or by giving such a tensor as the :attr:`out` argument for an
852
+ operation. In these cases, multiple writes of different data may target
853
+ a single memory location, and the order of writes is not guaranteed.
854
+
855
+ Args:
856
+ mode (:class:`bool`): If True, makes potentially nondeterministic
857
+ operations switch to a deterministic algorithm or throw a runtime
858
+ error. If False, allows nondeterministic operations.
859
+
860
+ Keyword args:
861
+ warn_only (:class:`bool`, optional): If True, operations that do not
862
+ have a deterministic implementation will throw a warning instead of
863
+ an error. Default: ``False``
864
+
865
+ Example::
866
+
867
+ >>> # xdoctest: +SKIP
868
+ >>> torch.use_deterministic_algorithms(True)
869
+
870
+ # Forward mode nondeterministic error
871
+ >>> torch.randn(10, device='cuda').kthvalue(1)
872
+ ...
873
+ RuntimeError: kthvalue CUDA does not have a deterministic implementation...
874
+
875
+ # Backward mode nondeterministic error
876
+ >>> torch.nn.AvgPool3d(1)(torch.randn(3, 4, 5, 6, requires_grad=True).cuda()).sum().backward()
877
+ ...
878
+ RuntimeError: avg_pool3d_backward_cuda does not have a deterministic implementation...
879
+ """
880
+ _C._set_deterministic_algorithms(mode, warn_only=warn_only)
881
+
882
+ def are_deterministic_algorithms_enabled() -> builtins.bool:
883
+ r"""Returns True if the global deterministic flag is turned on. Refer to
884
+ :func:`torch.use_deterministic_algorithms` documentation for more details.
885
+ """
886
+ return _C._get_deterministic_algorithms()
887
+
888
+ def is_deterministic_algorithms_warn_only_enabled() -> builtins.bool:
889
+ r"""Returns True if the global deterministic flag is set to warn only.
890
+ Refer to :func:`torch.use_deterministic_algorithms` documentation for more
891
+ details.
892
+ """
893
+ return _C._get_deterministic_algorithms_warn_only()
894
+
895
+ def set_deterministic_debug_mode(debug_mode: Union[builtins.int, str]) -> None:
896
+ r"""Sets the debug mode for deterministic operations.
897
+
898
+ .. note:: This is an alternative interface for
899
+ :func:`torch.use_deterministic_algorithms`. Refer to that function's
900
+ documentation for details about affected operations.
901
+
902
+ Args:
903
+ debug_mode(str or int): If "default" or 0, don't error or warn on
904
+ nondeterministic operations. If "warn" or 1, warn on
905
+ nondeterministic operations. If "error" or 2, error on
906
+ nondeterministic operations.
907
+ """
908
+
909
+ # NOTE: builtins.int is used here because int in this scope resolves
910
+ # to torch.int
911
+ if not isinstance(debug_mode, (builtins.int, str)):
912
+ raise TypeError(f'debug_mode must be str or int, but got {type(debug_mode)}')
913
+
914
+ if isinstance(debug_mode, str):
915
+ if debug_mode == 'default':
916
+ debug_mode = 0
917
+ elif debug_mode == 'warn':
918
+ debug_mode = 1
919
+ elif debug_mode == 'error':
920
+ debug_mode = 2
921
+ else:
922
+ raise RuntimeError(
923
+ 'invalid value of debug_mode, expected one of `default`, '
924
+ f'`warn`, `error`, but got {debug_mode}')
925
+
926
+ if debug_mode == 0:
927
+ _C._set_deterministic_algorithms(False)
928
+ elif debug_mode == 1:
929
+ _C._set_deterministic_algorithms(True, warn_only=True)
930
+ elif debug_mode == 2:
931
+ _C._set_deterministic_algorithms(True)
932
+ else:
933
+ raise RuntimeError(
934
+ 'invalid value of debug_mode, expected 0, 1, or 2, '
935
+ f'but got {debug_mode}')
936
+
937
+ def get_deterministic_debug_mode() -> builtins.int:
938
+ r"""Returns the current value of the debug mode for deterministic
939
+ operations. Refer to :func:`torch.set_deterministic_debug_mode`
940
+ documentation for more details.
941
+ """
942
+
943
+ if _C._get_deterministic_algorithms():
944
+ if _C._get_deterministic_algorithms_warn_only():
945
+ return 1
946
+ else:
947
+ return 2
948
+ else:
949
+ return 0
950
+
951
+ def get_float32_matmul_precision() -> builtins.str:
952
+ r"""Returns the current value of float32 matrix multiplication precision. Refer to
953
+ :func:`torch.set_float32_matmul_precision` documentation for more details.
954
+ """
955
+ return _C._get_float32_matmul_precision()
956
+
957
+ def set_float32_matmul_precision(precision: str) -> None:
958
+ r"""Sets the internal precision of float32 matrix multiplications.
959
+
960
+ Running float32 matrix multiplications in lower precision may significantly increase
961
+ performance, and in some programs the loss of precision has a negligible impact.
962
+
963
+ Supports three settings:
964
+
965
+ * "highest", float32 matrix multiplications use the float32 datatype (24 mantissa
966
+ bits) for internal computations.
967
+ * "high", float32 matrix multiplications either use the TensorFloat32 datatype (10
968
+ mantissa bits) or treat each float32 number as the sum of two bfloat16 numbers
969
+ (approximately 16 mantissa bits), if the appropriate fast matrix multiplication
970
+ algorithms are available. Otherwise float32 matrix multiplications are computed
971
+ as if the precision is "highest". See below for more information on the bfloat16
972
+ approach.
973
+ * "medium", float32 matrix multiplications use the bfloat16 datatype (8 mantissa
974
+ bits) for internal computations, if a fast matrix multiplication algorithm
975
+ using that datatype internally is available. Otherwise float32
976
+ matrix multiplications are computed as if the precision is "high".
977
+
978
+ When using "high" precision, float32 multiplications may use a bfloat16-based algorithm
979
+ that is more complicated than simply truncating to some smaller number mantissa bits
980
+ (e.g. 10 for TensorFloat32, 8 for bfloat16). Refer to [Henry2019]_ for a complete
981
+ description of this algorithm. To briefly explain here, the first step is to realize
982
+ that we can perfectly encode a single float32 number as the sum of three bfloat16
983
+ numbers (because float32 has 24 mantissa bits while bfloat16 has 8, and both have the
984
+ same number of exponent bits). This means that the product of two float32 numbers can
985
+ be exactly given by the sum of nine products of bfloat16 numbers. We can then trade
986
+ accuracy for speed by dropping some of these products. The "high" precision algorithm
987
+ specifically keeps only the three most significant products, which conveniently excludes
988
+ all of the products involving the last 8 mantissa bits of either input. This means that
989
+ we can represent our inputs as the sum of two bfloat16 numbers rather than three.
990
+ Because bfloat16 fused-multiply-add (FMA) instructions are typically >10x faster than
991
+ float32 ones, it's faster to do three multiplications and 2 additions with bfloat16
992
+ precision than it is to do a single multiplication with float32 precision.
993
+
994
+ .. [Henry2019] http://arxiv.org/abs/1904.06376
995
+
996
+ .. note::
997
+
998
+ This does not change the output dtype of float32 matrix multiplications,
999
+ it controls how the internal computation of the matrix multiplication is performed.
1000
+
1001
+ .. note::
1002
+
1003
+ This does not change the precision of convolution operations. Other flags,
1004
+ like `torch.backends.cudnn.allow_tf32`, may control the precision of convolution
1005
+ operations.
1006
+
1007
+ .. note::
1008
+
1009
+ This flag currently only affects one native device type: CUDA.
1010
+ If "high" or "medium" are set then the TensorFloat32 datatype will be used
1011
+ when computing float32 matrix multiplications, equivalent to setting
1012
+ `torch.backends.cuda.matmul.allow_tf32 = True`. When "highest" (the default)
1013
+ is set then the float32 datatype is used for internal computations, equivalent
1014
+ to setting `torch.backends.cuda.matmul.allow_tf32 = False`.
1015
+
1016
+ Args:
1017
+ precision(str): can be set to "highest" (default), "high", or "medium" (see above).
1018
+
1019
+ """
1020
+ _C._set_float32_matmul_precision(precision)
1021
+
1022
+ def set_warn_always(b: builtins.bool) -> None:
1023
+ r"""When this flag is False (default) then some PyTorch warnings may only
1024
+ appear once per process. This helps avoid excessive warning information.
1025
+ Setting it to True causes these warnings to always appear, which may be
1026
+ helpful when debugging.
1027
+
1028
+ Args:
1029
+ b (:class:`bool`): If True, force warnings to always be emitted
1030
+ If False, set to the default behaviour
1031
+ """
1032
+ _C._set_warnAlways(b)
1033
+
1034
+ def is_warn_always_enabled() -> builtins.bool:
1035
+ r"""Returns True if the global warn_always flag is turned on. Refer to
1036
+ :func:`torch.set_warn_always` documentation for more details.
1037
+ """
1038
+ return _C._get_warnAlways()
1039
+
1040
+ ################################################################################
1041
+ # Define error checking functions
1042
+ ################################################################################
1043
+
1044
+ # These error checking functions must be kept consistent with their C++
1045
+ # equivalents. Their C++ equivalents are mentioned where applicable.
1046
+
1047
+ def _check_with(error_type, cond: Union[builtins.bool, SymBool], message: Callable[[], str]): # noqa: F811
1048
+ if not isinstance(cond, (builtins.bool, torch.SymBool)):
1049
+ raise TypeError(f'cond must be a bool, but got {type(cond)}')
1050
+
1051
+ from torch.fx.experimental.symbolic_shapes import expect_true
1052
+ if expect_true(cond):
1053
+ return
1054
+
1055
+ # error_type must be a subclass of Exception and not subclass of Warning
1056
+ assert issubclass(error_type, Exception) and not issubclass(error_type, Warning)
1057
+
1058
+ if message is None:
1059
+ message_evaluated = (
1060
+ 'Expected cond to be True, but got False. (Could this error '
1061
+ 'message be improved? If so, please report an enhancement request '
1062
+ 'to PyTorch.)')
1063
+
1064
+ else:
1065
+ if not callable(message):
1066
+ raise TypeError('message must be a callable')
1067
+
1068
+ message_evaluated = str(message())
1069
+
1070
+ raise error_type(message_evaluated)
1071
+
1072
+ def _check(cond, message=None): # noqa: F811
1073
+ r"""Throws error containing an optional message if the specified condition
1074
+ is False.
1075
+
1076
+ Error type: ``RuntimeError``
1077
+
1078
+ C++ equivalent: ``TORCH_CHECK``
1079
+
1080
+ Args:
1081
+ cond (:class:`bool`): If False, throw error
1082
+
1083
+ message (Callable, optional): Callable that returns either a string or
1084
+ an object that has a ``__str__()`` method to be used as the error
1085
+ message. Default: ``None``
1086
+ """
1087
+ _check_with(RuntimeError, cond, message)
1088
+
1089
+ def _check_is_size(i, message=None):
1090
+ """Checks that a given integer is a valid size (i.e., is non-negative).
1091
+ You should use this over _check(i >= 0) because we can use the semantic
1092
+ information (that i is a size) to make some further inferences in case
1093
+ i is an unbacked SymInt.
1094
+
1095
+ NB: Do NOT use this in contexts where a -1 size would be valid (indicating
1096
+ to infer the size from context, or if you should wrap-around or truncate).
1097
+ Only use this if the only valid value is an honest to goodness size.
1098
+ """
1099
+ # This is responsible for the expect_true
1100
+ _check(i >= 0, message)
1101
+ from torch.fx.experimental.symbolic_shapes import _advise_is_size
1102
+ _advise_is_size(i)
1103
+
1104
+ def _check_index(cond, message=None): # noqa: F811
1105
+ r"""Throws error containing an optional message if the specified condition
1106
+ is False.
1107
+
1108
+ Error type: ``IndexError``
1109
+
1110
+ C++ equivalent: ``TORCH_CHECK_INDEX``
1111
+
1112
+ Args:
1113
+ cond (:class:`bool`): If False, throw error
1114
+
1115
+ message (Callable, optional): Callable that returns either a string or
1116
+ an object that has a ``__str__()`` method to be used as the error
1117
+ message. Default: ``None``
1118
+ """
1119
+ _check_with(IndexError, cond, message)
1120
+
1121
+ def _check_value(cond, message=None): # noqa: F811
1122
+ r"""Throws error containing an optional message if the specified condition
1123
+ is False.
1124
+
1125
+ Error type: ``ValueError``
1126
+
1127
+ C++ equivalent: ``TORCH_CHECK_VALUE``
1128
+
1129
+ Args:
1130
+ cond (:class:`bool`): If False, throw error
1131
+
1132
+ message (Callable, optional): Callable that returns either a string or
1133
+ an object that has a ``__str__()`` method to be used as the error
1134
+ message. Default: ``None``
1135
+ """
1136
+ _check_with(ValueError, cond, message)
1137
+
1138
+ def _check_type(cond, message=None): # noqa: F811
1139
+ r"""Throws error containing an optional message if the specified condition
1140
+ is False.
1141
+
1142
+ Error type: ``TypeError``
1143
+
1144
+ C++ equivalent: ``TORCH_CHECK_TYPE``
1145
+
1146
+ Args:
1147
+ cond (:class:`bool`): If False, throw error
1148
+
1149
+ message (Callable, optional): Callable that returns either a string or
1150
+ an object that has a ``__str__()`` method to be used as the error
1151
+ message. Default: ``None``
1152
+ """
1153
+ _check_with(TypeError, cond, message)
1154
+
1155
+ def _check_not_implemented(cond, message=None): # noqa: F811
1156
+ r"""Throws error containing an optional message if the specified condition
1157
+ is False.
1158
+
1159
+ Error type: ``NotImplementedError``
1160
+
1161
+ C++ equivalent: ``TORCH_CHECK_NOT_IMPLEMENTED``
1162
+
1163
+ Args:
1164
+ cond (:class:`bool`): If False, throw error
1165
+
1166
+ message (Callable, optional): Callable that returns either a string or
1167
+ an object that has a ``__str__()`` method to be used as the error
1168
+ message. Default: ``None``
1169
+ """
1170
+ _check_with(NotImplementedError, cond, message)
1171
+
1172
+ def _check_tensor_all_with(error_type, cond, message=None): # noqa: F811
1173
+ if not torch.is_tensor(cond):
1174
+ raise TypeError(f'cond must be a tensor, but got {type(cond)}')
1175
+
1176
+ if not cond.dtype == torch.bool:
1177
+ raise TypeError(
1178
+ f'cond tensor must have dtype torch.bool, but got {cond.dtype}')
1179
+
1180
+ _check_with(error_type, cond._is_all_true().item(), message)
1181
+
1182
+ # C++ equivalent: `TORCH_CHECK_TENSOR_ALL`
1183
+ def _check_tensor_all(cond, message=None): # noqa: F811
1184
+ r"""Throws error containing an optional message if the specified condition
1185
+ is False.
1186
+
1187
+ Error type: ``RuntimeError``
1188
+
1189
+ C++ equivalent: ``TORCH_CHECK_TENSOR_ALL``
1190
+
1191
+ Args:
1192
+ cond (:class:`torch.Tensor`): Tensor of dtype ``torch.bool``. If any
1193
+ element is ``False``, throw error
1194
+
1195
+ message (Callable, optional): Callable that returns either a string or
1196
+ an object that has a ``__str__()`` method to be used as the error
1197
+ message. Default: ``None``
1198
+ """
1199
+ _check_tensor_all_with(RuntimeError, cond, message)
1200
+
1201
+ ################################################################################
1202
+ # Define numeric constants
1203
+ ################################################################################
1204
+
1205
+ # For Python Array API (https://data-apis.org/array-api/latest/API_specification/constants.html) and
1206
+ # NumPy consistency (https://numpy.org/devdocs/reference/constants.html)
1207
+ from math import e , nan , inf , pi
1208
+ __all__.extend(['e', 'pi', 'nan', 'inf'])
1209
+
1210
+ ################################################################################
1211
+ # Define Storage and Tensor classes
1212
+ ################################################################################
1213
+
1214
+ from ._tensor import Tensor
1215
+ from .storage import _StorageBase, TypedStorage, _LegacyStorage, UntypedStorage, _warn_typed_storage_removal
1216
+
1217
+ # NOTE: New <type>Storage classes should never be added. When adding a new
1218
+ # dtype, use torch.storage.TypedStorage directly.
1219
+
1220
+ class ByteStorage(_LegacyStorage):
1221
+ @classproperty
1222
+ def dtype(self):
1223
+ _warn_typed_storage_removal(stacklevel=3)
1224
+ return self._dtype
1225
+
1226
+ @classproperty
1227
+ def _dtype(self):
1228
+ return torch.uint8
1229
+
1230
+ class DoubleStorage(_LegacyStorage):
1231
+ @classproperty
1232
+ def dtype(self):
1233
+ _warn_typed_storage_removal(stacklevel=3)
1234
+ return self._dtype
1235
+
1236
+ @classproperty
1237
+ def _dtype(self):
1238
+ return torch.double
1239
+
1240
+ class FloatStorage(_LegacyStorage):
1241
+ @classproperty
1242
+ def dtype(self):
1243
+ _warn_typed_storage_removal(stacklevel=3)
1244
+ return self._dtype
1245
+
1246
+ @classproperty
1247
+ def _dtype(self):
1248
+ return torch.float
1249
+
1250
+ class HalfStorage(_LegacyStorage):
1251
+ @classproperty
1252
+ def dtype(self):
1253
+ _warn_typed_storage_removal(stacklevel=3)
1254
+ return self._dtype
1255
+
1256
+ @classproperty
1257
+ def _dtype(self):
1258
+ return torch.half
1259
+
1260
+ class LongStorage(_LegacyStorage):
1261
+ @classproperty
1262
+ def dtype(self):
1263
+ _warn_typed_storage_removal(stacklevel=3)
1264
+ return self._dtype
1265
+
1266
+ @classproperty
1267
+ def _dtype(self):
1268
+ return torch.long
1269
+
1270
+ class IntStorage(_LegacyStorage):
1271
+ @classproperty
1272
+ def dtype(self):
1273
+ _warn_typed_storage_removal(stacklevel=3)
1274
+ return self._dtype
1275
+
1276
+ @classproperty
1277
+ def _dtype(self):
1278
+ return torch.int
1279
+
1280
+ class ShortStorage(_LegacyStorage):
1281
+ @classproperty
1282
+ def dtype(self):
1283
+ _warn_typed_storage_removal(stacklevel=3)
1284
+ return self._dtype
1285
+
1286
+ @classproperty
1287
+ def _dtype(self):
1288
+ return torch.short
1289
+
1290
+ class CharStorage(_LegacyStorage):
1291
+ @classproperty
1292
+ def dtype(self):
1293
+ _warn_typed_storage_removal(stacklevel=3)
1294
+ return self._dtype
1295
+
1296
+ @classproperty
1297
+ def _dtype(self):
1298
+ return torch.int8
1299
+
1300
+ class BoolStorage(_LegacyStorage):
1301
+ @classproperty
1302
+ def dtype(self):
1303
+ _warn_typed_storage_removal(stacklevel=3)
1304
+ return self._dtype
1305
+
1306
+ @classproperty
1307
+ def _dtype(self):
1308
+ return torch.bool
1309
+
1310
+ class BFloat16Storage(_LegacyStorage):
1311
+ @classproperty
1312
+ def dtype(self):
1313
+ _warn_typed_storage_removal(stacklevel=3)
1314
+ return self._dtype
1315
+
1316
+ @classproperty
1317
+ def _dtype(self):
1318
+ return torch.bfloat16
1319
+
1320
+ class ComplexDoubleStorage(_LegacyStorage):
1321
+ @classproperty
1322
+ def dtype(self):
1323
+ _warn_typed_storage_removal(stacklevel=3)
1324
+ return self._dtype
1325
+
1326
+ @classproperty
1327
+ def _dtype(self):
1328
+ return torch.cdouble
1329
+
1330
+ class ComplexFloatStorage(_LegacyStorage):
1331
+ @classproperty
1332
+ def dtype(self):
1333
+ _warn_typed_storage_removal(stacklevel=3)
1334
+ return self._dtype
1335
+
1336
+ @classproperty
1337
+ def _dtype(self):
1338
+ return torch.cfloat
1339
+
1340
+ class QUInt8Storage(_LegacyStorage):
1341
+ @classproperty
1342
+ def dtype(self):
1343
+ _warn_typed_storage_removal(stacklevel=3)
1344
+ return self._dtype
1345
+
1346
+ @classproperty
1347
+ def _dtype(self):
1348
+ return torch.quint8
1349
+
1350
+ class QInt8Storage(_LegacyStorage):
1351
+ @classproperty
1352
+ def dtype(self):
1353
+ _warn_typed_storage_removal(stacklevel=3)
1354
+ return self._dtype
1355
+
1356
+ @classproperty
1357
+ def _dtype(self):
1358
+ return torch.qint8
1359
+
1360
+ class QInt32Storage(_LegacyStorage):
1361
+ @classproperty
1362
+ def dtype(self):
1363
+ _warn_typed_storage_removal(stacklevel=3)
1364
+ return self._dtype
1365
+
1366
+ @classproperty
1367
+ def _dtype(self):
1368
+ return torch.qint32
1369
+
1370
+ class QUInt4x2Storage(_LegacyStorage):
1371
+ @classproperty
1372
+ def dtype(self):
1373
+ _warn_typed_storage_removal(stacklevel=3)
1374
+ return self._dtype
1375
+
1376
+ @classproperty
1377
+ def _dtype(self):
1378
+ return torch.quint4x2
1379
+
1380
+ class QUInt2x4Storage(_LegacyStorage):
1381
+ @classproperty
1382
+ def dtype(self):
1383
+ _warn_typed_storage_removal(stacklevel=3)
1384
+ return self._dtype
1385
+
1386
+ @classproperty
1387
+ def _dtype(self):
1388
+ return torch.quint2x4
1389
+
1390
+ _storage_classes = {
1391
+ UntypedStorage, DoubleStorage, FloatStorage, LongStorage, IntStorage,
1392
+ ShortStorage, CharStorage, ByteStorage, HalfStorage, BoolStorage,
1393
+ QUInt8Storage, QInt8Storage, QInt32Storage, BFloat16Storage,
1394
+ ComplexFloatStorage, ComplexDoubleStorage, QUInt4x2Storage, QUInt2x4Storage,
1395
+ TypedStorage
1396
+ }
1397
+
1398
+ # The _tensor_classes set is initialized by the call to _C._initialize_tensor_type_bindings()
1399
+ _tensor_classes: Set[Type] = set()
1400
+
1401
+ # If you edit these imports, please update torch/__init__.py.in as well
1402
+ from .random import set_rng_state, get_rng_state, manual_seed, initial_seed, seed
1403
+ from .serialization import save, load
1404
+ from ._tensor_str import set_printoptions
1405
+
1406
+ ################################################################################
1407
+ # Initialize extension
1408
+ ################################################################################
1409
+
1410
+ def manager_path():
1411
+ if _running_with_deploy() or platform.system() == 'Windows':
1412
+ return b""
1413
+ path = get_file_path('torch', 'bin', 'torch_shm_manager')
1414
+ prepare_multiprocessing_environment(get_file_path('torch'))
1415
+ if not os.path.exists(path):
1416
+ raise RuntimeError("Unable to find torch_shm_manager at " + path)
1417
+ return path.encode('utf-8')
1418
+
1419
+ from torch.amp import autocast
1420
+
1421
+ # Initializing the extension shadows the built-in python float / int classes;
1422
+ # store them for later use by SymInt / SymFloat.
1423
+ py_float = float
1424
+ py_int = int
1425
+
1426
+ # Shared memory manager needs to know the exact location of manager executable
1427
+ _C._initExtension(manager_path())
1428
+ del manager_path
1429
+
1430
+ # Appease the type checker: it can't deal with direct setting of globals().
1431
+ # Note that we will see "too many" functions when reexporting this way; there
1432
+ # is not a good way to fix this problem. Perhaps, try to redesign VariableFunctions
1433
+ # so that this import is good enough
1434
+ if TYPE_CHECKING:
1435
+ # Some type signatures pulled in from _VariableFunctions here clash with
1436
+ # signatures already imported. For now these clashes are ignored; see
1437
+ # PR #43339 for details.
1438
+ from torch._C._VariableFunctions import * # type: ignore[assignment, misc] # noqa: F403
1439
+ # Fixup segment_reduce visibility
1440
+ _segment_reduce = segment_reduce
1441
+ del segment_reduce
1442
+
1443
+ # Ops not to be exposed in `torch` namespace,
1444
+ # mostly helper ops.
1445
+ PRIVATE_OPS = (
1446
+ 'unique_dim',
1447
+ )
1448
+
1449
+ for name in dir(_C._VariableFunctions):
1450
+ if name.startswith('__') or name in PRIVATE_OPS:
1451
+ continue
1452
+ obj = getattr(_C._VariableFunctions, name)
1453
+ obj.__module__ = 'torch'
1454
+ # Hide some APIs that should not be public
1455
+ if name == "segment_reduce":
1456
+ # TODO: Once the undocumented FC window is passed, remove the line bellow
1457
+ globals()[name] = obj
1458
+ name = "_" + name
1459
+ globals()[name] = obj
1460
+ if not name.startswith("_"):
1461
+ __all__.append(name)
1462
+
1463
+
1464
+
1465
+ ################################################################################
1466
+ # Import TorchDynamo's lazy APIs to avoid circular dependenices
1467
+ ################################################################################
1468
+
1469
+ # needs to be before from .functional import * to avoid circular dependencies
1470
+ from ._compile import _disable_dynamo
1471
+
1472
+ ################################################################################
1473
+ # Import interface functions defined in Python
1474
+ ################################################################################
1475
+
1476
+ # needs to be after the above ATen bindings so we can overwrite from Python side
1477
+ from .functional import * # noqa: F403
1478
+
1479
+
1480
+ ################################################################################
1481
+ # Remove unnecessary members
1482
+ ################################################################################
1483
+
1484
+ del _StorageBase
1485
+ del _LegacyStorage
1486
+
1487
+ ################################################################################
1488
+ # Define _assert
1489
+ ################################################################################
1490
+
1491
+ # needs to be before the submodule imports to avoid circular dependencies
1492
+ def _assert(condition, message):
1493
+ r"""A wrapper around Python's assert which is symbolically traceable.
1494
+ """
1495
+ from .overrides import has_torch_function, handle_torch_function
1496
+
1497
+ if type(condition) is not torch.Tensor and has_torch_function((condition,)):
1498
+ return handle_torch_function(_assert, (condition,), condition, message)
1499
+ assert condition, message
1500
+
1501
+ ################################################################################
1502
+ # Import most common subpackages
1503
+ ################################################################################
1504
+
1505
+ # Use the redundant form so that type checkers know that these are a part of
1506
+ # the public API. The "regular" import lines are there solely for the runtime
1507
+ # side effect of adding to the imported module's members for other users.
1508
+ from torch import cuda as cuda
1509
+ from torch import cpu as cpu
1510
+ from torch import mps as mps
1511
+ from torch import autograd as autograd
1512
+ from torch.autograd import (
1513
+ no_grad as no_grad,
1514
+ enable_grad as enable_grad,
1515
+ set_grad_enabled as set_grad_enabled,
1516
+ inference_mode as inference_mode,
1517
+ )
1518
+ from torch import fft as fft
1519
+ from torch import futures as futures
1520
+ from torch import _awaits as _awaits
1521
+ from torch import nested as nested
1522
+ from torch import nn as nn
1523
+ from torch.signal import windows as windows
1524
+ from torch import optim as optim
1525
+ import torch.optim._multi_tensor
1526
+ from torch import multiprocessing as multiprocessing
1527
+ from torch import sparse as sparse
1528
+ from torch import special as special
1529
+ import torch.utils.backcompat
1530
+ from torch import jit as jit
1531
+ from torch import linalg as linalg
1532
+ from torch import hub as hub
1533
+ from torch import random as random
1534
+ from torch import distributions as distributions
1535
+ from torch import testing as testing
1536
+ from torch import backends as backends
1537
+ import torch.utils.data
1538
+ from torch import __config__ as __config__
1539
+ from torch import __future__ as __future__
1540
+ from torch import profiler as profiler
1541
+
1542
+ # Quantized, sparse, AO, etc. should be last to get imported, as nothing
1543
+ # is expected to depend on them.
1544
+ from torch import ao as ao
1545
+ # nn.quant* depends on ao -- so should be after those.
1546
+ import torch.nn.quantizable
1547
+ import torch.nn.quantized
1548
+ import torch.nn.qat
1549
+ import torch.nn.intrinsic
1550
+
1551
+ _C._init_names(list(torch._storage_classes))
1552
+
1553
+ # attach docstrings to torch and tensor functions
1554
+ from . import _torch_docs, _tensor_docs, _storage_docs
1555
+ del _torch_docs, _tensor_docs, _storage_docs
1556
+
1557
+
1558
+ def compiled_with_cxx11_abi() -> builtins.bool:
1559
+ r"""Returns whether PyTorch was built with _GLIBCXX_USE_CXX11_ABI=1"""
1560
+ return _C._GLIBCXX_USE_CXX11_ABI
1561
+
1562
+
1563
+ # Import the ops "namespace"
1564
+ from torch._ops import ops
1565
+ from torch._classes import classes
1566
+ import torch._library
1567
+
1568
+ # quantization depends on torch.fx
1569
+ # Import quantization
1570
+ from torch import quantization as quantization
1571
+
1572
+ # Import the quasi random sampler
1573
+ from torch import quasirandom as quasirandom
1574
+
1575
+ # If you are seeing this, it means that this call site was not checked if
1576
+ # the memory format could be preserved, and it was switched to old default
1577
+ # behaviour of contiguous
1578
+ legacy_contiguous_format = contiguous_format
1579
+
1580
+ # Register fork handler to initialize OpenMP in child processes (see gh-28389)
1581
+ from torch.multiprocessing._atfork import register_after_fork
1582
+ register_after_fork(torch.get_num_threads)
1583
+ del register_after_fork
1584
+
1585
+ # Import tools that require fully imported torch (for applying
1586
+ # torch.jit.script as a decorator, for instance):
1587
+ from ._lobpcg import lobpcg as lobpcg
1588
+
1589
+ # These were previously defined in native_functions.yaml and appeared on the
1590
+ # `torch` namespace, but we moved them to c10 dispatch to facilitate custom
1591
+ # class usage. We add these lines here to preserve backward compatibility.
1592
+ quantized_lstm = torch.ops.aten.quantized_lstm
1593
+ quantized_gru = torch.ops.aten.quantized_gru
1594
+
1595
+ from torch.utils.dlpack import from_dlpack, to_dlpack
1596
+
1597
+ # Import experimental masked operations support. See
1598
+ # [RFC-0016](https://github.com/pytorch/rfcs/pull/27) for more
1599
+ # information.
1600
+ from . import masked
1601
+
1602
+ # Import removed ops with error message about removal
1603
+ from ._linalg_utils import ( # type: ignore[misc]
1604
+ matrix_rank,
1605
+ eig,
1606
+ solve,
1607
+ lstsq,
1608
+ )
1609
+ from ._linalg_utils import _symeig as symeig # type: ignore[misc]
1610
+
1611
+ class _TorchCompileInductorWrapper:
1612
+ compiler_name = "inductor"
1613
+
1614
+ def __init__(self, mode, options, dynamic):
1615
+ self.config: Dict[str, Any] = dict()
1616
+ self.dynamic = dynamic
1617
+ self.apply_mode(mode)
1618
+ self.apply_options(options)
1619
+
1620
+ if self.config.get("triton.cudagraphs", False):
1621
+ os.environ["DISABLE_CUPTI_LAZY_REINIT"] = "1"
1622
+ # FIXME: CUDA Graph does not work well with CUPTI teardown.
1623
+ # 1) crashes on 1st lazy CUPTI re-init after teardown (CUDA 11)
1624
+ # 2) crashes on 2nd non-lazy CUPTI re-init after teardown (CUDA 12)
1625
+ # Workaround: turn off CUPTI teardown when using CUDA Graphs.
1626
+ os.environ["TEARDOWN_CUPTI"] = "0"
1627
+
1628
+ def __eq__(self, other):
1629
+ return (isinstance(other, _TorchCompileInductorWrapper) and
1630
+ self.config == other.config and
1631
+ self.dynamic == other.dynamic)
1632
+
1633
+ def apply_mode(self, mode: Optional[str]):
1634
+ if mode is None or mode == "default":
1635
+ pass
1636
+ elif mode in ("reduce-overhead", "max-autotune", "max-autotune-no-cudagraphs"):
1637
+ from torch._inductor import list_mode_options
1638
+ self.apply_options(list_mode_options(mode, self.dynamic))
1639
+ else:
1640
+ raise RuntimeError(
1641
+ f"Unrecognized mode={mode}, should be one of: default, reduce-overhead, max-autotune, max-autotune-no-cudagraphs"
1642
+ )
1643
+
1644
+ def apply_options(self, options: Optional[Dict[str, Any]]):
1645
+ if not options:
1646
+ return
1647
+
1648
+ from torch._inductor import config
1649
+ current_config: Dict[str, Any] = config.shallow_copy_dict()
1650
+
1651
+ for key, val in options.items():
1652
+ attr_name = key.replace("-", "_")
1653
+ if attr_name not in current_config:
1654
+ raise RuntimeError(
1655
+ f"Unexpected optimization option {key}, known options are {list(current_config.keys())}"
1656
+ )
1657
+ if type(val) is not type(current_config[attr_name]):
1658
+ val_type_str = type(val).__name__
1659
+ expected_type_str = type(current_config[attr_name]).__name__
1660
+ raise RuntimeError(
1661
+ f"Unexpected type of attr {key}, got {val_type_str} should be {expected_type_str}"
1662
+ )
1663
+ self.config[attr_name] = val
1664
+
1665
+ def __call__(self, model_, inputs_):
1666
+ from torch._inductor.compile_fx import compile_fx
1667
+
1668
+ return compile_fx(model_, inputs_, config_patches=self.config)
1669
+
1670
+ def get_compiler_config(self):
1671
+ from torch._inductor.compile_fx import get_patched_config_dict
1672
+ return get_patched_config_dict(config_patches=self.config)
1673
+
1674
+ def reset(self):
1675
+ from torch._inductor import config
1676
+ if "triton.cudagraphs" in self.config or config.triton.cudagraphs:
1677
+ if self.config.get("triton.cudagraphs", True):
1678
+ from torch._inductor.cudagraph_trees import reset_cudagraph_trees
1679
+ reset_cudagraph_trees()
1680
+
1681
+ class _TorchCompileWrapper:
1682
+ def __init__(self, backend, mode, options, dynamic):
1683
+ from torch._dynamo.backends.registry import lookup_backend
1684
+
1685
+ if isinstance(backend, str):
1686
+ self.compiler_name = backend
1687
+ elif hasattr(backend, "__name__"):
1688
+ self.compiler_name = backend.__name__
1689
+ else:
1690
+ self.compiler_name = str(backend)
1691
+ self.dynamic = dynamic
1692
+ self.compiler_fn = lookup_backend(backend)
1693
+ self.kwargs = {}
1694
+ # only pass the args if they non-empty
1695
+ if mode and mode != "default":
1696
+ self.kwargs["mode"] = mode
1697
+ if options:
1698
+ self.kwargs["options"] = options
1699
+
1700
+ def __eq__(self, other):
1701
+ return (isinstance(other, _TorchCompileWrapper) and
1702
+ self.compiler_fn == other.compiler_fn and
1703
+ self.kwargs == other.kwargs and
1704
+ self.dynamic == other.dynamic)
1705
+
1706
+ def __call__(self, model_, inputs_):
1707
+ return self.compiler_fn(model_, inputs_, **self.kwargs)
1708
+
1709
+
1710
+ def compile(model: Optional[Callable] = None, *,
1711
+ fullgraph: builtins.bool = False,
1712
+ dynamic: Optional[builtins.bool] = None,
1713
+ backend: Union[str, Callable] = "inductor",
1714
+ mode: Union[str, None] = None,
1715
+ options: Optional[Dict[str, Union[str, builtins.int, builtins.bool]]] = None,
1716
+ disable: builtins.bool = False) -> Callable:
1717
+ """
1718
+ Optimizes given model/function using TorchDynamo and specified backend.
1719
+
1720
+ Concretely, for every frame executed within the compiled region, we will attempt
1721
+ to compile it and cache the compiled result on the code object for future
1722
+ use. A single frame may be compiled multiple times if previous compiled
1723
+ results are not applicable for subsequent calls (this is called a "guard
1724
+ failure), you can use TORCH_LOGS=guards to debug these situations.
1725
+ Multiple compiled results can be associated with a frame up to
1726
+ ``torch._dynamo.config.cache_size_limit``, which defaults to 64; at which
1727
+ point we will fall back to eager. Note that compile caches are per
1728
+ *code object*, not frame; if you dynamically create multiple copies of a
1729
+ function, they will all share the same code cache.
1730
+
1731
+ Args:
1732
+ model (Callable): Module/function to optimize
1733
+ fullgraph (bool): If False (default), torch.compile attempts to discover compileable regions
1734
+ in the function that it will optimize. If True, then we require that the entire function be
1735
+ capturable into a single graph. If this is not possible (that is, if there are graph breaks),
1736
+ then this will raise an error.
1737
+ dynamic (bool or None): Use dynamic shape tracing. When this is True, we will up-front attempt
1738
+ to generate a kernel that is as dynamic as possible to avoid recompilations when
1739
+ sizes change. This may not always work as some operations/optimizations will
1740
+ force specialization; use TORCH_LOGS=dynamic to debug overspecialization.
1741
+ When this is False, we will NEVER generate dynamic kernels, we will always specialize.
1742
+ By default (None), we automatically detect if dynamism has occurred and compile a more
1743
+ dynamic kernel upon recompile.
1744
+ backend (str or Callable): backend to be used
1745
+
1746
+ - "inductor" is the default backend, which is a good balance between performance and overhead
1747
+
1748
+ - Non experimental in-tree backends can be seen with `torch._dynamo.list_backends()`
1749
+
1750
+ - Experimental or debug in-tree backends can be seen with `torch._dynamo.list_backends(None)`
1751
+
1752
+ - To register an out-of-tree custom backend: https://pytorch.org/docs/main/compile/custom-backends.html
1753
+ mode (str): Can be either "default", "reduce-overhead", "max-autotune" or "max-autotune-no-cudagraphs"
1754
+
1755
+ - "default" is the default mode, which is a good balance between performance and overhead
1756
+
1757
+ - "reduce-overhead" is a mode that reduces the overhead of python with CUDA graphs,
1758
+ useful for small batches. Reduction of overhead can come at the cost of more memory
1759
+ usage, as we will cache the workspace memory required for the invocation so that we
1760
+ do not have to reallocate it on subsequent runs. Reduction of overhead is not guaranteed
1761
+ to work; today, we only reduce overhead for CUDA only graphs which do not mutate inputs.
1762
+ There are other circumstances where CUDA graphs are not applicable; use TORCH_LOG=perf_hints
1763
+ to debug.
1764
+
1765
+ - "max-autotune" is a mode that leverages Triton based matrix multiplications and convolutions
1766
+ It enables CUDA graphs by default.
1767
+
1768
+ - "max-autotune-no-cudagraphs" is a mode similar to "max-autotune" but without CUDA graphs
1769
+
1770
+ - To see the exact configs that each mode sets you can call `torch._inductor.list_mode_options()`
1771
+
1772
+ options (dict): A dictionary of options to pass to the backend. Some notable ones to try out are
1773
+
1774
+ - `epilogue_fusion` which fuses pointwise ops into templates. Requires `max_autotune` to also be set
1775
+
1776
+ - `max_autotune` which will profile to pick the best matmul configuration
1777
+
1778
+ - `fallback_random` which is useful when debugging accuracy issues
1779
+
1780
+ - `shape_padding` which pads matrix shapes to better align loads on GPUs especially for tensor cores
1781
+
1782
+ - `triton.cudagraphs` which will reduce the overhead of python with CUDA graphs
1783
+
1784
+ - `trace.enabled` which is the most useful debugging flag to turn on
1785
+
1786
+ - `trace.graph_diagram` which will show you a picture of your graph after fusion
1787
+
1788
+ - For inductor you can see the full list of configs that it supports by calling `torch._inductor.list_options()`
1789
+ disable (bool): Turn torch.compile() into a no-op for testing
1790
+
1791
+ Example::
1792
+
1793
+ @torch.compile(options={"triton.cudagraphs": True}, fullgraph=True)
1794
+ def foo(x):
1795
+ return torch.sin(x) + torch.cos(x)
1796
+
1797
+ """
1798
+ _C._log_api_usage_once("torch.compile")
1799
+ # Temporary until we get proper support for python 3.12
1800
+ if sys.version_info >= (3, 12):
1801
+ raise RuntimeError("Dynamo is not supported on Python 3.12+")
1802
+
1803
+ # Decorator mode
1804
+ if model is None:
1805
+ def fn(model: Callable):
1806
+ if model is None:
1807
+ raise RuntimeError("Model can't be None")
1808
+ return compile(model,
1809
+ fullgraph=fullgraph,
1810
+ dynamic=dynamic,
1811
+ backend=backend,
1812
+ mode=mode,
1813
+ options=options,
1814
+ disable=disable)
1815
+ return fn
1816
+
1817
+ if mode is not None and options is not None:
1818
+ raise RuntimeError("Either mode or options can be specified, but both can't be specified at the same time.")
1819
+ if mode is None and options is None:
1820
+ mode = "default"
1821
+ if backend == "inductor":
1822
+ backend = _TorchCompileInductorWrapper(mode, options, dynamic)
1823
+ else:
1824
+ backend = _TorchCompileWrapper(backend, mode, options, dynamic)
1825
+
1826
+ return torch._dynamo.optimize(backend=backend, nopython=fullgraph, dynamic=dynamic, disable=disable)(model)
1827
+
1828
+
1829
+ from torch import export as export
1830
+
1831
+ from torch._higher_order_ops import cond
1832
+
1833
+ def _register_device_module(device_type, module):
1834
+ r"""Register an external runtime module of the specific :attr:`device_type`
1835
+ supported by torch.
1836
+
1837
+ After the :attr:`module` is registered correctly, the user can refer
1838
+ the external runtime module as part of torch with attribute torch.xxx.
1839
+ """
1840
+ # Make sure the device_type represent a supported device type for torch.
1841
+ device_type = torch.device(device_type).type
1842
+ m = sys.modules[__name__]
1843
+ if hasattr(m, device_type):
1844
+ raise RuntimeError(f"The runtime module of '{device_type}' has already "
1845
+ f"been registered with '{getattr(m, device_type)}'")
1846
+ setattr(m, device_type, module)
1847
+ torch_module_name = '.'.join([__name__, device_type])
1848
+ sys.modules[torch_module_name] = module
1849
+
1850
+ # expose return_types
1851
+ from . import return_types
1852
+ from . import library
1853
+ if not TYPE_CHECKING:
1854
+ from . import _meta_registrations
1855
+
1856
+ # Enable CUDA Sanitizer
1857
+ if 'TORCH_CUDA_SANITIZER' in os.environ:
1858
+ import torch.cuda._sanitizer as csan
1859
+
1860
+ csan.enable_cuda_sanitizer()
1861
+
1862
+ # Populate magic methods on SymInt and SymFloat
1863
+ import torch.fx.experimental.sym_node
1864
+
1865
+ from torch import func as func
1866
+ from torch.func import vmap
1867
+
1868
+
1869
+ # The function _sparse_coo_tensor_unsafe is removed from PyTorch
1870
+ # Python API (v. 1.13), here we temporarily provide its replacement
1871
+ # with a deprecation warning.
1872
+ # TODO: remove the function for PyTorch v 1.15.
1873
+ def _sparse_coo_tensor_unsafe(*args, **kwargs):
1874
+ import warnings
1875
+ warnings.warn('torch._sparse_coo_tensor_unsafe is deprecated, '
1876
+ 'use torch.sparse_coo_tensor(..., check_invariants=False) instead.')
1877
+ kwargs['check_invariants'] = False
1878
+ return torch.sparse_coo_tensor(*args, **kwargs)
1879
+
1880
+ # Register MPS specific decomps
1881
+ torch.backends.mps._init()
1882
+
1883
+ if not _running_with_deploy():
1884
+ from torch import compiler as compiler
1885
+
1886
+ class _TritonLibrary:
1887
+ lib = torch.library.Library("triton", "DEF")
1888
+ ops_table: Dict[Tuple[str, str], Callable] = {}
1889
+
1890
+ @classmethod
1891
+ def registerOp(cls, op_key, full_schema, op_impl, dispatch_key):
1892
+ if (op_key, dispatch_key) not in cls.ops_table:
1893
+ cls.lib.define(full_schema)
1894
+ cls.lib.impl("triton::" + op_key, op_impl, dispatch_key)
1895
+ cls.ops_table[(op_key, dispatch_key)] = op_impl
1896
+
1897
+ return cls.ops_table[(op_key, dispatch_key)]
1898
+
1899
+
1900
+ # Deprecated attributes
1901
+ _deprecated_attrs = {
1902
+ "has_mps": torch.backends.mps.is_built,
1903
+ "has_cuda": torch.backends.cuda.is_built,
1904
+ "has_cudnn": torch.backends.cudnn.is_available,
1905
+ "has_mkldnn": torch.backends.mkldnn.is_available,
1906
+ }
1907
+
1908
+ if TYPE_CHECKING:
1909
+ # Import the following modules during type checking to enable code intelligence features,
1910
+ # such as auto-completion in tools like pylance, even when these modules are not explicitly
1911
+ # imported in user code.
1912
+ from torch import _dynamo as _dynamo
1913
+ from torch import _inductor as _inductor
1914
+ from torch import onnx as onnx
1915
+
1916
+ else:
1917
+ _lazy_modules = {
1918
+ "_dynamo",
1919
+ "_inductor",
1920
+ "_export",
1921
+ # ONNX must be imported after _dynamo, _ops, _subclasses, fx, func and jit
1922
+ "onnx",
1923
+ }
1924
+
1925
+ def __getattr__(name):
1926
+ # Deprecated attrs
1927
+ replacement = _deprecated_attrs.get(name)
1928
+ if replacement is not None:
1929
+ import warnings
1930
+ warnings.warn(f"'{name}' is deprecated, please use '{replacement.__module__}.{replacement.__name__}()'", stacklevel=2)
1931
+ return replacement()
1932
+
1933
+ # Lazy modules
1934
+ if name in _lazy_modules:
1935
+ import importlib
1936
+ return importlib.import_module(f".{name}", __name__)
1937
+
1938
+ raise AttributeError(f"module '{__name__}' has no attribute '{name}'")
1939
+
1940
+
1941
+ def _constrain_as_value(symbol, min: Optional[builtins.int] = None, max: Optional[builtins.int] = None):
1942
+ """
1943
+ Add min/max constraint on the intermediate symbol at tracing time. If called in eager mode,
1944
+ it will still check if the input value is within the specified range.
1945
+ """
1946
+ torch.sym_constrain_range(symbol, min=min, max=max)
1947
+
1948
+
1949
+ def _constrain_as_size(symbol, min: Optional[builtins.int] = None, max: Optional[builtins.int] = None):
1950
+ """
1951
+ This indicates that a given int is size-like, and can be used in any context where a size is expected.
1952
+ You will typically use this when reading out integers from Tensors, e.g., max.item() or lengths.tolist()
1953
+ which then need to be used as tensor constructors. Providing these assertions to PyTorch can help resolve
1954
+ GuardOnDataDependentSymNode errors upon export, since we cannot guard on unbacked SymInts.
1955
+
1956
+ This function has unusual semantics which distinguish it from constrain_as_value.
1957
+ Specifically, at compile-time, we will unsoundly assume that the resulting int is always >= 2.
1958
+ As a result, max value you pass in should always be greater than 2.
1959
+ This makes it easier to use the unbacked int in size contexts, as we will often attempt to guard on a size being zero/one
1960
+ (e.g., when computing the contiguity of a tensor, or testing if broadcasting can occur),
1961
+ which will not work on unbacked SymInts. Assuming that the int is >= 2 allows us to
1962
+ report False to these tests. Although this is technically unsound,
1963
+ in practice we observe that if your program works for all sizes >= 2,
1964
+ it probably works for zero and one too. The reason specifically assume size is >= 2 is because
1965
+ lot of PyTorch code is specialized for 0 and 1 which could result in not general graphs.
1966
+ At runtime, we only assert that the user provided min/max values are respected.
1967
+
1968
+ To demonstrate in a scenario, suppose you do
1969
+ ```
1970
+ # Case 1
1971
+ # This will assume symbol is between [2, inf) at compile time, but [0, inf) at runtime
1972
+ constrain_as_size(symbol, min=0)
1973
+
1974
+ # Case 2
1975
+ # This will assume symbol is between [2, N] at compile time, but [0, N] at runtime
1976
+ constrain_as_size(symbol, min=0, max=N)
1977
+
1978
+ # Case 3
1979
+ # This is not valid case as max is <= 2
1980
+ constrain_as_size(symbol, min=0, max=1)
1981
+
1982
+ # Case 4
1983
+ # This will assume symbol is between [2, inf) at compile time, AND [2, inf) at runtime
1984
+ constrain_as_size(symbol, min=2)
1985
+
1986
+ # Case 5
1987
+ # This will assume symbol is between [2, inf) at compile time, but [1, inf) at runtime
1988
+ constrain_as_size(symbol, min=1)
1989
+ ```
1990
+ """
1991
+ torch.sym_constrain_range_for_size(symbol, min=min, max=max)
1992
+
1993
+
1994
+ from . import _logging
1995
+ _logging._init_logs()
env-llmeval/lib/python3.10/site-packages/torch/_appdirs.py ADDED
@@ -0,0 +1,666 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ # -*- coding: utf-8 -*-
3
+ # Copyright (c) 2005-2010 ActiveState Software Inc.
4
+ # Copyright (c) 2013 Eddy Petrișor
5
+
6
+ # flake8: noqa
7
+
8
+ """
9
+ This file is directly from
10
+ https://github.com/ActiveState/appdirs/blob/3fe6a83776843a46f20c2e5587afcffe05e03b39/appdirs.py
11
+
12
+ The license of https://github.com/ActiveState/appdirs copied below:
13
+
14
+
15
+ # This is the MIT license
16
+
17
+ Copyright (c) 2010 ActiveState Software Inc.
18
+
19
+ Permission is hereby granted, free of charge, to any person obtaining a
20
+ copy of this software and associated documentation files (the
21
+ "Software"), to deal in the Software without restriction, including
22
+ without limitation the rights to use, copy, modify, merge, publish,
23
+ distribute, sublicense, and/or sell copies of the Software, and to
24
+ permit persons to whom the Software is furnished to do so, subject to
25
+ the following conditions:
26
+
27
+ The above copyright notice and this permission notice shall be included
28
+ in all copies or substantial portions of the Software.
29
+
30
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
31
+ OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
32
+ MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
33
+ IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
34
+ CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
35
+ TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
36
+ SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
37
+ """
38
+
39
+ """Utilities for determining application-specific dirs.
40
+
41
+ See <https://github.com/ActiveState/appdirs> for details and usage.
42
+ """
43
+ # Dev Notes:
44
+ # - MSDN on where to store app data files:
45
+ # http://support.microsoft.com/default.aspx?scid=kb;en-us;310294#XSLTH3194121123120121120120
46
+ # - Mac OS X: http://developer.apple.com/documentation/MacOSX/Conceptual/BPFileSystem/index.html
47
+ # - XDG spec for Un*x: https://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html
48
+
49
+ __version__ = "1.4.4"
50
+ __version_info__ = tuple(int(segment) for segment in __version__.split("."))
51
+
52
+
53
+ import os
54
+ import sys
55
+
56
+ unicode = str
57
+
58
+ if sys.platform.startswith("java"):
59
+ import platform
60
+
61
+ os_name = platform.java_ver()[3][0]
62
+ if os_name.startswith("Windows"): # "Windows XP", "Windows 7", etc.
63
+ system = "win32"
64
+ elif os_name.startswith("Mac"): # "Mac OS X", etc.
65
+ system = "darwin"
66
+ else: # "Linux", "SunOS", "FreeBSD", etc.
67
+ # Setting this to "linux2" is not ideal, but only Windows or Mac
68
+ # are actually checked for and the rest of the module expects
69
+ # *sys.platform* style strings.
70
+ system = "linux2"
71
+ else:
72
+ system = sys.platform
73
+
74
+
75
+ def user_data_dir(appname=None, appauthor=None, version=None, roaming=False):
76
+ r"""Return full path to the user-specific data dir for this application.
77
+
78
+ "appname" is the name of application.
79
+ If None, just the system directory is returned.
80
+ "appauthor" (only used on Windows) is the name of the
81
+ appauthor or distributing body for this application. Typically
82
+ it is the owning company name. This falls back to appname. You may
83
+ pass False to disable it.
84
+ "version" is an optional version path element to append to the
85
+ path. You might want to use this if you want multiple versions
86
+ of your app to be able to run independently. If used, this
87
+ would typically be "<major>.<minor>".
88
+ Only applied when appname is present.
89
+ "roaming" (boolean, default False) can be set True to use the Windows
90
+ roaming appdata directory. That means that for users on a Windows
91
+ network setup for roaming profiles, this user data will be
92
+ sync'd on login. See
93
+ <http://technet.microsoft.com/en-us/library/cc766489(WS.10).aspx>
94
+ for a discussion of issues.
95
+
96
+ Typical user data directories are:
97
+ Mac OS X: ~/Library/Application Support/<AppName>
98
+ Unix: ~/.local/share/<AppName> # or in $XDG_DATA_HOME, if defined
99
+ Win XP (not roaming): C:\Documents and Settings\<username>\Application Data\<AppAuthor>\<AppName>
100
+ Win XP (roaming): C:\Documents and Settings\<username>\Local Settings\Application Data\<AppAuthor>\<AppName>
101
+ Win 7 (not roaming): C:\Users\<username>\AppData\Local\<AppAuthor>\<AppName>
102
+ Win 7 (roaming): C:\Users\<username>\AppData\Roaming\<AppAuthor>\<AppName>
103
+
104
+ For Unix, we follow the XDG spec and support $XDG_DATA_HOME.
105
+ That means, by default "~/.local/share/<AppName>".
106
+ """
107
+ if system == "win32":
108
+ if appauthor is None:
109
+ appauthor = appname
110
+ const = roaming and "CSIDL_APPDATA" or "CSIDL_LOCAL_APPDATA"
111
+ path = os.path.normpath(_get_win_folder(const))
112
+ if appname:
113
+ if appauthor is not False:
114
+ path = os.path.join(path, appauthor, appname)
115
+ else:
116
+ path = os.path.join(path, appname)
117
+ elif system == "darwin":
118
+ path = os.path.expanduser("~/Library/Application Support/")
119
+ if appname:
120
+ path = os.path.join(path, appname)
121
+ else:
122
+ path = os.getenv("XDG_DATA_HOME", os.path.expanduser("~/.local/share"))
123
+ if appname:
124
+ path = os.path.join(path, appname)
125
+ if appname and version:
126
+ path = os.path.join(path, version)
127
+ return path
128
+
129
+
130
+ def site_data_dir(appname=None, appauthor=None, version=None, multipath=False):
131
+ r"""Return full path to the user-shared data dir for this application.
132
+
133
+ "appname" is the name of application.
134
+ If None, just the system directory is returned.
135
+ "appauthor" (only used on Windows) is the name of the
136
+ appauthor or distributing body for this application. Typically
137
+ it is the owning company name. This falls back to appname. You may
138
+ pass False to disable it.
139
+ "version" is an optional version path element to append to the
140
+ path. You might want to use this if you want multiple versions
141
+ of your app to be able to run independently. If used, this
142
+ would typically be "<major>.<minor>".
143
+ Only applied when appname is present.
144
+ "multipath" is an optional parameter only applicable to *nix
145
+ which indicates that the entire list of data dirs should be
146
+ returned. By default, the first item from XDG_DATA_DIRS is
147
+ returned, or '/usr/local/share/<AppName>',
148
+ if XDG_DATA_DIRS is not set
149
+
150
+ Typical site data directories are:
151
+ Mac OS X: /Library/Application Support/<AppName>
152
+ Unix: /usr/local/share/<AppName> or /usr/share/<AppName>
153
+ Win XP: C:\Documents and Settings\All Users\Application Data\<AppAuthor>\<AppName>
154
+ Vista: (Fail! "C:\ProgramData" is a hidden *system* directory on Vista.)
155
+ Win 7: C:\ProgramData\<AppAuthor>\<AppName> # Hidden, but writeable on Win 7.
156
+
157
+ For Unix, this is using the $XDG_DATA_DIRS[0] default.
158
+
159
+ WARNING: Do not use this on Windows. See the Vista-Fail note above for why.
160
+ """
161
+ if system == "win32":
162
+ if appauthor is None:
163
+ appauthor = appname
164
+ path = os.path.normpath(_get_win_folder("CSIDL_COMMON_APPDATA"))
165
+ if appname:
166
+ if appauthor is not False:
167
+ path = os.path.join(path, appauthor, appname)
168
+ else:
169
+ path = os.path.join(path, appname)
170
+ elif system == "darwin":
171
+ path = os.path.expanduser("/Library/Application Support")
172
+ if appname:
173
+ path = os.path.join(path, appname)
174
+ else:
175
+ # XDG default for $XDG_DATA_DIRS
176
+ # only first, if multipath is False
177
+ path = os.getenv(
178
+ "XDG_DATA_DIRS", os.pathsep.join(["/usr/local/share", "/usr/share"])
179
+ )
180
+ pathlist = [
181
+ os.path.expanduser(x.rstrip(os.sep)) for x in path.split(os.pathsep)
182
+ ]
183
+ if appname:
184
+ if version:
185
+ appname = os.path.join(appname, version)
186
+ pathlist = [os.sep.join([x, appname]) for x in pathlist]
187
+
188
+ if multipath:
189
+ path = os.pathsep.join(pathlist)
190
+ else:
191
+ path = pathlist[0]
192
+ return path
193
+
194
+ if appname and version:
195
+ path = os.path.join(path, version)
196
+ return path
197
+
198
+
199
+ def user_config_dir(appname=None, appauthor=None, version=None, roaming=False):
200
+ r"""Return full path to the user-specific config dir for this application.
201
+
202
+ "appname" is the name of application.
203
+ If None, just the system directory is returned.
204
+ "appauthor" (only used on Windows) is the name of the
205
+ appauthor or distributing body for this application. Typically
206
+ it is the owning company name. This falls back to appname. You may
207
+ pass False to disable it.
208
+ "version" is an optional version path element to append to the
209
+ path. You might want to use this if you want multiple versions
210
+ of your app to be able to run independently. If used, this
211
+ would typically be "<major>.<minor>".
212
+ Only applied when appname is present.
213
+ "roaming" (boolean, default False) can be set True to use the Windows
214
+ roaming appdata directory. That means that for users on a Windows
215
+ network setup for roaming profiles, this user data will be
216
+ sync'd on login. See
217
+ <http://technet.microsoft.com/en-us/library/cc766489(WS.10).aspx>
218
+ for a discussion of issues.
219
+
220
+ Typical user config directories are:
221
+ Mac OS X: ~/Library/Preferences/<AppName>
222
+ Unix: ~/.config/<AppName> # or in $XDG_CONFIG_HOME, if defined
223
+ Win *: same as user_data_dir
224
+
225
+ For Unix, we follow the XDG spec and support $XDG_CONFIG_HOME.
226
+ That means, by default "~/.config/<AppName>".
227
+ """
228
+ if system == "win32":
229
+ path = user_data_dir(appname, appauthor, None, roaming)
230
+ elif system == "darwin":
231
+ path = os.path.expanduser("~/Library/Preferences/")
232
+ if appname:
233
+ path = os.path.join(path, appname)
234
+ else:
235
+ path = os.getenv("XDG_CONFIG_HOME", os.path.expanduser("~/.config"))
236
+ if appname:
237
+ path = os.path.join(path, appname)
238
+ if appname and version:
239
+ path = os.path.join(path, version)
240
+ return path
241
+
242
+
243
+ def site_config_dir(appname=None, appauthor=None, version=None, multipath=False):
244
+ r"""Return full path to the user-shared data dir for this application.
245
+
246
+ "appname" is the name of application.
247
+ If None, just the system directory is returned.
248
+ "appauthor" (only used on Windows) is the name of the
249
+ appauthor or distributing body for this application. Typically
250
+ it is the owning company name. This falls back to appname. You may
251
+ pass False to disable it.
252
+ "version" is an optional version path element to append to the
253
+ path. You might want to use this if you want multiple versions
254
+ of your app to be able to run independently. If used, this
255
+ would typically be "<major>.<minor>".
256
+ Only applied when appname is present.
257
+ "multipath" is an optional parameter only applicable to *nix
258
+ which indicates that the entire list of config dirs should be
259
+ returned. By default, the first item from XDG_CONFIG_DIRS is
260
+ returned, or '/etc/xdg/<AppName>', if XDG_CONFIG_DIRS is not set
261
+
262
+ Typical site config directories are:
263
+ Mac OS X: same as site_data_dir
264
+ Unix: /etc/xdg/<AppName> or $XDG_CONFIG_DIRS[i]/<AppName> for each value in
265
+ $XDG_CONFIG_DIRS
266
+ Win *: same as site_data_dir
267
+ Vista: (Fail! "C:\ProgramData" is a hidden *system* directory on Vista.)
268
+
269
+ For Unix, this is using the $XDG_CONFIG_DIRS[0] default, if multipath=False
270
+
271
+ WARNING: Do not use this on Windows. See the Vista-Fail note above for why.
272
+ """
273
+ if system == "win32":
274
+ path = site_data_dir(appname, appauthor)
275
+ if appname and version:
276
+ path = os.path.join(path, version)
277
+ elif system == "darwin":
278
+ path = os.path.expanduser("/Library/Preferences")
279
+ if appname:
280
+ path = os.path.join(path, appname)
281
+ else:
282
+ # XDG default for $XDG_CONFIG_DIRS
283
+ # only first, if multipath is False
284
+ path = os.getenv("XDG_CONFIG_DIRS", "/etc/xdg")
285
+ pathlist = [
286
+ os.path.expanduser(x.rstrip(os.sep)) for x in path.split(os.pathsep)
287
+ ]
288
+ if appname:
289
+ if version:
290
+ appname = os.path.join(appname, version)
291
+ pathlist = [os.sep.join([x, appname]) for x in pathlist]
292
+
293
+ if multipath:
294
+ path = os.pathsep.join(pathlist)
295
+ else:
296
+ path = pathlist[0]
297
+ return path
298
+
299
+
300
+ def user_cache_dir(appname=None, appauthor=None, version=None, opinion=True):
301
+ r"""Return full path to the user-specific cache dir for this application.
302
+
303
+ "appname" is the name of application.
304
+ If None, just the system directory is returned.
305
+ "appauthor" (only used on Windows) is the name of the
306
+ appauthor or distributing body for this application. Typically
307
+ it is the owning company name. This falls back to appname. You may
308
+ pass False to disable it.
309
+ "version" is an optional version path element to append to the
310
+ path. You might want to use this if you want multiple versions
311
+ of your app to be able to run independently. If used, this
312
+ would typically be "<major>.<minor>".
313
+ Only applied when appname is present.
314
+ "opinion" (boolean) can be False to disable the appending of
315
+ "Cache" to the base app data dir for Windows. See
316
+ discussion below.
317
+
318
+ Typical user cache directories are:
319
+ Mac OS X: ~/Library/Caches/<AppName>
320
+ Unix: ~/.cache/<AppName> (XDG default)
321
+ Win XP: C:\Documents and Settings\<username>\Local Settings\Application Data\<AppAuthor>\<AppName>\Cache
322
+ Vista: C:\Users\<username>\AppData\Local\<AppAuthor>\<AppName>\Cache
323
+
324
+ On Windows the only suggestion in the MSDN docs is that local settings go in
325
+ the `CSIDL_LOCAL_APPDATA` directory. This is identical to the non-roaming
326
+ app data dir (the default returned by `user_data_dir` above). Apps typically
327
+ put cache data somewhere *under* the given dir here. Some examples:
328
+ ...\Mozilla\Firefox\Profiles\<ProfileName>\Cache
329
+ ...\Acme\SuperApp\Cache\1.0
330
+ OPINION: This function appends "Cache" to the `CSIDL_LOCAL_APPDATA` value.
331
+ This can be disabled with the `opinion=False` option.
332
+ """
333
+ if system == "win32":
334
+ if appauthor is None:
335
+ appauthor = appname
336
+ path = os.path.normpath(_get_win_folder("CSIDL_LOCAL_APPDATA"))
337
+ if appname:
338
+ if appauthor is not False:
339
+ path = os.path.join(path, appauthor, appname)
340
+ else:
341
+ path = os.path.join(path, appname)
342
+ if opinion:
343
+ path = os.path.join(path, "Cache")
344
+ elif system == "darwin":
345
+ path = os.path.expanduser("~/Library/Caches")
346
+ if appname:
347
+ path = os.path.join(path, appname)
348
+ else:
349
+ path = os.getenv("XDG_CACHE_HOME", os.path.expanduser("~/.cache"))
350
+ if appname:
351
+ path = os.path.join(path, appname)
352
+ if appname and version:
353
+ path = os.path.join(path, version)
354
+ return path
355
+
356
+
357
+ def user_state_dir(appname=None, appauthor=None, version=None, roaming=False):
358
+ r"""Return full path to the user-specific state dir for this application.
359
+
360
+ "appname" is the name of application.
361
+ If None, just the system directory is returned.
362
+ "appauthor" (only used on Windows) is the name of the
363
+ appauthor or distributing body for this application. Typically
364
+ it is the owning company name. This falls back to appname. You may
365
+ pass False to disable it.
366
+ "version" is an optional version path element to append to the
367
+ path. You might want to use this if you want multiple versions
368
+ of your app to be able to run independently. If used, this
369
+ would typically be "<major>.<minor>".
370
+ Only applied when appname is present.
371
+ "roaming" (boolean, default False) can be set True to use the Windows
372
+ roaming appdata directory. That means that for users on a Windows
373
+ network setup for roaming profiles, this user data will be
374
+ sync'd on login. See
375
+ <http://technet.microsoft.com/en-us/library/cc766489(WS.10).aspx>
376
+ for a discussion of issues.
377
+
378
+ Typical user state directories are:
379
+ Mac OS X: same as user_data_dir
380
+ Unix: ~/.local/state/<AppName> # or in $XDG_STATE_HOME, if defined
381
+ Win *: same as user_data_dir
382
+
383
+ For Unix, we follow this Debian proposal <https://wiki.debian.org/XDGBaseDirectorySpecification#state>
384
+ to extend the XDG spec and support $XDG_STATE_HOME.
385
+
386
+ That means, by default "~/.local/state/<AppName>".
387
+ """
388
+ if system in ["win32", "darwin"]:
389
+ path = user_data_dir(appname, appauthor, None, roaming)
390
+ else:
391
+ path = os.getenv("XDG_STATE_HOME", os.path.expanduser("~/.local/state"))
392
+ if appname:
393
+ path = os.path.join(path, appname)
394
+ if appname and version:
395
+ path = os.path.join(path, version)
396
+ return path
397
+
398
+
399
+ def user_log_dir(appname=None, appauthor=None, version=None, opinion=True):
400
+ r"""Return full path to the user-specific log dir for this application.
401
+
402
+ "appname" is the name of application.
403
+ If None, just the system directory is returned.
404
+ "appauthor" (only used on Windows) is the name of the
405
+ appauthor or distributing body for this application. Typically
406
+ it is the owning company name. This falls back to appname. You may
407
+ pass False to disable it.
408
+ "version" is an optional version path element to append to the
409
+ path. You might want to use this if you want multiple versions
410
+ of your app to be able to run independently. If used, this
411
+ would typically be "<major>.<minor>".
412
+ Only applied when appname is present.
413
+ "opinion" (boolean) can be False to disable the appending of
414
+ "Logs" to the base app data dir for Windows, and "log" to the
415
+ base cache dir for Unix. See discussion below.
416
+
417
+ Typical user log directories are:
418
+ Mac OS X: ~/Library/Logs/<AppName>
419
+ Unix: ~/.cache/<AppName>/log # or under $XDG_CACHE_HOME if defined
420
+ Win XP: C:\Documents and Settings\<username>\Local Settings\Application Data\<AppAuthor>\<AppName>\Logs
421
+ Vista: C:\Users\<username>\AppData\Local\<AppAuthor>\<AppName>\Logs
422
+
423
+ On Windows the only suggestion in the MSDN docs is that local settings
424
+ go in the `CSIDL_LOCAL_APPDATA` directory. (Note: I'm interested in
425
+ examples of what some windows apps use for a logs dir.)
426
+
427
+ OPINION: This function appends "Logs" to the `CSIDL_LOCAL_APPDATA`
428
+ value for Windows and appends "log" to the user cache dir for Unix.
429
+ This can be disabled with the `opinion=False` option.
430
+ """
431
+ if system == "darwin":
432
+ path = os.path.join(os.path.expanduser("~/Library/Logs"), appname)
433
+ elif system == "win32":
434
+ path = user_data_dir(appname, appauthor, version)
435
+ version = False
436
+ if opinion:
437
+ path = os.path.join(path, "Logs")
438
+ else:
439
+ path = user_cache_dir(appname, appauthor, version)
440
+ version = False
441
+ if opinion:
442
+ path = os.path.join(path, "log")
443
+ if appname and version:
444
+ path = os.path.join(path, version)
445
+ return path
446
+
447
+
448
+ class AppDirs(object):
449
+ """Convenience wrapper for getting application dirs."""
450
+
451
+ def __init__(
452
+ self, appname=None, appauthor=None, version=None, roaming=False, multipath=False
453
+ ):
454
+ self.appname = appname
455
+ self.appauthor = appauthor
456
+ self.version = version
457
+ self.roaming = roaming
458
+ self.multipath = multipath
459
+
460
+ @property
461
+ def user_data_dir(self):
462
+ return user_data_dir(
463
+ self.appname, self.appauthor, version=self.version, roaming=self.roaming
464
+ )
465
+
466
+ @property
467
+ def site_data_dir(self):
468
+ return site_data_dir(
469
+ self.appname, self.appauthor, version=self.version, multipath=self.multipath
470
+ )
471
+
472
+ @property
473
+ def user_config_dir(self):
474
+ return user_config_dir(
475
+ self.appname, self.appauthor, version=self.version, roaming=self.roaming
476
+ )
477
+
478
+ @property
479
+ def site_config_dir(self):
480
+ return site_config_dir(
481
+ self.appname, self.appauthor, version=self.version, multipath=self.multipath
482
+ )
483
+
484
+ @property
485
+ def user_cache_dir(self):
486
+ return user_cache_dir(self.appname, self.appauthor, version=self.version)
487
+
488
+ @property
489
+ def user_state_dir(self):
490
+ return user_state_dir(self.appname, self.appauthor, version=self.version)
491
+
492
+ @property
493
+ def user_log_dir(self):
494
+ return user_log_dir(self.appname, self.appauthor, version=self.version)
495
+
496
+
497
+ # ---- internal support stuff
498
+
499
+
500
+ def _get_win_folder_from_registry(csidl_name):
501
+ """This is a fallback technique at best. I'm not sure if using the
502
+ registry for this guarantees us the correct answer for all CSIDL_*
503
+ names.
504
+ """
505
+ import winreg as _winreg
506
+
507
+ shell_folder_name = {
508
+ "CSIDL_APPDATA": "AppData",
509
+ "CSIDL_COMMON_APPDATA": "Common AppData",
510
+ "CSIDL_LOCAL_APPDATA": "Local AppData",
511
+ }[csidl_name]
512
+
513
+ key = _winreg.OpenKey(
514
+ _winreg.HKEY_CURRENT_USER,
515
+ r"Software\Microsoft\Windows\CurrentVersion\Explorer\Shell Folders",
516
+ )
517
+ dir, type = _winreg.QueryValueEx(key, shell_folder_name)
518
+ return dir
519
+
520
+
521
+ def _get_win_folder_with_pywin32(csidl_name):
522
+ from win32com.shell import shell, shellcon
523
+
524
+ dir = shell.SHGetFolderPath(0, getattr(shellcon, csidl_name), 0, 0)
525
+ # Try to make this a unicode path because SHGetFolderPath does
526
+ # not return unicode strings when there is unicode data in the
527
+ # path.
528
+ try:
529
+ dir = unicode(dir)
530
+
531
+ # Downgrade to short path name if have highbit chars. See
532
+ # <http://bugs.activestate.com/show_bug.cgi?id=85099>.
533
+ has_high_char = False
534
+ for c in dir:
535
+ if ord(c) > 255:
536
+ has_high_char = True
537
+ break
538
+ if has_high_char:
539
+ try:
540
+ import win32api
541
+
542
+ dir = win32api.GetShortPathName(dir)
543
+ except ImportError:
544
+ pass
545
+ except UnicodeError:
546
+ pass
547
+ return dir
548
+
549
+
550
+ def _get_win_folder_with_ctypes(csidl_name):
551
+ import ctypes
552
+
553
+ csidl_const = {
554
+ "CSIDL_APPDATA": 26,
555
+ "CSIDL_COMMON_APPDATA": 35,
556
+ "CSIDL_LOCAL_APPDATA": 28,
557
+ }[csidl_name]
558
+
559
+ buf = ctypes.create_unicode_buffer(1024)
560
+ ctypes.windll.shell32.SHGetFolderPathW(None, csidl_const, None, 0, buf)
561
+
562
+ # Downgrade to short path name if have highbit chars. See
563
+ # <http://bugs.activestate.com/show_bug.cgi?id=85099>.
564
+ has_high_char = False
565
+ for c in buf:
566
+ if ord(c) > 255:
567
+ has_high_char = True
568
+ break
569
+ if has_high_char:
570
+ buf2 = ctypes.create_unicode_buffer(1024)
571
+ if ctypes.windll.kernel32.GetShortPathNameW(buf.value, buf2, 1024):
572
+ buf = buf2
573
+
574
+ return buf.value
575
+
576
+
577
+ def _get_win_folder_with_jna(csidl_name):
578
+ import array
579
+
580
+ from com.sun import jna
581
+ from com.sun.jna.platform import win32
582
+
583
+ buf_size = win32.WinDef.MAX_PATH * 2
584
+ buf = array.zeros("c", buf_size)
585
+ shell = win32.Shell32.INSTANCE
586
+ shell.SHGetFolderPath(
587
+ None,
588
+ getattr(win32.ShlObj, csidl_name),
589
+ None,
590
+ win32.ShlObj.SHGFP_TYPE_CURRENT,
591
+ buf,
592
+ )
593
+ dir = jna.Native.toString(buf.tostring()).rstrip("\0")
594
+
595
+ # Downgrade to short path name if have highbit chars. See
596
+ # <http://bugs.activestate.com/show_bug.cgi?id=85099>.
597
+ has_high_char = False
598
+ for c in dir:
599
+ if ord(c) > 255:
600
+ has_high_char = True
601
+ break
602
+ if has_high_char:
603
+ buf = array.zeros("c", buf_size)
604
+ kernel = win32.Kernel32.INSTANCE
605
+ if kernel.GetShortPathName(dir, buf, buf_size):
606
+ dir = jna.Native.toString(buf.tostring()).rstrip("\0")
607
+
608
+ return dir
609
+
610
+
611
+ if system == "win32":
612
+ try:
613
+ import win32com.shell
614
+
615
+ _get_win_folder = _get_win_folder_with_pywin32
616
+ except ImportError:
617
+ try:
618
+ from ctypes import windll
619
+
620
+ _get_win_folder = _get_win_folder_with_ctypes
621
+ except ImportError:
622
+ try:
623
+ import com.sun.jna
624
+
625
+ _get_win_folder = _get_win_folder_with_jna
626
+ except ImportError:
627
+ _get_win_folder = _get_win_folder_from_registry
628
+
629
+
630
+ # ---- self test code
631
+
632
+ if __name__ == "__main__":
633
+ appname = "MyApp"
634
+ appauthor = "MyCompany"
635
+
636
+ props = (
637
+ "user_data_dir",
638
+ "user_config_dir",
639
+ "user_cache_dir",
640
+ "user_state_dir",
641
+ "user_log_dir",
642
+ "site_data_dir",
643
+ "site_config_dir",
644
+ )
645
+
646
+ print(f"-- app dirs {__version__} --")
647
+
648
+ print("-- app dirs (with optional 'version')")
649
+ dirs = AppDirs(appname, appauthor, version="1.0")
650
+ for prop in props:
651
+ print(f"{prop}: {getattr(dirs, prop)}")
652
+
653
+ print("\n-- app dirs (without optional 'version')")
654
+ dirs = AppDirs(appname, appauthor)
655
+ for prop in props:
656
+ print(f"{prop}: {getattr(dirs, prop)}")
657
+
658
+ print("\n-- app dirs (without optional 'appauthor')")
659
+ dirs = AppDirs(appname)
660
+ for prop in props:
661
+ print(f"{prop}: {getattr(dirs, prop)}")
662
+
663
+ print("\n-- app dirs (with disabled 'appauthor')")
664
+ dirs = AppDirs(appname, appauthor=False)
665
+ for prop in props:
666
+ print(f"{prop}: {getattr(dirs, prop)}")
env-llmeval/lib/python3.10/site-packages/torch/_awaits/__init__.py ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ from typing import cast, Callable, Generic, Type, TypeVar
4
+
5
+ import torch
6
+
7
+ __all__ = ['Await']
8
+
9
+ W = TypeVar("W")
10
+
11
+ class _PyAwaitMeta(type(torch._C._Await), type(Generic)): # type: ignore[misc, no-redef]
12
+ pass
13
+
14
+ class _Await(torch._C._Await, Generic[W], metaclass=_PyAwaitMeta):
15
+ r"""
16
+ Wrapper around a ``torch._C.Await`` which encapsulates delayed execution
17
+ of a callable. All manipulations happen with functions ``torch.jit._awaitable``,
18
+ ``torch.jit._awaitable_wait``, ``torch.jit._awaitable_nowait``.
19
+
20
+ Torch scriptable manipulations:
21
+ ``torch.jit._awaitable(func, *args)``
22
+ Creates ``Await[W]`` object, where W is return type of func.
23
+
24
+ Returns:
25
+ ``torch.jit._awaitable_wait(Await[W])``
26
+ Returns the result of the function, specified at ``_awaitable``, with specified arguments.
27
+
28
+ Returns:
29
+ The result of type ``W`` of the function call. The result is owned by ``Await[W]``
30
+ and returned on all following ``_awaitable_wait`` calls.
31
+
32
+
33
+ ``torch.jit._awaitable_nowait(W)``
34
+ Returns:
35
+ Trivial ``Await[W]`` with specified result.
36
+
37
+
38
+ Only in eager mode:
39
+ ``fn() -> Callable[Tuple[Any], W]``
40
+ Returns:
41
+ Specified at ``_awaitable`` python function ``func``.
42
+
43
+ ``args() -> Tuple[Any]``
44
+ Returns:
45
+ Specified at ``_awaitable`` python args.
46
+
47
+ ``is_nowait() -> _bool``
48
+ Returns:
49
+ ``True`` if this object was created via ``_awaitable_nowait`` call (trivial `Await[W]`).
50
+
51
+ In eager mode ``Await[W]`` can be used as ``W`` i.e. attributes of W can be called on ``Await[W]``,
52
+ ``_awaitable_wait()`` call will be transparently added.
53
+ """
54
+ pass
env-llmeval/lib/python3.10/site-packages/torch/_awaits/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (2.11 kB). View file
 
env-llmeval/lib/python3.10/site-packages/torch/_classes.py ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import types
2
+
3
+ import torch._C
4
+
5
+
6
+ class _ClassNamespace(types.ModuleType):
7
+ def __init__(self, name):
8
+ super().__init__("torch.classes" + name)
9
+ self.name = name
10
+
11
+ def __getattr__(self, attr):
12
+ proxy = torch._C._get_custom_class_python_wrapper(self.name, attr)
13
+ if proxy is None:
14
+ raise RuntimeError(f"Class {self.name}.{attr} not registered!")
15
+ return proxy
16
+
17
+
18
+ class _Classes(types.ModuleType):
19
+ __file__ = "_classes.py"
20
+
21
+ def __init__(self):
22
+ super().__init__("torch.classes")
23
+
24
+ def __getattr__(self, name):
25
+ namespace = _ClassNamespace(name)
26
+ setattr(self, name, namespace)
27
+ return namespace
28
+
29
+ @property
30
+ def loaded_libraries(self):
31
+ return torch.ops.loaded_libraries
32
+
33
+ def load_library(self, path):
34
+ """
35
+ Loads a shared library from the given path into the current process.
36
+
37
+ The library being loaded may run global initialization code to register
38
+ custom classes with the PyTorch JIT runtime. This allows dynamically
39
+ loading custom classes. For this, you should compile your class
40
+ and the static registration code into a shared library object, and then
41
+ call ``torch.classes.load_library('path/to/libcustom.so')`` to load the
42
+ shared object.
43
+
44
+ After the library is loaded, it is added to the
45
+ ``torch.classes.loaded_libraries`` attribute, a set that may be inspected
46
+ for the paths of all libraries loaded using this function.
47
+
48
+ Args:
49
+ path (str): A path to a shared library to load.
50
+ """
51
+ torch.ops.load_library(path)
52
+
53
+
54
+ # The classes "namespace"
55
+ classes = _Classes()
env-llmeval/lib/python3.10/site-packages/torch/_compile.py ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ APIs related to torch.compile which lazily import torch._dynamo to avoid
3
+ circular dependencies.
4
+ """
5
+ import functools
6
+
7
+
8
+ def _disable_dynamo(fn=None, recursive=True):
9
+ """
10
+ This API should be only used inside torch, external users should still use
11
+ torch._dynamo.disable. The main goal of this API is to avoid circular
12
+ imports issues that is common while using _dynamo.disable inside torch
13
+ itself.
14
+
15
+ This API avoids it by lazily importing torch._dynamo from the import time to
16
+ the invocation of the decorated function.
17
+ """
18
+ if fn is not None:
19
+
20
+ @functools.wraps(fn)
21
+ def inner(*args, **kwargs):
22
+ import torch._dynamo
23
+
24
+ return torch._dynamo.disable(fn, recursive)(*args, **kwargs)
25
+
26
+ return inner
27
+ else:
28
+ # decorator usage like @_disable_dynamo(recursive=False). The resulting
29
+ # object expects the original decorated function as the arg.
30
+ return functools.partial(_disable_dynamo, recursive=recursive)
env-llmeval/lib/python3.10/site-packages/torch/_custom_ops.py ADDED
@@ -0,0 +1,322 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import inspect
2
+
3
+ from torch._custom_op.impl import (
4
+ _custom_op_with_schema,
5
+ _find_custom_op,
6
+ infer_schema,
7
+ parse_qualname,
8
+ validate_namespace,
9
+ )
10
+ from torch.library import get_ctx
11
+
12
+ __all__ = [
13
+ "custom_op",
14
+ "impl",
15
+ "impl_abstract",
16
+ "get_ctx",
17
+ "impl_save_for_backward",
18
+ "impl_backward",
19
+ ]
20
+
21
+
22
+ def custom_op(qualname, func_or_schema=None):
23
+ r"""Register a new custom operator
24
+
25
+ In PyTorch, defining an op (short for "operator") is a two step-process:
26
+ - we need to define the op (by providing an operator name and schema)
27
+ - we need to implement behavior for how the operator interacts with
28
+ various PyTorch subsystems, like CPU/CUDA Tensors, Autograd, etc.
29
+
30
+ This entrypoint defines the custom operator (the first step)
31
+ you must then perform the second step by calling various
32
+ ``impl_*`` APIs.
33
+
34
+ This API may be used as a decorator (see examples).
35
+
36
+ For a detailed guide on custom ops, please see
37
+ https://docs.google.com/document/d/1aGWtgxV3HppuxQAdddyPrs74_aEntpkYt9MalnCKnhk
38
+
39
+ Arguments:
40
+ qualname (str): Should be a string that looks like
41
+ "namespace::operator_name". Operators in PyTorch need a namespace to
42
+ avoid name collisions; a given operator may only be created once.
43
+ If you are writing a Python library, we recommend the namespace to
44
+ be the name of your top-level module.
45
+ func_or_schema (Union[Callable, str]): Each PyTorch operator needs a
46
+ schema that tells PyTorch the types of the inputs/outputs.
47
+ If this is a Callable, we will automatically infer the schema from
48
+ the type annotations on the function (see examples). Otherwise,
49
+ if you don't want to use type annotations, you may provide us the
50
+ schema string.
51
+
52
+ Example::
53
+ >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA)
54
+ >>> import torch
55
+ >>> import numpy as np
56
+ >>> from torch import Tensor
57
+ >>>
58
+ >>> # Step 1: define the custom op.
59
+ >>> # We need to provide the API a "prototype function"
60
+ >>> # (a function that returns NotImplementedError), from which
61
+ >>> # we will infer the types of the inputs and outputs.
62
+ >>> @torch._custom_ops.custom_op("mylibrary::numpy_sin")
63
+ >>> def numpy_sin(x: Tensor) -> Tensor:
64
+ >>> raise NotImplementedError()
65
+ >>>
66
+ >>> # The custom op is now accessible via the torch.ops module:
67
+ >>> torch.ops.mylibrary.numpy_sin
68
+ >>>
69
+ >>> # Step 2: Register an implementation for various PyTorch subsystems
70
+ >>>
71
+ >>> # Register an implementation for CPU tensors
72
+ >>> @torch._custom_ops.impl("mylibrary::numpy_sin", device_types="cpu")
73
+ >>> def numpy_sin_impl_cpu(x):
74
+ >>> return torch.from_numpy(np.sin(x.numpy()))
75
+ >>>
76
+ >>> # Register an implementation for CUDA tensors
77
+ >>> @torch._custom_ops.impl("mylibrary::numpy_sin", device_types="cuda")
78
+ >>> def numpy_sin_impl_cuda(x):
79
+ >>> return torch.from_numpy(np.sin(x.cpu().numpy())).to(x.device)
80
+ >>>
81
+ >>> x = torch.randn(3)
82
+ >>> torch.ops.mylibrary.numpy_sin(x) # calls numpy_sin_impl_cpu
83
+ >>>
84
+ >>> x_cuda = x.cuda()
85
+ >>> torch.ops.mylibrary.numpy_sin(x) # calls numpy_sin_impl_cuda
86
+
87
+ """
88
+ ns, name = parse_qualname(qualname)
89
+ validate_namespace(ns)
90
+
91
+ def inner(func):
92
+ if not inspect.isfunction(func):
93
+ raise ValueError(
94
+ f"custom_op(...)(func): Expected `func` to be a Python "
95
+ f"function, got: {type(func)}"
96
+ )
97
+
98
+ if func.__name__ != name:
99
+ raise ValueError(
100
+ f"custom_op(qualname='{qualname}', ...)(func): expected `func` "
101
+ f"to have name '{name}' but got '{func.__name__}'. "
102
+ f"Please either change the name of `func` or the qualname that "
103
+ f"is passed to `custom_op`"
104
+ )
105
+
106
+ schema = infer_schema(func)
107
+ _custom_op_with_schema(qualname, schema)
108
+ return func
109
+
110
+ if func_or_schema is None:
111
+ return inner
112
+ if isinstance(func_or_schema, str):
113
+ _custom_op_with_schema(qualname, func_or_schema)
114
+ else:
115
+ return inner(func_or_schema)
116
+
117
+
118
+ def impl(qualname, *, device_types=("cpu", "cuda"), func=None):
119
+ r"""Register an implementation for a device type for this custom op.
120
+
121
+ If the op is passed multiple Tensor inputs with different device
122
+ types, it will dispatch to the registered implementation for the highest
123
+ priority device type among those present.
124
+ The supported device types, in order of priority, are {'cuda', 'cpu'}.
125
+
126
+ This API may be used as a decorator (see examples).
127
+
128
+ For a detailed guide on custom ops, please see
129
+ https://docs.google.com/document/d/1aGWtgxV3HppuxQAdddyPrs74_aEntpkYt9MalnCKnhk
130
+
131
+ Arguments:
132
+ device_types (str or Iterable[str]): the device type(s) to register the function for.
133
+
134
+ Example::
135
+ >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA)
136
+ >>> import torch
137
+ >>> import numpy as np
138
+ >>> from torch import Tensor
139
+ >>>
140
+ >>> # Step 1: define the custom op.
141
+ >>> # We need to provide the API a "prototype function"
142
+ >>> # (a function that returns NotImplementedError), from which
143
+ >>> # we will infer the types of the inputs and outputs.
144
+ >>> @torch._custom_ops.custom_op("mylibrary::numpy_cos")
145
+ >>> def numpy_cos(x: Tensor) -> Tensor:
146
+ >>> raise NotImplementedError()
147
+ >>>
148
+ >>> # The custom op is now accessible via the torch.ops module:
149
+ >>> torch.ops.mylibrary.numpy_cos
150
+ >>>
151
+ >>> # Step 2: Register an implementation for various PyTorch subsystems
152
+ >>>
153
+ >>> # Register an implementation for CPU tensors
154
+ >>> @torch._custom_ops.impl("mylibrary::numpy_cos", device_types="cpu")
155
+ >>> def numpy_cos_impl_cpu(x):
156
+ >>> return torch.from_numpy(np.cos(x.numpy()))
157
+ >>>
158
+ >>> # Register an implementation for CUDA tensors
159
+ >>> @torch._custom_ops.impl("mylibrary::numpy_cos", device_types="cuda")
160
+ >>> def numpy_cos_impl_cuda(x):
161
+ >>> return torch.from_numpy(np.cos(x.cpu().numpy())).to(x.device)
162
+ >>>
163
+ >>> x = torch.randn(3)
164
+ >>> torch.ops.mylibrary.numpy_cos(x) # calls numpy_cos_impl_cpu
165
+ >>>
166
+ >>> x_cuda = x.cuda()
167
+ >>> torch.ops.mylibrary.numpy_cos(x) # calls numpy_cos_impl_cuda
168
+
169
+ """
170
+
171
+ def inner(func):
172
+ custom_op = _find_custom_op(qualname, also_check_torch_library=True)
173
+ custom_op.impl(device_types, _stacklevel=3)(func)
174
+ return func
175
+
176
+ if func is None:
177
+ return inner
178
+ return inner(func)
179
+
180
+
181
+ def impl_abstract(qualname, *, func=None):
182
+ r"""Register an abstract implementation for this operator.
183
+
184
+ An "abstract implementation" specifies the behavior of this operator on
185
+ Tensors that carry no data. Given some input Tensors with certain properties
186
+ (sizes/strides/storage_offset/device), it specifies what the properties of
187
+ the output Tensors are.
188
+
189
+ The abstract implementation has the same signature as the operator.
190
+ It is run for both FakeTensors and meta tensors. To write an abstract
191
+ implementation, assume that all Tensor inputs to the operator are
192
+ regular CPU/CUDA/Meta tensors, but they do not have storage, and
193
+ you are trying to return regular CPU/CUDA/Meta tensor(s) as output.
194
+ The abstract implementation must consist of only PyTorch operations
195
+ (and may not directly access the storage or data of any input or
196
+ intermediate Tensors).
197
+
198
+ This API may be used as a decorator (see examples).
199
+
200
+ For a detailed guide on custom ops, please see
201
+ https://docs.google.com/document/d/1aGWtgxV3HppuxQAdddyPrs74_aEntpkYt9MalnCKnhk
202
+
203
+ Examples::
204
+ >>> import numpy as np
205
+ >>> from torch import Tensor
206
+ >>>
207
+ >>> # Example 1: an operator without data-dependent output shape
208
+ >>> @torch._custom_ops.custom_op("mylibrary::custom_linear")
209
+ >>> def custom_linear(x: Tensor, weight: Tensor, bias: Tensor) -> Tensor:
210
+ >>> raise NotImplementedError()
211
+ >>>
212
+ >>> @torch._custom_ops.impl_abstract("mylibrary::custom_linear")
213
+ >>> def custom_linear_abstract(x, weight):
214
+ >>> assert x.dim() == 2
215
+ >>> assert weight.dim() == 2
216
+ >>> assert bias.dim() == 1
217
+ >>> assert x.shape[1] == weight.shape[1]
218
+ >>> assert weight.shape[0] == bias.shape[0]
219
+ >>> assert x.device == weight.device
220
+ >>>
221
+ >>> return (x @ weight.t()) + bias
222
+ >>>
223
+ >>> # Example 2: an operator with data-dependent output shape
224
+ >>> @torch._custom_ops.custom_op('mylibrary::custom_nonzero')
225
+ >>> def custom_nonzero(x: Tensor) -> Tensor:
226
+ >>> ...
227
+ >>>
228
+ >>> @torch._custom_ops.impl_abstract("mylibrary::custom_nonzero")
229
+ >>> def custom_nonzero_abstract(x):
230
+ >>> # Number of nonzero-elements is data-dependent.
231
+ >>> # Since we cannot peek at the data in an abstract impl,
232
+ >>> # we use the ctx object to construct a new symint that
233
+ >>> # represents the data-dependent size.
234
+ >>> ctx = torch._custom_ops.get_ctx()
235
+ >>> nnz = ctx.create_unbacked_symint()
236
+ >>> shape = [x.dim(), nnz]
237
+ >>> result = x.new_empty(shape, dtype=torch.long)
238
+ >>> return result
239
+ >>>
240
+ >>> @torch._custom_ops.impl("mylibrary::custom_nonzero")
241
+ >>> def custom_nonzero_impl(x):
242
+ >>> x_np = to_numpy(x)
243
+ >>> res = np.stack(np.nonzero(x_np), axis=1)
244
+ >>> # unbacked symbolic ints in PyTorch must be >= 2, so we
245
+ >>> # constrain the range to at least 2
246
+ >>> if res.shape[0] <= 1:
247
+ >>> raise RuntimeError("not supported")
248
+ >>> return torch.tensor(res, device=x.device)
249
+
250
+ """
251
+ import torch.library
252
+
253
+ return torch.library.impl_abstract(qualname, func, _stacklevel=2)
254
+
255
+
256
+ def impl_save_for_backward(qualname, *, func=None):
257
+ r"""Register a function that tells us what to save for backward.
258
+
259
+ Please see :func:`impl_backward` for more details.
260
+ """
261
+
262
+ def inner(func):
263
+ custom_op = _find_custom_op(qualname, also_check_torch_library=True)
264
+ custom_op.impl_save_for_backward(_stacklevel=3)(func)
265
+ return func
266
+
267
+ if func is None:
268
+ return inner
269
+ return inner(func)
270
+
271
+
272
+ def impl_backward(qualname, output_differentiability=None, *, func=None):
273
+ r"""Registers a backward formula for an operator.
274
+
275
+ In order for an operator to work with autograd, you need to register
276
+ a backward formula. There are two pieces to this:
277
+ 1. You must give us a function to specify what to save for backward.
278
+ Call this the "save for backward" function.
279
+ 2. You must give us a function that computes gradients. Call this the
280
+ "backward" function.
281
+
282
+ Use `impl_save_for_backward` to define a "save for backward" function
283
+ that specifies what gets saved for backward. The function should accept
284
+ two arguments ``(inputs, output)`` and return the quantities to be saved
285
+ for backward.
286
+
287
+ During runtime, when you call the operator in a forwards pass, PyTorch
288
+ will invoke the "save for backward" function with the inputs and output
289
+ of the operator.
290
+
291
+ Use `impl_backward` to define the "backward" function. The backward
292
+ function must accept ``(ctx, saved, *grads)``:
293
+ - ``ctx`` is a context object where we may provide information
294
+ - ``saved`` is exactly what gets returned from the "save for backward"
295
+ function
296
+ - ``grads`` is one or more gradients. The number of gradients matches
297
+ the number of outputs of the operator.
298
+
299
+ The backward function must return a dict that maps the name of
300
+ an input to the operator to its corresponding gradient. All inputs that
301
+ were declared to be Tensors in the operator definition must be accounted
302
+ for in the dict. The gradient may be a Tensor or None.
303
+
304
+ For a detailed guide on custom ops, please see
305
+ https://docs.google.com/document/d/1aGWtgxV3HppuxQAdddyPrs74_aEntpkYt9MalnCKnhk
306
+
307
+ """
308
+
309
+ def inner(func):
310
+ custom_op = _find_custom_op(qualname, also_check_torch_library=True)
311
+ custom_op.impl_backward(output_differentiability, _stacklevel=3)(func)
312
+ return func
313
+
314
+ if func is None:
315
+ return inner
316
+ return inner(func)
317
+
318
+
319
+ def _destroy(qualname):
320
+ """De-registers a custom op. For testing purposes only"""
321
+ custom_op = _find_custom_op(qualname)
322
+ custom_op._destroy()
env-llmeval/lib/python3.10/site-packages/torch/_deploy.py ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import io
2
+
3
+ import torch
4
+ from torch.package import Importer, OrderedImporter, PackageImporter, sys_importer
5
+ from torch.package._package_pickler import create_pickler
6
+ from torch.package._package_unpickler import PackageUnpickler
7
+ from torch.serialization import _maybe_decode_ascii
8
+
9
+
10
+ def _save_storages(importer, obj):
11
+ serialized_storages = []
12
+ serialized_dtypes = []
13
+
14
+ importer = importer if isinstance(importer, torch.package.PackageImporter) else None
15
+ importers: Importer
16
+ if importer is not None:
17
+ importers = OrderedImporter(importer, sys_importer)
18
+ else:
19
+ importers = sys_importer
20
+
21
+ def persistent_id(obj):
22
+ if torch.is_storage(obj) or isinstance(obj, torch.storage.TypedStorage):
23
+ if isinstance(obj, torch.storage.TypedStorage):
24
+ # TODO: Once we decide to break serialization FC, we can
25
+ # remove this case
26
+ storage = obj._untyped_storage
27
+ dtype = obj.dtype
28
+ else:
29
+ storage = obj
30
+ dtype = torch.uint8
31
+
32
+ serialized_storages.append(obj)
33
+ serialized_dtypes.append(dtype)
34
+ return ("storage", len(serialized_storages) - 1)
35
+
36
+ if hasattr(obj, "__reduce_deploy__"):
37
+ if _serialized_reduces.get(id(obj)) is None:
38
+ _serialized_reduces[id(obj)] = (
39
+ "reduce_deploy",
40
+ id(obj),
41
+ *obj.__reduce_deploy__(importers),
42
+ )
43
+ return _serialized_reduces[id(obj)]
44
+
45
+ return None
46
+
47
+ # Write the pickle data for `obj`
48
+ data_buf = io.BytesIO()
49
+ pickler = create_pickler(data_buf, importers)
50
+ pickler.persistent_id = persistent_id
51
+ pickler.dump(obj)
52
+ data_value = data_buf.getvalue()
53
+ return (
54
+ data_value,
55
+ serialized_storages,
56
+ serialized_dtypes,
57
+ importer.zip_reader if importer else None,
58
+ )
59
+
60
+
61
+ def _load_storages(id, zip_reader, obj_bytes, serialized_storages, serialized_dtypes):
62
+ def persistent_load(saved_id):
63
+ assert isinstance(saved_id, tuple)
64
+ typename = _maybe_decode_ascii(saved_id[0])
65
+ data = saved_id[1:]
66
+
67
+ if typename == "storage":
68
+ # TODO: Once we decide to break serialization FC, we can
69
+ # stop wrapping with TypedStorage
70
+ storage = serialized_storages[data[0]]
71
+ dtype = serialized_dtypes[data[0]]
72
+ return torch.storage.TypedStorage(
73
+ wrap_storage=storage.untyped(), dtype=dtype
74
+ )
75
+
76
+ if typename == "reduce_deploy":
77
+ reduce_id, func, args = data
78
+ if reduce_id not in _loaded_reduces:
79
+ _loaded_reduces[reduce_id] = func(_raw_packages[zip_reader], *args)
80
+ return _loaded_reduces[reduce_id]
81
+
82
+ return None
83
+
84
+ importer: Importer
85
+ if zip_reader is not None:
86
+ importer = OrderedImporter(_get_package(zip_reader), sys_importer)
87
+ else:
88
+ importer = sys_importer
89
+
90
+ unpickler = PackageUnpickler(importer, io.BytesIO(obj_bytes))
91
+ unpickler.persistent_load = persistent_load # type: ignore[assignment]
92
+ result = _deploy_objects[id] = unpickler.load()
93
+ return result
94
+
95
+
96
+ def _get_package(zip_reader):
97
+ if zip_reader not in _raw_packages:
98
+ _raw_packages[zip_reader] = PackageImporter(zip_reader)
99
+ return _raw_packages[zip_reader]
100
+
101
+
102
+ _raw_packages: dict = {}
103
+ _deploy_objects: dict = {}
104
+ _serialized_reduces: dict = {}
105
+ _loaded_reduces: dict = {}
env-llmeval/lib/python3.10/site-packages/torch/_guards.py ADDED
@@ -0,0 +1,833 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ import contextlib
4
+
5
+ import dataclasses
6
+ import enum
7
+ import functools
8
+ import logging
9
+ import threading
10
+ import traceback
11
+ import unittest.mock
12
+ import weakref
13
+ from abc import ABC, abstractmethod
14
+ from contextlib import contextmanager
15
+ from typing import (
16
+ Any,
17
+ Callable,
18
+ Dict,
19
+ Generic,
20
+ List,
21
+ NamedTuple,
22
+ Optional,
23
+ Set,
24
+ Tuple,
25
+ TYPE_CHECKING,
26
+ TypeVar,
27
+ )
28
+
29
+ import torch
30
+ from torch.utils import _pytree as pytree
31
+ from torch.utils._traceback import CapturedTraceback
32
+ from torch.utils.weak import WeakTensorKeyDictionary
33
+
34
+ log = logging.getLogger(__name__)
35
+
36
+
37
+ if TYPE_CHECKING:
38
+ # Import the following modules during type checking to enable code intelligence features,
39
+ # such as auto-completion in tools like pylance, even when these modules are not explicitly
40
+ # imported in user code.
41
+
42
+ import sympy
43
+
44
+
45
+ """
46
+ torch._guards is the definitional source of truth for general purpose guard structures.
47
+
48
+ An important thing to keep in mind here is the preservation of layering. There should be no dynamo notions,
49
+ and no guard installation notions here.
50
+ """
51
+
52
+
53
+ class CompileId(NamedTuple):
54
+ frame_id: int
55
+ # This id is per-frame, and counts how many times we've compiled this
56
+ # frame. This could have been a global id but having this be per-frame
57
+ # gives you a better intuitive sense for how many recompiles have occurred
58
+ # so far.
59
+ frame_compile_id: int
60
+ # TODO: consider also tracking the recompilation count
61
+
62
+ def __str__(self):
63
+ return f"{self.frame_id}/{self.frame_compile_id}"
64
+
65
+
66
+ class TraceId(NamedTuple):
67
+ compile_id: CompileId
68
+ # This starts off as 0, and every time we restart analysis it goes
69
+ # up by one
70
+ attempt: int
71
+
72
+ def __str__(self):
73
+ if self.attempt == 0:
74
+ return str(self.compile_id)
75
+ else:
76
+ return f"{self.compile_id}_{self.attempt}"
77
+
78
+
79
+ class GuardSource(enum.Enum):
80
+ LOCAL = 0
81
+ GLOBAL = 1
82
+ LOCAL_NN_MODULE = 2
83
+ GLOBAL_NN_MODULE = 3
84
+ CONSTANT = 4
85
+ RANDOM_VALUE = 5
86
+ SHAPE_ENV = 6
87
+ LOCAL_FSDP_MODULE = 7
88
+ GLOBAL_FSDP_MODULE = 8
89
+
90
+ def is_fsdp_module(self) -> bool:
91
+ return self in (GuardSource.GLOBAL_FSDP_MODULE, GuardSource.LOCAL_FSDP_MODULE)
92
+
93
+ def is_nn_module(self) -> bool:
94
+ return (
95
+ self
96
+ in (
97
+ GuardSource.GLOBAL_NN_MODULE,
98
+ GuardSource.LOCAL_NN_MODULE,
99
+ )
100
+ or self.is_fsdp_module()
101
+ )
102
+
103
+ def is_local(self):
104
+ return self in (
105
+ GuardSource.LOCAL,
106
+ GuardSource.LOCAL_NN_MODULE,
107
+ GuardSource.LOCAL_FSDP_MODULE,
108
+ )
109
+
110
+
111
+ """
112
+ Base class for a "GuardBuilder" role.
113
+
114
+ The GuardBuilderBase role is to represent a scope within which to build a guard. The name is a little
115
+ confusing, as its not a builder, but for the sake of avoiding a lot of renames and keeping the original reference
116
+ to torchdynamo's GuardBuilder.
117
+
118
+ Note: create_fn is invoked with a GuardBuilderBase and a Guard. A GuardBuilder is chosen based
119
+ on GuardSource's select function.
120
+
121
+ There is value in keeping this GuardBuilderBase empty to keep layering clean.
122
+ """
123
+
124
+
125
+ class GuardBuilderBase:
126
+ pass
127
+
128
+
129
+ class ShapeGuard(NamedTuple):
130
+ expr: sympy.Expr
131
+ stack: CapturedTraceback
132
+
133
+
134
+ @dataclasses.dataclass
135
+ class Guard:
136
+ # originating_source is the source that called the make_guard method to
137
+ # construct this guard object. The property name specifies what exactly it
138
+ # is the guard is guarding on. The meaning of the name is dependent on the
139
+ # create_fn; you must look at the use-site inside create_fn to know what
140
+ # name means.
141
+ #
142
+ # That being said, although you might think this is just a "name", name is
143
+ # usually an arbitrary Python expression that will be evaluated with all
144
+ # globals (and locals, if you create a LOCAL guard) to extract the Python
145
+ # object that we want to perform guard tests on. This evaluation
146
+ # typically happens in GuardBuilder.eval. In these cases, name is
147
+ # typically produced by originating_source.name() (not to be confused with
148
+ # GuardSource - the property source).
149
+ #
150
+ # Occasionally, name is not a valid Python expression; sometimes
151
+ # it is meaningless. Example create_fns that are like this include
152
+ # GRAD_MODE and SHAPE_ENV.
153
+ originating_source: Source
154
+ create_fn: Callable[[GuardBuilderBase, Guard], None]
155
+
156
+ # Export only. These values are written to at time of guard check_fn creation.
157
+ guard_types: Optional[List[str]] = None
158
+ code_list: Optional[List[str]] = None
159
+ obj_weakref: Optional[object] = None
160
+ guarded_class_weakref: Optional[type] = None
161
+
162
+ stack = None
163
+ user_stack = None
164
+ _hash = None
165
+
166
+ def __hash__(self):
167
+ if self._hash is None:
168
+ self._hash = hash((self.name, self.source, id(self.create_fn)))
169
+ return self._hash
170
+
171
+ def sort_key(self):
172
+ return (
173
+ self.source.value if self.source else -1,
174
+ len(self.name),
175
+ self.name,
176
+ self.inner_create_fn().__code__.co_firstlineno,
177
+ )
178
+
179
+ def __lt__(self, other):
180
+ return self.sort_key() < other.sort_key()
181
+
182
+ def inner_create_fn(self):
183
+ if isinstance(self.create_fn, functools.partial):
184
+ return self.create_fn.func
185
+ else:
186
+ return self.create_fn
187
+
188
+ @property
189
+ def name(self) -> str:
190
+ return self.originating_source.name()
191
+
192
+ @property
193
+ def source(self) -> GuardSource:
194
+ return self.originating_source.guard_source()
195
+
196
+ @staticmethod
197
+ def weakref_to_str(obj_weakref):
198
+ """
199
+ This is a workaround of a Python weakref bug.
200
+
201
+ `obj_weakref` is instance returned by `weakref.ref`,
202
+ `str(obj_weakref)` is buggy if the original obj overrides __getattr__, e.g:
203
+
204
+ class MyConfig(dict):
205
+ def __getattr__(self, x):
206
+ return self[x]
207
+
208
+ obj = MyConfig(offset=5)
209
+ obj_weakref = weakref.ref(obj)
210
+ str(obj_weakref) # raise error: KeyError: '__name__'
211
+ """
212
+ if isinstance(obj_weakref, weakref.ReferenceType):
213
+ obj = obj_weakref()
214
+ if obj is not None:
215
+ return f"<weakref at {hex(id(obj_weakref))}; to '{obj.__class__.__name__}' at {hex(id(obj))}>"
216
+ else:
217
+ return f"<weakref at {hex(id(obj_weakref))}; dead>"
218
+ else:
219
+ return str(obj_weakref)
220
+
221
+ def __repr__(self):
222
+ s = f"""
223
+ {self.source.name.lower() if self.source else ""} {repr(self.name)} {self.inner_create_fn().__name__}
224
+ {{
225
+ 'guard_types': {self.guard_types},
226
+ 'code': {self.code_list},
227
+ 'obj_weakref': {self.weakref_to_str(self.obj_weakref)}
228
+ 'guarded_class': {self.guarded_class_weakref}
229
+ }}
230
+ """
231
+ return s
232
+
233
+ def __str__(self):
234
+ output = f"Name: {repr(self.name)}\n"
235
+ source = self.source.name.lower() if self.source else ""
236
+ output += f" Source: {source}\n"
237
+ output += f" Create Function: {self.inner_create_fn().__name__}\n"
238
+ output += f" Guard Types: {self.guard_types}\n"
239
+ output += f" Code List: {self.code_list}\n"
240
+ output += f" Object Weakref: {self.weakref_to_str(self.obj_weakref)}\n"
241
+ output += f" Guarded Class Weakref: {self.guarded_class_weakref}\n"
242
+ return output
243
+
244
+ def create(self, builder: GuardBuilderBase):
245
+ try:
246
+ return self.create_fn(builder, self)
247
+ except Exception:
248
+ log.error("Error while creating guard:\n%s", str(self).rstrip())
249
+ if self.stack:
250
+ log.error("Created at:\n%s", "".join(self.stack.format()[-4:]).rstrip())
251
+ raise
252
+
253
+ def is_nn_module(self):
254
+ return self.source.is_nn_module()
255
+
256
+ def is_fsdp_module(self):
257
+ return self.source.is_fsdp_module()
258
+
259
+ def is_local(self):
260
+ return self.source.is_local()
261
+
262
+ def set_export_info(self, guard_type, guarded_class, code_list, obj_weakref):
263
+ if not self.guard_types:
264
+ self.guard_types = list()
265
+
266
+ self.guard_types.append(guard_type)
267
+
268
+ assert self.guarded_class_weakref in (
269
+ guarded_class,
270
+ None,
271
+ ), "Guarded class id must be identical, or None"
272
+ self.guarded_class_weakref = guarded_class
273
+
274
+ if not self.code_list:
275
+ self.code_list = code_list
276
+ else:
277
+ self.code_list.extend(code_list)
278
+
279
+ assert self.obj_weakref in (
280
+ obj_weakref,
281
+ None,
282
+ ), "Guarded object must be identical, or None"
283
+ self.obj_weakref = obj_weakref
284
+
285
+
286
+ T = TypeVar("T")
287
+
288
+ """
289
+ Parent structure for guard env expressions.
290
+ A GuardEnvExpr can have any subtype.
291
+ Note: All subtypes must be handled exhaustively in
292
+ torch._dynamo.guards._parse_guard_env_guards to avoid a RuntimeError.
293
+ """
294
+
295
+
296
+ @dataclasses.dataclass
297
+ class GuardEnvExpr:
298
+ pass
299
+
300
+
301
+ """
302
+ A class representing a pair of duplicate inputs.
303
+ input_pos_a and input_pos_b are input positions we have deduped.
304
+ """
305
+
306
+
307
+ @dataclasses.dataclass
308
+ class DuplicateInputs(GuardEnvExpr):
309
+ input_source_a: Source
310
+ input_source_b: Source
311
+
312
+ def __post_init__(self):
313
+ assert self.input_source_a != self.input_source_b
314
+
315
+
316
+ """
317
+ Checkpointable is an interface for driving state snapshotting, left purposely vague for now.
318
+
319
+ copy_graphstate() -> T, a somewhat legacy name, is expected to emit a snapshot of any type that
320
+ can also be taken in at restore_graphstate(T) calls.
321
+
322
+ When to snapshot, is, at the moment, an implementation detail of upstream callers. Checkpointable
323
+ does not provide any garuantees around consistency, idempotency, or safety of calling its APIs, yet.
324
+
325
+ In the future, it will have a closer coupling to a generic Checkpoint management system.
326
+ """
327
+
328
+
329
+ class Checkpointable(ABC, Generic[T]):
330
+ @abstractmethod
331
+ def copy_graphstate(self) -> T:
332
+ ...
333
+
334
+ @abstractmethod
335
+ def restore_graphstate(self, state: T):
336
+ ...
337
+
338
+
339
+ """
340
+ The GuardCheckpointState - it is the T of Checkpointable[T] for GuardsContext
341
+ """
342
+
343
+
344
+ class GuardsCheckpointState:
345
+ dynamo_guards: Set[Guard] = set()
346
+
347
+ def __init__(self, dynamo_guards):
348
+ self.dynamo_guards = dynamo_guards
349
+
350
+ """
351
+ Produces a delta against another GuardsCheckpointState.
352
+
353
+ Returns None if no delta is found, otherwise, return a set() of mismatched
354
+ Guard type objects.
355
+ """
356
+
357
+ def diff(self, other):
358
+ r = self.dynamo_guards.difference(other.dynamo_guards)
359
+ if len(r) == 0:
360
+ return None
361
+ return r
362
+
363
+ def __eq__(self, other):
364
+ return self.diff(other) is None
365
+
366
+
367
+ class ModuleContextCheckpointState:
368
+ nn_modules: Dict[str, torch.nn.Module] = {}
369
+
370
+ def __init__(self, nn_modules):
371
+ self.nn_modules = nn_modules
372
+
373
+ """
374
+ Produces a delta against another ModuleContextCheckpointState.
375
+
376
+ Returns None if no delta is found, otherwise, return a set() of mismatched
377
+ module key names.
378
+ """
379
+
380
+ def diff(self, other):
381
+ r = set(self.nn_modules.keys()).difference(set(other.nn_modules.keys()))
382
+ if len(r) == 0:
383
+ return None
384
+ return r
385
+
386
+ def __eq__(self, other):
387
+ return self.diff(other) is None
388
+
389
+
390
+ class ModuleContext(Checkpointable[ModuleContextCheckpointState]):
391
+ def __init__(self):
392
+ self.nn_modules: Dict[str, Any] = {}
393
+
394
+ def copy_graphstate(self):
395
+ return ModuleContextCheckpointState(dict(self.nn_modules))
396
+
397
+ def restore_graphstate(self, state):
398
+ assert isinstance(state, ModuleContextCheckpointState)
399
+ self.nn_modules = state.nn_modules
400
+
401
+
402
+ class GlobalContextCheckpointState:
403
+ global_state: Dict[str, Tuple[Callable, ...]] = {}
404
+
405
+ def __init__(self, global_states):
406
+ self.global_state = global_states
407
+
408
+ """
409
+ Produces a delta against another GlobalContextCheckpointState.
410
+
411
+ Returns None if no delta is found, otherwise, return a set() of mismatched
412
+ global key names.
413
+ """
414
+
415
+ def diff(self, other):
416
+ r = set(self.global_state.keys()).difference(set(other.global_state.keys()))
417
+ if len(r) == 0:
418
+ return None
419
+ return r
420
+
421
+ def __eq__(self, other):
422
+ return self.diff(other) is None
423
+
424
+
425
+ class GlobalContext(Checkpointable[GlobalContextCheckpointState]):
426
+ """
427
+ This keeps track of the global torch state during tracing of a function.
428
+ For example, torch.is_grad_enabled.
429
+ """
430
+
431
+ _supported_global_states = {
432
+ "grad_enabled",
433
+ "torch_function_enabled",
434
+ "autocast_enabled",
435
+ "autocast_cpu_enabled",
436
+ "autocast_gpu_dtype",
437
+ "autocast_cpu_dtype",
438
+ "autocast_cache_enabled",
439
+ }
440
+
441
+ def __init__(self):
442
+ self.global_state: Dict[str, Tuple[Callable, ...]] = {}
443
+
444
+ def copy_graphstate(self):
445
+ return GlobalContextCheckpointState(dict(self.global_state))
446
+
447
+ def restore_graphstate(self, state):
448
+ assert isinstance(state, GlobalContextCheckpointState)
449
+ self.global_state = state.global_state
450
+ assert (
451
+ len(self.global_state) == len(self._supported_global_states)
452
+ and set(self.global_state.keys()) == self._supported_global_states
453
+ ), "Global state mismatch"
454
+ for func, args in self.global_state.values():
455
+ func(args)
456
+
457
+
458
+ """
459
+ A GuardsContext is a checkpointable representation of all the guards in the current tracing
460
+ context. It's lifecycle is bound 1:1 to the tracing context, and it should never be instantiated
461
+ directly outside of it. For passing around internal state representations of this object,
462
+ prefer to extract them with copy_graphstate to produce a GuardsCheckpointState.
463
+ """
464
+
465
+
466
+ # Like a Set[Guard] but will record the user stack on all guards at the
467
+ # time they were installed at their destination
468
+ class GuardsSet:
469
+ def __init__(self, inner=None):
470
+ if inner is None:
471
+ inner = set()
472
+ self.inner = inner
473
+
474
+ def __iter__(self):
475
+ return iter(self.inner)
476
+
477
+ def __len__(self):
478
+ return len(self.inner)
479
+
480
+ # Subtraction along with bool is typically used to determine the delta of
481
+ # added guards between checkpoints for higher order ops
482
+ def __sub__(self, other):
483
+ return GuardsSet(self.inner - other.inner)
484
+
485
+ def __bool__(self):
486
+ return bool(self.inner)
487
+
488
+ def add(self, guard: Guard, *, skip=0):
489
+ if guard in self.inner:
490
+ return
491
+ if guard.stack is None:
492
+ guard.stack = CapturedTraceback.extract(skip=1 + skip)
493
+ if guard.user_stack is None:
494
+ guard.user_stack = TracingContext.extract_stack()
495
+ self.inner.add(guard)
496
+
497
+ def update(self, *others: Set[Guard]):
498
+ for o in others:
499
+ for g in o:
500
+ self.add(g, skip=1)
501
+
502
+
503
+ class GuardsContext(Checkpointable[GuardsCheckpointState]):
504
+ def __init__(self):
505
+ self.dynamo_guards: GuardsSet = GuardsSet()
506
+ self.aotautograd_guards: List[GuardEnvExpr] = []
507
+
508
+ def copy_graphstate(self):
509
+ return GuardsCheckpointState(set(self.dynamo_guards.inner))
510
+
511
+ def restore_graphstate(self, state):
512
+ # NB: "steals" the passed in state
513
+ assert isinstance(state, GuardsCheckpointState)
514
+ self.dynamo_guards = GuardsSet(state.dynamo_guards)
515
+
516
+
517
+ _TLS = threading.local()
518
+
519
+ """
520
+ TracingContext is the source of truth for all currently accumulated information
521
+ needed to trace. Its lifecycle is kept 1:1 when using TorchDynamo, but other systems
522
+ are open to managing their own TracingContext with that in mind.
523
+
524
+ The purpose of TracingContext is not to be a dumping ground, or god object, but rather to avoid
525
+ having to plumb complex subsystems across multiple verticals.
526
+
527
+ Ex: A common example is guard accumulation between dynamo, shape_env, aot_autograd, and inductor.
528
+ Accessing the current tracing context via
529
+ TracingContext.get() allows users to accumulate their own guards for processing, without needing to know how
530
+ to plumb objects back up to where frame interpretation happened.
531
+
532
+ Note that you can end up with multiple TracingContext for a single compilation
533
+ of a frame, as we reset the TracingContext whenever we restart analysis.
534
+ CompileContext is a more overarching context that encompasses multiple restarts.
535
+ """
536
+
537
+
538
+ class CompileContext:
539
+ @staticmethod
540
+ def get() -> CompileContext:
541
+ assert _TLS.compile_context is not None
542
+ return _TLS.compile_context
543
+
544
+ @staticmethod
545
+ def try_get() -> Optional[CompileContext]:
546
+ return getattr(_TLS, "compile_context", None)
547
+
548
+ def __init__(self, compile_id):
549
+ assert compile_id is None or isinstance(compile_id, CompileId)
550
+ self.compile_id: Optional[CompileId] = compile_id
551
+ self.attempt = 0
552
+
553
+ @staticmethod
554
+ def current_compile_id():
555
+ self = CompileContext.try_get()
556
+ if self is None:
557
+ return None
558
+ return self.compile_id
559
+
560
+ @staticmethod
561
+ def current_trace_id():
562
+ self = CompileContext.try_get()
563
+ if self is None:
564
+ return None
565
+ if self.compile_id is None:
566
+ return None
567
+ return TraceId(self.compile_id, self.attempt)
568
+
569
+
570
+ class TracingContext:
571
+ """
572
+ Provides the currently installed TracingContext, or None.
573
+
574
+ Note that it is a staticmethod, and invocations outside of `with tracing()` (see below), are valid but
575
+ will return None.
576
+ """
577
+
578
+ @staticmethod
579
+ def try_get() -> Optional[TracingContext]:
580
+ return getattr(_TLS, "tracing_context", None)
581
+
582
+ @staticmethod
583
+ def get() -> TracingContext:
584
+ if ctx := TracingContext.try_get():
585
+ return ctx
586
+ raise RuntimeError(
587
+ "TracingContext.get() must be called within an ongoing trace."
588
+ )
589
+
590
+ def __init__(self, fake_mode):
591
+ self.guards_context = GuardsContext()
592
+ self.module_context = ModuleContext()
593
+ self.global_context = GlobalContext()
594
+ self.fake_mode = fake_mode
595
+ self.frame_summary_stack = []
596
+ # This is morally part of frame_summary_stack, but it is kept separate
597
+ # for clarity. As we process a frame, this variable gets updated
598
+ # to keep track of what line we are in the function. We make a
599
+ # function call, this gets cleared and the frame location is pushed
600
+ # to frame_summary_stack (prepping this variable for the inner frame's
601
+ # progress)
602
+ self.loc_in_frame = None
603
+ # this is only set after aot_autograd
604
+ self.fw_metadata = None
605
+ self.params_flat = None
606
+ # this is for extended return calling convention from backend
607
+ # compiler to aot_autograd
608
+ # Per output, what the compiler specified stride of the output is,
609
+ # or None if no stride is known. This is always the HINT, it
610
+ # is never a SymInt (it would be better if it was a SymInt, but
611
+ # I can't conveniently get this from Inductor atm. Also, be
612
+ # careful not to accidentally induce guards on the SymInt if
613
+ # you ever do change this in aot_autograd.py; you should check
614
+ # on permutations preferentially.)
615
+ self.output_strides: Optional[List[Optional[List[int]]]] = None
616
+ # When this is True, whenever we encounter an int in Dynamo tracing,
617
+ # we will (1) force unspec it and (2) force it as a size-like unbacked
618
+ # integer. This is currently used when processing certain lists of
619
+ # ints that are known to be size-like and may have 0/1 entries that we
620
+ # must not specialize on.
621
+ self.force_unspec_int_unbacked_size_like = False
622
+ # See note [Tensor Fakification and Symbol Caching]
623
+ self.tensor_to_context = WeakTensorKeyDictionary()
624
+
625
+ @staticmethod
626
+ @contextmanager
627
+ def patch(**kwargs):
628
+ prior = {}
629
+ ctx = TracingContext.get()
630
+
631
+ for key in kwargs.keys():
632
+ # KeyError on invalid entry
633
+ prior[key] = getattr(ctx, key)
634
+ for key, val in kwargs.items():
635
+ setattr(ctx, key, val)
636
+ try:
637
+ yield
638
+ finally:
639
+ for key, val in prior.items():
640
+ setattr(ctx, key, val)
641
+
642
+ @staticmethod
643
+ def extract_stack():
644
+ self = TracingContext.try_get()
645
+ if self is None:
646
+ return traceback.StackSummary()
647
+ stack = list(self.frame_summary_stack)
648
+ if self.loc_in_frame is not None:
649
+ stack.append(self.loc_in_frame)
650
+ return traceback.StackSummary.from_list(stack)
651
+
652
+ # Call this when you want to call into some code that isn't necessarily
653
+ # associated with the current frame state
654
+ @staticmethod
655
+ @contextlib.contextmanager
656
+ def clear_frame():
657
+ tc = TracingContext.get()
658
+ with unittest.mock.patch.object(
659
+ tc, "frame_summary_stack", []
660
+ ), unittest.mock.patch.object(tc, "loc_in_frame", None):
661
+ try:
662
+ yield
663
+ except Exception as e:
664
+ # Prevent real_stack from getting attached
665
+ #
666
+ # The invariant is that if an Exception as real_stack, we've
667
+ # appropriately attached a user stack and we no longer need to
668
+ # attach anything. Because we cannot conveniently interpose
669
+ # when an exception is thrown, we instead interpose everywhere
670
+ # we set what the user stack is set (using the context
671
+ # manager). However, our compiler stack does "tail calls"
672
+ # (when it calls into user compiler), at which point the
673
+ # parent exception frames would incorrectly attach an
674
+ # incorrect frame.
675
+ #
676
+ # However, if, somehow, someone raised an exception with this
677
+ # scope that had a stack (for example, because they are
678
+ # restoring the user stack state appropriately as they process
679
+ # node by node), we should respect it. Thus, we cannot
680
+ # unconditionally set None.
681
+ if not hasattr(e, "real_stack"):
682
+ e.real_stack = None # type: ignore[attr-defined]
683
+ raise
684
+
685
+ @staticmethod
686
+ @contextlib.contextmanager
687
+ def current_frame(frame_summary):
688
+ # frame_summary can be None to solely take advantage of real_stack
689
+ # attachment to thrown exceptions
690
+ tc = TracingContext.get()
691
+ if frame_summary is not None:
692
+ tc.frame_summary_stack.append(frame_summary)
693
+ old = tc.loc_in_frame
694
+ tc.loc_in_frame = None
695
+ try:
696
+ yield
697
+ except Exception as e:
698
+ if not hasattr(e, "real_stack"):
699
+ e.real_stack = tc.extract_stack() # type: ignore[attr-defined]
700
+ raise
701
+ finally:
702
+ if frame_summary is not None:
703
+ tc.frame_summary_stack.pop()
704
+ tc.loc_in_frame = old
705
+
706
+ @staticmethod
707
+ @contextlib.contextmanager
708
+ def report_output_strides():
709
+ tc = TracingContext.try_get()
710
+ if tc is None:
711
+ yield None
712
+ return
713
+ old_output_strides = tc.output_strides
714
+ tc.output_strides = []
715
+ try:
716
+ yield tc.output_strides
717
+ finally:
718
+ tc.output_strides = old_output_strides
719
+
720
+ @staticmethod
721
+ def set_current_loc(filename, lineno, frame_name):
722
+ TracingContext.get().loc_in_frame = traceback.FrameSummary(
723
+ filename, lineno, frame_name
724
+ )
725
+
726
+
727
+ @contextmanager
728
+ def compile_context(context: CompileContext):
729
+ old_context = getattr(_TLS, "compile_context", None)
730
+ _TLS.compile_context = context
731
+ try:
732
+ yield context
733
+ finally:
734
+ _TLS.compile_context = old_context
735
+
736
+
737
+ @contextmanager
738
+ def tracing(context: Optional[TracingContext]):
739
+ """
740
+ This function installs the passed in tracing context as a dynamic scoped
741
+ global variable.
742
+
743
+ Calls to TracingContext.get() while not under a `with tracing()` context
744
+ will return None.
745
+ """
746
+ old_context = getattr(_TLS, "tracing_context", None)
747
+ _TLS.tracing_context = context
748
+ try:
749
+ yield context
750
+ except Exception as e:
751
+ if not hasattr(e, "real_stack") and context is not None:
752
+ e.real_stack = context.extract_stack() # type: ignore[attr-defined]
753
+ raise
754
+ finally:
755
+ if (
756
+ context is not None
757
+ and context.fake_mode is not None
758
+ and context.fake_mode.shape_env is not None
759
+ ):
760
+ context.fake_mode.shape_env.cleanup()
761
+ _TLS.tracing_context = old_context
762
+
763
+
764
+ # Subclasses can be found in torch/_dynamo/source.py
765
+ # TODO(voz): Consider a toplevel torch/_source.py
766
+ @dataclasses.dataclass(frozen=True)
767
+ class Source:
768
+ def reconstruct(self, codegen):
769
+ raise NotImplementedError()
770
+
771
+ def guard_source(self) -> GuardSource:
772
+ raise NotImplementedError()
773
+
774
+ def name(self) -> str:
775
+ raise NotImplementedError()
776
+
777
+ def make_guard(self, fn) -> Guard:
778
+ if self.guard_source() is GuardSource.CONSTANT:
779
+ raise NotImplementedError()
780
+ return Guard(self, fn)
781
+
782
+ def is_nn_module(self) -> bool:
783
+ return self.guard_source().is_nn_module()
784
+
785
+
786
+ # Subclasses can be found in torch/_dynamo/source.py
787
+ @dataclasses.dataclass(frozen=True)
788
+ class ChainedSource(Source):
789
+ base: Source
790
+
791
+
792
+ def detect_fake_mode(inputs: Any = None):
793
+ """
794
+ Attempts to "detect" what the current fake mode is. If there is one ambiently
795
+ available from TracingContext, we preferentially use that. Otherwise, we
796
+ heuristically detect the fake mode via the following sources, in order of
797
+ priority:
798
+
799
+ - Currently active fake mode on stack
800
+ - Fake mode associated with passed in tensors (inputs does not
801
+ have to be flattened)
802
+ """
803
+ from torch._subclasses.fake_tensor import FakeTensor, FakeTensorMode
804
+
805
+ fake_modes = []
806
+
807
+ if context := TracingContext.try_get():
808
+ fake_mode = context.fake_mode
809
+ if fake_mode is not None:
810
+ fake_modes.append((fake_mode, "tracing context", 0))
811
+
812
+ from torch.utils._python_dispatch import _get_current_dispatch_mode_stack
813
+
814
+ for i, m in enumerate(reversed(_get_current_dispatch_mode_stack())):
815
+ if isinstance(m, FakeTensorMode):
816
+ fake_modes.append((m, "active fake mode", i))
817
+
818
+ flat_inputs = pytree.tree_leaves(inputs)
819
+ for i, flat_input in enumerate(flat_inputs):
820
+ if isinstance(flat_input, FakeTensor):
821
+ fake_modes.append((flat_input.fake_mode, "fake tensor input", i))
822
+
823
+ if fake_modes:
824
+ fake_mode, desc1, i1 = fake_modes[0]
825
+ for m, desc2, i2 in fake_modes[1:]:
826
+ assert fake_mode is m, (
827
+ f"fake mode ({fake_mode}) from {desc1} {i1} doesn't match mode ({m}) from {desc2} {i2}\n\n"
828
+ f"fake mode from {desc1} {i1} allocated at:\n{fake_mode.stack}\n"
829
+ f"fake mode from {desc2} {i2} allocated at:\n{m.stack}"
830
+ )
831
+ return fake_mode
832
+ else:
833
+ return None
env-llmeval/lib/python3.10/site-packages/torch/_jit_internal.py ADDED
@@ -0,0 +1,1510 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ The weak_script annotation needs to be here instead of inside torch/jit/ so it
3
+ can be used in other places in torch/ (namely torch.nn) without running into
4
+ circular dependency problems
5
+ """
6
+
7
+ import ast
8
+ import builtins
9
+ import collections
10
+ import contextlib
11
+ import enum
12
+ import inspect
13
+ import io
14
+ import pickle
15
+ import sys
16
+ import threading
17
+ import types
18
+ import typing
19
+ import warnings
20
+ import weakref
21
+ from textwrap import dedent
22
+ from typing import ( # noqa: F401
23
+ Any,
24
+ Callable,
25
+ Dict,
26
+ Final,
27
+ ForwardRef,
28
+ Generic,
29
+ get_args, # new in 3.8
30
+ get_origin, # new in 3.8
31
+ List,
32
+ Optional,
33
+ Tuple,
34
+ Type,
35
+ TypeVar,
36
+ Union,
37
+ )
38
+
39
+ import torch
40
+
41
+ # This is needed. `torch._jit_internal` is imported before `torch.distributed.__init__`.
42
+ # Explicitly ask to import `torch.distributed.__init__` first.
43
+ # Otherwise, "AttributeError: module 'torch' has no attribute 'distributed'" is raised.
44
+ import torch.distributed.rpc
45
+ import torch.package._mangling as package_mangling
46
+ from torch._awaits import _Await
47
+ from torch._C import _Await as CAwait, Future as CFuture
48
+ from torch._sources import fake_range, get_source_lines_and_file, parse_def
49
+ from torch.futures import Future
50
+
51
+ IS_PY39_PLUS: Final[bool] = sys.version_info >= (3, 9)
52
+ IS_PY310_PLUS: Final[bool] = sys.version_info >= (3, 10)
53
+
54
+ BuiltinUnionType: Union[Type, Tuple[Type, ...]]
55
+ if sys.version_info >= (3, 10):
56
+ # NOTE: IS_PY310_PLUS doesn't work with mypy.
57
+ # cf. https://mypy.readthedocs.io/en/stable/common_issues.html#python-version-and-system-platform-checks
58
+ BuiltinUnionType = types.UnionType
59
+ else:
60
+ BuiltinUnionType = () # trick: this makes isinstance short circuit.
61
+
62
+ LockType: Type
63
+ try:
64
+ import _thread
65
+
66
+ LockType = _thread.LockType
67
+ except ImportError:
68
+ import _dummy_thread
69
+
70
+ LockType = _dummy_thread.LockType
71
+
72
+ # Wrapper functions that can call either of 2 functions depending on a boolean
73
+ # argument
74
+ boolean_dispatched: "weakref.WeakKeyDictionary[Callable, Dict[str, Callable]]" = (
75
+ weakref.WeakKeyDictionary()
76
+ ) # noqa: T484
77
+
78
+
79
+ FAKE_FILENAME_PREFIX = "__torch_jit_dataclass"
80
+
81
+
82
+ class SourceLoader:
83
+ def __init__(self):
84
+ self.content = {}
85
+
86
+ def cache(self, fn, source):
87
+ self.content[fn] = source
88
+
89
+ def get_source(self, fn):
90
+ return self.content.get(fn)
91
+
92
+
93
+ loader = SourceLoader()
94
+
95
+
96
+ def createResolutionCallbackFromEnv(lookup_base):
97
+ """
98
+ Creates a resolution callback that will look up qualified names in an
99
+ environment, starting with `lookup_base` for the base of any qualified
100
+ names, then proceeding down the lookup chain with the resolved object.
101
+
102
+ You should not use this directly, it should only be used from the other
103
+ createResolutionCallbackFrom* functions.
104
+ """
105
+
106
+ def lookupInModule(qualified_name, module):
107
+ if "." in qualified_name:
108
+ parts = qualified_name.split(".")
109
+ base = parts[0]
110
+ remaining_pieces = ".".join(parts[1:])
111
+ module_value = getattr(module, base)
112
+ return lookupInModule(remaining_pieces, module_value)
113
+ else:
114
+ return getattr(module, qualified_name)
115
+
116
+ def parseNestedExpr(expr, module) -> Tuple[Any, int]:
117
+ i = 0
118
+ while i < len(expr) and expr[i] not in (",", "[", "]"):
119
+ i += 1
120
+
121
+ # Special case logic for the empty Tuple as a subscript (used
122
+ # in the type annotation `Tuple[()]`)
123
+ if expr[:i] == "()":
124
+ return (), i
125
+
126
+ base = lookupInModule(expr[:i].strip(), module)
127
+ assert base is not None, f"Unresolvable type {expr[:i]}"
128
+ if i == len(expr) or expr[i] != "[":
129
+ return base, i
130
+
131
+ assert expr[i] == "["
132
+ parts = []
133
+ while expr[i] != "]":
134
+ part_len = 0
135
+ i += 1
136
+ part, part_len = parseNestedExpr(expr[i:], module)
137
+ parts.append(part)
138
+ i += part_len
139
+ if len(parts) > 1:
140
+ return base[tuple(parts)], i + 1
141
+ else:
142
+ return base[parts[0]], i + 1
143
+
144
+ def parseExpr(expr, module):
145
+ try:
146
+ value, len_parsed = parseNestedExpr(expr, module)
147
+ assert len_parsed == len(
148
+ expr
149
+ ), "whole expression was not parsed, falling back to c++ parser"
150
+ return value
151
+ except Exception:
152
+ """
153
+ The python resolver fails in several cases in known unit tests, and is intended
154
+ to fall back gracefully to the c++ resolver in general. For example, python 2 style
155
+ annotations which are frequent in our unit tests often fail with types e.g. int not
156
+ resolvable from the calling frame.
157
+ """
158
+ return None
159
+
160
+ return lambda expr: parseExpr(expr, lookup_base)
161
+
162
+
163
+ def createResolutionCallbackFromFrame(frames_up: int = 0):
164
+ """
165
+ Creates a function which, given a string variable name,
166
+ returns the value of the variable in the scope of the caller of
167
+ the function which called createResolutionCallbackFromFrame (by default).
168
+
169
+ This is used to enable access in-scope Python variables inside
170
+ TorchScript fragments.
171
+
172
+ frames_up is number of additional frames to go up on the stack.
173
+ The default value is 0, which correspond to the frame of the caller
174
+ of createResolutionCallbackFromFrame. Also for example, if frames_up is set
175
+ to 1, then the frame of the caller's caller of createResolutionCallbackFromFrame
176
+ will be taken.
177
+
178
+ For example, the following program prints 2::
179
+
180
+ def bar():
181
+ cb = createResolutionCallbackFromFrame(1)
182
+ print(cb("foo"))
183
+
184
+ def baz():
185
+ foo = 2
186
+ bar()
187
+
188
+ baz()
189
+ """
190
+ frame = inspect.currentframe()
191
+ i = 0
192
+ while i < frames_up + 1:
193
+ assert frame is not None
194
+ frame = frame.f_back
195
+ i += 1
196
+
197
+ assert frame is not None
198
+ f_locals = frame.f_locals
199
+ f_globals = frame.f_globals
200
+
201
+ class env:
202
+ def __getattr__(self, key):
203
+ if key in f_locals:
204
+ return f_locals[key]
205
+ elif key in f_globals:
206
+ return f_globals[key]
207
+ elif key in dir(builtins):
208
+ return getattr(builtins, key)
209
+
210
+ return createResolutionCallbackFromEnv(env())
211
+
212
+
213
+ def get_closure(fn):
214
+ """
215
+ Get a dictionary of closed over variables from a function
216
+ """
217
+ captures = {}
218
+ captures.update(fn.__globals__)
219
+
220
+ for index, captured_name in enumerate(fn.__code__.co_freevars):
221
+ captures[captured_name] = fn.__closure__[index].cell_contents
222
+
223
+ return captures
224
+
225
+
226
+ # [local resolution in python]
227
+ # Depending on where a variable is defined, and where it is used, we may
228
+ # or may not be able to recover its value when recursively compiling a
229
+ # script function. Remember in the general case, a module or function is
230
+ # first defined and then later scripted. This means we do not have a
231
+ # chance to capture the active frames when the function is defined. Hence any
232
+ # name resolution has to happen later on the created closure. The way
233
+ # python captures type annotations restricts what we can recover. The
234
+ # follow example illustrates the different cases:
235
+ #
236
+ # class MyGlobalClass:
237
+ # ...
238
+ # def my_local_scope():
239
+ # @torch.jit.script
240
+ # class MyClass:
241
+ # ...
242
+ # @torch.jit.script
243
+ # class MyClassUsedAsVar:
244
+ # ...
245
+ # def eg(x: MyClass, y: MyGlobalClass):
246
+ # a_local_capture : Foo
247
+ # return MyClassUsedAsVar(x)
248
+ #
249
+ # MyGlobalClass is defined in the __globals__ dictionary of function
250
+ # 'eg', so it is always recoverable. my_local_scope introduces a new local
251
+ # variable scope in the function. Classes defined here are only visible as
252
+ # local variables. For the case of MyClassUsedAsVar, it is captured
253
+ # because it is used as a variable inside the body of the function, and we
254
+ # can resolve it using the captures returned from `get_closure`. However,
255
+ # the type annotations are not captured by the closure. In Python
256
+ # 3.0--3.9, the _value_ of MyClass and MyGlobalClass will be available as
257
+ # annotations on `eg``, but starting in Python 4.0, they will represented as
258
+ # strings and no longer present. Furthermore, since the body of `eg` does
259
+ # not reference those names, they do not appear in the list of closed over
260
+ # variables. In Python 2.x, type annotations are in comments, leading to a
261
+ # similar situation where their definitions are not available. We anticipate
262
+ # that most users will not run into this issue because their modules and
263
+ # functions will be defined at a global scope like MyGlobalClass. In cases
264
+ # where they are not, it is possible to work around issues by declaring the
265
+ # values global in the function.
266
+ # In Python 3.9 declaring class as global will make it invisible to
267
+ # `inspect.getsource`, see https://bugs.python.org/issue42666 .
268
+ # This could be worked around by manualy adding it to `global()` dictionary.
269
+
270
+
271
+ def createResolutionCallbackFromClosure(fn):
272
+ """
273
+ Create a resolutionCallback by introspecting the function instead of
274
+ looking up the stack for the enclosing scope
275
+ """
276
+ closure = get_closure(fn)
277
+
278
+ class closure_lookup:
279
+ # This is a class since `closure` is a dict and it's easier in
280
+ # `env_helper` if everything just works with `getattr` calls
281
+ def __getattr__(self, key):
282
+ if key in closure:
283
+ return closure[key]
284
+ elif hasattr(typing, key):
285
+ return getattr(typing, key)
286
+ elif hasattr(builtins, key):
287
+ return getattr(builtins, key)
288
+ return None
289
+
290
+ return createResolutionCallbackFromEnv(closure_lookup())
291
+
292
+
293
+ def can_compile_class(cls) -> bool:
294
+ # If any of the functions on a type don't have a code object, this type can't
295
+ # be compiled and is probably a builtin / bound from C
296
+ if is_ignored_fn(cls):
297
+ return False
298
+
299
+ # Ignore the following list of built-in classes.
300
+ ignored_builtin_classes = (torch.nn.Module, tuple, list, Exception)
301
+ if issubclass(cls, ignored_builtin_classes):
302
+ return False
303
+
304
+ names = cls.__dict__
305
+ fns = [
306
+ getattr(cls, name)
307
+ for name in names
308
+ if inspect.isroutine(getattr(cls, name, None))
309
+ ]
310
+ has_code = [hasattr(fn, "__code__") for fn in fns]
311
+ return all(has_code)
312
+
313
+
314
+ def get_callable_argument_names(fn) -> List[str]:
315
+ """
316
+ Gets names of all POSITIONAL_OR_KEYWORD arguments for callable `fn`.
317
+ Returns an empty list when other types of arguments are present.
318
+
319
+ This is used by `torch.jit.trace` to assign meaningful argument names to
320
+ traced functions and modules.
321
+
322
+ Args:
323
+ fn: A callable.
324
+ Returns:
325
+ Argument names: List[str]
326
+ """
327
+ # inspect.signature may fail, give up in that case.
328
+ try:
329
+ callable_signature = inspect.signature(fn)
330
+ except Exception:
331
+ return []
332
+
333
+ argument_names = []
334
+ for name, param in callable_signature.parameters.items():
335
+ # All four other types of arguments do not map to individual values
336
+ # with a keyword as name.
337
+ if not param.kind == param.POSITIONAL_OR_KEYWORD:
338
+ continue
339
+
340
+ argument_names.append(name)
341
+
342
+ return argument_names
343
+
344
+
345
+ def get_annotation_str(annotation):
346
+ """
347
+ Convert an AST node containing a type annotation to the string present in the source
348
+ that represents the same annotation.
349
+ """
350
+ if isinstance(annotation, ast.Name):
351
+ return annotation.id
352
+ elif isinstance(annotation, ast.Attribute):
353
+ return ".".join([get_annotation_str(annotation.value), annotation.attr])
354
+ elif isinstance(annotation, ast.Subscript):
355
+ # In Python3.9+ subscript indicies are not wrapped in ast.Index
356
+ subscript_slice = annotation.slice if IS_PY39_PLUS else annotation.slice.value # type: ignore[attr-defined]
357
+ return f"{get_annotation_str(annotation.value)}[{get_annotation_str(subscript_slice)}]"
358
+ elif isinstance(annotation, ast.Tuple):
359
+ return ",".join([get_annotation_str(elt) for elt in annotation.elts])
360
+ elif isinstance(annotation, (ast.Constant, ast.NameConstant)):
361
+ return f"{annotation.value}"
362
+
363
+ # If an AST node is not handled here, it's probably handled in ScriptTypeParser.
364
+ return None
365
+
366
+
367
+ def get_type_hint_captures(fn):
368
+ """
369
+ Get a dictionary containing type resolution mappings necessary to resolve types
370
+ for the literal annotations on 'fn'. These are not considered to be closed-over by fn
371
+ and must be obtained separately (e.g. using this function).
372
+
373
+ Args:
374
+ fn: A callable.
375
+ Returns:
376
+ A Dict[str, Any] containing a mapping from the literal annotations used on
377
+ fn to the Python objects they refer to.
378
+ """
379
+ # First, try to get the source of the function. We'll need to parse it to find the actual string names
380
+ # that were used to annotate the types, since inspect.signature() will only return the class object that
381
+ # the annotation refers to, not the string name. If we can't get the source, simply return an empty dict.
382
+ # This may happen in cases where the function is synthesized dynamically at runtime.
383
+ src = loader.get_source(fn)
384
+ if src is None:
385
+ src = inspect.getsource(fn)
386
+
387
+ # Gather a dictionary of parameter name -> type, skipping any parameters whose annotated
388
+ # types are strings. These are only understood by TorchScript in the context of a type annotation
389
+ # that refers to a class in its own definition, but trying to include a mapping for this in the result
390
+ # function would cause infinite recursion because the class is currently being compiled.
391
+ # In addition, there is logic in ScriptTypeParser to handle this.
392
+ signature = inspect.signature(fn)
393
+ name_to_type = {
394
+ name: parameter.annotation
395
+ for name, parameter in signature.parameters.items()
396
+ if parameter.annotation is not inspect.Parameter.empty
397
+ and not isinstance(parameter.annotation, str)
398
+ }
399
+
400
+ # Then, get the literal type annotations from the function declaration
401
+ # by source inspection. This accounts for the case in which aliases are used
402
+ # to annotate the arguments (e.g device_t = torch.device, and then d: device_t).
403
+ # frontend.py cannot be used here because it includes _jit_internal, so use ast instead.
404
+ a = ast.parse(dedent(src))
405
+ if len(a.body) != 1 or not isinstance(a.body[0], ast.FunctionDef):
406
+ raise RuntimeError(f"Expected {fn} to be a function")
407
+ f = a.body[0]
408
+
409
+ # Prepare a dictionary of source annotation -> type, which will be the final result of this function,
410
+ # by using the parsed AST (f) to reconstruct source annotations as strings for each parameter and mapping
411
+ # them to the type object corresponding to the annotation via name_to_type using the parameter name.
412
+ annotation_to_type = {}
413
+
414
+ for arg in f.args.args:
415
+ # Get the source type annotation string for this argument if possible.
416
+ arg_annotation_str = (
417
+ get_annotation_str(arg.annotation) if arg.annotation else None
418
+ )
419
+
420
+ # If the argument has no annotation or get_annotation_str cannot convert it to a string,
421
+ # arg_annotation_str will be None. Skip this arg; ScriptTypeParser will probably handle
422
+ # this in the latter case.
423
+ if arg_annotation_str is None:
424
+ continue
425
+
426
+ # Insert {arg_annotation_str: type} into annotation_to_type if possible. One reason arg_name may not
427
+ # be present in name_to_type is that the annotation itself is a string and not a type object
428
+ # (common for self-refential annotations in classes). Once again, let ScriptTypeParser handle this.
429
+ arg_name = arg.arg
430
+ if arg_name in name_to_type:
431
+ annotation_to_type[arg_annotation_str] = name_to_type[arg_name]
432
+
433
+ # If there is a valid return annotation, include it in annotation_to_type. As with argument annotations,
434
+ # the literal annotation has to be convertible to a string by get_annotation_str, and the actual type
435
+ # of the annotation cannot be a string.
436
+ literal_return_annotation = get_annotation_str(f.returns)
437
+ valid_literal_annotation = literal_return_annotation is not None
438
+ return_annotation = signature.return_annotation
439
+ valid_return_annotation_type = (
440
+ return_annotation is not inspect.Parameter.empty
441
+ and not isinstance(return_annotation, str)
442
+ )
443
+ if valid_literal_annotation and valid_return_annotation_type:
444
+ annotation_to_type[literal_return_annotation] = return_annotation
445
+
446
+ return annotation_to_type
447
+
448
+
449
+ def createResolutionCallbackForClassMethods(cls):
450
+ """
451
+ This looks at all the methods defined in a class and pulls their closed-over
452
+ variables into a dictionary and uses that to resolve variables.
453
+ """
454
+ # cls is a type here, so `ismethod` is false since the methods on the type
455
+ # aren't bound to anything, so Python treats them as regular functions
456
+ fns = [
457
+ getattr(cls, name)
458
+ for name in cls.__dict__
459
+ if inspect.isroutine(getattr(cls, name))
460
+ ]
461
+ # Skip built-ins, as they do not have global scope nor type hints
462
+ # Needed to support `enum.Enum` derived classes in Python-3.11
463
+ # That adds `_new_member_` property which is an alias to `__new__`
464
+ fns = [fn for fn in fns if not inspect.isbuiltin(fn) and hasattr(fn, "__globals__")]
465
+ captures = {}
466
+
467
+ for fn in fns:
468
+ captures.update(get_closure(fn))
469
+ captures.update(get_type_hint_captures(fn))
470
+
471
+ def lookup_in_class(key):
472
+ if key in captures:
473
+ return captures[key]
474
+ else:
475
+ return getattr(builtins, key, None)
476
+
477
+ return lookup_in_class
478
+
479
+
480
+ def boolean_dispatch(
481
+ arg_name, arg_index, default, if_true, if_false, module_name, func_name
482
+ ):
483
+ """
484
+ Dispatches to either of 2 script functions based on a boolean argument.
485
+ In TorchScript, the boolean argument must be constant so that the correct
486
+ function to use can be determined at compile time.
487
+ """
488
+
489
+ def fn(*args, **kwargs):
490
+ dispatch_flag = default
491
+ if arg_name in kwargs:
492
+ dispatch_flag = kwargs[arg_name]
493
+ elif arg_index < len(args):
494
+ dispatch_flag = args[arg_index]
495
+
496
+ if dispatch_flag:
497
+ return if_true(*args, **kwargs)
498
+ else:
499
+ return if_false(*args, **kwargs)
500
+
501
+ if if_true.__doc__ is None and if_false.__doc__ is not None:
502
+ doc = if_false.__doc__
503
+ if_true.__doc__ = doc
504
+ elif if_false.__doc__ is None and if_true.__doc__ is not None:
505
+ doc = if_true.__doc__
506
+ if_false.__doc__ = doc
507
+ elif if_false.__doc__ is None and if_true.__doc__ is None:
508
+ # neither function has a docstring
509
+ doc = None
510
+ else:
511
+ raise RuntimeError("only one function can have a docstring")
512
+ fn.__doc__ = doc
513
+
514
+ if module_name is not None:
515
+ fn.__module__ = module_name
516
+ if func_name is not None:
517
+ fn.__name__ = func_name
518
+
519
+ boolean_dispatched[fn] = {
520
+ "if_true": if_true,
521
+ "if_false": if_false,
522
+ "index": arg_index,
523
+ "default": default,
524
+ "arg_name": arg_name,
525
+ }
526
+ return fn
527
+
528
+
529
+ class FunctionModifiers:
530
+ """
531
+ Used to denote the behavior of a function in TorchScript. See export() and
532
+ ignore() for details.
533
+ """
534
+
535
+ UNUSED = "unused (ignored and replaced with raising of an exception)"
536
+ IGNORE = "ignore (leave as a call to Python, cannot be torch.jit.save'd)"
537
+ EXPORT = "export (compile this function even if nothing calls it)"
538
+ DEFAULT = "default (compile if called from a exported function / forward)"
539
+ COPY_TO_SCRIPT_WRAPPER = (
540
+ "if this method is not scripted, copy the python method onto the scripted model"
541
+ )
542
+ _DROP = "_drop (function is fully ignored, declaration can be unscriptable)"
543
+
544
+
545
+ def export(fn):
546
+ """
547
+ This decorator indicates that a method on an ``nn.Module`` is used as an entry point into a
548
+ :class:`ScriptModule` and should be compiled.
549
+
550
+ ``forward`` implicitly is assumed to be an entry point, so it does not need this decorator.
551
+ Functions and methods called from ``forward`` are compiled as they are seen
552
+ by the compiler, so they do not need this decorator either.
553
+
554
+ Example (using ``@torch.jit.export`` on a method):
555
+
556
+ .. testcode::
557
+
558
+ import torch
559
+ import torch.nn as nn
560
+
561
+ class MyModule(nn.Module):
562
+ def implicitly_compiled_method(self, x):
563
+ return x + 99
564
+
565
+ # `forward` is implicitly decorated with `@torch.jit.export`,
566
+ # so adding it here would have no effect
567
+ def forward(self, x):
568
+ return x + 10
569
+
570
+ @torch.jit.export
571
+ def another_forward(self, x):
572
+ # When the compiler sees this call, it will compile
573
+ # `implicitly_compiled_method`
574
+ return self.implicitly_compiled_method(x)
575
+
576
+ def unused_method(self, x):
577
+ return x - 20
578
+
579
+ # `m` will contain compiled methods:
580
+ # `forward`
581
+ # `another_forward`
582
+ # `implicitly_compiled_method`
583
+ # `unused_method` will not be compiled since it was not called from
584
+ # any compiled methods and wasn't decorated with `@torch.jit.export`
585
+ m = torch.jit.script(MyModule())
586
+ """
587
+ fn._torchscript_modifier = FunctionModifiers.EXPORT
588
+ return fn
589
+
590
+
591
+ def unused(fn):
592
+ """
593
+ This decorator indicates to the compiler that a function or method should
594
+ be ignored and replaced with the raising of an exception. This allows you
595
+ to leave code in your model that is not yet TorchScript compatible and still
596
+ export your model.
597
+
598
+ Example (using ``@torch.jit.unused`` on a method)::
599
+
600
+ import torch
601
+ import torch.nn as nn
602
+
603
+ class MyModule(nn.Module):
604
+ def __init__(self, use_memory_efficient):
605
+ super().__init__()
606
+ self.use_memory_efficient = use_memory_efficient
607
+
608
+ @torch.jit.unused
609
+ def memory_efficient(self, x):
610
+ import pdb
611
+ pdb.set_trace()
612
+ return x + 10
613
+
614
+ def forward(self, x):
615
+ # Use not-yet-scriptable memory efficient mode
616
+ if self.use_memory_efficient:
617
+ return self.memory_efficient(x)
618
+ else:
619
+ return x + 10
620
+
621
+ m = torch.jit.script(MyModule(use_memory_efficient=False))
622
+ m.save("m.pt")
623
+
624
+ m = torch.jit.script(MyModule(use_memory_efficient=True))
625
+ # exception raised
626
+ m(torch.rand(100))
627
+ """
628
+ if isinstance(fn, property):
629
+ prop = fn
630
+ setattr( # noqa: B010
631
+ prop.fget, "_torchscript_modifier", FunctionModifiers.UNUSED
632
+ )
633
+
634
+ if prop.fset:
635
+ setattr( # noqa: B010
636
+ prop.fset, "_torchscript_modifier", FunctionModifiers.UNUSED
637
+ )
638
+
639
+ return prop
640
+
641
+ fn._torchscript_modifier = FunctionModifiers.UNUSED
642
+ return fn
643
+
644
+
645
+ # No op context manager from python side
646
+ class _IgnoreContextManager(contextlib.AbstractContextManager):
647
+ def __init__(self, **kwargs):
648
+ pass
649
+
650
+ def __exit__(self, exc_type: Any, exc_value: Any, traceback: Any) -> None:
651
+ pass
652
+
653
+
654
+ def ignore(drop=False, **kwargs):
655
+ """
656
+ This decorator indicates to the compiler that a function or method should
657
+ be ignored and left as a Python function. This allows you to leave code in
658
+ your model that is not yet TorchScript compatible. If called from TorchScript,
659
+ ignored functions will dispatch the call to the Python interpreter. Models with ignored
660
+ functions cannot be exported; use :func:`@torch.jit.unused <torch.jit.unused>` instead.
661
+
662
+ Example (using ``@torch.jit.ignore`` on a method)::
663
+
664
+ import torch
665
+ import torch.nn as nn
666
+
667
+ class MyModule(nn.Module):
668
+ @torch.jit.ignore
669
+ def debugger(self, x):
670
+ import pdb
671
+ pdb.set_trace()
672
+
673
+ def forward(self, x):
674
+ x += 10
675
+ # The compiler would normally try to compile `debugger`,
676
+ # but since it is `@ignore`d, it will be left as a call
677
+ # to Python
678
+ self.debugger(x)
679
+ return x
680
+
681
+ m = torch.jit.script(MyModule())
682
+
683
+ # Error! The call `debugger` cannot be saved since it calls into Python
684
+ m.save("m.pt")
685
+
686
+ Example (using ``@torch.jit.ignore(drop=True)`` on a method):
687
+
688
+ .. testcode::
689
+
690
+ import torch
691
+ import torch.nn as nn
692
+
693
+ class MyModule(nn.Module):
694
+ @torch.jit.ignore(drop=True)
695
+ def training_method(self, x):
696
+ import pdb
697
+ pdb.set_trace()
698
+
699
+ def forward(self, x):
700
+ if self.training:
701
+ self.training_method(x)
702
+ return x
703
+
704
+ m = torch.jit.script(MyModule())
705
+
706
+ # This is OK since `training_method` is not saved, the call is replaced
707
+ # with a `raise`.
708
+ m.save("m.pt")
709
+
710
+ .. testcleanup::
711
+
712
+ import os
713
+ os.remove('m.pt')
714
+ """
715
+
716
+ if callable(drop):
717
+ # used without any args, so drop is actually a function
718
+ # @torch.jit.ignore
719
+ # def fn(...):
720
+ fn = drop
721
+ fn._torchscript_modifier = FunctionModifiers.IGNORE
722
+ return fn
723
+
724
+ if not isinstance(drop, bool):
725
+ raise RuntimeError(
726
+ "Argument to @torch.jit.ignore must be a bool or "
727
+ f"a function but got {drop}"
728
+ )
729
+
730
+ # for backwards compat
731
+ drop_on_export = kwargs.pop("drop_on_export", None)
732
+ if drop_on_export:
733
+ warnings.warn(
734
+ "ignore(drop_on_export=True) has been deprecated. TorchScript will now drop the function "
735
+ "call on compilation. Use torch.jit.unused now. {}",
736
+ category=FutureWarning,
737
+ )
738
+
739
+ drop = drop_on_export
740
+ elif drop:
741
+ warnings.warn(
742
+ "ignore(True) has been deprecated. TorchScript will now drop the function "
743
+ "call on compilation. Use torch.jit.unused now. {}",
744
+ category=FutureWarning,
745
+ )
746
+
747
+ def decorator(fn):
748
+ if drop:
749
+ fn._torchscript_modifier = FunctionModifiers.UNUSED
750
+ else:
751
+ fn._torchscript_modifier = FunctionModifiers.IGNORE
752
+ return fn
753
+
754
+ return decorator
755
+
756
+
757
+ def _drop(fn):
758
+ fn._torchscript_modifier = FunctionModifiers._DROP
759
+ return fn
760
+
761
+
762
+ def _copy_to_script_wrapper(fn):
763
+ fn._torchscript_modifier = FunctionModifiers.COPY_TO_SCRIPT_WRAPPER
764
+ return fn
765
+
766
+
767
+ def module_has_exports(mod):
768
+ for name in dir(mod):
769
+ if hasattr(mod, name):
770
+ item = getattr(mod, name)
771
+ if callable(item):
772
+ if get_torchscript_modifier(item) is FunctionModifiers.EXPORT:
773
+ return True
774
+ return False
775
+
776
+
777
+ # WARNING: should_drop is currently being used by our JIT code coverage plug-in to mark JIT'd code as covered. If you
778
+ # rename this function, please update references in tools/coverage_plugins_package/src/coverage_plugins/jit_plugin.py to
779
+ # allow JIT'd code to still be covered.
780
+ def should_drop(fn) -> bool:
781
+ attr = get_torchscript_modifier(fn)
782
+ if attr is None:
783
+ return False
784
+ return attr is FunctionModifiers.UNUSED or attr is FunctionModifiers._DROP
785
+
786
+
787
+ def is_ignored_fn(fn) -> bool:
788
+ mod = get_torchscript_modifier(fn)
789
+ return (
790
+ mod is FunctionModifiers.UNUSED
791
+ or mod is FunctionModifiers.IGNORE
792
+ or mod is FunctionModifiers._DROP
793
+ )
794
+
795
+
796
+ def _is_drop_fn(fn) -> bool:
797
+ mod = get_torchscript_modifier(fn)
798
+ return mod is FunctionModifiers._DROP
799
+
800
+
801
+ def is_static_fn(cls, fn) -> bool:
802
+ return isinstance(inspect.getattr_static(cls, fn, default=None), staticmethod)
803
+
804
+
805
+ def get_static_fn(cls, fn):
806
+ return inspect.getattr_static(cls, fn).__func__
807
+
808
+
809
+ def get_torchscript_modifier(fn):
810
+ if not callable(fn):
811
+ return None
812
+ if hasattr(fn, "__func__"):
813
+ fn = fn.__func__
814
+ return getattr(fn, "_torchscript_modifier", FunctionModifiers.DEFAULT)
815
+
816
+
817
+ def copy_torchscript_modifier(orig, new) -> None:
818
+ attr = get_torchscript_modifier(orig)
819
+ if attr is None:
820
+ return
821
+ new._torchscript_modifier = attr
822
+
823
+
824
+ # overloading registration
825
+ # overloads get registered in this file, and compiled in torch/jit/__init__.py
826
+ # so that they can be imported in nn/functional.py without an import cycle
827
+
828
+ # qualified_name => list[overload_functions]
829
+ _overloaded_fns: Dict[str, List[Callable]] = {} # noqa: T484
830
+
831
+
832
+ _OVERLOAD_EXAMPLE = """
833
+ Example usage of overload function:
834
+ @torch.jit._overload
835
+ def my_function(x: type0) -> type0: # decl 1
836
+ pass
837
+
838
+ @torch.jit._overload
839
+ def my_function(x: type1) -> type1: # decl 2
840
+ pass
841
+
842
+ def my_function(x): # implementation
843
+ if isinstance(x, type0):
844
+ return x
845
+ elif isinstance(x, type1):
846
+ return x
847
+ """
848
+
849
+
850
+ def get_overload_no_implementation_error_message(kind, obj):
851
+ sourcelines, file_lineno, filename = get_source_lines_and_file(obj)
852
+ return (
853
+ f'Implementation for the {kind} "{_qualified_name(obj)}" is missing. Please make '
854
+ f"sure a definition is provided and defined after all overload declarations.\n"
855
+ f'File "{filename}", line {file_lineno}:\n'
856
+ + "".join(sourcelines)
857
+ + "\n"
858
+ + _OVERLOAD_EXAMPLE
859
+ )
860
+
861
+
862
+ def _check_overload_body(func):
863
+ try:
864
+ parsed_def = parse_def(func)
865
+ except OSError as e:
866
+ # Parsing the function definition can raise an OSError if source is unavailable.
867
+ # Since this is just an initial check, just raise a warning if this is the case.
868
+ warnings.warn(
869
+ f"Unable to retrieve source for @torch.jit._overload function: {func}."
870
+ )
871
+ return
872
+
873
+ body = parsed_def.ast.body[0].body
874
+
875
+ def is_pass(x):
876
+ return isinstance(x, ast.Pass)
877
+
878
+ def is_ellipsis(x):
879
+ return isinstance(x, ast.Expr) and isinstance(x.value, ast.Ellipsis)
880
+
881
+ if len(body) != 1 or not (is_pass(body[0]) or is_ellipsis(body[0])):
882
+ msg = (
883
+ "Only `pass` statement or `...` can be the body of overload declaration:\n"
884
+ )
885
+ msg += "\n".join(parsed_def.source.split("\n")[:3])
886
+ msg += " <- Expecting `pass` or `...` here!\n" + _OVERLOAD_EXAMPLE
887
+ raise RuntimeError(msg)
888
+
889
+
890
+ def _overload(func):
891
+ _check_overload_body(func)
892
+ qual_name = _qualified_name(func)
893
+ global _overloaded_fns
894
+ fn_overload_list = _overloaded_fns.get(qual_name)
895
+ if fn_overload_list is None:
896
+ fn_overload_list = []
897
+ _overloaded_fns[qual_name] = fn_overload_list
898
+ fn_overload_list.append(func)
899
+ return func
900
+
901
+
902
+ def _get_fn_overloads(qual_name):
903
+ return _overloaded_fns.get(qual_name)
904
+
905
+
906
+ def _clear_fn_overloads(qual_name) -> None:
907
+ del _overloaded_fns[qual_name]
908
+
909
+
910
+ def get_class_name_lineno(method) -> Tuple[str, int]:
911
+ current_frame = inspect.currentframe()
912
+
913
+ # one for the get_class_name call, one for _overload_method call
914
+ for i in range(2):
915
+ assert (
916
+ current_frame is not None
917
+ ) # assert current frame is not an Optional[FrameType]
918
+ current_frame = current_frame.f_back
919
+
920
+ assert current_frame is not None # same here
921
+ class_name = current_frame.f_code.co_name
922
+ line_no = current_frame.f_code.co_firstlineno
923
+ return class_name, line_no
924
+
925
+
926
+ # At the point the decorator is applied to class methods the method
927
+ # has no reference to its owning class. _qualified_name would not include
928
+ # the class it is defined in, so any methods with the same name in the same file
929
+ # would have the same _qualified_name, even if they were defined in different
930
+ # classes. This problem only exists in python 2.
931
+ # We get around this problem by looking at the stack frame and identifying
932
+ # the class name, and throwing an error whenever overloads are used
933
+ # when modules of the same name are in the same file
934
+
935
+ # qualified_name => class name => list[overload_functions]
936
+ _overloaded_methods: Dict[str, Dict[str, List[Callable]]] = {} # noqa: T484
937
+
938
+
939
+ # (qualified_name, class name) => class_fileno
940
+ _overloaded_method_class_fileno = {}
941
+
942
+
943
+ def _overload_method(func):
944
+ _check_overload_body(func)
945
+ qual_name = _qualified_name(func)
946
+ global _overloaded_methods
947
+ class_name_map = _overloaded_methods.get(qual_name, None)
948
+ if class_name_map is None:
949
+ class_name_map = {}
950
+ _overloaded_methods[qual_name] = class_name_map
951
+
952
+ class_name, line_no = get_class_name_lineno(func)
953
+ method_overloads = class_name_map.get(class_name, None)
954
+ if method_overloads is None:
955
+ method_overloads = []
956
+ class_name_map[class_name] = method_overloads
957
+ _overloaded_method_class_fileno[(qual_name, class_name)] = line_no
958
+ else:
959
+ existing_lineno = _overloaded_method_class_fileno[(qual_name, class_name)]
960
+ if existing_lineno != line_no:
961
+ raise RuntimeError(
962
+ "Cannot currently overload the same method name in two different"
963
+ " classes with the same name in the same module"
964
+ )
965
+
966
+ method_overloads.append(func)
967
+ return func
968
+
969
+
970
+ def _get_overloaded_methods(method, mod_class):
971
+ # TODO: __name__ not set for submodules in recursive script
972
+ if not hasattr(method, "__name__"):
973
+ return None
974
+ qual_name = _qualified_name(method)
975
+ class_name_map = _overloaded_methods.get(qual_name, None)
976
+ if class_name_map is None:
977
+ return None
978
+ overloads = class_name_map.get(mod_class.__name__, None)
979
+ if overloads is None:
980
+ return None
981
+
982
+ method_line_no = get_source_lines_and_file(method)[1]
983
+ mod_class_fileno = get_source_lines_and_file(mod_class)[1]
984
+ mod_end_fileno = mod_class_fileno + len(get_source_lines_and_file(mod_class)[0])
985
+ if not (method_line_no >= mod_class_fileno and method_line_no <= mod_end_fileno):
986
+ raise Exception(
987
+ "Overloads are not useable when a module is redeclared within the same file: "
988
+ + str(method)
989
+ )
990
+ return overloads
991
+
992
+
993
+ def is_tuple(ann) -> bool:
994
+ if ann is Tuple:
995
+ raise_error_container_parameter_missing("Tuple")
996
+
997
+ # For some reason Python 3.7 violates the Type[A, B].__origin__ == Type rule
998
+ if not hasattr(ann, "__module__"):
999
+ return False
1000
+
1001
+ ann_origin = get_origin(ann)
1002
+ if IS_PY39_PLUS and ann.__module__ == "builtins" and ann_origin is tuple:
1003
+ return True
1004
+ return ann.__module__ == "typing" and (ann_origin is Tuple or ann_origin is tuple)
1005
+
1006
+
1007
+ def is_list(ann) -> bool:
1008
+ if ann is List:
1009
+ raise_error_container_parameter_missing("List")
1010
+
1011
+ if not hasattr(ann, "__module__"):
1012
+ return False
1013
+
1014
+ ann_origin = get_origin(ann)
1015
+ if IS_PY39_PLUS and ann.__module__ == "builtins" and ann_origin is list:
1016
+ return True
1017
+ return ann.__module__ == "typing" and (ann_origin is List or ann_origin is list)
1018
+
1019
+
1020
+ def is_dict(ann) -> bool:
1021
+ if ann is Dict:
1022
+ raise_error_container_parameter_missing("Dict")
1023
+
1024
+ if not hasattr(ann, "__module__"):
1025
+ return False
1026
+
1027
+ ann_origin = get_origin(ann)
1028
+ if IS_PY39_PLUS and ann.__module__ == "builtins" and ann_origin is dict:
1029
+ return True
1030
+ return ann.__module__ == "typing" and (ann_origin is Dict or ann_origin is dict)
1031
+
1032
+
1033
+ def is_union(ann):
1034
+ if ann is Union:
1035
+ raise_error_container_parameter_missing("Union")
1036
+
1037
+ return isinstance(ann, BuiltinUnionType) or (
1038
+ hasattr(ann, "__module__")
1039
+ and ann.__module__ == "typing"
1040
+ and (get_origin(ann) is Union)
1041
+ )
1042
+
1043
+
1044
+ def is_optional(ann):
1045
+ if ann is Optional:
1046
+ raise_error_container_parameter_missing("Optional")
1047
+
1048
+ def is_optional_as_optional(ann):
1049
+ return (
1050
+ hasattr(ann, "__module__")
1051
+ and ann.__module__ == "typing"
1052
+ and (get_origin(ann) is Optional)
1053
+ )
1054
+
1055
+ def is_union_as_optional(ann):
1056
+ ann_args = get_args(ann)
1057
+ return len(ann_args) == 2 and (None in ann_args or type(None) in ann_args)
1058
+
1059
+ return is_optional_as_optional(ann) or (is_union(ann) and is_union_as_optional(ann))
1060
+
1061
+
1062
+ def is_future(ann) -> bool:
1063
+ if ann is Future:
1064
+ raise RuntimeError(
1065
+ "Attempted to use Future without a "
1066
+ "contained type. Please add a contained type, e.g. "
1067
+ "Future[int]"
1068
+ )
1069
+ return get_origin(ann) is Future
1070
+
1071
+
1072
+ def is_await(ann) -> bool:
1073
+ if ann is _Await:
1074
+ return True
1075
+ return get_origin(ann) is _Await
1076
+
1077
+
1078
+ if torch.distributed.rpc.is_available():
1079
+ from torch._C._distributed_rpc import PyRRef
1080
+ from torch.distributed.rpc import RRef
1081
+
1082
+ def is_rref(ann) -> bool:
1083
+ if ann is RRef:
1084
+ raise RuntimeError(
1085
+ "Attempted to use RRef without a "
1086
+ "contained type. Please add a contained type, e.g. "
1087
+ "RRef[int]"
1088
+ )
1089
+ return get_origin(ann) is RRef
1090
+
1091
+ def is_rref_instance(obj) -> bool:
1092
+ return isinstance(obj, PyRRef)
1093
+
1094
+ else:
1095
+
1096
+ def is_rref_instance(obj) -> bool:
1097
+ # If the RPC module doesn't exist then RRefs don't exist either.
1098
+ return False
1099
+
1100
+
1101
+ def is_final(ann) -> bool:
1102
+ return ann.__module__ in {"typing", "typing_extensions"} and (
1103
+ get_origin(ann) is Final or isinstance(ann, type(Final))
1104
+ )
1105
+
1106
+
1107
+ # allows BroadcastingList instance to be subscriptable
1108
+ class BroadcastingListCls:
1109
+ def __getitem__(self, types):
1110
+ return
1111
+
1112
+
1113
+ # mypy doesn't support parameters on types, so we have to explicitly type each
1114
+ # list size
1115
+ BroadcastingList1 = BroadcastingListCls()
1116
+ for i in range(2, 7):
1117
+ globals()[f"BroadcastingList{i}"] = BroadcastingList1
1118
+
1119
+
1120
+ def is_scripting() -> bool:
1121
+ r"""
1122
+ Function that returns True when in compilation and False otherwise. This
1123
+ is useful especially with the @unused decorator to leave code in your
1124
+ model that is not yet TorchScript compatible.
1125
+ .. testcode::
1126
+
1127
+ import torch
1128
+
1129
+ @torch.jit.unused
1130
+ def unsupported_linear_op(x):
1131
+ return x
1132
+
1133
+ def linear(x):
1134
+ if torch.jit.is_scripting():
1135
+ return torch.linear(x)
1136
+ else:
1137
+ return unsupported_linear_op(x)
1138
+ """
1139
+ return False
1140
+
1141
+
1142
+ # Retrieves a fully-qualified name (module hierarchy + classname) for a given obj.
1143
+ def _qualified_name(obj, mangle_name=True) -> str:
1144
+ # This special case allows us to override the qualified name on a type.
1145
+ # It's currently used in conjunction with tracing, where we create a
1146
+ # fake module to filter only supported attributes. However, since this
1147
+ # new type is defined as a local class, we need a mechanism to override
1148
+ # its qualname so it appears correctly in the TorchScript system. This,
1149
+ # we set '_jit_override_qualname' with the original traced module's
1150
+ # qualified name, which is picked up here
1151
+ if hasattr(obj, "_jit_override_qualname"):
1152
+ return obj._jit_override_qualname
1153
+ # short-circuit in cases where the object already has a known qualified name
1154
+ if isinstance(obj, torch._C.ScriptFunction):
1155
+ return obj.qualified_name
1156
+
1157
+ if getattr(obj, "__name__", None):
1158
+ name = obj.__name__
1159
+ # Enum classes do not have `__name__` attr, instead they have `name`.
1160
+ elif isinstance(obj, enum.Enum):
1161
+ name = obj.name
1162
+ else:
1163
+ raise RuntimeError("Could not get name of python class object")
1164
+
1165
+ if name == "<lambda>":
1166
+ name = "_lambda" # make name a valid identifier
1167
+
1168
+ module_name = obj.__module__
1169
+
1170
+ # If the module is actually a torchbind module, then we should short circuit
1171
+ if module_name == "torch._classes":
1172
+ return obj.qualified_name
1173
+
1174
+ # The Python docs are very clear that `__module__` can be None, but I can't
1175
+ # figure out when it actually would be.
1176
+ if module_name is None:
1177
+ raise RuntimeError(
1178
+ f"Could not get qualified name for class '{name}': "
1179
+ "__module__ can't be None."
1180
+ )
1181
+
1182
+ # if getattr(sys.modules[module_name], name) is not obj:
1183
+ # raise RuntimeError(f"Could not get qualified name for class '{name}': "
1184
+ # f"the attr {name} on module {module_name} is not the class")
1185
+
1186
+ # torch.package and TorchScript have separate mangling schemes to avoid
1187
+ # name collisions from multiple packages. To avoid them interfering with
1188
+ # each other, normalize the package manging here.
1189
+ if package_mangling.is_mangled(module_name):
1190
+ module_name = module_name.replace("<", "_")
1191
+ module_name = module_name.replace(">", "_")
1192
+
1193
+ # The PythonExceptionValue C++ class in torch/csrc/jit/python/python_sugared_value.h
1194
+ # does not need mangle the python class name.
1195
+ if mangle_name:
1196
+ # __main__ is a builtin module, so rewrite it to "__torch__".
1197
+ if module_name == "__main__":
1198
+ module_name = "__torch__"
1199
+ else:
1200
+ # Everything else gets a "__torch__" prefix to avoid name collisions
1201
+ # with the names of user values.
1202
+ module_name = "__torch__." + module_name
1203
+
1204
+ if "." in name:
1205
+ raise RuntimeError(
1206
+ f"Could not get qualified name for class '{name}': "
1207
+ f"'{name}' is not a valid identifier"
1208
+ )
1209
+
1210
+ return module_name + "." + name
1211
+
1212
+
1213
+ def _try_get_dispatched_fn(fn):
1214
+ if not callable(fn):
1215
+ return None
1216
+ return boolean_dispatched.get(fn)
1217
+
1218
+
1219
+ def _get_named_tuple_properties(
1220
+ obj, loc: Optional[torch._C._jit_tree_views.SourceRange] = None, rcb=None
1221
+ ):
1222
+ if loc is None:
1223
+ loc = fake_range()
1224
+
1225
+ assert issubclass(obj, tuple) and hasattr(obj, "_fields")
1226
+ if hasattr(obj, "_field_defaults"):
1227
+ defaults = [
1228
+ obj._field_defaults[field]
1229
+ for field in obj._fields
1230
+ if field in obj._field_defaults
1231
+ ]
1232
+ else:
1233
+ defaults = []
1234
+ # In 3.10 recommended way to get annotations is to call `inspect.get_annotations` function
1235
+ # Also, annotations from base class are not inherited so they need to be queried explicitly
1236
+ if sys.version_info[:2] < (3, 10):
1237
+ obj_annotations = getattr(obj, "__annotations__", {})
1238
+ else:
1239
+ obj_annotations = inspect.get_annotations(obj)
1240
+ if len(obj_annotations) == 0 and hasattr(obj, "__base__"):
1241
+ obj_annotations = inspect.get_annotations(obj.__base__)
1242
+
1243
+ annotations = []
1244
+ for field in obj._fields:
1245
+ if field in obj_annotations:
1246
+ field_type = obj_annotations[field]
1247
+ # [Note: ForwardRef annotations in NamedTuple attributes]
1248
+ # NamedTuple types are slightly different from normal types.
1249
+ #
1250
+ # Normally, annotations are evaluted like this (during jit.script):
1251
+ # 1. Load strings of python code into c++ and parse.
1252
+ # 2. Get annotations as strings
1253
+ # 3. Use the PythonResolver's resolution callback (rcb) to convert
1254
+ # the string into a python object
1255
+ # 4. We call into annotations.py:ann_to_type to convert python obj
1256
+ # from step 3 into a type that torchscript understands.
1257
+ #
1258
+ # NamedTuples are more complicated, because it has sub-types.
1259
+ # Normally, once we have the NamedTuple type object from #3,
1260
+ # we can just look at the annotation literal values and use
1261
+ # ann_to_type directly on them.
1262
+ #
1263
+ # But sometimes, users will annotate with string literals, e.g.
1264
+ # x: 'int'
1265
+ # This also happens with PEP563 (from __forward__ import annotations)
1266
+ #
1267
+ # These annotations appear in the annotation dict as ForwardRef('int').
1268
+ #
1269
+ # Then, we need to convert the string into a python object. This
1270
+ # requires having local context for custom objects or imported types.
1271
+ # rcb() is what gives us this. So, we plumb rcb through the stack so
1272
+ # it can be used in this context for the if block below.
1273
+ #
1274
+ # FAQ:
1275
+ # - Why do we need this special handling for NamedTuple but string
1276
+ # annotations work fine for normal types? Normally, we parse the
1277
+ # string directly and then call rcb() directly from C++.
1278
+ # - Why not use ForwardRef._evaluate? For that, we need globals()
1279
+ # and locals() for the local context where the NamedTuple was defined.
1280
+ # rcb is what lets us look up into these. So, basically rcb does the
1281
+ # hard work for us.
1282
+ if isinstance(field_type, ForwardRef) and rcb is not None:
1283
+ rcb_type = rcb(field_type.__forward_arg__)
1284
+ # rcb returns None if it can't find anything.
1285
+ if rcb_type is None:
1286
+ raise ValueError(
1287
+ f"Unknown type annotation: '{field_type}' in NamedTuple {obj.__name__}."
1288
+ f" Likely due to partial support for ForwardRef parameters in NamedTuples, see #95858."
1289
+ f" Issue occurred at {loc.highlight()}"
1290
+ )
1291
+ field_type = rcb_type
1292
+ the_type = torch.jit.annotations.ann_to_type(field_type, loc, rcb)
1293
+ annotations.append(the_type)
1294
+ else:
1295
+ annotations.append(torch._C.TensorType.getInferred())
1296
+ return type(obj).__name__, obj._fields, annotations, defaults
1297
+
1298
+
1299
+ def _create_named_tuple(
1300
+ t, unqual_name: str, field_names: List[str], defaults: Tuple[Any, ...]
1301
+ ):
1302
+ TupleType = collections.namedtuple(unqual_name, field_names, defaults=defaults) # type: ignore[call-arg, no-redef, misc]
1303
+ return TupleType(*t)
1304
+
1305
+
1306
+ @contextlib.contextmanager
1307
+ def _disable_emit_hooks():
1308
+ hooks = torch._C._jit_get_emit_hooks()
1309
+ torch._C._jit_set_emit_hooks(None, None)
1310
+ try:
1311
+ yield
1312
+ finally:
1313
+ torch._C._jit_set_emit_hooks(hooks[0], hooks[1])
1314
+
1315
+
1316
+ def _disable_emit_hooks_decorator(_DecoratorContextManager) -> None: # noqa: F811
1317
+ def __enter__(self) -> None:
1318
+ self.hooks = torch._C._jit_get_emit_hooks()
1319
+ torch._C._jit_set_emit_hooks(None, None)
1320
+
1321
+ def __exit__(self, *args) -> None:
1322
+ torch._C._jit_set_emit_hooks(self.hooks[0], self.hooks[1])
1323
+
1324
+
1325
+ def _is_exception(obj) -> bool:
1326
+ if not inspect.isclass(obj):
1327
+ return False
1328
+ return issubclass(obj, Exception)
1329
+
1330
+
1331
+ def raise_error_container_parameter_missing(target_type) -> None:
1332
+ if target_type == "Dict":
1333
+ raise RuntimeError(
1334
+ "Attempted to use Dict without "
1335
+ "contained types. Please add contained type, e.g. "
1336
+ "Dict[int, int]"
1337
+ )
1338
+ raise RuntimeError(
1339
+ f"Attempted to use {target_type} without a "
1340
+ "contained type. Please add a contained type, e.g. "
1341
+ f"{target_type}[int]"
1342
+ )
1343
+
1344
+
1345
+ def check_args_exist(target_type) -> None:
1346
+ if target_type is List or target_type is list:
1347
+ raise_error_container_parameter_missing("List")
1348
+ elif target_type is Tuple or target_type is tuple:
1349
+ raise_error_container_parameter_missing("Tuple")
1350
+ elif target_type is Dict or target_type is dict:
1351
+ raise_error_container_parameter_missing("Dict")
1352
+ elif target_type is None or target_type is Optional:
1353
+ raise_error_container_parameter_missing("Optional")
1354
+
1355
+
1356
+ def check_empty_containers(obj) -> None:
1357
+ if obj == [] or obj == {} or obj == ():
1358
+ warnings.warn(
1359
+ "The inner type of a container is lost when "
1360
+ "calling torch.jit.isinstance in eager mode. For "
1361
+ "example, List[int] would become list and "
1362
+ "therefore falsely return True for List[float] or"
1363
+ " List[str]."
1364
+ )
1365
+
1366
+
1367
+ # supports List/Dict/Tuple and Optional types
1368
+ # TODO support future
1369
+ def container_checker(obj, target_type) -> bool:
1370
+ origin_type = get_origin(target_type)
1371
+ check_args_exist(target_type)
1372
+ if origin_type is None:
1373
+ return False
1374
+ elif origin_type is list or origin_type is List:
1375
+ check_empty_containers(obj)
1376
+ if not isinstance(obj, list):
1377
+ return False
1378
+ arg_type = get_args(target_type)[0]
1379
+ arg_origin = get_origin(arg_type)
1380
+ for el in obj:
1381
+ # check if nested container, ex: List[List[str]]
1382
+ if arg_origin: # processes nested container, ex: List[List[str]]
1383
+ if not container_checker(el, arg_type):
1384
+ return False
1385
+ elif not isinstance(el, arg_type):
1386
+ return False
1387
+ return True
1388
+ elif origin_type is Dict or origin_type is dict:
1389
+ check_empty_containers(obj)
1390
+ if not isinstance(obj, dict):
1391
+ return False
1392
+ key_type = get_args(target_type)[0]
1393
+ val_type = get_args(target_type)[1]
1394
+ for key, val in obj.items():
1395
+ # check if keys are of right type
1396
+ if not isinstance(key, key_type):
1397
+ return False
1398
+ val_origin = get_origin(val_type)
1399
+ if val_origin:
1400
+ if not container_checker(val, val_type):
1401
+ return False
1402
+ elif not isinstance(val, val_type):
1403
+ return False
1404
+ return True
1405
+ elif origin_type is Tuple or origin_type is tuple:
1406
+ check_empty_containers(obj)
1407
+ if not isinstance(obj, tuple):
1408
+ return False
1409
+ arg_types = get_args(target_type)
1410
+ if len(obj) != len(arg_types):
1411
+ return False
1412
+ for el, el_type in zip(obj, arg_types):
1413
+ el_origin = get_origin(el_type)
1414
+ if el_origin:
1415
+ if not container_checker(el, el_type):
1416
+ return False
1417
+ elif not isinstance(el, el_type):
1418
+ return False
1419
+ return True
1420
+ elif origin_type is Union or issubclass(
1421
+ origin_type, BuiltinUnionType
1422
+ ): # also handles Optional
1423
+ if obj is None: # check before recursion because None is always fine
1424
+ return True
1425
+ inner_types = get_args(target_type)
1426
+ for t in inner_types:
1427
+ t_origin = get_origin(t)
1428
+ if t_origin:
1429
+ return container_checker(obj, t)
1430
+ elif isinstance(obj, t):
1431
+ return True
1432
+ return False
1433
+
1434
+
1435
+ def _isinstance(obj, target_type) -> bool:
1436
+ if isinstance(target_type, collections.abc.Container):
1437
+ if not isinstance(target_type, tuple):
1438
+ raise RuntimeError(
1439
+ "The second argument to "
1440
+ "`torch.jit.isinstance` must be a type "
1441
+ "or a tuple of types"
1442
+ )
1443
+ for t_type in target_type:
1444
+ if _isinstance(obj, t_type):
1445
+ return True
1446
+ return False
1447
+
1448
+ origin_type = get_origin(target_type)
1449
+ if origin_type:
1450
+ return container_checker(obj, target_type)
1451
+
1452
+ # Check to handle non-typed optional origin returns as none instead
1453
+ # of as optional in 3.7-3.8
1454
+ check_args_exist(target_type)
1455
+
1456
+ # handle non-containers
1457
+ return isinstance(obj, target_type)
1458
+
1459
+
1460
+ class _TensorExtractor(pickle.Pickler):
1461
+ def __init__(self, *args, tensors: List[torch.Tensor], **kwargs):
1462
+ super().__init__(*args, **kwargs)
1463
+ self.tensors = tensors
1464
+
1465
+ def persistent_id(self, obj):
1466
+ if isinstance(obj, torch.Tensor):
1467
+ self.tensors.append(obj)
1468
+ return ""
1469
+ # Since we just want to extract tensors, we don't mind if an object is
1470
+ # unpicklable if it doesn't contain tensors, as we can just ignore/skip
1471
+ # it. To play it safe, we only do so for common objects that we're sure
1472
+ # don't contain tensors. Feel free to add new types here. Note also that
1473
+ # even if a type isn't listed here this won't block users, since thet
1474
+ # can just add a __getstate__ or __reduce__ method to their class.
1475
+ if isinstance(obj, LockType):
1476
+ return ""
1477
+ # Futures and RRefs don't technically contain a value, they just offer
1478
+ # the means to access a value.
1479
+ if isinstance(obj, CFuture) or is_rref_instance(obj):
1480
+ return ""
1481
+ if isinstance(obj, CAwait):
1482
+ return ""
1483
+ if isinstance(obj, torch.cuda.Event):
1484
+ return ""
1485
+ if isinstance(obj, threading.Thread):
1486
+ return ""
1487
+ return None
1488
+
1489
+
1490
+ def _extract_tensors(obj):
1491
+ r"""
1492
+ This function is exclusively called from C++.
1493
+ See ``torch/csrc/jit/python/python_ivalue.h``.
1494
+
1495
+ It extracts the tensors contained in the given object, through pickling.
1496
+ """
1497
+ tensors: List[torch.Tensor] = []
1498
+ extractor = _TensorExtractor(io.BytesIO(), protocol=-1, tensors=tensors)
1499
+ extractor.dump(obj)
1500
+ return tensors
1501
+
1502
+
1503
+ # In Python-3.11+ typed enums (i.e. IntEnum for example) retain number of base class methods in subclass
1504
+ # that were previously dropped. To preserve the behavior, explicitly drop them there
1505
+
1506
+ if sys.version_info > (3, 10):
1507
+ _drop(enum.Enum.__new__)
1508
+ _drop(enum.Enum.__format__)
1509
+ _drop(enum.Enum.__repr__)
1510
+ _drop(enum.Enum.__str__)
env-llmeval/lib/python3.10/site-packages/torch/_linalg_utils.py ADDED
@@ -0,0 +1,164 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Various linear algebra utility methods for internal use.
2
+
3
+ """
4
+
5
+ from typing import Optional, Tuple
6
+
7
+ import torch
8
+ from torch import Tensor
9
+
10
+
11
+ def is_sparse(A):
12
+ """Check if tensor A is a sparse tensor"""
13
+ if isinstance(A, torch.Tensor):
14
+ return A.layout == torch.sparse_coo
15
+
16
+ error_str = "expected Tensor"
17
+ if not torch.jit.is_scripting():
18
+ error_str += f" but got {type(A)}"
19
+ raise TypeError(error_str)
20
+
21
+
22
+ def get_floating_dtype(A):
23
+ """Return the floating point dtype of tensor A.
24
+
25
+ Integer types map to float32.
26
+ """
27
+ dtype = A.dtype
28
+ if dtype in (torch.float16, torch.float32, torch.float64):
29
+ return dtype
30
+ return torch.float32
31
+
32
+
33
+ def matmul(A: Optional[Tensor], B: Tensor) -> Tensor:
34
+ """Multiply two matrices.
35
+
36
+ If A is None, return B. A can be sparse or dense. B is always
37
+ dense.
38
+ """
39
+ if A is None:
40
+ return B
41
+ if is_sparse(A):
42
+ return torch.sparse.mm(A, B)
43
+ return torch.matmul(A, B)
44
+
45
+
46
+ def conjugate(A):
47
+ """Return conjugate of tensor A.
48
+
49
+ .. note:: If A's dtype is not complex, A is returned.
50
+ """
51
+ if A.is_complex():
52
+ return A.conj()
53
+ return A
54
+
55
+
56
+ def transpose(A):
57
+ """Return transpose of a matrix or batches of matrices."""
58
+ ndim = len(A.shape)
59
+ return A.transpose(ndim - 1, ndim - 2)
60
+
61
+
62
+ def transjugate(A):
63
+ """Return transpose conjugate of a matrix or batches of matrices."""
64
+ return conjugate(transpose(A))
65
+
66
+
67
+ def bform(X: Tensor, A: Optional[Tensor], Y: Tensor) -> Tensor:
68
+ """Return bilinear form of matrices: :math:`X^T A Y`."""
69
+ return matmul(transpose(X), matmul(A, Y))
70
+
71
+
72
+ def qform(A: Optional[Tensor], S: Tensor):
73
+ """Return quadratic form :math:`S^T A S`."""
74
+ return bform(S, A, S)
75
+
76
+
77
+ def basis(A):
78
+ """Return orthogonal basis of A columns."""
79
+ return torch.linalg.qr(A).Q
80
+
81
+
82
+ def symeig(A: Tensor, largest: Optional[bool] = False) -> Tuple[Tensor, Tensor]:
83
+ """Return eigenpairs of A with specified ordering."""
84
+ if largest is None:
85
+ largest = False
86
+ E, Z = torch.linalg.eigh(A, UPLO="U")
87
+ # assuming that E is ordered
88
+ if largest:
89
+ E = torch.flip(E, dims=(-1,))
90
+ Z = torch.flip(Z, dims=(-1,))
91
+ return E, Z
92
+
93
+
94
+ # These functions were deprecated and removed
95
+ # This nice error message can be removed in version 1.13+
96
+ def matrix_rank(input, tol=None, symmetric=False, *, out=None) -> Tensor:
97
+ raise RuntimeError(
98
+ "This function was deprecated since version 1.9 and is now removed.\n"
99
+ "Please use the `torch.linalg.matrix_rank` function instead. "
100
+ "The parameter 'symmetric' was renamed in `torch.linalg.matrix_rank()` to 'hermitian'."
101
+ )
102
+
103
+
104
+ def solve(input: Tensor, A: Tensor, *, out=None) -> Tuple[Tensor, Tensor]:
105
+ raise RuntimeError(
106
+ "This function was deprecated since version 1.9 and is now removed. "
107
+ "`torch.solve` is deprecated in favor of `torch.linalg.solve`. "
108
+ "`torch.linalg.solve` has its arguments reversed and does not return the LU factorization.\n\n"
109
+ "To get the LU factorization see `torch.lu`, which can be used with `torch.lu_solve` or `torch.lu_unpack`.\n"
110
+ "X = torch.solve(B, A).solution "
111
+ "should be replaced with:\n"
112
+ "X = torch.linalg.solve(A, B)"
113
+ )
114
+
115
+
116
+ def lstsq(input: Tensor, A: Tensor, *, out=None) -> Tuple[Tensor, Tensor]:
117
+ raise RuntimeError(
118
+ "This function was deprecated since version 1.9 and is now removed. "
119
+ "`torch.lstsq` is deprecated in favor of `torch.linalg.lstsq`.\n"
120
+ "`torch.linalg.lstsq` has reversed arguments and does not return the QR decomposition in "
121
+ "the returned tuple (although it returns other information about the problem).\n\n"
122
+ "To get the QR decomposition consider using `torch.linalg.qr`.\n\n"
123
+ "The returned solution in `torch.lstsq` stored the residuals of the solution in the "
124
+ "last m - n columns of the returned value whenever m > n. In torch.linalg.lstsq, "
125
+ "the residuals are in the field 'residuals' of the returned named tuple.\n\n"
126
+ "The unpacking of the solution, as in\n"
127
+ "X, _ = torch.lstsq(B, A).solution[:A.size(1)]\n"
128
+ "should be replaced with:\n"
129
+ "X = torch.linalg.lstsq(A, B).solution"
130
+ )
131
+
132
+
133
+ def _symeig(
134
+ input, eigenvectors=False, upper=True, *, out=None
135
+ ) -> Tuple[Tensor, Tensor]:
136
+ raise RuntimeError(
137
+ "This function was deprecated since version 1.9 and is now removed. "
138
+ "The default behavior has changed from using the upper triangular portion of the matrix by default "
139
+ "to using the lower triangular portion.\n\n"
140
+ "L, _ = torch.symeig(A, upper=upper) "
141
+ "should be replaced with:\n"
142
+ "L = torch.linalg.eigvalsh(A, UPLO='U' if upper else 'L')\n\n"
143
+ "and\n\n"
144
+ "L, V = torch.symeig(A, eigenvectors=True) "
145
+ "should be replaced with:\n"
146
+ "L, V = torch.linalg.eigh(A, UPLO='U' if upper else 'L')"
147
+ )
148
+
149
+
150
+ def eig(
151
+ self: Tensor, eigenvectors: bool = False, *, e=None, v=None
152
+ ) -> Tuple[Tensor, Tensor]:
153
+ raise RuntimeError(
154
+ "This function was deprecated since version 1.9 and is now removed. "
155
+ "`torch.linalg.eig` returns complex tensors of dtype `cfloat` or `cdouble` rather than real tensors "
156
+ "mimicking complex tensors.\n\n"
157
+ "L, _ = torch.eig(A) "
158
+ "should be replaced with:\n"
159
+ "L_complex = torch.linalg.eigvals(A)\n\n"
160
+ "and\n\n"
161
+ "L, V = torch.eig(A, eigenvectors=True) "
162
+ "should be replaced with:\n"
163
+ "L_complex, V_complex = torch.linalg.eig(A)"
164
+ )
env-llmeval/lib/python3.10/site-packages/torch/_lobpcg.py ADDED
@@ -0,0 +1,1167 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Locally Optimal Block Preconditioned Conjugate Gradient methods.
2
+ """
3
+ # Author: Pearu Peterson
4
+ # Created: February 2020
5
+
6
+ from typing import Dict, Optional, Tuple
7
+
8
+ import torch
9
+ from torch import Tensor
10
+ from . import _linalg_utils as _utils
11
+ from .overrides import handle_torch_function, has_torch_function
12
+
13
+
14
+ __all__ = ["lobpcg"]
15
+
16
+
17
+ def _symeig_backward_complete_eigenspace(D_grad, U_grad, A, D, U):
18
+ # compute F, such that F_ij = (d_j - d_i)^{-1} for i != j, F_ii = 0
19
+ F = D.unsqueeze(-2) - D.unsqueeze(-1)
20
+ F.diagonal(dim1=-2, dim2=-1).fill_(float("inf"))
21
+ F.pow_(-1)
22
+
23
+ # A.grad = U (D.grad + (U^T U.grad * F)) U^T
24
+ Ut = U.mT.contiguous()
25
+ res = torch.matmul(
26
+ U, torch.matmul(torch.diag_embed(D_grad) + torch.matmul(Ut, U_grad) * F, Ut)
27
+ )
28
+
29
+ return res
30
+
31
+
32
+ def _polynomial_coefficients_given_roots(roots):
33
+ """
34
+ Given the `roots` of a polynomial, find the polynomial's coefficients.
35
+
36
+ If roots = (r_1, ..., r_n), then the method returns
37
+ coefficients (a_0, a_1, ..., a_n (== 1)) so that
38
+ p(x) = (x - r_1) * ... * (x - r_n)
39
+ = x^n + a_{n-1} * x^{n-1} + ... a_1 * x_1 + a_0
40
+
41
+ Note: for better performance requires writing a low-level kernel
42
+ """
43
+ poly_order = roots.shape[-1]
44
+ poly_coeffs_shape = list(roots.shape)
45
+ # we assume p(x) = x^n + a_{n-1} * x^{n-1} + ... + a_1 * x + a_0,
46
+ # so poly_coeffs = {a_0, ..., a_n, a_{n+1}(== 1)},
47
+ # but we insert one extra coefficient to enable better vectorization below
48
+ poly_coeffs_shape[-1] += 2
49
+ poly_coeffs = roots.new_zeros(poly_coeffs_shape)
50
+ poly_coeffs[..., 0] = 1
51
+ poly_coeffs[..., -1] = 1
52
+
53
+ # perform the Horner's rule
54
+ for i in range(1, poly_order + 1):
55
+ # note that it is computationally hard to compute backward for this method,
56
+ # because then given the coefficients it would require finding the roots and/or
57
+ # calculating the sensitivity based on the Vieta's theorem.
58
+ # So the code below tries to circumvent the explicit root finding by series
59
+ # of operations on memory copies imitating the Horner's method.
60
+ # The memory copies are required to construct nodes in the computational graph
61
+ # by exploting the explicit (not in-place, separate node for each step)
62
+ # recursion of the Horner's method.
63
+ # Needs more memory, O(... * k^2), but with only O(... * k^2) complexity.
64
+ poly_coeffs_new = poly_coeffs.clone() if roots.requires_grad else poly_coeffs
65
+ out = poly_coeffs_new.narrow(-1, poly_order - i, i + 1)
66
+ out -= roots.narrow(-1, i - 1, 1) * poly_coeffs.narrow(
67
+ -1, poly_order - i + 1, i + 1
68
+ )
69
+ poly_coeffs = poly_coeffs_new
70
+
71
+ return poly_coeffs.narrow(-1, 1, poly_order + 1)
72
+
73
+
74
+ def _polynomial_value(poly, x, zero_power, transition):
75
+ """
76
+ A generic method for computing poly(x) using the Horner's rule.
77
+
78
+ Args:
79
+ poly (Tensor): the (possibly batched) 1D Tensor representing
80
+ polynomial coefficients such that
81
+ poly[..., i] = (a_{i_0}, ..., a{i_n} (==1)), and
82
+ poly(x) = poly[..., 0] * zero_power + ... + poly[..., n] * x^n
83
+
84
+ x (Tensor): the value (possible batched) to evalate the polynomial `poly` at.
85
+
86
+ zero_power (Tensor): the representation of `x^0`. It is application-specific.
87
+
88
+ transition (Callable): the function that accepts some intermediate result `int_val`,
89
+ the `x` and a specific polynomial coefficient
90
+ `poly[..., k]` for some iteration `k`.
91
+ It basically performs one iteration of the Horner's rule
92
+ defined as `x * int_val + poly[..., k] * zero_power`.
93
+ Note that `zero_power` is not a parameter,
94
+ because the step `+ poly[..., k] * zero_power` depends on `x`,
95
+ whether it is a vector, a matrix, or something else, so this
96
+ functionality is delegated to the user.
97
+ """
98
+
99
+ res = zero_power.clone()
100
+ for k in range(poly.size(-1) - 2, -1, -1):
101
+ res = transition(res, x, poly[..., k])
102
+ return res
103
+
104
+
105
+ def _matrix_polynomial_value(poly, x, zero_power=None):
106
+ """
107
+ Evaluates `poly(x)` for the (batched) matrix input `x`.
108
+ Check out `_polynomial_value` function for more details.
109
+ """
110
+
111
+ # matrix-aware Horner's rule iteration
112
+ def transition(curr_poly_val, x, poly_coeff):
113
+ res = x.matmul(curr_poly_val)
114
+ res.diagonal(dim1=-2, dim2=-1).add_(poly_coeff.unsqueeze(-1))
115
+ return res
116
+
117
+ if zero_power is None:
118
+ zero_power = torch.eye(
119
+ x.size(-1), x.size(-1), dtype=x.dtype, device=x.device
120
+ ).view(*([1] * len(list(x.shape[:-2]))), x.size(-1), x.size(-1))
121
+
122
+ return _polynomial_value(poly, x, zero_power, transition)
123
+
124
+
125
+ def _vector_polynomial_value(poly, x, zero_power=None):
126
+ """
127
+ Evaluates `poly(x)` for the (batched) vector input `x`.
128
+ Check out `_polynomial_value` function for more details.
129
+ """
130
+
131
+ # vector-aware Horner's rule iteration
132
+ def transition(curr_poly_val, x, poly_coeff):
133
+ res = torch.addcmul(poly_coeff.unsqueeze(-1), x, curr_poly_val)
134
+ return res
135
+
136
+ if zero_power is None:
137
+ zero_power = x.new_ones(1).expand(x.shape)
138
+
139
+ return _polynomial_value(poly, x, zero_power, transition)
140
+
141
+
142
+ def _symeig_backward_partial_eigenspace(D_grad, U_grad, A, D, U, largest):
143
+ # compute a projection operator onto an orthogonal subspace spanned by the
144
+ # columns of U defined as (I - UU^T)
145
+ Ut = U.mT.contiguous()
146
+ proj_U_ortho = -U.matmul(Ut)
147
+ proj_U_ortho.diagonal(dim1=-2, dim2=-1).add_(1)
148
+
149
+ # compute U_ortho, a basis for the orthogonal complement to the span(U),
150
+ # by projecting a random [..., m, m - k] matrix onto the subspace spanned
151
+ # by the columns of U.
152
+ #
153
+ # fix generator for determinism
154
+ gen = torch.Generator(A.device)
155
+
156
+ # orthogonal complement to the span(U)
157
+ U_ortho = proj_U_ortho.matmul(
158
+ torch.randn(
159
+ (*A.shape[:-1], A.size(-1) - D.size(-1)),
160
+ dtype=A.dtype,
161
+ device=A.device,
162
+ generator=gen,
163
+ )
164
+ )
165
+ U_ortho_t = U_ortho.mT.contiguous()
166
+
167
+ # compute the coefficients of the characteristic polynomial of the tensor D.
168
+ # Note that D is diagonal, so the diagonal elements are exactly the roots
169
+ # of the characteristic polynomial.
170
+ chr_poly_D = _polynomial_coefficients_given_roots(D)
171
+
172
+ # the code belows finds the explicit solution to the Sylvester equation
173
+ # U_ortho^T A U_ortho dX - dX D = -U_ortho^T A U
174
+ # and incorporates it into the whole gradient stored in the `res` variable.
175
+ #
176
+ # Equivalent to the following naive implementation:
177
+ # res = A.new_zeros(A.shape)
178
+ # p_res = A.new_zeros(*A.shape[:-1], D.size(-1))
179
+ # for k in range(1, chr_poly_D.size(-1)):
180
+ # p_res.zero_()
181
+ # for i in range(0, k):
182
+ # p_res += (A.matrix_power(k - 1 - i) @ U_grad) * D.pow(i).unsqueeze(-2)
183
+ # res -= chr_poly_D[k] * (U_ortho @ poly_D_at_A.inverse() @ U_ortho_t @ p_res @ U.t())
184
+ #
185
+ # Note that dX is a differential, so the gradient contribution comes from the backward sensitivity
186
+ # Tr(f(U_grad, D_grad, A, U, D)^T dX) = Tr(g(U_grad, A, U, D)^T dA) for some functions f and g,
187
+ # and we need to compute g(U_grad, A, U, D)
188
+ #
189
+ # The naive implementation is based on the paper
190
+ # Hu, Qingxi, and Daizhan Cheng.
191
+ # "The polynomial solution to the Sylvester matrix equation."
192
+ # Applied mathematics letters 19.9 (2006): 859-864.
193
+ #
194
+ # We can modify the computation of `p_res` from above in a more efficient way
195
+ # p_res = U_grad * (chr_poly_D[1] * D.pow(0) + ... + chr_poly_D[k] * D.pow(k)).unsqueeze(-2)
196
+ # + A U_grad * (chr_poly_D[2] * D.pow(0) + ... + chr_poly_D[k] * D.pow(k - 1)).unsqueeze(-2)
197
+ # + ...
198
+ # + A.matrix_power(k - 1) U_grad * chr_poly_D[k]
199
+ # Note that this saves us from redundant matrix products with A (elimination of matrix_power)
200
+ U_grad_projected = U_grad
201
+ series_acc = U_grad_projected.new_zeros(U_grad_projected.shape)
202
+ for k in range(1, chr_poly_D.size(-1)):
203
+ poly_D = _vector_polynomial_value(chr_poly_D[..., k:], D)
204
+ series_acc += U_grad_projected * poly_D.unsqueeze(-2)
205
+ U_grad_projected = A.matmul(U_grad_projected)
206
+
207
+ # compute chr_poly_D(A) which essentially is:
208
+ #
209
+ # chr_poly_D_at_A = A.new_zeros(A.shape)
210
+ # for k in range(chr_poly_D.size(-1)):
211
+ # chr_poly_D_at_A += chr_poly_D[k] * A.matrix_power(k)
212
+ #
213
+ # Note, however, for better performance we use the Horner's rule
214
+ chr_poly_D_at_A = _matrix_polynomial_value(chr_poly_D, A)
215
+
216
+ # compute the action of `chr_poly_D_at_A` restricted to U_ortho_t
217
+ chr_poly_D_at_A_to_U_ortho = torch.matmul(
218
+ U_ortho_t, torch.matmul(chr_poly_D_at_A, U_ortho)
219
+ )
220
+ # we need to invert 'chr_poly_D_at_A_to_U_ortho`, for that we compute its
221
+ # Cholesky decomposition and then use `torch.cholesky_solve` for better stability.
222
+ # Cholesky decomposition requires the input to be positive-definite.
223
+ # Note that `chr_poly_D_at_A_to_U_ortho` is positive-definite if
224
+ # 1. `largest` == False, or
225
+ # 2. `largest` == True and `k` is even
226
+ # under the assumption that `A` has distinct eigenvalues.
227
+ #
228
+ # check if `chr_poly_D_at_A_to_U_ortho` is positive-definite or negative-definite
229
+ chr_poly_D_at_A_to_U_ortho_sign = -1 if (largest and (k % 2 == 1)) else +1
230
+ chr_poly_D_at_A_to_U_ortho_L = torch.linalg.cholesky(
231
+ chr_poly_D_at_A_to_U_ortho_sign * chr_poly_D_at_A_to_U_ortho
232
+ )
233
+
234
+ # compute the gradient part in span(U)
235
+ res = _symeig_backward_complete_eigenspace(D_grad, U_grad, A, D, U)
236
+
237
+ # incorporate the Sylvester equation solution into the full gradient
238
+ # it resides in span(U_ortho)
239
+ res -= U_ortho.matmul(
240
+ chr_poly_D_at_A_to_U_ortho_sign
241
+ * torch.cholesky_solve(
242
+ U_ortho_t.matmul(series_acc), chr_poly_D_at_A_to_U_ortho_L
243
+ )
244
+ ).matmul(Ut)
245
+
246
+ return res
247
+
248
+
249
+ def _symeig_backward(D_grad, U_grad, A, D, U, largest):
250
+ # if `U` is square, then the columns of `U` is a complete eigenspace
251
+ if U.size(-1) == U.size(-2):
252
+ return _symeig_backward_complete_eigenspace(D_grad, U_grad, A, D, U)
253
+ else:
254
+ return _symeig_backward_partial_eigenspace(D_grad, U_grad, A, D, U, largest)
255
+
256
+
257
+ class LOBPCGAutogradFunction(torch.autograd.Function):
258
+ @staticmethod
259
+ def forward( # type: ignore[override]
260
+ ctx,
261
+ A: Tensor,
262
+ k: Optional[int] = None,
263
+ B: Optional[Tensor] = None,
264
+ X: Optional[Tensor] = None,
265
+ n: Optional[int] = None,
266
+ iK: Optional[Tensor] = None,
267
+ niter: Optional[int] = None,
268
+ tol: Optional[float] = None,
269
+ largest: Optional[bool] = None,
270
+ method: Optional[str] = None,
271
+ tracker: None = None,
272
+ ortho_iparams: Optional[Dict[str, int]] = None,
273
+ ortho_fparams: Optional[Dict[str, float]] = None,
274
+ ortho_bparams: Optional[Dict[str, bool]] = None,
275
+ ) -> Tuple[Tensor, Tensor]:
276
+ # makes sure that input is contiguous for efficiency.
277
+ # Note: autograd does not support dense gradients for sparse input yet.
278
+ A = A.contiguous() if (not A.is_sparse) else A
279
+ if B is not None:
280
+ B = B.contiguous() if (not B.is_sparse) else B
281
+
282
+ D, U = _lobpcg(
283
+ A,
284
+ k,
285
+ B,
286
+ X,
287
+ n,
288
+ iK,
289
+ niter,
290
+ tol,
291
+ largest,
292
+ method,
293
+ tracker,
294
+ ortho_iparams,
295
+ ortho_fparams,
296
+ ortho_bparams,
297
+ )
298
+
299
+ ctx.save_for_backward(A, B, D, U)
300
+ ctx.largest = largest
301
+
302
+ return D, U
303
+
304
+ @staticmethod
305
+ def backward(ctx, D_grad, U_grad):
306
+ A_grad = B_grad = None
307
+ grads = [None] * 14
308
+
309
+ A, B, D, U = ctx.saved_tensors
310
+ largest = ctx.largest
311
+
312
+ # lobpcg.backward has some limitations. Checks for unsupported input
313
+ if A.is_sparse or (B is not None and B.is_sparse and ctx.needs_input_grad[2]):
314
+ raise ValueError(
315
+ "lobpcg.backward does not support sparse input yet."
316
+ "Note that lobpcg.forward does though."
317
+ )
318
+ if (
319
+ A.dtype in (torch.complex64, torch.complex128)
320
+ or B is not None
321
+ and B.dtype in (torch.complex64, torch.complex128)
322
+ ):
323
+ raise ValueError(
324
+ "lobpcg.backward does not support complex input yet."
325
+ "Note that lobpcg.forward does though."
326
+ )
327
+ if B is not None:
328
+ raise ValueError(
329
+ "lobpcg.backward does not support backward with B != I yet."
330
+ )
331
+
332
+ if largest is None:
333
+ largest = True
334
+
335
+ # symeig backward
336
+ if B is None:
337
+ A_grad = _symeig_backward(D_grad, U_grad, A, D, U, largest)
338
+
339
+ # A has index 0
340
+ grads[0] = A_grad
341
+ # B has index 2
342
+ grads[2] = B_grad
343
+ return tuple(grads)
344
+
345
+
346
+ def lobpcg(
347
+ A: Tensor,
348
+ k: Optional[int] = None,
349
+ B: Optional[Tensor] = None,
350
+ X: Optional[Tensor] = None,
351
+ n: Optional[int] = None,
352
+ iK: Optional[Tensor] = None,
353
+ niter: Optional[int] = None,
354
+ tol: Optional[float] = None,
355
+ largest: Optional[bool] = None,
356
+ method: Optional[str] = None,
357
+ tracker: None = None,
358
+ ortho_iparams: Optional[Dict[str, int]] = None,
359
+ ortho_fparams: Optional[Dict[str, float]] = None,
360
+ ortho_bparams: Optional[Dict[str, bool]] = None,
361
+ ) -> Tuple[Tensor, Tensor]:
362
+ """Find the k largest (or smallest) eigenvalues and the corresponding
363
+ eigenvectors of a symmetric positive definite generalized
364
+ eigenvalue problem using matrix-free LOBPCG methods.
365
+
366
+ This function is a front-end to the following LOBPCG algorithms
367
+ selectable via `method` argument:
368
+
369
+ `method="basic"` - the LOBPCG method introduced by Andrew
370
+ Knyazev, see [Knyazev2001]. A less robust method, may fail when
371
+ Cholesky is applied to singular input.
372
+
373
+ `method="ortho"` - the LOBPCG method with orthogonal basis
374
+ selection [StathopoulosEtal2002]. A robust method.
375
+
376
+ Supported inputs are dense, sparse, and batches of dense matrices.
377
+
378
+ .. note:: In general, the basic method spends least time per
379
+ iteration. However, the robust methods converge much faster and
380
+ are more stable. So, the usage of the basic method is generally
381
+ not recommended but there exist cases where the usage of the
382
+ basic method may be preferred.
383
+
384
+ .. warning:: The backward method does not support sparse and complex inputs.
385
+ It works only when `B` is not provided (i.e. `B == None`).
386
+ We are actively working on extensions, and the details of
387
+ the algorithms are going to be published promptly.
388
+
389
+ .. warning:: While it is assumed that `A` is symmetric, `A.grad` is not.
390
+ To make sure that `A.grad` is symmetric, so that `A - t * A.grad` is symmetric
391
+ in first-order optimization routines, prior to running `lobpcg`
392
+ we do the following symmetrization map: `A -> (A + A.t()) / 2`.
393
+ The map is performed only when the `A` requires gradients.
394
+
395
+ Args:
396
+
397
+ A (Tensor): the input tensor of size :math:`(*, m, m)`
398
+
399
+ B (Tensor, optional): the input tensor of size :math:`(*, m,
400
+ m)`. When not specified, `B` is interpreted as
401
+ identity matrix.
402
+
403
+ X (tensor, optional): the input tensor of size :math:`(*, m, n)`
404
+ where `k <= n <= m`. When specified, it is used as
405
+ initial approximation of eigenvectors. X must be a
406
+ dense tensor.
407
+
408
+ iK (tensor, optional): the input tensor of size :math:`(*, m,
409
+ m)`. When specified, it will be used as preconditioner.
410
+
411
+ k (integer, optional): the number of requested
412
+ eigenpairs. Default is the number of :math:`X`
413
+ columns (when specified) or `1`.
414
+
415
+ n (integer, optional): if :math:`X` is not specified then `n`
416
+ specifies the size of the generated random
417
+ approximation of eigenvectors. Default value for `n`
418
+ is `k`. If :math:`X` is specified, the value of `n`
419
+ (when specified) must be the number of :math:`X`
420
+ columns.
421
+
422
+ tol (float, optional): residual tolerance for stopping
423
+ criterion. Default is `feps ** 0.5` where `feps` is
424
+ smallest non-zero floating-point number of the given
425
+ input tensor `A` data type.
426
+
427
+ largest (bool, optional): when True, solve the eigenproblem for
428
+ the largest eigenvalues. Otherwise, solve the
429
+ eigenproblem for smallest eigenvalues. Default is
430
+ `True`.
431
+
432
+ method (str, optional): select LOBPCG method. See the
433
+ description of the function above. Default is
434
+ "ortho".
435
+
436
+ niter (int, optional): maximum number of iterations. When
437
+ reached, the iteration process is hard-stopped and
438
+ the current approximation of eigenpairs is returned.
439
+ For infinite iteration but until convergence criteria
440
+ is met, use `-1`.
441
+
442
+ tracker (callable, optional) : a function for tracing the
443
+ iteration process. When specified, it is called at
444
+ each iteration step with LOBPCG instance as an
445
+ argument. The LOBPCG instance holds the full state of
446
+ the iteration process in the following attributes:
447
+
448
+ `iparams`, `fparams`, `bparams` - dictionaries of
449
+ integer, float, and boolean valued input
450
+ parameters, respectively
451
+
452
+ `ivars`, `fvars`, `bvars`, `tvars` - dictionaries
453
+ of integer, float, boolean, and Tensor valued
454
+ iteration variables, respectively.
455
+
456
+ `A`, `B`, `iK` - input Tensor arguments.
457
+
458
+ `E`, `X`, `S`, `R` - iteration Tensor variables.
459
+
460
+ For instance:
461
+
462
+ `ivars["istep"]` - the current iteration step
463
+ `X` - the current approximation of eigenvectors
464
+ `E` - the current approximation of eigenvalues
465
+ `R` - the current residual
466
+ `ivars["converged_count"]` - the current number of converged eigenpairs
467
+ `tvars["rerr"]` - the current state of convergence criteria
468
+
469
+ Note that when `tracker` stores Tensor objects from
470
+ the LOBPCG instance, it must make copies of these.
471
+
472
+ If `tracker` sets `bvars["force_stop"] = True`, the
473
+ iteration process will be hard-stopped.
474
+
475
+ ortho_iparams, ortho_fparams, ortho_bparams (dict, optional):
476
+ various parameters to LOBPCG algorithm when using
477
+ `method="ortho"`.
478
+
479
+ Returns:
480
+
481
+ E (Tensor): tensor of eigenvalues of size :math:`(*, k)`
482
+
483
+ X (Tensor): tensor of eigenvectors of size :math:`(*, m, k)`
484
+
485
+ References:
486
+
487
+ [Knyazev2001] Andrew V. Knyazev. (2001) Toward the Optimal
488
+ Preconditioned Eigensolver: Locally Optimal Block Preconditioned
489
+ Conjugate Gradient Method. SIAM J. Sci. Comput., 23(2),
490
+ 517-541. (25 pages)
491
+ https://epubs.siam.org/doi/abs/10.1137/S1064827500366124
492
+
493
+ [StathopoulosEtal2002] Andreas Stathopoulos and Kesheng
494
+ Wu. (2002) A Block Orthogonalization Procedure with Constant
495
+ Synchronization Requirements. SIAM J. Sci. Comput., 23(6),
496
+ 2165-2182. (18 pages)
497
+ https://epubs.siam.org/doi/10.1137/S1064827500370883
498
+
499
+ [DuerschEtal2018] Jed A. Duersch, Meiyue Shao, Chao Yang, Ming
500
+ Gu. (2018) A Robust and Efficient Implementation of LOBPCG.
501
+ SIAM J. Sci. Comput., 40(5), C655-C676. (22 pages)
502
+ https://epubs.siam.org/doi/abs/10.1137/17M1129830
503
+
504
+ """
505
+
506
+ if not torch.jit.is_scripting():
507
+ tensor_ops = (A, B, X, iK)
508
+ if not set(map(type, tensor_ops)).issubset(
509
+ (torch.Tensor, type(None))
510
+ ) and has_torch_function(tensor_ops):
511
+ return handle_torch_function(
512
+ lobpcg,
513
+ tensor_ops,
514
+ A,
515
+ k=k,
516
+ B=B,
517
+ X=X,
518
+ n=n,
519
+ iK=iK,
520
+ niter=niter,
521
+ tol=tol,
522
+ largest=largest,
523
+ method=method,
524
+ tracker=tracker,
525
+ ortho_iparams=ortho_iparams,
526
+ ortho_fparams=ortho_fparams,
527
+ ortho_bparams=ortho_bparams,
528
+ )
529
+
530
+ if not torch._jit_internal.is_scripting():
531
+ if A.requires_grad or (B is not None and B.requires_grad):
532
+ # While it is expected that `A` is symmetric,
533
+ # the `A_grad` might be not. Therefore we perform the trick below,
534
+ # so that `A_grad` becomes symmetric.
535
+ # The symmetrization is important for first-order optimization methods,
536
+ # so that (A - alpha * A_grad) is still a symmetric matrix.
537
+ # Same holds for `B`.
538
+ A_sym = (A + A.mT) / 2
539
+ B_sym = (B + B.mT) / 2 if (B is not None) else None
540
+
541
+ return LOBPCGAutogradFunction.apply(
542
+ A_sym,
543
+ k,
544
+ B_sym,
545
+ X,
546
+ n,
547
+ iK,
548
+ niter,
549
+ tol,
550
+ largest,
551
+ method,
552
+ tracker,
553
+ ortho_iparams,
554
+ ortho_fparams,
555
+ ortho_bparams,
556
+ )
557
+ else:
558
+ if A.requires_grad or (B is not None and B.requires_grad):
559
+ raise RuntimeError(
560
+ "Script and require grads is not supported atm."
561
+ "If you just want to do the forward, use .detach()"
562
+ "on A and B before calling into lobpcg"
563
+ )
564
+
565
+ return _lobpcg(
566
+ A,
567
+ k,
568
+ B,
569
+ X,
570
+ n,
571
+ iK,
572
+ niter,
573
+ tol,
574
+ largest,
575
+ method,
576
+ tracker,
577
+ ortho_iparams,
578
+ ortho_fparams,
579
+ ortho_bparams,
580
+ )
581
+
582
+
583
+ def _lobpcg(
584
+ A: Tensor,
585
+ k: Optional[int] = None,
586
+ B: Optional[Tensor] = None,
587
+ X: Optional[Tensor] = None,
588
+ n: Optional[int] = None,
589
+ iK: Optional[Tensor] = None,
590
+ niter: Optional[int] = None,
591
+ tol: Optional[float] = None,
592
+ largest: Optional[bool] = None,
593
+ method: Optional[str] = None,
594
+ tracker: None = None,
595
+ ortho_iparams: Optional[Dict[str, int]] = None,
596
+ ortho_fparams: Optional[Dict[str, float]] = None,
597
+ ortho_bparams: Optional[Dict[str, bool]] = None,
598
+ ) -> Tuple[Tensor, Tensor]:
599
+ # A must be square:
600
+ assert A.shape[-2] == A.shape[-1], A.shape
601
+ if B is not None:
602
+ # A and B must have the same shapes:
603
+ assert A.shape == B.shape, (A.shape, B.shape)
604
+
605
+ dtype = _utils.get_floating_dtype(A)
606
+ device = A.device
607
+ if tol is None:
608
+ feps = {torch.float32: 1.2e-07, torch.float64: 2.23e-16}[dtype]
609
+ tol = feps**0.5
610
+
611
+ m = A.shape[-1]
612
+ k = (1 if X is None else X.shape[-1]) if k is None else k
613
+ n = (k if n is None else n) if X is None else X.shape[-1]
614
+
615
+ if m < 3 * n:
616
+ raise ValueError(
617
+ f"LPBPCG algorithm is not applicable when the number of A rows (={m})"
618
+ f" is smaller than 3 x the number of requested eigenpairs (={n})"
619
+ )
620
+
621
+ method = "ortho" if method is None else method
622
+
623
+ iparams = {
624
+ "m": m,
625
+ "n": n,
626
+ "k": k,
627
+ "niter": 1000 if niter is None else niter,
628
+ }
629
+
630
+ fparams = {
631
+ "tol": tol,
632
+ }
633
+
634
+ bparams = {"largest": True if largest is None else largest}
635
+
636
+ if method == "ortho":
637
+ if ortho_iparams is not None:
638
+ iparams.update(ortho_iparams)
639
+ if ortho_fparams is not None:
640
+ fparams.update(ortho_fparams)
641
+ if ortho_bparams is not None:
642
+ bparams.update(ortho_bparams)
643
+ iparams["ortho_i_max"] = iparams.get("ortho_i_max", 3)
644
+ iparams["ortho_j_max"] = iparams.get("ortho_j_max", 3)
645
+ fparams["ortho_tol"] = fparams.get("ortho_tol", tol)
646
+ fparams["ortho_tol_drop"] = fparams.get("ortho_tol_drop", tol)
647
+ fparams["ortho_tol_replace"] = fparams.get("ortho_tol_replace", tol)
648
+ bparams["ortho_use_drop"] = bparams.get("ortho_use_drop", False)
649
+
650
+ if not torch.jit.is_scripting():
651
+ LOBPCG.call_tracker = LOBPCG_call_tracker # type: ignore[assignment]
652
+
653
+ if len(A.shape) > 2:
654
+ N = int(torch.prod(torch.tensor(A.shape[:-2])))
655
+ bA = A.reshape((N,) + A.shape[-2:])
656
+ bB = B.reshape((N,) + A.shape[-2:]) if B is not None else None
657
+ bX = X.reshape((N,) + X.shape[-2:]) if X is not None else None
658
+ bE = torch.empty((N, k), dtype=dtype, device=device)
659
+ bXret = torch.empty((N, m, k), dtype=dtype, device=device)
660
+
661
+ for i in range(N):
662
+ A_ = bA[i]
663
+ B_ = bB[i] if bB is not None else None
664
+ X_ = (
665
+ torch.randn((m, n), dtype=dtype, device=device) if bX is None else bX[i]
666
+ )
667
+ assert len(X_.shape) == 2 and X_.shape == (m, n), (X_.shape, (m, n))
668
+ iparams["batch_index"] = i
669
+ worker = LOBPCG(A_, B_, X_, iK, iparams, fparams, bparams, method, tracker)
670
+ worker.run()
671
+ bE[i] = worker.E[:k]
672
+ bXret[i] = worker.X[:, :k]
673
+
674
+ if not torch.jit.is_scripting():
675
+ LOBPCG.call_tracker = LOBPCG_call_tracker_orig # type: ignore[assignment]
676
+
677
+ return bE.reshape(A.shape[:-2] + (k,)), bXret.reshape(A.shape[:-2] + (m, k))
678
+
679
+ X = torch.randn((m, n), dtype=dtype, device=device) if X is None else X
680
+ assert len(X.shape) == 2 and X.shape == (m, n), (X.shape, (m, n))
681
+
682
+ worker = LOBPCG(A, B, X, iK, iparams, fparams, bparams, method, tracker)
683
+
684
+ worker.run()
685
+
686
+ if not torch.jit.is_scripting():
687
+ LOBPCG.call_tracker = LOBPCG_call_tracker_orig # type: ignore[assignment]
688
+
689
+ return worker.E[:k], worker.X[:, :k]
690
+
691
+
692
+ class LOBPCG:
693
+ """Worker class of LOBPCG methods."""
694
+
695
+ def __init__(
696
+ self,
697
+ A: Optional[Tensor],
698
+ B: Optional[Tensor],
699
+ X: Tensor,
700
+ iK: Optional[Tensor],
701
+ iparams: Dict[str, int],
702
+ fparams: Dict[str, float],
703
+ bparams: Dict[str, bool],
704
+ method: str,
705
+ tracker: None,
706
+ ) -> None:
707
+ # constant parameters
708
+ self.A = A
709
+ self.B = B
710
+ self.iK = iK
711
+ self.iparams = iparams
712
+ self.fparams = fparams
713
+ self.bparams = bparams
714
+ self.method = method
715
+ self.tracker = tracker
716
+ m = iparams["m"]
717
+ n = iparams["n"]
718
+
719
+ # variable parameters
720
+ self.X = X
721
+ self.E = torch.zeros((n,), dtype=X.dtype, device=X.device)
722
+ self.R = torch.zeros((m, n), dtype=X.dtype, device=X.device)
723
+ self.S = torch.zeros((m, 3 * n), dtype=X.dtype, device=X.device)
724
+ self.tvars: Dict[str, Tensor] = {}
725
+ self.ivars: Dict[str, int] = {"istep": 0}
726
+ self.fvars: Dict[str, float] = {"_": 0.0}
727
+ self.bvars: Dict[str, bool] = {"_": False}
728
+
729
+ def __str__(self):
730
+ lines = ["LOPBCG:"]
731
+ lines += [f" iparams={self.iparams}"]
732
+ lines += [f" fparams={self.fparams}"]
733
+ lines += [f" bparams={self.bparams}"]
734
+ lines += [f" ivars={self.ivars}"]
735
+ lines += [f" fvars={self.fvars}"]
736
+ lines += [f" bvars={self.bvars}"]
737
+ lines += [f" tvars={self.tvars}"]
738
+ lines += [f" A={self.A}"]
739
+ lines += [f" B={self.B}"]
740
+ lines += [f" iK={self.iK}"]
741
+ lines += [f" X={self.X}"]
742
+ lines += [f" E={self.E}"]
743
+ r = ""
744
+ for line in lines:
745
+ r += line + "\n"
746
+ return r
747
+
748
+ def update(self):
749
+ """Set and update iteration variables."""
750
+ if self.ivars["istep"] == 0:
751
+ X_norm = float(torch.norm(self.X))
752
+ iX_norm = X_norm**-1
753
+ A_norm = float(torch.norm(_utils.matmul(self.A, self.X))) * iX_norm
754
+ B_norm = float(torch.norm(_utils.matmul(self.B, self.X))) * iX_norm
755
+ self.fvars["X_norm"] = X_norm
756
+ self.fvars["A_norm"] = A_norm
757
+ self.fvars["B_norm"] = B_norm
758
+ self.ivars["iterations_left"] = self.iparams["niter"]
759
+ self.ivars["converged_count"] = 0
760
+ self.ivars["converged_end"] = 0
761
+
762
+ if self.method == "ortho":
763
+ self._update_ortho()
764
+ else:
765
+ self._update_basic()
766
+
767
+ self.ivars["iterations_left"] = self.ivars["iterations_left"] - 1
768
+ self.ivars["istep"] = self.ivars["istep"] + 1
769
+
770
+ def update_residual(self):
771
+ """Update residual R from A, B, X, E."""
772
+ mm = _utils.matmul
773
+ self.R = mm(self.A, self.X) - mm(self.B, self.X) * self.E
774
+
775
+ def update_converged_count(self):
776
+ """Determine the number of converged eigenpairs using backward stable
777
+ convergence criterion, see discussion in Sec 4.3 of [DuerschEtal2018].
778
+
779
+ Users may redefine this method for custom convergence criteria.
780
+ """
781
+ # (...) -> int
782
+ prev_count = self.ivars["converged_count"]
783
+ tol = self.fparams["tol"]
784
+ A_norm = self.fvars["A_norm"]
785
+ B_norm = self.fvars["B_norm"]
786
+ E, X, R = self.E, self.X, self.R
787
+ rerr = (
788
+ torch.norm(R, 2, (0,))
789
+ * (torch.norm(X, 2, (0,)) * (A_norm + E[: X.shape[-1]] * B_norm)) ** -1
790
+ )
791
+ converged = rerr < tol
792
+ count = 0
793
+ for b in converged:
794
+ if not b:
795
+ # ignore convergence of following pairs to ensure
796
+ # strict ordering of eigenpairs
797
+ break
798
+ count += 1
799
+ assert (
800
+ count >= prev_count
801
+ ), f"the number of converged eigenpairs (was {prev_count}, got {count}) cannot decrease"
802
+ self.ivars["converged_count"] = count
803
+ self.tvars["rerr"] = rerr
804
+ return count
805
+
806
+ def stop_iteration(self):
807
+ """Return True to stop iterations.
808
+
809
+ Note that tracker (if defined) can force-stop iterations by
810
+ setting ``worker.bvars['force_stop'] = True``.
811
+ """
812
+ return (
813
+ self.bvars.get("force_stop", False)
814
+ or self.ivars["iterations_left"] == 0
815
+ or self.ivars["converged_count"] >= self.iparams["k"]
816
+ )
817
+
818
+ def run(self):
819
+ """Run LOBPCG iterations.
820
+
821
+ Use this method as a template for implementing LOBPCG
822
+ iteration scheme with custom tracker that is compatible with
823
+ TorchScript.
824
+ """
825
+ self.update()
826
+
827
+ if not torch.jit.is_scripting() and self.tracker is not None:
828
+ self.call_tracker()
829
+
830
+ while not self.stop_iteration():
831
+ self.update()
832
+
833
+ if not torch.jit.is_scripting() and self.tracker is not None:
834
+ self.call_tracker()
835
+
836
+ @torch.jit.unused
837
+ def call_tracker(self):
838
+ """Interface for tracking iteration process in Python mode.
839
+
840
+ Tracking the iteration process is disabled in TorchScript
841
+ mode. In fact, one should specify tracker=None when JIT
842
+ compiling functions using lobpcg.
843
+ """
844
+ # do nothing when in TorchScript mode
845
+ pass
846
+
847
+ # Internal methods
848
+
849
+ def _update_basic(self):
850
+ """
851
+ Update or initialize iteration variables when `method == "basic"`.
852
+ """
853
+ mm = torch.matmul
854
+ ns = self.ivars["converged_end"]
855
+ nc = self.ivars["converged_count"]
856
+ n = self.iparams["n"]
857
+ largest = self.bparams["largest"]
858
+
859
+ if self.ivars["istep"] == 0:
860
+ Ri = self._get_rayleigh_ritz_transform(self.X)
861
+ M = _utils.qform(_utils.qform(self.A, self.X), Ri)
862
+ E, Z = _utils.symeig(M, largest)
863
+ self.X[:] = mm(self.X, mm(Ri, Z))
864
+ self.E[:] = E
865
+ np = 0
866
+ self.update_residual()
867
+ nc = self.update_converged_count()
868
+ self.S[..., :n] = self.X
869
+
870
+ W = _utils.matmul(self.iK, self.R)
871
+ self.ivars["converged_end"] = ns = n + np + W.shape[-1]
872
+ self.S[:, n + np : ns] = W
873
+ else:
874
+ S_ = self.S[:, nc:ns]
875
+ Ri = self._get_rayleigh_ritz_transform(S_)
876
+ M = _utils.qform(_utils.qform(self.A, S_), Ri)
877
+ E_, Z = _utils.symeig(M, largest)
878
+ self.X[:, nc:] = mm(S_, mm(Ri, Z[:, : n - nc]))
879
+ self.E[nc:] = E_[: n - nc]
880
+ P = mm(S_, mm(Ri, Z[:, n : 2 * n - nc]))
881
+ np = P.shape[-1]
882
+
883
+ self.update_residual()
884
+ nc = self.update_converged_count()
885
+ self.S[..., :n] = self.X
886
+ self.S[:, n : n + np] = P
887
+ W = _utils.matmul(self.iK, self.R[:, nc:])
888
+
889
+ self.ivars["converged_end"] = ns = n + np + W.shape[-1]
890
+ self.S[:, n + np : ns] = W
891
+
892
+ def _update_ortho(self):
893
+ """
894
+ Update or initialize iteration variables when `method == "ortho"`.
895
+ """
896
+ mm = torch.matmul
897
+ ns = self.ivars["converged_end"]
898
+ nc = self.ivars["converged_count"]
899
+ n = self.iparams["n"]
900
+ largest = self.bparams["largest"]
901
+
902
+ if self.ivars["istep"] == 0:
903
+ Ri = self._get_rayleigh_ritz_transform(self.X)
904
+ M = _utils.qform(_utils.qform(self.A, self.X), Ri)
905
+ E, Z = _utils.symeig(M, largest)
906
+ self.X = mm(self.X, mm(Ri, Z))
907
+ self.update_residual()
908
+ np = 0
909
+ nc = self.update_converged_count()
910
+ self.S[:, :n] = self.X
911
+ W = self._get_ortho(self.R, self.X)
912
+ ns = self.ivars["converged_end"] = n + np + W.shape[-1]
913
+ self.S[:, n + np : ns] = W
914
+
915
+ else:
916
+ S_ = self.S[:, nc:ns]
917
+ # Rayleigh-Ritz procedure
918
+ E_, Z = _utils.symeig(_utils.qform(self.A, S_), largest)
919
+
920
+ # Update E, X, P
921
+ self.X[:, nc:] = mm(S_, Z[:, : n - nc])
922
+ self.E[nc:] = E_[: n - nc]
923
+ P = mm(
924
+ S_,
925
+ mm(
926
+ Z[:, n - nc :],
927
+ _utils.basis(_utils.transpose(Z[: n - nc, n - nc :])),
928
+ ),
929
+ )
930
+ np = P.shape[-1]
931
+
932
+ # check convergence
933
+ self.update_residual()
934
+ nc = self.update_converged_count()
935
+
936
+ # update S
937
+ self.S[:, :n] = self.X
938
+ self.S[:, n : n + np] = P
939
+ W = self._get_ortho(self.R[:, nc:], self.S[:, : n + np])
940
+ ns = self.ivars["converged_end"] = n + np + W.shape[-1]
941
+ self.S[:, n + np : ns] = W
942
+
943
+ def _get_rayleigh_ritz_transform(self, S):
944
+ """Return a transformation matrix that is used in Rayleigh-Ritz
945
+ procedure for reducing a general eigenvalue problem :math:`(S^TAS)
946
+ C = (S^TBS) C E` to a standard eigenvalue problem :math: `(Ri^T
947
+ S^TAS Ri) Z = Z E` where `C = Ri Z`.
948
+
949
+ .. note:: In the original Rayleight-Ritz procedure in
950
+ [DuerschEtal2018], the problem is formulated as follows::
951
+
952
+ SAS = S^T A S
953
+ SBS = S^T B S
954
+ D = (<diagonal matrix of SBS>) ** -1/2
955
+ R^T R = Cholesky(D SBS D)
956
+ Ri = D R^-1
957
+ solve symeig problem Ri^T SAS Ri Z = Theta Z
958
+ C = Ri Z
959
+
960
+ To reduce the number of matrix products (denoted by empty
961
+ space between matrices), here we introduce element-wise
962
+ products (denoted by symbol `*`) so that the Rayleight-Ritz
963
+ procedure becomes::
964
+
965
+ SAS = S^T A S
966
+ SBS = S^T B S
967
+ d = (<diagonal of SBS>) ** -1/2 # this is 1-d column vector
968
+ dd = d d^T # this is 2-d matrix
969
+ R^T R = Cholesky(dd * SBS)
970
+ Ri = R^-1 * d # broadcasting
971
+ solve symeig problem Ri^T SAS Ri Z = Theta Z
972
+ C = Ri Z
973
+
974
+ where `dd` is 2-d matrix that replaces matrix products `D M
975
+ D` with one element-wise product `M * dd`; and `d` replaces
976
+ matrix product `D M` with element-wise product `M *
977
+ d`. Also, creating the diagonal matrix `D` is avoided.
978
+
979
+ Args:
980
+ S (Tensor): the matrix basis for the search subspace, size is
981
+ :math:`(m, n)`.
982
+
983
+ Returns:
984
+ Ri (tensor): upper-triangular transformation matrix of size
985
+ :math:`(n, n)`.
986
+
987
+ """
988
+ B = self.B
989
+ mm = torch.matmul
990
+ SBS = _utils.qform(B, S)
991
+ d_row = SBS.diagonal(0, -2, -1) ** -0.5
992
+ d_col = d_row.reshape(d_row.shape[0], 1)
993
+ # TODO use torch.linalg.cholesky_solve once it is implemented
994
+ R = torch.linalg.cholesky((SBS * d_row) * d_col, upper=True)
995
+ return torch.linalg.solve_triangular(
996
+ R, d_row.diag_embed(), upper=True, left=False
997
+ )
998
+
999
+ def _get_svqb(
1000
+ self, U: Tensor, drop: bool, tau: float # Tensor # bool # float
1001
+ ) -> Tensor:
1002
+ """Return B-orthonormal U.
1003
+
1004
+ .. note:: When `drop` is `False` then `svqb` is based on the
1005
+ Algorithm 4 from [DuerschPhD2015] that is a slight
1006
+ modification of the corresponding algorithm
1007
+ introduced in [StathopolousWu2002].
1008
+
1009
+ Args:
1010
+
1011
+ U (Tensor) : initial approximation, size is (m, n)
1012
+ drop (bool) : when True, drop columns that
1013
+ contribution to the `span([U])` is small.
1014
+ tau (float) : positive tolerance
1015
+
1016
+ Returns:
1017
+
1018
+ U (Tensor) : B-orthonormal columns (:math:`U^T B U = I`), size
1019
+ is (m, n1), where `n1 = n` if `drop` is `False,
1020
+ otherwise `n1 <= n`.
1021
+
1022
+ """
1023
+ if torch.numel(U) == 0:
1024
+ return U
1025
+ UBU = _utils.qform(self.B, U)
1026
+ d = UBU.diagonal(0, -2, -1)
1027
+
1028
+ # Detect and drop exact zero columns from U. While the test
1029
+ # `abs(d) == 0` is unlikely to be True for random data, it is
1030
+ # possible to construct input data to lobpcg where it will be
1031
+ # True leading to a failure (notice the `d ** -0.5` operation
1032
+ # in the original algorithm). To prevent the failure, we drop
1033
+ # the exact zero columns here and then continue with the
1034
+ # original algorithm below.
1035
+ nz = torch.where(abs(d) != 0.0)
1036
+ assert len(nz) == 1, nz
1037
+ if len(nz[0]) < len(d):
1038
+ U = U[:, nz[0]]
1039
+ if torch.numel(U) == 0:
1040
+ return U
1041
+ UBU = _utils.qform(self.B, U)
1042
+ d = UBU.diagonal(0, -2, -1)
1043
+ nz = torch.where(abs(d) != 0.0)
1044
+ assert len(nz[0]) == len(d)
1045
+
1046
+ # The original algorithm 4 from [DuerschPhD2015].
1047
+ d_col = (d**-0.5).reshape(d.shape[0], 1)
1048
+ DUBUD = (UBU * d_col) * _utils.transpose(d_col)
1049
+ E, Z = _utils.symeig(DUBUD)
1050
+ t = tau * abs(E).max()
1051
+ if drop:
1052
+ keep = torch.where(E > t)
1053
+ assert len(keep) == 1, keep
1054
+ E = E[keep[0]]
1055
+ Z = Z[:, keep[0]]
1056
+ d_col = d_col[keep[0]]
1057
+ else:
1058
+ E[(torch.where(E < t))[0]] = t
1059
+
1060
+ return torch.matmul(U * _utils.transpose(d_col), Z * E**-0.5)
1061
+
1062
+ def _get_ortho(self, U, V):
1063
+ """Return B-orthonormal U with columns are B-orthogonal to V.
1064
+
1065
+ .. note:: When `bparams["ortho_use_drop"] == False` then
1066
+ `_get_ortho` is based on the Algorithm 3 from
1067
+ [DuerschPhD2015] that is a slight modification of
1068
+ the corresponding algorithm introduced in
1069
+ [StathopolousWu2002]. Otherwise, the method
1070
+ implements Algorithm 6 from [DuerschPhD2015]
1071
+
1072
+ .. note:: If all U columns are B-collinear to V then the
1073
+ returned tensor U will be empty.
1074
+
1075
+ Args:
1076
+
1077
+ U (Tensor) : initial approximation, size is (m, n)
1078
+ V (Tensor) : B-orthogonal external basis, size is (m, k)
1079
+
1080
+ Returns:
1081
+
1082
+ U (Tensor) : B-orthonormal columns (:math:`U^T B U = I`)
1083
+ such that :math:`V^T B U=0`, size is (m, n1),
1084
+ where `n1 = n` if `drop` is `False, otherwise
1085
+ `n1 <= n`.
1086
+ """
1087
+ mm = torch.matmul
1088
+ mm_B = _utils.matmul
1089
+ m = self.iparams["m"]
1090
+ tau_ortho = self.fparams["ortho_tol"]
1091
+ tau_drop = self.fparams["ortho_tol_drop"]
1092
+ tau_replace = self.fparams["ortho_tol_replace"]
1093
+ i_max = self.iparams["ortho_i_max"]
1094
+ j_max = self.iparams["ortho_j_max"]
1095
+ # when use_drop==True, enable dropping U columns that have
1096
+ # small contribution to the `span([U, V])`.
1097
+ use_drop = self.bparams["ortho_use_drop"]
1098
+
1099
+ # clean up variables from the previous call
1100
+ for vkey in list(self.fvars.keys()):
1101
+ if vkey.startswith("ortho_") and vkey.endswith("_rerr"):
1102
+ self.fvars.pop(vkey)
1103
+ self.ivars.pop("ortho_i", 0)
1104
+ self.ivars.pop("ortho_j", 0)
1105
+
1106
+ BV_norm = torch.norm(mm_B(self.B, V))
1107
+ BU = mm_B(self.B, U)
1108
+ VBU = mm(_utils.transpose(V), BU)
1109
+ i = j = 0
1110
+ stats = ""
1111
+ for i in range(i_max):
1112
+ U = U - mm(V, VBU)
1113
+ drop = False
1114
+ tau_svqb = tau_drop
1115
+ for j in range(j_max):
1116
+ if use_drop:
1117
+ U = self._get_svqb(U, drop, tau_svqb)
1118
+ drop = True
1119
+ tau_svqb = tau_replace
1120
+ else:
1121
+ U = self._get_svqb(U, False, tau_replace)
1122
+ if torch.numel(U) == 0:
1123
+ # all initial U columns are B-collinear to V
1124
+ self.ivars["ortho_i"] = i
1125
+ self.ivars["ortho_j"] = j
1126
+ return U
1127
+ BU = mm_B(self.B, U)
1128
+ UBU = mm(_utils.transpose(U), BU)
1129
+ U_norm = torch.norm(U)
1130
+ BU_norm = torch.norm(BU)
1131
+ R = UBU - torch.eye(UBU.shape[-1], device=UBU.device, dtype=UBU.dtype)
1132
+ R_norm = torch.norm(R)
1133
+ # https://github.com/pytorch/pytorch/issues/33810 workaround:
1134
+ rerr = float(R_norm) * float(BU_norm * U_norm) ** -1
1135
+ vkey = f"ortho_UBUmI_rerr[{i}, {j}]"
1136
+ self.fvars[vkey] = rerr
1137
+ if rerr < tau_ortho:
1138
+ break
1139
+ VBU = mm(_utils.transpose(V), BU)
1140
+ VBU_norm = torch.norm(VBU)
1141
+ U_norm = torch.norm(U)
1142
+ rerr = float(VBU_norm) * float(BV_norm * U_norm) ** -1
1143
+ vkey = f"ortho_VBU_rerr[{i}]"
1144
+ self.fvars[vkey] = rerr
1145
+ if rerr < tau_ortho:
1146
+ break
1147
+ if m < U.shape[-1] + V.shape[-1]:
1148
+ # TorchScript needs the class var to be assigned to a local to
1149
+ # do optional type refinement
1150
+ B = self.B
1151
+ assert B is not None
1152
+ raise ValueError(
1153
+ "Overdetermined shape of U:"
1154
+ f" #B-cols(={B.shape[-1]}) >= #U-cols(={U.shape[-1]}) + #V-cols(={V.shape[-1]}) must hold"
1155
+ )
1156
+ self.ivars["ortho_i"] = i
1157
+ self.ivars["ortho_j"] = j
1158
+ return U
1159
+
1160
+
1161
+ # Calling tracker is separated from LOBPCG definitions because
1162
+ # TorchScript does not support user-defined callback arguments:
1163
+ LOBPCG_call_tracker_orig = LOBPCG.call_tracker
1164
+
1165
+
1166
+ def LOBPCG_call_tracker(self):
1167
+ self.tracker(self)
env-llmeval/lib/python3.10/site-packages/torch/_lowrank.py ADDED
@@ -0,0 +1,298 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Implement various linear algebra algorithms for low rank matrices.
2
+ """
3
+
4
+ __all__ = ["svd_lowrank", "pca_lowrank"]
5
+
6
+ from typing import Optional, Tuple
7
+
8
+ import torch
9
+ from torch import Tensor
10
+ from . import _linalg_utils as _utils
11
+ from .overrides import handle_torch_function, has_torch_function
12
+
13
+
14
+ def get_approximate_basis(
15
+ A: Tensor, q: int, niter: Optional[int] = 2, M: Optional[Tensor] = None
16
+ ) -> Tensor:
17
+ """Return tensor :math:`Q` with :math:`q` orthonormal columns such
18
+ that :math:`Q Q^H A` approximates :math:`A`. If :math:`M` is
19
+ specified, then :math:`Q` is such that :math:`Q Q^H (A - M)`
20
+ approximates :math:`A - M`.
21
+
22
+ .. note:: The implementation is based on the Algorithm 4.4 from
23
+ Halko et al, 2009.
24
+
25
+ .. note:: For an adequate approximation of a k-rank matrix
26
+ :math:`A`, where k is not known in advance but could be
27
+ estimated, the number of :math:`Q` columns, q, can be
28
+ choosen according to the following criteria: in general,
29
+ :math:`k <= q <= min(2*k, m, n)`. For large low-rank
30
+ matrices, take :math:`q = k + 5..10`. If k is
31
+ relatively small compared to :math:`min(m, n)`, choosing
32
+ :math:`q = k + 0..2` may be sufficient.
33
+
34
+ .. note:: To obtain repeatable results, reset the seed for the
35
+ pseudorandom number generator
36
+
37
+ Args::
38
+ A (Tensor): the input tensor of size :math:`(*, m, n)`
39
+
40
+ q (int): the dimension of subspace spanned by :math:`Q`
41
+ columns.
42
+
43
+ niter (int, optional): the number of subspace iterations to
44
+ conduct; ``niter`` must be a
45
+ nonnegative integer. In most cases, the
46
+ default value 2 is more than enough.
47
+
48
+ M (Tensor, optional): the input tensor's mean of size
49
+ :math:`(*, 1, n)`.
50
+
51
+ References::
52
+ - Nathan Halko, Per-Gunnar Martinsson, and Joel Tropp, Finding
53
+ structure with randomness: probabilistic algorithms for
54
+ constructing approximate matrix decompositions,
55
+ arXiv:0909.4061 [math.NA; math.PR], 2009 (available at
56
+ `arXiv <http://arxiv.org/abs/0909.4061>`_).
57
+ """
58
+
59
+ niter = 2 if niter is None else niter
60
+ m, n = A.shape[-2:]
61
+ dtype = _utils.get_floating_dtype(A)
62
+ matmul = _utils.matmul
63
+
64
+ R = torch.randn(n, q, dtype=dtype, device=A.device)
65
+
66
+ # The following code could be made faster using torch.geqrf + torch.ormqr
67
+ # but geqrf is not differentiable
68
+ A_H = _utils.transjugate(A)
69
+ if M is None:
70
+ Q = torch.linalg.qr(matmul(A, R)).Q
71
+ for i in range(niter):
72
+ Q = torch.linalg.qr(matmul(A_H, Q)).Q
73
+ Q = torch.linalg.qr(matmul(A, Q)).Q
74
+ else:
75
+ M_H = _utils.transjugate(M)
76
+ Q = torch.linalg.qr(matmul(A, R) - matmul(M, R)).Q
77
+ for i in range(niter):
78
+ Q = torch.linalg.qr(matmul(A_H, Q) - matmul(M_H, Q)).Q
79
+ Q = torch.linalg.qr(matmul(A, Q) - matmul(M, Q)).Q
80
+
81
+ return Q
82
+
83
+
84
+ def svd_lowrank(
85
+ A: Tensor,
86
+ q: Optional[int] = 6,
87
+ niter: Optional[int] = 2,
88
+ M: Optional[Tensor] = None,
89
+ ) -> Tuple[Tensor, Tensor, Tensor]:
90
+ r"""Return the singular value decomposition ``(U, S, V)`` of a matrix,
91
+ batches of matrices, or a sparse matrix :math:`A` such that
92
+ :math:`A \approx U diag(S) V^T`. In case :math:`M` is given, then
93
+ SVD is computed for the matrix :math:`A - M`.
94
+
95
+ .. note:: The implementation is based on the Algorithm 5.1 from
96
+ Halko et al, 2009.
97
+
98
+ .. note:: To obtain repeatable results, reset the seed for the
99
+ pseudorandom number generator
100
+
101
+ .. note:: The input is assumed to be a low-rank matrix.
102
+
103
+ .. note:: In general, use the full-rank SVD implementation
104
+ :func:`torch.linalg.svd` for dense matrices due to its 10-fold
105
+ higher performance characteristics. The low-rank SVD
106
+ will be useful for huge sparse matrices that
107
+ :func:`torch.linalg.svd` cannot handle.
108
+
109
+ Args::
110
+ A (Tensor): the input tensor of size :math:`(*, m, n)`
111
+
112
+ q (int, optional): a slightly overestimated rank of A.
113
+
114
+ niter (int, optional): the number of subspace iterations to
115
+ conduct; niter must be a nonnegative
116
+ integer, and defaults to 2
117
+
118
+ M (Tensor, optional): the input tensor's mean of size
119
+ :math:`(*, 1, n)`.
120
+
121
+ References::
122
+ - Nathan Halko, Per-Gunnar Martinsson, and Joel Tropp, Finding
123
+ structure with randomness: probabilistic algorithms for
124
+ constructing approximate matrix decompositions,
125
+ arXiv:0909.4061 [math.NA; math.PR], 2009 (available at
126
+ `arXiv <https://arxiv.org/abs/0909.4061>`_).
127
+
128
+ """
129
+ if not torch.jit.is_scripting():
130
+ tensor_ops = (A, M)
131
+ if not set(map(type, tensor_ops)).issubset(
132
+ (torch.Tensor, type(None))
133
+ ) and has_torch_function(tensor_ops):
134
+ return handle_torch_function(
135
+ svd_lowrank, tensor_ops, A, q=q, niter=niter, M=M
136
+ )
137
+ return _svd_lowrank(A, q=q, niter=niter, M=M)
138
+
139
+
140
+ def _svd_lowrank(
141
+ A: Tensor,
142
+ q: Optional[int] = 6,
143
+ niter: Optional[int] = 2,
144
+ M: Optional[Tensor] = None,
145
+ ) -> Tuple[Tensor, Tensor, Tensor]:
146
+ q = 6 if q is None else q
147
+ m, n = A.shape[-2:]
148
+ matmul = _utils.matmul
149
+ if M is None:
150
+ M_t = None
151
+ else:
152
+ M_t = _utils.transpose(M)
153
+ A_t = _utils.transpose(A)
154
+
155
+ # Algorithm 5.1 in Halko et al 2009, slightly modified to reduce
156
+ # the number conjugate and transpose operations
157
+ if m < n or n > q:
158
+ # computing the SVD approximation of a transpose in
159
+ # order to keep B shape minimal (the m < n case) or the V
160
+ # shape small (the n > q case)
161
+ Q = get_approximate_basis(A_t, q, niter=niter, M=M_t)
162
+ Q_c = _utils.conjugate(Q)
163
+ if M is None:
164
+ B_t = matmul(A, Q_c)
165
+ else:
166
+ B_t = matmul(A, Q_c) - matmul(M, Q_c)
167
+ assert B_t.shape[-2] == m, (B_t.shape, m)
168
+ assert B_t.shape[-1] == q, (B_t.shape, q)
169
+ assert B_t.shape[-1] <= B_t.shape[-2], B_t.shape
170
+ U, S, Vh = torch.linalg.svd(B_t, full_matrices=False)
171
+ V = Vh.mH
172
+ V = Q.matmul(V)
173
+ else:
174
+ Q = get_approximate_basis(A, q, niter=niter, M=M)
175
+ Q_c = _utils.conjugate(Q)
176
+ if M is None:
177
+ B = matmul(A_t, Q_c)
178
+ else:
179
+ B = matmul(A_t, Q_c) - matmul(M_t, Q_c)
180
+ B_t = _utils.transpose(B)
181
+ assert B_t.shape[-2] == q, (B_t.shape, q)
182
+ assert B_t.shape[-1] == n, (B_t.shape, n)
183
+ assert B_t.shape[-1] <= B_t.shape[-2], B_t.shape
184
+ U, S, Vh = torch.linalg.svd(B_t, full_matrices=False)
185
+ V = Vh.mH
186
+ U = Q.matmul(U)
187
+
188
+ return U, S, V
189
+
190
+
191
+ def pca_lowrank(
192
+ A: Tensor, q: Optional[int] = None, center: bool = True, niter: int = 2
193
+ ) -> Tuple[Tensor, Tensor, Tensor]:
194
+ r"""Performs linear Principal Component Analysis (PCA) on a low-rank
195
+ matrix, batches of such matrices, or sparse matrix.
196
+
197
+ This function returns a namedtuple ``(U, S, V)`` which is the
198
+ nearly optimal approximation of a singular value decomposition of
199
+ a centered matrix :math:`A` such that :math:`A = U diag(S) V^T`.
200
+
201
+ .. note:: The relation of ``(U, S, V)`` to PCA is as follows:
202
+
203
+ - :math:`A` is a data matrix with ``m`` samples and
204
+ ``n`` features
205
+
206
+ - the :math:`V` columns represent the principal directions
207
+
208
+ - :math:`S ** 2 / (m - 1)` contains the eigenvalues of
209
+ :math:`A^T A / (m - 1)` which is the covariance of
210
+ ``A`` when ``center=True`` is provided.
211
+
212
+ - ``matmul(A, V[:, :k])`` projects data to the first k
213
+ principal components
214
+
215
+ .. note:: Different from the standard SVD, the size of returned
216
+ matrices depend on the specified rank and q
217
+ values as follows:
218
+
219
+ - :math:`U` is m x q matrix
220
+
221
+ - :math:`S` is q-vector
222
+
223
+ - :math:`V` is n x q matrix
224
+
225
+ .. note:: To obtain repeatable results, reset the seed for the
226
+ pseudorandom number generator
227
+
228
+ Args:
229
+
230
+ A (Tensor): the input tensor of size :math:`(*, m, n)`
231
+
232
+ q (int, optional): a slightly overestimated rank of
233
+ :math:`A`. By default, ``q = min(6, m,
234
+ n)``.
235
+
236
+ center (bool, optional): if True, center the input tensor,
237
+ otherwise, assume that the input is
238
+ centered.
239
+
240
+ niter (int, optional): the number of subspace iterations to
241
+ conduct; niter must be a nonnegative
242
+ integer, and defaults to 2.
243
+
244
+ References::
245
+
246
+ - Nathan Halko, Per-Gunnar Martinsson, and Joel Tropp, Finding
247
+ structure with randomness: probabilistic algorithms for
248
+ constructing approximate matrix decompositions,
249
+ arXiv:0909.4061 [math.NA; math.PR], 2009 (available at
250
+ `arXiv <http://arxiv.org/abs/0909.4061>`_).
251
+
252
+ """
253
+
254
+ if not torch.jit.is_scripting():
255
+ if type(A) is not torch.Tensor and has_torch_function((A,)):
256
+ return handle_torch_function(
257
+ pca_lowrank, (A,), A, q=q, center=center, niter=niter
258
+ )
259
+
260
+ (m, n) = A.shape[-2:]
261
+
262
+ if q is None:
263
+ q = min(6, m, n)
264
+ elif not (q >= 0 and q <= min(m, n)):
265
+ raise ValueError(
266
+ f"q(={q}) must be non-negative integer and not greater than min(m, n)={min(m, n)}"
267
+ )
268
+ if not (niter >= 0):
269
+ raise ValueError(f"niter(={niter}) must be non-negative integer")
270
+
271
+ dtype = _utils.get_floating_dtype(A)
272
+
273
+ if not center:
274
+ return _svd_lowrank(A, q, niter=niter, M=None)
275
+
276
+ if _utils.is_sparse(A):
277
+ if len(A.shape) != 2:
278
+ raise ValueError("pca_lowrank input is expected to be 2-dimensional tensor")
279
+ c = torch.sparse.sum(A, dim=(-2,)) / m
280
+ # reshape c
281
+ column_indices = c.indices()[0]
282
+ indices = torch.zeros(
283
+ 2,
284
+ len(column_indices),
285
+ dtype=column_indices.dtype,
286
+ device=column_indices.device,
287
+ )
288
+ indices[0] = column_indices
289
+ C_t = torch.sparse_coo_tensor(
290
+ indices, c.values(), (n, 1), dtype=dtype, device=A.device
291
+ )
292
+
293
+ ones_m1_t = torch.ones(A.shape[:-2] + (1, m), dtype=dtype, device=A.device)
294
+ M = _utils.transpose(torch.sparse.mm(C_t, ones_m1_t))
295
+ return _svd_lowrank(A, q, niter=niter, M=M)
296
+ else:
297
+ C = A.mean(dim=(-2,), keepdim=True)
298
+ return _svd_lowrank(A - C, q, niter=niter, M=None)
env-llmeval/lib/python3.10/site-packages/torch/_meta_registrations.py ADDED
The diff for this file is too large to render. See raw diff
 
env-llmeval/lib/python3.10/site-packages/torch/_ops.py ADDED
@@ -0,0 +1,938 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import contextlib
2
+ import ctypes
3
+ import importlib
4
+ import inspect
5
+ import sys
6
+ import types
7
+ from typing import Any, Callable, Dict, List, Type, Union
8
+
9
+ import torch._C
10
+ import torch.utils._pytree as pytree
11
+ from torch import _utils_internal
12
+ from torch._functorch.pyfunctorch import dispatch_functorch
13
+
14
+ # Query `hasattr` only once.
15
+
16
+ _SET_GLOBAL_FLAGS = hasattr(sys, "getdlopenflags") and hasattr(sys, "setdlopenflags")
17
+
18
+
19
+ @contextlib.contextmanager
20
+ def dl_open_guard():
21
+ """
22
+ Context manager to set the RTLD_GLOBAL dynamic linker flag while we open a
23
+ shared library to load custom operators.
24
+ """
25
+ if not _SET_GLOBAL_FLAGS:
26
+ yield
27
+ return
28
+ old_flags = sys.getdlopenflags()
29
+ sys.setdlopenflags(old_flags | ctypes.RTLD_GLOBAL)
30
+ try:
31
+ yield
32
+ finally:
33
+ sys.setdlopenflags(old_flags)
34
+
35
+
36
+ class OperatorBase:
37
+ """
38
+ Base class for OpOverload (which represents C++ ATen operators) and HigherOrderOperator
39
+ (which represents Python-only operators that are unrepresentable in TorchScript).
40
+ """
41
+
42
+ def __init__(self):
43
+ # The dispatch cache precomputes a mapping of dispatch key that the
44
+ # dispatcher wants to dispatch to, to an actual implementation of the
45
+ # dispatch key. Confusingly, the actual implementation could *also* be a
46
+ # dispatch key, but in this case, this refers to the C++ kernel that
47
+ # was registered to some dispatch key. Aliases are permitted in the
48
+ # latter but not the former; for example, you might lookup the
49
+ # entry for AutogradCPU, and this maps you to the Autograd key for
50
+ # the generic autograd kernel that works for all devices. Since this
51
+ # is the Python dispatcher, you can also put an arbitrary Python
52
+ # callable to call instead. This handler gets precisely the
53
+ # args/kwargs that the operator was __call__'ed with.
54
+ # NB: This name is hard-coded in torch/csrc/autograd/python_variable.cpp
55
+ # for use with OpOverload; cache lookup is done entirely from C++
56
+ # for speed.
57
+ # TODO: The cache is NOT currently used by HigherOrderOperator, but it should!
58
+ self._dispatch_cache: Dict[
59
+ torch._C.DispatchKey, Union[torch._C.DispatchKey, Callable[..., Any]]
60
+ ] = {}
61
+
62
+ # This table allows you to override the behavior of a particular
63
+ # dispatch key to call a custom Python function, rather than the
64
+ # ordinary C++ configured behavior. This is the raison d'etre of
65
+ # Python dispatcher: to let you program the dispatcher from Python
66
+ # in case you need something unusual, and don't want to clobber
67
+ # the existing registrations using the Python operator registration
68
+ # API.
69
+ self.py_kernels: Dict[torch._C.DispatchKey, Callable[..., Any]] = {}
70
+
71
+ from torch.utils._python_dispatch import TorchDispatchMode
72
+
73
+ # This table allows you to override the behavior of a particular
74
+ # operator for a particular TorchDispatchMode. In practice,
75
+ # we are using this mostly for ProxyTensorMode. Modes can be
76
+ # thought of as an open world extension of dispatch keys, so it
77
+ # makes sense that you should be able to register them, the same
78
+ # way you can register dispatch keys.
79
+ self.python_key_mode_table: Dict[
80
+ Type[TorchDispatchMode], Callable[..., Any]
81
+ ] = {}
82
+
83
+ # This table allows you to override the behavior of functorch
84
+ # transformations. NB: this currently only does something for
85
+ # HigherOrderOperator
86
+ self.functorch_table = {}
87
+
88
+ def __call__(self, *args, **kwargs):
89
+ raise NotImplementedError()
90
+
91
+ def has_kernel_for_dispatch_key(self, k):
92
+ return k in self.py_kernels
93
+
94
+ def has_kernel_for_any_dispatch_key(self, ks):
95
+ for k in self.py_kernels:
96
+ if not torch._C._dispatch_is_alias_key(k) and ks.has(k):
97
+ return True
98
+ return False
99
+
100
+ def py_impl(self, k):
101
+ def inner(fn):
102
+ if inspect.isclass(k) and issubclass(
103
+ k, torch.utils._python_dispatch.TorchDispatchMode
104
+ ):
105
+ assert k not in self.python_key_mode_table
106
+ # TODO(voz): Should we replace setting torch._C.DispatchKey.Python entirely with setting mode keys?
107
+ self.python_key_mode_table[k] = fn
108
+ self._dispatch_cache.clear()
109
+ return fn
110
+
111
+ if isinstance(k, torch._C._functorch.TransformType):
112
+ assert k not in self.functorch_table
113
+ self.functorch_table[k] = fn
114
+ return fn
115
+
116
+ assert isinstance(k, torch._C.DispatchKey)
117
+ assert (
118
+ k != torch._C.DispatchKey.Python
119
+ ), "Please register a mode for the torch._C.DispatchKey.Python key instead."
120
+
121
+ if k in self.py_kernels:
122
+ raise RuntimeError(
123
+ f"Trying to override a python impl for {k} on operator {self.name()}"
124
+ )
125
+ self.py_kernels[k] = fn
126
+ self._dispatch_cache.clear()
127
+ return fn
128
+
129
+ return inner
130
+
131
+ # Registers an implementation to all **3** variants of functionalization that we have:
132
+ # - DispatchKey.Functionalize
133
+ # - functorch.TransformType.Functionalize
134
+ # - FunctionalTensorMode
135
+ # Example:
136
+ # @py_functionalize_impl
137
+ # def functionalize_rule(ctx, inner_f, *args):
138
+ # args_unwrapped = ctx.unwrap_tensors(args)
139
+ # with ctx.redispatch_to_next():
140
+ # out = ctx.functionalize(inner_f)(*args_unwrapped)
141
+ # return ctx.wrap_tensors(out)
142
+ def py_functionalize_impl(self, fn):
143
+ from torch._subclasses.functional_tensor import (
144
+ CppFunctionalizeAPI as _CppFunctionalizeAPI,
145
+ FunctorchFunctionalizeAPI as _FunctorchFunctionalizeAPI,
146
+ PythonFunctionalizeAPI as _PythonFunctionalizeAPI,
147
+ )
148
+
149
+ # Construct our three flavors of functionalization,
150
+ # each of which have slightly different wrap/unwrap/redispatch policies
151
+ def functionalize_dk_fn(*args, **kwargs):
152
+ return fn(_CppFunctionalizeAPI(), *args, **kwargs)
153
+
154
+ def functionalize_dispatch_mode_fn(mode, *args, **kwargs):
155
+ # Mode is unused (there's a global FunctionalTensorMode that we can access)
156
+ return fn(_PythonFunctionalizeAPI(), *args, **kwargs)
157
+
158
+ def functionalize_functorch_fn(interpreter, *args, **kwargs):
159
+ return fn(_FunctorchFunctionalizeAPI(interpreter), *args, **kwargs)
160
+
161
+ self.py_impl(torch._C.DispatchKey.Functionalize)(functionalize_dk_fn)
162
+ self.py_impl(torch._subclasses.functional_tensor.FunctionalTensorMode)(
163
+ functionalize_dispatch_mode_fn
164
+ )
165
+ self.py_impl(torch._C._functorch.TransformType.Functionalize)(
166
+ functionalize_functorch_fn
167
+ )
168
+
169
+ return fn
170
+
171
+ def name(self):
172
+ raise NotImplementedError()
173
+
174
+
175
+ is_included_in_alias = torch._C._dispatch_is_included_in_alias
176
+
177
+ DispatchKey = torch._C.DispatchKey
178
+
179
+
180
+ # Equivalent to computeDispatchTableEntryWithDebug
181
+ def resolve_key(op: OperatorBase, k: DispatchKey): # type: ignore[valid-type]
182
+ # 1. (Direct) operator registration
183
+ if op.has_kernel_for_dispatch_key(k):
184
+ return k
185
+ # 2.1 Use CompositeExplicitAutogradNonFunctional kernel if available
186
+ cand = DispatchKey.CompositeExplicitAutogradNonFunctional
187
+ if (
188
+ k == DispatchKey.Undefined or is_included_in_alias(k, cand)
189
+ ) and op.has_kernel_for_dispatch_key(cand):
190
+ return cand
191
+ # 2.2 Use CompositeExplicitAutograd kernel if available
192
+ cand = DispatchKey.CompositeExplicitAutograd
193
+ if (
194
+ k == DispatchKey.Undefined or is_included_in_alias(k, cand)
195
+ ) and op.has_kernel_for_dispatch_key(cand):
196
+ return cand
197
+ has_backend_kernel = op.has_kernel_for_any_dispatch_key(
198
+ torch._C._dispatch_get_backend_keyset_from_autograd(k)
199
+ ) or op.has_kernel_for_dispatch_key(DispatchKey.CompositeExplicitAutograd)
200
+ # 2.3. Use CompositeImplicitAutograd kernel if available
201
+ cand = DispatchKey.CompositeImplicitAutogradNestedTensor
202
+ if (
203
+ (k != DispatchKey.Undefined and is_included_in_alias(k, cand))
204
+ and op.has_kernel_for_dispatch_key(cand)
205
+ and not has_backend_kernel
206
+ ):
207
+ return cand
208
+ cand = DispatchKey.CompositeImplicitAutograd
209
+ if (
210
+ k == DispatchKey.Undefined or is_included_in_alias(k, cand)
211
+ ) and op.has_kernel_for_dispatch_key(cand):
212
+ if k == DispatchKey.AutogradOther and op.has_kernel_for_any_dispatch_key(
213
+ torch._C._dispatch_autogradother_backends
214
+ ):
215
+ raise RuntimeError("ambiguous autogradother kernel")
216
+ elif not has_backend_kernel:
217
+ return cand
218
+ # 2.4. For autograd backend keys, use kernel from DispatchKey::Autograd if available
219
+ cand = DispatchKey.Autograd
220
+ if is_included_in_alias(k, cand) and op.has_kernel_for_dispatch_key(cand):
221
+ return cand
222
+ # 2.5 Use kernel from DispatchKey::FuncTorchBatchedDecomposition if available
223
+ cand = DispatchKey.FuncTorchBatchedDecomposition
224
+ if is_included_in_alias(k, cand) and op.has_kernel_for_dispatch_key(cand):
225
+ return cand
226
+ # Backend fallback
227
+ if torch._C._dispatch_has_backend_fallback(k):
228
+ # The dispatch key itself will implicitly route to backend fallback.
229
+ # This is probably not great for the pure Python implementation.
230
+ return k
231
+ raise NotImplementedError(f"could not find kernel for {op} at dispatch key {k}")
232
+
233
+
234
+ _higher_order_ops = {}
235
+
236
+ _HIGHER_ORDER_OP_DEFAULT_FALLTHROUGH_DISPATCH_KEYS = [
237
+ DispatchKey.PythonDispatcher, # type: ignore[attr-defined]
238
+ DispatchKey.PythonTLSSnapshot, # type: ignore[attr-defined]
239
+ DispatchKey.ADInplaceOrView,
240
+ DispatchKey.BackendSelect,
241
+ DispatchKey.AutocastCPU, # type: ignore[attr-defined]
242
+ DispatchKey.AutocastCUDA, # type: ignore[attr-defined]
243
+ ]
244
+
245
+
246
+ class HigherOrderOperator(OperatorBase):
247
+ # The HigherOrderOperator will appear as torch.ops.higher_order.{name}
248
+ #
249
+ # If you're creating a new HigherOrderOperator, please do not change the
250
+ # default. Adding operators to the global torch.ops namespace is a bad
251
+ # practice due to name collisions.
252
+ def __init__(self, name):
253
+ super().__init__()
254
+ self._name = name
255
+
256
+ # Make _OPNamespace not scream, this whole name based association needs a good hard look
257
+ self.__name__ = name
258
+ _higher_order_ops[name] = self
259
+ self._ns = "higher_order"
260
+
261
+ # For a normal HigherOrderOperator instance, we will change its __module__ from torch._ops to
262
+ # torch._ops.higher_order.
263
+ # For an instance of subclass of HigherOrderOperator (e.g. customized higher order op),
264
+ # the __module__ attribute will be kept unchanged.
265
+ if self.__class__ is HigherOrderOperator:
266
+ self_name_space = "." + self.namespace if self.namespace else ""
267
+ self.__module__ = self.__module__ + self_name_space
268
+ self.non_fallthrough_keys = torch._C._dispatch_keyset_full()
269
+
270
+ for dispatch_key in _HIGHER_ORDER_OP_DEFAULT_FALLTHROUGH_DISPATCH_KEYS:
271
+ self.fallthrough(dispatch_key)
272
+
273
+ def py_impl(self, k):
274
+ if isinstance(k, torch._C.DispatchKey) and not self.non_fallthrough_keys.has(k):
275
+ self.non_fallthrough_keys = self.non_fallthrough_keys.add(k)
276
+ return super().py_impl(k)
277
+
278
+ @property
279
+ def namespace(self):
280
+ return self._ns
281
+
282
+ def fallthrough(self, dispatch_key):
283
+ self.non_fallthrough_keys = self.non_fallthrough_keys.remove(dispatch_key)
284
+
285
+ def dispatch(self, dispatch_key, *args, **kwargs):
286
+ from torch.utils._python_dispatch import _get_current_dispatch_mode
287
+
288
+ if dispatch_key in self._dispatch_cache:
289
+ kernel = self._dispatch_cache[dispatch_key]
290
+ assert not isinstance(kernel, torch._C.DispatchKey)
291
+ return kernel(*args, **kwargs)
292
+
293
+ if dispatch_key == torch._C.DispatchKey.FuncTorchDynamicLayerFrontMode:
294
+ return dispatch_functorch(self, args, kwargs)
295
+
296
+ if dispatch_key == torch._C.DispatchKey.Python:
297
+ # The place to handle ProxyTorchDispatchMode, FakeTensorMode, etc
298
+ from torch.utils._python_dispatch import _pop_mode_temporarily
299
+
300
+ curr_mode = _get_current_dispatch_mode()
301
+ assert (
302
+ curr_mode is not None
303
+ ), "Illegal invocation of dispatch on torch._C.DispatchKey.Python without a mode."
304
+ assert (
305
+ type(curr_mode) in self.python_key_mode_table
306
+ ), f"Current active mode {curr_mode} not registered"
307
+ handler = self.python_key_mode_table[type(curr_mode)]
308
+ with _pop_mode_temporarily() as mode:
309
+ return handler(mode, *args, **kwargs)
310
+
311
+ functionality_key = torch._C._to_functionality_key(dispatch_key) # type: ignore[attr-defined]
312
+ if functionality_key in mode_stack_per_key():
313
+ # The place to handle DispatchKey.PreDispatch
314
+ curr_stack = mode_stack_per_key()[functionality_key]
315
+ # The check for Python in the exclude set is so we properly respect `with no_dispatch()`
316
+ # calls inside of a mode.
317
+ if len(
318
+ curr_stack
319
+ ) > 0 and not torch._C._dispatch_tls_is_dispatch_key_excluded(
320
+ DispatchKey.Python
321
+ ):
322
+ curr_mode = curr_stack[-1]
323
+ pre_dispatch_modes = mode_stack_per_key().get(
324
+ DispatchKey.PreDispatch, [] # type: ignore[attr-defined]
325
+ )
326
+ handler = self.python_key_mode_table[type(curr_mode)]
327
+ if len(pre_dispatch_modes) > 0:
328
+ with temporarily_pop_mode(pre_dispatch_modes) as mode:
329
+ return handler(mode, *args, **kwargs)
330
+
331
+ final_key = resolve_key(self, dispatch_key)
332
+
333
+ # This can current fail due to backend fallbacks. You just have to
334
+ # register them by hand for HigherOrderOperator.
335
+ if final_key not in self.py_kernels:
336
+ raise NotImplementedError(
337
+ f"could not find kernel for HigherOrderOperator {self._name} "
338
+ f"at dispatch key {final_key} (resolved from {dispatch_key})"
339
+ )
340
+ self._dispatch_cache[dispatch_key] = self.py_kernels[final_key]
341
+ kernel = self.py_kernels[final_key]
342
+ # It's illegal to register DispatchKey to py_kernels, since there's no
343
+ # C++ kernel to call into
344
+ assert not isinstance(kernel, torch._C.DispatchKey)
345
+ return kernel(*args, **kwargs)
346
+
347
+ def __call__(self, *args, **kwargs):
348
+ # Dynamo already traces the body of HigherOrderOp beforehand when it
349
+ # so no need to trace into it.
350
+ import torch._dynamo
351
+ from torch._dynamo import disable
352
+
353
+ @disable
354
+ def wrapper():
355
+ flat_args = _to_flat_tuple(args, kwargs)
356
+ if torch.overrides.has_torch_function(flat_args):
357
+ return torch.overrides.handle_torch_function(
358
+ self, flat_args, *args, **kwargs
359
+ )
360
+
361
+ dispatch_key_set = _compute_keyset(args, kwargs, self.non_fallthrough_keys)
362
+ return self.dispatch(
363
+ dispatch_key_set.highestPriorityTypeId(), *args, **kwargs
364
+ )
365
+
366
+ return wrapper()
367
+
368
+ def __str__(self):
369
+ return f"{self.name()}"
370
+
371
+ def name(self):
372
+ return self._name
373
+
374
+
375
+ def _to_flat_tuple(args, kwargs):
376
+ return pytree.arg_tree_leaves(*args, **kwargs)
377
+
378
+
379
+ def _compute_keyset(args, kwargs, non_fallthrough_keys):
380
+ tensors = _get_tensors(args, kwargs)
381
+ return key_extractor(tensors, non_fallthrough_keys)
382
+
383
+
384
+ def _get_tensors(args, kwargs):
385
+ flat_all = _to_flat_tuple(args, kwargs)
386
+ tensor_args = [t for t in flat_all if isinstance(t, torch.Tensor)]
387
+ return tuple(tensor_args)
388
+
389
+
390
+ # Note - this should maintain identical impl to the C++ dispatcher key extraction logic
391
+ # at ATen/core/dispatch/DispatchKeyExtractor.h
392
+ def key_extractor(tensors, key_mask):
393
+ key_set = torch._C._dispatch_tls_local_include_set()
394
+ for tensor in tensors:
395
+ key_set = key_set | torch._C._dispatch_keys(tensor)
396
+ key_set = key_set - torch._C._dispatch_tls_local_exclude_set()
397
+ key_set = key_set & key_mask
398
+ return key_set
399
+
400
+
401
+ # Note [Per Dispatch Key Modes]
402
+ # In ordinary eager mode, we have a Python dispatch key that we attach
403
+ # a mode stack to.
404
+ # However - when the PyDispatcher is enabled, we extend this functionality
405
+ # such that every (functionality) dispatch key is allowed to have
406
+ # its own mode stack.
407
+ # This is controlled by passing a `torch._C.DispatchKey` into
408
+ # the mode constructor.
409
+ _mode_stack_per_key: Dict[torch._C.DispatchKey, List] = {}
410
+
411
+
412
+ # Per-dispatch-key mode variant.
413
+ # Temporarily pops the top of a given mode stack.
414
+ @contextlib.contextmanager
415
+ def temporarily_pop_mode(mode_stack):
416
+ assert len(mode_stack) > 0
417
+ top_mode = mode_stack.pop()
418
+ try:
419
+ yield top_mode
420
+ finally:
421
+ mode_stack.append(top_mode)
422
+
423
+
424
+ def mode_stack_per_key():
425
+ global _mode_stack_per_key
426
+ return _mode_stack_per_key
427
+
428
+
429
+ # Per-dispatch-key mode variant of push_mode().
430
+ def push_mode_for_key(key, mode):
431
+ assert isinstance(key, torch._C.DispatchKey)
432
+ assert isinstance(mode, torch.utils._python_dispatch.TorchDispatchMode)
433
+ if key not in mode_stack_per_key():
434
+ mode_stack_per_key()[key] = []
435
+ mode_stack_per_key()[key].append(mode)
436
+
437
+
438
+ # Per-dispatch-key mode variant of pop_mode().
439
+ def pop_mode_for_key(key):
440
+ assert isinstance(key, torch._C.DispatchKey)
441
+ assert key in mode_stack_per_key()
442
+ curr_mode_stack = mode_stack_per_key()[key]
443
+ assert len(curr_mode_stack) > 0
444
+ return curr_mode_stack.pop()
445
+
446
+
447
+ cached_ops = set()
448
+
449
+
450
+ def add_cached_op(op_overload):
451
+ global cached_ops
452
+ cached_ops.add(op_overload)
453
+
454
+
455
+ def reset_cached_ops():
456
+ global cached_ops
457
+ cached_ops.clear()
458
+
459
+
460
+ def get_cached_ops():
461
+ global cached_ops
462
+ return cached_ops
463
+
464
+
465
+ # Each OpOverload object contains pointer to a a specific operator overload, a pointer to the parent `OpOverloadPacket` object.
466
+ # You can obtain an OpOverload object through attribute query on OpOverloadPacket.
467
+ class OpOverload(OperatorBase):
468
+ def __init__(self, overloadpacket, op, op_dk, schema, tags):
469
+ super().__init__()
470
+ self._op = op
471
+ self._op_dk = op_dk
472
+ self._schema = schema
473
+ self._overloadpacket = overloadpacket
474
+ self._tags = tags
475
+ self._overloadname = (
476
+ "default" if schema.overload_name == "" else schema.overload_name
477
+ )
478
+ self._name = self._schema.name
479
+ if schema.overload_name:
480
+ self._name += "." + schema.overload_name
481
+ self.__name__ = f"{self._schema.name.split('::')[1]}.{self._overloadname}"
482
+ self.__module__ = overloadpacket.__module__
483
+ op.__module__ = overloadpacket.__module__
484
+ self.__qualname__ = self._name
485
+ self.__annotations__ = {}
486
+
487
+ # If the OpOverload was constructed from a Library.def in Python.
488
+ self._defined_in_python = self.__qualname__ in torch.library._defs
489
+
490
+ # Logic replicated from aten/src/ATen/native/MathBitsFallback.h
491
+ is_write = None
492
+ for a in self._schema.arguments:
493
+ if a.alias_info is None:
494
+ continue
495
+ if is_write is None:
496
+ is_write = a.alias_info.is_write
497
+ else:
498
+ # We will conservatively call mixed mutable/non-mutable
499
+ # aliased inputs as NOT a view
500
+ is_write = a.alias_info.is_write or is_write
501
+ self.is_view = is_write is not None and not is_write
502
+
503
+ # it's a no-op since OpOverload object is immutable and must be unique for a given op overload.
504
+ def __deepcopy__(self, memo=None):
505
+ return self
506
+
507
+ def __repr__(self):
508
+ return "<OpOverload(op='{}.{}', overload='{}')>".format(
509
+ *self._schema.name.split("::"), self._overloadname
510
+ )
511
+
512
+ def __call__(self, *args, **kwargs):
513
+ return self._op(*args, **(kwargs or {}))
514
+
515
+ def __hash__(self):
516
+ return hash(self._op)
517
+
518
+ # `my_namespace.my_op_name.overload_name`
519
+ def __str__(self):
520
+ return "{}.{}.{}".format(*self._schema.name.split("::"), self._overloadname)
521
+
522
+ def has_kernel_for_dispatch_key(self, k):
523
+ return super().has_kernel_for_dispatch_key(
524
+ k
525
+ ) or torch._C._dispatch_has_kernel_for_dispatch_key(self.name(), k)
526
+
527
+ def has_kernel_for_any_dispatch_key(self, ks):
528
+ return torch._C._dispatch_has_kernel_for_any_dispatch_key(
529
+ self.name(), ks
530
+ ) or super().has_kernel_for_any_dispatch_key(ks)
531
+
532
+ @property
533
+ def namespace(self):
534
+ return self._schema.name.split("::")[0]
535
+
536
+ def decompose(self, *args, **kwargs):
537
+ dk = torch._C.DispatchKey.CompositeImplicitAutograd
538
+ if dk in self.py_kernels:
539
+ # NB: This branch is not too necessary anymore, because we can
540
+ # apply Python CompositeImplicitAutograd *before* tracing
541
+ # using Python dispatcher (also taking advantage of the autograd
542
+ # formula). But it's included for completeness
543
+ return self.py_kernels[dk](*args, **kwargs)
544
+ elif torch._C._dispatch_has_kernel_for_dispatch_key(self.name(), dk):
545
+ return self._op_dk(dk, *args, **kwargs)
546
+ else:
547
+ return NotImplemented
548
+
549
+ # Remove a dispatch key from the dispatch cache. This will force it to get
550
+ # recomputed the next time. Does nothing
551
+ # WARNING: if you register a dispatch key to py_kernels of an OpOverload,
552
+ # calling _del_dispatch on that key is NOT sufficient to apply your change,
553
+ # because a single registration may affect MULTIPLE dispatch keys (e.g.,
554
+ # registering Autograd affects AutogradCPU). del_dispatch is to be used
555
+ # only if you are specifically modifying how get_dispatch handles a
556
+ # particular input 'key'.
557
+ def _uncache_dispatch(self, key):
558
+ self._dispatch_cache.pop(key, None)
559
+
560
+ # This implements the pre-computation logic for the Python dispatcher.
561
+ def _get_dispatch(self, key):
562
+ # This is only called upon a cache miss
563
+ assert key not in self._dispatch_cache, f"{self} {key}"
564
+
565
+ if key == torch._C.DispatchKey.Python:
566
+ if not self.python_key_mode_table:
567
+ self._dispatch_cache[key] = key
568
+ add_cached_op(self)
569
+ return key
570
+
571
+ def handler(*args, **kwargs):
572
+ from torch.utils._python_dispatch import _get_current_dispatch_mode
573
+
574
+ # TODO: We also need to handle tensor subclasses here
575
+ # TODO(voz): We should walk all the nodes here / turn it into a list, topmode is ok for now.
576
+ curr_mode = type(_get_current_dispatch_mode())
577
+ assert (
578
+ curr_mode is not None
579
+ ), "Illegal invocation of dispatch on torch._C.DispatchKey.Python without a mode."
580
+ if curr_mode not in self.python_key_mode_table:
581
+ # TODO: This path is slow, should generally encourage this
582
+ # case to not happen
583
+ return self._op_dk(key, *args, **kwargs)
584
+ # TODO(voz): The idea behind this is that we do not yet support dispatch by key + mode, only key.
585
+ return self.python_key_mode_table[curr_mode](*args, **kwargs)
586
+
587
+ self._dispatch_cache[key] = handler
588
+ add_cached_op(self)
589
+ return handler
590
+
591
+ cache_result = True
592
+ functionality_key = torch._C._to_functionality_key(key) # type: ignore[attr-defined]
593
+ if functionality_key in mode_stack_per_key():
594
+ curr_stack = mode_stack_per_key()[functionality_key]
595
+ # The check for Python in the exclude set is so we properly respect `with no_dispatch()`
596
+ # calls inside of a mode.
597
+ if len(
598
+ curr_stack
599
+ ) > 0 and not torch._C._dispatch_tls_is_dispatch_key_excluded(
600
+ DispatchKey.Python
601
+ ):
602
+
603
+ def handler(*args, **kwargs):
604
+ # This logic is meant to be a python parallel of handle_torch_function_no_python_arg_parser.
605
+ with temporarily_pop_mode(curr_stack) as curr_mode:
606
+ assert hasattr(curr_mode, "__torch_dispatch__")
607
+ overload_types = []
608
+ args_flattened = pytree.arg_tree_leaves(*args, **kwargs)
609
+ for a in args_flattened:
610
+ # TODO: need to double check the semantics of the "types" argument to torch_dispatch.
611
+ # It's generated in PyInterpreter.cpp, but seems to be generated in two places,
612
+ # where in one case we only include tensors with the python key, and in another
613
+ # we include **all** tensors.
614
+ if isinstance(a, torch.Tensor) and torch._C._dispatch_keys(
615
+ a
616
+ ).has(torch._C.DispatchKey.Python):
617
+ overload_types.append(type(a))
618
+ # TODO: check that I got these args correct (in C++, we pass in "0000"??)
619
+ return curr_mode.__torch_dispatch__(
620
+ self, overload_types, args, kwargs
621
+ )
622
+
623
+ # Note [Not Caching Per-Dispatch-Key Mode Handlers]
624
+ # Note that we're not caching this handler. There isn't really a point, since the slow bit
625
+ # is the handler itself (in python).
626
+ # Also, not caching means that we don't have to reset the cache when any existing
627
+ # modes go out of scope (which in of itself takes time to loop through all operators).
628
+ return handler
629
+ else:
630
+ # See Note [Not Caching Per-Dispatch-Key Mode Handlers]
631
+ cache_result = False
632
+
633
+ final_key = resolve_key(self, key)
634
+
635
+ # TODO: We could potentially have lots of debugging wrappers against
636
+ # dispatch keys; design some general registration mechanism instead of
637
+ # having if statement for each of them
638
+ if key == torch._C.DispatchKey.Functionalize:
639
+ import torch._dispatch.python as pydispatch
640
+
641
+ if pydispatch.CROSSREF_FUNCTIONALIZE:
642
+ handler = pydispatch.make_crossref_functionalize(self, final_key)
643
+ if cache_result:
644
+ self._dispatch_cache[key] = handler
645
+ add_cached_op(self)
646
+ return handler
647
+
648
+ # print(self, key, final_key)
649
+ r = self.py_kernels.get(final_key, final_key)
650
+ if cache_result:
651
+ self._dispatch_cache[key] = r
652
+ add_cached_op(self)
653
+ return r
654
+
655
+ def name(self):
656
+ return self._name
657
+
658
+ @property
659
+ def overloadpacket(self):
660
+ return self._overloadpacket
661
+
662
+ @property
663
+ def op(self):
664
+ return self._op
665
+
666
+ @property
667
+ def tags(self):
668
+ return self._tags
669
+
670
+ # TODO: add more methods to expose information about input and output arguments
671
+
672
+
673
+ # OpOverloadPacket class contains pointer to a base unresolved operator that doesn't correspond to a specific operator
674
+ # You can obtain an OpOverload object through attribute query.
675
+ class OpOverloadPacket:
676
+ def __init__(self, qualified_op_name, op_name, op, overload_names):
677
+ # These attributes are accessible on the object through the properties
678
+ # defined below but are immutable
679
+ self._qualified_op_name = qualified_op_name
680
+ self.__name__ = op_name
681
+ self._op = op
682
+ self._overload_names = overload_names
683
+ self._dir = []
684
+
685
+ # it's a no-op since OpOverloadPacket object is immutable and must be unique for a given op.
686
+ def __deepcopy__(self, memo=None):
687
+ return self
688
+
689
+ def __repr__(self):
690
+ return "<OpOverloadPacket(op='{}.{}')>".format(
691
+ *self._qualified_op_name.split("::")
692
+ )
693
+
694
+ def __hash__(self):
695
+ return hash(self._op)
696
+
697
+ def __str__(self):
698
+ return "{}.{}".format(*self._qualified_op_name.split("::"))
699
+
700
+ @property
701
+ def op(self):
702
+ return self._op
703
+
704
+ def __getattr__(self, key):
705
+ # It is not a valid op_name when __file__ is passed in
706
+ if key == "__file__":
707
+ return "torch.ops"
708
+
709
+ # ensure that query for dunder attributes that does not exist on
710
+ # opoverloadpacket but instead exists on the self._op object does not unnecessarily call
711
+ # `_get_operation_overload` (which is an expensive operation).
712
+ # This is done to prevent any potential slowdown. This list can be extended
713
+ # if there exists other attributes like `__name__` that only exist on self._op and not on the
714
+ # opoverloadpacket.
715
+ # This is ok since we are guaranteed that an overload name for an aten op can't start with '__'
716
+ try:
717
+ if key.startswith("__"):
718
+ return getattr(self._op, key)
719
+ except AttributeError:
720
+ # for consistency because it seems weird to
721
+ # throw an attribute error with a message containing
722
+ # an object name different from the one the attribute
723
+ # query was performed on.
724
+ raise AttributeError(
725
+ f"'{str(self)}' can't have an overload name beginning with '__' and the "
726
+ f"underlying op {str(self._op)} has no attribute {key} either."
727
+ ) from None
728
+
729
+ try:
730
+ # This is ok since we are guaranteed that an overload name for an aten op can't be 'default'
731
+ use_key = "" if key == "default" else key
732
+ # TODO: disallow access to overloads registered by JIT
733
+ op_, op_dk_, tags = torch._C._get_operation_overload(
734
+ self._qualified_op_name, use_key
735
+ )
736
+ schema = torch._C._get_schema(self._qualified_op_name, use_key)
737
+ overload = OpOverload(self, op_, op_dk_, schema, tags)
738
+ # cache the overload object
739
+ setattr(self, key, overload)
740
+ self._dir.append(key)
741
+ return overload
742
+ except RuntimeError:
743
+ raise AttributeError(
744
+ f"The underlying op of '{str(self)}' has no overload name '{key}'"
745
+ ) from None
746
+
747
+ def __iter__(self):
748
+ return iter(self._dir)
749
+
750
+ def __call__(self, *args, **kwargs):
751
+ # overloading __call__ to ensure torch.ops.foo.bar()
752
+ # is still callable from JIT
753
+ # We save the function ptr as the `op` attribute on
754
+ # OpOverloadPacket to access it here.
755
+ return self._op(*args, **(kwargs or {}))
756
+
757
+ # TODO: use this to make a __dir__
758
+ def overloads(self):
759
+ return [n if n else "default" for n in self._overload_names]
760
+
761
+
762
+ # Resolution of torch.fn is different from torch.ops.aten.fn
763
+ # torch.fn uses the Python argparser, matches with the
764
+ # appropriate schema, and calls into the unboxed version of the method
765
+ # torch.ops.aten.fn resolution is done via the mechanism defined in JIT.
766
+ # JIT creates a stack of all the overloads and then tries to match the
767
+ # correct one at runtime and always calls into the boxed version of the method
768
+ # Autograd codegen creates VariableType, TracerType,
769
+ # inplace or view type and python bindings.
770
+ # Aten codegen generates tensor methods for the tensor class.
771
+
772
+ # _OpNamespace is a subclass of ModuleType because the torch script
773
+ # allows attribute lookups on modules only. Since we want torch.ops.foo.bar()
774
+ # to work from script, we need to ensure ops and foo are modules
775
+
776
+
777
+ class _OpNamespace(types.ModuleType):
778
+ """
779
+ An op namespace to dynamically bind Operators into Python.
780
+
781
+ Say a user has created a custom Operator called "my_namespace::my_op". To
782
+ call this op, the user will write torch.ops.my_namespace.my_op(...).
783
+ At startup, this operation will not yet be bound into Python. Instead, the
784
+ following sequence of magic tricks will occur:
785
+ 1. `torch.ops.my_namespace` will invoke the `__getattr__` magic method
786
+ on the `torch.ops` object, which will create a new `_OpNamespace`
787
+ object called `my_namespace` and set it as an attribute on the `ops`
788
+ object.
789
+ 2. `torch.ops.my_namespace.my_op` will then invoke `__getattr__` on
790
+ the `my_namespace` object, which will retrieve the operation via
791
+ `torch.get_operation`, a function bound from C++, and then in a similar
792
+ fashion bind this new object onto the `my_namespace` object.
793
+ 3. `torch.ops.my_namespace.my_op(...)` then calls this new operation
794
+ and subsequent accesses will incur no further lookup (the namespace and
795
+ operation will already exist).
796
+ """
797
+
798
+ def __init__(self, name):
799
+ super().__init__("torch.ops." + name)
800
+ self.name = name
801
+ self._dir = []
802
+
803
+ def __iter__(self):
804
+ return iter(self._dir)
805
+
806
+ def __getattr__(self, op_name):
807
+ # It is not a valid op_name when __file__ is passed in
808
+ if op_name == "__file__":
809
+ return "torch.ops"
810
+ elif op_name in ["__origin__", "__self__"]:
811
+ raise AttributeError(
812
+ f"Invalid attribute '{op_name}' for '_OpNamespace' '{self.name}'"
813
+ )
814
+
815
+ # Get the op `my_namespace::my_op` if available. This will also check
816
+ # for overloads and raise an exception if there are more than one.
817
+ namespace_name = self.name
818
+ qualified_op_name = f"{namespace_name}::{op_name}"
819
+ try:
820
+ op, overload_names = torch._C._jit_get_operation(qualified_op_name)
821
+ if op is None:
822
+ raise AttributeError(
823
+ f"'_OpNamespace' '{self.name}' object has no attribute '{op_name}'"
824
+ )
825
+ except RuntimeError as e:
826
+ # Turn this into AttributeError so getattr(obj, key, default)
827
+ # works (this is called by TorchScript with __origin__)
828
+ raise AttributeError(
829
+ f"'_OpNamespace' '{self.name}' object has no attribute '{op_name}'"
830
+ ) from e
831
+
832
+ # let the script frontend know that op is identical to the builtin op
833
+ # with qualified_op_name
834
+ torch.jit._builtins._register_builtin(op, qualified_op_name)
835
+ op.__module__ = self.__module__ + "." + namespace_name
836
+ opoverloadpacket = OpOverloadPacket(
837
+ qualified_op_name, op_name, op, overload_names
838
+ )
839
+ opoverloadpacket.__module__ = self.__module__ + "." + namespace_name
840
+ # cache the opoverloadpacket to ensure that each op corresponds to
841
+ # a unique OpOverloadPacket object
842
+ setattr(self, op_name, opoverloadpacket)
843
+ self._dir.append(op_name)
844
+ return opoverloadpacket
845
+
846
+
847
+ class _PyOpNamespace(_OpNamespace):
848
+ def __init__(self, name, ops):
849
+ super().__init__(name)
850
+ self._ops = ops
851
+
852
+ def __getattr__(self, name):
853
+ # Following _OpNamespace.__getattr__, we cache the op on the _PyOpNamespace object.
854
+ op = self._ops.get(name, None)
855
+ if op is None:
856
+ raise AttributeError(
857
+ f"'_PyOpNamespace' '{self.name}' object has no attribute '{name}'"
858
+ )
859
+ setattr(self, name, op)
860
+ return op
861
+
862
+
863
+ class _Ops(types.ModuleType):
864
+ __file__ = "_ops.py"
865
+
866
+ def __init__(self):
867
+ super().__init__("torch.ops")
868
+ self.loaded_libraries = set()
869
+ self._higher_order_op_namespace = _PyOpNamespace(
870
+ "torch.ops.higher_order", _higher_order_ops
871
+ )
872
+ self._dir = []
873
+
874
+ def __getattr__(self, name):
875
+ # Check if the name is a HigherOrderOperator
876
+ if name == "higher_order":
877
+ return self._higher_order_op_namespace
878
+
879
+ # Here we are creating `torch.ops.my_namespace`
880
+ namespace = _OpNamespace(name)
881
+ setattr(self, name, namespace)
882
+ self._dir.append(name)
883
+ return namespace
884
+
885
+ def __iter__(self):
886
+ return iter(self._dir)
887
+
888
+ def import_module(self, module):
889
+ """
890
+ Imports a Python module that has torch.library registrations.
891
+
892
+ Generally, to extend PyTorch with custom operators, a user will
893
+ create a Python module whose import triggers registration of
894
+ the custom operators via a torch.ops.load_library call or a call
895
+ to one or more torch.library.* APIs.
896
+
897
+ It is unexpected for Python modules to have side effects, so some
898
+ linters and formatters will complain. Use this API to import Python
899
+ modules that contain these torch.library side effects.
900
+
901
+ Args:
902
+ module (str): The name of the Python module to import
903
+
904
+ """
905
+ importlib.import_module(module)
906
+
907
+ def load_library(self, path):
908
+ """
909
+ Loads a shared library from the given path into the current process.
910
+
911
+ The library being loaded may run global initialization code to register
912
+ custom operators with the PyTorch JIT runtime. This allows dynamically
913
+ loading custom operators. For this, you should compile your operator
914
+ and the static registration code into a shared library object, and then
915
+ call ``torch.ops.load_library('path/to/libcustom.so')`` to load the
916
+ shared object.
917
+
918
+ After the library is loaded, it is added to the
919
+ ``torch.ops.loaded_libraries`` attribute, a set that may be inspected
920
+ for the paths of all libraries loaded using this function.
921
+
922
+ Args:
923
+ path (str): A path to a shared library to load.
924
+ """
925
+ if torch._running_with_deploy():
926
+ return
927
+
928
+ path = _utils_internal.resolve_library_path(path)
929
+ with dl_open_guard():
930
+ # Import the shared library into the process, thus running its
931
+ # static (global) initialization code in order to register custom
932
+ # operators with the JIT.
933
+ ctypes.CDLL(path)
934
+ self.loaded_libraries.add(path)
935
+
936
+
937
+ # The ops "namespace"
938
+ ops = _Ops()
env-llmeval/lib/python3.10/site-packages/torch/_sources.py ADDED
@@ -0,0 +1,137 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import ast
2
+ import functools
3
+ import inspect
4
+ from textwrap import dedent
5
+ from typing import Any, List, NamedTuple, Optional, Tuple
6
+
7
+ from torch._C import ErrorReport
8
+ from torch._C._jit_tree_views import SourceRangeFactory
9
+
10
+
11
+ def get_source_lines_and_file(
12
+ obj: Any,
13
+ error_msg: Optional[str] = None,
14
+ ) -> Tuple[List[str], int, Optional[str]]:
15
+ """
16
+ Wrapper around inspect.getsourcelines and inspect.getsourcefile.
17
+
18
+ Returns: (sourcelines, file_lino, filename)
19
+ """
20
+ filename = None # in case getsourcefile throws
21
+ try:
22
+ filename = inspect.getsourcefile(obj)
23
+ sourcelines, file_lineno = inspect.getsourcelines(obj)
24
+ except OSError as e:
25
+ msg = (
26
+ f"Can't get source for {obj}. TorchScript requires source access in "
27
+ "order to carry out compilation, make sure original .py files are "
28
+ "available."
29
+ )
30
+ if error_msg:
31
+ msg += "\n" + error_msg
32
+ raise OSError(msg) from e
33
+
34
+ return sourcelines, file_lineno, filename
35
+
36
+
37
+ def normalize_source_lines(sourcelines: List[str]) -> List[str]:
38
+ """
39
+ This helper function accepts a list of source lines. It finds the
40
+ indentation level of the function definition (`def`), then it indents
41
+ all lines in the function body to a point at or greater than that
42
+ level. This allows for comments and continued string literals that
43
+ are at a lower indentation than the rest of the code.
44
+ Args:
45
+ sourcelines: function source code, separated into lines by
46
+ the '\n' character
47
+ Returns:
48
+ A list of source lines that have been correctly aligned
49
+ """
50
+
51
+ def remove_prefix(text, prefix):
52
+ return text[text.startswith(prefix) and len(prefix) :]
53
+
54
+ # Find the line and line number containing the function definition
55
+ idx = None
56
+ for i, l in enumerate(sourcelines):
57
+ if l.lstrip().startswith("def"):
58
+ idx = i
59
+ break
60
+
61
+ # This will happen when the function is a lambda- we won't find "def" anywhere in the source
62
+ # lines in that case. Currently trying to JIT compile a lambda will throw an error up in
63
+ # `parse_def()`, but we might want to handle this case in the future.
64
+ if idx is None:
65
+ return sourcelines
66
+
67
+ # Get a string representing the amount of leading whitespace
68
+ fn_def = sourcelines[idx]
69
+ whitespace = fn_def.split("def")[0]
70
+
71
+ # Add this leading whitespace to all lines before and after the `def`
72
+ aligned_prefix = [
73
+ whitespace + remove_prefix(s, whitespace) for s in sourcelines[:idx]
74
+ ]
75
+ aligned_suffix = [
76
+ whitespace + remove_prefix(s, whitespace) for s in sourcelines[idx + 1 :]
77
+ ]
78
+
79
+ # Put it together again
80
+ aligned_prefix.append(fn_def)
81
+ return aligned_prefix + aligned_suffix
82
+
83
+
84
+ # Thin wrapper around SourceRangeFactory to store extra metadata
85
+ # about the function-to-be-compiled.
86
+ class SourceContext(SourceRangeFactory):
87
+ def __init__(
88
+ self,
89
+ source,
90
+ filename,
91
+ file_lineno,
92
+ leading_whitespace_len,
93
+ uses_true_division=True,
94
+ funcname=None,
95
+ ):
96
+ super().__init__(source, filename, file_lineno, leading_whitespace_len)
97
+ self.uses_true_division = uses_true_division
98
+ self.filename = filename
99
+ self.funcname = funcname
100
+
101
+
102
+ @functools.lru_cache(maxsize=None)
103
+ def make_source_context(*args):
104
+ return SourceContext(*args)
105
+
106
+
107
+ def fake_range():
108
+ return SourceContext("", None, 0, 0).make_raw_range(0, 1)
109
+
110
+
111
+ class ParsedDef(NamedTuple):
112
+ ast: ast.Module
113
+ ctx: SourceContext
114
+ source: str
115
+ filename: Optional[str]
116
+ file_lineno: int
117
+
118
+
119
+ def parse_def(fn):
120
+ sourcelines, file_lineno, filename = get_source_lines_and_file(
121
+ fn, ErrorReport.call_stack()
122
+ )
123
+ sourcelines = normalize_source_lines(sourcelines)
124
+ source = "".join(sourcelines)
125
+ dedent_src = dedent(source)
126
+ py_ast = ast.parse(dedent_src)
127
+ if len(py_ast.body) != 1 or not isinstance(py_ast.body[0], ast.FunctionDef):
128
+ raise RuntimeError(
129
+ f"Expected a single top-level function: {filename}:{file_lineno}"
130
+ )
131
+ leading_whitespace_len = len(source.split("\n", 1)[0]) - len(
132
+ dedent_src.split("\n", 1)[0]
133
+ )
134
+ ctx = make_source_context(
135
+ source, filename, file_lineno, leading_whitespace_len, True, fn.__name__
136
+ )
137
+ return ParsedDef(py_ast, ctx, source, filename, file_lineno)
env-llmeval/lib/python3.10/site-packages/torch/_storage_docs.py ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Adds docstrings to Storage functions"""
2
+
3
+ import torch._C
4
+ from torch._C import _add_docstr as add_docstr
5
+
6
+
7
+ storage_classes = [
8
+ "StorageBase",
9
+ ]
10
+
11
+
12
+ def add_docstr_all(method, docstr):
13
+ for cls_name in storage_classes:
14
+ cls = getattr(torch._C, cls_name)
15
+ try:
16
+ add_docstr(getattr(cls, method), docstr)
17
+ except AttributeError:
18
+ pass
19
+
20
+
21
+ add_docstr_all(
22
+ "from_file",
23
+ """
24
+ from_file(filename, shared=False, size=0) -> Storage
25
+
26
+ Creates a CPU storage backed by a memory-mapped file.
27
+
28
+ If ``shared`` is ``True``, then memory is shared between all processes.
29
+ All changes are written to the file. If ``shared`` is ``False``, then the changes on
30
+ the storage do not affect the file.
31
+
32
+ ``size`` is the number of elements in the storage. If ``shared`` is ``False``,
33
+ then the file must contain at least ``size * sizeof(Type)`` bytes
34
+ (``Type`` is the type of storage, in the case of an ``UnTypedStorage`` the file must contain at
35
+ least ``size`` bytes). If ``shared`` is ``True`` the file will be created if needed.
36
+
37
+ Args:
38
+ filename (str): file name to map
39
+ shared (bool): whether to share memory (whether ``MAP_SHARED`` or ``MAP_PRIVATE`` is passed to the
40
+ underlying `mmap(2) call <https://man7.org/linux/man-pages/man2/mmap.2.html>`_)
41
+ size (int): number of elements in the storage
42
+ """,
43
+ )
env-llmeval/lib/python3.10/site-packages/torch/_streambase.py ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from abc import ABC, abstractmethod
2
+
3
+
4
+ class _StreamBase(ABC):
5
+ r"""Base stream class abstraction for multi backends Stream to herit from"""
6
+
7
+ @abstractmethod
8
+ def wait_event(self, event):
9
+ raise NotImplementedError()
10
+
11
+ @abstractmethod
12
+ def wait_stream(self, stream):
13
+ raise NotImplementedError()
14
+
15
+ @abstractmethod
16
+ def record_event(self, event=None):
17
+ raise NotImplementedError()
18
+
19
+ @abstractmethod
20
+ def query(self):
21
+ raise NotImplementedError()
22
+
23
+ @abstractmethod
24
+ def synchronize(self):
25
+ raise NotImplementedError()
26
+
27
+ @abstractmethod
28
+ def __eq__(self, stream):
29
+ raise NotImplementedError()
30
+
31
+
32
+ class _EventBase(ABC):
33
+ r"""Base Event class abstraction for multi backends Event to herit from"""
34
+
35
+ @abstractmethod
36
+ def wait(self, stream=None):
37
+ raise NotImplementedError()
38
+
39
+ @abstractmethod
40
+ def query(self):
41
+ raise NotImplementedError()
42
+
43
+ @abstractmethod
44
+ def synchronize(self):
45
+ raise NotImplementedError()
env-llmeval/lib/python3.10/site-packages/torch/_tensor.py ADDED
@@ -0,0 +1,1518 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copyreg
2
+ import enum
3
+ import functools
4
+ import warnings
5
+ from collections import OrderedDict
6
+ from copy import deepcopy
7
+ from numbers import Number
8
+ from typing import Any, Dict, Optional, Tuple, Union
9
+
10
+ import torch
11
+ import torch._C as _C
12
+ import torch.utils.hooks as hooks
13
+ from torch._namedtensor_internals import (
14
+ check_serializing_named_tensor,
15
+ is_ellipsis,
16
+ resolve_ellipsis,
17
+ single_ellipsis_index,
18
+ unzip_namedshape,
19
+ update_names,
20
+ )
21
+ from torch.overrides import (
22
+ get_default_nowrap_functions,
23
+ handle_torch_function,
24
+ has_torch_function,
25
+ has_torch_function_unary,
26
+ has_torch_function_variadic,
27
+ )
28
+ from torch.utils.dlpack import DLDeviceType
29
+
30
+
31
+ def _handle_torch_function_and_wrap_type_error_to_not_implemented(f):
32
+ assigned = functools.WRAPPER_ASSIGNMENTS
33
+
34
+ @functools.wraps(f, assigned=assigned)
35
+ def wrapped(*args, **kwargs):
36
+ try:
37
+ # See https://github.com/pytorch/pytorch/issues/75462
38
+ if has_torch_function(args):
39
+ return handle_torch_function(wrapped, args, *args, **kwargs)
40
+ return f(*args, **kwargs)
41
+ except TypeError:
42
+ return NotImplemented
43
+
44
+ return wrapped
45
+
46
+
47
+ # Should not be used, this is kept only for BC of loading old serialized Tensor subclasses
48
+ def _rebuild_from_type(func, type, args, dict):
49
+ if type is Tensor:
50
+ return func(*args)
51
+
52
+ ret = func(*args).as_subclass(type)
53
+ ret.__dict__ = dict
54
+ return ret
55
+
56
+
57
+ def _rebuild_from_type_v2(func, new_type, args, state):
58
+ ret = func(*args)
59
+ if type(ret) is not new_type:
60
+ ret = ret.as_subclass(new_type)
61
+ # Tensor does define __setstate__ even though it doesn't define
62
+ # __getstate__. So only use __setstate__ if it is NOT the one defined
63
+ # on Tensor
64
+ if (
65
+ getattr(ret.__class__, "__setstate__", Tensor.__setstate__)
66
+ is not Tensor.__setstate__
67
+ ):
68
+ ret.__setstate__(state)
69
+ else:
70
+ ret = torch._utils._set_obj_state(ret, state)
71
+ return ret
72
+
73
+
74
+ # NB: If you subclass Tensor, and want to share the subclassed class
75
+ # across processes, you must also update torch/multiprocessing/reductions.py
76
+ # to define a ForkingPickler serialization mode for the class.
77
+ #
78
+ # NB: If you add a new method to Tensor, you must update
79
+ # torch/_C/__init__.pyi.in to add a type annotation for your method;
80
+ # otherwise, it will not show up in autocomplete.
81
+ class Tensor(torch._C.TensorBase):
82
+ def __deepcopy__(self, memo):
83
+ if has_torch_function_unary(self):
84
+ return handle_torch_function(Tensor.__deepcopy__, (self,), self, memo)
85
+ if not self.is_leaf:
86
+ raise RuntimeError(
87
+ "Only Tensors created explicitly by the user "
88
+ "(graph leaves) support the deepcopy protocol at the moment. "
89
+ "If you were attempting to deepcopy a module, this may be because "
90
+ "of a torch.nn.utils.weight_norm usage, "
91
+ "see https://github.com/pytorch/pytorch/pull/103001"
92
+ )
93
+ if id(self) in memo:
94
+ return memo[id(self)]
95
+ with torch.no_grad():
96
+ # TODO: skipping storage copy is wrong for meta, as meta
97
+ # does accurate alias tracking; however, the code below
98
+ # doesn't work because of
99
+ # https://github.com/pytorch/pytorch/issues/47442
100
+ # Update the test in test_serialization if you remove 'meta' from here
101
+ if (
102
+ self.is_sparse
103
+ or self.device.type
104
+ in ["lazy", "xla", "mtia", "mps", "ort", "meta", "ipu"]
105
+ or (
106
+ not torch._C._has_storage(self)
107
+ and self.device.type == torch._C._get_privateuse1_backend_name()
108
+ )
109
+ or (type(self) is not Tensor and self.data_ptr() == 0)
110
+ ):
111
+ new_tensor = self.clone()
112
+ if type(new_tensor) is not type(self):
113
+ raise RuntimeError(
114
+ "The default implementation of __deepcopy__() for wrapper subclasses "
115
+ "only works for subclass types that implement clone() and for which "
116
+ "cloning returns another instance of the same subclass. You should either "
117
+ "properly implement clone() for your subclass or override __deepcopy__() "
118
+ "if it is intended behavior for clone() to return an instance of a "
119
+ "different type."
120
+ )
121
+ else:
122
+ new_storage = self._typed_storage()._deepcopy(memo)
123
+ if self.is_quantized:
124
+ # quantizer_params can be different type based on torch attribute
125
+ quantizer_params: Union[
126
+ Tuple[torch.qscheme, float, int],
127
+ Tuple[torch.qscheme, Tensor, Tensor, int],
128
+ ]
129
+ if self.qscheme() == torch.per_tensor_affine:
130
+ quantizer_params = (
131
+ self.qscheme(),
132
+ self.q_scale(),
133
+ self.q_zero_point(),
134
+ )
135
+ elif self.qscheme() in (
136
+ torch.per_channel_affine,
137
+ torch.per_channel_affine_float_qparams,
138
+ ):
139
+ quantizer_params = (
140
+ self.qscheme(),
141
+ self.q_per_channel_scales(),
142
+ self.q_per_channel_zero_points(),
143
+ self.q_per_channel_axis(),
144
+ )
145
+ else:
146
+ raise RuntimeError(
147
+ f"Unsupported qscheme {self.qscheme()} in deepcopy"
148
+ )
149
+ # TODO: Once we decide to break serialization FC, no longer
150
+ # need to wrap with TypedStorage
151
+ new_tensor = torch._utils._rebuild_qtensor(
152
+ torch.storage.TypedStorage(
153
+ wrap_storage=new_storage._untyped_storage,
154
+ dtype=self.dtype,
155
+ _internal=True,
156
+ ),
157
+ self.storage_offset(),
158
+ self.size(),
159
+ self.stride(),
160
+ quantizer_params,
161
+ self.requires_grad,
162
+ self._backward_hooks,
163
+ )
164
+ if type(new_tensor) is not type(self):
165
+ raise RuntimeError(
166
+ "The default implementation of __deepcopy__() for quantized tensors "
167
+ "expects the tensor returned by torch._utils._rebuild_qtensor() to "
168
+ "match the type of the instance being copied. If you encounter this, "
169
+ "please open an issue on PyTorch's GitHub."
170
+ )
171
+ else:
172
+ new_tensor = self.new_empty([])
173
+ if type(new_tensor) is not type(self):
174
+ raise RuntimeError(
175
+ "The default implementation of __deepcopy__() for non-wrapper subclasses "
176
+ "only works for subclass types that implement new_empty() and for which "
177
+ "that function returns another instance of the same subclass. You should "
178
+ "either properly implement new_empty() for your subclass or override "
179
+ "__deepcopy__() if it is intended behavior for new_empty() to return "
180
+ "an instance of a different type."
181
+ )
182
+ new_tensor.set_(
183
+ new_storage, self.storage_offset(), self.size(), self.stride()
184
+ )
185
+ if self.is_conj():
186
+ new_tensor = new_tensor.conj_physical()
187
+ if self.is_neg():
188
+ new_tensor = new_tensor.neg()
189
+ if self.requires_grad:
190
+ new_tensor.requires_grad_()
191
+ if self.grad is not None:
192
+ new_tensor.grad = self.grad.__deepcopy__(memo)
193
+
194
+ if type(self) is not Tensor:
195
+ if type(new_tensor) is not type(self):
196
+ raise RuntimeError(
197
+ "Type of deepcopy result does not match the type of the source tensor. "
198
+ "If you encounter this, please open an issue on PyTorch's GitHub."
199
+ )
200
+
201
+ # Plain Tensors don't have slots
202
+ slots_to_save = copyreg._slotnames(self.__class__) # type: ignore[attr-defined]
203
+ for slot in slots_to_save:
204
+ if hasattr(self, slot):
205
+ setattr(new_tensor, slot, deepcopy(getattr(self, slot), memo))
206
+
207
+ new_tensor.__dict__ = deepcopy(self.__dict__, memo)
208
+
209
+ memo[id(self)] = new_tensor
210
+ return new_tensor
211
+
212
+ def __reduce_ex__(self, proto):
213
+ state = torch._utils._get_obj_state(self)
214
+ if type(self) is Tensor and not state:
215
+ # Fast path for regular tensor without Python state.
216
+ return self._reduce_ex_internal(proto)
217
+ if has_torch_function_unary(self):
218
+ return handle_torch_function(Tensor.__reduce_ex__, (self,), self, proto)
219
+ func, args = self._reduce_ex_internal(proto)
220
+ return (_rebuild_from_type_v2, (func, type(self), args, state))
221
+
222
+ def storage(self):
223
+ r"""
224
+ storage() -> torch.TypedStorage
225
+
226
+ Returns the underlying :class:`TypedStorage`.
227
+
228
+ .. warning::
229
+
230
+ :class:`TypedStorage` is deprecated. It will be removed in the future, and
231
+ :class:`UntypedStorage` will be the only storage class. To access the
232
+ :class:`UntypedStorage` directly, use :attr:`Tensor.untyped_storage()`.
233
+ """
234
+ if has_torch_function_unary(self):
235
+ return handle_torch_function(Tensor.storage, (self,), self)
236
+
237
+ torch.storage._warn_typed_storage_removal(stacklevel=2)
238
+ return self._typed_storage()
239
+
240
+ # For internal use only, to avoid raising deprecation warning
241
+ def _typed_storage(self):
242
+ untyped_storage = self.untyped_storage()
243
+ return torch.TypedStorage(
244
+ wrap_storage=untyped_storage, dtype=self.dtype, _internal=True
245
+ )
246
+
247
+ def _reduce_ex_internal(self, proto):
248
+ check_serializing_named_tensor(self)
249
+ # See Note [Don't serialize hooks]
250
+ torch.utils.hooks.warn_if_has_hooks(self)
251
+ backward_hooks: Dict[Any, Any] = OrderedDict()
252
+ # Note: Numpy array is chosen to be the rebuild component for XLA, MTIA, ORT Tensors.
253
+ # We considered a few options:
254
+ # 1. CPU tensor can't be used here.
255
+ # Otherwise in torch.load CPU storage is reconstructed with randomly
256
+ # initialized data, moved onto backend device, and then storage is updated
257
+ # to the serialized content. This works perfectly for CPU/CUDA but not these backends;
258
+ # their tensors are disconnected with storage so they don't get the update.
259
+ # 2. Python list is not a good fit due to performance reason.
260
+ # `tolist()` converts every single element in the tensor into python objects
261
+ # and serialize them one by one.
262
+ if self.device.type in ["xla", "mtia", "ort"] or (
263
+ not torch._C._has_storage(self)
264
+ and self.device.type == torch._C._get_privateuse1_backend_name()
265
+ ):
266
+ # Convert BFloat16 tesors to Float32 before conversion to numpy, as numpy doesn't
267
+ # support BFloat16. The rebuild tensor from numpy takes in the original self.dtype,
268
+ # this would reconstruct the BFloat16 tensor from numpy.
269
+ numpy_tensor = (
270
+ self.cpu().numpy()
271
+ if self.dtype != torch.bfloat16
272
+ else self.cpu().to(torch.float32).numpy()
273
+ )
274
+ return (
275
+ torch._utils._rebuild_device_tensor_from_numpy,
276
+ (numpy_tensor, self.dtype, str(self.device), self.requires_grad),
277
+ )
278
+ if self.device.type == "meta":
279
+ # NB: This implementation BREAKS storage sharing. Current
280
+ # hypothesis is that no one cares for meta tensors.
281
+ arg_meta = (
282
+ self.dtype,
283
+ tuple(self.size()),
284
+ self.stride(),
285
+ self.requires_grad,
286
+ )
287
+ return (torch._utils._rebuild_meta_tensor_no_storage, arg_meta)
288
+ if self.is_quantized:
289
+ # quantizer_params can be different type based on torch attribute
290
+ quantizer_params: Union[
291
+ Tuple[torch.qscheme, float, int], Tuple[Any, Tensor, Tensor, int]
292
+ ]
293
+ if self.qscheme() == torch.per_tensor_affine:
294
+ quantizer_params = (
295
+ torch.per_tensor_affine,
296
+ self.q_scale(),
297
+ self.q_zero_point(),
298
+ )
299
+ elif self.qscheme() in (
300
+ torch.per_channel_affine,
301
+ torch.per_channel_affine_float_qparams,
302
+ ):
303
+ # convert scales and zero points to tuple to avoid recursive calls
304
+ # when/if we get multi-axis quantized tensors in the future, the shape
305
+ # is recoverable from the main tensor shape
306
+ quantizer_params = (
307
+ torch.per_channel_affine,
308
+ self.q_per_channel_scales(),
309
+ self.q_per_channel_zero_points(),
310
+ self.q_per_channel_axis(),
311
+ )
312
+ else:
313
+ raise RuntimeError(
314
+ f"Serialization is not supported for tensors of type {self.qscheme()}"
315
+ )
316
+ # TODO: Once we decide to break serialization FC, no longer
317
+ # need to wrap with TypedStorage
318
+ args_qtensor = (
319
+ torch.storage.TypedStorage(
320
+ wrap_storage=self._typed_storage()._untyped_storage,
321
+ dtype=self.dtype,
322
+ _internal=True,
323
+ ),
324
+ self.storage_offset(),
325
+ tuple(self.size()),
326
+ self.stride(),
327
+ quantizer_params,
328
+ self.requires_grad,
329
+ backward_hooks,
330
+ )
331
+ return (torch._utils._rebuild_qtensor, args_qtensor)
332
+ elif self.is_sparse:
333
+ if self.layout == torch.sparse_coo:
334
+ args_sparse = (
335
+ self.layout,
336
+ (self._indices(), self._values(), self.size(), self.is_coalesced()),
337
+ )
338
+ else:
339
+ raise NotImplementedError(
340
+ f"sparse tensor __reduce_ex__ for layout `{self.layout}`"
341
+ )
342
+ return (torch._utils._rebuild_sparse_tensor, args_sparse)
343
+ elif self.layout in {
344
+ torch.sparse_csr,
345
+ torch.sparse_csc,
346
+ torch.sparse_bsr,
347
+ torch.sparse_bsc,
348
+ }:
349
+ if self.layout in {torch.sparse_csr, torch.sparse_bsr}:
350
+ compressed_indices, plain_indices = (
351
+ self.crow_indices(),
352
+ self.col_indices(),
353
+ )
354
+ else:
355
+ compressed_indices, plain_indices = (
356
+ self.ccol_indices(),
357
+ self.row_indices(),
358
+ )
359
+ args_sparse_compressed = (
360
+ self.layout,
361
+ (
362
+ compressed_indices,
363
+ plain_indices,
364
+ self.values(),
365
+ self.size(),
366
+ ),
367
+ )
368
+ return (torch._utils._rebuild_sparse_tensor, args_sparse_compressed)
369
+ elif self.is_nested:
370
+ args_nested = (
371
+ # NB: values() currently returns the storage as a buffer in an unsafe way.
372
+ # Ideally, we'd use a private API for this instead. TODO: Switch to this if
373
+ # we ever get around to adding it.
374
+ self.values(),
375
+ self._nested_tensor_size(),
376
+ self._nested_tensor_strides(),
377
+ self._nested_tensor_storage_offsets(),
378
+ )
379
+ return (torch._utils._rebuild_nested_tensor, args_nested)
380
+ elif (
381
+ self.data_ptr() == 0
382
+ and type(self) is not torch.Tensor
383
+ and type(self).__torch_dispatch__ is not torch.Tensor.__torch_dispatch__
384
+ ):
385
+ arg_wrapper_subclass = (
386
+ type(self),
387
+ self.dtype,
388
+ tuple(self.size()),
389
+ self.stride(),
390
+ self.storage_offset(),
391
+ self.layout,
392
+ self.device,
393
+ self.requires_grad,
394
+ )
395
+ return (torch._utils._rebuild_wrapper_subclass, arg_wrapper_subclass)
396
+ else:
397
+ v3_dtypes = [
398
+ torch.float8_e5m2,
399
+ torch.float8_e4m3fn,
400
+ torch.bits8,
401
+ torch.bits16,
402
+ torch.bits1x8,
403
+ torch.bits2x4,
404
+ torch.bits4x2,
405
+ ]
406
+ if self.dtype in v3_dtypes:
407
+ rebuild_func = torch._utils._rebuild_tensor_v3
408
+ storage = self.untyped_storage()
409
+ else:
410
+ # TODO: Once we decide to break serialization FC, no longer
411
+ # need to wrap with TypedStorage
412
+ rebuild_func = torch._utils._rebuild_tensor_v2 # type: ignore[assignment]
413
+ storage = torch.storage.TypedStorage(
414
+ wrap_storage=self._typed_storage()._untyped_storage,
415
+ dtype=self.dtype,
416
+ _internal=True,
417
+ ) # type: ignore[assignment]
418
+ args = (
419
+ storage,
420
+ self.storage_offset(),
421
+ tuple(self.size()),
422
+ self.stride(),
423
+ self.requires_grad,
424
+ backward_hooks,
425
+ ) # previously was self._backward_hooks
426
+
427
+ if isinstance(storage, torch.storage.UntypedStorage):
428
+ args = args + (self.dtype,) # type: ignore[assignment]
429
+
430
+ metadata = torch._utils.get_tensor_metadata(self)
431
+ if metadata:
432
+ args = args + (metadata,) # type: ignore[assignment]
433
+
434
+ return (rebuild_func, args)
435
+
436
+ def __setstate__(self, state):
437
+ if has_torch_function_unary(self):
438
+ return handle_torch_function(Tensor.__setstate__, (self,), self, state)
439
+ # Warning: this method is NOT called when you torch.load() a tensor;
440
+ # that is managed by _rebuild_tensor_v2
441
+ if not self.is_leaf:
442
+ raise RuntimeError("__setstate__ can be only called on leaf Tensors")
443
+ if len(state) == 4:
444
+ # legacy serialization of Tensor
445
+ self.set_(*state)
446
+ return
447
+ elif len(state) == 5:
448
+ # legacy serialization of Variable
449
+ self.data = state[0]
450
+ state = (state[3], state[4], state[2])
451
+ # The setting of _backward_hooks is expected to be a no-op.
452
+ # See Note [Don't serialize hooks]
453
+ self.requires_grad, _, self._backward_hooks = state
454
+
455
+ def __repr__(self, *, tensor_contents=None):
456
+ if has_torch_function_unary(self):
457
+ return handle_torch_function(
458
+ Tensor.__repr__, (self,), self, tensor_contents=tensor_contents
459
+ )
460
+ # All strings are unicode in Python 3.
461
+ return torch._tensor_str._str(self, tensor_contents=tensor_contents)
462
+
463
+ def backward(
464
+ self, gradient=None, retain_graph=None, create_graph=False, inputs=None
465
+ ):
466
+ r"""Computes the gradient of current tensor wrt graph leaves.
467
+
468
+ The graph is differentiated using the chain rule. If the tensor is
469
+ non-scalar (i.e. its data has more than one element) and requires
470
+ gradient, the function additionally requires specifying ``gradient``.
471
+ It should be a tensor of matching type and location, that contains
472
+ the gradient of the differentiated function w.r.t. ``self``.
473
+
474
+ This function accumulates gradients in the leaves - you might need to zero
475
+ ``.grad`` attributes or set them to ``None`` before calling it.
476
+ See :ref:`Default gradient layouts<default-grad-layouts>`
477
+ for details on the memory layout of accumulated gradients.
478
+
479
+ .. note::
480
+
481
+ If you run any forward ops, create ``gradient``, and/or call ``backward``
482
+ in a user-specified CUDA stream context, see
483
+ :ref:`Stream semantics of backward passes<bwd-cuda-stream-semantics>`.
484
+
485
+ .. note::
486
+
487
+ When ``inputs`` are provided and a given input is not a leaf,
488
+ the current implementation will call its grad_fn (though it is not strictly needed to get this gradients).
489
+ It is an implementation detail on which the user should not rely.
490
+ See https://github.com/pytorch/pytorch/pull/60521#issuecomment-867061780 for more details.
491
+
492
+ Args:
493
+ gradient (Tensor or None): Gradient w.r.t. the
494
+ tensor. If it is a tensor, it will be automatically converted
495
+ to a Tensor that does not require grad unless ``create_graph`` is True.
496
+ None values can be specified for scalar Tensors or ones that
497
+ don't require grad. If a None value would be acceptable then
498
+ this argument is optional.
499
+ retain_graph (bool, optional): If ``False``, the graph used to compute
500
+ the grads will be freed. Note that in nearly all cases setting
501
+ this option to True is not needed and often can be worked around
502
+ in a much more efficient way. Defaults to the value of
503
+ ``create_graph``.
504
+ create_graph (bool, optional): If ``True``, graph of the derivative will
505
+ be constructed, allowing to compute higher order derivative
506
+ products. Defaults to ``False``.
507
+ inputs (sequence of Tensor): Inputs w.r.t. which the gradient will be
508
+ accumulated into ``.grad``. All other Tensors will be ignored. If not
509
+ provided, the gradient is accumulated into all the leaf Tensors that were
510
+ used to compute the attr::tensors.
511
+ """
512
+ if has_torch_function_unary(self):
513
+ return handle_torch_function(
514
+ Tensor.backward,
515
+ (self,),
516
+ self,
517
+ gradient=gradient,
518
+ retain_graph=retain_graph,
519
+ create_graph=create_graph,
520
+ inputs=inputs,
521
+ )
522
+ torch.autograd.backward(
523
+ self, gradient, retain_graph, create_graph, inputs=inputs
524
+ )
525
+
526
+ def register_hook(self, hook):
527
+ r"""Registers a backward hook.
528
+
529
+ The hook will be called every time a gradient with respect to the
530
+ Tensor is computed. The hook should have the following signature::
531
+
532
+ hook(grad) -> Tensor or None
533
+
534
+
535
+ The hook should not modify its argument, but it can optionally return
536
+ a new gradient which will be used in place of :attr:`grad`.
537
+
538
+ This function returns a handle with a method ``handle.remove()``
539
+ that removes the hook from the module.
540
+
541
+ .. note::
542
+ See :ref:`backward-hooks-execution` for more information on how when this hook
543
+ is executed, and how its execution is ordered relative to other hooks.
544
+
545
+ Example::
546
+
547
+ >>> v = torch.tensor([0., 0., 0.], requires_grad=True)
548
+ >>> h = v.register_hook(lambda grad: grad * 2) # double the gradient
549
+ >>> v.backward(torch.tensor([1., 2., 3.]))
550
+ >>> v.grad
551
+
552
+ 2
553
+ 4
554
+ 6
555
+ [torch.FloatTensor of size (3,)]
556
+
557
+ >>> h.remove() # removes the hook
558
+ """
559
+ if has_torch_function_unary(self):
560
+ return handle_torch_function(Tensor.register_hook, (self,), self, hook)
561
+ if not self.requires_grad:
562
+ raise RuntimeError(
563
+ "cannot register a hook on a tensor that doesn't require gradient"
564
+ )
565
+ if self._backward_hooks is None:
566
+ self._backward_hooks = OrderedDict()
567
+ if self.grad_fn is not None:
568
+ self.grad_fn._register_hook_dict(self)
569
+ handle = hooks.RemovableHandle(self._backward_hooks)
570
+ self._backward_hooks[handle.id] = hook
571
+ return handle
572
+
573
+ def register_post_accumulate_grad_hook(self, hook):
574
+ r"""Registers a backward hook that runs after grad accumulation.
575
+
576
+ The hook will be called after all gradients for a tensor have been accumulated,
577
+ meaning that the .grad field has been updated on that tensor. The post
578
+ accumulate grad hook is ONLY applicable for leaf tensors (tensors without a
579
+ .grad_fn field). Registering this hook on a non-leaf tensor will error!
580
+
581
+ The hook should have the following signature::
582
+
583
+ hook(param: Tensor) -> None
584
+
585
+ Note that, unlike other autograd hooks, this hook operates on the tensor
586
+ that requires grad and not the grad itself. The hook can in-place modify
587
+ and access its Tensor argument, including its .grad field.
588
+
589
+ This function returns a handle with a method ``handle.remove()``
590
+ that removes the hook from the module.
591
+
592
+ .. note::
593
+ See :ref:`backward-hooks-execution` for more information on how when this hook
594
+ is executed, and how its execution is ordered relative to other hooks. Since
595
+ this hook runs during the backward pass, it will run in no_grad mode (unless
596
+ create_graph is True). You can use torch.enable_grad() to re-enable autograd
597
+ within the hook if you need it.
598
+
599
+ Example::
600
+
601
+ >>> v = torch.tensor([0., 0., 0.], requires_grad=True)
602
+ >>> lr = 0.01
603
+ >>> # simulate a simple SGD update
604
+ >>> h = v.register_post_accumulate_grad_hook(lambda p: p.add_(p.grad, alpha=-lr))
605
+ >>> v.backward(torch.tensor([1., 2., 3.]))
606
+ >>> v
607
+ tensor([-0.0100, -0.0200, -0.0300], requires_grad=True)
608
+
609
+ >>> h.remove() # removes the hook
610
+ """
611
+ if has_torch_function_unary(self):
612
+ return handle_torch_function(
613
+ Tensor.register_post_accumulate_grad_hook, (self,), self, hook
614
+ )
615
+ if not self.requires_grad:
616
+ raise RuntimeError(
617
+ "cannot register a hook on a tensor that doesn't require gradient"
618
+ )
619
+ if self.grad_fn is not None:
620
+ raise RuntimeError(
621
+ "post accumulate grad hooks cannot be registered on non-leaf tensors"
622
+ )
623
+ if self._post_accumulate_grad_hooks is None:
624
+ self._post_accumulate_grad_hooks: Dict[Any, Any] = OrderedDict()
625
+ handle = hooks.RemovableHandle(self._post_accumulate_grad_hooks)
626
+ self._post_accumulate_grad_hooks[handle.id] = hook
627
+ return handle
628
+
629
+ def reinforce(self, reward):
630
+ def trim(str):
631
+ return "\n".join([line.strip() for line in str.split("\n")])
632
+
633
+ raise RuntimeError(
634
+ trim(
635
+ r"""reinforce() was removed.
636
+ Use torch.distributions instead.
637
+ See https://pytorch.org/docs/master/distributions.html
638
+
639
+ Instead of:
640
+
641
+ probs = policy_network(state)
642
+ action = probs.multinomial()
643
+ next_state, reward = env.step(action)
644
+ action.reinforce(reward)
645
+ action.backward()
646
+
647
+ Use:
648
+
649
+ probs = policy_network(state)
650
+ # NOTE: categorical is equivalent to what used to be called multinomial
651
+ m = torch.distributions.Categorical(probs)
652
+ action = m.sample()
653
+ next_state, reward = env.step(action)
654
+ loss = -m.log_prob(action) * reward
655
+ loss.backward()
656
+ """
657
+ )
658
+ )
659
+
660
+ detach = _C._add_docstr(
661
+ _C.TensorBase.detach,
662
+ r"""
663
+ Returns a new Tensor, detached from the current graph.
664
+
665
+ The result will never require gradient.
666
+
667
+ This method also affects forward mode AD gradients and the result will never
668
+ have forward mode AD gradients.
669
+
670
+ .. note::
671
+
672
+ Returned Tensor shares the same storage with the original one.
673
+ In-place modifications on either of them will be seen, and may trigger
674
+ errors in correctness checks.
675
+ IMPORTANT NOTE: Previously, in-place size / stride / storage changes
676
+ (such as `resize_` / `resize_as_` / `set_` / `transpose_`) to the returned tensor
677
+ also update the original tensor. Now, these in-place changes will not update the
678
+ original tensor anymore, and will instead trigger an error.
679
+ For sparse tensors:
680
+ In-place indices / values changes (such as `zero_` / `copy_` / `add_`) to the
681
+ returned tensor will not update the original tensor anymore, and will instead
682
+ trigger an error.
683
+ """,
684
+ )
685
+
686
+ detach_ = _C._add_docstr(
687
+ _C.TensorBase.detach_,
688
+ r"""
689
+ Detaches the Tensor from the graph that created it, making it a leaf.
690
+ Views cannot be detached in-place.
691
+
692
+ This method also affects forward mode AD gradients and the result will never
693
+ have forward mode AD gradients.
694
+ """,
695
+ )
696
+
697
+ def is_shared(self):
698
+ r"""Checks if tensor is in shared memory.
699
+
700
+ This is always ``True`` for CUDA tensors.
701
+ """
702
+ if has_torch_function_unary(self):
703
+ return handle_torch_function(Tensor.is_shared, (self,), self)
704
+ return self._typed_storage()._is_shared()
705
+
706
+ def share_memory_(self):
707
+ r"""Moves the underlying storage to shared memory.
708
+
709
+ This is a no-op if the underlying storage is already in shared memory
710
+ and for CUDA tensors. Tensors in shared memory cannot be resized.
711
+
712
+ See :meth:`torch.UntypedStorage.share_memory_` for more details.
713
+ """
714
+ if has_torch_function_unary(self):
715
+ return handle_torch_function(Tensor.share_memory_, (self,), self)
716
+ self._typed_storage()._share_memory_()
717
+ return self
718
+
719
+ def __reversed__(self):
720
+ r"""Reverses the tensor along dimension 0."""
721
+ if has_torch_function_unary(self):
722
+ return handle_torch_function(Tensor.__reversed__, (self,), self)
723
+ if self.dim() == 0:
724
+ return self
725
+ else:
726
+ return self.flip(0)
727
+
728
+ def norm(
729
+ self,
730
+ p: Optional[Union[float, str]] = "fro",
731
+ dim=None,
732
+ keepdim=False,
733
+ dtype=None,
734
+ ):
735
+ r"""See :func:`torch.norm`"""
736
+ if has_torch_function_unary(self):
737
+ return handle_torch_function(
738
+ Tensor.norm, (self,), self, p=p, dim=dim, keepdim=keepdim, dtype=dtype
739
+ )
740
+ return torch.norm(self, p, dim, keepdim, dtype=dtype)
741
+
742
+ def solve(self, other):
743
+ from ._linalg_utils import solve
744
+
745
+ return solve(self, other)
746
+
747
+ def lstsq(self, other):
748
+ from ._linalg_utils import lstsq
749
+
750
+ return lstsq(self, other)
751
+
752
+ def eig(self, eigenvectors=False):
753
+ from ._linalg_utils import eig
754
+
755
+ return eig(self, eigenvectors=eigenvectors)
756
+
757
+ def symeig(self, eigenvectors=False):
758
+ from ._linalg_utils import _symeig
759
+
760
+ return _symeig(self, eigenvectors=eigenvectors)
761
+
762
+ def lu(self, pivot=True, get_infos=False):
763
+ r"""See :func:`torch.lu`"""
764
+ # If get_infos is True, then we don't need to check for errors and vice versa
765
+ if has_torch_function_unary(self):
766
+ return handle_torch_function(
767
+ Tensor.lu, (self,), self, pivot=pivot, get_infos=get_infos
768
+ )
769
+
770
+ LU, pivots, infos = torch._lu_with_info(
771
+ self, pivot=pivot, check_errors=(not get_infos)
772
+ )
773
+ if get_infos:
774
+ return LU, pivots, infos
775
+ else:
776
+ return LU, pivots
777
+
778
+ def stft(
779
+ self,
780
+ n_fft: int,
781
+ hop_length: Optional[int] = None,
782
+ win_length: Optional[int] = None,
783
+ window: "Optional[Tensor]" = None,
784
+ center: bool = True,
785
+ pad_mode: str = "reflect",
786
+ normalized: bool = False,
787
+ onesided: Optional[bool] = None,
788
+ return_complex: Optional[bool] = None,
789
+ ):
790
+ r"""See :func:`torch.stft`
791
+
792
+ .. warning::
793
+ This function changed signature at version 0.4.1. Calling with
794
+ the previous signature may cause error or return incorrect result.
795
+ """
796
+ if has_torch_function_unary(self):
797
+ return handle_torch_function(
798
+ Tensor.stft,
799
+ (self,),
800
+ self,
801
+ n_fft,
802
+ hop_length=hop_length,
803
+ win_length=win_length,
804
+ window=window,
805
+ center=center,
806
+ pad_mode=pad_mode,
807
+ normalized=normalized,
808
+ onesided=onesided,
809
+ return_complex=return_complex,
810
+ )
811
+ return torch.stft(
812
+ self,
813
+ n_fft,
814
+ hop_length,
815
+ win_length,
816
+ window,
817
+ center,
818
+ pad_mode,
819
+ normalized,
820
+ onesided,
821
+ return_complex=return_complex,
822
+ )
823
+
824
+ def istft(
825
+ self,
826
+ n_fft: int,
827
+ hop_length: Optional[int] = None,
828
+ win_length: Optional[int] = None,
829
+ window: "Optional[Tensor]" = None,
830
+ center: bool = True,
831
+ normalized: bool = False,
832
+ onesided: Optional[bool] = None,
833
+ length: Optional[int] = None,
834
+ return_complex: bool = False,
835
+ ):
836
+ r"""See :func:`torch.istft`"""
837
+ if has_torch_function_unary(self):
838
+ return handle_torch_function(
839
+ Tensor.istft,
840
+ (self,),
841
+ self,
842
+ n_fft,
843
+ hop_length=hop_length,
844
+ win_length=win_length,
845
+ window=window,
846
+ center=center,
847
+ normalized=normalized,
848
+ onesided=onesided,
849
+ length=length,
850
+ return_complex=return_complex,
851
+ )
852
+ return torch.istft(
853
+ self,
854
+ n_fft,
855
+ hop_length,
856
+ win_length,
857
+ window,
858
+ center,
859
+ normalized,
860
+ onesided,
861
+ length,
862
+ return_complex=return_complex,
863
+ )
864
+
865
+ def resize(self, *sizes):
866
+ if has_torch_function_unary(self):
867
+ return handle_torch_function(Tensor.resize, (self,), self, *sizes)
868
+ warnings.warn("non-inplace resize is deprecated")
869
+ from torch.autograd._functions import Resize
870
+
871
+ return Resize.apply(self, sizes)
872
+
873
+ def resize_as(self, tensor):
874
+ if has_torch_function_variadic(self, tensor):
875
+ return handle_torch_function(Tensor.resize_as, (self, tensor), self, tensor)
876
+ warnings.warn("non-inplace resize_as is deprecated")
877
+ from torch.autograd._functions import Resize
878
+
879
+ return Resize.apply(self, tensor.size())
880
+
881
+ def split(self, split_size, dim=0):
882
+ r"""See :func:`torch.split`"""
883
+ if has_torch_function_unary(self):
884
+ return handle_torch_function(
885
+ Tensor.split, (self,), self, split_size, dim=dim
886
+ )
887
+ if isinstance(split_size, Tensor):
888
+ try:
889
+ split_size = int(split_size)
890
+ except ValueError:
891
+ pass
892
+
893
+ if isinstance(split_size, (int, torch.SymInt)):
894
+ return torch._VF.split(self, split_size, dim) # type: ignore[attr-defined]
895
+ else:
896
+ return torch._VF.split_with_sizes(self, split_size, dim)
897
+
898
+ def unique(self, sorted=True, return_inverse=False, return_counts=False, dim=None):
899
+ r"""Returns the unique elements of the input tensor.
900
+
901
+ See :func:`torch.unique`
902
+ """
903
+ if has_torch_function_unary(self):
904
+ return handle_torch_function(
905
+ Tensor.unique,
906
+ (self,),
907
+ self,
908
+ sorted=sorted,
909
+ return_inverse=return_inverse,
910
+ return_counts=return_counts,
911
+ dim=dim,
912
+ )
913
+ return torch.unique(
914
+ self,
915
+ sorted=sorted,
916
+ return_inverse=return_inverse,
917
+ return_counts=return_counts,
918
+ dim=dim,
919
+ )
920
+
921
+ def unique_consecutive(self, return_inverse=False, return_counts=False, dim=None):
922
+ r"""Eliminates all but the first element from every consecutive group of equivalent elements.
923
+
924
+ See :func:`torch.unique_consecutive`
925
+ """
926
+ if has_torch_function_unary(self):
927
+ return handle_torch_function(
928
+ Tensor.unique_consecutive,
929
+ (self,),
930
+ self,
931
+ return_inverse=return_inverse,
932
+ return_counts=return_counts,
933
+ dim=dim,
934
+ )
935
+ return torch.unique_consecutive(
936
+ self, return_inverse=return_inverse, return_counts=return_counts, dim=dim
937
+ )
938
+
939
+ @_handle_torch_function_and_wrap_type_error_to_not_implemented
940
+ def __rsub__(self, other):
941
+ return _C._VariableFunctions.rsub(self, other)
942
+
943
+ @_handle_torch_function_and_wrap_type_error_to_not_implemented
944
+ def __rdiv__(self, other):
945
+ return self.reciprocal() * other
946
+
947
+ __rtruediv__ = __rdiv__
948
+ __itruediv__ = _C.TensorBase.__idiv__
949
+
950
+ __pow__ = _handle_torch_function_and_wrap_type_error_to_not_implemented(
951
+ _C.TensorBase.pow
952
+ )
953
+ __ipow__ = _handle_torch_function_and_wrap_type_error_to_not_implemented(
954
+ _C.TensorBase.pow_
955
+ )
956
+
957
+ @_handle_torch_function_and_wrap_type_error_to_not_implemented
958
+ def __rmod__(self, other):
959
+ return torch.remainder(other, self)
960
+
961
+ def __format__(self, format_spec):
962
+ if has_torch_function_unary(self):
963
+ return handle_torch_function(Tensor.__format__, (self,), self, format_spec)
964
+ if self.dim() == 0 and not self.is_meta and type(self) is Tensor:
965
+ return self.item().__format__(format_spec)
966
+ return object.__format__(self, format_spec)
967
+
968
+ @_handle_torch_function_and_wrap_type_error_to_not_implemented
969
+ def __rpow__(self, other):
970
+ return torch.pow(other, self)
971
+
972
+ @_handle_torch_function_and_wrap_type_error_to_not_implemented
973
+ def __floordiv__(self, other):
974
+ return torch.floor_divide(self, other)
975
+
976
+ @_handle_torch_function_and_wrap_type_error_to_not_implemented
977
+ def __rfloordiv__(self, other):
978
+ return torch.floor_divide(other, self)
979
+
980
+ @_handle_torch_function_and_wrap_type_error_to_not_implemented
981
+ def __rlshift__(self, other):
982
+ return torch.bitwise_left_shift(other, self)
983
+
984
+ @_handle_torch_function_and_wrap_type_error_to_not_implemented
985
+ def __rrshift__(self, other):
986
+ return torch.bitwise_right_shift(other, self)
987
+
988
+ @_handle_torch_function_and_wrap_type_error_to_not_implemented
989
+ def __rmatmul__(self, other):
990
+ return torch.matmul(other, self)
991
+
992
+ __pos__ = _C.TensorBase.positive
993
+ __neg__ = _C.TensorBase.neg
994
+ __abs__ = _C.TensorBase.abs
995
+
996
+ def __len__(self):
997
+ if has_torch_function_unary(self):
998
+ return handle_torch_function(Tensor.__len__, (self,), self)
999
+ if self.dim() == 0:
1000
+ raise TypeError("len() of a 0-d tensor")
1001
+ if torch._C._get_tracing_state():
1002
+ warnings.warn(
1003
+ "Using len to get tensor shape might cause the trace to be incorrect. "
1004
+ "Recommended usage would be tensor.shape[0]. "
1005
+ "Passing a tensor of different shape might lead to errors or silently give "
1006
+ "incorrect results.",
1007
+ category=torch.jit.TracerWarning,
1008
+ stacklevel=2,
1009
+ )
1010
+ return self.shape[0]
1011
+
1012
+ def __iter__(self):
1013
+ # NB: we use 'imap' and not 'map' here, so that in Python 2 we get a
1014
+ # generator and don't eagerly perform all the indexes. This could
1015
+ # save us work, and also helps keep trace ordering deterministic
1016
+ # (e.g., if you zip(*hiddens), the eager map will force all the
1017
+ # indexes of hiddens[0] before hiddens[1], while the generator
1018
+ # map will interleave them.)
1019
+ # NB: We have intentionally skipped __torch_function__ dispatch here.
1020
+ # See gh-54457
1021
+ if self.dim() == 0:
1022
+ raise TypeError("iteration over a 0-d tensor")
1023
+ if torch._C._get_tracing_state():
1024
+ warnings.warn(
1025
+ "Iterating over a tensor might cause the trace to be incorrect. "
1026
+ "Passing a tensor of different shape won't change the number of "
1027
+ "iterations executed (and might lead to errors or silently give "
1028
+ "incorrect results).",
1029
+ category=torch.jit.TracerWarning,
1030
+ stacklevel=2,
1031
+ )
1032
+ return iter(self.unbind(0))
1033
+
1034
+ def __hash__(self):
1035
+ # Do NOT handle __torch_function__ here as user's default
1036
+ # implementation that handle most functions will most likely do it wrong.
1037
+ # It can be easily overridden by defining this method on the user
1038
+ # subclass if needed.
1039
+ return id(self)
1040
+
1041
+ def __dir__(self):
1042
+ if has_torch_function_unary(self):
1043
+ return handle_torch_function(Tensor.__dir__, (self,), self)
1044
+ tensor_methods = dir(self.__class__)
1045
+ tensor_methods.remove("volatile") # deprecated
1046
+ attrs = list(self.__dict__.keys())
1047
+ keys = tensor_methods + attrs
1048
+
1049
+ # property only available dense, cuda tensors
1050
+ if (not self.is_cuda) or self.is_sparse:
1051
+ keys.remove("__cuda_array_interface__")
1052
+
1053
+ return sorted(keys)
1054
+
1055
+ # Numpy array interface, to support `numpy.asarray(tensor) -> ndarray`
1056
+ __array_priority__ = 1000 # prefer Tensor ops over numpy ones
1057
+
1058
+ def __array__(self, dtype=None):
1059
+ if has_torch_function_unary(self):
1060
+ return handle_torch_function(Tensor.__array__, (self,), self, dtype=dtype)
1061
+ if dtype is None:
1062
+ return self.numpy()
1063
+ else:
1064
+ return self.numpy().astype(dtype, copy=False)
1065
+
1066
+ # Wrap Numpy array again in a suitable tensor when done, to support e.g.
1067
+ # `numpy.sin(tensor) -> tensor` or `numpy.greater(tensor, 0) -> ByteTensor`
1068
+ def __array_wrap__(self, array):
1069
+ if has_torch_function_unary(self):
1070
+ return handle_torch_function(
1071
+ Tensor.__array_wrap__, (self,), self, array=array
1072
+ )
1073
+ if array.dtype == bool:
1074
+ # Workaround, torch has no built-in bool tensor
1075
+ array = array.astype("uint8")
1076
+ return torch.from_numpy(array)
1077
+
1078
+ def __contains__(self, element):
1079
+ r"""Check if `element` is present in tensor
1080
+
1081
+ Args:
1082
+ element (Tensor or scalar): element to be checked
1083
+ for presence in current tensor"
1084
+ """
1085
+ if has_torch_function_unary(self):
1086
+ return handle_torch_function(Tensor.__contains__, (self,), self, element)
1087
+ if isinstance(
1088
+ element, (torch.Tensor, Number, torch.SymInt, torch.SymFloat, torch.SymBool)
1089
+ ):
1090
+ # type hint doesn't understand the __contains__ result array
1091
+ return (element == self).any().item() # type: ignore[union-attr]
1092
+
1093
+ raise RuntimeError(
1094
+ f"Tensor.__contains__ only supports Tensor or scalar, but you passed in a {type(element)}."
1095
+ )
1096
+
1097
+ @property
1098
+ def __cuda_array_interface__(self):
1099
+ """Array view description for cuda tensors.
1100
+
1101
+ See:
1102
+ https://numba.pydata.org/numba-doc/latest/cuda/cuda_array_interface.html
1103
+ """
1104
+ if has_torch_function_unary(self):
1105
+ # TODO mypy doesn't support @property, see: https://github.com/python/mypy/issues/6185
1106
+ return handle_torch_function(Tensor.__cuda_array_interface__.__get__, (self,), self) # type: ignore[attr-defined]
1107
+
1108
+ # raise AttributeError for unsupported tensors, so that
1109
+ # hasattr(cpu_tensor, "__cuda_array_interface__") is False.
1110
+ if not self.is_cuda:
1111
+ raise AttributeError(
1112
+ "Can't get __cuda_array_interface__ on non-CUDA tensor type: %s "
1113
+ "If CUDA data is required use tensor.cuda() to copy tensor to device memory."
1114
+ % self.type()
1115
+ )
1116
+
1117
+ if self.is_sparse:
1118
+ raise AttributeError(
1119
+ "Can't get __cuda_array_interface__ on sparse type: %s "
1120
+ "Use Tensor.to_dense() to convert to a dense tensor first."
1121
+ % self.type()
1122
+ )
1123
+
1124
+ # RuntimeError, matching tensor.__array__() behavior.
1125
+ if self.requires_grad:
1126
+ raise RuntimeError(
1127
+ "Can't get __cuda_array_interface__ on Variable that requires grad. "
1128
+ "If gradients aren't required, use var.detach() to get Variable that doesn't require grad."
1129
+ )
1130
+
1131
+ # CUDA devices are little-endian and tensors are stored in native byte
1132
+ # order. 1-byte entries are endian-agnostic.
1133
+ typestr = {
1134
+ torch.complex64: "<c8",
1135
+ torch.complex128: "<c16",
1136
+ torch.float16: "<f2",
1137
+ torch.float32: "<f4",
1138
+ torch.float64: "<f8",
1139
+ torch.uint8: "|u1",
1140
+ torch.int8: "|i1",
1141
+ torch.int16: "<i2",
1142
+ torch.int32: "<i4",
1143
+ torch.int64: "<i8",
1144
+ }[self.dtype]
1145
+
1146
+ itemsize = self.element_size()
1147
+
1148
+ shape = tuple(self.shape)
1149
+ if self.is_contiguous():
1150
+ # __cuda_array_interface__ v2 requires the strides to be omitted
1151
+ # (either not set or set to None) for C-contiguous arrays.
1152
+ strides = None
1153
+ else:
1154
+ strides = tuple(s * itemsize for s in self.stride())
1155
+ data_ptr = self.data_ptr() if self.numel() > 0 else 0
1156
+ data = (data_ptr, False) # read-only is false
1157
+
1158
+ return dict(typestr=typestr, shape=shape, strides=strides, data=data, version=2)
1159
+
1160
+ def storage_type(self):
1161
+ r"""storage_type() -> type
1162
+
1163
+ Returns the type of the underlying storage.
1164
+
1165
+ """
1166
+ if has_torch_function_unary(self):
1167
+ return handle_torch_function(Tensor.storage_type, (self,), self)
1168
+
1169
+ torch.storage._warn_typed_storage_removal()
1170
+
1171
+ return self._typed_storage()._get_legacy_storage_class()
1172
+
1173
+ def refine_names(self, *names):
1174
+ r"""Refines the dimension names of :attr:`self` according to :attr:`names`.
1175
+
1176
+ Refining is a special case of renaming that "lifts" unnamed dimensions.
1177
+ A ``None`` dim can be refined to have any name; a named dim can only be
1178
+ refined to have the same name.
1179
+
1180
+ Because named tensors can coexist with unnamed tensors, refining names
1181
+ gives a nice way to write named-tensor-aware code that works with both
1182
+ named and unnamed tensors.
1183
+
1184
+ :attr:`names` may contain up to one Ellipsis (``...``).
1185
+ The Ellipsis is expanded greedily; it is expanded in-place to fill
1186
+ :attr:`names` to the same length as ``self.dim()`` using names from the
1187
+ corresponding indices of ``self.names``.
1188
+
1189
+ Python 2 does not support Ellipsis but one may use a string literal
1190
+ instead (``'...'``).
1191
+
1192
+ Args:
1193
+ names (iterable of str): The desired names of the output tensor. May
1194
+ contain up to one Ellipsis.
1195
+
1196
+ Examples::
1197
+
1198
+ >>> imgs = torch.randn(32, 3, 128, 128)
1199
+ >>> named_imgs = imgs.refine_names('N', 'C', 'H', 'W')
1200
+ >>> named_imgs.names
1201
+ ('N', 'C', 'H', 'W')
1202
+
1203
+ >>> tensor = torch.randn(2, 3, 5, 7, 11)
1204
+ >>> tensor = tensor.refine_names('A', ..., 'B', 'C')
1205
+ >>> tensor.names
1206
+ ('A', None, None, 'B', 'C')
1207
+
1208
+ .. warning::
1209
+ The named tensor API is experimental and subject to change.
1210
+
1211
+ """
1212
+ if has_torch_function_unary(self):
1213
+ return handle_torch_function(Tensor.refine_names, (self,), self, *names)
1214
+ names = resolve_ellipsis(names, self.names, "refine_names")
1215
+ return super().refine_names(names)
1216
+
1217
+ def align_to(self, *names):
1218
+ r"""Permutes the dimensions of the :attr:`self` tensor to match the order
1219
+ specified in :attr:`names`, adding size-one dims for any new names.
1220
+
1221
+ All of the dims of :attr:`self` must be named in order to use this method.
1222
+ The resulting tensor is a view on the original tensor.
1223
+
1224
+ All dimension names of :attr:`self` must be present in :attr:`names`.
1225
+ :attr:`names` may contain additional names that are not in ``self.names``;
1226
+ the output tensor has a size-one dimension for each of those new names.
1227
+
1228
+ :attr:`names` may contain up to one Ellipsis (``...``).
1229
+ The Ellipsis is expanded to be equal to all dimension names of :attr:`self`
1230
+ that are not mentioned in :attr:`names`, in the order that they appear
1231
+ in :attr:`self`.
1232
+
1233
+ Python 2 does not support Ellipsis but one may use a string literal
1234
+ instead (``'...'``).
1235
+
1236
+ Args:
1237
+ names (iterable of str): The desired dimension ordering of the
1238
+ output tensor. May contain up to one Ellipsis that is expanded
1239
+ to all unmentioned dim names of :attr:`self`.
1240
+
1241
+ Examples::
1242
+
1243
+ >>> tensor = torch.randn(2, 2, 2, 2, 2, 2)
1244
+ >>> named_tensor = tensor.refine_names('A', 'B', 'C', 'D', 'E', 'F')
1245
+
1246
+ # Move the F and E dims to the front while keeping the rest in order
1247
+ >>> named_tensor.align_to('F', 'E', ...)
1248
+
1249
+ .. warning::
1250
+ The named tensor API is experimental and subject to change.
1251
+
1252
+ """
1253
+ if has_torch_function_unary(self):
1254
+ return handle_torch_function(Tensor.align_to, (self,), self, *names)
1255
+ ellipsis_idx = single_ellipsis_index(names, "align_to")
1256
+ if ellipsis_idx is None:
1257
+ return super().align_to(names)
1258
+ return super().align_to(
1259
+ [name for name in names if not is_ellipsis(name)], ellipsis_idx
1260
+ )
1261
+
1262
+ def unflatten(self, dim, sizes):
1263
+ r"""
1264
+ unflatten(dim, sizes) -> Tensor
1265
+
1266
+ See :func:`torch.unflatten`.
1267
+
1268
+ """
1269
+ if has_torch_function_unary(self):
1270
+ return handle_torch_function(Tensor.unflatten, (self,), self, dim, sizes)
1271
+
1272
+ if not sizes:
1273
+ raise RuntimeError("unflatten: sizes must be non-empty")
1274
+
1275
+ names = None
1276
+ if isinstance(sizes, OrderedDict) or (
1277
+ isinstance(sizes, (tuple, list)) and isinstance(sizes[0], (tuple, list))
1278
+ ):
1279
+ names, sizes = unzip_namedshape(sizes)
1280
+ return super().unflatten(dim, sizes, names)
1281
+ else:
1282
+ return super().unflatten(dim, sizes)
1283
+
1284
+ def rename_(self, *names, **rename_map):
1285
+ """In-place version of :meth:`~Tensor.rename`."""
1286
+
1287
+ if has_torch_function_unary(self):
1288
+ return handle_torch_function(
1289
+ Tensor.rename_, (self,), self, *names, **rename_map
1290
+ )
1291
+
1292
+ # Note [rename_ / rename API]
1293
+ # The Python API for these is different from the C++ API. In Python:
1294
+ # 1) tensor.rename(*names) takes a vararglist of names
1295
+ # 2) tensor.rename(**rename_map) takes a map of names to rename.
1296
+ # C++ is static, making it difficult to implement similar behavior.
1297
+ return update_names(self, names, rename_map, inplace=True)
1298
+
1299
+ def rename(self, *names, **rename_map):
1300
+ """Renames dimension names of :attr:`self`.
1301
+
1302
+ There are two main usages:
1303
+
1304
+ ``self.rename(**rename_map)`` returns a view on tensor that has dims
1305
+ renamed as specified in the mapping :attr:`rename_map`.
1306
+
1307
+ ``self.rename(*names)`` returns a view on tensor, renaming all
1308
+ dimensions positionally using :attr:`names`.
1309
+ Use ``self.rename(None)`` to drop names on a tensor.
1310
+
1311
+ One cannot specify both positional args :attr:`names` and keyword args
1312
+ :attr:`rename_map`.
1313
+
1314
+ Examples::
1315
+
1316
+ >>> imgs = torch.rand(2, 3, 5, 7, names=('N', 'C', 'H', 'W'))
1317
+ >>> renamed_imgs = imgs.rename(N='batch', C='channels')
1318
+ >>> renamed_imgs.names
1319
+ ('batch', 'channels', 'H', 'W')
1320
+
1321
+ >>> renamed_imgs = imgs.rename(None)
1322
+ >>> renamed_imgs.names
1323
+ (None, None, None, None)
1324
+
1325
+ >>> renamed_imgs = imgs.rename('batch', 'channel', 'height', 'width')
1326
+ >>> renamed_imgs.names
1327
+ ('batch', 'channel', 'height', 'width')
1328
+
1329
+ .. warning::
1330
+ The named tensor API is experimental and subject to change.
1331
+
1332
+ """
1333
+ if has_torch_function_unary(self):
1334
+ return handle_torch_function(
1335
+ Tensor.rename, (self,), self, *names, **rename_map
1336
+ )
1337
+
1338
+ # See Note [rename_ / rename API]
1339
+ return update_names(self, names, rename_map, inplace=False)
1340
+
1341
+ def to_sparse_coo(self):
1342
+ """Convert a tensor to :ref:`coordinate format <sparse-coo-docs>`.
1343
+
1344
+ Examples::
1345
+
1346
+ >>> dense = torch.randn(5, 5)
1347
+ >>> sparse = dense.to_sparse_coo()
1348
+ >>> sparse._nnz()
1349
+ 25
1350
+
1351
+ """
1352
+ return self.to_sparse()
1353
+
1354
+ def dim_order(self):
1355
+ """
1356
+
1357
+ dim_order() -> tuple
1358
+
1359
+ Returns a tuple of int describing the dim order or physical layout of :attr:`self`.
1360
+
1361
+ Args:
1362
+ None
1363
+
1364
+ Dim order represents how dimensions are laid out in memory,
1365
+ starting from the outermost to the innermost dimension.
1366
+
1367
+ Example::
1368
+ >>> torch.empty((2, 3, 5, 7)).dim_order()
1369
+ (0, 1, 2, 3)
1370
+ >>> torch.empty((2, 3, 5, 7), memory_format=torch.channels_last).dim_order()
1371
+ (0, 2, 3, 1)
1372
+
1373
+ .. warning::
1374
+ The dim_order tensor API is experimental and subject to change.
1375
+
1376
+ """
1377
+ if has_torch_function_unary(self):
1378
+ return handle_torch_function(Tensor.dim_order, (self,), self)
1379
+
1380
+ import torch._prims_common as utils
1381
+
1382
+ return tuple(utils.compute_elementwise_output_logical_to_physical_perm(self))
1383
+
1384
+ def _update_names(self, names, inplace):
1385
+ if has_torch_function_unary(self):
1386
+ return handle_torch_function(
1387
+ Tensor._update_names, (self,), self, names, inplace
1388
+ )
1389
+
1390
+ # See Note [rename_ / rename API]
1391
+ if inplace:
1392
+ return super().rename_(names)
1393
+ else:
1394
+ return super().rename(names)
1395
+
1396
+ @classmethod
1397
+ def __torch_function__(cls, func, types, args=(), kwargs=None):
1398
+ """
1399
+ This __torch_function__ implementation wraps subclasses such that
1400
+ methods called on subclasses return a subclass instance instead of
1401
+ a ``torch.Tensor`` instance.
1402
+
1403
+ One corollary to this is that you need coverage for torch.Tensor
1404
+ methods if implementing __torch_function__ for subclasses.
1405
+
1406
+ We recommend always calling ``super().__torch_function__`` as the base
1407
+ case when doing the above.
1408
+
1409
+ While not mandatory, we recommend making `__torch_function__` a classmethod.
1410
+ """
1411
+ if kwargs is None:
1412
+ kwargs = {}
1413
+
1414
+ if not all(issubclass(cls, t) for t in types):
1415
+ return NotImplemented
1416
+
1417
+ with _C.DisableTorchFunctionSubclass():
1418
+ ret = func(*args, **kwargs)
1419
+ if func in get_default_nowrap_functions():
1420
+ return ret
1421
+ else:
1422
+ return _convert(ret, cls)
1423
+
1424
+ __torch_dispatch__ = _C._disabled_torch_dispatch_impl
1425
+
1426
+ def __dlpack__(self, stream=None):
1427
+ """
1428
+ Creates a DLpack `capsule https://data-apis.org/array-api/latest/design_topics/data_interchange.html#data-interchange`_
1429
+ of the current tensor to be exported to other libraries.
1430
+
1431
+ This function will be called from the `from_dlpack` method
1432
+ of the library that will consume the capsule. `from_dlpack` passes the current
1433
+ stream to this method as part of the specification.
1434
+
1435
+ Args:
1436
+ stream (integer or None): An optional Python integer representing a
1437
+ pointer to a CUDA stream. The current stream is synchronized with
1438
+ this stream before the capsule is created, and since the capsule
1439
+ shares its storage with the tensor this make it safe to access from
1440
+ both streams. If None or -1 is passed then no synchronization is performed.
1441
+ If 1 (on CUDA) or 0 (on ROCM) then the default stream is used for
1442
+ synchronization.
1443
+ """
1444
+ if has_torch_function_unary(self):
1445
+ return handle_torch_function(Tensor.__dlpack__, (self,), self, stream)
1446
+
1447
+ # DLPack capsules can't capture all of PyTorch's semantics,
1448
+ # so we prohibit exporting tensors that would lose their properties like
1449
+ # requires_grad and having the conjugate bit set.
1450
+ if self.requires_grad:
1451
+ raise RuntimeError(
1452
+ "Can't export tensors that require gradient, use tensor.detach()"
1453
+ )
1454
+ if self.is_conj():
1455
+ raise RuntimeError("Can't export tensors with the conjugate bit set")
1456
+ if self.layout != torch.strided:
1457
+ raise RuntimeError(
1458
+ "Can't export tensors with layout other than torch.strided"
1459
+ )
1460
+
1461
+ if stream is not None and type(stream) is not int:
1462
+ # Stream pointers in CUDA/ROCm are uniquely numbered and can
1463
+ # be retrieved from their integer value.
1464
+ raise TypeError("stream must be ``int`` or ``none``")
1465
+ elif stream is not None and stream != -1:
1466
+ if self.device.type == "cuda":
1467
+ # NB: This logic handles the special case values for default
1468
+ # streams and must be kept in sync with from_dlpack in
1469
+ # torch/utils/dlpack.py
1470
+ if stream == 1 and torch.version.hip is None:
1471
+ stream = torch.cuda.default_stream()
1472
+ elif stream == 0 and torch.version.hip is not None:
1473
+ stream = torch.cuda.default_stream()
1474
+ else:
1475
+ stream = torch.cuda.ExternalStream(stream)
1476
+ # Only synchronize on different streams
1477
+ sync_stream = torch.cuda.current_stream()
1478
+ if stream != sync_stream:
1479
+ event = torch.cuda.Event()
1480
+ event.record(sync_stream)
1481
+ stream.wait_event(event)
1482
+ return torch.to_dlpack(self)
1483
+
1484
+ def __dlpack_device__(self) -> Tuple[enum.IntEnum, int]:
1485
+ if has_torch_function_unary(self):
1486
+ return handle_torch_function(Tensor.__dlpack_device__, (self,), self)
1487
+ device = self.device
1488
+ idx = device.index if device.index is not None else 0
1489
+ torch_device_type = device.type
1490
+ if torch_device_type == "cuda" and torch.version.hip is not None:
1491
+ device_type = DLDeviceType.kDLROCM
1492
+ elif torch_device_type == "cpu" and self.is_pinned():
1493
+ device_type = DLDeviceType.kDLCPUPinned
1494
+ elif torch_device_type == "cuda":
1495
+ device_type = DLDeviceType.kDLGPU
1496
+ elif torch_device_type == "cpu":
1497
+ device_type = DLDeviceType.kDLCPU
1498
+ elif self.device.type == "xpu":
1499
+ device_type = DLDeviceType.kDLOneAPI
1500
+ else:
1501
+ raise ValueError(f"Unknown device type {torch_device_type} for Dlpack")
1502
+ return (device_type, idx)
1503
+
1504
+ __module__ = "torch"
1505
+
1506
+
1507
+ def _convert(ret, cls):
1508
+ if cls is Tensor:
1509
+ return ret
1510
+
1511
+ if isinstance(ret, Tensor) and not isinstance(ret, cls):
1512
+ ret = ret.as_subclass(cls)
1513
+
1514
+ if isinstance(ret, (tuple, list)):
1515
+ # Also handles things like namedtuples
1516
+ ret = type(ret)(_convert(r, cls) for r in ret)
1517
+
1518
+ return ret
env-llmeval/lib/python3.10/site-packages/torch/_tensor_docs.py ADDED
The diff for this file is too large to render. See raw diff
 
env-llmeval/lib/python3.10/site-packages/torch/_tensor_str.py ADDED
@@ -0,0 +1,677 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import contextlib
2
+ import dataclasses
3
+ import math
4
+ import textwrap
5
+ from typing import Any, Dict, Optional
6
+
7
+ import torch
8
+ from torch import inf
9
+
10
+
11
+ @dataclasses.dataclass
12
+ class __PrinterOptions:
13
+ precision: int = 4
14
+ threshold: float = 1000
15
+ edgeitems: int = 3
16
+ linewidth: int = 80
17
+ sci_mode: Optional[bool] = None
18
+
19
+
20
+ PRINT_OPTS = __PrinterOptions()
21
+
22
+
23
+ # We could use **kwargs, but this will give better docs
24
+ def set_printoptions(
25
+ precision=None,
26
+ threshold=None,
27
+ edgeitems=None,
28
+ linewidth=None,
29
+ profile=None,
30
+ sci_mode=None,
31
+ ):
32
+ r"""Set options for printing. Items shamelessly taken from NumPy
33
+
34
+ Args:
35
+ precision: Number of digits of precision for floating point output
36
+ (default = 4).
37
+ threshold: Total number of array elements which trigger summarization
38
+ rather than full `repr` (default = 1000).
39
+ edgeitems: Number of array items in summary at beginning and end of
40
+ each dimension (default = 3).
41
+ linewidth: The number of characters per line for the purpose of
42
+ inserting line breaks (default = 80). Thresholded matrices will
43
+ ignore this parameter.
44
+ profile: Sane defaults for pretty printing. Can override with any of
45
+ the above options. (any one of `default`, `short`, `full`)
46
+ sci_mode: Enable (True) or disable (False) scientific notation. If
47
+ None (default) is specified, the value is defined by
48
+ `torch._tensor_str._Formatter`. This value is automatically chosen
49
+ by the framework.
50
+
51
+ Example::
52
+
53
+ >>> # Limit the precision of elements
54
+ >>> torch.set_printoptions(precision=2)
55
+ >>> torch.tensor([1.12345])
56
+ tensor([1.12])
57
+ >>> # Limit the number of elements shown
58
+ >>> torch.set_printoptions(threshold=5)
59
+ >>> torch.arange(10)
60
+ tensor([0, 1, 2, ..., 7, 8, 9])
61
+ >>> # Restore defaults
62
+ >>> torch.set_printoptions(profile='default')
63
+ >>> torch.tensor([1.12345])
64
+ tensor([1.1235])
65
+ >>> torch.arange(10)
66
+ tensor([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
67
+
68
+ """
69
+ if profile is not None:
70
+ if profile == "default":
71
+ PRINT_OPTS.precision = 4
72
+ PRINT_OPTS.threshold = 1000
73
+ PRINT_OPTS.edgeitems = 3
74
+ PRINT_OPTS.linewidth = 80
75
+ elif profile == "short":
76
+ PRINT_OPTS.precision = 2
77
+ PRINT_OPTS.threshold = 1000
78
+ PRINT_OPTS.edgeitems = 2
79
+ PRINT_OPTS.linewidth = 80
80
+ elif profile == "full":
81
+ PRINT_OPTS.precision = 4
82
+ PRINT_OPTS.threshold = inf
83
+ PRINT_OPTS.edgeitems = 3
84
+ PRINT_OPTS.linewidth = 80
85
+
86
+ if precision is not None:
87
+ PRINT_OPTS.precision = precision
88
+ if threshold is not None:
89
+ PRINT_OPTS.threshold = threshold
90
+ if edgeitems is not None:
91
+ PRINT_OPTS.edgeitems = edgeitems
92
+ if linewidth is not None:
93
+ PRINT_OPTS.linewidth = linewidth
94
+ PRINT_OPTS.sci_mode = sci_mode
95
+
96
+
97
+ def get_printoptions() -> Dict[str, Any]:
98
+ r"""Gets the current options for printing, as a dictionary that
99
+ can be passed as ``**kwargs`` to set_printoptions().
100
+ """
101
+ return dataclasses.asdict(PRINT_OPTS)
102
+
103
+
104
+ @contextlib.contextmanager
105
+ def printoptions(**kwargs):
106
+ r"""Context manager that temporarily changes the print options. Accepted
107
+ arguments are same as :func:`set_printoptions`."""
108
+ old_kwargs = get_printoptions()
109
+ set_printoptions(**kwargs)
110
+ try:
111
+ yield
112
+ finally:
113
+ set_printoptions(**old_kwargs)
114
+
115
+
116
+ def tensor_totype(t):
117
+ dtype = torch.float if t.is_mps else torch.double
118
+ return t.to(dtype=dtype)
119
+
120
+
121
+ class _Formatter:
122
+ def __init__(self, tensor):
123
+ self.floating_dtype = tensor.dtype.is_floating_point
124
+ self.int_mode = True
125
+ self.sci_mode = False
126
+ self.max_width = 1
127
+
128
+ with torch.no_grad():
129
+ tensor_view = tensor.reshape(-1)
130
+
131
+ if not self.floating_dtype:
132
+ for value in tensor_view:
133
+ value_str = f"{value}"
134
+ self.max_width = max(self.max_width, len(value_str))
135
+
136
+ else:
137
+ nonzero_finite_vals = torch.masked_select(
138
+ tensor_view, torch.isfinite(tensor_view) & tensor_view.ne(0)
139
+ )
140
+
141
+ if nonzero_finite_vals.numel() == 0:
142
+ # no valid number, do nothing
143
+ return
144
+
145
+ # Convert to double for easy calculation. HalfTensor overflows with 1e8, and there's no div() on CPU.
146
+ nonzero_finite_abs = tensor_totype(nonzero_finite_vals.abs())
147
+ nonzero_finite_min = tensor_totype(nonzero_finite_abs.min())
148
+ nonzero_finite_max = tensor_totype(nonzero_finite_abs.max())
149
+
150
+ for value in nonzero_finite_vals:
151
+ if value != torch.ceil(value):
152
+ self.int_mode = False
153
+ break
154
+
155
+ if self.int_mode:
156
+ # in int_mode for floats, all numbers are integers, and we append a decimal to nonfinites
157
+ # to indicate that the tensor is of floating type. add 1 to the len to account for this.
158
+ if (
159
+ nonzero_finite_max / nonzero_finite_min > 1000.0
160
+ or nonzero_finite_max > 1.0e8
161
+ ):
162
+ self.sci_mode = True
163
+ for value in nonzero_finite_vals:
164
+ value_str = f"{{:.{PRINT_OPTS.precision}e}}".format(value)
165
+ self.max_width = max(self.max_width, len(value_str))
166
+ else:
167
+ for value in nonzero_finite_vals:
168
+ value_str = f"{value:.0f}"
169
+ self.max_width = max(self.max_width, len(value_str) + 1)
170
+ else:
171
+ # Check if scientific representation should be used.
172
+ if (
173
+ nonzero_finite_max / nonzero_finite_min > 1000.0
174
+ or nonzero_finite_max > 1.0e8
175
+ or nonzero_finite_min < 1.0e-4
176
+ ):
177
+ self.sci_mode = True
178
+ for value in nonzero_finite_vals:
179
+ value_str = f"{{:.{PRINT_OPTS.precision}e}}".format(value)
180
+ self.max_width = max(self.max_width, len(value_str))
181
+ else:
182
+ for value in nonzero_finite_vals:
183
+ value_str = f"{{:.{PRINT_OPTS.precision}f}}".format(value)
184
+ self.max_width = max(self.max_width, len(value_str))
185
+
186
+ if PRINT_OPTS.sci_mode is not None:
187
+ self.sci_mode = PRINT_OPTS.sci_mode
188
+
189
+ def width(self):
190
+ return self.max_width
191
+
192
+ def format(self, value):
193
+ if self.floating_dtype:
194
+ if self.sci_mode:
195
+ ret = f"{{:{self.max_width}.{PRINT_OPTS.precision}e}}".format(value)
196
+ elif self.int_mode:
197
+ ret = f"{value:.0f}"
198
+ if not (math.isinf(value) or math.isnan(value)):
199
+ ret += "."
200
+ else:
201
+ ret = f"{{:.{PRINT_OPTS.precision}f}}".format(value)
202
+ else:
203
+ ret = f"{value}"
204
+ return (self.max_width - len(ret)) * " " + ret
205
+
206
+
207
+ def _scalar_str(self, formatter1, formatter2=None):
208
+ if formatter2 is not None:
209
+ real_str = _scalar_str(self.real, formatter1)
210
+ imag_str = (_scalar_str(self.imag, formatter2) + "j").lstrip()
211
+ # handles negative numbers, +0.0, -0.0
212
+ if imag_str[0] == "+" or imag_str[0] == "-":
213
+ return real_str + imag_str
214
+ else:
215
+ return real_str + "+" + imag_str
216
+ else:
217
+ return formatter1.format(self.item())
218
+
219
+
220
+ def _vector_str(self, indent, summarize, formatter1, formatter2=None):
221
+ # length includes spaces and comma between elements
222
+ element_length = formatter1.width() + 2
223
+ if formatter2 is not None:
224
+ # width for imag_formatter + an extra j for complex
225
+ element_length += formatter2.width() + 1
226
+
227
+ elements_per_line = max(
228
+ 1, int(math.floor((PRINT_OPTS.linewidth - indent) / (element_length)))
229
+ )
230
+
231
+ def _val_formatter(val, formatter1=formatter1, formatter2=formatter2):
232
+ if formatter2 is not None:
233
+ real_str = formatter1.format(val.real)
234
+ imag_str = (formatter2.format(val.imag) + "j").lstrip()
235
+ # handles negative numbers, +0.0, -0.0
236
+ if imag_str[0] == "+" or imag_str[0] == "-":
237
+ return real_str + imag_str
238
+ else:
239
+ return real_str + "+" + imag_str
240
+ else:
241
+ return formatter1.format(val)
242
+
243
+ if summarize and not PRINT_OPTS.edgeitems:
244
+ # Deal with edge case that negative zero is zero
245
+ data = ["..."]
246
+ elif summarize and self.size(0) > 2 * PRINT_OPTS.edgeitems:
247
+ data = (
248
+ [_val_formatter(val) for val in self[: PRINT_OPTS.edgeitems].tolist()]
249
+ + [" ..."]
250
+ + [_val_formatter(val) for val in self[-PRINT_OPTS.edgeitems :].tolist()]
251
+ )
252
+ else:
253
+ data = [_val_formatter(val) for val in self.tolist()]
254
+
255
+ data_lines = [
256
+ data[i : i + elements_per_line] for i in range(0, len(data), elements_per_line)
257
+ ]
258
+ lines = [", ".join(line) for line in data_lines]
259
+ return "[" + ("," + "\n" + " " * (indent + 1)).join(lines) + "]"
260
+
261
+
262
+ # formatter2 is only used for printing complex tensors.
263
+ # For complex tensors, formatter1 and formatter2 are the formatters for tensor.real
264
+ # and tensor.imag respesectively
265
+ def _tensor_str_with_formatter(self, indent, summarize, formatter1, formatter2=None):
266
+ dim = self.dim()
267
+
268
+ if dim == 0:
269
+ return _scalar_str(self, formatter1, formatter2)
270
+
271
+ if dim == 1:
272
+ return _vector_str(self, indent, summarize, formatter1, formatter2)
273
+
274
+ if summarize and self.size(0) > 2 * PRINT_OPTS.edgeitems:
275
+ slices = (
276
+ [
277
+ _tensor_str_with_formatter(
278
+ self[i], indent + 1, summarize, formatter1, formatter2
279
+ )
280
+ for i in range(0, PRINT_OPTS.edgeitems)
281
+ ]
282
+ + ["..."]
283
+ + [
284
+ _tensor_str_with_formatter(
285
+ self[i], indent + 1, summarize, formatter1, formatter2
286
+ )
287
+ for i in range(len(self) - PRINT_OPTS.edgeitems, len(self))
288
+ ]
289
+ )
290
+ else:
291
+ slices = [
292
+ _tensor_str_with_formatter(
293
+ self[i], indent + 1, summarize, formatter1, formatter2
294
+ )
295
+ for i in range(0, self.size(0))
296
+ ]
297
+
298
+ tensor_str = ("," + "\n" * (dim - 1) + " " * (indent + 1)).join(slices)
299
+ return "[" + tensor_str + "]"
300
+
301
+
302
+ def _tensor_str(self, indent):
303
+ if self.numel() == 0:
304
+ return "[]"
305
+
306
+ if self.has_names():
307
+ # There are two main codepaths (possibly more) that tensor printing goes through:
308
+ # - tensor data can fit comfortably on screen
309
+ # - tensor data needs to be summarized
310
+ # Some of the codepaths don't fully support named tensors, so we send in
311
+ # an unnamed tensor to the formatting code as a workaround.
312
+ self = self.rename(None)
313
+
314
+ summarize = self.numel() > PRINT_OPTS.threshold
315
+
316
+ if self._is_zerotensor():
317
+ self = self.clone()
318
+
319
+ # handle the negative bit
320
+ if self.is_neg():
321
+ self = self.resolve_neg()
322
+
323
+ if self.dtype in [
324
+ torch.float16,
325
+ torch.bfloat16,
326
+ torch.float8_e5m2,
327
+ torch.float8_e5m2fnuz,
328
+ torch.float8_e4m3fn,
329
+ torch.float8_e4m3fnuz,
330
+ ]:
331
+ self = self.float()
332
+
333
+ if self.dtype is torch.complex32:
334
+ self = self.cfloat()
335
+
336
+ if self.dtype.is_complex:
337
+ # handle the conjugate bit
338
+ self = self.resolve_conj()
339
+ real_formatter = _Formatter(
340
+ get_summarized_data(self.real) if summarize else self.real
341
+ )
342
+ imag_formatter = _Formatter(
343
+ get_summarized_data(self.imag) if summarize else self.imag
344
+ )
345
+ return _tensor_str_with_formatter(
346
+ self, indent, summarize, real_formatter, imag_formatter
347
+ )
348
+ else:
349
+ formatter = _Formatter(get_summarized_data(self) if summarize else self)
350
+ return _tensor_str_with_formatter(self, indent, summarize, formatter)
351
+
352
+
353
+ def _add_suffixes(tensor_str, suffixes, indent, force_newline):
354
+ tensor_strs = [tensor_str]
355
+ last_line_len = len(tensor_str) - tensor_str.rfind("\n") + 1
356
+ for suffix in suffixes:
357
+ suffix_len = len(suffix)
358
+ if force_newline or last_line_len + suffix_len + 2 > PRINT_OPTS.linewidth:
359
+ tensor_strs.append(",\n" + " " * indent + suffix)
360
+ last_line_len = indent + suffix_len
361
+ force_newline = False
362
+ else:
363
+ tensor_strs.append(", " + suffix)
364
+ last_line_len += suffix_len + 2
365
+ tensor_strs.append(")")
366
+ return "".join(tensor_strs)
367
+
368
+
369
+ def get_summarized_data(self):
370
+ dim = self.dim()
371
+ if dim == 0:
372
+ return self
373
+ if dim == 1:
374
+ if self.size(0) > 2 * PRINT_OPTS.edgeitems:
375
+ return torch.cat(
376
+ (self[: PRINT_OPTS.edgeitems], self[-PRINT_OPTS.edgeitems :])
377
+ )
378
+ else:
379
+ return self
380
+ if not PRINT_OPTS.edgeitems:
381
+ return self.new_empty([0] * self.dim())
382
+ elif self.size(0) > 2 * PRINT_OPTS.edgeitems:
383
+ start = [self[i] for i in range(0, PRINT_OPTS.edgeitems)]
384
+ end = [self[i] for i in range(len(self) - PRINT_OPTS.edgeitems, len(self))]
385
+ return torch.stack([get_summarized_data(x) for x in (start + end)])
386
+ else:
387
+ return torch.stack([get_summarized_data(x) for x in self])
388
+
389
+
390
+ def _str_intern(inp, *, tensor_contents=None):
391
+ if torch._C._functorch.is_functorch_wrapped_tensor(inp):
392
+ return _functorch_wrapper_str_intern(inp, tensor_contents=tensor_contents)
393
+ is_plain_tensor = type(inp) is torch.Tensor or type(inp) is torch.nn.Parameter
394
+ if inp.is_nested:
395
+ prefix = "nested_tensor("
396
+ elif is_plain_tensor:
397
+ prefix = "tensor("
398
+ else:
399
+ prefix = f"{type(inp).__name__}("
400
+ indent = len(prefix)
401
+ suffixes = []
402
+ custom_contents_provided = tensor_contents is not None
403
+ if custom_contents_provided:
404
+ tensor_str = tensor_contents
405
+
406
+ # This is used to extract the primal value and thus disable the forward AD
407
+ # within this function.
408
+ # TODO(albanD) This needs to be updated when more than one level is supported
409
+ self, tangent = torch.autograd.forward_ad.unpack_dual(inp)
410
+
411
+ # Note [Print tensor device]:
412
+ # A general logic here is we only print device when it doesn't match
413
+ # the device specified in default tensor type.
414
+ # Currently torch.set_default_tensor_type() only supports CPU/CUDA, thus
415
+ # torch._C._get_default_device() only returns either cpu or cuda.
416
+ # In other cases, we don't have a way to set them as default yet,
417
+ # and we should always print out device for them.
418
+ if (
419
+ self.device.type != torch._C._get_default_device()
420
+ or (
421
+ self.device.type == "cuda"
422
+ and torch.cuda.current_device() != self.device.index
423
+ )
424
+ or (self.device.type == "mps")
425
+ ):
426
+ suffixes.append("device='" + str(self.device) + "'")
427
+
428
+ # Tensor printing performs tensor operations like slice, indexing, etc to make it in a
429
+ # representable format. These operations on ipu/xla/lazy/mtia tensor results in compilations. Hence,
430
+ # to avoid compilations, copying the tensor to cpu before printing.
431
+ if self.device.type in ["xla", "lazy", "ipu", "mtia"]:
432
+ self = self.to("cpu")
433
+
434
+ # TODO: add an API to map real -> complex dtypes
435
+ _default_complex_dtype = (
436
+ torch.cdouble if torch.get_default_dtype() == torch.double else torch.cfloat
437
+ )
438
+ has_default_dtype = self.dtype in (
439
+ torch.get_default_dtype(),
440
+ _default_complex_dtype,
441
+ torch.int64,
442
+ torch.bool,
443
+ )
444
+ if self.is_sparse:
445
+ suffixes.append("size=" + str(tuple(self.shape)))
446
+ from torch._subclasses.fake_tensor import FakeTensor
447
+
448
+ if not self.is_meta and not isinstance(self, FakeTensor):
449
+ suffixes.append("nnz=" + str(self._nnz()))
450
+ if not has_default_dtype:
451
+ suffixes.append("dtype=" + str(self.dtype))
452
+ if not custom_contents_provided:
453
+ indices_prefix = "indices=tensor("
454
+ indices = self._indices().detach()
455
+ indices_str = _tensor_str(indices, indent + len(indices_prefix))
456
+ if indices.numel() == 0:
457
+ indices_str += ", size=" + str(tuple(indices.shape))
458
+ values_prefix = "values=tensor("
459
+ values = self._values().detach()
460
+ values_str = _tensor_str(values, indent + len(values_prefix))
461
+ if values.numel() == 0:
462
+ values_str += ", size=" + str(tuple(values.shape))
463
+ tensor_str = (
464
+ indices_prefix
465
+ + indices_str
466
+ + "),\n"
467
+ + " " * indent
468
+ + values_prefix
469
+ + values_str
470
+ + ")"
471
+ )
472
+ elif self.layout in {
473
+ torch.sparse_csr,
474
+ torch.sparse_csc,
475
+ torch.sparse_bsr,
476
+ torch.sparse_bsc,
477
+ }:
478
+ suffixes.append("size=" + str(tuple(self.shape)))
479
+ suffixes.append("nnz=" + str(self._nnz()))
480
+ if not has_default_dtype:
481
+ suffixes.append("dtype=" + str(self.dtype))
482
+ if not custom_contents_provided:
483
+ compressed_indices_method, plain_indices_method = {
484
+ torch.sparse_csr: (torch.Tensor.crow_indices, torch.Tensor.col_indices),
485
+ torch.sparse_csc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices),
486
+ torch.sparse_bsr: (torch.Tensor.crow_indices, torch.Tensor.col_indices),
487
+ torch.sparse_bsc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices),
488
+ }[self.layout]
489
+ if self.layout in {torch.sparse_csr, torch.sparse_bsr}:
490
+ cdimname, pdimname = "row", "column"
491
+ else:
492
+ cdimname, pdimname = "column", "row"
493
+ compressed_indices_prefix = f"c{cdimname[:3]}_indices=tensor("
494
+ compressed_indices = compressed_indices_method(self).detach()
495
+ compressed_indices_str = _tensor_str(
496
+ compressed_indices, indent + len(compressed_indices_prefix)
497
+ )
498
+ if compressed_indices.numel() == 0:
499
+ compressed_indices_str += ", size=" + str(
500
+ tuple(compressed_indices.shape)
501
+ )
502
+ plain_indices_prefix = f"{pdimname[:3]}_indices=tensor("
503
+ plain_indices = plain_indices_method(self).detach()
504
+ plain_indices_str = _tensor_str(
505
+ plain_indices, indent + len(plain_indices_prefix)
506
+ )
507
+ if plain_indices.numel() == 0:
508
+ plain_indices_str += ", size=" + str(tuple(plain_indices.shape))
509
+ values_prefix = "values=tensor("
510
+ values = self.values().detach()
511
+ values_str = _tensor_str(values, indent + len(values_prefix))
512
+ if values.numel() == 0:
513
+ values_str += ", size=" + str(tuple(values.shape))
514
+ tensor_str = (
515
+ compressed_indices_prefix
516
+ + compressed_indices_str
517
+ + "),\n"
518
+ + " " * indent
519
+ + plain_indices_prefix
520
+ + plain_indices_str
521
+ + "),\n"
522
+ + " " * indent
523
+ + values_prefix
524
+ + values_str
525
+ + ")"
526
+ )
527
+ elif self.is_quantized:
528
+ suffixes.append("size=" + str(tuple(self.shape)))
529
+ if not has_default_dtype:
530
+ suffixes.append("dtype=" + str(self.dtype))
531
+ suffixes.append("quantization_scheme=" + str(self.qscheme()))
532
+ if (
533
+ self.qscheme() == torch.per_tensor_affine
534
+ or self.qscheme() == torch.per_tensor_symmetric
535
+ ):
536
+ suffixes.append("scale=" + str(self.q_scale()))
537
+ suffixes.append("zero_point=" + str(self.q_zero_point()))
538
+ elif (
539
+ self.qscheme() == torch.per_channel_affine
540
+ or self.qscheme() == torch.per_channel_symmetric
541
+ or self.qscheme() == torch.per_channel_affine_float_qparams
542
+ ):
543
+ suffixes.append("scale=" + str(self.q_per_channel_scales()))
544
+ suffixes.append("zero_point=" + str(self.q_per_channel_zero_points()))
545
+ suffixes.append("axis=" + str(self.q_per_channel_axis()))
546
+ if not custom_contents_provided:
547
+ tensor_str = _tensor_str(self.dequantize(), indent)
548
+ elif self.is_nested:
549
+ if not custom_contents_provided:
550
+
551
+ def indented_str(s, indent):
552
+ return "\n".join(f" {line}" for line in s.split("\n"))
553
+
554
+ strs = ",\n".join(
555
+ indented_str(str(t), indent + 1)
556
+ for t in torch.ops.aten.unbind.int(self, 0)
557
+ )
558
+ tensor_str = f"[\n{strs}\n]"
559
+ elif torch._is_functional_tensor(self):
560
+ prefix = "_to_functional_tensor("
561
+ tensor_str = repr(torch._from_functional_tensor(self))
562
+ else:
563
+ # Circular import problem, so we import it here
564
+ from torch._subclasses.fake_tensor import FakeTensor
565
+
566
+ if self.is_meta or isinstance(self, FakeTensor):
567
+ suffixes.append("size=" + str(tuple(self.shape)))
568
+ if self.dtype != torch.get_default_dtype():
569
+ suffixes.append("dtype=" + str(self.dtype))
570
+ # TODO: This implies that ellipses is valid syntax for allocating
571
+ # a meta tensor or FakeTensor, which it could be, but it isn't right now
572
+ if not custom_contents_provided:
573
+ tensor_str = "..."
574
+ else:
575
+ if self.numel() == 0 and not self.is_sparse:
576
+ # Explicitly print the shape if it is not (0,), to match NumPy behavior
577
+ if self.dim() != 1:
578
+ suffixes.append("size=" + str(tuple(self.shape)))
579
+
580
+ # In an empty tensor, there are no elements to infer if the dtype
581
+ # should be int64, so it must be shown explicitly.
582
+ if self.dtype != torch.get_default_dtype():
583
+ suffixes.append("dtype=" + str(self.dtype))
584
+ if not custom_contents_provided:
585
+ tensor_str = "[]"
586
+ else:
587
+ if not PRINT_OPTS.edgeitems:
588
+ suffixes.append("size=" + str(tuple(self.shape)))
589
+
590
+ if not has_default_dtype:
591
+ suffixes.append("dtype=" + str(self.dtype))
592
+
593
+ if not custom_contents_provided:
594
+ if self.layout != torch.strided:
595
+ tensor_str = _tensor_str(self.to_dense(), indent)
596
+ else:
597
+ tensor_str = _tensor_str(self, indent)
598
+
599
+ if self.layout != torch.strided:
600
+ suffixes.append("layout=" + str(self.layout))
601
+
602
+ # Use inp here to get the original grad_fn and not the one generated by the forward grad
603
+ # unpacking.
604
+ grad_fn_name = None
605
+ try:
606
+ grad_fn = inp.grad_fn
607
+ except RuntimeError:
608
+ # Accessing the grad_fn calls rebasing logic which would cause an error
609
+ # if that tensor is a view created in no-grad mode modified in-place in
610
+ # no-grad mode. See: https://github.com/pytorch/pytorch/issues/99968
611
+ grad_fn_name = "Invalid"
612
+
613
+ if grad_fn_name is None and grad_fn is not None:
614
+ grad_fn_name = type(grad_fn).__name__
615
+ if grad_fn_name == "CppFunction":
616
+ grad_fn_name = grad_fn.name().rsplit("::", 1)[-1]
617
+
618
+ if grad_fn_name is not None:
619
+ suffixes.append(f"grad_fn=<{grad_fn_name}>")
620
+ elif inp.requires_grad:
621
+ suffixes.append("requires_grad=True")
622
+
623
+ if self.has_names():
624
+ suffixes.append(f"names={self.names}")
625
+
626
+ if tangent is not None:
627
+ suffixes.append(f"tangent={tangent}")
628
+
629
+ string_repr = _add_suffixes(
630
+ prefix + tensor_str, suffixes, indent, force_newline=self.is_sparse
631
+ )
632
+
633
+ # Check if this instance is flagged as a parameter and change the repr accordingly.
634
+ # Unfortunately, this function has to be aware of this detail.
635
+ # NB: This is currently skipped for plain tensor parameters to maintain BC. In the future,
636
+ # this should be done for those as well to produce a valid repr.
637
+ if isinstance(self, torch.nn.Parameter) and not is_plain_tensor:
638
+ string_repr = f"Parameter({string_repr})"
639
+
640
+ return string_repr
641
+
642
+
643
+ def _functorch_wrapper_str_intern(tensor, *, tensor_contents=None):
644
+ level = torch._C._functorch.maybe_get_level(tensor)
645
+ assert level != -1
646
+
647
+ if torch._C._functorch.is_functionaltensor(tensor):
648
+ # Since we're unwrapping the FunctionalTensorWrapper, we need to make sure
649
+ # that it's up to date first
650
+ torch._sync(tensor)
651
+
652
+ value = torch._C._functorch.get_unwrapped(tensor)
653
+ value_repr = repr(value)
654
+
655
+ indented_value_repr = textwrap.indent(value_repr, " " * 4)
656
+ if torch._C._functorch.is_batchedtensor(tensor):
657
+ bdim = torch._C._functorch.maybe_get_bdim(tensor)
658
+ assert bdim != -1
659
+ return (
660
+ f"BatchedTensor(lvl={level}, bdim={bdim}, value=\n"
661
+ f"{indented_value_repr}\n"
662
+ f")"
663
+ )
664
+ if torch._C._functorch.is_gradtrackingtensor(tensor):
665
+ return (
666
+ f"GradTrackingTensor(lvl={level}, value=\n" f"{indented_value_repr}\n" f")"
667
+ )
668
+ if torch._C._functorch.is_functionaltensor(tensor):
669
+ return f"FunctionalTensor(lvl={level}, value=\\\n{value_repr})"
670
+
671
+ raise ValueError("We don't know how to print this, please file us an issue")
672
+
673
+
674
+ def _str(self, *, tensor_contents=None):
675
+ with torch.no_grad(), torch.utils._python_dispatch._disable_current_modes():
676
+ guard = torch._C._DisableFuncTorch()
677
+ return _str_intern(self, tensor_contents=tensor_contents)
env-llmeval/lib/python3.10/site-packages/torch/_torch_docs.py ADDED
The diff for this file is too large to render. See raw diff
 
env-llmeval/lib/python3.10/site-packages/torch/_utils.py ADDED
@@ -0,0 +1,918 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copyreg
2
+ import functools
3
+ import sys
4
+ import traceback
5
+ import warnings
6
+ from collections import defaultdict
7
+ from contextlib import nullcontext
8
+ from typing import Any, DefaultDict, List, Optional
9
+
10
+ import torch
11
+
12
+
13
+ def _type(self, dtype=None, non_blocking=False, **kwargs):
14
+ """Returns the type if `dtype` is not provided, else casts this object to
15
+ the specified type.
16
+
17
+ If this is already of the correct type, no copy is performed and the
18
+ original object is returned.
19
+
20
+ Args:
21
+ dtype (type or string): The desired type
22
+ non_blocking (bool): If ``True``, and the source is in pinned memory
23
+ and destination is on the GPU or vice versa, the copy is performed
24
+ asynchronously with respect to the host. Otherwise, the argument
25
+ has no effect.
26
+ **kwargs: For compatibility, may contain the key ``async`` in place of
27
+ the ``non_blocking`` argument. The ``async`` arg is deprecated.
28
+ """
29
+ non_blocking = _get_async_or_non_blocking("type", non_blocking, kwargs)
30
+ if dtype is None:
31
+ return self.__module__ + "." + self.__class__.__name__
32
+
33
+ if isinstance(dtype, str):
34
+ dtype = _import_dotted_name(dtype)
35
+ if dtype == type(self):
36
+ return self
37
+ if self.is_sparse:
38
+ if not dtype.is_sparse:
39
+ raise RuntimeError("Cannot cast sparse tensor to dense tensor")
40
+ new_module_name = dtype.__module__.replace(".sparse", "")
41
+ new_values_type_name = new_module_name + "." + dtype.__name__
42
+ new_values = torch.Tensor._values(self).type(new_values_type_name, non_blocking)
43
+ new_indices_type_name = new_module_name + ".LongTensor"
44
+ new_indices = torch.Tensor._indices(self).type(
45
+ new_indices_type_name, non_blocking
46
+ )
47
+ return dtype(new_indices, new_values, self.size())
48
+ if dtype.is_sparse:
49
+ raise RuntimeError("Cannot cast dense tensor to sparse tensor")
50
+ return dtype(self.size()).copy_(self, non_blocking)
51
+
52
+
53
+ def _hpu(self, device=None, non_blocking=False, **kwargs):
54
+ """Returns a copy of this object in HPU memory.
55
+
56
+ If this object is already in HPU memory and on the correct device, then
57
+ no copy is performed and the original object is returned.
58
+
59
+ Args:
60
+ device (int): The destination HPU id. Defaults to the current device.
61
+ non_blocking (bool): If ``True`` and the source is in pinned memory,
62
+ the copy will be asynchronous with respect to the host. Otherwise,
63
+ the argument has no effect.
64
+ **kwargs: For compatibility, may contain the key ``async`` in place of
65
+ the ``non_blocking`` argument.
66
+ """
67
+ non_blocking = _get_async_or_non_blocking("hpu", non_blocking, kwargs)
68
+ hpu = getattr(torch, "hpu", None)
69
+ assert hpu is not None, "HPU device module is not loaded"
70
+ if self.is_hpu:
71
+ if device is None:
72
+ device = hpu.current_device()
73
+ if self.get_device() == device:
74
+ return self
75
+ else:
76
+ if device is None:
77
+ device = -1
78
+ with hpu.device(device):
79
+ assert not self.is_sparse, "sparse storage is not supported for HPU tensors"
80
+ untyped_storage = torch.UntypedStorage(self.size(), device=torch.device("hpu"))
81
+ untyped_storage.copy_(self, non_blocking)
82
+ return untyped_storage
83
+
84
+
85
+ def _cuda(self, device=None, non_blocking=False, **kwargs):
86
+ """Returns a copy of this object in CUDA memory.
87
+
88
+ If this object is already in CUDA memory and on the correct device, then
89
+ no copy is performed and the original object is returned.
90
+
91
+ Args:
92
+ device (int): The destination GPU id. Defaults to the current device.
93
+ non_blocking (bool): If ``True`` and the source is in pinned memory,
94
+ the copy will be asynchronous with respect to the host. Otherwise,
95
+ the argument has no effect.
96
+ **kwargs: For compatibility, may contain the key ``async`` in place of
97
+ the ``non_blocking`` argument.
98
+ """
99
+ non_blocking = _get_async_or_non_blocking("cuda", non_blocking, kwargs)
100
+ if self.is_cuda:
101
+ if device is None:
102
+ device = torch.cuda.current_device()
103
+ if self.get_device() == device:
104
+ return self
105
+ else:
106
+ if device is None:
107
+ device = -1
108
+ with torch.cuda.device(device):
109
+ if self.is_sparse:
110
+ new_type = getattr(torch.cuda.sparse, self.__class__.__name__)
111
+ indices = torch.Tensor._indices(self).cuda(device, non_blocking)
112
+ values = torch.Tensor._values(self).cuda(device, non_blocking)
113
+ return new_type(indices, values, self.size())
114
+ else:
115
+ untyped_storage = torch.UntypedStorage(
116
+ self.size(), device=torch.device("cuda")
117
+ )
118
+ untyped_storage.copy_(self, non_blocking)
119
+ return untyped_storage
120
+
121
+
122
+ def _get_async_or_non_blocking(function_name, non_blocking, kwargs):
123
+ """Return the non-blocking flag given the function name and kwargs.
124
+
125
+ Args:
126
+ function_name (str): the name of the function being used.
127
+ non_blocking (bool): the default value.
128
+ **kwargs (dict): the kwargs passed to the function.
129
+ """
130
+ if not kwargs:
131
+ return non_blocking
132
+ if len(kwargs) != 1 or "async" not in kwargs:
133
+ message = "{}() got an unexpected keyword argument '{}'"
134
+ argument = list(kwargs.keys()).pop()
135
+ raise TypeError(message.format(function_name, argument))
136
+ warnings.warn("'async' is deprecated; use 'non_blocking'")
137
+ return kwargs["async"]
138
+
139
+
140
+ # Note [Don't serialize hooks]
141
+ # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
142
+ # Since time immemorial, we have serialized the backward hooks associated with
143
+ # variables. This kind of half-worked--Python can pickle global functions
144
+ # (but not closures!)--but there were problems.
145
+ #
146
+ # - It's fragile. If you serialize a backward hook into a saved
147
+ # model, and then you rename the function associated with the hook,
148
+ # now your saved model is broken and you can't load it anymore.
149
+ #
150
+ # - It's not actually used. The standard recommendation is to
151
+ # serialize the *state_dict* of a model, not the model itself
152
+ # (since this is more stable to code changes affecting the model
153
+ # serialization), and the state dict saves "data" only, thus
154
+ # stripping the backward hooks. In some cases, hooks are
155
+ # essential to the well-functioning of a model (e.g., DDP),
156
+ # but DDP already manages readding the hooks!
157
+ #
158
+ # - We didn't serialize them in many cases. Prior to #10220, we
159
+ # were dropping backward hooks in ForkingPickler. We "fixed" this
160
+ # to be convenient with other serialization sites, but lack of
161
+ # serializing backward hooks wasn't actually the root cause of
162
+ # the bug.
163
+ #
164
+ # With these cases in mind, we have decided that a better strategy
165
+ # is to just NOT serialize hooks at all.
166
+ #
167
+ # Since this is a BC-breaking change, we should warn when we previously
168
+ # serialized a hook, but no longer do so. This will be done by adding a special
169
+ # sentinel property to hooks will be used to suppress this warning. If a hook
170
+ # has the property _torch_serialize_ignore, we will not emit a warning if we
171
+ # attempt to serialize a Tensor with this hook attached to it.
172
+ #
173
+ # By the way, when _backward_hooks is skipped, we must give an EMPTY
174
+ # OrderedDict(), if you pass a None you'll run afoul #12219.
175
+
176
+
177
+ # TODO: Once we decide to break serialization FC, `storage` no longer needs to
178
+ # be a TypedStorage
179
+ def _rebuild_tensor(storage, storage_offset, size, stride):
180
+ # first construct a tensor with the correct dtype/device
181
+ t = torch.tensor([], dtype=storage.dtype, device=storage._untyped_storage.device)
182
+ return t.set_(storage._untyped_storage, storage_offset, size, stride)
183
+
184
+
185
+ def get_tensor_metadata(tensor):
186
+ # Tensor's Metadata for serializing.
187
+ # Currently, this only returns a dict[string, bool] specifing whether
188
+ # `conj` or `neg` bit is set.
189
+ assert isinstance(tensor, torch.Tensor)
190
+ return torch._C._get_tensor_metadata(tensor) # type: ignore[attr-defined]
191
+
192
+
193
+ def set_tensor_metadata(tensor, metadata):
194
+ # See `get_tensor_metadata` above
195
+ assert isinstance(metadata, dict)
196
+ assert isinstance(tensor, torch.Tensor)
197
+ torch._C._set_tensor_metadata(tensor, metadata) # type: ignore[attr-defined]
198
+
199
+
200
+ def _rebuild_tensor_v2(
201
+ storage, storage_offset, size, stride, requires_grad, backward_hooks, metadata=None
202
+ ):
203
+ tensor = _rebuild_tensor(storage, storage_offset, size, stride)
204
+ tensor.requires_grad = requires_grad
205
+ if metadata:
206
+ set_tensor_metadata(tensor, metadata)
207
+
208
+ # NB: This line exists only for backwards compatibility; the
209
+ # general expectation is that backward_hooks is an empty
210
+ # OrderedDict. See Note [Don't serialize hooks]
211
+ tensor._backward_hooks = backward_hooks
212
+ return tensor
213
+
214
+
215
+ def _rebuild_tensor_v3(
216
+ storage,
217
+ storage_offset,
218
+ size,
219
+ stride,
220
+ requires_grad,
221
+ backward_hooks,
222
+ dtype,
223
+ metadata=None,
224
+ ):
225
+ t = torch.tensor(
226
+ [],
227
+ dtype=dtype,
228
+ device=storage._untyped_storage.device,
229
+ requires_grad=requires_grad,
230
+ )
231
+ t.set_(storage._untyped_storage, storage_offset, size, stride)
232
+ if metadata:
233
+ set_tensor_metadata(t, metadata)
234
+ t._backward_hooks = backward_hooks
235
+ return t
236
+
237
+
238
+ _sparse_tensors_to_validate: List["torch.Tensor"] = []
239
+
240
+
241
+ # In _legacy_load() in serialization.py we unpickle storages after the sparse
242
+ # tensors have been already unpickled. Those storages contain data necessary for
243
+ # validating sparse tensors: indices and values. That's why sparse tensors are
244
+ # first unpickled without any validation, and then this function is called just
245
+ # before _legacy_load() returns, so that all the sparse tensors can be validated
246
+ # in bulk.
247
+ #
248
+ # The same procedure must be followed by _load() in serialization.py because due
249
+ # to Pickler semantics, we have to use the same (non-validating) function for
250
+ # unpickling sparse tensors, regardless of the caller.
251
+ def _validate_loaded_sparse_tensors():
252
+ try:
253
+ for t in _sparse_tensors_to_validate:
254
+ if t.layout is torch.sparse_coo:
255
+ torch._validate_sparse_coo_tensor_args(
256
+ t._indices(), t._values(), t.size(), t.is_coalesced()
257
+ )
258
+ elif t.layout in {
259
+ torch.sparse_csr,
260
+ torch.sparse_csc,
261
+ torch.sparse_bsr,
262
+ torch.sparse_bsc,
263
+ }:
264
+ # TODO: Validation currently involves an expensive traversal
265
+ # on CPU, which may include a device transfer.
266
+ if t.layout in {torch.sparse_csr, torch.sparse_bsr}:
267
+ compressed_indices, plain_indices = (
268
+ t.crow_indices(),
269
+ t.col_indices(),
270
+ )
271
+ else:
272
+ compressed_indices, plain_indices = (
273
+ t.ccol_indices(),
274
+ t.row_indices(),
275
+ )
276
+ torch._validate_sparse_compressed_tensor_args(
277
+ compressed_indices, plain_indices, t.values(), t.size(), t.layout
278
+ )
279
+ else:
280
+ raise NotImplementedError(
281
+ f"_validate_loaded_sparse_tensors for layout `{t.layout}`"
282
+ )
283
+
284
+ finally:
285
+ _sparse_tensors_to_validate.clear()
286
+
287
+
288
+ def _rebuild_sparse_tensor(layout, data):
289
+ """
290
+ Rebuilds a sparse tensor from its sparse storage representation.
291
+
292
+ Args:
293
+ layout (str): The sparse storage layout of the tensor.
294
+ data (tuple): The tensor's sparse storage representation.
295
+ """
296
+ if layout == torch.sparse_coo:
297
+ if len(data) == 3:
298
+ # For BC:
299
+ indices, values, size = data
300
+ is_coalesced = None
301
+ else:
302
+ indices, values, size, is_coalesced = data
303
+ result = torch.sparse_coo_tensor(
304
+ indices, values, size, check_invariants=False, is_coalesced=is_coalesced
305
+ )
306
+ _sparse_tensors_to_validate.append(result)
307
+ return result
308
+
309
+ elif layout in {
310
+ torch.sparse_csr,
311
+ torch.sparse_csc,
312
+ torch.sparse_bsr,
313
+ torch.sparse_bsc,
314
+ }:
315
+ compressed_indices, plain_indices, values, size = data
316
+ result = torch.sparse_compressed_tensor(
317
+ compressed_indices,
318
+ plain_indices,
319
+ values,
320
+ size,
321
+ layout=layout,
322
+ check_invariants=False,
323
+ )
324
+ _sparse_tensors_to_validate.append(result)
325
+ return result
326
+
327
+ raise NotImplementedError(f"rebuilding sparse tensor for layout {layout}")
328
+
329
+
330
+ def _rebuild_nested_tensor(buffer, sizes, strides, storage_offsets):
331
+ return torch._nested_view_from_buffer(buffer, sizes, strides, storage_offsets)
332
+
333
+
334
+ def _rebuild_device_tensor_from_numpy(data, dtype, device, requires_grad):
335
+ tensor = torch.from_numpy(data).to(dtype=dtype, device=device)
336
+ tensor.requires_grad = requires_grad
337
+ return tensor
338
+
339
+
340
+ # Should not be used, only here to be able to load Tensors serialized with older versions of pytorch
341
+ _rebuild_xla_tensor = _rebuild_device_tensor_from_numpy
342
+
343
+
344
+ def _rebuild_meta_tensor_no_storage(dtype, size, stride, requires_grad):
345
+ return torch.empty_strided(
346
+ size, stride, dtype=dtype, device="meta", requires_grad=requires_grad
347
+ )
348
+
349
+
350
+ def _rebuild_wrapper_subclass(
351
+ cls, dtype, size, stride, storage_offset, layout, device, requires_grad
352
+ ):
353
+ return torch.Tensor._make_wrapper_subclass( # type: ignore[attr-defined]
354
+ cls,
355
+ size,
356
+ strides=stride,
357
+ storage_offset=storage_offset,
358
+ layout=layout,
359
+ device=device,
360
+ requires_grad=requires_grad,
361
+ )
362
+
363
+
364
+ # TODO: Once we decide to break serialization FC, `storage` no longer needs to
365
+ # be a TypedStorage
366
+ def _rebuild_qtensor(
367
+ storage,
368
+ storage_offset,
369
+ size,
370
+ stride,
371
+ quantizer_params,
372
+ requires_grad,
373
+ backward_hooks,
374
+ ):
375
+ qscheme = quantizer_params[0]
376
+ if qscheme == torch.per_tensor_affine:
377
+ _, scale, zero_point = quantizer_params
378
+ tensor = torch._empty_affine_quantized(
379
+ size,
380
+ scale=scale,
381
+ zero_point=zero_point,
382
+ dtype=storage.dtype,
383
+ device=storage.device,
384
+ )
385
+ elif qscheme in (torch.per_channel_affine, torch.per_channel_affine_float_qparams):
386
+ _, scales, zero_points, axis = quantizer_params
387
+ if type(scales) is list and type(zero_points) is list:
388
+ if qscheme == torch.per_channel_affine:
389
+ scales = torch.tensor(scales, dtype=torch.double, device=storage.device)
390
+ zero_points = torch.tensor(
391
+ zero_points, dtype=torch.long, device=storage.device
392
+ )
393
+ else:
394
+ scales = torch.tensor(scales, dtype=torch.float, device=storage.device)
395
+ zero_points = torch.tensor(
396
+ zero_points, dtype=torch.float, device=storage.device
397
+ )
398
+ tensor = torch._empty_per_channel_affine_quantized(
399
+ size,
400
+ scales=scales,
401
+ zero_points=zero_points,
402
+ axis=axis,
403
+ dtype=storage.dtype,
404
+ device=storage.device,
405
+ )
406
+ else:
407
+ raise RuntimeError(f"Can't deserialize quantized tensor with qscheme {qscheme}")
408
+ tensor.set_(storage, storage_offset, size, stride)
409
+ tensor.requires_grad = requires_grad
410
+ # NB: This line exists only for backwards compatibility; the
411
+ # general expectation is that backward_hooks is an empty
412
+ # OrderedDict. See Note [Don't serialize hooks]
413
+ tensor._backward_hooks = backward_hooks
414
+ return tensor
415
+
416
+
417
+ def _rebuild_parameter(data, requires_grad, backward_hooks):
418
+ param = torch.nn.Parameter(data, requires_grad)
419
+ # NB: This line exists only for backwards compatibility; the
420
+ # general expectation is that backward_hooks is an empty
421
+ # OrderedDict. See Note [Don't serialize hooks]
422
+ param._backward_hooks = backward_hooks
423
+
424
+ return param
425
+
426
+
427
+ def _rebuild_parameter_with_state(data, requires_grad, backward_hooks, state):
428
+ param = torch.nn.Parameter(data, requires_grad)
429
+ # NB: This line exists only for backwards compatibility; the
430
+ # general expectation is that backward_hooks is an empty
431
+ # OrderedDict. See Note [Don't serialize hooks]
432
+ param._backward_hooks = backward_hooks
433
+
434
+ # Restore state on Parameter like python attr.
435
+ param = _set_obj_state(param, state)
436
+ return param
437
+
438
+
439
+ def _get_obj_state(obj):
440
+ # Get the state of the python subclass
441
+ # This loosely mimicks the function on the object class but since Tensor do not inherit
442
+ # from it, we cannot call that function directly
443
+ # https://github.com/python/cpython/blob/c83919bd635f4433f1c6ae8504996a9fe3c215e5/Objects/typeobject.c#L4891
444
+ # Note that starting with Python 3.11, this `__getstate__` is always defined and thus
445
+ # the else branch will never be taken.
446
+ getstate_fn = getattr(obj, "__getstate__", None)
447
+ if getstate_fn:
448
+ state = getstate_fn()
449
+ else:
450
+ slots_to_save = copyreg._slotnames(obj.__class__) # type: ignore[attr-defined]
451
+ if slots_to_save:
452
+ state = (
453
+ obj.__dict__,
454
+ {
455
+ name: getattr(obj, name)
456
+ for name in slots_to_save
457
+ if hasattr(obj, name)
458
+ },
459
+ )
460
+ else:
461
+ state = obj.__dict__
462
+
463
+ return state
464
+
465
+
466
+ def _set_obj_state(obj, state):
467
+ if isinstance(state, tuple):
468
+ if not len(state) == 2:
469
+ raise RuntimeError(f"Invalid serialized state: {state}")
470
+ dict_state = state[0]
471
+ slots_state = state[1]
472
+ else:
473
+ dict_state = state
474
+ slots_state = None
475
+
476
+ # Starting with Python 3.11, the __dict__ attribute is lazily created
477
+ # and is serialized as None when not needed.
478
+ if dict_state:
479
+ for k, v in dict_state.items():
480
+ setattr(obj, k, v)
481
+
482
+ if slots_state:
483
+ for k, v in slots_state.items():
484
+ setattr(obj, k, v)
485
+ return obj
486
+
487
+
488
+ def _import_dotted_name(name):
489
+ components = name.split(".")
490
+ obj = __import__(components[0])
491
+ for component in components[1:]:
492
+ obj = getattr(obj, component)
493
+ return obj
494
+
495
+
496
+ # Taken from python 3.5 docs
497
+ def _accumulate(iterable, fn=lambda x, y: x + y):
498
+ "Return running totals"
499
+ # _accumulate([1,2,3,4,5]) --> 1 3 6 10 15
500
+ # _accumulate([1,2,3,4,5], operator.mul) --> 1 2 6 24 120
501
+ it = iter(iterable)
502
+ try:
503
+ total = next(it)
504
+ except StopIteration:
505
+ return
506
+ yield total
507
+ for element in it:
508
+ total = fn(total, element)
509
+ yield total
510
+
511
+
512
+ def _flatten_dense_tensors(tensors):
513
+ """Flatten dense tensors into a contiguous 1D buffer. Assume tensors are of
514
+ same dense type.
515
+
516
+ Since inputs are dense, the resulting tensor will be a concatenated 1D
517
+ buffer. Element-wise operation on this buffer will be equivalent to
518
+ operating individually.
519
+
520
+ Args:
521
+ tensors (Iterable[Tensor]): dense tensors to flatten.
522
+
523
+ Returns:
524
+ A contiguous 1D buffer containing input tensors.
525
+ """
526
+ return torch._C._nn.flatten_dense_tensors(tensors)
527
+
528
+
529
+ def _flatten_sparse_tensors(tensors):
530
+ """Flatten sparse tensors into two contiguous 1D buffers, one of indices and
531
+ one of values. Assume tensors are of same sparse type.
532
+
533
+ Args:
534
+ tensors (Iterable[Tensor]): sparse tensors to flatten.
535
+
536
+ Returns:
537
+ A tuple of two contiguous 1D buffers, one containing input tensors'
538
+ indices and the other containing the values.
539
+ """
540
+ flat_indices = torch._C._nn.flatten_dense_tensors(
541
+ [torch.Tensor._indices(t) for t in tensors]
542
+ )
543
+ flat_values = torch._C._nn.flatten_dense_tensors(
544
+ [torch.Tensor._values(t) for t in tensors]
545
+ )
546
+ return flat_indices, flat_values
547
+
548
+
549
+ def _unflatten_dense_tensors(flat, tensors):
550
+ """View a flat buffer using the sizes of tensors. Assume that tensors are of
551
+ same dense type, and that flat is given by _flatten_dense_tensors.
552
+
553
+ Args:
554
+ flat (Tensor): flattened dense tensors to unflatten.
555
+ tensors (Iterable[Tensor]): dense tensors whose sizes will be used to
556
+ unflatten flat.
557
+
558
+ Returns:
559
+ Unflattened dense tensors with sizes same as tensors and values from
560
+ flat.
561
+ """
562
+ return torch._C._nn.unflatten_dense_tensors(flat, tensors)
563
+
564
+
565
+ def _unflatten_sparse_tensors(flat, tensors):
566
+ """View flat buffer (containing indices and values) using the sizes of
567
+ tensors. Assume that tensors are of same sparse type, and that flat is given
568
+ by _flatten_sparse_tensors.
569
+
570
+ Args:
571
+ flat (tuple(Tensor, Tensor)): flattened indices and values of sparse
572
+ tensors to unflatten.
573
+ tensors (Iterable[Tensor]): sparse tensors whose sizes will be used to
574
+ unflatten flat.
575
+
576
+ Returns:
577
+ Unflattened sparse tensors with sizes same as tensors and values from
578
+ flat.
579
+ """
580
+ flat_indices, flat_values = flat
581
+ indices = torch._C._nn.unflatten_dense_tensors(
582
+ flat_indices, [torch.Tensor._indices(t) for t in tensors]
583
+ )
584
+ values = torch._C._nn.unflatten_dense_tensors(
585
+ flat_values, [torch.Tensor._values(t) for t in tensors]
586
+ )
587
+ outputs = []
588
+ for t, i, v in zip(tensors, indices, values):
589
+ outputs.append(t.new(i, v, t.size()))
590
+ return tuple(outputs)
591
+
592
+
593
+ def _reorder_tensors_as(tensors, ordered_tensors):
594
+ """Assume that tensors are of same order as ordered_tensors within their
595
+ types, e.g., from _take_tensors. Reorder them to be of same order as
596
+ ordered_tensors.
597
+
598
+ Args:
599
+ tensors (Iterable[Tensor]): tensors to be reordered. They should be of
600
+ the same order as ordered_tensors within their own types.
601
+ ordered_tensors (Iterable[Tensor]): tensors whose order will be the
602
+ reference.
603
+
604
+ Returns:
605
+ Ordered tuple of tensors with contents from tensors and order of
606
+ ordered_tensors.
607
+ """
608
+ type_dict = defaultdict(list)
609
+ for tensor in tensors:
610
+ type_dict[tensor.type()].append(tensor)
611
+ type_dict_ = {t: iter(coll) for t, coll in type_dict.items()}
612
+ return tuple(next(type_dict_[tensor.type()]) for tensor in ordered_tensors)
613
+
614
+
615
+ def _take_tensors(tensors, size_limit):
616
+ """Group tensors into chunks. This generator yields a chunk at each time,
617
+ each containing tensors of same type up to certain byte limit in total size.
618
+
619
+ Args:
620
+ tensors (Sequence): A sequence of tensors to be separated into chunks.
621
+ size_limit (int): The limit of each chunk in bytes.
622
+
623
+ Yields:
624
+ Blocks of tensors of same type and within size_limit. The yielded
625
+ tensors are only ordered as the original sequence within its types.
626
+ """
627
+ buf_dict: DefaultDict[str, List] = defaultdict(lambda: [[], 0])
628
+ for tensor in tensors:
629
+ t = tensor.type()
630
+ if tensor.is_sparse:
631
+ indices = torch.Tensor._indices(tensor)
632
+ values = torch.Tensor._values(tensor)
633
+ size = (
634
+ indices.numel() * indices.element_size()
635
+ + values.numel() * values.element_size()
636
+ )
637
+ else:
638
+ size = tensor.numel() * tensor.element_size()
639
+ buf_and_size = buf_dict[t]
640
+ if buf_and_size[1] + size > size_limit and buf_and_size[1] > 0:
641
+ yield buf_and_size[0]
642
+ buf_and_size = buf_dict[t] = [[], 0]
643
+ buf_and_size[0].append(tensor)
644
+ buf_and_size[1] += size
645
+ for buf, _ in buf_dict.values():
646
+ if len(buf) > 0:
647
+ yield buf
648
+
649
+
650
+ # annotation decorator to get annotations in a way that is compatible
651
+ # with both Python 2 and 3
652
+ def annotate(ret, **kwargs):
653
+ def dec(fun):
654
+ fun.__annotations__ = dict(kwargs)
655
+ fun.__annotations__["return"] = ret
656
+ return fun
657
+
658
+ return dec
659
+
660
+
661
+ def render_call(fn, args, kwargs):
662
+ str_fn = torch.overrides.resolve_name(fn)
663
+ if str_fn is None:
664
+ str_fn = str(fn)
665
+
666
+ str_args: List[str] = []
667
+ with torch._tensor_str.printoptions(threshold=0, edgeitems=0):
668
+ str_args.extend(repr(a) for a in args)
669
+ str_args.extend(f"{k}={repr(v)}" for k, v in kwargs.items())
670
+ r = f"{str_fn}({', '.join(str_args)})"
671
+ return r
672
+
673
+
674
+ # NOTE [ Python Traceback Reference Cycle Problem ]
675
+ #
676
+ # When using sys.exc_info(), it is important to **not** store the exc_info[2],
677
+ # which is the traceback, because otherwise you will run into the traceback
678
+ # reference cycle problem, i.e., the traceback holding reference to the frame,
679
+ # and the frame (which holds reference to all the object in its temporary scope)
680
+ # holding reference the traceback.
681
+
682
+
683
+ class KeyErrorMessage(str):
684
+ r"""str subclass that returns itself in repr"""
685
+
686
+ def __repr__(self):
687
+ return self
688
+
689
+
690
+ class ExceptionWrapper:
691
+ r"""Wraps an exception plus traceback to communicate across threads"""
692
+
693
+ def __init__(self, exc_info=None, where="in background"):
694
+ # It is important that we don't store exc_info, see
695
+ # NOTE [ Python Traceback Reference Cycle Problem ]
696
+ if exc_info is None:
697
+ exc_info = sys.exc_info()
698
+ self.exc_type = exc_info[0]
699
+ self.exc_msg = "".join(traceback.format_exception(*exc_info))
700
+ self.where = where
701
+
702
+ def reraise(self):
703
+ r"""Reraises the wrapped exception in the current thread"""
704
+ # Format a message such as: "Caught ValueError in DataLoader worker
705
+ # process 2. Original Traceback:", followed by the traceback.
706
+ msg = f"Caught {self.exc_type.__name__} {self.where}.\nOriginal {self.exc_msg}"
707
+ if self.exc_type == KeyError:
708
+ # KeyError calls repr() on its argument (usually a dict key). This
709
+ # makes stack traces unreadable. It will not be changed in Python
710
+ # (https://bugs.python.org/issue2651), so we work around it.
711
+ msg = KeyErrorMessage(msg)
712
+ elif getattr(self.exc_type, "message", None):
713
+ # Some exceptions have first argument as non-str but explicitly
714
+ # have message field
715
+ raise self.exc_type(message=msg)
716
+ try:
717
+ exception = self.exc_type(msg)
718
+ except TypeError:
719
+ # If the exception takes multiple arguments, don't try to
720
+ # instantiate since we don't know how to
721
+ raise RuntimeError(msg) from None
722
+ raise exception
723
+
724
+
725
+ def _get_available_device_type():
726
+ if torch.cuda.is_available():
727
+ return "cuda"
728
+ if hasattr(torch, "xpu") and torch.xpu.is_available(): # type: ignore[attr-defined]
729
+ return "xpu"
730
+ custom_backend_name = torch._C._get_privateuse1_backend_name()
731
+ custom_device_mod = getattr(torch, custom_backend_name, None)
732
+ if custom_device_mod and custom_device_mod.is_available():
733
+ return custom_backend_name
734
+ # add more available device types here
735
+ return None
736
+
737
+
738
+ def _get_device_attr(get_member):
739
+ device_type = _get_available_device_type()
740
+ if device_type and device_type.lower() == "cuda":
741
+ return get_member(torch.cuda)
742
+ if device_type and device_type.lower() == "xpu":
743
+ return get_member(torch.xpu) # type: ignore[attr-defined]
744
+ if device_type == torch._C._get_privateuse1_backend_name():
745
+ return get_member(getattr(torch, device_type))
746
+ # add more available device types here
747
+ return None
748
+
749
+
750
+ def _get_current_device_index():
751
+ # current device index
752
+ return _get_device_attr(lambda m: m.current_device())
753
+
754
+
755
+ def _get_all_device_indices():
756
+ # all device index
757
+ return _get_device_attr(lambda m: list(range(m.device_count())))
758
+
759
+
760
+ def _get_devices_properties(device_ids):
761
+ # all device properties
762
+ return [_get_device_attr(lambda m: m.get_device_properties(i)) for i in device_ids]
763
+
764
+
765
+ def get_current_device_index() -> int:
766
+ r"""Checks if there are CUDA devices available and
767
+ returns the device index of the current default CUDA device.
768
+ Returns -1 in case there are no CUDA devices available.
769
+ Arguments: ``None``
770
+ """
771
+ if torch.cuda.device_count() > 0:
772
+ return torch.cuda.current_device()
773
+ return -1
774
+
775
+
776
+ def _get_device_index(
777
+ device: Any, optional: bool = False, allow_cpu: bool = False
778
+ ) -> int:
779
+ r"""Gets the device index from :attr:`device`, which can be a torch.device
780
+ object, a Python integer, or ``None``.
781
+
782
+ If :attr:`device` is a torch.device object, returns the device index if it
783
+ has index. Note that for a device without a specified index,
784
+ i.e., ``torch.device('xxx')``, this will return the current default
785
+ device of that type if :attr:`optional` is ``True``. If :attr:`allow_cpu` is ``True``,
786
+ CPU devices will be accepted and ``-1`` will be returned in this case.
787
+
788
+ If :attr:`device` is a Python integer, it is returned as is.
789
+
790
+ If :attr:`device` is ``None``, this will return the current default
791
+ device of the supported runtime platform if :attr:`optional` is ``True``.
792
+ i.e., the current default CUDA device will be returned if CUDA runtime is supported.
793
+ """
794
+ if isinstance(device, str):
795
+ device = torch.device(device)
796
+ device_idx: Optional[int] = None
797
+ if isinstance(device, torch.device):
798
+ if not allow_cpu and device.type == "cpu":
799
+ raise ValueError(f"Expected a non cpu device, but got: {device}")
800
+ device_idx = -1 if device.type == "cpu" else device.index
801
+ if isinstance(device, int):
802
+ device_idx = device
803
+ if device_idx is None:
804
+ if optional:
805
+ # The eager API _get_current_device_index uses `lambda` functions which are
806
+ # not supported in JIT and hence not scriptable. The JIT equivalent API to get
807
+ # the current device index is `get_current_device_index()` which can
808
+ # be scripted. We use is_scripting to check the mode we are in and call the
809
+ # appropriate API.
810
+ if torch.jit.is_scripting():
811
+ device_idx = get_current_device_index()
812
+ else:
813
+ device_idx = _get_current_device_index()
814
+ else:
815
+ raise ValueError(
816
+ f"Expected a torch.device with a specified index or an integer, but got:{device}"
817
+ )
818
+ return device_idx
819
+
820
+
821
+ def _handle_complex(tensor):
822
+ """
823
+ Returns a real view of a tensor if complex dtype else just the tensor
824
+ need to check if a UninitializedParameter because otherwise checking is_complex is an error for a LazyModule
825
+ """
826
+ return (
827
+ torch.view_as_real(tensor)
828
+ if not isinstance(tensor, torch.nn.UninitializedParameter)
829
+ and tensor.is_complex()
830
+ else tensor
831
+ )
832
+
833
+
834
+ def _element_size(dtype):
835
+ """
836
+ Returns the element size for a dtype, in bytes
837
+ """
838
+ if not isinstance(dtype, torch.dtype):
839
+ raise RuntimeError(f"expected torch.dtype, but got {type(dtype)}")
840
+
841
+ if dtype.is_complex:
842
+ return torch.finfo(dtype).bits >> 2
843
+ elif dtype.is_floating_point:
844
+ return torch.finfo(dtype).bits >> 3
845
+ elif dtype == torch.bool:
846
+ # NOTE: torch.bool is not supported in torch.iinfo()
847
+ return 1
848
+ else:
849
+ return torch.iinfo(dtype).bits >> 3
850
+
851
+
852
+ class _ClassPropertyDescriptor:
853
+ def __init__(self, fget, fset=None):
854
+ self.fget = fget
855
+
856
+ def __get__(self, instance, owner=None):
857
+ if owner is None:
858
+ owner = type(instance)
859
+ return self.fget.__get__(instance, owner)()
860
+
861
+
862
+ def classproperty(func):
863
+ if not isinstance(func, (classmethod, staticmethod)):
864
+ func = classmethod(func)
865
+ return _ClassPropertyDescriptor(func)
866
+
867
+
868
+ # Whether we are compiling with torch.compile or not
869
+ def is_compiling():
870
+ return False
871
+
872
+
873
+ def _functionalize_sync(t):
874
+ # This code lives in python instead of C++ since conditioning on a certain python subclass
875
+ # is much more of a pain in C++.
876
+ from torch._subclasses.functional_tensor import (
877
+ FunctionalTensor,
878
+ maybe_disable_functional_mode,
879
+ )
880
+
881
+ ctx = (
882
+ maybe_disable_functional_mode
883
+ if isinstance(t, FunctionalTensor)
884
+ else nullcontext
885
+ )
886
+ if isinstance(t, FunctionalTensor):
887
+ # If a FunctionalTensorMode is active while syncing, we don't want it to intercept any ops that get called
888
+ # when we sync our inner tensor.
889
+ # Why?
890
+ # (1) If there are input mutations in the graph, then they will be re-applied during
891
+ # AOTAutograd when we call _sync() from inside of our functionalization kernels.
892
+ # (2) _sync() causes us to regenerate our updated the tensor from the updated base,
893
+ # which dispatches to a bunch of view ops
894
+ # (3) The input to these view ops is our inner FunctionalTensorWrapper
895
+ # (since the sync was called from C++), not the python FunctionalTensor
896
+ # (4) if a python FunctionalTensorMode is active, it will complain when it intercepts
897
+ # the view op, since it will see an input that is a C++ FunctionalTensorWrapper
898
+ # (aka a normal torch.Tensor) instead of a python `FunctionalTensor).
899
+ maybe_functional_mode = torch._C._unset_dispatch_mode(
900
+ torch._C._TorchDispatchModeKey.FUNCTIONAL
901
+ )
902
+ try:
903
+ torch._functionalize_sync(t.elem) # type: ignore[attr-defined]
904
+ finally:
905
+ if maybe_functional_mode is not None:
906
+ torch._C._set_dispatch_mode(maybe_functional_mode)
907
+ else:
908
+ torch._functionalize_sync(t) # type: ignore[attr-defined]
909
+
910
+
911
+ @functools.lru_cache(2)
912
+ def _get_device_module(device_type: str):
913
+ device_module = getattr(torch, device_type, None)
914
+ if device_module is None:
915
+ raise RuntimeError(
916
+ f"Device '{device_type}' does not have a corresponding module registered as 'torch.{device_type}'."
917
+ )
918
+ return device_module
env-llmeval/lib/python3.10/site-packages/torch/_vmap_internals.py ADDED
@@ -0,0 +1,237 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import functools
2
+ import warnings
3
+ from typing import Any, Callable, List, Optional, Tuple, Union
4
+
5
+ import torch
6
+ from torch import Tensor
7
+ from torch.utils._pytree import _broadcast_to_and_flatten, tree_flatten, tree_unflatten
8
+
9
+ in_dims_t = Union[int, Tuple]
10
+ out_dims_t = Union[int, Tuple[int, ...]]
11
+
12
+
13
+ # Checks that all args-to-be-batched have the same batch dim size
14
+ def _validate_and_get_batch_size(
15
+ flat_in_dims: List[Optional[int]], flat_args: List
16
+ ) -> int:
17
+ batch_sizes = [
18
+ arg.size(in_dim)
19
+ for in_dim, arg in zip(flat_in_dims, flat_args)
20
+ if in_dim is not None
21
+ ]
22
+ if batch_sizes and any(size != batch_sizes[0] for size in batch_sizes):
23
+ raise ValueError(
24
+ f"vmap: Expected all tensors to have the same size in the mapped "
25
+ f"dimension, got sizes {batch_sizes} for the mapped dimension"
26
+ )
27
+ return batch_sizes[0]
28
+
29
+
30
+ def _num_outputs(batched_outputs: Union[Tensor, Tuple[Tensor, ...]]) -> int:
31
+ if isinstance(batched_outputs, tuple):
32
+ return len(batched_outputs)
33
+ return 1
34
+
35
+
36
+ # If value is a tuple, check it has length `num_elements`.
37
+ # If value is not a tuple, make a tuple with `value` repeated `num_elements` times
38
+ def _as_tuple(
39
+ value: Any, num_elements: int, error_message_lambda: Callable[[], str]
40
+ ) -> Tuple:
41
+ if not isinstance(value, tuple):
42
+ return (value,) * num_elements
43
+ if len(value) != num_elements:
44
+ raise ValueError(error_message_lambda())
45
+ return value
46
+
47
+
48
+ # Creates BatchedTensors for every Tensor in arg that should be batched.
49
+ # Returns the (potentially) batched arguments and the batch_size.
50
+ def _create_batched_inputs(
51
+ in_dims: in_dims_t, args: Tuple, vmap_level: int, func: Callable
52
+ ) -> Tuple[Tuple, int]:
53
+ if not isinstance(in_dims, int) and not isinstance(in_dims, tuple):
54
+ raise ValueError(
55
+ f"vmap({_get_name(func)}, in_dims={in_dims}, ...)(<inputs>): "
56
+ f"expected `in_dims` to be int or a (potentially nested) tuple "
57
+ f"matching the structure of inputs, got: {type(in_dims)}."
58
+ )
59
+ if len(args) == 0:
60
+ raise ValueError(
61
+ f"vmap({_get_name(func)})(<inputs>): got no inputs. Maybe you forgot to add "
62
+ f"inputs, or you are trying to vmap over a function with no inputs. "
63
+ f"The latter is unsupported."
64
+ )
65
+
66
+ flat_args, args_spec = tree_flatten(args)
67
+ flat_in_dims = _broadcast_to_and_flatten(in_dims, args_spec)
68
+ if flat_in_dims is None:
69
+ raise ValueError(
70
+ f"vmap({_get_name(func)}, in_dims={in_dims}, ...)(<inputs>): "
71
+ f"in_dims is not compatible with the structure of `inputs`. "
72
+ f"in_dims has structure {tree_flatten(in_dims)[1]} but inputs "
73
+ f"has structure {args_spec}."
74
+ )
75
+
76
+ for arg, in_dim in zip(flat_args, flat_in_dims):
77
+ if not isinstance(in_dim, int) and in_dim is not None:
78
+ raise ValueError(
79
+ f"vmap({_get_name(func)}, in_dims={in_dims}, ...)(<inputs>): "
80
+ f"Got in_dim={in_dim} for an input but in_dim must be either "
81
+ f"an integer dimension or None."
82
+ )
83
+ if isinstance(in_dim, int) and not isinstance(arg, Tensor):
84
+ raise ValueError(
85
+ f"vmap({_get_name(func)}, in_dims={in_dims}, ...)(<inputs>): "
86
+ f"Got in_dim={in_dim} for an input but the input is of type "
87
+ f"{type(arg)}. We cannot vmap over non-Tensor arguments, "
88
+ f"please use None as the respective in_dim"
89
+ )
90
+ if in_dim is not None and (in_dim < 0 or in_dim >= arg.dim()):
91
+ raise ValueError(
92
+ f"vmap({_get_name(func)}, in_dims={in_dims}, ...)(<inputs>): "
93
+ f"Got in_dim={in_dim} for some input, but that input is a Tensor "
94
+ f"of dimensionality {arg.dim()} so expected in_dim to satisfy "
95
+ f"0 <= in_dim < {arg.dim()}."
96
+ )
97
+
98
+ batch_size = _validate_and_get_batch_size(flat_in_dims, flat_args)
99
+ # See NOTE [Ignored _remove_batch_dim, _add_batch_dim]
100
+ batched_inputs = [
101
+ arg if in_dim is None else torch._add_batch_dim(arg, in_dim, vmap_level)
102
+ for in_dim, arg in zip(flat_in_dims, flat_args)
103
+ ]
104
+ return tree_unflatten(batched_inputs, args_spec), batch_size
105
+
106
+
107
+ # Undos the batching (and any batch dimensions) associated with the `vmap_level`.
108
+ def _unwrap_batched(
109
+ batched_outputs: Union[Tensor, Tuple[Tensor, ...]],
110
+ out_dims: out_dims_t,
111
+ vmap_level: int,
112
+ batch_size: int,
113
+ func: Callable,
114
+ allow_none_pass_through: bool = False,
115
+ ) -> Tuple:
116
+ num_outputs = _num_outputs(batched_outputs)
117
+ out_dims_as_tuple = _as_tuple(
118
+ out_dims,
119
+ num_outputs,
120
+ lambda: f"vmap({_get_name(func)}, ..., out_dims={out_dims}): `out_dims` must "
121
+ f"have one dim per output (got {num_outputs} outputs) of {_get_name(func)}.",
122
+ )
123
+
124
+ # NOTE [Ignored _remove_batch_dim, _add_batch_dim]
125
+ # There is something wrong with our type bindings for functions that begin
126
+ # with '_', see #40397.
127
+ if isinstance(batched_outputs, Tensor):
128
+ out_dim = out_dims_as_tuple[0]
129
+ return torch._remove_batch_dim(batched_outputs, vmap_level, batch_size, out_dim) # type: ignore[return-value]
130
+ if allow_none_pass_through:
131
+ return tuple(
132
+ (
133
+ torch._remove_batch_dim(out, vmap_level, batch_size, out_dim)
134
+ if out is not None
135
+ else None
136
+ )
137
+ for out, out_dim in zip(batched_outputs, out_dims_as_tuple)
138
+ )
139
+ else:
140
+ return tuple(
141
+ torch._remove_batch_dim(out, vmap_level, batch_size, out_dim)
142
+ for out, out_dim in zip(batched_outputs, out_dims_as_tuple)
143
+ )
144
+
145
+
146
+ # Checks that `fn` returned one or more Tensors and nothing else.
147
+ # NB: A python function that return multiple arguments returns a single tuple,
148
+ # so we are effectively checking that `outputs` is a single Tensor or a tuple of
149
+ # Tensors.
150
+ def _validate_outputs(outputs: Any, func: Callable) -> None:
151
+ if isinstance(outputs, Tensor):
152
+ return
153
+ if not isinstance(outputs, tuple):
154
+ raise ValueError(
155
+ f"vmap({_get_name(func)}, ...): `{_get_name(func)}` must only return "
156
+ f"Tensors, got type {type(outputs)} as the return."
157
+ )
158
+ for idx, output in enumerate(outputs):
159
+ if isinstance(output, Tensor):
160
+ continue
161
+ raise ValueError(
162
+ f"vmap({_get_name(func)}, ...): `{_get_name(func)}` must only return "
163
+ f"Tensors, got type {type(output)} for return {idx}."
164
+ )
165
+
166
+
167
+ def _check_out_dims_is_int_or_int_tuple(out_dims: out_dims_t, func: Callable) -> None:
168
+ if isinstance(out_dims, int):
169
+ return
170
+ if not isinstance(out_dims, tuple) or not all(
171
+ isinstance(out_dim, int) for out_dim in out_dims
172
+ ):
173
+ raise ValueError(
174
+ f"vmap({_get_name(func)}, ..., out_dims={out_dims}): `out_dims` must be "
175
+ f"an int or a tuple of int representing where in the outputs the "
176
+ f"vmapped dimension should appear."
177
+ )
178
+
179
+
180
+ def _get_name(func: Callable):
181
+ if hasattr(func, "__name__"):
182
+ return func.__name__
183
+
184
+ # Not all callables have __name__, in fact, only static functions/methods do.
185
+ # A callable created via functools.partial or an nn.Module, to name some
186
+ # examples, don't have a __name__.
187
+ return repr(func)
188
+
189
+
190
+ # vmap(func)(inputs) wraps all Tensor inputs to be batched in BatchedTensors,
191
+ # sends those into func, and then unwraps the output BatchedTensors. Operations
192
+ # on BatchedTensors perform the batched operations that the user is asking for.
193
+ def vmap(func: Callable, in_dims: in_dims_t = 0, out_dims: out_dims_t = 0) -> Callable:
194
+ """
195
+ Please use torch.vmap instead of this API.
196
+ """
197
+ warnings.warn(
198
+ "Please use torch.vmap instead of torch._vmap_internals.vmap. ",
199
+ stacklevel=2,
200
+ )
201
+ return _vmap(func, in_dims, out_dims)
202
+
203
+
204
+ # A version of vmap but without the initial "experimental prototype" warning
205
+ def _vmap(
206
+ func: Callable,
207
+ in_dims: in_dims_t = 0,
208
+ out_dims: out_dims_t = 0,
209
+ allow_none_pass_through: bool = False,
210
+ ) -> Callable:
211
+ # The `allow_none_pass_through` argument is a temporary workaround may be removed.
212
+ # Currently it enables us to wrap the call in `autograd.grad` to the autograd engine,
213
+ # which may return None if any of the inputs are unused. See the issue discussing this:
214
+ # https://github.com/facebookresearch/functorch/issues/159.
215
+ @functools.wraps(func)
216
+ def wrapped(*args):
217
+ _check_out_dims_is_int_or_int_tuple(out_dims, func)
218
+ vmap_level = torch._C._vmapmode_increment_nesting()
219
+ try:
220
+ batched_inputs, batch_size = _create_batched_inputs(
221
+ in_dims, args, vmap_level, func
222
+ )
223
+ batched_outputs = func(*batched_inputs)
224
+ if not allow_none_pass_through:
225
+ _validate_outputs(batched_outputs, func)
226
+ return _unwrap_batched(
227
+ batched_outputs,
228
+ out_dims,
229
+ vmap_level,
230
+ batch_size,
231
+ func,
232
+ allow_none_pass_through=allow_none_pass_through,
233
+ )
234
+ finally:
235
+ torch._C._vmapmode_decrement_nesting()
236
+
237
+ return wrapped
env-llmeval/lib/python3.10/site-packages/torch/_weights_only_unpickler.py ADDED
@@ -0,0 +1,304 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Unpickler restricted to loading only state dicts
2
+ # Restrict constructing types to a list defined in _get_allowed_globals()
3
+ # Restrict BUILD operation to `Tensor`, `Parameter` and `OrderedDict` types only
4
+ # Restrict APPEND/APPENDS to `list`
5
+ # In `GLOBALS` operation do not do class lookup by name, but rather rely on dictionary
6
+ # defined by `_get_allowed_globals()` method, that contains:
7
+ # - torch types (Storage, dtypes, Tensor, `torch.Size`),
8
+ # - `torch._utils._rebuild` functions.
9
+ # - `torch.nn.Parameter`
10
+ # - `collections.OrderedDict`
11
+
12
+ # Based of https://github.com/python/cpython/blob/main/Lib/pickle.py
13
+ # Expected to be useful for loading PyTorch model weights
14
+ # For example:
15
+ # data = urllib.request.urlopen('https://download.pytorch.org/models/resnet50-0676ba61.pth').read()
16
+ # buf = io.BytesIO(data)
17
+ # weights = torch.load(buf, weights_only = True)
18
+
19
+ import functools as _functools
20
+ from collections import OrderedDict
21
+ from pickle import (
22
+ APPEND,
23
+ APPENDS,
24
+ BINFLOAT,
25
+ BINGET,
26
+ BININT,
27
+ BININT1,
28
+ BININT2,
29
+ BINPERSID,
30
+ BINPUT,
31
+ BINUNICODE,
32
+ BUILD,
33
+ bytes_types,
34
+ decode_long,
35
+ EMPTY_DICT,
36
+ EMPTY_LIST,
37
+ EMPTY_SET,
38
+ EMPTY_TUPLE,
39
+ GLOBAL,
40
+ LONG1,
41
+ LONG_BINGET,
42
+ LONG_BINPUT,
43
+ MARK,
44
+ NEWFALSE,
45
+ NEWOBJ,
46
+ NEWTRUE,
47
+ NONE,
48
+ PROTO,
49
+ REDUCE,
50
+ SETITEM,
51
+ SETITEMS,
52
+ SHORT_BINSTRING,
53
+ STOP,
54
+ TUPLE,
55
+ TUPLE1,
56
+ TUPLE2,
57
+ TUPLE3,
58
+ UnpicklingError,
59
+ )
60
+ from struct import unpack
61
+ from sys import maxsize
62
+ from typing import Any, Dict, List
63
+
64
+ import torch
65
+
66
+
67
+ # Unpickling machinery
68
+ @_functools.lru_cache(maxsize=1)
69
+ def _get_allowed_globals():
70
+ rc: Dict[str, Any] = {
71
+ "collections.OrderedDict": OrderedDict,
72
+ "torch.nn.parameter.Parameter": torch.nn.Parameter,
73
+ "torch.serialization._get_layout": torch.serialization._get_layout,
74
+ "torch.Size": torch.Size,
75
+ "torch.Tensor": torch.Tensor,
76
+ }
77
+ # dtype
78
+ for t in [
79
+ torch.complex32,
80
+ torch.complex64,
81
+ torch.complex128,
82
+ torch.float8_e5m2,
83
+ torch.float8_e4m3fn,
84
+ torch.float16,
85
+ torch.float32,
86
+ torch.float64,
87
+ torch.int8,
88
+ torch.int16,
89
+ torch.int32,
90
+ torch.int64,
91
+ ]:
92
+ rc[str(t)] = t
93
+ # Tensor classes
94
+ for tt in torch._tensor_classes:
95
+ rc[f"{tt.__module__}.{tt.__name__}"] = tt
96
+ # Storage classes
97
+ for ts in torch._storage_classes:
98
+ if ts not in (torch.storage.TypedStorage, torch.storage.UntypedStorage):
99
+ # Wrap legacy storage types in a dummy class
100
+ rc[f"{ts.__module__}.{ts.__name__}"] = torch.serialization.StorageType(
101
+ ts.__name__
102
+ )
103
+ else:
104
+ rc[f"{ts.__module__}.{ts.__name__}"] = ts
105
+ # Rebuild functions
106
+ for f in [
107
+ torch._utils._rebuild_parameter,
108
+ torch._utils._rebuild_tensor,
109
+ torch._utils._rebuild_tensor_v2,
110
+ torch._utils._rebuild_tensor_v3,
111
+ torch._utils._rebuild_sparse_tensor,
112
+ torch._utils._rebuild_meta_tensor_no_storage,
113
+ torch._utils._rebuild_nested_tensor,
114
+ ]:
115
+ rc[f"torch._utils.{f.__name__}"] = f
116
+
117
+ # Handles Tensor Subclasses, Tensor's with attributes.
118
+ # NOTE: It calls into above rebuild functions for regular Tensor types.
119
+ rc["torch._tensor._rebuild_from_type_v2"] = torch._tensor._rebuild_from_type_v2
120
+ return rc
121
+
122
+
123
+ class Unpickler:
124
+ def __init__(self, file, *, encoding: str = "bytes"):
125
+ self.encoding = encoding
126
+ self.readline = file.readline
127
+ self.read = file.read
128
+ self.memo: Dict[int, Any] = {}
129
+
130
+ def load(self):
131
+ """Read a pickled object representation from the open file.
132
+
133
+ Return the reconstituted object hierarchy specified in the file.
134
+ """
135
+ self.metastack = []
136
+ self.stack: List[Any] = []
137
+ self.append = self.stack.append
138
+ read = self.read
139
+ readline = self.readline
140
+ while True:
141
+ key = read(1)
142
+ if not key:
143
+ raise EOFError
144
+ assert isinstance(key, bytes_types)
145
+ # Risky operators
146
+ if key[0] == GLOBAL[0]:
147
+ module = readline()[:-1].decode("utf-8")
148
+ name = readline()[:-1].decode("utf-8")
149
+ full_path = f"{module}.{name}"
150
+ if full_path in _get_allowed_globals():
151
+ self.append(_get_allowed_globals()[full_path])
152
+ else:
153
+ raise RuntimeError(f"Unsupported class {full_path}")
154
+ elif key[0] == NEWOBJ[0]:
155
+ args = self.stack.pop()
156
+ cls = self.stack.pop()
157
+ if cls is not torch.nn.Parameter:
158
+ raise RuntimeError(f"Trying to instantiate unsupported class {cls}")
159
+ self.append(torch.nn.Parameter(*args))
160
+ elif key[0] == REDUCE[0]:
161
+ args = self.stack.pop()
162
+ func = self.stack[-1]
163
+ if func not in _get_allowed_globals().values():
164
+ raise RuntimeError(
165
+ f"Trying to call reduce for unrecognized function {func}"
166
+ )
167
+ self.stack[-1] = func(*args)
168
+ elif key[0] == BUILD[0]:
169
+ state = self.stack.pop()
170
+ inst = self.stack[-1]
171
+ if type(inst) is torch.Tensor:
172
+ # Legacy unpickling
173
+ inst.set_(*state)
174
+ elif type(inst) is torch.nn.Parameter:
175
+ inst.__setstate__(state)
176
+ elif type(inst) is OrderedDict:
177
+ inst.__dict__.update(state)
178
+ else:
179
+ raise RuntimeError(
180
+ f"Can only build Tensor, parameter or dict objects, but got {type(inst)}"
181
+ )
182
+ # Stack manipulation
183
+ elif key[0] == APPEND[0]:
184
+ item = self.stack.pop()
185
+ list_obj = self.stack[-1]
186
+ if type(list_obj) is not list:
187
+ raise RuntimeError(
188
+ f"Can only append to lists, but got {type(list_obj)}"
189
+ )
190
+ list_obj.append(item)
191
+ elif key[0] == APPENDS[0]:
192
+ items = self.pop_mark()
193
+ list_obj = self.stack[-1]
194
+ if type(list_obj) is not list:
195
+ raise RuntimeError(
196
+ f"Can only extend lists, but got {type(list_obj)}"
197
+ )
198
+ list_obj.extend(items)
199
+ elif key[0] == SETITEM[0]:
200
+ (v, k) = (self.stack.pop(), self.stack.pop())
201
+ self.stack[-1][k] = v
202
+ elif key[0] == SETITEMS[0]:
203
+ items = self.pop_mark()
204
+ for i in range(0, len(items), 2):
205
+ self.stack[-1][items[i]] = items[i + 1]
206
+ elif key[0] == MARK[0]:
207
+ self.metastack.append(self.stack)
208
+ self.stack = []
209
+ self.append = self.stack.append
210
+ elif key[0] == TUPLE[0]:
211
+ items = self.pop_mark()
212
+ self.append(tuple(items))
213
+ elif key[0] == TUPLE1[0]:
214
+ self.stack[-1] = (self.stack[-1],)
215
+ elif key[0] == TUPLE2[0]:
216
+ self.stack[-2:] = [(self.stack[-2], self.stack[-1])]
217
+ elif key[0] == TUPLE3[0]:
218
+ self.stack[-3:] = [(self.stack[-3], self.stack[-2], self.stack[-1])]
219
+ # Basic types construction
220
+ elif key[0] == NONE[0]:
221
+ self.append(None)
222
+ elif key[0] == NEWFALSE[0]:
223
+ self.append(False)
224
+ elif key[0] == NEWTRUE[0]:
225
+ self.append(True)
226
+ elif key[0] == EMPTY_TUPLE[0]:
227
+ self.append(())
228
+ elif key[0] == EMPTY_LIST[0]:
229
+ self.append([])
230
+ elif key[0] == EMPTY_DICT[0]:
231
+ self.append({})
232
+ elif key[0] == EMPTY_SET[0]:
233
+ self.append(set())
234
+ elif key[0] == BININT[0]:
235
+ self.append(unpack("<i", read(4))[0])
236
+ elif key[0] == BININT1[0]:
237
+ self.append(self.read(1)[0])
238
+ elif key[0] == BININT2[0]:
239
+ self.append(unpack("<H", read(2))[0])
240
+ elif key[0] == BINFLOAT[0]:
241
+ self.append(unpack(">d", self.read(8))[0])
242
+ elif key[0] == BINUNICODE[0]:
243
+ strlen = unpack("<I", read(4))[0]
244
+ if strlen > maxsize:
245
+ raise RuntimeError("String is too long")
246
+ strval = str(read(strlen), "utf-8", "surrogatepass")
247
+ self.append(strval)
248
+ elif key[0] == SHORT_BINSTRING[0]:
249
+ strlen = read(1)[0]
250
+ strdata = read(strlen)
251
+ if self.encoding != "bytes":
252
+ strdata = strdata.decode(self.encoding, "strict")
253
+ self.append(strdata)
254
+ elif key[0] == BINPERSID[0]:
255
+ pid = self.stack.pop()
256
+ # Only allow persistent load of storage
257
+ if type(pid) is not tuple and not type(pid) is not int:
258
+ raise RuntimeError(
259
+ f"persistent_load id must be tuple or int, but got {type(pid)}"
260
+ )
261
+ if (
262
+ type(pid) is tuple
263
+ and len(pid) > 0
264
+ and torch.serialization._maybe_decode_ascii(pid[0]) != "storage"
265
+ ):
266
+ raise RuntimeError(
267
+ f"Only persistent_load of storage is allowed, but got {pid[0]}"
268
+ )
269
+ self.append(self.persistent_load(pid))
270
+ elif key[0] in [BINGET[0], LONG_BINGET[0]]:
271
+ idx = (read(1) if key[0] == BINGET[0] else unpack("<I", read(4)))[0]
272
+ self.append(self.memo[idx])
273
+ elif key[0] in [BINPUT[0], LONG_BINPUT[0]]:
274
+ i = (read(1) if key[0] == BINPUT[0] else unpack("<I", read(4)))[0]
275
+ if i < 0:
276
+ raise ValueError("negative argument")
277
+ self.memo[i] = self.stack[-1]
278
+ elif key[0] == LONG1[0]:
279
+ n = read(1)[0]
280
+ data = read(n)
281
+ self.append(decode_long(data))
282
+ # First and last deserializer ops
283
+ elif key[0] == PROTO[0]:
284
+ # Read and ignore proto version
285
+ read(1)[0]
286
+ elif key[0] == STOP[0]:
287
+ rc = self.stack.pop()
288
+ return rc
289
+ else:
290
+ raise RuntimeError(f"Unsupported operand {key[0]}")
291
+
292
+ # Return a list of items pushed in the stack after last MARK instruction.
293
+ def pop_mark(self):
294
+ items = self.stack
295
+ self.stack = self.metastack.pop()
296
+ self.append = self.stack.append
297
+ return items
298
+
299
+ def persistent_load(self, pid):
300
+ raise UnpicklingError("unsupported persistent id encountered")
301
+
302
+
303
+ def load(file, *, encoding: str = "ASCII"):
304
+ return Unpickler(file, encoding=encoding).load()
env-llmeval/lib/python3.10/site-packages/torch/backends/__init__.py ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import types
2
+ from contextlib import contextmanager
3
+
4
+ # The idea for this parameter is that we forbid bare assignment
5
+ # to torch.backends.<cudnn|mkldnn>.enabled and friends when running our
6
+ # test suite, where it's very easy to forget to undo the change
7
+ # later.
8
+ __allow_nonbracketed_mutation_flag = True
9
+
10
+
11
+ def disable_global_flags():
12
+ global __allow_nonbracketed_mutation_flag
13
+ __allow_nonbracketed_mutation_flag = False
14
+
15
+
16
+ def flags_frozen():
17
+ return not __allow_nonbracketed_mutation_flag
18
+
19
+
20
+ @contextmanager
21
+ def __allow_nonbracketed_mutation():
22
+ global __allow_nonbracketed_mutation_flag
23
+ old = __allow_nonbracketed_mutation_flag
24
+ __allow_nonbracketed_mutation_flag = True
25
+ try:
26
+ yield
27
+ finally:
28
+ __allow_nonbracketed_mutation_flag = old
29
+
30
+
31
+ class ContextProp:
32
+ def __init__(self, getter, setter):
33
+ self.getter = getter
34
+ self.setter = setter
35
+
36
+ def __get__(self, obj, objtype):
37
+ return self.getter()
38
+
39
+ def __set__(self, obj, val):
40
+ if not flags_frozen():
41
+ self.setter(val)
42
+ else:
43
+ raise RuntimeError(
44
+ "not allowed to set %s flags "
45
+ "after disable_global_flags; please use flags() context manager instead"
46
+ % obj.__name__
47
+ )
48
+
49
+
50
+ class PropModule(types.ModuleType):
51
+ def __init__(self, m, name):
52
+ super().__init__(name)
53
+ self.m = m
54
+
55
+ def __getattr__(self, attr):
56
+ return self.m.__getattribute__(attr)
57
+
58
+
59
+ from torch.backends import (
60
+ cpu as cpu,
61
+ cuda as cuda,
62
+ cudnn as cudnn,
63
+ mkl as mkl,
64
+ mkldnn as mkldnn,
65
+ mps as mps,
66
+ openmp as openmp,
67
+ quantized as quantized,
68
+ )
env-llmeval/lib/python3.10/site-packages/torch/backends/mkldnn/__init__.py ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import sys
2
+ from contextlib import contextmanager
3
+
4
+ import torch
5
+ from torch.backends import __allow_nonbracketed_mutation, ContextProp, PropModule
6
+
7
+
8
+ def is_available():
9
+ r"""Return whether PyTorch is built with MKL-DNN support."""
10
+ return torch._C._has_mkldnn
11
+
12
+
13
+ VERBOSE_OFF = 0
14
+ VERBOSE_ON = 1
15
+ VERBOSE_ON_CREATION = 2
16
+
17
+
18
+ class verbose:
19
+ """
20
+ On-demand oneDNN (former MKL-DNN) verbosing functionality.
21
+
22
+ To make it easier to debug performance issues, oneDNN can dump verbose
23
+ messages containing information like kernel size, input data size and
24
+ execution duration while executing the kernel. The verbosing functionality
25
+ can be invoked via an environment variable named `DNNL_VERBOSE`. However,
26
+ this methodology dumps messages in all steps. Those are a large amount of
27
+ verbose messages. Moreover, for investigating the performance issues,
28
+ generally taking verbose messages for one single iteration is enough.
29
+ This on-demand verbosing functionality makes it possible to control scope
30
+ for verbose message dumping. In the following example, verbose messages
31
+ will be dumped out for the second inference only.
32
+
33
+ .. highlight:: python
34
+ .. code-block:: python
35
+
36
+ import torch
37
+ model(data)
38
+ with torch.backends.mkldnn.verbose(torch.backends.mkldnn.VERBOSE_ON):
39
+ model(data)
40
+
41
+ Args:
42
+ level: Verbose level
43
+ - ``VERBOSE_OFF``: Disable verbosing
44
+ - ``VERBOSE_ON``: Enable verbosing
45
+ - ``VERBOSE_ON_CREATION``: Enable verbosing, including oneDNN kernel creation
46
+ """
47
+
48
+ def __init__(self, level):
49
+ self.level = level
50
+
51
+ def __enter__(self):
52
+ if self.level == VERBOSE_OFF:
53
+ return
54
+ st = torch._C._verbose.mkldnn_set_verbose(self.level)
55
+ assert (
56
+ st
57
+ ), "Failed to set MKLDNN into verbose mode. Please consider to disable this verbose scope."
58
+ return self
59
+
60
+ def __exit__(self, exc_type, exc_val, exc_tb):
61
+ torch._C._verbose.mkldnn_set_verbose(VERBOSE_OFF)
62
+ return False
63
+
64
+
65
+ def set_flags(_enabled):
66
+ orig_flags = (torch._C._get_mkldnn_enabled(),)
67
+ torch._C._set_mkldnn_enabled(_enabled)
68
+ return orig_flags
69
+
70
+
71
+ @contextmanager
72
+ def flags(enabled=False):
73
+ with __allow_nonbracketed_mutation():
74
+ orig_flags = set_flags(enabled)
75
+ try:
76
+ yield
77
+ finally:
78
+ with __allow_nonbracketed_mutation():
79
+ set_flags(orig_flags[0])
80
+
81
+
82
+ class MkldnnModule(PropModule):
83
+ def __init__(self, m, name):
84
+ super().__init__(m, name)
85
+
86
+ enabled = ContextProp(torch._C._get_mkldnn_enabled, torch._C._set_mkldnn_enabled)
87
+
88
+
89
+ # Cool stuff from torch/backends/cudnn/__init__.py and
90
+ # https://stackoverflow.com/questions/2447353/getattr-on-a-module/7668273#7668273
91
+ sys.modules[__name__] = MkldnnModule(sys.modules[__name__], __name__)
env-llmeval/lib/python3.10/site-packages/torch/backends/mkldnn/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (3.61 kB). View file
 
env-llmeval/lib/python3.10/site-packages/torch/backends/mps/__init__.py ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from functools import lru_cache as _lru_cache
2
+
3
+ import torch
4
+ from ...library import Library as _Library
5
+
6
+ __all__ = ["is_built", "is_available", "is_macos13_or_newer"]
7
+
8
+
9
+ def is_built() -> bool:
10
+ r"""Return whether PyTorch is built with MPS support.
11
+
12
+ Note that this doesn't necessarily mean MPS is available; just that
13
+ if this PyTorch binary were run a machine with working MPS drivers
14
+ and devices, we would be able to use it.
15
+ """
16
+ return torch._C._has_mps
17
+
18
+
19
+ @_lru_cache
20
+ def is_available() -> bool:
21
+ r"""Return a bool indicating if MPS is currently available."""
22
+ return torch._C._mps_is_available()
23
+
24
+
25
+ @_lru_cache
26
+ def is_macos13_or_newer(minor: int = 0) -> bool:
27
+ r"""Return a bool indicating whether MPS is running on MacOS 13 or newer."""
28
+ return torch._C._mps_is_on_macos_13_or_newer(minor)
29
+
30
+
31
+ _lib = None
32
+
33
+
34
+ def _init():
35
+ r"""Register prims as implementation of var_mean and group_norm."""
36
+ global _lib
37
+ if is_built() is False or _lib is not None:
38
+ return
39
+ from ..._decomp.decompositions import (
40
+ native_group_norm_backward as _native_group_norm_backward,
41
+ )
42
+ from ..._refs import native_group_norm as _native_group_norm, var_mean as _var_mean
43
+
44
+ _lib = _Library("aten", "IMPL")
45
+ _lib.impl("var_mean.correction", _var_mean, "MPS")
46
+ _lib.impl("native_group_norm", _native_group_norm, "MPS")
47
+ _lib.impl("native_group_norm_backward", _native_group_norm_backward, "MPS")
env-llmeval/lib/python3.10/site-packages/torch/backends/mps/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (1.73 kB). View file
 
env-llmeval/lib/python3.10/site-packages/torch/backends/openmp/__init__.py ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ import torch
2
+
3
+
4
+ def is_available():
5
+ r"""Return whether PyTorch is built with OpenMP support."""
6
+ return torch._C.has_openmp
env-llmeval/lib/python3.10/site-packages/torch/backends/openmp/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (385 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/torch/backends/opt_einsum/__init__.py ADDED
@@ -0,0 +1,110 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import sys
2
+ import warnings
3
+ from contextlib import contextmanager
4
+ from functools import lru_cache as _lru_cache
5
+ from typing import Any
6
+
7
+ from torch.backends import __allow_nonbracketed_mutation, ContextProp, PropModule
8
+
9
+ try:
10
+ import opt_einsum as _opt_einsum # type: ignore[import]
11
+ except ImportError:
12
+ _opt_einsum = None
13
+
14
+
15
+ @_lru_cache
16
+ def is_available() -> bool:
17
+ r"""Return a bool indicating if opt_einsum is currently available."""
18
+ return _opt_einsum is not None
19
+
20
+
21
+ def get_opt_einsum() -> Any:
22
+ r"""Return the opt_einsum package if opt_einsum is currently available, else None."""
23
+ return _opt_einsum
24
+
25
+
26
+ def _set_enabled(_enabled: bool) -> None:
27
+ if not is_available() and _enabled:
28
+ raise ValueError(
29
+ f"opt_einsum is not available, so setting `enabled` to {_enabled} will not reap "
30
+ "the benefits of calculating an optimal path for einsum. torch.einsum will "
31
+ "fall back to contracting from left to right. To enable this optimal path "
32
+ "calculation, please install opt-einsum."
33
+ )
34
+ global enabled
35
+ enabled = _enabled
36
+
37
+
38
+ def _get_enabled() -> bool:
39
+ return enabled
40
+
41
+
42
+ def _set_strategy(_strategy: str) -> None:
43
+ if not is_available():
44
+ raise ValueError(
45
+ f"opt_einsum is not available, so setting `strategy` to {_strategy} will not be meaningful. "
46
+ "torch.einsum will bypass path calculation and simply contract from left to right. "
47
+ "Please install opt_einsum or unset `strategy`."
48
+ )
49
+ if not enabled:
50
+ raise ValueError(
51
+ f"opt_einsum is not enabled, so setting a `strategy` to {_strategy} will not be meaningful. "
52
+ "torch.einsum will bypass path calculation and simply contract from left to right. "
53
+ "Please set `enabled` to `True` as well or unset `strategy`."
54
+ )
55
+ if _strategy not in ["auto", "greedy", "optimal"]:
56
+ raise ValueError(
57
+ f"`strategy` must be one of the following: [auto, greedy, optimal] but is {_strategy}"
58
+ )
59
+ global strategy
60
+ strategy = _strategy
61
+
62
+
63
+ def _get_strategy() -> str:
64
+ return strategy
65
+
66
+
67
+ def set_flags(_enabled=None, _strategy=None):
68
+ orig_flags = (enabled, None if not is_available() else strategy)
69
+ if _enabled is not None:
70
+ _set_enabled(_enabled)
71
+ if _strategy is not None:
72
+ _set_strategy(_strategy)
73
+ return orig_flags
74
+
75
+
76
+ @contextmanager
77
+ def flags(enabled=None, strategy=None):
78
+ with __allow_nonbracketed_mutation():
79
+ orig_flags = set_flags(enabled, strategy)
80
+ try:
81
+ yield
82
+ finally:
83
+ # recover the previous values
84
+ with __allow_nonbracketed_mutation():
85
+ set_flags(*orig_flags)
86
+
87
+
88
+ # The magic here is to allow us to intercept code like this:
89
+ #
90
+ # torch.backends.opt_einsum.enabled = True
91
+
92
+
93
+ class OptEinsumModule(PropModule):
94
+ def __init__(self, m, name):
95
+ super().__init__(m, name)
96
+
97
+ global enabled
98
+ enabled = ContextProp(_get_enabled, _set_enabled)
99
+ global strategy
100
+ strategy = None
101
+ if is_available():
102
+ strategy = ContextProp(_get_strategy, _set_strategy)
103
+
104
+
105
+ # This is the sys.modules replacement trick, see
106
+ # https://stackoverflow.com/questions/2447353/getattr-on-a-module/7668273#7668273
107
+ sys.modules[__name__] = OptEinsumModule(sys.modules[__name__], __name__)
108
+
109
+ enabled = True if is_available() else False
110
+ strategy = "auto" if is_available() else None
env-llmeval/lib/python3.10/site-packages/torch/backends/opt_einsum/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (3.46 kB). View file
 
env-llmeval/lib/python3.10/site-packages/torch/backends/xnnpack/__init__.py ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import sys
2
+ import types
3
+
4
+ import torch
5
+
6
+
7
+ class _XNNPACKEnabled:
8
+ def __get__(self, obj, objtype):
9
+ return torch._C._is_xnnpack_enabled()
10
+
11
+ def __set__(self, obj, val):
12
+ raise RuntimeError("Assignment not supported")
13
+
14
+
15
+ class XNNPACKEngine(types.ModuleType):
16
+ def __init__(self, m, name):
17
+ super().__init__(name)
18
+ self.m = m
19
+
20
+ def __getattr__(self, attr):
21
+ return self.m.__getattribute__(attr)
22
+
23
+ enabled = _XNNPACKEnabled()
24
+
25
+
26
+ # This is the sys.modules replacement trick, see
27
+ # https://stackoverflow.com/questions/2447353/getattr-on-a-module/7668273#7668273
28
+ sys.modules[__name__] = XNNPACKEngine(sys.modules[__name__], __name__)